input
stringlengths
33
5k
output
stringlengths
32
5k
""" This script translates the queries in the MS MARCO dataset to the defined target languages. For machine translation, we use EasyNMT: https://github.com/UKPLab/EasyNMT You can install it via: pip install easynmt Usage: python translate_queries [target_language] """ import logging import os import sys import tarfile from easynmt import EasyNMT from sentence_transformers import LoggingHandler, util #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout target_lang = sys.argv[1] output_folder = "multilingual-data" data_folder = "../msmarco-data" output_filename = os.path.join(output_folder, "train_queries.en-{}.tsv".format(target_lang)) os.makedirs(output_folder, exist_ok=True) ## Does the output file exists? If yes, read it so we can continue the translation translated_qids = set() if os.path.exists(output_filename): with open(output_filename, "r", encoding="utf8") as fIn: for line in fIn: splits = line.strip().split("\t") translated_qids.add(splits[0]) ### Now we read the MS Marco dataset os.makedirs(data_folder, exist_ok=True) # Read qrels file for relevant positives per query train_queries = {} qrels_train = os.path.join(data_folder, "qrels.train.tsv") if not os.path.exists(qrels_train): util.http_get("https://msmarco.z22.web.core.windows.net/msmarcoranking/qrels.train.tsv", qrels_train) with open(qrels_train) as fIn: for line in fIn: qid, _, pid, _ = line.strip().split() if qid not in translated_qids: train_queries[qid] = None # Read all queries queries_filepath = os.path.join(data_folder, "queries.train.tsv") if not os.path.exists(queries_filepath): tar_filepath = os.path.join(data_folder, "queries.tar.gz") if not os.path.exists(tar_filepath): logging.info("Download queries.tar.gz") util.http_get("https://msmarco.z22.web.core.windows.net/msmarcoranking/queries.tar.gz", tar_filepath) with tarfile.open(tar_filepath, "r:gz") as tar: tar.extractall(path=data_folder) with open(queries_filepath, "r", encoding="utf8") as fIn: for line in fIn: qid, query = line.strip().split("\t") if qid in train_queries: train_queries[qid] = query.strip() qids = [qid for qid in train_queries if train_queries[qid] is not None] queries = [train_queries[qid] for qid in qids] # Define our translation model translation_model = EasyNMT("opus-mt") print("Start translation of {} queries.".format(len(queries))) print("This can take a while. But you can stop this script at any point") with open(output_filename, "a" if os.path.exists(output_filename) else "w", encoding="utf8") as fOut: for qid, query, translated_query in zip( qids, queries, translation_model.translate_stream( queries, source_lang="en", target_lang=target_lang, beam_size=2, perform_sentence_splitting=False, chunk_size=256, batch_size=64, ), ): fOut.write("{}\t{}\n".format(qid, translated_query.replace("\t", " "))) fOut.flush()
""" This script translates the queries in the MS MARCO dataset to the defined target languages. For machine translation, we use EasyNMT: https://github.com/UKPLab/EasyNMT You can install it via: pip install easynmt Usage: python translate_queries [target_language] """ import os from sentence_transformers import LoggingHandler, util import logging import tarfile from easynmt import EasyNMT import sys #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout target_lang = sys.argv[1] output_folder = "multilingual-data" data_folder = "../msmarco-data" output_filename = os.path.join(output_folder, "train_queries.en-{}.tsv".format(target_lang)) os.makedirs(output_folder, exist_ok=True) ## Does the output file exists? If yes, read it so we can continue the translation translated_qids = set() if os.path.exists(output_filename): with open(output_filename, "r", encoding="utf8") as fIn: for line in fIn: splits = line.strip().split("\t") translated_qids.add(splits[0]) ### Now we read the MS Marco dataset os.makedirs(data_folder, exist_ok=True) # Read qrels file for relevant positives per query train_queries = {} qrels_train = os.path.join(data_folder, "qrels.train.tsv") if not os.path.exists(qrels_train): util.http_get("https://msmarco.z22.web.core.windows.net/msmarcoranking/qrels.train.tsv", qrels_train) with open(qrels_train) as fIn: for line in fIn: qid, _, pid, _ = line.strip().split() if qid not in translated_qids: train_queries[qid] = None # Read all queries queries_filepath = os.path.join(data_folder, "queries.train.tsv") if not os.path.exists(queries_filepath): tar_filepath = os.path.join(data_folder, "queries.tar.gz") if not os.path.exists(tar_filepath): logging.info("Download queries.tar.gz") util.http_get("https://msmarco.z22.web.core.windows.net/msmarcoranking/queries.tar.gz", tar_filepath) with tarfile.open(tar_filepath, "r:gz") as tar: tar.extractall(path=data_folder) with open(queries_filepath, "r", encoding="utf8") as fIn: for line in fIn: qid, query = line.strip().split("\t") if qid in train_queries: train_queries[qid] = query.strip() qids = [qid for qid in train_queries if train_queries[qid] is not None] queries = [train_queries[qid] for qid in qids] # Define our translation model translation_model = EasyNMT("opus-mt") print("Start translation of {} queries.".format(len(queries))) print("This can take a while. But you can stop this script at any point") with open(output_filename, "a" if os.path.exists(output_filename) else "w", encoding="utf8") as fOut: for qid, query, translated_query in zip( qids, queries, translation_model.translate_stream( queries, source_lang="en", target_lang=target_lang, beam_size=2, perform_sentence_splitting=False, chunk_size=256, batch_size=64, ), ): fOut.write("{}\t{}\n".format(qid, translated_query.replace("\t", " "))) fOut.flush()
"""Wordpress reader.""" import warnings from typing import List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class WordpressReader(BaseReader): """ Wordpress reader. Reads data from a Wordpress workspace. Args: url (str): Base URL of the WordPress site. username (Optional[str]): WordPress username for authentication. password (Optional[str]): WordPress password for authentication. get_pages (bool): Retrieve static WordPress 'pages'. Default True. get_posts (bool): Retrieve WordPress 'posts' (blog entries). Default True. additional_post_types (Optional[str]): Comma-separated list of additional post types to retrieve (e.g., 'my-custom-page,webinars'). Default is None. """ def __init__( self, url: str, username: Optional[str] = None, password: Optional[str] = None, get_pages: bool = True, get_posts: bool = True, additional_post_types: Optional[str] = None, ) -> None: """Initialize Wordpress reader.""" self.url = url self.username = username self.password = password # Use a set to prevent duplicates self.post_types = set() # Add default types based on backward-compatible options if get_pages: self.post_types.add("pages") if get_posts: self.post_types.add("posts") # Add any additional post types specified if additional_post_types: self.post_types.update( post_type.strip() for post_type in additional_post_types.split(",") ) # Convert post_types back to a list self.post_types = list(self.post_types) def load_data(self) -> List[Document]: """ Load data from the specified post types. Returns: List[Document]: List of documents. """ from bs4 import BeautifulSoup, GuessedAtParserWarning # Suppressing this warning because guessing at the parser is the # desired behavior -- we don't want to force lxml on packages # where it's not installed. warnings.filterwarnings("ignore", category=GuessedAtParserWarning) results = [] articles = [] # Fetch articles for each specified post type for post_type in self.post_types: articles.extend(self.get_all_posts(post_type)) # Process each article to extract content and metadata for article in articles: body = article.get("content", {}).get("rendered", None) if body is None: body = article.get("content") soup = BeautifulSoup(body) body = soup.get_text() title = article.get("title", {}).get("rendered", None) or article.get( "title" ) extra_info = { "id": article["id"], "title": title, "url": article["link"], "updated_at": article["modified"], } results.append( Document( text=body, extra_info=extra_info, ) ) return results def get_all_posts(self, post_type: str) -> List[dict]: """Retrieve all posts of a specific type, handling pagination.""" posts = [] next_page = 1 while True: response = self.get_posts_page(post_type, next_page) posts.extend(response["articles"]) next_page = response["next_page"] if next_page is None: break return posts def get_posts_page(self, post_type: str, current_page: int = 1) -> dict: """Retrieve a single page of posts for a given post type.""" import requests url = f"{self.url}/wp-json/wp/v2/{post_type}?per_page=100&page={current_page}" # Handle authentication if username and password are provided auth = ( (self.username, self.password) if self.username and self.password else None ) response = requests.get(url, auth=auth) response.raise_for_status() # Raise an error for bad responses headers = response.headers num_pages = int(headers.get("X-WP-TotalPages", 1)) next_page = current_page + 1 if num_pages > current_page else None articles = response.json() return {"articles": articles, "next_page": next_page}
"""Wordpress reader.""" import warnings from typing import List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class WordpressReader(BaseReader): """ Wordpress reader. Reads data from a Wordpress workspace. Args: url (str): Base URL of the WordPress site. username (Optional[str]): WordPress username for authentication. password (Optional[str]): WordPress password for authentication. get_pages (bool): Retrieve static WordPress 'pages'. Default True. get_posts (bool): Retrieve WordPress 'posts' (blog entries). Default True. additional_post_types (Optional[str]): Comma-separated list of additional post types to retrieve (e.g., 'my-custom-page,webinars'). Default is None. """ def __init__( self, url: str, username: Optional[str] = None, password: Optional[str] = None, get_pages: bool = True, get_posts: bool = True, additional_post_types: Optional[str] = None, ) -> None: """Initialize Wordpress reader.""" self.url = url self.username = username self.password = password # Use a set to prevent duplicates self.post_types = set() # Add default types based on backward-compatible options if get_pages: self.post_types.add("pages") if get_posts: self.post_types.add("posts") # Add any additional post types specified if additional_post_types: self.post_types.update( post_type.strip() for post_type in additional_post_types.split(",") ) # Convert post_types back to a list self.post_types = list(self.post_types) def load_data(self) -> List[Document]: """ Load data from the specified post types. Returns: List[Document]: List of documents. """ from bs4 import BeautifulSoup, GuessedAtParserWarning # Suppressing this warning because guessing at the parser is the # desired behavior -- we don't want to force lxml on packages # where it's not installed. warnings.filterwarnings("ignore", category=GuessedAtParserWarning) results = [] articles = [] # Fetch articles for each specified post type for post_type in self.post_types: articles.extend(self.get_all_posts(post_type)) # Process each article to extract content and metadata for article in articles: body = article.get("content", {}).get("rendered", None) if body is None: body = article.get("content") soup = BeautifulSoup(body) body = soup.get_text() title = article.get("title", {}).get("rendered", None) or article.get( "title" ) extra_info = { "id": article["id"], "title": title, "url": article["link"], "updated_at": article["modified"], } results.append( Document( text=body, extra_info=extra_info, ) ) return results def get_all_posts(self, post_type: str) -> List[dict]: """Retrieve all posts of a specific type, handling pagination.""" posts = [] next_page = 1 while True: response = self.get_posts_page(post_type, next_page) posts.extend(response["articles"]) next_page = response["next_page"] if next_page is None: break return posts def get_posts_page(self, post_type: str, current_page: int = 1) -> dict: """Retrieve a single page of posts for a given post type.""" import requests url = f"{self.url}/wp-json/wp/v2/{post_type}?per_page=100&page={current_page}" # Handle authentication if username and password are provided auth = ( (self.username, self.password) if self.username and self.password else None ) response = requests.get(url, auth=auth) response.raise_for_status() # Raise an error for bad responses headers = response.headers num_pages = int(headers.get("X-WP-TotalPages", 1)) next_page = current_page + 1 if num_pages > current_page else None articles = response.json() return {"articles": articles, "next_page": next_page}
_base_ = './mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py' # learning policy max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[20, 23], gamma=0.1) ]
_base_ = './mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py' # learning policy lr_config = dict(step=[20, 23]) runner = dict(type='EpochBasedRunner', max_epochs=24)
from utils import foo from jina import Executor class DummyHubExecutorAbs(Executor): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) foo()
from helper import foo from jina import Executor class DummyHubExecutorAbs(Executor): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) foo()
_base_ = './detic_centernet2_r50_fpn_4x_lvis_boxsup.py' dataset_type = ['LVISV1Dataset', 'ImageNetLVISV1Dataset'] image_size_det = (640, 640) image_size_cls = (320, 320) # backend = 'pillow' backend_args = None train_pipeline_det = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size_det, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size_det, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_pipeline_cls = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=False, with_label=True), dict( type='RandomResize', scale=image_size_cls, ratio_range=(0.5, 1.5), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size_cls, recompute_bbox=False, bbox_clip_border=False, allow_negative_crop=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] dataset_det = dict( type='ClassBalancedDataset', oversample_thr=1e-3, dataset=dict( type='LVISV1Dataset', data_root='data/lvis/', ann_file='annotations/lvis_v1_train.json', data_prefix=dict(img=''), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline_det, backend_args=backend_args)) dataset_cls = dict( type='ImageNetLVISV1Dataset', data_root='data/imagenet', ann_file='annotations/imagenet_lvis_image_info.json', data_prefix=dict(img='ImageNet-LVIS/'), pipeline=train_pipeline_cls, backend_args=backend_args) train_dataloader = dict( _delete_=True, batch_size=[8, 32], num_workers=2, persistent_workers=True, sampler=dict(type='MultiDataSampler', dataset_ratio=[1, 4]), batch_sampler=dict( type='MultiDataAspectRatioBatchSampler', num_datasets=2), dataset=dict(type='ConcatDataset', datasets=[dataset_det, dataset_cls])) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='CosineAnnealingLR', begin=0, by_epoch=False, T_max=90000, ) ] load_from = './first_stage/detic_centernet2_r50_fpn_4x_lvis_boxsup.pth' find_unused_parameters = True
_base_ = './detic_centernet2_r50_fpn_4x_lvis_boxsup.py' image_size_det = (640, 640) image_size_cls = (320, 320) # backend = 'pillow' backend_args = None train_pipeline_det = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size_det, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size_det, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_pipeline_cls = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=False, with_label=True), dict( type='RandomResize', scale=image_size_cls, ratio_range=(0.5, 1.5), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size_cls, recompute_bbox=False, bbox_clip_border=False, allow_negative_crop=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] dataset_det = dict( type='ClassBalancedDataset', oversample_thr=1e-3, dataset=dict( type='LVISV1Dataset', data_root='data/lvis/', ann_file='annotations/lvis_v1_train.json', data_prefix=dict(img=''), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline_det, backend_args=backend_args)) dataset_cls = dict( type='ImageNetLVISV1Dataset', data_root='data/imagenet', ann_file='annotations/imagenet_lvis_image_info.json', data_prefix=dict(img='ImageNet-LVIS/'), pipeline=train_pipeline_cls, backend_args=backend_args) train_dataloader = dict( _delete_=True, batch_size=[8, 32], num_workers=2, persistent_workers=True, sampler=dict(type='MultiDataSampler', dataset_ratio=[1, 4]), batch_sampler=dict( type='MultiDataAspectRatioBatchSampler', num_datasets=2), dataset=dict(type='ConcatDataset', datasets=[dataset_det, dataset_cls])) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000) ] load_from = './first_stage/detic_centernet2_r50_fpn_4x_lvis_boxsup.pth' find_unused_parameters = True
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess from typing import Dict, Iterable, Optional import spacy from jina import DocumentArray, Executor, requests from jina_commons.batching import get_docs_batch_generator _EXCLUDE_COMPONENTS = [ 'tagger', 'parser', 'ner', 'senter', 'lemmatizer', 'attribute_ruler', ] class SpacyTextEncoder(Executor): """ :class:`SpacyTextEncoder` encodes ``Document`` using models offered by Spacy """ def __init__( self, model_name: str = 'en_core_web_sm', download_data: bool = True, default_batch_size: int = 32, default_traversal_paths: Iterable[str] = ('r',), device: str = 'cpu', *args, **kwargs, ): """ :param model_name: pre-trained spaCy language pipeline name :param default_batch_size: fallback batch size in case there is not batch size sent in the request :param default_traversal_paths: fallback traversal path in case there is not traversal path sent in the request :param device: device to use for encoding ['cuda', 'cpu', 'cuda:2'] """ super().__init__(*args, **kwargs) self.default_batch_size = default_batch_size self.default_traversal_paths = default_traversal_paths self.device = device if device.startswith('cuda'): spacy.require_gpu() if download_data: subprocess.run( ['python3', '-m', 'spacy', 'download', model_name], check=True ) self.spacy_model = spacy.load(model_name, exclude=_EXCLUDE_COMPONENTS) @requests def encode(self, docs: Optional[DocumentArray], parameters: Dict, **kwargs): """ Encode all docs with text and store the encodings in the embedding attribute of the docs. :param docs: documents sent to the encoder. The docs must have the ``text`` attribute. :param parameters: dictionary to define the ``traversal_path`` and the ``batch_size``. For example, ``parameters={'traversal_paths': ['r'], 'batch_size': 10}`` """ if self.device.startswith('cuda'): from cupy import asnumpy if docs: batch_size = parameters.get('batch_size', self.default_batch_size) document_batches_generator = get_docs_batch_generator( docs, traversal_path=parameters.get( 'traversal_paths', self.default_traversal_paths ), batch_size=batch_size, needs_attr='text', ) for document_batch in document_batches_generator: texts = [doc.text for doc in document_batch] for doc, spacy_doc in zip( document_batch, self.spacy_model.pipe(texts, batch_size=batch_size) ): if self.device.startswith('cuda'): doc.embedding = asnumpy(spacy_doc.vector) else: doc.embedding = spacy_doc.vector
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess from typing import Dict, List, Optional import spacy from jina import DocumentArray, Executor, requests from jina_commons.batching import get_docs_batch_generator _EXCLUDE_COMPONENTS = [ 'tagger', 'parser', 'ner', 'senter', 'lemmatizer', 'attribute_ruler', ] class SpacyTextEncoder(Executor): """ :class:`SpacyTextEncoder` encodes ``Document`` using models offered by Spacy """ def __init__( self, model_name: str = 'en_core_web_sm', require_gpu: bool = False, download_data: bool = True, default_batch_size: int = 32, default_traversal_paths: List[str] = ['r'], *args, **kwargs, ): """ :param model_name: pre-trained spaCy language pipeline name :param require_gpu: device to use for encoding ['cuda', 'cpu] - if not set, the device is detected automatically :param default_batch_size: Default batch size, used if ``batch_size`` is not provided as a parameter in the request :param default_traversal_paths: Default traversal paths, used if ``traversal_paths`` are not provided as a parameter in the request. """ super().__init__(*args, **kwargs) self.default_batch_size = default_batch_size self.default_traversal_paths = default_traversal_paths if require_gpu: spacy.require_gpu() if download_data: subprocess.run( ['python', '-m', 'spacy', 'download', model_name], check=True ) self.spacy_model = spacy.load(model_name, exclude=_EXCLUDE_COMPONENTS) @requests def encode(self, docs: Optional[DocumentArray], parameters: Dict, **kwargs): """ Encode all docs with text and store the encodings in the embedding attribute of the docs. :param docs: documents sent to the encoder. The docs must have the ``text`` attribute. :param parameters: dictionary to define the ``traversal_path`` and the ``batch_size``. For example, ``parameters={'traversal_paths': ['r'], 'batch_size': 10}`` """ if docs: batch_size = parameters.get('batch_size', self.default_batch_size) document_batches_generator = get_docs_batch_generator( docs, traversal_path=parameters.get( 'traversal_paths', self.default_traversal_paths ), batch_size=batch_size, needs_attr='text', ) for document_batch in document_batches_generator: texts = [doc.text for doc in document_batch] for doc, spacy_doc in zip( document_batch, self.spacy_model.pipe(texts, batch_size=batch_size) ): doc.embedding = spacy_doc.vector
"""Simple file node parser.""" from typing import Any, Dict, List, Optional, Sequence, Type from llama_index.core.callbacks.base import CallbackManager from llama_index.core.node_parser.node_utils import build_nodes_from_splits from llama_index.core.node_parser.file.html import HTMLNodeParser from llama_index.core.node_parser.file.json import JSONNodeParser from llama_index.core.node_parser.file.markdown import MarkdownNodeParser from llama_index.core.node_parser.interface import NodeParser from llama_index.core.schema import BaseNode, MetadataMode from llama_index.core.utils import get_tqdm_iterable FILE_NODE_PARSERS: Dict[str, Type[NodeParser]] = { ".md": MarkdownNodeParser, ".html": HTMLNodeParser, ".json": JSONNodeParser, } class SimpleFileNodeParser(NodeParser): """ Simple file node parser. Splits a document loaded from a file into Nodes using logic based on the file type automatically detects the NodeParser to use based on file type Args: include_metadata (bool): whether to include metadata in nodes include_prev_next_rel (bool): whether to include prev/next relationships """ @classmethod def from_defaults( cls, include_metadata: bool = True, include_prev_next_rel: bool = True, callback_manager: Optional[CallbackManager] = None, ) -> "SimpleFileNodeParser": callback_manager = callback_manager or CallbackManager([]) return cls( include_metadata=include_metadata, include_prev_next_rel=include_prev_next_rel, callback_manager=callback_manager, ) @classmethod def class_name(cls) -> str: """Get class name.""" return "SimpleFileNodeParser" def _parse_nodes( self, nodes: Sequence[BaseNode], show_progress: bool = False, **kwargs: Any, ) -> List[BaseNode]: """ Parse document into nodes. Args: nodes (Sequence[BaseNode]): nodes to parse """ all_nodes: List[BaseNode] = [] documents_with_progress = get_tqdm_iterable( nodes, show_progress, "Parsing documents into nodes" ) for document in documents_with_progress: ext = document.metadata.get("extension", "None") if ext in FILE_NODE_PARSERS: parser = FILE_NODE_PARSERS[ext]( include_metadata=self.include_metadata, include_prev_next_rel=self.include_prev_next_rel, callback_manager=self.callback_manager, ) nodes = parser.get_nodes_from_documents([document], show_progress) all_nodes.extend(nodes) else: # What to do when file type isn't supported yet? all_nodes.extend( # build node from document build_nodes_from_splits( [document.get_content(metadata_mode=MetadataMode.NONE)], document, id_func=self.id_func, ) ) return all_nodes
"""Simple file node parser.""" from typing import Any, Dict, List, Optional, Sequence, Type from llama_index.core.callbacks.base import CallbackManager from llama_index.core.node_parser.node_utils import build_nodes_from_splits from llama_index.core.node_parser.file.html import HTMLNodeParser from llama_index.core.node_parser.file.json import JSONNodeParser from llama_index.core.node_parser.file.markdown import MarkdownNodeParser from llama_index.core.node_parser.interface import NodeParser from llama_index.core.schema import BaseNode, MetadataMode from llama_index.core.utils import get_tqdm_iterable FILE_NODE_PARSERS: Dict[str, Type[NodeParser]] = { ".md": MarkdownNodeParser, ".html": HTMLNodeParser, ".json": JSONNodeParser, } class SimpleFileNodeParser(NodeParser): """Simple file node parser. Splits a document loaded from a file into Nodes using logic based on the file type automatically detects the NodeParser to use based on file type Args: include_metadata (bool): whether to include metadata in nodes include_prev_next_rel (bool): whether to include prev/next relationships """ @classmethod def from_defaults( cls, include_metadata: bool = True, include_prev_next_rel: bool = True, callback_manager: Optional[CallbackManager] = None, ) -> "SimpleFileNodeParser": callback_manager = callback_manager or CallbackManager([]) return cls( include_metadata=include_metadata, include_prev_next_rel=include_prev_next_rel, callback_manager=callback_manager, ) @classmethod def class_name(cls) -> str: """Get class name.""" return "SimpleFileNodeParser" def _parse_nodes( self, nodes: Sequence[BaseNode], show_progress: bool = False, **kwargs: Any, ) -> List[BaseNode]: """Parse document into nodes. Args: nodes (Sequence[BaseNode]): nodes to parse """ all_nodes: List[BaseNode] = [] documents_with_progress = get_tqdm_iterable( nodes, show_progress, "Parsing documents into nodes" ) for document in documents_with_progress: ext = document.metadata.get("extension", "None") if ext in FILE_NODE_PARSERS: parser = FILE_NODE_PARSERS[ext]( include_metadata=self.include_metadata, include_prev_next_rel=self.include_prev_next_rel, callback_manager=self.callback_manager, ) nodes = parser.get_nodes_from_documents([document], show_progress) all_nodes.extend(nodes) else: # What to do when file type isn't supported yet? all_nodes.extend( # build node from document build_nodes_from_splits( [document.get_content(metadata_mode=MetadataMode.NONE)], document, id_func=self.id_func, ) ) return all_nodes
from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, ChatResponseAsyncGen, ChatResponseGen, CompletionResponse, CompletionResponseAsyncGen, CompletionResponseGen, ImageBlock, LLMMetadata, MessageRole, TextBlock, AudioBlock, DocumentBlock, CachePoint, CacheControl, CitableBlock, CitationBlock, ) from llama_index.core.llms.custom import CustomLLM from llama_index.core.llms.llm import LLM from llama_index.core.llms.mock import MockLLM __all__ = [ "CustomLLM", "LLM", "ChatMessage", "ChatResponse", "ChatResponseAsyncGen", "ChatResponseGen", "CompletionResponse", "CompletionResponseAsyncGen", "CompletionResponseGen", "LLMMetadata", "MessageRole", "MockLLM", "ImageBlock", "TextBlock", "AudioBlock", "DocumentBlock", "CachePoint", "CacheControl", "CitableBlock", "CitationBlock", ]
from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, ChatResponseAsyncGen, ChatResponseGen, CompletionResponse, CompletionResponseAsyncGen, CompletionResponseGen, ImageBlock, LLMMetadata, MessageRole, TextBlock, AudioBlock, DocumentBlock, CachePoint, CacheControl, ) from llama_index.core.llms.custom import CustomLLM from llama_index.core.llms.llm import LLM from llama_index.core.llms.mock import MockLLM __all__ = [ "CustomLLM", "LLM", "ChatMessage", "ChatResponse", "ChatResponseAsyncGen", "ChatResponseGen", "CompletionResponse", "CompletionResponseAsyncGen", "CompletionResponseGen", "LLMMetadata", "MessageRole", "MockLLM", "ImageBlock", "TextBlock", "AudioBlock", "DocumentBlock", "CachePoint", "CacheControl", ]
from pydantic import BaseModel from inspect import Signature, Parameter from typing import Any, Dict, Optional, List, Callable from llama_index.core.llms import ChatMessage, AudioBlock, TextBlock, MessageRole from llama_index.core.tools import BaseTool def make_function_from_tool_model( model_cls: type[BaseModel], tool: BaseTool ) -> Callable: fields = model_cls.model_fields parameters = [ Parameter(name, Parameter.POSITIONAL_OR_KEYWORD, annotation=field.annotation) for name, field in fields.items() ] sig = Signature(parameters) def func_template(*args, **kwargs): bound = func_template.__signature__.bind(*args, **kwargs) bound.apply_defaults() return tool(**bound.arguments).raw_output func_template.__signature__ = sig return func_template def callback_user_message( messages: Dict[int, List[ChatMessage]], message_id: int, text: Optional[str] = None, audio: Optional[Any] = None, ) -> None: if messages.get(message_id) is None: if text: messages[message_id] = [] messages[message_id].append( ChatMessage(role=MessageRole.USER, blocks=[TextBlock(text=text)]) ) else: messages[message_id] = [] messages[message_id].append( ChatMessage(role=MessageRole.USER, blocks=[AudioBlock(audio=audio)]) ) else: last_user_messages = [ message for message in messages[message_id] if message.role == MessageRole.USER ] if len(last_user_messages) > 0: last_user_message = last_user_messages[-1] else: messages[message_id].append(ChatMessage(role=MessageRole.USER, blocks=[])) last_user_message = [ message for message in messages[message_id] if message.role == MessageRole.USER ][-1] if text: last_user_message.blocks.append(TextBlock(text=text)) else: last_user_message.blocks.append(AudioBlock(audio=audio)) def callback_agent_message( messages: Dict[int, List[ChatMessage]], message_id: int, text: Optional[str] = None, audio: Optional[Any] = None, ) -> None: if messages.get(message_id) is None: if text: messages[message_id] = [] messages[message_id].append( ChatMessage(role=MessageRole.ASSISTANT, blocks=[TextBlock(text=text)]) ) else: messages[message_id] = [] messages[message_id].append( ChatMessage( role=MessageRole.ASSISTANT, blocks=[AudioBlock(audio=audio)] ) ) else: last_agent_messages = [ message for message in messages[message_id] if message.role == MessageRole.ASSISTANT ] if len(last_agent_messages) > 0: last_agent_message = last_agent_messages[-1] else: messages[message_id].append( ChatMessage(role=MessageRole.ASSISTANT, blocks=[]) ) last_agent_message = [ message for message in messages[message_id] if message.role == MessageRole.ASSISTANT ][-1] if text: last_agent_message.blocks.append(TextBlock(text=text)) else: last_agent_message.blocks.append(AudioBlock(audio=audio)) def callback_agent_message_correction( messages: Dict[int, List[ChatMessage]], message_id: int, text: str ) -> None: last_agent_message = [ message for message in messages[message_id] if message.role == MessageRole.ASSISTANT ][-1] last_block = [ block for block in last_agent_message.blocks if block.block_type == "text" ][-1] last_block.text = text def callback_latency_measurement(latencies: List[int], latency: int) -> None: latencies.append(latency)
from typing import Any, Dict, Optional, List from llama_index.core.llms import ChatMessage, AudioBlock, TextBlock, MessageRole def callback_user_message( messages: Dict[int, List[ChatMessage]], message_id: int, text: Optional[str] = None, audio: Optional[Any] = None, ) -> None: if messages.get(message_id) is None: if text: messages[message_id] = [] messages[message_id].append( ChatMessage(role=MessageRole.USER, blocks=[TextBlock(text=text)]) ) else: messages[message_id] = [] messages[message_id].append( ChatMessage(role=MessageRole.USER, blocks=[AudioBlock(audio=audio)]) ) else: last_user_messages = [ message for message in messages[message_id] if message.role == MessageRole.USER ] if len(last_user_messages) > 0: last_user_message = last_user_messages[-1] else: messages[message_id].append(ChatMessage(role=MessageRole.USER, blocks=[])) last_user_message = [ message for message in messages[message_id] if message.role == MessageRole.USER ][-1] if text: last_user_message.blocks.append(TextBlock(text=text)) else: last_user_message.blocks.append(AudioBlock(audio=audio)) def callback_agent_message( messages: Dict[int, List[ChatMessage]], message_id: int, text: Optional[str] = None, audio: Optional[Any] = None, ) -> None: if messages.get(message_id) is None: if text: messages[message_id] = [] messages[message_id].append( ChatMessage(role=MessageRole.ASSISTANT, blocks=[TextBlock(text=text)]) ) else: messages[message_id] = [] messages[message_id].append( ChatMessage( role=MessageRole.ASSISTANT, blocks=[AudioBlock(audio=audio)] ) ) else: last_agent_messages = [ message for message in messages[message_id] if message.role == MessageRole.ASSISTANT ] if len(last_agent_messages) > 0: last_agent_message = last_agent_messages[-1] else: messages[message_id].append( ChatMessage(role=MessageRole.ASSISTANT, blocks=[]) ) last_agent_message = [ message for message in messages[message_id] if message.role == MessageRole.ASSISTANT ][-1] if text: last_agent_message.blocks.append(TextBlock(text=text)) else: last_agent_message.blocks.append(AudioBlock(audio=audio)) def callback_agent_message_correction( messages: Dict[int, List[ChatMessage]], message_id: int, text: str ) -> None: last_agent_message = [ message for message in messages[message_id] if message.role == MessageRole.ASSISTANT ][-1] last_block = [ block for block in last_agent_message.blocks if block.block_type == "text" ][-1] last_block.text = text def callback_latency_measurement(latencies: List[int], latency: int) -> None: latencies.append(latency)
from __future__ import annotations import json import logging import re from re import Pattern from typing import Optional, Union from langchain_core.agents import AgentAction, AgentFinish from langchain_core.exceptions import OutputParserException from langchain_core.language_models import BaseLanguageModel from pydantic import Field from langchain.agents.agent import AgentOutputParser from langchain.agents.structured_chat.prompt import FORMAT_INSTRUCTIONS from langchain.output_parsers import OutputFixingParser logger = logging.getLogger(__name__) class StructuredChatOutputParser(AgentOutputParser): """Output parser for the structured chat agent.""" format_instructions: str = FORMAT_INSTRUCTIONS """Default formatting instructions""" pattern: Pattern = re.compile(r"```(?:json\s+)?(\W.*?)```", re.DOTALL) """Regex pattern to parse the output.""" def get_format_instructions(self) -> str: """Returns formatting instructions for the given output parser.""" return self.format_instructions def parse(self, text: str) -> Union[AgentAction, AgentFinish]: try: action_match = self.pattern.search(text) if action_match is not None: response = json.loads(action_match.group(1).strip(), strict=False) if isinstance(response, list): # gpt turbo frequently ignores the directive to emit a single action logger.warning("Got multiple action responses: %s", response) response = response[0] if response["action"] == "Final Answer": return AgentFinish({"output": response["action_input"]}, text) else: return AgentAction( response["action"], response.get("action_input", {}), text ) else: return AgentFinish({"output": text}, text) except Exception as e: msg = f"Could not parse LLM output: {text}" raise OutputParserException(msg) from e @property def _type(self) -> str: return "structured_chat" class StructuredChatOutputParserWithRetries(AgentOutputParser): """Output parser with retries for the structured chat agent.""" base_parser: AgentOutputParser = Field(default_factory=StructuredChatOutputParser) """The base parser to use.""" output_fixing_parser: Optional[OutputFixingParser] = None """The output fixing parser to use.""" def get_format_instructions(self) -> str: return FORMAT_INSTRUCTIONS def parse(self, text: str) -> Union[AgentAction, AgentFinish]: try: if self.output_fixing_parser is not None: parsed_obj: Union[AgentAction, AgentFinish] = ( self.output_fixing_parser.parse(text) ) else: parsed_obj = self.base_parser.parse(text) return parsed_obj except Exception as e: msg = f"Could not parse LLM output: {text}" raise OutputParserException(msg) from e @classmethod def from_llm( cls, llm: Optional[BaseLanguageModel] = None, base_parser: Optional[StructuredChatOutputParser] = None, ) -> StructuredChatOutputParserWithRetries: if llm is not None: base_parser = base_parser or StructuredChatOutputParser() output_fixing_parser: OutputFixingParser = OutputFixingParser.from_llm( llm=llm, parser=base_parser ) return cls(output_fixing_parser=output_fixing_parser) elif base_parser is not None: return cls(base_parser=base_parser) else: return cls() @property def _type(self) -> str: return "structured_chat_with_retries"
from __future__ import annotations import json import logging import re from re import Pattern from typing import Optional, Union from langchain_core.agents import AgentAction, AgentFinish from langchain_core.exceptions import OutputParserException from langchain_core.language_models import BaseLanguageModel from pydantic import Field from langchain.agents.agent import AgentOutputParser from langchain.agents.structured_chat.prompt import FORMAT_INSTRUCTIONS from langchain.output_parsers import OutputFixingParser logger = logging.getLogger(__name__) class StructuredChatOutputParser(AgentOutputParser): """Output parser for the structured chat agent.""" format_instructions: str = FORMAT_INSTRUCTIONS """Default formatting instructions""" pattern: Pattern = re.compile(r"```(?:json\s+)?(\W.*?)```", re.DOTALL) """Regex pattern to parse the output.""" def get_format_instructions(self) -> str: """Returns formatting instructions for the given output parser.""" return self.format_instructions def parse(self, text: str) -> Union[AgentAction, AgentFinish]: try: action_match = self.pattern.search(text) if action_match is not None: response = json.loads(action_match.group(1).strip(), strict=False) if isinstance(response, list): # gpt turbo frequently ignores the directive to emit a single action logger.warning("Got multiple action responses: %s", response) response = response[0] if response["action"] == "Final Answer": return AgentFinish({"output": response["action_input"]}, text) else: return AgentAction( response["action"], response.get("action_input", {}), text ) else: return AgentFinish({"output": text}, text) except Exception as e: raise OutputParserException(f"Could not parse LLM output: {text}") from e @property def _type(self) -> str: return "structured_chat" class StructuredChatOutputParserWithRetries(AgentOutputParser): """Output parser with retries for the structured chat agent.""" base_parser: AgentOutputParser = Field(default_factory=StructuredChatOutputParser) """The base parser to use.""" output_fixing_parser: Optional[OutputFixingParser] = None """The output fixing parser to use.""" def get_format_instructions(self) -> str: return FORMAT_INSTRUCTIONS def parse(self, text: str) -> Union[AgentAction, AgentFinish]: try: if self.output_fixing_parser is not None: parsed_obj: Union[AgentAction, AgentFinish] = ( self.output_fixing_parser.parse(text) ) else: parsed_obj = self.base_parser.parse(text) return parsed_obj except Exception as e: raise OutputParserException(f"Could not parse LLM output: {text}") from e @classmethod def from_llm( cls, llm: Optional[BaseLanguageModel] = None, base_parser: Optional[StructuredChatOutputParser] = None, ) -> StructuredChatOutputParserWithRetries: if llm is not None: base_parser = base_parser or StructuredChatOutputParser() output_fixing_parser: OutputFixingParser = OutputFixingParser.from_llm( llm=llm, parser=base_parser ) return cls(output_fixing_parser=output_fixing_parser) elif base_parser is not None: return cls(base_parser=base_parser) else: return cls() @property def _type(self) -> str: return "structured_chat_with_retries"
