paperID
stringlengths
36
36
pwc_id
stringlengths
8
47
arxiv_id
stringlengths
6
16
nips_id
float64
url_abs
stringlengths
18
329
url_pdf
stringlengths
18
742
title
stringlengths
8
325
abstract
stringlengths
1
7.27k
authors
stringlengths
2
7.06k
published
stringlengths
10
10
conference
stringlengths
12
47
conference_url_abs
stringlengths
16
198
conference_url_pdf
stringlengths
27
199
proceeding
stringlengths
6
47
taskID
stringlengths
7
1.44k
areaID
stringclasses
688 values
embedding
stringlengths
9.26k
12.5k
umap_embedding
stringlengths
29
44
28c2f34c-6497-429a-8e6b-fa42c6e64885
an-active-learning-approach-for-reducing
1909.02344
null
https://arxiv.org/abs/1909.02344v1
https://arxiv.org/pdf/1909.02344v1.pdf
An Active Learning Approach for Reducing Annotation Cost in Skin Lesion Analysis
Automated skin lesion analysis is very crucial in clinical practice, as skin cancer is among the most common human malignancy. Existing approaches with deep learning have achieved remarkable performance on this challenging task, however, heavily relying on large-scale labelled datasets. In this paper, we present a novel active learning framework for cost-effective skin lesion analysis. The goal is to effectively select and utilize much fewer labelled samples, while the network can still achieve state-of-the-art performance. Our sample selection criteria complementarily consider both informativeness and representativeness, derived from decoupled aspects of measuring model certainty and covering sample diversity. To make wise use of the selected samples, we further design a simple yet effective strategy to aggregate intra-class images in pixel space, as a new form of data augmentation. We validate our proposed method on data of ISIC 2017 Skin Lesion Classification Challenge for two tasks. Using only up to 50% of samples, our approach can achieve state-of-the-art performances on both tasks, which are comparable or exceeding the accuracies with full-data training, and outperform other well-known active learning methods by a large margin.
['Pheng-Ann Heng', 'Cheng Xue', 'Qi Dou', 'Hao Chen', 'Xueying Shi', 'Jing Qin']
2019-09-05
null
null
null
null
['skin-lesion-classification']
['medical']
[ 8.01236928e-01 1.70694679e-01 -5.92214406e-01 -2.83621401e-01 -1.52455056e+00 -2.73167074e-01 6.78355098e-01 5.97080529e-01 -7.96833634e-01 7.71711051e-01 -3.67157646e-02 -8.02636053e-03 -2.57386386e-01 -6.62271738e-01 -3.22585016e-01 -1.16037560e+00 1.78527802e-01 2.37409845e-01 3.51857275e-01 2.07275093e-01 9.36307162e-02 5.21325946e-01 -1.51263583e+00 4.03376669e-01 1.26394415e+00 1.15447211e+00 -1.09243087e-01 6.40017152e-01 -1.62967682e-01 7.18945384e-01 -2.51749188e-01 -5.16641319e-01 8.26238617e-02 -2.37471238e-01 -8.35784674e-01 3.67889434e-01 4.65923935e-01 -7.87274912e-02 9.82303843e-02 8.90049458e-01 8.27244699e-01 -1.95445791e-01 7.67857313e-01 -8.50607395e-01 -1.72338828e-01 4.10415143e-01 -5.00724137e-01 -9.39425826e-02 -2.06800317e-03 3.65054786e-01 9.38637555e-01 -7.76946902e-01 5.36275327e-01 5.17468512e-01 8.25550616e-01 7.78066039e-01 -1.24783075e+00 -3.86567056e-01 2.35523492e-01 3.65611732e-01 -1.25689995e+00 -7.47615278e-01 7.40624487e-01 -3.22567791e-01 5.52689195e-01 7.76401639e-01 7.46876478e-01 1.28188550e+00 -1.51076317e-01 1.24478614e+00 1.27050757e+00 -7.05883205e-01 6.23551965e-01 3.00714821e-01 1.39275029e-01 5.82822800e-01 2.53075868e-01 -1.53498337e-01 -4.04785812e-01 -3.18626702e-01 4.17820305e-01 5.36225699e-02 -3.54411125e-01 -5.34172297e-01 -8.96776199e-01 8.47205997e-01 4.11865026e-01 2.03422844e-01 -5.27559638e-01 -1.19469106e-01 3.94345939e-01 -1.60234004e-01 7.82162726e-01 4.53290522e-01 -2.34294996e-01 6.21381216e-02 -9.73698795e-01 -1.73511520e-01 5.89840353e-01 3.41742218e-01 2.77038395e-01 -3.88849646e-01 -4.89224702e-01 1.07267618e+00 1.42500997e-01 1.67777017e-01 4.36539501e-01 -4.51549172e-01 5.38240820e-02 8.79735410e-01 -1.89580709e-01 -3.20239663e-01 -4.38935548e-01 -7.32238650e-01 -1.08015907e+00 3.79077941e-01 4.67597514e-01 1.45517156e-01 -1.28988075e+00 1.35683072e+00 4.89137411e-01 5.74710360e-03 -2.51580298e-01 6.74797952e-01 7.01939583e-01 2.41007730e-02 4.86423939e-01 -5.81722856e-01 1.14429080e+00 -8.72446239e-01 -6.50652647e-01 -8.91903564e-02 6.98839188e-01 -4.82396722e-01 9.41756606e-01 6.70899391e-01 -9.64957297e-01 -1.04868561e-01 -1.00345981e+00 1.60127550e-01 -2.91740477e-01 2.13277057e-01 8.58772457e-01 7.29351044e-01 -8.46186876e-01 4.73545998e-01 -1.00507343e+00 -5.45738161e-01 1.15231192e+00 2.40109727e-01 -5.50563514e-01 -1.68160290e-01 -7.67594516e-01 8.39398980e-01 1.54641718e-01 8.89983922e-02 -7.17584252e-01 -1.01064026e+00 -6.80005491e-01 -1.28106549e-01 6.53519154e-01 -3.94017130e-01 1.20623004e+00 -9.36363637e-01 -1.43521833e+00 1.05777740e+00 7.64405867e-03 -5.96560121e-01 8.68966877e-01 -9.86158401e-02 -2.87859321e-01 3.12529683e-01 -2.55617231e-01 5.36822975e-01 6.03181958e-01 -1.25036132e+00 -6.16678417e-01 -4.13305521e-01 -1.83317661e-01 1.79681405e-01 -9.55938935e-01 -2.77421057e-01 -4.29058224e-01 -4.82340187e-01 -8.02676752e-02 -7.81208396e-01 -6.26474559e-01 5.83977342e-01 -5.05925953e-01 -1.40398651e-01 3.95910531e-01 -6.05708420e-01 1.32607782e+00 -1.92219698e+00 -3.53190713e-02 2.60085940e-01 4.10578370e-01 8.00833642e-01 -6.30309433e-02 2.73593932e-01 2.97808181e-02 1.74174935e-01 -6.69291258e-01 -4.44582641e-01 -9.79349390e-02 -1.98875934e-01 1.13606066e-01 5.42470098e-01 6.72296405e-01 9.30458844e-01 -9.85165417e-01 -8.16661775e-01 3.21695238e-01 4.69447285e-01 -1.00560464e-01 6.77724630e-02 -2.28179976e-01 2.76625991e-01 -1.88014612e-01 8.84108543e-01 5.21068752e-01 -5.01726031e-01 3.05724323e-01 -2.74870306e-01 2.52701879e-01 -4.31339405e-02 -8.97121668e-01 1.60691869e+00 -5.08853972e-01 5.02437472e-01 -1.24297179e-01 -1.04876697e+00 5.69894314e-01 2.72013694e-01 7.52445757e-01 -7.63034940e-01 3.83276567e-02 2.64677316e-01 2.78070830e-02 -5.83740473e-01 -2.51349900e-02 5.06699309e-02 3.79989535e-01 1.55057535e-01 -3.15566920e-02 9.32562575e-02 3.64532173e-01 2.04032063e-02 1.35012889e+00 -1.49348199e-01 7.73921967e-01 -9.77717936e-02 5.59822261e-01 -5.32525517e-02 4.57335085e-01 6.57646656e-01 -3.56153786e-01 5.94670236e-01 5.40897906e-01 -1.88782394e-01 -8.02832961e-01 -9.28738773e-01 -4.51519221e-01 9.28572893e-01 -1.65795907e-01 -1.18677221e-01 -7.57725596e-01 -1.20601296e+00 -1.07656389e-01 6.27269387e-01 -1.00770366e+00 1.54467952e-02 -3.01019251e-01 -1.28279138e+00 3.82671446e-01 5.83522975e-01 4.30688769e-01 -9.06059027e-01 -4.20382917e-01 5.36563322e-02 2.23057345e-01 -8.57217610e-01 5.82786277e-02 3.38957161e-01 -7.04949617e-01 -1.33755982e+00 -1.08132076e+00 -5.10335922e-01 8.77736747e-01 6.89961901e-03 9.99013126e-01 1.08785689e-01 -1.01455426e+00 8.34922269e-02 -4.58838642e-01 -5.02510667e-01 -2.93744564e-01 2.77363718e-01 -4.70858783e-01 2.65984029e-01 2.08240554e-01 -2.40314722e-01 -7.11777925e-01 8.86117220e-02 -1.06493843e+00 1.17950246e-01 1.09599745e+00 1.08510888e+00 7.93682754e-01 -5.85468821e-02 7.74571061e-01 -1.39742208e+00 3.63935292e-01 -2.09927917e-01 -2.19536483e-01 5.42846560e-01 -6.88839376e-01 -2.14006916e-01 5.47953963e-01 -4.54044580e-01 -1.06806290e+00 4.55391288e-01 -3.30440968e-01 -3.87163460e-02 -1.00826852e-01 4.29901302e-01 -9.12411734e-02 -3.29680085e-01 1.06150210e+00 1.29952937e-01 1.89145267e-01 -2.09044576e-01 2.11554185e-01 7.85952747e-01 1.81063458e-01 -7.95937926e-02 4.35898274e-01 6.75893486e-01 2.07300514e-01 -6.56719446e-01 -1.04417765e+00 -7.89104462e-01 -7.61297762e-01 -2.45933726e-01 3.73404354e-01 -6.65210962e-01 -4.20426220e-01 7.77175963e-01 -5.22145569e-01 -4.61116076e-01 -4.68984127e-01 3.26664686e-01 -3.72683018e-01 5.44165969e-01 -4.37421501e-01 -1.13844895e+00 -6.24730527e-01 -9.65672016e-01 1.18549681e+00 1.98655710e-01 -1.05477601e-01 -1.23752105e+00 1.50593489e-01 3.89769703e-01 5.78404963e-01 4.55740064e-01 7.44449139e-01 -9.33907151e-01 -2.42505729e-01 -6.04914963e-01 -1.34724945e-01 4.23895687e-01 3.23522031e-01 1.29245937e-01 -1.39246464e+00 -4.78940010e-01 -4.04811054e-01 -6.18508101e-01 1.42381823e+00 2.52378166e-01 1.59351814e+00 -8.08911696e-02 -4.70377535e-01 3.52097422e-01 1.55992556e+00 -1.21382251e-01 8.33148420e-01 1.83126647e-02 4.43247497e-01 6.74073517e-01 6.84092641e-01 2.94279665e-01 -5.42536080e-02 5.16717851e-01 5.98797023e-01 -5.98643720e-01 -4.36234713e-01 1.70021713e-01 -1.66881099e-01 4.09294695e-01 -3.40123149e-03 -1.93989545e-01 -1.04683876e+00 6.64588034e-01 -1.93987036e+00 -7.76746869e-01 1.25654563e-02 2.64555717e+00 1.19148648e+00 4.07134801e-01 1.43979862e-01 6.06716335e-01 6.57805800e-01 1.74872894e-02 -8.28481197e-01 2.10514054e-01 -7.02494830e-02 4.70512748e-01 6.49574757e-01 2.94133306e-01 -1.40797210e+00 4.45772648e-01 6.00681257e+00 1.39768410e+00 -1.36668885e+00 2.19660383e-02 1.03668749e+00 -2.65026063e-01 -8.81770849e-02 -3.84959668e-01 -5.75050592e-01 5.13756275e-01 5.44062078e-01 2.58360595e-01 -9.50851664e-02 7.71151721e-01 -9.34669822e-02 -2.64856488e-01 -1.21126533e+00 9.62380886e-01 3.02004486e-01 -1.43403912e+00 -1.80704907e-01 1.86698109e-01 8.65471840e-01 -4.05751318e-01 1.68299809e-01 9.38083678e-02 -1.03797549e-02 -1.23300838e+00 1.54614240e-01 7.33014882e-01 1.02602029e+00 -5.43339312e-01 9.75071847e-01 3.55569154e-01 -7.05985665e-01 -1.81080744e-01 -4.71225455e-02 3.90775383e-01 -6.48208559e-02 1.05330157e+00 -1.05797744e+00 6.34062052e-01 2.73650050e-01 5.03021181e-01 -9.69223440e-01 1.61516643e+00 -2.70361770e-02 7.84131169e-01 -2.03681216e-01 -3.00895602e-01 -5.23627177e-02 3.15395296e-01 2.03949675e-01 1.15917647e+00 6.02788441e-02 -2.37577140e-01 -3.85927744e-02 3.97751927e-01 -1.61001403e-02 2.67456651e-01 -1.58388570e-01 -1.69278920e-01 4.98643428e-01 1.63083375e+00 -7.48273253e-01 -2.51594186e-01 -1.25127107e-01 7.96220362e-01 4.42080230e-01 1.11312177e-02 -5.95359743e-01 -3.68183255e-01 8.35502818e-02 2.90570945e-01 -4.16865274e-02 3.68275464e-01 -3.46405089e-01 -8.54932904e-01 1.10381678e-01 -8.12401891e-01 4.34027553e-01 -2.17994004e-01 -1.66117311e+00 4.48930085e-01 -3.81083190e-01 -1.35315132e+00 -1.72026888e-01 -7.80007303e-01 -5.81133604e-01 7.24491596e-01 -1.69870853e+00 -1.48181343e+00 -7.29536057e-01 2.88665265e-01 4.07364428e-01 -1.27620041e-01 1.16761696e+00 3.92917186e-01 -6.92225814e-01 9.40639555e-01 2.37091184e-01 8.34525153e-02 9.83184576e-01 -1.41773319e+00 1.51850194e-01 6.73353434e-01 -1.67998150e-02 1.88419566e-01 2.06381872e-01 -3.82703304e-01 -1.18232751e+00 -1.09313595e+00 4.58344012e-01 -3.49046320e-01 4.92267817e-01 -3.89902234e-01 -7.70313919e-01 6.22511357e-02 -1.00207023e-01 2.98605382e-01 1.08559823e+00 2.29516521e-01 -2.66135722e-01 -2.86615074e-01 -1.44502974e+00 5.43510854e-01 9.12557304e-01 -3.36004853e-01 4.46650051e-02 5.72798014e-01 3.66340816e-01 -2.21642137e-01 -7.01167226e-01 8.51210833e-01 4.93306935e-01 -9.66053724e-01 8.39014232e-01 -6.42233491e-01 3.90053689e-01 1.93588585e-01 4.57267687e-02 -1.25214875e+00 -3.67182791e-01 -2.98168510e-01 -2.46708587e-01 1.23570156e+00 4.79603052e-01 -5.47101259e-01 1.26414299e+00 4.43386704e-01 -8.39754567e-02 -1.49189329e+00 -9.08799946e-01 -4.98663843e-01 2.00210717e-02 -3.16630214e-01 1.70874953e-01 8.54200542e-01 -9.46133509e-02 -4.51648654e-03 -6.61503151e-02 -2.12485746e-01 9.32489932e-01 -3.46475005e-01 4.21166599e-01 -1.29097068e+00 -1.15905046e-01 -6.20808423e-01 -5.19965887e-01 -3.76317620e-01 -9.51265097e-02 -7.18781829e-01 3.53883356e-02 -1.77700138e+00 5.88606596e-01 -6.23626292e-01 -6.02857292e-01 6.45630479e-01 -5.26191950e-01 5.83812416e-01 -1.45106046e-02 9.20710415e-02 -7.82143474e-01 2.34830797e-01 1.17594945e+00 -3.27710360e-01 -3.97229269e-02 8.75547454e-02 -8.21625948e-01 7.06785738e-01 6.78222120e-01 4.04662453e-02 -3.41568530e-01 -7.25318044e-02 2.76759136e-02 -2.42632404e-01 4.88441467e-01 -1.10541272e+00 4.01592404e-01 -2.99409568e-01 6.77096248e-01 -4.11712736e-01 5.50455630e-01 -7.25556672e-01 -7.27997348e-02 5.63979149e-01 -7.62183845e-01 -1.01911056e+00 5.40814139e-02 6.24788225e-01 -7.72069693e-02 -2.07108244e-01 1.17652690e+00 5.00106718e-03 -7.68680811e-01 4.79344666e-01 -2.03875918e-02 -2.12688729e-01 1.32687163e+00 -1.99287832e-01 -5.74360967e-01 1.95164382e-02 -7.19811559e-01 5.10410704e-02 3.60270798e-01 8.46939087e-02 4.01056945e-01 -1.30351794e+00 -8.76024544e-01 6.47323802e-02 5.11352181e-01 9.38966423e-02 5.21757424e-01 1.11659884e+00 -4.74141955e-01 3.12016189e-01 -9.12583843e-02 -7.41635501e-01 -1.40983343e+00 3.14617544e-01 2.88382828e-01 -6.69101179e-01 -2.77493179e-01 9.85199630e-01 -2.33664885e-02 -3.59664649e-01 4.10226136e-01 1.54894873e-01 -3.17863911e-01 3.14528674e-01 5.58738351e-01 3.49327981e-01 5.90461254e-01 2.45086011e-02 -3.58519763e-01 3.17301780e-01 -4.09566492e-01 2.20521539e-01 1.27432156e+00 3.39617193e-01 1.32184491e-01 2.43525982e-01 1.12967980e+00 -1.86326308e-03 -1.21073294e+00 -4.09296900e-01 -6.44118264e-02 -5.37143171e-01 1.83773890e-01 -1.31821561e+00 -9.06134605e-01 9.11617517e-01 1.02070785e+00 3.02038282e-01 1.34273851e+00 -1.53951660e-01 5.13649404e-01 2.70023316e-01 2.36455053e-01 -1.20628381e+00 1.47517428e-01 -2.14474380e-01 6.31150901e-01 -1.62013292e+00 3.57723773e-01 -7.50914335e-01 -7.06251681e-01 9.27313685e-01 5.54906785e-01 1.07282050e-01 3.09197724e-01 2.04285294e-01 6.29748404e-02 5.29714413e-02 -9.31590915e-01 -4.83727187e-01 4.26629484e-01 6.43464446e-01 4.90023345e-01 1.58888504e-01 -3.08105171e-01 4.07118887e-01 4.58261937e-01 5.66506609e-02 9.76746455e-02 8.37959528e-01 -4.54382747e-01 -1.12061131e+00 -9.98140499e-02 9.82425213e-01 -5.52280247e-01 -3.58089618e-02 -6.26194060e-01 9.00149286e-01 -9.62391309e-03 6.70848072e-01 8.61771684e-03 -1.23671718e-01 9.71360281e-02 -1.24352179e-01 6.76777065e-01 -5.47174275e-01 -4.18650419e-01 -7.34787881e-02 2.82941103e-01 -4.06071514e-01 -4.71711040e-01 -4.66988504e-01 -8.03429246e-01 3.27167064e-02 -5.39874017e-01 -2.25557312e-01 7.34600067e-01 7.56779492e-01 1.91652074e-01 4.77053672e-01 7.99185634e-01 -4.14537966e-01 -9.45650220e-01 -1.01769149e+00 -5.54179013e-01 5.51354408e-01 1.56031400e-01 -5.04726768e-01 -4.08701986e-01 -1.09273707e-02]
[15.465348243713379, -2.7514255046844482]
85e338fa-ffb8-4060-8e7e-f05269ce573b
attention-wise-masked-graph-contrastive
2206.08262
null
https://arxiv.org/abs/2206.08262v1
https://arxiv.org/pdf/2206.08262v1.pdf
Attention-wise masked graph contrastive learning for predicting molecular property
Accurate and efficient prediction of the molecular properties of drugs is one of the fundamental problems in drug research and development. Recent advancements in representation learning have been shown to greatly improve the performance of molecular property prediction. However, due to limited labeled data, supervised learning-based molecular representation algorithms can only search limited chemical space, which results in poor generalizability. In this work, we proposed a self-supervised representation learning framework for large-scale unlabeled molecules. We developed a novel molecular graph augmentation strategy, referred to as attention-wise graph mask, to generate challenging positive sample for contrastive learning. We adopted the graph attention network (GAT) as the molecular graph encoder, and leveraged the learned attention scores as masking guidance to generate molecular augmentation graphs. By minimization of the contrastive loss between original graph and masked graph, our model can capture important molecular structure and higher-order semantic information. Extensive experiments showed that our attention-wise graph mask contrastive learning exhibit state-of-the-art performance in a couple of downstream molecular property prediction tasks.
['Lei Deng', 'Xuejun Liu', 'Yibiao Huang', 'Hui Liu']
2022-05-02
null
null
null
null
['molecular-property-prediction']
['miscellaneous']
[ 7.12812543e-01 8.86081532e-02 -5.38965225e-01 -3.81239384e-01 -6.53690040e-01 -4.57958281e-01 2.45470628e-01 6.15581870e-01 3.09128105e-03 1.15640593e+00 3.88518497e-02 -5.99498749e-01 -2.94206906e-02 -8.95724416e-01 -9.60642278e-01 -8.15625370e-01 -1.38731897e-01 1.78881496e-01 -1.96734786e-01 -7.16614872e-02 2.62469292e-01 6.15327835e-01 -9.32276547e-01 2.04122841e-01 1.32118058e+00 6.57203615e-01 2.89397389e-01 2.18302935e-01 -1.58919603e-01 1.00840330e+00 -2.89130867e-01 -3.79269361e-01 -2.47978959e-02 -7.64518619e-01 -7.31034279e-01 -1.12821914e-01 3.24828744e-01 1.53263789e-02 -5.48644245e-01 1.11048436e+00 6.81065440e-01 3.33973199e-01 7.94437230e-01 -8.53340209e-01 -1.18651056e+00 4.87091899e-01 -6.03135228e-01 2.26646617e-01 4.58752543e-01 2.07519308e-01 1.17828572e+00 -8.55410159e-01 7.02873528e-01 1.07811511e+00 3.21057647e-01 7.25273550e-01 -1.43820870e+00 -9.19759572e-01 3.16767901e-01 4.00531918e-01 -1.35129178e+00 -1.35899216e-01 8.43599141e-01 -3.70513439e-01 1.23024487e+00 7.55085498e-02 4.94092584e-01 8.93807232e-01 1.93921939e-01 4.79514271e-01 8.47189546e-01 -1.62071154e-01 1.46830171e-01 -1.90774679e-01 8.43800604e-03 1.04303885e+00 3.78050029e-01 1.97379813e-02 -3.30977529e-01 -3.82551789e-01 7.87758052e-01 2.33256087e-01 -4.62917596e-01 -3.45136970e-01 -8.75055134e-01 1.04909253e+00 1.14213848e+00 5.01041226e-02 -4.49757904e-01 1.08129315e-01 2.06987083e-01 1.09116241e-01 6.13491833e-01 8.73645782e-01 -5.10060370e-01 3.34527552e-01 -3.09480995e-01 -1.31007820e-01 3.31412584e-01 5.60535431e-01 8.38276744e-01 1.66695774e-01 -1.59147233e-01 6.22291803e-01 3.04751068e-01 1.22156329e-01 4.12647337e-01 -1.08266659e-01 5.89413106e-01 9.55119491e-01 -3.38369131e-01 -8.26695085e-01 -4.35616225e-01 -5.90592980e-01 -9.56095040e-01 -7.97528476e-02 2.02034600e-02 5.23707680e-02 -1.31576443e+00 1.82052469e+00 3.04867059e-01 3.96898061e-01 1.40091226e-01 8.17049444e-01 1.01380301e+00 7.71191359e-01 6.73347652e-01 -2.98526675e-01 1.02062619e+00 -9.91138458e-01 -6.43907428e-01 -1.65292844e-02 9.15019691e-01 -5.15625894e-01 9.31463897e-01 1.46002201e-02 -7.85742581e-01 -3.92803043e-01 -1.24557555e+00 9.58057586e-03 -4.00297046e-01 -1.78703547e-01 1.18341470e+00 4.42643791e-01 -4.40972507e-01 1.03956652e+00 -6.91418767e-01 1.00330785e-01 1.04845941e+00 6.74319565e-01 -6.02370083e-01 -3.14997733e-01 -1.21948326e+00 6.75851822e-01 4.56588298e-01 -3.91883552e-02 -9.70970631e-01 -8.70858312e-01 -9.77042079e-01 7.03622773e-02 3.83533865e-01 -7.21131802e-01 7.18055785e-01 -7.03616440e-01 -1.47101915e+00 5.99881530e-01 -8.25230032e-02 -3.75150383e-01 5.34142591e-02 1.06323704e-01 -3.71652842e-01 1.40811607e-01 1.34946883e-01 5.21248341e-01 6.31392956e-01 -9.34727371e-01 -2.64360327e-02 -4.74206924e-01 -8.22635815e-02 3.08286697e-01 -2.33789891e-01 -2.88285196e-01 -1.22139305e-01 -7.85589278e-01 5.59203885e-03 -7.32405186e-01 -8.05337071e-01 -3.55279267e-01 -4.72019047e-01 -4.52448241e-02 4.09281880e-01 -5.44540107e-01 1.26873577e+00 -1.88773811e+00 3.65967512e-01 3.98084730e-01 4.51402128e-01 3.81913543e-01 -5.18506587e-01 5.36100149e-01 -6.67215288e-01 3.60903800e-01 -4.24326092e-01 1.39681816e-01 -5.49174249e-01 -1.12282395e-01 -2.88558066e-01 5.02228856e-01 4.67640460e-01 1.26147318e+00 -1.29498780e+00 -1.72766775e-01 1.00729637e-01 6.60951734e-01 -6.71840489e-01 4.41218793e-01 -7.12670922e-01 7.44770586e-01 -8.23066950e-01 7.86704123e-01 5.87869346e-01 -8.01172972e-01 2.89869606e-01 -3.54101837e-01 4.01636422e-01 4.29079175e-01 -3.94493341e-01 1.83544505e+00 -1.64529994e-01 9.83618498e-02 -5.94550014e-01 -1.01446819e+00 8.95784557e-01 1.73144519e-01 4.84321773e-01 -7.68831372e-01 2.24996042e-02 2.32031539e-01 3.96247029e-01 -2.42974311e-01 -8.52578413e-03 -2.65792608e-01 4.14002657e-01 2.22804323e-01 4.62203547e-02 5.87641448e-02 1.82288978e-02 2.09237337e-01 1.02333331e+00 2.32336700e-01 5.33939242e-01 1.51390910e-01 6.32525384e-01 -3.44429277e-02 3.64965588e-01 2.34065726e-01 1.59046233e-01 3.48030329e-01 4.45391715e-01 -4.13279206e-01 -7.46127427e-01 -6.20080829e-01 6.16919156e-03 1.12051618e+00 6.89654499e-02 -6.36829972e-01 -6.05224490e-01 -1.03414786e+00 -1.04790051e-02 2.07411736e-01 -6.19227707e-01 -6.45361423e-01 -4.54308510e-01 -1.24109852e+00 2.81752557e-01 3.35804731e-01 2.07990497e-01 -1.21562159e+00 3.35311592e-01 4.15001541e-01 3.83323669e-01 -8.47800493e-01 -6.77546144e-01 4.22149122e-01 -9.98720706e-01 -1.40216684e+00 -7.39469826e-01 -9.78357375e-01 1.02267408e+00 3.87196124e-01 7.93466568e-01 1.80370927e-01 -5.15124083e-01 -3.56698751e-01 -2.72621036e-01 -2.68607795e-01 -2.64747262e-01 1.06190227e-01 -2.61853367e-01 1.26405522e-01 1.14020832e-01 -6.37570202e-01 -8.79561126e-01 5.57741821e-02 -8.78159046e-01 6.25026599e-03 8.07803810e-01 1.02663958e+00 1.04339433e+00 -1.82146341e-01 8.73415053e-01 -1.35092175e+00 7.98722208e-01 -5.60242474e-01 -5.19440770e-01 1.59709588e-01 -7.29684770e-01 5.44605792e-01 9.45497096e-01 -4.33302611e-01 -6.57790482e-01 2.80282825e-01 -2.34529346e-01 -4.70713109e-01 2.22150594e-01 9.43991721e-01 -4.68982726e-01 -5.55332422e-01 6.71976089e-01 1.94374591e-01 -1.04675584e-01 -3.93715054e-01 5.38675189e-01 3.50892693e-01 1.11372672e-01 -4.93684024e-01 4.92818922e-01 6.68450296e-02 5.62777638e-01 -6.15591049e-01 -8.16441119e-01 -2.87324548e-01 -3.66787583e-01 4.46267575e-01 8.16463351e-01 -9.89576459e-01 -7.53188014e-01 1.44790769e-01 -9.40408885e-01 -3.07904273e-01 -1.34025160e-02 4.90875393e-01 -3.49323362e-01 6.89346254e-01 -6.08542442e-01 -4.71344799e-01 -6.84839308e-01 -1.22191715e+00 7.96909213e-01 2.25430261e-02 1.34677291e-01 -9.41493869e-01 1.61503151e-01 3.38816136e-01 8.91800299e-02 5.10039687e-01 1.42982900e+00 -8.37506473e-01 -7.57659614e-01 -2.21588477e-01 -4.47824270e-01 1.31226465e-01 5.93312025e-01 -4.05402094e-01 -8.87709618e-01 -3.42893481e-01 -5.67180157e-01 -4.18350726e-01 1.09586048e+00 3.27909350e-01 1.55057991e+00 -4.10752863e-01 -5.26452541e-01 8.52983892e-01 1.26365972e+00 3.59489828e-01 7.51307547e-01 -1.60022676e-01 1.35130477e+00 2.01174155e-01 4.89163578e-01 2.46939257e-01 -1.03018150e-01 6.42477453e-01 5.91281176e-01 -4.97376114e-01 -1.34285882e-01 -6.18434787e-01 3.91404852e-02 5.09840608e-01 -3.17870885e-01 -2.96196222e-01 -5.85955441e-01 7.87772760e-02 -1.79377604e+00 -8.39665473e-01 6.58808127e-02 2.23192382e+00 1.07270467e+00 2.55845748e-02 7.74490759e-02 -2.81099051e-01 8.26397121e-01 1.49821043e-01 -9.39435899e-01 -1.66797921e-01 -1.20409476e-02 6.87895656e-01 6.30044460e-01 5.19852638e-01 -9.39545751e-01 1.25609565e+00 5.70484400e+00 1.05396855e+00 -1.17711067e+00 -2.54980177e-01 8.39642763e-01 2.81775117e-01 -5.82022846e-01 -4.56889421e-02 -5.10124683e-01 4.44493562e-01 8.87672603e-01 -2.14295343e-01 4.25041527e-01 8.09985340e-01 1.37850866e-01 6.41396761e-01 -1.15414441e+00 1.11998332e+00 5.41412644e-03 -1.79328024e+00 7.04784036e-01 3.42377961e-01 8.32979023e-01 -1.03774741e-01 1.48907080e-01 7.70554170e-02 1.46255046e-01 -1.54628217e+00 -7.72071555e-02 1.29461899e-01 1.13775361e+00 -9.06484902e-01 4.40140098e-01 -1.71671242e-01 -1.30483615e+00 2.36383960e-01 -4.25070673e-01 9.39361230e-02 -1.28738299e-01 2.54105359e-01 -1.06100583e+00 6.90228701e-01 -1.54544130e-01 1.20422316e+00 -4.38294142e-01 1.02695096e+00 -3.60641956e-01 5.12337863e-01 1.78608462e-01 -1.13608666e-01 3.17261040e-01 -5.23318410e-01 1.56960100e-01 9.18175876e-01 -9.20243040e-02 2.73266256e-01 3.60652894e-01 8.39989245e-01 -7.25667775e-01 4.52082336e-01 -6.08985186e-01 -7.33180285e-01 2.78431654e-01 1.06391668e+00 -6.32263780e-01 -1.64436027e-01 -3.57566714e-01 1.04809773e+00 6.37303293e-01 4.26195741e-01 -8.74317825e-01 -4.12897170e-01 7.33302712e-01 1.00181326e-01 1.82084039e-01 1.04783950e-02 4.50465456e-02 -1.03991961e+00 -3.27447683e-01 -8.83587599e-01 5.07208645e-01 -3.85526747e-01 -1.46705639e+00 6.37619495e-01 -4.08522815e-01 -1.09093022e+00 3.04391950e-01 -7.97500312e-01 -5.13834000e-01 1.05112147e+00 -1.81679535e+00 -1.10025275e+00 -1.33550212e-01 4.95422006e-01 4.14602280e-01 -3.16928953e-01 1.05552173e+00 3.95247042e-01 -8.79806221e-01 6.66597426e-01 1.19140074e-02 -1.62413314e-01 6.04503810e-01 -1.08546770e+00 3.99340510e-01 3.24731231e-01 1.36024132e-01 8.35121214e-01 3.49052668e-01 -9.88776207e-01 -1.43710756e+00 -1.51083088e+00 3.37780952e-01 -9.65661630e-02 6.85990870e-01 -1.84841245e-01 -1.13323903e+00 4.81925905e-01 -2.79378831e-01 2.79918402e-01 1.23323584e+00 -1.45772383e-01 -5.25791943e-01 2.30639815e-01 -9.89504278e-01 6.12990618e-01 1.29520214e+00 -6.48424327e-01 -6.57748356e-02 7.80343175e-01 1.01036978e+00 -3.45920950e-01 -9.45783138e-01 6.08816743e-01 2.17857897e-01 -2.05477670e-01 1.17891395e+00 -1.32327700e+00 5.42036474e-01 -2.93999881e-01 1.35133006e-02 -1.24769878e+00 -6.60856128e-01 -6.85996413e-01 -4.11589742e-01 6.38584733e-01 7.97594428e-01 -7.42906034e-01 1.06052840e+00 2.95671046e-01 -2.74443507e-01 -1.10641038e+00 -5.98685861e-01 -5.44755995e-01 3.02944129e-04 1.52007431e-01 6.04891360e-01 1.00727904e+00 7.51773492e-02 9.53937650e-01 -3.40669870e-01 7.58614168e-02 4.49181646e-01 2.81695426e-01 4.04646665e-01 -1.08873236e+00 -4.68311191e-01 -4.49273646e-01 -6.22621894e-01 -1.01157415e+00 3.69466305e-01 -1.38951683e+00 -5.13761163e-01 -1.68666601e+00 5.12170374e-01 -3.04287165e-01 -7.24362433e-01 6.04978561e-01 -6.78821921e-01 3.06171209e-01 -1.60136953e-01 1.34950951e-01 -4.72568721e-01 8.07221472e-01 1.66661847e+00 -4.65482771e-01 -4.04931664e-01 -2.06543729e-01 -9.87222970e-01 1.80415183e-01 7.91619301e-01 -3.87809783e-01 -6.72543466e-01 5.91744706e-02 3.09705883e-01 -8.63604918e-02 -3.84076275e-02 -5.84535182e-01 -2.14193106e-01 -4.69217658e-01 4.81966525e-01 -1.76524669e-01 3.31102461e-01 -5.42869747e-01 6.95893094e-02 6.74348652e-01 -4.95042741e-01 -3.67422462e-01 2.17625439e-01 9.46878970e-01 -1.44575775e-01 1.34083450e-01 7.78069377e-01 -1.78127825e-01 -4.92151558e-01 1.06048226e+00 1.29082039e-01 -2.17851266e-01 9.69538987e-01 -8.63976702e-02 -3.22514504e-01 -1.20831430e-01 -6.73729718e-01 -2.62112096e-02 3.87740195e-01 1.47781000e-01 8.60260725e-01 -1.26742971e+00 -5.44216990e-01 1.56893894e-01 3.81485492e-01 -1.24062568e-01 1.18352793e-01 4.75591719e-01 -5.36727011e-01 5.60509980e-01 -8.67476463e-02 -1.09005742e-01 -1.24130321e+00 1.00120223e+00 3.40501606e-01 -4.38935012e-01 -3.74765009e-01 9.12731707e-01 6.47547841e-01 -1.15945809e-01 9.14888643e-03 -1.67686135e-01 -3.26507509e-01 -2.15305299e-01 5.10726571e-01 -2.31240485e-02 1.57500088e-01 -4.99457806e-01 -4.44419831e-01 5.96483767e-01 -5.53988695e-01 7.03620672e-01 1.43839717e+00 4.37738001e-01 -4.73313294e-02 -1.46003351e-01 1.39616406e+00 -1.02004826e-01 -1.10473108e+00 -1.02635354e-01 -2.30615392e-01 -4.36146230e-01 5.54518364e-02 -7.98559606e-01 -9.26768422e-01 7.61997163e-01 3.68057430e-01 -3.00544560e-01 8.89841974e-01 -6.70490861e-02 8.00043762e-01 5.21495998e-01 2.30222479e-01 -4.94387954e-01 3.07827145e-01 2.01564789e-01 7.19144821e-01 -1.35884809e+00 3.89064074e-01 -9.35125828e-01 -4.91886169e-01 9.23973560e-01 6.32700384e-01 -5.36734471e-03 2.36863092e-01 -3.85739446e-01 -3.43396455e-01 -5.90445101e-01 -5.38224041e-01 -3.17521304e-01 5.62371790e-01 6.54810131e-01 9.37673748e-01 9.06582698e-02 -2.25351185e-01 4.23339635e-01 3.15135419e-01 -1.13415033e-01 6.48235232e-02 8.86557996e-01 -3.53921473e-01 -1.41149950e+00 1.12946063e-01 5.76484382e-01 -5.40825665e-01 -5.73019385e-01 -7.66061783e-01 3.56450051e-01 -1.45294517e-01 7.51303077e-01 -4.94706005e-01 -3.67966592e-01 2.05416426e-01 -1.79898009e-01 8.55012119e-01 -1.00852740e+00 -2.67489851e-01 -6.01689294e-02 -6.76774383e-02 -3.99403423e-01 -2.56855994e-01 1.37807786e-01 -1.54646719e+00 2.90086735e-02 -6.27837002e-01 4.79136527e-01 3.44274729e-01 6.60647452e-01 7.53499448e-01 7.96433270e-01 8.49305511e-01 -6.52542830e-01 -3.03897768e-01 -8.12524319e-01 -4.60027933e-01 5.87895274e-01 3.23242903e-01 -5.42950213e-01 7.95504078e-03 3.95309627e-02]
[5.1072773933410645, 5.913553714752197]
c66ac54e-53a6-4475-9c46-95119f1416e9
augdmc-data-augmentation-guided-deep-multiple
2306.13023
null
https://arxiv.org/abs/2306.13023v1
https://arxiv.org/pdf/2306.13023v1.pdf
AugDMC: Data Augmentation Guided Deep Multiple Clustering
Clustering aims to group similar objects together while separating dissimilar ones apart. Thereafter, structures hidden in data can be identified to help understand data in an unsupervised manner. Traditional clustering methods such as k-means provide only a single clustering for one data set. Deep clustering methods such as auto-encoder based clustering methods have shown a better performance, but still provide a single clustering. However, a given dataset might have multiple clustering structures and each represents a unique perspective of the data. Therefore, some multiple clustering methods have been developed to discover multiple independent structures hidden in data. Although deep multiple clustering methods provide better performance, how to efficiently capture the alternative perspectives in data is still a problem. In this paper, we propose AugDMC, a novel data Augmentation guided Deep Multiple Clustering method, to tackle the challenge. Specifically, AugDMC leverages data augmentations to automatically extract features related to a certain aspect of the data using a self-supervised prototype-based representation learning, where different aspects of the data can be preserved under different data augmentations. Moreover, a stable optimization strategy is proposed to alleviate the unstable problem from different augmentations. Thereafter, multiple clusterings based on different aspects of the data can be obtained. Experimental results on three real-world datasets compared with state-of-the-art methods validate the effectiveness of the proposed method.
['Juhua Hu', 'Maham Rashid', 'Enbei Liu', 'Jiawei Yao']
2023-06-22
null
null
null
null
['clustering', 'deep-clustering', 'deep-clustering']
['methodology', 'miscellaneous', 'natural-language-processing']
[-1.72285721e-01 -1.24550559e-01 -1.94507703e-01 -5.33897698e-01 -6.05280280e-01 -4.05153364e-01 3.97360474e-01 3.38959664e-01 -1.10063739e-01 3.11732870e-02 2.64324069e-01 3.90674293e-01 -4.92813736e-01 -5.68573654e-01 -4.20033395e-01 -1.01537478e+00 7.27927089e-02 6.69475436e-01 -2.09834114e-01 1.30633965e-01 6.85794055e-02 6.60851598e-02 -1.70012951e+00 4.68946785e-01 8.70949805e-01 7.57261693e-01 4.70563799e-01 -3.73290363e-03 -3.20177704e-01 3.59605610e-01 -5.63232541e-01 2.17551425e-01 3.45959157e-01 -3.81219566e-01 -5.84867477e-01 5.59361935e-01 2.31287926e-01 -2.46074367e-02 -3.22536826e-01 1.07292783e+00 3.27885896e-01 6.83976188e-02 4.98168826e-01 -1.44433606e+00 -7.01844871e-01 7.39891171e-01 -6.74088061e-01 -3.20335358e-01 -1.93747967e-01 -1.24856420e-01 1.06396139e+00 -8.33223403e-01 3.30415428e-01 1.08300674e+00 4.32660520e-01 5.20189822e-01 -1.46815920e+00 -6.41322255e-01 2.39547879e-01 1.98686287e-01 -1.86042786e+00 -2.47231975e-01 1.08604443e+00 -4.34124142e-01 2.55826265e-01 -1.89980529e-02 5.20808697e-01 8.56648624e-01 -4.12494659e-01 1.01681983e+00 9.33617234e-01 -1.16351470e-01 2.28484705e-01 1.87030017e-01 3.93950433e-01 5.12067616e-01 1.36154130e-01 -3.24524611e-01 -3.37542683e-01 3.00945520e-01 3.52789938e-01 5.82910955e-01 -3.30263019e-01 -5.83104670e-01 -1.38060367e+00 8.38462889e-01 6.54364467e-01 5.79768658e-01 -3.41802835e-01 -2.93168515e-01 3.65648896e-01 7.34584732e-03 1.35502890e-01 4.53918755e-01 -3.87222499e-01 2.28579298e-01 -1.18497765e+00 1.54551879e-01 3.28727365e-01 9.70254421e-01 1.28851068e+00 -1.20699719e-01 -1.12520456e-01 7.22392082e-01 4.01342511e-01 4.74705137e-02 8.42499375e-01 -8.51753891e-01 4.00413483e-01 1.34744632e+00 -2.82756001e-01 -1.38699377e+00 -4.89391863e-01 -5.83764732e-01 -1.44990492e+00 -7.49240667e-02 1.06863558e-01 6.74147978e-02 -8.51669133e-01 1.80336010e+00 3.36200714e-01 2.60752022e-01 2.14549884e-01 8.51234317e-01 7.70598829e-01 7.13339567e-01 -4.74555939e-01 -2.11147010e-01 1.09205151e+00 -9.29340720e-01 -9.00109529e-01 -8.55518691e-03 6.05629206e-01 -4.44065213e-01 9.54860508e-01 4.41244483e-01 -5.76343179e-01 -8.12503576e-01 -1.13188589e+00 3.89702967e-03 -4.39556688e-01 3.03081125e-01 5.02170503e-01 3.75762016e-01 -8.57740104e-01 4.60590690e-01 -8.62255514e-01 -8.09427276e-02 5.52163005e-01 4.70042259e-01 -4.52459782e-01 -2.27922440e-01 -8.07516813e-01 1.91018149e-01 8.82169247e-01 1.88550100e-01 -6.75444961e-01 -6.26185715e-01 -7.73855090e-01 2.16791734e-01 5.58171391e-01 -3.99389982e-01 5.04534423e-01 -9.10019994e-01 -1.01396263e+00 5.76641262e-01 -2.10478976e-01 -2.07505688e-01 1.27611561e-02 -1.28798813e-01 -5.02110362e-01 1.72219962e-01 4.18573201e-01 7.60805190e-01 7.16113925e-01 -1.76827645e+00 -6.03409648e-01 -5.83892107e-01 -3.38924706e-01 2.04461172e-01 -8.14406157e-01 -7.68890828e-02 -8.56496632e-01 -6.86400771e-01 5.01602471e-01 -8.16865981e-01 -4.15490597e-01 -2.54587382e-01 -7.10842609e-01 -1.80936933e-01 1.19689536e+00 -3.64718676e-01 1.44939160e+00 -2.33272910e+00 5.83633721e-01 3.12253922e-01 6.07947111e-01 1.87729031e-01 -8.59754086e-02 1.89268917e-01 -8.62462446e-02 3.28832835e-01 -4.76851672e-01 -7.22835064e-01 1.85640324e-02 4.06999230e-01 -4.02641296e-02 3.51577342e-01 2.36829609e-01 7.08207011e-01 -7.29120731e-01 -5.52515090e-01 2.66805261e-01 5.03563643e-01 -5.04726112e-01 3.88158649e-01 -1.54130151e-02 6.51939094e-01 -2.01667696e-01 5.86408973e-01 7.98715293e-01 -5.07939458e-01 3.02140236e-01 -4.21300143e-01 -1.02010936e-01 -3.58738214e-01 -1.37397301e+00 2.02426243e+00 -1.30738020e-01 4.76075679e-01 6.01494163e-02 -1.56286609e+00 9.05262768e-01 2.01843634e-01 8.82757008e-01 -4.12034303e-01 2.67440621e-02 4.82783280e-02 2.18634024e-01 -2.77766615e-01 4.39720809e-01 4.43880446e-03 -4.30128165e-02 4.91900086e-01 1.49286259e-02 5.38511693e-01 2.67983258e-01 2.15783238e-01 8.00104618e-01 -2.14700341e-01 -2.09084861e-02 -1.99360162e-01 3.54311258e-01 -3.06323487e-02 9.85665023e-01 4.85759526e-01 -3.74924392e-02 1.07803917e+00 1.24350339e-01 -3.88109565e-01 -8.58031988e-01 -7.54982650e-01 -1.41658619e-01 5.60777307e-01 4.09506917e-01 -8.27219903e-01 -7.02784598e-01 -6.78988874e-01 -1.89347759e-01 2.04930425e-01 -7.78416455e-01 -2.75022089e-01 -4.66851056e-01 -1.06351352e+00 3.96026969e-01 4.95368689e-01 5.93425512e-01 -7.21908510e-01 -4.28221911e-01 2.45371282e-01 -4.35573310e-01 -1.08883655e+00 -2.28343785e-01 2.74729103e-01 -8.37347686e-01 -1.18480766e+00 -3.73399347e-01 -8.74118507e-01 8.63106191e-01 7.78251112e-01 7.49466836e-01 2.90078849e-01 -1.53862432e-01 6.97318017e-02 -5.54508686e-01 -4.42362167e-02 -2.51681447e-01 1.13882139e-01 2.75727510e-01 4.93095309e-01 6.25610709e-01 -7.14786828e-01 -5.90599418e-01 4.38595951e-01 -1.24501741e+00 6.97443634e-02 7.82122076e-01 7.84803510e-01 7.67946064e-01 7.77091086e-01 5.22634983e-01 -7.44942844e-01 3.30241531e-01 -7.28944540e-01 -1.61929369e-01 2.71515638e-01 -7.21100569e-01 2.07309708e-01 1.12535465e+00 -4.42839116e-01 -7.00114071e-01 2.19197527e-01 3.94666582e-01 -9.94662702e-01 -5.65889060e-01 8.31153750e-01 -6.74331665e-01 6.05418742e-01 2.87895352e-01 4.27657723e-01 2.59384573e-01 -8.02722931e-01 4.80673850e-01 7.23229706e-01 5.41699231e-01 -4.93699759e-01 8.75252545e-01 7.10577726e-01 -2.24892110e-01 -6.55464232e-01 -8.55526030e-01 -9.46566224e-01 -1.17338347e+00 -1.18934199e-01 9.61479425e-01 -1.07047081e+00 -3.81297201e-01 4.34047133e-01 -8.19906056e-01 7.41239041e-02 -1.62983596e-01 3.48929971e-01 -1.87823057e-01 6.17957354e-01 -1.11579537e-01 -4.30307090e-01 -5.22139259e-02 -1.26520658e+00 1.05801928e+00 2.79229820e-01 -9.91611704e-02 -9.01684523e-01 -9.30621028e-02 4.08627748e-01 3.98243554e-02 4.14621085e-01 9.61216152e-01 -9.53363597e-01 -6.43801093e-01 -1.74205929e-01 -1.25197202e-01 3.73825788e-01 8.45522642e-01 1.43658891e-01 -7.57697344e-01 -6.38881624e-01 3.07850819e-02 -1.52447104e-01 9.32457447e-01 1.24971442e-01 1.58595705e+00 -5.15130103e-01 -5.81911325e-01 7.54725873e-01 1.43571138e+00 2.10007966e-01 3.71098280e-01 3.06161374e-01 1.22703826e+00 7.43662596e-01 4.26580250e-01 4.54392105e-01 6.02787495e-01 6.65308356e-01 4.58965987e-01 -1.00017034e-01 2.56431419e-02 -1.28955320e-01 2.15989977e-01 1.20233607e+00 3.09779942e-01 -7.10490197e-02 -1.02071524e+00 7.29954123e-01 -2.08912802e+00 -8.90146375e-01 -1.62023857e-01 2.00440145e+00 5.49922347e-01 -1.05570480e-01 1.04100920e-01 4.56733763e-01 1.01695597e+00 1.47633431e-02 -7.58514404e-01 4.37834114e-01 -3.43002409e-01 -1.47876889e-01 -3.41987461e-02 -2.06384826e-02 -1.28544426e+00 6.60474539e-01 5.11547947e+00 7.61432528e-01 -9.92131710e-01 -1.35688573e-01 5.42067111e-01 -9.33898538e-02 -2.62634605e-01 1.80988014e-01 -6.54907346e-01 7.89644122e-01 6.32530808e-01 -1.30210146e-01 3.21808189e-01 7.33534873e-01 1.82358965e-01 2.05476642e-01 -1.20461285e+00 1.09385991e+00 1.14217035e-01 -1.30885065e+00 3.17216098e-01 3.15579951e-01 7.89588928e-01 -2.22923979e-01 2.22916722e-01 2.76698172e-01 1.96094990e-01 -9.69436049e-01 3.53589833e-01 5.31333685e-01 3.83716583e-01 -9.11020517e-01 5.63400686e-01 5.39830267e-01 -1.36229873e+00 -2.81315744e-01 -3.97780746e-01 1.33252442e-01 -1.55630887e-01 7.19547093e-01 -6.99710965e-01 1.00292599e+00 9.23595607e-01 1.26542044e+00 -9.77270663e-01 8.85518849e-01 1.64324656e-01 4.81868654e-01 -2.41884142e-01 3.48142862e-01 3.84384453e-01 -5.70894837e-01 4.03212458e-01 8.46522510e-01 2.38861173e-01 -5.22882603e-02 5.03776133e-01 1.13226700e+00 -8.28035623e-02 1.35905772e-01 -5.86322725e-01 -4.58602048e-02 5.94479978e-01 1.41110539e+00 -9.05122876e-01 -2.29830369e-01 -3.71177405e-01 8.60921383e-01 4.51093823e-01 3.03217769e-01 -5.93290567e-01 -3.03675324e-01 7.16884434e-01 -8.24380219e-02 3.12809885e-01 -2.80365288e-01 -3.31449419e-01 -1.37422085e+00 1.21066213e-01 -1.02183115e+00 5.74188650e-01 -4.04090583e-01 -1.23518467e+00 3.92348856e-01 -1.37618706e-01 -1.69696569e+00 1.53187681e-02 -2.41875693e-01 -5.86851299e-01 4.82448071e-01 -1.18178284e+00 -1.19747078e+00 -4.38826054e-01 6.17067933e-01 6.28448665e-01 -5.41884065e-01 7.39668489e-01 3.68797898e-01 -1.03629887e+00 6.15442097e-01 6.64032757e-01 3.58162433e-01 7.51740754e-01 -1.40597260e+00 -6.29766732e-02 1.11231101e+00 3.86421502e-01 1.05961192e+00 1.97880402e-01 -4.74493951e-01 -1.33933258e+00 -1.38253856e+00 2.74069577e-01 -2.64188021e-01 2.92208076e-01 -3.96810830e-01 -1.40856683e+00 4.71394926e-01 2.97137678e-01 -1.36669204e-01 1.19165444e+00 2.77020693e-01 -4.54261869e-01 -2.86993116e-01 -8.48959446e-01 4.47459757e-01 7.10780263e-01 -3.57124984e-01 -4.83678699e-01 1.19507261e-01 8.22861314e-01 1.40103877e-01 -9.47187543e-01 4.63642120e-01 2.00061485e-01 -1.09321141e+00 7.63571799e-01 -6.69862568e-01 5.92698216e-01 -8.15192461e-01 -3.73422354e-01 -1.52346206e+00 -4.56368893e-01 -4.53446507e-01 -2.83076167e-01 1.57388389e+00 3.19653489e-02 -1.91991374e-01 7.83755302e-01 5.42985201e-01 -3.04735959e-01 -7.16405928e-01 -7.30418861e-01 -6.62950039e-01 5.51451892e-02 -1.88145369e-01 8.72416914e-01 1.43906784e+00 -1.10783845e-01 4.30622786e-01 -3.84755433e-01 4.12660629e-01 8.32893312e-01 5.50382614e-01 9.53766525e-01 -1.52686977e+00 8.85077789e-02 -5.38998067e-01 -5.58095753e-01 -9.04771626e-01 3.19669574e-01 -1.16842651e+00 -7.99408555e-02 -1.54775560e+00 4.49440032e-01 -5.72469831e-01 -5.07532656e-01 6.34143233e-01 -3.51301670e-01 -1.46947607e-01 1.71535850e-01 5.54698110e-01 -8.31104815e-01 8.16484630e-01 8.65637481e-01 -3.68200153e-01 -2.84728765e-01 -2.88835585e-01 -1.07220781e+00 6.09079182e-01 8.75596404e-01 -4.40997750e-01 -5.42802930e-01 -5.78512192e-01 -3.23343240e-02 -2.73173928e-01 1.63498640e-01 -1.26184916e+00 6.46126330e-01 9.97789502e-02 3.89504701e-01 -9.82341528e-01 1.56773597e-01 -1.03822088e+00 1.30504459e-01 1.58317342e-01 -2.70616829e-01 -3.43804806e-02 -5.47771826e-02 8.39499652e-01 -7.16654241e-01 6.59253970e-02 7.91190505e-01 -1.76079139e-01 -6.93896353e-01 4.91984248e-01 -1.94067121e-01 -6.41634911e-02 9.88912940e-01 -3.50917816e-01 3.86871467e-03 -5.37844077e-02 -6.79669440e-01 7.39683211e-01 5.92316508e-01 5.78250349e-01 7.44192898e-01 -1.59283161e+00 -6.09927952e-01 2.77659982e-01 3.69831085e-01 7.81326115e-01 4.21428889e-01 6.68834388e-01 3.83864269e-02 2.27957562e-01 -1.65059119e-01 -9.58436191e-01 -1.15316665e+00 9.11562204e-01 8.70915800e-02 -5.34529202e-02 -6.65827394e-01 4.40510750e-01 3.58525664e-01 -6.63218081e-01 2.26200595e-01 -2.17915669e-01 -4.76076424e-01 5.56044102e-01 5.53797603e-01 1.98492453e-01 5.05741164e-02 -9.52528059e-01 -2.24262074e-01 6.27927423e-01 -3.69649947e-01 2.91851848e-01 1.57685483e+00 -3.99002820e-01 -2.83618927e-01 6.47683024e-01 1.51072586e+00 -4.35458541e-01 -1.20245135e+00 -4.87540483e-01 1.03739150e-01 -5.46484709e-01 1.86314527e-02 -4.43397731e-01 -1.39945197e+00 1.04654658e+00 5.64064682e-01 3.14645916e-01 1.29458249e+00 -8.13604891e-02 6.74407601e-01 4.48029459e-01 1.61810983e-02 -1.24991858e+00 3.26096088e-01 1.07866563e-01 5.14943779e-01 -1.50912786e+00 -8.90447050e-02 -1.62378192e-01 -7.41607547e-01 1.14125717e+00 8.60491276e-01 2.19793335e-01 6.77427053e-01 -9.16456729e-02 1.17930941e-01 -4.43321884e-01 -5.22219419e-01 -3.97378355e-01 2.74321824e-01 5.36410272e-01 1.41851291e-01 1.32090766e-02 2.94142634e-01 8.37528646e-01 -4.71973792e-02 -5.89679301e-01 5.39319813e-01 6.43304765e-01 -1.84315741e-01 -1.09940326e+00 -4.35432851e-01 4.83717352e-01 -1.34529084e-01 2.04762965e-01 -5.99335313e-01 7.57493854e-01 2.92590618e-01 1.11054409e+00 2.44601175e-01 -6.92180395e-01 3.26300040e-02 3.29688587e-03 -6.27015233e-02 -7.76383162e-01 -3.07918102e-01 3.19105089e-01 -6.44204974e-01 -3.35357487e-01 -8.88627291e-01 -7.97585130e-01 -1.47299230e+00 2.18524020e-02 -2.14183956e-01 2.58538753e-01 4.20475721e-01 9.39991951e-01 6.82282388e-01 5.38499475e-01 1.13340437e+00 -6.95500493e-01 -1.08420938e-01 -7.49026835e-01 -6.05046451e-01 7.38329589e-01 3.55760932e-01 -7.30292320e-01 -3.56371164e-01 8.73779431e-02]
[9.032363891601562, 3.595463752746582]
3883685b-e282-41e3-8c46-d48ad74bc2c3
xcoref-cross-document-coreference-resolution
2109.05252
null
https://arxiv.org/abs/2109.05252v1
https://arxiv.org/pdf/2109.05252v1.pdf
XCoref: Cross-document Coreference Resolution in the Wild
Datasets and methods for cross-document coreference resolution (CDCR) focus on events or entities with strict coreference relations. They lack, however, annotating and resolving coreference mentions with more abstract or loose relations that may occur when news articles report about controversial and polarized events. Bridging and loose coreference relations trigger associations that may lead to exposing news readers to bias by word choice and labeling. For example, coreferential mentions of "direct talks between U.S. President Donald Trump and Kim" such as "an extraordinary meeting following months of heated rhetoric" or "great chance to solve a world problem" form a more positive perception of this event. A step towards bringing awareness of bias by word choice and labeling is the reliable resolution of coreferences with high lexical diversity. We propose an unsupervised method named XCoref, which is a CDCR method that capably resolves not only previously prevalent entities, such as persons, e.g., "Donald Trump," but also abstractly defined concepts, such as groups of persons, "caravan of immigrants," events and actions, e.g., "marching to the U.S. border." In an extensive evaluation, we compare the proposed XCoref to a state-of-the-art CDCR method and a previous method TCA that resolves such complex coreference relations and find that XCoref outperforms these methods. Outperforming an established CDCR model shows that the new CDCR models need to be evaluated on semantically complex mentions with more loose coreference relations to indicate their applicability of models to resolve mentions in the "wild" of political news articles.
['Bela Gipp', 'Karsten Donnay', 'Felix Hamborg', 'Anastasia Zhukova']
2021-09-11
xcoref-cross-document-coreference-resolution-1
https://dl.acm.org/doi/abs/10.1007/978-3-030-96957-8_25
https://www.gipp.com/wp-content/papercite-data/pdf/zhukova2022.pdf
information-for-a-better-world-shaping-the
['cross-document-coreference-resolution']
['natural-language-processing']
[-3.79702821e-02 4.40151751e-01 -5.88316858e-01 -3.43800485e-01 -8.78289938e-01 -8.83652508e-01 1.14058125e+00 6.24959171e-01 -5.47272146e-01 1.17983365e+00 1.05526686e+00 -3.65230381e-01 -3.84074122e-01 -8.11857104e-01 -5.77351570e-01 -3.37294787e-01 1.39222905e-01 1.01570725e+00 2.77659118e-01 -9.49915469e-01 3.13533515e-01 3.47211570e-01 -1.32943451e+00 7.58217573e-01 5.86757481e-01 1.39519557e-01 2.56885830e-02 -1.50226668e-01 -3.77571940e-01 7.31060088e-01 -7.26939917e-01 -7.27110326e-01 -2.63042539e-01 -5.69080226e-02 -1.51462102e+00 -6.45439386e-01 4.79693264e-01 6.17166877e-01 3.71232480e-02 1.28574991e+00 4.84037310e-01 2.16362953e-01 4.65159237e-01 -8.53835940e-01 -3.78305405e-01 1.56645286e+00 -5.48846126e-01 6.89453840e-01 1.03387368e+00 -5.87775290e-01 1.25945139e+00 -5.29035985e-01 1.51917982e+00 1.76424170e+00 7.79058456e-01 5.91650963e-01 -1.40105915e+00 -9.09073293e-01 4.03531760e-01 2.20444217e-01 -1.18813372e+00 -3.17424685e-01 6.52307332e-01 -5.04899621e-01 9.19532895e-01 8.68880987e-01 8.47271308e-02 1.59430647e+00 -1.06252678e-01 2.76871353e-01 1.11287391e+00 -4.48600888e-01 -1.82431147e-01 2.36578718e-01 6.33889496e-01 -9.34739187e-02 5.76551914e-01 6.79829419e-02 -5.25737524e-01 -5.58844805e-01 -8.96541700e-02 -5.82585216e-01 -5.90839505e-01 1.40972286e-01 -1.32025945e+00 9.64878082e-01 3.79039258e-01 9.17285502e-01 -2.77196229e-01 -4.23264265e-01 4.66010928e-01 3.92837357e-03 4.10044461e-01 8.04141760e-01 -4.35444862e-01 9.03211907e-02 -6.65645719e-01 5.72473884e-01 1.04541922e+00 8.63563120e-01 5.38637936e-01 -7.69107759e-01 -6.00776635e-02 7.15799451e-01 1.67523026e-01 4.11134630e-01 1.71297044e-01 -1.11819589e+00 6.90808177e-01 6.78623855e-01 5.78090370e-01 -1.44262505e+00 -7.64749169e-01 -4.01403397e-01 -6.08657360e-01 -2.58151293e-01 3.33304703e-01 -1.81336358e-01 -3.01606655e-01 1.96941173e+00 4.53872710e-01 -6.52253479e-02 5.94612479e-01 1.18974555e+00 1.31126142e+00 6.15119696e-01 4.48387176e-01 -6.14896834e-01 2.12483144e+00 -1.68758824e-01 -1.05692089e+00 -2.62888849e-01 5.19334972e-01 -9.86288548e-01 6.47712648e-01 -5.11311665e-02 -9.42463338e-01 -5.90496659e-02 -7.84106910e-01 -9.00105685e-02 -4.59100932e-01 -3.52868706e-01 5.93879163e-01 2.03410864e-01 -3.55095834e-01 4.84132230e-01 -2.65903473e-01 -9.63584244e-01 -2.24887833e-01 8.65629241e-02 -5.10042846e-01 3.11667383e-01 -2.02787375e+00 1.32401586e+00 6.89115226e-01 -2.16320634e-01 -2.90114373e-01 -7.98572123e-01 -7.87562072e-01 -3.89696807e-02 6.97241962e-01 -5.71020782e-01 9.90615249e-01 -8.15665841e-01 -6.75454378e-01 1.51059520e+00 -2.85578519e-01 -6.44317865e-01 2.63420463e-01 -5.07723153e-01 -1.16822922e+00 -1.12351753e-01 7.92538285e-01 3.78997892e-01 -6.75141290e-02 -1.44985175e+00 -7.93023407e-01 -3.16796362e-01 4.88365561e-01 3.34140837e-01 2.51431435e-01 8.21485162e-01 8.70879367e-02 -4.32845324e-01 1.74273401e-01 -8.56225014e-01 -4.53229807e-02 -1.09661782e+00 -6.45460606e-01 -5.61125576e-01 5.88029385e-01 -2.33862355e-01 1.55429387e+00 -1.83805215e+00 1.24299206e-01 1.33072451e-01 -1.74343865e-02 4.38945033e-02 1.73280239e-01 7.33460248e-01 -5.96619487e-01 4.41351175e-01 1.74091950e-01 3.84955317e-01 -6.73927180e-03 4.68663782e-01 -7.34763324e-01 3.36532712e-01 -8.80782083e-02 3.32825929e-01 -1.24597514e+00 -5.93718767e-01 -3.05454612e-01 3.30551624e-01 -3.35255831e-01 -3.56980741e-01 -2.67422616e-01 3.65386993e-01 -3.87040824e-01 2.98530608e-01 5.07613361e-01 -2.19332412e-01 8.38039637e-01 -7.94662237e-01 -6.65164530e-01 1.00666928e+00 -1.33406913e+00 1.43105996e+00 1.01830073e-01 4.61367846e-01 1.04200289e-01 -7.59994090e-01 9.66768384e-01 6.18259132e-01 7.97099695e-02 -6.24703526e-01 2.78226376e-01 1.99549690e-01 -2.54251622e-02 -3.98091853e-01 8.35454047e-01 -2.40687862e-01 -5.88579178e-01 1.71698973e-01 -2.59708762e-01 2.84604371e-01 5.55421293e-01 6.56363904e-01 8.03903818e-01 -4.01945263e-02 6.79980993e-01 -8.49192083e-01 8.35209072e-01 5.59844613e-01 1.19848251e+00 5.17261267e-01 -9.74253565e-03 2.23390758e-01 5.81993461e-01 -5.56951523e-01 -6.27039671e-01 -9.53902543e-01 -4.51303601e-01 1.02587378e+00 4.37853366e-01 -8.10511708e-01 -3.97225887e-01 -7.02394426e-01 -2.88775563e-01 1.27454269e+00 -7.58705616e-01 3.20065171e-01 -1.03447080e+00 -8.96564424e-01 5.67920446e-01 1.03548966e-01 2.69628435e-01 -9.03157949e-01 -7.41866112e-01 3.06558847e-01 -1.13089263e+00 -1.18495917e+00 -1.21827327e-01 9.94035602e-02 -2.57654965e-01 -1.28775191e+00 -1.05227888e-01 -5.41996062e-01 2.67215282e-01 -1.77166462e-01 1.60790479e+00 -7.42736980e-02 1.06166162e-01 1.44285902e-01 -5.35075307e-01 -3.71430904e-01 -5.07213473e-01 1.32485339e-02 2.86270171e-01 -2.79063016e-01 8.64378810e-01 -4.32694137e-01 -2.19697684e-01 3.38319927e-01 -6.07742727e-01 -2.64091134e-01 5.08800242e-03 7.24225163e-01 3.20043385e-01 -3.00315917e-01 4.13105428e-01 -1.63406324e+00 7.40347266e-01 -7.91376233e-01 -3.34910899e-01 3.68620127e-01 -5.19010961e-01 1.51415735e-01 1.72647517e-02 -5.03933489e-01 -1.50514042e+00 -7.24088073e-01 -2.01636665e-02 3.42396110e-01 -2.68463254e-01 7.09110200e-01 -1.15880482e-01 7.24035144e-01 1.28388524e+00 -4.97527719e-01 -6.03219867e-01 -4.53003645e-01 4.05218273e-01 4.71790463e-01 8.90830517e-01 -1.19206941e+00 5.52926898e-01 5.76685488e-01 -2.07621232e-01 -4.36540514e-01 -1.35582983e+00 -7.93381333e-01 -3.41753066e-01 4.15238664e-02 9.01577353e-01 -9.90721405e-01 -8.11013460e-01 -3.64049435e-01 -1.75971329e+00 3.53785753e-01 -7.39135221e-02 6.06374741e-01 -1.87420458e-01 3.31251144e-01 -5.43916821e-01 -5.29266894e-01 -3.33439648e-01 -4.73883748e-01 6.93981409e-01 2.86920965e-01 -1.16029227e+00 -9.69822466e-01 5.58625221e-01 4.67197955e-01 4.29476351e-02 5.10400951e-01 9.86623764e-01 -1.13073266e+00 1.00389600e-01 3.33159864e-01 -1.95518032e-01 -5.34521282e-01 2.99082827e-02 -1.34182647e-01 -5.41660666e-01 -7.51339123e-02 -2.72054464e-01 -5.42418808e-02 3.87663364e-01 -3.02872006e-02 -1.73532553e-02 -5.49854040e-01 -9.25423026e-01 1.72780789e-02 1.39501345e+00 3.00207943e-01 8.23927462e-01 9.49449360e-01 2.90155113e-02 8.50960314e-01 8.80137980e-01 2.59958059e-01 4.62892950e-01 9.37478304e-01 1.19471066e-01 1.12677485e-01 -1.48558676e-01 -1.40308976e-01 8.10109153e-02 3.58423829e-01 -4.25660998e-01 6.14475422e-02 -1.05749369e+00 7.65659451e-01 -1.89260054e+00 -1.56204057e+00 -6.68430090e-01 1.77253854e+00 1.20064235e+00 1.96893901e-01 -2.90806502e-01 -1.07908621e-01 1.18415272e+00 2.64234304e-01 1.97250634e-01 -4.85153586e-01 -6.49962068e-01 1.57476038e-01 1.35381699e-01 9.69484568e-01 -1.12097263e+00 1.17304993e+00 5.37849045e+00 4.52980250e-01 -6.83546007e-01 3.19817632e-01 -7.42768496e-02 2.93124497e-01 -6.24627590e-01 6.40406311e-01 -1.36397433e+00 2.51586646e-01 5.91460407e-01 -2.89483428e-01 -7.24748746e-02 5.62838793e-01 5.85257746e-02 -4.69859093e-02 -9.56501305e-01 7.39599586e-01 9.66240764e-02 -1.65384030e+00 1.13300271e-01 -2.97781944e-01 6.60687923e-01 -1.50346458e-01 -5.09345233e-01 2.66912311e-01 8.09680998e-01 -6.60208285e-01 7.18553722e-01 3.05077553e-01 4.20719385e-01 -5.93572080e-01 9.87188697e-01 1.22662961e-01 -9.89386082e-01 6.52348101e-02 -3.29069078e-01 -8.95473063e-02 5.70831358e-01 6.22138441e-01 -4.99776423e-01 9.05692697e-01 9.24093783e-01 3.15967172e-01 -5.85031994e-02 4.55432147e-01 -4.51753885e-01 4.09737110e-01 -2.04243347e-01 5.42613678e-02 1.86145276e-01 9.56533756e-03 1.27366984e+00 1.73657906e+00 2.42435604e-01 8.18649054e-01 8.46616328e-02 8.78703117e-01 8.11273009e-02 2.28549585e-01 -6.48444772e-01 4.39802110e-01 9.02421713e-01 1.21915948e+00 -5.12850404e-01 -3.50950122e-01 -1.66646123e-01 3.07074666e-01 4.16039735e-01 3.46646577e-01 -7.94667840e-01 -1.66137859e-01 7.10366786e-01 4.13417280e-01 -1.53535664e-01 4.19203699e-01 3.87556441e-02 -1.12969494e+00 -3.41819435e-01 -1.01912439e+00 1.11504650e+00 -7.02152371e-01 -1.31309950e+00 7.78875828e-01 5.03160715e-01 -9.32463706e-01 -2.06355855e-01 -2.64013350e-01 -7.03377426e-01 6.80710852e-01 -1.31290948e+00 -9.96880829e-01 2.38595530e-02 5.88332653e-01 1.70140430e-01 6.97415546e-02 9.32925582e-01 3.22581828e-01 -1.61632344e-01 2.96305656e-01 -6.97489023e-01 3.49020809e-01 1.17907429e+00 -1.06647873e+00 -1.05996124e-01 9.15517986e-01 1.03172347e-01 9.52383518e-01 1.48281503e+00 -8.80051315e-01 -6.17760956e-01 -7.02217042e-01 1.94328451e+00 -5.88442326e-01 7.38021612e-01 -1.68936159e-02 -9.30457294e-01 1.03375328e+00 6.88800037e-01 -5.42607009e-01 7.38313794e-01 9.79990184e-01 -8.15460145e-01 3.64887752e-02 -1.07866156e+00 6.95864737e-01 1.17283177e+00 -2.14302734e-01 -1.80855191e+00 4.02467340e-01 7.90357411e-01 -5.18635750e-01 -8.33403945e-01 7.46723831e-01 4.42307293e-02 -6.96481228e-01 9.76709545e-01 -1.07865345e+00 4.48495522e-02 -4.61304694e-01 -3.47650468e-01 -1.16604686e+00 -5.98150671e-01 -6.88045561e-01 3.93271565e-01 1.79563510e+00 8.05825353e-01 -6.49584830e-01 6.68876097e-02 5.03189683e-01 -1.13871716e-01 2.91140318e-01 -9.98368263e-01 -4.35684741e-01 6.66980445e-02 -2.92459548e-01 4.66392845e-01 1.89124358e+00 8.55689764e-01 9.15841401e-01 -9.54151452e-02 4.03154522e-01 5.55929840e-01 4.68442678e-01 4.52946693e-01 -1.78155589e+00 1.91549718e-01 -2.49753594e-01 -5.29393554e-02 -4.33277637e-01 5.20777702e-01 -1.00494266e+00 -2.64807016e-01 -1.34797907e+00 3.67353529e-01 -5.63254118e-01 -8.07049274e-02 2.40917817e-01 -2.30780505e-02 -1.36679783e-01 6.02848455e-02 1.82025492e-01 -6.38268530e-01 -9.55999866e-02 7.65000224e-01 -1.84841037e-01 -2.41594225e-01 -4.54149604e-01 -1.05728924e+00 1.06480718e+00 5.45846939e-01 -7.63024449e-01 1.17760107e-01 -1.61406398e-01 9.16189313e-01 1.46969303e-01 2.36856461e-01 -4.63264436e-01 4.09268260e-01 -3.74316543e-01 -1.05978593e-01 -4.33986247e-01 -3.79749388e-02 -5.74098289e-01 7.13737369e-01 5.32598138e-01 -3.72362256e-01 1.31381750e-01 1.92331791e-01 2.11542934e-01 -4.16570455e-01 -3.23679775e-01 5.61942160e-01 -3.49132180e-01 -6.89928412e-01 -5.52157640e-01 -2.91174710e-01 6.34136140e-01 8.27808142e-01 2.66117007e-01 -1.05140126e+00 -8.48077536e-02 -1.08012807e+00 2.22460270e-01 1.39740959e-01 7.37852216e-01 1.99886888e-01 -1.41580462e+00 -1.12662792e+00 -6.73160315e-01 1.16612256e-01 -2.86534995e-01 7.94144347e-02 9.29860115e-01 -1.31501377e-01 5.06234050e-01 -5.24430797e-02 -1.99609026e-01 -1.55431843e+00 8.71585786e-01 1.59888461e-01 -5.29746830e-01 -6.21846914e-01 4.75138038e-01 2.15272546e-01 -4.45401430e-01 2.98259724e-02 -1.22235157e-01 -8.76125216e-01 6.83510363e-01 6.13184988e-01 2.59033293e-01 -2.10014671e-01 -1.07763815e+00 -8.95219922e-01 4.84364778e-01 -1.50594801e-01 -5.50138727e-02 1.00592756e+00 -4.24459845e-01 -5.82789660e-01 3.78888726e-01 5.96601844e-01 6.12619698e-01 -1.13041617e-01 -3.31664562e-01 4.68972117e-01 -1.97363168e-01 -4.78051275e-01 -1.15204394e+00 -4.96171504e-01 2.21949503e-01 2.13703126e-01 2.65143335e-01 5.48258245e-01 6.71574473e-01 2.86437452e-01 2.56712526e-01 4.97880489e-01 -1.12680817e+00 -4.74157959e-01 7.87020385e-01 1.18175519e+00 -7.76404917e-01 6.37040809e-02 -8.42175901e-01 -7.05600142e-01 9.21421707e-01 5.19608021e-01 1.21225685e-01 4.10665661e-01 4.77236390e-01 3.79276961e-01 -6.48616672e-01 -8.95190358e-01 -3.28273237e-01 2.59820253e-01 3.87218148e-01 7.43298173e-01 3.44425231e-01 -1.41693711e+00 8.81890237e-01 -3.00516129e-01 -3.90464574e-01 5.46331763e-01 3.41411948e-01 -3.65148753e-01 -1.09136140e+00 -8.17422509e-01 -2.22044766e-01 -8.82850051e-01 -2.74991214e-01 -5.83094180e-01 1.14931107e+00 5.44307888e-01 9.46363330e-01 2.22123191e-01 -1.48972571e-02 5.73959768e-01 1.46244898e-01 1.76006734e-01 -4.95908052e-01 -9.12770987e-01 -6.06396012e-02 1.13099813e+00 -3.98482442e-01 -1.18662047e+00 -9.47733104e-01 -1.50989377e+00 -3.74368250e-01 -4.06044245e-01 7.57576823e-01 7.42511898e-02 1.12131357e+00 1.48318410e-01 7.75246471e-02 -1.40462152e-03 -1.77443326e-01 -2.19523311e-01 -9.30676877e-01 -1.90054864e-01 1.09335172e+00 -1.72317833e-01 -8.86157870e-01 -4.69576061e-01 -1.57225430e-01]
[9.383354187011719, 9.509909629821777]
c9471da5-eb17-4751-91a5-123dd258e6dd
semi-supervised-learning-with-sparse
1610.00520
null
http://arxiv.org/abs/1610.00520v1
http://arxiv.org/pdf/1610.00520v1.pdf
Semi-supervised Learning with Sparse Autoencoders in Phone Classification
We propose the application of a semi-supervised learning method to improve the performance of acoustic modelling for automatic speech recognition based on deep neural net- works. As opposed to unsupervised initialisation followed by supervised fine tuning, our method takes advantage of both unlabelled and labelled data simultaneously through mini- batch stochastic gradient descent. We tested the method with varying proportions of labelled vs unlabelled observations in frame-based phoneme classification on the TIMIT database. Our experiments show that the method outperforms standard supervised training for an equal amount of labelled data and provides competitive error rates compared to state-of-the-art graph-based semi-supervised learning techniques.
['Giampiero Salvi', 'Akash Kumar Dhaka']
2016-10-03
null
null
null
null
['acoustic-modelling']
['speech']
[ 4.17425454e-01 5.02394676e-01 1.27654141e-02 -8.95415783e-01 -1.12231731e+00 -1.62463844e-01 8.06600809e-01 -1.01656877e-01 -7.42311358e-01 6.32900655e-01 1.55251175e-01 -7.02943325e-01 1.30674660e-01 -4.10581797e-01 -6.17791593e-01 -6.52601421e-01 -1.44044578e-01 9.61405516e-01 4.17896837e-01 -4.49331524e-03 -5.04740812e-02 2.94006914e-01 -1.36517549e+00 2.98395872e-01 3.01081598e-01 8.33041728e-01 2.54879534e-01 1.11542237e+00 -2.68568397e-01 1.00579250e+00 -5.18249273e-01 -2.93825507e-01 -1.97997287e-01 -4.76743788e-01 -8.68171453e-01 5.42911947e-01 5.65283656e-01 2.26174623e-01 -3.59446645e-01 8.28229368e-01 8.61485183e-01 5.24460196e-01 6.60844982e-01 -7.61781633e-01 -1.01324297e-01 9.12828505e-01 8.22796207e-03 4.51923281e-01 8.93520936e-02 -1.91926286e-01 8.80172729e-01 -1.13337851e+00 3.26393306e-01 1.45976985e+00 7.06309915e-01 5.01630306e-01 -1.26707554e+00 -3.44663590e-01 5.88575006e-02 2.47363016e-01 -1.22702706e+00 -1.26696575e+00 8.96230519e-01 -3.20407242e-01 1.44248307e+00 3.72458249e-02 3.03476781e-01 9.58909333e-01 -4.09071714e-01 8.76608729e-01 1.06446970e+00 -1.15127516e+00 5.75107276e-01 2.11273972e-02 2.16284588e-01 9.52071607e-01 -4.40687388e-01 5.46689987e-01 -6.90663457e-01 -1.28810272e-01 3.49252939e-01 -7.96975672e-01 8.34990889e-02 -3.75924110e-01 -1.16944599e+00 9.42460656e-01 -5.21718599e-02 2.17248037e-01 -2.58172482e-01 1.21598318e-01 5.66539943e-01 2.80265987e-01 1.01754189e+00 -2.91500092e-02 -7.16114879e-01 -5.09427190e-01 -1.40110075e+00 -4.07070518e-01 1.08616710e+00 6.13859892e-01 7.45051801e-01 8.76715899e-01 3.63037527e-01 1.38525081e+00 7.11416245e-01 3.04434359e-01 7.64005125e-01 -6.91766679e-01 4.82231051e-01 5.10109477e-02 -6.31304026e-01 -2.90706873e-01 -4.06038672e-01 -4.80855614e-01 -7.95945764e-01 2.24680394e-01 1.77621216e-01 -4.78916645e-01 -1.45625997e+00 1.23771942e+00 1.22978695e-01 4.26277012e-01 9.48407501e-02 3.92237157e-01 9.45127964e-01 6.56959057e-01 -1.09220576e-02 -5.01272678e-01 6.92102075e-01 -1.39765573e+00 -8.71496201e-01 -3.04524571e-01 7.64516473e-01 -7.78524995e-01 5.02642453e-01 4.39387113e-01 -9.25375998e-01 -8.94227624e-01 -8.21733177e-01 4.88858849e-01 -5.28900862e-01 1.21383689e-01 3.98043990e-01 1.25955880e+00 -1.44348681e+00 5.58499277e-01 -8.93830895e-01 -1.00979321e-01 3.96612495e-01 5.74394345e-01 -3.14699441e-01 -2.42457943e-04 -1.05901396e+00 6.92775905e-01 8.41746986e-01 1.69239536e-01 -1.18190312e+00 -2.30495706e-01 -1.17293155e+00 -3.06819320e-01 2.87979901e-01 -1.60629392e-01 1.57458520e+00 -9.58336115e-01 -2.24548197e+00 8.42367291e-01 -4.17615473e-01 -8.58758092e-01 2.69350588e-01 -5.06640971e-02 -5.78192174e-01 4.65456173e-02 -6.14387512e-01 5.83904684e-01 1.20077074e+00 -1.08394420e+00 -4.66922969e-01 -9.80545506e-02 -4.49438781e-01 1.53930202e-01 -1.54898718e-01 2.59938866e-01 -3.46391767e-01 -5.91524661e-01 -1.94615722e-02 -8.27448726e-01 -4.52043176e-01 -8.07105541e-01 -4.23611760e-01 -3.57950449e-01 9.67674136e-01 -5.37707210e-01 9.79297161e-01 -1.97293282e+00 1.18920207e-01 3.24611366e-01 3.05189025e-02 7.67102182e-01 1.36902407e-02 3.62467140e-01 -2.66322851e-01 -1.46899298e-01 -4.93575513e-01 -9.75327015e-01 -2.27747541e-02 5.66680908e-01 1.05782405e-01 3.64747435e-01 -7.03324899e-02 8.30363333e-01 -1.04355562e+00 -5.84361136e-01 6.13185465e-01 5.78101039e-01 -1.42123342e-01 2.67565936e-01 -5.84457256e-02 3.42113435e-01 1.79728851e-01 3.81621212e-01 2.35194817e-01 5.30114025e-02 3.40271235e-01 3.53353888e-01 3.15742224e-01 7.30554342e-01 -1.20732379e+00 1.68515408e+00 -6.23421550e-01 9.67071533e-01 1.33162126e-01 -1.65728176e+00 1.07563305e+00 6.51687384e-01 -7.42845424e-03 -2.06463605e-01 -5.04323170e-02 2.61900634e-01 -1.23067066e-01 -1.14856511e-01 2.37543173e-02 -1.79769769e-01 4.31775749e-01 4.28215027e-01 6.77487552e-01 -4.85236257e-01 2.78977794e-03 1.60441622e-01 9.73370433e-01 1.58041105e-01 9.38910246e-02 -2.31153071e-01 7.43933082e-01 -3.80581915e-01 1.34117201e-01 7.97165394e-01 -1.24651983e-01 6.86649442e-01 -1.07837386e-01 -4.83608067e-01 -7.96386123e-01 -7.09768772e-01 -1.40414134e-01 1.55570447e+00 -7.27776289e-01 -5.38337946e-01 -1.02785575e+00 -1.14027214e+00 -4.73340362e-01 8.40990603e-01 -3.53926748e-01 1.77833304e-01 -4.34990823e-01 -9.86998439e-01 6.50332987e-01 3.62235427e-01 3.08080405e-01 -1.37215793e+00 1.41245192e-02 3.59049529e-01 2.68950284e-01 -1.41982317e+00 -1.79985225e-01 8.16104710e-01 -9.28467631e-01 -6.78716660e-01 -7.04672098e-01 -1.15227675e+00 6.49821818e-01 -1.72680423e-01 1.32610309e+00 -1.76575914e-01 9.19265822e-02 4.55464870e-01 -5.02076268e-01 -4.12392825e-01 -1.05524790e+00 2.52755702e-01 2.06384972e-01 1.53867230e-01 3.90053272e-01 -4.18017387e-01 -2.80939881e-02 3.33670735e-01 -6.66729152e-01 -1.84381783e-01 3.07473630e-01 1.05203569e+00 5.51868260e-01 4.39397335e-01 5.95287681e-01 -1.12283182e+00 6.26429856e-01 1.03285201e-02 -5.56976914e-01 9.28456113e-02 -5.95522106e-01 2.89451212e-01 3.01545739e-01 -4.31832165e-01 -1.06291866e+00 6.40534699e-01 -4.97927845e-01 -2.27288589e-01 -6.34479821e-01 5.30814528e-01 -1.87516622e-02 -2.60708809e-01 5.78320205e-01 2.70424187e-01 -8.52329284e-02 -6.27846956e-01 7.13255465e-01 1.10133886e+00 4.13811088e-01 -1.44326344e-01 3.89557719e-01 7.37897530e-02 -3.26239944e-01 -1.29216433e+00 -6.07949138e-01 -6.26598060e-01 -9.75695312e-01 -2.99718201e-01 7.48722017e-01 -8.14455926e-01 1.71596240e-02 8.49164546e-01 -9.63663459e-01 -7.61666536e-01 -4.44671065e-01 7.96475351e-01 -5.73864758e-01 5.96070051e-01 -5.92226028e-01 -1.10791838e+00 -1.37055144e-01 -9.98813093e-01 1.21370828e+00 -4.52685714e-01 -9.98810381e-02 -1.58490455e+00 4.65954274e-01 5.36599934e-01 2.22810045e-01 -5.57366967e-01 4.61449504e-01 -1.22788107e+00 1.59222156e-01 -4.97619629e-01 2.48842269e-01 8.59644413e-01 2.07747683e-01 -8.78027678e-02 -1.54513288e+00 -2.69854486e-01 -1.46675214e-01 -7.80271292e-01 1.20810080e+00 4.86985415e-01 9.21751678e-01 -1.21543489e-01 -8.78985301e-02 2.84712613e-01 7.59430885e-01 2.39271775e-01 5.80666840e-01 1.47516310e-01 9.22018707e-01 6.84577346e-01 2.81231701e-02 -6.65705558e-03 1.85164213e-02 7.34470546e-01 1.69571072e-01 -2.21918955e-01 -3.18629414e-01 -1.01070106e-01 4.11186218e-01 1.52009416e+00 1.05616994e-01 -2.51398712e-01 -1.26462793e+00 6.31807864e-01 -1.84061611e+00 -6.98682785e-01 7.19585493e-02 2.28697443e+00 8.57613325e-01 6.08652115e-01 3.55390877e-01 7.18402743e-01 9.25554335e-01 3.33835304e-01 8.87808874e-02 -6.41754746e-01 -7.68236741e-02 5.15774667e-01 4.58254784e-01 9.47902501e-01 -1.23306227e+00 1.23242652e+00 7.44571257e+00 1.32125545e+00 -9.29337978e-01 3.26015651e-01 7.25676239e-01 1.92274839e-01 8.30659196e-02 -1.47935078e-01 -8.73890698e-01 1.95733219e-01 1.81367898e+00 7.20348597e-01 2.92475700e-01 7.94295371e-01 1.37690037e-01 1.49573669e-01 -9.00109172e-01 8.27329338e-01 2.03495726e-01 -1.22284567e+00 -1.04331166e-01 7.11695179e-02 8.07615817e-01 5.63043058e-01 -2.39522442e-01 3.15950483e-01 7.89988756e-01 -9.30804431e-01 5.39817691e-01 9.73285884e-02 7.23777413e-01 -6.81416273e-01 7.09655106e-01 5.95340788e-01 -1.03017950e+00 3.65156859e-01 -3.97184432e-01 -1.53301597e-01 2.12707341e-01 8.53349984e-01 -1.34052134e+00 4.40284371e-01 3.38298142e-01 4.90556687e-01 -4.33136255e-01 9.98403668e-01 -4.75828797e-01 1.45720029e+00 -5.34684658e-01 -4.67983335e-02 4.45748270e-01 2.09553123e-01 3.98592055e-01 1.75435305e+00 -3.27592105e-01 -2.55885541e-01 2.11209834e-01 -7.31633231e-02 -3.69677916e-02 8.51102397e-02 -5.46998918e-01 -1.45662978e-01 1.84163719e-01 8.64271283e-01 -7.77288675e-01 -7.58637071e-01 -3.04563969e-01 7.44940639e-01 5.72674215e-01 4.68904585e-01 -1.63451567e-01 -2.93258011e-01 -2.09420428e-01 -1.84433669e-01 8.53690982e-01 -4.86583591e-01 1.15372362e-02 -8.59992087e-01 -3.68599236e-01 -7.27932096e-01 2.22070456e-01 -5.11522293e-01 -9.34400856e-01 1.20034945e+00 -3.40528227e-02 -6.48135006e-01 -9.77862418e-01 -7.89208591e-01 -6.23799980e-01 7.32955277e-01 -1.41014290e+00 -9.92865920e-01 3.13083977e-01 2.89431930e-01 1.07444155e+00 -8.19490850e-01 1.26120508e+00 5.66302687e-02 -5.22887826e-01 5.29390633e-01 3.52926701e-01 3.18711698e-01 3.20640266e-01 -1.47451854e+00 1.14779007e+00 7.98241735e-01 1.14808416e+00 -2.26810221e-02 4.77510005e-01 -4.06875968e-01 -7.93336689e-01 -8.32368255e-01 1.20001316e+00 -3.05439979e-01 6.68844223e-01 -6.11305594e-01 -7.69854128e-01 5.01316369e-01 4.10938740e-01 2.11888507e-01 7.08763301e-01 3.13855976e-01 -2.04978392e-01 1.39340997e-01 -6.42660618e-01 -2.99958363e-02 8.71951997e-01 -9.63371992e-01 -8.49528849e-01 6.31718755e-01 6.51462913e-01 -2.93985486e-01 -3.79855871e-01 5.02878368e-01 1.68004289e-01 -7.33206809e-01 1.00698078e+00 -6.72186732e-01 -1.10281311e-01 1.94245264e-01 -1.52646169e-01 -1.66209388e+00 -7.75949750e-03 -1.06332493e+00 -3.13092142e-01 1.05483937e+00 9.22956288e-01 -4.36487645e-01 9.73456144e-01 3.41329463e-02 -2.54331440e-01 -7.58136809e-01 -1.25816536e+00 -8.07533145e-01 -1.69388235e-01 -1.10001242e+00 4.22055610e-02 6.58894002e-01 -7.94971809e-02 5.81332862e-01 -4.06630963e-01 -7.95443133e-02 7.42021382e-01 -5.18375993e-01 6.46189868e-01 -1.14051270e+00 -5.27525067e-01 -2.82310367e-01 -8.48317087e-01 -1.04991245e+00 6.86120987e-01 -6.98569655e-01 4.17412996e-01 -1.44406343e+00 -4.56800073e-01 -3.09055209e-01 -5.09630799e-01 5.83193243e-01 1.56658106e-02 5.24130642e-01 -2.62515962e-01 -1.32507542e-02 -8.89408708e-01 4.03372407e-01 5.87660253e-01 -2.94341207e-01 -3.34171891e-01 3.52086663e-01 1.17228948e-01 9.28272545e-01 7.99109638e-01 -5.25576651e-01 -4.11209196e-01 -3.59324485e-01 -2.04480648e-01 2.71414616e-03 7.53194094e-02 -1.06472850e+00 3.22107822e-01 4.10169870e-01 1.05754532e-01 -4.81393725e-01 4.84799087e-01 -4.84926790e-01 -3.56158376e-01 1.85324058e-01 -5.92131495e-01 -3.01377356e-01 3.49619299e-01 6.57963812e-01 -5.45606613e-01 -3.37079644e-01 6.63657069e-01 -1.64954022e-01 -9.07064259e-01 -4.18256819e-02 -8.14930141e-01 1.00600332e-01 3.59974295e-01 -1.66428804e-01 1.32616639e-01 -7.41741478e-01 -1.19996250e+00 -2.43392020e-01 -1.95399269e-01 3.76083821e-01 7.21622586e-01 -1.04872108e+00 -8.59154940e-01 4.28849787e-01 -8.63898471e-02 -1.27606302e-01 -2.86562711e-01 4.78855222e-01 -2.84560233e-01 6.70083284e-01 3.98590565e-01 -8.18040729e-01 -1.47712421e+00 1.89460725e-01 4.92488325e-01 -3.32903594e-01 -2.71614134e-01 1.40721977e+00 -1.41747788e-01 -1.03823197e+00 8.23917687e-01 -3.12962895e-03 -2.63705611e-01 -1.39447358e-02 2.70070702e-01 3.22125435e-01 6.91637635e-01 -1.02379847e+00 -3.76495302e-01 2.94600278e-01 -7.41907135e-02 -7.65368044e-01 1.20961690e+00 -1.26683950e-01 2.86781520e-01 8.80735338e-01 1.38990641e+00 -1.30717248e-01 -1.18366516e+00 -5.97854435e-01 8.25542882e-02 -6.97994083e-02 7.03168690e-01 -8.19900870e-01 -9.40456688e-01 1.13495255e+00 6.18177772e-01 2.97743350e-01 7.84714401e-01 5.80821782e-02 3.86269569e-01 7.60752559e-01 3.13439101e-01 -1.18876016e+00 -1.40903845e-01 7.36908793e-01 4.72383857e-01 -1.51430130e+00 -1.91377793e-02 -3.85554880e-01 -5.64128518e-01 1.10758424e+00 -1.29158154e-01 1.60779208e-02 1.07209682e+00 3.57872307e-01 5.68540931e-01 -1.42150417e-01 -7.49568284e-01 -3.36583167e-01 7.34468639e-01 8.85351479e-01 5.35319984e-01 1.46143943e-01 3.62096936e-01 -2.32924238e-01 -3.43763560e-01 -2.07994431e-01 -6.86822087e-02 1.01419163e+00 -5.80446422e-01 -1.28380597e+00 -2.54782289e-01 3.87975723e-01 -5.56799829e-01 -5.06956100e-01 -6.75977707e-01 4.57424462e-01 -2.50667751e-01 1.38065219e+00 -1.28646240e-01 -5.04992783e-01 -6.61503822e-02 5.99767685e-01 4.04305965e-01 -8.62137079e-01 -4.68221813e-01 4.48018044e-01 6.68726444e-01 -2.20572844e-01 -9.13398325e-01 -6.31781638e-01 -1.00849676e+00 2.33966857e-01 -8.70454669e-01 5.34414530e-01 1.01057994e+00 1.38254225e+00 -6.02340549e-02 6.54447496e-01 7.67955482e-01 -1.16821873e+00 -4.07863438e-01 -1.34911358e+00 -4.03160334e-01 -4.05933708e-02 4.36731547e-01 -4.52381253e-01 -8.69557679e-01 3.41607243e-01]
[14.424020767211914, 6.653627872467041]
f649718b-e642-4021-9d31-01590d8093df
deeply-supervised-rotation-equivariant
1807.02804
null
http://arxiv.org/abs/1807.02804v1
http://arxiv.org/pdf/1807.02804v1.pdf
Deeply Supervised Rotation Equivariant Network for Lesion Segmentation in Dermoscopy Images
Automatic lesion segmentation in dermoscopy images is an essential step for computer-aided diagnosis of melanoma. The dermoscopy images exhibits rotational and reflectional symmetry, however, this geometric property has not been encoded in the state-of-the-art convolutional neural networks based skin lesion segmentation methods. In this paper, we present a deeply supervised rotation equivariant network for skin lesion segmentation by extending the recent group rotation equivariant network~\cite{cohen2016group}. Specifically, we propose the G-upsampling and G-projection operations to adapt the rotation equivariant classification network for our skin lesion segmentation problem. To further increase the performance, we integrate the deep supervision scheme into our proposed rotation equivariant segmentation architecture. The whole framework is equivariant to input transformations, including rotation and reflection, which improves the network efficiency and thus contributes to the segmentation performance. We extensively evaluate our method on the ISIC 2017 skin lesion challenge dataset. The experimental results show that our rotation equivariant networks consistently excel the regular counterparts with the same model complexity under different experimental settings. Our best model achieves 77.23\%(JA) on the test dataset, outperforming the state-of-the-art challenging methods and further demonstrating the effectiveness of our proposed deeply supervised rotation equivariant segmentation network. Our best model also outperforms the state-of-the-art challenging methods, which further demonstrate the effectiveness of our proposed deeply supervised rotation equivariant segmentation network.
['Pheng-Ann Heng', 'Chi-Wing Fu', 'Lequan Yu', 'Xiaomeng Li']
2018-07-08
null
null
null
null
['skin-lesion-segmentation']
['medical']
[ 5.75584352e-01 2.35469580e-01 -4.09666449e-01 -2.15634584e-01 -5.93713164e-01 -3.23274821e-01 3.06200117e-01 -4.67076272e-01 -5.62887549e-01 2.02656299e-01 -1.69181395e-02 -4.95821089e-01 -1.21281736e-01 -5.30078769e-01 -5.61902165e-01 -9.54561532e-01 3.90682608e-01 6.92439377e-02 1.44963652e-01 -2.95955300e-01 -8.04333091e-02 7.80154228e-01 -8.03534329e-01 1.23853132e-01 1.11870503e+00 7.24773586e-01 -1.18708603e-01 8.54151428e-01 3.21052462e-01 3.48428428e-01 1.80371059e-03 -5.63603103e-01 2.76280642e-01 -4.88154441e-01 -1.12108231e+00 2.30171099e-01 6.85780406e-01 -3.92281532e-01 -3.58745158e-01 1.17435348e+00 4.87693250e-01 -2.99576491e-01 6.27355158e-01 -4.95644987e-01 -4.60352033e-01 5.12834549e-01 -8.76691878e-01 -9.51281413e-02 -1.53096214e-01 -1.28265092e-04 6.30556285e-01 -4.78453070e-01 1.03894985e+00 9.23816562e-01 9.65185523e-01 8.16471219e-01 -8.95884454e-01 -3.58953685e-01 2.40092993e-01 1.32297769e-01 -1.33448529e+00 8.62471908e-02 6.29845619e-01 -8.51780102e-02 5.25459528e-01 5.06605506e-01 7.60501206e-01 1.15197027e+00 1.80158675e-01 8.91038775e-01 1.15111494e+00 -3.40733707e-01 -8.77365917e-02 -2.67537087e-01 1.14456780e-01 1.08417940e+00 2.49302387e-01 -3.64262491e-01 1.50025412e-01 3.16821605e-01 1.21240413e+00 2.45146334e-01 -2.96202838e-01 -2.82988608e-01 -1.08588719e+00 4.92509186e-01 1.02478933e+00 5.70372939e-02 -1.97681606e-01 2.90874302e-01 4.10540074e-01 -8.79973695e-02 5.63690305e-01 2.88253546e-01 -8.47072974e-02 2.63132721e-01 -5.93513072e-01 -9.53532010e-02 4.00127411e-01 4.81452167e-01 3.02531600e-01 -9.91930664e-02 -3.55417550e-01 8.67550075e-01 1.76074922e-01 3.87805998e-01 3.79841536e-01 -6.02900028e-01 1.68151855e-01 7.86685169e-01 -5.21150231e-01 -5.08417249e-01 -8.65484178e-01 -8.34229350e-01 -1.36243713e+00 -1.74216792e-01 5.72918594e-01 -1.18564919e-01 -1.57719374e+00 1.38354993e+00 5.42856812e-01 3.13087314e-01 -2.25014687e-02 9.92589295e-01 8.31127822e-01 -1.79044753e-01 6.52741566e-02 4.80173156e-02 1.39938819e+00 -1.20611680e+00 -6.71985447e-01 2.07929641e-01 1.03384161e+00 -8.95253599e-01 8.99967194e-01 4.06442851e-01 -8.16162229e-01 -7.80026987e-02 -1.07078731e+00 -1.19970858e-01 1.19573578e-01 4.85815018e-01 1.00100732e+00 8.33463669e-01 -9.31907177e-01 4.72270042e-01 -1.22140968e+00 -5.97324252e-01 8.20287228e-01 3.48261893e-01 -4.78979111e-01 -3.32196057e-01 -8.61648798e-01 5.86392522e-01 3.04930415e-02 5.19230723e-01 -5.99179268e-01 -9.12479818e-01 -8.26851368e-01 -5.22851944e-01 4.40658420e-01 -7.56726086e-01 1.12645745e+00 -7.33934700e-01 -1.76548004e+00 1.02527344e+00 -2.06841379e-01 -5.25483012e-01 1.01301050e+00 -8.48473087e-02 -2.53457636e-01 5.98046958e-01 -2.28827506e-01 6.37127876e-01 7.43123770e-01 -9.31657672e-01 -4.82204348e-01 -4.86917436e-01 -4.04167920e-02 3.18893582e-01 -3.52871329e-01 -2.46069700e-01 -8.52609456e-01 -6.38180852e-01 4.04496819e-01 -1.29269159e+00 -5.72867572e-01 3.12212706e-01 -9.16598320e-01 5.11200093e-02 8.36142600e-01 -7.73387492e-01 1.04938495e+00 -1.92256570e+00 1.41135350e-01 5.28311551e-01 3.24362338e-01 5.19589186e-01 -2.55500168e-01 -9.79284272e-02 -3.72643858e-01 2.43554682e-01 -3.87978971e-01 -3.42129320e-01 -2.93739200e-01 8.82181991e-03 8.33899528e-03 9.43746030e-01 1.38409466e-01 1.15775228e+00 -6.26906872e-01 -4.75311220e-01 4.31576341e-01 8.12190175e-01 -5.44957995e-01 -1.86826527e-01 -4.88605052e-02 3.95637095e-01 -2.83943772e-01 8.58572006e-01 8.67183506e-01 -4.08616543e-01 4.42279249e-01 -5.15116394e-01 2.99063802e-01 -2.45541692e-01 -9.51143265e-01 1.87768614e+00 -3.36842686e-01 3.92894924e-01 1.10324556e-02 -6.92023635e-01 5.86058319e-01 9.98070017e-02 6.93101108e-01 -4.73201036e-01 2.68925458e-01 2.35204816e-01 1.15908183e-01 -6.29141092e-01 2.67474860e-01 1.16597012e-01 3.57139587e-01 1.45631388e-01 -1.13607526e-01 -1.14775687e-01 7.35170618e-02 2.07483202e-01 8.36974144e-01 1.81520313e-01 2.22861975e-01 -1.47676408e-01 5.96729279e-01 -7.81777650e-02 3.38027418e-01 3.52994084e-01 -1.83771700e-01 8.09789598e-01 8.03594649e-01 -3.47675443e-01 -7.91919529e-01 -1.04069424e+00 -6.93943501e-01 5.90665400e-01 3.33246320e-01 -7.74969161e-02 -1.28989065e+00 -1.02241111e+00 -4.17470247e-01 4.45185117e-02 -9.97360766e-01 1.22505821e-01 -7.40030289e-01 -1.28023386e+00 8.30080867e-01 6.79517448e-01 9.08973098e-01 -5.62338352e-01 -3.41011323e-02 -2.18552366e-01 -8.21066126e-02 -1.22053933e+00 -5.04859865e-01 -1.81203559e-01 -6.94147110e-01 -1.48246694e+00 -1.08613777e+00 -8.81870210e-01 1.28863108e+00 3.65617484e-01 3.40260774e-01 8.24339630e-04 -8.83851171e-01 1.34960219e-01 -2.64122784e-01 -1.70693472e-01 -1.80259436e-01 5.14592528e-01 -3.29448611e-01 1.10413782e-01 1.44764289e-01 -2.77710170e-01 -1.04309630e+00 3.88472259e-01 -1.13713205e+00 2.46419713e-01 9.25030410e-01 9.09101844e-01 1.08442199e+00 -2.31248111e-01 2.80944973e-01 -1.44774806e+00 3.34511846e-01 -1.20070159e-01 -2.34402776e-01 2.74917245e-01 -3.76746595e-01 -1.23608291e-01 5.15359700e-01 -2.89237976e-01 -9.48614180e-01 2.30547681e-01 -3.91250581e-01 -2.06546679e-01 -1.03203394e-01 4.01524127e-01 1.86640210e-02 -5.61605632e-01 8.28813374e-01 -6.94829822e-02 2.18994632e-01 -1.98403925e-01 4.55621332e-01 4.74928975e-01 6.11523211e-01 -2.52366699e-02 8.07370067e-01 9.24415112e-01 5.93742847e-01 -8.46153080e-01 -8.98835361e-01 -5.17025352e-01 -7.56669223e-01 -7.31750652e-02 1.08961177e+00 -7.98032463e-01 -6.38918936e-01 9.75792170e-01 -8.96939218e-01 -4.53586251e-01 -2.48520583e-01 3.68990332e-01 -3.48472655e-01 7.62182415e-01 -8.48510981e-01 -3.44248503e-01 -5.96899331e-01 -1.52406538e+00 1.07192409e+00 4.61062610e-01 -2.68662442e-02 -1.23765302e+00 -6.98206648e-02 4.85619694e-01 2.66341269e-01 6.67488873e-01 8.07593346e-01 -4.65517044e-01 -3.38243484e-01 -3.31952691e-01 -4.74411577e-01 2.95385599e-01 2.45048314e-01 2.62229145e-01 -8.77600849e-01 -5.02529621e-01 -5.06402314e-01 -2.17229918e-01 1.38094699e+00 5.86605430e-01 1.75586212e+00 -2.54727136e-02 -4.79426742e-01 1.38209212e+00 1.43160832e+00 -4.23769325e-01 7.71358430e-01 1.14311457e-01 1.24240768e+00 5.39260268e-01 4.16183949e-01 3.10173188e-03 3.99313450e-01 4.38783407e-01 8.07108939e-01 -9.51800227e-01 -4.88788992e-01 -2.10903376e-01 -7.74791613e-02 6.46282136e-01 -5.03709912e-01 -3.33069675e-02 -8.23970377e-01 6.10305846e-01 -1.71064758e+00 -4.84313339e-01 -4.02074367e-01 2.00060034e+00 7.89754212e-01 -2.07099602e-01 -4.96191271e-02 -1.86860154e-04 7.41942286e-01 2.93432474e-01 -8.12841237e-01 -3.89379472e-01 -5.07486518e-03 6.56591773e-01 8.19916368e-01 5.17749965e-01 -1.59325516e+00 1.09891093e+00 5.54657984e+00 1.20115340e+00 -1.52419746e+00 -2.72173166e-01 6.57419145e-01 1.32826522e-01 -2.75000423e-01 -4.07110333e-01 -7.98725963e-01 -1.54818431e-01 3.21626008e-01 3.32215995e-01 2.44380295e-01 6.38987720e-01 4.25135158e-03 2.45482057e-01 -8.73147607e-01 7.44536936e-01 2.96375573e-01 -1.34441876e+00 1.08333394e-01 2.97205836e-01 1.09384048e+00 -4.12712432e-03 6.28095627e-01 -1.78831846e-01 1.83203578e-01 -1.48080301e+00 -2.55482793e-01 4.75984246e-01 1.38326645e+00 -8.88244212e-01 9.03078079e-01 -2.32203752e-01 -1.03477144e+00 4.02203321e-01 -2.07590222e-01 7.02010453e-01 -6.70684548e-03 4.54875231e-01 -1.16357827e+00 8.76642168e-01 3.78226250e-01 9.96534705e-01 -8.47160757e-01 8.63289416e-01 -5.11898279e-01 6.90385044e-01 -2.23436162e-01 1.42571449e-01 3.61772209e-01 -2.55300760e-01 4.56676453e-01 1.23964524e+00 3.98139609e-03 -1.98431209e-01 -2.32010812e-01 4.65558171e-01 -3.88184965e-01 2.60096490e-01 -2.07977369e-01 2.68977672e-01 -3.45800593e-02 1.64222574e+00 -7.28834271e-01 1.50570780e-01 1.15536461e-02 9.67125297e-01 9.23343897e-02 5.63290536e-01 -7.75738835e-01 -5.75846970e-01 5.66616833e-01 2.08841026e-01 2.37518072e-01 6.51327521e-02 -3.39187682e-01 -1.19413030e+00 1.11987278e-01 -8.58844399e-01 3.15551370e-01 -1.86691284e-01 -1.16142666e+00 5.11709094e-01 -3.46644431e-01 -1.19705749e+00 -1.12517625e-01 -9.88465011e-01 -7.47714102e-01 6.18396699e-01 -1.96993876e+00 -1.73555124e+00 -7.39856184e-01 6.88870847e-01 1.50526792e-01 -1.96488108e-02 8.21517289e-01 -1.01578295e-01 -8.90865326e-01 1.11260831e+00 1.01565741e-01 5.20513415e-01 1.11807466e+00 -1.43938386e+00 2.80142725e-01 1.01378930e+00 -2.55748451e-01 7.36511528e-01 -5.22746891e-02 -4.33546752e-01 -1.48843813e+00 -1.62921035e+00 6.79053515e-02 -1.16648734e-01 6.72752738e-01 -9.78631526e-02 -7.37843692e-01 6.45114243e-01 4.22521774e-03 3.78077209e-01 9.18215752e-01 -6.45131990e-02 -5.23072004e-01 -2.64528513e-01 -1.34397304e+00 1.08128870e+00 1.14589906e+00 -4.29797530e-01 1.34692907e-01 7.05069244e-01 7.88441956e-01 -8.42673123e-01 -1.07320797e+00 8.34019661e-01 7.42390513e-01 -6.00754082e-01 1.06673670e+00 -5.67794502e-01 7.73478210e-01 -6.46341592e-02 1.98453963e-01 -1.18885672e+00 -1.03067949e-01 -5.46608090e-01 1.53395891e-01 7.60574996e-01 3.28088671e-01 -8.47667694e-01 1.10591137e+00 1.31156340e-01 -2.23468065e-01 -1.29385602e+00 -8.86603296e-01 -3.18918228e-01 5.26822269e-01 -3.02110165e-01 2.81398922e-01 9.83856201e-01 -3.38369429e-01 -2.23292693e-01 -1.08202867e-01 1.18439645e-01 8.49993765e-01 -1.41716555e-01 7.35656738e-01 -6.76722467e-01 -1.26723379e-01 -5.77114284e-01 -3.92686188e-01 -1.01278687e+00 -4.12455091e-04 -1.26297009e+00 -4.33387637e-01 -1.51663256e+00 2.41787031e-01 -2.32041717e-01 -2.85725415e-01 5.82158923e-01 -3.69535565e-01 7.20108986e-01 2.45185802e-03 5.05991206e-02 -5.68128288e-01 9.72277969e-02 2.03660274e+00 -2.27390572e-01 -2.21216142e-01 5.88714853e-02 -9.49977040e-01 9.10151184e-01 8.51170421e-01 7.51276463e-02 -3.06179315e-01 -3.46637845e-01 -1.19352117e-02 -2.58164674e-01 4.23155516e-01 -7.47222364e-01 3.15230548e-01 -1.40077040e-01 5.04820585e-01 -3.87678385e-01 9.80225131e-02 -5.12127876e-01 -2.82246709e-01 8.00131619e-01 -3.08213294e-01 -6.69017553e-01 1.19104020e-01 5.35827219e-01 -3.27297524e-02 1.88052673e-02 1.14328945e+00 2.16731742e-01 -2.74439067e-01 7.17836559e-01 -4.40917797e-02 -1.70024589e-01 1.17465842e+00 -1.70078740e-01 -8.02757144e-01 1.58691585e-01 -7.70063698e-01 6.97723776e-02 5.34781277e-01 1.27801239e-01 5.55482924e-01 -1.00284159e+00 -8.80332589e-01 1.91959739e-01 1.52467787e-01 5.65470517e-01 6.12216949e-01 1.29497683e+00 -1.24261224e+00 3.35900933e-01 -1.97681814e-01 -9.17644441e-01 -1.30938339e+00 3.43761295e-02 7.34320462e-01 -6.93904698e-01 -5.88119090e-01 7.96461940e-01 1.93839535e-01 -6.69287026e-01 6.05129786e-02 -4.73810911e-01 -3.09305131e-01 -3.85686189e-01 2.74894178e-01 4.92455631e-01 8.22360888e-02 -3.08572769e-01 -2.28936195e-01 1.07733643e+00 -7.16745853e-01 2.15817183e-01 1.13674736e+00 3.70129406e-01 -2.22158819e-01 -3.64674091e-01 1.18431044e+00 -9.86327901e-02 -1.17939937e+00 -2.54164726e-01 -7.15485096e-01 -2.20967412e-01 -3.35690267e-02 -8.57008338e-01 -1.25842440e+00 1.04573870e+00 7.80243754e-01 -3.04880381e-01 1.22659707e+00 -4.26330149e-01 8.48532498e-01 4.47947741e-01 6.45018648e-04 -9.69694555e-01 5.76530732e-02 2.49436766e-01 7.17019439e-01 -1.16654623e+00 3.71917993e-01 -1.04402483e+00 -6.65292859e-01 1.16117215e+00 7.71695673e-01 -4.48910475e-01 5.67608535e-01 8.94219950e-02 3.52225572e-01 -4.85727564e-02 -1.19747423e-01 -1.76246151e-01 5.19944668e-01 6.63939774e-01 3.95852447e-01 2.74585009e-01 -6.29209876e-01 3.50985527e-01 -1.57892734e-01 -1.91388711e-01 4.83060479e-01 4.20341074e-01 9.41910893e-02 -1.18230152e+00 -1.49850221e-02 4.67304319e-01 -6.80610001e-01 9.67415348e-02 -5.00134885e-01 1.08751726e+00 -9.33800638e-02 5.38502812e-01 -1.62123263e-01 -2.20059693e-01 2.35645428e-01 -4.84950781e-01 6.92517221e-01 -3.98773164e-01 -6.69599175e-01 3.02695662e-01 -2.10189953e-01 -6.19907975e-01 -3.84903073e-01 -4.40154135e-01 -1.30350614e+00 -8.40302333e-02 -1.39332920e-01 -4.84840244e-01 8.70268703e-01 7.09244967e-01 1.05195455e-01 8.91960740e-01 7.71016955e-01 -3.70739162e-01 -5.82498133e-01 -8.64511967e-01 -4.43004102e-01 3.27898294e-01 1.79305449e-01 -1.25997841e-01 -1.20643891e-01 -7.96879977e-02]
[15.623648643493652, -2.9225449562072754]
6adaec8a-438a-4698-a1a9-dd993dcbc6a2
transcut-transparent-object-segmentation-from
1511.06853
null
http://arxiv.org/abs/1511.06853v1
http://arxiv.org/pdf/1511.06853v1.pdf
TransCut: Transparent Object Segmentation from a Light-Field Image
The segmentation of transparent objects can be very useful in computer vision applications. However, because they borrow texture from their background and have a similar appearance to their surroundings, transparent objects are not handled well by regular image segmentation methods. We propose a method that overcomes these problems using the consistency and distortion properties of a light-field image. Graph-cut optimization is applied for the pixel labeling problem. The light-field linearity is used to estimate the likelihood of a pixel belonging to the transparent object or Lambertian background, and the occlusion detector is used to find the occlusion boundary. We acquire a light field dataset for the transparent object, and use this dataset to evaluate our method. The results demonstrate that the proposed method successfully segments transparent objects from the background.
['Rin-ichiro Taniguchi', 'Yichao Xu', 'Atsushi Shimada', 'Hajime Nagahara']
2015-11-21
transcut-transparent-object-segmentation-from-1
http://openaccess.thecvf.com/content_iccv_2015/html/Xu_TransCut_Transparent_Object_ICCV_2015_paper.html
http://openaccess.thecvf.com/content_iccv_2015/papers/Xu_TransCut_Transparent_Object_ICCV_2015_paper.pdf
iccv-2015-12
['transparent-objects']
['computer-vision']
[ 3.68137211e-01 -1.40436456e-01 -5.07187471e-02 -4.65979815e-01 -9.95554477e-02 -3.90937299e-01 1.73125193e-01 -1.53844133e-01 -2.83407927e-01 5.76755345e-01 -5.41257381e-01 -2.64157020e-02 3.87161195e-01 -9.52373981e-01 -3.76118511e-01 -9.60148275e-01 5.49866855e-01 4.67361301e-01 1.08892846e+00 3.21683317e-01 2.35062882e-01 5.51200092e-01 -1.25819194e+00 1.18195908e-02 9.61807370e-01 9.28926587e-01 5.10915279e-01 2.62301087e-01 -6.26163900e-01 5.27506351e-01 -3.94434065e-01 -3.03375244e-01 6.59349263e-01 -3.38452607e-01 -6.65626049e-01 6.58356428e-01 6.69308841e-01 -5.06837130e-01 -6.00051247e-02 1.40636444e+00 8.77659693e-02 1.93299070e-01 6.95843875e-01 -9.05364096e-01 -1.94830671e-01 -1.47868007e-01 -1.02182066e+00 9.13504958e-02 8.87831226e-02 9.22547504e-02 4.72346067e-01 -6.27282619e-01 8.17830920e-01 1.03435397e+00 1.06017038e-01 5.41015446e-01 -1.07136238e+00 -3.81623268e-01 2.16632992e-01 -3.54281105e-02 -1.09870648e+00 -2.79296935e-01 9.89749312e-01 -5.30790627e-01 2.61196941e-01 2.81018227e-01 9.07502651e-01 2.39635840e-01 4.05986577e-01 7.53945053e-01 1.33564925e+00 -5.10618925e-01 3.72656107e-01 4.55803931e-01 5.96745968e-01 7.71101236e-01 5.09094059e-01 -8.19385648e-02 2.74126083e-02 -7.12096915e-02 7.90552020e-01 9.59154516e-02 -4.61741686e-01 -4.59008604e-01 -6.30179644e-01 4.93017644e-01 4.33985054e-01 1.63098395e-01 -9.16880667e-02 -1.17993556e-01 -2.56459773e-01 -1.61798105e-01 5.77711880e-01 -3.75534361e-03 -5.44114485e-02 4.88899380e-01 -8.89306307e-01 -2.57512201e-02 7.44800150e-01 8.33752871e-01 1.08118725e+00 -9.01025757e-02 9.70028862e-02 7.88278222e-01 6.94250822e-01 6.85837209e-01 -1.01385750e-01 -1.01031148e+00 1.65833101e-01 8.76676261e-01 2.27007017e-01 -6.53253973e-01 -2.33009815e-01 5.38455173e-02 -3.46367776e-01 7.67356098e-01 7.77000368e-01 1.33535966e-01 -1.27825165e+00 1.06987274e+00 9.77973938e-01 -7.19928294e-02 -3.15494798e-02 1.06333482e+00 9.64486361e-01 7.49875665e-01 -3.06986600e-01 -6.24905050e-01 1.20598102e+00 -8.42993259e-01 -7.90532112e-01 -2.77852714e-01 9.68637168e-02 -1.06567287e+00 8.57536435e-01 4.22342300e-01 -1.24262762e+00 -3.29619020e-01 -7.75613189e-01 -6.52856678e-02 1.79871738e-01 1.55425042e-01 7.74577320e-01 5.92158139e-01 -4.78928000e-01 8.29397887e-02 -8.26870739e-01 -2.19545260e-01 4.47815448e-01 2.88502991e-01 -5.21928519e-02 -1.95218906e-01 -3.39577109e-01 5.53892851e-01 2.63692677e-01 2.40436271e-01 -6.56345546e-01 -1.92239821e-01 -5.80617785e-01 -2.06029445e-01 3.65050316e-01 -5.04142344e-01 8.30467522e-01 -9.47772205e-01 -1.48820913e+00 1.06050229e+00 -4.59494680e-01 -3.40351299e-03 5.48988938e-01 8.22246354e-03 -7.55314976e-02 4.93300647e-01 -2.71322876e-02 1.64158791e-01 1.02090228e+00 -1.64042306e+00 -6.65494978e-01 -4.36773896e-01 4.33033817e-02 1.02658436e-01 1.27697513e-01 1.58304796e-01 -9.01743650e-01 -2.42303595e-01 6.95595682e-01 -9.79757428e-01 -3.30098450e-01 3.47835541e-01 -7.24265039e-01 5.61672188e-02 1.22200775e+00 -4.04445261e-01 6.99071288e-01 -2.27381897e+00 -3.96219045e-01 3.28410745e-01 4.24122572e-01 1.94785237e-01 1.64029896e-01 -5.31578064e-02 3.65713924e-01 -4.47716147e-01 -6.39963925e-01 -2.45404616e-01 -6.05538607e-01 2.69878805e-01 -3.64622325e-02 7.08436191e-01 -2.03217313e-01 3.45945269e-01 -6.20001793e-01 -9.39814508e-01 2.79317200e-01 4.01039481e-01 -1.69312045e-01 2.96354622e-01 -4.42214072e-01 6.28292561e-01 -7.20116794e-01 5.92185974e-01 1.23001015e+00 1.61448605e-02 -3.86768021e-02 -2.22572953e-01 -2.38421038e-01 -8.39915648e-02 -1.34792006e+00 1.05183840e+00 -2.18665898e-01 6.78679109e-01 4.20598388e-01 -3.94625723e-01 9.69058216e-01 -6.25741258e-02 6.07155681e-01 -5.03632367e-01 3.05547684e-01 2.08862513e-01 -1.89842861e-02 -7.94468820e-01 1.64404646e-01 -1.84079453e-01 7.22528338e-01 5.44764459e-01 -5.30544341e-01 -8.40011179e-01 4.66244847e-01 4.24276479e-02 6.21549368e-01 2.87974924e-01 -5.05850911e-02 -2.81610131e-01 5.04815996e-01 -6.15259521e-02 1.02845204e+00 3.63806158e-01 1.61151942e-02 6.98274672e-01 -7.06288666e-02 -6.94194317e-01 -5.12055159e-01 -1.17572594e+00 -6.21893764e-01 4.04860497e-01 9.27113593e-01 1.07642554e-01 -1.04006803e+00 -6.07959032e-01 -1.36875913e-01 4.17913824e-01 -1.32135987e-01 2.02250138e-01 -6.50246143e-01 -9.35103953e-01 -5.38733542e-01 2.03455184e-02 8.97237480e-01 -7.59653509e-01 -7.84168541e-01 1.56550840e-01 -3.92267793e-01 -1.30498028e+00 -2.93188542e-01 -1.18026406e-01 -9.75500107e-01 -1.26862955e+00 -5.85291088e-01 -8.21496487e-01 1.08538222e+00 7.89787352e-01 9.34293330e-01 2.18222469e-01 -5.15655994e-01 1.79967627e-01 2.52204780e-02 -3.66945654e-01 -4.87264037e-01 -5.55317998e-01 -1.98482320e-01 5.04539907e-01 2.35732183e-01 -2.42515206e-01 -6.83453202e-01 7.18301296e-01 -9.47932303e-01 1.63426355e-01 3.16855699e-01 3.09444338e-01 8.45727444e-01 2.91279942e-01 -2.62702227e-01 -1.00949681e+00 -4.73206751e-02 4.75060940e-02 -1.27998710e+00 3.92710298e-01 -2.65551716e-01 -2.74883211e-01 1.55506849e-01 -4.12324756e-01 -1.51772594e+00 4.38418239e-01 2.27704719e-01 -2.26893023e-01 -2.01074779e-01 -2.12102994e-01 -3.01065445e-01 -4.93795246e-01 3.58888149e-01 -2.10502688e-02 -3.00257593e-01 -4.54789013e-01 9.47049484e-02 6.24970675e-01 3.82976234e-01 -3.94921154e-01 7.77763546e-01 1.31135142e+00 1.50594100e-01 -1.29387879e+00 -8.35694432e-01 -6.63885593e-01 -5.05820870e-01 -4.52292353e-01 1.02612722e+00 -3.62974674e-01 -5.55538058e-01 4.63905424e-01 -1.33084655e+00 -3.73897880e-01 -3.35644364e-01 8.01276982e-01 -3.86298567e-01 6.84828997e-01 -6.67336702e-01 -1.11738503e+00 -5.35171591e-02 -1.28161919e+00 8.30312550e-01 5.37709951e-01 3.32786262e-01 -9.56068456e-01 -1.43718841e-02 6.03892386e-01 -1.24264754e-01 6.64615408e-02 9.11338806e-01 2.27255493e-01 -1.29020953e+00 -1.24206841e-01 -3.68486851e-01 3.82380784e-01 2.45747536e-01 5.09086072e-01 -1.25133395e+00 -2.20245533e-02 6.29338503e-01 1.67873710e-01 9.65407729e-01 8.35188031e-01 8.43477726e-01 -7.08026886e-02 -6.87368214e-01 7.78244197e-01 1.63230371e+00 4.83717710e-01 6.92356706e-01 1.62233353e-01 7.55545437e-01 1.01870549e+00 6.60874426e-01 -2.90765017e-02 2.43537985e-02 7.31491387e-01 5.22832572e-01 -4.81225580e-01 -4.86154169e-01 4.05385137e-01 1.99085344e-02 4.74573582e-01 -1.55308396e-01 -4.12408590e-01 -7.11732566e-01 2.77349561e-01 -1.48766649e+00 -6.57339692e-01 -1.03445959e+00 2.36470270e+00 8.45585346e-01 1.91649228e-01 -9.10053998e-02 8.46295804e-03 7.17625678e-01 -3.86010110e-01 -4.16296810e-01 -1.56371877e-01 -2.45012209e-01 -2.25534394e-01 4.79575545e-01 9.46172535e-01 -9.18094814e-01 1.04312384e+00 6.65071011e+00 6.93165958e-01 -1.13728034e+00 -1.03841173e-02 5.19683838e-01 2.27832288e-01 -3.66037697e-01 2.91907221e-01 -1.08716810e+00 4.94837314e-01 -2.17495814e-01 2.58409202e-01 2.02032074e-01 4.23616022e-01 3.19633722e-01 -9.28381085e-01 -8.58744562e-01 9.48881626e-01 -6.38527647e-02 -6.39967740e-01 -1.88774429e-02 7.97634125e-02 8.87678862e-01 -1.12188198e-01 -2.12521665e-02 -7.58936048e-01 2.32980430e-01 -3.78626227e-01 6.26268744e-01 5.26307464e-01 4.07817096e-01 -6.70455918e-02 4.22823817e-01 2.46861562e-01 -1.09501970e+00 2.38690481e-01 -5.84838808e-01 1.77773520e-01 3.59759599e-01 1.29620886e+00 -7.42723882e-01 1.88877001e-01 6.23387396e-01 3.02767366e-01 -3.66475552e-01 1.52575934e+00 -3.25755566e-01 5.32080770e-01 -5.93600929e-01 2.91655630e-01 -1.07186668e-01 -1.07860792e+00 7.80227780e-01 8.46096218e-01 -2.35198542e-01 8.03138018e-02 4.42372471e-01 1.26403999e+00 1.74938872e-01 1.57862708e-01 -4.77163106e-01 3.50657672e-01 -1.16779290e-01 1.37497175e+00 -1.45125103e+00 -3.05982023e-01 -5.97401679e-01 8.82406712e-01 -9.93236154e-02 8.27653170e-01 -5.87520480e-01 -2.69183606e-01 1.61046430e-01 2.91494220e-01 -3.25896591e-02 -2.13320062e-01 -4.55435812e-01 -1.22503221e+00 3.88868272e-01 -2.04750180e-01 3.53741460e-02 -9.32396233e-01 -1.08064389e+00 6.06951475e-01 -1.88973192e-02 -1.26474524e+00 4.22147036e-01 -5.55561721e-01 -6.78357303e-01 7.13978589e-01 -1.63983572e+00 -1.04936767e+00 -5.22111297e-01 5.13613880e-01 4.60642576e-01 2.75022745e-01 2.66495913e-01 1.72784656e-01 -4.73983973e-01 -2.78804839e-01 2.99777120e-01 3.87726165e-02 3.87021571e-01 -1.02529192e+00 -1.56736121e-01 1.08016062e+00 3.73294652e-02 5.38932502e-01 6.25571966e-01 -8.34207058e-01 -9.84668255e-01 -8.45922947e-01 3.98726225e-01 -3.60880643e-01 1.30252644e-01 -4.57308024e-01 -9.42711771e-01 3.72470468e-01 7.15407953e-02 2.88121313e-01 3.52057189e-01 -5.31324506e-01 9.87305716e-02 -1.83188900e-01 -1.28471565e+00 5.80881774e-01 6.79046750e-01 -8.85816962e-02 -4.55533087e-01 5.50747573e-01 3.68228525e-01 -4.19315487e-01 -3.12593460e-01 3.42736155e-01 4.81952101e-01 -1.22127354e+00 8.97371709e-01 2.18599830e-02 -7.82866329e-02 -5.33192456e-01 2.15107217e-01 -8.75529230e-01 6.38497248e-02 -5.97066402e-01 2.74847448e-01 1.22778618e+00 2.37884521e-01 -7.42408454e-01 9.56247509e-01 7.33843446e-01 -1.60175022e-02 -3.78968000e-01 -7.59879291e-01 -7.78072834e-01 -3.80328387e-01 -1.21789768e-01 1.04342528e-01 7.66557753e-01 -7.01825678e-01 3.20599318e-01 1.23038113e-01 1.83570310e-01 1.24489164e+00 7.97484219e-01 7.91918397e-01 -1.55648243e+00 -1.66959718e-01 -1.84216574e-01 -2.54194975e-01 -1.10840356e+00 9.22720879e-03 -6.98805332e-01 3.76161873e-01 -1.89832783e+00 3.83098990e-01 -8.95356357e-01 3.47067922e-01 7.45012164e-02 -3.02716732e-01 4.66006339e-01 3.86825055e-02 4.75246280e-01 -3.24361265e-01 3.56947541e-01 1.73727655e+00 -3.52003098e-01 -5.54563344e-01 4.40627158e-01 -5.07161655e-02 1.17790937e+00 7.45881617e-01 -5.22540331e-01 -3.55979860e-01 -5.27398825e-01 -5.50016798e-02 -1.87768906e-01 1.83050632e-01 -9.38998044e-01 -5.02078943e-02 -4.74900305e-01 2.28946686e-01 -5.16825259e-01 4.86087084e-01 -1.24510252e+00 -1.49187760e-03 2.85412133e-01 2.20661536e-01 -8.13365579e-01 -1.63221511e-03 5.71874917e-01 1.09883688e-01 -7.95444965e-01 1.25143373e+00 -2.68179715e-01 -2.91570574e-01 4.66121882e-01 -4.08993393e-01 1.04107596e-02 1.22451210e+00 -6.15060210e-01 -3.67163420e-01 -5.73506355e-02 -5.54386854e-01 3.25015299e-02 8.97196710e-01 -1.87509790e-01 7.31719315e-01 -8.42836082e-01 -4.56228763e-01 4.00068730e-01 9.75327492e-02 2.83115268e-01 -1.08164214e-01 8.09460998e-01 -9.99510407e-01 -1.36347741e-01 -3.80443335e-02 -8.59141886e-01 -1.48929822e+00 4.92019743e-01 5.41789472e-01 3.92281532e-01 -9.27363217e-01 7.29715586e-01 9.07239795e-01 6.95949122e-02 6.44209981e-02 -5.64775169e-01 -8.48696828e-02 -5.15380979e-01 5.06379902e-01 4.82542902e-01 -1.10581785e-01 -5.80148399e-01 -8.05984512e-02 1.21824074e+00 2.52176262e-03 -1.51158050e-01 9.91308928e-01 -3.88785273e-01 -4.64879543e-01 5.33542156e-01 9.19753551e-01 5.34835696e-01 -1.27293420e+00 -2.93801397e-01 -3.37672353e-01 -9.17599738e-01 3.12874228e-01 -2.97953844e-01 -1.43828321e+00 1.01395774e+00 5.57574868e-01 4.26148355e-01 9.27654386e-01 3.52323502e-02 9.13666189e-01 1.33356318e-01 4.12112057e-01 -1.08710933e+00 -1.20524973e-01 1.00189261e-01 4.01644558e-01 -1.21600020e+00 1.82782203e-01 -1.30540383e+00 -3.62701803e-01 1.17682683e+00 7.08879888e-01 2.92484909e-02 6.56906247e-01 4.01340842e-01 3.78730565e-01 -2.73230553e-01 -8.65138248e-02 -4.69579399e-01 1.87190175e-01 7.46777296e-01 8.43726471e-02 -2.94555455e-01 -3.04636568e-01 -1.87409282e-01 3.27834517e-01 -1.21646732e-01 6.43676579e-01 7.77212560e-01 -7.37603307e-01 -8.96170795e-01 -6.56328857e-01 2.43255869e-01 -4.53064203e-01 1.82523087e-01 -3.78537208e-01 4.00533527e-01 2.42055535e-01 1.15075040e+00 1.19895160e-01 3.08507234e-01 -5.80382086e-02 -3.88142288e-01 7.41879225e-01 -7.78347671e-01 -1.27541542e-01 6.58550203e-01 -3.05494308e-01 -4.51810241e-01 -7.60300100e-01 -4.22525793e-01 -1.52203703e+00 1.96908981e-01 -7.95578361e-01 1.88198417e-01 7.95450807e-01 6.60635054e-01 -3.79456878e-01 6.75633848e-02 8.04304779e-01 -5.52619815e-01 2.58910030e-01 -5.35750568e-01 -9.23476160e-01 3.65003198e-01 2.89338648e-01 -6.93601429e-01 -5.14729559e-01 3.73179823e-01]
[9.734906196594238, -2.779841184616089]
d4113f70-3a58-4d39-bba1-347c965fbf0c
quantitative-evaluation-of-base-and-detail
1808.09411
null
http://arxiv.org/abs/1808.09411v1
http://arxiv.org/pdf/1808.09411v1.pdf
Quantitative Evaluation of Base and Detail Decomposition Filters Based on their Artifacts
This paper introduces a quantitative evaluation of filters that seek to separate an image into its large-scale variations, the base layer, and its fine-scale variations, the detail layer. Such methods have proliferated with the development of HDR imaging and the proposition of many new tone-mapping operators. We argue that an objective quality measurement for all methods can be based on their artifacts. To this aim, the four main recurrent artifacts are described and mathematically characterized. Among them two are classic, the luminance halo and the staircase effect, but we show the relevance of two more, the contrast halo and the compartmentalization effect. For each of these artifacts we design a test-pattern and its attached measurement formula. Then we fuse these measurements into a single quality mark, and obtain in that way a ranking method valid for all filters performing a base+detail decomposition. This synthetic ranking is applied to seven filters representative of the literature and shown to agree with expert artifact rejection criteria.
['Jean-Michel Morel', 'Charles Hessel']
2018-08-28
null
null
null
null
['tone-mapping']
['computer-vision']
[ 3.57502818e-01 -1.32599294e-01 4.48824346e-01 -1.85705647e-01 -6.67861342e-01 -3.86291355e-01 6.97874427e-01 1.03889115e-01 -1.47786230e-01 8.52655232e-01 2.33997494e-01 4.32798304e-02 -4.21041578e-01 -5.37120223e-01 -1.92682579e-01 -8.47444355e-01 -2.24477388e-02 -3.68502289e-02 6.25639379e-01 -3.16566169e-01 3.41376245e-01 6.57156825e-01 -1.87401521e+00 3.21049780e-01 1.01746261e+00 1.11295438e+00 7.10977465e-02 5.52982986e-01 -8.91937390e-02 7.58853674e-01 -9.29921567e-01 -3.62945706e-01 2.22928658e-01 -7.15909600e-01 -6.23518586e-01 3.46249372e-01 3.51402640e-01 -1.41950712e-01 -7.98937771e-03 1.14233351e+00 5.73993266e-01 -2.38603160e-01 6.21379316e-01 -7.41863370e-01 -5.20395041e-01 2.49091700e-01 -4.52403545e-01 2.38092348e-01 5.28728187e-01 9.18223932e-02 5.50598979e-01 -9.52643931e-01 6.75596774e-01 9.35190141e-01 6.44912124e-01 2.06661627e-01 -1.37295544e+00 -5.46598583e-02 -4.38163728e-01 2.06102282e-01 -1.32426572e+00 -3.02794069e-01 8.04882407e-01 -6.25138581e-01 6.10562325e-01 6.69749141e-01 7.49813795e-01 6.68045402e-01 2.47928306e-01 2.05507755e-01 1.89334452e+00 -6.19252801e-01 2.46969819e-01 4.19104606e-01 1.80588588e-01 3.92818630e-01 5.38284838e-01 1.85872346e-01 -2.23572120e-01 -1.42481253e-02 8.24367523e-01 -6.13274455e-01 -6.14994824e-01 -4.11182940e-01 -8.12456489e-01 2.51256049e-01 4.78113517e-02 6.70190334e-01 -1.81837976e-01 -1.64309740e-01 1.69271812e-01 3.54009032e-01 3.89787316e-01 5.97323060e-01 -2.30491460e-05 -6.13334440e-02 -1.05899978e+00 1.95012346e-01 6.88850999e-01 7.38239408e-01 8.62910628e-01 4.91659679e-02 -2.48851955e-01 9.83020306e-01 7.61150494e-02 3.21343035e-01 3.05122405e-01 -8.48777354e-01 -1.23706080e-01 5.36605239e-01 3.18099737e-01 -9.34951544e-01 -3.62721086e-01 -6.38163745e-01 -5.69071710e-01 7.97848880e-01 4.70958501e-01 1.07298031e-01 -7.12901771e-01 1.33487880e+00 5.78630306e-02 -1.01923548e-01 -2.60895997e-01 8.61167550e-01 6.01323783e-01 2.80377358e-01 -2.62469113e-01 -4.19178307e-01 1.26550186e+00 -4.62417334e-01 -1.05196726e+00 3.36506903e-01 3.93860079e-02 -1.20750713e+00 9.79970813e-01 8.77055526e-01 -1.48274910e+00 -8.03773046e-01 -1.32609308e+00 -2.58092154e-02 -3.75048399e-01 2.29596004e-01 2.06597492e-01 8.89198720e-01 -1.30099189e+00 8.06871355e-01 -1.83444604e-01 -3.10815334e-01 -3.29507083e-01 -9.16312709e-02 1.35711487e-02 2.81302154e-01 -1.00442457e+00 1.25726056e+00 -1.02108419e-01 2.80300558e-01 -3.55962962e-01 -5.98783255e-01 -2.41485864e-01 -7.10529741e-04 2.61034556e-02 -5.18066049e-01 9.69526887e-01 -1.04002082e+00 -1.50925422e+00 1.24011528e+00 5.18457480e-02 -1.56514540e-01 9.55159664e-01 -2.49097534e-02 -9.54653502e-01 3.07460874e-01 -2.06597880e-01 -1.82836518e-01 1.09136748e+00 -1.81489122e+00 -5.64608276e-01 -5.85508868e-02 -8.45508873e-02 -1.73659697e-01 1.01895384e-01 9.53339189e-02 -3.42039078e-01 -8.51071298e-01 1.67393684e-01 -4.68247771e-01 1.97146028e-01 -1.71916768e-01 -2.78137118e-01 1.81682184e-01 5.05717456e-01 -6.47249818e-01 1.74258530e+00 -2.27155042e+00 6.08102046e-02 3.64714712e-01 3.74246508e-01 1.63074642e-01 9.16257426e-02 6.01267040e-01 -4.45794880e-01 -5.24376407e-02 -2.67410308e-01 -1.68708246e-02 3.84455808e-02 -2.31784746e-01 -2.43524626e-01 6.27170444e-01 2.15035155e-01 3.90512288e-01 -6.30423903e-01 -3.35660040e-01 4.50723708e-01 6.37054622e-01 -1.36413485e-01 3.66992280e-02 2.94650167e-01 2.36297533e-01 -7.26385787e-02 4.07009929e-01 9.94006693e-01 -1.03847943e-02 -5.06436005e-02 -6.11741900e-01 -6.67339981e-01 -4.09957953e-02 -1.37293720e+00 1.09297204e+00 -2.17017502e-01 7.43641019e-01 1.82408869e-01 -4.91580248e-01 1.17445505e+00 3.83858860e-01 4.75731015e-01 -8.33580315e-01 3.06633301e-02 7.37102211e-01 2.39407949e-04 -5.27460039e-01 6.38278127e-01 -2.79479891e-01 4.27244931e-01 5.18223047e-02 4.83195670e-03 -3.24839473e-01 3.80449831e-01 -3.32575180e-02 1.04321539e+00 -5.74425748e-03 3.61352831e-01 -7.52548754e-01 9.17677343e-01 -3.80434066e-01 2.85573751e-02 6.81358278e-01 -2.44741008e-01 1.03726029e+00 6.40983284e-01 -2.69162565e-01 -1.12846851e+00 -1.25116575e+00 -4.55501109e-01 2.70686239e-01 2.43365809e-01 -3.28691095e-01 -8.26649368e-01 -4.03249003e-02 -1.40021876e-01 3.64746213e-01 -7.52126753e-01 -7.08101764e-02 -4.14953560e-01 -5.78140259e-01 2.69039869e-01 -1.45862207e-01 5.16385019e-01 -8.88595641e-01 -8.69607687e-01 1.29151344e-01 -8.99689347e-02 -7.81352460e-01 -2.42373068e-02 2.25160662e-02 -5.95815182e-01 -1.16164529e+00 -1.05525875e+00 -3.75775218e-01 3.88383985e-01 1.65885776e-01 1.32532322e+00 2.36926824e-01 -4.94307667e-01 5.13048172e-01 -5.13379335e-01 -8.31041485e-02 -7.05076098e-01 -6.71074569e-01 -2.11671904e-01 2.58869886e-01 1.20152317e-01 -6.07348621e-01 -7.43941903e-01 5.73585212e-01 -1.04191208e+00 -1.62914291e-01 6.03802562e-01 3.95000368e-01 5.01176834e-01 5.36960550e-02 2.69064665e-01 -6.44743860e-01 6.51202679e-01 1.51423529e-01 -6.37417555e-01 2.21439451e-01 -6.79924965e-01 -1.29183367e-01 4.45752203e-01 -1.03965975e-01 -1.15990531e+00 -3.13351870e-01 -3.91451456e-02 -1.32777825e-01 -2.15643480e-01 2.02167720e-01 -2.05072626e-01 -4.00880426e-01 9.24256146e-01 2.77678877e-01 -2.06810594e-01 -6.83576167e-01 2.22845227e-01 6.23326123e-01 6.58044338e-01 -4.23002720e-01 1.01801169e+00 5.24099112e-01 1.33925170e-01 -1.19437325e+00 -3.78023207e-01 -5.11871696e-01 -3.63704234e-01 -6.33207619e-01 8.30456018e-01 -5.88667035e-01 -3.18168998e-01 5.72208643e-01 -1.10218227e+00 -1.42622098e-01 -8.32738757e-01 3.07244480e-01 -7.81241477e-01 6.19581223e-01 -5.63255727e-01 -8.83699059e-01 2.48047784e-01 -1.21499252e+00 8.63814473e-01 1.20156944e-01 -3.36155370e-02 -6.98251843e-01 3.62965226e-01 -7.19006658e-02 6.27615750e-01 2.76240647e-01 8.70350540e-01 1.38781235e-01 -5.12061834e-01 -1.97936863e-01 -3.68247241e-01 6.31274283e-01 1.79275900e-01 2.05127969e-01 -1.14333916e+00 -1.78040281e-01 4.66514856e-01 1.66840643e-01 8.04120600e-01 4.17086333e-01 8.66509080e-01 2.48076469e-01 1.82310253e-01 5.53172827e-01 1.98940456e+00 4.94532406e-01 1.27669084e+00 4.37993318e-01 2.76327468e-02 6.51175857e-01 4.93000478e-01 3.04100454e-01 -4.59701240e-01 1.05579507e+00 2.24104404e-01 -4.95139331e-01 -6.93179727e-01 1.38285041e-01 9.28627625e-02 8.34402919e-01 -5.56781054e-01 -1.22078126e-02 -5.25679171e-01 2.70938843e-01 -1.37746871e+00 -9.97520030e-01 -6.13638639e-01 2.50779581e+00 5.41413605e-01 2.32356265e-01 1.52668923e-01 4.95902628e-01 7.66323507e-01 1.05251864e-01 1.17338382e-01 -4.92916852e-01 -5.62741101e-01 3.80809486e-01 3.70101005e-01 7.66938984e-01 -9.01047885e-01 2.31437236e-01 7.29145575e+00 8.55613589e-01 -1.06068277e+00 -9.05627757e-02 4.61488754e-01 3.80586743e-01 -4.15279031e-01 -8.62652361e-02 -4.68079656e-01 5.75117767e-01 7.58861482e-01 -1.82398349e-01 2.85393059e-01 3.21362466e-01 3.79404664e-01 -3.61332536e-01 -7.60118723e-01 1.13390088e+00 1.84439301e-01 -8.79111826e-01 8.46793503e-02 4.45138589e-02 6.89018130e-01 -5.05242288e-01 1.13384411e-01 -2.79460728e-01 -4.02807236e-01 -9.15731966e-01 1.03252697e+00 8.40079904e-01 9.77726221e-01 -3.85327369e-01 5.52688062e-01 -4.30909663e-01 -1.10418820e+00 9.77795050e-02 -3.23850870e-01 3.48751545e-02 2.49934644e-01 8.40723932e-01 8.53213370e-02 8.92530620e-01 5.09641945e-01 3.21302474e-01 -7.53795266e-01 1.58139491e+00 -1.41661569e-01 2.10854858e-01 -3.90996560e-02 2.06367344e-01 -1.21555209e-01 -7.11127639e-01 8.54559898e-01 1.28732836e+00 6.28950059e-01 -1.09537408e-01 -4.86283928e-01 1.04403758e+00 5.31022131e-01 1.01611957e-01 -2.49247223e-01 2.46361211e-01 1.19255677e-01 1.31413293e+00 -7.93726504e-01 -3.28820020e-01 -5.91170669e-01 9.98832583e-01 -2.85072327e-01 4.23777938e-01 -8.85666132e-01 -6.43850565e-01 3.81668508e-01 3.66013736e-01 2.74126083e-01 1.93681736e-02 -3.85494441e-01 -9.73275721e-01 2.26144761e-01 -9.16157365e-01 -1.67252600e-01 -1.02473819e+00 -1.09838653e+00 8.43824983e-01 5.44294640e-02 -1.62710273e+00 6.60511106e-02 -7.92084217e-01 -3.19287807e-01 1.10820925e+00 -1.40973735e+00 -7.11061418e-01 -5.74706554e-01 5.21255136e-01 2.16668352e-01 6.84344023e-02 6.72117591e-01 6.83554530e-01 -2.58215398e-01 1.35133639e-01 9.01209190e-02 -3.85745436e-01 7.00270891e-01 -1.55694854e+00 -1.77908521e-02 9.28246260e-01 -1.78876311e-01 4.57700968e-01 1.32015121e+00 -4.19529885e-01 -8.52314293e-01 -4.59387928e-01 8.95876646e-01 -3.65703136e-01 6.99293911e-01 -1.65454999e-01 -1.03377616e+00 5.73135614e-02 1.32194206e-01 -1.94357708e-01 1.88098818e-01 -2.50460118e-01 -3.46030116e-01 -3.50795805e-01 -9.38682675e-01 3.95832390e-01 7.43781149e-01 -5.98777294e-01 -6.75614655e-01 -6.91527873e-03 1.87458426e-01 -2.15819582e-01 -9.71548140e-01 2.97272116e-01 6.43863916e-01 -2.07771206e+00 8.77346754e-01 1.17151640e-01 5.23737848e-01 -6.30626559e-01 2.20060199e-02 -1.13371420e+00 -5.52801013e-01 -7.94873238e-01 2.44323850e-01 1.12298155e+00 4.53188658e-01 -7.41036892e-01 3.70391995e-01 7.86155760e-02 -3.64412487e-01 -3.94800097e-01 -8.32556546e-01 -9.20839727e-01 -1.84254199e-01 -5.85757755e-02 3.60777497e-01 7.96179771e-01 5.38554974e-02 1.52938724e-01 -3.51639181e-01 -1.38837248e-01 7.17988908e-01 -8.98984745e-02 5.34894168e-01 -1.28034055e+00 -5.03469884e-01 -6.69011176e-01 -5.77666640e-01 -7.79391050e-01 -8.37672174e-01 -1.99333653e-01 3.57335731e-02 -1.30838466e+00 6.26591220e-02 -1.60582736e-01 -4.36148018e-01 -3.76697570e-01 1.62780192e-02 4.00443166e-01 1.46846771e-01 2.39533961e-01 -1.17153592e-01 1.15771547e-01 1.18205559e+00 2.17585683e-01 -1.24371082e-01 -1.43236980e-01 -3.59297276e-01 6.79757833e-01 5.45302272e-01 5.15398905e-02 -3.18280965e-01 -3.92979421e-02 4.39699352e-01 -1.50488429e-02 4.88444149e-01 -1.53406656e+00 -1.80948570e-01 3.31042945e-01 3.15268368e-01 -3.72181147e-01 3.45842004e-01 -1.01115918e+00 7.17623949e-01 5.13506591e-01 -2.08515689e-01 -9.54940319e-02 -3.59786563e-02 3.61860782e-01 -5.16930044e-01 -3.31255913e-01 1.31682420e+00 1.96427479e-02 -6.63181722e-01 -2.37016201e-01 -3.92561942e-01 -2.24864095e-01 8.44250858e-01 -6.51861131e-01 -5.66196799e-01 -3.35002989e-01 -9.57621515e-01 -6.06383085e-01 6.58215880e-01 6.18979558e-02 5.25970757e-01 -1.11507773e+00 -6.20381296e-01 2.63602018e-01 1.36662006e-01 -7.86857963e-01 5.32471538e-01 1.17135346e+00 -9.36331451e-01 2.70258993e-01 -4.31861311e-01 -3.90250027e-01 -1.32147157e+00 5.38376033e-01 6.04296982e-01 -2.41235256e-01 -5.78166306e-01 4.62686062e-01 3.81976992e-01 5.19510269e-01 6.87137693e-02 -4.98764932e-01 -3.66681933e-01 2.89512035e-02 7.47597992e-01 7.01336265e-01 2.15474039e-01 -6.19721949e-01 -1.26998246e-01 9.23987687e-01 4.40327227e-01 -1.61999926e-01 9.25878525e-01 -4.20353532e-01 -2.92588115e-01 6.77646995e-01 9.84431446e-01 5.55578113e-01 -1.06530952e+00 2.84610540e-01 -1.29035367e-02 -6.40424728e-01 -1.54090032e-01 -9.57656503e-01 -8.07501316e-01 7.50895560e-01 1.01075172e+00 1.22733688e+00 1.56887281e+00 -3.63794655e-01 2.06317335e-01 -3.03578675e-01 2.33397782e-01 -1.01024032e+00 -9.84041616e-02 1.41883701e-01 1.11931562e+00 -5.81479788e-01 1.41318560e-01 -9.37917471e-01 -1.06225714e-01 1.25425637e+00 5.75339720e-02 -2.67107636e-01 5.77176869e-01 3.28994721e-01 1.36897281e-01 -2.32573375e-01 -3.88246328e-01 -4.87111837e-01 4.13637429e-01 7.10826576e-01 6.05210423e-01 -1.60475045e-01 -1.06311822e+00 1.52141780e-01 1.86467636e-02 1.57510161e-01 6.99982524e-01 5.39053261e-01 -7.62620509e-01 -1.05365729e+00 -5.05626798e-01 2.34705850e-01 -5.06715655e-01 5.51533103e-02 -3.91765743e-01 1.11012137e+00 3.56550276e-01 8.77954304e-01 -1.70842558e-01 -3.40207219e-01 8.63265038e-01 -1.62847877e-01 7.35567331e-01 -7.69958124e-02 -6.31144166e-01 4.03023660e-01 1.84692115e-01 -6.30554140e-01 -6.83408618e-01 -3.75452965e-01 -3.86569113e-01 -1.42729059e-01 -2.08840832e-01 2.56455779e-01 6.48214161e-01 5.81355810e-01 -2.04326376e-01 7.22792566e-01 4.81290787e-01 -8.65428507e-01 -5.01968682e-01 -9.71507251e-01 -1.22796130e+00 6.51106715e-01 5.90422630e-01 -5.96441567e-01 -7.63998032e-01 9.10676792e-02]
[11.293927192687988, -2.236971378326416]
6237e181-ba14-42eb-9021-3fc8d3ec5c8f
enriching-entity-grids-and-graphs-with
null
null
https://aclanthology.org/W15-5619
https://aclanthology.org/W15-5619.pdf
Enriching entity grids and graphs with discourse relations: the impact in local coherence evaluation
null
["M{\\'a}rcio de S. Dias", 'Thiago A. S. Pardo']
2015-11-01
null
null
null
ws-2015-11
['coherence-evaluation']
['natural-language-processing']
[-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01 -8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01 -2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00 -3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01 -9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01 7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01 7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00 -1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01 3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01 9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01 5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00 -5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01 1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00 7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01 -1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02 -1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01 1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00 1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01 3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01 8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01 9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01 -9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01 -1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01 -2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01 -8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00 1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01 8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00 -6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01 -6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01 3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01 4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02 4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01 1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01 9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01 -1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01 -7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00 -1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02 1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01 -1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01 -1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01 -4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01 -1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01 6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01 -1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00 -7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01 -1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01 3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01 -1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01 1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01 3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00 -2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01 2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01 -1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01 4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01 2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00 1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01 -3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00 7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01 3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01 -2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01 7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01 -2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01 6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00 7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00 -3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01 -6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00 3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01 1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01 -5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01 -5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01 -2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01 -1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01 5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01 -2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01 -4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01 5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01 -6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00 1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01 8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02 -6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01 -1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01 1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01 8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03 3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01 8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01 -1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01 6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01 -9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01 -1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00 -5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02 -5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01 1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01 -4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01 1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01 6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01 5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01 1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01 1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01 1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01 1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00 -8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01 -1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01 6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01 4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00 -1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00 -7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00 2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01 -4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02 1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01 3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01 9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01 7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01 6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01 1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01 -1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00 3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01 9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01 -4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01 4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00 2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01 5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01 2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01 -2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01 -6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01 -1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01 -5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01 -1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00 -6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01 -1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01 1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02 1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01 5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01 -4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01 -1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01 6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01 7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01 1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01 1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01 8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01 8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00 -4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01 -5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02 5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01 -2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00 -3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01 6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01 5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00 3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01 -8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00 -8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01 3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01 -3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05 -1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01 8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02 6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01 5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00 1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01 2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02 -1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01 -4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02 9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01 -8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02 7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01 -3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01 -1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01 -1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01 -2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01 1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03 6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01 -4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01 9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01 8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01 1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01 -1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01 8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01 5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01 9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01 -4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01 1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01 -9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00 5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01 -7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00 -6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01 -5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01 -5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01 4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01 -9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00 -8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00 -5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01 -2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00 -3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02 2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01]
[-7.379876136779785, 3.7160580158233643]
65c9f6a2-f128-48d2-8cec-010ee40d0cb2
regclr-a-self-supervised-framework-for
2211.01165
null
https://arxiv.org/abs/2211.01165v1
https://arxiv.org/pdf/2211.01165v1.pdf
RegCLR: A Self-Supervised Framework for Tabular Representation Learning in the Wild
Recent advances in self-supervised learning (SSL) using large models to learn visual representations from natural images are rapidly closing the gap between the results produced by fully supervised learning and those produced by SSL on downstream vision tasks. Inspired by this advancement and primarily motivated by the emergence of tabular and structured document image applications, we investigate which self-supervised pretraining objectives, architectures, and fine-tuning strategies are most effective. To address these questions, we introduce RegCLR, a new self-supervised framework that combines contrastive and regularized methods and is compatible with the standard Vision Transformer architecture. Then, RegCLR is instantiated by integrating masked autoencoders as a representative example of a contrastive method and enhanced Barlow Twins as a representative example of a regularized method with configurable input image augmentations in both branches. Several real-world table recognition scenarios (e.g., extracting tables from document images), ranging from standard Word and Latex documents to even more challenging electronic health records (EHR) computer screen images, have been shown to benefit greatly from the representations learned from this new framework, with detection average-precision (AP) improving relatively by 4.8% for Table, 11.8% for Column, and 11.1% for GUI objects over a previous fully supervised baseline on real-world EHR screen images.
['Varun Ganapathi', 'Byung-Hak Kim', 'Weiyao Wang']
2022-11-02
null
null
null
null
['table-recognition']
['computer-vision']
[ 6.31117404e-01 2.52129078e-01 -5.99879734e-02 -3.57405365e-01 -8.12329769e-01 -6.41113400e-01 7.76159704e-01 3.17268103e-01 -3.12974691e-01 5.14360070e-01 3.52633715e-01 -3.18092048e-01 -4.63165231e-02 -6.13295019e-01 -1.04062927e+00 -4.68703091e-01 1.09478109e-01 5.79546690e-01 -1.77033022e-01 -1.87719181e-01 2.53608376e-02 4.10165101e-01 -1.49011314e+00 9.69169855e-01 6.19427979e-01 1.06715369e+00 1.85306624e-01 8.03751230e-01 -3.29779476e-01 1.24990213e+00 -6.60983682e-01 -3.90110135e-01 2.01633886e-01 -1.54665008e-01 -8.07578266e-01 4.02975440e-01 6.49074256e-01 -2.56220967e-01 -3.09900969e-01 8.56400728e-01 4.67236876e-01 -2.16735095e-01 5.79723775e-01 -1.00968790e+00 -1.24563718e+00 8.53754759e-01 -5.26126385e-01 1.73568919e-01 2.89471418e-01 3.60939950e-01 8.91214848e-01 -9.92895901e-01 6.36958182e-01 1.29347241e+00 6.69505715e-01 5.39214611e-01 -1.56608105e+00 -3.12337071e-01 1.22489437e-01 8.73506591e-02 -1.08517802e+00 -5.12584388e-01 4.58283871e-01 -5.32213509e-01 1.08106256e+00 2.38600403e-01 4.06949788e-01 1.44998491e+00 -1.04422849e-02 1.04512203e+00 1.24464726e+00 -6.42107964e-01 5.22767864e-02 7.14032769e-01 2.86645710e-01 8.22234988e-01 5.66728055e-01 -2.05752961e-02 -5.60209811e-01 1.83509544e-01 7.22207546e-01 2.71158934e-01 -4.31943059e-01 -6.69635415e-01 -1.46570289e+00 5.97704530e-01 4.14117575e-01 2.53355414e-01 -2.51321614e-01 -1.95912763e-01 4.71503854e-01 1.84156567e-01 9.12470296e-02 6.98304951e-01 -3.71720940e-01 9.32175890e-02 -9.52186108e-01 -2.30810210e-01 6.47468686e-01 1.06723762e+00 6.12351120e-01 2.11505264e-01 -6.13262475e-01 8.50346744e-01 1.00553855e-01 6.25123620e-01 4.84173238e-01 -5.74351668e-01 3.74182969e-01 8.83192360e-01 1.47800744e-01 -8.18958223e-01 -4.90199149e-01 -3.72960061e-01 -1.02954388e+00 2.57182240e-01 5.63496888e-01 1.13467574e-01 -1.30643463e+00 1.25960779e+00 -2.43643627e-01 -5.58493793e-01 2.94559687e-01 6.15302920e-01 1.16434705e+00 7.52840698e-01 -9.16278828e-03 -1.17860705e-01 1.59955192e+00 -1.06643796e+00 -7.78752029e-01 -4.44691807e-01 3.42411697e-01 -6.19687319e-01 1.43070984e+00 6.87160671e-01 -1.18300700e+00 -8.85968328e-01 -1.26603305e+00 -2.87668467e-01 -7.44045377e-01 5.11669636e-01 5.48247874e-01 7.04044640e-01 -1.15735626e+00 3.03304046e-01 -6.83063745e-01 -4.75012869e-01 6.73337281e-01 2.70649850e-01 -4.00231481e-01 -9.67109650e-02 -8.38413835e-01 6.86549544e-01 2.00054213e-01 2.65480927e-03 -7.19455600e-01 -7.72527993e-01 -7.32273340e-01 3.61800134e-01 6.66056514e-01 -5.09066105e-01 1.17037714e+00 -1.09555864e+00 -1.17199993e+00 1.23179746e+00 2.33163431e-01 -7.22071826e-01 3.91735375e-01 -3.79152507e-01 -3.93022805e-01 2.90372342e-01 -4.03354876e-03 7.89689660e-01 1.01058388e+00 -1.33052468e+00 -2.22226828e-01 -4.68239784e-01 1.62774045e-02 4.48059700e-02 -4.84407872e-01 -7.24981129e-02 -6.71261013e-01 -6.45572960e-01 -4.88295227e-01 -6.21525884e-01 -7.13988999e-03 9.53120664e-02 -5.18271029e-01 2.06600185e-02 6.37371838e-01 -6.25286818e-01 9.17247355e-01 -2.11062980e+00 -1.72029763e-01 7.33902082e-02 3.83906990e-01 4.35721487e-01 -1.93871051e-01 2.43599951e-01 -3.65970433e-01 -1.77491769e-01 -2.74248958e-01 -2.23378345e-01 -1.36320591e-01 -1.72369462e-02 -4.13392842e-01 3.00713144e-02 4.96821433e-01 1.08020163e+00 -6.84359550e-01 -4.00539815e-01 2.35633567e-01 6.03195846e-01 -3.40619296e-01 2.86534250e-01 -1.63992897e-01 1.69297770e-01 8.29276517e-02 8.18761051e-01 3.84931684e-01 -8.99192393e-01 2.81082094e-01 -4.78412122e-01 8.18732828e-02 -1.99189801e-02 -1.08376372e+00 1.50825465e+00 -2.70973891e-01 6.93511069e-01 -1.00006491e-01 -1.06645334e+00 1.00943410e+00 -7.72024468e-02 2.82219261e-01 -9.20091033e-01 1.21579975e-01 -2.24915832e-01 -3.03630352e-01 -5.69928110e-01 4.66440827e-01 3.08682680e-01 2.09422991e-01 3.47686976e-01 2.81792372e-01 1.12138085e-01 2.43462756e-01 4.26709890e-01 1.03656447e+00 1.04716502e-01 4.51926500e-01 -8.67298394e-02 6.04685664e-01 4.62592572e-01 1.18585713e-02 1.12053728e+00 -7.31599554e-02 9.51963305e-01 5.00220120e-01 -5.21183908e-01 -9.65597272e-01 -1.04167199e+00 -2.05742046e-02 1.11243904e+00 -1.91525295e-01 -4.72118735e-01 -7.80954897e-01 -7.85927713e-01 4.06984799e-02 3.69505078e-01 -6.81510389e-01 -1.59891516e-01 -4.26514000e-01 -8.34232092e-01 3.85586739e-01 1.06011641e+00 5.53736508e-01 -1.33884084e+00 -7.45124817e-01 -3.65692191e-02 3.08515914e-02 -1.36252892e+00 -2.98144042e-01 5.26720345e-01 -6.77727282e-01 -1.25733674e+00 -8.02827299e-01 -8.63583922e-01 7.22011566e-01 2.28726134e-01 1.45379007e+00 -2.15936974e-01 -6.56554937e-01 8.22392642e-01 -1.70284420e-01 -4.99958813e-01 -6.20780468e-01 -2.01987416e-01 -1.18328638e-01 1.65866122e-01 5.00080526e-01 1.01042293e-01 -6.00342512e-01 -1.14872247e-01 -9.47294712e-01 2.64213204e-01 7.92920887e-01 1.16305637e+00 6.71560347e-01 -3.71128708e-01 3.12177777e-01 -1.25703979e+00 5.94364226e-01 -1.81300953e-01 -7.13597715e-01 5.48914731e-01 -9.82468843e-01 2.43710086e-01 8.02608848e-01 -3.84349376e-01 -1.14132035e+00 1.85471699e-01 1.83122799e-01 -4.52584535e-01 -3.68681520e-01 1.89187124e-01 -1.39243407e-02 3.13143611e-01 1.11002958e+00 4.29727197e-01 1.84752375e-01 -2.97441930e-01 5.58270037e-01 9.75631773e-01 8.26828599e-01 -2.37303600e-01 7.93908894e-01 7.25559115e-01 -3.80017281e-01 -6.77097559e-01 -7.93253243e-01 -3.00412118e-01 -3.96708995e-01 8.57621804e-02 1.06852520e+00 -1.00756001e+00 -7.66080499e-01 3.53142917e-01 -7.91027904e-01 -4.20878083e-01 -5.71616590e-01 2.31363505e-01 -5.72204173e-01 3.41715425e-01 -6.31712675e-01 -7.68645525e-01 -6.00112438e-01 -1.05104148e+00 1.05769897e+00 1.87137723e-01 -1.54839709e-01 -6.65128827e-01 -1.27085850e-01 5.71570635e-01 6.15631700e-01 -2.38726521e-03 1.03011703e+00 -8.17272604e-01 -5.08713961e-01 -6.60165474e-02 -6.45390570e-01 5.53879738e-01 2.66081631e-01 -1.66363865e-01 -1.14842880e+00 -3.63228619e-01 -1.54455364e-01 -5.70980489e-01 9.92449522e-01 3.95810753e-01 1.23666143e+00 -2.25717545e-01 -3.26858640e-01 6.32706761e-01 1.33511138e+00 3.45010579e-01 5.87975144e-01 4.60389256e-01 7.72218227e-01 5.02925098e-01 3.35553527e-01 2.49467060e-01 2.74777472e-01 3.88416320e-01 2.12148115e-01 -5.19322097e-01 -4.29728240e-01 -2.59197861e-01 2.92085141e-01 2.46709213e-01 7.93232843e-02 -4.16051038e-02 -1.01658452e+00 3.01945686e-01 -1.67122233e+00 -8.04867148e-01 1.55213013e-01 2.12671089e+00 8.02912652e-01 3.30119491e-01 2.69474238e-01 2.35623598e-01 7.18145967e-01 8.53153095e-02 -6.62767768e-01 -3.15098494e-01 -2.13444427e-01 3.62512231e-01 3.51097077e-01 -3.40145528e-02 -1.34157348e+00 7.22362518e-01 6.66496372e+00 3.18221599e-01 -9.79512334e-01 -2.62816757e-01 1.03252316e+00 2.39473805e-02 1.95236564e-01 -4.84277755e-01 -7.57878542e-01 1.45170063e-01 1.08785796e+00 2.17440754e-01 5.11180401e-01 1.07223904e+00 -5.04928492e-02 9.04890597e-02 -1.35345435e+00 1.46220970e+00 4.37423259e-01 -1.66149747e+00 3.40851635e-01 -3.06176871e-01 5.10189235e-01 -1.45038977e-01 3.63775909e-01 5.34710348e-01 2.11828157e-01 -1.24811196e+00 5.02800465e-01 4.28157598e-01 1.13798213e+00 -4.32317257e-01 6.06470704e-01 -1.11697495e-01 -8.13934684e-01 -2.90249139e-01 -1.68592393e-01 2.36796230e-01 -3.88656169e-01 2.34712064e-01 -9.32017207e-01 1.45976737e-01 1.16049254e+00 6.99192047e-01 -9.87283349e-01 8.06398273e-01 4.23267633e-02 5.69487512e-01 2.01511145e-01 6.38987944e-02 1.50981188e-01 1.23354733e-01 2.56543994e-01 1.65893281e+00 -2.33741105e-01 -2.54820466e-01 -2.02570185e-01 1.00726390e+00 -1.79335430e-01 1.71552941e-01 -7.12953091e-01 -3.52921903e-01 1.01822861e-01 1.32778060e+00 -8.83925200e-01 -6.65913820e-01 -7.48220503e-01 1.00217223e+00 2.06038311e-01 4.75890398e-01 -7.24366307e-01 -4.82448488e-01 1.80178583e-01 2.86927283e-01 6.28672302e-01 1.79065242e-01 -3.41572076e-01 -1.17729688e+00 3.70076261e-02 -1.43383467e+00 5.02797425e-01 -1.05394185e+00 -1.30476248e+00 9.01026726e-01 -1.73663974e-01 -1.21723759e+00 -2.05625653e-01 -1.09237039e+00 -6.40460923e-02 5.24307609e-01 -1.54066133e+00 -9.97698128e-01 -6.05440140e-01 7.93864131e-01 6.97700143e-01 -5.79931676e-01 9.84570205e-01 -3.76238376e-02 -4.76101875e-01 8.06919634e-01 2.28242218e-01 4.50126618e-01 8.12571228e-01 -1.63587189e+00 4.63027745e-01 7.51308203e-01 4.33269024e-01 7.39281535e-01 3.23028475e-01 -2.98909664e-01 -1.69266737e+00 -1.10938907e+00 3.14173728e-01 -6.80166841e-01 4.18648899e-01 -6.43067300e-01 -1.03365862e+00 7.22898483e-01 3.70656013e-01 1.63021475e-01 5.29847562e-01 -1.22667260e-01 -7.73193896e-01 -4.13933039e-01 -1.18364739e+00 7.33423889e-01 9.47201252e-01 -5.06640673e-01 -7.01495886e-01 4.57926065e-01 4.95107561e-01 -3.82870615e-01 -5.90554833e-01 4.53809321e-01 4.58247364e-01 -1.13336194e+00 1.11975193e+00 -6.13920212e-01 6.05713069e-01 -2.58118182e-01 -2.68399157e-02 -9.14717793e-01 -3.34986746e-01 -5.96157014e-01 -4.11998600e-01 9.34613585e-01 3.56409162e-01 -3.39491993e-01 8.70758712e-01 2.41545290e-01 2.86102993e-03 -6.06059432e-01 -2.65038848e-01 -5.64866304e-01 -2.31913984e-01 -1.54414564e-01 2.75743037e-01 9.00258482e-01 -1.72715560e-02 6.73756301e-01 -2.64531553e-01 -9.05631334e-02 5.81633985e-01 1.31420016e-01 8.00654173e-01 -1.17353988e+00 -6.33291304e-01 -3.53096008e-01 -2.94709325e-01 -1.05540705e+00 -3.44189197e-01 -8.84896100e-01 -2.22005751e-02 -1.67473030e+00 6.26198173e-01 1.22254983e-01 -3.38404864e-01 6.42361462e-01 -2.13140666e-01 3.65858912e-01 3.94453675e-01 6.06972203e-02 -6.33937180e-01 -1.09635197e-01 8.93931627e-01 -6.67845786e-01 -3.08311433e-01 -1.36540100e-01 -1.16139758e+00 6.35156453e-01 5.22508085e-01 -8.70083869e-02 -4.47929740e-01 -2.75235116e-01 1.96666569e-01 5.54034896e-02 2.39455789e-01 -1.01868677e+00 8.64060670e-02 2.49718279e-01 9.56106126e-01 -5.76012671e-01 7.20898286e-02 -7.88966954e-01 -3.54846656e-01 4.80493456e-01 -7.08132267e-01 8.02718475e-02 4.97628242e-01 7.28478193e-01 -8.47548842e-02 3.78788486e-02 7.32085645e-01 -4.35452133e-01 -7.94196546e-01 -1.75613150e-01 -4.48422015e-01 -1.16638304e-03 6.59602463e-01 -4.99162167e-01 -7.07545042e-01 -3.81044090e-01 -9.47404444e-01 8.64281431e-02 7.85704702e-02 6.31609917e-01 8.13648582e-01 -9.14495587e-01 -6.44655883e-01 4.67151493e-01 5.19599617e-01 -1.18188709e-01 7.07450435e-02 6.01578712e-01 -3.35906804e-01 6.68470025e-01 -3.53981912e-01 -7.83883989e-01 -1.33484805e+00 9.21285570e-01 1.50880694e-01 -5.84446013e-01 -7.62114823e-01 6.29808307e-01 3.71278286e-01 -2.42296264e-01 6.78449869e-01 -5.76055646e-01 -3.72776181e-01 -1.36793349e-02 7.10067272e-01 1.62376076e-01 3.59336048e-01 -1.40290037e-01 -3.18878561e-01 3.52430582e-01 -4.65028226e-01 2.83732563e-01 1.38890433e+00 1.68315455e-01 2.86235332e-01 4.43908364e-01 9.11009192e-01 -2.64067221e-02 -1.23568594e+00 -3.16172242e-01 -3.82999796e-03 1.12446293e-01 -1.52885035e-01 -1.24563646e+00 -9.98958349e-01 8.53229880e-01 1.00455058e+00 2.51080900e-01 1.21279824e+00 -8.20586085e-02 3.77656490e-01 6.92637682e-01 9.45874155e-02 -8.86140227e-01 5.56285620e-01 2.31858760e-01 9.68113840e-01 -1.50962007e+00 -9.57126021e-02 -1.56392604e-01 -9.95623469e-01 1.17755663e+00 6.31695628e-01 -4.38446254e-02 2.48152211e-01 5.06336868e-01 2.33639255e-01 -3.32859069e-01 -5.71893156e-01 -2.96965569e-01 3.72454286e-01 8.49632502e-01 4.82050419e-01 -2.14893326e-01 2.26755559e-01 5.75227261e-01 1.79191418e-02 1.10132605e-01 5.68342566e-01 9.72505569e-01 -1.24528907e-01 -6.67436063e-01 -7.28715181e-01 6.68689728e-01 -3.85217547e-01 -2.93977857e-01 -3.52815300e-01 8.05742621e-01 -2.13084623e-01 9.00057375e-01 2.92204976e-01 -2.35263973e-01 5.25419235e-01 3.09862107e-01 5.51691175e-01 -8.37931454e-01 -8.39469910e-01 3.60514149e-02 -1.16864018e-01 -4.63075042e-01 -3.36414337e-01 -3.19660187e-01 -1.07404947e+00 3.20010781e-01 -8.84865299e-02 -2.42406428e-01 3.70217681e-01 5.66452622e-01 4.72896487e-01 7.91092336e-01 2.73335755e-01 -5.66340387e-01 -7.11676061e-01 -9.06783342e-01 -2.71924645e-01 4.86657679e-01 5.32045484e-01 -4.25508678e-01 -1.58118129e-01 3.74639660e-01]
[10.00249195098877, 2.226872444152832]
fe3023dd-7b2d-424e-b893-148592e91859
plug-and-play-autoencoders-for-conditional
2010.02983
null
https://arxiv.org/abs/2010.02983v2
https://arxiv.org/pdf/2010.02983v2.pdf
Plug and Play Autoencoders for Conditional Text Generation
Text autoencoders are commonly used for conditional generation tasks such as style transfer. We propose methods which are plug and play, where any pretrained autoencoder can be used, and only require learning a mapping within the autoencoder's embedding space, training embedding-to-embedding (Emb2Emb). This reduces the need for labeled training data for the task and makes the training procedure more efficient. Crucial to the success of this method is a loss term for keeping the mapped embedding on the manifold of the autoencoder and a mapping which is trained to navigate the manifold by learning offset vectors. Evaluations on style transfer tasks both with and without sequence-to-sequence supervision show that our method performs better than or comparable to strong baselines while being up to four times faster.
['James Henderson', 'Noah A. Smith', 'Ivan Montero', 'Nikolaos Pappas', 'Florian Mai']
2020-10-06
null
https://aclanthology.org/2020.emnlp-main.491
https://aclanthology.org/2020.emnlp-main.491.pdf
emnlp-2020-11
['conditional-text-generation']
['natural-language-processing']
[ 1.19162448e-01 4.05372769e-01 -3.92430983e-02 -4.19067949e-01 -4.22392249e-01 -5.78932524e-01 8.53439450e-01 -3.02304059e-01 -5.47555089e-01 8.23127687e-01 4.64227706e-01 -4.93810892e-01 5.75013697e-01 -7.82766998e-01 -1.03278267e+00 -5.01916468e-01 3.40358227e-01 6.41610146e-01 7.79407695e-02 -4.00624007e-01 -1.63660526e-01 2.29163364e-01 -1.01265585e+00 1.84729934e-01 6.28238082e-01 6.09773338e-01 2.82938927e-01 8.11686099e-01 -2.69790828e-01 7.89396763e-01 -6.49808586e-01 -7.12894917e-01 1.93538621e-01 -7.33089387e-01 -1.10737348e+00 2.90353913e-02 2.96691388e-01 -6.59234762e-01 -4.55493718e-01 6.44274712e-01 2.65864581e-01 3.58978689e-01 9.15472090e-01 -1.04246914e+00 -9.26110566e-01 4.28879648e-01 -1.23267204e-01 -8.69766474e-02 3.24165598e-02 -7.73683786e-02 1.15591550e+00 -9.99134302e-01 9.70863760e-01 1.09791172e+00 6.80321932e-01 1.05253971e+00 -1.62317014e+00 -4.98365134e-01 -1.32256433e-01 -8.64908695e-02 -9.70233798e-01 -5.60964525e-01 5.86415708e-01 -4.09577847e-01 1.15214276e+00 -1.15850672e-01 5.27234495e-01 1.35948753e+00 -5.34229577e-02 7.36822128e-01 7.99338937e-01 -7.77697921e-01 2.41494194e-01 4.87872720e-01 -2.58640826e-01 6.11886919e-01 -2.50857055e-01 1.96727037e-01 -4.50765580e-01 -1.29375933e-02 1.11495173e+00 -1.30304709e-01 -2.26499185e-01 -5.53555906e-01 -1.03242278e+00 1.11769450e+00 5.20537496e-01 3.32991213e-01 -2.82208562e-01 3.63299489e-01 4.29099321e-01 6.01553261e-01 4.94909346e-01 5.13978720e-01 -4.19061840e-01 -2.43087202e-01 -7.77764261e-01 1.24014840e-01 7.65429795e-01 1.13675547e+00 9.59906518e-01 3.09463620e-01 -1.27336094e-02 9.33607399e-01 -5.30950492e-03 3.05376738e-01 6.66304946e-01 -8.42835248e-01 5.63936532e-01 4.14142728e-01 1.13983132e-01 -5.23210704e-01 7.33834878e-02 -5.74280880e-02 -6.80604815e-01 4.46447253e-01 4.74722356e-01 -4.45336759e-01 -7.41731882e-01 1.87977350e+00 2.30210364e-01 3.57159734e-01 1.63550273e-01 6.28197551e-01 2.12842286e-01 9.71060455e-01 8.17434564e-02 2.63396591e-01 1.17746747e+00 -1.06066036e+00 -6.20238304e-01 -4.23219204e-01 8.57899368e-01 -7.13689685e-01 1.46551061e+00 -1.04752868e-01 -1.09491265e+00 -6.50289714e-01 -1.20589089e+00 -3.97674084e-01 -5.30929327e-01 1.58903584e-01 4.66690004e-01 3.19578528e-01 -1.21816301e+00 9.10030007e-01 -9.19925749e-01 -3.13459784e-01 2.75649160e-01 2.95327425e-01 -6.94809616e-01 1.33231729e-01 -1.13317573e+00 1.15495348e+00 7.19816923e-01 -3.66889477e-01 -8.55106711e-01 -9.37496603e-01 -9.66788828e-01 1.28022537e-01 -2.55154520e-01 -8.39633942e-01 1.34086812e+00 -1.31691170e+00 -1.89660037e+00 7.18733430e-01 -8.14395249e-02 -5.47493696e-01 4.58561391e-01 -5.18438339e-01 -3.42917979e-01 1.45347804e-01 -2.30638087e-02 1.08120751e+00 1.01470947e+00 -9.45890248e-01 -4.65464622e-01 1.23194158e-01 6.62902072e-02 3.70381266e-01 -8.26023161e-01 -1.50251761e-01 -2.86992490e-01 -8.12179267e-01 -4.16132629e-01 -1.07710898e+00 1.93397384e-02 -4.35882509e-02 -1.91089734e-01 -3.80334705e-01 1.06727409e+00 -1.02741849e+00 1.01975882e+00 -2.19476151e+00 4.39314842e-01 -4.65668701e-02 -5.93995824e-02 1.91857293e-01 -2.74592996e-01 6.07170463e-01 -2.11378068e-01 -5.95504940e-02 -2.64920563e-01 -6.67073190e-01 -3.39757092e-02 3.40382844e-01 -5.33262193e-01 1.25926316e-01 5.88137388e-01 9.04253006e-01 -8.35122645e-01 -2.24360183e-01 2.07458258e-01 7.35367775e-01 -7.25460052e-01 7.14332163e-01 -3.70080203e-01 3.62916231e-01 -4.33441438e-03 -3.17207247e-01 1.71054870e-01 -3.01654279e-01 8.74247253e-02 9.87582281e-02 1.72639832e-01 7.06636071e-01 -1.00538564e+00 1.88508141e+00 -8.88350964e-01 9.07361627e-01 -2.15959415e-01 -7.20936418e-01 8.40303957e-01 6.44828856e-01 -8.85345265e-02 -2.26249084e-01 -5.31622767e-02 1.11247092e-01 -2.04596519e-01 -8.37150812e-02 4.74926680e-01 -5.32130301e-01 3.11050206e-01 7.40103841e-01 7.05547690e-01 -1.22115746e-01 -5.29799028e-04 3.67183179e-01 8.21709752e-01 5.79136431e-01 -6.80004284e-02 -3.33414257e-01 2.20651418e-01 -9.11404714e-02 3.25552136e-01 2.98723310e-01 2.64973551e-01 5.95431328e-01 3.45691681e-01 -4.30647105e-01 -1.67520499e+00 -9.03060257e-01 1.50470242e-01 1.27939165e+00 -4.57371205e-01 -4.74926114e-01 -1.04378152e+00 -9.92311478e-01 -1.56563058e-01 1.09222507e+00 -8.83820891e-01 -2.48670310e-01 -8.16346347e-01 -1.70582816e-01 5.56146741e-01 1.06031084e+00 2.36569002e-01 -1.20908213e+00 -2.01245189e-01 3.61720771e-01 -8.98136795e-02 -1.00226438e+00 -6.54554904e-01 2.91662246e-01 -1.14991224e+00 -6.91524625e-01 -8.28007460e-01 -1.02006960e+00 9.14125800e-01 -2.39583075e-01 1.29322994e+00 5.72006106e-02 -2.42050388e-03 1.35326475e-01 -1.72625139e-01 -2.94495374e-01 -7.46987998e-01 3.02129954e-01 -4.13271151e-02 -1.33220181e-01 3.12467694e-01 -8.13553691e-01 -5.68740964e-01 3.24690603e-02 -8.52629781e-01 1.71043560e-01 4.50822622e-01 1.35970259e+00 1.53104514e-01 -2.59737283e-01 5.09670734e-01 -8.44513118e-01 5.69546282e-01 -1.76353097e-01 -5.50411880e-01 -4.73032482e-02 -5.97456634e-01 3.75936478e-01 9.31299806e-01 -4.02684361e-01 -1.06062937e+00 1.13680929e-01 -3.03045511e-01 -5.08582950e-01 -2.24216506e-01 3.17339785e-03 -1.03939399e-01 3.25188488e-01 8.01612973e-01 2.17108786e-01 1.61982998e-01 -5.92082024e-01 8.23616922e-01 5.04943013e-01 4.11802202e-01 -3.95640820e-01 9.50518310e-01 4.23814148e-01 -3.77660185e-01 -7.72755027e-01 -4.60370421e-01 -1.40382335e-01 -9.00621712e-01 3.25347483e-01 1.12437570e+00 -9.37492728e-01 -2.89687604e-01 3.75282988e-02 -1.23989463e+00 -7.20824599e-01 -4.75056320e-01 4.12678033e-01 -6.47748113e-01 3.60526554e-02 -9.23003376e-01 -4.85529512e-01 -4.61348116e-01 -8.52671385e-01 7.64765739e-01 2.62205862e-02 -5.01488626e-01 -1.53453207e+00 3.39852601e-01 -4.45961431e-02 5.79281986e-01 -1.72722593e-01 1.13208234e+00 -6.15462959e-01 -2.90049165e-01 -1.14661403e-01 2.64330562e-02 7.78982818e-01 1.06432520e-01 -2.70629436e-01 -1.16460145e+00 -3.92558187e-01 -1.67418018e-01 -6.00724101e-01 7.37126112e-01 2.25468092e-02 9.65240479e-01 -5.37865281e-01 -3.55947137e-01 5.31524718e-01 1.26373243e+00 8.30165762e-03 7.49977231e-01 3.02819043e-01 8.47734332e-01 5.77112079e-01 -8.01300034e-02 -1.19510606e-01 2.43827894e-01 6.75493717e-01 -1.45906925e-01 -2.47590065e-01 -2.32414156e-01 -8.68303120e-01 4.46008921e-01 1.03232706e+00 1.08011551e-01 1.12844110e-02 -5.47816694e-01 7.48124242e-01 -1.66997778e+00 -8.35176826e-01 3.11014861e-01 2.18383288e+00 1.15209520e+00 8.19871575e-02 1.29376590e-01 6.66006207e-02 4.86788273e-01 -1.96591895e-02 -3.06780219e-01 -7.02605546e-01 1.07007563e-01 5.63216686e-01 1.98603183e-01 8.84131491e-01 -1.09276402e+00 1.27563310e+00 6.97196102e+00 6.33458793e-01 -1.03187633e+00 2.81642705e-01 5.32037020e-01 3.92053910e-02 -2.61955500e-01 1.62360072e-01 -6.60537720e-01 3.20740402e-01 1.16914713e+00 2.63494372e-01 7.01771736e-01 1.00911295e+00 -2.05374584e-01 4.07064676e-01 -1.51441634e+00 7.08920479e-01 3.91109362e-02 -1.33176053e+00 1.19369626e-01 -7.68779367e-02 7.92930782e-01 -6.93550557e-02 -8.26859847e-02 5.10904431e-01 7.65804291e-01 -1.11824524e+00 4.82605040e-01 6.10991642e-02 8.07095349e-01 -7.58300900e-01 3.98129195e-01 1.41352534e-01 -7.97075272e-01 3.01747054e-01 -5.97259879e-01 -1.12116307e-01 2.13261098e-01 2.55738527e-01 -1.16718292e+00 9.00121331e-02 5.06646216e-01 5.97633302e-01 -3.01629782e-01 3.09846640e-01 -7.05900609e-01 8.64929199e-01 -1.23716109e-01 -5.37368581e-02 2.91392416e-01 -3.13960195e-01 3.52453619e-01 1.41665304e+00 1.76410332e-01 -1.76380023e-01 -7.69575164e-02 9.61303413e-01 -3.12970191e-01 1.53180048e-01 -8.43101561e-01 -2.98249811e-01 4.07573998e-01 1.14007664e+00 -3.79318804e-01 -5.77116668e-01 -4.66524780e-01 1.71024644e+00 7.39205420e-01 5.17834485e-01 -5.12497962e-01 -7.30954587e-01 8.40882123e-01 3.02402135e-02 7.11779416e-01 -2.86094308e-01 -3.07799190e-01 -1.10659122e+00 -2.05540881e-02 -7.79251218e-01 1.77525550e-01 -8.38036299e-01 -1.16755557e+00 7.84982383e-01 -3.60943317e-01 -9.77792501e-01 -7.75496483e-01 -8.79306316e-01 -8.38633657e-01 1.12662923e+00 -1.18494642e+00 -1.27321029e+00 1.86758876e-01 6.45771086e-01 4.10979241e-01 -4.04636919e-01 1.29075587e+00 1.37365937e-01 -2.52588511e-01 7.59097636e-01 1.96564734e-01 5.08978784e-01 7.13361382e-01 -1.71059024e+00 7.71928906e-01 7.06005991e-01 3.87462944e-01 8.67918968e-01 6.49075806e-01 -4.92830634e-01 -1.03451049e+00 -9.91485775e-01 1.09231281e+00 -7.37635016e-01 6.95798337e-01 -9.06144500e-01 -9.39969063e-01 1.19033372e+00 7.62085795e-01 -2.29300097e-01 8.52306664e-01 3.98860246e-01 -6.09694958e-01 1.45108342e-01 -6.72277391e-01 8.73089433e-01 8.33502531e-01 -9.37415659e-01 -7.10439801e-01 3.18912208e-01 8.95340443e-01 -3.28091294e-01 -9.32016671e-01 -1.75307244e-01 4.08851236e-01 -5.11978984e-01 8.76305878e-01 -1.15002000e+00 8.42641413e-01 -1.61636248e-01 1.18274093e-01 -1.85032356e+00 -4.38718915e-01 -7.18341112e-01 -2.43321344e-01 1.32371664e+00 7.62863159e-01 -4.83105808e-01 7.83741653e-01 5.14709771e-01 -7.24211559e-02 -4.83545959e-01 -7.78323352e-01 -8.52243662e-01 6.42765045e-01 5.84142096e-03 5.02364695e-01 1.15715718e+00 1.30031556e-01 9.23028052e-01 -4.64665145e-01 -1.67808250e-01 2.20798016e-01 -2.81594455e-01 8.29585671e-01 -9.60133255e-01 -7.40037501e-01 -3.50101709e-01 -2.34130576e-01 -1.21090055e+00 3.26469123e-01 -1.11383498e+00 -2.47204527e-02 -1.38746202e+00 -1.37773618e-01 -3.13842267e-01 -2.17069849e-01 7.04503179e-01 -3.90848219e-01 1.58144504e-01 2.21717626e-01 1.85988560e-01 -1.35862738e-01 8.62977803e-01 9.67451692e-01 -9.50980466e-03 -1.73551455e-01 -3.32149535e-01 -5.26627839e-01 5.39920747e-01 8.65260124e-01 -5.26639402e-01 -5.37242651e-01 -7.84846604e-01 9.36956033e-02 -2.75713414e-01 1.30159035e-01 -7.62209296e-01 -8.44744593e-02 1.76471740e-01 6.71405792e-01 -1.30411893e-01 5.74699819e-01 -7.58978724e-01 -1.64433613e-01 2.95313388e-01 -5.85249245e-01 2.45179832e-01 2.92345285e-01 3.80545199e-01 -8.15852284e-02 -3.80120844e-01 7.91065156e-01 5.45306988e-02 -3.57639909e-01 2.92462260e-02 -2.54183412e-01 1.31287858e-01 7.35098064e-01 6.17766939e-02 -1.01502910e-01 -5.57456434e-01 -7.26294398e-01 -7.16132894e-02 6.27315283e-01 5.64668834e-01 3.73158008e-01 -1.77570450e+00 -6.48598552e-01 2.64201969e-01 1.22904733e-01 -2.06343755e-01 -1.60003409e-01 3.21127415e-01 -5.03357172e-01 3.53700310e-01 -3.57583195e-01 -3.14190596e-01 -8.77570093e-01 6.45160377e-01 3.43978465e-01 -1.78908661e-01 -9.68015611e-01 9.32137609e-01 3.46770287e-01 -8.38776588e-01 1.58242762e-01 6.83090761e-02 6.04718886e-02 -2.96469361e-01 7.91521609e-01 1.91117108e-01 -5.25104739e-02 -4.07588840e-01 1.38689717e-02 1.82807535e-01 -3.66070151e-01 -6.98108912e-01 1.36746752e+00 1.24456130e-01 6.00201488e-02 5.29066086e-01 1.41834903e+00 -1.19950429e-01 -1.62466788e+00 -2.20822021e-01 -2.70680897e-03 -1.36872441e-01 1.56456381e-02 -7.28138924e-01 -7.97518551e-01 1.20550704e+00 5.09026468e-01 6.28739446e-02 6.35433614e-01 -2.60510594e-01 9.11973953e-01 4.08011764e-01 -6.07685782e-02 -1.31169951e+00 2.84863055e-01 6.02618098e-01 1.01126325e+00 -9.96397972e-01 -4.79541183e-01 -4.60156277e-02 -8.57950330e-01 1.02367163e+00 6.61541224e-01 -4.84150201e-01 6.82604909e-01 2.76502937e-01 3.65109235e-01 2.33823031e-01 -7.16029882e-01 1.56765908e-01 2.84890652e-01 6.99112475e-01 6.79695010e-01 2.18502656e-02 1.54847465e-02 2.55460411e-01 -5.04580200e-01 -1.07071109e-01 1.63647145e-01 8.76431286e-01 -2.65754968e-01 -1.49865687e+00 -6.72268728e-03 2.58222699e-01 -2.83076316e-01 -3.15371692e-01 -3.77194017e-01 7.11609840e-01 -1.75999135e-01 7.30537057e-01 3.34326833e-01 -2.47191191e-01 1.71700090e-01 7.42984653e-01 3.61846924e-01 -6.48885787e-01 -5.11655986e-01 -7.63271227e-02 1.11397468e-01 -4.42394763e-01 1.00735612e-01 -3.59098732e-01 -1.17778313e+00 -2.20700830e-01 -3.26163799e-01 2.99214989e-01 7.73778558e-01 8.97081435e-01 5.42849779e-01 4.46431786e-01 4.71519321e-01 -6.47297084e-01 -5.75883567e-01 -1.23335731e+00 -3.32749158e-01 7.35219240e-01 3.16691339e-01 -3.93326044e-01 -5.69817014e-02 5.91160178e-01]
[11.655662536621094, 9.471370697021484]
50044378-2fdb-4c2d-bcbf-864809268ab0
wonderm-skin-lesion-classification-with-fine
1808.03426
null
https://arxiv.org/abs/1808.03426v3
https://arxiv.org/pdf/1808.03426v3.pdf
WonDerM: Skin Lesion Classification with Fine-tuned Neural Networks
As skin cancer is one of the most frequent cancers globally, accurate, non-invasive dermoscopy-based diagnosis becomes essential and promising. A task of the Part 3 of the ISIC Skin Image Analysis Challenge at MICCAI 2018 is to predict seven disease classes with skin lesion images, including melanoma (MEL), melanocytic nevus (NV), basal cell carcinoma (BCC), actinic keratosis / Bowen's disease (intraepithelial carcinoma) (AKIEC), benign keratosis (solar lentigo / seborrheic keratosis / lichen planus-like keratosis) (BKL), dermatofibroma (DF) and vascular lesion (VASC) as defined by the International Dermatology Society. In this work, we design the WonDerM pipeline, that resamples the preprocessed skin lesion images, builds neural network architecture fine-tuned with segmentation task data (the Part 1), and uses an ensemble method to classify the seven skin diseases. Our model achieved an accuracy of 0.899 and 0.785 in the validation set and test set, respectively.
['Hong-Hee Won', 'Sang-Hyuk Jung', 'Yeong Chan Lee']
2018-08-10
null
null
null
null
['skin-lesion-classification']
['medical']
[ 8.07025552e-01 1.42520741e-01 -2.93841392e-01 -5.61200175e-03 -4.07197833e-01 -5.11182010e-01 6.56449437e-01 5.37493117e-02 -3.62144172e-01 6.77740872e-01 -2.30390742e-01 -5.80826879e-01 -1.90944821e-01 -5.96515119e-01 -2.35115394e-01 -9.23537076e-01 2.50659823e-01 9.80952755e-02 2.59735852e-01 6.46934137e-02 7.82293007e-02 4.75152612e-01 -1.14463842e+00 5.43562710e-01 1.37509704e+00 1.12966704e+00 -3.03563654e-01 1.30672550e+00 -1.00757312e-02 6.72222316e-01 -2.07457319e-01 -7.26108253e-01 -8.49815086e-02 -3.33482772e-01 -9.62378204e-01 8.19401518e-02 8.36749673e-01 -1.23855084e-01 4.22878973e-02 1.12450898e+00 2.60821700e-01 -5.61797261e-01 1.23007023e+00 -9.12588179e-01 -3.10473800e-01 -1.62489876e-01 -1.06320357e+00 -1.81986675e-01 1.06906965e-01 1.86993822e-01 4.33886573e-02 -3.04615706e-01 1.13541579e+00 7.26337850e-01 9.65018570e-01 1.08082509e+00 -8.01745832e-01 -2.30062991e-01 -2.37673715e-01 4.22541767e-01 -1.16809070e+00 -7.92935565e-02 -1.20001405e-01 -4.27018583e-01 7.09795177e-01 8.49416912e-01 1.14173138e+00 1.22090745e+00 3.25761825e-01 7.24754572e-01 1.63237488e+00 -6.36558890e-01 5.05483627e-01 2.54833430e-01 1.03708386e-01 6.68465495e-01 2.59137988e-01 -1.52460352e-01 2.74634510e-02 3.07823699e-02 8.23871613e-01 -2.49689668e-02 -1.12712801e-01 2.07716823e-01 -3.82573277e-01 3.97090763e-01 3.97363484e-01 -8.61753225e-02 -4.78168279e-01 -1.98669732e-01 3.17984253e-01 2.64719367e-01 3.71386975e-01 -8.00531730e-02 -3.24173242e-01 8.10610726e-02 -7.40755737e-01 -2.62408704e-01 7.30738461e-01 1.13602258e-01 2.27696463e-01 -6.21583641e-01 2.30964483e-03 1.15395832e+00 2.93933690e-01 2.72354454e-01 4.25466806e-01 -3.29049587e-01 -1.50224477e-01 9.37652469e-01 -4.19288039e-01 -1.50301799e-01 -4.70442861e-01 6.07439922e-03 -1.25831926e+00 3.78218204e-01 4.92381155e-01 -2.96787560e-01 -1.88954079e+00 1.04253054e+00 6.79863989e-01 2.80683875e-01 -1.36250528e-02 1.03984940e+00 7.36806035e-01 2.60325358e-03 5.40131986e-01 -3.18560228e-02 1.49852669e+00 -8.78939986e-01 -5.64355791e-01 -5.83460778e-02 5.25334179e-01 -6.23247564e-01 6.42796338e-01 7.49057293e-01 -8.10036838e-01 -1.13592418e-02 -8.39823306e-01 2.97952425e-02 -6.66643560e-01 3.10981661e-01 8.85898769e-01 9.18100834e-01 -1.20457590e+00 3.32069367e-01 -9.04463589e-01 -1.20870042e+00 8.13342333e-01 2.46371001e-01 -8.30787599e-01 -1.36264950e-01 -9.58275080e-01 9.96819556e-01 4.76682633e-02 1.17554821e-01 -4.00528431e-01 -8.82855117e-01 -4.69175369e-01 -6.56506121e-01 1.46614879e-01 -8.74838114e-01 8.84810925e-01 -1.31803429e+00 -1.56630194e+00 1.41617346e+00 -1.15733266e-01 -4.56685394e-01 5.46464801e-01 1.48705825e-01 -8.29201996e-01 4.12909836e-01 -4.39889580e-01 4.86751586e-01 6.24865949e-01 -9.57094610e-01 -1.00563598e+00 -6.92843676e-01 -2.95002341e-01 5.59520982e-02 -1.21252254e-01 -1.22537233e-01 -6.62145853e-01 -8.31865147e-02 -4.39484537e-01 -9.70340133e-01 -3.94308686e-01 3.59811187e-01 -1.05602431e+00 -1.30250245e-01 3.71628404e-01 -1.23389971e+00 1.29444647e+00 -1.88496208e+00 7.00485483e-02 6.58316553e-01 1.56467482e-01 9.68922794e-01 -1.85038060e-01 2.28813276e-01 -1.16040528e-01 4.08743024e-01 -3.23707104e-01 4.84645776e-02 -4.06483382e-01 -3.01399529e-01 5.23835897e-01 1.83385298e-01 4.29908037e-01 1.05089808e+00 -5.43390632e-01 -5.08380830e-01 4.38784033e-01 5.80138505e-01 2.83605546e-01 -1.61721751e-01 -3.01163971e-01 2.20432654e-02 -6.74145743e-02 1.14649045e+00 9.82442439e-01 -3.21811616e-01 4.90993291e-01 -4.91333872e-01 2.21597269e-01 -3.77576858e-01 -1.05774319e+00 1.18196893e+00 -5.28074265e-01 4.14765418e-01 5.89984953e-01 -1.27207130e-01 3.56539994e-01 4.89558429e-02 1.09268308e-01 -6.32855773e-01 -5.29383644e-02 2.07998961e-01 7.93180168e-02 -1.06752014e+00 -3.20340067e-01 3.83101888e-02 7.37478018e-01 -1.33657157e-01 -1.72580332e-01 1.81176066e-01 6.06775522e-01 1.04257040e-01 1.23409975e+00 -3.73639725e-02 6.81377411e-01 1.75772011e-01 5.64176261e-01 1.94377646e-01 2.01961130e-01 1.88636303e-01 -4.70448256e-01 4.20835644e-01 8.91305804e-01 -2.81786621e-01 -8.91421616e-01 -1.41587853e+00 -6.40881240e-01 3.66306752e-01 -7.26984516e-02 -2.18407989e-01 -1.18905854e+00 -8.11397195e-01 3.05975020e-01 2.80866802e-01 -9.30198908e-01 1.49957359e-01 -3.09223682e-02 -1.07975674e+00 7.37550199e-01 2.45770961e-01 7.79739439e-01 -6.64912462e-01 6.01538084e-02 -2.63586730e-01 3.21415901e-01 -5.15564024e-01 -6.26789480e-02 -7.38550648e-02 -1.62065744e-01 -1.87491715e+00 -1.03919756e+00 -8.16712081e-01 1.07376850e+00 -3.28553319e-01 6.07996345e-01 -6.26670346e-02 -1.54741812e+00 2.85016626e-01 -1.24893084e-01 -3.90946567e-01 -4.69753712e-01 -1.62306249e-01 -1.22448102e-01 3.95667583e-01 6.80186272e-01 -7.26923645e-02 -8.58812511e-01 -1.04912132e-01 -1.06194866e+00 3.75120819e-01 1.13155937e+00 6.27874911e-01 8.86593342e-01 -1.36843845e-02 3.62356514e-01 -1.51288247e+00 6.76370740e-01 -5.64060986e-01 -1.90069437e-01 7.94624746e-01 -7.23768353e-01 -9.21192348e-01 4.42765236e-01 -3.55147511e-01 -1.33615303e+00 4.78953689e-01 -2.05718845e-01 -5.67964464e-02 -7.76008904e-01 6.43548489e-01 1.39422953e-01 -3.42597991e-01 9.38624561e-01 2.54807055e-01 3.24988335e-01 -1.97001755e-01 1.31690323e-01 1.29264903e+00 5.24767160e-01 3.11091542e-01 3.32643777e-01 4.90988582e-01 3.77907693e-01 -1.28586435e+00 -7.83772349e-01 -5.93116283e-01 -5.49271882e-01 -4.22958434e-01 1.17625928e+00 -8.13510120e-01 -4.88283426e-01 1.34432697e+00 -5.74169278e-01 -5.72193563e-01 3.65669318e-02 -1.79271474e-02 5.21608144e-02 5.48435032e-01 -8.73154938e-01 -8.92109215e-01 -6.80946052e-01 -4.07733113e-01 9.52050388e-01 1.05218911e+00 -3.86392027e-01 -1.44209754e+00 3.17383766e-01 6.72898293e-01 4.35592830e-01 8.03324044e-01 9.76192951e-01 -4.56277668e-01 -9.12310407e-02 -4.65984017e-01 -5.01848519e-01 6.88751101e-01 3.15978944e-01 8.90086055e-01 -8.19238424e-01 3.11876126e-02 -7.71505415e-01 -5.36262929e-01 1.28679585e+00 6.70775950e-01 1.25788915e+00 -1.06165111e-01 -5.76250970e-01 9.57817316e-01 1.74409437e+00 1.94397122e-01 8.90187025e-01 -1.79968178e-02 5.81414878e-01 6.95663571e-01 4.53450948e-01 -9.10586864e-02 1.94462240e-01 -5.20640835e-02 4.72407222e-01 -6.88067317e-01 -4.12702054e-01 -9.60411355e-02 -1.69713333e-01 -9.06836167e-02 -5.11398971e-01 -2.15712130e-01 -9.34655488e-01 6.35970354e-01 -1.25189590e+00 -4.68853861e-01 -5.66130340e-01 2.03919911e+00 8.65875065e-01 -2.50340194e-01 5.21225706e-02 -1.75713614e-01 9.14242506e-01 -3.91365826e-01 -8.31800342e-01 -6.30320370e-01 -2.21374243e-01 7.12076187e-01 6.81077659e-01 2.52391279e-01 -1.45740819e+00 9.54147041e-01 5.28223181e+00 8.80829513e-01 -1.50849724e+00 -4.41789120e-01 9.56716955e-01 1.48149401e-01 -1.62367091e-01 -4.85722065e-01 -5.92555463e-01 4.24012631e-01 6.29849851e-01 7.59694055e-02 4.62182969e-01 5.51188827e-01 -1.84579149e-01 -6.77692413e-01 -5.64780474e-01 7.18151271e-01 4.47739698e-02 -1.63884640e+00 -3.87631580e-02 5.28373718e-02 8.58089983e-01 -7.62574598e-02 3.30015957e-01 1.03335105e-01 6.20595887e-02 -1.37827945e+00 -6.01509511e-01 1.08763111e+00 1.67074585e+00 -4.73956227e-01 8.99965584e-01 9.66751426e-02 -6.66267216e-01 2.00572535e-01 -1.03081102e-02 4.83500183e-01 -2.55536765e-01 6.37161076e-01 -1.09422219e+00 2.36822292e-01 6.42522275e-01 6.69588149e-01 -9.16457117e-01 1.39024150e+00 -3.17224234e-01 9.19074237e-01 -4.20066476e-01 -3.06946933e-01 8.92372653e-02 -1.22614369e-01 2.26198733e-01 1.24250293e+00 -4.05167080e-02 -1.24855347e-01 -5.12876689e-01 5.16786098e-01 3.09541285e-01 1.71817943e-01 1.20628355e-02 -3.14236820e-01 2.68880099e-01 2.02158022e+00 -5.14085591e-01 9.22868773e-02 4.25165743e-02 1.21919048e+00 -1.41075134e-01 5.60184300e-01 -4.63179141e-01 -6.27940118e-01 4.26003337e-01 2.77877778e-01 -1.65748462e-01 8.93166959e-01 -1.85637474e-01 -7.55318820e-01 -2.29761034e-01 -6.22660160e-01 6.29074991e-01 -5.26619554e-01 -1.74335122e+00 1.09409414e-01 -6.77122533e-01 -6.49000168e-01 -9.91626009e-02 -1.18669748e+00 -1.21549547e+00 1.16823363e+00 -1.74685371e+00 -1.88659632e+00 -8.32498431e-01 3.94954920e-01 5.38584823e-03 -2.39919513e-01 1.01381516e+00 -1.35098711e-01 -1.00929236e+00 7.62431860e-01 2.52712280e-01 3.53696011e-02 1.05301821e+00 -1.80908537e+00 5.73647805e-02 2.97241837e-01 -7.74378240e-01 5.20988107e-01 -2.22064592e-02 -8.86004627e-01 -1.29620337e+00 -1.56869495e+00 4.23659772e-01 -1.81080289e-02 7.87136018e-01 8.19418952e-02 -4.71294850e-01 2.42374033e-01 1.10988632e-01 -2.23748330e-02 1.31342208e+00 -1.14760324e-02 -3.57913524e-01 -1.37631446e-02 -1.63057446e+00 6.48767233e-01 4.46793973e-01 -1.96911335e-01 3.11974287e-01 6.79018259e-01 -2.25794390e-01 -6.27933979e-01 -1.24314284e+00 3.74631226e-01 8.41571033e-01 -9.06012475e-01 7.22726405e-01 -7.94590294e-01 9.45209146e-01 3.80801149e-02 2.51958966e-01 -1.27057076e+00 -1.05512910e-01 -3.78283203e-01 -1.60885349e-01 1.05579305e+00 2.73002774e-01 -5.76454043e-01 1.14684618e+00 3.88275355e-01 2.16347829e-01 -1.23134398e+00 -8.41678858e-01 -1.65558010e-01 2.62396336e-01 3.28242868e-01 5.90742342e-02 8.35238039e-01 -1.54192016e-01 1.17437929e-01 1.92238525e-01 -9.80626047e-02 8.73148978e-01 -5.36487579e-01 6.04255497e-01 -1.05181122e+00 2.42297407e-02 -6.02688313e-01 -4.33399379e-01 -1.18934002e-03 -3.12880248e-01 -8.80563736e-01 -7.79087961e-01 -1.98505652e+00 1.75511092e-01 -2.61301696e-01 -4.74143952e-01 6.88088059e-01 -2.19949260e-01 3.99037898e-01 -1.58201247e-01 -2.57199913e-01 -2.31342882e-01 -6.26473069e-01 1.41249597e+00 -2.75518894e-01 -2.16180738e-02 5.08562744e-01 -6.50842249e-01 8.88589621e-01 7.31775224e-01 5.35082042e-01 -2.03175887e-01 7.66552463e-02 2.56413102e-01 1.20616496e-01 7.32962132e-01 -7.93479621e-01 4.69113022e-01 -5.64178824e-01 8.68536890e-01 -4.99601930e-01 2.78932035e-01 -4.15834934e-01 1.09515414e-01 7.81228602e-01 -3.95500362e-01 -1.19968259e+00 1.56139731e-01 5.45349777e-01 4.91852732e-03 1.35021657e-02 1.19998348e+00 3.70378746e-03 -1.00128198e+00 4.73970860e-01 -4.45516855e-01 -5.44880748e-01 1.75345361e+00 -4.05216008e-01 -9.42516685e-01 5.50885312e-02 -7.67439902e-01 4.16871071e-01 5.09942353e-01 -1.71105342e-03 6.10565305e-01 -8.20794761e-01 -9.29185390e-01 1.72662839e-01 3.56849641e-01 3.54908518e-02 1.06844211e+00 1.05702949e+00 -1.00947952e+00 2.41788134e-01 -4.10767198e-01 -4.86503303e-01 -1.58895373e+00 -3.18122864e-01 7.77534187e-01 -4.09258813e-01 -1.39726773e-02 1.33272386e+00 -5.17935812e-01 -5.44548631e-01 2.22582892e-01 2.01901808e-01 -4.18757290e-01 8.94531142e-03 5.58640599e-01 4.35403287e-01 -6.49084300e-02 -1.21862456e-01 -3.45473677e-01 5.35970449e-01 -8.35513890e-01 5.94985783e-01 9.04947162e-01 3.30575943e-01 -5.31813920e-01 8.08940083e-02 8.87629867e-01 -4.09447223e-01 -9.05520141e-01 2.49040172e-01 -3.64999890e-01 5.42828068e-02 2.10940182e-01 -2.02030802e+00 -7.72658944e-01 6.68551207e-01 1.18511975e+00 2.70336956e-01 1.37908530e+00 -3.22257012e-01 8.14726233e-01 3.63633446e-02 -1.48258969e-01 -1.46778893e+00 -6.31744981e-01 -2.35094316e-02 4.99882370e-01 -1.28987086e+00 3.62618342e-02 -1.00563598e+00 -7.81449914e-01 1.39452076e+00 9.90671217e-01 -6.06740452e-02 6.62254274e-01 3.08761597e-01 5.09244204e-01 1.00456744e-01 -1.02383435e+00 -3.51046592e-01 4.76191849e-01 1.03978443e+00 2.54115164e-01 4.73503351e-01 -4.17098314e-01 5.57588398e-01 2.49136865e-01 2.02429622e-01 4.90930080e-01 5.47517657e-01 -1.44033864e-01 -9.55447137e-01 5.63971736e-02 1.40434539e+00 -4.66131479e-01 9.61511955e-02 -1.25498474e+00 1.14985144e+00 4.26924378e-01 5.36150634e-01 2.67579138e-01 -2.94216096e-01 -1.06942616e-01 -1.62937716e-01 5.79171836e-01 -4.37315941e-01 -7.57227421e-01 1.80153728e-01 2.31964126e-01 -3.08190912e-01 -2.72104561e-01 -2.45058671e-01 -9.62230146e-01 -3.14888335e-03 1.51409786e-02 -4.34494734e-01 1.24694908e+00 8.01787794e-01 9.48111862e-02 3.23189467e-01 3.95348966e-01 1.78280592e-01 -3.76450449e-01 -9.98606086e-01 -9.15945828e-01 4.67173666e-01 1.81533679e-01 -1.95360184e-02 -3.81303966e-01 3.97635043e-01]
[15.690374374389648, -3.000481128692627]
b7686392-1f20-4ae0-8ade-dcdcf34b9597
maximal-divergence-sequential-autoencoder-for
null
null
https://openreview.net/forum?id=ByloIiCqYQ
https://openreview.net/pdf?id=ByloIiCqYQ
Maximal Divergence Sequential Autoencoder for Binary Software Vulnerability Detection
Due to the sharp increase in the severity of the threat imposed by software vulnerabilities, the detection of vulnerabilities in binary code has become an important concern in the software industry, such as the embedded systems industry, and in the field of computer security. However, most of the work in binary code vulnerability detection has relied on handcrafted features which are manually chosen by a select few, knowledgeable domain experts. In this paper, we attempt to alleviate this severe binary vulnerability detection bottleneck by leveraging recent advances in deep learning representations and propose the Maximal Divergence Sequential Auto-Encoder. In particular, latent codes representing vulnerable and non-vulnerable binaries are encouraged to be maximally divergent, while still being able to maintain crucial information from the original binaries. We conducted extensive experiments to compare and contrast our proposed methods with the baselines, and the results show that our proposed methods outperform the baselines in all performance measures of interest.
