Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Vietnamese
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
stringclasses
400 values
corpus-id
stringlengths
40
40
score
float64
0
1
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
28d3ec156472c35ea8e1b7acad969b725111fe56
1
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
334c4806912d851ef2117e67728cfa624dbec9a3
1
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
383ca85aaca9f306ea7ae04fb0b6b76f1e393395
1
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
3ea9cd35f39e8c128f39f13148e91466715f4ee2
1
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
508119a50e3d4e8b7116c1b56a002de492b2270b
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
c0a39b1b64100b929ec77d33232513ec72089a2e
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
f9cf246008d745f883914d925567bb36df806613
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
53c544145d2fe5fe8c44584f44f36f74393b983e
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
0eaa75861d9e17f2c95bd3f80f48db95bf68a50c
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
24ff5027e7042aeead47ef3071f1a023243078bb
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
2c6835e8bdb8c70a9c3aa9bd2578b01dd1b93114
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
38a70884a93dd6912404519a779cc497965feff1
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
cc6dc5a3e8a18a0aaab7cbe8cee22bf3ac92f0bf
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
45e2e2a327ea696411b212492b053fd328963cc3
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
71795f9f511f6948dd67aff7e9725c08ff1a4c94
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
8cfb12304856268ee438ccb16e4b87960c7349e0
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
a39faa00248abb3984317f2d6830f485cb5e1a0d
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
e749e6311e25eb8081672742e78c427ce5979552
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
d5ecb372f6cbdfb52588fbb4a54be21d510009d0
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
6193ece762c15b7d8a958dc64c37e858cd873b8a
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
2d9416485091e6af3619c4bc9323a0887d450c8a
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
0f28cbfe0674e0af4899d21dd90f6f5d0d5c3f1b
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
cc43c080340817029fd497536cc9bd39b0a76dd2
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
15e8961e8f9d1fb5060c3284a5bdcc09f2fc1ba6
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
36b3865f944c74c6d782c26dfe7be04ef9664a67
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
bb192e0208548831de1475b11859f2114121c662
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
1935e0986939ea6ef2afa01eeef94dbfea6fb6da
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
1ea03bc28a14ade633d5a7fe9af71328834d45ab
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
55ca165fa6091973674b12ea8fa3f1a3a1e50a6d
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
0dacd4593ba6bce441bae37fc3ff7f3b70408ee1
1
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
24d800e6681a129b7787cbb05d0e224acad70e8d
1
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
32334506f746e83367cecb91a0ab841e287cd958
1
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
49934d08d42ed9e279a82cbad2086377443c8a75
1
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
61efdc56bc6c034e9d13a0c99d0b651a78bfc596
1
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
c7788c34ba1387f1e437a2f83e1931f0c64d8e4e
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
7731c8a1c56fdfa149759a8bb7b81464da0b15c1
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
17a00f26b68f40fb03e998a7eef40437dd40e561
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
190dcdb71a119ec830d6e7e6e01bb42c6c10c2f3
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
f5888af5e5353eb74d37ec50e9840e58b1992953
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
1f8be49d63c694ec71c2310309cd02a2d8dd457f
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
31e9d9458471b4a0cfc6cf1de219b10af0f37239
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
33127e014cf537192c33a5b0e4b62df2a7b1869f
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
c6b5c1cc565c878db50ad20aafd804284558ad02
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
2ccca721c20ad1d8503ede36fe310626070de640
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
8eb3ebd0a1d8a26c7070543180d233f841b79850
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
5574763d870bae0fd3fd6d3014297942a045f60a
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
6273df9def7c011bc21cd42a4029d4b7c7c48c2e
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
1e396464e440e6032be3f035a9a6837c32c9d2c0
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
4c11a7b668dee651cc2d8eb2eaf8665449b1738f
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