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder CI_HUB_USER = "__DUMMY_TRANSFORMERS_USER__" CI_HUB_USER_FULL_NAME = "Dummy User" CI_HUB_USER_TOKEN = "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" CI_HUB_ENDPOINT = "https://hub-ci.huggingface.co" CI_HUB_DATASETS_URL = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" CI_HUB_TOKEN_PATH = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def ci_hfh_hf_hub_url(monkeypatch): monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE ) @pytest.fixture def ci_hub_config(monkeypatch): monkeypatch.setattr("datasets.config.HF_ENDPOINT", CI_HUB_ENDPOINT) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", CI_HUB_DATASETS_URL) @pytest.fixture def ci_hub_token_path(monkeypatch): monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", CI_HUB_TOKEN_PATH) @pytest.fixture def set_ci_hub_access_token(ci_hub_config, ci_hub_token_path): HfFolder.save_token(CI_HUB_USER_TOKEN) yield HfFolder.delete_token() @pytest.fixture(scope="session") def hf_api(): return HfApi(endpoint=CI_HUB_ENDPOINT) @pytest.fixture(scope="session") def hf_token(hf_api: HfApi): previous_token = HfFolder.get_token() HfFolder.save_token(CI_HUB_USER_TOKEN) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(previous_token) @pytest.fixture def cleanup_repo(hf_api): def _cleanup_repo(repo_id): hf_api.delete_repo(repo_id, token=CI_HUB_USER_TOKEN, repo_type="dataset") return _cleanup_repo @pytest.fixture def temporary_repo(cleanup_repo): @contextmanager def _temporary_repo(repo_id): try: yield repo_id finally: cleanup_repo(repo_id) return _temporary_repo @pytest.fixture(scope="session") def hf_private_dataset_repo_txt_data_(hf_api: HfApi, hf_token, text_file): repo_name = f"repo_txt_data-{int(time.time() * 10e3)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(text_file), path_in_repo="data/text_data.txt", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_txt_data(hf_private_dataset_repo_txt_data_, ci_hub_config, ci_hfh_hf_hub_url): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_txt_data_(hf_api: HfApi, hf_token, zip_csv_with_dir_path): repo_name = f"repo_zipped_txt_data-{int(time.time() * 10e3)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_csv_with_dir_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_txt_data( hf_private_dataset_repo_zipped_txt_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_img_data_(hf_api: HfApi, hf_token, zip_image_path): repo_name = f"repo_zipped_img_data-{int(time.time() * 10e3)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_image_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_img_data( hf_private_dataset_repo_zipped_img_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_img_data_
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder from datasets.utils._hf_hub_fixes import create_repo, delete_repo CI_HUB_USER = "__DUMMY_TRANSFORMERS_USER__" CI_HUB_USER_FULL_NAME = "Dummy User" CI_HUB_USER_TOKEN = "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" CI_HUB_ENDPOINT = "https://hub-ci.huggingface.co" CI_HUB_DATASETS_URL = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" CI_HUB_TOKEN_PATH = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def ci_hfh_hf_hub_url(monkeypatch): monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE ) @pytest.fixture def ci_hub_config(monkeypatch): monkeypatch.setattr("datasets.config.HF_ENDPOINT", CI_HUB_ENDPOINT) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", CI_HUB_DATASETS_URL) @pytest.fixture def ci_hub_token_path(monkeypatch): monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", CI_HUB_TOKEN_PATH) @pytest.fixture def set_ci_hub_access_token(ci_hub_config, ci_hub_token_path): HfFolder.save_token(CI_HUB_USER_TOKEN) yield HfFolder.delete_token() @pytest.fixture(scope="session") def hf_api(): return HfApi(endpoint=CI_HUB_ENDPOINT) @pytest.fixture(scope="session") def hf_token(hf_api: HfApi): previous_token = HfFolder.get_token() HfFolder.save_token(CI_HUB_USER_TOKEN) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(previous_token) @pytest.fixture def cleanup_repo(hf_api): def _cleanup_repo(repo_id): delete_repo(hf_api, repo_id, token=CI_HUB_USER_TOKEN, repo_type="dataset") return _cleanup_repo @pytest.fixture def temporary_repo(cleanup_repo): @contextmanager def _temporary_repo(repo_id): try: yield repo_id finally: cleanup_repo(repo_id) return _temporary_repo @pytest.fixture(scope="session") def hf_private_dataset_repo_txt_data_(hf_api: HfApi, hf_token, text_file): repo_name = f"repo_txt_data-{int(time.time() * 10e3)}" repo_id = f"{CI_HUB_USER}/{repo_name}" create_repo(hf_api, repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(text_file), path_in_repo="data/text_data.txt", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: delete_repo(hf_api, repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_txt_data(hf_private_dataset_repo_txt_data_, ci_hub_config, ci_hfh_hf_hub_url): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_txt_data_(hf_api: HfApi, hf_token, zip_csv_with_dir_path): repo_name = f"repo_zipped_txt_data-{int(time.time() * 10e3)}" repo_id = f"{CI_HUB_USER}/{repo_name}" create_repo(hf_api, repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_csv_with_dir_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: delete_repo(hf_api, repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_txt_data( hf_private_dataset_repo_zipped_txt_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_img_data_(hf_api: HfApi, hf_token, zip_image_path): repo_name = f"repo_zipped_img_data-{int(time.time() * 10e3)}" repo_id = f"{CI_HUB_USER}/{repo_name}" create_repo(hf_api, repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_image_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: delete_repo(hf_api, repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_img_data( hf_private_dataset_repo_zipped_img_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_img_data_
import csv import os from pathlib import Path from typing import Tuple, Union import torchaudio from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import extract_archive _RELEASE_CONFIGS = { "release1": { "folder_in_archive": "wavs", "url": "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2", "checksum": "be1a30453f28eb8dd26af4101ae40cbf2c50413b1bb21936cbcdc6fae3de8aa5", } } class LJSPEECH(Dataset): """Create a Dataset for *LJSpeech-1.1* [:footcite:`ljspeech17`]. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. url (str, optional): The URL to download the dataset from. (default: ``"https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2"``) folder_in_archive (str, optional): The top-level directory of the dataset. (default: ``"wavs"``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ def __init__( self, root: Union[str, Path], url: str = _RELEASE_CONFIGS["release1"]["url"], folder_in_archive: str = _RELEASE_CONFIGS["release1"]["folder_in_archive"], download: bool = False, ) -> None: self._parse_filesystem(root, url, folder_in_archive, download) def _parse_filesystem(self, root: str, url: str, folder_in_archive: str, download: bool) -> None: root = Path(root) basename = os.path.basename(url) archive = root / basename basename = Path(basename.split(".tar.bz2")[0]) folder_in_archive = basename / folder_in_archive self._path = root / folder_in_archive self._metadata_path = root / basename / "metadata.csv" if download: if not os.path.isdir(self._path): if not os.path.isfile(archive): checksum = _RELEASE_CONFIGS["release1"]["checksum"] download_url_to_file(url, archive, hash_prefix=checksum) extract_archive(archive) else: if not os.path.exists(self._path): raise RuntimeError( f"The path {self._path} doesn't exist. " "Please check the ``root`` path or set `download=True` to download it" ) with open(self._metadata_path, "r", newline="") as metadata: flist = csv.reader(metadata, delimiter="|", quoting=csv.QUOTE_NONE) self._flist = list(flist) def __getitem__(self, n: int) -> Tuple[Tensor, int, str, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, str, str): ``(waveform, sample_rate, transcript, normalized_transcript)`` """ line = self._flist[n] fileid, transcript, normalized_transcript = line fileid_audio = self._path / (fileid + ".wav") # Load audio waveform, sample_rate = torchaudio.load(fileid_audio) return ( waveform, sample_rate, transcript, normalized_transcript, ) def __len__(self) -> int: return len(self._flist)
import csv import os from pathlib import Path from typing import Tuple, Union import torchaudio from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import extract_archive _RELEASE_CONFIGS = { "release1": { "folder_in_archive": "wavs", "url": "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2", "checksum": "be1a30453f28eb8dd26af4101ae40cbf2c50413b1bb21936cbcdc6fae3de8aa5", } } class LJSPEECH(Dataset): """Create a Dataset for *LJSpeech-1.1* [:footcite:`ljspeech17`]. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. url (str, optional): The URL to download the dataset from. (default: ``"https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2"``) folder_in_archive (str, optional): The top-level directory of the dataset. (default: ``"wavs"``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ def __init__( self, root: Union[str, Path], url: str = _RELEASE_CONFIGS["release1"]["url"], folder_in_archive: str = _RELEASE_CONFIGS["release1"]["folder_in_archive"], download: bool = False, ) -> None: self._parse_filesystem(root, url, folder_in_archive, download) def _parse_filesystem(self, root: str, url: str, folder_in_archive: str, download: bool) -> None: root = Path(root) basename = os.path.basename(url) archive = root / basename basename = Path(basename.split(".tar.bz2")[0]) folder_in_archive = basename / folder_in_archive self._path = root / folder_in_archive self._metadata_path = root / basename / "metadata.csv" if download: if not os.path.isdir(self._path): if not os.path.isfile(archive): checksum = _RELEASE_CONFIGS["release1"]["checksum"] download_url_to_file(url, archive, hash_prefix=checksum) extract_archive(archive) with open(self._metadata_path, "r", newline="") as metadata: flist = csv.reader(metadata, delimiter="|", quoting=csv.QUOTE_NONE) self._flist = list(flist) def __getitem__(self, n: int) -> Tuple[Tensor, int, str, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, str, str): ``(waveform, sample_rate, transcript, normalized_transcript)`` """ line = self._flist[n] fileid, transcript, normalized_transcript = line fileid_audio = self._path / (fileid + ".wav") # Load audio waveform, sample_rate = torchaudio.load(fileid_audio) return ( waveform, sample_rate, transcript, normalized_transcript, ) def __len__(self) -> int: return len(self._flist)
"""This file only exists to be lazy-imported and avoid V2-related import warnings when just using V1.""" import torch from torchvision import datapoints from torchvision.transforms import v2 class PadIfSmaller(v2.Transform): def __init__(self, size, fill=0): super().__init__() self.size = size self.fill = v2._utils._setup_fill_arg(fill) def _get_params(self, sample): _, height, width = v2._utils.query_chw(sample) padding = [0, 0, max(self.size - width, 0), max(self.size - height, 0)] needs_padding = any(padding) return dict(padding=padding, needs_padding=needs_padding) def _transform(self, inpt, params): if not params["needs_padding"]: return inpt fill = v2._utils._get_fill(self.fill, type(inpt)) fill = v2._utils._convert_fill_arg(fill) return v2.functional.pad(inpt, padding=params["padding"], fill=fill) class CocoDetectionToVOCSegmentation(v2.Transform): """Turn samples from datasets.CocoDetection into the same format as VOCSegmentation. This is achieved in two steps: 1. COCO differentiates between 91 categories while VOC only supports 21, including background for both. Fortunately, the COCO categories are a superset of the VOC ones and thus can be mapped. Instances of the 70 categories not present in VOC are dropped and replaced by background. 2. COCO only offers detection masks, i.e. a (N, H, W) bool-ish tensor, where the truthy values in each individual mask denote the instance. However, a segmentation mask is a (H, W) integer tensor (typically torch.uint8), where the value of each pixel denotes the category it belongs to. The detection masks are merged into one segmentation mask while pixels that belong to multiple detection masks are marked as invalid. """ COCO_TO_VOC_LABEL_MAP = dict( zip( [0, 5, 2, 16, 9, 44, 6, 3, 17, 62, 21, 67, 18, 19, 4, 1, 64, 20, 63, 7, 72], range(21), ) ) INVALID_VALUE = 255 def _coco_detection_masks_to_voc_segmentation_mask(self, target): if "masks" not in target: return None instance_masks, instance_labels_coco = target["masks"], target["labels"] valid_labels_voc = [ (idx, label_voc) for idx, label_coco in enumerate(instance_labels_coco.tolist()) if (label_voc := self.COCO_TO_VOC_LABEL_MAP.get(label_coco)) is not None ] if not valid_labels_voc: return None valid_voc_category_idcs, instance_labels_voc = zip(*valid_labels_voc) instance_masks = instance_masks[list(valid_voc_category_idcs)].to(torch.uint8) instance_labels_voc = torch.tensor(instance_labels_voc, dtype=torch.uint8) # Calling `.max()` on the stacked detection masks works fine to separate background from foreground as long as # there is at most a single instance per pixel. Overlapping instances will be filtered out in the next step. segmentation_mask, _ = (instance_masks * instance_labels_voc.reshape(-1, 1, 1)).max(dim=0) segmentation_mask[instance_masks.sum(dim=0) > 1] = self.INVALID_VALUE return segmentation_mask def forward(self, image, target): segmentation_mask = self._coco_detection_masks_to_voc_segmentation_mask(target) if segmentation_mask is None: segmentation_mask = torch.zeros(v2.functional.get_size(image), dtype=torch.uint8) return image, datapoints.Mask(segmentation_mask)
"""This file only exists to be lazy-imported and avoid V2-related import warnings when just using V1.""" import torch from torchvision import datapoints from torchvision.transforms import v2 class PadIfSmaller(v2.Transform): def __init__(self, size, fill=0): super().__init__() self.size = size self.fill = v2._utils._setup_fill_arg(fill) def _get_params(self, sample): _, height, width = v2._utils.query_chw(sample) padding = [0, 0, max(self.size - width, 0), max(self.size - height, 0)] needs_padding = any(padding) return dict(padding=padding, needs_padding=needs_padding) def _transform(self, inpt, params): if not params["needs_padding"]: return inpt fill = v2._utils._get_fill(self.fill, type(inpt)) fill = v2._utils._convert_fill_arg(fill) return v2.functional.pad(inpt, padding=params["padding"], fill=fill) class CocoDetectionToVOCSegmentation(v2.Transform): """Turn samples from datasets.CocoDetection into the same format as VOCSegmentation. This is achieved in two steps: 1. COCO differentiates between 91 categories while VOC only supports 21, including background for both. Fortunately, the COCO categories are a superset of the VOC ones and thus can be mapped. Instances of the 70 categories not present in VOC are dropped and replaced by background. 2. COCO only offers detection masks, i.e. a (N, H, W) bool-ish tensor, where the truthy values in each individual mask denote the instance. However, a segmentation mask is a (H, W) integer tensor (typically torch.uint8), where the value of each pixel denotes the category it belongs to. The detection masks are merged into one segmentation mask while pixels that belong to multiple detection masks are marked as invalid. """ COCO_TO_VOC_LABEL_MAP = dict( zip( [0, 5, 2, 16, 9, 44, 6, 3, 17, 62, 21, 67, 18, 19, 4, 1, 64, 20, 63, 7, 72], range(21), ) ) INVALID_VALUE = 255 def _coco_detection_masks_to_voc_segmentation_mask(self, target): if "masks" not in target: return None instance_masks, instance_labels_coco = target["masks"], target["labels"] valid_labels_voc = [ (idx, label_voc) for idx, label_coco in enumerate(instance_labels_coco.tolist()) if (label_voc := self.COCO_TO_VOC_LABEL_MAP.get(label_coco)) is not None ] if not valid_labels_voc: return None valid_voc_category_idcs, instance_labels_voc = zip(*valid_labels_voc) instance_masks = instance_masks[list(valid_voc_category_idcs)].to(torch.uint8) instance_labels_voc = torch.tensor(instance_labels_voc, dtype=torch.uint8) # Calling `.max()` on the stacked detection masks works fine to separate background from foreground as long as # there is at most a single instance per pixel. Overlapping instances will be filtered out in the next step. segmentation_mask, _ = (instance_masks * instance_labels_voc.reshape(-1, 1, 1)).max(dim=0) segmentation_mask[instance_masks.sum(dim=0) > 1] = self.INVALID_VALUE return segmentation_mask def forward(self, image, target): segmentation_mask = self._coco_detection_masks_to_voc_segmentation_mask(target) if segmentation_mask is None: segmentation_mask = torch.zeros(v2.functional.get_spatial_size(image), dtype=torch.uint8) return image, datapoints.Mask(segmentation_mask)
# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from argparse import ArgumentParser class BaseDiffusersCLICommand(ABC): @staticmethod @abstractmethod def register_subcommand(parser: ArgumentParser): raise NotImplementedError() @abstractmethod def run(self): raise NotImplementedError()
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from argparse import ArgumentParser class BaseDiffusersCLICommand(ABC): @staticmethod @abstractmethod def register_subcommand(parser: ArgumentParser): raise NotImplementedError() @abstractmethod def run(self): raise NotImplementedError()
"""Question-answering with sources over a vector database.""" import warnings from typing import Any from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain_core.documents import Document from langchain_core.vectorstores import VectorStore from pydantic import Field, model_validator from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain class VectorDBQAWithSourcesChain(BaseQAWithSourcesChain): """Question-answering with sources over a vector database.""" vectorstore: VectorStore = Field(exclude=True) """Vector Database to connect to.""" k: int = 4 """Number of results to return from store""" reduce_k_below_max_tokens: bool = False """Reduce the number of results to return from store based on tokens limit""" max_tokens_limit: int = 3375 """Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true""" search_kwargs: dict[str, Any] = Field(default_factory=dict) """Extra search args.""" def _reduce_tokens_below_limit(self, docs: list[Document]) -> list[Document]: num_docs = len(docs) if self.reduce_k_below_max_tokens and isinstance( self.combine_documents_chain, StuffDocumentsChain, ): tokens = [ self.combine_documents_chain.llm_chain._get_num_tokens(doc.page_content) for doc in docs ] token_count = sum(tokens[:num_docs]) while token_count > self.max_tokens_limit: num_docs -= 1 token_count -= tokens[num_docs] return docs[:num_docs] def _get_docs( self, inputs: dict[str, Any], *, run_manager: CallbackManagerForChainRun, ) -> list[Document]: question = inputs[self.question_key] docs = self.vectorstore.similarity_search( question, k=self.k, **self.search_kwargs, ) return self._reduce_tokens_below_limit(docs) async def _aget_docs( self, inputs: dict[str, Any], *, run_manager: AsyncCallbackManagerForChainRun, ) -> list[Document]: msg = "VectorDBQAWithSourcesChain does not support async" raise NotImplementedError(msg) @model_validator(mode="before") @classmethod def raise_deprecation(cls, values: dict) -> Any: warnings.warn( "`VectorDBQAWithSourcesChain` is deprecated - " "please use `from langchain.chains import RetrievalQAWithSourcesChain`", ) return values @property def _chain_type(self) -> str: return "vector_db_qa_with_sources_chain"
"""Question-answering with sources over a vector database.""" import warnings from typing import Any from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain_core.documents import Document from langchain_core.vectorstores import VectorStore from pydantic import Field, model_validator from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain class VectorDBQAWithSourcesChain(BaseQAWithSourcesChain): """Question-answering with sources over a vector database.""" vectorstore: VectorStore = Field(exclude=True) """Vector Database to connect to.""" k: int = 4 """Number of results to return from store""" reduce_k_below_max_tokens: bool = False """Reduce the number of results to return from store based on tokens limit""" max_tokens_limit: int = 3375 """Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true""" search_kwargs: dict[str, Any] = Field(default_factory=dict) """Extra search args.""" def _reduce_tokens_below_limit(self, docs: list[Document]) -> list[Document]: num_docs = len(docs) if self.reduce_k_below_max_tokens and isinstance( self.combine_documents_chain, StuffDocumentsChain ): tokens = [ self.combine_documents_chain.llm_chain._get_num_tokens(doc.page_content) for doc in docs ] token_count = sum(tokens[:num_docs]) while token_count > self.max_tokens_limit: num_docs -= 1 token_count -= tokens[num_docs] return docs[:num_docs] def _get_docs( self, inputs: dict[str, Any], *, run_manager: CallbackManagerForChainRun ) -> list[Document]: question = inputs[self.question_key] docs = self.vectorstore.similarity_search( question, k=self.k, **self.search_kwargs ) return self._reduce_tokens_below_limit(docs) async def _aget_docs( self, inputs: dict[str, Any], *, run_manager: AsyncCallbackManagerForChainRun ) -> list[Document]: msg = "VectorDBQAWithSourcesChain does not support async" raise NotImplementedError(msg) @model_validator(mode="before") @classmethod def raise_deprecation(cls, values: dict) -> Any: warnings.warn( "`VectorDBQAWithSourcesChain` is deprecated - " "please use `from langchain.chains import RetrievalQAWithSourcesChain`" ) return values @property def _chain_type(self) -> str: return "vector_db_qa_with_sources_chain"
from langchain_exa import ( ExaSearchResults, # type: ignore[import-not-found, import-not-found] ) def test_search_tool() -> None: tool = ExaSearchResults() res = tool.invoke({"query": "best time to visit japan", "num_results": 5}) print(res) # noqa: T201 assert not isinstance(res, str) # str means error for this tool\ def test_search_tool_advanced_features() -> None: tool = ExaSearchResults() res = tool.invoke( { "query": "best time to visit japan", "num_results": 3, "text_contents_options": {"max_characters": 1000}, "summary": True, "type": "auto", } ) print(res) # noqa: T201 assert not isinstance(res, str) # str means error for this tool assert len(res.results) == 3 # Verify summary exists assert hasattr(res.results[0], "summary") # Verify text was limited assert len(res.results[0].text) <= 1000
from langchain_exa import ( ExaSearchResults, # type: ignore[import-not-found, import-not-found] ) def test_search_tool() -> None: tool = ExaSearchResults() res = tool.invoke({"query": "best time to visit japan", "num_results": 5}) print(res) # noqa: T201 assert not isinstance(res, str) # str means error for this tool\
from llama_index.core.base.embeddings.base import BaseEmbedding from llama_index.embeddings.ollama import OllamaEmbedding def test_embedding_class(): emb = OllamaEmbedding( model_name="", client_kwargs={"headers": {"Authorization": "Bearer token"}} ) assert isinstance(emb, BaseEmbedding)
from llama_index.core.base.embeddings.base import BaseEmbedding from llama_index.embeddings.ollama import OllamaEmbedding def test_embedding_class(): emb = OllamaEmbedding(model_name="") assert isinstance(emb, BaseEmbedding)
# Copyright (c) OpenMMLab. All rights reserved. from .gaussian_target import (gather_feat, gaussian_radius, gen_gaussian_target, get_local_maximum, get_topk_from_heatmap, transpose_and_gather_feat) from .image import imrenormalize from .make_divisible import make_divisible # Disable yapf because it conflicts with isort. # yapf: disable from .misc import (align_tensor, aligned_bilinear, center_of_mass, empty_instances, filter_gt_instances, filter_scores_and_topk, flip_tensor, generate_coordinate, images_to_levels, interpolate_as, levels_to_images, mask2ndarray, multi_apply, relative_coordinate_maps, rename_loss_dict, reweight_loss_dict, samplelist_boxtype2tensor, select_single_mlvl, sigmoid_geometric_mean, unfold_wo_center, unmap, unpack_gt_instances) from .panoptic_gt_processing import preprocess_panoptic_gt from .point_sample import (get_uncertain_point_coords_with_randomness, get_uncertainty) from .vlfuse_helper import BertEncoderLayer, VLFuse, permute_and_flatten __all__ = [ 'gaussian_radius', 'gen_gaussian_target', 'make_divisible', 'get_local_maximum', 'get_topk_from_heatmap', 'transpose_and_gather_feat', 'interpolate_as', 'sigmoid_geometric_mean', 'gather_feat', 'preprocess_panoptic_gt', 'get_uncertain_point_coords_with_randomness', 'get_uncertainty', 'unpack_gt_instances', 'empty_instances', 'center_of_mass', 'filter_scores_and_topk', 'flip_tensor', 'generate_coordinate', 'levels_to_images', 'mask2ndarray', 'multi_apply', 'select_single_mlvl', 'unmap', 'images_to_levels', 'samplelist_boxtype2tensor', 'filter_gt_instances', 'rename_loss_dict', 'reweight_loss_dict', 'relative_coordinate_maps', 'aligned_bilinear', 'unfold_wo_center', 'imrenormalize', 'VLFuse', 'permute_and_flatten', 'BertEncoderLayer', 'align_tensor' ]
# Copyright (c) OpenMMLab. All rights reserved. from .gaussian_target import (gather_feat, gaussian_radius, gen_gaussian_target, get_local_maximum, get_topk_from_heatmap, transpose_and_gather_feat) from .image import imrenormalize from .make_divisible import make_divisible from .misc import (aligned_bilinear, center_of_mass, empty_instances, filter_gt_instances, filter_scores_and_topk, flip_tensor, generate_coordinate, images_to_levels, interpolate_as, levels_to_images, mask2ndarray, multi_apply, relative_coordinate_maps, rename_loss_dict, reweight_loss_dict, samplelist_boxtype2tensor, select_single_mlvl, sigmoid_geometric_mean, unfold_wo_center, unmap, unpack_gt_instances) from .panoptic_gt_processing import preprocess_panoptic_gt from .point_sample import (get_uncertain_point_coords_with_randomness, get_uncertainty) from .vlfuse_helper import BertEncoderLayer, VLFuse, permute_and_flatten __all__ = [ 'gaussian_radius', 'gen_gaussian_target', 'make_divisible', 'get_local_maximum', 'get_topk_from_heatmap', 'transpose_and_gather_feat', 'interpolate_as', 'sigmoid_geometric_mean', 'gather_feat', 'preprocess_panoptic_gt', 'get_uncertain_point_coords_with_randomness', 'get_uncertainty', 'unpack_gt_instances', 'empty_instances', 'center_of_mass', 'filter_scores_and_topk', 'flip_tensor', 'generate_coordinate', 'levels_to_images', 'mask2ndarray', 'multi_apply', 'select_single_mlvl', 'unmap', 'images_to_levels', 'samplelist_boxtype2tensor', 'filter_gt_instances', 'rename_loss_dict', 'reweight_loss_dict', 'relative_coordinate_maps', 'aligned_bilinear', 'unfold_wo_center', 'imrenormalize', 'VLFuse', 'permute_and_flatten', 'BertEncoderLayer' ]
import logging import sys import traceback from datasets import Dataset, load_dataset from peft import LoraConfig, TaskType from sentence_transformers import ( SentenceTransformer, SentenceTransformerModelCardData, SentenceTransformerTrainer, SentenceTransformerTrainingArguments, ) from sentence_transformers.evaluation import NanoBEIREvaluator from sentence_transformers.losses import CachedMultipleNegativesRankingLoss from sentence_transformers.training_args import BatchSamplers # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # You can specify any Hugging Face pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else "bert-base-uncased" model_name_only = model_name.split("/")[-1] # 1. Load a model to finetune with 2. (Optional) model card data model = SentenceTransformer( model_name, model_card_data=SentenceTransformerModelCardData( language="en", license="apache-2.0", model_name=f"{model_name_only} adapter finetuned on GooAQ pairs", ), ) # Create a LoRA adapter for the model peft_config = LoraConfig( task_type=TaskType.FEATURE_EXTRACTION, inference_mode=False, r=64, lora_alpha=128, lora_dropout=0.1, ) model.add_adapter(peft_config) # 3. Load a dataset to finetune on dataset = load_dataset("sentence-transformers/gooaq", split="train") dataset_dict = dataset.train_test_split(test_size=10_000, seed=12) train_dataset: Dataset = dataset_dict["train"].select(range(1_000_000)) eval_dataset: Dataset = dataset_dict["test"] # 4. Define a loss function loss = CachedMultipleNegativesRankingLoss(model, mini_batch_size=32) # 5. (Optional) Specify training arguments run_name = f"{model_name_only}-gooaq-peft" args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=f"models/{run_name}", # Optional training parameters: num_train_epochs=1, per_device_train_batch_size=1024, per_device_eval_batch_size=1024, learning_rate=2e-5, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=25, logging_first_step=True, run_name=run_name, # Will be used in W&B if `wandb` is installed ) # 6. (Optional) Create an evaluator & evaluate the base model # The full corpus, but only the evaluation queries dev_evaluator = NanoBEIREvaluator() dev_evaluator(model) # 7. Create a trainer & train trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_evaluator, ) trainer.train() # (Optional) Evaluate the trained model on the evaluator after training dev_evaluator(model) # 8. Save the trained model final_output_dir = f"models/{run_name}/final" model.save_pretrained(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first try: model.push_to_hub(run_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{run_name}')`." )
import logging import sys import traceback from datasets import Dataset, load_dataset from peft import LoraConfig, TaskType from sentence_transformers import ( SentenceTransformer, SentenceTransformerModelCardData, SentenceTransformerTrainer, SentenceTransformerTrainingArguments, ) from sentence_transformers.evaluation import NanoBEIREvaluator from sentence_transformers.losses import MultipleNegativesRankingLoss from sentence_transformers.training_args import BatchSamplers # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # You can specify any Hugging Face pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else "bert-base-uncased" model_name_only = model_name.split("/")[-1] # 1. Load a model to finetune with 2. (Optional) model card data model = SentenceTransformer( model_name, model_card_data=SentenceTransformerModelCardData( language="en", license="apache-2.0", model_name=f"{model_name_only} adapter finetuned on GooAQ pairs", ), ) # Create a LoRA adapter for the model peft_config = LoraConfig( task_type=TaskType.FEATURE_EXTRACTION, inference_mode=False, r=64, lora_alpha=128, lora_dropout=0.1, ) model.add_adapter(peft_config) # 3. Load a dataset to finetune on dataset = load_dataset("sentence-transformers/gooaq", split="train") dataset_dict = dataset.train_test_split(test_size=10_000, seed=12) train_dataset: Dataset = dataset_dict["train"].select(range(1_000_000)) eval_dataset: Dataset = dataset_dict["test"] # 4. Define a loss function loss = MultipleNegativesRankingLoss(model) # 5. (Optional) Specify training arguments run_name = f"{model_name_only}-gooaq-peft" args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=f"models/{run_name}", # Optional training parameters: num_train_epochs=1, per_device_train_batch_size=1024, per_device_eval_batch_size=1024, learning_rate=2e-5, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=25, logging_first_step=True, run_name=run_name, # Will be used in W&B if `wandb` is installed ) # 6. (Optional) Create an evaluator & evaluate the base model # The full corpus, but only the evaluation queries dev_evaluator = NanoBEIREvaluator(batch_size=1024) dev_evaluator(model) # 7. Create a trainer & train trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_evaluator, ) trainer.train() # (Optional) Evaluate the trained model on the evaluator after training dev_evaluator(model) # 8. Save the trained model final_output_dir = f"models/{run_name}/final" model.save_pretrained(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first try: model.push_to_hub(run_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{run_name}')`." )
from ..utils import is_torch_available if is_torch_available(): from .faster_cache import FasterCacheConfig, apply_faster_cache from .group_offloading import apply_group_offloading from .hooks import HookRegistry, ModelHook from .layerwise_casting import apply_layerwise_casting, apply_layerwise_casting_hook from .pyramid_attention_broadcast import PyramidAttentionBroadcastConfig, apply_pyramid_attention_broadcast
from ..utils import is_torch_available if is_torch_available(): from .group_offloading import apply_group_offloading from .hooks import HookRegistry, ModelHook from .layerwise_casting import apply_layerwise_casting, apply_layerwise_casting_hook from .pyramid_attention_broadcast import PyramidAttentionBroadcastConfig, apply_pyramid_attention_broadcast
""" This file runs Masked Language Model. You provide a training file. Each line is interpreted as a sentence / paragraph. Optionally, you can also provide a dev file. The fine-tuned model is stored in the output/model_name folder. Usage: python train_mlm.py model_name data/train_sentences.txt [data/dev_sentences.txt] """ import gzip import sys from datetime import datetime from transformers import ( AutoModelForMaskedLM, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForWholeWordMask, Trainer, TrainingArguments, ) if len(sys.argv) < 3: print("Usage: python train_mlm.py model_name data/train_sentences.txt [data/dev_sentences.txt]") exit() model_name = sys.argv[1] per_device_train_batch_size = 64 save_steps = 1000 # Save model every 1k steps num_train_epochs = 3 # Number of epochs use_fp16 = False # Set to True, if your GPU supports FP16 operations max_length = 100 # Max length for a text input do_whole_word_mask = True # If set to true, whole words are masked mlm_prob = 0.15 # Probability that a word is replaced by a [MASK] token # Load the model model = AutoModelForMaskedLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) output_dir = "output/{}-{}".format(model_name.replace("/", "_"), datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) print("Save checkpoints to:", output_dir) ##### Load our training datasets train_sentences = [] train_path = sys.argv[2] with ( gzip.open(train_path, "rt", encoding="utf8") if train_path.endswith(".gz") else open(train_path, encoding="utf8") as fIn ): for line in fIn: line = line.strip() if len(line) >= 10: train_sentences.append(line) print("Train sentences:", len(train_sentences)) dev_sentences = [] if len(sys.argv) >= 4: dev_path = sys.argv[3] with ( gzip.open(dev_path, "rt", encoding="utf8") if dev_path.endswith(".gz") else open(dev_path, encoding="utf8") as fIn ): for line in fIn: line = line.strip() if len(line) >= 10: dev_sentences.append(line) print("Dev sentences:", len(dev_sentences)) # A dataset wrapper, that tokenizes our data on-the-fly class TokenizedSentencesDataset: def __init__(self, sentences, tokenizer, max_length, cache_tokenization=False): self.tokenizer = tokenizer self.sentences = sentences self.max_length = max_length self.cache_tokenization = cache_tokenization def __getitem__(self, item): if not self.cache_tokenization: return self.tokenizer( self.sentences[item], add_special_tokens=True, truncation=True, max_length=self.max_length, return_special_tokens_mask=True, ) if isinstance(self.sentences[item], str): self.sentences[item] = self.tokenizer( self.sentences[item], add_special_tokens=True, truncation=True, max_length=self.max_length, return_special_tokens_mask=True, ) return self.sentences[item] def __len__(self): return len(self.sentences) train_dataset = TokenizedSentencesDataset(train_sentences, tokenizer, max_length) dev_dataset = ( TokenizedSentencesDataset(dev_sentences, tokenizer, max_length, cache_tokenization=True) if len(dev_sentences) > 0 else None ) ##### Training arguments if do_whole_word_mask: data_collator = DataCollatorForWholeWordMask(tokenizer=tokenizer, mlm=True, mlm_probability=mlm_prob) else: data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=True, mlm_probability=mlm_prob) training_args = TrainingArguments( output_dir=output_dir, overwrite_output_dir=True, num_train_epochs=num_train_epochs, evaluation_strategy="steps" if dev_dataset is not None else "no", per_device_train_batch_size=per_device_train_batch_size, eval_steps=save_steps, save_steps=save_steps, logging_steps=save_steps, save_total_limit=1, prediction_loss_only=True, fp16=use_fp16, ) trainer = Trainer( model=model, args=training_args, data_collator=data_collator, train_dataset=train_dataset, eval_dataset=dev_dataset ) print("Save tokenizer to:", output_dir) tokenizer.save_pretrained(output_dir) trainer.train() print("Save model to:", output_dir) model.save_pretrained(output_dir) print("Training done")
""" This file runs Masked Language Model. You provide a training file. Each line is interpreted as a sentence / paragraph. Optionally, you can also provide a dev file. The fine-tuned model is stored in the output/model_name folder. Usage: python train_mlm.py model_name data/train_sentences.txt [data/dev_sentences.txt] """ import gzip import sys from datetime import datetime from transformers import ( AutoModelForMaskedLM, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForWholeWordMask, Trainer, TrainingArguments, ) if len(sys.argv) < 3: print("Usage: python train_mlm.py model_name data/train_sentences.txt [data/dev_sentences.txt]") exit() model_name = sys.argv[1] per_device_train_batch_size = 64 save_steps = 1000 # Save model every 1k steps num_train_epochs = 3 # Number of epochs use_fp16 = False # Set to True, if your GPU supports FP16 operations max_length = 100 # Max length for a text input do_whole_word_mask = True # If set to true, whole words are masked mlm_prob = 0.15 # Probability that a word is replaced by a [MASK] token # Load the model model = AutoModelForMaskedLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) output_dir = "output/{}-{}".format(model_name.replace("/", "_"), datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) print("Save checkpoints to:", output_dir) ##### Load our training datasets train_sentences = [] train_path = sys.argv[2] with gzip.open(train_path, "rt", encoding="utf8") if train_path.endswith(".gz") else open( train_path, encoding="utf8" ) as fIn: for line in fIn: line = line.strip() if len(line) >= 10: train_sentences.append(line) print("Train sentences:", len(train_sentences)) dev_sentences = [] if len(sys.argv) >= 4: dev_path = sys.argv[3] with gzip.open(dev_path, "rt", encoding="utf8") if dev_path.endswith(".gz") else open( dev_path, encoding="utf8" ) as fIn: for line in fIn: line = line.strip() if len(line) >= 10: dev_sentences.append(line) print("Dev sentences:", len(dev_sentences)) # A dataset wrapper, that tokenizes our data on-the-fly class TokenizedSentencesDataset: def __init__(self, sentences, tokenizer, max_length, cache_tokenization=False): self.tokenizer = tokenizer self.sentences = sentences self.max_length = max_length self.cache_tokenization = cache_tokenization def __getitem__(self, item): if not self.cache_tokenization: return self.tokenizer( self.sentences[item], add_special_tokens=True, truncation=True, max_length=self.max_length, return_special_tokens_mask=True, ) if isinstance(self.sentences[item], str): self.sentences[item] = self.tokenizer( self.sentences[item], add_special_tokens=True, truncation=True, max_length=self.max_length, return_special_tokens_mask=True, ) return self.sentences[item] def __len__(self): return len(self.sentences) train_dataset = TokenizedSentencesDataset(train_sentences, tokenizer, max_length) dev_dataset = ( TokenizedSentencesDataset(dev_sentences, tokenizer, max_length, cache_tokenization=True) if len(dev_sentences) > 0 else None ) ##### Training arguments if do_whole_word_mask: data_collator = DataCollatorForWholeWordMask(tokenizer=tokenizer, mlm=True, mlm_probability=mlm_prob) else: data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=True, mlm_probability=mlm_prob) training_args = TrainingArguments( output_dir=output_dir, overwrite_output_dir=True, num_train_epochs=num_train_epochs, evaluation_strategy="steps" if dev_dataset is not None else "no", per_device_train_batch_size=per_device_train_batch_size, eval_steps=save_steps, save_steps=save_steps, logging_steps=save_steps, save_total_limit=1, prediction_loss_only=True, fp16=use_fp16, ) trainer = Trainer( model=model, args=training_args, data_collator=data_collator, train_dataset=train_dataset, eval_dataset=dev_dataset ) print("Save tokenizer to:", output_dir) tokenizer.save_pretrained(output_dir) trainer.train() print("Save model to:", output_dir) model.save_pretrained(output_dir) print("Training done")
""" This file loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file. CT will be training using these sentences. Checkpoints are stored every 500 steps to the output folder. Usage: python train_ct_from_file.py path/to/sentences.txt """ import math from sentence_transformers import models, losses from sentence_transformers import LoggingHandler, SentenceTransformer import logging from datetime import datetime import gzip import sys import tqdm from torch.utils.data import DataLoader #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout ## Training parameters model_name = "distilbert-base-uncased" batch_size = 128 num_epochs = 1 max_seq_length = 75 # Input file path (a text file, each line a sentence) if len(sys.argv) < 2: print("Run this script with: python {} path/to/sentences.txt".format(sys.argv[0])) exit() filepath = sys.argv[1] # Save path to store our model output_name = "" if len(sys.argv) >= 3: output_name = "-" + sys.argv[2].replace(" ", "_").replace("/", "_").replace("\\", "_") model_output_path = "output/train_ct-improved{}-{}".format(output_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Read the train corpus ################# train_sentences = [] with gzip.open(filepath, "rt", encoding="utf8") if filepath.endswith(".gz") else open( filepath, encoding="utf8" ) as fIn: for line in tqdm.tqdm(fIn, desc="Read file"): line = line.strip() if len(line) >= 10: train_sentences.append(line) logging.info("Train sentences: {}".format(len(train_sentences))) # A regular torch DataLoader and as loss we use losses.ContrastiveTensionLossInBatchNegatives train_dataloader = DataLoader(train_sentences, batch_size=batch_size, shuffle=True, drop_last=True) train_loss = losses.ContrastiveTensionLossInBatchNegatives(model) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=num_epochs, warmup_steps=warmup_steps, optimizer_params={"lr": 5e-5}, checkpoint_path=model_output_path, show_progress_bar=True, use_amp=False, # Set to True, if your GPU supports FP16 cores )
