input
stringlengths
33
5k
output
stringlengths
32
5k
# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Tuple, Union import mmcv import numpy as np from mmengine.utils import is_str def palette_val(palette: List[tuple]) -> List[tuple]: """Convert palette to matplotlib palette. Args: palette (List[tuple]): A list of color tuples. Returns: List[tuple[float]]: A list of RGB matplotlib color tuples. """ new_palette = [] for color in palette: color = [c / 255 for c in color] new_palette.append(tuple(color)) return new_palette def get_palette(palette: Union[List[tuple], str, tuple], num_classes: int) -> List[Tuple[int]]: """Get palette from various inputs. Args: palette (list[tuple] | str | tuple): palette inputs. num_classes (int): the number of classes. Returns: list[tuple[int]]: A list of color tuples. """ assert isinstance(num_classes, int) if isinstance(palette, list): dataset_palette = palette elif isinstance(palette, tuple): dataset_palette = [palette] * num_classes elif palette == 'random' or palette is None: state = np.random.get_state() # random color np.random.seed(42) palette = np.random.randint(0, 256, size=(num_classes, 3)) np.random.set_state(state) dataset_palette = [tuple(c) for c in palette] elif palette == 'coco': from mmdet.datasets import CocoDataset, CocoPanopticDataset dataset_palette = CocoDataset.METAINFO['PALETTE'] if len(dataset_palette) < num_classes: dataset_palette = CocoPanopticDataset.METAINFO['PALETTE'] elif palette == 'citys': from mmdet.datasets import CityscapesDataset dataset_palette = CityscapesDataset.METAINFO['PALETTE'] elif palette == 'voc': from mmdet.datasets import VOCDataset dataset_palette = VOCDataset.METAINFO['PALETTE'] elif is_str(palette): dataset_palette = [mmcv.color_val(palette)[::-1]] * num_classes else: raise TypeError(f'Invalid type for palette: {type(palette)}') assert len(dataset_palette) >= num_classes, \ 'The length of palette should not be less than `num_classes`.' return dataset_palette def _get_adaptive_scales(areas: np.ndarray, min_area: int = 800, max_area: int = 30000) -> np.ndarray: """Get adaptive scales according to areas. The scale range is [0.5, 1.0]. When the area is less than ``min_area``, the scale is 0.5 while the area is larger than ``max_area``, the scale is 1.0. Args: areas (ndarray): The areas of bboxes or masks with the shape of (n, ). min_area (int): Lower bound areas for adaptive scales. Defaults to 800. max_area (int): Upper bound areas for adaptive scales. Defaults to 30000. Returns: ndarray: The adaotive scales with the shape of (n, ). """ scales = 0.5 + (areas - min_area) / (max_area - min_area) scales = np.clip(scales, 0.5, 1.0) return scales def jitter_color(color: tuple) -> tuple: """Randomly jitter the given color in order to better distinguish instances with the same class. Args: color (tuple): The RGB color tuple. Each value is between [0, 255]. Returns: tuple: The jittered color tuple. """ jitter = np.random.rand(3) jitter = (jitter / np.linalg.norm(jitter) - 0.5) * 0.5 * 255 color = np.clip(jitter + color, 0, 255).astype(np.uint8) return tuple(color)
# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Tuple, Union import mmcv import numpy as np from mmengine.utils import is_str def palette_val(palette: List[tuple]) -> List[tuple]: """Convert palette to matplotlib palette. Args: palette (List[tuple]): A list of color tuples. Returns: List[tuple[float]]: A list of RGB matplotlib color tuples. """ new_palette = [] for color in palette: color = [c / 255 for c in color] new_palette.append(tuple(color)) return new_palette def get_palette(palette: Union[List[tuple], str, tuple], num_classes: int) -> List[Tuple[int]]: """Get palette from various inputs. Args: palette (list[tuple] | str | tuple): palette inputs. num_classes (int): the number of classes. Returns: list[tuple[int]]: A list of color tuples. """ assert isinstance(num_classes, int) if isinstance(palette, list): dataset_palette = palette elif isinstance(palette, tuple): dataset_palette = [palette] * num_classes elif palette == 'random' or palette is None: state = np.random.get_state() # random color np.random.seed(42) palette = np.random.randint(0, 256, size=(num_classes, 3)) np.random.set_state(state) dataset_palette = [tuple(c) for c in palette] elif palette == 'coco': from mmdet.datasets import CocoDataset, CocoPanopticDataset dataset_palette = CocoDataset.METAINFO['PALETTE'] if len(dataset_palette) < num_classes: dataset_palette = CocoPanopticDataset.METAINFO['PALETTE'] elif palette == 'citys': from mmdet.datasets import CityscapesDataset dataset_palette = CityscapesDataset.METAINFO['PALETTE'] elif palette == 'voc': from mmdet.datasets import VOCDataset dataset_palette = VOCDataset.METAINFO['PALETTE'] elif is_str(palette): dataset_palette = [mmcv.color_val(palette)[::-1]] * num_classes else: raise TypeError(f'Invalid type for palette: {type(palette)}') assert len(dataset_palette) >= num_classes, \ 'The length of palette should not be less than `num_classes`.' return dataset_palette def _get_adaptive_scales(areas: np.ndarray, min_area: int = 800, max_area: int = 30000) -> np.ndarray: """Get adaptive scales according to areas. The scale range is [0.5, 1.0]. When the area is less than ``min_area``, the scale is 0.5 while the area is larger than ``max_area``, the scale is 1.0. Args: areas (ndarray): The areas of bboxes or masks with the shape of (n, ). min_area (int): Lower bound areas for adaptive scales. Defaults to 800. max_area (int): Upper bound areas for adaptive scales. Defaults to 30000. Returns: ndarray: The adaotive scales with the shape of (n, ). """ scales = 0.5 + (areas - min_area) / (max_area - min_area) scales = np.clip(scales, 0.5, 1.0) return scales
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers import util from sentence_transformers.losses.MultipleNegativesRankingLoss import MultipleNegativesRankingLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseMultipleNegativesRankingLoss(MultipleNegativesRankingLoss): def __init__(self, model: SparseEncoder, scale: float = 1.0, similarity_fct=util.dot_score) -> None: """ Given a list of (anchor, positive) pairs or (anchor, positive, negative) triplets, this loss optimizes the following: 1. Given an anchor (e.g. a question), assign the highest similarity to the corresponding positive (i.e. answer) out of every single positive and negative (e.g. all answers) in the batch. If you provide the optional negatives, they will all be used as extra options from which the model must pick the correct positive. Within reason, the harder this "picking" is, the stronger the model will become. Because of this, a higher batch size results in more in-batch negatives, which then increases performance (to a point). This loss function works great to train embeddings for retrieval setups where you have positive pairs (e.g. (query, answer)) as it will sample in each batch ``n-1`` negative docs randomly. This loss is also known as InfoNCE loss, SimCSE loss, Cross-Entropy Loss with in-batch negatives, or simply in-batch negatives loss. Args: model: SparseEncoder model scale: Output of similarity function is multiplied by scale value similarity_fct: similarity function between sentence embeddings. By default, dot product. Can also be set to cosine similarity (and then set scale to 20) Requirements: 1. Need to be used in SpladeLoss or CSRLoss as a loss function. 2. (anchor, positive) pairs or (anchor, positive, negative) triplets Inputs: +-------------------------------------------------+--------+ | Texts | Labels | +=================================================+========+ | (anchor, positive) pairs | none | +-------------------------------------------------+--------+ | (anchor, positive, negative) triplets | none | +-------------------------------------------------+--------+ | (anchor, positive, negative_1, ..., negative_n) | none | +-------------------------------------------------+--------+ Recommendations: - Use ``BatchSamplers.NO_DUPLICATES`` (:class:`docs <sentence_transformers.training_args.BatchSamplers>`) to ensure that no in-batch negatives are duplicates of the anchor or positive samples. Relations: - :class:`SparseCachedMultipleNegativesRankingLoss` is equivalent to this loss, but it uses caching that allows for much higher batch sizes (and thus better performance) without extra memory usage. However, it is slightly slower. - :class:`SparseGISTEmbedLoss` is equivalent to this loss, but uses a guide model to guide the in-batch negative sample selection. `SparseGISTEmbedLoss` yields a stronger training signal at the cost of some training overhead. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], } ) loss = losses.SpladeLoss( model=model, loss=losses.SparseMultipleNegativesRankingLoss(model), document_regularizer_weight=3e-5, query_regularizer_weight=5e-5 ) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model, scale=scale, similarity_fct=similarity_fct) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError( "SparseMultipleNegativesRankingLoss should not be used alone. Use it with SpladeLoss or CSRLoss." )
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers import util from sentence_transformers.losses.MultipleNegativesRankingLoss import MultipleNegativesRankingLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseMultipleNegativesRankingLoss(MultipleNegativesRankingLoss): def __init__(self, model: SparseEncoder, scale: float = 1.0, similarity_fct=util.dot_score) -> None: """ Given a list of (anchor, positive) pairs or (anchor, positive, negative) triplets, this loss optimizes the following: 1. Given an anchor (e.g. a question), assign the highest similarity to the corresponding positive (i.e. answer) out of every single positive and negative (e.g. all answers) in the batch. If you provide the optional negatives, they will all be used as extra options from which the model must pick the correct positive. Within reason, the harder this "picking" is, the stronger the model will become. Because of this, a higher batch size results in more in-batch negatives, which then increases performance (to a point). This loss function works great to train embeddings for retrieval setups where you have positive pairs (e.g. (query, answer)) as it will sample in each batch ``n-1`` negative docs randomly. This loss is also known as InfoNCE loss, SimCSE loss, Cross-Entropy Loss with in-batch negatives, or simply in-batch negatives loss. Args: model: SparseEncoder model scale: Output of similarity function is multiplied by scale value similarity_fct: similarity function between sentence embeddings. By default, dot product. Can also be set to cosine similarity (and then set scale to 20) Requirements: 1. Need to be used in SpladeLoss or CSRLoss as a loss function. 2. (anchor, positive) pairs or (anchor, positive, negative) triplets Inputs: +-------------------------------------------------+--------+ | Texts | Labels | +=================================================+========+ | (anchor, positive) pairs | none | +-------------------------------------------------+--------+ | (anchor, positive, negative) triplets | none | +-------------------------------------------------+--------+ | (anchor, positive, negative_1, ..., negative_n) | none | +-------------------------------------------------+--------+ Recommendations: - Use ``BatchSamplers.NO_DUPLICATES`` (:class:`docs <sentence_transformers.training_args.BatchSamplers>`) to ensure that no in-batch negatives are duplicates of the anchor or positive samples. Relations: - :class:`SparseCachedMultipleNegativesRankingLoss` is equivalent to this loss, but it uses caching that allows for much higher batch sizes (and thus better performance) without extra memory usage. However, it is slightly slower. - :class:`SparseGISTEmbedLoss` is equivalent to this loss, but uses a guide model to guide the in-batch negative sample selection. `SparseGISTEmbedLoss` yields a stronger training signal at the cost of some training overhead. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], } ) loss = losses.SpladeLoss( model=model, loss=losses.SparseMultipleNegativesRankingLoss(model), corpus_regularizer_weight=3e-5, query_regularizer_weight=5e-5 ) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model, scale=scale, similarity_fct=similarity_fct) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError( "SparseMultipleNegativesRankingLoss should not be used alone. Use it with SpladeLoss or CSRLoss." )
import os import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDocument from docarray.typing.tensor.audio.audio_ndarray import AudioNdArray from docarray.typing.tensor.audio.audio_torch_tensor import AudioTorchTensor @pytest.mark.parametrize( 'tensor,cls_audio_tensor,cls_tensor', [ (torch.zeros(1000, 2), AudioTorchTensor, torch.Tensor), (np.zeros((1000, 2)), AudioNdArray, np.ndarray), ], ) def test_set_audio_tensor(tensor, cls_audio_tensor, cls_tensor): class MyAudioDoc(BaseDocument): tensor: cls_audio_tensor doc = MyAudioDoc(tensor=tensor) assert isinstance(doc.tensor, cls_audio_tensor) assert isinstance(doc.tensor, cls_tensor) assert (doc.tensor == tensor).all() @pytest.mark.parametrize( 'cls_tensor,tensor', [ (AudioNdArray, np.zeros((1000, 2))), (AudioTorchTensor, torch.zeros(1000, 2)), (AudioTorchTensor, np.zeros((1000, 2))), ], ) def test_validation(cls_tensor, tensor): arr = parse_obj_as(cls_tensor, tensor) assert isinstance(arr, cls_tensor) @pytest.mark.parametrize( 'cls_tensor,tensor', [ (AudioNdArray, torch.zeros(1000, 2)), (AudioNdArray, 'hello'), (AudioTorchTensor, 'hello'), ], ) def test_illegal_validation(cls_tensor, tensor): match = str(cls_tensor).split('.')[-1][:-2] with pytest.raises(ValueError, match=match): parse_obj_as(cls_tensor, tensor) @pytest.mark.parametrize( 'cls_tensor,tensor,proto_key', [ (AudioTorchTensor, torch.zeros(1000, 2), AudioTorchTensor._proto_type_name), (AudioNdArray, np.zeros((1000, 2)), AudioNdArray._proto_type_name), ], ) def test_proto_tensor(cls_tensor, tensor, proto_key): tensor = parse_obj_as(cls_tensor, tensor) proto = tensor._to_node_protobuf() assert proto_key in str(proto) @pytest.mark.parametrize( 'cls_tensor,tensor', [ (AudioTorchTensor, torch.zeros(1000, 2)), (AudioNdArray, np.zeros((1000, 2))), ], ) def test_save_audio_tensor_to_wav_file(cls_tensor, tensor, tmpdir): tmp_file = str(tmpdir / 'tmp.wav') audio_tensor = parse_obj_as(cls_tensor, tensor) audio_tensor.save_to_wav_file(tmp_file) assert os.path.isfile(tmp_file)
import os import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDocument from docarray.typing.tensor.audio.audio_ndarray import AudioNdArray from docarray.typing.tensor.audio.audio_torch_tensor import AudioTorchTensor @pytest.mark.parametrize( 'tensor,cls_audio_tensor,cls_tensor', [ (torch.zeros(1000, 2), AudioTorchTensor, torch.Tensor), (np.zeros((1000, 2)), AudioNdArray, np.ndarray), ], ) def test_set_audio_tensor(tensor, cls_audio_tensor, cls_tensor): class MyAudioDoc(BaseDocument): tensor: cls_audio_tensor doc = MyAudioDoc(tensor=tensor) assert isinstance(doc.tensor, cls_audio_tensor) assert isinstance(doc.tensor, cls_tensor) assert (doc.tensor == tensor).all() @pytest.mark.parametrize( 'cls_tensor,tensor', [ (AudioNdArray, np.zeros((1000, 2))), (AudioTorchTensor, torch.zeros(1000, 2)), (AudioTorchTensor, np.zeros((1000, 2))), ], ) def test_validation(cls_tensor, tensor): arr = parse_obj_as(cls_tensor, tensor) assert isinstance(arr, cls_tensor) @pytest.mark.parametrize( 'cls_tensor,tensor', [ (AudioNdArray, torch.zeros(1000, 2)), (AudioNdArray, 'hello'), (AudioTorchTensor, 'hello'), ], ) def test_illegal_validation(cls_tensor, tensor): match = str(cls_tensor).split('.')[-1][:-2] with pytest.raises(ValueError, match=match): parse_obj_as(cls_tensor, tensor) @pytest.mark.parametrize( 'cls_tensor,tensor,proto_key', [ (AudioTorchTensor, torch.zeros(1000, 2), AudioTorchTensor._PROTO_FIELD_NAME), (AudioNdArray, np.zeros((1000, 2)), AudioNdArray._PROTO_FIELD_NAME), ], ) def test_proto_tensor(cls_tensor, tensor, proto_key): tensor = parse_obj_as(cls_tensor, tensor) proto = tensor._to_node_protobuf() assert str(proto).startswith(proto_key) @pytest.mark.parametrize( 'cls_tensor,tensor', [ (AudioTorchTensor, torch.zeros(1000, 2)), (AudioNdArray, np.zeros((1000, 2))), ], ) def test_save_audio_tensor_to_wav_file(cls_tensor, tensor, tmpdir): tmp_file = str(tmpdir / 'tmp.wav') audio_tensor = parse_obj_as(cls_tensor, tensor) audio_tensor.save_to_wav_file(tmp_file) assert os.path.isfile(tmp_file)
from .autoencoder_asym_kl import AsymmetricAutoencoderKL from .autoencoder_dc import AutoencoderDC from .autoencoder_kl import AutoencoderKL from .autoencoder_kl_allegro import AutoencoderKLAllegro from .autoencoder_kl_cogvideox import AutoencoderKLCogVideoX from .autoencoder_kl_cosmos import AutoencoderKLCosmos from .autoencoder_kl_hunyuan_video import AutoencoderKLHunyuanVideo from .autoencoder_kl_ltx import AutoencoderKLLTXVideo from .autoencoder_kl_magvit import AutoencoderKLMagvit from .autoencoder_kl_mochi import AutoencoderKLMochi from .autoencoder_kl_temporal_decoder import AutoencoderKLTemporalDecoder from .autoencoder_kl_wan import AutoencoderKLWan from .autoencoder_oobleck import AutoencoderOobleck from .autoencoder_tiny import AutoencoderTiny from .consistency_decoder_vae import ConsistencyDecoderVAE from .vq_model import VQModel
from .autoencoder_asym_kl import AsymmetricAutoencoderKL from .autoencoder_dc import AutoencoderDC from .autoencoder_kl import AutoencoderKL from .autoencoder_kl_allegro import AutoencoderKLAllegro from .autoencoder_kl_cogvideox import AutoencoderKLCogVideoX from .autoencoder_kl_hunyuan_video import AutoencoderKLHunyuanVideo from .autoencoder_kl_ltx import AutoencoderKLLTXVideo from .autoencoder_kl_magvit import AutoencoderKLMagvit from .autoencoder_kl_mochi import AutoencoderKLMochi from .autoencoder_kl_temporal_decoder import AutoencoderKLTemporalDecoder from .autoencoder_kl_wan import AutoencoderKLWan from .autoencoder_oobleck import AutoencoderOobleck from .autoencoder_tiny import AutoencoderTiny from .consistency_decoder_vae import ConsistencyDecoderVAE from .vq_model import VQModel
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Union from mmengine.config import ConfigDict from mmdet.registry import MODELS from .two_stage import TwoStageDetector @MODELS.register_module() class FasterRCNN(TwoStageDetector): """Implementation of `Faster R-CNN <https://arxiv.org/abs/1506.01497>`_""" def __init__(self, backbone: Union[ConfigDict, dict], rpn_head: Union[ConfigDict, dict], roi_head: Union[ConfigDict, dict], train_cfg: Union[ConfigDict, dict], test_cfg: Union[ConfigDict, dict], neck: Optional[Union[ConfigDict, dict]] = None, pretrained: Optional[str] = None, preprocess_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict]] = None) -> None: super().__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg, preprocess_cfg=preprocess_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .two_stage import TwoStageDetector @MODELS.register_module() class FasterRCNN(TwoStageDetector): """Implementation of `Faster R-CNN <https://arxiv.org/abs/1506.01497>`_""" def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None, img_norm_cfg=None): super(FasterRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg, img_norm_cfg=img_norm_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from typing import Union import torch from numpy import ndarray from torch import Tensor from mmdet.core.bbox.assigners import AssignResult from mmdet.registry import TASK_UTILS from .base_sampler import BaseSampler @TASK_UTILS.register_module() class RandomSampler(BaseSampler): """Random sampler. Args: num (int): Number of samples pos_fraction (float): Fraction of positive samples neg_pos_up (int): Upper bound number of negative and positive samples. Defaults to -1. add_gt_as_proposals (bool): Whether to add ground truth boxes as proposals. Defaults to True. """ def __init__(self, num: int, pos_fraction: float, neg_pos_ub: int = -1, add_gt_as_proposals: bool = True, **kwargs): from mmdet.core.bbox import demodata super().__init__( num=num, pos_fraction=pos_fraction, neg_pos_ub=neg_pos_ub, add_gt_as_proposals=add_gt_as_proposals) self.rng = demodata.ensure_rng(kwargs.get('rng', None)) def random_choice(self, gallery: Union[Tensor, ndarray, list], num: int) -> Union[Tensor, ndarray]: """Random select some elements from the gallery. If `gallery` is a Tensor, the returned indices will be a Tensor; If `gallery` is a ndarray or list, the returned indices will be a ndarray. Args: gallery (Tensor | ndarray | list): indices pool. num (int): expected sample num. Returns: Tensor or ndarray: sampled indices. """ assert len(gallery) >= num is_tensor = isinstance(gallery, torch.Tensor) if not is_tensor: if torch.cuda.is_available(): device = torch.cuda.current_device() else: device = 'cpu' gallery = torch.tensor(gallery, dtype=torch.long, device=device) # This is a temporary fix. We can revert the following code # when PyTorch fixes the abnormal return of torch.randperm. # See: https://github.com/open-mmlab/mmdetection/pull/5014 perm = torch.randperm(gallery.numel())[:num].to(device=gallery.device) rand_inds = gallery[perm] if not is_tensor: rand_inds = rand_inds.cpu().numpy() return rand_inds def _sample_pos(self, assign_result: AssignResult, num_expected: int, **kwargs) -> Union[Tensor, ndarray]: """Randomly sample some positive samples. Args: assign_result (:obj:`AssignResult`): Bbox assigning results. num_expected (int): The number of expected positive samples Returns: Tensor or ndarray: sampled indices. """ pos_inds = torch.nonzero(assign_result.gt_inds > 0, as_tuple=False) if pos_inds.numel() != 0: pos_inds = pos_inds.squeeze(1) if pos_inds.numel() <= num_expected: return pos_inds else: return self.random_choice(pos_inds, num_expected) def _sample_neg(self, assign_result: AssignResult, num_expected: int, **kwargs) -> Union[Tensor, ndarray]: """Randomly sample some negative samples. Args: assign_result (:obj:`AssignResult`): Bbox assigning results. num_expected (int): The number of expected positive samples Returns: Tensor or ndarray: sampled indices. """ neg_inds = torch.nonzero(assign_result.gt_inds == 0, as_tuple=False) if neg_inds.numel() != 0: neg_inds = neg_inds.squeeze(1) if len(neg_inds) <= num_expected: return neg_inds else: return self.random_choice(neg_inds, num_expected)
# Copyright (c) OpenMMLab. All rights reserved. from typing import Union import torch from numpy import ndarray from torch import Tensor from mmdet.core.bbox.assigners import AssignResult from mmdet.registry import TASK_UTILS from .base_sampler import BaseSampler @TASK_UTILS.register_module() class RandomSampler(BaseSampler): """Random sampler. Args: num (int): Number of samples pos_fraction (float): Fraction of positive samples neg_pos_up (int): Upper bound number of negative and positive samples. Defaults to -1. add_gt_as_proposals (bool): Whether to add ground truth boxes as proposals. Defaults to True. """ def __init__(self, num: int, pos_fraction: float, neg_pos_ub: int = -1, add_gt_as_proposals: bool = True, **kwargs): from mmdet.core.bbox import demodata super(RandomSampler, self).__init__(num, pos_fraction, neg_pos_ub, add_gt_as_proposals) self.rng = demodata.ensure_rng(kwargs.get('rng', None)) def random_choice(self, gallery: Union[Tensor, ndarray, list], num: int) -> Union[Tensor, ndarray]: """Random select some elements from the gallery. If `gallery` is a Tensor, the returned indices will be a Tensor; If `gallery` is a ndarray or list, the returned indices will be a ndarray. Args: gallery (Tensor | ndarray | list): indices pool. num (int): expected sample num. Returns: Tensor or ndarray: sampled indices. """ assert len(gallery) >= num is_tensor = isinstance(gallery, torch.Tensor) if not is_tensor: if torch.cuda.is_available(): device = torch.cuda.current_device() else: device = 'cpu' gallery = torch.tensor(gallery, dtype=torch.long, device=device) # This is a temporary fix. We can revert the following code # when PyTorch fixes the abnormal return of torch.randperm. # See: https://github.com/open-mmlab/mmdetection/pull/5014 perm = torch.randperm(gallery.numel())[:num].to(device=gallery.device) rand_inds = gallery[perm] if not is_tensor: rand_inds = rand_inds.cpu().numpy() return rand_inds def _sample_pos(self, assign_result: AssignResult, num_expected: int, **kwargs) -> Union[Tensor, ndarray]: """Randomly sample some positive samples. Args: assign_result (:obj:`AssignResult`): Bbox assigning results. num_expected (int): The number of expected positive samples Returns: Tensor or ndarray: sampled indices. """ pos_inds = torch.nonzero(assign_result.gt_inds > 0, as_tuple=False) if pos_inds.numel() != 0: pos_inds = pos_inds.squeeze(1) if pos_inds.numel() <= num_expected: return pos_inds else: return self.random_choice(pos_inds, num_expected) def _sample_neg(self, assign_result: AssignResult, num_expected: int, **kwargs) -> Union[Tensor, ndarray]: """Randomly sample some negative samples. Args: assign_result (:obj:`AssignResult`): Bbox assigning results. num_expected (int): The number of expected positive samples Returns: Tensor or ndarray: sampled indices. """ neg_inds = torch.nonzero(assign_result.gt_inds == 0, as_tuple=False) if neg_inds.numel() != 0: neg_inds = neg_inds.squeeze(1) if len(neg_inds) <= num_expected: return neg_inds else: return self.random_choice(neg_inds, num_expected)
"""Pydantic v1 compatibility shim.""" from langchain_core._api import warn_deprecated try: from pydantic.v1.dataclasses import * # noqa: F403 except ImportError: from pydantic.dataclasses import * # type: ignore # noqa: F403 warn_deprecated( "0.3.0", removal="1.0.0", alternative="pydantic.v1 or pydantic", message=( "As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. " "The langchain_core.pydantic_v1 module was a " "compatibility shim for pydantic v1, and should no longer be used. " "Please update the code to import from Pydantic directly.\n\n" "For example, replace imports like: " "`from langchain_core.pydantic_v1 import BaseModel`\n" "with: `from pydantic import BaseModel`\n" "or the v1 compatibility namespace if you are working in a code base " "that has not been fully upgraded to pydantic 2 yet. " "\tfrom pydantic.v1 import BaseModel\n" ), )
from langchain_core._api import warn_deprecated try: from pydantic.v1.dataclasses import * # noqa: F403 except ImportError: from pydantic.dataclasses import * # type: ignore # noqa: F403 warn_deprecated( "0.3.0", removal="1.0.0", alternative="pydantic.v1 or pydantic", message=( "As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. " "The langchain_core.pydantic_v1 module was a " "compatibility shim for pydantic v1, and should no longer be used. " "Please update the code to import from Pydantic directly.\n\n" "For example, replace imports like: " "`from langchain_core.pydantic_v1 import BaseModel`\n" "with: `from pydantic import BaseModel`\n" "or the v1 compatibility namespace if you are working in a code base " "that has not been fully upgraded to pydantic 2 yet. " "\tfrom pydantic.v1 import BaseModel\n" ), )
from langchain_huggingface.chat_models.huggingface import ( # type: ignore[import-not-found] TGI_MESSAGE, TGI_RESPONSE, ChatHuggingFace, _convert_dict_to_message, ) __all__ = ["TGI_MESSAGE", "TGI_RESPONSE", "ChatHuggingFace", "_convert_dict_to_message"]
from langchain_huggingface.chat_models.huggingface import ( # type: ignore[import-not-found] TGI_MESSAGE, TGI_RESPONSE, ChatHuggingFace, _convert_dict_to_message, ) __all__ = ["ChatHuggingFace", "_convert_dict_to_message", "TGI_MESSAGE", "TGI_RESPONSE"]
import re from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField class CodeExtractionBlock(Block): class Input(BlockSchema): text: str = SchemaField( description="Text containing code blocks to extract (e.g., AI response)", placeholder="Enter text containing code blocks", ) class Output(BlockSchema): html: str = SchemaField(description="Extracted HTML code") css: str = SchemaField(description="Extracted CSS code") javascript: str = SchemaField(description="Extracted JavaScript code") python: str = SchemaField(description="Extracted Python code") sql: str = SchemaField(description="Extracted SQL code") java: str = SchemaField(description="Extracted Java code") cpp: str = SchemaField(description="Extracted C++ code") csharp: str = SchemaField(description="Extracted C# code") json_code: str = SchemaField(description="Extracted JSON code") bash: str = SchemaField(description="Extracted Bash code") php: str = SchemaField(description="Extracted PHP code") ruby: str = SchemaField(description="Extracted Ruby code") yaml: str = SchemaField(description="Extracted YAML code") markdown: str = SchemaField(description="Extracted Markdown code") typescript: str = SchemaField(description="Extracted TypeScript code") xml: str = SchemaField(description="Extracted XML code") remaining_text: str = SchemaField( description="Remaining text after code extraction" ) def __init__(self): super().__init__( id="d3a7d896-3b78-4f44-8b4b-48fbf4f0bcd8", description="Extracts code blocks from text and identifies their programming languages", categories={BlockCategory.TEXT}, input_schema=CodeExtractionBlock.Input, output_schema=CodeExtractionBlock.Output, test_input={ "text": "Here's a Python example:\n```python\nprint('Hello World')\n```\nAnd some HTML:\n```html\n<h1>Title</h1>\n```" }, test_output=[ ("html", "<h1>Title</h1>"), ("python", "print('Hello World')"), ("remaining_text", "Here's a Python example:\nAnd some HTML:"), ], ) async def run(self, input_data: Input, **kwargs) -> BlockOutput: # List of supported programming languages with mapped aliases language_aliases = { "html": ["html", "htm"], "css": ["css"], "javascript": ["javascript", "js"], "python": ["python", "py"], "sql": ["sql"], "java": ["java"], "cpp": ["cpp", "c++"], "csharp": ["csharp", "c#", "cs"], "json_code": ["json"], "bash": ["bash", "shell", "sh"], "php": ["php"], "ruby": ["ruby", "rb"], "yaml": ["yaml", "yml"], "markdown": ["markdown", "md"], "typescript": ["typescript", "ts"], "xml": ["xml"], } # Extract code for each language for canonical_name, aliases in language_aliases.items(): code = "" # Try each alias for the language for alias in aliases: code_for_alias = self.extract_code(input_data.text, alias) if code_for_alias: code = code + "\n\n" + code_for_alias if code else code_for_alias if code: # Only yield if there's actual code content yield canonical_name, code # Remove all code blocks from the text to get remaining text pattern = ( r"```(?:" + "|".join( re.escape(alias) for aliases in language_aliases.values() for alias in aliases ) + r")\s+[\s\S]*?```" ) remaining_text = re.sub(pattern, "", input_data.text).strip() remaining_text = re.sub(r"\n\s*\n", "\n", remaining_text) if remaining_text: # Only yield if there's remaining text yield "remaining_text", remaining_text def extract_code(self, text: str, language: str) -> str: # Escape special regex characters in the language string language = re.escape(language) # Extract all code blocks enclosed in ```language``` blocks pattern = re.compile(rf"```{language}\s+(.*?)```", re.DOTALL | re.IGNORECASE) matches = pattern.finditer(text) # Combine all code blocks for this language with newlines between them code_blocks = [match.group(1).strip() for match in matches] return "\n\n".join(code_blocks) if code_blocks else ""
import re from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField class CodeExtractionBlock(Block): class Input(BlockSchema): text: str = SchemaField( description="Text containing code blocks to extract (e.g., AI response)", placeholder="Enter text containing code blocks", ) class Output(BlockSchema): html: str = SchemaField(description="Extracted HTML code") css: str = SchemaField(description="Extracted CSS code") javascript: str = SchemaField(description="Extracted JavaScript code") python: str = SchemaField(description="Extracted Python code") sql: str = SchemaField(description="Extracted SQL code") java: str = SchemaField(description="Extracted Java code") cpp: str = SchemaField(description="Extracted C++ code") csharp: str = SchemaField(description="Extracted C# code") json_code: str = SchemaField(description="Extracted JSON code") bash: str = SchemaField(description="Extracted Bash code") php: str = SchemaField(description="Extracted PHP code") ruby: str = SchemaField(description="Extracted Ruby code") yaml: str = SchemaField(description="Extracted YAML code") markdown: str = SchemaField(description="Extracted Markdown code") typescript: str = SchemaField(description="Extracted TypeScript code") xml: str = SchemaField(description="Extracted XML code") remaining_text: str = SchemaField( description="Remaining text after code extraction" ) def __init__(self): super().__init__( id="d3a7d896-3b78-4f44-8b4b-48fbf4f0bcd8", description="Extracts code blocks from text and identifies their programming languages", categories={BlockCategory.TEXT}, input_schema=CodeExtractionBlock.Input, output_schema=CodeExtractionBlock.Output, test_input={ "text": "Here's a Python example:\n```python\nprint('Hello World')\n```\nAnd some HTML:\n```html\n<h1>Title</h1>\n```" }, test_output=[ ("html", "<h1>Title</h1>"), ("python", "print('Hello World')"), ("remaining_text", "Here's a Python example:\nAnd some HTML:"), ], ) def run(self, input_data: Input, **kwargs) -> BlockOutput: # List of supported programming languages with mapped aliases language_aliases = { "html": ["html", "htm"], "css": ["css"], "javascript": ["javascript", "js"], "python": ["python", "py"], "sql": ["sql"], "java": ["java"], "cpp": ["cpp", "c++"], "csharp": ["csharp", "c#", "cs"], "json_code": ["json"], "bash": ["bash", "shell", "sh"], "php": ["php"], "ruby": ["ruby", "rb"], "yaml": ["yaml", "yml"], "markdown": ["markdown", "md"], "typescript": ["typescript", "ts"], "xml": ["xml"], } # Extract code for each language for canonical_name, aliases in language_aliases.items(): code = "" # Try each alias for the language for alias in aliases: code_for_alias = self.extract_code(input_data.text, alias) if code_for_alias: code = code + "\n\n" + code_for_alias if code else code_for_alias if code: # Only yield if there's actual code content yield canonical_name, code # Remove all code blocks from the text to get remaining text pattern = ( r"```(?:" + "|".join( re.escape(alias) for aliases in language_aliases.values() for alias in aliases ) + r")\s+[\s\S]*?```" ) remaining_text = re.sub(pattern, "", input_data.text).strip() remaining_text = re.sub(r"\n\s*\n", "\n", remaining_text) if remaining_text: # Only yield if there's remaining text yield "remaining_text", remaining_text def extract_code(self, text: str, language: str) -> str: # Escape special regex characters in the language string language = re.escape(language) # Extract all code blocks enclosed in ```language``` blocks pattern = re.compile(rf"```{language}\s+(.*?)```", re.DOTALL | re.IGNORECASE) matches = pattern.finditer(text) # Combine all code blocks for this language with newlines between them code_blocks = [match.group(1).strip() for match in matches] return "\n\n".join(code_blocks) if code_blocks else ""
from argparse import Namespace from copy import deepcopy from typing import TYPE_CHECKING, Type from hubble.executor.helper import is_valid_huburi from hubble.executor.hubio import HubIO from jina.enums import PodRoleType from jina.orchestrate.pods import Pod from jina.orchestrate.pods.container import ContainerPod if TYPE_CHECKING: # pragma: no cover from jina.orchestrate.pods import BasePod class PodFactory: """ A PodFactory is a factory class, abstracting the Pod creation """ @staticmethod def build_pod(args: 'Namespace') -> Type['BasePod']: """Build an implementation of a `BasePod` interface :param args: deployment arguments parsed from the CLI. :return: the created BaseDeployment """ # copy to update but forward original cargs = deepcopy(args) if is_valid_huburi(cargs.uses): _hub_args = deepcopy(args) _hub_args.uri = args.uses _hub_args.no_usage = True cargs.uses = HubIO(_hub_args).pull() if ( cargs.pod_role != PodRoleType.HEAD and cargs.uses and cargs.uses.startswith('docker://') ): return ContainerPod(cargs) else: return Pod(args)
from argparse import Namespace from copy import deepcopy from typing import TYPE_CHECKING, Type from hubble.executor.helper import is_valid_huburi from hubble.executor.hubio import HubIO from jina.enums import PodRoleType from jina.orchestrate.pods import Pod from jina.orchestrate.pods.container import ContainerPod if TYPE_CHECKING: # pragma: no cover from jina.orchestrate.pods import BasePod class PodFactory: """ A PodFactory is a factory class, abstracting the Pod creation """ @staticmethod def build_pod(args: 'Namespace') -> Type['BasePod']: """Build an implementation of a `BasePod` interface :param args: deployment arguments parsed from the CLI. :return: the created BaseDeployment """ # copy to update but forward original cargs = deepcopy(args) if is_valid_huburi(cargs.uses): _hub_args = deepcopy(args) _hub_args.uri = args.uses _hub_args.no_usage = True cargs.uses = HubIO(_hub_args).pull() if ( cargs.pod_role != PodRoleType.HEAD and cargs.uses and cargs.uses.startswith('docker://') ): return ContainerPod(cargs) else: return Pod(args)
from datetime import datetime, timedelta, timezone import jwt from fastapi import Depends, FastAPI, HTTPException, status from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm from jwt.exceptions import InvalidTokenError from passlib.context import CryptContext from pydantic import BaseModel # to get a string like this run: # openssl rand -hex 32 SECRET_KEY = "09d25e094faa6ca2556c818166b7a9563b93f7099f6f0f4caa6cf63b88e8d3e7" ALGORITHM = "HS256" ACCESS_TOKEN_EXPIRE_MINUTES = 30 fake_users_db = { "johndoe": { "username": "johndoe", "full_name": "John Doe", "email": "johndoe@example.com", "hashed_password": "$2b$12$EixZaYVK1fsbw1ZfbX3OXePaWxn96p36WQoeG6Lruj3vjPGga31lW", "disabled": False, } } class Token(BaseModel): access_token: str token_type: str class TokenData(BaseModel): username: str | None = None class User(BaseModel): username: str email: str | None = None full_name: str | None = None disabled: bool | None = None class UserInDB(User): hashed_password: str pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto") oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token") app = FastAPI() def verify_password(plain_password, hashed_password): return pwd_context.verify(plain_password, hashed_password) def get_password_hash(password): return pwd_context.hash(password) def get_user(db, username: str): if username in db: user_dict = db[username] return UserInDB(**user_dict) def authenticate_user(fake_db, username: str, password: str): user = get_user(fake_db, username) if not user: return False if not verify_password(password, user.hashed_password): return False return user def create_access_token(data: dict, expires_delta: timedelta | None = None): to_encode = data.copy() if expires_delta: expire = datetime.now(timezone.utc) + expires_delta else: expire = datetime.now(timezone.utc) + timedelta(minutes=15) to_encode.update({"exp": expire}) encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM) return encoded_jwt async def get_current_user(token: str = Depends(oauth2_scheme)): credentials_exception = HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Could not validate credentials", headers={"WWW-Authenticate": "Bearer"}, ) try: payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM]) username = payload.get("sub") if username is None: raise credentials_exception token_data = TokenData(username=username) except InvalidTokenError: raise credentials_exception user = get_user(fake_users_db, username=token_data.username) if user is None: raise credentials_exception return user async def get_current_active_user(current_user: User = Depends(get_current_user)): if current_user.disabled: raise HTTPException(status_code=400, detail="Inactive user") return current_user @app.post("/token") async def login_for_access_token( form_data: OAuth2PasswordRequestForm = Depends(), ) -> Token: user = authenticate_user(fake_users_db, form_data.username, form_data.password) if not user: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Incorrect username or password", headers={"WWW-Authenticate": "Bearer"}, ) access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES) access_token = create_access_token( data={"sub": user.username}, expires_delta=access_token_expires ) return Token(access_token=access_token, token_type="bearer") @app.get("/users/me/", response_model=User) async def read_users_me(current_user: User = Depends(get_current_active_user)): return current_user @app.get("/users/me/items/") async def read_own_items(current_user: User = Depends(get_current_active_user)): return [{"item_id": "Foo", "owner": current_user.username}]
from datetime import datetime, timedelta, timezone import jwt from fastapi import Depends, FastAPI, HTTPException, status from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm from jwt.exceptions import InvalidTokenError from passlib.context import CryptContext from pydantic import BaseModel # to get a string like this run: # openssl rand -hex 32 SECRET_KEY = "09d25e094faa6ca2556c818166b7a9563b93f7099f6f0f4caa6cf63b88e8d3e7" ALGORITHM = "HS256" ACCESS_TOKEN_EXPIRE_MINUTES = 30 fake_users_db = { "johndoe": { "username": "johndoe", "full_name": "John Doe", "email": "johndoe@example.com", "hashed_password": "$2b$12$EixZaYVK1fsbw1ZfbX3OXePaWxn96p36WQoeG6Lruj3vjPGga31lW", "disabled": False, } } class Token(BaseModel): access_token: str token_type: str class TokenData(BaseModel): username: str | None = None class User(BaseModel): username: str email: str | None = None full_name: str | None = None disabled: bool | None = None class UserInDB(User): hashed_password: str pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto") oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token") app = FastAPI() def verify_password(plain_password, hashed_password): return pwd_context.verify(plain_password, hashed_password) def get_password_hash(password): return pwd_context.hash(password) def get_user(db, username: str): if username in db: user_dict = db[username] return UserInDB(**user_dict) def authenticate_user(fake_db, username: str, password: str): user = get_user(fake_db, username) if not user: return False if not verify_password(password, user.hashed_password): return False return user def create_access_token(data: dict, expires_delta: timedelta | None = None): to_encode = data.copy() if expires_delta: expire = datetime.now(timezone.utc) + expires_delta else: expire = datetime.now(timezone.utc) + timedelta(minutes=15) to_encode.update({"exp": expire}) encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM) return encoded_jwt async def get_current_user(token: str = Depends(oauth2_scheme)): credentials_exception = HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Could not validate credentials", headers={"WWW-Authenticate": "Bearer"}, ) try: payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM]) username: str = payload.get("sub") if username is None: raise credentials_exception token_data = TokenData(username=username) except InvalidTokenError: raise credentials_exception user = get_user(fake_users_db, username=token_data.username) if user is None: raise credentials_exception return user async def get_current_active_user(current_user: User = Depends(get_current_user)): if current_user.disabled: raise HTTPException(status_code=400, detail="Inactive user") return current_user @app.post("/token") async def login_for_access_token( form_data: OAuth2PasswordRequestForm = Depends(), ) -> Token: user = authenticate_user(fake_users_db, form_data.username, form_data.password) if not user: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Incorrect username or password", headers={"WWW-Authenticate": "Bearer"}, ) access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES) access_token = create_access_token( data={"sub": user.username}, expires_delta=access_token_expires ) return Token(access_token=access_token, token_type="bearer") @app.get("/users/me/", response_model=User) async def read_users_me(current_user: User = Depends(get_current_active_user)): return current_user @app.get("/users/me/items/") async def read_own_items(current_user: User = Depends(get_current_active_user)): return [{"item_id": "Foo", "owner": current_user.username}]
"""Joint QA Summary graph.""" from typing import List, Optional, Sequence from llama_index.core.base.embeddings.base import BaseEmbedding from llama_index.core.callbacks.base import CallbackManager from llama_index.core.indices.list.base import SummaryIndex from llama_index.core.indices.vector_store import VectorStoreIndex from llama_index.core.ingestion import run_transformations from llama_index.core.llms.llm import LLM from llama_index.core.query_engine.router_query_engine import RouterQueryEngine from llama_index.core.schema import Document, TransformComponent from llama_index.core.settings import Settings from llama_index.core.storage.storage_context import StorageContext from llama_index.core.tools.query_engine import QueryEngineTool DEFAULT_SUMMARY_TEXT = "Use this index for summarization queries" DEFAULT_QA_TEXT = ( "Use this index for queries that require retrieval of specific " "context from documents." ) class QASummaryQueryEngineBuilder: """ Joint QA Summary graph builder. Can build a graph that provides a unified query interface for both QA and summarization tasks. NOTE: this is a beta feature. The API may change in the future. Args: docstore (BaseDocumentStore): A BaseDocumentStore to use for storing nodes. summary_text (str): Text to use for the summary index. qa_text (str): Text to use for the QA index. node_parser (NodeParser): A NodeParser to use for parsing. """ def __init__( self, llm: Optional[LLM] = None, embed_model: Optional[BaseEmbedding] = None, callback_manager: Optional[CallbackManager] = None, transformations: Optional[List[TransformComponent]] = None, storage_context: Optional[StorageContext] = None, summary_text: str = DEFAULT_SUMMARY_TEXT, qa_text: str = DEFAULT_QA_TEXT, ) -> None: """Init params.""" self._llm = llm or Settings.llm self._callback_manager = callback_manager or Settings.callback_manager self._embed_model = embed_model or Settings.embed_model self._transformations = transformations or Settings.transformations self._storage_context = storage_context or StorageContext.from_defaults() self._summary_text = summary_text self._qa_text = qa_text def build_from_documents( self, documents: Sequence[Document], ) -> RouterQueryEngine: """Build query engine.""" # parse nodes nodes = run_transformations(documents, self._transformations) # type: ignore # ingest nodes self._storage_context.docstore.add_documents(nodes, allow_update=True) # build indices vector_index = VectorStoreIndex( nodes=nodes, transformations=self._transformations, embed_model=self._embed_model, storage_context=self._storage_context, ) summary_index = SummaryIndex(nodes, storage_context=self._storage_context) vector_query_engine = vector_index.as_query_engine(llm=self._llm) list_query_engine = summary_index.as_query_engine( llm=self._llm, response_mode="tree_summarize" ) # build query engine return RouterQueryEngine.from_defaults( llm=self._llm, query_engine_tools=[ QueryEngineTool.from_defaults( vector_query_engine, description=self._qa_text ), QueryEngineTool.from_defaults( list_query_engine, description=self._summary_text ), ], select_multi=False, )
"""Joint QA Summary graph.""" from typing import List, Optional, Sequence from llama_index.core.base.embeddings.base import BaseEmbedding from llama_index.core.callbacks.base import CallbackManager from llama_index.core.indices.list.base import SummaryIndex from llama_index.core.indices.vector_store import VectorStoreIndex from llama_index.core.ingestion import run_transformations from llama_index.core.llms.llm import LLM from llama_index.core.query_engine.router_query_engine import RouterQueryEngine from llama_index.core.schema import Document, TransformComponent from llama_index.core.settings import Settings from llama_index.core.storage.storage_context import StorageContext from llama_index.core.tools.query_engine import QueryEngineTool DEFAULT_SUMMARY_TEXT = "Use this index for summarization queries" DEFAULT_QA_TEXT = ( "Use this index for queries that require retrieval of specific " "context from documents." ) class QASummaryQueryEngineBuilder: """Joint QA Summary graph builder. Can build a graph that provides a unified query interface for both QA and summarization tasks. NOTE: this is a beta feature. The API may change in the future. Args: docstore (BaseDocumentStore): A BaseDocumentStore to use for storing nodes. summary_text (str): Text to use for the summary index. qa_text (str): Text to use for the QA index. node_parser (NodeParser): A NodeParser to use for parsing. """ def __init__( self, llm: Optional[LLM] = None, embed_model: Optional[BaseEmbedding] = None, callback_manager: Optional[CallbackManager] = None, transformations: Optional[List[TransformComponent]] = None, storage_context: Optional[StorageContext] = None, summary_text: str = DEFAULT_SUMMARY_TEXT, qa_text: str = DEFAULT_QA_TEXT, ) -> None: """Init params.""" self._llm = llm or Settings.llm self._callback_manager = callback_manager or Settings.callback_manager self._embed_model = embed_model or Settings.embed_model self._transformations = transformations or Settings.transformations self._storage_context = storage_context or StorageContext.from_defaults() self._summary_text = summary_text self._qa_text = qa_text def build_from_documents( self, documents: Sequence[Document], ) -> RouterQueryEngine: """Build query engine.""" # parse nodes nodes = run_transformations(documents, self._transformations) # type: ignore # ingest nodes self._storage_context.docstore.add_documents(nodes, allow_update=True) # build indices vector_index = VectorStoreIndex( nodes=nodes, transformations=self._transformations, embed_model=self._embed_model, storage_context=self._storage_context, ) summary_index = SummaryIndex(nodes, storage_context=self._storage_context) vector_query_engine = vector_index.as_query_engine(llm=self._llm) list_query_engine = summary_index.as_query_engine( llm=self._llm, response_mode="tree_summarize" ) # build query engine return RouterQueryEngine.from_defaults( llm=self._llm, query_engine_tools=[ QueryEngineTool.from_defaults( vector_query_engine, description=self._qa_text ), QueryEngineTool.from_defaults( list_query_engine, description=self._summary_text ), ], select_multi=False, )
import logging import pytest from backend.util.test import SpinTestServer # NOTE: You can run tests like with the --log-cli-level=INFO to see the logs # Set up logging logger = logging.getLogger(__name__) # Create console handler with formatting ch = logging.StreamHandler() ch.setLevel(logging.INFO) formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") ch.setFormatter(formatter) logger.addHandler(ch) @pytest.fixture(scope="session") async def server(): async with SpinTestServer() as server: yield server @pytest.fixture(scope="session", autouse=True) async def graph_cleanup(server): created_graph_ids = [] original_create_graph = server.agent_server.test_create_graph async def create_graph_wrapper(*args, **kwargs): created_graph = await original_create_graph(*args, **kwargs) # Extract user_id correctly user_id = kwargs.get("user_id", args[2] if len(args) > 2 else None) created_graph_ids.append((created_graph.id, user_id)) return created_graph try: server.agent_server.test_create_graph = create_graph_wrapper yield # This runs the test function finally: server.agent_server.test_create_graph = original_create_graph # Delete the created graphs and assert they were deleted for graph_id, user_id in created_graph_ids: if user_id: resp = await server.agent_server.test_delete_graph(graph_id, user_id) num_deleted = resp["version_counts"] assert num_deleted > 0, f"Graph {graph_id} was not deleted."