['Trung Le', 'Dinh Phung', 'Tue Le', 'Tuan Nguyen', 'Olivier De Vel', 'Paul Montague', 'Lizhen Qu']
2019-05-01
null
null
null
iclr-2019-5
['vulnerability-detection', 'computer-security']
['miscellaneous', 'miscellaneous']
[ 9.76498351e-02 -1.70609877e-01 -2.92847455e-01 -2.50800371e-01 -4.92636651e-01 -9.92974162e-01 3.30755055e-01 4.44291651e-01 -1.64723977e-01 4.86303359e-01 1.23284280e-01 -6.79544449e-01 -2.36363355e-02 -6.84638619e-01 -5.16550004e-01 -5.60711503e-01 -2.92635590e-01 -5.36254272e-02 4.40147430e-01 -2.62842327e-01 5.83287537e-01 2.61922330e-01 -1.10846043e+00 9.41252932e-02 8.37275565e-01 9.74848390e-01 -1.63953498e-01 5.29466629e-01 1.44118562e-01 7.11006105e-01 -5.20020604e-01 -8.75955224e-01 3.81052017e-01 -1.99023724e-01 -5.52638829e-01 -2.56612271e-01 1.15310296e-01 -3.53364199e-01 -6.82787359e-01 1.71878648e+00 3.52091551e-01 -2.33935133e-01 4.21299607e-01 -1.10536027e+00 -5.72911918e-01 9.09768283e-01 -6.67807221e-01 5.34138978e-01 4.75015529e-02 1.41029418e-01 1.08594358e+00 -4.98838603e-01 4.22015078e-02 1.06753504e+00 6.70799315e-01 5.11964202e-01 -1.00123858e+00 -8.30506146e-01 1.30764946e-01 2.87326306e-01 -1.20720637e+00 -4.43035543e-01 8.60824108e-01 -5.40072381e-01 8.90290976e-01 -6.75039142e-02 -3.57275568e-02 1.22124565e+00 3.58168393e-01 3.36187631e-01 6.33690119e-01 -3.20752084e-01 3.83077800e-01 2.67863452e-01 3.63996416e-01 5.72665811e-01 4.35403824e-01 3.10256660e-01 1.73669867e-02 -5.94233036e-01 3.32660228e-01 1.95999831e-01 -2.84610361e-01 -4.53499913e-01 -6.58600032e-01 1.24374855e+00 4.62105721e-01 2.46266946e-01 -1.26338691e-01 9.84585360e-02 7.60084987e-01 2.42275238e-01 3.48405749e-01 3.28731328e-01 -3.73399228e-01 -3.41838002e-01 -9.69826400e-01 3.56787033e-02 5.96502125e-01 4.96586919e-01 3.71903747e-01 1.85216814e-01 2.40663037e-01 4.71276313e-01 3.48001719e-01 9.80404988e-02 5.87885976e-01 -3.75709444e-01 7.34309316e-01 8.02479446e-01 -2.24316508e-01 -1.12603283e+00 8.87872055e-02 -4.80789721e-01 -7.56636739e-01 3.87245923e-01 -5.01445420e-02 -9.60997120e-02 -7.56876886e-01 1.69230747e+00 -5.61721670e-03 -9.21415687e-02 1.37138173e-01 5.44335604e-01 1.39892250e-01 4.79929954e-01 -9.77512673e-02 2.82249898e-02 9.48900819e-01 -6.30191386e-01 -2.42766708e-01 -4.11865979e-01 3.82123291e-01 -5.79894125e-01 7.17614055e-01 2.58071333e-01 -6.63395643e-01 -2.72166133e-01 -1.34582591e+00 4.30928469e-01 -2.20334172e-01 -2.88869292e-01 5.78183353e-01 1.19836736e+00 -7.04077780e-01 5.76801240e-01 -9.03892517e-01 8.70434269e-02 4.98249561e-01 4.22579199e-01 -2.62211502e-01 3.32006216e-02 -1.26608133e+00 6.06841624e-01 6.34068429e-01 -1.33269727e-01 -1.20738506e+00 -3.01233202e-01 -8.15969229e-01 3.75832349e-01 4.63662684e-01 1.17177345e-01 1.08718681e+00 -9.58350062e-01 -1.12131071e+00 5.68377435e-01 2.70435423e-01 -7.15129852e-01 2.79448420e-01 -2.79306650e-01 -4.79787946e-01 5.90863638e-02 -1.85949996e-01 1.30170628e-01 9.45870936e-01 -9.06654835e-01 -4.85169947e-01 -1.48203805e-01 4.37696218e-01 -3.11051130e-01 -9.57767487e-01 4.46483433e-01 -4.33289222e-02 -6.65961742e-01 -3.42758954e-01 -9.06963706e-01 -3.77685338e-01 -2.47667030e-01 -4.91079718e-01 -5.63137010e-02 9.09692168e-01 -7.92140603e-01 1.43713474e+00 -2.52401972e+00 2.97086954e-01 1.24195367e-01 4.07576680e-01 6.13462031e-01 1.52895108e-01 3.73943031e-01 -3.15480322e-01 3.02771896e-01 -6.95651531e-01 -1.05721816e-01 2.43106410e-02 -1.79440409e-01 -8.93306375e-01 5.42860568e-01 1.04100786e-01 4.91217047e-01 -7.65959561e-01 -3.69434893e-01 -1.49113864e-01 2.36563668e-01 -6.45650685e-01 3.90326709e-01 -3.01643759e-01 -4.27524559e-02 -4.52841789e-01 7.89547801e-01 5.98491490e-01 -2.02507079e-01 4.22524996e-02 2.59189248e-01 6.69362098e-02 3.92758995e-01 -7.84376562e-01 1.20148683e+00 -4.00511742e-01 4.89230901e-01 -8.64845887e-02 -1.03391552e+00 8.09820950e-01 3.58288318e-01 1.51927099e-01 -4.18150872e-01 2.24068314e-01 1.70944020e-01 3.94348890e-01 -1.78806167e-02 3.48560244e-01 1.25341728e-01 -3.08798432e-01 5.70190251e-01 -1.48134872e-01 2.38623619e-01 -4.97150645e-02 3.87566805e-01 1.14538133e+00 -3.44098657e-01 4.56741035e-01 -1.03160590e-01 6.10923290e-01 -2.50373721e-01 7.70127833e-01 5.37101626e-01 -3.74086469e-01 2.85123795e-01 9.22742069e-01 -3.27205330e-01 -1.09182787e+00 -8.98372233e-01 -1.25162199e-01 7.20910668e-01 1.31247729e-01 -5.39991856e-01 -8.46709371e-01 -1.30133355e+00 -1.49101496e-01 6.02946520e-01 -5.14632165e-01 -7.84136713e-01 -6.35978341e-01 -9.08426046e-01 8.23084950e-01 7.09539473e-01 4.15604472e-01 -8.99423420e-01 -7.86356747e-01 1.49233431e-01 5.95846064e-02 -9.90324795e-01 -4.08375293e-01 3.75952512e-01 -6.49412572e-01 -9.95792747e-01 -5.04920959e-01 -5.07428288e-01 3.04350525e-01 4.87149134e-02 8.13663244e-01 3.07738006e-01 -4.33430046e-01 -1.54027507e-01 -6.50437653e-01 -1.30705059e-01 -5.43654263e-01 2.63539135e-01 1.81613281e-01 -2.00433806e-02 3.32297623e-01 -6.48093164e-01 -3.60314667e-01 1.14792272e-01 -1.11340296e+00 -5.96776664e-01 6.52941346e-01 7.64974177e-01 6.64646327e-02 6.36074185e-01 3.59826863e-01 -5.30986369e-01 7.19545722e-01 -8.62820506e-01 -9.58580673e-01 1.87030986e-01 -4.95204359e-01 3.02762479e-01 8.94328713e-01 -5.69947243e-01 -7.54320741e-01 -1.36935070e-01 -2.21311241e-01 -3.76206964e-01 5.07714460e-03 5.98411977e-01 -5.11785328e-01 -2.96991497e-01 5.68736017e-01 1.85692698e-01 -3.59926403e-01 -4.89679754e-01 1.64351359e-01 7.82948017e-01 4.73516226e-01 -5.21708429e-01 1.08888018e+00 5.18399850e-02 -1.22820832e-01 -4.31391925e-01 -5.51235676e-01 -1.15616329e-01 -4.14207220e-01 2.74796605e-01 5.84993124e-01 -5.66455185e-01 -3.98232907e-01 5.10339022e-01 -9.65837240e-01 -3.35516557e-02 1.72846645e-01 4.67188768e-02 -9.06167254e-02 9.53645885e-01 -5.68731070e-01 -6.89711094e-01 -3.21836442e-01 -1.61399746e+00 7.06456244e-01 2.89593607e-01 -3.03551219e-02 -7.96078563e-01 4.16027576e-01 -2.32653871e-01 4.67996716e-01 1.52949721e-01 1.41207206e+00 -9.09218013e-01 -3.89888436e-01 -5.39691627e-01 -2.56102353e-01 5.09011805e-01 3.13012987e-01 1.30662099e-02 -8.17282617e-01 -5.09184957e-01 2.30026737e-01 -5.41477561e-01 9.92562830e-01 -1.07304946e-01 1.24626279e+00 -3.40035647e-01 -3.49538088e-01 7.31186390e-01 1.42565322e+00 4.03874695e-01 5.54243684e-01 4.72167224e-01 5.26157320e-01 4.98986036e-01 2.13611141e-01 5.21435797e-01 3.20189223e-02 8.48579347e-01 9.87769246e-01 2.52210945e-01 3.20002884e-01 -4.34968062e-02 5.50970733e-01 4.63564098e-01 3.29910338e-01 -2.46868029e-01 -1.05249262e+00 6.29367530e-01 -1.70229375e+00 -9.10853088e-01 2.98363775e-01 2.32729006e+00 9.00661230e-01 6.94538891e-01 1.35796010e-01 4.39457119e-01 7.80981302e-01 2.03756824e-01 -5.83300233e-01 -5.72542906e-01 1.12896875e-01 2.18370110e-01 5.59630096e-01 2.36756593e-01 -1.43364727e+00 9.29028213e-01 6.13373709e+00 7.93175876e-01 -1.13384986e+00 -9.60459486e-02 5.46270311e-01 9.69605669e-02 -1.45787731e-01 3.14348638e-01 -8.58126163e-01 8.02213907e-01 1.18776071e+00 -2.02231869e-01 3.37675273e-01 1.09541607e+00 -5.16515732e-01 2.42197156e-01 -9.81939495e-01 6.19892478e-01 3.06240208e-02 -8.96045029e-01 -2.33090863e-01 3.54296476e-01 5.27225912e-01 -1.52219996e-01 5.50655961e-01 3.46944988e-01 5.78943253e-01 -1.00360394e+00 7.96875656e-01 2.09055990e-01 5.67347884e-01 -1.20418048e+00 8.72474670e-01 3.02270055e-01 -1.16815042e+00 -6.54033065e-01 -4.96382624e-01 5.40314950e-02 2.16127541e-02 7.70288527e-01 -6.31321371e-01 3.76523584e-01 6.87234163e-01 3.56008619e-01 -9.29610729e-01 1.01320994e+00 -3.02126378e-01 9.43154275e-01 -5.18566743e-02 1.13885105e-01 2.74411410e-01 3.39410067e-01 3.65772814e-01 9.83337760e-01 6.99611455e-02 -2.22877041e-01 2.56430686e-01 8.74439299e-01 -1.47528693e-01 -2.99940139e-01 -4.83878314e-01 -5.33626080e-01 3.76728058e-01 1.06237662e+00 -7.51519144e-01 -1.25668883e-01 -5.50612926e-01 8.45716417e-01 3.43408406e-01 -2.85770763e-02 -1.05311215e+00 -8.17794144e-01 9.29122746e-01 -2.19181627e-01 5.87234676e-01 -4.31904584e-01 -1.50473088e-01 -1.25628853e+00 1.03792250e-01 -1.23583758e+00 3.29353273e-01 8.67865630e-04 -1.25752854e+00 9.72308218e-01 2.13472303e-02 -1.03104734e+00 -4.61965740e-01 -5.89763701e-01 -7.71087170e-01 7.56057739e-01 -1.38901341e+00 -8.05771053e-01 1.72239289e-01 4.45090503e-01 4.07175481e-01 -5.78477859e-01 5.58532655e-01 2.83861995e-01 -8.30092132e-01 1.08817601e+00 1.77572787e-01 4.11024928e-01 4.82994646e-01 -1.04682744e+00 1.03403926e+00 1.36318576e+00 2.19376370e-01 8.25096309e-01 5.15811563e-01 -9.43660975e-01 -9.21946645e-01 -1.00598073e+00 5.01267850e-01 -3.72985840e-01 8.90365839e-01 -6.99582160e-01 -9.99048471e-01 4.96736020e-01 1.70250937e-01 1.00429475e-01 5.71115434e-01 -1.69778928e-01 -8.70091796e-01 1.87676519e-01 -1.07866037e+00 4.53939527e-01 5.46216488e-01 -6.22281611e-01 -6.31402791e-01 5.43689467e-02 8.86429071e-01 -1.73329636e-02 -3.99542779e-01 4.79715586e-01 2.60403335e-01 -1.03714752e+00 1.11924541e+00 -5.76772332e-01 5.81583083e-01 -6.95091337e-02 -3.54457200e-01 -1.01500320e+00 -4.34255093e-01 -2.44320557e-01 -4.94437844e-01 1.39137912e+00 1.64019272e-01 -4.60491270e-01 7.62770712e-01 3.49375904e-01 9.98482760e-03 -5.07048726e-01 -8.83475244e-01 -7.81594992e-01 3.09069455e-01 -6.17062636e-02 6.76702678e-01 7.73333371e-01 6.17028847e-02 -1.06636651e-01 -5.04962564e-01 5.29961646e-01 7.38947511e-01 2.69280016e-01 3.08441401e-01 -1.21078181e+00 -7.93763638e-01 -5.96795678e-01 -7.69247651e-01 -7.16035426e-01 4.57126290e-01 -6.92706287e-01 4.07763310e-02 -5.96900821e-01 4.56316084e-01 -1.69394344e-01 -5.75228214e-01 5.56697786e-01 -4.22859192e-01 1.88002110e-01 -5.27536869e-02 5.79875037e-02 -4.06295031e-01 4.55949545e-01 1.15548007e-01 -3.64663661e-01 2.09421694e-01 1.42447785e-01 -8.67657721e-01 7.63043880e-01 8.42212856e-01 -8.47714305e-01 -3.76455218e-01 -3.31369132e-01 4.53863382e-01 -4.17349972e-02 2.87821144e-01 -1.04756391e+00 2.82467734e-02 -1.33434042e-01 1.18339747e-01 -1.46072373e-01 5.03861196e-02 -6.84107661e-01 -4.55698848e-01 6.25171661e-01 -1.79016128e-01 3.25421244e-01 2.48098627e-01 5.84200919e-01 -2.46832013e-01 -6.44325197e-01 8.65017354e-01 -8.34931880e-02 -6.18393362e-01 3.60590369e-01 -4.36619669e-01 8.86644721e-02 1.07062781e+00 -1.10248495e-02 -3.30604166e-01 -2.43702501e-01 -7.75020644e-02 -1.24104083e-01 7.19712079e-01 5.11820436e-01 6.62281513e-01 -1.00055146e+00 -4.96443212e-01 2.92153925e-01 1.99245498e-01 -4.97133911e-01 3.06583755e-02 2.83093423e-01 -3.19446385e-01 4.89030272e-01 -2.57719666e-01 -8.20415765e-02 -1.21245384e+00 1.06311643e+00 2.44268790e-01 -4.06969488e-01 -6.12523973e-01 9.18366551e-01 2.06027940e-01 -6.57409281e-02 4.74150032e-01 -3.59999649e-02 -2.73192078e-01 -3.48232031e-01 7.19717801e-01 1.34757817e-01 1.30725682e-01 -6.51019633e-01 -5.96402943e-01 3.63451242e-01 -5.86766601e-01 1.20951168e-01 1.26777577e+00 2.55164444e-01 -2.71450877e-02 -4.83223461e-02 1.09695864e+00 1.77906677e-01 -1.19411838e+00 -2.23642468e-01 4.66472417e-01 -6.22667909e-01 1.26960590e-01 -6.69261932e-01 -1.12525690e+00 1.22294497e+00 6.49478316e-01 3.02030444e-01 1.18296695e+00 -9.10968333e-02 1.04722285e+00 3.51164490e-01 4.93490398e-01 -4.06769216e-01 3.15419972e-01 5.48475206e-01 2.13664517e-01 -1.17075360e+00 -1.47399336e-01 -4.77314889e-02 -4.72271055e-01 1.04442692e+00 5.34764409e-01 -2.15467870e-01 5.34603775e-01 5.23592710e-01 -1.68441683e-01 7.59683102e-02 -6.81492150e-01 1.61405414e-01 3.19287032e-02 5.13470829e-01 3.57759178e-01 -1.53785989e-01 -9.22336131e-02 7.96087682e-01 -8.74360204e-02 -6.33665085e-01 6.41814709e-01 1.15555286e+00 -5.14449775e-01 -1.60794270e+00 -4.16426420e-01 1.94427952e-01 -8.51164460e-01 -4.19322670e-01 -6.42612457e-01 3.53363574e-01 -2.25603324e-03 8.65718186e-01 -2.63115704e-01 -6.40267968e-01 -1.19760282e-01 -7.88401142e-02 1.04514301e-01 -6.43987834e-01 -5.86201489e-01 -2.64874965e-01 -3.79135966e-01 -2.64814347e-01 2.56984502e-01 -5.61170340e-01 -8.10823023e-01 -1.75611079e-01 -4.77826416e-01 2.91651070e-01 5.45734167e-01 8.27691972e-01 1.76618040e-01 5.34852386e-01 9.02087808e-01 -5.75935006e-01 -1.17050958e+00 -7.72957325e-01 -3.26288283e-01 2.37870216e-01 6.53306901e-01 -8.47238779e-01 -5.96082330e-01 -2.06334859e-01]
[7.087465286254883, 7.781181335449219]
b44b944e-e97b-4b46-a4f7-32f54bee89d9
explore-and-match-end-to-end-video-grounding
2201.10168
null
https://arxiv.org/abs/2201.10168v4
https://arxiv.org/pdf/2201.10168v4.pdf
Explore-And-Match: Bridging Proposal-Based and Proposal-Free With Transformer for Sentence Grounding in Videos
Natural Language Video Grounding (NLVG) aims to localize time segments in an untrimmed video according to sentence queries. In this work, we present a new paradigm named Explore-And-Match for NLVG that seamlessly unifies the strengths of two streams of NLVG methods: proposal-free and proposal-based; the former explores the search space to find time segments directly, and the latter matches the predefined time segments with ground truths. To achieve this, we formulate NLVG as a set prediction problem and design an end-to-end trainable Language Video Transformer (LVTR) that can enjoy two favorable properties, which are rich contextualization power and parallel decoding. We train LVTR with two losses. First, temporal localization loss allows time segments of all queries to regress targets (explore). Second, set guidance loss couples every query with their respective target (match). To our surprise, we found that training schedule shows divide-and-conquer-like pattern: time segments are first diversified regardless of the target, then coupled with each target, and fine-tuned to the target again. Moreover, LVTR is highly efficient and effective: it infers faster than previous baselines (by 2X or more) and sets competitive results on two NLVG benchmarks (ActivityCaptions and Charades-STA). Codes are available at https://github.com/sangminwoo/Explore-And-Match.
['Changick Kim', 'Minki Jeong', 'Sumin Lee', 'Inyong Koo', 'Jinyoung Park', 'Sangmin Woo']
2022-01-25
null
null
null
null
['video-grounding']
['computer-vision']
[ 4.97961678e-02 -2.60288604e-02 -6.87691391e-01 -4.18217599e-01 -1.23830807e+00 -7.05852509e-01 5.29866219e-01 -1.19167186e-01 -4.46012974e-01 6.54868841e-01 3.23422819e-01 -1.93087429e-01 -1.55974776e-02 -6.07262671e-01 -1.02978873e+00 -6.21194899e-01 -1.04515053e-01 3.71583968e-01 6.32523715e-01 -1.32946953e-01 3.89040401e-03 1.71762615e-01 -1.35804081e+00 5.45442522e-01 5.68294704e-01 1.09751177e+00 4.12315339e-01 5.97280622e-01 2.61893243e-01 1.03879464e+00 -1.75996587e-01 -4.55052674e-01 1.86352462e-01 -5.45880556e-01 -6.36482239e-01 -1.42847002e-02 5.20648062e-01 -2.04295635e-01 -8.68528247e-01 6.78587019e-01 4.28114414e-01 2.45784536e-01 2.18955815e-01 -1.43103850e+00 -4.70070571e-01 6.25596285e-01 -5.31744838e-01 4.09984261e-01 3.87998521e-01 3.87963295e-01 1.15270078e+00 -7.20141768e-01 8.89159739e-01 1.07163286e+00 5.72111487e-01 5.88151276e-01 -1.06288803e+00 -5.08876443e-01 4.17804778e-01 3.03643733e-01 -1.42382872e+00 -5.97831368e-01 5.01297593e-01 -4.06098604e-01 9.01163042e-01 4.10270780e-01 6.30681694e-01 1.39399397e+00 9.39608440e-02 1.06040227e+00 7.48635173e-01 -1.59283265e-01 7.05859065e-02 -1.06602445e-01 -1.21481866e-01 9.13051426e-01 -4.65406090e-01 5.73178232e-02 -8.48468721e-01 5.27489334e-02 7.25516617e-01 8.22599903e-02 -5.64196646e-01 -1.94276780e-01 -1.58476150e+00 7.67961085e-01 3.61931473e-01 2.38601178e-01 -2.64162093e-01 4.96616185e-01 4.91588414e-01 2.61077374e-01 3.56933504e-01 2.68855065e-01 -5.13301671e-01 -4.14643824e-01 -1.20779467e+00 2.75907785e-01 3.75842601e-01 1.22497761e+00 7.63993204e-01 -1.23833746e-01 -8.21641207e-01 4.70621735e-01 8.67796019e-02 3.59033763e-01 4.87779438e-01 -1.10290563e+00 7.08186269e-01 2.22818583e-01 -2.23937426e-02 -8.81677032e-01 -2.49087438e-01 -4.58654195e-01 -5.45476913e-01 -3.69725138e-01 2.84049153e-01 5.61216734e-02 -8.38953614e-01 2.12017894e+00 2.45514482e-01 6.25045240e-01 -1.53805301e-01 1.16905332e+00 6.71238899e-01 9.65833783e-01 1.14682123e-01 -4.16636884e-01 1.33479083e+00 -1.09294498e+00 -4.48947966e-01 -1.24631569e-01 7.10907519e-01 -3.82117331e-01 1.43770170e+00 4.06414479e-01 -1.18858397e+00 -6.83209896e-01 -7.24905133e-01 -2.16009080e-01 1.90536305e-02 5.01005314e-02 6.46765888e-01 1.44885048e-01 -1.23930573e+00 5.35975516e-01 -9.93181229e-01 -2.99993962e-01 3.57294947e-01 1.79821566e-01 -2.24599570e-01 -1.40000671e-01 -1.19074488e+00 3.14746827e-01 2.67768234e-01 -1.59620821e-01 -1.21007740e+00 -7.58942127e-01 -8.23587298e-01 -4.01910134e-02 5.69219530e-01 -8.49710703e-01 1.33741045e+00 -1.04476178e+00 -1.38892484e+00 1.04835916e+00 -4.93259341e-01 -9.10125017e-01 7.73807764e-01 -2.46308655e-01 -3.81150275e-01 3.46374214e-01 3.72883916e-01 8.51595819e-01 6.93411589e-01 -7.59672761e-01 -7.97486186e-01 -1.20660096e-01 2.01845933e-02 1.15166537e-01 -1.16803400e-01 3.42105911e-03 -1.26340401e+00 -7.80957997e-01 2.60471217e-02 -7.48323679e-01 2.29174714e-03 4.86761285e-03 -4.28311110e-01 -2.95026451e-01 5.58641851e-01 -6.26314580e-01 1.59659052e+00 -2.24178529e+00 3.09730172e-01 -2.07531340e-02 2.71257013e-01 -8.15650448e-02 -1.96869820e-01 5.84545434e-01 3.92266028e-02 -1.29129499e-01 1.66515517e-03 -4.00784165e-01 -8.84660333e-03 1.59998432e-01 -5.96095681e-01 6.17763102e-01 -1.17946558e-01 1.06113696e+00 -1.15541816e+00 -6.34631276e-01 5.32497279e-02 3.53130877e-01 -7.60104597e-01 1.91064209e-01 -6.09099984e-01 5.10902107e-01 -4.12040442e-01 7.13263273e-01 1.66850567e-01 -4.03736472e-01 -8.47368781e-03 -4.91765350e-01 -1.54590696e-01 3.52996677e-01 -6.91250086e-01 1.96523583e+00 -2.22195432e-01 8.50084424e-01 -3.64696801e-01 -8.40436339e-01 6.39667630e-01 3.84493172e-01 7.14983404e-01 -9.10431206e-01 -7.99373984e-02 6.48075193e-02 -5.22516131e-01 -6.06498837e-01 3.42219293e-01 2.34677270e-01 -1.80748612e-01 1.30838275e-01 2.95184731e-01 1.55763060e-01 2.68711865e-01 3.29283237e-01 1.22118962e+00 5.36780775e-01 2.77083479e-02 1.34172797e-01 2.35651970e-01 -6.31300658e-02 7.38474846e-01 8.39398324e-01 -1.77560985e-01 6.61944091e-01 6.86159968e-01 -3.19794267e-01 -9.45744455e-01 -1.34867179e+00 2.98929513e-01 1.47383869e+00 2.86860853e-01 -6.23569429e-01 -6.78778827e-01 -7.89552033e-01 -2.00852841e-01 9.01932836e-01 -5.57581007e-01 -2.22743496e-01 -7.33338416e-01 -2.69366503e-01 5.79411864e-01 4.85313803e-01 4.20249313e-01 -9.28854227e-01 -6.37546897e-01 3.07819724e-01 -6.26192510e-01 -1.22422302e+00 -1.01554561e+00 -6.38673035e-03 -6.94608390e-01 -9.60766017e-01 -6.08150005e-01 -6.71148777e-01 3.93127531e-01 3.13296914e-01 1.31308162e+00 4.85914871e-02 4.87174653e-02 3.68992895e-01 -4.53946382e-01 -6.73655123e-02 -7.17986226e-02 3.70516628e-02 -6.68314025e-02 1.84569374e-01 2.94121623e-01 -5.03436029e-01 -7.23661482e-01 5.43114603e-01 -6.37635648e-01 3.13167572e-01 3.71738315e-01 6.67238235e-01 1.05121398e+00 -2.42044657e-01 3.89780521e-01 -5.09272993e-01 1.49449155e-01 -5.87167442e-01 -7.92075276e-01 2.29400709e-01 -3.36967140e-01 -1.09998979e-01 5.48307002e-01 -4.95107740e-01 -4.87424105e-01 1.02674298e-01 -2.32243523e-01 -9.39461589e-01 1.90286994e-01 2.75319189e-01 -1.41788885e-01 2.75337338e-01 4.68808293e-01 6.60699964e-01 -2.91553557e-01 -2.42143556e-01 3.88284951e-01 3.46927047e-01 9.38504755e-01 -5.28699338e-01 5.93248129e-01 5.44902384e-01 -3.49893898e-01 -5.80058396e-01 -9.50721145e-01 -6.26418531e-01 -2.55076140e-01 -3.83796126e-01 9.72166359e-01 -1.13634253e+00 -8.43858302e-01 8.60917196e-02 -1.06233013e+00 -7.49611557e-01 -4.03046876e-01 5.85674822e-01 -9.50742185e-01 2.22763985e-01 -6.18324637e-01 -5.30704141e-01 -2.51105279e-01 -1.06761193e+00 1.31624401e+00 5.89680634e-02 -1.86728850e-01 -7.07786143e-01 -3.85072120e-02 2.64585704e-01 4.14610468e-02 3.72061700e-01 5.37712455e-01 -5.96326590e-01 -9.89319980e-01 -6.84408396e-02 -1.12265214e-01 -2.12972220e-02 -1.93377852e-01 -1.19908132e-01 -8.35545182e-01 -4.13579464e-01 -5.37097454e-02 -2.52017319e-01 9.83235955e-01 5.88213086e-01 1.41191113e+00 -6.05825365e-01 -5.05753458e-01 1.08752263e+00 1.41471410e+00 1.11833654e-01 7.48610914e-01 3.57735753e-01 6.65754259e-01 2.68241256e-01 8.07509482e-01 4.34669465e-01 6.36150777e-01 9.93142426e-01 5.06164491e-01 -1.24304183e-01 -1.16996340e-01 -6.97329521e-01 6.04682446e-01 5.59101880e-01 -4.68058810e-02 -7.52602041e-01 -6.23206437e-01 6.78013086e-01 -2.19848609e+00 -1.24676836e+00 -2.28720121e-02 2.22247100e+00 7.78426230e-01 2.42056444e-01 3.71436268e-01 -1.68307006e-01 5.15068948e-01 2.94257581e-01 -5.22995472e-01 6.02728501e-02 -2.32375592e-01 -2.43842471e-02 5.55424690e-01 4.09308046e-01 -1.03355157e+00 1.22292662e+00 5.09073448e+00 1.00993013e+00 -1.17713416e+00 4.59924996e-01 7.79752672e-01 -4.66613710e-01 -2.93080419e-01 -6.98293895e-02 -8.43640268e-01 6.38004482e-01 9.56016421e-01 -5.78108393e-02 6.91139042e-01 6.59701526e-01 5.95519900e-01 1.53281018e-01 -1.35494494e+00 1.05386913e+00 -7.92171136e-02 -1.70372272e+00 5.63152395e-02 -1.79311410e-01 4.83697534e-01 3.80934596e-01 -8.64911377e-02 3.74216437e-01 9.44651812e-02 -7.80518174e-01 1.20829630e+00 5.64511180e-01 8.81138802e-01 -4.87298936e-01 2.92075098e-01 3.74115258e-01 -1.33733904e+00 -4.32060240e-03 -1.62566036e-01 1.69502020e-01 4.19714183e-01 3.26823354e-01 -6.61367416e-01 4.99790967e-01 7.55316496e-01 8.50436032e-01 -3.55889469e-01 1.09964132e+00 -3.33021343e-01 8.65030229e-01 -2.71722823e-01 6.02971986e-02 5.87647200e-01 -5.71745820e-02 6.75461888e-01 1.34597683e+00 4.64518666e-01 -6.13979399e-02 3.44204128e-01 8.09857607e-01 -1.57203689e-01 -4.56342585e-02 -3.94949824e-01 2.71382127e-02 5.22486866e-01 9.10865486e-01 -7.30236530e-01 -4.02730256e-01 -4.14304763e-01 1.19520473e+00 3.30728590e-01 5.53890884e-01 -1.35473526e+00 -1.76064983e-01 4.88929629e-01 3.74122888e-01 5.84843636e-01 -4.56244759e-02 1.67612880e-01 -1.19400346e+00 2.35765427e-02 -7.75914192e-01 6.98012352e-01 -9.88763392e-01 -9.10167694e-01 6.86439216e-01 -1.71681419e-02 -1.55247068e+00 -3.38078856e-01 -2.11838529e-01 -3.44039261e-01 5.32419384e-01 -1.30701947e+00 -1.26661849e+00 -2.87732959e-01 8.37259054e-01 8.78230691e-01 1.30569991e-02 4.14084196e-01 4.30511475e-01 -3.66239071e-01 8.34715664e-01 -1.03220493e-01 1.96030512e-01 6.56659365e-01 -9.65466559e-01 4.20197904e-01 9.45509076e-01 5.49850762e-01 2.25959197e-01 7.07348824e-01 -4.79757160e-01 -1.50938272e+00 -1.43692946e+00 9.91490781e-01 -5.27616918e-01 6.34890020e-01 -5.15398085e-01 -8.03668201e-01 9.88991022e-01 8.40996802e-02 8.73440132e-02 2.87225455e-01 -2.29086146e-01 -4.84674871e-01 -2.07281619e-01 -7.69151151e-01 6.89472198e-01 1.19577277e+00 -5.47235370e-01 -3.15516800e-01 7.10492015e-01 1.15708995e+00 -7.64104843e-01 -6.10133410e-01 1.62383959e-01 5.02693892e-01 -1.11113036e+00 9.69247997e-01 -6.16020918e-01 4.11226243e-01 -3.44183713e-01 -3.36711884e-01 -8.89722943e-01 -2.61681437e-01 -1.11208856e+00 -2.50933707e-01 1.11963761e+00 3.99921596e-01 -4.31373000e-01 7.89558232e-01 4.43467349e-02 -4.84845519e-01 -1.03003180e+00 -9.49597299e-01 -9.14626420e-01 -3.23595792e-01 -6.83825850e-01 5.01767337e-01 8.79186511e-01 1.33226980e-02 2.60145217e-01 -5.50701797e-01 2.14923814e-01 4.69339937e-01 2.42013276e-01 6.16347611e-01 -5.06165087e-01 -7.67187953e-01 -4.51661080e-01 -2.87668347e-01 -1.53783000e+00 -1.93436276e-02 -8.78998220e-01 8.86793882e-02 -1.44315529e+00 1.74861252e-01 -3.57852936e-01 -2.54061550e-01 7.41280794e-01 1.01930806e-02 2.52908468e-01 3.27428728e-01 3.19491774e-01 -1.04673719e+00 4.28955287e-01 1.05905747e+00 -1.38029277e-01 -3.97208452e-01 1.81562185e-01 -4.91712540e-01 5.50815940e-01 6.07597530e-01 -4.74782437e-01 -6.37044966e-01 -5.97949266e-01 1.91339195e-01 5.46368599e-01 4.95145261e-01 -9.84901965e-01 3.37221801e-01 -1.70822322e-01 4.64656949e-02 -8.03312182e-01 4.41774815e-01 -4.43455577e-01 1.92128062e-01 3.17358255e-01 -4.84806687e-01 1.70124635e-01 1.06212512e-01 5.84534168e-01 -1.55995980e-01 1.16581090e-01 6.16665065e-01 -4.95434962e-02 -9.81179237e-01 6.85438275e-01 -8.43863189e-02 4.21110421e-01 1.02804458e+00 -2.74897605e-01 -2.45746672e-01 -5.31118333e-01 -5.42856812e-01 4.54453886e-01 3.69507045e-01 5.02856433e-01 6.35710120e-01 -1.29261351e+00 -7.14437962e-01 -1.00773916e-01 2.44535416e-01 -1.07692845e-01 1.86525181e-01 1.18986940e+00 -2.57657498e-01 3.96075755e-01 2.18860462e-01 -9.44406986e-01 -1.05380416e+00 8.77916932e-01 3.26075852e-01 -2.56698191e-01 -7.17380822e-01 1.18680394e+00 5.56863248e-01 -1.23777077e-01 5.51981211e-01 -4.08556879e-01 1.22708961e-01 -1.01323575e-01 5.53379297e-01 1.04918040e-01 -2.05296621e-01 -5.71905434e-01 -3.53472143e-01 5.15943229e-01 1.31718278e-01 -6.21974394e-02 1.21481025e+00 -1.74173534e-01 1.71817467e-01 4.56249833e-01 1.28404069e+00 3.79564874e-02 -1.58679402e+00 -3.31913561e-01 -1.56302258e-01 -4.83387530e-01 -7.40789697e-02 -6.59677565e-01 -1.09931886e+00 5.29132485e-01 3.81377727e-01 3.71355563e-02 1.36753273e+00 3.65474790e-01 9.69498932e-01 2.85416506e-02 4.76871490e-01 -7.59889722e-01 2.41374701e-01 3.21561188e-01 7.85216212e-01 -9.47657764e-01 -2.97111422e-01 -3.31408948e-01 -7.67840683e-01 7.95445859e-01 6.07060611e-01 9.96728018e-02 2.40375578e-01 2.05991454e-02 -2.68499404e-01 -2.42583722e-01 -1.06820643e+00 -2.43849158e-01 3.50705981e-01 5.03459156e-01 1.84379637e-01 -1.24893837e-01 -1.09266594e-01 6.74330056e-01 -1.60429835e-01 2.81153858e-01 6.63545057e-02 5.66164494e-01 -2.95267522e-01 -6.18242085e-01 -2.14493766e-01 3.59544456e-01 -3.21770400e-01 -2.12900370e-01 7.85948932e-02 8.21532130e-01 1.67745769e-01 7.19643295e-01 1.78623095e-01 -5.84083498e-01 4.21533585e-01 -2.98698306e-01 4.14221972e-01 -4.31547552e-01 -5.07179797e-01 3.77139658e-01 1.42261371e-01 -1.04575360e+00 -2.84176677e-01 -6.51284039e-01 -1.35129976e+00 -1.62064493e-01 -1.04998238e-01 2.52624601e-01 1.68705478e-01 8.70272100e-01 5.34754038e-01 5.29968441e-01 6.15814924e-01 -8.30317855e-01 -2.79027820e-01 -5.60442269e-01 -2.48750314e-01 3.03994209e-01 4.03923094e-01 -4.68599200e-01 -2.67271340e-01 3.92536491e-01]
[9.907205581665039, 0.6544288396835327]
8e463456-a4a5-46bc-bbc0-c28427b68d7b
non-contact-atrial-fibrillation-detection
2110.07610
null
https://arxiv.org/abs/2110.07610v2
https://arxiv.org/pdf/2110.07610v2.pdf
Non-contact Atrial Fibrillation Detection from Face Videos by Learning Systolic Peaks
Objective: We propose a non-contact approach for atrial fibrillation (AF) detection from face videos. Methods: Face videos, electrocardiography (ECG), and contact photoplethysmography (PPG) from 100 healthy subjects and 100 AF patients are recorded. Data recordings from healthy subjects are all labeled as healthy. Two cardiologists evaluated ECG recordings of patients and labeled each recording as AF, sinus rhythm (SR), or atrial flutter (AFL). We use the 3D convolutional neural network for remote PPG monitoring and propose a novel loss function (Wasserstein distance) to use the timing of systolic peaks from contact PPG as the label for our model training. Then a set of heart rate variability (HRV) features are calculated from the inter-beat intervals, and a support vector machine (SVM) classifier is trained with HRV features. Results: Our proposed method can accurately extract systolic peaks from face videos for AF detection. The proposed method is trained with subject-independent 10-fold cross-validation with 30s video clips and tested on two tasks. 1) Classification of healthy versus AF: the accuracy, sensitivity, and specificity are 96.00%, 95.36%, and 96.12%. 2) Classification of SR versus AF: the accuracy, sensitivity, and specificity are 95.23%, 98.53%, and 91.12%. In addition, we also demonstrate the feasibility of non-contact AFL detection. Conclusion: We achieve good performance of non-contact AF detection by learning systolic peaks. Significance: non-contact AF detection can be used for self-screening of AF symptoms for suspectable populations at home or self-monitoring of AF recurrence after treatment for chronic patients.
['Xiaobai Li', 'Tapio Seppänen', 'Mikko Tulppo', 'Juhani Junttila', 'Zhaodong Sun']
2021-10-14
null
null
null
null
['photoplethysmography-ppg', 'heart-rate-variability', 'atrial-fibrillation-detection', 'electrocardiography-ecg']
['medical', 'medical', 'medical', 'methodology']
[ 3.59710813e-01 -1.88592479e-01 -1.93929762e-01 -4.71704990e-01 -7.09845960e-01 -6.85457289e-01 -2.43057594e-01 -2.96631038e-01 -5.45117147e-02 7.40146995e-01 -7.32071400e-02 -2.96614438e-01 2.07141042e-04 -5.66252053e-01 -1.20262951e-01 -8.20420504e-01 -6.38061583e-01 2.01114953e-01 -5.58852375e-01 4.11420941e-01 -8.55894610e-02 7.63903797e-01 -1.11883974e+00 2.71587163e-01 7.60109842e-01 1.57934225e+00 -7.05458999e-01 8.42087150e-01 3.89549255e-01 1.97317228e-01 -8.53501916e-01 1.40095383e-01 2.94783235e-01 -8.26973677e-01 -2.30117545e-01 -7.87264332e-02 6.39455795e-01 -3.63246232e-01 -2.29766697e-01 6.38645411e-01 1.17013800e+00 -4.17012900e-01 6.50741160e-01 -1.12446892e+00 -4.28162277e-01 1.57109827e-01 -7.28444040e-01 6.81122005e-01 4.78252500e-01 2.37836838e-01 3.76272112e-01 -8.18187296e-01 2.44700342e-01 7.97136664e-01 1.11873698e+00 6.00113690e-01 -1.15768635e+00 -1.06013095e+00 -5.12368143e-01 8.25999528e-02 -1.67464375e+00 -6.77829564e-01 8.38370919e-01 -6.44328833e-01 5.33702791e-01 4.72528726e-01 1.28788733e+00 9.61547852e-01 4.19008613e-01 8.14095065e-02 1.17156446e+00 -2.47044384e-01 -6.86123073e-02 -3.41987275e-02 1.24472030e-01 9.22963917e-01 2.37795174e-01 2.99679786e-01 -4.87959385e-01 -6.99007809e-01 9.36347067e-01 6.42006099e-02 -8.73123527e-01 1.40442267e-01 -1.21598017e+00 5.62079370e-01 -4.14169878e-02 3.69216174e-01 -3.85568619e-01 -2.38038212e-01 4.61928368e-01 5.05138218e-01 4.19264913e-01 2.45335519e-01 -3.06985259e-01 -2.22471058e-01 -1.05206537e+00 -1.26718342e-01 8.42018545e-01 4.86678600e-01 2.29805484e-01 3.42854321e-01 -5.72258949e-01 7.32528687e-01 3.15824986e-01 9.86710131e-01 6.24861538e-01 -9.76198196e-01 -9.82316807e-02 4.67661887e-01 1.79279760e-01 -1.03974903e+00 -5.55587769e-01 -5.36545515e-01 -1.29022670e+00 -9.08535272e-02 3.19925904e-01 -4.42096412e-01 -7.35496521e-01 1.51086605e+00 1.37700260e-01 6.53236628e-01 -1.94190014e-02 1.03907478e+00 1.08256471e+00 4.18138623e-01 -8.71654674e-02 -1.11994743e+00 1.38377345e+00 -2.49612153e-01 -8.48254800e-01 5.20402528e-02 3.92314911e-01 -4.87281024e-01 9.43702877e-01 5.57913601e-01 -9.04450834e-01 -6.29378736e-01 -9.15007770e-01 6.05767488e-01 3.78879279e-01 6.46991253e-01 2.41878524e-01 1.13840854e+00 -9.31883395e-01 7.15671003e-01 -7.47640967e-01 -9.14089903e-02 6.67552888e-01 4.42555159e-01 -3.11553955e-01 2.01445326e-01 -1.29580772e+00 3.59930038e-01 -1.79236636e-01 4.19411570e-01 -5.88647068e-01 -8.57431948e-01 -7.78712869e-01 -9.35857072e-02 -2.10531712e-01 -7.68643796e-01 7.58880079e-01 -1.18706965e+00 -1.33644545e+00 1.33047032e+00 -4.36521977e-01 -2.10381508e-01 3.53677183e-01 -2.06300601e-01 -8.07734072e-01 3.37247491e-01 -9.26949531e-02 -1.30384296e-01 1.13134706e+00 -5.58596432e-01 -1.40425399e-01 -7.27404058e-01 -5.57775140e-01 4.19687964e-02 -1.66225851e-01 1.47004142e-01 2.12307364e-01 -6.22830033e-01 1.97402224e-01 -7.47377038e-01 2.73173422e-01 1.65806159e-01 -2.22196668e-01 -1.18399732e-01 6.90242052e-01 -1.05000353e+00 1.46786225e+00 -2.33921027e+00 -2.25592390e-01 3.48322302e-01 6.47675574e-01 5.99510670e-01 9.62023288e-02 -1.29810110e-01 -6.61733821e-02 3.36418837e-01 -3.62401754e-01 2.53730029e-01 -5.69695890e-01 -1.61506698e-01 -8.16167071e-02 7.08186686e-01 3.17591839e-02 8.63162458e-01 -5.20945072e-01 -5.30996263e-01 -1.81543529e-02 8.37677181e-01 8.56124144e-03 3.53590041e-01 5.53560674e-01 7.42135763e-01 -1.09570190e-01 8.74161661e-01 6.11628771e-01 -1.63154379e-01 3.07768136e-01 -6.08466208e-01 3.32633972e-01 -1.59185380e-01 -1.03552067e+00 1.25562131e+00 -9.32031348e-02 5.77613533e-01 -7.64432251e-02 -9.53426898e-01 1.33960259e+00 8.05785000e-01 6.21691644e-01 -3.86555940e-01 2.63014138e-01 1.97309032e-01 2.68682659e-01 -8.65106583e-01 -8.64206135e-01 -2.73602039e-01 4.43373561e-01 4.60176826e-01 -1.47786558e-01 4.95831281e-01 -1.70668900e-01 -3.20360452e-01 1.07216692e+00 -1.49241403e-01 5.72137833e-01 -3.21783245e-01 8.06650400e-01 -5.31769812e-01 8.19556832e-01 7.71095872e-01 -6.91611528e-01 7.90974855e-01 6.10564291e-01 -1.13892210e+00 -3.45544577e-01 -1.18395221e+00 -3.52065057e-01 2.14997381e-01 -1.76410541e-01 -4.75177675e-01 -5.34559488e-01 -7.63199031e-01 1.55334532e-01 -1.02086708e-01 -5.38396180e-01 -3.37268054e-01 -8.46734285e-01 -8.16067934e-01 7.98086345e-01 6.54471815e-01 5.49746096e-01 -1.14436769e+00 -7.42798388e-01 1.63035262e-02 -4.04520780e-01 -8.23160887e-01 -5.23592770e-01 -5.48427165e-01 -9.18771029e-01 -1.43702400e+00 -8.55385840e-01 -7.91786551e-01 3.76931697e-01 -1.88595489e-01 1.08936203e+00 1.48845449e-01 -9.08748448e-01 5.47061205e-01 1.10319883e-01 -3.18865508e-01 -1.90745294e-01 -5.28716147e-01 5.71193755e-01 5.77701271e-01 4.42301959e-01 -8.22319806e-01 -1.07770085e+00 3.50987315e-01 8.67665410e-02 -5.63400447e-01 4.65333253e-01 5.26581943e-01 8.82951140e-01 -6.24527156e-01 7.81544268e-01 -7.36697435e-01 7.75077224e-01 1.87041536e-02 -4.08054531e-01 1.31760329e-01 -9.02955115e-01 -7.93402731e-01 4.79888737e-01 -6.09631121e-01 -4.40595239e-01 5.23232594e-02 1.16958447e-01 -8.25634718e-01 -4.16669756e-01 1.43763274e-01 -6.56107366e-02 -8.22407082e-02 9.67501462e-01 3.09466243e-01 3.54193985e-01 -3.19423713e-02 -3.18482637e-01 9.91454720e-01 5.60691893e-01 -1.97307870e-01 4.98134524e-01 3.27469230e-01 1.53359041e-01 -1.07433558e+00 -7.61206031e-01 -3.10304791e-01 -4.61878210e-01 -3.96546245e-01 8.14377367e-01 -1.02543938e+00 -1.01263797e+00 4.48560923e-01 -8.93346608e-01 1.01018019e-01 -2.23641694e-01 7.12956369e-01 -4.64493185e-01 5.65564215e-01 -5.06483316e-01 -1.10313416e+00 -1.20844114e+00 -5.89617908e-01 7.90004730e-01 2.01895103e-01 -4.09912854e-01 -6.14570975e-01 1.64442718e-01 2.46930420e-01 5.23894727e-01 8.83681297e-01 4.88931447e-01 -4.36236024e-01 3.02015729e-02 -4.99532580e-01 -5.76160327e-02 4.99389201e-01 5.93587935e-01 1.15256608e-02 -1.25264561e+00 -4.62848574e-01 2.66464889e-01 4.06088121e-02 5.13067067e-01 8.76021206e-01 1.12174702e+00 -3.24709535e-01 -3.10349077e-01 9.19087172e-01 8.75672400e-01 6.94189668e-01 6.55005336e-01 -2.89604366e-01 5.08520603e-01 3.47333215e-02 3.24736804e-01 3.62703502e-01 -1.71089396e-01 3.76543880e-01 -1.60955042e-01 -2.32005849e-01 -2.86719128e-02 2.82821894e-01 4.51932818e-01 3.38113904e-01 -5.92379689e-01 1.27014831e-01 -9.39900756e-01 1.34403273e-01 -1.41070938e+00 -9.96680439e-01 -2.48988867e-01 2.43459821e+00 6.55173898e-01 -2.19393075e-01 3.41392875e-01 4.47885811e-01 9.35682297e-01 -1.39772296e-01 -5.19804060e-01 -2.78200597e-01 -2.11985871e-01 5.46618521e-01 -9.58448127e-02 2.74937928e-01 -1.31541824e+00 6.35691583e-02 5.75656843e+00 1.22806604e-03 -1.53421474e+00 2.44023316e-02 1.02177072e+00 -1.62492812e-01 3.75800490e-01 -3.31680655e-01 -5.22740126e-01 4.89999801e-01 9.80039239e-01 -2.36516893e-01 3.37383687e-01 3.94514918e-01 3.56676936e-01 3.10923368e-01 -9.66968536e-01 1.79697680e+00 3.49236965e-01 -1.23833382e+00 -3.47203225e-01 -2.99450755e-01 7.02183023e-02 -4.10329372e-01 -2.12865263e-01 5.13469838e-02 -1.03065574e+00 -1.20504260e+00 -9.03519318e-02 8.18559825e-01 1.63423812e+00 -6.07005656e-01 7.97044396e-01 9.60808247e-02 -1.28008413e+00 -1.43011376e-01 -6.68388307e-02 9.73894671e-02 5.40828928e-02 9.31968689e-01 -6.35656953e-01 2.72668660e-01 8.68266702e-01 9.82447565e-01 -1.82962760e-01 8.95421267e-01 -6.33747280e-02 1.05662084e+00 -2.95287967e-01 3.16685766e-01 -7.73278832e-01 -2.03170046e-01 6.97372079e-01 9.87489760e-01 4.41062748e-01 5.33284545e-01 2.23265693e-01 7.80270159e-01 1.08385712e-01 1.98012412e-01 -7.19633698e-01 -6.96874857e-02 4.03503329e-01 1.33976614e+00 -4.25604552e-01 -1.99792817e-01 -2.38348827e-01 7.27623224e-01 -3.30637842e-01 2.56741732e-01 -7.06285954e-01 -7.18499720e-01 4.48556125e-01 5.94492853e-01 -2.58695215e-01 2.74980485e-01 -2.91374236e-01 -1.23303163e+00 2.88300604e-01 -8.41461182e-01 6.91075385e-01 -5.31703174e-01 -1.24850225e+00 8.83609712e-01 -3.73615354e-01 -1.41088915e+00 -2.28071734e-01 -2.49635875e-01 -1.02282286e+00 1.08990657e+00 -1.25607443e+00 -7.59136200e-01 -8.09985757e-01 6.87650740e-01 -3.10399365e-02 -3.89025718e-01 1.24977791e+00 3.68349522e-01 -4.64505106e-01 7.26670504e-01 -6.60515368e-01 4.19587582e-01 9.67284441e-01 -1.09166145e+00 2.87776906e-02 5.17550409e-01 -4.90650907e-02 5.99425375e-01 2.47236434e-02 -6.72906339e-01 -1.22503996e+00 -1.07233000e+00 1.09455633e+00 -3.72179121e-01 -1.61427334e-01 -2.12719664e-01 -7.02268302e-01 3.86833876e-01 -1.72101885e-01 6.43546462e-01 1.05060244e+00 -1.46313429e-01 -1.12435624e-01 -5.29034853e-01 -1.28288448e+00 4.14757878e-02 9.01007891e-01 -4.11405176e-01 -3.21187496e-01 3.72005582e-01 -1.41864468e-04 -4.84765977e-01 -1.22594523e+00 7.28663623e-01 1.07739508e+00 -9.13378298e-01 9.73970413e-01 -5.76923609e-01 -5.92729710e-02 -1.23497538e-01 1.98079929e-01 -8.97411346e-01 -3.98109168e-01 -1.15306461e+00 -5.42674959e-01 8.63155007e-01 1.69061124e-01 -8.98993075e-01 6.55220509e-01 3.03981483e-01 1.68161094e-01 -8.90856028e-01 -8.89238358e-01 -5.98301828e-01 -4.23875719e-01 -3.08862189e-03 1.17810994e-01 1.04986072e+00 -7.61357769e-02 3.65316361e-01 -4.89317030e-01 2.07785785e-01 6.98647618e-01 4.22901601e-01 3.87257874e-01 -1.75788200e+00 -1.61209852e-01 -9.46437195e-03 -5.48314869e-01 -1.33198872e-01 -1.25585452e-01 -9.02302921e-01 -5.12150764e-01 -1.25754821e+00 9.88488421e-02 -1.61194190e-01 -5.31124651e-01 5.92936099e-01 -8.51188675e-02 6.41611993e-01 -2.34398946e-01 2.75317580e-01 2.38917828e-01 9.30635035e-02 1.07433569e+00 8.49676691e-03 -5.05615473e-01 4.68582720e-01 -4.22755033e-01 6.12768888e-01 9.93621469e-01 -3.54799867e-01 -3.76248538e-01 3.61723602e-01 -9.31339934e-02 6.07048273e-01 4.75969404e-01 -1.11689520e+00 -3.10963660e-01 2.49342486e-01 1.00557280e+00 -1.10167883e-01 2.06670329e-01 -3.99771959e-01 2.10072905e-01 7.93962300e-01 -1.79402549e-02 3.70042287e-02 8.53623375e-02 4.41612214e-01 -6.55649602e-02 3.72749418e-01 8.58224154e-01 -1.57934472e-01 1.97025150e-01 6.36151254e-01 -4.21181321e-01 4.02796447e-01 8.65088403e-01 -4.29943085e-01 -8.91557187e-02 -5.09340525e-01 -1.42783213e+00 -2.18459427e-01 -2.83253223e-01 3.11971366e-01 1.02525806e+00 -1.29560101e+00 -9.45514500e-01 8.67092073e-01 -3.92851457e-02 -4.06879872e-01 2.62453824e-01 1.48490143e+00 -4.30503160e-01 3.10010798e-02 -2.28615522e-01 -9.21247303e-01 -1.58628535e+00 5.38697131e-02 9.29938734e-01 2.98008710e-01 -9.08573151e-01 6.15598500e-01 3.98817239e-03 9.51056033e-02 3.99669826e-01 -9.90027487e-02 -3.88572484e-01 4.36947085e-02 8.10223162e-01 3.90264034e-01 9.58255827e-02 -3.63680393e-01 -5.37762105e-01 9.82381642e-01 3.23775500e-01 4.55449462e-01 9.14237440e-01 1.64431795e-01 -1.80293739e-01 4.30982411e-01 9.91166472e-01 3.53063866e-02 -6.37445509e-01 1.35326728e-01 -6.19174242e-01 -4.31319147e-01 -7.97042549e-02 -1.03811407e+00 -1.35793960e+00 1.01933599e+00 1.58950984e+00 7.92671517e-02 1.47854435e+00 -2.34130561e-01 6.51362360e-01 8.03413689e-02 -5.62734269e-02 -4.04135615e-01 -1.96276337e-01 -2.00721130e-01 9.48669851e-01 -8.37025285e-01 -1.89854965e-01 -3.85821640e-01 -3.99712652e-01 1.52867579e+00 4.15129215e-01 -4.63825688e-02 1.06962121e+00 1.57341719e-01 6.21355116e-01 -2.44466826e-01 -3.65851581e-01 3.60741138e-01 4.04621303e-01 7.25339890e-01 5.90915442e-01 1.10947363e-01 -5.07545710e-01 9.58938181e-01 5.62987588e-02 4.57872987e-01 3.78514677e-01 7.07332790e-01 -3.25673461e-01 -5.98276377e-01 -6.93851486e-02 9.39495444e-01 -6.91819727e-01 1.25717595e-01 -4.63961631e-01 3.49036485e-01 1.41053304e-01 8.08099747e-01 3.98044549e-02 -3.24529052e-01 3.15547347e-01 5.94921231e-01 5.82522094e-01 -3.70464772e-01 -5.83637178e-01 2.80816674e-01 -6.03486202e-04 -6.21351719e-01 -3.38720798e-01 -5.32242954e-01 -9.81874466e-01 1.40830547e-01 -1.55061826e-01 2.36995757e-01 1.21369846e-01 6.25033021e-01 7.50401080e-01 1.91080481e-01 8.52890730e-01 -3.42652023e-01 -3.96332145e-01 -9.58112895e-01 -8.74822259e-01 2.37434879e-01 7.97570288e-01 -4.95040894e-01 -8.31937075e-01 3.11157435e-01]
[14.153963088989258, 3.135256767272949]
bad44840-2b8d-4cbf-b509-7e862a996cd3
svarah-evaluating-english-asr-systems-on
2305.15760
null
https://arxiv.org/abs/2305.15760v1
https://arxiv.org/pdf/2305.15760v1.pdf
Svarah: Evaluating English ASR Systems on Indian Accents
India is the second largest English-speaking country in the world with a speaker base of roughly 130 million. Thus, it is imperative that automatic speech recognition (ASR) systems for English should be evaluated on Indian accents. Unfortunately, Indian speakers find a very poor representation in existing English ASR benchmarks such as LibriSpeech, Switchboard, Speech Accent Archive, etc. In this work, we address this gap by creating Svarah, a benchmark that contains 9.6 hours of transcribed English audio from 117 speakers across 65 geographic locations throughout India, resulting in a diverse range of accents. Svarah comprises both read speech and spontaneous conversational data, covering various domains, such as history, culture, tourism, etc., ensuring a diverse vocabulary. We evaluate 6 open source ASR models and 2 commercial ASR systems on Svarah and show that there is clear scope for improvement on Indian accents. Svarah as well as all our code will be publicly available.
['Mitesh M. Khapra', 'Pratyush Kumar', 'Kaushal Bhogale', 'Abhigyan Raman', 'Janki Nawale', 'Sai Sundaresan', 'Vignesh Nagarajan', 'Sakshi Joshi', 'Tahir Javed']
2023-05-25
null
null
null
null
['automatic-speech-recognition']
['speech']
[-2.72964001e-01 -4.13382659e-03 6.14962727e-02 -6.24466300e-01 -1.41610146e+00 -8.64886999e-01 5.40087044e-01 -1.51647985e-01 -5.39270818e-01 8.21308732e-01 9.28862572e-01 -5.48914015e-01 3.19080770e-01 -3.94462347e-01 -1.57386258e-01 -4.34327722e-01 1.30452499e-01 6.97697103e-01 -1.92501873e-01 -8.59633267e-01 1.27498358e-01 3.85723591e-01 -9.62080240e-01 -9.07795057e-02 6.61665380e-01 5.39041817e-01 1.34398580e-01 8.96645546e-01 -1.83842212e-01 9.27065194e-01 -1.15110278e+00 -5.17661393e-01 1.78953144e-03 -2.62464553e-01 -1.21806943e+00 -1.14384152e-01 4.29824442e-01 -5.62020652e-02 -5.23249269e-01 8.19244325e-01 1.03766537e+00 2.93738514e-01 9.93910506e-02 -8.25026274e-01 -8.80893648e-01 1.26689601e+00 -1.33699611e-01 5.53235352e-01 6.07157290e-01 -1.30648673e-01 1.00182259e+00 -8.26759398e-01 6.03304088e-01 1.10376918e+00 5.42406499e-01 6.36276782e-01 -6.73435330e-01 -9.19309080e-01 7.66929239e-02 8.63136426e-02 -1.83847964e+00 -1.26711869e+00 7.19575584e-01 1.53022692e-01 1.14818311e+00 7.38912284e-01 4.58912075e-01 1.29996967e+00 -4.14000571e-01 8.19219232e-01 1.31899893e+00 -4.84482288e-01 2.65819997e-01 1.32880509e-01 1.83293253e-01 3.04410374e-03 -5.77516854e-01 -3.59750986e-01 -9.31517959e-01 -1.17843691e-03 6.29047632e-01 -5.47414958e-01 -2.25082248e-01 5.58658779e-01 -1.43543971e+00 7.26349175e-01 -5.74720986e-02 2.95785040e-01 -3.98443609e-01 -5.69872558e-01 4.89915818e-01 7.30464995e-01 5.76759696e-01 3.97061944e-01 -7.26291895e-01 -8.68213475e-01 -8.43117118e-01 1.36811748e-01 1.08162415e+00 1.22692251e+00 4.41547424e-01 3.76548856e-01 4.10646498e-01 1.68198872e+00 3.36216807e-01 1.00588417e+00 6.49103284e-01 -9.04415309e-01 6.95978224e-01 1.10880576e-01 -1.73341751e-01 -5.20293057e-01 -1.67650014e-01 -1.82605624e-01 -7.58536935e-01 -3.81976664e-01 2.51462579e-01 -4.84793723e-01 -9.82427180e-01 1.69824207e+00 7.60914162e-02 -9.66222659e-02 5.39051831e-01 6.82216406e-01 1.10924292e+00 9.17436779e-01 -2.14540754e-02 -3.34771186e-01 1.32127941e+00 -8.51663113e-01 -8.36809695e-01 -4.27182555e-01 3.43385369e-01 -1.26336622e+00 1.07342458e+00 2.77816087e-01 -1.16207099e+00 -2.40577832e-01 -7.55184054e-01 -2.06309129e-02 -5.95192730e-01 -2.53327370e-01 4.21065539e-01 1.12136805e+00 -1.49822819e+00 -4.36879456e-01 -7.26071119e-01 -6.75257921e-01 -2.55825102e-01 3.02290827e-01 -6.08874023e-01 1.40763611e-01 -1.50588894e+00 8.36904526e-01 5.86741529e-02 3.41091901e-02 -5.63428760e-01 -5.60920060e-01 -1.01298869e+00 -3.15292507e-01 -2.92023383e-02 2.50331342e-01 1.70857882e+00 -8.98757637e-01 -1.88036263e+00 1.01411021e+00 -3.51448953e-01 -4.05949593e-01 1.76066935e-01 -3.36115777e-01 -1.28659153e+00 -3.59664381e-01 4.27863635e-02 4.02074754e-01 1.29133090e-01 -8.16534996e-01 -7.39385843e-01 -5.55762351e-01 -1.58947632e-01 4.95878905e-01 -2.09073231e-01 9.07439947e-01 -4.94390666e-01 -9.43179667e-01 -2.15255711e-02 -1.19180930e+00 -1.12367854e-01 -1.16603625e+00 -5.41634381e-01 -1.12134591e-01 7.70071208e-01 -1.24877489e+00 1.56874967e+00 -2.46249866e+00 -1.30160600e-01 2.96754599e-01 -2.53030330e-01 2.33021155e-01 -9.84108075e-02 5.39784551e-01 -9.21229348e-02 2.24113390e-01 -1.03753574e-01 -2.57442087e-01 -2.84762122e-02 3.60462785e-01 -5.03923476e-01 3.07875723e-01 3.23857479e-02 4.40551072e-01 -7.52987862e-01 -2.65053928e-01 2.91245610e-01 6.44150853e-01 -2.14490369e-01 3.24222147e-01 3.31511706e-01 3.81801188e-01 -1.80845603e-01 9.18599427e-01 6.32735193e-01 5.04542291e-01 -6.94294600e-03 5.77540338e-01 -4.58923042e-01 9.52302158e-01 -1.28179598e+00 1.69670320e+00 -6.81548774e-01 7.80296624e-01 5.79042852e-01 -5.83150983e-01 1.27509558e+00 8.32872450e-01 2.15461120e-01 -6.08371973e-01 -2.25799978e-01 5.77781320e-01 4.58841212e-02 7.94377849e-02 9.31337118e-01 4.52367179e-02 -4.96411502e-01 1.82697445e-01 7.29389414e-02 -3.36728007e-01 1.19803168e-01 1.15990251e-01 1.17434669e+00 -5.16169012e-01 4.75781947e-01 -3.78306597e-01 6.82396293e-01 -1.41205154e-02 4.75092679e-01 6.84712350e-01 -6.75720811e-01 8.86475682e-01 -1.36897668e-01 -2.33506441e-01 -8.88897061e-01 -1.29362094e+00 -3.12702447e-01 1.51713908e+00 -4.10902888e-01 -5.58588982e-01 -8.89234781e-01 -2.66230226e-01 -6.16407573e-01 8.70471358e-01 -1.43451422e-01 3.81479800e-01 -8.86855304e-01 -7.34529495e-01 9.71922517e-01 4.25529480e-01 7.66450882e-01 -1.48333049e+00 2.88956612e-01 3.11653405e-01 -4.91383553e-01 -1.27369678e+00 -8.78463566e-01 1.95976242e-01 -1.10411972e-01 -3.61492753e-01 -8.26035440e-01 -1.11653292e+00 -1.05351515e-01 1.16139062e-01 1.47393525e+00 -4.85421121e-01 1.51865095e-01 4.33183193e-01 -5.67426085e-01 -6.06025875e-01 -9.69469786e-01 6.64653122e-01 2.73656964e-01 -1.45680457e-01 8.59132349e-01 -4.42004681e-01 -7.99533352e-02 4.76948202e-01 -3.23458970e-01 -3.36982638e-01 4.19663608e-01 4.26720262e-01 2.65245169e-01 -2.86159128e-01 1.01023972e+00 -8.83531690e-01 5.27692676e-01 -5.97977936e-01 -2.93406785e-01 1.18545346e-01 -1.03710100e-01 -4.88705397e-01 4.87514615e-01 -9.35570747e-02 -1.31983626e+00 9.56525654e-03 -1.08713126e+00 1.96912631e-01 -6.40791059e-01 5.95794022e-01 -4.38516796e-01 3.46997768e-01 5.58418036e-01 5.54877579e-01 -1.59775302e-01 -4.83236015e-01 1.80783719e-01 1.69105041e+00 8.82717788e-01 -3.99371147e-01 5.07635415e-01 -2.03618720e-01 -1.00870466e+00 -1.71007633e+00 -5.33149362e-01 -9.85561252e-01 -2.77752042e-01 -1.34076923e-01 6.53360188e-01 -1.30039346e+00 -2.86820471e-01 6.88636541e-01 -9.40886319e-01 -3.04582149e-01 -9.24673751e-02 6.15639806e-01 -5.73179066e-01 -1.98398143e-01 -9.06453967e-01 -8.86610627e-01 -4.49890792e-01 -1.25216746e+00 1.08317947e+00 1.74832225e-01 -7.32532442e-01 -1.04185438e+00 4.24716920e-01 6.56157374e-01 6.59894645e-01 -5.01070023e-01 2.60007888e-01 -1.18480647e+00 -9.05235782e-02 4.63108979e-02 1.97706908e-01 5.26386321e-01 4.84053284e-01 1.60012860e-03 -1.27559841e+00 -2.81804055e-01 -2.15431154e-01 -3.10895175e-01 2.94061333e-01 3.32351774e-01 6.11743748e-01 -3.13545346e-01 3.20928454e-01 3.61243099e-01 8.59472752e-01 5.74825346e-01 9.14097607e-01 4.74596828e-01 5.25485158e-01 4.19892311e-01 4.09572631e-01 3.26280653e-01 7.30639160e-01 6.60580039e-01 -2.33132973e-01 -7.61266947e-02 -1.40045613e-01 -3.89409997e-02 8.97575617e-01 2.03588438e+00 -8.78406540e-02 -1.96915880e-01 -1.32460916e+00 9.53143597e-01 -1.16287351e+00 -1.02695417e+00 1.25859573e-01 2.30484319e+00 1.38333035e+00 -1.50771335e-01 4.30884838e-01 5.96031845e-02 7.90516138e-01 3.70932251e-01 -3.92632447e-02 -6.99172139e-01 -6.25259876e-01 3.50804627e-01 4.39644307e-01 8.92126381e-01 -1.27941990e+00 1.23866093e+00 7.16303873e+00 6.67218745e-01 -1.16794968e+00 4.52365875e-02 8.26287746e-01 5.96954077e-02 -8.26373398e-02 -2.87105650e-01 -1.01734829e+00 3.91671360e-01 1.64948928e+00 -3.92911792e-01 6.91946328e-01 8.30093086e-01 2.11959958e-01 5.33885479e-01 -5.72927713e-01 1.05931640e+00 1.88381240e-01 -1.07911098e+00 -1.97937384e-01 -3.24304141e-02 5.77938676e-01 8.98226619e-01 -6.10395037e-02 6.18865907e-01 8.12006593e-01 -1.15645158e+00 7.43126452e-01 -1.62140265e-01 7.78835177e-01 -1.04129887e+00 8.23385656e-01 -2.21946687e-02 -1.13739991e+00 3.35703790e-01 -3.99355367e-02 4.42236736e-02 2.95695782e-01 5.15112728e-02 -9.27076340e-01 3.50885868e-01 8.82162333e-01 5.68156183e-01 -5.15337884e-01 6.02751255e-01 1.64612949e-01 1.36336172e+00 -4.71556216e-01 6.92680292e-03 2.86108822e-01 -2.77299285e-01 7.87753999e-01 1.81305087e+00 2.27555037e-01 -1.63838651e-03 2.46141553e-01 -1.59740448e-01 -1.89739153e-01 6.17120564e-01 -6.47197902e-01 -1.26381889e-01 9.68183935e-01 9.37004447e-01 -4.31946337e-01 -2.20965549e-01 -7.84954131e-01 9.89541829e-01 1.15746900e-01 5.44573009e-01 -5.68345785e-01 -6.10678911e-01 1.06340814e+00 -1.77863106e-01 -2.41453335e-01 -3.61351848e-01 -5.67082502e-02 -9.60585475e-01 -1.08288869e-01 -1.55246592e+00 3.84486198e-01 -5.41233361e-01 -1.16402459e+00 1.00016260e+00 -4.51727539e-01 -7.66072035e-01 -4.58253980e-01 -4.40113038e-01 -3.79528999e-01 9.82495606e-01 -1.29065907e+00 -1.11540830e+00 -9.07879695e-02 7.58267224e-01 1.22454548e+00 -6.35163546e-01 1.29421210e+00 6.43836737e-01 -6.33584797e-01 7.05302775e-01 7.95697197e-02 6.21122777e-01 1.04329550e+00 -1.63882804e+00 9.52977240e-01 6.61662459e-01 3.73400480e-01 7.42136538e-01 6.70122683e-01 -2.71420240e-01 -1.21551812e+00 -1.01251221e+00 1.27316701e+00 -8.12499225e-01 9.08920765e-01 -4.98596728e-01 -9.39761758e-01 1.17233801e+00 8.12998772e-01 -3.83521229e-01 9.72491145e-01 6.14255726e-01 -2.41209462e-01 -1.97131008e-01 -7.78451622e-01 7.79665172e-01 9.31440771e-01 -8.40290189e-01 -6.76031291e-01 1.98557690e-01 8.69683743e-01 -5.54034114e-01 -1.17412603e+00 -2.59964820e-02 3.36779267e-01 -6.53744221e-01 7.51584113e-01 -4.51780230e-01 -1.17784642e-01 -1.48011148e-01 -6.29263043e-01 -1.80116343e+00 -1.08259223e-01 -1.23798454e+00 3.62671137e-01 1.93008459e+00 8.26418281e-01 -8.62594306e-01 5.73808372e-01 5.01050353e-01 -4.96607274e-01 -7.67300604e-03 -1.14602339e+00 -6.46908998e-01 1.53493360e-01 -6.25328660e-01 7.42802858e-01 1.24675870e+00 1.30106598e-01 6.87983513e-01 -3.03145647e-01 2.17570841e-01 1.68403745e-01 -4.19243753e-01 8.14034164e-01 -8.68927300e-01 6.68737292e-02 -3.85756791e-01 -5.52572489e-01 -9.24853206e-01 2.22877994e-01 -6.43854201e-01 1.41783863e-01 -1.06281698e+00 -1.45680666e-01 -6.41213417e-01 -3.26054573e-01 5.57653606e-01 -1.38411149e-01 2.31797755e-01 -7.61517361e-02 5.11624180e-02 -3.42375308e-01 3.98027062e-01 6.49416029e-01 -2.37461999e-01 -3.89632136e-01 1.62248179e-01 -8.31554472e-01 4.98615831e-01 1.13084388e+00 -3.74219120e-02 -2.49907389e-01 -4.58211303e-01 -1.64940715e-01 6.41869986e-03 -4.32968736e-01 -8.28441203e-01 2.12356195e-01 -2.77621210e-01 1.03892200e-03 -3.40784460e-01 3.23355794e-01 -3.66064817e-01 4.65422869e-02 -2.13853747e-01 -3.52792531e-01 5.33272982e-01 2.97526807e-01 -1.23422228e-01 -7.86708891e-01 1.86202705e-01 7.24652886e-01 -9.78365447e-03 -1.06277788e+00 1.55868769e-01 -7.59377301e-01 5.63665986e-01 4.59286720e-01 1.08118527e-01 -2.40401894e-01 -7.83150494e-01 -5.92420340e-01 3.66770364e-02 3.37927341e-01 8.94054472e-01 3.24003249e-01 -1.12533569e+00 -1.25989413e+00 4.21736538e-01 3.43281120e-01 -2.01097354e-01 1.32559583e-01 3.95342886e-01 -6.64795220e-01 4.79274720e-01 2.84129065e-02 -2.05309108e-01 -1.29806280e+00 1.08334437e-01 1.38969779e-01 1.26959562e-01 -4.26594585e-01 8.08466256e-01 -1.55712545e-01 -1.10198653e+00 3.09876084e-01 1.73855405e-02 -3.13349098e-01 -1.91778198e-01 7.31337965e-01 2.86871701e-01 2.59245604e-01 -1.29268277e+00 -5.96558988e-01 3.18823978e-02 -2.87220955e-01 -6.79603517e-01 1.06237233e+00 -5.09267986e-01 -1.61977008e-01 7.71210909e-01 9.48298395e-01 8.92855644e-01 -4.87704694e-01 -6.44255131e-02 8.58511999e-02 -1.25441179e-01 1.08042635e-01 -8.78090382e-01 -7.84886003e-01 3.46220106e-01 4.78714973e-01 3.75273705e-01 1.18826151e+00 1.51782393e-01 7.59405553e-01 4.03200448e-01 3.70998561e-01 -1.42803681e+00 -6.20010197e-01 1.05409527e+00 9.50512052e-01 -1.21648765e+00 -6.16462708e-01 -3.40966523e-01 -9.25890028e-01 5.74258983e-01 4.07005847e-01 3.09470654e-01 7.37686455e-01 4.97347116e-01 1.07879126e+00 2.15452179e-01 -6.02660060e-01 -1.07798606e-01 -2.72515506e-01 6.81926310e-01 1.05703008e+00 5.30708373e-01 9.16705292e-04 4.99842584e-01 -1.18926609e+00 -5.06657243e-01 6.94448769e-01 9.09556031e-01 -2.22898811e-01 -1.10459304e+00 -4.36158061e-01 1.18463486e-01 -8.83356929e-01 -4.54031080e-01 -5.76437056e-01 7.41514027e-01 -5.86241722e-01 1.35292745e+00 2.60262758e-01 -1.53126702e-01 3.31164598e-01 1.66769952e-01 -1.74062818e-01 -6.96180761e-01 -6.01660907e-01 9.33527723e-02 7.37153888e-01 -2.64050275e-01 -2.84210891e-01 -7.68098712e-01 -9.70832467e-01 -5.38721025e-01 -1.42856896e-01 5.03052294e-01 8.46317947e-01 6.81085110e-01 2.30789378e-01 1.12303413e-01 8.11811984e-01 -2.75651962e-01 -2.44091675e-01 -1.32247174e+00 -8.41201186e-01 2.75881916e-01 5.09675443e-01 -1.12834044e-01 -4.02209133e-01 1.09464370e-01]
[14.2860689163208, 6.79240608215332]
6a99e919-e59a-4009-abc4-01ae3074bffd
deep-tensor-networks-with-matrix-product
2209.09098
null
https://arxiv.org/abs/2209.09098v1
https://arxiv.org/pdf/2209.09098v1.pdf
Deep tensor networks with matrix product operators
We introduce deep tensor networks, which are exponentially wide neural networks based on the tensor network representation of the weight matrices. We evaluate the proposed method on the image classification (MNIST, FashionMNIST) and sequence prediction (cellular automata) tasks. In the image classification case, deep tensor networks improve our matrix product state baselines and achieve 0.49% error rate on MNIST and 8.3% error rate on FashionMNIST. In the sequence prediction case, we demonstrate an exponential improvement in the number of parameters compared to the one-layer tensor network methods. In both cases, we discuss the non-uniform and the uniform tensor network models and show that the latter generalizes well to different input sizes.
['Bojan Žunkovič']
2022-09-16
null
null
null
null
['tensor-networks']
['methodology']
[ 1.40687257e-01 -3.73140931e-01 -2.41938382e-01 1.18532576e-01 -1.13328449e-01 -8.59695017e-01 4.93567854e-01 4.93891276e-02 -5.56876898e-01 5.09272099e-01 1.82738543e-01 -7.14761376e-01 -5.81652485e-02 -5.00905335e-01 -9.59500849e-01 -8.20292115e-01 -3.63948941e-01 5.22261798e-01 2.61998177e-01 -3.18262517e-01 1.66884914e-01 4.56196129e-01 -9.98252690e-01 6.03035808e-01 2.09184140e-01 1.50633180e+00 -3.25212210e-01 1.29353976e+00 1.25781327e-01 1.22647798e+00 -7.57610053e-02 -8.58656287e-01 4.47215259e-01 3.14374477e-01 -1.16343212e+00 1.31371379e-01 5.16867578e-01 -3.66197407e-01 -9.30634081e-01 9.31385875e-01 1.62214398e-01 4.65039238e-02 7.57188261e-01 -1.21000028e+00 -1.11478424e+00 9.22105670e-01 -1.37744218e-01 3.59921873e-01 -4.32564437e-01 2.05266729e-01 1.29942870e+00 -8.35950017e-01 4.02820617e-01 1.21732092e+00 9.73157465e-01 1.95295587e-01 -1.37770760e+00 -2.60937572e-01 -1.41956389e-01 4.19559389e-01 -1.15444529e+00 -1.08632147e-01 2.72536010e-01 -7.73261428e-01 1.20784640e+00 2.21000090e-01 6.75745070e-01 1.10189176e+00 6.53512359e-01 8.98291349e-01 8.45060706e-01 -1.00783564e-01 1.45461455e-01 -3.38824987e-01 5.14291883e-01 1.00769532e+00 2.54093379e-01 1.53109953e-01 -1.86585963e-01 -3.54150862e-01 1.21084905e+00 1.96559966e-01 1.34137392e-01 -1.21009916e-01 -1.87891972e+00 8.12645972e-01 4.89222765e-01 3.34187359e-01 -3.28278631e-01 9.67749119e-01 9.81828570e-01 4.44017291e-01 4.80305731e-01 4.71138000e-01 -6.76611245e-01 -4.11589622e-01 -3.29043120e-01 1.41370744e-01 9.26625669e-01 1.01138175e+00 4.86585319e-01 3.97811055e-01 -1.56733274e-01 8.36609602e-01 -1.89585850e-01 4.26400930e-01 6.33757472e-01 -1.04205978e+00 3.03988844e-01 5.56524754e-01 -1.11477673e-02 -1.13693452e+00 -6.30257666e-01 -5.44838369e-01 -1.35200632e+00 -5.63190222e-01 6.37087405e-01 -1.40944660e-01 -8.74754846e-01 1.27076721e+00 5.29857576e-02 2.85295367e-01 1.96980819e-01 6.49083972e-01 5.98720014e-01 7.30289876e-01 -2.25460976e-01 1.02039389e-01 1.69436789e+00 -1.31863379e+00 -5.14297962e-01 3.19629669e-01 1.22895682e+00 -8.62920046e-01 9.14149225e-01 4.05338854e-01 -8.06485176e-01 -2.89693296e-01 -8.90019715e-01 -3.24301988e-01 -3.29496026e-01 3.76387000e-01 1.05300355e+00 5.35665989e-01 -1.18134844e+00 8.76253247e-01 -9.81402814e-01 -3.74227792e-01 1.03227206e-01 5.09303451e-01 -3.84778917e-01 -1.06105305e-01 -1.05008793e+00 6.63339853e-01 5.05070627e-01 2.97601938e-01 -9.84466970e-01 -6.10094368e-01 -5.04169464e-01 1.61157772e-01 -8.05625021e-02 -7.28591502e-01 1.33163214e+00 -6.82511628e-01 -1.56440890e+00 3.80757451e-01 1.88815489e-01 -9.90536273e-01 2.30703056e-01 1.69616804e-01 -1.64717603e-02 5.08315936e-02 -5.35379171e-01 7.14053154e-01 4.17742997e-01 -5.80460250e-01 -4.60017085e-01 -9.95826870e-02 3.93131644e-01 -2.90502578e-01 -6.09728992e-01 -1.43835127e-01 -1.14468977e-01 -8.29696238e-01 -5.25095128e-02 -1.65056074e+00 -3.79048407e-01 3.85252982e-02 -6.73068106e-01 -2.99165726e-01 6.50735974e-01 -5.99095285e-01 8.65071654e-01 -1.94467962e+00 3.52692753e-01 -1.54369194e-02 6.04365289e-01 4.22360040e-02 -5.33830345e-01 5.80598414e-01 -1.18676350e-01 1.69808835e-01 8.14239457e-02 -2.36105368e-01 -2.76838690e-02 7.00729609e-01 -1.29536316e-01 3.67402285e-01 1.54482052e-01 1.05374002e+00 -6.87611222e-01 -1.73107862e-01 -3.77860636e-01 3.96927595e-01 -7.47205615e-01 -1.86529711e-01 -2.69693106e-01 1.07016198e-01 6.02491572e-02 4.42512184e-01 1.94168702e-01 -9.06256616e-01 3.48266870e-01 -5.54448724e-01 9.45062339e-02 1.13264266e-02 -6.32361174e-01 1.37191367e+00 -4.45738226e-01 8.67659509e-01 -6.23664498e-01 -1.08080006e+00 5.83725214e-01 4.61238086e-01 4.28935319e-01 -1.07278615e-01 3.50163639e-01 2.61792243e-01 6.81914032e-01 -5.59901774e-01 7.10577488e-01 1.58771556e-02 -2.02240050e-02 6.47632182e-01 2.03844801e-01 3.20000321e-01 4.95354801e-01 2.98299015e-01 1.25675416e+00 -3.40707600e-01 -1.55115917e-01 -5.02226770e-01 2.59331256e-01 7.47154839e-03 2.14853585e-01 5.70522010e-01 -2.93345097e-02 1.02106623e-01 1.03381574e+00 -1.08384168e+00 -1.87023735e+00 -7.15843439e-01 5.67688644e-02 1.31126416e+00 -1.90793112e-01 -6.19547904e-01 -6.32465243e-01 -5.24737418e-01 2.32752636e-02 2.58196592e-01 -9.96742189e-01 -1.80206567e-01 -5.97390890e-01 -1.03230727e+00 1.01896060e+00 7.89085686e-01 4.94695842e-01 -3.37619513e-01 1.03756845e-01 1.03938267e-01 -2.93384135e-01 -1.62311518e+00 -7.13607132e-01 2.08603926e-02 -1.11214554e+00 -6.40533805e-01 -5.52561283e-01 -1.04141009e+00 4.52910811e-01 -8.00248049e-03 7.48729765e-01 6.64408058e-02 1.45007014e-01 1.25300705e-01 -2.77779788e-01 2.99286544e-02 -6.34982109e-01 4.11033541e-01 4.78385866e-01 2.55802542e-01 -2.78706811e-02 -5.97718596e-01 -5.82507133e-01 4.78558779e-01 -1.08689272e+00 3.53910387e-01 4.86937851e-01 1.23423326e+00 2.51957685e-01 -5.65448515e-02 8.09656531e-02 -4.84307170e-01 5.91674149e-01 -3.12326670e-01 -5.80214739e-01 1.97964504e-01 -4.73671645e-01 5.45587599e-01 7.91296959e-01 -1.05770743e+00 -1.68368638e-01 9.47439000e-02 2.25541517e-02 -6.48046553e-01 4.57300127e-01 7.14766324e-01 7.55581260e-01 -4.78818804e-01 6.01366580e-01 4.38206196e-01 1.43457636e-01 -3.99009824e-01 3.19231480e-01 3.16745043e-01 1.05639741e-01 -6.54789150e-01 5.49396038e-01 4.08373415e-01 2.85913169e-01 -6.69044673e-01 -4.82871532e-01 -9.59661230e-02 -7.07424402e-01 -7.36864284e-03 8.09804797e-01 -6.75898790e-01 -1.33198762e+00 5.33891201e-01 -1.50958776e+00 -4.95813191e-01 -6.25844225e-02 6.84015334e-01 -6.57398522e-01 5.61188877e-01 -1.70450795e+00 -6.35116577e-01 -3.99925351e-01 -1.53753781e+00 8.41324508e-01 -5.73039412e-01 1.01199627e-01 -1.26242912e+00 -1.54435575e-01 1.17724955e-01 4.52659190e-01 -1.77428313e-02 1.35543466e+00 -6.83298647e-01 -7.29073226e-01 -2.55995333e-01 -5.90893030e-01 5.79652905e-01 -4.03097212e-01 1.98165685e-01 -5.55578947e-01 -1.08744361e-01 -4.55964506e-01 -2.67079860e-01 8.75120878e-01 9.76750627e-02 1.07284713e+00 -9.24960434e-01 5.86763956e-02 3.26663315e-01 1.33417571e+00 1.14660919e-01 6.66282773e-01 5.90039752e-02 1.11506093e+00 2.15670258e-01 -2.00965866e-01 2.79668272e-01 5.42085290e-01 6.69622719e-01 3.49525392e-01 1.42034829e-01 -2.14982219e-02 -1.63852591e-02 4.18395519e-01 1.68307579e+00 -4.19873118e-01 -7.65985325e-02 -9.62812304e-01 5.78929305e-01 -2.13303661e+00 -6.85691476e-01 -2.77719051e-01 1.77899086e+00 7.94911802e-01 7.01972842e-02 5.03427148e-01 1.45761445e-01 4.32166845e-01 -2.03002363e-01 -4.37624961e-01 -7.03170121e-01 -2.04450801e-01 -3.52426529e-01 1.01600420e+00 4.17008489e-01 -1.12609994e+00 9.31308746e-01 7.19653320e+00 8.98364663e-01 -1.32407284e+00 3.74289691e-01 8.05841982e-01 5.79959787e-02 3.55462357e-02 -2.61285335e-01 -5.23547947e-01 2.36912534e-01 1.39149952e+00 1.40861452e-01 7.17734814e-01 6.67528331e-01 -1.44405052e-01 4.04264510e-01 -1.35028696e+00 1.18518651e+00 -2.62952089e-01 -1.87557018e+00 3.36745054e-01 2.97153115e-01 8.34687829e-01 4.83840257e-01 2.10021466e-01 3.73552144e-01 5.73615789e-01 -8.89913023e-01 6.77202940e-01 2.95871168e-01 6.84208810e-01 -4.88565654e-01 8.34579229e-01 1.31369248e-01 -9.65831995e-01 -2.92985141e-01 -7.36756623e-01 -3.48511130e-01 -4.08595204e-02 5.82445741e-01 -1.03288174e+00 1.88487843e-01 5.75023890e-01 6.93293631e-01 -4.45862651e-01 8.81109357e-01 4.59492028e-01 9.31026936e-01 -4.21184659e-01 -5.21323979e-01 7.37479806e-01 -2.49472201e-01 3.40708822e-01 1.30667996e+00 1.13981970e-01 -9.03061107e-02 1.88498661e-01 4.23896372e-01 -3.41501862e-01 9.52512845e-02 -4.83024865e-01 -4.60611582e-01 -1.79962203e-01 1.22414219e+00 -7.64398634e-01 -6.07485056e-01 -4.80194017e-02 9.39829230e-01 4.32476610e-01 5.10287344e-01 -8.30980361e-01 -2.66070038e-01 7.14557171e-01 -3.04792553e-01 6.09004617e-01 -6.93630457e-01 -4.89986181e-01 -1.42181063e+00 -1.05097458e-01 -7.14526236e-01 8.56762826e-02 -5.08900523e-01 -1.37030089e+00 9.57664847e-01 -2.80763626e-01 -1.10557246e+00 -1.69850126e-01 -1.24343014e+00 4.08796780e-02 1.04725383e-01 -9.41046476e-01 -1.21652162e+00 4.12588805e-01 2.83123553e-01 2.25316465e-01 -6.19481504e-02 8.64266455e-01 5.70514143e-01 -8.57097030e-01 8.27544391e-01 6.64949059e-01 5.55800557e-01 -2.12911074e-03 -1.11404169e+00 8.12673926e-01 4.70789403e-01 8.08767006e-02 7.32413054e-01 6.09648526e-01 -2.46785611e-01 -1.75268030e+00 -1.28857696e+00 8.76845181e-01 -4.29132015e-01 1.44031906e+00 -7.43185580e-01 -5.56805670e-01 9.58849549e-01 -5.54966182e-02 2.83039182e-01 6.60783410e-01 2.78582335e-01 -1.06972778e+00 2.31272597e-02 -8.84496331e-01 9.35799003e-01 1.04542565e+00 -6.10180199e-01 2.31575385e-01 9.36330676e-01 1.24272585e+00 -1.69770911e-01 -1.72734118e+00 1.15464911e-01 1.11297500e+00 -5.62833369e-01 8.39038730e-01 -1.32964242e+00 8.37051392e-01 -1.07548051e-01 -5.19824624e-01 -1.17916203e+00 -7.26396978e-01 -5.11577547e-01 -2.67862350e-01 3.11386764e-01 8.33392024e-01 -7.23247945e-01 8.50628555e-01 3.69529188e-01 -6.18629307e-02 -1.13110411e+00 -9.67273474e-01 -1.19919181e+00 2.25672677e-01 -5.53940952e-01 4.48300689e-01 8.75211835e-01 2.56020337e-01 8.15630496e-01 -7.78119922e-01 -1.90953523e-01 3.15292150e-01 -1.21276356e-01 4.84411508e-01 -9.84989047e-01 -4.73624170e-01 -5.47046721e-01 -9.14040923e-01 -1.43925905e+00 -7.85235092e-02 -1.00423443e+00 -3.03792924e-01 -1.12327397e+00 4.19811636e-01 -3.57930064e-01 -1.89589053e-01 5.05451262e-01 3.09060574e-01 7.85365105e-01 3.78841519e-01 3.53043854e-01 -7.39763439e-01 4.78943199e-01 1.40310955e+00 -4.61010545e-01 4.29083496e-01 -2.53099620e-01 -2.81236053e-01 4.79154855e-01 7.68498659e-01 -2.05047995e-01 -1.13304496e-01 -8.06454122e-01 5.17891169e-01 3.86517285e-03 2.63427734e-01 -8.83424938e-01 2.47514814e-01 -1.45243760e-02 1.19255275e-01 -4.17694658e-01 4.94734883e-01 -6.11681998e-01 7.88691193e-02 8.98701191e-01 -6.93350494e-01 6.90638304e-01 2.32600719e-01 6.56425238e-01 2.78224289e-01 1.54071346e-01 5.47243118e-01 6.81912452e-02 -1.32705405e-01 6.66283667e-01 -8.71744633e-01 -4.41222936e-01 6.06043994e-01 -3.14562954e-02 -6.04820848e-01 -3.81170005e-01 -9.87370670e-01 -1.22377738e-01 6.26485422e-03 3.05955142e-01 4.65430319e-01 -1.60502326e+00 -7.81826138e-01 -1.68596700e-01 2.13254571e-01 -4.90888506e-01 2.83156246e-01 1.45173144e+00 -8.73524189e-01 8.36146712e-01 -2.18189195e-01 -7.85310090e-01 -9.05179441e-01 9.87012863e-01 4.66239870e-01 -6.45280063e-01 -1.21332295e-02 7.25752711e-01 3.25219452e-01 -7.18715012e-01 1.35635361e-01 -9.69550908e-01 1.25109881e-01 -4.23457444e-01 4.70845282e-01 6.14538133e-01 1.30218491e-01 -5.62045693e-01 8.69215757e-04 2.57566750e-01 -3.75132859e-01 1.29848748e-01 1.18721032e+00 2.03735381e-01 -6.06948078e-01 7.54900098e-01 1.67017531e+00 -7.45108008e-01 -7.76702166e-01 -5.70864558e-01 5.09062000e-02 2.15042457e-01 -9.67387110e-02 -4.87526089e-01 -1.07830584e+00 9.71569002e-01 6.24380589e-01 5.44501841e-01 5.16454875e-01 -2.04311654e-01 1.10590518e+00 1.05079567e+00 2.35728979e-01 -5.72363615e-01 1.28883719e-01 1.10784590e+00 1.00646877e+00 -8.89056504e-01 -2.65189856e-01 -4.68973249e-01 -5.33618033e-01 1.36704063e+00 2.78306901e-01 -3.68974000e-01 8.49793315e-01 2.65644312e-01 -2.88226306e-01 -1.60296395e-01 -1.37101972e+00 2.19019055e-01 1.66892499e-01 2.39604026e-01 4.50128496e-01 3.98737133e-01 -1.89280674e-01 -7.97863686e-05 -3.74640048e-01 2.87770573e-03 6.90719724e-01 3.32972884e-01 -9.54639986e-02 -6.91577911e-01 -3.19077015e-01 7.13331580e-01 -4.70667243e-01 -5.34920156e-01 -2.64089495e-01 3.17424774e-01 -3.67617279e-01 5.86957753e-01 2.72281915e-01 -1.02730072e+00 -9.49831866e-03 -3.06474622e-02 6.06141090e-01 -8.21786970e-02 -7.75581419e-01 -1.18974857e-01 4.70109284e-01 -2.52335608e-01 -2.42685199e-01 -4.29353446e-01 -7.52684176e-01 -9.69693303e-01 -3.81638557e-01 2.52449457e-02 8.00306022e-01 7.66298592e-01 5.69346786e-01 3.05923790e-01 3.97625893e-01 -7.54654467e-01 -8.69743705e-01 -1.22093761e+00 -5.13584018e-01 1.42092928e-01 2.81605214e-01 -4.45987672e-01 -1.74532887e-02 1.99372068e-01]
[6.04067850112915, 5.0236921310424805]
6cc1aeb2-4bde-4911-83b4-dc8ae66986fc
cxtrack-improving-3d-point-cloud-tracking
2211.08542
null
https://arxiv.org/abs/2211.08542v2
https://arxiv.org/pdf/2211.08542v2.pdf
CXTrack: Improving 3D Point Cloud Tracking with Contextual Information
3D single object tracking plays an essential role in many applications, such as autonomous driving. It remains a challenging problem due to the large appearance variation and the sparsity of points caused by occlusion and limited sensor capabilities. Therefore, contextual information across two consecutive frames is crucial for effective object tracking. However, points containing such useful information are often overlooked and cropped out in existing methods, leading to insufficient use of important contextual knowledge. To address this issue, we propose CXTrack, a novel transformer-based network for 3D object tracking, which exploits ConteXtual information to improve the tracking results. Specifically, we design a target-centric transformer network that directly takes point features from two consecutive frames and the previous bounding box as input to explore contextual information and implicitly propagate target cues. To achieve accurate localization for objects of all sizes, we propose a transformer-based localization head with a novel center embedding module to distinguish the target from distractors. Extensive experiments on three large-scale datasets, KITTI, nuScenes and Waymo Open Dataset, show that CXTrack achieves state-of-the-art tracking performance while running at 34 FPS.
['Song-Hai Zhang', 'Yu-Kun Lai', 'Yuan-Chen Guo', 'Tian-Xing Xu']
2022-11-12
null
http://openaccess.thecvf.com//content/CVPR2023/html/Xu_CXTrack_Improving_3D_Point_Cloud_Tracking_With_Contextual_Information_CVPR_2023_paper.html
http://openaccess.thecvf.com//content/CVPR2023/papers/Xu_CXTrack_Improving_3D_Point_Cloud_Tracking_With_Contextual_Information_CVPR_2023_paper.pdf
cvpr-2023-1
['3d-single-object-tracking', '3d-object-tracking']
['computer-vision', 'computer-vision']
[-1.21552251e-01 -6.31083786e-01 -2.78519571e-01 -2.14382708e-01 -4.64388609e-01 -5.85674822e-01 3.56484741e-01 5.67711145e-02 -4.74670798e-01 4.94658619e-01 -4.26930282e-03 -1.43555207e-02 -5.00811525e-02 -4.98252928e-01 -8.44835520e-01 -7.85578012e-01 3.44891921e-02 6.78930059e-02 1.00443816e+00 -1.54215693e-01 -3.73825915e-02 6.62300229e-01 -1.65892911e+00 -1.61716729e-01 6.44065738e-01 1.27277040e+00 3.47403079e-01 1.32601619e-01 -2.41544783e-01 5.64564228e-01 -4.80254412e-01 -1.63026705e-01 5.23624837e-01 1.03616156e-01 6.30566776e-02 -4.16099317e-02 8.62621307e-01 -3.66998106e-01 -6.37879670e-01 1.31198680e+00 4.49929714e-01 1.72880217e-01 7.47357085e-02 -1.51635838e+00 -4.61878330e-01 2.16867715e-01 -7.50511825e-01 4.14125472e-01 3.19626257e-02 4.10271138e-01 7.17431843e-01 -8.28826785e-01 4.81322080e-01 1.38937163e+00 7.48706758e-01 6.92687333e-01 -1.07200503e+00 -1.09712386e+00 6.94132090e-01 2.57161647e-01 -1.27941656e+00 -2.77184576e-01 9.03300047e-01 -4.55363154e-01 4.19444948e-01 3.10950335e-02 7.85367250e-01 1.09909594e+00 8.28883201e-02 7.85392880e-01 8.40783775e-01 5.93560189e-02 -7.75910541e-02 1.55549645e-01 1.21784098e-01 5.83146453e-01 5.72810411e-01 4.69163984e-01 -4.97326821e-01 1.13977581e-01 7.17504144e-01 5.53637266e-01 -3.18394154e-01 -9.16763425e-01 -1.43536222e+00 5.72597980e-01 9.30425823e-01 6.05038367e-02 -1.15388446e-01 2.19904348e-01 3.12620491e-01 2.86856201e-02 4.00699228e-01 -8.99544656e-02 -3.19695175e-01 -9.65477452e-02 -5.07976949e-01 3.80034596e-01 1.55443385e-01 1.40405452e+00 6.78310454e-01 7.75778815e-02 -3.58973026e-01 5.02791405e-01 4.94443685e-01 9.70898032e-01 1.08501099e-01 -7.35881031e-01 5.96241713e-01 8.96573067e-01 3.55201662e-01 -1.21694183e+00 -2.90923744e-01 -6.36148572e-01 -5.06510973e-01 3.42804819e-01 4.09004331e-01 9.61258039e-02 -9.21571314e-01 1.84534490e+00 8.80420446e-01 4.74758178e-01 -3.62319469e-01 1.42405939e+00 8.75213623e-01 3.69828552e-01 9.23571810e-02 1.31836059e-02 1.28339195e+00 -9.49332595e-01 -6.60046875e-01 -2.16153726e-01 4.68363255e-01 -6.29165888e-01 7.56255448e-01 -7.43769407e-02 -6.21041238e-01 -7.79825032e-01 -9.79657650e-01 -8.43380690e-02 -4.29254025e-01 1.86860994e-01 4.37778145e-01 4.31541055e-01 -4.67115313e-01 2.40840092e-01 -1.06242239e+00 -2.54473776e-01 7.01803803e-01 3.71705174e-01 -3.51064920e-01 -3.24721724e-01 -8.43249023e-01 7.47135699e-01 3.56570125e-01 3.85659456e-01 -7.32543886e-01 -7.73805797e-01 -9.17699516e-01 -1.84101611e-01 6.20689809e-01 -4.59283769e-01 9.08691227e-01 -3.16663265e-01 -1.13750100e+00 4.68324751e-01 -2.16686621e-01 -4.26830292e-01 6.51843309e-01 -5.20855069e-01 -4.17134672e-01 -1.18688703e-01 2.07596794e-01 6.33666396e-01 8.94488037e-01 -1.13721347e+00 -9.37632918e-01 -7.49045312e-01 8.16849321e-02 2.48937849e-02 -2.33949155e-01 -1.29766479e-01 -7.69278705e-01 -6.33182168e-01 3.30991179e-01 -1.06371939e+00 -1.27321512e-01 5.76756001e-01 -2.29666963e-01 -3.35922360e-01 1.47363949e+00 -1.99271083e-01 9.16112006e-01 -2.26633430e+00 7.22764358e-02 -1.92602962e-01 5.11335135e-01 3.14793915e-01 -5.03514754e-03 -1.22570701e-01 3.31739545e-01 -3.94565582e-01 1.39536649e-01 -2.81492352e-01 1.04867533e-01 6.97606876e-02 -2.68622756e-01 6.52046680e-01 2.99612492e-01 9.47662175e-01 -1.09258485e+00 -5.56537151e-01 5.65907538e-01 7.82501876e-01 -3.44832897e-01 1.01944052e-01 -3.48214120e-01 6.23280048e-01 -8.30098391e-01 9.71480966e-01 9.09897864e-01 -1.42301619e-01 -4.76397961e-01 -4.86678779e-01 -4.94743347e-01 4.36923467e-02 -1.18116260e+00 1.74484789e+00 -4.72991690e-02 6.35654509e-01 3.28488275e-02 -5.53987324e-01 9.11116898e-01 -6.07098751e-02 5.35581291e-01 -7.40006447e-01 3.62436771e-01 2.10599408e-01 -1.51474411e-02 -2.56800264e-01 5.17664552e-01 1.89809754e-01 3.45718898e-02 -1.20508596e-01 -2.87668139e-01 2.59436041e-01 -1.58379823e-02 1.55577045e-02 1.09798455e+00 4.39062327e-01 -1.59787610e-01 -5.64414822e-02 5.69169402e-01 2.28642553e-01 1.02059186e+00 5.68687320e-01 -7.64874697e-01 4.15884674e-01 -3.28478664e-02 -5.50013065e-01 -7.12050438e-01 -9.63734329e-01 -1.31437913e-01 7.98659861e-01 8.23387146e-01 -2.93876261e-01 -2.30874345e-01 -8.48499358e-01 4.59420800e-01 1.03821948e-01 -7.11231828e-01 -3.39185268e-01 -7.55545259e-01 -2.01478735e-01 1.35128930e-01 7.58789539e-01 4.20748949e-01 -7.50557601e-01 -9.21803057e-01 2.18813464e-01 4.58587054e-03 -1.49809635e+00 -7.76212811e-01 3.89392264e-02 -8.39283943e-01 -1.11939752e+00 -6.25297546e-01 -5.38372517e-01 6.15248144e-01 8.79752576e-01 6.69651628e-01 -7.64420778e-02 -2.55690485e-01 1.51658595e-01 -2.37832442e-01 -4.81267691e-01 2.38145128e-01 -1.62840396e-01 2.07698092e-01 1.23822000e-02 7.12941885e-01 -1.99379131e-01 -7.63336718e-01 6.61912739e-01 -4.93906111e-01 -1.18828319e-01 6.13373220e-01 6.75903201e-01 8.14356983e-01 -6.17206544e-02 1.52047530e-01 -3.79516572e-01 -4.06414159e-02 -2.54341602e-01 -1.18823373e+00 -2.56191138e-02 -1.65119413e-02 -1.91874996e-01 3.74068350e-01 -8.30716968e-01 -6.95955515e-01 3.18026483e-01 2.08491355e-01 -1.28152931e+00 2.59387214e-02 -5.45369945e-02 -3.18938732e-01 -4.77463156e-01 3.52667987e-01 1.17129177e-01 2.77819559e-02 -5.24440348e-01 2.03782767e-01 3.24512601e-01 5.24895132e-01 -3.50110561e-01 1.23251021e+00 6.71334922e-01 1.46175846e-01 -6.21613026e-01 -1.02253962e+00 -6.86180353e-01 -5.68467140e-01 -3.95674050e-01 8.05126548e-01 -1.18403864e+00 -9.57522750e-01 3.22868884e-01 -1.07372820e+00 4.59084027e-02 -2.89195895e-01 7.30791032e-01 -1.14224762e-01 3.23387398e-03 -1.14901625e-01 -7.57016838e-01 -2.02619687e-01 -1.36725307e+00 1.35073042e+00 4.67253625e-01 4.14886296e-01 -6.06424093e-01 -8.08336213e-02 3.59592289e-02 4.38880384e-01 4.82773930e-01 2.26094052e-01 -2.55685240e-01 -1.15610945e+00 -4.00805026e-01 -6.15184069e-01 2.30607111e-02 3.18029016e-01 -2.26139560e-01 -7.52639771e-01 -4.58013326e-01 -1.47388875e-01 -8.89953673e-02 8.68763626e-01 2.73230314e-01 9.40031469e-01 2.28261307e-01 -8.22329581e-01 7.64050126e-01 1.29940820e+00 6.48118481e-02 4.02319729e-02 2.96370059e-01 1.08420885e+00 3.30128998e-01 1.03683996e+00 2.68297225e-01 3.81913841e-01 9.08774853e-01 6.67213023e-01 2.81308264e-01 -2.51417011e-01 -4.08032447e-01 2.49092534e-01 5.88433564e-01 1.82801664e-01 1.53550029e-01 -6.02473319e-01 6.17984056e-01 -2.02254868e+00 -8.65169168e-01 -1.55910984e-01 2.27535534e+00 5.51244140e-01 5.27523100e-01 1.81066126e-01 -2.19862089e-01 8.44661176e-01 2.23157287e-01 -1.01777685e+00 7.02094495e-01 -4.26415401e-03 -2.99276650e-01 8.10288012e-01 1.25812367e-01 -1.28992546e+00 9.95178640e-01 5.00750446e+00 7.44547367e-01 -1.34463823e+00 1.82895094e-01 -1.09948188e-01 -3.30573559e-01 1.04266070e-01 -1.83338538e-01 -1.47237718e+00 7.21514404e-01 4.24206704e-01 -2.31714286e-02 -1.24477357e-01 1.00516546e+00 2.03541636e-01 1.08210534e-01 -9.65729654e-01 1.07177198e+00 -6.90872520e-02 -1.06742764e+00 -2.58716017e-01 1.44145507e-02 4.73721892e-01 2.77610272e-01 3.91355567e-02 4.22576100e-01 1.63916081e-01 -4.44554180e-01 9.47324574e-01 2.33823106e-01 5.17502785e-01 -5.72578669e-01 4.83395696e-01 2.75533855e-01 -1.82127619e+00 -1.72439255e-02 -7.27758825e-01 1.81612387e-01 9.39478278e-02 5.30397773e-01 -3.13534439e-01 3.68307948e-01 1.06563222e+00 1.15253627e+00 -5.99685252e-01 1.52266169e+00 -8.60726759e-02 2.22120136e-01 -6.25052392e-01 -1.02204926e-01 2.41741508e-01 1.13488063e-01 9.45344269e-01 7.99462080e-01 3.03940952e-01 5.44675477e-02 5.78536868e-01 9.17793512e-01 -2.85094753e-02 -2.38314942e-01 -7.23381042e-01 2.34092012e-01 6.35445714e-01 1.26600671e+00 -6.22501850e-01 -1.90766379e-01 -5.77283084e-01 5.26504457e-01 2.64400542e-01 1.93682387e-01 -1.15680337e+00 -3.65125626e-01 1.03672862e+00 6.89315721e-02 7.80525982e-01 -4.88559693e-01 9.10843834e-02 -1.31365716e+00 3.27023268e-01 -5.51727414e-01 1.56244442e-01 -4.78453070e-01 -1.13405037e+00 5.81243157e-01 -6.45484701e-02 -1.85607624e+00 4.57269311e-01 -6.75972164e-01 -3.49201232e-01 6.67229116e-01 -1.88615966e+00 -1.24850941e+00 -8.16525817e-01 7.30417848e-01 5.22697389e-01 6.25777990e-02 1.31275030e-02 6.97911203e-01 -6.51385665e-01 5.57604730e-01 -1.11683458e-01 1.73001096e-01 8.49559307e-01 -9.11139369e-01 3.19789827e-01 8.35035563e-01 -2.83727758e-02 6.74767792e-01 5.70098758e-01 -7.98817933e-01 -1.82457316e+00 -1.49866700e+00 3.74925822e-01 -6.80668116e-01 6.81513667e-01 -4.80593771e-01 -9.36794460e-01 6.30172074e-01 -3.27447355e-01 7.32395113e-01 1.46608323e-01 -1.74248174e-01 -4.41046655e-01 -3.92911524e-01 -9.29881871e-01 5.44880867e-01 1.47417438e+00 -2.08039865e-01 -5.78055620e-01 1.38797134e-01 1.23102689e+00 -8.90195727e-01 -6.48353755e-01 5.82461536e-01 6.89757943e-01 -7.25898385e-01 1.15238714e+00 -2.76343822e-01 -1.48963034e-01 -8.64937603e-01 -1.78150341e-01 -1.00170934e+00 -3.16107690e-01 -4.18974936e-01 -4.63469863e-01 1.03701663e+00 -3.42497006e-02 -6.49209321e-01 9.78802860e-01 4.62295413e-01 -2.44105071e-01 -5.82652152e-01 -1.01644433e+00 -1.09370661e+00 -3.53803128e-01 -4.07791018e-01 7.72810578e-01 6.47121549e-01 -5.41631699e-01 1.19652718e-01 -4.16776747e-01 4.35724586e-01 1.12858272e+00 4.67691034e-01 1.09267247e+00 -1.43058217e+00 2.35349685e-01 -2.88481027e-01 -8.01558852e-01 -1.47144198e+00 -6.14577495e-02 -4.81849164e-01 3.81673634e-01 -1.16781509e+00 -5.74566983e-02 -7.78427482e-01 -4.91093159e-01 4.04360533e-01 -2.95545459e-01 4.56736416e-01 3.53955775e-01 2.13653401e-01 -8.69798779e-01 8.98324013e-01 1.40086269e+00 -3.13255847e-01 -1.15070604e-01 5.92421666e-02 -4.02910471e-01 5.70101023e-01 3.47992808e-01 -5.88878036e-01 -2.35102773e-01 -6.80947661e-01 -2.17355534e-01 -1.74922779e-01 6.60499692e-01 -1.38915002e+00 5.06901264e-01 -1.58015743e-01 5.39944351e-01 -1.23756099e+00 5.60349584e-01 -1.36767578e+00 1.48385195e-02 4.71046448e-01 -1.96937378e-02 2.11314648e-01 5.33092558e-01 9.34041202e-01 -2.41599321e-01 3.25952232e-01 6.92187667e-01 1.79731309e-01 -9.72177804e-01 8.51875663e-01 4.79626507e-01 5.46476357e-02 1.26426375e+00 -3.00157219e-01 -3.40711951e-01 2.18635038e-01 -3.35018724e-01 5.96578121e-01 5.89591444e-01 9.08274174e-01 6.38171971e-01 -1.76895595e+00 -4.18420136e-01 3.18988770e-01 4.31907773e-01 2.62953669e-01 2.69925326e-01 1.06317616e+00 -6.53066486e-02 4.84488249e-01 -1.93017229e-01 -1.24612677e+00 -1.26149654e+00 6.93895996e-01 2.03207552e-01 1.99179128e-01 -1.08770704e+00 7.17370689e-01 4.43475723e-01 -2.58512229e-01 5.11428416e-01 -6.53571427e-01 -1.59578353e-01 -1.71102569e-01 6.94732904e-01 9.60779041e-02 -1.33969232e-01 -8.24691772e-01 -5.22920549e-01 1.03001034e+00 -1.92768961e-01 4.48504120e-01 9.92725015e-01 -2.87942410e-01 3.38953674e-01 3.84886444e-01 1.12504363e+00 -3.79321873e-02 -1.83356977e+00 -7.21540630e-01 -1.23348445e-01 -1.01429737e+00 1.99561134e-01 -3.26605469e-01 -1.37677968e+00 9.30001795e-01 8.76062334e-01 -9.27167237e-02 7.71016777e-01 -1.20850757e-01 1.00998843e+00 3.44816029e-01 6.09364808e-01 -6.81427777e-01 3.68728787e-02 4.73882198e-01 5.40574968e-01 -1.70339835e+00 -3.73427868e-02 -4.32206362e-01 -2.46367142e-01 7.79460430e-01 1.04716396e+00 -3.65975164e-02 6.12290144e-01 1.55150086e-01 5.29898256e-02 -1.75360367e-01 -6.13821685e-01 -5.51207364e-01 4.64219153e-01 5.67135811e-01 -9.20768529e-02 -2.39942715e-01 1.66014612e-01 3.30923051e-01 2.03267008e-01 -8.67558867e-02 -7.22233281e-02 1.23041308e+00 -5.71050823e-01 -7.29938686e-01 -5.36557138e-01 2.44981468e-01 -2.02595964e-01 2.76033878e-01 -5.79360165e-02 9.71531928e-01 2.31944740e-01 6.06507242e-01 9.11482610e-03 -4.77822214e-01 6.30022526e-01 -3.38522226e-01 4.64936167e-01 -4.19922978e-01 -3.02979797e-01 1.88962027e-01 -4.29949462e-01 -7.45215833e-01 -6.01617754e-01 -7.58284986e-01 -1.14956057e+00 -1.50792375e-01 -6.39420033e-01 -3.28191631e-02 6.76581800e-01 7.67199755e-01 5.48145413e-01 6.66652620e-01 4.39441115e-01 -1.11038613e+00 -3.98784906e-01 -7.25178361e-01 -1.94755495e-01 4.11869556e-01 8.10013473e-01 -1.41750777e+00 -2.49197960e-01 -2.66744405e-01]
[6.566880226135254, -2.294078826904297]
6608b1b8-594d-4ec1-958b-77829269241f
leveraging-predictions-in-power-system
2305.12044
null
https://arxiv.org/abs/2305.12044v1
https://arxiv.org/pdf/2305.12044v1.pdf
Leveraging Predictions in Power System Frequency Control: an Adaptive Approach
Ensuring the frequency stability of electric grids with increasing renewable resources is a key problem in power system operations. In recent years, a number of advanced controllers have been designed to optimize frequency control. These controllers, however, almost always assume that the net load in the system remains constant over a sufficiently long time. Given the intermittent and uncertain nature of renewable resources, it is becoming important to explicitly consider net load that is time-varying. This paper proposes an adaptive approach to frequency control in power systems with significant time-varying net load. We leverage the advances in short-term load forecasting, where the net load in the system can be accurately predicted using weather and other features. We integrate these predictions into the design of adaptive controllers, which can be seamlessly combined with most existing controllers including conventional droop control and emerging neural network-based controllers. We prove that the overall control architecture achieves frequency restoration decentralizedly. Case studies verify that the proposed method improves both transient and frequency-restoration performances compared to existing approaches.
['Baosen Zhang', 'Yuanyuan Shi', 'Guanya Shi', 'Wenqi Cui']
2023-05-20
null
null
null
null
['load-forecasting']
['miscellaneous']
[-2.68889666e-01 -2.15511769e-01 -4.53139842e-01 2.54601717e-01 1.61577724e-02 -9.38457549e-01 2.99098581e-01 8.78948998e-03 5.44606984e-01 1.44268560e+00 -2.35621221e-02 -1.06605776e-01 -5.19538105e-01 -9.12986100e-01 -6.88864961e-02 -1.12200248e+00 -4.76062745e-01 1.53365418e-01 -2.85532683e-01 -6.86298966e-01 -8.77381302e-03 5.48334420e-01 -1.22192979e+00 -6.37867212e-01 1.24439168e+00 1.03139079e+00 7.05065578e-02 5.12578309e-01 6.80420876e-01 4.34322923e-01 -9.70255196e-01 7.32098401e-01 2.33525783e-01 -2.32937232e-01 -8.18960145e-02 -1.91078067e-01 -4.75627035e-01 -3.98148417e-01 -4.34645563e-01 1.22050667e+00 7.07619548e-01 3.49504173e-01 4.71202880e-01 -1.57615674e+00 -6.64974630e-01 5.70182979e-01 -4.40642744e-01 4.62747544e-01 6.29844591e-02 1.69734344e-01 7.87185371e-01 -3.77706856e-01 1.22106723e-01 6.93679512e-01 6.12469494e-01 2.27849528e-01 -1.30951452e+00 -7.37729669e-01 4.88058746e-01 2.31511101e-01 -1.31197572e+00 -9.14779678e-02 9.99193370e-01 -3.14675272e-01 1.25053167e+00 1.92230076e-01 1.10599709e+00 2.89181411e-01 5.84692419e-01 2.05669388e-01 5.74857354e-01 -4.27741855e-01 2.87088066e-01 -1.86739862e-01 -4.13061917e-01 -1.15301229e-01 4.46232975e-01 2.47891381e-01 -2.59391516e-01 -7.27842376e-02 5.74630260e-01 -1.14271700e-01 -1.00803673e+00 -3.60350549e-01 -7.81819165e-01 7.53324389e-01 3.60886991e-01 6.15582287e-01 -5.30380666e-01 7.75498375e-02 2.32666776e-01 4.88001168e-01 6.20190620e-01 6.07775569e-01 -5.89149535e-01 6.21238071e-03 -8.35463583e-01 2.14994371e-01 8.66960704e-01 9.46260989e-01 2.32324928e-01 1.28746557e+00 1.62566304e-01 3.76849532e-01 -5.24873920e-02 8.27455044e-01 6.70785725e-01 -9.17184055e-01 -8.07656944e-02 3.03337902e-01 6.80721700e-01 -9.11139131e-01 -6.00075543e-01 -1.08386111e+00 -1.08419585e+00 3.89961004e-01 1.02139659e-01 -7.11661637e-01 -1.53211534e-01 1.85838604e+00 3.50745678e-01 2.15241499e-02 -1.21282920e-01 5.62376082e-01 -5.64796448e-01 8.57422352e-01 -5.29625118e-01 -1.00307822e+00 9.69135880e-01 -4.47738647e-01 -1.53172565e+00 1.83906257e-01 1.99313894e-01 -5.88587523e-01 3.39174718e-01 5.05458355e-01 -1.02658963e+00 -2.36953542e-01 -1.51820266e+00 7.67081678e-01 -4.57879841e-01 8.11931118e-02 1.53862089e-01 6.44210577e-01 -1.18225336e+00 7.58326292e-01 -7.57894754e-01 -2.54255027e-01 -1.39234200e-01 3.34060103e-01 4.23735559e-01 6.36866808e-01 -1.64147878e+00 1.43236983e+00 7.70924568e-01 4.82202172e-01 -5.38099170e-01 -1.11548674e+00 -5.91868460e-01 3.36028814e-01 7.28715599e-01 -6.10728562e-01 1.48488379e+00 -7.68451929e-01 -1.85043371e+00 -6.29725933e-01 1.16013780e-01 -5.60802698e-01 1.72923386e-01 2.18999404e-02 -7.81277657e-01 1.42951220e-01 -2.08426416e-01 -3.86557400e-01 7.44918287e-01 -8.83535385e-01 -7.90592015e-01 5.05134389e-02 -1.87014595e-01 3.35730821e-01 -7.04521477e-01 -6.43639565e-01 7.11577177e-01 -8.87574434e-01 -4.19004619e-01 -7.34566808e-01 -3.21654290e-01 -2.17695102e-01 -1.40244514e-01 -4.11653131e-01 1.35761762e+00 -4.96177793e-01 1.53834701e+00 -1.51771832e+00 1.38635308e-01 3.55885208e-01 -5.56174628e-02 3.57901156e-01 4.22009110e-01 1.04003036e+00 -3.99301559e-01 -1.19913124e-01 3.97794507e-02 2.85861462e-01 2.83725649e-01 4.04400051e-01 -6.71003222e-01 4.50932115e-01 1.74583167e-01 5.84350824e-01 -9.63018000e-01 5.00164747e-01 5.22838950e-01 5.97008467e-01 -4.14575547e-01 -4.66728508e-02 -5.03736496e-01 4.05645818e-01 -5.61808586e-01 3.04166734e-01 6.48970246e-01 -3.25458854e-01 6.44282937e-01 -2.20431417e-01 -4.33499277e-01 -1.27436295e-01 -1.36012852e+00 1.20077968e+00 -5.87094843e-01 4.93473530e-01 5.43525815e-01 -1.56320691e+00 6.42026544e-01 7.08967388e-01 9.56737041e-01 -6.20513022e-01 4.79831696e-02 1.72043294e-01 7.42246956e-02 -5.11750467e-02 2.95000106e-01 -1.00046061e-01 3.25586379e-01 6.24750495e-01 1.08742818e-01 -2.80963093e-01 6.21089280e-01 -9.57238451e-02 6.79170907e-01 3.58212995e-03 7.73436010e-01 -8.55465710e-01 7.42219687e-01 -7.43204281e-02 1.03108883e+00 1.04916692e-01 -1.64070070e-01 -2.52837539e-01 3.77818525e-01 -1.94417909e-01 -7.96097577e-01 -7.49449492e-01 -3.13015699e-01 6.68543458e-01 -5.02810180e-02 -1.56661421e-01 -3.15753937e-01 -9.04947072e-02 3.42657417e-01 1.05879998e+00 -3.45773160e-01 -4.65963721e-01 -5.40179133e-01 -1.11380816e+00 -3.41224521e-01 3.77005249e-01 2.93073326e-01 -4.40352082e-01 -6.19358122e-01 8.84515464e-01 1.79557607e-01 -7.05427587e-01 -5.74151576e-01 4.12258476e-01 -4.78202581e-01 -1.01840198e+00 -6.18567765e-01 -4.78754938e-01 5.57718694e-01 -1.09581994e-02 1.10154986e+00 3.01445484e-01 -2.41505504e-01 5.05763352e-01 -9.20519084e-02 -3.84018898e-01 -2.97186989e-03 1.61829323e-01 7.67805636e-01 -2.17397243e-01 -4.19806987e-01 -1.10136819e+00 -7.23929048e-01 2.18074456e-01 -7.61119187e-01 -2.52143741e-01 4.59462740e-02 1.09875536e+00 3.26584399e-01 9.93552864e-01 1.68118644e+00 -3.42877001e-01 6.86166167e-01 -5.96761882e-01 -1.26015878e+00 4.28727090e-01 -1.14525676e+00 -1.77023426e-01 1.39262831e+00 -5.12896895e-01 -8.90366495e-01 -1.54832795e-01 1.86701462e-01 -2.70890385e-01 4.30589736e-01 5.77152491e-01 -2.08756953e-01 -3.01125944e-01 2.02415958e-02 3.96968275e-01 6.04424514e-02 -1.53053895e-01 1.39126465e-01 5.20528495e-01 4.50924397e-01 -4.23524767e-01 1.24591672e+00 1.67230770e-01 3.37525636e-01 -6.71652794e-01 -5.03387570e-01 -7.82843381e-02 -5.19123852e-01 -3.65209907e-01 1.01848274e-01 -9.70750630e-01 -1.43097341e+00 4.87442613e-01 -8.00219536e-01 -3.25979829e-01 -3.21359724e-01 3.86314541e-01 -5.59627652e-01 -5.58739975e-02 -3.30094039e-01 -1.06351328e+00 -5.24055004e-01 -7.46187091e-01 2.55024701e-01 5.42175949e-01 9.79290456e-02 -1.53027451e+00 1.76247329e-01 -5.92930615e-01 1.14913416e+00 6.98446274e-01 8.82966518e-01 -1.62304193e-01 -4.03077453e-01 8.16686526e-02 4.25996453e-01 2.93245763e-01 5.60907066e-01 4.19114567e-02 -5.38293362e-01 -9.82203424e-01 9.91870984e-02 1.59673452e-01 -1.09004900e-01 5.74928105e-01 6.57437086e-01 -5.87995470e-01 -3.82567525e-01 3.74760419e-01 2.03248072e+00 6.92243218e-01 -2.85514742e-02 2.91074157e-01 2.19190031e-01 2.72737294e-01 4.79297459e-01 8.92989039e-01 4.23462331e-01 5.56176603e-01 5.08321404e-01 1.76016778e-01 4.90710199e-01 1.32566825e-01 2.31836453e-01 8.97837877e-01 2.06796736e-01 -3.89298648e-01 -6.38003945e-01 6.40101790e-01 -1.90584719e+00 -1.03336680e+00 3.72952670e-01 2.06042147e+00 6.10958874e-01 3.72041799e-02 -1.17499605e-01 5.20941794e-01 7.82226264e-01 1.23343006e-01 -1.06058407e+00 -2.13854760e-01 -2.23935217e-01 -9.28567275e-02 5.72407246e-01 4.43168163e-01 -8.99504483e-01 8.46969709e-03 6.41037369e+00 6.04540169e-01 -1.40639174e+00 -2.64839560e-01 4.16319907e-01 -2.63085514e-01 6.61197864e-03 -3.64394337e-01 -6.02701068e-01 7.87340760e-01 1.32261395e+00 -1.50597000e+00 8.68725181e-01 8.44179511e-01 9.27548945e-01 -1.57882467e-01 -8.38043153e-01 3.70904744e-01 -5.52070439e-02 -1.19645905e+00 -4.04164225e-01 -2.16805339e-02 1.23788619e+00 -2.79228061e-01 -7.85551295e-02 4.56900418e-01 2.88984269e-01 -6.38355494e-01 5.90704083e-01 5.25065303e-01 4.72495884e-01 -1.30064011e+00 5.74473023e-01 5.20661056e-01 -1.68058550e+00 -6.76052511e-01 -1.06613807e-01 -3.61475348e-01 7.06098974e-01 9.30137038e-01 -2.55659848e-01 1.03987563e+00 6.28076851e-01 1.04778993e+00 8.71121045e-03 9.80159283e-01 -1.98682934e-01 4.99716043e-01 -5.84743619e-01 4.55575548e-02 -1.34058788e-01 -2.22499967e-01 5.07001221e-01 1.50320828e-01 4.26183581e-01 2.20813408e-01 6.60967171e-01 6.41027331e-01 1.05762407e-01 -4.74033833e-01 -5.76481044e-01 1.43649161e-01 8.48313570e-01 1.33815396e+00 -4.21144843e-01 -3.00737351e-01 -3.52605462e-01 9.20258909e-02 -1.93391353e-01 5.61675787e-01 -7.57020533e-01 -5.75820029e-01 8.90132248e-01 -3.00467581e-01 1.80754408e-01 -3.84489089e-01 -1.77493557e-01 -1.00548470e+00 9.06232670e-02 -5.85857213e-01 2.73999542e-01 -6.92315757e-01 -1.43294442e+00 3.31743300e-01 -3.64245288e-02 -1.75276077e+00 -9.63938475e-01 -1.06967360e-01 -8.09080303e-01 9.78430331e-01 -2.17399621e+00 -7.25366592e-01 2.20279217e-01 3.56263340e-01 4.87397224e-01 -6.09967858e-02 8.14942598e-01 4.27771300e-01 -1.01105297e+00 2.11317092e-02 9.10428047e-01 -2.42011607e-01 1.52520210e-01 -1.49056971e+00 -2.84494787e-01 1.09642804e+00 -6.44163609e-01 3.83557677e-01 9.69722033e-01 -4.49466527e-01 -1.80209649e+00 -1.22388875e+00 3.22208256e-01 4.49677795e-01 1.04297614e+00 -1.80252165e-01 -9.60370839e-01 5.99819899e-01 9.87660944e-01 1.06990896e-01 2.84593672e-01 -5.57884395e-01 5.41848421e-01 -3.82062256e-01 -1.10750854e+00 3.21240336e-01 2.89202780e-01 -3.81462783e-01 -2.86576182e-01 3.61469269e-01 3.96936923e-01 -3.39813560e-01 -1.22855079e+00 5.18861651e-01 3.25648010e-01 -1.95494547e-01 6.85843885e-01 -1.12416878e-01 -4.54595238e-01 -7.10678399e-01 3.54357995e-02 -2.45337343e+00 -2.92993605e-01 -1.28763628e+00 -6.08959436e-01 1.03953719e+00 8.87777656e-02 -1.23123372e+00 4.07190233e-01 3.29736352e-01 -1.04654461e-01 -5.74791729e-01 -1.25857437e+00 -9.50175822e-01 3.41928929e-01 2.54196763e-01 7.93118775e-01 1.27348065e+00 6.97106183e-01 9.86820832e-02 -3.29280972e-01 9.87602890e-01 7.31861830e-01 3.29586446e-01 -4.21910249e-02 -9.92392182e-01 -3.01983207e-03 -4.53012526e-01 7.64452219e-02 -4.72238511e-01 2.55836219e-01 -4.34627146e-01 -1.33347675e-01 -1.57154608e+00 -5.47793984e-01 -2.51154974e-02 -3.61669183e-01 5.28549671e-01 -1.88550472e-01 5.24146669e-03 2.03502774e-02 -6.23067692e-02 -6.81293905e-02 1.18519533e+00 8.44226420e-01 -6.23573661e-02 -1.54186264e-01 -2.35313121e-02 -1.77398697e-01 4.31272328e-01 1.33795464e+00 6.28784820e-02 -8.27358723e-01 -1.54709965e-01 -3.17423604e-02 5.42334616e-01 -2.37985328e-01 -1.32977569e+00 5.45405567e-01 -3.63569707e-01 3.11182261e-01 -6.96500897e-01 -5.80901243e-02 -1.45881486e+00 4.69778240e-01 1.02841556e+00 4.05563265e-02 5.90006411e-01 2.73528039e-01 7.72575915e-01 -2.36255154e-01 3.96830797e-01 7.86879122e-01 1.80393368e-01 -4.46992695e-01 1.92379072e-01 -6.83683276e-01 -1.81370363e-01 1.42016244e+00 1.74162343e-01 -6.52005970e-01 -6.47677183e-01 -7.23137677e-01 1.05459368e+00 2.76392940e-02 4.87170994e-01 5.82380444e-02 -1.37623465e+00 -4.27326769e-01 1.32486671e-01 -5.16117752e-01 -4.79510248e-01 3.30135465e-01 7.38607645e-01 -2.22437114e-01 8.51454318e-01 -1.61044106e-01 -5.34441173e-01 -4.82283711e-01 4.17845637e-01 8.73927653e-01 -3.60864460e-01 -3.44368577e-01 -2.10233524e-01 -4.85010624e-01 -7.74871856e-02 -6.57577440e-02 -3.09750348e-01 -3.18646848e-01 3.58434558e-01 6.79942071e-01 4.35137659e-01 3.78853738e-01 -2.60682732e-01 -7.32831610e-03 5.51662087e-01 3.25286567e-01 4.40853447e-01 1.63756096e+00 -4.36812758e-01 -6.92225918e-02 4.88964081e-01 6.17046654e-01 -4.06553298e-01 -1.24195743e+00 6.82019591e-02 -4.77690548e-02 -1.97482169e-01 3.60725105e-01 -8.52097452e-01 -1.71909571e+00 2.89086610e-01 4.50944573e-01 9.80385959e-01 1.39595711e+00 -1.15510094e+00 4.11431193e-01 2.75275797e-01 7.74806261e-01 -1.27994013e+00 -4.15203005e-01 5.25602043e-01 8.19192588e-01 -6.01836026e-01 1.96976691e-01 -1.43700615e-01 6.80680340e-03 1.33453989e+00 5.27881742e-01 -3.94747555e-01 1.09896207e+00 6.34871542e-01 -3.44772488e-01 5.37847638e-01 -1.50683868e+00 1.76144913e-01 -1.70034915e-01 6.34540498e-01 3.11297327e-01 1.56146113e-03 -5.00522137e-01 2.99774319e-01 -1.02862366e-01 1.65628523e-01 1.02030730e+00 1.09428763e+00 -4.02049214e-01 -9.18165743e-01 -5.27815282e-01 4.27173376e-01 -5.98248184e-01 3.38338345e-01 7.53979981e-01 9.26953256e-01 4.85943444e-02 1.07515299e+00 1.59432173e-01 3.59870821e-01 5.59702814e-01 -6.43104836e-02 -1.00736447e-01 -2.94740438e-01 -5.84301412e-01 2.33817622e-01 -1.80571526e-01 -3.70824456e-01 -1.92382410e-01 -5.26077092e-01 -1.21765327e+00 -3.27724040e-01 -8.00547302e-01 6.15733743e-01 5.08795083e-01 6.88600719e-01 2.05462396e-01 9.62641716e-01 1.21029437e+00 -1.01377249e+00 -1.01008415e+00 -8.54500651e-01 -1.05222714e+00 -4.58903551e-01 6.58186138e-01 -9.57371712e-01 -8.37418437e-01 -1.34519666e-01]
[5.6922383308410645, 2.577162981033325]
1261815b-6d67-4ad5-9608-d426a5dca321
emotiongesture-audio-driven-diverse-emotional
2305.18891
null
https://arxiv.org/abs/2305.18891v1
https://arxiv.org/pdf/2305.18891v1.pdf
EmotionGesture: Audio-Driven Diverse Emotional Co-Speech 3D Gesture Generation
Generating vivid and diverse 3D co-speech gestures is crucial for various applications in animating virtual avatars. While most existing methods can generate gestures from audio directly, they usually overlook that emotion is one of the key factors of authentic co-speech gesture generation. In this work, we propose EmotionGesture, a novel framework for synthesizing vivid and diverse emotional co-speech 3D gestures from audio. Considering emotion is often entangled with the rhythmic beat in speech audio, we first develop an Emotion-Beat Mining module (EBM) to extract the emotion and audio beat features as well as model their correlation via a transcript-based visual-rhythm alignment. Then, we propose an initial pose based Spatial-Temporal Prompter (STP) to generate future gestures from the given initial poses. STP effectively models the spatial-temporal correlations between the initial poses and the future gestures, thus producing the spatial-temporal coherent pose prompt. Once we obtain pose prompts, emotion, and audio beat features, we will generate 3D co-speech gestures through a transformer architecture. However, considering the poses of existing datasets often contain jittering effects, this would lead to generating unstable gestures. To address this issue, we propose an effective objective function, dubbed Motion-Smooth Loss. Specifically, we model motion offset to compensate for jittering ground-truth by forcing gestures to be smooth. Last, we present an emotion-conditioned VAE to sample emotion features, enabling us to generate diverse emotional results. Extensive experiments demonstrate that our framework outperforms the state-of-the-art, achieving vivid and diverse emotional co-speech 3D gestures.
['Xin Yu', 'Haoran Xin', 'Jie Hou', 'Lincheng Li', 'Chen Liu', 'Xingqun Qi']
2023-05-30
null
null
null
null
['gesture-generation']
['robots']
[-4.24325392e-02 -1.92545190e-01 1.71615139e-01 -3.01461577e-01 -7.69022465e-01 -6.46212876e-01 6.87399209e-01 -7.24481523e-01 2.06228346e-01 1.62252828e-01 4.95945275e-01 1.65629640e-01 1.19129263e-01 -3.27619463e-01 -5.16575515e-01 -7.08553016e-01 -1.10487796e-01 1.49322689e-01 -1.14686787e-01 -3.77921671e-01 -9.39795095e-03 4.94749576e-01 -1.84108484e+00 2.76980340e-01 5.92198014e-01 9.77905452e-01 4.49949019e-02 9.33048427e-01 -3.22953671e-01 5.95115066e-01 -1.10567713e+00 -1.92016765e-01 1.23368450e-01 -8.37353170e-01 -4.15835083e-01 1.49649635e-01 5.32466620e-02 -3.77934068e-01 -2.59005338e-01 6.31335020e-01 8.47269893e-01 2.90361375e-01 7.85910189e-01 -1.57290804e+00 -1.09508887e-01 4.39328372e-01 -5.88262260e-01 -3.92772675e-01 8.07600796e-01 3.31799984e-01 9.43392456e-01 -9.65131044e-01 9.50202942e-01 1.56425452e+00 4.59241897e-01 7.54394829e-01 -9.24664140e-01 -9.47872162e-01 2.75216341e-01 1.37060359e-01 -1.43248725e+00 -5.11785805e-01 1.21931839e+00 -2.49045983e-01 5.63446701e-01 6.77492678e-01 1.12865758e+00 1.72497654e+00 -2.87632406e-01 1.02471614e+00 7.74072111e-01 -2.62709081e-01 6.57897294e-02 -3.37068260e-01 -5.03553629e-01 1.92825019e-01 -8.44268918e-01 2.85904944e-01 -1.06826341e+00 -5.90211786e-02 8.43210518e-01 -1.09773733e-01 -2.51190603e-01 -2.57853046e-02 -1.26503909e+00 4.46935773e-01 1.25252932e-01 3.37585986e-01 -4.16365445e-01 3.45666766e-01 4.11205232e-01 2.65868992e-01 2.80651808e-01 2.24226922e-01 -1.12761177e-01 -7.61088610e-01 -9.61343229e-01 4.89841014e-01 6.43904746e-01 9.08607423e-01 2.29130208e-01 3.20215583e-01 -4.35336679e-01 8.29625368e-01 3.35314751e-01 6.62788808e-01 2.79644966e-01 -9.46748376e-01 2.68375695e-01 3.41354102e-01 -9.17179435e-02 -1.13967872e+00 -3.40099156e-01 -9.65045616e-02 -7.33406663e-01 5.23249879e-02 1.48808464e-01 -2.71276861e-01 -7.73884594e-01 1.82680082e+00 6.19147480e-01 5.06853640e-01 -4.84366231e-02 1.38824415e+00 1.10714471e+00 8.01704049e-01 -5.27561009e-02 -4.84791309e-01 1.14694142e+00 -6.02361023e-01 -1.15354145e+00 2.55861759e-01 2.44175926e-01 -9.84139144e-01 1.43869150e+00 4.05753940e-01 -8.57656002e-01 -5.68119407e-01 -8.28874111e-01 1.81031138e-01 3.61546963e-01 9.65828747e-02 4.02972132e-01 4.83758092e-01 -4.91588712e-01 4.55640107e-01 -8.99276495e-01 6.01835214e-02 -6.74269199e-02 -1.49299381e-02 -2.03945398e-01 4.48292851e-01 -1.14141023e+00 3.35573286e-01 -1.57138333e-01 1.56703874e-01 -8.55588615e-01 -6.22276664e-01 -8.09061468e-01 -2.87168533e-01 3.96852463e-01 -3.10439080e-01 1.27894735e+00 -9.74790812e-01 -2.05157900e+00 4.45538878e-01 -3.50566596e-01 2.27371678e-01 7.05393493e-01 -3.26596767e-01 -4.92401749e-01 2.85345912e-01 -1.36410639e-01 8.12567115e-01 1.04359686e+00 -1.57011914e+00 -3.75213742e-01 -1.49322003e-01 -2.57731944e-01 5.70872366e-01 -4.41716254e-01 8.15113038e-02 -8.90303433e-01 -1.00757635e+00 3.69461775e-01 -1.08518004e+00 2.45069414e-02 -4.38896157e-02 -5.63402712e-01 -2.46576108e-02 1.19759262e+00 -6.15795553e-01 1.35601211e+00 -2.39820766e+00 3.91975075e-01 3.81394625e-01 6.85016289e-02 -1.64749220e-01 -2.78656036e-01 3.18826407e-01 8.44847132e-03 2.84891725e-02 1.73270956e-01 -5.56092739e-01 1.41467974e-01 2.53349960e-01 -4.62984353e-01 1.18278891e-01 3.52232933e-01 9.69493270e-01 -9.59768295e-01 -6.14312172e-01 3.84373277e-01 8.87151897e-01 -6.16056085e-01 4.40584183e-01 -2.94926852e-01 1.08858633e+00 -6.20135963e-01 6.54319525e-01 4.33642179e-01 2.98149049e-01 1.08138472e-01 -3.47217739e-01 3.21242251e-02 1.19718388e-01 -1.38406980e+00 1.90054882e+00 -5.15106440e-01 7.13172019e-01 1.11736143e-02 -5.00800848e-01 1.39553702e+00 6.48947179e-01 8.00073624e-01 -6.59586728e-01 2.87229478e-01 1.45623073e-01 -2.97056794e-01 -8.89763236e-01 5.89931130e-01 -1.90019205e-01 -2.92277783e-01 3.98131311e-01 -1.22089282e-01 -6.26597047e-01 -2.99860746e-01 3.31128351e-02 9.73967969e-01 4.96785074e-01 -2.36215308e-01 5.63452184e-01 1.88743711e-01 -1.65169761e-01 4.33190882e-01 1.46203414e-01 2.53374130e-02 1.00723839e+00 6.64701462e-01 -1.80592731e-01 -8.29258800e-01 -9.72123086e-01 4.32479143e-01 9.10746396e-01 4.55500185e-01 -5.75198889e-01 -6.59033418e-01 -4.17044491e-01 -4.09594089e-01 4.75732386e-01 -5.21665454e-01 -4.44104597e-02 -6.61962688e-01 -2.76187092e-01 8.67362201e-01 2.21047342e-01 2.09190682e-01 -1.23144352e+00 -6.75102293e-01 1.97221667e-01 -6.98448777e-01 -1.05039883e+00 -7.12327003e-01 -9.55165848e-02 -4.34622794e-01 -7.43016958e-01 -1.01484263e+00 -5.36947250e-01 1.48471504e-01 9.00358856e-02 8.35003197e-01 -2.48284377e-02 -3.28167319e-01 2.88441479e-01 -7.70704567e-01 -3.04246634e-01 -3.97958696e-01 -1.08854972e-01 7.80307800e-02 2.04597116e-01 1.25295641e-02 -9.35562909e-01 -5.17604351e-01 4.32322025e-01 -8.33036602e-01 2.84559160e-01 2.37926424e-01 8.80534351e-01 6.25909805e-01 -2.71750033e-01 4.25078750e-01 -2.28597149e-02 8.60298336e-01 -1.28477722e-01 1.19373776e-01 -1.10607423e-01 1.69503585e-01 -4.68469076e-02 3.86924535e-01 -1.25751770e+00 -9.98132586e-01 2.14076847e-01 -3.64615768e-01 -1.13366020e+00 -1.28475934e-01 2.92740196e-01 -4.20328438e-01 3.47317517e-01 5.98266065e-01 1.54917896e-01 5.66291027e-02 -2.73337126e-01 4.67367679e-01 8.33398461e-01 6.96791053e-01 -7.59294391e-01 8.20966601e-01 3.04225266e-01 -3.81512828e-02 -9.60110128e-01 -2.96378195e-01 -2.35234752e-01 -2.46643230e-01 -8.80004585e-01 7.87044883e-01 -8.45333278e-01 -9.01037753e-01 3.59012306e-01 -1.33604801e+00 -4.29407656e-01 -1.87424690e-01 5.45079470e-01 -7.49285519e-01 1.23110257e-01 -5.27159452e-01 -1.10612118e+00 -3.11503828e-01 -1.31305611e+00 1.57716048e+00 1.26860797e-01 -7.90069461e-01 -1.95013523e-01 6.20103702e-02 1.27955675e-01 2.04486996e-02 7.35209882e-01 4.22192752e-01 -9.81909707e-02 -2.83378959e-01 1.16513204e-03 2.61588812e-01 -1.10534877e-01 2.37880513e-01 4.34331954e-01 -9.12684560e-01 2.37377629e-01 -3.12827915e-01 -4.22182918e-01 2.38320604e-01 3.75673860e-01 8.83409739e-01 -3.61854166e-01 -7.65689909e-02 8.27758968e-01 6.43280745e-01 3.50768209e-01 6.25924289e-01 -1.24799401e-01 8.34685624e-01 8.99400055e-01 1.15582097e+00 8.24705124e-01 2.06860125e-01 1.19070566e+00 3.44249725e-01 2.02647801e-02 -3.03150952e-01 -6.11287475e-01 4.94978398e-01 9.58123505e-01 -3.74944150e-01 -1.07384764e-01 -5.53095877e-01 3.06194633e-01 -1.76013625e+00 -1.14744496e+00 -8.34366530e-02 1.66122496e+00 8.94064486e-01 -1.67192295e-01 3.25446159e-01 3.85391861e-01 5.61378539e-01 2.45389521e-01 -5.52114487e-01 -3.92603904e-01 -4.14320081e-02 3.10951173e-01 -2.69051045e-01 3.69978756e-01 -7.01413751e-01 1.03903759e+00 5.00178099e+00 1.20234299e+00 -1.68245673e+00 -1.54254124e-01 4.14630860e-01 -6.20665550e-01 -8.02641988e-01 -3.29388559e-01 -3.47604424e-01 3.62190515e-01 3.89255136e-01 3.03855352e-02 4.54442263e-01 7.99939573e-01 7.22751796e-01 3.93518984e-01 -9.75083828e-01 1.35191071e+00 -9.50037241e-02 -1.00255334e+00 1.56161994e-01 -5.80463856e-02 5.56913912e-01 -6.98342860e-01 1.13447778e-01 2.43646473e-01 1.87932048e-02 -1.01784194e+00 1.26765823e+00 3.60714763e-01 1.26192927e+00 -8.67562115e-01 1.44362569e-01 2.96580315e-01 -1.59710097e+00 2.59952605e-01 3.33185464e-01 1.09519027e-01 6.04202807e-01 1.88896134e-01 -7.46642172e-01 5.53679526e-01 7.48483896e-01 6.10025465e-01 7.76753202e-02 5.35249233e-01 -4.12134707e-01 4.71310556e-01 -4.21801746e-01 -3.14156204e-01 9.63656977e-02 1.29995877e-02 9.54663634e-01 1.08543193e+00 7.15726793e-01 3.27547908e-01 1.30282929e-02 8.02392006e-01 3.03301126e-01 2.06357107e-01 -4.94929761e-01 -2.27934375e-01 8.05527031e-01 1.17410803e+00 -5.92273831e-01 -1.50586125e-02 2.39069998e-01 1.27418160e+00 -3.62347782e-01 5.35884500e-01 -1.15506113e+00 -3.13449442e-01 9.08126414e-01 -1.39857352e-01 6.13310225e-02 -3.44003648e-01 -2.99198598e-01 -9.61920559e-01 2.19485745e-01 -1.16655946e+00 -1.37562945e-01 -8.92438114e-01 -8.44909966e-01 8.23380291e-01 -1.24921791e-01 -1.82443702e+00 -6.76606655e-01 -4.54749018e-02 -7.50705481e-01 5.71510315e-01 -8.97766650e-01 -1.21156323e+00 -5.71161687e-01 6.91790879e-01 7.54250884e-01 1.38225093e-01 8.37091088e-01 3.27949047e-01 -2.80101269e-01 7.77091324e-01 -5.58833659e-01 -8.61305837e-03 7.95431912e-01 -7.10359156e-01 3.98288101e-01 3.98397237e-01 4.78732437e-01 3.13912541e-01 1.04725671e+00 -4.85259652e-01 -1.48663366e+00 -7.37408161e-01 5.01222789e-01 -2.24845707e-01 3.93904001e-01 -4.56759065e-01 -6.32884204e-01 1.23170018e-01 -2.97155738e-01 -1.32631421e-01 5.37766814e-01 -1.62791401e-01 -2.33128637e-01 6.71017990e-02 -8.07903230e-01 1.10248733e+00 1.47645140e+00 -4.70864058e-01 -4.12894189e-01 -2.54454702e-01 9.79723036e-01 -6.62420809e-01 -6.24548614e-01 6.11579359e-01 1.11210060e+00 -9.91087854e-01 1.00997174e+00 -1.40258685e-01 5.94919443e-01 -3.35451573e-01 -7.39054084e-02 -1.35779142e+00 2.93130726e-01 -1.20521629e+00 -1.64257139e-01 1.49532509e+00 1.56457528e-01 1.46375433e-01 8.45075309e-01 2.38820598e-01 -1.61255389e-01 -6.61063552e-01 -9.39364195e-01 -6.31440878e-01 -4.36131358e-01 -9.31417167e-01 9.05939162e-01 1.03079510e+00 1.86219782e-01 2.93177873e-01 -7.94072211e-01 6.71573170e-03 3.02079946e-01 1.94811538e-01 1.30879593e+00 -9.52106595e-01 -3.41870129e-01 -5.33000052e-01 -2.20212698e-01 -1.29956877e+00 1.13963269e-01 -3.68064910e-01 4.21221435e-01 -1.10883939e+00 -1.67402074e-01 -5.92811882e-01 3.10095221e-01 2.53668249e-01 -1.87416062e-01 2.51867115e-01 4.41901922e-01 1.80430830e-01 -2.86739409e-01 1.04960108e+00 1.75273240e+00 -1.02890320e-01 -8.84306848e-01 1.41646201e-02 -1.39972851e-01 5.74339926e-01 5.14954269e-01 -3.60704482e-01 -5.48734188e-01 -1.32381707e-01 4.57938127e-02 6.27028048e-01 3.56558770e-01 -9.29559052e-01 -4.23798412e-02 -3.74416620e-01 1.83127269e-01 -8.37039411e-01 9.15465593e-01 -6.89047039e-01 6.20079637e-01 2.55773276e-01 -3.91567707e-01 -4.99248207e-02 5.27690947e-02 3.02039057e-01 -4.25209761e-01 2.99572259e-01 2.48671278e-01 1.07764229e-01 -4.19554442e-01 3.30476016e-01 -3.45096320e-01 -1.07982159e-01 8.95910084e-01 -4.18541938e-01 2.07245722e-01 -9.84594107e-01 -8.49323332e-01 1.44015417e-01 3.35920364e-01 8.25147748e-01 8.71289611e-01 -1.80263066e+00 -5.85744262e-01 2.16577008e-01 1.91330314e-01 1.21467143e-01 5.65640330e-01 6.30312443e-01 -2.61066854e-01 -1.44473687e-01 -1.08214960e-01 -8.62319291e-01 -1.61507332e+00 1.20494127e-01 -1.31744156e-02 -8.46275780e-03 -6.41607285e-01 8.64715755e-01 2.29082871e-02 -3.72626752e-01 5.45422614e-01 -1.35644525e-01 -2.22225904e-01 2.01178208e-01 4.13286090e-01 1.36557072e-01 -4.21846747e-01 -7.50885129e-01 -3.18892598e-01 6.94391966e-01 6.42572165e-01 -8.70540261e-01 1.18050051e+00 -1.50008023e-01 3.49008739e-01 5.80736041e-01 1.15926754e+00 3.27861488e-01 -1.47610414e+00 1.16798438e-01 -3.56257498e-01 -4.09656852e-01 -3.75535756e-01 -4.23313320e-01 -1.09200954e+00 1.04320490e+00 3.18055242e-01 -8.28295648e-02 1.24177217e+00 -1.50464727e-02 1.06677258e+00 3.21891122e-02 3.13885421e-01 -1.04392660e+00 7.81453848e-01 5.43843925e-01 1.13881624e+00 -7.45039463e-01 -4.09816593e-01 -5.20987988e-01 -1.07542467e+00 1.04183292e+00 6.28683686e-01 2.86764324e-01 4.17519242e-01 4.88570333e-01 5.00609696e-01 -1.35439426e-01 -6.70649886e-01 -8.13416392e-02 4.09134150e-01 7.85146952e-01 3.41102034e-01 1.10616863e-01 -2.38508329e-01 8.70707512e-01 -7.69583464e-01 -1.81617424e-01 1.78098291e-01 6.47006989e-01 -2.08338127e-02 -1.16307008e+00 -6.46289945e-01 -2.44684041e-01 -2.36541480e-01 6.61716610e-02 -6.65408552e-01 5.53048134e-01 -1.77145824e-02 1.03634799e+00 3.93817015e-02 -1.16214907e+00 4.36317593e-01 7.81811401e-02 4.93655980e-01 -2.05771327e-01 -5.89319468e-01 6.97135150e-01 1.07013181e-01 -7.07538962e-01 -4.11751419e-01 -5.49674511e-01 -1.53417444e+00 -2.96143830e-01 -2.10978240e-01 -4.42901291e-02 7.16410995e-01 7.34529138e-01 3.08695585e-01 7.68390715e-01 1.00250912e+00 -1.57700777e+00 -2.14612976e-01 -1.07817948e+00 -4.14444476e-01 7.41514087e-01 2.24360630e-01 -7.55857050e-01 -4.02626783e-01 9.14091915e-02]
[5.721756935119629, -0.18667438626289368]
733eeaca-da0e-4433-b037-a8a795908afc
sgm-net-semantic-guided-matting-net
2208.07496
null
https://arxiv.org/abs/2208.07496v1
https://arxiv.org/pdf/2208.07496v1.pdf
SGM-Net: Semantic Guided Matting Net
Human matting refers to extracting human parts from natural images with high quality, including human detail information such as hair, glasses, hat, etc. This technology plays an essential role in image synthesis and visual effects in the film industry. When the green screen is not available, the existing human matting methods need the help of additional inputs (such as trimap, background image, etc.), or the model with high computational cost and complex network structure, which brings great difficulties to the application of human matting in practice. To alleviate such problems, most existing methods (such as MODNet) use multi-branches to pave the way for matting through segmentation, but these methods do not make full use of the image features and only utilize the prediction results of the network as guidance information. Therefore, we propose a module to generate foreground probability map and add it to MODNet to obtain Semantic Guided Matting Net (SGM-Net). Under the condition of only one image, we can realize the human matting task. We verify our method on the P3M-10k dataset. Compared with the benchmark, our method has significantly improved in various evaluation indicators.
['Chun Liu', 'Mengjie Hu', 'Donghan Yang', 'Wenfeng Sun', 'Qing Song']
2022-08-16
null
null
null
null
['image-matting']
['computer-vision']
[ 3.80990237e-01 -4.05038930e-02 5.34380600e-02 -1.98228776e-01 1.39056653e-01 -5.64619415e-02 2.08674967e-01 -5.06663322e-01 -2.54437864e-01 5.58948576e-01 -8.79353434e-02 -1.92667440e-01 2.21711427e-01 -1.08796883e+00 -7.86852181e-01 -7.42545903e-01 6.88521624e-01 3.25696468e-01 8.03530753e-01 -3.08589250e-01 3.21891047e-02 5.55267818e-02 -1.20246840e+00 4.26809341e-01 1.24424374e+00 7.99414396e-01 6.00417554e-01 2.90701151e-01 -6.80533707e-01 6.47255778e-01 -6.05079830e-01 -4.90379155e-01 3.55055541e-01 -6.72992110e-01 -4.66890663e-01 6.86404765e-01 7.96415806e-02 -5.97054720e-01 -4.92961794e-01 1.26496649e+00 2.18047291e-01 -1.12679087e-01 5.08181751e-01 -1.33124220e+00 -4.16285723e-01 6.93266749e-01 -8.76483679e-01 -6.14609150e-03 1.90870094e-04 3.91979396e-01 3.69358093e-01 -7.74926424e-01 4.67761964e-01 1.41769028e+00 3.57726872e-01 4.26235527e-01 -7.33060300e-01 -7.17908740e-01 2.93215066e-01 3.38129163e-01 -1.11626017e+00 -2.53815949e-01 8.58821332e-01 -2.30125651e-01 3.93056199e-02 2.65496880e-01 1.06719017e+00 6.72722042e-01 2.32385527e-02 1.18890369e+00 1.21505177e+00 -2.82780349e-01 -2.57614017e-01 1.90749526e-01 2.47257818e-02 9.00054276e-01 2.97262937e-01 -3.22387159e-01 -3.22388977e-01 4.34394926e-01 1.04376364e+00 3.08938682e-01 -4.13924783e-01 -7.93833006e-03 -1.41486180e+00 2.89714247e-01 5.98556280e-01 1.47613019e-01 -2.81429708e-01 -2.06234250e-02 -1.44627457e-02 -4.98508736e-02 3.97715926e-01 -4.72749509e-02 -1.01385199e-01 1.66538879e-01 -1.11034620e+00 -3.22660320e-02 4.14420247e-01 1.03714263e+00 1.01786983e+00 1.49352476e-01 -1.71011955e-01 7.23804951e-01 2.99525738e-01 7.67292440e-01 2.15524882e-01 -7.78010130e-01 7.17497945e-01 1.00715780e+00 1.34229720e-01 -1.22658062e+00 -2.11438924e-01 -2.58566827e-01 -1.11797476e+00 1.29545778e-01 4.86011982e-01 -2.07452893e-01 -1.48893929e+00 1.24126649e+00 4.73855406e-01 2.19000772e-01 -1.61896527e-01 1.16232622e+00 1.00278914e+00 1.11720479e+00 -1.25716984e-01 -3.15865517e-01 1.23056698e+00 -1.38335848e+00 -9.76877093e-01 -3.87615800e-01 1.47194996e-01 -1.07838273e+00 1.28238070e+00 7.24539876e-01 -1.14566064e+00 -6.51679158e-01 -1.09325755e+00 7.13286325e-02 -2.49396369e-01 3.40924084e-01 6.98152661e-01 5.96937060e-01 -6.38855338e-01 5.15839815e-01 -6.42148674e-01 -2.30166540e-01 5.76180577e-01 1.23595648e-01 -1.13127097e-01 -4.47817624e-01 -1.10258114e+00 7.87211120e-01 5.92377245e-01 7.64602900e-01 -1.04126394e+00 -1.45440340e-01 -7.19033480e-01 -1.15089029e-01 6.06298625e-01 -6.19043171e-01 7.43162513e-01 -1.30100715e+00 -1.37395740e+00 5.33271432e-01 -4.74447682e-02 -1.32294986e-02 7.87442267e-01 -2.95282513e-01 -2.68816888e-01 1.86242014e-01 -1.22871973e-01 7.06753731e-01 8.64842892e-01 -1.33253527e+00 -6.36683226e-01 -6.55111670e-02 1.84188649e-01 3.25817525e-01 -2.53887892e-01 -1.32722616e-01 -8.62663329e-01 -6.78424120e-01 3.05087447e-01 -7.09465146e-01 -3.90292197e-01 5.26468605e-02 -7.97782958e-01 2.08408341e-01 1.05898929e+00 -1.25850666e+00 1.17008281e+00 -2.03071523e+00 3.38081360e-01 3.25554997e-01 2.36023724e-01 4.99712586e-01 8.21894333e-02 6.89258100e-04 2.17059478e-01 4.98547442e-02 -4.74417537e-01 -1.26271486e-01 -3.76448780e-01 3.04263026e-01 1.54983386e-01 1.69080168e-01 8.16980898e-02 8.73342395e-01 -6.70469105e-01 -1.15099657e+00 4.32841569e-01 8.92189071e-02 -2.61844337e-01 3.71790677e-01 -4.27140445e-01 3.18834782e-01 -5.01175046e-01 6.97664261e-01 1.02172148e+00 -2.01396018e-01 -2.03025654e-01 -5.37905216e-01 1.27931103e-01 -1.59099713e-01 -1.36824918e+00 1.60532689e+00 -1.92848936e-01 2.48250693e-01 1.93328410e-01 -8.32466006e-01 9.37781572e-01 9.84673575e-02 1.92072973e-01 -4.77275282e-01 2.60996997e-01 9.76093262e-02 6.24090172e-02 -7.45680928e-01 2.42808595e-01 1.41724572e-01 5.05504727e-01 2.94423729e-01 -2.84165204e-01 5.96645661e-02 1.77565083e-01 4.11879539e-01 7.31326580e-01 2.28632376e-01 -2.89353877e-01 -5.74187040e-02 5.14869213e-01 1.95465878e-01 8.22451353e-01 2.02999368e-01 1.16579622e-01 7.54129767e-01 4.27817285e-01 -3.06223571e-01 -1.16144240e+00 -9.56951201e-01 3.70209694e-01 4.61412817e-01 8.47375512e-01 -3.31072778e-01 -1.16891682e+00 -6.42370045e-01 -4.01244819e-01 4.30076480e-01 -4.57927227e-01 -2.62260318e-01 -7.52590656e-01 -9.10916090e-01 1.12465054e-01 4.09518510e-01 1.18999922e+00 -1.41813469e+00 -1.16781518e-01 1.00218393e-01 -4.71370846e-01 -1.03403556e+00 -5.76761544e-01 -2.53748626e-01 -9.23393846e-01 -1.08990884e+00 -9.85047400e-01 -8.86535287e-01 1.04223812e+00 5.52046418e-01 9.12142813e-01 6.93647563e-01 -2.65268922e-01 -1.60321817e-01 -3.24884385e-01 -2.98786521e-01 -2.63886720e-01 -3.48606296e-02 -3.33267391e-01 2.57904649e-01 -4.22346443e-02 -5.50766766e-01 -6.90050662e-01 5.52221656e-01 -1.00362301e+00 9.58859205e-01 9.60236251e-01 7.08553135e-01 3.85998040e-01 3.75299156e-01 3.94329220e-01 -9.79111731e-01 1.46020919e-01 -1.87934101e-01 -4.79070187e-01 4.13704365e-01 -4.41340446e-01 -3.42213064e-01 3.75100911e-01 -4.59097862e-01 -1.31126130e+00 -6.67951331e-02 -2.72655934e-02 -4.71087158e-01 -1.56527210e-03 2.85132527e-01 -9.05583024e-01 2.21735090e-02 1.81539968e-01 5.60102582e-01 1.29993498e-01 -5.51941454e-01 3.02582175e-01 6.35263264e-01 5.15969634e-01 -4.65274274e-01 1.12141240e+00 2.80266613e-01 7.85307959e-03 -5.25399923e-01 -8.35183144e-01 -6.04706518e-02 -6.22413456e-01 -4.33363169e-01 1.15672207e+00 -7.26645350e-01 -4.27509725e-01 8.27736616e-01 -1.31771982e+00 -3.64733845e-01 1.70338124e-01 2.62697965e-01 -1.28409967e-01 5.95643222e-01 -9.50917423e-01 -6.97948933e-01 -4.16774511e-01 -1.33321285e+00 6.79262757e-01 6.55553102e-01 5.22276700e-01 -5.53924799e-01 -8.02588046e-01 5.76981366e-01 2.82404602e-01 2.48928770e-01 8.44889402e-01 8.45022947e-02 -1.22044373e+00 2.31649533e-01 -5.20339608e-01 6.63509548e-01 3.41354549e-01 1.16157256e-01 -7.60775208e-01 1.98037043e-01 -1.67227849e-01 9.96988788e-02 9.96512592e-01 3.21446270e-01 1.38068211e+00 -4.01786536e-01 -3.95027488e-01 6.80885136e-01 1.21905828e+00 3.52200091e-01 1.19972062e+00 3.28590482e-01 1.27166283e+00 7.74764657e-01 9.76954103e-01 9.36505385e-03 1.71584800e-01 3.72636527e-01 4.71559048e-01 -5.29095173e-01 -2.91194022e-01 -4.30815756e-01 3.41394097e-01 9.63992715e-01 -3.28102529e-01 -3.10441643e-01 -5.38233280e-01 3.60465765e-01 -1.97901034e+00 -7.72207975e-01 -6.15544558e-01 1.87681997e+00 9.50799882e-01 4.96429563e-01 4.76863831e-02 1.94234118e-01 1.05477679e+00 1.85853411e-02 -4.09506828e-01 1.78377807e-01 -2.76496530e-01 -1.10285036e-01 3.80630851e-01 2.41467163e-01 -8.66865098e-01 1.16708279e+00 5.45570326e+00 1.32606685e+00 -9.05147493e-01 7.02597350e-02 9.44348276e-01 3.05625826e-01 -4.19581115e-01 4.70887870e-02 -6.58073545e-01 9.27763224e-01 1.09245136e-01 1.67260885e-01 6.55621886e-01 6.82985067e-01 4.01029438e-01 -4.00150418e-01 -6.47201240e-01 1.14730120e+00 1.05041452e-02 -1.16392994e+00 1.63685426e-01 -1.43525928e-01 6.29406273e-01 -6.75450683e-01 -2.00246692e-01 -4.95613739e-02 -3.48264314e-02 -1.06067359e+00 6.86659336e-01 6.83773398e-01 4.89398599e-01 -6.31950319e-01 8.89451563e-01 5.48368454e-01 -1.14966309e+00 4.10456628e-01 -6.34868860e-01 2.39039678e-02 4.28531319e-01 1.09108067e+00 -7.05945194e-01 7.38044679e-01 5.46407998e-01 7.44213223e-01 -7.60198891e-01 1.24073505e+00 -3.88153851e-01 8.33862364e-01 -3.36102724e-01 9.56826881e-02 6.80909380e-02 -5.52998781e-01 2.53615975e-01 1.00717187e+00 3.59832585e-01 1.29681036e-01 3.61938804e-01 9.76039827e-01 9.57433581e-02 1.79113910e-01 -3.03347200e-01 7.69875012e-03 1.51161000e-01 1.51580393e+00 -1.19946909e+00 -7.84140944e-01 -2.15725034e-01 1.12738061e+00 -2.70415515e-01 4.04756159e-01 -9.63031113e-01 -3.61693561e-01 9.16897226e-03 4.53026056e-01 -4.13008407e-03 -2.05128297e-01 -4.12698120e-01 -1.06041932e+00 1.84464708e-01 -1.01641822e+00 9.93853509e-02 -1.25995612e+00 -1.04991519e+00 3.16685140e-01 -7.91828614e-03 -1.17574203e+00 4.15299237e-01 -4.86990064e-01 -8.99900019e-01 9.19799805e-01 -1.07510960e+00 -1.38753951e+00 -9.01907444e-01 5.77570915e-01 6.63985193e-01 4.27604876e-02 -4.63693291e-02 6.37204230e-01 -8.37230742e-01 2.90654212e-01 -4.49922770e-01 1.80037752e-01 6.63470089e-01 -1.13524902e+00 2.65549153e-01 1.13067472e+00 -6.27572462e-02 3.68342131e-01 5.36849439e-01 -1.02210867e+00 -1.06724370e+00 -1.14361644e+00 3.01448464e-01 -1.17882624e-01 8.31259266e-02 -4.13378090e-01 -9.46039617e-01 5.81779420e-01 5.42747200e-01 -3.09157073e-01 -1.23044521e-01 -2.86436886e-01 2.72657096e-01 -2.87509173e-01 -9.78792787e-01 7.57168770e-01 1.18518353e+00 2.73901671e-01 -4.54711825e-01 4.37525570e-01 1.14844155e+00 -5.41757405e-01 -3.76027554e-01 4.40631509e-01 2.53293842e-01 -9.44896936e-01 8.84982586e-01 -2.67217726e-01 6.95860744e-01 -8.92663002e-01 2.59718686e-01 -1.15302026e+00 -1.79512858e-01 -3.62962365e-01 1.57981396e-01 1.59102392e+00 2.80040741e-01 -4.40590799e-01 9.52079952e-01 3.91885400e-01 -3.19201887e-01 -8.38199794e-01 -2.60257661e-01 -4.29699868e-01 -5.80947340e-01 -1.20288390e-03 7.82494426e-01 8.36724699e-01 -5.42457283e-01 2.74161071e-01 -8.73427689e-01 1.89361006e-01 6.53734684e-01 1.41864657e-01 1.03478575e+00 -9.16767418e-01 -2.93326765e-01 -1.71197236e-01 -2.42696404e-01 -1.21574903e+00 -3.65136027e-01 -5.05382180e-01 1.12672642e-01 -1.98520434e+00 4.17528689e-01 -6.24712110e-01 -4.16769423e-02 5.29358864e-01 -6.26257718e-01 3.03119659e-01 2.32386872e-01 1.41567275e-01 -5.82109213e-01 6.35701537e-01 2.02471089e+00 -4.07223076e-01 3.72172659e-03 -1.58166941e-02 -4.61247534e-01 9.01892483e-01 6.99184895e-01 -2.55049109e-01 -4.31562781e-01 -4.97403890e-01 3.66809964e-02 6.27821982e-02 4.34362799e-01 -1.02543271e+00 1.83073685e-01 -6.07226968e-01 8.37378860e-01 -8.38832974e-01 3.55427027e-01 -7.66448021e-01 2.85088122e-01 5.83228350e-01 2.34284684e-01 1.10562086e-01 -2.52835546e-02 4.21629965e-01 -9.29517522e-02 -3.70812684e-01 6.87260330e-01 -4.60636169e-01 -7.97161222e-01 4.31985825e-01 -3.54981832e-02 -1.04655176e-01 9.69958007e-01 -1.94188386e-01 -4.64369565e-01 -2.70472616e-01 -6.06794000e-01 4.41943586e-01 6.10165596e-01 1.76045045e-01 7.41778910e-01 -1.37376392e+00 -5.05973697e-01 -5.12548126e-02 -3.75486821e-01 6.51039958e-01 4.98142093e-01 8.79701734e-01 -9.77226317e-01 -3.24253321e-01 -3.42627972e-01 -6.55848145e-01 -1.14695704e+00 5.75849950e-01 2.11484969e-01 -9.02972519e-02 -7.71488667e-01 6.27456307e-01 7.35521138e-01 -1.76300518e-02 -3.95208895e-02 -2.62743771e-01 -8.31879824e-02 -2.67665207e-01 4.04735327e-01 2.90662169e-01 -2.19245896e-01 -2.80236900e-01 -1.52892303e-02 5.62845588e-01 3.46866809e-02 -1.53680965e-02 1.02736127e+00 -1.51809543e-01 -4.57896203e-01 2.68368512e-01 5.43524563e-01 1.72206350e-02 -1.14424324e+00 -1.28766835e-01 -4.22887057e-01 -7.26104200e-01 -1.95854366e-01 -6.29142940e-01 -1.57628286e+00 1.08541906e+00 4.23736572e-01 -1.89706497e-02 1.21620488e+00 -1.28598675e-01 1.27695060e+00 1.62265480e-01 5.08146226e-01 -1.03329909e+00 4.28494543e-01 -1.45331427e-01 6.38662636e-01 -1.11069584e+00 1.99386433e-01 -9.62628424e-01 -7.39209116e-01 9.05865192e-01 1.21541798e+00 -8.95961598e-02 3.82623941e-01 1.13320976e-01 2.23100141e-01 -6.50824457e-02 -2.10188895e-01 -1.37172118e-01 1.97139010e-01 5.06944895e-01 -1.21947285e-02 3.48845981e-02 -4.51625466e-01 6.52762175e-01 -1.05947904e-01 -1.12821817e-01 5.40341437e-01 7.17933357e-01 -8.77402425e-01 -1.04687953e+00 -5.71470737e-01 7.17034936e-01 -2.17456490e-01 -1.41377494e-01 -1.34446621e-01 6.18758082e-01 6.27619624e-01 8.90098453e-01 -2.27844834e-01 -5.39220214e-01 1.55210316e-01 -2.43570283e-01 4.24180537e-01 -4.83718365e-01 -2.15227842e-01 2.54511476e-01 4.19566594e-03 -3.60177785e-01 -5.21046698e-01 -3.00342977e-01 -1.15235412e+00 -4.23146933e-01 -4.96359557e-01 -3.79644916e-03 4.17066753e-01 1.03788090e+00 -1.48170948e-01 8.20894182e-01 4.00110573e-01 -7.49092042e-01 1.70608580e-01 -1.08196270e+00 -6.83063149e-01 4.54775810e-01 -2.29776770e-01 -7.10882604e-01 -1.30967706e-01 3.33049387e-01]
[10.645964622497559, -0.9915552735328674]
aab2f32b-1626-473b-b273-ca468e2fec72
a-comparison-of-time-based-models-for
2306.13076
null
https://arxiv.org/abs/2306.13076v1
https://arxiv.org/pdf/2306.13076v1.pdf
A Comparison of Time-based Models for Multimodal Emotion Recognition
Emotion recognition has become an important research topic in the field of human-computer interaction. Studies on sound and videos to understand emotions focused mainly on analyzing facial expressions and classified 6 basic emotions. In this study, the performance of different sequence models in multi-modal emotion recognition was compared. The sound and images were first processed by multi-layered CNN models, and the outputs of these models were fed into various sequence models. The sequence model is GRU, Transformer, LSTM and Max Pooling. Accuracy, precision, and F1 Score values of all models were calculated. The multi-modal CREMA-D dataset was used in the experiments. As a result of the comparison of the CREMA-D dataset, GRU-based architecture with 0.640 showed the best result in F1 score, LSTM-based architecture with 0.699 in precision metric, while sensitivity showed the best results over time with Max Pooling-based architecture with 0.620. As a result, it has been observed that the sequence models compare performances close to each other.
['Sena Nur Cavsak', 'Selahattin Serdar Helli', 'Ege Kesim']
2023-06-22
null
null
null
null
['multimodal-emotion-recognition', 'multimodal-emotion-recognition']
['computer-vision', 'speech']
[-6.75557852e-02 -4.25435841e-01 3.43277037e-01 -3.49940717e-01 -2.58458823e-01 -2.79961854e-01 3.60744357e-01 -1.40133291e-01 -6.27180040e-01 3.94491911e-01 1.44001827e-01 4.01886344e-01 5.21875657e-02 -5.10810435e-01 -3.26340437e-01 -7.50520527e-01 -3.09733331e-01 -2.87999004e-01 -4.46975604e-02 -3.55256796e-01 3.96209776e-01 3.84051293e-01 -2.01183987e+00 7.88118780e-01 1.50532603e-01 1.63253403e+00 -2.04889521e-01 9.08549309e-01 -2.51964420e-01 1.05323255e+00 -7.78448939e-01 -4.67584640e-01 -1.83658898e-01 -3.98061484e-01 -6.08407617e-01 -3.52325290e-01 2.12783478e-02 -2.17285119e-02 -7.14202523e-02 9.39483762e-01 9.39125836e-01 3.72211307e-01 5.39109945e-01 -1.44922698e+00 -3.55856687e-01 4.47250366e-01 -4.69770789e-01 1.03238456e-01 5.85181236e-01 -4.31673914e-01 5.95763028e-01 -6.98544383e-01 3.03865910e-01 1.35752690e+00 6.94391072e-01 6.63510978e-01 -5.97970784e-01 -8.37804914e-01 -2.70647079e-01 4.60258037e-01 -1.24325740e+00 -2.78420568e-01 7.32334793e-01 -4.10922527e-01 1.26254320e+00 2.02365562e-01 5.62011957e-01 1.05681717e+00 7.15183914e-01 5.66076338e-01 1.25250423e+00 -4.69790578e-01 -5.14442548e-02 3.72173995e-01 2.81415462e-01 7.27893770e-01 -4.77349490e-01 -4.09537666e-02 -7.79484391e-01 -1.02138676e-01 3.77938241e-01 -1.29823878e-01 -1.65801615e-01 4.38315034e-01 -8.22220445e-01 6.32246315e-01 3.03448766e-01 1.10337651e+00 -6.85137510e-01 1.68471709e-01 9.60292220e-01 5.61284244e-01 3.99860919e-01 1.51735559e-01 -4.34905589e-01 -5.77768266e-01 -7.48216212e-01 -1.10092878e-01 5.65659046e-01 4.24400151e-01 3.48537296e-01 2.81121701e-01 -1.72483280e-01 1.09024513e+00 4.74428851e-03 3.03412259e-01 8.68908644e-01 -5.35883129e-01 -8.25211257e-02 5.19649148e-01 -1.34008303e-01 -1.53281391e+00 -6.39808416e-01 -5.88244684e-02 -9.66357708e-01 5.73967472e-02 -2.50223391e-02 -3.89096648e-01 -9.14701164e-01 1.71027672e+00 -1.76781878e-01 1.43873006e-01 4.00435328e-01 8.18201900e-01 1.38268471e+00 1.11532390e+00 4.44568306e-01 -2.08048090e-01 1.53332770e+00 -7.70466983e-01 -1.07061398e+00 2.24894613e-01 5.33243656e-01 -9.05829072e-01 6.17603958e-01 5.15124381e-01 -9.09610748e-01 -8.67271662e-01 -9.23568964e-01 2.25145906e-01 -5.89309037e-01 5.08847773e-01 4.19064194e-01 7.28676796e-01 -1.34528804e+00 4.00124967e-01 -3.71107310e-01 -6.20305955e-01 5.18668853e-02 4.36845422e-01 -4.95794415e-01 5.06613672e-01 -1.35040569e+00 1.07308483e+00 4.13862526e-01 4.57663596e-01 -7.48883903e-01 -2.50466436e-01 -4.75132793e-01 1.05400652e-01 -2.64389813e-01 -1.02667287e-01 1.20574892e+00 -1.50722921e+00 -1.74765909e+00 7.39157856e-01 -2.92925209e-01 -3.16840142e-01 -2.33269054e-02 -2.22682863e-01 -8.79427791e-01 2.58966982e-01 -4.87034351e-01 7.11442947e-01 5.76900542e-01 -1.05292821e+00 -7.32860923e-01 -3.91155303e-01 -1.43988594e-01 2.10607667e-02 -4.11037028e-01 7.61608064e-01 1.14749856e-01 -2.17583597e-01 -5.54654449e-02 -6.67278528e-01 1.71373606e-01 -5.25872529e-01 1.40185818e-01 -3.83111417e-01 9.28884983e-01 -7.92025566e-01 1.35475469e+00 -2.29487562e+00 2.53259428e-02 1.76717862e-01 -1.41656667e-01 3.88086289e-01 -1.54033497e-01 2.85094947e-01 -2.80810595e-01 2.07211688e-01 2.62397647e-01 -5.84469698e-02 -1.30617812e-01 -1.29061323e-02 3.22140101e-03 -1.78922825e-02 1.21240750e-01 6.08195901e-01 -4.02595669e-01 -4.99304384e-01 2.13907719e-01 7.78469205e-01 -3.76842357e-02 3.17579538e-01 8.05141181e-02 -1.38252508e-03 -3.97000074e-01 5.67234933e-01 4.97473210e-01 2.94721156e-01 -1.20189995e-01 -5.48348069e-01 -2.31577322e-01 -3.80203784e-01 -8.81791234e-01 1.47005832e+00 -7.49133587e-01 9.13656414e-01 6.60082251e-02 -9.91410196e-01 1.41545570e+00 1.13332176e+00 4.62730974e-01 -9.68463838e-01 8.60568404e-01 3.04025292e-01 1.06407307e-01 -1.16096771e+00 7.11982787e-01 -3.54943216e-01 -2.41869949e-02 1.91486999e-01 3.63484323e-01 2.16721043e-01 2.64031254e-02 -2.13300258e-01 6.79109633e-01 -5.83567768e-02 -5.45668043e-03 7.50681311e-02 7.69598365e-01 -3.16586077e-01 2.55392522e-01 2.77575254e-01 -2.83102036e-01 3.52577657e-01 5.44919729e-01 -5.43102503e-01 -6.51843548e-01 -4.55367893e-01 1.82202205e-01 1.20187080e+00 -2.22544670e-01 -8.43416229e-02 -7.63824046e-01 -1.98460206e-01 -5.74071467e-01 4.39245075e-01 -8.25410366e-01 -1.69540837e-01 -2.10733637e-01 -7.89125383e-01 9.86541092e-01 2.49408633e-01 9.28312361e-01 -1.61355746e+00 -9.96822059e-01 2.98390120e-01 -3.50789338e-01 -1.06468999e+00 2.48084724e-01 1.34212941e-01 -5.57378948e-01 -7.13779092e-01 -9.02841091e-01 -9.68429983e-01 6.56142235e-02 -2.83394277e-01 7.92457521e-01 -1.10453546e-01 -1.48042604e-01 3.28983039e-01 -6.80114031e-01 -6.40725553e-01 -4.36462350e-02 -1.38612807e-01 -1.80846572e-01 4.71361101e-01 6.38319492e-01 -4.86507952e-01 -2.36589134e-01 7.57048875e-02 -7.39548624e-01 -3.36637735e-01 4.78673995e-01 5.82222402e-01 5.80424406e-02 -4.82409932e-02 5.77044249e-01 -2.52119064e-01 9.41551507e-01 -3.72198552e-01 5.17031131e-03 3.16099167e-01 1.07221408e-02 -3.14768374e-01 5.00098288e-01 -5.75505257e-01 -1.18707263e+00 -9.13238376e-02 -3.80557299e-01 -5.36505878e-01 -2.93955058e-01 4.47986662e-01 7.27696121e-02 -1.23643421e-01 4.71203268e-01 2.35876769e-01 -1.15779014e-02 -1.98969021e-01 -2.14465156e-01 1.14968777e+00 3.34278941e-01 -2.97590137e-01 -4.28650409e-01 -1.23724435e-02 -2.83710063e-01 -1.15390885e+00 -3.94032508e-01 -1.25005320e-01 -2.03795180e-01 -9.31317449e-01 1.23756492e+00 -7.37233758e-01 -1.08563602e+00 1.13784575e+00 -1.35098279e+00 4.60270159e-02 3.78458053e-01 7.30632424e-01 -3.33687276e-01 -6.29311427e-02 -7.87786484e-01 -1.25722599e+00 -7.74277985e-01 -1.11098695e+00 7.12595642e-01 6.02570415e-01 -3.53819311e-01 -6.97524786e-01 -7.03302622e-02 4.77180555e-02 6.05234265e-01 3.87792289e-01 7.99756944e-01 -6.17954791e-01 3.71972471e-01 -3.02092254e-01 -1.23650342e-01 5.11173427e-01 -3.77540267e-03 4.11361694e-01 -1.28662574e+00 1.55009210e-01 1.44346312e-01 -4.94552165e-01 6.53515995e-01 4.94195104e-01 1.18148851e+00 -1.12871781e-01 -1.69178322e-02 1.92542315e-01 1.36546826e+00 1.04845011e+00 8.46554697e-01 3.33436012e-01 2.41335914e-01 6.69389307e-01 5.61436117e-01 3.25375617e-01 9.88979042e-02 3.77678335e-01 2.33789980e-01 4.21376899e-02 3.99849385e-01 1.43829644e-01 6.10164046e-01 8.50438893e-01 -2.97006607e-01 -4.85365748e-01 -6.55215681e-01 3.85060430e-01 -1.64163196e+00 -1.27806199e+00 -1.37118205e-01 1.66825235e+00 3.22260052e-01 -1.47286281e-01 2.21858144e-01 4.17251378e-01 8.66751015e-01 2.19970211e-01 5.45666628e-02 -1.30946338e+00 -1.77141413e-01 4.65935886e-01 -8.73164535e-02 1.20566301e-01 -9.93360519e-01 8.35994959e-01 6.14546204e+00 7.87750959e-01 -1.83630288e+00 8.17312226e-02 6.83957636e-01 -2.61661381e-01 3.03524137e-01 -6.00517452e-01 -3.66622359e-01 6.46854341e-01 1.41927981e+00 1.27020150e-01 1.71231583e-01 5.47760725e-01 2.44500414e-01 -3.11964869e-01 -5.90315640e-01 1.31347680e+00 3.99216622e-01 -7.47345626e-01 1.37657925e-01 -3.45001847e-01 4.37073857e-01 -2.15477183e-01 -5.39037585e-02 2.89327323e-01 -2.10421130e-01 -1.14583170e+00 6.54629350e-01 8.20240438e-01 4.22619462e-01 -1.01944280e+00 1.27031565e+00 -6.05696477e-02 -1.12924397e+00 -1.98952571e-01 -2.43391946e-01 -2.66451627e-01 2.08102345e-01 3.07895601e-01 -3.90340656e-01 6.67549729e-01 1.14442635e+00 4.40753669e-01 -1.15048945e-01 7.54225492e-01 2.64581561e-01 5.03391325e-01 -3.18220556e-01 -7.01776147e-01 3.79450023e-01 -6.08855002e-02 4.60999608e-02 1.50958455e+00 6.82031810e-01 3.50009471e-01 -4.48804200e-01 3.20615441e-01 1.46452472e-01 5.11931717e-01 -4.31469649e-01 -2.84354270e-01 1.24334045e-01 1.52499998e+00 -5.73935270e-01 -4.73526150e-01 -2.72570550e-01 7.66078591e-01 -1.85207084e-01 2.26906955e-01 -1.13684285e+00 -7.11939991e-01 4.87361968e-01 -4.91294831e-01 1.67133629e-01 1.69471920e-01 -1.16937105e-02 -4.82224703e-01 -1.06193468e-01 -8.17670643e-01 4.87514824e-01 -1.32853913e+00 -8.37306798e-01 1.22756839e+00 -1.46217123e-01 -9.81122375e-01 -1.51591241e-01 -7.30252504e-01 -6.40116692e-01 7.81575501e-01 -9.14583385e-01 -1.00683773e+00 -4.36180919e-01 5.38868487e-01 3.41527373e-01 -3.17868233e-01 1.04006338e+00 4.48299915e-01 -6.66514993e-01 5.69724917e-01 -3.45431447e-01 2.63759375e-01 4.93654132e-01 -4.85673547e-01 -4.53886598e-01 4.55667585e-01 -1.16657913e-01 2.06579655e-01 5.10966897e-01 -2.02820718e-01 -9.60067809e-01 -6.54893875e-01 9.39327359e-01 3.70396554e-01 3.60324621e-01 8.93682241e-02 -7.99793661e-01 4.37707424e-01 6.33912861e-01 -4.53497589e-01 7.39711702e-01 -1.11667164e-01 -1.61751747e-01 -1.39392406e-01 -1.31125522e+00 1.63318649e-01 3.15659314e-01 -4.85968441e-01 -4.06973302e-01 -3.74742866e-01 3.06992680e-01 -1.32429659e-01 -1.19713187e+00 4.88853484e-01 1.00079501e+00 -1.17190051e+00 4.69306558e-01 -4.33659643e-01 7.00332165e-01 -8.55403543e-02 -3.50612849e-01 -1.25719404e+00 -5.74443489e-02 -9.98202488e-02 3.10471714e-01 1.37897229e+00 5.71964443e-01 -6.93942428e-01 2.48979881e-01 3.61072659e-01 2.14136243e-02 -8.35813999e-01 -8.04130793e-01 -2.40815222e-01 -2.88158357e-01 -4.32825118e-01 4.92946684e-01 7.65615702e-01 1.64277971e-01 3.58496875e-01 -5.01217663e-01 -2.48404711e-01 -1.33618727e-01 -6.41928762e-02 4.51739281e-01 -9.93709385e-01 2.86372453e-01 -5.93575060e-01 -7.85559595e-01 -4.01156694e-01 1.61954314e-01 -4.33212072e-01 2.01322287e-02 -1.34465814e+00 1.88734844e-01 9.19381231e-02 -5.68981230e-01 6.50623858e-01 1.94270507e-01 4.16979134e-01 2.63444275e-01 -3.63675803e-01 -1.97951064e-01 4.64296162e-01 9.08955276e-01 5.09047471e-02 -2.23547325e-01 -1.50425151e-01 -1.98760092e-01 6.49031460e-01 1.22030914e+00 -1.96781322e-01 -2.23523304e-01 -4.32478875e-01 9.45437923e-02 2.65103906e-01 1.74829632e-01 -1.21525371e+00 1.66474521e-01 2.93770581e-01 5.30774653e-01 -5.86684585e-01 6.71391547e-01 -7.82403767e-01 2.76472390e-01 4.43320423e-01 -3.65894526e-01 3.99310440e-01 5.99250555e-01 -2.11687103e-01 -7.22124517e-01 -1.90948516e-01 7.59944737e-01 -1.52043164e-01 -1.12560570e+00 -4.19314466e-02 -7.90912032e-01 -3.67453068e-01 9.68106627e-01 -5.36034524e-01 -5.65534607e-02 -6.08154655e-01 -9.38420117e-01 -1.58263490e-01 -2.09884748e-01 7.58892536e-01 6.87567472e-01 -1.21471262e+00 -5.78599811e-01 1.22367188e-01 -1.90713912e-01 -7.70438850e-01 7.01474905e-01 8.99920642e-01 -4.28141832e-01 3.47142130e-01 -8.70309532e-01 -3.90779287e-01 -1.82091522e+00 1.19325720e-01 6.36358380e-01 1.68861926e-01 2.00223207e-01 9.38813388e-01 -2.13276193e-01 -3.16207945e-01 3.15879077e-01 -3.03075343e-01 -7.02152252e-01 4.59891409e-01 5.15211880e-01 5.36827743e-01 8.58692825e-02 -9.39782143e-01 -5.47076762e-01 9.04177070e-01 2.79488027e-01 -4.16229367e-01 1.27888942e+00 1.90095425e-01 -4.72944379e-01 8.00191224e-01 1.51842153e+00 -4.94983971e-01 -2.54218876e-01 3.28772366e-01 -1.50556520e-01 -3.39807905e-02 1.06988274e-01 -1.09411204e+00 -1.31451213e+00 1.16341913e+00 1.00919163e+00 1.93256289e-01 1.65520501e+00 -4.41013545e-01 6.89260721e-01 1.53642818e-01 2.15962678e-01 -1.16161990e+00 2.91452762e-02 6.12518430e-01 7.99502194e-01 -8.29426348e-01 -5.89523911e-01 1.24622911e-01 -9.03619766e-01 1.33324027e+00 7.62536883e-01 5.09620458e-02 7.85203815e-01 2.97275692e-01 3.52100223e-01 -2.89973319e-01 -7.86086380e-01 5.11679724e-02 1.10871278e-01 2.82405078e-01 8.61645520e-01 -5.65635331e-04 -4.95711863e-01 7.91991353e-01 -3.59119892e-01 4.60474133e-01 2.59703398e-01 7.69797623e-01 -4.72179621e-01 -6.25423431e-01 -4.25337404e-01 2.79031783e-01 -8.81884694e-01 1.86438411e-01 -4.85246956e-01 7.05745935e-01 1.45501480e-01 1.22290254e+00 3.46675664e-01 -1.09507704e+00 4.23907608e-01 4.29896176e-01 3.41727614e-01 1.77658111e-01 -1.16395152e+00 -1.57586828e-01 1.47533119e-01 -4.62631524e-01 -8.31183851e-01 -2.96383500e-01 -1.26585579e+00 -3.14447880e-01 -1.34141222e-01 5.18727124e-01 8.26261163e-01 6.94923460e-01 4.56252694e-01 5.83371878e-01 7.32865632e-01 -7.17216730e-01 7.50749633e-02 -1.43834901e+00 -4.44372237e-01 2.00636253e-01 1.10472851e-01 -4.64700252e-01 -4.12343800e-01 -5.82407899e-02]
[13.412208557128906, 5.235416889190674]
5b29bd82-4a0b-421d-ba82-78962ec73198
s2rl-do-we-really-need-to-perceive-all-states
2206.11054
null
https://arxiv.org/abs/2206.11054v1
https://arxiv.org/pdf/2206.11054v1.pdf
S2RL: Do We Really Need to Perceive All States in Deep Multi-Agent Reinforcement Learning?
Collaborative multi-agent reinforcement learning (MARL) has been widely used in many practical applications, where each agent makes a decision based on its own observation. Most mainstream methods treat each local observation as an entirety when modeling the decentralized local utility functions. However, they ignore the fact that local observation information can be further divided into several entities, and only part of the entities is helpful to model inference. Moreover, the importance of different entities may change over time. To improve the performance of decentralized policies, the attention mechanism is used to capture features of local information. Nevertheless, existing attention models rely on dense fully connected graphs and cannot better perceive important states. To this end, we propose a sparse state based MARL (S2RL) framework, which utilizes a sparse attention mechanism to discard irrelevant information in local observations. The local utility functions are estimated through the self-attention and sparse attention mechanisms separately, then are combined into a standard joint value function and auxiliary joint value function in the central critic. We design the S2RL framework as a plug-and-play module, making it general enough to be applied to various methods. Extensive experiments on StarCraft II show that S2RL can significantly improve the performance of many state-of-the-art methods.
['Chao Wu', 'Yunfeng Shao', 'Furui Liu', 'Kun Kuang', 'Jiahui Li', 'Yinchuan Li', 'Shuang Luo']
2022-06-20
null
null
null
null
['starcraft-ii']
['playing-games']
[-7.08242893e-01 1.59900159e-01 -6.89445972e-01 -5.72386347e-02 -4.97884005e-01 -2.74834961e-01 4.49140012e-01 2.11196482e-01 -4.00130212e-01 9.57634091e-01 3.23042035e-01 1.76051542e-01 -1.13085248e-01 -7.95454204e-01 -5.66808701e-01 -1.05156684e+00 -3.89601700e-02 5.00269532e-01 4.43649828e-01 -4.06103045e-01 -2.44993702e-01 -5.72405756e-02 -8.17194581e-01 -2.81557113e-01 9.75933075e-01 8.08892488e-01 4.11786139e-01 3.68641555e-01 6.01224117e-02 1.48879409e+00 -6.78995609e-01 -4.75182198e-02 5.41027039e-02 -5.09107649e-01 -5.08062124e-01 3.61052006e-02 -3.24250102e-01 -5.77675283e-01 -6.71131849e-01 1.33425581e+00 6.06957614e-01 5.47826409e-01 2.50875443e-01 -1.39508605e+00 -8.70556772e-01 1.02838635e+00 -5.35537302e-01 2.05251589e-01 1.39953226e-01 5.02470255e-01 1.22895074e+00 -3.35673362e-01 3.71203393e-01 1.52784896e+00 1.64037868e-01 4.86376166e-01 -1.07302809e+00 -5.21304727e-01 1.26949573e+00 5.22924662e-01 -9.79351461e-01 -2.44540229e-01 1.00862515e+00 5.03806323e-02 8.06082189e-01 -1.99532270e-01 8.51864338e-01 9.62997019e-01 1.68387711e-01 1.33345890e+00 8.02426100e-01 1.03108376e-01 4.86595422e-01 -1.90250844e-01 -1.35537237e-01 9.27720487e-01 3.73551160e-01 -4.51591760e-02 -3.05623949e-01 -1.80173978e-01 9.69402432e-01 4.29727107e-01 -9.05016959e-02 -4.87743616e-01 -1.16424251e+00 9.69666302e-01 7.53674448e-01 4.19984832e-02 -5.90863049e-01 4.96099353e-01 3.63025308e-01 3.66144001e-01 3.79287481e-01 1.90514147e-01 -4.68430638e-01 5.98863922e-02 -2.25388169e-01 1.92948222e-01 6.82198703e-01 7.84846902e-01 9.60376263e-01 3.02767694e-01 -2.32637778e-01 4.99142647e-01 6.42311633e-01 5.74221253e-01 6.87780082e-01 -1.16724861e+00 5.53449869e-01 8.44358504e-01 3.29819262e-01 -1.03775680e+00 -3.82455379e-01 -6.39686286e-01 -9.78674412e-01 1.50340989e-01 1.25797475e-02 -6.88472986e-01 -6.18034482e-01 1.95511186e+00 5.79790354e-01 2.96395749e-01 2.74533927e-01 1.15683901e+00 6.06723189e-01 7.26489127e-01 -7.47019285e-03 -3.23876053e-01 9.49729145e-01 -1.51347518e+00 -9.41981196e-01 -4.47950363e-01 3.34695399e-01 -7.52076432e-02 6.34452939e-01 1.97771117e-01 -1.15345645e+00 -4.18196559e-01 -9.20803666e-01 9.75577831e-02 -1.32906318e-01 1.78162545e-01 6.49493515e-01 -5.39268218e-02 -7.96497643e-01 4.55739975e-01 -1.25014365e+00 1.82083428e-01 3.64472955e-01 4.86657888e-01 -7.83142149e-02 6.32004067e-02 -1.47732937e+00 8.51543248e-01 3.81128401e-01 2.78560400e-01 -1.34277046e+00 5.05892821e-02 -1.05068982e+00 3.80485207e-01 9.80955124e-01 -8.17884028e-01 1.52506816e+00 -9.76258874e-01 -1.93003905e+00 -2.56759614e-01 -1.20355718e-01 -4.18516099e-01 3.06336939e-01 -2.09067523e-01 -2.81263590e-01 1.82528183e-01 2.31798097e-01 1.15118437e-01 8.01951766e-01 -1.12637603e+00 -7.72033095e-01 -1.30614385e-01 6.04359746e-01 6.13475442e-01 -2.40609869e-01 -3.88934553e-01 -6.40593648e-01 -5.44820368e-01 -2.50958443e-01 -7.42677271e-01 -7.64339447e-01 -2.80600131e-01 -1.72737896e-01 -4.89560843e-01 7.19960451e-01 -3.82735372e-01 1.20657051e+00 -1.79068887e+00 5.12830377e-01 8.60578846e-04 4.18346375e-01 3.22910845e-01 -3.83397132e-01 4.76823747e-01 4.52766299e-01 -1.14412561e-01 1.54371783e-01 -5.49105525e-01 2.03257099e-01 4.74999994e-01 -8.05685446e-02 5.48034132e-01 1.77739292e-01 1.10075212e+00 -1.53097332e+00 -5.09320438e-01 2.97319233e-01 3.12551647e-01 -5.66225111e-01 2.30131269e-01 -3.69460732e-01 4.53889936e-01 -1.34721994e+00 4.81012374e-01 3.60597074e-01 -5.34610391e-01 5.43858409e-01 6.75802305e-02 3.70167270e-02 2.15177596e-01 -1.36869240e+00 1.65247631e+00 -3.54855418e-01 6.45597875e-02 4.55784887e-01 -1.18220103e+00 6.37678206e-01 4.20197845e-01 5.95442951e-01 -6.65470243e-01 2.29086995e-01 -1.56505689e-01 6.99692667e-02 -3.97776395e-01 2.55034596e-01 1.66413128e-01 -1.61244392e-01 5.16923487e-01 2.66513467e-01 2.24849984e-01 2.46196181e-01 4.99716073e-01 1.00993812e+00 6.34443536e-02 5.40907085e-01 3.93187702e-02 6.29000008e-01 -1.92468524e-01 1.36869490e+00 8.41333032e-01 -6.05487883e-01 6.86597079e-02 7.30845809e-01 -4.60610181e-01 -6.00647092e-01 -6.46402776e-01 7.95156717e-01 1.10013139e+00 7.81544924e-01 -5.01002133e-01 -3.83113593e-01 -1.10165679e+00 3.07003148e-02 3.56291473e-01 -7.49174118e-01 -5.32497704e-01 -4.11997944e-01 -7.06018209e-01 -4.17402200e-03 6.63849115e-01 5.88130236e-01 -1.34727430e+00 -4.00206447e-01 5.61647773e-01 -1.28788069e-01 -8.19304109e-01 -5.80232501e-01 5.32790385e-02 -6.96491063e-01 -1.08554387e+00 -6.16001368e-01 -5.85182250e-01 7.24509418e-01 3.54561299e-01 9.88123775e-01 1.17020987e-01 4.52224761e-01 4.20714289e-01 -4.13406312e-01 -3.07500988e-01 6.50350600e-02 2.41115019e-01 2.29213700e-01 1.28935218e-01 2.49816664e-02 -5.29386997e-01 -6.46766305e-01 2.29001194e-01 -5.73447049e-01 -1.74787208e-01 8.09904933e-01 1.16890502e+00 4.39481020e-01 2.18259737e-01 8.29246342e-01 -7.94301808e-01 7.44564712e-01 -7.18725383e-01 -6.60554111e-01 2.67250061e-01 -5.13867557e-01 2.60024935e-01 1.15564561e+00 -6.30760789e-01 -1.16392708e+00 -1.40474930e-01 1.94007501e-01 -7.18690515e-01 2.56020278e-01 8.22490454e-01 -3.09254438e-01 6.34474382e-02 -1.08522542e-01 3.45624149e-01 5.70158362e-02 -3.30553234e-01 2.32442737e-01 2.22768769e-01 1.50617197e-01 -6.57403111e-01 5.73647678e-01 3.53182793e-01 -8.71076286e-02 -3.11738133e-01 -1.07532024e+00 -3.44065934e-01 -1.21513143e-01 -1.61259666e-01 4.17683274e-01 -1.31928468e+00 -1.21258450e+00 5.83122611e-01 -7.83051014e-01 -6.65275812e-01 -4.67468798e-01 5.68994164e-01 -3.35717857e-01 3.85785520e-01 -7.53711045e-01 -9.86546874e-01 -2.25061834e-01 -1.44851720e+00 8.01806509e-01 7.90704250e-01 5.32607377e-01 -1.28183222e+00 3.01278651e-01 2.67776139e-02 4.14139628e-01 -1.39751226e-01 3.76056522e-01 -5.65461874e-01 -6.04274750e-01 -9.54871699e-02 6.98379800e-02 2.50429481e-01 1.63482755e-01 -1.56602681e-01 -4.14891750e-01 -6.24988317e-01 -1.80528462e-01 -6.20375276e-01 9.28086877e-01 3.64183992e-01 8.85054290e-01 -5.23908794e-01 -2.90532798e-01 1.87983558e-01 1.38435245e+00 1.08093902e-01 2.49037236e-01 2.20704943e-01 8.30814958e-01 1.10595271e-01 6.91633344e-01 6.90485060e-01 1.03848720e+00 3.78390431e-01 9.39367175e-01 1.73258223e-02 1.08611226e-01 -4.81720984e-01 7.92886019e-01 1.12347949e+00 -2.36720026e-01 -2.71522969e-01 -4.27321255e-01 5.70080340e-01 -2.72108316e+00 -1.01322186e+00 4.09359485e-01 1.86463606e+00 7.12949991e-01 1.42430887e-01 1.12908453e-01 -5.15850961e-01 7.07184851e-01 5.70817530e-01 -1.11975849e+00 5.88669861e-03 -1.18113302e-01 -4.03717637e-01 4.68264729e-01 5.79377830e-01 -1.01899648e+00 1.03147662e+00 5.54958487e+00 9.08313692e-01 -1.00864398e+00 1.49696648e-01 3.86400282e-01 -6.60271645e-02 -1.64164260e-01 2.42269903e-01 -7.68000245e-01 6.75926805e-01 5.28386354e-01 -2.24296644e-01 6.10577643e-01 1.08639872e+00 4.12819922e-01 -1.24103852e-01 -6.11863434e-01 6.21523201e-01 -9.48160887e-02 -1.03677070e+00 -1.18986562e-01 -1.00910455e-01 1.01046598e+00 3.53012562e-01 -1.96271956e-01 7.80615926e-01 1.22900200e+00 -4.87476438e-01 6.30479276e-01 6.64147973e-01 1.53982669e-01 -7.98492193e-01 7.94137478e-01 7.29327619e-01 -1.51795566e+00 -5.43331623e-01 -7.19433427e-01 -3.68145347e-01 1.40900642e-01 2.58207023e-01 -2.72155017e-01 8.33864033e-01 5.39791882e-01 1.21036065e+00 -2.89068162e-01 8.64397109e-01 -7.80368268e-01 5.28491974e-01 -2.34169826e-01 -4.43850875e-01 5.85718989e-01 -3.15815330e-01 6.03820324e-01 4.32776481e-01 -1.25108674e-01 1.56863481e-01 9.28958654e-01 5.91463089e-01 -2.53316581e-01 -1.23461679e-01 -2.14146122e-01 2.69782748e-02 5.28097987e-01 1.30152535e+00 -3.96529377e-01 -6.56169236e-01 -6.71435416e-01 7.43519902e-01 8.26163828e-01 5.25295138e-01 -8.07491779e-01 -4.08464491e-01 7.46952176e-01 -5.83467782e-01 6.51248276e-01 -1.89577863e-01 4.94463295e-01 -1.84686565e+00 -1.54186055e-01 -9.61453080e-01 4.43816394e-01 -6.50540888e-01 -1.40515614e+00 3.58883023e-01 -3.67597282e-01 -1.25210285e+00 -2.19950408e-01 -1.49807796e-01 -1.01535618e+00 6.32748723e-01 -1.89797509e+00 -1.16509342e+00 -1.51294157e-01 7.17170298e-01 6.70684636e-01 -2.07914650e-01 6.84789300e-01 -3.91318090e-02 -1.16186166e+00 2.59113997e-01 4.22939211e-01 3.93452018e-01 6.07502282e-01 -1.43545544e+00 8.05278420e-02 8.70674372e-01 -7.24413693e-02 6.00070834e-01 3.98414969e-01 -7.19460666e-01 -1.56917870e+00 -1.20478463e+00 3.35466862e-01 4.75603156e-02 8.64582121e-01 -5.59329316e-02 -6.50154889e-01 9.18590307e-01 4.15212750e-01 4.58773613e-01 1.96802661e-01 1.05224393e-01 7.82191455e-02 -1.93883643e-01 -7.41833270e-01 7.30815589e-01 6.30817652e-01 -3.24521601e-01 -7.04361975e-01 2.47190878e-01 7.76130199e-01 -4.06463712e-01 -9.20526028e-01 5.01112342e-02 2.32155174e-01 -6.73277617e-01 7.96518385e-01 -8.10314953e-01 2.08937168e-01 -5.90582728e-01 3.33930522e-01 -1.89867163e+00 -6.53500021e-01 -8.33031297e-01 -8.81308794e-01 9.86308634e-01 2.11724699e-01 -9.70096409e-01 6.92314267e-01 5.30594528e-01 -8.62704962e-02 -8.60379517e-01 -7.39243329e-01 -6.25329971e-01 -2.31472656e-01 1.39656112e-01 7.01103628e-01 8.93574238e-01 2.39353985e-01 6.57358289e-01 -6.86600983e-01 3.88729006e-01 5.88859797e-01 4.76010442e-01 8.63757610e-01 -9.89004195e-01 -5.37241459e-01 -4.02993053e-01 -1.32023081e-01 -1.45569396e+00 3.06390226e-01 -4.77962285e-01 4.56927568e-02 -1.75653553e+00 2.78316200e-01 -4.08432066e-01 -7.97673464e-01 7.35504508e-01 -7.00431108e-01 -3.50293458e-01 4.28839117e-01 2.94001579e-01 -1.49286747e+00 1.30527163e+00 1.64284110e+00 -3.49664181e-01 -2.17779920e-01 5.75706176e-03 -8.57801974e-01 8.46991241e-01 8.56229782e-01 -5.08107960e-01 -4.96863097e-01 -5.28687775e-01 2.53548414e-01 1.92841262e-01 2.30482072e-01 -7.97622979e-01 6.79044306e-01 -5.73692739e-01 1.80948928e-01 -2.54384726e-01 3.50045770e-01 -8.81375551e-01 -3.92802328e-01 5.98769784e-01 -2.97847003e-01 1.14872664e-01 -3.13879311e-01 1.05672681e+00 -4.03572798e-01 4.65474412e-04 3.49124610e-01 -4.03631181e-01 -8.75948191e-01 8.29603016e-01 -2.54640698e-01 1.80947125e-01 1.03672302e+00 5.10986745e-01 -4.58915383e-01 -6.98442340e-01 -7.28963673e-01 1.21950209e+00 3.56254935e-01 2.39730239e-01 3.89166087e-01 -1.37020397e+00 -5.44653356e-01 -1.47189945e-01 -2.40459666e-01 4.64422822e-01 5.17162383e-01 9.84309256e-01 1.15816761e-02 1.65153593e-01 -1.03459708e-01 -2.12788060e-01 -6.57802880e-01 7.48417020e-01 3.70345801e-01 -7.99673676e-01 -5.30026555e-01 5.32950819e-01 2.31332943e-01 -3.41648310e-01 1.13653660e-01 -3.45511228e-01 -5.63075602e-01 -1.60031822e-02 5.14855385e-01 4.32430178e-01 -4.76616114e-01 -4.44545269e-01 -1.99986413e-01 3.37522626e-01 -1.14117369e-01 1.65070146e-01 1.56925559e+00 -4.84670579e-01 8.76633748e-02 5.35994351e-01 8.45960081e-01 -4.70194779e-02 -1.78069544e+00 -5.20578682e-01 -6.34442389e-01 -1.00451134e-01 3.34986091e-01 -6.17178619e-01 -1.59899974e+00 6.40882730e-01 -1.10634193e-01 4.60957378e-01 9.68520761e-01 -1.79799274e-01 7.76856303e-01 7.33832717e-01 4.51921642e-01 -1.33707273e+00 9.46453288e-02 6.32777989e-01 5.64843059e-01 -1.39378774e+00 1.32547572e-01 6.73623011e-02 -1.06471157e+00 8.79697025e-01 8.49590361e-01 -6.51635289e-01 5.21467507e-01 1.93626117e-02 -1.18449435e-01 -6.34663031e-02 -1.26594102e+00 -4.04359639e-01 -8.10935944e-02 3.68544251e-01 -1.45624951e-01 7.71802887e-02 -1.20502509e-01 1.04029274e+00 6.21135890e-01 -4.22026850e-02 5.33222377e-01 1.02094340e+00 -4.31961805e-01 -1.07922959e+00 -2.10654754e-02 3.58311743e-01 -3.89003605e-01 1.75654769e-01 -8.87291431e-02 6.92853272e-01 -4.85848784e-02 9.38947141e-01 -2.15125978e-01 -2.62406766e-01 2.17917562e-01 -5.14758170e-01 9.34228227e-02 -4.99095380e-01 -6.68834805e-01 3.10754687e-01 -1.98333472e-01 -7.54088879e-01 -5.38538098e-01 -5.58879256e-01 -1.32317472e+00 -1.30940959e-01 -5.47173142e-01 5.02916634e-01 1.66269585e-01 9.46852684e-01 6.00438595e-01 1.01848757e+00 8.30720663e-01 -8.87212873e-01 -8.49871218e-01 -9.15823162e-01 -7.36127257e-01 1.55162007e-01 6.17924035e-01 -9.98710454e-01 -2.37634510e-01 -2.83078134e-01]
[3.7670648097991943, 2.046658992767334]
1ab10da0-5ae1-4b9b-8009-8556a99bf9b4
meta-meta-classification-for-one-shot
2004.08083
null
https://arxiv.org/abs/2004.08083v4
https://arxiv.org/pdf/2004.08083v4.pdf
Meta-Meta Classification for One-Shot Learning
We present a new approach, called meta-meta classification, to learning in small-data settings. In this approach, one uses a large set of learning problems to design an ensemble of learners, where each learner has high bias and low variance and is skilled at solving a specific type of learning problem. The meta-meta classifier learns how to examine a given learning problem and combine the various learners to solve the problem. The meta-meta learning approach is especially suited to solving few-shot learning tasks, as it is easier to learn to classify a new learning problem with little data than it is to apply a learning algorithm to a small data set. We evaluate the approach on a one-shot, one-class-versus-all classification task and show that it is able to outperform traditional meta-learning as well as ensembling approaches.