""" This file loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file. CT will be training using these sentences. Checkpoints are stored every 500 steps to the output folder. Usage: python train_ct_from_file.py path/to/sentences.txt """ import math from sentence_transformers import models, losses from sentence_transformers import LoggingHandler, SentenceTransformer import logging from datetime import datetime import gzip import sys import tqdm from torch.utils.data import DataLoader #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout ## Training parameters model_name = "distilbert-base-uncased" batch_size = 128 num_epochs = 1 max_seq_length = 75 # Input file path (a text file, each line a sentence) if len(sys.argv) < 2: print("Run this script with: python {} path/to/sentences.txt".format(sys.argv[0])) exit() filepath = sys.argv[1] # Save path to store our model output_name = "" if len(sys.argv) >= 3: output_name = "-" + sys.argv[2].replace(" ", "_").replace("/", "_").replace("\\", "_") model_output_path = "output/train_ct-improved{}-{}".format(output_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Read the train corpus ################# train_sentences = [] with gzip.open(filepath, "rt", encoding="utf8") if filepath.endswith(".gz") else open( filepath, encoding="utf8" ) as fIn: for line in tqdm.tqdm(fIn, desc="Read file"): line = line.strip() if len(line) >= 10: train_sentences.append(line) logging.info("Train sentences: {}".format(len(train_sentences))) # A regular torch DataLoader and as loss we use losses.ContrastiveTensionLossInBatchNegatives train_dataloader = DataLoader(train_sentences, batch_size=batch_size, shuffle=True, drop_last=True) train_loss = losses.ContrastiveTensionLossInBatchNegatives(model) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=num_epochs, warmup_steps=warmup_steps, optimizer_params={"lr": 5e-5}, checkpoint_path=model_output_path, show_progress_bar=True, use_amp=False, # Set to True, if your GPU supports FP16 cores )
from typing import List from pydantic import BaseModel from backend.blocks.exa._auth import ( ExaCredentials, ExaCredentialsField, ExaCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import requests class ContentRetrievalSettings(BaseModel): text: dict = SchemaField( description="Text content settings", default={"maxCharacters": 1000, "includeHtmlTags": False}, advanced=True, ) highlights: dict = SchemaField( description="Highlight settings", default={ "numSentences": 3, "highlightsPerUrl": 3, "query": "", }, advanced=True, ) summary: dict = SchemaField( description="Summary settings", default={"query": ""}, advanced=True, ) class ExaContentsBlock(Block): class Input(BlockSchema): credentials: ExaCredentialsInput = ExaCredentialsField() ids: List[str] = SchemaField( description="Array of document IDs obtained from searches", ) contents: ContentRetrievalSettings = SchemaField( description="Content retrieval settings", default=ContentRetrievalSettings(), advanced=True, ) class Output(BlockSchema): results: list = SchemaField( description="List of document contents", default=[], ) def __init__(self): super().__init__( id="c52be83f-f8cd-4180-b243-af35f986b461", description="Retrieves document contents using Exa's contents API", categories={BlockCategory.SEARCH}, input_schema=ExaContentsBlock.Input, output_schema=ExaContentsBlock.Output, ) def run( self, input_data: Input, *, credentials: ExaCredentials, **kwargs ) -> BlockOutput: url = "https://api.exa.ai/contents" headers = { "Content-Type": "application/json", "x-api-key": credentials.api_key.get_secret_value(), } payload = { "ids": input_data.ids, "text": input_data.contents.text, "highlights": input_data.contents.highlights, "summary": input_data.contents.summary, } try: response = requests.post(url, headers=headers, json=payload) response.raise_for_status() data = response.json() yield "results", data.get("results", []) except Exception as e: yield "error", str(e) yield "results", []
from typing import List, Optional from pydantic import BaseModel from backend.blocks.exa._auth import ( ExaCredentials, ExaCredentialsField, ExaCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import requests class ContentRetrievalSettings(BaseModel): text: dict = SchemaField( description="Text content settings", default={"maxCharacters": 1000, "includeHtmlTags": False}, advanced=True, ) highlights: dict = SchemaField( description="Highlight settings", default={ "numSentences": 3, "highlightsPerUrl": 3, "query": "", }, advanced=True, ) summary: dict = SchemaField( description="Summary settings", default={"query": ""}, advanced=True, ) class ExaContentsBlock(Block): class Input(BlockSchema): credentials: ExaCredentialsInput = ExaCredentialsField() ids: List[str] = SchemaField( description="Array of document IDs obtained from searches", ) contents: ContentRetrievalSettings = SchemaField( description="Content retrieval settings", default=ContentRetrievalSettings(), advanced=True, ) class Output(BlockSchema): results: list = SchemaField( description="List of document contents", default=[], ) def __init__(self): super().__init__( id="c52be83f-f8cd-4180-b243-af35f986b461", description="Retrieves document contents using Exa's contents API", categories={BlockCategory.SEARCH}, input_schema=ExaContentsBlock.Input, output_schema=ExaContentsBlock.Output, ) def run( self, input_data: Input, *, credentials: ExaCredentials, **kwargs ) -> BlockOutput: url = "https://api.exa.ai/contents" headers = { "Content-Type": "application/json", "x-api-key": credentials.api_key.get_secret_value(), } payload = { "ids": input_data.ids, "text": input_data.contents.text, "highlights": input_data.contents.highlights, "summary": input_data.contents.summary, } try: response = requests.post(url, headers=headers, json=payload) response.raise_for_status() data = response.json() yield "results", data.get("results", []) except Exception as e: yield "error", str(e) yield "results", []
_base_ = './htc_x101_32x4d_fpn_16x1_20e_coco.py' model = dict( backbone=dict( type='ResNeXt', groups=64, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
_base_ = './htc_r50_fpn_1x_coco.py' model = dict( backbone=dict( type='ResNeXt', depth=101, groups=64, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d'))) data = dict(samples_per_gpu=1, workers_per_gpu=1) # learning policy lr_config = dict(step=[16, 19]) runner = dict(type='EpochBasedRunner', max_epochs=20)
from torchaudio._internal import module_utils as _mod_utils from . import ffmpeg_utils, sox_utils from .download import download_asset if _mod_utils.is_sox_available(): sox_utils.set_verbosity(0) __all__ = [ "download_asset", "sox_utils", "ffmpeg_utils", ]
from torchaudio._internal import module_utils as _mod_utils from . import sox_utils from .download import download_asset if _mod_utils.is_sox_available(): sox_utils.set_verbosity(0) __all__ = [ "download_asset", "sox_utils", ]
import os from pathlib import Path from typing import List, Tuple, Union import torchaudio from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import extract_archive _RELEASE_CONFIGS = { "release1": { "folder_in_archive": "waves_yesno", "url": "http://www.openslr.org/resources/1/waves_yesno.tar.gz", "checksum": "c3f49e0cca421f96b75b41640749167b52118f232498667ca7a5f9416aef8e73", } } class YESNO(Dataset): """*YesNo* :cite:`YesNo` dataset. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. url (str, optional): The URL to download the dataset from. (default: ``"http://www.openslr.org/resources/1/waves_yesno.tar.gz"``) folder_in_archive (str, optional): The top-level directory of the dataset. (default: ``"waves_yesno"``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ def __init__( self, root: Union[str, Path], url: str = _RELEASE_CONFIGS["release1"]["url"], folder_in_archive: str = _RELEASE_CONFIGS["release1"]["folder_in_archive"], download: bool = False, ) -> None: self._parse_filesystem(root, url, folder_in_archive, download) def _parse_filesystem(self, root: str, url: str, folder_in_archive: str, download: bool) -> None: root = Path(root) archive = os.path.basename(url) archive = root / archive self._path = root / folder_in_archive if download: if not os.path.isdir(self._path): if not os.path.isfile(archive): checksum = _RELEASE_CONFIGS["release1"]["checksum"] download_url_to_file(url, archive, hash_prefix=checksum) extract_archive(archive) if not os.path.isdir(self._path): raise RuntimeError("Dataset not found. Please use `download=True` to download it.") self._walker = sorted(str(p.stem) for p in Path(self._path).glob("*.wav")) def _load_item(self, fileid: str, path: str): labels = [int(c) for c in fileid.split("_")] file_audio = os.path.join(path, fileid + ".wav") waveform, sample_rate = torchaudio.load(file_audio) return waveform, sample_rate, labels def __getitem__(self, n: int) -> Tuple[Tensor, int, List[int]]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: Tuple of the following items; Tensor: Waveform int: Sample rate List[int]: labels """ fileid = self._walker[n] item = self._load_item(fileid, self._path) return item def __len__(self) -> int: return len(self._walker)
import os from pathlib import Path from typing import List, Tuple, Union import torchaudio from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import extract_archive _RELEASE_CONFIGS = { "release1": { "folder_in_archive": "waves_yesno", "url": "http://www.openslr.org/resources/1/waves_yesno.tar.gz", "checksum": "c3f49e0cca421f96b75b41640749167b52118f232498667ca7a5f9416aef8e73", } } class YESNO(Dataset): """Create a Dataset for *YesNo* :cite:`YesNo`. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. url (str, optional): The URL to download the dataset from. (default: ``"http://www.openslr.org/resources/1/waves_yesno.tar.gz"``) folder_in_archive (str, optional): The top-level directory of the dataset. (default: ``"waves_yesno"``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ def __init__( self, root: Union[str, Path], url: str = _RELEASE_CONFIGS["release1"]["url"], folder_in_archive: str = _RELEASE_CONFIGS["release1"]["folder_in_archive"], download: bool = False, ) -> None: self._parse_filesystem(root, url, folder_in_archive, download) def _parse_filesystem(self, root: str, url: str, folder_in_archive: str, download: bool) -> None: root = Path(root) archive = os.path.basename(url) archive = root / archive self._path = root / folder_in_archive if download: if not os.path.isdir(self._path): if not os.path.isfile(archive): checksum = _RELEASE_CONFIGS["release1"]["checksum"] download_url_to_file(url, archive, hash_prefix=checksum) extract_archive(archive) if not os.path.isdir(self._path): raise RuntimeError("Dataset not found. Please use `download=True` to download it.") self._walker = sorted(str(p.stem) for p in Path(self._path).glob("*.wav")) def _load_item(self, fileid: str, path: str): labels = [int(c) for c in fileid.split("_")] file_audio = os.path.join(path, fileid + ".wav") waveform, sample_rate = torchaudio.load(file_audio) return waveform, sample_rate, labels def __getitem__(self, n: int) -> Tuple[Tensor, int, List[int]]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, List[int]): ``(waveform, sample_rate, labels)`` """ fileid = self._walker[n] item = self._load_item(fileid, self._path) return item def __len__(self) -> int: return len(self._walker)
import os class Settings: def __init__(self): self.JWT_SECRET_KEY: str = os.getenv("SUPABASE_JWT_SECRET", "") self.ENABLE_AUTH: bool = os.getenv("ENABLE_AUTH", "false").lower() == "true" self.JWT_ALGORITHM: str = "HS256" @property def is_configured(self) -> bool: return bool(self.JWT_SECRET_KEY) settings = Settings()
import os from dotenv import load_dotenv load_dotenv() class Settings: JWT_SECRET_KEY: str = os.getenv("SUPABASE_JWT_SECRET", "") ENABLE_AUTH: bool = os.getenv("ENABLE_AUTH", "false").lower() == "true" JWT_ALGORITHM: str = "HS256" @property def is_configured(self) -> bool: return bool(self.JWT_SECRET_KEY) settings = Settings()
# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput, SchedulerMixin, UNet2DModel class CustomLocalPipeline(DiffusionPipeline): r""" This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Parameters: unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of [`DDPMScheduler`], or [`DDIMScheduler`]. """ def __init__(self, unet: UNet2DModel, scheduler: SchedulerMixin): super().__init__() self.register_modules(unet=unet, scheduler=scheduler) @torch.no_grad() def __call__( self, batch_size: int = 1, generator: Optional[torch.Generator] = None, num_inference_steps: int = 50, output_type: Optional[str] = "pil", return_dict: bool = True, **kwargs, ) -> Union[ImagePipelineOutput, Tuple]: r""" Args: batch_size (`int`, *optional*, defaults to 1): The number of images to generate. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. eta (`float`, *optional*, defaults to 0.0): The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM). num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. """ # Sample gaussian noise to begin loop image = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=generator, ) image = image.to(self.device) # set step values self.scheduler.set_timesteps(num_inference_steps) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output model_output = self.unet(image, t).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 image = self.scheduler.step(model_output, t, image).prev_sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=image), "This is a local test"
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput, SchedulerMixin, UNet2DModel class CustomLocalPipeline(DiffusionPipeline): r""" This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Parameters: unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of [`DDPMScheduler`], or [`DDIMScheduler`]. """ def __init__(self, unet: UNet2DModel, scheduler: SchedulerMixin): super().__init__() self.register_modules(unet=unet, scheduler=scheduler) @torch.no_grad() def __call__( self, batch_size: int = 1, generator: Optional[torch.Generator] = None, num_inference_steps: int = 50, output_type: Optional[str] = "pil", return_dict: bool = True, **kwargs, ) -> Union[ImagePipelineOutput, Tuple]: r""" Args: batch_size (`int`, *optional*, defaults to 1): The number of images to generate. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. eta (`float`, *optional*, defaults to 0.0): The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM). num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. """ # Sample gaussian noise to begin loop image = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=generator, ) image = image.to(self.device) # set step values self.scheduler.set_timesteps(num_inference_steps) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output model_output = self.unet(image, t).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 image = self.scheduler.step(model_output, t, image).prev_sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=image), "This is a local test"
# Copyright (c) OpenMMLab. All rights reserved. from .anchor_free_head import AnchorFreeHead from .anchor_head import AnchorHead from .atss_head import ATSSHead from .atss_vlfusion_head import ATSSVLFusionHead from .autoassign_head import AutoAssignHead from .boxinst_head import BoxInstBboxHead, BoxInstMaskHead from .cascade_rpn_head import CascadeRPNHead, StageCascadeRPNHead from .centernet_head import CenterNetHead from .centernet_update_head import CenterNetUpdateHead from .centripetal_head import CentripetalHead from .condinst_head import CondInstBboxHead, CondInstMaskHead from .conditional_detr_head import ConditionalDETRHead from .corner_head import CornerHead from .dab_detr_head import DABDETRHead from .ddod_head import DDODHead from .ddq_detr_head import DDQDETRHead from .deformable_detr_head import DeformableDETRHead from .detr_head import DETRHead from .dino_head import DINOHead from .embedding_rpn_head import EmbeddingRPNHead from .fcos_head import FCOSHead from .fovea_head import FoveaHead from .free_anchor_retina_head import FreeAnchorRetinaHead from .fsaf_head import FSAFHead from .ga_retina_head import GARetinaHead from .ga_rpn_head import GARPNHead from .gfl_head import GFLHead from .grounding_dino_head import GroundingDINOHead from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead from .lad_head import LADHead from .ld_head import LDHead from .mask2former_head import Mask2FormerHead from .maskformer_head import MaskFormerHead from .nasfcos_head import NASFCOSHead from .paa_head import PAAHead from .pisa_retinanet_head import PISARetinaHead from .pisa_ssd_head import PISASSDHead from .reppoints_head import RepPointsHead from .retina_head import RetinaHead from .retina_sepbn_head import RetinaSepBNHead from .rpn_head import RPNHead from .rtmdet_head import RTMDetHead, RTMDetSepBNHead from .rtmdet_ins_head import RTMDetInsHead, RTMDetInsSepBNHead from .sabl_retina_head import SABLRetinaHead from .solo_head import DecoupledSOLOHead, DecoupledSOLOLightHead, SOLOHead from .solov2_head import SOLOV2Head from .ssd_head import SSDHead from .tood_head import TOODHead from .vfnet_head import VFNetHead from .yolact_head import YOLACTHead, YOLACTProtonet from .yolo_head import YOLOV3Head from .yolof_head import YOLOFHead from .yolox_head import YOLOXHead __all__ = [ 'AnchorFreeHead', 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead', 'GARPNHead', 'RetinaHead', 'RetinaSepBNHead', 'GARetinaHead', 'SSDHead', 'FCOSHead', 'RepPointsHead', 'FoveaHead', 'FreeAnchorRetinaHead', 'ATSSHead', 'FSAFHead', 'NASFCOSHead', 'PISARetinaHead', 'PISASSDHead', 'GFLHead', 'CornerHead', 'YOLACTHead', 'YOLACTProtonet', 'YOLOV3Head', 'PAAHead', 'SABLRetinaHead', 'CentripetalHead', 'VFNetHead', 'StageCascadeRPNHead', 'CascadeRPNHead', 'EmbeddingRPNHead', 'LDHead', 'AutoAssignHead', 'DETRHead', 'YOLOFHead', 'DeformableDETRHead', 'CenterNetHead', 'YOLOXHead', 'SOLOHead', 'DecoupledSOLOHead', 'DecoupledSOLOLightHead', 'SOLOV2Head', 'LADHead', 'TOODHead', 'MaskFormerHead', 'Mask2FormerHead', 'DDODHead', 'CenterNetUpdateHead', 'RTMDetHead', 'RTMDetSepBNHead', 'CondInstBboxHead', 'CondInstMaskHead', 'RTMDetInsHead', 'RTMDetInsSepBNHead', 'BoxInstBboxHead', 'BoxInstMaskHead', 'ConditionalDETRHead', 'DINOHead', 'ATSSVLFusionHead', 'DABDETRHead', 'DDQDETRHead', 'GroundingDINOHead' ]
# Copyright (c) OpenMMLab. All rights reserved. from .anchor_free_head import AnchorFreeHead from .anchor_head import AnchorHead from .atss_head import ATSSHead from .atss_vlfusion_head import ATSSVLFusionHead from .autoassign_head import AutoAssignHead from .boxinst_head import BoxInstBboxHead, BoxInstMaskHead from .cascade_rpn_head import CascadeRPNHead, StageCascadeRPNHead from .centernet_head import CenterNetHead from .centernet_update_head import CenterNetUpdateHead from .centripetal_head import CentripetalHead from .condinst_head import CondInstBboxHead, CondInstMaskHead from .conditional_detr_head import ConditionalDETRHead from .corner_head import CornerHead from .dab_detr_head import DABDETRHead from .ddod_head import DDODHead from .deformable_detr_head import DeformableDETRHead from .detr_head import DETRHead from .dino_head import DINOHead from .embedding_rpn_head import EmbeddingRPNHead from .fcos_head import FCOSHead from .fovea_head import FoveaHead from .free_anchor_retina_head import FreeAnchorRetinaHead from .fsaf_head import FSAFHead from .ga_retina_head import GARetinaHead from .ga_rpn_head import GARPNHead from .gfl_head import GFLHead from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead from .lad_head import LADHead from .ld_head import LDHead from .mask2former_head import Mask2FormerHead from .maskformer_head import MaskFormerHead from .nasfcos_head import NASFCOSHead from .paa_head import PAAHead from .pisa_retinanet_head import PISARetinaHead from .pisa_ssd_head import PISASSDHead from .reppoints_head import RepPointsHead from .retina_head import RetinaHead from .retina_sepbn_head import RetinaSepBNHead from .rpn_head import RPNHead from .rtmdet_head import RTMDetHead, RTMDetSepBNHead from .rtmdet_ins_head import RTMDetInsHead, RTMDetInsSepBNHead from .sabl_retina_head import SABLRetinaHead from .solo_head import DecoupledSOLOHead, DecoupledSOLOLightHead, SOLOHead from .solov2_head import SOLOV2Head from .ssd_head import SSDHead from .tood_head import TOODHead from .vfnet_head import VFNetHead from .yolact_head import YOLACTHead, YOLACTProtonet from .yolo_head import YOLOV3Head from .yolof_head import YOLOFHead from .yolox_head import YOLOXHead __all__ = [ 'AnchorFreeHead', 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead', 'GARPNHead', 'RetinaHead', 'RetinaSepBNHead', 'GARetinaHead', 'SSDHead', 'FCOSHead', 'RepPointsHead', 'FoveaHead', 'FreeAnchorRetinaHead', 'ATSSHead', 'FSAFHead', 'NASFCOSHead', 'PISARetinaHead', 'PISASSDHead', 'GFLHead', 'CornerHead', 'YOLACTHead', 'YOLACTProtonet', 'YOLOV3Head', 'PAAHead', 'SABLRetinaHead', 'CentripetalHead', 'VFNetHead', 'StageCascadeRPNHead', 'CascadeRPNHead', 'EmbeddingRPNHead', 'LDHead', 'AutoAssignHead', 'DETRHead', 'YOLOFHead', 'DeformableDETRHead', 'CenterNetHead', 'YOLOXHead', 'SOLOHead', 'DecoupledSOLOHead', 'DecoupledSOLOLightHead', 'SOLOV2Head', 'LADHead', 'TOODHead', 'MaskFormerHead', 'Mask2FormerHead', 'DDODHead', 'CenterNetUpdateHead', 'RTMDetHead', 'RTMDetSepBNHead', 'CondInstBboxHead', 'CondInstMaskHead', 'RTMDetInsHead', 'RTMDetInsSepBNHead', 'BoxInstBboxHead', 'BoxInstMaskHead', 'ConditionalDETRHead', 'DINOHead', 'ATSSVLFusionHead', 'DABDETRHead' ]
from setuptools import setup, find_packages with open("README.md", mode="r", encoding="utf-8") as readme_file: readme = readme_file.read() setup( name="sentence-transformers", version="2.6.0.dev0", author="Nils Reimers", author_email="info@nils-reimers.de", description="Multilingual text embeddings", long_description=readme, long_description_content_type="text/markdown", license="Apache License 2.0", url="https://www.SBERT.net", download_url="https://github.com/UKPLab/sentence-transformers/", packages=find_packages(), python_requires=">=3.8.0", install_requires=[ "transformers>=4.32.0,<5.0.0", "tqdm", "torch>=1.11.0", "numpy", "scikit-learn", "scipy", "huggingface-hub>=0.15.1", "Pillow", ], classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.8", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], keywords="Transformer Networks BERT XLNet sentence embedding PyTorch NLP deep learning", )
from setuptools import setup, find_packages with open("README.md", mode="r", encoding="utf-8") as readme_file: readme = readme_file.read() setup( name="sentence-transformers", version="2.5.0.dev0", author="Nils Reimers", author_email="info@nils-reimers.de", description="Multilingual text embeddings", long_description=readme, long_description_content_type="text/markdown", license="Apache License 2.0", url="https://www.SBERT.net", download_url="https://github.com/UKPLab/sentence-transformers/", packages=find_packages(), python_requires=">=3.8.0", install_requires=[ "transformers>=4.32.0,<5.0.0", "tqdm", "torch>=1.11.0", "numpy", "scikit-learn", "scipy", "huggingface-hub>=0.15.1", "Pillow", ], classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.8", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], keywords="Transformer Networks BERT XLNet sentence embedding PyTorch NLP deep learning", )
from dataclasses import dataclass, field from typing import Any, Dict, Type import pytest from pydantic import Field from docarray import BaseDoc from docarray.index.abstract import BaseDocIndex from docarray.typing import NdArray pytestmark = pytest.mark.index class SimpleDoc(BaseDoc): tens: NdArray[10] = Field(dim=1000) class FakeQueryBuilder: ... @dataclass class DBConfig(BaseDocIndex.DBConfig): work_dir: str = '.' other: int = 5 default_column_config: Dict[Type, Dict[str, Any]] = field( default_factory=lambda: { str: { 'dim': 128, 'space': 'l2', }, } ) default_ef: int = 50 @dataclass class RuntimeConfig(BaseDocIndex.RuntimeConfig): pass def _identity(*x, **y): return x, y class DummyDocIndex(BaseDocIndex): DBConfig = DBConfig RuntimeConfig = RuntimeConfig def python_type_to_db_type(self, x): return str _index = _identity num_docs = _identity _del_items = _identity _get_items = _identity execute_query = _identity _find = _identity _find_batched = _identity _filter = _identity _filter_batched = _identity _text_search = _identity _text_search_batched = _identity def test_defaults(): index = DummyDocIndex[SimpleDoc]() assert index._db_config.other == 5 assert index._db_config.work_dir == '.' assert index._runtime_config.default_column_config[str] == { 'dim': 128, 'space': 'l2', } def test_set_by_class(): # change all settings index = DummyDocIndex[SimpleDoc](DBConfig(work_dir='hi', other=10)) assert index._db_config.other == 10 assert index._db_config.work_dir == 'hi' index.configure(RuntimeConfig(default_column_config={}, default_ef=10)) assert index._runtime_config.default_column_config == {} # change only some settings index = DummyDocIndex[SimpleDoc](DBConfig(work_dir='hi')) assert index._db_config.other == 5 assert index._db_config.work_dir == 'hi' index.configure(RuntimeConfig(default_column_config={})) assert index._runtime_config.default_column_config == {} def test_set_by_kwargs(): # change all settings index = DummyDocIndex[SimpleDoc](work_dir='hi', other=10) assert index._db_config.other == 10 assert index._db_config.work_dir == 'hi' index.configure(default_column_config={}, default_ef=10) assert index._runtime_config.default_column_config == {} # change only some settings index = DummyDocIndex[SimpleDoc](work_dir='hi') assert index._db_config.other == 5 assert index._db_config.work_dir == 'hi' index.configure(default_column_config={}) assert index._runtime_config.default_column_config == {} def test_default_column_config(): index = DummyDocIndex[SimpleDoc]() assert index._runtime_config.default_column_config == { str: { 'dim': 128, 'space': 'l2', }, }
from dataclasses import dataclass, field from typing import Any, Dict, Type import pytest from pydantic import Field from docarray import BaseDoc from docarray.index.abstract import BaseDocIndex from docarray.typing import NdArray pytestmark = pytest.mark.index class SimpleDoc(BaseDoc): tens: NdArray[10] = Field(dim=1000) class FakeQueryBuilder: ... @dataclass class DBConfig(BaseDocIndex.DBConfig): work_dir: str = '.' other: int = 5 @dataclass class RuntimeConfig(BaseDocIndex.RuntimeConfig): default_column_config: Dict[Type, Dict[str, Any]] = field( default_factory=lambda: { str: { 'dim': 128, 'space': 'l2', }, } ) default_ef: int = 50 def _identity(*x, **y): return x, y class DummyDocIndex(BaseDocIndex): DBConfig = DBConfig RuntimeConfig = RuntimeConfig def python_type_to_db_type(self, x): return str _index = _identity num_docs = _identity _del_items = _identity _get_items = _identity execute_query = _identity _find = _identity _find_batched = _identity _filter = _identity _filter_batched = _identity _text_search = _identity _text_search_batched = _identity def test_defaults(): index = DummyDocIndex[SimpleDoc]() assert index._db_config.other == 5 assert index._db_config.work_dir == '.' assert index._runtime_config.default_column_config[str] == { 'dim': 128, 'space': 'l2', } def test_set_by_class(): # change all settings index = DummyDocIndex[SimpleDoc](DBConfig(work_dir='hi', other=10)) assert index._db_config.other == 10 assert index._db_config.work_dir == 'hi' index.configure(RuntimeConfig(default_column_config={}, default_ef=10)) assert index._runtime_config.default_column_config == {} # change only some settings index = DummyDocIndex[SimpleDoc](DBConfig(work_dir='hi')) assert index._db_config.other == 5 assert index._db_config.work_dir == 'hi' index.configure(RuntimeConfig(default_column_config={})) assert index._runtime_config.default_column_config == {} def test_set_by_kwargs(): # change all settings index = DummyDocIndex[SimpleDoc](work_dir='hi', other=10) assert index._db_config.other == 10 assert index._db_config.work_dir == 'hi' index.configure(default_column_config={}, default_ef=10) assert index._runtime_config.default_column_config == {} # change only some settings index = DummyDocIndex[SimpleDoc](work_dir='hi') assert index._db_config.other == 5 assert index._db_config.work_dir == 'hi' index.configure(default_column_config={}) assert index._runtime_config.default_column_config == {} def test_default_column_config(): index = DummyDocIndex[SimpleDoc]() assert index._runtime_config.default_column_config == { str: { 'dim': 128, 'space': 'l2', }, }
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os from collections import Sequence from pathlib import Path import mmcv import numpy as np from mmcv import Config, DictAction from mmdet.core.utils import mask2ndarray from mmdet.core.visualization import imshow_det_bboxes from mmdet.datasets.builder import build_dataset def parse_args(): parser = argparse.ArgumentParser(description='Browse a dataset') parser.add_argument('config', help='train config file path') parser.add_argument( '--skip-type', type=str, nargs='+', default=['DefaultFormatBundle', 'Normalize', 'Collect'], help='skip some useless pipeline') parser.add_argument( '--output-dir', default=None, type=str, help='If there is no display interface, you can save it') parser.add_argument('--not-show', default=False, action='store_true') parser.add_argument( '--show-interval', type=float, default=2, help='the interval of show (s)') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def retrieve_data_cfg(config_path, skip_type, cfg_options): def skip_pipeline_steps(config): config['pipeline'] = [ x for x in config.pipeline if x['type'] not in skip_type ] cfg = Config.fromfile(config_path) if cfg_options is not None: cfg.merge_from_dict(cfg_options) train_data_cfg = cfg.data.train while 'dataset' in train_data_cfg and train_data_cfg[ 'type'] != 'MultiImageMixDataset': train_data_cfg = train_data_cfg['dataset'] if isinstance(train_data_cfg, Sequence): [skip_pipeline_steps(c) for c in train_data_cfg] else: skip_pipeline_steps(train_data_cfg) return cfg def main(): args = parse_args() cfg = retrieve_data_cfg(args.config, args.skip_type, args.cfg_options) if 'gt_semantic_seg' in cfg.train_pipeline[-1]['keys']: cfg.data.train.pipeline = [ p for p in cfg.data.train.pipeline if p['type'] != 'SegRescale' ] dataset = build_dataset(cfg.data.train) progress_bar = mmcv.ProgressBar(len(dataset)) for item in dataset: filename = os.path.join(args.output_dir, Path(item['filename']).name ) if args.output_dir is not None else None gt_bboxes = item['gt_bboxes'] gt_labels = item['gt_labels'] gt_masks = item.get('gt_masks', None) if gt_masks is not None: gt_masks = mask2ndarray(gt_masks) gt_seg = item.get('gt_semantic_seg', None) if gt_seg is not None: pad_value = 255 # the padding value of gt_seg sem_labels = np.unique(gt_seg) all_labels = np.concatenate((gt_labels, sem_labels), axis=0) all_labels, counts = np.unique(all_labels, return_counts=True) stuff_labels = all_labels[np.logical_and(counts < 2, all_labels != pad_value)] stuff_masks = gt_seg[None] == stuff_labels[:, None, None] gt_labels = np.concatenate((gt_labels, stuff_labels), axis=0) gt_masks = np.concatenate((gt_masks, stuff_masks.astype(np.uint8)), axis=0) # If you need to show the bounding boxes, # please comment the following line gt_bboxes = None imshow_det_bboxes( item['img'], gt_bboxes, gt_labels, gt_masks, class_names=dataset.CLASSES, show=not args.not_show, wait_time=args.show_interval, out_file=filename, bbox_color=dataset.PALETTE, text_color=(200, 200, 200), mask_color=dataset.PALETTE) progress_bar.update() if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os from collections import Sequence from pathlib import Path import mmcv from mmcv import Config, DictAction from mmdet.core.utils import mask2ndarray from mmdet.core.visualization import imshow_det_bboxes from mmdet.datasets.builder import build_dataset def parse_args(): parser = argparse.ArgumentParser(description='Browse a dataset') parser.add_argument('config', help='train config file path') parser.add_argument( '--skip-type', type=str, nargs='+', default=['DefaultFormatBundle', 'Normalize', 'Collect'], help='skip some useless pipeline') parser.add_argument( '--output-dir', default=None, type=str, help='If there is no display interface, you can save it') parser.add_argument('--not-show', default=False, action='store_true') parser.add_argument( '--show-interval', type=float, default=2, help='the interval of show (s)') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def retrieve_data_cfg(config_path, skip_type, cfg_options): def skip_pipeline_steps(config): config['pipeline'] = [ x for x in config.pipeline if x['type'] not in skip_type ] cfg = Config.fromfile(config_path) if cfg_options is not None: cfg.merge_from_dict(cfg_options) train_data_cfg = cfg.data.train while 'dataset' in train_data_cfg and train_data_cfg[ 'type'] != 'MultiImageMixDataset': train_data_cfg = train_data_cfg['dataset'] if isinstance(train_data_cfg, Sequence): [skip_pipeline_steps(c) for c in train_data_cfg] else: skip_pipeline_steps(train_data_cfg) return cfg def main(): args = parse_args() cfg = retrieve_data_cfg(args.config, args.skip_type, args.cfg_options) dataset = build_dataset(cfg.data.train) progress_bar = mmcv.ProgressBar(len(dataset)) for item in dataset: filename = os.path.join(args.output_dir, Path(item['filename']).name ) if args.output_dir is not None else None gt_masks = item.get('gt_masks', None) if gt_masks is not None: gt_masks = mask2ndarray(gt_masks) imshow_det_bboxes( item['img'], item['gt_bboxes'], item['gt_labels'], gt_masks, class_names=dataset.CLASSES, show=not args.not_show, wait_time=args.show_interval, out_file=filename, bbox_color=(255, 102, 61), text_color=(255, 102, 61)) progress_bar.update() if __name__ == '__main__': main()
from .vggish_audio_encoder import VggishAudioEncoder
from .vggish_audio_encoder import VggishAudioEncoder
"""Question-answering with sources over a vector database.""" import warnings from typing import Any from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain_core.documents import Document from langchain_core.vectorstores import VectorStore from pydantic import Field, model_validator from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain class VectorDBQAWithSourcesChain(BaseQAWithSourcesChain): """Question-answering with sources over a vector database.""" vectorstore: VectorStore = Field(exclude=True) """Vector Database to connect to.""" k: int = 4 """Number of results to return from store""" reduce_k_below_max_tokens: bool = False """Reduce the number of results to return from store based on tokens limit""" max_tokens_limit: int = 3375 """Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true""" search_kwargs: dict[str, Any] = Field(default_factory=dict) """Extra search args.""" def _reduce_tokens_below_limit(self, docs: list[Document]) -> list[Document]: num_docs = len(docs) if self.reduce_k_below_max_tokens and isinstance( self.combine_documents_chain, StuffDocumentsChain, ): tokens = [ self.combine_documents_chain.llm_chain._get_num_tokens(doc.page_content) for doc in docs ] token_count = sum(tokens[:num_docs]) while token_count > self.max_tokens_limit: num_docs -= 1 token_count -= tokens[num_docs] return docs[:num_docs] def _get_docs( self, inputs: dict[str, Any], *, run_manager: CallbackManagerForChainRun, ) -> list[Document]: question = inputs[self.question_key] docs = self.vectorstore.similarity_search( question, k=self.k, **self.search_kwargs, ) return self._reduce_tokens_below_limit(docs) async def _aget_docs( self, inputs: dict[str, Any], *, run_manager: AsyncCallbackManagerForChainRun, ) -> list[Document]: msg = "VectorDBQAWithSourcesChain does not support async" raise NotImplementedError(msg) @model_validator(mode="before") @classmethod def raise_deprecation(cls, values: dict) -> Any: warnings.warn( "`VectorDBQAWithSourcesChain` is deprecated - " "please use `from langchain.chains import RetrievalQAWithSourcesChain`", stacklevel=2, ) return values @property def _chain_type(self) -> str: return "vector_db_qa_with_sources_chain"
"""Question-answering with sources over a vector database.""" import warnings from typing import Any from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain_core.documents import Document from langchain_core.vectorstores import VectorStore from pydantic import Field, model_validator from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain class VectorDBQAWithSourcesChain(BaseQAWithSourcesChain): """Question-answering with sources over a vector database.""" vectorstore: VectorStore = Field(exclude=True) """Vector Database to connect to.""" k: int = 4 """Number of results to return from store""" reduce_k_below_max_tokens: bool = False """Reduce the number of results to return from store based on tokens limit""" max_tokens_limit: int = 3375 """Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true""" search_kwargs: dict[str, Any] = Field(default_factory=dict) """Extra search args.""" def _reduce_tokens_below_limit(self, docs: list[Document]) -> list[Document]: num_docs = len(docs) if self.reduce_k_below_max_tokens and isinstance( self.combine_documents_chain, StuffDocumentsChain, ): tokens = [ self.combine_documents_chain.llm_chain._get_num_tokens(doc.page_content) for doc in docs ] token_count = sum(tokens[:num_docs]) while token_count > self.max_tokens_limit: num_docs -= 1 token_count -= tokens[num_docs] return docs[:num_docs] def _get_docs( self, inputs: dict[str, Any], *, run_manager: CallbackManagerForChainRun, ) -> list[Document]: question = inputs[self.question_key] docs = self.vectorstore.similarity_search( question, k=self.k, **self.search_kwargs, ) return self._reduce_tokens_below_limit(docs) async def _aget_docs( self, inputs: dict[str, Any], *, run_manager: AsyncCallbackManagerForChainRun, ) -> list[Document]: msg = "VectorDBQAWithSourcesChain does not support async" raise NotImplementedError(msg) @model_validator(mode="before") @classmethod def raise_deprecation(cls, values: dict) -> Any: warnings.warn( "`VectorDBQAWithSourcesChain` is deprecated - " "please use `from langchain.chains import RetrievalQAWithSourcesChain`", stacklevel=5, ) return values @property def _chain_type(self) -> str: return "vector_db_qa_with_sources_chain"
""" Example of training with Dask on GPU ==================================== """ import cupy as cp import dask_cudf from dask import array as da from dask import dataframe as dd from dask.distributed import Client from dask_cuda import LocalCUDACluster from xgboost import dask as dxgb from xgboost.dask import DaskDMatrix def using_dask_matrix(client: Client, X: da.Array, y: da.Array) -> da.Array: # DaskDMatrix acts like normal DMatrix, works as a proxy for local DMatrix scatter # around workers. dtrain = DaskDMatrix(client, X, y) # Use train method from xgboost.dask instead of xgboost. This distributed version # of train returns a dictionary containing the resulting booster and evaluation # history obtained from evaluation metrics. output = dxgb.train( client, { "verbosity": 2, "tree_method": "hist", # Golden line for GPU training "device": "cuda", }, dtrain, num_boost_round=4, evals=[(dtrain, "train")], ) bst = output["booster"] history = output["history"] # you can pass output directly into `predict` too. prediction = dxgb.predict(client, bst, dtrain) print("Evaluation history:", history) return prediction def using_quantile_device_dmatrix(client: Client, X: da.Array, y: da.Array) -> da.Array: """`DaskQuantileDMatrix` is a data type specialized for `hist` tree methods for reducing memory usage. .. versionadded:: 1.2.0 """ X = dask_cudf.from_dask_dataframe(dd.from_dask_array(X)) y = dask_cudf.from_dask_dataframe(dd.from_dask_array(y)) # `DaskQuantileDMatrix` is used instead of `DaskDMatrix`, be careful that it can not # be used for anything else other than training unless a reference is specified. See # the `ref` argument of `DaskQuantileDMatrix`. dtrain = dxgb.DaskQuantileDMatrix(client, X, y) output = dxgb.train( client, {"verbosity": 2, "tree_method": "hist", "device": "cuda"}, dtrain, num_boost_round=4, ) prediction = dxgb.predict(client, output, X) return prediction if __name__ == "__main__": # `LocalCUDACluster` is used for assigning GPU to XGBoost processes. Here # `n_workers` represents the number of GPUs since we use one GPU per worker process. with LocalCUDACluster(n_workers=2, threads_per_worker=4) as cluster: with Client(cluster) as client: # generate some random data for demonstration rng = da.random.default_rng(1) m = 100000 n = 100 X = rng.normal(size=(m, n)) y = X.sum(axis=1) print("Using DaskQuantileDMatrix") from_ddqdm = using_quantile_device_dmatrix(client, X, y) print("Using DMatrix") from_dmatrix = using_dask_matrix(client, X, y)