import pytest from backend.util.test import SpinTestServer @pytest.fixture(scope="session") async def server(): async with SpinTestServer() as server: yield server @pytest.fixture(scope="session", autouse=True) async def graph_cleanup(server): created_graph_ids = [] original_create_graph = server.agent_server.create_graph async def create_graph_wrapper(*args, **kwargs): created_graph = await original_create_graph(*args, **kwargs) # Extract user_id correctly user_id = kwargs.get("user_id", args[2] if len(args) > 2 else None) created_graph_ids.append((created_graph.id, user_id)) return created_graph try: server.agent_server.create_graph = create_graph_wrapper yield # This runs the test function finally: server.agent_server.create_graph = original_create_graph # Delete the created graphs and assert they were deleted for graph_id, user_id in created_graph_ids: resp = await server.agent_server.delete_graph(graph_id, user_id) num_deleted = resp["version_counts"] assert num_deleted > 0, f"Graph {graph_id} was not deleted."
from typing import Any, Dict, Iterable import torch from torch import Tensor, nn from sentence_transformers import util from sentence_transformers.SentenceTransformer import SentenceTransformer class CoSENTLoss(nn.Module): def __init__(self, model: SentenceTransformer, scale: float = 20.0, similarity_fct=util.pairwise_cos_sim) -> None: """ This class implements CoSENT (Cosine Sentence) loss. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. Anecdotal experiments show that this loss function produces a more powerful training signal than :class:`CosineSimilarityLoss`, resulting in faster convergence and a final model with superior performance. Consequently, CoSENTLoss may be used as a drop-in replacement for :class:`CosineSimilarityLoss` in any training script. Args: model: SentenceTransformerModel similarity_fct: Function to compute the PAIRWISE similarity between embeddings. Default is ``util.pairwise_cos_sim``. scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://kexue.fm/archives/8847 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Relations: - :class:`AnglELoss` is CoSENTLoss with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. - :class:`CosineSimilarityLoss` seems to produce a weaker training signal than CoSENTLoss. In our experiments, CoSENTLoss is recommended. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.CoSENTLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(CoSENTLoss, self).__init__() self.model = model self.similarity_fct = similarity_fct self.scale = scale def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor) -> Tensor: embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] scores = self.similarity_fct(embeddings[0], embeddings[1]) scores = scores * self.scale scores = scores[:, None] - scores[None, :] # label matrix indicating which pairs are relevant labels = labels[:, None] < labels[None, :] labels = labels.float() # mask out irrelevant pairs so they are negligible after exp() scores = scores - (1 - labels) * 1e12 # append a zero as e^0 = 1 scores = torch.cat((torch.zeros(1).to(scores.device), scores.view(-1)), dim=0) loss = torch.logsumexp(scores, dim=0) return loss def get_config_dict(self) -> Dict[str, Any]: return {"scale": self.scale, "similarity_fct": self.similarity_fct.__name__} @property def citation(self) -> str: return """ @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } """
from typing import Dict, Iterable import torch from torch import Tensor, nn from sentence_transformers import util from sentence_transformers.SentenceTransformer import SentenceTransformer class CoSENTLoss(nn.Module): def __init__(self, model: SentenceTransformer, scale: float = 20.0, similarity_fct=util.pairwise_cos_sim): """ This class implements CoSENT (Cosine Sentence) loss. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. Anecdotal experiments show that this loss function produces a more powerful training signal than :class:`CosineSimilarityLoss`, resulting in faster convergence and a final model with superior performance. Consequently, CoSENTLoss may be used as a drop-in replacement for :class:`CosineSimilarityLoss` in any training script. Args: model: SentenceTransformerModel similarity_fct: Function to compute the PAIRWISE similarity between embeddings. Default is ``util.pairwise_cos_sim``. scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://kexue.fm/archives/8847 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Relations: - :class:`AnglELoss` is CoSENTLoss with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. - :class:`CosineSimilarityLoss` seems to produce a weaker training signal than CoSENTLoss. In our experiments, CoSENTLoss is recommended. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.CoSENTLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(CoSENTLoss, self).__init__() self.model = model self.similarity_fct = similarity_fct self.scale = scale def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor): embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] scores = self.similarity_fct(embeddings[0], embeddings[1]) scores = scores * self.scale scores = scores[:, None] - scores[None, :] # label matrix indicating which pairs are relevant labels = labels[:, None] < labels[None, :] labels = labels.float() # mask out irrelevant pairs so they are negligible after exp() scores = scores - (1 - labels) * 1e12 # append a zero as e^0 = 1 scores = torch.cat((torch.zeros(1).to(scores.device), scores.view(-1)), dim=0) loss = torch.logsumexp(scores, dim=0) return loss def get_config_dict(self): return {"scale": self.scale, "similarity_fct": self.similarity_fct.__name__} @property def citation(self) -> str: return """ @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } """
# Copyright (c) OpenMMLab. All rights reserved. import mmcv from .version import __version__, short_version def digit_version(version_str): digit_version = [] for x in version_str.split('.'): if x.isdigit(): digit_version.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') digit_version.append(int(patch_version[0]) - 1) digit_version.append(int(patch_version[1])) return digit_version mmcv_minimum_version = '1.3.8' mmcv_maximum_version = '1.5.0' mmcv_version = digit_version(mmcv.__version__) assert (mmcv_version >= digit_version(mmcv_minimum_version) and mmcv_version <= digit_version(mmcv_maximum_version)), \ f'MMCV=={mmcv.__version__} is used but incompatible. ' \ f'Please install mmcv>={mmcv_minimum_version}, <={mmcv_maximum_version}.' __all__ = ['__version__', 'short_version']
# Copyright (c) OpenMMLab. All rights reserved. import mmcv from .version import __version__, short_version def digit_version(version_str): digit_version = [] for x in version_str.split('.'): if x.isdigit(): digit_version.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') digit_version.append(int(patch_version[0]) - 1) digit_version.append(int(patch_version[1])) return digit_version mmcv_minimum_version = '1.3.8' mmcv_maximum_version = '1.4.0' mmcv_version = digit_version(mmcv.__version__) assert (mmcv_version >= digit_version(mmcv_minimum_version) and mmcv_version <= digit_version(mmcv_maximum_version)), \ f'MMCV=={mmcv.__version__} is used but incompatible. ' \ f'Please install mmcv>={mmcv_minimum_version}, <={mmcv_maximum_version}.' __all__ = ['__version__', 'short_version']
import os from typing import BinaryIO, Optional, Tuple, Union import torch import torchaudio from .backend import Backend from .common import AudioMetaData sox_ext = torchaudio._extension.lazy_import_sox_ext() class SoXBackend(Backend): @staticmethod def info(uri: Union[BinaryIO, str, os.PathLike], format: Optional[str], buffer_size: int = 4096) -> AudioMetaData: if hasattr(uri, "read"): raise ValueError( "SoX backend does not support reading from file-like objects. ", "Please use an alternative backend that does support reading from file-like objects, e.g. FFmpeg.", ) else: sinfo = sox_ext.get_info(uri, format) if sinfo: return AudioMetaData(*sinfo) else: raise RuntimeError(f"Failed to fetch metadata for {uri}.") @staticmethod def load( uri: Union[BinaryIO, str, os.PathLike], frame_offset: int = 0, num_frames: int = -1, normalize: bool = True, channels_first: bool = True, format: Optional[str] = None, buffer_size: int = 4096, ) -> Tuple[torch.Tensor, int]: if hasattr(uri, "read"): raise ValueError( "SoX backend does not support loading from file-like objects. ", "Please use an alternative backend that does support loading from file-like objects, e.g. FFmpeg.", ) else: ret = sox_ext.load_audio_file(uri, frame_offset, num_frames, normalize, channels_first, format) if not ret: raise RuntimeError(f"Failed to load audio from {uri}.") return ret @staticmethod def save( uri: Union[BinaryIO, str, os.PathLike], src: torch.Tensor, sample_rate: int, channels_first: bool = True, format: Optional[str] = None, encoding: Optional[str] = None, bits_per_sample: Optional[int] = None, buffer_size: int = 4096, compression: Optional[Union[torchaudio.io.CodecConfig, float, int]] = None, ) -> None: if not isinstance(compression, (float, int, type(None))): raise ValueError( "SoX backend expects non-`None` value for argument `compression` to be of ", f"type `float` or `int`, but received value of type {type(compression)}", ) if hasattr(uri, "write"): raise ValueError( "SoX backend does not support writing to file-like objects. ", "Please use an alternative backend that does support writing to file-like objects, e.g. FFmpeg.", ) else: sox_ext.save_audio_file( uri, src, sample_rate, channels_first, compression, format, encoding, bits_per_sample, ) @staticmethod def can_decode(uri: Union[BinaryIO, str, os.PathLike], format: Optional[str]) -> bool: # i.e. not a file-like object. return not hasattr(uri, "read") @staticmethod def can_encode(uri: Union[BinaryIO, str, os.PathLike], format: Optional[str]) -> bool: # i.e. not a file-like object. return not hasattr(uri, "write")
import os from typing import BinaryIO, Optional, Tuple, Union import torch import torchaudio from .backend import Backend from .common import AudioMetaData sox_ext = torchaudio._extension.lazy_import_sox_ext() class SoXBackend(Backend): @staticmethod def info(uri: Union[BinaryIO, str, os.PathLike], format: Optional[str], buffer_size: int = 4096) -> AudioMetaData: if hasattr(uri, "read"): raise ValueError( "SoX backend does not support reading from file-like objects. ", "Please use an alternative backend that does support reading from file-like objects, e.g. FFmpeg.", ) else: sinfo = sox_ext.get_info(uri, format) if sinfo: return AudioMetaData(*sinfo) else: raise RuntimeError(f"Failed to fetch metadata for {uri}.") @staticmethod def load( uri: Union[BinaryIO, str, os.PathLike], frame_offset: int = 0, num_frames: int = -1, normalize: bool = True, channels_first: bool = True, format: Optional[str] = None, buffer_size: int = 4096, ) -> Tuple[torch.Tensor, int]: if hasattr(uri, "read"): raise ValueError( "SoX backend does not support loading from file-like objects. ", "Please use an alternative backend that does support loading from file-like objects, e.g. FFmpeg.", ) else: ret = sox_ext.load_audio_file(uri, frame_offset, num_frames, normalize, channels_first, format) if not ret: raise RuntimeError(f"Failed to load audio from {uri}.") return ret @staticmethod def save( uri: Union[BinaryIO, str, os.PathLike], src: torch.Tensor, sample_rate: int, channels_first: bool = True, format: Optional[str] = None, encoding: Optional[str] = None, bits_per_sample: Optional[int] = None, buffer_size: int = 4096, ) -> None: if hasattr(uri, "write"): raise ValueError( "SoX backend does not support writing to file-like objects. ", "Please use an alternative backend that does support writing to file-like objects, e.g. FFmpeg.", ) else: sox_ext.save_audio_file( uri, src, sample_rate, channels_first, None, format, encoding, bits_per_sample, ) @staticmethod def can_decode(uri: Union[BinaryIO, str, os.PathLike], format: Optional[str]) -> bool: # i.e. not a file-like object. return not hasattr(uri, "read") @staticmethod def can_encode(uri: Union[BinaryIO, str, os.PathLike], format: Optional[str]) -> bool: # i.e. not a file-like object. return not hasattr(uri, "write")
# -*- coding: utf-8 -*- """ Audio Feature Augmentation ========================== **Author**: `Moto Hira <moto@meta.com>`__ """ # When running this tutorial in Google Colab, install the required packages # with the following. # !pip install torchaudio librosa import torch import torchaudio import torchaudio.transforms as T print(torch.__version__) print(torchaudio.__version__) ###################################################################### # Preparation # ----------- # import librosa import matplotlib.pyplot as plt from torchaudio.utils import download_asset ###################################################################### # In this tutorial, we will use a speech data from # `VOiCES dataset <https://iqtlabs.github.io/voices/>`__, # which is licensed under Creative Commos BY 4.0. SAMPLE_WAV_SPEECH_PATH = download_asset("tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav") def _get_sample(path, resample=None): effects = [["remix", "1"]] if resample: effects.extend( [ ["lowpass", f"{resample // 2}"], ["rate", f"{resample}"], ] ) return torchaudio.sox_effects.apply_effects_file(path, effects=effects) def get_speech_sample(*, resample=None): return _get_sample(SAMPLE_WAV_SPEECH_PATH, resample=resample) def get_spectrogram( n_fft=400, win_len=None, hop_len=None, power=2.0, ): waveform, _ = get_speech_sample() spectrogram = T.Spectrogram( n_fft=n_fft, win_length=win_len, hop_length=hop_len, center=True, pad_mode="reflect", power=power, ) return spectrogram(waveform) def plot_spec(ax, spec, title, ylabel="freq_bin"): ax.set_title(title) ax.imshow(librosa.power_to_db(spec), origin="lower", aspect="auto") ###################################################################### # SpecAugment # ----------- # # `SpecAugment <https://ai.googleblog.com/2019/04/specaugment-new-data-augmentation.html>`__ # is a popular spectrogram augmentation technique. # # ``torchaudio`` implements :py:func:`torchaudio.transforms.TimeStretch`, # :py:func:`torchaudio.transforms.TimeMasking` and # :py:func:`torchaudio.transforms.FrequencyMasking`. # ###################################################################### # TimeStretch # ----------- # spec = get_spectrogram(power=None) stretch = T.TimeStretch() spec_12 = stretch(spec, overriding_rate=1.2) spec_09 = stretch(spec, overriding_rate=0.9) ###################################################################### # def plot(): fig, axes = plt.subplots(3, 1, sharex=True, sharey=True) plot_spec(axes[0], torch.abs(spec_12[0]), title="Stretched x1.2") plot_spec(axes[1], torch.abs(spec[0]), title="Original") plot_spec(axes[2], torch.abs(spec_09[0]), title="Stretched x0.9") fig.tight_layout() plot() ###################################################################### # Time and Frequency Masking # -------------------------- # torch.random.manual_seed(4) time_masking = T.TimeMasking(time_mask_param=80) freq_masking = T.FrequencyMasking(freq_mask_param=80) spec = get_spectrogram() time_masked = time_masking(spec) freq_masked = freq_masking(spec) ###################################################################### # def plot(): fig, axes = plt.subplots(3, 1, sharex=True, sharey=True) plot_spec(axes[0], spec[0], title="Original") plot_spec(axes[1], time_masked[0], title="Masked along time axis") plot_spec(axes[2], freq_masked[0], title="Masked along frequency axis") fig.tight_layout() plot()
# -*- coding: utf-8 -*- """ Audio Feature Augmentation ========================== **Author**: `Moto Hira <moto@meta.com>`__ """ # When running this tutorial in Google Colab, install the required packages # with the following. # !pip install torchaudio librosa import torch import torchaudio import torchaudio.transforms as T print(torch.__version__) print(torchaudio.__version__) ###################################################################### # Preparing data and utility functions (skip this section) # -------------------------------------------------------- # # @title Prepare data and utility functions. {display-mode: "form"} # @markdown # @markdown You do not need to look into this cell. # @markdown Just execute once and you are good to go. # @markdown # @markdown In this tutorial, we will use a speech data from [VOiCES dataset](https://iqtlabs.github.io/voices/), # @markdown which is licensed under Creative Commos BY 4.0. # ------------------------------------------------------------------------------- # Preparation of data and helper functions. # ------------------------------------------------------------------------------- import librosa import matplotlib.pyplot as plt from torchaudio.utils import download_asset SAMPLE_WAV_SPEECH_PATH = download_asset("tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav") def _get_sample(path, resample=None): effects = [["remix", "1"]] if resample: effects.extend( [ ["lowpass", f"{resample // 2}"], ["rate", f"{resample}"], ] ) return torchaudio.sox_effects.apply_effects_file(path, effects=effects) def get_speech_sample(*, resample=None): return _get_sample(SAMPLE_WAV_SPEECH_PATH, resample=resample) def get_spectrogram( n_fft=400, win_len=None, hop_len=None, power=2.0, ): waveform, _ = get_speech_sample() spectrogram = T.Spectrogram( n_fft=n_fft, win_length=win_len, hop_length=hop_len, center=True, pad_mode="reflect", power=power, ) return spectrogram(waveform) def plot_spectrogram(spec, title=None, ylabel="freq_bin", aspect="auto", xmax=None): fig, axs = plt.subplots(1, 1) axs.set_title(title or "Spectrogram (db)") axs.set_ylabel(ylabel) axs.set_xlabel("frame") im = axs.imshow(librosa.power_to_db(spec), origin="lower", aspect=aspect) if xmax: axs.set_xlim((0, xmax)) fig.colorbar(im, ax=axs) plt.show(block=False) ###################################################################### # SpecAugment # ----------- # # `SpecAugment <https://ai.googleblog.com/2019/04/specaugment-new-data-augmentation.html>`__ # is a popular spectrogram augmentation technique. # # ``torchaudio`` implements :py:func:`torchaudio.transforms.TimeStretch`, # :py:func:`torchaudio.transforms.TimeMasking` and # :py:func:`torchaudio.transforms.FrequencyMasking`. # ###################################################################### # TimeStretch # ----------- # spec = get_spectrogram(power=None) stretch = T.TimeStretch() rate = 1.2 spec_ = stretch(spec, rate) plot_spectrogram(torch.abs(spec_[0]), title=f"Stretched x{rate}", aspect="equal", xmax=304) plot_spectrogram(torch.abs(spec[0]), title="Original", aspect="equal", xmax=304) rate = 0.9 spec_ = stretch(spec, rate) plot_spectrogram(torch.abs(spec_[0]), title=f"Stretched x{rate}", aspect="equal", xmax=304) ###################################################################### # TimeMasking # ----------- # torch.random.manual_seed(4) spec = get_spectrogram() plot_spectrogram(spec[0], title="Original") masking = T.TimeMasking(time_mask_param=80) spec = masking(spec) plot_spectrogram(spec[0], title="Masked along time axis") ###################################################################### # FrequencyMasking # ---------------- # torch.random.manual_seed(4) spec = get_spectrogram() plot_spectrogram(spec[0], title="Original") masking = T.FrequencyMasking(freq_mask_param=80) spec = masking(spec) plot_spectrogram(spec[0], title="Masked along frequency axis")
import csv import logging import os from typing import Optional import numpy as np from sklearn.metrics import ndcg_score logger = logging.getLogger(__name__) class CERerankingEvaluator: """ This class evaluates a CrossEncoder model for the task of re-ranking. Given a query and a list of documents, it computes the score [query, doc_i] for all possible documents and sorts them in decreasing order. Then, MRR@10 and NDCG@10 are computed to measure the quality of the ranking. Args: samples (List[Dict, str, Union[str, List[str]]): Must be a list and each element is of the form: {'query': '', 'positive': [], 'negative': []}. Query is the search query, positive is a list of positive (relevant) documents, negative is a list of negative (irrelevant) documents. """ def __init__( self, samples, at_k: int = 10, name: str = "", write_csv: bool = True, mrr_at_k: Optional[int] = None ): self.samples = samples self.name = name if mrr_at_k is not None: logger.warning(f"The `mrr_at_k` parameter has been deprecated; please use `at_k={mrr_at_k}` instead.") self.at_k = mrr_at_k else: self.at_k = at_k if isinstance(self.samples, dict): self.samples = list(self.samples.values()) self.csv_file = "CERerankingEvaluator" + ("_" + name if name else "") + f"_results_@{self.at_k}.csv" self.csv_headers = [ "epoch", "steps", "MRR@{}".format(self.at_k), "NDCG@{}".format(self.at_k), ] self.write_csv = write_csv def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CERerankingEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) all_mrr_scores = [] all_ndcg_scores = [] num_queries = 0 num_positives = [] num_negatives = [] for instance in self.samples: query = instance["query"] positive = list(instance["positive"]) negative = list(instance["negative"]) docs = positive + negative is_relevant = [1] * len(positive) + [0] * len(negative) if len(positive) == 0 or len(negative) == 0: continue num_queries += 1 num_positives.append(len(positive)) num_negatives.append(len(negative)) model_input = [[query, doc] for doc in docs] pred_scores = model.predict(model_input, convert_to_numpy=True, show_progress_bar=False) pred_scores_argsort = np.argsort(-pred_scores) # Sort in decreasing order mrr_score = 0 for rank, index in enumerate(pred_scores_argsort[0 : self.at_k]): if is_relevant[index]: mrr_score = 1 / (rank + 1) break all_mrr_scores.append(mrr_score) all_ndcg_scores.append(ndcg_score([is_relevant], [pred_scores], k=self.at_k)) mean_mrr = np.mean(all_mrr_scores) mean_ndcg = np.mean(all_ndcg_scores) logger.info( "Queries: {} \t Positives: Min {:.1f}, Mean {:.1f}, Max {:.1f} \t Negatives: Min {:.1f}, Mean {:.1f}, Max {:.1f}".format( num_queries, np.min(num_positives), np.mean(num_positives), np.max(num_positives), np.min(num_negatives), np.mean(num_negatives), np.max(num_negatives), ) ) logger.info("MRR@{}: {:.2f}".format(self.at_k, mean_mrr * 100)) logger.info("NDCG@{}: {:.2f}".format(self.at_k, mean_ndcg * 100)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, mean_mrr, mean_ndcg]) return mean_mrr
import logging import numpy as np import os import csv from typing import Optional from sklearn.metrics import ndcg_score logger = logging.getLogger(__name__) class CERerankingEvaluator: """ This class evaluates a CrossEncoder model for the task of re-ranking. Given a query and a list of documents, it computes the score [query, doc_i] for all possible documents and sorts them in decreasing order. Then, MRR@10 and NDCG@10 are computed to measure the quality of the ranking. Args: samples (List[Dict, str, Union[str, List[str]]): Must be a list and each element is of the form: {'query': '', 'positive': [], 'negative': []}. Query is the search query, positive is a list of positive (relevant) documents, negative is a list of negative (irrelevant) documents. """ def __init__( self, samples, at_k: int = 10, name: str = "", write_csv: bool = True, mrr_at_k: Optional[int] = None ): self.samples = samples self.name = name if mrr_at_k is not None: logger.warning(f"The `mrr_at_k` parameter has been deprecated; please use `at_k={mrr_at_k}` instead.") self.at_k = mrr_at_k else: self.at_k = at_k if isinstance(self.samples, dict): self.samples = list(self.samples.values()) self.csv_file = "CERerankingEvaluator" + ("_" + name if name else "") + f"_results_@{self.at_k}.csv" self.csv_headers = [ "epoch", "steps", "MRR@{}".format(self.at_k), "NDCG@{}".format(self.at_k), ] self.write_csv = write_csv def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CERerankingEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) all_mrr_scores = [] all_ndcg_scores = [] num_queries = 0 num_positives = [] num_negatives = [] for instance in self.samples: query = instance["query"] positive = list(instance["positive"]) negative = list(instance["negative"]) docs = positive + negative is_relevant = [1] * len(positive) + [0] * len(negative) if len(positive) == 0 or len(negative) == 0: continue num_queries += 1 num_positives.append(len(positive)) num_negatives.append(len(negative)) model_input = [[query, doc] for doc in docs] pred_scores = model.predict(model_input, convert_to_numpy=True, show_progress_bar=False) pred_scores_argsort = np.argsort(-pred_scores) # Sort in decreasing order mrr_score = 0 for rank, index in enumerate(pred_scores_argsort[0 : self.at_k]): if is_relevant[index]: mrr_score = 1 / (rank + 1) break all_mrr_scores.append(mrr_score) all_ndcg_scores.append(ndcg_score([is_relevant], [pred_scores], k=self.at_k)) mean_mrr = np.mean(all_mrr_scores) mean_ndcg = np.mean(all_ndcg_scores) logger.info( "Queries: {} \t Positives: Min {:.1f}, Mean {:.1f}, Max {:.1f} \t Negatives: Min {:.1f}, Mean {:.1f}, Max {:.1f}".format( num_queries, np.min(num_positives), np.mean(num_positives), np.max(num_positives), np.min(num_negatives), np.mean(num_negatives), np.max(num_negatives), ) ) logger.info("MRR@{}: {:.2f}".format(self.at_k, mean_mrr * 100)) logger.info("NDCG@{}: {:.2f}".format(self.at_k, mean_ndcg * 100)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, mean_mrr, mean_ndcg]) return mean_mrr
""" Outlook local calendar reader for Windows. Created on Sun Apr 16 12:03:19 2023 @author: tevslin """ import datetime import importlib import platform from typing import List, Optional, Union from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document # Copyright 2023 Evslin Consulting # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class OutlookLocalCalendarReader(BaseReader): """ Outlook local calendar reader for Windows. Reads events from local copy of Outlook calendar. """ def load_data( self, number_of_results: Optional[int] = 100, start_date: Optional[Union[str, datetime.date]] = None, end_date: Optional[Union[str, datetime.date]] = None, more_attributes: Optional[List[str]] = None, ) -> List[Document]: """ Load data from user's local calendar. Args: number_of_results (Optional[int]): the number of events to return. Defaults to 100. start_date (Optional[Union[str, datetime.date]]): the start date to return events from. Defaults to today. end_date (Optional[Union[str, datetime.date]]): the last date (inclusive) to return events from. Defaults to 2199-01-01. more_attributes (Optional[ List[str]]): additional attributes to be retrieved from calendar entries. Non-existnat attributes are ignored. Returns a list of documents sutitable for indexing by llam_index. Always returns Start, End, Subject, Location, and Organizer attributes and optionally returns additional attributes specified in the more_attributes parameter. """ if platform.system().lower() != "windows": return [] attributes = [ "Start", "End", "Subject", "Location", "Organizer", ] # base attributes to return if more_attributes is not None: # if the user has specified more attributes attributes += more_attributes if start_date is None: start_date = datetime.date.today() elif isinstance(start_date, str): start_date = datetime.date.fromisoformat(start_date) # Initialize the Outlook application winstuff = importlib.import_module("win32com.client") outlook = winstuff.Dispatch("Outlook.Application").GetNamespace("MAPI") # Get the Calendar folder calendar_folder = outlook.GetDefaultFolder(9) # Retrieve calendar items events = calendar_folder.Items if not events: return [] events.Sort("[Start]") # Sort items by start time numberReturned = 0 results = [] for event in events: converted_date = datetime.date( event.Start.year, event.Start.month, event.Start.day ) if converted_date > start_date: # if past start date numberReturned += 1 eventstring = "" for attribute in attributes: if hasattr(event, attribute): eventstring += f"{attribute}: {getattr(event, attribute)}, " results.append(Document(text=eventstring)) if numberReturned >= number_of_results: break return results if __name__ == "__main__": reader = OutlookLocalCalendarReader() print(reader.load_data())
""" Outlook local calendar reader for Windows. Created on Sun Apr 16 12:03:19 2023 @author: tevslin """ import datetime import importlib import platform from typing import List, Optional, Union from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document # Copyright 2023 Evslin Consulting # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class OutlookLocalCalendarReader(BaseReader): """ Outlook local calendar reader for Windows. Reads events from local copy of Outlook calendar. """ def load_data( self, number_of_results: Optional[int] = 100, start_date: Optional[Union[str, datetime.date]] = None, end_date: Optional[Union[str, datetime.date]] = None, more_attributes: Optional[List[str]] = None, ) -> List[Document]: """ Load data from user's local calendar. Args: number_of_results (Optional[int]): the number of events to return. Defaults to 100. start_date (Optional[Union[str, datetime.date]]): the start date to return events from. Defaults to today. end_date (Optional[Union[str, datetime.date]]): the last date (inclusive) to return events from. Defaults to 2199-01-01. more_attributes (Optional[ List[str]]): additional attributes to be retrieved from calendar entries. Non-existnat attributes are ignored. Returns a list of documents sutitable for indexing by llam_index. Always returns Start, End, Subject, Location, and Organizer attributes and optionally returns additional attributes specified in the more_attributes parameter. """ if platform.system().lower() != "windows": return [] attributes = [ "Start", "End", "Subject", "Location", "Organizer", ] # base attributes to return if more_attributes is not None: # if the user has specified more attributes attributes += more_attributes if start_date is None: start_date = datetime.date.today() elif isinstance(start_date, str): start_date = datetime.date.fromisoformat(start_date) # Initialize the Outlook application winstuff = importlib.import_module("win32com.client") outlook = winstuff.Dispatch("Outlook.Application").GetNamespace("MAPI") # Get the Calendar folder calendar_folder = outlook.GetDefaultFolder(9) # Retrieve calendar items events = calendar_folder.Items if not events: return [] events.Sort("[Start]") # Sort items by start time numberReturned = 0 results = [] for event in events: converted_date = datetime.date( event.Start.year, event.Start.month, event.Start.day ) if converted_date > start_date: # if past start date numberReturned += 1 eventstring = "" for attribute in attributes: if hasattr(event, attribute): eventstring += f"{attribute}: {getattr(event,attribute)}, " results.append(Document(text=eventstring)) if numberReturned >= number_of_results: break return results if __name__ == "__main__": reader = OutlookLocalCalendarReader() print(reader.load_data())
"""Retriever tool.""" from typing import TYPE_CHECKING, Any, List, Optional from llama_index.core.base.base_retriever import BaseRetriever if TYPE_CHECKING: from llama_index.core.langchain_helpers.agents.tools import LlamaIndexTool from llama_index.core.schema import ( MetadataMode, Node, NodeWithScore, QueryBundle, TextNode, ) from llama_index.core.tools.types import AsyncBaseTool, ToolMetadata, ToolOutput from llama_index.core.postprocessor.types import BaseNodePostprocessor DEFAULT_NAME = "retriever_tool" DEFAULT_DESCRIPTION = """Useful for running a natural language query against a knowledge base and retrieving a set of relevant documents. """ class RetrieverTool(AsyncBaseTool): """ Retriever tool. A tool making use of a retriever. Args: retriever (BaseRetriever): A retriever. metadata (ToolMetadata): The associated metadata of the query engine. node_postprocessors (Optional[List[BaseNodePostprocessor]]): A list of node postprocessors. """ def __init__( self, retriever: BaseRetriever, metadata: ToolMetadata, node_postprocessors: Optional[List[BaseNodePostprocessor]] = None, ) -> None: self._retriever = retriever self._metadata = metadata self._node_postprocessors = node_postprocessors or [] @classmethod def from_defaults( cls, retriever: BaseRetriever, node_postprocessors: Optional[List[BaseNodePostprocessor]] = None, name: Optional[str] = None, description: Optional[str] = None, ) -> "RetrieverTool": name = name or DEFAULT_NAME description = description or DEFAULT_DESCRIPTION metadata = ToolMetadata(name=name, description=description) return cls( retriever=retriever, metadata=metadata, node_postprocessors=node_postprocessors, ) @property def retriever(self) -> BaseRetriever: return self._retriever @property def metadata(self) -> ToolMetadata: return self._metadata def call(self, *args: Any, **kwargs: Any) -> ToolOutput: query_str = "" if args is not None: query_str += ", ".join([str(arg) for arg in args]) + "\n" if kwargs is not None: query_str += ( ", ".join([f"{k!s} is {v!s}" for k, v in kwargs.items()]) + "\n" ) if query_str == "": raise ValueError("Cannot call query engine without inputs") docs = self._retriever.retrieve(query_str) docs = self._apply_node_postprocessors(docs, QueryBundle(query_str)) content = "" for doc in docs: assert isinstance(doc.node, (Node, TextNode)) node_copy = doc.node.model_copy() content += node_copy.get_content(MetadataMode.LLM) + "\n\n" return ToolOutput( content=content, tool_name=self.metadata.name, raw_input={"input": query_str}, raw_output=docs, ) async def acall(self, *args: Any, **kwargs: Any) -> ToolOutput: query_str = "" if args is not None: query_str += ", ".join([str(arg) for arg in args]) + "\n" if kwargs is not None: query_str += ( ", ".join([f"{k!s} is {v!s}" for k, v in kwargs.items()]) + "\n" ) if query_str == "": raise ValueError("Cannot call query engine without inputs") docs = await self._retriever.aretrieve(query_str) content = "" docs = self._apply_node_postprocessors(docs, QueryBundle(query_str)) for doc in docs: assert isinstance(doc.node, (Node, TextNode)) node_copy = doc.node.model_copy() content += node_copy.get_content(MetadataMode.LLM) + "\n\n" return ToolOutput( content=content, tool_name=self.metadata.name, raw_input={"input": query_str}, raw_output=docs, ) def as_langchain_tool(self) -> "LlamaIndexTool": raise NotImplementedError("`as_langchain_tool` not implemented here.") def _apply_node_postprocessors( self, nodes: List[NodeWithScore], query_bundle: QueryBundle ) -> List[NodeWithScore]: for node_postprocessor in self._node_postprocessors: nodes = node_postprocessor.postprocess_nodes( nodes, query_bundle=query_bundle ) return nodes
"""Retriever tool.""" from typing import TYPE_CHECKING, Any, List, Optional from llama_index.core.base.base_retriever import BaseRetriever if TYPE_CHECKING: from llama_index.core.langchain_helpers.agents.tools import LlamaIndexTool from llama_index.core.schema import ( MetadataMode, Node, NodeWithScore, QueryBundle, TextNode, ) from llama_index.core.tools.types import AsyncBaseTool, ToolMetadata, ToolOutput from llama_index.core.postprocessor.types import BaseNodePostprocessor DEFAULT_NAME = "retriever_tool" DEFAULT_DESCRIPTION = """Useful for running a natural language query against a knowledge base and retrieving a set of relevant documents. """ class RetrieverTool(AsyncBaseTool): """Retriever tool. A tool making use of a retriever. Args: retriever (BaseRetriever): A retriever. metadata (ToolMetadata): The associated metadata of the query engine. node_postprocessors (Optional[List[BaseNodePostprocessor]]): A list of node postprocessors. """ def __init__( self, retriever: BaseRetriever, metadata: ToolMetadata, node_postprocessors: Optional[List[BaseNodePostprocessor]] = None, ) -> None: self._retriever = retriever self._metadata = metadata self._node_postprocessors = node_postprocessors or [] @classmethod def from_defaults( cls, retriever: BaseRetriever, node_postprocessors: Optional[List[BaseNodePostprocessor]] = None, name: Optional[str] = None, description: Optional[str] = None, ) -> "RetrieverTool": name = name or DEFAULT_NAME description = description or DEFAULT_DESCRIPTION metadata = ToolMetadata(name=name, description=description) return cls( retriever=retriever, metadata=metadata, node_postprocessors=node_postprocessors, ) @property def retriever(self) -> BaseRetriever: return self._retriever @property def metadata(self) -> ToolMetadata: return self._metadata def call(self, *args: Any, **kwargs: Any) -> ToolOutput: query_str = "" if args is not None: query_str += ", ".join([str(arg) for arg in args]) + "\n" if kwargs is not None: query_str += ( ", ".join([f"{k!s} is {v!s}" for k, v in kwargs.items()]) + "\n" ) if query_str == "": raise ValueError("Cannot call query engine without inputs") docs = self._retriever.retrieve(query_str) docs = self._apply_node_postprocessors(docs, QueryBundle(query_str)) content = "" for doc in docs: assert isinstance(doc.node, (Node, TextNode)) node_copy = doc.node.model_copy() content += node_copy.get_content(MetadataMode.LLM) + "\n\n" return ToolOutput( content=content, tool_name=self.metadata.name, raw_input={"input": query_str}, raw_output=docs, ) async def acall(self, *args: Any, **kwargs: Any) -> ToolOutput: query_str = "" if args is not None: query_str += ", ".join([str(arg) for arg in args]) + "\n" if kwargs is not None: query_str += ( ", ".join([f"{k!s} is {v!s}" for k, v in kwargs.items()]) + "\n" ) if query_str == "": raise ValueError("Cannot call query engine without inputs") docs = await self._retriever.aretrieve(query_str) content = "" docs = self._apply_node_postprocessors(docs, QueryBundle(query_str)) for doc in docs: assert isinstance(doc.node, (Node, TextNode)) node_copy = doc.node.model_copy() content += node_copy.get_content(MetadataMode.LLM) + "\n\n" return ToolOutput( content=content, tool_name=self.metadata.name, raw_input={"input": query_str}, raw_output=docs, ) def as_langchain_tool(self) -> "LlamaIndexTool": raise NotImplementedError("`as_langchain_tool` not implemented here.") def _apply_node_postprocessors( self, nodes: List[NodeWithScore], query_bundle: QueryBundle ) -> List[NodeWithScore]: for node_postprocessor in self._node_postprocessors: nodes = node_postprocessor.postprocess_nodes( nodes, query_bundle=query_bundle ) return nodes
""" ================================================ Kernel Density Estimate of Species Distributions ================================================ This shows an example of a neighbors-based query (in particular a kernel density estimate) on geospatial data, using a Ball Tree built upon the Haversine distance metric -- i.e. distances over points in latitude/longitude. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <https://matplotlib.org/basemap/>`_ to plot the coast lines and national boundaries of South America. This example does not perform any learning over the data (see :ref:`sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py` for an example of classification based on the attributes in this dataset). It simply shows the kernel density estimate of observed data points in geospatial coordinates. The two species are: - `"Bradypus variegatus" <https://www.iucnredlist.org/species/3038/47437046>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- - `"Maximum entropy modeling of species geographic distributions" <http://rob.schapire.net/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # noqa: E501 # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import fetch_species_distributions from sklearn.neighbors import KernelDensity # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False def construct_grids(batch): """Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages """ # x,y coordinates for corner cells xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) # x coordinates of the grid cells xgrid = np.arange(xmin, xmax, batch.grid_size) # y coordinates of the grid cells ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid) # Get matrices/arrays of species IDs and locations data = fetch_species_distributions() species_names = ["Bradypus Variegatus", "Microryzomys Minutus"] Xtrain = np.vstack([data["train"]["dd lat"], data["train"]["dd long"]]).T ytrain = np.array( [d.decode("ascii").startswith("micro") for d in data["train"]["species"]], dtype="int", ) Xtrain *= np.pi / 180.0 # Convert lat/long to radians # Set up the data grid for the contour plot xgrid, ygrid = construct_grids(data) X, Y = np.meshgrid(xgrid[::5], ygrid[::5][::-1]) land_reference = data.coverages[6][::5, ::5] land_mask = (land_reference > -9999).ravel() xy = np.vstack([Y.ravel(), X.ravel()]).T xy = xy[land_mask] xy *= np.pi / 180.0 # Plot map of South America with distributions of each species fig = plt.figure() fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05) for i in range(2): plt.subplot(1, 2, i + 1) # construct a kernel density estimate of the distribution print(" - computing KDE in spherical coordinates") kde = KernelDensity( bandwidth=0.04, metric="haversine", kernel="gaussian", algorithm="ball_tree" ) kde.fit(Xtrain[ytrain == i]) # evaluate only on the land: -9999 indicates ocean Z = np.full(land_mask.shape[0], -9999, dtype="int") Z[land_mask] = np.exp(kde.score_samples(xy)) Z = Z.reshape(X.shape) # plot contours of the density levels = np.linspace(0, Z.max(), 25) plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) if basemap: print(" - plot coastlines using basemap") m = Basemap( projection="cyl", llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution="c", ) m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour( X, Y, land_reference, levels=[-9998], colors="k", linestyles="solid" ) plt.xticks([]) plt.yticks([]) plt.title(species_names[i]) plt.show()
""" ================================================ Kernel Density Estimate of Species Distributions ================================================ This shows an example of a neighbors-based query (in particular a kernel density estimate) on geospatial data, using a Ball Tree built upon the Haversine distance metric -- i.e. distances over points in latitude/longitude. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <https://matplotlib.org/basemap/>`_ to plot the coast lines and national boundaries of South America. This example does not perform any learning over the data (see :ref:`sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py` for an example of classification based on the attributes in this dataset). It simply shows the kernel density estimate of observed data points in geospatial coordinates. The two species are: - `"Bradypus variegatus" <https://www.iucnredlist.org/species/3038/47437046>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- - `"Maximum entropy modeling of species geographic distributions" <http://rob.schapire.net/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # noqa: E501 # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import fetch_species_distributions from sklearn.neighbors import KernelDensity # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False def construct_grids(batch): """Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages """ # x,y coordinates for corner cells xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) # x coordinates of the grid cells xgrid = np.arange(xmin, xmax, batch.grid_size) # y coordinates of the grid cells ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid) # Get matrices/arrays of species IDs and locations data = fetch_species_distributions() species_names = ["Bradypus Variegatus", "Microryzomys Minutus"] Xtrain = np.vstack([data["train"]["dd lat"], data["train"]["dd long"]]).T ytrain = np.array( [d.decode("ascii").startswith("micro") for d in data["train"]["species"]], dtype="int", ) Xtrain *= np.pi / 180.0 # Convert lat/long to radians # Set up the data grid for the contour plot xgrid, ygrid = construct_grids(data) X, Y = np.meshgrid(xgrid[::5], ygrid[::5][::-1]) land_reference = data.coverages[6][::5, ::5] land_mask = (land_reference > -9999).ravel() xy = np.vstack([Y.ravel(), X.ravel()]).T xy = xy[land_mask] xy *= np.pi / 180.0 # Plot map of South America with distributions of each species fig = plt.figure() fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05) for i in range(2): plt.subplot(1, 2, i + 1) # construct a kernel density estimate of the distribution print(" - computing KDE in spherical coordinates") kde = KernelDensity( bandwidth=0.04, metric="haversine", kernel="gaussian", algorithm="ball_tree" ) kde.fit(Xtrain[ytrain == i]) # evaluate only on the land: -9999 indicates ocean Z = np.full(land_mask.shape[0], -9999, dtype="int") Z[land_mask] = np.exp(kde.score_samples(xy)) Z = Z.reshape(X.shape) # plot contours of the density levels = np.linspace(0, Z.max(), 25) plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) if basemap: print(" - plot coastlines using basemap") m = Basemap( projection="cyl", llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution="c", ) m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour( X, Y, land_reference, levels=[-9998], colors="k", linestyles="solid" ) plt.xticks([]) plt.yticks([]) plt.title(species_names[i]) plt.show()
from llama_index.agent.azure_foundry_agent.base import AzureFoundryAgent __all__ = ["AzureFoundryAgent"]
from llama_index.agent.azure_foundry_agent.base import AzureFoundryAgent __all__ = [ "AzureFoundryAgent" ]
# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Tuple, Union import torch.nn as nn from mmcv.cnn import ConvModule from mmengine.model import BaseModule from torch import Tensor from mmdet.registry import MODELS from mmdet.utils import OptConfigType, OptMultiConfig @MODELS.register_module() class ChannelMapper(BaseModule): """Channel Mapper to reduce/increase channels of backbone features. This is used to reduce/increase channels of backbone features. Args: in_channels (List[int]): Number of input channels per scale. out_channels (int): Number of output channels (used at each scale). kernel_size (int, optional): kernel_size for reducing channels (used at each scale). Default: 3. conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for convolution layer. Default: None. norm_cfg (:obj:`ConfigDict` or dict, optional): Config dict for normalization layer. Default: None. act_cfg (:obj:`ConfigDict` or dict, optional): Config dict for activation layer in ConvModule. Default: dict(type='ReLU'). bias (bool | str): If specified as `auto`, it will be decided by the norm_cfg. Bias will be set as True if `norm_cfg` is None, otherwise False. Default: "auto". num_outs (int, optional): Number of output feature maps. There would be extra_convs when num_outs larger than the length of in_channels. init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or dict], optional): Initialization config dict. Example: >>> import torch >>> in_channels = [2, 3, 5, 7] >>> scales = [340, 170, 84, 43] >>> inputs = [torch.rand(1, c, s, s) ... for c, s in zip(in_channels, scales)] >>> self = ChannelMapper(in_channels, 11, 3).eval() >>> outputs = self.forward(inputs) >>> for i in range(len(outputs)): ... print(f'outputs[{i}].shape = {outputs[i].shape}') outputs[0].shape = torch.Size([1, 11, 340, 340]) outputs[1].shape = torch.Size([1, 11, 170, 170]) outputs[2].shape = torch.Size([1, 11, 84, 84]) outputs[3].shape = torch.Size([1, 11, 43, 43]) """ def __init__( self, in_channels: List[int], out_channels: int, kernel_size: int = 3, conv_cfg: OptConfigType = None, norm_cfg: OptConfigType = None, act_cfg: OptConfigType = dict(type='ReLU'), bias: Union[bool, str] = 'auto', num_outs: int = None, init_cfg: OptMultiConfig = dict( type='Xavier', layer='Conv2d', distribution='uniform') ) -> None: super().__init__(init_cfg=init_cfg) assert isinstance(in_channels, list) self.extra_convs = None if num_outs is None: num_outs = len(in_channels) self.convs = nn.ModuleList() for in_channel in in_channels: self.convs.append( ConvModule( in_channel, out_channels, kernel_size, padding=(kernel_size - 1) // 2, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg, bias=bias)) if num_outs > len(in_channels): self.extra_convs = nn.ModuleList() for i in range(len(in_channels), num_outs): if i == len(in_channels): in_channel = in_channels[-1] else: in_channel = out_channels self.extra_convs.append( ConvModule( in_channel, out_channels, 3, stride=2, padding=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg, bias=bias)) def forward(self, inputs: Tuple[Tensor]) -> Tuple[Tensor]: """Forward function.""" assert len(inputs) == len(self.convs) outs = [self.convs[i](inputs[i]) for i in range(len(inputs))] if self.extra_convs: for i in range(len(self.extra_convs)): if i == 0: outs.append(self.extra_convs[0](inputs[-1])) else: outs.append(self.extra_convs[i](outs[-1])) return tuple(outs)
# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Tuple import torch.nn as nn from mmcv.cnn import ConvModule from mmengine.model import BaseModule from torch import Tensor from mmdet.registry import MODELS from mmdet.utils import OptConfigType, OptMultiConfig @MODELS.register_module() class ChannelMapper(BaseModule): """Channel Mapper to reduce/increase channels of backbone features. This is used to reduce/increase channels of backbone features. Args: in_channels (List[int]): Number of input channels per scale. out_channels (int): Number of output channels (used at each scale). kernel_size (int, optional): kernel_size for reducing channels (used at each scale). Default: 3. conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for convolution layer. Default: None. norm_cfg (:obj:`ConfigDict` or dict, optional): Config dict for normalization layer. Default: None. act_cfg (:obj:`ConfigDict` or dict, optional): Config dict for activation layer in ConvModule. Default: dict(type='ReLU'). num_outs (int, optional): Number of output feature maps. There would be extra_convs when num_outs larger than the length of in_channels. init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or dict], optional): Initialization config dict. Example: >>> import torch >>> in_channels = [2, 3, 5, 7] >>> scales = [340, 170, 84, 43] >>> inputs = [torch.rand(1, c, s, s) ... for c, s in zip(in_channels, scales)] >>> self = ChannelMapper(in_channels, 11, 3).eval() >>> outputs = self.forward(inputs) >>> for i in range(len(outputs)): ... print(f'outputs[{i}].shape = {outputs[i].shape}') outputs[0].shape = torch.Size([1, 11, 340, 340]) outputs[1].shape = torch.Size([1, 11, 170, 170]) outputs[2].shape = torch.Size([1, 11, 84, 84]) outputs[3].shape = torch.Size([1, 11, 43, 43]) """ def __init__( self, in_channels: List[int], out_channels: int, kernel_size: int = 3, conv_cfg: OptConfigType = None, norm_cfg: OptConfigType = None, act_cfg: OptConfigType = dict(type='ReLU'), num_outs: int = None, init_cfg: OptMultiConfig = dict( type='Xavier', layer='Conv2d', distribution='uniform') ) -> None: super().__init__(init_cfg=init_cfg) assert isinstance(in_channels, list) self.extra_convs = None if num_outs is None: num_outs = len(in_channels) self.convs = nn.ModuleList() for in_channel in in_channels: self.convs.append( ConvModule( in_channel, out_channels, kernel_size, padding=(kernel_size - 1) // 2, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) if num_outs > len(in_channels): self.extra_convs = nn.ModuleList() for i in range(len(in_channels), num_outs): if i == len(in_channels): in_channel = in_channels[-1] else: in_channel = out_channels self.extra_convs.append( ConvModule( in_channel, out_channels, 3, stride=2, padding=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) def forward(self, inputs: Tuple[Tensor]) -> Tuple[Tensor]: """Forward function.""" assert len(inputs) == len(self.convs) outs = [self.convs[i](inputs[i]) for i in range(len(inputs))] if self.extra_convs: for i in range(len(self.extra_convs)): if i == 0: outs.append(self.extra_convs[0](inputs[-1])) else: outs.append(self.extra_convs[i](outs[-1])) return tuple(outs)
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet.models.roi_heads import PointRendRoIHead # noqa from mmdet.registry import MODELS from mmdet.testing import demo_mm_inputs, demo_mm_proposals, get_roi_head_cfg class TestHTCRoIHead(TestCase): @parameterized.expand( ['point_rend/point-rend_r50-caffe_fpn_ms-1x_coco.py']) def test_init(self, cfg_file): """Test init Point rend RoI head.""" # Normal HTC RoI head roi_head_cfg = get_roi_head_cfg(cfg_file) roi_head = MODELS.build(roi_head_cfg) assert roi_head.with_bbox assert roi_head.with_mask @parameterized.expand( ['point_rend/point-rend_r50-caffe_fpn_ms-1x_coco.py']) def test_point_rend_roi_head_loss(self, cfg_file): """Tests htc roi head loss when truth is empty and non-empty.""" if not torch.cuda.is_available(): # RoI pooling only support in GPU return unittest.skip('test requires GPU and torch+cuda') s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] roi_head_cfg = get_roi_head_cfg(cfg_file) roi_head = MODELS.build(roi_head_cfg) roi_head = roi_head.cuda() feats = [] for i in range(len(roi_head_cfg.bbox_roi_extractor.featmap_strides)): feats.append( torch.rand(1, 256, s // (2**(i + 2)), s // (2**(i + 2))).to(device='cuda')) feats = tuple(feats) # When truth is non-empty then both cls, box, and mask loss # should be nonzero for random inputs img_shape_list = [img_meta['img_shape'] for img_meta in img_metas] proposal_list = demo_mm_proposals(img_shape_list, 100, device='cuda') batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=[(3, s, s)], num_items=[1], num_classes=4, with_mask=True, device='cuda')['data_samples'] out = roi_head.loss(feats, proposal_list, batch_data_samples) for name, value in out.items(): if 'loss' in name: self.assertGreaterEqual( value.sum(), 0, msg='loss should be non-zero') # Positive rois must not be empty proposal_list = demo_mm_proposals(img_shape_list, 100, device='cuda') batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=[(3, s, s)], num_items=[0], num_classes=4, with_mask=True, device='cuda')['data_samples'] with self.assertRaises(AssertionError): out = roi_head.loss(feats, proposal_list, batch_data_samples) @parameterized.expand( ['point_rend/point-rend_r50-caffe_fpn_ms-1x_coco.py']) def test_point_rend_roi_head_predict(self, cfg_file): if not torch.cuda.is_available(): # RoI pooling only support in GPU return unittest.skip('test requires GPU and torch+cuda') s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] roi_head_cfg = get_roi_head_cfg(cfg_file) roi_head = MODELS.build(roi_head_cfg) roi_head = roi_head.cuda() feats = [] for i in range(len(roi_head_cfg.bbox_roi_extractor.featmap_strides)): feats.append( torch.rand(1, 256, s // (2**(i + 2)), s // (2**(i + 2))).to(device='cuda')) feats = tuple(feats) img_shape_list = [img_meta['img_shape'] for img_meta in img_metas] proposal_list = demo_mm_proposals(img_shape_list, 100, device='cuda') batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=[(3, s, s)], num_items=[1], num_classes=4, with_mask=True, device='cuda')['data_samples'] results = roi_head.predict( feats, proposal_list, batch_data_samples, rescale=True) self.assertEqual(results[0].masks.shape[-2:], (s, s))
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet.models.roi_heads import PointRendRoIHead # noqa from mmdet.registry import MODELS from mmdet.testing import demo_mm_inputs, demo_mm_proposals, get_roi_head_cfg class TestHTCRoIHead(TestCase): @parameterized.expand( ['point_rend/point_rend_r50_caffe_fpn_mstrain_1x_coco.py']) def test_init(self, cfg_file): """Test init Point rend RoI head.""" # Normal HTC RoI head roi_head_cfg = get_roi_head_cfg(cfg_file) roi_head = MODELS.build(roi_head_cfg) assert roi_head.with_bbox assert roi_head.with_mask @parameterized.expand( ['point_rend/point_rend_r50_caffe_fpn_mstrain_1x_coco.py']) def test_point_rend_roi_head_loss(self, cfg_file): """Tests htc roi head loss when truth is empty and non-empty.""" if not torch.cuda.is_available(): # RoI pooling only support in GPU return unittest.skip('test requires GPU and torch+cuda') s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] roi_head_cfg = get_roi_head_cfg(cfg_file) roi_head = MODELS.build(roi_head_cfg) roi_head = roi_head.cuda() feats = [] for i in range(len(roi_head_cfg.bbox_roi_extractor.featmap_strides)): feats.append( torch.rand(1, 256, s // (2**(i + 2)), s // (2**(i + 2))).to(device='cuda')) feats = tuple(feats) # When truth is non-empty then both cls, box, and mask loss # should be nonzero for random inputs img_shape_list = [img_meta['img_shape'] for img_meta in img_metas] proposal_list = demo_mm_proposals(img_shape_list, 100, device='cuda') batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=[(3, s, s)], num_items=[1], num_classes=4, with_mask=True, device='cuda')['data_samples'] out = roi_head.loss(feats, proposal_list, batch_data_samples) for name, value in out.items(): if 'loss' in name: self.assertGreaterEqual( value.sum(), 0, msg='loss should be non-zero') # Positive rois must not be empty proposal_list = demo_mm_proposals(img_shape_list, 100, device='cuda') batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=[(3, s, s)], num_items=[0], num_classes=4, with_mask=True, device='cuda')['data_samples'] with self.assertRaises(AssertionError): out = roi_head.loss(feats, proposal_list, batch_data_samples) @parameterized.expand( ['point_rend/point_rend_r50_caffe_fpn_mstrain_1x_coco.py']) def test_point_rend_roi_head_predict(self, cfg_file): if not torch.cuda.is_available(): # RoI pooling only support in GPU return unittest.skip('test requires GPU and torch+cuda') s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] roi_head_cfg = get_roi_head_cfg(cfg_file) roi_head = MODELS.build(roi_head_cfg) roi_head = roi_head.cuda() feats = [] for i in range(len(roi_head_cfg.bbox_roi_extractor.featmap_strides)): feats.append( torch.rand(1, 256, s // (2**(i + 2)), s // (2**(i + 2))).to(device='cuda')) feats = tuple(feats) img_shape_list = [img_meta['img_shape'] for img_meta in img_metas] proposal_list = demo_mm_proposals(img_shape_list, 100, device='cuda') batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=[(3, s, s)], num_items=[1], num_classes=4, with_mask=True, device='cuda')['data_samples'] results = roi_head.predict( feats, proposal_list, batch_data_samples, rescale=True) self.assertEqual(results[0].masks.shape[-2:], (s, s))
# Copyright (c) OpenMMLab. All rights reserved. import glob import os import os.path as osp import warnings from mmengine.config import Config, ConfigDict from mmengine.logging import print_log def find_latest_checkpoint(path, suffix='pth'): """Find the latest checkpoint from the working directory. Args: path(str): The path to find checkpoints. suffix(str): File extension. Defaults to pth. Returns: latest_path(str | None): File path of the latest checkpoint. References: .. [1] https://github.com/microsoft/SoftTeacher /blob/main/ssod/utils/patch.py """ if not osp.exists(path): warnings.warn('The path of checkpoints does not exist.') return None if osp.exists(osp.join(path, f'latest.{suffix}')): return osp.join(path, f'latest.{suffix}') checkpoints = glob.glob(osp.join(path, f'*.{suffix}')) if len(checkpoints) == 0: warnings.warn('There are no checkpoints in the path.') return None latest = -1 latest_path = None for checkpoint in checkpoints: count = int(osp.basename(checkpoint).split('_')[-1].split('.')[0]) if count > latest: latest = count latest_path = checkpoint return latest_path def update_data_root(cfg, logger=None): """Update data root according to env MMDET_DATASETS. If set env MMDET_DATASETS, update cfg.data_root according to MMDET_DATASETS. Otherwise, using cfg.data_root as default. Args: cfg (:obj:`Config`): The model config need to modify logger (logging.Logger | str | None): the way to print msg """ assert isinstance(cfg, Config), \ f'cfg got wrong type: {type(cfg)}, expected mmengine.Config' if 'MMDET_DATASETS' in os.environ: dst_root = os.environ['MMDET_DATASETS'] print_log(f'MMDET_DATASETS has been set to be {dst_root}.' f'Using {dst_root} as data root.') else: return assert isinstance(cfg, Config), \ f'cfg got wrong type: {type(cfg)}, expected mmengine.Config' def update(cfg, src_str, dst_str): for k, v in cfg.items(): if isinstance(v, ConfigDict): update(cfg[k], src_str, dst_str) if isinstance(v, str) and src_str in v: cfg[k] = v.replace(src_str, dst_str) update(cfg.data, cfg.data_root, dst_root) cfg.data_root = dst_root
# Copyright (c) OpenMMLab. All rights reserved. import glob import os import os.path as osp import warnings import mmcv from mmcv.utils import print_log def find_latest_checkpoint(path, suffix='pth'): """Find the latest checkpoint from the working directory. Args: path(str): The path to find checkpoints. suffix(str): File extension. Defaults to pth. Returns: latest_path(str | None): File path of the latest checkpoint. References: .. [1] https://github.com/microsoft/SoftTeacher /blob/main/ssod/utils/patch.py """ if not osp.exists(path): warnings.warn('The path of checkpoints does not exist.') return None if osp.exists(osp.join(path, f'latest.{suffix}')): return osp.join(path, f'latest.{suffix}') checkpoints = glob.glob(osp.join(path, f'*.{suffix}')) if len(checkpoints) == 0: warnings.warn('There are no checkpoints in the path.') return None latest = -1 latest_path = None for checkpoint in checkpoints: count = int(osp.basename(checkpoint).split('_')[-1].split('.')[0]) if count > latest: latest = count latest_path = checkpoint return latest_path def update_data_root(cfg, logger=None): """Update data root according to env MMDET_DATASETS. If set env MMDET_DATASETS, update cfg.data_root according to MMDET_DATASETS. Otherwise, using cfg.data_root as default. Args: cfg (mmcv.Config): The model config need to modify logger (logging.Logger | str | None): the way to print msg """ assert isinstance(cfg, mmcv.Config), \ f'cfg got wrong type: {type(cfg)}, expected mmcv.Config' if 'MMDET_DATASETS' in os.environ: dst_root = os.environ['MMDET_DATASETS'] print_log(f'MMDET_DATASETS has been set to be {dst_root}.' f'Using {dst_root} as data root.') else: return assert isinstance(cfg, mmcv.Config), \ f'cfg got wrong type: {type(cfg)}, expected mmcv.Config' def update(cfg, src_str, dst_str): for k, v in cfg.items(): if isinstance(v, mmcv.ConfigDict): update(cfg[k], src_str, dst_str) if isinstance(v, str) and src_str in v: cfg[k] = v.replace(src_str, dst_str) update(cfg.data, cfg.data_root, dst_root) cfg.data_root = dst_root
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch import torch.nn.functional as F from mmengine.model.utils import constant_init from mmdet.models.layers import DyReLU, SELayer def test_se_layer(): with pytest.raises(AssertionError): # act_cfg sequence length must equal to 2 SELayer(channels=32, act_cfg=(dict(type='ReLU'), )) with pytest.raises(AssertionError): # act_cfg sequence must be a tuple of dict SELayer(channels=32, act_cfg=[dict(type='ReLU'), dict(type='ReLU')]) # Test SELayer forward layer = SELayer(channels=32) layer.init_weights() layer.train() x = torch.randn((1, 32, 10, 10)) x_out = layer(x) assert x_out.shape == torch.Size((1, 32, 10, 10)) def test_dyrelu(): with pytest.raises(AssertionError): # act_cfg sequence length must equal to 2 DyReLU(channels=32, act_cfg=(dict(type='ReLU'), )) with pytest.raises(AssertionError): # act_cfg sequence must be a tuple of dict DyReLU(channels=32, act_cfg=[dict(type='ReLU'), dict(type='ReLU')]) # Test DyReLU forward layer = DyReLU(channels=32) layer.init_weights() layer.train() x = torch.randn((1, 32, 10, 10)) x_out = layer(x) assert x_out.shape == torch.Size((1, 32, 10, 10)) # DyReLU should act as standard (static) ReLU # when eliminating the effect of SE-like module layer = DyReLU(channels=32) constant_init(layer.conv2.conv, 0) layer.train() x = torch.randn((1, 32, 10, 10)) x_out = layer(x) relu_out = F.relu(x) assert torch.equal(x_out, relu_out)
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch import torch.nn.functional as F from mmcv.cnn import constant_init from mmdet.models.layers import DyReLU, SELayer def test_se_layer(): with pytest.raises(AssertionError): # act_cfg sequence length must equal to 2 SELayer(channels=32, act_cfg=(dict(type='ReLU'), )) with pytest.raises(AssertionError): # act_cfg sequence must be a tuple of dict SELayer(channels=32, act_cfg=[dict(type='ReLU'), dict(type='ReLU')]) # Test SELayer forward layer = SELayer(channels=32) layer.init_weights() layer.train() x = torch.randn((1, 32, 10, 10)) x_out = layer(x) assert x_out.shape == torch.Size((1, 32, 10, 10)) def test_dyrelu(): with pytest.raises(AssertionError): # act_cfg sequence length must equal to 2 DyReLU(channels=32, act_cfg=(dict(type='ReLU'), )) with pytest.raises(AssertionError): # act_cfg sequence must be a tuple of dict DyReLU(channels=32, act_cfg=[dict(type='ReLU'), dict(type='ReLU')]) # Test DyReLU forward layer = DyReLU(channels=32) layer.init_weights() layer.train() x = torch.randn((1, 32, 10, 10)) x_out = layer(x) assert x_out.shape == torch.Size((1, 32, 10, 10)) # DyReLU should act as standard (static) ReLU # when eliminating the effect of SE-like module layer = DyReLU(channels=32) constant_init(layer.conv2.conv, 0) layer.train() x = torch.randn((1, 32, 10, 10)) x_out = layer(x) relu_out = F.relu(x) assert torch.equal(x_out, relu_out)
"""Standard LangChain interface tests""" import os from langchain_core.language_models import BaseChatModel from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_openai import AzureChatOpenAI OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "") OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "") class TestAzureOpenAIStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[BaseChatModel]: return AzureChatOpenAI @property def chat_model_params(self) -> dict: return { "deployment_name": os.environ["AZURE_OPENAI_CHAT_DEPLOYMENT_NAME"], "model": "gpt-4o-mini", "openai_api_version": OPENAI_API_VERSION, "azure_endpoint": OPENAI_API_BASE, "stream_usage": True, } @property def supports_image_inputs(self) -> bool: return True @property def supports_json_mode(self) -> bool: return True class TestAzureOpenAIStandardLegacy(ChatModelIntegrationTests): """Test a legacy model.""" @property def chat_model_class(self) -> type[BaseChatModel]: return AzureChatOpenAI @property def chat_model_params(self) -> dict: return { "deployment_name": os.environ["AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME"], "openai_api_version": OPENAI_API_VERSION, "azure_endpoint": OPENAI_API_BASE, "stream_usage": True, } @property def structured_output_kwargs(self) -> dict: return {"method": "function_calling"}
"""Standard LangChain interface tests""" import os from typing import Type from langchain_core.language_models import BaseChatModel from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_openai import AzureChatOpenAI OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "") OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "") class TestAzureOpenAIStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> Type[BaseChatModel]: return AzureChatOpenAI @property def chat_model_params(self) -> dict: return { "deployment_name": os.environ["AZURE_OPENAI_CHAT_DEPLOYMENT_NAME"], "model": "gpt-4o-mini", "openai_api_version": OPENAI_API_VERSION, "azure_endpoint": OPENAI_API_BASE, "stream_usage": True, } @property def supports_image_inputs(self) -> bool: return True @property def supports_json_mode(self) -> bool: return True class TestAzureOpenAIStandardLegacy(ChatModelIntegrationTests): """Test a legacy model.""" @property def chat_model_class(self) -> Type[BaseChatModel]: return AzureChatOpenAI @property def chat_model_params(self) -> dict: return { "deployment_name": os.environ["AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME"], "openai_api_version": OPENAI_API_VERSION, "azure_endpoint": OPENAI_API_BASE, "stream_usage": True, } @property def structured_output_kwargs(self) -> dict: return {"method": "function_calling"}
from .backend_utils import set_audio_backend from .case_utils import ( HttpServerMixin, is_ffmpeg_available, PytorchTestCase, skipIfNoCtcDecoder, skipIfNoCuda, skipIfNoExec, skipIfNoFFmpeg, skipIfNoKaldi, skipIfNoModule, skipIfNoQengine, skipIfNoSox, skipIfPy310, skipIfRocm, TempDirMixin, TestBaseMixin, TorchaudioTestCase, zip_equal, ) from .data_utils import get_asset_path, get_sinusoid, get_spectrogram, get_whitenoise from .func_utils import torch_script from .image_utils import get_image, rgb_to_gray, rgb_to_yuv_ccir, save_image from .parameterized_utils import load_params, nested_params from .wav_utils import get_wav_data, load_wav, normalize_wav, save_wav __all__ = [ "get_asset_path", "get_whitenoise", "get_sinusoid", "get_spectrogram", "set_audio_backend", "TempDirMixin", "HttpServerMixin", "TestBaseMixin", "PytorchTestCase", "TorchaudioTestCase", "is_ffmpeg_available", "skipIfNoCtcDecoder", "skipIfNoCuda", "skipIfNoExec", "skipIfNoModule", "skipIfNoKaldi", "skipIfNoSox", "skipIfNoSoxBackend", "skipIfRocm", "skipIfNoQengine", "skipIfNoFFmpeg", "skipIfPy310", "get_wav_data", "normalize_wav", "load_wav", "save_wav", "load_params", "nested_params", "torch_script", "save_image", "get_image", "rgb_to_gray", "rgb_to_yuv_ccir", "zip_equal", ]
from .backend_utils import set_audio_backend from .case_utils import ( HttpServerMixin, is_ffmpeg_available, PytorchTestCase, skipIfNoCtcDecoder, skipIfNoCuda, skipIfNoExec, skipIfNoFFmpeg, skipIfNoKaldi, skipIfNoModule, skipIfNoQengine, skipIfNoSox, skipIfPy310, skipIfRocm, TempDirMixin, TestBaseMixin, TorchaudioTestCase, ) from .data_utils import get_asset_path, get_sinusoid, get_spectrogram, get_whitenoise from .func_utils import torch_script from .image_utils import get_image, rgb_to_gray, rgb_to_yuv_ccir, save_image from .parameterized_utils import load_params, nested_params from .wav_utils import get_wav_data, load_wav, normalize_wav, save_wav __all__ = [ "get_asset_path", "get_whitenoise", "get_sinusoid", "get_spectrogram", "set_audio_backend", "TempDirMixin", "HttpServerMixin", "TestBaseMixin", "PytorchTestCase", "TorchaudioTestCase", "is_ffmpeg_available", "skipIfNoCtcDecoder", "skipIfNoCuda", "skipIfNoExec", "skipIfNoModule", "skipIfNoKaldi", "skipIfNoSox", "skipIfNoSoxBackend", "skipIfRocm", "skipIfNoQengine", "skipIfNoFFmpeg", "skipIfPy310", "get_wav_data", "normalize_wav", "load_wav", "save_wav", "load_params", "nested_params", "torch_script", "save_image", "get_image", "rgb_to_gray", "rgb_to_yuv_ccir", ]
_base_ = [ 'mmdet::_base_/datasets/coco_instance.py', 'mmdet::_base_/schedules/schedule_1x.py', 'mmdet::_base_/default_runtime.py' ] custom_imports = dict( imports=['projects.SparseInst.sparseinst'], allow_failed_imports=False) model = dict( type='SparseInst', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_mask=True, pad_size_divisor=32), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(1, 2, 3), frozen_stages=0, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), encoder=dict( type='InstanceContextEncoder', in_channels=[512, 1024, 2048], out_channels=256), decoder=dict( type='BaseIAMDecoder', in_channels=256 + 2, num_classes=80, ins_dim=256, ins_conv=4, mask_dim=256, mask_conv=4, kernel_dim=128, scale_factor=2.0, output_iam=False, num_masks=100), criterion=dict( type='SparseInstCriterion', num_classes=80, assigner=dict(type='SparseInstMatcher', alpha=0.8, beta=0.2), loss_cls=dict( type='FocalLoss', use_sigmoid=True, alpha=0.25, gamma=2.0, reduction='sum', loss_weight=2.0), loss_obj=dict( type='CrossEntropyLoss', use_sigmoid=True, reduction='mean', loss_weight=1.0), loss_mask=dict( type='CrossEntropyLoss', use_sigmoid=True, reduction='mean', loss_weight=5.0), loss_dice=dict( type='DiceLoss', use_sigmoid=True, reduction='sum', eps=5e-5, loss_weight=2.0), ), test_cfg=dict(score_thr=0.005, mask_thr_binary=0.45)) backend = 'pillow' train_pipeline = [ dict( type='LoadImageFromFile', backend_args={{_base_.backend_args}}, imdecode_backend=backend), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='RandomChoiceResize', scales=[(416, 853), (448, 853), (480, 853), (512, 853), (544, 853), (576, 853), (608, 853), (640, 853)], keep_ratio=True, backend=backend), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', backend_args={{_base_.backend_args}}, imdecode_backend=backend), dict(type='Resize', scale=(640, 853), keep_ratio=True, backend=backend), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=8, num_workers=8, sampler=dict(type='InfiniteSampler'), dataset=dict(pipeline=train_pipeline)) test_dataloader = dict(dataset=dict(pipeline=test_pipeline)) val_dataloader = test_dataloader val_evaluator = dict(metric='segm') test_evaluator = val_evaluator # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(_delete_=True, type='AdamW', lr=0.00005, weight_decay=0.05)) train_cfg = dict( _delete_=True, type='IterBasedTrainLoop', max_iters=270000, val_interval=10000) # learning rate param_scheduler = [ dict( type='MultiStepLR', begin=0, end=270000, by_epoch=False, milestones=[210000, 250000], gamma=0.1) ] default_hooks = dict( checkpoint=dict(by_epoch=False, interval=10000, max_keep_ckpts=3)) log_processor = dict(by_epoch=False) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64, enable=True)
_base_ = [ 'mmdet::_base_/datasets/coco_instance.py', 'mmdet::_base_/schedules/schedule_1x.py', 'mmdet::_base_/default_runtime.py' ] custom_imports = dict( imports=['projects.SparseInst.sparseinst'], allow_failed_imports=False) model = dict( type='SparseInst', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_mask=True, pad_size_divisor=32), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(1, 2, 3), frozen_stages=0, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), encoder=dict( type='InstanceContextEncoder', in_channels=[512, 1024, 2048], out_channels=256), decoder=dict( type='BaseIAMDecoder', in_channels=256 + 2, num_classes=80, ins_dim=256, ins_conv=4, mask_dim=256, mask_conv=4, kernel_dim=128, scale_factor=2.0, output_iam=False, num_masks=100), criterion=dict( type='SparseInstCriterion', num_classes=80, assigner=dict(type='SparseInstMatcher', alpha=0.8, beta=0.2), loss_cls=dict( type='FocalLoss', use_sigmoid=True, alpha=0.25, gamma=2.0, reduction='sum', loss_weight=2.0), loss_obj=dict( type='CrossEntropyLoss', use_sigmoid=True, reduction='mean', loss_weight=1.0), loss_mask=dict( type='CrossEntropyLoss', use_sigmoid=True, reduction='mean', loss_weight=5.0), loss_dice=dict( type='DiceLoss', use_sigmoid=True, reduction='sum', eps=5e-5, loss_weight=2.0), ), test_cfg=dict(score_thr=0.005, mask_thr_binary=0.45)) backend = 'pillow' train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}, imdecode_backend=backend), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='RandomChoiceResize', scales=[(416, 853), (448, 853), (480, 853), (512, 853), (544, 853), (576, 853), (608, 853), (640, 853)], keep_ratio=True, backend=backend), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}, imdecode_backend=backend), dict(type='Resize', scale=(640, 853), keep_ratio=True, backend=backend), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=8, num_workers=8, sampler=dict(type='InfiniteSampler'), dataset=dict(pipeline=train_pipeline)) test_dataloader = dict(dataset=dict(pipeline=test_pipeline)) val_dataloader = test_dataloader val_evaluator = dict(metric='segm') test_evaluator = val_evaluator # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(_delete_=True, type='AdamW', lr=0.00005, weight_decay=0.05)) train_cfg = dict( _delete_=True, type='IterBasedTrainLoop', max_iters=270000, val_interval=10000) # learning rate param_scheduler = [ dict( type='MultiStepLR', begin=0, end=270000, by_epoch=False, milestones=[210000, 250000], gamma=0.1) ] default_hooks = dict( checkpoint=dict(by_epoch=False, interval=10000, max_keep_ckpts=3)) log_processor = dict(by_epoch=False) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64, enable=True)
# Copyright (c) OpenMMLab. All rights reserved. from .batch_sampler import (AspectRatioBatchSampler, TrackAspectRatioBatchSampler) from .class_aware_sampler import ClassAwareSampler from .multi_source_sampler import GroupMultiSourceSampler, MultiSourceSampler from .track_img_sampler import TrackImgSampler __all__ = [ 'ClassAwareSampler', 'AspectRatioBatchSampler', 'MultiSourceSampler', 'GroupMultiSourceSampler', 'TrackImgSampler', 'TrackAspectRatioBatchSampler' ]
# Copyright (c) OpenMMLab. All rights reserved. from .batch_sampler import AspectRatioBatchSampler from .class_aware_sampler import ClassAwareSampler from .multi_source_sampler import GroupMultiSourceSampler, MultiSourceSampler from .track_img_sampler import TrackImgSampler __all__ = [ 'ClassAwareSampler', 'AspectRatioBatchSampler', 'MultiSourceSampler', 'GroupMultiSourceSampler', 'TrackImgSampler' ]
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "3.1.0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled from .info import DatasetInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .utils import * from .utils import logging
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "3.0.3.dev0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled from .info import DatasetInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .utils import * from .utils import logging
from contextlib import contextmanager from typing import TYPE_CHECKING, Callable, Iterator from llama_index.core.llms.llm import LLM from llama_index.llms.huggingface import HuggingFaceLLM from llama_index.llms.llama_cpp import LlamaCPP if TYPE_CHECKING: from lmformatenforcer import CharacterLevelParser def build_lm_format_enforcer_function( llm: LLM, character_level_parser: "CharacterLevelParser" ) -> Callable: """ Prepare for using the LM format enforcer. This builds the processing function that will be injected into the LLM to activate the LM Format Enforcer. """ if isinstance(llm, HuggingFaceLLM): from lmformatenforcer.integrations.transformers import ( build_transformers_prefix_allowed_tokens_fn, ) return build_transformers_prefix_allowed_tokens_fn( llm._tokenizer, character_level_parser ) if isinstance(llm, LlamaCPP): from llama_cpp import LogitsProcessorList from lmformatenforcer.integrations.llamacpp import ( build_llamacpp_logits_processor, ) return LogitsProcessorList( [build_llamacpp_logits_processor(llm._model, character_level_parser)] ) raise ValueError("Unsupported LLM type") @contextmanager def activate_lm_format_enforcer( llm: LLM, lm_format_enforcer_fn: Callable ) -> Iterator[None]: """ Activate the LM Format Enforcer for the given LLM. with activate_lm_format_enforcer(llm, lm_format_enforcer_fn): llm.complete(...) """ if isinstance(llm, HuggingFaceLLM): generate_kwargs_key = "prefix_allowed_tokens_fn" elif isinstance(llm, LlamaCPP): generate_kwargs_key = "logits_processor" else: raise ValueError("Unsupported LLM type") llm.generate_kwargs[generate_kwargs_key] = lm_format_enforcer_fn try: # This is where the user code will run yield finally: # We remove the token enforcer function from the generate_kwargs at the end # in case other code paths use the same llm object. del llm.generate_kwargs[generate_kwargs_key]
from contextlib import contextmanager from typing import TYPE_CHECKING, Callable, Iterator from llama_index.core.llms.llm import LLM from llama_index.llms.huggingface import HuggingFaceLLM from llama_index.llms.llama_cpp import LlamaCPP if TYPE_CHECKING: from lmformatenforcer import CharacterLevelParser def build_lm_format_enforcer_function( llm: LLM, character_level_parser: "CharacterLevelParser" ) -> Callable: """Prepare for using the LM format enforcer. This builds the processing function that will be injected into the LLM to activate the LM Format Enforcer. """ if isinstance(llm, HuggingFaceLLM): from lmformatenforcer.integrations.transformers import ( build_transformers_prefix_allowed_tokens_fn, ) return build_transformers_prefix_allowed_tokens_fn( llm._tokenizer, character_level_parser ) if isinstance(llm, LlamaCPP): from llama_cpp import LogitsProcessorList from lmformatenforcer.integrations.llamacpp import ( build_llamacpp_logits_processor, ) return LogitsProcessorList( [build_llamacpp_logits_processor(llm._model, character_level_parser)] ) raise ValueError("Unsupported LLM type") @contextmanager def activate_lm_format_enforcer( llm: LLM, lm_format_enforcer_fn: Callable ) -> Iterator[None]: """Activate the LM Format Enforcer for the given LLM. with activate_lm_format_enforcer(llm, lm_format_enforcer_fn): llm.complete(...) """ if isinstance(llm, HuggingFaceLLM): generate_kwargs_key = "prefix_allowed_tokens_fn" elif isinstance(llm, LlamaCPP): generate_kwargs_key = "logits_processor" else: raise ValueError("Unsupported LLM type") llm.generate_kwargs[generate_kwargs_key] = lm_format_enforcer_fn try: # This is where the user code will run yield finally: # We remove the token enforcer function from the generate_kwargs at the end # in case other code paths use the same llm object. del llm.generate_kwargs[generate_kwargs_key]
"""Standard LangChain interface tests""" from pathlib import Path from typing import Dict, List, Literal, Type, cast from langchain_core.language_models import BaseChatModel from langchain_core.messages import AIMessage from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_openai import ChatOpenAI REPO_ROOT_DIR = Path(__file__).parents[6] class TestOpenAIStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> Type[BaseChatModel]: return ChatOpenAI @property def chat_model_params(self) -> dict: return {"model": "gpt-4o-mini", "stream_usage": True} @property def supports_image_inputs(self) -> bool: return True @property def supports_json_mode(self) -> bool: return True @property def supports_anthropic_inputs(self) -> bool: return True @property def supported_usage_metadata_details( self, ) -> Dict[ Literal["invoke", "stream"], List[ Literal[ "audio_input", "audio_output", "reasoning_output", "cache_read_input", "cache_creation_input", ] ], ]: return {"invoke": ["reasoning_output", "cache_read_input"], "stream": []} def invoke_with_cache_read_input(self, *, stream: bool = False) -> AIMessage: with open(REPO_ROOT_DIR / "README.md", "r") as f: readme = f.read() input_ = f"""What's langchain? Here's the langchain README: {readme} """ llm = ChatOpenAI(model="gpt-4o-mini", stream_usage=True) _invoke(llm, input_, stream) # invoke twice so first invocation is cached return _invoke(llm, input_, stream) def invoke_with_reasoning_output(self, *, stream: bool = False) -> AIMessage: llm = ChatOpenAI(model="o1-mini", stream_usage=True, temperature=1) input_ = ( "explain the relationship between the 2008/9 economic crisis and the " "startup ecosystem in the early 2010s" ) return _invoke(llm, input_, stream) def _invoke(llm: ChatOpenAI, input_: str, stream: bool) -> AIMessage: if stream: full = None for chunk in llm.stream(input_): full = full + chunk if full else chunk # type: ignore[operator] return cast(AIMessage, full) else: return cast(AIMessage, llm.invoke(input_))
"""Standard LangChain interface tests""" from pathlib import Path from typing import Dict, List, Literal, Type, cast from langchain_core.language_models import BaseChatModel from langchain_core.messages import AIMessage from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_openai import ChatOpenAI REPO_ROOT_DIR = Path(__file__).parents[6] class TestOpenAIStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> Type[BaseChatModel]: return ChatOpenAI @property def chat_model_params(self) -> dict: return {"model": "gpt-4o-mini", "stream_usage": True} @property def supports_image_inputs(self) -> bool: return True @property def supports_json_mode(self) -> bool: return True @property def supported_usage_metadata_details( self, ) -> Dict[ Literal["invoke", "stream"], List[ Literal[ "audio_input", "audio_output", "reasoning_output", "cache_read_input", "cache_creation_input", ] ], ]: return {"invoke": ["reasoning_output", "cache_read_input"], "stream": []} def invoke_with_cache_read_input(self, *, stream: bool = False) -> AIMessage: with open(REPO_ROOT_DIR / "README.md", "r") as f: readme = f.read() input_ = f"""What's langchain? Here's the langchain README: {readme} """ llm = ChatOpenAI(model="gpt-4o-mini", stream_usage=True) _invoke(llm, input_, stream) # invoke twice so first invocation is cached return _invoke(llm, input_, stream) def invoke_with_reasoning_output(self, *, stream: bool = False) -> AIMessage: llm = ChatOpenAI(model="o1-mini", stream_usage=True, temperature=1) input_ = ( "explain the relationship between the 2008/9 economic crisis and the " "startup ecosystem in the early 2010s" ) return _invoke(llm, input_, stream) def _invoke(llm: ChatOpenAI, input_: str, stream: bool) -> AIMessage: if stream: full = None for chunk in llm.stream(input_): full = full + chunk if full else chunk # type: ignore[operator] return cast(AIMessage, full) else: return cast(AIMessage, llm.invoke(input_))
"""Util that sends calendar events in Office 365. Free, but setup is required. See link below. https://learn.microsoft.com/en-us/graph/auth/ """ from datetime import datetime as dt from typing import List, Optional, Type from zoneinfo import ZoneInfo from langchain_core.callbacks import CallbackManagerForToolRun from pydantic import BaseModel, Field from langchain_community.tools.office365.base import O365BaseTool from langchain_community.tools.office365.utils import UTC_FORMAT class SendEventSchema(BaseModel): """Input for CreateEvent Tool.""" body: str = Field( ..., description="The message body to include in the event.", ) attendees: List[str] = Field( ..., description="The list of attendees for the event.", ) subject: str = Field( ..., description="The subject of the event.", ) start_datetime: str = Field( description=" The start datetime for the event in the following format: " ' YYYY-MM-DDTHH:MM:SS±hh:mm, where "T" separates the date and time ' " components, and the time zone offset is specified as ±hh:mm. " ' For example: "2023-06-09T10:30:00+03:00" represents June 9th, ' " 2023, at 10:30 AM in a time zone with a positive offset of 3 " " hours from Coordinated Universal Time (UTC).", ) end_datetime: str = Field( description=" The end datetime for the event in the following format: " ' YYYY-MM-DDTHH:MM:SS±hh:mm, where "T" separates the date and time ' " components, and the time zone offset is specified as ±hh:mm. " ' For example: "2023-06-09T10:30:00+03:00" represents June 9th, ' " 2023, at 10:30 AM in a time zone with a positive offset of 3 " " hours from Coordinated Universal Time (UTC).", ) class O365SendEvent(O365BaseTool): """Tool for sending calendar events in Office 365.""" name: str = "send_event" description: str = ( "Use this tool to create and send an event with the provided event fields." ) args_schema: Type[SendEventSchema] = SendEventSchema def _run( self, body: str, attendees: List[str], subject: str, start_datetime: str, end_datetime: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: # Get calendar object schedule = self.account.schedule() calendar = schedule.get_default_calendar() event = calendar.new_event() event.body = body event.subject = subject try: event.start = dt.fromisoformat(start_datetime).replace( tzinfo=ZoneInfo("UTC") ) except ValueError: # fallback for backwards compatibility event.start = dt.strptime(start_datetime, UTC_FORMAT) try: event.end = dt.fromisoformat(end_datetime).replace(tzinfo=ZoneInfo("UTC")) except ValueError: # fallback for backwards compatibility event.end = dt.strptime(end_datetime, UTC_FORMAT) for attendee in attendees: event.attendees.add(attendee) event.save() output = "Event sent: " + str(event) return output
"""Util that sends calendar events in Office 365. Free, but setup is required. See link below. https://learn.microsoft.com/en-us/graph/auth/ """ from datetime import datetime as dt from typing import List, Optional, Type from zoneinfo import ZoneInfo from langchain_core.callbacks import CallbackManagerForToolRun from pydantic import BaseModel, Field from langchain_community.tools.office365.base import O365BaseTool from langchain_community.tools.office365.utils import UTC_FORMAT class SendEventSchema(BaseModel): """Input for CreateEvent Tool.""" body: str = Field( ..., description="The message body to include in the event.", ) attendees: List[str] = Field( ..., description="The list of attendees for the event.", ) subject: str = Field( ..., description="The subject of the event.", ) start_datetime: str = Field( description=" The start datetime for the event in the following format: " ' YYYY-MM-DDTHH:MM:SS±hh:mm, where "T" separates the date and time ' " components, and the time zone offset is specified as ±hh:mm. " ' For example: "2023-06-09T10:30:00+03:00" represents June 9th, ' " 2023, at 10:30 AM in a time zone with a positive offset of 3 " " hours from Coordinated Universal Time (UTC).", ) end_datetime: str = Field( description=" The end datetime for the event in the following format: " ' YYYY-MM-DDTHH:MM:SS±hh:mm, where "T" separates the date and time ' " components, and the time zone offset is specified as ±hh:mm. " ' For example: "2023-06-09T10:30:00+03:00" represents June 9th, ' " 2023, at 10:30 AM in a time zone with a positive offset of 3 " " hours from Coordinated Universal Time (UTC).", ) class O365SendEvent(O365BaseTool): # type: ignore[override, override] """Tool for sending calendar events in Office 365.""" name: str = "send_event" description: str = ( "Use this tool to create and send an event with the provided event fields." ) args_schema: Type[SendEventSchema] = SendEventSchema def _run( self, body: str, attendees: List[str], subject: str, start_datetime: str, end_datetime: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: # Get calendar object schedule = self.account.schedule() calendar = schedule.get_default_calendar() event = calendar.new_event() event.body = body event.subject = subject try: event.start = dt.fromisoformat(start_datetime).replace( tzinfo=ZoneInfo("UTC") ) except ValueError: # fallback for backwards compatibility event.start = dt.strptime(start_datetime, UTC_FORMAT) try: event.end = dt.fromisoformat(end_datetime).replace(tzinfo=ZoneInfo("UTC")) except ValueError: # fallback for backwards compatibility event.end = dt.strptime(end_datetime, UTC_FORMAT) for attendee in attendees: event.attendees.add(attendee) event.save() output = "Event sent: " + str(event) return output
# Copyright (c) OpenMMLab. All rights reserved. from .default_scope import DefaultScope from .registry import Registry, build_from_cfg from .root import (DATA_SAMPLERS, DATASETS, HOOKS, LOOPS, METRICS, MODEL_WRAPPERS, MODELS, OPTIMIZER_CONSTRUCTORS, OPTIMIZERS, PARAM_SCHEDULERS, RUNNER_CONSTRUCTORS, RUNNERS, TASK_UTILS, TRANSFORMS, VISBACKENDS, VISUALIZERS, WEIGHT_INITIALIZERS) __all__ = [ 'Registry', 'build_from_cfg', 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'HOOKS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', 'WEIGHT_INITIALIZERS', 'OPTIMIZERS', 'OPTIMIZER_CONSTRUCTORS', 'TASK_UTILS', 'PARAM_SCHEDULERS', 'METRICS', 'MODEL_WRAPPERS', 'LOOPS', 'VISBACKENDS', 'VISUALIZERS', 'DefaultScope' ]
# Copyright (c) OpenMMLab. All rights reserved. from .default_scope import DefaultScope from .registry import Registry, build_from_cfg from .root import (DATA_SAMPLERS, DATASETS, HOOKS, LOOPS, METRICS, MODEL_WRAPPERS, MODELS, OPTIMIZER_CONSTRUCTORS, OPTIMIZERS, PARAM_SCHEDULERS, RUNNER_CONSTRUCTORS, RUNNERS, TASK_UTILS, TRANSFORMS, VISUALIZERS, WEIGHT_INITIALIZERS, WRITERS) __all__ = [ 'Registry', 'build_from_cfg', 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'HOOKS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', 'WEIGHT_INITIALIZERS', 'OPTIMIZERS', 'OPTIMIZER_CONSTRUCTORS', 'TASK_UTILS', 'PARAM_SCHEDULERS', 'METRICS', 'MODEL_WRAPPERS', 'LOOPS', 'WRITERS', 'VISUALIZERS', 'DefaultScope' ]
import asyncio import os from typing import Dict, List import pytest import requests from jina import Flow from jina.logging.logger import JinaLogger from tests.k8s_otel.kind_wrapper import KindClusterWrapperV2 from tests.k8s_otel.util import get_last_health_check_data, parse_string_jaeger_tags @pytest.mark.asyncio @pytest.mark.timeout(1800) async def test_flow_resource_labeling( tmpdir, otel_test_namespace: str, k8s_cluster_v2: KindClusterWrapperV2 ): NAMESPACE = 'test-flow-resource-labeling' dump_path = os.path.join(tmpdir, NAMESPACE) logger = JinaLogger(NAMESPACE) # Create k8s flow artifacts flow = Flow( name='test-flow-metrics', port=8080, metrics=True, metrics_exporter_host=f'http://otel-collector.{otel_test_namespace}.svc.cluster.local', metrics_exporter_port=4317, tracing=True, traces_exporter_host=f'http://jaeger.{otel_test_namespace}.svc.cluster.local', traces_exporter_port=4317, ).add( name='instrumentation', uses='docker://test-instrumentation:test-pip', ) flow.to_kubernetes_yaml(dump_path, k8s_namespace=NAMESPACE) # Deploy flow k8s_cluster_v2.deploy_from_dir(dir=dump_path, namespace=NAMESPACE) # Make client requests with k8s_cluster_v2.port_forward( 'svc/gateway', NAMESPACE, svc_port=8080 ) as gateway_port: from jina import Client [docs async for docs in Client(port=gateway_port, asyncio=True).post("/")] # Give grace period for metrics and traces to be exported await asyncio.sleep(60) # Check Jaeger API with k8s_cluster_v2.port_forward( 'svc/jaeger', otel_test_namespace, svc_port=16686 ) as jaeger_port: try: # Gateway trace_data = get_last_health_check_data( jaeger_port=jaeger_port, service_name='gateway' ) assert trace_data['processes']['p1']['serviceName'] == 'gateway' tags: Dict[str, str] = parse_string_jaeger_tags( trace_data['processes']['p1']['tags'] ) assert tags['k8s.deployment.name'] == 'gateway' assert tags['k8s.namespace.name'] == NAMESPACE assert tags['k8s.pod.name'].startswith('gateway-') # Instrumentation Executor trace_data = get_last_health_check_data( jaeger_port=jaeger_port, service_name='instrumentation' ) assert trace_data['processes']['p1']['serviceName'] == 'instrumentation' tags: Dict[str, str] = parse_string_jaeger_tags( trace_data['processes']['p1']['tags'] ) assert tags['k8s.deployment.name'] == 'instrumentation' assert tags['k8s.namespace.name'] == NAMESPACE assert tags['k8s.pod.name'].startswith('instrumentation-') except AssertionError as e: logger.error(trace_data) raise e with k8s_cluster_v2.port_forward( 'svc/prometheus', otel_test_namespace, svc_port=9090 ) as prometheus_port: try: # Check Prometheus Labels prometheus_labels: List[str] = requests.get( f'http://localhost:{prometheus_port}/api/v1/labels' ).json()['data'] assert 'k8s_deployment_name' in prometheus_labels assert 'k8s_namespace_name' in prometheus_labels assert 'k8s_pod_name' in prometheus_labels except AssertionError as e: logger.error(prometheus_labels) raise e try: depl_values: List[str] = requests.get( f'http://localhost:{prometheus_port}/api/v1/label/k8s_deployment_name/values' ).json()['data'] assert 'gateway' in depl_values assert 'instrumentation' in depl_values except AssertionError as e: logger.error(depl_values) raise e try: ns_values: List[str] = requests.get( f'http://localhost:{prometheus_port}/api/v1/label/k8s_namespace_name/values' ).json()['data'] assert NAMESPACE in ns_values except AssertionError as e: logger.error(ns_values) raise e try: pod_values: List[str] = requests.get( f'http://localhost:{prometheus_port}/api/v1/label/k8s_pod_name/values' ).json()['data'] assert any(i.startswith('gateway-') for i in pod_values) assert any(i.startswith('instrumentation-') for i in pod_values) except AssertionError as e: logger.error(pod_values) raise e