['Chris Jermaine', 'Dipak Chaudhari', 'Arkabandhu Chowdhury', 'Swarat Chaudhuri']
2020-04-17
null
null
null
null
['small-data']
['computer-vision']
[ 3.74900430e-01 1.33235931e-01 -4.06521767e-01 -3.43616456e-01 -1.21992397e+00 -2.72053689e-01 5.68353653e-01 5.35656869e-01 -5.24471164e-01 7.37158537e-01 -1.75669014e-01 -7.37532154e-02 -4.78682935e-01 -8.58081818e-01 -6.01451695e-01 -6.77547395e-01 2.96452232e-02 7.20871687e-01 1.96773320e-01 -3.21516067e-01 3.13646972e-01 -1.65607110e-01 -2.16045356e+00 7.59238064e-01 9.48242307e-01 7.37204313e-01 2.92162359e-01 8.84761989e-01 -4.39981282e-01 9.89029467e-01 -7.20346689e-01 -4.13299561e-01 8.77761096e-03 -7.36503303e-01 -1.17150819e+00 -1.56874508e-01 5.99801779e-01 3.91121417e-01 3.45716864e-01 9.57954645e-01 4.38460052e-01 5.15068173e-01 9.67432678e-01 -1.18225753e+00 -4.03744757e-01 5.94750643e-01 -4.72591251e-01 7.13233888e-01 2.74712861e-01 -1.05894901e-01 1.08939266e+00 -9.07995462e-01 3.85341346e-01 1.11325240e+00 8.74441206e-01 8.01217139e-01 -1.33526909e+00 -2.83646226e-01 8.84027854e-02 3.66784066e-01 -7.37125516e-01 -2.53770351e-01 5.38571537e-01 -4.16159421e-01 8.93482268e-01 2.11167529e-01 5.94996870e-01 1.11167288e+00 3.31137955e-01 8.45201552e-01 1.13013268e+00 -8.09723794e-01 8.62063229e-01 2.53271341e-01 6.58242583e-01 5.41272521e-01 1.29344329e-01 1.66524112e-01 -3.94072771e-01 -2.20929429e-01 -1.97011456e-01 3.66750628e-01 2.17146829e-01 -3.00438613e-01 -1.02875853e+00 8.32385063e-01 2.97160119e-01 5.10321379e-01 -3.62595767e-01 1.23796925e-01 6.28252089e-01 7.60186732e-01 9.22354341e-01 9.11598146e-01 -6.34179711e-01 -1.77638710e-01 -7.25183547e-01 4.01699543e-01 8.51788580e-01 5.07380486e-01 8.66659284e-01 -8.37785676e-02 -1.66318879e-01 1.17249238e+00 -1.40486836e-01 1.20843053e-01 1.09922814e+00 -9.22120750e-01 4.12484616e-01 5.12124956e-01 -1.19876683e-01 -5.98836653e-02 -2.72071689e-01 -3.81226033e-01 -5.64684510e-01 7.32856035e-01 2.39831686e-01 -3.12152416e-01 -9.93963838e-01 1.60915923e+00 2.91046709e-01 5.56317925e-01 3.05767447e-01 2.85224140e-01 9.34121013e-01 7.46413887e-01 2.06235990e-01 -5.36286712e-01 1.13683581e+00 -1.33820379e+00 -4.10653055e-01 -5.64291894e-01 8.53952348e-01 -1.27883554e-01 9.90221739e-01 5.04987836e-01 -1.14707923e+00 -8.50524545e-01 -1.17339134e+00 3.61668050e-01 -7.50228107e-01 -5.89880407e-01 4.60115880e-01 7.22777724e-01 -5.79765201e-01 1.00172937e+00 -3.58849555e-01 -4.31216806e-01 4.90763277e-01 9.60010439e-02 -1.28160596e-01 -1.69768572e-01 -9.84611034e-01 1.16135955e+00 6.71027184e-01 -6.13856614e-01 -1.19626284e+00 -1.08512926e+00 -7.49305665e-01 8.91528726e-02 4.87142742e-01 -6.44788742e-01 1.76244414e+00 -1.53212070e+00 -1.23549354e+00 8.86882246e-01 -4.08531688e-02 -3.61946017e-01 3.06330979e-01 -9.13000628e-02 -4.33556408e-01 -3.35131556e-01 2.02806778e-02 2.07331687e-01 1.23568821e+00 -1.23014855e+00 -9.86221015e-01 -5.38873911e-01 1.05196964e-02 1.59570009e-01 -3.09153229e-01 -9.45200026e-02 2.23880768e-01 -6.18039846e-01 -2.26486474e-01 -6.31314456e-01 -3.69096965e-01 -4.85743582e-01 2.32123092e-01 -3.08563650e-01 8.37879241e-01 1.28794536e-01 1.01990318e+00 -1.84306204e+00 4.96524781e-01 -1.90461293e-01 3.14393491e-01 5.64544559e-01 -3.52026910e-01 5.11412501e-01 -4.46598113e-01 1.16780410e-02 -1.85406312e-01 -3.12808752e-01 -5.09096265e-01 1.74816012e-01 -2.75419205e-01 -3.54272425e-02 3.15832123e-02 9.66498911e-01 -1.41890860e+00 -1.81739464e-01 2.36765891e-01 -1.13879889e-01 -4.48211998e-01 4.93339270e-01 -4.60782558e-01 -8.28651488e-02 -2.80300468e-01 5.92571259e-01 3.54603142e-01 -2.00933263e-01 2.55997092e-01 3.95834625e-01 2.09033534e-01 -2.32327618e-02 -1.17172956e+00 1.69611645e+00 -9.00652528e-01 5.59039533e-01 -4.02047187e-01 -1.47896326e+00 7.52777457e-01 2.59755880e-01 3.03030193e-01 -3.87738287e-01 1.71004221e-01 2.24665403e-01 -1.70047600e-02 -8.63712311e-01 1.28555045e-01 -6.45233214e-01 -1.11784600e-02 8.92180324e-01 8.01007450e-01 -3.83961275e-02 2.37979725e-01 -1.87679697e-02 1.17494082e+00 -4.25986387e-02 7.93559253e-01 -3.52095157e-01 3.07621777e-01 1.63944960e-01 4.34196323e-01 1.07002413e+00 -8.38868320e-02 3.81612748e-01 1.70937404e-01 -9.45385456e-01 -8.53875220e-01 -9.81781542e-01 1.19974427e-01 1.88419485e+00 -1.21541470e-01 -5.27301133e-01 -7.97631621e-01 -1.04559720e+00 1.37933567e-01 8.20618927e-01 -1.12856102e+00 -4.78022367e-01 -1.34354770e-01 -9.85408068e-01 -4.00589667e-02 6.06716335e-01 2.18976647e-01 -1.16676903e+00 -8.76192331e-01 3.58359307e-01 3.56319934e-01 -1.22873344e-01 1.14170404e-03 8.17961991e-01 -1.21416485e+00 -1.26186371e+00 -6.31759763e-01 -8.85705233e-01 4.33125615e-01 4.18925345e-01 1.23734343e+00 6.44439384e-02 -5.27719736e-01 4.10700470e-01 -5.91682553e-01 -7.46952653e-01 -6.72471046e-01 2.08528310e-01 2.00557917e-01 -2.39228699e-02 5.97202361e-01 -4.18024093e-01 6.41897395e-02 6.71985820e-02 -6.92254424e-01 -1.08088836e-01 4.25442398e-01 1.43370831e+00 1.72598168e-01 2.45919898e-01 8.65380466e-01 -1.53094459e+00 8.02899778e-01 -1.02299142e+00 -2.69755814e-02 7.58189380e-01 -9.12015557e-01 1.75510019e-01 7.31796563e-01 -7.64104784e-01 -1.01986337e+00 -6.36604726e-02 1.05510823e-01 -4.43024218e-01 -2.39497259e-01 5.77216804e-01 1.95855945e-02 -3.48345214e-03 1.23958921e+00 6.01652823e-02 7.98167959e-02 -6.73959196e-01 5.02612710e-01 7.41468728e-01 3.12137634e-01 -6.57171190e-01 4.53781992e-01 1.86722428e-01 -3.14386696e-01 -8.04486036e-01 -1.39809191e+00 -5.29182374e-01 -9.26858366e-01 -3.89169514e-01 6.85308993e-01 -6.22581303e-01 -3.07707131e-01 4.35680240e-01 -6.94880128e-01 -5.42612493e-01 -8.56001616e-01 1.65867373e-01 -8.28177214e-01 -2.33517438e-01 -6.74284175e-02 -9.41849053e-01 -1.68258280e-01 -8.73938560e-01 6.84142590e-01 3.44907761e-01 -1.56478956e-01 -1.35868895e+00 6.85368717e-01 1.32015720e-01 3.59251112e-01 5.55211958e-03 1.01188648e+00 -1.04641235e+00 2.35255018e-01 -2.27755129e-01 4.14808273e-01 2.77766466e-01 2.95028329e-01 -5.86692579e-02 -1.37325954e+00 -4.84546870e-01 1.89884067e-01 -9.06548142e-01 1.18977118e+00 1.41387060e-01 1.33058894e+00 -1.61857516e-01 -2.75065720e-01 3.57451230e-01 1.40686440e+00 2.03635350e-01 3.10305238e-01 5.31158090e-01 3.14003050e-01 6.75728977e-01 7.86568522e-01 3.08190554e-01 1.15591906e-01 4.92601663e-01 1.10483527e-01 2.53763229e-01 6.70726364e-03 -1.85259193e-01 1.63993582e-01 5.11569440e-01 -1.87287033e-01 9.32271406e-02 -1.20291865e+00 3.18898857e-01 -2.11919475e+00 -1.44146693e+00 3.48304152e-01 2.17861843e+00 6.63399041e-01 1.66943938e-01 4.12660450e-01 3.84894162e-01 6.99363887e-01 2.60731399e-01 -5.55159330e-01 -5.70693254e-01 2.52776235e-01 4.31439340e-01 -2.23475978e-01 3.34207624e-01 -1.15057397e+00 7.22921014e-01 7.49790764e+00 8.89817476e-01 -8.67334127e-01 4.26650554e-01 6.53298616e-01 -2.36122802e-01 -5.85740153e-03 -5.50550269e-03 -6.41808033e-01 4.06319439e-01 1.40222609e+00 -4.15861130e-01 4.06527549e-01 1.14031446e+00 -3.97102416e-01 -2.66188383e-01 -1.53805745e+00 9.24389720e-01 3.83744180e-01 -1.58781075e+00 5.15756197e-02 -2.87617177e-01 9.36677277e-01 -1.68689843e-02 3.26942764e-02 9.92661953e-01 3.48941207e-01 -1.06153405e+00 4.10700053e-01 4.39195395e-01 4.02707845e-01 -8.91933978e-01 5.93464196e-01 9.49942589e-01 -9.70297396e-01 -7.94976115e-01 -5.50471902e-01 -3.40976030e-01 -2.85872549e-01 1.98403224e-01 -4.73114163e-01 2.78954148e-01 7.46697783e-01 8.09275806e-01 -7.97115982e-01 1.27698362e+00 7.08674267e-02 4.58880454e-01 3.64391208e-01 -2.31488064e-01 8.13146755e-02 1.44641578e-01 3.09665591e-01 1.05378640e+00 7.52048716e-02 2.95000285e-01 3.01854908e-01 5.09777546e-01 -4.33847383e-02 1.00758389e-01 -7.86738575e-01 2.61077713e-02 3.51158768e-01 1.30911636e+00 -3.49046379e-01 -6.83495283e-01 -4.31710422e-01 8.34349930e-01 8.99542809e-01 1.52182490e-01 -2.03532562e-01 -4.29411411e-01 5.07853746e-01 -2.09638700e-01 2.64299870e-01 4.49301630e-01 -1.81412145e-01 -1.24993181e+00 -5.15221596e-01 -1.16838956e+00 9.92323637e-01 -6.99000597e-01 -1.56823027e+00 4.05255824e-01 1.79845601e-01 -1.41845763e+00 -4.59747851e-01 -6.83783591e-01 -1.25084484e+00 6.16521716e-01 -1.35383058e+00 -8.34542155e-01 -4.48472142e-01 2.08951369e-01 1.06660366e+00 -7.15676844e-01 9.57364857e-01 -2.32065648e-01 -4.98822778e-01 4.18654859e-01 5.09695530e-01 -1.78161085e-01 7.08480299e-01 -1.54162848e+00 2.44657055e-01 3.18641335e-01 4.92313802e-01 4.39450562e-01 6.12542212e-01 -4.34978455e-01 -1.41643298e+00 -1.07831800e+00 5.86451411e-01 -7.86018312e-01 4.44339335e-01 -2.42312804e-01 -1.16700506e+00 6.35808170e-01 1.32142678e-01 3.42247635e-01 1.15765321e+00 6.19767606e-01 -5.68204463e-01 -3.01053315e-01 -1.34123492e+00 1.48039624e-01 7.21403658e-01 -5.13259411e-01 -1.35256600e+00 3.34894270e-01 3.85841310e-01 -1.83771864e-01 -7.03955293e-01 1.49653405e-01 5.64007163e-01 -1.06003368e+00 8.05145264e-01 -1.56998909e+00 7.80619264e-01 1.44864038e-01 -1.30109638e-01 -2.09115291e+00 -5.36917031e-01 -3.67919683e-01 -5.46027660e-01 1.09176350e+00 5.18706143e-01 -4.28561240e-01 8.57329309e-01 3.13444614e-01 2.02283375e-02 -8.13502729e-01 -7.30824530e-01 -1.03002369e+00 3.88270169e-01 -5.18207073e-01 5.17498016e-01 1.08592427e+00 4.78111774e-01 5.74960351e-01 -3.24531436e-01 -3.02916080e-01 8.30911100e-01 3.71246397e-01 6.98672891e-01 -1.54110193e+00 -6.50657892e-01 -4.03387487e-01 -3.60119194e-01 -2.67619163e-01 3.58370513e-01 -1.14212501e+00 8.27207416e-02 -1.17967355e+00 4.71436620e-01 -4.15228158e-01 -7.13787258e-01 3.63151789e-01 -6.62974000e-01 5.02184257e-02 1.02797583e-01 2.77021825e-02 -8.69539440e-01 2.65209407e-01 6.68039024e-01 -3.31008494e-01 -2.77751267e-01 4.56324846e-01 -6.51127756e-01 7.25265205e-01 6.02888644e-01 -6.94264412e-01 -6.13445640e-01 -1.28427058e-01 8.96767378e-02 7.21336603e-02 -6.68562669e-03 -1.09933937e+00 3.12567770e-01 -2.66018003e-01 5.66485405e-01 -1.42217621e-01 1.48596391e-01 -5.30870557e-01 -4.04700004e-02 7.09725261e-01 -6.45622194e-01 3.75807621e-02 4.91101518e-02 7.34191418e-01 -1.06772669e-01 -9.28494990e-01 1.08184266e+00 -6.40702784e-01 -1.16072786e+00 2.13653132e-01 -2.99745560e-01 6.43406332e-01 1.45076227e+00 -5.46938889e-02 -3.96639526e-01 -2.97233500e-02 -9.01260495e-01 1.52950644e-01 3.55269700e-01 6.65298164e-01 6.16018713e-01 -1.34905052e+00 -6.53480947e-01 3.09796661e-01 7.26437569e-01 -3.53796065e-01 2.30476871e-01 3.35489661e-01 -2.93633435e-02 -1.73900902e-01 -4.21260774e-01 -5.82354188e-01 -1.30952644e+00 9.43469524e-01 6.05526686e-01 -4.86944765e-02 -6.24588132e-01 9.16162968e-01 -2.41758361e-01 -5.65820634e-01 3.33878458e-01 -6.83995336e-02 -3.64505708e-01 5.97048223e-01 1.21968615e+00 6.89730406e-01 1.62107676e-01 -1.39592394e-01 -1.77052934e-02 5.20216882e-01 -3.00545722e-01 -4.45578694e-02 1.56344533e+00 3.46531808e-01 1.62441015e-01 1.32936704e+00 1.05570900e+00 -6.20869815e-01 -1.10701895e+00 -3.40727687e-01 4.22406971e-01 -5.41590929e-01 3.83093245e-02 -8.04511786e-01 -6.31116629e-01 1.03715718e+00 6.75046861e-01 3.56836200e-01 6.96400821e-01 -1.26173478e-02 1.29044801e-01 8.52747440e-01 4.18031722e-01 -1.43974662e+00 5.85995078e-01 6.22324467e-01 4.45100904e-01 -1.74272358e+00 7.24846348e-02 3.43965799e-01 -7.84119546e-01 1.31036711e+00 7.31627226e-01 -1.56659260e-01 8.69391978e-01 1.57993719e-01 -1.32179316e-02 -1.99536547e-01 -1.48208761e+00 -2.44674414e-01 4.88292933e-01 7.42885947e-01 3.10775608e-01 -1.28736943e-01 2.52307743e-01 4.41248506e-01 2.82344729e-01 1.56445593e-01 3.88314962e-01 1.18572545e+00 -9.81685281e-01 -1.08316731e+00 -2.90316641e-02 8.96882892e-01 -2.12698713e-01 1.15478955e-01 -3.13337028e-01 5.04057050e-01 2.95435041e-01 7.26960063e-01 2.01612443e-01 -6.10214472e-01 2.85510600e-01 6.44280255e-01 6.11782610e-01 -1.40650868e+00 -1.00142229e+00 -4.39305961e-01 -4.16660197e-02 -3.16430271e-01 -5.75260460e-01 -6.73739731e-01 -7.85404086e-01 -7.77257755e-02 -2.38440230e-01 4.78575259e-01 4.97109413e-01 1.19897497e+00 -8.63173138e-03 5.14141083e-01 9.12030280e-01 -9.94838655e-01 -9.48311329e-01 -8.77899706e-01 -7.99246907e-01 4.55550700e-01 5.70487857e-01 -7.03889251e-01 -4.69328344e-01 -2.25432485e-01]
[9.951714515686035, 3.1183838844299316]
c476d3b4-da04-49f7-8833-b8c42a12cae4
cognitive-compositional-semantics-using
null
null
https://aclanthology.info/papers/S14-1018/s14-1018
https://www.aclweb.org/anthology/S14-1018v2
Cognitive Compositional Semantics using Continuation Dependencies
null
['William Schuler', 'Adam Wheeler']
2014-08-01
cognitive-compositional-semantics-using-1
https://aclanthology.org/S14-1018
https://aclanthology.org/S14-1018.pdf
semeval-2014-8
['implicatures']
['natural-language-processing']
[-2.44508207e-01 3.89024585e-01 -2.65282035e-01 -2.15905145e-01 -8.60921741e-02 -7.76765764e-01 4.48510379e-01 -7.23253429e-01 -5.48377395e-01 1.31954515e+00 3.66348401e-02 -9.49533224e-01 -2.40340635e-01 -1.05564880e+00 -8.44053447e-01 -8.75781775e-01 -7.42435038e-01 6.86515033e-01 1.44298598e-01 -6.52004302e-01 8.47113907e-01 6.29996777e-01 -1.62287033e+00 5.77558100e-01 6.81926727e-01 5.49597681e-01 5.66466339e-02 1.04480565e+00 6.13576770e-02 1.59847176e+00 -6.05450153e-01 -4.56729174e-01 1.43710867e-01 -1.88022718e-01 -5.35770595e-01 -3.36825520e-01 7.91536197e-02 -5.88986814e-01 -3.10633808e-01 6.07356608e-01 1.14270830e+00 -5.53557873e-02 1.07025254e+00 -1.51067197e+00 -7.97060013e-01 5.44234335e-01 2.30399013e-01 1.20632313e-01 6.10446513e-01 -1.79472014e-01 3.51212233e-01 -1.36621380e+00 6.32680655e-01 8.64870071e-01 9.47046995e-01 5.99273622e-01 -1.20647264e+00 -5.60552299e-01 -7.17137158e-01 -2.57835120e-01 -1.59567785e+00 -6.30042374e-01 6.23617955e-02 -3.34735900e-01 1.69142139e+00 6.72587395e-01 1.35647905e+00 1.47341585e+00 1.36649036e+00 4.72517729e-01 1.13904178e+00 -3.16340059e-01 3.65351558e-01 6.43754780e-01 -2.29148138e-02 5.51889002e-01 1.19686353e+00 6.76312149e-01 -5.60917914e-01 -7.92779744e-01 1.11365557e+00 -3.12949389e-01 2.60771513e-01 -7.06989706e-01 -1.06566191e+00 7.88466871e-01 -1.33808568e-01 2.20882341e-01 -3.46203089e-01 -9.92989019e-02 2.24548295e-01 4.12961632e-01 -2.94082850e-01 4.77862865e-01 -8.89795244e-01 -1.87686309e-01 -1.01472771e+00 1.91863477e-01 1.30615628e+00 1.45811689e+00 4.72722203e-03 3.70100170e-01 1.66493103e-01 2.89523482e-01 5.29429734e-01 1.05927479e+00 4.36951250e-01 -1.33365822e+00 -9.55119133e-02 4.20878716e-02 6.12505674e-01 -1.13473701e+00 -7.12930143e-01 -2.41300568e-01 -9.54724610e-01 5.18771529e-01 -1.59270123e-01 -4.59180593e-01 -7.59686172e-01 4.79171664e-01 -1.81984559e-01 -3.19489211e-01 5.45619786e-01 2.69257158e-01 7.28577793e-01 1.45816103e-01 9.25893057e-03 -4.73371416e-01 8.38296890e-01 -1.26899445e+00 -1.11426139e+00 2.33304992e-01 6.82289064e-01 -1.11704338e+00 4.06794518e-01 4.29345578e-01 -1.87200487e+00 -9.69799384e-02 -1.08317137e+00 1.19022481e-01 -7.97166348e-01 -2.57194549e-01 6.66624963e-01 1.49922979e+00 -1.63972652e+00 6.47176981e-01 -6.05021298e-01 5.40335439e-02 -4.73218322e-01 9.07614470e-01 -3.47142309e-01 2.90655226e-01 -1.28751957e+00 9.52449858e-01 -1.04219764e-01 3.03568155e-01 -3.30324143e-01 -1.84501112e-01 -1.03385210e+00 -6.24127567e-01 -2.59417385e-01 -1.07312346e+00 1.36302292e+00 1.09815992e-01 -1.30379498e+00 1.00962746e+00 -4.14315462e-01 -1.14109404e-01 6.61359608e-01 -1.52096570e-01 -8.18174660e-01 1.58321753e-01 2.87593510e-02 3.47163439e-01 5.30214727e-01 -9.69232559e-01 -6.31655395e-01 -1.00153096e-01 -2.54188716e-01 2.48816490e-01 1.43904146e-03 2.05205917e-01 6.38460100e-01 -9.53604504e-02 1.91062525e-01 -8.61961663e-01 -3.21419090e-01 -7.61404037e-01 -1.77353188e-01 -3.84736449e-01 5.59762537e-01 -2.92163283e-01 1.33848476e+00 -1.84365213e+00 -4.54683900e-01 2.94456817e-03 2.53527164e-01 3.89016122e-02 2.33101144e-01 1.23831403e+00 -2.43849114e-01 1.06667292e+00 3.98064762e-01 9.52541176e-03 3.13382268e-01 5.07273376e-01 2.86674555e-02 2.51206756e-01 9.43330750e-02 1.15280068e+00 -1.09214199e+00 -5.20940363e-01 5.57267785e-01 4.60968643e-01 -3.84588838e-01 6.24593735e-01 9.30012882e-01 2.99172718e-02 -8.94021094e-02 1.33241999e+00 1.05377018e+00 -2.90812284e-01 -2.46628653e-02 3.44544262e-01 -6.44541264e-01 6.00222833e-02 -7.41804183e-01 9.49429095e-01 1.31349964e-02 1.99757457e-01 1.74998537e-01 -6.80728197e-01 3.94654661e-01 1.10545933e+00 4.45659161e-01 -9.24297392e-01 -1.69569388e-01 9.00310338e-01 1.03920102e-01 -9.62983370e-01 6.40755475e-01 -1.72503099e-01 7.69825354e-02 1.40852645e-01 -3.61913115e-01 -3.84120375e-01 5.52458428e-02 4.19574350e-01 1.00224769e+00 -1.33707494e-01 5.48685491e-01 -8.72328460e-01 6.88946426e-01 -2.01589778e-01 3.00597936e-01 1.23978651e+00 -2.90862411e-01 9.21478033e-01 3.19022417e-01 -5.37574828e-01 -5.72780192e-01 -1.20098352e+00 -4.80556756e-01 9.86326516e-01 -1.58388391e-01 -3.87671381e-01 -7.10155964e-01 -2.63155133e-01 -1.85071185e-01 4.93483543e-01 -5.93591571e-01 5.23159266e-01 -5.14705896e-01 -6.85349941e-01 7.65277922e-01 3.17972392e-01 6.49624616e-02 -1.49228525e+00 -5.70813596e-01 3.34754556e-01 -1.07132711e-01 -5.39811492e-01 -1.57590687e-01 6.12205923e-01 -1.19366693e+00 -1.01526415e+00 -8.75530541e-01 -1.03603637e+00 7.18889177e-01 2.44572356e-01 1.18463767e+00 2.84042627e-01 -2.87709564e-01 6.49904788e-01 -1.31030381e-02 -2.67939389e-01 -3.16364132e-02 -5.78750819e-02 5.01899779e-01 -1.07851994e+00 6.46393359e-01 -3.92214775e-01 -1.00622165e+00 5.35368681e-01 -3.85821253e-01 -2.04611585e-01 7.85597622e-01 1.04281425e+00 1.42742008e-01 -1.33182362e-01 2.41971418e-01 -1.16735983e+00 1.11498392e+00 -4.85333532e-01 1.30341025e-02 2.62960047e-01 -8.53362501e-01 -4.53584343e-01 2.27881029e-01 -1.33037493e-02 -6.33760452e-01 -2.51423597e-01 -4.14545417e-01 3.22794706e-01 -4.06866640e-01 3.34393084e-02 2.24873364e-01 -5.26000679e-01 5.21005154e-01 1.50258854e-01 -4.07556817e-02 1.21735156e-01 6.30975887e-02 3.75316888e-01 3.67786407e-01 -7.01224983e-01 5.19809723e-01 1.93325520e-01 -3.00995037e-02 -1.28791058e+00 2.66786069e-01 -1.64763972e-01 -6.60750508e-01 -2.69126564e-01 7.75121748e-01 -9.50198710e-01 -6.35705650e-01 5.21708906e-01 -9.54387486e-01 -1.36340424e-01 -5.25335252e-01 6.30965471e-01 -7.02474535e-01 2.94757709e-02 -4.17852998e-01 -1.17976546e+00 -4.78847146e-01 -1.38869667e+00 9.59160328e-01 3.85633826e-01 -2.05811903e-01 -1.19790471e+00 3.38975668e-01 8.99848714e-02 4.29175526e-01 7.39965662e-02 5.03531873e-01 -2.80004859e-01 -2.98304528e-01 -2.85470933e-01 1.59573574e-02 -1.65876746e-01 -3.09365243e-02 4.80770379e-01 -5.48391879e-01 -4.37962860e-01 2.44738594e-01 -4.86500829e-01 -7.51581416e-02 7.11018145e-01 4.09077644e-01 -6.02920949e-01 -7.12544680e-01 5.56552589e-01 1.27709007e+00 4.72497940e-01 5.88340998e-01 6.77552521e-01 9.28869769e-02 5.17871320e-01 4.48484391e-01 2.08113909e-01 1.07506551e-01 1.08483166e-01 1.14217520e-01 -2.17137560e-01 9.45900455e-02 -1.75644696e-01 4.44304377e-01 1.09980536e+00 -8.23837519e-01 -2.15223029e-01 -4.88283783e-01 6.68056428e-01 -1.69156313e+00 -1.31570101e+00 -6.70152605e-01 9.76623476e-01 3.78074080e-01 3.38884830e-01 1.58041969e-01 1.21232189e-01 5.47049284e-01 -4.76693302e-01 -1.27305150e-01 -9.16352808e-01 -3.82233024e-01 4.21136379e-01 7.14838982e-01 6.51479006e-01 -6.10602558e-01 5.08361042e-01 1.25505590e+01 5.49717486e-01 -5.10860123e-02 1.27314463e-01 3.14815581e-01 1.99914098e-01 -2.24020526e-01 1.62632689e-01 -1.04165065e+00 9.26906094e-02 1.64754760e+00 -4.36735392e-01 3.93212438e-01 6.44444764e-01 3.94769877e-01 -1.96429595e-01 -9.78620768e-01 5.21999180e-01 1.12709433e-01 -1.50397491e+00 -3.76861334e-01 9.64888573e-01 5.80093563e-01 -1.81895152e-01 6.81941509e-01 4.33209062e-01 7.39425182e-01 -1.14519978e+00 7.88427055e-01 3.18626672e-01 8.87266219e-01 -8.18826377e-01 1.07315242e+00 2.76328743e-01 -1.04355454e+00 1.15487054e-02 -5.90443075e-01 -9.22581375e-01 1.62244976e-01 2.02188566e-01 -5.61583102e-01 4.06869203e-01 6.19966745e-01 2.15250537e-01 -8.53338003e-01 1.45581341e+00 -4.29231405e-01 4.22687940e-02 -3.00976187e-01 -4.39922899e-01 4.83290881e-01 5.28384298e-02 3.26606274e-01 1.02295005e+00 2.89785862e-01 5.45581102e-01 -2.62208551e-01 2.92286038e-01 6.63503349e-01 5.84383309e-03 -1.38496268e+00 -8.68683681e-02 3.54620427e-01 9.69217539e-01 -3.99494410e-01 -3.56748998e-02 -6.11456513e-01 6.62115753e-01 -1.66942239e-01 5.75146377e-01 -2.92761147e-01 -8.89406264e-01 4.33969021e-01 -2.30117049e-02 -2.88469017e-01 -1.35338321e-01 -3.23372036e-01 -1.02459288e+00 -6.06416404e-01 -3.90122980e-01 7.32179061e-02 -8.63867998e-01 -1.79313409e+00 6.85844719e-01 -3.50327820e-01 -1.03178740e+00 -9.29034173e-01 -9.72984850e-01 -2.90242791e-01 6.67755604e-01 -6.59234166e-01 -1.30476952e+00 1.77773401e-01 4.65253919e-01 1.82401046e-01 -5.88519633e-01 1.09945750e+00 -1.42670095e-01 -3.18711132e-01 1.08882773e+00 3.51253241e-01 -3.05974871e-01 8.32965672e-01 -1.16271269e+00 4.23785180e-01 1.09189451e-02 -6.59259140e-01 1.28460062e+00 6.81860268e-01 -6.81785107e-01 -1.16639841e+00 -1.52893141e-01 1.38110602e+00 -9.15031374e-01 5.27874053e-01 -1.02810413e-01 1.46300867e-01 6.57190859e-01 9.07351732e-01 -5.09461224e-01 1.08935249e+00 -1.13616258e-01 4.93123859e-01 8.23448122e-01 -1.38805819e+00 5.99272728e-01 1.21222687e+00 -4.81854081e-01 -8.27020168e-01 3.28937650e-01 9.94227231e-01 -5.60786903e-01 -1.34066856e+00 6.99696779e-01 1.14132881e+00 -1.04883564e+00 1.54237401e+00 -1.16912270e+00 4.08816934e-01 1.70770600e-01 -2.18455836e-01 -6.52935803e-01 -5.24122715e-01 -8.07741940e-01 -3.97186369e-01 3.40213925e-01 8.64144087e-01 -1.16800272e+00 5.53630650e-01 1.39166510e+00 -3.58625412e-01 -4.51715857e-01 -8.63314152e-01 -1.06149745e+00 -4.66870656e-03 1.81816339e-01 3.85523647e-01 8.18638563e-01 7.09820271e-01 2.02331603e-01 -2.05201268e-01 -4.37674336e-02 6.59316301e-01 -4.87512946e-01 5.82342803e-01 -8.74011815e-01 2.49149442e-01 -3.85976404e-01 -2.94489831e-01 -2.90531307e-01 -3.26795012e-01 -4.87107635e-01 -8.59293997e-01 -1.53084815e+00 8.49664882e-02 1.97367743e-01 -2.33256146e-01 3.44385266e-01 6.77823246e-01 2.45789096e-01 -2.27382466e-01 1.17054820e-01 -1.86927155e-01 -9.06788632e-02 9.18564737e-01 1.10557920e-03 -2.17724726e-01 3.92412305e-01 -1.01716614e+00 9.60534811e-01 7.85404518e-02 -6.09580100e-01 -5.51487744e-01 1.64939865e-01 5.71885824e-01 3.57775450e-01 4.49405432e-01 -9.70509052e-01 9.87445056e-01 -4.32846308e-01 6.12257063e-01 -1.43385470e+00 -2.65485227e-01 -9.00021493e-01 3.61826897e-01 6.29400074e-01 4.08042461e-01 3.53796333e-01 2.26811334e-01 -9.13986787e-02 -2.01378226e-01 -6.44658387e-01 4.43001747e-01 -7.45609999e-01 -4.55086857e-01 -3.90635371e-01 -1.02313221e+00 -9.67486948e-03 7.88939476e-01 -4.61360693e-01 -6.47767961e-01 -1.95199717e-02 -1.44608676e+00 7.30553791e-02 8.33678424e-01 1.34732248e-02 6.98022604e-01 -1.44444084e+00 -1.11748077e-01 6.18802965e-01 -5.42432606e-01 -4.98194307e-01 2.20674574e-01 1.06156552e+00 -1.31528914e+00 1.26915324e+00 -5.21896303e-01 -2.05424115e-01 -8.96585643e-01 7.19095051e-01 3.15837234e-01 1.75098896e-01 -3.93049836e-01 7.00151443e-01 1.12239346e-02 -6.58594191e-01 1.24011397e-01 2.97559589e-01 -4.87763733e-01 -2.52128989e-01 9.22277749e-01 1.17918742e+00 1.32526740e-01 -3.91715407e-01 -5.58191121e-01 4.39446121e-01 2.08604142e-01 -6.12734079e-01 1.38662541e+00 -2.20989168e-01 -7.44191706e-01 5.00318348e-01 7.50003338e-01 -7.33495504e-02 -3.28966863e-02 1.27011871e+00 4.80256975e-03 -5.47239244e-01 -3.11336160e-01 -7.82959402e-01 -3.42039734e-01 5.93214929e-01 6.17733955e-01 4.59080935e-01 9.69997942e-01 -6.47576571e-01 7.70057857e-01 7.64313757e-01 7.83133745e-01 -1.22997761e+00 -6.36951804e-01 3.69483382e-01 9.39836800e-01 -9.30032432e-01 1.30400375e-01 -3.14221263e-01 -5.55534840e-01 1.08689797e+00 5.38173854e-01 -1.62142932e-01 1.17091513e+00 6.96656525e-01 -1.75611794e-01 -4.53250527e-01 -1.04549897e+00 9.83817875e-02 2.10727617e-01 1.32608259e+00 8.26061428e-01 1.41275764e-01 -1.40426433e+00 8.46834600e-01 -6.34404242e-01 4.76996809e-01 9.47268784e-01 1.55018985e+00 -5.12773991e-01 -1.41692734e+00 -4.41162825e-01 2.31142953e-01 -2.82854587e-01 -3.49930972e-01 -8.62966061e-01 1.09929097e+00 1.97083559e-02 1.37330377e+00 -4.48758155e-01 -4.63731140e-01 8.27405751e-01 3.19600284e-01 4.41484600e-01 -1.25142381e-01 -8.94688129e-01 6.48750722e-01 3.84649158e-01 -1.05672014e+00 -7.94483483e-01 -1.27049911e+00 -1.08188879e+00 -1.16740942e+00 -3.07217389e-01 4.65777248e-01 2.31674016e-01 3.19533348e-01 -2.09303293e-02 1.56313553e-03 6.67447627e-01 -1.00111675e+00 -1.97397545e-01 -6.07395887e-01 -1.20775104e+00 -5.56946039e-01 3.94425273e-01 -5.85869551e-01 -1.15223050e+00 -6.24734610e-02]
[-1.5392378568649292, 15.86925220489502]
121133fe-1d27-497e-af07-a205ca29d3e5
structure-aware-incremental-learning-with
2305.01204
null
https://arxiv.org/abs/2305.01204v1
https://arxiv.org/pdf/2305.01204v1.pdf
Structure Aware Incremental Learning with Personalized Imitation Weights for Recommender Systems
Recommender systems now consume large-scale data and play a significant role in improving user experience. Graph Neural Networks (GNNs) have emerged as one of the most effective recommender system models because they model the rich relational information. The ever-growing volume of data can make training GNNs prohibitively expensive. To address this, previous attempts propose to train the GNN models incrementally as new data blocks arrive. Feature and structure knowledge distillation techniques have been explored to allow the GNN model to train in a fast incremental fashion while alleviating the catastrophic forgetting problem. However, preserving the same amount of the historical information for all users is sub-optimal since it fails to take into account the dynamics of each user's change of preferences. For the users whose interests shift substantially, retaining too much of the old knowledge can overly constrain the model, preventing it from quickly adapting to the users' novel interests. In contrast, for users who have static preferences, model performance can benefit greatly from preserving as much of the user's long-term preferences as possible. In this work, we propose a novel training strategy that adaptively learns personalized imitation weights for each user to balance the contribution from the recent data and the amount of knowledge to be distilled from previous time periods. We demonstrate the effectiveness of learning imitation weights via a comparison on five diverse datasets for three state-of-art structure distillation based recommender systems. The performance shows consistent improvement over competitive incremental learning techninques.
['Mark Coates', 'Jianye Hao', 'Chen Ma', 'Ruiming Tang', 'Antonios Valkanas', 'Yingxue Zhang', 'Yuening Wang']
2023-05-02
null
null
null
null
['incremental-learning']
['methodology']
[-2.75485992e-01 1.73015505e-01 -4.59245265e-01 -1.59016132e-01 8.68990049e-02 -5.03976166e-01 3.44423860e-01 2.12799147e-01 -3.97370458e-01 6.63043559e-01 4.84630525e-01 -1.12198986e-01 -3.86845887e-01 -1.01543605e+00 -6.30101025e-01 -3.81208628e-01 -1.68922961e-01 6.66346312e-01 3.34108531e-01 -8.14047635e-01 1.85210761e-02 5.10510921e-01 -1.57850862e+00 -4.28208383e-03 1.21845210e+00 6.66070044e-01 3.74728471e-01 3.61602336e-01 -1.76525712e-01 7.28361905e-01 -2.05839053e-01 -3.08277100e-01 4.56687242e-01 -2.65521824e-01 -4.81740236e-01 -3.16862494e-01 3.57540816e-01 -4.42983270e-01 -9.22002077e-01 6.52087033e-01 4.04360563e-01 8.10384929e-01 1.54963508e-01 -9.22505021e-01 -1.10045385e+00 1.00600100e+00 -2.15905666e-01 1.86937213e-01 2.00881109e-01 -1.25355870e-01 9.96065497e-01 -6.08690202e-01 7.47556984e-01 9.94752526e-01 6.78420246e-01 7.48917937e-01 -1.29640996e+00 -5.04989803e-01 7.17801332e-01 2.46830255e-01 -1.04470575e+00 -2.25564703e-01 8.22055578e-01 -1.13469819e-02 9.11562920e-01 2.85031974e-01 1.07185125e+00 1.03843224e+00 1.38318548e-02 7.50743151e-01 3.39807004e-01 -7.42988363e-02 1.29437387e-01 2.60560930e-01 1.89780518e-01 4.77067173e-01 2.72266477e-01 1.30808741e-01 -5.88303864e-01 -2.53021240e-01 6.90318227e-01 5.98917305e-01 -2.25369260e-01 -6.39204204e-01 -5.41857898e-01 7.14704394e-01 8.16052973e-01 5.10617554e-01 -5.67688107e-01 2.80829594e-02 1.35229439e-01 7.60603011e-01 4.30929780e-01 7.18318880e-01 -6.93001509e-01 -2.47627124e-01 -7.20309079e-01 1.49136409e-01 9.77505803e-01 9.18340683e-01 7.11267292e-01 2.31374279e-01 -7.29731396e-02 1.02566636e+00 8.50909799e-02 1.75931111e-01 7.42348135e-01 -8.26436758e-01 7.89630488e-02 9.35596049e-01 -3.25721763e-02 -1.08414018e+00 -3.04425895e-01 -8.98181498e-01 -8.42988849e-01 -1.68959469e-01 1.71461686e-01 -3.09153259e-01 -9.17991817e-01 1.93040955e+00 2.92196214e-01 2.25503877e-01 -1.90113574e-01 5.28605461e-01 4.86918151e-01 6.37295902e-01 -1.67112127e-01 -2.55311906e-01 6.78808928e-01 -9.81556654e-01 -2.60050774e-01 -8.56939554e-02 3.83784026e-01 -4.17417407e-01 9.80483472e-01 3.14740807e-01 -9.52920079e-01 -6.17476761e-01 -8.01773906e-01 1.22285023e-01 -3.26281339e-01 -4.83636051e-01 7.25534439e-01 4.94794667e-01 -1.12815833e+00 1.13017595e+00 -7.35349119e-01 -5.06254673e-01 2.71054745e-01 8.46515238e-01 1.51763391e-03 -2.43990794e-01 -1.37290955e+00 7.92587101e-01 1.87428892e-01 -8.93171653e-02 -5.83573461e-01 -1.12215209e+00 -2.67860711e-01 5.08354247e-01 7.10730731e-01 -7.94724405e-01 1.20663345e+00 -1.09937572e+00 -1.55042434e+00 -1.79420292e-01 2.27913469e-01 -5.08764386e-01 3.99949551e-01 -2.06380352e-01 -5.45414865e-01 -4.21050727e-01 -4.86650705e-01 3.34289879e-01 7.43334115e-01 -1.02189553e+00 -6.63813949e-01 -1.77810356e-01 4.49223250e-01 5.17867982e-01 -8.71857584e-01 -5.82649469e-01 -6.54878676e-01 -5.98596811e-01 -1.12179607e-01 -1.17375684e+00 -4.79873508e-01 -1.21598668e-01 2.39854485e-01 -1.80078864e-01 6.49413705e-01 -4.35128808e-01 1.56309986e+00 -1.94600201e+00 3.32225978e-01 4.31929469e-01 4.45455790e-01 5.79979897e-01 -4.19167727e-01 6.97902083e-01 3.56730074e-01 1.82548855e-02 3.06520253e-01 -1.78551793e-01 -2.18534306e-01 6.20651782e-01 -1.38514712e-01 -1.70953900e-01 -4.99792099e-01 9.80366766e-01 -1.09954000e+00 2.54367918e-01 -1.08559944e-01 5.30293226e-01 -1.08126128e+00 1.69853076e-01 -3.20116341e-01 2.01292902e-01 -3.78975600e-01 1.37163490e-01 3.38063419e-01 -4.12518799e-01 5.02069890e-01 -6.27797246e-02 2.61700541e-01 1.68825537e-01 -1.11122811e+00 1.42036915e+00 -6.36683524e-01 2.18792796e-01 -6.81817010e-02 -7.62807250e-01 7.04377115e-01 1.54798716e-01 7.35909343e-01 -9.24758434e-01 -1.96252465e-01 -7.00077713e-02 3.31922501e-01 -1.30065605e-01 7.40138233e-01 -3.32119092e-02 6.73322752e-02 5.71984589e-01 7.39785209e-02 3.44378710e-01 2.39473298e-01 6.11619771e-01 1.14877403e+00 -1.02243535e-01 9.33121666e-02 -5.25127798e-02 2.75743157e-01 -2.56722540e-01 7.79218554e-01 9.40925121e-01 1.57304659e-01 2.26630017e-01 9.04717371e-02 -5.85382342e-01 -8.83949518e-01 -8.61042619e-01 5.94708502e-01 1.52240956e+00 8.26071948e-02 -5.62252820e-01 -3.34207386e-01 -7.44404376e-01 3.95026714e-01 8.15334857e-01 -7.48872042e-01 -6.56243384e-01 -6.12221897e-01 -5.47559202e-01 5.30046597e-03 5.08666515e-01 2.94870943e-01 -9.71914649e-01 -2.25680202e-01 6.19744003e-01 6.50625303e-02 -4.32452917e-01 -8.59712839e-01 -6.13358393e-02 -1.07497418e+00 -7.88240075e-01 -5.92406392e-01 -4.05569345e-01 7.42355168e-01 6.89972460e-01 1.10546136e+00 4.64554995e-01 8.73365626e-02 6.08330905e-01 -4.21703696e-01 -8.65743607e-02 -3.39781135e-01 4.76787359e-01 4.77050722e-01 -1.40007600e-01 9.05584469e-02 -1.10476887e+00 -7.74509490e-01 2.89962709e-01 -7.53604650e-01 -2.25134250e-02 4.49235290e-01 7.94806719e-01 3.43128532e-01 1.78007782e-01 7.82354474e-01 -1.47658753e+00 9.75638390e-01 -7.34705985e-01 -2.90793002e-01 4.07013386e-01 -1.45229816e+00 2.36912087e-01 1.13782573e+00 -9.91524458e-01 -1.17581689e+00 -2.36854374e-01 3.22610848e-02 -3.94339919e-01 5.34038305e-01 7.73974955e-01 1.92251325e-01 -7.48461112e-02 6.81808650e-01 1.15522556e-01 -1.29118925e-02 -7.36843050e-01 7.93129683e-01 2.77968168e-01 3.30867052e-01 -6.60700858e-01 8.03325593e-01 6.51445389e-02 -3.93913180e-01 -7.06482947e-01 -6.90036416e-01 -5.10586619e-01 -4.38805312e-01 -1.21288121e-01 9.58876461e-02 -6.46560371e-01 -6.04126275e-01 1.81438431e-01 -4.61822093e-01 -4.04312044e-01 -7.21469045e-01 2.39862621e-01 -1.23459883e-01 2.88385600e-01 -5.17459035e-01 -4.95233953e-01 -5.62221646e-01 -6.06105745e-01 -1.64512262e-01 5.74019015e-01 -1.79731980e-01 -1.06910634e+00 2.83801526e-01 6.02050778e-03 1.01075232e+00 -1.75249800e-01 9.48193192e-01 -7.62531996e-01 -5.05445778e-01 -3.21238577e-01 2.45248862e-02 1.78867429e-01 3.49012166e-01 -1.41839162e-01 -4.37561661e-01 -6.92327261e-01 -3.09345901e-01 7.47085437e-02 7.54070103e-01 6.19599894e-02 7.99566209e-01 -6.00135505e-01 -4.10138905e-01 3.41879010e-01 1.29727769e+00 3.42368513e-01 3.17980617e-01 -1.72759313e-02 9.12898362e-01 2.72129685e-01 2.24164218e-01 4.44320619e-01 6.10389829e-01 5.53073645e-01 3.22313160e-01 9.25535858e-02 -2.17872307e-01 -6.72154248e-01 2.98043281e-01 1.06834233e+00 -4.07960773e-01 -3.31098258e-01 -4.79617208e-01 3.63569707e-01 -2.22882009e+00 -1.06883168e+00 4.01747853e-01 2.41827798e+00 6.76359832e-01 2.37162203e-01 3.16759616e-01 -4.26957726e-01 2.96566188e-01 5.39823249e-02 -1.03468907e+00 -2.83907592e-01 2.15107918e-01 1.27221584e-01 4.86031324e-01 4.40296531e-01 -3.49377215e-01 9.49132800e-01 6.13854170e+00 4.54855978e-01 -1.02996802e+00 2.63892077e-02 2.88620442e-01 -6.05811357e-01 -6.32597029e-01 1.34885043e-01 -5.71063578e-01 5.07205725e-01 1.25436366e+00 -5.89178801e-01 1.03408206e+00 8.78821135e-01 1.43680066e-01 7.49621242e-02 -9.97284651e-01 7.46022046e-01 -4.50167023e-02 -1.43802488e+00 2.68621802e-01 1.49567217e-01 9.22560871e-01 3.46378118e-01 1.54776409e-01 8.04608107e-01 8.16910565e-01 -5.62109351e-01 3.56234372e-01 8.55201542e-01 3.32979709e-01 -8.71053755e-01 3.56184036e-01 5.98196387e-01 -1.15966916e+00 -5.49678266e-01 -4.82025951e-01 -1.85306311e-01 7.39169121e-02 4.12716925e-01 -6.90225661e-01 5.11147857e-01 6.71792805e-01 7.14766622e-01 -6.51317477e-01 9.82064009e-01 4.39053252e-02 7.04248309e-01 -4.67402935e-01 -5.93426190e-02 1.79777220e-01 -3.57799798e-01 4.57154453e-01 5.26518822e-01 5.13039470e-01 3.58842283e-01 2.69690573e-01 4.18213278e-01 -5.21196008e-01 1.86564833e-01 -6.34873986e-01 -1.90818399e-01 6.05967641e-01 1.08666992e+00 -3.77863169e-01 -4.03707534e-01 -5.81542373e-01 9.32407558e-01 6.80276752e-01 3.82858634e-01 -4.24068451e-01 -2.94740889e-02 7.20470905e-01 5.48066199e-01 4.18411165e-01 -2.43063867e-01 2.42803514e-01 -1.21868551e+00 -2.33753935e-01 -8.18716049e-01 5.65225363e-01 -3.73716265e-01 -1.32033634e+00 5.13260067e-01 -1.98646754e-01 -9.56765592e-01 -2.96602696e-01 -5.87675162e-03 -6.42150760e-01 5.63751578e-01 -1.30186951e+00 -1.03395581e+00 -1.30852878e-01 5.72027385e-01 5.66210449e-01 -3.33591044e-01 6.96861386e-01 4.04270858e-01 -5.24702311e-01 8.22528183e-01 5.48436880e-01 -3.69367868e-01 6.75983787e-01 -1.14880967e+00 4.19806540e-01 6.53567433e-01 3.01727861e-01 1.03820074e+00 6.46119654e-01 -7.92860985e-01 -1.58207929e+00 -8.92359734e-01 6.52682483e-01 -2.47539714e-01 5.22191465e-01 -1.93203583e-01 -1.21966231e+00 5.94217658e-01 8.08087736e-03 -1.32328704e-01 7.58831978e-01 6.99397683e-01 -4.05261129e-01 -3.97664011e-01 -9.97538805e-01 8.06337416e-01 1.32873619e+00 -2.28965014e-01 -3.43104661e-01 -3.55444252e-02 7.38048673e-01 -2.30321616e-01 -9.90625679e-01 1.72978297e-01 8.52667272e-01 -7.29016364e-01 9.54978108e-01 -7.40823805e-01 -5.48696220e-02 5.21736394e-04 1.68474764e-01 -1.59918189e+00 -8.67845595e-01 -1.01611817e+00 -7.63733506e-01 1.05878592e+00 4.59993899e-01 -7.12883949e-01 9.68928397e-01 1.15923023e+00 7.64495283e-02 -8.62470865e-01 -3.80524218e-01 -7.77116239e-01 -9.14109126e-02 7.87275434e-02 8.30450356e-01 9.07981336e-01 2.23906174e-01 6.19165123e-01 -8.54539931e-01 -2.82919168e-01 2.94272065e-01 1.51801273e-01 7.48344779e-01 -1.64442718e+00 -6.26621187e-01 -3.34083468e-01 1.56896681e-01 -1.31274617e+00 -2.49421641e-01 -9.68770742e-01 -4.48080927e-01 -1.65041351e+00 1.35246545e-01 -6.61017895e-01 -8.58384788e-01 5.81999183e-01 -2.66621917e-01 -1.42654404e-01 3.49948376e-01 3.72988462e-01 -6.57227278e-01 5.43207049e-01 1.30829549e+00 -5.84003665e-02 -8.29822958e-01 4.05189961e-01 -1.22622073e+00 4.07066524e-01 7.97442973e-01 -4.87695813e-01 -1.16974163e+00 -3.25034112e-01 6.12756371e-01 -8.00154805e-02 -4.62087840e-01 -8.14363003e-01 5.66737056e-01 -3.41610909e-01 3.49725842e-01 -2.75861382e-01 2.46904358e-01 -1.00701594e+00 5.31613708e-01 4.42766160e-01 -2.32743561e-01 1.87543973e-01 7.13055059e-02 1.04533219e+00 2.47142375e-01 6.49218857e-02 6.24093473e-01 -2.64877617e-01 -6.83641493e-01 7.61658251e-01 -3.89780968e-01 -1.99445784e-01 8.02834332e-01 -2.03083798e-01 -4.34544235e-02 -7.09244788e-01 -8.99112165e-01 5.62743485e-01 5.89329839e-01 8.73949468e-01 5.21470189e-01 -1.25661504e+00 -2.87138969e-01 2.32461601e-01 -3.01082544e-02 -3.09299648e-01 5.47974765e-01 4.91444975e-01 5.19094951e-02 1.26526028e-01 -2.81601042e-01 1.57677189e-01 -1.15936148e+00 9.22670484e-01 2.44155914e-01 -6.22093976e-01 -6.59358859e-01 6.23944938e-01 -1.79644078e-01 -4.37462956e-01 2.25422680e-01 -1.99574172e-01 -3.37617844e-01 1.93076268e-01 2.96445698e-01 5.40698588e-01 -1.27637386e-01 -1.98778421e-01 8.49306434e-02 1.59825504e-01 -8.04152548e-01 2.24758744e-01 1.74934745e+00 -2.51693308e-01 1.10346258e-01 2.70107150e-01 7.59410918e-01 2.60641072e-02 -1.28627610e+00 -7.22981334e-01 -1.73853964e-01 -4.23335612e-01 1.20483991e-02 -8.60167325e-01 -1.17995512e+00 4.52246577e-01 3.81911486e-01 3.30460668e-01 9.64654446e-01 -3.39419365e-01 1.09091341e+00 6.66367650e-01 5.42592168e-01 -1.39104617e+00 2.61159241e-01 5.99124134e-01 5.94049811e-01 -9.04150426e-01 2.30899468e-01 1.06270090e-01 -5.75200796e-01 9.44852591e-01 7.17752755e-01 -2.12186679e-01 9.57499444e-01 -3.42303425e-01 -2.97819763e-01 -1.48505401e-02 -1.03543937e+00 -8.55655521e-02 3.62407148e-01 4.84806240e-01 2.02507600e-01 1.16600662e-01 -2.62016147e-01 5.99790215e-01 -3.51773761e-02 1.13343615e-02 5.07284701e-01 8.29822838e-01 -4.76771176e-01 -1.57916462e+00 3.95445704e-01 9.82399404e-01 -3.86160873e-02 -6.82639927e-02 -2.80096799e-01 6.25680864e-01 -4.19478975e-02 6.69506967e-01 -2.48040318e-01 -7.03377903e-01 5.45385122e-01 1.37413305e-03 4.43259865e-01 -8.06691885e-01 -7.58901358e-01 -6.80855736e-02 6.82173148e-02 -5.35920203e-01 1.31281326e-03 -5.14898837e-01 -1.17381036e+00 -7.70999670e-01 -3.18667293e-01 3.03981960e-01 1.98091075e-01 6.63782835e-01 7.81603813e-01 5.41456282e-01 7.10225880e-01 -5.62599838e-01 -7.69389272e-01 -7.35613704e-01 -4.65364069e-01 4.44953650e-01 1.45015255e-01 -7.13294387e-01 -1.83351841e-02 -3.58314127e-01]
[10.138126373291016, 5.589784622192383]
089b219e-e384-4bf7-a24e-f67ef3fa1c72
the-art-of-transfer-learning-an-adaptive-and
2305.00520
null
https://arxiv.org/abs/2305.00520v1
https://arxiv.org/pdf/2305.00520v1.pdf
The ART of Transfer Learning: An Adaptive and Robust Pipeline
Transfer learning is an essential tool for improving the performance of primary tasks by leveraging information from auxiliary data resources. In this work, we propose Adaptive Robust Transfer Learning (ART), a flexible pipeline of performing transfer learning with generic machine learning algorithms. We establish the non-asymptotic learning theory of ART, providing a provable theoretical guarantee for achieving adaptive transfer while preventing negative transfer. Additionally, we introduce an ART-integrated-aggregating machine that produces a single final model when multiple candidate algorithms are considered. We demonstrate the promising performance of ART through extensive empirical studies on regression, classification, and sparse learning. We further present a real-data analysis for a mortality study.
['Chenglong Ye', 'Yunan Wu', 'Boxiang Wang']
2023-04-30
null
null
null
null
['sparse-learning']
['methodology']
[ 2.94449806e-01 5.15967682e-02 -6.92981303e-01 -3.27985644e-01 -1.63865077e+00 -4.10169721e-01 4.10900712e-01 -4.39663120e-02 -3.13309669e-01 9.42592442e-01 4.53431308e-02 -4.63307619e-01 -3.08313429e-01 -3.92635584e-01 -1.29396141e+00 -5.75733125e-01 -4.83962059e-01 5.25086522e-01 -1.08830519e-01 9.86874476e-02 -2.25101574e-03 2.59587079e-01 -9.33149636e-01 6.88388050e-01 9.04463530e-01 1.05859101e+00 -2.83879995e-01 6.78033590e-01 3.81690234e-01 8.37712824e-01 -2.21591428e-01 -5.66813648e-01 4.98308182e-01 -4.98788834e-01 -6.83587790e-01 -1.87938660e-01 6.70976102e-01 -3.79403770e-01 -2.11367980e-01 7.28148043e-01 6.98335767e-01 1.18075639e-01 1.12387133e+00 -1.54598916e+00 -5.90925872e-01 6.94603503e-01 -6.02201045e-01 2.54856914e-01 -9.89591554e-02 1.22447006e-01 1.03416049e+00 -1.23083508e+00 2.54567176e-01 1.19008553e+00 1.17340577e+00 7.18164623e-01 -1.22301435e+00 -1.03954196e+00 -1.00902148e-01 2.26167843e-01 -1.21801674e+00 -5.42011678e-01 5.76022923e-01 -6.79905534e-01 6.47496343e-01 2.24957466e-01 2.31587902e-01 1.21985340e+00 2.18072489e-01 1.24185538e+00 9.74059939e-01 -4.58594322e-01 3.55955333e-01 2.19225869e-01 1.90862954e-01 8.90058339e-01 1.18040100e-01 1.74044743e-01 -1.10155261e+00 -5.52668691e-01 6.53944314e-01 7.76159614e-02 -1.60649732e-01 -6.02449536e-01 -9.91903245e-01 8.82217526e-01 5.43453872e-01 -1.76982477e-01 -3.50285947e-01 2.08133280e-01 4.87019747e-01 6.28883064e-01 9.46978509e-01 1.15245610e-01 -8.72372687e-01 1.09871522e-01 -8.97108972e-01 -1.23137921e-01 7.60903418e-01 1.04927611e+00 7.78604686e-01 -1.09904252e-01 -5.64461589e-01 6.59119189e-01 -1.06982067e-01 6.77945197e-01 2.85005540e-01 -9.23581719e-01 5.22878349e-01 4.79715824e-01 -2.33207140e-02 -4.11905885e-01 -4.76268053e-01 -8.02690744e-01 -1.16372728e+00 -8.06491226e-02 2.02106073e-01 -2.91183472e-01 -4.89454776e-01 1.73143828e+00 2.25816265e-01 5.81231296e-01 -5.79938143e-02 4.59039867e-01 3.06718439e-01 2.23193601e-01 1.76479951e-01 -3.95349473e-01 1.00727141e+00 -1.15449810e+00 -4.81318057e-01 -1.55528143e-01 8.94957602e-01 -2.29194582e-01 1.08636498e+00 4.26527351e-01 -1.04195356e+00 -2.54673690e-01 -7.33820975e-01 2.23457515e-02 -4.33252975e-02 3.10190946e-01 7.49021411e-01 4.59127069e-01 -8.84830236e-01 6.79813623e-01 -1.03086078e+00 -2.02065900e-01 1.00114632e+00 5.34756839e-01 -4.46188062e-01 -5.67442775e-02 -7.75933266e-01 7.29081690e-01 -6.55495524e-02 -2.56214172e-01 -1.05757809e+00 -1.39523089e+00 -5.59241772e-01 1.94851637e-01 1.13876693e-01 -1.10873663e+00 1.45857811e+00 -1.02436972e+00 -1.33798242e+00 8.76730025e-01 -1.31487668e-01 -8.08062196e-01 8.83162916e-01 -7.80065835e-01 1.00086238e-02 1.81665331e-01 9.53376107e-03 3.84851247e-01 1.19685566e+00 -8.59941840e-01 -6.52851284e-01 -4.31682229e-01 -4.50779229e-01 1.05295420e-01 -9.34145212e-01 -2.28010509e-02 -1.63009018e-01 -7.34432399e-01 -6.33084655e-01 -1.06462407e+00 -1.15369514e-01 3.07620138e-01 -8.48875344e-02 -4.16817546e-01 4.07675833e-01 -5.05542874e-01 1.05983031e+00 -2.34546280e+00 3.66536736e-01 6.34751050e-03 2.95339108e-01 1.88824996e-01 -2.36952841e-01 2.26072565e-01 1.15985528e-01 4.40057404e-02 -4.30578560e-01 -4.81221855e-01 -1.59661308e-01 -5.71830943e-02 -4.64086354e-01 6.70047224e-01 3.24642777e-01 1.14482641e+00 -9.78529215e-01 -5.14819920e-01 -2.26713009e-02 2.70811558e-01 -8.97134960e-01 4.46875393e-01 2.86638010e-02 5.14185548e-01 -4.77988571e-01 6.02948666e-01 3.84548217e-01 -6.28801823e-01 -3.30256857e-02 5.73483780e-02 4.97076988e-01 -4.90352064e-02 -6.57370508e-01 1.79766858e+00 -6.80543065e-01 3.90795767e-01 3.25872958e-01 -1.01122892e+00 5.23361683e-01 1.81922376e-01 5.04739761e-01 -3.14572662e-01 -3.31995375e-02 4.25377190e-01 -3.01972538e-01 -2.47263923e-01 -1.17955662e-01 -1.04847714e-01 -1.02611549e-01 5.30889571e-01 2.80994117e-01 2.76132554e-01 -3.36227357e-01 2.17681855e-01 1.45991349e+00 -1.54249789e-02 3.68680835e-01 -4.67212498e-01 2.41491675e-01 -1.66783258e-01 3.88357282e-01 1.07643449e+00 -3.36450934e-01 2.53617018e-01 2.50529081e-01 -4.32444632e-01 -7.30820239e-01 -1.30447817e+00 -1.59114718e-01 1.78168881e+00 -4.23986971e-01 -1.88042715e-01 -5.76758802e-01 -1.14188659e+00 2.29949966e-01 4.07498062e-01 -1.15414107e+00 -6.12014115e-01 -4.56237465e-01 -8.77427459e-01 5.54873526e-01 6.48078859e-01 1.45623788e-01 -6.29614353e-01 -2.24353686e-01 -7.77264461e-02 -1.04445353e-01 -7.90086448e-01 -8.32546890e-01 4.27109599e-01 -1.16313899e+00 -1.13569152e+00 -6.85979247e-01 -7.69873559e-01 6.26493275e-01 3.49884838e-01 1.22630548e+00 -3.92095335e-02 -1.85679451e-01 4.79702711e-01 -1.93676353e-01 -5.22959650e-01 -3.22109580e-01 6.07812822e-01 2.75692791e-01 9.46529955e-02 1.86768875e-01 -5.37525117e-01 -7.47487128e-01 1.52337864e-01 -5.98802328e-01 -8.36356357e-03 1.01962507e+00 1.06803405e+00 4.76204753e-01 -5.65271914e-01 1.09061372e+00 -1.08838987e+00 5.06002009e-01 -1.00512648e+00 -4.24335629e-01 4.44377363e-01 -7.23824322e-01 2.21623823e-01 5.30169666e-01 -5.51672935e-01 -8.80751431e-01 1.85057387e-01 3.27482224e-01 -8.23531330e-01 3.11167568e-01 3.19659293e-01 2.75659025e-01 7.27632195e-02 1.12527239e+00 3.12036008e-01 1.17532901e-01 -5.59746087e-01 4.85722810e-01 7.15581119e-01 5.72800934e-01 -8.76869261e-01 8.62419665e-01 4.75522697e-01 1.49956971e-01 -3.57728124e-01 -1.39055216e+00 -5.45042813e-01 -7.61078238e-01 -3.65196168e-02 3.31163287e-01 -1.26036274e+00 -4.91828084e-01 1.97497159e-01 -7.52633870e-01 -8.48232150e-01 -3.14310759e-01 5.48044860e-01 -9.32863176e-01 -1.46501854e-01 -6.68481708e-01 -6.87092900e-01 -9.17288244e-01 -6.75826371e-01 1.22112823e+00 -3.75623971e-01 -4.11229096e-02 -1.17154646e+00 2.38590717e-01 2.59733051e-01 4.51996386e-01 -1.03252411e-01 8.04769635e-01 -9.21287119e-01 -3.97563130e-01 -2.09022537e-02 -1.71982422e-01 4.38396156e-01 1.54952362e-01 -4.05332565e-01 -9.68146443e-01 -7.45690584e-01 -3.75599176e-01 -7.74218976e-01 1.21703041e+00 3.00489873e-01 1.34073484e+00 -6.45023286e-01 -4.25153375e-01 9.19465601e-01 1.17892027e+00 -5.21341622e-01 1.96851805e-01 2.22604588e-01 4.96044755e-01 3.63203704e-01 5.50002813e-01 6.33444428e-01 1.28505901e-01 2.35526785e-01 -3.42664681e-02 -1.69245601e-01 -2.71304905e-01 -3.45536798e-01 5.92417836e-01 7.38760471e-01 1.07310779e-01 1.82406053e-01 -8.82162273e-01 4.70180422e-01 -2.13293362e+00 -7.54549861e-01 8.35188702e-02 2.23330927e+00 1.15503120e+00 -8.40651244e-03 2.33190134e-01 -7.89241493e-02 5.26662171e-01 -5.94241679e-01 -8.46402347e-01 2.27234308e-02 1.43866017e-01 5.87078094e-01 5.15947104e-01 1.70731291e-01 -1.32538950e+00 8.81104052e-01 7.80881071e+00 1.04632723e+00 -9.09913898e-01 3.71976316e-01 5.78248799e-01 -3.09563577e-01 6.67401031e-02 -5.56095362e-01 -5.33578038e-01 2.94620544e-01 1.23135126e+00 -4.18061793e-01 5.15541255e-01 1.03950763e+00 -3.00468095e-02 4.43252891e-01 -1.50311685e+00 7.26383030e-01 -5.22030443e-02 -1.32852411e+00 2.60946065e-01 -2.08585918e-01 9.85826850e-01 4.77856666e-01 4.94967312e-01 7.55142689e-01 5.53884983e-01 -8.92129540e-01 4.23056483e-01 3.44013840e-01 1.09121609e+00 -7.94486403e-01 3.97120059e-01 5.01260638e-01 -7.38049328e-01 -2.24457160e-01 -2.06052899e-01 -5.77613264e-02 -5.42179048e-01 5.38816333e-01 -9.93999779e-01 6.17377639e-01 7.34807134e-01 9.26357985e-01 -6.05067968e-01 1.01552105e+00 -5.23968562e-02 1.12484241e+00 -1.95548594e-01 3.32956642e-01 -1.97480321e-01 1.89291134e-01 2.36133307e-01 1.43942869e+00 3.42166185e-01 -9.51389298e-02 1.27706915e-01 6.20057046e-01 -6.91356301e-01 4.25669640e-01 -7.25022614e-01 3.63809973e-01 6.23025596e-01 1.29666770e+00 -2.36026332e-01 -2.94203848e-01 -5.23468316e-01 9.71777141e-01 7.40746140e-01 1.98299065e-01 -7.81317472e-01 1.63693391e-02 4.43247885e-01 -1.14197947e-01 2.82146424e-01 4.48896661e-02 -3.42936665e-01 -1.31202030e+00 -1.28425002e-01 -9.19932723e-01 1.03091490e+00 -4.86935526e-01 -1.89773607e+00 2.70493835e-01 -1.58520386e-01 -1.40592933e+00 -1.90884769e-01 -5.42344451e-01 -4.86362994e-01 5.98480105e-01 -1.61765087e+00 -1.40101123e+00 -6.03597276e-02 8.61407578e-01 4.77474868e-01 -5.45356035e-01 9.05597448e-01 3.00260365e-01 -6.36848986e-01 1.16672075e+00 4.74165410e-01 8.75246990e-03 1.24926257e+00 -1.35028958e+00 -4.05748524e-02 5.02681732e-01 -1.07861590e-02 4.62185889e-01 3.74543756e-01 -4.09455180e-01 -1.71027040e+00 -1.68751872e+00 2.21348509e-01 -7.80898273e-01 9.71705258e-01 -3.22461724e-01 -9.24482942e-01 1.04977381e+00 -9.34547260e-02 3.35620850e-01 1.19482374e+00 5.16691744e-01 -8.09053302e-01 -2.27220774e-01 -1.17727458e+00 1.54013053e-01 1.04875445e+00 -5.90822220e-01 -6.46095991e-01 5.80790460e-01 8.08529973e-01 -1.42365634e-01 -1.04247212e+00 6.19189441e-01 5.06640434e-01 -4.34216619e-01 9.31686759e-01 -1.07460082e+00 6.26038492e-01 3.22234213e-01 -1.22489788e-01 -1.46134675e+00 -3.99268538e-01 -9.56736028e-01 -7.94831216e-01 9.55168664e-01 4.86188889e-01 -4.52373773e-01 8.38828743e-01 3.00958037e-01 -5.21142408e-02 -6.18449330e-01 -1.02219141e+00 -1.22646010e+00 7.65504301e-01 -3.70196372e-01 7.42965788e-02 1.10220110e+00 8.71098265e-02 5.20266175e-01 -6.30587876e-01 5.17589487e-02 1.01994646e+00 -4.38167155e-02 8.01901042e-01 -1.23648572e+00 -5.54459453e-01 -3.34070653e-01 1.41767533e-02 -6.62108362e-01 5.75855911e-01 -1.43138742e+00 -2.48075034e-02 -1.11214459e+00 7.96785355e-01 -4.37181771e-01 -8.35932076e-01 8.02856326e-01 -4.87198204e-01 2.80058622e-01 -1.46640375e-01 5.80802739e-01 -1.02213240e+00 6.63491845e-01 9.36701715e-01 -1.09594546e-01 -1.40787423e-01 2.87777275e-01 -7.00406432e-01 5.91592073e-01 9.58364546e-01 -6.87386632e-01 -2.58774042e-01 -4.26986784e-01 1.49637848e-01 -4.94660586e-02 2.74740219e-01 -7.40164161e-01 2.19594270e-01 -8.71632174e-02 2.80579180e-01 -2.43286535e-01 3.37472297e-02 -6.76440418e-01 -4.44752157e-01 7.55275786e-01 -8.35463583e-01 -1.64648354e-01 3.38989019e-01 9.11624849e-01 2.55079836e-01 3.16847622e-01 8.29422414e-01 3.05934012e-01 -1.98295742e-01 6.45488799e-01 1.70012761e-03 3.22687387e-01 1.02413666e+00 7.35089242e-01 -4.25253838e-01 -1.48786351e-01 -5.80068290e-01 3.76473099e-01 9.99860838e-02 3.39985371e-01 4.63548243e-01 -1.36396420e+00 -1.32225072e+00 1.04362763e-01 4.13650453e-01 -2.56792039e-01 6.56837896e-02 9.45456386e-01 1.21740691e-01 2.15647146e-01 -1.51453659e-01 -5.63700736e-01 -1.07873881e+00 8.84824038e-01 2.98184216e-01 -3.79879832e-01 -4.68401283e-01 7.91726470e-01 3.51289153e-01 -5.45344889e-01 3.19585413e-01 8.99349526e-02 3.61578256e-01 -2.03961432e-01 6.44397140e-01 6.15001678e-01 2.96473771e-01 6.24240153e-02 -3.18792462e-01 4.34265062e-02 -1.02962591e-01 9.80229750e-02 1.61395812e+00 1.36359707e-01 -1.66733384e-01 5.55934846e-01 1.31072950e+00 -1.46852955e-01 -1.34364629e+00 -7.11519957e-01 1.28169671e-01 -2.23879606e-01 9.09694806e-02 -8.37781847e-01 -8.69793475e-01 1.00405443e+00 6.01026833e-01 -2.33391225e-01 1.27408648e+00 1.73386768e-01 5.34213364e-01 8.10822427e-01 5.45975745e-01 -6.83276892e-01 2.82573909e-01 2.65363425e-01 1.04098558e+00 -1.36721039e+00 -2.48748250e-02 -3.05097818e-01 -3.49688709e-01 8.65675688e-01 5.73212683e-01 -1.65495589e-01 7.47328103e-01 3.34380388e-01 -3.70066404e-01 1.54735804e-01 -1.30742025e+00 2.78466530e-02 5.81227958e-01 5.10181665e-01 2.32620850e-01 1.95020497e-01 2.61085536e-02 9.52414870e-01 6.95356205e-02 3.61278951e-01 1.93008214e-01 8.95443380e-01 -4.04434115e-01 -9.10900116e-01 -1.77294999e-01 7.57163823e-01 -6.83628559e-01 -3.50092500e-01 -3.88899416e-01 4.99228537e-01 -3.31718385e-01 6.54904425e-01 -1.10406011e-01 -3.68869931e-01 1.18049584e-01 2.34243944e-01 7.39867270e-01 -6.35578752e-01 -5.58423042e-01 -1.85306430e-01 -2.60878175e-01 -4.41967845e-01 -1.92689970e-01 -6.15446508e-01 -8.81539583e-01 -3.03182930e-01 -9.09870043e-02 1.19850188e-01 2.44503722e-01 7.78880119e-01 7.74355173e-01 4.02496904e-01 9.58420694e-01 -6.30352080e-01 -1.08169985e+00 -9.91689622e-01 -3.16667557e-01 3.69897187e-01 6.16889656e-01 -5.01071513e-01 -5.31256557e-01 2.74734229e-01]
[9.603504180908203, 3.0564982891082764]
9d2fac36-1b71-4ae8-9642-356fec7196ac
disease-oriented-image-embedding-with-pseudo
2108.06518
null
https://arxiv.org/abs/2108.06518v1
https://arxiv.org/pdf/2108.06518v1.pdf
Disease-oriented image embedding with pseudo-scanner standardization for content-based image retrieval on 3D brain MRI
To build a robust and practical content-based image retrieval (CBIR) system that is applicable to a clinical brain MRI database, we propose a new framework -- Disease-oriented image embedding with pseudo-scanner standardization (DI-PSS) -- that consists of two core techniques, data harmonization and a dimension reduction algorithm. Our DI-PSS uses skull stripping and CycleGAN-based image transformations that map to a standard brain followed by transformation into a brain image taken with a given reference scanner. Then, our 3D convolutioinal autoencoders (3D-CAE) with deep metric learning acquires a low-dimensional embedding that better reflects the characteristics of the disease. The effectiveness of our proposed framework was tested on the T1-weighted MRIs selected from the Alzheimer's Disease Neuroimaging Initiative and the Parkinson's Progression Markers Initiative. We confirmed that our PSS greatly reduced the variability of low-dimensional embeddings caused by different scanner and datasets. Compared with the baseline condition, our PSS reduced the variability in the distance from Alzheimer's disease (AD) to clinically normal (CN) and Parkinson disease (PD) cases by 15.8-22.6% and 18.0-29.9%, respectively. These properties allow DI-PSS to generate lower dimensional representations that are more amenable to disease classification. In AD and CN classification experiments based on spectral clustering, PSS improved the average accuracy and macro-F1 by 6.2% and 10.7%, respectively. Given the potential of the DI-PSS for harmonizing images scanned by MRI scanners that were not used to scan the training data, we expect that the DI-PSS is suitable for application to a large number of legacy MRIs scanned in heterogeneous environments.
['Kenichi Oishi', 'Hitoshi Iyatomi', 'Yusuke Chayama', 'Kumpei Ikuta', 'Yuto Onga', 'Hayato Arai']
2021-08-14
null
null
null
null
['content-based-image-retrieval', 'skull-stripping']
['computer-vision', 'medical']
[ 2.96354860e-01 -2.92104464e-02 3.07034433e-01 -4.83357221e-01 -8.72164965e-01 -1.66459858e-01 5.21856844e-01 -1.95182160e-01 -6.73646450e-01 4.35180336e-01 3.60537887e-01 1.26608163e-01 -4.05199677e-01 -6.57677174e-01 -2.46758103e-01 -7.92329013e-01 -4.73002017e-01 6.27146065e-01 2.02015817e-01 -7.62297288e-02 -1.04722477e-01 6.65273011e-01 -1.20538855e+00 3.23357433e-01 5.89065790e-01 9.57704663e-01 5.63051820e-01 2.92689532e-01 8.34657997e-02 2.61556000e-01 -4.97598052e-01 -1.53217033e-01 4.77689177e-01 -2.15761825e-01 -5.75549781e-01 -7.49941031e-03 2.65992761e-01 -4.99652624e-01 -4.85792816e-01 1.09768546e+00 9.14442837e-01 -2.34415397e-01 9.17456508e-01 -1.09650409e+00 -8.90544295e-01 3.40382665e-01 -6.09598517e-01 4.55091000e-01 -2.55536407e-01 5.22929542e-02 6.72419786e-01 -5.91072440e-01 9.21421230e-01 1.16357744e+00 7.53718197e-01 7.65407383e-01 -1.39982545e+00 -6.74393475e-01 -4.09080923e-01 5.10782123e-01 -1.20100403e+00 -1.11862250e-01 7.07759738e-01 -6.59141541e-01 6.08784139e-01 3.35860342e-01 8.63750577e-01 1.03838646e+00 5.67384958e-01 2.22634584e-01 1.30977821e+00 -2.16864064e-01 2.89635688e-01 -6.87428042e-02 2.29938269e-01 3.44718605e-01 2.91144788e-01 -5.45196645e-02 -4.77696061e-02 -3.83163422e-01 7.44916141e-01 1.31338492e-01 -3.72087419e-01 -3.83608639e-01 -1.55644572e+00 9.98063982e-01 6.04872882e-01 6.10156119e-01 -5.26826143e-01 -2.17509449e-01 5.51435113e-01 1.61795080e-01 3.38958293e-01 3.81232649e-01 -1.03474945e-01 3.64456654e-01 -9.47459340e-01 1.88546609e-02 2.85903335e-01 5.62629163e-01 1.44352555e-01 -8.30878541e-02 -1.32901035e-02 1.21702778e+00 3.24540108e-01 5.52846014e-01 1.31725109e+00 -9.44846332e-01 1.62870273e-01 4.99656498e-01 -4.59864259e-01 -1.00227928e+00 -7.68608391e-01 -4.30502445e-01 -1.18639672e+00 2.20325783e-01 4.14111018e-02 4.56741080e-02 -8.56802225e-01 1.76035511e+00 2.61296988e-01 -8.50684419e-02 4.35911044e-02 1.09639013e+00 5.20404100e-01 1.51685119e-01 -1.33120883e-02 -1.69778138e-01 1.69228709e+00 -6.98187411e-01 -6.68225706e-01 3.89552303e-02 7.34448969e-01 -4.42344010e-01 1.17207837e+00 5.10458648e-02 -6.34998739e-01 -4.26936686e-01 -1.12802899e+00 1.56744674e-01 -2.13463798e-01 -4.26684432e-02 3.18313807e-01 6.70452714e-01 -1.28735244e+00 3.79272789e-01 -9.06934023e-01 -3.95766646e-01 6.06987953e-01 3.23107421e-01 -7.73107946e-01 -7.04209656e-02 -1.21286106e+00 9.93679523e-01 2.02117234e-01 -1.74220234e-01 -7.69761086e-01 -9.07776475e-01 -5.17275512e-01 -4.04229254e-01 -3.00245106e-01 -6.96405232e-01 7.01298416e-01 -6.84056163e-01 -1.15019858e+00 1.07910347e+00 2.60812908e-01 -6.07679069e-01 4.55886424e-01 -4.57243770e-02 -7.46365428e-01 5.52668810e-01 3.32456112e-01 9.02854919e-01 7.58786857e-01 -9.46672201e-01 -8.68245065e-02 -9.55699146e-01 -4.98948544e-01 1.48784056e-01 -4.25381869e-01 8.40427056e-02 -9.26352292e-02 -8.35827410e-01 3.18923444e-01 -1.31100130e+00 -1.60490453e-01 3.75784904e-01 -2.04661846e-01 2.35417962e-01 1.00348127e+00 -9.77235436e-01 7.36435056e-01 -2.08643222e+00 1.27200350e-01 2.63499618e-01 6.55514479e-01 2.58684844e-01 -3.02692860e-01 -1.22081213e-01 -5.72942853e-01 8.86421353e-02 -4.23995495e-01 -6.83547035e-02 -1.93701893e-01 1.01153731e-01 2.70826429e-01 6.56977952e-01 6.65175468e-02 8.20264876e-01 -5.94134271e-01 -3.70566219e-01 1.68172449e-01 7.22416818e-01 -4.74655360e-01 2.49849483e-02 3.97801191e-01 4.65902209e-01 -2.01694816e-01 3.97529334e-01 6.74038053e-01 -1.09592274e-01 1.37866557e-01 -6.31370723e-01 2.53277868e-01 -1.96324289e-01 -8.71615946e-01 1.67329216e+00 -2.34510794e-01 5.27212024e-01 -7.01084882e-02 -1.03825212e+00 8.45258296e-01 7.57987425e-02 9.71797645e-01 -1.07293284e+00 9.37592834e-02 1.96569830e-01 4.66443747e-01 -5.80822885e-01 -7.56591037e-02 -1.69274077e-01 2.46537104e-01 6.43709242e-01 3.76488082e-02 1.23568572e-01 -1.01061799e-01 5.42666130e-02 1.23115432e+00 -5.07860780e-01 3.63954343e-02 -5.09843409e-01 5.16273499e-01 -2.09926024e-01 5.07266939e-01 3.29636991e-01 -6.45917237e-01 8.95276010e-01 2.90586323e-01 -4.03225780e-01 -1.38648570e+00 -1.22705507e+00 -5.98135471e-01 3.44021499e-01 -3.00371200e-01 -1.54367015e-01 -1.02951622e+00 -5.42750359e-01 -1.83128100e-02 4.93917435e-01 -6.89511240e-01 -5.01426637e-01 -3.35762173e-01 -1.22492099e+00 6.53837025e-01 3.54486465e-01 6.66155636e-01 -7.13751554e-01 -6.07855558e-01 5.41374236e-02 -7.97127113e-02 -8.17579448e-01 -6.12691522e-01 4.10676412e-02 -1.04940057e+00 -1.06791639e+00 -1.21961033e+00 -8.70756865e-01 5.68666041e-01 2.03279600e-01 6.07856393e-01 -3.26223850e-01 -6.79580867e-01 5.22238910e-01 -3.15798640e-01 -1.14796817e-01 -5.30517161e-01 -1.07052982e-01 4.84528601e-01 1.26864821e-01 3.71541858e-01 -7.26919055e-01 -1.02996552e+00 3.49682003e-01 -1.15252960e+00 -1.78677380e-01 8.24517369e-01 8.08475018e-01 8.73208463e-01 -1.84291545e-02 5.87321043e-01 -5.83763480e-01 8.14429462e-01 -5.01258373e-01 -1.49076045e-01 1.84740812e-01 -8.74289989e-01 1.01629041e-01 1.22495584e-01 -5.85609615e-01 -5.57464778e-01 -3.40250954e-02 -2.49364283e-02 -4.96207446e-01 -8.18789154e-02 3.49380910e-01 -1.74773663e-01 -1.04758814e-01 8.10801625e-01 2.46361747e-01 6.27832174e-01 -5.02998054e-01 3.04228336e-01 1.06721652e+00 5.78208208e-01 -6.62509874e-02 4.96455014e-01 6.21578932e-01 -4.72256206e-02 -8.46983492e-01 -1.02502227e-01 -2.48985693e-01 -8.07265699e-01 -7.41875789e-04 1.23528445e+00 -8.86513233e-01 -7.84214437e-02 6.21673167e-01 -7.95749187e-01 -1.36965841e-01 -2.10399643e-01 8.02360296e-01 -3.59814137e-01 6.49412334e-01 -4.69702721e-01 -2.46329680e-01 -9.25085425e-01 -1.48929000e+00 8.54714930e-01 -2.57556021e-01 -3.51792425e-01 -7.64957309e-01 2.28591561e-01 5.41730583e-01 6.12443268e-01 2.74970621e-01 1.34578860e+00 -8.28362286e-01 8.38457122e-02 -9.42911878e-02 -2.75807530e-01 8.03396702e-01 3.59734058e-01 -5.43221712e-01 -5.65135181e-01 -3.27069402e-01 5.39068103e-01 4.78635021e-02 5.40136158e-01 3.77081603e-01 1.03375244e+00 -6.66865259e-02 -1.21683650e-01 5.07503033e-01 1.35881460e+00 4.76906061e-01 8.89239371e-01 7.82222629e-01 5.39105415e-01 4.29647505e-01 7.98455402e-02 1.72397628e-01 3.74181420e-01 9.52648401e-01 2.51489967e-01 -6.03752285e-02 -5.75133681e-01 3.92623723e-01 4.09173369e-01 1.13078439e+00 1.30790085e-01 4.61765915e-01 -1.06075215e+00 6.38761103e-01 -1.33975053e+00 -7.29696989e-01 -2.63055980e-01 2.08066177e+00 8.81804645e-01 -1.75888583e-01 1.86483994e-01 1.11665666e-01 9.57759917e-01 -1.43261388e-01 -6.96679950e-01 -8.94814581e-02 -1.71367213e-01 3.57885748e-01 5.43137908e-01 2.06463970e-02 -8.44576120e-01 2.78457671e-01 5.91244221e+00 5.07783890e-01 -1.30581009e+00 6.32123947e-01 5.39119422e-01 -2.88639575e-01 -4.90200892e-02 -5.41030049e-01 -2.04604611e-01 6.96698844e-01 1.25439417e+00 -1.71671823e-01 4.25222069e-01 8.09433281e-01 2.64279783e-01 1.61684290e-01 -9.04512465e-01 1.20934772e+00 1.74883679e-01 -1.02523005e+00 1.96540475e-01 2.67092139e-01 4.69034284e-01 4.18499738e-01 1.57973588e-01 -1.07169703e-01 -1.94055766e-01 -8.85390878e-01 5.20168006e-01 7.03881860e-01 1.02980530e+00 -5.61956048e-01 8.11612487e-01 -1.98822320e-01 -7.21655846e-01 4.85543497e-02 -3.05293918e-01 6.28890455e-01 1.27246499e-01 7.57522523e-01 -7.36365139e-01 3.62370372e-01 9.48505282e-01 4.82352197e-01 -7.16706276e-01 8.84836137e-01 2.59179205e-01 3.62904012e-01 -1.80778742e-01 3.91375661e-01 -4.30748574e-02 -3.92321706e-01 5.99218965e-01 9.39920902e-01 3.84968311e-01 -6.82731941e-02 -2.80158132e-01 9.07785356e-01 3.56996804e-02 1.62246242e-01 -4.82451797e-01 9.29804593e-02 3.42791557e-01 1.23902977e+00 -5.80900550e-01 -1.67895049e-01 -3.74001116e-01 1.11900878e+00 6.76989369e-03 3.12778726e-02 -8.25482011e-01 -4.63940710e-01 6.91889167e-01 2.57062525e-01 1.34213537e-01 -1.93038300e-01 -1.93709642e-01 -1.05377841e+00 1.87832534e-01 -1.05721521e+00 2.08091050e-01 -8.31981003e-01 -1.58831680e+00 1.00560904e+00 9.59117059e-03 -1.07447660e+00 3.16614397e-02 -4.84290719e-01 -3.04225832e-01 8.10686707e-01 -1.22739768e+00 -1.01217008e+00 -3.41802806e-01 7.37840354e-01 1.65368944e-01 -6.64647996e-01 1.11004174e+00 6.58912480e-01 -5.72197080e-01 5.35061121e-01 4.54492599e-01 2.37777472e-01 7.82897174e-01 -9.69048321e-01 4.80845384e-02 4.77367550e-01 -1.47625729e-01 6.55153155e-01 2.60846615e-01 -6.18329823e-01 -1.22677338e+00 -1.40733516e+00 4.74259377e-01 -1.75675511e-01 7.63501406e-01 -1.88143685e-01 -9.34224963e-01 4.80804741e-01 -5.66979833e-02 -3.30320299e-02 9.32559252e-01 -5.25449097e-01 -4.62064862e-01 -3.12660396e-01 -1.56215632e+00 5.95613539e-01 9.55433071e-01 -6.68344736e-01 -9.11768317e-01 5.80151737e-01 5.04068494e-01 5.86956255e-02 -1.51259816e+00 2.54799157e-01 7.07738757e-01 -6.00289285e-01 1.10596168e+00 -4.70273018e-01 3.56839597e-01 -1.18451566e-01 -5.20211160e-01 -1.35524607e+00 -5.64467490e-01 4.84095030e-02 3.40335846e-01 9.28718626e-01 6.91767484e-02 -7.80402839e-01 3.48130971e-01 7.19225824e-01 -1.53511465e-01 -6.37160957e-01 -1.22687316e+00 -8.97311509e-01 3.87377143e-01 -3.13481361e-01 4.68535274e-01 9.78438497e-01 -4.38197881e-01 -3.20631592e-03 6.97762966e-02 8.15038458e-02 7.49654293e-01 -4.50355798e-01 1.93575859e-01 -1.33221793e+00 6.46049008e-02 -3.78288388e-01 -1.02583671e+00 3.23831029e-02 1.45658523e-01 -1.47699440e+00 -5.01650870e-01 -1.33212543e+00 4.66771156e-01 -4.25753415e-01 -6.10287428e-01 3.63026649e-01 2.62514293e-01 4.58095342e-01 1.95792109e-01 6.02952361e-01 -8.28635618e-02 6.07584953e-01 1.15140104e+00 -3.68642807e-01 -1.65960461e-01 -5.05304873e-01 -6.76166117e-01 3.90828878e-01 9.62812722e-01 -6.53656244e-01 -5.56061864e-01 -4.60323393e-01 -4.96422142e-01 -4.47794557e-01 4.67760533e-01 -1.31887138e+00 -1.41201332e-01 3.41173798e-01 4.23806876e-01 -2.29914501e-01 1.84481606e-01 -8.83449376e-01 6.12982690e-01 7.16511548e-01 -2.55002022e-01 1.64254084e-01 3.34335603e-02 4.65373248e-01 5.16192429e-02 -1.57303244e-01 1.00445402e+00 -1.21456437e-01 -4.32441056e-01 3.25595766e-01 -3.91468853e-01 -1.47951126e-01 1.15458953e+00 -2.40860954e-01 -2.60756433e-01 -2.87267603e-02 -9.27934170e-01 -2.96174049e-01 3.05065900e-01 4.32328373e-01 6.67512536e-01 -1.68850815e+00 -7.74622798e-01 2.21145794e-01 1.10296309e-01 -4.14632916e-01 3.93561006e-01 1.25536442e+00 -6.14454687e-01 3.91054988e-01 -7.34870791e-01 -8.36662114e-01 -1.27875590e+00 3.06410640e-01 4.33723211e-01 -2.04390928e-01 -1.02247465e+00 2.75555700e-01 4.42316979e-02 -4.30761695e-01 -3.78115103e-02 -3.34387332e-01 -1.46406054e-01 2.04999611e-01 7.30702400e-01 3.43721718e-01 4.82916087e-01 -9.06764209e-01 -4.97409225e-01 5.57155848e-01 -3.89973491e-01 -2.34471902e-01 1.75776100e+00 -1.17660329e-01 -3.11109960e-01 2.57729232e-01 1.63290107e+00 -4.68584836e-01 -7.64431715e-01 -1.40505388e-01 3.61864343e-02 -2.05384698e-02 6.15268767e-01 -7.99922466e-01 -1.63063776e+00 6.38729751e-01 1.75097036e+00 -4.89071533e-02 1.04037237e+00 5.50403446e-02 9.80935812e-01 2.27949589e-01 3.55449349e-01 -1.01202118e+00 -7.28841797e-02 1.21970668e-01 1.28679085e+00 -8.96836579e-01 -7.86661729e-02 1.06102303e-01 -7.67193615e-01 1.11721706e+00 1.13100171e-01 -6.62246272e-02 7.26754487e-01 2.05732398e-02 2.66432703e-01 -4.17002797e-01 -2.23710388e-01 1.28420159e-01 2.44664639e-01 1.01730454e+00 4.42888029e-02 2.09404990e-01 -4.42533255e-01 8.68211925e-01 -2.20592931e-01 3.28306369e-02 3.79173040e-01 7.47316957e-01 -1.58328727e-01 -1.17981732e+00 -4.33988422e-01 9.44080830e-01 -2.67576277e-01 2.87374426e-02 -3.08486313e-01 7.50572026e-01 1.74443007e-01 4.75599647e-01 6.63464963e-02 -5.95565498e-01 3.66073430e-01 3.05301100e-01 3.08480829e-01 -4.76110965e-01 -3.23550463e-01 5.62769584e-02 -2.58222312e-01 -6.70010865e-01 -6.27318382e-01 -8.55425060e-01 -1.31321299e+00 -4.25274856e-02 -1.18710615e-01 -2.56159991e-01 8.81743073e-01 5.93389094e-01 8.09216261e-01 6.72116280e-01 4.61121470e-01 -7.41965234e-01 -6.50452733e-01 -1.07398260e+00 -1.03441942e+00 6.23958588e-01 3.39610279e-02 -9.27998602e-01 -2.92854518e-01 8.02568421e-02]
[14.242191314697266, -1.7375420331954956]
8e1d7111-4aff-4172-a9ec-32e7f6bd6356
searching-efficient-3d-architectures-with
2007.16100
null
https://arxiv.org/abs/2007.16100v2
https://arxiv.org/pdf/2007.16100v2.pdf
Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution
Self-driving cars need to understand 3D scenes efficiently and accurately in order to drive safely. Given the limited hardware resources, existing 3D perception models are not able to recognize small instances (e.g., pedestrians, cyclists) very well due to the low-resolution voxelization and aggressive downsampling. To this end, we propose Sparse Point-Voxel Convolution (SPVConv), a lightweight 3D module that equips the vanilla Sparse Convolution with the high-resolution point-based branch. With negligible overhead, this point-based branch is able to preserve the fine details even from large outdoor scenes. To explore the spectrum of efficient 3D models, we first define a flexible architecture design space based on SPVConv, and we then present 3D Neural Architecture Search (3D-NAS) to search the optimal network architecture over this diverse design space efficiently and effectively. Experimental results validate that the resulting SPVNAS model is fast and accurate: it outperforms the state-of-the-art MinkowskiNet by 3.3%, ranking 1st on the competitive SemanticKITTI leaderboard. It also achieves 8x computation reduction and 3x measured speedup over MinkowskiNet with higher accuracy. Finally, we transfer our method to 3D object detection, and it achieves consistent improvements over the one-stage detection baseline on KITTI.
['Song Han', 'Yujun Lin', 'Haotian Tang', 'Hanrui Wang', 'Shengyu Zhao', 'Zhijian Liu', 'Ji Lin']
2020-07-31
null
https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/6421_ECCV_2020_paper.php
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123730681.pdf
eccv-2020-8
['robust-3d-semantic-segmentation', 'lidar-semantic-segmentation']
['computer-vision', 'computer-vision']
[-2.10286483e-01 5.47750182e-02 -2.56315649e-01 -3.82222831e-01 -5.19641221e-01 -3.55022728e-01 5.31485260e-01 -3.03729653e-01 -2.40347683e-01 6.43245578e-02 -2.51966178e-01 -7.17547119e-01 2.38266259e-01 -8.69923949e-01 -1.05811977e+00 -2.40236655e-01 2.26295236e-02 5.89130580e-01 8.73901010e-01 -3.42460811e-01 4.57554348e-02 9.59423482e-01 -1.75063050e+00 3.14484805e-01 6.54492140e-01 1.35761285e+00 3.11846435e-01 5.53727508e-01 -3.23635101e-01 5.24059594e-01 -3.55665833e-01 -8.18026736e-02 6.45339072e-01 3.63043159e-01 -3.98304015e-01 3.44928838e-02 1.11248636e+00 -7.62636244e-01 -5.83165467e-01 8.01584542e-01 2.28058442e-01 1.69177711e-01 3.64561975e-01 -1.31584835e+00 -1.83924720e-01 2.04449385e-01 -6.31145477e-01 3.87813061e-01 -3.10271889e-01 5.24376512e-01 7.76359081e-01 -1.34222329e+00 4.21562642e-01 1.56326687e+00 8.42583060e-01 4.99710023e-01 -1.01357937e+00 -9.36613560e-01 4.62670237e-01 5.14131367e-01 -1.48590350e+00 -4.13036704e-01 6.18099928e-01 -1.75456777e-01 1.59289324e+00 1.78780153e-01 8.05231750e-01 9.70092356e-01 2.27843225e-01 9.59979594e-01 8.11081827e-01 1.57437459e-01 2.44809985e-01 -8.64434391e-02 3.56861353e-01 7.35446751e-01 6.13248587e-01 4.94603753e-01 -5.09767592e-01 3.17654461e-01 8.21995854e-01 1.35327019e-02 2.83570558e-01 -7.27890134e-01 -1.01971900e+00 7.27786839e-01 8.83084834e-01 -2.62753755e-01 -2.09886864e-01 6.52633131e-01 3.25840801e-01 -1.07571803e-01 3.00985366e-01 2.26568863e-01 -5.00992179e-01 1.76630244e-02 -9.81177330e-01 3.83346289e-01 6.39232635e-01 1.28677809e+00 8.76803815e-01 4.54353780e-01 1.29811047e-02 5.05436778e-01 1.94349661e-01 6.39944494e-01 -1.85959905e-01 -1.19978559e+00 5.24173796e-01 6.41076922e-01 -8.63299072e-02 -6.62318945e-01 -6.38619065e-01 -8.14937532e-01 -6.41105354e-01 7.88523912e-01 1.39787242e-01 3.36766362e-01 -1.11450875e+00 1.26583874e+00 6.34134531e-01 5.06552219e-01 8.86041671e-04 1.14489877e+00 1.19982421e+00 5.75236380e-01 -3.82228531e-02 5.70366621e-01 1.42882645e+00 -1.14489532e+00 -4.17079864e-04 -7.09011137e-01 6.44834280e-01 -4.33656812e-01 8.01090240e-01 1.04357943e-01 -9.33981359e-01 -7.81984091e-01 -1.56109047e+00 -4.04499143e-01 -4.24081534e-01 1.77645296e-01 7.64257967e-01 7.03442991e-01 -1.14943790e+00 4.04273748e-01 -1.10237372e+00 -2.98208237e-01 9.33772027e-01 3.62132609e-01 -2.53916144e-01 -2.69319892e-01 -7.98113346e-01 1.17771482e+00 4.38314140e-01 -1.42612047e-02 -1.28924167e+00 -1.14149559e+00 -9.36014712e-01 1.46156341e-01 6.06736243e-01 -7.90383875e-01 1.34205818e+00 -2.66930312e-01 -1.22993660e+00 7.90619314e-01 -1.29096076e-01 -9.58155811e-01 5.37501454e-01 -2.93363512e-01 -1.16333239e-01 1.83198005e-01 7.74895623e-02 1.11621416e+00 6.23079777e-01 -1.26872146e+00 -9.85064149e-01 -3.03027123e-01 3.46843034e-01 1.89340875e-01 9.93386880e-02 -4.14446503e-01 -7.53439903e-01 -1.98761940e-01 3.79157186e-01 -8.14652264e-01 -3.78856361e-01 5.08991063e-01 -2.52835721e-01 -1.55865416e-01 1.16675723e+00 -2.46142760e-01 4.85626549e-01 -2.15091491e+00 -5.84381342e-01 8.57914388e-02 7.85339892e-01 4.34295982e-01 -1.02029860e-01 -2.59304225e-01 1.95224077e-01 -9.99528468e-02 5.86499535e-02 -7.21149027e-01 9.14573967e-02 5.14022410e-01 -2.78153777e-01 5.16273677e-01 5.08578300e-01 1.10997915e+00 -7.70996690e-01 -4.46673453e-01 7.48421252e-01 7.21818566e-01 -7.48695552e-01 -3.07027519e-01 -1.45526856e-01 -1.60315126e-01 -7.40882337e-01 9.53914940e-01 1.14610875e+00 -2.37973988e-01 -3.52183789e-01 -4.90833521e-01 -4.59739953e-01 4.37546641e-01 -1.07538211e+00 1.51125228e+00 -3.82999480e-01 9.78357315e-01 3.46212029e-01 -1.01888573e+00 1.07231498e+00 -3.59081686e-01 2.99418896e-01 -9.08209145e-01 1.90951511e-01 2.04509690e-01 -3.11876237e-01 3.83620486e-02 7.25541234e-01 2.57374227e-01 -1.58020794e-01 -9.59434584e-02 -1.49544673e-02 -3.86450231e-01 -4.84615304e-02 2.60683060e-01 1.15960741e+00 -4.96813748e-03 -6.65117279e-02 -4.37219262e-01 2.40351558e-01 3.96093726e-01 4.77404475e-01 9.97852147e-01 -4.97547179e-01 5.03232360e-01 2.53939718e-01 -8.16826880e-01 -1.05874014e+00 -1.18790019e+00 -1.93473101e-01 9.01830733e-01 6.81865990e-01 -1.85639605e-01 -5.28371274e-01 -6.13245130e-01 3.00612092e-01 9.33857858e-01 -3.94869119e-01 -3.15060467e-01 -7.87647247e-01 -3.04946840e-01 5.80002904e-01 9.36212003e-01 8.88434231e-01 -3.73042196e-01 -1.01552105e+00 3.17255646e-01 2.58949518e-01 -1.58713937e+00 -2.18085587e-01 4.85379159e-01 -8.20424557e-01 -9.37837899e-01 -4.23017405e-02 -7.27336287e-01 3.02052259e-01 1.02544069e+00 1.41568899e+00 -9.59143694e-03 -3.32953513e-01 1.23414911e-01 -1.07433729e-01 -5.62557817e-01 -2.42392033e-01 8.37637559e-02 1.74266458e-01 -4.85042661e-01 5.92109978e-01 -4.59758550e-01 -7.75756180e-01 4.36179191e-01 -3.61140817e-01 3.06496918e-01 8.33585799e-01 5.13282955e-01 9.20919597e-01 4.43485938e-02 5.80628577e-04 -2.73672938e-01 -1.32396132e-01 -1.91621020e-01 -9.01277661e-01 -2.49952748e-01 -4.30426031e-01 -1.88905131e-02 3.90982687e-01 -3.34127158e-01 -6.97429001e-01 2.58544117e-01 -3.26830029e-01 -8.79664242e-01 -2.16372013e-01 -2.20502153e-01 -1.51909620e-01 -5.13548851e-01 6.30936861e-01 2.30314180e-01 -1.06338628e-01 -4.75639403e-01 4.44916368e-01 1.99407503e-01 6.73030019e-01 -4.64446574e-01 8.90728772e-01 8.85942876e-01 2.64226466e-01 -9.63618517e-01 -8.66443455e-01 -4.45688486e-01 -5.06442249e-01 -3.12031150e-01 8.81972492e-01 -1.34536791e+00 -7.88013697e-01 2.83717006e-01 -1.28832781e+00 -4.78747964e-01 -4.17402148e-01 4.34340984e-01 -3.82018626e-01 -3.27367568e-03 -3.86917531e-01 -6.29580617e-01 -2.30410948e-01 -1.36177754e+00 1.35673106e+00 1.61774829e-02 -4.65172641e-02 -3.76283050e-01 -6.60412073e-01 3.43405455e-01 4.99761790e-01 2.99308360e-01 6.60174012e-01 -3.98875713e-01 -1.35176015e+00 -1.63603634e-01 -8.23244393e-01 2.91562974e-01 -5.53064883e-01 -2.66808391e-01 -9.16263819e-01 -9.73271132e-02 -1.70635223e-01 -1.56694755e-01 1.28614390e+00 4.72484022e-01 1.20836568e+00 6.65539354e-02 -6.35573268e-01 1.01241851e+00 1.22448504e+00 -1.61480218e-01 3.30554783e-01 2.31230542e-01 9.18208897e-01 1.99991226e-01 5.58270037e-01 8.52555856e-02 7.39877403e-01 6.62518501e-01 1.05361569e+00 -2.71355420e-01 -6.62089586e-01 -3.09885770e-01 1.75990686e-01 4.19071674e-01 1.43468887e-01 -4.09622565e-02 -9.92404759e-01 5.01540363e-01 -1.61243773e+00 -8.06459010e-01 -2.97237784e-01 1.72431409e+00 1.23156764e-01 9.98624980e-01 -6.10581264e-02 -2.80273017e-02 3.50333720e-01 2.65252888e-01 -9.42361295e-01 -2.74078816e-01 -2.40701959e-01 2.42275491e-01 1.21500981e+00 5.02832234e-01 -1.14233506e+00 1.20751929e+00 6.18001080e+00 1.09836447e+00 -1.12477100e+00 2.66257435e-01 6.72643840e-01 -4.19350535e-01 -2.71999054e-02 -1.24582604e-01 -1.49489272e+00 4.07773517e-02 6.61529183e-01 1.35935321e-01 2.68743992e-01 1.35471153e+00 3.39912236e-01 1.12390980e-01 -1.11919439e+00 1.18212855e+00 -1.13164708e-01 -1.80098736e+00 1.33522853e-01 1.38060018e-01 5.67566514e-01 7.05735326e-01 8.88757482e-02 6.44973636e-01 4.15798873e-01 -1.05857730e+00 1.25609410e+00 3.09503190e-02 7.37940371e-01 -8.08852017e-01 3.89928639e-01 5.23231506e-01 -1.55941224e+00 -1.36180356e-01 -6.95379138e-01 -1.53905535e-02 7.68516064e-02 5.95453382e-01 -8.47359061e-01 3.53046395e-02 1.02075303e+00 5.59089482e-01 -4.25890893e-01 1.07550335e+00 -1.50225060e-02 5.19177198e-01 -8.18852961e-01 -2.57153124e-01 7.48712599e-01 2.82591194e-01 7.85238862e-01 1.24910462e+00 4.66958463e-01 1.20230146e-01 3.77796561e-01 1.17707098e+00 -1.10000819e-01 -4.99384820e-01 -5.10794878e-01 5.69727778e-01 6.49243236e-01 1.09661162e+00 -8.56085241e-01 -4.46675181e-01 -4.58466381e-01 6.20650351e-01 2.24606574e-01 1.85059175e-01 -1.03141248e+00 -4.90878709e-02 1.36288500e+00 4.15106773e-01 8.41767550e-01 -6.46699488e-01 -6.23440802e-01 -7.24808514e-01 4.01598774e-02 -4.56950098e-01 -1.24915279e-01 -6.46744192e-01 -8.77137780e-01 5.53461313e-01 -8.67974479e-03 -1.07568908e+00 1.12367302e-01 -1.00433004e+00 -4.23668236e-01 5.95202088e-01 -1.85012615e+00 -1.27015376e+00 -5.52032232e-01 4.19123650e-01 8.85803103e-01 7.58240595e-02 3.22821021e-01 2.77929664e-01 -3.00762653e-01 6.55647099e-01 -1.84838548e-01 -7.56595805e-02 5.20255081e-02 -9.50119436e-01 1.13782132e+00 7.60407805e-01 -1.04350328e-01 1.91865698e-01 4.87676650e-01 -5.28422177e-01 -1.73567128e+00 -1.68847704e+00 5.36849320e-01 -6.79271340e-01 3.94079715e-01 -7.99588978e-01 -6.66166663e-01 4.14647371e-01 -3.17058146e-01 3.91027778e-01 -5.06137908e-02 -1.58654407e-01 -6.76382482e-01 -3.57620239e-01 -1.19750834e+00 6.59875095e-01 1.60254252e+00 -2.66578138e-01 -3.28725696e-01 2.25330174e-01 1.18337059e+00 -8.40867162e-01 -3.25041145e-01 5.67195952e-01 4.67484564e-01 -9.96757150e-01 1.55026054e+00 -1.46257356e-01 1.37574643e-01 -5.88875830e-01 -3.70698899e-01 -8.89925599e-01 -4.80620295e-01 -3.13833922e-01 -5.41185915e-01 5.96576154e-01 2.88059920e-01 -6.43150687e-01 1.18141246e+00 2.86530763e-01 -8.30820084e-01 -9.15983558e-01 -1.36754537e+00 -9.83807027e-01 -9.99685097e-03 -1.20867348e+00 9.13392186e-01 4.28107709e-01 -7.57250190e-01 2.30096743e-01 -3.70185301e-02 6.15568519e-01 1.02875423e+00 1.03609554e-01 8.80454242e-01 -1.16125071e+00 -1.39491186e-01 -8.66815984e-01 -8.06129754e-01 -1.88595378e+00 -2.92676259e-02 -8.16091835e-01 3.03362217e-02 -1.46773636e+00 -8.03338364e-02 -6.04330540e-01 -4.18885648e-02 4.15329576e-01 1.54915079e-01 4.15672213e-01 1.87607393e-01 -7.66879693e-02 -7.43943274e-01 4.95821059e-01 1.21778286e+00 -4.59866345e-01 -1.25093803e-01 -8.86740685e-02 -6.91906333e-01 7.51720667e-01 6.35097504e-01 -1.31511629e-01 -3.24357122e-01 -7.61828303e-01 -2.80515820e-01 -3.93645734e-01 9.62033927e-01 -1.45774019e+00 2.74089843e-01 1.84778683e-02 6.13230705e-01 -1.49135983e+00 7.89222956e-01 -7.85340428e-01 -2.10114300e-01 4.26577777e-01 1.40283033e-01 -1.93908229e-01 6.38550401e-01 4.31599349e-01 1.56553879e-01 3.99597406e-01 9.21982586e-01 -1.17985263e-01 -1.43211257e+00 6.03166103e-01 -2.90710628e-01 -8.08653235e-02 1.07227027e+00 -7.25380838e-01 -3.15623969e-01 -2.73812329e-03 -3.04752022e-01 5.57222903e-01 3.25305462e-01 5.96768141e-01 9.25321162e-01 -1.38826835e+00 -6.21528804e-01 3.74618918e-01 1.80536613e-01 4.99738395e-01 4.09637749e-01 4.28262413e-01 -8.46137166e-01 6.81359947e-01 -1.76231768e-02 -1.08366191e+00 -9.63466942e-01 4.40138072e-01 5.44154763e-01 -3.18180323e-02 -1.04344928e+00 1.03754961e+00 5.50565481e-01 -3.45480829e-01 3.65289062e-01 -8.56672347e-01 1.66613400e-01 -4.62438583e-01 5.35116911e-01 4.01825726e-01 3.71426672e-01 -7.39110529e-01 -6.18140757e-01 4.99361157e-01 -1.52217299e-02 4.04702455e-01 1.18259108e+00 -1.86613994e-03 5.54064929e-01 -7.02041760e-02 1.30210066e+00 -5.72002828e-01 -1.84802592e+00 -1.40579283e-01 -3.86870503e-01 -4.41125363e-01 6.13812029e-01 -3.13952237e-01 -1.09081829e+00 8.47036779e-01 7.90812075e-01 -1.53037399e-01 6.65463150e-01 2.53425092e-01 1.04677832e+00 6.13125563e-01 5.84911883e-01 -9.97877598e-01 -9.58017707e-02 9.02116477e-01 6.17005408e-01 -1.12879002e+00 -5.18247448e-02 -7.26873338e-01 -1.51916221e-01 8.86120498e-01 9.97007310e-01 -3.98235202e-01 6.48436427e-01 4.58959758e-01 -1.01823837e-01 -4.58189547e-01 -7.06895292e-01 -3.62191230e-01 7.85719380e-02 7.65496612e-01 -3.46693724e-01 2.64858156e-01 5.42231977e-01 4.83647525e-01 -4.33882624e-01 -3.36778045e-01 4.51351479e-02 7.46064246e-01 -7.17799902e-01 -4.12318498e-01 -3.82993013e-01 5.04833758e-01 2.09003612e-01 -2.94246469e-02 -7.67207369e-02 1.06724894e+00 4.26846176e-01 7.87978292e-01 4.59577054e-01 -5.90247512e-01 8.03287625e-01 -4.30174351e-01 3.24018896e-01 -3.62489820e-01 -2.35639498e-01 -2.65060604e-01 1.39748827e-01 -1.19365227e+00 8.31284001e-02 -5.95096886e-01 -1.26215100e+00 -6.32048547e-01 -2.16415510e-01 -5.72712898e-01 9.43338871e-01 8.58746290e-01 5.68655968e-01 6.51720762e-01 4.03265923e-01 -1.38481557e+00 -5.79713583e-01 -4.56902862e-01 -2.50013709e-01 -1.87735215e-01 4.84229773e-01 -9.27764237e-01 -2.27703810e-01 -5.38014293e-01]
[7.734495639801025, -2.631298065185547]
926bdaa9-9e40-4a8f-b780-8d43a057def2
tetra-nerf-representing-neural-radiance
2304.09987
null
https://arxiv.org/abs/2304.09987v2
https://arxiv.org/pdf/2304.09987v2.pdf
Tetra-NeRF: Representing Neural Radiance Fields Using Tetrahedra
Neural Radiance Fields (NeRFs) are a very recent and very popular approach for the problems of novel view synthesis and 3D reconstruction. A popular scene representation used by NeRFs is to combine a uniform, voxel-based subdivision of the scene with an MLP. Based on the observation that a (sparse) point cloud of the scene is often available, this paper proposes to use an adaptive representation based on tetrahedra obtained by the Delaunay triangulation instead of the uniform subdivision or point-based representations. We show that such a representation enables efficient training and leads to state-of-the-art results. Our approach elegantly combines concepts from 3D geometry processing, triangle-based rendering, and modern neural radiance fields. Compared to voxel-based representations, ours provides more detail around parts of the scene likely to be close to the surface. Compared to point-based representations, our approach achieves better performance.
['Torsten Sattler', 'Jonas Kulhanek']
2023-04-19
null
null
null
null
['3d-reconstruction', 'novel-view-synthesis']
['computer-vision', 'computer-vision']
[ 3.21815461e-01 -7.28047341e-02 4.55656379e-01 -4.06634301e-01 -6.20437264e-01 -2.95537233e-01 7.51389980e-01 1.72410235e-01 -1.20986111e-01 4.36429769e-01 1.14634804e-01 -2.32603535e-01 -1.96857631e-01 -1.45074821e+00 -9.24978912e-01 -5.92185855e-01 7.62766227e-02 5.81677675e-01 8.33599195e-02 -5.26568949e-01 3.59751672e-01 1.27454662e+00 -1.96168411e+00 4.97259408e-01 6.49200261e-01 1.05161548e+00 2.23929882e-01 6.37157977e-01 -4.42218333e-01 5.58093131e-01 -3.20277989e-01 6.98728710e-02 3.81975979e-01 3.30905430e-02 -6.54810727e-01 -1.14278987e-01 8.92171443e-01 -1.72947854e-01 -6.78362995e-02 7.29089797e-01 3.49762470e-01 5.36101282e-01 7.58823037e-01 -6.18706882e-01 -3.43726128e-01 3.65705267e-02 -6.78781986e-01 -2.28672296e-01 4.53347772e-01 -2.85835892e-01 6.54819846e-01 -1.12860358e+00 6.08546972e-01 1.32300448e+00 9.28079486e-01 1.27664313e-01 -1.35485673e+00 -3.18955071e-02 7.95775354e-02 -4.17610519e-02 -1.38515973e+00 -1.36898786e-01 1.05959702e+00 -2.73997098e-01 1.37937832e+00 6.46170795e-01 7.35446751e-01 6.97480738e-01 3.17420721e-01 4.09768671e-01 1.10034621e+00 -6.64547801e-01 4.14533496e-01 1.08726643e-01 -8.28481242e-02 6.76885962e-01 -1.93883106e-01 1.86562777e-01 -2.80119069e-02 -5.29139578e-01 1.31153154e+00 1.26816750e-01 -5.50904572e-01 -6.11896276e-01 -1.04409158e+00 8.21189582e-01 9.95980322e-01 3.37875128e-01 -7.23707557e-01 4.97133791e-01 2.12600663e-01 6.95003867e-02 8.65924478e-01 3.81725669e-01 -4.59681243e-01 1.63931713e-01 -1.02014410e+00 4.67039764e-01 6.94263518e-01 6.55537844e-01 1.01476908e+00 3.27473581e-01 1.98967233e-01 8.86249304e-01 3.96355748e-01 2.99670011e-01 -9.23948511e-02 -1.27133739e+00 6.21039718e-02 4.81593937e-01 -2.08204910e-02 -1.05950928e+00 -3.02901864e-01 -5.62510133e-01 -9.63646829e-01 9.14305985e-01 1.61533743e-01 3.34371179e-01 -1.02476037e+00 1.20828462e+00 4.73938823e-01 1.98117524e-01 -5.23111131e-03 8.16716373e-01 9.01387811e-01 1.10464132e+00 -3.26137900e-01 1.02601744e-01 1.08411729e+00 -6.79985642e-01 -4.71992902e-02 4.17138577e-01 3.67571026e-01 -5.14879405e-01 7.16140747e-01 7.63442993e-01 -1.11773908e+00 -7.66206563e-01 -8.98013711e-01 -3.04873854e-01 -3.26197058e-01 -3.55885178e-01 8.42265427e-01 6.63303375e-01 -1.31976593e+00 9.84375179e-01 -4.10592735e-01 -1.19220711e-01 4.41276848e-01 1.40586630e-01 -2.63220727e-01 -2.73990929e-01 -4.90492404e-01 7.75959253e-01 4.22456600e-02 5.05030481e-03 -4.74014312e-01 -9.21219230e-01 -9.26031888e-01 1.93959028e-01 5.98791577e-02 -1.20802414e+00 1.04571807e+00 -1.09571338e+00 -1.65601182e+00 7.38772511e-01 -2.13577971e-01 -2.27906063e-01 2.38137856e-01 -1.19329937e-01 1.20667309e-01 2.60495603e-01 -3.96283627e-01 5.83616614e-01 6.51834786e-01 -1.68037832e+00 -3.06502551e-01 -3.99617881e-01 3.67306650e-01 3.24826986e-01 4.92468506e-01 -2.98040986e-01 1.27135262e-01 -6.49858534e-01 4.96156752e-01 -3.98101628e-01 -6.59613311e-01 3.20760339e-01 -1.00548804e-01 -2.67391354e-01 5.98508239e-01 -4.82836217e-01 3.26288223e-01 -1.99032283e+00 1.62135646e-01 5.57826698e-01 2.02562943e-01 -1.28596067e-01 1.16442284e-02 4.03865010e-01 -3.45282108e-01 4.85125147e-02 -4.97074097e-01 -3.77327323e-01 -1.65993154e-01 2.27034122e-01 -4.25918072e-01 5.30601442e-01 2.29194183e-02 4.94827598e-01 -6.48358881e-01 7.89775103e-02 7.13934839e-01 1.23420215e+00 -6.96754098e-01 -7.58316889e-02 -6.13016963e-01 5.79001248e-01 -5.77830613e-01 3.77604544e-01 1.03742325e+00 9.03739631e-02 -3.02680135e-01 -2.08185643e-01 -3.99633586e-01 3.65530431e-01 -1.28881609e+00 2.00455952e+00 -8.50099564e-01 5.64679027e-01 5.16448915e-02 -8.72533381e-01 1.16270065e+00 3.38792473e-01 5.44281065e-01 -7.87870169e-01 7.24553242e-02 1.35933250e-01 -7.17327774e-01 -2.96844747e-02 6.67491674e-01 -2.85301208e-01 3.75419050e-01 1.04582667e-01 -1.24130867e-01 -6.04524136e-01 -5.06853938e-01 -1.88241705e-01 9.08320069e-01 8.38002741e-01 3.79386812e-01 -4.28903580e-01 4.55265343e-01 7.58324564e-02 2.06776261e-01 4.50397134e-01 7.65029192e-01 1.04584718e+00 6.13413639e-02 -7.20294833e-01 -1.07938409e+00 -1.11383009e+00 -4.21755821e-01 6.82328284e-01 -2.83908583e-02 -3.30994099e-01 -6.54721558e-01 -6.57590777e-02 -2.16995195e-01 1.00513208e+00 -4.88031954e-01 4.19915140e-01 -7.77415752e-01 -3.99294168e-01 2.17828956e-02 4.23947483e-01 3.69858563e-01 -8.78550172e-01 -9.84128237e-01 2.08009169e-01 3.72566991e-02 -6.68850660e-01 4.64311123e-01 2.27991387e-01 -1.47575009e+00 -7.80052304e-01 -8.81773233e-01 -4.27718878e-01 6.02802455e-01 3.19973439e-01 1.47407424e+00 -2.73551419e-03 -1.90668881e-01 6.12455189e-01 -2.47686192e-01 -3.39437425e-01 -4.35734421e-01 -4.68900353e-01 -3.94356728e-01 -4.80526686e-02 -1.01130471e-01 -1.07917070e+00 -5.20115316e-01 -1.56910300e-01 -8.49051178e-01 2.79710174e-01 2.40576416e-01 3.49376321e-01 1.01646399e+00 9.59223583e-02 -7.86617920e-02 -9.44480777e-01 4.40821759e-02 -4.43263113e-01 -7.33204365e-01 -9.60639119e-02 -1.02001801e-01 1.25981972e-01 7.24301398e-01 -1.37149887e-02 -1.07872808e+00 6.80683628e-02 -6.60609365e-01 -6.60893023e-01 -8.05270970e-01 2.57556289e-01 8.01342502e-02 -4.19546425e-01 8.69702637e-01 2.45270189e-02 -5.33264756e-01 -9.31219757e-01 4.57557142e-01 1.54214233e-01 4.13367778e-01 -5.97187281e-01 5.40105224e-01 8.10860634e-01 4.07685637e-01 -1.18465126e+00 -3.08084697e-01 -4.04144496e-01 -7.13019550e-01 -2.24182621e-01 7.62271285e-01 -7.68909216e-01 -5.05496025e-01 1.73007801e-01 -1.58036137e+00 -2.82766730e-01 -8.26766551e-01 4.67260122e-01 -9.08233166e-01 2.14848951e-01 -3.44987810e-01 -1.10545754e+00 -1.67211041e-01 -1.03434741e+00 1.40849149e+00 3.61238122e-02 5.06889559e-02 -9.75992084e-01 2.96088815e-01 3.22108902e-02 3.46151829e-01 8.87754381e-01 1.26890814e+00 1.80995882e-01 -8.74670267e-01 1.09134451e-01 -1.87735558e-01 2.42038399e-01 -1.74476132e-01 6.40770644e-02 -1.53917551e+00 -2.79780291e-02 4.25182045e-01 2.92218011e-02 9.15114939e-01 6.92813873e-01 1.38232863e+00 4.40338999e-02 -2.01310590e-01 1.03356409e+00 2.12163043e+00 1.15973569e-01 9.35411096e-01 1.56315506e-01 9.23895419e-01 7.48228490e-01 1.64032310e-01 4.88267511e-01 4.29043978e-01 6.27815962e-01 8.82952690e-01 -2.26306200e-01 -8.62001032e-02 -5.49537390e-02 -4.52365763e-02 5.66718042e-01 -6.85913801e-01 -3.33258688e-01 -6.99832916e-01 1.97689742e-01 -1.49653447e+00 -8.83967698e-01 -7.33973682e-01 2.31705832e+00 8.27348679e-02 -9.91454273e-02 -1.09606892e-01 3.63166183e-01 2.21767783e-01 2.54109532e-01 -1.00734003e-01 -9.48396027e-01 -6.72456324e-02 7.04349399e-01 4.33845937e-01 6.11256421e-01 -6.62057996e-01 4.73128945e-01 6.68057299e+00 6.88526213e-01 -1.12387586e+00 -1.05444584e-02 5.26063323e-01 7.21664578e-02 -9.04166222e-01 -1.13459326e-01 -4.11693871e-01 -7.06646070e-02 8.14440906e-01 3.74770790e-01 4.97609496e-01 8.11960518e-01 1.08258404e-01 -4.21990544e-01 -1.19513059e+00 1.11978543e+00 1.02811940e-01 -1.53937554e+00 2.21774042e-01 9.09981206e-02 7.47667074e-01 2.90971130e-01 -1.19529806e-01 2.47131288e-02 1.79644346e-01 -1.19768214e+00 8.18084240e-01 9.80457366e-01 8.45566869e-01 -8.47913563e-01 4.22872514e-01 6.25173032e-01 -1.15283620e+00 2.76844114e-01 -6.37202621e-01 -9.31881666e-02 1.39980897e-01 8.95981252e-01 -4.03111726e-01 9.60215986e-01 9.46108103e-01 4.62807596e-01 -2.16300264e-01 1.22512209e+00 1.77163616e-01 2.21255943e-01 -6.91547215e-01 2.38543183e-01 3.52954358e-01 -5.03161311e-01 6.49118721e-01 1.05533707e+00 4.71584499e-01 1.24383532e-01 6.14937395e-02 1.25415254e+00 1.58516303e-01 1.25232548e-01 -1.06093705e+00 7.26784527e-01 -2.69803524e-01 1.11141431e+00 -5.63081741e-01 -2.84691364e-01 -3.90102834e-01 8.41251016e-01 3.22056442e-01 5.76758325e-01 -5.36396503e-01 -2.38035887e-01 3.61739486e-01 4.27293599e-01 4.84612375e-01 -5.16307592e-01 -3.65743190e-01 -8.33296657e-01 -3.57807875e-02 -4.31758255e-01 -2.44818325e-03 -1.35835409e+00 -1.14250255e+00 8.61696959e-01 3.51293445e-01 -1.10375369e+00 -3.17326754e-01 -8.09000552e-01 -6.34525418e-01 1.26447856e+00 -1.69766665e+00 -9.87181067e-01 -4.24322635e-01 5.57502270e-01 5.49338281e-01 2.84919411e-01 1.15353870e+00 2.54997797e-02 2.80738175e-01 -2.39080787e-01 2.21935019e-01 -4.05885428e-01 -1.47067070e-01 -1.29856169e+00 5.89900672e-01 3.31963867e-01 3.37188095e-01 3.02210480e-01 5.62148631e-01 -3.13781261e-01 -1.32596636e+00 -8.92986000e-01 4.28870708e-01 -4.20371652e-01 -1.30503148e-01 -2.41405100e-01 -1.16906834e+00 5.64769208e-01 7.05912411e-02 6.32439405e-02 4.88181531e-01 -2.89942566e-02 -4.03867483e-01 -2.39333883e-02 -1.39952409e+00 5.02155423e-01 1.06673634e+00 -4.27017301e-01 -6.05464518e-01 3.29704374e-01 5.20157516e-01 -5.05391479e-01 -8.21138442e-01 5.35672903e-01 3.10903311e-01 -1.49059534e+00 1.22060859e+00 -1.17021076e-01 3.10134262e-01 -1.58610567e-01 -6.22498453e-01 -1.57348967e+00 -4.70933318e-01 -2.84426153e-01 -9.95613337e-02 5.78676879e-01 -4.55697849e-02 -7.12926090e-01 7.41072714e-01 1.24494642e-01 -5.02210200e-01 -9.44166124e-01 -1.01393247e+00 -2.62508482e-01 2.18527928e-01 -6.94069028e-01 5.62874973e-01 8.36717486e-01 -8.80213201e-01 6.44016862e-02 2.96322644e-01 2.83865660e-01 7.09434628e-01 3.83462489e-01 5.89070559e-01 -1.63232386e+00 -4.38726157e-01 -4.76118922e-01 -3.64604235e-01 -1.27158689e+00 6.17967546e-03 -9.46990967e-01 2.90327743e-02 -2.06074309e+00 -4.26509619e-01 -8.80021691e-01 -1.31171048e-02 -1.09144868e-02 5.88578701e-01 4.88727480e-01 -8.15908685e-02 -1.75650224e-01 -4.76161651e-02 5.93635738e-01 1.33819759e+00 7.66529366e-02 -2.11264417e-01 -3.11494749e-02 -3.69546175e-01 1.13948703e+00 6.77145004e-01 -2.60647655e-01 -2.56174713e-01 -7.67777741e-01 4.86804992e-01 2.23857239e-01 7.19999075e-01 -1.06566310e+00 -4.49656099e-02 2.84749269e-02 6.64962113e-01 -1.06926894e+00 9.83566880e-01 -1.06902611e+00 5.29128075e-01 6.50535747e-02 2.00573787e-01 -6.75562099e-02 2.77328849e-01 4.01170403e-01 1.06971397e-03 -3.29211980e-01 9.25564468e-01 -7.74263263e-01 -5.65821052e-01 1.39814571e-01 -3.26289088e-01 -5.37731111e-01 5.86338818e-01 -7.08372056e-01 6.98587745e-02 -2.83116728e-01 -5.99731922e-01 -4.04899806e-01 6.22608840e-01 -1.34456772e-02 9.16487336e-01 -1.22465551e+00 -7.63069212e-01 3.85099947e-01 -1.27687305e-01 6.75316572e-01 3.51250976e-01 3.62394094e-01 -1.09391415e+00 2.09707141e-01 -2.67259449e-01 -9.41397846e-01 -9.88752961e-01 4.36348736e-01 6.98307335e-01 -1.24547805e-03 -1.14464164e+00 7.76476562e-01 5.71671247e-01 -6.69068277e-01 -2.58466210e-02 -7.45161712e-01 -1.86557412e-01 -2.83007771e-01 2.96008706e-01 5.79362452e-01 3.37907791e-01 -7.43297040e-01 -6.56012446e-02 1.10258090e+00 6.14762068e-01 -1.23496316e-01 1.53705359e+00 2.37957001e-01 -2.27793530e-01 8.10205340e-01 1.09646058e+00 1.52254298e-01 -1.05719078e+00 -2.93428630e-01 -5.70856094e-01 -6.64753020e-01 5.05536735e-01 -5.87826252e-01 -8.61256719e-01 1.26270771e+00 4.47442949e-01 3.10530901e-01 1.12480223e+00 -1.45521477e-01 5.14925718e-01 5.50672591e-01 8.25707912e-01 -5.64662576e-01 -4.40376043e-01 5.57687819e-01 1.31397820e+00 -7.46304750e-01 2.01996267e-01 -7.99002469e-01 6.06836379e-02 1.30279684e+00 1.18099503e-01 -6.05291128e-01 7.14299023e-01 2.35626474e-01 -1.88117012e-01 -3.65719408e-01 -4.29551154e-01 5.03596887e-02 5.06485403e-01 7.75168896e-01 3.91183734e-01 -9.56987515e-02 4.21566933e-01 -1.56611919e-01 -3.30944955e-01 -3.38509172e-01 3.33867013e-01 8.01044881e-01 -4.45797324e-01 -8.04627776e-01 -7.90032983e-01 4.24224287e-01 -2.10030690e-01 -1.62066564e-01 4.17044424e-02 5.50105393e-01 1.82467401e-01 4.67827588e-01 4.77231503e-01 4.43137512e-02 5.42287648e-01 -7.63574019e-02 1.06798601e+00 -7.00528204e-01 -7.98172891e-01 1.91977754e-01 -3.08384709e-02 -8.29108655e-01 -5.38294375e-01 -3.41240257e-01 -1.20885599e+00 -3.92882407e-01 -1.02551520e-01 -2.81446222e-02 1.08619809e+00 5.13546050e-01 2.54138798e-01 7.27890611e-01 8.25440466e-01 -1.65576530e+00 -5.96522354e-02 -6.31236613e-01 -6.78677440e-01 -2.71917805e-02 4.38264996e-01 -6.46582127e-01 -1.60422564e-01 -2.71422029e-01]
[9.340560913085938, -3.0862107276916504]
e5e6ddbf-2a6f-4fd1-a992-67ae781313c7
a-weak-supervision-approach-for-predicting
null
null
https://aclanthology.org/2022.coling-1.400
https://aclanthology.org/2022.coling-1.400.pdf
A Weak Supervision Approach for Predicting Difficulty of Technical Interview Questions
Predicting difficulty of questions is crucial for technical interviews. However, such questions are long-form and more open-ended than factoid and multiple choice questions explored so far for question difficulty prediction. Existing models also require large volumes of candidate response data for training. We study weak-supervision and use unsupervised algorithms for both question generation and difficulty prediction. We create a dataset of interview questions with difficulty scores for deep learning and use it to evaluate SOTA models for question difficulty prediction trained using weak supervision. Our analysis brings out the task’s difficulty as well as the promise of weak supervision for it.
['Indrajit Bhattacharya', 'Tapas Nayak', 'Pratik Saini', 'Subhasish Ghosh', 'Arpita Kundu']
null
null
null
null
coling-2022-10
['question-generation']
['natural-language-processing']
[ 5.02263494e-02 8.56827557e-01 -6.25051409e-02 -8.48228455e-01 -1.30875766e+00 -8.24225366e-01 1.79709822e-01 2.82466054e-01 -2.75855392e-01 4.91910875e-01 8.92888784e-01 -8.49452138e-01 -3.84930581e-01 -5.00789702e-01 -1.94591388e-01 2.55140096e-01 4.25065041e-01 8.05842221e-01 3.24213095e-02 -6.71146154e-01 1.26491860e-01 -2.61954576e-01 -9.38073337e-01 5.44258058e-01 1.03863442e+00 9.33392823e-01 3.64839494e-01 1.06488383e+00 -5.69997787e-01 1.29800093e+00 -7.01916873e-01 -6.92077756e-01 -6.44576475e-02 -3.26733619e-01 -1.81493652e+00 1.91283301e-02 6.92639172e-01 -6.67930961e-01 -4.05574292e-01 3.37765008e-01 4.42002386e-01 1.68362573e-01 5.06686509e-01 -1.01235950e+00 -7.96449006e-01 8.17344248e-01 2.66254306e-01 4.30715889e-01 9.76993024e-01 9.49453041e-02 1.52033484e+00 -8.93869162e-01 5.12410522e-01 9.87485886e-01 7.46683002e-01 8.56088281e-01 -1.08638024e+00 -2.77259767e-01 1.04596488e-01 4.19160038e-01 -4.35842246e-01 -3.83050978e-01 8.89730573e-01 -2.76370913e-01 1.05185878e+00 4.10808235e-01 5.95207699e-03 1.45434952e+00 -1.09208271e-01 7.77688086e-01 1.01165700e+00 -1.55879468e-01 1.82175100e-01 2.42459461e-01 5.74935138e-01 4.09969896e-01 -3.72243047e-01 -4.52754587e-01 -1.36851847e-01 -3.44036728e-01 3.88298035e-01 -1.36689842e-01 3.28322314e-02 3.10036510e-01 -7.37487257e-01 9.85992193e-01 2.15307042e-01 3.49991620e-01 -1.13314584e-01 -2.31286332e-01 1.60506517e-01 1.04044104e+00 4.84332234e-01 1.03804052e+00 -1.11525238e+00 -5.53544462e-01 -6.31283522e-01 6.67385995e-01 1.48497140e+00 9.32750404e-01 6.61990881e-01 -3.91619235e-01 -5.01277149e-01 1.09949923e+00 -1.46168873e-01 2.22793266e-01 3.96212190e-01 -1.30723011e+00 9.66755748e-01 8.67828012e-01 3.49225849e-01 -1.01649618e+00 -9.45650458e-01 -1.54570580e-01 -5.23496866e-01 -5.09113610e-01 7.84304082e-01 -6.30766571e-01 -5.43809235e-01 1.67083359e+00 5.18010706e-02 -6.43158615e-01 -2.20919847e-01 7.15700507e-01 1.34388125e+00 5.77297568e-01 1.13416232e-01 2.16815490e-02 1.26262498e+00 -1.08159840e+00 -9.54637825e-01 -5.57831705e-01 1.03446412e+00 -5.26727021e-01 1.64260483e+00 2.25981265e-01 -1.39940619e+00 -7.06294835e-01 -2.73481369e-01 -7.51136661e-01 -2.05117445e-02 -7.72616789e-02 5.90798199e-01 6.68001413e-01 -1.08375192e+00 3.21287543e-01 -8.28996152e-02 -3.36620599e-01 1.48563311e-01 3.26709181e-01 -1.45314112e-01 -2.25730255e-01 -1.49533689e+00 1.16226852e+00 -3.97281319e-01 -2.77090341e-01 -6.33864820e-01 -7.20107079e-01 -9.03767169e-01 4.75140303e-01 4.44966674e-01 -3.52255702e-01 1.87366438e+00 -8.01633000e-01 -1.38057482e+00 8.37636173e-01 -2.83308059e-01 -5.11542559e-02 -2.32460108e-04 -1.53714314e-01 -1.38149977e-01 2.30475456e-01 1.32269651e-01 6.00635529e-01 4.26346898e-01 -6.89943492e-01 -4.26529735e-01 -7.78019726e-02 9.45123136e-01 2.61117816e-01 -6.14860296e-01 1.24433726e-01 3.23320717e-01 -2.99784988e-01 2.23546475e-01 -5.23432553e-01 -4.91115272e-01 -3.63130599e-01 -1.69598293e-02 -9.02428031e-01 4.40037668e-01 -1.12344086e+00 1.34600461e+00 -1.54833019e+00 -9.40950704e-04 -9.85509679e-02 6.12553656e-01 -1.43372994e-02 -7.15662539e-01 8.55996966e-01 -2.02201679e-01 3.93517494e-01 1.22972645e-01 -3.19910735e-01 2.59642601e-01 1.75518375e-02 -2.38270700e-01 -3.05802733e-01 5.81660926e-01 1.29174888e+00 -9.14690673e-01 -5.16970217e-01 -2.19243541e-01 -5.57245374e-01 -9.82498467e-01 9.54749107e-01 -6.22249365e-01 1.99613363e-01 -5.16717792e-01 5.49764276e-01 4.40597147e-01 -6.38176739e-01 2.88791180e-01 7.89011195e-02 3.85811806e-01 1.19173408e+00 -6.15324020e-01 1.64020395e+00 -7.53132284e-01 5.56622744e-01 2.30384544e-01 -8.04321408e-01 1.09317648e+00 4.70648766e-01 2.18399525e-01 -7.98065364e-01 -5.32972533e-03 -6.55143932e-02 7.97477458e-03 -1.23535156e+00 7.10324168e-01 -1.56115785e-01 -5.31323433e-01 6.87763870e-01 4.87961948e-01 -7.17064440e-01 8.79988000e-02 4.68883336e-01 1.67970133e+00 -5.00386417e-01 -4.27224487e-02 -2.89888561e-01 2.85036415e-01 -8.88217911e-02 1.30443871e-01 9.07767653e-01 -3.76002192e-01 6.03784919e-01 7.66102791e-01 -3.84859562e-01 -8.86964560e-01 -8.51530254e-01 2.04840794e-01 1.58955276e+00 -2.12644547e-01 -6.18035614e-01 -8.48133028e-01 -9.94661331e-01 -3.45743060e-01 5.44019520e-01 -4.14634138e-01 1.12313300e-01 -3.66383106e-01 6.73589259e-02 3.49942952e-01 5.43806314e-01 2.93473676e-02 -1.26065135e+00 4.36890386e-02 3.57798696e-01 -1.00454652e+00 -1.22911966e+00 -3.81872743e-01 3.65297824e-01 -7.05043256e-01 -9.52699780e-01 -3.92390370e-01 -1.12970626e+00 4.08313066e-01 3.93449426e-01 1.78176320e+00 5.05152225e-01 2.79029340e-01 8.43132257e-01 -7.18150318e-01 -2.35896721e-01 -1.55045792e-01 7.78374553e-01 -2.82308668e-01 -7.11611986e-01 6.84805632e-01 -9.18848634e-01 -5.48852623e-01 4.42465365e-01 -8.92451942e-01 -2.69449592e-01 3.36426616e-01 8.27679813e-01 -3.80313009e-01 -4.72616762e-01 1.19151390e+00 -9.68015313e-01 1.42197549e+00 -1.02560890e+00 -5.10903373e-02 1.41475037e-01 -2.88160890e-01 -1.13523386e-01 6.31969452e-01 -4.50009912e-01 -1.19129503e+00 -3.48683685e-01 -8.89168799e-01 4.15311635e-01 -2.95058727e-01 6.09047174e-01 -7.91103467e-02 1.23345308e-01 1.25365376e+00 -3.71900886e-01 -3.30198288e-01 -5.17539799e-01 2.05818862e-01 9.03221130e-01 2.80598521e-01 -8.37397575e-01 9.97210801e-01 -1.23332888e-01 -8.08657944e-01 -5.40241897e-01 -1.49989700e+00 -5.43432117e-01 -1.95597559e-01 -1.36276886e-01 5.50776660e-01 -8.35830152e-01 -8.41944039e-01 3.51576358e-02 -1.37251079e+00 -5.84216774e-01 -3.04666251e-01 -4.91910204e-02 -4.97299790e-01 2.12460682e-01 -1.08142221e+00 -8.91267121e-01 -2.97589451e-01 -5.99874258e-01 6.81820691e-01 2.77887970e-01 -9.29898322e-01 -1.26101351e+00 1.08436331e-01 1.09255803e+00 6.55127108e-01 -2.46381506e-01 1.13753140e+00 -8.28877509e-01 -3.26803386e-01 -1.70673892e-01 -1.30249470e-01 1.81231365e-01 8.88267606e-02 -5.92855752e-01 -1.04276979e+00 1.84953973e-01 6.66496038e-01 -1.32779443e+00 5.28147280e-01 1.12793460e-01 1.47819066e+00 -6.81384683e-01 2.33899757e-01 9.15281475e-02 8.85491967e-01 -5.50903201e-01 5.70041299e-01 1.39145404e-01 5.15559435e-01 1.17737734e+00 6.12934768e-01 4.00160968e-01 1.35426688e+00 2.06543416e-01 2.81026393e-01 1.46799451e-02 4.12994921e-01 -2.94914812e-01 2.84280747e-01 1.19473112e+00 6.45434797e-01 -2.53799856e-01 -1.15820754e+00 1.00756478e+00 -1.42340136e+00 -7.91161835e-01 -3.98775667e-01 1.28326118e+00 1.33454025e+00 1.68504298e-01 3.04675996e-01 2.12884590e-01 2.31257036e-01 3.06174189e-01 -3.43557626e-01 -8.06601107e-01 1.61633536e-01 5.57670534e-01 -2.83513337e-01 7.97859848e-01 -6.28415704e-01 6.89780414e-01 7.28838015e+00 5.18605113e-01 -3.76434624e-01 2.68693924e-01 9.22363520e-01 -5.39020821e-02 -1.08155406e+00 8.16875324e-02 -5.44019639e-01 3.16959381e-01 1.25457036e+00 1.25951469e-02 3.53083670e-01 9.06057000e-01 9.03237313e-02 -2.42149904e-01 -1.22275054e+00 6.17740333e-01 -5.20766824e-02 -1.01852584e+00 -3.10101390e-01 -5.32827318e-01 8.01278651e-01 -2.25828722e-01 -9.20398459e-02 7.60872543e-01 5.30736864e-01 -1.26555455e+00 1.67285532e-01 3.11168164e-01 5.41700423e-01 -4.18975770e-01 8.50231409e-01 8.70089233e-01 -5.28217912e-01 -6.03919327e-01 -6.48502588e-01 -9.80535746e-01 5.88772036e-02 7.68554389e-01 -8.41758668e-01 4.36691605e-02 4.75681990e-01 8.92553777e-02 -9.35527384e-01 3.72677624e-01 -2.36790568e-01 1.01252389e+00 -3.42947900e-01 -3.93308252e-01 2.10249200e-01 2.94141144e-01 -5.67195006e-02 9.31431532e-01 -4.44315411e-02 4.50820357e-01 2.86446512e-01 7.94120848e-01 -3.06604803e-01 6.35794306e-04 -2.96748251e-01 -1.12036556e-01 7.05446243e-01 1.57718205e+00 -9.11840424e-02 -3.91002372e-02 -5.21409035e-01 6.49816215e-01 7.95256615e-01 1.78577006e-01 -4.70602214e-01 -2.83871621e-01 3.49114299e-01 2.83700377e-01 -2.30387375e-01 -1.64804146e-01 -5.85213304e-01 -1.13146007e+00 4.22286481e-01 -1.24965084e+00 4.12540555e-01 -7.75752246e-01 -1.61112547e+00 3.90272468e-01 -3.28312606e-01 -7.73929596e-01 -4.94875282e-01 -5.93250692e-01 -9.03580964e-01 9.70272422e-01 -1.55277228e+00 -9.47585404e-01 -6.36613190e-01 4.15675163e-01 8.24627161e-01 1.81521028e-01 9.01473761e-01 1.50809109e-01 -1.65472507e-01 7.66006470e-01 -2.60080367e-01 1.36640638e-01 7.76966631e-01 -1.54613352e+00 9.55440283e-01 6.01534992e-02 -2.08791450e-01 3.92789006e-01 6.12479508e-01 -4.17830914e-01 -1.22231340e+00 -6.24400079e-01 1.64417076e+00 -1.38590837e+00 8.31269622e-01 -5.92343330e-01 -1.03144157e+00 6.76619768e-01 4.09849286e-01 -2.69977242e-01 9.02188718e-01 8.25668633e-01 -2.63663113e-01 1.73900038e-01 -1.16302061e+00 4.30480570e-01 9.45710361e-01 -8.96994293e-01 -1.08312201e+00 4.66477841e-01 1.06755722e+00 -4.94219124e-01 -9.40930426e-01 -9.97742638e-02 2.73999959e-01 -9.85366702e-01 5.58499634e-01 -7.98407912e-01 1.11357760e+00 6.87851727e-01 1.18883684e-01 -1.24873781e+00 -7.37802804e-01 -7.30260849e-01 -1.98534071e-01 1.44882524e+00 7.25954354e-01 -7.13551044e-02 1.17076695e+00 1.22580826e+00 -2.87629329e-02 -9.25764322e-01 -5.38710296e-01 -2.16397002e-01 6.63296103e-01 -3.51185322e-01 5.09644270e-01 1.12280357e+00 6.57447100e-01 8.89772177e-01 -1.99085429e-01 -2.89862633e-01 1.05182193e-01 -2.46100321e-01 7.23376334e-01 -1.33476472e+00 -1.61391094e-01 -8.65881667e-02 4.32184100e-01 -1.48807323e+00 3.01609814e-01 -6.50407135e-01 6.34726286e-02 -1.73855913e+00 4.80806492e-02 -3.72236073e-01 2.13804334e-01 1.29817501e-01 -8.21345031e-01 -3.48694891e-01 4.68261726e-02 -2.70531058e-01 -1.05142105e+00 2.89528280e-01 1.21468353e+00 -7.40512609e-02 1.54753332e-03 8.30108300e-02 -1.35158789e+00 4.86182749e-01 1.08653748e+00 -4.44788039e-01 -6.47808433e-01 -8.29154432e-01 1.00275207e+00 5.65150976e-01 3.18148993e-02 -8.27233493e-01 1.27511919e-01 -4.12987828e-01 3.15361649e-01 -5.47038019e-01 1.31762743e-01 -6.40908957e-01 -8.03565443e-01 -2.00414255e-01 -1.17555928e+00 2.58045375e-01 -2.89680567e-02 1.15907222e-01 -1.18534416e-01 -8.27681601e-01 2.65555799e-01 -3.83018762e-01 -1.27383336e-01 1.49665326e-01 -6.84662223e-01 7.46897459e-01 9.85239521e-02 4.56096195e-02 -2.76004314e-01 -1.30975032e+00 -5.91098189e-01 8.28796387e-01 1.32849485e-01 6.08064353e-01 5.70953071e-01 -1.26853585e+00 -8.18207681e-01 -3.34258616e-01 2.39128843e-01 1.28771588e-01 4.73745793e-01 3.75239491e-01 8.16415325e-02 4.00684536e-01 -4.62566242e-02 -1.47515714e-01 -8.36741388e-01 4.17815030e-01 1.42083168e-01 -9.09608781e-01 -8.25762763e-05 1.15345168e+00 -3.80267277e-02 -1.18684494e+00 1.89910159e-01 -5.82471848e-01 -5.69821894e-01 1.61441173e-02 5.59416831e-01 2.96051294e-01 4.83400412e-02 3.73337805e-01 9.15441811e-02 -8.73246044e-02 -2.41329670e-01 -5.46882376e-02 1.24840975e+00 -4.38056529e-01 -4.72365506e-02 4.13208634e-01 1.18472207e+00 -7.34147131e-02 -8.99360120e-01 -4.59019721e-01 6.76044166e-01 -2.21812546e-01 -4.14701134e-01 -1.08248007e+00 -3.36030126e-01 9.46633935e-01 6.29827082e-02 6.97574079e-01 8.33404779e-01 2.50415206e-01 1.06725442e+00 1.07920301e+00 -1.34614214e-01 -1.36477816e+00 8.48334134e-01 1.13303483e+00 1.12008893e+00 -1.54044068e+00 -4.70481902e-01 -2.65285313e-01 -4.88678247e-01 9.51678038e-01 1.21996999e+00 -1.34176284e-01 2.89527059e-01 3.44094068e-01 3.74928564e-01 -2.90898532e-01 -1.35086596e+00 -1.39873087e-01 1.88417256e-01 8.50867391e-01 8.32320869e-01 -3.26796621e-01 -2.99143612e-01 1.31525242e+00 -7.07890332e-01 -5.21685276e-03 7.76759088e-01 7.81626403e-01 -5.51483989e-01 -1.07121634e+00 -2.24459350e-01 1.13355637e+00 -5.78722835e-01 -2.14286298e-01 -8.09273958e-01 2.37670951e-02 -2.99056381e-01 1.68423998e+00 -1.24896891e-01 -5.74939966e-01 4.60881561e-01 2.22673908e-01 3.69033754e-01 -1.00341094e+00 -1.30570519e+00 -9.24547434e-01 7.13597715e-01 -4.28598076e-01 -1.84888858e-02 -2.56435305e-01 -7.59511173e-01 -3.06595206e-01 -4.85052884e-01 4.15683806e-01 4.13623184e-01 1.27792406e+00 2.13509366e-01 2.99343884e-01 1.15393126e+00 -4.10490930e-01 -1.14292765e+00 -1.47485340e+00 -1.82576492e-01 7.25344360e-01 4.88206327e-01 -8.17962363e-02 -5.86968541e-01 -2.37929374e-01]
[11.52406120300293, 8.104268074035645]
5ee46b03-0657-4ad8-8e89-1fa4e2b3efb0
c-norm-a-neural-approach-to-few-shot-entity
null
null
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03886-8
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-020-03886-8.pdf
C-Norm: a neural approach to few-shot entity normalization
Entity normalization is an important information extraction task which has gained renewed attention in the last decade, particularly in the biomedical and life science domains. In these domains, and more generally in all specialized domains, this task is still challenging for the latest machine learning-based approaches, which have difficulty handling highly multi-class and few-shot learning problems. To address this issue, we propose C-Norm, a new neural approach which synergistically combines standard and weak supervision, ontological knowledge integration and distributional semantics.
['Claire Nédellec', 'Pierre Zweigenbaum', 'Robert Bossy', 'Louise Deléger', 'Arnaud Ferré']
2020-12-29
null
null
null
bmc-bioinformatics-2020-12
['medical-concept-normalization']
['medical']
[ 3.47591788e-01 -4.73058186e-02 -3.90293032e-01 -3.56802166e-01 -2.10838839e-01 -5.25668785e-02 5.03447056e-01 7.29846895e-01 -9.70735669e-01 1.10205078e+00 2.60888994e-01 -1.03826895e-02 -3.38807762e-01 -7.64681816e-01 -2.98813749e-02 -5.90286195e-01 1.10106103e-01 2.11260930e-01 6.14852846e-01 -4.23408359e-01 1.69939250e-01 4.78181064e-01 -1.62861907e+00 -3.74251194e-02 8.44919264e-01 6.82332873e-01 -2.28963032e-01 1.27639011e-01 -4.35531080e-01 6.70244396e-01 -2.96673059e-01 -7.64644146e-01 -1.10760055e-01 -1.11034892e-01 -7.72457063e-01 -5.53140581e-01 3.76763456e-02 3.20592910e-01 -1.59032956e-01 1.53335690e+00 7.59274960e-01 4.78542060e-01 6.70825899e-01 -1.11080229e+00 -6.38866961e-01 4.29161370e-01 -6.87939644e-01 4.51237351e-01 9.37381387e-02 -2.31631413e-01 9.39968467e-01 -8.79083812e-01 6.56342626e-01 1.03535593e+00 7.42512107e-01 5.63321829e-01 -8.99324954e-01 -6.12303317e-01 1.63512915e-01 6.29369974e-01 -1.42107463e+00 -2.53163606e-01 6.61382198e-01 -3.58859092e-01 8.70758057e-01 -4.31672782e-02 1.61424190e-01 1.12044799e+00 -3.63692641e-02 6.85599387e-01 7.51776278e-01 -6.90021336e-01 2.92588353e-01 1.21237434e-01 3.16650271e-01 1.46428704e-01 4.92931664e-01 -2.25968286e-01 -2.51881093e-01 -5.65330684e-02 3.36325437e-01 2.35517278e-01 -1.68236598e-01 -1.98551267e-01 -1.02814114e+00 9.48376536e-01 2.26575494e-01 8.36440742e-01 -2.63096839e-01 -4.03339833e-01 6.59251392e-01 9.70283374e-02 6.28258049e-01 5.41224778e-01 -6.01964533e-01 -1.83187470e-01 -8.13134730e-01 2.40595683e-01 8.07439029e-01 8.20095599e-01 5.71239829e-01 -5.31374738e-02 -5.65203978e-03 1.09357929e+00 2.12988239e-02 1.10313959e-01 7.57949054e-01 -3.77414882e-01 3.11131209e-01 9.73256707e-01 -1.71569243e-01 -1.00220335e+00 -7.55148292e-01 -5.99050462e-01 -1.40365732e+00 -1.75869554e-01 2.83553481e-01 -1.88170806e-01 -6.86302781e-01 1.90183556e+00 7.09260404e-01 3.93753946e-01 2.22354010e-01 7.53701389e-01 9.53714907e-01 3.15031379e-01 5.10910571e-01 -4.72361177e-01 1.45213377e+00 -7.10315228e-01 -1.19357061e+00 -2.14493260e-01 4.06555295e-01 -6.50693238e-01 8.20043802e-01 2.13318229e-01 -5.36999881e-01 -2.27173343e-01 -1.24250340e+00 -2.00579911e-01 -1.07677686e+00 -4.07340258e-01 7.03534305e-01 4.34447497e-01 -4.28616762e-01 5.75392187e-01 -6.21134460e-01 -7.02787161e-01 6.72634184e-01 3.29140127e-01 -6.99351788e-01 -3.00996542e-01 -1.76757050e+00 1.27647686e+00 9.84076917e-01 -1.33014083e-01 -6.01542480e-02 -4.98319954e-01 -9.97355163e-01 1.19879879e-01 7.75728285e-01 -5.43776214e-01 9.81406927e-01 -6.67963266e-01 -1.31373298e+00 8.43046844e-01 1.13604963e-01 -3.60360026e-01 7.56062418e-02 -2.45348200e-01 -9.66426492e-01 -4.28130865e-01 7.70356804e-02 6.02626614e-02 4.30302411e-01 -6.43571079e-01 -6.89426959e-01 -8.38922381e-01 -1.87387884e-01 2.19069868e-01 -8.11871111e-01 3.76119137e-01 -4.22699362e-01 -7.83487499e-01 -2.12252632e-01 -5.17733097e-01 -5.60079455e-01 -2.66082942e-01 -2.23736376e-01 -6.51051164e-01 7.24639952e-01 -3.12686205e-01 1.39246380e+00 -2.29855871e+00 2.17652485e-01 8.24839175e-02 -8.31884507e-04 7.33264327e-01 4.64399569e-02 2.63842165e-01 -2.96646267e-01 -1.19619198e-01 -5.39911449e-01 -1.52324662e-01 3.88811678e-02 2.84653783e-01 1.59548342e-01 3.54408979e-01 3.20510179e-01 6.88258767e-01 -9.94333506e-01 -5.93941271e-01 1.36216849e-01 4.96421814e-01 -2.24439546e-01 8.90371501e-02 -3.88607383e-02 1.81938827e-01 -3.36975545e-01 5.67960739e-01 5.43373406e-01 -2.64375776e-01 2.14445561e-01 -1.66166544e-01 -1.07641242e-01 -2.64379889e-01 -1.33061397e+00 1.95309556e+00 -1.49510145e-01 2.30575040e-01 -1.02064900e-01 -1.50101757e+00 6.02254033e-01 2.99572319e-01 4.87228662e-01 -7.29951322e-01 4.90101546e-01 3.33040416e-01 -1.41525418e-01 -8.26087117e-01 4.83574957e-01 -7.29860842e-01 -2.45758355e-01 4.46526567e-03 3.81278455e-01 2.31717616e-01 4.77305919e-01 -1.13556534e-01 1.04322219e+00 -3.40147018e-02 1.07500923e+00 -1.24437198e-01 7.66510487e-01 -1.44745559e-01 1.13850987e+00 2.64637530e-01 -4.71541315e-01 6.45937920e-01 2.50166208e-01 -3.39212447e-01 -6.95219457e-01 -6.18839502e-01 -3.36593390e-01 1.26248443e+00 3.29896212e-01 -2.67568350e-01 -6.57894909e-01 -7.99837947e-01 6.90009743e-02 6.63072407e-01 -7.01237202e-01 -4.66236651e-01 -4.74729210e-01 -1.13792253e+00 5.72250605e-01 4.87860650e-01 2.53103167e-01 -1.28290069e+00 -2.07042322e-01 5.13153076e-01 -1.22079827e-01 -1.22519016e+00 -2.06106842e-01 5.99119544e-01 -6.58379197e-01 -1.23330545e+00 -7.69537508e-01 -7.64772296e-01 3.68142217e-01 -1.52413145e-01 9.71715868e-01 -1.46068469e-01 -5.57062685e-01 -1.45100892e-01 -5.54195881e-01 -8.73790145e-01 3.43105234e-02 4.79105145e-01 2.64448255e-01 1.23132482e-01 1.07844615e+00 -6.15447044e-01 -1.02206990e-01 1.62652507e-01 -1.25862408e+00 -4.13336664e-01 5.47097385e-01 9.05150115e-01 4.75469977e-01 1.82475999e-01 1.05818844e+00 -1.24239230e+00 7.68369317e-01 -7.50685573e-01 -3.40416968e-01 3.69290978e-01 -4.84673977e-01 -2.66163964e-02 8.29299927e-01 -2.69498259e-01 -1.00918877e+00 -1.67510986e-01 -6.18163407e-01 9.49989352e-03 -4.74610299e-01 8.25077415e-01 -6.24500215e-01 1.40358984e-01 7.14379251e-01 -3.45467217e-02 -2.52351850e-01 -6.06954992e-01 1.77048907e-01 9.39700246e-01 7.02159882e-01 -3.52018028e-01 6.44096971e-01 3.18794340e-01 -6.26951382e-02 -8.52776647e-01 -1.20415306e+00 -7.83011317e-01 -8.40497613e-01 1.65169328e-01 1.14175761e+00 -6.85059667e-01 -5.16710818e-01 4.30314898e-01 -1.20134521e+00 3.84441614e-01 -4.72354025e-01 7.83547342e-01 -1.39430836e-01 3.07739228e-01 -1.96857303e-01 -5.81698596e-01 -3.63240212e-01 -7.67524362e-01 6.59770191e-01 7.84915030e-01 -1.50968581e-01 -9.58311498e-01 4.31593031e-01 1.09285759e-02 5.78247309e-01 3.22650671e-01 1.13302577e+00 -1.25627005e+00 2.02322379e-01 -4.39804047e-01 -4.45209026e-01 4.68990564e-01 2.84128100e-01 -3.09964538e-01 -9.50029135e-01 -2.87905838e-02 5.72688468e-02 -2.46837124e-01 8.86635184e-01 9.26022232e-02 8.80746901e-01 6.73638806e-02 -2.52065063e-01 3.41649294e-01 1.43480611e+00 1.66439712e-01 4.61876899e-01 4.92995679e-01 6.21110976e-01 7.85350561e-01 6.45350277e-01 4.44844127e-01 3.77283514e-01 6.03910446e-01 3.97957087e-01 -2.17189774e-01 1.49358481e-01 1.63627248e-02 -2.30376258e-01 1.07006872e+00 -1.79467931e-01 -1.87738836e-02 -9.07328427e-01 6.57187879e-01 -2.16042018e+00 -9.84640539e-01 1.17678158e-01 2.07521915e+00 1.19405556e+00 6.70512393e-02 -2.08570927e-01 3.37506980e-01 9.00617540e-01 1.32769614e-01 -6.69541776e-01 -2.13641480e-01 -3.89323920e-01 2.75462985e-01 2.13031232e-01 -1.04623325e-01 -1.51111031e+00 8.21278274e-01 5.92541742e+00 1.11083198e+00 -8.54174435e-01 3.34040284e-01 2.36540735e-01 2.54193068e-01 8.43172297e-02 -3.36536407e-01 -7.80739427e-01 5.61490595e-01 7.99024105e-01 -3.03843319e-01 -4.26582731e-02 8.90575349e-01 -8.56699273e-02 1.88861825e-02 -1.07026613e+00 1.05130816e+00 3.04340363e-01 -1.02506328e+00 -1.70060873e-01 -2.80727655e-01 7.12640643e-01 6.30415678e-02 -3.32777202e-01 6.46573067e-01 2.22643688e-01 -9.92702723e-01 -1.07684489e-02 3.37182522e-01 6.71015203e-01 -1.01839709e+00 1.41836596e+00 6.02568626e-01 -1.05469227e+00 -7.63585046e-02 -5.30608475e-01 6.69641048e-02 3.31834972e-01 1.06869113e+00 -8.61954987e-02 8.65003407e-01 8.26758265e-01 9.24720585e-01 -2.09986404e-01 1.35941601e+00 -3.82390499e-01 3.28440487e-01 -2.60225683e-01 -5.13184314e-05 4.79576178e-02 -3.90738547e-02 4.06114846e-01 1.34229827e+00 1.57833889e-01 2.86109239e-01 1.98302701e-01 2.72335082e-01 -4.41619486e-01 6.08142495e-01 -6.96028769e-01 6.37393519e-02 1.41529217e-01 1.34943819e+00 -6.94258213e-01 -4.03295845e-01 -6.11342669e-01 6.85402751e-01 4.77013826e-01 8.81824866e-02 -6.95207775e-01 -9.71187949e-01 7.72480607e-01 -2.55664855e-01 3.04986332e-02 8.71952996e-02 -1.83293462e-01 -1.49790323e+00 2.92371847e-02 -6.63777530e-01 7.99965799e-01 -1.23974033e-01 -1.73193049e+00 4.27231878e-01 -8.88376161e-02 -1.27912104e+00 3.61606143e-02 -6.10766709e-01 -5.11145115e-01 4.78048652e-01 -2.10515070e+00 -7.98081338e-01 -1.27188027e-01 5.54517925e-01 3.12275916e-01 -2.67612427e-01 1.14246416e+00 1.00517976e+00 -8.88752937e-01 5.55240691e-01 3.72162998e-01 2.23450512e-01 1.13214767e+00 -1.19171619e+00 2.83063632e-02 7.00827956e-01 -1.32646412e-01 6.68416739e-01 6.04441345e-01 -4.57304597e-01 -9.23664391e-01 -1.22433984e+00 1.29487884e+00 -7.45694712e-02 6.39646113e-01 -2.12088957e-01 -1.26142335e+00 2.45867088e-01 2.12587580e-01 3.87774736e-01 1.12612271e+00 3.00856978e-01 -3.51932079e-01 -1.65061355e-01 -1.31789863e+00 3.56969416e-01 9.26043808e-01 -3.64609212e-01 -1.02134836e+00 2.56136209e-01 6.40252829e-01 -1.33052751e-01 -1.07110894e+00 7.63196826e-01 3.09628516e-01 -5.75450122e-01 8.65451038e-01 -1.01066327e+00 1.40497640e-01 -4.42311317e-01 -1.72481984e-01 -1.36366093e+00 -2.74753481e-01 -1.95289806e-01 -8.93462524e-02 1.47268617e+00 2.99688607e-01 -4.61162537e-01 7.59215832e-01 4.53736335e-01 1.46311700e-01 -6.02646887e-01 -1.15586460e+00 -8.77644181e-01 1.35372147e-01 -3.41014594e-01 6.12274110e-01 1.43290555e+00 3.35951120e-01 6.30292118e-01 -4.94020194e-01 -2.04627693e-01 5.48207104e-01 -4.47317101e-02 2.80368268e-01 -1.76859164e+00 1.41271815e-01 -5.46681106e-01 -8.24078560e-01 -2.63263166e-01 2.34219089e-01 -9.81206477e-01 1.91209838e-01 -1.52016377e+00 2.92619169e-01 -2.99538113e-02 -7.87994981e-01 6.71823680e-01 -4.92225349e-01 2.35280856e-01 -1.94573641e-01 -1.22897007e-01 -9.58699703e-01 8.78669262e-01 8.14512372e-01 -1.89080402e-01 2.63612792e-02 -5.00371605e-02 -8.84905219e-01 1.04334736e+00 6.68189108e-01 -6.96750104e-01 -1.24742426e-01 -2.56304026e-01 3.73854607e-01 -4.29971606e-01 -1.95641607e-01 -1.04547298e+00 5.53872228e-01 -3.82622600e-01 1.93242237e-01 -2.64515787e-01 4.29623621e-03 -1.04891539e+00 -1.32774785e-01 2.04916447e-01 -1.98772743e-01 -7.58581236e-02 1.86015368e-01 6.59404397e-01 -6.35865629e-01 -3.90762925e-01 1.04401708e+00 -1.04209282e-01 -8.99853110e-01 4.98048097e-01 -6.28218204e-02 5.33097267e-01 1.20495367e+00 3.94634902e-02 -2.59631783e-01 3.77484858e-01 -8.70199740e-01 2.86536127e-01 1.78637147e-01 6.21869385e-01 4.31847095e-01 -1.43878770e+00 -7.92540908e-01 6.19796030e-02 5.95826745e-01 2.01856077e-01 2.64131278e-01 9.03315842e-01 -3.27367820e-02 1.96172833e-01 -2.83909082e-01 -4.77612019e-02 -1.11121881e+00 5.93609035e-01 -1.18503414e-01 -4.65639025e-01 -4.45184231e-01 6.43462837e-01 -1.07175462e-01 -5.15525997e-01 4.75657582e-01 1.25976294e-01 -1.00908947e+00 5.15925586e-01 8.40500355e-01 5.10629475e-01 3.27990472e-01 -6.37830555e-01 -6.30128503e-01 5.65675497e-01 -1.80312142e-01 4.80469882e-01 1.76626074e+00 1.05498962e-01 -3.30321372e-01 5.52629590e-01 1.29026020e+00 -3.31898779e-01 -5.01920164e-01 -7.10323811e-01 7.25805104e-01 -2.17655241e-01 -1.56328052e-01 -7.35825956e-01 -8.39738727e-01 9.53022182e-01 4.71618414e-01 2.05207527e-01 9.23090398e-01 -5.63215986e-02 7.47910440e-01 4.32234108e-01 2.86184371e-01 -1.55596209e+00 -4.14811909e-01 8.51282358e-01 4.06666934e-01 -1.43027377e+00 1.80759713e-01 -3.20594549e-01 -3.61220270e-01 1.01173711e+00 7.00953603e-01 2.12535918e-01 8.35201442e-01 3.35206717e-01 -1.06529795e-01 -1.25034779e-01 -4.14655060e-01 -5.05959988e-01 2.75030315e-01 5.14257550e-01 5.53705156e-01 -2.28673622e-01 -6.61205649e-01 1.03540170e+00 3.36707681e-01 3.54464859e-01 7.38869980e-02 1.03133178e+00 -5.82300127e-01 -1.40822113e+00 -9.53186825e-02 7.19479501e-01 -8.40208590e-01 -1.27415523e-01 -1.52375728e-01 5.25771439e-01 4.29073095e-01 6.96500599e-01 -2.16104209e-01 -9.46198851e-02 6.86607540e-01 1.13577038e-01 -2.28183270e-02 -8.43996704e-01 -6.49286032e-01 -3.68877172e-01 -4.81316745e-02 -2.94148564e-01 -8.54943752e-01 -4.32539552e-01 -1.40766740e+00 -1.90438004e-03 -6.15777135e-01 2.84108579e-01 6.59496307e-01 1.22256100e+00 2.18149468e-01 5.88859797e-01 2.81227440e-01 -5.03039122e-01 -5.19041121e-01 -1.07203948e+00 -7.22530663e-01 5.81820488e-01 2.87291724e-02 -9.24806356e-01 -4.41462904e-01 -1.80196851e-01]
[9.671523094177246, 9.34350872039795]
b1e326b2-70fc-411f-8ca4-87e55197cd55
transform-invariant-convolutional-neural-1
2206.13388
null
https://arxiv.org/abs/2206.13388v1
https://arxiv.org/pdf/2206.13388v1.pdf
Transform-Invariant Convolutional Neural Networks for Image Classification and Search
This paper demonstrates that a simple modification of the variational autoencoder (VAE) formalism enables the method to identify and classify rotated and distorted digits. In particular, the conventional objective (cost) function employed during the training process of a VAE both quantifies the agreement between the input and output data records and ensures that the latent space representation of the input data record is statistically generated with an appropriate mean and standard deviation. After training, simulated data realizations are generated by decoding appropriate latent space points. Since, however, standard VAE:s trained on randomly rotated MNIST digits cannot reliably distinguish between different digit classes since the rotated input data is effectively compared to a similarly rotated output data record. In contrast, an alternative implementation in which the objective function compares the output associated with each rotated digit to a corresponding fixed unreferenced reference digit is shown here to discriminate accurately among the rotated digits in latent space even when the dimension of the latent space is 2 or 3.
['David Yevick']
2022-06-18
null
null
null
null
['rotated-mnist']
['computer-vision']
[ 3.56446028e-01 1.34451136e-01 7.83998370e-02 -3.08783233e-01 -8.00567627e-01 -8.17889035e-01 9.42967594e-01 -3.46549213e-01 -3.40315163e-01 8.00557554e-01 1.73572302e-01 -1.53040346e-02 -1.72257647e-01 -6.24437034e-01 -4.72857118e-01 -1.10186756e+00 2.68349230e-01 6.53389633e-01 -5.28616428e-01 1.69869438e-01 1.39097258e-01 6.13730550e-01 -1.64617217e+00 1.25022516e-01 4.89839375e-01 8.51842105e-01 4.63189147e-02 8.95121694e-01 1.30362988e-01 3.24245572e-01 -1.18052590e+00 -2.99131215e-01 4.01766837e-01 -8.14423800e-01 -4.19122487e-01 1.81544438e-01 4.68959928e-01 -1.14262082e-01 -4.65896070e-01 1.40067136e+00 4.20183331e-01 3.03970963e-01 1.26565504e+00 -1.08074450e+00 -9.47513223e-01 5.84847271e-01 1.16536736e-01 -1.83586925e-02 2.66295522e-01 -2.24076845e-02 7.76789248e-01 -6.28556788e-01 6.82912588e-01 1.18698168e+00 4.06255543e-01 7.43335545e-01 -1.79177034e+00 -5.36987603e-01 -2.69527823e-01 -1.96169823e-01 -1.39786458e+00 -6.79415882e-01 9.85327244e-01 -5.99205554e-01 7.70446301e-01 3.20497274e-01 6.69262290e-01 1.63468635e+00 3.47066343e-01 4.48650330e-01 9.21016872e-01 -4.76492107e-01 5.48434794e-01 2.33529538e-01 1.31513737e-02 3.16865295e-02 8.26253369e-02 4.35500890e-01 -1.76242784e-01 -1.58473611e-01 9.43272054e-01 -3.59899461e-01 -4.20780778e-01 -6.30174339e-01 -1.37559366e+00 8.27839196e-01 6.19974732e-02 5.07465065e-01 -5.39533973e-01 2.32830718e-01 1.15380079e-01 4.64198440e-01 2.09386811e-01 5.81952095e-01 -1.80681244e-01 -1.94929615e-01 -1.26562762e+00 9.60739180e-02 4.61376458e-01 6.08390331e-01 3.09034795e-01 6.62437677e-01 -2.52492347e-04 6.63095057e-01 5.19566357e-01 5.79500437e-01 7.90690184e-01 -1.30133879e+00 3.88941973e-01 2.13087708e-01 3.74654420e-02 -8.54463458e-01 2.10452482e-01 -4.51871693e-01 -1.01211619e+00 7.63963223e-01 5.49300075e-01 -1.40878735e-02 -1.02742243e+00 1.80036664e+00 -2.06506744e-01 -8.76702741e-02 8.36877406e-01 7.14344323e-01 5.13829887e-01 8.19719434e-01 -1.93639189e-01 -3.99130285e-01 9.58008826e-01 -1.22978121e-01 -9.69726324e-01 -5.49364388e-02 4.41468874e-04 -7.19275236e-01 7.19344318e-01 3.77025127e-01 -1.31752944e+00 -8.78392458e-01 -1.41626382e+00 8.57283920e-02 -2.34316006e-01 2.45587692e-01 1.53766826e-01 6.50156319e-01 -9.70903695e-01 7.86043644e-01 -7.96543896e-01 -1.74746814e-03 -4.24481519e-02 3.49404961e-01 -5.42607784e-01 3.96012366e-01 -1.11126280e+00 8.14602256e-01 5.17084599e-01 1.06901467e-01 -9.96162653e-01 -1.84767097e-01 -8.75206232e-01 1.01391137e-01 -5.57896674e-01 -2.39663661e-01 1.13670540e+00 -1.23059464e+00 -1.68630195e+00 7.87587821e-01 -1.43121257e-01 -2.69811243e-01 7.96804070e-01 3.52703124e-01 -6.33072376e-01 -3.67524549e-02 -8.72509629e-02 6.78502679e-01 1.22165513e+00 -1.33817184e+00 -1.90537684e-02 -3.39093715e-01 -5.24782479e-01 -7.12245405e-02 6.67269826e-02 -3.63343865e-01 -5.75894117e-02 -9.90009665e-01 5.18251956e-01 -7.67596364e-01 1.89217523e-01 -1.25802815e-01 -4.72220778e-01 9.88287553e-02 6.41760468e-01 -5.11608303e-01 8.07577848e-01 -2.64230824e+00 5.63909709e-01 4.05544370e-01 3.35267335e-02 -1.31962121e-01 -2.56916154e-02 1.25226840e-01 -5.70564210e-01 -8.13314170e-02 -4.80630219e-01 -3.22258234e-01 8.67342427e-02 3.13721776e-01 -5.95417500e-01 7.62332737e-01 1.58130497e-01 5.57472289e-01 -6.65909469e-01 -2.83952922e-01 2.34055743e-01 9.51267540e-01 -3.31679404e-01 8.78254622e-02 1.90961704e-01 5.45351923e-01 8.82152095e-02 1.68450370e-01 5.19047976e-01 -4.99722213e-02 3.84778768e-01 -1.68258354e-01 5.16021214e-02 1.92627624e-01 -1.36443245e+00 1.28307319e+00 -1.24710418e-01 1.30465484e+00 -2.81880081e-01 -1.02950919e+00 1.28228533e+00 8.51289392e-01 6.50792345e-02 -7.22127557e-01 2.29032651e-01 1.05125457e-01 1.25431478e-01 -1.01542853e-01 5.57033181e-01 -7.12169632e-02 -1.62878945e-01 4.61367965e-01 4.01122451e-01 -3.33391279e-02 -1.14730991e-01 -9.60025862e-02 3.60828072e-01 2.13194638e-01 2.06849754e-01 -1.22615598e-01 2.47489259e-01 -3.38981301e-01 4.69980538e-01 8.59086633e-01 -1.71917334e-01 7.57977128e-01 6.02157414e-01 -1.86554506e-01 -1.56300390e+00 -1.49089479e+00 -5.30723393e-01 2.51401752e-01 -3.03901192e-02 1.26392320e-01 -8.70675862e-01 -1.96331456e-01 -2.04066917e-01 1.12838590e+00 -7.01565325e-01 -1.58340678e-01 -4.85546023e-01 -6.02568269e-01 7.31627941e-01 5.57524383e-01 2.60977954e-01 -9.87588882e-01 -6.24356329e-01 2.58973539e-01 -1.36828288e-01 -6.43329740e-01 3.87734249e-02 5.00288188e-01 -9.23793197e-01 -7.05329180e-01 -8.29446554e-01 -7.24107265e-01 8.28051090e-01 -6.00521207e-01 8.93565714e-01 -6.25119150e-01 7.29010701e-02 5.31732216e-02 4.61434722e-02 1.59692496e-01 -8.55983436e-01 -5.42083144e-01 4.14338887e-01 -3.48439589e-02 3.56220365e-01 -6.09222651e-01 -1.77138299e-01 1.31855518e-01 -6.29005849e-01 -2.34332189e-01 2.38025740e-01 9.83365893e-01 5.98361015e-01 1.58946514e-01 2.38315269e-01 -1.51963517e-01 5.98145485e-01 -2.74757832e-01 -7.76278317e-01 2.01157659e-01 -4.83564794e-01 5.94649851e-01 5.13720334e-01 -7.70522416e-01 -6.96226776e-01 -1.86098590e-01 5.11175208e-03 -5.07515609e-01 -4.22610641e-01 1.50799096e-01 -1.92363411e-01 6.14737809e-01 8.10368896e-01 5.58837116e-01 -7.15560839e-02 -4.95249391e-01 2.42933810e-01 8.31015825e-01 1.14752543e+00 -3.89422834e-01 6.30649865e-01 1.65242851e-01 -2.28001580e-01 -5.29728830e-01 1.01273902e-01 2.60688424e-01 -6.89104557e-01 -2.28549197e-01 1.01653516e+00 -7.29108274e-01 -6.54422939e-01 4.87302482e-01 -1.27138782e+00 7.43397605e-03 -8.44347775e-01 9.33630168e-01 -7.12062895e-01 1.26132578e-01 -2.98602432e-01 -1.12111843e+00 1.51388004e-01 -1.55218720e+00 8.36661816e-01 -1.45657212e-01 -5.85030794e-01 -9.11163807e-01 1.07011244e-01 -1.28328741e-01 -5.14606852e-03 3.19300681e-01 1.19252765e+00 -7.02548087e-01 -3.52222681e-01 -5.49882591e-01 2.89421380e-01 6.59268379e-01 1.38776153e-01 5.15038729e-01 -1.22999775e+00 -3.47210586e-01 2.76408315e-01 -1.05313301e-01 5.71444809e-01 6.21129572e-01 6.57976270e-01 -2.07398385e-01 6.13893494e-02 5.78411222e-01 1.14100552e+00 7.64454007e-01 6.57719851e-01 1.90344617e-01 1.45196900e-01 4.69962835e-01 -1.41612679e-01 4.06998210e-02 -1.96681917e-01 6.32107735e-01 5.62910214e-02 3.20333511e-01 -2.29310500e-03 -1.41865462e-01 4.77504700e-01 9.11095381e-01 -1.31372809e-01 -4.86625284e-01 -7.35776186e-01 4.45868731e-01 -1.33070910e+00 -1.16490209e+00 2.72123575e-01 2.35029197e+00 6.34559095e-01 2.90392876e-01 -2.88325161e-01 7.72454560e-01 8.96498978e-01 2.63637483e-01 -7.04328239e-01 -5.26050210e-01 -4.07499373e-01 2.71794438e-01 2.28143826e-01 5.56278288e-01 -9.15123224e-01 3.57180893e-01 7.90986633e+00 4.75593299e-01 -1.10541618e+00 -4.61026311e-01 3.45573306e-01 9.96799096e-02 -2.37348616e-01 -3.39212984e-01 -3.72397602e-01 6.60585225e-01 1.11938047e+00 -3.00847679e-01 5.02779245e-01 8.76237988e-01 2.63313763e-02 1.53306231e-01 -1.52625787e+00 1.15727103e+00 -7.24066868e-02 -1.12602115e+00 2.47622773e-01 2.59084314e-01 7.01588869e-01 -5.27870536e-01 7.59697020e-01 1.04430757e-01 2.93816686e-01 -1.19009030e+00 1.02493203e+00 7.31561422e-01 1.14803696e+00 -8.61857176e-01 6.12970591e-01 2.88554966e-01 -7.77452767e-01 4.85721268e-02 -4.14927244e-01 1.65209863e-02 -2.43652388e-01 2.97447711e-01 -6.83037341e-01 1.50715515e-01 3.20323497e-01 4.74434376e-01 -2.65409708e-01 4.54702407e-01 -7.11984411e-02 4.32670832e-01 1.60339549e-01 3.03165853e-01 1.49628937e-01 -3.44482273e-01 7.96638072e-01 7.78570116e-01 6.32664144e-01 -2.13169903e-01 -3.87472868e-01 9.74410236e-01 3.51927616e-02 -4.51842546e-01 -5.64773202e-01 -2.65124947e-01 5.99732935e-01 4.37177330e-01 -5.75994194e-01 -4.72687155e-01 1.65863633e-01 1.10491097e+00 -1.42700568e-01 7.59333670e-01 -4.85688716e-01 -5.03181517e-01 8.98397803e-01 -4.25836235e-01 4.48339254e-01 -1.83159798e-01 -2.29035720e-01 -1.23612726e+00 -1.33205190e-01 -8.61250401e-01 -8.99228528e-02 -1.15037894e+00 -1.18258965e+00 9.92858112e-01 7.45861381e-02 -1.51441705e+00 -1.18428886e+00 -6.45352066e-01 -2.61405528e-01 1.26392138e+00 -7.56764233e-01 -4.53731328e-01 5.51894680e-02 5.52312553e-01 3.57208759e-01 -7.06657648e-01 1.32023680e+00 -6.14388175e-02 -3.99150640e-01 7.98007905e-01 7.94416904e-01 6.28082514e-01 2.16612831e-01 -1.49840653e+00 6.67473078e-01 8.00992489e-01 4.46796209e-01 6.44729793e-01 1.11981666e+00 -3.91022563e-01 -8.95697057e-01 -7.02721655e-01 7.52338529e-01 -5.09939671e-01 2.76971251e-01 -2.82806516e-01 -8.95297229e-01 8.69816244e-01 1.53380379e-01 -7.17499405e-02 7.50370860e-01 -3.43870193e-01 -4.82797056e-01 2.57493526e-01 -1.21456230e+00 4.99212354e-01 4.88972306e-01 -1.09049928e+00 -1.23456335e+00 -2.22857088e-01 2.98993468e-01 -3.23613346e-01 -9.04596448e-01 8.11922848e-02 7.97436953e-01 -9.34935987e-01 9.85292733e-01 -7.87804306e-01 4.88673806e-01 -3.20011795e-01 -7.21337676e-01 -1.38178027e+00 -3.61742198e-01 -3.02580684e-01 -2.08622962e-01 1.06575251e+00 1.97758481e-01 -5.17430305e-01 6.24903977e-01 3.48457932e-01 2.86672294e-01 -2.46592924e-01 -1.12101090e+00 -7.54926205e-01 1.73775345e-01 -5.71613729e-01 6.55391514e-01 9.88079429e-01 -3.45308512e-01 5.07302843e-02 -2.75324762e-01 2.90201724e-01 8.39596748e-01 1.14438422e-01 3.36846769e-01 -1.43641424e+00 -3.96525115e-01 -3.37071896e-01 -1.01256657e+00 -1.03484154e+00 2.62525350e-01 -8.44841003e-01 -1.29863292e-01 -1.11727035e+00 -3.06349337e-01 -8.94008502e-02 -3.86903942e-01 -9.19912979e-02 2.43054464e-01 2.16658667e-01 1.17273696e-01 3.41946721e-01 2.08632320e-01 4.22012568e-01 9.19801235e-01 -1.91247493e-01 -2.62396514e-01 8.68074000e-02 -3.34726632e-01 6.60266817e-01 4.62310076e-01 -4.70247716e-01 -4.14911568e-01 -3.62329304e-01 -1.47052305e-02 4.47336137e-01 6.97398365e-01 -1.16720796e+00 -1.83864171e-03 1.65133491e-01 1.08567846e+00 -7.20372140e-01 5.65118432e-01 -8.72224569e-01 7.41677046e-01 3.74914348e-01 -8.37210715e-01 1.42050967e-01 -9.23159271e-02 5.18057466e-01 -4.27103937e-01 -2.61597186e-01 9.53766584e-01 6.79511130e-02 -3.62466872e-01 -1.81703195e-01 -7.88160920e-01 -1.42545700e-01 8.18838239e-01 -6.66931927e-01 -8.11173022e-02 -4.26714718e-01 -1.10456932e+00 -4.87918645e-01 6.03830755e-01 8.81057978e-02 6.53505921e-01 -1.63280892e+00 -6.41640782e-01 7.60611296e-01 -1.35015063e-02 -2.44044259e-01 1.50531992e-01 8.54176581e-02 -3.43987823e-01 3.78468543e-01 -5.13403535e-01 -7.04027474e-01 -1.18194008e+00 4.61505890e-01 5.52634537e-01 1.84617952e-01 -6.95026517e-01 8.28283668e-01 -2.02641040e-01 -2.59289384e-01 3.89935672e-01 -4.16013420e-01 -2.04701841e-01 3.53433460e-01 4.90494311e-01 2.26291060e-01 -9.15951878e-02 -1.05735409e+00 -2.20766395e-01 5.21513343e-01 2.59987712e-01 -7.79592454e-01 1.21435249e+00 1.29580170e-01 2.79968232e-01 9.10694301e-01 1.39466214e+00 -1.29010394e-01 -1.45986485e+00 -4.16861847e-02 -1.83762506e-01 -4.05684203e-01 1.20850280e-01 -5.60426831e-01 -8.66229653e-01 9.84490752e-01 1.05296803e+00 3.77665401e-01 9.10738766e-01 -1.46614045e-01 8.88268203e-02 4.75351304e-01 4.91591617e-02 -9.47306454e-01 -1.08147010e-01 2.04258874e-01 7.38305867e-01 -8.41781139e-01 -2.12629646e-01 5.39097846e-01 -7.96708226e-01 1.22565734e+00 -6.71815202e-02 -2.38823324e-01 3.41367245e-01 2.46223062e-01 4.59031045e-01 3.25237066e-02 -5.23442864e-01 5.29393554e-01 3.00169945e-01 9.07620788e-01 3.59221786e-01 4.96378690e-02 2.95953780e-01 9.73319188e-02 -7.98972547e-01 -3.81454110e-01 5.32398999e-01 6.45918787e-01 -6.93236515e-02 -9.09064710e-01 -6.80707335e-01 1.20592795e-01 -3.42467725e-01 6.18080646e-02 -1.25152051e-01 8.28517318e-01 4.21962924e-02 6.13689005e-01 7.72427142e-01 -3.27063799e-01 9.73796621e-02 4.55391884e-01 5.61410666e-01 -2.25331813e-01 -1.27096966e-01 2.34431893e-01 -5.05387545e-01 -2.23667264e-01 -4.81348634e-01 -7.44416773e-01 -1.00253594e+00 -1.14892937e-01 -9.27227736e-02 3.62782627e-01 1.01105499e+00 8.26170802e-01 -7.44793415e-02 6.08961701e-01 6.59213901e-01 -9.45213974e-01 -7.76198447e-01 -9.10569906e-01 -7.75180280e-01 3.26894730e-01 9.01414514e-01 -5.68690658e-01 -6.20733380e-01 3.73606652e-01]
[15.012696266174316, 6.201170444488525]
377bb1ff-2057-4108-b511-e96c1c31b060
adversarial-attack-based-on-prediction
2306.01809
null
https://arxiv.org/abs/2306.01809v1
https://arxiv.org/pdf/2306.01809v1.pdf
Adversarial Attack Based on Prediction-Correction
Deep neural networks (DNNs) are vulnerable to adversarial examples obtained by adding small perturbations to original examples. The added perturbations in existing attacks are mainly determined by the gradient of the loss function with respect to the inputs. In this paper, the close relationship between gradient-based attacks and the numerical methods for solving ordinary differential equation (ODE) is studied for the first time. Inspired by the numerical solution of ODE, a new prediction-correction (PC) based adversarial attack is proposed. In our proposed PC-based attack, some existing attack can be selected to produce a predicted example first, and then the predicted example and the current example are combined together to determine the added perturbations. The proposed method possesses good extensibility and can be applied to all available gradient-based attacks easily. Extensive experiments demonstrate that compared with the state-of-the-art gradient-based adversarial attacks, our proposed PC-based attacks have higher attack success rates, and exhibit better transferability.
['Fangjun Huang', 'Chen Wan']
2023-06-02
null
null
null
null
['adversarial-attack']
['adversarial']
[ 1.79067533e-02 -9.80727300e-02 2.19933480e-01 -4.24514413e-02 -3.95202786e-01 -5.96031368e-01 4.48072463e-01 -1.44796655e-01 -5.79041004e-01 7.77775645e-01 -2.84968257e-01 -3.35749775e-01 -5.73878409e-03 -8.87884021e-01 -6.64806426e-01 -9.79052484e-01 -1.15594506e-01 -7.83044174e-02 6.07029319e-01 -6.67346239e-01 2.01947317e-01 9.15696263e-01 -8.67632926e-01 -1.32289231e-01 9.77338612e-01 9.92734373e-01 -2.27029547e-01 5.83132684e-01 -1.08950231e-02 7.73985744e-01 -8.57062161e-01 -6.91290319e-01 6.89284027e-01 -4.56005514e-01 -4.34691638e-01 -4.78390694e-01 2.78215885e-01 -4.27221268e-01 -8.85020554e-01 1.50530887e+00 8.64527285e-01 1.64200276e-01 5.56661904e-01 -1.55604780e+00 -4.97314602e-01 5.03542364e-01 -2.41145551e-01 3.41326326e-01 4.61850651e-02 1.81335509e-01 4.14054185e-01 -8.05486023e-01 2.40723535e-01 1.37112737e+00 8.77161205e-01 1.08932304e+00 -7.66293049e-01 -1.22987902e+00 2.63048679e-01 1.99517548e-01 -1.13841987e+00 -8.99764076e-02 1.10554278e+00 -1.54223934e-01 4.52087015e-01 4.00960177e-01 5.50101936e-01 1.06088734e+00 3.55750382e-01 7.04653680e-01 7.56840408e-01 -6.10714816e-02 3.29959989e-01 2.09138259e-01 -2.74992555e-01 5.94875515e-01 9.41969529e-02 4.13795948e-01 1.91663101e-01 -4.17068988e-01 7.68163204e-01 2.40905449e-01 -5.87318778e-01 -1.27785519e-01 -7.44078636e-01 1.02371430e+00 9.40761626e-01 1.81711450e-01 -3.65411378e-02 7.72869214e-02 5.86520731e-01 3.66867155e-01 2.75725365e-01 5.50583482e-01 -4.13100392e-01 1.96394831e-01 -5.72318673e-01 6.11597538e-01 9.72094655e-01 5.59525132e-01 6.75752282e-01 5.73781192e-01 -1.77985313e-03 5.84605932e-01 3.00200373e-01 3.57123792e-01 7.76692450e-01 -4.38987195e-01 6.29540622e-01 4.46753979e-01 -1.54731438e-01 -1.29437220e+00 -3.53991896e-01 -4.88309532e-01 -1.01219177e+00 6.19627535e-01 3.91098589e-01 -7.07322299e-01 -7.42514193e-01 1.73069465e+00 4.85816956e-01 6.14640653e-01 4.75982279e-01 8.07186723e-01 6.91520154e-01 8.08213830e-01 -6.03233688e-02 -2.16776177e-01 6.20867908e-01 -7.49401033e-01 -5.71251810e-01 -1.60298496e-01 4.69671845e-01 -6.61701858e-01 6.10724270e-01 2.66963452e-01 -7.28876650e-01 -4.04038161e-01 -1.37269473e+00 5.16815901e-01 -3.52342099e-01 -2.27262750e-01 1.51926026e-01 7.74034441e-01 -5.78592181e-01 1.00272572e+00 -6.42482817e-01 2.44590834e-01 5.37626803e-01 4.67083275e-01 -2.33213976e-01 1.89220503e-01 -1.70317650e+00 8.37625504e-01 4.22779888e-01 3.01201880e-01 -8.74382257e-01 -9.01703835e-01 -7.32614398e-01 -1.37435332e-01 2.33491421e-01 -1.28252879e-01 1.00784731e+00 -9.77450848e-01 -1.74267542e+00 2.62660563e-01 3.48957032e-01 -6.78624392e-01 1.02137327e+00 -1.22720294e-01 -4.21036869e-01 1.93421543e-01 -4.64619339e-01 1.48020491e-01 1.00469089e+00 -1.18668807e+00 -3.36109579e-01 -2.23424435e-01 2.62875885e-01 1.13400005e-01 -7.00460553e-01 4.92795743e-02 5.57382032e-02 -9.21393633e-01 -7.56907463e-02 -9.16556299e-01 -5.53792059e-01 4.61638927e-01 -3.86931062e-01 1.96137339e-01 1.36982894e+00 -5.21489918e-01 1.31268609e+00 -2.20787144e+00 8.32326114e-02 2.83134609e-01 2.97209769e-01 1.19098842e+00 -2.76871957e-02 5.09216785e-01 -1.59158692e-01 1.63326964e-01 -4.84400272e-01 -3.52367177e-03 -1.08479008e-01 1.55604348e-01 -7.05192804e-01 4.79712635e-01 1.48488685e-01 6.61679924e-01 -9.75387275e-01 -2.55359739e-01 5.05469292e-02 5.60409784e-01 -5.18531859e-01 3.16833794e-01 -5.87313883e-02 2.64590234e-01 -7.11473763e-01 1.76039055e-01 1.06252038e+00 5.12961328e-01 -1.99278086e-01 -1.28048196e-01 3.19102854e-01 -1.86567158e-01 -1.27471435e+00 7.12770045e-01 -3.05791825e-01 4.86845374e-01 3.48884277e-02 -1.15745270e+00 1.36188257e+00 3.76645178e-01 1.51378304e-01 -2.30704658e-02 2.84510761e-01 4.20418262e-01 3.55781645e-01 -3.10599387e-01 -6.83666691e-02 -1.94480568e-01 1.25428081e-01 1.15155734e-01 -1.42199367e-01 -2.31877357e-01 -1.03523448e-01 3.89770009e-02 9.44260120e-01 -2.26353332e-01 3.02346915e-01 -9.59969163e-02 1.08945751e+00 -2.69931704e-01 9.11585569e-01 5.91664195e-01 -4.60945904e-01 3.69107991e-01 7.01811969e-01 -5.90310812e-01 -8.84332657e-01 -7.63412774e-01 -8.66524056e-02 3.77959669e-01 3.29715997e-01 -1.97607949e-01 -9.54042971e-01 -1.13954890e+00 1.83894843e-01 2.88263142e-01 -5.10054469e-01 -6.99238658e-01 -7.16318786e-01 -6.78465128e-01 1.09441042e+00 6.10642195e-01 1.07752085e+00 -1.09480071e+00 -1.77595228e-01 3.76257360e-01 3.48215401e-01 -8.87638390e-01 -4.52281922e-01 -1.09562576e-01 -7.82977462e-01 -1.02583933e+00 -8.14349413e-01 -8.99116874e-01 6.80935204e-01 -2.56003380e-01 3.14278990e-01 1.17727600e-01 -6.15279935e-02 -1.14378341e-01 -1.58666581e-01 -6.05791628e-01 -7.52616823e-01 -2.81317860e-01 3.51530254e-01 2.88000137e-01 -1.02885079e-03 -7.25112915e-01 -5.12250781e-01 3.92769545e-01 -9.83931959e-01 -6.80074751e-01 4.26010162e-01 9.67305660e-01 3.36221874e-01 3.18560898e-01 7.60324359e-01 -8.03746879e-01 9.97757971e-01 -3.36472183e-01 -7.89464772e-01 7.30544329e-02 -3.92040491e-01 5.87115325e-02 1.52971578e+00 -1.10935831e+00 -8.69504511e-01 1.83981918e-02 -4.74081546e-01 -8.48637879e-01 6.03874139e-02 2.51996905e-01 -4.31604475e-01 -8.93444240e-01 8.95649612e-01 1.86243460e-01 1.52508751e-01 -4.34334725e-01 5.29570058e-02 4.31219667e-01 4.65724051e-01 -4.12347734e-01 1.22865474e+00 2.11569548e-01 3.11602145e-01 -5.22841156e-01 -5.21874070e-01 2.08912596e-01 -3.11240077e-01 -9.69157368e-02 4.66257900e-01 -4.38089967e-01 -8.33863556e-01 1.09929383e+00 -1.13007534e+00 -2.09192336e-01 -1.30315304e-01 5.17205298e-01 -3.17021430e-01 5.58037102e-01 -8.23984146e-01 -8.14346015e-01 -5.76668024e-01 -1.41693962e+00 2.65323013e-01 5.08573055e-01 3.71484309e-01 -1.07742083e+00 2.47442862e-03 -3.04628283e-01 5.50391018e-01 6.31460488e-01 7.25894034e-01 -1.13696873e+00 -1.47361681e-01 -7.95288920e-01 1.19594634e-02 8.58594000e-01 -1.92426387e-02 1.90222993e-01 -7.09212244e-01 -3.60559016e-01 5.42241931e-01 -2.00132161e-01 6.95488453e-01 -1.10432534e-02 1.11443317e+00 -8.63920212e-01 -3.15985143e-01 9.11256135e-01 1.53662109e+00 5.02664208e-01 6.70233548e-01 4.87514079e-01 9.41346228e-01 1.30374119e-01 4.28137332e-01 3.67722362e-01 -3.62860978e-01 4.40056086e-01 8.13275337e-01 9.37449373e-03 3.63878042e-01 -1.77553460e-01 3.69967908e-01 4.14229035e-01 1.78159803e-01 -6.85430598e-03 -6.97037995e-01 1.04066387e-01 -1.75310814e+00 -1.07497060e+00 3.34457345e-02 2.19593382e+00 1.01352656e+00 5.23726702e-01 -4.42391038e-02 5.19078851e-01 9.69014466e-01 2.81832069e-01 -8.72810125e-01 -7.00087905e-01 1.38212949e-01 2.37745270e-01 5.05915999e-01 5.38219929e-01 -1.24014616e+00 7.93776870e-01 6.23983717e+00 1.17312253e+00 -1.40440691e+00 -2.38111079e-01 4.35972273e-01 6.87611625e-02 4.56104428e-02 -1.61515027e-01 -9.20538783e-01 5.82223117e-01 5.02186418e-01 -5.32361090e-01 4.90111828e-01 1.12876630e+00 -1.48799777e-01 6.57807112e-01 -8.04597974e-01 7.21423805e-01 -3.38727944e-02 -1.09866488e+00 2.26841122e-01 -1.04742974e-01 7.70173430e-01 -3.11987221e-01 3.30663651e-01 3.75392795e-01 2.27632195e-01 -8.83320034e-01 3.29880655e-01 2.56274432e-01 3.46901417e-01 -1.23057044e+00 9.45916712e-01 3.91494751e-01 -1.16794300e+00 -4.10592079e-01 -6.66125834e-01 -9.96715501e-02 -1.52428851e-01 4.18271393e-01 -4.91162241e-01 4.17882085e-01 3.28324467e-01 5.31568885e-01 -2.59278178e-01 1.09187043e+00 -4.90611464e-01 6.45135105e-01 -2.11464658e-01 -4.54957366e-01 4.95166600e-01 -8.26480165e-02 9.09926772e-01 9.29585755e-01 2.27529511e-01 4.34310399e-02 1.49358884e-01 7.97449410e-01 -1.12126492e-01 3.28046829e-01 -5.57572663e-01 2.84606427e-01 6.30282521e-01 1.08991706e+00 -1.87169284e-01 -2.76593834e-01 -1.74755171e-01 8.54070127e-01 3.33111554e-01 3.91163230e-01 -9.49903607e-01 -1.06126761e+00 9.11197543e-01 -2.45993987e-01 2.86915123e-01 5.84997013e-02 -3.95106636e-02 -1.09927690e+00 1.12704679e-01 -1.09404206e+00 2.67796248e-01 -3.61937940e-01 -1.44679701e+00 8.60813498e-01 -1.49498358e-01 -1.57503259e+00 -1.57803386e-01 -7.62480140e-01 -1.16435039e+00 1.07102263e+00 -1.21717346e+00 -5.12701631e-01 -9.03818309e-02 9.08714533e-01 8.17679092e-02 -5.07474065e-01 8.10811996e-01 1.42190680e-01 -7.57562101e-01 1.13098967e+00 2.73040265e-01 5.18161952e-01 4.25371736e-01 -1.07765424e+00 4.57419664e-01 1.18076754e+00 -2.80895919e-01 5.32802522e-01 7.58065283e-01 -5.11364996e-01 -9.20299470e-01 -1.18744135e+00 3.50514770e-01 1.42156959e-01 8.91371071e-01 -1.56986788e-01 -1.12832844e+00 4.23368901e-01 -1.87500507e-01 3.55754286e-01 2.85512626e-01 -7.53923535e-01 -5.46457589e-01 -4.39747512e-01 -1.71554995e+00 1.03896403e+00 7.03228176e-01 -3.11453849e-01 -4.86576110e-01 2.10977688e-01 8.38845551e-01 -7.21575499e-01 -8.15953910e-01 6.85418546e-01 3.29382688e-01 -7.89901555e-01 1.14022255e+00 -6.77566826e-01 4.07040745e-01 -1.48044959e-01 1.58718333e-01 -1.52665353e+00 -6.00337796e-02 -1.03813314e+00 -2.30107129e-01 1.07997620e+00 2.83114046e-01 -1.20772123e+00 5.96949637e-01 5.47812343e-01 -1.22423554e-02 -1.23887849e+00 -9.91654932e-01 -9.69938874e-01 5.27334511e-01 -1.12310477e-01 7.66887367e-01 8.68107498e-01 -2.89376955e-02 -3.03686291e-01 -4.27539915e-01 4.54755574e-01 5.41187406e-01 -5.07390320e-01 7.77153552e-01 -1.11491919e+00 -3.41044813e-01 -5.66744626e-01 -1.00051749e+00 -7.08826184e-01 1.72287330e-01 -7.14029312e-01 -4.01438773e-02 -1.02100122e+00 -5.43577850e-01 -4.26928848e-01 -4.26169306e-01 4.36684459e-01 -6.03478193e-01 1.80973247e-01 4.07164991e-01 6.50456548e-02 2.01935843e-01 6.09871387e-01 1.25594819e+00 -1.10405467e-01 -3.23808491e-01 4.23373759e-01 -5.65831244e-01 8.84527862e-01 1.05463481e+00 -6.55170619e-01 -3.91406596e-01 1.21153509e-02 -1.96203813e-01 -1.05133921e-01 1.83034226e-01 -1.35882366e+00 1.26330778e-01 -1.21179715e-01 2.97441453e-01 -1.04568131e-01 2.93066114e-01 -8.85349333e-01 -2.15073049e-01 9.77707505e-01 -4.62939173e-01 -4.25650775e-02 4.25463527e-01 5.73883832e-01 -2.40740359e-01 -6.01536155e-01 1.06741381e+00 -2.72200089e-02 -2.86567837e-01 7.47463584e-01 -1.98018163e-01 2.35802397e-01 1.13446772e+00 1.09230332e-01 -4.31240380e-01 -4.03525233e-01 -6.51735544e-01 -1.14708040e-02 1.71667114e-01 1.76501572e-01 8.47001612e-01 -1.52802515e+00 -6.47200465e-01 3.93054068e-01 -4.48822945e-01 -1.05946012e-01 1.05488086e-02 4.78093475e-01 -7.09615231e-01 -2.03341201e-01 -2.89056033e-01 1.88160408e-02 -1.21945238e+00 8.78660560e-01 8.05435181e-01 -3.81303310e-01 -6.26180947e-01 9.80436087e-01 1.59265265e-01 -4.30059612e-01 4.58565801e-01 5.49866166e-03 -2.46658087e-01 -4.53996062e-01 6.61827445e-01 4.30534929e-01 -2.31935769e-01 -5.00850856e-01 -3.09445262e-01 6.16952240e-01 -2.41395697e-01 1.14025408e-02 1.13148856e+00 4.57534283e-01 -3.79805863e-02 -2.69205309e-02 1.58347726e+00 4.53025587e-02 -1.41008067e+00 -3.40751499e-01 -6.05934978e-01 -4.63600427e-01 -2.07718357e-01 -4.75369394e-01 -1.53572249e+00 9.66481447e-01 5.35784543e-01 2.94920146e-01 1.19183612e+00 -7.29027033e-01 1.07694793e+00 5.11099756e-01 1.08260952e-01 -6.62458420e-01 4.49739099e-02 5.10950685e-01 9.27994251e-01 -9.05207932e-01 -5.81008270e-02 -4.66790408e-01 -5.90823770e-01 1.30074060e+00 9.40438628e-01 -7.86724210e-01 9.29823756e-01 4.00019199e-01 1.45742431e-01 4.06517118e-01 -3.23882222e-01 3.02965581e-01 1.80883735e-01 7.61792123e-01 -2.00434849e-01 -3.68335843e-01 -5.54279208e-01 6.02248132e-01 -2.61918575e-01 -3.26295406e-01 4.90054399e-01 7.55387902e-01 -3.44115436e-01 -1.01793838e+00 -4.48822945e-01 2.55004734e-01 -6.90228999e-01 -1.16960913e-01 -4.20049638e-01 6.67209208e-01 -5.69493324e-02 7.51873434e-01 -3.72367710e-01 -7.80153751e-01 4.02974218e-01 -1.42586185e-02 2.10853755e-01 -9.36063156e-02 -8.15641463e-01 -4.68682110e-01 -3.59342784e-01 -5.25776029e-01 4.93321940e-02 -2.82550901e-01 -1.36741447e+00 -3.31692785e-01 -4.49146628e-01 2.68108338e-01 5.27312696e-01 9.18638468e-01 1.29969284e-01 4.15215850e-01 1.21129990e+00 -1.01619840e+00 -1.24373615e+00 -6.67924225e-01 -4.67219532e-01 3.78264219e-01 4.59266782e-01 -5.11249363e-01 -1.13514042e+00 -3.90768081e-01]
[5.57551383972168, 7.960184574127197]
53116d69-2b2c-4fe8-8b7f-19152ad9803b
a-family-of-cognitively-realistic-parsing
null
null
https://openreview.net/forum?id=YKrSi_BzRh
https://openreview.net/pdf?id=YKrSi_BzRh
A Family of Cognitively Realistic Parsing Environments for Deep Reinforcement Learning
The hierarchical syntactic structure of natural language is a key feature of human cognition that enables us to recursively construct arbitrarily long sentences supporting communication of complex, relational information. In this work, we describe a framework in which learning cognitively-realistic left-corner parsers can be formalized as a Reinforcement Learning problem, and introduce a family of cognitively realistic chart-parsing environments to evaluate potential psycholinguistic implications of RL algorithms. We report how several baseline Q-learning and Actor Critic algorithms, both tabular and neural, perform on subsets of the Penn Treebank corpus. We observe a sharp increase in difficulty as parse trees get slightly more complex, indicating that hierarchical reinforcement learning might be required to solve this family of environments.
['Anonymous']
2022-01-16
null
null
null
acl-arr-january-2022-1
['hierarchical-reinforcement-learning']
['methodology']
[-6.79238141e-03 9.44461703e-01 2.29479000e-01 -4.48507935e-01 -1.01370454e+00 -8.74322593e-01 3.63631874e-01 2.49182597e-01 -5.64168990e-01 1.02092636e+00 5.17937005e-01 -9.42945719e-01 -2.14451730e-01 -8.14086139e-01 -6.54627800e-01 -1.34801015e-01 -3.47792685e-01 5.81166744e-01 2.44521081e-01 -6.01087391e-01 2.74759620e-01 4.64488029e-01 -1.18245649e+00 3.03203642e-01 7.18565166e-01 3.14323157e-01 4.81989652e-01 1.16749871e+00 -2.23394334e-01 1.33279860e+00 -7.16291010e-01 -5.92957377e-01 -5.36358766e-02 -4.50780064e-01 -1.33674455e+00 9.42499936e-02 1.66770637e-01 -2.34162405e-01 -1.29082143e-01 9.15175319e-01 3.85760486e-01 2.29511201e-01 4.23847258e-01 -5.81533670e-01 -5.36417067e-01 1.11861932e+00 -7.92935789e-02 5.26518285e-01 6.48488700e-01 2.66768605e-01 1.43525207e+00 -2.75588781e-01 5.61244428e-01 1.85125411e+00 4.22812194e-01 6.84209406e-01 -1.25022733e+00 -3.02086145e-01 5.60177386e-01 -6.14848137e-02 -6.75025821e-01 -3.45375746e-01 7.76665449e-01 -2.04546183e-01 1.42341173e+00 -2.68416665e-02 6.68223679e-01 9.41008866e-01 5.55458367e-01 8.06332171e-01 1.31059480e+00 -6.73683584e-01 3.63830447e-01 -2.34356031e-01 3.47735614e-01 9.94039774e-01 2.07479790e-01 3.85032296e-01 -5.33425987e-01 -2.77869970e-01 8.43205869e-01 -6.53966248e-01 1.95054829e-01 -3.76653284e-01 -7.28017807e-01 1.15851510e+00 1.41210303e-01 2.09445551e-01 -2.60307848e-01 3.46759111e-01 4.38469470e-01 6.81532145e-01 -6.86959326e-02 1.03087723e+00 -7.34217525e-01 -9.39732194e-02 -2.20464617e-01 5.82654357e-01 1.01758373e+00 8.81687045e-01 5.21979094e-01 1.04324870e-01 2.30439559e-01 6.90727770e-01 4.33279127e-01 2.50352532e-01 4.34584707e-01 -1.68479133e+00 7.22954035e-01 2.26144493e-01 1.92755431e-01 -4.09423470e-01 -1.03627121e+00 -3.02994519e-01 -1.13023028e-01 9.81796905e-02 8.91135752e-01 -6.27331197e-01 -3.64507735e-01 1.96397781e+00 1.97308332e-01 -5.78259647e-01 6.44046307e-01 4.25257504e-01 4.65117455e-01 6.56941175e-01 5.48436105e-01 -6.54477119e-01 1.58757067e+00 -5.36316574e-01 -7.10289299e-01 -6.09128356e-01 9.00577784e-01 -4.11673754e-01 1.34641957e+00 4.15891767e-01 -1.62681067e+00 -3.50973666e-01 -9.10841644e-01 -1.63174614e-01 -5.19523211e-02 -6.69118226e-01 1.04289198e+00 8.21267486e-01 -1.27138686e+00 6.79208100e-01 -8.53994489e-01 -1.84619427e-01 1.56997815e-01 2.31259987e-01 -9.04314816e-02 4.47663516e-02 -1.35200644e+00 1.08628976e+00 5.32138944e-01 -8.46969411e-02 -7.01977074e-01 -1.67226017e-01 -1.14238977e+00 2.90739387e-01 5.93751490e-01 -6.05639756e-01 1.96551728e+00 -8.50653350e-01 -1.70810843e+00 8.33637655e-01 -1.01504311e-01 -4.74856317e-01 1.65714264e-01 -5.60776666e-02 -4.68490198e-02 2.64093369e-01 1.89397745e-02 6.83951139e-01 4.81556535e-01 -1.13678336e+00 -5.57757318e-01 -5.12127638e-01 4.97577667e-01 6.02145910e-01 3.31142485e-01 2.80138612e-01 2.56323069e-01 -3.73330802e-01 5.85726686e-02 -7.65127122e-01 -6.62324607e-01 -6.21099710e-01 -1.83335632e-01 -6.75622106e-01 -3.14036489e-01 -4.42259431e-01 9.50145483e-01 -1.73109519e+00 1.02521420e-01 -6.19451515e-03 1.39618337e-01 -3.12177449e-01 -3.79968286e-01 4.99363065e-01 -7.74692595e-02 3.15224797e-01 -1.17288828e-01 -5.40742278e-02 6.88459724e-02 4.87764359e-01 -1.69409573e-01 1.86178915e-03 4.18734610e-01 1.06396830e+00 -1.02419913e+00 -6.78797185e-01 -2.57597327e-01 -1.91908523e-01 -1.01141536e+00 3.44108909e-01 -4.76874948e-01 4.47016597e-01 -6.79959774e-01 3.20984900e-01 3.67367491e-02 -1.11208968e-02 6.81337059e-01 5.78315914e-01 -9.38669443e-02 6.74125671e-01 -9.64630842e-01 1.64338255e+00 -4.40039903e-01 3.37062955e-01 4.81574945e-02 -8.48435104e-01 7.14824617e-01 2.71920323e-01 -1.89822093e-01 -1.04576433e+00 9.79686975e-02 -3.49035144e-01 6.78255916e-01 -6.44184828e-01 2.74396688e-01 -6.72875226e-01 -5.26410937e-01 7.16667473e-01 4.25978680e-04 -6.53167844e-01 2.89925843e-01 2.20444024e-01 1.32648706e+00 1.35565013e-01 3.80262852e-01 -5.77724457e-01 4.23552245e-01 -5.75614758e-02 6.12116873e-01 1.22523522e+00 -3.76758695e-01 -6.03674650e-02 1.03359032e+00 -6.57131314e-01 -1.02652144e+00 -1.22223008e+00 2.43013557e-02 1.67973101e+00 -3.64818692e-01 -3.31593573e-01 -1.07067037e+00 -4.86886144e-01 -3.00705642e-01 1.20042729e+00 -4.02103812e-01 -1.35728225e-01 -9.38060522e-01 -7.17607737e-01 5.25772750e-01 7.08802760e-01 1.77772716e-01 -1.71592677e+00 -1.22853959e+00 4.63539660e-01 3.12223509e-02 -1.06724656e+00 1.45675018e-01 6.84367299e-01 -1.16209400e+00 -1.09721541e+00 -7.14441985e-02 -8.46389532e-01 2.77521729e-01 -2.02653810e-01 1.68245065e+00 2.41370514e-01 2.87803747e-02 5.21998823e-01 -3.33542407e-01 -5.97088695e-01 -9.36833084e-01 -6.13236753e-03 -2.57676750e-01 -8.21276426e-01 1.30049169e-01 -5.30966759e-01 -3.00346375e-01 -1.94765121e-01 -6.25443578e-01 -3.86146121e-02 4.47152138e-01 8.02610517e-01 7.40878657e-02 3.57778519e-02 7.58958578e-01 -1.32257235e+00 1.33852899e+00 -3.25641274e-01 -8.04559410e-01 3.85833263e-01 -1.55599415e-01 7.05750346e-01 8.14638078e-01 -9.98144373e-02 -1.38329744e+00 2.72777975e-01 -3.40909600e-01 5.87940037e-01 -2.36555368e-01 5.56017399e-01 -2.65501440e-01 2.56633282e-01 8.14098239e-01 4.93397862e-02 -2.40272120e-01 -1.71829119e-01 6.07374728e-01 1.39252290e-01 3.73882771e-01 -1.33214378e+00 6.43136978e-01 -2.38827735e-01 -5.17920144e-02 -8.14799964e-01 -1.01283109e+00 1.93760678e-01 -5.74579000e-01 9.19358730e-02 1.02138281e+00 -8.78388584e-01 -1.19749117e+00 -1.21887289e-01 -1.36483026e+00 -9.42465484e-01 -2.32779190e-01 1.58649608e-01 -1.17724240e+00 3.20199758e-01 -9.59021270e-01 -1.07155395e+00 -1.01618897e-02 -1.08842051e+00 8.46886754e-01 2.07605392e-01 -4.14487571e-01 -1.01451778e+00 2.11698264e-01 3.06507558e-01 3.81683297e-02 -7.55719990e-02 1.55197895e+00 -7.56392837e-01 -4.49728757e-01 3.79980236e-01 -2.46838927e-02 -1.11193366e-01 -2.50398010e-01 -2.21825644e-01 -8.95212889e-01 -5.22849411e-02 2.47513935e-01 -8.78167033e-01 4.80946898e-01 2.09731996e-01 9.55136836e-01 -2.85522670e-01 2.25033820e-01 1.05347291e-01 1.11248374e+00 5.79114377e-01 4.61903304e-01 2.55748153e-01 1.94566563e-01 1.00657248e+00 4.45101857e-01 3.30208391e-01 8.94113541e-01 9.20824483e-02 1.18442111e-01 3.63075793e-01 3.69826704e-01 -4.65295851e-01 3.27243418e-01 7.85710692e-01 2.30880547e-02 2.38110889e-02 -1.07843065e+00 1.59397498e-01 -1.63750350e+00 -9.50426936e-01 4.36336130e-01 1.65597117e+00 1.22826171e+00 6.22167349e-01 2.86349058e-01 1.04908608e-01 4.45684224e-01 1.68193713e-01 -5.80460429e-01 -1.08615935e+00 1.10982098e-01 5.05300820e-01 2.30965450e-01 1.07714033e+00 -6.56477809e-01 1.49873722e+00 7.99024391e+00 -3.65067534e-02 -3.23035270e-01 -1.41105726e-01 7.89851308e-01 2.33127460e-01 -3.46784860e-01 -1.17823310e-01 -6.16527021e-01 -1.58396721e-01 1.73877907e+00 -1.69268325e-01 6.37076080e-01 5.69715559e-01 2.51651168e-01 -2.22719252e-01 -1.43536127e+00 4.18419600e-01 -4.15996343e-01 -1.09033179e+00 -1.19364023e-01 -2.39563525e-01 1.49648905e-01 -2.05762535e-01 -1.65344194e-01 7.52475619e-01 1.32892334e+00 -1.03944123e+00 6.35215878e-01 7.38575161e-02 3.40826958e-01 -9.83622968e-01 2.34477386e-01 7.59180069e-01 -8.26498568e-01 -5.64891815e-01 -6.53293312e-01 -6.23876572e-01 1.09854259e-01 -1.24354802e-01 -5.78935325e-01 -8.60541873e-03 5.36513031e-01 -6.76682666e-02 -6.69539392e-01 4.85246390e-01 -6.37633741e-01 6.05984151e-01 1.75966161e-05 -3.60136986e-01 3.58126670e-01 6.48142397e-02 5.74938729e-02 1.13879907e+00 -3.46201777e-01 7.91906893e-01 1.40443847e-01 6.76017821e-01 -4.98580486e-02 1.90977976e-01 -8.31941605e-01 1.17988519e-01 5.43594658e-01 9.23058629e-01 -9.67308283e-01 -2.26279795e-01 -5.26195765e-01 5.27808487e-01 1.10407495e+00 2.71065652e-01 -4.88305449e-01 5.02213184e-03 3.05990219e-01 -2.07230747e-01 1.98797971e-01 -4.83855873e-01 -3.17382216e-01 -1.13424385e+00 -3.68587434e-01 -1.13316405e+00 5.10804057e-01 -8.32044423e-01 -1.01494622e+00 5.00591934e-01 8.40830952e-02 -2.11021557e-01 -6.52018785e-01 -7.78105199e-01 -6.12450600e-01 5.28827310e-01 -1.43959332e+00 -4.18607831e-01 3.60894144e-01 5.30939639e-01 8.68397832e-01 -6.13379572e-03 1.07516861e+00 -5.71006060e-01 -5.63905180e-01 3.95178437e-01 -2.78222173e-01 2.45546654e-01 1.19754821e-01 -1.76135635e+00 8.81591141e-01 5.36387265e-01 3.91652942e-01 6.95251465e-01 8.20754290e-01 -4.82979447e-01 -1.41345060e+00 -5.66919267e-01 8.36817503e-01 -7.57675171e-01 7.90962577e-01 -5.77924013e-01 -9.20489728e-01 9.64040220e-01 4.37093675e-01 -2.98439682e-01 7.29553759e-01 4.59161341e-01 -4.38283086e-01 1.98905125e-01 -9.72396433e-01 8.25545430e-01 1.21450830e+00 -6.19919658e-01 -1.38434625e+00 3.63264710e-01 1.10552120e+00 -3.20384502e-01 -8.37687016e-01 -3.16768922e-02 2.34327152e-01 -1.01226449e+00 8.74612391e-01 -1.17759645e+00 6.05874777e-01 3.08138728e-01 3.50069478e-02 -1.45200515e+00 -5.34379125e-01 -9.41911042e-01 9.00213048e-02 7.64234245e-01 6.16368234e-01 -5.33232987e-01 7.93221176e-01 9.88735199e-01 -7.05270246e-02 -4.54737037e-01 -9.14619565e-01 -4.51005727e-01 8.95650625e-01 -4.84002650e-01 2.58105993e-01 5.69610596e-01 5.99091947e-01 1.02294457e+00 1.06920406e-01 2.94221435e-02 6.11847341e-01 -3.88206765e-02 2.90593475e-01 -1.35754967e+00 -5.65924406e-01 -4.84616071e-01 2.31410772e-01 -9.86360252e-01 7.12533236e-01 -7.53545225e-01 2.24905863e-01 -1.14982927e+00 -3.05692032e-02 -3.21170747e-01 -1.75173447e-01 2.98290581e-01 -1.89120442e-01 -5.69107354e-01 5.52643895e-01 -2.12268278e-01 -8.84643972e-01 3.47544938e-01 1.47177613e+00 1.20749220e-01 -2.40316182e-01 1.22039421e-02 -1.19758999e+00 1.00237131e+00 9.43792880e-01 -4.32075083e-01 -6.52864933e-01 -5.03151655e-01 6.12375915e-01 9.30206954e-01 -1.61717832e-01 -5.47250986e-01 2.04486683e-01 -4.05652374e-01 4.81545508e-01 -2.21957788e-01 5.88392168e-02 -5.57081938e-01 -7.25938737e-01 6.76563263e-01 -8.90743971e-01 7.50683069e-01 3.13084513e-01 4.16642547e-01 1.34591505e-01 -5.07178724e-01 7.66543627e-01 -6.99677467e-01 -3.56176496e-01 -4.50475961e-01 -1.00610268e+00 6.90940619e-01 7.65732527e-01 8.06989223e-02 -2.07062960e-01 -4.75716054e-01 -1.07138467e+00 2.61953235e-01 -6.18846230e-02 1.65445089e-01 5.88274658e-01 -6.24995589e-01 -6.91332579e-01 -8.30386579e-02 -1.59582347e-01 1.20312639e-01 -7.75246844e-02 2.05251835e-02 -6.94923759e-01 6.64615929e-01 -3.74088556e-01 -2.34667468e-03 -9.08457518e-01 7.48003304e-01 5.69756627e-01 -6.27314925e-01 -6.40267074e-01 7.65778542e-01 4.43195134e-01 -5.47453582e-01 2.26361692e-01 -5.77581882e-01 -4.99276161e-01 -1.63398162e-01 5.51167488e-01 -8.47941637e-02 -2.41385758e-01 -1.11839667e-01 -1.36534512e-01 2.85943329e-01 -2.89899498e-01 -4.04624104e-01 1.23736703e+00 -1.56009629e-01 1.36169046e-01 4.37321126e-01 5.98976791e-01 -1.14472762e-01 -1.33004081e+00 -2.09450230e-01 7.15639472e-01 2.25707978e-01 -3.85299325e-01 -7.91691124e-01 -5.22857010e-01 9.43512380e-01 9.46940035e-02 4.51093674e-01 8.25410187e-01 3.44742507e-01 2.47457609e-01 1.14561963e+00 5.04667580e-01 -1.18135726e+00 1.98281467e-01 8.44911814e-01 8.13523531e-01 -1.00782502e+00 -2.30076797e-02 -2.95428485e-01 -7.55474925e-01 1.25931859e+00 7.79206574e-01 -3.10845733e-01 3.06404620e-01 4.53328937e-01 1.20267570e-02 -2.83968270e-01 -1.32386446e+00 -2.81150788e-01 -4.77713585e-01 6.62414193e-01 7.50354171e-01 1.03079982e-03 -3.06217849e-01 7.50807524e-01 -7.92536616e-01 -5.69395423e-01 8.65778267e-01 1.13071585e+00 -8.69405031e-01 -1.08234847e+00 -4.06637549e-01 2.71472502e-02 -5.46842813e-01 -2.09098414e-01 -4.73426759e-01 8.60325575e-01 -3.63917261e-01 9.68733907e-01 1.48095936e-01 3.02354217e-01 4.84275073e-01 3.97619694e-01 9.18588400e-01 -9.18901443e-01 -8.05936694e-01 6.25617504e-02 4.63101983e-01 -7.44436264e-01 -2.41307631e-01 -7.65974700e-01 -1.71158290e+00 1.84452757e-02 1.32346243e-01 2.67894208e-01 2.14713797e-01 1.15892005e+00 -2.54494160e-01 5.51308274e-01 3.68887752e-01 -5.73057055e-01 -9.12939310e-01 -7.98451900e-01 -3.81012380e-01 2.04049781e-01 1.90754697e-01 -4.02203143e-01 -1.10992283e-01 -1.45388827e-01]
[4.072351932525635, 1.387505054473877]
edcdea0f-9054-447d-9884-17d5294d9a8d
deep-person-generation-a-survey-from-the
2109.02081
null
https://arxiv.org/abs/2109.02081v1
https://arxiv.org/pdf/2109.02081v1.pdf
Deep Person Generation: A Survey from the Perspective of Face, Pose and Cloth Synthesis
Deep person generation has attracted extensive research attention due to its wide applications in virtual agents, video conferencing, online shopping and art/movie production. With the advancement of deep learning, visual appearances (face, pose, cloth) of a person image can be easily generated or manipulated on demand. In this survey, we first summarize the scope of person generation, and then systematically review recent progress and technical trends in deep person generation, covering three major tasks: talking-head generation (face), pose-guided person generation (pose) and garment-oriented person generation (cloth). More than two hundred papers are covered for a thorough overview, and the milestone works are highlighted to witness the major technical breakthrough. Based on these fundamental tasks, a number of applications are investigated, e.g., virtual fitting, digital human, generative data augmentation. We hope this survey could shed some light on the future prospects of deep person generation, and provide a helpful foundation for full applications towards digital human.