""" Example of training with Dask on GPU ==================================== """ import dask_cudf from dask import array as da from dask import dataframe as dd from dask.distributed import Client from dask_cuda import LocalCUDACluster from xgboost import dask as dxgb from xgboost.dask import DaskDMatrix def using_dask_matrix(client: Client, X: da.Array, y: da.Array) -> da.Array: # DaskDMatrix acts like normal DMatrix, works as a proxy for local DMatrix scatter # around workers. dtrain = DaskDMatrix(client, X, y) # Use train method from xgboost.dask instead of xgboost. This distributed version # of train returns a dictionary containing the resulting booster and evaluation # history obtained from evaluation metrics. output = dxgb.train( client, { "verbosity": 2, "tree_method": "hist", # Golden line for GPU training "device": "cuda", }, dtrain, num_boost_round=4, evals=[(dtrain, "train")], ) bst = output["booster"] history = output["history"] # you can pass output directly into `predict` too. prediction = dxgb.predict(client, bst, dtrain) print("Evaluation history:", history) return prediction def using_quantile_device_dmatrix(client: Client, X: da.Array, y: da.Array) -> da.Array: """`DaskQuantileDMatrix` is a data type specialized for `hist` tree methods for reducing memory usage. .. versionadded:: 1.2.0 """ X = dask_cudf.from_dask_dataframe(dd.from_dask_array(X)) y = dask_cudf.from_dask_dataframe(dd.from_dask_array(y)) # `DaskQuantileDMatrix` is used instead of `DaskDMatrix`, be careful that it can not # be used for anything else other than training unless a reference is specified. See # the `ref` argument of `DaskQuantileDMatrix`. dtrain = dxgb.DaskQuantileDMatrix(client, X, y) output = dxgb.train( client, {"verbosity": 2, "tree_method": "hist", "device": "cuda"}, dtrain, num_boost_round=4, ) prediction = dxgb.predict(client, output, X) return prediction if __name__ == "__main__": # `LocalCUDACluster` is used for assigning GPU to XGBoost processes. Here # `n_workers` represents the number of GPUs since we use one GPU per worker process. with LocalCUDACluster(n_workers=2, threads_per_worker=4) as cluster: with Client(cluster) as client: # generate some random data for demonstration m = 100000 n = 100 X = da.random.random(size=(m, n), chunks=10000) y = da.random.random(size=(m,), chunks=10000) print("Using DaskQuantileDMatrix") from_ddqdm = using_quantile_device_dmatrix(client, X, y) print("Using DMatrix") from_dmatrix = using_dask_matrix(client, X, y)
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pytest from pydantic import parse_obj_as from docarray.computation.numpy_backend import NumpyCompBackend from docarray.typing import NdArray def test_to_device(): with pytest.raises(NotImplementedError): NumpyCompBackend.to_device(np.random.rand(10, 3), 'meta') @pytest.mark.parametrize( 'array,result', [ (np.zeros((5)), 1), (np.zeros((1, 5)), 2), (np.zeros((5, 5)), 2), (np.zeros(()), 0), ], ) def test_n_dim(array, result): assert NumpyCompBackend.n_dim(array) == result @pytest.mark.parametrize( 'array,result', [ (np.zeros((10,)), (10,)), (np.zeros((5, 5)), (5, 5)), (np.zeros(()), ()), ], ) def test_shape(array, result): shape = NumpyCompBackend.shape(array) assert shape == result assert type(shape) == tuple def test_device(): array = np.array([1, 2, 3]) assert NumpyCompBackend.device(array) is None @pytest.mark.parametrize('dtype', [np.int64, np.float64, int, float]) def test_dtype(dtype): array = np.array([1, 2, 3], dtype=dtype) assert NumpyCompBackend.dtype(array) == dtype def test_empty(): array = NumpyCompBackend.empty((10, 3)) assert array.shape == (10, 3) def test_empty_dtype(): tensor = NumpyCompBackend.empty((10, 3), dtype=np.int32) assert tensor.shape == (10, 3) assert tensor.dtype == np.int32 def test_empty_device(): with pytest.raises(NotImplementedError): NumpyCompBackend.empty((10, 3), device='meta') def test_squeeze(): tensor = np.zeros(shape=(1, 1, 3, 1)) squeezed = NumpyCompBackend.squeeze(tensor) assert squeezed.shape == (3,) @pytest.mark.parametrize( 'array,t_range,x_range,result', [ (np.array([0, 1, 2, 3, 4, 5]), (0, 10), None, np.array([0, 2, 4, 6, 8, 10])), (np.array([0, 1, 2, 3, 4, 5]), (0, 10), (0, 10), np.array([0, 1, 2, 3, 4, 5])), ( np.array([[0.0, 1.0], [0.0, 1.0]]), (0, 10), None, np.array([[0.0, 10.0], [0.0, 10.0]]), ), ], ) def test_minmax_normalize(array, t_range, x_range, result): output = NumpyCompBackend.minmax_normalize( tensor=array, t_range=t_range, x_range=x_range ) assert np.allclose(output, result) def test_stack(): t0 = parse_obj_as(NdArray, np.zeros((3, 224, 224))) t1 = parse_obj_as(NdArray, np.ones((3, 224, 224))) stacked1 = NumpyCompBackend.stack([t0, t1], dim=0) assert isinstance(stacked1, np.ndarray) assert stacked1.shape == (2, 3, 224, 224) stacked2 = NumpyCompBackend.stack([t0, t1], dim=-1) assert isinstance(stacked2, np.ndarray) assert stacked2.shape == (3, 224, 224, 2)
import numpy as np import pytest from pydantic import parse_obj_as from docarray.computation.numpy_backend import NumpyCompBackend from docarray.typing import NdArray def test_to_device(): with pytest.raises(NotImplementedError): NumpyCompBackend.to_device(np.random.rand(10, 3), 'meta') @pytest.mark.parametrize( 'array,result', [ (np.zeros((5)), 1), (np.zeros((1, 5)), 2), (np.zeros((5, 5)), 2), (np.zeros(()), 0), ], ) def test_n_dim(array, result): assert NumpyCompBackend.n_dim(array) == result @pytest.mark.parametrize( 'array,result', [ (np.zeros((10,)), (10,)), (np.zeros((5, 5)), (5, 5)), (np.zeros(()), ()), ], ) def test_shape(array, result): shape = NumpyCompBackend.shape(array) assert shape == result assert type(shape) == tuple def test_device(): array = np.array([1, 2, 3]) assert NumpyCompBackend.device(array) is None @pytest.mark.parametrize('dtype', [np.int64, np.float64, int, float]) def test_dtype(dtype): array = np.array([1, 2, 3], dtype=dtype) assert NumpyCompBackend.dtype(array) == dtype def test_empty(): array = NumpyCompBackend.empty((10, 3)) assert array.shape == (10, 3) def test_empty_dtype(): tensor = NumpyCompBackend.empty((10, 3), dtype=np.int32) assert tensor.shape == (10, 3) assert tensor.dtype == np.int32 def test_empty_device(): with pytest.raises(NotImplementedError): NumpyCompBackend.empty((10, 3), device='meta') def test_squeeze(): tensor = np.zeros(shape=(1, 1, 3, 1)) squeezed = NumpyCompBackend.squeeze(tensor) assert squeezed.shape == (3,) @pytest.mark.parametrize( 'array,t_range,x_range,result', [ (np.array([0, 1, 2, 3, 4, 5]), (0, 10), None, np.array([0, 2, 4, 6, 8, 10])), (np.array([0, 1, 2, 3, 4, 5]), (0, 10), (0, 10), np.array([0, 1, 2, 3, 4, 5])), ( np.array([[0.0, 1.0], [0.0, 1.0]]), (0, 10), None, np.array([[0.0, 10.0], [0.0, 10.0]]), ), ], ) def test_minmax_normalize(array, t_range, x_range, result): output = NumpyCompBackend.minmax_normalize( tensor=array, t_range=t_range, x_range=x_range ) assert np.allclose(output, result) def test_stack(): t0 = parse_obj_as(NdArray, np.zeros((3, 224, 224))) t1 = parse_obj_as(NdArray, np.ones((3, 224, 224))) stacked1 = NumpyCompBackend.stack([t0, t1], dim=0) assert isinstance(stacked1, np.ndarray) assert stacked1.shape == (2, 3, 224, 224) stacked2 = NumpyCompBackend.stack([t0, t1], dim=-1) assert isinstance(stacked2, np.ndarray) assert stacked2.shape == (3, 224, 224, 2)
# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from diffusers import AutoencoderDC from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, torch_device, ) from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class AutoencoderDCTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = AutoencoderDC main_input_name = "sample" base_precision = 1e-2 def get_autoencoder_dc_config(self): return { "in_channels": 3, "latent_channels": 4, "attention_head_dim": 2, "encoder_block_types": ( "ResBlock", "EfficientViTBlock", ), "decoder_block_types": ( "ResBlock", "EfficientViTBlock", ), "encoder_block_out_channels": (8, 8), "decoder_block_out_channels": (8, 8), "encoder_qkv_multiscales": ((), (5,)), "decoder_qkv_multiscales": ((), (5,)), "encoder_layers_per_block": (1, 1), "decoder_layers_per_block": [1, 1], "downsample_block_type": "conv", "upsample_block_type": "interpolate", "decoder_norm_types": "rms_norm", "decoder_act_fns": "silu", "scaling_factor": 0.41407, } @property def dummy_input(self): batch_size = 4 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) return {"sample": image} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = self.get_autoencoder_dc_config() inputs_dict = self.dummy_input return init_dict, inputs_dict @unittest.skip("AutoencoderDC does not support `norm_num_groups` because it does not use GroupNorm.") def test_forward_with_norm_groups(self): pass
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from diffusers import AutoencoderDC from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, torch_device, ) from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class AutoencoderDCTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = AutoencoderDC main_input_name = "sample" base_precision = 1e-2 def get_autoencoder_dc_config(self): return { "in_channels": 3, "latent_channels": 4, "attention_head_dim": 2, "encoder_block_types": ( "ResBlock", "EfficientViTBlock", ), "decoder_block_types": ( "ResBlock", "EfficientViTBlock", ), "encoder_block_out_channels": (8, 8), "decoder_block_out_channels": (8, 8), "encoder_qkv_multiscales": ((), (5,)), "decoder_qkv_multiscales": ((), (5,)), "encoder_layers_per_block": (1, 1), "decoder_layers_per_block": [1, 1], "downsample_block_type": "conv", "upsample_block_type": "interpolate", "decoder_norm_types": "rms_norm", "decoder_act_fns": "silu", "scaling_factor": 0.41407, } @property def dummy_input(self): batch_size = 4 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) return {"sample": image} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = self.get_autoencoder_dc_config() inputs_dict = self.dummy_input return init_dict, inputs_dict @unittest.skip("AutoencoderDC does not support `norm_num_groups` because it does not use GroupNorm.") def test_forward_with_norm_groups(self): pass
from __future__ import annotations try: from typing import Self except ImportError: from typing_extensions import Self import torch.nn.functional as F from torch import Tensor from sentence_transformers.models.Module import Module class Normalize(Module): """This layer normalizes embeddings to unit length""" def __init__(self) -> None: super().__init__() def forward(self, features: dict[str, Tensor]) -> dict[str, Tensor]: features.update({"sentence_embedding": F.normalize(features["sentence_embedding"], p=2, dim=1)}) return features def save(self, output_path: str, *args, safe_serialization: bool = True, **kwargs) -> None: return @classmethod def load(cls, *args, **kwargs) -> Self: return cls()
from __future__ import annotations import torch.nn.functional as F from torch import Tensor, nn class Normalize(nn.Module): """This layer normalizes embeddings to unit length""" def __init__(self) -> None: super().__init__() def forward(self, features: dict[str, Tensor]) -> dict[str, Tensor]: features.update({"sentence_embedding": F.normalize(features["sentence_embedding"], p=2, dim=1)}) return features def save(self, output_path) -> None: pass @staticmethod def load(input_path) -> Normalize: return Normalize()
import numpy as np import pytest from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_doc.io.json import orjson_dumps from docarray.typing import Mesh3DUrl, NdArray from tests import TOYDATA_DIR MESH_FILES = { 'obj': str(TOYDATA_DIR / 'tetrahedron.obj'), 'glb': str(TOYDATA_DIR / 'test.glb'), 'ply': str(TOYDATA_DIR / 'cube.ply'), } REMOTE_OBJ_FILE = 'https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_format, file_path', [ ('obj', MESH_FILES['obj']), ('glb', MESH_FILES['glb']), ('ply', MESH_FILES['ply']), ('remote-obj', REMOTE_OBJ_FILE), ], ) def test_load(file_format, file_path): url = parse_obj_as(Mesh3DUrl, file_path) tensors = url.load() assert isinstance(tensors.vertices, np.ndarray) assert isinstance(tensors.vertices, NdArray) assert isinstance(tensors.faces, np.ndarray) assert isinstance(tensors.faces, NdArray) assert tensors.vertices.shape[1] == 3 assert tensors.faces.shape[1] == 3 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_path', [*MESH_FILES.values(), REMOTE_OBJ_FILE], ) @pytest.mark.parametrize('field', ['vertices', 'faces']) def test_load_one_of_fields(file_path, field): url = parse_obj_as(Mesh3DUrl, file_path) field = getattr(url.load(), field) assert isinstance(field, np.ndarray) assert isinstance(field, NdArray) def test_json_schema(): schema_json_of(Mesh3DUrl) def test_dump_json(): url = parse_obj_as(Mesh3DUrl, REMOTE_OBJ_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'file_format,path_to_file', [ ('obj', MESH_FILES['obj']), ('glb', MESH_FILES['glb']), ('ply', MESH_FILES['ply']), ('obj', REMOTE_OBJ_FILE), ('illegal', 'illegal'), ('illegal', 'https://www.google.com'), ('illegal', 'my/local/text/file.txt'), ('illegal', 'my/local/text/file.png'), ], ) def test_validation(file_format, path_to_file): if file_format == 'illegal': with pytest.raises(ValueError, match='Mesh3DUrl'): parse_obj_as(Mesh3DUrl, path_to_file) else: url = parse_obj_as(Mesh3DUrl, path_to_file) assert isinstance(url, Mesh3DUrl) assert isinstance(url, str) @pytest.mark.proto def test_proto_mesh_url(): uri = parse_obj_as(Mesh3DUrl, REMOTE_OBJ_FILE) uri._to_node_protobuf()
import numpy as np import pytest from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_document.io.json import orjson_dumps from docarray.typing import Mesh3DUrl, NdArray from tests import TOYDATA_DIR MESH_FILES = { 'obj': str(TOYDATA_DIR / 'tetrahedron.obj'), 'glb': str(TOYDATA_DIR / 'test.glb'), 'ply': str(TOYDATA_DIR / 'cube.ply'), } REMOTE_OBJ_FILE = 'https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_format, file_path', [ ('obj', MESH_FILES['obj']), ('glb', MESH_FILES['glb']), ('ply', MESH_FILES['ply']), ('remote-obj', REMOTE_OBJ_FILE), ], ) def test_load(file_format, file_path): url = parse_obj_as(Mesh3DUrl, file_path) tensors = url.load() assert isinstance(tensors.vertices, np.ndarray) assert isinstance(tensors.vertices, NdArray) assert isinstance(tensors.faces, np.ndarray) assert isinstance(tensors.faces, NdArray) assert tensors.vertices.shape[1] == 3 assert tensors.faces.shape[1] == 3 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_path', [*MESH_FILES.values(), REMOTE_OBJ_FILE], ) @pytest.mark.parametrize('field', ['vertices', 'faces']) def test_load_one_of_fields(file_path, field): url = parse_obj_as(Mesh3DUrl, file_path) field = getattr(url.load(), field) assert isinstance(field, np.ndarray) assert isinstance(field, NdArray) def test_json_schema(): schema_json_of(Mesh3DUrl) def test_dump_json(): url = parse_obj_as(Mesh3DUrl, REMOTE_OBJ_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'file_format,path_to_file', [ ('obj', MESH_FILES['obj']), ('glb', MESH_FILES['glb']), ('ply', MESH_FILES['ply']), ('obj', REMOTE_OBJ_FILE), ('illegal', 'illegal'), ('illegal', 'https://www.google.com'), ('illegal', 'my/local/text/file.txt'), ('illegal', 'my/local/text/file.png'), ], ) def test_validation(file_format, path_to_file): if file_format == 'illegal': with pytest.raises(ValueError, match='Mesh3DUrl'): parse_obj_as(Mesh3DUrl, path_to_file) else: url = parse_obj_as(Mesh3DUrl, path_to_file) assert isinstance(url, Mesh3DUrl) assert isinstance(url, str) @pytest.mark.proto def test_proto_mesh_url(): uri = parse_obj_as(Mesh3DUrl, REMOTE_OBJ_FILE) uri._to_node_protobuf()
import pytest from langchain_core.utils.env import get_from_dict_or_env def test_get_from_dict_or_env() -> None: assert ( get_from_dict_or_env( { "a": "foo", }, ["a"], "__SOME_KEY_IN_ENV", ) == "foo" ) assert ( get_from_dict_or_env( { "a": "foo", }, ["b", "a"], "__SOME_KEY_IN_ENV", ) == "foo" ) assert ( get_from_dict_or_env( { "a": "foo", }, "a", "__SOME_KEY_IN_ENV", ) == "foo" ) assert ( get_from_dict_or_env( { "a": "foo", }, "not exists", "__SOME_KEY_IN_ENV", default="default", ) == "default" ) # Not the most obvious behavior, but # this is how it works right now with pytest.raises( ValueError, match="Did not find not exists, " "please add an environment variable `__SOME_KEY_IN_ENV` which contains it, " "or pass `not exists` as a named parameter.", ): assert ( get_from_dict_or_env( { "a": "foo", }, "not exists", "__SOME_KEY_IN_ENV", ) is None )
import pytest from langchain_core.utils.env import get_from_dict_or_env def test_get_from_dict_or_env() -> None: assert ( get_from_dict_or_env( { "a": "foo", }, ["a"], "__SOME_KEY_IN_ENV", ) == "foo" ) assert ( get_from_dict_or_env( { "a": "foo", }, ["b", "a"], "__SOME_KEY_IN_ENV", ) == "foo" ) assert ( get_from_dict_or_env( { "a": "foo", }, "a", "__SOME_KEY_IN_ENV", ) == "foo" ) assert ( get_from_dict_or_env( { "a": "foo", }, "not exists", "__SOME_KEY_IN_ENV", default="default", ) == "default" ) # Not the most obvious behavior, but # this is how it works right now with pytest.raises(ValueError): assert ( get_from_dict_or_env( { "a": "foo", }, "not exists", "__SOME_KEY_IN_ENV", ) is None )
""" Quantile Regression =================== .. versionadded:: 2.0.0 The script is inspired by this awesome example in sklearn: https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_quantile.html .. note:: The feature is only supported using the Python package. In addition, quantile crossing can happen due to limitation in the algorithm. """ import argparse from typing import Dict import numpy as np from sklearn.model_selection import train_test_split import xgboost as xgb def f(x: np.ndarray) -> np.ndarray: """The function to predict.""" return x * np.sin(x) def quantile_loss(args: argparse.Namespace) -> None: """Train a quantile regression model.""" rng = np.random.RandomState(1994) # Generate a synthetic dataset for demo, the generate process is from the sklearn # example. X = np.atleast_2d(rng.uniform(0, 10.0, size=1000)).T expected_y = f(X).ravel() sigma = 0.5 + X.ravel() / 10.0 noise = rng.lognormal(sigma=sigma) - np.exp(sigma**2.0 / 2.0) y = expected_y + noise # Train on 0.05 and 0.95 quantiles. The model is similar to multi-class and # multi-target models. alpha = np.array([0.05, 0.5, 0.95]) evals_result: Dict[str, Dict] = {} X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rng) # We will be using the `hist` tree method, quantile DMatrix can be used to preserve # memory. # Do not use the `exact` tree method for quantile regression, otherwise the # performance might drop. Xy = xgb.QuantileDMatrix(X, y) # use Xy as a reference Xy_test = xgb.QuantileDMatrix(X_test, y_test, ref=Xy) booster = xgb.train( { # Use the quantile objective function. "objective": "reg:quantileerror", "tree_method": "hist", "quantile_alpha": alpha, # Let's try not to overfit. "learning_rate": 0.04, "max_depth": 5, }, Xy, num_boost_round=32, early_stopping_rounds=2, # The evaluation result is a weighted average across multiple quantiles. evals=[(Xy, "Train"), (Xy_test, "Test")], evals_result=evals_result, ) xx = np.atleast_2d(np.linspace(0, 10, 1000)).T scores = booster.inplace_predict(xx) # dim 1 is the quantiles assert scores.shape[0] == xx.shape[0] assert scores.shape[1] == alpha.shape[0] y_lower = scores[:, 0] # alpha=0.05 y_med = scores[:, 1] # alpha=0.5, median y_upper = scores[:, 2] # alpha=0.95 # Train a mse model for comparison booster = xgb.train( { "objective": "reg:squarederror", "tree_method": "hist", # Let's try not to overfit. "learning_rate": 0.04, "max_depth": 5, }, Xy, num_boost_round=32, early_stopping_rounds=2, evals=[(Xy, "Train"), (Xy_test, "Test")], evals_result=evals_result, ) xx = np.atleast_2d(np.linspace(0, 10, 1000)).T y_pred = booster.inplace_predict(xx) if args.plot: from matplotlib import pyplot as plt fig = plt.figure(figsize=(10, 10)) plt.plot(xx, f(xx), "g:", linewidth=3, label=r"$f(x) = x\,\sin(x)$") plt.plot(X_test, y_test, "b.", markersize=10, label="Test observations") plt.plot(xx, y_med, "r-", label="Predicted median") plt.plot(xx, y_pred, "m-", label="Predicted mean") plt.plot(xx, y_upper, "k-") plt.plot(xx, y_lower, "k-") plt.fill_between( xx.ravel(), y_lower, y_upper, alpha=0.4, label="Predicted 90% interval" ) plt.xlabel("$x$") plt.ylabel("$f(x)$") plt.ylim(-10, 25) plt.legend(loc="upper left") plt.show() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--plot", action="store_true", help="Specify it to enable plotting the outputs.", ) args = parser.parse_args() quantile_loss(args)
""" Quantile Regression =================== .. versionadded:: 2.0.0 The script is inspired by this awesome example in sklearn: https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_quantile.html """ import argparse from typing import Dict import numpy as np from sklearn.model_selection import train_test_split import xgboost as xgb def f(x: np.ndarray) -> np.ndarray: """The function to predict.""" return x * np.sin(x) def quantile_loss(args: argparse.Namespace) -> None: """Train a quantile regression model.""" rng = np.random.RandomState(1994) # Generate a synthetic dataset for demo, the generate process is from the sklearn # example. X = np.atleast_2d(rng.uniform(0, 10.0, size=1000)).T expected_y = f(X).ravel() sigma = 0.5 + X.ravel() / 10.0 noise = rng.lognormal(sigma=sigma) - np.exp(sigma**2.0 / 2.0) y = expected_y + noise # Train on 0.05 and 0.95 quantiles. The model is similar to multi-class and # multi-target models. alpha = np.array([0.05, 0.5, 0.95]) evals_result: Dict[str, Dict] = {} X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rng) # We will be using the `hist` tree method, quantile DMatrix can be used to preserve # memory. # Do not use the `exact` tree method for quantile regression, otherwise the # performance might drop. Xy = xgb.QuantileDMatrix(X, y) # use Xy as a reference Xy_test = xgb.QuantileDMatrix(X_test, y_test, ref=Xy) booster = xgb.train( { # Use the quantile objective function. "objective": "reg:quantileerror", "tree_method": "hist", "quantile_alpha": alpha, # Let's try not to overfit. "learning_rate": 0.04, "max_depth": 5, }, Xy, num_boost_round=32, early_stopping_rounds=2, # The evaluation result is a weighted average across multiple quantiles. evals=[(Xy, "Train"), (Xy_test, "Test")], evals_result=evals_result, ) xx = np.atleast_2d(np.linspace(0, 10, 1000)).T scores = booster.inplace_predict(xx) # dim 1 is the quantiles assert scores.shape[0] == xx.shape[0] assert scores.shape[1] == alpha.shape[0] y_lower = scores[:, 0] # alpha=0.05 y_med = scores[:, 1] # alpha=0.5, median y_upper = scores[:, 2] # alpha=0.95 # Train a mse model for comparison booster = xgb.train( { "objective": "reg:squarederror", "tree_method": "hist", # Let's try not to overfit. "learning_rate": 0.04, "max_depth": 5, }, Xy, num_boost_round=32, early_stopping_rounds=2, evals=[(Xy, "Train"), (Xy_test, "Test")], evals_result=evals_result, ) xx = np.atleast_2d(np.linspace(0, 10, 1000)).T y_pred = booster.inplace_predict(xx) if args.plot: from matplotlib import pyplot as plt fig = plt.figure(figsize=(10, 10)) plt.plot(xx, f(xx), "g:", linewidth=3, label=r"$f(x) = x\,\sin(x)$") plt.plot(X_test, y_test, "b.", markersize=10, label="Test observations") plt.plot(xx, y_med, "r-", label="Predicted median") plt.plot(xx, y_pred, "m-", label="Predicted mean") plt.plot(xx, y_upper, "k-") plt.plot(xx, y_lower, "k-") plt.fill_between( xx.ravel(), y_lower, y_upper, alpha=0.4, label="Predicted 90% interval" ) plt.xlabel("$x$") plt.ylabel("$f(x)$") plt.ylim(-10, 25) plt.legend(loc="upper left") plt.show() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--plot", action="store_true", help="Specify it to enable plotting the outputs.", ) args = parser.parse_args() quantile_loss(args)
from __future__ import annotations from typing import Iterable import torch.nn.functional as F from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer from .ContrastiveLoss import SiameseDistanceMetric class OnlineContrastiveLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=SiameseDistanceMetric.COSINE_DISTANCE, margin: float = 0.5 ) -> None: """ This Online Contrastive loss is similar to :class:`ConstrativeLoss`, but it selects hard positive (positives that are far apart) and hard negative pairs (negatives that are close) and computes the loss only for these pairs. This loss often yields better performances than ContrastiveLoss. Args: model: SentenceTransformer model distance_metric: Function that returns a distance between two embeddings. The class SiameseDistanceMetric contains pre-defined metrics that can be used margin: Negative samples (label == 0) should have a distance of at least the margin value. References: - `Training Examples > Quora Duplicate Questions <../../examples/training/quora_duplicate_questions/README.html>`_ Requirements: 1. (anchor, positive/negative) pairs 2. Data should include hard positives and hard negatives Inputs: +-----------------------------------------------+------------------------------+ | Texts | Labels | +===============================================+==============================+ | (anchor, positive/negative) pairs | 1 if positive, 0 if negative | +-----------------------------------------------+------------------------------+ Relations: - :class:`ContrastiveLoss` is similar, but does not use hard positive and hard negative pairs. :class:`OnlineContrastiveLoss` often yields better results. Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "label": [1, 0], }) loss = losses.OnlineContrastiveLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__() self.model = model self.margin = margin self.distance_metric = distance_metric def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor, size_average=False) -> Tensor: embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] distance_matrix = self.distance_metric(embeddings[0], embeddings[1]) negs = distance_matrix[labels == 0] poss = distance_matrix[labels == 1] # select hard positive and hard negative pairs negative_pairs = negs[negs < (poss.max() if len(poss) > 1 else negs.mean())] positive_pairs = poss[poss > (negs.min() if len(negs) > 1 else poss.mean())] positive_loss = positive_pairs.pow(2).sum() negative_loss = F.relu(self.margin - negative_pairs).pow(2).sum() loss = positive_loss + negative_loss return loss
from __future__ import annotations from typing import Iterable import torch.nn.functional as F from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer from .ContrastiveLoss import SiameseDistanceMetric class OnlineContrastiveLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=SiameseDistanceMetric.COSINE_DISTANCE, margin: float = 0.5 ) -> None: """ This Online Contrastive loss is similar to :class:`ConstrativeLoss`, but it selects hard positive (positives that are far apart) and hard negative pairs (negatives that are close) and computes the loss only for these pairs. This loss often yields better performances than ContrastiveLoss. Args: model: SentenceTransformer model distance_metric: Function that returns a distance between two embeddings. The class SiameseDistanceMetric contains pre-defined metrics that can be used margin: Negative samples (label == 0) should have a distance of at least the margin value. References: - `Training Examples > Quora Duplicate Questions <../../examples/training/quora_duplicate_questions/README.html>`_ Requirements: 1. (anchor, positive/negative) pairs 2. Data should include hard positives and hard negatives Relations: - :class:`ContrastiveLoss` is similar, but does not use hard positive and hard negative pairs. :class:`OnlineContrastiveLoss` often yields better results. Inputs: +-----------------------------------------------+------------------------------+ | Texts | Labels | +===============================================+==============================+ | (anchor, positive/negative) pairs | 1 if positive, 0 if negative | +-----------------------------------------------+------------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "label": [1, 0], }) loss = losses.OnlineContrastiveLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__() self.model = model self.margin = margin self.distance_metric = distance_metric def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor, size_average=False) -> Tensor: embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] distance_matrix = self.distance_metric(embeddings[0], embeddings[1]) negs = distance_matrix[labels == 0] poss = distance_matrix[labels == 1] # select hard positive and hard negative pairs negative_pairs = negs[negs < (poss.max() if len(poss) > 1 else negs.mean())] positive_pairs = poss[poss > (negs.min() if len(negs) > 1 else poss.mean())] positive_loss = positive_pairs.pow(2).sum() negative_loss = F.relu(self.margin - negative_pairs).pow(2).sum() loss = positive_loss + negative_loss return loss
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.initializers import deserialize from keras.src.initializers import get from keras.src.initializers import serialize from keras.src.initializers.constant_initializers import Constant from keras.src.initializers.constant_initializers import Constant as constant from keras.src.initializers.constant_initializers import Identity from keras.src.initializers.constant_initializers import ( Identity as IdentityInitializer, ) from keras.src.initializers.constant_initializers import Identity as identity from keras.src.initializers.constant_initializers import Ones from keras.src.initializers.constant_initializers import Ones as ones from keras.src.initializers.constant_initializers import STFTInitializer from keras.src.initializers.constant_initializers import Zeros from keras.src.initializers.constant_initializers import Zeros as zeros from keras.src.initializers.initializer import Initializer from keras.src.initializers.random_initializers import GlorotNormal from keras.src.initializers.random_initializers import ( GlorotNormal as glorot_normal, ) from keras.src.initializers.random_initializers import GlorotUniform from keras.src.initializers.random_initializers import ( GlorotUniform as glorot_uniform, ) from keras.src.initializers.random_initializers import HeNormal from keras.src.initializers.random_initializers import HeNormal as he_normal from keras.src.initializers.random_initializers import HeUniform from keras.src.initializers.random_initializers import HeUniform as he_uniform from keras.src.initializers.random_initializers import LecunNormal from keras.src.initializers.random_initializers import ( LecunNormal as lecun_normal, ) from keras.src.initializers.random_initializers import LecunUniform from keras.src.initializers.random_initializers import ( LecunUniform as lecun_uniform, ) from keras.src.initializers.random_initializers import OrthogonalInitializer from keras.src.initializers.random_initializers import ( OrthogonalInitializer as Orthogonal, ) from keras.src.initializers.random_initializers import ( OrthogonalInitializer as orthogonal, ) from keras.src.initializers.random_initializers import RandomNormal from keras.src.initializers.random_initializers import ( RandomNormal as random_normal, ) from keras.src.initializers.random_initializers import RandomUniform from keras.src.initializers.random_initializers import ( RandomUniform as random_uniform, ) from keras.src.initializers.random_initializers import TruncatedNormal from keras.src.initializers.random_initializers import ( TruncatedNormal as truncated_normal, ) from keras.src.initializers.random_initializers import VarianceScaling from keras.src.initializers.random_initializers import ( VarianceScaling as variance_scaling, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.initializers import deserialize from keras.src.initializers import get from keras.src.initializers import serialize from keras.src.initializers.constant_initializers import Constant from keras.src.initializers.constant_initializers import Constant as constant from keras.src.initializers.constant_initializers import Identity from keras.src.initializers.constant_initializers import ( Identity as IdentityInitializer, ) from keras.src.initializers.constant_initializers import Identity as identity from keras.src.initializers.constant_initializers import Ones from keras.src.initializers.constant_initializers import Ones as ones from keras.src.initializers.constant_initializers import Zeros from keras.src.initializers.constant_initializers import Zeros as zeros from keras.src.initializers.initializer import Initializer from keras.src.initializers.random_initializers import GlorotNormal from keras.src.initializers.random_initializers import ( GlorotNormal as glorot_normal, ) from keras.src.initializers.random_initializers import GlorotUniform from keras.src.initializers.random_initializers import ( GlorotUniform as glorot_uniform, ) from keras.src.initializers.random_initializers import HeNormal from keras.src.initializers.random_initializers import HeNormal as he_normal from keras.src.initializers.random_initializers import HeUniform from keras.src.initializers.random_initializers import HeUniform as he_uniform from keras.src.initializers.random_initializers import LecunNormal from keras.src.initializers.random_initializers import ( LecunNormal as lecun_normal, ) from keras.src.initializers.random_initializers import LecunUniform from keras.src.initializers.random_initializers import ( LecunUniform as lecun_uniform, ) from keras.src.initializers.random_initializers import OrthogonalInitializer from keras.src.initializers.random_initializers import ( OrthogonalInitializer as Orthogonal, ) from keras.src.initializers.random_initializers import ( OrthogonalInitializer as orthogonal, ) from keras.src.initializers.random_initializers import RandomNormal from keras.src.initializers.random_initializers import ( RandomNormal as random_normal, ) from keras.src.initializers.random_initializers import RandomUniform from keras.src.initializers.random_initializers import ( RandomUniform as random_uniform, ) from keras.src.initializers.random_initializers import TruncatedNormal from keras.src.initializers.random_initializers import ( TruncatedNormal as truncated_normal, ) from keras.src.initializers.random_initializers import VarianceScaling from keras.src.initializers.random_initializers import ( VarianceScaling as variance_scaling, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.saving.file_editor import KerasFileEditor as KerasFileEditor from keras.src.saving.object_registration import ( CustomObjectScope as CustomObjectScope, ) from keras.src.saving.object_registration import ( CustomObjectScope as custom_object_scope, ) from keras.src.saving.object_registration import ( get_custom_objects as get_custom_objects, ) from keras.src.saving.object_registration import ( get_registered_name as get_registered_name, ) from keras.src.saving.object_registration import ( get_registered_object as get_registered_object, ) from keras.src.saving.object_registration import ( register_keras_serializable as register_keras_serializable, ) from keras.src.saving.saving_api import load_model as load_model from keras.src.saving.saving_api import load_weights as load_weights from keras.src.saving.saving_api import save_model as save_model from keras.src.saving.saving_api import save_weights as save_weights from keras.src.saving.serialization_lib import ( deserialize_keras_object as deserialize_keras_object, ) from keras.src.saving.serialization_lib import ( serialize_keras_object as serialize_keras_object, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.saving.file_editor import KerasFileEditor from keras.src.saving.object_registration import CustomObjectScope from keras.src.saving.object_registration import ( CustomObjectScope as custom_object_scope, ) from keras.src.saving.object_registration import get_custom_objects from keras.src.saving.object_registration import get_registered_name from keras.src.saving.object_registration import get_registered_object from keras.src.saving.object_registration import register_keras_serializable from keras.src.saving.saving_api import load_model from keras.src.saving.saving_api import load_weights from keras.src.saving.saving_api import save_model from keras.src.saving.saving_api import save_weights from keras.src.saving.serialization_lib import deserialize_keras_object from keras.src.saving.serialization_lib import serialize_keras_object
"""Weaviate Sub-Question Query Engine Pack.""" from typing import Any, Dict, List, Optional from llama_index.core.indices.vector_store import VectorStoreIndex from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.query_engine import SubQuestionQueryEngine from llama_index.core.schema import TextNode from llama_index.core.storage.storage_context import StorageContext from llama_index.core.tools import QueryEngineTool, ToolMetadata from llama_index.vector_stores.weaviate import WeaviateVectorStore class WeaviateSubQuestionPack(BaseLlamaPack): """Weaviate Sub-Question query engine pack.""" def __init__( self, collection_name: str, host: str, auth_client_secret: str, nodes: Optional[List[TextNode]] = None, **kwargs: Any, ) -> None: """Init params.""" from weaviate import Client self.client: Client = Client(host, auth_client_secret=auth_client_secret) weaviate_client = self.client weaviate_collection = weaviate_client.get_or_create_collection(collection_name) self._vector_store = WeaviateVectorStore( weaviate_collection=weaviate_collection ) if nodes is not None: self._storage_context = StorageContext.from_defaults( vector_store=self._vector_store ) self._index = VectorStoreIndex( nodes, storage_context=self._storage_context, **kwargs ) else: self._index = VectorStoreIndex.from_vector_store( self._vector_store, **kwargs ) self._storage_context = self._index.storage_context self.retriever = self._index.as_retriever() query_engine = self._index.as_query_engine() query_engine_tools = [ QueryEngineTool( query_engine=query_engine, metadata=ToolMetadata(name="Vector Index") ) ] self.query_engine = SubQuestionQueryEngine.from_defaults( query_engine_tools=query_engine_tools ) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "vector_store": self._vector_store, "storage_context": self._storage_context, "index": self._index, "retriever": self.retriever, "query_engine": self.query_engine, } def retrieve(self, query_str: str) -> Any: """Retrieve.""" return self.retriever.retrieve(query_str) def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.query_engine.query(*args, **kwargs)
"""Weaviate Sub-Question Query Engine Pack.""" from typing import Any, Dict, List, Optional from llama_index.core.indices.vector_store import VectorStoreIndex from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.query_engine import SubQuestionQueryEngine from llama_index.core.schema import TextNode from llama_index.core.storage.storage_context import StorageContext from llama_index.core.tools import QueryEngineTool, ToolMetadata from llama_index.vector_stores.weaviate import WeaviateVectorStore class WeaviateSubQuestionPack(BaseLlamaPack): """Weaviate Sub-Question query engine pack.""" def __init__( self, collection_name: str, host: str, auth_client_secret: str, nodes: Optional[List[TextNode]] = None, **kwargs: Any, ) -> None: """Init params.""" from weaviate import Client self.client: Client = Client(host, auth_client_secret=auth_client_secret) weaviate_client = self.client weaviate_collection = weaviate_client.get_or_create_collection(collection_name) self._vector_store = WeaviateVectorStore( weaviate_collection=weaviate_collection ) if nodes is not None: self._storage_context = StorageContext.from_defaults( vector_store=self._vector_store ) self._index = VectorStoreIndex( nodes, storage_context=self._storage_context, **kwargs ) else: self._index = VectorStoreIndex.from_vector_store( self._vector_store, **kwargs ) self._storage_context = self._index.storage_context self.retriever = self._index.as_retriever() query_engine = self._index.as_query_engine() query_engine_tools = [ QueryEngineTool( query_engine=query_engine, metadata=ToolMetadata(name="Vector Index") ) ] self.query_engine = SubQuestionQueryEngine.from_defaults( query_engine_tools=query_engine_tools ) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "vector_store": self._vector_store, "storage_context": self._storage_context, "index": self._index, "retriever": self.retriever, "query_engine": self.query_engine, } def retrieve(self, query_str: str) -> Any: """Retrieve.""" return self.retriever.retrieve(query_str) def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.query_engine.query(*args, **kwargs)