import asyncio import os from typing import Dict, List import pytest import requests from jina import Flow from jina.logging.logger import JinaLogger from tests.k8s_otel.kind_wrapper import KindClusterWrapperV2 from tests.k8s_otel.util import get_last_health_check_data, parse_string_jaeger_tags @pytest.mark.asyncio @pytest.mark.timeout(1800) async def test_flow_resource_labeling( tmpdir, otel_test_namespace: str, k8s_cluster_v2: KindClusterWrapperV2 ): NAMESPACE = 'test-flow-resource-labeling' dump_path = os.path.join(tmpdir, NAMESPACE) logger = JinaLogger(NAMESPACE) # Create k8s flow artifacts flow = Flow( name='test-flow-metrics', port=8080, metrics=True, metrics_exporter_host=f'otel-collector.{otel_test_namespace}.svc.cluster.local', metrics_exporter_port=4317, tracing=True, traces_exporter_host=f'jaeger.{otel_test_namespace}.svc.cluster.local', traces_exporter_port=4317, ).add( name='instrumentation', uses='docker://test-instrumentation:test-pip', ) flow.to_kubernetes_yaml(dump_path, k8s_namespace=NAMESPACE) # Deploy flow k8s_cluster_v2.deploy_from_dir(dir=dump_path, namespace=NAMESPACE) # Make client requests with k8s_cluster_v2.port_forward( 'svc/gateway', NAMESPACE, svc_port=8080 ) as gateway_port: from jina import Client [docs async for docs in Client(port=gateway_port, asyncio=True).post("/")] # Give grace period for metrics and traces to be exported await asyncio.sleep(60) # Check Jaeger API with k8s_cluster_v2.port_forward( 'svc/jaeger', otel_test_namespace, svc_port=16686 ) as jaeger_port: try: # Gateway trace_data = get_last_health_check_data( jaeger_port=jaeger_port, service_name='gateway' ) assert trace_data['processes']['p1']['serviceName'] == 'gateway' tags: Dict[str, str] = parse_string_jaeger_tags( trace_data['processes']['p1']['tags'] ) assert tags['k8s.deployment.name'] == 'gateway' assert tags['k8s.namespace.name'] == NAMESPACE assert tags['k8s.pod.name'].startswith('gateway-') # Instrumentation Executor trace_data = get_last_health_check_data( jaeger_port=jaeger_port, service_name='instrumentation' ) assert trace_data['processes']['p1']['serviceName'] == 'instrumentation' tags: Dict[str, str] = parse_string_jaeger_tags( trace_data['processes']['p1']['tags'] ) assert tags['k8s.deployment.name'] == 'instrumentation' assert tags['k8s.namespace.name'] == NAMESPACE assert tags['k8s.pod.name'].startswith('instrumentation-') except AssertionError as e: logger.error(trace_data) raise e with k8s_cluster_v2.port_forward( 'svc/prometheus', otel_test_namespace, svc_port=9090 ) as prometheus_port: try: # Check Prometheus Labels prometheus_labels: List[str] = requests.get( f'http://localhost:{prometheus_port}/api/v1/labels' ).json()['data'] assert 'k8s_deployment_name' in prometheus_labels assert 'k8s_namespace_name' in prometheus_labels assert 'k8s_pod_name' in prometheus_labels except AssertionError as e: logger.error(prometheus_labels) raise e try: depl_values: List[str] = requests.get( f'http://localhost:{prometheus_port}/api/v1/label/k8s_deployment_name/values' ).json()['data'] assert 'gateway' in depl_values assert 'instrumentation' in depl_values except AssertionError as e: logger.error(depl_values) raise e try: ns_values: List[str] = requests.get( f'http://localhost:{prometheus_port}/api/v1/label/k8s_namespace_name/values' ).json()['data'] assert NAMESPACE in ns_values except AssertionError as e: logger.error(ns_values) raise e try: pod_values: List[str] = requests.get( f'http://localhost:{prometheus_port}/api/v1/label/k8s_pod_name/values' ).json()['data'] assert any(i.startswith('gateway-') for i in pod_values) assert any(i.startswith('instrumentation-') for i in pod_values) except AssertionError as e: logger.error(pod_values) raise e
import math import os import pytest import torch import torchvision from torchvision.io import _HAS_GPU_VIDEO_DECODER, VideoReader try: import av except ImportError: av = None VIDEO_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "videos") @pytest.mark.skipif(_HAS_GPU_VIDEO_DECODER is False, reason="Didn't compile with support for gpu decoder") class TestVideoGPUDecoder: @pytest.mark.skipif(av is None, reason="PyAV unavailable") @pytest.mark.parametrize( "video_file", [ "RATRACE_wave_f_nm_np1_fr_goo_37.avi", "TrumanShow_wave_f_nm_np1_fr_med_26.avi", "v_SoccerJuggling_g23_c01.avi", "v_SoccerJuggling_g24_c01.avi", "R6llTwEh07w.mp4", "SOX5yA1l24A.mp4", "WUzgd7C1pWA.mp4", ], ) def test_frame_reading(self, video_file): torchvision.set_video_backend("cuda") full_path = os.path.join(VIDEO_DIR, video_file) decoder = VideoReader(full_path) with av.open(full_path) as container: for av_frame in container.decode(container.streams.video[0]): av_frames = torch.tensor(av_frame.to_rgb(src_colorspace="ITU709").to_ndarray()) vision_frames = next(decoder)["data"] mean_delta = torch.mean(torch.abs(av_frames.float() - vision_frames.cpu().float())) assert mean_delta < 0.75 @pytest.mark.skipif(av is None, reason="PyAV unavailable") @pytest.mark.parametrize("keyframes", [True, False]) @pytest.mark.parametrize( "full_path, duration", [ (os.path.join(VIDEO_DIR, x), y) for x, y in [ ("v_SoccerJuggling_g23_c01.avi", 8.0), ("v_SoccerJuggling_g24_c01.avi", 8.0), ("R6llTwEh07w.mp4", 10.0), ("SOX5yA1l24A.mp4", 11.0), ("WUzgd7C1pWA.mp4", 11.0), ] ], ) def test_seek_reading(self, keyframes, full_path, duration): torchvision.set_video_backend("cuda") decoder = VideoReader(full_path) time = duration / 2 decoder.seek(time, keyframes_only=keyframes) with av.open(full_path) as container: container.seek(int(time * 1000000), any_frame=not keyframes, backward=False) for av_frame in container.decode(container.streams.video[0]): av_frames = torch.tensor(av_frame.to_rgb(src_colorspace="ITU709").to_ndarray()) vision_frames = next(decoder)["data"] mean_delta = torch.mean(torch.abs(av_frames.float() - vision_frames.cpu().float())) assert mean_delta < 0.75 @pytest.mark.skipif(av is None, reason="PyAV unavailable") @pytest.mark.parametrize( "video_file", [ "RATRACE_wave_f_nm_np1_fr_goo_37.avi", "TrumanShow_wave_f_nm_np1_fr_med_26.avi", "v_SoccerJuggling_g23_c01.avi", "v_SoccerJuggling_g24_c01.avi", "R6llTwEh07w.mp4", "SOX5yA1l24A.mp4", "WUzgd7C1pWA.mp4", ], ) def test_metadata(self, video_file): torchvision.set_video_backend("cuda") full_path = os.path.join(VIDEO_DIR, video_file) decoder = VideoReader(full_path) video_metadata = decoder.get_metadata()["video"] with av.open(full_path) as container: video = container.streams.video[0] av_duration = float(video.duration * video.time_base) assert math.isclose(video_metadata["duration"], av_duration, rel_tol=1e-2) assert math.isclose(video_metadata["fps"], video.base_rate, rel_tol=1e-2) if __name__ == "__main__": pytest.main([__file__])
import math import os import pytest import torch from torchvision.io import _HAS_GPU_VIDEO_DECODER, VideoReader try: import av except ImportError: av = None VIDEO_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "videos") @pytest.mark.skipif(_HAS_GPU_VIDEO_DECODER is False, reason="Didn't compile with support for gpu decoder") class TestVideoGPUDecoder: @pytest.mark.skipif(av is None, reason="PyAV unavailable") @pytest.mark.parametrize( "video_file", [ "RATRACE_wave_f_nm_np1_fr_goo_37.avi", "TrumanShow_wave_f_nm_np1_fr_med_26.avi", "v_SoccerJuggling_g23_c01.avi", "v_SoccerJuggling_g24_c01.avi", "R6llTwEh07w.mp4", "SOX5yA1l24A.mp4", "WUzgd7C1pWA.mp4", ], ) def test_frame_reading(self, video_file): full_path = os.path.join(VIDEO_DIR, video_file) decoder = VideoReader(full_path, device="cuda") with av.open(full_path) as container: for av_frame in container.decode(container.streams.video[0]): av_frames = torch.tensor(av_frame.to_rgb(src_colorspace="ITU709").to_ndarray()) vision_frames = next(decoder)["data"] mean_delta = torch.mean(torch.abs(av_frames.float() - vision_frames.cpu().float())) assert mean_delta < 0.75 @pytest.mark.skipif(av is None, reason="PyAV unavailable") @pytest.mark.parametrize("keyframes", [True, False]) @pytest.mark.parametrize( "full_path, duration", [ (os.path.join(VIDEO_DIR, x), y) for x, y in [ ("v_SoccerJuggling_g23_c01.avi", 8.0), ("v_SoccerJuggling_g24_c01.avi", 8.0), ("R6llTwEh07w.mp4", 10.0), ("SOX5yA1l24A.mp4", 11.0), ("WUzgd7C1pWA.mp4", 11.0), ] ], ) def test_seek_reading(self, keyframes, full_path, duration): decoder = VideoReader(full_path, device="cuda") time = duration / 2 decoder.seek(time, keyframes_only=keyframes) with av.open(full_path) as container: container.seek(int(time * 1000000), any_frame=not keyframes, backward=False) for av_frame in container.decode(container.streams.video[0]): av_frames = torch.tensor(av_frame.to_rgb(src_colorspace="ITU709").to_ndarray()) vision_frames = next(decoder)["data"] mean_delta = torch.mean(torch.abs(av_frames.float() - vision_frames.cpu().float())) assert mean_delta < 0.75 @pytest.mark.skipif(av is None, reason="PyAV unavailable") @pytest.mark.parametrize( "video_file", [ "RATRACE_wave_f_nm_np1_fr_goo_37.avi", "TrumanShow_wave_f_nm_np1_fr_med_26.avi", "v_SoccerJuggling_g23_c01.avi", "v_SoccerJuggling_g24_c01.avi", "R6llTwEh07w.mp4", "SOX5yA1l24A.mp4", "WUzgd7C1pWA.mp4", ], ) def test_metadata(self, video_file): full_path = os.path.join(VIDEO_DIR, video_file) decoder = VideoReader(full_path, device="cuda") video_metadata = decoder.get_metadata()["video"] with av.open(full_path) as container: video = container.streams.video[0] av_duration = float(video.duration * video.time_base) assert math.isclose(video_metadata["duration"], av_duration, rel_tol=1e-2) assert math.isclose(video_metadata["fps"], video.base_rate, rel_tol=1e-2) if __name__ == "__main__": pytest.main([__file__])
# Copyright (c) OpenMMLab. All rights reserved. from .config import Config, ConfigDict, DictAction from .get_config_model import get_config, get_model __all__ = ['Config', 'ConfigDict', 'DictAction', 'get_config', 'get_model']
# Copyright (c) OpenMMLab. All rights reserved. from .config import Config, ConfigDict, DictAction __all__ = ['Config', 'ConfigDict', 'DictAction']
from typing import List import torch from parameterized import parameterized from torchaudio import sox_effects from torchaudio_unittest.common_utils import ( get_sinusoid, save_wav, skipIfNoSox, TempDirMixin, torch_script, TorchaudioTestCase, ) from .common import load_params class SoxEffectTensorTransform(torch.nn.Module): effects: List[List[str]] def __init__(self, effects: List[List[str]], sample_rate: int, channels_first: bool): super().__init__() self.effects = effects self.sample_rate = sample_rate self.channels_first = channels_first def forward(self, tensor: torch.Tensor): return sox_effects.apply_effects_tensor(tensor, self.sample_rate, self.effects, self.channels_first) class SoxEffectFileTransform(torch.nn.Module): effects: List[List[str]] channels_first: bool def __init__(self, effects: List[List[str]], channels_first: bool): super().__init__() self.effects = effects self.channels_first = channels_first def forward(self, path: str): return sox_effects.apply_effects_file(path, self.effects, self.channels_first) @skipIfNoSox class TestTorchScript(TempDirMixin, TorchaudioTestCase): @parameterized.expand( load_params("sox_effect_test_args.jsonl"), name_func=lambda f, i, p: f'{f.__name__}_{i}_{p.args[0]["effects"][0][0]}', ) def test_apply_effects_tensor(self, args): effects = args["effects"] channels_first = True num_channels = args.get("num_channels", 2) input_sr = args.get("input_sample_rate", 8000) trans = SoxEffectTensorTransform(effects, input_sr, channels_first) trans = torch_script(trans) wav = get_sinusoid( frequency=800, sample_rate=input_sr, n_channels=num_channels, dtype="float32", channels_first=channels_first ) found, sr_found = trans(wav) expected, sr_expected = sox_effects.apply_effects_tensor(wav, input_sr, effects, channels_first) assert sr_found == sr_expected self.assertEqual(expected, found) @parameterized.expand( load_params("sox_effect_test_args.jsonl"), name_func=lambda f, i, p: f'{f.__name__}_{i}_{p.args[0]["effects"][0][0]}', ) def test_apply_effects_file(self, args): effects = args["effects"] channels_first = True num_channels = args.get("num_channels", 2) input_sr = args.get("input_sample_rate", 8000) trans = SoxEffectFileTransform(effects, channels_first) trans = torch_script(trans) path = self.get_temp_path("input.wav") wav = get_sinusoid( frequency=800, sample_rate=input_sr, n_channels=num_channels, dtype="float32", channels_first=channels_first ) save_wav(path, wav, sample_rate=input_sr, channels_first=channels_first) found, sr_found = trans(path) expected, sr_expected = sox_effects.apply_effects_file(path, effects, channels_first) assert sr_found == sr_expected self.assertEqual(expected, found)
from typing import List import torch from parameterized import parameterized from torchaudio import sox_effects from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, skipIfNoSox, get_sinusoid, save_wav, torch_script, ) from .common import ( load_params, ) class SoxEffectTensorTransform(torch.nn.Module): effects: List[List[str]] def __init__(self, effects: List[List[str]], sample_rate: int, channels_first: bool): super().__init__() self.effects = effects self.sample_rate = sample_rate self.channels_first = channels_first def forward(self, tensor: torch.Tensor): return sox_effects.apply_effects_tensor(tensor, self.sample_rate, self.effects, self.channels_first) class SoxEffectFileTransform(torch.nn.Module): effects: List[List[str]] channels_first: bool def __init__(self, effects: List[List[str]], channels_first: bool): super().__init__() self.effects = effects self.channels_first = channels_first def forward(self, path: str): return sox_effects.apply_effects_file(path, self.effects, self.channels_first) @skipIfNoSox class TestTorchScript(TempDirMixin, TorchaudioTestCase): @parameterized.expand( load_params("sox_effect_test_args.jsonl"), name_func=lambda f, i, p: f'{f.__name__}_{i}_{p.args[0]["effects"][0][0]}', ) def test_apply_effects_tensor(self, args): effects = args["effects"] channels_first = True num_channels = args.get("num_channels", 2) input_sr = args.get("input_sample_rate", 8000) trans = SoxEffectTensorTransform(effects, input_sr, channels_first) trans = torch_script(trans) wav = get_sinusoid( frequency=800, sample_rate=input_sr, n_channels=num_channels, dtype="float32", channels_first=channels_first ) found, sr_found = trans(wav) expected, sr_expected = sox_effects.apply_effects_tensor(wav, input_sr, effects, channels_first) assert sr_found == sr_expected self.assertEqual(expected, found) @parameterized.expand( load_params("sox_effect_test_args.jsonl"), name_func=lambda f, i, p: f'{f.__name__}_{i}_{p.args[0]["effects"][0][0]}', ) def test_apply_effects_file(self, args): effects = args["effects"] channels_first = True num_channels = args.get("num_channels", 2) input_sr = args.get("input_sample_rate", 8000) trans = SoxEffectFileTransform(effects, channels_first) trans = torch_script(trans) path = self.get_temp_path("input.wav") wav = get_sinusoid( frequency=800, sample_rate=input_sr, n_channels=num_channels, dtype="float32", channels_first=channels_first ) save_wav(path, wav, sample_rate=input_sr, channels_first=channels_first) found, sr_found = trans(path) expected, sr_expected = sox_effects.apply_effects_file(path, effects, channels_first) assert sr_found == sr_expected self.assertEqual(expected, found)
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmdet.models.utils import ConvUpsample @pytest.mark.parametrize('num_layers', [0, 1, 2]) def test_conv_upsample(num_layers): num_upsample = num_layers if num_layers > 0 else 0 num_layers = num_layers if num_layers > 0 else 1 layer = ConvUpsample( 10, 5, num_layers=num_layers, num_upsample=num_upsample, conv_cfg=None, norm_cfg=None) size = 5 x = torch.randn((1, 10, size, size)) size = size * pow(2, num_upsample) x = layer(x) assert x.shape[-2:] == (size, size)
import pytest import torch from mmdet.models.utils import ConvUpsample @pytest.mark.parametrize('num_layers', [0, 1, 2]) def test_conv_upsample(num_layers): num_upsample = num_layers if num_layers > 0 else 0 num_layers = num_layers if num_layers > 0 else 1 layer = ConvUpsample( 10, 5, num_layers=num_layers, num_upsample=num_upsample, conv_cfg=None, norm_cfg=None) size = 5 x = torch.randn((1, 10, size, size)) size = size * pow(2, num_upsample) x = layer(x) assert x.shape[-2:] == (size, size)
_base_ = './fast-rcnn_r50_fpn_1x_coco.py' # learning policy lr_config = dict(step=[16, 22]) runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = './fast_rcnn_r50_fpn_1x_coco.py' # learning policy lr_config = dict(step=[16, 22]) runner = dict(type='EpochBasedRunner', max_epochs=24)
import math from keras.src import backend from keras.src import layers from keras.src import ops from keras.src.api_export import keras_export @keras_export("keras.layers.GaussianDropout") class GaussianDropout(layers.Layer): """Apply multiplicative 1-centered Gaussian noise. As it is a regularization layer, it is only active at training time. Args: rate: Float, drop probability (as with `Dropout`). The multiplicative noise will have standard deviation `sqrt(rate / (1 - rate))`. seed: Integer, optional random seed to enable deterministic behavior. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (doing nothing). """ def __init__(self, rate, seed=None, **kwargs): super().__init__(**kwargs) if not 0 <= rate <= 1: raise ValueError( f"Invalid value received for argument " "`rate`. Expected a float value between 0 and 1. " f"Received: rate={rate}" ) self.rate = rate self.seed = seed if rate > 0: self.seed_generator = backend.random.SeedGenerator(seed) self.supports_masking = True self.built = True def call(self, inputs, training=False): if training and self.rate > 0: stddev = math.sqrt(self.rate / (1.0 - self.rate)) return inputs * backend.random.normal( shape=ops.shape(inputs), mean=1.0, stddev=stddev, dtype=self.compute_dtype, seed=self.seed_generator, ) return inputs def compute_output_shape(self, input_shape): return input_shape def get_config(self): base_config = super().get_config() config = { "rate": self.rate, "seed": self.seed, } return {**base_config, **config}
import math from keras.src import backend from keras.src import layers from keras.src import ops from keras.src.api_export import keras_export @keras_export("keras.layers.GaussianDropout") class GaussianDropout(layers.Layer): """Apply multiplicative 1-centered Gaussian noise. As it is a regularization layer, it is only active at training time. Args: rate: Float, drop probability (as with `Dropout`). The multiplicative noise will have standard deviation `sqrt(rate / (1 - rate))`. seed: Integer, optional random seed to enable deterministic behavior. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (doing nothing). """ def __init__(self, rate, seed=None, **kwargs): super().__init__(**kwargs) if not 0 <= rate <= 1: raise ValueError( f"Invalid value received for argument " "`rate`. Expected a float value between 0 and 1. " f"Received: rate={rate}" ) self.rate = rate self.seed = seed if rate > 0: self.seed_generator = backend.random.SeedGenerator(seed) self.supports_masking = True def call(self, inputs, training=False): if training and self.rate > 0: stddev = math.sqrt(self.rate / (1.0 - self.rate)) return inputs * backend.random.normal( shape=ops.shape(inputs), mean=1.0, stddev=stddev, dtype=self.compute_dtype, seed=self.seed_generator, ) return inputs def compute_output_shape(self, input_shape): return input_shape def get_config(self): base_config = super().get_config() config = { "rate": self.rate, "seed": self.seed, } return {**base_config, **config}
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization utils for RoFormer.""" from tokenizers import NormalizedString, PreTokenizedString, normalizers class JiebaPreTokenizer: def __init__(self, vocab) -> None: self.vocab = vocab self.normalizers = normalizers.BertNormalizer( clean_text=False, handle_chinese_chars=True, strip_accents=False, lowercase=False, ) try: import rjieba except ImportError: raise ImportError( "You need to install rjieba to use RoFormerTokenizer. " "See https://pypi.org/project/rjieba/ for installation." ) self.jieba = rjieba def jieba_split(self, i: int, normalized_string: NormalizedString) -> list[NormalizedString]: splits = [] # this code slice normalized_string is too slow (6s) but test_alignment_methods can pass for token, start, end in self.jieba.tokenize(str(normalized_string), hmm=False): if token in self.vocab: splits.append(normalized_string[start:end]) else: token_list = self.normalizers.normalize_str(token).split() for token in token_list: if token: end = start + len(token) splits.append(normalized_string[start:end]) start = end # this code test_alignment_methods can't pass but fast (300ms) # for token in self.jieba.cut(str(normalized_string), False): # if token in self.vocab: # splits.append(NormalizedString(token)) # else: # token_list = self.normalizers.normalize_str(token).split() # for token in token_list: # if token: # splits.append(NormalizedString(token)) return splits def pre_tokenize(self, pretok: PreTokenizedString): pretok.split(self.jieba_split)
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization utils for RoFormer.""" from typing import List from tokenizers import NormalizedString, PreTokenizedString, normalizers class JiebaPreTokenizer: def __init__(self, vocab) -> None: self.vocab = vocab self.normalizers = normalizers.BertNormalizer( clean_text=False, handle_chinese_chars=True, strip_accents=False, lowercase=False, ) try: import rjieba except ImportError: raise ImportError( "You need to install rjieba to use RoFormerTokenizer. " "See https://pypi.org/project/rjieba/ for installation." ) self.jieba = rjieba def jieba_split(self, i: int, normalized_string: NormalizedString) -> List[NormalizedString]: splits = [] # this code slice normalized_string is too slow (6s) but test_alignment_methods can pass for token, start, end in self.jieba.tokenize(str(normalized_string), hmm=False): if token in self.vocab: splits.append(normalized_string[start:end]) else: token_list = self.normalizers.normalize_str(token).split() for token in token_list: if token: end = start + len(token) splits.append(normalized_string[start:end]) start = end # this code test_alignment_methods can't pass but fast (300ms) # for token in self.jieba.cut(str(normalized_string), False): # if token in self.vocab: # splits.append(NormalizedString(token)) # else: # token_list = self.normalizers.normalize_str(token).split() # for token in token_list: # if token: # splits.append(NormalizedString(token)) return splits def pre_tokenize(self, pretok: PreTokenizedString): pretok.split(self.jieba_split)
# Copyright (c) OpenMMLab. All rights reserved. import os import pytest import torch import torch.nn as nn from torch.distributed import destroy_process_group, init_process_group from torch.nn.parallel import DataParallel, DistributedDataParallel from mmengine.model import (MMDistributedDataParallel, MMSeparateDistributedDataParallel, convert_sync_batchnorm, is_model_wrapper, revert_sync_batchnorm) from mmengine.registry import MODEL_WRAPPERS, Registry from mmengine.utils import is_installed class ToyModule(nn.Module): def __init__(self): super().__init__() self.layer1 = nn.Linear(1, 1) def add_module(self, name, module): raise ValueError() @pytest.mark.skipif( torch.__version__ == 'parrots', reason='not supported in parrots now') def test_revert_syncbn(): # conv = ConvModule(3, 8, 2, norm_cfg=dict(type='SyncBN')) conv = nn.Sequential(nn.Conv2d(3, 8, 2), nn.SyncBatchNorm(8)) x = torch.randn(1, 3, 10, 10) # Expect a ValueError prompting that SyncBN is not supported on CPU with pytest.raises(ValueError): y = conv(x) conv = revert_sync_batchnorm(conv) y = conv(x) assert y.shape == (1, 8, 9, 9) # TODO, capsys provided by `pytest` cannot capture the error log produced # by MMLogger. Test the error log after refactoring the unit test with # `unittest` conv = nn.Sequential(ToyModule(), nn.SyncBatchNorm(8)) revert_sync_batchnorm(conv) @pytest.mark.skipif( torch.__version__ == 'parrots', reason='not supported in parrots now') def test_convert_syncbn(): # conv = ConvModule(3, 8, 2, norm_cfg=dict(type='SyncBN')) conv = nn.Sequential(nn.Conv2d(3, 8, 2), nn.BatchNorm2d(8)) x = torch.randn(1, 3, 10, 10) y = conv(x) assert y.shape == (1, 8, 9, 9) # Test convert to mmcv SyncBatchNorm if is_installed('mmcv'): # MMCV SyncBatchNorm is only supported on distributed training. # torch 1.6 will throw an AssertionError, and higher version will # throw an RuntimeError with pytest.raises((RuntimeError, AssertionError)): convert_sync_batchnorm(conv, implementation='mmcv') # Test convert BN to Pytorch SyncBatchNorm # Expect a ValueError prompting that SyncBN is not supported on CPU converted_conv = convert_sync_batchnorm(conv) assert isinstance(converted_conv[1], torch.nn.SyncBatchNorm) with pytest.raises(ValueError): converted_conv(x) def test_is_model_wrapper(): # Test basic module wrapper. os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = '29510' os.environ['RANK'] = str(0) init_process_group(backend='gloo', rank=0, world_size=1) model = nn.Linear(1, 1) for wrapper in [ DistributedDataParallel, MMDistributedDataParallel, MMSeparateDistributedDataParallel, DataParallel ]: wrapper_model = wrapper(model) assert is_model_wrapper(wrapper_model) # Test `is_model_wrapper` can check model wrapper registered in custom # registry. CHILD_REGISTRY = Registry('test_is_model_wrapper', parent=MODEL_WRAPPERS) class CustomModelWrapper(nn.Module): def __init__(self, model): super().__init__() self.module = model pass CHILD_REGISTRY.register_module(module=CustomModelWrapper, force=True) for wrapper in [ DistributedDataParallel, MMDistributedDataParallel, MMSeparateDistributedDataParallel, DataParallel, CustomModelWrapper ]: wrapper_model = wrapper(model) assert is_model_wrapper(wrapper_model) # Test `is_model_wrapper` will not check model wrapper in parent # registry from a child registry. for wrapper in [ DistributedDataParallel, MMDistributedDataParallel, MMSeparateDistributedDataParallel, DataParallel ]: wrapper_model = wrapper(model) assert not is_model_wrapper(wrapper_model, registry=CHILD_REGISTRY) wrapper_model = CustomModelWrapper(model) assert is_model_wrapper(wrapper_model, registry=CHILD_REGISTRY) destroy_process_group()
# Copyright (c) OpenMMLab. All rights reserved. import os import pytest import torch import torch.nn as nn from torch.distributed import destroy_process_group, init_process_group from torch.nn.parallel import DataParallel, DistributedDataParallel from mmengine.model import (MMDistributedDataParallel, MMSeparateDistributedDataParallel, convert_sync_batchnorm, is_model_wrapper, revert_sync_batchnorm) from mmengine.registry import MODEL_WRAPPERS, Registry from mmengine.utils import is_installed @pytest.mark.skipif( torch.__version__ == 'parrots', reason='not supported in parrots now') def test_revert_syncbn(): # conv = ConvModule(3, 8, 2, norm_cfg=dict(type='SyncBN')) conv = nn.Sequential(nn.Conv2d(3, 8, 2), nn.SyncBatchNorm(8)) x = torch.randn(1, 3, 10, 10) # Expect a ValueError prompting that SyncBN is not supported on CPU with pytest.raises(ValueError): y = conv(x) conv = revert_sync_batchnorm(conv) y = conv(x) assert y.shape == (1, 8, 9, 9) @pytest.mark.skipif( torch.__version__ == 'parrots', reason='not supported in parrots now') def test_convert_syncbn(): # conv = ConvModule(3, 8, 2, norm_cfg=dict(type='SyncBN')) conv = nn.Sequential(nn.Conv2d(3, 8, 2), nn.BatchNorm2d(8)) x = torch.randn(1, 3, 10, 10) y = conv(x) assert y.shape == (1, 8, 9, 9) # Test convert to mmcv SyncBatchNorm if is_installed('mmcv'): # MMCV SyncBatchNorm is only supported on distributed training. with pytest.raises((RuntimeError, AssertionError)): convert_sync_batchnorm(conv, implementation='mmcv') # Test convert to Pytorch SyncBatchNorm # Expect a ValueError prompting that SyncBN is not supported on CPU converted_conv = convert_sync_batchnorm(conv) assert isinstance(converted_conv[1], torch.nn.SyncBatchNorm) with pytest.raises(ValueError): converted_conv(x) def test_is_model_wrapper(): # Test basic module wrapper. os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = '29510' os.environ['RANK'] = str(0) init_process_group(backend='gloo', rank=0, world_size=1) model = nn.Linear(1, 1) for wrapper in [ DistributedDataParallel, MMDistributedDataParallel, MMSeparateDistributedDataParallel, DataParallel ]: wrapper_model = wrapper(model) assert is_model_wrapper(wrapper_model) # Test `is_model_wrapper` can check model wrapper registered in custom # registry. CHILD_REGISTRY = Registry('test_is_model_wrapper', parent=MODEL_WRAPPERS) class CustomModelWrapper(nn.Module): def __init__(self, model): super().__init__() self.module = model pass CHILD_REGISTRY.register_module(module=CustomModelWrapper, force=True) for wrapper in [ DistributedDataParallel, MMDistributedDataParallel, MMSeparateDistributedDataParallel, DataParallel, CustomModelWrapper ]: wrapper_model = wrapper(model) assert is_model_wrapper(wrapper_model) # Test `is_model_wrapper` will not check model wrapper in parent # registry from a child registry. for wrapper in [ DistributedDataParallel, MMDistributedDataParallel, MMSeparateDistributedDataParallel, DataParallel ]: wrapper_model = wrapper(model) assert not is_model_wrapper(wrapper_model, registry=CHILD_REGISTRY) wrapper_model = CustomModelWrapper(model) assert is_model_wrapper(wrapper_model, registry=CHILD_REGISTRY) destroy_process_group()
# Copyright (c) OpenMMLab. All rights reserved. from .base_data_element import BaseDataElement from .instance_data import InstanceData from .sampler import DefaultSampler, InfiniteSampler from .utils import pseudo_collate, worker_init_fn __all__ = [ 'BaseDataElement', 'DefaultSampler', 'InfiniteSampler', 'worker_init_fn', 'pseudo_collate', 'InstanceData' ]
# Copyright (c) OpenMMLab. All rights reserved. from .base_data_element import BaseDataElement from .sampler import DefaultSampler, InfiniteSampler from .utils import pseudo_collate, worker_init_fn __all__ = [ 'BaseDataElement', 'DefaultSampler', 'InfiniteSampler', 'worker_init_fn', 'pseudo_collate' ]
"""XGBoost: eXtreme Gradient Boosting library. Contributors: https://github.com/dmlc/xgboost/blob/master/CONTRIBUTORS.md """ from . import tracker # noqa from . import collective from .core import ( Booster, DataIter, DMatrix, ExtMemQuantileDMatrix, QuantileDMatrix, _py_version, build_info, ) from .tracker import RabitTracker # noqa from .training import cv, train try: from .config import config_context, get_config, set_config from .plotting import plot_importance, plot_tree, to_graphviz from .sklearn import ( XGBClassifier, XGBModel, XGBRanker, XGBRegressor, XGBRFClassifier, XGBRFRegressor, ) except ImportError: pass __version__ = _py_version() __all__ = [ # core "DMatrix", "QuantileDMatrix", "ExtMemQuantileDMatrix", "Booster", "DataIter", "train", "cv", # utilities "RabitTracker", "build_info", "plot_importance", "plot_tree", "to_graphviz", "set_config", "get_config", "config_context", # sklearn "XGBModel", "XGBClassifier", "XGBRegressor", "XGBRanker", "XGBRFClassifier", "XGBRFRegressor", # collective "collective", ]
"""XGBoost: eXtreme Gradient Boosting library. Contributors: https://github.com/dmlc/xgboost/blob/master/CONTRIBUTORS.md """ from . import tracker # noqa from . import collective, dask from .core import ( Booster, DataIter, DMatrix, ExtMemQuantileDMatrix, QuantileDMatrix, _py_version, build_info, ) from .tracker import RabitTracker # noqa from .training import cv, train try: from .config import config_context, get_config, set_config from .plotting import plot_importance, plot_tree, to_graphviz from .sklearn import ( XGBClassifier, XGBModel, XGBRanker, XGBRegressor, XGBRFClassifier, XGBRFRegressor, ) except ImportError: pass __version__ = _py_version() __all__ = [ # core "DMatrix", "QuantileDMatrix", "ExtMemQuantileDMatrix", "Booster", "DataIter", "train", "cv", # utilities "RabitTracker", "build_info", "plot_importance", "plot_tree", "to_graphviz", "set_config", "get_config", "config_context", # sklearn "XGBModel", "XGBClassifier", "XGBRegressor", "XGBRanker", "XGBRFClassifier", "XGBRFRegressor", # dask "dask", # collective "collective", ]
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.image import affine_transform from keras.src.ops.image import crop_images from keras.src.ops.image import extract_patches from keras.src.ops.image import gaussian_blur from keras.src.ops.image import hsv_to_rgb from keras.src.ops.image import map_coordinates from keras.src.ops.image import pad_images from keras.src.ops.image import perspective_transform from keras.src.ops.image import resize from keras.src.ops.image import rgb_to_grayscale from keras.src.ops.image import rgb_to_hsv
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.image import affine_transform from keras.src.ops.image import crop_images from keras.src.ops.image import extract_patches from keras.src.ops.image import hsv_to_rgb from keras.src.ops.image import map_coordinates from keras.src.ops.image import pad_images from keras.src.ops.image import perspective_transform from keras.src.ops.image import resize from keras.src.ops.image import rgb_to_grayscale from keras.src.ops.image import rgb_to_hsv
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.parallel import is_module_wrapper from mmcv.runner.hooks import HOOKS, Hook @HOOKS.register_module() class YOLOXModeSwitchHook(Hook): """Switch the mode of YOLOX during training. This hook turns off the mosaic and mixup data augmentation and switches to use L1 loss in bbox_head. Args: num_last_epochs (int): The number of latter epochs in the end of the training to close the data augmentation and switch to L1 loss. Default: 15. skip_type_keys (list[str], optional): Sequence of type string to be skip pipeline. Default: ('Mosaic', 'RandomAffine', 'MixUp') """ def __init__(self, num_last_epochs=15, skip_type_keys=('Mosaic', 'RandomAffine', 'MixUp')): self.num_last_epochs = num_last_epochs self.skip_type_keys = skip_type_keys self._restart_dataloader = False def before_train_epoch(self, runner): """Close mosaic and mixup augmentation and switches to use L1 loss.""" epoch = runner.epoch train_loader = runner.data_loader model = runner.model if is_module_wrapper(model): model = model.module if (epoch + 1) == runner.max_epochs - self.num_last_epochs: runner.logger.info('No mosaic and mixup aug now!') # The dataset pipeline cannot be updated when persistent_workers # is True, so we need to force the dataloader's multi-process # restart. This is a very hacky approach. train_loader.dataset.update_skip_type_keys(self.skip_type_keys) if hasattr(train_loader, 'persistent_workers' ) and train_loader.persistent_workers is True: train_loader._DataLoader__initialized = False train_loader._iterator = None self._restart_dataloader = True runner.logger.info('Add additional L1 loss now!') model.bbox_head.use_l1 = True else: # Once the restart is complete, we need to restore # the initialization flag. if self._restart_dataloader: train_loader._DataLoader__initialized = True
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.parallel import is_module_wrapper from mmcv.runner.hooks import HOOKS, Hook @HOOKS.register_module() class YOLOXModeSwitchHook(Hook): """Switch the mode of YOLOX during training. This hook turns off the mosaic and mixup data augmentation and switches to use L1 loss in bbox_head. Args: num_last_epochs (int): The number of latter epochs in the end of the training to close the data augmentation and switch to L1 loss. Default: 15. skip_type_keys (list[str], optional): Sequence of type string to be skip pipeline. Default: ('Mosaic', 'RandomAffine', 'MixUp') """ def __init__(self, num_last_epochs=15, skip_type_keys=('Mosaic', 'RandomAffine', 'MixUp')): self.num_last_epochs = num_last_epochs self.skip_type_keys = skip_type_keys def before_train_epoch(self, runner): """Close mosaic and mixup augmentation and switches to use L1 loss.""" epoch = runner.epoch train_loader = runner.data_loader model = runner.model if is_module_wrapper(model): model = model.module if (epoch + 1) == runner.max_epochs - self.num_last_epochs: runner.logger.info('No mosaic and mixup aug now!') train_loader.dataset.update_skip_type_keys(self.skip_type_keys) runner.logger.info('Add additional L1 loss now!') model.bbox_head.use_l1 = True
from typing import Union from langchain_core.agents import AgentAction, AgentFinish from langchain_core.messages import BaseMessage from langchain_core.outputs import ChatGeneration, Generation from langchain.agents.agent import MultiActionAgentOutputParser from langchain.agents.output_parsers.tools import ( ToolAgentAction, parse_ai_message_to_tool_action, ) OpenAIToolAgentAction = ToolAgentAction def parse_ai_message_to_openai_tool_action( message: BaseMessage, ) -> Union[list[AgentAction], AgentFinish]: """Parse an AI message potentially containing tool_calls.""" tool_actions = parse_ai_message_to_tool_action(message) if isinstance(tool_actions, AgentFinish): return tool_actions final_actions: list[AgentAction] = [] for action in tool_actions: if isinstance(action, ToolAgentAction): final_actions.append( OpenAIToolAgentAction( tool=action.tool, tool_input=action.tool_input, log=action.log, message_log=action.message_log, tool_call_id=action.tool_call_id, ) ) else: final_actions.append(action) return final_actions class OpenAIToolsAgentOutputParser(MultiActionAgentOutputParser): """Parses a message into agent actions/finish. Is meant to be used with OpenAI models, as it relies on the specific tool_calls parameter from OpenAI to convey what tools to use. If a tool_calls parameter is passed, then that is used to get the tool names and tool inputs. If one is not passed, then the AIMessage is assumed to be the final output. """ @property def _type(self) -> str: return "openai-tools-agent-output-parser" def parse_result( self, result: list[Generation], *, partial: bool = False ) -> Union[list[AgentAction], AgentFinish]: if not isinstance(result[0], ChatGeneration): msg = "This output parser only works on ChatGeneration output" raise ValueError(msg) message = result[0].message return parse_ai_message_to_openai_tool_action(message) def parse(self, text: str) -> Union[list[AgentAction], AgentFinish]: msg = "Can only parse messages" raise ValueError(msg)
from typing import Union from langchain_core.agents import AgentAction, AgentFinish from langchain_core.messages import BaseMessage from langchain_core.outputs import ChatGeneration, Generation from langchain.agents.agent import MultiActionAgentOutputParser from langchain.agents.output_parsers.tools import ( ToolAgentAction, parse_ai_message_to_tool_action, ) OpenAIToolAgentAction = ToolAgentAction def parse_ai_message_to_openai_tool_action( message: BaseMessage, ) -> Union[list[AgentAction], AgentFinish]: """Parse an AI message potentially containing tool_calls.""" tool_actions = parse_ai_message_to_tool_action(message) if isinstance(tool_actions, AgentFinish): return tool_actions final_actions: list[AgentAction] = [] for action in tool_actions: if isinstance(action, ToolAgentAction): final_actions.append( OpenAIToolAgentAction( tool=action.tool, tool_input=action.tool_input, log=action.log, message_log=action.message_log, tool_call_id=action.tool_call_id, ) ) else: final_actions.append(action) return final_actions class OpenAIToolsAgentOutputParser(MultiActionAgentOutputParser): """Parses a message into agent actions/finish. Is meant to be used with OpenAI models, as it relies on the specific tool_calls parameter from OpenAI to convey what tools to use. If a tool_calls parameter is passed, then that is used to get the tool names and tool inputs. If one is not passed, then the AIMessage is assumed to be the final output. """ @property def _type(self) -> str: return "openai-tools-agent-output-parser" def parse_result( self, result: list[Generation], *, partial: bool = False ) -> Union[list[AgentAction], AgentFinish]: if not isinstance(result[0], ChatGeneration): raise ValueError("This output parser only works on ChatGeneration output") message = result[0].message return parse_ai_message_to_openai_tool_action(message) def parse(self, text: str) -> Union[list[AgentAction], AgentFinish]: raise ValueError("Can only parse messages")
"""Feature selection algorithms. These include univariate filter selection methods and the recursive feature elimination algorithm. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from ._base import SelectorMixin from ._from_model import SelectFromModel from ._mutual_info import mutual_info_classif, mutual_info_regression from ._rfe import RFE, RFECV from ._sequential import SequentialFeatureSelector from ._univariate_selection import ( GenericUnivariateSelect, SelectFdr, SelectFpr, SelectFwe, SelectKBest, SelectPercentile, chi2, f_classif, f_oneway, f_regression, r_regression, ) from ._variance_threshold import VarianceThreshold __all__ = [ "RFE", "RFECV", "GenericUnivariateSelect", "SelectFdr", "SelectFpr", "SelectFromModel", "SelectFwe", "SelectKBest", "SelectPercentile", "SelectorMixin", "SequentialFeatureSelector", "VarianceThreshold", "chi2", "f_classif", "f_oneway", "f_regression", "mutual_info_classif", "mutual_info_regression", "r_regression", ]
"""Feature selection algorithms. These include univariate filter selection methods and the recursive feature elimination algorithm. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from ._base import SelectorMixin from ._from_model import SelectFromModel from ._mutual_info import mutual_info_classif, mutual_info_regression from ._rfe import RFE, RFECV from ._sequential import SequentialFeatureSelector from ._univariate_selection import ( GenericUnivariateSelect, SelectFdr, SelectFpr, SelectFwe, SelectKBest, SelectPercentile, chi2, f_classif, f_oneway, f_regression, r_regression, ) from ._variance_threshold import VarianceThreshold __all__ = [ "GenericUnivariateSelect", "SequentialFeatureSelector", "RFE", "RFECV", "SelectFdr", "SelectFpr", "SelectFwe", "SelectKBest", "SelectFromModel", "SelectPercentile", "VarianceThreshold", "chi2", "f_classif", "f_oneway", "f_regression", "r_regression", "mutual_info_classif", "mutual_info_regression", "SelectorMixin", ]
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] teacher_ckpt = 'http://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_1x_coco/paa_r101_fpn_1x_coco_20200821-0a1825a4.pth' # noqa model = dict( type='LAD', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), # student backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # teacher teacher_ckpt=teacher_ckpt, teacher_backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), teacher_neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), teacher_bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # training and testing settings train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.1, neg_iou_thr=0.1, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, score_voting=True, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) train_dataloader = dict(batch_size=8, num_workers=4) optim_wrapper = dict(type='AmpOptimWrapper', optimizer=dict(lr=0.01)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] teacher_ckpt = 'http://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_1x_coco/paa_r101_fpn_1x_coco_20200821-0a1825a4.pth' # noqa preprocess_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True, pad_size_divisor=32) model = dict( preprocess_cfg=preprocess_cfg, type='LAD', # student backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # teacher teacher_ckpt=teacher_ckpt, teacher_backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), teacher_neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), teacher_bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # training and testing settings train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.1, neg_iou_thr=0.1, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, score_voting=True, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) train_dataloader = dict(batch_size=8, num_workers=4) optim_wrapper = dict(optimizer=dict(lr=0.01)) # TODO: MMEngine does not support fp16 yet. # fp16 = dict(loss_scale=512.) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
import numpy as np from absl.testing import parameterized from tensorflow import data as tf_data from keras.src import backend from keras.src import layers from keras.src import testing class RandomRotationTest(testing.TestCase): @parameterized.named_parameters( ("random_rotate_neg4", -0.4), ("random_rotate_neg2", -0.2), ("random_rotate_4", 0.4), ("random_rotate_2", 0.2), ("random_rotate_tuple", (-0.2, 0.4)), ) def test_random_rotation_shapes(self, factor): self.run_layer_test( layers.RandomRotation, init_kwargs={ "factor": factor, }, input_shape=(2, 3, 4), expected_output_shape=(2, 3, 4), supports_masking=False, run_training_check=False, ) def test_random_rotation_correctness(self): if backend.config.image_data_format() == "channels_last": input_shape = (1, 5, 5, 1) else: input_shape = (1, 1, 5, 5) input_image = np.reshape(np.arange(0, 25), input_shape) layer = layers.RandomRotation(factor=(0.5, 0.5)) actual_output = layer(input_image) expected_output = np.asarray( [ [24, 23, 22, 21, 20], [19, 18, 17, 16, 15], [14, 13, 12, 11, 10], [9, 8, 7, 6, 5], [4, 3, 2, 1, 0], ] ).reshape(input_shape) self.assertAllClose( backend.convert_to_tensor(expected_output), actual_output, atol=1e-5 ) def test_training_false(self): input_image = np.reshape(np.arange(0, 25), (1, 5, 5, 1)) layer = layers.RandomRotation(factor=(0.5, 0.5)) actual_output = layer(input_image, training=False) self.assertAllClose(actual_output, input_image) def test_tf_data_compatibility(self): if backend.config.image_data_format() == "channels_last": input_shape = (1, 5, 5, 1) else: input_shape = (1, 1, 5, 5) input_image = np.reshape(np.arange(0, 25), input_shape) layer = layers.RandomRotation(factor=(0.5, 0.5)) ds = tf_data.Dataset.from_tensor_slices(input_image).map(layer) expected_output = np.asarray( [ [24, 23, 22, 21, 20], [19, 18, 17, 16, 15], [14, 13, 12, 11, 10], [9, 8, 7, 6, 5], [4, 3, 2, 1, 0], ] ).reshape(input_shape[1:]) output = next(iter(ds)).numpy() self.assertAllClose(expected_output, output)
import numpy as np from absl.testing import parameterized from tensorflow import data as tf_data from keras.src import backend from keras.src import layers from keras.src import testing class RandomRotationTest(testing.TestCase): @parameterized.named_parameters( ("random_rotate_neg4", -0.4), ("random_rotate_neg2", -0.2), ("random_rotate_4", 0.4), ("random_rotate_2", 0.2), ("random_rotate_tuple", (-0.2, 0.4)), ) def test_random_rotation_shapes(self, factor): self.run_layer_test( layers.RandomRotation, init_kwargs={ "factor": factor, }, input_shape=(2, 3, 4), expected_output_shape=(2, 3, 4), supports_masking=False, run_training_check=False, ) def test_random_rotation_correctness(self): if backend.config.image_data_format() == "channels_last": input_shape = (1, 5, 5, 1) else: input_shape = (1, 1, 5, 5) input_image = np.reshape(np.arange(0, 25), input_shape) layer = layers.RandomRotation(factor=(0.5, 0.5)) actual_output = layer(input_image) expected_output = np.asarray( [ [24, 23, 22, 21, 20], [19, 18, 17, 16, 15], [14, 13, 12, 11, 10], [9, 8, 7, 6, 5], [4, 3, 2, 1, 0], ] ).reshape(input_shape) self.assertAllClose( backend.convert_to_tensor(expected_output), actual_output, atol=1e-5 ) def test_training_false(self): input_image = np.reshape(np.arange(0, 25), (1, 5, 5, 1)) layer = layers.RandomRotation(factor=(0.5, 0.5)) actual_output = layer(input_image, training=False) self.assertAllClose(actual_output, input_image) def test_tf_data_compatibility(self): if backend.config.image_data_format() == "channels_last": input_shape = (1, 5, 5, 1) else: input_shape = (1, 1, 5, 5) input_image = np.reshape(np.arange(0, 25), input_shape) layer = layers.RandomRotation(factor=(0.5, 0.5)) ds = tf_data.Dataset.from_tensor_slices(input_image).map(layer) expected_output = np.asarray( [ [24, 23, 22, 21, 20], [19, 18, 17, 16, 15], [14, 13, 12, 11, 10], [9, 8, 7, 6, 5], [4, 3, 2, 1, 0], ] ).reshape(input_shape[1:]) for output in ds.take(1): output = output.numpy() self.assertAllClose(expected_output, output)
"""Test embedding functionalities.""" from collections import defaultdict from typing import Any, Dict, List from unittest.mock import patch import pytest from llama_index.core.indices.tree.base import TreeIndex from llama_index.core.indices.tree.select_leaf_embedding_retriever import ( TreeSelectLeafEmbeddingRetriever, ) from llama_index.core.schema import BaseNode, Document, QueryBundle from tests.mock_utils.mock_prompts import ( MOCK_INSERT_PROMPT, MOCK_SUMMARY_PROMPT, ) @pytest.fixture() def index_kwargs() -> dict: """Index kwargs.""" return { "summary_template": MOCK_SUMMARY_PROMPT, "insert_prompt": MOCK_INSERT_PROMPT, "num_children": 2, } @pytest.fixture() def documents() -> List[Document]: """Get documents.""" # NOTE: one document for now doc_text = ( "Hello world.\nThis is a test.\nThis is another test.\nThis is a test v2." ) return [Document(text=doc_text)] def _get_node_text_embedding_similarities( query_embedding: List[float], nodes: List[BaseNode] ) -> List[float]: """Get node text embedding similarity.""" text_similarity_map = defaultdict(lambda: 0.0) text_similarity_map["Hello world."] = 0.9 text_similarity_map["This is a test."] = 0.8 text_similarity_map["This is another test."] = 0.7 text_similarity_map["This is a test v2."] = 0.6 similarities = [] for node in nodes: similarities.append(text_similarity_map[node.get_content()]) return similarities @patch.object( TreeSelectLeafEmbeddingRetriever, "_get_query_text_embedding_similarities", side_effect=_get_node_text_embedding_similarities, ) def test_embedding_query( _patch_similarity: Any, index_kwargs: Dict, documents: List[Document], patch_llm_predictor, patch_token_text_splitter, ) -> None: """Test embedding query.""" tree = TreeIndex.from_documents(documents, **index_kwargs) # test embedding query query_str = "What is?" retriever = tree.as_retriever(retriever_mode="select_leaf_embedding") nodes = retriever.retrieve(QueryBundle(query_str)) assert nodes[0].node.get_content() == "Hello world."