['Tao Mei', 'Zhoujun Li', 'Tong Shen', 'Wei zhang', 'Tong Sha']
2021-09-05
null
null
null
null
['talking-head-generation']
['computer-vision']
[ 3.86007190e-01 4.63327974e-01 2.75779843e-01 -2.60730833e-01 -1.51449472e-01 -3.05481583e-01 7.59863734e-01 -7.05114305e-01 1.85241908e-01 8.61006498e-01 2.27525339e-01 3.78245264e-01 2.76787460e-01 -8.36312830e-01 -4.87842441e-01 -8.23707283e-01 8.12270194e-02 5.97100854e-01 -4.43407923e-01 -4.38578814e-01 -1.69903010e-01 5.39560080e-01 -1.98992467e+00 9.15991068e-02 5.48301399e-01 7.59605110e-01 1.21849969e-01 7.74874091e-01 1.34247035e-01 3.51972759e-01 -1.12870181e+00 -9.93949115e-01 -3.21068726e-02 -4.96337980e-01 -5.32555521e-01 7.48101473e-01 3.83211017e-01 -5.49853921e-01 -5.42429805e-01 7.31071532e-01 1.29321563e+00 3.66621345e-01 7.35724270e-01 -1.68357909e+00 -1.00280833e+00 3.52905989e-01 -5.74941635e-01 -4.64899600e-01 1.00239658e+00 1.69009671e-01 3.25629890e-01 -9.32449818e-01 8.59194160e-01 1.71754861e+00 6.61120236e-01 1.34030795e+00 -6.08206034e-01 -4.71916109e-01 3.46408844e-01 -8.24785978e-02 -1.21365654e+00 -4.47865576e-01 8.18762541e-01 -4.10541981e-01 3.87017339e-01 1.79913133e-01 1.16303968e+00 1.74595797e+00 -3.43013145e-02 1.37734926e+00 8.26294303e-01 -4.68242556e-01 -2.24034593e-01 4.43479568e-01 -2.16198936e-01 9.18197036e-01 1.28298476e-01 2.66424835e-01 -6.53341949e-01 -1.46052942e-01 1.25877106e+00 -2.35782057e-01 -3.49433452e-01 -3.88078362e-01 -1.36220062e+00 8.45102727e-01 4.62503023e-02 -1.65112048e-01 -4.02334303e-01 1.92055747e-01 3.56197059e-01 1.68041326e-02 3.18080783e-01 4.53460263e-03 7.98276812e-02 6.59472197e-02 -4.80347067e-01 1.01818120e+00 6.64423227e-01 1.51873767e+00 2.75417417e-01 6.18434668e-01 -5.40909946e-01 9.84416425e-01 2.00965688e-01 8.90194237e-01 2.59116262e-01 -9.23627317e-01 8.27361643e-02 2.22878218e-01 1.91935256e-01 -8.91841352e-01 -4.36366707e-01 -8.63012224e-02 -1.19294274e+00 2.06314400e-01 1.01318508e-01 -7.96887398e-01 -1.05969834e+00 1.49121869e+00 6.31367862e-01 -2.00203732e-01 -6.62439018e-02 9.99596238e-01 1.76165056e+00 6.60399318e-01 2.31944351e-03 -1.97651356e-01 1.60656548e+00 -9.86027241e-01 -1.02028692e+00 -8.05666894e-02 -3.43672216e-01 -8.39986682e-01 7.52769411e-01 3.15017432e-01 -1.48223245e+00 -9.63091969e-01 -7.83240318e-01 -2.82377079e-02 -2.83099741e-01 2.76335090e-01 1.10023689e+00 1.03671980e+00 -1.02331424e+00 4.19384837e-01 -3.53440076e-01 -7.26536393e-01 3.48542601e-01 5.08368909e-01 -1.94159150e-01 1.85650155e-01 -1.23629487e+00 5.17148614e-01 -1.53387576e-01 1.21539846e-01 -9.10135448e-01 -2.58308172e-01 -1.02624059e+00 -5.54132283e-01 1.03729041e-02 -1.62658298e+00 1.34843504e+00 -7.84956038e-01 -1.83982754e+00 1.40159547e+00 -1.20411061e-01 -2.50170171e-01 9.64325905e-01 -8.31673294e-02 -5.21937966e-01 -9.52111110e-02 -6.82542026e-02 1.04594731e+00 1.05565095e+00 -1.57594347e+00 -6.81683838e-01 -7.02581644e-01 2.91297436e-02 5.15285015e-01 -2.20743522e-01 2.35073239e-01 -6.62326455e-01 -9.02022541e-01 -3.27518076e-01 -9.50837672e-01 -2.90481806e-01 -1.60656609e-02 -6.68261111e-01 -5.70433199e-01 8.92308116e-01 -5.51310539e-01 8.22558105e-01 -1.60418737e+00 4.47431892e-01 -2.35987738e-01 3.95500302e-01 1.30593464e-01 8.62146839e-02 4.45144892e-01 2.54654884e-01 -3.98909152e-01 5.99561958e-04 -7.97939956e-01 2.89535016e-01 -1.38082311e-01 -1.47284150e-01 4.02655095e-01 -2.23686263e-01 1.28383589e+00 -7.03013718e-01 -4.71946001e-01 5.45045674e-01 9.73308921e-01 -4.25412804e-02 2.61938810e-01 9.60760564e-02 6.30646944e-01 -4.02251661e-01 7.06754863e-01 5.90269506e-01 3.05987950e-02 -1.66605040e-01 -1.44391969e-01 1.77956939e-01 -3.25786173e-01 -1.16595864e+00 1.48950708e+00 -2.12614506e-01 5.91120660e-01 3.08393002e-01 -3.81329715e-01 1.20292699e+00 6.89616323e-01 4.82888103e-01 -4.20851380e-01 2.19501302e-01 -3.16162333e-02 -4.28699613e-01 -5.26594281e-01 8.09256554e-01 -1.51292965e-01 -2.22766727e-01 3.04581314e-01 -1.46899462e-01 -2.59757161e-01 6.20612241e-02 8.55867341e-02 1.32871553e-01 3.52308601e-01 2.24179402e-01 1.17734931e-01 4.91751313e-01 -3.75624776e-01 1.73605204e-01 5.74955285e-01 -2.72538215e-01 8.24041724e-01 1.64019298e-02 -8.06483984e-01 -1.04075956e+00 -1.05305433e+00 2.73671955e-01 9.59368885e-01 3.23057443e-01 5.10525815e-02 -1.15064406e+00 -4.56345588e-01 6.92914706e-03 3.85990441e-01 -6.62152171e-01 -1.01495564e-01 -8.13395798e-01 -8.98690820e-01 5.01270890e-01 6.17568910e-01 4.94852781e-01 -1.74157202e+00 -3.68865371e-01 9.91441160e-02 -3.11168581e-01 -1.06675541e+00 -4.29925382e-01 -9.17077899e-01 -5.95063686e-01 -6.44849360e-01 -1.80308652e+00 -1.10034466e+00 6.52158618e-01 2.57061392e-01 1.31034553e+00 -2.19601691e-02 -4.35772628e-01 7.78270483e-01 -1.30973458e-01 -7.04806149e-01 -4.31252450e-01 -1.14269406e-01 5.02729833e-01 -3.13714147e-02 1.83098406e-01 -3.79387647e-01 -7.33797312e-01 2.46347547e-01 -3.82137030e-01 3.07085723e-01 3.06531668e-01 6.41295791e-01 2.46281266e-01 -1.84929013e-01 7.99517035e-01 -8.23878109e-01 8.98270130e-01 -3.95076796e-02 -1.86540946e-01 1.25665829e-01 -1.25290006e-01 -7.32888162e-01 2.99862117e-01 -3.72662127e-01 -1.44244015e+00 9.79193859e-03 -2.32420564e-01 -2.12152496e-01 -2.60058016e-01 -2.09478229e-01 -4.54350412e-01 5.90020567e-02 6.14473224e-01 2.82647461e-01 1.66285783e-02 -3.31597239e-01 4.45154220e-01 7.31452405e-01 7.34900236e-01 -6.13843143e-01 7.33260572e-01 5.78388691e-01 -2.11603045e-01 -9.43313301e-01 -3.63054693e-01 -5.94249368e-02 -5.88137388e-01 -7.08248973e-01 9.16302264e-01 -7.89781332e-01 -1.10274386e+00 9.97383416e-01 -1.49626923e+00 -2.37863675e-01 -2.88023531e-01 -8.70104530e-04 -8.33638608e-01 3.15546364e-01 -8.77762973e-01 -1.19708240e+00 -8.41912389e-01 -1.00391924e+00 1.51619112e+00 6.63392782e-01 -3.18396956e-01 -1.09845519e+00 -2.28719339e-01 7.55870581e-01 3.21328342e-02 6.30843163e-01 4.14353609e-01 1.03977263e-01 -5.75464189e-01 -4.55545008e-01 6.86637759e-02 -6.70999885e-02 1.63035959e-01 -1.01431593e-01 -1.15453506e+00 -2.53351390e-01 -6.40507281e-01 -2.12163329e-01 5.09563923e-01 6.99973464e-01 1.02300107e+00 -3.82623598e-02 -6.69101477e-01 5.63632190e-01 7.04294264e-01 4.47280198e-01 8.07117760e-01 -1.21393226e-01 9.71460760e-01 8.54334235e-01 4.40202981e-01 7.97392905e-01 5.54064751e-01 9.18269336e-01 3.43305171e-02 -4.00904626e-01 -6.70289040e-01 -3.55423123e-01 1.90317348e-01 2.90297866e-01 -1.04576409e+00 -7.97775805e-01 -2.62863934e-01 3.02626491e-01 -1.75285971e+00 -1.23543906e+00 -2.54276663e-01 2.22445774e+00 3.16463470e-01 -3.29862416e-01 7.84224808e-01 1.87928379e-02 1.21497416e+00 6.87787384e-02 -4.87484574e-01 -2.02486828e-01 -3.22658211e-01 -5.48332520e-02 -1.55818671e-01 1.90465719e-01 -1.05576301e+00 1.01930177e+00 7.36067486e+00 6.21558487e-01 -5.95052838e-01 -1.38134331e-01 7.55749285e-01 1.42371021e-02 -1.86334908e-01 -8.98875058e-01 -1.13200974e+00 2.96931118e-01 1.79499015e-01 -2.41245568e-01 4.74742651e-01 8.83912981e-01 3.49075198e-01 3.75450373e-01 -1.08275843e+00 1.44668865e+00 5.00282109e-01 -1.27924657e+00 2.77146310e-01 2.63238043e-01 1.04290879e+00 -8.42783332e-01 4.71247047e-01 4.04022962e-01 1.12864941e-01 -9.80538607e-01 8.21253598e-01 5.61715424e-01 1.00462675e+00 -9.74850953e-01 6.09569013e-01 1.15422435e-01 -1.19519269e+00 2.61870384e-01 -3.33317101e-01 5.45401759e-02 8.49386454e-01 3.27973902e-01 -6.23892009e-01 3.75248879e-01 5.33334613e-01 5.07925689e-01 -4.14381213e-02 7.30125248e-01 -1.19231224e-01 -1.94252536e-01 1.65639222e-01 -2.33445004e-01 -1.91844895e-01 -2.00001955e-01 7.78921545e-01 1.09087801e+00 3.16976815e-01 1.99669644e-01 2.14323834e-01 9.25585449e-01 -1.81324974e-01 -3.70293297e-02 -5.01340389e-01 -8.81310087e-03 2.70688623e-01 1.25763929e+00 -5.86959362e-01 -5.87474048e-01 -9.06852707e-02 1.66339302e+00 -2.30911449e-01 4.26205963e-01 -9.77851391e-01 -3.15689713e-01 7.39936352e-01 2.09601343e-01 -1.89880416e-01 -3.68306972e-03 -8.57429579e-02 -8.72378051e-01 -1.94878057e-01 -1.00616682e+00 1.58800915e-01 -1.10652792e+00 -1.20352924e+00 8.32189083e-01 -7.23512610e-03 -1.06676006e+00 -6.68973744e-01 -5.35178840e-01 -6.43336952e-01 9.59024906e-01 -7.61421025e-01 -1.50385821e+00 -6.45006835e-01 6.99429750e-01 1.00087261e+00 -6.50204241e-01 8.79554510e-01 2.61293024e-01 -7.19343007e-01 8.54114890e-01 -4.10668731e-01 3.93334180e-02 4.54990685e-01 -1.14804375e+00 9.36140418e-01 2.96866953e-01 -1.59110069e-01 7.10022271e-01 8.00970793e-01 -7.84321606e-01 -1.39787948e+00 -9.21362698e-01 7.38374174e-01 -5.51159143e-01 -1.53920203e-01 -3.66211027e-01 -1.54377192e-01 7.02501953e-01 3.53813171e-01 -4.44840312e-01 3.07799101e-01 -2.84980331e-02 3.44877660e-01 1.13037653e-01 -1.36796534e+00 1.00890338e+00 1.52994359e+00 1.23843528e-01 9.56641734e-02 6.10724628e-01 5.93965948e-01 -7.64566302e-01 -5.04620850e-01 2.65866101e-01 9.44800258e-01 -1.16532290e+00 1.29241061e+00 -4.09693152e-01 2.64876455e-01 -6.29580319e-02 2.60867596e-01 -1.20607030e+00 -5.04358411e-01 -1.20013499e+00 -4.93657649e-01 1.20775199e+00 9.47795063e-03 -4.15396005e-01 1.18538511e+00 6.07892156e-01 -2.56260931e-01 -7.39304066e-01 -2.71536499e-01 -4.15144593e-01 -3.57311577e-01 -7.39168227e-02 9.86646593e-01 5.64389527e-01 -2.79222369e-01 4.48234409e-01 -1.18260956e+00 -1.30341619e-01 9.39155281e-01 5.28320409e-02 1.31391454e+00 -1.28417623e+00 -3.01659048e-01 -3.21419477e-01 -4.29454625e-01 -1.33975410e+00 -5.38804568e-02 -3.56849283e-01 -6.96596727e-02 -2.14427996e+00 3.24045181e-01 -1.35111079e-01 5.28555036e-01 -3.38018984e-02 -2.13709414e-01 6.32748902e-01 2.74370313e-01 -2.48668969e-01 -2.96782076e-01 7.44760573e-01 1.93448281e+00 -5.88736646e-02 -2.11759374e-01 7.01188505e-01 -8.20505083e-01 9.25792336e-01 5.66216946e-01 3.81400168e-01 -4.47641402e-01 -3.49390358e-01 -6.90034330e-02 2.87836105e-01 5.62878847e-01 -7.46135652e-01 -1.57792926e-01 -4.98249307e-02 8.34430158e-01 -7.35994697e-01 9.49000657e-01 -3.37201208e-01 3.36791962e-01 3.81836921e-01 -1.03223149e-03 3.82321104e-02 -1.28876090e-01 4.21435416e-01 2.53513724e-01 1.44347930e-02 7.56538391e-01 -4.79733706e-01 -8.73164773e-01 8.15863371e-01 -4.77906317e-01 -3.27116787e-01 1.01916528e+00 -6.92325532e-01 1.11493971e-02 -1.03925800e+00 -1.01078987e+00 1.04831243e-02 2.14237958e-01 7.64196813e-01 8.65487635e-01 -1.60481107e+00 -8.63143146e-01 1.65201455e-01 -3.05252075e-02 -1.07715607e-01 6.95859253e-01 2.47156292e-01 -3.13606679e-01 3.08559954e-01 -1.07276581e-01 -3.88213694e-01 -1.52064276e+00 4.32165772e-01 3.50952685e-01 2.33730316e-01 -7.37621546e-01 1.32728243e+00 7.03631997e-01 -3.44868094e-01 4.22617108e-01 4.52976316e-01 -3.46277237e-01 -3.17861438e-01 8.30551147e-01 8.65878522e-01 -3.17931384e-01 -9.85449672e-01 -1.26920834e-01 6.42421365e-01 1.32607579e-01 -1.02014519e-01 9.68006134e-01 -3.49217802e-01 1.92478448e-01 1.82902873e-01 6.59501076e-01 -1.80571467e-01 -1.24739170e+00 7.53719211e-02 -8.88816357e-01 -2.83445776e-01 -4.26564306e-01 -6.10940516e-01 -1.28783369e+00 7.90115535e-01 5.93754470e-01 2.23066777e-01 1.02101851e+00 2.02996626e-01 1.23241854e+00 -5.83640262e-02 7.75664985e-01 -1.15137875e+00 4.34282750e-01 1.85575336e-01 1.41123164e+00 -1.00730622e+00 -8.34122077e-02 -7.52303898e-01 -1.03569281e+00 9.08692896e-01 8.12003493e-01 1.62387684e-01 2.09063917e-01 1.28609389e-01 1.76370442e-02 -3.56173247e-01 -2.04985231e-01 -1.79893106e-01 5.05761027e-01 1.40688610e+00 6.78839445e-01 3.60778362e-01 6.92171082e-02 5.60710728e-01 -7.81180739e-01 -1.58660069e-01 2.78048337e-01 3.70181352e-01 -3.11603844e-01 -1.01823759e+00 -7.55337894e-01 1.62439227e-01 -7.25622624e-02 2.65420943e-01 -5.42539775e-01 7.54416525e-01 4.28372353e-01 1.00736773e+00 1.93534587e-02 -1.44594222e-01 6.66123271e-01 -1.82907224e-01 1.07034206e+00 -5.03328204e-01 -3.63508999e-01 1.41057804e-01 2.83205807e-01 -1.43377885e-01 -4.30082798e-01 -7.00035930e-01 -9.28440630e-01 -8.84205043e-01 -7.02965930e-02 -3.57939333e-01 5.47389984e-01 6.18161023e-01 8.63899440e-02 4.80757982e-01 3.62157106e-01 -1.43949020e+00 7.24077523e-02 -9.38246310e-01 -6.74588501e-01 3.89578432e-01 -5.19299973e-03 -7.07702637e-01 7.11083189e-02 4.98674870e-01]
[12.024898529052734, -0.7886855006217957]
b433bae6-460b-4ec3-a742-7efe811313cf
multi-label-image-classification-with
1612.01082
null
http://arxiv.org/abs/1612.01082v3
http://arxiv.org/pdf/1612.01082v3.pdf
Multi-Label Image Classification with Regional Latent Semantic Dependencies
Deep convolution neural networks (CNN) have demonstrated advanced performance on single-label image classification, and various progress also have been made to apply CNN methods on multi-label image classification, which requires to annotate objects, attributes, scene categories etc. in a single shot. Recent state-of-the-art approaches to multi-label image classification exploit the label dependencies in an image, at global level, largely improving the labeling capacity. However, predicting small objects and visual concepts is still challenging due to the limited discrimination of the global visual features. In this paper, we propose a Regional Latent Semantic Dependencies model (RLSD) to address this problem. The utilized model includes a fully convolutional localization architecture to localize the regions that may contain multiple highly-dependent labels. The localized regions are further sent to the recurrent neural networks (RNN) to characterize the latent semantic dependencies at the regional level. Experimental results on several benchmark datasets show that our proposed model achieves the best performance compared to the state-of-the-art models, especially for predicting small objects occurred in the images. In addition, we set up an upper bound model (RLSD+ft-RPN) using bounding box coordinates during training, the experimental results also show that our RLSD can approach the upper bound without using the bounding-box annotations, which is more realistic in the real world.
['Jun-Jie Zhang', 'Chunhua Shen', 'Qi Wu', 'Jianfeng Lu', 'Jian Zhang']
2016-12-04
null
null
null
null
['multi-label-image-classification']
['computer-vision']
[ 1.92564085e-01 -3.65968257e-01 -3.91812533e-01 -4.71847087e-01 -7.05043256e-01 -3.03661436e-01 2.59768814e-01 2.05793485e-01 -3.20624352e-01 4.51249719e-01 -9.65485070e-03 3.96682695e-02 1.06525056e-01 -5.61152041e-01 -6.01705194e-01 -8.84935737e-01 2.40396932e-01 2.50635147e-01 3.62882346e-01 2.99498230e-01 2.59914637e-01 4.20682132e-01 -1.79891741e+00 8.11982930e-01 3.61067206e-01 1.40932047e+00 3.82766157e-01 3.20386678e-01 -3.21738183e-01 1.33853471e+00 -5.57411373e-01 8.27484652e-02 -1.16543032e-01 -3.05536717e-01 -8.80631745e-01 4.33078408e-02 4.85949218e-01 -1.81157932e-01 9.26024839e-02 1.14074337e+00 3.19436520e-01 9.18837339e-02 7.69923329e-01 -1.22443295e+00 -8.05021882e-01 2.91000098e-01 -7.22160876e-01 1.15692511e-01 -1.32021055e-01 -4.56475347e-01 1.01379371e+00 -9.17572021e-01 4.73048687e-01 1.25923800e+00 7.39734709e-01 4.21994299e-01 -7.78037190e-01 -9.18104827e-01 4.84433740e-01 3.10909122e-01 -1.59073591e+00 -1.03052948e-02 6.19525194e-01 -4.82096642e-01 8.58767211e-01 2.34703217e-02 1.00464925e-01 9.89589036e-01 1.52203932e-01 8.68984938e-01 1.21250880e+00 -4.49463457e-01 -1.53601736e-01 2.55597502e-01 2.88103044e-01 1.02127016e+00 -1.52113825e-01 -1.79045036e-01 -3.36660653e-01 2.91019417e-02 6.59397185e-01 3.80483359e-01 8.90830904e-02 -3.70032638e-01 -1.10722673e+00 9.24021721e-01 8.47490549e-01 5.38525343e-01 2.10191160e-02 2.74911880e-01 7.48449028e-01 -8.95725191e-03 8.64311695e-01 5.22656552e-02 -5.74622035e-01 4.47516084e-01 -7.54121721e-01 -2.05583230e-01 3.05673867e-01 1.06199765e+00 9.67247844e-01 -3.65079492e-01 -3.59703839e-01 1.15177345e+00 3.91977698e-01 2.70300638e-02 6.46584511e-01 -5.92804849e-01 5.42600632e-01 9.49333668e-01 -2.06984028e-01 -9.80765045e-01 -7.25847960e-01 -5.74338377e-01 -1.04187882e+00 6.84113503e-02 1.36091784e-01 1.96752712e-01 -1.09304726e+00 1.58322990e+00 1.49550259e-01 3.32880795e-01 1.56586710e-02 7.75580049e-01 1.08393383e+00 7.67251194e-01 5.62705815e-01 -1.80097431e-01 1.39035964e+00 -1.59341311e+00 -6.60207510e-01 -3.44043046e-01 1.23204839e+00 -7.05347836e-01 1.02658367e+00 1.56078776e-02 -3.39773357e-01 -8.68847907e-01 -9.74632323e-01 -7.85958618e-02 -8.20827603e-01 7.22461700e-01 4.73096758e-01 2.99519867e-01 -8.64381015e-01 4.34127241e-01 -2.80501753e-01 -4.19101059e-01 6.91982269e-01 2.96351820e-01 -5.43606639e-01 -2.70570904e-01 -1.17339134e+00 8.23254704e-01 8.13528240e-01 1.62557185e-01 -1.05577385e+00 -3.59378397e-01 -8.97319853e-01 9.65623111e-02 3.13469917e-01 -1.82058349e-01 9.68466759e-01 -1.23657405e+00 -8.91908050e-01 1.08520508e+00 -1.75195441e-01 5.72459511e-02 1.41925424e-01 -5.82179870e-04 -3.89804929e-01 1.30449012e-01 5.00551462e-01 8.84409249e-01 5.21419883e-01 -1.47340691e+00 -8.76142621e-01 -2.66469538e-01 1.49181589e-01 2.64011174e-01 -5.36059082e-01 4.97445226e-01 -3.26283753e-01 -5.13814151e-01 1.95711404e-01 -8.90840828e-01 -1.32988527e-01 -7.74050504e-02 -4.23229665e-01 -6.64719820e-01 1.07942104e+00 -2.89230049e-01 1.06409514e+00 -2.35702682e+00 -1.11380629e-01 -8.73630568e-02 -1.59400534e-02 1.24019593e-01 -1.89837322e-01 1.53542250e-01 -2.73804992e-01 1.52671397e-01 1.67485029e-01 -6.21585250e-01 -2.47087404e-01 3.34273726e-01 -2.05307811e-01 4.94091570e-01 4.39238362e-03 8.85266423e-01 -6.66432619e-01 -9.11832392e-01 1.85945302e-01 1.56568393e-01 -3.80832292e-02 2.90472507e-01 -1.96127817e-01 4.89413738e-01 -3.82560998e-01 9.24871266e-01 4.62360471e-01 -8.15552711e-01 2.30823189e-01 -3.72516602e-01 -8.06874856e-02 -3.25827479e-01 -1.07268012e+00 1.69826090e+00 -6.63250089e-01 3.89257103e-01 -2.56539881e-01 -1.23973429e+00 9.72188473e-01 4.32189733e-01 4.43868607e-01 -5.69958866e-01 3.63845319e-01 2.62184769e-01 -4.54371154e-01 -5.71223974e-01 1.42446756e-01 -8.56377929e-02 -2.16170534e-01 3.29576522e-01 2.90377855e-01 7.13199794e-01 1.38455689e-01 -1.13794871e-01 6.45575643e-01 1.44047678e-01 3.27062756e-01 -2.71702945e-01 6.72213376e-01 -1.21777944e-01 6.93670571e-01 6.30788624e-01 -2.89246529e-01 6.14962041e-01 4.62465048e-01 -7.69774258e-01 -8.46530497e-01 -5.71242988e-01 -1.60862669e-01 1.73317039e+00 5.27407110e-01 -2.17812672e-01 -3.89964014e-01 -1.19568467e+00 -2.26902649e-01 2.02416465e-01 -8.75560343e-01 -1.20922141e-02 -4.65305805e-01 -8.91988754e-01 5.64775288e-01 8.70191932e-01 8.10386539e-01 -1.11417007e+00 -3.58763158e-01 1.04502380e-01 -3.16062808e-01 -1.27573478e+00 -2.40206584e-01 5.84598064e-01 -5.74892700e-01 -1.10322320e+00 -7.08372235e-01 -1.30448616e+00 8.97924960e-01 3.45507145e-01 7.99128294e-01 1.83276236e-01 -3.41329306e-01 -2.01762244e-01 -4.94696170e-01 -2.04529613e-01 -9.97601077e-02 1.36937618e-01 -2.41244242e-01 2.86604166e-01 3.56016129e-01 -2.41633952e-01 -4.75674361e-01 7.42661297e-01 -7.42144883e-01 2.86920756e-01 7.03816772e-01 8.81896734e-01 8.54932249e-01 7.94920847e-02 7.18706131e-01 -1.16013265e+00 1.32605731e-01 -6.06795847e-01 -3.39510649e-01 7.47406125e-01 -4.86529619e-01 -5.18264063e-02 8.07537913e-01 -5.77248573e-01 -1.00741148e+00 3.44495386e-01 -5.46327420e-02 -6.25672698e-01 -5.87466896e-01 3.89309973e-01 -1.92245260e-01 -3.02466244e-01 3.37455899e-01 8.41858461e-02 -3.77850741e-01 -5.66029489e-01 3.80366176e-01 8.93608510e-01 1.68600783e-01 -4.46042806e-01 1.72340497e-02 4.72358823e-01 1.80366501e-01 -2.43991792e-01 -1.78673649e+00 -9.66607511e-01 -9.44539428e-01 -3.87980610e-01 1.18970978e+00 -1.08317459e+00 -6.35386229e-01 5.14332056e-01 -1.23016787e+00 -1.84380800e-01 2.43336812e-01 3.29315454e-01 -5.24321377e-01 2.15643242e-01 -8.02233219e-01 -4.85848755e-01 -1.42191395e-01 -1.34143007e+00 1.28399575e+00 4.05975342e-01 1.33160055e-01 -1.06815088e+00 -2.22237840e-01 5.51834822e-01 2.50666052e-01 2.24203199e-01 1.21316695e+00 -8.78616214e-01 -4.59119797e-01 -5.92483319e-02 -7.80361533e-01 3.99023950e-01 1.27599249e-02 -3.50022852e-01 -1.21641064e+00 -2.92470515e-01 -2.55497962e-01 -8.15698206e-01 1.05435359e+00 2.21627459e-01 1.58388519e+00 7.21952096e-02 -7.97571242e-01 6.00350022e-01 1.71186459e+00 2.12669149e-01 2.37642914e-01 3.58468682e-01 9.65065956e-01 5.26222706e-01 9.32208478e-01 1.85353845e-01 2.84630388e-01 6.91013217e-01 6.64141238e-01 -3.68499309e-01 -2.87104696e-01 -9.31569282e-03 -6.54965863e-02 8.56967807e-01 4.07865345e-02 -3.45016241e-01 -8.38464141e-01 4.97440547e-01 -2.22190666e+00 -6.01967335e-01 -1.33305490e-01 1.53701496e+00 5.94003141e-01 1.36375446e-02 -2.36616895e-01 -2.03768522e-01 9.58682537e-01 2.87051737e-01 -4.67168778e-01 -2.70601720e-01 -1.14616051e-01 -9.97620672e-02 6.58246279e-01 -1.97729398e-03 -1.81311905e+00 1.02435374e+00 6.26418447e+00 1.21006739e+00 -1.10983479e+00 4.97841269e-01 7.93660522e-01 2.85388529e-01 4.33921188e-01 -2.29022622e-01 -1.28378963e+00 3.33034039e-01 7.67469823e-01 5.56503654e-01 -9.78401974e-02 1.13328373e+00 -2.90746838e-01 -1.20155737e-01 -8.91465366e-01 9.73356247e-01 4.38137472e-01 -1.18226004e+00 1.32392779e-01 -9.34054554e-02 8.85867715e-01 -6.75559267e-02 5.49639426e-02 4.16462541e-01 1.58745453e-01 -1.11088312e+00 6.15866125e-01 4.55724299e-01 1.08516431e+00 -7.51401365e-01 1.14203906e+00 5.31424284e-01 -1.65639031e+00 -4.91233557e-01 -6.60028696e-01 1.04394719e-01 -9.11786035e-02 2.70266622e-01 -5.34718096e-01 6.28746569e-01 7.18573153e-01 9.63172317e-01 -9.37206864e-01 7.75134563e-01 -1.87144130e-01 3.48669469e-01 2.54330114e-02 -6.34227693e-02 5.34152091e-01 9.77296457e-02 -3.88387203e-01 1.25169778e+00 1.81743488e-01 -1.64963946e-01 6.24527395e-01 5.91892123e-01 -2.17348516e-01 4.14692223e-01 -3.88431132e-01 1.90401137e-01 2.09686339e-01 1.51274025e+00 -1.16909802e+00 -3.81464630e-01 -7.22161055e-01 9.68884110e-01 7.50354171e-01 3.42787266e-01 -1.03964984e+00 -4.11526978e-01 3.26079279e-01 -3.74536157e-01 3.03917259e-01 8.67284462e-02 -1.63329840e-01 -9.21024978e-01 -2.47633740e-01 -4.85079736e-01 6.52417362e-01 -8.16895127e-01 -1.35826361e+00 6.06595695e-01 -1.71661332e-01 -1.21678686e+00 2.27393135e-01 -8.83628607e-01 -1.74286604e-01 6.60094023e-01 -1.55951500e+00 -1.83087242e+00 -4.19755101e-01 6.40102029e-01 7.01592028e-01 -2.16507435e-01 1.20972610e+00 6.44873381e-01 -6.82884634e-01 6.35941446e-01 2.90455341e-01 3.57519954e-01 8.11910927e-01 -8.83914948e-01 -2.61510968e-01 4.81375694e-01 3.37741613e-01 2.53955066e-01 1.55659264e-03 -4.90308881e-01 -4.66375113e-01 -1.55049372e+00 7.54948616e-01 -2.61058450e-01 5.14514983e-01 -3.92185301e-01 -7.89974451e-01 8.04969072e-01 5.65889254e-02 5.33441365e-01 8.98010612e-01 1.92767024e-01 -6.17105544e-01 -1.65499672e-01 -8.58936906e-01 6.01067171e-02 9.31445003e-01 -6.60557568e-01 -2.03959614e-01 6.57087445e-01 8.59979093e-01 -2.64384925e-01 -8.79870117e-01 6.44599199e-01 4.12619919e-01 -6.88634396e-01 9.76677656e-01 -5.13481319e-01 4.67572838e-01 -4.00890112e-01 -2.84114540e-01 -1.04680264e+00 -6.05801642e-01 5.58243811e-01 1.60431683e-01 1.38468337e+00 3.33283365e-01 -3.58497828e-01 6.27842605e-01 4.37777229e-02 -2.35137656e-01 -1.03995657e+00 -7.44487882e-01 -7.00325489e-01 -8.83478597e-02 -1.01007402e-01 2.91295350e-01 1.12648106e+00 -3.57569158e-01 4.37968433e-01 -5.72903812e-01 2.93189615e-01 4.96899515e-01 4.77980793e-01 1.24354005e-01 -1.24306774e+00 7.54083395e-02 -2.51490921e-01 -5.29445887e-01 -1.05637908e+00 5.92823565e-01 -1.05051732e+00 5.92462085e-02 -1.67918384e+00 6.69962645e-01 -6.95696712e-01 -9.92520273e-01 8.36068928e-01 -1.47344291e-01 6.87817216e-01 1.95505649e-01 4.53850597e-01 -1.28296900e+00 2.68367290e-01 1.14492750e+00 -3.36460233e-01 3.42096776e-01 -1.51414409e-01 -4.30179805e-01 8.25688839e-01 7.65146315e-01 -6.77962899e-01 -3.10739100e-01 -3.44616562e-01 1.76494524e-01 -2.06762210e-01 2.80871153e-01 -1.12748969e+00 3.75440598e-01 -2.19077393e-01 5.46802759e-01 -8.60572875e-01 2.93227226e-01 -9.04398024e-01 3.54054421e-02 2.77573884e-01 -6.38898313e-01 -1.96343467e-01 5.35023212e-02 6.17492437e-01 -4.83696938e-01 -5.35683215e-01 1.01719856e+00 -2.76248306e-01 -1.20929337e+00 3.55232596e-01 -1.99123710e-01 -1.95718303e-01 1.42414582e+00 4.77001220e-02 -5.27851760e-01 1.22774541e-01 -8.04579139e-01 2.04922169e-01 1.33463696e-01 5.33224404e-01 5.40296793e-01 -1.52046907e+00 -2.89483935e-01 8.52445737e-02 6.02187872e-01 -1.18547998e-01 4.00887072e-01 5.86583853e-01 -5.45941949e-01 5.53633153e-01 -2.08683908e-01 -6.86700463e-01 -1.51570952e+00 8.99044156e-01 4.10002232e-01 -4.79322791e-01 -3.51172179e-01 1.10842466e+00 6.41147792e-01 -4.35784400e-01 3.94702643e-01 -1.52264088e-01 -6.79536045e-01 3.68863165e-01 4.97684687e-01 3.41371484e-02 -9.63789150e-02 -8.55425417e-01 -3.20628047e-01 1.00237262e+00 -3.38714957e-01 6.08650982e-01 1.06459379e+00 -2.80518472e-01 -3.88042152e-01 7.31178641e-01 1.68214011e+00 -6.68886065e-01 -9.28852797e-01 -3.63484830e-01 6.53060433e-03 -2.41562843e-01 -7.41818454e-03 -8.17866206e-01 -1.16100872e+00 1.01892006e+00 8.11400115e-01 1.20442301e-01 1.04521608e+00 2.99212784e-01 6.37802541e-01 2.32363850e-01 3.30373496e-01 -1.16127717e+00 4.44026589e-01 6.09854162e-01 4.30023581e-01 -1.40853310e+00 -1.49934053e-01 -5.24400115e-01 -6.55872107e-01 1.19850802e+00 9.82740164e-01 4.05842774e-02 8.06008518e-01 5.00328913e-02 3.32269073e-01 -2.56108761e-01 -5.41613758e-01 -2.35745668e-01 2.05499277e-01 1.86289772e-01 4.24862146e-01 5.79225412e-03 -7.28894249e-02 4.55972701e-01 5.68680346e-01 -2.18449086e-01 2.95916367e-02 7.44550288e-01 -6.89357460e-01 -9.73501861e-01 -2.23575905e-01 3.61517370e-01 -6.32399499e-01 -1.34367317e-01 -1.57855207e-03 5.95005453e-01 7.98721194e-01 9.04571950e-01 6.89126253e-02 -3.05534154e-01 8.12191963e-02 2.19817698e-01 1.22644298e-01 -8.10629547e-01 -5.36116600e-01 -2.70184502e-02 -8.30865577e-02 -5.03079295e-01 -8.17466021e-01 -2.04586476e-01 -1.29613161e+00 2.55136132e-01 -6.04802728e-01 -4.24716994e-02 6.27845347e-01 1.01301742e+00 1.91030473e-01 7.81761527e-01 6.13852322e-01 -6.69193327e-01 -2.14509949e-01 -1.07850480e+00 -7.20134676e-01 5.58464766e-01 1.30847886e-01 -9.98155355e-01 -2.61972517e-01 3.40238772e-02]
[9.792252540588379, 4.022725582122803]
d47bb08a-5098-4f88-8aa3-702004dd7f89
irrgn-an-implicit-relational-reasoning-graph
2212.00482
null
https://arxiv.org/abs/2212.00482v1
https://arxiv.org/pdf/2212.00482v1.pdf
IRRGN: An Implicit Relational Reasoning Graph Network for Multi-turn Response Selection
The task of response selection in multi-turn dialogue is to find the best option from all candidates. In order to improve the reasoning ability of the model, previous studies pay more attention to using explicit algorithms to model the dependencies between utterances, which are deterministic, limited and inflexible. In addition, few studies consider differences between the options before and after reasoning. In this paper, we propose an Implicit Relational Reasoning Graph Network to address these issues, which consists of the Utterance Relational Reasoner (URR) and the Option Dual Comparator (ODC). URR aims to implicitly extract dependencies between utterances, as well as utterances and options, and make reasoning with relational graph convolutional networks. ODC focuses on perceiving the difference between the options through dual comparison, which can eliminate the interference of the noise options. Experimental results on two multi-turn dialogue reasoning benchmark datasets MuTual and MuTual+ show that our method significantly improves the baseline of four pretrained language models and achieves state-of-the-art performance. The model surpasses human performance for the first time on the MuTual dataset.
['Wei Peng', 'Yuanchen Ju', 'Xuewei Guo', 'Hengwei Dai', 'Jingcheng Deng']
2022-12-01
null
null
null
null
['relational-reasoning']
['natural-language-processing']
[ 5.70777804e-02 7.57327199e-01 -2.13490482e-02 -7.74363577e-01 -6.33492053e-01 -5.22499502e-01 6.18104875e-01 1.81851424e-02 -3.06567103e-01 3.53996843e-01 8.11057031e-01 -6.79221988e-01 1.07853092e-01 -9.12112772e-01 -3.59988540e-01 -1.80128068e-01 5.59801221e-01 8.81511271e-01 2.66889304e-01 -9.50382173e-01 1.04278713e-01 -6.95618913e-02 -8.30472231e-01 9.83950377e-01 8.66269052e-01 7.39655912e-01 2.53089401e-03 6.23774886e-01 -6.82970166e-01 1.52860630e+00 -5.97762227e-01 -8.00402403e-01 -1.83773562e-01 -7.64567316e-01 -1.52298427e+00 -2.12075144e-01 -1.94200084e-01 -6.72387123e-01 -3.45136672e-01 7.02122033e-01 4.96363550e-01 3.29511583e-01 4.89072382e-01 -1.04807186e+00 -9.82545078e-01 1.68847847e+00 2.02424079e-02 -1.54179692e-01 9.09171104e-01 3.33885968e-01 1.43297672e+00 -8.17896068e-01 4.54671413e-01 1.85148263e+00 5.29586017e-01 1.03766072e+00 -1.19269598e+00 -1.29027933e-01 5.91672242e-01 3.03695232e-01 -9.57240939e-01 -4.55871642e-01 9.39398766e-01 -1.44427627e-01 1.23872399e+00 5.13713360e-01 2.87883222e-01 1.09531558e+00 -1.65513873e-01 1.28146613e+00 1.06919336e+00 -3.96921545e-01 -9.32068303e-02 5.38834147e-02 5.47571003e-01 5.91425896e-01 -8.79680991e-01 -3.24588418e-01 -4.42821980e-01 -7.43384883e-02 5.36969662e-01 -1.85402170e-01 -4.16313797e-01 1.02345152e-02 -1.18138981e+00 9.55259860e-01 6.29974067e-01 3.18199284e-02 -1.21653669e-01 -3.37811738e-01 4.46887344e-01 7.40323126e-01 1.69463813e-01 5.62751770e-01 -4.77681607e-01 -8.91924948e-02 -7.10695004e-03 2.40957126e-01 1.23059940e+00 8.10543358e-01 5.80707490e-01 -3.30502570e-01 -6.07657552e-01 1.09036922e+00 4.74858105e-01 1.77673057e-01 2.13551104e-01 -8.44311893e-01 8.95051181e-01 1.16544783e+00 -6.44730926e-02 -8.48118842e-01 -6.66670918e-01 2.79121548e-01 -7.35672414e-01 -3.82488668e-01 5.72219670e-01 -2.35781819e-01 -4.63397890e-01 1.71370018e+00 4.60362345e-01 -4.28152263e-01 4.26707804e-01 1.20506763e+00 1.61330521e+00 5.64506054e-01 1.13534406e-01 8.42364952e-02 1.48983705e+00 -1.30383158e+00 -9.89413321e-01 -2.91999817e-01 8.76169145e-01 -7.12865889e-01 1.41713023e+00 1.86137319e-01 -9.93769169e-01 -4.00388122e-01 -6.39664114e-01 -6.00734890e-01 -1.75798312e-01 7.08361268e-02 7.52088070e-01 1.58543974e-01 -9.65462983e-01 2.56261528e-01 -2.91681230e-01 -1.94254871e-02 -1.19985946e-01 3.00813377e-01 -1.91192284e-01 -6.68802336e-02 -1.90305293e+00 1.10261834e+00 2.00147882e-01 4.70310152e-01 -3.62203896e-01 -3.43762726e-01 -9.73476350e-01 1.48178652e-01 9.26186979e-01 -6.43705904e-01 1.73006082e+00 -9.66926575e-01 -2.23214865e+00 6.96969032e-01 4.46899571e-02 -5.71066797e-01 5.09239137e-01 -2.94720799e-01 -2.40359277e-01 3.49247754e-02 -1.90134913e-01 6.88622475e-01 2.28510305e-01 -8.48958373e-01 -4.48544562e-01 -1.00515038e-01 9.09920454e-01 6.00932658e-01 3.29038173e-01 2.47007050e-02 -3.88427228e-01 -2.62682378e-01 1.96845978e-01 -9.53767836e-01 -6.05449686e-03 -5.50669372e-01 -6.90517008e-01 -9.65316355e-01 4.08591300e-01 -6.90730274e-01 1.12646890e+00 -1.88365793e+00 4.64575201e-01 -3.05447310e-01 2.98807293e-01 9.31413546e-02 -2.27429256e-01 7.47263312e-01 1.30317137e-01 1.52265161e-01 -2.39438489e-02 -1.30729526e-01 2.32979998e-01 3.39137554e-01 -5.98165214e-01 -1.72354523e-02 2.77688533e-01 1.05184269e+00 -7.79032886e-01 -2.38332227e-01 1.30697444e-01 1.14471279e-01 -6.09557271e-01 7.44246185e-01 -7.22510934e-01 4.18388307e-01 -5.96607029e-01 3.41425955e-01 5.18427491e-01 -1.68269068e-01 6.56152010e-01 -2.10118800e-01 2.21146882e-01 1.24831235e+00 -8.77971590e-01 1.50267458e+00 -5.39734185e-01 3.58706534e-01 -3.43210511e-02 -6.37473226e-01 9.69426394e-01 3.42541575e-01 -3.08380932e-01 -9.20078456e-01 2.07721844e-01 6.49476871e-02 4.72209662e-01 -6.49533331e-01 5.91228843e-01 -6.27503265e-03 -3.81239533e-01 5.94811618e-01 -1.96373388e-01 -2.44795784e-01 -1.99446250e-02 6.57468319e-01 8.62448335e-01 6.89413473e-02 3.36260915e-01 -8.57988596e-02 9.73722160e-01 -2.93075413e-01 4.46864367e-01 7.21296132e-01 6.27904385e-02 3.37978750e-01 1.05955529e+00 -5.35472453e-01 -2.68948495e-01 -8.22723448e-01 5.07174969e-01 1.43781126e+00 4.05550420e-01 -3.78372550e-01 -7.05121100e-01 -1.03683269e+00 -1.67488828e-01 1.07051969e+00 -6.78786755e-01 -6.14254810e-02 -9.11216855e-01 -3.04058582e-01 5.14674842e-01 4.58307356e-01 7.59750366e-01 -1.31361163e+00 -3.52372438e-01 2.99033195e-01 -7.94635415e-01 -1.18827987e+00 -5.23290515e-01 3.26719247e-02 -3.11856240e-01 -1.29608929e+00 1.24204427e-01 -3.93114716e-01 2.83091605e-01 1.46982327e-01 1.42438626e+00 4.85650629e-01 4.91220415e-01 3.50870937e-01 -6.18997216e-01 3.20035852e-02 -5.63830197e-01 1.32150725e-01 -5.27889848e-01 8.55517760e-02 4.43762183e-01 -1.07586605e-03 -4.32923883e-01 5.61126828e-01 -5.11811316e-01 5.39023876e-01 3.98353219e-01 1.07692122e+00 1.01863690e-01 -4.03314978e-01 5.38216472e-01 -1.27178001e+00 1.26726818e+00 -3.54706436e-01 -1.51701495e-01 6.11332238e-01 -3.18743169e-01 4.22783881e-01 7.59022713e-01 -1.19910114e-01 -1.45837557e+00 -3.97234440e-01 -3.72754127e-01 2.67848194e-01 -2.03676056e-02 6.09918475e-01 -4.06797588e-01 3.83264959e-01 3.02871913e-01 -6.85727820e-02 -6.06897511e-02 -2.87991196e-01 7.63355315e-01 7.20672488e-01 2.96993524e-01 -9.29037035e-01 3.63876708e-02 1.09748952e-01 -3.97490174e-01 -5.36976814e-01 -1.02821386e+00 -2.45279938e-01 -5.01626194e-01 -2.46460930e-01 8.93690765e-01 -7.06319988e-01 -1.12389266e+00 3.75934243e-01 -1.53415310e+00 -7.72342622e-01 -1.09846788e-02 2.13253886e-01 -3.24198484e-01 2.99474567e-01 -9.99292910e-01 -9.90906656e-01 -4.16926920e-01 -1.43715990e+00 7.35692501e-01 3.21510404e-01 -4.28844392e-01 -1.00841868e+00 -3.72336060e-01 6.38099790e-01 4.17989135e-01 -1.94003984e-01 1.22118533e+00 -1.18796134e+00 -5.72460771e-01 2.82729268e-01 -2.75117904e-01 3.25282179e-02 2.29436979e-02 -1.16409086e-01 -7.77510464e-01 2.56859988e-01 7.53730759e-02 -7.53378987e-01 9.44589734e-01 -2.29319692e-01 7.56462514e-01 -5.54897368e-01 -1.38463214e-01 3.35162804e-02 6.43356681e-01 3.46200645e-01 7.07545221e-01 5.26363626e-02 7.25585878e-01 1.00375891e+00 5.03217995e-01 1.32835716e-01 1.35958207e+00 7.20230281e-01 4.27053511e-01 -4.09154966e-03 -9.82890353e-02 -3.47324997e-01 2.29800835e-01 8.35718691e-01 2.88335949e-01 -5.88322699e-01 -9.46409881e-01 3.20880681e-01 -2.15235043e+00 -8.99619937e-01 -3.97851944e-01 1.77359235e+00 1.21499312e+00 2.16481403e-01 -1.16869651e-01 -2.23581493e-01 4.99566019e-01 2.87306339e-01 -5.04283786e-01 -9.34983730e-01 -7.01813102e-02 -1.20599210e-01 -3.26428950e-01 8.40771616e-01 -9.02780712e-01 1.16593790e+00 5.52324533e+00 5.05704761e-01 -8.36867988e-01 -2.18978360e-01 8.09904337e-01 2.91983515e-01 -5.85860789e-01 1.99392423e-01 -7.38954306e-01 7.76428133e-02 8.26655865e-01 2.30479091e-01 7.24923491e-01 6.17450535e-01 -3.58595550e-02 -5.82216233e-02 -1.47630560e+00 5.18341362e-01 6.57943487e-02 -1.13169670e+00 5.40610068e-02 -5.08390129e-01 1.52322218e-01 -2.84485489e-01 -8.06512237e-02 9.71658945e-01 8.48206401e-01 -1.07477534e+00 5.98577738e-01 6.34618163e-01 2.02697456e-01 -6.90961659e-01 9.26551819e-01 5.33327401e-01 -1.01059806e+00 -7.37521425e-02 -1.35524243e-01 -3.75434518e-01 -8.05993155e-02 8.97703841e-02 -1.03337741e+00 6.94557905e-01 3.18947673e-01 4.05068636e-01 -4.24243510e-01 1.53677940e-01 -9.25647914e-01 4.06502277e-01 -9.27602798e-02 -4.01124954e-01 4.17912036e-01 -1.48871869e-01 3.17318410e-01 1.10590088e+00 -3.94395739e-01 6.58314884e-01 4.63238835e-01 8.20186913e-01 -3.50543350e-01 8.40385631e-02 -1.59001380e-01 -3.20947655e-02 6.28066421e-01 1.14776659e+00 -3.88591051e-01 -3.29323620e-01 -5.32816470e-01 8.24985445e-01 8.93997908e-01 2.29660988e-01 -7.56560385e-01 -1.66958615e-01 3.88939410e-01 -2.89379746e-01 7.90763833e-03 4.00295220e-02 -1.36328474e-01 -9.54630077e-01 -1.52466848e-01 -1.36342442e+00 6.49143755e-01 -7.96154499e-01 -1.42445004e+00 8.73998821e-01 -7.42099434e-02 -7.42639184e-01 -3.74906391e-01 -5.31456590e-01 -6.80299819e-01 1.12539220e+00 -1.30293977e+00 -1.12704611e+00 -8.56571179e-03 3.81876916e-01 9.45463717e-01 4.80075106e-02 8.43014121e-01 -2.47808129e-01 -4.89592373e-01 5.84185541e-01 -6.40352845e-01 5.32344997e-01 6.69358134e-01 -1.37767529e+00 4.29609060e-01 3.82983595e-01 -1.09213330e-01 1.02473485e+00 4.55546558e-01 -4.69237864e-01 -1.55720770e+00 -5.49669385e-01 1.03371835e+00 -5.18077970e-01 6.63226485e-01 -3.23134333e-01 -1.22890759e+00 7.71778643e-01 8.34918499e-01 -4.87999022e-01 7.01210320e-01 4.45564002e-01 -6.00959241e-01 2.01825857e-01 -8.54145586e-01 9.68572974e-01 8.75861824e-01 -7.75757670e-01 -1.11824286e+00 2.42594197e-01 1.16602051e+00 -9.94575620e-01 -5.01615703e-01 2.38572508e-01 4.59319562e-01 -1.21027184e+00 7.56678283e-01 -7.51858711e-01 6.25672340e-01 7.46440236e-03 -7.44124055e-02 -1.34117806e+00 3.54669876e-02 -7.51906633e-01 1.05238603e-02 1.46940041e+00 6.61130548e-01 -6.29101336e-01 1.12476207e-01 1.10487139e+00 -1.19110972e-01 -1.03650570e+00 -7.85302460e-01 -9.92598608e-02 -3.92502770e-02 -1.72939926e-01 1.02568913e+00 9.30143535e-01 3.06757629e-01 1.09804142e+00 -3.50573450e-01 -4.61911075e-02 -1.05553836e-01 5.15030861e-01 8.10855448e-01 -8.55514050e-01 -4.66609120e-01 -5.45136034e-01 3.74302626e-01 -1.73039579e+00 5.92873156e-01 -8.66508543e-01 2.92239457e-01 -1.90841103e+00 -3.43983956e-02 -4.28745687e-01 4.11306042e-03 5.87154031e-01 -5.56199431e-01 -5.88350356e-01 2.59785056e-01 8.54955986e-03 -7.43883193e-01 6.98768914e-01 1.36636329e+00 -3.98699462e-01 -3.16561341e-01 1.04750946e-01 -9.02546942e-01 8.36438000e-01 8.16013157e-01 -1.74313217e-01 -6.72746122e-01 -8.64749610e-01 4.41737503e-01 7.04988956e-01 1.67228386e-01 -1.96396843e-01 5.09376585e-01 -3.50702494e-01 -2.00914875e-01 -7.13806570e-01 3.54053855e-01 -5.33758163e-01 -3.79705071e-01 5.69241866e-02 -1.16294336e+00 2.87868351e-01 -1.11962631e-01 5.15643597e-01 -1.24486372e-01 -1.84403747e-01 3.34006995e-01 -3.27515215e-01 -7.34777153e-01 -2.33453125e-01 -3.57194453e-01 2.91133851e-01 3.86813134e-01 4.60205436e-01 -7.76605666e-01 -5.97078621e-01 -6.54599607e-01 8.04655254e-01 -1.02889359e-01 6.31688893e-01 8.78394246e-01 -1.13617110e+00 -7.01763630e-01 -1.54049262e-01 -1.15572475e-01 1.83857247e-01 4.15863544e-01 8.08031857e-01 -2.52625138e-01 4.56045657e-01 1.71854228e-01 -2.98060447e-01 -1.32775486e+00 4.78415757e-01 6.20409489e-01 -6.05725884e-01 -5.54222941e-01 1.12893534e+00 2.04844594e-01 -1.20140100e+00 1.68419659e-01 -4.36470389e-01 -7.46853769e-01 3.53585035e-02 4.33642447e-01 -6.40720204e-02 -1.83977410e-01 -5.38221419e-01 -4.06993389e-01 6.55757412e-02 -4.73843843e-01 -8.50315243e-02 9.15118814e-01 -3.48178595e-01 -4.82963532e-01 5.39519548e-01 7.48035789e-01 4.16012183e-02 -9.93669271e-01 -6.08667493e-01 1.83575913e-01 -1.38026953e-01 -3.63432974e-01 -1.14077187e+00 -7.39484191e-01 8.61342251e-01 -2.38512173e-01 6.00359499e-01 8.31458569e-01 -7.83839077e-02 6.79138064e-01 8.75824690e-01 1.61362469e-01 -1.06661463e+00 2.55877465e-01 1.09582949e+00 1.31269717e+00 -1.20336437e+00 -1.21088326e-01 -6.16445661e-01 -1.23602748e+00 1.39667988e+00 1.06162369e+00 1.52239352e-01 1.42210662e-01 4.94193062e-02 4.37462270e-01 -1.47112951e-01 -1.35309207e+00 -2.15658069e-01 2.42207333e-01 3.14950109e-01 8.26108038e-01 3.07641387e-01 -4.10125762e-01 8.68908703e-01 -2.24359378e-01 -5.81599772e-01 5.66024184e-01 5.76805592e-01 -1.72488868e-01 -1.16790020e+00 1.08218044e-02 1.75333127e-01 -1.63976133e-01 -4.17865723e-01 -1.11691511e+00 8.71589959e-01 -3.46150011e-01 1.50892329e+00 -2.46249244e-01 -4.88946527e-01 6.68438673e-01 2.80692458e-01 9.44105089e-02 -6.02756858e-01 -1.19064856e+00 -2.16919571e-01 7.87226856e-01 -5.28247416e-01 -3.72912318e-01 -2.86559969e-01 -1.68495703e+00 -2.94594109e-01 -3.85100901e-01 3.06301773e-01 1.97338820e-01 1.24251735e+00 2.37402961e-01 8.42266858e-01 6.25145376e-01 -1.40983909e-01 -9.97781813e-01 -9.37327445e-01 1.99345537e-02 4.08203036e-01 1.64664805e-01 -4.57904756e-01 -1.89688176e-01 -5.00710011e-01]
[12.365357398986816, 7.950145721435547]
b77d6b3f-2cc8-41f3-ac76-ff0c070b1210
edvr-video-restoration-with-enhanced
1905.02716
null
https://arxiv.org/abs/1905.02716v1
https://arxiv.org/pdf/1905.02716v1.pdf
EDVR: Video Restoration with Enhanced Deformable Convolutional Networks
Video restoration tasks, including super-resolution, deblurring, etc, are drawing increasing attention in the computer vision community. A challenging benchmark named REDS is released in the NTIRE19 Challenge. This new benchmark challenges existing methods from two aspects: (1) how to align multiple frames given large motions, and (2) how to effectively fuse different frames with diverse motion and blur. In this work, we propose a novel Video Restoration framework with Enhanced Deformable networks, termed EDVR, to address these challenges. First, to handle large motions, we devise a Pyramid, Cascading and Deformable (PCD) alignment module, in which frame alignment is done at the feature level using deformable convolutions in a coarse-to-fine manner. Second, we propose a Temporal and Spatial Attention (TSA) fusion module, in which attention is applied both temporally and spatially, so as to emphasize important features for subsequent restoration. Thanks to these modules, our EDVR wins the champions and outperforms the second place by a large margin in all four tracks in the NTIRE19 video restoration and enhancement challenges. EDVR also demonstrates superior performance to state-of-the-art published methods on video super-resolution and deblurring. The code is available at https://github.com/xinntao/EDVR.
['Chen Change Loy', 'Xintao Wang', 'Kelvin C. K. Chan', 'Chao Dong', 'Ke Yu']
2019-05-07
null
null
null
null
['video-enhancement', 'video-restoration']
['computer-vision', 'computer-vision']
[ 0.1663237 -0.77225274 0.01562331 0.00757188 -0.6237472 -0.36257818 0.44273847 -0.63179207 -0.4001946 0.74202716 0.7526974 0.18791288 -0.10236313 -0.42022565 -0.686941 -0.75569934 0.186762 -0.32034642 0.43926764 -0.42899647 0.16191009 0.45313445 -1.4400182 0.39569834 0.9468335 0.7029963 0.42426875 0.7430958 0.40509734 0.96174806 -0.10004152 -0.19094199 0.26466525 -0.32875615 -0.8823795 0.12834601 0.7798835 -0.87371236 -0.8509393 1.2250686 0.64638746 0.62439984 0.2871469 -0.9173361 -1.192015 0.40862444 -0.83598727 0.8666705 0.37265688 0.26484022 0.5614132 -1.0435193 0.59276456 1.3636466 0.60707885 0.69681907 -1.044128 -0.6124975 0.29742682 0.6274232 -1.2810514 -0.7220254 0.4687952 -0.49982488 0.7335929 0.2940208 0.25632536 1.0788385 0.06529114 0.59944147 0.87659466 0.01826376 -0.18428203 -0.5832769 0.0536764 0.29611334 -0.02308415 0.2701024 -0.3750157 0.23531432 1.2119197 0.25703064 -0.8308058 0.139889 -1.3938205 0.39691117 0.44678795 0.4451762 -0.52685934 0.17535265 0.37991267 0.20553237 0.7032475 0.04169434 -0.3105668 -0.01293382 -0.95345646 0.30375004 0.12782322 0.63841784 0.440252 0.15070127 -0.5372383 1.1317183 0.20204817 0.2970583 0.53854257 -1.1912513 0.52899104 0.02511466 0.40128478 -1.0903689 -0.16087566 -0.24831638 -1.446546 0.25950134 0.034138 -0.08091228 -0.91723543 1.637401 0.36372954 0.80844456 0.02736138 1.4858619 1.0499207 0.803189 -0.02695566 -0.4210523 1.3650448 -1.2885765 -1.0046649 -0.05287911 -0.12350091 -0.99129707 0.67699164 0.33205307 -1.4043543 -0.87887406 -0.86157525 -0.4510916 0.1426656 0.03885006 0.12978698 0.05028501 -1.3770251 0.8255803 -0.86471486 -0.20724213 0.41767222 0.17975041 -0.45823547 -0.37036693 -1.2648484 0.81922144 0.23486134 0.33100915 -0.85825205 -0.5768035 -0.8473874 0.00677732 0.42127046 -0.90553755 0.93528056 -0.92470616 -1.3881567 0.53563225 -0.36069036 -0.4285117 0.77776885 -0.6446542 -0.68111986 0.19381236 -0.03703479 0.554557 1.0540652 -1.187263 -0.6836397 -0.16630468 0.0549521 0.36743158 -0.17432548 0.38700578 -0.8558222 -1.2780308 -0.00602597 -0.65806586 -0.1806053 -0.09872305 -0.25200626 -0.09058776 0.9600735 -1.3025466 1.4604391 -2.1848795 0.70304847 -0.47107404 0.4812298 0.6266324 -0.31271073 0.03339092 -0.3479016 0.0938563 -0.25403664 -0.4365656 -0.3220002 -0.05065504 -0.32937863 0.461613 0.20270352 0.79224217 -0.8539712 -0.23015088 0.4195518 0.8988822 -0.51807934 0.24043512 0.13388094 0.713195 -0.23727445 0.4786554 1.0663228 -0.22890525 -0.24186374 -0.6449577 -0.41343284 -0.18279488 -1.2811635 1.6630948 -0.19656399 0.67229 0.1572751 -0.666687 0.60372746 0.40497708 0.55679196 -0.6835282 -0.03444526 0.05276455 -0.34116367 -0.69795644 0.8541932 0.15851729 0.43154192 0.11217341 -0.14254238 0.42489883 0.35298002 0.17322318 1.0215487 0.37979043 0.07355283 -0.09870216 0.83073086 -0.37609196 0.8733982 0.36102343 -0.28167713 1.2223728 0.03687747 -0.509213 -1.0858548 -0.9383361 0.16103376 0.9223147 0.6400539 -0.2157035 -0.7342326 -0.37534955 -0.32207212 0.15004858 -0.5964827 0.00542173 -0.9130441 -0.73361474 0.0769494 0.58450896 0.88029665 -1.0947648 -0.14853594 0.26063767 -0.7448844 -1.3816841 -1.2770399 -0.57598567 -0.7548228 -0.9924434 -1.1826326 -0.8521479 0.40541062 0.800887 0.87663454 0.31044587 -0.09799314 0.1758538 -0.554491 0.4835225 -0.14066033 -0.27499577 0.12187098 0.21567978 -0.14950456 -0.71878 -0.8822404 0.5913427 -1.2018402 0.27246377 0.43860143 0.884236 0.6125363 0.05104806 0.48026544 -0.40370065 0.5151162 -0.50602794 -0.48017 0.31789473 -0.14829567 -0.20343496 0.5392943 -0.5674325 -1.1685096 -0.23246779 -0.23915155 -0.8720964 -0.08556034 0.07143395 -0.10351588 -0.1449511 0.44826683 0.43064785 -0.24655057 -0.78523093 0.34264332 0.57129437 0.9755624 -0.29164347 0.99544513 0.4429245 -0.39865255 -0.5219632 -0.6677482 -0.42118403 -0.6945748 -0.15466821 1.1903518 -1.1963115 -0.5862987 0.8960347 -1.180161 -0.43423325 -0.04028541 0.54523355 -0.4575251 0.7215064 -0.99734586 -0.32896256 -0.5811692 -1.2979327 0.8741002 0.4871653 0.24251659 -0.72570413 -0.01142866 0.57680243 0.7569621 0.2593386 0.15091382 0.02981193 -0.7924932 0.3799793 -0.63878393 0.68223166 0.36491176 -0.08201126 -0.61180794 -0.60849726 -0.05204618 0.04218882 1.2324059 0.5694866 1.1547563 -0.36590174 -0.04714893 0.9886055 1.3448626 0.14242491 1.0800351 0.5384488 0.9596913 0.11017746 0.5149021 0.35315 0.5914798 1.0392336 0.43134007 -0.21551423 -0.65179574 0.19027199 0.5180678 0.73109305 -0.6445794 -0.22366412 -0.50192183 0.5801089 -2.0909889 -1.2456031 -0.11733412 2.0432446 0.7884453 -0.35539284 -0.01212447 -0.1298645 1.1846044 0.45524332 -0.4761995 0.17484911 -0.37834418 -0.04939408 0.20482707 0.66445225 -1.344628 0.89763737 5.0938616 0.93580586 -0.99578357 0.3996457 0.753618 0.02626814 -0.0290782 -0.17203155 -0.6660548 0.6659512 0.4009905 -0.12396845 0.8888393 0.21531655 0.5769998 0.13226858 -0.65728307 1.0964333 0.20858216 -1.4995852 0.01945781 -0.13296077 1.0008537 0.07026461 0.05799464 0.08648147 0.24733792 -1.0647703 0.6531317 0.7600034 0.77797055 -0.62296295 0.6950301 -0.07204674 -1.557532 -0.02240414 -0.29347953 0.2668125 0.5146221 0.45622945 0.29620218 0.8482099 1.0959572 1.2631452 -0.25449347 1.2159302 -0.18849349 0.17439617 0.14665833 0.820339 0.04551291 -0.20634283 0.7687618 1.2469503 0.461278 0.5269286 0.1053841 0.6481454 -0.22471152 -0.28666937 0.14011195 0.35951504 0.35054398 1.4011961 -0.31732965 -0.4049678 -0.4054186 1.3839467 0.07995263 0.6002828 -1.0324687 -0.07822771 0.9847957 -0.04985391 0.5539999 -0.25241062 0.26123917 -1.6199838 0.07657738 -1.0039815 0.30101508 -1.0196013 -1.2807722 0.941083 -0.21660022 -1.4564984 0.13641787 -0.11754705 -0.49658996 0.9820703 -1.8852644 -0.9610632 -0.77504206 0.9643022 0.9024871 0.0780857 0.1089839 0.8468185 -0.8496093 0.35524088 0.11090519 0.185425 1.0212575 -0.83823085 0.6320486 1.3248124 -0.22441562 0.36837617 0.60429245 -0.6612728 -1.2084438 -1.4486331 0.5478129 -0.1173445 0.5661412 0.2571435 -1.3164575 0.6304177 0.3747003 0.5239424 -0.07702699 -0.5362775 -0.3371361 -0.02218395 -1.0957566 0.5717745 1.257694 -0.30175185 -0.40265098 0.2573931 0.9208378 -0.7392971 -1.0623493 0.5062079 0.39465764 -1.0827681 1.2478391 -0.35516137 0.788118 -0.743032 -0.2183834 -1.2779479 -0.81673443 -0.74606246 -0.29209113 1.3487786 -0.22864543 -0.5233565 0.21463785 0.31155306 -0.23560247 -0.5608887 -0.8039113 -0.64260024 -0.20825504 0.05760067 0.43219504 1.1027371 -0.6518404 0.03303659 -1.0394131 0.39067942 0.72127044 -0.10308377 0.49234974 -0.7167383 -0.34990615 -0.4540331 -0.32786703 -1.3200719 -0.1544472 -0.47485977 0.01671491 -1.715577 0.45095092 -0.02916444 -0.32525417 0.3915074 -0.5932757 0.622872 0.47578347 0.42588535 -0.73674566 0.67640233 1.4117882 0.01965815 -0.18425573 -0.23928581 -0.68154067 0.6671982 0.64862305 -0.08894029 0.0409879 -0.84142244 -0.31881574 0.27715623 0.67358166 -0.9162303 0.35209888 -0.26067626 0.48861295 -0.42227373 0.32501426 -0.5202872 0.42034867 0.28757557 -0.16960444 0.3366736 0.24061476 0.5231511 -0.42178887 0.17321832 1.0794328 -0.01600412 -1.0389154 0.7039625 -0.1365709 0.1441162 0.8483631 -0.03280636 -0.76519066 -0.26617682 -0.90730715 0.30970544 0.5125511 0.7419802 0.82231975 -1.4146821 -1.2469729 -0.0495591 -0.40492642 -0.0910297 1.1235218 1.162898 -0.5196416 -0.1058113 -0.42169213 -0.40092304 -1.5058779 0.5616491 0.45505896 -0.26005903 -0.9745335 0.81001323 0.40779525 0.14896804 0.09403364 -0.09779595 -0.49486673 -0.09056536 1.0636508 0.6267865 -0.07440825 -0.90880936 -0.2568606 0.95276845 -0.21829723 0.26165858 1.5025928 -0.6496037 -0.15754832 -0.25671554 0.95671463 -0.10010456 -1.7844927 -0.5510899 -0.37617958 -0.85168743 0.23753327 -0.70425725 -1.6213257 0.5584379 0.7850624 -0.01962117 1.6052711 -0.26341787 1.105404 -0.37655243 -0.03128356 -0.63835907 0.16619827 0.56053764 1.2290976 -1.2668332 0.06949505 -0.39443377 -0.69705033 1.0781013 0.6934875 -0.3195176 0.36187288 0.2821464 -0.12265581 0.36193368 -0.7715663 -0.1969685 0.5580134 0.46820977 0.43612736 -0.2717486 -0.32045773 0.43880805 0.30890507 0.34832126 0.57893157 0.4560483 -0.43456215 -0.91059923 -0.5583836 0.01597374 -0.545081 -0.34940174 0.17849787 0.4058314 0.20032038 1.0460933 -0.03395099 -0.524707 0.35978782 -0.7067206 0.32375464 -0.13075729 -0.5481391 0.29335508 -0.12000025 -0.8057591 -0.7074671 -0.6070607 -0.92881083 -0.50245947 -0.10646885 -0.1713618 0.10955655 0.93115056 0.5362501 0.9250405 0.51273566 -1.4091768 -0.3052997 -0.96928465 -0.36196595 0.46416909 0.7411728 -0.5867087 -0.3025905 0.3605337 ]
[11.082847595214844, -1.933424949645996]
942fba5e-73a3-4d39-8046-50537acf249a
crowdsourcing-cybersecurity-cyber-attack
1702.07745
null
http://arxiv.org/abs/1702.07745v1
http://arxiv.org/pdf/1702.07745v1.pdf
Crowdsourcing Cybersecurity: Cyber Attack Detection using Social Media
Social media is often viewed as a sensor into various societal events such as disease outbreaks, protests, and elections. We describe the use of social media as a crowdsourced sensor to gain insight into ongoing cyber-attacks. Our approach detects a broad range of cyber-attacks (e.g., distributed denial of service (DDOS) attacks, data breaches, and account hijacking) in an unsupervised manner using just a limited fixed set of seed event triggers. A new query expansion strategy based on convolutional kernels and dependency parses helps model reporting structure and aids in identifying key event characteristics. Through a large-scale analysis over Twitter, we demonstrate that our approach consistently identifies and encodes events, outperforming existing methods.
['Ramakrishnan Naren', 'Lu Chang-Tien', 'Wang Gang', 'Jan Steve', 'Ji Taoran', 'Khandpur Rupinder Paul']
2017-02-24
null
null
null
null
['cyber-attack-detection']
['miscellaneous']
[-1.49986625e-01 -5.09807616e-02 -3.13060582e-01 -2.40440547e-01 -7.32393265e-01 -1.10977077e+00 9.00438547e-01 1.32056618e+00 -3.05421531e-01 5.25669456e-01 4.70052153e-01 -3.77287120e-01 2.89591640e-01 -1.34917045e+00 -5.44587612e-01 1.87742472e-01 -3.61943096e-01 4.55594867e-01 7.41163194e-01 -3.34465504e-01 1.74800619e-01 7.46435761e-01 -7.10049808e-01 1.02705926e-01 3.22202027e-01 8.60927761e-01 -8.20820510e-01 5.64739227e-01 -2.48496652e-01 7.06728280e-01 -1.11790586e+00 -8.60535622e-01 -4.09437902e-02 1.91815048e-01 -4.72278088e-01 -3.54333133e-01 -2.62230281e-02 -3.43058765e-01 -5.49188197e-01 1.02112293e+00 5.15410900e-01 -2.79600531e-01 2.88300198e-02 -1.32237351e+00 -4.93472338e-01 8.00751865e-01 -4.27393109e-01 9.35364366e-01 8.54207754e-01 1.69465423e-01 9.59366262e-01 -6.22392833e-01 8.17166924e-01 1.11928630e+00 9.44799662e-01 -7.30023608e-02 -9.56425011e-01 -1.04284263e+00 -1.83545470e-01 -3.34929228e-01 -1.22409534e+00 -2.87118524e-01 5.59856236e-01 -4.37353641e-01 1.26291203e+00 2.31799155e-01 5.84530115e-01 1.27632368e+00 2.64245659e-01 3.62925649e-01 5.40524542e-01 8.82268101e-02 5.14833272e-01 -6.23578206e-02 3.75120014e-01 5.69082916e-01 7.14850783e-01 -2.47137621e-02 -6.36738002e-01 -1.41294014e+00 3.01520258e-01 4.64929223e-01 3.73268753e-01 5.50525606e-01 -1.06121409e+00 1.14513612e+00 2.33383030e-01 6.04012981e-02 -6.53434217e-01 1.75192311e-01 6.34260476e-01 1.29787445e-01 7.82425761e-01 5.26399672e-01 -4.66965914e-01 -2.33201366e-02 -6.35539949e-01 3.70503396e-01 1.15085316e+00 5.40644348e-01 7.18002200e-01 -1.02881163e-01 -4.54179868e-02 1.78735122e-01 2.22916037e-01 8.84105861e-01 -4.04117256e-02 -3.07246387e-01 5.60130060e-01 1.11835861e+00 2.26051465e-01 -1.55476427e+00 -6.36299133e-01 -1.70771834e-02 -4.20242310e-01 -7.17428803e-01 1.78445101e-01 -4.63849515e-01 -6.56316757e-01 1.40653205e+00 7.34322190e-01 7.09622562e-01 -2.24906966e-01 3.65458310e-01 8.01680386e-01 4.11173850e-01 5.69042087e-01 -1.08248040e-01 1.64014852e+00 1.67906773e-03 -5.67727268e-01 -1.70022428e-01 4.47825909e-01 -6.62331581e-01 1.70074642e-01 -5.19200563e-02 -6.64483070e-01 2.32665032e-01 -4.91962433e-01 4.68884557e-01 -1.00156236e+00 -5.70730865e-01 8.83296251e-01 8.06859016e-01 -4.20597255e-01 1.99682564e-01 -8.08419764e-01 -7.94454455e-01 5.86632490e-01 -4.68445243e-03 -1.38636842e-01 3.70943367e-01 -1.69984770e+00 3.66313934e-01 3.06133211e-01 -7.45853841e-01 -7.76014924e-01 -7.45340526e-01 -7.64241755e-01 -1.44670337e-01 4.10474181e-01 -2.25373983e-01 9.71788228e-01 6.40669372e-03 -7.95023322e-01 1.01900136e+00 -8.81451145e-02 -9.47683811e-01 6.32748976e-02 -1.69532910e-01 -1.09841299e+00 3.86657715e-01 3.31290156e-01 -7.03835264e-02 6.45040989e-01 -4.83163744e-01 -4.14509088e-01 -2.49198586e-01 1.92992181e-01 -6.22576535e-01 -5.83432615e-01 1.12518060e+00 1.03424475e-01 -6.20673299e-01 -3.43667477e-01 -7.60784745e-01 -2.93046087e-01 -6.46592617e-01 -8.36327195e-01 -4.82821345e-01 8.10638368e-01 -5.18988788e-01 1.58395159e+00 -1.73746300e+00 -8.41656923e-01 4.33586478e-01 6.32758975e-01 4.16089088e-01 2.41747990e-01 1.33479953e+00 1.44091740e-01 5.13546824e-01 9.22522768e-02 -2.28336384e-03 -1.16905190e-01 -1.74155071e-01 -1.00599289e+00 5.34739316e-01 3.64809781e-01 1.13878727e+00 -1.21036220e+00 -2.92982817e-01 -2.01387405e-01 1.45401746e-01 -4.07015502e-01 8.95754099e-02 -3.79024297e-01 3.34978104e-01 -8.26250017e-01 1.04672217e+00 4.06529129e-01 -8.30526769e-01 3.73840369e-02 -1.34676760e-02 9.57923830e-02 4.92644846e-01 -8.91689420e-01 8.14053416e-01 1.80945843e-01 4.51642483e-01 -2.08295688e-01 -3.97742957e-01 9.63785350e-01 4.10500616e-01 6.34962559e-01 -3.24360371e-01 3.08957070e-01 4.37508710e-02 -5.78913391e-01 -4.59811807e-01 3.15603912e-01 2.96120256e-01 -6.79387450e-01 9.04775441e-01 -1.96113065e-01 5.75130284e-01 4.00338583e-02 6.66932106e-01 1.96329498e+00 -1.07939160e+00 7.59281993e-01 1.56783730e-01 -1.05395466e-02 4.31114823e-01 5.03476322e-01 9.54513371e-01 -3.73318076e-01 1.38434082e-01 5.79550028e-01 -8.32903981e-01 -1.06765378e+00 -1.25062621e+00 1.24367431e-01 1.06742072e+00 7.06234351e-02 -6.63276315e-01 -4.92141783e-01 -8.70966911e-01 4.76415366e-01 3.80790889e-01 -3.42501014e-01 -8.56257800e-04 -7.36331642e-01 -1.29240036e+00 1.45567381e+00 3.88926893e-01 6.00081563e-01 -1.13360012e+00 -3.38261634e-01 4.21233624e-01 -1.17793679e-01 -1.78658485e+00 -3.81725669e-01 -3.25228721e-01 -2.88602561e-01 -1.67257571e+00 2.74550885e-01 -2.17184588e-01 4.47070003e-01 2.47967541e-01 1.13524508e+00 -1.88538507e-01 -4.36972290e-01 6.76779747e-01 -1.35589257e-01 -7.65087068e-01 -4.66571093e-01 8.03137049e-02 3.57693017e-01 2.26650372e-01 1.21959114e+00 -5.83758891e-01 -5.84576964e-01 1.00821652e-01 -1.13433039e+00 -9.90119755e-01 -2.80681625e-02 -7.29909167e-02 -1.69729307e-01 -2.23328382e-01 9.14995134e-01 -1.15536046e+00 1.20949078e+00 -1.46962953e+00 -6.94545925e-01 3.90791707e-02 -4.85951185e-01 -6.13981783e-01 4.19652104e-01 -8.08694661e-01 -5.02817094e-01 -1.31570697e-01 2.50241935e-01 -1.45893246e-01 -4.92947698e-01 6.78471565e-01 3.45859617e-01 -2.52626818e-02 1.17657316e+00 4.87529002e-02 -4.60835546e-01 -1.85832456e-01 3.55517194e-02 7.16913462e-01 1.62215516e-01 -1.81886464e-01 1.09756529e+00 9.44603980e-01 -4.50602829e-01 -1.12164938e+00 -7.95033455e-01 -8.76236975e-01 -1.56011982e-02 -2.05812901e-02 8.53726268e-01 -9.85402882e-01 -1.16327155e+00 5.93772471e-01 -1.48631525e+00 2.63484567e-01 -1.36646226e-01 2.31918797e-01 5.19893050e-01 3.31418186e-01 -1.10702097e+00 -8.02761257e-01 -5.34569144e-01 -2.17652082e-01 1.09449089e+00 4.48324263e-01 -5.47385991e-01 -1.07460129e+00 5.41354954e-01 2.45229676e-01 5.08199751e-01 7.75867164e-01 3.71886522e-01 -1.80459309e+00 -5.29404759e-01 -8.79313290e-01 -4.29654598e-01 -4.17796046e-01 6.49576401e-03 -4.12466191e-02 -8.73043478e-01 -9.67649221e-02 -4.32122171e-01 -2.81246603e-01 5.37884116e-01 -9.34987590e-02 6.03764713e-01 -6.28440261e-01 -6.47227287e-01 3.19170207e-01 1.08528018e+00 1.70326754e-01 4.64251131e-01 1.91272542e-01 4.48813051e-01 2.00025037e-01 -9.06306058e-02 9.66688514e-01 5.82800567e-01 8.43359455e-02 3.33613694e-01 9.69263092e-02 6.53626800e-01 -6.92203701e-01 2.12912843e-01 2.13723063e-01 3.56885225e-01 -5.68053663e-01 -1.37881732e+00 6.99007988e-01 -1.54783380e+00 -1.07717741e+00 -2.48949565e-02 1.80457783e+00 6.08871520e-01 2.74634391e-01 4.61418360e-01 -2.35392183e-01 1.26559556e+00 6.36378646e-01 -5.18894494e-01 -2.47152686e-01 -2.15777963e-01 2.86561012e-01 1.04965580e+00 3.03653777e-01 -1.38847923e+00 9.22130466e-01 7.28850317e+00 3.38696718e-01 -9.62434947e-01 2.69156933e-01 1.67754278e-01 7.22659752e-02 -2.61285216e-01 8.26063231e-02 -1.11378455e+00 6.25944078e-01 1.29866648e+00 -2.91919708e-01 2.57418960e-01 6.25096500e-01 1.33348599e-01 1.46716684e-01 -4.41877723e-01 6.54084921e-01 -1.15952611e-01 -1.74794507e+00 -8.57102871e-02 2.91049480e-01 4.50901389e-01 5.57574749e-01 -4.70872790e-01 -9.44256410e-02 1.00881147e+00 -6.70035958e-01 2.35871240e-01 3.39907825e-01 4.73734677e-01 -4.82288301e-01 4.26596940e-01 2.37962976e-01 -1.16743898e+00 -2.52648264e-01 5.54735474e-02 -2.32108384e-02 4.78270650e-01 1.17837477e+00 -1.29367006e+00 6.61298772e-03 3.94326866e-01 5.86980045e-01 -4.19385761e-01 8.66321445e-01 -1.82425931e-01 1.32944262e+00 -8.29781890e-01 -3.97714823e-01 2.85022408e-01 5.54857612e-01 1.20154989e+00 1.45811892e+00 -7.58426189e-02 3.92504007e-01 4.74073559e-01 7.18839824e-01 -4.32135731e-01 -7.26296082e-02 -9.03068423e-01 -6.30241573e-01 1.02557588e+00 1.11043668e+00 -9.19610500e-01 -3.55177760e-01 -1.99902192e-01 5.09219587e-01 1.52392134e-01 4.70308036e-01 -9.13026214e-01 -5.41957796e-01 8.15041125e-01 5.56491435e-01 1.84351400e-01 -3.68808150e-01 1.49127677e-01 -1.34135520e+00 -1.75427794e-01 -6.38791680e-01 7.26056874e-01 -2.80151516e-01 -1.62725103e+00 3.78182441e-01 5.31435274e-02 -9.93160844e-01 -1.72551677e-01 3.25607928e-03 -1.15504515e+00 3.18129867e-01 -1.21302569e+00 -1.02440572e+00 -9.50559378e-02 8.07435334e-01 -1.26978219e-01 -2.99498588e-01 7.65530765e-01 4.82680082e-01 -6.96020722e-01 4.70790803e-01 -3.14913869e-01 9.42824066e-01 5.97240448e-01 -8.48825634e-01 1.10645127e+00 8.79564643e-01 1.13575898e-01 6.15714014e-01 6.26179576e-01 -1.32646847e+00 -1.23477972e+00 -1.28362560e+00 1.33388853e+00 -6.66763842e-01 1.39910328e+00 -4.66675460e-01 -6.51507378e-01 8.89829457e-01 -8.46039951e-02 3.53577912e-01 9.73964989e-01 -2.20885780e-02 -8.81594896e-01 -6.39699772e-02 -1.44728422e+00 1.50392801e-01 8.52462649e-01 -9.14849997e-01 -4.31355387e-01 7.69910991e-01 1.00847828e+00 -6.12754636e-02 -7.96847999e-01 8.50822628e-02 2.33471274e-01 -4.94488180e-01 9.44960535e-01 -1.38634777e+00 -4.53488939e-02 4.63062935e-02 5.15204072e-02 -7.88776278e-01 -2.72762254e-02 -1.22799420e+00 -5.95479429e-01 1.44730318e+00 2.90935367e-01 -1.26726139e+00 6.28641486e-01 6.04453325e-01 7.18870938e-01 2.04336122e-02 -7.58943796e-01 -4.57796574e-01 -5.58442414e-01 -4.66077447e-01 8.65141869e-01 1.48198211e+00 1.58595338e-01 3.10813278e-01 -1.82358116e-01 7.38042176e-01 7.34790266e-01 -9.75555182e-02 6.88239872e-01 -1.53191352e+00 1.42809629e-01 1.23149782e-01 -6.86796546e-01 -3.43430966e-01 -1.80325121e-01 -4.97739643e-01 -7.18102992e-01 -9.71471429e-01 -1.43401191e-01 -2.99577206e-01 -2.55825818e-01 5.35202324e-01 1.38618484e-01 4.41851318e-01 -1.66868448e-01 3.68467629e-01 -9.38911438e-01 -2.53817230e-01 1.70269921e-01 -1.90586522e-01 -3.41840088e-01 1.54274315e-01 -6.56383693e-01 9.17199850e-01 9.61841702e-01 -9.26385820e-01 1.67120546e-01 2.18943711e-02 1.07751358e+00 2.09962711e-01 6.59592986e-01 -5.45348346e-01 4.83928949e-01 -1.62245542e-01 1.32322624e-01 -5.09634197e-01 -1.08516976e-01 -3.49787802e-01 1.70040817e-03 3.86591315e-01 -2.10860819e-01 4.48053926e-01 8.15749764e-02 1.20518148e+00 -1.98572531e-01 4.01982218e-01 4.79237735e-01 -2.00950906e-01 -3.21928650e-01 4.57426012e-01 -4.30616111e-01 5.70478261e-01 1.17815232e+00 1.80099607e-01 -9.10346568e-01 -5.73596358e-01 -8.09363186e-01 2.91808575e-01 2.18157381e-01 5.32289982e-01 4.83100057e-01 -1.14949524e+00 -7.85064459e-01 1.70040786e-01 3.06392193e-01 -5.03142774e-01 -2.11789593e-01 5.19755542e-01 -4.03255314e-01 2.92336553e-01 2.53796160e-01 -1.81116834e-01 -9.97452319e-01 3.73896271e-01 4.03434709e-02 -6.42733812e-01 -4.97768700e-01 3.82542908e-01 -7.35547543e-01 -3.54571164e-01 1.84344202e-01 -1.33496180e-01 -1.87106416e-01 4.86258328e-01 1.04248095e+00 5.35595357e-01 -9.42826048e-02 -5.00084877e-01 -9.13422048e-01 -1.69509843e-01 6.47270828e-02 1.02908246e-01 1.23111069e+00 8.11735913e-02 -2.12236062e-01 1.25716314e-01 1.15869701e+00 5.32019913e-01 -5.03285468e-01 -6.13606811e-01 3.57805550e-01 -2.16006771e-01 -3.80232364e-01 -6.55590653e-01 -7.01864004e-01 2.76508540e-01 1.72947496e-02 1.25516319e+00 6.86296344e-01 3.28100115e-01 1.56277156e+00 6.22000515e-01 4.75553602e-01 -7.21508324e-01 -2.96796076e-02 5.33391595e-01 1.94384575e-01 -1.16223025e+00 -4.12068069e-02 -3.84171218e-01 -3.59982610e-01 9.65533495e-01 1.56393617e-01 -5.38929403e-01 1.18607056e+00 5.28923213e-01 -1.96322903e-01 -7.28045821e-01 -6.85308278e-01 -2.22643673e-01 -2.23554656e-01 3.97466749e-01 -1.68992221e-01 2.20903039e-01 -1.45121813e-01 7.14807630e-01 1.29078150e-01 -1.48105780e-02 6.07028246e-01 1.02678144e+00 -5.69736600e-01 -7.15178907e-01 -4.26317424e-01 4.99853909e-01 -1.08076334e+00 -1.28803685e-01 -7.84517586e-01 4.15836304e-01 -1.22276835e-01 1.04332685e+00 2.16660678e-01 -7.64424682e-01 3.21605355e-01 1.07360981e-01 -4.39988226e-01 -7.17560351e-01 -1.19844222e+00 -4.24902081e-01 3.87814224e-01 -7.75325477e-01 -2.91603744e-01 -4.43520665e-01 -1.18274891e+00 -5.63851714e-01 -1.07580908e-01 1.68750048e-01 5.10144234e-01 8.62737238e-01 8.73457134e-01 -6.16626665e-02 7.65063286e-01 5.17567694e-02 -3.68041903e-01 -8.16596270e-01 -4.41726625e-01 5.73723137e-01 3.68514508e-01 -4.19863939e-01 -5.08873701e-01 -2.20778987e-01]
[8.366738319396973, 9.469409942626953]
fe9df5cf-779f-4512-9f0b-e8a290dd5f26
on-transforming-reinforcement-learning-by
2212.14164
null
https://arxiv.org/abs/2212.14164v2
https://arxiv.org/pdf/2212.14164v2.pdf
On Transforming Reinforcement Learning by Transformer: The Development Trajectory
Transformer, originally devised for natural language processing, has also attested significant success in computer vision. Thanks to its super expressive power, researchers are investigating ways to deploy transformers to reinforcement learning (RL) and the transformer-based models have manifested their potential in representative RL benchmarks. In this paper, we collect and dissect recent advances on transforming RL by transformer (transformer-based RL or TRL), in order to explore its development trajectory and future trend. We group existing developments in two categories: architecture enhancement and trajectory optimization, and examine the main applications of TRL in robotic manipulation, text-based games, navigation and autonomous driving. For architecture enhancement, these methods consider how to apply the powerful transformer structure to RL problems under the traditional RL framework, which model agents and environments much more precisely than deep RL methods, but they are still limited by the inherent defects of traditional RL algorithms, such as bootstrapping and "deadly triad". For trajectory optimization, these methods treat RL problems as sequence modeling and train a joint state-action model over entire trajectories under the behavior cloning framework, which are able to extract policies from static datasets and fully use the long-sequence modeling capability of the transformer. Given these advancements, extensions and challenges in TRL are reviewed and proposals about future direction are discussed. We hope that this survey can provide a detailed introduction to TRL and motivate future research in this rapidly developing field.
['DaCheng Tao', 'Yixin Chen', 'Ya zhang', 'Li Shen', 'Shengchao Hu']
2022-12-29
null
null
null
null
['text-based-games']
['playing-games']
[-2.51277722e-02 -2.47196872e-02 -3.76519322e-01 -1.03595786e-01 -4.89036828e-01 -9.05433893e-01 7.94848859e-01 -4.52680677e-01 -6.44059658e-01 6.32958770e-01 9.70405713e-02 -5.64904451e-01 -2.91678518e-01 -7.69093990e-01 -6.96043134e-01 -8.00277710e-01 -1.74560905e-01 6.41926825e-01 1.02436639e-01 -8.38291824e-01 2.32959300e-01 6.35006428e-01 -1.80528545e+00 1.19999878e-01 6.04296923e-01 7.25078046e-01 4.63226318e-01 6.98950410e-01 -1.69080958e-01 1.55096638e+00 -3.45689356e-01 -1.07340375e-03 2.26849034e-01 -2.71234691e-01 -8.86746585e-01 -2.71132678e-01 -1.73387960e-01 -3.75880629e-01 -8.22544634e-01 6.64652050e-01 4.16957736e-01 4.31335270e-01 3.86229336e-01 -1.68312085e+00 -4.32913035e-01 7.36418724e-01 -6.30682781e-02 -8.15896541e-02 2.52152652e-01 6.04781330e-01 9.30245161e-01 -4.82536703e-01 6.57505393e-01 1.40234065e+00 7.06323683e-01 8.96310687e-01 -8.21304142e-01 -3.80954891e-01 4.94234949e-01 5.85395575e-01 -8.20536375e-01 -4.28265512e-01 5.31112373e-01 -2.86595285e-01 1.39113235e+00 6.91697374e-02 8.21185470e-01 1.56238866e+00 4.75850791e-01 1.51682866e+00 1.07674634e+00 2.00845916e-02 2.79951632e-01 -2.16840282e-01 -7.92163312e-02 9.08600092e-01 -4.36152250e-01 6.72548234e-01 -3.78601402e-01 9.01309624e-02 6.15985036e-01 -3.44199330e-01 2.50789791e-01 -7.21454024e-01 -1.56923592e+00 9.59474683e-01 4.25015152e-01 2.03926444e-01 -1.41129375e-01 5.69084883e-01 7.20682621e-01 5.63244879e-01 1.52571052e-02 5.84428489e-01 -4.66911733e-01 -6.39927924e-01 -4.37367409e-01 8.98527145e-01 7.39356577e-01 1.21322787e+00 4.61202174e-01 5.20015717e-01 -3.67541701e-01 6.44805551e-01 2.21132159e-01 5.96887648e-01 5.72890580e-01 -1.37570918e+00 2.50288427e-01 3.74344558e-01 6.04550019e-02 -5.08164823e-01 -7.99412549e-01 -2.61539519e-01 -6.13520622e-01 3.93510014e-01 2.88713396e-01 2.86028609e-02 -7.37158477e-01 1.82203531e+00 9.69900936e-02 1.47357702e-01 3.86715740e-01 5.94991982e-01 5.38763821e-01 6.74784184e-01 3.85392383e-02 8.96044169e-03 9.98387039e-01 -1.29590690e+00 -5.44814825e-01 -2.56467372e-01 8.98058593e-01 -2.39631996e-01 1.38862574e+00 4.78942603e-01 -1.07962668e+00 -4.00824428e-01 -9.48239207e-01 -4.29929942e-02 -5.56364655e-01 1.93765968e-01 8.90440702e-01 3.52889955e-01 -1.29185474e+00 8.09324920e-01 -1.12670732e+00 -4.92443860e-01 3.17454100e-01 5.19736886e-01 -3.40556689e-02 3.68312635e-02 -1.19787133e+00 1.26744604e+00 2.50587881e-01 2.29538813e-01 -1.50382769e+00 -3.95353079e-01 -9.34420705e-01 -4.10497874e-01 5.41588545e-01 -6.65372670e-01 1.82356465e+00 -4.77779478e-01 -2.18143964e+00 5.31762958e-01 5.41656241e-02 -8.42833281e-01 5.62283099e-01 -1.58840999e-01 -5.09046093e-02 -1.99209273e-01 4.41924222e-02 6.81082010e-01 7.13625610e-01 -9.46840525e-01 -9.75493729e-01 -2.71310717e-01 4.03923988e-01 2.83563077e-01 4.72779386e-02 -9.74330530e-02 -3.29146475e-01 -3.83041590e-01 -3.73720288e-01 -1.24051118e+00 -6.54670238e-01 -3.24110985e-01 -1.00025861e-02 -5.80439270e-01 1.02872944e+00 -2.12722048e-01 9.20993268e-01 -1.70425141e+00 7.33313859e-01 -2.34235406e-01 2.72167861e-01 2.88431942e-01 -5.86117208e-01 6.92986846e-01 4.14920777e-01 -2.59531617e-01 -2.58976877e-01 -3.40561807e-01 4.96171653e-01 6.71215057e-01 -7.70346642e-01 4.88651931e-01 2.77988054e-02 1.47577870e+00 -1.37149072e+00 -1.85760781e-01 5.26954353e-01 4.38664593e-02 -4.31987882e-01 1.80646345e-01 -6.52466834e-01 6.76137090e-01 -7.23259330e-01 6.08813465e-01 1.41175583e-01 2.76069582e-01 -4.24534604e-02 4.25844975e-02 -5.05575120e-01 2.28661895e-01 -5.14818072e-01 1.94031870e+00 -5.85811377e-01 7.97275364e-01 -4.89830039e-02 -1.12978768e+00 8.54340851e-01 4.41767462e-02 8.56971383e-01 -1.01169729e+00 1.22843146e-01 6.07948713e-02 -5.60454652e-02 -7.47035980e-01 7.38243937e-01 7.01879486e-02 -4.92400497e-01 5.03856421e-01 -4.42874916e-02 -3.83260459e-01 2.91443199e-01 1.07578576e-01 1.34460497e+00 9.92888987e-01 9.05847624e-02 1.19611897e-01 4.72309828e-01 4.37367976e-01 3.72281641e-01 1.02499866e+00 -4.91151452e-01 -1.57962099e-01 4.40883428e-01 -5.69190443e-01 -1.17488718e+00 -1.13333857e+00 4.54041600e-01 1.41738188e+00 4.76109199e-02 -5.64542890e-01 -5.62094390e-01 -8.23215187e-01 -4.89156768e-02 9.58938301e-01 -6.36712909e-01 -4.96983886e-01 -9.30907249e-01 -6.55449688e-01 1.23374987e+00 5.82747459e-01 6.57218575e-01 -1.57115734e+00 -9.85819340e-01 3.99179935e-01 -3.84256810e-01 -1.08527935e+00 2.78124046e-02 1.87678874e-01 -7.64951706e-01 -9.18055058e-01 -4.21790808e-01 -7.00848043e-01 -6.31153062e-02 9.51232761e-02 1.05359697e+00 -2.48694032e-01 -2.07936138e-01 7.74241805e-01 -5.74975908e-01 -3.71421963e-01 -6.47139966e-01 2.23050982e-01 2.32790217e-01 -4.93134499e-01 1.09890923e-01 -4.83108908e-01 -1.34792611e-01 4.07937855e-01 -6.86215281e-01 -9.86921135e-03 5.66583276e-01 8.51904392e-01 1.61395252e-01 -1.54398158e-01 5.94611347e-01 -3.89913708e-01 8.47023606e-01 -4.00711954e-01 -7.59030998e-01 2.34654725e-01 -5.95995903e-01 4.59889770e-01 7.14856505e-01 -4.46443826e-01 -1.00708306e+00 -1.02470508e-02 -4.44704562e-01 -5.74047923e-01 1.20778205e-02 3.51193696e-01 1.40101865e-01 -1.30974010e-01 4.03345585e-01 7.17824996e-01 3.56067896e-01 -9.12594274e-02 8.14575970e-01 3.95909816e-01 5.11818290e-01 -9.78226960e-01 6.37094915e-01 5.21412015e-01 1.64708383e-02 -7.13252127e-01 -6.15889132e-01 -2.72699267e-01 -4.83536243e-01 -4.50576037e-01 6.23687148e-01 -3.90875757e-01 -1.34475684e+00 6.44905031e-01 -9.35025513e-01 -1.10780704e+00 -6.75727546e-01 4.08682376e-01 -1.63421381e+00 2.54615575e-01 -7.95828342e-01 -9.30205464e-01 -5.44040389e-02 -1.57549453e+00 1.01194108e+00 -1.22954413e-01 1.35180414e-01 -9.95092332e-01 4.12138760e-01 1.17643826e-01 6.31075561e-01 4.52804677e-02 9.72500026e-01 -3.26856375e-01 -6.38799489e-01 2.75918692e-01 1.96202025e-01 1.30469203e-01 -1.86025739e-01 -2.37428948e-01 -8.56460392e-01 -4.59445119e-01 -2.21374556e-02 -6.42685473e-01 7.55535126e-01 2.49789387e-01 1.10790181e+00 -1.62655711e-01 -4.52705324e-01 7.47967601e-01 1.07547021e+00 4.67646629e-01 7.31079400e-01 7.01787353e-01 6.87662601e-01 7.13717282e-01 9.70984817e-01 3.62531066e-01 7.19801486e-01 8.22788835e-01 8.04495871e-01 1.93390369e-01 8.53594914e-02 -4.73725766e-01 1.07654881e+00 8.56889248e-01 -1.85800165e-01 -3.48424584e-01 -7.70375073e-01 3.17799330e-01 -2.31801105e+00 -1.18484795e+00 2.43916705e-01 1.83937979e+00 2.84810364e-01 -1.54261857e-01 3.84596586e-01 -2.17756271e-01 9.18563828e-02 1.94279850e-01 -1.10653567e+00 -5.39094508e-01 -1.61733702e-01 3.66051421e-02 6.82384372e-01 3.69196624e-01 -9.57428277e-01 1.72497320e+00 6.97441673e+00 1.02446282e+00 -1.09932339e+00 -1.99083667e-02 1.10686414e-01 -5.31925596e-02 -1.30325615e-01 -4.96171936e-02 -8.01078320e-01 -4.18353565e-02 1.01447153e+00 -1.62979797e-01 1.12550402e+00 8.99984300e-01 4.17374551e-01 2.08732426e-01 -1.20279014e+00 9.86805856e-01 -1.33698612e-01 -1.39341915e+00 -2.48788446e-02 1.06258802e-01 2.12516218e-01 5.84359527e-01 3.91251564e-01 1.15433323e+00 9.85915363e-01 -1.20754087e+00 9.86068189e-01 4.41976368e-01 4.73009646e-01 -8.00177753e-01 3.44017565e-01 6.39864922e-01 -1.46518946e+00 -6.85009956e-01 -5.29600263e-01 -1.53147504e-01 2.10332364e-01 -3.54283780e-01 -7.90173173e-01 6.16487741e-01 7.54118085e-01 1.32369077e+00 -1.34881914e-01 6.55789971e-01 -2.32438713e-01 4.48112905e-01 -9.43887383e-02 -2.81403720e-01 9.35642064e-01 -4.65208083e-01 8.52827489e-01 9.91182327e-01 1.77481592e-01 -3.48273337e-01 2.73805618e-01 9.38387692e-01 3.41290504e-01 -1.78744838e-01 -1.06799853e+00 -2.63238668e-01 2.05925122e-01 1.17205966e+00 -5.38371742e-01 -1.30305439e-01 -2.32520491e-01 8.71572196e-01 6.62804902e-01 3.74381363e-01 -1.22173345e+00 -1.19668722e-01 9.68359888e-01 -2.98865855e-01 1.50423735e-01 -5.64314306e-01 2.40330458e-01 -9.75244701e-01 -2.79151022e-01 -1.24650776e+00 9.94525775e-02 -7.65700340e-01 -8.84217680e-01 6.55694544e-01 2.21106663e-01 -1.29302275e+00 -6.52821898e-01 -7.90671527e-01 -2.12632447e-01 7.57079646e-02 -1.62280750e+00 -1.33548832e+00 4.52379473e-02 7.48489499e-01 9.64811444e-01 -5.40182590e-01 7.00413525e-01 1.61782950e-02 -5.37254751e-01 4.16926265e-01 3.07103038e-01 -4.51279320e-02 3.53291631e-01 -1.20095527e+00 6.66082203e-01 3.81686628e-01 1.77881703e-01 4.59654331e-01 5.96406758e-01 -3.35804880e-01 -1.92681241e+00 -1.30306220e+00 3.48540217e-01 -6.72830224e-01 8.65587652e-01 -5.14258981e-01 -3.94611418e-01 1.11177719e+00 1.01071022e-01 -3.79900903e-01 -3.19681577e-02 -1.09494403e-01 -1.15052566e-01 -5.18705463e-04 -9.80594039e-01 1.11464787e+00 1.37630427e+00 -3.26045483e-01 -5.32366872e-01 2.88543075e-01 9.06320333e-01 -5.04962146e-01 -5.44626176e-01 3.65520298e-01 7.37511277e-01 -9.57856834e-01 1.11126733e+00 -8.63105059e-01 1.07067870e-03 -2.69678622e-01 -1.28300250e-01 -1.42036831e+00 -2.90041029e-01 -9.47219551e-01 -4.23653349e-02 7.71718740e-01 8.39024782e-02 -7.15500653e-01 8.06759298e-01 -2.10774913e-02 -5.93053222e-01 -8.93237352e-01 -8.69375587e-01 -1.09126735e+00 4.32192445e-01 -8.49263430e-01 7.10579693e-01 4.39482689e-01 2.31424391e-01 3.96823078e-01 -5.98282099e-01 -3.00084144e-01 4.28070813e-01 -1.64456256e-02 9.56280291e-01 -8.21935117e-01 -2.14804187e-01 -7.40283132e-01 -1.36114374e-01 -1.50570691e+00 8.06979239e-01 -1.12278605e+00 4.02618915e-01 -1.49556255e+00 -2.27946088e-01 -7.32942641e-01 -7.38204941e-02 5.42546332e-01 5.41431844e-01 -1.45326570e-01 3.85986000e-01 1.22554220e-01 -8.10462952e-01 1.17018211e+00 1.35255325e+00 -4.21931356e-01 -2.48536751e-01 2.54231006e-01 -2.57876456e-01 8.41793001e-01 1.05881608e+00 -2.74755448e-01 -9.21254814e-01 -4.41705167e-01 4.71005738e-01 2.04889655e-01 4.24791068e-01 -9.90591824e-01 2.97668546e-01 -3.95699829e-01 -3.60267907e-01 -6.43474042e-01 5.89312792e-01 -7.34507978e-01 -3.18965942e-01 6.91442847e-01 -6.29946232e-01 5.23689508e-01 4.04320359e-01 6.27925634e-01 1.18401721e-01 4.26420979e-02 6.17106080e-01 -4.22112763e-01 -1.18905747e+00 4.63976145e-01 -1.12181020e+00 3.14338901e-03 1.26908064e+00 -1.67464301e-01 -2.35127583e-01 -4.68364090e-01 -6.77988350e-01 5.99618554e-01 2.50319451e-01 7.97133148e-01 8.43969584e-01 -1.10865736e+00 -5.61232030e-01 -4.85903062e-02 1.79443493e-01 -3.85588706e-01 9.16055292e-02 9.10936713e-01 -3.18797141e-01 6.35836124e-01 -5.03810704e-01 -6.26054108e-01 -9.58635449e-01 9.43854392e-01 5.89457035e-01 -6.94716096e-01 -7.85495222e-01 5.11530578e-01 1.40750185e-01 -1.09349656e+00 3.38569224e-01 -5.93747616e-01 -4.44734305e-01 -4.08310384e-01 2.07180172e-01 5.37076592e-01 -2.10388884e-01 -4.66527343e-01 -3.14872324e-01 5.88159442e-01 7.30418637e-02 -3.99365872e-01 1.41618216e+00 -1.53026983e-01 -1.06944755e-01 6.02616966e-01 7.74347723e-01 -4.20964301e-01 -1.41901076e+00 -3.73949707e-02 1.29639655e-01 1.80295050e-01 -9.65062454e-02 -5.21664679e-01 -8.88983011e-01 9.99392629e-01 3.60177666e-01 -9.27753747e-02 7.87412524e-01 -1.59912538e-02 8.02105010e-01 9.09624994e-01 8.53620529e-01 -1.06341362e+00 2.18027338e-01 1.22805083e+00 8.42617750e-01 -8.52688134e-01 -4.51441407e-01 2.85820454e-01 -8.61447155e-01 1.15119624e+00 6.82956696e-01 -3.05129617e-01 1.83811083e-01 5.51189959e-01 -1.68285325e-01 -1.59082457e-01 -1.18682921e+00 -5.37165701e-01 -2.83978999e-01 1.01896822e+00 3.24534886e-02 -3.56834792e-02 1.20541163e-01 1.03371359e-01 -4.20098484e-01 1.87040448e-01 4.12049502e-01 1.01688266e+00 -4.90145504e-01 -1.35425854e+00 -1.54338600e-02 1.55002937e-01 1.65245160e-01 1.69699788e-01 -1.52695671e-01 9.61218238e-01 -1.37229577e-01 9.60819244e-01 -4.46670055e-02 -7.02077508e-01 4.43499148e-01 -2.73571908e-01 8.78979325e-01 -1.76673651e-01 -7.28201449e-01 -4.29036885e-01 1.39111400e-01 -1.16173565e+00 -2.54171222e-01 -6.57230735e-01 -1.36085665e+00 -4.68534738e-01 2.39747211e-01 1.54627442e-01 6.17714405e-01 1.14377904e+00 1.82658479e-01 6.07148290e-01 4.43131298e-01 -9.86896992e-01 -9.82179642e-01 -5.83695710e-01 -3.12188923e-01 -2.40583539e-01 5.07738233e-01 -8.78690004e-01 -1.73563056e-03 -2.04886049e-01]
[4.120167255401611, 1.6389027833938599]
dafe45da-f9cb-4686-8b26-f1ded5103ac7
self-supervised-image-to-point-distillation
2301.05709
null
https://arxiv.org/abs/2301.05709v2
https://arxiv.org/pdf/2301.05709v2.pdf
Self-Supervised Image-to-Point Distillation via Semantically Tolerant Contrastive Loss
An effective framework for learning 3D representations for perception tasks is distilling rich self-supervised image features via contrastive learning. However, image-to point representation learning for autonomous driving datasets faces two main challenges: 1) the abundance of self-similarity, which results in the contrastive losses pushing away semantically similar point and image regions and thus disturbing the local semantic structure of the learned representations, and 2) severe class imbalance as pretraining gets dominated by over-represented classes. We propose to alleviate the self-similarity problem through a novel semantically tolerant image-to-point contrastive loss that takes into consideration the semantic distance between positive and negative image regions to minimize contrasting semantically similar point and image regions. Additionally, we address class imbalance by designing a class-agnostic balanced loss that approximates the degree of class imbalance through an aggregate sample-to-samples semantic similarity measure. We demonstrate that our semantically-tolerant contrastive loss with class balancing improves state-of-the art 2D-to-3D representation learning in all evaluation settings on 3D semantic segmentation. Our method consistently outperforms state-of-the-art 2D-to-3D representation learning frameworks across a wide range of 2D self-supervised pretrained models.
['Steven L. Waslander', 'Liam Paull', 'Ali Harakeh', 'Tianshu Kuai', 'Jordan S. K. Hu', 'Anas Mahmoud']
2023-01-12
null
http://openaccess.thecvf.com//content/CVPR2023/html/Mahmoud_Self-Supervised_Image-to-Point_Distillation_via_Semantically_Tolerant_Contrastive_Loss_CVPR_2023_paper.html
http://openaccess.thecvf.com//content/CVPR2023/papers/Mahmoud_Self-Supervised_Image-to-Point_Distillation_via_Semantically_Tolerant_Contrastive_Loss_CVPR_2023_paper.pdf
cvpr-2023-1
['semantic-textual-similarity']
['natural-language-processing']
[ 3.22358370e-01 1.96868867e-01 -4.60319638e-01 -7.44793057e-01 -9.28284883e-01 -4.60870206e-01 6.21825695e-01 4.44605857e-01 -3.50199372e-01 1.79092005e-01 -6.59833103e-02 -4.76651974e-02 2.00914480e-02 -8.24820936e-01 -1.07648289e+00 -5.62151313e-01 9.60614905e-02 6.07443154e-01 4.76385355e-01 -4.07455266e-01 3.53861868e-01 7.76220858e-01 -2.08810973e+00 1.35149613e-01 9.34990585e-01 1.49715471e+00 1.74243852e-01 1.95189789e-01 -4.74345744e-01 6.25240505e-01 -6.27560079e-01 -4.06050608e-02 7.98883259e-01 -2.40666136e-01 -5.40711284e-01 1.59791157e-01 1.17205346e+00 -5.64371049e-02 -1.77995622e-01 1.26596677e+00 5.02979934e-01 3.12449843e-01 1.04076636e+00 -1.43487954e+00 -7.28739321e-01 -1.32615626e-01 -1.09697509e+00 3.07969660e-01 -1.26093505e-02 2.86689878e-01 9.79837775e-01 -7.90289104e-01 4.92274076e-01 1.64228225e+00 7.19234884e-01 4.66583312e-01 -1.23746896e+00 -7.28383005e-01 3.90922159e-01 -8.27966183e-02 -1.05111074e+00 -7.00048804e-02 1.19302154e+00 -5.53832054e-01 1.20829022e+00 -1.22986689e-01 5.87935328e-01 7.99819052e-01 4.93838973e-02 9.31517303e-01 1.14070606e+00 -1.85413450e-01 2.41915524e-01 -1.44074224e-02 2.70067036e-01 6.80618107e-01 2.03755662e-01 3.21502090e-01 -3.39529663e-01 1.40017450e-01 8.48543763e-01 1.77825511e-01 2.74589688e-01 -1.04287934e+00 -6.56795919e-01 8.61662686e-01 9.73245680e-01 -1.33778796e-01 -3.25533450e-02 3.63382310e-01 5.82801878e-01 1.83199838e-01 8.90147805e-01 4.02935386e-01 -4.90752041e-01 1.49134517e-01 -7.37737656e-01 5.66024005e-01 2.09017754e-01 9.59354818e-01 1.13983154e+00 2.64461245e-02 -1.43504605e-01 1.12825239e+00 1.56319991e-01 6.28170431e-01 4.19367075e-01 -1.07515085e+00 5.96171319e-01 8.44819427e-01 -3.26325685e-01 -9.40696955e-01 -2.56855756e-01 -6.85361087e-01 -6.25537038e-01 7.97275603e-01 3.40525419e-01 4.89043206e-01 -1.44100845e+00 1.84734392e+00 2.23493680e-01 3.88902389e-02 4.57514077e-02 1.09654570e+00 1.08968055e+00 4.09958303e-01 2.96541810e-01 3.52302432e-01 1.04279935e+00 -9.65572178e-01 -1.88863486e-01 -6.94952905e-01 4.47594404e-01 -3.75908524e-01 1.33348632e+00 -2.23592058e-01 -1.34636641e+00 -8.46571803e-01 -1.22225380e+00 -5.27012229e-01 -4.07939464e-01 -2.62325048e-01 4.34245676e-01 4.27892715e-01 -6.87571108e-01 4.50113088e-01 -6.22929692e-01 -1.32538587e-01 1.12285984e+00 8.96402299e-02 -3.16882133e-01 -2.24328965e-01 -8.63268256e-01 1.01770186e+00 2.40526915e-01 -5.50034225e-01 -9.92658556e-01 -1.26570570e+00 -1.17362535e+00 -3.26156095e-02 6.24064356e-03 -6.67344928e-01 1.01353431e+00 -1.05461943e+00 -9.52709913e-01 1.70761168e+00 -8.73966026e-04 -5.65753579e-01 6.06981158e-01 -1.65685490e-01 6.21740632e-02 3.09169203e-01 5.61124802e-01 1.23560274e+00 1.01137018e+00 -1.81424499e+00 -5.75802565e-01 -9.66742575e-01 -1.02795437e-01 5.76103628e-01 1.13211751e-01 -7.24241972e-01 -2.57830501e-01 -7.79297233e-01 6.57235861e-01 -6.44646525e-01 -2.85008043e-01 6.30125225e-01 -9.87218097e-02 -3.10885400e-01 8.42105329e-01 -8.20306689e-02 1.76908508e-01 -2.35016823e+00 -5.54334335e-02 4.57381308e-02 3.35517675e-01 5.54052554e-02 -3.36869806e-01 -2.84608394e-01 -9.62431878e-02 -1.04897790e-01 -5.59918046e-01 -5.55753052e-01 1.26927733e-01 4.23622340e-01 -5.08224785e-01 4.73188967e-01 7.00604558e-01 9.46645617e-01 -1.17176783e+00 -4.79217976e-01 6.17312193e-01 4.05816764e-01 -6.35604203e-01 3.35805416e-01 -2.75900304e-01 2.67537504e-01 -3.83206308e-01 7.76340187e-01 1.04858470e+00 1.73032023e-02 -7.14666247e-01 -1.94063589e-01 1.69076830e-01 2.52253443e-01 -5.78840911e-01 2.02083659e+00 -4.49624836e-01 4.94186223e-01 -1.97567239e-01 -1.48865640e+00 1.37641478e+00 -3.86045009e-01 5.16601145e-01 -1.12493098e+00 7.71819353e-02 2.66302556e-01 -5.57423353e-01 -3.58546227e-01 4.17557627e-01 -4.27853703e-01 -1.59527048e-01 1.67509948e-03 2.66781330e-01 -1.02708077e+00 -3.23158711e-01 3.78042459e-02 6.24639928e-01 2.59330958e-01 -1.97841972e-03 -2.17034027e-01 9.68186557e-02 2.11200088e-01 6.01880789e-01 7.81152308e-01 -6.85623705e-01 9.00669515e-01 4.23886478e-01 -2.79216200e-01 -1.04181361e+00 -1.62025630e+00 -3.68682355e-01 8.70110810e-01 7.64932096e-01 2.79318035e-01 -4.33394998e-01 -8.16567242e-01 6.55982256e-01 6.54668927e-01 -6.76081777e-01 -5.93472064e-01 -2.58447647e-01 -3.72396111e-01 5.23137569e-01 7.84504950e-01 7.06617653e-01 -7.01048195e-01 -4.71124262e-01 -1.58384919e-01 7.30245858e-02 -1.02292562e+00 -2.68164068e-01 6.55983150e-01 -1.14972985e+00 -9.35219228e-01 -8.00749898e-01 -1.11166954e+00 7.78179407e-01 7.17763722e-01 1.40588427e+00 -4.05841649e-01 -4.34523672e-01 4.55646873e-01 -1.39111802e-01 -7.48473883e-01 -2.11920992e-01 -2.09816709e-01 -1.09054185e-01 -4.76405978e-01 5.59289932e-01 -5.63414276e-01 -7.97036588e-01 3.05614918e-01 -7.59940982e-01 -2.84229755e-01 4.59737211e-01 7.27665365e-01 1.20401204e+00 -2.00004235e-01 6.23941958e-01 -6.15567744e-01 2.46821821e-01 -4.22375798e-01 -3.58460128e-01 -1.24034293e-01 -6.01531208e-01 1.01472624e-01 1.82088837e-01 -3.53569657e-01 -7.68561840e-01 5.47557138e-02 -2.10508972e-01 -1.05086839e+00 -2.47078896e-01 -1.44988894e-01 -8.08997154e-02 -2.53274262e-01 8.39222074e-01 7.91249350e-02 4.92466629e-01 -2.48201475e-01 7.02486157e-01 3.68386269e-01 7.46741414e-01 -7.28050470e-01 7.74092972e-01 7.68000245e-01 1.46758392e-01 -6.99684799e-01 -1.19495690e+00 -7.77735829e-01 -4.54698086e-01 -9.10556689e-02 9.87644494e-01 -1.25811625e+00 -3.09844375e-01 4.37609017e-01 -8.20856333e-01 -3.58872503e-01 -1.02948582e+00 2.72356510e-01 -9.19216275e-01 2.32596815e-01 -2.81062514e-01 -6.02709413e-01 -1.55282497e-01 -1.20141745e+00 1.55568445e+00 1.02839068e-01 -2.58815587e-02 -7.63285637e-01 -3.66450846e-02 6.02934599e-01 1.05823301e-01 4.32064593e-01 9.66526151e-01 -3.04940403e-01 -3.63484681e-01 -8.46089050e-02 -7.39944994e-01 7.85389185e-01 1.35974020e-01 -5.37125409e-01 -1.20389748e+00 -1.64569482e-01 -4.04106379e-02 -8.34552824e-01 1.35645914e+00 6.01415038e-01 1.50731623e+00 8.81508216e-02 -2.24005744e-01 9.04794514e-01 1.28062510e+00 -2.05943897e-01 4.91733372e-01 2.66120970e-01 9.14238036e-01 8.38308930e-01 6.51496053e-01 6.94754124e-02 3.90272737e-01 4.99321789e-01 8.42166841e-01 -4.61619347e-01 -4.26108003e-01 -6.45593464e-01 -1.06003508e-01 1.79877624e-01 3.79725724e-01 -6.69376701e-02 -6.23530805e-01 7.93807924e-01 -1.63529408e+00 -8.36145937e-01 2.29613230e-01 2.08702493e+00 7.13663936e-01 4.71945524e-01 1.79243311e-01 2.12439135e-01 5.34154654e-01 4.48025912e-01 -9.94048893e-01 -3.82284969e-01 -3.80964428e-01 2.91861057e-01 7.85611510e-01 2.08943889e-01 -1.19676471e+00 9.45200741e-01 5.46947384e+00 9.79820549e-01 -1.19376111e+00 1.98775530e-02 9.31431890e-01 -1.56771913e-01 -4.97002393e-01 -3.58111441e-01 -6.14749193e-01 3.44123006e-01 1.35248512e-01 8.67118239e-02 -1.41765639e-01 1.19604719e+00 1.41251944e-02 7.46412799e-02 -1.07332075e+00 1.42576587e+00 1.97186619e-01 -1.39062476e+00 4.37393546e-01 -1.64831489e-01 9.55598831e-01 4.53177005e-01 4.03878778e-01 1.93391293e-01 1.21255092e-01 -1.06023669e+00 1.12029421e+00 2.22979724e-01 8.34302306e-01 -7.67362535e-01 2.63984948e-01 6.65167272e-02 -1.05078447e+00 -1.43973514e-01 -5.64704716e-01 6.27474561e-02 -6.81083053e-02 8.38003099e-01 -4.43502307e-01 1.67285249e-01 1.03945518e+00 1.16470718e+00 -3.76313418e-01 9.15447593e-01 -3.52939367e-02 1.78107664e-01 -2.56516844e-01 2.98322201e-01 6.48355782e-01 -9.53823850e-02 6.30897403e-01 1.02403331e+00 9.63334739e-02 -1.41012684e-01 2.62658685e-01 1.26696706e+00 -2.28571042e-01 -1.80691361e-01 -8.19653690e-01 3.85141194e-01 4.04879898e-01 7.22877860e-01 -5.74430764e-01 -2.77229518e-01 -1.70823932e-01 8.52797270e-01 3.59392583e-01 2.80525506e-01 -4.28210795e-01 -1.84676334e-01 1.18015850e+00 4.70052093e-01 3.71885657e-01 -2.32157096e-01 -9.12270904e-01 -6.85848773e-01 9.71152186e-02 -3.43816698e-01 3.52739811e-01 -7.88098574e-01 -1.93921435e+00 3.32136899e-01 2.82810889e-02 -1.41789412e+00 9.61983055e-02 -5.67163169e-01 -5.35488784e-01 7.51499176e-01 -2.12433672e+00 -1.19321263e+00 -5.50088644e-01 5.41332483e-01 6.13270044e-01 -1.21943943e-01 3.29369485e-01 1.94776118e-01 9.84204840e-03 7.47396767e-01 -2.33320639e-01 -8.68832693e-02 7.68351018e-01 -1.49044502e+00 4.40228164e-01 3.13736469e-01 -2.50693768e-01 1.23193040e-01 4.40890193e-01 -3.62800270e-01 -9.45008755e-01 -1.34121644e+00 4.42321688e-01 -5.32974362e-01 2.77189881e-01 -3.61196876e-01 -9.95305300e-01 3.06480676e-01 -3.92469794e-01 5.61487675e-01 2.39054829e-01 -1.71768665e-01 -8.35600495e-01 -3.48337471e-01 -1.59964585e+00 3.71424168e-01 1.49748588e+00 -7.28763878e-01 -8.06353688e-01 2.96277076e-01 8.97124529e-01 -5.51908076e-01 -6.23645186e-01 7.03681231e-01 2.16689184e-01 -8.78303349e-01 1.46644557e+00 -4.47711229e-01 6.25253260e-01 -3.35952848e-01 -4.04031754e-01 -1.20171571e+00 -6.84965253e-02 4.90319766e-02 1.20992236e-01 8.60509932e-01 1.04763515e-01 -5.65702260e-01 1.01689565e+00 1.65577829e-01 -6.35774016e-01 -8.57388437e-01 -1.12640190e+00 -9.79653180e-01 5.91765761e-01 -5.28536618e-01 4.55299646e-01 9.35966194e-01 -5.53162932e-01 2.22840607e-01 3.25922310e-01 1.23831317e-01 1.04481435e+00 1.85789615e-01 7.67239630e-01 -1.23845005e+00 1.21316232e-01 -8.45740676e-01 -1.00710189e+00 -1.51856220e+00 3.78436804e-01 -1.15133154e+00 2.39755824e-01 -1.47544098e+00 1.15990654e-01 -9.42740262e-01 -3.43006402e-01 3.28241318e-01 -2.04789806e-02 5.33803284e-01 4.41040248e-02 1.92561865e-01 -4.54356402e-01 9.78462994e-01 1.59262681e+00 -7.35259771e-01 -2.21090809e-01 -1.03143059e-01 -7.01352060e-01 6.37151182e-01 5.62226653e-01 -4.15576220e-01 -8.48372400e-01 -4.70724463e-01 -1.70231491e-01 -4.20820713e-01 8.31132054e-01 -1.00937903e+00 -1.73151717e-01 -5.98465130e-02 5.49142897e-01 -8.87652636e-01 5.50599337e-01 -6.10560179e-01 -7.33837962e-01 2.43168980e-01 -5.36751330e-01 -1.93290159e-01 4.00411725e-01 7.22192407e-01 -4.07346427e-01 6.54167756e-02 1.16439342e+00 -2.84758419e-01 -1.00892949e+00 4.64958102e-01 1.88420907e-01 6.97090924e-01 8.92329574e-01 -7.63811171e-01 -3.67817789e-01 -1.09905966e-01 -3.25769544e-01 3.82498264e-01 6.59415960e-01 7.15123177e-01 8.14301968e-01 -1.29095626e+00 -5.39486349e-01 4.45132911e-01 7.02563882e-01 6.43317103e-01 3.55965137e-01 2.77327985e-01 -4.76623535e-01 2.14960463e-02 -4.96028215e-01 -1.30516708e+00 -8.88734758e-01 3.67177844e-01 6.20719433e-01 1.70114622e-01 -7.77076125e-01 1.14550519e+00 7.05940664e-01 -8.41030002e-01 4.87439364e-01 -6.43911660e-01 8.08268115e-02 -1.02914788e-01 1.11222483e-01 1.56886548e-01 1.58812955e-01 -7.08529592e-01 -5.01785517e-01 9.97591913e-01 -3.16098891e-02 2.18101203e-01 1.31980824e+00 -7.70087587e-03 2.83909589e-01 4.58964437e-01 1.68907118e+00 -6.96966112e-01 -1.87152386e+00 -1.69270650e-01 -4.41243023e-01 -7.04493880e-01 3.42908502e-01 -6.30908549e-01 -1.15348661e+00 1.03660893e+00 1.10468423e+00 -1.52560085e-01 9.31429744e-01 3.99533749e-01 9.04763699e-01 1.37755245e-01 2.29858890e-01 -1.23691607e+00 5.12012482e-01 5.31123877e-01 8.24145079e-01 -1.75641012e+00 4.09904495e-03 -4.48594421e-01 -7.21809566e-01 5.26234806e-01 7.66652167e-01 -6.40175283e-01 7.59776056e-01 -1.17469899e-01 1.51239246e-01 -4.10568684e-01 -2.10559949e-01 -4.16618228e-01 4.72665668e-01 1.07497036e+00 5.23389578e-02 8.47343430e-02 8.51103812e-02 2.94595301e-01 -1.96691349e-01 -3.49326432e-01 -5.16496040e-02 9.03707504e-01 -5.32250047e-01 -6.18855774e-01 -8.26188922e-02 5.22185326e-01 1.08847871e-01 1.85151055e-01 -3.15609574e-01 6.76242948e-01 3.38467389e-01 5.97057641e-01 7.63466358e-01 -1.44697756e-01 6.66089714e-01 -3.84684950e-01 7.93372273e-01 -5.96333563e-01 -2.92582899e-01 -3.39591771e-01 -3.96708935e-01 -6.35781229e-01 -3.69026273e-01 -4.62451518e-01 -1.64720750e+00 9.58902836e-02 4.79465351e-02 -2.35062003e-01 7.83104300e-01 7.31383979e-01 4.53135639e-01 5.01007438e-01 8.32713187e-01 -1.27427793e+00 -7.02339828e-01 -5.33388078e-01 -6.21826470e-01 9.63929296e-01 6.83150589e-01 -1.22751105e+00 -6.13704741e-01 -4.61195618e-01]
[8.038609504699707, -3.2873220443725586]
6abecf8a-0701-4774-9222-cad475d665ac
annotating-arguments-in-a-corpus-of-opinion
null
null
https://aclanthology.org/2022.lrec-1.201
https://aclanthology.org/2022.lrec-1.201.pdf
Annotating Arguments in a Corpus of Opinion Articles
Interest in argument mining has resulted in an increasing number of argument annotated corpora. However, most focus on English texts with explicit argumentative discourse markers, such as persuasive essays or legal documents. Conversely, we report on the first extensive and consolidated Portuguese argument annotation project focused on opinion articles. We briefly describe the annotation guidelines based on a multi-layered process and analyze the manual annotations produced, highlighting the main challenges of this textual genre. We then conduct a comprehensive inter-annotator agreement analysis, including argumentative discourse units, their classes and relations, and resulting graphs. This analysis reveals that each of these aspects tackles very different kinds of challenges. We observe differences in annotator profiles, motivating our aim of producing a non-aggregated corpus containing the insights of every annotator. We note that the interpretation and identification of token-level arguments is challenging; nevertheless, tasks that focus on higher-level components of the argument structure can obtain considerable agreement. We lay down perspectives on corpus usage, exploiting its multi-faceted nature.
['Miguel Won', 'Bruno Martins', 'Paula Carvalho', 'Rui Sousa-Silva', 'Henrique Lopes Cardoso', 'Luís Trigo', 'Gil Rocha']
null
null
null
null
lrec-2022-6
['argument-mining']
['natural-language-processing']
[ 2.88053632e-01 1.05648613e+00 -5.47464132e-01 -1.73154548e-01 -9.33058321e-01 -1.13626444e+00 1.01519430e+00 9.33188140e-01 -4.70727593e-01 1.05933213e+00 9.95396018e-01 -8.49779904e-01 -4.80549634e-01 -4.03589487e-01 -3.19532067e-01 -3.22940379e-01 3.04762930e-01 6.60530031e-01 2.05980256e-01 -4.82660204e-01 6.96437776e-01 -8.00398663e-02 -1.46828115e+00 8.32069635e-01 1.11151862e+00 4.75677639e-01 -1.92279592e-01 5.81334710e-01 -5.42562485e-01 1.32841527e+00 -1.02622509e+00 -1.08220601e+00 -5.22117853e-01 -5.05368412e-01 -1.62754357e+00 -9.76276323e-02 1.91831738e-01 3.74447554e-01 4.86058146e-01 8.08321118e-01 3.52653891e-01 -4.16018546e-01 6.22440398e-01 -9.18392777e-01 -4.78664100e-01 1.36162865e+00 -2.14856714e-01 3.84912372e-01 6.88825548e-01 -4.27581847e-01 1.51779485e+00 -4.81170803e-01 1.21481180e+00 1.22757745e+00 6.25443757e-01 2.01748729e-01 -9.52820778e-01 6.49760962e-02 1.78480864e-01 1.63419545e-01 -1.84409618e-01 -2.10742548e-01 9.43980813e-01 -8.30333650e-01 8.72340858e-01 4.18450385e-01 6.87663674e-01 1.29003382e+00 -4.01585042e-01 7.43980467e-01 1.51237249e+00 -8.64149034e-01 3.99062000e-02 1.68691322e-01 6.51882052e-01 1.99022606e-01 5.09905517e-01 -7.95150459e-01 -3.32929194e-01 -5.71243703e-01 7.97689613e-03 -7.81503916e-01 -7.09652230e-02 -1.27391875e-01 -1.20882773e+00 1.05434489e+00 -1.71681829e-02 1.04814744e+00 -1.50852546e-01 -3.23416740e-01 1.20439172e+00 3.35902095e-01 6.52646363e-01 6.49944663e-01 -6.04541421e-01 -6.04611933e-01 -5.79226315e-01 2.89458543e-01 1.28316665e+00 3.91113281e-01 2.10632145e-01 -4.87296522e-01 -2.22747564e-01 9.83258784e-01 3.08868766e-01 1.26481831e-01 1.01647936e-01 -8.66324306e-01 8.80195379e-01 1.09664404e+00 2.32867628e-01 -1.03411794e+00 -3.26345682e-01 -2.63882548e-01 -8.30642134e-02 9.34709087e-02 8.34540725e-01 -3.40013683e-01 -1.18902415e-01 1.39382505e+00 4.73873228e-01 -1.08746088e+00 3.02839875e-01 6.40570998e-01 1.08527219e+00 1.01939827e-01 4.15068418e-01 -3.95151943e-01 1.96744025e+00 -8.36664379e-01 -1.12138736e+00 1.33392084e-02 1.00018692e+00 -1.11036801e+00 1.10771406e+00 6.96230158e-02 -1.37391102e+00 -1.55091910e-02 -8.73405337e-01 -3.24196190e-01 -4.36470866e-01 1.83431074e-01 5.44976413e-01 6.50109172e-01 -1.99977949e-01 2.98768908e-01 -3.96404445e-01 -1.32114321e-01 5.78139007e-01 -1.86725557e-01 -1.55115992e-01 7.17060208e-01 -1.23864055e+00 1.32047176e+00 4.97650862e-01 -7.98275024e-02 2.65039504e-01 -3.98530364e-01 -7.00742424e-01 -2.26514921e-01 8.90266955e-01 -2.25681230e-01 1.26717353e+00 -1.12603688e+00 -1.14573944e+00 1.62345028e+00 -4.29820316e-03 -4.03990835e-01 8.14985335e-01 -3.64080578e-01 -4.07260805e-01 4.63164262e-02 5.42964935e-01 -1.01989590e-01 2.44763613e-01 -1.17027068e+00 -7.36927152e-01 -2.27456376e-01 3.24351698e-01 2.16522306e-01 -1.51037484e-01 7.71933675e-01 4.53859270e-01 -6.08129740e-01 -2.00212464e-01 -6.98228002e-01 1.79492459e-01 -5.51604569e-01 -4.62560982e-01 -1.00918913e+00 8.12616229e-01 -6.60243988e-01 1.61328995e+00 -1.91380775e+00 1.72347024e-01 -6.41748086e-02 4.79545116e-01 1.74103379e-01 6.57520652e-01 8.92028153e-01 -1.29577562e-01 5.64809144e-01 -3.64253134e-01 2.75598206e-02 4.05763626e-01 3.94506633e-01 -3.57268363e-01 4.20157194e-01 2.60478929e-02 9.97644067e-01 -1.10579753e+00 -8.45302463e-01 -1.07078537e-01 2.51673639e-01 -1.30770117e-01 -2.91557670e-01 -3.07011813e-01 3.61065358e-01 -6.74287319e-01 6.43562734e-01 1.89293385e-01 -4.35568243e-01 8.31245244e-01 -3.16800922e-01 -7.12490678e-01 1.13969111e+00 -6.84630156e-01 1.32094347e+00 -1.98378056e-01 9.86027896e-01 3.38859349e-01 -1.19430268e+00 7.77965486e-01 5.10925531e-01 1.49139374e-01 -4.64202881e-01 4.38959271e-01 9.62325692e-01 5.29546440e-01 -5.12155771e-01 5.56032896e-01 2.63206512e-01 -3.88520569e-01 8.10599744e-01 -2.24536255e-01 4.51000519e-02 8.52182984e-01 3.34234953e-01 7.35203743e-01 2.25032240e-01 8.11267316e-01 -6.81469798e-01 8.11325014e-01 5.05690455e-01 1.60208538e-01 4.68743354e-01 -5.13552874e-02 1.45184875e-01 1.25436282e+00 -7.76774824e-01 -1.22246075e+00 -3.88798535e-01 -6.56177521e-01 8.82804394e-01 -3.25659424e-01 -6.45561278e-01 -8.91706944e-01 -1.19972479e+00 -2.68869489e-01 5.79248726e-01 -9.70826089e-01 8.94895256e-01 -1.08383751e+00 -7.75809228e-01 5.24452806e-01 1.34164378e-01 3.69586706e-01 -1.31015396e+00 -1.39595497e+00 3.71787250e-01 -5.57707667e-01 -9.76253986e-01 5.26759803e-01 3.01158935e-01 -3.72965246e-01 -1.85030818e+00 -2.89030552e-01 -7.10568666e-01 3.71737480e-01 -4.62077647e-01 1.46469092e+00 5.09184182e-01 9.81199071e-02 8.72736052e-02 -8.00706029e-01 -7.70914614e-01 -9.01266515e-01 3.42115074e-01 -6.64793372e-01 -5.57510018e-01 3.93961132e-01 -1.72208831e-01 -1.36590138e-01 9.33359489e-02 -6.18597746e-01 -9.35512707e-02 1.75238907e-01 9.12985682e-01 1.53217882e-01 -6.61805630e-01 5.95617652e-01 -1.52096105e+00 1.30923510e+00 -3.85254055e-01 -1.93823785e-01 4.79618490e-01 -5.62577903e-01 3.37652713e-02 1.58328086e-01 -1.81297854e-01 -1.08898652e+00 -8.98181558e-01 -3.56734753e-01 9.48220730e-01 -8.59042630e-02 6.95919335e-01 2.58799672e-01 3.94711792e-01 8.82630706e-01 -7.69216895e-01 1.70670286e-01 -3.08803737e-01 3.91244560e-01 7.43475616e-01 3.30753386e-01 -1.07165313e+00 4.27258074e-01 3.71524125e-01 -1.73107237e-01 -6.56942427e-01 -1.47793043e+00 -2.13015422e-01 -7.24542797e-01 -3.58766407e-01 8.44571829e-01 -3.89195353e-01 -8.46581101e-01 -1.68541938e-01 -1.48460424e+00 -3.26503247e-01 -6.70635223e-01 2.96793997e-01 -4.23751146e-01 4.81247723e-01 -6.22315764e-01 -9.12170827e-01 -3.76797825e-01 -1.00678778e+00 7.30426431e-01 -1.15234464e-01 -1.21365607e+00 -1.38478982e+00 4.39426124e-01 8.24473500e-01 1.21557884e-01 8.40601385e-01 1.10033858e+00 -1.15818679e+00 4.52376813e-01 7.95029178e-02 -2.55100459e-01 -9.41187665e-02 7.80414268e-02 1.41330630e-01 -8.82161915e-01 2.87584066e-01 5.58630899e-02 -5.81524253e-01 4.33369249e-01 1.21020377e-01 4.98658091e-01 -5.17655194e-01 -3.34483147e-01 -5.06637692e-01 9.23820138e-01 -1.22049160e-01 4.17744607e-01 1.16714001e+00 3.55401009e-01 1.32332337e+00 7.88165033e-01 7.48169124e-02 3.20338279e-01 5.57537556e-01 4.58355546e-01 -3.52847651e-02 -1.24988735e-01 6.18694797e-02 -9.50332358e-02 6.94170952e-01 -6.75286829e-01 -3.47604275e-01 -1.07272995e+00 6.85553014e-01 -2.17561936e+00 -1.12352657e+00 -1.05766845e+00 1.55387199e+00 7.99006999e-01 3.86863053e-01 3.11381131e-01 7.22082496e-01 7.20956028e-01 3.53773713e-01 1.96088195e-01 -8.46630216e-01 -5.91737628e-01 2.40620881e-01 -7.68474862e-02 6.31422579e-01 -1.00020874e+00 6.78433299e-01 6.67893219e+00 6.96950078e-01 -4.12964880e-01 2.22776845e-01 5.27103603e-01 3.12704027e-01 -5.60172439e-01 2.87167311e-01 -4.08204943e-01 4.08090323e-01 7.08375931e-01 -7.12259561e-02 -3.58953595e-01 7.23815382e-01 -5.01227155e-02 -1.76514551e-01 -7.34127641e-01 2.73310065e-01 5.72601855e-02 -1.69206071e+00 -2.72975147e-01 2.81948864e-01 6.55062318e-01 -1.94212884e-01 -4.54389989e-01 3.43635045e-02 4.00574356e-01 -7.94273436e-01 1.13295221e+00 -1.90061271e-01 4.21975374e-01 -4.04773951e-01 1.07937431e+00 -5.64909773e-03 -6.41220510e-01 -9.49985981e-02 1.59750745e-01 -6.04987323e-01 5.94728470e-01 6.29558742e-01 -4.22029555e-01 7.13489711e-01 5.62816620e-01 4.66518939e-01 -3.42776656e-01 3.42705905e-01 -7.49028385e-01 7.38994598e-01 -1.18032992e-01 -5.04391313e-01 4.38142687e-01 -3.12862575e-01 7.87098944e-01 1.40273416e+00 -9.31708813e-02 1.15054630e-01 1.21983612e-04 6.00858212e-01 -5.83312847e-02 6.12164378e-01 -3.11547339e-01 -1.27820656e-01 4.14965898e-01 1.47742212e+00 -1.12712216e+00 -4.53339934e-01 -5.13449192e-01 2.57959664e-01 6.81446791e-01 -1.66565925e-01 -7.33676136e-01 2.61004008e-02 2.96247154e-01 1.33763731e-01 2.94482671e-02 1.23834804e-01 -5.33391774e-01 -7.83984542e-01 2.14457437e-01 -1.05723810e+00 7.83683836e-01 -3.27050447e-01 -1.19631064e+00 7.14685917e-01 2.29452774e-01 -7.89018989e-01 -3.88653874e-01 -7.43569314e-01 -5.70269108e-01 5.52728653e-01 -1.34489036e+00 -1.14861059e+00 -2.01399084e-02 1.75463483e-02 3.92991602e-01 2.46373147e-01 9.66084480e-01 1.76681623e-01 -3.00907165e-01 2.63213217e-02 -4.24097747e-01 3.29592705e-01 5.70793927e-01 -1.31081164e+00 1.29860952e-01 3.68279606e-01 1.43547520e-01 5.02448261e-01 1.03243542e+00 -5.97093403e-01 -6.28825724e-01 -5.23704290e-02 1.51419449e+00 -9.06279802e-01 1.33619308e+00 -4.36388031e-02 -8.63121569e-01 4.88257974e-01 9.51492250e-01 -4.84984845e-01 9.48539853e-01 6.37155652e-01 -4.20661271e-01 7.97357738e-01 -9.72145796e-01 6.57242060e-01 1.11152470e+00 -4.66488987e-01 -1.37174475e+00 4.53954518e-01 3.29171300e-01 -6.56543076e-01 -9.85626101e-01 3.11590761e-01 4.87153769e-01 -1.19511592e+00 5.80710173e-01 -7.81094193e-01 7.66865313e-01 -9.53864902e-02 2.79703856e-01 -7.97698438e-01 1.58821508e-01 -5.80555379e-01 1.17409863e-01 1.42636704e+00 8.80647182e-01 -7.36856878e-01 5.85603535e-01 5.01047432e-01 -4.64126408e-01 -7.20765531e-01 -7.99884975e-01 -2.01684892e-01 2.79786080e-01 -3.39064747e-01 2.34148294e-01 1.35157335e+00 8.60697031e-01 7.45530069e-01 1.20496012e-01 -7.27183938e-01 2.84143835e-01 4.42282706e-01 7.68315077e-01 -1.81347859e+00 2.23585516e-02 -7.43377268e-01 9.59184095e-02 -4.58916247e-01 2.65972883e-01 -8.26515138e-01 -4.76433277e-01 -1.85646784e+00 1.18041351e-01 -3.18264723e-01 4.77984101e-01 2.24774897e-01 -1.39101729e-01 1.58383891e-01 -1.11922115e-01 4.23375994e-01 -6.13829494e-01 -6.38254434e-02 1.15012681e+00 8.07515159e-02 -7.87367001e-02 -4.13907856e-01 -9.35692906e-01 1.20847976e+00 8.24506819e-01 -4.57153678e-01 1.71924680e-02 -3.18171889e-01 1.02265275e+00 -5.06272078e-01 1.73582718e-01 -3.85777414e-01 -7.99658522e-03 -1.16951533e-01 -2.51318634e-01 -5.90135098e-01 -9.47608873e-02 -4.61844385e-01 1.74886547e-02 5.47078073e-01 -4.75671440e-01 1.74553171e-01 4.84210663e-02 1.35981292e-01 -5.47255576e-01 -7.62805581e-01 2.66445398e-01 -2.12211609e-01 -1.18478790e-01 -6.47717357e-01 -5.54191709e-01 6.80047154e-01 9.29648936e-01 -4.13808435e-01 -8.65721226e-01 -1.18717728e-02 -8.02217185e-01 6.68589920e-02 4.12737936e-01 1.56118110e-01 -2.54294664e-01 -9.74552810e-01 -1.12675035e+00 -7.41547942e-01 9.10597369e-02 -1.01469614e-01 -1.33133605e-01 1.10948467e+00 -5.85758686e-01 3.88206750e-01 3.50278653e-02 -2.61954457e-01 -1.62534881e+00 3.22037905e-01 -1.90656409e-01 -9.08250213e-01 -6.80899203e-01 2.34187081e-01 -4.02698129e-01 -2.01459631e-01 -3.27100843e-01 -1.40980706e-01 -1.03365386e+00 8.70844781e-01 2.10291058e-01 5.32324553e-01 -7.51582459e-02 -8.86948228e-01 -2.75057524e-01 4.63348389e-01 1.25245884e-01 -2.44329467e-01 1.35496533e+00 -2.19058424e-01 -6.84711337e-01 6.28782749e-01 6.36875331e-01 8.71686876e-01 -5.41885793e-01 1.68551028e-01 6.60323441e-01 -1.13454160e-04 -5.85050344e-01 -7.97007442e-01 -2.11545631e-01 4.17482764e-01 -4.06864524e-01 1.23287189e+00 2.83110619e-01 4.60713446e-01 1.88586622e-01 1.57341301e-01 -3.07572689e-02 -1.52429271e+00 -1.19956926e-01 7.55894005e-01 1.03562462e+00 -9.97198880e-01 3.53006244e-01 -9.47034478e-01 -6.18544161e-01 1.41369748e+00 1.44617394e-01 6.00852892e-02 2.37292528e-01 3.96233201e-01 2.36270040e-01 -1.00611186e+00 -4.81313676e-01 -2.21791714e-01 2.40580067e-01 3.57243836e-01 1.28143704e+00 -4.72949892e-02 -1.62816727e+00 5.07295430e-01 -6.07883096e-01 -6.00800633e-01 5.01142561e-01 9.51956272e-01 -2.96768725e-01 -1.56910872e+00 -5.08196771e-01 2.94187456e-01 -1.12254739e+00 -7.14958310e-02 -1.09602475e+00 1.28465104e+00 -1.32264748e-01 1.13420784e+00 1.47997260e-01 4.24095988e-01 3.08331132e-01 1.10517308e-01 5.02344608e-01 -4.13702160e-01 -1.17632413e+00 -2.98111178e-02 1.44421411e+00 -2.69475095e-02 -1.44678640e+00 -9.07660246e-01 -1.19640529e+00 -1.90222293e-01 -5.48224926e-01 9.95667934e-01 6.60264015e-01 1.34541368e+00 -5.54180518e-02 6.70652032e-01 -1.66966408e-01 -3.51814926e-01 -1.15561873e-01 -1.16485977e+00 7.21026724e-03 5.70908427e-01 -4.65913713e-02 -7.72000849e-01 -5.62929988e-01 -8.04506317e-02]
[9.515731811523438, 9.679492950439453]
5316eb73-dded-4b14-a2d8-5e0941d3b4a4
augmented-sbert-data-augmentation-method-for
2010.08240
null
https://arxiv.org/abs/2010.08240v2
https://arxiv.org/pdf/2010.08240v2.pdf
Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks
There are two approaches for pairwise sentence scoring: Cross-encoders, which perform full-attention over the input pair, and Bi-encoders, which map each input independently to a dense vector space. While cross-encoders often achieve higher performance, they are too slow for many practical use cases. Bi-encoders, on the other hand, require substantial training data and fine-tuning over the target task to achieve competitive performance. We present a simple yet efficient data augmentation strategy called Augmented SBERT, where we use the cross-encoder to label a larger set of input pairs to augment the training data for the bi-encoder. We show that, in this process, selecting the sentence pairs is non-trivial and crucial for the success of the method. We evaluate our approach on multiple tasks (in-domain) as well as on a domain adaptation task. Augmented SBERT achieves an improvement of up to 6 points for in-domain and of up to 37 points for domain adaptation tasks compared to the original bi-encoder performance.
['Iryna Gurevych', 'Johannes Daxenberger', 'Nils Reimers', 'Nandan Thakur']
2020-10-16
null
https://aclanthology.org/2021.naacl-main.28
https://aclanthology.org/2021.naacl-main.28.pdf
naacl-2021-4
['sentence-pair-modeling']
['natural-language-processing']
[ 3.23412716e-01 -1.61477253e-02 1.97450500e-02 -7.94182479e-01 -1.51466262e+00 -6.27076507e-01 5.72274625e-01 3.15290600e-01 -5.62457502e-01 8.74752641e-01 4.14568245e-01 -2.05646664e-01 3.50582242e-01 -4.74974990e-01 -8.17161322e-01 -3.93180341e-01 1.76277563e-01 7.71440506e-01 2.79057711e-01 -4.16608602e-01 1.24434151e-01 -1.47565290e-01 -1.22788203e+00 5.07033169e-01 8.07918429e-01 8.61929119e-01 2.02630937e-01 8.48010421e-01 -1.56134948e-01 5.08841872e-01 -6.80007219e-01 -8.80576730e-01 2.44349048e-01 -4.52249080e-01 -1.02288568e+00 -1.81268439e-01 5.03516257e-01 -3.89104635e-01 -8.49247873e-02 8.64486694e-01 5.84262550e-01 1.79097146e-01 6.81535840e-01 -1.00193310e+00 -7.67797709e-01 5.71147203e-01 -4.82238621e-01 1.19610593e-01 4.23576653e-01 -1.36247501e-01 1.43196285e+00 -1.11914980e+00 4.64703590e-01 9.11061704e-01 8.01459908e-01 6.32035196e-01 -1.35724461e+00 -5.93254685e-01 9.53901485e-02 1.50185212e-01 -1.04216564e+00 -5.71065724e-01 6.94164455e-01 -3.91672850e-01 1.13487113e+00 1.18026393e-03 2.15482235e-01 1.18044090e+00 -1.80746794e-01 8.89839292e-01 9.67503309e-01 -5.08872688e-01 1.29586861e-01 2.42562026e-01 3.45339745e-01 3.26408416e-01 5.91634540e-04 -3.29039432e-02 -5.98846912e-01 -2.68803865e-01 6.75146043e-01 -2.25818709e-01 -5.41893952e-02 -3.81663561e-01 -1.18350494e+00 1.00246215e+00 5.19472122e-01 2.67854959e-01 -2.60230064e-01 -5.27154729e-02 7.48421133e-01 5.91224253e-01 5.84446192e-01 7.35540748e-01 -7.44812548e-01 -3.80299658e-01 -8.42774749e-01 4.74686176e-01 6.12954438e-01 8.61492455e-01 5.81651330e-01 -3.89850736e-01 -3.60923588e-01 1.23681557e+00 -1.75431818e-01 2.19204172e-01 5.69070220e-01 -7.55321920e-01 1.00230443e+00 4.80546236e-01 2.52449006e-01 -3.65483046e-01 -1.75179943e-01 -3.73177886e-01 -8.01415265e-01 1.02652431e-01 4.93452996e-01 -2.39837825e-01 -7.90623844e-01 2.03185272e+00 3.77610762e-04 -4.66317683e-02 1.08165465e-01 8.88753712e-01 6.20006621e-01 6.15079105e-01 3.26611940e-03 6.52389228e-02 1.27796984e+00 -1.22701585e+00 -4.39108640e-01 -5.07491469e-01 9.93829370e-01 -6.99163675e-01 1.39761496e+00 1.99350521e-01 -1.44007254e+00 -6.28189802e-01 -1.13781750e+00 -3.18884701e-01 -2.03496277e-01 2.98665881e-01 4.09965634e-01 2.32925668e-01 -9.69471216e-01 5.91022372e-01 -6.16167188e-01 -2.57956088e-01 2.43151307e-01 5.77340245e-01 -7.29984999e-01 -2.12706938e-01 -1.37607861e+00 1.15080440e+00 1.24987103e-01 -5.79054236e-01 -4.02868062e-01 -7.32920349e-01 -9.70518470e-01 1.60552233e-01 -1.04002744e-01 -6.95208311e-01 1.63595927e+00 -1.02096987e+00 -1.29544544e+00 9.16327000e-01 -3.17747682e-01 -5.16803265e-01 2.63784647e-01 -4.11683589e-01 -1.26901641e-01 -7.72186518e-02 2.54290640e-01 6.48925662e-01 4.87612545e-01 -9.11883771e-01 -6.01695895e-01 -2.03674570e-01 2.36365542e-01 5.99253356e-01 -5.87295830e-01 1.92392439e-01 -5.37442327e-01 -6.90352798e-01 -2.94950753e-01 -8.02080989e-01 -3.36713821e-01 -2.88098663e-01 -1.61351383e-01 -3.02155674e-01 5.23804426e-01 -7.45732605e-01 1.09996974e+00 -2.17830873e+00 2.74728090e-01 -1.90519631e-01 3.69309299e-02 4.70881790e-01 -5.21875858e-01 4.10933167e-01 -1.88471735e-01 -7.03138933e-02 -4.75668997e-01 -9.05855894e-01 -5.74173070e-02 1.94148123e-01 -6.76416382e-02 1.19927667e-01 6.55965269e-01 8.12050104e-01 -9.68539894e-01 -3.36205214e-01 -2.03202502e-03 3.16211671e-01 -8.42525363e-01 5.39996624e-01 1.58006009e-02 2.91727930e-01 -1.21389374e-01 6.10944675e-03 4.97966945e-01 -3.56001526e-01 8.75872225e-02 6.24547675e-02 3.80381107e-01 9.96529818e-01 -9.65405405e-01 1.77083015e+00 -6.09987378e-01 5.81620038e-01 4.73937802e-02 -9.84558403e-01 9.74385560e-01 4.05709267e-01 3.39018822e-01 -7.42756307e-01 -6.80743530e-02 3.61482322e-01 -4.75033484e-02 -1.46270782e-01 6.85378730e-01 -4.84803051e-01 -3.35535675e-01 6.80044532e-01 3.25651556e-01 5.30987419e-02 3.44479740e-01 2.73189813e-01 1.30095983e+00 7.38810524e-02 4.41909313e-01 3.07621658e-02 5.22223711e-01 -6.39509112e-02 5.42480171e-01 5.23269951e-01 -5.48479594e-02 9.15398836e-01 4.99139309e-01 -3.81339818e-01 -1.45478201e+00 -9.48689938e-01 -7.62985572e-02 1.37913954e+00 -2.27146134e-01 -3.93915236e-01 -7.42807746e-01 -1.09092355e+00 5.06956652e-02 6.25536144e-01 -6.28057599e-01 -1.91407591e-01 -6.22855186e-01 -5.69253325e-01 4.28601295e-01 1.05170882e+00 7.96622336e-02 -1.02534389e+00 -1.03455253e-01 3.12824368e-01 -2.90835977e-01 -1.20507455e+00 -6.94633901e-01 5.55425644e-01 -7.87755907e-01 -9.05414701e-01 -8.35884869e-01 -9.05033886e-01 7.49464631e-01 7.56381825e-02 1.50461483e+00 -1.04621863e-02 1.26521751e-01 -2.40854234e-01 -4.60467756e-01 -1.37622312e-01 -4.28365588e-01 3.95327896e-01 6.06761314e-02 -2.07490623e-01 6.33102119e-01 -5.12143552e-01 -3.10957253e-01 2.79381305e-01 -4.97263193e-01 1.85531694e-02 7.85711229e-01 1.32991314e+00 3.24667603e-01 -5.44741690e-01 8.50748181e-01 -1.10390759e+00 8.20557892e-01 -3.88282299e-01 -2.92533517e-01 1.02930203e-01 -3.72202843e-01 2.23904222e-01 7.54996061e-01 -3.47587407e-01 -7.09218025e-01 1.32099256e-01 -5.43574095e-01 -2.88864940e-01 -4.89331484e-02 4.45274234e-01 -9.42894146e-02 1.47659078e-01 8.31291437e-01 6.27323091e-02 1.07175082e-01 -6.77330673e-01 3.10171008e-01 8.59366715e-01 6.39551044e-01 -4.75091845e-01 6.85878336e-01 -1.51197001e-01 -3.48669291e-01 -3.74765515e-01 -1.00598001e+00 -6.59425914e-01 -9.37574029e-01 3.57333809e-01 7.07804382e-01 -1.05643213e+00 -1.39901310e-01 9.74973589e-02 -1.29297757e+00 -4.25499767e-01 -2.60281622e-01 3.61821771e-01 -5.26535034e-01 1.66532427e-01 -5.36298275e-01 -4.51405555e-01 -3.80772799e-01 -1.19023252e+00 1.25912714e+00 -2.53760636e-01 -4.05142576e-01 -1.10841489e+00 3.92163813e-01 5.42902946e-01 3.82909507e-01 -2.06399754e-01 8.74668181e-01 -1.13306189e+00 -1.05443776e-01 -5.17298460e-01 -3.48130882e-01 7.20922709e-01 7.09283575e-02 -3.89737159e-01 -8.46408248e-01 -3.04675460e-01 -3.75588566e-01 -7.29858041e-01 7.65159369e-01 8.60904902e-02 1.06760859e+00 -9.33372602e-02 -1.66785300e-01 3.01582038e-01 1.16212475e+00 -9.55330282e-02 5.43213964e-01 2.04263374e-01 5.63127637e-01 3.79489273e-01 6.60921872e-01 2.45704263e-01 5.00170171e-01 1.17412376e+00 4.10441123e-02 -2.82120377e-01 -1.14186421e-01 -2.21164390e-01 4.11142647e-01 9.88759041e-01 6.50651753e-02 -3.94030884e-02 -7.77446210e-01 7.54939795e-01 -1.79588115e+00 -8.67374599e-01 -9.38625187e-02 2.43587971e+00 1.24193001e+00 2.39379808e-01 3.78454357e-01 3.16652536e-01 5.66363752e-01 -7.60375783e-02 -3.30479473e-01 -6.59107327e-01 1.33869378e-02 4.34179991e-01 2.51245767e-01 7.18274653e-01 -1.19596672e+00 8.79169405e-01 7.20235872e+00 5.72806358e-01 -8.88640404e-01 3.80194992e-01 5.43079972e-01 -3.21150720e-01 -2.65049487e-01 -1.44066840e-01 -7.91043103e-01 5.25132775e-01 1.06566298e+00 -1.01015314e-01 2.29865775e-01 9.26262558e-01 -2.83604562e-01 2.41612151e-01 -1.31157899e+00 8.66557658e-01 9.46049169e-02 -1.18320048e+00 -2.23688796e-01 -7.59667009e-02 7.98370600e-01 2.70021886e-01 -2.17047125e-01 7.22434759e-01 5.72161376e-01 -8.81371796e-01 3.54002744e-01 -1.65699814e-02 9.19946969e-01 -8.19865227e-01 1.12156236e+00 2.73690104e-01 -8.50380659e-01 7.02108964e-02 -5.27223647e-01 -2.93270051e-01 3.36381853e-01 5.95408797e-01 -8.78167093e-01 3.99430364e-01 4.30791974e-01 6.21884823e-01 -5.91936231e-01 9.19923246e-01 -2.66520619e-01 6.06144667e-01 -1.60866335e-01 -3.80650349e-02 2.64194459e-01 1.33416072e-01 2.35930949e-01 1.31062710e+00 1.69325873e-01 -1.34278074e-01 7.97965974e-02 3.66775841e-01 -3.99012059e-01 1.33637771e-01 -6.71736419e-01 1.79105699e-02 4.41391945e-01 1.14293683e+00 1.33172646e-01 -5.54432988e-01 -5.91422498e-01 1.22669780e+00 9.94023860e-01 2.01862440e-01 -7.25610375e-01 -5.88193715e-01 9.96835768e-01 3.89722660e-02 4.79697376e-01 -1.90156877e-01 -6.02786720e-01 -1.17822647e+00 1.71526775e-01 -8.75078201e-01 3.41254592e-01 -6.36666119e-01 -1.55376148e+00 7.51449883e-01 -2.93995202e-01 -1.21556628e+00 -6.83256745e-01 -6.71098709e-01 -5.58194399e-01 1.18085909e+00 -1.43622899e+00 -1.00282800e+00 -1.35456637e-01 4.83044475e-01 4.82817620e-01 -2.31302872e-01 1.22651553e+00 4.84941602e-01 -3.26184750e-01 1.03052294e+00 3.01532388e-01 3.08434904e-01 1.12282789e+00 -1.52063799e+00 8.54347885e-01 6.27621770e-01 2.89504290e-01 6.10580444e-01 4.34863240e-01 -3.38789791e-01 -8.87090862e-01 -9.82030571e-01 1.58855581e+00 -7.85848320e-01 5.60213804e-01 -6.92277431e-01 -1.08006668e+00 6.82155907e-01 3.19611639e-01 5.82380965e-02 1.00558400e+00 7.49476790e-01 -5.93096077e-01 1.08853020e-02 -1.03489637e+00 4.45126623e-01 7.85993874e-01 -7.40632176e-01 -8.66978407e-01 4.84576046e-01 7.56127417e-01 -4.80188280e-01 -9.00440156e-01 2.37865448e-01 3.45414311e-01 -9.21433806e-01 1.01345015e+00 -9.75205123e-01 9.90415275e-01 1.44857569e-02 -2.02045441e-01 -1.54116070e+00 -6.84618294e-01 -2.82864869e-01 -7.47021660e-02 1.21160066e+00 7.47763157e-01 -3.05326551e-01 8.78075957e-01 4.73812163e-01 -1.91433936e-01 -1.02058077e+00 -8.39035749e-01 -7.55233347e-01 4.02554899e-01 -3.77839237e-01 6.57588422e-01 8.55401993e-01 2.57634014e-01 1.00273263e+00 -4.68845189e-01 -1.15214758e-01 4.31739539e-01 -4.53600399e-02 8.08933139e-01 -1.04341805e+00 -5.22653759e-01 -4.13904995e-01 -3.69828373e-01 -1.24846470e+00 1.26472622e-01 -8.69483948e-01 1.78407028e-01 -1.57809794e+00 2.41717324e-01 -5.67623615e-01 -4.77088451e-01 5.95860362e-01 -6.22466624e-01 5.26926875e-01 8.31497163e-02 1.02833182e-01 -6.50653243e-01 5.25136232e-01 9.04961526e-01 8.36739391e-02 -7.12129623e-02 2.07825378e-03 -8.99158955e-01 3.52385640e-01 7.23593295e-01 -3.79315615e-01 -3.66494983e-01 -8.64558876e-01 6.94894344e-02 -4.37707342e-02 6.64454848e-02 -9.52679515e-01 4.95074689e-02 1.08246714e-01 2.68353701e-01 -4.05606687e-01 6.01276696e-01 -4.78345960e-01 -4.79077369e-01 3.81054431e-02 -6.95815802e-01 1.98148146e-01 5.76697215e-02 3.80529195e-01 -5.05482852e-01 -4.26924706e-01 8.93280625e-01 2.76264083e-02 -3.61644566e-01 1.54527470e-01 3.61582823e-02 3.32317889e-01 7.47913122e-01 1.40750520e-02 -8.39918777e-02 -5.25003195e-01 -6.73144221e-01 1.66404158e-01 5.16236126e-01 3.63111258e-01 3.60400468e-01 -1.62167549e+00 -8.07427168e-01 3.60358655e-01 3.29777300e-01 7.73510709e-03 -7.36514032e-02 6.74042940e-01 -8.21549371e-02 5.21835208e-01 -3.05045277e-01 -3.54033262e-01 -1.33723295e+00 4.58147407e-01 2.31027082e-02 -7.37529218e-01 -4.33710515e-01 1.18347108e+00 2.31330842e-01 -6.55063570e-01 1.71117291e-01 -1.08636186e-01 -1.08436495e-01 -7.71379769e-02 7.18104064e-01 -1.17874727e-01 3.90784562e-01 -5.20829320e-01 -3.82717013e-01 2.87173092e-01 -5.09817004e-01 -3.29698831e-01 1.38626766e+00 8.12712237e-02 1.77996755e-01 4.20726180e-01 1.47287190e+00 -2.01780811e-01 -1.24576151e+00 -5.42116642e-01 -3.46815810e-02 -4.95816112e-01 -8.77848864e-02 -9.38369215e-01 -6.66026950e-01 1.09813201e+00 3.09075881e-02 1.02677643e-01 1.05382359e+00 -3.15102935e-02 9.85765457e-01 3.55396330e-01 3.11638355e-01 -9.45919096e-01 2.42679417e-01 7.50875413e-01 8.73354912e-01 -1.42826188e+00 -2.45372519e-01 -2.44378850e-01 -1.07314122e+00 7.15810120e-01 6.71251595e-01 -3.30494374e-01 2.67038375e-01 3.69417101e-01 9.95398536e-02 1.30098045e-01 -1.11873055e+00 -1.40523702e-01 3.95012110e-01 5.98834574e-01 9.16715801e-01 -5.80904670e-02 -2.02773944e-01 8.58940899e-01 -2.80092269e-01 1.33798057e-02 1.61894560e-01 7.72634447e-01 -2.59105742e-01 -1.54199278e+00 -5.53687140e-02 6.26621306e-01 -3.72235477e-01 -2.42796838e-01 -5.25383234e-01 5.16198814e-01 -1.50824606e-01 7.18910873e-01 2.04450622e-01 -6.48585558e-01 3.99131656e-01 4.25164372e-01 4.47435528e-01 -9.10481334e-01 -8.53720665e-01 -3.13843280e-01 4.87011075e-01 -3.60086799e-01 -7.66039416e-02 -7.75936723e-01 -9.41155016e-01 -1.77959129e-01 -3.55062127e-01 3.40864480e-01 6.67602241e-01 1.07904601e+00 4.49069351e-01 4.26760346e-01 6.59095645e-01 -8.10381353e-01 -8.64851177e-01 -1.21170235e+00 -2.11686909e-01 7.18659639e-01 3.30179423e-01 -6.71521723e-01 -1.21764511e-01 -2.67405920e-02]
[10.909427642822266, 8.566184043884277]
27727233-02d6-4da2-8dc4-2df4a97582d7
speech-to-speech-translation-between
1910.00795
null
https://arxiv.org/abs/1910.00795v2
https://arxiv.org/pdf/1910.00795v2.pdf
Speech-to-speech Translation between Untranscribed Unknown Languages
In this paper, we explore a method for training speech-to-speech translation tasks without any transcription or linguistic supervision. Our proposed method consists of two steps: First, we train and generate discrete representation with unsupervised term discovery with a discrete quantized autoencoder. Second, we train a sequence-to-sequence model that directly maps the source language speech to the target language's discrete representation. Our proposed method can directly generate target speech without any auxiliary or pre-training steps with a source or target transcription. To the best of our knowledge, this is the first work that performed pure speech-to-speech translation between untranscribed unknown languages.
['Andros Tjandra', 'Satoshi Nakamura', 'Sakriani Sakti']
2019-10-02
null
null
null
null
['speech-to-speech-translation']
['speech']
[ 6.28447652e-01 4.64888871e-01 -4.45566885e-02 -5.46140373e-01 -1.13403738e+00 -5.94770014e-01 8.04920018e-01 -2.33794093e-01 -9.73783731e-02 1.03188574e+00 1.60685048e-01 -7.71942139e-01 6.31262839e-01 -6.05092764e-01 -8.51241231e-01 -4.89032120e-01 3.48066598e-01 8.76883984e-01 -4.44726795e-02 -4.11455929e-01 -2.24070251e-01 2.43338004e-01 -9.79282498e-01 4.63752240e-01 8.11625302e-01 5.28137028e-01 4.33109403e-01 8.96176457e-01 -2.97138661e-01 7.34044373e-01 -7.86873758e-01 -1.90300763e-01 1.69072136e-01 -1.04358757e+00 -9.57002640e-01 2.99915195e-01 -3.18319388e-02 -3.54066640e-01 -3.56694490e-01 1.08798265e+00 4.99729037e-01 1.60023838e-01 8.20673287e-01 -8.24665129e-01 -1.30104041e+00 8.42297614e-01 7.97581524e-02 1.23720981e-01 4.55236256e-01 4.86501865e-02 7.69479215e-01 -9.91951942e-01 5.89499712e-01 1.14858437e+00 7.66571239e-02 7.40307033e-01 -1.23132968e+00 -4.98758614e-01 -1.48386031e-01 -1.22604489e-01 -1.58917296e+00 -8.97781491e-01 8.44606280e-01 -3.29771608e-01 1.20711029e+00 3.95754911e-02 3.53722960e-01 1.28254890e+00 -1.33570433e-01 6.02133393e-01 1.03905773e+00 -9.03414667e-01 3.37030888e-01 3.61636668e-01 -3.53931636e-01 6.82698250e-01 -3.91284913e-01 2.54116714e-01 -3.14986020e-01 -1.40336677e-02 7.57951915e-01 -3.54852170e-01 -1.68763191e-01 3.33577424e-01 -1.18779612e+00 7.97726393e-01 -1.15048252e-01 6.19943440e-01 -4.62400496e-01 3.47405002e-02 3.32691312e-01 6.67384088e-01 4.83897924e-01 1.87105060e-01 -4.31668669e-01 -1.41309008e-01 -1.05303562e+00 -4.27558273e-01 9.89599049e-01 1.22424328e+00 6.52621090e-01 6.04502261e-01 4.31029797e-02 7.96395242e-01 2.53687263e-01 6.62022114e-01 1.05214906e+00 -6.84598029e-01 6.19866192e-01 -3.90739962e-02 -3.33540924e-02 -4.81329650e-01 2.56858408e-01 -2.43123829e-01 -7.62703657e-01 -2.10905120e-01 -1.89793669e-02 -3.66412431e-01 -9.04116213e-01 1.54179585e+00 1.07489847e-01 3.03251654e-01 8.55462253e-01 7.26515055e-01 7.27282643e-01 1.27892864e+00 -2.93956190e-01 -6.62200987e-01 1.04390144e+00 -1.16212642e+00 -1.14353514e+00 -7.40187392e-02 3.16621304e-01 -8.84090662e-01 9.94451463e-01 1.20141812e-01 -1.20957243e+00 -6.69271171e-01 -8.89999866e-01 -1.50369465e-01 -4.10892963e-01 4.44325328e-01 2.17097595e-01 4.18196678e-01 -1.26263237e+00 2.79925019e-01 -8.85933936e-01 -3.11630815e-01 -2.99027711e-01 2.86427945e-01 -2.57429749e-01 2.41518766e-01 -1.61626410e+00 7.77936459e-01 7.07089722e-01 -6.86162338e-02 -1.19445908e+00 3.74049693e-02 -9.04142380e-01 3.59978043e-02 1.70450717e-01 -6.32718623e-01 1.76737702e+00 -1.36350226e+00 -2.26773763e+00 5.53839266e-01 -6.78491831e-01 -6.15276217e-01 -3.63779441e-03 2.57856518e-01 -6.17457271e-01 1.20826885e-01 4.86261509e-02 4.79688704e-01 1.06263828e+00 -1.22193384e+00 -3.66569191e-01 -1.05330870e-01 -1.89033389e-01 2.15506569e-01 -2.53203869e-01 2.97016501e-01 -2.86598086e-01 -8.39393973e-01 7.15276301e-02 -8.68637085e-01 5.19408323e-02 -5.43314755e-01 -2.57490575e-01 -4.94164497e-01 5.67911148e-01 -1.00809681e+00 1.13432431e+00 -1.97635078e+00 4.09629464e-01 -1.11998186e-01 -2.97351897e-01 3.45568627e-01 -2.53620118e-01 9.60700989e-01 -2.80742254e-02 3.08516771e-01 -3.55272740e-01 -7.17718899e-01 -4.26526032e-02 4.73606348e-01 -6.85781896e-01 1.39393106e-01 4.06663895e-01 9.49458241e-01 -9.75836217e-01 -5.64260304e-01 7.36901835e-02 7.15516448e-01 -4.29630056e-02 5.92100739e-01 -3.45566273e-01 7.31412530e-01 -2.37115979e-01 4.70450819e-01 1.47716537e-01 -1.09924739e-02 2.53937185e-01 3.06486368e-01 -2.65417486e-01 9.17936683e-01 -6.04390681e-01 1.79151368e+00 -6.37018085e-01 6.37904108e-01 -2.26313565e-02 -1.12177420e+00 1.21179748e+00 1.08673465e+00 4.03229035e-02 -5.21805823e-01 9.70726907e-02 6.16249442e-01 -1.76954091e-01 -4.57426131e-01 3.07501376e-01 -5.80769062e-01 -3.17379907e-02 4.74254429e-01 5.18051863e-01 -4.08387244e-01 -8.02196860e-02 -1.29216924e-01 8.07486892e-01 -6.51780292e-02 4.48761553e-01 2.65662342e-01 5.90335011e-01 2.32042726e-02 3.17820877e-01 4.38631356e-01 4.32473272e-02 5.82753599e-01 1.06386751e-01 -7.48107657e-02 -1.29372215e+00 -1.13101399e+00 2.73431510e-01 1.10490501e+00 -3.91071886e-01 -9.60927457e-02 -8.76314223e-01 -4.84638512e-01 -5.80354452e-01 1.05598938e+00 -2.89480954e-01 -2.82664374e-02 -6.39299333e-01 3.45713533e-02 1.13340688e+00 3.23016137e-01 1.25402108e-01 -1.28029633e+00 3.69677633e-01 4.22988653e-01 -4.60921943e-01 -1.18290234e+00 -8.38213325e-01 2.65339285e-01 -8.75282884e-01 -3.48560750e-01 -9.45459306e-01 -1.52458811e+00 6.58953488e-01 2.53494121e-02 8.26398432e-01 -2.08726883e-01 4.48957533e-01 -1.39686346e-01 -5.20550907e-01 -2.59893596e-01 -1.16666198e+00 2.20959976e-01 2.80100167e-01 1.00122854e-01 2.14589283e-01 -7.32520461e-01 -1.78451128e-02 7.09034577e-02 -8.70048106e-01 1.64973781e-01 8.30007255e-01 8.87140095e-01 7.50013649e-01 1.41859343e-02 6.37574196e-01 -4.61852103e-01 9.54811454e-01 -5.14703751e-01 -5.45122325e-01 2.89306343e-01 -3.42427880e-01 3.00749749e-01 1.19406569e+00 -5.09123445e-01 -1.05818772e+00 3.96633714e-01 -3.43751907e-01 -6.78805470e-01 -5.40688694e-01 5.92983127e-01 -1.30796611e-01 3.99493545e-01 6.95680916e-01 1.00006437e+00 -5.74656688e-02 -5.83076358e-01 5.57773411e-01 1.37487543e+00 6.36044681e-01 -4.67388958e-01 8.25625002e-01 8.94738436e-02 -5.70124924e-01 -8.57750535e-01 -4.51028526e-01 -3.51537853e-01 -9.28915501e-01 3.54008883e-01 9.84535933e-01 -8.76348197e-01 -2.96519816e-01 1.32199496e-01 -1.78849316e+00 -2.95542687e-01 -1.21364623e-01 6.21833205e-01 -7.34067976e-01 3.30468714e-01 -7.87142456e-01 -9.36382473e-01 -4.75604832e-01 -1.03061509e+00 1.25435448e+00 -2.31137529e-01 3.42307836e-02 -9.64338481e-01 3.06280762e-01 1.94116160e-01 4.32491779e-01 -2.77481288e-01 3.47936213e-01 -9.95821953e-01 -4.43635255e-01 8.59513283e-02 2.14637175e-01 6.56037569e-01 6.62446678e-01 -1.51072249e-01 -7.61326790e-01 -2.77423322e-01 2.32417732e-01 -4.26541150e-01 3.20431381e-01 -3.47441435e-02 5.47532082e-01 -9.22871113e-01 8.03230032e-02 4.79190022e-01 1.11606932e+00 6.89090490e-01 4.02776480e-01 -6.83640540e-02 4.52245086e-01 5.43404579e-01 2.41165772e-01 1.42396335e-02 2.17273787e-01 5.25038958e-01 -1.73186451e-01 -1.56655386e-01 -2.61847526e-01 -5.99167466e-01 8.20449233e-01 1.63704252e+00 2.25450426e-01 -4.81906772e-01 -9.97986853e-01 6.77157402e-01 -1.60326457e+00 -9.74220753e-01 2.50547379e-01 1.80750299e+00 1.20583093e+00 -1.22853108e-02 -1.29754052e-01 -5.55057898e-02 8.98931086e-01 -8.87585878e-02 -3.16368043e-01 -6.50705993e-01 1.33968830e-01 4.86444592e-01 1.79963902e-01 8.92021120e-01 -7.94824183e-01 1.30723250e+00 6.41236353e+00 7.30613232e-01 -1.42665565e+00 3.56054991e-01 2.79580206e-01 2.19354227e-01 -4.23912048e-01 4.95067164e-02 -6.51624322e-01 3.22707891e-01 1.61976063e+00 -4.13410217e-01 8.80981386e-01 7.42227256e-01 3.83185089e-01 7.33624101e-01 -1.18886888e+00 8.06044281e-01 2.46660262e-01 -1.13252687e+00 3.04998875e-01 -1.95637092e-01 6.88753247e-01 1.02681041e-01 -1.78367466e-01 4.23441738e-01 4.28148896e-01 -1.21274734e+00 7.55269468e-01 3.80814880e-01 9.82565343e-01 -6.75387442e-01 6.51965559e-01 7.77586281e-01 -1.14503002e+00 3.50017518e-01 -2.94249058e-01 -6.94224313e-02 4.45258826e-01 2.64947414e-01 -1.53965068e+00 6.17717624e-01 -6.97780252e-02 4.37049568e-01 -9.19079036e-03 2.56300569e-01 -4.81572688e-01 1.21678650e+00 -2.10254982e-01 -2.66373277e-01 3.44087303e-01 -2.47457162e-01 5.74229181e-01 1.36200249e+00 6.06959701e-01 1.98394775e-01 5.05271316e-01 8.48800778e-01 -1.56604603e-01 3.54153782e-01 -9.53637958e-01 -6.02619410e-01 6.03699625e-01 5.92196405e-01 -3.76529574e-01 -7.77890086e-01 -4.13437158e-01 1.56635451e+00 2.89478809e-01 6.08419240e-01 -5.65027237e-01 -6.04051054e-01 2.28491575e-01 2.69060563e-02 3.64819318e-01 -5.43892860e-01 -1.19325481e-02 -1.33555579e+00 2.09418032e-02 -1.01546705e+00 -1.68067470e-01 -8.55036974e-01 -1.22992098e+00 1.18316746e+00 -2.74101704e-01 -1.15103710e+00 -9.06836152e-01 -3.20811868e-02 -4.16661412e-01 1.21604776e+00 -1.29404378e+00 -1.31393158e+00 4.22636449e-01 6.65981412e-01 1.03605831e+00 -5.60560882e-01 1.27664471e+00 1.80329114e-01 -2.46436149e-01 5.22902489e-01 3.77427310e-01 5.03367364e-01 5.49072444e-01 -1.14122915e+00 8.39069605e-01 7.82084048e-01 4.29244816e-01 8.61499548e-01 6.78819299e-01 -7.31504738e-01 -1.16248822e+00 -1.17452276e+00 1.38134801e+00 -1.66100383e-01 8.25279474e-01 -6.33964002e-01 -9.28371906e-01 9.98979628e-01 7.82954276e-01 -1.96366161e-01 7.86711037e-01 -2.23478258e-01 -2.18402520e-02 9.46352407e-02 -7.80269623e-01 5.04310727e-01 7.94829369e-01 -1.14784861e+00 -1.10298693e+00 4.86564398e-01 1.43753779e+00 -3.91723126e-01 -8.56346488e-01 -2.20275540e-02 1.43646821e-01 -1.47405654e-01 7.09467590e-01 -5.62196314e-01 3.36589932e-01 -5.14388740e-01 -3.94752145e-01 -1.52853179e+00 -2.19422802e-01 -8.86610985e-01 -9.51410681e-02 1.33347917e+00 7.17900574e-01 -6.04751348e-01 2.69886494e-01 -4.76165526e-02 -5.41226089e-01 -4.29428160e-01 -1.05369043e+00 -9.54981148e-01 1.78918660e-01 -1.42116427e-01 7.06805289e-01 9.08576548e-01 -4.79513630e-02 6.44415379e-01 -5.26895940e-01 4.03589010e-01 2.26487741e-01 4.79691476e-02 5.28466702e-01 -6.67089283e-01 -7.37919748e-01 3.71374562e-02 -9.28417444e-02 -1.31203604e+00 4.47679460e-01 -1.16267014e+00 4.99358565e-01 -1.48957539e+00 -3.08815628e-01 4.14543673e-02 -2.51437306e-01 5.50179780e-01 1.85448647e-01 -1.04356445e-01 -1.11104660e-01 3.93716753e-01 -2.61265486e-01 8.88334155e-01 1.16180789e+00 -2.35517576e-01 -4.61961061e-01 -3.37841511e-02 -5.15858650e-01 2.42772013e-01 1.20064688e+00 -7.99925566e-01 -6.66251838e-01 -6.57158375e-01 -3.55068624e-01 6.87008917e-01 -3.73805724e-02 -6.68940365e-01 1.92362130e-01 -4.94959742e-01 -5.10940962e-02 -5.28819799e-01 3.11052144e-01 -5.45248747e-01 1.66787580e-01 3.16979259e-01 -5.08464575e-01 9.71821323e-02 1.09950818e-01 3.68852556e-01 -6.58367157e-01 -3.20215911e-01 5.24609029e-01 -2.59335488e-01 -3.42689037e-01 -5.01881018e-02 -8.92572761e-01 -3.21694255e-01 8.54336023e-01 7.22473338e-02 6.20537661e-02 -6.64581060e-01 -9.50308740e-01 -2.52205640e-01 3.28608602e-01 5.90160012e-01 6.84280813e-01 -1.43294275e+00 -9.33848858e-01 3.30874056e-01 -1.29636854e-01 -7.87497684e-02 -4.18755978e-01 3.49133521e-01 -3.14345032e-01 9.14232671e-01 6.88011721e-02 -4.42198038e-01 -1.08991683e+00 7.14094341e-01 2.44298816e-01 -3.17279398e-02 -3.85937005e-01 5.54643154e-01 -4.21088263e-02 -8.35412383e-01 1.25897095e-01 -1.92640856e-01 4.68754061e-02 -3.84223521e-01 3.90374333e-01 -1.40067190e-01 9.76472162e-03 -9.71306980e-01 -2.95119256e-01 1.25168502e-01 8.43136981e-02 -8.38352203e-01 1.09320045e+00 -3.28678995e-01 -1.54536441e-01 8.28280568e-01 1.47133112e+00 -8.13232921e-03 -6.13180101e-01 -2.11946428e-01 -1.30082220e-01 -5.41253872e-02 -3.48166414e-02 -6.00335717e-01 -6.20487213e-01 1.04634106e+00 2.80112714e-01 2.00509667e-01 1.05210996e+00 1.27779007e-01 1.18115735e+00 7.24885523e-01 3.73176157e-01 -1.03881884e+00 -4.00462151e-02 9.18025613e-01 1.05480814e+00 -1.14515245e+00 -7.81636119e-01 -1.62698224e-01 -6.21426642e-01 1.09424126e+00 3.45685720e-01 6.56614080e-02 5.04434884e-01 2.33844087e-01 4.16777402e-01 1.87986225e-01 -1.04831862e+00 -3.18608552e-01 3.51171017e-01 5.95197618e-01 6.76323593e-01 1.56962156e-01 -3.54817271e-01 4.09947157e-01 -5.02048016e-01 2.99913973e-01 3.99869263e-01 7.58075953e-01 -5.45863986e-01 -1.41929281e+00 -4.00904804e-01 -7.31767341e-02 -3.09813708e-01 -5.24424076e-01 -7.84488857e-01 2.30786756e-01 -7.34423399e-02 1.23685360e+00 8.16235244e-02 -4.22121614e-01 2.18582615e-01 5.23106217e-01 1.01908557e-01 -1.05029166e+00 -4.41399455e-01 4.69773322e-01 9.69738662e-02 -6.93037063e-02 -2.22877726e-01 -4.57816958e-01 -1.61570251e+00 -6.17514877e-03 -3.56397301e-01 6.44507408e-01 8.94969761e-01 7.78465748e-01 3.63638103e-01 5.33545613e-01 8.59663486e-01 -6.98087752e-01 -6.54899836e-01 -1.31707549e+00 -2.28899390e-01 1.71156034e-01 6.53584123e-01 -3.03544030e-02 -3.26662213e-01 5.93262553e-01]
[14.586840629577637, 7.055795192718506]
c673fc17-7df5-4fc7-a520-c63126bce827
densepose-from-wifi
2301.00250
null
https://arxiv.org/abs/2301.00250v1
https://arxiv.org/pdf/2301.00250v1.pdf
DensePose From WiFi
Advances in computer vision and machine learning techniques have led to significant development in 2D and 3D human pose estimation from RGB cameras, LiDAR, and radars. However, human pose estimation from images is adversely affected by occlusion and lighting, which are common in many scenarios of interest. Radar and LiDAR technologies, on the other hand, need specialized hardware that is expensive and power-intensive. Furthermore, placing these sensors in non-public areas raises significant privacy concerns. To address these limitations, recent research has explored the use of WiFi antennas (1D sensors) for body segmentation and key-point body detection. This paper further expands on the use of the WiFi signal in combination with deep learning architectures, commonly used in computer vision, to estimate dense human pose correspondence. We developed a deep neural network that maps the phase and amplitude of WiFi signals to UV coordinates within 24 human regions. The results of the study reveal that our model can estimate the dense pose of multiple subjects, with comparable performance to image-based approaches, by utilizing WiFi signals as the only input. This paves the way for low-cost, broadly accessible, and privacy-preserving algorithms for human sensing.
['Fernando de la Torre', 'Dong Huang', 'Jiaqi Geng']
2022-12-31
null
null
null
null
['body-detection', '3d-human-pose-estimation']
['computer-vision', 'computer-vision']
[ 3.97447735e-01 -2.03006759e-01 1.68411553e-01 -4.98514533e-01 -6.13836527e-01 -4.89054590e-01 1.77251045e-02 6.95942715e-02 -6.06510997e-01 5.16574442e-01 -8.68809298e-02 2.55545199e-01 1.54140756e-01 -9.39938664e-01 -7.54246116e-01 -5.51579595e-01 -1.77946478e-01 3.32461685e-01 -1.83841735e-01 1.78755671e-01 -3.21218997e-01 5.52910864e-01 -1.52563655e+00 -2.05553845e-01 4.60313648e-01 1.43498766e+00 -5.07473409e-01 4.43472326e-01 5.64698696e-01 -2.95213878e-01 -5.85562646e-01 -5.55666268e-01 5.80250204e-01 -3.13494802e-02 -1.24406375e-01 -1.31255940e-01 9.41255629e-01 -6.35056019e-01 -3.56857270e-01 7.55904019e-01 9.23689842e-01 -1.00703195e-01 2.44941488e-01 -1.33400202e+00 -1.12608328e-01 -5.63689172e-02 -8.15344632e-01 -2.91386396e-01 8.93739820e-01 -2.48653162e-02 3.74285579e-01 -4.89338905e-01 1.81372553e-01 9.77970600e-01 1.31352293e+00 4.44964737e-01 -1.08879113e+00 -9.83411670e-01 -2.47483924e-01 -8.31528977e-02 -1.58841670e+00 -2.73091555e-01 7.22223759e-01 -2.79959887e-01 5.11943698e-01 3.92694026e-01 1.08770680e+00 1.32132077e+00 3.03983629e-01 4.97750789e-01 1.19734430e+00 -2.99561203e-01 3.62609290e-02 -2.21040286e-02 -1.58779711e-01 7.29641259e-01 7.97554135e-01 1.78025275e-01 -7.38400996e-01 -3.59916806e-01 7.80705094e-01 2.94766366e-01 -2.24638239e-01 -6.71136916e-01 -1.03780067e+00 5.89545846e-01 5.70946932e-01 -1.80020422e-01 -4.85208422e-01 4.18648958e-01 1.60241410e-01 -1.45674184e-01 3.03881377e-01 2.03445554e-01 -1.77172035e-01 -3.85822393e-02 -1.11169851e+00 3.28168333e-01 7.19784677e-01 8.06715608e-01 5.12244940e-01 -2.75913090e-01 1.40267119e-01 3.26172471e-01 7.30279684e-01 1.24042022e+00 -1.41267687e-01 -8.07488620e-01 5.29215813e-01 2.99770325e-01 1.14152573e-01 -1.56659937e+00 -7.69388199e-01 -4.38350499e-01 -9.21741009e-01 4.13196608e-02 5.31950712e-01 -4.92356926e-01 -8.08562458e-01 1.67909312e+00 7.32018888e-01 8.24814737e-02 -4.69049454e-01 1.24264812e+00 6.03941023e-01 1.30518824e-01 1.55651337e-02 1.65314883e-01 1.47876477e+00 -2.43344471e-01 -5.14798105e-01 -4.68891978e-01 -1.15199052e-02 -4.91436958e-01 6.64029896e-01 5.74962139e-01 -7.38236070e-01 -4.06096727e-01 -1.10105669e+00 3.15557122e-02 -2.81038910e-01 1.13983355e-01 7.89829195e-01 1.40850520e+00 -7.41407752e-01 3.50419581e-01 -1.04137504e+00 -7.44063616e-01 5.99070847e-01 8.71616602e-01 -2.83493251e-01 -1.60133824e-01 -1.14332795e+00 6.39961481e-01 -2.45933101e-01 3.73424381e-01 -3.07914346e-01 -4.78329033e-01 -1.00290346e+00 -2.77349532e-01 1.25832126e-01 -7.65230358e-01 8.96444738e-01 -6.10900939e-01 -1.31706905e+00 8.62236619e-01 8.99272710e-02 -5.34046650e-01 5.18200815e-01 -7.29937077e-01 -3.62399608e-01 2.54786223e-01 8.63186345e-02 7.59673297e-01 9.00186479e-01 -7.90075064e-01 -3.46103102e-01 -9.28900719e-01 -3.26855659e-01 1.50588095e-01 -3.45418543e-01 -1.69491932e-01 -4.66338724e-01 -2.40502924e-01 3.17546308e-01 -1.27195680e+00 -1.23960614e-01 4.38173264e-01 -4.06897426e-01 3.65806580e-01 6.26165628e-01 -8.82228255e-01 7.03351140e-01 -2.06409693e+00 -3.15899372e-01 8.05667281e-01 1.38903126e-01 9.05266330e-02 4.15743142e-01 3.39447968e-02 4.65211421e-01 -2.18723014e-01 -9.45765078e-02 -2.65596986e-01 3.11197862e-02 -3.23839523e-02 7.97020942e-02 1.05555308e+00 -3.06588173e-01 6.93982720e-01 -5.33323109e-01 -5.64515114e-01 4.45789635e-01 7.86831379e-01 -5.30978024e-01 -9.86747071e-02 2.93589413e-01 7.53514171e-01 -4.55494374e-01 1.08122873e+00 8.34955275e-01 5.01458580e-03 1.87753111e-01 -4.28130120e-01 1.27541810e-01 7.80997798e-02 -1.34299934e+00 1.83788574e+00 -1.81600362e-01 4.42968100e-01 4.31721479e-01 -8.36219549e-01 7.61720121e-01 3.07960868e-01 8.13306749e-01 -7.21060395e-01 4.01385695e-01 -1.19328070e-02 -5.01126945e-01 -4.37440485e-01 2.09791496e-01 5.29931560e-02 -4.85740691e-01 2.66495883e-01 -3.17470521e-01 1.70921087e-01 -4.66527551e-01 -3.26124609e-01 1.05240309e+00 3.18812281e-01 2.15812892e-01 2.17124730e-01 2.13580698e-01 -1.19426206e-01 5.48349082e-01 7.46665359e-01 -4.22444582e-01 6.31636441e-01 -4.23884571e-01 -4.87863690e-01 -4.66853917e-01 -1.33647180e+00 -1.81397066e-01 8.59906256e-01 4.17779922e-01 -2.19469190e-01 -7.66999185e-01 -4.60282534e-01 5.13258159e-01 3.47260088e-02 -3.59167039e-01 3.73690426e-02 -7.42459536e-01 -5.35514951e-01 8.75855088e-01 4.84872788e-01 8.53183329e-01 -4.75019842e-01 -1.21264517e+00 1.15461042e-03 -4.46494818e-01 -1.21576357e+00 -3.57869059e-01 -3.31395715e-02 -6.82949662e-01 -1.01573420e+00 -8.64700556e-01 -3.50817084e-01 5.86701870e-01 1.86083168e-01 7.92718291e-01 -2.86860853e-01 -5.93490601e-01 1.07600009e+00 3.72396819e-02 -7.19349027e-01 6.82427585e-01 2.10308135e-02 5.25214970e-01 1.42376631e-01 7.28973567e-01 -6.79850161e-01 -8.39708328e-01 3.29449713e-01 -1.55272424e-01 -4.14871722e-01 5.17303467e-01 2.73672462e-01 7.16400146e-01 -2.31388301e-01 8.94982219e-02 -4.37278330e-01 2.77625978e-01 -3.51424396e-01 -6.40691102e-01 -7.57907107e-02 -4.48494881e-01 -3.91861647e-01 1.11335382e-01 -2.70827949e-01 -6.93304300e-01 6.85825646e-01 -1.31639004e-01 -2.99064398e-01 -4.38968182e-01 9.23254639e-02 -3.39586496e-01 -5.65409362e-01 6.62962437e-01 -9.12386179e-02 1.43751264e-01 -3.76549453e-01 1.21623933e-01 8.49742353e-01 8.06274295e-01 -3.54106814e-01 7.91209519e-01 7.99992859e-01 3.90442014e-01 -1.20722806e+00 -5.93889952e-01 -5.35585344e-01 -6.26136184e-01 -4.29691643e-01 1.00065434e+00 -1.24700844e+00 -1.07865345e+00 4.87734556e-01 -9.41265225e-01 3.13110024e-01 6.20586462e-02 7.30566144e-01 -3.49067926e-01 4.14762616e-01 -2.34625533e-01 -1.16148889e+00 -6.04401171e-01 -7.25995660e-01 1.40420771e+00 3.96436661e-01 -6.99455738e-01 -3.50772202e-01 -3.36588100e-02 7.62723923e-01 2.35976577e-01 7.68342733e-01 6.91972971e-02 -7.99845383e-02 -5.84024966e-01 -6.29511058e-01 1.15358934e-01 -2.06379279e-01 -1.49456769e-01 -7.34907806e-01 -1.15171731e+00 -4.15054977e-01 -1.44128412e-01 -3.66336316e-01 2.95928627e-01 7.54219890e-01 1.01033366e+00 -6.22129478e-02 -7.32288599e-01 1.05660927e+00 1.11762762e+00 -1.15800031e-01 5.15431464e-01 3.09024662e-01 7.84204543e-01 5.61931491e-01 5.92190742e-01 5.38174331e-01 4.73014265e-01 8.52027118e-01 4.70638126e-01 -2.70241439e-01 2.36816794e-01 -2.25913242e-01 2.52110302e-01 3.56567502e-02 -2.51528859e-01 2.98536532e-02 -8.47801030e-01 1.62621126e-01 -1.57575345e+00 -7.76711166e-01 -1.25778019e-01 2.42548156e+00 4.48978454e-01 -1.25488102e-01 4.22190428e-01 2.05826387e-01 6.64913476e-01 -1.76692620e-01 -5.36722362e-01 -1.52754828e-01 1.94971785e-01 4.25209343e-01 9.65440333e-01 -1.04605295e-01 -1.62298584e+00 2.82992035e-01 6.36833620e+00 3.26253735e-02 -1.15835035e+00 -6.43969700e-03 1.53076395e-01 -4.41603512e-01 2.24785030e-01 -5.97936392e-01 -7.89808035e-01 4.64937836e-01 7.85592854e-01 5.77419877e-01 3.38892847e-01 9.11234081e-01 4.00219448e-02 -3.16661328e-01 -1.01073587e+00 1.50402367e+00 2.02077344e-01 -7.79831648e-01 -7.09676921e-01 3.95399958e-01 2.07797989e-01 3.01043186e-02 2.76352167e-01 -1.14476740e-01 -2.04571918e-01 -9.42106724e-01 6.30577922e-01 4.41812873e-01 8.95737529e-01 -8.11167717e-01 6.81045830e-01 2.45615229e-01 -1.27125573e+00 3.71601456e-03 -1.68511301e-01 -2.83061236e-01 2.00592503e-01 6.27029657e-01 -7.07280695e-01 2.39307970e-01 1.29961455e+00 2.60486692e-01 -3.65576565e-01 1.09029698e+00 -1.25867173e-01 5.13876140e-01 -1.02418780e+00 -7.94653520e-02 -3.54590654e-01 -1.65577903e-01 3.59361768e-01 1.00512362e+00 5.17255306e-01 7.38052875e-02 3.60236764e-01 6.86557710e-01 -9.81759652e-03 -1.27969176e-01 -8.33340466e-01 2.08336368e-01 4.98974323e-01 1.24664164e+00 -7.29582548e-01 3.52378488e-01 -4.36075598e-01 9.09820855e-01 -3.46039206e-01 8.12313035e-02 -9.12361920e-01 -3.79165590e-01 8.46047223e-01 6.31906509e-01 2.80927241e-01 -5.56104124e-01 -4.94094521e-01 -8.11293423e-01 1.84381172e-01 -7.53987730e-01 2.96337694e-01 -3.38441610e-01 -1.07234895e+00 -3.26860771e-02 -5.61323650e-02 -1.23616385e+00 -3.21199715e-01 -4.29270953e-01 -1.58006251e-01 6.74253047e-01 -1.09335446e+00 -1.36776268e+00 -5.74202836e-01 8.61743808e-01 -1.88613772e-01 1.69953004e-01 9.70582783e-01 6.47683918e-01 -3.85309815e-01 9.31990743e-01 -1.65982023e-01 4.33896422e-01 6.98210001e-01 -8.05382073e-01 3.24322373e-01 8.01859736e-01 1.65241987e-01 6.96984351e-01 6.27781391e-01 -9.20805871e-01 -1.80659282e+00 -9.53182638e-01 6.75412536e-01 -4.81070280e-01 -1.90448999e-01 -7.55378902e-01 -1.72383085e-01 6.59738302e-01 -2.13817090e-01 5.42554148e-02 9.95478570e-01 3.00673395e-01 -3.93188484e-02 -4.43738580e-01 -1.61060166e+00 3.02536517e-01 9.81794238e-01 -5.02383232e-01 -4.12932515e-01 1.47946328e-01 1.72362238e-01 -6.83315158e-01 -7.63966918e-01 3.58398229e-01 1.28238249e+00 -8.34713638e-01 1.46022058e+00 1.81807280e-01 -3.86504084e-01 -2.08853871e-01 -1.96740493e-01 -8.22359920e-01 -2.09185019e-01 -4.68495011e-01 -1.56505078e-01 1.01146865e+00 -1.59915313e-02 -5.37361085e-01 1.20606756e+00 9.46049154e-01 4.31497812e-01 -3.49331290e-01 -1.12811577e+00 -5.26396751e-01 -5.20324945e-01 -5.84111929e-01 5.46273351e-01 4.77207810e-01 -3.02114427e-01 5.77351339e-02 -6.54386878e-01 5.51007867e-01 1.15667486e+00 1.03824794e-01 9.51981366e-01 -1.53572619e+00 -1.22799389e-01 3.14440459e-01 -7.69403219e-01 -9.55669522e-01 -2.91372180e-01 -4.59954023e-01 1.10457897e-01 -1.32920825e+00 -3.28339666e-01 -4.24955964e-01 6.84531033e-02 4.93975967e-01 3.56113553e-01 9.02116120e-01 7.78835639e-02 -1.10129759e-01 -4.46852863e-01 1.74050346e-01 5.98466575e-01 -1.87094301e-01 -4.35009487e-02 4.48663145e-01 -5.42266011e-01 9.64609027e-01 7.64647424e-01 -3.74044985e-01 -1.17682209e-02 -4.76983845e-01 4.08153325e-01 -2.92323291e-01 7.36554384e-01 -1.65137315e+00 4.47813243e-01 1.61042497e-01 1.24290049e+00 -7.97973692e-01 8.35328043e-01 -1.27380872e+00 3.43865812e-01 6.15117788e-01 9.82602090e-02 -7.96787441e-02 1.95417657e-01 6.96848035e-01 2.85102546e-01 3.74617934e-01 5.89985907e-01 -2.00603783e-01 -4.24223542e-01 3.19923818e-01 -2.37790048e-01 -1.49901077e-01 9.47603762e-01 -6.54221237e-01 2.48523012e-01 -5.63963652e-01 -4.43056762e-01 1.28655016e-01 3.96347255e-01 1.02197289e-01 6.44548178e-01 -1.29525304e+00 -3.23748231e-01 6.68397546e-01 -1.11894093e-01 -7.11196065e-02 -1.21612148e-03 9.61574256e-01 -4.88151640e-01 4.46037382e-01 -3.25710207e-01 -9.38217878e-01 -1.43554580e+00 8.95561650e-02 2.25753888e-01 2.72176266e-01 -6.00637615e-01 8.69833827e-01 -3.93730074e-01 -5.01948595e-01 5.49400508e-01 -1.89863130e-01 1.87402636e-01 -1.75679801e-03 4.01694775e-01 6.45762801e-01 3.81963775e-02 -7.40643322e-01 -7.89858937e-01 9.16575551e-01 4.62969244e-01 -2.02415183e-01 1.09185088e+00 -3.62306416e-01 2.32812822e-01 -7.16693141e-03 8.95753205e-01 2.32677445e-01 -1.11330426e+00 -5.51447198e-02 -2.25773185e-01 -5.36173582e-01 3.52928229e-02 -7.20734417e-01 -1.06863499e+00 9.22821283e-01 1.20931423e+00 -2.63373479e-02 1.19367743e+00 -1.89149439e-01 1.14326370e+00 3.49255502e-01 8.89992058e-01 -1.20414352e+00 -4.12303507e-01 1.06558695e-01 2.87187248e-01 -1.20899987e+00 3.10383767e-01 -4.30924445e-01 -1.14786677e-01 8.67553174e-01 4.67759281e-01 3.69741954e-02 6.72452450e-01 4.11546409e-01 1.58128232e-01 -2.11015597e-01 3.87660086e-01 -2.00311705e-01 3.74289453e-01 1.20039034e+00 2.72886157e-01 2.28653416e-01 -1.12212431e-02 5.72028935e-01 -4.71619576e-01 1.35057047e-01 -2.11775824e-01 1.22042525e+00 -2.88195789e-01 -8.71013880e-01 -1.11310351e+00 5.61976552e-01 -5.96495986e-01 3.32615316e-01 -4.77304161e-01 7.25057364e-01 6.07657731e-01 1.03722322e+00 4.00275923e-02 -5.31187654e-01 3.55911881e-01 1.04271872e-02 7.35221446e-01 -3.40743810e-01 -6.51241899e-01 6.71098679e-02 1.75279763e-03 -8.89594674e-01 -4.68991488e-01 -7.90676415e-01 -9.77038324e-01 -3.26732486e-01 -1.22207351e-01 -2.85615772e-01 9.11049962e-01 8.25515330e-01 4.87051576e-01 7.98296183e-02 2.70329416e-01 -1.12240732e+00 -3.81324857e-01 -4.77322102e-01 -7.51879096e-01 1.87321752e-01 2.25160524e-01 -7.53175378e-01 7.89168477e-02 -1.87585190e-01]
[6.858797550201416, 0.351593554019928]
d7a4ed53-b447-47dc-be26-3d709a3c1d07
explaining-classes-through-stable-word
null
null
https://aclanthology.org/2022.findings-acl.85
https://aclanthology.org/2022.findings-acl.85.pdf
Explaining Classes through Stable Word Attributions
Input saliency methods have recently become a popular tool for explaining predictions of deep learning models in NLP. Nevertheless, there has been little work investigating methods for aggregating prediction-level explanations to the class level, nor has a framework for evaluating such class explanations been established. We explore explanations based on XLM-R and the Integrated Gradients input attribution method, and propose 1) the Stable Attribution Class Explanation method (SACX) to extract keyword lists of classes in text classification tasks, and 2) a framework for the systematic evaluation of the keyword lists. We find that explanations of individual predictions are prone to noise, but that stable explanations can be effectively identified through repeated training and explanation. We evaluate on web register data and show that the class explanations are linguistically meaningful and distinguishing of the classes.