9f6db3f5809a9d1b9f1c70d9d30382a0bd8be8d0
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
6fcccd6def46a4dd50f85df4d4c011bd9f1855af
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
7cbbe0025b71a265c6bee195b5595cfad397a734
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
a00a757b26d5c4f53b628a9c565990cdd0e51876
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
b49e31fe5948b3ca4552ac69dd7a735607467f1c
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
5914781bde18606e55e8f7683f55889df91576ec
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
423455ad8afb9b2534c0954a5e61c95bea611801
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
c5788be735f3caadc7d0d3147aa52fd4a6036ec4
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
d3569f184b7083c0433bf00fa561736ae6f8d31e
0
ae0fb9c6ebb8ce12610c477d2388447a13dc4694
c630196c34533903b48e546897d46df27c844bc2
0
4715401473dca02ebaa5bdd4d4003705ed91c380
14829636fee5a1cf8dee9737849a8e2bdaf9a91f
1
4715401473dca02ebaa5bdd4d4003705ed91c380
35fe18606529d82ce3fc90961dd6813c92713b3c
1
4715401473dca02ebaa5bdd4d4003705ed91c380
3d16ed355757fc13b7c6d7d6d04e6e9c5c9c0b78
1
4715401473dca02ebaa5bdd4d4003705ed91c380
5e86853f533c88a1996455d955a2e20ac47b3878
1
4715401473dca02ebaa5bdd4d4003705ed91c380
5fb1285e05bbd78d0094fe8061c644ea09d9da8d
1
4715401473dca02ebaa5bdd4d4003705ed91c380
d2920567fb66bc69d92ab2208f6455e37ce6138b
0
4715401473dca02ebaa5bdd4d4003705ed91c380
5e90e57fccafbc78ecbac1a78c546b7db9a468ce
0
4715401473dca02ebaa5bdd4d4003705ed91c380
991891e3aa226766dcb4ad7221045599f8607685
0
4715401473dca02ebaa5bdd4d4003705ed91c380
11b111cbe79e5733fea28e4b9ff99fe7b4a4585c
0
4715401473dca02ebaa5bdd4d4003705ed91c380
0dbed89ea3296f351eb986cc02678c7a33d50945
0
4715401473dca02ebaa5bdd4d4003705ed91c380
47f0455d65a0823c70ce7cce9749f3abd826e0a7
0
4715401473dca02ebaa5bdd4d4003705ed91c380
239222aead65a66be698036d04e4af6eaa24b77b
0
4715401473dca02ebaa5bdd4d4003705ed91c380
d19f938c790f0ffd8fa7fccc9fd7c40758a29f94
0
4715401473dca02ebaa5bdd4d4003705ed91c380
7a5ae36df3f08df85dfaa21fead748f830d5e4fa
0
4715401473dca02ebaa5bdd4d4003705ed91c380
2b695f4060e78f9977a3da1c01a07a05a3f94b28
0
4715401473dca02ebaa5bdd4d4003705ed91c380
c28bcaab43e57b9b03f09fd2237669634da8a741
0
4715401473dca02ebaa5bdd4d4003705ed91c380
3ec40e4f549c49b048cd29aeb0223e709abc5565
0
4715401473dca02ebaa5bdd4d4003705ed91c380
2433254a9df37729159daa5eeec56123e122518e
0
4715401473dca02ebaa5bdd4d4003705ed91c380
399bc455dcbaf9eb0b4144d0bc721ac4bb7c8d59
0
4715401473dca02ebaa5bdd4d4003705ed91c380
1eff385c88fd1fdd1c03fd3fb573de2530b73f99
0
4715401473dca02ebaa5bdd4d4003705ed91c380
0341cd2fb49a56697edaf03b05734f44d0e41f89
0
4715401473dca02ebaa5bdd4d4003705ed91c380
b0f16acfa4efce9c24100ec330b82fb8a28feeec
0
4715401473dca02ebaa5bdd4d4003705ed91c380
2bf8acb0bd8b0fde644b91c5dd4bef2e8119e61e
0
4715401473dca02ebaa5bdd4d4003705ed91c380
e3ab7a95af2c0efc92f146f8667ff95e46da84f1
0
4715401473dca02ebaa5bdd4d4003705ed91c380
b1b5646683557b38468344dff09ae921a5a4b345
0
4715401473dca02ebaa5bdd4d4003705ed91c380
cd5b7d8fb4f8dc3872e773ec24460c9020da91ed
0
4715401473dca02ebaa5bdd4d4003705ed91c380
b4cbe50b8988e7c9c1a7b982bfb6c708bb3ce3e8
0
4715401473dca02ebaa5bdd4d4003705ed91c380
6a2311d02aea97f7fe4e78c8bd2a53091364dc3b
0
4715401473dca02ebaa5bdd4d4003705ed91c380
97aef787d63aef75e6f8055cdac3771f8649f21a
0
4715401473dca02ebaa5bdd4d4003705ed91c380
d9d8aafe6856025f2c2b7c70f5e640e03b6bcd46
0
3be10c45163c61dfb9f250412699b3f8cb0ada1d
738f4d2137fc767b1802963b5e45a2216c27b77c
1
3be10c45163c61dfb9f250412699b3f8cb0ada1d
ae341ad66824e1f30a2675fd50742b97794c8f57
1
3be10c45163c61dfb9f250412699b3f8cb0ada1d
090a6772a1d69f07bfe7e89f99934294a0dac1b9
1
3be10c45163c61dfb9f250412699b3f8cb0ada1d
0df013671e9e901a9126deb4957e22e3d937b1a5
1
3be10c45163c61dfb9f250412699b3f8cb0ada1d
32f7aef5c13c715b00b966eaaba5dd2fe35df1a4
1
3be10c45163c61dfb9f250412699b3f8cb0ada1d
25519ce6a924f5890180eacfa6e66203048f5dd1
0
3be10c45163c61dfb9f250412699b3f8cb0ada1d
634aa5d051512ee4b831e6210a234fb2d9b9d623
0
3be10c45163c61dfb9f250412699b3f8cb0ada1d
593b0a74211460f424d471ab7155a0a05c5fd342
0
3be10c45163c61dfb9f250412699b3f8cb0ada1d
b5e04a538ecb428c4cfef9784fe1f7d1c193cd1a
0
3be10c45163c61dfb9f250412699b3f8cb0ada1d
35de4258058f02a31cd0a0882b5bcc14d7a06697
0
3be10c45163c61dfb9f250412699b3f8cb0ada1d
87d696d7dce4fed554430f100d0f2aaee9f73bc5
0
End of preview. Expand in Data Studio

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["Scidocs-VN"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@misc{pham2025vnmtebvietnamesemassivetext,
    title={VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
    author={Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
    year={2025},
    eprint={2507.21500},
    archivePrefix={arXiv},
    primaryClass={cs.CL},
    url={https://arxiv.org/abs/2507.21500}
}

@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}
Downloads last month
62

Collection including GreenNode/scidocs-vn