"""Test embedding functionalities.""" from collections import defaultdict from typing import Any, Dict, List from unittest.mock import patch import pytest from llama_index.core.indices.tree.base import TreeIndex from llama_index.core.indices.tree.select_leaf_embedding_retriever import ( TreeSelectLeafEmbeddingRetriever, ) from llama_index.core.schema import BaseNode, Document, QueryBundle from tests.mock_utils.mock_prompts import ( MOCK_INSERT_PROMPT, MOCK_SUMMARY_PROMPT, ) @pytest.fixture() def index_kwargs() -> dict: """Index kwargs.""" return { "summary_template": MOCK_SUMMARY_PROMPT, "insert_prompt": MOCK_INSERT_PROMPT, "num_children": 2, } @pytest.fixture() def documents() -> List[Document]: """Get documents.""" # NOTE: one document for now doc_text = ( "Hello world.\n" "This is a test.\n" "This is another test.\n" "This is a test v2." ) return [Document(text=doc_text)] def _get_node_text_embedding_similarities( query_embedding: List[float], nodes: List[BaseNode] ) -> List[float]: """Get node text embedding similarity.""" text_similarity_map = defaultdict(lambda: 0.0) text_similarity_map["Hello world."] = 0.9 text_similarity_map["This is a test."] = 0.8 text_similarity_map["This is another test."] = 0.7 text_similarity_map["This is a test v2."] = 0.6 similarities = [] for node in nodes: similarities.append(text_similarity_map[node.get_content()]) return similarities @patch.object( TreeSelectLeafEmbeddingRetriever, "_get_query_text_embedding_similarities", side_effect=_get_node_text_embedding_similarities, ) def test_embedding_query( _patch_similarity: Any, index_kwargs: Dict, documents: List[Document], patch_llm_predictor, patch_token_text_splitter, ) -> None: """Test embedding query.""" tree = TreeIndex.from_documents(documents, **index_kwargs) # test embedding query query_str = "What is?" retriever = tree.as_retriever(retriever_mode="select_leaf_embedding") nodes = retriever.retrieve(QueryBundle(query_str)) assert nodes[0].node.get_content() == "Hello world."
from __future__ import annotations import math from pathlib import Path import numpy as np import pytest from packaging.version import Version, parse from tokenizers import Tokenizer from sentence_transformers import SentenceTransformer from sentence_transformers.models.StaticEmbedding import StaticEmbedding try: import model2vec from model2vec import __version__ as M2V_VERSION except ImportError: model2vec = None skip_if_no_model2vec = pytest.mark.skipif(model2vec is None, reason="The model2vec library is not installed.") @pytest.fixture(scope="session") def tokenizer() -> Tokenizer: return Tokenizer.from_pretrained("bert-base-uncased") @pytest.fixture def embedding_weights(): return np.random.rand(30522, 768) @pytest.fixture def static_embedding(tokenizer: Tokenizer, embedding_weights) -> StaticEmbedding: return StaticEmbedding(tokenizer, embedding_weights=embedding_weights) def test_initialization_with_embedding_weights(tokenizer: Tokenizer, embedding_weights) -> None: model = StaticEmbedding(tokenizer, embedding_weights=embedding_weights) assert model.embedding.weight.shape == (30522, 768) def test_initialization_with_embedding_dim(tokenizer: Tokenizer) -> None: model = StaticEmbedding(tokenizer, embedding_dim=768) assert model.embedding.weight.shape == (30522, 768) def test_tokenize(static_embedding: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding.tokenize(texts) assert "input_ids" in tokens assert "offsets" in tokens def test_forward(static_embedding: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding.tokenize(texts) output = static_embedding(tokens) assert "sentence_embedding" in output def test_save_and_load(tmp_path: Path, static_embedding: StaticEmbedding) -> None: save_dir = tmp_path / "model" save_dir.mkdir() static_embedding.save(str(save_dir)) loaded_model = StaticEmbedding.load(str(save_dir)) assert loaded_model.embedding.weight.shape == static_embedding.embedding.weight.shape @skip_if_no_model2vec() def test_from_distillation() -> None: model = StaticEmbedding.from_distillation("sentence-transformers-testing/stsb-bert-tiny-safetensors", pca_dims=32) expected_shape = (29525 if parse(M2V_VERSION) >= Version("0.5.0") else 29528, 32) assert model.embedding.weight.shape == expected_shape @skip_if_no_model2vec() def test_from_model2vec() -> None: model = StaticEmbedding.from_model2vec("minishlab/M2V_base_output") assert model.embedding.weight.shape == (29528, 256) def test_loading_model2vec() -> None: model = SentenceTransformer("minishlab/potion-base-8M") assert model.get_sentence_embedding_dimension() == 256 assert model.max_seq_length == math.inf test_sentences = ["It's so sunny outside!", "The sun is shining outside!"] embeddings = model.encode(test_sentences) assert embeddings.shape == (2, 256) similarity = model.similarity(embeddings[0], embeddings[1]) assert similarity.item() > 0.7
from __future__ import annotations import math from pathlib import Path import numpy as np import pytest from tokenizers import Tokenizer from sentence_transformers import SentenceTransformer from sentence_transformers.models.StaticEmbedding import StaticEmbedding try: import model2vec except ImportError: model2vec = None skip_if_no_model2vec = pytest.mark.skipif(model2vec is None, reason="The model2vec library is not installed.") @pytest.fixture(scope="session") def tokenizer() -> Tokenizer: return Tokenizer.from_pretrained("bert-base-uncased") @pytest.fixture def embedding_weights(): return np.random.rand(30522, 768) @pytest.fixture def static_embedding(tokenizer: Tokenizer, embedding_weights) -> StaticEmbedding: return StaticEmbedding(tokenizer, embedding_weights=embedding_weights) def test_initialization_with_embedding_weights(tokenizer: Tokenizer, embedding_weights) -> None: model = StaticEmbedding(tokenizer, embedding_weights=embedding_weights) assert model.embedding.weight.shape == (30522, 768) def test_initialization_with_embedding_dim(tokenizer: Tokenizer) -> None: model = StaticEmbedding(tokenizer, embedding_dim=768) assert model.embedding.weight.shape == (30522, 768) def test_tokenize(static_embedding: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding.tokenize(texts) assert "input_ids" in tokens assert "offsets" in tokens def test_forward(static_embedding: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding.tokenize(texts) output = static_embedding(tokens) assert "sentence_embedding" in output def test_save_and_load(tmp_path: Path, static_embedding: StaticEmbedding) -> None: save_dir = tmp_path / "model" save_dir.mkdir() static_embedding.save(str(save_dir)) loaded_model = StaticEmbedding.load(str(save_dir)) assert loaded_model.embedding.weight.shape == static_embedding.embedding.weight.shape @skip_if_no_model2vec() def test_from_distillation() -> None: model = StaticEmbedding.from_distillation("sentence-transformers-testing/stsb-bert-tiny-safetensors", pca_dims=32) assert model.embedding.weight.shape == (29528, 32) @skip_if_no_model2vec() def test_from_model2vec() -> None: model = StaticEmbedding.from_model2vec("minishlab/M2V_base_output") assert model.embedding.weight.shape == (29528, 256) def test_loading_model2vec() -> None: model = SentenceTransformer("minishlab/potion-base-8M") assert model.get_sentence_embedding_dimension() == 256 assert model.max_seq_length == math.inf test_sentences = ["It's so sunny outside!", "The sun is shining outside!"] embeddings = model.encode(test_sentences) assert embeddings.shape == (2, 256) similarity = model.similarity(embeddings[0], embeddings[1]) assert similarity.item() > 0.7
from pathlib import Path from typing import Dict import numpy as np import pytest from jina import Document, DocumentArray, Executor from ...paddle_image import ImagePaddlehubEncoder input_dim = 224 target_output_dim = 2048 num_doc = 2 test_data = np.random.rand(num_doc, 3, input_dim, input_dim) tmp_files = [] def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.model_name == 'xception71_imagenet' def test_imagepaddlehubencoder_encode(test_images: Dict[str, np.array]): encoder = ImagePaddlehubEncoder(channel_axis=3) embeddings = {} for name, image_arr in test_images.items(): docs = DocumentArray([Document(blob=image_arr)]) encoder.encode(docs, parameters={}) embeddings[name] = docs[0].embedding assert docs[0].embedding.shape == (2048,) def dist(a, b): a_embedding = embeddings[a] b_embedding = embeddings[b] return np.linalg.norm(a_embedding - b_embedding) small_distance = dist('banana1', 'banana2') assert small_distance < dist('banana1', 'airplane') assert small_distance < dist('banana1', 'satellite') assert small_distance < dist('banana1', 'studio') assert small_distance < dist('banana2', 'airplane') assert small_distance < dist('banana2', 'satellite') assert small_distance < dist('banana2', 'studio') assert small_distance < dist('airplane', 'studio') assert small_distance < dist('airplane', 'satellite') @pytest.mark.gpu def test_encode_gpu(test_images: Dict[str, np.array]): encoder = ImagePaddlehubEncoder(channel_axis=3, device='cuda') for name, image_arr in test_images.items(): docs = DocumentArray([Document(blob=image_arr)]) encoder.encode(docs, parameters={}) assert docs[0].embedding.shape == (2048,)
from pathlib import Path from typing import Dict import numpy as np from jina import DocumentArray, Document, Executor from ...paddle_image import ImagePaddlehubEncoder input_dim = 224 target_output_dim = 2048 num_doc = 2 test_data = np.random.rand(num_doc, 3, input_dim, input_dim) tmp_files = [] def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.model_name == 'xception71_imagenet' def test_imagepaddlehubencoder_encode(test_images: Dict[str, np.array]): encoder = ImagePaddlehubEncoder(channel_axis=3) embeddings = {} for name, image_arr in test_images.items(): docs = DocumentArray([Document(blob=image_arr)]) encoder.encode(docs, parameters={}) embeddings[name] = docs[0].embedding assert docs[0].embedding.shape == (2048,) def dist(a, b): a_embedding = embeddings[a] b_embedding = embeddings[b] return np.linalg.norm(a_embedding - b_embedding) small_distance = dist('banana1', 'banana2') assert small_distance < dist('banana1', 'airplane') assert small_distance < dist('banana1', 'satellite') assert small_distance < dist('banana1', 'studio') assert small_distance < dist('banana2', 'airplane') assert small_distance < dist('banana2', 'satellite') assert small_distance < dist('banana2', 'studio') assert small_distance < dist('airplane', 'studio') assert small_distance < dist('airplane', 'satellite')
import importlib import os import re import types from typing import Any, Optional import numpy as np try: import torch # noqa: F401 except ImportError: torch_imported = False else: torch_imported = True try: import tensorflow as tf # type: ignore # noqa: F401 except (ImportError, TypeError): tf_imported = False else: tf_imported = True INSTALL_INSTRUCTIONS = { 'google.protobuf': '"docarray[common]"', 'lz4': '"docarray[common]"', 'pandas': '"docarray[pandas]"', 'PIL': '"docarray[image]"', 'pydub': '"docarray[audio]"', 'av': '"docarray[video]"', 'trimesh': '"docarray[mesh]"', 'hnswlib': '"docarray[hnswlib]"', 'elasticsearch': '"docarray[elasticsearch]"', 'weaviate': '"docarray[weaviate]"', 'qdrant_client': '"docarray[qdrant]"', 'fastapi': '"docarray[web]"', 'torch': '"docarray[torch]"', 'tensorflow': 'protobuf==3.19.0 tensorflow', 'hubble': '"docarray[jac]"', 'smart_open': '"docarray[aws]"', 'boto3': '"docarray[aws]"', 'botocore': '"docarray[aws]"', } def import_library( package: str, raise_error: bool = True ) -> Optional[types.ModuleType]: lib: Optional[types.ModuleType] try: lib = importlib.import_module(package) except (ModuleNotFoundError, ImportError): lib = None if lib is None and raise_error: raise ImportError( f'The following required library is not installed: {package} \n' f'To install all necessary libraries, run: `pip install {INSTALL_INSTRUCTIONS[package]}`.' ) else: return lib def _get_path_from_docarray_root_level(file_path: str) -> str: path = os.path.dirname(file_path) rel_path = re.sub('(?s:.*)docarray', 'docarray', path).replace('/', '.') return rel_path def is_torch_available(): return torch_imported def is_tf_available(): return tf_imported def is_np_int(item: Any) -> bool: dtype = getattr(item, 'dtype', None) ndim = getattr(item, 'ndim', None) if dtype is not None and ndim is not None: try: return ndim == 0 and np.issubdtype(dtype, np.integer) except TypeError: return False return False # this is unreachable, but mypy wants it def is_notebook() -> bool: """ Check if we're running in a Jupyter notebook, using magic command `get_ipython` that only available in Jupyter. :return: True if run in a Jupyter notebook else False. """ try: shell = get_ipython().__class__.__name__ # type: ignore except NameError: return False if shell == 'ZMQInteractiveShell': return True elif shell == 'Shell': return True elif shell == 'TerminalInteractiveShell': return False else: return False
import importlib import os import re import types from typing import Any, Optional import numpy as np try: import torch # noqa: F401 except ImportError: torch_imported = False else: torch_imported = True try: import tensorflow as tf # type: ignore # noqa: F401 except (ImportError, TypeError): tf_imported = False else: tf_imported = True INSTALL_INSTRUCTIONS = { 'google.protobuf': '"docarray[common]"', 'lz4': '"docarray[common]"', 'pandas': '"docarray[pandas]"', 'PIL': '"docarray[image]"', 'pydub': '"docarray[audio]"', 'av': '"docarray[video]"', 'trimesh': '"docarray[mesh]"', 'hnswlib': '"docarray[hnswlib]"', 'elasticsearch': '"docarray[elasticsearch]"', 'fastapi': '"docarray[web]"', 'torch': '"docarray[torch]"', 'tensorflow': 'protobuf==3.19.0 tensorflow', 'hubble': '"docarray[jac]"', 'smart_open': '"docarray[aws]"', 'boto3': '"docarray[aws]"', 'botocore': '"docarray[aws]"', } def import_library( package: str, raise_error: bool = True ) -> Optional[types.ModuleType]: lib: Optional[types.ModuleType] try: lib = importlib.import_module(package) except (ModuleNotFoundError, ImportError): lib = None if lib is None and raise_error: raise ImportError( f'The following required library is not installed: {package} \n' f'To install all necessary libraries, run: `pip install {INSTALL_INSTRUCTIONS[package]}`.' ) else: return lib def _get_path_from_docarray_root_level(file_path: str) -> str: path = os.path.dirname(file_path) rel_path = re.sub('(?s:.*)docarray', 'docarray', path).replace('/', '.') return rel_path def is_torch_available(): return torch_imported def is_tf_available(): return tf_imported def is_np_int(item: Any) -> bool: dtype = getattr(item, 'dtype', None) ndim = getattr(item, 'ndim', None) if dtype is not None and ndim is not None: try: return ndim == 0 and np.issubdtype(dtype, np.integer) except TypeError: return False return False # this is unreachable, but mypy wants it def is_notebook() -> bool: """ Check if we're running in a Jupyter notebook, using magic command `get_ipython` that only available in Jupyter. :return: True if run in a Jupyter notebook else False. """ try: shell = get_ipython().__class__.__name__ # type: ignore except NameError: return False if shell == 'ZMQInteractiveShell': return True elif shell == 'Shell': return True elif shell == 'TerminalInteractiveShell': return False else: return False
import zlib from typing import Iterator, TextIO def exact_div(x, y): assert x % y == 0 return x // y def str2bool(string): str2val = {"True": True, "False": False} if string in str2val: return str2val[string] else: raise ValueError(f"Expected one of {set(str2val.keys())}, got {string}") def optional_int(string): return None if string == "None" else int(string) def optional_float(string): return None if string == "None" else float(string) def compression_ratio(text) -> float: text_bytes = text.encode("utf-8") return len(text_bytes) / len(zlib.compress(text_bytes)) def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = '.'): assert seconds >= 0, "non-negative timestamp expected" milliseconds = round(seconds * 1000.0) hours = milliseconds // 3_600_000 milliseconds -= hours * 3_600_000 minutes = milliseconds // 60_000 milliseconds -= minutes * 60_000 seconds = milliseconds // 1_000 milliseconds -= seconds * 1_000 hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" def write_txt(transcript: Iterator[dict], file: TextIO): for segment in transcript: print(segment['text'].strip(), file=file, flush=True) def write_vtt(transcript: Iterator[dict], file: TextIO): print("WEBVTT\n", file=file) for segment in transcript: print( f"{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}\n" f"{segment['text'].strip().replace('-->', '->')}\n", file=file, flush=True, ) def write_srt(transcript: Iterator[dict], file: TextIO): """ Write a transcript to a file in SRT format. Example usage: from pathlib import Path from whisper.utils import write_srt result = transcribe(model, audio_path, temperature=temperature, **args) # save SRT audio_basename = Path(audio_path).stem with open(Path(output_dir) / (audio_basename + ".srt"), "w", encoding="utf-8") as srt: write_srt(result["segments"], file=srt) """ for i, segment in enumerate(transcript, start=1): # write srt lines print( f"{i}\n" f"{format_timestamp(segment['start'], always_include_hours=True, decimal_marker=',')} --> " f"{format_timestamp(segment['end'], always_include_hours=True, decimal_marker=',')}\n" f"{segment['text'].strip().replace('-->', '->')}\n", file=file, flush=True, )
import zlib from typing import Iterator, TextIO def exact_div(x, y): assert x % y == 0 return x // y def str2bool(string): str2val = {"True": True, "False": False} if string in str2val: return str2val[string] else: raise ValueError(f"Expected one of {set(str2val.keys())}, got {string}") def optional_int(string): return None if string == "None" else int(string) def optional_float(string): return None if string == "None" else float(string) def compression_ratio(text) -> float: return len(text) / len(zlib.compress(text.encode("utf-8"))) def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = '.'): assert seconds >= 0, "non-negative timestamp expected" milliseconds = round(seconds * 1000.0) hours = milliseconds // 3_600_000 milliseconds -= hours * 3_600_000 minutes = milliseconds // 60_000 milliseconds -= minutes * 60_000 seconds = milliseconds // 1_000 milliseconds -= seconds * 1_000 hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" def write_txt(transcript: Iterator[dict], file: TextIO): for segment in transcript: print(segment['text'].strip(), file=file, flush=True) def write_vtt(transcript: Iterator[dict], file: TextIO): print("WEBVTT\n", file=file) for segment in transcript: print( f"{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}\n" f"{segment['text'].strip().replace('-->', '->')}\n", file=file, flush=True, ) def write_srt(transcript: Iterator[dict], file: TextIO): """ Write a transcript to a file in SRT format. Example usage: from pathlib import Path from whisper.utils import write_srt result = transcribe(model, audio_path, temperature=temperature, **args) # save SRT audio_basename = Path(audio_path).stem with open(Path(output_dir) / (audio_basename + ".srt"), "w", encoding="utf-8") as srt: write_srt(result["segments"], file=srt) """ for i, segment in enumerate(transcript, start=1): # write srt lines print( f"{i}\n" f"{format_timestamp(segment['start'], always_include_hours=True, decimal_marker=',')} --> " f"{format_timestamp(segment['end'], always_include_hours=True, decimal_marker=',')}\n" f"{segment['text'].strip().replace('-->', '->')}\n", file=file, flush=True, )
from __future__ import annotations from typing import Any, List, Optional, cast from langchain_text_splitters.base import TextSplitter, Tokenizer, split_text_on_tokens class SentenceTransformersTokenTextSplitter(TextSplitter): """Splitting text to tokens using sentence model tokenizer.""" def __init__( self, chunk_overlap: int = 50, model_name: str = "sentence-transformers/all-mpnet-base-v2", tokens_per_chunk: Optional[int] = None, **kwargs: Any, ) -> None: """Create a new TextSplitter.""" super().__init__(**kwargs, chunk_overlap=chunk_overlap) try: from sentence_transformers import SentenceTransformer except ImportError: raise ImportError( "Could not import sentence_transformers python package. " "This is needed in order to for SentenceTransformersTokenTextSplitter. " "Please install it with `pip install sentence-transformers`." ) self.model_name = model_name self._model = SentenceTransformer(self.model_name) self.tokenizer = self._model.tokenizer self._initialize_chunk_configuration(tokens_per_chunk=tokens_per_chunk) def _initialize_chunk_configuration( self, *, tokens_per_chunk: Optional[int] ) -> None: self.maximum_tokens_per_chunk = self._model.max_seq_length if tokens_per_chunk is None: self.tokens_per_chunk = self.maximum_tokens_per_chunk else: self.tokens_per_chunk = tokens_per_chunk if self.tokens_per_chunk > self.maximum_tokens_per_chunk: raise ValueError( f"The token limit of the models '{self.model_name}'" f" is: {self.maximum_tokens_per_chunk}." f" Argument tokens_per_chunk={self.tokens_per_chunk}" f" > maximum token limit." ) def split_text(self, text: str) -> List[str]: """Splits the input text into smaller components by splitting text on tokens. This method encodes the input text using a private `_encode` method, then strips the start and stop token IDs from the encoded result. It returns the processed segments as a list of strings. Args: text (str): The input text to be split. Returns: List[str]: A list of string components derived from the input text after encoding and processing. """ def encode_strip_start_and_stop_token_ids(text: str) -> List[int]: return self._encode(text)[1:-1] tokenizer = Tokenizer( chunk_overlap=self._chunk_overlap, tokens_per_chunk=self.tokens_per_chunk, decode=self.tokenizer.decode, encode=encode_strip_start_and_stop_token_ids, ) return split_text_on_tokens(text=text, tokenizer=tokenizer) def count_tokens(self, *, text: str) -> int: """Counts the number of tokens in the given text. This method encodes the input text using a private `_encode` method and calculates the total number of tokens in the encoded result. Args: text (str): The input text for which the token count is calculated. Returns: int: The number of tokens in the encoded text. """ return len(self._encode(text)) _max_length_equal_32_bit_integer: int = 2**32 def _encode(self, text: str) -> list[int]: token_ids_with_start_and_end_token_ids = self.tokenizer.encode( text, max_length=self._max_length_equal_32_bit_integer, truncation="do_not_truncate", ) return cast("list[int]", token_ids_with_start_and_end_token_ids)
from __future__ import annotations from typing import Any, List, Optional, cast from langchain_text_splitters.base import TextSplitter, Tokenizer, split_text_on_tokens class SentenceTransformersTokenTextSplitter(TextSplitter): """Splitting text to tokens using sentence model tokenizer.""" def __init__( self, chunk_overlap: int = 50, model_name: str = "sentence-transformers/all-mpnet-base-v2", tokens_per_chunk: Optional[int] = None, **kwargs: Any, ) -> None: """Create a new TextSplitter.""" super().__init__(**kwargs, chunk_overlap=chunk_overlap) try: from sentence_transformers import SentenceTransformer except ImportError: raise ImportError( "Could not import sentence_transformers python package. " "This is needed in order to for SentenceTransformersTokenTextSplitter. " "Please install it with `pip install sentence-transformers`." ) self.model_name = model_name self._model = SentenceTransformer(self.model_name) self.tokenizer = self._model.tokenizer self._initialize_chunk_configuration(tokens_per_chunk=tokens_per_chunk) def _initialize_chunk_configuration( self, *, tokens_per_chunk: Optional[int] ) -> None: self.maximum_tokens_per_chunk = cast(int, self._model.max_seq_length) if tokens_per_chunk is None: self.tokens_per_chunk = self.maximum_tokens_per_chunk else: self.tokens_per_chunk = tokens_per_chunk if self.tokens_per_chunk > self.maximum_tokens_per_chunk: raise ValueError( f"The token limit of the models '{self.model_name}'" f" is: {self.maximum_tokens_per_chunk}." f" Argument tokens_per_chunk={self.tokens_per_chunk}" f" > maximum token limit." ) def split_text(self, text: str) -> List[str]: """Splits the input text into smaller components by splitting text on tokens. This method encodes the input text using a private `_encode` method, then strips the start and stop token IDs from the encoded result. It returns the processed segments as a list of strings. Args: text (str): The input text to be split. Returns: List[str]: A list of string components derived from the input text after encoding and processing. """ def encode_strip_start_and_stop_token_ids(text: str) -> List[int]: return self._encode(text)[1:-1] tokenizer = Tokenizer( chunk_overlap=self._chunk_overlap, tokens_per_chunk=self.tokens_per_chunk, decode=self.tokenizer.decode, encode=encode_strip_start_and_stop_token_ids, ) return split_text_on_tokens(text=text, tokenizer=tokenizer) def count_tokens(self, *, text: str) -> int: """Counts the number of tokens in the given text. This method encodes the input text using a private `_encode` method and calculates the total number of tokens in the encoded result. Args: text (str): The input text for which the token count is calculated. Returns: int: The number of tokens in the encoded text. """ return len(self._encode(text)) _max_length_equal_32_bit_integer: int = 2**32 def _encode(self, text: str) -> List[int]: token_ids_with_start_and_end_token_ids = self.tokenizer.encode( text, max_length=self._max_length_equal_32_bit_integer, truncation="do_not_truncate", ) return token_ids_with_start_and_end_token_ids
"""DocumentFilter that uses an LLM chain to extract the relevant parts of documents.""" from __future__ import annotations from collections.abc import Sequence from typing import Any, Callable, Optional, cast from langchain_core.callbacks.manager import Callbacks from langchain_core.documents import Document from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers import BaseOutputParser, StrOutputParser from langchain_core.prompts import PromptTemplate from langchain_core.runnables import Runnable from pydantic import ConfigDict from langchain.chains.llm import LLMChain from langchain.retrievers.document_compressors.base import BaseDocumentCompressor from langchain.retrievers.document_compressors.chain_extract_prompt import ( prompt_template, ) def default_get_input(query: str, doc: Document) -> dict[str, Any]: """Return the compression chain input.""" return {"question": query, "context": doc.page_content} class NoOutputParser(BaseOutputParser[str]): """Parse outputs that could return a null string of some sort.""" no_output_str: str = "NO_OUTPUT" def parse(self, text: str) -> str: cleaned_text = text.strip() if cleaned_text == self.no_output_str: return "" return cleaned_text def _get_default_chain_prompt() -> PromptTemplate: output_parser = NoOutputParser() template = prompt_template.format(no_output_str=output_parser.no_output_str) return PromptTemplate( template=template, input_variables=["question", "context"], output_parser=output_parser, ) class LLMChainExtractor(BaseDocumentCompressor): """Document compressor that uses an LLM chain to extract the relevant parts of documents.""" llm_chain: Runnable """LLM wrapper to use for compressing documents.""" get_input: Callable[[str, Document], dict] = default_get_input """Callable for constructing the chain input from the query and a Document.""" model_config = ConfigDict( arbitrary_types_allowed=True, ) def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Compress page content of raw documents.""" compressed_docs = [] for doc in documents: _input = self.get_input(query, doc) output_ = self.llm_chain.invoke(_input, config={"callbacks": callbacks}) if isinstance(self.llm_chain, LLMChain): output = output_[self.llm_chain.output_key] if self.llm_chain.prompt.output_parser is not None: output = self.llm_chain.prompt.output_parser.parse(output) else: output = output_ if len(output) == 0: continue compressed_docs.append( Document(page_content=cast(str, output), metadata=doc.metadata) ) return compressed_docs async def acompress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Compress page content of raw documents asynchronously.""" inputs = [self.get_input(query, doc) for doc in documents] outputs = await self.llm_chain.abatch(inputs, {"callbacks": callbacks}) compressed_docs = [] for i, doc in enumerate(documents): if len(outputs[i]) == 0: continue compressed_docs.append( Document(page_content=outputs[i], metadata=doc.metadata) # type: ignore[arg-type] ) return compressed_docs @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: Optional[PromptTemplate] = None, get_input: Optional[Callable[[str, Document], str]] = None, llm_chain_kwargs: Optional[dict] = None, ) -> LLMChainExtractor: """Initialize from LLM.""" _prompt = prompt if prompt is not None else _get_default_chain_prompt() _get_input = get_input if get_input is not None else default_get_input if _prompt.output_parser is not None: parser = _prompt.output_parser else: parser = StrOutputParser() llm_chain = _prompt | llm | parser return cls(llm_chain=llm_chain, get_input=_get_input) # type: ignore[arg-type]
"""DocumentFilter that uses an LLM chain to extract the relevant parts of documents.""" from __future__ import annotations from typing import Any, Callable, Dict, Optional, Sequence, cast from langchain_core.callbacks.manager import Callbacks from langchain_core.documents import Document from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers import BaseOutputParser, StrOutputParser from langchain_core.prompts import PromptTemplate from langchain_core.runnables import Runnable from pydantic import ConfigDict from langchain.chains.llm import LLMChain from langchain.retrievers.document_compressors.base import BaseDocumentCompressor from langchain.retrievers.document_compressors.chain_extract_prompt import ( prompt_template, ) def default_get_input(query: str, doc: Document) -> Dict[str, Any]: """Return the compression chain input.""" return {"question": query, "context": doc.page_content} class NoOutputParser(BaseOutputParser[str]): """Parse outputs that could return a null string of some sort.""" no_output_str: str = "NO_OUTPUT" def parse(self, text: str) -> str: cleaned_text = text.strip() if cleaned_text == self.no_output_str: return "" return cleaned_text def _get_default_chain_prompt() -> PromptTemplate: output_parser = NoOutputParser() template = prompt_template.format(no_output_str=output_parser.no_output_str) return PromptTemplate( template=template, input_variables=["question", "context"], output_parser=output_parser, ) class LLMChainExtractor(BaseDocumentCompressor): """Document compressor that uses an LLM chain to extract the relevant parts of documents.""" llm_chain: Runnable """LLM wrapper to use for compressing documents.""" get_input: Callable[[str, Document], dict] = default_get_input """Callable for constructing the chain input from the query and a Document.""" model_config = ConfigDict( arbitrary_types_allowed=True, ) def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Compress page content of raw documents.""" compressed_docs = [] for doc in documents: _input = self.get_input(query, doc) output_ = self.llm_chain.invoke(_input, config={"callbacks": callbacks}) if isinstance(self.llm_chain, LLMChain): output = output_[self.llm_chain.output_key] if self.llm_chain.prompt.output_parser is not None: output = self.llm_chain.prompt.output_parser.parse(output) else: output = output_ if len(output) == 0: continue compressed_docs.append( Document(page_content=cast(str, output), metadata=doc.metadata) ) return compressed_docs async def acompress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Compress page content of raw documents asynchronously.""" inputs = [self.get_input(query, doc) for doc in documents] outputs = await self.llm_chain.abatch(inputs, {"callbacks": callbacks}) compressed_docs = [] for i, doc in enumerate(documents): if len(outputs[i]) == 0: continue compressed_docs.append( Document(page_content=outputs[i], metadata=doc.metadata) # type: ignore[arg-type] ) return compressed_docs @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: Optional[PromptTemplate] = None, get_input: Optional[Callable[[str, Document], str]] = None, llm_chain_kwargs: Optional[dict] = None, ) -> LLMChainExtractor: """Initialize from LLM.""" _prompt = prompt if prompt is not None else _get_default_chain_prompt() _get_input = get_input if get_input is not None else default_get_input if _prompt.output_parser is not None: parser = _prompt.output_parser else: parser = StrOutputParser() llm_chain = _prompt | llm | parser return cls(llm_chain=llm_chain, get_input=_get_input) # type: ignore[arg-type]
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, setup_requires=['setuptools>=18.0', 'wheel'], install_requires=['numpy', 'rich>=12.0.0', 'jina-hubble-sdk>=0.13.1'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', ], 'full': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', ], 'qdrant': [ 'qdrant-client==0.8.0', ], 'annlite': [ 'annlite>=0.3.12', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'redis': [ 'redis>=4.3.0', ], 'benchmark': [ 'pandas', 'seaborn', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite>=0.3.12', 'elasticsearch>=8.2.0', 'redis>=4.3.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, setup_requires=['setuptools>=18.0', 'wheel'], install_requires=['numpy', 'rich>=12.0.0', 'jina-hubble-sdk>=0.13.1'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', ], 'full': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', ], 'qdrant': [ 'qdrant-client~=0.7.3', ], 'annlite': [ 'annlite>=0.3.12', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'redis': [ 'redis>=4.3.0', ], 'benchmark': [ 'pandas', 'seaborn', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite>=0.3.12', 'elasticsearch>=8.2.0', 'redis>=4.3.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py' conv_cfg = dict(type='ConvWS') norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( backbone=dict( conv_cfg=conv_cfg, norm_cfg=norm_cfg, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://jhu/resnet50_gn_ws')), neck=dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg), roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, conv_cfg=conv_cfg, norm_cfg=norm_cfg), mask_head=dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg))) # learning policy max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py' conv_cfg = dict(type='ConvWS') norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( backbone=dict( conv_cfg=conv_cfg, norm_cfg=norm_cfg, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://jhu/resnet50_gn_ws')), neck=dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg), roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, conv_cfg=conv_cfg, norm_cfg=norm_cfg), mask_head=dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg))) # learning policy lr_config = dict(step=[16, 22]) runner = dict(type='EpochBasedRunner', max_epochs=24)
import asyncio import logging import os import threading import time from functools import wraps from uuid import uuid4 from tenacity import retry, stop_after_attempt, wait_exponential from backend.util.process import get_service_name logger = logging.getLogger(__name__) def _log_prefix(resource_name: str, conn_id: str): """ Returns a prefix string for logging purposes. This needs to be called on the fly to get the current process ID & service name, not the parent process ID & service name. """ return f"[PID-{os.getpid()}|THREAD-{threading.get_native_id()}|{get_service_name()}|{resource_name}-{conn_id}]" def conn_retry( resource_name: str, action_name: str, max_retry: int = 5, multiplier: int = 1, min_wait: float = 1, max_wait: float = 30, ): conn_id = str(uuid4()) def on_retry(retry_state): prefix = _log_prefix(resource_name, conn_id) exception = retry_state.outcome.exception() logger.warning(f"{prefix} {action_name} failed: {exception}. Retrying now...") def decorator(func): is_coroutine = asyncio.iscoroutinefunction(func) retry_decorator = retry( stop=stop_after_attempt(max_retry + 1), wait=wait_exponential(multiplier=multiplier, min=min_wait, max=max_wait), before_sleep=on_retry, reraise=True, ) wrapped_func = retry_decorator(func) @wraps(func) def sync_wrapper(*args, **kwargs): prefix = _log_prefix(resource_name, conn_id) logger.info(f"{prefix} {action_name} started...") try: result = wrapped_func(*args, **kwargs) logger.info(f"{prefix} {action_name} completed successfully.") return result except Exception as e: logger.error(f"{prefix} {action_name} failed after retries: {e}") raise @wraps(func) async def async_wrapper(*args, **kwargs): prefix = _log_prefix(resource_name, conn_id) logger.info(f"{prefix} {action_name} started...") try: result = await wrapped_func(*args, **kwargs) logger.info(f"{prefix} {action_name} completed successfully.") return result except Exception as e: logger.error(f"{prefix} {action_name} failed after retries: {e}") raise return async_wrapper if is_coroutine else sync_wrapper return decorator func_retry = retry( reraise=False, stop=stop_after_attempt(5), wait=wait_exponential(multiplier=1, min=1, max=30), ) def continuous_retry(*, retry_delay: float = 1.0): def decorator(func): @wraps(func) def wrapper(*args, **kwargs): while True: try: return func(*args, **kwargs) except Exception as exc: logger.exception( "%s failed with %s — retrying in %.2f s", func.__name__, exc, retry_delay, ) time.sleep(retry_delay) return wrapper return decorator