['Veronika Laippala', 'Filip Ginter', 'Amanda Myntti', 'Aki-Juhani Kyröläinen', 'Samuel Rönnqvist']
null
null
null
null
findings-acl-2022-5
['xlm-r']
['natural-language-processing']
[ 5.81475794e-01 8.86752844e-01 -6.31524980e-01 -7.84422755e-01 -7.86655843e-01 -4.98439193e-01 8.87410223e-01 4.54477221e-01 -9.25111026e-03 7.57515073e-01 7.12251842e-01 -7.37816393e-01 -6.29523516e-01 -3.34860504e-01 -6.54321194e-01 -2.48069808e-01 3.41861695e-01 6.48513377e-01 8.09799284e-02 -1.33234203e-01 7.45644510e-01 3.47611904e-01 -1.84089172e+00 9.02368426e-01 1.09656835e+00 7.28459895e-01 1.83670089e-01 5.46811283e-01 -6.14241421e-01 9.28281784e-01 -5.63127875e-01 -6.75489724e-01 -2.50692904e-01 -7.02676296e-01 -1.17599213e+00 -3.02543730e-01 5.66695988e-01 -1.22139722e-01 1.91616461e-01 8.87536407e-01 1.94987610e-01 8.38882327e-02 1.05724847e+00 -1.44755888e+00 -1.16833639e+00 1.31221676e+00 -4.39817496e-02 2.69980371e-01 3.88890624e-01 -2.52107412e-01 1.55274761e+00 -1.23048854e+00 6.00246608e-01 1.38061488e+00 5.68051398e-01 9.29212749e-01 -1.20829821e+00 -6.94182158e-01 5.22403717e-01 4.32281405e-01 -7.03045845e-01 -2.76763231e-01 4.40513045e-01 -3.68296027e-01 1.45111561e+00 4.62958664e-01 3.80497575e-01 1.24797487e+00 2.85819232e-01 1.06389129e+00 8.54655981e-01 -6.15694344e-01 3.62766795e-02 5.22910595e-01 8.21248770e-01 5.68603456e-01 4.27010447e-01 2.08388254e-01 -9.83887494e-01 -1.58216462e-01 2.96883583e-01 -1.07430957e-01 -3.97980988e-01 -2.12852675e-02 -1.16381264e+00 1.22124040e+00 6.57876730e-01 1.74313962e-01 -3.00388128e-01 1.68056682e-01 1.73734352e-01 -3.52654718e-02 7.08712280e-01 8.71024072e-01 -1.11311007e+00 2.41982535e-01 -7.94887602e-01 4.92786914e-01 6.14626348e-01 8.06137741e-01 6.55975461e-01 7.51201734e-02 -2.80683964e-01 5.70872486e-01 3.77212077e-01 1.72945186e-01 7.29363024e-01 -8.94057751e-01 4.54925686e-01 8.42330635e-01 2.62008253e-02 -1.02606046e+00 -5.92186034e-01 -4.22335058e-01 -3.46671194e-01 1.25802472e-01 3.07889730e-01 7.81337172e-02 -7.63958633e-01 1.77602780e+00 -6.04292788e-02 -3.03602725e-01 4.40443456e-01 7.81219780e-01 1.16561711e+00 2.64419466e-01 4.70047385e-01 -1.81756460e-03 1.20158923e+00 -9.22401071e-01 -8.36135209e-01 -6.21895075e-01 8.57881010e-01 -4.00090098e-01 1.32683897e+00 2.44615808e-01 -9.09861028e-01 -5.69465816e-01 -8.62235188e-01 -4.33342129e-01 -6.75063252e-01 2.90125340e-01 9.86695111e-01 4.13246304e-01 -8.43967557e-01 8.56113076e-01 -3.92785251e-01 -1.91611901e-01 4.92543101e-01 6.41942978e-01 -2.27367088e-01 4.48825568e-01 -1.26269639e+00 1.16475630e+00 5.01518130e-01 -2.51759917e-01 -5.34002602e-01 -7.76658833e-01 -9.17542636e-01 4.19406831e-01 2.49859020e-02 -5.69426000e-01 1.12887657e+00 -1.40272605e+00 -8.20737720e-01 7.75361061e-01 -5.54614782e-01 -6.29219353e-01 -2.67794989e-02 -4.34532642e-01 -2.47093916e-01 5.97035401e-02 3.37521493e-01 1.28030121e+00 6.40106797e-01 -1.19400680e+00 -7.19313204e-01 -2.66985536e-01 3.44833918e-02 2.94341624e-01 -3.06079507e-01 2.66787130e-02 3.30242842e-01 -6.66334212e-01 3.32029551e-01 -7.28404522e-01 -1.43686906e-01 -1.48793891e-01 -6.99053228e-01 -5.36386728e-01 5.28309047e-01 -6.84289157e-01 8.80576491e-01 -1.75394297e+00 9.85862315e-03 -9.32055265e-02 4.75070775e-01 -1.56581312e-01 3.12766917e-02 -1.37278259e-01 -5.09019017e-01 6.16650581e-01 -1.29094303e-01 -2.04062358e-01 2.37013429e-01 1.77001566e-01 -1.09745109e+00 -8.00054669e-02 3.55718076e-01 1.07218766e+00 -9.46813345e-01 -3.01473886e-01 4.90111997e-03 3.47053945e-01 -7.72813737e-01 -1.39100626e-01 -4.69101101e-01 9.20791179e-03 -3.47482920e-01 4.50144559e-01 3.39959748e-02 -4.74817097e-01 -4.47277091e-02 2.72779260e-02 1.14066049e-01 1.14469039e+00 -6.87988460e-01 1.09100974e+00 -7.44543821e-02 1.14843214e+00 -7.54422843e-01 -7.83765435e-01 9.00089502e-01 3.79612088e-01 -1.48139119e-01 -3.84623677e-01 -7.43754506e-02 5.73195577e-01 1.79304898e-01 -3.90229434e-01 6.53070629e-01 -2.47938007e-01 1.07033312e-01 5.98161042e-01 1.05380535e-01 2.82966077e-01 -1.97677106e-01 4.37082887e-01 9.80224252e-01 2.04790533e-01 4.18347389e-01 -3.46711934e-01 1.39634326e-01 3.84846151e-01 1.45931944e-01 1.06426716e+00 7.71383056e-04 7.38282919e-01 5.02265811e-01 -6.26679420e-01 -8.12810659e-01 -7.27559507e-01 -1.36644736e-01 1.16267991e+00 -3.01554520e-02 -3.41339171e-01 -5.88063002e-01 -1.09017301e+00 1.42475948e-01 1.52427983e+00 -9.55001354e-01 -2.24553779e-01 -7.14547113e-02 -7.13214219e-01 2.68824488e-01 7.93343484e-01 9.56340730e-02 -1.56583941e+00 -6.75770521e-01 4.06496183e-05 -2.71728426e-01 -7.00074494e-01 -2.26463586e-01 8.92439544e-01 -9.87109900e-01 -1.12702107e+00 -1.79420128e-01 -6.15603685e-01 7.28455663e-01 1.23865128e-01 1.30376387e+00 4.58561689e-01 -9.59556177e-03 3.78943980e-01 -2.75972754e-01 -7.88357139e-01 -4.74336833e-01 1.03053167e-01 1.76349923e-01 -4.81535047e-01 9.01762366e-01 -1.41886547e-01 -3.22891474e-01 7.34558553e-02 -4.75203305e-01 3.95605266e-01 5.24320900e-01 7.78626025e-01 6.33166850e-01 -3.10453922e-01 8.64420474e-01 -1.26657534e+00 9.30141807e-01 -5.28853476e-01 -1.24922894e-01 2.18010783e-01 -1.04802418e+00 4.10874039e-01 3.57752740e-01 -4.79189754e-01 -9.26367104e-01 1.48174375e-01 -3.38085108e-02 -1.17884345e-01 -3.19391280e-01 5.51243246e-01 7.98243470e-03 2.54817903e-01 9.58206654e-01 6.68209745e-03 -4.46036190e-01 -3.18233520e-01 5.28886139e-01 4.30205345e-01 3.00663680e-01 -2.90153503e-01 5.21796942e-01 1.23756565e-01 -3.52522016e-01 -4.29480553e-01 -1.38751411e+00 -5.19747473e-02 -5.61618268e-01 -1.00145563e-01 9.27639663e-01 -5.02443969e-01 -4.32811618e-01 -5.58167517e-01 -1.63936174e+00 -1.36441976e-01 -4.05476779e-01 5.69214165e-01 -4.18494314e-01 -5.62682003e-02 -3.82785797e-01 -7.50727236e-01 -2.51662493e-01 -1.16269433e+00 1.09475708e+00 2.79252648e-01 -1.08943784e+00 -1.05689311e+00 -2.73243994e-01 2.99047649e-01 2.30174184e-01 -1.45287141e-01 1.41240644e+00 -1.54748225e+00 -4.46767658e-01 -1.08026592e-02 -2.81184077e-01 -1.19662292e-01 -1.00471340e-02 -1.17922105e-01 -1.20177269e+00 4.88755703e-01 -1.74814478e-01 -2.03973874e-01 1.04876828e+00 6.74259782e-01 1.25769877e+00 -7.61061728e-01 -7.22551942e-01 1.14356577e-01 9.25786912e-01 5.36543280e-02 4.45023537e-01 4.53274608e-01 5.21875083e-01 1.02481830e+00 4.12546784e-01 -9.19000730e-02 2.29752451e-01 5.88684559e-01 5.06186545e-01 -1.31991670e-01 -1.67171061e-01 -3.83260936e-01 3.74378860e-01 2.19756454e-01 2.00462610e-01 -2.91338027e-01 -8.49074483e-01 6.84373438e-01 -1.95650077e+00 -1.11622179e+00 -5.72867632e-01 1.71684372e+00 6.60865188e-01 3.45095754e-01 -4.38318610e-01 2.59867102e-01 5.96212149e-01 -2.67175496e-01 -6.59493029e-01 -6.73229635e-01 -3.60407025e-01 4.02736254e-02 1.83967575e-01 8.12176287e-01 -9.10455883e-01 1.03493452e+00 7.61471081e+00 5.23590207e-01 -6.65037155e-01 2.18056906e-02 7.48054981e-01 6.83521554e-02 -8.82428706e-01 1.89806744e-01 -1.18269205e+00 6.81826547e-02 9.24940407e-01 -1.92776427e-01 7.39471838e-02 1.15287554e+00 -1.00621418e-03 2.02605650e-01 -1.31799662e+00 5.26801944e-01 3.94069701e-02 -1.59727108e+00 6.49265051e-01 -4.86786431e-03 5.76593399e-01 -1.45095900e-01 2.18931094e-01 3.44615430e-01 2.18838632e-01 -1.24846697e+00 8.45494092e-01 3.63223433e-01 2.83403844e-01 -5.54331243e-01 7.45077312e-01 3.06919396e-01 -6.45253837e-01 -1.79146752e-01 -5.69146872e-01 -2.62780517e-01 -3.53855431e-01 3.62181693e-01 -9.50494945e-01 6.89422712e-02 6.65778279e-01 9.20393288e-01 -8.57692897e-01 6.00876391e-01 -8.69912088e-01 8.14007282e-01 1.93617821e-01 -3.54975939e-01 1.24876708e-01 4.43086982e-01 5.35667539e-01 1.11934960e+00 2.24575639e-01 2.05129415e-01 -3.07244122e-01 1.35742688e+00 -2.90592876e-03 1.77607670e-01 -6.16588354e-01 -4.48796488e-02 2.86109865e-01 9.90494609e-01 -1.00224853e+00 -5.46541333e-01 -2.05673456e-01 9.37612474e-01 3.86614352e-01 2.82809943e-01 -8.45896423e-01 -3.56255919e-01 6.47853732e-01 -8.74430016e-02 1.93811715e-01 3.72426867e-01 -8.59851599e-01 -1.09006369e+00 -2.06163689e-01 -6.61386788e-01 4.26984876e-01 -1.31301630e+00 -1.27351654e+00 7.90269673e-01 1.03414401e-01 -7.87112832e-01 -4.63262320e-01 -8.75591934e-01 -5.93897760e-01 8.60419393e-01 -1.50174427e+00 -7.84902751e-01 -8.16306192e-03 2.73784101e-01 8.27246308e-01 -3.21572363e-01 1.06227219e+00 -2.05043122e-01 -2.35201031e-01 3.74459893e-01 -3.19531143e-01 -1.72568932e-01 3.62175822e-01 -1.59992135e+00 3.67981583e-01 6.68890059e-01 6.90502644e-01 1.00224233e+00 1.10721791e+00 -7.80232191e-01 -6.57475948e-01 -8.70619178e-01 1.75665903e+00 -9.70524728e-01 3.00718158e-01 -1.23708062e-01 -1.23417497e+00 9.55785811e-01 2.02269375e-01 -5.32868683e-01 9.14078236e-01 4.82319951e-01 -4.27212894e-01 4.99916762e-01 -9.72041488e-01 6.94759607e-01 8.80553246e-01 -5.18678844e-01 -1.12370217e+00 5.97444654e-01 1.06968927e+00 -2.80338794e-01 -1.55733824e-01 3.12012494e-01 5.30602038e-01 -9.05451536e-01 9.33403611e-01 -1.10076714e+00 9.97607827e-01 -1.67419896e-01 -1.07677557e-01 -1.21063209e+00 -3.46463084e-01 -1.48049474e-01 -5.39086312e-02 1.24447072e+00 1.18349838e+00 -5.15677452e-01 8.15866351e-01 9.84218597e-01 -3.74682575e-01 -8.50585580e-01 -6.99647605e-01 -2.64371544e-01 6.75388351e-02 -6.96634650e-01 6.33483052e-01 9.53616560e-01 2.81318814e-01 7.45360196e-01 1.90560631e-02 1.82711229e-01 4.17371452e-01 2.27520302e-01 2.20740452e-01 -1.37727869e+00 -2.32487366e-01 -7.86897838e-01 -1.72987550e-01 -7.80079305e-01 6.68019593e-01 -1.28986442e+00 8.46093148e-02 -1.86652529e+00 4.78383273e-01 -1.80149198e-01 -2.58155495e-01 1.02163100e+00 -5.24637938e-01 9.82006118e-02 -1.14993908e-01 5.16673625e-01 -4.45160598e-01 4.62290049e-01 7.32802153e-01 -1.74180880e-01 -6.77870885e-02 -1.67548940e-01 -1.41180384e+00 9.63855982e-01 8.17964852e-01 -8.29107583e-01 -4.81336772e-01 -4.65037793e-01 5.35480499e-01 -3.35420877e-01 5.74898779e-01 -5.78019202e-01 3.96819366e-03 -5.09374738e-02 7.79842079e-01 -6.53586149e-01 8.27787369e-02 -5.59264302e-01 -1.91784695e-01 4.90547031e-01 -1.30997956e+00 1.81013476e-02 4.40158784e-01 5.30762851e-01 2.39651743e-02 -4.23350215e-01 3.15380067e-01 -2.34071314e-02 -6.71122074e-01 -1.98514536e-01 -3.49979192e-01 -7.66210631e-02 3.38129729e-01 -3.88996392e-01 -5.35461426e-01 -4.15644616e-01 -8.04334998e-01 -5.54936193e-03 9.19952244e-02 6.67085230e-01 8.53815436e-01 -1.29562044e+00 -5.13929665e-01 -6.40901849e-02 9.34808031e-02 -5.82664847e-01 -2.78616786e-01 3.90824646e-01 6.41573370e-02 8.49658608e-01 3.80592160e-02 -2.50495225e-01 -1.19498217e+00 5.35363853e-01 3.96828920e-01 -1.52625218e-01 -6.72734022e-01 1.05715609e+00 5.65247655e-01 -6.70672357e-01 4.11818415e-01 -4.54660058e-01 -7.86728203e-01 2.19183806e-02 6.91872001e-01 -4.00169007e-02 -1.10712640e-01 -5.72903991e-01 -4.75320697e-01 2.75114566e-01 -6.90022334e-02 -1.36834398e-01 1.37301719e+00 -4.11586184e-03 1.12595610e-01 5.32047272e-01 7.10971057e-01 -1.85232013e-01 -8.41490328e-01 2.19201863e-01 4.60350186e-01 -9.31864828e-02 -2.39269994e-03 -1.23059881e+00 -8.30720723e-01 1.17375720e+00 2.44032368e-01 3.37810308e-01 6.74128711e-01 1.39738724e-01 2.67084241e-01 2.93354243e-01 -2.00741723e-01 -6.13900542e-01 -5.48339356e-03 5.44390678e-01 1.07672870e+00 -1.19964600e+00 1.73176099e-02 -3.81133407e-01 -8.62285674e-01 1.28732014e+00 6.41121686e-01 1.75182939e-01 4.79356259e-01 -1.88083097e-01 -7.96018019e-02 -4.96491969e-01 -1.05139327e+00 -5.86865246e-02 8.25181305e-01 5.46865761e-01 9.11971748e-01 8.16813391e-03 -3.43965173e-01 1.27839112e+00 -3.95067751e-01 -3.59375954e-01 3.86763304e-01 3.25555950e-01 -6.69687688e-01 -7.77148426e-01 -2.82121480e-01 7.59221673e-01 -4.96183962e-01 -6.21123672e-01 -9.60573196e-01 7.78502166e-01 1.14864759e-01 9.16068614e-01 -8.43226463e-02 -4.09724295e-01 5.18933050e-02 4.98156458e-01 6.29650056e-02 -8.47290218e-01 -8.33900094e-01 -4.11121964e-01 1.20171070e-01 -3.55225772e-01 -4.48232770e-01 -6.06745243e-01 -1.71082997e+00 1.30488634e-01 -6.08824313e-01 3.71293366e-01 6.39955938e-01 1.43387067e+00 4.57412899e-01 6.11460805e-01 -8.92898515e-02 -8.72332215e-01 -2.09619820e-01 -7.90618598e-01 -2.98369110e-01 3.17482591e-01 3.00668865e-01 -7.87283957e-01 -7.54820943e-01 5.30335829e-02]
[9.44970417022705, 6.6270270347595215]
9e5a6336-37d0-485f-8957-a171ee441342
fots-fast-oriented-text-spotting-with-a
1801.01671
null
http://arxiv.org/abs/1801.01671v2
http://arxiv.org/pdf/1801.01671v2.pdf
FOTS: Fast Oriented Text Spotting with a Unified Network
Incidental scene text spotting is considered one of the most difficult and valuable challenges in the document analysis community. Most existing methods treat text detection and recognition as separate tasks. In this work, we propose a unified end-to-end trainable Fast Oriented Text Spotting (FOTS) network for simultaneous detection and recognition, sharing computation and visual information among the two complementary tasks. Specially, RoIRotate is introduced to share convolutional features between detection and recognition. Benefiting from convolution sharing strategy, our FOTS has little computation overhead compared to baseline text detection network, and the joint training method learns more generic features to make our method perform better than these two-stage methods. Experiments on ICDAR 2015, ICDAR 2017 MLT, and ICDAR 2013 datasets demonstrate that the proposed method outperforms state-of-the-art methods significantly, which further allows us to develop the first real-time oriented text spotting system which surpasses all previous state-of-the-art results by more than 5% on ICDAR 2015 text spotting task while keeping 22.6 fps.
['Yu Qiao', 'Shi Yan', 'Ding Liang', 'Xuebo Liu', 'Junjie Yan', 'Dagui Chen']
2018-01-05
fots-fast-oriented-text-spotting-with-a-1
http://openaccess.thecvf.com/content_cvpr_2018/html/Liu_FOTS_Fast_Oriented_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_FOTS_Fast_Oriented_CVPR_2018_paper.pdf
cvpr-2018-6
['text-spotting']
['computer-vision']
[ 2.98514992e-01 -3.38148355e-01 1.23738898e-02 -2.36720949e-01 -7.30059624e-01 -3.74416888e-01 7.46028960e-01 3.63887288e-03 -6.12873435e-01 3.04770544e-02 2.16305275e-02 -2.76054859e-01 2.69450605e-01 -4.63614464e-01 -5.62727511e-01 -5.38032472e-01 4.17511135e-01 5.80642760e-01 3.68348658e-01 7.56242648e-02 2.59543300e-01 2.42500171e-01 -1.35581160e+00 6.10778809e-01 7.75477886e-01 1.08563387e+00 5.96312940e-01 7.98555791e-01 -4.25945193e-01 7.68853009e-01 -4.76551831e-01 -4.75663930e-01 1.31447464e-01 2.75535975e-02 -5.15650868e-01 2.08162352e-01 1.02637374e+00 -6.71239555e-01 -8.26105237e-01 8.29217136e-01 7.79128253e-01 -1.50516778e-01 2.94912606e-01 -9.79601860e-01 -8.40942681e-01 8.63828778e-01 -7.79970050e-01 1.19471073e-01 6.48379922e-02 4.63343151e-02 1.01273596e+00 -1.47618997e+00 6.03294432e-01 1.10763979e+00 5.98443151e-01 5.60490727e-01 -9.12008464e-01 -5.50351799e-01 3.94338250e-01 -3.31542082e-02 -1.36565244e+00 -4.57289487e-01 3.22710961e-01 -3.50948215e-01 1.10377574e+00 3.21178198e-01 4.12816226e-01 9.87155676e-01 -6.12423271e-02 1.77144670e+00 5.76764882e-01 -5.10796309e-01 -2.02894136e-01 -1.08811334e-01 2.82245517e-01 9.71798301e-01 4.86585706e-01 -6.44796729e-01 -8.29902828e-01 1.84142724e-01 5.47850370e-01 4.76550102e-01 -3.40516388e-01 -1.55250236e-01 -1.59872448e+00 4.78934914e-01 1.34321496e-01 4.36569422e-01 -3.31778079e-03 2.02760413e-01 7.62265027e-01 1.01548843e-01 7.55966961e-01 -5.21901026e-02 -2.86502659e-01 -1.72915354e-01 -1.38954806e+00 9.07780901e-02 4.81651723e-01 1.01055646e+00 3.16721529e-01 5.74663356e-02 -8.12005043e-01 1.03844142e+00 2.86320686e-01 1.05405676e+00 4.41278547e-01 8.68816972e-02 9.50994849e-01 9.40392911e-01 -1.43415108e-01 -8.78740370e-01 -3.43881547e-01 -4.02663767e-01 -8.30345690e-01 -3.46212506e-01 1.97184071e-01 -6.57798350e-02 -1.37533796e+00 8.48459125e-01 -3.99542376e-02 -5.54421395e-02 -2.98976630e-01 1.04367018e+00 1.06262898e+00 7.30822265e-01 -1.84965193e-01 1.54978096e-01 1.47995555e+00 -1.29238248e+00 -9.13817525e-01 -4.98112649e-01 9.80925798e-01 -1.06441367e+00 1.14742041e+00 4.90148753e-01 -7.64415324e-01 -3.79420161e-01 -9.58248317e-01 -3.75584245e-01 -3.99617016e-01 1.09442127e+00 5.37490308e-01 6.64855957e-01 -8.66124690e-01 1.48354515e-01 -9.59006250e-01 -8.33142340e-01 7.90317714e-01 1.38630003e-01 -1.57936022e-01 -7.33357817e-02 -7.13068724e-01 5.10040760e-01 4.44630623e-01 1.29223675e-01 -6.80672467e-01 -5.55151761e-01 -4.65657145e-01 2.08961502e-01 6.98510528e-01 -4.68700588e-01 1.30300748e+00 -5.64978778e-01 -1.40161002e+00 1.07818997e+00 -3.10626447e-01 -6.39649808e-01 8.45420361e-01 -8.18338752e-01 -4.35321420e-01 2.04923823e-01 1.69501185e-01 4.64613259e-01 1.08385551e+00 -5.84484279e-01 -7.91256309e-01 -3.45068604e-01 -6.13105834e-01 2.52426475e-01 -1.04651213e+00 3.45606148e-01 -1.25269055e+00 -9.25483465e-01 -8.02585110e-03 -6.21432483e-01 3.24601501e-01 5.13269544e-01 -8.31513166e-01 -5.22882402e-01 1.40326905e+00 -7.67510533e-01 1.37363660e+00 -2.22410202e+00 -4.84838821e-02 -3.28683674e-01 6.31844282e-01 6.47539258e-01 -5.19100688e-02 5.13221204e-01 2.01435015e-01 -6.58923909e-02 -1.18833229e-01 -9.48358119e-01 1.92440405e-01 -2.58434474e-01 -6.99239790e-01 5.70340633e-01 -4.44250032e-02 1.14823771e+00 -5.19864619e-01 -7.61055112e-01 5.80105901e-01 4.29137707e-01 5.50274253e-02 -6.70438111e-02 -1.71413228e-01 -3.02403986e-01 -6.06358826e-01 8.86628807e-01 8.02067041e-01 -4.63850707e-01 -1.27616554e-01 2.91108470e-02 -7.41304755e-02 1.76769167e-01 -1.04052138e+00 1.82885742e+00 -1.06940649e-01 1.27087402e+00 -5.61775193e-02 -9.81627166e-01 8.77781630e-01 1.40981406e-01 2.36281142e-01 -8.64221871e-01 3.33641797e-01 7.80839548e-02 -6.93662345e-01 -3.57818156e-01 8.59199166e-01 4.92067158e-01 1.10759653e-01 6.22575045e-01 6.90297410e-02 1.57618463e-01 2.43900567e-01 5.91049671e-01 1.03425658e+00 -2.24288907e-02 -1.64216444e-01 -2.01801839e-03 3.21911216e-01 -1.69125959e-01 6.29509687e-02 1.08270180e+00 -1.17445298e-01 8.28091621e-01 2.16345519e-01 -6.77011847e-01 -9.73316848e-01 -6.69600964e-01 -1.35236889e-01 1.29002655e+00 1.91096768e-01 -8.27459633e-01 -8.03685427e-01 -1.09278309e+00 1.36621609e-01 4.67816353e-01 -6.24422610e-01 1.79829136e-01 -6.50835097e-01 -8.24044585e-01 9.25373495e-01 7.59954333e-01 8.20310712e-01 -8.29815030e-01 -5.00333428e-01 -2.16445234e-02 -2.27868274e-01 -1.45943451e+00 -8.68503749e-01 8.33939314e-02 -7.12971568e-01 -8.79307568e-01 -1.23756361e+00 -8.51463974e-01 5.63001335e-01 9.11215186e-01 7.34136283e-01 1.70566797e-01 -8.16994727e-01 4.03526962e-01 -5.80098391e-01 -5.43622971e-01 3.99002098e-02 3.25113297e-01 -2.61135370e-01 1.93028346e-01 4.76641387e-01 3.19230199e-01 -6.42156184e-01 3.29787731e-01 -9.96321142e-01 4.65793341e-01 6.23444021e-01 8.97610724e-01 4.79445159e-01 -8.02540258e-02 2.50622872e-02 -7.92457223e-01 5.26180208e-01 1.05750680e-01 -6.60281956e-01 6.22190177e-01 -7.23507524e-01 -1.55792817e-01 5.83529234e-01 -4.69297796e-01 -9.98829722e-01 2.79440135e-01 3.10511678e-01 -5.29296637e-01 2.06145234e-02 4.04615492e-01 9.56615284e-02 9.98455361e-02 5.58891058e-01 8.19419801e-01 -3.79151165e-01 -7.05681443e-01 3.00733536e-01 1.03823757e+00 4.47935820e-01 -9.89319235e-02 8.06155384e-01 7.28975534e-01 -5.63432455e-01 -9.07509804e-01 -8.13274801e-01 -8.66478503e-01 -6.47080541e-01 -5.67608587e-02 6.62509918e-01 -1.04260528e+00 -6.42942369e-01 9.96841788e-01 -1.11626387e+00 -3.78813088e-01 1.11254655e-01 1.16397955e-01 -2.43159339e-01 7.27334619e-01 -6.90546095e-01 -9.10333753e-01 -9.93947744e-01 -8.22305560e-01 1.85278559e+00 3.39483516e-03 3.35837632e-01 -6.33724272e-01 -1.97482944e-01 4.17478442e-01 3.39547068e-01 -3.93415242e-01 2.35513195e-01 -6.03156984e-01 -5.00859618e-01 -6.24435544e-01 -8.25108230e-01 8.69311020e-03 -8.61601308e-02 1.38307557e-01 -1.07345307e+00 -6.06161535e-01 -3.80613655e-01 -3.42199326e-01 1.60917342e+00 1.16157547e-01 1.37283003e+00 -3.30452956e-02 -8.00836504e-01 6.57719254e-01 1.17091334e+00 -5.55601306e-02 6.05847776e-01 4.78035957e-01 1.07525325e+00 1.52808443e-01 6.57285392e-01 4.52699125e-01 1.68398783e-01 8.55175972e-01 1.14694245e-01 -4.96403605e-01 -3.36976320e-01 -2.06102625e-01 2.73347914e-01 5.96387863e-01 4.55791384e-01 -7.53621221e-01 -1.11688125e+00 4.19290990e-01 -2.31027675e+00 -9.31133389e-01 -2.00616553e-01 1.96455395e+00 5.61459601e-01 1.14450760e-01 8.24607313e-02 1.92206964e-01 1.02474988e+00 3.58792752e-01 -6.53474867e-01 1.34329721e-01 -3.58847618e-01 1.00756735e-01 6.36028111e-01 -8.61012712e-02 -1.69135106e+00 1.32805932e+00 5.70044279e+00 1.26344168e+00 -1.34688687e+00 -2.25646701e-02 5.39753616e-01 -1.78505048e-01 3.51254970e-01 -3.46541047e-01 -1.04271197e+00 4.87749845e-01 4.63621259e-01 -6.99573979e-02 3.00408185e-01 1.06198168e+00 9.68536641e-03 2.08784252e-01 -8.33444536e-01 1.37576842e+00 4.03854847e-01 -1.40539205e+00 3.38035315e-01 -1.61809742e-01 5.17946064e-01 1.62225485e-01 1.54929519e-01 2.85626233e-01 4.05835807e-02 -1.09854865e+00 9.16009784e-01 4.32044387e-01 1.17128909e+00 -4.72957879e-01 6.68745875e-01 2.57918209e-01 -1.49842703e+00 5.28433807e-02 -3.79327029e-01 2.85594583e-01 8.82045329e-02 8.82964253e-01 -8.79077315e-01 5.57046831e-01 8.50096405e-01 1.15994608e+00 -7.61458695e-01 1.15991545e+00 3.09161134e-02 8.22987676e-01 -3.08567286e-01 -3.32400322e-01 1.35561958e-01 4.63458121e-01 4.51270819e-01 1.64203072e+00 2.79635787e-01 -3.08748603e-01 2.61030316e-01 8.89049351e-01 -5.66882968e-01 3.62187415e-01 -3.44935507e-01 -5.04430175e-01 2.97376037e-01 1.39967537e+00 -1.22274435e+00 -6.00738406e-01 -5.64711750e-01 1.57671654e+00 3.17633837e-01 1.75954878e-01 -7.60933816e-01 -8.98017347e-01 7.16870874e-02 -2.23993048e-01 7.78915644e-01 -2.48093665e-01 -4.38145757e-01 -1.70673203e+00 4.17010576e-01 -7.76263416e-01 2.91318059e-01 -6.90794349e-01 -1.08941436e+00 4.54639465e-01 -6.25863850e-01 -1.24286866e+00 3.21702987e-01 -9.31291997e-01 -4.98271585e-01 7.09527850e-01 -1.33500385e+00 -1.45874274e+00 -6.11196280e-01 5.18470228e-01 1.09994781e+00 -2.79056400e-01 6.08829975e-01 3.15724552e-01 -1.06774664e+00 1.09040654e+00 4.99707967e-01 6.67536080e-01 1.02668619e+00 -1.13975132e+00 1.12806547e+00 1.13369393e+00 4.44125116e-01 3.74337405e-01 2.27894410e-01 -8.44615519e-01 -1.65969276e+00 -1.19132102e+00 8.58950198e-01 -5.84730983e-01 5.92391491e-01 -9.34173822e-01 -7.60995269e-01 6.61179364e-01 1.01553753e-01 6.60800859e-02 1.25059709e-01 -9.07476246e-02 -5.07913649e-01 -1.48466425e-02 -7.20569372e-01 7.02544749e-01 1.11763906e+00 -5.57277322e-01 -3.84675324e-01 6.12711072e-01 6.83402002e-01 -5.85737944e-01 -1.07670352e-01 9.28417742e-02 6.04645610e-01 -6.94324493e-01 8.63761008e-01 -5.46446927e-02 2.12032542e-01 -1.82604745e-01 7.99534097e-03 -5.68944216e-01 1.77320540e-02 -6.59709632e-01 -2.99228400e-01 1.24421751e+00 2.48763382e-01 -6.13464773e-01 8.88203681e-01 7.72542804e-02 -2.25786015e-01 -5.29942453e-01 -8.43422413e-01 -7.62426555e-01 -1.58078164e-01 -5.90652704e-01 3.15063268e-01 9.31876600e-01 7.11110458e-02 2.47237951e-01 -6.04396820e-01 -1.50171891e-01 4.70647037e-01 1.78168297e-01 9.46281731e-01 -1.16737664e+00 -1.01111494e-01 -7.64905632e-01 -4.19785857e-01 -1.70360744e+00 -1.55724406e-01 -9.83120024e-01 1.67724058e-01 -1.64351952e+00 6.28667176e-01 -4.74149026e-02 -5.82514629e-02 8.28849673e-01 -4.25199002e-01 2.87064403e-01 5.37980080e-01 4.88319784e-01 -1.16398728e+00 6.26307189e-01 1.07166922e+00 -4.75551516e-01 6.59828112e-02 -3.04238468e-01 -4.80570346e-01 3.95945698e-01 4.63183254e-01 -2.54881859e-01 -1.24913044e-01 -8.51797581e-01 -3.70559879e-02 -2.94511378e-01 3.33751142e-01 -8.64245713e-01 5.57917476e-01 2.12554723e-01 5.54543376e-01 -1.10460138e+00 2.40958482e-02 -5.86013556e-01 -7.96691060e-01 3.21486980e-01 -4.14501965e-01 -3.16088408e-01 4.64712143e-01 5.80460966e-01 3.22787762e-02 1.54019194e-02 4.43545192e-01 3.46949667e-01 -6.74651980e-01 3.55210543e-01 -4.83378708e-01 -1.13683604e-01 7.88370967e-01 -2.27914125e-01 -6.75900519e-01 -1.03413776e-01 -2.64866322e-01 3.53771061e-01 2.96209037e-01 7.14115202e-01 8.64422202e-01 -9.69712675e-01 -9.09791708e-01 2.11741820e-01 3.86099339e-01 1.19581237e-01 1.97331429e-01 9.05994833e-01 -6.68165445e-01 9.76251841e-01 3.34923536e-01 -8.48030329e-01 -1.49778390e+00 4.94669944e-01 2.34784886e-01 -4.01701272e-01 -1.17380774e+00 8.51634145e-01 3.12082708e-01 -3.04976165e-01 6.87021792e-01 -2.91960388e-01 1.21229462e-01 -8.97995904e-02 8.66891384e-01 4.65845317e-01 3.36117327e-01 -2.21192479e-01 -3.72155398e-01 6.62224710e-01 -8.11617851e-01 1.70881465e-01 1.06377816e+00 -2.19226718e-01 2.21785843e-01 2.90843219e-01 7.51911342e-01 -1.37073994e-01 -9.84307706e-01 -5.50711691e-01 -1.58402491e-02 -5.35411000e-01 4.19427276e-01 -1.08801270e+00 -1.02215350e+00 1.14605272e+00 7.32688606e-01 7.26653561e-02 1.08830488e+00 -9.20919105e-02 1.10451937e+00 8.22529316e-01 -7.56881153e-03 -1.30694997e+00 3.12013596e-01 5.97057939e-01 8.04726601e-01 -1.35666311e+00 4.33877185e-02 -3.73986542e-01 -4.60440695e-01 1.37921751e+00 5.97802937e-01 7.35031441e-02 1.27897039e-01 4.27895963e-01 8.28151852e-02 -2.85846144e-01 -6.19247794e-01 -2.53292561e-01 5.24992943e-01 1.80455789e-01 5.03520131e-01 -1.48919970e-02 -1.26736969e-01 4.18123484e-01 2.57649839e-01 3.50846574e-02 3.49446721e-02 1.11772871e+00 -5.85476100e-01 -7.37720966e-01 -3.45794916e-01 7.31243312e-01 -4.53788877e-01 -5.03611505e-01 -7.92922318e-01 8.71736825e-01 -3.90309453e-01 7.38275528e-01 1.06896721e-01 -4.08955634e-01 2.12942556e-01 7.65947178e-02 8.77693295e-02 -5.95610082e-01 -3.91658068e-01 3.47621679e-01 -1.98627859e-01 -4.39481825e-01 6.09088317e-02 -5.77965498e-01 -1.41262639e+00 -4.83803481e-01 -7.77962089e-01 -4.17635202e-01 6.67301655e-01 1.01611578e+00 5.98829687e-01 4.45654392e-01 4.27263618e-01 -8.10440063e-01 -3.11824352e-01 -1.09378779e+00 -5.21107316e-01 2.23827183e-01 3.74470621e-01 -4.07462746e-01 -1.26487464e-01 1.79141730e-01]
[11.952794075012207, 2.2958860397338867]
f4bcc869-96c8-4ce5-9035-9b5a776830e5
test-time-style-shifting-handling-arbitrary
2306.04911
null
https://arxiv.org/abs/2306.04911v2
https://arxiv.org/pdf/2306.04911v2.pdf
Test-Time Style Shifting: Handling Arbitrary Styles in Domain Generalization
In domain generalization (DG), the target domain is unknown when the model is being trained, and the trained model should successfully work on an arbitrary (and possibly unseen) target domain during inference. This is a difficult problem, and despite active studies in recent years, it remains a great challenge. In this paper, we take a simple yet effective approach to tackle this issue. We propose test-time style shifting, which shifts the style of the test sample (that has a large style gap with the source domains) to the nearest source domain that the model is already familiar with, before making the prediction. This strategy enables the model to handle any target domains with arbitrary style statistics, without additional model update at test-time. Additionally, we propose style balancing, which provides a great platform for maximizing the advantage of test-time style shifting by handling the DG-specific imbalance issues. The proposed ideas are easy to implement and successfully work in conjunction with various other DG schemes. Experimental results on different datasets show the effectiveness of our methods.
['Jaekyun Moon', 'Soyeong Kim', 'Dong-Jun Han', 'Jungwuk Park']
2023-06-08
null
null
null
null
['domain-generalization']
['methodology']
[ 2.77258337e-01 -1.92746118e-01 -3.23702514e-01 -5.85024536e-01 -5.41739702e-01 -7.13180482e-01 3.51578414e-01 -1.48977175e-01 -6.49062991e-02 1.15585792e+00 -2.59952933e-01 -9.43528190e-02 -2.16165736e-01 -9.34465647e-01 -6.67962670e-01 -8.28982711e-01 3.19345564e-01 9.36974585e-01 4.72617656e-01 -1.20026879e-01 3.26152086e-01 2.82178730e-01 -1.48171127e+00 1.40678078e-01 1.36502600e+00 9.85313892e-01 4.17883545e-01 2.01038226e-01 -2.26933405e-01 6.76308692e-01 -9.66401815e-01 -5.11109948e-01 1.62610620e-01 -4.94795799e-01 -7.43613720e-01 1.37811020e-01 3.25423479e-01 -2.98545867e-01 5.09690829e-02 1.08780694e+00 6.50519252e-01 9.09581408e-02 6.40890777e-01 -1.36922359e+00 -5.20134747e-01 4.10035849e-01 -4.24914777e-01 1.47403568e-01 3.95651720e-02 -9.56504494e-02 6.04878366e-01 -8.21588397e-01 5.74320912e-01 1.18211937e+00 4.80867803e-01 7.16503382e-01 -1.14125299e+00 -9.20947790e-01 4.24341083e-01 3.75641584e-01 -1.32311893e+00 -3.44144404e-01 1.10914981e+00 -3.67139310e-01 3.64319503e-01 4.70690010e-03 2.89024144e-01 1.20976412e+00 1.81049667e-02 8.65077138e-01 1.18921959e+00 -3.57154042e-01 5.32144248e-01 5.41774213e-01 9.56673622e-02 6.23053238e-02 2.53486186e-01 -2.22419426e-01 -3.27881813e-01 -2.38852546e-01 5.08459866e-01 -7.02125058e-02 -4.27825063e-01 -6.19251966e-01 -1.04275012e+00 5.26414037e-01 1.82679057e-01 2.76739448e-01 -8.29859376e-02 -5.21713853e-01 3.13023180e-01 4.03243959e-01 7.69963682e-01 2.78491199e-01 -7.91079462e-01 -1.61489308e-01 -1.12400377e+00 4.05617148e-01 8.29068840e-01 1.16388607e+00 6.24813378e-01 -5.79487495e-02 9.80687235e-03 1.17926228e+00 4.84318822e-04 5.08990288e-01 6.51334763e-01 -4.93459940e-01 6.87684536e-01 8.03390622e-01 1.07144736e-01 -7.27860570e-01 -1.79840967e-01 -7.70494282e-01 -8.41741681e-01 1.23528495e-01 6.66223109e-01 -1.93529844e-01 -7.29083776e-01 1.89157259e+00 6.09862089e-01 3.97967756e-01 1.84614956e-02 6.74784482e-01 4.10362571e-01 6.23851061e-01 -1.48938259e-03 -3.25010419e-01 9.84774053e-01 -8.16679597e-01 -4.57177043e-01 -4.83048618e-01 6.69252992e-01 -8.19104254e-01 1.08758044e+00 7.64122844e-01 -8.82087529e-01 -8.47281396e-01 -1.09986925e+00 2.24806532e-01 -1.99292138e-01 1.42907485e-01 3.42536449e-01 7.04594016e-01 -6.89962506e-01 6.65466607e-01 -4.23201680e-01 -3.40568572e-01 2.89434254e-01 3.56819421e-01 -7.53684714e-02 -4.05896813e-01 -1.24339652e+00 7.78672159e-01 7.12333858e-01 -2.70688720e-02 -6.30482674e-01 -7.16770589e-01 -4.06384051e-01 -1.41921490e-01 5.37836552e-01 -6.29748106e-01 1.17072380e+00 -1.24293315e+00 -1.31223226e+00 6.40117764e-01 -3.86388153e-01 -1.07161947e-01 7.38449991e-01 -2.17094645e-01 -7.30917454e-01 -3.04158181e-01 1.24414980e-01 3.44970375e-01 9.78115261e-01 -1.28797221e+00 -7.19852865e-01 -5.80576837e-01 -5.52793071e-02 3.72975171e-01 -6.10898197e-01 -2.91847289e-01 -4.20899898e-01 -8.43787968e-01 2.41821095e-01 -1.00460923e+00 1.74214110e-01 -6.49161637e-03 -2.11887464e-01 -4.54637796e-01 9.37215865e-01 -5.22337258e-01 1.50678205e+00 -2.16991043e+00 2.38893420e-01 2.69397855e-01 -3.92576158e-02 4.11564440e-01 6.49438873e-02 2.07169384e-01 -4.02758606e-02 -5.95923886e-02 -4.00390565e-01 -1.69515759e-01 -1.56555399e-01 4.03920472e-01 -5.11898041e-01 3.37335654e-02 2.64702946e-01 3.35108787e-01 -7.97488332e-01 -5.83833635e-01 -1.30624339e-01 1.01786822e-01 -6.97985113e-01 3.66945684e-01 -3.85609865e-01 6.04413509e-01 -6.89556122e-01 6.07759714e-01 1.11459696e+00 -2.49744117e-01 4.89770383e-01 6.47295862e-02 2.53728986e-01 3.18431437e-01 -1.58196735e+00 1.45059943e+00 -4.01814789e-01 1.02458268e-01 -2.66078889e-01 -1.22682762e+00 1.36859417e+00 1.70928184e-02 -1.20158069e-01 -4.74786758e-01 -1.37564868e-01 3.89058024e-01 1.15395918e-01 -3.72507840e-01 3.40428263e-01 -3.05667937e-01 -4.12080102e-02 2.98462212e-01 8.01779479e-02 2.59721130e-02 2.38668859e-01 -2.66039222e-01 7.81090379e-01 2.84121692e-01 2.79480189e-01 -3.06567639e-01 7.52848089e-01 -3.59245837e-02 1.11412621e+00 5.79332650e-01 -1.93921089e-01 5.34865677e-01 5.16614914e-01 -2.70864069e-01 -9.31821227e-01 -1.07481527e+00 -2.89464474e-01 1.02386582e+00 2.75206208e-01 -3.17860544e-02 -6.96736872e-01 -9.83660221e-01 -1.78828966e-02 8.76929879e-01 -5.29468894e-01 -2.69649684e-01 -7.68861830e-01 -6.14510298e-01 2.66751736e-01 6.03698671e-01 7.75482833e-01 -9.12417531e-01 1.35891363e-01 3.96836579e-01 -2.42331728e-01 -7.64290988e-01 -2.15294778e-01 1.37536377e-01 -1.31463969e+00 -8.83654416e-01 -8.43272507e-01 -1.09486914e+00 7.30303764e-01 1.28205374e-01 1.14368451e+00 -1.49321267e-02 2.84976006e-01 -2.47238994e-01 -3.81598800e-01 -3.83120596e-01 -4.22995120e-01 3.66899669e-01 8.05077143e-03 9.63899270e-02 5.45046151e-01 -7.43334591e-01 -4.71034884e-01 7.92336583e-01 -8.61343503e-01 -1.36159629e-01 5.16812384e-01 1.01204646e+00 6.99576318e-01 5.03009737e-01 1.09150326e+00 -1.18393350e+00 4.74265069e-01 -7.06333578e-01 -4.18914735e-01 4.46851015e-01 -7.39935935e-01 -3.50076444e-02 1.05252838e+00 -7.16058612e-01 -1.26416755e+00 -2.08742812e-01 -2.09326409e-02 -3.16421241e-01 -3.25152397e-01 3.18671584e-01 -7.49902010e-01 1.63061589e-01 6.51151836e-01 4.44818258e-01 -6.49797842e-02 -8.62099528e-01 -1.62596494e-01 7.68547833e-01 1.39049500e-01 -8.42010796e-01 8.83409500e-01 1.89257249e-01 -2.56102622e-01 -4.53038990e-01 -9.64137495e-01 -1.52536377e-01 -7.77243853e-01 4.30324450e-02 2.95289755e-01 -9.01212692e-01 -9.16690677e-02 7.16286242e-01 -9.31503057e-01 -3.50338995e-01 -1.75631624e-02 2.64511973e-01 -1.64246187e-01 3.70460540e-01 -1.62410103e-02 -6.58303142e-01 -5.90984859e-02 -1.05621922e+00 8.06812942e-01 3.14405173e-01 -2.79412121e-01 -1.26810384e+00 -4.48909178e-02 3.83927315e-01 3.32916617e-01 -4.25784588e-02 1.16761112e+00 -9.32112932e-01 -5.10158837e-01 -1.84535270e-03 -1.12719528e-01 6.90127075e-01 1.35840982e-01 -1.86427578e-01 -1.03973961e+00 -4.18322086e-01 2.78219551e-01 -3.03110540e-01 6.34935975e-01 1.07085742e-01 1.48903000e+00 -2.82705259e-02 -4.55623358e-01 3.19374204e-01 1.23995137e+00 5.07126868e-01 5.70374310e-01 3.36951882e-01 4.62722421e-01 3.86750847e-01 1.04843092e+00 3.93138349e-01 3.56852472e-01 7.83541203e-01 3.20089795e-02 1.09810308e-01 -4.14876034e-03 -3.11993390e-01 3.64346296e-01 8.30653608e-01 1.54140666e-01 -3.41006070e-01 -7.79992640e-01 5.99406719e-01 -1.66485262e+00 -7.89333701e-01 1.08034782e-01 2.48642659e+00 1.12653315e+00 6.19023204e-01 1.02826580e-01 4.04566020e-01 8.80264342e-01 -8.00851509e-02 -8.63574862e-01 -3.37591797e-01 -1.18791610e-01 2.46615723e-01 -1.39693972e-02 1.83879182e-01 -1.04944229e+00 7.10783601e-01 5.70793438e+00 1.28523266e+00 -1.29464006e+00 -2.16176696e-02 6.92730904e-01 3.64270695e-02 -2.80974865e-01 -8.81844312e-02 -1.05436206e+00 8.84210169e-01 5.73055685e-01 -2.70417929e-01 3.62064570e-01 1.26324654e+00 -4.20081504e-02 -1.83551252e-01 -1.48150885e+00 7.25379169e-01 5.27925566e-02 -7.85485506e-01 2.15427801e-02 -8.02950859e-02 7.59240985e-01 -5.47002554e-01 2.65356805e-02 7.33873427e-01 -1.41733527e-01 -5.27026296e-01 5.55065155e-01 3.08450043e-01 7.53258824e-01 -9.51664388e-01 7.52028465e-01 6.91245139e-01 -9.05732751e-01 -1.06006309e-01 -6.54062688e-01 -1.24432653e-01 -2.45287210e-01 1.01414263e+00 -1.01666331e+00 6.05469346e-01 5.50108016e-01 6.87862873e-01 -7.13607430e-01 1.04991877e+00 -3.03394735e-01 7.42019296e-01 -6.47627935e-02 -8.28519240e-02 -3.38844806e-01 -8.87283087e-02 5.10703921e-01 8.04560304e-01 6.29550159e-01 -2.18910575e-01 3.05635422e-01 6.94909632e-01 -1.12306990e-01 1.06583886e-01 -7.23241031e-01 3.00737232e-01 8.07366967e-01 9.19866085e-01 -5.89903712e-01 -5.49003601e-01 -2.16362149e-01 9.92885888e-01 3.86806577e-01 2.84601122e-01 -9.30252135e-01 -3.53650242e-01 5.32503545e-01 1.80566669e-01 2.96447635e-01 9.06590298e-02 -5.71601987e-01 -1.22852409e+00 5.65797567e-01 -1.00438583e+00 5.23632646e-01 -6.56688929e-01 -1.62215865e+00 4.67898101e-01 -6.01348877e-02 -1.86908197e+00 -1.76769391e-01 -4.85491425e-01 -5.80555260e-01 8.93153846e-01 -1.50218558e+00 -8.91351700e-01 -1.36166245e-01 6.30968869e-01 6.18818641e-01 -1.60236090e-01 7.28140712e-01 5.15547633e-01 -5.22479415e-01 9.28380370e-01 4.56632584e-01 -1.45719439e-01 1.14604616e+00 -1.16970193e+00 1.50937364e-01 7.29671597e-01 -3.41132134e-01 6.38598442e-01 5.74462950e-01 -8.13402116e-01 -1.10336077e+00 -1.31692064e+00 1.01964247e+00 -3.97154808e-01 4.75968659e-01 -4.44741219e-01 -1.25146997e+00 5.31061113e-01 -1.29468784e-01 -2.86142290e-01 8.45430970e-01 3.50276589e-01 -2.40565464e-01 -5.31971276e-01 -1.33053124e+00 5.02012610e-01 1.12774551e+00 -2.07257912e-01 -9.22991395e-01 2.84624130e-01 5.48860252e-01 -4.70840514e-01 -8.02245080e-01 5.73745012e-01 3.45760882e-01 -9.09192562e-01 8.19876134e-01 -3.61098558e-01 3.97775590e-01 -4.72530663e-01 -1.26386080e-02 -1.62563694e+00 -3.01022172e-01 -1.76715985e-01 -3.52605022e-02 1.69538379e+00 4.55032647e-01 -7.80595899e-01 8.25466454e-01 4.86051857e-01 -2.82897707e-02 -6.56776547e-01 -9.17891860e-01 -1.02420306e+00 2.56765723e-01 -2.59076744e-01 8.26541901e-01 1.16225326e+00 -1.83679491e-01 2.92490065e-01 -4.28134620e-01 2.09484085e-01 5.57719886e-01 4.69024211e-01 8.85679543e-01 -1.52235520e+00 -4.92296129e-01 -1.92640662e-01 -2.24683583e-01 -1.32829940e+00 7.77675658e-02 -9.01835918e-01 -1.67294994e-01 -1.08486998e+00 1.50345266e-01 -7.47137189e-01 -4.15412903e-01 3.15295398e-01 -5.29010296e-01 -5.17739840e-02 -6.35706633e-02 1.79632694e-01 -4.93790358e-01 4.87613738e-01 1.54514503e+00 -3.74109372e-02 -1.85890421e-01 3.20937604e-01 -8.73563051e-01 6.01926744e-01 8.82964313e-01 -7.03022778e-01 -7.90505350e-01 -3.28984171e-01 -3.70099209e-02 -6.44864365e-02 1.64412066e-01 -1.11859071e+00 4.91256714e-02 -1.83491066e-01 7.62301385e-01 -5.54292798e-01 1.38811991e-01 -9.41849709e-01 1.01329677e-01 2.65631706e-01 -1.99484900e-01 -2.31724575e-01 2.70968825e-01 5.02971828e-01 -2.96200484e-01 -3.67318690e-01 9.24806058e-01 2.40167171e-01 -7.89522231e-01 1.66250274e-01 1.76921606e-01 3.56050491e-01 1.12255967e+00 -3.14816862e-01 -3.01279515e-01 -4.05640043e-02 -7.99461424e-01 2.75960833e-01 6.06767654e-01 4.80276227e-01 3.78458530e-01 -1.41360998e+00 -6.17954552e-01 4.22820330e-01 2.58006692e-01 2.63102382e-01 4.19602305e-01 5.24307787e-01 -6.79740831e-02 -1.73431877e-02 -1.80788651e-01 -7.59501696e-01 -1.06533563e+00 6.46081924e-01 7.86758289e-02 -4.29421127e-01 -2.87521243e-01 7.99412847e-01 4.88402218e-01 -7.06247747e-01 1.31021544e-01 -2.41539642e-01 -1.32008240e-01 8.24772418e-02 5.39610267e-01 3.11174333e-01 2.86544979e-01 -7.37596825e-02 -3.21094632e-01 5.77210903e-01 -3.20301652e-01 3.46886396e-01 1.22817397e+00 -1.30347043e-01 -9.11652520e-02 7.68112719e-01 9.72682953e-01 -6.21024966e-02 -1.24538708e+00 -5.23573756e-01 2.26119012e-02 -5.87241411e-01 -2.84044683e-01 -1.09575462e+00 -8.55266809e-01 9.27385688e-01 5.60879409e-01 2.37961173e-01 1.42331803e+00 -1.95310682e-01 6.73485398e-01 1.79553807e-01 5.80863535e-01 -1.33322930e+00 -2.15078350e-02 4.91578013e-01 8.31077218e-01 -1.17953718e+00 -1.66381866e-01 -4.45875615e-01 -5.73513687e-01 1.08487070e+00 1.03272438e+00 -6.76223636e-02 6.43037558e-01 -3.94492596e-02 -8.27962235e-02 3.16078812e-01 -7.64629006e-01 3.11904967e-01 2.49386549e-01 5.87459385e-01 3.14939886e-01 1.22118458e-01 -3.19243193e-01 8.84081781e-01 -1.14271447e-01 2.32836217e-01 2.90374398e-01 9.18536603e-01 -5.45208097e-01 -1.55858350e+00 -4.94197309e-01 4.83849257e-01 -2.16172755e-01 3.95528339e-02 -3.27107042e-01 8.83835614e-01 4.36866730e-01 7.77025044e-01 -9.58394408e-02 -3.64012420e-01 4.82294321e-01 5.02713919e-01 3.91105980e-01 -6.92129910e-01 -1.93621367e-01 4.28494550e-02 9.00753140e-02 -1.86886176e-01 -1.92361861e-01 -6.75629675e-01 -1.02148104e+00 -3.06162238e-01 -3.06739926e-01 1.61026672e-01 3.25970143e-01 1.00782573e+00 3.65485847e-01 4.23685074e-01 9.80508327e-01 -4.76045221e-01 -6.70180023e-01 -1.00059426e+00 -7.69383609e-01 4.74712253e-01 3.47508229e-02 -9.78589952e-01 -3.74547064e-01 4.07607295e-02]
[10.16139030456543, 3.2389824390411377]
e30f62c4-f011-4e6f-a91b-8fd40001209f
materials-property-prediction-with
2211.02235
null
https://arxiv.org/abs/2211.02235v2
https://arxiv.org/pdf/2211.02235v2.pdf
Materials Property Prediction with Uncertainty Quantification: A Benchmark Study
Uncertainty quantification (UQ) has increasing importance in building robust high-performance and generalizable materials property prediction models. It can also be used in active learning to train better models by focusing on getting new training data from uncertain regions. There are several categories of UQ methods each considering different types of uncertainty sources. Here we conduct a comprehensive evaluation on the UQ methods for graph neural network based materials property prediction and evaluate how they truly reflect the uncertainty that we want in error bound estimation or active learning. Our experimental results over four crystal materials datasets (including formation energy, adsorption energy, total energy, and band gap properties) show that the popular ensemble methods for uncertainty estimation is NOT the best choice for UQ in materials property prediction. For the convenience of the community, all the source code and data sets can be accessed freely at \url{https://github.com/usccolumbia/materialsUQ}.
['Jianjun Hu', 'Sadman Sadeed Omee', 'Rongzhi Dong', 'Daniel Varivoda']
2022-11-04
null
null
null
null
['formation-energy', 'total-energy']
['miscellaneous', 'miscellaneous']
[ 8.97963867e-02 1.30978882e-01 -4.62065727e-01 -4.30081666e-01 -1.11583638e+00 -2.50075191e-01 2.21249253e-01 6.19737685e-01 6.78997859e-02 1.45734537e+00 -2.05518231e-02 -2.20588505e-01 -4.47798759e-01 -1.28131831e+00 -9.86585379e-01 -1.09141755e+00 -8.21270496e-02 7.27109671e-01 2.49425232e-01 4.71591391e-02 4.59361136e-01 3.54042977e-01 -1.40632749e+00 -5.41176386e-02 1.41667306e+00 1.42484927e+00 4.11886461e-02 3.49665545e-02 -8.24383944e-02 6.14031553e-01 -9.11433026e-02 -1.82705626e-01 -7.93374926e-02 5.77052906e-02 -9.17214274e-01 -9.34972286e-01 -1.55091122e-01 5.62095046e-02 -9.73670650e-03 1.12860918e+00 6.39667392e-01 4.02126759e-01 1.18962157e+00 -1.07921505e+00 -6.67999685e-01 1.18920290e+00 -6.30043447e-02 -2.01424137e-02 4.64478910e-01 -1.38128653e-01 1.06690526e+00 -8.62656176e-01 4.46359992e-01 5.78978360e-01 5.00855207e-01 7.16586292e-01 -1.01964259e+00 -9.07835662e-01 -9.13129747e-02 4.20794815e-01 -1.44736135e+00 -5.16183257e-01 1.02158260e+00 -4.86067116e-01 1.12048936e+00 5.53943276e-01 2.89700925e-01 9.77143109e-01 2.94185668e-01 6.42938316e-01 1.06977391e+00 -5.23795187e-01 6.54875576e-01 9.61235836e-02 5.55286825e-01 4.95364934e-01 6.79826558e-01 3.47393334e-01 -5.56017339e-01 -3.40808332e-01 3.56400043e-01 -2.00463027e-01 -5.06112874e-01 -4.20580566e-01 -8.28898430e-01 5.71309984e-01 6.90406919e-01 1.28404647e-01 -3.18146080e-01 3.28644186e-01 3.28931352e-03 -3.62027064e-02 1.01001430e+00 7.63790846e-01 -7.47140050e-01 -1.55520499e-01 -5.17777503e-01 3.67228091e-02 7.10051477e-01 8.72741520e-01 8.70537877e-01 1.77309494e-02 3.97972353e-02 7.53241420e-01 5.67421317e-01 4.80702758e-01 -1.79470584e-01 -7.04837203e-01 3.60521615e-01 5.28032720e-01 3.78755450e-01 -2.85151064e-01 -3.53765041e-01 -1.00691259e-01 -6.77064121e-01 1.86715484e-01 1.11147277e-01 -2.44489744e-01 -8.40986490e-01 1.12978530e+00 1.96324840e-01 -1.58104986e-01 -1.51881456e-01 4.76053417e-01 1.39573944e+00 8.89694989e-01 1.77282408e-01 -3.85176688e-01 5.03009677e-01 -7.09816098e-01 -4.27617848e-01 1.42032370e-01 2.72278219e-01 -4.32841003e-01 4.42044616e-01 3.82401347e-01 -9.90113080e-01 -1.09825872e-01 -1.25469601e+00 1.83962643e-01 -7.78274775e-01 -1.95021510e-01 1.07738650e+00 6.91952705e-01 -4.72258151e-01 1.22768402e+00 -1.03271449e+00 2.16404259e-01 5.56525052e-01 5.21915436e-01 -1.10702731e-01 3.42348814e-02 -1.43247497e+00 8.55429947e-01 7.83246756e-01 7.66331479e-02 -5.74786305e-01 -8.85322630e-01 -5.95491886e-01 -2.08705485e-01 4.97226804e-01 -3.90306175e-01 8.06874871e-01 -2.98245102e-01 -1.50188601e+00 2.74914831e-01 1.85238540e-01 -6.22240342e-02 3.79882097e-01 -9.33497772e-02 -4.73063976e-01 -3.55913699e-01 -3.44167382e-01 1.78097472e-01 5.10184348e-01 -1.28098178e+00 3.19369137e-02 -3.68593752e-01 -2.80767024e-01 -1.78437144e-01 8.02310109e-02 -2.79972136e-01 8.03707317e-02 -3.49293262e-01 4.08693999e-01 -6.99841738e-01 -1.88741788e-01 -2.82515287e-01 -5.91271341e-01 -6.59477293e-01 1.91886857e-01 -5.37232816e-01 1.27962887e+00 -1.51607335e+00 1.79204717e-01 7.05981612e-01 1.92692846e-01 -5.18212058e-02 4.29100722e-01 6.92043781e-01 -1.55819282e-01 3.95747006e-01 -6.36376441e-01 2.08827958e-01 2.22220153e-01 -2.57999539e-01 1.45496175e-01 2.50137269e-01 2.09162369e-01 1.12441695e+00 -8.73595417e-01 -5.82148656e-02 2.88975626e-01 4.67226237e-01 -9.98161659e-02 6.75321445e-02 -6.69204652e-01 6.19814515e-01 -5.79089165e-01 1.06311452e+00 7.84344196e-01 -4.73029971e-01 -6.40827119e-02 -2.63121694e-01 -1.47663832e-01 4.15768057e-01 -1.08567548e+00 1.42255151e+00 -2.32866719e-01 2.67954797e-01 -4.29558158e-01 -9.03404057e-01 1.11608875e+00 2.18218505e-01 7.73919404e-01 -5.31828403e-01 2.73163915e-01 5.32587409e-01 -4.18560728e-02 -3.24342787e-01 3.92568856e-01 1.15115680e-01 6.59648627e-02 2.72992611e-01 2.22884819e-01 -2.95765013e-01 2.63546526e-01 4.50404808e-02 7.62351155e-01 2.43954957e-01 2.76509285e-01 -6.47663236e-01 3.82603496e-01 -3.33057374e-01 4.83163208e-01 6.79976463e-01 1.51192732e-02 3.64995182e-01 1.36670962e-01 -5.75181544e-02 -1.03252327e+00 -1.25794637e+00 -7.62179255e-01 6.93486571e-01 2.41207629e-01 -5.86741567e-01 -3.04244906e-01 -3.54841709e-01 8.79271179e-02 8.18203926e-01 -5.61378062e-01 -1.86058909e-01 8.73369947e-02 -1.10152531e+00 -1.77017197e-01 6.70399308e-01 4.25974607e-01 -9.24428642e-01 2.88323581e-01 8.79900455e-02 -1.22996315e-01 -4.48649287e-01 1.96150154e-01 5.68792820e-01 -7.11456299e-01 -1.01057255e+00 -5.86044371e-01 -1.87612250e-01 6.51656568e-01 -4.94107395e-01 1.17993033e+00 -3.01139895e-02 6.19179979e-02 3.47348183e-01 -5.27805924e-01 -9.19928133e-01 -6.07447267e-01 1.30626485e-01 1.45364687e-01 -6.65805221e-01 3.69317353e-01 -5.50457120e-01 -5.22900701e-01 1.85961977e-01 -4.97361958e-01 -9.91458520e-02 2.79148549e-01 4.46703047e-01 8.75393033e-01 3.47470313e-01 6.20019734e-01 -1.09714091e+00 5.81013381e-01 -6.99405849e-01 -8.03624392e-01 5.47823906e-01 -1.31692672e+00 3.31917882e-01 1.13629535e-01 3.03006694e-02 -1.08548498e+00 -1.54942572e-01 -5.00467658e-01 1.99244678e-01 2.64973771e-02 6.61774397e-01 -4.57738161e-01 -2.99195945e-01 8.28304410e-01 -2.16255262e-01 -4.90870208e-01 -3.57332796e-01 1.98010318e-02 7.79924750e-01 -1.64924741e-01 -1.03072381e+00 5.69355011e-01 -1.43274322e-01 1.68710753e-01 -6.35426044e-01 -6.35374129e-01 -3.56135935e-01 -5.72152674e-01 -6.07479453e-01 5.18083155e-01 -5.03407359e-01 -7.22759306e-01 4.75319147e-01 -6.55618727e-01 -2.99150109e-01 -1.99921548e-01 5.17449200e-01 -3.57864738e-01 2.64652789e-01 -2.72867709e-01 -1.10465765e+00 -8.70615065e-01 -1.11694515e+00 7.22275913e-01 4.25936639e-01 -9.82266068e-02 -1.23433745e+00 -5.17627075e-02 6.13898396e-01 6.06131911e-01 4.23265100e-01 1.21086764e+00 -5.19505739e-01 -7.80682445e-01 -3.26894641e-01 -2.80775269e-03 3.70191872e-01 2.79042751e-01 2.70071805e-01 -1.01867378e+00 -1.86756015e-01 -5.47804654e-01 -3.49071562e-01 1.24894214e+00 6.27247274e-01 1.42466247e+00 -5.65342568e-02 -4.26370442e-01 1.85934678e-01 1.75285161e+00 3.05927545e-01 8.41945648e-01 -1.06880106e-01 6.48054123e-01 2.65507042e-01 3.83095115e-01 4.07811821e-01 -2.33524889e-01 2.50355333e-01 5.38989246e-01 4.87971604e-01 2.05418497e-01 -1.70005158e-01 7.04253912e-02 7.40995705e-01 -9.60653245e-01 -5.23462653e-01 -1.34092772e+00 -1.04239546e-02 -1.85380578e+00 -9.18325543e-01 -2.54028201e-01 2.55373096e+00 7.55436778e-01 2.79728264e-01 -1.16977334e-01 2.56170928e-01 6.21703327e-01 -3.58013846e-02 -9.18114960e-01 -1.09375320e-01 2.76765283e-02 3.49451751e-01 7.25797951e-01 5.66365182e-01 -9.38528478e-01 5.59132516e-01 6.10966253e+00 1.08699536e+00 -1.16635633e+00 5.31925671e-02 6.13667011e-01 6.13083653e-02 -8.06313217e-01 -5.73152788e-02 -6.53351247e-01 5.47019720e-01 8.39419365e-01 -7.33431578e-02 2.91721970e-01 5.43270111e-01 -2.03744426e-01 -3.00654888e-01 -1.07480299e+00 9.16388214e-01 -5.30413270e-01 -1.76032865e+00 -3.40460867e-01 -1.41305849e-01 1.01640415e+00 3.15979481e-01 -1.55282304e-01 1.62001804e-01 2.39946812e-01 -9.88416433e-01 5.44909000e-01 1.02807975e+00 8.39696169e-01 -6.31376922e-01 7.28563488e-01 1.71124097e-02 -8.99580956e-01 1.23874776e-01 -4.99451876e-01 1.05681814e-01 -7.55832717e-02 1.02913165e+00 -6.19071126e-01 9.99752045e-01 7.42969513e-01 6.49110258e-01 -3.71564686e-01 1.10143721e+00 -2.42588699e-01 7.46077478e-01 -4.55281377e-01 -6.98133945e-01 -4.37086225e-01 -3.68123412e-01 6.24512494e-01 5.26254535e-01 3.35137814e-01 1.66915357e-01 -3.10114652e-01 1.18402982e+00 -3.51179183e-01 1.23474501e-01 -3.76866490e-01 -3.30274582e-01 7.05178678e-01 8.61442745e-01 -7.96506166e-01 1.01773128e-01 -2.03028321e-01 4.09479469e-01 2.45061472e-01 3.99413198e-01 -8.35922778e-01 -2.92668939e-01 1.94604620e-01 2.51603812e-01 -1.21395610e-01 -1.51231751e-01 -1.89610109e-01 -1.13807952e+00 -4.91252914e-03 -1.36242002e-01 1.63848236e-01 -9.88092780e-01 -1.53263450e+00 2.26382345e-01 3.45690578e-01 -9.59647954e-01 3.49741690e-02 -9.73664045e-01 -6.19735897e-01 6.52516723e-01 -1.16780949e+00 -9.23277617e-01 -2.77317941e-01 9.52631086e-02 -5.99702261e-02 -4.25500907e-02 9.59914923e-01 4.13545705e-02 -7.20184803e-01 3.52143407e-01 9.28032458e-01 -8.66801068e-02 5.10555148e-01 -1.32187796e+00 6.29143268e-02 5.28452158e-01 -1.69620648e-01 4.93900955e-01 8.95767748e-01 -9.13018405e-01 -1.26715887e+00 -8.77343357e-01 2.85808682e-01 -6.81519806e-01 7.20572829e-01 -2.81526744e-01 -8.53739142e-01 4.28030759e-01 -4.68213558e-02 -1.16142236e-01 1.02026212e+00 4.99974906e-01 -2.64448840e-02 -1.26414314e-01 -1.23399031e+00 -9.03184060e-03 1.01920879e+00 -2.68661290e-01 -8.26517865e-02 5.88166714e-01 6.05191946e-01 -2.88024276e-01 -1.54637074e+00 9.01296556e-01 6.72846317e-01 -8.35428774e-01 8.31719518e-01 -4.88939762e-01 4.81769741e-01 1.23737216e-01 -4.30393636e-01 -1.18890810e+00 -4.00940567e-01 -8.87436420e-02 -3.97202849e-01 1.31196725e+00 1.16647792e+00 -9.20074046e-01 9.19347882e-01 1.26199257e+00 -9.04372185e-02 -1.18854702e+00 -8.43478918e-01 -8.57283413e-01 4.46666092e-01 -6.01164043e-01 1.01246619e+00 6.93614960e-01 9.53348950e-02 2.25415409e-01 -2.06191137e-01 5.47069833e-02 8.38033319e-01 1.61647901e-01 1.77561082e-02 -1.74689484e+00 -2.76699644e-02 -2.21263885e-01 -2.50084251e-01 -3.47006351e-01 1.39546290e-01 -1.03968012e+00 -8.34334642e-02 -1.87492144e+00 1.79411262e-01 -8.91838670e-01 -7.28195906e-01 4.17092919e-01 -3.67802158e-02 -2.34590471e-02 -3.00088525e-01 2.84164041e-01 -4.98527437e-01 7.38753080e-01 1.21755695e+00 -6.29390717e-01 -1.25681669e-01 4.38576341e-01 -5.34216404e-01 2.85546869e-01 1.08907473e+00 -3.66454840e-01 -4.84315097e-01 -6.99976983e-04 1.04739714e+00 3.55193913e-02 1.05433106e-01 -1.13640010e+00 7.33499303e-02 -3.31533819e-01 5.77624083e-01 -5.48317611e-01 3.19556624e-01 -8.86755884e-01 5.34913242e-01 1.72619551e-01 -1.23316638e-01 -7.25974202e-01 1.63213223e-01 5.47680736e-01 7.94986039e-02 -7.00678468e-01 6.80443347e-01 -2.13841841e-01 -7.68145919e-01 8.03730905e-01 -1.23208538e-01 -4.15746450e-01 8.24431896e-01 -2.34152630e-01 -5.28495967e-01 -2.22451493e-01 -8.82067859e-01 2.18458831e-01 5.08118510e-01 1.56648979e-01 6.21834099e-01 -1.32843709e+00 -5.86433470e-01 -6.69753626e-02 4.78289366e-01 1.57564968e-01 3.34861368e-01 5.71069181e-01 -4.16883111e-01 4.87206817e-01 -5.16552962e-02 -3.08885515e-01 -9.18027163e-01 3.32296968e-01 4.72610116e-01 3.46018001e-03 2.14258850e-01 1.14842188e+00 -5.96113682e-01 -5.36676109e-01 -9.94431451e-02 -1.62768796e-01 -1.60141468e-01 -1.46624334e-02 -9.90983658e-03 9.11918283e-01 5.55091918e-01 -3.43219787e-01 -4.52220887e-01 3.30631703e-01 8.19273815e-02 4.30179805e-01 1.59673023e+00 1.18383199e-01 -4.13972706e-01 8.05174291e-01 9.91120040e-01 9.95391309e-02 -8.51343095e-01 -1.22905008e-01 -2.53138114e-02 -7.84785375e-02 3.13225418e-01 -1.08711231e+00 -9.15131807e-01 5.60161769e-01 7.27615595e-01 3.33855093e-01 9.21199441e-01 2.93827146e-01 3.92984509e-01 3.89240235e-01 7.87618101e-01 -1.31882787e+00 -2.05732450e-01 2.57219702e-01 1.01483917e+00 -1.61016428e+00 6.52043462e-01 -7.25829303e-01 -1.81528375e-01 1.17112470e+00 7.15705097e-01 2.79480010e-01 1.31903207e+00 -2.01280918e-02 -3.10837954e-01 -3.11700404e-01 -4.98741746e-01 3.48550119e-02 4.44952756e-01 5.98862290e-01 8.09508801e-01 4.46068972e-01 -3.69129717e-01 6.77141309e-01 -1.15360968e-01 -2.26012230e-01 2.85767734e-01 7.89608479e-01 -5.95134020e-01 -1.53862214e+00 -8.20499435e-02 1.06730461e+00 -4.84270342e-02 -6.20105565e-02 -4.38250065e-01 3.63178194e-01 7.83857796e-03 8.78182590e-01 -1.79013923e-01 -4.92526948e-01 -7.00059384e-02 1.75924987e-01 8.78208160e-01 -4.70512658e-01 1.46735385e-01 -5.10498822e-01 4.43762422e-01 -3.74080747e-01 -6.88057482e-01 -3.93013239e-01 -1.40591097e+00 -4.68413740e-01 -1.03836143e+00 6.37538195e-01 7.81413615e-01 6.78556979e-01 8.19861516e-02 3.49518776e-01 4.81757373e-01 -8.00666153e-01 -1.30104303e-01 -1.14782357e+00 -8.26648116e-01 -4.01777886e-02 -8.78683664e-03 -9.48856950e-01 -4.07464832e-01 -6.52586162e-01]
[5.208134174346924, 5.38541316986084]
55ff4b4b-95e6-46ac-9f8a-77c4fe256afc
minimum-barrier-salient-object-detection-at
null
null
http://openaccess.thecvf.com/content_iccv_2015/html/Zhang_Minimum_Barrier_Salient_ICCV_2015_paper.html
http://openaccess.thecvf.com/content_iccv_2015/papers/Zhang_Minimum_Barrier_Salient_ICCV_2015_paper.pdf
Minimum Barrier Salient Object Detection at 80 FPS
We propose a highly efficient, yet powerful, salient object detection method based on the Minimum Barrier Distance (MBD) Transform. The MBD transform is robust to pixel-value fluctuation, and thus can be effectively applied on raw pixels without region abstraction. We present an approximate MBD transform algorithm with 100X speedup over the exact algorithm. An error bound analysis is also provided. Powered by this fast MBD transform algorithm, the proposed salient object detection method runs at 80 FPS, and significantly outperforms previous methods with similar speed on four large benchmark datasets, and achieves comparable or better performance than state-of-the-art methods. Furthermore, a technique based on color whitening is proposed to extend our method to leverage the appearance-based backgroundness cue. This extended version further improves the performance, while still being one order of magnitude faster than all the other leading methods.
['Radomir Mech', 'Brian Price', 'Xiaohui Shen', 'Zhe Lin', 'Stan Sclaroff', 'Jianming Zhang']
2015-12-01
null
null
null
iccv-2015-12
['video-salient-object-detection']
['computer-vision']
[ 4.35142547e-01 -1.57782212e-01 -2.22284704e-01 1.67217806e-01 -8.51894975e-01 -3.92942846e-01 4.32754338e-01 3.04339021e-01 -4.36075628e-01 4.85366702e-01 -5.71700782e-02 -2.63942599e-01 5.01107275e-01 -6.08646572e-01 -7.25572228e-01 -7.83160985e-01 -8.30742717e-02 -2.32422575e-01 1.28047693e+00 -1.73302412e-01 4.78574127e-01 5.29758275e-01 -1.74822164e+00 8.67710039e-02 7.31322348e-01 1.38251698e+00 4.70919073e-01 7.01084077e-01 1.32123068e-01 7.73334801e-01 -4.02140230e-01 -5.99841326e-02 5.68944037e-01 -1.60675004e-01 -6.50955796e-01 2.60246117e-02 8.33091497e-01 -7.33406723e-01 -2.31958419e-01 1.07794952e+00 5.54483891e-01 2.44621664e-01 2.27897376e-01 -9.26233411e-01 -6.13260210e-01 2.71601290e-01 -1.23859465e+00 4.98029232e-01 2.05576956e-01 -9.96613875e-02 9.17549372e-01 -1.12848651e+00 5.94440162e-01 1.20953846e+00 5.42859554e-01 3.64353329e-01 -1.28463471e+00 -4.88382131e-01 4.72512037e-01 1.73538193e-01 -1.36298501e+00 -1.76120624e-01 7.35494912e-01 -4.19624858e-02 8.24095786e-01 4.06843960e-01 7.45001316e-01 5.95886588e-01 1.53404057e-01 1.26200271e+00 1.18469453e+00 -5.53976178e-01 2.95921534e-01 -1.06070884e-01 -1.00260094e-01 9.85159039e-01 3.92741650e-01 1.29662693e-01 -5.49566984e-01 -2.09656984e-01 1.06430924e+00 1.36320442e-01 -3.33560646e-01 -6.68859184e-01 -1.37160993e+00 6.63811207e-01 6.97552562e-01 -6.92206472e-02 -2.19619006e-01 4.17177945e-01 3.36236537e-01 -2.12178215e-01 6.81859255e-01 5.31245098e-02 -2.00571552e-01 -6.85998723e-02 -1.14103389e+00 2.76023060e-01 4.18016970e-01 9.93390262e-01 6.68962657e-01 1.27604594e-02 -4.64100599e-01 5.06662607e-01 4.71807383e-02 7.32335269e-01 1.22782789e-01 -1.07243335e+00 1.33892968e-01 5.34878492e-01 4.94850039e-01 -1.19833744e+00 -3.96995991e-01 -3.85311484e-01 -5.80653667e-01 6.90530062e-01 2.38169059e-01 2.24207088e-01 -9.13010418e-01 1.40566897e+00 8.41010571e-01 2.90544093e-01 -1.96082845e-01 1.17644489e+00 6.76261187e-01 6.69294715e-01 -1.03740387e-01 -1.94142058e-01 1.39035189e+00 -1.27150238e+00 -4.87270206e-01 -1.96797416e-01 2.63256967e-01 -7.29165614e-01 1.07719171e+00 5.03716171e-01 -1.25139713e+00 -4.44297999e-01 -1.16776049e+00 -3.92626166e-01 -1.87003568e-01 5.26472218e-02 8.71503055e-01 6.08358443e-01 -1.21803486e+00 3.48062366e-01 -9.19215977e-01 -3.91240537e-01 5.62710643e-01 1.96240589e-01 5.69398701e-02 1.28319398e-01 -6.09191120e-01 7.13699937e-01 9.28280428e-02 -1.42372459e-01 -6.69557214e-01 -8.91617000e-01 -8.33600581e-01 4.97443462e-03 4.27814841e-01 -5.88674366e-01 1.31354487e+00 -9.80487168e-01 -1.55553401e+00 9.51738179e-01 -4.71265525e-01 -7.84296513e-01 6.65558398e-01 -4.43766296e-01 -9.15131196e-02 5.82237184e-01 9.84831676e-02 8.92394781e-01 1.03177679e+00 -1.17807031e+00 -1.01934052e+00 -1.34760350e-01 -5.58806919e-02 8.27968195e-02 -4.63520348e-01 3.15608412e-01 -7.79770315e-01 -8.09407771e-01 1.35302916e-01 -6.59201562e-01 -3.30289990e-01 7.31807888e-01 -2.74298519e-01 1.38881683e-01 1.04925394e+00 -5.34250557e-01 1.18522143e+00 -2.25851917e+00 -2.00118184e-01 -1.16559163e-01 4.66201186e-01 3.91737580e-01 3.73185799e-02 3.08437776e-02 3.85318816e-01 -2.57455081e-01 -3.44578803e-01 -3.55596304e-01 -1.45763829e-01 -2.55706429e-01 -5.90816319e-01 6.79293752e-01 1.86649308e-01 8.77879024e-01 -1.01188028e+00 -6.03622437e-01 5.02304792e-01 4.87141728e-01 -2.35631630e-01 -1.46392271e-01 1.16893269e-01 -7.37799406e-02 -2.80550152e-01 1.03718197e+00 1.11488259e+00 -3.94758135e-01 -2.87155837e-01 -1.30105987e-01 -3.78042996e-01 -1.21161677e-01 -1.14539731e+00 1.55707002e+00 -1.92591071e-01 8.18995178e-01 1.94323912e-01 -7.26546049e-01 9.73730624e-01 -2.51801014e-01 4.78352517e-01 -8.42169821e-01 4.52447236e-02 1.14937186e-01 -4.80527341e-01 7.03134239e-02 7.77524233e-01 2.37324044e-01 1.78637221e-01 2.45339230e-01 -4.69910055e-01 8.06384832e-02 1.01139687e-01 3.16550285e-01 1.24814570e+00 2.31630296e-01 5.31117976e-01 -5.85367680e-01 4.67379153e-01 -8.78233537e-02 6.82853281e-01 9.14069831e-01 -7.20237315e-01 7.34486520e-01 2.29931638e-01 -7.02321649e-01 -7.33926594e-01 -1.32504261e+00 -1.93636820e-01 1.23252559e+00 1.06906140e+00 -2.69138098e-01 -7.73503959e-01 -4.24713910e-01 2.21862286e-01 2.62095124e-01 -7.76443243e-01 3.94936129e-02 -3.99662912e-01 -6.59670293e-01 2.31688619e-01 9.08268332e-01 7.99830496e-01 -7.58925080e-01 -1.44200027e+00 3.24644029e-01 -9.57518891e-02 -1.26998091e+00 -5.77452779e-01 -1.34540275e-01 -1.02583838e+00 -7.91994214e-01 -9.91104484e-01 -6.74701154e-01 5.50667882e-01 9.59397495e-01 9.81845856e-01 2.76212990e-01 -7.58174956e-01 2.35544264e-01 -5.45637906e-01 -5.10565996e-01 6.76194131e-02 -2.21426308e-01 -1.34705067e-01 8.06318447e-02 1.69650510e-01 -3.00742418e-01 -1.04024053e+00 3.41365844e-01 -9.04629052e-01 5.42754352e-01 6.96317673e-01 6.37597919e-01 9.81088877e-01 -3.52015465e-01 2.71498531e-01 -4.87676442e-01 -3.65413353e-02 7.33083114e-02 -9.68199790e-01 2.11628586e-01 -4.80416477e-01 -1.36490613e-02 3.87476504e-01 -4.67225343e-01 -1.12856972e+00 2.36247167e-01 2.38983288e-01 -3.69444311e-01 1.82924941e-01 -3.36690575e-01 9.30365622e-02 -5.55349827e-01 4.69058663e-01 2.21142367e-01 -1.81051075e-01 -3.20169300e-01 4.64813411e-01 2.25134671e-01 8.22427988e-01 -2.94774741e-01 8.83684278e-01 1.34265482e+00 4.99565452e-02 -7.76379585e-01 -6.92390442e-01 -7.73342311e-01 -5.37234664e-01 -1.83930025e-01 5.40248156e-01 -9.26017523e-01 -5.26053965e-01 4.72047389e-01 -1.06527305e+00 -5.59291303e-01 -1.83893785e-01 2.24307254e-01 -5.41706204e-01 5.33167958e-01 -7.72246957e-01 -1.07019973e+00 -6.50278091e-01 -8.74534905e-01 1.54428780e+00 3.83189172e-01 1.63115799e-01 -5.82710326e-01 -2.58724779e-01 2.22844146e-02 4.94147778e-01 5.58881640e-01 3.06915194e-01 2.48372369e-02 -8.59701276e-01 7.26935512e-04 -7.44880557e-01 -1.05298504e-01 1.49997314e-02 2.09341824e-01 -9.15808737e-01 -5.41517854e-01 -2.24710301e-01 6.59858510e-02 1.19533122e+00 7.44982898e-01 1.06892908e+00 -3.08656394e-02 -6.83232307e-01 8.05674016e-01 1.61063111e+00 -1.43031120e-01 6.44610584e-01 8.34396601e-01 5.00953436e-01 2.80783355e-01 1.09286094e+00 7.16535985e-01 3.21206897e-01 8.32957327e-01 7.09900796e-01 -8.10987353e-01 -3.84572089e-01 4.73396741e-02 5.40808856e-01 1.32779121e-01 -1.62472844e-01 8.35943371e-02 -4.62810397e-01 6.36380017e-01 -2.01363945e+00 -1.06490469e+00 -3.05227697e-01 2.19680524e+00 5.03834724e-01 1.78022936e-01 4.69236523e-01 4.59313691e-02 8.20919216e-01 2.68889457e-01 -7.71706522e-01 -2.21743405e-01 -3.43031555e-01 2.07902655e-01 8.58788192e-01 4.15854961e-01 -1.35592413e+00 1.05655515e+00 7.05912733e+00 7.31007695e-01 -1.16108847e+00 1.20002754e-01 6.50425911e-01 -2.31771976e-01 1.06196292e-02 -7.24293664e-02 -9.16051626e-01 2.88220167e-01 2.57068783e-01 -2.42254198e-01 2.16508046e-01 1.10373604e+00 3.09728384e-01 -5.38511097e-01 -6.10807419e-01 1.01305127e+00 3.24882120e-01 -1.45605361e+00 -2.46090323e-01 -5.52137829e-02 8.88895988e-01 7.25435838e-02 3.16243976e-01 -1.08478330e-01 1.28891930e-01 -5.10317028e-01 1.10309243e+00 3.02657951e-03 6.35072827e-01 -6.88304722e-01 5.88164866e-01 3.11164036e-02 -1.70017695e+00 -2.05559045e-01 -5.98718762e-01 -1.46686494e-01 1.70049325e-01 7.41271555e-01 -4.45809662e-01 2.99482256e-01 1.24257588e+00 7.23553538e-01 -8.62369716e-01 1.25296974e+00 -6.54569566e-02 4.02008414e-01 -4.59493876e-01 -2.23353267e-01 2.25061774e-01 8.50365683e-02 5.56845725e-01 1.44494128e+00 2.13891551e-01 -8.44052527e-03 1.42564625e-01 9.16824579e-01 1.35964915e-01 1.88351095e-01 -2.67093152e-01 6.63420260e-01 4.97000396e-01 1.53667045e+00 -1.31013465e+00 -4.97067094e-01 -5.54143131e-01 1.29903936e+00 2.04272285e-01 3.43843043e-01 -1.10406852e+00 -5.33513367e-01 5.68300843e-01 1.71920434e-01 8.86404395e-01 -5.27091585e-02 -2.77184784e-01 -9.54207063e-01 3.22084397e-01 -5.50356686e-01 3.66472572e-01 -7.79186845e-01 -8.68136227e-01 3.80419761e-01 -7.67760798e-02 -1.50381589e+00 2.09874049e-01 -6.43459618e-01 -5.78760862e-01 4.93434042e-01 -2.02351069e+00 -1.13431597e+00 -5.11124313e-01 5.51036298e-01 5.92740119e-01 3.71294856e-01 4.54038620e-01 -4.60113734e-02 -4.03380811e-01 5.51113605e-01 3.07442248e-01 -1.30957467e-02 6.34006023e-01 -1.23300099e+00 6.13525987e-01 1.39177525e+00 2.32192315e-03 4.14173841e-01 7.09150970e-01 -3.29650998e-01 -1.48842812e+00 -1.16110682e+00 1.56545937e-01 -2.50525415e-01 5.48326910e-01 -4.81378347e-01 -9.06781256e-01 3.40305239e-01 6.98713586e-02 5.20165384e-01 2.24165455e-01 -3.47236037e-01 -3.68523657e-01 -3.17751020e-01 -1.24636543e+00 6.92781389e-01 1.07130647e+00 -7.36682564e-02 -4.50293660e-01 2.58801468e-02 8.82092297e-01 -6.52427793e-01 -3.81648213e-01 3.99874270e-01 5.64694583e-01 -1.34839106e+00 1.17435694e+00 1.10315837e-01 1.13238178e-01 -6.44632459e-01 -1.34879172e-01 -7.20858216e-01 -5.16279101e-01 -1.05765712e+00 -5.93554556e-01 1.02587616e+00 1.72079608e-01 -6.10797465e-01 6.98425829e-01 3.60116631e-01 -5.62770292e-02 -8.61426473e-01 -1.04186964e+00 -1.05292118e+00 -3.33692759e-01 -2.40126148e-01 4.70132023e-01 4.34067249e-01 -2.59030722e-02 -1.42336875e-01 -2.97643483e-01 3.46454501e-01 9.29008901e-01 7.20213711e-01 7.28450298e-01 -1.03261626e+00 -1.87808558e-01 -6.05315030e-01 -6.79728389e-01 -1.43353009e+00 -2.64670283e-01 -4.50235605e-01 1.32998720e-01 -1.47805572e+00 4.20758367e-01 -9.04768556e-02 -4.97473627e-01 4.66677517e-01 -5.06087840e-01 6.53763056e-01 2.24502087e-01 -1.93879660e-02 -9.49071944e-01 4.65852618e-01 1.23539376e+00 -9.28460062e-02 -1.53133243e-01 -2.52504319e-01 -6.79317653e-01 7.68178523e-01 6.13101661e-01 -3.11456442e-01 -7.49164447e-02 -2.31885940e-01 -2.07912952e-01 -3.68611008e-01 6.50483310e-01 -1.15624857e+00 1.52352408e-01 -2.09525019e-01 5.90322971e-01 -7.82291770e-01 3.28106076e-01 -5.30953348e-01 -4.60480899e-01 6.57219410e-01 -1.01344645e-01 4.59595993e-02 5.76884091e-01 7.06392884e-01 1.05330870e-02 2.88772017e-01 1.12673593e+00 2.37142682e-01 -1.15268886e+00 2.94575900e-01 -3.06096405e-01 -7.76098892e-02 1.42931008e+00 -6.55129552e-01 -4.53746766e-01 -2.28980124e-01 -1.38015137e-03 -7.81440437e-02 8.31019461e-01 3.44959795e-01 8.60980749e-01 -1.34872627e+00 -5.27689934e-01 1.14452086e-01 2.37594754e-01 -1.52075350e-01 2.03687549e-01 1.05069077e+00 -7.46249139e-01 1.46106660e-01 -8.90697911e-02 -8.17831874e-01 -1.47007692e+00 8.79313290e-01 2.83522960e-02 -6.26873299e-02 -1.10762525e+00 8.23856533e-01 4.92032439e-01 2.98770875e-01 1.79820746e-01 -5.26543975e-01 2.85133004e-01 -5.05842209e-01 1.08403718e+00 5.47393978e-01 -1.08795121e-01 -5.58596790e-01 -5.35596967e-01 7.70964086e-01 -1.06849805e-01 -6.75349012e-02 1.06909132e+00 -2.84842908e-01 1.22722171e-01 1.86900049e-01 9.10263419e-01 1.12102233e-01 -1.81003797e+00 -2.24567041e-01 -2.85224915e-01 -9.51827407e-01 2.65162528e-01 -4.27200228e-01 -1.03446293e+00 7.59040356e-01 8.94627869e-01 1.39294416e-01 1.49211848e+00 3.97476703e-02 9.88862455e-01 1.50892273e-01 5.26290298e-01 -1.26553941e+00 1.53311417e-01 1.40579283e-01 6.47225678e-01 -1.40613365e+00 3.52998048e-01 -6.76635504e-01 -5.19668996e-01 1.05686629e+00 5.84281921e-01 -1.65763170e-01 3.12560380e-01 6.07421160e-01 -1.71478968e-02 1.62878945e-01 -5.26588142e-01 -4.57955658e-01 2.50122517e-01 8.13156068e-01 9.83317569e-02 -7.02766180e-02 -1.93309844e-01 5.28944843e-02 3.88500899e-01 -1.09605767e-01 3.20229113e-01 1.00367343e+00 -8.09501410e-01 -6.17064059e-01 -5.65638125e-01 1.61858931e-01 -4.02615100e-01 -2.20033810e-01 -1.70539066e-01 9.04893160e-01 -3.04109484e-01 8.51709664e-01 1.76705435e-01 -2.38048453e-02 1.91886634e-01 -6.62163854e-01 4.35339212e-01 -1.52236879e-01 -2.80890405e-01 1.04246564e-01 -4.51952964e-01 -1.08858752e+00 -5.77097595e-01 -6.10907257e-01 -1.50377297e+00 -3.68339926e-01 -5.06731331e-01 -4.33591396e-01 3.81041229e-01 5.34725368e-01 5.41329384e-01 1.24403827e-01 5.71762860e-01 -1.22361577e+00 -2.30403185e-01 -3.91603082e-01 -5.44218302e-01 4.12680835e-01 4.83713567e-01 -9.18319762e-01 -3.43620896e-01 1.37150198e-01]
[9.553237915039062, -0.7622674703598022]
d81996a5-1d0e-4073-bb56-bf791423d742
learning-to-reason-deductively-math-word
2203.10316
null
https://arxiv.org/abs/2203.10316v4
https://arxiv.org/pdf/2203.10316v4.pdf
Learning to Reason Deductively: Math Word Problem Solving as Complex Relation Extraction
Solving math word problems requires deductive reasoning over the quantities in the text. Various recent research efforts mostly relied on sequence-to-sequence or sequence-to-tree models to generate mathematical expressions without explicitly performing relational reasoning between quantities in the given context. While empirically effective, such approaches typically do not provide explanations for the generated expressions. In this work, we view the task as a complex relation extraction problem, proposing a novel approach that presents explainable deductive reasoning steps to iteratively construct target expressions, where each step involves a primitive operation over two quantities defining their relation. Through extensive experiments on four benchmark datasets, we show that the proposed model significantly outperforms existing strong baselines. We further demonstrate that the deductive procedure not only presents more explainable steps but also enables us to make more accurate predictions on questions that require more complex reasoning.
['Wei Lu', 'Jierui Li', 'Zhanming Jie']
2022-03-19
null
https://aclanthology.org/2022.acl-long.410
https://aclanthology.org/2022.acl-long.410.pdf
acl-2022-5
['math-word-problem-solving', 'relational-reasoning', 'math-word-problem-solving', 'math-word-problem-solving']
['knowledge-base', 'natural-language-processing', 'reasoning', 'time-series']
[ 4.61259753e-01 4.11364913e-01 -1.75750762e-01 -6.26674294e-01 -8.96947384e-01 -8.78760755e-01 8.24028909e-01 4.22534943e-01 -2.09126621e-02 8.59587908e-01 2.82374769e-01 -1.05601692e+00 -1.53871800e-03 -1.38557673e+00 -8.71163428e-01 -1.11363130e-02 2.58760631e-01 5.46044648e-01 -3.21362205e-02 -4.54669148e-01 4.14654106e-01 4.06357259e-01 -1.21778524e+00 5.15169859e-01 1.19817030e+00 7.23016918e-01 -3.11871439e-01 6.40173078e-01 -7.89535880e-01 1.59666502e+00 -6.39263988e-01 -1.15482306e+00 1.74095109e-01 -6.13042831e-01 -1.20499420e+00 -1.92284063e-01 5.38228512e-01 -3.82370532e-01 4.15181555e-03 1.09341347e+00 -2.16614857e-01 2.85323650e-01 8.55598330e-01 -1.22430551e+00 -1.02233958e+00 1.24897277e+00 -1.93319395e-01 2.28494167e-01 9.86987770e-01 9.61178690e-02 1.61785448e+00 -7.27565110e-01 3.45800519e-01 1.50502455e+00 4.51070786e-01 5.05933285e-01 -1.35052598e+00 -6.56002581e-01 2.95101345e-01 5.43193340e-01 -1.11812627e+00 -6.94113225e-02 7.84793854e-01 -2.06289068e-01 1.20640647e+00 5.60315430e-01 6.56303883e-01 7.69280314e-01 -4.49104384e-02 6.74619734e-01 1.03484476e+00 -5.08535206e-01 1.14577949e-01 -1.93512872e-01 4.99062121e-01 8.93392861e-01 3.01302582e-01 -2.84282684e-01 -3.87020975e-01 -5.83482459e-02 8.31211627e-01 -2.81075329e-01 -1.48271292e-01 1.51905879e-01 -1.24486339e+00 9.32811379e-01 4.69940633e-01 2.51215219e-01 -3.88005972e-01 4.17333513e-01 1.20161943e-01 2.65979618e-01 2.84408480e-01 1.00017357e+00 -5.76205194e-01 -2.10334569e-01 -6.51097596e-01 6.65400445e-01 1.12608778e+00 1.20327592e+00 7.74946213e-01 -3.02448601e-01 -4.14055973e-01 2.09306374e-01 1.06944799e-01 9.82822999e-02 1.40622348e-01 -1.10272622e+00 7.90423810e-01 8.18184972e-01 1.90069839e-01 -1.02380228e+00 -2.25192472e-01 3.12418547e-02 -4.45138335e-01 -4.17924523e-01 6.68989182e-01 -1.85406044e-01 -6.48171127e-01 1.77518082e+00 4.82131332e-01 3.69500220e-01 1.86129928e-01 7.42992878e-01 1.02922893e+00 7.93612957e-01 4.40964252e-01 -7.27629066e-02 1.38907278e+00 -1.04859078e+00 -9.54754770e-01 -1.48506775e-01 1.07089388e+00 -4.94029462e-01 1.27110136e+00 2.81032234e-01 -1.23160648e+00 -2.86459059e-01 -8.87015939e-01 -6.82905555e-01 -3.83732855e-01 -1.83955058e-01 1.33761930e+00 4.35343415e-01 -7.27409184e-01 6.91602051e-01 -5.27077079e-01 9.40803438e-02 2.48231813e-01 6.40267059e-02 -9.60722417e-02 1.01332739e-02 -1.44636130e+00 1.12865424e+00 4.66411591e-01 1.56456664e-01 -3.83651376e-01 -1.10848761e+00 -1.29413319e+00 2.76039928e-01 7.36089826e-01 -1.01069224e+00 1.61196649e+00 -4.56450820e-01 -1.43237281e+00 6.78123295e-01 -5.38601995e-01 -7.92002201e-01 4.14652407e-01 -5.43565154e-01 -1.08168088e-01 1.82881624e-01 9.71876755e-02 5.33008695e-01 3.99395794e-01 -1.07750916e+00 -3.63356918e-01 -1.81036070e-01 7.57382929e-01 -3.03013325e-02 2.27949500e-01 7.70039111e-02 -1.42320842e-01 -6.02345169e-01 3.34218204e-01 -6.69224083e-01 -3.10611069e-01 -1.55699730e-01 -7.41600692e-01 -8.17326963e-01 2.88713295e-02 -5.38325310e-01 1.27285314e+00 -1.37818825e+00 2.59443820e-01 1.04097994e-02 4.56801683e-01 5.35579696e-02 -4.69473191e-02 4.86994386e-01 -2.77000666e-01 5.54288864e-01 -2.35354424e-01 7.07010850e-02 4.37284380e-01 2.73251772e-01 -7.76125789e-01 -1.88457578e-01 5.62451959e-01 1.42007101e+00 -1.09506762e+00 -7.05039501e-01 2.45598271e-01 1.63211916e-02 -7.96039939e-01 5.41079640e-01 -9.90168810e-01 -1.12068104e-02 -5.82726181e-01 4.98122633e-01 5.82314193e-01 -4.34464216e-01 2.45144293e-01 -2.53253818e-01 3.42072666e-01 9.66099501e-01 -9.47567880e-01 1.52400422e+00 -7.30528355e-01 3.02318662e-01 -5.82061648e-01 -1.02596617e+00 8.26272964e-01 -1.77540388e-02 5.72932884e-03 -4.52938527e-01 8.76789242e-02 -9.48778936e-04 1.21292628e-01 -8.21835458e-01 5.09248316e-01 -6.23346984e-01 -1.80420205e-01 4.14434522e-01 -1.02798954e-01 -8.51109803e-01 5.97725391e-01 4.62920099e-01 1.11073589e+00 6.07213438e-01 6.12936378e-01 4.18493114e-02 8.60449851e-01 2.31011435e-01 4.28563356e-01 7.32838571e-01 4.06183265e-02 6.79891258e-02 7.64048278e-01 -5.21049261e-01 -8.16904187e-01 -1.07544351e+00 1.52692825e-01 9.15173292e-01 1.96735993e-01 -8.59823704e-01 -6.71515226e-01 -8.17269087e-01 -6.14595078e-02 1.51591182e+00 -5.91738582e-01 -1.86051466e-02 -7.39036381e-01 -3.06455553e-01 6.83750629e-01 5.64157367e-01 3.98826152e-01 -9.58751321e-01 -3.38054836e-01 1.90501347e-01 -5.42251408e-01 -1.51738322e+00 -4.89442237e-02 1.92549080e-02 -9.05028999e-01 -9.74873662e-01 -3.44203897e-02 -5.87318063e-01 7.01935351e-01 4.65739891e-02 1.44766784e+00 4.72661167e-01 -3.71005088e-02 9.11620483e-02 -3.74049544e-01 -4.89992142e-01 -4.70887691e-01 3.24014537e-02 -4.50632900e-01 -3.68521452e-01 7.24026084e-01 -6.71625316e-01 -1.11121632e-01 -2.85454392e-01 -8.61527026e-01 5.49025416e-01 3.62245977e-01 4.42849666e-01 4.07051533e-01 -2.24007629e-02 3.16558599e-01 -1.19934750e+00 8.41885686e-01 -3.50602120e-01 -5.16268075e-01 6.17298007e-01 -4.47443545e-01 6.83180213e-01 9.84663129e-01 -2.64130443e-01 -1.23462427e+00 -1.80780068e-01 -1.69734180e-01 -4.12612408e-02 -3.02027673e-01 7.38754392e-01 -1.54803783e-01 3.96849394e-01 7.25341618e-01 2.07257241e-01 -4.95188117e-01 -1.09691165e-01 8.84446979e-01 -1.99034601e-03 4.92019922e-01 -1.40773714e+00 1.37242723e+00 7.35860094e-02 3.87198955e-01 -3.20142746e-01 -1.63437796e+00 -3.08483280e-02 -7.16001034e-01 1.81587815e-01 7.81841815e-01 -6.42048538e-01 -1.03467464e+00 -2.25707740e-01 -1.62362731e+00 -2.76670396e-01 -2.47570172e-01 2.56514162e-01 -5.22031665e-01 4.81330603e-01 -6.94393694e-01 -1.00285637e+00 -3.32642883e-01 -8.52993011e-01 1.04451263e+00 2.15403348e-01 -7.56843388e-01 -1.14838433e+00 -2.58199275e-01 6.89898014e-01 6.93749115e-02 2.18107581e-01 1.54300976e+00 -8.12244296e-01 -9.33965385e-01 1.90345906e-02 -4.47332740e-01 5.64139672e-02 3.51709127e-01 1.84478730e-01 -5.78584015e-01 7.61867046e-01 -1.97268888e-01 -3.91806871e-01 5.12076378e-01 -2.97037631e-01 1.48379099e+00 -7.07963884e-01 5.18488325e-02 4.68063027e-01 1.11205423e+00 -1.40981395e-02 7.48863101e-01 1.85708776e-01 6.59992814e-01 7.74408460e-01 6.98178351e-01 6.68605343e-02 8.49557221e-01 2.97159791e-01 1.34707674e-01 1.31185606e-01 5.38167767e-02 -7.06245840e-01 6.72459751e-02 7.10214794e-01 -1.40401393e-01 4.72962670e-02 -9.09071684e-01 4.65847254e-01 -1.73720098e+00 -1.17144144e+00 -4.23776895e-01 1.60526788e+00 1.59602714e+00 1.13734588e-01 -1.86845988e-01 1.38928339e-01 3.27387035e-01 2.43535843e-02 -3.43283236e-01 -6.64422691e-01 1.43795222e-01 7.57953525e-01 -3.90194841e-02 8.03855181e-01 -7.67223179e-01 1.40295827e+00 6.54071331e+00 6.21605754e-01 -6.08728528e-01 -4.55787331e-01 3.88728559e-01 6.04464002e-02 -8.56653571e-01 2.47248515e-01 -7.26951897e-01 -1.44433808e-02 7.87048340e-01 -5.45092762e-01 5.99388421e-01 7.40221441e-01 -9.81010310e-03 -9.80246440e-02 -1.61298013e+00 7.47279048e-01 -9.40432698e-02 -1.42016768e+00 7.29497850e-01 -4.99281377e-01 3.85039926e-01 -1.01381505e+00 -2.52143443e-01 5.81672668e-01 6.17222786e-01 -1.40258539e+00 6.60025001e-01 4.96034354e-01 2.37380534e-01 -6.46717787e-01 3.92133981e-01 4.49009389e-01 -1.14899468e+00 1.30231559e-01 -2.63902187e-01 -7.67836094e-01 1.57328188e-01 4.96179521e-01 -1.11140180e+00 7.64246821e-01 1.53721899e-01 5.79908669e-01 -5.83133519e-01 5.20531178e-01 -1.16103303e+00 7.21452892e-01 -5.45048788e-02 -7.05769479e-01 2.70346403e-01 -5.66974640e-01 1.06698953e-01 1.22383034e+00 1.52061999e-01 7.37285078e-01 -1.61830306e-01 1.49119771e+00 -1.69396043e-01 2.67793059e-01 -5.60028136e-01 -3.23301822e-01 4.17958677e-01 1.25729978e+00 -5.32615781e-01 -7.70802617e-01 -4.29659158e-01 7.88807809e-01 7.93156743e-01 3.69796246e-01 -1.17532372e+00 -3.78411800e-01 6.89233840e-01 -7.17445686e-02 6.84502348e-02 -4.24805135e-01 -7.46384382e-01 -1.36984706e+00 1.66193962e-01 -1.01289129e+00 4.01033849e-01 -1.25672126e+00 -1.38482642e+00 2.57420599e-01 2.86623716e-01 -5.67713082e-01 -4.97771084e-01 -6.32835209e-01 -5.81279576e-01 1.08095360e+00 -1.51549625e+00 -1.02447915e+00 -2.23864302e-01 1.61958992e-01 6.41304255e-01 4.94807690e-01 9.29691494e-01 -1.80858403e-01 -4.64620769e-01 3.95515680e-01 -9.49258506e-01 3.61721724e-01 2.45440751e-01 -1.54200923e+00 5.72390079e-01 9.66974437e-01 5.53269863e-01 1.39318502e+00 1.04005706e+00 -6.63129508e-01 -1.55132878e+00 -8.50180149e-01 1.41244578e+00 -7.83863068e-01 1.15456057e+00 -2.81039119e-01 -1.07259858e+00 1.03275704e+00 2.95364827e-01 -3.11115742e-01 8.17153215e-01 3.53646785e-01 -8.16492915e-01 3.03144217e-01 -9.15148854e-01 1.01792896e+00 1.21975553e+00 -6.69762254e-01 -1.43215513e+00 5.67743599e-01 1.24493504e+00 -7.78241098e-01 -7.90374577e-01 3.74534786e-01 2.59904772e-01 -6.82038724e-01 9.78598475e-01 -1.36474931e+00 1.30906880e+00 -3.96331072e-01 -1.04881912e-01 -1.11089230e+00 -1.19955905e-01 -6.69992983e-01 -5.28106689e-01 1.14144552e+00 8.55883479e-01 -3.59798193e-01 6.62299275e-01 1.27157283e+00 2.35276535e-01 -9.35350299e-01 -5.65139174e-01 -5.92947066e-01 4.05028582e-01 -7.90303349e-01 1.03750265e+00 9.78876770e-01 3.50865901e-01 8.28419268e-01 6.06747419e-02 1.45933524e-01 4.30114925e-01 5.76669514e-01 8.27167153e-01 -9.56661940e-01 -3.74578059e-01 -4.11835343e-01 -1.83213502e-01 -1.26475620e+00 6.50243640e-01 -1.07995009e+00 2.65425444e-02 -1.92046595e+00 8.50852802e-02 -2.44663537e-01 1.81255415e-01 5.50814509e-01 -7.72976398e-01 -2.68644094e-01 1.53194815e-01 -3.85909855e-01 -5.75255692e-01 4.83014554e-01 1.50791347e+00 -2.20930278e-01 1.97366759e-01 -4.33607027e-02 -1.08648872e+00 7.87421286e-01 6.16593838e-01 -2.62624741e-01 -5.90549767e-01 -4.16083604e-01 7.02639163e-01 1.96184814e-01 3.69132757e-01 -5.28648674e-01 1.88986629e-01 -7.80198157e-01 1.02208242e-01 -4.78780687e-01 2.84985691e-01 -6.87473476e-01 -1.68948263e-01 1.26558527e-01 -7.94418514e-01 1.55280322e-01 1.56897575e-01 1.82869643e-01 -1.49979934e-01 -4.45202231e-01 2.38338113e-01 -2.25595340e-01 -5.46951830e-01 6.32374287e-02 -8.71998966e-02 2.13313922e-01 1.01521933e+00 2.27505594e-01 -3.14638317e-01 -5.67531109e-01 -5.51183045e-01 2.46446088e-01 -6.60683122e-03 2.83149391e-01 5.55258274e-01 -1.22713757e+00 -5.49929142e-01 -3.98464739e-01 5.11346087e-02 3.32300037e-01 -1.79336146e-01 4.36861187e-01 -7.34001637e-01 6.10591590e-01 2.54393369e-01 -4.36985567e-02 -1.16257572e+00 9.17654335e-01 3.96230429e-01 -4.40015286e-01 -4.51221019e-01 1.08051848e+00 1.44140556e-01 -6.98969007e-01 1.32682770e-01 -1.04579997e+00 -1.69951797e-01 -1.42033488e-01 5.25191426e-01 8.33872035e-02 -1.18705951e-01 -3.12701285e-01 -1.19895637e-01 4.43409503e-01 -7.81351700e-02 -8.94567072e-02 1.15130341e+00 9.43514258e-02 -4.46394414e-01 4.69158709e-01 7.91989565e-01 -7.87143130e-03 -6.43456221e-01 -4.64322269e-01 3.40408742e-01 -3.76915038e-01 -4.01524901e-01 -8.92789721e-01 -4.48135376e-01 9.83476162e-01 -7.47920096e-01 3.98647726e-01 9.43626225e-01 7.20739365e-04 9.56234276e-01 8.82106125e-01 2.98789650e-01 -6.00346088e-01 7.06782117e-02 6.75784945e-01 8.89536917e-01 -9.91700649e-01 2.25856096e-01 -1.20471847e+00 -4.67337549e-01 1.37877691e+00 8.59046042e-01 6.77633658e-02 8.79494548e-02 4.17790323e-01 -6.62661158e-03 -1.58038527e-01 -1.08884490e+00 -2.76883185e-01 3.54933172e-01 3.72386664e-01 8.82679999e-01 4.44114171e-02 -3.68679821e-01 8.05294573e-01 -9.01312709e-01 3.70643474e-02 5.51026881e-01 7.96507359e-01 -2.33214736e-01 -1.28348982e+00 -3.29184145e-01 4.36522126e-01 -3.52817208e-01 -6.25156105e-01 -7.87987292e-01 7.83682168e-01 -2.16421396e-01 1.04247570e+00 -1.57965615e-01 -1.45636767e-01 2.86028981e-01 3.64528805e-01 1.02458096e+00 -8.22652161e-01 -6.53284431e-01 -6.30510092e-01 4.87711489e-01 -4.17796373e-01 -3.22236419e-01 -4.40386862e-01 -1.86495900e+00 -5.59783220e-01 -9.37353969e-02 3.49433839e-01 2.70057380e-01 1.46957457e+00 2.99760699e-03 7.52838254e-01 2.80316085e-01 -1.72278181e-01 -8.33312452e-01 -8.59915614e-01 -7.08973855e-02 6.57362103e-01 1.41484424e-01 -4.37372833e-01 -2.36881807e-01 2.36241251e-01]
[9.66939926147461, 7.4560065269470215]
53ebc0c5-e1fd-4d0c-b429-cb4e9555cc0a
latent-space-unsupervised-semantic
2207.11067
null
https://arxiv.org/abs/2207.11067v2
https://arxiv.org/pdf/2207.11067v2.pdf
Latent Space Unsupervised Semantic Segmentation
The development of compact and energy-efficient wearable sensors has led to an increase in the availability of biosignals. To analyze these continuously recorded, and often multidimensional, time series at scale, being able to conduct meaningful unsupervised data segmentation is an auspicious target. A common way to achieve this is to identify change-points within the time series as the segmentation basis. However, traditional change-point detection algorithms often come with drawbacks, limiting their real-world applicability. Notably, they generally rely on the complete time series to be available and thus cannot be used for real-time applications. Another common limitation is that they poorly (or cannot) handle the segmentation of multidimensional time series. Consequently, the main contribution of this work is to propose a novel unsupervised segmentation algorithm for multidimensional time series named Latent Space Unsupervised Semantic Segmentation (LS-USS), which was designed to work easily with both online and batch data. When comparing LS-USS against other state-of-the-art change-point detection algorithms on a variety of real-world datasets, in both the offline and real-time setting, LS-USS systematically achieves on par or better performances.
['Ulysse Côté-Allard', 'Jim Tørresen', 'Knut J. Strømmen']
2022-07-22
null
null
null
null
['unsupervised-semantic-segmentation']
['computer-vision']
[ 3.76215219e-01 -5.13926685e-01 -1.62652448e-01 -2.09785044e-01 -4.89126295e-01 -6.65380120e-01 2.84326613e-01 6.77890837e-01 -3.53967428e-01 4.30420399e-01 -2.90070832e-01 -7.12483525e-02 -2.97674835e-01 -6.52105153e-01 -2.79236853e-01 -6.63847148e-01 -1.04775995e-01 2.40646422e-01 2.58155435e-01 1.10412620e-01 9.67172608e-02 4.93213564e-01 -1.77084649e+00 -2.49122471e-01 1.04562616e+00 1.06482911e+00 1.27588227e-01 2.52176017e-01 -2.05203041e-01 -1.95152283e-01 -4.11983341e-01 3.11469764e-01 1.73983231e-01 -6.44404650e-01 -4.03121501e-01 1.14503220e-01 -2.49064267e-01 1.07524604e-01 2.31402725e-01 1.02352118e+00 5.65125704e-01 3.10745388e-01 4.27907139e-01 -1.20946860e+00 2.13668406e-01 2.23634556e-01 -3.14806491e-01 3.82246464e-01 3.06452870e-01 -2.43917152e-01 6.45415843e-01 -5.47259390e-01 6.78873360e-01 7.34729052e-01 6.84621155e-01 3.65605235e-01 -1.62371349e+00 -3.22221518e-01 6.88723773e-02 2.36967020e-02 -1.24517441e+00 -2.58310825e-01 1.13558269e+00 -5.02518654e-01 7.18266129e-01 5.89978635e-01 8.84049475e-01 1.03246999e+00 6.72880933e-02 7.33100414e-01 1.35426104e+00 -2.31611580e-01 7.52338529e-01 -2.13596135e-01 9.44976509e-02 1.44406751e-01 2.48501509e-01 -3.99112374e-01 -3.19907814e-01 -1.93387881e-01 6.17343783e-01 3.60709995e-01 -4.77449521e-02 -5.21766543e-01 -1.32681298e+00 4.31060225e-01 1.02451697e-01 9.34420824e-01 -4.81128395e-01 -1.73128620e-01 7.37010419e-01 2.77635604e-01 7.49099791e-01 5.09700239e-01 -3.94051582e-01 -7.10587621e-01 -1.34655726e+00 5.33887781e-02 5.32470763e-01 5.19172788e-01 3.70287865e-01 -1.97906852e-01 1.60677254e-01 6.07983947e-01 -1.73172541e-02 2.94886827e-01 8.25021386e-01 -3.53458047e-01 2.50619382e-01 1.04222524e+00 5.79229072e-02 -1.22751427e+00 -8.65156412e-01 -4.17325348e-01 -1.07525563e+00 -2.29315221e-01 6.23950839e-01 9.87700671e-02 -7.96477497e-01 1.56654203e+00 5.92685342e-01 6.11581095e-02 -1.02404848e-01 1.06138492e+00 3.03226352e-01 5.43381751e-01 8.27351585e-02 -7.39644408e-01 1.29900157e+00 -2.77241409e-01 -8.28150511e-01 5.06253988e-02 5.82187116e-01 -6.08213782e-01 1.16965830e+00 5.41355848e-01 -7.55630076e-01 -6.24032378e-01 -1.12123191e+00 2.17661321e-01 -6.08708084e-01 7.64389709e-02 5.64235330e-01 6.66005254e-01 -5.26375830e-01 7.16216385e-01 -1.36633992e+00 -5.82462370e-01 1.59177929e-01 2.54918516e-01 -1.84156746e-01 2.84662664e-01 -1.06605422e+00 4.54536289e-01 3.13983500e-01 1.37429789e-01 -4.85492289e-01 -5.54562926e-01 -4.44354892e-01 -1.54004976e-01 4.38478082e-01 -2.33235002e-01 7.38234460e-01 -9.83265758e-01 -1.42736638e+00 8.40262711e-01 -7.74517134e-02 -5.11777580e-01 6.48649216e-01 2.87676770e-02 -5.92322826e-01 2.29229897e-01 -5.37151285e-02 2.10198030e-01 1.17950606e+00 -7.97782302e-01 -1.95622712e-01 -5.86295128e-01 -4.00641173e-01 1.27453823e-02 -6.12126708e-01 -1.69147640e-01 -3.04154724e-01 -9.20042932e-01 6.13061905e-01 -9.50947404e-01 -1.40574336e-01 -1.56149954e-01 -3.56279999e-01 -2.80726731e-01 9.47621703e-01 -6.83330357e-01 1.43836772e+00 -2.31293774e+00 2.50959426e-01 2.29433641e-01 1.86159253e-01 2.04828352e-01 2.97953397e-01 4.79946822e-01 -2.32066065e-01 -1.73072487e-01 -5.00031650e-01 -2.49886841e-01 6.33434802e-02 3.31500433e-02 -2.45425522e-01 7.50410020e-01 -3.82619910e-02 5.55049300e-01 -9.45886075e-01 -3.53339106e-01 4.11113441e-01 3.11911166e-01 -1.30837023e-01 -1.51056070e-02 -2.74361700e-01 8.99555981e-01 -5.48670709e-01 5.77411175e-01 3.66394848e-01 -1.52223662e-01 1.57209873e-01 -1.26856923e-01 -3.12521964e-01 -3.18002491e-03 -1.30429292e+00 1.87148321e+00 -1.52325496e-01 5.63723564e-01 -2.72019953e-01 -1.42752016e+00 1.18063092e+00 4.23611790e-01 1.37224388e+00 -1.04326880e+00 5.26319630e-02 5.36079824e-01 -2.51937866e-01 -6.02603376e-01 3.10703307e-01 -1.67862311e-01 -2.66635090e-01 4.31129098e-01 -2.30989143e-01 4.01762780e-03 3.95491660e-01 -3.14988345e-01 1.03857946e+00 2.21777275e-01 2.88576156e-01 -3.69904608e-01 4.52890933e-01 1.33167841e-02 6.06185853e-01 1.86812326e-01 -3.36722583e-01 5.12579918e-01 4.42517191e-01 -3.74708831e-01 -8.82879674e-01 -8.96251976e-01 -2.48870373e-01 7.52954423e-01 3.01449776e-01 -3.95261675e-01 -9.34851468e-01 -5.27709246e-01 -1.35948882e-01 3.79583657e-01 -3.86914283e-01 -6.36446401e-02 -3.74803036e-01 -8.91957283e-01 3.66057366e-01 3.40724617e-01 3.52874577e-01 -7.57360518e-01 -1.33971453e+00 7.21735716e-01 -3.53070676e-01 -1.03757668e+00 -1.66820481e-01 2.34909758e-01 -1.36075330e+00 -9.03679252e-01 -7.64318764e-01 -1.70217544e-01 6.97777569e-01 1.18750386e-01 6.66908026e-01 -3.64212245e-01 -5.90783298e-01 4.62690800e-01 -4.33004528e-01 -4.36203003e-01 3.40741463e-02 1.97369725e-01 2.62552202e-01 4.24340039e-01 3.62684995e-01 -6.72890782e-01 -9.33419824e-01 5.07602751e-01 -1.19594073e+00 -8.09999462e-03 2.31108099e-01 3.60107750e-01 1.06257629e+00 4.30112123e-01 8.77673388e-01 -3.22098345e-01 5.08371890e-01 -4.25183207e-01 -6.59453571e-01 4.26221713e-02 -6.81527495e-01 -1.51823750e-02 7.52094686e-01 -5.37185371e-01 -5.74715734e-01 1.18143804e-01 -2.17269678e-02 -2.87252784e-01 -2.88756102e-01 5.91772437e-01 -9.72880702e-03 3.59808773e-01 5.72137177e-01 3.71455133e-01 -1.57394167e-03 -7.97946453e-01 1.03854500e-01 7.18774736e-01 3.98264676e-01 -2.70661265e-01 4.82614458e-01 7.91515529e-01 1.15579993e-01 -1.09695697e+00 -3.20504844e-01 -8.71826172e-01 -8.17630708e-01 -4.68647391e-01 8.99337828e-01 -6.13022089e-01 -3.92298818e-01 6.25921667e-01 -5.87679863e-01 -3.88729155e-01 -3.77073139e-01 4.44357842e-01 -5.97837925e-01 5.76817334e-01 -2.89220195e-02 -9.52992857e-01 -3.70885611e-01 -1.00449991e+00 1.08154702e+00 7.93575123e-02 -5.77354252e-01 -9.97720361e-01 4.57015634e-02 2.15084255e-01 2.98769325e-01 7.57568181e-01 6.43316805e-01 -5.37948549e-01 -9.96208340e-02 -4.01730537e-01 1.77228600e-01 1.46089301e-01 4.93695438e-01 -8.59326571e-02 -6.58970773e-01 -5.42006493e-01 4.62896258e-01 1.50450781e-01 4.76916134e-01 4.76445973e-01 1.30599904e+00 1.62433952e-01 -4.69528466e-01 2.78330088e-01 1.35366404e+00 2.79540449e-01 3.80545020e-01 2.33951926e-01 4.37557429e-01 6.82168961e-01 1.04073000e+00 6.76581144e-01 2.23584712e-01 8.53498399e-01 2.53741056e-01 -1.06531806e-01 3.23698670e-01 -1.22019187e-01 3.00569892e-01 1.19123435e+00 -1.08957760e-01 2.06163395e-02 -8.67118895e-01 6.84454858e-01 -1.93233550e+00 -7.53024280e-01 -3.45050126e-01 2.54847980e+00 8.14158142e-01 1.87107608e-01 6.09600782e-01 8.49565387e-01 6.62140191e-01 1.27314683e-02 -8.57442915e-01 -1.40566051e-01 1.04008615e-01 6.09052889e-02 3.71601880e-01 -3.45470637e-01 -1.31863725e+00 2.49412060e-01 5.16377831e+00 8.12049270e-01 -1.55740011e+00 2.65226096e-01 4.08680558e-01 -5.68436906e-02 -4.85362671e-02 -2.43668556e-01 -3.15132350e-01 8.36297572e-01 1.08044827e+00 -1.26031786e-01 4.13485616e-01 6.05282068e-01 7.42989957e-01 -2.41642356e-01 -1.02478170e+00 1.36140704e+00 -2.40965098e-01 -7.09681571e-01 -5.32707334e-01 -1.56121194e-01 5.24060369e-01 -2.36803249e-01 -1.26661152e-01 -1.86433032e-01 -7.91961551e-01 -6.15130126e-01 6.71983540e-01 5.55634081e-01 7.50299692e-01 -5.19431949e-01 3.45818818e-01 3.90354633e-01 -1.30068731e+00 2.92106159e-02 -8.04873258e-02 -9.43405740e-03 1.58387631e-01 1.18446696e+00 -4.38846499e-01 7.56978631e-01 6.52368069e-01 7.58269906e-01 -3.31627637e-01 1.21477342e+00 1.00059405e-01 6.44434333e-01 -7.53615916e-01 -3.01514678e-02 1.79192767e-01 -2.67105818e-01 7.26466477e-01 1.01163304e+00 5.45479119e-01 -1.31918639e-01 1.97780758e-01 6.39326692e-01 3.30602139e-01 3.35646749e-01 -3.05267692e-01 -5.89581728e-01 2.18684107e-01 1.12356484e+00 -1.53608561e+00 -2.80473143e-01 -1.83967814e-01 9.74012733e-01 -3.61796498e-01 1.05676219e-01 -8.73406053e-01 -4.18854266e-01 5.64039171e-01 1.55753255e-01 4.84939702e-02 -7.57029891e-01 -4.15691882e-01 -1.19711518e+00 3.62246662e-01 -6.46967113e-01 6.32542670e-01 -1.84084460e-01 -1.14655995e+00 3.00065160e-01 5.99378496e-02 -1.73463881e+00 -9.87693593e-02 -2.00881571e-01 -2.13969186e-01 4.44625020e-01 -1.18206847e+00 -6.85189247e-01 -4.85845655e-01 6.94709539e-01 6.55838966e-01 3.46465498e-01 7.15348244e-01 6.08023524e-01 -6.05848253e-01 2.53463030e-01 4.25318152e-01 -3.30317020e-01 5.39211631e-01 -1.16029763e+00 2.69489944e-01 9.26960707e-01 1.53541282e-01 3.98901731e-01 8.25118363e-01 -7.06142724e-01 -1.75624192e+00 -1.03987396e+00 5.25463462e-01 -8.20859522e-02 6.07096910e-01 -5.35328329e-01 -9.71671641e-01 6.80900291e-02 -4.59527105e-01 -1.72968820e-01 6.86938882e-01 -2.27464154e-01 5.75689338e-02 -3.55619490e-01 -1.15534270e+00 5.82111537e-01 9.30333495e-01 -4.92915064e-01 -6.13095164e-01 3.10535848e-01 3.31449360e-01 -4.13656324e-01 -1.22673178e+00 2.61766493e-01 4.19867098e-01 -7.45291829e-01 7.86145687e-01 -2.76406202e-02 3.66985127e-02 -4.97376561e-01 2.89553225e-01 -1.15795231e+00 1.81723595e-01 -8.34631205e-01 -1.64611399e-01 1.14564443e+00 -1.51247218e-01 -8.87920737e-01 4.96507049e-01 5.05674183e-01 -1.66138466e-02 -5.37868619e-01 -1.29685557e+00 -1.11548901e+00 -5.59281707e-01 -7.04583406e-01 6.51978374e-01 1.07612455e+00 3.90041918e-01 -1.27459779e-01 -2.89496128e-02 -1.51419863e-01 7.32530296e-01 5.40707886e-01 5.31976163e-01 -1.44088018e+00 4.99994457e-02 -4.31827068e-01 -7.59504020e-01 -7.95225620e-01 -4.06941146e-01 -7.33087718e-01 5.48662283e-02 -1.42551231e+00 -3.00589412e-01 -5.07454455e-01 -4.91824627e-01 3.68028194e-01 2.95102745e-02 4.08150762e-01 -4.78410684e-02 3.79793078e-01 -5.34074843e-01 4.61445451e-01 9.63054299e-01 -2.16564629e-02 -9.08666313e-01 1.24874696e-01 -1.13234006e-01 5.16622305e-01 9.45059955e-01 -4.40516293e-01 -5.78192830e-01 1.04606993e-01 2.19117329e-01 -6.76581189e-02 2.98104376e-01 -1.30367482e+00 1.80760622e-01 4.45970846e-03 1.40382692e-01 -8.20786119e-01 1.61607623e-01 -9.71217692e-01 5.22862434e-01 5.79779029e-01 -7.24967495e-02 -1.35611281e-01 1.92967951e-01 5.98407865e-01 -2.57263333e-01 3.13589908e-02 5.94789207e-01 2.13776216e-01 -7.10033059e-01 2.69814461e-01 -4.22935694e-01 -1.50809631e-01 1.27840924e+00 -6.43239498e-01 -8.85766000e-03 8.25748667e-02 -8.90864432e-01 1.29421446e-02 4.16802347e-01 6.45972192e-01 3.76018673e-01 -1.22166514e+00 -1.68896720e-01 2.90658802e-01 2.50156641e-01 -4.58126776e-02 4.62195039e-01 1.38496292e+00 -2.54566014e-01 4.56546217e-01 -3.06070358e-01 -9.36522543e-01 -1.17461395e+00 7.04568028e-01 4.80387956e-02 -2.78518461e-02 -9.53309178e-01 1.18673697e-01 -2.35145092e-01 -2.25056726e-02 9.30250138e-02 -9.02590930e-01 -1.40289053e-01 6.36499882e-01 2.06711009e-01 5.98944128e-01 2.47646794e-01 -4.08902973e-01 -4.05825198e-01 5.87198675e-01 5.75819612e-01 -3.16931109e-04 1.40282226e+00 -3.44305515e-01 -2.48805821e-01 9.99896467e-01 1.19435751e+00 -3.61542016e-01 -1.15172935e+00 7.16350041e-03 3.47107321e-01 -2.37062171e-01 -1.00162968e-01 -3.08977067e-01 -7.31310725e-01 6.52500451e-01 9.58721936e-01 8.81414950e-01 1.56052208e+00 -2.56880105e-01 1.10660815e+00 6.19362965e-02 6.22263789e-01 -1.54226863e+00 -8.65611732e-02 -9.57890600e-02 5.95366180e-01 -9.15140212e-01 -1.12572148e-01 -3.52895230e-01 -2.26977676e-01 1.18570471e+00 -5.57061993e-02 1.21758439e-01 4.75214720e-01 -4.66147922e-02 -1.45827845e-01 -2.10507378e-01 -1.31429076e-01 -2.44574994e-01 2.89064467e-01 2.85638005e-01 1.87029377e-01 2.22522229e-01 -7.73517430e-01 5.92794776e-01 1.22796878e-01 1.84842199e-01 4.69983779e-02 1.02047157e+00 -2.58439988e-01 -1.02113259e+00 -5.28702438e-01 5.38457632e-01 -5.66211879e-01 6.56477809e-01 -1.57058924e-01 4.91579950e-01 1.45653173e-01 1.03870535e+00 -2.95005348e-02 -1.65127546e-01 4.91961271e-01 2.71448404e-01 2.78490126e-01 -2.57927954e-01 -4.10534024e-01 3.51189017e-01 -3.42521966e-01 -8.18086803e-01 -8.11224759e-01 -9.48626161e-01 -1.52333558e+00 1.86581105e-01 -1.51455864e-01 2.36545410e-02 1.16524124e+00 1.03958535e+00 4.87576663e-01 5.63649654e-01 7.87512720e-01 -7.28934646e-01 -3.34114403e-01 -7.07712829e-01 -6.34209812e-01 7.34726071e-01 1.77705586e-01 -7.55074084e-01 -1.21548414e-01 3.12204659e-01]
[7.24359655380249, 3.2706849575042725]
b1b5c56c-2e35-455a-ba6a-e784f9a878d3
segment-anything-meets-semantic-communication
2306.02094
null
https://arxiv.org/abs/2306.02094v1
https://arxiv.org/pdf/2306.02094v1.pdf
Segment Anything Meets Semantic Communication
In light of the diminishing returns of traditional methods for enhancing transmission rates, the domain of semantic communication presents promising new frontiers. Focusing on image transmission, this paper explores the application of foundation models, particularly the Segment Anything Model (SAM) developed by Meta AI Research, to improve semantic communication. SAM is a promptable image segmentation model that has gained attention for its ability to perform zero-shot segmentation tasks without explicit training or domain-specific knowledge. By employing SAM's segmentation capability and lightweight neural network architecture for semantic coding, we propose a practical approach to semantic communication. We demonstrate that this approach retains critical semantic features, achieving higher image reconstruction quality and reducing communication overhead. This practical solution eliminates the resource-intensive stage of training a segmentation model and can be applied to any semantic coding architecture, paving the way for real-world applications.
['Hyundong Shin', 'Chaoning Zhang', 'Brian Estadimas Arfeto', 'Shehbaz Tariq']
2023-06-03
null
null
null
null
['zero-shot-segmentation', 'image-reconstruction']
['computer-vision', 'computer-vision']
[ 9.62071896e-01 6.98789179e-01 -4.82801616e-01 -3.31304371e-01 -3.27378780e-01 -9.50172693e-02 4.96774435e-01 -5.33881225e-02 -4.50672805e-01 4.73983139e-01 2.27811322e-01 -4.35713291e-01 -1.59169137e-01 -1.02251720e+00 -4.30867136e-01 -2.31917337e-01 2.08916832e-02 3.34216088e-01 3.06340516e-01 -2.01159552e-01 4.05368060e-01 3.01973075e-01 -1.50725484e+00 3.28174025e-01 7.95343697e-01 1.31135035e+00 8.24264228e-01 6.36765182e-01 -6.79600775e-01 1.01136827e+00 -7.42560744e-01 -3.22608024e-01 -1.02294333e-01 -6.20867550e-01 -1.39063227e+00 2.64755756e-01 -2.95082659e-01 -3.75258148e-01 -4.15471286e-01 1.12112880e+00 2.04728663e-01 -1.45357713e-01 3.70798498e-01 -1.05005085e+00 -7.00748086e-01 9.60816860e-01 -1.40277192e-01 -2.65561678e-02 4.88614589e-01 -3.76513243e-01 8.38500798e-01 -2.32742533e-01 6.55687451e-01 1.09649837e+00 6.39565587e-01 7.58301973e-01 -9.03397262e-01 -4.65215385e-01 -1.76194236e-01 3.33134383e-01 -1.24622715e+00 -2.82691687e-01 6.31016731e-01 -1.14097238e-01 9.83643115e-01 2.98078358e-01 1.03332376e+00 1.06607831e+00 -1.63005158e-01 1.18520796e+00 8.21925581e-01 -6.25657737e-01 4.08400774e-01 2.50349581e-01 4.59379405e-02 6.02706432e-01 -9.91287455e-02 2.84576025e-02 -3.84360641e-01 3.00265700e-01 7.29423463e-01 -2.14460224e-01 -1.83743268e-01 -1.88496903e-01 -9.84554410e-01 8.39479983e-01 5.79073489e-01 5.67571759e-01 -2.28830010e-01 5.90361714e-01 3.74091029e-01 2.81413138e-01 4.09545809e-01 5.78461766e-01 -1.00046329e-01 -4.66768295e-01 -1.16225946e+00 -2.18374044e-01 9.24289763e-01 1.31481361e+00 5.07095456e-01 2.16041744e-01 -1.89746860e-02 8.41866851e-01 1.25672475e-01 2.76455998e-01 4.50244606e-01 -1.51423991e+00 -1.10471129e-01 5.44423401e-01 -3.68741035e-01 -7.50296950e-01 -3.90264302e-01 -4.84644830e-01 -7.65634418e-01 -2.37949282e-01 -1.16831467e-01 2.66230516e-02 -1.09158790e+00 1.48089278e+00 -1.17476121e-01 8.72761235e-02 4.13540304e-01 7.35012770e-01 7.95331955e-01 9.11575854e-01 2.92138040e-01 -1.77627262e-02 1.15060854e+00 -1.03551376e+00 -5.87122321e-01 -1.33000940e-01 7.59816527e-01 -5.57047844e-01 8.95299435e-01 4.70725298e-01 -1.21623826e+00 -4.62500095e-01 -1.12029123e+00 1.06245913e-01 -5.50496221e-01 -2.88019925e-01 1.00047839e+00 9.87234414e-01 -1.34360194e+00 6.04672849e-01 -6.03853822e-01 -7.55050242e-01 8.13909769e-01 5.09844244e-01 4.97916676e-02 -1.24053992e-01 -1.15232062e+00 7.72469044e-01 8.99305820e-01 -4.08486187e-01 -8.15078378e-01 -5.56691170e-01 -6.57794237e-01 3.56806844e-01 5.29800951e-01 -6.95250988e-01 1.45536649e+00 -1.57538307e+00 -1.75397956e+00 6.17066145e-01 1.47309676e-01 -7.71041214e-01 2.55039841e-01 2.49801073e-02 -2.81930804e-01 7.89956450e-01 -2.22230241e-01 1.37251711e+00 7.59936273e-01 -1.37064826e+00 -6.68048918e-01 9.19910371e-02 1.69852063e-01 2.68727750e-01 -8.54839265e-01 -6.20417446e-02 -6.78844810e-01 -5.51447868e-01 6.01175651e-02 -6.84302986e-01 -3.17279696e-01 1.42709509e-01 -2.00687528e-01 9.19174477e-02 1.09653139e+00 -4.99924511e-01 1.12044144e+00 -2.17514491e+00 1.75045177e-01 3.43442976e-01 1.42582834e-01 3.89303535e-01 -1.82299167e-01 4.88293499e-01 4.51141357e-01 1.87361762e-01 -5.73816001e-01 -1.23779997e-01 -1.91576406e-01 5.21752357e-01 -1.63099319e-01 -2.56359994e-01 -1.68485150e-01 1.05679774e+00 -8.70077729e-01 -5.62237859e-01 3.51857662e-01 5.47365904e-01 -6.97700739e-01 1.65502340e-01 -3.96320909e-01 3.34780484e-01 -5.08045018e-01 6.19596958e-01 4.09431994e-01 -5.06584406e-01 2.11570621e-01 9.40508209e-03 1.31551161e-01 2.59769484e-02 -6.29136503e-01 2.26189256e+00 -7.00687647e-01 7.79317558e-01 3.16819083e-03 -1.49132097e+00 8.78607035e-01 3.65485638e-01 6.63258612e-01 -1.17620742e+00 2.73282290e-01 1.61764443e-01 -2.62683481e-01 -4.67587411e-01 7.84915924e-01 2.28635664e-03 -1.51686534e-01 3.61660987e-01 1.83105126e-01 -5.41628659e-01 1.33126244e-01 4.54854131e-01 9.60069299e-01 3.16625126e-02 6.39404580e-02 -2.90778846e-01 3.61374795e-01 3.70958358e-01 1.20179472e-03 7.57484913e-01 2.70537939e-02 3.97941947e-01 9.26311612e-02 -1.82283223e-01 -1.16308534e+00 -1.16845882e+00 -6.54018298e-02 8.72734666e-01 7.51043260e-01 -3.43941063e-01 -1.27459812e+00 -2.94767439e-01 -3.61413121e-01 9.32686687e-01 -2.19471231e-01 -4.78841931e-01 -2.00539246e-01 -4.31057721e-01 6.69022977e-01 3.83329302e-01 1.08941889e+00 -1.12863517e+00 -1.11352158e+00 2.99764276e-01 -3.46410006e-01 -1.31309485e+00 1.05509698e-01 -5.06857038e-03 -9.27128553e-01 -5.80152273e-01 -8.51442218e-01 -8.26236427e-01 4.87372309e-01 5.79728842e-01 9.95703340e-01 4.37601715e-01 -4.99275208e-01 8.68438363e-01 -8.34872067e-01 -3.90917301e-01 -7.09252596e-01 2.94822782e-01 -6.33992136e-01 -4.55244243e-01 1.75007299e-01 -5.04224598e-01 -7.14295268e-01 1.24349512e-01 -1.04266858e+00 4.90838259e-01 6.26806796e-01 6.44436717e-01 1.22089349e-01 2.73224652e-01 7.84454882e-01 -7.71222532e-01 7.43282139e-01 -4.98398453e-01 -2.77128905e-01 2.20280483e-01 -6.39454246e-01 -2.66890615e-01 4.18859392e-01 -1.14074886e-01 -1.08041000e+00 -1.79708675e-01 -1.91364720e-01 -3.27666127e-03 -1.85086071e-01 5.72454512e-01 1.50819004e-01 -3.86637449e-01 3.57262492e-01 4.88489330e-01 2.79233903e-01 -3.02626222e-01 4.99755055e-01 1.04661608e+00 5.93337357e-01 -4.80915755e-01 2.17134058e-01 5.93826592e-01 -1.66324615e-01 -1.24570036e+00 -6.98083818e-01 -4.50959235e-01 -3.77000928e-01 -3.40533495e-01 1.15908670e+00 -7.56196141e-01 -5.74048102e-01 2.13511586e-01 -1.13236952e+00 -3.80297005e-01 -5.62733650e-01 3.68563116e-01 -9.56659019e-01 6.06919229e-01 -5.90261519e-01 -5.32778561e-01 -3.63274336e-01 -1.18339968e+00 7.95962930e-01 2.90766716e-01 -3.52067858e-01 -1.00403559e+00 -6.13747478e-01 6.43286169e-01 7.71223426e-01 -3.32754225e-01 9.72551525e-01 -3.72451097e-01 -8.76325428e-01 3.00664790e-02 -6.10134482e-01 4.74240631e-01 -2.53522307e-01 -4.83620137e-01 -8.55872691e-01 -1.27699286e-01 -1.01214141e-01 -4.19365346e-01 8.14583302e-01 2.75328338e-01 1.61550963e+00 -9.56702158e-02 -2.89938986e-01 6.81805670e-01 1.50984347e+00 5.71743131e-01 7.75623322e-01 4.72486764e-01 3.67809236e-01 6.75972641e-01 3.00414205e-01 4.00216997e-01 4.76470679e-01 4.87941504e-01 4.68479186e-01 -3.63940954e-01 -6.07922137e-01 -2.11717144e-01 -8.08920264e-02 8.92528832e-01 -5.10285944e-02 -5.28891385e-01 -9.59025383e-01 4.77018833e-01 -1.69328535e+00 -8.52079391e-01 3.38290244e-01 1.73342550e+00 5.07910311e-01 1.91086337e-01 -1.63779065e-01 2.25614056e-01 4.19576615e-01 2.36189608e-02 -3.41117531e-01 -8.48017871e-01 1.38435066e-01 4.16131884e-01 6.51113033e-01 1.03386655e-01 -8.06693017e-01 1.35608304e+00 7.31158543e+00 1.21972728e+00 -8.75854850e-01 2.25030795e-01 5.12998521e-01 3.30935448e-01 -4.82768774e-01 4.90810461e-02 -2.69399554e-01 3.88254821e-01 1.17427993e+00 -1.93828464e-01 6.39344871e-01 7.31217444e-01 2.53124516e-02 -5.02072692e-01 -7.61947155e-01 8.94225180e-01 1.03933863e-01 -1.74818933e+00 4.02096212e-01 -3.67695391e-02 4.85123813e-01 -1.62353024e-01 3.51020694e-02 1.12441465e-01 2.68788636e-01 -1.18210471e+00 7.78363764e-01 2.43856221e-01 9.19232070e-01 -7.91275203e-01 6.64556205e-01 2.76063830e-01 -9.33180034e-01 -3.18281591e-01 -4.33684766e-01 -5.69241084e-02 4.41568285e-01 2.83558279e-01 -6.28196776e-01 6.39488280e-01 6.01732492e-01 7.50741661e-01 -1.48044899e-01 9.61479247e-01 8.17620754e-02 5.95545232e-01 -1.21127836e-01 -8.30159858e-02 5.27030647e-01 -1.13408297e-01 2.07925558e-01 1.30188715e+00 6.47012949e-01 1.50867432e-01 2.31160492e-01 7.90939450e-01 -1.71829406e-02 -4.09514504e-03 -6.29809201e-01 -2.10410401e-01 6.14380419e-01 6.97406411e-01 -1.20692909e+00 -5.08291304e-01 -5.56010187e-01 1.30498314e+00 -1.00682423e-01 2.65147358e-01 -7.12495983e-01 -2.99989104e-01 1.09934926e-01 -2.23726347e-01 3.38681608e-01 -2.75161922e-01 -6.40836358e-01 -6.22327924e-01 -4.89072263e-01 -5.93711257e-01 7.47874752e-02 -8.35187554e-01 -6.50819480e-01 5.19377112e-01 1.29490688e-01 -9.04526770e-01 6.03224058e-03 -1.86868697e-01 -2.67481297e-01 1.88299835e-01 -1.69358981e+00 -1.34518111e+00 -3.76034081e-01 6.59000933e-01 7.83862948e-01 -3.68689150e-01 9.27988827e-01 2.95419693e-01 -1.69611871e-01 5.50729454e-01 -8.70151892e-02 -1.57545373e-01 -1.07842021e-01 -7.71030307e-01 1.98035747e-01 4.64296103e-01 1.34969130e-01 8.98520425e-02 7.13510513e-01 -3.60877633e-01 -1.34585333e+00 -8.88601840e-01 6.74411893e-01 2.60948032e-01 4.42339659e-01 -1.38709068e-01 -5.53035915e-01 3.63649845e-01 3.40061158e-01 -6.34590864e-01 7.98456669e-01 -2.04567298e-01 -1.45958111e-01 6.24263622e-02 -1.17785037e+00 4.87790793e-01 1.27473879e+00 -4.70349014e-01 -5.31901062e-01 2.27797464e-01 1.12595534e+00 -1.00190043e-01 -8.72120142e-01 2.61690348e-01 3.93982530e-01 -9.37709272e-01 1.16751266e+00 1.32576987e-01 5.37472606e-01 3.34999233e-01 -3.59962523e-01 -1.01795292e+00 -7.42150024e-02 -4.78864938e-01 1.25729233e-01 9.53624547e-01 2.52660215e-01 -3.42842907e-01 9.39385116e-01 3.50757927e-01 -5.42130411e-01 -5.43915510e-01 -1.05781758e+00 -8.92680764e-01 -1.42717019e-01 -7.10001826e-01 6.13176048e-01 7.23960578e-01 3.09161335e-01 7.55156204e-02 -3.25190127e-01 -3.24087501e-01 4.97710466e-01 1.59342960e-02 3.96315634e-01 -1.16487443e+00 -3.10359746e-01 -6.11715853e-01 -6.75966859e-01 -1.37768877e+00 2.72398233e-01 -1.09237134e+00 4.25102077e-02 -1.80833662e+00 1.76364437e-01 -5.08428872e-01 -1.03766270e-01 3.14471453e-01 6.18978620e-01 5.13241172e-01 5.52550912e-01 2.21485019e-01 -7.20906615e-01 4.77728307e-01 1.37366521e+00 -1.67164579e-01 3.61458078e-04 -1.31491482e-01 -8.19849074e-01 6.90155268e-01 9.74480271e-01 -2.34820649e-01 -1.00335300e+00 -5.59181809e-01 4.62796986e-02 1.51025578e-01 2.67930627e-01 -1.35949981e+00 3.52103651e-01 1.50942029e-02 -1.32010043e-01 -2.12249756e-01 4.39729601e-01 -1.18526864e+00 9.60908383e-02 8.50428760e-01 -5.32894433e-01 -5.07813871e-01 3.67818028e-02 5.73004663e-01 -4.38287050e-01 -4.65389639e-01 8.88367712e-01 -4.71920490e-01 -1.41208041e+00 3.64773609e-02 -6.82237685e-01 -1.67119101e-01 1.41418767e+00 -9.52522933e-01 -1.40931875e-01 -4.23560381e-01 -7.01386034e-01 1.26055613e-01 4.17949885e-01 4.18227911e-01 8.05461824e-01 -8.97422552e-01 -2.37094387e-01 1.79508775e-01 -6.47141188e-02 -2.72836775e-01 2.25549161e-01 4.43172663e-01 -8.10608923e-01 5.08183062e-01 -4.28322643e-01 -6.55405283e-01 -1.05394483e+00 5.13736606e-01 7.62478113e-02 1.25491783e-01 -1.01058757e+00 8.96938324e-01 8.82862359e-02 -4.06138711e-02 4.51085389e-01 3.35532688e-02 -1.86693713e-01 -1.37047425e-01 2.79182196e-01 4.24311757e-01 -3.16581130e-01 -3.76922458e-01 6.89941421e-02 4.88253534e-01 3.24555188e-02 -1.67220280e-01 1.15803945e+00 -6.29284620e-01 -7.20497370e-02 1.21090204e-01 1.11089563e+00 -7.50780880e-01 -9.75487351e-01 -4.23650965e-02 2.07287624e-01 -3.54852408e-01 4.74453986e-01 -9.54259574e-01 -1.22108591e+00 9.54667866e-01 5.18944621e-01 4.13784266e-01 1.36650372e+00 1.22598119e-01 1.31324220e+00 3.55485648e-01 6.94279790e-01 -1.48288155e+00 2.02912554e-01 4.74462062e-01 3.46835434e-01 -9.54391181e-01 -1.38671994e-01 -7.37913668e-01 -4.87605155e-01 1.22930288e+00 2.12570861e-01 2.19654799e-01 5.64828336e-01 3.49100858e-01 -5.32479472e-02 -3.19140226e-01 -4.35290903e-01 -3.48773837e-01 -1.66614965e-01 1.03237379e+00 2.61520028e-01 1.96523547e-01 -4.97644722e-01 3.93431410e-02 -3.01747590e-01 3.44460726e-01 5.43438315e-01 1.00259817e+00 -8.54320645e-01 -1.20091522e+00 1.10085078e-01 3.81132394e-01 -3.51531893e-01 -1.04447968e-01 -3.21040064e-01 7.08348453e-01 -1.00917732e-02 1.03019059e+00 3.31266910e-01 -4.19476390e-01 -8.32609683e-02 -2.58242726e-01 4.65553015e-01 -4.75174576e-01 -4.80066329e-01 -4.26131748e-02 2.38107562e-01 -7.79773533e-01 -7.59852827e-01 -1.60043463e-01 -1.45626819e+00 -4.39150959e-01 -9.20088291e-02 1.79782927e-01 9.50477839e-01 9.98880327e-01 4.51531947e-01 7.24944532e-01 3.35239977e-01 -6.51418030e-01 -1.29969090e-01 -4.43442971e-01 -4.52539206e-01 3.38851303e-01 -3.35369632e-02 -3.12992305e-01 2.41552413e-01 1.57698452e-01]
[11.265408515930176, -1.4894294738769531]
94d90c1d-8b91-4925-88b4-cd94bd380782
ensemble-learning-of-myocardial-displacements
2303.06744
null
https://arxiv.org/abs/2303.06744v1
https://arxiv.org/pdf/2303.06744v1.pdf
Ensemble Learning of Myocardial Displacements for Myocardial Infarction Detection in Echocardiography
Early detection and localization of myocardial infarction (MI) can reduce the severity of cardiac damage through timely treatment interventions. In recent years, deep learning techniques have shown promise for detecting MI in echocardiographic images. However, there has been no examination of how segmentation accuracy affects MI classification performance and the potential benefits of using ensemble learning approaches. Our study investigates this relationship and introduces a robust method that combines features from multiple segmentation models to improve MI classification performance by leveraging ensemble learning. Our method combines myocardial segment displacement features from multiple segmentation models, which are then input into a typical classifier to estimate the risk of MI. We validated the proposed approach on two datasets: the public HMC-QU dataset (109 echocardiograms) for training and validation, and an E-Hospital dataset (60 echocardiograms) from a local clinical site in Vietnam for independent testing. Model performance was evaluated based on accuracy, sensitivity, and specificity. The proposed approach demonstrated excellent performance in detecting MI. The results showed that the proposed approach outperformed the state-of-the-art feature-based method. Further research is necessary to determine its potential use in clinical settings as a tool to assist cardiologists and technicians with objective assessments and reduce dependence on operator subjectivity. Our research codes are available on GitHub at https://github.com/vinuni-vishc/mi-detection-echo.
['Hieu Pham', 'Long Tran', 'Thuy Nguyen', 'Vinh Le', 'Phuong Tran', 'Bach Do', 'Hanh Van', 'Thanh Le', 'Quang Nguyen', 'Hung Pham', 'Dai Tran', 'Phi Nguyen', 'Nguyen Tuan']
2023-03-12
null
null
null
null
['myocardial-infarction-detection']
['medical']
[ 1.79557726e-01 -4.29062545e-01 -1.89608693e-01 -2.74275869e-01 -1.13200057e+00 -4.81943488e-01 -1.56614661e-01 2.68752664e-01 -3.92060906e-01 4.38458651e-01 8.96042399e-03 -7.62179017e-01 -3.94235641e-01 -6.25409544e-01 -2.39850029e-01 -7.23893046e-01 -4.66563553e-01 4.06277269e-01 1.16742834e-01 4.13067907e-01 3.69922251e-01 5.12801230e-01 -9.58741009e-01 4.66716349e-01 9.26595569e-01 7.77261138e-01 1.88163206e-01 1.06333780e+00 4.51568663e-01 6.73018336e-01 -5.36458910e-01 7.13627636e-02 3.41456383e-01 -8.70929241e-01 -4.94834721e-01 5.81124797e-02 2.56679267e-01 -4.52622473e-01 -1.28517181e-01 1.69258356e-01 1.17865443e+00 -2.64514983e-01 5.91996074e-01 -6.63570523e-01 -1.46503434e-01 5.49219251e-01 -2.00286344e-01 9.28374350e-01 -1.71555340e-01 3.11478317e-01 5.47665536e-01 -7.53035367e-01 4.53914344e-01 4.83241171e-01 9.53753293e-01 1.16900623e-01 -1.08498323e+00 -7.45612085e-01 -4.33963716e-01 2.88095862e-01 -1.26723433e+00 -2.80830175e-01 5.93100786e-01 -7.40468442e-01 5.92084587e-01 3.02499533e-01 6.57875776e-01 3.84319305e-01 5.00469804e-01 3.62569302e-01 1.19776845e+00 -4.20054436e-01 -2.34225079e-01 1.37554958e-01 4.27843839e-01 7.43188083e-01 3.02038014e-01 3.91639501e-01 -1.15036190e-01 -3.46791446e-01 8.96218538e-01 2.41747111e-01 -2.98732221e-01 -1.30350187e-01 -1.43056786e+00 9.00308847e-01 3.65299493e-01 4.79601443e-01 -5.08838594e-01 -1.72417462e-01 6.13550127e-01 2.33794004e-01 3.47517252e-01 3.30438852e-01 -5.55881202e-01 -1.20792657e-01 -1.11915433e+00 -4.54971492e-02 5.05118787e-01 5.63725457e-02 1.26597648e-02 -5.22632040e-02 -2.55800068e-01 8.76105487e-01 1.32862777e-01 6.06016219e-01 3.82409036e-01 -1.13449824e+00 3.13769728e-01 5.53375661e-01 -2.15044022e-01 -1.07010770e+00 -6.17418349e-01 -7.88299441e-01 -1.01344514e+00 3.10029387e-01 3.89596403e-01 -6.03601277e-01 -8.37133765e-01 1.10350859e+00 4.74929810e-02 3.39247853e-01 -8.88939649e-02 1.08024371e+00 8.54676723e-01 3.28606665e-01 2.50034750e-01 -2.76085138e-01 1.35111165e+00 -4.48894948e-01 -2.41775349e-01 -1.57302879e-02 1.09414625e+00 -6.09242976e-01 5.11657953e-01 3.72725338e-01 -8.58628571e-01 -6.13103688e-01 -1.00493562e+00 5.99836111e-01 1.61133930e-01 6.22267127e-01 4.17219877e-01 9.49110389e-01 -6.27683699e-01 7.25986123e-01 -1.12632024e+00 -4.32261020e-01 6.99886441e-01 4.17322934e-01 -2.76421905e-01 3.21878381e-02 -1.06049168e+00 9.46343660e-01 3.51690650e-01 3.53772730e-01 -6.62757218e-01 -7.51976907e-01 -6.37610078e-01 -1.71422854e-01 7.40498453e-02 -1.00904059e+00 6.85574770e-01 -8.74580264e-01 -9.48207736e-01 9.22732294e-01 -1.77590832e-01 -3.73380184e-01 4.73554999e-01 -2.35704362e-01 -2.70555824e-01 4.82409000e-01 2.57123083e-01 2.20908120e-01 3.16546768e-01 -9.56977606e-01 -7.19783664e-01 -5.44791639e-01 -1.34900749e-01 8.81879032e-02 3.30263674e-02 2.59748042e-01 1.69435292e-01 -8.12679768e-01 3.86049032e-01 -1.19218647e+00 -3.97496432e-01 -2.37827376e-01 -9.88718718e-02 1.67590514e-01 5.65701127e-01 -1.07650292e+00 1.39958632e+00 -1.98831236e+00 -8.96545649e-02 3.51916552e-01 4.01430249e-01 6.16980195e-01 2.36912683e-01 3.18577111e-01 -1.04347624e-01 7.17430532e-01 -3.00287038e-01 3.69210422e-01 -6.88437164e-01 -7.41465166e-02 4.94442642e-01 4.90724772e-01 8.91776755e-02 8.88447583e-01 -5.45322001e-01 -7.94483125e-01 5.42378366e-01 3.04026634e-01 -3.08840215e-01 1.29310086e-01 7.85053372e-01 9.05920565e-01 -3.78662765e-01 5.65817475e-01 4.55898941e-01 -3.46144557e-01 5.26639462e-01 -1.90507472e-01 4.38160859e-02 -1.00044303e-01 -1.07503271e+00 1.20704508e+00 -1.39214620e-01 5.10110021e-01 -4.53459889e-01 -1.27751362e+00 8.39311719e-01 6.78059638e-01 7.30095267e-01 -2.35211104e-01 1.56160071e-01 3.29421997e-01 5.78975379e-01 -6.99722648e-01 -5.44161081e-01 -1.47147924e-01 2.33854949e-01 4.25631642e-01 -2.61558622e-01 4.49772775e-01 2.39399791e-01 -5.11993170e-02 1.00454819e+00 -1.54862797e-03 3.32744300e-01 -2.84682184e-01 6.36934221e-01 9.78190973e-02 8.96256983e-01 1.23189449e+00 -4.96447593e-01 8.09102058e-01 4.06742573e-01 -6.33854806e-01 -6.20622039e-01 -9.37848210e-01 -5.29166937e-01 6.61195457e-01 -2.14385778e-01 -1.45585433e-01 -4.99200910e-01 -6.86792791e-01 -8.11850131e-02 2.41480142e-01 -4.24800396e-01 -2.63060424e-02 -9.11929607e-01 -1.06864607e+00 6.20440185e-01 8.82153988e-01 5.32599211e-01 -1.00187409e+00 -1.18374693e+00 4.20114815e-01 -4.64366883e-01 -5.69901228e-01 -2.03319550e-01 -5.18319607e-02 -1.35905409e+00 -1.33627009e+00 -1.13341630e+00 -9.50872540e-01 3.33929449e-01 1.00231133e-01 1.04009295e+00 5.09452939e-01 -5.86183012e-01 8.52578208e-02 -3.52056175e-01 -6.48734748e-01 -5.95033109e-01 1.95141971e-01 -2.35145271e-01 -1.67268902e-01 6.44372925e-02 -3.71406108e-01 -1.21765530e+00 3.56902301e-01 -4.11304146e-01 -5.17321564e-02 8.46504152e-01 8.74985039e-01 4.98084664e-01 -2.32875153e-01 8.97826910e-01 -1.19539249e+00 3.26247334e-01 -5.00353277e-01 -9.19276625e-02 2.35631645e-01 -8.33987951e-01 -7.02051044e-01 2.17112210e-02 -2.53424197e-01 -7.82658994e-01 -9.35037583e-02 2.45943163e-02 -1.96146578e-01 -2.11334661e-01 9.86340284e-01 4.30323452e-01 -9.89720523e-02 6.91642344e-01 -7.29022697e-02 3.48675758e-01 -2.21552372e-01 -4.41392779e-01 8.41346025e-01 2.22232312e-01 -1.92346260e-01 3.47343594e-01 9.44175348e-02 2.89393961e-01 -6.21563435e-01 -5.65262139e-01 -6.38696671e-01 -8.58086765e-01 -4.39086944e-01 8.53639901e-01 -8.30777168e-01 -2.50108391e-01 5.44754386e-01 -7.60332108e-01 -1.31290048e-01 1.76287770e-01 8.39573801e-01 -2.52580702e-01 3.91408086e-01 -7.20064938e-01 -5.87651134e-01 -7.29141533e-01 -1.09520900e+00 5.64955592e-01 7.61480331e-02 -2.04868495e-01 -9.40784156e-01 1.02896936e-01 6.06275141e-01 4.76338983e-01 6.49216592e-01 1.09394097e+00 -8.29045296e-01 -4.18726683e-01 -5.83837092e-01 -8.29737335e-02 5.97346067e-01 2.63807476e-01 -1.67630967e-02 -5.74907660e-01 -1.27543896e-01 -1.76465392e-01 1.27320796e-01 7.74591327e-01 9.86966908e-01 1.01629269e+00 1.62724048e-01 -3.78886163e-01 4.27493840e-01 1.22083843e+00 5.02943575e-01 5.82364202e-01 3.91045660e-01 6.07234955e-01 1.44057527e-01 5.66240549e-01 2.54689425e-01 3.78315777e-01 3.43389958e-01 -8.48749802e-02 -6.36386693e-01 -1.77290112e-01 4.48342443e-01 -1.05549902e-01 5.62536240e-01 -6.22068703e-01 -1.07518993e-01 -1.48500788e+00 3.10731888e-01 -1.78434336e+00 -1.06575739e+00 -5.03668964e-01 2.25466180e+00 3.35162282e-01 1.57785922e-01 3.17869723e-01 4.12957549e-01 7.06403613e-01 -3.20597440e-01 -2.49343604e-01 -3.58124048e-01 4.81659807e-02 2.52675891e-01 3.48157108e-01 3.02513801e-02 -1.47604990e+00 1.81158751e-01 6.44563246e+00 8.50050002e-02 -1.29607844e+00 2.29190737e-01 1.19869614e+00 2.33123392e-01 4.37811762e-01 2.31055566e-03 -1.94821119e-01 3.22448581e-01 1.05168080e+00 -5.65272234e-02 -2.57843792e-01 3.03045183e-01 6.62617087e-01 -2.20293850e-01 -7.33459830e-01 6.46640897e-01 1.31459273e-02 -1.55894279e+00 -4.12327737e-01 -2.59131640e-02 4.86979753e-01 6.41259030e-02 -1.66226014e-01 2.70863593e-01 -6.88068330e-01 -7.16512918e-01 5.05797006e-02 8.10807765e-01 7.88281262e-01 -4.70081806e-01 1.54201150e+00 2.51516819e-01 -7.42153168e-01 -1.74452975e-01 3.44322979e-01 -1.69426039e-01 2.04981685e-01 3.78423601e-01 -9.83950377e-01 4.86409962e-01 6.52869105e-01 6.79237485e-01 -7.66687989e-01 1.22686064e+00 3.06509912e-01 1.23776078e+00 -8.00220892e-02 3.83750290e-01 -1.50495619e-01 -1.13363869e-01 5.15009344e-01 1.22548890e+00 3.05256635e-01 3.59175712e-01 5.03780842e-01 5.33082008e-01 4.10815299e-01 4.29820091e-01 -5.02951324e-01 9.30297002e-02 2.03861713e-01 1.15555489e+00 -1.13918924e+00 -4.60985839e-01 -5.85693419e-01 4.69986290e-01 -2.29373291e-01 3.52366745e-01 -7.79043317e-01 -2.93199956e-01 -1.43391207e-01 5.25940061e-01 9.17467549e-02 5.11768088e-02 -8.51371765e-01 -8.11919868e-01 -1.49162546e-01 -1.04343808e+00 7.01824248e-01 -2.19473049e-01 -9.15871382e-01 4.46208030e-01 1.24348216e-01 -1.38263607e+00 -2.36676991e-01 -3.56990546e-01 -7.27792084e-01 1.15021205e+00 -9.16267157e-01 -1.13699448e+00 -2.71384478e-01 -1.30385738e-02 4.23485905e-01 -2.62178421e-01 1.16576064e+00 3.70149672e-01 -8.18362832e-01 4.44123536e-01 -3.67806405e-02 5.39025545e-01 6.96095049e-01 -1.08810377e+00 -2.34159663e-01 8.03519130e-01 -2.79998839e-01 6.04264200e-01 2.16358140e-01 -7.55297244e-01 -6.40896201e-01 -9.48374450e-01 9.68461752e-01 -4.79310930e-01 2.16573048e-02 4.93731856e-01 -6.92662716e-01 4.77871239e-01 -7.88331628e-02 1.93135619e-01 1.18049407e+00 1.25466600e-01 4.52027649e-01 -9.39504653e-02 -1.10474026e+00 1.52783021e-01 6.59526646e-01 -1.36383519e-01 -4.53283876e-01 7.16134086e-02 -3.11166793e-01 -3.95820528e-01 -1.43732417e+00 8.97119045e-01 1.01442742e+00 -1.16491532e+00 8.83636653e-01 -4.36041415e-01 4.04908240e-01 -9.57381576e-02 1.89099357e-01 -8.67570817e-01 -6.06266618e-01 -1.07275449e-01 2.38815039e-01 9.53001380e-01 5.99913895e-01 -7.89439380e-01 6.03663385e-01 4.81411040e-01 -1.53285399e-01 -1.18053138e+00 -5.83856761e-01 -3.82910192e-01 2.31445253e-01 -2.72626013e-01 -1.65259421e-01 6.31046832e-01 -2.61353821e-01 8.48260596e-02 -2.26381924e-02 2.31106028e-01 5.02212107e-01 2.75798261e-01 4.06552583e-01 -1.23112583e+00 -2.21477896e-01 -2.99452484e-01 -7.26885915e-01 2.30758525e-02 -2.63146967e-01 -1.13656688e+00 -3.99862319e-01 -1.74157774e+00 6.56051338e-01 -8.07459593e-01 -7.58700132e-01 2.70577043e-01 -6.48957074e-01 6.00740373e-01 4.76147205e-01 5.15810192e-01 -1.60182104e-01 -3.50013554e-01 1.14702725e+00 1.74264565e-01 -4.56749856e-01 4.36416745e-01 -7.23110676e-01 6.89362168e-01 1.25661194e+00 -7.46847689e-01 -3.71878415e-01 -2.31929362e-01 -4.48209345e-01 5.32801092e-01 6.92903638e-01 -1.25805616e+00 -2.77620822e-01 3.21513973e-02 8.05736303e-01 -4.92082864e-01 -2.63451695e-01 -4.33800578e-01 3.64556432e-01 8.45745027e-01 -3.35240453e-01 2.18594074e-01 1.56868443e-01 1.36836186e-01 3.11786514e-02 -1.51229367e-01 5.89214027e-01 -3.64104748e-01 -5.40352821e-01 2.19869748e-01 -7.17230201e-01 1.56638101e-01 1.12847662e+00 -4.40774053e-01 9.26277041e-02 -1.84140801e-01 -1.12918079e+00 6.09630719e-02 2.40419805e-02 1.81230158e-01 6.05997622e-01 -9.86156940e-01 -1.33233798e+00 -5.28088585e-03 -8.51348042e-03 -3.86388958e-01 4.53975976e-01 1.56320930e+00 -1.02798164e+00 3.42718154e-01 -1.79481432e-01 -1.05134821e+00 -1.40696394e+00 9.76939797e-02 6.53077602e-01 -2.87646919e-01 -8.31864238e-01 4.43876833e-01 -8.26211795e-02 -1.96772851e-02 -2.55303021e-05 -1.75731890e-02 -1.55197009e-01 -1.92331504e-02 3.14071536e-01 7.06245840e-01 1.57280236e-01 -5.50560474e-01 -5.77729344e-01 5.40718675e-01 -4.74650925e-03 1.53906792e-01 1.00256598e+00 -3.01852405e-01 1.20708168e-01 6.50399745e-01 9.61607814e-01 -4.41219449e-01 -5.83078146e-01 1.07017599e-01 -5.55658415e-02 -3.29426557e-01 4.11969125e-01 -1.15873826e+00 -1.14131868e+00 9.28810954e-01 1.56548941e+00 -5.35000563e-02 1.20507240e+00 -2.22456902e-01 6.00357652e-01 -2.44072080e-03 6.94452673e-02 -6.45885110e-01 -2.45506644e-01 -7.51141757e-02 5.59318900e-01 -1.52075088e+00 1.90786105e-02 -2.55140215e-01 -9.95522797e-01 1.25485289e+00 2.44768217e-01 -1.68098837e-01 1.01423693e+00 6.23951107e-03 7.94116557e-01 -1.13323279e-01 -3.16821724e-01 -6.31646020e-03 3.36169153e-01 6.04786515e-01 1.00060725e+00 3.54156762e-01 -8.07169795e-01 5.35259068e-01 3.88854653e-01 4.49886233e-01 3.58546466e-01 1.11211622e+00 -2.90206701e-01 -1.08165920e+00 -2.00603262e-01 1.11627495e+00 -1.03704989e+00 -7.82485902e-02 -1.38789481e-02 6.64815784e-01 4.55826879e-01 1.05166340e+00 -2.95679271e-01 -2.63186485e-01 3.61955315e-01 3.13628078e-01 2.83291429e-01 -5.88228464e-01 -8.12244952e-01 2.65704185e-01 2.23616093e-01 -1.81353837e-01 -6.48303926e-01 -9.79540825e-01 -1.13395417e+00 8.34252983e-02 -3.59369338e-01 -4.12929021e-02 2.74058700e-01 9.02407587e-01 5.81552863e-01 7.84560740e-01 7.43087530e-01 -6.74752057e-01 -4.42271262e-01 -1.04914069e+00 -5.06986618e-01 2.88300097e-01 2.26688027e-01 -4.40173388e-01 -2.26964906e-01 3.10152590e-01]
[14.199823379516602, -2.3406050205230713]
4f20fd80-48ef-4b09-a1a0-4c56203834cf
data-augmentation-for-low-resource-named
2108.11703
null
https://arxiv.org/abs/2108.11703v1
https://arxiv.org/pdf/2108.11703v1.pdf
Data Augmentation for Low-Resource Named Entity Recognition Using Backtranslation
The state of art natural language processing systems relies on sizable training datasets to achieve high performance. Lack of such datasets in the specialized low resource domains lead to suboptimal performance. In this work, we adapt backtranslation to generate high quality and linguistically diverse synthetic data for low-resource named entity recognition. We perform experiments on two datasets from the materials science (MaSciP) and biomedical domains (S800). The empirical results demonstrate the effectiveness of our proposed augmentation strategy, particularly in the low-resource scenario.
['Stefan Langer', 'Usama Yaseen']
2021-08-26
null
https://aclanthology.org/2021.icon-main.43
https://aclanthology.org/2021.icon-main.43.pdf
icon-2021-12
['low-resource-named-entity-recognition']
['natural-language-processing']
[ 3.12702745e-01 -7.54690543e-02 -5.75887784e-02 -4.80514586e-01 -1.02133512e+00 -5.79059362e-01 6.33316815e-01 1.90660760e-01 -9.34791148e-01 1.43008375e+00 2.82290429e-01 -2.63116330e-01 4.13580805e-01 -6.32633269e-01 -6.31942868e-01 -2.00223982e-01 3.58520389e-01 6.56400859e-01 5.96888438e-02 -3.41040343e-01 1.28220975e-01 5.00075698e-01 -1.12171543e+00 5.60268700e-01 1.18292868e+00 3.51766616e-01 1.81418046e-01 4.35585827e-01 -5.99679291e-01 4.32432860e-01 -8.33672345e-01 -6.52603269e-01 4.17981058e-01 -4.54015493e-01 -9.25138950e-01 -2.00822040e-01 -1.13555118e-01 2.70607799e-01 1.95367962e-01 9.62559819e-01 8.31561565e-01 1.45232469e-01 4.92903084e-01 -9.79612410e-01 -7.22263277e-01 7.59644330e-01 -2.57117033e-01 3.19545031e-01 5.44085383e-01 2.70601422e-01 7.51738131e-01 -1.30126202e+00 1.25196207e+00 1.07712507e+00 5.43022752e-01 6.19224310e-01 -8.34614813e-01 -7.06608772e-01 -1.20907709e-01 -7.95067772e-02 -1.57684755e+00 -7.27516294e-01 5.21219313e-01 4.19383310e-02 1.16749489e+00 -4.45651785e-02 6.18062215e-03 1.48591447e+00 -1.13225363e-01 6.13863230e-01 1.28770375e+00 -7.01495886e-01 2.02306852e-01 3.31202179e-01 -1.36061134e-02 4.77522910e-01 6.24467075e-01 -1.86720431e-01 -5.78103244e-01 -1.92610979e-01 4.00223166e-01 -3.09838027e-01 -1.00689366e-01 2.56810576e-01 -1.59795856e+00 5.08228779e-01 3.85548435e-02 6.87245131e-01 -6.36656880e-01 -7.43287206e-01 7.80103624e-01 5.64584434e-01 3.65629673e-01 8.66465569e-01 -9.48867202e-01 -1.59253269e-01 -7.02533782e-01 5.29585145e-02 9.35844481e-01 1.38104868e+00 3.82901788e-01 1.32856280e-01 -2.86589950e-01 1.03709674e+00 -6.60550967e-02 5.37762761e-01 9.47684884e-01 -3.48999172e-01 8.99554491e-01 6.86298966e-01 4.08321619e-01 -7.89164007e-01 -5.22531748e-01 -2.04730302e-01 -1.01255846e+00 -4.14740711e-01 4.22113001e-01 -3.87688041e-01 -1.02551043e+00 1.73046970e+00 4.82396454e-01 -1.78243816e-02 7.97332168e-01 7.09657133e-01 1.07268882e+00 6.51361763e-01 5.38279355e-01 -1.77309573e-01 1.44027853e+00 -7.96056807e-01 -8.21938396e-01 -2.54959136e-01 7.81087399e-01 -9.47315574e-01 1.51284194e+00 1.97192997e-01 -8.07090521e-01 -4.95597839e-01 -8.52369606e-01 -3.45382281e-02 -6.75678194e-01 4.57304329e-01 5.18822491e-01 5.61838388e-01 -4.87510681e-01 2.75845885e-01 -6.37539268e-01 -6.26184642e-01 3.69272768e-01 6.74586296e-02 -7.94669986e-01 -2.83207119e-01 -1.53984928e+00 8.76171529e-01 1.10013330e+00 -6.44957051e-02 -4.47319001e-01 -7.57438779e-01 -8.27308655e-01 -2.88285226e-01 3.57040763e-01 -7.14601696e-01 9.74095881e-01 -7.23775446e-01 -1.36670327e+00 1.05814648e+00 9.47430059e-02 -4.77791458e-01 7.06978559e-01 -1.09047964e-01 -8.27237666e-01 4.87062074e-02 2.32962817e-01 5.66177964e-01 2.19613969e-01 -9.05478358e-01 -3.71326208e-01 -2.28745729e-01 -3.46607566e-01 1.78316478e-02 -3.83031517e-01 3.26684713e-01 -2.23998338e-01 -1.02065885e+00 -2.76729256e-01 -7.71831453e-01 -5.26493549e-01 -4.20669973e-01 -4.68474150e-01 -5.42099960e-03 1.70684382e-01 -7.96175957e-01 1.04947603e+00 -1.90767658e+00 -2.02044472e-01 -2.14838654e-01 -3.92026484e-01 7.09906101e-01 -2.94870228e-01 5.49250305e-01 -1.33060375e-02 4.01977301e-01 -4.89302933e-01 -9.27424729e-02 -3.20783138e-01 3.38528395e-01 -1.05592653e-01 7.45578706e-02 7.39889622e-01 7.95925081e-01 -9.99896944e-01 -7.67562449e-01 -1.39441639e-01 2.78408289e-01 -3.66185904e-01 3.39402676e-01 -2.22759187e-01 6.31268501e-01 -7.73057759e-01 7.17118919e-01 6.41052544e-01 1.57301817e-02 1.56620786e-01 -1.59926608e-01 3.06743141e-02 3.35103363e-01 -1.17744052e+00 2.05417061e+00 -6.51742637e-01 1.09902397e-02 -1.81950152e-01 -5.82924366e-01 1.14507031e+00 4.05252934e-01 2.00258002e-01 -6.98155165e-01 1.76317498e-01 4.93957460e-01 -9.22249556e-02 -7.18754590e-01 6.09458983e-01 -4.32618618e-01 -4.60778475e-01 2.29422912e-01 1.92671224e-01 5.42150885e-02 5.51168382e-01 6.15818016e-02 1.15142453e+00 9.72691029e-02 7.48861909e-01 -2.33722955e-01 6.52928472e-01 3.74126136e-01 9.30405736e-01 5.60126007e-01 -4.00255620e-01 5.87216318e-01 4.22778493e-03 -2.74607986e-01 -1.26523232e+00 -6.89734042e-01 -1.16501123e-01 9.65433776e-01 -3.02086741e-01 -1.84057236e-01 -6.24517143e-01 -8.02422583e-01 -2.98222393e-01 9.68839884e-01 -2.00696513e-01 -4.14176993e-02 -7.50751972e-01 -9.29343879e-01 1.28887808e+00 3.39604944e-01 7.15519786e-01 -1.55923259e+00 -3.14129561e-01 3.22652489e-01 -2.75461078e-01 -1.79092884e+00 -1.91946104e-01 -6.37827441e-02 -6.31345928e-01 -7.74334610e-01 -6.99814320e-01 -8.03929150e-01 5.18673539e-01 -2.59606570e-01 1.29531193e+00 -4.59787995e-01 -2.15914309e-01 -4.43649083e-01 -5.82704008e-01 -6.85327232e-01 -9.05312419e-01 5.15031934e-01 1.54240668e-01 -1.77281633e-01 5.37432909e-01 -2.57847160e-01 -1.61938980e-01 1.44182160e-01 -1.10122931e+00 2.15000257e-01 1.04301035e+00 9.69886124e-01 7.25712895e-01 -1.81360334e-01 1.20829475e+00 -1.41996431e+00 7.62335598e-01 -6.30858362e-01 -2.33884573e-01 6.72051609e-01 -4.29348201e-01 4.09769952e-01 1.28170848e+00 -4.76295084e-01 -1.41492093e+00 1.50349945e-01 -3.64494652e-01 6.57474771e-02 -5.02416432e-01 6.62707925e-01 -5.37057996e-01 3.23805243e-01 1.08975756e+00 2.56525457e-01 -5.00549793e-01 -7.91034937e-01 3.06968838e-01 9.55566287e-01 5.93371212e-01 -8.06495786e-01 4.44580913e-01 1.24105096e-01 -1.85016960e-01 -6.41528428e-01 -8.73719990e-01 -2.14638278e-01 -6.41261101e-01 3.82667542e-01 5.59555829e-01 -9.55772817e-01 -4.52124663e-02 2.60380358e-01 -1.13479948e+00 7.16732070e-02 -3.96187395e-01 6.82196617e-01 -2.29408175e-01 8.83253217e-02 -6.09547257e-01 -5.32741547e-01 -8.69849920e-01 -9.33771372e-01 9.61175680e-01 1.84521839e-01 -1.20313875e-01 -6.29607141e-01 2.37371117e-01 3.48788798e-01 2.51070678e-01 4.95700687e-01 7.12292373e-01 -1.42710650e+00 4.31368575e-02 -2.35055849e-01 -1.16784699e-01 1.54925078e-01 2.88765877e-01 -2.08012342e-01 -6.56677842e-01 2.32352261e-02 -1.50438130e-01 -6.33880734e-01 3.88788790e-01 -4.56960320e-01 7.46033132e-01 -2.49227405e-01 -7.34087005e-02 3.53724599e-01 1.36914122e+00 5.74025139e-03 3.85883838e-01 3.59889150e-01 5.99558830e-01 5.31126082e-01 1.06030536e+00 4.44581360e-01 2.56540239e-01 3.11669052e-01 -4.78049159e-01 -1.64925024e-01 -1.46300003e-01 -3.10919285e-01 1.81970835e-01 1.12842309e+00 2.72490650e-01 -3.68722767e-01 -1.41660321e+00 8.55993450e-01 -1.49943113e+00 -6.64562881e-01 7.30566233e-02 1.84886491e+00 1.54431081e+00 1.20814197e-01 -1.93729207e-01 -1.65758282e-01 7.83731878e-01 -1.84475869e-01 -5.30826509e-01 -4.63590235e-01 -4.47462648e-01 4.75094825e-01 5.22940755e-01 -8.93310159e-02 -1.04193902e+00 1.38554776e+00 6.40795898e+00 9.35655534e-01 -9.55937088e-01 3.04983974e-01 6.37373924e-01 5.42678423e-02 -2.65131831e-01 -3.98767352e-01 -9.91252542e-01 4.19907242e-01 1.47972190e+00 -4.15090024e-01 -9.62204784e-02 7.46526480e-01 1.25938565e-01 4.11901951e-01 -7.82244205e-01 8.41867387e-01 -5.29706851e-02 -1.27465057e+00 4.93806511e-01 -5.25573432e-01 7.51490533e-01 2.68433154e-01 -3.83144587e-01 4.42016661e-01 4.52575564e-01 -9.57642019e-01 3.63399982e-01 3.57647955e-01 9.99228120e-01 -8.14590037e-01 9.03467417e-01 5.38518608e-01 -7.76852787e-01 3.86334628e-01 -5.41041911e-01 4.28400159e-01 3.14930826e-01 6.37301385e-01 -1.30397081e+00 8.33580077e-01 4.04872239e-01 2.98570812e-01 -5.91599286e-01 6.83525085e-01 -2.63542503e-01 6.16453350e-01 -4.30191249e-01 -2.62972176e-01 1.43305734e-01 -1.10886015e-01 4.70505655e-01 1.65509117e+00 1.24248542e-01 2.58239716e-01 3.20442319e-01 5.88070214e-01 -5.88802993e-01 8.36054504e-01 -8.28072429e-01 -5.70631981e-01 5.54473221e-01 1.22160685e+00 -5.95968187e-01 -5.14250636e-01 -4.63690698e-01 8.46845210e-01 5.63182890e-01 1.32329017e-01 -6.20785534e-01 -6.40978992e-01 4.11421210e-01 -1.92530319e-01 7.16550425e-02 -2.69810110e-01 -6.00441754e-01 -1.36266255e+00 2.05444619e-01 -1.35578251e+00 6.71778142e-01 -4.70227301e-01 -1.45238304e+00 1.11943376e+00 -1.55065536e-01 -1.15229952e+00 -3.45581263e-01 -4.95184362e-01 -4.03184257e-02 8.92533600e-01 -1.50206423e+00 -1.44712806e+00 -6.58793300e-02 5.52937746e-01 6.44863784e-01 -6.00467801e-01 1.07231963e+00 6.64933085e-01 -7.57765591e-01 9.78745162e-01 6.36374131e-02 2.98566431e-01 1.11568701e+00 -8.31617117e-01 7.99910724e-01 9.84753430e-01 6.47047982e-02 8.43488753e-01 6.04215205e-01 -8.26394260e-01 -1.29750824e+00 -1.45459127e+00 1.19729507e+00 -4.60192978e-01 5.44693470e-01 -4.30211633e-01 -1.06249917e+00 3.67635667e-01 4.25365753e-02 1.02745533e-01 1.01257372e+00 -1.42937377e-01 -3.06568563e-01 2.58508563e-01 -1.77791524e+00 7.34583676e-01 1.11953032e+00 -3.92582119e-01 -8.77672315e-01 4.35889363e-01 7.92947233e-01 -1.88893586e-01 -1.10781181e+00 5.29956877e-01 2.08212689e-01 -1.80590257e-01 7.61239350e-01 -1.40037513e+00 4.15723294e-01 -2.47397572e-01 -2.36695439e-01 -1.24469340e+00 1.41618371e-01 -6.12928212e-01 3.71045023e-01 1.61863923e+00 8.45475733e-01 -5.62800825e-01 6.36345208e-01 6.33925915e-01 -8.39484036e-02 -4.90256727e-01 -8.27535570e-01 -7.41706848e-01 7.34169260e-02 -2.46643335e-01 7.94156551e-01 1.31065798e+00 -2.44886324e-01 6.52184367e-01 -2.18931839e-01 -5.21043781e-03 6.74146488e-02 1.40691837e-02 6.25400484e-01 -8.48357856e-01 -1.35371715e-01 1.65556058e-01 -2.96130329e-01 -2.60631263e-01 4.85509902e-01 -9.80998516e-01 1.08600974e-01 -1.27190876e+00 1.94369167e-01 -6.70656621e-01 -4.44961369e-01 6.89733326e-01 -4.93554503e-01 1.53411105e-01 -8.74630362e-02 5.21546490e-02 -5.37914932e-01 5.07776499e-01 1.02862298e+00 5.22558875e-02 -3.23523372e-01 -4.34924841e-01 -6.52426958e-01 6.13545954e-01 1.01354849e+00 -6.81450725e-01 -2.13309973e-01 -5.76644838e-01 1.63262829e-01 -1.78067014e-01 -3.62115026e-01 -7.98425436e-01 -1.14903770e-01 -4.66167331e-01 1.89652681e-01 -2.12743863e-01 -1.20967813e-01 -5.62843025e-01 2.06598878e-01 3.63238305e-01 -5.76644838e-01 3.28587264e-01 3.01992714e-01 2.97356993e-01 -3.42359543e-01 -2.64135927e-01 9.90459383e-01 -3.43064725e-01 -8.39851797e-01 1.68227881e-01 -2.84565445e-02 6.34217918e-01 9.21833634e-01 1.56269595e-01 -1.86914608e-01 2.35075071e-01 -4.48554277e-01 -2.84265932e-02 5.17289162e-01 6.38482273e-01 4.60366964e-01 -1.25914502e+00 -1.13205993e+00 2.99506664e-01 5.02751529e-01 -1.16593525e-01 -1.16984382e-01 3.50532502e-01 -8.86137068e-01 4.80541110e-01 -6.54363334e-01 1.50429865e-03 -8.83873224e-01 6.00896120e-01 -8.60274881e-02 -6.08508229e-01 -4.54270571e-01 5.05817711e-01 -3.65588218e-01 -1.00918937e+00 -1.82773307e-01 -1.42154485e-01 -3.42548311e-01 -1.47891164e-01 5.40908992e-01 2.67490059e-01 3.36555123e-01 -8.23489904e-01 -5.87683320e-01 -8.90174508e-02 -1.64028659e-01 -2.94148743e-01 1.46842241e+00 1.68077648e-01 1.88885063e-01 3.12124372e-01 1.14556289e+00 1.01235598e-01 -3.10276508e-01 -3.77988994e-01 4.92486984e-01 -3.63089949e-01 -3.78395945e-01 -9.33459282e-01 -6.22010767e-01 5.20389259e-01 3.95578206e-01 -3.57491642e-01 1.02825069e+00 -3.95560503e-01 1.02854860e+00 8.64951611e-01 6.63068652e-01 -1.17748129e+00 -3.78727943e-01 6.69642150e-01 7.94621289e-01 -1.47408164e+00 -1.80162862e-01 -4.45295811e-01 -1.01606500e+00 7.26743758e-01 6.10003769e-01 1.43378258e-01 3.55022371e-01 4.23857778e-01 2.58269459e-01 5.26273400e-02 -7.01803982e-01 -7.43124858e-02 8.04996789e-02 5.01164913e-01 6.50445044e-01 1.45028112e-02 -8.86864424e-01 9.04407263e-01 -1.81268871e-01 1.90388054e-01 4.37585324e-01 1.23480618e+00 -1.80457029e-02 -1.49012494e+00 -1.04296558e-01 3.71206433e-01 -9.92037654e-01 -2.44918495e-01 -6.27834201e-01 7.34871984e-01 4.01288597e-03 9.16237891e-01 -5.34606993e-01 -3.57476808e-02 7.07809925e-01 3.91787618e-01 1.13417357e-01 -7.91963696e-01 -9.40806568e-01 -4.35709357e-01 5.87720633e-01 -3.50437880e-01 -5.02425849e-01 -4.84026521e-01 -1.50200355e+00 -2.42630835e-03 2.53872387e-03 2.92469323e-01 6.95863128e-01 7.23132968e-01 8.76337171e-01 2.77436286e-01 3.50417882e-01 -3.78740653e-02 -6.83917165e-01 -1.21183980e+00 -2.30982155e-01 9.47054982e-01 -3.49187791e-01 -3.83206427e-01 3.97839732e-02 1.47282898e-01]
[9.888971328735352, 9.64171314239502]
889945a4-9a91-4d76-9a06-e4d3c315bb29
word2box-capturing-set-theoretic-semantics-of
null
null
https://openreview.net/forum?id=NThz_6MqDuG
https://openreview.net/pdf?id=NThz_6MqDuG
Word2Box: Capturing Set-Theoretic Semantics of Words using BoxEmbeddings
Learning representations of words in a continuous space is perhaps the most fundamental task in NLP, a prerequisite for nearly all modern machine-learning techniques. Often the objective is to capture distributional similarity via vector dot product, however this is just one relation between word meanings we may wish to capture. It is natural to consider words as (soft) equivalence classes based on similarity, it is natural to expect the ability to perform set-theoretic operations (intersection, union, difference) on these representations. This is particularly relevant for words which are homographs- for example, “tongue”∩“body” should be similar to “mouth”, while “tongue”∩“language” should be similar to “dialect”. Box embeddings are a novel region-based representation which provide the capability to perform these set-theoretic operations. In this work, we provide a fuzzy-set interpretation of box embeddings, and train box embeddings with a CBOW objective where contexts are represented using intersection. We demonstrate improved performance on various word similarity tasks, particularly on less common words, and perform a quantitative and qualitative analysis exploring the additional unique expressivity provided by Word2Box.
['Anonymous']
2021-11-16
null
null
null
acl-arr-november-2021-11
['word-similarity']
['natural-language-processing']
[ 0.01374361 0.01143906 -0.35563344 -0.6269907 -0.36879414 -0.86890584 0.9689053 0.9416275 -0.52065617 0.21706575 0.5572718 -0.43636215 -0.3900696 -1.0151875 -0.31398875 -0.5263633 -0.28508645 0.4612023 -0.16546446 -0.72714186 0.2644587 0.67067295 -1.5689656 0.05955157 0.75490546 0.9156713 0.05133103 0.16529647 -0.5410728 0.01369202 -0.43591446 -0.52897704 0.10706875 -0.06465216 -0.88829225 -0.14156523 0.46961954 0.29863906 -0.03959217 1.4080763 0.16620871 0.59544045 1.2372016 -1.0675148 -1.1851473 0.52806455 -0.30993482 0.18529513 0.6688535 -0.2741551 1.6020786 -0.965299 0.43820232 1.567577 0.5403269 0.44217223 -1.2894391 -0.13190769 0.10635003 0.09711137 -1.420355 0.06911185 0.5689488 -0.35816315 0.79494077 0.46034485 0.43910098 0.82774156 0.09007438 0.50355613 0.98666704 -0.7622711 0.32699907 0.4820761 0.5330994 0.46699053 0.3895315 -0.08553975 -0.0714257 -0.06479191 0.42878228 0.49507582 -0.39739653 -0.30141008 -1.0671053 1.3616523 0.53060913 0.8549806 -0.0761576 0.03114646 0.6162037 0.36652926 0.4588191 0.7384311 -0.08861968 0.0655738 -0.70090526 0.45730206 0.725377 0.9351128 0.8855771 -0.25542963 0.00629573 0.9995066 0.4007312 0.21438651 0.88742685 -0.3662352 -0.00631512 0.7853057 -0.3251655 -1.1172782 -0.39146155 -0.02265546 -0.8053627 0.25275272 0.33088747 0.33285752 -0.8700429 1.797661 0.09959127 -0.08488417 0.10325313 0.8111316 0.7862044 0.64965665 -0.02633796 -0.01504354 1.8721298 -0.41227636 -0.74940753 0.09541337 0.9539402 -0.61799395 1.5331504 0.07811284 -0.8173972 -0.4415779 -1.0934311 -0.27976638 -1.2756336 -0.43582356 0.68903315 0.850823 -0.85020953 0.7790241 -0.30258873 -0.84669614 0.19671166 0.26184732 -0.78536814 -0.12131772 -1.315963 1.3387412 0.384115 -0.40143785 -0.12594071 -0.7855878 -1.4245896 0.25012147 0.12068043 -0.32603323 0.8091067 -0.59002244 -0.9917342 1.0911459 -0.03668774 -0.5898443 -0.12559457 0.04610685 -0.7256334 -0.12203424 0.08953197 0.5379393 0.52998 -1.0719731 -0.30072325 -0.45664808 0.3651534 0.09916323 -0.7064831 0.22286628 0.17517136 -0.9351069 0.16361377 -0.73802316 -0.03753721 0.38155377 -0.22224103 -0.9038332 0.71806693 -0.24766083 1.3787487 -2.2661726 -0.00944837 0.5268215 0.18780741 0.20693158 -0.05002486 0.69050163 -0.40977412 0.4553683 -0.63161343 -0.15601322 0.43424034 0.52173 -0.46848327 0.66306484 0.45028642 0.70932746 -0.9380463 -0.49416026 0.34057492 0.36803055 -0.6087063 -0.07850055 -0.22265579 -0.35962808 -0.06006676 0.44059438 0.6794814 0.13123398 0.01562551 -0.29948267 0.00763037 0.20184599 -1.3749043 1.6548624 -0.66686547 0.6718045 -0.32473448 -1.1947608 1.1847321 0.18550439 0.265985 -0.36159396 0.28831628 0.05675152 0.09204702 -0.3169609 0.7562985 -0.74383926 -0.46209547 0.5202926 0.05976664 -0.62732166 0.24892995 0.11759665 0.7594561 -0.40543342 0.67750025 -0.80317694 0.5850905 -0.14240873 0.13621995 0.09720745 -0.1901734 0.7348893 0.5558156 -0.24426249 -0.82705057 -1.4360502 -0.53378123 1.0030799 0.20339917 -0.6016532 -0.41153714 -0.55346125 0.27457199 0.9969909 -0.99600077 -0.39792463 -0.27664855 -0.1701104 0.5563811 0.7997255 -0.11828393 -0.63072443 -0.28610802 0.038117 0.25953516 -0.72485906 -0.84039545 0.41734096 -0.56101584 -0.8475972 -0.6119836 -1.1141189 0.5070387 0.14942461 1.2074572 0.09367443 -0.41663623 0.31680992 -0.5994438 -0.57954717 -0.2616121 -0.4875728 0.56283003 -0.0173995 0.7146013 -0.39320123 -0.29863775 0.02235011 -1.5275221 -0.77273715 0.05882978 0.92859125 0.6747485 0.05939493 0.30036768 -0.6790391 1.1325352 -0.48797265 -0.10154211 0.30588335 -0.24184468 0.28807652 0.7748204 -0.6314746 -0.5678795 -0.44452912 -0.16034104 -0.48440316 -0.19655243 0.61604846 -0.36172616 0.31179693 0.6878727 -0.00794047 0.14510536 -0.45217952 0.889233 0.7922846 0.39317217 -0.7441571 0.57716435 0.6599411 -0.02312676 -1.2586138 -0.40399995 -0.78695506 -0.7110931 0.31613287 1.0515234 -0.44346082 -0.66737545 -0.38546142 -1.0698786 0.385927 -0.75863653 0.5763239 -0.44529217 0.5522033 -0.13709387 -0.64178616 -0.29184014 -0.69311917 1.0107317 0.1085282 -0.89694303 -1.6730586 0.23009995 -0.33300516 0.22269064 0.23405713 1.4997809 -1.3205014 0.48348615 -0.30628923 -0.17062226 0.6748978 0.46969244 0.1111517 -0.6899525 -0.16108336 0.01375493 -0.09896623 0.71876043 0.15307242 1.0149485 -0.23335919 -0.22882743 0.2631134 1.5090032 -0.06347504 0.36541525 -0.0814524 0.51222277 1.0161182 0.4601828 0.34588826 0.2798561 0.5506939 0.33628985 0.05446022 0.07993753 -0.283743 0.3302764 0.82969034 0.43600464 -0.14369936 -0.8270433 0.8163441 -1.3128283 -1.056028 -0.05634346 2.2834642 0.72630864 -0.01611899 0.08380026 0.4704995 0.76586854 0.25221112 -0.03751571 -1.0375943 -0.10374752 0.7287999 0.13698699 0.3586967 -0.99559194 0.90086263 5.7634277 0.9644114 -1.101023 -0.05572899 0.19404328 0.09574852 -0.8480276 -0.14829573 -0.461257 0.4740898 0.7311564 -0.37237427 -0.0149423 0.7654024 -0.01490565 0.09427927 -1.6375268 0.98755974 0.3372218 -1.1745592 0.3476365 0.05631687 0.49559173 -0.4155483 0.262596 0.29930472 0.21229285 -1.5707886 0.43656856 0.2801015 0.9614327 -0.81765974 0.56696653 -0.0220892 -1.4174398 0.06521311 -0.6891385 -0.0499694 0.1893252 0.52652204 -0.62152505 0.5007722 0.48161066 0.5996037 -0.21186651 0.7444527 0.03663129 0.0782508 -0.4309017 -0.40551627 0.40547183 -0.49255082 0.35973826 1.4109116 0.400305 -0.04663869 0.02819505 0.9640413 -0.16843411 0.4338702 -1.0782804 -0.33014533 0.49573386 1.1815301 -0.6880525 -0.4559056 -0.50608 0.8215375 0.08527709 -0.16067304 -0.6804367 -0.81435287 1.4944588 0.14476159 -0.04674966 -0.2559249 -0.391215 -0.7811723 -0.12114507 -0.6259651 0.48007438 -0.51782554 -1.8302017 0.44914746 0.16391027 -1.3656592 -0.14634867 -1.1737198 -0.9948751 0.9723554 -1.1883785 -0.84418803 0.1403836 0.74847186 0.37618196 0.09656937 1.1043367 0.0869244 -0.05364969 0.68897796 0.15268749 0.15369958 0.6969419 -1.6359502 0.18955049 0.3402963 0.6661026 1.1829684 0.82773864 -0.31712365 -1.3567144 -0.91597474 1.12486 -0.37119773 0.9226457 -0.44365695 -1.1528862 0.43093613 0.20026606 0.1687203 0.9968446 0.25170442 -0.8041459 -0.03361365 -1.3385936 0.8179847 0.8091786 -0.98581326 -1.3114754 0.38626322 0.84309006 0.19344722 -1.072131 0.15640795 0.4780441 -0.64564604 0.9264725 -0.8248051 0.15698063 -0.39135322 -0.59744287 -1.6874511 -0.17754504 -0.24144831 0.30773565 1.2561325 0.24677597 -0.697059 0.4807499 0.33401954 -0.10303923 -0.72099644 -1.0345477 -1.2119137 0.74258715 -0.56125796 0.87694573 1.193179 0.73241866 0.18039685 0.3210242 -0.11987314 0.12574548 -0.02512029 0.1746182 -1.3917629 0.01280643 -0.89995104 -0.8964953 -0.8515727 0.32289445 -1.438058 -0.06315281 -1.5714146 -0.23520134 -0.20956668 -0.27256212 0.1767439 0.12872149 0.019447 0.20475838 -0.2288323 -0.04935215 0.6820663 1.0065644 -0.26973033 0.12684692 -0.22939156 -0.7845202 0.8483225 0.6425038 -0.15960716 -0.34305614 -0.3146109 0.22870721 -0.47806817 0.12770954 -0.72847855 0.14843902 -0.08888388 -0.05186558 -0.17402652 0.5014644 -1.1319513 -0.3762716 0.25632116 -0.42426565 0.48231086 0.01746857 0.48272362 -0.50347084 -0.55799365 0.8023728 -0.05402474 -0.7453262 0.2023013 -0.19202022 0.315753 1.1529845 -0.49986067 -0.08741011 -0.2404972 -0.47154132 0.02732149 0.5372874 0.66577584 0.74363655 -1.6461408 -0.5405603 0.22065882 0.76455176 -0.2369638 -0.07847986 0.4569426 -0.51793903 0.29405072 -0.14692692 -0.3811629 -1.2390418 0.8298354 0.19224486 0.0455958 -0.38523847 1.0312294 0.35914618 -0.5320891 0.23224124 -0.8239974 -0.39285287 0.56695217 0.55397785 0.27008218 0.09081931 -0.8818507 -0.58702916 0.6978279 -0.0446253 -0.17220202 1.054125 0.17791831 -0.23083167 0.6754926 1.7829844 -0.02461844 -0.32997993 -0.31310302 0.33795425 -0.40863168 -0.18875197 -0.38468707 -0.49215135 1.2552643 0.6254089 0.532752 0.66085106 0.32773978 0.72816044 0.26184595 0.12070231 -1.1993256 0.03086225 0.7001455 1.098216 -1.0620407 -0.07888789 -0.31648445 -0.5712291 1.2272698 0.18563254 -0.42492032 0.983293 0.09784495 -0.0893116 -0.27189738 -0.42830816 -0.54616237 0.6090617 0.7222168 0.6858927 0.3805002 -0.5328587 0.5588402 -0.4107153 -0.75457907 0.31275302 0.806005 -0.52601457 -1.1877098 -0.39551124 0.6351225 -0.29330105 -0.2688964 -0.36312747 0.85942304 0.2641888 0.9797325 0.6026084 -0.36946794 0.40445742 0.04653451 0.3470141 -1.0736505 -0.64638704 -0.52025235 -0.12153136 -0.18213528 -0.13622041 -0.47776935 -1.5697132 -0.5154279 -0.47086704 0.22876263 0.8449682 1.0020723 -0.05801131 0.25976178 0.45320615 -0.38770774 -0.8999893 -0.949447 -1.024542 1.1115828 0.20947152 -0.8104523 -0.58255386 -0.2535121 ]
[10.397768020629883, 8.76957893371582]
954bb935-c091-4daf-838b-5c3cd917843b
crafting-a-multi-task-cnn-for-viewpoint
1609.03894
null
http://arxiv.org/abs/1609.03894v1
http://arxiv.org/pdf/1609.03894v1.pdf
Crafting a multi-task CNN for viewpoint estimation
Convolutional Neural Networks (CNNs) were recently shown to provide state-of-the-art results for object category viewpoint estimation. However different ways of formulating this problem have been proposed and the competing approaches have been explored with very different design choices. This paper presents a comparison of these approaches in a unified setting as well as a detailed analysis of the key factors that impact performance. Followingly, we present a new joint training method with the detection task and demonstrate its benefit. We also highlight the superiority of classification approaches over regression approaches, quantify the benefits of deeper architectures and extended training data, and demonstrate that synthetic data is beneficial even when using ImageNet training data. By combining all these elements, we demonstrate an improvement of approximately 5% mAVP over previous state-of-the-art results on the Pascal3D+ dataset. In particular for their most challenging 24 view classification task we improve the results from 31.1% to 36.1% mAVP.
['Renaud Marlet', 'Mathieu Aubry', 'Francisco Massa']
2016-09-13
null
null
null
null
['viewpoint-estimation']
['computer-vision']
[ 1.09920837e-01 -3.48844901e-02 2.79974677e-02 -5.07318974e-01 -7.57914305e-01 -4.39337015e-01 9.14955437e-01 -2.74963737e-01 -5.66579163e-01 3.82922590e-01 -1.93332396e-02 -8.17249864e-02 5.68207689e-02 -4.41916645e-01 -8.20747554e-01 -5.65835416e-01 4.36984226e-02 3.00946236e-01 3.28494102e-01 -4.49227467e-02 2.46684968e-01 7.24202275e-01 -1.89952624e+00 4.27420765e-01 3.21209580e-01 1.23553050e+00 -2.23431853e-03 6.94467485e-01 1.94917858e-01 6.66194081e-01 -7.47915685e-01 -4.03879702e-01 4.11919057e-01 9.85254943e-02 -6.46654487e-01 1.26043409e-01 1.10210860e+00 -5.72445631e-01 -2.97618061e-01 6.03489339e-01 7.14349210e-01 -1.33364648e-01 7.61214495e-01 -1.18218565e+00 -4.39431757e-01 1.52838930e-01 -6.61494017e-01 2.04276249e-01 2.99503207e-02 8.85273442e-02 8.51630211e-01 -1.06130731e+00 6.32411361e-01 1.17522395e+00 8.55509937e-01 4.70058501e-01 -1.29994261e+00 -4.89216208e-01 8.96515995e-02 2.32972309e-01 -1.35073030e+00 -5.24534881e-01 6.46974266e-01 -5.36199927e-01 1.37777495e+00 -3.82052697e-02 5.33386290e-01 1.24995100e+00 4.05116603e-02 9.71092165e-01 1.18759775e+00 -5.74868679e-01 -6.71480224e-02 2.91250557e-01 1.06599167e-01 6.40483737e-01 2.41778806e-01 2.64005989e-01 -3.29384208e-01 3.08196545e-01 6.45485401e-01 -2.34867886e-01 -7.76582211e-02 -8.23584557e-01 -1.17098057e+00 8.47689271e-01 6.80649817e-01 2.87188701e-02 -1.71274841e-01 2.42470056e-01 6.32207870e-01 -8.84899031e-03 5.71467996e-01 3.68659824e-01 -6.21787846e-01 1.06400117e-01 -1.14220262e+00 5.56041181e-01 6.63774490e-01 9.33656335e-01 3.18903416e-01 1.72580272e-01 -1.07989967e-01 9.43819940e-01 2.38049656e-01 2.18393698e-01 6.64679036e-02 -1.06696033e+00 4.07794416e-01 3.43276471e-01 2.02593327e-01 -8.02295029e-01 -5.38436055e-01 -8.30017686e-01 -5.59258103e-01 7.61660218e-01 7.85640836e-01 1.29738048e-01 -1.02904761e+00 1.48768735e+00 1.48318871e-03 -4.18027669e-01 -1.81739375e-01 8.67225945e-01 1.17555106e+00 2.89985478e-01 7.20255673e-02 2.31353447e-01 1.26830828e+00 -1.30637717e+00 -4.35600698e-01 -1.00322075e-01 3.59683156e-01 -8.85132134e-01 9.21743155e-01 6.70073450e-01 -1.23404694e+00 -8.51324856e-01 -1.41829479e+00 -7.21260384e-02 -5.49989402e-01 6.22069359e-01 6.47069335e-01 8.40762615e-01 -1.23232782e+00 7.66472697e-01 -7.04035819e-01 -4.35324728e-01 8.62468123e-01 3.94041508e-01 -2.86026239e-01 -6.73388243e-02 -6.22100770e-01 1.12579465e+00 2.00901851e-01 1.59920901e-02 -1.07657683e+00 -7.51071811e-01 -6.75853610e-01 -7.93287754e-02 3.52701247e-01 -6.11115098e-01 1.46473002e+00 -7.55941629e-01 -1.27968967e+00 1.26774824e+00 1.62611187e-01 -7.29848504e-01 8.83162141e-01 -4.54796135e-01 -1.83228657e-01 5.25274239e-02 -1.82290629e-01 1.24716353e+00 6.97851479e-01 -1.20783246e+00 -7.36873567e-01 -6.10172898e-02 3.71610463e-01 4.67605069e-02 1.56616885e-02 2.32414052e-01 -5.21834254e-01 -5.69938838e-01 -6.16680942e-02 -9.76479173e-01 -3.48574407e-02 2.71869719e-01 -2.50540763e-01 -3.05664927e-01 6.42414331e-01 -4.74288523e-01 6.11913085e-01 -2.05657625e+00 7.19401389e-02 -4.23235118e-01 3.49479973e-01 4.23279852e-01 6.08391725e-02 6.21812902e-02 -1.43562555e-01 3.77328508e-02 -1.93269402e-02 -7.18666792e-01 9.72214490e-02 -8.58562589e-02 -5.12345508e-02 5.61650753e-01 4.63714451e-01 8.95426154e-01 -3.81005347e-01 -2.21432164e-01 7.04108775e-01 8.56619596e-01 -5.10380447e-01 5.62071837e-02 -4.03495617e-02 2.14736313e-01 2.21457258e-01 6.99846745e-01 7.43759871e-01 -2.94659734e-01 8.76434054e-03 -6.19167924e-01 -1.59204319e-01 3.91969979e-01 -9.86280739e-01 1.60393596e+00 -4.77295935e-01 1.21102226e+00 -8.31744373e-02 -1.05755448e+00 7.87981510e-01 1.55569881e-01 3.00612271e-01 -6.81271493e-01 3.26577485e-01 2.37505496e-01 1.48894489e-01 -1.89925253e-01 5.19041777e-01 -6.62980676e-02 2.58162141e-01 -1.02740243e-01 5.27072132e-01 -7.00136945e-02 6.39374480e-02 -1.39844358e-01 6.45822346e-01 6.36716485e-01 3.61795247e-01 -4.15550649e-01 4.75694805e-01 -9.70360413e-02 4.73110117e-02 7.44790375e-01 -4.83594239e-01 1.15605330e+00 4.89623487e-01 -7.39143014e-01 -1.24938083e+00 -8.95799339e-01 -3.47199619e-01 8.71716499e-01 -2.28722319e-02 -2.67071128e-01 -6.45748794e-01 -8.84239137e-01 -8.31041858e-02 7.07475841e-01 -9.60648417e-01 2.34953091e-01 -6.87604547e-01 -9.07892168e-01 5.00454962e-01 9.71055925e-01 7.24530935e-01 -7.97520995e-01 -9.03107226e-01 -7.03310445e-02 6.83781877e-02 -1.64396799e+00 2.44130775e-01 3.12722534e-01 -8.19998503e-01 -1.02127576e+00 -8.93803716e-01 -5.88441968e-01 3.23870778e-01 3.95135105e-01 1.58561623e+00 -1.60794675e-01 -3.91885787e-01 3.85754734e-01 -1.48584515e-01 -5.81463397e-01 -3.38911265e-01 2.76151836e-01 -1.33072868e-01 -3.42965990e-01 3.66465449e-01 -3.12142342e-01 -8.51570070e-01 4.31160867e-01 -6.56042576e-01 1.69814169e-01 6.30194545e-01 6.93018258e-01 4.42581475e-01 -4.27850515e-01 3.78427625e-01 -6.90471053e-01 1.35331473e-03 -5.32479957e-02 -7.26207674e-01 -2.84207091e-02 -8.08815360e-01 3.60531919e-02 3.53269011e-01 -2.30471894e-01 -1.02727699e+00 2.20736429e-01 -3.78318042e-01 -5.58009624e-01 -6.20039523e-01 -1.56737074e-01 2.65237354e-02 -3.17592531e-01 7.65634894e-01 -1.37694284e-01 -1.59272887e-02 -5.98736763e-01 4.24139112e-01 4.62392360e-01 3.54971170e-01 -2.14646935e-01 5.33759475e-01 7.05307305e-01 1.00369029e-01 -7.09461808e-01 -9.31141317e-01 -4.44716334e-01 -9.19591069e-01 -2.88074344e-01 1.14262116e+00 -1.19205284e+00 -5.15616477e-01 6.00184798e-01 -1.12497354e+00 -1.83320388e-01 -1.66255042e-01 5.37815869e-01 -7.65897751e-01 9.61403996e-02 -4.73303050e-01 -5.97554088e-01 -1.21288873e-01 -1.51474214e+00 1.22113073e+00 5.23767918e-02 -6.91001117e-02 -8.47078800e-01 -1.91246375e-01 5.48090875e-01 6.17592216e-01 5.71273327e-01 6.18294716e-01 -6.43376172e-01 -6.92002356e-01 -1.87581137e-01 -6.47965848e-01 7.06111491e-01 -1.53829470e-01 1.17218658e-01 -1.57283044e+00 -3.29862148e-01 -9.56575498e-02 -4.50151473e-01 1.18701303e+00 6.42004013e-01 1.18156219e+00 2.14793980e-01 -3.49068850e-01 7.02762485e-01 1.57365704e+00 -1.37679949e-01 7.39095628e-01 6.01415396e-01 7.71336734e-01 6.50701821e-01 4.92820591e-01 -7.03075342e-03 2.17289761e-01 1.03129411e+00 7.97933042e-01 -2.42094249e-01 -6.49931252e-01 1.53243586e-01 1.06601171e-01 3.98847044e-01 -4.15755689e-01 -2.73798078e-01 -8.28868270e-01 5.50903797e-01 -1.45672703e+00 -6.40239596e-01 -1.78823978e-01 2.12251067e+00 2.47006759e-01 4.00312245e-01 5.07266581e-01 3.03824216e-01 3.71473908e-01 3.00694972e-01 -2.79525727e-01 -3.69927466e-01 -9.48674530e-02 2.28501603e-01 6.44756317e-01 2.35956073e-01 -1.44990468e+00 7.32467949e-01 7.37365532e+00 7.59724081e-01 -1.16923690e+00 8.85949880e-02 7.11332977e-01 -3.11391205e-01 2.82180667e-01 -3.71628284e-01 -9.06431854e-01 4.11108471e-02 7.52197325e-01 5.35650253e-01 3.88772562e-02 1.13929415e+00 -1.29554287e-01 -1.42601028e-01 -1.31053042e+00 1.23459852e+00 4.65898633e-01 -1.29221106e+00 -1.97008014e-01 4.40546647e-02 7.11647511e-01 4.87830937e-01 1.60499915e-01 4.09137934e-01 -4.47045527e-02 -1.15658605e+00 9.70026553e-01 1.72637701e-01 7.65778363e-01 -6.31812453e-01 7.56181121e-01 5.23416549e-02 -1.00288486e+00 -5.12678809e-02 -3.68866652e-01 -8.30751732e-02 -5.19812256e-02 2.74634868e-01 -8.29943359e-01 6.19306862e-01 1.05720949e+00 8.47917378e-01 -1.00175452e+00 1.19785833e+00 -1.81716219e-01 4.80657756e-01 -2.47161329e-01 -2.25528590e-02 3.29581171e-01 2.31284171e-01 4.72064346e-01 1.34184277e+00 7.11732060e-02 -5.06756246e-01 -2.47140273e-01 9.26976442e-01 -2.90465783e-02 -1.06204428e-01 -5.49605966e-01 3.82177681e-01 -7.23644271e-02 1.30193484e+00 -7.82489598e-01 -3.69253397e-01 -7.26921499e-01 6.72194302e-01 4.78090703e-01 2.39274412e-01 -1.12953377e+00 -1.98145673e-01 6.95856571e-01 2.52425849e-01 8.18983912e-01 -3.58522743e-01 -3.25845093e-01 -9.63093340e-01 1.08088419e-01 -7.69570231e-01 1.57636866e-01 -9.81969535e-01 -1.00304997e+00 6.41909242e-01 3.41434002e-01 -1.36878228e+00 -2.31171042e-01 -1.32810569e+00 -2.89076626e-01 6.19733691e-01 -1.67875338e+00 -1.22569835e+00 -5.67372561e-01 3.43482830e-02 8.31415415e-01 -3.27689976e-01 7.69165635e-01 4.14526761e-01 -4.17851090e-01 5.98097682e-01 3.26779410e-02 3.99836898e-02 5.95947981e-01 -1.34672153e+00 6.57633603e-01 7.39097178e-01 1.91207185e-01 2.12387145e-01 7.19846010e-01 1.47979474e-02 -1.02412236e+00 -9.21119988e-01 5.39158881e-01 -9.12578225e-01 2.20199630e-01 -5.04694402e-01 -6.32706165e-01 6.28906608e-01 4.84727412e-01 1.37992159e-01 3.16463917e-01 1.39401153e-01 -6.00134432e-01 -6.63955286e-02 -1.04520631e+00 5.51166832e-01 1.09484816e+00 -1.90138459e-01 -6.01414680e-01 1.43243164e-01 5.96768618e-01 -6.08539999e-01 -7.00608253e-01 8.31448138e-01 8.77620161e-01 -1.65421247e+00 1.32811141e+00 -4.79443997e-01 6.55481935e-01 -2.78590977e-01 -4.52797562e-01 -9.94524240e-01 -2.36279622e-01 -7.92697668e-02 -1.90728009e-01 9.69449043e-01 3.43793303e-01 -4.29234296e-01 8.28780591e-01 1.73335508e-01 -1.83425307e-01 -1.04138041e+00 -8.09109151e-01 -8.36232305e-01 2.74285376e-01 -6.00014091e-01 1.85819089e-01 5.69550991e-01 -7.62471318e-01 4.28169638e-01 -4.36893672e-01 -1.49921656e-01 6.71563387e-01 -4.48131114e-02 9.11016881e-01 -9.92520094e-01 -1.36909172e-01 -6.34255469e-01 -7.31689930e-01 -1.14774740e+00 -5.07132597e-02 -6.45869792e-01 -7.76089802e-02 -1.51464033e+00 1.20029256e-01 -2.22600579e-01 -2.73713857e-01 1.30016997e-01 7.44283274e-02 6.22600794e-01 3.63246083e-01 1.04583815e-01 -6.02296114e-01 2.35003471e-01 9.61511314e-01 -1.54140294e-01 1.36888161e-01 1.00429496e-02 -5.13690531e-01 8.15925419e-01 8.73203933e-01 -1.97613552e-01 -2.40360588e-01 -5.42966068e-01 8.58302936e-02 -4.90495801e-01 7.52673328e-01 -1.29375315e+00 -1.67140871e-01 4.60063249e-01 8.62245798e-01 -1.03417480e+00 6.71527386e-01 -6.67491853e-01 -1.83124617e-01 5.29773235e-01 -4.06340539e-01 -6.26417622e-02 5.70647240e-01 5.19082248e-01 -1.47841871e-01 -9.52620730e-02 1.04798234e+00 -1.76352248e-01 -8.72697711e-01 -2.09250376e-02 -1.52958959e-01 2.14364398e-02 9.29597259e-01 -4.17009383e-01 -3.09375942e-01 -2.22714484e-01 -7.06292808e-01 -1.31109923e-01 3.77939641e-01 6.24861360e-01 4.15725052e-01 -1.20376182e+00 -7.60831654e-01 1.21177003e-01 3.01031202e-01 -1.32691383e-01 1.09408192e-01 8.85066628e-01 -7.21004248e-01 7.15740621e-01 -4.35465693e-01 -1.12892318e+00 -1.40117335e+00 5.60855389e-01 5.86911440e-01 -1.02964394e-01 -4.77890044e-01 9.16170716e-01 3.68222922e-01 -4.22556698e-01 5.39884210e-01 -5.53752363e-01 -5.10976791e-01 7.96615407e-02 3.52764726e-01 5.31457424e-01 4.49139774e-01 -5.24894655e-01 -5.04752755e-01 7.46665120e-01 -1.30130902e-01 1.07103221e-01 1.43857336e+00 2.32842490e-02 3.57191980e-01 3.75567943e-01 1.33510518e+00 -2.57562757e-01 -1.53211522e+00 -6.57001436e-02 -3.47280353e-01 -5.58387339e-01 1.54706806e-01 -9.10835624e-01 -1.16705477e+00 1.23214459e+00 9.79625165e-01 1.83119044e-01 9.71197009e-01 6.85714781e-02 1.67942688e-01 2.53805429e-01 1.46779329e-01 -8.28324676e-01 1.29931673e-01 3.52721542e-01 1.01425529e+00 -1.63336301e+00 3.02646011e-01 -5.70198417e-01 -4.88438398e-01 1.23693216e+00 6.09165967e-01 -4.31205213e-01 5.49414694e-01 1.16227418e-01 1.78310871e-01 -2.93940365e-01 -5.23965776e-01 -2.61598557e-01 5.30494332e-01 7.89364517e-01 6.17779434e-01 -1.33829176e-01 -5.74919060e-02 1.79062411e-01 -1.61037654e-01 -2.19324917e-01 3.30134898e-01 7.57279813e-01 -7.10352957e-02 -8.91672492e-01 -1.90231055e-01 3.07460040e-01 -6.60484791e-01 -6.57634065e-03 -3.60784382e-01 1.40608048e+00 1.46623984e-01 6.84151769e-01 1.15494594e-01 -3.19102705e-01 5.68030059e-01 5.79559878e-02 8.51502597e-01 -3.98155838e-01 -6.26100421e-01 4.27019037e-02 3.25679868e-01 -6.43038690e-01 -8.39411676e-01 -7.02459216e-01 -5.07620156e-01 -1.88837200e-01 -4.74056184e-01 -5.47233701e-01 9.85636055e-01 7.45044053e-01 2.29205102e-01 9.61096823e-01 3.04115027e-01 -1.34875393e+00 -5.87049484e-01 -1.01464605e+00 -1.41161889e-01 2.64221758e-01 3.74872357e-01 -1.00463283e+00 -4.86655056e-01 -2.72659659e-02]
[8.56373405456543, -0.43084219098091125]
7318469a-e5ec-4374-88cd-b4b4e34b6ee9
escoxlm-r-multilingual-taxonomy-driven-pre
2305.12092
null
https://arxiv.org/abs/2305.12092v1
https://arxiv.org/pdf/2305.12092v1.pdf
ESCOXLM-R: Multilingual Taxonomy-driven Pre-training for the Job Market Domain
The increasing number of benchmarks for Natural Language Processing (NLP) tasks in the computational job market domain highlights the demand for methods that can handle job-related tasks such as skill extraction, skill classification, job title classification, and de-identification. While some approaches have been developed that are specific to the job market domain, there is a lack of generalized, multilingual models and benchmarks for these tasks. In this study, we introduce a language model called ESCOXLM-R, based on XLM-R, which uses domain-adaptive pre-training on the European Skills, Competences, Qualifications and Occupations (ESCO) taxonomy, covering 27 languages. The pre-training objectives for ESCOXLM-R include dynamic masked language modeling and a novel additional objective for inducing multilingual taxonomical ESCO relations. We comprehensively evaluate the performance of ESCOXLM-R on 6 sequence labeling and 3 classification tasks in 4 languages and find that it achieves state-of-the-art results on 6 out of 9 datasets. Our analysis reveals that ESCOXLM-R performs better on short spans and outperforms XLM-R on entity-level and surface-level span-F1, likely due to ESCO containing short skill and occupation titles, and encoding information on the entity-level.