from __future__ import annotations import re import pytest from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import NanoBEIREvaluator from sentence_transformers.util import is_datasets_available from tests.utils import is_ci if not is_datasets_available(): pytest.skip( reason="Datasets are not installed. Please install `datasets` with `pip install datasets`", allow_module_level=True, ) if is_ci(): pytest.skip( reason="Skip test in CI to try and avoid 429 Client Error", allow_module_level=True, ) def test_nanobeir_evaluator(stsb_bert_tiny_model: SentenceTransformer): """Tests that the NanoBERTEvaluator can be loaded and produces expected metrics""" datasets = ["QuoraRetrieval", "MSMARCO"] query_prompts = { "QuoraRetrieval": "Instruct: Given a question, retrieve questions that are semantically equivalent to the given question\\nQuery: ", "MSMARCO": "Instruct: Given a web search query, retrieve relevant passages that answer the query\\nQuery: ", } model = stsb_bert_tiny_model evaluator = NanoBEIREvaluator( dataset_names=datasets, query_prompts=query_prompts, ) results = evaluator(model) assert len(results) > 0 assert all(isinstance(results[metric], float) for metric in results) def test_nanobeir_evaluator_with_invalid_dataset(): """Test that NanoBEIREvaluator raises an error for invalid dataset names.""" invalid_datasets = ["invalidDataset"] with pytest.raises( ValueError, match=re.escape( r"Dataset(s) ['invalidDataset'] not found in the NanoBEIR collection. " r"Valid dataset names are: ['climatefever', 'dbpedia', 'fever', 'fiqa2018', 'hotpotqa', 'msmarco', 'nfcorpus', 'nq', 'quoraretrieval', 'scidocs', 'arguana', 'scifact', 'touche2020']" ), ): NanoBEIREvaluator(dataset_names=invalid_datasets) def test_nanobeir_evaluator_empty_inputs(): """Test that NanoBEIREvaluator behaves correctly with empty datasets.""" with pytest.raises(ValueError, match="dataset_names cannot be empty. Use None to evaluate on all datasets."): NanoBEIREvaluator(dataset_names=[])
from __future__ import annotations import re import pytest from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import NanoBEIREvaluator from sentence_transformers.util import is_datasets_available from tests.utils import is_ci if not is_datasets_available(): pytest.skip( reason="Datasets are not installed. Please install `datasets` with `pip install datasets`", allow_module_level=True, ) if is_ci(): pytest.skip( reason="Skip test in CI to try and avoid 429 Client Error", allow_module_level=True, ) def test_nanobeir_evaluator(stsb_bert_tiny_model_reused: SentenceTransformer): """Tests that the NanoBERTEvaluator can be loaded and produces expected metrics""" datasets = ["QuoraRetrieval", "MSMARCO"] query_prompts = { "QuoraRetrieval": "Instruct: Given a question, retrieve questions that are semantically equivalent to the given question\\nQuery: ", "MSMARCO": "Instruct: Given a web search query, retrieve relevant passages that answer the query\\nQuery: ", } model = stsb_bert_tiny_model_reused evaluator = NanoBEIREvaluator( dataset_names=datasets, query_prompts=query_prompts, ) results = evaluator(model) assert len(results) > 0 assert all(isinstance(results[metric], float) for metric in results) def test_nanobeir_evaluator_with_invalid_dataset(): """Test that NanoBEIREvaluator raises an error for invalid dataset names.""" invalid_datasets = ["invalidDataset"] with pytest.raises( ValueError, match=re.escape( r"Dataset(s) ['invalidDataset'] not found in the NanoBEIR collection. " r"Valid dataset names are: ['climatefever', 'dbpedia', 'fever', 'fiqa2018', 'hotpotqa', 'msmarco', 'nfcorpus', 'nq', 'quoraretrieval', 'scidocs', 'arguana', 'scifact', 'touche2020']" ), ): NanoBEIREvaluator(dataset_names=invalid_datasets) def test_nanobeir_evaluator_empty_inputs(): """Test that NanoBEIREvaluator behaves correctly with empty datasets.""" with pytest.raises(ValueError, match="dataset_names cannot be empty. Use None to evaluate on all datasets."): NanoBEIREvaluator(dataset_names=[])
""" This is a more complex example on performing clustering on large scale dataset. This examples find in a large set of sentences local communities, i.e., groups of sentences that are highly similar. You can freely configure the threshold what is considered as similar. A high threshold will only find extremely similar sentences, a lower threshold will find more sentence that are less similar. A second parameter is 'min_community_size': Only communities with at least a certain number of sentences will be returned. The method for finding the communities is extremely fast, for clustering 50k sentences it requires only 5 seconds (plus embedding comuptation). In this example, we download a large set of questions from Quora and then find similar questions in this set. """ import csv import os import time from sentence_transformers import SentenceTransformer, util # Model for computing sentence embeddings. We use one trained for similar questions detection model = SentenceTransformer("all-MiniLM-L6-v2") # We download the Quora Duplicate Questions Dataset (https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) # and find similar question in it url = "http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv" dataset_path = "quora_duplicate_questions.tsv" max_corpus_size = 50000 # We limit our corpus to only the first 50k questions # Check if the dataset exists. If not, download and extract # Download dataset if needed if not os.path.exists(dataset_path): print("Download dataset") util.http_get(url, dataset_path) # Get all unique sentences from the file corpus_sentences = set() with open(dataset_path, encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_MINIMAL) for row in reader: corpus_sentences.add(row["question1"]) corpus_sentences.add(row["question2"]) if len(corpus_sentences) >= max_corpus_size: break corpus_sentences = list(corpus_sentences) print("Encode the corpus. This might take a while") corpus_embeddings = model.encode(corpus_sentences, batch_size=64, show_progress_bar=True, convert_to_tensor=True) print("Start clustering") start_time = time.time() # Two parameters to tune: # min_cluster_size: Only consider cluster that have at least 25 elements # threshold: Consider sentence pairs with a cosine-similarity larger than threshold as similar clusters = util.community_detection(corpus_embeddings, min_community_size=25, threshold=0.75) print("Clustering done after {:.2f} sec".format(time.time() - start_time)) # Print for all clusters the top 3 and bottom 3 elements for i, cluster in enumerate(clusters): print("\nCluster {}, #{} Elements ".format(i + 1, len(cluster))) for sentence_id in cluster[0:3]: print("\t", corpus_sentences[sentence_id]) print("\t", "...") for sentence_id in cluster[-3:]: print("\t", corpus_sentences[sentence_id])
""" This is a more complex example on performing clustering on large scale dataset. This examples find in a large set of sentences local communities, i.e., groups of sentences that are highly similar. You can freely configure the threshold what is considered as similar. A high threshold will only find extremely similar sentences, a lower threshold will find more sentence that are less similar. A second parameter is 'min_community_size': Only communities with at least a certain number of sentences will be returned. The method for finding the communities is extremely fast, for clustering 50k sentences it requires only 5 seconds (plus embedding comuptation). In this example, we download a large set of questions from Quora and then find similar questions in this set. """ from sentence_transformers import SentenceTransformer, util import os import csv import time # Model for computing sentence embeddings. We use one trained for similar questions detection model = SentenceTransformer("all-MiniLM-L6-v2") # We download the Quora Duplicate Questions Dataset (https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) # and find similar question in it url = "http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv" dataset_path = "quora_duplicate_questions.tsv" max_corpus_size = 50000 # We limit our corpus to only the first 50k questions # Check if the dataset exists. If not, download and extract # Download dataset if needed if not os.path.exists(dataset_path): print("Download dataset") util.http_get(url, dataset_path) # Get all unique sentences from the file corpus_sentences = set() with open(dataset_path, encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_MINIMAL) for row in reader: corpus_sentences.add(row["question1"]) corpus_sentences.add(row["question2"]) if len(corpus_sentences) >= max_corpus_size: break corpus_sentences = list(corpus_sentences) print("Encode the corpus. This might take a while") corpus_embeddings = model.encode(corpus_sentences, batch_size=64, show_progress_bar=True, convert_to_tensor=True) print("Start clustering") start_time = time.time() # Two parameters to tune: # min_cluster_size: Only consider cluster that have at least 25 elements # threshold: Consider sentence pairs with a cosine-similarity larger than threshold as similar clusters = util.community_detection(corpus_embeddings, min_community_size=25, threshold=0.75) print("Clustering done after {:.2f} sec".format(time.time() - start_time)) # Print for all clusters the top 3 and bottom 3 elements for i, cluster in enumerate(clusters): print("\nCluster {}, #{} Elements ".format(i + 1, len(cluster))) for sentence_id in cluster[0:3]: print("\t", corpus_sentences[sentence_id]) print("\t", "...") for sentence_id in cluster[-3:]: print("\t", corpus_sentences[sentence_id])
"""Standard LangChain interface tests""" from langchain_core.language_models import BaseChatModel from langchain_tests.integration_tests import ( # type: ignore[import-not-found] ChatModelIntegrationTests, # type: ignore[import-not-found] ) from langchain_mistralai import ChatMistralAI class TestMistralStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[BaseChatModel]: return ChatMistralAI @property def chat_model_params(self) -> dict: return {"model": "mistral-large-latest", "temperature": 0} @property def supports_json_mode(self) -> bool: return True
"""Standard LangChain interface tests""" from typing import Type from langchain_core.language_models import BaseChatModel from langchain_tests.integration_tests import ( # type: ignore[import-not-found] ChatModelIntegrationTests, # type: ignore[import-not-found] ) from langchain_mistralai import ChatMistralAI class TestMistralStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> Type[BaseChatModel]: return ChatMistralAI @property def chat_model_params(self) -> dict: return {"model": "mistral-large-latest", "temperature": 0} @property def supports_json_mode(self) -> bool: return True
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( type='CenterNet', # use caffe img_norm data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=32), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5, # There is a chance to get 40.3 after switching init_cfg, # otherwise it is about 39.9~40.1 init_cfg=dict(type='Caffe2Xavier', layer='Conv2d'), relu_before_extra_convs=True), bbox_head=dict( type='CenterNetUpdateHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, strides=[8, 16, 32, 64, 128], hm_min_radius=4, hm_min_overlap=0.8, more_pos_thresh=0.2, more_pos_topk=9, soft_weight_on_reg=False, loss_cls=dict( type='GaussianFocalLoss', pos_weight=0.25, neg_weight=0.75, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), ), train_cfg=None, test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # single-scale training is about 39.3 train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.00025, by_epoch=False, begin=0, end=4000), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] optim_wrapper = dict( optimizer=dict(lr=0.01), # Experiments show that there is no need to turn on clip_grad. paramwise_cfg=dict(norm_decay_mult=0.)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (2 samples per GPU) auto_scale_lr = dict(base_batch_size=16)
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( type='CenterNet', # use caffe img_norm data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=32), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5, # There is a chance to get 40.3 after switching init_cfg, # otherwise it is about 39.9~40.1 init_cfg=dict(type='Caffe2Xavier', layer='Conv2d'), relu_before_extra_convs=True), bbox_head=dict( type='CenterNetUpdateHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, strides=[8, 16, 32, 64, 128], hm_min_radius=4, hm_min_overlap=0.8, more_pos_thresh=0.2, more_pos_topk=9, soft_weight_on_reg=False, loss_cls=dict( type='GaussianFocalLoss', pos_weight=0.25, neg_weight=0.75, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), ), train_cfg=None, test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # single-scale training is about 39.3 train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.00025, by_epoch=False, begin=0, end=4000), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] optim_wrapper = dict( optimizer=dict(lr=0.01), # Experiments show that there is no need to turn on clip_grad. paramwise_cfg=dict(norm_decay_mult=0.)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (2 samples per GPU) auto_scale_lr = dict(base_batch_size=16)
"""Flat reader.""" from fsspec import AbstractFileSystem from fsspec.implementations.local import LocalFileSystem from pathlib import Path from typing import Any, Dict, List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class FlatReader(BaseReader): """ Flat reader. Extract raw text from a file and save the file type in the metadata """ def __init__( self, *args: Any, **kwargs: Any, ) -> None: """Init params.""" super().__init__(*args, **kwargs) def _get_fs( self, file: Path, fs: Optional[AbstractFileSystem] = None ) -> AbstractFileSystem: if fs is None: fs = LocalFileSystem() return fs def load_data( self, file: Path, extra_info: Optional[Dict] = None, fs: Optional[AbstractFileSystem] = None, ) -> List[Document]: """Parse file into string.""" fs = self._get_fs(file, fs) with fs.open(file, encoding="utf-8") as f: content = f.read() metadata = {"filename": file.name, "extension": file.suffix} if extra_info: metadata = {**metadata, **extra_info} return [Document(text=content, metadata=metadata)]
"""Flat reader.""" from fsspec import AbstractFileSystem from fsspec.implementations.local import LocalFileSystem from pathlib import Path from typing import Any, Dict, List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class FlatReader(BaseReader): """Flat reader. Extract raw text from a file and save the file type in the metadata """ def __init__( self, *args: Any, **kwargs: Any, ) -> None: """Init params.""" super().__init__(*args, **kwargs) def _get_fs( self, file: Path, fs: Optional[AbstractFileSystem] = None ) -> AbstractFileSystem: if fs is None: fs = LocalFileSystem() return fs def load_data( self, file: Path, extra_info: Optional[Dict] = None, fs: Optional[AbstractFileSystem] = None, ) -> List[Document]: """Parse file into string.""" fs = self._get_fs(file, fs) with fs.open(file, encoding="utf-8") as f: content = f.read() metadata = {"filename": file.name, "extension": file.suffix} if extra_info: metadata = {**metadata, **extra_info} return [Document(text=content, metadata=metadata)]
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Sequence, Union from torch import Tensor from mmdet.registry import TASK_UTILS from mmdet.structures.bbox import (BaseBoxes, HorizontalBoxes, bbox2distance, distance2bbox, get_box_tensor) from .base_bbox_coder import BaseBBoxCoder @TASK_UTILS.register_module() class DistancePointBBoxCoder(BaseBBoxCoder): """Distance Point BBox coder. This coder encodes gt bboxes (x1, y1, x2, y2) into (top, bottom, left, right) and decode it back to the original. Args: clip_border (bool, optional): Whether clip the objects outside the border of the image. Defaults to True. """ def __init__(self, clip_border: Optional[bool] = True, **kwargs) -> None: super().__init__(**kwargs) self.clip_border = clip_border def encode(self, points: Tensor, gt_bboxes: Union[Tensor, BaseBoxes], max_dis: Optional[float] = None, eps: float = 0.1) -> Tensor: """Encode bounding box to distances. Args: points (Tensor): Shape (N, 2), The format is [x, y]. gt_bboxes (Tensor or :obj:`BaseBoxes`): Shape (N, 4), The format is "xyxy" max_dis (float): Upper bound of the distance. Default None. eps (float): a small value to ensure target < max_dis, instead <=. Default 0.1. Returns: Tensor: Box transformation deltas. The shape is (N, 4). """ gt_bboxes = get_box_tensor(gt_bboxes) assert points.size(0) == gt_bboxes.size(0) assert points.size(-1) == 2 assert gt_bboxes.size(-1) == 4 return bbox2distance(points, gt_bboxes, max_dis, eps) def decode( self, points: Tensor, pred_bboxes: Tensor, max_shape: Optional[Union[Sequence[int], Tensor, Sequence[Sequence[int]]]] = None ) -> Union[Tensor, BaseBoxes]: """Decode distance prediction to bounding box. Args: points (Tensor): Shape (B, N, 2) or (N, 2). pred_bboxes (Tensor): Distance from the given point to 4 boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4) max_shape (Sequence[int] or torch.Tensor or Sequence[ Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If priors shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]], and the length of max_shape should also be B. Default None. Returns: Union[Tensor, :obj:`BaseBoxes`]: Boxes with shape (N, 4) or (B, N, 4) """ assert points.size(0) == pred_bboxes.size(0) assert points.size(-1) == 2 assert pred_bboxes.size(-1) == 4 if self.clip_border is False: max_shape = None bboxes = distance2bbox(points, pred_bboxes, max_shape) if self.use_box_type: bboxes = HorizontalBoxes(bboxes) return bboxes
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import TASK_UTILS from mmdet.structures.bbox import (HorizontalBoxes, bbox2distance, distance2bbox, get_box_tensor) from .base_bbox_coder import BaseBBoxCoder @TASK_UTILS.register_module() class DistancePointBBoxCoder(BaseBBoxCoder): """Distance Point BBox coder. This coder encodes gt bboxes (x1, y1, x2, y2) into (top, bottom, left, right) and decode it back to the original. Args: clip_border (bool, optional): Whether clip the objects outside the border of the image. Defaults to True. """ def __init__(self, clip_border=True, **kwargs): super().__init__(**kwargs) self.clip_border = clip_border def encode(self, points, gt_bboxes, max_dis=None, eps=0.1): """Encode bounding box to distances. Args: points (Tensor): Shape (N, 2), The format is [x, y]. gt_bboxes (Tensor or :obj:`BaseBoxes`): Shape (N, 4), The format is "xyxy" max_dis (float): Upper bound of the distance. Default None. eps (float): a small value to ensure target < max_dis, instead <=. Default 0.1. Returns: Tensor: Box transformation deltas. The shape is (N, 4). """ gt_bboxes = get_box_tensor(gt_bboxes) assert points.size(0) == gt_bboxes.size(0) assert points.size(-1) == 2 assert gt_bboxes.size(-1) == 4 return bbox2distance(points, gt_bboxes, max_dis, eps) def decode(self, points, pred_bboxes, max_shape=None): """Decode distance prediction to bounding box. Args: points (Tensor): Shape (B, N, 2) or (N, 2). pred_bboxes (Tensor): Distance from the given point to 4 boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4) max_shape (Sequence[int] or torch.Tensor or Sequence[ Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If priors shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]], and the length of max_shape should also be B. Default None. Returns: Union[Tensor, :obj:`BaseBoxes`]: Boxes with shape (N, 4) or (B, N, 4) """ assert points.size(0) == pred_bboxes.size(0) assert points.size(-1) == 2 assert pred_bboxes.size(-1) == 4 if self.clip_border is False: max_shape = None bboxes = distance2bbox(points, pred_bboxes, max_shape) if self.use_box_type: bboxes = HorizontalBoxes(bboxes) return bboxes
import os import sys import pkg_resources from setuptools import setup, find_packages def read_version(fname="whisper/version.py"): exec(compile(open(fname, encoding="utf-8").read(), fname, "exec")) return locals()["__version__"] requirements = [] if sys.platform.startswith("linux"): triton_requirement = "triton>=2.0.0.dev20221202" try: import re import subprocess version_line = subprocess.check_output(["nvcc", "--version"]).strip().split(b"\n")[-1] major, minor = re.findall(rb"([\d]+)\.([\d]+)", version_line)[0] if (int(major), int(minor)) < (11, 4): # the last version supporting CUDA < 11.4 triton_requirement = "triton==2.0.0.dev20221011" except (IndexError, OSError, subprocess.SubprocessError): pass requirements.append(triton_requirement) setup( name="openai-whisper", py_modules=["whisper"], version=read_version(), description="Robust Speech Recognition via Large-Scale Weak Supervision", long_description=open("README.md", encoding="utf-8").read(), long_description_content_type="text/markdown", readme="README.md", python_requires=">=3.7", author="OpenAI", url="https://github.com/openai/whisper", license="MIT", packages=find_packages(exclude=["tests*"]), install_requires=requirements + [ str(r) for r in pkg_resources.parse_requirements( open(os.path.join(os.path.dirname(__file__), "requirements.txt")) ) ], entry_points={ "console_scripts": ["whisper=whisper.transcribe:cli"], }, include_package_data=True, extras_require={"dev": ["pytest", "scipy"]}, )
import os import pkg_resources from setuptools import setup, find_packages def read_version(fname="whisper/version.py"): exec(compile(open(fname, encoding="utf-8").read(), fname, "exec")) return locals()["__version__"] setup( name="openai-whisper", py_modules=["whisper"], version=read_version(), description="Robust Speech Recognition via Large-Scale Weak Supervision", long_description=open("README.md", encoding="utf-8").read(), long_description_content_type="text/markdown", readme="README.md", python_requires=">=3.7", author="OpenAI", url="https://github.com/openai/whisper", license="MIT", packages=find_packages(exclude=["tests*"]), install_requires=[ str(r) for r in pkg_resources.parse_requirements( open(os.path.join(os.path.dirname(__file__), "requirements.txt")) ) ], entry_points={ "console_scripts": ["whisper=whisper.transcribe:cli"], }, include_package_data=True, extras_require={"dev": ["pytest"]}, )
# Copyright (c) OpenMMLab. All rights reserved. from .anchor_free_head import AnchorFreeHead from .anchor_head import AnchorHead from .atss_head import ATSSHead from .autoassign_head import AutoAssignHead from .boxinst_head import BoxInstBboxHead, BoxInstMaskHead from .cascade_rpn_head import CascadeRPNHead, StageCascadeRPNHead from .centernet_head import CenterNetHead from .centernet_update_head import CenterNetUpdateHead from .centripetal_head import CentripetalHead from .condinst_head import CondInstBboxHead, CondInstMaskHead from .conditional_detr_head import ConditionalDETRHead from .corner_head import CornerHead from .ddod_head import DDODHead from .deformable_detr_head import DeformableDETRHead from .detr_head import DETRHead from .embedding_rpn_head import EmbeddingRPNHead from .fcos_head import FCOSHead from .fovea_head import FoveaHead from .free_anchor_retina_head import FreeAnchorRetinaHead from .fsaf_head import FSAFHead from .ga_retina_head import GARetinaHead from .ga_rpn_head import GARPNHead from .gfl_head import GFLHead from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead from .lad_head import LADHead from .ld_head import LDHead from .mask2former_head import Mask2FormerHead from .maskformer_head import MaskFormerHead from .nasfcos_head import NASFCOSHead from .paa_head import PAAHead from .pisa_retinanet_head import PISARetinaHead from .pisa_ssd_head import PISASSDHead from .reppoints_head import RepPointsHead from .retina_head import RetinaHead from .retina_sepbn_head import RetinaSepBNHead from .rpn_head import RPNHead from .rtmdet_head import RTMDetHead, RTMDetSepBNHead from .rtmdet_ins_head import RTMDetInsHead, RTMDetInsSepBNHead from .sabl_retina_head import SABLRetinaHead from .solo_head import DecoupledSOLOHead, DecoupledSOLOLightHead, SOLOHead from .solov2_head import SOLOV2Head from .ssd_head import SSDHead from .tood_head import TOODHead from .vfnet_head import VFNetHead from .yolact_head import YOLACTHead, YOLACTProtonet from .yolo_head import YOLOV3Head from .yolof_head import YOLOFHead from .yolox_head import YOLOXHead __all__ = [ 'AnchorFreeHead', 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead', 'GARPNHead', 'RetinaHead', 'RetinaSepBNHead', 'GARetinaHead', 'SSDHead', 'FCOSHead', 'RepPointsHead', 'FoveaHead', 'FreeAnchorRetinaHead', 'ATSSHead', 'FSAFHead', 'NASFCOSHead', 'PISARetinaHead', 'PISASSDHead', 'GFLHead', 'CornerHead', 'YOLACTHead', 'YOLACTProtonet', 'YOLOV3Head', 'PAAHead', 'SABLRetinaHead', 'CentripetalHead', 'VFNetHead', 'StageCascadeRPNHead', 'CascadeRPNHead', 'EmbeddingRPNHead', 'LDHead', 'AutoAssignHead', 'DETRHead', 'YOLOFHead', 'DeformableDETRHead', 'CenterNetHead', 'YOLOXHead', 'SOLOHead', 'DecoupledSOLOHead', 'DecoupledSOLOLightHead', 'SOLOV2Head', 'LADHead', 'TOODHead', 'MaskFormerHead', 'Mask2FormerHead', 'DDODHead', 'CenterNetUpdateHead', 'RTMDetHead', 'RTMDetSepBNHead', 'CondInstBboxHead', 'CondInstMaskHead', 'RTMDetInsHead', 'RTMDetInsSepBNHead', 'BoxInstBboxHead', 'BoxInstMaskHead', 'ConditionalDETRHead' ]
# Copyright (c) OpenMMLab. All rights reserved. from .anchor_free_head import AnchorFreeHead from .anchor_head import AnchorHead from .atss_head import ATSSHead from .autoassign_head import AutoAssignHead from .boxinst_head import BoxInstBboxHead, BoxInstMaskHead from .cascade_rpn_head import CascadeRPNHead, StageCascadeRPNHead from .centernet_head import CenterNetHead from .centernet_update_head import CenterNetUpdateHead from .centripetal_head import CentripetalHead from .condinst_head import CondInstBboxHead, CondInstMaskHead from .corner_head import CornerHead from .ddod_head import DDODHead from .deformable_detr_head import DeformableDETRHead from .detr_head import DETRHead from .embedding_rpn_head import EmbeddingRPNHead from .fcos_head import FCOSHead from .fovea_head import FoveaHead from .free_anchor_retina_head import FreeAnchorRetinaHead from .fsaf_head import FSAFHead from .ga_retina_head import GARetinaHead from .ga_rpn_head import GARPNHead from .gfl_head import GFLHead from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead from .lad_head import LADHead from .ld_head import LDHead from .mask2former_head import Mask2FormerHead from .maskformer_head import MaskFormerHead from .nasfcos_head import NASFCOSHead from .paa_head import PAAHead from .pisa_retinanet_head import PISARetinaHead from .pisa_ssd_head import PISASSDHead from .reppoints_head import RepPointsHead from .retina_head import RetinaHead from .retina_sepbn_head import RetinaSepBNHead from .rpn_head import RPNHead from .rtmdet_head import RTMDetHead, RTMDetSepBNHead from .rtmdet_ins_head import RTMDetInsHead, RTMDetInsSepBNHead from .sabl_retina_head import SABLRetinaHead from .solo_head import DecoupledSOLOHead, DecoupledSOLOLightHead, SOLOHead from .solov2_head import SOLOV2Head from .ssd_head import SSDHead from .tood_head import TOODHead from .vfnet_head import VFNetHead from .yolact_head import YOLACTHead, YOLACTProtonet from .yolo_head import YOLOV3Head from .yolof_head import YOLOFHead from .yolox_head import YOLOXHead __all__ = [ 'AnchorFreeHead', 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead', 'GARPNHead', 'RetinaHead', 'RetinaSepBNHead', 'GARetinaHead', 'SSDHead', 'FCOSHead', 'RepPointsHead', 'FoveaHead', 'FreeAnchorRetinaHead', 'ATSSHead', 'FSAFHead', 'NASFCOSHead', 'PISARetinaHead', 'PISASSDHead', 'GFLHead', 'CornerHead', 'YOLACTHead', 'YOLACTProtonet', 'YOLOV3Head', 'PAAHead', 'SABLRetinaHead', 'CentripetalHead', 'VFNetHead', 'StageCascadeRPNHead', 'CascadeRPNHead', 'EmbeddingRPNHead', 'LDHead', 'AutoAssignHead', 'DETRHead', 'YOLOFHead', 'DeformableDETRHead', 'CenterNetHead', 'YOLOXHead', 'SOLOHead', 'DecoupledSOLOHead', 'DecoupledSOLOLightHead', 'SOLOV2Head', 'LADHead', 'TOODHead', 'MaskFormerHead', 'Mask2FormerHead', 'DDODHead', 'CenterNetUpdateHead', 'RTMDetHead', 'RTMDetSepBNHead', 'CondInstBboxHead', 'CondInstMaskHead', 'RTMDetInsHead', 'RTMDetInsSepBNHead', 'BoxInstBboxHead', 'BoxInstMaskHead' ]
# Copyright (c) OpenMMLab. All rights reserved. from typing import Iterator, List, Optional, Sequence, Union from mmengine.registry import EVALUATOR, METRICS from mmengine.structures import BaseDataElement from .metric import BaseMetric @EVALUATOR.register_module() class Evaluator: """Wrapper class to compose multiple :class:`BaseMetric` instances. Args: metrics (dict or BaseMetric or Sequence): The config of metrics. """ def __init__(self, metrics: Union[dict, BaseMetric, Sequence]): self._dataset_meta: Optional[dict] = None if not isinstance(metrics, Sequence): metrics = [metrics] self.metrics: List[BaseMetric] = [] for metric in metrics: if isinstance(metric, dict): self.metrics.append(METRICS.build(metric)) else: self.metrics.append(metric) @property def dataset_meta(self) -> Optional[dict]: """Optional[dict]: Meta info of the dataset.""" return self._dataset_meta @dataset_meta.setter def dataset_meta(self, dataset_meta: dict) -> None: """Set the dataset meta info to the evaluator and it's metrics.""" self._dataset_meta = dataset_meta for metric in self.metrics: metric.dataset_meta = dataset_meta def process(self, data_batch: Sequence[dict], predictions: Sequence[BaseDataElement]): """Convert ``BaseDataSample`` to dict and invoke process method of each metric. Args: data_batch (Sequence[dict]): A batch of data from the dataloader. predictions (Sequence[BaseDataElement]): A batch of outputs from the model. """ _data_batch = [] for data in data_batch: if isinstance(data['data_sample'], BaseDataElement): _data_batch.append( dict( inputs=data['inputs'], data_sample=data['data_sample'].to_dict())) else: _data_batch.append(data) _predictions = [] for pred in predictions: if isinstance(pred, BaseDataElement): _predictions.append(pred.to_dict()) else: _predictions.append(pred) for metric in self.metrics: metric.process(_data_batch, _predictions) def evaluate(self, size: int) -> dict: """Invoke ``evaluate`` method of each metric and collect the metrics dictionary. Args: size (int): Length of the entire validation dataset. When batch size > 1, the dataloader may pad some data samples to make sure all ranks have the same length of dataset slice. The ``collect_results`` function will drop the padded data based on this size. Returns: dict: Evaluation results of all metrics. The keys are the names of the metrics, and the values are corresponding results. """ metrics = {} for metric in self.metrics: _results = metric.evaluate(size) # Check metric name conflicts for name in _results.keys(): if name in metrics: raise ValueError( 'There are multiple evaluation results with the same ' f'metric name {name}. Please make sure all metrics ' 'have different prefixes.') metrics.update(_results) return metrics def offline_evaluate(self, data: Sequence, predictions: Sequence, chunk_size: int = 1): """Offline evaluate the dumped predictions on the given data . Args: data (Sequence): All data of the validation set. predictions (Sequence): All predictions of the model on the validation set. chunk_size (int): The number of data samples and predictions to be processed in a batch. """ # support chunking iterable objects def get_chunks(seq: Iterator, chunk_size=1): stop = False while not stop: chunk = [] for _ in range(chunk_size): try: chunk.append(next(seq)) except StopIteration: stop = True break if chunk: yield chunk size = 0 for data_chunk, pred_chunk in zip( get_chunks(iter(data), chunk_size), get_chunks(iter(predictions), chunk_size)): size += len(data_chunk) self.process(data_chunk, pred_chunk) return self.evaluate(size)
# Copyright (c) OpenMMLab. All rights reserved. from typing import Iterator, List, Optional, Sequence, Union from mmengine.data import BaseDataElement from mmengine.registry import EVALUATOR, METRICS from .metric import BaseMetric @EVALUATOR.register_module() class Evaluator: """Wrapper class to compose multiple :class:`BaseMetric` instances. Args: metrics (dict or BaseMetric or Sequence): The config of metrics. """ def __init__(self, metrics: Union[dict, BaseMetric, Sequence]): self._dataset_meta: Optional[dict] = None if not isinstance(metrics, Sequence): metrics = [metrics] self.metrics: List[BaseMetric] = [] for metric in metrics: if isinstance(metric, dict): self.metrics.append(METRICS.build(metric)) else: self.metrics.append(metric) @property def dataset_meta(self) -> Optional[dict]: """Optional[dict]: Meta info of the dataset.""" return self._dataset_meta @dataset_meta.setter def dataset_meta(self, dataset_meta: dict) -> None: """Set the dataset meta info to the evaluator and it's metrics.""" self._dataset_meta = dataset_meta for metric in self.metrics: metric.dataset_meta = dataset_meta def process(self, data_batch: Sequence[dict], predictions: Sequence[BaseDataElement]): """Convert ``BaseDataSample`` to dict and invoke process method of each metric. Args: data_batch (Sequence[dict]): A batch of data from the dataloader. predictions (Sequence[BaseDataElement]): A batch of outputs from the model. """ _data_batch = [] for data in data_batch: if isinstance(data['data_sample'], BaseDataElement): _data_batch.append( dict( inputs=data['inputs'], data_sample=data['data_sample'].to_dict())) else: _data_batch.append(data) _predictions = [] for pred in predictions: if isinstance(pred, BaseDataElement): _predictions.append(pred.to_dict()) else: _predictions.append(pred) for metric in self.metrics: metric.process(_data_batch, _predictions) def evaluate(self, size: int) -> dict: """Invoke ``evaluate`` method of each metric and collect the metrics dictionary. Args: size (int): Length of the entire validation dataset. When batch size > 1, the dataloader may pad some data samples to make sure all ranks have the same length of dataset slice. The ``collect_results`` function will drop the padded data based on this size. Returns: dict: Evaluation results of all metrics. The keys are the names of the metrics, and the values are corresponding results. """ metrics = {} for metric in self.metrics: _results = metric.evaluate(size) # Check metric name conflicts for name in _results.keys(): if name in metrics: raise ValueError( 'There are multiple evaluation results with the same ' f'metric name {name}. Please make sure all metrics ' 'have different prefixes.') metrics.update(_results) return metrics def offline_evaluate(self, data: Sequence, predictions: Sequence, chunk_size: int = 1): """Offline evaluate the dumped predictions on the given data . Args: data (Sequence): All data of the validation set. predictions (Sequence): All predictions of the model on the validation set. chunk_size (int): The number of data samples and predictions to be processed in a batch. """ # support chunking iterable objects def get_chunks(seq: Iterator, chunk_size=1): stop = False while not stop: chunk = [] for _ in range(chunk_size): try: chunk.append(next(seq)) except StopIteration: stop = True break if chunk: yield chunk size = 0 for data_chunk, pred_chunk in zip( get_chunks(iter(data), chunk_size), get_chunks(iter(predictions), chunk_size)): size += len(data_chunk) self.process(data_chunk, pred_chunk) return self.evaluate(size)
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.chat_message_histories import RedisChatMessageHistory # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "RedisChatMessageHistory": "langchain_community.chat_message_histories", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "RedisChatMessageHistory", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.chat_message_histories import RedisChatMessageHistory # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "RedisChatMessageHistory": "langchain_community.chat_message_histories" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "RedisChatMessageHistory", ]
from typing import Optional, TypeVar from docarray.base_document import BaseDocument from docarray.documents import Audio from docarray.typing import AnyEmbedding, AnyTensor from docarray.typing.tensor.video.video_tensor import VideoTensor from docarray.typing.url.video_url import VideoUrl T = TypeVar('T', bound='Video') class Video(BaseDocument): """ Document for handling video. The Video Document can contain a VideoUrl (`Video.url`), an Audio Document (`Video.audio`), a VideoTensor (`Video.tensor`), an AnyTensor representing the indices of the video's key frames (`Video.key_frame_indices`) and an AnyEmbedding (`Video.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Video # use it directly vid = Video( url='https://github.com/docarray/docarray/tree/feat-add-video-v2/tests/toydata/mov_bbb.mp4?raw=true' ) vid.audio.tensor, vid.tensor, vid.key_frame_indices = vid.url.load() model = MyEmbeddingModel() vid.embedding = model(vid.tensor) You can extend this Document: .. code-block:: python from typing import Optional from docarray.documents import Text, Video # extend it class MyVideo(Video): name: Optional[Text] video = MyVideo( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) video.video_tensor = video.url.load().video model = MyEmbeddingModel() video.embedding = model(video.tensor) video.name = Text(text='my first video') You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Text, Video # compose it class MultiModalDoc(BaseDocument): video: Video text: Text mmdoc = MultiModalDoc( video=Video( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.video.video_tensor = mmdoc.video.url.load().video """ url: Optional[VideoUrl] audio: Optional[Audio] = Audio() tensor: Optional[VideoTensor] key_frame_indices: Optional[AnyTensor] embedding: Optional[AnyEmbedding]
from typing import Optional, TypeVar from docarray.base_document import BaseDocument from docarray.documents import Audio from docarray.typing import AnyEmbedding, AnyTensor from docarray.typing.tensor.video.video_tensor import VideoTensor from docarray.typing.url.video_url import VideoUrl T = TypeVar('T', bound='Video') class Video(BaseDocument): """ Document for handling video. The Video Document can contain a VideoUrl (`Video.url`), an Audio Document (`Video.audio`), a VideoTensor (`Video.tensor`), an AnyTensor representing the indices of the video's key frames (`Video.key_frame_indices`) and an AnyEmbedding (`Video.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Video # use it directly vid = Video( url='https://github.com/docarray/docarray/tree/feat-add-video-v2/tests/toydata/mov_bbb.mp4?raw=true' ) vid.audio.tensor, vid.tensor, vid.key_frame_indices = vid.url.load() model = MyEmbeddingModel() vid.embedding = model(vid.tensor) You can extend this Document: .. code-block:: python from typing import Optional from docarray.documents import Text, Video # extend it class MyVideo(Video): name: Optional[Text] video = MyVideo( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) video.tensor = video.url.load_key_frames() model = MyEmbeddingModel() video.embedding = model(video.tensor) video.name = Text(text='my first video') You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Text, Video # compose it class MultiModalDoc(BaseDocument): video: Video text: Text mmdoc = MultiModalDoc( video=Video( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.video.tensor = mmdoc.video.url.load_key_frames() """ url: Optional[VideoUrl] audio: Optional[Audio] = Audio() tensor: Optional[VideoTensor] key_frame_indices: Optional[AnyTensor] embedding: Optional[AnyEmbedding]
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # model settings norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), bbox_head=dict( _delete_=True, type='SABLRetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), norm_cfg=norm_cfg, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), loss_bbox_reg=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)), # training and testing settings train_cfg=dict( assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 960)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # model settings norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), bbox_head=dict( _delete_=True, type='SABLRetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), norm_cfg=norm_cfg, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), loss_bbox_reg=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)), # training and testing settings train_cfg=dict( assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 960)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
from keras.src.api_export import keras_export @keras_export(["keras.Initializer", "keras.initializers.Initializer"]) class Initializer: """Initializer base class: all Keras initializers inherit from this class. Initializers should implement a `__call__()` method with the following signature: ```python def __call__(self, shape, dtype=None, **kwargs): # returns a tensor of shape `shape` and dtype `dtype` # containing values drawn from a distribution of your choice. ``` Optionally, you can also implement the method `get_config()` and the class method `from_config` in order to support serialization, just like with any Keras object. Here's a simple example: a random normal initializer. ```python class ExampleRandomNormal(Initializer): def __init__(self, mean, stddev): self.mean = mean self.stddev = stddev def __call__(self, shape, dtype=None, **kwargs): return keras.random.normal( shape, mean=self.mean, stddev=self.stddev, dtype=dtype ) def get_config(self): # To support serialization return {"mean": self.mean, "stddev": self.stddev} ``` Note that we don't have to implement `from_config()` in the example above since the constructor arguments of the class the keys in the config returned by `get_config()` are the same. In this case, the default `from_config()` works fine. """ def __call__(self, shape, dtype=None): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. """ raise NotImplementedError( "Initializer subclasses must implement the `__call__()` method." ) def get_config(self): """Returns the initializer's configuration as a JSON-serializable dict. Returns: A JSON-serializable Python dict. """ return {} @classmethod def from_config(cls, config): """Instantiates an initializer from a configuration dictionary. Example: ```python initializer = RandomUniform(-1, 1) config = initializer.get_config() initializer = RandomUniform.from_config(config) ``` Args: config: A Python dictionary, the output of `get_config()`. Returns: An `Initializer` instance. """ return cls(**config) def clone(self): return self.__class__.from_config(self.get_config())