import asyncio import logging import os import threading from functools import wraps from uuid import uuid4 from tenacity import retry, stop_after_attempt, wait_exponential from backend.util.process import get_service_name logger = logging.getLogger(__name__) def _log_prefix(resource_name: str, conn_id: str): """ Returns a prefix string for logging purposes. This needs to be called on the fly to get the current process ID & service name, not the parent process ID & service name. """ return f"[PID-{os.getpid()}|THREAD-{threading.get_native_id()}|{get_service_name()}|{resource_name}-{conn_id}]" def conn_retry( resource_name: str, action_name: str, max_retry: int = 5, multiplier: int = 1, min_wait: float = 1, max_wait: float = 30, ): conn_id = str(uuid4()) def on_retry(retry_state): prefix = _log_prefix(resource_name, conn_id) exception = retry_state.outcome.exception() logger.warning(f"{prefix} {action_name} failed: {exception}. Retrying now...") def decorator(func): is_coroutine = asyncio.iscoroutinefunction(func) retry_decorator = retry( stop=stop_after_attempt(max_retry + 1), wait=wait_exponential(multiplier=multiplier, min=min_wait, max=max_wait), before_sleep=on_retry, reraise=True, ) wrapped_func = retry_decorator(func) @wraps(func) def sync_wrapper(*args, **kwargs): prefix = _log_prefix(resource_name, conn_id) logger.info(f"{prefix} {action_name} started...") try: result = wrapped_func(*args, **kwargs) logger.info(f"{prefix} {action_name} completed successfully.") return result except Exception as e: logger.error(f"{prefix} {action_name} failed after retries: {e}") raise @wraps(func) async def async_wrapper(*args, **kwargs): prefix = _log_prefix(resource_name, conn_id) logger.info(f"{prefix} {action_name} started...") try: result = await wrapped_func(*args, **kwargs) logger.info(f"{prefix} {action_name} completed successfully.") return result except Exception as e: logger.error(f"{prefix} {action_name} failed after retries: {e}") raise return async_wrapper if is_coroutine else sync_wrapper return decorator func_retry = retry( reraise=False, stop=stop_after_attempt(5), wait=wait_exponential(multiplier=1, min=1, max=30), )
from __future__ import annotations from copy import deepcopy import pytest from sentence_transformers import SparseEncoder @pytest.fixture(scope="session") def _splade_bert_tiny_model() -> SparseEncoder: model = SparseEncoder("sparse-encoder-testing/splade-bert-tiny-nq") model.model_card_data.generate_widget_examples = False # Disable widget examples generation for testing return model @pytest.fixture() def splade_bert_tiny_model(_splade_bert_tiny_model: SparseEncoder) -> SparseEncoder: return deepcopy(_splade_bert_tiny_model) @pytest.fixture(scope="session") def _inference_free_splade_bert_tiny_model() -> SparseEncoder: model = SparseEncoder("sparse-encoder-testing/inference-free-splade-bert-tiny-nq") model.model_card_data.generate_widget_examples = False # Disable widget examples generation for testing return model @pytest.fixture() def inference_free_splade_bert_tiny_model(_inference_free_splade_bert_tiny_model: SparseEncoder) -> SparseEncoder: return deepcopy(_inference_free_splade_bert_tiny_model) @pytest.fixture(scope="session") def _csr_bert_tiny_model() -> SparseEncoder: model = SparseEncoder("sentence-transformers-testing/stsb-bert-tiny-safetensors") model[-1].k = 16 model[-1].k_aux = 32 model.model_card_data.generate_widget_examples = False # Disable widget examples generation for testing return model @pytest.fixture() def csr_bert_tiny_model(_csr_bert_tiny_model: SparseEncoder) -> SparseEncoder: return deepcopy(_csr_bert_tiny_model)
from __future__ import annotations import pytest from sentence_transformers import SparseEncoder @pytest.fixture() def splade_bert_tiny_model() -> SparseEncoder: return SparseEncoder("sparse-encoder-testing/splade-bert-tiny-nq") @pytest.fixture(scope="session") def splade_bert_tiny_model_reused() -> SparseEncoder: return SparseEncoder("sparse-encoder-testing/splade-bert-tiny-nq") @pytest.fixture() def csr_bert_tiny_model() -> SparseEncoder: return SparseEncoder("sentence-transformers-testing/stsb-bert-tiny-safetensors")
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod from typing import List, Tuple, Union from mmcv.runner import BaseModule from torch import Tensor from mmdet.core.utils import (InstanceList, OptInstanceList, OptMultiConfig, OptSamplingResultList, SampleList) class BaseMaskHead(BaseModule, metaclass=ABCMeta): """Base class for mask heads used in One-Stage Instance Segmentation.""" def __init__(self, init_cfg: OptMultiConfig = None) -> None: super().__init__(init_cfg=init_cfg) @abstractmethod def loss(self, **kwargs): """Compute losses of the head.""" pass @abstractmethod def get_results(self, **kwargs): """Transform network outputs of a batch into mask results.""" pass def forward_train(self, x: Union[List[Tensor], Tuple[Tensor]], batch_data_samples: SampleList, positive_infos: OptSamplingResultList = None, **kwargs) -> dict: """ Args: x (list[Tensor] | tuple[Tensor]): Features from FPN. Each has a shape (B, C, H, W). batch_data_samples (list[:obj:`DetDataSample`]): Each item contains the meta information of each image and corresponding annotations. positive_infos (list[:obj:``], optional): Information of positive samples. Used when the label assignment is done outside the MaskHead, e.g., in BboxHead in YOLACT or CondInst, etc. When the label assignment is done in MaskHead, it would be None, like SOLO. All values in it should have shape (num_positive_samples, *). Returns: dict[str, Tensor]: A dictionary of loss components. """ if positive_infos is None: outs = self(x) else: # TODO: Currently not checked outs = self(x, positive_infos) assert isinstance(outs, tuple), 'Forward results should be a tuple, ' \ 'even if only one item is returned' batch_gt_instances = [] batch_gt_instances_ignore = [] batch_img_metas = [] for data_sample in batch_data_samples: batch_img_metas.append(data_sample.metainfo) # pad the `gt_mask` to keep the same shape as `batch_img_shape` img_shape = data_sample.metainfo['batch_input_shape'] gt_masks = data_sample.gt_instances.masks.pad(img_shape) data_sample.gt_instances.masks = gt_masks batch_gt_instances.append(data_sample.gt_instances) if 'ignored_instances' in data_sample: batch_gt_instances_ignore.append(data_sample.ignored_instances) else: batch_gt_instances_ignore.append(None) loss = self.loss( *outs, batch_gt_instances=batch_gt_instances, batch_img_metas=batch_img_metas, positive_infos=positive_infos, batch_gt_instances_ignore=batch_gt_instances_ignore, **kwargs) return loss def simple_test(self, x: Tuple[Tensor], batch_img_metas: List[dict], rescale: bool = False, results_list: OptInstanceList = None, **kwargs) -> InstanceList: """Test function without test-time augmentation. Args: x (tuple[Tensor]): Multi-level features from the upstream network, each is a 4D-tensor. batch_img_metas (list[dict]): List of image information. rescale (bool, optional): Whether to rescale the results. Defaults to False. results_list (list[obj:``], optional): Detection results of each image after the post process. Only exist if there is a `bbox_head`, like `YOLACT`, `CondInst`, etc. Returns: list[obj:`InstanceData`]: Instance segmentation results of each image after the post process. Each item usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance,) - labels (Tensor): Has a shape (num_instances,). - masks (Tensor): Processed mask results, has a shape (num_instances, h, w). """ if results_list is None: outs = self(x) else: outs = self(x, results_list=results_list) results_list = self.get_results( *outs, batch_img_metas=batch_img_metas, rescale=rescale, results_list=results_list, **kwargs) return results_list
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod from mmcv.runner import BaseModule class BaseMaskHead(BaseModule, metaclass=ABCMeta): """Base class for mask heads used in One-Stage Instance Segmentation.""" def __init__(self, init_cfg): super(BaseMaskHead, self).__init__(init_cfg) @abstractmethod def loss(self, **kwargs): pass @abstractmethod def get_results(self, **kwargs): """Get precessed :obj:`InstanceData` of multiple images.""" pass def forward_train(self, x, gt_labels, gt_masks, img_metas, gt_bboxes=None, gt_bboxes_ignore=None, positive_infos=None, **kwargs): """ Args: x (list[Tensor] | tuple[Tensor]): Features from FPN. Each has a shape (B, C, H, W). gt_labels (list[Tensor]): Ground truth labels of all images. each has a shape (num_gts,). gt_masks (list[Tensor]) : Masks for each bbox, has a shape (num_gts, h , w). img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes (list[Tensor], optional): Ground truth bboxes of the image, each item has a shape (num_gts, 4). gt_bboxes_ignore (list[Tensor], optional): Ground truth bboxes to be ignored, each item has a shape (num_ignored_gts, 4). positive_infos (list[:obj:`InstanceData`], optional): Information of positive samples. Used when the label assignment is done outside the MaskHead, e.g., in BboxHead in YOLACT or CondInst, etc. When the label assignment is done in MaskHead, it would be None, like SOLO. All values in it should have shape (num_positive_samples, *). Returns: dict[str, Tensor]: A dictionary of loss components. """ if positive_infos is None: outs = self(x) else: outs = self(x, positive_infos) assert isinstance(outs, tuple), 'Forward results should be a tuple, ' \ 'even if only one item is returned' loss = self.loss( *outs, gt_labels=gt_labels, gt_masks=gt_masks, img_metas=img_metas, gt_bboxes=gt_bboxes, gt_bboxes_ignore=gt_bboxes_ignore, positive_infos=positive_infos, **kwargs) return loss def simple_test(self, feats, img_metas, rescale=False, instances_list=None, **kwargs): """Test function without test-time augmentation. Args: feats (tuple[torch.Tensor]): Multi-level features from the upstream network, each is a 4D-tensor. img_metas (list[dict]): List of image information. rescale (bool, optional): Whether to rescale the results. Defaults to False. instances_list (list[obj:`InstanceData`], optional): Detection results of each image after the post process. Only exist if there is a `bbox_head`, like `YOLACT`, `CondInst`, etc. Returns: list[obj:`InstanceData`]: Instance segmentation \ results of each image after the post process. \ Each item usually contains following keys. \ - scores (Tensor): Classification scores, has a shape (num_instance,) - labels (Tensor): Has a shape (num_instances,). - masks (Tensor): Processed mask results, has a shape (num_instances, h, w). """ if instances_list is None: outs = self(feats) else: outs = self(feats, instances_list=instances_list) mask_inputs = outs + (img_metas, ) results_list = self.get_results( *mask_inputs, rescale=rescale, instances_list=instances_list, **kwargs) return results_list def onnx_export(self, img, img_metas): raise NotImplementedError(f'{self.__class__.__name__} does ' f'not support ONNX EXPORT')
from __future__ import annotations from pathlib import Path from unittest.mock import Mock, PropertyMock import pytest import torch from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import InformationRetrievalEvaluator from sentence_transformers.util import cos_sim @pytest.fixture def mock_model(): def mock_encode(sentences: str | list[str], **kwargs) -> torch.Tensor: """ We simply one-hot encode the sentences; if a sentence contains a keyword, the corresponding one-hot encoding is added to the sentence embedding. """ one_hot_encodings = { "pokemon": torch.tensor([1.0, 0.0, 0.0, 0.0, 0.0]), "car": torch.tensor([0.0, 1.0, 0.0, 0.0, 0.0]), "vehicle": torch.tensor([0.0, 0.0, 1.0, 0.0, 0.0]), "fruit": torch.tensor([0.0, 0.0, 0.0, 1.0, 0.0]), "vegetable": torch.tensor([0.0, 0.0, 0.0, 0.0, 1.0]), } if isinstance(sentences, str): sentences = [sentences] embeddings = [] for sentence in sentences: encoding = torch.zeros(5) for keyword, one_hot in one_hot_encodings.items(): if keyword in sentence: encoding += one_hot embeddings.append(encoding) return torch.stack(embeddings) model = Mock(spec=SentenceTransformer) model.similarity_fn_name = "cosine" model.similarity.side_effect = cos_sim model.encode.side_effect = mock_encode model.encode_query.side_effect = mock_encode model.encode_document.side_effect = mock_encode model.model_card_data = PropertyMock(return_value=Mock()) return model @pytest.fixture def test_data(): queries = { "0": "What is a pokemon?", "1": "What is a vegetable?", "2": "What is a fruit?", "3": "What is a vehicle?", "4": "What is a car?", } corpus = { "0": "A pokemon is a fictional creature", "1": "A vegetable is a plant", "2": "A fruit is a plant", "3": "A vehicle is a machine", "4": "A car is a vehicle", } relevant_docs = {"0": {"0"}, "1": {"1"}, "2": {"2"}, "3": {"3", "4"}, "4": {"4"}} return queries, corpus, relevant_docs def test_simple(test_data, tmp_path: Path): queries, corpus, relevant_docs = test_data model = SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") ir_evaluator = InformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="test", accuracy_at_k=[1, 3], precision_recall_at_k=[1, 3], mrr_at_k=[3], ndcg_at_k=[3], map_at_k=[5], ) results = ir_evaluator(model, output_path=str(tmp_path)) expected_keys = [ "test_cosine_accuracy@1", "test_cosine_accuracy@3", "test_cosine_precision@1", "test_cosine_precision@3", "test_cosine_recall@1", "test_cosine_recall@3", "test_cosine_ndcg@3", "test_cosine_mrr@3", "test_cosine_map@5", ] assert set(results.keys()) == set(expected_keys) def test_metrices(test_data, mock_model, tmp_path: Path): queries, corpus, relevant_docs = test_data ir_evaluator = InformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="test", accuracy_at_k=[1, 3], precision_recall_at_k=[1, 3], mrr_at_k=[3], ndcg_at_k=[3], map_at_k=[5], ) results = ir_evaluator(mock_model, output_path=str(tmp_path)) # We expect test_cosine_precision@3 to be 0.4, since 6 out of 15 (5 queries * 3) are True Positives # We expect test_cosine_recall@1 to be 0.9; the average of 4 times a recall of 1 and once a recall of 0.5 expected_results = { "test_cosine_accuracy@1": 1.0, "test_cosine_accuracy@3": 1.0, "test_cosine_precision@1": 1.0, "test_cosine_precision@3": 0.4, "test_cosine_recall@1": 0.9, "test_cosine_recall@3": 1.0, "test_cosine_ndcg@3": 1.0, "test_cosine_mrr@3": 1.0, "test_cosine_map@5": 1.0, } for key, expected_value in expected_results.items(): assert results[key] == pytest.approx(expected_value, abs=1e-9)
from __future__ import annotations from pathlib import Path from unittest.mock import Mock, PropertyMock import pytest import torch from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import InformationRetrievalEvaluator from sentence_transformers.util import cos_sim @pytest.fixture def mock_model(): def mock_encode(sentences: str | list[str], **kwargs) -> torch.Tensor: """ We simply one-hot encode the sentences; if a sentence contains a keyword, the corresponding one-hot encoding is added to the sentence embedding. """ one_hot_encodings = { "pokemon": torch.tensor([1.0, 0.0, 0.0, 0.0, 0.0]), "car": torch.tensor([0.0, 1.0, 0.0, 0.0, 0.0]), "vehicle": torch.tensor([0.0, 0.0, 1.0, 0.0, 0.0]), "fruit": torch.tensor([0.0, 0.0, 0.0, 1.0, 0.0]), "vegetable": torch.tensor([0.0, 0.0, 0.0, 0.0, 1.0]), } if isinstance(sentences, str): sentences = [sentences] embeddings = [] for sentence in sentences: encoding = torch.zeros(5) for keyword, one_hot in one_hot_encodings.items(): if keyword in sentence: encoding += one_hot embeddings.append(encoding) return torch.stack(embeddings) model = Mock(spec=SentenceTransformer) model.similarity_fn_name = "cosine" model.similarity.side_effect = cos_sim model.encode.side_effect = mock_encode model.model_card_data = PropertyMock(return_value=Mock()) return model @pytest.fixture def test_data(): queries = { "0": "What is a pokemon?", "1": "What is a vegetable?", "2": "What is a fruit?", "3": "What is a vehicle?", "4": "What is a car?", } corpus = { "0": "A pokemon is a fictional creature", "1": "A vegetable is a plant", "2": "A fruit is a plant", "3": "A vehicle is a machine", "4": "A car is a vehicle", } relevant_docs = {"0": {"0"}, "1": {"1"}, "2": {"2"}, "3": {"3", "4"}, "4": {"4"}} return queries, corpus, relevant_docs def test_simple(test_data, tmp_path: Path): queries, corpus, relevant_docs = test_data model = SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") ir_evaluator = InformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="test", accuracy_at_k=[1, 3], precision_recall_at_k=[1, 3], mrr_at_k=[3], ndcg_at_k=[3], map_at_k=[5], ) results = ir_evaluator(model, output_path=str(tmp_path)) expected_keys = [ "test_cosine_accuracy@1", "test_cosine_accuracy@3", "test_cosine_precision@1", "test_cosine_precision@3", "test_cosine_recall@1", "test_cosine_recall@3", "test_cosine_ndcg@3", "test_cosine_mrr@3", "test_cosine_map@5", ] assert set(results.keys()) == set(expected_keys) def test_metrices(test_data, mock_model, tmp_path: Path): queries, corpus, relevant_docs = test_data ir_evaluator = InformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="test", accuracy_at_k=[1, 3], precision_recall_at_k=[1, 3], mrr_at_k=[3], ndcg_at_k=[3], map_at_k=[5], ) results = ir_evaluator(mock_model, output_path=str(tmp_path)) # We expect test_cosine_precision@3 to be 0.4, since 6 out of 15 (5 queries * 3) are True Positives # We expect test_cosine_recall@1 to be 0.9; the average of 4 times a recall of 1 and once a recall of 0.5 expected_results = { "test_cosine_accuracy@1": 1.0, "test_cosine_accuracy@3": 1.0, "test_cosine_precision@1": 1.0, "test_cosine_precision@3": 0.4, "test_cosine_recall@1": 0.9, "test_cosine_recall@3": 1.0, "test_cosine_ndcg@3": 1.0, "test_cosine_mrr@3": 1.0, "test_cosine_map@5": 1.0, } for key, expected_value in expected_results.items(): assert results[key] == pytest.approx(expected_value, abs=1e-9)
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py' norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( backbone=dict( norm_cfg=norm_cfg, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://contrib/resnet50_gn')), neck=dict(norm_cfg=norm_cfg), roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=norm_cfg), mask_head=dict(norm_cfg=norm_cfg))) # learning policy max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py' norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( backbone=dict( norm_cfg=norm_cfg, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://contrib/resnet50_gn')), neck=dict(norm_cfg=norm_cfg), roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=norm_cfg), mask_head=dict(norm_cfg=norm_cfg))) # learning policy lr_config = dict(step=[16, 22]) runner = dict(type='EpochBasedRunner', max_epochs=24)
import os import subprocess import sys import pytest from xgboost import testing as tm DEMO_DIR = tm.demo_dir(__file__) PYTHON_DEMO_DIR = os.path.join(DEMO_DIR, "guide-python") @pytest.mark.skipif(**tm.no_cupy()) def test_data_iterator(): script = os.path.join(PYTHON_DEMO_DIR, "quantile_data_iterator.py") cmd = ["python", script] subprocess.check_call(cmd) def test_update_process_demo(): script = os.path.join(PYTHON_DEMO_DIR, "update_process.py") cmd = ["python", script] subprocess.check_call(cmd) def test_categorical_demo(): script = os.path.join(PYTHON_DEMO_DIR, "categorical.py") cmd = ["python", script] subprocess.check_call(cmd) @pytest.mark.skipif(**tm.no_rmm()) @pytest.mark.skipif(**tm.no_cupy()) def test_external_memory_demo(): script = os.path.join(PYTHON_DEMO_DIR, "external_memory.py") cmd = ["python", script] subprocess.check_call(cmd)
import os import subprocess import sys import pytest from xgboost import testing as tm sys.path.append("tests/python") import test_demos as td # noqa @pytest.mark.skipif(**tm.no_cupy()) def test_data_iterator(): script = os.path.join(td.PYTHON_DEMO_DIR, "quantile_data_iterator.py") cmd = ["python", script] subprocess.check_call(cmd) def test_update_process_demo(): script = os.path.join(td.PYTHON_DEMO_DIR, "update_process.py") cmd = ["python", script] subprocess.check_call(cmd) def test_categorical_demo(): script = os.path.join(td.PYTHON_DEMO_DIR, "categorical.py") cmd = ["python", script] subprocess.check_call(cmd)
import os import warnings from pathlib import Path import torch from torchaudio._internal import module_utils as _mod_utils # noqa: F401 _LIB_DIR = Path(__file__).parent / "lib" def _get_lib_path(lib: str): suffix = "pyd" if os.name == "nt" else "so" path = _LIB_DIR / f"{lib}.{suffix}" return path def _load_lib(lib: str) -> bool: """Load extension module Note: In case `torchaudio` is deployed with `pex` format, the library file is not in a standard location. In this case, we expect that `libtorchaudio` is available somewhere in the search path of dynamic loading mechanism, so that importing `_torchaudio` will have library loader find and load `libtorchaudio`. This is the reason why the function should not raising an error when the library file is not found. Returns: bool: True if the library file is found AND the library loaded without failure. False if the library file is not found (like in the case where torchaudio is deployed with pex format, thus the shared library file is in a non-standard location.). If the library file is found but there is an issue loading the library, (such as missing dependency) then this function raises the exception as-is. Raises: Exception: If the library file is found, but there is an issue loading the library file, (when underlying `ctype.DLL` throws an exception), this function will pass the exception as-is, instead of catching it and returning bool. The expected case is `OSError` thrown by `ctype.DLL` when a dynamic dependency is not found. This behavior was chosen because the expected failure case is not recoverable. If a dependency is missing, then users have to install it. """ path = _get_lib_path(lib) if not path.exists(): return False torch.ops.load_library(path) torch.classes.load_library(path) return True _FFMPEG_INITIALIZED = False def _init_ffmpeg(): global _FFMPEG_INITIALIZED if _FFMPEG_INITIALIZED: return if not torch.ops.torchaudio.is_ffmpeg_available(): raise RuntimeError( "torchaudio is not compiled with FFmpeg integration. Please set USE_FFMPEG=1 when compiling torchaudio." ) try: _load_lib("libtorchaudio_ffmpeg") except OSError as err: raise ImportError("FFmpeg libraries are not found. Please install FFmpeg.") from err import torchaudio._torchaudio_ffmpeg # noqa torch.ops.torchaudio.ffmpeg_init() _FFMPEG_INITIALIZED = True def _init_extension(): if not _mod_utils.is_module_available("torchaudio._torchaudio"): warnings.warn("torchaudio C++ extension is not available.") return _load_lib("libtorchaudio") # This import is for initializing the methods registered via PyBind11 # This has to happen after the base library is loaded from torchaudio import _torchaudio # noqa # Because this part is executed as part of `import torchaudio`, we ignore the # initialization failure. # If the FFmpeg integration is not properly initialized, then detailed error # will be raised when client code attempts to import the dedicated feature. try: _init_ffmpeg() except Exception: pass _init_extension()
import os import warnings from pathlib import Path import torch from torchaudio._internal import module_utils as _mod_utils # noqa: F401 _LIB_DIR = Path(__file__).parent / "lib" def _get_lib_path(lib: str): suffix = "pyd" if os.name == "nt" else "so" path = _LIB_DIR / f"{lib}.{suffix}" return path def _load_lib(lib: str) -> bool: """Load extension module Note: In case `torchaudio` is deployed with `pex` format, the library file is not in a standard location. In this case, we expect that `libtorchaudio` is available somewhere in the search path of dynamic loading mechanism, so that importing `_torchaudio` will have library loader find and load `libtorchaudio`. This is the reason why the function should not raising an error when the library file is not found. Returns: bool: True if the library file is found AND the library loaded without failure. False if the library file is not found (like in the case where torchaudio is deployed with pex format, thus the shared library file is in a non-standard location.). If the library file is found but there is an issue loading the library, (such as missing dependency) then this function raises the exception as-is. Raises: Exception: If the library file is found, but there is an issue loading the library file, (when underlying `ctype.DLL` throws an exception), this function will pass the exception as-is, instead of catching it and returning bool. The expected case is `OSError` thrown by `ctype.DLL` when a dynamic dependency is not found. This behavior was chosen because the expected failure case is not recoverable. If a dependency is missing, then users have to install it. """ path = _get_lib_path(lib) if not path.exists(): return False torch.ops.load_library(path) torch.classes.load_library(path) return True def _init_extension(): if not _mod_utils.is_module_available("torchaudio._torchaudio"): warnings.warn("torchaudio C++ extension is not available.") return _load_lib("libtorchaudio") # This import is for initializing the methods registered via PyBind11 # This has to happen after the base library is loaded from torchaudio import _torchaudio # noqa _init_extension()
from .filtering import ( allpass_biquad, band_biquad, bandpass_biquad, bandreject_biquad, bass_biquad, biquad, contrast, dcshift, deemph_biquad, dither, equalizer_biquad, filtfilt, flanger, gain, highpass_biquad, lfilter, lowpass_biquad, overdrive, phaser, riaa_biquad, treble_biquad, vad, ) from .functional import ( amplitude_to_DB, apply_beamforming, apply_codec, compute_deltas, compute_kaldi_pitch, create_dct, DB_to_amplitude, detect_pitch_frequency, edit_distance, griffinlim, inverse_spectrogram, linear_fbanks, loudness, mask_along_axis, mask_along_axis_iid, melscale_fbanks, mu_law_decoding, mu_law_encoding, mvdr_weights_rtf, mvdr_weights_souden, phase_vocoder, pitch_shift, psd, resample, rnnt_loss, rtf_evd, rtf_power, sliding_window_cmn, spectral_centroid, spectrogram, ) __all__ = [ "amplitude_to_DB", "compute_deltas", "compute_kaldi_pitch", "create_dct", "melscale_fbanks", "linear_fbanks", "DB_to_amplitude", "loudness", "detect_pitch_frequency", "griffinlim", "mask_along_axis", "mask_along_axis_iid", "mu_law_encoding", "mu_law_decoding", "phase_vocoder", "sliding_window_cmn", "spectrogram", "inverse_spectrogram", "spectral_centroid", "allpass_biquad", "band_biquad", "bandpass_biquad", "bandreject_biquad", "bass_biquad", "biquad", "contrast", "dither", "dcshift", "deemph_biquad", "equalizer_biquad", "filtfilt", "flanger", "gain", "highpass_biquad", "lfilter", "lowpass_biquad", "overdrive", "phaser", "riaa_biquad", "treble_biquad", "vad", "apply_codec", "resample", "edit_distance", "pitch_shift", "rnnt_loss", "psd", "mvdr_weights_souden", "mvdr_weights_rtf", "rtf_evd", "rtf_power", "apply_beamforming", ]
from .filtering import ( allpass_biquad, band_biquad, bandpass_biquad, bandreject_biquad, bass_biquad, biquad, contrast, dcshift, deemph_biquad, dither, equalizer_biquad, filtfilt, flanger, gain, highpass_biquad, lfilter, lowpass_biquad, overdrive, phaser, riaa_biquad, treble_biquad, vad, ) from .functional import ( amplitude_to_DB, apply_beamforming, apply_codec, barkscale_fbanks, compute_deltas, compute_kaldi_pitch, create_dct, DB_to_amplitude, detect_pitch_frequency, edit_distance, griffinlim, inverse_spectrogram, linear_fbanks, loudness, mask_along_axis, mask_along_axis_iid, melscale_fbanks, mu_law_decoding, mu_law_encoding, mvdr_weights_rtf, mvdr_weights_souden, phase_vocoder, pitch_shift, psd, resample, rnnt_loss, rtf_evd, rtf_power, sliding_window_cmn, spectral_centroid, spectrogram, ) __all__ = [ "amplitude_to_DB", "compute_deltas", "compute_kaldi_pitch", "create_dct", "melscale_fbanks", "barkscale_fbanks", "linear_fbanks", "DB_to_amplitude", "loudness", "detect_pitch_frequency", "griffinlim", "mask_along_axis", "mask_along_axis_iid", "mu_law_encoding", "mu_law_decoding", "phase_vocoder", "sliding_window_cmn", "spectrogram", "inverse_spectrogram", "spectral_centroid", "allpass_biquad", "band_biquad", "bandpass_biquad", "bandreject_biquad", "bass_biquad", "biquad", "contrast", "dither", "dcshift", "deemph_biquad", "equalizer_biquad", "filtfilt", "flanger", "gain", "highpass_biquad", "lfilter", "lowpass_biquad", "overdrive", "phaser", "riaa_biquad", "treble_biquad", "vad", "apply_codec", "resample", "edit_distance", "pitch_shift", "rnnt_loss", "psd", "mvdr_weights_souden", "mvdr_weights_rtf", "rtf_evd", "rtf_power", "apply_beamforming", ]
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import Mock from mmengine.hooks import IterTimerHook class TestIterTimerHook: def test_before_epoch(self): hook = IterTimerHook() runner = Mock() hook._before_epoch(runner) assert isinstance(hook.t, float) def test_before_iter(self): hook = IterTimerHook() runner = Mock() runner.log_buffer = dict() hook._before_epoch(runner) hook._before_iter(runner, 0) runner.message_hub.update_scalar.assert_called() def test_after_iter(self): hook = IterTimerHook() runner = Mock() runner.log_buffer = dict() hook._before_epoch(runner) hook._after_iter(runner, 0) runner.message_hub.update_scalar.assert_called()
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import Mock from mmengine.hooks import IterTimerHook class TestIterTimerHook: def test_before_epoch(self): hook = IterTimerHook() runner = Mock() hook._before_epoch(runner) assert isinstance(hook.t, float) def test_before_iter(self): hook = IterTimerHook() runner = Mock() runner.log_buffer = dict() hook._before_epoch(runner) hook._before_iter(runner, 0) runner.message_hub.update_log.assert_called() def test_after_iter(self): hook = IterTimerHook() runner = Mock() runner.log_buffer = dict() hook._before_epoch(runner) hook._after_iter(runner, 0) runner.message_hub.update_log.assert_called()
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import fire from llama import Llama from typing import List def main( ckpt_dir: str, tokenizer_path: str, temperature: float = 0.6, top_p: float = 0.9, max_seq_len: int = 128, max_gen_len: int = 64, max_batch_size: int = 4, ): """ Entry point of the program for generating text using a pretrained model. Args: ckpt_dir (str): The directory containing checkpoint files for the pretrained model. tokenizer_path (str): The path to the tokenizer model used for text encoding/decoding. temperature (float, optional): The temperature value for controlling randomness in generation. Defaults to 0.6. top_p (float, optional): The top-p sampling parameter for controlling diversity in generation. Defaults to 0.9. max_seq_len (int, optional): The maximum sequence length for input prompts. Defaults to 128. max_gen_len (int, optional): The maximum length of generated sequences. Defaults to 64. max_batch_size (int, optional): The maximum batch size for generating sequences. Defaults to 4. """ generator = Llama.build( ckpt_dir=ckpt_dir, tokenizer_path=tokenizer_path, max_seq_len=max_seq_len, max_batch_size=max_batch_size, ) prompts: List[str] = [ # For these prompts, the expected answer is the natural continuation of the prompt "I believe the meaning of life is", "Simply put, the theory of relativity states that ", """A brief message congratulating the team on the launch: Hi everyone, I just """, # Few shot prompt (providing a few examples before asking model to complete more); """Translate English to French: sea otter => loutre de mer peppermint => menthe poivrée plush girafe => girafe peluche cheese =>""", ] results = generator.text_completion( prompts, max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, ) for prompt, result in zip(prompts, results): print(prompt) print(f"> {result['generation']}") print("\n==================================\n") if __name__ == "__main__": fire.Fire(main)
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import fire from llama import Llama def main( ckpt_dir: str, tokenizer_path: str, temperature: float = 0.6, top_p: float = 0.9, max_seq_len: int = 128, max_gen_len: int = 64, max_batch_size: int = 4, ): generator = Llama.build( ckpt_dir=ckpt_dir, tokenizer_path=tokenizer_path, max_seq_len=max_seq_len, max_batch_size=max_batch_size, ) prompts = [ # For these prompts, the expected answer is the natural continuation of the prompt "I believe the meaning of life is", "Simply put, the theory of relativity states that ", """A brief message congratulating the team on the launch: Hi everyone, I just """, # Few shot prompt (providing a few examples before asking model to complete more); """Translate English to French: sea otter => loutre de mer peppermint => menthe poivrée plush girafe => girafe peluche cheese =>""", ] results = generator.text_completion( prompts, max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, ) for prompt, result in zip(prompts, results): print(prompt) print(f"> {result['generation']}") print("\n==================================\n") if __name__ == "__main__": fire.Fire(main)
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor, metaTensorFlow T = TypeVar('T', bound='ImageTensorFlowTensor') @_register_proto(proto_type_name='image_tensorflow_tensor') class ImageTensorFlowTensor( TensorFlowTensor, AbstractImageTensor, metaclass=metaTensorFlow ): """ Subclass of [`TensorFlowTensor`][docarray.typing.TensorFlowTensor], to represent an image tensor. Adds image-specific features to the tensor. For instance the ability convert the tensor back to [`ImageBytes`][docarray.typing.ImageBytes] which are optimized to send over the wire. --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import ImageBytes, ImageTensorFlowTensor, ImageUrl class MyImageDoc(BaseDoc): title: str tensor: Optional[ImageTensorFlowTensor] url: Optional[ImageUrl] bytes: Optional[ImageBytes] doc = MyImageDoc( title='my_second_image_doc', url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg", ) doc.tensor = doc.url.load() doc.bytes = doc.tensor.to_bytes() ``` --- """ ...
from typing import TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor, metaTensorFlow T = TypeVar('T', bound='ImageTensorFlowTensor') @_register_proto(proto_type_name='image_tensorflow_tensor') class ImageTensorFlowTensor( TensorFlowTensor, AbstractImageTensor, metaclass=metaTensorFlow ): """ Subclass of [`TensorFlowTensor`][docarray.typing.TensorFlowTensor], to represent an image tensor. Adds image-specific features to the tensor. For instance the ability convert the tensor back to [`ImageBytes`][docarray.typing.ImageBytes] which are optimized to send over the wire. --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import ImageBytes, ImageTensorFlowTensor, ImageUrl class MyImageDoc(BaseDoc): title: str tensor: Optional[ImageTensorFlowTensor] url: Optional[ImageUrl] bytes: Optional[ImageBytes] doc = MyImageDoc( title='my_second_image_doc', url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg", ) doc.tensor = doc.url.load() doc.bytes = doc.tensor.to_bytes() ``` --- """ ...
from abc import ABC from docarray.array.storage.weaviate.backend import BackendMixin, WeaviateConfig from docarray.array.storage.weaviate.find import FindMixin from docarray.array.storage.weaviate.getsetdel import GetSetDelMixin from docarray.array.storage.weaviate.seqlike import SequenceLikeMixin __all__ = ['StorageMixins', 'WeaviateConfig'] class StorageMixins(FindMixin, BackendMixin, GetSetDelMixin, SequenceLikeMixin, ABC): ...
from abc import ABC from .backend import BackendMixin, WeaviateConfig from .find import FindMixin from .getsetdel import GetSetDelMixin from .seqlike import SequenceLikeMixin __all__ = ['StorageMixins', 'WeaviateConfig'] class StorageMixins(FindMixin, BackendMixin, GetSetDelMixin, SequenceLikeMixin, ABC): ...