['Barbara Plank', 'Rob van der Goot', 'Mike Zhang']
2023-05-20
null
null
null
null
['de-identification', 'xlm-r']
['natural-language-processing', 'natural-language-processing']
[ 1.99996665e-01 1.94354206e-02 -7.07388878e-01 -4.06100661e-01 -8.32207263e-01 -6.61774278e-01 6.22070789e-01 3.56626242e-01 -8.98338318e-01 9.30335939e-01 4.90964472e-01 -4.79099929e-01 -5.76301396e-01 -4.19848025e-01 -4.86188710e-01 -3.62285338e-02 2.72211105e-01 1.13188672e+00 -7.17445314e-02 -5.84190190e-01 -9.66160297e-02 4.38795745e-01 -1.44372559e+00 3.68804067e-01 8.91747653e-01 6.62868619e-01 3.56403381e-01 5.29769897e-01 -2.94905216e-01 1.10535383e+00 -5.19821763e-01 -9.01100159e-01 5.87174222e-02 -3.64163965e-01 -1.46139038e+00 -2.05826640e-01 5.48463881e-01 5.98517537e-01 -2.12510139e-01 9.49593723e-01 5.13717711e-01 2.38345727e-01 7.58868158e-01 -1.07256317e+00 -6.84750140e-01 8.46836865e-01 -3.67938131e-01 2.22481042e-01 5.67208767e-01 -1.00533530e-01 1.10439599e+00 -6.95054233e-01 1.21626222e+00 1.47828472e+00 9.56137598e-01 4.81497973e-01 -1.29389405e+00 -6.31733954e-01 -1.99138895e-01 1.97466537e-01 -1.36504364e+00 -1.55112073e-01 4.02151883e-01 -7.84814537e-01 1.30592430e+00 1.72502488e-01 9.90218520e-02 9.17661488e-01 4.10485506e-01 6.61413014e-01 1.64712965e+00 -7.38535464e-01 -6.03723466e-01 2.52985328e-01 3.43666434e-01 9.10174012e-01 7.31280912e-03 1.20406568e-01 -1.01253688e+00 2.01645508e-01 3.19871843e-01 -4.38348413e-01 5.15763462e-01 1.75671488e-01 -1.35965466e+00 3.93213838e-01 -3.58748585e-02 4.47784573e-01 -2.80826241e-01 -3.67731303e-01 8.34776103e-01 5.98851621e-01 7.85686612e-01 9.12244320e-01 -8.65825593e-01 -3.08754981e-01 -1.12218189e+00 5.08852184e-01 6.84255302e-01 1.12203598e+00 5.86902320e-01 -1.76856443e-01 -5.94430804e-01 1.19245827e+00 -2.59905934e-01 4.49719727e-01 5.06191671e-01 -1.03479612e+00 7.39273548e-01 7.43840396e-01 -1.75193757e-01 -8.32988322e-01 -9.95278001e-01 -7.99370944e-01 -6.19836986e-01 -2.78494537e-01 6.25398457e-01 1.06821274e-02 -6.65536821e-01 1.78865457e+00 -9.43735838e-02 -3.10516864e-01 1.94083229e-01 5.59721768e-01 1.00192988e+00 3.45512778e-01 5.23235500e-01 -1.06892034e-01 1.76179254e+00 -1.06061184e+00 -7.66175687e-01 -6.35827363e-01 9.42865193e-01 -7.35680461e-01 1.06803656e+00 -5.13019115e-02 -1.09340882e+00 -1.10334980e+00 -5.07443249e-01 -4.72171694e-01 -8.09255481e-01 5.39254904e-01 5.44843972e-01 5.25778651e-01 -6.19173825e-01 3.79781872e-01 -2.13729560e-01 -3.33304167e-01 -1.58397153e-01 1.99474066e-01 -5.43068409e-01 -1.01164415e-01 -1.79190099e+00 1.26070487e+00 8.63724172e-01 -1.87760532e-01 -4.05192316e-01 -7.03892410e-01 -1.15949607e+00 -9.11750644e-02 5.94276965e-01 -5.67416847e-01 1.05655396e+00 -4.42503840e-01 -8.97984147e-01 1.72797167e+00 -1.72211304e-01 -5.57709217e-01 2.53952920e-01 -1.30256429e-01 -9.07301545e-01 -2.14499518e-01 6.38422787e-01 6.68454349e-01 1.29696250e-01 -8.98325264e-01 -8.68067682e-01 -3.94335449e-01 -4.81612794e-02 4.78191078e-01 -2.79106855e-01 6.07977927e-01 -4.60063279e-01 -5.11856735e-01 -4.47935581e-01 -9.94956374e-01 -1.61678404e-01 -1.19453180e+00 -2.05435902e-01 -6.50171161e-01 -1.46884337e-01 -1.13843298e+00 1.63819683e+00 -1.95823336e+00 2.99512982e-01 1.13969475e-01 -5.08892983e-02 2.04134911e-01 -6.48135841e-02 5.13619661e-01 -6.24439195e-02 1.95311774e-02 -4.17171232e-02 -3.66113007e-01 2.34636441e-01 2.79758036e-01 -6.54801801e-02 5.77810360e-03 1.55787453e-01 1.10921800e+00 -1.16225135e+00 -9.19117510e-01 -1.23020589e-01 -2.75540531e-01 -3.24970245e-01 -1.64937183e-01 2.45123375e-02 5.53480983e-01 7.17901960e-02 7.04880834e-01 1.18601806e-01 -5.49078956e-02 5.60492337e-01 3.66690129e-01 -3.15112740e-01 6.66800737e-01 -8.03974330e-01 1.82033896e+00 -7.43456066e-01 4.69384491e-01 1.26325056e-01 -8.20389211e-01 8.79944801e-01 2.42841765e-01 5.55084944e-01 -8.26747358e-01 -1.25189915e-01 5.79577088e-01 1.14742413e-01 -4.76358235e-01 9.97970283e-01 -1.05119422e-01 -8.71053696e-01 1.99081581e-02 4.28923935e-01 6.56956434e-02 8.49968135e-01 1.59876779e-01 8.76716852e-01 4.41210300e-01 3.01198602e-01 -5.43611526e-01 8.68652344e-01 5.30792236e-01 8.09135318e-01 6.78328395e-01 3.70615646e-02 6.72853813e-02 4.16219264e-01 -6.52593896e-02 -9.31512713e-01 -6.72540009e-01 -3.92851621e-01 1.77970552e+00 -2.17393592e-01 -6.70126081e-01 -6.52981699e-01 -7.50497937e-01 2.84928292e-01 5.85540712e-01 -1.88343734e-01 1.29026752e-02 -5.83770216e-01 -4.11598831e-01 1.06869650e+00 5.20676613e-01 5.00990927e-01 -1.41884458e+00 -2.76286215e-01 1.48295432e-01 -3.41636747e-01 -1.58799279e+00 -4.45034891e-01 2.73074478e-01 -3.34495097e-01 -8.92836988e-01 -6.42750204e-01 -1.18859756e+00 3.36890340e-01 -5.54198503e-01 1.70474911e+00 -3.42674196e-01 -1.33260280e-01 2.31106818e-01 -5.17186858e-02 -3.97511214e-01 -6.60678983e-01 8.99066985e-01 3.94501537e-01 -4.93810952e-01 8.16899717e-01 1.33878917e-01 2.65197545e-01 1.36947408e-01 -4.76322711e-01 7.91832954e-02 6.51309431e-01 1.05355990e+00 6.35747969e-01 2.30232149e-01 8.72511148e-01 -1.51601553e+00 8.58785868e-01 -3.89295101e-01 -2.47753218e-01 4.28550065e-01 -1.00737214e+00 2.41227839e-02 4.50548410e-01 -2.21090540e-01 -1.20021009e+00 8.86163339e-02 -5.45793831e-01 6.38033226e-02 -2.34078616e-01 1.01242554e+00 -2.68361717e-02 3.12608659e-01 7.61843085e-01 1.60862505e-01 -3.12302619e-01 -7.72622108e-01 3.46289426e-01 1.00004733e+00 1.03341043e+00 -9.58726645e-01 6.29926503e-01 -2.58329093e-01 1.92992777e-01 -8.26258123e-01 -1.39810026e+00 -8.63339663e-01 -9.32816923e-01 -1.97228029e-01 1.01605153e+00 -1.11131322e+00 -8.00668120e-01 3.30511302e-01 -9.33413684e-01 -3.87730569e-01 -4.04280275e-01 3.86222929e-01 -4.61578697e-01 1.33526117e-01 -8.67552996e-01 -7.29631424e-01 -2.02176318e-01 -8.94988179e-01 1.24553251e+00 -1.25787020e-01 -7.90073514e-01 -1.13527405e+00 -4.02171016e-02 1.00835907e+00 5.16021363e-02 -3.96373533e-02 1.30825520e+00 -6.94996417e-01 3.61211389e-01 -4.16525081e-02 -9.19663720e-03 4.22783047e-01 -1.96630299e-01 -8.29243958e-01 -4.54860061e-01 -1.00917079e-01 -5.44328451e-01 -7.36303866e-01 8.92497122e-01 3.17031257e-02 9.90942419e-01 2.02287305e-02 -2.73701817e-01 3.96180600e-01 9.28275585e-01 -1.46372512e-01 2.87660837e-01 5.11488199e-01 6.74930692e-01 1.19469666e+00 1.03187978e+00 -1.79319054e-01 5.72241962e-01 7.25503266e-01 -3.62791002e-01 -2.51944870e-01 -3.35405022e-01 -4.53143388e-01 3.01487207e-01 1.02052224e+00 -2.71128774e-01 2.25136027e-01 -1.37740934e+00 8.11284542e-01 -1.72716951e+00 -9.31987286e-01 -2.18531594e-01 1.73795831e+00 1.49152458e+00 3.31075579e-01 2.89141238e-01 -9.79675129e-02 4.08414930e-01 7.01857582e-02 -2.20774546e-01 -6.00156844e-01 -2.71463931e-01 5.36018848e-01 7.91222036e-01 5.40042102e-01 -1.11443317e+00 1.56121194e+00 6.66180563e+00 1.20304263e+00 -4.01531070e-01 3.82174522e-01 3.97279799e-01 1.76266983e-01 5.35959890e-03 -1.81842700e-01 -1.53625321e+00 2.95580775e-01 9.80909586e-01 -2.24261090e-01 4.39334542e-01 7.10175335e-01 -1.60851255e-01 1.66769996e-01 -8.24373364e-01 7.42891729e-01 -7.55972788e-02 -1.13935041e+00 -2.97848314e-01 1.17235810e-01 1.06312239e+00 -1.32545367e-01 -3.38424072e-02 1.00711441e+00 3.76795620e-01 -1.19162071e+00 8.17159772e-01 6.56789005e-01 1.36553633e+00 -9.00998175e-01 9.62811530e-01 7.18718171e-01 -1.17040348e+00 -1.68637320e-01 -2.24859223e-01 -2.13160515e-01 1.63460761e-01 3.96669000e-01 -5.60006976e-01 1.06033552e+00 5.43748856e-01 6.04294777e-01 -7.82884359e-01 2.57352054e-01 -3.48732024e-01 6.36304200e-01 2.80594379e-01 2.88234740e-01 1.84911415e-01 6.17120741e-03 4.05397594e-01 1.86999297e+00 5.33443317e-03 -3.25778157e-01 5.94658792e-01 5.22124708e-01 -3.21400523e-01 3.21400404e-01 -6.34907186e-01 -4.48652536e-01 5.37163556e-01 1.21585441e+00 -3.91563147e-01 -3.54018837e-01 -5.01232684e-01 8.12019408e-01 4.66052026e-01 1.69146836e-01 -3.97239178e-01 -5.89438438e-01 6.06935799e-01 3.20598155e-01 -4.63658780e-01 -5.38255811e-01 -2.74743706e-01 -7.29569018e-01 -3.19921643e-01 -1.22118676e+00 6.76048934e-01 -4.50977117e-01 -1.39660764e+00 4.81903136e-01 3.20916712e-01 -6.88207030e-01 -7.45054305e-01 -9.84794259e-01 4.54556435e-01 1.26035213e+00 -1.31067777e+00 -1.35666835e+00 3.11831236e-01 3.44198078e-01 5.84054828e-01 -7.75330842e-01 7.90898979e-01 6.66361630e-01 -2.61361808e-01 6.55759811e-01 -8.24818537e-02 3.84367019e-01 1.04556537e+00 -1.39676988e+00 4.20364022e-01 7.41551816e-01 2.62071908e-01 6.60006344e-01 4.83009040e-01 -1.03420377e+00 -7.90406704e-01 -1.14381301e+00 2.05029297e+00 -7.40328908e-01 7.91576684e-01 -4.34078485e-01 -4.51268673e-01 7.57174432e-01 1.89383283e-01 -6.24322414e-01 5.79085946e-01 7.98023999e-01 -4.77021150e-02 2.44675763e-02 -8.30433786e-01 3.96124423e-01 1.61778677e+00 -1.08356047e+00 -7.26712167e-01 5.88460267e-01 6.30398691e-01 -8.17653120e-01 -1.35445082e+00 4.67632532e-01 3.13182384e-01 -2.96948910e-01 1.06961417e+00 -1.04273081e+00 5.91346204e-01 -7.43841156e-02 1.25947848e-01 -1.47108066e+00 -5.82473695e-01 -4.39413548e-01 1.36258259e-01 1.50780225e+00 6.47106349e-01 -4.69542414e-01 4.68743801e-01 8.28905627e-02 -3.30870062e-01 -5.93360364e-01 -8.29988599e-01 -1.19112515e+00 1.78542227e-01 -4.26629812e-01 5.32927811e-01 1.24032569e+00 2.63322168e-03 9.00215864e-01 -5.39057672e-01 -1.87703237e-01 2.31405884e-01 1.95538148e-01 5.33705294e-01 -1.46432388e+00 -2.48321712e-01 -3.83959621e-01 -1.76280722e-01 -7.36984313e-01 9.69843268e-01 -1.60992801e+00 -9.38448757e-02 -1.68642199e+00 2.25483924e-01 -3.72917861e-01 -1.97045356e-01 7.16661572e-01 -1.61028415e-01 1.98092565e-01 8.80393386e-02 1.49858817e-01 -6.53697729e-01 -3.70012335e-02 1.16567814e+00 -1.50312200e-01 -7.26702511e-02 -4.80907932e-02 -6.82270944e-01 6.74936056e-01 5.86622655e-01 -5.94325781e-01 -1.02691380e-02 -3.81056100e-01 8.00964296e-01 -5.28760664e-02 -2.97237765e-02 -9.43144798e-01 1.80847540e-01 -2.20025465e-01 2.56259620e-01 -5.24386108e-01 2.16174021e-01 -4.78584826e-01 4.65415046e-02 4.13392216e-01 -7.17655063e-01 3.45992148e-01 1.18149184e-01 1.06963515e-01 -4.84914899e-01 -6.06466830e-01 3.47480863e-01 -3.10841620e-01 -1.08475971e+00 -2.70132604e-03 -4.84945834e-01 4.99971330e-01 5.38278818e-01 2.38336399e-01 -2.87092566e-01 1.16169468e-01 -8.05330336e-01 5.90345144e-01 2.04567775e-01 7.35439062e-01 -1.23170190e-01 -1.42865109e+00 -9.31248367e-01 -6.14197217e-02 4.48154807e-01 -3.61700684e-01 -2.79092230e-02 6.97749197e-01 -3.23863149e-01 9.85677600e-01 -2.71678030e-01 -1.15389168e-01 -1.51119149e+00 5.36864161e-01 1.76302850e-01 -1.22980404e+00 2.47971490e-02 6.79078758e-01 -2.70807683e-01 -1.22995102e+00 8.64391550e-02 1.39334917e-01 -6.02602065e-01 3.07758361e-01 -1.14061490e-01 6.30313635e-01 1.49699152e-01 -1.11893940e+00 -4.67996001e-01 3.20317328e-01 2.03479514e-01 -2.51974374e-01 8.77171278e-01 2.86795422e-02 -3.27834994e-01 5.83804667e-01 6.79256558e-01 3.74913484e-01 -4.97917503e-01 -5.99955797e-01 8.34231317e-01 -9.92547423e-02 -2.54752100e-01 -1.13721538e+00 -4.18761253e-01 6.09763026e-01 3.22016895e-01 2.42855167e-03 9.63978827e-01 1.66562945e-01 7.63128698e-01 2.48124450e-01 4.18537468e-01 -1.86900997e+00 -2.58942217e-01 1.38895357e+00 5.76601207e-01 -9.38908219e-01 -6.68924749e-02 -5.52646637e-01 -1.02854407e+00 4.86275971e-01 5.78669846e-01 6.18875742e-01 2.00806409e-01 1.95822507e-01 3.40138823e-02 -3.95574838e-01 -4.13128287e-01 -9.17354167e-01 7.72271931e-01 3.51075679e-01 9.25960600e-01 4.46730763e-01 -8.75397086e-01 8.37543130e-01 -7.32867241e-01 -1.10111862e-01 -3.49266142e-01 7.29738295e-01 -2.03778893e-01 -1.54943192e+00 -2.32349023e-01 4.28050101e-01 -1.02662945e+00 -3.16936642e-01 -6.76779270e-01 8.19570541e-01 7.01623678e-01 8.04308057e-01 -1.73327342e-01 -4.78322983e-01 5.41214943e-01 7.07303226e-01 6.49378777e-01 -1.01995301e+00 -1.16030264e+00 -4.33517337e-01 8.70707273e-01 -4.92403992e-02 -5.12875378e-01 -6.82129145e-01 -1.24231887e+00 -1.82620585e-01 2.46463090e-01 3.58548760e-01 3.86876822e-01 1.17065418e+00 2.37494603e-01 9.34010804e-01 7.33031929e-02 -2.63943851e-01 -5.78747392e-01 -1.22754443e+00 -8.80086422e-01 6.19918942e-01 -2.74204552e-01 -6.64454877e-01 3.47906440e-01 4.03449945e-02]
[10.018876075744629, 9.25311279296875]
254bff46-539d-45a0-b08c-cd702c62f5d6
memefier-dual-stage-modality-fusion-for-image
2304.02906
null
https://arxiv.org/abs/2304.02906v2
https://arxiv.org/pdf/2304.02906v2.pdf
MemeFier: Dual-stage Modality Fusion for Image Meme Classification
Hate speech is a societal problem that has significantly grown through the Internet. New forms of digital content such as image memes have given rise to spread of hate using multimodal means, being far more difficult to analyse and detect compared to the unimodal case. Accurate automatic processing, analysis and understanding of this kind of content will facilitate the endeavor of hindering hate speech proliferation through the digital world. To this end, we propose MemeFier, a deep learning-based architecture for fine-grained classification of Internet image memes, utilizing a dual-stage modality fusion module. The first fusion stage produces feature vectors containing modality alignment information that captures non-trivial connections between the text and image of a meme. The second fusion stage leverages the power of a Transformer encoder to learn inter-modality correlations at the token level and yield an informative representation. Additionally, we consider external knowledge as an additional input, and background image caption supervision as a regularizing component. Extensive experiments on three widely adopted benchmarks, i.e., Facebook Hateful Memes, Memotion7k and MultiOFF, indicate that our approach competes and in some cases surpasses state-of-the-art. Our code is available on https://github.com/ckoutlis/memefier.
['Symeon Papadopoulos', 'Manos Schinas', 'Christos Koutlis']
2023-04-06
null
null
null
null
['meme-classification']
['natural-language-processing']
[ 1.96595654e-01 -1.76390454e-01 -5.33503741e-02 6.43603057e-02 -5.52904010e-01 -7.16787398e-01 1.17933714e+00 1.76744759e-01 -4.26594734e-01 5.71376681e-01 5.29732227e-01 -4.95998524e-02 3.46968770e-01 -4.81214792e-01 -6.15042567e-01 -6.19515657e-01 4.12868291e-01 -2.10837345e-03 -3.51193473e-02 -4.25803453e-01 4.15208608e-01 -9.28307418e-03 -1.25772202e+00 5.71017265e-01 6.51929617e-01 1.01989675e+00 -2.44429216e-01 5.52102685e-01 -2.83840686e-01 1.34974074e+00 -4.57039624e-01 -1.05196667e+00 -5.94345741e-02 -2.85299361e-01 -8.88635337e-01 2.95136869e-01 6.22464895e-01 -3.87739539e-01 -8.15906167e-01 1.24952960e+00 4.56209570e-01 -3.36710699e-02 5.76992154e-01 -1.23440969e+00 -1.09321642e+00 5.16456783e-01 -7.71395743e-01 2.78269410e-01 4.48540926e-01 2.72536486e-01 8.33680689e-01 -1.01982081e+00 7.51265526e-01 1.22065330e+00 3.96717489e-01 4.92004067e-01 -1.19419575e+00 -6.21162474e-01 -1.88199863e-01 3.75473529e-01 -1.44213951e+00 -5.73346972e-01 9.32315946e-01 -8.25453043e-01 6.90858305e-01 6.68833107e-02 4.31788296e-01 1.85525870e+00 1.82088807e-01 1.02084279e+00 1.35478008e+00 -1.31541952e-01 -1.58460483e-01 3.63044977e-01 -9.35731083e-02 9.33430851e-01 -1.43800408e-01 -4.35974300e-01 -8.78049195e-01 -9.83240902e-02 4.64638770e-01 1.86178714e-01 -1.77756444e-01 -3.46583053e-02 -1.21818936e+00 8.72953713e-01 4.11658913e-01 4.40761596e-01 -2.66239583e-01 1.53512254e-01 6.58141077e-01 3.02747220e-01 6.60737455e-01 3.01438451e-01 3.89849424e-01 -3.51060867e-01 -9.40278709e-01 -7.62417093e-02 6.85676754e-01 4.63688165e-01 6.65509462e-01 -2.86898971e-01 -1.33108437e-01 8.82601798e-01 1.92926973e-02 7.58373559e-01 2.72775859e-01 -5.90228856e-01 6.95623696e-01 6.48325801e-01 -7.96826556e-02 -1.41258597e+00 -2.87205100e-01 -1.76261738e-01 -9.30691361e-01 -2.48239785e-01 3.69436443e-01 5.68311624e-02 -1.04605651e+00 1.67029786e+00 9.50229093e-02 1.10295698e-01 -3.50176543e-01 8.65653038e-01 6.25340998e-01 9.57560003e-01 2.03599632e-01 3.78541509e-03 1.34781718e+00 -9.89945590e-01 -8.81710708e-01 -2.32574910e-01 4.65626299e-01 -9.83915091e-01 1.02258503e+00 2.70161271e-01 -9.97942328e-01 -8.56730118e-02 -7.59644508e-01 -4.02983427e-01 -8.90347481e-01 -1.34747118e-01 3.37057561e-01 4.57983077e-01 -7.84815073e-01 2.09732994e-01 -5.03432870e-01 -5.94059885e-01 8.91883731e-01 -8.00550506e-02 -6.87427223e-01 -2.43816033e-01 -1.28307569e+00 1.04668903e+00 2.36083597e-01 2.85754986e-02 -8.61993730e-01 -5.59938490e-01 -7.97300875e-01 -2.04036027e-01 4.21958029e-01 -5.32714784e-01 9.25194681e-01 -1.23828232e+00 -1.17402196e+00 1.17048335e+00 1.14414454e-01 -2.78952420e-01 4.36395317e-01 -4.06703770e-01 -5.66104233e-01 3.38705093e-01 7.06567094e-02 7.10579216e-01 1.35265303e+00 -1.17860413e+00 -3.86844486e-01 -3.24991286e-01 1.58878893e-01 8.89580697e-02 -9.57399130e-01 2.21998140e-01 -3.15059870e-01 -6.78367317e-01 -5.09221256e-01 -8.76697242e-01 4.70436484e-01 -1.42354548e-01 -7.71279395e-01 4.22232458e-03 1.08078349e+00 -1.10661304e+00 1.52277064e+00 -2.31319451e+00 4.95165229e-01 2.01807380e-01 6.44539356e-01 3.30335379e-01 -1.49110913e-01 9.16105330e-01 1.39605314e-01 1.71247199e-01 -3.19998443e-01 -5.44046044e-01 2.19453767e-01 -2.50496417e-02 -3.12224776e-01 6.95833445e-01 3.92477959e-01 8.34631979e-01 -9.28526938e-01 -3.74903381e-01 1.76064372e-01 8.17011178e-01 -3.23666096e-01 2.35022232e-01 -1.33851290e-01 3.91558677e-01 -1.83129027e-01 8.05636108e-01 4.69586283e-01 -4.35343146e-01 -1.11635543e-01 -2.47475863e-01 -1.07588530e-01 1.51861504e-01 -4.26155359e-01 1.83131635e+00 -5.05556047e-01 9.84548628e-01 1.28822908e-01 -6.78026021e-01 5.91502249e-01 3.64135355e-01 2.47014642e-01 -9.63648379e-01 5.17856240e-01 1.06608368e-01 -3.25838804e-01 -7.11058676e-01 6.67951882e-01 -1.03804082e-01 -3.67624104e-01 5.24725676e-01 1.90081865e-01 2.15195805e-01 1.94329575e-01 5.88844121e-01 1.08925736e+00 -5.62304780e-02 2.28028640e-01 3.99104040e-03 6.47001565e-01 -2.26128727e-01 1.83522608e-03 5.36297202e-01 -4.13163930e-01 5.02549946e-01 7.12904394e-01 -3.20908427e-01 -1.12001956e+00 -9.79500890e-01 9.42729264e-02 1.35464203e+00 1.13081984e-01 -4.26706672e-01 -9.20018613e-01 -7.43604124e-01 -2.90582478e-02 4.54866767e-01 -8.57916951e-01 -2.65747160e-01 -2.75979787e-01 -5.82648039e-01 6.49368703e-01 8.20103586e-02 6.71353459e-01 -9.24991012e-01 -3.70832980e-01 -1.70664430e-01 -3.84281486e-01 -1.32595193e+00 -4.84771460e-01 -9.59852040e-02 -9.12060738e-02 -8.81103933e-01 -8.25647771e-01 -3.62232983e-01 5.00598490e-01 2.72123665e-01 9.93418157e-01 1.25892505e-01 -1.80878907e-01 6.35063469e-01 -4.33411360e-01 -7.62060583e-02 -3.56819034e-01 2.50767529e-01 -1.80296868e-01 4.96924043e-01 3.77167404e-01 -5.68363547e-01 -5.73165298e-01 -5.55405132e-02 -1.22079539e+00 3.31094742e-01 5.26753008e-01 1.02702844e+00 3.68709788e-02 -1.57219589e-01 2.50254154e-01 -9.64325964e-01 5.35508990e-01 -1.20454371e+00 -1.10917762e-01 1.23991437e-01 1.30711198e-02 -1.62725776e-01 6.25754476e-01 -4.16238606e-01 -1.03450000e+00 -2.20349118e-01 8.96910951e-02 -6.11882806e-01 -1.00255556e-01 4.96151060e-01 -8.79818201e-03 9.32808593e-02 4.93666917e-01 2.29744688e-01 -1.71606671e-02 -3.63352627e-01 5.36044061e-01 8.87939453e-01 6.30397677e-01 -3.37335229e-01 1.01306438e+00 6.39908969e-01 -2.13811412e-01 -1.02872539e+00 -8.94936562e-01 -5.40757358e-01 -4.67851937e-01 -4.91620153e-01 1.05196118e+00 -8.44461620e-01 -6.02414191e-01 8.42164338e-01 -1.17120230e+00 -9.94716361e-02 2.60117412e-01 -9.07678306e-02 -2.71777898e-01 2.37288043e-01 -8.60992253e-01 -7.97094166e-01 -2.20386386e-01 -8.73282433e-01 1.04861283e+00 1.18794136e-01 -5.66247031e-02 -1.15613973e+00 2.58401409e-02 9.38931048e-01 4.43345308e-01 3.73797297e-01 7.61947095e-01 -7.03878462e-01 -5.45333683e-01 -1.50607899e-01 -5.86742282e-01 3.27742904e-01 -1.11507267e-01 -7.85765350e-02 -1.29527068e+00 -2.81817555e-01 -4.23716575e-01 -7.86493599e-01 1.07577038e+00 -3.08330446e-01 1.00315595e+00 -4.99243110e-01 -1.32497936e-01 1.89589635e-01 1.35055327e+00 -2.47217476e-01 7.21221924e-01 2.56575584e-01 1.13569307e+00 5.92142165e-01 1.51737258e-01 6.99283302e-01 6.07101023e-01 5.94803393e-01 5.21572948e-01 -5.32164127e-02 -2.35633656e-01 -4.58207160e-01 5.79479158e-01 1.11967361e+00 5.81798293e-02 -3.49764854e-01 -1.18390512e+00 5.93999028e-01 -1.91569352e+00 -1.32975686e+00 2.56602257e-01 1.88534045e+00 6.92438543e-01 -9.45533365e-02 3.31797093e-01 -4.59276587e-02 7.25260794e-01 4.77715731e-01 -3.03212583e-01 -4.53567982e-01 -2.28069320e-01 -8.53537396e-02 4.19163227e-01 3.77552718e-01 -1.40117335e+00 1.03498590e+00 4.75743198e+00 9.22116816e-01 -1.27682400e+00 5.87797701e-01 6.72009408e-01 -2.09068581e-01 -2.95281976e-01 -4.24612641e-01 -2.83792138e-01 7.95650721e-01 9.64879811e-01 1.24526881e-01 7.70386755e-01 3.05243999e-01 6.85758609e-03 -1.22478768e-01 -8.43827665e-01 1.19571853e+00 5.19554675e-01 -1.41007042e+00 5.42032206e-03 1.36790186e-01 7.69161224e-01 1.51181459e-01 5.64958930e-01 2.06618190e-01 -1.56447932e-01 -1.08802891e+00 9.94778097e-01 6.68433249e-01 6.28975570e-01 -7.89841771e-01 6.86190486e-01 1.28026381e-01 -7.56219745e-01 -2.37549871e-01 8.33324715e-03 -4.60307635e-02 7.58745968e-02 5.02714932e-01 -6.18625879e-01 3.03640634e-01 5.48225164e-01 8.79908085e-01 -8.30969930e-01 6.29703879e-01 -1.38615847e-01 6.15969956e-01 -7.53324404e-02 1.21167190e-01 5.34837306e-01 4.16574404e-02 6.02417469e-01 1.57986355e+00 6.08739443e-02 -1.81057736e-01 -2.58049294e-02 8.53984952e-01 -5.38820744e-01 6.59550428e-02 -8.69808197e-01 -8.11801434e-01 4.43567276e-01 1.37860894e+00 -4.72939223e-01 -1.07354097e-01 -7.45621622e-01 1.43032646e+00 5.08875251e-01 2.40530878e-01 -1.07811296e+00 -2.57122219e-01 6.26300812e-01 1.82570387e-02 1.66874483e-01 -2.07695737e-01 -3.58121395e-02 -1.35061157e+00 -1.32606074e-01 -9.76488233e-01 2.77967721e-01 -7.37035453e-01 -1.55037177e+00 4.90053982e-01 -3.37179720e-01 -7.65101135e-01 -3.83922160e-02 -6.32334054e-01 -3.82922143e-01 6.12653613e-01 -1.42814231e+00 -1.69856977e+00 -1.72026291e-01 7.54727066e-01 4.06064510e-01 -6.37832060e-02 6.31921828e-01 5.55883229e-01 -9.58457410e-01 6.84600651e-01 7.37533867e-02 3.78576636e-01 8.14486384e-01 -1.00678194e+00 -1.73127856e-02 8.99676263e-01 1.06041275e-01 4.86625850e-01 6.49535596e-01 -5.68321109e-01 -1.57764900e+00 -9.66333032e-01 8.11488450e-01 -7.73404241e-01 1.37050641e+00 -6.37435794e-01 -8.38376641e-01 4.64637429e-01 7.90373623e-01 -1.52522430e-01 9.12127256e-01 1.99014619e-02 -9.77629364e-01 1.72806725e-01 -9.21180129e-01 6.32697999e-01 9.50740099e-01 -1.25452065e+00 -4.10974860e-01 2.83065856e-01 4.13148940e-01 -1.31149948e-01 -9.22650635e-01 -3.43749702e-01 6.33262575e-01 -9.42600250e-01 6.99208379e-01 -5.53177893e-01 1.09727597e+00 -6.05473071e-02 -2.80473530e-01 -1.15340638e+00 -1.64074913e-01 -8.87172461e-01 -4.32085037e-01 1.40411937e+00 3.65187794e-01 -3.38419527e-01 3.55283886e-01 4.40059632e-01 1.39718115e-01 -5.80062926e-01 -8.01045597e-01 -4.06323195e-01 3.93712856e-02 -2.18738779e-01 1.09879628e-01 1.36587393e+00 3.06963325e-01 6.18570030e-01 -1.00475311e+00 -5.35546243e-02 6.18646026e-01 -2.39309043e-01 5.65707564e-01 -8.74653816e-01 5.01796156e-02 -6.15133226e-01 -5.20488620e-01 -5.48546731e-01 4.92050856e-01 -9.58870471e-01 -3.71184558e-01 -1.25231600e+00 6.66040421e-01 1.32972002e-01 -3.68821710e-01 5.77975571e-01 -5.96159883e-02 8.73755574e-01 5.13401747e-01 2.30360135e-01 -9.13630366e-01 3.76366049e-01 1.14596927e+00 -3.82970452e-01 2.53907144e-01 -7.16972411e-01 -6.18618727e-01 6.11002088e-01 7.56857812e-01 -2.39443347e-01 -2.20458537e-01 -4.33667600e-01 7.11529553e-01 -1.91825345e-01 6.44534528e-01 -8.50444317e-01 1.48446470e-01 -5.89495786e-02 3.13700676e-01 -2.39805862e-01 6.87959790e-01 -7.88070798e-01 -2.60299683e-01 1.60251871e-01 -4.18943137e-01 2.50051642e-04 8.69047344e-02 4.66317296e-01 -2.97806829e-01 8.56920779e-02 7.20745981e-01 6.23997450e-02 -7.60965049e-01 2.83364058e-01 -5.37375867e-01 2.26226300e-01 7.25997925e-01 -7.09157586e-02 -9.57475245e-01 -5.63153505e-01 -5.41775823e-01 -1.48920836e-02 5.52107334e-01 6.97840512e-01 5.55971026e-01 -1.41866994e+00 -6.52409077e-01 -1.49335088e-02 4.13515240e-01 -8.38932633e-01 3.74340832e-01 1.28551686e+00 -1.26544937e-01 3.08137983e-01 -4.51116443e-01 -2.70100057e-01 -1.03495681e+00 5.79507232e-01 2.85873916e-02 -2.72562653e-02 -4.07787174e-01 7.68261135e-01 2.44549170e-01 -3.15917693e-02 8.58498886e-02 3.58750999e-01 -7.53064752e-02 4.19289470e-01 7.98146367e-01 4.16270763e-01 -1.77557394e-01 -1.27316391e+00 -3.40312600e-01 7.00802058e-02 -2.82342046e-01 -4.23303097e-02 1.22543609e+00 -4.35124218e-01 -3.62830251e-01 5.33981204e-01 1.55988812e+00 -5.15153967e-02 -9.67950225e-01 -3.45145404e-01 -1.22433240e-02 -7.25947976e-01 1.80176124e-01 -9.73066986e-01 -1.04068422e+00 1.11522090e+00 4.53907281e-01 4.39744055e-01 1.04640496e+00 5.08663207e-02 1.21445107e+00 3.20613831e-01 1.44452520e-03 -1.21806395e+00 5.25102019e-01 5.97339571e-01 8.37313294e-01 -1.44743168e+00 -2.32722893e-01 -1.76116884e-01 -8.13814044e-01 8.69264841e-01 5.42330265e-01 9.76302177e-02 3.68741542e-01 8.62414017e-02 -6.51671961e-02 -3.04441512e-01 -7.23562956e-01 -2.16880113e-01 4.13807571e-01 4.06877309e-01 4.64111537e-01 2.68972367e-02 -1.35480613e-02 3.52007806e-01 1.88078895e-01 -2.04461649e-01 5.22872090e-01 8.33337188e-01 -3.74745071e-01 -6.94457531e-01 -4.61358398e-01 2.70076901e-01 -6.78938091e-01 -2.55528092e-01 -7.51846492e-01 6.43236756e-01 2.29017287e-01 8.13837886e-01 9.97465942e-03 -6.36669695e-01 -1.08185932e-01 2.35365182e-01 4.51243699e-01 -2.84948170e-01 -6.86737478e-01 -7.46771246e-02 2.94895023e-01 -6.54024005e-01 -4.00718421e-01 -4.51270640e-01 -7.16518164e-01 -8.28251958e-01 8.54413658e-02 -1.83441088e-01 7.10756123e-01 9.17091787e-01 4.68684644e-01 1.96610972e-01 6.20333076e-01 -8.42399001e-01 -2.71748632e-01 -8.01254749e-01 -3.95712435e-01 8.30067217e-01 5.37759185e-01 -7.81111062e-01 -2.05375850e-01 1.82552204e-01]
[8.473236083984375, 10.62991714477539]
a10efc8f-3ce4-4b49-a546-c4dcc287ad11
clue-a-chinese-language-understanding
2004.05986
null
https://arxiv.org/abs/2004.05986v3
https://arxiv.org/pdf/2004.05986v3.pdf
CLUE: A Chinese Language Understanding Evaluation Benchmark
The advent of natural language understanding (NLU) benchmarks for English, such as GLUE and SuperGLUE allows new NLU models to be evaluated across a diverse set of tasks. These comprehensive benchmarks have facilitated a broad range of research and applications in natural language processing (NLP). The problem, however, is that most such benchmarks are limited to English, which has made it difficult to replicate many of the successes in English NLU for other languages. To help remedy this issue, we introduce the first large-scale Chinese Language Understanding Evaluation (CLUE) benchmark. CLUE is an open-ended, community-driven project that brings together 9 tasks spanning several well-established single-sentence/sentence-pair classification tasks, as well as machine reading comprehension, all on original Chinese text. To establish results on these tasks, we report scores using an exhaustive set of current state-of-the-art pre-trained Chinese models (9 in total). We also introduce a number of supplementary datasets and additional tools to help facilitate further progress on Chinese NLU. Our benchmark is released at https://www.CLUEbenchmarks.com
['Kyle Richardson', 'Zhe Zhao', 'Lu Li', 'Weijian Xie', 'Qianqian Dong', 'Yechen Xu', 'Zuoyu Tian', 'Zhenzhong Lan', 'Rongzhao Wang', 'Liang Xu', 'Junyi Li', 'He Zhou', 'Chenjie Cao', 'Zhengliang Yang', 'Yudong Li', 'Yiwen Zhang', 'Yiming Cui', 'Xuanwei Zhang', 'Weitang Liu', 'Jun Zeng', 'Cong Yue', 'Yin Tian', 'Shaoweihua Liu', 'Qipeng Zhao', 'Kai Sun', 'Hai Hu', 'Dian Yu', 'Yina Patterson', 'Yanting Li', 'Xinrui Zhang', 'Cong Yu', 'Bo Shi']
2020-04-13
null
https://aclanthology.org/2020.coling-main.419
https://aclanthology.org/2020.coling-main.419.pdf
coling-2020-8
['sentence-pair-classification']
['natural-language-processing']
[ 4.36894745e-01 -3.83823328e-02 -2.20981613e-01 -5.60155272e-01 -1.37430596e+00 -9.08298314e-01 5.21342516e-01 3.56772184e-01 -6.73303068e-01 7.78531492e-01 6.96785927e-01 -7.27406085e-01 4.92441386e-01 -4.96840596e-01 -8.15208852e-01 4.43452038e-02 1.45601839e-01 5.97763181e-01 -1.13637093e-02 -3.31506938e-01 3.42201918e-01 -4.59353834e-01 -9.80028272e-01 9.26194191e-01 1.31997955e+00 6.09085262e-01 4.86812502e-01 9.55515146e-01 -3.01189333e-01 8.27240229e-01 -5.96767485e-01 -5.67084670e-01 -3.45626920e-01 -5.28709292e-01 -1.37558889e+00 -6.68413460e-01 4.82871294e-01 -2.76804328e-01 2.46285692e-01 6.58790767e-01 5.40656984e-01 4.81766798e-02 4.77011859e-01 -7.25405037e-01 -1.22417784e+00 1.00362980e+00 -2.05233485e-01 2.51357049e-01 9.25757766e-01 -3.59770544e-02 1.49749553e+00 -8.93604159e-01 9.00491476e-01 1.19466603e+00 5.68682194e-01 8.77110958e-01 -9.58061576e-01 -5.94178915e-01 2.04537630e-01 1.70367882e-01 -9.24253464e-01 -4.55554336e-01 2.49339685e-01 1.61658451e-02 1.75930095e+00 1.07420251e-01 5.47323376e-02 1.45609939e+00 3.13020676e-01 1.47376907e+00 1.03050804e+00 -1.02571726e+00 -9.85771865e-02 -2.05953762e-01 6.47495747e-01 3.07199359e-01 -9.87840071e-02 -3.12779665e-01 -5.17418802e-01 2.59486437e-01 -5.90086989e-02 -4.67443854e-01 -5.53994298e-01 3.33979070e-01 -1.58272994e+00 8.35973203e-01 1.86539933e-01 5.62699616e-01 1.99227095e-01 -3.90466154e-02 6.52409315e-01 6.40274763e-01 7.04613507e-01 8.29784811e-01 -1.03891921e+00 -7.59937942e-01 -4.94508922e-01 9.89442840e-02 1.25841975e+00 1.25674939e+00 4.77629662e-01 -5.15999079e-01 -6.33820444e-02 9.41629410e-01 -2.27145553e-02 3.57945144e-01 5.15573502e-01 -7.43501604e-01 1.07652485e+00 3.53440315e-01 -1.96517721e-01 -5.34513772e-01 -2.78142601e-01 -6.68645576e-02 -8.09177160e-01 -4.67728764e-01 6.47909105e-01 -3.76179218e-01 -5.56341052e-01 1.76358998e+00 -3.03180546e-01 -1.34338439e-02 4.27055448e-01 5.20641625e-01 9.87498939e-01 9.75258827e-01 1.74122036e-01 8.28156173e-02 1.38220835e+00 -1.27322733e+00 -7.13544250e-01 -5.57691753e-01 1.32804894e+00 -1.13299847e+00 1.60622096e+00 4.88048762e-01 -1.00029039e+00 -5.41188955e-01 -9.16044831e-01 -6.90133035e-01 -6.29043758e-01 1.92590877e-01 6.53752506e-01 6.30772889e-01 -1.18877161e+00 2.83942401e-01 -8.77722144e-01 -5.90631843e-01 1.78422764e-01 -1.12237237e-01 -3.33785027e-01 -4.71529841e-01 -1.62502551e+00 9.77261961e-01 6.75756574e-01 -5.99829406e-02 -4.83375251e-01 -9.65147614e-01 -9.49524045e-01 -1.80673953e-02 3.99501622e-01 -4.85335857e-01 1.78358400e+00 -8.91735733e-01 -1.25597882e+00 1.12825429e+00 -4.71413732e-01 -5.98481238e-01 3.22211534e-01 -9.34473693e-01 -4.57333863e-01 -2.72228599e-01 2.12675616e-01 8.62365484e-01 -7.76457265e-02 -6.52082980e-01 -6.10912025e-01 -1.01969123e-01 -1.32576138e-01 2.18364015e-01 -1.79043248e-01 6.51201487e-01 -5.28381526e-01 -5.85839212e-01 -4.61232454e-01 -5.71958005e-01 4.83784713e-02 -5.57945192e-01 -4.70909536e-01 -5.99491417e-01 4.97134268e-01 -9.52419281e-01 1.53099465e+00 -1.85317683e+00 7.46653453e-02 -5.76560855e-01 -5.87480776e-02 3.38816583e-01 -5.41420698e-01 8.64613354e-01 -7.87812546e-02 7.10320473e-01 -3.26785415e-01 -7.11218119e-01 -3.94321121e-02 1.96175545e-01 -3.77273351e-01 -2.60023117e-01 6.31395400e-01 1.34846747e+00 -1.12371516e+00 -2.15557382e-01 1.14503251e-02 9.30966511e-02 -5.62311709e-01 2.30514213e-01 -6.87372029e-01 4.55725878e-01 -5.74850500e-01 5.81776083e-01 5.69209218e-01 -1.78678840e-01 1.11380341e-02 3.99099231e-01 -2.34232143e-01 9.65906203e-01 -6.41239405e-01 2.03945661e+00 -7.29245901e-01 7.01929212e-01 -5.34620993e-02 -7.09399283e-01 6.18705392e-01 4.34708685e-01 -2.15674549e-01 -6.32155240e-01 7.04157874e-02 4.77125198e-01 9.21205431e-02 -2.81073779e-01 7.00754285e-01 1.95107400e-01 -3.88230801e-01 8.33302200e-01 1.68931574e-01 -2.89440840e-01 4.26138371e-01 6.40987098e-01 1.15070498e+00 6.21027090e-02 7.12303102e-01 -5.93515098e-01 6.08146966e-01 1.90548256e-01 1.67947292e-01 1.03777874e+00 -3.60797644e-01 8.41489792e-01 5.23482859e-01 -2.95211852e-01 -9.82611418e-01 -1.03806496e+00 -1.17459178e-01 1.23983073e+00 -4.36877698e-01 -7.15655088e-01 -9.76486862e-01 -6.91025555e-01 -3.96066070e-01 1.08373296e+00 -5.42617738e-01 1.89785987e-01 -6.70687973e-01 -7.04987109e-01 7.21971273e-01 7.85974264e-01 4.54736143e-01 -1.35551262e+00 -9.55364779e-02 3.59729648e-01 -7.23179460e-01 -1.47030389e+00 -6.32948279e-01 4.05659117e-02 -6.81644559e-01 -9.30444002e-01 -5.36991835e-01 -1.23594356e+00 2.56455570e-01 6.39896095e-02 1.84083819e+00 2.19311714e-01 4.85722236e-02 5.77588260e-01 -1.13307488e+00 -9.78670418e-01 -9.09794569e-01 6.11288726e-01 -1.94277450e-01 -6.68383420e-01 1.06609869e+00 1.11172780e-01 -7.06426650e-02 7.48196319e-02 -7.47110546e-01 3.61545056e-01 3.93325657e-01 9.56786275e-01 3.25741112e-01 -6.33258045e-01 8.32390904e-01 -1.04658616e+00 1.06896770e+00 -4.75327313e-01 -3.00378352e-01 8.19856405e-01 1.05778305e-02 -5.62069379e-02 8.15165281e-01 -7.21888989e-02 -1.26812470e+00 -4.16601896e-01 -5.79714656e-01 5.85888386e-01 -3.38079900e-01 9.63369548e-01 -1.69098750e-01 4.98415619e-01 6.13602638e-01 2.63006777e-01 -2.34151468e-01 -7.35154688e-01 6.01058304e-01 9.99437571e-01 5.98239839e-01 -8.75594139e-01 1.09676011e-01 -2.21278578e-01 -9.74434137e-01 -1.03593874e+00 -1.31746483e+00 -5.36968172e-01 -9.10893083e-01 2.51580328e-01 1.22947371e+00 -1.09183073e+00 -3.93976241e-01 6.79421782e-01 -1.69231999e+00 -6.94595575e-01 2.82352477e-01 3.66292745e-01 -2.95394331e-01 4.96815056e-01 -9.72298741e-01 -3.97718281e-01 -6.41726732e-01 -1.07140875e+00 1.06082106e+00 1.86969265e-02 -5.75006545e-01 -1.38092530e+00 2.24287510e-01 7.37262011e-01 4.39029515e-01 -1.48311079e-01 9.99837399e-01 -8.53357315e-01 -4.69660461e-01 -4.50379439e-02 -3.50665778e-01 7.88022816e-01 -1.67952389e-01 -1.30063938e-02 -7.96813846e-01 -2.94997722e-01 -4.29147333e-02 -1.29180348e+00 9.74352121e-01 2.12628216e-01 1.02704382e+00 1.08363189e-01 -2.05696300e-01 3.61543417e-01 1.19531429e+00 4.48978543e-02 6.38321877e-01 2.24749610e-01 4.93298769e-01 5.19780576e-01 5.49719989e-01 -2.34136842e-02 6.83569252e-01 2.62424856e-01 -1.57980070e-01 5.25771603e-02 -9.17458460e-02 -3.87776911e-01 5.37485838e-01 1.45137477e+00 5.66358939e-02 -7.40479052e-01 -1.35420597e+00 6.29366100e-01 -1.58737409e+00 -3.81218046e-01 -1.60590097e-01 1.92906797e+00 1.17952943e+00 1.29050657e-01 -5.20274043e-01 -4.67119992e-01 2.96274573e-01 1.77574515e-01 -4.03635539e-02 -9.01613355e-01 -3.96204293e-01 4.01272893e-01 -1.08856320e-01 6.87496245e-01 -1.19895875e+00 1.48646581e+00 6.28641558e+00 9.14443433e-01 -7.94433594e-01 1.96297660e-01 1.08407605e+00 5.34835875e-01 -4.21252459e-01 -4.48731408e-02 -1.09648204e+00 1.52233824e-01 1.12087429e+00 -3.25159460e-01 3.20012778e-01 5.94406545e-01 7.01615065e-02 -3.54916006e-01 -1.36994600e+00 3.71357590e-01 1.78078413e-01 -1.32748663e+00 1.00564122e-01 -6.36349082e-01 9.16706920e-01 8.71247709e-01 -2.81735420e-01 5.89591742e-01 4.10577416e-01 -1.16899729e+00 3.13744783e-01 5.93650527e-02 9.90885973e-01 -4.33600396e-01 9.35078204e-01 5.26855767e-01 -1.05097568e+00 2.86496878e-01 -5.77356279e-01 -5.03767610e-01 4.95068192e-01 1.58423185e-01 -6.23431444e-01 6.27576888e-01 7.46418655e-01 9.86625791e-01 -6.10005617e-01 5.04021943e-01 -6.81348205e-01 1.08861685e+00 -2.34519437e-01 -5.41706264e-01 6.07618093e-01 -1.00394763e-01 3.06948125e-01 1.62808144e+00 -6.44258130e-03 2.48503655e-01 -2.41118353e-02 7.67422676e-01 -4.34797257e-01 5.07346094e-01 -5.66944003e-01 -3.26222211e-01 4.05296475e-01 8.99309933e-01 -4.00550872e-01 -4.22640741e-01 -1.05660558e+00 1.04931140e+00 9.35246766e-01 2.32546359e-01 -3.78086179e-01 -4.18865889e-01 5.00959635e-01 -4.63962317e-01 -1.29455045e-01 -6.05426133e-01 -4.28525746e-01 -1.60939991e+00 -8.58236861e-04 -1.24725628e+00 6.82422996e-01 -7.69369304e-01 -1.52011395e+00 6.80065989e-01 -1.22031569e-01 -8.16029251e-01 -3.78921777e-01 -9.28088367e-01 -8.66744697e-01 9.98289108e-01 -1.70508969e+00 -1.17419922e+00 -2.93320902e-02 2.78168529e-01 1.09767830e+00 -1.17401771e-01 1.19979620e+00 1.83914468e-01 -5.94588101e-01 7.41740882e-01 3.56500328e-01 5.86210608e-01 1.13575351e+00 -1.39437103e+00 1.08591998e+00 9.56304491e-01 3.57173800e-01 8.22504461e-01 3.36285323e-01 -6.60690904e-01 -1.14488089e+00 -7.30412662e-01 1.75685465e+00 -1.29637551e+00 1.12346637e+00 -8.10110092e-01 -1.03247499e+00 1.09017050e+00 7.57050097e-01 -5.39088428e-01 7.53009379e-01 6.30785763e-01 -1.94941893e-01 2.96530306e-01 -3.76322478e-01 6.80075288e-01 9.14015174e-01 -5.24805188e-01 -9.50197637e-01 3.77391189e-01 1.19802237e+00 -4.25037324e-01 -9.11776066e-01 3.34425777e-01 3.79316479e-01 -7.26097345e-01 6.60788536e-01 -9.84876692e-01 1.00564623e+00 2.46128067e-01 7.54932612e-02 -1.49722040e+00 -2.08687205e-02 -6.85026705e-01 3.42083454e-01 1.27522671e+00 1.09294045e+00 -6.57864988e-01 3.75463337e-01 5.95370352e-01 -4.60949033e-01 -7.99199700e-01 -7.88001776e-01 -5.50061882e-01 8.96917999e-01 -8.98889005e-01 8.25023875e-02 8.89971137e-01 4.99908894e-01 8.25206339e-01 -1.92622468e-01 -4.86126840e-01 1.29262403e-01 -9.16787982e-02 6.71052217e-01 -7.00572908e-01 -2.01060295e-01 -4.22507524e-01 1.58693150e-01 -1.49683404e+00 3.80623460e-01 -1.12371194e+00 1.50492743e-01 -1.44875097e+00 3.88298720e-01 -2.81618387e-01 -4.40116152e-02 5.85796118e-01 -7.09647119e-01 -4.84997295e-02 2.45869085e-01 -7.47364312e-02 -8.72422516e-01 5.15830576e-01 1.30345023e+00 2.54379399e-02 -7.55186900e-02 -1.23899378e-01 -7.47011185e-01 4.10777897e-01 9.83513892e-01 -8.06184784e-02 -2.80944765e-01 -1.32342196e+00 2.51022726e-01 -3.56930465e-01 -3.37318033e-01 -8.20112467e-01 1.53669193e-01 2.85875022e-01 9.73521098e-02 -6.25118494e-01 -2.31720328e-01 -9.89020020e-02 -8.39262068e-01 2.89520025e-01 -5.77782810e-01 3.75366420e-01 4.60255951e-01 2.07730100e-01 -6.61719382e-01 -2.94057369e-01 4.52012211e-01 -3.07455510e-01 -1.05744040e+00 -4.01070938e-02 -4.65309054e-01 8.18347812e-01 6.12909317e-01 8.34003687e-02 -5.86199760e-01 -7.08675027e-01 -2.22159371e-01 7.58403003e-01 2.60784119e-01 9.43321645e-01 3.39496434e-01 -6.36213303e-01 -1.26198840e+00 5.77956326e-02 4.49731946e-01 1.57379627e-01 2.22997993e-01 7.50013888e-01 -7.66344428e-01 9.94087815e-01 3.62167843e-02 -3.36270541e-01 -1.09874845e+00 3.02411079e-01 2.53096409e-02 -7.28264630e-01 -3.73438269e-01 1.10149848e+00 2.00336218e-01 -9.85163927e-01 5.29084615e-02 -6.35627270e-01 -1.59981474e-01 -2.76682109e-01 1.07448053e+00 1.48329720e-01 3.46120372e-02 -3.08908731e-01 -2.88076967e-01 2.93404818e-01 -4.30132747e-01 5.95121495e-02 1.14042687e+00 -1.84864774e-01 -3.87996376e-01 4.76391822e-01 1.35924172e+00 -4.42032926e-02 -6.85294569e-01 -3.17082196e-01 3.83718342e-01 7.20271990e-02 -3.88110250e-01 -1.22677112e+00 -1.83464542e-01 1.24261713e+00 -1.21683262e-01 -2.80591510e-02 1.07112765e+00 1.53612822e-01 1.15771723e+00 7.62761891e-01 3.56124878e-01 -1.27187812e+00 -3.45777534e-02 1.45113468e+00 9.71650839e-01 -1.82735050e+00 -3.60541970e-01 -5.74833512e-01 -8.39565337e-01 1.20310485e+00 8.49192321e-01 2.27918550e-01 5.43170094e-01 3.47906888e-01 4.60163891e-01 2.29354501e-01 -1.03086448e+00 2.25050282e-02 3.76101166e-01 4.96280462e-01 1.21243560e+00 1.97452962e-01 -6.52367890e-01 1.00221753e+00 -3.20372552e-01 5.41433133e-02 5.94714284e-01 8.47678840e-01 -2.51456141e-01 -1.58569872e+00 -3.85728404e-02 4.87305522e-01 -6.26713932e-01 -7.52822578e-01 -6.50687635e-01 9.72120047e-01 -3.81750941e-01 1.17695785e+00 1.76241368e-01 -9.80510563e-02 1.35823667e-01 1.71200231e-01 2.41455093e-01 -9.01621044e-01 -6.60667956e-01 -2.70463884e-01 5.79525888e-01 -5.56426346e-01 -1.68762535e-01 -6.20657265e-01 -1.01743329e+00 -1.92397013e-01 -2.31687710e-01 1.84092060e-01 3.24693441e-01 1.02042556e+00 3.26032996e-01 1.36338055e-01 -3.12418677e-03 -4.16357011e-01 -4.26054478e-01 -1.42971504e+00 -5.76269887e-02 3.44175637e-01 -3.24032940e-02 1.64306596e-01 -2.27746874e-01 -3.19927894e-02]
[11.011070251464844, 9.38243579864502]
75c930e9-688d-4f47-8d31-76aed7248613
chord-recognition-music-and-audio-information
2105.07019
null
https://arxiv.org/abs/2105.07019v2
https://arxiv.org/pdf/2105.07019v2.pdf
Chord Recognition- Music and Audio Information Retrieval
Music Information Retrieval (MIR) is a collaborative scientific study that help to build innovative information research themes, novel frameworks, and developing connected delivery mechanisms in addition to making the world's massive collection of music open for everyone. Modern rock music proved to be difficult to estimate tempo and chord recognition did not work. All of the findings indicate that modern rock and metal music can be analysed, despite its complexity, but that further research is needed in this area to make it useful. Using a neural network has been one of the simplest ways of dealing with it. The pitch class profile vector is used in the neural network method. Because the vector only contains 12 elements of semi-tone values, it is enough for chord recognition. Of course, there are other ways of achieving this work, most of them depend on pitch class profiling to transform the chord into a type that can be recognised, but the recognition process is time-consuming centred on extremely complicated and memory-intensive methods.
['Shah Riya Chiragkumar']
2021-05-14
null
null
null
null
['chord-recognition', 'music-information-retrieval']
['audio', 'music']
[ 2.23070845e-01 -4.42206085e-01 -3.57121021e-01 9.78506058e-02 -4.10832077e-01 -8.16715777e-01 2.45298624e-01 7.35390931e-02 -4.27687705e-01 2.60447949e-01 1.86058164e-01 -2.68041760e-01 -5.91225505e-01 -8.13882649e-01 9.79439840e-02 -7.83890367e-01 7.00616241e-02 4.16909277e-01 3.16911489e-01 -4.50249970e-01 9.67325270e-01 5.40411651e-01 -1.96922672e+00 2.93291211e-01 2.43174091e-01 8.72677386e-01 1.60620958e-01 6.91771388e-01 -4.51714665e-01 7.20812142e-01 -7.95236766e-01 -2.84431934e-01 2.51698703e-01 -7.91726708e-01 -9.42475379e-01 -7.31155574e-01 -2.13684570e-02 9.72279310e-02 1.76711723e-01 8.93799067e-01 6.54028893e-01 3.97298604e-01 6.25512242e-01 -7.84058690e-01 -1.59871861e-01 9.80454981e-01 -1.54900700e-01 6.81740195e-02 5.83297312e-01 -4.28026229e-01 9.38121617e-01 -5.28709948e-01 4.48859006e-01 6.84228957e-01 9.17232752e-01 1.91340387e-01 -8.45974922e-01 -9.25511718e-01 -6.83009565e-01 5.94798625e-01 -1.35353446e+00 -3.18181813e-01 1.18523860e+00 -4.84421968e-01 7.73024082e-01 7.91392744e-01 1.31509459e+00 5.60862064e-01 4.79277261e-02 3.48306656e-01 9.18356597e-01 -9.06426013e-01 1.02510162e-01 6.29129037e-02 6.07360899e-02 3.09201460e-02 9.17030126e-03 -1.72751829e-01 -6.13738537e-01 -3.49732190e-02 1.00292587e+00 -1.23369001e-01 -2.20931649e-01 1.60801709e-01 -1.18232846e+00 6.70887411e-01 -1.72892045e-02 1.08652818e+00 -3.57416898e-01 -3.80912833e-02 6.19892955e-01 5.58900952e-01 3.45515087e-02 1.00559378e+00 -2.56041348e-01 -9.18905437e-01 -1.52453208e+00 3.14715177e-01 1.02534175e+00 7.51934797e-02 3.71599168e-01 2.30501324e-01 1.98735639e-01 1.00535369e+00 1.48083329e-01 2.39500865e-01 7.60614455e-01 -1.16303134e+00 1.16702411e-02 7.59071052e-01 -3.37817281e-01 -1.51232874e+00 -4.24964517e-01 -3.35125059e-01 -6.83164954e-01 5.36418080e-01 9.06475246e-01 1.47569865e-01 -1.99061468e-01 1.20037842e+00 7.15506673e-02 -1.85344189e-01 -3.72929633e-01 9.78316247e-01 7.22654998e-01 6.72835708e-01 -3.25854748e-01 -3.19690913e-01 1.24617577e+00 -6.65897310e-01 -8.64060402e-01 3.75247657e-01 2.34725371e-01 -1.45655417e+00 1.00072181e+00 9.81914997e-01 -1.25742745e+00 -7.05738902e-01 -1.33210719e+00 3.21893618e-02 -5.13839483e-01 -1.82758307e-03 9.43589032e-01 8.35378528e-01 -6.43924952e-01 1.09369993e+00 -4.89459842e-01 8.09355453e-02 -6.12236448e-02 3.47136289e-01 -2.41673067e-01 3.71377528e-01 -1.05765891e+00 8.06057036e-01 5.41364372e-01 1.45676032e-01 -3.22294980e-02 -4.28164303e-01 -2.39623949e-01 -8.18951875e-02 2.08959267e-01 -2.21163899e-01 1.11554575e+00 -1.11278152e+00 -1.74662995e+00 6.39136136e-01 2.27780089e-01 8.55135825e-03 2.97257215e-01 7.87636638e-02 -4.36332196e-01 1.62016213e-01 -1.03949778e-01 1.92294300e-01 6.59416735e-01 -7.39957392e-01 -4.86928791e-01 -3.60354185e-01 -1.79186299e-01 9.22409594e-02 -5.07008374e-01 3.54573697e-01 -1.80193469e-01 -8.52635145e-01 6.58622921e-01 -9.30383623e-01 1.89477935e-01 -4.17652994e-01 -6.56171367e-02 -3.80573690e-01 4.58973795e-01 -8.11113656e-01 1.73273218e+00 -2.15930009e+00 -1.08272806e-01 4.30873245e-01 -4.57387641e-02 4.46080029e-01 3.47090036e-01 7.75512516e-01 -5.83437793e-02 6.02883510e-02 1.31815419e-01 2.80836910e-01 7.30905160e-02 -7.26497918e-02 -1.84396386e-01 1.58986494e-01 -4.59805459e-01 4.25793171e-01 -5.62404156e-01 -3.57373178e-01 7.87845030e-02 6.74603760e-01 -2.86136329e-01 -2.86139578e-01 1.29870623e-01 2.94984579e-01 -2.12082535e-01 6.24429882e-01 3.24713141e-01 2.43898705e-01 9.48285684e-02 -2.01512709e-01 -5.17541826e-01 4.51064587e-01 -1.62740088e+00 1.60327709e+00 -1.21368565e-01 9.56578493e-01 -3.47710311e-01 -9.81712401e-01 1.24676991e+00 5.97798347e-01 5.54987788e-01 -7.92221487e-01 3.26673150e-01 5.23614168e-01 3.28993767e-01 -6.45805717e-01 8.91044617e-01 -2.29104146e-01 1.20910972e-01 6.47150993e-01 -3.26765954e-01 -1.36714160e-01 3.62803489e-01 -2.83170909e-01 6.33030057e-01 2.30742574e-01 1.73628256e-01 -4.12691459e-02 5.70795894e-01 -3.59303281e-02 4.66051072e-01 7.07489729e-01 -6.61872551e-02 3.72501761e-01 1.64665535e-01 -6.75378978e-01 -1.01442778e+00 -6.76916063e-01 -2.39521965e-01 1.16650844e+00 -2.33730569e-01 -6.37073457e-01 -6.25060201e-01 1.52729720e-01 -3.23422909e-01 2.85254031e-01 -1.84569046e-01 1.50036126e-01 -6.12279415e-01 -3.44534278e-01 7.38347888e-01 1.65612206e-01 3.59313309e-01 -1.45041144e+00 -7.96415985e-01 5.97360671e-01 -1.93167120e-01 -3.03096503e-01 -8.62030685e-02 3.23062420e-01 -1.04150498e+00 -1.11619842e+00 -8.47665906e-01 -8.49750340e-01 5.86451264e-03 2.94342637e-01 8.17516327e-01 2.49571607e-01 -4.38256562e-01 -3.19432691e-02 -6.26897097e-01 -7.95805931e-01 -4.48490232e-01 1.86689422e-01 -4.07668129e-02 -3.99245203e-01 5.47257662e-01 -8.97394598e-01 -4.57959592e-01 2.09542081e-01 -7.61992812e-01 -1.23510268e-02 4.46600169e-01 3.56919587e-01 5.13196111e-01 4.02720988e-01 7.10296154e-01 -5.02318263e-01 7.83956945e-01 -3.06479950e-02 -8.74625817e-02 -1.33724928e-01 -7.14462698e-01 -4.53344315e-01 4.08118784e-01 -6.62458122e-01 -6.18765414e-01 -2.19400167e-01 -2.40846589e-01 1.02567419e-01 -4.94472012e-02 6.35749459e-01 2.59538293e-01 -1.49831399e-01 8.82827580e-01 1.11916855e-01 1.74580082e-01 -6.75431848e-01 1.03083335e-01 1.06122625e+00 6.50170684e-01 -3.04251969e-01 4.59264010e-01 2.13190973e-01 9.59035903e-02 -1.00384259e+00 -4.41066891e-01 -7.12729335e-01 -5.63663661e-01 -7.03895390e-01 7.01450586e-01 -3.19790125e-01 -1.07063758e+00 3.19870144e-01 -7.75084019e-01 7.22330213e-02 -3.29152763e-01 8.00095618e-01 -5.01760125e-01 3.92568380e-01 -5.40222108e-01 -1.15920055e+00 -3.84881318e-01 -9.06503499e-01 4.03353989e-01 4.77103889e-01 -6.69689655e-01 -6.61670864e-01 4.62362647e-01 5.83593369e-01 6.09898329e-01 8.25030878e-02 9.29364204e-01 -5.83160579e-01 -2.80199856e-01 -4.01741147e-01 2.27540508e-01 2.74336427e-01 1.73244685e-01 1.66796744e-01 -9.01553929e-01 3.28068994e-02 2.68939883e-01 -9.20989662e-02 5.88723361e-01 1.26929983e-01 9.82078850e-01 -1.72285706e-01 1.01107344e-01 3.16380113e-01 1.23781908e+00 8.49312305e-01 8.84474158e-01 8.12826812e-01 4.54021990e-01 5.04561782e-01 4.33069825e-01 2.84610927e-01 7.61514083e-02 8.38514209e-01 2.54104882e-02 1.71777174e-01 -1.23002052e-01 -1.49072688e-02 3.14389944e-01 1.40476739e+00 -7.95797408e-01 4.64088291e-01 -8.36312532e-01 2.59351373e-01 -1.63598013e+00 -1.53249240e+00 -5.77843010e-01 2.46440816e+00 9.78988945e-01 1.04019605e-01 4.54144239e-01 1.41700506e+00 3.50308239e-01 -2.22623676e-01 4.69681211e-02 -8.78882170e-01 -5.50355762e-02 5.32203734e-01 6.93573756e-03 6.64145425e-02 -1.00004542e+00 5.72896361e-01 6.49362803e+00 9.34505761e-01 -1.50708044e+00 -2.78109223e-01 -2.49714907e-02 -8.13849643e-02 -5.36943898e-02 7.47036412e-02 -4.45093453e-01 4.63597059e-01 9.63490367e-01 -8.95986184e-02 6.85882986e-01 7.02728570e-01 2.92384773e-01 -3.36296707e-01 -5.42125762e-01 1.26411057e+00 1.58947483e-01 -1.32470262e+00 -1.09944366e-01 -1.98202375e-02 4.48949426e-01 -3.64828914e-01 -2.72356838e-01 1.54951334e-01 -6.10463440e-01 -8.67063701e-01 6.58960640e-01 8.69959772e-01 4.23893750e-01 -1.08812344e+00 8.74334037e-01 2.81067520e-01 -1.04687142e+00 -8.96096528e-02 -3.28571528e-01 -6.85511827e-01 -3.58096100e-02 4.29296762e-01 -6.22866273e-01 5.46151638e-01 9.19176757e-01 3.07138681e-01 -4.19769317e-01 1.56117284e+00 4.61409539e-02 7.74998903e-01 -2.39198923e-01 -2.30244428e-01 -1.16453297e-01 -4.24748480e-01 6.61252260e-01 1.02992749e+00 4.52051878e-01 -3.36592644e-01 -8.29071105e-02 4.93577421e-01 5.23514807e-01 6.02441192e-01 -4.76713300e-01 -2.87192315e-01 6.14150703e-01 1.18926883e+00 -1.23452854e+00 -1.15162045e-01 -5.88415973e-02 7.27924168e-01 -2.90362597e-01 -2.71188438e-01 -3.78047079e-01 -8.20493281e-01 2.36135677e-01 6.34555370e-02 6.57581612e-02 -2.43643358e-01 -5.33062279e-01 -5.22853792e-01 -1.14998177e-01 -1.10184860e+00 1.55643210e-01 -5.97981870e-01 -1.01848137e+00 3.76580000e-01 -2.48465672e-01 -1.27531946e+00 -6.82294488e-01 -3.52051944e-01 -5.89862585e-01 7.66537428e-01 -8.75013053e-01 -9.53517854e-01 -2.61896979e-02 4.22705680e-01 2.54851520e-01 -3.33261281e-01 1.39100945e+00 6.34930074e-01 -1.10718623e-01 6.00484669e-01 1.81923151e-01 1.35047346e-01 7.57936597e-01 -1.05195868e+00 -2.45507643e-01 1.37088373e-01 7.23707139e-01 5.53141713e-01 5.58558643e-01 -3.76513720e-01 -1.35017276e+00 -6.66003823e-02 1.17623436e+00 -3.28725934e-01 6.67272747e-01 5.12544587e-02 -9.08781111e-01 2.73461342e-02 6.07528724e-02 -9.62771952e-01 1.21955955e+00 4.33100879e-01 -2.03395218e-01 -1.12788737e-01 -6.32412374e-01 4.93745685e-01 6.44717515e-01 -6.05429292e-01 -8.87460828e-01 -1.31276965e-01 1.73178270e-01 -1.18178949e-01 -1.07812083e+00 1.48804337e-01 1.25370777e+00 -1.15113115e+00 9.89953339e-01 -1.58190876e-01 1.68656752e-01 -6.14053667e-01 -3.67579833e-02 -6.69185698e-01 -3.93595099e-01 -6.45320177e-01 3.47957343e-01 1.36728454e+00 4.48462516e-01 -3.68585467e-01 9.59226131e-01 2.44670868e-01 -9.36518386e-02 -4.92704988e-01 -9.75103736e-01 -8.60785007e-01 -1.34871274e-01 -9.77612376e-01 4.27955091e-01 1.19766080e+00 3.45161200e-01 2.91359186e-01 -2.99663782e-01 -7.60740161e-01 3.03259939e-01 1.38049588e-01 8.97422075e-01 -1.76990521e+00 -3.73138189e-01 -1.05071640e+00 -7.27324963e-01 -3.14372480e-01 -3.91813934e-01 -8.67648244e-01 -3.72886121e-01 -1.28354347e+00 -2.40198541e-02 -5.49933672e-01 -2.41133302e-01 5.11344492e-01 3.46753806e-01 8.16941381e-01 5.42904496e-01 6.34636521e-01 2.65441760e-02 -2.31704280e-01 1.33874214e+00 -1.04086056e-01 -6.64226055e-01 2.48241425e-01 -7.00920820e-01 9.45565104e-01 8.66531670e-01 -4.43178594e-01 -3.89953762e-01 1.95811421e-01 9.68063354e-01 3.28262337e-02 -1.75070073e-02 -1.32484376e+00 5.33550799e-01 1.69780701e-02 5.25233507e-01 -7.29259312e-01 4.76206362e-01 -7.11470127e-01 6.96801066e-01 2.12707758e-01 -1.92360952e-01 8.66516978e-02 1.20878354e-01 -8.75016451e-02 -4.01932538e-01 -7.10726500e-01 4.05117124e-01 -1.82610840e-01 -4.99925733e-01 -3.54463816e-01 -4.23967749e-01 -4.14560944e-01 6.01123393e-01 -8.46684515e-01 1.84721500e-01 -4.59367514e-01 -8.80465508e-01 -6.08849466e-01 3.14705312e-01 3.71625990e-01 2.74899453e-01 -1.40024483e+00 -4.55278426e-01 1.62161246e-01 -9.08614993e-02 -4.01947111e-01 3.62876534e-01 8.19650590e-01 -7.91974962e-01 2.96431869e-01 -4.61242288e-01 -3.36799860e-01 -1.52260351e+00 3.17789495e-01 -1.13403946e-01 -2.16438361e-02 -7.76812971e-01 4.89239663e-01 -7.07102418e-01 -2.80004032e-02 5.05186379e-01 1.21261321e-01 -9.80443120e-01 6.51274323e-01 1.00386798e+00 6.08987331e-01 1.04051843e-01 -6.14221632e-01 -1.00868091e-01 7.97690392e-01 2.07574785e-01 -2.85092980e-01 1.44284570e+00 2.37178057e-01 -4.74776924e-01 1.02928841e+00 7.10521936e-01 3.65726084e-01 -2.57187873e-01 3.09813976e-01 1.56305075e-01 -4.83163238e-01 1.55444235e-01 -1.00034070e+00 -6.68302834e-01 6.15025103e-01 7.60694385e-01 6.60385668e-01 1.29399407e+00 -4.90615606e-01 6.87546551e-01 5.34409404e-01 3.43319327e-01 -1.55737519e+00 -2.03508645e-01 3.96816403e-01 8.37900460e-01 -7.48142302e-01 -8.04523081e-02 -2.07336415e-02 -1.04018219e-01 1.67476761e+00 -1.50584340e-01 -5.82235605e-02 7.18154371e-01 1.25825897e-01 3.43564272e-01 -7.62889460e-02 -1.40865579e-01 -1.19680248e-01 4.08886969e-01 4.61397588e-01 9.24189508e-01 1.06959604e-01 -1.01842797e+00 7.42639899e-01 -9.50294197e-01 3.01480502e-01 3.85345608e-01 7.35168159e-01 -5.85976124e-01 -1.59896755e+00 -7.17140675e-01 3.71070147e-01 -8.75764012e-01 -3.71397547e-02 -5.01609862e-01 8.38143647e-01 3.17892611e-01 1.02824008e+00 2.92781722e-02 -6.70567513e-01 1.81169331e-01 3.41033310e-01 7.52606452e-01 -9.62400511e-02 -1.03995216e+00 2.76138365e-01 8.91503319e-02 -2.53332883e-01 -5.64269304e-01 -6.13047421e-01 -1.17409003e+00 -6.11460686e-01 -3.68416578e-01 4.67049062e-01 1.48204100e+00 8.37679803e-01 -1.10747725e-01 4.91244376e-01 6.28227413e-01 -1.08207643e+00 -1.64511740e-01 -9.86445069e-01 -6.65528119e-01 2.11761013e-01 -2.20297828e-01 -4.77480680e-01 -3.15661907e-01 -7.65300840e-02]
[15.930076599121094, 5.257870197296143]
a1b7eff0-e992-401b-ae80-e36271034f85
investigations-in-audio-captioning-addressing
2211.06547
null
https://arxiv.org/abs/2211.06547v2
https://arxiv.org/pdf/2211.06547v2.pdf
Investigations in Audio Captioning: Addressing Vocabulary Imbalance and Evaluating Suitability of Language-Centric Performance Metrics
The analysis, processing, and extraction of meaningful information from sounds all around us is the subject of the broader area of audio analytics. Audio captioning is a recent addition to the domain of audio analytics, a cross-modal translation task that focuses on generating natural descriptions from sound events occurring in an audio stream. In this work, we identify and improve on three main challenges in automated audio captioning: i) data scarcity, ii) imbalance or limitations in the audio captions vocabulary, and iii) the proper performance evaluation metric that can best capture both auditory and semantic characteristics. We find that generally adopted loss functions can result in an unfair vocabulary imbalance during model training. We propose two audio captioning augmentation methods that enrich the training dataset and the vocabulary size. We further underline the need for in-domain pretraining by exploring the suitability of audio encoders that were previously trained on different audio tasks. Finally, we systematically explore five performance metrics borrowed from the image captioning domain and highlight their limitations for the audio domain.
['Dimitra Emmanouilidou', 'Sandeep Kothinti']
2022-11-12
null
null
null
null
['audio-captioning']
['audio']
[ 9.02436554e-01 1.76507175e-01 2.59497792e-01 -2.43303820e-01 -1.36296785e+00 -4.69745755e-01 3.99098098e-01 3.54121923e-01 -3.09674948e-01 5.98499179e-01 6.99794948e-01 4.48307209e-02 -1.30814284e-01 -4.05112505e-01 -8.91268671e-01 -2.19178230e-01 -6.52133226e-02 3.78707826e-01 -2.98044868e-02 -1.36838257e-01 -1.59205478e-02 -4.72796746e-02 -2.10571527e+00 5.26415348e-01 5.12522280e-01 1.41569304e+00 9.18907449e-02 9.13518965e-01 -2.35484511e-01 7.73787379e-01 -7.20428705e-01 -2.73589045e-01 -4.25369516e-02 -4.68706459e-01 -8.65286171e-01 -1.21554643e-01 5.88562250e-01 5.80394454e-02 -1.41623527e-01 8.50775719e-01 8.74599576e-01 7.17407316e-02 6.23496413e-01 -1.53202844e+00 -4.11728442e-01 9.47631538e-01 7.45389014e-02 4.19129878e-01 6.33696496e-01 2.90276308e-04 1.10734200e+00 -8.22221816e-01 3.95237863e-01 1.03435910e+00 6.56510532e-01 4.47179943e-01 -1.00528014e+00 -8.36440980e-01 -5.10904603e-02 4.34819818e-01 -1.51119518e+00 -8.45858037e-01 9.86736834e-01 -7.33222246e-01 6.32923841e-01 3.45098853e-01 4.31741297e-01 1.38335824e+00 -4.93411481e-01 6.25113368e-01 7.61606872e-01 -6.40788734e-01 2.33180001e-01 1.64245829e-01 -2.60537505e-01 -3.99271473e-02 -2.37934560e-01 -6.23028586e-03 -1.13362396e+00 -1.46054909e-01 4.81639504e-01 -7.42725492e-01 -2.98395932e-01 -1.37106925e-01 -1.38354611e+00 7.71588206e-01 6.65505454e-02 2.65912414e-01 -3.08740586e-01 3.79891932e-01 8.33923638e-01 4.09627795e-01 3.03090423e-01 8.23150516e-01 -3.76754105e-01 -5.26694834e-01 -1.09326231e+00 2.62258947e-01 5.38110077e-01 9.39161122e-01 4.73321855e-01 3.09158117e-01 -2.87225783e-01 7.87605226e-01 7.85547420e-02 5.44982433e-01 5.13547719e-01 -7.21336961e-01 6.55565798e-01 7.78089464e-02 1.20813996e-01 -7.29124725e-01 -2.60344625e-01 -5.32508790e-01 -3.95033807e-01 -4.70669270e-01 2.86445737e-01 -1.94688275e-01 -6.37957156e-01 2.06966448e+00 1.62522376e-01 4.97535020e-01 8.00001621e-02 9.30894315e-01 1.01640105e+00 6.44424081e-01 3.76499593e-01 -1.29870087e-01 1.45983231e+00 -7.24955499e-01 -9.27975357e-01 -3.19605231e-01 3.04250062e-01 -1.02708411e+00 1.47826469e+00 3.95478189e-01 -1.14559674e+00 -7.55509853e-01 -1.02388990e+00 -3.22664902e-02 -3.78890365e-01 1.00056283e-01 4.89827603e-01 4.46323544e-01 -8.23801935e-01 2.73869872e-01 -4.07221794e-01 -2.68416762e-01 1.17770851e-01 1.27953097e-01 -2.03359708e-01 3.56743604e-01 -1.53584552e+00 6.47231042e-01 4.94060636e-01 -2.26730928e-01 -9.60060716e-01 -1.06182313e+00 -9.18287218e-01 2.49295533e-01 3.63478243e-01 -5.73192894e-01 1.57316613e+00 -1.23580456e+00 -1.25496650e+00 6.94423437e-01 8.08411092e-02 -6.93927765e-01 1.88317850e-01 -3.49313885e-01 -6.15895450e-01 2.71254539e-01 1.30415782e-01 1.00799596e+00 9.70566869e-01 -1.08065379e+00 -5.39649129e-01 -8.34733061e-03 -2.58732498e-01 2.69890457e-01 -6.49923265e-01 1.55626267e-01 -2.48763844e-01 -9.76387084e-01 -3.64616930e-01 -8.10587227e-01 1.82480022e-01 -2.84712136e-01 -2.04620540e-01 -4.14401665e-02 5.83632171e-01 -6.90206647e-01 1.42156351e+00 -2.42445683e+00 1.23170011e-01 4.20743227e-02 -2.22571671e-01 1.69364810e-02 -3.45995277e-01 4.70656395e-01 -2.64040023e-01 5.45364618e-02 -2.05034435e-01 -1.95621416e-01 2.19494626e-01 -4.72303815e-02 -8.29879284e-01 -1.42594635e-01 5.75740099e-01 7.00376809e-01 -9.11614656e-01 -6.11034513e-01 -1.11645557e-01 6.59003079e-01 -6.07726634e-01 3.47187072e-01 -2.97201425e-01 5.56747079e-01 -1.74143717e-01 5.67542732e-01 2.30594829e-01 -5.48007935e-02 -3.38729680e-01 -2.99335241e-01 1.09492712e-01 7.42478490e-01 -1.23400092e+00 1.95715654e+00 -7.37922847e-01 7.88963377e-01 -1.49062797e-02 -8.54571879e-01 9.65517879e-01 8.03806424e-01 6.41536176e-01 -6.31249189e-01 1.62185296e-01 4.00694489e-01 -2.84551550e-03 -7.48986721e-01 6.79554880e-01 -3.98540407e-01 -3.15688014e-01 4.14249361e-01 4.64580476e-01 -3.41698885e-01 1.34752467e-01 -2.39298075e-01 8.83951843e-01 -1.31405219e-01 1.40667483e-01 1.24247544e-01 4.54303533e-01 -2.09807485e-01 1.11457638e-01 6.21712804e-01 -2.13657573e-01 1.03958309e+00 2.72830784e-01 -4.58306409e-02 -1.17218959e+00 -1.00827706e+00 -1.91788316e-01 1.55910456e+00 -3.28769982e-01 -5.96057057e-01 -7.14366615e-01 -2.49468043e-01 -1.49320319e-01 6.01307213e-01 -5.41637123e-01 -3.33140075e-01 -2.64171392e-01 -3.54667962e-01 9.60435271e-01 6.47356451e-01 -5.15287220e-02 -1.33568275e+00 -6.78596675e-01 3.47206742e-01 -6.96506321e-01 -1.47739100e+00 -3.41823786e-01 2.56532013e-01 -4.18521672e-01 -6.84681654e-01 -7.28187859e-01 -7.15354145e-01 -7.76554123e-02 -1.91175088e-01 1.36984849e+00 -4.65719432e-01 -2.51043215e-02 7.77492225e-01 -8.19319427e-01 -1.11823893e+00 -6.94463134e-01 4.63590711e-01 2.17257112e-01 1.74551830e-01 4.42633212e-01 -7.20543206e-01 -2.33955607e-01 1.04476295e-01 -1.01250947e+00 1.10312551e-01 5.46913207e-01 4.25416499e-01 5.90153098e-01 -2.31231004e-01 1.09286427e+00 -4.13537115e-01 8.12647939e-01 -5.73481500e-01 -5.40405624e-02 -4.94662374e-02 -1.91741467e-01 -2.82365400e-02 4.84611124e-01 -7.59904623e-01 -5.77311575e-01 2.35578924e-01 -3.11367244e-01 -5.92813551e-01 -3.23110729e-01 6.54277623e-01 -1.71404287e-01 3.18358004e-01 7.61346042e-01 2.07229927e-01 2.05526762e-02 -4.86053914e-01 2.90804654e-01 9.44394529e-01 8.46144617e-01 -5.84517479e-01 6.07186794e-01 2.15563804e-01 -2.52454996e-01 -8.79714251e-01 -8.38089764e-01 -5.14713168e-01 -3.50483835e-01 -3.92147630e-01 7.60754645e-01 -1.14342463e+00 -2.82846063e-01 4.13786098e-02 -1.15465319e+00 -3.39109870e-03 -7.13134170e-01 5.99435449e-01 -9.32610154e-01 6.77852109e-02 -2.16648430e-01 -9.01809931e-01 -4.59047586e-01 -1.07584357e+00 1.40514314e+00 -1.65729329e-01 -6.54004872e-01 -4.79716152e-01 1.62439570e-01 3.78138930e-01 5.26465118e-01 2.18171209e-01 7.44650483e-01 -8.90016675e-01 -1.39536574e-01 -1.23947792e-01 -1.34845972e-01 3.90629411e-01 -5.22330664e-02 -3.17395896e-01 -1.49883544e+00 -1.13015205e-01 -2.08608687e-01 -6.32087529e-01 6.89839303e-01 1.28773212e-01 1.20345366e+00 -3.69569719e-01 2.47091144e-01 2.61611283e-01 1.03045261e+00 1.22721158e-01 3.77192587e-01 2.76321024e-01 4.67260510e-01 8.83605361e-01 7.12374568e-01 4.88833666e-01 1.78059191e-01 9.32365239e-01 5.00841200e-01 -2.78240666e-02 -4.10954326e-01 -6.14333093e-01 4.40437853e-01 1.07269430e+00 2.99729377e-01 -1.36565432e-01 -9.98587310e-01 9.02209401e-01 -1.55644596e+00 -7.51033545e-01 3.02029043e-01 2.16426229e+00 1.17640650e+00 5.31468950e-02 4.02007192e-01 7.29282975e-01 7.03253150e-01 -9.69086587e-02 -3.06768745e-01 -4.64935273e-01 2.06616186e-02 4.10317004e-01 1.85364619e-01 2.61293352e-01 -1.23338020e+00 6.63161337e-01 6.32331038e+00 7.55998373e-01 -1.22875428e+00 2.33562753e-01 2.54954338e-01 -2.80542344e-01 -3.16454917e-01 -2.68917471e-01 -4.29476082e-01 5.88005126e-01 1.38497627e+00 -8.27688426e-02 3.73743296e-01 6.81157529e-01 2.73040920e-01 4.74189788e-01 -1.48229718e+00 1.19765365e+00 2.13646114e-01 -1.07546699e+00 3.80311579e-01 -1.69801071e-01 3.56769294e-01 -3.74283604e-02 2.32474267e-01 3.29973072e-01 -5.40514529e-01 -1.24998009e+00 1.18232787e+00 3.71604592e-01 1.01121151e+00 -6.35353148e-01 6.57617748e-01 -1.91427723e-01 -1.21896482e+00 -1.45483539e-01 -6.93513453e-03 -8.80187303e-02 2.77246207e-01 2.69002378e-01 -1.21213639e+00 3.63011271e-01 8.35339308e-01 4.74748611e-01 -5.44036150e-01 1.20693445e+00 3.70085984e-02 9.22001719e-01 -3.14381361e-01 1.20247230e-01 8.78649801e-02 3.46416533e-01 7.36627638e-01 1.42644024e+00 4.90320206e-01 -4.89913225e-01 -1.08527474e-01 6.66714489e-01 -8.12041834e-02 4.44587857e-01 -6.36242032e-01 -4.13420767e-01 6.35500073e-01 8.19726169e-01 -3.36632401e-01 -6.76872581e-02 -3.59986812e-01 3.91439855e-01 -1.77249372e-01 9.70201567e-02 -8.90243471e-01 -3.96404624e-01 6.01284027e-01 3.44265938e-01 3.16500545e-01 8.25075284e-02 -2.18453526e-01 -7.88385034e-01 2.09574670e-01 -1.07261109e+00 3.81570488e-01 -1.04886425e+00 -1.25870812e+00 7.72698581e-01 3.03944461e-02 -1.70090401e+00 -6.19195938e-01 -3.59411448e-01 -2.81862676e-01 4.56981003e-01 -1.59241223e+00 -1.17635572e+00 -2.96703249e-01 4.39823091e-01 6.78496659e-01 -1.95496708e-01 9.38129306e-01 8.57257009e-01 -3.26909274e-02 7.10293591e-01 -3.33621055e-01 2.47376021e-02 9.34407592e-01 -9.83329654e-01 2.28474036e-01 5.58350086e-01 4.63823289e-01 5.67746460e-02 1.17477155e+00 -3.82182896e-02 -9.45149064e-01 -1.28641880e+00 1.10094810e+00 -5.17322898e-01 8.70127141e-01 -6.31384671e-01 -1.01559508e+00 5.17277718e-01 8.04368183e-02 -2.73806036e-01 1.09131312e+00 5.70174493e-02 -4.06872511e-01 -1.59733221e-01 -6.50166452e-01 3.43935609e-01 8.10193241e-01 -1.06100655e+00 -6.56455040e-01 1.62947953e-01 1.10086370e+00 -3.03356439e-01 -8.98067355e-01 4.27875787e-01 5.90973139e-01 -4.34833378e-01 1.10059714e+00 -8.42398107e-01 5.75460970e-01 -3.21397603e-01 -2.90539593e-01 -1.15355098e+00 1.34011492e-01 -7.59630263e-01 -9.54822823e-02 1.65316594e+00 4.71257299e-01 3.32275853e-02 4.91093785e-01 1.62214205e-01 -2.20675513e-01 -3.49571437e-01 -1.12400901e+00 -7.74649262e-01 2.69119591e-02 -1.04332268e+00 8.19982290e-01 8.34055603e-01 1.30613223e-01 6.61802292e-01 -5.04456341e-01 8.75638351e-02 1.74272239e-01 -1.08040959e-01 7.85989344e-01 -1.39238536e+00 -2.05032885e-01 -2.63419211e-01 -5.50374687e-01 -6.07008934e-01 1.65442556e-01 -8.13575149e-01 2.57059962e-01 -1.14387286e+00 -7.22321570e-02 -2.74181396e-01 -3.74503553e-01 4.72462595e-01 8.36793333e-02 4.95323509e-01 3.61434281e-01 9.71630663e-02 -6.18189156e-01 6.72268391e-01 9.63203490e-01 -2.55251944e-01 -2.47904852e-01 -5.17815202e-02 -8.01096857e-01 4.58487600e-01 7.35457003e-01 -5.23016453e-01 -5.98347247e-01 -5.06936193e-01 6.29521966e-01 1.38706714e-01 4.98233527e-01 -1.33760452e+00 1.34919062e-01 9.72543955e-02 -2.31329173e-01 -3.09153467e-01 5.91502070e-01 -8.86659086e-01 9.21703875e-02 -1.09559856e-01 -7.98234403e-01 4.43008132e-02 4.31021601e-01 5.43797195e-01 -7.32783794e-01 -2.51116961e-01 5.38335085e-01 1.28678396e-01 -4.74084198e-01 8.34810780e-04 -4.79427457e-01 3.85490268e-01 5.63709557e-01 -1.96324930e-01 9.59858447e-02 -7.57842004e-01 -9.03108597e-01 -9.52940956e-02 2.76708957e-02 8.53645921e-01 4.06487554e-01 -1.55275083e+00 -9.87055540e-01 7.16446936e-02 5.76911211e-01 -9.59606245e-02 1.40085533e-01 7.61989474e-01 -1.31884702e-02 6.11143887e-01 -3.04034263e-01 -5.81910491e-01 -1.16197443e+00 4.64463800e-01 9.98667255e-02 1.74454171e-02 -2.34905556e-01 7.11929262e-01 6.13444224e-02 -9.01643112e-02 5.71549058e-01 -4.51926857e-01 -4.65413690e-01 3.96235764e-01 5.36290884e-01 1.99597731e-01 4.04364854e-01 -9.65723276e-01 -2.71852940e-01 3.16946268e-01 3.37825239e-01 -4.51471388e-01 1.22673380e+00 -2.17726558e-01 3.21247846e-01 7.22054005e-01 1.14253223e+00 -1.31871358e-01 -8.48244786e-01 -2.38749072e-01 6.82507455e-02 -1.35182172e-01 1.22454144e-01 -7.11420238e-01 -6.07225478e-01 1.09135175e+00 7.51332641e-01 4.51359212e-01 1.32966256e+00 1.28260359e-01 9.22071874e-01 1.18461870e-01 1.00027874e-01 -1.22158277e+00 2.15564638e-01 4.98566329e-01 1.15878630e+00 -9.98003244e-01 -4.10624921e-01 -3.62691909e-01 -8.46165299e-01 9.78132665e-01 3.56195539e-01 3.23870271e-01 5.26953042e-01 2.15451285e-01 1.79152906e-01 -8.05483535e-02 -6.83034182e-01 -4.64611918e-01 5.39068043e-01 7.69279599e-01 5.50300181e-01 -2.31326550e-01 1.49193089e-02 1.10031950e+00 -8.49579632e-01 8.54479000e-02 4.89458442e-01 7.91693389e-01 -2.63139546e-01 -8.76782477e-01 -5.57171583e-01 2.49310151e-01 -5.17763078e-01 -1.96068674e-01 -5.77429295e-01 4.55571681e-01 2.07962826e-01 1.07133746e+00 3.00404072e-01 -4.36311454e-01 4.69272316e-01 4.35395181e-01 2.24138886e-01 -6.66642308e-01 -5.58782101e-01 2.44613253e-02 1.61565125e-01 -2.37069175e-01 -4.91177320e-01 -6.74737990e-01 -9.68445301e-01 4.19394732e-01 -3.09204966e-01 4.59592253e-01 7.08990872e-01 7.83471346e-01 4.80942637e-01 7.64466941e-01 3.76061291e-01 -7.87876964e-01 -4.34759498e-01 -1.23549509e+00 -3.41502219e-01 5.10068357e-01 5.28626740e-01 -7.56693780e-01 -3.58390987e-01 4.75318670e-01]
[15.26798152923584, 4.95896577835083]
5b4d144d-64cb-46df-8711-90af78a63e49
towards-mitigating-the-problem-of
2210.11194
null
https://arxiv.org/abs/2210.11194v1
https://arxiv.org/pdf/2210.11194v1.pdf
Towards Mitigating the Problem of Insufficient and Ambiguous Supervision in Online Crowdsourcing Annotation
In real-world crowdsourcing annotation systems, due to differences in user knowledge and cultural backgrounds, as well as the high cost of acquiring annotation information, the supervision information we obtain might be insufficient and ambiguous. To mitigate the negative impacts, in this paper, we investigate a more general and broadly applicable learning problem, i.e. \emph{semi-supervised partial label learning}, and propose a novel method based on pseudo-labeling and contrastive learning. Following the key inventing principle, our method facilitate the partial label disambiguation process with unlabeled data and at the same time assign reliable pseudo-labels to weakly supervised examples. Specifically, our method learns from the ambiguous labeling information via partial cross-entropy loss. Meanwhile, high-accuracy pseudo-labels are generated for both partial and unlabeled examples through confidence-based thresholding and contrastive learning is performed in a hybrid unsupervised and supervised manner for more discriminative representations, while its supervision increases curriculumly. The two main components systematically work as a whole and reciprocate each other. In experiments, our method consistently outperforms all comparing methods by a significant margin and set up the first state-of-the-art performance for semi-supervised partial label learning on image benchmarks.
['Shu-Tao Xia', 'Zimo Liu', 'Tianxiang Li', 'Mingyan Zhu', 'Bowen Zhao', 'Qian-Wei Wang']
2022-10-20
null
null
null
null
['partial-label-learning']
['methodology']
[ 4.45177525e-01 2.29220644e-01 -4.49813664e-01 -7.35904515e-01 -1.17739046e+00 -7.39571273e-01 5.04417837e-01 1.28095835e-01 -5.59128165e-01 9.73527312e-01 -1.40305795e-02 2.08288476e-01 2.80484289e-01 -2.41524339e-01 -6.05024815e-01 -8.95980000e-01 5.87681890e-01 5.35850585e-01 3.08458030e-01 -1.28117334e-02 -2.94961426e-02 -8.43847245e-02 -1.49192047e+00 2.51161188e-01 1.12647784e+00 1.03836739e+00 1.23238705e-01 1.05105489e-02 -1.59167483e-01 9.10720170e-01 -3.91840219e-01 -6.89940393e-01 2.75807947e-01 -4.06018376e-01 -1.02279305e+00 6.44529104e-01 4.53577608e-01 -1.04500487e-01 2.29206845e-01 1.22849369e+00 5.39041698e-01 3.75990919e-03 6.57782257e-01 -1.18904686e+00 -6.53052032e-01 5.34118891e-01 -8.17364395e-01 -2.98372537e-01 2.77918339e-01 1.45109668e-01 1.13191676e+00 -1.19453597e+00 3.96583706e-01 1.05401051e+00 6.18408620e-01 7.39720702e-01 -1.26154268e+00 -7.65983880e-01 5.01191795e-01 -2.32384190e-01 -1.64846182e+00 -2.77255416e-01 8.88894975e-01 -5.01533091e-01 1.51843816e-01 4.93517816e-02 1.79508790e-01 9.95666504e-01 -5.70140004e-01 1.17808926e+00 1.53231347e+00 -4.78212565e-01 2.12032259e-01 4.76875752e-01 1.27930075e-01 9.25258756e-01 1.50022730e-01 -8.93730447e-02 -6.10113919e-01 -3.18038642e-01 3.17767769e-01 -4.34268005e-02 -2.81809449e-01 -3.72361392e-01 -1.22082949e+00 6.25627935e-01 2.45689958e-01 1.26669139e-01 -4.21304367e-02 -2.43712917e-01 4.58752871e-01 -1.16076924e-01 7.98732638e-01 2.38016397e-01 -6.23315513e-01 2.06682369e-01 -9.46377993e-01 -1.12583274e-02 6.91539407e-01 1.20786750e+00 1.10381603e+00 -3.07143658e-01 -4.37719285e-01 9.94604468e-01 3.77033830e-01 3.53817344e-01 5.08513689e-01 -9.16427970e-01 5.68903625e-01 6.84140444e-01 3.14959258e-01 -5.40851951e-01 -3.41335863e-01 -4.08341020e-01 -7.58808553e-01 -1.33822724e-01 6.26444519e-01 -2.77964413e-01 -8.51250350e-01 1.86997557e+00 4.98706609e-01 2.44711742e-01 -1.44151375e-01 1.10565913e+00 8.67737770e-01 2.39647001e-01 5.29028237e-01 -4.76958603e-01 1.34847951e+00 -1.37930930e+00 -7.98899770e-01 -3.06401163e-01 8.67715955e-01 -7.25347817e-01 1.33586693e+00 2.14470208e-01 -7.85977662e-01 -6.41903579e-01 -9.67464626e-01 -3.91989090e-02 -1.95144042e-01 5.87477803e-01 3.63883495e-01 5.37829340e-01 -7.44488299e-01 4.75587308e-01 -5.96530139e-01 -3.17563638e-02 6.43477857e-01 3.05876136e-01 -3.87224287e-01 -4.59106602e-02 -1.15579879e+00 4.89878863e-01 5.07881939e-01 1.30942181e-01 -7.04079747e-01 -3.02191049e-01 -8.72112036e-01 -4.00438368e-01 7.67891526e-01 -1.37773722e-01 1.29961658e+00 -1.35367763e+00 -1.34255898e+00 1.39414060e+00 -2.20409617e-01 -1.66527256e-01 7.91549742e-01 -2.09900394e-01 -2.91622043e-01 8.98831859e-02 5.25186241e-01 9.30887818e-01 7.68554330e-01 -1.71647727e+00 -8.83408010e-01 -3.63014251e-01 -5.17518483e-02 4.43177521e-01 -4.12189096e-01 -1.86270505e-01 -5.51753044e-01 -7.73315847e-01 2.95358419e-01 -1.22259307e+00 -1.65453359e-01 -3.61286178e-02 -3.95440608e-01 -5.18159270e-01 6.51494145e-01 -4.52141881e-01 1.09093583e+00 -2.07733107e+00 -1.09646782e-01 1.94016714e-02 3.35711300e-01 5.06609738e-01 5.12990728e-02 -7.32353330e-02 8.14273208e-02 2.01250404e-01 -6.24797523e-01 -6.25268698e-01 -1.27318159e-01 3.06278259e-01 -2.03201339e-01 4.94962990e-01 5.17405689e-01 9.05758798e-01 -1.35263777e+00 -9.78542030e-01 -1.72792554e-01 1.52311265e-01 -1.00496531e-01 2.68201679e-01 -2.73020178e-01 8.85981202e-01 -5.33007264e-01 9.80652213e-01 6.98169053e-01 -5.62623441e-01 2.24573687e-01 -1.23098038e-01 1.79099545e-01 -8.08832124e-02 -1.22336531e+00 1.81501091e+00 -4.24652785e-01 2.36689284e-01 -1.83058195e-02 -1.01124549e+00 9.25433278e-01 4.47403848e-01 3.77871335e-01 -4.73809183e-01 5.81132136e-02 5.34726739e-01 -6.08721495e-01 -6.27141476e-01 3.63026470e-01 -2.01552853e-01 -5.11839800e-02 5.17085075e-01 2.27008224e-01 1.52248219e-01 1.23676568e-01 3.53730619e-02 5.42616367e-01 6.06953025e-01 3.82647634e-01 -3.07292819e-01 7.90390968e-01 -9.65709314e-02 9.09835279e-01 5.24264872e-01 -6.54560924e-01 7.19670773e-01 3.40202749e-01 -2.88236290e-01 -7.17404366e-01 -7.21733391e-01 -2.27245599e-01 1.45106363e+00 5.71950555e-01 -1.63918227e-01 -7.27058887e-01 -1.45791590e+00 -8.84286314e-02 3.56155396e-01 -6.59257114e-01 5.08545619e-03 -4.26003903e-01 -8.41045141e-01 5.88610947e-01 5.61087847e-01 7.11790025e-01 -9.89643931e-01 -2.00505070e-02 7.49062374e-02 -4.47234362e-01 -1.24589944e+00 -7.55092204e-01 3.59510541e-01 -6.64163649e-01 -1.03151739e+00 -8.98272574e-01 -1.12089574e+00 1.04346085e+00 3.95239592e-01 1.22246552e+00 2.32686102e-01 9.95413214e-02 7.84023851e-02 -5.05588949e-01 -2.67890215e-01 -2.67109513e-01 8.19069967e-02 5.83091564e-02 3.97551000e-01 5.87614238e-01 -2.79041797e-01 -4.87390012e-01 7.66264558e-01 -9.70934391e-01 -8.89389217e-02 5.62134445e-01 1.17756140e+00 9.88001049e-01 -8.60877186e-02 8.09088588e-01 -1.27608407e+00 3.34510535e-01 -4.84792829e-01 -5.73478341e-01 4.45072770e-01 -8.35481286e-01 7.18626082e-02 5.38920462e-01 -6.67305231e-01 -1.38641572e+00 6.58320546e-01 1.48552686e-01 -1.52811259e-01 -1.72771007e-01 1.36173859e-01 -3.67363632e-01 -1.47723362e-01 7.58591890e-01 1.44280136e-01 -1.81938723e-01 -3.25516254e-01 3.52181941e-01 9.15509164e-01 3.72984260e-01 -7.61270702e-01 7.56984293e-01 6.85046256e-01 -2.69134223e-01 -3.17949206e-01 -1.60067034e+00 -6.63031995e-01 -8.73850644e-01 -1.54703662e-01 7.90237606e-01 -1.21707368e+00 -4.07719195e-01 4.70161408e-01 -9.60451066e-01 -1.89637318e-01 -3.21826905e-01 3.33229959e-01 -2.45234743e-01 6.42493308e-01 -5.44994116e-01 -9.57164764e-01 -1.88019648e-01 -1.24614775e+00 1.43896878e+00 4.55580801e-01 4.73550484e-02 -7.12044120e-01 -8.90681073e-02 7.06598878e-01 -3.61978225e-02 2.20315941e-02 2.80965090e-01 -1.09950829e+00 -2.88814187e-01 -2.40763813e-01 -4.28742945e-01 7.84631610e-01 2.20437154e-01 -3.24397802e-01 -1.38030732e+00 -2.23534957e-01 -5.55921867e-02 -9.70912755e-01 8.25689614e-01 -1.03550084e-01 1.10692263e+00 -2.24090561e-01 -2.25314617e-01 2.06827894e-01 1.21793759e+00 -2.48641059e-01 6.25331327e-02 7.91126043e-02 8.50016415e-01 9.14628506e-01 1.13283098e+00 4.37335819e-01 4.93739247e-01 6.11524642e-01 2.24878445e-01 -8.55990797e-02 2.09777057e-02 -3.89355570e-01 1.29388988e-01 6.88544750e-01 4.48224731e-02 5.51843680e-02 -7.61243463e-01 4.73947227e-01 -2.07792139e+00 -5.94669461e-01 6.66454481e-03 2.28946209e+00 1.41576564e+00 8.95987973e-02 2.36006141e-01 6.70246333e-02 1.18500876e+00 6.09270670e-02 -5.38318992e-01 3.42819452e-01 -3.23407173e-01 -1.87380001e-01 6.21507764e-01 2.98946589e-01 -1.61668134e+00 1.09405947e+00 5.36701775e+00 1.19978225e+00 -8.63471806e-01 4.05198246e-01 1.02860904e+00 1.99710116e-01 -1.55883566e-01 3.00952271e-02 -8.61259341e-01 6.25922143e-01 3.09042305e-01 3.14587951e-01 1.91495225e-01 8.82893860e-01 -1.10612877e-01 -9.77700055e-02 -9.59931314e-01 1.08672071e+00 1.09967493e-01 -9.18697357e-01 -2.10512787e-01 -9.55742821e-02 1.17856848e+00 -1.81463689e-01 -1.65488794e-01 3.79245579e-01 2.98836619e-01 -6.94160521e-01 9.47790146e-01 2.40018994e-01 8.96530807e-01 -4.98606294e-01 1.04492533e+00 6.18054211e-01 -1.25009394e+00 -7.28232786e-02 -1.72628120e-01 -2.20248625e-02 1.13826089e-01 7.02597260e-01 -5.01125753e-01 4.68358696e-01 4.79004830e-01 6.51941776e-01 -6.99318051e-01 7.77197182e-01 -6.09026253e-01 8.52059245e-01 -1.14453532e-01 -1.02605186e-01 3.39356184e-01 -2.46379271e-01 1.64579615e-01 1.27956820e+00 -2.19791025e-01 2.69047439e-01 6.83552921e-01 6.43464386e-01 -4.96068478e-01 3.16829443e-01 -2.81280756e-01 2.03365803e-01 6.79902315e-01 1.40636873e+00 -8.45045805e-01 -4.87489343e-01 -4.06613529e-01 9.52239394e-01 5.99814773e-01 3.86045247e-01 -7.82363951e-01 4.67170142e-02 -5.63865192e-02 -7.68672302e-02 -6.89960420e-02 1.23890683e-01 -3.79829913e-01 -1.24881756e+00 5.21264136e-01 -7.06572592e-01 3.65920961e-01 -4.07705754e-01 -1.56143570e+00 5.29522002e-01 -3.00651520e-01 -1.63939691e+00 1.63627835e-03 -2.77497590e-01 -1.74274206e-01 6.40434206e-01 -1.82417381e+00 -1.36371922e+00 -4.27766562e-01 4.31606591e-01 6.54712737e-01 -1.36818603e-01 7.83082068e-01 4.10848647e-01 -4.50625032e-01 7.50597537e-01 -3.24771442e-02 3.31813008e-01 1.15368783e+00 -1.34033251e+00 -1.11441970e-01 6.95924580e-01 2.11198092e-01 2.98036337e-01 2.98606545e-01 -6.42150521e-01 -7.32076526e-01 -1.27823043e+00 8.22084725e-01 -4.90377426e-01 5.20356059e-01 -4.05724913e-01 -9.53522623e-01 4.69295770e-01 -1.56105727e-01 5.30143261e-01 8.73397529e-01 -9.31442901e-02 -6.87930882e-01 -3.22712772e-02 -1.18726945e+00 3.17688227e-01 1.07475746e+00 -7.12873697e-01 -4.96926278e-01 7.61802435e-01 8.83766711e-01 -4.95674670e-01 -6.03577614e-01 5.51661849e-01 3.05315018e-01 -6.59886599e-01 6.47929192e-01 -3.90841246e-01 3.75105709e-01 -5.68994701e-01 -1.29618391e-01 -8.58092487e-01 -7.74887428e-02 -5.69130480e-01 1.16410889e-01 1.68598568e+00 6.72719538e-01 -4.07705039e-01 8.30025375e-01 6.67840600e-01 8.64564404e-02 -8.94861341e-01 -8.66312265e-01 -8.02575052e-01 -1.35095328e-01 -1.69387341e-01 4.06596184e-01 1.26984179e+00 -8.51925313e-02 4.84211266e-01 -5.85707545e-01 2.29673341e-01 7.51958191e-01 1.09409139e-01 4.41310972e-01 -1.21256196e+00 -1.02426745e-01 -1.80391133e-01 -6.29128516e-02 -1.19008362e+00 5.59468091e-01 -9.25302148e-01 4.56061989e-01 -1.05322707e+00 3.88871849e-01 -8.41150522e-01 -3.77759844e-01 6.72853231e-01 -7.56964862e-01 6.05195224e-01 5.24154725e-03 5.87810755e-01 -1.23181427e+00 5.09484470e-01 1.10491598e+00 -2.92678088e-01 -1.95644721e-01 1.61436528e-01 -8.22648346e-01 9.43255603e-01 5.65922558e-01 -5.66136718e-01 -2.97350496e-01 -3.96600604e-01 1.03769407e-01 -2.16194555e-01 1.78603396e-01 -6.87425256e-01 1.63603485e-01 3.00192721e-02 6.04301021e-02 -2.14502916e-01 6.90867286e-03 -8.22293520e-01 -5.27777612e-01 3.72010246e-02 -7.61231482e-01 -4.79737669e-01 -3.19639981e-01 8.96417737e-01 -4.28860128e-01 -3.95462096e-01 8.27007174e-01 -5.37814535e-02 -7.03443587e-01 3.90048593e-01 3.04088324e-01 4.75956887e-01 9.67518628e-01 -5.91913350e-02 -2.22568229e-01 -1.54359266e-01 -7.18515217e-01 5.46238005e-01 4.14059639e-01 3.47666502e-01 1.70334429e-01 -1.52545691e+00 -8.42218876e-01 -1.17167883e-01 5.90393305e-01 3.28692496e-01 1.17554270e-01 7.56577075e-01 -7.77352378e-02 -4.54346761e-02 2.50290096e-01 -8.35435987e-01 -1.17764795e+00 6.19229913e-01 1.76093057e-01 -3.76066238e-01 -1.15000010e-01 1.03659594e+00 1.58267573e-01 -7.42808640e-01 4.65423465e-01 2.03981116e-01 -3.54404688e-01 3.60285789e-01 4.51333493e-01 2.38340393e-01 7.94108771e-03 -8.90284359e-01 -3.02691162e-01 7.03753650e-01 -1.42138149e-03 3.91448326e-02 8.19852054e-01 -3.98644865e-01 -1.32388115e-01 5.51508546e-01 1.22879565e+00 1.16911717e-03 -1.49309623e+00 -8.89226437e-01 2.31969848e-01 -4.14519042e-01 -3.35259259e-01 -8.40140820e-01 -1.16455996e+00 6.45045340e-01 6.36398435e-01 7.58187473e-02 1.05366278e+00 2.12296367e-01 6.17227256e-01 4.68472511e-01 4.22701895e-01 -1.52663028e+00 2.43827417e-01 1.70869932e-01 3.43301237e-01 -1.98801398e+00 4.99982201e-02 -7.00540245e-01 -1.14678335e+00 6.80049241e-01 7.93928444e-01 1.50447458e-01 4.65243459e-01 1.20626076e-03 2.39225194e-01 2.95018405e-02 -3.15959096e-01 -3.63727391e-01 3.16555649e-01 4.80281979e-01 6.38388634e-01 1.18538186e-01 -5.98183155e-01 9.22723114e-01 4.08213645e-01 -4.19335663e-02 1.76897824e-01 9.90240335e-01 -3.68123591e-01 -1.06190264e+00 -3.55288327e-01 3.60479236e-01 -5.41286528e-01 -3.68363149e-02 -3.59093904e-01 4.69435662e-01 4.47852582e-01 1.16624928e+00 -4.86122906e-01 -3.69579345e-01 1.11845694e-01 1.79201305e-01 -3.64909358e-02 -6.79377079e-01 -5.11435091e-01 2.27835312e-01 1.67893872e-01 -3.76585633e-01 -9.83432174e-01 -5.29340029e-01 -1.41873264e+00 4.29046810e-01 -8.56142521e-01 1.92933172e-01 3.27381313e-01 1.29140425e+00 7.11686760e-02 2.10479394e-01 8.91574144e-01 -8.15412998e-01 -7.85162091e-01 -9.31885779e-01 -6.27499461e-01 8.37479770e-01 8.37260932e-02 -7.92058229e-01 -4.37290728e-01 3.01069975e-01]
[9.50619888305664, 3.933006525039673]
d947263f-a4d3-46c8-a993-79f7b8a639e6
memory-guided-collaborative-attention-for
2208.02960
null
https://arxiv.org/abs/2208.02960v1
https://arxiv.org/pdf/2208.02960v1.pdf
Memory-Guided Collaborative Attention for Nighttime Thermal Infrared Image Colorization
Nighttime thermal infrared (NTIR) image colorization, also known as translation of NTIR images into daytime color images (NTIR2DC), is a promising research direction to facilitate nighttime scene perception for humans and intelligent systems under unfavorable conditions (e.g., complete darkness). However, previously developed methods have poor colorization performance for small sample classes. Moreover, reducing the high confidence noise in pseudo-labels and addressing the problem of image gradient disappearance during translation are still under-explored, and keeping edges from being distorted during translation is also challenging. To address the aforementioned issues, we propose a novel learning framework called Memory-guided cOllaboRative atteNtion Generative Adversarial Network (MornGAN), which is inspired by the analogical reasoning mechanisms of humans. Specifically, a memory-guided sample selection strategy and adaptive collaborative attention loss are devised to enhance the semantic preservation of small sample categories. In addition, we propose an online semantic distillation module to mine and refine the pseudo-labels of NTIR images. Further, conditional gradient repair loss is introduced for reducing edge distortion during translation. Extensive experiments on the NTIR2DC task show that the proposed MornGAN significantly outperforms other image-to-image translation methods in terms of semantic preservation and edge consistency, which helps improve the object detection accuracy remarkably.
['Yong-Jie Li', 'Kai-Fu Yang', 'Yi-Jun Cao', 'Fu-Ya Luo']
2022-08-05
null
null
null
null
['colorization']
['computer-vision']
[ 4.68418479e-01 -3.90493125e-01 9.92157310e-02 -3.52426201e-01 -4.61281925e-01 -4.39958036e-01 3.35145026e-01 -5.26909053e-01 -3.87754858e-01 6.08847857e-01 -4.71906178e-03 -2.69854873e-01 -3.51897404e-02 -6.87158823e-01 -6.79390132e-01 -1.06918430e+00 6.81657672e-01 -1.48203641e-01 -5.38401585e-03 -1.74274072e-01 3.38869125e-01 2.55095690e-01 -1.29286301e+00 1.02584109e-01 1.41933918e+00 9.88298535e-01 3.74188840e-01 3.95312577e-01 -1.63472388e-02 7.73277998e-01 -3.28018129e-01 -3.96921784e-01 4.17110771e-01 -5.09862542e-01 -3.47096473e-01 3.30409378e-01 5.29347599e-01 -3.79270017e-01 -4.66656923e-01 1.47680283e+00 5.95969379e-01 5.67380190e-01 3.68559361e-01 -1.36375582e+00 -1.47958434e+00 9.29079652e-02 -7.43430972e-01 2.14538798e-01 -1.11753508e-01 2.27886334e-01 4.61375386e-01 -1.08404541e+00 6.37397468e-02 1.16406643e+00 5.23626268e-01 5.14787436e-01 -1.10424101e+00 -8.75984013e-01 3.84192079e-01 7.39427567e-01 -1.54896569e+00 -2.23217681e-01 9.82864559e-01 1.06347594e-02 2.56573975e-01 4.52301532e-01 3.44007581e-01 9.78012800e-01 6.66339765e-05 7.33219802e-01 1.38150096e+00 -3.69755328e-01 1.40501738e-01 2.82678783e-01 -3.13204736e-01 5.69048166e-01 1.65174589e-01 2.77287364e-01 -2.47008815e-01 3.13639641e-01 7.58457243e-01 3.02145123e-01 -4.95486259e-01 -8.99379402e-02 -1.06252956e+00 5.09434521e-01 8.52968395e-01 -6.38569742e-02 -5.51324338e-02 -1.22960649e-01 2.26893529e-01 1.82297438e-01 7.60183096e-01 2.32802823e-01 -2.83802539e-01 5.29506385e-01 -4.78943735e-01 -4.10991535e-02 -5.66205420e-02 1.03628135e+00 8.92924607e-01 1.87831014e-01 -5.03329039e-01 1.00057209e+00 1.16175838e-01 8.57839763e-01 4.73938346e-01 -8.67431521e-01 4.67736125e-01 4.76318866e-01 3.23413521e-01 -1.04770362e+00 -1.38952196e-01 -5.09872973e-01 -1.16913736e+00 4.20554370e-01 8.08530599e-02 -1.70803621e-01 -9.07675683e-01 1.57330501e+00 3.60217780e-01 3.38659346e-01 1.51270926e-02 1.34764385e+00 6.42228484e-01 7.32880414e-01 1.17338948e-01 -2.88912416e-01 1.22664142e+00 -1.27920032e+00 -7.55226731e-01 -6.94632411e-01 -7.03797191e-02 -8.22028339e-01 1.26271045e+00 2.76827365e-01 -8.73109519e-01 -8.95039618e-01 -8.78920138e-01 -2.75732547e-01 -3.76012921e-01 3.88109535e-01 6.48676157e-01 6.77478790e-01 -9.19472337e-01 2.79309779e-01 -4.51728910e-01 -9.68904570e-02 4.28768158e-01 -7.60350972e-02 -1.06237687e-01 -6.40356302e-01 -1.24776721e+00 7.94422925e-01 4.32380885e-01 6.72352433e-01 -6.53315306e-01 -5.41557312e-01 -8.27774227e-01 -1.30860627e-01 5.63548207e-01 -6.79636061e-01 9.18744385e-01 -1.29674101e+00 -1.49859416e+00 6.71971381e-01 -1.37963042e-01 2.91452423e-04 6.51721060e-01 -2.93262362e-01 -6.56492412e-01 3.42699466e-04 -1.00053273e-01 6.75251842e-01 1.30356061e+00 -1.47715759e+00 -6.36711001e-01 -4.95246857e-01 -4.77628633e-02 7.75341392e-01 -5.66448271e-01 -1.08877391e-01 -6.50254190e-01 -9.26360190e-01 2.61655658e-01 -8.58854771e-01 -1.37303263e-01 2.70284832e-01 -4.00850117e-01 1.78308375e-02 9.73874450e-01 -9.99504864e-01 8.27980578e-01 -2.19826388e+00 1.73114352e-02 -2.96626519e-02 -5.13520651e-02 3.64302933e-01 -3.13131541e-01 -2.05391243e-01 -1.92241594e-01 -1.11291692e-01 -3.84684652e-01 -2.25108117e-01 -1.65569857e-01 -7.96903111e-03 -3.47492129e-01 4.37543035e-01 2.24334925e-01 1.06354856e+00 -1.06472921e+00 -3.40608418e-01 4.75031137e-01 5.94651937e-01 -2.67715156e-01 3.19229484e-01 -8.05465281e-02 6.28068864e-01 -3.76029551e-01 6.18447304e-01 1.23009038e+00 1.36129782e-01 -2.72378951e-01 -6.43161535e-01 -2.04494536e-01 -3.61403853e-01 -7.03178167e-01 1.61686766e+00 -5.79293072e-01 6.30082369e-01 -1.70477808e-01 -8.30333531e-01 1.04157674e+00 -1.75932378e-01 5.96013181e-02 -1.26347005e+00 1.20048463e-01 -5.75635396e-02 -3.24974328e-01 -6.93356216e-01 6.44848228e-01 -1.77352682e-01 2.71582037e-01 2.96115965e-01 -7.25564241e-01 -4.11318652e-02 -2.58123994e-01 -1.85967281e-01 4.02449846e-01 3.92978251e-01 -2.47221649e-01 -3.01134158e-02 6.57955170e-01 -8.75061899e-02 7.96180844e-01 4.52010393e-01 -3.11657548e-01 8.72883320e-01 -2.56560177e-01 -3.16949517e-01 -1.10872161e+00 -1.09276199e+00 9.29932520e-02 1.15515399e+00 8.18333983e-01 3.55299056e-01 -7.01221108e-01 -5.31192124e-01 -3.69150758e-01 1.03587937e+00 -6.18868470e-01 -6.94005728e-01 -4.28455204e-01 -1.11343491e+00 2.61987925e-01 6.33482277e-01 1.19272614e+00 -1.15220344e+00 -1.74398467e-01 -1.07873090e-01 -6.41396999e-01 -1.01938009e+00 -8.74263823e-01 -2.96881586e-01 -6.17652953e-01 -9.35810328e-01 -9.09297109e-01 -8.78426015e-01 1.03300130e+00 1.06192648e+00 7.54864752e-01 -5.09085134e-02 -4.74250317e-01 1.48613885e-01 -5.40881991e-01 -2.81498075e-01 -5.17942458e-02 -4.28183109e-01 -2.47373775e-01 3.42821747e-01 3.77756447e-01 -1.54803902e-01 -1.11199462e+00 5.37994862e-01 -1.25253260e+00 4.24079537e-01 8.11118603e-01 8.14758658e-01 5.27392685e-01 5.50472438e-01 3.87549430e-01 -6.36217594e-01 4.11896735e-01 -1.51405424e-01 -4.87310410e-01 6.40837908e-01 -7.30771303e-01 -5.54807857e-02 7.93150127e-01 -5.22067606e-01 -1.78140521e+00 -1.72281966e-01 1.21130839e-01 -5.79827428e-01 -3.52815725e-02 7.47236460e-02 -3.30148607e-01 -3.28548282e-01 5.18368959e-01 7.18883395e-01 -3.98713239e-02 -2.05671281e-01 5.42757630e-01 6.76899314e-01 8.03954780e-01 -2.96270937e-01 1.12510753e+00 7.20869303e-01 -2.64959186e-01 -5.44569254e-01 -1.08682835e+00 -3.43147427e-01 -2.38467991e-01 -1.99343890e-01 1.03256869e+00 -1.00556016e+00 -5.11735559e-01 9.29367781e-01 -8.60317826e-01 -4.12220657e-01 1.16904296e-01 3.75777751e-01 -3.55849266e-01 6.24920249e-01 -3.50604385e-01 -7.95385838e-01 -5.89328587e-01 -7.41843402e-01 1.00373697e+00 7.64892578e-01 6.99689448e-01 -8.43990207e-01 -3.83455604e-01 5.93501627e-01 6.59844875e-01 -3.47738415e-02 9.01283681e-01 1.96269602e-01 -6.29571915e-01 1.06342934e-01 -8.83118570e-01 7.17751086e-01 2.49740690e-01 -2.52340704e-01 -9.57871854e-01 -3.45402539e-01 7.83212185e-02 -1.97996542e-01 9.79865491e-01 2.30955511e-01 1.52713454e+00 -3.19705993e-01 -1.04265474e-01 8.04886997e-01 1.37673366e+00 3.50651324e-01 1.10081184e+00 5.15789390e-01 9.78017628e-01 6.09702229e-01 9.71222281e-01 2.84703106e-01 3.79758447e-01 5.69802821e-01 4.51262832e-01 -6.79971397e-01 -2.66248494e-01 -1.52782857e-01 3.56733561e-01 2.71217912e-01 -2.01033875e-02 -7.92557970e-02 -3.12096953e-01 2.40651444e-01 -1.75410485e+00 -8.67868960e-01 -3.07475310e-02 2.29870296e+00 6.66689277e-01 -1.54990211e-01 -3.08674783e-01 -2.36641932e-02 1.14656258e+00 4.37953398e-02 -9.42004621e-01 1.12040244e-01 -3.42819989e-01 -3.84012870e-02 6.90576017e-01 2.67097235e-01 -1.14640975e+00 9.53879058e-01 4.76733971e+00 8.98262441e-01 -1.05696023e+00 2.48856336e-01 9.85603571e-01 3.28290045e-01 -3.43252003e-01 -9.65686589e-02 -4.61612523e-01 6.20300114e-01 1.92760676e-01 -5.24186268e-02 9.64498818e-01 6.81519389e-01 4.93092984e-01 3.90922911e-02 -4.00576860e-01 1.10062850e+00 5.35108805e-01 -7.14165807e-01 -3.22878063e-02 -4.36430335e-01 1.02356923e+00 -2.27420822e-01 4.95773882e-01 1.83839753e-01 6.18043020e-02 -7.21266389e-01 6.75182521e-01 7.35548377e-01 1.06947863e+00 -9.26229537e-01 5.36194742e-01 1.12963237e-01 -1.18366301e+00 -4.18794215e-01 -7.81881988e-01 3.40801984e-01 -7.25845993e-02 5.26182830e-01 -3.36155623e-01 6.16730988e-01 8.18610966e-01 6.53515935e-01 -7.98738301e-01 1.05734599e+00 -5.49997270e-01 1.65019065e-01 1.58958286e-01 2.26587638e-01 7.79922903e-02 -6.85688317e-01 2.23915413e-01 7.50054240e-01 4.04017001e-01 2.44175136e-01 5.73190637e-02 1.10591471e+00 1.16184412e-04 -1.78217247e-01 -1.87886819e-01 1.99010819e-01 3.63608301e-01 1.49437022e+00 -6.11798763e-01 -2.51124233e-01 -3.41057271e-01 1.72717607e+00 6.27059639e-02 8.52147400e-01 -1.17653656e+00 -5.29054105e-01 5.00955701e-01 -1.91864401e-01 6.53635934e-02 -1.01480231e-01 -2.92368680e-01 -1.33975303e+00 8.96743014e-02 -6.53928399e-01 2.54671186e-01 -1.47866690e+00 -1.27853906e+00 4.83318329e-01 -3.29241365e-01 -1.39090538e+00 5.30946434e-01 -4.74022359e-01 -8.35431516e-01 7.90700257e-01 -1.98298764e+00 -1.32707393e+00 -1.10367060e+00 8.29123497e-01 7.34976292e-01 2.44672433e-01 3.69280398e-01 4.54034120e-01 -7.97579885e-01 7.06216633e-01 3.52065027e-01 2.44208495e-03 8.75270247e-01 -8.77024114e-01 3.12690318e-01 1.14454341e+00 -2.57088840e-01 4.17205125e-01 4.34530407e-01 -5.29468715e-01 -1.33229160e+00 -1.80897665e+00 3.14108789e-01 -7.76870921e-02 1.97976410e-01 -1.86637700e-01 -9.90569353e-01 3.72544020e-01 8.18696618e-02 -1.29297739e-02 1.50591403e-01 -4.39177662e-01 -3.55578691e-01 -4.01534557e-01 -1.03204763e+00 8.49809766e-01 1.12891495e+00 -4.58277762e-01 -3.02185625e-01 6.09127760e-01 8.29044461e-01 -2.52713740e-01 -3.34943950e-01 3.85454774e-01 3.30041111e-01 -9.89544034e-01 1.25054526e+00 -1.28424913e-01 2.85733640e-01 -7.74309874e-01 1.81726336e-01 -1.39088953e+00 -5.03415108e-01 -3.83930236e-01 4.52396452e-01 1.21003163e+00 -8.37569311e-03 -7.71970689e-01 5.98943055e-01 6.56308353e-01 -3.70368540e-01 -1.14577465e-01 -5.32802880e-01 -6.55566633e-01 -2.60836154e-01 -5.79610802e-02 3.51247102e-01 9.61110175e-01 -6.92486584e-01 7.73609877e-02 -6.77369058e-01 4.40285623e-01 7.90578723e-01 3.27164054e-01 5.69278657e-01 -6.42265558e-01 -9.75049883e-02 -3.31460983e-01 -6.64122030e-02 -8.06419373e-01 9.97637361e-02 -6.64873779e-01 4.00908977e-01 -1.55275714e+00 2.69400597e-01 -5.16220152e-01 -4.79653001e-01 4.39308524e-01 -8.17781448e-01 7.16646016e-01 1.58979036e-02 2.27736086e-01 -6.02723956e-01 9.38985825e-01 1.58042860e+00 -3.72601122e-01 -3.93395312e-02 -1.51460275e-01 -8.71075094e-01 4.40819830e-01 8.97448599e-01 -1.11992210e-01 -5.51683545e-01 -5.90300083e-01 1.14696763e-01 -3.29746604e-01 5.78044355e-01 -9.88863945e-01 1.99976832e-01 -4.60235894e-01 7.20955193e-01 -4.49646801e-01 1.65543884e-01 -7.75705516e-01 8.12363327e-02 3.92337859e-01 -1.94931775e-01 -6.28308579e-02 4.52297926e-02 7.85797656e-01 -6.77983239e-02 1.19319685e-01 9.61916804e-01 -1.04081333e-01 -1.23701465e+00 4.97548759e-01 -5.07068995e-04 -1.27699167e-01 1.10651183e+00 -2.61647493e-01 -6.40964866e-01 -2.92297900e-01 -2.28999615e-01 3.19837242e-01 5.21042764e-01 6.48349822e-01 8.83897543e-01 -1.36892378e+00 -8.13401282e-01 3.73338044e-01 3.65765691e-01 6.43822178e-02 8.45207512e-01 8.23133945e-01 -4.95738447e-01 4.61065657e-02 -3.70298117e-01 -2.61602849e-01 -9.46035624e-01 8.03989708e-01 3.17646712e-01 2.82249808e-01 -6.90706432e-01 8.63271236e-01 6.44888043e-01 -4.00049478e-01 -5.69139235e-02 2.99563427e-02 -6.98106363e-02 -3.35402161e-01 7.07163036e-01 5.26774645e-01 1.48478985e-01 -3.50780755e-01 -1.02421634e-01 6.13668144e-01 -1.42875046e-01 2.10813254e-01 9.69296455e-01 -7.23780036e-01 -2.50291854e-01 -5.88318259e-02 9.28709447e-01 -2.99054146e-01 -1.60991490e+00 -3.68875474e-01 -5.01260221e-01 -8.73495638e-01 2.32767001e-01 -9.70854938e-01 -1.28869843e+00 7.55809665e-01 9.88536000e-01 -2.63242692e-01 1.69845569e+00 -4.93667662e-01 8.94396007e-01 3.74427408e-01 1.01105265e-01 -1.11647105e+00 3.58725309e-01 1.77721858e-01 7.68001854e-01 -1.48573768e+00 -2.10187614e-01 -4.12081301e-01 -7.93154299e-01 9.85857010e-01 9.40977216e-01 1.88461051e-03 4.92125079e-02 -2.79516131e-01 3.20310682e-01 2.89601356e-01 -2.46589541e-01 -2.87644863e-01 3.60166162e-01 7.94146657e-01 3.34704667e-02 -2.92051621e-02 -2.73479104e-01 1.88285038e-01 3.02844077e-01 -2.27765411e-01 3.19139451e-01 5.10470390e-01 -4.87845421e-01 -6.93146765e-01 -7.32274413e-01 1.23891339e-01 -5.06971031e-02 -4.28700477e-01 -2.32565895e-01 3.61901283e-01 3.08922023e-01 1.16462731e+00 6.08984493e-02 -5.12610257e-01 1.48825780e-01 -1.88999787e-01 3.38972569e-01 -1.96648046e-01 -7.30632991e-02 8.30637962e-02 -4.17028397e-01 -3.75283867e-01 -4.77092147e-01 -3.13911915e-01 -9.98872340e-01 -2.70366549e-01 -4.90683794e-01 -4.39655706e-02 7.97589958e-01 7.70259917e-01 2.99667090e-01 6.00413144e-01 1.02597332e+00 -8.21422100e-01 -3.81737918e-01 -8.47220182e-01 -6.93006873e-01 6.37201846e-01 9.78579968e-02 -5.75239360e-01 -4.61913884e-01 1.12468384e-01]
[10.74649429321289, -2.207329511642456]
509220a5-e973-4d30-bb08-ba4b5fab1229
shadow-removal-by-a-lightness-guided-network
2006.15617
null
https://arxiv.org/abs/2006.15617v1
https://arxiv.org/pdf/2006.15617v1.pdf
Shadow Removal by a Lightness-Guided Network with Training on Unpaired Data
Shadow removal can significantly improve the image visual quality and has many applications in computer vision. Deep learning methods based on CNNs have become the most effective approach for shadow removal by training on either paired data, where both the shadow and underlying shadow-free versions of an image are known, or unpaired data, where shadow and shadow-free training images are totally different with no correspondence. In practice, CNN training on unpaired data is more preferred given the easiness of training data collection. In this paper, we present a new Lightness-Guided Shadow Removal Network (LG-ShadowNet) for shadow removal by training on unpaired data. In this method, we first train a CNN module to compensate for the lightness and then train a second CNN module with the guidance of lightness information from the first CNN module for final shadow removal. We also introduce a loss function to further utilise the colour prior of existing data. Extensive experiments on widely used ISTD, adjusted ISTD and USR datasets demonstrate that the proposed method outperforms the state-of-the-art methods with training on unpaired data.
['Song Wang', 'Yang Mi', 'Mengyang Pu', 'Zhihao Liu', 'Hui Yin']
2020-06-28
null
null
null
null
['shadow-removal']
['computer-vision']
[ 6.69017613e-01 3.16137671e-02 6.00044668e-01 -4.78746653e-01 -1.31044775e-01 -1.93359032e-01 3.60890001e-01 -4.11088794e-01 -3.95765334e-01 8.16482842e-01 -2.10238859e-01 -4.97066438e-01 4.94869828e-01 -5.12310803e-01 -6.33451998e-01 -1.06208837e+00 2.88000584e-01 1.28097028e-01 6.87319517e-01 -2.68948585e-01 7.65016750e-02 4.27073598e-01 -1.45106578e+00 -2.31845863e-02 1.10701239e+00 1.13676178e+00 7.68534005e-01 5.70796251e-01 -6.01776727e-02 5.60059011e-01 -7.11135268e-01 -3.63321938e-02 6.29908919e-01 -5.13377368e-01 -6.94065541e-02 9.43783298e-02 6.07079148e-01 -7.57753551e-01 -6.17974520e-01 6.69905901e-01 6.90281034e-01 2.24423975e-01 2.74325043e-01 -1.25748873e+00 -6.72886908e-01 -3.01757365e-01 -6.85995221e-01 4.50258590e-02 3.51283997e-02 1.24659240e-01 4.62453067e-01 -8.52775872e-01 2.12692618e-01 1.02466130e+00 6.90171540e-01 3.00778031e-01 -9.28422809e-01 -7.94379652e-01 1.56935334e-01 2.70334780e-01 -9.93195713e-01 -3.02909821e-01 9.42791939e-01 1.56708837e-01 4.86790508e-01 1.25311494e-01 7.17164457e-01 1.01715183e+00 3.94247711e-01 9.36707377e-01 1.83394182e+00 -5.81407845e-01 9.91155282e-02 1.30871743e-01 -1.78019166e-01 8.96331251e-01 2.28419513e-01 5.05293906e-01 -5.95410645e-01 1.81873322e-01 5.27978539e-01 2.16007799e-01 -7.71414518e-01 -5.55524886e-01 -8.20380747e-01 4.89855230e-01 9.39481437e-01 -1.95062637e-01 -6.89891651e-02 -2.86047030e-02 -1.07511424e-01 7.25063682e-02 5.60689569e-01 1.19572900e-01 -4.92442191e-01 5.71539640e-01 -9.49971676e-01 -3.70048173e-02 6.37252331e-01 7.66481519e-01 9.33964133e-01 2.28822827e-01 -1.20099969e-01 6.82770133e-01 2.11877301e-01 9.25073326e-01 1.77680150e-01 -7.35761762e-01 2.16775134e-01 3.89676362e-01 3.11883003e-01 -8.04951131e-01 -3.97189289e-01 -3.57740790e-01 -8.75131845e-01 8.56397033e-01 3.28970551e-01 7.15846419e-02 -1.55681932e+00 1.37303424e+00 2.74002731e-01 4.36006308e-01 2.38927767e-01 1.06411016e+00 1.02182496e+00 5.16237497e-01 -5.24293423e-01 -1.64391384e-01 8.85517716e-01 -1.19778967e+00 -7.35560536e-01 -5.92258751e-01 -3.65830958e-02 -9.57106948e-01 1.10277486e+00 4.66989517e-01 -5.98115146e-01 -3.43963712e-01 -1.32183301e+00 -2.04083219e-01 -6.34248912e-01 2.78371990e-01 4.94583547e-01 6.24252021e-01 -9.18746650e-01 5.10543406e-01 -4.21940953e-01 -1.77462727e-01 6.32339180e-01 1.49246037e-01 -1.33826986e-01 -4.86180246e-01 -1.12087393e+00 9.74178195e-01 2.05975607e-01 6.50801480e-01 -1.06319201e+00 -5.81717193e-01 -6.90407991e-01 -1.25772119e-01 6.05017364e-01 -3.22769433e-01 9.07490194e-01 -1.15264034e+00 -1.58145308e+00 7.31783926e-01 5.38647734e-02 -2.62442440e-01 6.67349815e-01 -3.87959301e-01 -1.58833802e-01 -7.02269226e-02 -1.26764446e-01 2.82765985e-01 1.27721524e+00 -1.97181892e+00 -4.36104953e-01 -2.47250572e-01 1.63558498e-01 4.58588749e-01 -3.67928529e-03 -4.18868750e-01 -6.58520222e-01 -5.04182696e-01 -3.33958119e-02 -1.07499111e+00 4.42665964e-02 4.64647949e-01 -6.11547410e-01 4.32695806e-01 1.51659882e+00 -9.52843308e-01 5.69172204e-01 -2.03857899e+00 -2.72734582e-01 2.01761171e-01 3.11116785e-01 7.47496724e-01 -2.90885210e-01 5.27810752e-02 1.36447176e-01 -6.41296923e-01 -7.73078501e-01 -5.81391990e-01 -2.27137372e-01 5.37416577e-01 -3.39805454e-01 6.46307766e-01 -1.20214066e-02 7.40431488e-01 -8.18526387e-01 -4.30079341e-01 5.71758807e-01 7.58152425e-01 1.41282260e-01 5.75192392e-01 -8.01828802e-02 4.29066896e-01 5.16339727e-02 6.84278786e-01 1.18545783e+00 1.60510883e-01 6.87678456e-02 -3.43624324e-01 -1.83471635e-01 -1.36121571e-01 -9.60052788e-01 1.40046692e+00 -8.25204372e-01 1.19118738e+00 3.35579187e-01 -5.00038266e-01 8.40680361e-01 -2.32847705e-01 3.14748921e-02 -1.14186823e+00 2.43016675e-01 1.73941463e-01 1.64278727e-02 -2.53696680e-01 3.05383295e-01 -1.36088192e-01 4.00122404e-01 4.31690186e-01 -4.58658665e-01 -4.13016796e-01 -3.70398402e-01 1.24172710e-01 1.01198649e+00 2.76492447e-01 -9.61190835e-02 -1.23358727e-01 3.98786157e-01 -5.53571224e-01 7.06494391e-01 7.18757272e-01 -2.74482727e-01 1.07895410e+00 1.01898998e-01 -3.70185077e-01 -7.54166484e-01 -1.13918543e+00 -5.05139641e-02 9.92605746e-01 6.84800327e-01 1.76091522e-01 -5.19888163e-01 -8.43586326e-01 1.03314169e-01 6.97825611e-01 -9.45919931e-01 -1.21642873e-01 -4.82387245e-01 -7.01965630e-01 2.19398454e-01 4.36285585e-01 1.13110721e+00 -1.17533374e+00 -1.04923224e+00 -2.00191066e-01 -1.80278897e-01 -1.15453959e+00 -3.06597173e-01 5.64441800e-01 -4.08310652e-01 -1.26006281e+00 -9.83367205e-01 -5.25789857e-01 7.21959293e-01 1.04075718e+00 9.58072066e-01 5.66866875e-01 -6.75900042e-01 7.23612234e-02 -4.30623621e-01 -8.30725074e-01 1.03490194e-02 -4.28224206e-01 -2.74623305e-01 2.22737059e-01 -2.41946429e-01 -4.78741497e-01 -1.01899326e+00 2.24473745e-01 -1.09448218e+00 3.79019648e-01 1.00064814e+00 9.06118631e-01 1.62323341e-01 7.28158802e-02 -6.28171116e-02 -1.08095479e+00 1.94282562e-01 1.86997727e-01 -6.73705280e-01 3.33215237e-01 -7.58304656e-01 -2.00903118e-02 5.70841074e-01 -1.07979663e-02 -1.72488844e+00 2.15681002e-01 2.70493060e-01 -6.20737970e-01 -1.87993348e-02 -1.84569925e-01 -4.12354708e-01 -4.64156955e-01 5.11236966e-01 3.40533108e-01 -1.75525174e-01 -2.83377767e-01 1.75778434e-01 4.84499156e-01 5.95284462e-01 -6.19813912e-02 1.16266501e+00 1.02053559e+00 1.64405584e-01 -9.98466849e-01 -1.09809458e+00 -4.58320618e-01 -7.55622983e-01 -3.25903386e-01 7.32376575e-01 -5.69127858e-01 -3.09688061e-01 9.71808553e-01 -1.00971568e+00 -1.03724682e+00 1.47908926e-01 -2.90240236e-02 -1.52195737e-01 5.00550926e-01 1.10164554e-04 -8.49797606e-01 -3.91293645e-01 -8.23901117e-01 1.28364730e+00 3.75866413e-01 6.09415293e-01 -9.60065067e-01 -1.19939543e-01 2.79165715e-01 5.47375917e-01 3.36977631e-01 6.75629497e-01 5.53013124e-02 -7.23384023e-01 -5.28161004e-02 -8.27322066e-01 7.36704051e-01 3.68362188e-01 -2.31876880e-01 -1.37308383e+00 -3.16462159e-01 -1.26368240e-01 -3.03746164e-01 1.36436605e+00 3.99274111e-01 1.13522089e+00 9.64077860e-02 -2.89102882e-01 8.21566939e-01 1.65624475e+00 2.88468972e-02 9.14356172e-01 4.07913834e-01 1.00669599e+00 6.31476581e-01 7.94712245e-01 2.45022207e-01 1.44942313e-01 5.56673527e-01 7.41798997e-01 -9.57695842e-01 -8.06927145e-01 1.67192444e-01 1.67712197e-01 1.20829441e-01 -1.14806950e-01 -4.75628525e-01 -6.66377902e-01 2.19948754e-01 -1.70598340e+00 -5.46402037e-01 -3.02742004e-01 2.26870584e+00 5.45324862e-01 1.05626248e-01 -5.53159237e-01 1.49406835e-01 4.71041799e-01 4.61051166e-01 -7.14803457e-01 -8.05795491e-02 -5.54324806e-01 2.64318317e-01 8.14881742e-01 7.30574191e-01 -9.55945849e-01 1.05369711e+00 5.26503134e+00 4.48607981e-01 -1.21346343e+00 -8.93451739e-03 3.88095349e-01 1.23474933e-01 -2.20623761e-01 1.18831567e-01 -2.62965798e-01 4.48156267e-01 1.73695892e-01 6.03049695e-01 4.60459322e-01 3.60677481e-01 2.05744877e-01 -9.52181101e-01 -6.83112204e-01 9.77346063e-01 4.66402620e-01 -8.00229728e-01 -3.90913934e-01 -2.77614724e-02 9.58669603e-01 6.02468438e-02 1.95700034e-01 1.87702151e-03 2.49212801e-01 -8.11017513e-01 5.60708940e-01 6.51576638e-01 6.96796417e-01 -5.46306968e-01 1.03171194e+00 4.67824973e-02 -1.06447971e+00 -7.54469782e-02 -3.50504905e-01 1.00496508e-01 -3.09112612e-02 8.53077710e-01 -9.52066779e-01 5.87404013e-01 9.77694452e-01 5.32261491e-01 -8.98936033e-01 9.68081474e-01 -6.00345016e-01 2.77085453e-01 -2.22741306e-01 2.29186013e-01 9.97531191e-02 -4.02002960e-01 3.16295654e-01 1.12871480e+00 -2.04813182e-02 2.53501832e-01 3.66360955e-02 5.57599664e-01 7.71503299e-02 -4.14919317e-01 -5.81364632e-01 5.10315239e-01 7.51431212e-02 1.42611861e+00 -9.62390840e-01 -1.67885467e-01 -4.26027209e-01 1.62671268e+00 8.95622075e-02 7.15074599e-01 -8.49543691e-01 -5.34699321e-01 3.03028196e-01 9.12176736e-04 2.97326475e-01 -1.86173990e-01 -2.12606281e-01 -8.48847687e-01 -9.06929746e-02 -5.58981538e-01 -2.07472946e-02 -1.32738256e+00 -9.93685067e-01 5.52246571e-01 -3.04752737e-01 -1.02004826e+00 5.05471587e-01 -6.84063435e-01 -8.85238767e-01 9.47547376e-01 -2.18536758e+00 -1.35796201e+00 -1.10504043e+00 6.88958406e-01 4.77225780e-01 1.08704835e-01 5.60131550e-01 6.34149238e-02 -5.58650196e-01 3.03636044e-01 3.83113891e-01 2.74417619e-03 1.05278540e+00 -1.44135606e+00 1.57227531e-01 1.03953552e+00 -2.37417400e-01 6.27415925e-02 9.00730669e-01 -6.56321347e-01 -1.23660052e+00 -1.11744094e+00 3.11539382e-01 -2.13706106e-01 1.50420308e-01 -5.40817678e-01 -9.64699328e-01 3.29903543e-01 4.04664814e-01 1.87135935e-01 3.14833760e-01 -2.92001307e-01 -3.04140955e-01 -5.80491066e-01 -1.00095952e+00 5.32220602e-01 9.62201357e-01 -4.31023329e-01 -3.41937810e-01 3.13134164e-01 4.41035628e-01 -6.44932151e-01 1.23309658e-03 4.66884762e-01 6.70451641e-01 -1.59601820e+00 8.95026863e-01 2.57836819e-01 2.48253211e-01 -4.70632732e-01 -2.20679194e-01 -1.51486123e+00 1.65717661e-01 -4.54239935e-01 -6.04549572e-02 1.00832260e+00 1.08071715e-02 -7.80835032e-01 8.29443514e-01 4.36331928e-01 -4.27320451e-01 -7.94987500e-01 -6.15078449e-01 -6.72703981e-01 -3.62562567e-01 -1.27098590e-01 3.62019688e-01 4.17003423e-01 -1.02704060e+00 1.45920634e-01 -6.03067517e-01 4.43281472e-01 1.07344532e+00 6.43630028e-01 1.01057851e+00 -1.13199735e+00 -1.66628987e-01 2.32806746e-02 3.12679186e-02 -8.41049492e-01 3.03948760e-01 -3.32111329e-01 8.19576085e-01 -1.81554866e+00 2.05046743e-01 -5.62104285e-01 -1.90566704e-01 6.22531891e-01 -3.83868396e-01 7.08850801e-01 1.73749313e-01 7.77412951e-02 -5.09027421e-01 9.93428290e-01 1.50690639e+00 -1.21505409e-01 -3.27770799e-01 1.22053578e-01 -3.75786930e-01 6.94394946e-01 7.87901103e-01 -1.72967523e-01 -4.80181336e-01 -4.41571265e-01 -1.17725447e-01 -3.93422902e-01 7.55535126e-01 -1.05648935e+00 6.34884611e-02 -3.16505097e-02 8.96078050e-01 -8.03614259e-01 7.83181608e-01 -1.02693450e+00 -2.92698771e-01 5.03766835e-01 7.76525140e-02 -5.51735938e-01 1.77118167e-01 9.20432627e-01 1.97076663e-01 1.61499158e-01 1.05785120e+00 -5.54104596e-02 -7.66604900e-01 2.64082044e-01 -1.46517977e-01 -2.25968242e-01 9.54145610e-01 -3.17339659e-01 -4.66187626e-01 -5.24453342e-01 -1.77899048e-01 1.16211213e-01 5.90717375e-01 2.90128738e-01 1.15503252e+00 -9.04565036e-01 -4.72636372e-01 4.00846004e-01 1.11626834e-01 2.73616035e-02 2.21081853e-01 9.16889250e-01 -5.08709669e-01 1.97275549e-01 -2.93349624e-01 -3.88528794e-01 -1.47596800e+00 3.12360853e-01 4.26237911e-01 2.30631113e-01 -8.21759105e-01 8.09881568e-01 8.46374929e-01 -4.06207561e-01 4.12135512e-01 -2.52046436e-01 2.28349119e-01 -3.41241181e-01 3.36762041e-01 3.91696095e-01 3.84566367e-01 -5.37309825e-01 -3.01074088e-01 4.38698649e-01 5.22905439e-02 4.75942232e-02 1.33031392e+00 -3.74287993e-01 -8.58484358e-02 3.54544550e-01 1.11858773e+00 -4.78353314e-02 -1.92070401e+00 -3.64078790e-01 -6.63387001e-01 -9.53966618e-01 4.30095315e-01 -1.07398641e+00 -1.41823578e+00 9.65851963e-01 1.00411582e+00 -6.46025836e-02 1.48181856e+00 -2.68592328e-01 9.57808971e-01 2.97957957e-01 8.92390236e-02 -1.17703044e+00 3.79535049e-01 4.57718253e-01 1.03523517e+00 -1.66387606e+00 2.67998189e-01 -4.62837219e-01 -5.20441711e-01 1.12073016e+00 7.76560545e-01 -1.58374682e-01 6.74244523e-01 2.21878305e-01 4.71152365e-01 -1.08742729e-01 -1.79585993e-01 -5.62246203e-01 3.49629492e-01 1.04093170e+00 -9.08540785e-02 -7.20547661e-02 1.63877234e-01 6.72651380e-02 1.92457121e-02 -3.93506348e-01 6.14603102e-01 1.01534677e+00 -4.45542157e-01 -8.96402180e-01 -5.81686318e-01 4.66043621e-01 1.52048469e-01 -3.90309483e-01 -8.39950502e-01 8.54958892e-01 3.14302266e-01 9.81261790e-01 -2.28035942e-01 -2.59954631e-01 1.47289827e-01 -4.19886321e-01 6.83057308e-01 -4.40327764e-01 -9.45200697e-02 -5.25798313e-02 -8.90876427e-02 -6.99935913e-01 -4.71940190e-01 -3.59916747e-01 -1.10010040e+00 -2.66374171e-01 -6.04490221e-01 -3.67114663e-01 7.34106183e-01 1.05051768e+00 3.25528644e-02 6.58914626e-01 8.02797377e-01 -1.47431493e+00 5.88818043e-02 -7.16997445e-01 -8.17614794e-01 1.26817748e-01 9.17669475e-01 -8.59456003e-01 -4.43928599e-01 -1.15757212e-01]
[10.84246826171875, -4.104151725769043]
1b2fec55-d7fc-4ec5-8f62-3f2fe61a1ce0
an-efficient-point-of-gaze-estimator-for-low
2106.05106
null
https://arxiv.org/abs/2106.05106v1
https://arxiv.org/pdf/2106.05106v1.pdf
An Efficient Point of Gaze Estimator for Low-Resolution Imaging Systems Using Extracted Ocular Features Based Neural Architecture
A user's eyes provide means for Human Computer Interaction (HCI) research as an important modal. The time to time scientific explorations of the eye has already seen an upsurge of the benefits in HCI applications from gaze estimation to the measure of attentiveness of a user looking at a screen for a given time period. The eye tracking system as an assisting, interactive tool can be incorporated by physically disabled individuals, fitted best for those who have eyes as only a limited set of communication. The threefold objective of this paper is - 1. To introduce a neural network based architecture to predict users' gaze at 9 positions displayed in the 11.31{\deg} visual range on the screen, through a low resolution based system such as a webcam in real time by learning various aspects of eyes as an ocular feature set. 2.A collection of coarsely supervised feature set obtained in real time which is also validated through the user case study presented in the paper for 21 individuals ( 17 men and 4 women ) from whom a 35k set of instances was derived with an accuracy score of 82.36% and f1_score of 82.2% and 3.A detailed study over applicability and underlying challenges of such systems. The experimental results verify the feasibility and validity of the proposed eye gaze tracking model.
['Kavi Arya', 'Imon Mukherjee', 'Atul Sahay']
2021-06-09
null
null
null
null
['gaze-estimation']
['computer-vision']
[ 1.60916314e-01 3.28429610e-01 1.54744938e-01 -3.23849499e-01 2.71413714e-01 -1.14040360e-01 -2.26119589e-02 -4.53921556e-01 -3.73754829e-01 6.71009004e-01 -1.33161634e-01 -2.37820566e-01 -5.61011195e-01 1.06702875e-02 -1.69953659e-01 -4.64226276e-01 5.06719761e-02 -1.50568336e-01 2.92930868e-03 -2.20600054e-01 5.49892485e-01 4.21261996e-01 -2.62094784e+00 -3.84656750e-02 8.11615884e-01 1.13489556e+00 6.57523274e-02 9.46000099e-01 4.37521160e-01 3.56025219e-01 -7.60904014e-01 2.50234187e-01 1.42095283e-01 -1.49958163e-01 -4.69806373e-01 1.51779234e-01 8.02481413e-01 -3.24745834e-01 2.02288732e-01 6.83560908e-01 8.18272412e-01 8.95119160e-02 5.38426578e-01 -1.54265451e+00 -5.84327340e-01 -4.77236927e-01 -6.66814506e-01 3.86712015e-01 9.13355291e-01 3.53388160e-01 2.44905576e-01 -6.71988904e-01 2.42689863e-01 9.83792722e-01 5.13948023e-01 6.51037157e-01 -8.69994998e-01 -7.29654908e-01 -3.65030229e-01 3.00771534e-01 -1.51913297e+00 -6.34444654e-01 6.83165729e-01 -6.10387027e-01 1.12256110e+00 5.92033088e-01 6.70978129e-01 5.63075900e-01 1.73631594e-01 2.66124547e-01 1.49739683e+00 -1.05070162e+00 -2.94352829e-01 9.31148231e-01 6.46462917e-01 5.45832455e-01 3.61391664e-01 2.43123636e-01 -8.01520824e-01 2.85012543e-01 4.66848880e-01 -8.17646086e-02 -2.74568111e-01 5.10028265e-02 -6.67796433e-01 3.35976601e-01 3.67301971e-01 1.87542722e-01 -2.35097185e-01 -3.25261027e-01 -9.40445513e-02 3.92469585e-01 2.54764616e-01 2.34506384e-01 -5.27320385e-01 -4.23690081e-01 -6.44022822e-01 1.99160442e-01 7.28251696e-01 1.07205069e+00 3.44716221e-01 -2.92984992e-01 -1.26000687e-01 4.40882236e-01 8.13406706e-01 7.43584991e-01 3.70405346e-01 -6.25546157e-01 5.94596080e-02 1.00374818e+00 4.43227679e-01 -8.07726979e-01 -7.86716640e-01 8.35898966e-02 -1.81007564e-01 1.04797840e+00 7.15167701e-01 -4.93671566e-01 -7.97606945e-01 1.32005441e+00 3.95889908e-01 -4.09195811e-01 -4.82940108e-01 9.93257463e-01 9.04572546e-01 2.06319585e-01 -1.23522185e-01 -5.58973551e-01 1.61284864e+00 -4.95963961e-01 -1.00119936e+00 1.11706451e-01 4.05970722e-01 -8.78408968e-01 1.21325064e+00 7.79232860e-01 -1.09792340e+00 -8.23818684e-01 -1.00452125e+00 -9.99590456e-02 -6.00778461e-01 4.75160480e-01 3.22327673e-01 1.35905468e+00 -1.31619596e+00 2.55715072e-01 -4.22215968e-01 -8.79525065e-01 2.17541605e-01 1.07433319e+00 -1.94722727e-01 6.17763817e-01 -6.56965733e-01 1.05968821e+00 -9.88941565e-02 1.22197539e-01 2.70205379e-01 -4.87575650e-01 -5.39554358e-01 2.77319252e-02 2.50726808e-02 -3.31627905e-01 1.05128598e+00 -1.26130188e+00 -1.52651036e+00 1.04229558e+00 -7.05425680e-01 2.20789928e-02 2.91470885e-01 -4.49079573e-01 -9.79307234e-01 -6.21884838e-02 -3.22177589e-01 4.41279083e-01 9.17403996e-01 -9.20195282e-01 -1.10577381e+00 -7.83623099e-01 2.35145632e-02 1.84071541e-01 -4.18493867e-01 5.84373951e-01 -8.37859586e-02 2.70225614e-01 -3.03646356e-01 -1.00449908e+00 6.83214188e-01 1.11777276e-01 -4.09976691e-01 -4.98958200e-01 9.72848594e-01 -7.88011789e-01 1.81166267e+00 -1.79934955e+00 -2.22728252e-01 3.97293448e-01 5.05348265e-01 6.52857482e-01 5.45906067e-01 2.25435078e-01 -4.50809419e-01 -2.42176559e-02 5.03587484e-01 -2.03389764e-01 -1.28695101e-01 -4.35494661e-01 3.26807886e-01 5.82401633e-01 -4.42176536e-02 4.82816249e-01 -3.22115123e-01 -3.57761174e-01 3.29795092e-01 7.83503234e-01 -6.07561283e-02 3.18356454e-01 6.27692342e-01 3.94181967e-01 -2.44827241e-01 7.17919946e-01 4.52808022e-01 -3.07201564e-01 -4.78726864e-01 -1.21721581e-01 -6.19526923e-01 -3.29501987e-01 -1.19073653e+00 9.97460961e-01 -1.90857142e-01 1.32558823e+00 -3.18669826e-01 -1.34303734e-01 7.86922097e-01 3.08641940e-01 7.65291974e-02 -7.37639308e-01 6.90038025e-01 -1.11342564e-01 4.39736247e-01 -1.31071150e+00 3.30259383e-01 4.91742641e-01 5.08949697e-01 4.74500448e-01 -2.16443822e-01 7.43898988e-01 -1.83817074e-02 -3.24089795e-01 5.51745594e-01 2.25774363e-01 5.61235666e-01 -3.41362834e-01 8.44162166e-01 -4.31823909e-01 -3.38883370e-01 2.72512674e-01 -6.21385634e-01 4.39868182e-01 3.10304403e-01 -3.53110671e-01 -8.65190506e-01 -4.18714911e-01 -4.05596584e-01 1.15114653e+00 -2.38640662e-02 2.89305393e-03 -1.11430728e+00 -5.44056222e-02 -1.35745987e-01 5.29129803e-01 -9.13469911e-01 2.47232225e-02 -1.50332987e-01 -1.75900072e-01 7.28688166e-02 1.19936012e-01 2.15170786e-01 -1.20741856e+00 -1.32889056e+00 -5.68283856e-01 5.01936078e-01 -5.77449799e-01 -1.28977090e-01 -3.53751481e-01 -6.10564172e-01 -1.28960466e+00 -5.88641942e-01 -5.82539856e-01 7.19059408e-01 3.04767638e-01 7.33423769e-01 2.45515183e-01 -5.21582007e-01 5.78202605e-01 -1.09508947e-01 -1.11996913e+00 1.34714350e-01 3.43287624e-02 4.41618562e-01 1.21273100e-01 1.14121127e+00 -3.71679097e-01 -8.58608246e-01 4.09335136e-01 1.86293218e-02 -3.06879491e-01 3.93474340e-01 4.34697002e-01 -9.69509557e-02 -3.56396079e-01 2.70032912e-01 -7.61399090e-01 8.25191081e-01 -2.87901938e-01 -7.02465594e-01 2.09516183e-01 -1.11988461e+00 -3.39099646e-01 -2.71479696e-01 -4.23700124e-01 -1.07511866e+00 -9.76846442e-02 2.97861308e-01 -4.35536020e-02 -7.08642900e-01 -5.21265250e-03 -1.90837611e-03 -4.20621783e-01 1.27348447e+00 -2.43473500e-01 4.72640932e-01 -4.47133929e-01 -2.17955217e-01 1.67372096e+00 3.06287318e-01 1.39977962e-01 5.08431017e-01 2.06145659e-01 2.44282842e-01 -1.33420682e+00 -5.88001668e-01 -8.09919178e-01 -8.21248293e-01 -7.48398602e-01 7.45044351e-01 -5.49058318e-01 -1.78969955e+00 6.26839995e-01 -8.63046885e-01 1.90900117e-01 3.72672498e-01 4.43711191e-01 -2.49538437e-01 -1.29579887e-01 4.01868463e-01 -1.60617268e+00 -5.05519092e-01 -7.36171365e-01 9.60506141e-01 1.06887877e+00 -4.91078615e-01 -7.73650527e-01 -1.77019939e-01 4.23801243e-01 4.69357193e-01 3.50250453e-01 1.30116642e-01 -3.89740974e-01 -2.07132384e-01 -5.91650605e-01 -2.67298818e-01 2.03790925e-02 4.64738369e-01 2.18858823e-01 -1.70677233e+00 -2.77716249e-01 -9.79695842e-02 -7.06656575e-02 -2.68485285e-02 5.85373878e-01 6.85305595e-01 1.91461165e-02 -5.34765840e-01 3.86059523e-01 1.41333532e+00 4.87807781e-01 8.69830847e-01 4.06666428e-01 7.46688902e-01 7.64765501e-01 5.85015178e-01 3.94516975e-01 2.10910842e-01 5.75554252e-01 2.92468756e-01 -3.92223448e-02 -7.24950358e-02 3.51894587e-01 -7.83638060e-02 7.13579264e-03 -7.36450672e-01 -2.44633943e-01 -9.66095984e-01 1.40311360e-01 -1.41069269e+00 -8.75255883e-01 -6.82533801e-01 2.64711213e+00 4.61234570e-01 3.04851204e-01 7.27714181e-01 6.21004999e-01 8.94273162e-01 -6.99962676e-01 -5.15136480e-01 -5.08585870e-01 4.88753766e-01 2.11398378e-01 4.19215322e-01 4.47988600e-01 -8.21093202e-01 3.14018637e-01 6.00792599e+00 -6.68654665e-02 -1.28204298e+00 -2.13584304e-01 2.45112732e-01 -4.52551782e-01 5.54144979e-01 -3.90224457e-01 -1.17871022e+00 8.37941885e-01 1.37230098e+00 1.00620143e-01 5.52980840e-01 6.47301435e-01 6.26652300e-01 -5.91070652e-01 -1.09495282e+00 1.48810554e+00 4.35015470e-01 -6.46685660e-01 -6.28101945e-01 4.05176461e-01 2.49582112e-01 -3.05980802e-01 4.29426163e-01 -4.53548618e-02 -9.17597353e-01 -1.21376681e+00 3.60927552e-01 1.18288672e+00 1.15155864e+00 -6.96019053e-01 5.33869803e-01 3.65518987e-01 -5.92082500e-01 -5.07280231e-01 1.29360989e-01 -6.52549207e-01 -1.89679101e-01 -3.83785248e-01 -8.83823574e-01 -2.64392406e-01 1.02786791e+00 1.64645761e-01 -9.78193879e-01 1.39026248e+00 1.49973020e-01 4.09323066e-01 -3.59450489e-01 -5.62447727e-01 -4.50536579e-01 1.06798381e-01 5.92833102e-01 7.00719535e-01 3.53806973e-01 2.00984761e-01 -8.43747258e-01 6.21776521e-01 5.81292391e-01 -6.48035035e-02 -5.94675481e-01 3.32139790e-01 6.07765257e-01 1.32613897e+00 -3.28014851e-01 2.42730275e-01 -5.47642291e-01 5.19716322e-01 6.33230284e-02 5.39875329e-01 -5.23260415e-01 -1.08060491e+00 5.15007138e-01 8.74263465e-01 -1.17022330e-02 1.98815882e-01 -5.39534330e-01 -3.14456522e-01 1.95903286e-01 -5.96634150e-01 1.82236768e-02 -1.37613010e+00 -6.48543775e-01 6.11786127e-01 7.29417875e-02 -1.49250531e+00 -3.88413519e-01 -1.14713120e+00 -5.18522084e-01 1.63791215e+00 -1.15812302e+00 -1.26397312e+00 -9.95791554e-01 7.02164412e-01 2.69100308e-01 -6.83903098e-01 7.40761340e-01 7.86021128e-02 -6.66916490e-01 9.97511387e-01 -1.98235691e-01 -3.64380717e-01 8.90456080e-01 -1.34030342e+00 -1.39030099e-01 6.52714372e-01 -5.76991022e-01 1.07674694e+00 9.55953896e-01 -2.55992621e-01 -1.26053762e+00 -2.02766836e-01 1.19367349e+00 -1.15940523e+00 1.35257080e-01 -1.95004180e-01 -6.76049709e-01 5.32171071e-01 5.12994111e-01 -2.32077107e-01 8.17150533e-01 2.88382113e-01 4.27544236e-01 -2.23446861e-01 -1.25062108e+00 5.51260412e-01 7.92540789e-01 -4.29607809e-01 -6.21878088e-01 -1.22017480e-01 1.25997975e-01 -6.31169498e-01 -6.56923711e-01 -1.63382769e-01 1.07118869e+00 -1.27650809e+00 7.31142044e-01 -4.84192342e-01 -7.93181062e-02 -3.13361347e-01 4.04456884e-01 -5.75143158e-01 -1.29846543e-01 -1.13424468e+00 -4.90516514e-01 1.03302908e+00 3.00745249e-01 -8.00028563e-01 6.69750035e-01 1.39845622e+00 2.52965420e-01 -6.44468009e-01 -5.35886824e-01 -1.95707902e-01 -6.58309102e-01 -2.07022294e-01 4.00704622e-01 2.69162029e-01 3.50019217e-01 4.79565114e-01 -3.33793372e-01 2.44933337e-01 5.42620122e-01 -6.52541578e-01 1.00906134e+00 -1.94631946e+00 1.30540267e-01 -1.40790343e-01 -8.43039274e-01 -5.40116191e-01 -4.13392842e-01 2.04663455e-01 -3.15847903e-01 -1.04225826e+00 -4.83572073e-02 2.84439698e-02 -3.00494283e-01 1.81469232e-01 -1.31413102e-01 1.94244459e-01 -1.83479562e-01 1.64015487e-01 -1.73280239e-01 -4.39459980e-01 1.02007115e+00 4.42695856e-01 -6.87505782e-01 5.98367631e-01 -8.52794051e-01 6.22833133e-01 4.70535457e-01 -5.65733984e-02 -7.31379926e-01 1.16136216e-01 6.34318352e-01 -2.46232986e-01 4.35039252e-01 -1.16112566e+00 5.14047682e-01 1.50346056e-01 7.71961391e-01 -5.16413927e-01 3.95520836e-01 -1.14429772e+00 -1.26721133e-02 1.47472590e-01 7.41164898e-03 -1.85195561e-02 2.33488560e-01 3.06296319e-01 3.41032714e-01 -2.16958821e-01 6.20674908e-01 3.32550019e-01 -7.35117137e-01 -1.94179967e-01 6.60739988e-02 -3.17937404e-01 1.21209419e+00 -1.29572785e+00 -3.81405890e-01 -2.58383334e-01 -9.89483774e-01 -7.40405470e-02 4.27506059e-01 5.53935468e-01 2.54062593e-01 -8.54916513e-01 -9.68227312e-02 7.27540433e-01 3.81416410e-01 -4.84224260e-01 1.03542574e-01 1.00662601e+00 -3.98662239e-01 7.71486938e-01 -8.14583242e-01 -7.05480874e-01 -1.97193539e+00 4.65133220e-01 4.36558843e-01 7.59342194e-01 -2.34833449e-01 7.89177060e-01 -2.92287856e-01 3.97782177e-01 5.27731836e-01 -1.77525789e-01 -1.22847927e+00 7.99428225e-02 9.62485731e-01 9.41976964e-01 1.39694363e-01 -1.04965866e+00 -2.67871141e-01 7.85426557e-01 8.09298456e-02 1.17913127e-01 9.88973498e-01 -7.34928548e-01 1.21683918e-01 6.79119170e-01 9.12662387e-01 -5.17686382e-02 -9.91211176e-01 1.19867384e-01 -2.24082634e-01 -7.29764223e-01 5.37426360e-02 -1.15947652e+00 -4.23926115e-01 8.15843999e-01 1.80285275e+00 5.95785260e-01 1.31180191e+00 -3.20202082e-01 -3.18921246e-02 4.37327236e-01 -3.76263224e-02 -1.23244464e+00 -3.55827302e-01 5.45607619e-02 8.75336945e-01 -1.56587625e+00 4.49005030e-02 -2.60439694e-01 -6.39904559e-01 1.13857663e+00 8.05733740e-01 1.75774515e-01 9.78523672e-01 -1.58288166e-01 1.99887171e-01 -4.99565035e-01 -4.73113030e-01 -4.14358646e-01 8.01709116e-01 1.17031252e+00 7.60290682e-01 -2.24325210e-01 -2.49415383e-01 4.88188893e-01 -3.19859743e-01 5.30250669e-01 4.50474232e-01 9.70940590e-01 -5.62889218e-01 -5.32824337e-01 -5.74300528e-01 7.51648128e-01 -5.58976293e-01 2.10296676e-01 -3.10334235e-01 1.03901875e+00 4.66778100e-01 1.21795690e+00 1.59692287e-01 -3.23656470e-01 6.29096985e-01 1.13062538e-01 4.55268145e-01 -4.71718192e-01 -4.85180259e-01 -1.04731448e-01 3.37846167e-02 -4.23083097e-01 -4.78565365e-01 -7.85393000e-01 -7.77267039e-01 -2.13429049e-01 -4.37712371e-01 -4.28483993e-01 8.04274082e-01 9.43187296e-01 5.26317179e-01 5.37037849e-01 5.08957088e-01 -9.51972604e-01 -1.29461065e-01 -1.49943364e+00 -7.02928185e-01 1.05333060e-01 8.60287488e-01 -9.69256699e-01 -4.15734291e-01 4.78601307e-01]
[14.054485321044922, 0.17055562138557434]
be214286-8644-445b-bf61-543fc7fa0243
framewise-approach-in-multimodal-emotion
1805.01369
null
http://arxiv.org/abs/1805.01369v1
http://arxiv.org/pdf/1805.01369v1.pdf
Framewise approach in multimodal emotion recognition in OMG challenge
In this report we described our approach achieves $53\%$ of unweighted accuracy over $7$ emotions and $0.05$ and $0.09$ mean squared errors for arousal and valence in OMG emotion recognition challenge. Our results were obtained with ensemble of single modality models trained on voice and face data from video separately. We consider each stream as a sequence of frames. Next we estimated features from frames and handle it with recurrent neural network. As audio frame we mean short $0.4$ second spectrogram interval. For features estimation for face pictures we used own ResNet neural network pretrained on AffectNet database. Each short spectrogram was considered as a picture and processed by convolutional network too. As a base audio model we used ResNet pretrained in speaker recognition task. Predictions from both modalities were fused on decision level and improve single-channel approaches by a few percent
['Maxim Ryabov', 'Grigoriy Sterling', 'Andrey Belyaev']
2018-05-03
null
null
null
null
['multimodal-emotion-recognition', 'multimodal-emotion-recognition']
['computer-vision', 'speech']
[ 1.98118150e-01 4.90858465e-01 3.31668526e-01 -9.68432069e-01 -9.14170980e-01 -2.03123808e-01 3.43888015e-01 -1.28783107e-01 -5.03328800e-01 7.27673531e-01 3.14824820e-01 4.59136248e-01 3.47015083e-01 -5.58428347e-01 -7.02199519e-01 -3.89014274e-01 -4.17765945e-01 -2.98635185e-01 -6.88851297e-01 -3.13339889e-01 -3.86569798e-02 3.50017101e-01 -1.71423101e+00 7.70908594e-01 -1.39499471e-01 2.12414169e+00 -5.87620318e-01 1.05312395e+00 1.36643846e-03 9.84286070e-01 -6.43746078e-01 -5.33055544e-01 2.88803250e-01 -3.42232287e-01 -6.14036679e-01 1.80482659e-02 4.89043683e-01 -2.00130835e-01 -2.94231087e-01 8.00035059e-01 9.11881328e-01 3.58609706e-01 5.52933693e-01 -1.37611496e+00 -2.14740083e-01 8.18802357e-01 -5.08051395e-01 2.24609673e-01 6.89187288e-01 1.25119202e-02 9.09036994e-01 -1.21211517e+00 4.34498161e-01 1.28670907e+00 7.66744912e-01 7.96866715e-01 -1.02379584e+00 -1.11380672e+00 1.15904622e-01 4.20629978e-01 -1.19633698e+00 -1.20822239e+00 9.30720508e-01 -1.62812293e-01 1.73901951e+00 2.82716513e-01 5.59134781e-01 1.18885052e+00 3.42753261e-01 3.00128430e-01 1.09220648e+00 -2.19479650e-01 6.88763633e-02 2.66990244e-01 -9.70327575e-03 7.54877269e-01 -9.56088543e-01 9.98179428e-03 -9.58534181e-01 -1.92605741e-02 2.45356932e-01 -3.19952428e-01 7.73427486e-02 7.82750547e-01 -8.10341656e-01 7.34870911e-01 2.02863961e-01 -4.76777591e-02 -7.63077140e-01 5.84789336e-01 8.06289852e-01 8.72941494e-01 5.84353030e-01 1.96517594e-02 -5.50126910e-01 -3.09870958e-01 -9.34038281e-01 -1.22254610e-01 8.27519417e-01 4.64195490e-01 4.49247003e-01 6.98183298e-01 1.17941778e-02 1.21910882e+00 2.61734128e-01 6.69092000e-01 5.90406537e-01 -1.23601925e+00 4.45746584e-03 1.29777402e-01 -1.96070537e-01 -1.01330554e+00 -5.29215217e-01 2.80369092e-02 -8.80363286e-01 1.31525248e-01 -4.39192262e-03 -5.92042446e-01 -9.52950954e-01 2.07693124e+00 3.95334102e-02 3.58773649e-01 -1.81796141e-02 6.58980846e-01 9.76296902e-01 9.20861363e-01 3.37430984e-01 -7.86471665e-01 1.49619675e+00 -6.40033185e-01 -8.35754037e-01 1.56540781e-01 -1.14160582e-01 -9.95383978e-01 5.28539240e-01 9.67610478e-01 -1.52417517e+00 -7.87500739e-01 -9.78429079e-01 2.13487267e-01 -5.06288171e-01 6.65886030e-02 3.39900583e-01 7.95216501e-01 -1.40505040e+00 6.68768585e-01 -4.06018764e-01 -1.65612400e-01 4.26322967e-01 7.60441899e-01 -4.48908865e-01 6.36366129e-01 -1.34189975e+00 8.27964187e-01 -1.16649039e-01 1.84684336e-01 -1.16140056e+00 -4.46089685e-01 -8.03445578e-01 1.19244918e-01 -1.97508320e-01 -1.24890715e-01 1.34067035e+00 -1.78877378e+00 -1.99370515e+00 9.71308708e-01 -4.20846671e-01 -7.05972373e-01 -7.11857826e-02 -1.64661542e-01 -1.13387454e+00 4.06620115e-01 -5.10935783e-01 1.01554263e+00 1.58576977e+00 -5.88847756e-01 -3.65458071e-01 -2.49440834e-01 -4.53462780e-01 6.26002578e-03 -2.72887856e-01 4.62107986e-01 2.75463402e-01 -5.00164270e-01 -4.12443802e-02 -7.76681423e-01 1.68437123e-01 -2.86342472e-01 -1.26463160e-01 -2.26900920e-01 6.40598774e-01 -7.50836134e-01 1.16707087e+00 -2.12479639e+00 -1.47117600e-01 2.27785572e-01 -7.34264106e-02 -1.43225968e-01 -4.23855662e-01 1.21743180e-01 -8.16013098e-01 7.91265294e-02 2.94767648e-01 -4.36140388e-01 1.88054591e-01 -3.61351937e-01 -5.65113842e-01 3.98948342e-01 5.31622410e-01 5.00610828e-01 -1.12504937e-01 -3.55817348e-01 2.34133318e-01 8.50240350e-01 -5.63542545e-01 4.29601133e-01 1.97689328e-02 -1.10890977e-01 1.80871308e-01 8.50921810e-01 6.02917910e-01 4.56291705e-01 -1.89114287e-01 -4.78103548e-01 6.32066280e-02 4.88086790e-02 -1.06318796e+00 1.66630912e+00 -7.76049078e-01 8.34102392e-01 3.33993226e-01 -1.07464552e+00 1.18216872e+00 9.38451886e-01 6.31361127e-01 -5.02058208e-01 7.01419711e-01 -1.20562248e-01 -3.80625576e-02 -6.05711102e-01 3.95411521e-01 -7.35227406e-01 -2.95162827e-01 4.40835565e-01 8.11887622e-01 -5.04587181e-02 -3.47444713e-01 -4.65575904e-02 9.48500216e-01 -1.63819432e-01 2.00300828e-01 8.77393468e-04 6.40703201e-01 -6.65281713e-01 4.76837844e-01 3.85378152e-01 -5.38507879e-01 4.21459943e-01 3.74581218e-01 -3.73730510e-01 -7.29719222e-01 -9.11053598e-01 -1.69693604e-01 1.61315989e+00 -5.85653722e-01 -4.40576732e-01 -8.14437389e-01 -3.55259687e-01 -3.97187710e-01 5.53120196e-01 -9.00865674e-01 -2.47949809e-01 -2.43105918e-01 -5.74405611e-01 7.31250823e-01 5.07066011e-01 3.72165889e-01 -1.43612373e+00 -4.74559665e-01 3.97738665e-01 -7.92056099e-02 -9.45190907e-01 -2.05962420e-01 3.62568140e-01 -2.55831569e-01 -7.76330113e-01 -3.51166964e-01 -5.45718491e-01 -6.90644281e-03 -5.44887483e-01 1.08282006e+00 -5.60232878e-01 -5.11909842e-01 5.90513289e-01 -1.56470612e-01 -8.99385333e-01 -1.84256560e-03 -5.19294560e-01 5.53440690e-01 5.14838517e-01 7.72415996e-01 -9.01543260e-01 -6.74476564e-01 -1.39993981e-01 -4.63691801e-01 -5.06255865e-01 7.03211576e-02 6.97739244e-01 3.07757050e-01 -2.52938241e-01 9.49497461e-01 -2.81434834e-01 7.06490159e-01 -5.44764340e-01 -1.35034993e-01 -9.05358046e-02 -2.28509247e-01 -3.13851863e-01 5.70244312e-01 -3.94699007e-01 -1.13962591e+00 2.01337710e-01 -4.67521161e-01 -6.49223506e-01 -4.40038741e-01 2.70434588e-01 1.66318521e-01 1.70216128e-01 5.71468532e-01 -1.66822702e-01 -1.06654868e-01 1.62068456e-02 1.86251506e-01 1.06143701e+00 4.14566368e-01 -3.34705740e-01 -2.24903058e-02 2.20953822e-01 -2.37847507e-01 -8.46697271e-01 -3.26691419e-01 -2.84032878e-02 -1.88608259e-01 -7.27120340e-01 1.01644361e+00 -1.28859723e+00 -1.39352083e+00 4.90061998e-01 -1.05772352e+00 5.11419475e-02 -1.20260030e-01 5.36281765e-01 -6.40088081e-01 -2.56684810e-01 -9.20502186e-01 -1.35323572e+00 -8.02325726e-01 -7.50308037e-01 8.38120282e-01 2.26359814e-01 -4.83451933e-01 -4.13858950e-01 3.21386009e-02 1.59030646e-01 6.04073226e-01 2.71915734e-01 2.55886465e-01 -7.15694547e-01 3.34772438e-01 -4.47325557e-01 5.91652542e-02 7.25773335e-01 -9.92301926e-02 2.62888402e-01 -1.94980431e+00 1.30875289e-01 3.94126862e-01 -9.48446572e-01 9.86130953e-01 5.87647736e-01 1.41710901e+00 -2.16966942e-01 3.27104479e-01 4.10116017e-01 1.21842718e+00 4.68071193e-01 5.40650189e-01 -4.18846518e-01 1.96259886e-01 6.34284377e-01 2.87620008e-01 9.01076913e-01 7.88148865e-02 2.33524695e-01 3.74234408e-01 2.25303352e-01 2.35747471e-01 2.44239330e-01 8.92280340e-01 8.40093911e-01 -2.42830232e-01 -8.05744827e-02 -6.35804474e-01 2.93191582e-01 -1.44938457e+00 -1.42543447e+00 5.68836451e-01 1.70083737e+00 7.15210855e-01 -5.33953644e-02 2.46387020e-01 2.16791347e-01 6.97009981e-01 1.71195924e-01 -5.34338474e-01 -1.24448395e+00 -1.15700796e-01 9.43674505e-01 -1.19810097e-01 4.92420107e-01 -1.15794289e+00 8.09105515e-01 6.32857084e+00 6.59548223e-01 -1.70581126e+00 1.24443546e-01 1.13648522e+00 -9.62349832e-01 3.51884604e-01 -7.99745023e-01 -5.13667285e-01 3.89414102e-01 1.90821290e+00 6.64763823e-02 6.67665303e-01 9.28091764e-01 2.97371984e-01 -1.43329710e-01 -1.17454350e+00 1.58745813e+00 2.76073337e-01 -8.71213496e-01 -2.77172178e-01 -2.60817528e-01 3.63942742e-01 1.36881962e-01 3.94158661e-01 6.03321850e-01 2.07773317e-02 -1.66221607e+00 5.99439621e-01 7.30747700e-01 9.65751410e-01 -1.10425258e+00 6.32524848e-01 -2.10126355e-01 -1.18970251e+00 -1.37608841e-01 -2.51718968e-01 -3.19405943e-01 -6.01343885e-02 4.20042366e-01 -6.57145262e-01 -1.72883994e-03 9.08217132e-01 5.27524531e-01 -6.56981394e-02 8.78858641e-02 4.26006287e-01 7.61042476e-01 -5.45364678e-01 1.54178500e-01 6.08393140e-02 1.63271010e-01 2.45840013e-01 1.56819940e+00 5.40866792e-01 5.04358411e-01 -3.07394356e-01 2.20209986e-01 -4.69118446e-01 1.51251867e-01 -5.61154842e-01 -1.02818355e-01 3.54372710e-01 1.66706359e+00 -3.50523442e-01 -6.18154109e-01 -2.96856135e-01 1.00650752e+00 -1.94343552e-02 2.54594803e-01 -1.12171721e+00 -6.17938936e-01 7.78284431e-01 -4.13509816e-01 1.50804609e-01 4.65480179e-01 -4.95162271e-02 -1.20603704e+00 -3.14878643e-01 -7.63929904e-01 4.21173841e-01 -9.39778268e-01 -1.31434870e+00 1.14329004e+00 -4.46551889e-01 -1.09595227e+00 -6.33523822e-01 -6.18549109e-01 -6.33576095e-01 7.36312687e-01 -1.08157074e+00 -7.08569348e-01 -1.38562262e-01 9.77732003e-01 7.40528762e-01 -3.31763536e-01 1.24273288e+00 1.90616310e-01 -6.61744475e-01 7.28560388e-01 -4.83622789e-01 2.23636642e-01 1.05579853e+00 -8.61230373e-01 -1.43715158e-01 2.92993486e-01 -6.95495605e-02 3.77029717e-01 6.53948367e-01 -5.95591869e-03 -1.32943797e+00 -1.00341702e+00 8.51639152e-01 -1.51378959e-01 5.43650806e-01 -2.86025554e-01 -5.41877091e-01 6.86112940e-01 9.77554679e-01 2.24898919e-01 1.17390037e+00 1.38700426e-01 -4.14771110e-01 -4.50604200e-01 -1.52725017e+00 4.67024483e-02 5.31047463e-01 -8.83762658e-01 -5.39559662e-01 -4.43018228e-02 3.46639812e-01 -1.33230999e-01 -1.19749665e+00 3.41022670e-01 8.19923341e-01 -1.13946295e+00 8.48645210e-01 -6.76093042e-01 6.75662935e-01 3.33878219e-01 -8.15877736e-01 -1.33701468e+00 -1.91638544e-02 -7.12874174e-01 -6.59900010e-02 1.27003109e+00 4.91588205e-01 -3.43168676e-01 3.69322896e-01 7.84398019e-01 1.05604678e-01 -7.10909307e-01 -1.14291143e+00 -5.73807135e-02 -2.06446171e-01 -1.08792830e+00 3.99692982e-01 8.31701517e-01 6.75585508e-01 5.44252574e-01 -6.71521723e-01 -2.50991583e-01 3.65978003e-01 -2.71013230e-01 1.91395387e-01 -8.40294302e-01 -8.91895816e-02 -3.85685265e-01 -4.80592757e-01 -5.48477173e-02 5.02895474e-01 -5.72984636e-01 4.71265800e-02 -5.95626593e-01 -1.92184299e-02 4.61396009e-01 -9.11743402e-01 4.82457250e-01 3.65032881e-01 8.24318349e-01 2.58629084e-01 -6.52569294e-01 -4.27563310e-01 4.50979054e-01 2.26624578e-01 -1.52742893e-01 -3.75710353e-02 -2.89015144e-01 -4.70283180e-01 8.99639606e-01 1.05114949e+00 -1.47116542e-01 -2.24825978e-01 3.08869481e-02 2.25015476e-01 6.12434030e-01 2.80638009e-01 -1.11715698e+00 -6.42313585e-02 1.36977136e-01 1.07041585e+00 -2.54202217e-01 1.22260201e+00 -8.13803017e-01 1.26146138e-01 4.98883761e-02 -7.13241637e-01 -1.47032291e-01 4.82521504e-01 2.62293696e-01 -3.68080318e-01 2.79111773e-01 9.36430216e-01 -2.43865177e-01 -5.69412291e-01 2.85132736e-01 -6.09751940e-01 -4.01224256e-01 8.76245856e-01 -9.63377878e-02 1.84913844e-01 -9.01618958e-01 -1.61680353e+00 -1.19399928e-01 -2.82321095e-01 3.26457679e-01 7.86572397e-01 -1.36783421e+00 -6.14746690e-01 4.19967026e-01 -3.34107876e-01 -9.64090109e-01 5.06751239e-01 7.80871868e-01 1.14380844e-01 2.80822307e-01 -4.79455143e-01 -2.93540835e-01 -1.67512798e+00 2.18079075e-01 5.26655316e-01 4.00818914e-01 2.52838105e-01 1.33050358e+00 -2.52164453e-01 -3.93215418e-02 4.54976439e-01 -3.16762775e-01 -3.52721035e-01 7.01505423e-01 9.62843001e-01 2.43842065e-01 1.33712977e-01 -8.89626801e-01 -6.18969321e-01 4.97612506e-01 8.27731192e-02 -6.42964125e-01 1.67350185e+00 -2.57574469e-01 -2.27277607e-01 7.61661232e-01 1.66240680e+00 -2.77130574e-01 -9.51833189e-01 8.69596004e-02 -5.42528987e-01 1.50682479e-01 1.27571717e-01 -1.08119404e+00 -1.22613001e+00 1.12103677e+00 1.14521730e+00 2.75578916e-01 1.63576460e+00 -3.11614066e-01 6.01533532e-01 4.72403228e-01 -5.19403927e-02 -1.54705727e+00 5.95843457e-02 4.46315318e-01 1.01833045e+00 -1.32631826e+00 -4.26291734e-01 4.55595106e-02 -9.04413521e-01 1.40609777e+00 5.33265352e-01 -4.50669855e-01 9.86867309e-01 4.18465883e-01 3.19285959e-01 -2.01615736e-01 -1.41839528e+00 9.14294347e-02 2.46444449e-01 2.27281764e-01 9.20320094e-01 7.84894601e-02 7.49142021e-02 1.06507576e+00 -4.47420239e-01 2.23895609e-01 2.39018664e-01 5.05294800e-01 -5.35619378e-01 -5.09208083e-01 -4.38283324e-01 5.88475227e-01 -1.06369090e+00 -2.26433203e-01 -4.13216978e-01 2.99402773e-01 1.65132463e-01 1.24441862e+00 3.90449107e-01 -9.30909872e-01 5.27365059e-02 9.29783523e-01 5.28251112e-01 -2.23637208e-01 -1.05829966e+00 3.65692645e-01 4.31897521e-01 -9.87070501e-01 -5.47847748e-01 -6.54222190e-01 -1.29646647e+00 -2.80106187e-01 1.34259537e-01 5.58261238e-02 8.85757387e-01 6.10931754e-01 4.43978459e-01 5.00463426e-01 1.06490743e+00 -1.04292083e+00 -1.78904235e-01 -1.43513954e+00 -6.98448539e-01 3.08469743e-01 5.12074947e-01 -1.66835532e-01 -4.28409666e-01 4.72959340e-01]
[13.354351043701172, 5.086041450500488]
8bdb0192-7743-4924-b628-fcc7d592122f
unsupervised-features-extraction-for-binary
1810.09683
null
http://arxiv.org/abs/1810.09683v2
http://arxiv.org/pdf/1810.09683v2.pdf
Unsupervised Features Extraction for Binary Similarity Using Graph Embedding Neural Networks
In this paper we consider the binary similarity problem that consists in determining if two binary functions are similar only considering their compiled form. This problem is know to be crucial in several application scenarios, such as copyright disputes, malware analysis, vulnerability detection, etc. The current state-of-the-art solutions in this field work by creating an embedding model that maps binary functions into vectors in $\mathbb{R}^{n}$. Such embedding model captures syntactic and semantic similarity between binaries, i.e., similar binary functions are mapped to points that are close in the vector space. This strategy has many advantages, one of them is the possibility to precompute embeddings of several binary functions, and then compare them with simple geometric operations (e.g., dot product). In [32] functions are first transformed in Annotated Control Flow Graphs (ACFGs) constituted by manually engineered features and then graphs are embedded into vectors using a deep neural network architecture. In this paper we propose and test several ways to compute annotated control flow graphs that use unsupervised approaches for feature learning, without incurring a human bias. Our methods are inspired after techniques used in the natural language processing community (e.g., we use word2vec to encode assembly instructions). We show that our approach is indeed successful, and it leads to better performance than previous state-of-the-art solutions. Furthermore, we report on a qualitative analysis of functions embeddings. We found interesting cases in which embeddings are clustered according to the semantic of the original binary function.
['Luca Massarelli', 'Roberto Baldoni', 'Leonardo Querzoni', 'Giuseppe Antonio Di Luna', 'Fabio Petroni']
2018-10-23
null
null
null
null
['vulnerability-detection']
['miscellaneous']
[ 9.99958888e-02 -1.61516801e-01 -1.19879909e-01 -3.32136393e-01 -1.52123123e-02 -1.06971717e+00 7.95517683e-01 7.19109952e-01 -5.33108652e-01 3.60083729e-01 1.45346923e-02 -6.84436440e-01 -2.25068286e-01 -1.23512566e+00 -8.22163999e-01 -4.93268669e-01 -1.76958337e-01 3.85354698e-01 2.37373397e-01 -5.95752478e-01 6.04982197e-01 7.17925131e-01 -1.65014207e+00 9.00622159e-02 6.47286832e-01 9.01293755e-01 -1.28572688e-01 6.70576572e-01 -3.63303244e-01 6.36485696e-01 -7.90403187e-01 -8.07850957e-01 2.07649261e-01 -2.69954741e-01 -7.91189373e-01 -2.85237074e-01 1.42870441e-01 1.14497513e-01 -3.56400371e-01 1.26524341e+00 -5.72838224e-02 1.31530121e-01 7.50120938e-01 -1.45650136e+00 -9.42932904e-01 4.67018455e-01 -3.28890495e-02 8.04703906e-02 4.22682464e-01 1.10061504e-01 1.26039052e+00 -3.80483478e-01 6.58457696e-01 1.17346716e+00 5.08232236e-01 3.30417454e-01 -1.37931204e+00 -3.26316297e-01 -2.60042280e-01 5.43666065e-01 -1.17032230e+00 -2.47394070e-02 7.31492400e-01 -7.03538954e-01 1.07216597e+00 4.89721388e-01 5.77631652e-01 7.87913740e-01 4.67534006e-01 3.60423952e-01 8.39437246e-01 -4.60051239e-01 3.90408427e-01 3.29163164e-01 6.21170998e-01 7.95873225e-01 4.65250313e-01 9.81708840e-02 1.35185391e-01 -1.68606594e-01 3.90677363e-01 2.74718672e-01 -3.49487364e-01 -5.82579911e-01 -1.01956463e+00 1.38481748e+00 6.51085377e-01 9.41086292e-01 -3.76167670e-02 2.98217356e-01 6.26935184e-01 5.54299116e-01 1.27380267e-01 8.89803588e-01 -3.13222378e-01 -1.32502779e-01 -7.19110310e-01 1.81941465e-01 1.00364220e+00 6.65930212e-01 1.02304769e+00 -2.10554257e-01 -1.38578594e-01 3.00314009e-01 2.52687335e-01 1.71100814e-02 7.00628281e-01 -4.97483075e-01 1.80385619e-01 7.95991004e-01 -4.49976951e-01 -1.44321060e+00 -2.06274763e-01 -5.66168688e-03 -6.03336334e-01 3.32459033e-01 4.84530479e-01 2.09183365e-01 -5.78274250e-01 1.50931251e+00 -4.67566364e-02 -1.05792157e-01 -2.37161536e-02 6.37141109e-01 4.17069405e-01 6.35071158e-01 -3.67365241e-01 1.58131152e-01 1.42678332e+00 -6.87904477e-01 -5.33366740e-01 7.76490420e-02 7.01326787e-01 -5.35636365e-01 1.07520270e+00 3.19909602e-01 -6.03084147e-01 -5.12365162e-01 -1.26080334e+00 -2.36366671e-02 -1.15015900e+00 -2.01313213e-01 6.40320480e-01 1.10989666e+00 -1.15644550e+00 1.09990668e+00 -5.37531912e-01 -3.91245753e-01 2.60931492e-01 5.21285832e-01 -5.86032867e-01 1.69321910e-01 -9.73522067e-01 8.26283574e-01 5.77979445e-01 -3.02892655e-01 -6.45099819e-01 -3.54466945e-01 -1.27657819e+00 3.96946192e-01 4.16149944e-01 -1.73911065e-01 7.93230474e-01 -8.23772907e-01 -1.25317216e+00 7.30709076e-01 3.08558475e-02 -6.43084109e-01 8.76305997e-02 1.74594596e-01 -3.48583907e-01 1.50933024e-03 -1.23539820e-01 2.70682037e-01 8.67864251e-01 -9.69450831e-01 -2.85351306e-01 -4.03337121e-01 3.80175143e-01 -6.64891362e-01 -7.53239155e-01 1.63461655e-01 -1.35878995e-01 -6.28603280e-01 -3.87257248e-01 -7.72874534e-01 -1.16172180e-01 -3.79768573e-02 -4.27556932e-01 -3.38355094e-01 7.33613014e-01 -5.67134142e-01 1.36267722e+00 -2.15007734e+00 5.16731620e-01 4.81027275e-01 5.08409798e-01 4.19020057e-01 8.33498687e-02 5.23310363e-01 -2.99219042e-01 6.08710229e-01 -5.45983136e-01 1.75158698e-02 5.32726467e-01 2.79739857e-01 -2.67384320e-01 7.68770874e-01 3.62017751e-01 9.29051220e-01 -8.43199551e-01 -2.88872302e-01 2.46902421e-01 3.97819191e-01 -6.84197307e-01 2.05079943e-01 -2.88080484e-01 -1.66311450e-02 -8.43825042e-02 3.48096699e-01 4.12678659e-01 6.70662373e-02 2.86188275e-01 -3.27106416e-01 -2.38619804e-01 1.67387158e-01 -9.08167422e-01 1.31058657e+00 -6.06725156e-01 8.25273633e-01 -3.36711824e-01 -1.55872333e+00 1.04724693e+00 -4.12405431e-02 2.64684141e-01 -4.79338557e-01 5.16499162e-01 1.38794348e-01 2.94151098e-01 -2.58377016e-01 5.25029957e-01 3.61678749e-02 -3.32087964e-01 4.24163401e-01 3.05618703e-01 -3.19254786e-01 5.28711081e-01 -5.18946424e-02 1.21645284e+00 -2.20153376e-01 4.65713501e-01 -3.53983372e-01 8.45792592e-01 -7.55269900e-02 2.03179985e-01 4.49136496e-01 -4.67808917e-02 2.34401062e-01 1.12774003e+00 -3.41681749e-01 -1.10286224e+00 -8.69207203e-01 5.20557240e-02 8.46670926e-01 -1.99132171e-02 -8.22645545e-01 -8.56222868e-01 -1.02375937e+00 1.33258924e-01 7.28437901e-01 -8.15142870e-01 -5.06754577e-01 -6.68485343e-01 -3.34090382e-01 6.28017187e-01 4.90145504e-01 4.28414270e-02 -1.03626502e+00 -6.71471536e-01 1.22545166e-02 4.65251088e-01 -7.58031905e-01 -4.12890941e-01 4.03047681e-01 -5.39361298e-01 -1.29967749e+00 -3.70590389e-01 -7.70739138e-01 5.59831083e-01 -2.13959947e-01 1.11239552e+00 2.37324595e-01 -4.89290237e-01 2.33924046e-01 -6.15420640e-01 -5.73812760e-02 -6.28649652e-01 -7.41897896e-02 -5.20454487e-03 1.56329513e-01 4.44554180e-01 -4.80020523e-01 -1.02116928e-01 1.62655085e-01 -1.34862602e+00 -6.90042257e-01 3.98861110e-01 8.13311279e-01 3.39379996e-01 2.31025726e-01 -3.64332609e-02 -8.15309823e-01 9.89963770e-01 -4.14883703e-01 -7.92408884e-01 3.47036630e-01 -5.40340483e-01 6.21083856e-01 1.26938188e+00 -3.74651253e-01 -8.78461525e-02 -1.23001665e-01 -2.56992489e-01 -5.41729867e-01 -2.00518638e-01 3.35190982e-01 -2.85660982e-01 -3.16339076e-01 6.15293980e-01 2.86030799e-01 8.57108459e-02 -3.60081404e-01 5.40802956e-01 5.66721201e-01 2.48422340e-01 -4.28501099e-01 9.94967461e-01 1.82547733e-01 1.37946218e-01 -7.91896105e-01 8.85870680e-02 -2.26228341e-01 -5.67615569e-01 1.78454459e-01 1.05051315e+00 1.80532560e-01 -1.04127645e+00 -1.30520016e-02 -1.33577669e+00 -2.63508726e-02 -4.47773874e-01 3.24531704e-01 -6.08492315e-01 6.83778226e-01 -4.36092108e-01 -5.12899578e-01 -4.81671691e-02 -1.51189029e+00 8.15452039e-01 1.61807746e-01 -3.52381259e-01 -1.09552848e+00 1.85924694e-01 -2.13419855e-01 4.53536510e-01 1.97918281e-01 1.52433920e+00 -1.13977683e+00 -1.73136666e-01 -2.88900107e-01 -1.74138680e-01 5.46162903e-01 2.67450482e-01 1.45154610e-01 -6.36677086e-01 -2.40822434e-01 3.97659764e-02 1.04127981e-01 7.88092077e-01 -7.10749626e-02 1.34464419e+00 -3.89215529e-01 -2.82086223e-01 6.00565135e-01 1.47203434e+00 3.74970078e-01 7.91573465e-01 2.22809479e-01 6.64499938e-01 7.43121624e-01 2.57352710e-01 1.58385977e-01 -7.11046904e-02 8.02216530e-01 6.28415406e-01 2.39239022e-01 9.89102870e-02 -1.03394769e-01 5.26053727e-01 6.14365220e-01 1.04980983e-01 -2.72841454e-01 -8.48270237e-01 4.24774230e-01 -1.56698287e+00 -8.12278330e-01 1.61568169e-02 2.23645449e+00 4.72806245e-01 2.08957031e-01 1.21235095e-01 5.03404319e-01 7.75369048e-01 1.28487691e-01 -6.61422238e-02 -1.00388288e+00 2.21831694e-01 1.02420211e+00 5.71444333e-01 5.01570344e-01 -1.05407274e+00 8.73318672e-01 5.21460056e+00 8.00231814e-01 -1.23814631e+00 2.51414090e-01 3.32586706e-01 3.47490072e-01 -3.81054342e-01 5.73155731e-02 -4.02983367e-01 6.23834193e-01 9.80944932e-01 -1.37228817e-01 7.03021288e-01 8.09054852e-01 -4.44457203e-01 2.59472489e-01 -1.32133281e+00 9.61508036e-01 3.56433272e-01 -1.38077891e+00 -7.50723556e-02 1.48512900e-01 6.44649565e-02 -5.21995068e-01 6.68973997e-02 4.56475019e-01 2.12863714e-01 -1.31117165e+00 5.92152774e-01 3.32242578e-01 7.08296657e-01 -8.36496055e-01 7.82997251e-01 -8.43891501e-02 -1.37213993e+00 -2.90977538e-01 -3.61805648e-01 5.05552217e-02 -3.76893692e-02 3.89571846e-01 -7.35176325e-01 6.95398569e-01 4.85607892e-01 6.80129111e-01 -7.97703803e-01 9.08288896e-01 -3.79889429e-01 3.64520192e-01 2.10376345e-02 -5.22475064e-01 3.09877336e-01 -3.98160815e-01 4.57667023e-01 1.21582818e+00 3.23189706e-01 -5.12813270e-01 -1.06423095e-01 1.27790606e+00 -5.86605556e-02 2.31438696e-01 -1.01430380e+00 -6.36844933e-01 1.51131172e-02 1.16980267e+00 -8.88717949e-01 -3.15659374e-01 -3.08771342e-01 1.12908566e+00 2.75577217e-01 -6.79519549e-02 -1.01099837e+00 -1.12017822e+00 9.74800706e-01 3.09443865e-02 5.87529182e-01 -4.26568866e-01 -8.73721763e-02 -1.07883513e+00 5.35282046e-02 -7.74379075e-01 1.02969043e-01 -3.16003501e-01 -1.18625605e+00 8.51528704e-01 -4.49744761e-02 -1.07553673e+00 -4.39705998e-01 -1.20235968e+00 -7.80074477e-01 6.19377971e-01 -1.09384286e+00 -6.18182242e-01 2.30980683e-02 6.07976556e-01 2.02426121e-01 -2.83529937e-01 9.06198204e-01 4.03422743e-01 -4.86189067e-01 7.43314028e-01 8.80754516e-02 3.26423764e-01 3.58101308e-01 -1.38392711e+00 5.89524865e-01 8.13736796e-01 5.47441304e-01 8.33644927e-01 5.46659768e-01 -4.70388651e-01 -1.66559374e+00 -9.26043630e-01 1.00452316e+00 -3.39930594e-01 9.92748737e-01 -6.89333856e-01 -8.43426228e-01 4.90333229e-01 1.93549216e-01 1.91526875e-01 5.75303257e-01 -2.04032898e-01 -5.98671973e-01 -3.53608988e-02 -1.27617395e+00 5.88594615e-01 9.03706372e-01 -7.64982820e-01 -6.28700256e-01 1.66287214e-01 9.41920519e-01 2.49274150e-01 -8.13657582e-01 1.80537000e-01 4.00783330e-01 -1.07657659e+00 9.43877697e-01 -9.63666022e-01 3.94646466e-01 -3.53337407e-01 -3.90111327e-01 -1.50027788e+00 -2.93250322e-01 -3.65490705e-01 -1.24417447e-01 1.04723346e+00 2.80106306e-01 -9.22680914e-01 4.39911604e-01 8.14912319e-02 -1.26995608e-01 -7.33618379e-01 -7.17535615e-01 -9.73143578e-01 1.34767115e-01 -3.05613279e-01 7.80767500e-01 1.01570761e+00 1.39977798e-01 9.82027054e-02 2.12569416e-01 -8.12295154e-02 1.22151703e-01 2.04022229e-01 5.80571234e-01 -1.32372940e+00 -5.08220553e-01 -9.15532231e-01 -1.28748631e+00 -6.39657259e-01 6.58557415e-01 -1.24740577e+00 -1.82395697e-01 -1.14698648e+00 -2.32634917e-01 -2.43611127e-01 -1.89080149e-01 4.29578781e-01 1.83628783e-01 2.77331412e-01 3.69817585e-01 -2.91589618e-01 -1.12687498e-01 4.55980986e-01 6.36002183e-01 -5.33204257e-01 9.53370556e-02 -4.10435617e-01 -6.55363142e-01 5.07277071e-01 8.47755492e-01 -4.32030052e-01 -1.19063109e-01 -1.79689750e-01 1.39767811e-01 -2.69260466e-01 4.74024057e-01 -1.01308477e+00 4.04013023e-02 5.36488816e-02 4.95274039e-03 4.64956947e-02 1.94532052e-01 -1.04801524e+00 -9.39086005e-02 8.12392712e-01 -4.47632819e-02 4.39397067e-01 1.22674711e-01 4.12230819e-01 -3.42928052e-01 -8.12182546e-01 5.33483922e-01 6.62439363e-03 -6.35718644e-01 1.72937177e-02 -4.30631995e-01 -2.56619006e-01 1.24526227e+00 -1.30125761e-01 -3.54807585e-01 -2.57288814e-01 -4.44497883e-01 -3.39888960e-01 7.07364082e-01 4.79139507e-01 5.72454095e-01 -1.23923147e+00 -2.65445441e-01 4.08008128e-01 1.44729361e-01 -6.04184330e-01 -4.02319908e-01 7.42661655e-01 -8.43421221e-01 6.14015102e-01 -3.38114083e-01 -3.70721221e-01 -1.24427366e+00 9.89392936e-01 8.65679756e-02 -4.12596613e-01 -1.29240885e-01 5.44440329e-01 -8.30546021e-02 -5.86402655e-01 3.53050344e-02 -7.44452417e-01 -3.88003469e-01 1.09076299e-01 4.59954113e-01 3.11645806e-01 3.29889178e-01 -7.32522190e-01 -4.93287086e-01 7.41123199e-01 1.50231078e-01 5.39761297e-02 1.25741267e+00 7.68073678e-01 -5.95301747e-01 2.40829393e-01 1.76930904e+00 1.36467010e-01 -3.52601320e-01 2.81663120e-01 1.18623972e-01 -5.70531666e-01 -2.18504086e-01 -1.93739623e-01 -1.12316573e+00 1.03466642e+00 6.31761670e-01 7.37653792e-01 9.82587516e-01 1.28538772e-01 6.71921730e-01 6.10463917e-01 3.39257866e-01 -5.94220459e-01 2.67643724e-02 7.90658295e-01 5.16632378e-01 -9.25648212e-01 -2.78724968e-01 -3.99648100e-01 -2.74470478e-01 1.47601068e+00 2.44741231e-01 -4.41104919e-01 6.23582006e-01 2.36855999e-01 -5.25759637e-01 -2.89186776e-01 -1.74203038e-01 -4.82152700e-01 3.17765564e-01 5.94400108e-01 3.88812482e-01 1.55484900e-01 -7.70318866e-01 6.60686731e-01 -5.27480721e-01 -4.12140846e-01 4.45193589e-01 1.07247555e+00 -2.70706564e-01 -1.47394204e+00 -4.75971192e-01 4.40938264e-01 -2.48068273e-01 -1.50698170e-01 -7.43157685e-01 7.05323160e-01 3.52551341e-01 8.31816673e-01 2.75431186e-01 -8.95953000e-01 3.78739178e-01 1.17944270e-01 6.06831074e-01 -6.19494975e-01 -9.44836676e-01 -6.60050273e-01 -2.79282570e-01 -6.11747384e-01 7.22106472e-02 -3.58646601e-01 -1.12305117e+00 -3.40592712e-01 -1.29327804e-01 2.51953036e-01 8.73946190e-01 7.43044436e-01 2.61070043e-01 6.66754067e-01 6.79285228e-01 -7.90276766e-01 -4.95817065e-01 -6.53381467e-01 -4.29330349e-01 7.49291837e-01 2.08194494e-01 -7.76368856e-01 -4.76232797e-01 -1.55773401e-01]
[7.188471794128418, 7.798822402954102]
dfaed6ca-f738-4900-a7fb-21ddd8ab6fe5
learning-diverse-stochastic-human-action
1912.10150
null
https://arxiv.org/abs/1912.10150v1
https://arxiv.org/pdf/1912.10150v1.pdf
Learning Diverse Stochastic Human-Action Generators by Learning Smooth Latent Transitions
Human-motion generation is a long-standing challenging task due to the requirement of accurately modeling complex and diverse dynamic patterns. Most existing methods adopt sequence models such as RNN to directly model transitions in the original action space. Due to high dimensionality and potential noise, such modeling of action transitions is particularly challenging. In this paper, we focus on skeleton-based action generation and propose to model smooth and diverse transitions on a latent space of action sequences with much lower dimensionality. Conditioned on a latent sequence, actions are generated by a frame-wise decoder shared by all latent action-poses. Specifically, an implicit RNN is defined to model smooth latent sequences, whose randomness (diversity) is controlled by noise from the input. Different from standard action-prediction methods, our model can generate action sequences from pure noise without any conditional action poses. Remarkably, it can also generate unseen actions from mixed classes during training. Our model is learned with a bi-directional generative-adversarial-net framework, which not only can generate diverse action sequences of a particular class or mix classes, but also learns to classify action sequences within the same model. Experimental results show the superiority of our method in both diverse action-sequence generation and classification, relative to existing methods.