from keras.src.api_export import keras_export @keras_export(["keras.Initializer", "keras.initializers.Initializer"]) class Initializer: """Initializer base class: all Keras initializers inherit from this class. Initializers should implement a `__call__()` method with the following signature: ```python def __call__(self, shape, dtype=None, **kwargs): # returns a tensor of shape `shape` and dtype `dtype` # containing values drawn from a distribution of your choice. ``` Optionally, you an also implement the method `get_config()` and the class method `from_config` in order to support serialization -- just like with any Keras object. Here's a simple example: a random normal initializer. ```python class ExampleRandomNormal(Initializer): def __init__(self, mean, stddev): self.mean = mean self.stddev = stddev def __call__(self, shape, dtype=None, **kwargs): return keras.random.normal( shape, mean=self.mean, stddev=self.stddev, dtype=dtype ) def get_config(self): # To support serialization return {"mean": self.mean, "stddev": self.stddev} ``` Note that we don't have to implement `from_config()` in the example above since the constructor arguments of the class the keys in the config returned by `get_config()` are the same. In this case, the default `from_config()` works fine. """ def __call__(self, shape, dtype=None): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. """ raise NotImplementedError( "Initializer subclasses must implement the `__call__()` method." ) def get_config(self): """Returns the initializer's configuration as a JSON-serializable dict. Returns: A JSON-serializable Python dict. """ return {} @classmethod def from_config(cls, config): """Instantiates an initializer from a configuration dictionary. Example: ```python initializer = RandomUniform(-1, 1) config = initializer.get_config() initializer = RandomUniform.from_config(config) ``` Args: config: A Python dictionary, the output of `get_config()`. Returns: An `Initializer` instance. """ return cls(**config) def clone(self): return self.__class__.from_config(self.get_config())
# Copyright (c) OpenMMLab. All rights reserved. import argparse import cv2 import torch from mmdet.apis import inference_detector, init_detector def parse_args(): parser = argparse.ArgumentParser(description='MMDetection webcam demo') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--device', type=str, default='cuda:0', help='CPU/CUDA device option') parser.add_argument( '--camera-id', type=int, default=0, help='camera device id') parser.add_argument( '--score-thr', type=float, default=0.5, help='bbox score threshold') args = parser.parse_args() return args def main(): args = parse_args() device = torch.device(args.device) model = init_detector(args.config, args.checkpoint, device=device) camera = cv2.VideoCapture(args.camera_id) print('Press "Esc", "q" or "Q" to exit.') while True: ret_val, img = camera.read() result = inference_detector(model, img) ch = cv2.waitKey(1) if ch == 27 or ch == ord('q') or ch == ord('Q'): break model.show_result( img, result, score_thr=args.score_thr, wait_time=1, show=True) if __name__ == '__main__': main()
import argparse import cv2 import torch from mmdet.apis import inference_detector, init_detector def parse_args(): parser = argparse.ArgumentParser(description='MMDetection webcam demo') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--device', type=str, default='cuda:0', help='CPU/CUDA device option') parser.add_argument( '--camera-id', type=int, default=0, help='camera device id') parser.add_argument( '--score-thr', type=float, default=0.5, help='bbox score threshold') args = parser.parse_args() return args def main(): args = parse_args() device = torch.device(args.device) model = init_detector(args.config, args.checkpoint, device=device) camera = cv2.VideoCapture(args.camera_id) print('Press "Esc", "q" or "Q" to exit.') while True: ret_val, img = camera.read() result = inference_detector(model, img) ch = cv2.waitKey(1) if ch == 27 or ch == ord('q') or ch == ord('Q'): break model.show_result( img, result, score_thr=args.score_thr, wait_time=1, show=True) if __name__ == '__main__': main()
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.22.5' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.22.4' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
from __future__ import annotations import os from . import InputExample class LabelSentenceReader: """Reads in a file that has at least two columns: a label and a sentence. This reader can for example be used with the BatchHardTripletLoss. Maps labels automatically to integers """ def __init__(self, folder, label_col_idx=0, sentence_col_idx=1, separator="\t"): self.folder = folder self.label_map = {} self.label_col_idx = label_col_idx self.sentence_col_idx = sentence_col_idx self.separator = separator def get_examples(self, filename, max_examples=0): examples = [] id = 0 for line in open(os.path.join(self.folder, filename), encoding="utf-8"): splits = line.strip().split(self.separator) label = splits[self.label_col_idx] sentence = splits[self.sentence_col_idx] if label not in self.label_map: self.label_map[label] = len(self.label_map) label_id = self.label_map[label] guid = "%s-%d" % (filename, id) id += 1 examples.append(InputExample(guid=guid, texts=[sentence], label=label_id)) if 0 < max_examples <= id: break return examples
import os from . import InputExample class LabelSentenceReader: """Reads in a file that has at least two columns: a label and a sentence. This reader can for example be used with the BatchHardTripletLoss. Maps labels automatically to integers """ def __init__(self, folder, label_col_idx=0, sentence_col_idx=1, separator="\t"): self.folder = folder self.label_map = {} self.label_col_idx = label_col_idx self.sentence_col_idx = sentence_col_idx self.separator = separator def get_examples(self, filename, max_examples=0): examples = [] id = 0 for line in open(os.path.join(self.folder, filename), encoding="utf-8"): splits = line.strip().split(self.separator) label = splits[self.label_col_idx] sentence = splits[self.sentence_col_idx] if label not in self.label_map: self.label_map[label] = len(self.label_map) label_id = self.label_map[label] guid = "%s-%d" % (filename, id) id += 1 examples.append(InputExample(guid=guid, texts=[sentence], label=label_id)) if 0 < max_examples <= id: break return examples
import unittest import torch from mmengine.config import Config from mmengine.data import InstanceData from mmengine.testing import assert_allclose from mmdet.core.evaluation import INSTANCE_OFFSET from mmdet.models.seg_heads.panoptic_fusion_heads import HeuristicFusionHead class TestHeuristicFusionHead(unittest.TestCase): def test_loss(self): head = HeuristicFusionHead(num_things_classes=2, num_stuff_classes=2) result = head.loss() self.assertTrue(not head.with_loss) self.assertDictEqual(result, dict()) def test_predict(self): test_cfg = Config(dict(mask_overlap=0.5, stuff_area_limit=1)) head = HeuristicFusionHead( num_things_classes=2, num_stuff_classes=2, test_cfg=test_cfg) mask_results = InstanceData() mask_results.bboxes = torch.tensor([[0, 0, 1, 1], [1, 1, 2, 2]]) mask_results.labels = torch.tensor([0, 1]) mask_results.scores = torch.tensor([0.8, 0.7]) mask_results.masks = torch.tensor([[[1, 0], [0, 0]], [[0, 0], [0, 1]]]).bool() seg_preds_list = [ torch.tensor([[[0.2, 0.7], [0.3, 0.1]], [[0.2, 0.2], [0.6, 0.1]], [[0.6, 0.1], [0.1, 0.8]]]) ] target_list = [ torch.tensor([[0 + 1 * INSTANCE_OFFSET, 2], [3, 1 + 2 * INSTANCE_OFFSET]]) ] results_list = head.predict([mask_results], seg_preds_list) for target, result in zip(target_list, results_list): assert_allclose(result.sem_seg[0], target) # test with no thing head = HeuristicFusionHead( num_things_classes=2, num_stuff_classes=2, test_cfg=test_cfg) mask_results = InstanceData() mask_results.bboxes = torch.zeros((0, 4)) mask_results.labels = torch.zeros((0, )).long() mask_results.scores = torch.zeros((0, )) mask_results.masks = torch.zeros((0, 2, 2), dtype=torch.bool) seg_preds_list = [ torch.tensor([[[0.2, 0.7], [0.3, 0.1]], [[0.2, 0.2], [0.6, 0.1]], [[0.6, 0.1], [0.1, 0.8]]]) ] target_list = [torch.tensor([[4, 2], [3, 4]])] results_list = head.predict([mask_results], seg_preds_list) for target, result in zip(target_list, results_list): assert_allclose(result.sem_seg[0], target)
import unittest import torch from mmengine.config import Config from mmengine.testing import assert_allclose from mmdet.core.evaluation import INSTANCE_OFFSET from mmdet.models.seg_heads.panoptic_fusion_heads import HeuristicFusionHead class TestHeuristicFusionHead(unittest.TestCase): def test_loss(self): head = HeuristicFusionHead(num_things_classes=2, num_stuff_classes=2) result = head.loss() self.assertTrue(not head.with_loss) self.assertDictEqual(result, dict()) def test_predict(self): test_cfg = Config( dict(mask_thr_binary=0.5, mask_overlap=0.5, stuff_area_limit=1)) head = HeuristicFusionHead( num_things_classes=2, num_stuff_classes=2, test_cfg=test_cfg) det_bboxes_list = [torch.tensor([[0, 0, 1, 1], [1, 1, 2, 2]])] det_labels_list = [torch.tensor([0, 1])] mask_preds_list = [ torch.tensor([[[0.6, 0.1], [0.1, 0.2]], [[0.1, 0.1], [0.2, 0.8]]]) ] seg_preds_list = [ torch.tensor([[[0.2, 0.7], [0.3, 0.1]], [[0.2, 0.2], [0.6, 0.1]], [[0.6, 0.1], [0.1, 0.8]]]) ] target_list = [ torch.tensor([[0 + 2 * INSTANCE_OFFSET, 2], [3, 1 + 1 * INSTANCE_OFFSET]]) ] results_list = head.predict(det_bboxes_list, det_labels_list, mask_preds_list, seg_preds_list) for target, result in zip(target_list, results_list): assert_allclose(result.sem_seg[0], target) # test with no thing test_cfg = Config( dict(mask_thr_binary=0.5, mask_overlap=0.5, stuff_area_limit=1)) head = HeuristicFusionHead( num_things_classes=2, num_stuff_classes=2, test_cfg=test_cfg) det_bboxes_list = [torch.zeros((0, 4))] det_labels_list = [torch.tensor((0, ))] mask_preds_list = [torch.tensor((0, 2, 2))] seg_preds_list = [ torch.tensor([[[0.2, 0.7], [0.3, 0.1]], [[0.2, 0.2], [0.6, 0.1]], [[0.6, 0.1], [0.1, 0.8]]]) ] target_list = [torch.tensor([[4, 2], [3, 4]])] results_list = head.predict(det_bboxes_list, det_labels_list, mask_preds_list, seg_preds_list) for target, result in zip(target_list, results_list): assert_allclose(result.sem_seg[0], target)
# Copyright (c) OpenMMLab. All rights reserved. from .hub import load_url from .misc import (check_prerequisites, concat_list, deprecated_api_warning, has_method, import_modules_from_strings, is_list_of, is_method_overridden, is_seq_of, is_str, is_tuple_of, iter_cast, list_cast, mmcv_full_available, requires_executable, requires_package, slice_list, to_1tuple, to_2tuple, to_3tuple, to_4tuple, to_ntuple, tuple_cast) from .parrots_wrapper import TORCH_VERSION from .path import (check_file_exist, fopen, is_filepath, mkdir_or_exist, scandir, symlink) from .version_utils import digit_version, get_git_hash __all__ = [ 'is_str', 'iter_cast', 'list_cast', 'tuple_cast', 'is_seq_of', 'is_list_of', 'is_tuple_of', 'slice_list', 'concat_list', 'check_prerequisites', 'requires_package', 'requires_executable', 'is_filepath', 'fopen', 'check_file_exist', 'mkdir_or_exist', 'symlink', 'scandir', 'deprecated_api_warning', 'import_modules_from_strings', 'to_1tuple', 'to_2tuple', 'to_3tuple', 'to_4tuple', 'to_ntuple', 'is_method_overridden', 'has_method', 'mmcv_full_available', 'digit_version', 'get_git_hash', 'TORCH_VERSION', 'load_url' ]
# Copyright (c) OpenMMLab. All rights reserved. from .misc import (check_prerequisites, concat_list, deprecated_api_warning, has_method, import_modules_from_strings, is_list_of, is_method_overridden, is_seq_of, is_str, is_tuple_of, iter_cast, list_cast, mmcv_full_available, requires_executable, requires_package, slice_list, to_1tuple, to_2tuple, to_3tuple, to_4tuple, to_ntuple, tuple_cast) from .parrots_wrapper import TORCH_VERSION from .path import (check_file_exist, fopen, is_filepath, mkdir_or_exist, scandir, symlink) from .version_utils import digit_version, get_git_hash __all__ = [ 'is_str', 'iter_cast', 'list_cast', 'tuple_cast', 'is_seq_of', 'is_list_of', 'is_tuple_of', 'slice_list', 'concat_list', 'check_prerequisites', 'requires_package', 'requires_executable', 'is_filepath', 'fopen', 'check_file_exist', 'mkdir_or_exist', 'symlink', 'scandir', 'deprecated_api_warning', 'import_modules_from_strings', 'to_1tuple', 'to_2tuple', 'to_3tuple', 'to_4tuple', 'to_ntuple', 'is_method_overridden', 'has_method', 'mmcv_full_available', 'digit_version', 'get_git_hash', 'TORCH_VERSION' ]
from dataclasses import dataclass, fields, field from typing import Optional, Tuple, TYPE_CHECKING if TYPE_CHECKING: from docarray.score import NamedScore default_values = dict(value=0.0, op_name='', description='', ref_id='') @dataclass(unsafe_hash=True) class NamedScoreData: _reference_ns: 'NamedScore' = field(hash=False, compare=False) value: Optional[float] = None op_name: Optional[str] = None description: Optional[str] = None ref_id: Optional[str] = None @property def _non_empty_fields(self) -> Tuple[str]: r = [] for f in fields(self): f_name = f.name if not f_name.startswith('_'): v = getattr(self, f_name) if v is not None: r.append(f_name) return tuple(r) def _set_default_value_if_none(self, key): if getattr(self, key) is None: setattr(self, key, default_values[key])
from dataclasses import dataclass, fields, field from typing import Optional, Tuple, TYPE_CHECKING if TYPE_CHECKING: from docarray.score import NamedScore default_values = dict(value=0.0, op_name='', description='', ref_id='') @dataclass(unsafe_hash=True) class NamedScoreData: _reference_ns: 'NamedScore' = field(hash=False, compare=False) value: Optional[float] = None op_name: Optional[str] = None description: Optional[str] = None ref_id: Optional[str] = None @property def _non_empty_fields(self) -> Tuple[str]: r = [] for f in fields(self): f_name = f.name if not f_name.startswith('_'): v = getattr(self, f_name) if v is not None: if f_name not in default_values: r.append(f_name) else: dv = default_values[f_name] if v != dv: r.append(f_name) return tuple(r) def _set_default_value_if_none(self, key): if getattr(self, key) is None: setattr(self, key, default_values[key])
from __future__ import annotations import re import pytest from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import NanoBEIREvaluator from sentence_transformers.util import is_datasets_available if not is_datasets_available(): pytest.skip( reason="Datasets are not installed. Please install `datasets` with `pip install datasets`", allow_module_level=True, ) def test_nanobeir_evaluator(): """Tests that the NanoBERTEvaluator can be loaded and produces expected metrics""" datasets = ["QuoraRetrieval", "MSMARCO"] query_prompts = { "QuoraRetrieval": "Instruct: Given a question, retrieve questions that are semantically equivalent to the given question\\nQuery: ", "MSMARCO": "Instruct: Given a web search query, retrieve relevant passages that answer the query\\nQuery: ", } model = SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") evaluator = NanoBEIREvaluator( dataset_names=datasets, query_prompts=query_prompts, ) results = evaluator(model) assert len(results) > 0 assert all(isinstance(results[metric], float) for metric in results) def test_nanobeir_evaluator_with_invalid_dataset(): """Test that NanoBEIREvaluator raises an error for invalid dataset names.""" invalid_datasets = ["invalidDataset"] with pytest.raises( ValueError, match=re.escape( r"Dataset(s) ['invalidDataset'] not found in the NanoBEIR collection. " r"Valid dataset names are: ['climatefever', 'dbpedia', 'fever', 'fiqa2018', 'hotpotqa', 'msmarco', 'nfcorpus', 'nq', 'quoraretrieval', 'scidocs', 'arguana', 'scifact', 'touche2020']" ), ): NanoBEIREvaluator(dataset_names=invalid_datasets) def test_nanobeir_evaluator_empty_inputs(): """Test that NanoBEIREvaluator behaves correctly with empty datasets.""" with pytest.raises(ValueError, match="dataset_names cannot be empty. Use None to evaluate on all datasets."): NanoBEIREvaluator(dataset_names=[])
from __future__ import annotations import re import pytest from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import NanoBEIREvaluator def test_nanobeir_evaluator(): """Tests that the NanoBERTEvaluator can be loaded and produces expected metrics""" datasets = ["QuoraRetrieval", "MSMARCO"] query_prompts = { "QuoraRetrieval": "Instruct: Given a question, retrieve questions that are semantically equivalent to the given question\\nQuery: ", "MSMARCO": "Instruct: Given a web search query, retrieve relevant passages that answer the query\\nQuery: ", } model = SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") evaluator = NanoBEIREvaluator( dataset_names=datasets, query_prompts=query_prompts, ) results = evaluator(model) assert len(results) > 0 assert all(isinstance(results[metric], float) for metric in results) def test_nanobeir_evaluator_with_invalid_dataset(): """Test that NanoBEIREvaluator raises an error for invalid dataset names.""" invalid_datasets = ["invalidDataset"] with pytest.raises( ValueError, match=re.escape( r"Dataset(s) ['invalidDataset'] not found in the NanoBEIR collection. " r"Valid dataset names are: ['climatefever', 'dbpedia', 'fever', 'fiqa2018', 'hotpotqa', 'msmarco', 'nfcorpus', 'nq', 'quoraretrieval', 'scidocs', 'arguana', 'scifact', 'touche2020']" ), ): NanoBEIREvaluator(dataset_names=invalid_datasets) def test_nanobeir_evaluator_empty_inputs(): """Test that NanoBEIREvaluator behaves correctly with empty datasets.""" with pytest.raises(ValueError, match="dataset_names cannot be empty. Use None to evaluate on all datasets."): NanoBEIREvaluator(dataset_names=[])
import torchaudio _STREAM_READER = [ "StreamReader", ] _STREAM_WRITER = [ "StreamWriter", ] _LAZILY_IMPORTED = _STREAM_READER + _STREAM_WRITER def __getattr__(name: str): if name in _LAZILY_IMPORTED: if not torchaudio._extension._FFMPEG_INITIALIZED: torchaudio._extension._init_ffmpeg() if name in _STREAM_READER: from . import _stream_reader item = getattr(_stream_reader, name) else: from . import _stream_writer item = getattr(_stream_writer, name) globals()[name] = item return item raise AttributeError(f"module {__name__} has no attribute {name}") def __dir__(): return sorted(__all__ + _LAZILY_IMPORTED) __all__ = []
import torchaudio _STREAM_READER = [ "StreamReader", "StreamReaderSourceStream", "StreamReaderSourceAudioStream", "StreamReaderSourceVideoStream", "StreamReaderOutputStream", ] _STREAM_WRITER = [ "StreamWriter", ] _LAZILY_IMPORTED = _STREAM_READER + _STREAM_WRITER def __getattr__(name: str): if name in _LAZILY_IMPORTED: if not torchaudio._extension._FFMPEG_INITIALIZED: torchaudio._extension._init_ffmpeg() if name in _STREAM_READER: from . import _stream_reader item = getattr(_stream_reader, name) else: from . import _stream_writer item = getattr(_stream_writer, name) globals()[name] = item return item raise AttributeError(f"module {__name__} has no attribute {name}") def __dir__(): return sorted(__all__ + _LAZILY_IMPORTED) __all__ = []
import pytest from backend.util.service import ( AppService, AppServiceClient, endpoint_to_async, expose, get_service_client, ) TEST_SERVICE_PORT = 8765 class ServiceTest(AppService): def __init__(self): super().__init__() def cleanup(self): pass @classmethod def get_port(cls) -> int: return TEST_SERVICE_PORT @expose def add(self, a: int, b: int) -> int: return a + b @expose def subtract(self, a: int, b: int) -> int: return a - b @expose def fun_with_async(self, a: int, b: int) -> int: async def add_async(a: int, b: int) -> int: return a + b return self.run_and_wait(add_async(a, b)) class ServiceTestClient(AppServiceClient): @classmethod def get_service_type(cls): return ServiceTest add = ServiceTest.add subtract = ServiceTest.subtract fun_with_async = ServiceTest.fun_with_async add_async = endpoint_to_async(ServiceTest.add) subtract_async = endpoint_to_async(ServiceTest.subtract) @pytest.mark.asyncio async def test_service_creation(server): with ServiceTest(): client = get_service_client(ServiceTestClient) assert client.add(5, 3) == 8 assert client.subtract(10, 4) == 6 assert client.fun_with_async(5, 3) == 8 assert await client.add_async(5, 3) == 8 assert await client.subtract_async(10, 4) == 6
import pytest from backend.util.service import ( AppService, AppServiceClient, endpoint_to_async, expose, get_service_client, ) TEST_SERVICE_PORT = 8765 class ServiceTest(AppService): def __init__(self): super().__init__() def cleanup(self): pass @classmethod def get_port(cls) -> int: return TEST_SERVICE_PORT @expose def add(self, a: int, b: int) -> int: return a + b @expose def subtract(self, a: int, b: int) -> int: return a - b @expose def fun_with_async(self, a: int, b: int) -> int: async def add_async(a: int, b: int) -> int: return a + b return self.run_and_wait(add_async(a, b)) class ServiceTestClient(AppServiceClient): @classmethod def get_service_type(cls): return ServiceTest add = ServiceTest.add subtract = ServiceTest.subtract fun_with_async = ServiceTest.fun_with_async add_async = endpoint_to_async(ServiceTest.add) subtract_async = endpoint_to_async(ServiceTest.subtract) @pytest.mark.asyncio(loop_scope="session") async def test_service_creation(server): with ServiceTest(): client = get_service_client(ServiceTestClient) assert client.add(5, 3) == 8 assert client.subtract(10, 4) == 6 assert client.fun_with_async(5, 3) == 8 assert await client.add_async(5, 3) == 8 assert await client.subtract_async(10, 4) == 6
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .two_stage import TwoStageDetector @DETECTORS.register_module() class FasterRCNN(TwoStageDetector): """Implementation of `Faster R-CNN <https://arxiv.org/abs/1506.01497>`_""" def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None, img_norm_cfg=None): super(FasterRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg, img_norm_cfg=img_norm_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .two_stage import TwoStageDetector @DETECTORS.register_module() class FasterRCNN(TwoStageDetector): """Implementation of `Faster R-CNN <https://arxiv.org/abs/1506.01497>`_""" def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(FasterRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg)
from torchvision.transforms import AutoAugmentPolicy, InterpolationMode # usort: skip from . import functional, utils # usort: skip from ._transform import Transform # usort: skip from ._presets import StereoMatching # usort: skip from ._augment import RandomCutmix, RandomErasing, RandomMixup, SimpleCopyPaste from ._auto_augment import AugMix, AutoAugment, RandAugment, TrivialAugmentWide from ._color import ( ColorJitter, RandomAdjustSharpness, RandomAutocontrast, RandomEqualize, RandomInvert, RandomPhotometricDistort, RandomPosterize, RandomSolarize, ) from ._container import Compose, RandomApply, RandomChoice, RandomOrder from ._geometry import ( CenterCrop, ElasticTransform, FiveCrop, FixedSizeCrop, Pad, RandomAffine, RandomCrop, RandomHorizontalFlip, RandomIoUCrop, RandomPerspective, RandomResize, RandomResizedCrop, RandomRotation, RandomShortestSize, RandomVerticalFlip, RandomZoomOut, Resize, ScaleJitter, TenCrop, ) from ._meta import ClampBoundingBoxes, ConvertBoundingBoxFormat, ConvertDtype, ConvertImageDtype from ._misc import ( GaussianBlur, Identity, Lambda, LinearTransformation, Normalize, PermuteDimensions, RemoveSmallBoundingBoxes, ToDtype, TransposeDimensions, ) from ._temporal import UniformTemporalSubsample from ._type_conversion import LabelToOneHot, PILToTensor, ToImagePIL, ToImageTensor, ToPILImage from ._deprecated import Grayscale, RandomGrayscale, ToTensor # usort: skip
from torchvision.transforms import AutoAugmentPolicy, InterpolationMode # usort: skip from . import functional, utils # usort: skip from ._transform import Transform # usort: skip from ._presets import StereoMatching # usort: skip from ._augment import RandomCutmix, RandomErasing, RandomMixup, SimpleCopyPaste from ._auto_augment import AugMix, AutoAugment, RandAugment, TrivialAugmentWide from ._color import ( ColorJitter, RandomAdjustSharpness, RandomAutocontrast, RandomEqualize, RandomInvert, RandomPhotometricDistort, RandomPosterize, RandomSolarize, ) from ._container import Compose, RandomApply, RandomChoice, RandomOrder from ._geometry import ( CenterCrop, ElasticTransform, FiveCrop, FixedSizeCrop, Pad, RandomAffine, RandomCrop, RandomHorizontalFlip, RandomIoUCrop, RandomPerspective, RandomResize, RandomResizedCrop, RandomRotation, RandomShortestSize, RandomVerticalFlip, RandomZoomOut, Resize, ScaleJitter, TenCrop, ) from ._meta import ClampBoundingBoxes, ConvertBoundingBoxFormat, ConvertColorSpace, ConvertDtype, ConvertImageDtype from ._misc import ( GaussianBlur, Identity, Lambda, LinearTransformation, Normalize, PermuteDimensions, RemoveSmallBoundingBoxes, ToDtype, TransposeDimensions, ) from ._temporal import UniformTemporalSubsample from ._type_conversion import LabelToOneHot, PILToTensor, ToImagePIL, ToImageTensor, ToPILImage from ._deprecated import Grayscale, RandomGrayscale, ToTensor # usort: skip
""" This script trains sentence transformers with a triplet loss function. As corpus, we use the wikipedia sections dataset that was describd by Dor et al., 2018, Learning Thematic Similarity Metric Using Triplet Networks. """ import logging import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import TripletEvaluator from sentence_transformers.losses import TripletLoss from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = "distilbert-base-uncased" batch_size = 16 num_train_epochs = 1 output_dir = "output/training-wikipedia-sections-" + model_name + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Here we define our SentenceTransformer model. If not already a Sentence Transformer model, it will automatically # create one with "mean" pooling. model = SentenceTransformer(model_name) # If we want, we can limit the maximum sequence length for the model # model.max_seq_length = 75 logging.info(model) # 2. Load the Wikipedia-Sections dataset: https://huggingface.co/datasets/sentence-transformers/wikipedia-sections train_dataset = load_dataset("sentence-transformers/wikipedia-sections", "triplet", split="train").select( range(10_000) ) eval_dataset = load_dataset("sentence-transformers/wikipedia-sections", "triplet", split="validation").select( range(1000) ) test_dataset = load_dataset("sentence-transformers/wikipedia-sections", "triplet", split="test").select(range(1000)) logging.info(train_dataset) # 3. Define our training loss # TripletLoss (https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) needs three text columns train_loss = TripletLoss(model) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. dev_evaluator = TripletEvaluator( anchors=eval_dataset[:1000]["anchor"], positives=eval_dataset[:1000]["positive"], negatives=eval_dataset[:1000]["negative"], name="wikipedia-sections-dev", ) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_train_epochs, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="wikipedia-sections-triplet", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_evaluator = TripletEvaluator( anchors=test_dataset["anchor"], positives=test_dataset["positive"], negatives=test_dataset["negative"], name="wikipedia-sections-test", ) test_evaluator(model) # 8. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(f"{model_name}-wikipedia-sections-triplet") except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}-wikipedia-sections-triplet')`." )
""" This script trains sentence transformers with a triplet loss function. As corpus, we use the wikipedia sections dataset that was describd by Dor et al., 2018, Learning Thematic Similarity Metric Using Triplet Networks. """ from sentence_transformers import SentenceTransformer, InputExample, LoggingHandler, losses, models, util from torch.utils.data import DataLoader from sentence_transformers.evaluation import TripletEvaluator from datetime import datetime from zipfile import ZipFile import csv import logging import os logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) logger = logging.getLogger(__name__) # You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = "distilbert-base-uncased" dataset_path = "datasets/wikipedia-sections" if not os.path.exists(dataset_path): os.makedirs(dataset_path, exist_ok=True) filepath = os.path.join(dataset_path, "wikipedia-sections-triplets.zip") util.http_get("https://sbert.net/datasets/wikipedia-sections-triplets.zip", filepath) with ZipFile(filepath, "r") as zip: zip.extractall(dataset_path) ### Create a torch.DataLoader that passes training batch instances to our model train_batch_size = 16 output_path = "output/training-wikipedia-sections-" + model_name + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") num_epochs = 1 ### Configure sentence transformers for training and train on the provided dataset # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False, ) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) logger.info("Read Triplet train dataset") train_examples = [] with open(os.path.join(dataset_path, "train.csv"), encoding="utf-8") as fIn: reader = csv.DictReader(fIn, delimiter=",", quoting=csv.QUOTE_MINIMAL) for row in reader: train_examples.append(InputExample(texts=[row["Sentence1"], row["Sentence2"], row["Sentence3"]], label=0)) train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=train_batch_size) train_loss = losses.TripletLoss(model=model) logger.info("Read Wikipedia Triplet dev dataset") dev_examples = [] with open(os.path.join(dataset_path, "validation.csv"), encoding="utf-8") as fIn: reader = csv.DictReader(fIn, delimiter=",", quoting=csv.QUOTE_MINIMAL) for row in reader: dev_examples.append(InputExample(texts=[row["Sentence1"], row["Sentence2"], row["Sentence3"]])) if len(dev_examples) >= 1000: break evaluator = TripletEvaluator.from_input_examples(dev_examples, name="dev") warmup_steps = int(len(train_dataloader) * num_epochs * 0.1) # 10% of train data # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=evaluator, epochs=num_epochs, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=output_path, ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## logger.info("Read test examples") test_examples = [] with open(os.path.join(dataset_path, "test.csv"), encoding="utf-8") as fIn: reader = csv.DictReader(fIn, delimiter=",", quoting=csv.QUOTE_MINIMAL) for row in reader: test_examples.append(InputExample(texts=[row["Sentence1"], row["Sentence2"], row["Sentence3"]])) model = SentenceTransformer(output_path) test_evaluator = TripletEvaluator.from_input_examples(test_examples, name="test") test_evaluator(model, output_path=output_path)
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( frozen_stages=0, norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False, init_cfg=dict( type='Pretrained', checkpoint='./swav_800ep_pretrain.pth.tar'))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( frozen_stages=0, norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False, init_cfg=dict( type='Pretrained', checkpoint='./swav_800ep_pretrain.pth.tar'))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
from keras.src.backend.common.name_scope import name_scope from keras.src.backend.jax import core from keras.src.backend.jax import distribution_lib from keras.src.backend.jax import image from keras.src.backend.jax import linalg from keras.src.backend.jax import math from keras.src.backend.jax import nn from keras.src.backend.jax import numpy from keras.src.backend.jax import random from keras.src.backend.jax import tensorboard from keras.src.backend.jax.core import IS_THREAD_SAFE from keras.src.backend.jax.core import SUPPORTS_SPARSE_TENSORS from keras.src.backend.jax.core import Variable from keras.src.backend.jax.core import cast from keras.src.backend.jax.core import compute_output_spec from keras.src.backend.jax.core import cond from keras.src.backend.jax.core import convert_to_numpy from keras.src.backend.jax.core import convert_to_tensor from keras.src.backend.jax.core import device_scope from keras.src.backend.jax.core import is_tensor from keras.src.backend.jax.core import random_seed_dtype from keras.src.backend.jax.core import scatter from keras.src.backend.jax.core import shape from keras.src.backend.jax.core import stop_gradient from keras.src.backend.jax.core import vectorized_map from keras.src.backend.jax.rnn import cudnn_ok from keras.src.backend.jax.rnn import gru from keras.src.backend.jax.rnn import lstm from keras.src.backend.jax.rnn import rnn
from keras.src.backend.common.name_scope import name_scope from keras.src.backend.jax import core from keras.src.backend.jax import distribution_lib from keras.src.backend.jax import image from keras.src.backend.jax import linalg from keras.src.backend.jax import math from keras.src.backend.jax import nn from keras.src.backend.jax import numpy from keras.src.backend.jax import random from keras.src.backend.jax.core import IS_THREAD_SAFE from keras.src.backend.jax.core import SUPPORTS_SPARSE_TENSORS from keras.src.backend.jax.core import Variable from keras.src.backend.jax.core import cast from keras.src.backend.jax.core import compute_output_spec from keras.src.backend.jax.core import cond from keras.src.backend.jax.core import convert_to_numpy from keras.src.backend.jax.core import convert_to_tensor from keras.src.backend.jax.core import device_scope from keras.src.backend.jax.core import is_tensor from keras.src.backend.jax.core import random_seed_dtype from keras.src.backend.jax.core import scatter from keras.src.backend.jax.core import shape from keras.src.backend.jax.core import stop_gradient from keras.src.backend.jax.core import vectorized_map from keras.src.backend.jax.rnn import cudnn_ok from keras.src.backend.jax.rnn import gru from keras.src.backend.jax.rnn import lstm from keras.src.backend.jax.rnn import rnn
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MSE - Mean Squared Error Metric""" from sklearn.metrics import mean_squared_error import datasets _CITATION = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _DESCRIPTION = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _KWARGS_DESCRIPTION = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Mse(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(self._get_feature_types()), reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ], ) def _get_feature_types(self): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float")), "references": datasets.Sequence(datasets.Value("float")), } else: return { "predictions": datasets.Value("float"), "references": datasets.Value("float"), } def _compute(self, predictions, references, sample_weight=None, multioutput="uniform_average", squared=True): mse = mean_squared_error( references, predictions, sample_weight=sample_weight, multioutput=multioutput, squared=squared ) return {"mse": mse}
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MSE - Mean Squared Error Metric""" from sklearn.metrics import mean_squared_error import datasets _CITATION = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _DESCRIPTION = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _KWARGS_DESCRIPTION = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Mse(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(self._get_feature_types()), reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ], ) def _get_feature_types(self): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float")), "references": datasets.Sequence(datasets.Value("float")), } else: return { "predictions": datasets.Value("float"), "references": datasets.Value("float"), } def _compute(self, predictions, references, sample_weight=None, multioutput="uniform_average", squared=True): mse = mean_squared_error( references, predictions, sample_weight=sample_weight, multioutput=multioutput, squared=squared ) return {"mse": mse}
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.activations import deserialize from keras.src.activations import get from keras.src.activations import serialize from keras.src.activations.activations import celu from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import glu from keras.src.activations.activations import hard_shrink from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import hard_silu as hard_swish from keras.src.activations.activations import hard_tanh from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_sigmoid from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import silu as swish from keras.src.activations.activations import soft_shrink from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import squareplus from keras.src.activations.activations import tanh from keras.src.activations.activations import tanh_shrink
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.activations import deserialize from keras.src.activations import get from keras.src.activations import serialize from keras.src.activations.activations import celu from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import glu from keras.src.activations.activations import hard_shrink from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import hard_silu as hard_swish from keras.src.activations.activations import hard_tanh from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_sigmoid from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import silu as swish from keras.src.activations.activations import soft_shrink from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import tanh from keras.src.activations.activations import tanh_shrink
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_beit import * from .feature_extraction_beit import * from .image_processing_beit import * from .image_processing_beit_fast import * from .modeling_beit import * from .modeling_flax_beit import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_beit import * from .feature_extraction_beit import * from .image_processing_beit import * from .modeling_beit import * from .modeling_flax_beit import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
""" Example of forwarding evaluation logs to the client =================================================== The example runs on GPU. Two classes are defined to show how to use Dask builtins to forward the logs to the client process. """ import logging import dask import distributed from dask import array as da from dask_cuda import LocalCUDACluster from distributed import Client from xgboost import dask as dxgb from xgboost.callback import EvaluationMonitor def _get_logger() -> logging.Logger: logger = logging.getLogger("[xgboost.dask]") logger.setLevel(logging.INFO) if not logger.hasHandlers(): handler = logging.StreamHandler() logger.addHandler(handler) return logger class ForwardLoggingMonitor(EvaluationMonitor): def __init__( self, client: Client, rank: int = 0, period: int = 1, ) -> None: """Print the evaluation result at each iteration. The default monitor in the native interface logs the result to the Dask scheduler process. This class can be used to forward the logging to the client process. Important: see the `client` parameter for more info. Parameters ---------- client : Distributed client. This must be the top-level client. The class uses :py:meth:`distributed.Client.forward_logging` in conjunction with the Python :py:mod:`logging` module to forward the evaluation results to the client process. It has undefined behaviour if called in a nested task. As a result, client-side logging is not enabled by default. """ client.forward_logging(_get_logger().name) super().__init__( rank=rank, period=period, logger=lambda msg: _get_logger().info(msg.strip()), ) class WorkerEventMonitor(EvaluationMonitor): """Use :py:meth:`distributed.print` to forward the log. A downside is that not only all clients connected to the cluster can see the log, the logs are also printed on the worker. If you use a local cluster, the log is duplicated. """ def __init__(self, rank: int = 0, period: int = 1) -> None: super().__init__( rank=rank, period=period, logger=lambda msg: distributed.print(msg.strip()) ) def hist_train( client: Client, X: da.Array, y: da.Array, monitor: EvaluationMonitor ) -> da.Array: # `DaskQuantileDMatrix` is used instead of `DaskDMatrix`, be careful that it can not # be used for anything else other than as a training DMatrix, unless a reference is # specified. See the `ref` argument of `DaskQuantileDMatrix`. dtrain = dxgb.DaskQuantileDMatrix(client, X, y) output = dxgb.train( client, # Make sure the device is set to CUDA. {"tree_method": "hist", "device": "cuda"}, dtrain, num_boost_round=4, evals=[(dtrain, "train")], # Use the monitor to forward the log. callbacks=[monitor], # Disable the internal logging and prefer the client-side `EvaluationMonitor`. verbose_eval=False, ) bst = output["booster"] history = output["history"] prediction = dxgb.predict(client, bst, X) print("Evaluation history:", history) return prediction if __name__ == "__main__": # `LocalCUDACluster` is used for assigning GPU to XGBoost processes. Here # `n_workers` represents the number of GPUs since we use one GPU per worker process. with LocalCUDACluster(n_workers=2, threads_per_worker=4) as cluster: # Create client from cluster, set the backend to GPU array (cupy). with Client(cluster) as client, dask.config.set({"array.backend": "cupy"}): # Generate some random data for demonstration rng = da.random.default_rng(1) m = 2**18 n = 100 X = rng.uniform(size=(m, n), chunks=(128**2, -1)) y = X.sum(axis=1) # Use forwarding, the client must be the top client. monitor: EvaluationMonitor = ForwardLoggingMonitor(client) hist_train(client, X, y, monitor).compute() # Use distributed.print, the logs in this demo are duplicated as the same # log is printed in all workers along with the client. monitor = WorkerEventMonitor() hist_train(client, X, y, monitor).compute()