""" Pandas output parser. DEPRECATED: This class has been moved to `llama-index-experimental`. """ from typing import Any class PandasInstructionParser: """ Pandas instruction parser. DEPRECATED: This class has been moved to `llama-index-experimental`. """ def __init__(self, *args: Any, **kwargs: Any) -> None: raise DeprecationWarning( "PandasInstructionParser has been moved to `llama-index-experimental`.\n" "`pip install llama-index-experimental`\n" "`from llama_index.experimental.query_engine.pandas import PandasInstructionParser`\n" "Note that the PandasInstructionParser allows for arbitrary code execution, \n" "and should be used in a secure environment." )
"""Pandas output parser. DEPRECATED: This class has been moved to `llama-index-experimental`. """ from typing import Any class PandasInstructionParser: """Pandas instruction parser. DEPRECATED: This class has been moved to `llama-index-experimental`. """ def __init__(self, *args: Any, **kwargs: Any) -> None: raise DeprecationWarning( "PandasInstructionParser has been moved to `llama-index-experimental`.\n" "`pip install llama-index-experimental`\n" "`from llama_index.experimental.query_engine.pandas import PandasInstructionParser`\n" "Note that the PandasInstructionParser allows for arbitrary code execution, \n" "and should be used in a secure environment." )
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import subprocess import sys import pytorch_sphinx_theme sys.path.insert(0, os.path.abspath('../..')) # -- Project information ----------------------------------------------------- project = 'MMDetection' copyright = '2018-2021, OpenMMLab' author = 'MMDetection Authors' version_file = '../../mmdet/version.py' def get_version(): with open(version_file, 'r') as f: exec(compile(f.read(), version_file, 'exec')) return locals()['__version__'] # The full version, including alpha/beta/rc tags release = get_version() # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'myst_parser', 'sphinx_markdown_tables', 'sphinx_copybutton', ] myst_enable_extensions = ['colon_fence'] myst_heading_anchors = 3 autodoc_mock_imports = [ 'matplotlib', 'pycocotools', 'terminaltables', 'mmdet.version', 'mmcv.ops' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = { '.rst': 'restructuredtext', '.md': 'markdown', } # The master toctree document. master_doc = 'index' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # # html_theme = 'sphinx_rtd_theme' html_theme = 'pytorch_sphinx_theme' html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()] html_theme_options = { 'menu': [ { 'name': 'GitHub', 'url': 'https://github.com/open-mmlab/mmdetection' }, ], # Specify the language of shared menu 'menu_lang': 'en' } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] html_css_files = ['css/readthedocs.css'] # -- Extension configuration ------------------------------------------------- # Ignore >>> when copying code copybutton_prompt_text = r'>>> |\.\.\. ' copybutton_prompt_is_regexp = True def builder_inited_handler(app): subprocess.run(['./stat.py']) def setup(app): app.connect('builder-inited', builder_inited_handler)
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import subprocess import sys import pytorch_sphinx_theme sys.path.insert(0, os.path.abspath('../..')) # -- Project information ----------------------------------------------------- project = 'MMDetection' copyright = '2018-2021, OpenMMLab' author = 'MMDetection Authors' version_file = '../../mmdet/version.py' def get_version(): with open(version_file, 'r') as f: exec(compile(f.read(), version_file, 'exec')) return locals()['__version__'] # The full version, including alpha/beta/rc tags release = get_version() # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'myst_parser', 'sphinx_markdown_tables', 'sphinx_copybutton', ] autodoc_mock_imports = [ 'matplotlib', 'pycocotools', 'terminaltables', 'mmdet.version', 'mmcv.ops' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = { '.rst': 'restructuredtext', '.md': 'markdown', } # The master toctree document. master_doc = 'index' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # # html_theme = 'sphinx_rtd_theme' html_theme = 'pytorch_sphinx_theme' html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()] html_theme_options = { 'menu': [ { 'name': 'GitHub', 'url': 'https://github.com/open-mmlab/mmdetection' }, ], # Specify the language of shared menu 'menu_lang': 'en' } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] html_css_files = ['css/readthedocs.css'] # -- Extension configuration ------------------------------------------------- # Ignore >>> when copying code copybutton_prompt_text = r'>>> |\.\.\. ' copybutton_prompt_is_regexp = True def builder_inited_handler(app): subprocess.run(['./stat.py']) def setup(app): app.connect('builder-inited', builder_inited_handler)
from typing import Any, Dict, List, Optional, Sequence, Type, Union import PIL.Image import torch from torchvision import datapoints from torchvision.prototype.datapoints import Label, OneHotLabel from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2._utils import _setup_fill_arg, _setup_size from torchvision.transforms.v2.utils import has_any, is_simple_tensor, query_bounding_boxes, query_spatial_size class FixedSizeCrop(Transform): def __init__( self, size: Union[int, Sequence[int]], fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = 0, padding_mode: str = "constant", ) -> None: super().__init__() size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")) self.crop_height = size[0] self.crop_width = size[1] self.fill = fill self._fill = _setup_fill_arg(fill) self.padding_mode = padding_mode def _check_inputs(self, flat_inputs: List[Any]) -> None: if not has_any( flat_inputs, PIL.Image.Image, datapoints.Image, is_simple_tensor, datapoints.Video, ): raise TypeError( f"{type(self).__name__}() requires input sample to contain an tensor or PIL image or a Video." ) if has_any(flat_inputs, datapoints.BoundingBoxes) and not has_any(flat_inputs, Label, OneHotLabel): raise TypeError( f"If a BoundingBoxes is contained in the input sample, " f"{type(self).__name__}() also requires it to contain a Label or OneHotLabel." ) def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]: height, width = query_spatial_size(flat_inputs) new_height = min(height, self.crop_height) new_width = min(width, self.crop_width) needs_crop = new_height != height or new_width != width offset_height = max(height - self.crop_height, 0) offset_width = max(width - self.crop_width, 0) r = torch.rand(1) top = int(offset_height * r) left = int(offset_width * r) bounding_boxes: Optional[torch.Tensor] try: bounding_boxes = query_bounding_boxes(flat_inputs) except ValueError: bounding_boxes = None if needs_crop and bounding_boxes is not None: format = bounding_boxes.format bounding_boxes, spatial_size = F.crop_bounding_boxes( bounding_boxes.as_subclass(torch.Tensor), format=format, top=top, left=left, height=new_height, width=new_width, ) bounding_boxes = F.clamp_bounding_boxes(bounding_boxes, format=format, spatial_size=spatial_size) height_and_width = F.convert_format_bounding_boxes( bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYWH )[..., 2:] is_valid = torch.all(height_and_width > 0, dim=-1) else: is_valid = None pad_bottom = max(self.crop_height - new_height, 0) pad_right = max(self.crop_width - new_width, 0) needs_pad = pad_bottom != 0 or pad_right != 0 return dict( needs_crop=needs_crop, top=top, left=left, height=new_height, width=new_width, is_valid=is_valid, padding=[0, 0, pad_right, pad_bottom], needs_pad=needs_pad, ) def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any: if params["needs_crop"]: inpt = F.crop( inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"], ) if params["is_valid"] is not None: if isinstance(inpt, (Label, OneHotLabel, datapoints.Mask)): inpt = inpt.wrap_like(inpt, inpt[params["is_valid"]]) # type: ignore[arg-type] elif isinstance(inpt, datapoints.BoundingBoxes): inpt = datapoints.BoundingBoxes.wrap_like( inpt, F.clamp_bounding_boxes( inpt[params["is_valid"]], format=inpt.format, spatial_size=inpt.spatial_size ), ) if params["needs_pad"]: fill = self._fill[type(inpt)] inpt = F.pad(inpt, params["padding"], fill=fill, padding_mode=self.padding_mode) return inpt
from typing import Any, Dict, List, Optional, Sequence, Type, Union import PIL.Image import torch from torchvision import datapoints from torchvision.prototype.datapoints import Label, OneHotLabel from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2._utils import _setup_fill_arg, _setup_size from torchvision.transforms.v2.utils import has_any, is_simple_tensor, query_bounding_box, query_spatial_size class FixedSizeCrop(Transform): def __init__( self, size: Union[int, Sequence[int]], fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = 0, padding_mode: str = "constant", ) -> None: super().__init__() size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")) self.crop_height = size[0] self.crop_width = size[1] self.fill = fill self._fill = _setup_fill_arg(fill) self.padding_mode = padding_mode def _check_inputs(self, flat_inputs: List[Any]) -> None: if not has_any( flat_inputs, PIL.Image.Image, datapoints.Image, is_simple_tensor, datapoints.Video, ): raise TypeError( f"{type(self).__name__}() requires input sample to contain an tensor or PIL image or a Video." ) if has_any(flat_inputs, datapoints.BoundingBox) and not has_any(flat_inputs, Label, OneHotLabel): raise TypeError( f"If a BoundingBox is contained in the input sample, " f"{type(self).__name__}() also requires it to contain a Label or OneHotLabel." ) def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]: height, width = query_spatial_size(flat_inputs) new_height = min(height, self.crop_height) new_width = min(width, self.crop_width) needs_crop = new_height != height or new_width != width offset_height = max(height - self.crop_height, 0) offset_width = max(width - self.crop_width, 0) r = torch.rand(1) top = int(offset_height * r) left = int(offset_width * r) bounding_boxes: Optional[torch.Tensor] try: bounding_boxes = query_bounding_box(flat_inputs) except ValueError: bounding_boxes = None if needs_crop and bounding_boxes is not None: format = bounding_boxes.format bounding_boxes, spatial_size = F.crop_bounding_box( bounding_boxes.as_subclass(torch.Tensor), format=format, top=top, left=left, height=new_height, width=new_width, ) bounding_boxes = F.clamp_bounding_box(bounding_boxes, format=format, spatial_size=spatial_size) height_and_width = F.convert_format_bounding_box( bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYWH )[..., 2:] is_valid = torch.all(height_and_width > 0, dim=-1) else: is_valid = None pad_bottom = max(self.crop_height - new_height, 0) pad_right = max(self.crop_width - new_width, 0) needs_pad = pad_bottom != 0 or pad_right != 0 return dict( needs_crop=needs_crop, top=top, left=left, height=new_height, width=new_width, is_valid=is_valid, padding=[0, 0, pad_right, pad_bottom], needs_pad=needs_pad, ) def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any: if params["needs_crop"]: inpt = F.crop( inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"], ) if params["is_valid"] is not None: if isinstance(inpt, (Label, OneHotLabel, datapoints.Mask)): inpt = inpt.wrap_like(inpt, inpt[params["is_valid"]]) # type: ignore[arg-type] elif isinstance(inpt, datapoints.BoundingBox): inpt = datapoints.BoundingBox.wrap_like( inpt, F.clamp_bounding_box(inpt[params["is_valid"]], format=inpt.format, spatial_size=inpt.spatial_size), ) if params["needs_pad"]: fill = self._fill[type(inpt)] inpt = F.pad(inpt, params["padding"], fill=fill, padding_mode=self.padding_mode) return inpt
# Copyright (c) OpenMMLab. All rights reserved. import warnings import torch from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class DETR(SingleStageDetector): r"""Implementation of `DETR: End-to-End Object Detection with Transformers <https://arxiv.org/pdf/2005.12872>`_""" def __init__(self, backbone, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(DETR, self).__init__(backbone, None, bbox_head, train_cfg, test_cfg, pretrained, init_cfg) # over-write `forward_dummy` because: # the forward of bbox_head requires img_metas def forward_dummy(self, img): """Used for computing network flops. See `mmdetection/tools/analysis_tools/get_flops.py` """ warnings.warn('Warning! MultiheadAttention in DETR does not ' 'support flops computation! Do not use the ' 'results in your papers!') batch_size, _, height, width = img.shape dummy_img_metas = [ dict( batch_input_shape=(height, width), img_shape=(height, width, 3)) for _ in range(batch_size) ] x = self.extract_feat(img) outs = self.bbox_head(x, dummy_img_metas) return outs # over-write `onnx_export` because: # (1) the forward of bbox_head requires img_metas # (2) the different behavior (e.g. construction of `masks`) between # torch and ONNX model, during the forward of bbox_head def onnx_export(self, img, img_metas): """Test function for exporting to ONNX, without test time augmentation. Args: img (torch.Tensor): input images. img_metas (list[dict]): List of image information. Returns: tuple[Tensor, Tensor]: dets of shape [N, num_det, 5] and class labels of shape [N, num_det]. """ x = self.extract_feat(img) # forward of this head requires img_metas outs = self.bbox_head.forward_onnx(x, img_metas) # get shape as tensor img_shape = torch._shape_as_tensor(img)[2:] img_metas[0]['img_shape_for_onnx'] = img_shape det_bboxes, det_labels = self.bbox_head.onnx_export(*outs, img_metas) return det_bboxes, det_labels
import warnings import torch from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class DETR(SingleStageDetector): r"""Implementation of `DETR: End-to-End Object Detection with Transformers <https://arxiv.org/pdf/2005.12872>`_""" def __init__(self, backbone, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(DETR, self).__init__(backbone, None, bbox_head, train_cfg, test_cfg, pretrained, init_cfg) # over-write `forward_dummy` because: # the forward of bbox_head requires img_metas def forward_dummy(self, img): """Used for computing network flops. See `mmdetection/tools/analysis_tools/get_flops.py` """ warnings.warn('Warning! MultiheadAttention in DETR does not ' 'support flops computation! Do not use the ' 'results in your papers!') batch_size, _, height, width = img.shape dummy_img_metas = [ dict( batch_input_shape=(height, width), img_shape=(height, width, 3)) for _ in range(batch_size) ] x = self.extract_feat(img) outs = self.bbox_head(x, dummy_img_metas) return outs # over-write `onnx_export` because: # (1) the forward of bbox_head requires img_metas # (2) the different behavior (e.g. construction of `masks`) between # torch and ONNX model, during the forward of bbox_head def onnx_export(self, img, img_metas): """Test function for exporting to ONNX, without test time augmentation. Args: img (torch.Tensor): input images. img_metas (list[dict]): List of image information. Returns: tuple[Tensor, Tensor]: dets of shape [N, num_det, 5] and class labels of shape [N, num_det]. """ x = self.extract_feat(img) # forward of this head requires img_metas outs = self.bbox_head.forward_onnx(x, img_metas) # get shape as tensor img_shape = torch._shape_as_tensor(img)[2:] img_metas[0]['img_shape_for_onnx'] = img_shape det_bboxes, det_labels = self.bbox_head.onnx_export(*outs, img_metas) return det_bboxes, det_labels
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.callbacks.streamlit.streamlit_callback_handler import ( LLMThought, LLMThoughtLabeler, LLMThoughtState, StreamlitCallbackHandler, ToolRecord, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "LLMThoughtState": ( "langchain_community.callbacks.streamlit.streamlit_callback_handler" ), "ToolRecord": ( "langchain_community.callbacks.streamlit.streamlit_callback_handler" ), "LLMThoughtLabeler": ( "langchain_community.callbacks.streamlit.streamlit_callback_handler" ), "LLMThought": ( "langchain_community.callbacks.streamlit.streamlit_callback_handler" ), "StreamlitCallbackHandler": ( "langchain_community.callbacks.streamlit.streamlit_callback_handler" ), } _import_attribute = create_importer(__file__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "LLMThought", "LLMThoughtLabeler", "LLMThoughtState", "StreamlitCallbackHandler", "ToolRecord", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.callbacks.streamlit.streamlit_callback_handler import ( LLMThought, LLMThoughtLabeler, LLMThoughtState, StreamlitCallbackHandler, ToolRecord, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "LLMThoughtState": ( "langchain_community.callbacks.streamlit.streamlit_callback_handler" ), "ToolRecord": ( "langchain_community.callbacks.streamlit.streamlit_callback_handler" ), "LLMThoughtLabeler": ( "langchain_community.callbacks.streamlit.streamlit_callback_handler" ), "LLMThought": ( "langchain_community.callbacks.streamlit.streamlit_callback_handler" ), "StreamlitCallbackHandler": ( "langchain_community.callbacks.streamlit.streamlit_callback_handler" ), } _import_attribute = create_importer(__file__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "LLMThoughtState", "ToolRecord", "LLMThoughtLabeler", "LLMThought", "StreamlitCallbackHandler", ]
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch from mmdet.models.roi_heads.mask_heads import (DynamicMaskHead, FCNMaskHead, MaskIoUHead) from .utils import _dummy_bbox_sampling def test_mask_head_loss(): """Test mask head loss when mask target is empty.""" self = FCNMaskHead( num_convs=1, roi_feat_size=6, in_channels=8, conv_out_channels=8, num_classes=8) # Dummy proposals proposal_list = [ torch.Tensor([[23.6667, 23.8757, 228.6326, 153.8874]]), ] gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] sampling_results = _dummy_bbox_sampling(proposal_list, gt_bboxes, gt_labels) # create dummy mask import numpy as np from mmdet.core import BitmapMasks dummy_mask = np.random.randint(0, 2, (1, 160, 240), dtype=np.uint8) gt_masks = [BitmapMasks(dummy_mask, 160, 240)] # create dummy train_cfg train_cfg = mmcv.Config(dict(mask_size=12, mask_thr_binary=0.5)) # Create dummy features "extracted" for each sampled bbox num_sampled = sum(len(res.bboxes) for res in sampling_results) dummy_feats = torch.rand(num_sampled, 8, 6, 6) mask_pred = self.forward(dummy_feats) mask_targets = self.get_targets(sampling_results, gt_masks, train_cfg) pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) loss_mask = self.loss(mask_pred, mask_targets, pos_labels) onegt_mask_loss = sum(loss_mask['loss_mask']) assert onegt_mask_loss.item() > 0, 'mask loss should be non-zero' # test mask_iou_head mask_iou_head = MaskIoUHead( num_convs=1, num_fcs=1, roi_feat_size=6, in_channels=8, conv_out_channels=8, fc_out_channels=8, num_classes=8) pos_mask_pred = mask_pred[range(mask_pred.size(0)), pos_labels] mask_iou_pred = mask_iou_head(dummy_feats, pos_mask_pred) pos_mask_iou_pred = mask_iou_pred[range(mask_iou_pred.size(0)), pos_labels] mask_iou_targets = mask_iou_head.get_targets(sampling_results, gt_masks, pos_mask_pred, mask_targets, train_cfg) loss_mask_iou = mask_iou_head.loss(pos_mask_iou_pred, mask_iou_targets) onegt_mask_iou_loss = loss_mask_iou['loss_mask_iou'].sum() assert onegt_mask_iou_loss.item() >= 0 # test dynamic_mask_head dummy_proposal_feats = torch.rand(num_sampled, 8) dynamic_mask_head = DynamicMaskHead( dynamic_conv_cfg=dict( type='DynamicConv', in_channels=8, feat_channels=8, out_channels=8, input_feat_shape=6, with_proj=False, act_cfg=dict(type='ReLU', inplace=True), norm_cfg=dict(type='LN')), num_convs=1, num_classes=8, in_channels=8, roi_feat_size=6) mask_pred = dynamic_mask_head(dummy_feats, dummy_proposal_feats) mask_target = dynamic_mask_head.get_targets(sampling_results, gt_masks, train_cfg) loss_mask = dynamic_mask_head.loss(mask_pred, mask_target, pos_labels) loss_mask = loss_mask['loss_mask'].sum() assert loss_mask.item() >= 0
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch from mmdet.models.roi_heads.mask_heads import (DynamicMaskHead, FCNMaskHead, MaskIoUHead) from .utils import _dummy_bbox_sampling def test_mask_head_loss(): """Test mask head loss when mask target is empty.""" self = FCNMaskHead( num_convs=1, roi_feat_size=6, in_channels=8, conv_out_channels=8, num_classes=8) # Dummy proposals proposal_list = [ torch.Tensor([[23.6667, 23.8757, 228.6326, 153.8874]]), ] gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] sampling_results = _dummy_bbox_sampling(proposal_list, gt_bboxes, gt_labels) # create dummy mask import numpy as np from mmdet.core import BitmapMasks dummy_mask = np.random.randint(0, 2, (1, 160, 240), dtype=np.uint8) gt_masks = [BitmapMasks(dummy_mask, 160, 240)] # create dummy train_cfg train_cfg = mmcv.Config(dict(mask_size=12, mask_thr_binary=0.5)) # Create dummy features "extracted" for each sampled bbox num_sampled = sum(len(res.bboxes) for res in sampling_results) dummy_feats = torch.rand(num_sampled, 8, 6, 6) mask_pred = self.forward(dummy_feats) mask_targets = self.get_targets(sampling_results, gt_masks, train_cfg) pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) loss_mask = self.loss(mask_pred, mask_targets, pos_labels) onegt_mask_loss = sum(loss_mask['loss_mask']) assert onegt_mask_loss.item() > 0, 'mask loss should be non-zero' # test mask_iou_head mask_iou_head = MaskIoUHead( num_convs=1, num_fcs=1, roi_feat_size=6, in_channels=8, conv_out_channels=8, fc_out_channels=8, num_classes=8) pos_mask_pred = mask_pred[range(mask_pred.size(0)), pos_labels] mask_iou_pred = mask_iou_head(dummy_feats, pos_mask_pred) pos_mask_iou_pred = mask_iou_pred[range(mask_iou_pred.size(0)), pos_labels] mask_iou_targets = mask_iou_head.get_targets(sampling_results, gt_masks, pos_mask_pred, mask_targets, train_cfg) loss_mask_iou = mask_iou_head.loss(pos_mask_iou_pred, mask_iou_targets) onegt_mask_iou_loss = loss_mask_iou['loss_mask_iou'].sum() assert onegt_mask_iou_loss.item() >= 0 # test dynamic_mask_head dummy_proposal_feats = torch.rand(num_sampled, 8) dynamic_mask_head = DynamicMaskHead( dynamic_conv_cfg=dict( type='DynamicConv', in_channels=8, feat_channels=8, out_channels=8, input_feat_shape=6, with_proj=False, act_cfg=dict(type='ReLU', inplace=True), norm_cfg=dict(type='LN')), num_convs=1, num_classes=8, in_channels=8, roi_feat_size=6) mask_pred = dynamic_mask_head(dummy_feats, dummy_proposal_feats) mask_target = dynamic_mask_head.get_targets(sampling_results, gt_masks, train_cfg) loss_mask = dynamic_mask_head.loss(mask_pred, mask_target, pos_labels) loss_mask = loss_mask['loss_mask'].sum() assert loss_mask.item() >= 0
""" This examples trains a CrossEncoder for the STSbenchmark task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it output a continuous labels 0...1 to indicate the similarity between the input pair. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_stsbenchmark.py """ import logging import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CrossEncoderCorrelationEvaluator from sentence_transformers.cross_encoder.losses.BinaryCrossEntropyLoss import BinaryCrossEntropyLoss from sentence_transformers.cross_encoder.trainer import CrossEncoderTrainer from sentence_transformers.cross_encoder.training_args import CrossEncoderTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) train_batch_size = 64 num_epochs = 4 output_dir = "output/training_ce_stsbenchmark-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Define our CrossEncoder model. We use distilroberta-base as the base model and set it up to predict 1 label # You can also use other base models, like bert-base-uncased, microsoft/mpnet-base, or rerankers like Alibaba-NLP/gte-reranker-modernbert-base model_name = "distilroberta-base" model = CrossEncoder(model_name, num_labels=1) # 2. Load the STSB dataset: https://huggingface.co/datasets/sentence-transformers/stsb train_dataset = load_dataset("sentence-transformers/stsb", split="train") eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") test_dataset = load_dataset("sentence-transformers/stsb", split="test") logging.info(train_dataset) # 3. Define our training loss, we use one that accepts pairs with a binary label loss = BinaryCrossEntropyLoss(model) # 4. Before and during training, we use CrossEncoderClassificationEvaluator to measure the performance on the dev set eval_evaluator = CrossEncoderCorrelationEvaluator( sentence_pairs=list(zip(eval_dataset["sentence1"], eval_dataset["sentence2"])), scores=eval_dataset["score"], name="stsb-validation", ) eval_evaluator(model) # 5. Define the training arguments short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1] run_name = f"reranker-{short_model_name}-stsb" args = CrossEncoderTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=80, save_strategy="steps", save_steps=80, save_total_limit=2, logging_steps=20, run_name=run_name, # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = CrossEncoderTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=eval_evaluator, ) trainer.train() # 7. Evaluate the final model on test dataset test_evaluator = CrossEncoderCorrelationEvaluator( sentence_pairs=list(zip(test_dataset["sentence1"], test_dataset["sentence2"])), scores=test_dataset["score"], name="stsb-test", ) test_evaluator(model) # 8. Save the final model final_output_dir = f"{output_dir}/final" model.save_pretrained(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first try: model.push_to_hub(run_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{run_name}')`." )
""" This examples trains a CrossEncoder for the STSbenchmark task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it output a continuous labels 0...1 to indicate the similarity between the input pair. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_stsbenchmark.py """ import logging import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CECorrelationEvaluator from sentence_transformers.cross_encoder.losses.BinaryCrossEntropyLoss import BinaryCrossEntropyLoss from sentence_transformers.cross_encoder.trainer import CrossEncoderTrainer from sentence_transformers.cross_encoder.training_args import CrossEncoderTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) train_batch_size = 64 num_epochs = 4 output_dir = "output/training_ce_stsbenchmark-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Define our CrossEncoder model. We use distilroberta-base as the base model and set it up to predict 1 label # You can also use other base models, like bert-base-uncased, microsoft/mpnet-base, or rerankers like Alibaba-NLP/gte-reranker-modernbert-base model_name = "distilroberta-base" model = CrossEncoder(model_name, num_labels=1) # 2. Load the STSB dataset: https://huggingface.co/datasets/sentence-transformers/stsb train_dataset = load_dataset("sentence-transformers/stsb", split="train") eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") test_dataset = load_dataset("sentence-transformers/stsb", split="test") logging.info(train_dataset) # 3. Define our training loss, we use one that accepts pairs with a binary label loss = BinaryCrossEntropyLoss(model) # 4. Before and during training, we use CEClassificationEvaluator to measure the performance on the dev set eval_evaluator = CECorrelationEvaluator( sentence_pairs=list(zip(eval_dataset["sentence1"], eval_dataset["sentence2"])), scores=eval_dataset["score"], name="stsb-validation", ) eval_evaluator(model) # 5. Define the training arguments short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1] run_name = f"reranker-{short_model_name}-stsb" args = CrossEncoderTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=80, save_strategy="steps", save_steps=80, save_total_limit=2, logging_steps=20, run_name=run_name, # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = CrossEncoderTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=eval_evaluator, ) trainer.train() # 7. Evaluate the final model on test dataset test_evaluator = CECorrelationEvaluator( sentence_pairs=list(zip(test_dataset["sentence1"], test_dataset["sentence2"])), scores=test_dataset["score"], name="stsb-test", ) test_evaluator(model) # 8. Save the final model final_output_dir = f"{output_dir}/final" model.save_pretrained(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first try: model.push_to_hub(run_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{run_name}')`." )
import base64 from typing import Any, Dict, Union, Optional from vertexai.generative_models._generative_models import SafetySettingsType from google.cloud.aiplatform_v1beta1.types import content as gapic_content_types from llama_index.core.llms import ChatMessage, MessageRole def is_gemini_model(model: str) -> bool: return model.startswith("gemini") def create_gemini_client( model: str, safety_settings: Optional[SafetySettingsType] ) -> Any: from vertexai.preview.generative_models import GenerativeModel return GenerativeModel(model_name=model, safety_settings=safety_settings) def convert_chat_message_to_gemini_content( message: ChatMessage, is_history: bool = True ) -> Any: from vertexai.preview.generative_models import Content, Part def _convert_gemini_part_to_prompt(part: Union[str, Dict]) -> Part: from vertexai.preview.generative_models import Image, Part if isinstance(part, str): return Part.from_text(part) if not isinstance(part, Dict): raise ValueError( f"Message's content is expected to be a dict, got {type(part)}!" ) if part["type"] == "text": return Part.from_text(part["text"]) elif part["type"] == "image_url": path = part["image_url"] if path.startswith("gs://"): raise ValueError("Only local image path is supported!") elif path.startswith("data:image/jpeg;base64,"): image = Image.from_bytes(base64.b64decode(path[23:])) else: image = Image.load_from_file(path) else: raise ValueError("Only text and image_url types are supported!") return Part.from_image(image) if ( message.content == "" or message.content is None ) and "tool_calls" in message.additional_kwargs: tool_calls = message.additional_kwargs["tool_calls"] parts = [ Part._from_gapic(raw_part=gapic_content_types.Part(function_call=tool_call)) for tool_call in tool_calls ] else: raw_content = message.content if raw_content is None: raw_content = "" if isinstance(raw_content, str): raw_content = [raw_content] parts = [_convert_gemini_part_to_prompt(part) for part in raw_content] if is_history: return Content( role="user" if message.role == MessageRole.USER else "model", parts=parts, ) else: return parts
import base64 from typing import Any, Dict, Union, Optional from vertexai.generative_models._generative_models import SafetySettingsType from google.cloud.aiplatform_v1beta1.types import content as gapic_content_types from llama_index.core.llms import ChatMessage, MessageRole def is_gemini_model(model: str) -> bool: return model.startswith("gemini") def create_gemini_client( model: str, safety_settings: Optional[SafetySettingsType] ) -> Any: from vertexai.preview.generative_models import GenerativeModel return GenerativeModel(model_name=model, safety_settings=safety_settings) def convert_chat_message_to_gemini_content( message: ChatMessage, is_history: bool = True ) -> Any: from vertexai.preview.generative_models import Content, Part def _convert_gemini_part_to_prompt(part: Union[str, Dict]) -> Part: from vertexai.preview.generative_models import Image, Part if isinstance(part, str): return Part.from_text(part) if not isinstance(part, Dict): raise ValueError( f"Message's content is expected to be a dict, got {type(part)}!" ) if part["type"] == "text": return Part.from_text(part["text"]) elif part["type"] == "image_url": path = part["image_url"] if path.startswith("gs://"): raise ValueError("Only local image path is supported!") elif path.startswith("data:image/jpeg;base64,"): image = Image.from_bytes(base64.b64decode(path[23:])) else: image = Image.load_from_file(path) else: raise ValueError("Only text and image_url types are supported!") return Part.from_image(image) if message.content == "" and "tool_calls" in message.additional_kwargs: tool_calls = message.additional_kwargs["tool_calls"] parts = [ Part._from_gapic(raw_part=gapic_content_types.Part(function_call=tool_call)) for tool_call in tool_calls ] else: raw_content = message.content if raw_content is None: raw_content = "" if isinstance(raw_content, str): raw_content = [raw_content] parts = [_convert_gemini_part_to_prompt(part) for part in raw_content] if is_history: return Content( role="user" if message.role == MessageRole.USER else "model", parts=parts, ) else: return parts
""" OPUS (http://opus.nlpl.eu/) is a great collection of different parallel datasets for more than 400 languages. On the website, you can download parallel datasets for many languages in different formats. I found that the format "Bottom-left triangle: download plain text files (MOSES/GIZA++)" requires minimal overhead for post-processing to get it into a suitable format for this library. You can use the OPUS dataset to create multilingual sentence embeddings. This script contains code to download OPUS datasets for the desired languages and to create training files in the right format. 1) First, you need to install OpusTools (https://github.com/Helsinki-NLP/OpusTools/tree/master/opustools_pkg): pip install opustools 2) Once you have OpusTools installed, you can download data in the right format via: mkdir parallel-sentences opus_read -d [CORPUS] -s [SRC_LANG] -t [TRG_LANG] --write parallel-sentences/[FILENAME].tsv.gz -wm moses -dl opus -p raw For example: mkdir parallel-sentences opus_read -d JW300 -s en -t de --write parallel-sentences/JW300-en-de.tsv.gz -wm moses -dl opus -p raw This downloads the JW300 Corpus (http://opus.nlpl.eu/JW300.php) for English (en) and German (de) and write the output to parallel-sentences/JW300-en-de.tsv.gz #################### This python code automates the download and creation of the parallel sentences files. """ import os from opustools import OpusRead corpora = ["JW300"] # Corpora you want to use source_languages = ["en"] # Source language, our teacher model is able to understand target_languages = ["de", "es", "it", "fr", "ar", "tr"] # Target languages, out student model should learn output_folder = "parallel-sentences" opus_download_folder = "./opus" # Iterator over all corpora / source languages / target languages combinations and download files os.makedirs(output_folder, exist_ok=True) for corpus in corpora: for src_lang in source_languages: for trg_lang in target_languages: output_filename = os.path.join(output_folder, "{}-{}-{}.tsv.gz".format(corpus, src_lang, trg_lang)) if not os.path.exists(output_filename): print("Create:", output_filename) try: read = OpusRead( directory=corpus, source=src_lang, target=trg_lang, write=[output_filename], download_dir=opus_download_folder, preprocess="raw", write_mode="moses", suppress_prompts=True, ) read.printPairs() except Exception: print("An error occurred during the creation of", output_filename)
""" OPUS (http://opus.nlpl.eu/) is a great collection of different parallel datasets for more than 400 languages. On the website, you can download parallel datasets for many languages in different formats. I found that the format "Bottom-left triangle: download plain text files (MOSES/GIZA++)" requires minimal overhead for post-processing to get it into a suitable format for this library. You can use the OPUS dataset to create multilingual sentence embeddings. This script contains code to download OPUS datasets for the desired languages and to create training files in the right format. 1) First, you need to install OpusTools (https://github.com/Helsinki-NLP/OpusTools/tree/master/opustools_pkg): pip install opustools 2) Once you have OpusTools installed, you can download data in the right format via: mkdir parallel-sentences opus_read -d [CORPUS] -s [SRC_LANG] -t [TRG_LANG] --write parallel-sentences/[FILENAME].tsv.gz -wm moses -dl opus -p raw For example: mkdir parallel-sentences opus_read -d JW300 -s en -t de --write parallel-sentences/JW300-en-de.tsv.gz -wm moses -dl opus -p raw This downloads the JW300 Corpus (http://opus.nlpl.eu/JW300.php) for English (en) and German (de) and write the output to parallel-sentences/JW300-en-de.tsv.gz #################### This python code automates the download and creation of the parallel sentences files. """ from opustools import OpusRead import os corpora = ["JW300"] # Corpora you want to use source_languages = ["en"] # Source language, our teacher model is able to understand target_languages = ["de", "es", "it", "fr", "ar", "tr"] # Target languages, out student model should learn output_folder = "parallel-sentences" opus_download_folder = "./opus" # Iterator over all corpora / source languages / target languages combinations and download files os.makedirs(output_folder, exist_ok=True) for corpus in corpora: for src_lang in source_languages: for trg_lang in target_languages: output_filename = os.path.join(output_folder, "{}-{}-{}.tsv.gz".format(corpus, src_lang, trg_lang)) if not os.path.exists(output_filename): print("Create:", output_filename) try: read = OpusRead( directory=corpus, source=src_lang, target=trg_lang, write=[output_filename], download_dir=opus_download_folder, preprocess="raw", write_mode="moses", suppress_prompts=True, ) read.printPairs() except Exception: print("An error occurred during the creation of", output_filename)
__version__ = '0.30.0a3' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler)
__version__ = '0.30.0a3' import logging from docarray.array import DocArray, DocArrayStacked from docarray.base_doc.doc import BaseDoc __all__ = ['BaseDoc', 'DocArray', 'DocArrayStacked'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler)
""" Tatoeba (https://tatoeba.org/) is a collection of sentences and translation, mainly aiming for language learning. It is available for more than 300 languages. This script downloads the Tatoeba corpus and extracts the sentences & translations in the languages you like """ import gzip import os import tarfile import sentence_transformers # Note: Tatoeba uses 3 letter languages codes (ISO-639-2), # while other datasets like OPUS use 2 letter language codes (ISO-639-1) # For training of sentence transformers, which type of language code is used doesn't matter. # For language codes, see: https://en.wikipedia.org/wiki/List_of_ISO_639-2_codes source_languages = set(["eng"]) target_languages = set(["deu", "ara", "tur", "spa", "ita", "fra"]) num_dev_sentences = 1000 # Number of sentences that are used to create a development set tatoeba_folder = "../datasets/tatoeba" output_folder = "parallel-sentences/" sentences_file_bz2 = os.path.join(tatoeba_folder, "sentences.tar.bz2") sentences_file = os.path.join(tatoeba_folder, "sentences.csv") links_file_bz2 = os.path.join(tatoeba_folder, "links.tar.bz2") links_file = os.path.join(tatoeba_folder, "links.csv") download_url = "https://downloads.tatoeba.org/exports/" os.makedirs(tatoeba_folder, exist_ok=True) os.makedirs(output_folder, exist_ok=True) # Download files if needed for filepath in [sentences_file_bz2, links_file_bz2]: if not os.path.exists(filepath): url = download_url + os.path.basename(filepath) print("Download", url) sentence_transformers.util.http_get(url, filepath) # Extract files if needed if not os.path.exists(sentences_file): print("Extract", sentences_file_bz2) tar = tarfile.open(sentences_file_bz2, "r:bz2") tar.extract("sentences.csv", path=tatoeba_folder) tar.close() if not os.path.exists(links_file): print("Extract", links_file_bz2) tar = tarfile.open(links_file_bz2, "r:bz2") tar.extract("links.csv", path=tatoeba_folder) tar.close() # Read sentences sentences = {} all_langs = target_languages.union(source_languages) print("Read sentences.csv file") with open(sentences_file, encoding="utf8") as fIn: for line in fIn: id, lang, sentence = line.strip().split("\t") if lang in all_langs: sentences[id] = (lang, sentence) # Read links that map the translations between different languages print("Read links.csv") translations = {src_lang: {trg_lang: {} for trg_lang in target_languages} for src_lang in source_languages} with open(links_file, encoding="utf8") as fIn: for line in fIn: src_id, target_id = line.strip().split() if src_id in sentences and target_id in sentences: src_lang, src_sent = sentences[src_id] trg_lang, trg_sent = sentences[target_id] if src_lang in source_languages and trg_lang in target_languages: if src_sent not in translations[src_lang][trg_lang]: translations[src_lang][trg_lang][src_sent] = [] translations[src_lang][trg_lang][src_sent].append(trg_sent) # Write everything to the output folder print("Write output files") for src_lang in source_languages: for trg_lang in target_languages: source_sentences = list(translations[src_lang][trg_lang]) train_sentences = source_sentences[num_dev_sentences:] dev_sentences = source_sentences[0:num_dev_sentences] print("{}-{} has {} sentences".format(src_lang, trg_lang, len(source_sentences))) if len(dev_sentences) > 0: with gzip.open( os.path.join(output_folder, "Tatoeba-{}-{}-dev.tsv.gz".format(src_lang, trg_lang)), "wt", encoding="utf8", ) as fOut: for sent in dev_sentences: fOut.write("\t".join([sent] + translations[src_lang][trg_lang][sent])) fOut.write("\n") if len(train_sentences) > 0: with gzip.open( os.path.join(output_folder, "Tatoeba-{}-{}-train.tsv.gz".format(src_lang, trg_lang)), "wt", encoding="utf8", ) as fOut: for sent in train_sentences: fOut.write("\t".join([sent] + translations[src_lang][trg_lang][sent])) fOut.write("\n") print("---DONE---")
""" Tatoeba (https://tatoeba.org/) is a collection of sentences and translation, mainly aiming for language learning. It is available for more than 300 languages. This script downloads the Tatoeba corpus and extracts the sentences & translations in the languages you like """ import os import sentence_transformers import tarfile import gzip # Note: Tatoeba uses 3 letter languages codes (ISO-639-2), # while other datasets like OPUS use 2 letter language codes (ISO-639-1) # For training of sentence transformers, which type of language code is used doesn't matter. # For language codes, see: https://en.wikipedia.org/wiki/List_of_ISO_639-2_codes source_languages = set(["eng"]) target_languages = set(["deu", "ara", "tur", "spa", "ita", "fra"]) num_dev_sentences = 1000 # Number of sentences that are used to create a development set tatoeba_folder = "../datasets/tatoeba" output_folder = "parallel-sentences/" sentences_file_bz2 = os.path.join(tatoeba_folder, "sentences.tar.bz2") sentences_file = os.path.join(tatoeba_folder, "sentences.csv") links_file_bz2 = os.path.join(tatoeba_folder, "links.tar.bz2") links_file = os.path.join(tatoeba_folder, "links.csv") download_url = "https://downloads.tatoeba.org/exports/" os.makedirs(tatoeba_folder, exist_ok=True) os.makedirs(output_folder, exist_ok=True) # Download files if needed for filepath in [sentences_file_bz2, links_file_bz2]: if not os.path.exists(filepath): url = download_url + os.path.basename(filepath) print("Download", url) sentence_transformers.util.http_get(url, filepath) # Extract files if needed if not os.path.exists(sentences_file): print("Extract", sentences_file_bz2) tar = tarfile.open(sentences_file_bz2, "r:bz2") tar.extract("sentences.csv", path=tatoeba_folder) tar.close() if not os.path.exists(links_file): print("Extract", links_file_bz2) tar = tarfile.open(links_file_bz2, "r:bz2") tar.extract("links.csv", path=tatoeba_folder) tar.close() # Read sentences sentences = {} all_langs = target_languages.union(source_languages) print("Read sentences.csv file") with open(sentences_file, encoding="utf8") as fIn: for line in fIn: id, lang, sentence = line.strip().split("\t") if lang in all_langs: sentences[id] = (lang, sentence) # Read links that map the translations between different languages print("Read links.csv") translations = {src_lang: {trg_lang: {} for trg_lang in target_languages} for src_lang in source_languages} with open(links_file, encoding="utf8") as fIn: for line in fIn: src_id, target_id = line.strip().split() if src_id in sentences and target_id in sentences: src_lang, src_sent = sentences[src_id] trg_lang, trg_sent = sentences[target_id] if src_lang in source_languages and trg_lang in target_languages: if src_sent not in translations[src_lang][trg_lang]: translations[src_lang][trg_lang][src_sent] = [] translations[src_lang][trg_lang][src_sent].append(trg_sent) # Write everything to the output folder print("Write output files") for src_lang in source_languages: for trg_lang in target_languages: source_sentences = list(translations[src_lang][trg_lang]) train_sentences = source_sentences[num_dev_sentences:] dev_sentences = source_sentences[0:num_dev_sentences] print("{}-{} has {} sentences".format(src_lang, trg_lang, len(source_sentences))) if len(dev_sentences) > 0: with gzip.open( os.path.join(output_folder, "Tatoeba-{}-{}-dev.tsv.gz".format(src_lang, trg_lang)), "wt", encoding="utf8", ) as fOut: for sent in dev_sentences: fOut.write("\t".join([sent] + translations[src_lang][trg_lang][sent])) fOut.write("\n") if len(train_sentences) > 0: with gzip.open( os.path.join(output_folder, "Tatoeba-{}-{}-train.tsv.gz".format(src_lang, trg_lang)), "wt", encoding="utf8", ) as fOut: for sent in train_sentences: fOut.write("\t".join([sent] + translations[src_lang][trg_lang][sent])) fOut.write("\n") print("---DONE---")
import os import numpy as np import pytest from docarray import BaseDoc, DocList, DocVec from docarray.documents import ImageDoc from docarray.typing import NdArray, TorchTensor class MyDoc(BaseDoc): embedding: NdArray text: str image: ImageDoc @pytest.mark.slow @pytest.mark.parametrize( 'protocol', ['pickle-array', 'protobuf-array', 'protobuf', 'pickle', 'json-array'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) @pytest.mark.parametrize('show_progress', [False, True]) @pytest.mark.parametrize('array_cls', [DocList, DocVec]) def test_array_save_load_binary(protocol, compress, tmp_path, show_progress, array_cls): tmp_file = os.path.join(tmp_path, 'test') da = array_cls[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ] ) da.save_binary( tmp_file, protocol=protocol, compress=compress, show_progress=show_progress ) da2 = array_cls[MyDoc].load_binary( tmp_file, protocol=protocol, compress=compress, show_progress=show_progress ) assert len(da2) == 2 assert len(da) == len(da2) for d1, d2 in zip(da, da2): assert d1.embedding.tolist() == d2.embedding.tolist() assert d1.text == d2.text assert d1.image.url == d2.image.url assert da[1].image.url is None assert da2[1].image.url is None @pytest.mark.slow @pytest.mark.parametrize( 'protocol', ['pickle-array', 'protobuf-array', 'protobuf', 'pickle', 'json-array'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) @pytest.mark.parametrize('show_progress', [False, True]) @pytest.mark.parametrize('to_doc_vec', [True, False]) def test_array_save_load_binary_streaming( protocol, compress, tmp_path, show_progress, to_doc_vec ): tmp_file = os.path.join(tmp_path, 'test') array_cls = DocVec if to_doc_vec else DocList da = DocList[MyDoc]() def _extend_da(num_docs=100): for _ in range(num_docs): da.extend( [ MyDoc( embedding=np.random.rand(3, 2), text='hello', image=ImageDoc(url='aux.png'), ), ] ) _extend_da() if to_doc_vec: da = da.to_doc_vec() da.save_binary( tmp_file, protocol=protocol, compress=compress, show_progress=show_progress ) da_after = array_cls[MyDoc].load_binary( tmp_file, protocol=protocol, compress=compress, show_progress=show_progress ) for i, doc in enumerate(da_after): assert doc.id == da[i].id assert doc.text == da[i].text assert doc.image.url == da[i].image.url assert i == 99 @pytest.mark.parametrize('tensor_type', [NdArray, TorchTensor]) def test_save_load_tensor_type(tensor_type, tmp_path): tmp_file = os.path.join(tmp_path, 'test123') class MyDoc(BaseDoc): embedding: tensor_type text: str image: ImageDoc da = DocVec[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ], tensor_type=tensor_type, ) da.save_binary(tmp_file) da2 = DocVec[MyDoc].load_binary(tmp_file, tensor_type=tensor_type) assert da2.tensor_type == tensor_type assert isinstance(da2.embedding, tensor_type)
import os import numpy as np import pytest from docarray import BaseDoc, DocList, DocVec from docarray.documents import ImageDoc from docarray.typing import NdArray class MyDoc(BaseDoc): embedding: NdArray text: str image: ImageDoc @pytest.mark.slow @pytest.mark.parametrize( 'protocol', ['pickle-array', 'protobuf-array', 'protobuf', 'pickle', 'json-array'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) @pytest.mark.parametrize('show_progress', [False, True]) @pytest.mark.parametrize('array_cls', [DocList, DocVec]) def test_array_save_load_binary(protocol, compress, tmp_path, show_progress, array_cls): tmp_file = os.path.join(tmp_path, 'test') da = array_cls[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ] ) da.save_binary( tmp_file, protocol=protocol, compress=compress, show_progress=show_progress ) da2 = array_cls[MyDoc].load_binary( tmp_file, protocol=protocol, compress=compress, show_progress=show_progress ) assert len(da2) == 2 assert len(da) == len(da2) for d1, d2 in zip(da, da2): assert d1.embedding.tolist() == d2.embedding.tolist() assert d1.text == d2.text assert d1.image.url == d2.image.url assert da[1].image.url is None assert da2[1].image.url is None @pytest.mark.slow @pytest.mark.parametrize( 'protocol', ['pickle-array', 'protobuf-array', 'protobuf', 'pickle', 'json-array'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) @pytest.mark.parametrize('show_progress', [False, True]) @pytest.mark.parametrize('to_doc_vec', [True, False]) def test_array_save_load_binary_streaming( protocol, compress, tmp_path, show_progress, to_doc_vec ): tmp_file = os.path.join(tmp_path, 'test') array_cls = DocVec if to_doc_vec else DocList da = DocList[MyDoc]() def _extend_da(num_docs=100): for _ in range(num_docs): da.extend( [ MyDoc( embedding=np.random.rand(3, 2), text='hello', image=ImageDoc(url='aux.png'), ), ] ) _extend_da() if to_doc_vec: da = da.to_doc_vec() da.save_binary( tmp_file, protocol=protocol, compress=compress, show_progress=show_progress ) da_after = array_cls[MyDoc].load_binary( tmp_file, protocol=protocol, compress=compress, show_progress=show_progress ) for i, doc in enumerate(da_after): assert doc.id == da[i].id assert doc.text == da[i].text assert doc.image.url == da[i].image.url assert i == 99