['Yufan Zhou', 'Changyou Chen', 'Zhenyi Wang', 'Ping Yu', 'Yang Zhao', 'Ruiyi Zhang', 'Junsong Yuan']
2019-12-21
learning-diverse-stochastic-human-action-1
null
null
aaai-2019-12
['human-action-generation', 'action-generation']
['computer-vision', 'computer-vision']
[ 8.41231048e-01 1.47002280e-01 -3.25266093e-01 1.21514753e-01 -9.53791440e-01 -4.24653053e-01 9.09739614e-01 -9.53896582e-01 7.22774640e-02 8.61906946e-01 6.24027073e-01 9.00149047e-02 3.40156525e-01 -8.35716307e-01 -9.70840156e-01 -9.03773427e-01 4.30186272e-01 4.83764023e-01 2.12792009e-01 -1.59815356e-01 -1.18247211e-01 1.91506594e-01 -1.41003251e+00 5.24350107e-01 7.29536772e-01 5.89512110e-01 1.69470489e-01 9.30748224e-01 8.08500499e-02 1.36554778e+00 -5.46721637e-01 -1.72915533e-01 2.86060661e-01 -1.12941253e+00 -5.67540526e-01 4.59480017e-01 1.97466925e-01 -5.08005619e-01 -7.45052993e-01 7.46201396e-01 4.82046634e-01 3.72268468e-01 8.57946992e-01 -1.37847185e+00 -5.91629982e-01 4.94623244e-01 -1.92415446e-01 -3.39341134e-01 6.17356181e-01 7.76398301e-01 8.51867795e-01 -7.91408658e-01 9.80035782e-01 1.30551386e+00 4.23254728e-01 1.26558971e+00 -1.35422564e+00 -5.75305223e-01 2.59506792e-01 2.01699898e-01 -1.05618942e+00 -4.06205505e-01 9.50780869e-01 -5.22198796e-01 5.73580146e-01 1.72394514e-01 8.76478732e-01 2.00187302e+00 2.75992036e-01 1.33740580e+00 6.56330049e-01 -1.70242578e-01 4.23693776e-01 -8.66820514e-01 -7.33472943e-01 4.21682507e-01 -3.75547320e-01 1.12499148e-01 -6.05552971e-01 -2.11296957e-02 1.02222002e+00 3.26741606e-01 -2.89317220e-01 -5.00444829e-01 -1.52420902e+00 7.10596740e-01 -5.65166883e-02 5.51750250e-02 -5.34035087e-01 6.99926138e-01 2.47279346e-01 -6.21819794e-02 1.35671824e-01 1.31059080e-01 -2.00320825e-01 -6.29470944e-01 -7.45237529e-01 6.11297607e-01 5.64917207e-01 1.06973684e+00 5.46334922e-01 3.93533617e-01 -6.01638854e-01 5.70454538e-01 1.02350473e-01 5.87125003e-01 7.42483914e-01 -1.31391263e+00 6.64818406e-01 2.78856725e-01 1.78840280e-01 -7.55322039e-01 1.52792886e-01 -1.46517619e-01 -9.98744965e-01 2.43159056e-01 3.70224595e-01 -1.67167112e-01 -1.35822535e+00 1.93575215e+00 3.58774483e-01 5.76332748e-01 5.26477955e-02 6.87602460e-01 4.04399335e-01 8.09341848e-01 9.93422605e-03 -7.08113909e-02 6.52919829e-01 -1.21256816e+00 -7.01340318e-01 -2.90340155e-01 5.17950296e-01 -4.91662532e-01 1.07740760e+00 1.97641104e-01 -1.18330860e+00 -6.62120104e-01 -7.48256385e-01 6.51759580e-02 2.36448377e-01 -1.40970364e-01 2.38887563e-01 3.17357928e-01 -7.61883736e-01 6.79989874e-01 -1.29010272e+00 4.30071652e-02 5.80051959e-01 5.22032641e-02 -1.96243539e-01 -2.39186853e-01 -1.08455324e+00 4.62122887e-01 3.01188409e-01 5.92662171e-02 -1.50502050e+00 -4.81111795e-01 -1.17678070e+00 -1.91070884e-01 4.70274240e-01 -1.04948127e+00 1.44861889e+00 -1.10247612e+00 -2.07965398e+00 1.26614451e-01 -2.10454911e-01 -3.76616865e-01 9.76123512e-01 -3.25172007e-01 -2.62421668e-01 1.64257661e-01 3.25087368e-01 7.86877930e-01 1.12824273e+00 -1.00356817e+00 -4.77078140e-01 8.25991556e-02 -1.49819190e-02 3.00713211e-01 1.11448795e-01 -3.59520167e-01 -5.38436830e-01 -1.11007726e+00 -1.56150619e-02 -1.22146225e+00 -6.96674466e-01 1.07377991e-02 -5.74170351e-01 1.06886663e-01 7.28162050e-01 -5.20622671e-01 1.03255558e+00 -1.97156584e+00 4.92595643e-01 -1.54841080e-01 1.03458704e-03 1.60779729e-01 -4.39868480e-01 5.68270147e-01 -5.71985543e-02 -6.70866817e-02 -5.59108913e-01 -3.54328364e-01 1.83074892e-01 4.97623771e-01 -4.80378002e-01 1.99413225e-01 3.59657496e-01 1.32504010e+00 -1.26116443e+00 -2.70451993e-01 3.55822206e-01 5.23514330e-01 -6.39937758e-01 2.74958700e-01 -7.54299879e-01 9.81250763e-01 -7.57023036e-01 6.54709756e-01 1.93403468e-01 -2.43729979e-01 1.57474503e-01 3.00370902e-01 4.17368621e-01 2.26450264e-01 -1.12605333e+00 1.99370432e+00 -4.79126781e-01 3.03783387e-01 -5.26924074e-01 -9.09726202e-01 6.93153501e-01 4.36667472e-01 5.45434237e-01 -5.14786422e-01 -1.63886294e-01 1.90476343e-01 -5.49013764e-02 -4.37550992e-01 3.43129665e-01 -2.84826130e-01 -3.19972456e-01 5.41731119e-01 -1.18560337e-01 -1.31419882e-01 1.27361134e-01 1.00172080e-01 1.44529164e+00 9.04820919e-01 9.41802114e-02 4.41662133e-01 4.20345187e-01 -1.95394903e-01 8.98903668e-01 7.12573886e-01 -8.62489268e-02 1.04155815e+00 4.79916781e-01 -2.93567330e-01 -1.05211711e+00 -1.29851031e+00 4.24528986e-01 8.21161211e-01 1.14038751e-01 -3.04155439e-01 -6.08034194e-01 -9.27754819e-01 -3.15997809e-01 6.66215897e-01 -6.02115691e-01 -4.02735293e-01 -9.94690418e-01 -4.50980484e-01 5.18390775e-01 7.77003825e-01 3.92609388e-01 -1.49281383e+00 -3.97389024e-01 5.77488303e-01 -4.62057501e-01 -1.12836254e+00 -7.84862101e-01 -2.78785735e-01 -8.60324144e-01 -9.97431219e-01 -1.09923446e+00 -6.53809428e-01 5.96111238e-01 -6.82945177e-02 1.05675519e+00 -2.73625523e-01 -2.64631361e-01 4.65671301e-01 -4.63037193e-01 -2.53775390e-03 -9.29941177e-01 -1.21292248e-01 -2.85173096e-02 4.07168776e-01 1.16235666e-01 -7.60505736e-01 -7.19690561e-01 4.45952892e-01 -1.20404243e+00 4.07245845e-01 6.22777581e-01 9.76615548e-01 7.47527122e-01 -1.17029756e-01 6.26936138e-01 -7.19484150e-01 1.53235614e-01 -5.43066144e-01 -9.68116075e-02 2.89467704e-02 6.22594617e-02 1.16921209e-01 9.33578193e-01 -7.97857285e-01 -1.11599696e+00 4.64573234e-01 -1.35392115e-01 -7.70210147e-01 -3.56304586e-01 1.05568483e-01 -5.86639285e-01 4.68210340e-01 6.20689809e-01 8.36616933e-01 2.48139631e-02 -2.64057100e-01 6.98667705e-01 7.32923001e-02 6.46760106e-01 -6.57053530e-01 1.02431464e+00 6.29036248e-01 1.02848113e-01 -6.20178103e-01 -5.08559763e-01 -1.76634844e-02 -6.14176035e-01 -3.99835467e-01 1.07684433e+00 -1.01816678e+00 -1.40303984e-01 8.97089243e-01 -1.04666364e+00 -8.71383488e-01 -6.25876009e-01 4.99976367e-01 -1.19465160e+00 5.58707237e-01 -6.73211575e-01 -6.64020240e-01 9.96925533e-02 -1.17223585e+00 1.30346966e+00 -4.31974754e-02 -3.87074172e-01 -8.75125647e-01 2.69197822e-01 3.53825688e-01 -1.60251674e-03 8.68987560e-01 5.00479221e-01 -2.31857434e-01 -1.08998966e+00 -2.56856292e-01 5.63257813e-01 4.47872996e-01 4.58425432e-01 -1.30400032e-01 -4.89796132e-01 1.55132776e-02 -1.31503597e-01 -4.85500574e-01 8.16519201e-01 2.68195212e-01 1.23178506e+00 -3.93018991e-01 -3.49104196e-01 5.44447482e-01 1.00150526e+00 2.86654055e-01 1.00294769e+00 6.67090267e-02 1.09429455e+00 3.17860067e-01 5.97624600e-01 4.16379303e-01 1.36869550e-01 7.50562608e-01 4.35592502e-01 2.65816063e-01 -2.63991654e-01 -8.34181607e-01 7.42181063e-01 6.44297421e-01 -1.27966508e-01 -2.98250973e-01 -7.97045887e-01 5.41924417e-01 -2.10071445e+00 -1.42858291e+00 -4.36921455e-02 1.94271529e+00 9.22064185e-01 2.34252661e-01 2.93373019e-01 1.84678763e-01 7.14728236e-01 4.54146117e-01 -7.53237724e-01 7.90647566e-02 3.36495824e-02 3.01714182e-01 1.63791701e-01 3.00100267e-01 -9.99388218e-01 9.46999133e-01 6.05697918e+00 1.10041261e+00 -8.28759313e-01 -1.47231758e-01 5.48922002e-01 -3.64547312e-01 -4.72546101e-01 -3.62495556e-02 -7.01346099e-01 8.24453652e-01 7.01197207e-01 -6.89779520e-02 2.78799206e-01 8.77607465e-01 3.74298364e-01 2.61501133e-01 -1.26823854e+00 8.33862424e-01 6.33626506e-02 -1.45841622e+00 5.15731394e-01 1.28400892e-01 1.13292944e+00 -4.49461162e-01 3.71805765e-02 5.12108922e-01 6.63686156e-01 -1.07498956e+00 9.10651028e-01 7.90998101e-01 8.91841173e-01 -7.68011570e-01 1.47219643e-01 6.70959294e-01 -1.24624634e+00 -9.22513474e-03 -1.24487571e-01 -6.71879351e-02 5.86008489e-01 3.21105480e-01 -4.48071271e-01 4.44224149e-01 1.03060566e-01 1.19009387e+00 -8.80317390e-02 7.12379754e-01 -5.70247948e-01 7.40492105e-01 -8.93697292e-02 2.15322867e-01 2.58478969e-01 -2.80113727e-01 6.26459122e-01 9.25794005e-01 4.27034527e-01 6.64531738e-02 3.94592285e-01 8.03867877e-01 4.88981493e-02 -2.91015863e-01 -8.83472204e-01 -1.47380188e-01 1.81969300e-01 7.44699895e-01 -4.34838384e-01 -3.97676796e-01 -3.60130906e-01 1.34939420e+00 -3.50936614e-02 4.66190755e-01 -1.13184798e+00 -9.28900093e-02 7.97396183e-01 1.07112460e-01 5.02927005e-01 -2.66929835e-01 -1.08848311e-01 -1.33035994e+00 2.16872320e-01 -1.00976110e+00 8.62243846e-02 -6.47251785e-01 -1.09056830e+00 3.46014231e-01 -9.91011113e-02 -1.93763816e+00 -8.94463181e-01 -2.30656028e-01 -7.60518789e-01 7.06607044e-01 -1.02390695e+00 -1.24619746e+00 -8.62492323e-02 6.45200670e-01 1.05082643e+00 -2.48150140e-01 5.26091099e-01 1.34305641e-01 -4.44593757e-01 4.90018874e-01 1.66030824e-01 2.48316363e-01 2.54320621e-01 -1.14733839e+00 7.92752862e-01 9.81598496e-01 2.06623524e-01 1.99774057e-01 5.41970074e-01 -9.37293291e-01 -1.24863386e+00 -1.58195567e+00 6.29347086e-01 -8.42737436e-01 6.55986965e-01 -3.33441079e-01 -7.26412237e-01 7.87259758e-01 -1.68663248e-01 4.84421551e-02 6.01058483e-01 -6.93678021e-01 -1.15891555e-02 3.44532698e-01 -6.47472620e-01 1.07450616e+00 1.61045146e+00 -5.14685750e-01 -5.67032337e-01 3.33001614e-01 7.63574123e-01 -5.64121425e-01 -4.84971315e-01 4.01697189e-01 4.78503406e-01 -8.67822707e-01 1.15641439e+00 -8.15397024e-01 1.14828444e+00 -3.29673290e-01 -5.50752729e-02 -1.26704216e+00 -3.00772011e-01 -9.05697644e-01 -5.77524841e-01 9.97198641e-01 1.83937535e-01 -1.97897017e-01 1.24824798e+00 5.00422776e-01 -2.77729839e-01 -8.05922031e-01 -7.89218724e-01 -1.07743442e+00 3.17382142e-02 -6.08788610e-01 6.06352031e-01 5.87787926e-01 -5.54946005e-01 1.99375436e-01 -8.74500513e-01 -2.03635365e-01 5.80089569e-01 1.15253203e-01 1.27081263e+00 -5.39914131e-01 -7.08151281e-01 -3.09146255e-01 -5.29631257e-01 -1.58918190e+00 3.99484456e-01 -7.96854615e-01 4.56546575e-01 -1.55611444e+00 1.98008586e-02 -1.38134481e-02 4.17382494e-02 2.66972125e-01 -3.75378132e-01 2.93096960e-01 3.04983020e-01 2.52918720e-01 -5.67024648e-01 1.28534317e+00 1.79789007e+00 -1.06296755e-01 -2.02012628e-01 2.54158139e-01 -2.24363565e-01 8.68994653e-01 5.74504495e-01 -4.74715978e-01 -7.65574872e-01 -2.31677324e-01 -5.16192392e-02 4.98400897e-01 5.66531420e-01 -1.22111785e+00 -1.08755998e-01 -6.41991019e-01 4.67596263e-01 -5.50061345e-01 5.69992244e-01 -4.95960861e-01 4.82262731e-01 5.13876796e-01 -4.76262301e-01 -2.85175472e-01 -3.42589915e-01 1.07261944e+00 -1.97095349e-01 9.40139741e-02 6.43335462e-01 -3.33988756e-01 -6.67985260e-01 6.74221218e-01 -6.71664596e-01 3.11964720e-01 1.14856982e+00 -5.04042029e-01 1.12427101e-01 -6.90899372e-01 -1.11767387e+00 3.35641392e-02 6.14911079e-01 5.34042239e-01 6.84316337e-01 -1.89148140e+00 -7.08793163e-01 1.61963031e-02 4.15668041e-02 3.53873819e-01 3.30825210e-01 4.26346928e-01 -3.60830814e-01 -3.90390418e-02 -2.71734029e-01 -5.84870458e-01 -8.21213067e-01 5.07262468e-01 2.77627736e-01 -3.94746780e-01 -1.05966055e+00 6.66458547e-01 5.88249147e-01 -3.11588794e-01 -6.33464428e-03 -1.12238206e-01 6.56685978e-02 -3.10797513e-01 5.05986989e-01 4.24756467e-01 -6.68193340e-01 -7.62176514e-01 -2.94200778e-02 4.69882846e-01 2.66273767e-01 -2.97202945e-01 1.14898145e+00 1.47543162e-01 4.27111983e-01 5.01069129e-01 1.05853379e+00 -1.22694306e-01 -1.97491539e+00 -1.02705106e-01 -2.21599236e-01 -6.64777815e-01 -7.46852338e-01 -4.56501096e-01 -9.87019837e-01 7.65463471e-01 1.23675738e-03 -2.36522540e-01 9.42031324e-01 -1.48948699e-01 1.21443272e+00 8.75107348e-02 4.37999308e-01 -1.14722002e+00 7.61434972e-01 5.65201879e-01 9.17424679e-01 -8.82989764e-01 -4.65179920e-01 -2.81881660e-01 -8.76747727e-01 9.22604442e-01 7.60260880e-01 -2.99280673e-01 2.49620289e-01 3.45139951e-02 -7.51202777e-02 2.44555801e-01 -8.36960018e-01 -1.34629548e-01 1.43864691e-01 9.03158844e-01 5.54474629e-02 5.90151437e-02 -1.09625116e-01 3.92013490e-01 -5.24493121e-02 3.28830332e-01 6.57383859e-01 1.05610812e+00 -1.80872455e-01 -1.38223422e+00 -2.90438771e-01 3.39887768e-01 -2.34388217e-01 9.58945751e-02 -1.06644638e-01 5.84709644e-01 1.80715650e-01 6.26532853e-01 -1.42533720e-01 -4.62495714e-01 1.62699327e-01 2.67491370e-01 3.56177121e-01 -7.51443803e-01 -4.57388461e-02 7.85185322e-02 -1.66666191e-02 -8.61022949e-01 -4.16317344e-01 -1.04412305e+00 -1.14683831e+00 1.09222718e-01 2.70872921e-01 -1.99526340e-01 1.18458569e-01 9.87432301e-01 2.78449118e-01 7.03176618e-01 6.90934122e-01 -1.08442092e+00 -7.06057608e-01 -7.24687040e-01 -4.46503162e-01 8.05817306e-01 2.94290990e-01 -6.23850942e-01 -3.44405174e-01 5.42732060e-01]
[7.327515125274658, -0.12589320540428162]
70e5e0a6-3da9-4b91-8998-ed163552e836
specializing-multi-domain-nmt-via-penalizing
2210.12910
null
https://arxiv.org/abs/2210.12910v1
https://arxiv.org/pdf/2210.12910v1.pdf
Specializing Multi-domain NMT via Penalizing Low Mutual Information
Multi-domain Neural Machine Translation (NMT) trains a single model with multiple domains. It is appealing because of its efficacy in handling multiple domains within one model. An ideal multi-domain NMT should learn distinctive domain characteristics simultaneously, however, grasping the domain peculiarity is a non-trivial task. In this paper, we investigate domain-specific information through the lens of mutual information (MI) and propose a new objective that penalizes low MI to become higher. Our method achieved the state-of-the-art performance among the current competitive multi-domain NMT models. Also, we empirically show our objective promotes low MI to be higher resulting in domain-specialized multi-domain NMT.
['Cheonbok Park', 'Edward Choi', 'Hyunchang Cho', 'Hantae Kim', 'Jiyoung Lee']
2022-10-24
null
null
null
null
['nmt']
['computer-code']
[ 4.86974806e-01 -8.89287665e-02 -5.24654269e-01 -4.06810284e-01 -1.08016860e+00 -6.92776263e-01 9.09892499e-01 -2.68391490e-01 -4.64907765e-01 9.60349798e-01 2.64378358e-02 -3.28923941e-01 -1.15492091e-01 -4.15638119e-01 -7.19926178e-01 -5.78354120e-01 3.23001951e-01 1.00721300e+00 1.54048413e-01 -3.55365247e-01 -5.67780063e-02 1.24010392e-01 -1.02012074e+00 4.01628852e-01 1.45590460e+00 7.08926022e-01 6.31911814e-01 7.30462670e-02 -1.29850566e-01 3.30734104e-01 -6.39783859e-01 -6.84406459e-01 3.26117516e-01 -7.60330260e-01 -8.00869584e-01 -1.40541077e-01 3.42454404e-01 4.80669737e-02 1.27474979e-01 1.15858459e+00 4.21285659e-01 -2.47077066e-02 9.84133840e-01 -1.33102775e+00 -9.94449615e-01 7.25749075e-01 -5.07967472e-01 2.65210178e-02 -2.43578833e-02 -2.87883896e-02 1.17870629e+00 -7.91233301e-01 8.85925531e-01 1.19826519e+00 3.01138341e-01 6.90488219e-01 -1.50938046e+00 -7.54903018e-01 3.00513297e-01 1.94865391e-01 -1.12947440e+00 -7.95475468e-02 9.59443390e-01 -2.88483560e-01 8.93680692e-01 -4.42364030e-02 1.90329909e-01 1.53499496e+00 2.04599559e-01 8.90682936e-01 1.40469730e+00 -3.64179760e-01 9.29315314e-02 2.76652485e-01 -2.47432142e-01 1.84685305e-01 2.25842193e-01 2.87602171e-02 -4.92605984e-01 -4.20729108e-02 8.49907100e-01 -3.49814683e-01 9.08502266e-02 -4.96485889e-01 -1.56809747e+00 8.57735276e-01 2.61918921e-02 5.33736348e-01 -3.54548424e-01 -4.02417868e-01 3.78318638e-01 8.50772858e-01 5.97336352e-01 6.38492405e-01 -7.81145215e-01 -2.83385426e-01 -8.10399175e-01 1.85156062e-01 6.25808418e-01 1.08112741e+00 8.20437133e-01 -1.14894465e-01 -9.55898431e-04 1.18022227e+00 -5.30676544e-02 5.19192696e-01 6.71145856e-01 -7.64327228e-01 8.39104474e-01 8.11912715e-01 -9.05746147e-02 -4.14344817e-01 -2.44168639e-01 -6.32913172e-01 -1.04437315e+00 -1.48042500e-01 5.42448163e-01 -2.68639714e-01 -7.78990507e-01 2.19644547e+00 7.05839172e-02 -8.91274437e-02 4.01953310e-01 9.74368513e-01 5.73645294e-01 6.00684226e-01 3.99231687e-02 -2.57240444e-01 1.16821182e+00 -9.17483032e-01 -6.47594452e-01 -6.13479912e-01 5.99485815e-01 -8.94551694e-01 1.18310308e+00 1.31920055e-01 -9.49752510e-01 -4.85109866e-01 -8.26933622e-01 -4.37412597e-02 -3.12136561e-01 1.63985670e-01 4.42492485e-01 1.96820855e-01 -7.53755867e-01 4.35968876e-01 -4.87614781e-01 -5.23653150e-01 1.76104084e-01 4.45588976e-01 -5.85847139e-01 -9.47826505e-02 -1.57916939e+00 1.33134425e+00 4.88812625e-01 -5.24442375e-01 -7.08821416e-01 -6.42394662e-01 -6.79240525e-01 -3.12556088e-01 1.79491699e-01 -9.19052243e-01 1.29359198e+00 -1.31145811e+00 -1.67556369e+00 1.01104605e+00 -3.51589322e-01 -3.76230150e-01 7.30016410e-01 -2.69703299e-01 -4.49619323e-01 -3.00326180e-02 2.46788085e-01 7.02429473e-01 7.83674538e-01 -1.18862867e+00 -5.69697678e-01 -3.16451758e-01 1.26486726e-03 3.79216075e-01 -4.95978296e-01 6.12643845e-02 -2.78635234e-01 -7.64860570e-01 1.46295756e-01 -1.08039212e+00 -1.31418798e-02 -4.18844581e-01 -6.57495782e-02 -4.14635599e-01 7.03958571e-01 -4.81188148e-01 1.04646254e+00 -1.95459259e+00 7.90745020e-01 -2.89316356e-01 1.64445713e-01 2.11964101e-01 -3.51075411e-01 4.42416608e-01 8.26710761e-02 -1.16822515e-02 -4.02731568e-01 -2.37583235e-01 -1.26110169e-03 3.94964814e-01 8.90788659e-02 3.15004557e-01 6.89454019e-01 9.04394627e-01 -9.24253464e-01 -5.87647676e-01 -3.47509980e-02 2.40650445e-01 -5.36601424e-01 2.46081218e-01 -4.63315099e-01 7.76105762e-01 -3.37511152e-01 5.42195976e-01 7.85728574e-01 -4.98504311e-01 6.18279755e-01 -1.05427504e-01 -6.78333268e-02 2.50271797e-01 -8.35926831e-01 1.93999302e+00 -4.42048907e-01 6.96658671e-01 -2.66631739e-03 -1.12314785e+00 9.97104645e-01 3.77806574e-01 4.24991786e-01 -8.35024297e-01 1.02694958e-01 5.82038283e-01 2.89832383e-01 -8.96119028e-02 4.07783628e-01 -5.88380754e-01 -9.44701880e-02 3.96837085e-01 2.24690422e-01 -1.04540356e-01 1.32785439e-02 -1.37299284e-01 8.07128787e-01 1.73271477e-01 2.83542812e-01 -4.05787915e-01 2.92170972e-01 1.36550024e-01 8.05731893e-01 4.84797984e-01 -3.44830811e-01 5.79344451e-01 4.25027966e-01 -1.06008038e-01 -1.43083203e+00 -1.11976671e+00 -1.74364582e-01 1.18517387e+00 2.90531874e-01 5.73893599e-02 -5.98688602e-01 -8.13310921e-01 -1.21462038e-02 5.99605203e-01 -2.94930816e-01 -2.22819090e-01 -7.34272718e-01 -7.94550300e-01 6.14580274e-01 2.80982822e-01 7.06779838e-01 -7.33830392e-01 -6.97228312e-02 2.32727259e-01 -7.21454024e-01 -1.41762447e+00 -5.74773490e-01 3.78515065e-01 -1.05883229e+00 -6.29143238e-01 -1.22213387e+00 -1.20120490e+00 4.00633872e-01 2.90699810e-01 1.42561519e+00 -6.74638689e-01 5.28118014e-01 -2.76669919e-01 -4.39082444e-01 -2.42111817e-01 -7.42220521e-01 5.60010374e-01 2.70161182e-01 -1.50643930e-01 5.60573578e-01 -8.47299874e-01 -2.73854375e-01 6.97105348e-01 -8.86577129e-01 3.15563828e-01 1.08108687e+00 1.07803476e+00 5.25091767e-01 -2.10071191e-01 8.87755930e-01 -7.52812386e-01 9.07288849e-01 -5.77338040e-01 -3.53443593e-01 4.53266501e-01 -5.53894341e-01 2.13813722e-01 8.17750752e-01 -9.72885907e-01 -1.13231313e+00 -1.99025720e-01 1.30136803e-01 -3.97947162e-01 -1.43438689e-02 3.87029648e-01 -3.93950552e-01 1.12206601e-01 6.25563383e-01 5.78420281e-01 -1.73796136e-02 -6.35720551e-01 3.66789639e-01 7.00656712e-01 1.99821666e-01 -9.17336285e-01 8.30985010e-01 1.12658016e-01 -6.38606101e-02 -6.17553353e-01 -7.30870366e-01 -3.07363272e-01 -8.63280475e-01 1.59471259e-02 7.44381011e-01 -1.11716056e+00 -1.56168297e-01 4.21661526e-01 -1.31648707e+00 -2.47186214e-01 2.58669913e-01 4.70192015e-01 -6.26352191e-01 2.90530354e-01 -4.36007380e-01 -3.69773746e-01 -2.44210944e-01 -1.21062720e+00 9.25991654e-01 -3.76361012e-02 -2.95850247e-01 -1.15860152e+00 1.61067456e-01 3.85729223e-01 4.86863136e-01 3.60842831e-02 1.10878325e+00 -9.50297952e-01 -2.94687510e-01 3.43357921e-01 -4.46868628e-01 5.99049389e-01 2.79251903e-01 -3.27624470e-01 -6.78823531e-01 -2.80627698e-01 -4.21726443e-02 -2.62214452e-01 7.16267645e-01 2.48397797e-01 5.81191123e-01 -1.84304297e-01 -1.47437617e-01 5.47552943e-01 1.40190673e+00 9.34069082e-02 2.47610077e-01 6.68462694e-01 5.90976834e-01 5.05157053e-01 8.15086961e-01 2.56061673e-01 5.23819447e-01 8.33035350e-01 2.79441714e-01 -2.42539629e-01 -1.99068012e-03 -2.84665495e-01 5.14126956e-01 1.07554185e+00 -1.90918222e-02 -1.45842016e-01 -9.77441549e-01 6.53169930e-01 -1.96993053e+00 -7.32752562e-01 -2.98871957e-02 1.91352153e+00 1.16255200e+00 3.12581122e-01 3.72140944e-01 -4.54096109e-01 7.95267940e-01 -2.71982476e-02 -7.26339102e-01 -4.08768386e-01 -6.65211201e-01 -2.19075335e-03 3.60065460e-01 1.94263160e-01 -1.02245414e+00 1.26121771e+00 6.26784039e+00 9.11150634e-01 -1.03196001e+00 3.04404974e-01 3.38331372e-01 4.88532111e-02 -3.90241623e-01 -1.12471104e-01 -6.95765972e-01 6.08522236e-01 9.99158323e-01 -3.96912366e-01 3.11217487e-01 8.31381321e-01 -5.10816788e-03 3.04494709e-01 -1.16766715e+00 8.50195050e-01 -2.49061182e-01 -1.14306474e+00 4.75208849e-01 3.59989613e-01 9.82433081e-01 2.80049354e-01 2.48728216e-01 4.63054836e-01 5.04751682e-01 -6.80558085e-01 5.88863790e-01 -1.22808097e-02 7.79571533e-01 -7.60190845e-01 5.39319932e-01 6.22458160e-01 -7.84970343e-01 2.13131383e-02 -3.57729882e-01 -2.62697469e-02 -3.45037365e-03 6.95314646e-01 -9.46535110e-01 7.38648474e-01 2.00289533e-01 7.36549556e-01 -2.21391857e-01 5.73952556e-01 -2.14431901e-02 3.92401695e-01 -2.17007637e-01 4.33851592e-02 4.53675926e-01 -4.44246560e-01 6.78433418e-01 1.24883580e+00 3.26152056e-01 -3.27328384e-01 2.83355862e-01 8.55665207e-01 -3.03475827e-01 1.81426063e-01 -7.23447561e-01 -1.25286952e-01 5.60389876e-01 7.43687570e-01 -1.49803728e-01 -4.41920698e-01 -6.44336820e-01 1.24992752e+00 5.41633010e-01 2.82388598e-01 -8.99930954e-01 4.65145521e-02 1.31442392e+00 -9.54704583e-02 5.63170686e-02 -4.03680533e-01 -5.51921844e-01 -1.49954557e+00 2.15983912e-01 -1.22590351e+00 2.83314645e-01 -2.49366179e-01 -1.67003906e+00 8.44813049e-01 -5.02743060e-04 -1.64615571e+00 -3.69221896e-01 -5.85097969e-01 -7.14753047e-02 1.06248283e+00 -1.83372140e+00 -1.44207656e+00 1.20507404e-01 6.03903115e-01 7.97907472e-01 -3.07779104e-01 9.26735103e-01 5.61733544e-01 -5.04031003e-01 8.15378785e-01 6.17603660e-01 9.25679505e-02 1.25909483e+00 -1.28164494e+00 6.34132326e-01 6.84411108e-01 -1.35509178e-01 7.84211695e-01 7.59693921e-01 -7.63848245e-01 -1.35653198e+00 -9.98000145e-01 1.10110795e+00 -6.23557270e-01 7.60620654e-01 -2.70377189e-01 -1.00737190e+00 6.11266971e-01 2.40418434e-01 -4.96895790e-01 7.29747117e-01 2.22269505e-01 -5.43075860e-01 4.22160998e-02 -1.10368133e+00 6.68527901e-01 1.08986080e+00 -5.20339072e-01 -8.70564222e-01 3.09897035e-01 9.41296339e-01 -1.64439648e-01 -1.12786984e+00 5.91364861e-01 5.23846209e-01 -7.08541393e-01 9.45598245e-01 -7.15610504e-01 6.81652248e-01 -1.29452288e-01 -3.00128877e-01 -1.73931646e+00 -4.24866885e-01 -5.30085802e-01 -1.89215411e-02 1.11372387e+00 7.10751116e-01 -7.56505370e-01 5.74826300e-01 2.67418772e-01 -2.60659866e-02 -4.87030447e-01 -1.15222263e+00 -1.38730311e+00 7.39912271e-01 -7.68703371e-02 5.42713106e-01 1.37707973e+00 -1.86914671e-02 6.85120106e-01 -5.95145047e-01 4.80089784e-02 7.83157051e-01 3.05234075e-01 6.37136579e-01 -1.38649368e+00 -3.09012771e-01 -6.43866837e-01 4.47029695e-02 -1.35590470e+00 3.51570159e-01 -9.62927878e-01 -2.95908242e-01 -1.40570796e+00 4.45163578e-01 -2.99580753e-01 -4.79677647e-01 2.81466186e-01 -2.67085373e-01 5.08177280e-02 3.05608362e-01 5.52948236e-01 -5.62588573e-01 5.34292758e-01 1.59726036e+00 -1.83981508e-01 -1.88957348e-01 1.11779980e-02 -8.10526669e-01 3.82119685e-01 9.71176684e-01 -5.10803640e-01 -2.80822217e-01 -7.65488327e-01 -6.03598207e-02 1.49590988e-02 -7.00962543e-02 -7.57643282e-01 5.42163178e-02 -4.86165136e-01 9.10513252e-02 -4.35894996e-01 4.91568983e-01 -7.35340655e-01 5.92659786e-02 1.90850317e-01 -3.57653201e-01 1.70980960e-01 1.59319386e-01 3.52723062e-01 -4.08457130e-01 1.58004120e-01 1.02665401e+00 -3.19660008e-01 -8.26268435e-01 7.03624636e-02 -1.33626744e-01 2.16157556e-01 8.18681896e-01 -1.12044059e-01 -2.32704505e-01 -1.74685091e-01 -3.76549214e-01 1.90397754e-01 6.43977344e-01 7.62069285e-01 3.27187926e-01 -1.49762154e+00 -1.06991982e+00 1.39962286e-01 4.23467636e-01 -2.07199782e-01 1.90398712e-02 7.33090281e-01 1.32071570e-01 4.53039855e-01 -4.06661719e-01 -8.17546487e-01 -1.35898900e+00 2.57723510e-01 2.03909874e-01 -5.87143838e-01 -3.20909232e-01 7.21639097e-01 4.03207093e-01 -7.39157498e-01 -1.77763671e-01 -1.35148436e-01 3.32677700e-02 1.07259303e-01 5.49612492e-02 1.05388083e-01 6.50619715e-02 -6.61790013e-01 -4.59014297e-01 5.87437928e-01 -3.50992262e-01 -2.38064155e-01 1.24004710e+00 -2.11040974e-01 -6.52201474e-02 3.02434325e-01 1.32020724e+00 -5.19093394e-01 -1.20630741e+00 -7.36930668e-01 2.10163176e-01 -3.44324082e-01 -2.45065272e-01 -1.17828000e+00 -4.84199256e-01 8.09095800e-01 3.36999625e-01 -1.05398029e-01 1.25172055e+00 1.32766858e-01 9.97927785e-01 3.04736078e-01 5.12035906e-01 -1.28955424e+00 2.38638923e-01 9.16035354e-01 5.51913381e-01 -1.62230694e+00 -2.90022165e-01 -1.28888741e-01 -9.90319014e-01 8.28171015e-01 7.19810724e-01 1.23649567e-01 2.62177169e-01 -3.21879871e-02 2.47959137e-01 2.16082767e-01 -9.22726929e-01 -2.85154581e-01 3.61800373e-01 6.45833671e-01 6.72538936e-01 3.47125173e-01 -5.25427759e-01 6.03810310e-01 -6.74581826e-02 -8.36774334e-02 1.25698328e-01 7.94533372e-01 -3.98678988e-01 -1.64879179e+00 -1.81807145e-01 9.10724699e-02 -5.31165719e-01 -2.10373089e-01 -7.43174732e-01 8.24089289e-01 -7.43562281e-02 9.20528412e-01 -2.89058387e-01 -5.42604983e-01 3.70433092e-01 2.23342657e-01 3.87264282e-01 -5.31272411e-01 -6.01631463e-01 8.93838406e-02 7.21137896e-02 -1.64355353e-01 -4.62245703e-01 -6.68222368e-01 -9.21663404e-01 -3.33701491e-01 -1.09058037e-01 3.06818038e-02 7.91464984e-01 1.00130093e+00 5.69742084e-01 3.73630732e-01 6.38109088e-01 -5.43721914e-01 -7.68497825e-01 -1.13680208e+00 -2.21113384e-01 5.83716989e-01 4.40615147e-01 -8.16083372e-01 -2.37026140e-01 -1.12058774e-01]
[11.6347017288208, 10.274798393249512]
a0c207ee-adce-4896-a9d0-a04bb038a37b
chinese-named-entity-recognition-augmented
1912.08282
null
https://arxiv.org/abs/1912.08282v2
https://arxiv.org/pdf/1912.08282v2.pdf
Chinese Named Entity Recognition Augmented with Lexicon Memory
Inspired by a concept of content-addressable retrieval from cognitive science, we propose a novel fragment-based model augmented with a lexicon-based memory for Chinese NER, in which both the character-level and word-level features are combined to generate better feature representations for possible name candidates. It is observed that locating the boundary information of entity names is useful in order to classify them into pre-defined categories. Position-dependent features, including prefix and suffix are introduced for NER in the form of distributed representation. The lexicon-based memory is used to help generate such position-dependent features and deal with the problem of out-of-vocabulary words. Experimental results showed that the proposed model, called LEMON, achieved state-of-the-art on four datasets.
['Xuanjing Huang', 'Yi Zhou', 'Xiaoqing Zheng']
2019-12-17
null
null
null
null
['chinese-named-entity-recognition']
['natural-language-processing']
[-2.80039221e-01 -4.00450647e-01 -1.19966544e-01 -4.01694365e-02 -8.31836939e-01 -6.78455055e-01 6.35957181e-01 4.90175247e-01 -8.64218831e-01 7.08680212e-01 5.42480409e-01 -1.26071423e-02 -5.14294624e-01 -1.16383410e+00 -1.32735536e-01 -3.19440424e-01 -2.33101360e-02 4.80109930e-01 4.33642983e-01 -4.79567647e-01 1.00181878e+00 5.59722781e-01 -1.71440196e+00 5.17399430e-01 1.16569257e+00 8.45901072e-01 4.81644660e-01 -5.20661026e-02 -1.11108732e+00 5.78590035e-01 -4.47720051e-01 -1.67637989e-01 -8.71006250e-02 -1.73980102e-01 -9.86422837e-01 -3.40971828e-01 -4.78523411e-02 1.72869220e-01 -2.77865708e-01 1.11497116e+00 3.82996380e-01 4.71174479e-01 7.68835247e-01 -3.32887292e-01 -9.64418769e-01 7.70577967e-01 -1.04127973e-01 4.30047512e-01 4.43787128e-01 -5.15572429e-01 1.11844027e+00 -1.18280423e+00 7.06555486e-01 1.27934313e+00 2.85658449e-01 3.75313342e-01 -3.87354642e-01 -5.08432984e-01 1.25044599e-01 5.95363379e-01 -1.84627688e+00 -1.30218044e-01 4.69252348e-01 -1.35735244e-01 1.34651840e+00 2.57662535e-01 2.86920577e-01 4.45953220e-01 7.51894489e-02 5.91323137e-01 1.09855700e+00 -8.31307471e-01 8.60670134e-02 6.02787882e-02 7.34027803e-01 5.67455173e-01 3.75979245e-01 -2.35703751e-01 -4.51051772e-01 -3.06360841e-01 5.62905610e-01 3.09535116e-02 -1.31466284e-01 -2.54060910e-03 -8.88934553e-01 9.94031131e-01 4.62898940e-01 1.02358413e+00 -6.40110910e-01 -5.82716346e-01 1.83607578e-01 -3.40970419e-03 2.74919778e-01 8.99271488e-01 -5.46691418e-01 5.43330349e-02 -9.84984756e-01 -3.62725742e-02 8.53963256e-01 1.11453950e+00 9.06473875e-01 -2.52544016e-01 -5.54468274e-01 8.45106184e-01 2.71758825e-01 5.65248251e-01 1.10542274e+00 -2.81897217e-01 3.84816021e-01 1.12015378e+00 1.49308756e-01 -9.87800837e-01 -7.07419395e-01 -6.10788167e-01 -5.05122721e-01 -8.07474256e-01 -2.01831404e-02 3.79561298e-02 -1.12301934e+00 1.50455415e+00 -8.67340267e-02 2.19653934e-01 2.80086517e-01 7.13091731e-01 1.22805512e+00 8.14172983e-01 2.12712929e-01 -2.67473578e-01 1.65819550e+00 -1.06925249e+00 -8.49084258e-01 -1.59778625e-01 6.39499903e-01 -8.40667844e-01 7.18624592e-01 -1.27591223e-01 -8.76175404e-01 -5.84842384e-01 -8.18057477e-01 5.96965775e-02 -1.12521219e+00 2.01611280e-01 4.16382343e-01 7.14662611e-01 -9.52877522e-01 4.25626546e-01 -2.36912221e-01 -5.48295856e-01 -2.62511969e-01 2.10237816e-01 -3.23083639e-01 3.70514393e-02 -1.74169171e+00 1.09742749e+00 1.01489472e+00 5.65070473e-02 -2.51096129e-01 -1.49594620e-01 -8.02920759e-01 5.42532444e-01 3.19979608e-01 -5.01642883e-01 5.15386343e-01 -4.79060709e-01 -1.06219363e+00 6.15466654e-01 -2.34759122e-01 -2.06831858e-01 -3.66630346e-01 -2.73030818e-01 -9.65718329e-01 4.47533995e-01 1.08664557e-01 4.46537733e-01 3.92363310e-01 -9.43951905e-01 -7.35216379e-01 -2.55348444e-01 -9.15330797e-02 5.30253470e-01 -8.24376941e-01 3.61792982e-01 -7.82951891e-01 -6.78986311e-01 2.63668448e-01 -6.50919020e-01 -6.56563789e-02 -7.82391965e-01 -1.63256571e-01 -5.90098202e-01 3.90792757e-01 -7.93275058e-01 1.88909638e+00 -1.66613376e+00 -4.80213948e-02 5.30058444e-01 -7.21228272e-02 6.34245217e-01 -4.55044746e-01 8.59032333e-01 2.92995721e-01 3.91581059e-01 1.33930042e-01 1.62045836e-01 -1.19151980e-01 -2.82946918e-02 -2.28286892e-01 -2.46828482e-01 1.34083614e-01 7.98404813e-01 -9.65652347e-01 -6.61275744e-01 2.03083530e-02 3.54669720e-01 -2.82946080e-01 2.06079498e-01 2.63279639e-02 -1.32065592e-02 -9.57029879e-01 6.02721095e-01 6.86657429e-01 4.96834330e-02 1.74503967e-01 -4.71842214e-02 -2.26606622e-01 4.64186341e-01 -1.35126519e+00 1.35244262e+00 -4.27095622e-01 -1.84128344e-01 -4.59771335e-01 -5.51008344e-01 1.33135557e+00 2.32138157e-01 -1.43475533e-01 -8.84899914e-01 4.16487366e-01 3.40487778e-01 -1.09943219e-01 -3.69083464e-01 9.32078421e-01 2.58877665e-01 -3.09897542e-01 1.10051885e-01 1.19714476e-01 4.33133930e-01 3.81389976e-01 1.64855689e-01 1.09676099e+00 1.26296701e-02 5.50686419e-01 -5.73244631e-01 1.01539516e+00 1.86081991e-01 5.36656916e-01 8.15113485e-01 1.17111020e-01 3.51856053e-01 -2.48272121e-01 -1.44808784e-01 -6.29270613e-01 -7.31995404e-01 -1.82013795e-01 1.23265576e+00 3.57773721e-01 -5.69085717e-01 -8.94469440e-01 -7.16530085e-01 -2.53721237e-01 9.42264080e-01 -4.06495064e-01 -2.44290426e-01 -6.41528428e-01 -4.06405747e-01 4.63966906e-01 5.18670440e-01 5.14625072e-01 -1.46985567e+00 -3.06331545e-01 4.24039871e-01 -3.47321838e-01 -7.56588757e-01 -5.43374062e-01 3.33791822e-01 -7.06646800e-01 -9.01283324e-01 -7.81147718e-01 -1.13366199e+00 6.57683074e-01 2.94084281e-01 1.04273057e+00 3.41406196e-01 6.59063756e-02 3.63692194e-01 -9.76158679e-01 -2.45787263e-01 -1.50771305e-01 4.55990911e-01 -1.47441179e-01 -1.19797565e-01 1.00062251e+00 -2.49168202e-01 -4.84174162e-01 2.04711393e-01 -1.03451681e+00 -4.35182482e-01 8.88554513e-01 9.68082845e-01 5.66331029e-01 -5.73068559e-02 8.60205054e-01 -6.99720442e-01 8.25356960e-01 -6.90569639e-01 -2.36903623e-01 8.38479221e-01 -6.71695054e-01 5.53481162e-01 6.56115115e-01 -5.18227339e-01 -1.13591111e+00 -2.22541660e-01 -6.94565699e-02 6.44964501e-02 -1.11693189e-01 1.02076638e+00 -3.09147209e-01 9.10867229e-02 4.21398520e-01 7.29407012e-01 -4.60612446e-01 -1.05051363e+00 4.22488511e-01 1.01389205e+00 1.97585762e-01 -7.11527050e-01 5.41685343e-01 -1.52729496e-01 -2.45519742e-01 -7.88023412e-01 -7.89268911e-01 -8.89470458e-01 -9.73707855e-01 1.62549943e-01 7.26171851e-01 -9.18781102e-01 -1.64484262e-01 2.28767738e-01 -1.19472408e+00 5.62356949e-01 -5.42173395e-03 5.10899305e-01 -4.35841791e-02 4.66910392e-01 -6.34795249e-01 -5.88450372e-01 -7.13654578e-01 -7.03620315e-01 8.13699603e-01 8.42241228e-01 3.14596966e-02 -8.35366428e-01 4.71324474e-02 4.12087888e-02 6.17023170e-01 -4.69102591e-01 1.27436507e+00 -1.56985366e+00 -4.72288847e-01 -1.94754049e-01 -1.05636619e-01 3.57231009e-03 4.49086465e-02 -5.42115510e-01 -5.37775517e-01 -1.43060476e-01 -2.00004086e-01 -8.09894279e-02 1.04528189e+00 -2.50382811e-01 8.49300444e-01 -6.96457922e-02 -4.62265223e-01 1.93759248e-01 1.47578001e+00 3.73458356e-01 7.25378394e-01 6.32609189e-01 4.67993855e-01 4.83575642e-01 8.38932872e-01 4.86783087e-01 4.72163826e-01 5.80526114e-01 2.09995918e-02 2.69410074e-01 -9.79199111e-02 -2.19417796e-01 3.21202427e-02 1.17541409e+00 9.36495289e-02 -3.94885242e-01 -9.51631784e-01 8.02045643e-01 -1.70943725e+00 -7.25445271e-01 5.29784709e-03 2.02355099e+00 8.68745089e-01 8.19961913e-03 -1.91788077e-01 -1.53091311e-01 1.10471725e+00 3.13431844e-02 -9.50462073e-02 -4.29716140e-01 -4.23601121e-01 5.72159767e-01 5.65569758e-01 2.45573997e-01 -1.09054375e+00 1.53770137e+00 5.52495527e+00 1.33752418e+00 -9.06985760e-01 -3.64233889e-02 1.04047015e-01 5.71691394e-01 -4.16160941e-01 1.55387506e-01 -1.31611657e+00 3.01226974e-01 1.03641808e+00 -4.76606786e-01 2.22324252e-01 6.38071954e-01 -2.77227074e-01 9.35272314e-03 -4.60850865e-01 5.72552204e-01 3.60931784e-01 -1.08101296e+00 6.97304904e-01 -1.93113610e-01 5.32748103e-01 -7.77111053e-02 -1.94997415e-01 5.02561927e-01 5.69638275e-02 -7.41372228e-01 6.49264157e-01 9.01259482e-01 3.67257506e-01 -9.55925941e-01 9.93552506e-01 4.38204765e-01 -1.56103492e+00 -7.15540498e-02 -8.40898097e-01 1.00405626e-01 -1.42661214e-01 7.73644000e-02 -5.24128675e-01 8.79401207e-01 3.69902223e-01 3.47937554e-01 -8.92790973e-01 1.35181820e+00 -4.00866330e-01 4.55665737e-01 -1.61822021e-01 -6.41104400e-01 5.14959157e-01 1.14052230e-02 3.68357688e-01 1.53372037e+00 6.13547742e-01 3.59990746e-01 1.67047501e-01 5.82313418e-01 2.87813991e-02 9.14110363e-01 -2.48256639e-01 -1.02091819e-01 1.15340555e+00 1.47592843e+00 -1.10965490e+00 -3.51507604e-01 -4.41720188e-01 9.42755520e-01 4.68769014e-01 1.39665216e-01 -4.40928549e-01 -1.07480621e+00 1.41802296e-01 -1.02838024e-01 8.30826879e-01 -2.74895310e-01 8.27460662e-02 -1.20177126e+00 -1.53017923e-01 -5.36008596e-01 7.10483253e-01 -5.04395366e-01 -1.38365114e+00 9.23262298e-01 -8.50327685e-03 -1.21074510e+00 -2.37406522e-01 -5.28897226e-01 -5.32801807e-01 1.08979261e+00 -1.75980818e+00 -1.16436195e+00 1.85391214e-02 5.84582984e-01 4.63952780e-01 -3.89500469e-01 1.33493912e+00 2.27432862e-01 -3.79262656e-01 6.83692992e-01 4.32767302e-01 4.80214417e-01 7.15773761e-01 -9.74147260e-01 1.62873387e-01 8.55548561e-01 3.92117023e-01 1.13950908e+00 1.49009094e-01 -9.88073111e-01 -1.25019491e+00 -9.81038570e-01 1.61912799e+00 -1.74104869e-01 5.20284653e-01 1.16285414e-01 -1.01827455e+00 2.00456649e-01 2.70164400e-01 -2.13453040e-01 8.36466551e-01 9.23913866e-02 -3.74811232e-01 1.30060852e-01 -1.07096815e+00 4.12025809e-01 9.49785173e-01 -6.00669861e-01 -1.48927116e+00 -1.15107447e-01 7.20274627e-01 -2.79941075e-02 -7.80331612e-01 1.73432216e-01 2.15763465e-01 -3.97106737e-01 9.16010141e-01 -5.89675009e-01 -1.60226792e-01 -3.60757977e-01 -1.13338344e-01 -1.22810209e+00 -7.31250703e-01 -1.15940437e-01 -7.12213963e-02 1.63838565e+00 5.94915032e-01 -4.08804655e-01 3.42368871e-01 3.88741046e-01 -1.30953059e-01 -4.45645005e-01 -8.90501261e-01 -1.10525703e+00 2.34559342e-01 1.81514502e-01 7.31759667e-01 8.74359548e-01 1.60143018e-01 5.36802769e-01 7.53921689e-03 1.11802824e-01 1.83938667e-02 1.88030019e-01 -1.46323770e-01 -1.37669957e+00 2.32932061e-01 -3.09010893e-01 -4.39791977e-01 -1.09628201e+00 4.20463502e-01 -1.15266156e+00 -4.93001416e-02 -1.57693195e+00 4.12643790e-01 -4.48466331e-01 -1.07462990e+00 4.58592564e-01 -5.34552813e-01 2.51237508e-02 4.04982328e-01 3.07920158e-01 -9.21199083e-01 5.75851202e-01 7.88703799e-01 1.07573085e-01 -2.33488664e-01 -3.03674668e-01 -8.36920679e-01 6.23238623e-01 5.32331944e-01 -6.79123223e-01 -8.12307373e-02 -3.88386279e-01 1.21455461e-01 -1.27594307e-01 -2.38182947e-01 -1.05473411e+00 6.15899265e-01 -8.49249959e-02 3.42784077e-01 -8.58459294e-01 9.54970345e-02 -8.64249766e-01 -3.35846096e-01 4.07659948e-01 -3.92435521e-01 3.82238239e-01 1.24813214e-01 3.75655800e-01 -4.85955417e-01 -6.98778927e-01 2.67177016e-01 -3.26319277e-01 -1.34814000e+00 -7.32743889e-02 -4.77691591e-01 3.34631205e-01 6.84924006e-01 4.88067828e-02 -5.20612061e-01 -1.57328933e-01 -5.45141995e-01 2.40925699e-01 5.66913188e-02 7.01710463e-01 7.33367205e-01 -1.45744002e+00 -6.15371764e-01 1.05611607e-01 4.06218708e-01 -7.04648137e-01 2.41103381e-01 1.41783118e-01 -3.56029242e-01 8.90255630e-01 -2.97037631e-01 1.26712555e-02 -1.06254172e+00 7.63322473e-01 -1.47836497e-02 -5.74371696e-01 -1.94759443e-01 6.69925988e-01 -1.65769488e-01 -4.11413372e-01 1.89985022e-01 -1.28718868e-01 -1.23045790e+00 4.05987591e-01 8.34767520e-01 1.93000108e-01 1.97599843e-01 -9.60815549e-01 -5.78441024e-01 8.36282551e-01 -1.94268480e-01 -4.68719676e-02 1.29712963e+00 -4.63091463e-01 -4.41598892e-01 1.50934115e-01 9.26058292e-01 2.10343093e-01 -2.98681527e-01 -9.15911973e-01 7.43301630e-01 -8.86622742e-02 1.85836002e-01 -1.08224678e+00 -7.64763892e-01 6.84861481e-01 6.23138309e-01 -7.19423369e-02 1.17050958e+00 -1.03093162e-01 1.10813320e+00 9.20330405e-01 7.06069171e-01 -1.24466813e+00 -2.86181927e-01 1.31847763e+00 4.89634514e-01 -7.23547518e-01 -2.35887289e-01 -4.03987855e-01 -3.29441190e-01 1.45284736e+00 7.19039321e-01 5.94564117e-02 7.63827503e-01 -3.60433385e-02 -4.79232930e-02 -3.16023752e-02 -4.47424471e-01 -7.92347491e-01 9.03268158e-01 3.70040745e-01 4.91559148e-01 -9.03943926e-02 -1.18862534e+00 1.36098695e+00 3.27682868e-02 -3.19065452e-01 2.21571058e-01 1.17446327e+00 -1.22505450e+00 -1.52766645e+00 -3.52293849e-01 3.06535691e-01 -3.71470898e-01 -7.62215078e-01 -4.37361836e-01 6.40344322e-01 2.00340152e-01 1.02850568e+00 3.25422958e-02 -4.99423802e-01 2.06708357e-01 6.21812582e-01 1.41908526e-01 -9.42877471e-01 -9.23110664e-01 -1.76000204e-02 1.91594765e-01 -1.95507765e-01 -4.23138142e-01 -2.14857429e-01 -1.38065422e+00 6.03872836e-02 -7.09911227e-01 7.44174838e-01 4.97892529e-01 1.10701358e+00 5.99091351e-01 2.11446583e-01 6.88920140e-01 -3.78276229e-01 -5.15798151e-01 -1.17484057e+00 -5.19241154e-01 4.26796705e-01 -3.29647720e-01 -6.12395585e-01 -1.56637520e-01 -5.22292614e-01]
[9.739495277404785, 9.585725784301758]
0b823695-94b9-4741-8e2e-ed6eb802e339
occluded-human-mesh-recovery
2203.13349
null
https://arxiv.org/abs/2203.13349v1
https://arxiv.org/pdf/2203.13349v1.pdf
Occluded Human Mesh Recovery
Top-down methods for monocular human mesh recovery have two stages: (1) detect human bounding boxes; (2) treat each bounding box as an independent single-human mesh recovery task. Unfortunately, the single-human assumption does not hold in images with multi-human occlusion and crowding. Consequently, top-down methods have difficulties in recovering accurate 3D human meshes under severe person-person occlusion. To address this, we present Occluded Human Mesh Recovery (OCHMR) - a novel top-down mesh recovery approach that incorporates image spatial context to overcome the limitations of the single-human assumption. The approach is conceptually simple and can be applied to any existing top-down architecture. Along with the input image, we condition the top-down model on spatial context from the image in the form of body-center heatmaps. To reason from the predicted body centermaps, we introduce Contextual Normalization (CoNorm) blocks to adaptively modulate intermediate features of the top-down model. The contextual conditioning helps our model disambiguate between two severely overlapping human bounding-boxes, making it robust to multi-person occlusion. Compared with state-of-the-art methods, OCHMR achieves superior performance on challenging multi-person benchmarks like 3DPW, CrowdPose and OCHuman. Specifically, our proposed contextual reasoning architecture applied to the SPIN model with ResNet-50 backbone results in 75.2 PMPJPE on 3DPW-PC, 23.6 AP on CrowdPose and 37.7 AP on OCHuman datasets, a significant improvement of 6.9 mm, 6.4 AP and 20.8 AP respectively over the baseline. Code and models will be released.
['Kris Kitani', 'Shashank Tripathi', 'Rawal Khirodkar']
2022-03-24
null
http://openaccess.thecvf.com//content/CVPR2022/html/Khirodkar_Occluded_Human_Mesh_Recovery_CVPR_2022_paper.html
http://openaccess.thecvf.com//content/CVPR2022/papers/Khirodkar_Occluded_Human_Mesh_Recovery_CVPR_2022_paper.pdf
cvpr-2022-1
['human-mesh-recovery']
['computer-vision']
[ 2.19121054e-01 2.47214511e-01 6.74964488e-02 -1.95122391e-01 -7.19594777e-01 -2.72331890e-02 3.26585680e-01 -1.90655112e-01 -2.80310273e-01 6.43883526e-01 3.93694431e-01 2.54182398e-01 1.99616596e-01 -7.81138897e-01 -8.85414958e-01 -4.55765039e-01 3.20962310e-01 8.59072864e-01 6.83013260e-01 -4.27274138e-01 -2.64646020e-02 4.64410454e-01 -1.78036809e+00 4.12858367e-01 7.07468569e-01 7.87876368e-01 -1.24744214e-01 5.96031070e-01 2.24439546e-01 5.91472566e-01 -5.10657132e-01 -3.88131350e-01 4.06053066e-01 -1.03042156e-01 -8.11062992e-01 6.72183409e-02 1.19404662e+00 -3.92086118e-01 -3.74723226e-01 7.25256801e-01 8.20221961e-01 1.94612935e-01 6.67066872e-01 -1.21559215e+00 -3.81883055e-01 1.15524307e-01 -1.15576530e+00 3.43324840e-02 8.38496566e-01 1.83088630e-01 6.45092845e-01 -1.22510624e+00 1.02991259e+00 1.67474151e+00 1.00115299e+00 6.31502032e-01 -1.19552827e+00 -6.46696925e-01 3.07280153e-01 -5.17970659e-02 -1.53793311e+00 -2.43165582e-01 5.90106249e-01 -6.01915479e-01 9.35962617e-01 3.17189306e-01 9.36667681e-01 9.37399566e-01 2.00167462e-01 7.81897128e-01 9.79541183e-01 -2.13156894e-01 -1.74441636e-01 -3.34423929e-01 -7.50705525e-02 8.46273243e-01 3.84054214e-01 1.08617488e-02 -7.09471464e-01 -1.17686167e-01 9.32701766e-01 -1.92778289e-01 -1.96258634e-01 -6.12867594e-01 -1.06156492e+00 4.53297108e-01 6.83128715e-01 -2.01633006e-01 -4.04335797e-01 2.29513913e-01 2.44299635e-01 -3.24635148e-01 4.90363270e-01 -3.97181585e-02 -1.98766679e-01 3.90251428e-01 -1.19557464e+00 9.19453263e-01 4.54282075e-01 1.19681823e+00 5.75189054e-01 -7.41129965e-02 -4.52526242e-01 7.54421830e-01 2.02613264e-01 8.50221157e-01 -6.53717294e-02 -9.89297152e-01 7.04183161e-01 6.34152293e-01 3.19070667e-01 -1.28636551e+00 -6.86811805e-01 -2.72320658e-01 -8.02956998e-01 2.03105435e-01 6.90299511e-01 1.04570352e-01 -1.26818228e+00 1.54526865e+00 9.28189993e-01 8.13423172e-02 -3.79173696e-01 1.28111649e+00 1.26798081e+00 4.76747751e-01 3.59844416e-01 3.40012401e-01 1.74604774e+00 -1.31320322e+00 -5.26895344e-01 -5.79766393e-01 6.26322776e-02 -7.60575056e-01 1.03351974e+00 2.56129861e-01 -1.33238292e+00 -7.94384122e-01 -8.28489602e-01 -6.65665209e-01 -2.86778390e-01 1.06693178e-01 3.15136999e-01 3.40701610e-01 -8.93881917e-01 5.45973241e-01 -5.32372177e-01 -4.99232024e-01 4.58367825e-01 3.65635693e-01 -5.40235519e-01 -2.46305123e-01 -1.02189803e+00 8.71051729e-01 6.50357530e-02 1.88855335e-01 -6.36418045e-01 -7.40502954e-01 -9.00843382e-01 -2.53447086e-01 4.84892845e-01 -1.37236226e+00 8.55695844e-01 -4.98075426e-01 -1.24747121e+00 1.31896770e+00 -3.20803642e-01 -2.98040122e-01 1.08108175e+00 -6.85952187e-01 -7.27065504e-02 3.52002501e-01 4.25915450e-01 9.79315877e-01 9.25043106e-01 -1.38832057e+00 -7.56952465e-01 -5.11837184e-01 -2.29490548e-01 3.74760360e-01 5.39727867e-01 2.50375066e-02 -1.01073444e+00 -9.05322254e-01 3.66790920e-01 -1.21617866e+00 -1.50850654e-01 3.92866820e-01 -5.83201408e-01 -1.45502701e-01 6.88050151e-01 -1.02038550e+00 1.03587878e+00 -1.74506402e+00 3.80542397e-01 1.68099985e-01 1.99310869e-01 6.68563247e-02 1.06749579e-01 5.03529981e-02 7.28304610e-02 -2.35487908e-01 -3.46746564e-01 -7.49404073e-01 6.73355460e-02 1.54123500e-01 -7.39138350e-02 8.03318262e-01 8.27457458e-02 9.73368049e-01 -7.11538672e-01 -8.48592222e-01 4.48293537e-01 8.34606469e-01 -7.21649051e-01 1.34453431e-01 1.85980516e-05 6.29922867e-01 -1.64306015e-01 1.03836596e+00 8.73109460e-01 -1.33270606e-01 -7.29318988e-03 -3.79928946e-01 5.10609895e-02 -2.51282215e-01 -1.47977138e+00 1.90132558e+00 -4.56151105e-02 3.41377318e-01 2.32342198e-01 -2.85280734e-01 5.88109732e-01 1.50178820e-01 5.25413334e-01 -5.80237687e-01 5.81957810e-02 5.68640530e-02 -4.47283477e-01 -4.33061928e-01 5.85021794e-01 -1.05265245e-01 -1.92725345e-01 -1.12946749e-01 -1.63772702e-01 -1.07835636e-01 5.83329089e-02 1.08080044e-01 8.13572764e-01 6.60423696e-01 1.70082584e-01 -2.15074942e-01 7.57794559e-01 -3.22092660e-02 8.36520731e-01 5.55446327e-01 -3.53380978e-01 1.12794757e+00 2.58306801e-01 -8.78696918e-01 -1.00391912e+00 -1.03857517e+00 -1.70693249e-02 1.20635188e+00 4.71882015e-01 -4.52837765e-01 -9.36074317e-01 -4.39561009e-01 2.57511526e-01 2.23888978e-01 -8.21590006e-01 3.12344462e-01 -1.12588525e+00 -5.00191212e-01 5.48805892e-01 8.42754066e-01 6.10166192e-01 -1.09198737e+00 -8.97782266e-01 7.34844953e-02 -5.42064548e-01 -1.37051940e+00 -5.57606101e-01 -4.78998959e-01 -6.14920557e-01 -1.24153876e+00 -1.05304778e+00 -6.83184206e-01 7.48760045e-01 -5.89693571e-03 1.31478608e+00 3.81462276e-01 -5.29799521e-01 2.61098802e-01 -4.59126346e-02 -1.07729949e-01 1.31616458e-01 1.07579622e-02 8.42957199e-02 -1.91932097e-01 6.17730543e-02 -4.34637368e-01 -1.06746840e+00 5.81949592e-01 -3.76048476e-01 4.55663472e-01 3.35878879e-01 6.73572421e-01 9.58431482e-01 -2.71693319e-01 7.87272602e-02 -8.91232312e-01 -9.65181440e-02 -1.72700435e-01 -3.09607595e-01 1.47554263e-01 -1.76416218e-01 -3.13106865e-01 1.35857657e-01 -2.93886393e-01 -1.14734983e+00 2.68309176e-01 -1.32702261e-01 -4.36735451e-01 -2.24881783e-01 -2.90618658e-01 -2.90218621e-01 -1.37334034e-01 6.67261362e-01 -2.96898633e-01 -4.07965660e-01 -4.20315683e-01 3.86285990e-01 2.98232615e-01 9.90472615e-01 -9.20601547e-01 9.36004937e-01 8.85069549e-01 1.35067970e-01 -7.46092677e-01 -8.61086667e-01 -5.29496610e-01 -9.21799064e-01 -4.58251059e-01 1.35545051e+00 -1.16673088e+00 -7.16428757e-01 4.78063613e-01 -1.18327439e+00 -4.30862516e-01 -1.27817929e-01 -4.67681745e-03 -5.67268670e-01 3.12388599e-01 -7.48260796e-01 -6.75621212e-01 -6.89237416e-01 -1.12573159e+00 1.72101045e+00 1.30478084e-01 -4.51566815e-01 -4.54393804e-01 -1.71681270e-01 8.60467613e-01 9.25047994e-02 8.37823510e-01 5.85603416e-01 4.05039638e-02 -5.15545011e-01 -1.54502317e-01 -2.69486845e-01 -1.60705298e-01 -3.95974278e-01 -1.87888727e-01 -1.06601477e+00 -2.48218492e-01 -4.75527316e-01 -1.57426402e-01 5.68098783e-01 4.68910396e-01 9.59801555e-01 -7.70818964e-02 -5.45381546e-01 7.99392998e-01 1.13379633e+00 -3.99370164e-01 7.62518108e-01 3.53205353e-01 1.19166231e+00 7.92697966e-01 7.54507244e-01 3.68991345e-01 6.54604197e-01 1.06429589e+00 1.24208823e-01 -3.28313112e-01 -6.39054060e-01 -6.29994988e-01 -8.00233185e-02 3.38292480e-01 -5.70592046e-01 4.49859574e-02 -1.23774695e+00 4.43673611e-01 -1.96018636e+00 -8.84576619e-01 -4.99214321e-01 1.95237529e+00 5.89586973e-01 1.56906486e-01 3.97810280e-01 -1.25091940e-01 8.22105229e-01 1.63720906e-01 -4.49263304e-01 8.79668891e-02 -1.10347040e-01 1.55609161e-01 4.41492647e-01 5.36835551e-01 -1.37567115e+00 1.20011342e+00 5.60254431e+00 6.28985882e-01 -6.20356858e-01 2.70472437e-01 3.74039918e-01 -2.17094496e-01 1.71232015e-01 -1.80772990e-01 -9.68311071e-01 2.83338785e-01 1.77309692e-01 4.22841072e-01 1.54296815e-01 8.15555871e-01 8.62207562e-02 -3.41353536e-01 -1.17734110e+00 1.23613977e+00 2.05806017e-01 -9.10637915e-01 8.77474844e-02 -1.25265988e-02 8.56273890e-01 -3.15271705e-01 -2.44204327e-01 3.97912502e-01 -1.41705684e-02 -1.13970172e+00 1.14280331e+00 7.10279822e-01 9.54630077e-01 -6.92733884e-01 5.60127199e-01 2.69697726e-01 -1.67305052e+00 2.16650620e-01 -3.96679789e-01 3.34661715e-02 4.14062649e-01 3.53829026e-01 -3.63771588e-01 6.32676661e-01 1.02188075e+00 3.83526266e-01 -5.71089983e-01 8.12295556e-01 -4.70750958e-01 -1.28154054e-01 -3.90846491e-01 5.92102230e-01 -2.41343111e-01 1.39081255e-01 5.32645464e-01 1.26522052e+00 -1.75062735e-02 4.21716839e-01 4.32629675e-01 6.66606426e-01 -9.29166749e-02 1.42190188e-01 -2.00149938e-01 8.47176790e-01 3.74036938e-01 9.76380944e-01 -8.32725048e-01 -5.50606430e-01 -2.03551635e-01 1.23892677e+00 4.30797040e-01 3.46768022e-01 -1.11694646e+00 -2.99078599e-02 5.23678422e-01 6.89980209e-01 2.67279625e-01 7.93347042e-03 -5.12819290e-01 -1.05440259e+00 2.23188564e-01 -8.95328283e-01 4.76576775e-01 -9.18866575e-01 -1.15845466e+00 6.13796294e-01 2.32391715e-01 -1.07905269e+00 1.21073276e-01 -3.74918669e-01 -1.94345444e-01 8.38268876e-01 -1.22246552e+00 -1.66262245e+00 -8.14938247e-01 7.00994849e-01 7.41565883e-01 3.89073640e-01 5.93098640e-01 5.37800074e-01 -5.72177231e-01 5.79133868e-01 -8.32654536e-01 2.02103198e-01 8.95995915e-01 -1.17774439e+00 6.78740740e-01 8.73038411e-01 -2.63091445e-01 5.72308958e-01 8.07739437e-01 -1.23567915e+00 -1.22455359e+00 -1.17502570e+00 8.28166306e-01 -7.93920457e-01 6.06729127e-02 -4.87581134e-01 -8.96606803e-01 6.98168933e-01 -3.12069170e-02 3.75154406e-01 2.19340846e-01 4.68324386e-02 -4.10842836e-01 7.38473609e-02 -1.39736629e+00 7.40785599e-01 1.57332301e+00 -2.27624401e-01 -7.87763715e-01 2.38609672e-01 5.10687232e-01 -1.08554184e+00 -9.95134413e-01 6.90506995e-01 7.61561513e-01 -9.26346540e-01 1.49748468e+00 -2.82916576e-01 4.59403902e-01 -6.10092461e-01 -1.24487460e-01 -6.80888951e-01 -3.41271549e-01 -5.25018394e-01 -3.51205915e-01 8.19882214e-01 -3.76680307e-02 -2.39630505e-01 9.36055541e-01 9.98661339e-01 -8.45208485e-03 -9.05485451e-01 -9.01119173e-01 -3.86360973e-01 1.78543963e-02 -2.90950894e-01 5.65138161e-01 6.97807848e-01 -3.41394097e-01 9.59196687e-02 -6.55091584e-01 3.35453540e-01 8.78042579e-01 -1.53009780e-02 1.34370220e+00 -1.20186496e+00 -1.05103806e-01 -1.84379056e-01 -3.12850058e-01 -1.02643609e+00 1.61165316e-02 -5.30265510e-01 1.96354672e-01 -1.79300177e+00 2.27162078e-01 -3.17021459e-01 2.23203048e-01 5.93797803e-01 -4.03570116e-01 6.47990525e-01 3.73304576e-01 2.65167177e-01 -4.89866406e-01 4.55925524e-01 1.34834313e+00 1.41486535e-02 -1.48532569e-01 -2.98740804e-01 -2.84385860e-01 1.08875287e+00 4.22477454e-01 -4.90262240e-01 -1.35443211e-01 -5.22766232e-01 6.51260242e-02 4.02788259e-02 7.93774784e-01 -1.38013649e+00 3.63549024e-01 8.14267397e-02 7.90115535e-01 -9.68751907e-01 6.67680979e-01 -6.69766247e-01 4.62708235e-01 4.18040454e-01 2.34916106e-01 9.31616277e-02 2.27525786e-01 6.05210543e-01 1.82610720e-01 3.58650476e-01 9.01751876e-01 -2.44455427e-01 -6.89182520e-01 3.96670163e-01 1.61531448e-01 3.62699568e-01 1.00763583e+00 -4.80803370e-01 -2.10792989e-01 2.23875437e-02 -1.02378130e+00 3.74554992e-01 7.05685794e-01 5.38571239e-01 8.05192828e-01 -1.27314734e+00 -8.02922666e-01 1.08496115e-01 -5.23201115e-02 4.92042184e-01 6.43032670e-01 8.81293058e-01 -8.67651343e-01 2.09715411e-01 -1.82578832e-01 -7.78210998e-01 -1.42488408e+00 4.32948440e-01 4.48586404e-01 -2.52419740e-01 -1.13907456e+00 8.93524528e-01 3.49884659e-01 -4.68173474e-01 3.78044635e-01 -3.07456970e-01 -2.17188243e-02 -5.50709441e-02 4.83526438e-01 6.29863918e-01 -6.12243861e-02 -1.16121519e+00 -6.26179576e-01 1.28159213e+00 1.99740842e-01 -3.06123588e-02 1.17409766e+00 -9.00864452e-02 7.17758164e-02 1.16969785e-02 8.28604639e-01 1.55364916e-01 -1.41013598e+00 -1.03491142e-01 -3.41687739e-01 -6.77143514e-01 -3.44666600e-01 -7.13193536e-01 -9.71273780e-01 7.20077991e-01 6.50425434e-01 -5.16434729e-01 8.45993698e-01 5.59795424e-02 9.60519433e-01 -1.92785576e-01 7.76678443e-01 -1.21320367e+00 -4.09854539e-02 2.47804999e-01 1.24874806e+00 -1.07314026e+00 5.34487545e-01 -9.10022140e-01 -6.11348212e-01 7.22459376e-01 1.06158853e+00 -3.06619227e-01 3.88921052e-01 9.72269252e-02 -1.44873366e-01 -6.95793390e-01 -2.25116998e-01 -1.67731345e-01 6.88217878e-01 5.46335697e-01 2.71213979e-01 2.07367212e-01 -1.53705895e-01 4.93472010e-01 -3.50912869e-01 -5.04891574e-02 -3.57615910e-02 8.98449957e-01 -1.99880123e-01 -7.01126397e-01 -9.69991148e-01 9.35501605e-02 -3.57890755e-01 1.58410162e-01 -2.05432639e-01 1.06570399e+00 5.78177333e-01 7.70539582e-01 -7.95846283e-02 -1.39250010e-01 9.59987879e-01 -8.30956455e-03 4.69370991e-01 -6.10623002e-01 -6.89300835e-01 1.98256731e-01 2.08646595e-01 -9.26396966e-01 -4.44471925e-01 -6.54405475e-01 -1.39804256e+00 -4.16815460e-01 -3.04420274e-02 -5.62914133e-01 2.23724619e-01 7.75729656e-01 2.80449599e-01 5.46358645e-01 -2.60986537e-01 -1.41290379e+00 1.11945435e-01 -8.11514795e-01 -2.23291934e-01 7.99987972e-01 3.54047492e-02 -1.11635959e+00 -7.72066712e-02 7.88895190e-02]
[7.11115837097168, -0.9794793128967285]
973274a2-4bdc-4cf1-9185-76c03c550d1f
multimodal-semi-supervised-learning-for-text
2205.03873
null
https://arxiv.org/abs/2205.03873v1
https://arxiv.org/pdf/2205.03873v1.pdf
Multimodal Semi-Supervised Learning for Text Recognition
Until recently, the number of public real-world text images was insufficient for training scene text recognizers. Therefore, most modern training methods rely on synthetic data and operate in a fully supervised manner. Nevertheless, the amount of public real-world text images has increased significantly lately, including a great deal of unlabeled data. Leveraging these resources requires semi-supervised approaches; however, the few existing methods do not account for vision-language multimodality structure and therefore suboptimal for state-of-the-art multimodal architectures. To bridge this gap, we present semi-supervised learning for multimodal text recognizers (SemiMTR) that leverages unlabeled data at each modality training phase. Notably, our method refrains from extra training stages and maintains the current three-stage multimodal training procedure. Our algorithm starts by pretraining the vision model through a single-stage training that unifies self-supervised learning with supervised training. More specifically, we extend an existing visual representation learning algorithm and propose the first contrastive-based method for scene text recognition. After pretraining the language model on a text corpus, we fine-tune the entire network via a sequential, character-level, consistency regularization between weakly and strongly augmented views of text images. In a novel setup, consistency is enforced on each modality separately. Extensive experiments validate that our method outperforms the current training schemes and achieves state-of-the-art results on multiple scene text recognition benchmarks.
['Ron Litman', 'Shai Mazor', 'Roy Ganz', 'Aviad Aberdam']
2022-05-08
null
null
null
null
['scene-text-recognition']
['computer-vision']
[ 6.51075780e-01 -2.06482723e-01 -3.86854351e-01 -4.46319699e-01 -9.09380257e-01 -5.56088448e-01 1.09699023e+00 -1.60455346e-01 -5.84928572e-01 3.44816476e-01 9.11067650e-02 -4.65908617e-01 4.86916125e-01 -4.36612308e-01 -8.26812029e-01 -5.74577451e-01 7.59351671e-01 7.14760125e-01 1.18841365e-01 -1.65324688e-01 1.01112396e-01 1.44749895e-01 -1.47352397e+00 6.98012769e-01 1.00496829e+00 8.24436069e-01 2.30353937e-01 6.69607937e-01 -3.88117552e-01 1.05877817e+00 -7.57396668e-02 -5.90071738e-01 8.49815365e-03 -4.38682258e-01 -8.60126913e-01 8.10274124e-01 7.17372060e-01 -3.82173687e-01 -6.05294764e-01 9.64010179e-01 2.69684166e-01 6.10010475e-02 6.84463799e-01 -1.15164804e+00 -8.64823461e-01 5.10058343e-01 -6.74352288e-01 -3.24289680e-01 3.39506477e-01 2.46694997e-01 1.02173316e+00 -1.37379611e+00 5.60049772e-01 1.04297864e+00 4.71317053e-01 6.00968897e-01 -1.44014716e+00 -2.06707507e-01 3.62375021e-01 -4.04219069e-02 -1.32610941e+00 -6.91199124e-01 9.24150348e-01 -3.55342925e-01 1.07679963e+00 4.89538014e-02 3.88047576e-01 1.50574720e+00 -4.03474331e-01 1.16696692e+00 1.17415142e+00 -8.04413915e-01 9.07530338e-02 2.35716775e-01 -1.26871746e-02 1.03799188e+00 1.12442546e-01 -2.22987786e-01 -7.25745022e-01 1.38322994e-01 6.58286572e-01 9.05478969e-02 -2.06809238e-01 -9.19801593e-01 -1.46641147e+00 7.66271770e-01 9.53693315e-02 3.62837791e-01 2.14879159e-02 -1.09160751e-01 4.20267522e-01 2.43001089e-01 3.35935712e-01 -8.25755447e-02 -8.88959542e-02 -4.72483486e-02 -1.25866342e+00 -3.87557924e-01 6.93874538e-01 7.73783088e-01 7.91720808e-01 1.97634265e-01 9.27867070e-02 1.08423615e+00 5.70433319e-01 9.34723020e-01 5.77811301e-01 -5.30094683e-01 8.45180213e-01 9.14490044e-01 -2.35234171e-01 -7.58968830e-01 -9.43704769e-02 2.08190386e-03 -9.42545474e-01 -7.01752529e-02 6.22603238e-01 1.21615864e-01 -1.25395048e+00 1.38961232e+00 9.42854509e-02 -1.16067857e-01 2.94245154e-01 8.36105764e-01 8.87247860e-01 6.35539591e-01 -6.92078397e-02 -6.02670200e-02 1.13510382e+00 -1.44144964e+00 -4.65023071e-01 -4.10801053e-01 6.06153607e-01 -8.44289124e-01 1.37397122e+00 3.24596763e-01 -1.07610011e+00 -3.69289428e-01 -9.55742776e-01 -1.90281630e-01 -4.85664576e-01 5.46778202e-01 4.87150103e-01 8.06724727e-01 -9.89503622e-01 -1.28345802e-01 -1.02683163e+00 -7.51929045e-01 4.36679929e-01 2.06301004e-01 -6.35856688e-01 -4.14825976e-01 -7.38318980e-01 7.20825016e-01 3.87783080e-01 2.54330248e-01 -1.05840909e+00 -1.94702044e-01 -1.12852883e+00 -1.64036393e-01 5.73273122e-01 -6.52561188e-01 1.08139133e+00 -1.50750911e+00 -1.64808285e+00 1.24661362e+00 -2.65785515e-01 -2.02318281e-01 5.73581755e-01 9.55749527e-02 -3.04843128e-01 5.02691329e-01 -1.14403546e-01 8.47915113e-01 1.17629874e+00 -1.77540302e+00 -3.41604024e-01 -2.54427403e-01 -3.32977511e-02 3.57220709e-01 -6.92406893e-01 -1.07021131e-01 -9.87387300e-01 -4.49417740e-01 1.18315004e-01 -8.58810902e-01 -7.14209676e-02 -3.37309241e-02 -6.51763916e-01 1.44207671e-01 8.27669024e-01 -3.03617001e-01 8.03697765e-01 -2.03068900e+00 1.78266481e-01 1.13863043e-01 1.25646800e-01 2.11562574e-01 -4.84470755e-01 5.60462058e-01 -2.10940856e-02 -2.12556675e-01 -4.29413855e-01 -9.52911139e-01 2.38311499e-01 3.37760150e-01 -5.73605955e-01 4.80917424e-01 1.37476310e-01 1.13127613e+00 -6.86947405e-01 -8.19293499e-01 5.12082815e-01 4.61136639e-01 -4.59395587e-01 3.30873817e-01 -3.67417067e-01 3.44349027e-01 -2.62996197e-01 1.00231326e+00 6.07288659e-01 -6.56051040e-01 3.97670627e-01 -3.14799398e-01 -6.84938058e-02 -5.08896150e-02 -9.02976334e-01 2.10628581e+00 -3.45648050e-01 6.73238695e-01 -4.26736511e-02 -1.43697786e+00 6.21182978e-01 1.27660811e-01 4.26078677e-01 -7.30603576e-01 1.36292636e-01 2.27176726e-01 -4.56817299e-01 -6.17590308e-01 6.64287508e-01 3.41974124e-02 -6.28166571e-02 6.28470182e-01 2.53723860e-01 -1.22367382e-01 2.62324989e-01 4.95799929e-01 8.50654304e-01 4.07950133e-01 -2.51664165e-02 4.21154350e-01 6.35443807e-01 2.48690218e-01 -2.24711131e-02 8.56282175e-01 -9.60831344e-02 9.01771724e-01 3.17836046e-01 -1.99769780e-01 -1.06853867e+00 -1.04052055e+00 -8.32271799e-02 1.38963318e+00 1.40582174e-01 -2.53801227e-01 -7.07246482e-01 -1.05237174e+00 -1.39154822e-01 4.26928103e-01 -7.38855362e-01 9.17355120e-02 -2.52907634e-01 -7.51481295e-01 8.91467154e-01 5.72498381e-01 6.62701428e-01 -9.43853974e-01 -2.48182043e-01 -3.43214214e-01 -2.28344128e-01 -1.54200864e+00 -4.58574653e-01 1.71823382e-01 -7.65475869e-01 -9.10820365e-01 -8.08499515e-01 -1.03784394e+00 1.15209925e+00 6.13448679e-01 1.03015435e+00 7.59291425e-02 -2.07729265e-01 1.03356075e+00 -4.00539070e-01 1.85366482e-01 -5.08019507e-01 2.70801783e-02 -2.27276921e-01 4.31479782e-01 2.56216168e-01 -1.99788377e-01 -2.70446032e-01 2.03478023e-01 -1.20155561e+00 4.51221764e-01 8.59358370e-01 1.24918449e+00 5.22284687e-01 -3.65585595e-01 3.33177835e-01 -8.35701168e-01 2.11468950e-01 -9.75479782e-02 -4.77975994e-01 6.39480710e-01 -5.00641882e-01 -2.43668072e-02 5.86633086e-01 -6.40220404e-01 -1.37232924e+00 4.57162589e-01 1.66824505e-01 -6.53332531e-01 -4.44341928e-01 6.53289795e-01 -2.09117666e-01 -1.66974694e-01 4.02325124e-01 7.30241418e-01 5.08173183e-02 -1.15139559e-01 6.71858549e-01 8.21747959e-01 5.77899933e-01 -6.39918864e-01 1.03258801e+00 8.05541694e-01 -3.95301700e-01 -9.49164152e-01 -8.85655463e-01 -4.18803364e-01 -8.64710212e-01 -1.92771479e-01 7.53212035e-01 -1.08889222e+00 -6.75764203e-01 6.62631333e-01 -8.25891316e-01 -6.23689413e-01 -8.29190314e-02 4.42410797e-01 -6.22350335e-01 8.62795889e-01 -4.99155074e-01 -7.91657031e-01 -1.54452890e-01 -1.11495578e+00 1.33039343e+00 -1.45780861e-01 3.73469442e-01 -1.23374426e+00 1.81744501e-01 9.25916791e-01 2.89881945e-01 -2.80978829e-01 7.64528990e-01 -7.65050769e-01 -6.59519970e-01 -9.80504751e-02 -5.12708783e-01 3.35474044e-01 -1.13434857e-02 -7.45743364e-02 -1.07012832e+00 -3.67040753e-01 -3.85363191e-01 -1.16789317e+00 1.16470647e+00 -6.60661329e-03 8.56720805e-01 2.04621092e-03 -1.90046191e-01 6.04029715e-01 1.27915418e+00 -3.44013453e-01 5.10722697e-01 3.39759409e-01 1.20306695e+00 6.38770044e-01 3.28013003e-01 2.48431191e-01 7.47916579e-01 3.64067137e-01 4.60881829e-01 -4.58063066e-01 -2.40513794e-02 -4.74786490e-01 5.53816736e-01 8.14907968e-01 1.47807524e-01 -3.86291504e-01 -1.09169245e+00 4.56210017e-01 -2.04117680e+00 -9.32680130e-01 1.72014832e-01 2.15003610e+00 8.88902247e-01 -9.20594186e-02 -1.70582242e-03 -6.75593913e-02 5.53383291e-01 3.49348634e-01 -5.90935349e-01 4.11551706e-02 -4.83090520e-01 -2.33017802e-01 2.64539093e-01 2.56479949e-01 -1.30217850e+00 1.30290222e+00 6.01252699e+00 5.89106262e-01 -1.27334452e+00 -1.19744860e-01 5.12959301e-01 -5.95402494e-02 -3.32543463e-01 3.45146842e-02 -5.53069353e-01 -1.54027231e-02 6.36365712e-01 2.73796499e-01 5.38986385e-01 7.31200039e-01 -3.97824273e-02 -4.85743210e-02 -1.25483918e+00 1.33473432e+00 8.18512321e-01 -1.30373263e+00 4.42686081e-01 -6.89245760e-02 9.37945545e-01 2.08576381e-01 2.75645643e-01 4.29946184e-01 1.53525382e-01 -1.07346869e+00 6.40007317e-01 2.84818739e-01 8.68706763e-01 -3.89291257e-01 3.94286364e-01 3.38492393e-01 -1.11462593e+00 1.54269740e-01 -2.16525570e-01 4.44170237e-01 3.67844142e-02 1.54533833e-01 -5.44618070e-01 6.40435457e-01 3.55481744e-01 1.02580965e+00 -9.55578923e-01 5.07649124e-01 -2.09144014e-03 6.79353714e-01 -1.70686647e-01 1.07105099e-01 4.32773799e-01 -1.89174816e-01 2.73421228e-01 1.40982509e+00 -1.10240437e-01 -2.90873885e-01 4.83830571e-01 8.13661993e-01 -3.40676278e-01 3.10966820e-01 -7.60878384e-01 -4.37284589e-01 1.28863111e-01 1.33495891e+00 -7.40170300e-01 -3.95207822e-01 -9.36905444e-01 1.12700355e+00 4.28432435e-01 7.30082095e-01 -7.50890672e-01 -5.50544597e-02 -2.31201649e-01 -3.39087218e-01 4.63665247e-01 -2.93662339e-01 -2.97106236e-01 -1.85933959e+00 1.79968234e-02 -1.35946596e+00 4.21260715e-01 -8.50132823e-01 -1.35728228e+00 4.70822871e-01 -2.82541573e-01 -1.23638940e+00 -2.66691536e-01 -8.38969946e-01 -4.20835286e-01 4.82415348e-01 -1.65469587e+00 -1.93676591e+00 -4.13460046e-01 9.67637777e-01 7.92782724e-01 -4.70711589e-01 7.50761807e-01 5.44046089e-02 -7.61083782e-01 7.54263759e-01 1.98383987e-01 5.31122327e-01 9.19135809e-01 -1.12462616e+00 8.86167884e-02 9.82565939e-01 5.46401441e-01 5.83678246e-01 2.57941246e-01 -3.93445224e-01 -2.07366991e+00 -9.09396648e-01 5.74437797e-01 -5.54464281e-01 1.00001049e+00 -6.06132269e-01 -9.45984542e-01 8.60843420e-01 5.30555606e-01 8.97364095e-02 6.28111303e-01 6.35693744e-02 -7.74927258e-01 1.07953049e-01 -6.18601263e-01 7.69150555e-01 7.27074325e-01 -8.45230341e-01 -7.05479681e-01 3.55934888e-01 2.49693453e-01 -3.67760092e-01 -5.38287342e-01 3.42135191e-01 5.91781378e-01 -8.25559974e-01 9.04592276e-01 -5.55464923e-01 5.76451719e-01 -3.08391213e-01 -4.09895837e-01 -7.48492897e-01 3.62561554e-01 -3.67206126e-01 -1.38188183e-01 1.18338263e+00 4.91964310e-01 -4.40026909e-01 9.27066147e-01 4.48468268e-01 -1.40565336e-01 -4.89771932e-01 -7.26435900e-01 -4.88742501e-01 6.87105721e-03 -4.97640669e-01 -1.39784545e-01 1.36744869e+00 2.08401158e-01 6.44492626e-01 -5.18224597e-01 1.45217860e-02 8.19181561e-01 3.66682678e-01 1.05619979e+00 -8.46322238e-01 -4.25124109e-01 -4.66104448e-01 -1.40243918e-01 -1.46109414e+00 5.47947347e-01 -1.00198853e+00 2.26051435e-01 -1.53131151e+00 8.12885642e-01 -9.40399319e-02 3.93830054e-02 7.62351096e-01 -5.71796484e-02 4.58596706e-01 9.60852131e-02 3.98971349e-01 -1.15016484e+00 7.82327592e-01 1.06990743e+00 -5.50828397e-01 -1.11892685e-01 -5.38463950e-01 -4.21842098e-01 8.19743633e-01 4.72236305e-01 -4.89887036e-02 -5.08149207e-01 -6.56722426e-01 1.63752437e-01 -6.57821596e-02 5.66119492e-01 -5.69960117e-01 5.53969204e-01 -2.06144482e-01 4.71741557e-01 -7.21992254e-01 3.44469368e-01 -8.07488382e-01 -4.13354009e-01 2.01742817e-02 -5.71986675e-01 -2.53688157e-01 8.78771693e-02 7.19852448e-01 -3.32761675e-01 -7.01616630e-02 6.79652333e-01 2.32005358e-01 -7.12256610e-01 1.33739918e-01 -4.15137619e-01 1.02473430e-01 6.31275773e-01 -3.40007067e-01 -6.22897446e-01 -2.87111729e-01 -4.99690622e-01 2.96038806e-01 8.37489486e-01 3.75036865e-01 8.54771554e-01 -1.05097950e+00 -5.23523271e-01 2.50226617e-01 6.38981700e-01 -8.52621272e-02 2.60230869e-01 1.08351636e+00 -2.80441195e-01 4.52623248e-01 7.31028095e-02 -9.72703815e-01 -1.17348659e+00 5.93871415e-01 3.83751541e-01 -3.23551565e-01 -5.66372395e-01 3.35507751e-01 3.37293386e-01 -6.04295075e-01 4.53587025e-01 -2.70813257e-02 -8.12194720e-02 -1.10610187e-01 3.46018791e-01 -9.07574520e-02 -6.89376146e-02 -1.01072598e+00 -2.41333529e-01 6.17273092e-01 -3.05880934e-01 -5.26801646e-01 1.00052953e+00 -3.52170795e-01 -1.13147143e-02 6.95160389e-01 1.11207092e+00 -9.21690166e-02 -1.22070253e+00 -5.27724504e-01 -2.52212852e-01 -2.68963516e-01 8.45661983e-02 -8.01465988e-01 -9.34224427e-01 1.02326345e+00 3.84046346e-01 -3.35086435e-02 1.14702630e+00 -3.56733054e-02 4.95618105e-01 1.06704712e+00 6.18731119e-02 -1.21517551e+00 7.13642180e-01 6.68410361e-01 5.29632449e-01 -1.77642763e+00 -8.46061558e-02 -1.65416270e-01 -1.03908718e+00 1.11696482e+00 6.20715618e-01 2.88498670e-01 2.77857393e-01 1.21830076e-01 3.11948895e-01 -5.37628904e-02 -7.88243055e-01 -4.24711466e-01 5.34563303e-01 4.45606053e-01 5.75266004e-01 -3.16869438e-01 2.79279023e-01 2.69586146e-01 4.12811160e-01 -1.51819825e-01 2.97034889e-01 1.09343410e+00 -3.97233963e-01 -1.13035870e+00 -4.02588457e-01 1.69509500e-01 -1.65465519e-01 -3.69917899e-01 -6.49490595e-01 8.42770994e-01 -4.38285232e-01 9.91797924e-01 -3.07538658e-02 -2.85353929e-01 1.87242240e-01 2.40859121e-01 6.66996062e-01 -5.03105223e-01 -2.93722183e-01 3.46389353e-01 -5.45523465e-02 -3.40888917e-01 -8.37638497e-01 -5.96705258e-01 -1.16484785e+00 -1.12444460e-01 -3.54267687e-01 -1.22892015e-01 6.77358031e-01 1.12926996e+00 1.56494454e-01 2.02554226e-01 7.04462409e-01 -9.96517956e-01 -4.71340418e-01 -7.34339654e-01 -2.54525810e-01 5.97252369e-01 1.44233942e-01 -4.71093327e-01 -2.99728125e-01 6.68515146e-01]
[11.012587547302246, 1.6184743642807007]
22c013d8-f01a-436b-8fd1-8488dcada0a4
union-visual-translation-embedding-for-visual
1905.11624
null
https://arxiv.org/abs/1905.11624v3
https://arxiv.org/pdf/1905.11624v3.pdf
Contextual Translation Embedding for Visual Relationship Detection and Scene Graph Generation
Relations amongst entities play a central role in image understanding. Due to the complexity of modeling (subject, predicate, object) relation triplets, it is crucial to develop a method that can not only recognize seen relations, but also generalize to unseen cases. Inspired by a previously proposed visual translation embedding model, or VTransE, we propose a context-augmented translation embedding model that can capture both common and rare relations. The previous VTransE model maps entities and predicates into a low-dimensional embedding vector space where the predicate is interpreted as a translation vector between the embedded features of the bounding box regions of the subject and the object. Our model additionally incorporates the contextual information captured by the bounding box of the union of the subject and the object, and learns the embeddings guided by the constraint predicate $\approx$ union (subject, object) $-$ subject $-$ object. In a comprehensive evaluation on multiple challenging benchmarks, our approach outperforms previous translation-based models and comes close to or exceeds the state of the art across a range of settings, from small-scale to large-scale datasets, from common to previously unseen relations. It also achieves promising results for the recently introduced task of scene graph generation.
['Zih-Siou Hung', 'Svetlana Lazebnik', 'Arun Mallya']
2019-05-28
null
null
null
null
['visual-relationship-detection']
['computer-vision']
[ 3.55916172e-01 2.30404675e-01 -1.96854606e-01 -3.52062076e-01 -3.56063277e-01 -4.33554530e-01 8.60914350e-01 4.18239266e-01 -2.47900158e-01 3.54983747e-01 4.19536263e-01 -3.44261676e-01 -3.78151461e-02 -1.00016499e+00 -9.54776525e-01 -5.12967885e-01 -3.98561172e-02 6.37869656e-01 3.38397712e-01 -1.72165066e-01 -2.77101845e-01 3.76269281e-01 -1.48070240e+00 3.48035604e-01 6.22602165e-01 1.13520062e+00 -1.13920439e-02 1.96730882e-01 -1.50082767e-01 6.29009604e-01 -3.32335055e-01 -7.38517284e-01 1.92928717e-01 -2.89900184e-01 -1.01089191e+00 1.00481637e-01 6.88288271e-01 7.65471384e-02 -5.37415683e-01 8.93135726e-01 1.80933073e-01 2.34136596e-01 8.25793386e-01 -1.48258841e+00 -1.31781626e+00 3.13601375e-01 -5.70519328e-01 1.37709573e-01 5.44628561e-01 -2.43319407e-01 1.54631329e+00 -1.01642573e+00 1.10775387e+00 1.28754103e+00 2.46850610e-01 2.26537123e-01 -1.42152810e+00 -2.83082604e-01 4.54086870e-01 5.86430371e-01 -1.50729668e+00 -6.66177198e-02 5.93545854e-01 -5.58736384e-01 1.22871625e+00 2.92440087e-01 6.79747045e-01 9.28196490e-01 7.71464640e-03 7.65950859e-01 8.79395008e-01 -5.14664412e-01 2.18076687e-02 2.91052848e-01 -6.75283819e-02 8.01983535e-01 9.15666446e-02 -1.28587976e-01 -5.57658911e-01 -1.03029691e-01 5.31834424e-01 -3.60857099e-02 -4.09985483e-01 -9.83419657e-01 -1.48372078e+00 7.75062859e-01 9.98254061e-01 2.09520012e-01 -7.86987618e-02 2.85210133e-01 1.25649124e-01 8.29792321e-02 4.43185508e-01 2.77135104e-01 -3.24607909e-01 1.75449669e-01 -2.55043864e-01 1.22051239e-01 6.60998344e-01 1.26067173e+00 1.03276622e+00 -4.11692619e-01 -2.88972020e-01 6.24969959e-01 2.58376837e-01 1.08722880e-01 2.94423699e-02 -4.97050643e-01 7.63192892e-01 1.28541946e+00 1.53513774e-01 -1.17272031e+00 -1.57083169e-01 -1.38099134e-01 -6.66540384e-01 -6.08639903e-02 4.39523645e-02 3.63437444e-01 -9.35790420e-01 1.73846912e+00 6.66538954e-01 2.83187717e-01 7.77149051e-02 7.74285436e-01 1.17617273e+00 6.15994215e-01 1.70946777e-01 -1.55038023e-02 1.61407769e+00 -1.08360052e+00 -6.12919748e-01 -3.52166444e-01 6.27024829e-01 -5.89224100e-01 1.16353452e+00 -3.98509353e-01 -7.71038294e-01 -3.67046207e-01 -9.41646934e-01 -6.29162312e-01 -8.78909707e-01 2.01437876e-01 7.28080988e-01 1.05352618e-01 -8.98748219e-01 1.73765987e-01 -6.19453907e-01 -6.35735810e-01 4.04176593e-01 2.51482964e-01 -8.27040136e-01 -3.43453318e-01 -1.05308998e+00 1.03204668e+00 4.72465396e-01 1.33469820e-01 -4.02519554e-01 -5.14558613e-01 -1.45455444e+00 1.97378844e-01 6.39477909e-01 -9.65297937e-01 6.39107287e-01 -5.26569068e-01 -7.10579515e-01 9.88553405e-01 -4.20077860e-01 -3.47736716e-01 3.18128496e-01 -3.30065966e-01 -3.06103081e-01 4.97858748e-02 2.91957438e-01 7.88946152e-01 5.76605439e-01 -1.41398132e+00 -4.29189652e-01 -3.57841820e-01 3.40885699e-01 4.35707092e-01 -2.61880457e-01 -1.02308588e-02 -6.86278939e-01 -6.13850892e-01 3.92018080e-01 -8.06107163e-01 8.22771117e-02 3.24922830e-01 -6.64133668e-01 -4.59575832e-01 1.21739268e+00 -3.13100547e-01 1.08842552e+00 -2.35993576e+00 4.41713750e-01 2.36806329e-02 3.03821146e-01 8.05784315e-02 -6.11032657e-02 7.50297010e-01 -4.46316749e-01 1.02384128e-01 -2.39635587e-01 -2.70203263e-01 1.47729069e-01 4.79143381e-01 -4.39756930e-01 1.87124342e-01 4.84423786e-01 1.32115066e+00 -9.75631773e-01 -4.69633460e-01 2.35780001e-01 5.47403574e-01 -2.96466738e-01 2.89055705e-01 -3.30952644e-01 9.07541960e-02 -3.43990535e-01 5.47246635e-01 3.71414483e-01 -6.59271181e-01 8.88658464e-02 -5.89896023e-01 2.28118360e-01 2.07511067e-01 -1.20856130e+00 1.50854635e+00 -2.57632852e-01 7.24779963e-01 -5.06282210e-01 -9.09219742e-01 8.30993891e-01 1.84760988e-01 4.11257446e-01 -5.50138891e-01 4.25739363e-02 -1.03979297e-01 -7.79652447e-02 -6.17430627e-01 4.61190701e-01 7.07541453e-03 -9.70255733e-02 3.31888467e-01 1.66317731e-01 -1.62792161e-01 2.25547239e-01 5.72807729e-01 1.10572827e+00 2.95588791e-01 4.73676801e-01 2.12241616e-02 4.24027026e-01 -1.56197116e-01 5.09539843e-01 2.92018622e-01 -5.06427474e-02 6.19887114e-01 8.67274404e-01 -6.77702248e-01 -8.27091873e-01 -1.37681580e+00 4.68822801e-03 1.05853510e+00 6.38113379e-01 -7.88963377e-01 -1.86840028e-01 -8.58844936e-01 1.88257799e-01 5.43853998e-01 -1.04462111e+00 -1.75730512e-01 -4.77762848e-01 -4.68309879e-01 -3.72349955e-02 8.51486087e-01 5.07802069e-01 -9.66454744e-01 -3.64116669e-01 2.26604398e-02 -2.30209455e-01 -1.76569188e+00 -5.16416609e-01 -5.14422590e-03 -3.40208173e-01 -1.09818697e+00 -2.41024196e-01 -1.07399356e+00 8.52199495e-01 6.25938475e-02 1.20981848e+00 2.85556130e-02 -4.87246096e-01 4.45708752e-01 -4.66284096e-01 -2.00035319e-01 1.04846172e-01 -3.02476794e-01 -1.87554970e-01 3.89135957e-01 2.55519778e-01 -3.39050531e-01 -5.17235041e-01 3.40409994e-01 -9.03142154e-01 1.48335487e-01 3.84271950e-01 9.64524388e-01 8.03237021e-01 -7.64320940e-02 -5.05946539e-02 -8.05107415e-01 2.74580866e-01 -3.28136533e-01 -3.23993057e-01 7.45192945e-01 -3.55721563e-01 2.18365684e-01 2.97820866e-01 -5.43411136e-01 -6.82079554e-01 8.81966874e-02 3.79299700e-01 -5.17934978e-01 5.99260479e-02 3.08817297e-01 -3.71145487e-01 2.14021236e-01 4.09298211e-01 1.00369632e-01 -4.55890566e-01 -2.23472938e-01 8.26626182e-01 1.29057527e-01 5.46091259e-01 -4.56907004e-01 9.93396342e-01 8.09225321e-01 1.87313706e-01 -6.32750750e-01 -7.10667074e-01 -4.05108035e-01 -8.67529750e-01 1.54498890e-01 1.12441206e+00 -8.13054979e-01 -5.35621464e-01 -1.63316369e-01 -1.25715041e+00 -5.14336973e-02 -4.76723015e-01 3.77569318e-01 -3.83268595e-01 2.45441139e-01 -3.55589926e-01 -3.33576411e-01 -7.67117664e-02 -1.11912549e+00 1.31194067e+00 8.64565969e-02 -1.66472062e-01 -9.92504776e-01 -1.42153889e-01 2.40489066e-01 6.86750785e-02 5.47628760e-01 1.44341314e+00 -4.71604198e-01 -9.94293571e-01 -1.41364679e-01 -6.56529367e-01 1.24175556e-01 2.16468126e-01 2.01304734e-01 -5.79018295e-01 -2.76055876e-02 -5.89070261e-01 -2.47504011e-01 9.82718766e-01 -9.50132087e-02 7.68242300e-01 -2.90844172e-01 -7.26261795e-01 5.31822681e-01 1.32098091e+00 -1.05339684e-01 5.48977852e-01 2.04371423e-01 9.76540148e-01 5.85586548e-01 5.73674262e-01 9.78413448e-02 8.16657960e-01 9.09837842e-01 6.75961673e-01 -2.52229571e-01 -1.94921166e-01 -4.29686576e-01 2.08081380e-02 2.31863558e-01 1.42968357e-01 -3.75226349e-01 -9.58102882e-01 8.79300892e-01 -1.96124518e+00 -7.35126913e-01 -1.04785979e-01 2.01691461e+00 5.28875232e-01 5.91640621e-02 -1.11158952e-01 -1.21900544e-01 5.45589805e-01 4.40256715e-01 -3.35159808e-01 -4.27735806e-01 -1.76823094e-01 2.41947800e-01 9.33489576e-03 3.95616680e-01 -1.20589066e+00 1.23703992e+00 5.47018194e+00 3.71846259e-01 -8.18616152e-01 1.02808654e-01 2.91297734e-01 1.65677413e-01 -5.13078928e-01 2.95089871e-01 -5.89956164e-01 -3.51757258e-02 2.21385732e-01 -1.75638556e-01 2.14837551e-01 6.07981145e-01 -3.08602750e-01 -2.32999861e-01 -1.59087467e+00 8.70871246e-01 4.04840797e-01 -1.23449588e+00 2.83456236e-01 5.47390729e-02 7.12982833e-01 -2.60093719e-01 3.03719252e-01 3.04453015e-01 1.78151041e-01 -1.04851329e+00 5.38343310e-01 1.24829687e-01 9.45301116e-01 -3.35144639e-01 5.88303983e-01 3.98773737e-02 -1.69076335e+00 4.90281172e-02 -2.05221191e-01 -5.96760586e-02 1.68392703e-01 2.89993197e-01 -9.37984645e-01 6.57329738e-01 7.81843722e-01 8.37256730e-01 -5.72375238e-01 7.23568380e-01 -6.65216327e-01 -3.87160666e-02 -2.36461088e-01 6.02807216e-02 1.86312094e-01 -1.46443382e-01 3.31646621e-01 9.80650008e-01 -3.03937625e-02 1.90947905e-01 1.32842869e-01 9.94063199e-01 -3.48610520e-01 1.55991778e-01 -8.12760830e-01 -1.68650523e-02 3.45152348e-01 1.18242788e+00 -7.17497885e-01 -3.82408381e-01 -6.01044893e-01 1.07242978e+00 7.41315722e-01 5.91206014e-01 -9.01943505e-01 -2.13238418e-01 8.56106102e-01 4.40458953e-03 6.95018351e-01 -2.97093302e-01 -3.92672196e-02 -1.17977464e+00 4.35938895e-01 -4.16066289e-01 5.99933267e-01 -8.92622292e-01 -1.13359582e+00 7.89927304e-01 2.04925314e-01 -1.09218359e+00 -2.39152126e-02 -7.23869979e-01 -5.49025118e-01 7.90170312e-01 -1.32630038e+00 -1.55197179e+00 -4.32222068e-01 4.91483927e-01 2.49613449e-01 1.60252243e-01 9.48179960e-01 1.16887055e-01 -5.22868752e-01 4.31316346e-01 -2.71986753e-01 3.75835299e-01 5.04745662e-01 -1.23796189e+00 5.00744820e-01 7.84369886e-01 7.46390641e-01 7.05600441e-01 5.12768865e-01 -4.28712964e-01 -1.12056577e+00 -1.15821922e+00 1.23233998e+00 -7.84465730e-01 6.88511670e-01 -7.99979806e-01 -8.45107973e-01 1.10602868e+00 2.89345413e-01 5.99144280e-01 6.39984012e-01 2.24774212e-01 -9.22372639e-01 -1.25840604e-01 -8.40998530e-01 8.28479111e-01 1.27999628e+00 -7.23118961e-01 -7.19443858e-01 3.45120549e-01 8.81638050e-01 -6.90042973e-01 -8.55359852e-01 6.32884443e-01 4.59149122e-01 -7.79567480e-01 1.07017159e+00 -8.66513491e-01 5.90126872e-01 -3.78781378e-01 -3.40446383e-01 -1.10235322e+00 -3.08688760e-01 -1.77481577e-01 -3.90729636e-01 1.13761067e+00 6.59588456e-01 -4.18305546e-01 7.24531353e-01 6.98848546e-01 1.89111814e-01 -1.19006145e+00 -1.09672058e+00 -6.78119302e-01 -2.84438103e-01 -2.02230379e-01 6.83797002e-01 9.69637454e-01 -9.96664837e-02 4.58085805e-01 -1.32401973e-01 4.23409075e-01 2.81478733e-01 5.90419829e-01 8.16495836e-01 -8.53277087e-01 -2.74993032e-01 -1.61963210e-01 -9.98056352e-01 -1.07530129e+00 2.02210754e-01 -8.93782258e-01 -2.91072696e-01 -2.07156181e+00 3.15169245e-01 -3.25394660e-01 -2.38037705e-01 7.57293463e-01 -3.91359597e-01 3.02674294e-01 2.97031879e-01 -3.18131968e-02 -6.22465372e-01 8.46905828e-01 1.28994513e+00 -3.87776792e-01 5.23698553e-02 -4.04514730e-01 -6.03670716e-01 6.04615867e-01 2.39636615e-01 -3.50627214e-01 -4.93723005e-01 -7.63866007e-01 3.69058132e-01 -2.34772012e-01 6.15438044e-01 -6.05686069e-01 2.01761857e-01 -1.48515552e-01 2.31057957e-01 -4.63568091e-01 7.28440940e-01 -1.06431341e+00 4.24933843e-02 4.76386994e-02 -2.76988834e-01 2.15319380e-01 1.23572415e-02 7.86814272e-01 -2.94107586e-01 3.04182023e-01 3.34762394e-01 8.04396048e-02 -9.40198720e-01 4.51175839e-01 3.99414510e-01 1.44796416e-01 1.36805856e+00 -2.42644951e-01 -5.38785875e-01 -2.66580522e-01 -7.57295728e-01 2.30168223e-01 3.91463518e-01 8.39875996e-01 8.02783608e-01 -1.52213585e+00 -5.08889318e-01 2.05641612e-01 7.62500644e-01 2.08999753e-01 9.05057117e-02 7.03937113e-01 -2.41496503e-01 1.65725037e-01 6.24246076e-02 -6.96818411e-01 -1.34632587e+00 7.88900197e-01 2.48517826e-01 -1.95379302e-01 -5.90279818e-01 1.18698168e+00 5.28143585e-01 -3.19671512e-01 1.50034472e-01 -5.87382495e-01 -7.17644244e-02 -5.38320579e-02 2.30343923e-01 5.32564335e-02 -4.33897153e-02 -1.16692233e+00 -5.45812786e-01 6.91765726e-01 -1.67015165e-01 2.29330920e-02 1.07047856e+00 1.56605572e-01 -2.57736266e-01 4.96910810e-01 1.45984793e+00 -1.77335069e-01 -9.42906260e-01 -6.79087579e-01 -1.29117146e-01 -7.43666768e-01 -4.30603474e-01 -6.68081641e-01 -8.14494908e-01 8.32679331e-01 2.96239108e-01 8.23649764e-02 9.76680636e-01 7.34892070e-01 4.66962546e-01 1.98125049e-01 3.36506486e-01 -7.15802968e-01 4.14600044e-01 3.44474941e-01 1.10570419e+00 -1.37213778e+00 1.50561735e-01 -8.65151882e-01 -8.62174809e-01 7.06008554e-01 7.80209482e-01 9.56066102e-02 6.02241695e-01 -5.48692010e-02 -1.00995272e-01 -4.33388114e-01 -8.56420755e-01 -4.54548955e-01 6.67771697e-01 6.02974594e-01 3.27010125e-01 1.70460343e-01 -1.66534007e-01 5.19449413e-02 -3.44501734e-02 -4.77776438e-01 2.65537351e-02 9.92011487e-01 -6.75307810e-02 -1.22796488e+00 -3.41554359e-02 3.99409473e-01 4.83579896e-02 -1.41119599e-01 -7.11108625e-01 9.84755576e-01 5.21663249e-01 8.37509513e-01 1.88641652e-01 -3.53533119e-01 5.55436373e-01 -1.17551079e-02 4.30458695e-01 -8.03581119e-01 -3.14009547e-01 -2.18197584e-01 -8.41277242e-02 -6.33087695e-01 -5.10040343e-01 -6.09988689e-01 -1.26736176e+00 6.29004538e-02 -3.87137055e-01 -8.72740224e-02 3.55719000e-01 8.93263042e-01 5.14132082e-01 3.49607319e-01 3.56622159e-01 -3.58623862e-01 -7.49160051e-02 -6.80456400e-01 -4.27283317e-01 9.01090145e-01 2.23388523e-01 -1.01347792e+00 -9.89427194e-02 8.30987915e-02]
[10.41025161743164, 1.6513782739639282]
39d9eed7-6bb5-45e2-80f7-4f6e066b824c
learning-to-transfer-examples-for-partial
1903.12230
null
http://arxiv.org/abs/1903.12230v2
http://arxiv.org/pdf/1903.12230v2.pdf
Learning to Transfer Examples for Partial Domain Adaptation
Domain adaptation is critical for learning in new and unseen environments. With domain adversarial training, deep networks can learn disentangled and transferable features that effectively diminish the dataset shift between the source and target domains for knowledge transfer. In the era of Big Data, the ready availability of large-scale labeled datasets has stimulated wide interest in partial domain adaptation (PDA), which transfers a recognizer from a labeled large domain to an unlabeled small domain. It extends standard domain adaptation to the scenario where target labels are only a subset of source labels. Under the condition that target labels are unknown, the key challenge of PDA is how to transfer relevant examples in the shared classes to promote positive transfer, and ignore irrelevant ones in the specific classes to mitigate negative transfer. In this work, we propose a unified approach to PDA, Example Transfer Network (ETN), which jointly learns domain-invariant representations across the source and target domains, and a progressive weighting scheme that quantifies the transferability of source examples while controlling their importance to the learning task in the target domain. A thorough evaluation on several benchmark datasets shows that our approach achieves state-of-the-art results for partial domain adaptation tasks.
['Jian-Min Wang', 'Zhangjie Cao', 'Mingsheng Long', 'Qiang Yang', 'Kaichao You']
2019-03-28
learning-to-transfer-examples-for-partial-1
http://openaccess.thecvf.com/content_CVPR_2019/html/Cao_Learning_to_Transfer_Examples_for_Partial_Domain_Adaptation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/papers/Cao_Learning_to_Transfer_Examples_for_Partial_Domain_Adaptation_CVPR_2019_paper.pdf
cvpr-2019-6
['partial-domain-adaptation']
['methodology']
[ 5.85089147e-01 2.12062418e-01 -6.21455491e-01 -4.52203125e-01 -7.60389507e-01 -9.44251359e-01 5.19337833e-01 -1.03628121e-01 -4.16769087e-01 1.20018828e+00 5.46665564e-02 3.87387276e-02 -8.92970264e-02 -9.52843845e-01 -7.69657969e-01 -8.52386773e-01 2.02409998e-01 7.70203650e-01 2.48204753e-01 -4.23598230e-01 -2.82864600e-01 4.82319534e-01 -9.94900703e-01 3.62751871e-01 9.02326167e-01 8.49606335e-01 -9.43209156e-02 1.73619777e-01 -1.58226833e-01 6.43057227e-01 -7.02991128e-01 -3.49647075e-01 4.29724634e-01 -4.30510849e-01 -7.86827981e-01 -3.18936974e-01 4.43188876e-01 -2.78302401e-01 -4.66749519e-01 1.07980514e+00 5.25004685e-01 1.15929641e-01 9.12649453e-01 -1.44508910e+00 -1.22307134e+00 3.49077791e-01 -3.76528054e-01 2.36558497e-01 -4.94342186e-02 2.93995664e-02 8.07806551e-01 -8.18484604e-01 7.15541601e-01 1.05493987e+00 4.36342925e-01 1.09215426e+00 -1.41259897e+00 -1.18086588e+00 2.30414346e-01 6.74846843e-02 -1.11589503e+00 -2.46981800e-01 9.40657556e-01 -5.47036707e-01 4.82018739e-01 -1.12361938e-01 1.10799313e-01 1.55538166e+00 -2.84985274e-01 5.96010864e-01 1.06146955e+00 -4.75502700e-01 3.48520219e-01 6.41344607e-01 4.65779975e-02 -1.54333590e-02 2.52088696e-01 3.93226802e-01 -5.13301313e-01 -1.54758260e-01 5.59146702e-01 1.80446759e-01 -2.12514475e-01 -9.93789554e-01 -1.10037208e+00 9.64276373e-01 6.50508106e-01 1.02021240e-01 -2.37904161e-01 -4.26492631e-01 4.51872259e-01 6.36419058e-01 6.51262283e-01 5.65673292e-01 -9.78200138e-01 3.35105211e-01 -2.15788409e-01 2.62299478e-01 7.54768550e-01 1.09599566e+00 9.15483356e-01 -3.25725824e-02 -1.76005706e-01 9.80817854e-01 -1.41031832e-01 6.94526732e-01 5.30303657e-01 -5.97699165e-01 8.09542358e-01 9.16492701e-01 9.86671299e-02 -4.21791881e-01 6.03289120e-02 -4.82663274e-01 -8.10438216e-01 4.20064270e-01 5.26679099e-01 -3.53344321e-01 -8.99144769e-01 2.24193954e+00 4.87378120e-01 2.63445437e-01 4.92002606e-01 7.93048322e-01 6.96414292e-01 4.54572022e-01 4.48906511e-01 1.54941231e-01 1.01181960e+00 -7.84041166e-01 -3.68250340e-01 -7.39348114e-01 4.89544600e-01 -3.22281480e-01 1.13243806e+00 8.66122544e-02 -6.48448586e-01 -5.41513145e-01 -1.23711598e+00 -6.08834177e-02 -7.23042250e-01 -2.11727232e-01 3.12212825e-01 4.25879747e-01 -5.31612039e-01 4.39935207e-01 -2.68592477e-01 -2.07888514e-01 9.68761206e-01 5.21310866e-01 -6.99450433e-01 -5.79306066e-01 -1.64737177e+00 9.15509284e-01 6.13925040e-01 -4.67874199e-01 -1.07330370e+00 -9.85582113e-01 -8.27847064e-01 2.02439338e-01 3.28012913e-01 -5.64229548e-01 1.00776172e+00 -1.37179184e+00 -1.32060266e+00 1.18311691e+00 2.75785089e-01 -3.64722282e-01 3.90734643e-01 -2.26733863e-01 -6.27737820e-01 -6.70536533e-02 9.91544053e-02 7.42194891e-01 1.01936746e+00 -1.29300618e+00 -6.73020661e-01 -5.67777634e-01 3.01951226e-02 4.41682130e-01 -8.19003046e-01 -3.24939877e-01 9.94291976e-02 -7.05264509e-01 -3.55232358e-01 -9.22876954e-01 5.53303882e-02 9.37548950e-02 -4.84132245e-02 -2.18947500e-01 1.09442306e+00 -4.96612281e-01 6.99405015e-01 -2.37021375e+00 5.02257466e-01 -5.22097982e-02 3.39704096e-01 6.75628006e-01 -4.75226671e-01 1.51589856e-01 -3.96473259e-01 -1.86904281e-01 -4.06223744e-01 9.72878039e-02 -7.53807798e-02 3.62485200e-01 -7.82275796e-01 1.58525333e-01 5.06631792e-01 8.17203581e-01 -1.08696640e+00 -5.26013151e-02 -5.42961024e-02 3.26164216e-01 -4.46395814e-01 5.20578384e-01 -1.23959541e-01 6.63647354e-01 -6.17573977e-01 3.65056932e-01 8.04458857e-01 -1.84916094e-01 9.07044858e-02 1.63056746e-01 5.57058990e-01 1.92850515e-01 -8.92803431e-01 1.55836940e+00 -3.92236173e-01 4.22863454e-01 5.80539219e-02 -1.18014371e+00 1.25870204e+00 2.74097860e-01 2.00898558e-01 -7.45617986e-01 -1.19472057e-01 1.95432574e-01 8.64199623e-02 -1.90795988e-01 1.67066991e-01 -6.80218756e-01 -3.44514579e-01 4.05035347e-01 3.79821926e-01 -9.64349583e-02 -3.28254133e-01 5.45784310e-02 9.83733237e-01 1.29065409e-01 5.36996722e-01 -7.58209080e-02 4.92944419e-01 1.27184048e-01 6.95322156e-01 3.62363815e-01 -5.51033974e-01 4.27447349e-01 3.56198937e-01 -4.09382135e-01 -9.41664875e-01 -1.43269932e+00 7.23730326e-02 1.66955030e+00 1.54787481e-01 4.00422364e-01 -4.66874450e-01 -1.24422836e+00 4.34980720e-01 6.74099803e-01 -9.76664603e-01 -9.10615325e-01 -6.47440195e-01 -3.96403044e-01 4.24533218e-01 7.38323450e-01 3.47068042e-01 -1.23190570e+00 -3.96123007e-02 2.09503807e-02 4.33567278e-02 -9.74966705e-01 -4.02171224e-01 5.06430686e-01 -9.11991477e-01 -1.07260585e+00 -8.92044187e-01 -1.09260285e+00 8.63493741e-01 1.62208006e-01 1.13016629e+00 -6.56390131e-01 9.59762707e-02 1.20684437e-01 -2.10458279e-01 -5.42889297e-01 -4.88160461e-01 2.65390724e-01 9.05767158e-02 -2.30816733e-02 8.40569437e-01 -5.92079878e-01 -3.58079702e-01 4.62650865e-01 -9.26494539e-01 -2.87743866e-01 5.66841543e-01 1.04427898e+00 4.64784592e-01 -2.90815175e-01 1.15125489e+00 -1.33896291e+00 7.37141967e-01 -9.23007846e-01 -2.54844010e-01 3.06309640e-01 -4.29155856e-01 1.11546181e-01 8.78595233e-01 -1.05194235e+00 -1.17134428e+00 -4.55330685e-02 3.39702159e-01 -4.76424336e-01 -2.78693885e-01 1.81121930e-01 -6.70397401e-01 1.67847108e-02 1.13384521e+00 4.91500050e-02 -8.48319232e-02 -4.34253097e-01 5.41829944e-01 6.48647070e-01 5.58202982e-01 -7.20468521e-01 1.02718174e+00 4.27254081e-01 -2.58145511e-01 -2.24071905e-01 -1.06373048e+00 -2.78611809e-01 -9.74685669e-01 3.49427611e-01 5.51772058e-01 -1.12774765e+00 -4.35597822e-02 2.74217099e-01 -7.77325928e-01 -5.45373559e-01 -9.32419777e-01 2.96913713e-01 -3.80801231e-01 -1.08839169e-01 -1.03114650e-01 -1.03725836e-01 -8.78573582e-02 -8.58818769e-01 7.70898640e-01 2.55186856e-01 -2.78266013e-01 -1.25591028e+00 2.90604502e-01 2.55027652e-01 4.20274615e-01 2.65110880e-01 1.19414496e+00 -1.40616095e+00 -3.23259801e-01 -3.59673649e-01 -2.38629401e-01 8.42843890e-01 4.05812681e-01 -8.32131803e-01 -1.11205220e+00 -5.03358901e-01 -1.42801842e-02 -7.10143030e-01 8.15769970e-01 -1.63624361e-02 8.62841189e-01 -2.61031479e-01 -5.07102609e-01 5.58225095e-01 1.15947604e+00 1.95898205e-01 4.31986541e-01 3.84180516e-01 7.06740260e-01 6.16020262e-01 5.82065761e-01 1.52325198e-01 2.70264894e-01 4.68538612e-01 2.63852298e-01 -1.40438303e-01 -3.09809804e-01 -4.97057110e-01 3.17931622e-01 3.35651845e-01 3.84622872e-01 -2.58788764e-01 -8.90466094e-01 7.03562915e-01 -1.47476959e+00 -6.71100736e-01 5.50960302e-01 2.34054804e+00 1.20067728e+00 1.27183169e-01 -2.96816714e-02 -1.85057804e-01 9.75956976e-01 5.69143519e-02 -1.11866379e+00 -1.42404288e-01 -1.21387735e-01 4.14891571e-01 3.98381919e-01 3.38703483e-01 -1.18762326e+00 9.42460001e-01 5.94643450e+00 6.98559046e-01 -1.11934900e+00 1.65881604e-01 3.95613402e-01 -3.89960185e-02 -2.43145004e-01 -2.10029662e-01 -7.86433578e-01 3.38009655e-01 8.07274222e-01 -4.62218165e-01 3.46805245e-01 1.15951514e+00 -5.20159185e-01 5.48156857e-01 -1.54570925e+00 5.68169832e-01 -4.93711047e-02 -9.03488040e-01 2.40657166e-01 8.35834816e-02 9.79214072e-01 2.94054430e-02 4.64756221e-01 8.24858725e-01 6.76208377e-01 -9.66043711e-01 1.34324387e-01 9.38332081e-02 1.18236649e+00 -7.45944202e-01 5.57682812e-01 4.74094868e-01 -6.37868226e-01 -1.88506216e-01 -4.26689535e-01 -7.63258561e-02 -3.15510929e-01 1.84365466e-01 -1.19858634e+00 2.02140361e-01 4.07130033e-01 7.93981433e-01 -3.43420535e-01 5.21397531e-01 -5.70012689e-01 5.27604818e-01 6.24905974e-02 3.84787828e-01 -1.34783223e-01 3.00896377e-03 4.48790371e-01 8.57600391e-01 1.14125952e-01 8.73843655e-02 5.42698614e-02 8.06376874e-01 -7.17505395e-01 -1.72771022e-01 -8.71162713e-01 4.04029116e-02 7.50042856e-01 8.81871939e-01 -6.02866057e-03 -4.58156407e-01 -3.80057842e-01 9.82634544e-01 8.05764198e-01 6.27560019e-01 -4.90383506e-01 -4.27889377e-01 9.83440042e-01 2.57251468e-02 2.83624649e-01 2.05935404e-01 -3.76440197e-01 -1.16432250e+00 -1.69996861e-02 -9.16549325e-01 7.27219939e-01 -4.70899075e-01 -1.77185690e+00 4.35298085e-01 6.50975620e-03 -1.46864903e+00 -1.46708518e-01 -6.51150763e-01 -4.32098866e-01 1.22760355e+00 -1.87226188e+00 -1.04708982e+00 -2.37098798e-01 9.87682462e-01 4.00546342e-01 -5.80237985e-01 1.18813646e+00 3.03684145e-01 -2.40788028e-01 8.82600129e-01 5.86509526e-01 3.40828508e-01 1.35296500e+00 -1.21311975e+00 3.37737471e-01 5.00779092e-01 -2.60474354e-01 5.73848367e-01 4.50506270e-01 -5.11461198e-01 -8.18530083e-01 -1.30772436e+00 8.13935637e-01 -7.57240236e-01 5.02015173e-01 -5.83291411e-01 -1.33962047e+00 9.47922766e-01 -1.42566428e-01 4.74351764e-01 1.01861417e+00 1.07347295e-01 -9.50849712e-01 -3.01750928e-01 -1.50170124e+00 3.85031790e-01 8.50789368e-01 -6.27019227e-01 -1.01511824e+00 2.71644950e-01 9.10373151e-01 -3.07554126e-01 -8.40870321e-01 3.81217748e-01 3.33184749e-01 -4.71851230e-01 1.17257738e+00 -1.21537125e+00 5.44043362e-01 -5.19108260e-04 -5.35604134e-02 -1.86768365e+00 -4.09938425e-01 -9.37658548e-02 -2.00628117e-01 1.15773726e+00 3.39305907e-01 -8.43038559e-01 8.84007454e-01 6.47024930e-01 5.29059097e-02 -2.84697264e-01 -9.01276946e-01 -8.35831225e-01 6.76868618e-01 1.54368609e-01 7.70779312e-01 1.48284173e+00 -5.81186786e-02 6.27649248e-01 -3.23446810e-01 1.48323044e-01 5.13859510e-01 9.46105421e-02 7.32199490e-01 -1.57646489e+00 -1.46190777e-01 1.12675433e-03 -2.53524482e-01 -8.52737546e-01 5.14718711e-01 -1.09612405e+00 -1.70332745e-01 -1.11378884e+00 2.46092960e-01 -6.44591749e-01 -8.50193083e-01 6.98456943e-01 -3.63088071e-01 6.26538694e-02 7.84576163e-02 2.76093066e-01 -3.99391264e-01 6.62054718e-01 1.48575723e+00 -2.98491269e-01 -2.61490166e-01 4.50390652e-02 -1.10710657e+00 5.87095141e-01 7.42721200e-01 -8.85026813e-01 -7.03981400e-01 -5.42891741e-01 -2.00220093e-01 -2.21624523e-01 2.47762516e-01 -7.09555984e-01 3.96366455e-02 -3.30725104e-01 6.53557479e-01 5.58069870e-02 3.55531007e-01 -1.12936199e+00 -3.54565233e-01 3.25486630e-01 -7.04837680e-01 -5.23234725e-01 4.43690568e-01 7.51210511e-01 -3.00390542e-01 -3.71042676e-02 1.12766337e+00 9.01262760e-02 -9.36490715e-01 4.39702779e-01 3.43144327e-01 5.71306527e-01 1.35778511e+00 -1.83526073e-02 -5.90654731e-01 -4.74587753e-02 -8.84644508e-01 1.74873143e-01 4.14189368e-01 7.19540238e-01 5.25583267e-01 -1.62327039e+00 -8.56460392e-01 5.00187755e-01 5.19365191e-01 1.99171826e-01 2.98755139e-01 3.52135487e-02 9.78873596e-02 2.50370830e-01 -6.95523381e-01 -2.63262391e-01 -1.00650001e+00 9.03518438e-01 2.61260092e-01 -3.53835404e-01 -2.11224020e-01 1.08389795e+00 9.46692884e-01 -1.02016771e+00 1.21795617e-01 7.53828064e-02 -1.60980135e-01 -2.14514267e-02 5.97080529e-01 2.39345610e-01 -6.77268431e-02 -4.35038537e-01 -3.25550228e-01 1.85518116e-01 -5.17164946e-01 2.42121458e-01 1.43250203e+00 1.97291933e-02 2.54618913e-01 3.00007135e-01 1.37599182e+00 -2.24511355e-01 -1.66480649e+00 -7.92229474e-01 -1.71126157e-01 -4.22913164e-01 -3.66025388e-01 -1.24476302e+00 -8.15437436e-01 1.14168978e+00 7.00021565e-01 -1.76687330e-01 1.21576464e+00 1.42761648e-01 6.51452124e-01 2.93917626e-01 1.31491825e-01 -9.54286933e-01 3.06278497e-01 6.16602480e-01 8.58600497e-01 -1.44005477e+00 -2.29972973e-01 -2.87937462e-01 -9.35000420e-01 7.98917949e-01 9.77840424e-01 -2.68395156e-01 4.35723692e-01 3.56467478e-02 2.09056735e-02 1.71898812e-01 -5.90964079e-01 1.89774528e-01 3.40944558e-01 1.19240022e+00 1.04637019e-01 1.56560332e-01 3.65257770e-01 8.98660660e-01 1.29547685e-01 9.93282124e-02 1.20922245e-01 8.26386511e-01 -4.62512225e-01 -1.37043607e+00 -2.99262732e-01 2.38213852e-01 -2.03595340e-01 -7.26427836e-03 -6.25908017e-01 9.89720166e-01 2.57151186e-01 4.44808334e-01 -1.19219527e-01 -2.03497887e-01 6.47524655e-01 4.68776315e-01 3.76337498e-01 -1.00827515e+00 -4.10209388e-01 -5.34971237e-01 -3.21088433e-01 -5.43172099e-02 -1.78887695e-01 -3.77586752e-01 -1.07652330e+00 7.85347000e-02 -4.81937863e-02 1.00429855e-01 2.97306180e-01 8.44064713e-01 4.99513179e-01 5.20418584e-01 6.02702796e-01 -5.00607312e-01 -1.10833716e+00 -9.24525440e-01 -6.94832027e-01 7.99799085e-01 6.62787139e-01 -7.80823648e-01 -3.31110954e-01 2.21081555e-01]
[10.345235824584961, 3.1135683059692383]
a71d3389-8867-464a-903f-4d5ee910397a
self-supervised-interest-point-detection-and
2306.01938
null
https://arxiv.org/abs/2306.01938v1
https://arxiv.org/pdf/2306.01938v1.pdf
Self-supervised Interest Point Detection and Description for Fisheye and Perspective Images
Keypoint detection and matching is a fundamental task in many computer vision problems, from shape reconstruction, to structure from motion, to AR/VR applications and robotics. It is a well-studied problem with remarkable successes such as SIFT, and more recent deep learning approaches. While great robustness is exhibited by these techniques with respect to noise, illumination variation, and rigid motion transformations, less attention has been placed on image distortion sensitivity. In this work, we focus on the case when this is caused by the geometry of the cameras used for image acquisition, and consider the keypoint detection and matching problem between the hybrid scenario of a fisheye and a projective image. We build on a state-of-the-art approach and derive a self-supervised procedure that enables training an interest point detector and descriptor network. We also collected two new datasets for additional training and testing in this unexplored scenario, and we demonstrate that current approaches are suboptimal because they are designed to work in traditional projective conditions, while the proposed approach turns out to be the most effective.
['Gianfranco Doretto', 'Yu Gu', 'Shivang Patel', 'Marcela Mera-Trujillo']
2023-06-02
null
null
null
null
['interest-point-detection', 'keypoint-detection']
['computer-vision', 'computer-vision']
[ 2.46140063e-01 -2.30261818e-01 -4.47780564e-02 -1.38537586e-01 -4.98872072e-01 -5.76389790e-01 9.42532480e-01 5.33297285e-02 -5.91952443e-01 2.15127960e-01 -2.78666884e-01 -1.91670768e-02 -2.37800121e-01 -6.12935781e-01 -8.11153054e-01 -6.00180984e-01 -7.56367743e-02 4.68389273e-01 5.43297946e-01 -2.76139528e-01 4.73647922e-01 9.80201304e-01 -1.75162804e+00 -4.44978029e-01 4.35655415e-01 9.24230933e-01 9.45083871e-02 5.52311540e-01 9.27766338e-02 4.33884412e-01 -3.15743536e-01 -4.70808089e-01 6.02870226e-01 -1.39506698e-01 -5.59395909e-01 1.31047964e-01 8.96283686e-01 -2.73647547e-01 -5.86912394e-01 1.01351893e+00 5.32336473e-01 1.39742166e-01 4.78904933e-01 -1.33861494e+00 -3.54150563e-01 -1.01540133e-01 -5.47662437e-01 1.49274606e-03 4.99065161e-01 -1.43990874e-01 7.82513380e-01 -9.18359101e-01 9.37234163e-01 1.09200144e+00 8.17136049e-01 3.71739686e-01 -1.10974324e+00 -3.06288272e-01 -2.24203840e-01 4.09074068e-01 -1.30860758e+00 -5.90853572e-01 1.04415619e+00 -3.45370173e-01 5.48505068e-01 1.86800919e-02 6.15537167e-01 9.40315843e-01 1.77544579e-01 8.61479104e-01 9.13824677e-01 -6.15710735e-01 3.06852430e-01 2.17605770e-01 -2.48632193e-01 6.92346632e-01 6.54003546e-02 2.58512914e-01 -2.08666325e-01 -8.51044990e-03 1.00648654e+00 3.15062404e-01 -4.57418084e-01 -1.28882670e+00 -1.34823477e+00 7.13698864e-01 6.61387742e-01 3.05405021e-01 -2.36305848e-01 4.03888226e-02 1.08914286e-01 4.26263750e-01 1.13303363e-01 5.27431011e-01 -2.61635810e-01 -2.53237542e-02 -9.17456627e-01 3.88651907e-01 9.29756761e-01 1.15547228e+00 7.65102565e-01 -1.75173953e-01 3.46234173e-01 5.54539621e-01 2.40086719e-01 6.35084271e-01 1.98766038e-01 -8.95114064e-01 2.73350924e-01 5.26870430e-01 1.74243167e-01 -1.33210409e+00 -5.60734153e-01 -3.38665903e-01 -6.66366100e-01 4.48778063e-01 5.22850990e-01 2.51975268e-01 -5.94058096e-01 1.40091598e+00 4.36972171e-01 8.94093737e-02 -4.10630135e-03 9.86534715e-01 6.44322395e-01 2.55884677e-01 -5.20567238e-01 -1.58696979e-01 1.13474035e+00 -8.01405907e-01 -4.09409791e-01 -1.47483885e-01 4.50603902e-01 -9.15738285e-01 7.85485864e-01 4.92077798e-01 -1.05394828e+00 -4.92266983e-01 -1.20187259e+00 -1.62313789e-01 -4.44109648e-01 9.62245837e-02 4.37972516e-01 4.65300351e-01 -8.97566080e-01 7.83446014e-01 -7.37636864e-01 -8.88683081e-01 1.40744880e-01 5.15098691e-01 -7.75044978e-01 -2.97644287e-01 -7.77909100e-01 1.17546141e+00 7.65972957e-02 1.23341992e-01 -5.40956259e-01 -5.21182716e-01 -8.51688325e-01 -6.20387122e-02 5.63813627e-01 -7.10359752e-01 1.07717681e+00 -5.82562506e-01 -1.61219823e+00 9.40146804e-01 1.38028175e-01 -4.86895174e-01 8.11702907e-01 -2.50064135e-01 -1.07098617e-01 2.22900465e-01 -1.30542487e-01 6.01763964e-01 9.81224775e-01 -1.20279098e+00 -4.93555874e-01 -6.66700363e-01 1.79157197e-01 2.33693361e-01 -9.27255005e-02 2.14941576e-02 -5.26515782e-01 -2.75140852e-01 4.65944409e-01 -1.16344368e+00 -8.00006911e-02 3.56830299e-01 -1.76783010e-01 -2.83643603e-02 9.80719090e-01 -1.77254587e-01 5.43010354e-01 -1.97799695e+00 1.86945006e-01 7.45763034e-02 -8.39548707e-02 4.50150758e-01 2.45123506e-02 7.35435188e-01 7.87579492e-02 -3.22662055e-01 -5.18046655e-02 -4.70859319e-01 8.54369104e-02 7.99389482e-02 -3.13982785e-01 9.63350296e-01 1.68913126e-01 6.85761154e-01 -6.65882409e-01 -3.32466453e-01 6.77844644e-01 7.24169970e-01 -3.85923713e-01 1.67323485e-01 1.35952681e-01 4.97355610e-01 -2.82659024e-01 7.11845517e-01 8.37220371e-01 1.65396094e-01 -2.64976203e-01 -3.83697361e-01 -3.99541408e-01 -8.65147114e-02 -1.53604960e+00 1.85693645e+00 -3.63001883e-01 6.72929645e-01 1.72940403e-01 -1.08768797e+00 1.08545828e+00 1.97913870e-02 5.76551318e-01 -8.35971296e-01 1.56904176e-01 2.64995456e-01 -1.37663066e-01 -5.62988222e-01 7.28076100e-01 6.14798665e-02 1.97113276e-01 6.69038370e-02 7.17812125e-03 -4.33713078e-01 -4.15433832e-02 -7.01821819e-02 1.08508825e+00 3.54370773e-01 4.62366462e-01 -1.33131459e-01 6.59193575e-01 3.50614972e-02 3.50178361e-01 6.53347135e-01 -1.49715051e-01 9.46598172e-01 2.36413851e-01 -6.40483499e-01 -1.28774893e+00 -7.39464045e-01 -3.44651639e-01 5.19174695e-01 5.20221412e-01 -2.20793650e-01 -5.07115781e-01 -3.96188319e-01 9.55722481e-02 2.38034591e-01 -3.90602142e-01 -2.53445208e-01 -7.40044057e-01 -1.57874718e-01 3.65915656e-01 3.56096596e-01 6.03400826e-01 -8.46322179e-01 -1.03855550e+00 1.73875138e-01 2.96103776e-01 -1.39815748e+00 -1.21581845e-01 6.63610101e-02 -7.90295422e-01 -1.28846800e+00 -9.29070294e-01 -6.42402172e-01 4.20277804e-01 6.03564680e-01 9.27863896e-01 -1.05640955e-01 -4.25017595e-01 7.95721412e-01 -3.21694434e-01 -3.08381438e-01 -2.88103372e-01 4.84389663e-02 1.88152745e-01 6.16849437e-02 2.93604851e-01 -5.18167496e-01 -7.95166492e-01 6.59246445e-01 -9.81087923e-01 -2.51996011e-01 7.32829750e-01 6.94591820e-01 5.14890313e-01 -1.34431154e-01 -4.09600660e-02 -5.24187505e-01 1.44997418e-01 -7.71704242e-02 -8.90655994e-01 1.62009612e-01 -4.05330628e-01 -4.12431583e-02 6.03490174e-01 -3.46102625e-01 -5.45937121e-01 5.74054241e-01 -2.50130951e-01 -7.40707397e-01 -4.60502386e-01 1.79727226e-01 -2.50008792e-01 -8.04902434e-01 5.31558216e-01 3.17565054e-01 1.29204541e-01 -4.69232291e-01 2.82488674e-01 4.92436856e-01 7.19316483e-01 -3.05906534e-01 1.10667634e+00 8.69739413e-01 4.86947149e-01 -1.21477461e+00 -3.19745749e-01 -7.52147377e-01 -1.08534908e+00 -1.15553327e-01 5.52370787e-01 -6.79610193e-01 -7.50287652e-01 3.90774399e-01 -1.25813675e+00 2.43120715e-01 -1.99166462e-01 5.50905585e-01 -8.58758569e-01 6.59233630e-01 -1.45526096e-01 -6.36015832e-01 -1.72085807e-01 -1.30598104e+00 1.23683023e+00 2.44377702e-01 3.25380653e-01 -1.01710868e+00 2.43377671e-01 1.53922932e-02 4.39412087e-01 2.68179268e-01 5.42198360e-01 -5.74743867e-01 -8.69401693e-01 -4.64775383e-01 -1.46893963e-01 1.69038281e-01 -1.00734144e-01 1.77596509e-02 -9.90451634e-01 -5.64746201e-01 1.18470877e-01 -2.26808533e-01 7.17036545e-01 1.34757385e-01 5.60777247e-01 1.55817941e-01 -3.51848215e-01 9.23506916e-01 1.55012727e+00 1.51609659e-01 6.64706171e-01 6.76651061e-01 6.94557786e-01 7.97407150e-01 7.00448513e-01 1.81538075e-01 4.52488095e-01 1.17623031e+00 8.25159729e-01 -2.54496485e-01 9.65386778e-02 -1.92146376e-01 1.17883965e-01 3.36932242e-01 -1.32077783e-01 6.74011260e-02 -9.25552070e-01 4.25762743e-01 -1.83418691e+00 -8.66103649e-01 -1.39584407e-01 2.49572635e+00 1.99186876e-01 -8.50404054e-02 -9.89835486e-02 2.20011815e-01 4.88656759e-01 -1.17780864e-02 -4.59169894e-01 7.78965233e-03 -2.37091899e-01 -1.08856512e-02 5.95070779e-01 9.36928988e-02 -1.32073855e+00 9.57938194e-01 5.93890190e+00 3.59994739e-01 -1.42751682e+00 -2.57113427e-01 -5.49705103e-02 3.76190633e-01 7.64293224e-02 9.90553647e-02 -7.53250062e-01 8.36239159e-02 4.94006693e-01 2.11187884e-01 1.32242322e-01 9.66669738e-01 -8.28483179e-02 -1.78246900e-01 -1.36775637e+00 1.37390482e+00 4.49512362e-01 -1.07484126e+00 -2.21541777e-01 2.07437053e-01 4.02087510e-01 3.40219326e-02 1.31843120e-01 -1.88493058e-02 -3.05004269e-01 -6.82758987e-01 5.11392117e-01 3.26933056e-01 4.62330669e-01 -5.71655869e-01 7.73202181e-01 4.15205836e-01 -1.03422332e+00 -9.18706208e-02 -7.47944832e-01 1.13835000e-01 -3.81803326e-02 2.61770904e-01 -7.13466346e-01 5.81408560e-01 6.21328473e-01 7.85764992e-01 -6.34366989e-01 1.47776353e+00 -5.97270466e-02 -3.93709019e-02 -4.21837896e-01 1.62319601e-01 1.72550291e-01 -2.71507382e-01 7.18938291e-01 9.61860836e-01 4.21216518e-01 -1.73710391e-01 1.64592549e-01 7.24244893e-01 5.91439418e-02 1.30987197e-01 -1.12010717e+00 3.73680264e-01 2.38097966e-01 1.50899506e+00 -9.15209055e-01 -1.53152868e-02 -5.92299998e-01 9.06467259e-01 1.71116486e-01 1.43078759e-01 -5.43853641e-01 -4.82543141e-01 4.95970726e-01 2.88379818e-01 6.08613491e-01 -5.94249547e-01 3.02858055e-01 -1.42010820e+00 1.71426281e-01 -6.46583617e-01 4.98480015e-02 -6.94623053e-01 -9.15307045e-01 5.15672863e-01 9.90495756e-02 -1.68714345e+00 -3.89364600e-01 -8.15453529e-01 -6.08495831e-01 5.02822280e-01 -1.83733380e+00 -1.24089587e+00 -4.74322498e-01 8.28256011e-01 4.93334502e-01 -1.60542548e-01 6.65221274e-01 3.99649233e-01 -1.76170275e-01 4.45637554e-01 3.40747058e-01 -2.41514407e-02 9.04258132e-01 -1.12568188e+00 4.02639151e-01 9.96463239e-01 3.76904249e-01 6.46834254e-01 8.91007841e-01 -9.72077250e-02 -2.21718740e+00 -6.82078183e-01 5.38219631e-01 -4.05324161e-01 5.63278437e-01 -5.63362360e-01 -8.48388910e-01 5.02791405e-01 -2.74003688e-02 3.67541820e-01 1.60831541e-01 -2.23240569e-01 -3.15159261e-01 -1.73641086e-01 -1.12560439e+00 4.06937093e-01 9.75505650e-01 -4.34224993e-01 -6.63381398e-01 1.39648929e-01 3.03996086e-01 -6.30487084e-01 -8.34436774e-01 4.52337623e-01 5.79282224e-01 -1.23531890e+00 1.12308300e+00 -2.46947154e-01 1.68543383e-01 -4.17104781e-01 -1.67839810e-01 -1.34934545e+00 -1.81498200e-01 -5.81310868e-01 6.40745014e-02 1.14016187e+00 -1.82663456e-01 -5.44738114e-01 8.88535917e-01 3.00708026e-01 -1.01721309e-01 -4.89195794e-01 -1.07235968e+00 -8.16063464e-01 -1.11218400e-01 -1.77890718e-01 3.35774899e-01 9.08867002e-01 -3.47442508e-01 3.03396940e-01 -3.71860296e-01 2.75432378e-01 7.52091885e-01 2.85061032e-01 1.32935190e+00 -1.50329125e+00 -3.28303687e-02 -2.63244152e-01 -9.96933639e-01 -1.18052292e+00 3.15042883e-02 -4.55774277e-01 9.39896479e-02 -1.24904084e+00 -2.34240472e-01 -3.96690845e-01 1.09092079e-01 -4.30801660e-02 2.30727464e-01 3.60663921e-01 3.41270238e-01 4.33690578e-01 -5.54582298e-01 5.99951386e-01 1.05518413e+00 -1.29396766e-01 -2.52988130e-01 2.98743904e-01 -2.70660698e-01 7.59291172e-01 4.17868942e-01 -2.30786830e-01 -2.52086222e-01 -4.68850315e-01 2.17458233e-01 1.34488195e-01 5.69021583e-01 -1.20944798e+00 6.73904300e-01 1.90161228e-01 3.36673200e-01 -6.14724040e-01 4.59559947e-01 -1.22569942e+00 7.27468729e-02 2.87276506e-01 4.56227325e-02 3.43166977e-01 -3.33866403e-02 5.01636803e-01 -3.48008037e-01 -2.66363800e-01 8.66552055e-01 -1.79674536e-01 -9.27608311e-01 4.23314095e-01 1.97792158e-01 -2.10997701e-01 1.07224953e+00 -6.48016691e-01 -1.89962313e-01 -3.03371668e-01 -3.64637703e-01 -9.96261090e-02 8.92309546e-01 5.33110678e-01 8.73536885e-01 -1.16275501e+00 -4.73658204e-01 4.65032071e-01 4.01030838e-01 1.53698251e-01 -2.43735872e-02 1.11303496e+00 -7.84448683e-01 5.12140870e-01 -3.45495373e-01 -1.02618015e+00 -1.26249385e+00 8.21777403e-01 2.89998978e-01 9.25649852e-02 -9.42327261e-01 3.89019728e-01 2.22313982e-02 -4.85066205e-01 4.15964633e-01 -1.56035140e-01 -2.65323371e-01 -5.04601225e-02 4.45583880e-01 4.03184295e-01 4.15177464e-01 -9.82038438e-01 -3.92776549e-01 1.28618395e+00 -1.13100007e-01 2.06069067e-01 1.27667618e+00 -1.24948360e-01 1.25698283e-01 2.19717517e-01 1.39752424e+00 -2.60396563e-02 -1.17580450e+00 -4.23774242e-01 9.75608304e-02 -6.80145025e-01 2.72244941e-02 -1.78336754e-01 -8.55334520e-01 1.11755598e+00 7.84768283e-01 3.79065126e-01 9.75725532e-01 -4.72258516e-02 5.47291100e-01 6.51804864e-01 6.28756285e-01 -8.73752713e-01 -9.44836512e-02 5.69623530e-01 7.46820688e-01 -1.47963619e+00 1.82985634e-01 -2.62823880e-01 -2.97667980e-01 1.36561120e+00 3.26254547e-01 -3.95609856e-01 5.11311471e-01 8.10653940e-02 6.86339587e-02 -1.22396119e-01 -3.42514902e-01 -2.96684682e-01 2.69378901e-01 7.26583123e-01 8.02226439e-02 -4.94895399e-01 -3.99222318e-03 -2.36187294e-01 -1.64701015e-01 -2.75995024e-02 5.47226846e-01 1.08374906e+00 -3.07846636e-01 -1.08321035e+00 -5.30301213e-01 -6.87238798e-02 -2.65094966e-01 2.32256383e-01 -4.69880342e-01 1.26781893e+00 -7.39192143e-02 4.55592483e-01 6.45289123e-02 -3.22092384e-01 7.48858094e-01 -2.36487329e-01 7.30281889e-01 -3.23607773e-01 -4.74542975e-01 9.16398410e-03 -4.26459581e-01 -6.93456829e-01 -7.52428234e-01 -7.72404253e-01 -8.72599363e-01 -1.11268699e-01 -3.92888665e-01 2.15097405e-02 1.05807567e+00 8.37739825e-01 2.85318077e-01 8.63966718e-02 7.44762123e-01 -1.29071677e+00 -7.35928655e-01 -5.54890752e-01 -6.06001139e-01 4.98314947e-01 6.21271431e-01 -8.77882838e-01 -3.36536050e-01 -2.01090813e-01]
[7.837305068969727, -2.195344924926758]
d753a1ba-5b1e-4d62-849e-7622700956a1
dpdnet-a-robust-people-detector-using-deep
2006.01053
null
https://arxiv.org/abs/2006.01053v1
https://arxiv.org/pdf/2006.01053v1.pdf
DPDnet: A Robust People Detector using Deep Learning with an Overhead Depth Camera
In this paper we propose a method based on deep learning that detects multiple people from a single overhead depth image with high reliability. Our neural network, called DPDnet, is based on two fully-convolutional encoder-decoder neural blocks based on residual layers. The Main Block takes a depth image as input and generates a pixel-wise confidence map, where each detected person in the image is represented by a Gaussian-like distribution. The refinement block combines the depth image and the output from the main block, to refine the confidence map. Both blocks are simultaneously trained end-to-end using depth images and head position labels. The experimental work shows that DPDNet outperforms state-of-the-art methods, with accuracies greater than 99% in three different publicly available datasets, without retraining not fine-tuning. In addition, the computational complexity of our proposal is independent of the number of people in the scene and runs in real time using conventional GPUs.
['Javier Macias-Guarasa', 'David Casillas-Perez', 'Cristina Losada-Gutierrez', 'Roberto Martin-Lopez', 'David Fuentes-Jimenez', 'Daniel Pizarro', 'Carlos A. Luna']
2020-06-01
null
null
null
null
['head-detection']
['computer-vision']
[-5.54712377e-02 3.07792783e-01 4.24472839e-01 -5.29257298e-01 -5.10249317e-01 9.37908143e-02 3.35755110e-01 2.61449605e-01 -9.08475518e-01 6.41636968e-01 -8.12922493e-02 2.84665853e-01 4.37060237e-01 -8.57987881e-01 -7.38381684e-01 -5.60335636e-01 -8.10671672e-02 8.11391354e-01 6.96998179e-01 1.96372971e-01 8.74583237e-03 2.08693355e-01 -1.82887578e+00 2.12200478e-01 5.71639001e-01 1.21933925e+00 1.15109667e-01 1.08003414e+00 3.85917276e-01 7.30988562e-01 -6.39634073e-01 -6.28903389e-01 2.92062908e-01 -2.78400481e-02 -3.37075353e-01 2.87646890e-01 7.04363406e-01 -7.97153115e-01 -5.97859979e-01 9.19618189e-01 9.36702609e-01 -2.30823755e-01 4.92066205e-01 -9.36925530e-01 -2.38451600e-01 1.19122289e-01 -7.98174500e-01 8.97215977e-02 4.75235015e-01 1.41146719e-01 3.31165701e-01 -9.07770872e-01 2.54797846e-01 1.45422614e+00 8.61696243e-01 5.77427685e-01 -9.42974508e-01 -7.38890529e-01 -1.48187364e-02 3.84805202e-02 -1.50323200e+00 -1.06001392e-01 1.47663251e-01 -5.52724898e-01 8.70347619e-01 -2.60989249e-01 8.07565212e-01 9.57344472e-01 9.08610821e-02 8.50170672e-01 8.47541392e-01 -4.42648858e-01 2.63731211e-01 1.67787611e-01 1.01492763e-01 1.06948090e+00 6.96966767e-01 1.18026599e-01 -5.39575636e-01 9.79024544e-03 8.60917211e-01 1.19329140e-01 1.25504166e-01 -3.37426484e-01 -6.39236152e-01 7.74265587e-01 5.08366227e-01 1.25373796e-01 -5.01867652e-01 1.45578146e-01 3.59346300e-01 -2.70241141e-01 4.66281503e-01 -4.87473160e-01 -3.73329490e-01 1.54752238e-02 -1.30588496e+00 5.12266636e-01 6.17552161e-01 6.92754209e-01 7.73654580e-01 -4.97438848e-01 -1.65092289e-01 5.13889968e-01 4.47262019e-01 5.98124206e-01 3.02714348e-01 -7.38861501e-01 4.55950558e-01 8.11082006e-01 9.21180397e-02 -8.68110418e-01 -7.94206977e-01 -3.81989241e-01 -9.98797178e-01 5.90358138e-01 5.42497814e-01 -6.88100100e-01 -8.78120124e-01 1.38842738e+00 4.97607678e-01 2.11321965e-01 -1.85188219e-01 1.06434357e+00 7.76000321e-01 4.73111540e-01 -1.07846841e-01 2.95351088e-01 1.51407683e+00 -1.12844837e+00 -3.01139712e-01 -5.07115602e-01 3.13698530e-01 -3.42785895e-01 3.45817447e-01 7.38813818e-01 -1.30810368e+00 -1.04132068e+00 -1.15302634e+00 -2.10716367e-01 -2.05183998e-01 6.73869669e-01 2.89776832e-01 8.26485872e-01 -1.34567893e+00 4.54038173e-01 -1.04344773e+00 -4.52843904e-01 4.05372649e-01 6.13993883e-01 -4.86070335e-01 -1.69315562e-02 -8.13065648e-01 7.20262766e-01 5.63292205e-01 2.93107897e-01 -8.26480031e-01 -1.41147450e-01 -1.07031250e+00 2.20794836e-03 2.82333139e-03 -9.39468324e-01 1.38071871e+00 -8.90146077e-01 -1.42793071e+00 1.27341890e+00 -3.11913699e-01 -6.23537838e-01 1.03922379e+00 -6.13635182e-01 -2.02579170e-01 1.40049532e-01 3.06958139e-01 9.27661836e-01 8.25237632e-01 -9.38798487e-01 -1.32532537e+00 -6.37913167e-01 -2.29194373e-01 4.24908251e-02 4.03048880e-02 8.49449486e-02 -1.33228731e+00 -2.12740660e-01 -3.42049897e-02 -8.33668828e-01 -3.78471226e-01 3.39123547e-01 -5.40331125e-01 -2.73367196e-01 4.89048839e-01 -5.65903604e-01 8.70854497e-01 -2.13837028e+00 5.35026491e-02 2.73018956e-01 4.33058202e-01 2.64220476e-01 3.14848483e-01 -6.97614849e-02 1.85383633e-01 -7.15663791e-01 -1.73926651e-01 -1.08043873e+00 -1.48219749e-01 -8.00266862e-03 4.25902188e-01 8.25921059e-01 8.52067322e-02 4.35510218e-01 -8.61583650e-01 -5.83495915e-01 4.73143667e-01 8.96357119e-01 -5.31189978e-01 5.28492689e-01 2.76642919e-01 2.79258668e-01 -2.79217754e-02 3.55938196e-01 1.08210802e+00 -2.26139128e-01 2.02259924e-02 2.22737014e-01 -2.95019746e-01 -8.88624266e-02 -1.51783609e+00 1.53004694e+00 -1.39034986e-01 7.88717985e-01 3.26571539e-02 -7.08849430e-01 9.94211674e-01 1.34743676e-01 -3.84321958e-02 -6.48259997e-01 3.10352117e-01 1.56254828e-01 -4.19660002e-01 -4.60378051e-01 5.96079826e-01 3.17443013e-01 -9.04886276e-02 1.58232152e-01 3.02056253e-01 5.08545578e-01 3.28442514e-01 9.72700045e-02 9.59092140e-01 9.10521820e-02 1.15328781e-01 3.00440192e-02 6.86516881e-01 -4.53573257e-01 3.90534461e-01 8.44681859e-01 -1.97492272e-01 8.45002115e-01 5.14707685e-01 -7.47880936e-01 -1.05359876e+00 -9.84189987e-01 -4.88578938e-02 1.02170372e+00 1.72670424e-01 -3.83050978e-01 -1.19981253e+00 -5.45370281e-01 6.11243881e-02 2.17749923e-01 -9.63668823e-01 1.66827962e-01 -5.69579422e-01 -6.09209061e-01 6.56732440e-01 7.46775210e-01 8.38483334e-01 -8.85667086e-01 -1.19795227e+00 2.43017569e-01 1.07016474e-01 -1.30302024e+00 -1.31021917e-01 1.47293821e-01 -6.69558585e-01 -1.20926237e+00 -1.07839465e+00 -8.75746131e-01 8.40862811e-01 -2.35240050e-02 1.24400294e+00 7.17836544e-02 -4.52655435e-01 3.09926458e-02 -6.38787402e-03 -3.18206429e-01 8.95113572e-02 1.29227713e-01 5.14426269e-02 1.40798301e-01 6.15954399e-01 -1.52411997e-01 -9.46587801e-01 7.95746371e-02 -3.56692195e-01 1.52869076e-01 6.44548059e-01 5.22922814e-01 4.33076203e-01 1.37415290e-01 3.66545767e-02 -7.27835894e-01 1.56657636e-01 -2.32908234e-01 -1.01515925e+00 -1.85580954e-01 -2.76577771e-01 6.92782924e-02 1.40599817e-01 -8.33630189e-02 -9.19277072e-01 5.27098477e-01 -4.67677534e-01 -9.63240936e-02 -5.51135600e-01 -1.55400634e-01 -3.06559782e-02 3.10280263e-01 6.68494761e-01 9.79269594e-02 -1.59156963e-01 -4.69885707e-01 9.34015661e-02 7.27585018e-01 1.19914532e+00 -6.59974515e-02 4.68355775e-01 6.71635091e-01 -2.20710978e-01 -7.30450809e-01 -7.78932095e-01 -5.67377448e-01 -9.49681461e-01 -3.53296101e-01 1.10238302e+00 -1.34372640e+00 -9.22376990e-01 9.33195114e-01 -1.37223852e+00 -3.04876477e-01 4.31460366e-02 5.47392607e-01 -2.63667643e-01 2.00011969e-01 -8.46876323e-01 -1.08704114e+00 -5.36265016e-01 -9.68235612e-01 1.47186375e+00 7.26916850e-01 8.75049364e-03 -7.13021338e-01 2.29269683e-01 2.31626496e-01 1.85715239e-02 2.91629046e-01 -6.57552183e-02 -3.79776031e-01 -4.27230746e-01 -6.50713265e-01 -5.38199365e-01 2.45881379e-01 -3.66816014e-01 -6.24516746e-03 -1.23881721e+00 -3.61859739e-01 -2.30763480e-01 -4.42806602e-01 1.05185640e+00 5.52478194e-01 1.14540565e+00 6.51689917e-02 -5.03189266e-01 4.91467983e-01 1.31756413e+00 -3.26291323e-01 7.54338264e-01 4.79688674e-01 6.12439334e-01 6.17843270e-01 3.62310022e-01 7.75955677e-01 7.37034738e-01 5.81023276e-01 4.51391280e-01 -4.33841497e-01 -1.01034112e-01 -1.42613098e-01 3.30072969e-01 3.81634124e-02 -2.21337035e-01 -1.42946839e-01 -9.04857993e-01 4.32390422e-01 -2.00150537e+00 -9.16227341e-01 -4.08568799e-01 2.32467294e+00 5.35138965e-01 5.20471573e-01 5.46661139e-01 3.23146552e-01 8.90345931e-01 -2.70000458e-01 -2.59550035e-01 -1.52349174e-01 -3.94026898e-02 2.34407291e-01 5.15080810e-01 6.55407012e-01 -1.32805789e+00 6.89414740e-01 6.01649094e+00 3.00200641e-01 -8.31877887e-01 1.36860311e-01 7.39154458e-01 -1.41387060e-01 6.29613280e-01 -6.55483544e-01 -1.41882133e+00 5.83500803e-01 8.40233266e-01 6.09667301e-01 -2.04618752e-01 1.11255777e+00 5.28059490e-02 -6.51476860e-01 -1.15270793e+00 1.32827973e+00 2.71823317e-01 -9.23167348e-01 -6.20519459e-01 -6.32316768e-02 6.22023880e-01 1.91457257e-01 -1.36044577e-01 2.97466397e-01 2.13966727e-01 -1.04536819e+00 1.00587702e+00 5.30095220e-01 7.34478056e-01 -1.13281548e+00 1.15680802e+00 5.56766808e-01 -1.18651128e+00 1.36234045e-01 -4.90895450e-01 -2.99770862e-01 1.55475050e-01 8.38624597e-01 -8.01672399e-01 6.15827143e-02 1.16660881e+00 4.09578621e-01 -8.49716961e-01 1.28488863e+00 -5.69673777e-01 1.75936788e-01 -4.18958217e-01 9.78833586e-02 2.32116714e-01 2.40208954e-01 -5.96140288e-02 1.78921413e+00 2.98876941e-01 -9.56198722e-02 1.73741803e-01 4.43441182e-01 3.31051089e-02 -3.62724066e-01 -2.42914185e-01 9.25285101e-01 1.69538669e-02 1.30130196e+00 -7.38552272e-01 -6.77605569e-01 -5.56208789e-01 1.51255536e+00 5.50156832e-01 -4.25582491e-02 -9.30847704e-01 -4.40443575e-01 3.65948558e-01 2.30424270e-01 6.49819374e-01 -6.88400045e-02 -2.11852431e-01 -9.62539852e-01 2.74619926e-02 -4.38708782e-01 4.27837133e-01 -7.08823144e-01 -1.11900043e+00 8.66227925e-01 -2.45309502e-01 -8.46349716e-01 -4.53752309e-01 -8.52611601e-01 -3.30460370e-01 1.02202117e+00 -1.29695451e+00 -9.81452882e-01 -8.17421496e-01 8.09192598e-01 4.44229215e-01 -5.29863089e-02 7.61046827e-01 5.07127881e-01 -7.36487091e-01 8.19808543e-01 -1.67183354e-01 4.66630220e-01 6.30192697e-01 -1.38127744e+00 6.91783011e-01 9.81353283e-01 -3.50801885e-01 8.78116339e-02 6.62048519e-01 -7.36441553e-01 -6.07850909e-01 -1.16959476e+00 1.16966093e+00 -3.77743155e-01 -6.48890734e-02 -6.51604474e-01 -6.74956083e-01 5.32947302e-01 2.66263068e-01 2.78571635e-01 4.14509475e-01 6.72514662e-02 -1.94799468e-01 -3.16511914e-02 -1.36644435e+00 2.22300515e-01 7.93176234e-01 -2.82679647e-01 -4.62706447e-01 1.88011065e-01 2.24516913e-01 -8.24193895e-01 -2.42957756e-01 1.01026654e-01 6.72532201e-01 -1.53293037e+00 9.64868367e-01 1.03602283e-01 2.87922382e-01 -4.69241202e-01 9.44770128e-02 -8.01421404e-01 -4.81744051e-01 -1.32641494e-01 -3.71190995e-01 8.23149979e-01 2.44480759e-01 -1.70166507e-01 1.11704874e+00 4.60432589e-01 2.00680047e-01 -5.97851634e-01 -7.71095335e-01 -3.75705451e-01 -4.25717384e-01 -4.73040223e-01 2.84604132e-01 2.03506052e-01 -3.56208891e-01 3.51914912e-01 -5.50933540e-01 5.89256823e-01 9.82231677e-01 -4.16598797e-01 1.06857800e+00 -1.38775694e+00 -5.19937515e-01 -1.28882766e-01 -7.51865685e-01 -1.23407841e+00 -1.97218075e-01 -2.05017835e-01 2.85725206e-01 -1.61528659e+00 3.83245260e-01 -1.43603981e-01 1.21893607e-01 4.49409634e-01 -3.56764168e-01 7.60937572e-01 -7.00765774e-02 -1.49389595e-01 -9.46473598e-01 2.67131716e-01 5.47131121e-01 -2.70383768e-02 -1.01716079e-01 2.66427577e-01 -3.05974364e-01 1.25114584e+00 7.10535645e-01 -5.19607544e-01 1.53609663e-01 -6.07289255e-01 5.44739366e-02 -1.87499627e-01 4.87429202e-01 -1.74315524e+00 5.02964377e-01 6.03521705e-01 1.17260849e+00 -1.05139542e+00 3.89481932e-01 -7.05234647e-01 -1.32222831e-01 9.39922154e-01 3.39402109e-02 1.70674548e-01 1.68743700e-01 4.18617696e-01 1.67299639e-02 -1.65713206e-01 9.93292987e-01 9.29488149e-03 -6.87588573e-01 2.85457760e-01 -3.20988864e-01 -1.88679338e-01 1.00969768e+00 -2.83506840e-01 8.79178271e-02 -1.95342273e-01 -5.57874858e-01 2.45055497e-01 3.10288221e-01 1.85130581e-01 6.20501161e-01 -1.16288030e+00 -9.30019915e-01 5.59116542e-01 2.49058362e-02 3.72067243e-01 3.18252325e-01 4.08766985e-01 -9.07077014e-01 3.25692952e-01 -2.13382944e-01 -9.84111488e-01 -1.26133573e+00 4.39377367e-01 5.52501202e-01 -3.67961764e-01 -8.73141110e-01 1.19189560e+00 1.69689983e-01 -2.55423307e-01 7.91205168e-01 -2.64042616e-01 -2.31917232e-01 -1.13396145e-01 1.12518167e+00 4.13227111e-01 1.07999183e-01 -6.87748611e-01 -5.44722915e-01 6.31278992e-01 -3.00916247e-02 -3.93349469e-01 1.11141729e+00 -9.50698331e-02 9.48418751e-02 2.48408079e-01 9.46293235e-01 -7.50357434e-02 -1.73080194e+00 -2.01769531e-01 -2.26891279e-01 -4.50171232e-01 -1.43857840e-02 -7.05609798e-01 -1.13809335e+00 8.78094494e-01 1.17060983e+00 -1.23087123e-01 1.13432229e+00 4.96437028e-03 6.90112889e-01 1.63171962e-01 3.92045021e-01 -1.07854939e+00 1.98178917e-01 5.96923769e-01 4.12357360e-01 -1.38306272e+00 -1.83055513e-02 -1.08974583e-01 -4.82157350e-01 1.08999979e+00 9.33535099e-01 -4.47383672e-01 4.75276291e-01 4.95430022e-01 -5.39834388e-02 -3.59347053e-02 -4.27245975e-01 -5.54706991e-01 1.77644983e-01 7.69160807e-01 3.39926690e-01 -2.38164961e-02 -7.72452960e-03 6.57850802e-01 -2.50325978e-01 2.57583171e-01 9.79223177e-02 7.08949685e-01 -6.52687550e-01 -8.85413229e-01 -6.27876878e-01 5.96830659e-02 -4.97372895e-01 2.43984967e-01 -7.28705823e-02 5.95353961e-01 9.32916641e-01 8.58384848e-01 6.08644247e-01 -3.65797728e-01 4.09382373e-01 -3.26446205e-01 5.59653819e-01 -4.98619974e-01 -7.58311927e-01 4.75465134e-02 -5.56285344e-02 -6.28254533e-01 -1.89699486e-01 -6.02088153e-01 -1.28537095e+00 -5.70619464e-01 -5.43400757e-02 -2.00870987e-02 5.89442670e-01 8.99180472e-01 1.61112279e-01 4.34491932e-01 3.85530919e-01 -1.23713601e+00 3.50874923e-02 -1.03984952e+00 -4.77019757e-01 8.74948427e-02 5.02645910e-01 -5.19155324e-01 6.78121448e-02 -6.67093769e-02]
[7.986742973327637, -0.5949397087097168]
52f10ba5-40bd-46c2-b156-969907d613d2
adaptkeybert-an-attention-based-approach
2211.07499
null
https://arxiv.org/abs/2211.07499v2
https://arxiv.org/pdf/2211.07499v2.pdf
AdaptKeyBERT: An Attention-Based approach towards Few-Shot & Zero-Shot Domain Adaptation of KeyBERT
Keyword extraction has been an important topic for modern natural language processing. With its applications ranging from ontology generation, fact verification in summarized text, and recommendation systems. While it has had significant data-intensive applications, it is often hampered when the data set is small. Downstream training for keyword extractors is a lengthy process and requires a significant amount of data. Recently, Few-shot Learning (FSL) and Zero-Shot Learning (ZSL) have been proposed to tackle this problem. Therefore, we propose AdaptKeyBERT, a pipeline for training keyword extractors with LLM bases by incorporating the concept of regularized attention into a pre-training phase for downstream domain adaptation. As we believe our work has implications to be utilized in the pipeline of FSL/ZSL and keyword extraction, we open-source our code as well as provide the fine-tuning library of the same name AdaptKeyBERT at https://github.com/AmanPriyanshu/AdaptKeyBERT.
['Supriti Vijay', 'Aman Priyanshu']
2022-11-14
null
null
null
null
['fact-verification', 'keyword-extraction']
['natural-language-processing', 'natural-language-processing']
[ 2.42302436e-02 9.01088677e-03 -4.77450222e-01 -3.61654222e-01 -1.10854650e+00 -6.31813705e-01 6.60932660e-01 4.44281757e-01 -5.63949883e-01 6.55776620e-01 4.08798277e-01 -4.43021089e-01 -1.04528949e-01 -8.12954485e-01 -5.92570961e-01 -2.41275787e-01 1.02329269e-01 3.98483634e-01 4.98688489e-01 -4.05692905e-01 2.65080780e-01 2.68410683e-01 -1.52298772e+00 2.18059912e-01 6.86981797e-01 8.12261462e-01 1.87130675e-01 6.50399506e-01 -5.76732755e-01 5.55355608e-01 -3.83969724e-01 -4.59908187e-01 1.87059000e-01 -1.88621491e-01 -1.02961719e+00 -4.46744889e-01 1.12077752e-02 -1.94399968e-01 -3.87158334e-01 9.84906971e-01 6.95289493e-01 4.80984032e-01 4.65062708e-01 -1.34801078e+00 -6.26350820e-01 1.01333821e+00 -2.80728906e-01 3.19181085e-01 3.70966077e-01 2.26592049e-01 1.18633163e+00 -1.12475407e+00 6.10258400e-01 1.00243390e+00 4.35706228e-01 5.92323065e-01 -7.13685095e-01 -9.10186350e-01 -6.62736148e-02 6.18255258e-01 -1.43957746e+00 -7.88249135e-01 5.51544428e-01 -3.24169785e-01 1.31555533e+00 7.62366951e-02 3.83117169e-01 1.09393644e+00 -2.20408946e-01 1.07436883e+00 6.60030842e-01 -7.43604064e-01 2.95922130e-01 2.01209724e-01 3.01620662e-01 5.55849433e-01 1.93043500e-01 -2.22413585e-01 -7.51073897e-01 -2.83586562e-01 2.97300398e-01 -3.62347178e-02 -2.44449392e-01 -9.78473276e-02 -9.04602885e-01 8.59112859e-01 6.38190880e-02 2.76921958e-01 -2.55836517e-01 2.53423955e-02 5.08565903e-01 3.65683645e-01 4.97189730e-01 7.11223960e-01 -8.46221626e-01 -4.54362005e-01 -9.89446521e-01 3.25097531e-01 1.01119733e+00 1.29864383e+00 6.09324336e-01 -1.78081870e-01 -2.61471987e-01 1.01362467e+00 -4.51342203e-02 1.45350546e-01 7.95777619e-01 -4.86684740e-01 2.87840247e-01 5.83263218e-01 1.14476077e-01 -5.24354339e-01 -2.80565232e-01 2.06580721e-02 -3.08491409e-01 -3.83652925e-01 1.50336549e-01 -1.96704358e-01 -1.00640261e+00 1.31402218e+00 4.41774786e-01 2.30030432e-01 1.98481217e-01 7.43894875e-01 1.15786803e+00 8.35251868e-01 2.41393536e-01 -2.58240569e-02 1.52975118e+00 -9.24556255e-01 -8.21938574e-01 -2.17177674e-01 7.04583943e-01 -7.98601627e-01 1.23798573e+00 3.78681630e-01 -8.61840546e-01 -1.01434715e-01 -9.62794781e-01 -4.76803005e-01 -9.52852130e-01 -3.17723691e-01 6.97062373e-01 3.80090773e-01 -5.19461095e-01 5.50550461e-01 -7.32746601e-01 -7.00876474e-01 5.38308680e-01 1.79454908e-01 -3.87144655e-01 -1.00883603e-01 -1.65950513e+00 8.10600042e-01 7.67248869e-01 -4.33577716e-01 -6.31165206e-01 -7.65474617e-01 -9.88783062e-01 3.19357127e-01 9.08274472e-01 -3.77756625e-01 1.65462601e+00 -1.67841867e-01 -1.47899115e+00 5.99146187e-01 -3.13985348e-01 -5.04574478e-01 9.17757396e-03 -4.66500968e-01 -4.88744348e-01 -7.47399554e-02 9.50219035e-02 3.93422902e-01 6.68515563e-01 -6.13069713e-01 -7.20346451e-01 -1.57368466e-01 -1.86519444e-01 1.21544585e-01 -6.83873594e-01 4.30192769e-01 -7.84891367e-01 -8.01451921e-01 -3.71229559e-01 -5.17526090e-01 -1.56570107e-01 -3.39810044e-01 -4.23237354e-01 -6.58336461e-01 7.33276963e-01 -7.77871668e-01 1.59124923e+00 -2.04823112e+00 -1.91212177e-01 6.71235621e-02 1.62518900e-02 6.86183691e-01 -1.80677846e-01 7.78802752e-01 1.50928304e-01 2.36556619e-01 -2.58204252e-01 -7.09784478e-02 1.19655497e-01 -1.10768080e-01 -4.48399395e-01 9.89721566e-02 3.53475243e-01 1.17415237e+00 -1.15703607e+00 -3.74953628e-01 -7.10105570e-03 4.04212654e-01 -3.97335619e-01 2.26699471e-01 -5.48644662e-01 -6.73098043e-02 -4.28383946e-01 8.66356432e-01 2.07086414e-01 -3.01314265e-01 -7.00327381e-03 -5.58119230e-02 -1.21846080e-01 4.75229174e-01 -1.15758383e+00 1.75606322e+00 -3.89073342e-01 4.24566954e-01 -1.80259913e-01 -8.87334645e-01 6.98738039e-01 5.20296633e-01 4.75267738e-01 -4.80817378e-01 2.43469134e-01 3.19911093e-01 -1.22230820e-01 -7.83853769e-01 7.02406526e-01 -1.39730424e-01 -2.64739871e-01 4.29296911e-01 5.61897218e-01 -2.78431743e-01 4.87705886e-01 4.44791764e-01 1.29795885e+00 7.92757124e-02 9.75009561e-01 8.09132457e-02 3.51475209e-01 1.25088528e-01 6.44984186e-01 6.97059989e-01 -1.10204548e-01 3.29394847e-01 2.78205305e-01 -7.85114914e-02 -9.77764487e-01 -5.55078328e-01 2.36304058e-03 1.26980078e+00 -1.74893245e-01 -8.92088532e-01 -4.43776250e-01 -5.49871445e-01 2.81897992e-01 9.60302472e-01 -1.66330323e-01 -4.30477321e-01 -8.19855779e-02 -4.78335142e-01 7.17771530e-01 5.07024467e-01 3.54439951e-02 -1.21257794e+00 -3.84992540e-01 4.46607947e-01 1.50728179e-02 -1.20201468e+00 -5.01857638e-01 4.36641693e-01 -3.92814159e-01 -1.03394806e+00 -6.70745552e-01 -5.79902232e-01 2.11863801e-01 2.54145443e-01 9.53020751e-01 6.41863570e-02 -4.72957820e-01 2.57651955e-01 -7.90307820e-01 -9.10519481e-01 -8.15508217e-02 4.41044062e-01 2.14516059e-01 -2.20585227e-01 1.09398425e+00 -4.83521461e-01 -3.95222664e-01 -6.13311445e-03 -9.18142974e-01 -7.30818808e-02 3.91627163e-01 8.26199293e-01 4.39043939e-01 6.60402700e-02 7.56102204e-01 -1.25206661e+00 9.49284256e-01 -6.93198144e-01 -6.50252402e-01 1.24899700e-01 -7.63496459e-01 -1.26116434e-02 6.02911711e-01 -2.69939542e-01 -7.91989386e-01 -7.89032057e-02 -3.72456342e-01 -3.80212396e-01 -2.73578316e-01 7.55953610e-01 -2.95320570e-01 8.25872496e-02 6.68091953e-01 1.10455126e-01 -1.23748183e-01 -7.12940872e-01 5.94069839e-01 9.99699712e-01 3.09543729e-01 -4.22150820e-01 8.92010391e-01 1.67082593e-01 -5.14052153e-01 -9.21639144e-01 -1.03519273e+00 -1.08161151e+00 -4.41828936e-01 1.93791285e-01 5.12565017e-01 -8.39311600e-01 -4.17218983e-01 2.98633128e-01 -9.83121872e-01 -3.53240520e-01 -3.04037601e-01 3.16042513e-01 -3.11020255e-01 2.75152296e-01 -4.81395900e-01 -8.15306723e-01 -6.55015945e-01 -8.44009936e-01 8.84831131e-01 4.02109981e-01 -4.34373796e-01 -7.81486571e-01 5.11757545e-02 2.13086173e-01 3.94430041e-01 -2.77062356e-01 9.20143485e-01 -1.36265755e+00 -4.20093745e-01 -4.68184054e-01 -1.01314917e-01 7.97267631e-02 2.07160473e-01 -1.45698830e-01 -1.03071547e+00 -1.39632270e-01 -4.67170209e-01 -4.00922388e-01 9.44605529e-01 1.44577399e-01 1.23223555e+00 -3.41173530e-01 -4.01265353e-01 5.84367156e-01 1.21996725e+00 1.85736537e-01 2.63412058e-01 4.58271205e-01 6.33836687e-01 5.31314790e-01 8.17170203e-01 5.85514724e-01 3.74450177e-01 4.38863218e-01 -7.24119991e-02 1.95778027e-01 -1.99243929e-02 -3.10753733e-01 1.86024189e-01 7.37141192e-01 2.40360200e-01 -3.32101554e-01 -1.23177075e+00 8.03565085e-01 -1.84236693e+00 -1.02994204e+00 3.63114446e-01 2.04136372e+00 1.18813133e+00 2.45747507e-01 4.46055606e-02 2.58733243e-01 3.16084266e-01 5.02312630e-02 -5.78067422e-01 -3.30293387e-01 1.37566537e-01 5.80661118e-01 5.28500915e-01 5.01779377e-01 -1.10467207e+00 1.54512572e+00 5.01644993e+00 9.57161486e-01 -1.06198788e+00 2.69734293e-01 1.50670424e-01 -3.61618042e-01 -3.18520039e-01 2.09102184e-01 -1.26703775e+00 5.56837797e-01 1.15696692e+00 -7.06348598e-01 3.97344351e-01 9.15445924e-01 1.88964531e-01 -1.64701819e-01 -9.66252506e-01 8.52517009e-01 5.77730164e-02 -1.40749347e+00 -4.42502536e-02 -1.61762446e-01 4.78202850e-01 2.95107126e-01 -2.94868797e-01 7.32563674e-01 3.02311629e-01 -8.01380932e-01 1.98520958e-01 2.99178004e-01 7.88208306e-01 -9.64768767e-01 6.41789615e-01 4.23325509e-01 -1.16010177e+00 -1.36271670e-01 -4.35522765e-01 8.09148401e-02 2.71676987e-01 8.05918574e-01 -1.17028630e+00 4.16847020e-01 6.53538227e-01 5.75838387e-01 -3.77907991e-01 1.23979652e+00 -3.46892804e-01 7.43078709e-01 -2.28789732e-01 -2.03988746e-01 9.18834805e-02 1.81284398e-01 6.51562274e-01 1.23727155e+00 2.49847665e-01 2.32507244e-01 2.25004360e-01 4.54600781e-01 -3.10601503e-01 4.84366894e-01 -6.13780439e-01 -6.31391108e-01 8.00952077e-01 1.33138537e+00 -5.39764881e-01 -5.83122194e-01 -7.34654784e-01 8.53115797e-01 3.11030120e-01 2.32044086e-01 -5.06303191e-01 -1.00852859e+00 9.41929042e-01 7.89195597e-02 3.34441841e-01 -1.26940355e-01 -1.33984819e-01 -1.35164571e+00 -1.37458712e-01 -9.37035441e-01 6.18652403e-01 -5.19466460e-01 -1.21129704e+00 3.09832573e-01 6.67907372e-02 -1.03920197e+00 -3.16139638e-01 -5.79977453e-01 -4.96089906e-01 8.97630990e-01 -1.68409371e+00 -9.55306888e-01 -6.59682751e-02 4.29251820e-01 8.74710321e-01 -4.45234567e-01 1.01107800e+00 3.72184932e-01 -5.83875358e-01 7.68490672e-01 6.34812787e-02 2.68438369e-01 9.56990302e-01 -1.17481935e+00 7.35188663e-01 9.99413133e-01 2.84819216e-01 9.06598866e-01 7.23966718e-01 -7.80594826e-01 -1.53503156e+00 -1.14878833e+00 1.16176093e+00 -3.77579033e-01 9.84718382e-01 -4.01158959e-01 -1.10174906e+00 6.75044239e-01 1.78093508e-01 -7.22570438e-03 1.06022251e+00 3.30558419e-01 -3.82731318e-01 3.19790430e-02 -8.48374426e-01 5.99580348e-01 7.53890097e-01 -5.74890971e-01 -6.10560834e-01 4.13894325e-01 1.05578542e+00 -2.29751140e-01 -9.07992601e-01 3.39918166e-01 3.84137094e-01 -3.69838595e-01 7.26933658e-01 -7.13306904e-01 2.40203336e-01 -1.69887379e-01 7.75042251e-02 -1.28922665e+00 -2.89038450e-01 -6.99963331e-01 -7.76795924e-01 1.48887205e+00 6.20272756e-01 -4.59862262e-01 6.93056881e-01 6.44039810e-01 5.88103337e-03 -8.84893000e-01 -6.23863876e-01 -7.99030960e-01 2.45583802e-03 -6.97009027e-01 6.35804474e-01 1.00690913e+00 4.33176666e-01 5.56433976e-01 -4.44592685e-01 8.44562501e-02 3.75371844e-01 -8.72692093e-02 8.27657163e-01 -1.24355531e+00 -2.71791488e-01 -3.39800209e-01 -2.29700670e-01 -6.93853676e-01 2.09751353e-01 -1.21797240e+00 2.28478029e-01 -1.62659836e+00 1.28673851e-01 -6.90109730e-02 -3.75381827e-01 9.04846489e-01 -3.10432702e-01 -8.73998255e-02 -6.63728416e-02 1.38867134e-02 -5.43301404e-01 5.52869618e-01 6.99058890e-01 -1.14221685e-01 -2.37210795e-01 7.59165064e-02 -9.03809488e-01 4.89787489e-01 9.71987545e-01 -5.68587065e-01 -3.47687513e-01 -3.70634086e-02 2.00683564e-01 -4.38942850e-01 -5.47287241e-02 -7.41608977e-01 4.99205291e-01 -2.68154323e-01 1.96897447e-01 -4.75383788e-01 2.75272995e-01 -6.63914144e-01 -4.64146286e-01 9.94313508e-02 -2.37192929e-01 -2.22572252e-01 2.86076576e-01 4.00835752e-01 -1.73082635e-01 -5.10833502e-01 6.13388717e-01 -4.31843460e-01 -1.28274477e+00 4.67653364e-01 -4.08252537e-01 2.74115145e-01 8.87359679e-01 1.18396312e-01 -1.33535773e-01 -3.43924552e-01 -3.79724085e-01 5.24165332e-01 2.86142677e-01 7.04671204e-01 7.82268584e-01 -1.05296314e+00 -4.99114633e-01 2.08131343e-01 5.42853355e-01 1.42858177e-01 -3.24707069e-02 6.54181778e-01 -1.09785743e-01 6.72337234e-01 1.91113800e-01 1.17501147e-01 -1.18794823e+00 5.98659992e-01 -1.93664372e-01 -1.79055005e-01 -8.11084509e-01 1.13486814e+00 -4.06351477e-01 -5.27201474e-01 3.88940752e-01 -1.00466333e-01 -2.86567271e-01 2.93870956e-01 9.59980965e-01 2.37806067e-01 2.84235418e-01 -1.25903741e-01 -3.39906961e-01 -1.29788192e-02 -5.55913627e-01 -1.81993172e-01 1.37827563e+00 8.70482400e-02 -3.57419811e-02 4.95553702e-01 1.00053239e+00 4.31019114e-03 -6.87711537e-01 -5.91973007e-01 7.01019704e-01 -3.52120042e-01 9.43511948e-02 -6.65936589e-01 -5.79279542e-01 6.71835899e-01 1.40074238e-01 1.54376589e-02 9.94721472e-01 8.43915492e-02 1.11057150e+00 6.23629391e-01 3.23148489e-01 -1.32677650e+00 -2.10408717e-01 9.31996167e-01 6.12312198e-01 -1.54487872e+00 8.85818526e-02 -1.59681857e-01 -4.94395167e-01 8.69145095e-01 5.96157134e-01 2.36338750e-01 8.24754894e-01 4.45463389e-01 4.67470288e-02 -1.34380847e-01 -1.01202595e+00 -5.84637046e-01 4.00473505e-01 3.51742655e-01 7.48998642e-01 -2.52720594e-01 -4.18492645e-01 1.03989828e+00 -2.55203187e-01 2.16528639e-01 4.18900698e-01 1.24604928e+00 -5.93631089e-01 -1.37996423e+00 -2.86027715e-02 7.08621860e-01 -5.92934430e-01 -5.97236991e-01 -4.05554771e-01 5.15406370e-01 -1.16831385e-01 7.88744152e-01 -2.64758408e-01 -3.82344872e-01 2.53946275e-01 6.42673850e-01 1.13883823e-01 -1.23242557e+00 -3.97233248e-01 -6.61506578e-02 2.04329744e-01 -4.93686795e-01 8.85142758e-03 -4.59320009e-01 -1.30799258e+00 2.02990454e-02 -2.97357202e-01 4.30949390e-01 5.81867933e-01 1.01106513e+00 6.11711681e-01 4.28437233e-01 1.77221060e-01 -5.95099568e-01 -4.24233228e-01 -1.21830642e+00 -4.07121629e-01 9.34622884e-02 1.01551518e-01 -6.95956171e-01 -1.23633929e-01 -2.58103502e-03]
[10.523185729980469, 8.009100914001465]
14af5b47-8075-451d-b28a-0181d94755d6
fusion-towards-automated-icd-coding-via
null
null
https://aclanthology.org/2021.findings-acl.184
https://aclanthology.org/2021.findings-acl.184.pdf
Fusion: Towards Automated ICD Coding via Feature Compression
null
['Fenglong Ma', 'Jimeng Sun', 'Lucas Glass', 'Cao Xiao', 'Junyu Luo']
null
null
null
null
findings-acl-2021-8
['feature-compression']
['computer-vision']
[-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01 -8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01 -2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00 -3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01 -9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01 7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01 7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00 -1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01 3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01 9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01 5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00 -5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01 1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00 7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01 -1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02 -1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01 1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00 1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01 3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01 8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01 9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01 -9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01 -1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01 -2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01 -8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00 1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01 8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00 -6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01 -6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01 3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01 4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02 4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01 1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01 9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01 -1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01 -7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00 -1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02 1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01 -1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01 -1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01 -4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01 -1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01 6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01 -1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00 -7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01 -1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01 3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01 -1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01 1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01 3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00 -2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01 2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01 -1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01 4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01 2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00 1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01 -3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00 7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01 3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01 -2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01 7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01 -2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01 6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00 7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00 -3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01 -6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00 3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01 1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01 -5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01 -5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01 -2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01 -1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01 5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01 -2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01 -4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01 5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01 -6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00 1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01 8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02 -6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01 -1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01 1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01 8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03 3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01 8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01 -1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01 6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01 -9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01 -1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00 -5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02 -5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01 1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01 -4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01 1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01 6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01 5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01 1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01 1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01 1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01 1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00 -8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01 -1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01 6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01 4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00 -1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00 -7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00 2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01 -4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02 1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01 3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01 9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01 7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01 6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01 1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01 -1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00 3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01 9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01 -4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01 4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00 2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01 5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01 2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01 -2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01 -6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01 -1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01 -5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01 -1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00 -6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01 -1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01 1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02 1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01 5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01 -4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01 -1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01 6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01 7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01 1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01 1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01 8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01 8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00 -4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01 -5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02 5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01 -2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00 -3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01 6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01 5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00 3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01 -8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00 -8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01 3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01 -3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05 -1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01 8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02 6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01 5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00 1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01 2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02 -1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01 -4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02 9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01 -8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02 7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01 -3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01 -1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01 -1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01 -2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01 1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03 6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01 -4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01 9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01 8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01 1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01 -1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01 8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01 5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01 9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01 -4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01 1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01 -9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00 5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01 -7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00 -6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01 -5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01 -5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01 4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01 -9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00 -8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00 -5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01 -2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00 -3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02 2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01]
[-7.437716007232666, 3.7819583415985107]
8720e5b7-4bb5-4f77-b1c1-6e24d04b8a6b
spatial-content-alignment-for-pose-transfer
2103.16828
null
https://arxiv.org/abs/2103.16828v1
https://arxiv.org/pdf/2103.16828v1.pdf
Spatial Content Alignment For Pose Transfer
Due to unreliable geometric matching and content misalignment, most conventional pose transfer algorithms fail to generate fine-trained person images. In this paper, we propose a novel framework Spatial Content Alignment GAN (SCAGAN) which aims to enhance the content consistency of garment textures and the details of human characteristics. We first alleviate the spatial misalignment by transferring the edge content to the target pose in advance. Secondly, we introduce a new Content-Style DeBlk which can progressively synthesize photo-realistic person images based on the appearance features of the source image, the target pose heatmap and the prior transferred content in edge domain. We compare the proposed framework with several state-of-the-art methods to show its superiority in quantitative and qualitative analysis. Moreover, detailed ablation study results demonstrate the efficacy of our contributions. Codes are publicly available at github.com/rocketappslab/SCA-GAN.
['Kin-Wai Lau', 'Jingjing Xiong', 'Yuzhi Zhao', 'Lai-Man Po', 'Wing-Yin Yu']
2021-03-31
null
null
null
null
['geometric-matching', 'pose-transfer']
['computer-vision', 'computer-vision']
[ 3.56615543e-01 -6.73270896e-02 2.10479721e-01 -1.37974083e-01 -7.03024805e-01 -5.80462933e-01 6.01543427e-01 -6.56954169e-01 -7.28139803e-02 9.51355338e-01 4.55732197e-01 4.21644121e-01 2.67543346e-01 -7.12611318e-01 -9.10610080e-01 -5.43430924e-01 4.94709373e-01 2.74154425e-01 -1.79713771e-01 -1.62759528e-01 -7.91204348e-02 1.67286500e-01 -1.26762700e+00 6.11903481e-02 9.45573807e-01 8.02813232e-01 4.75773513e-02 5.61859310e-01 4.77515429e-01 1.97817460e-01 -4.00045186e-01 -7.99854398e-01 4.90473002e-01 -8.94196749e-01 -5.69332778e-01 3.71710688e-01 7.63753951e-01 -5.87017298e-01 -5.66750228e-01 1.17566788e+00 7.60388494e-01 -3.88352596e-03 5.94690025e-01 -1.35208094e+00 -8.80741656e-01 6.88456744e-02 -7.23386943e-01 -2.96888590e-01 6.68704867e-01 2.24615052e-01 2.93435216e-01 -7.24643230e-01 8.59159648e-01 1.11938357e+00 7.67380655e-01 8.19809377e-01 -1.06796443e+00 -6.39244556e-01 1.06682844e-01 1.16951309e-01 -1.29197752e+00 -2.92157799e-01 1.06428719e+00 -3.58657420e-01 8.51763934e-02 3.70353311e-01 8.92020226e-01 1.62832153e+00 -8.15488491e-03 7.38743126e-01 1.54281795e+00 -5.39454997e-01 2.34420728e-02 -5.21800965e-02 -6.75856531e-01 8.26502621e-01 3.01799238e-01 3.14933807e-01 -5.48086345e-01 1.49013668e-01 1.25146556e+00 -7.33114555e-02 -4.00592864e-01 -4.73593533e-01 -1.27686751e+00 3.44934136e-01 4.56227243e-01 9.32899863e-02 -4.77332026e-01 4.31844920e-01 6.02408499e-02 -6.64772987e-02 5.71249247e-01 9.88087505e-02 4.69476990e-02 -9.74761173e-02 -7.52926826e-01 4.81416494e-01 2.52246827e-01 1.30411768e+00 4.65642512e-01 1.43932775e-01 -5.02371609e-01 6.44451499e-01 1.63721621e-01 8.05623472e-01 1.05134815e-01 -9.42558110e-01 3.51929456e-01 3.06569219e-01 3.25644851e-01 -1.02641690e+00 3.36426608e-02 -4.32478905e-01 -1.02546465e+00 7.71821737e-02 6.06819928e-01 -3.37398082e-01 -1.03664422e+00 1.74543440e+00 5.23276806e-01 1.21620022e-01 -2.84670323e-01 1.24846756e+00 6.31328523e-01 2.32727513e-01 1.58159807e-01 2.39404485e-01 1.39717448e+00 -1.04583621e+00 -8.54518116e-01 -4.10628438e-01 -1.15712672e-01 -8.29746783e-01 1.16145813e+00 2.06406221e-01 -1.33613920e+00 -6.84513032e-01 -8.44704568e-01 -7.45198829e-03 -1.95638314e-02 4.93581831e-01 3.88957322e-01 7.83084393e-01 -9.08808112e-01 3.93500835e-01 -6.35861278e-01 -4.48617280e-01 5.23516893e-01 2.39545666e-02 -4.19650882e-01 -3.18774253e-01 -1.16730165e+00 5.70088863e-01 1.13064431e-01 2.34609053e-01 -9.65422392e-01 -6.91288352e-01 -9.35066283e-01 -3.16252798e-01 1.20914198e-01 -1.22449756e+00 9.42019463e-01 -1.14761007e+00 -1.63624060e+00 9.41280782e-01 -2.19942257e-02 4.09012251e-02 1.27176023e+00 -4.57282186e-01 -2.43375059e-02 1.69958711e-01 -4.89232540e-02 8.95794451e-01 9.46157575e-01 -1.55662656e+00 -3.18871289e-01 -3.06023002e-01 -2.20033616e-01 5.04567862e-01 -1.37794137e-01 -1.87637240e-01 -8.48715544e-01 -1.16072476e+00 -1.88553602e-01 -9.77786362e-01 -1.09858938e-01 1.50684372e-01 -6.47607625e-01 4.52664644e-01 4.76787180e-01 -1.27552819e+00 8.53297055e-01 -1.98971641e+00 4.92207885e-01 2.30554044e-01 1.73065346e-02 -9.60749239e-02 -1.33761019e-01 2.98520237e-01 1.12283818e-01 -1.62223250e-01 -3.38307619e-01 -5.82835674e-01 1.34129733e-01 -1.83477312e-01 -8.48908275e-02 6.97988987e-01 -2.42496207e-02 1.28244030e+00 -8.71462941e-01 -4.41445857e-01 4.29674238e-01 9.06422198e-01 -4.63315129e-01 3.75236928e-01 -3.71466875e-02 1.13937807e+00 -3.85959655e-01 7.09115446e-01 8.32642257e-01 9.58459266e-03 1.44650443e-02 -5.55005789e-01 2.88232058e-01 -3.24851811e-01 -1.01588798e+00 2.05275393e+00 -3.72469038e-01 3.52031052e-01 -7.84281641e-02 -3.56892824e-01 6.73954129e-01 1.86300263e-01 3.91303182e-01 -7.32730389e-01 3.46067756e-01 7.61772245e-02 -4.32043761e-01 -3.26638490e-01 4.30704713e-01 3.13805626e-03 -1.70759767e-01 1.10047646e-01 -1.54619858e-01 -1.79686978e-01 -1.07939057e-01 -8.32678601e-02 4.88557279e-01 7.30484426e-01 -7.39668682e-02 -1.90416053e-02 4.41746116e-01 -2.60226548e-01 3.01004887e-01 4.62779731e-01 -1.86340973e-01 1.37413621e+00 1.23754293e-01 -1.87233746e-01 -1.52534854e+00 -1.21315825e+00 1.60176381e-01 6.12686217e-01 4.49357420e-01 -2.39852890e-01 -1.31546926e+00 -6.06676638e-01 -2.05867290e-01 4.20139998e-01 -8.81806254e-01 -6.49230704e-02 -5.33266187e-01 -5.36180079e-01 5.31810641e-01 6.42857015e-01 1.17048466e+00 -9.45579171e-01 -4.20646548e-01 -1.59562916e-01 -6.54450893e-01 -1.20157492e+00 -8.65127206e-01 -8.56013715e-01 -5.01541495e-01 -7.60473549e-01 -1.48817790e+00 -7.94161797e-01 1.19889069e+00 -1.55978203e-01 9.83659327e-01 3.34929908e-03 -3.87535721e-01 5.55560589e-01 -3.52754533e-01 -1.17476247e-01 -2.07423836e-01 -1.13775991e-01 -7.85903633e-02 1.56476825e-01 -1.57638535e-01 -5.34012914e-01 -1.22577691e+00 5.13674140e-01 -7.82811761e-01 5.74276686e-01 6.47243083e-01 7.71603703e-01 6.42905772e-01 -1.02315851e-01 3.25343817e-01 -7.36223221e-01 4.03855801e-01 -1.38369612e-02 -3.71275783e-01 2.85225540e-01 -2.71223694e-01 -3.18770289e-01 2.85606891e-01 -3.09300065e-01 -1.23949778e+00 1.50642604e-01 -9.33058038e-02 -4.26588744e-01 -3.16348195e-01 -9.00407210e-02 -4.73675579e-01 -1.47712559e-01 5.51745653e-01 5.58908701e-01 3.56318504e-02 -3.22797358e-01 5.19427717e-01 5.43214500e-01 8.61140847e-01 -9.14727688e-01 1.02455163e+00 6.58108354e-01 -2.20150560e-01 -4.06881034e-01 -5.61524034e-01 1.13162007e-02 -5.96279681e-01 -5.89820683e-01 1.01491022e+00 -1.06483138e+00 -5.76922417e-01 1.02270329e+00 -1.02593100e+00 -5.78509510e-01 -2.36771718e-01 2.59308308e-01 -9.01065290e-01 4.65854138e-01 -6.65887952e-01 -6.77289009e-01 -4.43931878e-01 -7.34761000e-01 1.41931367e+00 3.36574048e-01 -1.57693222e-01 -8.10032427e-01 -1.97203495e-02 6.03973687e-01 4.70820665e-01 7.52771914e-01 3.48110855e-01 2.22710699e-01 -5.36890388e-01 -2.82692939e-01 -2.77122468e-01 2.17354864e-01 2.30225608e-01 -5.29558539e-01 -8.29414725e-01 -5.62979639e-01 -3.33370686e-01 -2.53894955e-01 4.42021221e-01 4.41740930e-01 1.12513196e+00 -3.23647827e-01 -2.54811198e-01 7.48424113e-01 1.42124128e+00 -2.20316842e-01 1.11138117e+00 3.36824566e-01 1.02669859e+00 6.82366192e-01 5.11952341e-01 3.23318243e-01 2.61311024e-01 8.60678077e-01 1.03885695e-01 -4.55590099e-01 -7.05330610e-01 -8.19616258e-01 2.67146200e-01 3.96738142e-01 -5.65429926e-01 -2.58753061e-01 -5.41632473e-01 5.71347356e-01 -1.65806735e+00 -8.61326516e-01 3.19319516e-02 2.22952056e+00 8.76200080e-01 -1.60269111e-01 2.68525183e-01 -1.91189945e-01 9.40549850e-01 -1.29224375e-01 -3.42528224e-01 2.66361743e-01 -1.09965988e-01 -2.23655906e-02 5.30239761e-01 5.01628757e-01 -9.68080103e-01 8.89367461e-01 6.02531528e+00 8.64561260e-01 -7.22375393e-01 2.34951288e-01 9.77486134e-01 7.44457096e-02 -4.15308803e-01 -3.23814392e-01 -5.01554787e-01 6.62335873e-01 2.90952265e-01 6.44868687e-02 4.95135039e-01 6.25469804e-01 7.19987229e-02 4.34573852e-02 -9.08675492e-01 1.18856478e+00 4.11038786e-01 -1.06704390e+00 1.05694123e-02 8.96777809e-02 1.21766353e+00 -6.85683548e-01 4.79523301e-01 -1.23732336e-01 1.88987523e-01 -1.04276967e+00 1.03737080e+00 8.43252540e-01 1.32704043e+00 -6.99872136e-01 6.66508436e-01 -1.78624019e-01 -1.10156763e+00 2.76052386e-01 -9.95948687e-02 1.91175371e-01 5.41594028e-01 2.65926808e-01 -2.39750102e-01 9.14488733e-01 7.33436227e-01 5.64825356e-01 -7.18706310e-01 9.34917152e-01 -5.19561231e-01 2.57386744e-01 -2.14301273e-02 3.87721419e-01 -1.96519673e-01 -2.94429243e-01 5.10459125e-01 9.99817908e-01 5.14949381e-01 -5.34821581e-03 -7.96683431e-02 1.11742580e+00 3.29048559e-02 -8.07553083e-02 -4.73336965e-01 1.11379206e-01 2.96513170e-01 1.11750686e+00 -5.75929165e-01 -2.88385600e-01 -2.35992223e-01 1.71697915e+00 -5.21262437e-02 5.53645432e-01 -1.02485681e+00 -1.88142762e-01 3.50540817e-01 4.04992104e-01 2.24828467e-01 -7.46752918e-02 -3.63731921e-01 -1.25474119e+00 2.83920884e-01 -1.09901392e+00 1.39034361e-01 -1.01219714e+00 -1.50418913e+00 7.09978640e-01 1.69426933e-01 -1.49055517e+00 -1.67233989e-01 -3.16940606e-01 -4.27564859e-01 9.37491596e-01 -1.18824470e+00 -1.83232081e+00 -7.81919360e-01 5.78572571e-01 4.81205255e-01 -3.82844470e-02 6.07154727e-01 4.71953422e-01 -3.69843125e-01 9.85260844e-01 -1.16025671e-01 2.71459848e-01 9.45173442e-01 -1.06041026e+00 6.73333347e-01 1.03193510e+00 -3.31225693e-01 3.88520986e-01 8.53309691e-01 -1.02722740e+00 -1.04975271e+00 -1.16652811e+00 4.11873192e-01 -5.45144081e-01 2.22929716e-02 -5.00473619e-01 -4.31867123e-01 7.63470531e-01 4.11754340e-01 -5.39025217e-02 2.53502727e-01 -4.66872573e-01 -1.30509615e-01 -2.99376273e-03 -1.30844235e+00 8.57140064e-01 1.41035867e+00 -2.22602338e-01 -2.33229071e-01 1.52119026e-01 3.06062132e-01 -8.84666383e-01 -7.60055125e-01 3.54715824e-01 7.12219894e-01 -8.75550926e-01 1.10320473e+00 -2.35304847e-01 6.73858285e-01 -4.20962483e-01 -1.13583580e-01 -1.40118408e+00 -3.37413102e-01 -6.62291288e-01 8.69057029e-02 1.32609785e+00 -5.34303710e-02 -4.74356383e-01 9.37457919e-01 6.33411169e-01 7.49947652e-02 -3.51807714e-01 -6.13403559e-01 -7.36994267e-01 -9.90403164e-03 7.75553733e-02 6.36215031e-01 7.51626194e-01 -3.48750174e-01 1.81329213e-02 -1.05730629e+00 1.33131355e-01 1.05709958e+00 8.34949091e-02 1.02100039e+00 -6.44650221e-01 -4.68111634e-01 -8.98164958e-02 -4.63199705e-01 -9.67438400e-01 -2.32708380e-01 -4.28116351e-01 8.95406902e-02 -1.56969345e+00 4.09568608e-01 -2.74091542e-01 6.92747161e-02 2.41378516e-01 -4.43913728e-01 8.73634219e-01 1.68219179e-01 7.95829520e-02 -3.86103898e-01 8.13485920e-01 1.76487029e+00 -3.73760983e-02 7.25855678e-02 -2.37041458e-01 -5.78966081e-01 4.75545466e-01 7.19423294e-01 -1.20454550e-01 -4.17843848e-01 -4.88359302e-01 1.56412721e-01 -1.46398664e-01 8.39974999e-01 -1.23531353e+00 -1.05431385e-01 -2.77300030e-02 1.06198442e+00 -2.79687762e-01 4.38780576e-01 -8.09799194e-01 6.92256808e-01 6.06015146e-01 -2.38021895e-01 -2.28868444e-02 1.92450538e-01 6.66563869e-01 4.58433572e-03 2.85386145e-01 6.93959057e-01 -9.69370976e-02 -4.73606288e-01 4.26254660e-01 1.14064746e-01 2.53697280e-02 9.97072637e-01 -3.43890399e-01 -2.68644065e-01 -7.04602122e-01 -5.91058373e-01 -5.14511354e-02 1.01524842e+00 4.55146492e-01 6.39305890e-01 -1.78781807e+00 -9.67478275e-01 2.65748709e-01 1.21933922e-01 -4.61763479e-02 7.92965829e-01 8.52562070e-01 -7.25989580e-01 1.13589957e-01 -6.72592819e-01 -3.81019056e-01 -1.19103789e+00 4.11680877e-01 5.11846423e-01 -3.09536047e-03 -8.20154250e-01 7.17846394e-01 5.00259995e-01 -3.00327599e-01 1.97207574e-02 1.75809607e-01 1.98452681e-01 -6.41837478e-01 4.29829091e-01 3.55033159e-01 -2.26994604e-01 -8.45515370e-01 -2.37403244e-01 9.48565304e-01 1.07083328e-01 -4.01036650e-01 1.09476042e+00 -4.41114068e-01 2.16036901e-01 -6.85564801e-02 7.96057463e-01 1.72553271e-01 -1.83878553e+00 4.26624604e-02 -8.45941782e-01 -1.04949236e+00 -2.81380028e-01 -9.76302683e-01 -1.17290092e+00 4.49889958e-01 1.00319743e+00 -5.50740480e-01 1.30003786e+00 -8.87950212e-02 9.50260997e-01 -5.68734705e-01 5.33545256e-01 -9.87522125e-01 3.09646308e-01 -1.93434164e-01 1.18005610e+00 -9.78655219e-01 2.40379497e-02 -8.27240050e-01 -7.84837127e-01 6.52380764e-01 8.63662720e-01 -2.11713567e-01 1.09092005e-01 3.28167016e-03 3.12752724e-02 -9.09048095e-02 1.10928027e-03 -1.00799434e-01 5.60423613e-01 1.00817537e+00 1.88011691e-01 -2.79812161e-02 -3.50159407e-01 5.46901941e-01 -3.54336709e-01 1.32766709e-01 2.10316554e-01 6.71615660e-01 1.94497555e-01 -1.14892995e+00 -6.86853766e-01 -1.09902754e-01 -3.39079797e-01 8.62206668e-02 -3.92020047e-01 6.50973380e-01 2.00107723e-01 6.05927706e-01 1.35264490e-02 -3.45647633e-01 5.09964645e-01 -1.34870023e-01 9.86855030e-01 -1.02474034e-01 -2.11449668e-01 1.96855694e-01 2.01714654e-02 -4.73040044e-01 -3.90242934e-01 -5.63224733e-01 -6.26909852e-01 -4.22670454e-01 1.21118553e-01 -2.73679644e-01 4.49119598e-01 6.53206766e-01 3.92333150e-01 6.06950879e-01 3.91974956e-01 -1.02195609e+00 -9.50772464e-02 -1.00106895e+00 -3.81441712e-01 9.41308677e-01 3.72175910e-02 -6.60233855e-01 -9.78124365e-02 4.90220696e-01]
[11.966782569885254, -0.8384580612182617]
24d47b0f-97c3-4ad9-929e-5e842d3ad6f3
detclip-dictionary-enriched-visual-concept
2209.09407
null
https://arxiv.org/abs/2209.09407v2
https://arxiv.org/pdf/2209.09407v2.pdf
DetCLIP: Dictionary-Enriched Visual-Concept Paralleled Pre-training for Open-world Detection
Open-world object detection, as a more general and challenging goal, aims to recognize and localize objects described by arbitrary category names. The recent work GLIP formulates this problem as a grounding problem by concatenating all category names of detection datasets into sentences, which leads to inefficient interaction between category names. This paper presents DetCLIP, a paralleled visual-concept pre-training method for open-world detection by resorting to knowledge enrichment from a designed concept dictionary. To achieve better learning efficiency, we propose a novel paralleled concept formulation that extracts concepts separately to better utilize heterogeneous datasets (i.e., detection, grounding, and image-text pairs) for training. We further design a concept dictionary~(with descriptions) from various online sources and detection datasets to provide prior knowledge for each concept. By enriching the concepts with their descriptions, we explicitly build the relationships among various concepts to facilitate the open-domain learning. The proposed concept dictionary is further used to provide sufficient negative concepts for the construction of the word-region alignment loss\, and to complete labels for objects with missing descriptions in captions of image-text pair data. The proposed framework demonstrates strong zero-shot detection performances, e.g., on the LVIS dataset, our DetCLIP-T outperforms GLIP-T by 9.9% mAP and obtains a 13.5% improvement on rare categories compared to the fully-supervised model with the same backbone as ours.