"""Example of forwarding evaluation logs to the client =================================================== The example runs on GPU. Two classes are defined to show how to use Dask builtins to forward the logs to the client process. """ import logging import dask import distributed from dask import array as da from dask_cuda import LocalCUDACluster from distributed import Client from xgboost import dask as dxgb from xgboost.callback import EvaluationMonitor def _get_logger() -> logging.Logger: logger = logging.getLogger("[xgboost.dask]") logger.setLevel(logging.INFO) if not logger.hasHandlers(): handler = logging.StreamHandler() logger.addHandler(handler) return logger class ForwardLoggingMonitor(EvaluationMonitor): def __init__( self, client: Client, rank: int = 0, period: int = 1, ) -> None: """Print the evaluation result at each iteration. The default monitor in the native interface logs the result to the Dask scheduler process. This class can be used to forward the logging to the client process. Important: see the `client` parameter for more info. Parameters ---------- client : Distributed client. This must be the top-level client. The class uses :py:meth:`distributed.Client.forward_logging` in conjunction with the Python :py:mod:`logging` module to forward the evaluation results to the client process. It has undefined behaviour if called in a nested task. As a result, client-side logging is not enabled by default. """ client.forward_logging(_get_logger().name) super().__init__( rank=rank, period=period, logger=lambda msg: _get_logger().info(msg.strip()), ) class WorkerEventMonitor(EvaluationMonitor): """Use :py:meth:`distributed.print` to forward the log. A downside is that not only all clients connected to the cluster can see the log, the logs are also printed on the worker. If you use a local cluster, the log is duplicated. """ def __init__(self, rank: int = 0, period: int = 1) -> None: super().__init__( rank=rank, period=period, logger=lambda msg: distributed.print(msg.strip()) ) def hist_train( client: Client, X: da.Array, y: da.Array, monitor: EvaluationMonitor ) -> da.Array: # `DaskQuantileDMatrix` is used instead of `DaskDMatrix`, be careful that it can not # be used for anything else other than as a training DMatrix, unless a reference is # specified. See the `ref` argument of `DaskQuantileDMatrix`. dtrain = dxgb.DaskQuantileDMatrix(client, X, y) output = dxgb.train( client, # Make sure the device is set to CUDA. {"tree_method": "hist", "device": "cuda"}, dtrain, num_boost_round=4, evals=[(dtrain, "train")], # Use the monitor to forward the log. callbacks=[monitor], # Disable the internal logging and prefer the client-side `EvaluationMonitor`. verbose_eval=False, ) bst = output["booster"] history = output["history"] prediction = dxgb.predict(client, bst, X) print("Evaluation history:", history) return prediction if __name__ == "__main__": # `LocalCUDACluster` is used for assigning GPU to XGBoost processes. Here # `n_workers` represents the number of GPUs since we use one GPU per worker process. with LocalCUDACluster(n_workers=2, threads_per_worker=4) as cluster: # Create client from cluster, set the backend to GPU array (cupy). with Client(cluster) as client, dask.config.set({"array.backend": "cupy"}): # Generate some random data for demonstration rng = da.random.default_rng(1) m = 2**18 n = 100 X = rng.uniform(size=(m, n), chunks=(128**2, -1)) y = X.sum(axis=1) # Use forwarding, the client must be the top client. monitor: EvaluationMonitor = ForwardLoggingMonitor(client) hist_train(client, X, y, monitor).compute() # Use distributed.print, the logs in this demo are duplicated as the same # log is printed in all workers along with the client. monitor = WorkerEventMonitor() hist_train(client, X, y, monitor).compute()
import os from typing import Any, Callable, Optional, Tuple from PIL import Image from .utils import check_integrity, download_and_extract_archive, download_url from .vision import VisionDataset class SBU(VisionDataset): """`SBU Captioned Photo <http://www.cs.virginia.edu/~vicente/sbucaptions/>`_ Dataset. Args: root (string): Root directory of dataset where tarball ``SBUCaptionedPhotoDataset.tar.gz`` exists. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ url = "https://www.cs.rice.edu/~vo9/sbucaptions/SBUCaptionedPhotoDataset.tar.gz" filename = "SBUCaptionedPhotoDataset.tar.gz" md5_checksum = "9aec147b3488753cf758b4d493422285" def __init__( self, root: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = True, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") # Read the caption for each photo self.photos = [] self.captions = [] file1 = os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_urls.txt") file2 = os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_captions.txt") for line1, line2 in zip(open(file1), open(file2)): url = line1.rstrip() photo = os.path.basename(url) filename = os.path.join(self.root, "dataset", photo) if os.path.exists(filename): caption = line2.rstrip() self.photos.append(photo) self.captions.append(caption) def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is a caption for the photo. """ filename = os.path.join(self.root, "dataset", self.photos[index]) img = Image.open(filename).convert("RGB") if self.transform is not None: img = self.transform(img) target = self.captions[index] if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: """The number of photos in the dataset.""" return len(self.photos) def _check_integrity(self) -> bool: """Check the md5 checksum of the downloaded tarball.""" root = self.root fpath = os.path.join(root, self.filename) if not check_integrity(fpath, self.md5_checksum): return False return True def download(self) -> None: """Download and extract the tarball, and download each individual photo.""" if self._check_integrity(): print("Files already downloaded and verified") return download_and_extract_archive(self.url, self.root, self.root, self.filename, self.md5_checksum) # Download individual photos with open(os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_urls.txt")) as fh: for line in fh: url = line.rstrip() try: download_url(url, os.path.join(self.root, "dataset")) except OSError: # The images point to public images on Flickr. # Note: Images might be removed by users at anytime. pass
import os from typing import Any, Callable, Optional, Tuple from PIL import Image from .utils import check_integrity, download_url from .vision import VisionDataset class SBU(VisionDataset): """`SBU Captioned Photo <http://www.cs.virginia.edu/~vicente/sbucaptions/>`_ Dataset. Args: root (string): Root directory of dataset where tarball ``SBUCaptionedPhotoDataset.tar.gz`` exists. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ url = "https://www.cs.rice.edu/~vo9/sbucaptions/SBUCaptionedPhotoDataset.tar.gz" filename = "SBUCaptionedPhotoDataset.tar.gz" md5_checksum = "9aec147b3488753cf758b4d493422285" def __init__( self, root: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = True, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") # Read the caption for each photo self.photos = [] self.captions = [] file1 = os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_urls.txt") file2 = os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_captions.txt") for line1, line2 in zip(open(file1), open(file2)): url = line1.rstrip() photo = os.path.basename(url) filename = os.path.join(self.root, "dataset", photo) if os.path.exists(filename): caption = line2.rstrip() self.photos.append(photo) self.captions.append(caption) def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is a caption for the photo. """ filename = os.path.join(self.root, "dataset", self.photos[index]) img = Image.open(filename).convert("RGB") if self.transform is not None: img = self.transform(img) target = self.captions[index] if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: """The number of photos in the dataset.""" return len(self.photos) def _check_integrity(self) -> bool: """Check the md5 checksum of the downloaded tarball.""" root = self.root fpath = os.path.join(root, self.filename) if not check_integrity(fpath, self.md5_checksum): return False return True def download(self) -> None: """Download and extract the tarball, and download each individual photo.""" import tarfile if self._check_integrity(): print("Files already downloaded and verified") return download_url(self.url, self.root, self.filename, self.md5_checksum) # Extract file with tarfile.open(os.path.join(self.root, self.filename), "r:gz") as tar: tar.extractall(path=self.root) # Download individual photos with open(os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_urls.txt")) as fh: for line in fh: url = line.rstrip() try: download_url(url, os.path.join(self.root, "dataset")) except OSError: # The images point to public images on Flickr. # Note: Images might be removed by users at anytime. pass
_base_ = '../cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( _delete_=True, type='HRNet', extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(32, 64)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(32, 64, 128)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(32, 64, 128, 256))), init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w32')), neck=dict( _delete_=True, type='HRFPN', in_channels=[32, 64, 128, 256], out_channels=256)) # learning policy max_epochs = 20 train_cfg = dict(max_epochs=max_epochs) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 19], gamma=0.1) ]
_base_ = '../cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( _delete_=True, type='HRNet', extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(32, 64)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(32, 64, 128)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(32, 64, 128, 256))), init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w32')), neck=dict( _delete_=True, type='HRFPN', in_channels=[32, 64, 128, 256], out_channels=256)) # learning policy lr_config = dict(step=[16, 19]) runner = dict(type='EpochBasedRunner', max_epochs=20)
from . import utils from .model import ( hubert_base, hubert_large, hubert_pretrain_base, hubert_pretrain_large, hubert_pretrain_model, hubert_pretrain_xlarge, hubert_xlarge, HuBERTPretrainModel, wav2vec2_base, wav2vec2_large, wav2vec2_large_lv60k, wav2vec2_model, Wav2Vec2Model, ) __all__ = [ "Wav2Vec2Model", "HuBERTPretrainModel", "wav2vec2_model", "wav2vec2_base", "wav2vec2_large", "wav2vec2_large_lv60k", "hubert_base", "hubert_large", "hubert_xlarge", "hubert_pretrain_model", "hubert_pretrain_base", "hubert_pretrain_large", "hubert_pretrain_xlarge", "utils", ]
from . import utils from .model import ( Wav2Vec2Model, HuBERTPretrainModel, wav2vec2_model, wav2vec2_base, wav2vec2_large, wav2vec2_large_lv60k, hubert_base, hubert_large, hubert_xlarge, hubert_pretrain_model, hubert_pretrain_base, hubert_pretrain_large, hubert_pretrain_xlarge, ) __all__ = [ "Wav2Vec2Model", "HuBERTPretrainModel", "wav2vec2_model", "wav2vec2_base", "wav2vec2_large", "wav2vec2_large_lv60k", "hubert_base", "hubert_large", "hubert_xlarge", "hubert_pretrain_model", "hubert_pretrain_base", "hubert_pretrain_large", "hubert_pretrain_xlarge", "utils", ]
from typing import TYPE_CHECKING from ...utils import ( DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_opencv_available, is_torch_available, is_transformers_available, ) _dummy_objects = {} _import_structure = {} try: if not (is_transformers_available() and is_torch_available() and is_opencv_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils import dummy_torch_and_transformers_and_opencv_objects # noqa F403 _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_and_opencv_objects)) else: _import_structure["pipeline_consisid"] = ["ConsisIDPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * else: from .pipeline_consisid import ConsisIDPipeline else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value)
from typing import TYPE_CHECKING from ...utils import ( DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, ) _dummy_objects = {} _import_structure = {} try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils import dummy_torch_and_transformers_objects # noqa F403 _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure["pipeline_consisid"] = ["ConsisIDPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * else: from .pipeline_consisid import ConsisIDPipeline else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value)
_base_ = './mask-rcnn_r50_fpn_gn-ws-all_2x_coco.py' # model settings conv_cfg = dict(type='ConvWS') norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, style='pytorch', conv_cfg=conv_cfg, norm_cfg=norm_cfg, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://jhu/resnext101_32x4d_gn_ws')))
_base_ = './mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py' # model settings conv_cfg = dict(type='ConvWS') norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, style='pytorch', conv_cfg=conv_cfg, norm_cfg=norm_cfg, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://jhu/resnext101_32x4d_gn_ws')))
import os from pathlib import Path import pytest from jina import Executor def test_config(): ranker = Executor.load_config( str(Path(__file__).parents[2] / 'config.yml'), override_with={ 'query_features': ['query'], 'match_features': ['match'], 'relevance_label': 'relevance', }, ) assert ranker.query_features == ['query'] assert ranker.match_features == ['match'] def test_dump_load_path_not_exist(ranker): with pytest.raises(ValueError): ranker.dump(parameters={}) ranker.load(parameters={}) def test_train(ranker, documents_to_train_price_sensitive_model): ranker.train(docs=documents_to_train_price_sensitive_model) assert ranker.booster def test_train_with_categorical_features( ranker_with_categorical_features, documents_to_train_price_sensitive_model ): """Weight field specify the importance of the features.""" ranker_with_categorical_features.train( docs=documents_to_train_price_sensitive_model ) assert ranker_with_categorical_features.booster def test_dump_load(ranker, documents_to_train_price_sensitive_model, tmpdir): model_path = str(tmpdir) + 'model.txt' ranker.train(docs=documents_to_train_price_sensitive_model) assert ranker.booster ranker.dump(parameters={'model_path': model_path}) assert os.path.exists(model_path) ranker.load({'model_path': model_path}) assert ranker.booster def test_rank_price_sensitive_model( ranker, documents_to_train_price_sensitive_model, documents_random_brand, ): """train the model using price sensitive data, assure higher price get lower relevance score.""" ranker.train(docs=documents_to_train_price_sensitive_model) assert ranker.booster ranker.rank(documents_random_brand) for doc in documents_random_brand: predicted_relevances = [] predicted_ids = [] expected_ids = ['3', '4', '2', '1'] # Price smaller to large. for match in doc.matches: predicted_relevances.append(match.scores.get('relevance').value) predicted_ids.append(match.id) assert ( predicted_relevances[0] >= predicted_relevances[1] >= predicted_relevances[2] ) assert predicted_ids == expected_ids
import os from pathlib import Path import pytest from jina import Executor def test_config(): ranker = Executor.load_config( str(Path(__file__).parents[2] / 'config.yml'), override_with={ 'query_features': ['query'], 'match_features': ['match'], 'relevance_label': 'relevance', }, ) assert ranker.query_features == ['query'] assert ranker.match_features == ['match'] def test_dump_load_path_not_exist(ranker): with pytest.raises(ValueError): ranker.dump(parameters={}) ranker.load(parameters={}) def test_train(ranker, documents_to_train_price_sensitive_model): ranker.train(docs=documents_to_train_price_sensitive_model) assert ranker.booster def test_train_with_categorical_features( ranker_with_categorical_features, documents_to_train_price_sensitive_model ): """Weight field specify the importance of the features.""" ranker_with_categorical_features.train( docs=documents_to_train_price_sensitive_model ) assert ranker_with_categorical_features.booster def test_dump_load(ranker, documents_to_train_price_sensitive_model, tmpdir): model_path = str(tmpdir) + 'model.txt' ranker.train(docs=documents_to_train_price_sensitive_model) assert ranker.booster ranker.dump(parameters={'model_path': model_path}) assert os.path.exists(model_path) ranker.load({'model_path': model_path}) assert ranker.booster def test_rank_price_sensitive_model( ranker, documents_to_train_price_sensitive_model, documents_random_brand, ): """train the model using price sensitive data, assure higher price get lower relevance score.""" ranker.train(docs=documents_to_train_price_sensitive_model) assert ranker.booster ranker.rank(documents_random_brand) for doc in documents_random_brand: predicted_relevances = [] predicted_ids = [] expected_ids = ['3', '4', '2', '1'] # Price smaller to large. for match in doc.matches: predicted_relevances.append(match.scores.get('relevance').value) predicted_ids.append(match.id) assert ( predicted_relevances[0] >= predicted_relevances[1] >= predicted_relevances[2] ) assert predicted_ids == expected_ids
""" The system trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) on the SNLI + MultiNLI (AllNLI) dataset with softmax loss function. At every 1000 training steps, the model is evaluated on the STS benchmark dataset Usage: python training_nli.py OR python training_nli.py pretrained_transformer_model_name """ import logging import sys import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers import SentenceTransformer, losses from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # You can specify any Hugging Face pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else "bert-base-uncased" train_batch_size = 16 output_dir = "output/training_nli_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Here we define our SentenceTransformer model. If not already a Sentence Transformer model, it will automatically # create one with "mean" pooling. model = SentenceTransformer(model_name) # 2. Load the AllNLI dataset: https://huggingface.co/datasets/sentence-transformers/all-nli # We'll start with 10k training samples, but you can increase this to get a stronger model logging.info("Read AllNLI train dataset") train_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="train").select(range(10000)) eval_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="dev").select(range(1000)) logging.info(train_dataset) # 3. Define our training loss: https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss train_loss = losses.SoftmaxLoss( model=model, sentence_embedding_dimension=model.get_sentence_embedding_dimension(), num_labels=3, ) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. stsb_eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=stsb_eval_dataset["sentence1"], sentences2=stsb_eval_dataset["sentence2"], scores=stsb_eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) logging.info("Evaluation before training:") dev_evaluator(model) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=1, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="nli-v1", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_dataset = load_dataset("sentence-transformers/stsb", split="test") test_evaluator = EmbeddingSimilarityEvaluator( sentences1=test_dataset["sentence1"], sentences2=test_dataset["sentence2"], scores=test_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-test", ) test_evaluator(model) # 8. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(f"{model_name}-nli-v1") except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}-nli-v1')`." )
""" The system trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) on the SNLI + MultiNLI (AllNLI) dataset with softmax loss function. At every 1000 training steps, the model is evaluated on the STS benchmark dataset Usage: python training_nli.py OR python training_nli.py pretrained_transformer_model_name """ import logging import sys import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers import SentenceTransformer, losses from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # You can specify any Hugging Face pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else "bert-base-uncased" train_batch_size = 16 output_dir = "output/training_nli_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Here we define our SentenceTransformer model. If not already a Sentence Transformer model, it will automatically # create one with "mean" pooling. model = SentenceTransformer(model_name) # 2. Load the AllNLI dataset: https://huggingface.co/datasets/sentence-transformers/all-nli # We'll start with 10k training samples, but you can increase this to get a stronger model logging.info("Read AllNLI train dataset") train_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="train").select(range(10000)) eval_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="dev").select(range(1000)) logging.info(train_dataset) # 3. Define our training loss: https://sbert.net/docs/package_reference/losses.html#softmaxloss train_loss = losses.SoftmaxLoss( model=model, sentence_embedding_dimension=model.get_sentence_embedding_dimension(), num_labels=3, ) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. stsb_eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=stsb_eval_dataset["sentence1"], sentences2=stsb_eval_dataset["sentence2"], scores=stsb_eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) logging.info("Evaluation before training:") dev_evaluator(model) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=1, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="nli-v1", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_dataset = load_dataset("sentence-transformers/stsb", split="test") test_evaluator = EmbeddingSimilarityEvaluator( sentences1=test_dataset["sentence1"], sentences2=test_dataset["sentence2"], scores=test_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-test", ) test_evaluator(model) # 8. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(f"{model_name}-nli-v1") except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}-nli-v1')`." )
import json import os from typing import Dict from torch import Tensor, nn class Dropout(nn.Module): """Dropout layer. Args: dropout: Sets a dropout value for dense layer. """ def __init__(self, dropout: float = 0.2): super(Dropout, self).__init__() self.dropout = dropout self.dropout_layer = nn.Dropout(self.dropout) def forward(self, features: Dict[str, Tensor]): features.update({"sentence_embedding": self.dropout_layer(features["sentence_embedding"])}) return features def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump({"dropout": self.dropout}, fOut) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) model = Dropout(**config) return model
from torch import Tensor from torch import nn from typing import Dict import os import json class Dropout(nn.Module): """Dropout layer. :param dropout: Sets a dropout value for dense layer. """ def __init__(self, dropout: float = 0.2): super(Dropout, self).__init__() self.dropout = dropout self.dropout_layer = nn.Dropout(self.dropout) def forward(self, features: Dict[str, Tensor]): features.update({"sentence_embedding": self.dropout_layer(features["sentence_embedding"])}) return features def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump({"dropout": self.dropout}, fOut) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) model = Dropout(**config) return model
import os import time import pytest from docarray import Document from jina import Client, Flow from jina.serve.networking.utils import send_health_check_sync @pytest.fixture def error_log_level(): old_env = os.environ.get('JINA_LOG_LEVEL') os.environ['JINA_LOG_LEVEL'] = 'ERROR' yield os.environ['JINA_LOG_LEVEL'] = old_env @pytest.fixture def cert_pem(): """This is the cert entry of a self-signed local cert""" cur_dir = os.path.dirname(os.path.abspath(__file__)) return f'{cur_dir}/cert/server.crt' @pytest.fixture def key_pem(): """This is the key entry of a self-signed local cert""" cur_dir = os.path.dirname(os.path.abspath(__file__)) return f'{cur_dir}/cert/server.key' def test_grpc_ssl_with_flow(cert_pem, key_pem, error_log_level): with Flow( protocol='grpc', ssl_certfile=cert_pem, ssl_keyfile=key_pem, ) as f: with pytest.raises(ConnectionError): Client(protocol='grpc', port=f.port, tls=True).index([Document()]) # the openssl error from above seems to take a bit to actually terminate and may cause the next test to seg fault time.sleep(15.0) def test_grpc_ssl_with_flow_and_client(cert_pem, key_pem, error_log_level): with Flow( protocol='grpc', ssl_certfile=cert_pem, ssl_keyfile=key_pem, ) as flow: with open(cert_pem, 'rb') as f: creds = f.read() send_health_check_sync( target=f'localhost:{flow.port}', root_certificates=creds, tls=True, timeout=1.0, ) time.sleep(15.0)
import os import time import pytest from docarray import Document from jina import Client, Flow from jina.serve.networking import GrpcConnectionPool @pytest.fixture def error_log_level(): old_env = os.environ.get('JINA_LOG_LEVEL') os.environ['JINA_LOG_LEVEL'] = 'ERROR' yield os.environ['JINA_LOG_LEVEL'] = old_env @pytest.fixture def cert_pem(): """This is the cert entry of a self-signed local cert""" cur_dir = os.path.dirname(os.path.abspath(__file__)) return f'{cur_dir}/cert/server.crt' @pytest.fixture def key_pem(): """This is the key entry of a self-signed local cert""" cur_dir = os.path.dirname(os.path.abspath(__file__)) return f'{cur_dir}/cert/server.key' def test_grpc_ssl_with_flow(cert_pem, key_pem, error_log_level): with Flow( protocol='grpc', ssl_certfile=cert_pem, ssl_keyfile=key_pem, ) as f: with pytest.raises(ConnectionError): Client(protocol='grpc', port=f.port, tls=True).index([Document()]) # the openssl error from above seems to take a bit to actually terminate and may cause the next test to seg fault time.sleep(15.0) def test_grpc_ssl_with_flow_and_client(cert_pem, key_pem, error_log_level): with Flow( protocol='grpc', ssl_certfile=cert_pem, ssl_keyfile=key_pem, ) as flow: with open(cert_pem, 'rb') as f: creds = f.read() GrpcConnectionPool.send_health_check_sync( target=f'localhost:{flow.port}', root_certificates=creds, tls=True, timeout=1.0, ) time.sleep(15.0)
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from .mongo_handler import MongoHandler from .mongo_storage import MongoDBStorage
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from .mongo_storage import MongoDBStorage from .mongo_handler import MongoHandler
import torch from keras.src.backend.common.stateless_scope import in_stateless_scope from keras.src.ops.operation import Operation class TorchLayer(torch.nn.Module): @property def torch_params(self): if not hasattr(self, "_torch_params"): self._track_variables() return self._torch_params def _post_build(self): # Do not track variables when in a stateless scope. # The variables are not initialized. if in_stateless_scope(): return self._track_variables() def _track_variables(self): # set torch_params attribute will have module automatically track # parameters. self._torch_params = torch.nn.ParameterDict( {variable.path: variable.value for variable in self.variables} ) def named_parameters( self, prefix="", recurse=True, remove_duplicate=True, ): if not hasattr(self, "_torch_params"): self._track_variables() return torch.nn.Module.named_parameters( self, prefix, recurse, remove_duplicate ) def forward(self, *args, **kwargs): return Operation.__call__(self, *args, **kwargs) def _setattr_hook(self, name, value): from keras.src.layers import Layer if ( isinstance(value, torch.nn.Module) and not isinstance(value, Layer) and not name == "_torch_params" ): from keras.src.utils.torch_utils import TorchModuleWrapper if not isinstance(self, TorchModuleWrapper): value = TorchModuleWrapper(value) return name, value def _post_track_variable(self, variable): if hasattr(self, "_torch_params"): if variable.path not in self.torch_params: self.torch_params[variable.path] = variable.value def _post_untrack_variable(self, variable): if hasattr(self, "_torch_params"): if variable.path in self.torch_params: self.torch_params.pop(variable.path)
from typing import Iterator from typing import Tuple import torch from keras.src.backend.common.stateless_scope import in_stateless_scope from keras.src.ops.operation import Operation class TorchLayer(torch.nn.Module): @property def torch_params(self): if not hasattr(self, "_torch_params"): self._track_variables() return self._torch_params def _post_build(self): # Do not track variables when in a stateless scope. # The variables are not initialized. if in_stateless_scope(): return self._track_variables() def _track_variables(self): # set torch_params attribute will have module automatically track # parameters. self._torch_params = torch.nn.ParameterDict( {variable.path: variable.value for variable in self.variables} ) def named_parameters( self, prefix: str = "", recurse: bool = True, remove_duplicate: bool = True, ) -> Iterator[Tuple[str, torch.nn.Parameter]]: if not hasattr(self, "_torch_params"): self._track_variables() return torch.nn.Module.named_parameters( self, prefix, recurse, remove_duplicate ) def forward(self, *args, **kwargs): return Operation.__call__(self, *args, **kwargs) def _setattr_hook(self, name, value): from keras.src.layers import Layer if ( isinstance(value, torch.nn.Module) and not isinstance(value, Layer) and not name == "_torch_params" ): from keras.src.utils.torch_utils import TorchModuleWrapper if not isinstance(self, TorchModuleWrapper): value = TorchModuleWrapper(value) return name, value def _post_track_variable(self, variable): if hasattr(self, "_torch_params"): if variable.path not in self.torch_params: self.torch_params[variable.path] = variable.value def _post_untrack_variable(self, variable): if hasattr(self, "_torch_params"): if variable.path in self.torch_params: self.torch_params.pop(variable.path)
_base_ = './cascade-mask-rcnn_r50_fpn_20e_coco.py' model = dict( backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
_base_ = './cascade_mask_rcnn_r50_fpn_20e_coco.py' model = dict( backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
import re import pytest from llama_index.core.workflow.decorators import step from llama_index.core.workflow.errors import WorkflowValidationError from llama_index.core.workflow.events import Event, StartEvent, StopEvent from llama_index.core.workflow.workflow import Workflow def test_decorated_config(workflow): def f(self, ev: Event) -> Event: return Event() res = step(workflow=workflow.__class__)(f) config = getattr(res, "__step_config") assert config.accepted_events == [Event] assert config.event_name == "ev" assert config.return_types == [Event] def test_decorate_method(): class TestWorkflow(Workflow): @step def f1(self, ev: StartEvent) -> Event: return ev @step def f2(self, ev: Event) -> StopEvent: return StopEvent() wf = TestWorkflow() assert getattr(wf.f1, "__step_config") assert getattr(wf.f2, "__step_config") def test_decorate_wrong_signature(): def f(): pass with pytest.raises(WorkflowValidationError): step()(f) def test_decorate_free_function(): class TestWorkflow(Workflow): pass @step(workflow=TestWorkflow) def f(ev: Event) -> Event: return Event() assert TestWorkflow._step_functions == {"f": f} def test_decorate_free_function_wrong_decorator(): with pytest.raises( WorkflowValidationError, match=re.escape( "To decorate f please pass a workflow class to the @step decorator." ), ): @step def f(ev: Event) -> Event: return Event() def test_decorate_free_function_wrong_num_workers(): class TestWorkflow(Workflow): pass with pytest.raises( WorkflowValidationError, match="num_workers must be an integer greater than 0" ): @step(workflow=TestWorkflow, num_workers=0) def f1(ev: Event) -> Event: return Event() with pytest.raises( WorkflowValidationError, match="num_workers must be an integer greater than 0" ): @step(workflow=TestWorkflow, num_workers=0.5) # type: ignore def f2(ev: Event) -> Event: return Event()
import re import pytest from llama_index.core.workflow.decorators import step from llama_index.core.workflow.errors import WorkflowValidationError from llama_index.core.workflow.events import Event, StartEvent, StopEvent from llama_index.core.workflow.workflow import Workflow def test_decorated_config(workflow): def f(self, ev: Event) -> Event: return Event() res = step(workflow=workflow.__class__)(f) config = getattr(res, "__step_config") assert config.accepted_events == [Event] assert config.event_name == "ev" assert config.return_types == [Event] def test_decorate_method(): class TestWorkflow(Workflow): @step def f1(self, ev: StartEvent) -> Event: return ev @step def f2(self, ev: Event) -> StopEvent: return StopEvent() wf = TestWorkflow() assert getattr(wf.f1, "__step_config") assert getattr(wf.f2, "__step_config") def test_decorate_wrong_signature(): def f(): pass with pytest.raises(WorkflowValidationError): step()(f) def test_decorate_free_function(): class TestWorkflow(Workflow): pass @step(workflow=TestWorkflow) def f(ev: Event) -> Event: return Event() assert TestWorkflow._step_functions == {"f": f} def test_decorate_free_function_wrong_decorator(): with pytest.raises( WorkflowValidationError, match=re.escape( "To decorate f please pass a workflow class to the @step decorator." ), ): @step def f(ev: Event) -> Event: return Event() def test_decorate_free_function_wrong_num_workers(): class TestWorkflow(Workflow): pass with pytest.raises( WorkflowValidationError, match="num_workers must be an integer greater than 0" ): @step(workflow=TestWorkflow, num_workers=0) def f1(ev: Event) -> Event: return Event() with pytest.raises( WorkflowValidationError, match="num_workers must be an integer greater than 0" ): @step(workflow=TestWorkflow, num_workers=0.5) def f2(ev: Event) -> Event: return Event()
#!/usr/bin/env python import functools as func import glob import os.path as osp import re import numpy as np url_prefix = 'https://github.com/open-mmlab/mmdetection/blob/master/configs' files = sorted(glob.glob('../../configs/*/README.md')) stats = [] titles = [] num_ckpts = 0 for f in files: url = osp.dirname(f.replace('../../configs', url_prefix)) with open(f, 'r') as content_file: content = content_file.read() title = content.split('\n')[0].replace('# ', '').strip() ckpts = set(x.lower().strip() for x in re.findall(r'\[model\]\((https?.*)\)', content)) if len(ckpts) == 0: continue _papertype = [x for x in re.findall(r'\[([A-Z]+)\]', content)] assert len(_papertype) > 0 papertype = _papertype[0] paper = set([(papertype, title)]) titles.append(title) num_ckpts += len(ckpts) statsmsg = f""" \t* [{papertype}] [{title}]({url}) ({len(ckpts)} ckpts) """ stats.append((paper, ckpts, statsmsg)) allpapers = func.reduce(lambda a, b: a.union(b), [p for p, _, _ in stats]) msglist = '\n'.join(x for _, _, x in stats) papertypes, papercounts = np.unique([t for t, _ in allpapers], return_counts=True) countstr = '\n'.join( [f' - {t}: {c}' for t, c in zip(papertypes, papercounts)]) modelzoo = f""" # Model Zoo Statistics * Number of papers: {len(set(titles))} {countstr} * Number of checkpoints: {num_ckpts} {msglist} """ with open('modelzoo_statistics.md', 'w') as f: f.write(modelzoo)
#!/usr/bin/env python import functools as func import glob import os.path as osp import re import numpy as np url_prefix = 'https://github.com/open-mmlab/mmdetection/blob/master/' files = sorted(glob.glob('../configs/*/README.md')) stats = [] titles = [] num_ckpts = 0 for f in files: url = osp.dirname(f.replace('../', url_prefix)) with open(f, 'r') as content_file: content = content_file.read() title = content.split('\n')[0].replace('# ', '').strip() ckpts = set(x.lower().strip() for x in re.findall(r'\[model\]\((https?.*)\)', content)) if len(ckpts) == 0: continue _papertype = [x for x in re.findall(r'\[([A-Z]+)\]', content)] assert len(_papertype) > 0 papertype = _papertype[0] paper = set([(papertype, title)]) titles.append(title) num_ckpts += len(ckpts) statsmsg = f""" \t* [{papertype}] [{title}]({url}) ({len(ckpts)} ckpts) """ stats.append((paper, ckpts, statsmsg)) allpapers = func.reduce(lambda a, b: a.union(b), [p for p, _, _ in stats]) msglist = '\n'.join(x for _, _, x in stats) papertypes, papercounts = np.unique([t for t, _ in allpapers], return_counts=True) countstr = '\n'.join( [f' - {t}: {c}' for t, c in zip(papertypes, papercounts)]) modelzoo = f""" # Model Zoo Statistics * Number of papers: {len(set(titles))} {countstr} * Number of checkpoints: {num_ckpts} {msglist} """ with open('modelzoo_statistics.md', 'w') as f: f.write(modelzoo)
""" This file evaluates CrossEncoder on the TREC 2019 Deep Learning (DL) Track: https://arxiv.org/abs/2003.07820 TREC 2019 DL is based on the corpus of MS Marco. MS Marco provides a sparse annotation, i.e., usually only a single passage is marked as relevant for a given query. Many other highly relevant passages are not annotated and hence are treated as an error if a model ranks those high. TREC DL instead annotated up to 200 passages per query for their relevance to a given query. It is better suited to estimate the model performance for the task of reranking in Information Retrieval. Run: python eval_cross-encoder-trec-dl.py cross-encoder-model-name """ import gzip import logging import os import sys from collections import defaultdict import numpy as np import pytrec_eval import tqdm from sentence_transformers import CrossEncoder, util data_folder = "trec2019-data" os.makedirs(data_folder, exist_ok=True) # Read test queries queries = {} queries_filepath = os.path.join(data_folder, "msmarco-test2019-queries.tsv.gz") if not os.path.exists(queries_filepath): logging.info("Download " + os.path.basename(queries_filepath)) util.http_get( "https://msmarco.z22.web.core.windows.net/msmarcoranking/msmarco-test2019-queries.tsv.gz", queries_filepath ) with gzip.open(queries_filepath, "rt", encoding="utf8") as fIn: for line in fIn: qid, query = line.strip().split("\t") queries[qid] = query # Read which passages are relevant relevant_docs = defaultdict(lambda: defaultdict(int)) qrels_filepath = os.path.join(data_folder, "2019qrels-pass.txt") if not os.path.exists(qrels_filepath): logging.info("Download " + os.path.basename(qrels_filepath)) util.http_get("https://trec.nist.gov/data/deep/2019qrels-pass.txt", qrels_filepath) with open(qrels_filepath) as fIn: for line in fIn: qid, _, pid, score = line.strip().split() score = int(score) if score > 0: relevant_docs[qid][pid] = score # Only use queries that have at least one relevant passage relevant_qid = [] for qid in queries: if len(relevant_docs[qid]) > 0: relevant_qid.append(qid) # Read the top 1000 passages that are supposed to be re-ranked passage_filepath = os.path.join(data_folder, "msmarco-passagetest2019-top1000.tsv.gz") if not os.path.exists(passage_filepath): logging.info("Download " + os.path.basename(passage_filepath)) util.http_get( "https://msmarco.z22.web.core.windows.net/msmarcoranking/msmarco-passagetest2019-top1000.tsv.gz", passage_filepath, ) passage_cand = {} with gzip.open(passage_filepath, "rt", encoding="utf8") as fIn: for line in fIn: qid, pid, query, passage = line.strip().split("\t") if qid not in passage_cand: passage_cand[qid] = [] passage_cand[qid].append([pid, passage]) logging.info("Queries: {}".format(len(queries))) queries_result_list = [] run = {} model = CrossEncoder(sys.argv[1], max_length=512) for qid in tqdm.tqdm(relevant_qid): query = queries[qid] cand = passage_cand[qid] pids = [c[0] for c in cand] corpus_sentences = [c[1] for c in cand] cross_inp = [[query, sent] for sent in corpus_sentences] if model.config.num_labels > 1: # Cross-Encoder that predict more than 1 score, we use the last and apply softmax cross_scores = model.predict(cross_inp, apply_softmax=True)[:, 1].tolist() else: cross_scores = model.predict(cross_inp).tolist() cross_scores_sparse = {} for idx, pid in enumerate(pids): cross_scores_sparse[pid] = cross_scores[idx] sparse_scores = cross_scores_sparse run[qid] = {} for pid in sparse_scores: run[qid][pid] = float(sparse_scores[pid]) evaluator = pytrec_eval.RelevanceEvaluator(relevant_docs, {"ndcg_cut.10"}) scores = evaluator.evaluate(run) print("Queries:", len(relevant_qid)) print("NDCG@10: {:.2f}".format(np.mean([ele["ndcg_cut_10"] for ele in scores.values()]) * 100))