import pyarrow as pa import pytest from datasets.builder import InvalidConfigName from datasets.data_files import DataFilesList from datasets.packaged_modules.arrow.arrow import Arrow, ArrowConfig @pytest.fixture def arrow_file_streaming_format(tmp_path): filename = tmp_path / "stream.arrow" testdata = [[1, 1, 1], [0, 100, 6], [1, 90, 900]] schema = pa.schema([pa.field("input_ids", pa.list_(pa.int32()))]) array = pa.array(testdata, type=pa.list_(pa.int32())) table = pa.Table.from_arrays([array], schema=schema) with open(filename, "wb") as f: with pa.ipc.new_stream(f, schema) as writer: writer.write_table(table) return str(filename) @pytest.fixture def arrow_file_file_format(tmp_path): filename = tmp_path / "file.arrow" testdata = [[1, 1, 1], [0, 100, 6], [1, 90, 900]] schema = pa.schema([pa.field("input_ids", pa.list_(pa.int32()))]) array = pa.array(testdata, type=pa.list_(pa.int32())) table = pa.Table.from_arrays([array], schema=schema) with open(filename, "wb") as f: with pa.ipc.new_file(f, schema) as writer: writer.write_table(table) return str(filename) @pytest.mark.parametrize( "file_fixture, config_kwargs", [ ("arrow_file_streaming_format", {}), ("arrow_file_file_format", {}), ], ) def test_arrow_generate_tables(file_fixture, config_kwargs, request): arrow = Arrow(**config_kwargs) generator = arrow._generate_tables([[request.getfixturevalue(file_fixture)]]) pa_table = pa.concat_tables([table for _, table in generator]) expected = {"input_ids": [[1, 1, 1], [0, 100, 6], [1, 90, 900]]} assert pa_table.to_pydict() == expected def test_config_raises_when_invalid_name() -> None: with pytest.raises(InvalidConfigName, match="Bad characters"): _ = ArrowConfig(name="name-with-*-invalid-character") @pytest.mark.parametrize("data_files", ["str_path", ["str_path"], DataFilesList(["str_path"], [()])]) def test_config_raises_when_invalid_data_files(data_files) -> None: with pytest.raises(ValueError, match="Expected a DataFilesDict"): _ = ArrowConfig(name="name", data_files=data_files)
import pytest from datasets.builder import InvalidConfigName from datasets.data_files import DataFilesList from datasets.packaged_modules.arrow.arrow import ArrowConfig def test_config_raises_when_invalid_name() -> None: with pytest.raises(InvalidConfigName, match="Bad characters"): _ = ArrowConfig(name="name-with-*-invalid-character") @pytest.mark.parametrize("data_files", ["str_path", ["str_path"], DataFilesList(["str_path"], [()])]) def test_config_raises_when_invalid_data_files(data_files) -> None: with pytest.raises(ValueError, match="Expected a DataFilesDict"): _ = ArrowConfig(name="name", data_files=data_files)
from __future__ import annotations from typing import Callable try: from typing import Self except ImportError: from typing_extensions import Self from torch import Tensor, nn from sentence_transformers.models.Module import Module from sentence_transformers.util import fullname, import_from_string class Dense(Module): """ Feed-forward function with activation function. This layer takes a fixed-sized sentence embedding and passes it through a feed-forward layer. Can be used to generate deep averaging networks (DAN). Args: in_features: Size of the input dimension out_features: Output size bias: Add a bias vector activation_function: Pytorch activation function applied on output init_weight: Initial value for the matrix of the linear layer init_bias: Initial value for the bias of the linear layer """ config_keys: list[str] = [ "in_features", "out_features", "bias", "activation_function", ] def __init__( self, in_features: int, out_features: int, bias: bool = True, activation_function: Callable[[Tensor], Tensor] | None = nn.Tanh(), init_weight: Tensor | None = None, init_bias: Tensor | None = None, ): super().__init__() self.in_features = in_features self.out_features = out_features self.bias = bias self.activation_function = nn.Identity() if activation_function is None else activation_function self.linear = nn.Linear(in_features, out_features, bias=bias) if init_weight is not None: self.linear.weight = nn.Parameter(init_weight) if init_bias is not None: self.linear.bias = nn.Parameter(init_bias) def forward(self, features: dict[str, Tensor]): features.update({"sentence_embedding": self.activation_function(self.linear(features["sentence_embedding"]))}) return features def get_sentence_embedding_dimension(self) -> int: return self.out_features def get_config_dict(self): return { "in_features": self.in_features, "out_features": self.out_features, "bias": self.bias, "activation_function": fullname(self.activation_function), } def save(self, output_path: str, *args, safe_serialization: bool = True, **kwargs) -> None: self.save_config(output_path) self.save_torch_weights(output_path, safe_serialization=safe_serialization) def __repr__(self): return f"Dense({self.get_config_dict()})" @classmethod def load( cls, model_name_or_path: str, subfolder: str = "", token: bool | str | None = None, cache_folder: str | None = None, revision: str | None = None, local_files_only: bool = False, **kwargs, ) -> Self: hub_kwargs = { "subfolder": subfolder, "token": token, "cache_folder": cache_folder, "revision": revision, "local_files_only": local_files_only, } config = cls.load_config(model_name_or_path=model_name_or_path, **hub_kwargs) config["activation_function"] = import_from_string(config["activation_function"])() model = cls(**config) model = cls.load_torch_weights(model_name_or_path=model_name_or_path, model=model, **hub_kwargs) return model
from __future__ import annotations import json import os from typing import Callable import torch from safetensors.torch import load_model as load_safetensors_model from safetensors.torch import save_model as save_safetensors_model from torch import Tensor, nn from sentence_transformers.util import fullname, import_from_string class Dense(nn.Module): """ Feed-forward function with activation function. This layer takes a fixed-sized sentence embedding and passes it through a feed-forward layer. Can be used to generate deep averaging networks (DAN). Args: in_features: Size of the input dimension out_features: Output size bias: Add a bias vector activation_function: Pytorch activation function applied on output init_weight: Initial value for the matrix of the linear layer init_bias: Initial value for the bias of the linear layer """ def __init__( self, in_features: int, out_features: int, bias: bool = True, activation_function: Callable[[Tensor], Tensor] | None = nn.Tanh(), init_weight: Tensor | None = None, init_bias: Tensor | None = None, ): super().__init__() self.in_features = in_features self.out_features = out_features self.bias = bias self.activation_function = nn.Identity() if activation_function is None else activation_function self.linear = nn.Linear(in_features, out_features, bias=bias) if init_weight is not None: self.linear.weight = nn.Parameter(init_weight) if init_bias is not None: self.linear.bias = nn.Parameter(init_bias) def forward(self, features: dict[str, Tensor]): features.update({"sentence_embedding": self.activation_function(self.linear(features["sentence_embedding"]))}) return features def get_sentence_embedding_dimension(self) -> int: return self.out_features def get_config_dict(self): return { "in_features": self.in_features, "out_features": self.out_features, "bias": self.bias, "activation_function": fullname(self.activation_function), } def save(self, output_path, safe_serialization: bool = True) -> None: with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut) if safe_serialization: save_safetensors_model(self, os.path.join(output_path, "model.safetensors")) else: torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def __repr__(self): return f"Dense({self.get_config_dict()})" @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) config["activation_function"] = import_from_string(config["activation_function"])() model = Dense(**config) if os.path.exists(os.path.join(input_path, "model.safetensors")): load_safetensors_model(model, os.path.join(input_path, "model.safetensors")) else: model.load_state_dict( torch.load( os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu"), weights_only=True ) ) return model
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Callable import numpy as np import pytest from jina import Document, DocumentArray, Flow from ...audioclip_image import AudioCLIPImageEncoder @pytest.mark.parametrize("request_size", [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [ Document(blob=np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)) for _ in range(50) ] ) with Flow(return_results=True).add(uses=AudioCLIPImageEncoder) as flow: resp = flow.post( on="/index", inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding is not None assert doc.embedding.shape == (1024,)
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Callable import numpy as np import pytest from jina import Document, DocumentArray, Flow from jinahub.encoder.audioclip_image import AudioCLIPImageEncoder @pytest.mark.parametrize("request_size", [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [ Document(blob=np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)) for _ in range(50) ] ) with Flow(return_results=True).add(uses=AudioCLIPImageEncoder) as flow: resp = flow.post( on="/index", inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding is not None assert doc.embedding.shape == (1024,)
from setuptools import find_packages, setup with open("README.md", mode="r", encoding="utf-8") as readme_file: readme = readme_file.read() setup( name="sentence-transformers", version="3.1.0.dev0", author="Nils Reimers, Tom Aarsen", author_email="info@nils-reimers.de", description="Multilingual text embeddings", long_description=readme, long_description_content_type="text/markdown", license="Apache License 2.0", url="https://www.SBERT.net", download_url="https://github.com/UKPLab/sentence-transformers/", packages=find_packages(), include_package_data=True, python_requires=">=3.8.0", install_requires=[ "transformers>=4.38.0,<5.0.0", "tqdm", "torch>=1.11.0", "numpy<2.0.0", "scikit-learn", "scipy", "huggingface-hub>=0.19.3", "Pillow", ], extras_require={ "train": [ "datasets", "accelerate>=0.20.3", ], "dev": [ "datasets", "accelerate>=0.20.3", "pre-commit", "pytest", "ruff>=0.3.0", ], }, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "Programming Language :: Python :: 3.12", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], keywords="Transformer Networks BERT XLNet sentence embedding PyTorch NLP deep learning", )
from setuptools import find_packages, setup with open("README.md", mode="r", encoding="utf-8") as readme_file: readme = readme_file.read() setup( name="sentence-transformers", version="3.1.0.dev0", author="Nils Reimers, Tom Aarsen", author_email="info@nils-reimers.de", description="Multilingual text embeddings", long_description=readme, long_description_content_type="text/markdown", license="Apache License 2.0", url="https://www.SBERT.net", download_url="https://github.com/UKPLab/sentence-transformers/", packages=find_packages(), include_package_data=True, python_requires=">=3.8.0", install_requires=[ "transformers>=4.34.0,<5.0.0", "tqdm", "torch>=1.11.0", "numpy", "scikit-learn", "scipy", "huggingface-hub>=0.15.1", "Pillow", ], extras_require={ "train": [ "datasets", "accelerate>=0.20.3", ], "dev": [ "datasets", "accelerate>=0.20.3", "pre-commit", "pytest", "ruff>=0.3.0", ], }, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "Programming Language :: Python :: 3.12", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], keywords="Transformer Networks BERT XLNet sentence embedding PyTorch NLP deep learning", )
"""Rss reader.""" from typing import List, Any, Union import logging from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document logger = logging.getLogger(__name__) class RssReader(BasePydanticReader): """RSS reader. Reads content from an RSS feed. """ is_remote: bool = True html_to_text: bool = False user_agent: Union[str, None] = None def __init__(self, **kwargs: Any) -> None: super().__init__(**kwargs) # https://pythonhosted.org/feedparser/http-useragent.html self.user_agent = kwargs.get("user_agent", None) @classmethod def class_name(cls) -> str: return "RssReader" def load_data(self, urls: List[str]) -> List[Document]: """Load data from RSS feeds. Args: urls (List[str]): List of RSS URLs to load. Returns: List[Document]: List of documents. """ import feedparser if self.user_agent: feedparser.USER_AGENT = self.user_agent if not isinstance(urls, list): raise ValueError("urls must be a list of strings.") documents = [] for url in urls: parsed = feedparser.parse(url) for entry in parsed.entries: doc_id = getattr(entry, "id", None) or getattr(entry, "link", None) data = entry.get("content", [{}])[0].get( "value", entry.get("description", entry.get("summary", "")) ) if self.html_to_text: import html2text data = html2text.html2text(data) extra_info = { "title": getattr(entry, "title", None), "link": getattr(entry, "link", None), "date": getattr(entry, "published", None), } if doc_id: documents.append( Document(text=data, id_=doc_id, extra_info=extra_info) ) else: documents.append(Document(text=data, extra_info=extra_info)) return documents if __name__ == "__main__": default_reader = RssReader() print( default_reader.load_data(urls=["https://rsshub.app/hackernews/newest"]) ) # 0 blocked by cloudflare reader = RssReader(user_agent="MyApp/1.0 +http://example.com/") print(reader.load_data(urls=["https://rsshub.app/hackernews/newest"]))
"""Rss reader.""" from typing import List from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document class RssReader(BasePydanticReader): """RSS reader. Reads content from an RSS feed. """ is_remote: bool = True html_to_text: bool = False @classmethod def class_name(cls) -> str: return "RssReader" def load_data(self, urls: List[str]) -> List[Document]: """Load data from RSS feeds. Args: urls (List[str]): List of RSS URLs to load. Returns: List[Document]: List of documents. """ import feedparser if not isinstance(urls, list): raise ValueError("urls must be a list of strings.") documents = [] for url in urls: parsed = feedparser.parse(url) for entry in parsed.entries: doc_id = getattr(entry, "id", None) or getattr(entry, "link", None) data = entry.get("content", [{}])[0].get( "value", entry.get("description", entry.get("summary", "")) ) if self.html_to_text: import html2text data = html2text.html2text(data) extra_info = { "title": getattr(entry, "title", None), "link": getattr(entry, "link", None), "date": getattr(entry, "published", None), } if doc_id: documents.append( Document(text=data, id_=doc_id, extra_info=extra_info) ) else: documents.append(Document(text=data, extra_info=extra_info)) return documents
"""Tool for the SemanticScholar API.""" from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import BaseModel, Field from langchain_community.utilities.semanticscholar import SemanticScholarAPIWrapper class SemantscholarInput(BaseModel): """Input for the SemanticScholar tool.""" query: str = Field(description="search query to look up") class SemanticScholarQueryRun(BaseTool): """Tool that searches the semanticscholar API.""" name: str = "semanticscholar" description: str = ( "A wrapper around semantischolar.org " "Useful for when you need to answer to questions" "from research papers." "Input should be a search query." ) api_wrapper: SemanticScholarAPIWrapper = Field( default_factory=SemanticScholarAPIWrapper # type: ignore[arg-type] ) args_schema: Type[BaseModel] = SemantscholarInput def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Semantic Scholar tool.""" return self.api_wrapper.run(query)
"""Tool for the SemanticScholar API.""" from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import BaseModel, Field from langchain_community.utilities.semanticscholar import SemanticScholarAPIWrapper class SemantscholarInput(BaseModel): """Input for the SemanticScholar tool.""" query: str = Field(description="search query to look up") class SemanticScholarQueryRun(BaseTool): # type: ignore[override, override] """Tool that searches the semanticscholar API.""" name: str = "semanticscholar" description: str = ( "A wrapper around semantischolar.org " "Useful for when you need to answer to questions" "from research papers." "Input should be a search query." ) api_wrapper: SemanticScholarAPIWrapper = Field( default_factory=SemanticScholarAPIWrapper # type: ignore[arg-type] ) args_schema: Type[BaseModel] = SemantscholarInput def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Semantic Scholar tool.""" return self.api_wrapper.run(query)
# Copyright (c) OpenMMLab. All rights reserved. import os import os.path as osp import warnings import numpy as np import onnx import onnxruntime as ort import torch import torch.nn as nn ort_custom_op_path = '' try: from mmcv.ops import get_onnxruntime_op_path ort_custom_op_path = get_onnxruntime_op_path() except (ImportError, ModuleNotFoundError): warnings.warn('If input model has custom op from mmcv, \ you may have to build mmcv with ONNXRuntime from source.') class WrapFunction(nn.Module): """Wrap the function to be tested for torch.onnx.export tracking.""" def __init__(self, wrapped_function): super(WrapFunction, self).__init__() self.wrapped_function = wrapped_function def forward(self, *args, **kwargs): return self.wrapped_function(*args, **kwargs) def ort_validate(model, feats, onnx_io='tmp.onnx'): """Validate the output of the onnxruntime backend is the same as the output generated by torch. Args: model (nn.Module | function): the function of model or model to be verified. feats (tuple(list(torch.Tensor)) | list(torch.Tensor) | torch.Tensor): the input of model. onnx_io (str): the name of onnx output file. """ # if model is not an instance of nn.Module, then it is a normal # function and it should be wrapped. if isinstance(model, nn.Module): wrap_model = model else: wrap_model = WrapFunction(model) wrap_model.cpu().eval() with torch.no_grad(): torch.onnx.export( wrap_model, feats, onnx_io, export_params=True, keep_initializers_as_inputs=True, do_constant_folding=True, verbose=False, opset_version=11) if isinstance(feats, tuple): ort_feats = [] for feat in feats: ort_feats += feat else: ort_feats = feats # default model name: tmp.onnx onnx_outputs = get_ort_model_output(ort_feats) # remove temp file if osp.exists(onnx_io): os.remove(onnx_io) if isinstance(feats, tuple): torch_outputs = convert_result_list(wrap_model.forward(*feats)) else: torch_outputs = convert_result_list(wrap_model.forward(feats)) torch_outputs = [ torch_output.detach().numpy() for torch_output in torch_outputs ] # match torch_outputs and onnx_outputs for i in range(len(onnx_outputs)): np.testing.assert_allclose( torch_outputs[i], onnx_outputs[i], rtol=1e-03, atol=1e-05) def get_ort_model_output(feat, onnx_io='tmp.onnx'): """Run the model in onnxruntime env. Args: feat (list[Tensor]): A list of tensors from torch.rand, each is a 4D-tensor. Returns: list[np.array]: onnxruntime infer result, each is a np.array """ onnx_model = onnx.load(onnx_io) onnx.checker.check_model(onnx_model) session_options = ort.SessionOptions() # register custom op for onnxruntime if osp.exists(ort_custom_op_path): session_options.register_custom_ops_library(ort_custom_op_path) sess = ort.InferenceSession(onnx_io, session_options) if isinstance(feat, torch.Tensor): onnx_outputs = sess.run(None, {sess.get_inputs()[0].name: feat.numpy()}) else: onnx_outputs = sess.run(None, { sess.get_inputs()[i].name: feat[i].numpy() for i in range(len(feat)) }) return onnx_outputs def convert_result_list(outputs): """Convert the torch forward outputs containing tuple or list to a list only containing torch.Tensor. Args: output (list(Tensor) | tuple(list(Tensor) | ...): the outputs in torch env, maybe containing nested structures such as list or tuple. Returns: list(Tensor): a list only containing torch.Tensor """ # recursive end condition if isinstance(outputs, torch.Tensor): return [outputs] ret = [] for sub in outputs: ret += convert_result_list(sub) return ret
import os import os.path as osp import warnings import numpy as np import onnx import onnxruntime as ort import torch import torch.nn as nn ort_custom_op_path = '' try: from mmcv.ops import get_onnxruntime_op_path ort_custom_op_path = get_onnxruntime_op_path() except (ImportError, ModuleNotFoundError): warnings.warn('If input model has custom op from mmcv, \ you may have to build mmcv with ONNXRuntime from source.') class WrapFunction(nn.Module): """Wrap the function to be tested for torch.onnx.export tracking.""" def __init__(self, wrapped_function): super(WrapFunction, self).__init__() self.wrapped_function = wrapped_function def forward(self, *args, **kwargs): return self.wrapped_function(*args, **kwargs) def ort_validate(model, feats, onnx_io='tmp.onnx'): """Validate the output of the onnxruntime backend is the same as the output generated by torch. Args: model (nn.Module | function): the function of model or model to be verified. feats (tuple(list(torch.Tensor)) | list(torch.Tensor) | torch.Tensor): the input of model. onnx_io (str): the name of onnx output file. """ # if model is not an instance of nn.Module, then it is a normal # function and it should be wrapped. if isinstance(model, nn.Module): wrap_model = model else: wrap_model = WrapFunction(model) wrap_model.cpu().eval() with torch.no_grad(): torch.onnx.export( wrap_model, feats, onnx_io, export_params=True, keep_initializers_as_inputs=True, do_constant_folding=True, verbose=False, opset_version=11) if isinstance(feats, tuple): ort_feats = [] for feat in feats: ort_feats += feat else: ort_feats = feats # default model name: tmp.onnx onnx_outputs = get_ort_model_output(ort_feats) # remove temp file if osp.exists(onnx_io): os.remove(onnx_io) if isinstance(feats, tuple): torch_outputs = convert_result_list(wrap_model.forward(*feats)) else: torch_outputs = convert_result_list(wrap_model.forward(feats)) torch_outputs = [ torch_output.detach().numpy() for torch_output in torch_outputs ] # match torch_outputs and onnx_outputs for i in range(len(onnx_outputs)): np.testing.assert_allclose( torch_outputs[i], onnx_outputs[i], rtol=1e-03, atol=1e-05) def get_ort_model_output(feat, onnx_io='tmp.onnx'): """Run the model in onnxruntime env. Args: feat (list[Tensor]): A list of tensors from torch.rand, each is a 4D-tensor. Returns: list[np.array]: onnxruntime infer result, each is a np.array """ onnx_model = onnx.load(onnx_io) onnx.checker.check_model(onnx_model) session_options = ort.SessionOptions() # register custom op for onnxruntime if osp.exists(ort_custom_op_path): session_options.register_custom_ops_library(ort_custom_op_path) sess = ort.InferenceSession(onnx_io, session_options) if isinstance(feat, torch.Tensor): onnx_outputs = sess.run(None, {sess.get_inputs()[0].name: feat.numpy()}) else: onnx_outputs = sess.run(None, { sess.get_inputs()[i].name: feat[i].numpy() for i in range(len(feat)) }) return onnx_outputs def convert_result_list(outputs): """Convert the torch forward outputs containing tuple or list to a list only containing torch.Tensor. Args: output (list(Tensor) | tuple(list(Tensor) | ...): the outputs in torch env, maybe containing nested structures such as list or tuple. Returns: list(Tensor): a list only containing torch.Tensor """ # recursive end condition if isinstance(outputs, torch.Tensor): return [outputs] ret = [] for sub in outputs: ret += convert_result_list(sub) return ret
import os from pathlib import Path from jina import Executor def test_config(): ex = Executor.load_config( str(Path(__file__).parents[2] / 'config.yml'), override_with={ 'query_features': ['query'], 'match_features': ['match'], 'relevance_label': 'rel', }, ) assert ex.q_features == ['query'] def test_init(ranker): assert not ranker.model.is_fitted() def test_train(ranker, documents_to_train_stub_model): ranker.train(docs=documents_to_train_stub_model) assert ranker.model.is_fitted() def test_train_with_weights(ranker_with_weight, documents_to_train_stub_model): """Weight field specify the importance of the features.""" ranker_with_weight.train(docs=documents_to_train_stub_model) assert ranker_with_weight.model.is_fitted() def test_dump_load(ranker, documents_to_train_stub_model, tmpdir): model_path = str(tmpdir) + '/model.cbm' ranker.train(docs=documents_to_train_stub_model) assert ranker.model.is_fitted() ranker.dump(parameters={'model_path': model_path}) print(model_path) assert os.path.exists(model_path) ranker.load({'model_path': model_path}) assert ranker.model.is_fitted() def test_rank( ranker, documents_to_train_stub_model, documents_without_label_random_price ): ranker.train(docs=documents_to_train_stub_model) assert ranker.model.is_fitted() matches_before_rank = documents_without_label_random_price.traverse_flat(['m']) for match in matches_before_rank: assert not match.scores.get('relevance').value ranker.rank(documents_without_label_random_price) matches_after_rank = documents_without_label_random_price.traverse_flat(['m']) for match in matches_after_rank: assert isinstance(match.scores.get('relevance').value, float) def test_rank_price_sensitive_model( ranker, documents_to_train_price_sensitive_model, documents_without_label_random_brand, ): """train the model using price sensitive data, assure higher price get lower relevance score.""" ranker.train(docs=documents_to_train_price_sensitive_model) assert ranker.model.is_fitted() ranker.rank(documents_without_label_random_brand) for doc in documents_without_label_random_brand: predicted_relevances = [] predicted_ids = [] expected_ids = ['3', '4', '2', '1'] # Price smaller to large. for match in doc.matches: predicted_relevances.append(match.scores.get('relevance').value) predicted_ids.append(match.id) assert ( predicted_relevances[0] >= predicted_relevances[1] >= predicted_relevances[2] ) assert predicted_ids == expected_ids
import os def test_init(ranker): assert not ranker.model.is_fitted() def test_train(ranker, documents_to_train_stub_model): ranker.train(docs=documents_to_train_stub_model) assert ranker.model.is_fitted() def test_train_with_weights(ranker_with_weight, documents_to_train_stub_model): """Weight field specify the importance of the features.""" ranker_with_weight.train(docs=documents_to_train_stub_model) assert ranker_with_weight.model.is_fitted() def test_dump_load(ranker, documents_to_train_stub_model, tmpdir): model_path = str(tmpdir) + '/model.cbm' ranker.train(docs=documents_to_train_stub_model) assert ranker.model.is_fitted() ranker.dump(parameters={'model_path': model_path}) print(model_path) assert os.path.exists(model_path) ranker.load({'model_path': model_path}) assert ranker.model.is_fitted() def test_rank( ranker, documents_to_train_stub_model, documents_without_label_random_price ): ranker.train(docs=documents_to_train_stub_model) assert ranker.model.is_fitted() matches_before_rank = documents_without_label_random_price.traverse_flat(['m']) for match in matches_before_rank: assert not match.scores.get('relevance').value ranker.rank(documents_without_label_random_price) matches_after_rank = documents_without_label_random_price.traverse_flat(['m']) for match in matches_after_rank: assert isinstance(match.scores.get('relevance').value, float) def test_rank_price_sensitive_model( ranker, documents_to_train_price_sensitive_model, documents_without_label_random_brand, ): """train the model using price sensitive data, assure higher price get lower relevance score.""" ranker.train(docs=documents_to_train_price_sensitive_model) assert ranker.model.is_fitted() ranker.rank(documents_without_label_random_brand) for doc in documents_without_label_random_brand: predicted_relevances = [] predicted_ids = [] expected_ids = ['3', '4', '2', '1'] # Price smaller to large. for match in doc.matches: predicted_relevances.append(match.scores.get('relevance').value) predicted_ids.append(match.id) assert ( predicted_relevances[0] >= predicted_relevances[1] >= predicted_relevances[2] ) assert predicted_ids == expected_ids
"""LangChain **Runnable** and the **LangChain Expression Language (LCEL)**. The LangChain Expression Language (LCEL) offers a declarative method to build production-grade programs that harness the power of LLMs. Programs created using LCEL and LangChain Runnables inherently support synchronous, asynchronous, batch, and streaming operations. Support for **async** allows servers hosting LCEL based programs to scale better for higher concurrent loads. **Batch** operations allow for processing multiple inputs in parallel. **Streaming** of intermediate outputs, as they're being generated, allows for creating more responsive UX. This module contains schema and implementation of LangChain Runnables primitives. """ from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.runnables.base import ( Runnable, RunnableBinding, RunnableGenerator, RunnableLambda, RunnableMap, RunnableParallel, RunnableSequence, RunnableSerializable, chain, ) from langchain_core.runnables.branch import RunnableBranch from langchain_core.runnables.config import ( RunnableConfig, ensure_config, get_config_list, patch_config, run_in_executor, ) from langchain_core.runnables.fallbacks import RunnableWithFallbacks from langchain_core.runnables.history import RunnableWithMessageHistory from langchain_core.runnables.passthrough import ( RunnableAssign, RunnablePassthrough, RunnablePick, ) from langchain_core.runnables.router import RouterInput, RouterRunnable from langchain_core.runnables.utils import ( AddableDict, ConfigurableField, ConfigurableFieldMultiOption, ConfigurableFieldSingleOption, ConfigurableFieldSpec, aadd, add, ) __all__ = [ "chain", "AddableDict", "ConfigurableField", "ConfigurableFieldSingleOption", "ConfigurableFieldMultiOption", "ConfigurableFieldSpec", "ensure_config", "run_in_executor", "patch_config", "RouterInput", "RouterRunnable", "Runnable", "RunnableSerializable", "RunnableBinding", "RunnableBranch", "RunnableConfig", "RunnableGenerator", "RunnableLambda", "RunnableMap", "RunnableParallel", "RunnablePassthrough", "RunnableAssign", "RunnablePick", "RunnableSequence", "RunnableWithFallbacks", "RunnableWithMessageHistory", "get_config_list", "aadd", "add", ] _dynamic_imports = { "chain": "base", "Runnable": "base", "RunnableBinding": "base", "RunnableGenerator": "base", "RunnableLambda": "base", "RunnableMap": "base", "RunnableParallel": "base", "RunnableSequence": "base", "RunnableSerializable": "base", "RunnableBranch": "branch", "RunnableConfig": "config", "ensure_config": "config", "get_config_list": "config", "patch_config": "config", "run_in_executor": "config", "RunnableWithFallbacks": "fallbacks", "RunnableWithMessageHistory": "history", "RunnableAssign": "passthrough", "RunnablePassthrough": "passthrough", "RunnablePick": "passthrough", "RouterInput": "router", "RouterRunnable": "router", "AddableDict": "utils", "ConfigurableField": "utils", "ConfigurableFieldMultiOption": "utils", "ConfigurableFieldSingleOption": "utils", "ConfigurableFieldSpec": "utils", "aadd": "utils", "add": "utils", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""LangChain **Runnable** and the **LangChain Expression Language (LCEL)**. The LangChain Expression Language (LCEL) offers a declarative method to build production-grade programs that harness the power of LLMs. Programs created using LCEL and LangChain Runnables inherently support synchronous, asynchronous, batch, and streaming operations. Support for **async** allows servers hosting LCEL based programs to scale better for higher concurrent loads. **Batch** operations allow for processing multiple inputs in parallel. **Streaming** of intermediate outputs, as they're being generated, allows for creating more responsive UX. This module contains schema and implementation of LangChain Runnables primitives. """ from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.runnables.base import ( Runnable, RunnableBinding, RunnableGenerator, RunnableLambda, RunnableMap, RunnableParallel, RunnableSequence, RunnableSerializable, chain, ) from langchain_core.runnables.branch import RunnableBranch from langchain_core.runnables.config import ( RunnableConfig, ensure_config, get_config_list, patch_config, run_in_executor, ) from langchain_core.runnables.fallbacks import RunnableWithFallbacks from langchain_core.runnables.history import RunnableWithMessageHistory from langchain_core.runnables.passthrough import ( RunnableAssign, RunnablePassthrough, RunnablePick, ) from langchain_core.runnables.router import RouterInput, RouterRunnable from langchain_core.runnables.utils import ( AddableDict, ConfigurableField, ConfigurableFieldMultiOption, ConfigurableFieldSingleOption, ConfigurableFieldSpec, aadd, add, ) __all__ = [ "chain", "AddableDict", "ConfigurableField", "ConfigurableFieldSingleOption", "ConfigurableFieldMultiOption", "ConfigurableFieldSpec", "ensure_config", "run_in_executor", "patch_config", "RouterInput", "RouterRunnable", "Runnable", "RunnableSerializable", "RunnableBinding", "RunnableBranch", "RunnableConfig", "RunnableGenerator", "RunnableLambda", "RunnableMap", "RunnableParallel", "RunnablePassthrough", "RunnableAssign", "RunnablePick", "RunnableSequence", "RunnableWithFallbacks", "RunnableWithMessageHistory", "get_config_list", "aadd", "add", ] _dynamic_imports = { "chain": "base", "Runnable": "base", "RunnableBinding": "base", "RunnableGenerator": "base", "RunnableLambda": "base", "RunnableMap": "base", "RunnableParallel": "base", "RunnableSequence": "base", "RunnableSerializable": "base", "RunnableBranch": "branch", "RunnableConfig": "config", "ensure_config": "config", "get_config_list": "config", "patch_config": "config", "run_in_executor": "config", "RunnableWithFallbacks": "fallbacks", "RunnableWithMessageHistory": "history", "RunnableAssign": "passthrough", "RunnablePassthrough": "passthrough", "RunnablePick": "passthrough", "RouterInput": "router", "RouterRunnable": "router", "AddableDict": "utils", "ConfigurableField": "utils", "ConfigurableFieldMultiOption": "utils", "ConfigurableFieldSingleOption": "utils", "ConfigurableFieldSpec": "utils", "aadd": "utils", "add": "utils", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent # type: ignore[name-defined] if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoNdArray') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_ndarray') class VideoNdArray(NdArray, VideoTensorMixin): """ Subclass of NdArray, to represent a video tensor. Adds video-specific features to the tensor. EXAMPLE USAGE """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoNdArray') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField class VideoNdArray(NdArray, VideoTensorMixin): """ Subclass of NdArray, to represent a video tensor. Adds video-specific features to the tensor. EXAMPLE USAGE """ _PROTO_FIELD_NAME = 'video_ndarray' @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet.data_elements import DetDataSample from mmdet.testing import demo_mm_inputs, get_detector_cfg from mmdet.utils import register_all_modules class TestSingleStageInstanceSegmentor(TestCase): def setUp(self): register_all_modules() @parameterized.expand([ 'solo/solo_r50_fpn_1x_coco.py', 'solo/decoupled_solo_r50_fpn_1x_coco.py', 'solo/decoupled_solo_light_r50_fpn_3x_coco.py', 'solov2/solov2_r50_fpn_1x_coco.py', 'solov2/solov2_light_r18_fpn_mstrain_3x_coco.py' ]) def test_init(self, cfg_file): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector detector = build_detector(model) self.assertTrue(detector.backbone) self.assertTrue(detector.neck) self.assertTrue(detector.mask_head) @parameterized.expand([ ('solo/solo_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solo/decoupled_solo_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solo/decoupled_solo_light_r50_fpn_3x_coco.py', ('cpu', 'cuda')), ('solov2/solov2_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solov2/solov2_light_r18_fpn_mstrain_3x_coco.py', ('cpu', 'cuda')), ]) def test_single_stage_forward_loss_mode(self, cfg_file, devices): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) detector.init_weights() if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() packed_inputs = demo_mm_inputs( 2, [[3, 128, 128], [3, 125, 130]], with_mask=True) batch_inputs, data_samples = detector.data_preprocessor( packed_inputs, True) losses = detector.forward(batch_inputs, data_samples, mode='loss') self.assertIsInstance(losses, dict) @parameterized.expand([ ('solo/solo_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solo/decoupled_solo_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solo/decoupled_solo_light_r50_fpn_3x_coco.py', ('cpu', 'cuda')), ('solov2/solov2_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solov2/solov2_light_r18_fpn_mstrain_3x_coco.py', ('cpu', 'cuda')), ]) def test_single_stage_forward_predict_mode(self, cfg_file, devices): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() packed_inputs = demo_mm_inputs( 2, [[3, 128, 128], [3, 125, 130]], with_mask=True) batch_inputs, data_samples = detector.data_preprocessor( packed_inputs, False) # Test forward test detector.eval() with torch.no_grad(): batch_results = detector.forward( batch_inputs, data_samples, mode='predict') self.assertEqual(len(batch_results), 2) self.assertIsInstance(batch_results[0], DetDataSample)
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet.core import DetDataSample from mmdet.testing import demo_mm_inputs, get_detector_cfg from mmdet.utils import register_all_modules class TestSingleStageInstanceSegmentor(TestCase): def setUp(self): register_all_modules() @parameterized.expand([ 'solo/solo_r50_fpn_1x_coco.py', 'solo/decoupled_solo_r50_fpn_1x_coco.py', 'solo/decoupled_solo_light_r50_fpn_3x_coco.py', 'solov2/solov2_r50_fpn_1x_coco.py', 'solov2/solov2_light_r18_fpn_mstrain_3x_coco.py' ]) def test_init(self, cfg_file): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector detector = build_detector(model) self.assertTrue(detector.backbone) self.assertTrue(detector.neck) self.assertTrue(detector.mask_head) @parameterized.expand([ ('solo/solo_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solo/decoupled_solo_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solo/decoupled_solo_light_r50_fpn_3x_coco.py', ('cpu', 'cuda')), ('solov2/solov2_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solov2/solov2_light_r18_fpn_mstrain_3x_coco.py', ('cpu', 'cuda')), ]) def test_single_stage_forward_loss_mode(self, cfg_file, devices): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) detector.init_weights() if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() packed_inputs = demo_mm_inputs( 2, [[3, 128, 128], [3, 125, 130]], with_mask=True) batch_inputs, data_samples = detector.data_preprocessor( packed_inputs, True) losses = detector.forward(batch_inputs, data_samples, mode='loss') self.assertIsInstance(losses, dict) @parameterized.expand([ ('solo/solo_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solo/decoupled_solo_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solo/decoupled_solo_light_r50_fpn_3x_coco.py', ('cpu', 'cuda')), ('solov2/solov2_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solov2/solov2_light_r18_fpn_mstrain_3x_coco.py', ('cpu', 'cuda')), ]) def test_single_stage_forward_predict_mode(self, cfg_file, devices): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() packed_inputs = demo_mm_inputs( 2, [[3, 128, 128], [3, 125, 130]], with_mask=True) batch_inputs, data_samples = detector.data_preprocessor( packed_inputs, False) # Test forward test detector.eval() with torch.no_grad(): batch_results = detector.forward( batch_inputs, data_samples, mode='predict') self.assertEqual(len(batch_results), 2) self.assertIsInstance(batch_results[0], DetDataSample)
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Callable, List import pytest from jina import DocumentArray, Flow from ...transform_encoder import TransformerTorchEncoder @pytest.mark.parametrize("request_size", [1, 10, 50, 100]) def test_integration(data_generator: Callable, request_size: int): with Flow(return_results=True).add(uses=TransformerTorchEncoder) as flow: resp = flow.post( on="/index", inputs=data_generator(), request_size=request_size, return_results=True ) assert min(len(resp) * request_size, 50) == 50 for r in resp: for doc in r.docs: assert doc.embedding is not None def filter_none(elements): return list(filter(lambda e: e is not None, elements)) @pytest.mark.parametrize( ["docs", "docs_per_path", "traversal_path"], [ (pytest.lazy_fixture("docs_with_text"), [["r", 10], ["c", 0], ["cc", 0]], "r"), ( pytest.lazy_fixture("docs_with_chunk_text"), [["r", 0], ["c", 10], ["cc", 0]], "c", ), ( pytest.lazy_fixture("docs_with_chunk_chunk_text"), [["r", 0], ["c", 0], ["cc", 10]], "cc", ), ], ) def test_traversal_path( docs: DocumentArray, docs_per_path: List[List[str]], traversal_path: str ): def validate_traversal(expected_docs_per_path: List[List[str]]): def validate(res): for path, count in expected_docs_per_path: assert len( filter_none( DocumentArray(res[0].docs) .traverse_flat([path]) .get_attributes("embedding") ) ) == count return validate flow = Flow(return_results=True).add(uses=TransformerTorchEncoder) with flow: resp = flow.post( on="/test", inputs=docs, parameters={"traversal_paths": [traversal_path]}, return_results=True ) validate_traversal(docs_per_path)(resp)
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Callable, List import pytest from jina import DocumentArray, Flow from ...transform_encoder import TransformerTorchEncoder @pytest.mark.parametrize("request_size", [1, 10, 50, 100]) def test_integration(data_generator: Callable, request_size: int): with Flow(return_results=True).add(uses=TransformerTorchEncoder) as flow: resp = flow.post( on="/index", inputs=data_generator(), request_size=request_size, return_results=True ) assert min(len(resp) * request_size, 50) == 50 for r in resp: for doc in r.docs: assert doc.embedding is not None @pytest.mark.parametrize( ["docs", "docs_per_path", "traversal_path"], [ (pytest.lazy_fixture("docs_with_text"), [["r", 10], ["c", 0], ["cc", 0]], "r"), ( pytest.lazy_fixture("docs_with_chunk_text"), [["r", 0], ["c", 10], ["cc", 0]], "c", ), ( pytest.lazy_fixture("docs_with_chunk_chunk_text"), [["r", 0], ["c", 0], ["cc", 10]], "cc", ), ], ) def test_traversal_path( docs: DocumentArray, docs_per_path: List[List[str]], traversal_path: str ): def validate_traversal(expected_docs_per_path: List[List[str]]): def validate(res): for path, count in expected_docs_per_path: return ( len( DocumentArray(res[0].docs) .traverse_flat([path]) .get_attributes("embedding") ) == count ) return validate flow = Flow(return_results=True).add(uses=TransformerTorchEncoder) with flow: resp = flow.post( on="/test", inputs=docs, parameters={"traversal_paths": [traversal_path]}, return_results=True ) assert validate_traversal(docs_per_path)(resp)
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.hooks import Hook from mmdet.registry import HOOKS @HOOKS.register_module() class FastStopTrainingHook(Hook): """Set runner's epoch information to the model.""" def __init__(self, by_epoch, save_ckpt=False, stop_iter_or_epoch=5): self.by_epoch = by_epoch self.save_ckpt = save_ckpt self.stop_iter_or_epoch = stop_iter_or_epoch def after_train_iter(self, runner, batch_idx: int, data_batch: None, outputs: None) -> None: if self.save_ckpt and self.by_epoch: # If it is epoch-based and want to save weights, # we must run at least 1 epoch. return if runner.iter >= self.stop_iter_or_epoch: raise RuntimeError('quick exit') def after_train_epoch(self, runner) -> None: if runner.epoch >= self.stop_iter_or_epoch - 1: raise RuntimeError('quick exit')
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.hooks import Hook from mmdet.registry import HOOKS @HOOKS.register_module() class FastStopTrainingHook(Hook): """Set runner's epoch information to the model.""" def after_train_iter(self, runner, batch_idx: int, data_batch: None, outputs: None) -> None: if batch_idx >= 5: raise RuntimeError('quick exit')
import os from pathlib import Path import pytest from jina import Flow from jina.excepts import RuntimeFailToStart from jina.orchestrate.deployments import Deployment from jina.parsers import set_deployment_parser from jina.serve.executors import BaseExecutor cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_simple_use_abs_import_shall_fail(): with pytest.raises(ModuleNotFoundError): from .dummyhub_abs import DummyHubExecutorAbs DummyHubExecutorAbs() with pytest.raises(RuntimeFailToStart): with Flow().add(uses='DummyHubExecutorAbs'): pass def test_simple_use_relative_import(): from .dummyhub import DummyHubExecutor DummyHubExecutor() with Flow().add(uses='DummyHubExecutor'): pass def test_use_from_local_dir_exe_level(): with BaseExecutor.load_config('dummyhub/config.yml'): pass def test_use_from_local_dir_deployment_level(): a = set_deployment_parser().parse_args(['--uses', 'dummyhub/config.yml']) with Deployment(a): pass def test_use_from_local_dir_flow_level(): with Flow().add(uses='dummyhub/config.yml'): pass @pytest.fixture def local_hub_executor(tmpdir): from hubble.executor import HubExecutor, helper, hubapi pkg_path = Path(__file__).parent / 'dummyhub' stream_data = helper.archive_package(pkg_path) with open(tmpdir / 'dummy_test.zip', 'wb') as temp_zip_file: temp_zip_file.write(stream_data.getvalue()) hubapi.install_local( Path(tmpdir) / 'dummy_test.zip', HubExecutor(uuid='hello', tag='v0') ) @pytest.mark.parametrize('uses', ['jinahub://hello', 'jinaai://jina-ai/hello']) def test_use_from_local_hub_deployment_level( mocker, monkeypatch, local_hub_executor, uses ): from hubble.executor.hubio import HubExecutor, HubIO mock = mocker.Mock() def _mock_fetch( name, *args, **kwargs, ): mock(name=name) return ( HubExecutor( uuid='hello', name='alias_dummy', tag='v0', image_name='jinahub/pod.dummy_mwu_encoder', md5sum=None, visibility=True, archive_url=None, ), False, ) monkeypatch.setattr(HubIO, 'fetch_meta', _mock_fetch) a = set_deployment_parser().parse_args(['--uses', uses]) with Deployment(a): pass @pytest.mark.parametrize('uses', ['jinahub://hello', 'jinaai://jina-ai/hello']) def test_use_from_local_hub_flow_level(mocker, monkeypatch, local_hub_executor, uses): from hubble.executor.hubio import HubExecutor, HubIO mock = mocker.Mock() def _mock_fetch( name, *args, **kwargs, ): mock(name=name) return ( HubExecutor( uuid='hello', name='alias_dummy', tag='v0', image_name='jinahub/pod.dummy_mwu_encoder', md5sum=None, visibility=True, archive_url=None, ), False, ) monkeypatch.setattr(HubIO, 'fetch_meta', _mock_fetch) with Flow().add(uses=uses, install_requirements=True): pass
import os from pathlib import Path import pytest from jina import Flow from jina.excepts import RuntimeFailToStart from jina.orchestrate.deployments import Deployment from jina.parsers import set_deployment_parser from jina.serve.executors import BaseExecutor cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_simple_use_abs_import_shall_fail(): with pytest.raises(ModuleNotFoundError): from .dummyhub_abs import DummyHubExecutorAbs DummyHubExecutorAbs() with pytest.raises(RuntimeFailToStart): with Flow().add(uses='DummyHubExecutorAbs'): pass def test_simple_use_relative_import(): from .dummyhub import DummyHubExecutor DummyHubExecutor() with Flow().add(uses='DummyHubExecutor'): pass def test_use_from_local_dir_exe_level(): with BaseExecutor.load_config('dummyhub/config.yml'): pass def test_use_from_local_dir_deployment_level(): a = set_deployment_parser().parse_args(['--uses', 'dummyhub/config.yml']) with Deployment(a): pass def test_use_from_local_dir_flow_level(): with Flow().add(uses='dummyhub/config.yml'): pass @pytest.fixture def local_hub_executor(tmpdir): from hubble.executor import HubExecutor, helper, hubapi pkg_path = Path(__file__).parent / 'dummyhub' stream_data = helper.archive_package(pkg_path) with open(tmpdir / 'dummy_test.zip', 'wb') as temp_zip_file: temp_zip_file.write(stream_data.getvalue()) hubapi.install_local( Path(tmpdir) / 'dummy_test.zip', HubExecutor(uuid='hello', tag='v0') ) @pytest.mark.parametrize('uses', ['jinahub://hello', 'jinaai://jina-ai/hello']) def test_use_from_local_hub_deployment_level( mocker, monkeypatch, local_hub_executor, uses ): from hubble.executor.hubio import HubExecutor, HubIO mock = mocker.Mock() def _mock_fetch( name, tag, image_required=True, rebuild_image=True, *, prefer_platform=None, secret=None, force=False, ): mock(name=name) return ( HubExecutor( uuid='hello', name='alias_dummy', tag='v0', image_name='jinahub/pod.dummy_mwu_encoder', md5sum=None, visibility=True, archive_url=None, ), False, ) monkeypatch.setattr(HubIO, 'fetch_meta', _mock_fetch) a = set_deployment_parser().parse_args(['--uses', uses]) with Deployment(a): pass @pytest.mark.parametrize('uses', ['jinahub://hello', 'jinaai://jina-ai/hello']) def test_use_from_local_hub_flow_level(mocker, monkeypatch, local_hub_executor, uses): from hubble.executor.hubio import HubExecutor, HubIO mock = mocker.Mock() def _mock_fetch( name, tag, image_required=True, rebuild_image=True, *, prefer_platform=None, secret=None, force=False, ): mock(name=name) return ( HubExecutor( uuid='hello', name='alias_dummy', tag='v0', image_name='jinahub/pod.dummy_mwu_encoder', md5sum=None, visibility=True, archive_url=None, ), False, ) monkeypatch.setattr(HubIO, 'fetch_meta', _mock_fetch) with Flow().add(uses=uses, install_requirements=True): pass
# Copyright (c) OpenMMLab. All rights reserved. from .vis_backend import (BaseVisBackend, ClearMLVisBackend, LocalVisBackend, MLflowVisBackend, NeptuneVisBackend, TensorboardVisBackend, WandbVisBackend) from .visualizer import Visualizer __all__ = [ 'Visualizer', 'BaseVisBackend', 'LocalVisBackend', 'WandbVisBackend', 'TensorboardVisBackend', 'MLflowVisBackend', 'ClearMLVisBackend', 'NeptuneVisBackend' ]
# Copyright (c) OpenMMLab. All rights reserved. from .vis_backend import (BaseVisBackend, ClearMLVisBackend, LocalVisBackend, MLflowVisBackend, TensorboardVisBackend, WandbVisBackend) from .visualizer import Visualizer __all__ = [ 'Visualizer', 'BaseVisBackend', 'LocalVisBackend', 'WandbVisBackend', 'TensorboardVisBackend', 'MLflowVisBackend', 'ClearMLVisBackend' ]