""" This file evaluates CrossEncoder on the TREC 2019 Deep Learning (DL) Track: https://arxiv.org/abs/2003.07820 TREC 2019 DL is based on the corpus of MS Marco. MS Marco provides a sparse annotation, i.e., usually only a single passage is marked as relevant for a given query. Many other highly relevant passages are not annotated and hence are treated as an error if a model ranks those high. TREC DL instead annotated up to 200 passages per query for their relevance to a given query. It is better suited to estimate the model performance for the task of reranking in Information Retrieval. Run: python eval_cross-encoder-trec-dl.py cross-encoder-model-name """ import gzip from collections import defaultdict import logging import tqdm import numpy as np import sys import pytrec_eval from sentence_transformers import util, CrossEncoder import os data_folder = "trec2019-data" os.makedirs(data_folder, exist_ok=True) # Read test queries queries = {} queries_filepath = os.path.join(data_folder, "msmarco-test2019-queries.tsv.gz") if not os.path.exists(queries_filepath): logging.info("Download " + os.path.basename(queries_filepath)) util.http_get( "https://msmarco.z22.web.core.windows.net/msmarcoranking/msmarco-test2019-queries.tsv.gz", queries_filepath ) with gzip.open(queries_filepath, "rt", encoding="utf8") as fIn: for line in fIn: qid, query = line.strip().split("\t") queries[qid] = query # Read which passages are relevant relevant_docs = defaultdict(lambda: defaultdict(int)) qrels_filepath = os.path.join(data_folder, "2019qrels-pass.txt") if not os.path.exists(qrels_filepath): logging.info("Download " + os.path.basename(qrels_filepath)) util.http_get("https://trec.nist.gov/data/deep/2019qrels-pass.txt", qrels_filepath) with open(qrels_filepath) as fIn: for line in fIn: qid, _, pid, score = line.strip().split() score = int(score) if score > 0: relevant_docs[qid][pid] = score # Only use queries that have at least one relevant passage relevant_qid = [] for qid in queries: if len(relevant_docs[qid]) > 0: relevant_qid.append(qid) # Read the top 1000 passages that are supposed to be re-ranked passage_filepath = os.path.join(data_folder, "msmarco-passagetest2019-top1000.tsv.gz") if not os.path.exists(passage_filepath): logging.info("Download " + os.path.basename(passage_filepath)) util.http_get( "https://msmarco.z22.web.core.windows.net/msmarcoranking/msmarco-passagetest2019-top1000.tsv.gz", passage_filepath, ) passage_cand = {} with gzip.open(passage_filepath, "rt", encoding="utf8") as fIn: for line in fIn: qid, pid, query, passage = line.strip().split("\t") if qid not in passage_cand: passage_cand[qid] = [] passage_cand[qid].append([pid, passage]) logging.info("Queries: {}".format(len(queries))) queries_result_list = [] run = {} model = CrossEncoder(sys.argv[1], max_length=512) for qid in tqdm.tqdm(relevant_qid): query = queries[qid] cand = passage_cand[qid] pids = [c[0] for c in cand] corpus_sentences = [c[1] for c in cand] cross_inp = [[query, sent] for sent in corpus_sentences] if model.config.num_labels > 1: # Cross-Encoder that predict more than 1 score, we use the last and apply softmax cross_scores = model.predict(cross_inp, apply_softmax=True)[:, 1].tolist() else: cross_scores = model.predict(cross_inp).tolist() cross_scores_sparse = {} for idx, pid in enumerate(pids): cross_scores_sparse[pid] = cross_scores[idx] sparse_scores = cross_scores_sparse run[qid] = {} for pid in sparse_scores: run[qid][pid] = float(sparse_scores[pid]) evaluator = pytrec_eval.RelevanceEvaluator(relevant_docs, {"ndcg_cut.10"}) scores = evaluator.evaluate(run) print("Queries:", len(relevant_qid)) print("NDCG@10: {:.2f}".format(np.mean([ele["ndcg_cut_10"] for ele in scores.values()]) * 100))
import http.client import json from typing import Optional def list_packages(*, contains: Optional[str] = None): conn = http.client.HTTPSConnection("api.github.com") headers = { "Accept": "application/vnd.github+json", "X-GitHub-Api-Version": "2022-11-28", "User-Agent": "langchain-cli", } conn.request( "GET", "/repos/langchain-ai/langchain/contents/templates", headers=headers ) res = conn.getresponse() res_str = res.read() data = json.loads(res_str) package_names = [ p["name"] for p in data if p["type"] == "dir" and p["name"] != "docs" ] return [p for p in package_names if contains in p] if contains else package_names
import http.client import json from typing import Optional def list_packages(*, contains: Optional[str] = None): conn = http.client.HTTPSConnection("api.github.com") headers = { "Accept": "application/vnd.github+json", "X-GitHub-Api-Version": "2022-11-28", "User-Agent": "langchain-cli", } conn.request( "GET", "/repos/langchain-ai/langchain/contents/templates", headers=headers ) res = conn.getresponse() res_str = res.read() data = json.loads(res_str) package_names = [ p["name"] for p in data if p["type"] == "dir" and p["name"] != "docs" ] package_names_filtered = ( [p for p in package_names if contains in p] if contains else package_names ) return package_names_filtered
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.models.utils.misc import get_box_tensor from mmdet.registry import TASK_UTILS from mmdet.structures.bbox import HorizontalBoxes from .base_bbox_coder import BaseBBoxCoder @TASK_UTILS.register_module() class PseudoBBoxCoder(BaseBBoxCoder): """Pseudo bounding box coder.""" def __init__(self, **kwargs): super().__init__(**kwargs) def encode(self, bboxes, gt_bboxes): """torch.Tensor: return the given ``bboxes``""" gt_bboxes = get_box_tensor(gt_bboxes) return gt_bboxes def decode(self, bboxes, pred_bboxes): """torch.Tensor: return the given ``pred_bboxes``""" if self.use_box_type: pred_bboxes = HorizontalBoxes(pred_bboxes) return pred_bboxes
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import TASK_UTILS from .base_bbox_coder import BaseBBoxCoder @TASK_UTILS.register_module() class PseudoBBoxCoder(BaseBBoxCoder): """Pseudo bounding box coder.""" def __init__(self, **kwargs): super(BaseBBoxCoder, self).__init__(**kwargs) def encode(self, bboxes, gt_bboxes): """torch.Tensor: return the given ``bboxes``""" return gt_bboxes def decode(self, bboxes, pred_bboxes): """torch.Tensor: return the given ``pred_bboxes``""" return pred_bboxes
from typing import Any, Optional from langchain_core.language_models import BaseLanguageModel from langchain_core.memory import BaseMemory from langchain_core.messages import SystemMessage from langchain_core.prompts.chat import MessagesPlaceholder from langchain_core.tools import BaseTool from langchain.agents.agent import AgentExecutor from langchain.agents.openai_functions_agent.agent_token_buffer_memory import ( AgentTokenBufferMemory, ) from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent from langchain.memory.token_buffer import ConversationTokenBufferMemory def _get_default_system_message() -> SystemMessage: return SystemMessage( content=( "Do your best to answer the questions. " "Feel free to use any tools available to look up " "relevant information, only if necessary" ), ) def create_conversational_retrieval_agent( llm: BaseLanguageModel, tools: list[BaseTool], remember_intermediate_steps: bool = True, # noqa: FBT001,FBT002 memory_key: str = "chat_history", system_message: Optional[SystemMessage] = None, verbose: bool = False, # noqa: FBT001,FBT002 max_token_limit: int = 2000, **kwargs: Any, ) -> AgentExecutor: """A convenience method for creating a conversational retrieval agent. Args: llm: The language model to use, should be ChatOpenAI tools: A list of tools the agent has access to remember_intermediate_steps: Whether the agent should remember intermediate steps or not. Intermediate steps refer to prior action/observation pairs from previous questions. The benefit of remembering these is if there is relevant information in there, the agent can use it to answer follow up questions. The downside is it will take up more tokens. memory_key: The name of the memory key in the prompt. system_message: The system message to use. By default, a basic one will be used. verbose: Whether or not the final AgentExecutor should be verbose or not, defaults to False. max_token_limit: The max number of tokens to keep around in memory. Defaults to 2000. Returns: An agent executor initialized appropriately """ if remember_intermediate_steps: memory: BaseMemory = AgentTokenBufferMemory( memory_key=memory_key, llm=llm, max_token_limit=max_token_limit, ) else: memory = ConversationTokenBufferMemory( memory_key=memory_key, return_messages=True, output_key="output", llm=llm, max_token_limit=max_token_limit, ) _system_message = system_message or _get_default_system_message() prompt = OpenAIFunctionsAgent.create_prompt( system_message=_system_message, extra_prompt_messages=[MessagesPlaceholder(variable_name=memory_key)], ) agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt) return AgentExecutor( agent=agent, tools=tools, memory=memory, verbose=verbose, return_intermediate_steps=remember_intermediate_steps, **kwargs, )
from typing import Any, Optional from langchain_core.language_models import BaseLanguageModel from langchain_core.memory import BaseMemory from langchain_core.messages import SystemMessage from langchain_core.prompts.chat import MessagesPlaceholder from langchain_core.tools import BaseTool from langchain.agents.agent import AgentExecutor from langchain.agents.openai_functions_agent.agent_token_buffer_memory import ( AgentTokenBufferMemory, ) from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent from langchain.memory.token_buffer import ConversationTokenBufferMemory def _get_default_system_message() -> SystemMessage: return SystemMessage( content=( "Do your best to answer the questions. " "Feel free to use any tools available to look up " "relevant information, only if necessary" ) ) def create_conversational_retrieval_agent( llm: BaseLanguageModel, tools: list[BaseTool], remember_intermediate_steps: bool = True, # noqa: FBT001,FBT002 memory_key: str = "chat_history", system_message: Optional[SystemMessage] = None, verbose: bool = False, # noqa: FBT001,FBT002 max_token_limit: int = 2000, **kwargs: Any, ) -> AgentExecutor: """A convenience method for creating a conversational retrieval agent. Args: llm: The language model to use, should be ChatOpenAI tools: A list of tools the agent has access to remember_intermediate_steps: Whether the agent should remember intermediate steps or not. Intermediate steps refer to prior action/observation pairs from previous questions. The benefit of remembering these is if there is relevant information in there, the agent can use it to answer follow up questions. The downside is it will take up more tokens. memory_key: The name of the memory key in the prompt. system_message: The system message to use. By default, a basic one will be used. verbose: Whether or not the final AgentExecutor should be verbose or not, defaults to False. max_token_limit: The max number of tokens to keep around in memory. Defaults to 2000. Returns: An agent executor initialized appropriately """ if remember_intermediate_steps: memory: BaseMemory = AgentTokenBufferMemory( memory_key=memory_key, llm=llm, max_token_limit=max_token_limit ) else: memory = ConversationTokenBufferMemory( memory_key=memory_key, return_messages=True, output_key="output", llm=llm, max_token_limit=max_token_limit, ) _system_message = system_message or _get_default_system_message() prompt = OpenAIFunctionsAgent.create_prompt( system_message=_system_message, extra_prompt_messages=[MessagesPlaceholder(variable_name=memory_key)], ) agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt) return AgentExecutor( agent=agent, tools=tools, memory=memory, verbose=verbose, return_intermediate_steps=remember_intermediate_steps, **kwargs, )
from typing import Union, Dict, Any import google.ai.generativelanguage as glm import google.generativeai as genai from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, CompletionResponse, ImageBlock, TextBlock, ) from llama_index.core.multi_modal_llms.base import ChatMessage from llama_index.core.utilities.gemini_utils import ROLES_FROM_GEMINI, ROLES_TO_GEMINI # These are the shortened model names # Any model that contains one of these names will not support function calling MODELS_WITHOUT_FUNCTION_CALLING_SUPPORT = [ "gemini-2.0-flash-thinking", "gemini-2.0-flash-lite", ] def _error_if_finished_early(candidate: "glm.Candidate") -> None: # type: ignore[name-defined] # only until release if (finish_reason := candidate.finish_reason) > 1: # 1=STOP (normally) reason = finish_reason.name # Safety reasons have more detail, so include that if we can. if finish_reason == 3: # 3=Safety relevant_safety = list( filter( lambda sr: sr.probability > 1, # 1=Negligible candidate.safety_ratings, ) ) reason += f" {relevant_safety}" raise RuntimeError(f"Response was terminated early: {reason}") def completion_from_gemini_response( response: Union[ "genai.types.GenerateContentResponse", "genai.types.AsyncGenerateContentResponse", ], text: str = None, delta: str = None, ) -> CompletionResponse: top_candidate = response.candidates[0] _error_if_finished_early(top_candidate) raw = { **(type(top_candidate).to_dict(top_candidate)), # type: ignore **(type(response.prompt_feedback).to_dict(response.prompt_feedback)), # type: ignore } if response.usage_metadata: raw["usage_metadata"] = type(response.usage_metadata).to_dict( response.usage_metadata ) return CompletionResponse( text=text if text is not None else response.text, delta=delta if delta is not None else response.text, raw=raw, ) def chat_from_gemini_response( response: Union[ "genai.types.GenerateContentResponse", "genai.types.AsyncGenerateContentResponse", ], ) -> ChatResponse: top_candidate = response.candidates[0] _error_if_finished_early(top_candidate) raw = { **(type(top_candidate).to_dict(top_candidate)), # type: ignore **(type(response.prompt_feedback).to_dict(response.prompt_feedback)), # type: ignore } if response.usage_metadata: raw["usage_metadata"] = type(response.usage_metadata).to_dict( response.usage_metadata ) role = ROLES_FROM_GEMINI[top_candidate.content.role] try: # When the response contains only a function call, the library # raises an exception. # The easiest way to detect this is to try access the text attribute and # catch the exception. # https://github.com/google-gemini/generative-ai-python/issues/670 text = response.text except (ValueError, AttributeError): text = None additional_kwargs: Dict[str, Any] = {} for part in response.parts: if fn := part.function_call: if "tool_calls" not in additional_kwargs: additional_kwargs["tool_calls"] = [] additional_kwargs["tool_calls"].append(fn) return ChatResponse( message=ChatMessage( role=role, content=text, additional_kwargs=additional_kwargs ), raw=raw, additional_kwargs=additional_kwargs, ) def chat_message_to_gemini(message: ChatMessage) -> "genai.types.ContentDict": """Convert ChatMessages to Gemini-specific history, including ImageDocuments.""" parts = [] for block in message.blocks: if isinstance(block, TextBlock): if block.text: parts.append({"text": block.text}) elif isinstance(block, ImageBlock): base64_bytes = block.resolve_image(as_base64=False).read() parts.append( { "mime_type": block.image_mimetype, "data": base64_bytes, } ) else: msg = f"Unsupported content block type: {type(block).__name__}" raise ValueError(msg) for tool_call in message.additional_kwargs.get("tool_calls", []): parts.append(tool_call) return { "role": ROLES_TO_GEMINI[message.role], "parts": parts, } def is_function_calling_model(model: str) -> bool: for model_name in MODELS_WITHOUT_FUNCTION_CALLING_SUPPORT: if model_name in model: return False return True
from typing import Union, Dict, Any import google.ai.generativelanguage as glm import google.generativeai as genai from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, CompletionResponse, ImageBlock, TextBlock, ) from llama_index.core.multi_modal_llms.base import ChatMessage from llama_index.core.utilities.gemini_utils import ROLES_FROM_GEMINI, ROLES_TO_GEMINI # These are the shortened model names # Any model that contains one of these names will not support function calling MODELS_WITHOUT_FUNCTION_CALLING_SUPPORT = [ "gemini-2.0-flash-thinking", "gemini-2.0-flash-lite", ] def _error_if_finished_early(candidate: "glm.Candidate") -> None: # type: ignore[name-defined] # only until release if (finish_reason := candidate.finish_reason) > 1: # 1=STOP (normally) reason = finish_reason.name # Safety reasons have more detail, so include that if we can. if finish_reason == 3: # 3=Safety relevant_safety = list( filter( lambda sr: sr.probability > 1, # 1=Negligible candidate.safety_ratings, ) ) reason += f" {relevant_safety}" raise RuntimeError(f"Response was terminated early: {reason}") def completion_from_gemini_response( response: Union[ "genai.types.GenerateContentResponse", "genai.types.AsyncGenerateContentResponse", ], ) -> CompletionResponse: top_candidate = response.candidates[0] _error_if_finished_early(top_candidate) raw = { **(type(top_candidate).to_dict(top_candidate)), # type: ignore **(type(response.prompt_feedback).to_dict(response.prompt_feedback)), # type: ignore } if response.usage_metadata: raw["usage_metadata"] = type(response.usage_metadata).to_dict( response.usage_metadata ) return CompletionResponse(text=response.text, raw=raw) def chat_from_gemini_response( response: Union[ "genai.types.GenerateContentResponse", "genai.types.AsyncGenerateContentResponse", ], ) -> ChatResponse: top_candidate = response.candidates[0] _error_if_finished_early(top_candidate) raw = { **(type(top_candidate).to_dict(top_candidate)), # type: ignore **(type(response.prompt_feedback).to_dict(response.prompt_feedback)), # type: ignore } if response.usage_metadata: raw["usage_metadata"] = type(response.usage_metadata).to_dict( response.usage_metadata ) role = ROLES_FROM_GEMINI[top_candidate.content.role] try: # When the response contains only a function call, the library # raises an exception. # The easiest way to detect this is to try access the text attribute and # catch the exception. # https://github.com/google-gemini/generative-ai-python/issues/670 text = response.text except (ValueError, AttributeError): text = None additional_kwargs: Dict[str, Any] = {} for part in response.parts: if fn := part.function_call: if "tool_calls" not in additional_kwargs: additional_kwargs["tool_calls"] = [] additional_kwargs["tool_calls"].append(fn) return ChatResponse( message=ChatMessage( role=role, content=text, additional_kwargs=additional_kwargs ), raw=raw, additional_kwargs=additional_kwargs, ) def chat_message_to_gemini(message: ChatMessage) -> "genai.types.ContentDict": """Convert ChatMessages to Gemini-specific history, including ImageDocuments.""" parts = [] for block in message.blocks: if isinstance(block, TextBlock): if block.text: parts.append({"text": block.text}) elif isinstance(block, ImageBlock): base64_bytes = block.resolve_image(as_base64=False).read() parts.append( { "mime_type": block.image_mimetype, "data": base64_bytes, } ) else: msg = f"Unsupported content block type: {type(block).__name__}" raise ValueError(msg) for tool_call in message.additional_kwargs.get("tool_calls", []): parts.append(tool_call) return { "role": ROLES_TO_GEMINI[message.role], "parts": parts, } def is_function_calling_model(model: str) -> bool: for model_name in MODELS_WITHOUT_FUNCTION_CALLING_SUPPORT: if model_name in model: return False return True
import numpy as np import torch from docarray import Document from docarray.document import AnyDocument from docarray.typing import AnyUrl, Embedding, ImageUrl, NdArray, TextUrl, TorchTensor def test_proto_all_types(): class Mymmdoc(Document): tensor: NdArray torch_tensor: TorchTensor embedding: Embedding any_url: AnyUrl image_url: ImageUrl text_url: TextUrl doc = Mymmdoc( tensor=np.zeros((3, 224, 224)), torch_tensor=torch.zeros((3, 224, 224)), embedding=np.zeros((100, 1)), any_url='http://jina.ai', image_url='http://jina.ai/bla.jpg', text_url='http://jina.ai', ) new_doc = AnyDocument.from_protobuf(doc.to_protobuf()) for field, value in new_doc: assert isinstance(value, doc._get_nested_document_class(field))
import numpy as np import torch from docarray import Document from docarray.document import AnyDocument from docarray.typing import AnyUrl, Embedding, ImageUrl, Tensor, TextUrl, TorchTensor def test_proto_all_types(): class Mymmdoc(Document): tensor: Tensor torch_tensor: TorchTensor embedding: Embedding any_url: AnyUrl image_url: ImageUrl text_url: TextUrl doc = Mymmdoc( tensor=np.zeros((3, 224, 224)), torch_tensor=torch.zeros((3, 224, 224)), embedding=np.zeros((100, 1)), any_url='http://jina.ai', image_url='http://jina.ai/bla.jpg', text_url='http://jina.ai', ) new_doc = AnyDocument.from_protobuf(doc.to_protobuf()) for field, value in new_doc: assert isinstance(value, doc._get_nested_document_class(field))
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script is used to get the files against which we will run doc testing. This uses `tests_fetcher.get_all_doctest_files` then groups the test files by their directory paths. The files in `docs/source/en/model_doc` or `docs/source/en/tasks` are **NOT** grouped together with other files in the same directory: the objective is to run doctest against them in independent GitHub Actions jobs. Assume we are under `transformers` root directory: To get a map (dictionary) between directory (or file) paths and the corresponding files ```bash python utils/split_doctest_jobs.py ``` or to get a list of lists of directory (or file) paths ```bash python utils/split_doctest_jobs.py --only_return_keys --num_splits 4 ``` (this is used to allow GitHub Actions to generate more than 256 jobs using matrix) """ import argparse from collections import defaultdict from pathlib import Path from tests_fetcher import get_all_doctest_files if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--only_return_keys", action="store_true", help="if to only return the keys (which is a list of list of files' directory or file paths).", ) parser.add_argument( "--num_splits", type=int, default=1, help="the number of splits into which the (flat) list of directory/file paths will be split. This has effect only if `only_return_keys` is `True`.", ) args = parser.parse_args() all_doctest_files = get_all_doctest_files() raw_test_collection_map = defaultdict(list) for file in all_doctest_files: file_dir = "/".join(Path(file).parents[0].parts) # not to run files in `src/` for now as it is completely broken at this moment. See issues/39159 and # https://github.com/huggingface/transformers/actions/runs/15988670157 # TODO (ydshieh): fix the error, ideally before 2025/09 if file_dir.startswith("src/"): continue raw_test_collection_map[file_dir].append(file) refined_test_collection_map = {} for file_dir in raw_test_collection_map.keys(): if file_dir in ["docs/source/en/model_doc", "docs/source/en/tasks"]: for file in raw_test_collection_map[file_dir]: refined_test_collection_map[file] = file else: refined_test_collection_map[file_dir] = " ".join(sorted(raw_test_collection_map[file_dir])) sorted_file_dirs = sorted(refined_test_collection_map.keys()) test_collection_map = {} for file_dir in sorted_file_dirs: test_collection_map[file_dir] = refined_test_collection_map[file_dir] num_jobs = len(test_collection_map) num_jobs_per_splits = num_jobs // args.num_splits file_directory_splits = [] end = 0 for idx in range(args.num_splits): start = end end = start + num_jobs_per_splits + (1 if idx < num_jobs % args.num_splits else 0) file_directory_splits.append(sorted_file_dirs[start:end]) if args.only_return_keys: print(file_directory_splits) else: print(dict(test_collection_map))
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script is used to get the files against which we will run doc testing. This uses `tests_fetcher.get_all_doctest_files` then groups the test files by their directory paths. The files in `docs/source/en/model_doc` or `docs/source/en/tasks` are **NOT** grouped together with other files in the same directory: the objective is to run doctest against them in independent GitHub Actions jobs. Assume we are under `transformers` root directory: To get a map (dictionary) between directory (or file) paths and the corresponding files ```bash python utils/split_doctest_jobs.py ``` or to get a list of lists of directory (or file) paths ```bash python utils/split_doctest_jobs.py --only_return_keys --num_splits 4 ``` (this is used to allow GitHub Actions to generate more than 256 jobs using matrix) """ import argparse from collections import defaultdict from pathlib import Path from tests_fetcher import get_all_doctest_files if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--only_return_keys", action="store_true", help="if to only return the keys (which is a list of list of files' directory or file paths).", ) parser.add_argument( "--num_splits", type=int, default=1, help="the number of splits into which the (flat) list of directory/file paths will be split. This has effect only if `only_return_keys` is `True`.", ) args = parser.parse_args() all_doctest_files = get_all_doctest_files() raw_test_collection_map = defaultdict(list) for file in all_doctest_files: file_dir = "/".join(Path(file).parents[0].parts) raw_test_collection_map[file_dir].append(file) refined_test_collection_map = {} for file_dir in raw_test_collection_map.keys(): if file_dir in ["docs/source/en/model_doc", "docs/source/en/tasks"]: for file in raw_test_collection_map[file_dir]: refined_test_collection_map[file] = file else: refined_test_collection_map[file_dir] = " ".join(sorted(raw_test_collection_map[file_dir])) sorted_file_dirs = sorted(refined_test_collection_map.keys()) test_collection_map = {} for file_dir in sorted_file_dirs: test_collection_map[file_dir] = refined_test_collection_map[file_dir] num_jobs = len(test_collection_map) num_jobs_per_splits = num_jobs // args.num_splits file_directory_splits = [] end = 0 for idx in range(args.num_splits): start = end end = start + num_jobs_per_splits + (1 if idx < num_jobs % args.num_splits else 0) file_directory_splits.append(sorted_file_dirs[start:end]) if args.only_return_keys: print(file_directory_splits) else: print(dict(test_collection_map))
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import unittest from unittest.mock import MagicMock, patch import pytest from mmdet.datasets import DATASETS @patch('mmdet.datasets.CocoDataset.load_annotations', MagicMock()) @patch('mmdet.datasets.CustomDataset.load_annotations', MagicMock()) @patch('mmdet.datasets.XMLDataset.load_annotations', MagicMock()) @patch('mmdet.datasets.CityscapesDataset.load_annotations', MagicMock()) @patch('mmdet.datasets.CocoDataset._filter_imgs', MagicMock) @patch('mmdet.datasets.CustomDataset._filter_imgs', MagicMock) @patch('mmdet.datasets.XMLDataset._filter_imgs', MagicMock) @patch('mmdet.datasets.CityscapesDataset._filter_imgs', MagicMock) @pytest.mark.parametrize('dataset', ['CocoDataset', 'VOCDataset', 'CityscapesDataset']) def test_custom_classes_override_default(dataset): dataset_class = DATASETS.get(dataset) if dataset in ['CocoDataset', 'CityscapesDataset']: dataset_class.coco = MagicMock() dataset_class.cat_ids = MagicMock() original_classes = dataset_class.CLASSES # Test setting classes as a tuple custom_dataset = dataset_class( ann_file=MagicMock(), pipeline=[], classes=('bus', 'car'), test_mode=True, img_prefix='VOC2007' if dataset == 'VOCDataset' else '') assert custom_dataset.CLASSES != original_classes assert custom_dataset.CLASSES == ('bus', 'car') print(custom_dataset) # Test setting classes as a list custom_dataset = dataset_class( ann_file=MagicMock(), pipeline=[], classes=['bus', 'car'], test_mode=True, img_prefix='VOC2007' if dataset == 'VOCDataset' else '') assert custom_dataset.CLASSES != original_classes assert custom_dataset.CLASSES == ['bus', 'car'] print(custom_dataset) # Test overriding not a subset custom_dataset = dataset_class( ann_file=MagicMock(), pipeline=[], classes=['foo'], test_mode=True, img_prefix='VOC2007' if dataset == 'VOCDataset' else '') assert custom_dataset.CLASSES != original_classes assert custom_dataset.CLASSES == ['foo'] print(custom_dataset) # Test default behavior custom_dataset = dataset_class( ann_file=MagicMock(), pipeline=[], classes=None, test_mode=True, img_prefix='VOC2007' if dataset == 'VOCDataset' else '') assert custom_dataset.CLASSES == original_classes print(custom_dataset) # Test sending file path import tempfile with tempfile.TemporaryDirectory() as tmpdir: path = tmpdir + 'classes.txt' with open(path, 'w') as f: f.write('bus\ncar\n') custom_dataset = dataset_class( ann_file=MagicMock(), pipeline=[], classes=path, test_mode=True, img_prefix='VOC2007' if dataset == 'VOCDataset' else '') assert custom_dataset.CLASSES != original_classes assert custom_dataset.CLASSES == ['bus', 'car'] print(custom_dataset) class CustomDatasetTests(unittest.TestCase): def setUp(self): super().setUp() self.data_dir = osp.join( osp.dirname(osp.dirname(osp.dirname(__file__))), 'data') self.dataset_class = DATASETS.get('XMLDataset') def test_data_infos__default_db_directories(self): """Test correct data read having a Pacal-VOC directory structure.""" test_dataset_root = osp.join(self.data_dir, 'VOCdevkit', 'VOC2007') custom_ds = self.dataset_class( data_root=test_dataset_root, ann_file=osp.join(test_dataset_root, 'ImageSets', 'Main', 'trainval.txt'), pipeline=[], classes=('person', 'dog'), test_mode=True) self.assertListEqual([{ 'id': '000001', 'filename': osp.join('JPEGImages', '000001.jpg'), 'width': 353, 'height': 500 }], custom_ds.data_infos) def test_data_infos__overridden_db_subdirectories(self): """Test correct data read having a customized directory structure.""" test_dataset_root = osp.join(self.data_dir, 'custom_dataset') custom_ds = self.dataset_class( data_root=test_dataset_root, ann_file=osp.join(test_dataset_root, 'trainval.txt'), pipeline=[], classes=('person', 'dog'), test_mode=True, img_prefix='', img_subdir='images', ann_subdir='images') self.assertListEqual([{ 'id': '000001', 'filename': osp.join('images', '000001.jpg'), 'width': 353, 'height': 500 }], custom_ds.data_infos)
# Copyright (c) OpenMMLab. All rights reserved. import os import unittest from unittest.mock import MagicMock, patch import pytest from mmdet.datasets import DATASETS @patch('mmdet.datasets.CocoDataset.load_annotations', MagicMock()) @patch('mmdet.datasets.CustomDataset.load_annotations', MagicMock()) @patch('mmdet.datasets.XMLDataset.load_annotations', MagicMock()) @patch('mmdet.datasets.CityscapesDataset.load_annotations', MagicMock()) @patch('mmdet.datasets.CocoDataset._filter_imgs', MagicMock) @patch('mmdet.datasets.CustomDataset._filter_imgs', MagicMock) @patch('mmdet.datasets.XMLDataset._filter_imgs', MagicMock) @patch('mmdet.datasets.CityscapesDataset._filter_imgs', MagicMock) @pytest.mark.parametrize('dataset', ['CocoDataset', 'VOCDataset', 'CityscapesDataset']) def test_custom_classes_override_default(dataset): dataset_class = DATASETS.get(dataset) if dataset in ['CocoDataset', 'CityscapesDataset']: dataset_class.coco = MagicMock() dataset_class.cat_ids = MagicMock() original_classes = dataset_class.CLASSES # Test setting classes as a tuple custom_dataset = dataset_class( ann_file=MagicMock(), pipeline=[], classes=('bus', 'car'), test_mode=True, img_prefix='VOC2007' if dataset == 'VOCDataset' else '') assert custom_dataset.CLASSES != original_classes assert custom_dataset.CLASSES == ('bus', 'car') print(custom_dataset) # Test setting classes as a list custom_dataset = dataset_class( ann_file=MagicMock(), pipeline=[], classes=['bus', 'car'], test_mode=True, img_prefix='VOC2007' if dataset == 'VOCDataset' else '') assert custom_dataset.CLASSES != original_classes assert custom_dataset.CLASSES == ['bus', 'car'] print(custom_dataset) # Test overriding not a subset custom_dataset = dataset_class( ann_file=MagicMock(), pipeline=[], classes=['foo'], test_mode=True, img_prefix='VOC2007' if dataset == 'VOCDataset' else '') assert custom_dataset.CLASSES != original_classes assert custom_dataset.CLASSES == ['foo'] print(custom_dataset) # Test default behavior custom_dataset = dataset_class( ann_file=MagicMock(), pipeline=[], classes=None, test_mode=True, img_prefix='VOC2007' if dataset == 'VOCDataset' else '') assert custom_dataset.CLASSES == original_classes print(custom_dataset) # Test sending file path import tempfile tmp_file = tempfile.NamedTemporaryFile() with open(tmp_file.name, 'w') as f: f.write('bus\ncar\n') custom_dataset = dataset_class( ann_file=MagicMock(), pipeline=[], classes=tmp_file.name, test_mode=True, img_prefix='VOC2007' if dataset == 'VOCDataset' else '') tmp_file.close() assert custom_dataset.CLASSES != original_classes assert custom_dataset.CLASSES == ['bus', 'car'] print(custom_dataset) class CustomDatasetTests(unittest.TestCase): def setUp(self): super().setUp() self.data_dir = os.path.join( os.path.dirname(os.path.dirname(os.path.dirname(__file__))), 'data') self.dataset_class = DATASETS.get('XMLDataset') def test_data_infos__default_db_directories(self): """Test correct data read having a Pacal-VOC directory structure.""" test_dataset_root = os.path.join(self.data_dir, 'VOCdevkit', 'VOC2007') custom_ds = self.dataset_class( data_root=test_dataset_root, ann_file=os.path.join(test_dataset_root, 'ImageSets', 'Main', 'trainval.txt'), pipeline=[], classes=('person', 'dog'), test_mode=True) self.assertListEqual([{ 'id': '000001', 'filename': 'JPEGImages/000001.jpg', 'width': 353, 'height': 500 }], custom_ds.data_infos) def test_data_infos__overridden_db_subdirectories(self): """Test correct data read having a customized directory structure.""" test_dataset_root = os.path.join(self.data_dir, 'custom_dataset') custom_ds = self.dataset_class( data_root=test_dataset_root, ann_file=os.path.join(test_dataset_root, 'trainval.txt'), pipeline=[], classes=('person', 'dog'), test_mode=True, img_prefix='', img_subdir='images', ann_subdir='images') self.assertListEqual([{ 'id': '000001', 'filename': 'images/000001.jpg', 'width': 353, 'height': 500 }], custom_ds.data_infos)
"""Experiment with different models.""" from __future__ import annotations from collections.abc import Sequence from typing import Optional from langchain_core.language_models.llms import BaseLLM from langchain_core.prompts.prompt import PromptTemplate from langchain_core.utils.input import get_color_mapping, print_text from langchain.chains.base import Chain from langchain.chains.llm import LLMChain class ModelLaboratory: """A utility to experiment with and compare the performance of different models.""" def __init__(self, chains: Sequence[Chain], names: Optional[list[str]] = None): """Initialize the ModelLaboratory with chains to experiment with. Args: chains (Sequence[Chain]): A sequence of chains to experiment with. Each chain must have exactly one input and one output variable. names (Optional[List[str]]): Optional list of names corresponding to each chain. If provided, its length must match the number of chains. Raises: ValueError: If any chain is not an instance of `Chain`. ValueError: If a chain does not have exactly one input variable. ValueError: If a chain does not have exactly one output variable. ValueError: If the length of `names` does not match the number of chains. """ for chain in chains: if not isinstance(chain, Chain): msg = ( "ModelLaboratory should now be initialized with Chains. " "If you want to initialize with LLMs, use the `from_llms` method " "instead (`ModelLaboratory.from_llms(...)`)" ) raise ValueError(msg) if len(chain.input_keys) != 1: msg = ( "Currently only support chains with one input variable, " f"got {chain.input_keys}" ) raise ValueError(msg) if len(chain.output_keys) != 1: msg = ( "Currently only support chains with one output variable, " f"got {chain.output_keys}" ) if names is not None and len(names) != len(chains): msg = "Length of chains does not match length of names." raise ValueError(msg) self.chains = chains chain_range = [str(i) for i in range(len(self.chains))] self.chain_colors = get_color_mapping(chain_range) self.names = names @classmethod def from_llms( cls, llms: list[BaseLLM], prompt: Optional[PromptTemplate] = None ) -> ModelLaboratory: """Initialize the ModelLaboratory with LLMs and an optional prompt. Args: llms (List[BaseLLM]): A list of LLMs to experiment with. prompt (Optional[PromptTemplate]): An optional prompt to use with the LLMs. If provided, the prompt must contain exactly one input variable. Returns: ModelLaboratory: An instance of `ModelLaboratory` initialized with LLMs. """ if prompt is None: prompt = PromptTemplate(input_variables=["_input"], template="{_input}") chains = [LLMChain(llm=llm, prompt=prompt) for llm in llms] names = [str(llm) for llm in llms] return cls(chains, names=names) def compare(self, text: str) -> None: """Compare model outputs on an input text. If a prompt was provided with starting the laboratory, then this text will be fed into the prompt. If no prompt was provided, then the input text is the entire prompt. Args: text: input text to run all models on. """ print(f"\033[1mInput:\033[0m\n{text}\n") # noqa: T201 for i, chain in enumerate(self.chains): name = self.names[i] if self.names is not None else str(chain) print_text(name, end="\n") output = chain.run(text) print_text(output, color=self.chain_colors[str(i)], end="\n\n")
"""Experiment with different models.""" from __future__ import annotations from collections.abc import Sequence from typing import Optional from langchain_core.language_models.llms import BaseLLM from langchain_core.prompts.prompt import PromptTemplate from langchain_core.utils.input import get_color_mapping, print_text from langchain.chains.base import Chain from langchain.chains.llm import LLMChain class ModelLaboratory: """A utility to experiment with and compare the performance of different models.""" def __init__(self, chains: Sequence[Chain], names: Optional[list[str]] = None): """Initialize the ModelLaboratory with chains to experiment with. Args: chains (Sequence[Chain]): A sequence of chains to experiment with. Each chain must have exactly one input and one output variable. names (Optional[List[str]]): Optional list of names corresponding to each chain. If provided, its length must match the number of chains. Raises: ValueError: If any chain is not an instance of `Chain`. ValueError: If a chain does not have exactly one input variable. ValueError: If a chain does not have exactly one output variable. ValueError: If the length of `names` does not match the number of chains. """ for chain in chains: if not isinstance(chain, Chain): msg = ( "ModelLaboratory should now be initialized with Chains. " "If you want to initialize with LLMs, use the `from_llms` method " "instead (`ModelLaboratory.from_llms(...)`)" ) raise ValueError(msg) if len(chain.input_keys) != 1: msg = ( "Currently only support chains with one input variable, " f"got {chain.input_keys}" ) raise ValueError(msg) if len(chain.output_keys) != 1: msg = ( "Currently only support chains with one output variable, " f"got {chain.output_keys}" ) raise ValueError(msg) if names is not None: if len(names) != len(chains): msg = "Length of chains does not match length of names." raise ValueError(msg) self.chains = chains chain_range = [str(i) for i in range(len(self.chains))] self.chain_colors = get_color_mapping(chain_range) self.names = names @classmethod def from_llms( cls, llms: list[BaseLLM], prompt: Optional[PromptTemplate] = None ) -> ModelLaboratory: """Initialize the ModelLaboratory with LLMs and an optional prompt. Args: llms (List[BaseLLM]): A list of LLMs to experiment with. prompt (Optional[PromptTemplate]): An optional prompt to use with the LLMs. If provided, the prompt must contain exactly one input variable. Returns: ModelLaboratory: An instance of `ModelLaboratory` initialized with LLMs. """ if prompt is None: prompt = PromptTemplate(input_variables=["_input"], template="{_input}") chains = [LLMChain(llm=llm, prompt=prompt) for llm in llms] names = [str(llm) for llm in llms] return cls(chains, names=names) def compare(self, text: str) -> None: """Compare model outputs on an input text. If a prompt was provided with starting the laboratory, then this text will be fed into the prompt. If no prompt was provided, then the input text is the entire prompt. Args: text: input text to run all models on. """ print(f"\033[1mInput:\033[0m\n{text}\n") # noqa: T201 for i, chain in enumerate(self.chains): if self.names is not None: name = self.names[i] else: name = str(chain) print_text(name, end="\n") output = chain.run(text) print_text(output, color=self.chain_colors[str(i)], end="\n\n")
def get_doc_value(): return 'MyExecutorAfterReload'
def get_doc_value(): return 'MyExecutorAfterReload'