['Hang Xu', 'Chunjing Xu', 'Zhenguo Li', 'Wei zhang', 'Dan Xu', 'Xiaodan Liang', 'Youpeng Wen', 'Jianhua Han', 'Lewei Yao']
2022-09-20
null
null
null
null
['open-world-object-detection']
['computer-vision']
[ 5.52486815e-02 -8.66012648e-02 -2.79588193e-01 -2.80016512e-01 -9.20003593e-01 -7.53619075e-01 4.56493616e-01 3.43606085e-01 -5.72668910e-01 3.90498489e-01 1.67077016e-02 -7.74828047e-02 3.58314425e-01 -6.32959247e-01 -6.32546127e-01 -6.01058066e-01 3.65016133e-01 5.33607960e-01 4.62864250e-01 -4.70637828e-02 1.81590587e-01 3.65406275e-02 -1.63359261e+00 4.32334602e-01 9.23995674e-01 1.02942228e+00 7.31898904e-01 1.88851357e-01 -6.31476104e-01 4.13036585e-01 -3.76972884e-01 -5.23053288e-01 2.66309828e-01 -8.83515403e-02 -6.42030537e-01 3.36384714e-01 6.79809391e-01 -1.19823061e-01 -2.16994643e-01 1.25603342e+00 4.64328319e-01 -3.17705385e-02 7.52495348e-01 -1.15656221e+00 -8.66097867e-01 4.73920792e-01 -9.00967777e-01 3.34467798e-01 1.75368950e-01 1.47426113e-01 1.35998070e+00 -1.36489558e+00 7.94323087e-01 1.16547883e+00 4.84008878e-01 5.35506189e-01 -1.10908866e+00 -1.00414276e+00 4.53132540e-01 4.29816008e-01 -2.05737233e+00 -1.02879636e-01 5.99068642e-01 -5.56018591e-01 7.95401394e-01 1.09395303e-01 3.94494087e-01 1.10286367e+00 -3.33108604e-01 1.02069008e+00 7.38990545e-01 -5.52360713e-01 -6.05921447e-02 5.91298461e-01 3.88573498e-01 8.81121755e-01 4.35343802e-01 -1.62812948e-01 -3.42091709e-01 2.55767331e-02 4.14232969e-01 2.27008257e-02 -2.19286263e-01 -6.69153452e-01 -1.36536336e+00 7.70918012e-01 6.72717452e-01 3.02607298e-01 5.37571125e-02 -2.04124853e-01 5.34409881e-01 1.46185216e-02 3.55066538e-01 3.43090743e-01 -3.15284669e-01 4.54334944e-01 -7.80803323e-01 2.16797628e-02 5.14312148e-01 1.54301107e+00 9.07479584e-01 -2.36157417e-01 -4.63582486e-01 1.07411182e+00 2.90509582e-01 6.86928451e-01 5.54177284e-01 -2.89559364e-01 8.89560282e-01 7.99094975e-01 7.70038366e-02 -9.96630967e-01 -2.04414025e-01 -8.02917123e-01 -6.08038962e-01 -4.16624784e-01 1.23823896e-01 1.58203226e-02 -9.94205117e-01 1.72484016e+00 4.51905489e-01 3.09376925e-01 1.66824445e-01 9.88760114e-01 1.01539791e+00 7.34989047e-01 2.29129538e-01 -2.51081258e-01 1.58850467e+00 -1.03154874e+00 -6.70117497e-01 -4.23067242e-01 7.32082009e-01 -6.76032841e-01 1.22658396e+00 1.79138497e-01 -3.00030649e-01 -6.70857787e-01 -1.02478004e+00 -1.24074504e-01 -4.88245875e-01 5.16409218e-01 3.17391992e-01 3.74423981e-01 -6.58104599e-01 -1.30714640e-01 -3.49090278e-01 -5.95732212e-01 6.25720799e-01 9.16794613e-02 -3.87310237e-01 -4.07035649e-01 -9.55034077e-01 7.77475655e-01 9.54612374e-01 -4.32671964e-01 -1.12029338e+00 -5.43760002e-01 -8.50839436e-01 3.87087278e-02 8.63141537e-01 -5.49161971e-01 9.01618481e-01 -8.82380247e-01 -5.77097297e-01 1.17987609e+00 -1.55661777e-02 -4.45993960e-01 2.67834723e-01 -1.84220105e-01 -4.73769516e-01 2.62895554e-01 5.56252062e-01 9.13357496e-01 8.68936121e-01 -1.40539241e+00 -9.73780870e-01 -3.14104229e-01 -3.83179449e-02 4.36752737e-01 -7.51844347e-01 9.30074155e-02 -1.00743997e+00 -8.05764139e-01 3.37311774e-01 -7.55915701e-01 8.15023854e-03 1.87529147e-01 -6.09801114e-01 -3.62794161e-01 7.76668191e-01 -5.73603749e-01 1.15176797e+00 -2.28523040e+00 -2.90171374e-02 6.56991452e-02 4.91877198e-01 2.19907701e-01 -3.33455324e-01 6.30868897e-02 4.54726489e-03 -1.73889175e-01 -2.99149930e-01 -3.59121680e-01 -1.20480455e-01 2.77139306e-01 -3.72293055e-01 3.67140234e-01 2.39935502e-01 7.22091794e-01 -9.88112092e-01 -9.89750803e-01 1.36049569e-01 1.54954359e-01 -4.63106096e-01 1.83092028e-01 -3.40688437e-01 2.60369945e-02 -4.41806912e-01 6.52243674e-01 6.75917625e-01 -3.26191396e-01 3.08518019e-02 -2.68596977e-01 1.09857790e-01 -1.97135746e-01 -1.34087396e+00 1.68861496e+00 -3.87643605e-01 4.61535037e-01 -1.81569979e-02 -1.04426455e+00 1.04489958e+00 2.14309603e-01 2.76050746e-01 -3.69979560e-01 2.08385453e-01 1.88990831e-01 -2.26435050e-01 -5.36685526e-01 2.91490912e-01 -1.02034964e-01 -1.19486481e-01 9.63709429e-02 4.85691160e-01 1.35166377e-01 2.36411273e-01 4.99617666e-01 8.44317019e-01 -1.98437899e-01 4.14415658e-01 -2.60673881e-01 6.78746283e-01 1.57695606e-01 6.91273153e-01 8.46773267e-01 -1.75199777e-01 5.81040323e-01 1.16865069e-01 -1.53203443e-01 -9.47437048e-01 -1.12560868e+00 -3.61086160e-01 1.08702850e+00 5.23809552e-01 -4.16043907e-01 -5.95652640e-01 -9.03495312e-01 7.72653967e-02 5.95151424e-01 -3.67201537e-01 -1.11026518e-01 -1.66688219e-01 -6.88531578e-01 4.85943079e-01 4.78090525e-01 5.46550035e-01 -7.74759054e-01 -2.82621622e-01 5.94641231e-02 -5.28903425e-01 -1.33442652e+00 -6.59077823e-01 1.84378117e-01 -5.70454121e-01 -1.23132896e+00 -6.73330784e-01 -1.34515488e+00 8.48478913e-01 5.72149336e-01 1.07926273e+00 1.20404055e-02 -5.65257430e-01 3.29192400e-01 -6.15322530e-01 -3.30936462e-01 -2.22252145e-01 -8.01051483e-02 2.22265720e-01 3.19872111e-01 5.93028843e-01 -1.57811761e-01 -4.49518710e-01 4.06138361e-01 -6.90344870e-01 1.61704108e-01 7.13138819e-01 1.05040240e+00 8.99140418e-01 -9.29938182e-02 3.83066207e-01 -7.64147639e-01 2.91583866e-01 -6.48005664e-01 -6.09609187e-01 4.47848022e-01 -4.45738524e-01 1.33326827e-02 4.34813648e-01 -6.31448328e-01 -1.06401908e+00 2.47223675e-01 -3.56057915e-03 -7.56876647e-01 -1.87002942e-01 3.23148757e-01 -3.80585641e-01 -1.05045743e-01 9.00155485e-01 5.48910499e-01 -3.96997541e-01 -5.27957499e-01 6.72889233e-01 8.91455531e-01 7.12279201e-01 -5.42110980e-01 1.05696428e+00 4.38727915e-01 -5.37985921e-01 -7.85550416e-01 -1.17393851e+00 -1.20496178e+00 -5.84703028e-01 7.97815397e-02 7.84548581e-01 -1.39864516e+00 -5.94771840e-02 1.29624665e-01 -1.18178236e+00 3.06858599e-01 -1.31765068e-01 3.67095321e-01 -3.73572528e-01 5.62871873e-01 -4.08120483e-01 -5.78157544e-01 -4.08830792e-01 -8.42806220e-01 1.02236903e+00 4.93218452e-02 2.78227508e-01 -4.44527239e-01 -1.72793388e-01 3.85752589e-01 -2.06770629e-01 -1.06974885e-01 6.87224030e-01 -9.05696690e-01 -6.44551516e-01 -3.27482432e-01 -6.26613140e-01 4.72839147e-01 -1.07785247e-01 -4.57111984e-01 -8.79252613e-01 -4.90592182e-01 -5.68236336e-02 -5.25656581e-01 1.09924090e+00 -9.58180428e-02 1.23024607e+00 -2.55757153e-01 -7.71917880e-01 4.95210528e-01 1.61539543e+00 -2.93371174e-03 2.39364654e-01 1.22628205e-01 9.76327777e-01 5.54740727e-01 1.10694790e+00 5.09953737e-01 1.77680403e-01 7.62903273e-01 3.35854858e-01 -7.56436586e-02 -2.15048417e-01 -3.53982866e-01 1.64245993e-01 7.16542721e-01 5.00090957e-01 -2.79158562e-01 -1.06540060e+00 9.94273782e-01 -1.65128851e+00 -8.41609657e-01 -4.90068346e-02 2.11132574e+00 9.77054596e-01 2.09824651e-01 -9.26010162e-02 -1.36185437e-01 1.13200605e+00 -8.10876787e-02 -5.17022192e-01 3.40378284e-01 -1.66065887e-01 -1.52087390e-01 4.73986834e-01 1.38053849e-01 -1.38107669e+00 1.12016141e+00 5.17478275e+00 1.29105091e+00 -8.05839777e-01 6.03302598e-01 2.77978003e-01 -7.00547844e-02 -6.58452958e-02 -4.00098003e-02 -1.27080357e+00 4.49171335e-01 3.46469492e-01 -1.79090932e-01 -9.98490453e-02 1.11933374e+00 -1.71063900e-01 1.77868843e-01 -1.10395920e+00 1.27276242e+00 4.97925818e-01 -1.25356042e+00 3.70511204e-01 -2.60888040e-01 6.93616629e-01 2.86911160e-01 -1.76739126e-01 4.84226316e-01 9.89449546e-02 -4.31177020e-01 9.39036310e-01 -2.93451417e-02 9.77822959e-01 -5.75711012e-01 6.55569911e-01 5.46656430e-01 -1.50816751e+00 -3.87522936e-01 -5.75507581e-01 2.69718796e-01 -1.03469476e-01 4.24307853e-01 -8.75819266e-01 4.96274292e-01 6.29698992e-01 8.18789184e-01 -7.27440655e-01 1.30102897e+00 -2.82909840e-01 5.41730583e-01 -2.96255946e-01 6.85219467e-02 2.67476380e-01 4.92424816e-02 6.43519342e-01 1.39748287e+00 -1.88952759e-02 5.23673333e-02 7.08704650e-01 9.90391970e-01 -1.89074337e-01 4.72350806e-01 -5.59915543e-01 1.22833736e-01 7.47773349e-01 1.29164886e+00 -7.01096654e-01 -5.95189273e-01 -7.91315913e-01 1.02850711e+00 5.59809208e-01 2.31610268e-01 -9.72926319e-01 -6.08380497e-01 5.25485337e-01 4.11978215e-02 4.49900746e-01 1.41821019e-02 -8.13040137e-03 -1.36425877e+00 2.94509947e-01 -5.73070526e-01 6.44574881e-01 -7.44147480e-01 -1.54056525e+00 5.65012932e-01 1.14129543e-01 -1.52838457e+00 2.78709412e-01 -6.91150486e-01 -3.40776652e-01 7.21036851e-01 -1.63756979e+00 -1.39903879e+00 -4.35132325e-01 8.39232504e-01 7.84071326e-01 -2.72306949e-01 5.48104584e-01 5.73030591e-01 -6.10884190e-01 8.13816667e-01 2.63946831e-01 4.58759993e-01 7.93636262e-01 -1.13041627e+00 1.51023149e-01 1.09322429e+00 5.43380320e-01 5.18167257e-01 5.45548141e-01 -6.63740754e-01 -9.80440080e-01 -1.55559278e+00 7.64141500e-01 -4.72337365e-01 6.87556148e-01 -6.24340773e-01 -9.98596489e-01 5.39341688e-01 -9.93076712e-02 3.53206843e-01 4.81495649e-01 1.12079732e-01 -7.83836007e-01 -1.90688640e-01 -9.60354090e-01 4.35464025e-01 1.23652017e+00 -6.86762631e-01 -1.08447313e+00 6.98422134e-01 1.06876302e+00 -3.64983976e-01 -2.94501841e-01 1.73658773e-01 4.04550023e-02 -3.81970286e-01 1.09564841e+00 -3.44368249e-01 1.37819737e-01 -7.04495907e-01 -2.27649361e-01 -8.97862494e-01 -2.39040405e-01 -2.37105414e-02 -1.09668486e-01 1.42687392e+00 2.59732664e-01 -3.98106456e-01 5.55595636e-01 -5.27124992e-03 -2.45133951e-01 -4.83249545e-01 -9.56564248e-01 -1.02611578e+00 -1.19910374e-01 -3.95640880e-01 7.52495825e-02 1.05628681e+00 2.03746483e-02 5.92633903e-01 -2.31887147e-01 4.36119229e-01 7.05115020e-01 2.48993769e-01 4.58886266e-01 -1.14655876e+00 -2.16997907e-01 -7.09839985e-02 -6.28922045e-01 -1.20497286e+00 1.78019300e-01 -1.23410666e+00 3.01754117e-01 -1.41190898e+00 8.24294031e-01 -6.82319045e-01 -5.32147706e-01 6.81104839e-01 -2.69140720e-01 4.30675954e-01 3.58993798e-01 3.71197522e-01 -1.03343785e+00 6.20473742e-01 1.03600454e+00 -5.15188038e-01 -9.48165506e-02 -3.86271656e-01 -7.31984496e-01 6.18052363e-01 4.82546598e-01 -5.48861802e-01 -4.56068814e-01 -4.42933679e-01 -1.37494132e-01 -2.08527654e-01 5.21084964e-01 -1.26113737e+00 2.33447105e-01 -2.72482745e-02 1.29153669e-01 -9.23126638e-01 7.57258385e-02 -7.80891955e-01 -2.67703056e-01 3.19543302e-01 -2.76392430e-01 -4.77238238e-01 2.53700167e-01 9.95241702e-01 -3.46275806e-01 -3.33392560e-01 8.84657085e-01 -2.26027668e-01 -1.31525052e+00 3.42519403e-01 7.14484006e-02 3.86348397e-01 1.31232977e+00 -2.01266214e-01 -2.46499702e-01 1.98855609e-01 -8.25396419e-01 6.18486881e-01 2.65492082e-01 7.04701364e-01 7.84062803e-01 -1.30383718e+00 -6.86373949e-01 1.18085861e-01 9.28257287e-01 1.07048281e-01 2.10733548e-01 5.12180209e-01 -2.49559879e-01 4.55328614e-01 -5.29273748e-02 -8.14115345e-01 -1.38872337e+00 1.02035499e+00 2.37889737e-01 -5.86946234e-02 -7.64054716e-01 1.16468847e+00 8.01456630e-01 -3.62592876e-01 4.17547584e-01 -1.46673962e-01 -4.06020403e-01 1.81319147e-01 6.07254922e-01 -2.14659005e-01 -5.30702360e-02 -7.86834419e-01 -5.03323138e-01 6.80023730e-01 -3.16416532e-01 2.03165099e-01 8.65782976e-01 -3.76912117e-01 1.27467573e-01 1.97944880e-01 1.20986819e+00 -2.99193412e-01 -1.02698040e+00 -8.27613831e-01 2.48383265e-02 -4.72614169e-01 1.22914128e-01 -8.06175411e-01 -9.37727630e-01 8.34687233e-01 9.25524950e-01 -5.21398187e-01 1.01479149e+00 5.01532435e-01 5.12692571e-01 6.57231450e-01 5.24937987e-01 -1.07813883e+00 4.20394480e-01 5.06891012e-01 7.82242715e-01 -1.41455674e+00 -1.55533969e-01 -8.16563785e-01 -7.27776587e-01 7.29950547e-01 1.00595868e+00 1.63526893e-01 4.70918685e-01 -1.55385464e-01 -8.78805667e-02 -1.09370612e-01 -4.78241056e-01 -6.84446752e-01 3.82238358e-01 6.72048509e-01 -6.38192222e-02 8.28292072e-02 -3.54122639e-01 8.78193676e-01 3.12340051e-01 -1.72085732e-01 2.22579092e-01 6.36899769e-01 -7.83645093e-01 -8.85458946e-01 -4.24076587e-01 6.41112685e-01 2.41858754e-02 -3.84718537e-01 -9.99678448e-02 5.56073070e-01 6.80961430e-01 7.86101341e-01 1.94093198e-01 -4.15186673e-01 2.95547336e-01 6.69325143e-02 9.41636413e-02 -1.20859468e+00 -1.99067831e-01 -8.58598873e-02 -4.57494929e-02 -3.57310623e-01 -2.24233672e-01 -5.92551649e-01 -1.28478241e+00 2.38844335e-01 -8.92570436e-01 1.60893247e-01 2.05154479e-01 9.22911763e-01 3.02589953e-01 3.35909903e-01 5.13431847e-01 -3.72937679e-01 -5.94036460e-01 -8.17394912e-01 -6.89148843e-01 6.92494333e-01 1.64133400e-01 -1.03806686e+00 -2.08557278e-01 1.79705173e-01]
[9.765652656555176, 1.578628420829773]
26f40678-542c-422b-956b-f15d85fd30eb
learning-emotion-aware-contextual
null
null
https://openreview.net/forum?id=msFpRstzoXt
https://openreview.net/pdf?id=msFpRstzoXt
Learning Emotion-Aware Contextual Representations for Emotion-Cause Pair Extraction
Emotion Cause Pair Extraction (ECPE), the task expanded from the previous emotion cause extraction (ECE) task, focuses on extracting emotion-cause pairs in text. Two reasons have made ECPE a more challenging, but more applicable task in real world scenarios: 1) an ECPE model needs to identify both emotions and their corresponding causes without the annotation of emotions. 2) the ECPE task involves finding causes for multiple emotions in the document context, while ECE is for one emotion. However, most existing methods for ECPE adopt an unified approach that models emotion extraction and cause extraction jointly through shared contextual representations, which is suboptimal in extracting multiple emotion-cause pairs. In addition, previous ECPE works are evaluated on one ECE dataset, which exhibits a bias that majority of documents have only one emotion-cause pair. In this work, we propose a simple pipelined approach that builds on two independent encoders, in which the emotion extraction model only provide input features for the cause extraction model. We reconstruct the benchmark dataset to better meet ECPE settings. Based on experiments conducted on the original and reconstructed dataset, we validate that our model can learn distinct contextual representations specific to each emotion, and thus achieves state-of-the-art performance on both datasets, while showing robustness in analyzing more complex document context.
['Anonymous']
2021-11-16
null
null
null
acl-arr-november-2021-11
['emotion-cause-pair-extraction', 'emotion-cause-extraction']
['natural-language-processing', 'natural-language-processing']
[ 2.97832787e-01 -7.85198063e-02 -1.31178364e-01 -3.89259785e-01 -8.95340562e-01 -7.31718600e-01 5.71739018e-01 2.28066832e-01 -2.02466235e-01 6.61080360e-01 4.77211386e-01 5.26364483e-02 -1.00453518e-01 -5.22547781e-01 -5.68052471e-01 -3.64467651e-01 4.12638262e-02 -5.74720688e-02 -3.53102714e-01 -2.19906822e-01 5.48326550e-03 1.91774413e-01 -1.85267854e+00 7.74330914e-01 6.03406072e-01 1.04248083e+00 -1.38040120e-02 7.94121265e-01 -3.34355921e-01 1.26375270e+00 -9.30476010e-01 -5.29159427e-01 -2.44008258e-01 -5.72124720e-01 -1.02760661e+00 -2.22738653e-01 5.60136735e-02 -6.62995800e-02 -4.37523127e-02 7.04164207e-01 4.39965606e-01 -2.18566917e-02 7.87849844e-01 -1.58981633e+00 -7.10651934e-01 8.35540414e-01 -3.83961856e-01 -1.51543498e-01 6.68606699e-01 -4.64019775e-01 1.48309577e+00 -9.00710821e-01 6.88905180e-01 1.20835817e+00 5.97846866e-01 7.24031150e-01 -7.76810408e-01 -6.35021150e-01 4.75569487e-01 4.32230949e-01 -1.18709683e+00 -1.31197080e-01 8.45798492e-01 6.00700732e-03 1.47119772e+00 3.65226388e-01 3.82393330e-01 1.40487885e+00 1.88017458e-01 1.20429230e+00 1.06086648e+00 -3.62501621e-01 2.82094240e-01 5.35729714e-02 3.66986930e-01 2.18332902e-01 -2.27815464e-01 -3.93965870e-01 -5.72804511e-01 -2.38979474e-01 2.64055967e-01 -2.74534941e-01 -3.84213537e-01 1.89889923e-01 -1.10274839e+00 7.76896656e-01 2.81743795e-01 6.17234170e-01 -6.43270075e-01 1.35991976e-01 6.49831653e-01 3.16093564e-01 3.01128000e-01 5.39774716e-01 -9.14425910e-01 -3.70828152e-01 -7.20818818e-01 5.48488021e-01 1.08828580e+00 8.71576846e-01 5.86096168e-01 -3.94183189e-01 -2.32250527e-01 9.13423896e-01 -7.36813545e-02 3.02317858e-01 4.04862076e-01 -5.04459918e-01 2.60786057e-01 9.27137852e-01 1.13776527e-01 -1.26434505e+00 -6.46944821e-01 -4.42477405e-01 -7.16167927e-01 -4.64918673e-01 2.25151926e-02 -4.67583954e-01 -6.49254620e-01 1.97941124e+00 2.16154799e-01 2.25781411e-01 4.43194926e-01 8.75701845e-01 1.25766408e+00 8.20537627e-01 2.05989182e-01 -2.17129335e-01 1.52596080e+00 -8.34250748e-01 -1.35013533e+00 -4.81673092e-01 7.11014152e-01 -8.55950177e-01 1.10201824e+00 7.29945958e-01 -6.03062034e-01 -1.65500075e-01 -1.07839668e+00 -3.43045294e-01 -7.89044440e-01 5.97861886e-01 7.85936713e-01 2.87260026e-01 -6.78502679e-01 2.45710567e-01 -2.02443466e-01 -2.47475073e-01 -1.37825981e-02 1.98185161e-01 -3.01690459e-01 1.53228659e-02 -1.75727403e+00 7.99229622e-01 2.71581501e-01 8.96233097e-02 -4.60878938e-01 -7.17008770e-01 -8.88580441e-01 2.60249704e-01 5.31217456e-01 -2.35880464e-01 1.18387914e+00 -1.16083884e+00 -1.16955721e+00 6.73628390e-01 -5.53350508e-01 -1.09841146e-01 -1.18729331e-01 -7.83367395e-01 -8.91778588e-01 2.61949208e-02 1.72406614e-01 5.90350509e-01 6.56750560e-01 -1.54684806e+00 -5.44262528e-01 -1.93419203e-01 -3.09301894e-02 5.33298664e-02 -4.33325738e-01 5.50814033e-01 -7.88965762e-01 -7.14765251e-01 -4.59472656e-01 -6.95911467e-01 -5.42369857e-02 -6.05748117e-01 -4.85009849e-01 -5.96431196e-01 1.12464511e+00 -6.55421197e-01 1.61572957e+00 -2.08313823e+00 2.22274527e-01 -1.35371201e-02 9.90754887e-02 -1.41223550e-01 -3.12545329e-01 5.09798944e-01 -4.87760603e-01 2.72817791e-01 -1.64654449e-01 -5.00107288e-01 2.32075825e-01 4.79056180e-01 -7.38321304e-01 -1.91235915e-01 7.15435982e-01 7.98147440e-01 -9.40656245e-01 -4.78505433e-01 -1.42206445e-01 6.07242584e-01 -4.56869781e-01 4.38274354e-01 -1.90103441e-01 -3.39620411e-02 -2.77160972e-01 5.20704508e-01 6.63093507e-01 -2.46250331e-01 3.68801892e-01 -3.43784988e-01 1.52175874e-01 4.01079237e-01 -1.28603351e+00 1.40204573e+00 -8.50180030e-01 5.79441130e-01 3.89464311e-02 -6.44232631e-01 1.04386175e+00 6.48040771e-01 6.05864048e-01 -5.15601873e-01 3.09685856e-01 2.04570577e-01 -2.75673091e-01 -6.55263186e-01 7.48966038e-01 -7.90017769e-02 -6.55290961e-01 5.47319710e-01 2.42408127e-01 -1.10556662e-01 3.32640678e-01 3.49460900e-01 1.26839197e+00 5.16340360e-02 4.13219988e-01 1.69251055e-01 5.48781753e-01 -9.39226970e-02 9.54497576e-01 3.82444054e-01 -2.93317705e-01 4.53285575e-01 1.01328743e+00 -3.79572362e-01 -4.77511138e-01 -5.83314598e-01 5.76822180e-03 1.02483988e+00 1.39675289e-01 -1.00316560e+00 -6.53408885e-01 -1.06793976e+00 -2.78740048e-01 9.83482420e-01 -8.32100093e-01 -6.89211860e-02 -6.09117448e-01 -8.28600168e-01 5.81568241e-01 5.63728392e-01 4.11658108e-01 -1.19042420e+00 -7.34082341e-01 3.56059462e-01 -6.78121030e-01 -1.54176366e+00 1.48846105e-01 5.50680757e-01 -7.20460117e-02 -1.24511671e+00 -2.87744284e-01 -5.56855083e-01 2.53771901e-01 -1.15972221e-01 1.45952725e+00 -6.74633831e-02 -2.69948453e-01 5.10747075e-01 -8.05295229e-01 -8.12319934e-01 -2.48900339e-01 1.63246840e-01 -1.85196474e-01 5.63267283e-02 9.58221316e-01 -2.32517958e-01 -3.25973302e-01 2.15271801e-01 -9.25859630e-01 2.80597452e-02 4.65726525e-01 6.72850192e-01 6.07667685e-01 2.81132460e-01 9.24086928e-01 -7.05017388e-01 9.09701824e-01 -7.68466592e-01 1.68485120e-01 3.36329490e-01 -3.85501146e-01 -1.99811876e-01 9.58432674e-01 -2.63965577e-01 -1.29047167e+00 1.65642481e-02 -1.68685451e-01 -2.72465914e-01 -5.06959736e-01 6.27602041e-01 -4.82519686e-01 8.07986736e-01 3.16064417e-01 5.86379766e-02 -5.25010943e-01 -3.40202421e-01 5.13180017e-01 9.04947400e-01 5.98263621e-01 -5.84115505e-01 2.14632720e-01 2.14611039e-01 -2.07673565e-01 -4.55061615e-01 -1.16724253e+00 -4.58291978e-01 -4.48682517e-01 -2.86829203e-01 9.33000743e-01 -1.01019883e+00 -4.41763222e-01 2.44529411e-01 -1.44513798e+00 -1.17118008e-01 6.42640218e-02 3.05514693e-01 -2.69343793e-01 3.15507129e-02 -5.63409090e-01 -6.90996170e-01 -3.32733095e-01 -9.31862533e-01 1.50125802e+00 1.03763446e-01 -8.10866535e-01 -7.50178337e-01 -2.44781077e-02 1.86969489e-02 1.33750662e-01 4.89809245e-01 1.05730438e+00 -6.79850817e-01 1.48745835e-01 -2.52311885e-01 -3.35604817e-01 1.37032703e-01 4.57776994e-01 2.69734830e-01 -1.24771488e+00 2.17282146e-01 9.93977953e-03 -6.11276507e-01 8.40036631e-01 -4.09781300e-02 1.28327680e+00 -3.86860043e-01 -2.42036521e-01 2.02774107e-01 1.31449807e+00 1.77756801e-01 4.72658873e-01 2.53318906e-01 6.25489414e-01 8.32159340e-01 7.61284053e-01 6.58837855e-01 5.25247574e-01 6.17223799e-01 4.57783431e-01 -3.74204218e-01 -1.46830808e-02 3.24630439e-02 4.89307135e-01 8.06849420e-01 2.51843423e-01 -4.20077443e-01 -7.81475306e-01 8.17963421e-01 -2.02029443e+00 -7.93531954e-01 -3.51930082e-01 1.45301926e+00 1.14998245e+00 -4.32114840e-01 -1.15873851e-01 3.67318064e-01 5.44074655e-01 2.33453646e-01 -4.24834520e-01 -8.61389875e-01 -3.38134050e-01 1.74887121e-01 -1.53694645e-01 8.21853802e-02 -1.31833935e+00 9.32555676e-01 6.05403042e+00 7.39767969e-01 -1.05204904e+00 -1.94788165e-02 6.04179621e-01 -2.58848429e-01 -4.18260664e-01 -1.91478297e-01 -5.97835958e-01 3.42676997e-01 7.47351825e-01 1.60813138e-01 2.78357416e-01 9.11092579e-01 1.82566643e-02 8.30971301e-02 -1.25513709e+00 1.05739641e+00 1.37940213e-01 -8.60612810e-01 2.28632474e-03 -3.46972764e-01 6.93930149e-01 -3.38067830e-01 -2.64716804e-01 6.64866030e-01 4.97549474e-02 -9.82376814e-01 5.74297428e-01 3.33155781e-01 6.14936113e-01 -1.13633895e+00 9.79218423e-01 -2.11096350e-02 -1.23670483e+00 -7.58944973e-02 -1.00055180e-01 -1.37335479e-01 1.49798989e-01 8.95905912e-01 -4.93378788e-01 6.94052577e-01 9.57898617e-01 9.35373068e-01 -5.57290852e-01 3.05675864e-01 -7.85593808e-01 6.64429426e-01 -2.04112470e-01 -1.77502766e-01 1.53108001e-01 3.52249533e-01 4.27646369e-01 1.73328710e+00 1.82419971e-01 4.65001948e-02 -3.15952152e-02 9.78389680e-01 -1.90103203e-01 3.72093767e-01 -4.11783338e-01 8.98773372e-02 3.92919034e-01 1.71421504e+00 -6.66102231e-01 -3.94065052e-01 -3.89922917e-01 1.09926963e+00 4.21977729e-01 2.56277949e-01 -1.09800506e+00 -6.36990190e-01 7.54539371e-01 -7.57541955e-01 3.86629432e-01 9.25529599e-02 -3.39853972e-01 -1.28942358e+00 1.26921400e-01 -1.00372660e+00 4.85627830e-01 -8.60139430e-01 -1.48400056e+00 7.99974501e-01 -8.86944979e-02 -9.62125421e-01 -5.47542691e-01 -7.22865403e-01 -7.98209846e-01 5.40228426e-01 -1.70128942e+00 -1.16774678e+00 -3.02860498e-01 7.00791836e-01 4.15111929e-01 2.66167730e-01 1.16471326e+00 2.36526132e-01 -9.16566491e-01 6.30327821e-01 -5.29548824e-01 1.32717162e-01 1.07693410e+00 -1.44698191e+00 -1.40696853e-01 9.04807150e-01 6.31195828e-02 6.94056332e-01 6.55817270e-01 -7.19168544e-01 -1.45655310e+00 -1.09134281e+00 1.39665413e+00 -4.76659030e-01 5.86990476e-01 -5.68003178e-01 -9.18091536e-01 4.49605376e-01 6.31879270e-01 -3.96736637e-02 1.05855560e+00 6.24492645e-01 -6.16069496e-01 2.63373673e-01 -9.98355925e-01 6.43430829e-01 7.65978158e-01 -4.97493595e-01 -7.80151486e-01 -5.49652502e-02 8.10776353e-01 -1.69328839e-01 -8.99387598e-01 4.93731737e-01 5.10072052e-01 -8.79718602e-01 5.48836708e-01 -6.17320478e-01 1.22276437e+00 -1.95527181e-01 -3.24098945e-01 -1.29668176e+00 -1.31261379e-01 -5.39756536e-01 -4.65862334e-01 1.91454601e+00 4.58849072e-01 -1.48976058e-01 1.72045261e-01 8.00630152e-01 7.68216178e-02 -1.13746381e+00 -6.75476313e-01 -5.74200571e-01 -4.63659018e-02 -9.67731655e-01 1.12569749e+00 1.21492195e+00 1.65370509e-01 6.15598857e-01 -4.45549846e-01 6.66968822e-02 -5.08006802e-03 5.79331577e-01 6.06889069e-01 -8.29062462e-01 -2.51827717e-01 -5.26217639e-01 1.58189729e-01 -5.42671084e-01 5.97091436e-01 -7.43443310e-01 1.93188637e-01 -1.55137599e+00 2.70682514e-01 -1.65224642e-01 -5.83864987e-01 9.89026189e-01 -7.86067724e-01 -8.20635259e-02 1.91232249e-01 -1.45416796e-01 -6.75430775e-01 6.66065276e-01 8.22178006e-01 -1.52142206e-02 -1.80798158e-01 -5.39008439e-01 -9.44210827e-01 8.31524611e-01 6.82791054e-01 -4.23635423e-01 -3.25367808e-01 -2.48297155e-01 8.96854639e-01 -3.81533146e-01 3.82900029e-01 -5.78225136e-01 -1.26748279e-01 -3.16977203e-02 5.38476825e-01 -5.58406830e-01 5.10875322e-02 -9.28453565e-01 -4.17095751e-01 -2.02397734e-01 -3.72196168e-01 -2.84826513e-02 4.58090931e-01 2.51921356e-01 -5.73474824e-01 -2.26610005e-01 1.60905257e-01 1.81535482e-01 -9.75372195e-01 -2.23933801e-01 -5.34150183e-01 7.06520956e-03 7.19435751e-01 2.38662630e-01 -3.18692833e-01 -5.31349361e-01 -3.40567410e-01 2.61373639e-01 1.26062986e-02 8.00697982e-01 6.33971930e-01 -1.41629446e+00 -6.46055877e-01 -2.05065295e-01 3.23282152e-01 -1.32367328e-01 2.26752639e-01 5.91746986e-01 3.71806711e-01 3.33444118e-01 1.28648967e-01 -1.99281424e-01 -1.38036907e+00 7.48906076e-01 7.72642642e-02 -7.37514079e-01 -2.62619197e-01 7.40338326e-01 2.21399903e-01 -5.65634549e-01 8.35186094e-02 -4.08881038e-01 -5.96999407e-01 4.30900931e-01 7.66028404e-01 1.32183760e-01 1.52605072e-01 -5.95064998e-01 -6.10463977e-01 5.23114443e-01 -1.54619217e-01 7.20287263e-02 1.39717984e+00 -9.38702598e-02 -4.08524007e-01 4.08567607e-01 1.44320822e+00 1.01629786e-01 -7.79633164e-01 -1.37022063e-01 6.63704500e-02 1.37349768e-02 2.79970050e-01 -1.29308021e+00 -9.54285562e-01 6.23106480e-01 1.98046133e-01 1.51684448e-01 1.71182728e+00 1.34550974e-01 9.14871871e-01 2.60990441e-01 -7.96235912e-03 -1.30705392e+00 -6.37749094e-04 8.21317494e-01 1.38609326e+00 -1.14967930e+00 -8.21668133e-02 -6.62969053e-01 -8.19687486e-01 1.16278005e+00 8.02702010e-01 9.67254341e-02 4.35188919e-01 5.91340959e-01 2.03796700e-01 -5.03412426e-01 -1.15878546e+00 -2.65896112e-01 3.77984583e-01 5.38891032e-02 7.83999979e-01 6.91992119e-02 -3.99532795e-01 1.72689545e+00 -2.45688364e-01 1.18242921e-02 3.60552847e-01 1.01680577e+00 2.26869643e-01 -1.22928834e+00 -3.26666594e-01 2.37327099e-01 -7.65371323e-01 -1.43480659e-01 -1.25509584e+00 8.59508812e-01 3.91448736e-01 1.32370758e+00 -5.34238964e-02 -5.29640019e-01 3.15201074e-01 3.29082012e-01 1.79614618e-01 -3.60896528e-01 -9.74021733e-01 2.00051188e-01 3.42426270e-01 -8.91982377e-01 -6.37420952e-01 -5.33608913e-01 -1.67753422e+00 3.17952871e-01 -5.82888536e-02 6.53662719e-03 6.10193610e-01 1.12169015e+00 7.12330520e-01 9.84659433e-01 8.31475914e-01 -5.19532859e-01 7.25184530e-02 -8.90358508e-01 -4.32029068e-01 7.63711810e-01 1.77265599e-01 -6.01350367e-01 -3.28249753e-01 4.97976840e-02]
[12.663707733154297, 6.22737979888916]
3b21860f-82bd-43f1-8db4-9bb1da22a48a
hierarchical-kinematic-human-mesh-recovery
2003.04232
null
https://arxiv.org/abs/2003.04232v2
https://arxiv.org/pdf/2003.04232v2.pdf
Hierarchical Kinematic Human Mesh Recovery
We consider the problem of estimating a parametric model of 3D human mesh from a single image. While there has been substantial recent progress in this area with direct regression of model parameters, these methods only implicitly exploit the human body kinematic structure, leading to sub-optimal use of the model prior. In this work, we address this gap by proposing a new technique for regression of human parametric model that is explicitly informed by the known hierarchical structure, including joint interdependencies of the model. This results in a strong prior-informed design of the regressor architecture and an associated hierarchical optimization that is flexible to be used in conjunction with the current standard frameworks for 3D human mesh recovery. We demonstrate these aspects by means of extensive experiments on standard benchmark datasets, showing how our proposed new design outperforms several existing and popular methods, establishing new state-of-the-art results. By considering joint interdependencies, our method is equipped to infer joints even under data corruptions, which we demonstrate by conducting experiments under varying degrees of occlusion.
['Terrence Chen', 'Ren Li', 'Ziyan Wu', 'Jana Kosecka', 'Georgios Georgakis', 'Srikrishna Karanam']
2020-03-09
null
https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/2889_ECCV_2020_paper.php
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123620749.pdf
eccv-2020-8
['human-mesh-recovery']
['computer-vision']
[ 2.20057175e-01 3.62828732e-01 -1.90725163e-01 -1.16549596e-01 -5.00428915e-01 -1.76317871e-01 5.17133772e-01 -9.52636525e-02 -2.92489022e-01 5.81914127e-01 2.62561262e-01 2.49388710e-01 -2.06702486e-01 -4.79593396e-01 -8.89093935e-01 -5.19630373e-01 -2.23432794e-01 9.49336231e-01 3.33229870e-01 -3.99165392e-01 -5.47616482e-02 5.28630674e-01 -1.64123178e+00 -1.19687527e-01 4.64431167e-01 7.24604368e-01 -6.42798319e-02 5.09357274e-01 4.46803957e-01 3.79580140e-01 -3.34555596e-01 -1.93649620e-01 4.23606813e-01 -2.00988367e-01 -7.71814346e-01 5.10483623e-01 5.06930709e-01 -2.17720971e-01 -8.72331206e-03 5.71972728e-01 5.94803214e-01 -1.13333967e-02 6.31861866e-01 -9.79376912e-01 5.68180159e-02 1.45101607e-01 -6.75842345e-01 -2.97280490e-01 5.82728803e-01 -1.65465083e-02 9.74501193e-01 -7.46145844e-01 9.24092829e-01 1.41715777e+00 9.37768936e-01 3.90941739e-01 -1.75433898e+00 -3.00689042e-01 8.50284994e-02 -1.58840716e-02 -1.51438236e+00 -5.34514487e-01 1.04367554e+00 -6.87202513e-01 6.47081017e-01 1.64427623e-01 8.78550947e-01 1.19564486e+00 3.90057117e-02 6.42102063e-01 1.21947134e+00 -6.35752976e-01 -7.99007341e-03 -1.54396579e-01 9.00957957e-02 9.83184695e-01 2.75907904e-01 1.72240034e-01 -6.19210422e-01 -2.83763528e-01 1.14999473e+00 -4.46467757e-01 -2.58481145e-01 -1.17501652e+00 -1.28663051e+00 5.85236549e-01 2.15186596e-01 9.49535817e-02 -4.45058972e-01 2.30325535e-01 2.69333005e-01 9.28460658e-02 5.55901885e-01 8.58664364e-02 -3.75540465e-01 1.44952402e-01 -9.73309338e-01 6.58880711e-01 1.02020705e+00 9.10365105e-01 7.50167847e-01 -7.10114166e-02 5.25791422e-02 8.76650214e-01 4.97418255e-01 3.55597049e-01 -7.32409908e-03 -1.07683527e+00 2.84522533e-01 5.64825296e-01 1.75026342e-01 -1.21486914e+00 -6.79249167e-01 -4.67758179e-01 -8.56341183e-01 3.40703398e-01 6.70242250e-01 2.08809394e-02 -8.49596083e-01 1.85435474e+00 7.67506421e-01 2.91366935e-01 -4.58392084e-01 9.52477992e-01 3.90110910e-01 9.90661755e-02 -1.00399107e-01 -1.75944045e-01 1.43607700e+00 -7.64378071e-01 -6.21012688e-01 -7.01770857e-02 2.31254503e-01 -6.91113412e-01 8.53356481e-01 6.10993922e-01 -1.17894650e+00 -5.95871985e-01 -1.07173645e+00 -2.19734639e-01 8.25117081e-02 2.25142539e-02 3.26906830e-01 5.91225564e-01 -9.44220364e-01 7.45472133e-01 -1.07887018e+00 -4.63189423e-01 -2.54402030e-03 6.90801919e-01 -6.35928929e-01 1.02731854e-01 -9.49122906e-01 1.04750407e+00 1.74844131e-01 5.11246622e-01 -6.80462360e-01 -6.07788086e-01 -8.29071641e-01 -3.76001626e-01 6.39594913e-01 -1.29509354e+00 1.02895796e+00 -6.67349935e-01 -1.79322028e+00 9.75584149e-01 -1.53988585e-01 -3.17673415e-01 1.13069355e+00 -5.24146378e-01 1.76999554e-01 2.28954569e-01 -2.10707366e-01 5.30036211e-01 1.07187092e+00 -1.65279102e+00 -8.56071711e-02 -4.44788605e-01 5.47770634e-02 3.96087989e-02 -1.27365470e-01 -1.67885497e-01 -8.01545680e-01 -7.87883401e-01 2.72047192e-01 -1.38145828e+00 -4.38293099e-01 1.23568952e-01 -6.84218943e-01 3.45425643e-02 4.88311887e-01 -8.53188097e-01 1.18081343e+00 -1.61954916e+00 1.04923511e+00 5.71427524e-01 3.03737134e-01 -1.14173524e-01 2.14015931e-01 3.92000139e-01 -1.75602492e-02 -1.39379323e-01 -6.53940201e-01 -8.90434980e-01 1.64018929e-01 5.39374590e-01 1.01595849e-01 8.40933859e-01 9.38742235e-02 6.19897306e-01 -5.97240567e-01 -7.79981434e-01 3.35330606e-01 8.40437293e-01 -7.03972340e-01 2.70115912e-01 -9.59537327e-02 7.94954002e-01 -4.38661516e-01 5.93667984e-01 4.45336312e-01 -1.37371287e-01 3.46218020e-01 -4.45351064e-01 1.24743603e-01 -8.46362561e-02 -1.54549122e+00 1.91668701e+00 -3.06735575e-01 -1.35326935e-02 4.49444830e-01 -1.07052314e+00 7.61118293e-01 4.67297912e-01 8.10722172e-01 -1.07352711e-01 1.99196786e-01 1.56838179e-01 -2.28002504e-01 -4.28356379e-01 2.81122267e-01 -2.01960817e-01 -3.19722481e-02 1.41621977e-01 5.15274107e-02 -1.10328101e-01 4.07090038e-02 -1.49205551e-01 9.63658154e-01 7.86849022e-01 4.56125647e-01 -5.01841307e-01 6.21188641e-01 -1.75346091e-01 4.42478269e-01 4.45321500e-01 1.44607022e-01 8.05916667e-01 5.50888896e-01 -3.61533046e-01 -1.14532959e+00 -8.37854207e-01 -2.38718390e-01 6.03535295e-01 -2.50942297e-02 -5.29123068e-01 -9.14840162e-01 -5.39530814e-01 1.83742180e-01 9.07549113e-02 -9.48486924e-01 1.99712113e-01 -1.05709767e+00 -6.72732413e-01 3.72955382e-01 3.02390128e-01 1.11114778e-01 -7.00852096e-01 -7.78573692e-01 3.27853590e-01 -1.54445976e-01 -1.33801854e+00 -9.74388272e-02 -1.06416054e-01 -1.03711390e+00 -1.16735506e+00 -9.04774368e-01 -4.36554700e-01 5.95858276e-01 -2.04149663e-01 1.29250479e+00 3.52978915e-01 -3.81516755e-01 6.49787664e-01 -9.10425857e-02 6.56760484e-02 -4.86261219e-01 2.43300661e-01 6.20430075e-02 1.22860916e-01 -4.60862607e-01 -9.17087257e-01 -5.49763083e-01 5.09373486e-01 -8.44850302e-01 2.66640633e-01 5.49410880e-01 8.23274374e-01 7.32610703e-01 -3.47214341e-01 2.71008402e-01 -1.13908672e+00 2.65963197e-01 -4.07852352e-01 -5.64267397e-01 1.99297890e-02 -4.79510844e-01 3.31850737e-01 3.52245748e-01 -3.45334768e-01 -9.80324864e-01 4.50826705e-01 -1.58827886e-01 -5.27864814e-01 -1.49117932e-01 4.58684325e-01 -3.66727978e-01 -1.73531100e-01 4.62215394e-01 -3.02589774e-01 1.54032737e-01 -9.23787117e-01 3.59520525e-01 3.58009734e-03 6.90824032e-01 -1.04961061e+00 9.13098335e-01 6.81000650e-01 5.16012371e-01 -1.00164497e+00 -5.35752594e-01 -3.97397548e-01 -1.26363385e+00 -1.86618388e-01 7.13493228e-01 -7.33886421e-01 -5.83774030e-01 3.88095200e-01 -1.15073669e+00 -2.22724512e-01 -7.46133253e-02 3.02128315e-01 -8.90778899e-01 7.73960412e-01 -6.80219173e-01 -6.82827413e-01 -1.93084981e-02 -1.39090693e+00 1.33841491e+00 -5.78169942e-01 -5.24622202e-01 -1.04192078e+00 3.59996051e-01 4.80131000e-01 -1.69706903e-02 8.60817611e-01 8.39942753e-01 -2.40622789e-01 -4.24406230e-01 -1.87357068e-01 2.10149333e-01 2.41114631e-01 -2.02923536e-01 -9.29526985e-03 -7.98849821e-01 -2.63374150e-01 -1.11784436e-01 -3.89812961e-02 7.57962048e-01 3.25941175e-01 7.78080881e-01 -1.25014722e-01 -3.88366431e-01 5.61497331e-01 1.28238118e+00 -7.41579831e-01 5.54255009e-01 2.79471785e-01 1.02667904e+00 9.85146642e-01 4.60363388e-01 5.49616396e-01 5.08093894e-01 1.33650839e+00 6.75954938e-01 -1.61255270e-01 -2.44558930e-01 -1.52980134e-01 7.77555853e-02 8.19364965e-01 -8.32211256e-01 1.36878446e-01 -9.65903699e-01 4.46669132e-01 -2.03530049e+00 -4.96152312e-01 -3.04922283e-01 2.39266133e+00 7.88831651e-01 9.85973775e-02 5.15905678e-01 2.70899445e-01 5.29875994e-01 1.19078070e-01 -2.53059417e-01 2.84398608e-02 1.68655053e-01 3.58525544e-01 4.51131910e-01 6.33904696e-01 -1.09082794e+00 6.75440013e-01 6.81411839e+00 4.83788282e-01 -6.62206650e-01 2.67233979e-02 -4.95078377e-02 1.34669363e-01 -1.18682869e-01 1.59589097e-01 -7.01808274e-01 1.52810827e-01 6.62701726e-01 3.06181401e-01 2.07865626e-01 5.50931573e-01 2.70700961e-01 8.75024963e-03 -1.28882968e+00 6.97687685e-01 4.90099527e-02 -8.09104800e-01 -1.03191383e-01 3.88826519e-01 5.53359628e-01 -3.54951978e-01 -2.43466616e-01 -1.14129975e-01 1.27506495e-01 -9.30454791e-01 9.57599163e-01 7.30480373e-01 4.22779173e-01 -5.79011500e-01 4.66233402e-01 3.80781889e-01 -1.12557375e+00 3.31569910e-01 -2.05656849e-02 -3.14160101e-02 4.27319705e-01 7.45606363e-01 -6.13190055e-01 9.01597559e-01 5.02120912e-01 7.19845176e-01 -4.59383547e-01 8.30339611e-01 -3.50281119e-01 5.02784908e-01 -5.88444889e-01 6.20239139e-01 -3.04894120e-01 -2.00848192e-01 8.11206222e-01 1.18298328e+00 8.95464793e-02 -5.43752201e-02 4.60393846e-01 6.54099166e-01 1.09367110e-01 2.95561254e-01 -4.14689511e-01 5.54341793e-01 6.00875504e-02 1.04900849e+00 -7.19249249e-01 -2.26855293e-01 -1.89405814e-01 9.04984176e-01 5.31161129e-01 2.52242565e-01 -8.27992439e-01 2.92401969e-01 3.79750520e-01 4.97228086e-01 3.74410957e-01 -6.66738629e-01 -2.24131584e-01 -1.17813706e+00 2.92887896e-01 -9.24341738e-01 2.81891376e-01 -2.57220417e-01 -1.06740189e+00 3.38046163e-01 6.36642098e-01 -1.16519642e+00 -5.66945493e-01 -5.05172074e-01 -3.24431099e-02 6.17333353e-01 -1.37529945e+00 -1.46485853e+00 -1.88150525e-01 5.97415209e-01 3.85987520e-01 3.56583238e-01 8.27615201e-01 3.51117313e-01 -5.28635800e-01 3.06322724e-01 -4.24551845e-01 -2.90387690e-01 7.58217514e-01 -1.16984725e+00 2.01323360e-01 6.56898022e-01 3.49687077e-02 6.07284427e-01 1.15772069e+00 -7.36459017e-01 -1.56915867e+00 -5.53960204e-01 6.51150465e-01 -6.34733498e-01 5.49203575e-01 -5.12604594e-01 -9.58070636e-01 8.57359231e-01 -1.33921146e-01 1.83717892e-01 4.57022995e-01 2.74060100e-01 -2.78450191e-01 3.17917317e-02 -8.81347597e-01 3.97360027e-01 1.24111760e+00 -1.70781255e-01 -6.27557755e-01 1.81469753e-01 4.72744793e-01 -6.25497997e-01 -1.21148014e+00 7.98451960e-01 9.74321008e-01 -1.06018579e+00 1.36744261e+00 -4.26318526e-01 3.36803257e-01 -3.94984007e-01 -8.24169219e-02 -1.03458130e+00 -5.13629578e-02 -7.66593397e-01 -5.62890649e-01 1.01583922e+00 6.76676854e-02 -2.30260625e-01 7.75015116e-01 6.17212951e-01 -1.48865819e-01 -7.90001035e-01 -1.07822657e+00 -6.96884513e-01 3.42778638e-02 -3.83243114e-01 1.89762563e-01 8.53707016e-01 -3.14894795e-01 2.11367145e-01 -9.87275839e-01 2.71017998e-01 9.69123304e-01 -1.26529470e-01 1.24052906e+00 -1.43340671e+00 -6.21761024e-01 -2.35624880e-01 -5.49435556e-01 -1.09961975e+00 4.10331100e-01 -5.15583336e-01 9.77108181e-02 -1.23885322e+00 -1.09801663e-03 -3.04731339e-01 1.00410432e-02 4.41540033e-01 -5.80836460e-02 3.93337756e-01 1.00352801e-01 2.77025700e-01 -3.64055276e-01 4.18970972e-01 1.17447019e+00 1.36112273e-01 -1.18570432e-01 -3.80391926e-02 -1.48222059e-01 1.01809824e+00 3.75060976e-01 -4.37002957e-01 -1.28773063e-01 -3.45435202e-01 1.28829911e-01 1.67419255e-01 7.54227340e-01 -1.00066185e+00 7.74884596e-02 7.90640414e-02 2.31495187e-01 -3.58359456e-01 5.53040683e-01 -1.14116323e+00 6.06759489e-01 4.21494335e-01 -1.28956735e-01 3.66884097e-02 5.10084555e-02 6.16246521e-01 -6.03620559e-02 -1.24900088e-01 7.49815881e-01 -1.03073575e-01 -4.60838735e-01 1.24311589e-01 1.73960102e-03 -8.51134360e-02 7.00604737e-01 -3.78385484e-01 4.26796377e-01 -1.79692224e-01 -1.20663989e+00 2.94082928e-02 7.54928172e-01 3.14606667e-01 2.95861155e-01 -1.21352136e+00 -7.59790242e-01 1.69460759e-01 -6.14869893e-02 7.56213069e-02 1.49967745e-01 1.16829753e+00 -4.02788103e-01 6.49860576e-02 -2.13363856e-01 -8.80925477e-01 -1.34584641e+00 4.90508884e-01 2.01450348e-01 -5.48950553e-01 -8.66714060e-01 3.21793944e-01 1.38384074e-01 -4.21434641e-01 1.94306567e-01 -4.29177850e-01 -1.49440482e-01 1.24929352e-02 -1.04817323e-01 6.16228342e-01 1.36064500e-01 -1.01608908e+00 -2.94114202e-01 1.04940379e+00 3.29323292e-01 -1.38947606e-01 1.35674310e+00 -2.49765694e-01 -2.11588025e-01 5.31908095e-01 1.01415825e+00 2.96507418e-01 -1.37343526e+00 -2.11182505e-01 2.22701073e-01 -3.34011525e-01 -1.23567514e-01 -3.64735484e-01 -9.98823166e-01 7.31122673e-01 3.10688227e-01 -1.11496365e-02 8.69122803e-01 -4.09205854e-02 5.89069247e-01 2.06820831e-01 5.98970473e-01 -8.18876565e-01 -1.41000658e-01 2.41287678e-01 1.05925286e+00 -9.97109950e-01 4.98772919e-01 -9.15788531e-01 -1.35006115e-01 1.10672045e+00 2.41659641e-01 -4.94252443e-01 6.52274728e-01 2.01367736e-01 -1.92372307e-01 -2.48767167e-01 -3.92828315e-01 -2.32241422e-01 6.09877944e-01 4.79083329e-01 4.27367508e-01 -8.34642500e-02 -4.27048624e-01 3.55440378e-01 -2.07371771e-01 3.59161124e-02 1.79759517e-01 1.00994980e+00 -1.27687141e-01 -1.66089284e+00 -6.16446018e-01 -8.32965598e-02 -5.15238404e-01 2.88980812e-01 -2.96897531e-01 1.30581117e+00 5.71883395e-02 5.20657539e-01 -4.93715137e-01 -1.44134656e-01 7.93700576e-01 2.75431424e-02 9.38802898e-01 -4.76560533e-01 -4.69173044e-01 5.35763919e-01 3.29603642e-01 -7.70012677e-01 -8.82785082e-01 -8.29589844e-01 -9.68778312e-01 -3.68705951e-02 -2.60132521e-01 -8.75411481e-02 5.61582625e-01 9.32236016e-01 2.08001181e-01 4.36542392e-01 1.91934630e-01 -1.51143610e+00 -4.92477477e-01 -7.95578361e-01 -4.98475850e-01 6.04919195e-01 4.00065243e-01 -1.35763609e+00 -1.74455449e-01 4.24201995e-01]
[7.061221122741699, -1.1859419345855713]
4a4bf6ec-defa-47bb-aae9-023a91de69f6
neural-oscillators-are-universal
2305.08753
null
https://arxiv.org/abs/2305.08753v1
https://arxiv.org/pdf/2305.08753v1.pdf
Neural Oscillators are Universal
Coupled oscillators are being increasingly used as the basis of machine learning (ML) architectures, for instance in sequence modeling, graph representation learning and in physical neural networks that are used in analog ML devices. We introduce an abstract class of neural oscillators that encompasses these architectures and prove that neural oscillators are universal, i.e, they can approximate any continuous and casual operator mapping between time-varying functions, to desired accuracy. This universality result provides theoretical justification for the use of oscillator based ML systems. The proof builds on a fundamental result of independent interest, which shows that a combination of forced harmonic oscillators with a nonlinear read-out suffices to approximate the underlying operators.
['Siddhartha Mishra', 'T. Konstantin Rusch', 'Samuel Lanthaler']
2023-05-15
null
null
null
null
['graph-representation-learning']
['methodology']
[ 4.08188999e-01 1.82945549e-01 -2.04322502e-01 1.33222863e-01 2.27987200e-01 -7.12666094e-01 3.93456638e-01 9.22092795e-02 -2.01025277e-01 6.56061053e-01 -3.23104978e-01 -3.02899361e-01 -2.98587292e-01 -7.19585240e-01 -8.56124938e-01 -6.99307919e-01 -2.94110537e-01 1.30413160e-01 1.59475893e-01 -5.20509779e-01 1.40952632e-01 5.59167266e-01 -1.30536807e+00 -2.37554103e-01 6.24704719e-01 7.73507416e-01 -1.02537468e-01 1.03606904e+00 1.36277989e-01 9.58208680e-01 -6.81685269e-01 1.21591292e-01 -1.27123650e-02 -7.92721152e-01 -3.49136531e-01 -5.54755747e-01 1.42166480e-01 3.99908036e-01 -9.80705798e-01 1.03809929e+00 3.71848434e-01 1.72890604e-01 7.94086337e-01 -1.25016832e+00 -9.24771070e-01 1.04025447e+00 1.45768419e-01 2.47734591e-01 2.64126986e-01 -1.60346791e-01 1.00461495e+00 -4.47690010e-01 3.46717387e-01 9.18494344e-01 1.15312028e+00 6.38048351e-01 -1.90216327e+00 -3.08423221e-01 -5.12208045e-01 -1.80952087e-01 -1.60062814e+00 -1.90780237e-01 8.34386110e-01 -2.72879928e-01 1.15491700e+00 1.19636439e-01 8.33111763e-01 9.58586931e-01 1.00580609e+00 2.18697339e-01 5.81938326e-01 -7.31814027e-01 3.83194149e-01 8.81146863e-02 2.37527981e-01 1.12691748e+00 3.97678971e-01 2.49030501e-01 -8.28897119e-01 -1.77398831e-01 1.21782768e+00 -1.22874323e-02 -4.11193967e-01 -1.05369940e-01 -9.82679307e-01 9.01405334e-01 6.49049640e-01 8.53263319e-01 -2.44893298e-01 1.21877706e+00 9.95290056e-02 6.61635995e-01 -2.13802934e-01 6.92286491e-01 -3.90855083e-03 1.18815213e-01 -5.69604039e-01 2.13840544e-01 1.13663554e+00 9.82948482e-01 6.81607723e-01 5.04812956e-01 2.26153493e-01 3.42113882e-01 2.32315317e-01 5.86877584e-01 8.08607996e-01 -9.09007132e-01 -3.51343393e-01 4.36033159e-01 -2.35113740e-01 -8.69281590e-01 -7.96112537e-01 -6.62208736e-01 -1.13001084e+00 -1.39497802e-01 1.78927183e-01 6.77589923e-02 -5.46251118e-01 2.03349304e+00 -5.39439321e-01 3.34248543e-01 1.05963036e-01 2.95420736e-01 3.90546620e-01 9.26565289e-01 -3.17215890e-01 -3.74660701e-01 1.09732890e+00 -2.17465803e-01 -1.03633118e+00 2.17086244e-02 6.20661974e-01 -3.84512156e-01 7.98420429e-01 3.49946231e-01 -9.30587471e-01 -6.78955019e-01 -1.42337906e+00 -1.32825375e-01 -5.57449818e-01 -1.85084343e-01 6.73322737e-01 7.19814539e-01 -1.35329103e+00 9.95314956e-01 -6.97463989e-01 -2.21744388e-01 -6.12778179e-02 6.34010911e-01 -6.80993721e-02 6.65601254e-01 -1.42790282e+00 9.13039267e-01 3.90239000e-01 2.43700787e-01 -4.03386563e-01 -7.48877168e-01 -5.81045210e-01 6.69921860e-02 -3.97171944e-01 -6.24760568e-01 1.25325298e+00 -9.00739312e-01 -1.67990947e+00 5.50749600e-01 -1.01855069e-01 -1.01929283e+00 -6.62734807e-02 2.03410909e-01 -7.50874758e-01 4.51846160e-02 -5.14352143e-01 3.89227450e-01 8.82785797e-01 -6.27371311e-01 2.93600447e-02 5.52114286e-02 -1.20164730e-01 -5.20627201e-01 -4.01240706e-01 -5.83295226e-01 3.82581323e-01 -4.77736741e-01 4.66350585e-01 -1.13192725e+00 -1.63990796e-01 -1.22042866e-02 -3.35303724e-01 -3.99237216e-01 6.15855515e-01 6.93251844e-03 1.42091238e+00 -1.90108788e+00 3.82843405e-01 5.23921251e-01 3.01394939e-01 -1.15430616e-01 1.78981528e-01 8.59304547e-01 -1.03548951e-01 5.96833369e-03 -2.11611360e-01 9.66067761e-02 1.97411418e-01 2.71444678e-01 -5.95716417e-01 6.41605794e-01 3.30555856e-01 1.23468459e+00 -6.98642433e-01 -4.07848656e-02 2.33847853e-02 6.72830582e-01 -3.66612405e-01 -1.52020931e-01 -3.42976362e-01 2.99525946e-01 -1.85964853e-01 7.44810030e-02 -1.14671744e-01 -4.03973162e-01 9.17223170e-02 -2.79205054e-01 -1.32195011e-01 2.71224797e-01 -1.02040112e+00 1.69632936e+00 -5.31974733e-01 1.28452134e+00 -3.94187659e-01 -1.11309993e+00 1.07478499e+00 5.50239503e-01 3.23531270e-01 -4.06601876e-01 1.92646116e-01 6.31184876e-01 2.97969639e-01 -2.66499966e-01 1.53083950e-01 -2.72747368e-01 -2.11412817e-01 4.93718088e-01 3.66171807e-01 -3.19119394e-01 2.74169967e-02 1.56068385e-01 1.10188043e+00 -6.72909766e-02 3.15723002e-01 -7.51800060e-01 5.47233164e-01 -3.50615263e-01 5.26638813e-02 1.04117548e+00 1.79199859e-01 3.45128357e-01 4.39144701e-01 -4.32637781e-01 -9.69020307e-01 -1.17939866e+00 -2.97414780e-01 7.25574911e-01 1.26507849e-01 -1.88811883e-01 -6.05223596e-01 6.37960911e-01 -6.10523075e-02 4.06963319e-01 -6.15221441e-01 -6.62073076e-01 -6.91577375e-01 -4.99839664e-01 1.15169382e+00 5.61266124e-01 3.95427421e-02 -8.28194201e-01 -8.51768613e-01 4.94578779e-01 2.73916870e-01 -8.80559444e-01 -2.98974901e-01 9.08826470e-01 -1.11380756e+00 -4.77527738e-01 -5.28152943e-01 -9.23844159e-01 2.64065355e-01 -3.72359931e-01 7.72377908e-01 2.45082304e-02 -4.05849963e-01 5.58616936e-01 3.08217674e-01 -3.66889894e-01 -8.80741298e-01 3.69878769e-01 6.41287029e-01 -1.62188008e-01 2.67088056e-01 -1.29288614e+00 -2.13038594e-01 -2.14505360e-01 -1.03074777e+00 -3.55767161e-01 4.93533134e-01 6.15925193e-01 3.07437986e-01 -1.71735376e-01 6.35004580e-01 -3.55827272e-01 8.95184755e-01 -3.23334187e-01 -7.90904820e-01 2.68358737e-01 -4.18094963e-01 8.69203150e-01 9.82816339e-01 -8.29186141e-01 1.37498323e-03 1.59445137e-01 7.84690380e-02 -2.08822280e-01 4.84742254e-01 5.65401018e-01 3.62405598e-01 -6.22378588e-01 1.19368291e+00 4.31138664e-01 1.43950418e-01 8.45710039e-02 2.28654072e-01 5.38203180e-01 9.46729481e-01 -2.66375661e-01 7.72437274e-01 1.05053239e-01 7.86000967e-01 -1.21345735e+00 -2.58667856e-01 -7.56629556e-02 -4.40777570e-01 -1.44070089e-01 3.44604403e-01 -6.74110591e-01 -1.32225776e+00 1.93564683e-01 -1.33660734e+00 -2.76505768e-01 -3.18965107e-01 5.26042342e-01 -8.55757296e-01 -2.24434957e-01 -8.17005217e-01 -1.15497983e+00 -1.35653123e-01 -7.00242221e-01 5.16325891e-01 5.12251079e-01 -3.42723757e-01 -1.34446824e+00 3.81920427e-01 -7.77112603e-01 6.86370730e-01 3.56028259e-01 9.24718976e-01 -4.12561923e-01 -5.40633678e-01 -5.05593300e-01 5.02275884e-01 1.44661337e-01 -1.12096861e-01 2.86272824e-01 -1.01546049e+00 2.66992524e-02 1.06929220e-01 2.23058499e-02 8.46881747e-01 4.45363373e-01 5.33263385e-01 5.23180515e-02 -4.63657439e-01 3.43797773e-01 1.81819594e+00 1.98437691e-01 5.42344689e-01 -5.42076051e-01 5.39763272e-01 9.10292119e-02 -8.69979322e-01 2.80026328e-02 -1.85729951e-01 5.91059327e-01 -1.08459026e-01 3.15809160e-01 3.33012909e-01 -3.36416662e-01 6.13966882e-01 1.26335335e+00 -1.90751657e-01 -1.76827341e-01 -6.59101188e-01 2.57441878e-01 -1.68711019e+00 -1.05488253e+00 -2.72933781e-01 2.21740365e+00 7.95711815e-01 2.65205801e-01 8.35797116e-02 5.62587321e-01 6.77011907e-01 -3.01256657e-01 -5.85830092e-01 -7.34851599e-01 -4.50483024e-01 8.40408921e-01 7.03315318e-01 6.36203766e-01 -6.21582508e-01 3.66684318e-01 7.66472912e+00 3.99612129e-01 -1.22749674e+00 2.99405344e-02 -4.67700325e-02 3.39819759e-01 -2.15405211e-01 -2.05941200e-01 -4.30428237e-01 2.92876333e-01 1.60973656e+00 -2.75199056e-01 7.73097575e-01 4.12060022e-01 -2.29068529e-02 1.70084536e-01 -1.54759312e+00 1.10359275e+00 -3.27125847e-01 -1.55607045e+00 -2.19624210e-02 5.39165251e-02 6.78600013e-01 -2.32979074e-01 2.19851568e-01 9.95854959e-02 -9.46339369e-02 -1.40008569e+00 7.10722983e-01 9.11094010e-01 4.73270983e-01 -6.13449037e-01 5.03398359e-01 2.23902896e-01 -1.43025100e+00 -3.61226499e-01 -4.34506387e-01 -5.03710389e-01 6.56908154e-02 6.56347990e-01 -1.80905566e-01 1.21709436e-01 -4.19272929e-02 3.99906158e-01 -9.37391743e-02 8.41390252e-01 9.41431243e-03 6.69730186e-01 -7.35200346e-01 -7.29942381e-01 5.32568358e-02 -1.43316954e-01 3.88394117e-01 1.09868860e+00 4.90885228e-01 8.70480314e-02 -3.80124658e-01 1.33546185e+00 -2.80153424e-01 -3.91019046e-01 -8.57215405e-01 -4.98313546e-01 6.58656180e-01 9.04415905e-01 -7.53362298e-01 -2.02886816e-02 -1.32368743e-01 8.67333233e-01 1.71646755e-02 4.48762983e-01 -9.45642948e-01 -9.56234097e-01 4.13366646e-01 -6.80526299e-03 1.74823254e-01 -6.45001709e-01 -1.51446000e-01 -9.31138396e-01 -8.20713490e-02 -2.78178215e-01 -2.02077553e-01 -5.48331678e-01 -8.35396588e-01 5.55023968e-01 -4.94879246e-01 -1.14140058e+00 -5.94066203e-01 -8.43170762e-01 -5.52451909e-01 8.56173098e-01 -9.10366774e-01 -6.07118905e-01 -9.55429375e-02 4.82191563e-01 -4.10229504e-01 4.27542813e-02 1.08892155e+00 4.07512933e-02 -2.61968225e-01 5.73168278e-01 1.41580775e-01 1.91814825e-01 -1.18453186e-02 -1.41979206e+00 4.05750602e-01 7.33706176e-01 7.31754065e-01 1.00998342e+00 1.00340283e+00 -7.76510239e-02 -2.05433655e+00 -6.56971633e-01 8.97754192e-01 -2.50187516e-01 8.56238484e-01 -5.49035788e-01 -8.77626002e-01 6.05586290e-01 1.71134233e-01 3.12170386e-01 4.41634685e-01 -3.82662475e-01 -3.47650528e-01 -3.38640839e-01 -7.24433839e-01 5.77575862e-01 9.20063198e-01 -9.98555362e-01 -5.08953810e-01 2.72938430e-01 8.06586087e-01 -3.55812967e-01 -1.03196454e+00 2.49366872e-02 9.04929042e-01 -6.93784356e-01 8.07097971e-01 -4.03266370e-01 1.22269854e-01 -4.36848223e-01 -2.26506263e-01 -1.07612360e+00 -3.14689308e-01 -1.39832449e+00 -6.50015712e-01 4.08476323e-01 5.09049177e-01 -1.15109801e+00 2.75507450e-01 2.85243453e-03 -1.50770983e-02 -5.82556009e-01 -1.11789668e+00 -1.10977197e+00 1.07007869e-01 -1.72796264e-01 1.28237426e-01 6.12296283e-01 6.81970119e-01 5.75997174e-01 -1.61461934e-01 1.59284800e-01 3.64727557e-01 -1.98705092e-01 5.77223860e-02 -1.53467536e+00 -5.80390036e-01 -8.13020527e-01 -1.21512043e+00 -1.26736009e+00 -3.62256588e-03 -9.60313678e-01 1.83593765e-01 -9.11158264e-01 -5.28046131e-01 -2.64500678e-01 -5.96198380e-01 -8.11568648e-02 3.58397752e-01 5.46434700e-01 -1.94763273e-01 6.62792996e-02 -3.10852658e-02 3.05328608e-01 5.33281505e-01 2.10840758e-02 -4.36614871e-01 1.99067876e-01 -2.88987428e-01 3.63863260e-01 6.74704194e-01 -4.83466059e-01 -4.54500645e-01 -6.62691966e-02 8.51310670e-01 6.42746836e-02 5.17455995e-01 -1.55398560e+00 7.46623874e-01 3.29192489e-01 1.80610344e-01 2.23732814e-02 2.23444134e-01 -6.19233549e-01 3.70889753e-01 1.19307208e+00 -6.95350051e-01 2.66131133e-01 -2.05300134e-02 5.69402277e-01 -7.73683041e-02 -4.58406717e-01 6.48462832e-01 1.98437020e-01 -2.18707114e-01 9.44952145e-02 -6.61391437e-01 -2.60643493e-02 5.06936789e-01 -1.74145460e-01 -1.91392630e-01 -6.05127752e-01 -6.10215902e-01 -3.89463872e-01 4.52112667e-02 -1.01320140e-01 2.57248789e-01 -1.43208444e+00 -4.67772931e-01 3.23859185e-01 -1.45653889e-01 -6.05865240e-01 -3.16929996e-01 8.97306383e-01 -6.96375251e-01 8.25223982e-01 -3.87547575e-02 -8.32387567e-01 -5.53614914e-01 3.11879545e-01 9.26868975e-01 2.66858399e-01 -3.92387748e-01 6.61632001e-01 -3.95555049e-01 -4.44269478e-02 2.47596622e-01 -9.53991115e-01 4.20558572e-01 -3.80703688e-01 3.99971187e-01 1.33066371e-01 -1.07328020e-01 -2.49207065e-01 -4.10109967e-01 7.95061171e-01 7.16007531e-01 -4.22908992e-01 9.36345160e-01 2.37470686e-01 -4.69571888e-01 1.37257004e+00 1.25981367e+00 -2.05378532e-01 -4.94306535e-01 -3.49286377e-01 2.25968763e-01 7.72960484e-01 -1.98969543e-01 -4.59102169e-02 -4.98732328e-01 1.00695801e+00 6.40064001e-01 1.11398816e+00 1.04170275e+00 -6.02338277e-02 5.67114592e-01 1.07975674e+00 3.79062533e-01 -8.48036945e-01 -3.83834466e-02 4.72704619e-01 6.15719318e-01 -3.46099854e-01 -2.12566987e-01 -8.72023702e-02 3.55820686e-01 1.75937951e+00 -2.17396513e-01 -7.78624415e-01 8.38215411e-01 5.90070784e-01 -5.72646618e-01 8.96222293e-02 -8.57305527e-01 5.15319034e-02 3.32597792e-01 5.43092549e-01 7.44969785e-01 6.99240714e-02 -2.90383071e-01 3.88728440e-01 -2.95380771e-01 2.18566060e-01 8.01875949e-01 8.54413271e-01 -6.80256546e-01 -8.11592877e-01 -9.93772075e-02 1.39784172e-01 -1.09290712e-01 -1.65350780e-01 -2.19748884e-01 5.96965611e-01 -1.27880290e-01 5.94155133e-01 3.08195651e-01 -4.36550766e-01 5.24351420e-03 3.53519291e-01 1.06498420e+00 -1.48020416e-01 -4.17667001e-01 -2.89466113e-01 -4.47579473e-01 -3.31266612e-01 -4.88741994e-01 -1.14885047e-01 -1.50043130e+00 -2.49813423e-01 -4.93016630e-01 1.36808515e-01 6.99688315e-01 1.02998757e+00 2.89103448e-01 7.93989837e-01 5.94110966e-01 -5.74855506e-01 -6.69197917e-01 -9.51560974e-01 -6.73524380e-01 -3.95984501e-01 8.22905183e-01 -2.38352731e-01 -6.02636874e-01 1.85893491e-01]
[7.80021858215332, 3.2331788539886475]
09172cab-4eb2-48c9-ba81-56c6437f061d
lossy-compression-of-multidimensional-medical
2208.01602
null
https://arxiv.org/abs/2208.01602v2
https://arxiv.org/pdf/2208.01602v2.pdf
Lossy compression of multidimensional medical images using sinusoidal activation networks: an evaluation study
In this work, we evaluate how neural networks with periodic activation functions can be leveraged to reliably compress large multidimensional medical image datasets, with proof-of-concept application to 4D diffusion-weighted MRI (dMRI). In the medical imaging landscape, multidimensional MRI is a key area of research for developing biomarkers that are both sensitive and specific to the underlying tissue microstructure. However, the high-dimensional nature of these data poses a challenge in terms of both storage and sharing capabilities and associated costs, requiring appropriate algorithms able to represent the information in a low-dimensional space. Recent theoretical developments in deep learning have shown how periodic activation functions are a powerful tool for implicit neural representation of images and can be used for compression of 2D images. Here we extend this approach to 4D images and show how any given 4D dMRI dataset can be accurately represented through the parameters of a sinusoidal activation network, achieving a data compression rate about 10 times higher than the standard DEFLATE algorithm. Our results show that the proposed approach outperforms benchmark ReLU and Tanh activation perceptron architectures in terms of mean squared error, peak signal-to-noise ratio and structural similarity index. Subsequent analyses using the tensor and spherical harmonics representations demonstrate that the proposed lossy compression reproduces accurately the characteristics of the original data, leading to relative errors about 5 to 10 times lower than the benchmark JPEG2000 lossy compression and similar to standard pre-processing steps such as MP-PCA denosing, suggesting a loss of information within the currently accepted levels for clinical application.
['Marco Palombo', 'Derek K. Jones', 'Matteo Mancini']
2022-08-02
null
null
null
null
['data-compression']
['time-series']
[ 6.62528992e-01 -6.83815032e-03 -4.02654745e-02 -1.71403855e-01 -7.35681713e-01 -1.31639391e-01 5.15104830e-01 4.96046305e-01 -7.69744694e-01 6.28028512e-01 3.70499641e-01 -7.51272142e-02 -5.70845783e-01 -5.69975555e-01 -5.99277437e-01 -1.07487619e+00 -6.97055519e-01 5.70299745e-01 -4.06238139e-02 -3.33462581e-02 7.08554909e-02 8.74117553e-01 -1.32588255e+00 3.52377295e-01 4.42312241e-01 1.35800648e+00 2.40049109e-01 5.97724795e-01 2.88961798e-01 5.43517947e-01 -3.24952394e-01 -1.48700744e-01 3.48186702e-01 -7.27615133e-02 -8.60201955e-01 -3.12561959e-01 3.92236859e-01 -6.72808528e-01 -6.64214671e-01 1.03284299e+00 8.56915653e-01 1.00040615e-01 7.22881615e-01 -4.74549413e-01 -4.75234479e-01 3.17561358e-01 -4.86497551e-01 7.21074820e-01 -3.37115005e-02 -1.74561739e-02 4.74435538e-01 -6.30210936e-01 6.76368237e-01 8.43403459e-01 8.19705784e-01 3.29480499e-01 -1.55372512e+00 -2.93823898e-01 -6.83652639e-01 3.16575289e-01 -1.16115797e+00 -4.29572463e-01 9.24779415e-01 -4.11023438e-01 1.03929818e+00 4.20004874e-01 6.74689829e-01 8.62242877e-01 5.75523913e-01 3.47275466e-01 1.26262212e+00 -3.64523619e-01 1.41714722e-01 -3.14730078e-01 -1.35128386e-03 3.01788241e-01 3.39315981e-01 1.81014851e-01 -2.81946599e-01 -2.49588996e-01 8.69341850e-01 5.91649748e-02 -4.76547241e-01 -2.21025363e-01 -1.45867336e+00 9.32747543e-01 6.64801359e-01 7.88815558e-01 -9.09787297e-01 4.42540288e-01 6.70270264e-01 1.14722602e-01 5.74045956e-01 4.36824173e-01 1.56614259e-02 -1.85372750e-03 -1.28433371e+00 2.33541965e-01 3.20915312e-01 1.63364664e-01 1.06551714e-01 1.66446075e-01 -2.46762186e-02 9.44126070e-01 2.77971383e-02 4.20206815e-01 1.05750751e+00 -1.28687346e+00 9.15633813e-02 1.14057183e-01 -3.90044123e-01 -1.36097014e+00 -5.59509635e-01 -7.19927192e-01 -1.59771788e+00 2.20966458e-01 2.41142344e-02 2.92731553e-01 -7.38088667e-01 1.50604522e+00 1.98225677e-01 1.50742844e-01 -1.29687548e-01 1.01109660e+00 5.27453244e-01 4.22703296e-01 2.44037877e-03 -4.87797201e-01 1.34361982e+00 -3.49550545e-01 -7.10275888e-01 -1.21568739e-01 4.98500943e-01 -4.96780992e-01 5.36495209e-01 4.85563695e-01 -1.48530412e+00 -3.24358284e-01 -1.19974756e+00 -6.25653043e-02 -7.21320733e-02 -2.66845524e-01 5.45820355e-01 5.58134913e-01 -1.30575967e+00 9.81689453e-01 -1.07598925e+00 1.34117693e-01 7.14657903e-01 4.77118611e-01 -6.77525699e-01 -3.49755764e-01 -1.22897553e+00 9.99093115e-01 5.07432878e-01 1.38942480e-01 -7.79780209e-01 -1.12211013e+00 -6.09838545e-01 1.49537012e-01 -3.11188042e-01 -5.92935860e-01 6.77486300e-01 -4.91344571e-01 -9.86901760e-01 9.24094915e-01 2.09336206e-01 -9.53953683e-01 4.12254125e-01 7.83793554e-02 -3.97929490e-01 9.98346448e-01 -1.86556071e-01 7.30463445e-01 9.67636824e-01 -8.87425303e-01 1.15308307e-01 -5.24077833e-01 -2.57299244e-01 1.62867993e-01 -4.68006641e-01 -1.52283922e-01 1.04682222e-01 -9.88774180e-01 3.66455615e-01 -7.62340486e-01 -2.71288574e-01 3.67441207e-01 4.45224419e-02 4.33937609e-01 5.23071826e-01 -1.07111168e+00 9.55097616e-01 -1.95536911e+00 3.85925293e-01 2.11181983e-01 7.12918639e-01 3.10191184e-01 -8.39440599e-02 5.45483679e-02 -5.23390472e-01 2.44966638e-03 -5.79461694e-01 -1.82273000e-01 -4.89937574e-01 2.35488221e-01 4.11661901e-02 9.32226837e-01 1.60009246e-02 8.53493154e-01 -6.48882031e-01 -2.74647683e-01 1.90599903e-01 1.08834326e+00 -5.33498943e-01 -2.03026757e-02 4.12596285e-01 3.12657207e-01 -1.01744905e-01 3.54066104e-01 7.23281205e-01 -2.62616128e-01 1.54558033e-01 -5.63178957e-01 3.86960864e-01 8.31912607e-02 -6.91807091e-01 1.84279799e+00 -4.48261738e-01 7.04186201e-01 3.06675613e-01 -1.60472357e+00 6.53939724e-01 5.21701515e-01 1.07546771e+00 -9.65050995e-01 5.26501387e-02 4.96334404e-01 1.06355347e-01 -4.57313478e-01 1.27267659e-01 -6.12313926e-01 3.33623469e-01 6.10603571e-01 1.96810793e-02 -7.76053891e-02 2.64830161e-02 -7.75229633e-02 1.23151553e+00 -4.56182808e-01 5.09169996e-02 -2.86801696e-01 4.44108248e-01 -3.02798122e-01 2.50281617e-02 5.12953818e-01 -3.21649998e-01 7.54894137e-01 2.75747597e-01 -5.30201316e-01 -1.50697613e+00 -8.06899905e-01 -7.13409543e-01 3.69144499e-01 -3.03060681e-01 9.04615745e-02 -8.55290353e-01 -4.70030308e-02 -6.99627995e-02 4.73073959e-01 -6.77469552e-01 -2.42620409e-01 -8.87960494e-01 -1.19093859e+00 7.88719356e-01 1.95789337e-01 3.23966682e-01 -9.05453384e-01 -1.04499245e+00 4.21821356e-01 -2.81046718e-01 -1.14535558e+00 -6.52226731e-02 1.96143359e-01 -1.42282057e+00 -8.67038846e-01 -1.36857808e+00 -5.35030365e-01 5.50843298e-01 2.21694499e-01 9.42195654e-01 1.43996879e-01 -5.81439435e-01 3.36382717e-01 -7.03638867e-02 2.24912092e-01 -7.99718857e-01 -6.38277456e-02 1.52350307e-01 -2.49317124e-01 -2.17465274e-02 -1.09261942e+00 -1.15223420e+00 -9.23827514e-02 -1.44989550e+00 9.46587548e-02 9.22809243e-01 9.51707780e-01 7.99147606e-01 1.34195656e-01 5.11683345e-01 -5.26156843e-01 7.35708296e-01 -5.62686265e-01 -5.45429587e-02 -9.42174569e-02 -9.70678389e-01 1.69298679e-01 4.37497735e-01 -2.90128827e-01 -4.37976658e-01 -1.86627209e-01 -3.30383629e-01 -6.90890551e-01 -5.74072301e-02 6.45369470e-01 5.98178506e-01 -5.14014304e-01 7.16734827e-01 6.15701616e-01 6.95752621e-01 -4.73974556e-01 2.23013207e-01 4.92042750e-01 6.28605485e-01 -3.33493888e-01 3.66348207e-01 7.37637937e-01 5.67896664e-01 -8.66608083e-01 -2.10965186e-01 -2.78651923e-01 -5.86037993e-01 -9.48789567e-02 8.64565969e-01 -5.93439043e-01 -6.07715905e-01 3.83780956e-01 -1.07287800e+00 8.69072229e-02 -3.50326300e-01 6.33154273e-01 -7.60710776e-01 8.08864355e-01 -1.01160741e+00 -3.46814394e-01 -8.63546848e-01 -1.41867995e+00 8.43502700e-01 -4.43182260e-01 -4.00796048e-02 -1.04168284e+00 5.93645088e-02 4.39631999e-01 8.88058543e-01 5.86934268e-01 1.41099524e+00 -4.53478903e-01 -2.07922414e-01 -3.98848236e-01 -1.67389274e-01 6.82960093e-01 -2.02139363e-01 -8.86179268e-01 -8.25236440e-01 -6.06897831e-01 7.38867640e-01 -2.40000054e-01 8.88829112e-01 7.59847701e-01 1.31848323e+00 -6.25930369e-01 -1.26282535e-02 7.40660846e-01 1.51352942e+00 -9.32585001e-02 6.92534506e-01 2.40091071e-01 2.56336927e-01 5.35602927e-01 -2.41540372e-01 1.34933725e-01 -1.27115190e-01 6.66290998e-01 5.59153616e-01 -7.11323768e-02 -5.70569694e-01 3.08999091e-01 -1.66920722e-01 1.21398866e+00 -2.38332346e-01 2.13056803e-01 -8.69982421e-01 6.06078207e-01 -1.22755778e+00 -1.07016790e+00 4.14928496e-02 2.26489425e+00 9.65035737e-01 2.27190908e-02 -9.53611955e-02 6.06006324e-01 4.48241442e-01 2.20311686e-01 -5.08296490e-01 -3.32415968e-01 -2.99074531e-01 4.96416748e-01 6.57022893e-01 4.11432952e-01 -9.92774427e-01 -1.59659892e-01 6.70076704e+00 9.17263687e-01 -1.31953585e+00 4.02539462e-01 8.57451618e-01 -3.16975981e-01 -1.79909065e-01 -5.88708222e-01 -1.52369319e-02 3.81132126e-01 1.50229037e+00 -4.40614149e-02 7.34286129e-01 4.18441862e-01 2.42984891e-01 3.00473552e-02 -8.12025070e-01 1.22127080e+00 1.96780264e-01 -1.73179376e+00 1.50210649e-01 3.22358370e-01 4.64573324e-01 3.13380390e-01 1.92197785e-01 -3.95076632e-01 -6.14885807e-01 -1.38390136e+00 3.69182765e-01 4.81313407e-01 1.18172455e+00 -5.63044310e-01 6.64251983e-01 1.22011766e-01 -5.82453549e-01 5.48283234e-02 -4.44882780e-01 3.36548150e-01 2.65949190e-01 8.67471337e-01 -7.69771159e-01 4.03207660e-01 6.52682483e-01 5.31278133e-01 -2.25488827e-01 1.04608703e+00 4.66990471e-01 4.24303800e-01 -4.67377990e-01 4.79893833e-01 2.47305721e-01 -7.23228008e-02 7.46361554e-01 1.17768133e+00 5.59155107e-01 9.40626338e-02 -4.80575711e-01 6.66639209e-01 -2.72442810e-02 -1.59107596e-02 -4.37597156e-01 -6.41236082e-02 6.21152334e-02 1.01765299e+00 -6.66074097e-01 -1.72504961e-01 -9.42713991e-02 1.01107883e+00 1.15561575e-01 2.21691310e-01 -3.49079639e-01 -1.90530300e-01 3.63908082e-01 4.89368916e-01 3.94448280e-01 -2.92701781e-01 -3.05338711e-01 -8.39051306e-01 1.48234725e-01 -8.80060196e-01 2.43390724e-01 -6.19527340e-01 -1.10836840e+00 7.27813840e-01 2.07983986e-01 -9.89712536e-01 -3.35298151e-01 -7.13129878e-01 -6.03454523e-02 8.69601130e-01 -1.70017302e+00 -9.33825374e-01 -1.08752921e-01 3.89765769e-01 1.03919037e-01 -1.31482199e-01 1.19688439e+00 7.28934228e-01 6.65925220e-02 3.11138362e-01 4.95410651e-01 -6.07199632e-02 2.15459228e-01 -8.47802162e-01 -6.22952357e-02 5.17466724e-01 -3.03191114e-02 4.72861350e-01 7.45747030e-01 -3.76163453e-01 -1.52958024e+00 -7.11943865e-01 5.54123044e-01 1.62096530e-01 4.86961424e-01 9.54026133e-02 -1.23312235e+00 2.26477101e-01 1.15679195e-02 3.20007235e-01 7.60267973e-01 -6.28026247e-01 -1.42253295e-01 -1.23620331e-01 -1.55334163e+00 8.13547298e-02 6.21183097e-01 -5.80338180e-01 -5.49708486e-01 6.05716527e-01 5.90785384e-01 -3.17721963e-01 -1.52339935e+00 3.33330452e-01 6.40332818e-01 -1.04645145e+00 1.42421758e+00 -4.51571465e-01 7.59221673e-01 1.19971588e-01 -2.94948548e-01 -1.31329095e+00 -3.59713167e-01 -3.14002156e-01 -4.33338374e-01 3.62268209e-01 -9.69097670e-03 -3.82798672e-01 6.32950008e-01 4.94804591e-01 -1.25422180e-01 -1.14299107e+00 -1.69894719e+00 -4.60371941e-01 4.05605882e-01 -5.39718926e-01 1.43832341e-01 8.70725155e-01 -2.27334589e-01 -2.82679677e-01 -2.53735870e-01 -2.83720016e-01 9.54610109e-01 -3.28445345e-01 -2.45099708e-01 -1.02992690e+00 -4.30702955e-01 -7.30662167e-01 -8.56312335e-01 -7.00677216e-01 4.40834537e-02 -1.33309901e+00 -4.84796584e-01 -1.29512370e+00 2.18975142e-01 -5.69018781e-01 -4.60305929e-01 4.19315286e-02 4.29417163e-01 7.89431453e-01 1.14345849e-01 6.43341660e-01 1.59776866e-01 4.39908236e-01 1.39655638e+00 -4.18603510e-01 2.45598227e-01 -3.38633180e-01 -4.26702589e-01 4.38136697e-01 4.35243189e-01 -5.66890121e-01 -2.04236656e-01 -6.56128407e-01 1.25121459e-01 2.71549881e-01 5.34966171e-01 -1.27125144e+00 2.43115082e-01 3.99968892e-01 4.90966111e-01 -1.74405769e-01 6.27064049e-01 -9.68300581e-01 3.26450467e-01 8.86390924e-01 -5.13558447e-01 5.50185740e-02 2.32793033e-01 5.25936544e-01 -3.31142366e-01 -3.30440193e-01 9.48062837e-01 -1.54409587e-01 -1.66444197e-01 3.67503494e-01 -2.38881037e-01 -2.28894487e-01 9.21153486e-01 -2.57961452e-01 -2.09224582e-01 -3.25864196e-01 -8.15384924e-01 -5.33094347e-01 2.15429142e-01 -1.07408658e-01 9.96463895e-01 -1.43609595e+00 -8.97000194e-01 2.42360070e-01 -4.22703505e-01 -2.74656296e-01 5.87535560e-01 1.31375039e+00 -9.98890340e-01 6.10153258e-01 -5.87268829e-01 -7.13167071e-01 -8.64762723e-01 5.61576843e-01 5.87322712e-01 -4.84739035e-01 -1.11141515e+00 4.27380770e-01 -8.81480202e-02 4.65342328e-02 3.95747796e-02 -2.80123502e-01 -9.79478508e-02 -2.49986798e-02 6.75457001e-01 4.00799155e-01 5.04064918e-01 -7.73519337e-01 -2.67836988e-01 5.32894433e-01 -3.90213765e-02 -5.55516630e-02 1.82293856e+00 8.84736422e-03 -3.89515311e-01 1.34179786e-01 1.67772079e+00 -5.74270129e-01 -1.04303920e+00 -1.95052519e-01 -2.13263288e-01 -3.23689461e-01 8.62571955e-01 -6.41252637e-01 -1.28534365e+00 1.17407429e+00 1.18565452e+00 2.63887823e-01 1.32259881e+00 -1.66960850e-01 1.14701343e+00 1.91009626e-01 1.58330172e-01 -7.55119920e-01 -1.05661549e-01 -1.42549053e-01 1.25115573e+00 -8.90630245e-01 4.08662796e-01 -5.11675552e-02 -2.24962443e-01 1.29041862e+00 -4.16629970e-01 -3.81459773e-01 8.00694942e-01 2.97587454e-01 -2.74668127e-01 -3.27846378e-01 -3.42227668e-01 6.06272399e-01 4.25165385e-01 7.12029040e-01 4.02338743e-01 -4.78048138e-02 -5.62761426e-01 1.67323649e-01 -4.12753634e-02 1.69900611e-01 4.90411907e-01 6.22905493e-01 -2.20682770e-01 -8.75172496e-01 -3.42254162e-01 7.76203215e-01 -8.95724177e-01 -1.36221036e-01 4.96839374e-01 5.21549046e-01 -1.91377848e-01 2.96455711e-01 1.12330630e-01 5.20633198e-02 -4.13881987e-02 4.01758254e-02 6.92763805e-01 -6.23809323e-02 -5.18259883e-01 6.67658895e-02 -1.20494522e-01 -5.83337128e-01 -6.92175210e-01 -4.98442858e-01 -1.07398272e+00 -3.02455902e-01 1.50267765e-01 -3.00507367e-01 1.03923976e+00 6.85072780e-01 4.60773110e-01 5.00294864e-01 2.72251695e-01 -1.17353594e+00 -7.76288211e-01 -8.79639447e-01 -5.01189113e-01 7.18596101e-01 5.65063357e-01 -6.03999674e-01 -3.22020411e-01 8.53292365e-03]
[13.531752586364746, -2.3992550373077393]
4d9b03dd-cc7f-4585-ad16-0199dae15b05
hierarchical-transformer-for-survival
2211.16632
null
https://arxiv.org/abs/2211.16632v1
https://arxiv.org/pdf/2211.16632v1.pdf
Hierarchical Transformer for Survival Prediction Using Multimodality Whole Slide Images and Genomics
Learning good representation of giga-pixel level whole slide pathology images (WSI) for downstream tasks is critical. Previous studies employ multiple instance learning (MIL) to represent WSIs as bags of sampled patches because, for most occasions, only slide-level labels are available, and only a tiny region of the WSI is disease-positive area. However, WSI representation learning still remains an open problem due to: (1) patch sampling on a higher resolution may be incapable of depicting microenvironment information such as the relative position between the tumor cells and surrounding tissues, while patches at lower resolution lose the fine-grained detail; (2) extracting patches from giant WSI results in large bag size, which tremendously increases the computational cost. To solve the problems, this paper proposes a hierarchical-based multimodal transformer framework that learns a hierarchical mapping between pathology images and corresponding genes. Precisely, we randomly extract instant-level patch features from WSIs with different magnification. Then a co-attention mapping between imaging and genomics is learned to uncover the pairwise interaction and reduce the space complexity of imaging features. Such early fusion makes it computationally feasible to use MIL Transformer for the survival prediction task. Our architecture requires fewer GPU resources compared with benchmark methods while maintaining better WSI representation ability. We evaluate our approach on five cancer types from the Cancer Genome Atlas database and achieved an average c-index of $0.673$, outperforming the state-of-the-art multimodality methods.
['Junzhou Huang', 'Jiawen Yao', 'Xinliang Zhu', 'Chunyuan Li']
2022-11-29
null
null
null
null
['multiple-instance-learning']
['methodology']
[ 3.72949511e-01 3.22911404e-02 -3.48585635e-01 -1.88152432e-01 -1.54713929e+00 -2.84916788e-01 1.13869786e-01 5.89174330e-01 -2.03032140e-02 7.33705819e-01 1.28712431e-01 -4.77821603e-02 -2.10410461e-01 -8.42213273e-01 -8.83105159e-01 -1.44015348e+00 -2.11925954e-01 4.74706560e-01 1.74671367e-01 -2.60709245e-02 1.10520244e-01 3.18317682e-01 -1.15341723e+00 7.14233398e-01 6.62670195e-01 1.13727808e+00 2.78851867e-01 5.11897385e-01 -3.49544972e-01 4.51639920e-01 -3.98808151e-01 -7.44140223e-02 3.96739505e-02 -2.20709845e-01 -6.13104045e-01 -3.64612937e-02 5.70882142e-01 1.91516057e-02 -3.89950335e-01 1.06273222e+00 3.52867037e-01 -3.81403387e-01 7.14327693e-01 -9.80999947e-01 -2.58243203e-01 2.81925857e-01 -1.07859838e+00 2.36061543e-01 -4.26975675e-02 8.27708244e-02 1.13862824e+00 -4.71780509e-01 7.54883945e-01 8.55901122e-01 5.49926221e-01 3.56202990e-01 -1.37301469e+00 -6.01546466e-01 -1.57699490e-03 6.92798346e-02 -1.52440441e+00 -2.66599432e-02 6.56751335e-01 -3.46844554e-01 7.66002119e-01 8.15423667e-01 8.09325635e-01 8.88539910e-01 6.90192640e-01 7.25335360e-01 1.20316672e+00 -7.70201609e-02 -6.75345864e-03 -2.05042269e-02 2.60911733e-01 9.58573878e-01 8.37804228e-02 -4.25732404e-01 -5.18136740e-01 -5.44313312e-01 9.91885126e-01 5.21100521e-01 -4.50002342e-01 -5.03372587e-02 -1.60144746e+00 7.10557818e-01 8.69378090e-01 5.63172400e-01 -1.14391945e-01 1.75981283e-01 3.86398524e-01 2.07782000e-01 4.54115719e-01 3.11469644e-01 -2.53098667e-01 1.87000796e-01 -8.27953517e-01 -3.02441344e-02 2.94742048e-01 4.22806829e-01 8.90464664e-01 -6.75412536e-01 -2.75485098e-01 6.58554435e-01 1.29212841e-01 1.87385112e-01 6.29012704e-01 -4.32447463e-01 2.73490012e-01 1.13544619e+00 -3.43115389e-01 -1.31009722e+00 -5.11877477e-01 -4.91826683e-01 -1.33734179e+00 -2.34987542e-01 5.35114169e-01 3.08285058e-01 -8.57731104e-01 1.38002658e+00 3.78673762e-01 4.99449879e-01 -2.81778276e-01 9.11793709e-01 9.97461915e-01 7.75146127e-01 9.99153405e-02 -2.18773335e-01 1.81833434e+00 -7.22614765e-01 -4.41824526e-01 -5.43413572e-02 8.23804677e-01 -3.64474654e-01 1.02631581e+00 1.21729128e-01 -7.70946324e-01 -2.20783353e-01 -9.10034060e-01 -5.01373038e-03 -3.69247645e-01 2.74340630e-01 8.76837909e-01 7.75281936e-02 -1.08164942e+00 3.31785411e-01 -9.28480983e-01 -3.02147537e-01 8.00981522e-01 5.02722323e-01 -6.99522793e-01 -2.57580489e-01 -8.03602755e-01 2.62054026e-01 -7.45558441e-02 8.91663954e-02 -8.58807683e-01 -1.15371668e+00 -6.76086605e-01 1.83497533e-01 9.60771814e-02 -5.56975901e-01 4.11432862e-01 -6.99354172e-01 -1.11044014e+00 1.07575166e+00 -4.29150015e-01 8.47080797e-02 1.33014083e-01 5.36270678e-01 -4.98176590e-02 2.07839444e-01 1.43540710e-01 6.72718644e-01 5.17787039e-01 -1.10362518e+00 -4.91751701e-01 -8.17395091e-01 -5.96796498e-02 2.14188680e-01 -5.88708043e-01 -3.69834661e-01 -6.50892079e-01 -5.33871591e-01 3.82182896e-01 -8.01749825e-01 -4.49619710e-01 1.41307265e-01 -5.63641250e-01 -7.87506625e-03 5.36051631e-01 -6.22882545e-01 1.00137138e+00 -2.37922978e+00 3.06546301e-01 3.20698053e-01 5.16071558e-01 -2.50373483e-01 -3.40828411e-02 1.79332852e-01 -1.72208831e-01 1.66516587e-01 -7.55410641e-02 -6.68070614e-02 -3.59456390e-01 1.09578274e-01 -3.55809666e-02 5.85637987e-01 1.67972371e-01 1.11712873e+00 -7.58452892e-01 -7.90227115e-01 -1.47711173e-01 4.73960638e-01 -5.12473345e-01 1.75719708e-01 4.69107628e-02 5.96572697e-01 -5.99864721e-01 9.55662668e-01 5.59779286e-01 -7.84203351e-01 1.77933991e-01 -6.56098962e-01 2.72573590e-01 -7.78997689e-02 -7.45390952e-01 1.76935756e+00 -1.79762989e-01 4.39335525e-01 1.63108021e-01 -1.29588842e+00 6.05859160e-01 2.73053825e-01 8.54218423e-01 -5.15518725e-01 7.37911165e-02 5.45353349e-03 -1.38392434e-01 -4.80818808e-01 -1.93163320e-01 -1.85817957e-01 -7.74820149e-02 1.66178405e-01 -1.18128888e-01 1.27494320e-01 -1.57991171e-01 7.42289722e-02 1.44604957e+00 -5.09232521e-01 1.78977996e-01 -2.98795432e-01 3.64267647e-01 1.82319224e-01 7.26574659e-01 4.83119547e-01 -1.79430664e-01 5.53225458e-01 9.35101688e-01 -4.48108226e-01 -7.18639433e-01 -9.35617864e-01 -4.21956331e-01 9.01935041e-01 2.60644704e-01 -3.28893512e-01 -5.29737771e-01 -7.20793307e-01 4.32234891e-02 -2.49311939e-01 -1.11045516e+00 -1.52937006e-02 -5.35299063e-01 -1.43087924e+00 2.90363699e-01 4.85261828e-01 2.34099582e-01 -4.66606408e-01 -3.13094378e-01 3.28376107e-02 -3.55459899e-01 -6.82229996e-01 -4.75878268e-01 1.21918395e-01 -9.99379277e-01 -1.13546360e+00 -6.32916152e-01 -9.42435086e-01 1.20463502e+00 4.26708877e-01 1.01895881e+00 2.60485798e-01 -1.10774684e+00 1.31451609e-02 -1.69127464e-01 -1.77943423e-01 -8.63985531e-03 -2.04634517e-01 -6.11916840e-01 2.24798620e-01 1.60523266e-01 -4.04490829e-01 -9.27727699e-01 2.08795801e-01 -9.49643552e-01 2.80895919e-01 8.96643698e-01 1.40085483e+00 1.19917297e+00 2.51803398e-01 3.03266138e-01 -9.50315177e-01 2.57614022e-03 -5.19312799e-01 -3.59058291e-01 3.90590668e-01 1.37537494e-01 -2.90280432e-01 3.24632287e-01 -3.31622183e-01 -7.46557832e-01 9.43633392e-02 1.20162122e-01 -2.15930298e-01 7.50605017e-02 6.15600705e-01 -8.41562524e-02 -4.26078469e-01 4.08196658e-01 3.80886286e-01 2.70953417e-01 -4.25745025e-02 -2.27067754e-01 4.30029392e-01 1.18852027e-01 -4.56123888e-01 3.06010365e-01 7.65080512e-01 3.15700680e-01 -7.83792853e-01 -7.71420896e-01 -5.69609463e-01 -2.86860704e-01 -5.66736981e-02 7.39946306e-01 -9.29672003e-01 -9.72739875e-01 2.65904784e-01 -6.40522242e-01 -2.73258299e-01 1.10087674e-02 2.30298355e-01 -2.52326727e-01 1.76494613e-01 -1.09832442e+00 -1.89806044e-01 -4.01521087e-01 -1.46015012e+00 1.65793192e+00 1.15602575e-01 6.69890791e-02 -8.26379538e-01 1.86271612e-02 6.86602831e-01 3.45092714e-01 6.73968554e-01 1.48816442e+00 -1.59872249e-01 -7.99302459e-01 -4.72109348e-01 -4.39188480e-01 -2.11590886e-01 1.69359520e-01 -7.86189586e-02 -8.72612774e-01 -3.92638177e-01 -3.06720674e-01 -2.48493657e-01 9.95991945e-01 6.89999938e-01 1.77057493e+00 -1.66646197e-01 -9.59467113e-01 6.69989526e-01 1.60132587e+00 -5.33124954e-02 5.88899791e-01 4.90507819e-02 7.78990805e-01 6.09247625e-01 6.36291981e-01 3.10097784e-01 3.92512023e-01 5.98953843e-01 4.56989437e-01 -6.06055081e-01 1.10018693e-01 1.14896744e-01 1.61253735e-02 5.52610397e-01 6.95817992e-02 -7.89428782e-03 -9.79339898e-01 5.79038501e-01 -1.88384545e+00 -6.52436435e-01 1.03984430e-01 2.05520487e+00 8.82492423e-01 -2.12427750e-01 -1.17100038e-01 -6.29870445e-02 4.15093124e-01 7.49925375e-02 -5.15924156e-01 3.25275362e-01 -2.78095137e-02 6.12645857e-02 4.03568536e-01 2.99887121e-01 -1.06607306e+00 5.27162969e-01 5.43658590e+00 1.11251950e+00 -1.22607911e+00 2.28328899e-01 1.42148423e+00 -3.42441231e-01 -3.19628447e-01 -2.95019805e-01 -7.39255071e-01 4.62722421e-01 5.41441739e-01 1.34160250e-01 1.10252080e-02 4.24250573e-01 -1.06783785e-01 -1.42539293e-01 -1.05714643e+00 1.17213368e+00 4.22662050e-02 -1.61587679e+00 6.71987385e-02 5.14997005e-01 5.30719995e-01 4.47637886e-02 1.31535873e-01 1.62382975e-01 -9.98788327e-02 -1.37796831e+00 -2.20695242e-01 5.07818937e-01 9.01882887e-01 -5.98837852e-01 9.94396448e-01 2.16458872e-01 -1.11145961e+00 -9.44743442e-05 -6.05916023e-01 4.77281123e-01 -4.25284058e-01 9.57965732e-01 -9.17208552e-01 5.60781419e-01 8.30933750e-01 7.30382204e-01 -7.09498644e-01 8.67146730e-01 6.01804316e-01 5.88969350e-01 -3.63389939e-01 -2.89290422e-03 2.99438715e-01 -9.15169194e-02 2.46716991e-01 1.21757185e+00 6.12551928e-01 3.76505733e-01 3.54789168e-01 5.87441564e-01 -6.75834902e-03 2.56020665e-01 -3.76656651e-01 -2.33467147e-02 1.65661499e-01 1.69392824e+00 -8.15383911e-01 -2.04819530e-01 -3.49748731e-01 7.70263374e-01 4.81685132e-01 2.58454412e-01 -7.66867995e-01 1.12471566e-01 6.92690611e-01 4.11591381e-01 -2.70498265e-02 1.81753889e-01 -3.44912887e-01 -1.18457055e+00 -1.15422897e-01 -7.26865649e-01 5.78440368e-01 -3.51569057e-01 -1.39477575e+00 4.24979120e-01 -4.16270733e-01 -1.26184726e+00 4.36119556e-01 -6.07260525e-01 -5.91677248e-01 6.40438616e-01 -1.49858129e+00 -1.31053686e+00 -7.40583062e-01 5.21382332e-01 1.99036837e-01 5.79184741e-02 1.04695070e+00 2.31180653e-01 -8.64728570e-01 6.93107188e-01 1.61788940e-01 1.01277687e-01 6.56249881e-01 -1.28211248e+00 -4.12643522e-01 -4.00958471e-02 -9.14493576e-02 5.39188564e-01 3.03701133e-01 -3.96232933e-01 -1.81906724e+00 -1.15576851e+00 5.57183743e-01 -2.97572941e-01 6.02046371e-01 -4.20494050e-01 -1.09821236e+00 3.93677503e-01 -1.05972476e-01 5.81240535e-01 1.23522329e+00 4.08879966e-02 -1.77325279e-01 -5.32614410e-01 -1.18332231e+00 6.70877039e-01 7.63562620e-01 -3.07202190e-01 1.01422310e-01 7.41941750e-01 2.70882577e-01 -4.79848415e-01 -1.35283720e+00 4.65758979e-01 3.06393206e-01 -6.88523829e-01 1.05569422e+00 -4.62344319e-01 5.06578982e-01 -3.80918503e-01 -1.43319666e-01 -1.13978052e+00 -5.02958953e-01 -4.25802469e-02 1.61916599e-01 1.04394722e+00 4.00058597e-01 -6.13218427e-01 1.00278330e+00 3.09454530e-01 -5.33450395e-02 -1.47321749e+00 -1.21911585e+00 -1.12737633e-01 6.78847656e-02 1.20534904e-01 4.83647048e-01 1.00673795e+00 3.52073789e-01 1.46837801e-01 7.85855204e-03 3.28901589e-01 6.88506246e-01 4.46629375e-01 4.89782155e-01 -1.08306563e+00 -4.80327040e-01 -5.48761725e-01 -8.61470342e-01 -5.76774955e-01 1.05458856e-01 -1.08426261e+00 -1.30385071e-01 -1.28115034e+00 8.62627208e-01 -6.62022948e-01 -6.93317592e-01 8.01086247e-01 -4.32738006e-01 6.26344025e-01 -3.66123468e-01 2.49505296e-01 -5.87892354e-01 2.93458402e-01 1.57593846e+00 -6.38982534e-01 1.72260240e-01 -5.64682186e-01 -9.02010381e-01 4.07431513e-01 4.99922663e-01 -2.17870638e-01 -1.95570946e-01 -2.08915636e-01 1.60178930e-01 4.55935746e-01 5.82891464e-01 -9.07465041e-01 2.94710934e-01 -1.37729272e-01 7.77804255e-01 -5.22932708e-01 4.60411549e-01 -6.98160648e-01 2.57963538e-01 3.68384272e-01 -1.77924290e-01 -4.27971870e-01 1.99638128e-01 6.94892883e-01 -5.35630286e-01 2.61378378e-01 7.36580551e-01 -2.27313578e-01 -1.85575783e-01 5.92299283e-01 -7.11008683e-02 -3.48186165e-01 1.31550550e+00 -1.94267139e-01 -5.05272806e-01 8.74873176e-02 -6.33500338e-01 2.36411273e-01 4.34253693e-01 -4.93050180e-02 5.54299653e-01 -1.23809409e+00 -7.65700459e-01 3.42939824e-01 3.47468376e-01 3.15797895e-01 8.17558289e-01 1.32812643e+00 -5.45416713e-01 4.18308079e-01 -9.03946832e-02 -1.11618733e+00 -1.31623244e+00 1.97678387e-01 3.56250346e-01 -7.42523670e-01 -6.69853568e-01 1.31256104e+00 9.50330794e-01 -2.63917178e-01 1.61621196e-03 -2.33416006e-01 -1.58762038e-01 -3.51918750e-02 6.41462684e-01 -6.39811754e-02 2.57769912e-01 -4.73860532e-01 -4.11801726e-01 7.84708560e-01 -4.92048115e-01 4.94425148e-01 1.34890509e+00 2.22143799e-01 -5.71064115e-01 3.73986810e-01 1.45969200e+00 -3.34060729e-01 -1.07857382e+00 -2.22771645e-01 -3.28695476e-01 -5.17503619e-01 4.09027845e-01 -6.48725271e-01 -1.27823520e+00 8.64388227e-01 7.16618776e-01 -2.77133603e-02 1.27990198e+00 3.03639919e-01 8.63561332e-01 4.23186533e-02 3.92461628e-01 -5.89314580e-01 5.20087332e-02 -1.49347082e-01 7.25050509e-01 -1.45155585e+00 -6.63913339e-02 -7.66084492e-01 -5.35649240e-01 1.00971591e+00 6.17756546e-01 -1.18025653e-01 6.43781126e-01 4.70983624e-01 -2.93145515e-02 -6.21454597e-01 -8.75842392e-01 2.60935605e-01 3.45602721e-01 1.93988830e-01 5.61680675e-01 3.22987318e-01 -1.58530667e-01 6.61806405e-01 1.50222734e-01 -3.04163426e-01 6.35697991e-02 6.72059000e-01 -2.75605172e-01 -8.36097598e-01 -3.26363832e-01 1.02593827e+00 -4.97771800e-01 -6.74524456e-02 -2.28495613e-01 6.08649135e-01 6.56009838e-03 4.75016892e-01 2.70447344e-01 -1.99511543e-01 6.44607171e-02 -2.76747167e-01 5.29725075e-01 -5.30500770e-01 -3.94977510e-01 4.14966911e-01 -4.36282724e-01 -7.16079414e-01 -1.16764382e-01 -5.83768129e-01 -1.30478191e+00 -5.37790917e-02 -4.95844707e-02 4.56435531e-02 3.88743609e-01 7.61374474e-01 4.86906081e-01 7.79502213e-01 6.21011078e-01 -8.15130055e-01 -1.37375370e-01 -6.85050309e-01 -7.61275470e-01 2.53236324e-01 4.16934639e-01 -5.80676317e-01 -2.27304310e-01 -8.31960812e-02]
[15.163360595703125, -2.877103090286255]
44f4a2af-e10f-4329-b8ca-5f1f4c77dff1
squeezing-large-scale-diffusion-models-for
2307.01193
null
https://arxiv.org/abs/2307.01193v1
https://arxiv.org/pdf/2307.01193v1.pdf
Squeezing Large-Scale Diffusion Models for Mobile
The emergence of diffusion models has greatly broadened the scope of high-fidelity image synthesis, resulting in notable advancements in both practical implementation and academic research. With the active adoption of the model in various real-world applications, the need for on-device deployment has grown considerably. However, deploying large diffusion models such as Stable Diffusion with more than one billion parameters to mobile devices poses distinctive challenges due to the limited computational and memory resources, which may vary according to the device. In this paper, we present the challenges and solutions for deploying Stable Diffusion on mobile devices with TensorFlow Lite framework, which supports both iOS and Android devices. The resulting Mobile Stable Diffusion achieves the inference latency of smaller than 7 seconds for a 512x512 image generation on Android devices with mobile GPUs.
['HyungJun Kim', 'Jae-Joon Kim', 'Hyesung Jeon', 'Dongwon Jo', 'Yulhwa Kim', 'Taesu Kim', 'Daehyun Ahn', 'Minkyu Kim', 'Jiwoong Choi']
2023-07-03
null
null
null
null
['image-generation']
['computer-vision']
[ 5.96015491e-02 -5.63152850e-01 -1.53091222e-01 8.54056329e-02 -2.65957445e-01 -5.45597434e-01 5.65737128e-01 -4.47890997e-01 -3.53765875e-01 5.09013116e-01 9.20272395e-02 -7.94969559e-01 -1.98508427e-02 -7.66971171e-01 -2.83200979e-01 -5.82114875e-01 -1.91120028e-01 9.08641890e-03 2.98576772e-01 2.36048903e-02 1.84736282e-01 1.62790135e-01 -1.45287752e+00 1.83484212e-01 6.59358025e-01 1.16060877e+00 3.67847502e-01 1.25638545e+00 1.37148604e-01 1.00272703e+00 -6.37998819e-01 -6.07077301e-01 2.68467039e-01 -2.17646569e-01 -4.07649010e-01 -1.03462406e-01 3.13135207e-01 -7.88216710e-01 -5.66604257e-01 1.07195818e+00 6.69583082e-01 -9.58137959e-02 1.24996364e-01 -1.27475393e+00 -8.31355512e-01 5.20694017e-01 -8.48284125e-01 7.03957140e-01 1.44005105e-01 5.64410746e-01 6.75895989e-01 -6.18797660e-01 4.68681663e-01 1.12548554e+00 7.87473202e-01 4.94033724e-01 -7.22597659e-01 -6.15224361e-01 -1.47104129e-01 1.87351406e-01 -1.38493204e+00 -5.44179082e-01 3.20600629e-01 -2.92966574e-01 1.34834266e+00 4.50433940e-01 7.61825621e-01 1.29295313e+00 3.22113931e-01 6.45299256e-01 1.28002703e+00 -4.98797931e-02 2.00404078e-01 -1.31980047e-01 5.72966039e-02 6.45435214e-01 3.49696547e-01 -4.02439907e-02 -3.43586445e-01 -3.75430971e-01 9.81176496e-01 5.53971939e-02 1.00093603e-01 4.63123947e-01 -1.28095579e+00 6.11811757e-01 1.18887298e-01 1.87328622e-01 -6.07741296e-01 5.05381823e-01 6.27933145e-01 9.57383960e-02 4.95753020e-01 5.73021695e-02 -2.69666046e-01 -8.49275351e-01 -1.14428735e+00 2.48675495e-01 6.79106414e-01 8.55981588e-01 5.66917717e-01 2.67929405e-01 3.46373320e-02 5.73130906e-01 3.87539715e-01 8.90618384e-01 6.99084044e-01 -1.26491272e+00 4.55154687e-01 4.97486740e-01 -1.27348721e-01 -1.45531213e+00 -6.99128807e-02 -3.20596814e-01 -1.19629622e+00 -9.12424922e-02 9.04205069e-02 -5.24538755e-01 -5.65064490e-01 1.35663509e+00 6.08160675e-01 6.92229688e-01 -1.22826144e-01 6.49320602e-01 4.72860307e-01 7.86193073e-01 -8.42741951e-02 -1.06431045e-01 1.22002578e+00 -1.32191336e+00 -5.69180667e-01 -1.19216859e-01 5.40557563e-01 -1.07772529e+00 1.41526532e+00 3.82086456e-01 -1.09813058e+00 -5.52227080e-01 -1.09624195e+00 -2.22842649e-01 1.40337329e-02 -4.84290021e-03 1.13955843e+00 1.14216459e+00 -1.21011233e+00 1.96871847e-01 -1.28581822e+00 -2.40001753e-01 5.04872799e-01 6.09172285e-01 1.43567055e-01 -7.30050728e-02 -6.75661206e-01 5.83742633e-02 -1.98990852e-01 1.12734735e-01 -8.31414521e-01 -8.40013087e-01 -2.04698026e-01 5.22343032e-02 2.09761426e-01 -9.69006598e-01 1.04814374e+00 -1.00331330e+00 -1.86207616e+00 5.31831443e-01 -6.01860322e-03 -5.20696640e-01 5.95030725e-01 -6.75577372e-02 -5.59558213e-01 -1.68153364e-02 -2.46935245e-02 4.33157831e-01 1.11266363e+00 -6.10549927e-01 -7.22105443e-01 -2.78919429e-01 3.57159495e-01 5.64174652e-02 -7.51955807e-01 1.86916664e-01 -8.58516634e-01 -6.33079231e-01 -5.38927972e-01 -1.50589943e+00 -2.76992798e-01 -1.52561432e-02 -2.65783042e-01 1.93675399e-01 1.35965133e+00 -4.55059677e-01 1.53357697e+00 -2.24131203e+00 -8.48312825e-02 6.20870702e-02 6.73286200e-01 4.53218490e-01 9.95784067e-03 -8.37015584e-02 5.79839349e-01 1.52986750e-01 -6.52037635e-02 -4.37904358e-01 -3.12719136e-01 2.22910330e-01 -2.36850932e-01 2.11868808e-01 -4.78877038e-01 1.02148044e+00 -7.84392655e-01 -3.91521603e-01 8.43711793e-02 7.72790551e-01 -9.03034270e-01 1.44363478e-01 4.13981229e-02 2.78163344e-01 -3.85391444e-01 6.11259222e-01 9.18101907e-01 -7.20683157e-01 1.88805163e-01 5.00778370e-02 -7.73390904e-02 1.37482747e-01 -1.13472140e+00 1.59875488e+00 -7.33622968e-01 7.74741769e-01 3.15705627e-01 -2.80348033e-01 2.85295874e-01 7.81182945e-02 4.95682716e-01 -7.62561858e-01 5.94438873e-02 2.86556005e-01 1.43779501e-01 -3.21057260e-01 9.36971188e-01 3.10467750e-01 1.32315442e-01 8.62257302e-01 -3.01867187e-01 1.93460882e-01 2.32405767e-01 4.12687808e-01 1.37811124e+00 -2.08691657e-01 -1.55094594e-01 -1.92347333e-01 3.38723481e-01 -1.45013660e-01 1.56754375e-01 6.93216085e-01 -1.30841851e-01 1.67718962e-01 1.56496003e-01 -3.97443712e-01 -9.50619936e-01 -8.55560124e-01 2.29906514e-02 9.76990283e-01 1.17507808e-01 -8.54125798e-01 -1.17578769e+00 -5.22709012e-01 -3.04115683e-01 5.66681921e-02 -4.19054002e-01 2.38531187e-01 -6.07860982e-01 -1.31122792e+00 1.04660904e+00 2.49486059e-01 1.02559328e+00 -9.05883908e-01 -9.29847419e-01 1.77888110e-01 3.80074643e-02 -1.36384225e+00 -7.08306193e-01 -7.02887416e-01 -1.12545967e+00 -8.23179483e-01 -7.87139952e-01 -2.73142368e-01 4.03587997e-01 7.38698483e-01 9.57770050e-01 4.48030114e-01 -2.34847978e-01 4.18954015e-01 6.80038929e-02 1.53151095e-01 -3.19346547e-01 4.49018925e-01 3.26355547e-02 7.11680055e-02 3.96923013e-02 -4.74423826e-01 -1.08600700e+00 2.74550319e-01 -9.64048982e-01 1.26046687e-01 2.46827275e-01 4.92468745e-01 5.56823134e-01 4.02118117e-01 1.64189279e-01 -9.08976912e-01 1.16488242e+00 -7.89852560e-01 -6.60522580e-01 -1.27939822e-03 -9.44482148e-01 -2.58894145e-01 6.55946732e-01 -6.84491694e-01 -1.26606297e+00 -5.34819961e-01 -3.23150277e-01 -2.25545347e-01 4.17265058e-01 5.63299000e-01 3.03318292e-01 -1.49702445e-01 5.86079836e-01 1.62469205e-02 -1.98336944e-01 -2.78852969e-01 3.68350089e-01 8.96582901e-01 3.17709595e-01 -6.54463708e-01 2.05796957e-01 6.19576812e-01 -7.63522238e-02 -1.11830354e+00 -3.03640634e-01 -5.99113386e-03 -8.10644925e-02 -6.99065402e-02 6.01262152e-01 -1.00596786e+00 -1.07374930e+00 9.56792653e-01 -9.67397153e-01 -7.90478170e-01 -2.02102095e-01 2.87696987e-01 -1.54728100e-01 3.85090053e-01 -9.36821342e-01 -3.46744120e-01 -7.00556695e-01 -1.79980409e+00 9.42377746e-01 2.32240468e-01 -2.06316918e-01 -1.29811013e+00 2.48001702e-02 3.52126420e-01 9.71585333e-01 -2.30407640e-01 5.56627095e-01 3.07538718e-01 -9.10976291e-01 2.42886450e-02 -5.67859232e-01 3.92150939e-01 1.71074793e-01 2.92215049e-01 -7.67160892e-01 -3.67253095e-01 2.41751075e-01 1.75724830e-02 2.63215989e-01 4.61385012e-01 1.17606080e+00 -4.03944284e-01 -3.70937258e-01 1.11579871e+00 1.32140279e+00 1.20944999e-01 7.32651353e-01 2.11501941e-01 1.04486823e+00 -3.80719341e-02 2.01299027e-01 5.36558449e-01 6.72280788e-01 5.91686130e-01 8.90446752e-02 -3.36397141e-02 -6.07633352e-01 -1.24356590e-01 3.35066468e-01 1.49757934e+00 -3.01057965e-01 -3.21596205e-01 -9.53465104e-01 2.49186158e-01 -1.66196561e+00 -8.17069530e-01 -5.17165005e-01 2.01247835e+00 7.91697562e-01 7.41207153e-02 6.64004870e-03 -9.71049592e-02 3.61933380e-01 3.27830434e-01 -8.34736109e-01 -3.56686801e-01 -1.26980439e-01 2.44953841e-01 5.21511614e-01 5.03256440e-01 -5.09281754e-01 1.02624846e+00 7.31712198e+00 1.07832575e+00 -1.77548802e+00 5.95195532e-01 8.95156741e-01 -2.00824738e-01 -2.22220108e-01 -2.91531999e-02 -9.49870169e-01 8.19822907e-01 1.47616088e+00 -3.69402379e-01 8.38855028e-01 9.39285278e-01 2.71794349e-01 -2.29337901e-01 -4.84284163e-01 1.28431928e+00 -1.79231346e-01 -1.67007148e+00 -9.02262107e-02 6.37057066e-01 1.07897925e+00 4.86555696e-01 6.51108563e-01 1.72606751e-03 1.97469249e-01 -7.18042374e-01 5.40483475e-01 7.69297406e-02 1.15199184e+00 -4.84580904e-01 3.77950549e-01 2.45668441e-01 -1.14013195e+00 -3.36950868e-02 -3.15284461e-01 -4.02538449e-01 2.16265649e-01 5.75239778e-01 -5.46358764e-01 -2.49862954e-01 8.93343508e-01 7.18555570e-01 -6.05042994e-01 5.65560818e-01 1.58210725e-01 9.90564227e-01 -5.41691363e-01 -1.73566153e-03 2.44686484e-01 -2.29978815e-01 2.03803644e-01 1.13715279e+00 6.88092411e-01 -1.72499061e-01 -1.66245222e-01 5.05150378e-01 -3.08353603e-01 2.72203796e-02 -3.49856764e-01 2.40014978e-02 4.36618954e-01 1.37490046e+00 -9.67412889e-01 -6.76326454e-01 -6.07936025e-01 1.24850667e+00 1.50334788e-02 2.50426203e-01 -1.16768408e+00 -5.48431315e-02 1.02361357e+00 3.02543461e-01 5.07133380e-02 -7.20322013e-01 -4.69769329e-01 -1.29506612e+00 3.78459841e-02 -1.23353302e+00 -5.85718751e-02 -5.96042275e-01 -9.52109993e-01 8.23607564e-01 -1.63019150e-01 -7.41832614e-01 -1.15806602e-01 -4.16933566e-01 -3.23051453e-01 8.65218759e-01 -1.19365311e+00 -1.00213075e+00 -4.78475928e-01 8.14314663e-01 6.43364191e-01 -2.05682784e-01 7.67887414e-01 7.56685615e-01 -7.97080517e-01 6.36777401e-01 2.30935931e-01 -3.86023819e-01 2.72608966e-01 -7.77740896e-01 1.06547678e+00 8.48225057e-01 8.33826065e-02 1.14536667e+00 3.54788661e-01 -6.77077889e-01 -1.83277011e+00 -8.93807292e-01 5.23331344e-01 -3.75117242e-01 9.04689252e-01 -2.63767749e-01 -6.26237214e-01 6.19089067e-01 4.40893114e-01 3.74899834e-01 6.83466852e-01 -9.14847553e-02 -1.68205008e-01 -9.07099470e-02 -1.03903067e+00 1.04104662e+00 1.18637991e+00 -7.58747518e-01 5.96528709e-01 2.67150462e-01 4.69011426e-01 -5.47475815e-01 -9.04728651e-01 -1.56131834e-01 6.16878927e-01 -1.11664832e+00 9.72340703e-01 -9.33256522e-02 2.20904604e-01 -1.61949411e-01 -2.01143190e-01 -7.99560547e-01 -6.72508180e-02 -1.21319735e+00 -6.71290517e-01 9.64313090e-01 1.72935516e-01 -5.43400705e-01 1.02945483e+00 7.60329664e-01 2.27129921e-01 -7.77952492e-01 -8.34677041e-01 -3.94645065e-01 -2.84233630e-01 -7.04973161e-01 8.29997420e-01 6.92944527e-01 -5.22889853e-01 5.08194923e-01 -5.08081615e-01 -4.42319550e-02 5.36551297e-01 -2.73214608e-01 1.03524387e+00 -7.62386441e-01 -6.80714309e-01 -2.45510757e-01 -2.62295514e-01 -1.86923122e+00 -1.37557745e-01 -5.73665440e-01 -6.14874542e-01 -1.04051983e+00 2.49081299e-01 -9.88974273e-01 2.83622742e-02 8.42815340e-02 -2.08798155e-01 7.71417260e-01 1.67029977e-01 5.44451237e-01 -6.00633860e-01 2.80460179e-01 1.32787430e+00 -1.30238280e-01 -1.96669221e-01 -2.73208111e-03 -8.02546918e-01 8.73019397e-01 6.94667280e-01 -4.94764298e-01 -8.11185360e-01 -1.00513613e+00 7.53343284e-01 9.56822708e-02 4.15272154e-02 -1.16711354e+00 2.88270175e-01 8.46089795e-02 -1.04591310e-01 5.02745472e-02 3.83866936e-01 -6.09606981e-01 3.66340965e-01 4.52160954e-01 -1.92499328e-02 7.27556527e-01 2.10165992e-01 3.48746628e-01 3.06483749e-02 1.13348737e-01 4.66371655e-01 -3.68014239e-02 -5.95851779e-01 5.34805238e-01 -3.78542364e-01 7.00082928e-02 1.03096068e+00 -2.57556856e-01 -4.17186499e-01 -2.40380958e-01 -3.58008653e-01 -5.27762890e-01 5.66126704e-01 3.70931357e-01 5.37646770e-01 -1.11244249e+00 -2.67716676e-01 3.59127760e-01 -4.40151066e-01 -2.95727670e-01 5.74695706e-01 9.58363116e-01 -8.97938013e-01 2.43103787e-01 -1.55451626e-01 -6.77242815e-01 -1.39388716e+00 5.50166070e-01 7.20425025e-02 -4.55575883e-01 -5.99088490e-01 7.97416389e-01 8.33032429e-02 8.44976902e-02 -2.42466941e-01 -4.54117209e-01 4.45600957e-01 -3.18116575e-01 8.11038911e-01 9.58357632e-01 1.20684303e-01 -8.25065613e-01 -6.11011013e-02 4.55819011e-01 -2.31544182e-01 -1.65081024e-01 8.93568993e-01 -4.29329634e-01 -1.97353676e-01 9.91793498e-02 1.19364178e+00 4.48399425e-01 -1.51045871e+00 1.33436963e-01 -3.55721354e-01 -7.02388465e-01 4.94986832e-01 -4.74782884e-01 -1.44319952e+00 9.53110278e-01 8.25263143e-01 3.16747844e-01 9.70929086e-01 -4.74981189e-01 1.49150181e+00 1.23145513e-01 6.95926249e-01 -7.82739222e-01 5.27186804e-02 4.90878075e-01 3.24079335e-01 -1.07596838e+00 9.01833847e-02 -2.38850206e-01 -5.37605047e-01 7.71246433e-01 2.62395591e-01 -9.88790691e-02 1.03751981e+00 7.26642847e-01 3.46391760e-02 -1.57773241e-01 -7.01976061e-01 3.12587738e-01 -6.70560077e-02 6.57900333e-01 6.43076897e-01 2.54682571e-01 -2.64689565e-01 2.66431540e-01 -2.13202730e-01 2.68636078e-01 6.02637291e-01 7.29240537e-01 1.78266406e-01 -1.28652370e+00 -1.90903246e-01 4.72820222e-01 -8.64626646e-01 -4.89893585e-01 2.29820788e-01 4.37427908e-01 8.19863826e-02 1.06449783e+00 1.65977910e-01 -3.96832079e-01 -5.28157316e-02 -7.90757895e-01 4.95292187e-01 -3.43569994e-01 -8.22599649e-01 -2.93950513e-02 -9.79450494e-02 -5.75558960e-01 -2.91167825e-01 -4.34363514e-01 -1.01266050e+00 -1.19121265e+00 -9.57996994e-02 -1.98704019e-01 9.44990575e-01 6.20427370e-01 1.04701924e+00 5.16293645e-01 2.45816171e-01 -8.28428507e-01 -2.99557239e-01 -7.78238058e-01 -4.20528680e-01 1.13607384e-01 3.20503078e-02 -3.52129459e-01 -6.03522640e-03 1.39718309e-01]
[11.077330589294434, -0.4837866425514221]
a1b5b3e9-4fe5-4f81-8e4f-2524be25dd00
knowledge-graph-embeddings-in-the-biomedical
2305.19979
null
https://arxiv.org/abs/2305.19979v1
https://arxiv.org/pdf/2305.19979v1.pdf
Knowledge Graph Embeddings in the Biomedical Domain: Are They Useful? A Look at Link Prediction, Rule Learning, and Downstream Polypharmacy Tasks
Knowledge graphs are powerful tools for representing and organising complex biomedical data. Several knowledge graph embedding algorithms have been proposed to learn from and complete knowledge graphs. However, a recent study demonstrates the limited efficacy of these embedding algorithms when applied to biomedical knowledge graphs, raising the question of whether knowledge graph embeddings have limitations in biomedical settings. This study aims to apply state-of-the-art knowledge graph embedding models in the context of a recent biomedical knowledge graph, BioKG, and evaluate their performance and potential downstream uses. We achieve a three-fold improvement in terms of performance based on the HITS@10 score over previous work on the same biomedical knowledge graph. Additionally, we provide interpretable predictions through a rule-based method. We demonstrate that knowledge graph embedding models are applicable in practice by evaluating the best-performing model on four tasks that represent real-life polypharmacy situations. Results suggest that knowledge learnt from large biomedical knowledge graphs can be transferred to such downstream use cases. Our code is available at https://github.com/aryopg/biokge.
['Ajitha Rajan', 'Antonio Vergari', 'Pasquale Minervini', 'Javier Antonio Alfaro', 'Piyush Borole', 'Wolf De Wulf', 'Dominik Grabarczyk', 'Aryo Pradipta Gema']
2023-05-31
null
null
null
null
['graph-embedding', 'link-prediction', 'knowledge-graph-embedding', 'knowledge-graph-embeddings', 'knowledge-graphs', 'knowledge-graph-embeddings']
['graphs', 'graphs', 'graphs', 'graphs', 'knowledge-base', 'methodology']
[ 1.74658984e-01 7.82787204e-01 -5.10459960e-01 -1.19319849e-01 -2.24635318e-01 -3.65740597e-01 3.16539139e-01 9.33018327e-01 -3.65729898e-01 7.57910311e-01 5.32333493e-01 -5.09166241e-01 -6.14503622e-01 -8.54473293e-01 -5.24936616e-01 -4.20122713e-01 -4.87238586e-01 6.32514775e-01 5.90527151e-03 -1.38337836e-01 -1.34500399e-01 3.91839892e-01 -8.54789615e-01 4.18776214e-01 5.12101769e-01 2.85059333e-01 -3.38762045e-01 6.33785665e-01 6.32048026e-02 7.52114475e-01 -4.92949814e-01 -5.99543214e-01 -2.44944870e-01 -2.70880312e-01 -1.11229885e+00 -5.53857088e-01 1.34095758e-01 9.61217470e-03 -8.15153778e-01 7.73208261e-01 7.78532505e-01 -2.78931875e-02 7.15710580e-01 -1.24221468e+00 -1.22753060e+00 6.49002075e-01 2.24914894e-01 5.44864953e-01 6.24265134e-01 1.15083447e-02 1.25402868e+00 -5.22100747e-01 1.00710130e+00 1.06051648e+00 9.83330131e-01 6.78132474e-01 -1.43586814e+00 -4.42087322e-01 -1.94755316e-01 5.66085756e-01 -1.33339214e+00 -3.09286356e-01 5.26065469e-01 -5.63044310e-01 1.61462605e+00 2.50394791e-01 9.91876543e-01 1.10576808e+00 6.44400179e-01 4.53769922e-01 8.55824411e-01 -4.53308582e-01 1.88706174e-01 9.29787531e-02 5.55134237e-01 1.06571555e+00 7.85879254e-01 1.08287863e-01 -5.65885544e-01 -6.75383627e-01 3.69479865e-01 -4.54803631e-02 -5.19946098e-01 -3.37547004e-01 -1.33728206e+00 1.05253744e+00 6.37541771e-01 6.06220782e-01 -2.91964263e-01 4.21906650e-01 5.56433141e-01 2.97215194e-01 5.64201415e-01 7.67286479e-01 -5.06896913e-01 -2.38414109e-02 -5.29061854e-01 -8.42664391e-02 1.20968938e+00 7.41557062e-01 3.61581177e-01 -2.85263687e-01 -1.21725775e-01 4.55045402e-01 3.47369492e-01 -4.73465137e-02 5.81857502e-01 -4.04075921e-01 -5.41595444e-02 8.04726899e-01 -3.67345363e-01 -1.16003692e+00 -6.23755157e-01 -2.31144801e-01 -3.81490290e-01 -2.78807074e-01 1.77215189e-01 8.41213539e-02 -8.81765187e-01 1.33197105e+00 4.44157332e-01 4.03378189e-01 2.52477378e-01 5.16103029e-01 1.28509593e+00 5.54841347e-02 4.99682963e-01 1.12593025e-01 1.71707880e+00 -6.23740315e-01 -8.81172776e-01 1.85786765e-02 1.22139537e+00 -2.07867801e-01 5.37395537e-01 4.13261689e-02 -5.45403183e-01 -7.06233531e-02 -9.62584496e-01 -2.10447460e-01 -9.79972363e-01 -2.78565466e-01 1.04581344e+00 7.13471711e-01 -1.19630826e+00 7.10809767e-01 -1.06710386e+00 -7.51426816e-01 7.75028825e-01 4.74644929e-01 -7.45039880e-01 -2.17143551e-01 -1.57943273e+00 1.25982344e+00 6.57051682e-01 -1.23313211e-01 -5.33546805e-01 -1.20690525e+00 -1.05069041e+00 1.85678735e-01 1.26414433e-01 -1.16982722e+00 5.47539473e-01 -2.47457892e-01 -9.35159981e-01 8.44966471e-01 1.37286827e-01 -4.44000304e-01 5.14944457e-02 1.21712007e-01 -6.05711937e-01 3.27802569e-01 -1.06245495e-01 4.12346542e-01 1.67279810e-01 -6.91145301e-01 1.12747073e-01 -3.46300304e-01 1.16243094e-01 -6.28178790e-02 -6.53364837e-01 -3.52751434e-01 -1.79281369e-01 -4.61482763e-01 -4.74515229e-01 -8.68584156e-01 -2.74487048e-01 1.47149518e-01 -2.99035102e-01 -2.20695630e-01 3.55498672e-01 -8.20019126e-01 1.37379527e+00 -1.92056358e+00 2.06213802e-01 2.23278120e-01 6.21682405e-01 2.91187882e-01 -1.09385230e-01 8.87260735e-01 -3.84985745e-01 4.56162572e-01 -1.21751957e-01 3.68328869e-01 1.46953156e-02 3.50288481e-01 2.30675355e-01 5.47034025e-01 2.94130743e-01 1.51955950e+00 -1.37696898e+00 -5.27702034e-01 1.58061147e-01 8.86242270e-01 -6.05991304e-01 -1.61648288e-01 -8.15706477e-02 -2.24911403e-02 -6.38227820e-01 6.24336064e-01 -3.42597403e-02 -6.71191394e-01 8.72491181e-01 -5.12997508e-01 5.39389610e-01 4.64712419e-02 -4.33025777e-01 1.64049602e+00 -3.23360018e-03 5.86099982e-01 -5.43703079e-01 -1.17153108e+00 5.74348330e-01 5.06432891e-01 6.15828454e-01 -1.86096892e-01 9.20904502e-02 -1.64822981e-01 3.31448883e-01 -5.99343061e-01 6.59987554e-02 -2.95950025e-01 1.75151691e-01 2.24644154e-01 3.08355361e-01 1.60384148e-01 1.96383327e-01 3.90983731e-01 1.77639186e+00 -1.13624215e-01 8.15365732e-01 -4.06556070e-01 1.96808323e-01 2.29148641e-01 1.61191940e-01 4.71482843e-01 -3.37136090e-01 5.68064488e-02 7.28262722e-01 -4.83933300e-01 -6.43034995e-01 -9.83602464e-01 -3.73195171e-01 7.20293641e-01 -2.78645605e-01 -8.33689630e-01 -3.67950797e-01 -8.91623616e-01 6.42912686e-01 6.50278687e-01 -1.13890564e+00 -6.00419044e-01 -1.66944399e-01 -9.49503660e-01 8.36353779e-01 6.08975410e-01 -3.28490853e-01 -1.06997442e+00 -3.23460966e-01 4.06764328e-01 2.10446611e-01 -9.02408242e-01 -2.55317330e-01 8.82383436e-02 -9.67995524e-01 -1.64837205e+00 -5.08257389e-01 -8.38163614e-01 7.93516934e-01 -3.31939548e-01 1.10693932e+00 1.71786666e-01 -8.66920590e-01 9.23567057e-01 -3.38128746e-01 -5.33297837e-01 -6.00844622e-01 5.36157377e-02 8.33076537e-02 -5.11086464e-01 8.40139925e-01 -4.32198405e-01 -7.88560808e-01 -1.24874949e-01 -1.08412337e+00 -2.67086267e-01 6.08961880e-01 1.03433108e+00 6.04039133e-01 -2.30870649e-01 9.11436975e-01 -1.22134793e+00 9.99465525e-01 -7.62798369e-01 -8.71935263e-02 4.36964929e-01 -1.14481544e+00 3.02320659e-01 2.38367438e-01 -3.77678543e-01 -3.18795174e-01 -1.36585519e-01 7.53093846e-05 -3.57186824e-01 6.68366551e-02 1.07646501e+00 3.72201622e-01 -2.40095869e-01 8.59745085e-01 1.48106925e-03 3.18396866e-01 -2.60985821e-01 7.66808689e-01 5.37408590e-01 -3.11657451e-02 -2.08244085e-01 3.61453533e-01 3.90722662e-01 1.65388614e-01 -8.66536319e-01 -4.94692296e-01 -4.67248976e-01 -5.74574351e-01 1.71144575e-01 1.08171737e+00 -7.51652062e-01 -9.12366807e-01 -3.90676528e-01 -8.33681047e-01 -2.10606873e-01 -3.67394745e-01 5.53405464e-01 -4.37661737e-01 6.64274693e-01 -7.02848375e-01 -1.79059148e-01 -6.76555991e-01 -7.30630934e-01 8.16250443e-01 -3.01021636e-01 -6.74874723e-01 -1.66515064e+00 4.02435452e-01 3.50290805e-01 1.82780668e-01 5.88149965e-01 1.44828439e+00 -9.95849073e-01 -2.15339020e-01 -2.18525633e-01 -1.20863602e-01 -1.62739791e-02 4.82182860e-01 -3.63074273e-01 -7.58262038e-01 -3.73123378e-01 -6.10880911e-01 -1.64244220e-01 8.42233419e-01 1.85890540e-01 8.59948456e-01 -4.12492156e-01 -8.91835570e-01 3.63174379e-01 1.40829968e+00 -2.08960008e-02 5.12798429e-01 1.46766007e-01 7.89795399e-01 3.51562023e-01 6.43002689e-02 6.46105185e-02 4.33523357e-01 5.27808964e-01 1.01681337e-01 1.55732874e-02 -3.14648688e-01 -2.27260694e-01 1.37357011e-01 1.10422456e+00 -2.90117133e-02 -1.63849548e-01 -1.29402184e+00 8.66947114e-01 -1.84436917e+00 -8.15603197e-01 5.80597371e-02 1.72046208e+00 1.14068997e+00 -9.78335813e-02 -1.46725163e-01 -1.13649562e-01 3.49568814e-01 -9.10772309e-02 -5.05950689e-01 -5.63912809e-01 2.18110800e-01 5.08108020e-01 4.36190128e-01 4.18202847e-01 -7.53179312e-01 7.67612576e-01 7.04348803e+00 4.41883087e-01 -6.27808869e-01 2.12307155e-01 2.45105430e-01 -3.90362740e-03 -4.86082166e-01 -7.45772570e-02 -3.19384545e-01 3.24965239e-01 1.28747487e+00 -5.56912422e-01 2.73047864e-01 5.94041526e-01 -1.60906255e-01 3.83845657e-01 -1.49629998e+00 7.81050742e-01 1.79636508e-01 -1.63735735e+00 2.03747004e-01 2.03792766e-01 3.58787090e-01 7.68868327e-02 -2.50915647e-01 3.10529262e-01 3.13988864e-01 -1.28390229e+00 -2.34603122e-01 7.61753976e-01 8.85475457e-01 -3.51155430e-01 7.82122135e-01 -2.33152539e-01 -1.00131536e+00 1.96136132e-01 -3.31042647e-01 2.61493921e-01 6.42906502e-02 5.68305612e-01 -1.56173182e+00 9.58196759e-01 4.53963161e-01 1.11800754e+00 -6.90349758e-01 8.20806324e-01 -3.39656144e-01 6.86643720e-01 -4.48481515e-02 -1.69796988e-01 1.14037311e-02 1.01770416e-01 3.76938909e-01 1.52776992e+00 5.62477969e-02 1.52577072e-01 -8.73752832e-02 7.74339557e-01 -1.07377172e-01 2.32137978e-01 -1.01732111e+00 -8.07327271e-01 1.63021684e-01 9.90855336e-01 -6.82095885e-01 -3.35184127e-01 -5.23569047e-01 8.50210130e-01 4.59720045e-01 3.31034005e-01 -7.12511241e-01 -5.90171278e-01 7.46143401e-01 8.60581473e-02 2.18189940e-01 1.68706447e-01 1.29023790e-01 -1.08174741e+00 -2.23056510e-01 -7.27787733e-01 8.81688476e-01 -6.58028603e-01 -1.63838840e+00 3.75737637e-01 7.40128979e-02 -7.51897514e-01 2.78491341e-02 -9.63759005e-01 -1.78690687e-01 6.27947390e-01 -1.45992649e+00 -1.19091713e+00 -4.17598449e-02 3.00563872e-01 -1.20560475e-01 -7.13919550e-02 1.44021440e+00 2.74542063e-01 -2.90013969e-01 6.48246467e-01 2.13616356e-01 2.55980670e-01 5.46466053e-01 -1.31099987e+00 2.86696702e-01 7.87767321e-02 2.24958837e-01 9.16778862e-01 4.75759298e-01 -8.88242006e-01 -1.76670420e+00 -1.13589323e+00 1.00372410e+00 -1.06525362e+00 9.33737576e-01 -2.65172720e-01 -1.00270343e+00 9.98333752e-01 3.54292840e-02 2.13712052e-01 1.40231764e+00 3.92419130e-01 -3.88237834e-01 4.21047300e-01 -1.16059625e+00 5.55035591e-01 1.26210630e+00 -6.70639753e-01 -9.46189880e-01 6.77478850e-01 7.79119849e-01 -1.13629796e-01 -1.86086702e+00 3.07298273e-01 6.85385823e-01 -1.94918454e-01 1.16596806e+00 -1.31984401e+00 3.29997927e-01 -1.44027427e-01 1.58149019e-01 -1.42844021e+00 -7.15521514e-01 -3.34423214e-01 -5.02218306e-01 5.61095417e-01 5.45919299e-01 -9.98053670e-01 7.46482313e-01 4.80322599e-01 6.05414994e-03 -1.11899304e+00 -1.05961418e+00 -7.20400572e-01 1.60234898e-01 -5.88512188e-03 4.30201441e-01 1.60509253e+00 8.64643633e-01 4.02354985e-01 7.96457306e-02 7.53526539e-02 3.39263767e-01 -1.28568977e-01 2.38638774e-01 -1.25293970e+00 -3.14826816e-01 -2.15400144e-01 -1.37588847e+00 -3.52802761e-02 2.50807196e-01 -1.81537509e+00 -6.98841214e-01 -2.17944622e+00 3.96876842e-01 -6.00627586e-02 -7.86125958e-01 1.03177500e+00 -2.07631424e-01 1.25723138e-01 -7.37924501e-02 -8.54537562e-02 -4.46802318e-01 3.67391318e-01 1.08186996e+00 -5.13643146e-01 -4.42310097e-03 -7.04824150e-01 -9.24203396e-01 1.99079692e-01 9.10165131e-01 -6.25535190e-01 -5.54096282e-01 -1.87858343e-01 3.41469467e-01 -1.69729456e-01 2.88982093e-01 -5.67161024e-01 2.15264350e-01 1.68667018e-01 4.23836946e-01 1.87634483e-01 2.16918558e-01 -6.23196244e-01 5.82008660e-01 8.83708954e-01 -2.42822647e-01 -5.01692891e-02 6.48092508e-01 1.00320697e+00 3.19512412e-02 1.31193511e-02 1.59104392e-01 -3.20984051e-02 -6.18242323e-01 3.24566662e-01 -2.14673817e-01 7.07541928e-02 1.08331907e+00 -3.14094335e-01 -7.51091719e-01 -2.01231558e-02 -1.19628906e+00 1.59918457e-01 1.96396947e-01 4.78200674e-01 8.63805234e-01 -1.39753723e+00 -5.81254840e-01 -1.06732413e-01 6.13923967e-01 -6.89643979e-01 1.13511361e-01 9.89775419e-01 -6.38180971e-01 6.86806440e-01 -1.55139834e-01 -2.33565792e-01 -1.36215746e+00 8.74834836e-01 2.81188488e-01 -3.40565205e-01 -8.50622952e-01 5.21671414e-01 3.42805833e-02 -4.85521764e-01 -1.26125887e-01 -3.87183875e-01 -2.43643418e-01 5.56618571e-02 2.59293467e-01 3.80927771e-01 9.64124650e-02 -2.41350457e-01 -8.33002031e-01 3.45524311e-01 -1.63320437e-01 3.39094341e-01 1.48393655e+00 5.44606686e-01 -2.52947718e-01 3.00706357e-01 1.39570475e+00 -2.65828520e-01 -2.89062709e-01 -2.91899126e-02 1.52030110e-01 -1.11963116e-01 5.78329787e-02 -1.01882362e+00 -7.63967633e-01 4.60406274e-01 6.52422965e-01 3.06132752e-02 5.88326931e-01 3.18404526e-01 3.67632359e-01 6.22216225e-01 2.48210356e-01 -7.64531434e-01 -1.61293209e-01 2.05547616e-01 8.03518414e-01 -1.10477912e+00 5.08945405e-01 -5.27321100e-01 -5.24031699e-01 1.07282019e+00 2.37879939e-02 1.55620426e-01 1.12331808e+00 -8.03516731e-02 -2.59604175e-02 -9.93957639e-01 -7.66091347e-01 -7.47812241e-02 5.56910753e-01 7.54274428e-01 7.42472708e-01 3.97256792e-01 -6.19667888e-01 5.83525479e-01 -1.64198428e-02 3.60729486e-01 4.12488461e-01 1.09783375e+00 3.92239839e-02 -1.16856575e+00 2.65285343e-01 9.56960201e-01 -5.53333879e-01 -3.92591983e-01 -6.13160372e-01 9.26693141e-01 -1.97863087e-01 6.94175422e-01 -4.67751771e-01 -3.55027348e-01 3.49225074e-01 5.25107741e-01 6.34383857e-01 -9.66258287e-01 -5.83424926e-01 -6.09213948e-01 4.40005422e-01 -6.44642413e-01 -3.83743078e-01 -2.65006512e-01 -1.24156797e+00 -1.94512874e-01 -4.33657974e-01 2.70368516e-01 2.86695033e-01 4.36155140e-01 9.66029525e-01 8.39407325e-01 -3.55188757e-01 -1.27890572e-01 -3.64775717e-01 -8.48188281e-01 -5.07475436e-01 5.42550325e-01 -2.41486263e-03 -5.95453858e-01 -2.26415500e-01 1.38228536e-01]
[8.031500816345215, 7.392233848571777]
fa51bba6-8aee-457d-9de2-1f1640ce6555
corl-research-oriented-deep-offline
2210.07105
null
https://arxiv.org/abs/2210.07105v3
https://arxiv.org/pdf/2210.07105v3.pdf
CORL: Research-oriented Deep Offline Reinforcement Learning Library
CORL is an open-source library that provides thoroughly benchmarked single-file implementations of both deep offline and offline-to-online reinforcement learning algorithms. It emphasizes a simple developing experience with a straightforward codebase and a modern analysis tracking tool. In CORL, we isolate methods implementation into separate single files, making performance-relevant details easier to recognize. Additionally, an experiment tracking feature is available to help log metrics, hyperparameters, dependencies, and more to the cloud. Finally, we have ensured the reliability of the implementations by benchmarking commonly employed D4RL datasets providing a transparent source of results that can be reused for robust evaluation tools such as performance profiles, probability of improvement, or expected online performance.
['Sergey Kolesnikov', 'Vladislav Kurenkov', 'Dmitry Akimov', 'Alexander Nikulin', 'Denis Tarasov']
2022-10-13
null
null
null
null
['d4rl']
['robots']
[-6.27624989e-01 -2.55358011e-01 -2.77817667e-01 -5.48543215e-01 -9.91872072e-01 -7.38269925e-01 5.22362471e-01 5.07960737e-01 -4.80020970e-01 8.01659107e-01 -7.82843605e-02 -5.32270133e-01 -4.34951812e-01 -3.05350333e-01 -6.60666823e-01 -5.74847162e-01 -5.74663818e-01 4.10923392e-01 2.92800784e-01 -2.70300899e-02 4.88981009e-01 5.36491334e-01 -1.84923422e+00 4.42640372e-02 2.97450840e-01 9.31238115e-01 8.11568722e-02 7.59485602e-01 2.34811977e-01 8.79766941e-01 -8.02994490e-01 -2.65252352e-01 2.99815595e-01 -1.75983027e-01 -7.19558835e-01 -5.12514234e-01 5.62181138e-02 -6.62078500e-01 -1.24077536e-01 6.98471427e-01 8.19161892e-01 -1.27394557e-01 1.38990209e-01 -1.57194424e+00 -8.74339417e-02 8.17086518e-01 -2.92908430e-01 2.74415284e-01 5.66169143e-01 8.05758178e-01 7.18535841e-01 -3.36902797e-01 6.18061662e-01 9.10994947e-01 4.66707766e-01 2.07282245e-01 -1.14400351e+00 -5.86687982e-01 -2.33603224e-01 1.96485162e-01 -1.03773534e+00 -5.87485254e-01 1.54450208e-01 -5.36106586e-01 1.43969107e+00 1.50697753e-01 5.70730984e-01 1.26975191e+00 2.45017633e-01 6.33694708e-01 1.21427393e+00 -3.46170485e-01 5.22857666e-01 1.92496940e-01 1.95156068e-01 7.49055326e-01 1.53810427e-01 6.39710128e-01 -5.65273464e-01 -9.33947787e-02 5.51785231e-01 -4.21780229e-01 2.25758985e-01 -5.92500150e-01 -9.57217574e-01 5.25856376e-01 -4.18498404e-02 5.22757247e-02 -1.37933955e-01 4.34493601e-01 8.66852880e-01 5.58515906e-01 4.85555567e-02 2.84743935e-01 -7.51614630e-01 -1.18514764e+00 -5.67564666e-01 5.42724669e-01 8.64494324e-01 1.11539614e+00 7.01589227e-01 -1.27924057e-02 -1.98560521e-01 5.35046220e-01 1.92837328e-01 1.66173086e-01 4.72640365e-01 -1.30458593e+00 3.95168923e-02 5.27231038e-01 3.03221256e-01 -4.19166476e-01 -7.22030401e-01 -4.46501583e-01 1.16247095e-01 5.80239296e-01 4.52105641e-01 -2.32721508e-01 -2.42367998e-01 1.45316732e+00 3.48976433e-01 -4.56001073e-01 1.86064783e-02 7.07856953e-01 5.59067070e-01 5.31438142e-02 6.05377788e-03 -6.73941597e-02 1.08160710e+00 -8.57434630e-01 -4.66433644e-01 -2.18508318e-02 8.21145415e-01 -7.62464166e-01 1.42515445e+00 4.90232229e-01 -1.25869155e+00 -3.84403259e-01 -9.75572467e-01 9.24375728e-02 -7.23694503e-01 2.27577418e-01 9.03132856e-01 8.20989847e-01 -1.09339321e+00 1.08788085e+00 -1.20140088e+00 -2.90073782e-01 2.03714147e-01 3.11196208e-01 -1.53890088e-01 3.62763047e-01 -8.65548849e-01 9.73880053e-01 6.29126430e-01 -5.13573110e-01 -1.24345052e+00 -8.54323387e-01 -6.13798559e-01 -1.41376555e-01 2.99466908e-01 -2.72117764e-01 1.68422818e+00 -5.11588156e-01 -1.95312548e+00 8.13265800e-01 4.98204470e-01 -3.21990758e-01 7.99870193e-01 -3.29100966e-01 -3.41047913e-01 -1.81809455e-01 -7.12625086e-02 3.50541741e-01 6.28690302e-01 -6.44045234e-01 -6.10313654e-01 -2.96085626e-01 2.22514316e-01 3.20878029e-02 2.72947550e-02 2.76673794e-01 -6.04932904e-01 -2.44397029e-01 -8.91854107e-01 -6.93863928e-01 1.76346779e-01 -1.76744372e-01 2.04330925e-02 -1.39797971e-01 4.01922494e-01 -7.05697238e-01 1.36483812e+00 -2.35412169e+00 -1.66641220e-01 -6.50605038e-02 -1.85457423e-01 -1.83788300e-01 -2.17007771e-01 8.66074681e-01 -7.94714838e-02 -1.33605702e-02 2.51237392e-01 -6.41757203e-03 6.44002020e-01 1.07590958e-01 1.71296552e-01 5.67876637e-01 9.26878899e-02 4.81166750e-01 -9.54706252e-01 -3.58961016e-01 3.81067872e-01 -5.87159060e-02 -6.94436431e-01 4.81294125e-01 -2.51329541e-01 2.75987655e-01 -1.16485566e-01 6.77467644e-01 4.54996884e-01 -1.02512389e-01 2.79655993e-01 1.52949437e-01 -5.50293028e-01 5.23054957e-01 -1.27329683e+00 1.96108246e+00 -7.51671731e-01 3.31323653e-01 -6.22854801e-03 -7.11028636e-01 7.73594975e-01 -5.00743371e-03 3.61331522e-01 -8.30757618e-01 2.31824249e-01 3.14516202e-02 -1.86626896e-01 -3.81036967e-01 4.26036596e-01 7.40396976e-01 -1.78283349e-01 8.29989552e-01 3.83025646e-01 -7.56280199e-02 6.59431934e-01 6.84055611e-02 1.31205595e+00 7.42448688e-01 4.57305908e-01 -2.72027403e-01 6.71979487e-02 8.56080465e-03 1.57384411e-01 8.16281199e-01 -2.01156795e-01 2.68881097e-02 7.23207116e-01 -2.64621854e-01 -1.25976300e+00 -1.13842833e+00 -3.62114877e-01 1.53701186e+00 -4.26332057e-01 -8.97736669e-01 -7.19561279e-01 -5.41115105e-01 1.40592128e-01 7.49296367e-01 -6.12249672e-01 -1.08171530e-01 -8.42181891e-02 -3.78037393e-01 5.56922734e-01 5.84306836e-01 2.82026321e-01 -1.22035885e+00 -1.01403511e+00 6.56562373e-02 3.79386365e-01 -8.86923611e-01 -1.25653252e-01 6.06875122e-01 -7.30082750e-01 -1.08104503e+00 -1.36852846e-01 -4.77440357e-01 5.63367829e-02 -3.11316311e-01 1.34237587e+00 9.77083296e-02 -5.05061567e-01 4.96526539e-01 -3.76330525e-01 -4.27860528e-01 -5.86516976e-01 -6.43870085e-02 9.03135687e-02 -8.03650200e-01 1.08583435e-01 -5.09613633e-01 -3.93144995e-01 3.12669426e-01 -5.97730994e-01 -1.01479545e-01 2.34453425e-01 6.47245347e-01 4.72874671e-01 -2.41970271e-01 3.63465875e-01 -5.69882154e-01 8.74413013e-01 -4.87122655e-01 -1.23665595e+00 2.14859009e-01 -1.04161632e+00 3.19381297e-01 6.38264477e-01 -6.85570538e-02 -6.96577251e-01 -2.73394287e-01 -2.44457111e-01 -1.77776873e-01 -3.31457704e-01 4.92202163e-01 1.14409417e-01 1.56802222e-01 7.05760419e-01 1.27944916e-01 2.45443389e-01 -4.30063665e-01 3.32600266e-01 6.05685353e-01 4.31294560e-01 -8.84788752e-01 3.72817874e-01 -1.61292329e-01 -3.99982631e-01 -2.25970268e-01 -5.35803795e-01 -3.02826464e-01 -4.68842089e-01 -3.30865294e-01 2.83191800e-01 -8.20749581e-01 -1.43521476e+00 3.90043855e-01 -5.70921421e-01 -9.71860647e-01 -5.09661198e-01 3.62016588e-01 -9.14246857e-01 -7.52060162e-03 -5.75290561e-01 -7.37705231e-01 -2.94707984e-01 -1.25295317e+00 7.85980523e-01 4.73211765e-01 -2.66566306e-01 -9.62035716e-01 4.29336905e-01 3.68131138e-02 5.55081427e-01 1.09695785e-01 6.99430108e-01 -7.06977904e-01 -4.72901613e-01 -1.30361274e-01 -1.09599397e-01 4.05794144e-01 -1.85619757e-01 5.79878569e-01 -9.67546821e-01 -6.33360803e-01 -5.88524342e-01 -8.33031178e-01 1.32380262e-01 2.03607053e-01 1.47588301e+00 -1.60727814e-01 -6.16981555e-03 6.36825442e-01 1.23238373e+00 1.91989448e-02 4.04767424e-01 7.97904074e-01 -8.22347328e-02 2.09517196e-01 7.84911335e-01 1.08887339e+00 1.97949097e-01 5.85893750e-01 4.06459242e-01 1.67369902e-01 2.11627364e-01 -1.86069936e-01 7.12919235e-01 7.55442739e-01 6.81307912e-02 1.51511580e-01 -7.99282372e-01 1.68111235e-01 -1.73972917e+00 -8.04794550e-01 1.36738569e-01 2.37587976e+00 9.73096311e-01 4.04765159e-01 6.49834454e-01 2.53290758e-02 2.07519799e-01 -2.44088605e-01 -6.83686554e-01 -8.80152166e-01 3.56327951e-01 3.81723940e-01 4.86449033e-01 2.07506135e-01 -6.57916665e-01 8.03326666e-01 7.89598608e+00 9.62624192e-01 -9.47485447e-01 -2.28475649e-02 2.25161567e-01 -2.38759041e-01 -7.10601569e-04 1.14914797e-01 -7.40876317e-01 4.28589642e-01 1.52480459e+00 -5.66081762e-01 8.89922857e-01 1.24305224e+00 4.10617888e-01 -5.34256339e-01 -1.29180324e+00 8.53396893e-01 -5.64270020e-01 -1.46230614e+00 -3.95368516e-01 -5.08305058e-02 1.84309199e-01 4.69909042e-01 -4.96772602e-02 7.53167450e-01 7.37415135e-01 -8.14972162e-01 9.54112232e-01 4.16990548e-01 8.84139597e-01 -9.27982271e-01 5.77588201e-01 2.07285672e-01 -7.32213616e-01 -1.71375975e-01 -3.69890273e-01 -2.90963113e-01 -4.18329507e-01 2.17291713e-01 -7.62894750e-01 6.42937064e-01 1.04137599e+00 6.63933516e-01 -9.10670877e-01 1.09335351e+00 -1.34855151e-01 4.79301393e-01 -2.39392981e-01 -1.71977624e-01 -7.12008253e-02 -3.28121856e-02 1.58261061e-02 1.42689478e+00 -2.58378051e-02 -5.21698833e-01 1.23429544e-01 8.15707564e-01 3.03468794e-01 2.45923445e-01 -3.80575746e-01 -2.78769583e-01 5.90315521e-01 1.51032412e+00 -5.34936786e-01 7.59142172e-03 -3.07881296e-01 5.58566749e-01 5.03233492e-01 5.71742542e-02 -1.01419258e+00 -4.73407775e-01 8.55661035e-01 -5.61740771e-02 1.99242249e-01 -4.26586062e-01 9.62615684e-02 -6.63420320e-01 -1.77578852e-01 -1.13081002e+00 5.86417139e-01 -8.03356707e-01 -1.13240528e+00 3.14001590e-01 2.23791480e-01 -1.01476371e+00 -5.39318144e-01 -7.68597841e-01 -5.43796360e-01 5.20509899e-01 -1.15715802e+00 -6.65895045e-01 -3.78312707e-01 5.75636744e-01 1.64614424e-01 -3.53267252e-01 9.98085380e-01 3.71199548e-01 -9.33621287e-01 9.02152538e-01 3.32924038e-01 -5.38193397e-02 7.04748929e-01 -1.57909393e+00 4.25742835e-01 5.46894491e-01 -1.70829713e-01 6.70292556e-01 6.85567319e-01 -3.08588624e-01 -1.59021711e+00 -6.76868677e-01 3.19357067e-02 -4.23063427e-01 1.20135796e+00 -4.28623229e-01 -6.01155102e-01 5.51734567e-01 3.93100381e-01 -1.24521174e-01 6.66875541e-01 3.56714427e-01 -9.77027118e-02 -2.75023013e-01 -9.25028741e-01 3.74380708e-01 8.43291581e-01 -4.23626870e-01 5.71358425e-04 4.46928322e-01 3.94038409e-01 -7.86905229e-01 -1.25948334e+00 1.64620150e-02 6.59115374e-01 -1.39747369e+00 6.17344022e-01 -5.39650977e-01 2.75226235e-01 -5.41139543e-02 -5.47921099e-03 -1.26407158e+00 -2.57355925e-02 -9.51944530e-01 -2.40791351e-01 1.25918865e+00 3.96544784e-01 -5.21256328e-01 4.44287896e-01 2.51108438e-01 -1.39977217e-01 -6.27210379e-01 -5.34339845e-01 -9.19293821e-01 8.65595136e-03 -7.53937602e-01 7.01045990e-01 7.46941388e-01 2.92765141e-01 -1.30716898e-02 -3.97419147e-02 -1.48995832e-01 4.90802884e-01 2.29913831e-01 1.10099137e+00 -7.82678127e-01 -7.95481563e-01 -5.87440550e-01 -1.29003823e-01 -6.01640284e-01 -2.71600839e-02 -9.86323833e-01 -2.17739791e-01 -1.06334794e+00 2.36792311e-01 -6.16643429e-01 -3.70959193e-01 7.20949173e-01 2.41529137e-01 -1.41804054e-01 -6.50364207e-03 -9.24096853e-02 -9.17646825e-01 4.04377311e-01 9.00226951e-01 4.17133152e-01 -1.91654295e-01 -3.33038345e-02 -3.08251590e-01 3.72773081e-01 1.06989789e+00 -6.28675103e-01 -3.38316828e-01 -2.74498194e-01 3.15886140e-01 1.55003160e-01 4.28258717e-01 -1.43532932e+00 -6.48974180e-02 -3.38487625e-01 3.48171741e-01 -3.85164261e-01 -1.97333574e-01 -4.36957300e-01 -5.12640104e-02 3.76391441e-01 -4.79140818e-01 5.35393655e-01 7.17446923e-01 4.60488163e-02 2.60553867e-01 -2.07884461e-01 7.39125907e-01 -1.68955475e-02 -7.74233639e-01 1.55057117e-01 -4.34000880e-01 2.25492492e-01 1.21543968e+00 -4.35745381e-02 -4.44769472e-01 -3.64100486e-01 -5.50029218e-01 4.32155639e-01 7.67897785e-01 5.17830908e-01 3.57690156e-02 -9.60514069e-01 -4.58448827e-01 2.96710223e-01 3.35948169e-01 -6.14114583e-01 2.50677943e-01 8.71935368e-01 -7.06658900e-01 2.65474916e-01 -7.39552855e-01 -5.82853675e-01 -9.75887835e-01 6.28603935e-01 3.97150815e-01 -1.90434963e-01 -5.52579105e-01 4.92264479e-01 -6.45683885e-01 -6.71338081e-01 6.06868207e-01 -3.30376565e-01 2.55371720e-01 -1.28244117e-01 5.75651228e-01 3.80346179e-01 5.53291559e-01 3.35202634e-01 -5.36234260e-01 -1.02723211e-01 8.68950784e-02 -1.67311281e-01 1.56785333e+00 -8.38717595e-02 1.59736440e-01 7.25436747e-01 8.93086314e-01 -4.55077700e-02 -1.47768092e+00 1.78181946e-01 1.30776167e-01 -1.85685411e-01 1.93883896e-01 -1.28707337e+00 -7.64219165e-01 6.34601593e-01 8.66589308e-01 1.24418937e-01 1.01971042e+00 -1.07185498e-01 8.97789896e-02 3.14831287e-01 5.26856065e-01 -1.39236510e+00 3.15027013e-02 4.97020811e-01 8.38461339e-01 -9.60184991e-01 2.51815796e-01 4.57679123e-01 -5.24385870e-01 1.21540844e+00 7.80160785e-01 1.83200762e-01 6.14027977e-01 9.59999979e-01 2.23617420e-01 -7.06530437e-02 -1.24858487e+00 -1.12352811e-01 -2.88303345e-01 7.55089223e-01 6.25102043e-01 -6.69666454e-02 -1.35567933e-01 5.78612328e-01 -4.40135837e-01 1.60222143e-01 6.16503656e-01 1.23419440e+00 -3.65316086e-02 -1.38792968e+00 -6.57975301e-02 2.59647191e-01 -3.44644457e-01 7.61147290e-02 4.70705442e-02 1.13098454e+00 -3.75156283e-01 4.98876303e-01 1.07603952e-01 -3.30788076e-01 3.07555437e-01 6.83906674e-02 7.86940694e-01 -2.74790049e-01 -8.68605852e-01 -2.00037584e-01 2.96403855e-01 -1.10091007e+00 2.91922279e-02 -6.37372792e-01 -1.24662018e+00 -6.70348704e-01 -3.56176011e-02 1.25451073e-01 1.05305958e+00 7.10265875e-01 6.62022114e-01 6.25410020e-01 4.74668860e-01 -7.75527179e-01 -8.77873003e-01 -8.87499750e-01 -6.82300150e-01 2.29382098e-01 -7.08327144e-02 -7.88840473e-01 -4.68307436e-02 -2.93906748e-01]
[4.111735820770264, 1.623763918876648]
c5ea6dd3-93ab-4e9d-94e8-50b7fe54b649
vizinspect-pro-automated-optical-inspection
2205.13095
null
https://arxiv.org/abs/2205.13095v1
https://arxiv.org/pdf/2205.13095v1.pdf
VizInspect Pro -- Automated Optical Inspection (AOI) solution
Traditional vision based Automated Optical Inspection (referred to as AOI in paper) systems present multiple challenges in factory settings including inability to scale across multiple product lines, requirement of vendor programming expertise, little tolerance to variations and lack of cloud connectivity for aggregated insights. The lack of flexibility in these systems presents a unique opportunity for a deep learning based AOI system specifically for factory automation. The proposed solution, VizInspect pro is a generic computer vision based AOI solution built on top of Leo - An edge AI platform. Innovative features that overcome challenges of traditional vision systems include deep learning based image analysis which combines the power of self-learning with high speed and accuracy, an intuitive user interface to configure inspection profiles in minutes without ML or vision expertise and the ability to solve complex inspection challenges while being tolerant to deviations and unpredictable defects. This solution has been validated by multiple external enterprise customers with confirmed value propositions. In this paper we show you how this solution and platform solved problems around model development, deployment, scaling multiple inferences and visualizations.
['Debashis Mondal', 'Haotian Xu', 'Sanjit Menon', 'Faraz Waseem']
2022-05-26
null
null
null
null
['self-learning']
['natural-language-processing']
[-4.58545417e-01 -3.76768969e-02 9.95281279e-01 -2.35575318e-01 1.10908985e-01 -7.42500961e-01 -3.02641630e-01 2.00286344e-01 5.19108176e-01 -7.01499805e-02 -6.02784514e-01 -4.03521746e-01 -1.02762365e+00 -4.95863765e-01 -2.82499939e-01 -4.03211832e-01 -1.02999806e-02 6.82508409e-01 7.14156553e-02 -5.19806445e-01 2.04806045e-01 7.15465426e-01 -1.57541823e+00 3.29817325e-01 8.78474593e-01 1.23806143e+00 4.52318490e-01 9.27739859e-01 2.14119088e-02 8.33005250e-01 -9.73122001e-01 3.79718512e-01 5.38070142e-01 2.23321781e-01 -3.76874298e-01 3.79962355e-01 4.40298706e-01 -2.68555105e-01 3.20193559e-01 5.50428152e-01 4.67622519e-01 -4.20780063e-01 6.08808920e-02 -1.69141829e+00 -1.18396246e+00 -1.53519556e-01 -4.57203746e-01 2.47782394e-01 2.97458082e-01 8.02891970e-01 5.54860532e-01 -5.86167634e-01 3.64905328e-01 9.40182447e-01 1.20085168e+00 -8.83433223e-02 -1.00335038e+00 -7.04487115e-02 -1.73953056e-01 4.04273361e-01 -8.15836191e-01 5.26964739e-02 8.35127234e-01 -7.15067446e-01 1.66343951e+00 -4.12517264e-02 6.97080851e-01 3.59410971e-01 6.36928082e-01 1.68354094e-01 1.07275081e+00 -6.86479032e-01 4.20258790e-01 6.61375761e-01 4.60273623e-01 8.68005991e-01 6.76092565e-01 -2.30249271e-01 -4.45839107e-01 4.26957220e-01 7.01028645e-01 7.99284056e-02 2.57416219e-01 -4.75165099e-01 -7.89076924e-01 4.59240049e-01 3.02284867e-01 4.38503861e-01 -8.10415804e-01 1.52612746e-01 6.23893023e-01 7.98788488e-01 -2.82184482e-01 9.25059319e-01 -1.10068130e+00 -6.51048869e-02 -3.52313429e-01 7.34643661e-04 6.28401756e-01 1.06347954e+00 7.34298944e-01 6.62118673e-01 2.88583905e-01 3.10441613e-01 5.61260581e-01 2.74198592e-01 2.25257948e-01 -1.44459367e+00 -8.80790725e-02 9.51399922e-01 3.46270144e-01 -1.14127326e+00 -8.40812743e-01 -4.76763725e-01 -2.96297997e-01 1.07709229e+00 2.12143466e-01 -7.05611944e-01 -9.81220245e-01 6.25439703e-01 3.17928851e-01 -5.50303876e-01 1.09965689e-01 7.17600703e-01 6.83629870e-01 4.16350365e-01 -4.20392454e-01 3.15264195e-01 1.25488138e+00 -9.43111718e-01 -8.67209017e-01 -1.50195494e-01 5.33675492e-01 -6.80109859e-01 1.33384442e+00 1.20871186e+00 -9.53478456e-01 -8.73685002e-01 -1.35961151e+00 3.30952257e-01 -6.43552482e-01 2.73395896e-01 9.61631715e-01 8.22364688e-01 -1.49574459e+00 3.68100256e-01 -7.34723806e-01 -6.87326610e-01 2.67558843e-01 5.44817448e-01 -3.50204825e-01 6.12313917e-04 -1.98238596e-01 1.03247976e+00 2.92385668e-01 3.14143747e-01 -9.60324049e-01 -1.03939962e+00 -5.58911324e-01 2.64444053e-01 3.69404912e-01 -7.33835697e-01 1.18747091e+00 -1.05515277e+00 -1.50537753e+00 2.25395098e-01 6.72410667e-01 -3.50023866e-01 1.94328934e-01 -5.43230832e-01 -4.48285908e-01 1.61241025e-01 7.22224712e-02 2.34705344e-01 6.23058677e-01 -1.38208425e+00 -8.56443822e-01 -3.62627625e-01 3.83087814e-01 -2.94481695e-01 -3.12197179e-01 3.41400999e-04 1.99616387e-01 4.05327797e-01 1.90241951e-02 -6.97211981e-01 -1.77735329e-01 6.14138953e-02 -4.85940091e-02 -1.11799970e-01 1.39513588e+00 -7.03858793e-01 5.98672688e-01 -1.88217974e+00 -5.36723197e-01 1.26202181e-01 8.47986713e-02 4.99691069e-01 -7.32178167e-02 8.13666642e-01 -2.53450066e-01 -3.40093613e-01 5.74712396e-01 2.73684889e-01 1.17677756e-01 1.70276433e-01 4.15266603e-01 9.06417966e-02 3.68762374e-01 4.30593014e-01 -7.47854352e-01 -2.38844499e-01 7.35354364e-01 2.36356094e-01 -2.61706501e-01 7.84269050e-02 -2.51117587e-01 2.97670364e-01 -2.84122285e-02 1.21771240e+00 6.10063493e-01 -2.80928493e-01 1.33501351e-01 -4.25691247e-01 -5.21135390e-01 -4.00509000e-01 -1.39325130e+00 1.50320494e+00 -9.73129272e-01 8.13085079e-01 5.12456119e-01 -1.18951190e+00 1.29570973e+00 6.53070450e-01 6.17584586e-01 -5.07517993e-01 1.65247232e-01 -1.54138338e-02 2.05000296e-01 -1.15251422e+00 -4.42434363e-02 4.95950460e-01 3.27079207e-01 3.09404492e-01 3.58289272e-01 -3.29058081e-01 1.20298393e-01 -2.80328125e-01 1.13292825e+00 4.16041642e-01 -1.07376337e-01 -2.65964091e-01 1.48833558e-01 6.39845312e-01 4.54164058e-01 7.02343047e-01 -2.42283404e-01 4.61980760e-01 2.80174732e-01 -9.94247973e-01 -1.25357938e+00 -8.33444655e-01 3.69737953e-01 7.22862065e-01 -1.39068678e-01 -9.59691182e-02 -5.94437301e-01 -3.48062664e-01 -7.97559880e-03 6.74749374e-01 -3.86735618e-01 1.59545124e-01 -1.17233753e-01 -1.70042247e-01 -3.22262049e-01 5.85516155e-01 4.37128842e-01 -1.14159048e+00 -1.40224385e+00 4.99750823e-01 7.93793380e-01 -8.05304110e-01 4.44441557e-01 2.99403518e-01 -7.01016188e-01 -9.10509765e-01 1.69830948e-01 -9.09692764e-01 4.03916836e-01 4.50160533e-01 1.08761263e+00 3.02986819e-02 -1.19179153e+00 9.86733973e-01 -2.70078838e-01 -1.32478285e+00 -4.07718003e-01 -3.65703642e-01 -3.76493554e-03 -3.49811763e-01 4.34768409e-01 -7.46894658e-01 -5.57172775e-01 -4.66450118e-02 -5.34756660e-01 -2.83794433e-01 5.87766647e-01 8.80730569e-01 1.51321664e-01 3.40173274e-01 6.08816922e-01 -5.91688156e-01 9.06917274e-01 -3.65547866e-01 -1.20041955e+00 4.69155490e-01 -1.09312522e+00 -4.95431453e-01 4.05538410e-01 -5.71892150e-02 -1.16600549e+00 1.59225687e-01 4.25966322e-01 -4.51050490e-01 -5.83939612e-01 6.90234959e-01 1.02668360e-01 -2.20184013e-01 7.39600718e-01 -3.34352583e-01 4.47408557e-01 -4.75330591e-01 1.82174310e-01 8.26473117e-01 4.41341907e-01 -3.88906971e-02 6.69748485e-01 3.46569419e-01 -1.56373084e-02 -7.23478913e-01 -5.91862142e-01 -3.16381931e-01 -8.28842521e-01 -5.87553382e-01 9.18757319e-01 -6.97118223e-01 -1.35670853e+00 3.61278653e-01 -1.19255018e+00 -1.27861142e-01 -2.65582174e-01 1.55589178e-01 -3.40277970e-01 1.51241332e-01 -4.39744443e-01 -9.61100161e-01 -8.42875659e-01 -8.49937856e-01 3.78265679e-01 8.34729910e-01 -2.29758412e-01 -9.50444639e-01 -6.54772222e-02 6.49867177e-01 8.46390605e-01 5.12683451e-01 7.49734104e-01 -4.40899581e-01 -7.52179265e-01 -6.11429989e-01 -2.54961699e-01 7.44811296e-01 6.46792710e-01 5.94555616e-01 -9.07919645e-01 -2.70430177e-01 1.34091914e-01 -3.25367808e-01 -1.03327803e-01 4.48083937e-01 5.42310059e-01 -7.63147399e-02 -3.65460962e-02 1.81550100e-01 1.94019651e+00 6.60169542e-01 2.09300652e-01 8.07746053e-01 6.51753306e-01 7.77440608e-01 1.14282525e+00 7.09351599e-01 3.76054160e-02 2.84962833e-01 9.08820391e-01 -2.10606158e-01 1.12049975e-01 6.15739048e-01 8.13858211e-02 6.26227617e-01 -1.10547699e-01 1.53497785e-01 -1.25735283e+00 9.87635911e-01 -1.83184457e+00 -6.94084585e-01 -2.57381767e-01 1.73562872e+00 -4.88981344e-02 2.70979792e-01 -2.04530247e-02 2.49636427e-01 2.14621574e-01 -8.37142408e-01 -4.95497465e-01 -1.35967934e+00 4.57428902e-01 1.99324369e-01 4.04671043e-01 1.03337005e-01 -7.40022957e-01 4.07448918e-01 6.48423147e+00 -1.69832408e-01 -1.07966816e+00 4.32931364e-01 6.63200170e-02 2.03523915e-02 2.28113070e-01 -2.90488265e-03 -3.88790220e-01 1.99198812e-01 9.34096754e-01 1.52057722e-01 3.24399263e-01 1.42532206e+00 4.50519383e-01 -6.00117110e-02 -9.23318148e-01 6.50096059e-01 -8.91007930e-02 -1.68841875e+00 -6.43025219e-01 -1.63152888e-01 8.27704370e-01 2.45885953e-01 -9.16055590e-03 -4.07671109e-02 5.29460430e-01 -8.36311996e-01 5.89315712e-01 6.52500629e-01 2.08489195e-01 -6.58345997e-01 1.08187759e+00 -1.99162364e-01 -7.35653579e-01 -9.97211754e-01 -3.18392754e-01 -3.80629748e-01 5.95214665e-02 1.86265826e-01 -1.42255068e+00 8.02626312e-01 1.47260749e+00 5.86395636e-02 -6.16533756e-01 1.20423043e+00 3.52083594e-01 4.13600892e-01 -3.44062626e-01 1.14557147e-02 4.23290521e-01 -1.89824685e-01 2.02896878e-01 1.03962409e+00 5.17569602e-01 -6.92229092e-01 2.83025563e-01 9.75722849e-01 1.19539595e+00 -5.15283406e-01 -9.51320052e-01 3.65027636e-02 4.67736125e-01 1.56334877e+00 -5.26592135e-01 6.83153234e-03 -7.23336339e-01 7.84111440e-01 -1.89276606e-01 1.79128036e-01 -5.09507596e-01 -8.38744819e-01 6.69150591e-01 3.30870785e-02 6.72016799e-01 -5.14589369e-01 -7.54060209e-01 -5.25679849e-02 -6.90290378e-03 -8.43226314e-01 1.25788838e-01 -1.33922386e+00 -1.22106016e+00 4.22347963e-01 -2.30166122e-01 -1.30556297e+00 -1.14863060e-01 -1.23349023e+00 -9.35315788e-01 6.89027369e-01 -1.02317441e+00 -1.80144715e+00 -1.05198491e+00 2.83612907e-01 8.12904239e-01 -7.03028381e-01 7.25353241e-01 1.45002902e-01 -5.11675656e-01 2.54020780e-01 2.23512039e-01 -3.22503954e-01 3.53389502e-01 -1.59452188e+00 -2.00811867e-02 7.63501167e-01 -1.95541605e-01 2.93100208e-01 8.99258554e-01 -4.45352823e-01 -1.84837794e+00 -6.96243823e-01 2.93449104e-01 -6.77501857e-01 6.32064939e-01 5.06579690e-02 -7.89388299e-01 7.89412916e-01 9.11915123e-01 -9.61335972e-02 6.55571520e-01 -8.26180950e-02 1.99860215e-01 -8.72030973e-01 -1.31058228e+00 2.11343154e-01 2.76078850e-01 -2.89781597e-02 -2.94745743e-01 7.39649355e-01 6.66166723e-01 -1.13647074e-01 -1.04986191e+00 -3.40038165e-02 2.86824852e-01 -1.34951854e+00 6.48434579e-01 -3.80963027e-01 -4.73375656e-02 -6.81288302e-01 3.48870844e-01 -1.08401346e+00 -5.50673783e-01 -1.02835059e+00 2.30403423e-01 1.45119131e+00 3.15337658e-01 -6.32386148e-01 4.99455512e-01 7.64319837e-01 -8.60918939e-01 -4.74349052e-01 -5.07199943e-01 -8.02947104e-01 -6.30311251e-01 -3.69717717e-01 6.10224009e-01 8.62694860e-01 -8.03590566e-02 1.86607584e-01 2.11491883e-02 7.79424906e-01 4.06733930e-01 7.67986923e-02 8.82242203e-01 -1.65814590e+00 -4.86850619e-01 1.17152765e-01 -6.95696414e-01 2.24778697e-01 -8.51176858e-01 -2.31812838e-02 -9.64631736e-02 -2.06849670e+00 -3.96968812e-01 -3.57244074e-01 -3.21918726e-01 6.50539398e-01 6.97116792e-01 -8.05009305e-02 2.60405988e-01 -2.41925284e-01 -3.74940068e-01 -3.10830414e-01 9.53622699e-01 -1.77894413e-01 -3.68680686e-01 -5.47547750e-02 -6.87671304e-01 6.22927666e-01 8.50876808e-01 -1.70641065e-01 -7.43619919e-01 -9.63696182e-01 3.91777366e-01 -2.43537024e-01 2.35052198e-01 -1.64315724e+00 4.58358645e-01 9.60573182e-02 4.08520460e-01 -5.88282287e-01 9.15623531e-02 -1.42735457e+00 4.54171747e-01 6.21823728e-01 4.23671275e-01 5.79700053e-01 4.69144106e-01 2.61593699e-01 -5.84605243e-03 -6.27512753e-01 4.04495031e-01 -4.75880235e-01 -8.77297103e-01 -3.64886284e-01 -5.50879359e-01 -9.95523930e-01 1.41573668e+00 -7.76050389e-01 -3.68939161e-01 -1.14372753e-01 -7.95371950e-01 2.25182831e-01 5.44089198e-01 4.90095824e-01 3.94874007e-01 -6.35446787e-01 -3.73193800e-01 3.24393898e-01 6.70899525e-02 1.27678514e-01 4.42810655e-01 7.36010373e-01 -1.35163975e+00 5.10379970e-01 -1.05752110e+00 -7.62384474e-01 -1.32903874e+00 8.95672023e-01 4.63699341e-01 1.21766202e-01 -6.84147954e-01 6.81266129e-01 -5.27242839e-01 -3.91812831e-01 1.68475121e-01 -2.39350230e-01 -1.66729316e-01 -1.42761841e-01 3.76135230e-01 6.41896129e-01 4.63003993e-01 3.39833051e-01 -3.38541001e-01 6.05880022e-01 4.52183001e-02 1.12856507e-01 1.73942864e+00 -3.35846990e-01 -7.51769841e-02 5.85221171e-01 4.09516782e-01 -4.47302848e-01 -1.35656762e+00 3.10629666e-01 3.62170577e-01 -3.80603731e-01 1.93967178e-01 -1.33851290e+00 -1.04304111e+00 1.07567167e+00 1.51348174e+00 6.91830277e-01 1.11875653e+00 -3.12512159e-01 2.71442324e-01 6.48878872e-01 1.81524754e-01 -1.52739084e+00 4.33483452e-01 8.77572000e-02 8.90262306e-01 -1.39777708e+00 -5.47529198e-02 -1.55643642e-01 -9.28015053e-01 1.54044998e+00 1.16641343e+00 -4.20950279e-02 5.51749229e-01 7.07807600e-01 7.55728006e-01 -8.43209505e-01 -9.53042746e-01 1.65766135e-01 -3.15830976e-01 1.69428527e+00 2.42238879e-01 -3.23283762e-01 3.83262932e-01 3.28004926e-01 2.82627285e-01 3.21281910e-01 7.53714621e-01 1.27324939e+00 -4.38352883e-01 -5.42625427e-01 -5.20570040e-01 2.41315097e-01 -2.79667407e-01 5.03224552e-01 1.41893830e-02 8.48008752e-01 4.85008210e-01 1.18233836e+00 3.15531462e-01 -3.90561432e-01 4.14423048e-01 -2.08737463e-01 2.80079335e-01 -5.21100223e-01 -1.01356995e+00 -2.50516027e-01 2.38573194e-01 -4.76522982e-01 2.14466587e-01 -6.37503088e-01 -1.13254297e+00 8.22811276e-02 -3.86564910e-01 -2.51054555e-01 1.39111280e+00 8.07929933e-01 9.50255156e-01 9.93121147e-01 5.68049490e-01 -6.94137454e-01 -5.98427832e-01 -1.07426906e+00 -6.65861428e-01 1.02496326e-01 2.65586227e-01 -4.28548545e-01 1.53020144e-01 2.92275429e-01]
[7.261680603027344, 2.031715154647827]
12afad55-e9de-4ae6-9445-ba0a80555dfa
the-limitations-of-cross-language-word
1806.02253
null
http://arxiv.org/abs/1806.02253v1
http://arxiv.org/pdf/1806.02253v1.pdf
The Limitations of Cross-language Word Embeddings Evaluation
The aim of this work is to explore the possible limitations of existing methods of cross-language word embeddings evaluation, addressing the lack of correlation between intrinsic and extrinsic cross-language evaluation methods. To prove this hypothesis, we construct English-Russian datasets for extrinsic and intrinsic evaluation tasks and compare performances of 5 different cross-language models on them. The results say that the scores even on different intrinsic benchmarks do not correlate to each other. We can conclude that the use of human references as ground truth for cross-language word embeddings is not proper unless one does not understand how do native speakers process semantics in their cognition.
['Roman Suvorov', 'Ilya Sochenkov', 'Amir Bakarov']
2018-06-06
the-limitations-of-cross-language-word-1
https://aclanthology.org/S18-2010
https://aclanthology.org/S18-2010.pdf
semeval-2018-6
['embeddings-evaluation']
['natural-language-processing']
[-3.75980943e-01 6.45571873e-02 -2.73206264e-01 -5.17087042e-01 -3.50176364e-01 -6.52949810e-01 1.00206792e+00 6.47592783e-01 -1.25429654e+00 6.69110537e-01 5.52168310e-01 -3.35220397e-01 -1.59324229e-01 -7.07689822e-01 -2.68494338e-01 -6.39880672e-02 5.69127262e-01 5.49139023e-01 2.62286067e-01 -5.58111608e-01 3.41698557e-01 1.79485261e-01 -1.35636044e+00 5.91882057e-02 1.01510084e+00 1.78958610e-01 -1.20074362e-01 5.08335352e-01 -3.71198833e-01 4.04740125e-01 -7.05628157e-01 -9.85222697e-01 -8.06150436e-02 -3.58395338e-01 -9.05294418e-01 -5.66990793e-01 5.48205316e-01 9.32939574e-02 -9.61727574e-02 1.28108883e+00 3.55086088e-01 6.61060661e-02 9.78962302e-01 -8.69003236e-01 -1.43296254e+00 9.85513449e-01 6.55273115e-03 4.43391889e-01 4.07993346e-01 8.45660046e-02 1.22926533e+00 -1.02425146e+00 6.64689302e-01 1.24171412e+00 7.76404381e-01 6.63849890e-01 -1.32655704e+00 -4.71302688e-01 3.24062780e-02 1.28484052e-02 -1.46648991e+00 -2.66287118e-01 5.25028348e-01 -5.83283544e-01 8.93942654e-01 -5.07279672e-02 4.94056046e-01 1.55948067e+00 1.70388781e-02 2.84062892e-01 1.65308583e+00 -7.30766296e-01 -5.59965931e-02 8.55292320e-01 7.85430789e-01 4.45939898e-01 8.54314208e-01 3.52767318e-01 -7.14511991e-01 1.41444638e-01 3.48707765e-01 -5.75531185e-01 -4.14182544e-01 -3.50052714e-01 -1.48193407e+00 9.21913981e-01 8.99852514e-02 1.00504684e+00 8.84370208e-02 -8.85482430e-02 7.13490307e-01 6.01029813e-01 3.15475971e-01 1.01938701e+00 -4.92440909e-01 -3.18526030e-01 -6.95683777e-01 1.66455165e-01 4.96490926e-01 4.30838168e-01 4.74034786e-01 1.24238938e-01 -9.17717367e-02 9.52474356e-01 4.87618774e-01 4.16287482e-01 1.12132823e+00 -3.54466826e-01 1.79427698e-01 5.64077139e-01 -1.10515341e-01 -1.03577483e+00 -3.32830131e-01 -3.74705046e-01 -1.83794320e-01 2.49554515e-01 6.30184412e-01 5.66745214e-02 -4.72889096e-01 2.17722774e+00 -2.20706627e-01 -5.33605032e-02 5.42386353e-01 7.48834312e-01 1.15215003e+00 1.54739588e-01 6.10175014e-01 7.93877319e-02 1.62832069e+00 -7.38130689e-01 -8.94177020e-01 -2.40630448e-01 9.51445878e-01 -9.02716041e-01 1.76832664e+00 4.56025004e-02 -1.02333772e+00 -1.18927169e+00 -1.34345818e+00 -3.00547481e-01 -1.10206628e+00 2.14724496e-01 5.19474685e-01 1.15463996e+00 -8.78973603e-01 4.82063234e-01 -6.19221747e-01 -6.16439939e-01 -2.34746084e-01 6.39683902e-02 -6.11041546e-01 2.04936907e-01 -1.56436932e+00 1.69687951e+00 6.16177082e-01 -2.37859905e-01 -5.13723373e-01 -7.83752024e-01 -8.31745446e-01 -2.46649846e-01 -3.14664692e-01 -5.04077375e-01 9.15978670e-01 -9.41960275e-01 -1.03260088e+00 1.68661249e+00 1.73824832e-01 -2.28450760e-01 3.99977386e-01 -3.64863813e-01 -9.92717028e-01 -4.14754033e-01 1.92183524e-01 5.16581893e-01 2.22684786e-01 -1.35697770e+00 -3.30560207e-01 -4.01753008e-01 8.76969472e-02 6.48516193e-02 -5.75201035e-01 6.49745613e-02 -1.48145678e-02 -8.47660422e-01 -2.53577828e-01 -7.88374841e-01 1.97783992e-01 -4.39933091e-01 3.80073674e-02 -5.18932879e-01 2.63277799e-01 -4.26990300e-01 1.24735916e+00 -2.13878012e+00 1.52214780e-01 -1.49188876e-01 1.20299533e-01 4.58565742e-01 -3.52116346e-01 3.34890068e-01 -3.03970337e-01 4.62566346e-01 4.54920791e-02 -4.11881030e-01 3.47893059e-01 2.83253580e-01 -2.51476973e-01 3.69393140e-01 2.36678407e-01 1.00264978e+00 -9.98343110e-01 -5.13680577e-01 1.96273744e-01 5.14865696e-01 -2.68024355e-01 -2.19657160e-02 2.63063073e-01 1.91508934e-01 -2.28126407e-01 9.20466892e-03 5.50667763e-01 2.72372186e-01 2.45958880e-01 -3.35963726e-01 -1.95004106e-01 7.70877481e-01 -9.28712428e-01 1.68974173e+00 -4.68949944e-01 7.23742366e-01 -5.81545293e-01 -7.14472771e-01 9.49683487e-01 2.80073345e-01 -2.85638005e-01 -1.01747191e+00 2.78367490e-01 5.54713964e-01 3.41657370e-01 -2.42868125e-01 8.91125441e-01 -4.55585659e-01 -2.62197345e-01 5.40547907e-01 6.58915281e-01 -8.89465511e-02 2.55571306e-01 -1.54896351e-02 6.14707112e-01 2.22474933e-01 3.96438092e-01 -8.05376291e-01 8.42812121e-01 -3.34344544e-02 2.45655462e-01 4.53649074e-01 -3.63580972e-01 4.06747371e-01 3.88110429e-01 -3.83457512e-01 -8.68683100e-01 -1.54159045e+00 -4.22905266e-01 1.06533587e+00 1.20623566e-01 -6.63183689e-01 -7.34550238e-01 -7.75340378e-01 -9.64267254e-02 1.18069279e+00 -1.04117715e+00 -4.04136449e-01 -3.11840683e-01 -5.83334088e-01 9.62432146e-01 4.87126917e-01 -2.19991691e-02 -9.54797864e-01 -6.51397288e-01 -1.88650355e-01 8.96945894e-02 -1.18664038e+00 -1.60559565e-01 2.03807026e-01 -6.52349234e-01 -8.67651880e-01 -4.17096823e-01 -8.61488760e-01 2.96815842e-01 1.49822496e-02 1.69017661e+00 2.34347031e-01 1.41935512e-01 4.70799237e-01 -4.69151586e-01 -4.18602020e-01 -7.04525471e-01 2.56792039e-01 4.34611261e-01 -5.07856846e-01 1.19383919e+00 -3.78159821e-01 -1.63594365e-01 2.49347463e-01 -7.34192610e-01 -5.50515354e-01 3.11744928e-01 7.48897016e-01 2.15315804e-01 -5.52361727e-01 5.96031666e-01 -8.95373344e-01 1.18035054e+00 -1.81774423e-01 -3.17011029e-01 3.12346607e-01 -7.44038761e-01 4.17170763e-01 3.57635260e-01 -4.18610543e-01 -7.65069604e-01 -6.05378687e-01 -2.90403277e-01 -6.46204948e-02 -3.18973869e-01 3.89207125e-01 -1.78710185e-03 2.22790167e-01 9.17368174e-01 -5.70739359e-02 -1.36473149e-01 -3.84277344e-01 6.12691283e-01 2.74042398e-01 4.47894424e-01 -7.94214308e-01 7.71395326e-01 3.41262762e-03 -6.70125186e-01 -9.74685788e-01 -1.10714400e+00 -3.24448675e-01 -7.43806303e-01 6.84725642e-02 1.37658095e+00 -1.00593174e+00 -6.24728501e-01 -8.08680337e-03 -1.39669144e+00 -1.31323799e-01 -6.61523700e-01 9.02323902e-01 -3.51641715e-01 2.45082453e-01 -2.90459663e-01 -4.33829218e-01 7.59255737e-02 -1.23994613e+00 6.66778326e-01 -1.22239394e-02 -9.06312883e-01 -1.72992766e+00 6.22811258e-01 2.40800694e-01 4.31794614e-01 -2.77734280e-01 9.20102000e-01 -1.06564510e+00 2.28620350e-01 4.84046564e-02 -2.28347316e-01 6.05282307e-01 1.12151310e-01 1.64895877e-02 -1.12089169e+00 -1.17971726e-01 9.09705758e-02 -6.84089661e-01 7.22702503e-01 -1.33121669e-01 5.42712212e-01 2.80972809e-01 7.74186803e-03 2.59027839e-01 1.71623051e+00 -3.67364317e-01 6.47859275e-01 4.18381572e-01 6.15190566e-01 8.47365618e-01 4.10146326e-01 -1.56567395e-01 5.81517875e-01 7.03944802e-01 -1.15713187e-01 9.13485363e-02 -4.46245402e-01 -4.81875360e-01 5.99735677e-01 1.37094665e+00 -4.80112173e-02 -1.33161604e-01 -9.83830988e-01 8.68306875e-01 -1.25266957e+00 -7.68572748e-01 -5.32720745e-01 2.36438227e+00 8.73379171e-01 2.39629671e-01 -9.22628492e-03 -8.78880322e-02 4.22611147e-01 2.48708427e-01 1.81945428e-01 -8.19910169e-01 -3.61139417e-01 5.73831022e-01 3.43517482e-01 6.77059650e-01 -7.62002110e-01 1.17388439e+00 7.16487026e+00 5.60714424e-01 -8.36204350e-01 4.43991005e-01 1.79506317e-01 3.99957299e-01 -6.99499667e-01 2.80144233e-02 -7.97605872e-01 2.41837472e-01 1.28917396e+00 -8.17411542e-02 -1.22371420e-01 4.90585446e-01 -1.37746602e-01 2.21242368e-01 -1.28075838e+00 8.27162206e-01 3.52273077e-01 -8.50380480e-01 1.67253107e-01 -1.05256766e-01 5.14581323e-01 2.99581081e-01 4.90757599e-02 6.42153084e-01 5.02446592e-01 -1.15257859e+00 6.42749667e-01 5.87768257e-01 6.63739860e-01 -6.57233536e-01 7.92943895e-01 -8.86248276e-02 -7.13222384e-01 5.04113972e-01 -5.34694493e-01 1.12316804e-02 1.54773653e-01 7.60403052e-02 -4.21044856e-01 3.71624440e-01 4.14703250e-01 2.68351793e-01 -1.10925877e+00 3.43500853e-01 -4.96929377e-01 4.88738388e-01 1.67898670e-01 -2.54015088e-01 2.66302288e-01 -3.68764788e-01 2.81089425e-01 1.50820625e+00 2.47307852e-01 -4.90307122e-01 -1.54248759e-01 1.02035630e+00 1.79670879e-03 5.39752483e-01 -8.46129358e-01 -4.20137346e-01 1.62930593e-01 1.01006997e+00 -5.10074914e-01 -2.40543023e-01 -8.99097979e-01 1.04722679e+00 7.07398593e-01 2.69988794e-02 -9.10354376e-01 -3.75033110e-01 1.08297980e+00 8.66227783e-03 -8.11431110e-02 -5.60198009e-01 -5.52079499e-01 -1.27971840e+00 -1.20368399e-01 -7.69693434e-01 3.00278068e-01 -7.94178307e-01 -1.66816819e+00 7.23626018e-01 -1.87460646e-01 -9.41946745e-01 1.13132909e-01 -1.17434323e+00 -3.60743135e-01 1.11106741e+00 -1.48711526e+00 -1.02109563e+00 -1.44640669e-01 4.27303761e-01 2.87321389e-01 -4.50135469e-01 1.29006720e+00 3.84416044e-01 -1.05589695e-01 8.92175496e-01 -3.38503152e-01 3.62476259e-01 1.07840955e+00 -1.43718898e+00 5.18965840e-01 8.41784000e-01 6.72505081e-01 1.09195364e+00 9.55157518e-01 -4.85162348e-01 -8.14138830e-01 -6.61752284e-01 1.39766788e+00 -1.07004404e+00 1.08236074e+00 -1.81415036e-01 -1.15628076e+00 5.42321622e-01 8.87220860e-01 -6.28569443e-03 1.05757356e+00 6.19802475e-01 -8.37711394e-01 1.43821970e-01 -7.10935652e-01 7.27894604e-01 9.24608827e-01 -8.81727517e-01 -1.45590425e+00 6.47018328e-02 9.37979937e-01 2.02633128e-01 -1.04284418e+00 2.01660901e-01 4.60445940e-01 -1.04426384e+00 9.68004167e-01 -1.08905935e+00 5.14575779e-01 -1.77000463e-01 -4.53899503e-01 -1.64526367e+00 -1.45323500e-01 1.47451267e-01 5.87029040e-01 1.52978265e+00 6.90291345e-01 -6.86532557e-01 3.27025682e-01 2.48425454e-01 -1.05848975e-01 -7.47358575e-02 -6.59106731e-01 -8.72144639e-01 7.74286807e-01 -6.80141747e-01 3.52893800e-01 1.54241586e+00 1.47866353e-01 8.31272781e-01 1.63084894e-01 -1.44451652e-02 3.70874971e-01 -4.09832418e-01 6.49574339e-01 -1.47142541e+00 -1.99462235e-01 -7.66199648e-01 -6.46075487e-01 -3.96194190e-01 8.41738760e-01 -1.12827110e+00 -3.91956180e-01 -1.31646955e+00 3.95309031e-02 -4.26280141e-01 -6.50889397e-01 3.21049578e-02 -2.24696696e-01 4.23264056e-01 1.25257969e-01 -1.70619741e-01 -4.90742892e-01 6.29761338e-01 9.86805737e-01 1.10629797e-01 1.29842848e-01 -5.32079458e-01 -8.24563622e-01 8.77632558e-01 7.90387273e-01 -5.09848893e-01 -5.54480076e-01 -8.08298111e-01 3.91086310e-01 -5.91645896e-01 3.50760877e-01 -1.00900280e+00 -1.34880066e-01 2.25345250e-02 1.18242458e-01 -6.04913533e-02 2.52008498e-01 -6.24397337e-01 -3.67562324e-01 4.18065131e-01 -5.24143755e-01 7.81138957e-01 2.27365971e-01 1.59027040e-01 -5.54875910e-01 -6.24676526e-01 8.73522520e-01 -2.34768972e-01 -7.56481290e-01 -1.68526918e-01 -1.73621252e-01 6.35477483e-01 8.58498096e-01 -2.81590760e-01 -3.74538153e-01 1.30136326e-01 -6.58836067e-01 -1.43703431e-01 7.41124690e-01 1.06987667e+00 3.64071727e-01 -1.59303689e+00 -9.55412984e-01 5.97808557e-03 7.76206791e-01 -1.13965094e+00 -1.66918859e-02 6.58191442e-01 -4.99149263e-01 5.67954361e-01 -5.47127843e-01 -2.45772451e-01 -1.06674612e+00 7.52911448e-01 3.49520922e-01 -2.25737154e-01 -1.78988293e-01 7.23610103e-01 2.06818935e-02 -8.52906644e-01 -2.03067049e-01 -3.14637154e-01 -5.17940462e-01 3.47043484e-01 5.16876042e-01 1.02502987e-01 1.08204395e-01 -1.10524452e+00 -3.48472834e-01 5.94796658e-01 -3.09404116e-02 -5.37359834e-01 1.16169703e+00 -1.29318135e-02 -1.88040391e-01 1.16847289e+00 1.26483214e+00 6.24053776e-01 -1.91671208e-01 -4.57302928e-02 3.03460121e-01 -4.02431756e-01 -7.32104406e-02 -6.72166169e-01 -6.70576572e-01 1.10691881e+00 8.28127980e-01 1.15024231e-01 4.71711993e-01 -8.34789127e-02 2.36646578e-01 1.76939800e-01 1.31646529e-01 -1.31277215e+00 6.52636820e-03 6.81373119e-01 7.34374464e-01 -1.29512560e+00 -1.08854324e-01 -5.91017567e-02 -9.58510876e-01 1.03206432e+00 8.48900855e-01 -3.45151573e-01 6.40743077e-01 -5.99412695e-02 3.46786529e-01 -3.17218572e-01 -5.71455657e-01 -5.42830706e-01 3.71753663e-01 7.63409376e-01 1.44985318e+00 2.33098716e-01 -1.07639670e+00 3.80408317e-01 -5.96964955e-01 -4.97476518e-01 5.86723089e-01 3.15663606e-01 -5.94021715e-02 -1.67601848e+00 -1.75732747e-01 -6.80500865e-02 -5.64390481e-01 -1.92075089e-01 -4.65668142e-01 1.20464647e+00 2.38553271e-01 6.58336341e-01 8.54147300e-02 -2.56156236e-01 5.69127619e-01 3.54475647e-01 6.04753613e-01 -7.68225789e-01 -6.96695089e-01 -6.34734035e-01 3.54313940e-01 -2.00666904e-01 -6.28796697e-01 -5.51163077e-01 -9.36713517e-01 -3.43418084e-02 -1.53626263e-01 3.89443934e-01 6.72673762e-01 9.31171596e-01 -1.88303329e-02 6.37587786e-01 -2.00712100e-01 -7.67165348e-02 -6.66244268e-01 -1.16295719e+00 -3.63370776e-01 8.71653199e-01 9.72526670e-02 -9.29818869e-01 -4.50520515e-01 -1.18274987e-01]
[10.752846717834473, 9.596521377563477]
9fef98d8-76c2-468e-b002-5355cab3a649
heart-rate-variability-as-a-predictive
2005.08031
null
https://arxiv.org/abs/2005.08031v3
https://arxiv.org/pdf/2005.08031v3.pdf
Heart Rate Variability as a Predictive Biomarker of Thermal Comfort
Thermal comfort is an assessment of one's satisfaction with the surroundings; yet, most mechanisms that are used to provide thermal comfort are based on approaches that preclude physiological, psychological, and personal psychophysics that are precursors to thermal comfort. This leads to many people feeling either cold or hot in an environment that was supposed to be thermally comfortable to most users. To address this problem, this paper proposes to use heart rate variability (HRV) as an alternative indicator of thermal comfort status. Since HRV is linked to homeostasis, we conjectured that people's thermal comfort could be more accurately estimated based on their heart rate variability (HRV). To test our hypothesis, we analyzed statistical, spectral, and nonlinear HRV indices of 17 human subjects doing light office work in a cold, neutral, and hot environment. The resulting HRV indices were used as inputs to machine learning classification algorithms. We observed that HRV is distinctively different depending on the thermal environment and that it is possible to reliably predict each subject's thermal state (cold, neutral, and hot) with up to 93.7% accuracy. The result of this study suggests that it could be possible to design automatic real-time thermal comfort controllers based on people's HRV.
['Guillaume Lopez', 'Yuta Suzuki', 'Kizito Nkurikiyeyezu']
2020-05-16
null
null
null
null
['heart-rate-variability']
['medical']
[-7.76761919e-02 -1.14899419e-01 1.78644862e-02 -4.88873184e-01 2.70451158e-01 -3.91604900e-01 1.10449456e-01 2.21142352e-01 -3.13561141e-01 7.80629516e-01 8.22202116e-02 -1.91555038e-01 2.17228860e-01 -6.58347905e-01 2.79640734e-01 -6.67735457e-01 1.05443045e-01 -1.65207714e-01 -4.72738594e-01 -3.14741611e-01 2.54283577e-01 4.58013624e-01 -1.61499465e+00 -3.94260436e-02 8.25793207e-01 9.47044909e-01 -4.31360081e-02 7.69564867e-01 4.68824774e-01 3.71646918e-02 -7.05571711e-01 8.04993808e-02 1.06230460e-01 -6.38985813e-01 -4.74770546e-01 -4.08852637e-01 -1.51432410e-01 -5.60050830e-02 2.72053659e-01 3.42200786e-01 5.75959027e-01 6.65642917e-01 6.25328839e-01 -1.20417154e+00 -4.75426316e-01 -2.23325476e-01 1.90400317e-01 8.67758989e-02 6.28306031e-01 4.28445429e-01 2.80784518e-01 -6.43116683e-02 -7.07760174e-03 7.52410293e-01 5.86451709e-01 5.46653450e-01 -1.49020791e+00 -2.94501930e-01 -8.52881074e-02 7.98124671e-02 -1.32342851e+00 -4.99857306e-01 8.17485571e-01 -4.75921780e-01 8.52369905e-01 9.26105797e-01 1.38192570e+00 1.14894903e+00 7.79797792e-01 -2.38971308e-01 1.63889945e+00 -2.98274666e-01 7.17106462e-01 7.59217501e-01 2.46165693e-01 2.62995601e-01 3.44741136e-01 1.56092495e-01 -6.30512461e-02 -2.54663020e-01 4.81366396e-01 -1.89097762e-01 -5.84047377e-01 2.27606058e-01 -6.39229238e-01 4.13982183e-01 3.39555323e-01 7.17074811e-01 -3.33702862e-01 -1.18100278e-01 5.47594130e-01 2.24212319e-01 3.73567402e-01 1.00022876e+00 -5.29076576e-01 -4.37712640e-01 -5.74276030e-01 -1.08941764e-01 1.08769107e+00 2.54087061e-01 4.44628716e-01 -1.37824401e-01 -1.03300303e-01 6.47462010e-01 1.63800716e-01 4.05166239e-01 5.10796785e-01 -1.01195753e+00 -5.45845211e-01 3.75894457e-01 3.17252517e-01 -1.24027932e+00 -7.28403151e-01 -1.73854098e-01 -9.10468280e-01 2.34219193e-01 2.10857660e-01 -2.16393724e-01 -4.81973141e-01 1.60000789e+00 2.54541337e-01 -4.13997203e-01 -1.42789125e-01 1.24314928e+00 3.35619330e-01 6.77301705e-01 2.68644691e-01 -1.03871846e+00 1.47111583e+00 -3.05387855e-01 -1.14515972e+00 -1.32535443e-01 7.40878135e-02 -6.00907505e-01 1.28550494e+00 4.30905610e-01 -6.12580717e-01 -9.81497228e-01 -8.85483384e-01 2.01032192e-01 -5.71968734e-01 -3.21724117e-01 4.83622015e-01 1.40108025e+00 -1.10065091e+00 6.94416583e-01 -7.22842634e-01 -8.64604354e-01 -5.43100059e-01 -5.67892268e-02 1.28382593e-02 5.58160722e-01 -1.32114124e+00 1.31932700e+00 3.00184101e-01 7.13076591e-01 1.12630211e-01 -3.40077698e-01 -6.19182765e-01 1.50642602e-03 -1.16173580e-01 -9.86680090e-01 7.87567258e-01 -9.00945187e-01 -1.73435915e+00 6.26347840e-01 -2.76151657e-01 1.93419024e-01 2.05065385e-01 -2.91276753e-01 -6.28396392e-01 8.75339657e-02 -3.93767804e-01 3.91591787e-02 5.79349518e-01 -1.37942612e+00 4.52950537e-01 -4.08939689e-01 -5.14165044e-01 9.41236094e-02 -1.00776829e-01 -3.07171464e-01 3.62743795e-01 6.09785840e-02 1.84115201e-01 -1.09439731e+00 -1.90264434e-01 -3.57733071e-01 -2.39480078e-01 8.54172483e-02 2.91736990e-01 -8.25640321e-01 1.29800546e+00 -1.85143840e+00 -3.73368472e-01 6.33975804e-01 -8.47523436e-02 1.33066773e-01 4.16984409e-01 4.98242140e-01 -1.23327993e-01 3.28178644e-01 7.56133720e-03 1.05942041e-01 1.54378548e-01 2.20324516e-01 -1.05220541e-04 6.65553868e-01 -3.69713485e-01 4.86552626e-01 -6.98703527e-01 -3.91875535e-01 6.82563365e-01 5.36820769e-01 -8.82560313e-02 4.18317735e-01 3.34868282e-01 5.58122993e-01 -1.31652609e-01 6.26914680e-01 4.31269109e-01 5.56903839e-01 4.00411457e-01 -3.91396731e-01 -4.08846945e-01 -2.97960937e-02 -5.20516217e-01 7.81281710e-01 -4.89684492e-01 7.25632370e-01 -2.48840690e-01 -6.20963514e-01 1.28591359e+00 7.18813062e-01 6.16981089e-01 -1.08702838e+00 4.96240139e-01 3.51334177e-02 -1.52237117e-01 -9.18063760e-01 5.93722105e-01 -5.97583711e-01 -7.07500726e-02 2.34004274e-01 -6.95438087e-01 -4.43447143e-01 -3.12553555e-01 -6.24953449e-01 5.12817442e-01 1.37051597e-01 4.73666608e-01 -5.59061408e-01 4.81666118e-01 -5.65331221e-01 4.58967984e-01 3.09239447e-01 -8.36165190e-01 2.01006532e-01 3.78708720e-01 -5.07005095e-01 -6.93745852e-01 -9.11227345e-01 -3.15623969e-01 8.22930992e-01 8.58772397e-02 -1.11296795e-01 -9.20554698e-01 3.51634562e-01 -3.01813483e-01 1.17136919e+00 -5.30596375e-01 -5.25972188e-01 -2.14050546e-01 -7.56947160e-01 1.01834148e-01 1.62909254e-01 2.86551058e-01 -9.88707483e-01 -1.22159290e+00 8.07784721e-02 -6.40275359e-01 -7.89102733e-01 -4.95065190e-02 3.71400028e-01 -9.92509365e-01 -8.42756808e-01 -2.68597335e-01 -1.01223074e-01 5.29789150e-01 1.66438028e-01 9.01872873e-01 5.35707772e-02 -5.16475141e-01 6.48996055e-01 -3.52550834e-01 -3.82846475e-01 -2.68408179e-01 -8.74375552e-02 4.63498890e-01 -3.21257621e-01 1.96857989e-01 -6.70951545e-01 -9.70926881e-01 4.58363295e-01 -5.83956301e-01 -3.54460090e-01 1.37284935e-01 1.02459289e-01 3.83176059e-01 9.71092060e-02 4.84974295e-01 -3.59976649e-01 1.03753841e+00 -3.12780827e-01 3.45740579e-02 1.69411659e-01 -1.01227176e+00 -2.94563413e-01 5.19587100e-01 -2.57399559e-01 -1.05384719e+00 -1.72448158e-01 5.17066289e-03 1.18626237e-01 -6.17719531e-01 1.70161694e-01 -4.26277183e-02 1.04177378e-01 8.50468040e-01 4.90837432e-02 1.99056461e-01 9.23506394e-02 9.03537273e-02 5.44816673e-01 3.97921294e-01 -5.95094144e-01 5.44066370e-01 -1.21533521e-01 1.72792673e-01 -1.36867976e+00 -3.55808467e-01 -4.96777326e-01 -6.96554840e-01 -1.00506639e+00 1.28599143e+00 -5.35921991e-01 -1.54856575e+00 2.00376630e-01 -6.37458861e-01 -4.46058750e-01 2.27962196e-01 4.94262546e-01 -6.93870783e-01 4.14245903e-01 -2.11876094e-01 -1.55082428e+00 -5.69214582e-01 -3.96687359e-01 4.88633066e-01 4.00206715e-01 -1.09540248e+00 -1.16882396e+00 3.92875582e-01 6.73168123e-01 6.77094519e-01 1.00657701e+00 7.67093182e-01 9.04852077e-02 2.36590579e-01 -2.86342204e-01 4.09630477e-01 3.73640329e-01 4.39921618e-01 3.01623911e-01 -1.44469988e+00 -2.66655356e-01 6.49642348e-01 -2.06066504e-01 3.80162537e-01 4.98241395e-01 9.71563041e-01 -3.91933113e-01 -8.38503167e-02 2.51145482e-01 1.67712796e+00 4.44560736e-01 9.62259352e-01 2.05330059e-01 2.25311011e-01 1.01470792e+00 6.36953294e-01 4.59322751e-01 2.10484881e-02 3.48485291e-01 2.62041360e-01 -1.82190314e-01 8.27632666e-01 2.45140940e-01 4.25929785e-01 7.36771703e-01 -7.46687889e-01 -1.59516837e-02 -5.55415154e-01 -1.02478676e-01 -1.28116512e+00 -1.11057532e+00 -3.99510711e-01 2.48029423e+00 8.02279115e-01 2.96501499e-02 2.30422452e-01 1.97774231e-01 5.41591525e-01 1.07494265e-01 -1.97311357e-01 -1.37931347e+00 4.68700469e-01 2.10199296e-01 2.83208072e-01 3.50186974e-01 -7.75829792e-01 1.98226213e-01 7.26444769e+00 -4.39397484e-01 -1.09408164e+00 -3.77396137e-01 9.36107337e-01 -9.62956622e-02 -8.53582099e-02 -1.09773800e-01 9.82593894e-02 4.42907602e-01 1.54109299e+00 -2.08996236e-01 4.97517824e-01 7.96272814e-01 9.30939198e-01 -8.29097092e-01 -1.05634868e+00 6.75293744e-01 -1.26624584e-01 -1.07969671e-01 -8.13140094e-01 4.58554141e-02 8.20354521e-02 -9.76728499e-01 -1.49412621e-02 3.61028314e-01 -7.97307074e-01 -1.03799391e+00 1.94758967e-01 1.10336983e+00 4.08809811e-01 -7.67580867e-01 8.95046949e-01 2.95968086e-01 -1.01206172e+00 1.28056154e-01 -3.16331685e-01 -3.91734451e-01 -3.85499038e-02 8.23948562e-01 -8.87906969e-01 2.72500992e-01 4.42242026e-01 -1.29191205e-01 -3.60859245e-01 6.44321978e-01 1.75185293e-01 4.02787626e-01 -2.29353830e-01 -2.65359432e-01 -3.35347593e-01 -5.13504982e-01 3.53278182e-02 1.01377618e+00 2.32591763e-01 4.75691646e-01 -1.13895126e-01 1.18539691e+00 8.92866731e-01 2.56515592e-01 -6.28545642e-01 2.39958316e-02 3.02363038e-01 1.17850304e+00 -8.06816518e-01 -3.22055705e-02 4.82613826e-03 1.09244049e+00 -4.36555117e-01 4.63264555e-01 -8.79175901e-01 -1.53158516e-01 8.34521651e-01 -7.36187072e-03 -7.86707580e-01 -3.37105066e-01 -8.00286353e-01 -7.33875215e-01 -4.96307500e-02 -3.82964641e-01 -3.63867171e-02 -8.52908909e-01 -9.31198418e-01 3.95316452e-01 4.26266640e-02 -8.93095195e-01 -9.93962493e-03 -2.89173245e-01 -7.30630994e-01 1.27197754e+00 -8.85705411e-01 -3.58176559e-01 -7.30269074e-01 2.58316815e-01 -5.51013695e-03 7.22517133e-01 1.27496111e+00 -1.71199784e-01 -7.21312463e-01 2.82563359e-01 -2.90054291e-01 -5.50971508e-01 8.77632499e-01 -1.27290988e+00 -2.38505587e-01 4.10362273e-01 -9.93427455e-01 9.67256129e-01 1.24954486e+00 -5.52135885e-01 -1.25974953e+00 -6.49150193e-01 8.21867883e-01 -3.24526519e-01 -4.19647992e-02 -1.12040654e-01 -9.40945625e-01 -1.74774583e-02 2.69575059e-01 -5.37641168e-01 1.28772879e+00 3.24628174e-01 6.55347258e-02 -3.59694570e-01 -1.41788864e+00 6.26392066e-01 2.92503744e-01 -5.18762827e-01 -5.88229418e-01 9.59750786e-02 3.97294283e-01 4.47062515e-02 -1.37524891e+00 -1.31382747e-02 1.01103354e+00 -1.37363994e+00 6.71298265e-01 1.65811688e-01 -4.92610633e-02 -5.02757123e-03 4.33581769e-02 -1.21166968e+00 -3.87069404e-01 -4.79788661e-01 3.62722784e-01 9.53380227e-01 7.67273456e-02 -8.82430255e-01 2.55823165e-01 1.58677471e+00 -1.57966942e-01 -5.34566879e-01 -6.18104756e-01 -6.48809969e-01 -3.43614340e-01 -3.31050605e-01 1.87934786e-01 1.03474498e+00 6.40034437e-01 7.27727637e-02 -3.42793494e-01 2.82747094e-02 3.52639973e-01 -8.84572044e-02 5.41131496e-01 -1.35840166e+00 8.32487941e-02 -3.25457633e-01 -1.10400252e-01 1.68594956e-01 -5.47284186e-02 -2.93903083e-01 4.87154901e-01 -1.57154548e+00 -5.26551381e-02 -8.06543678e-02 -5.03727853e-01 3.08849752e-01 -3.35392684e-01 -1.23916209e-01 -1.99977588e-02 -1.05587997e-01 2.81324983e-01 4.22872066e-01 1.12889910e+00 5.75940192e-01 -8.84898782e-01 1.68096751e-01 -6.73063457e-01 2.12484971e-01 1.21625495e+00 2.33528659e-01 -5.65887570e-01 6.92295194e-01 1.32887410e-02 2.99390972e-01 2.70291448e-01 -1.18320906e+00 -3.28908831e-01 -5.86629689e-01 6.99449301e-01 -1.03880182e-01 4.52101946e-01 -1.06236827e+00 6.15196824e-01 8.23607624e-01 -2.94434041e-01 -2.14375943e-01 2.12089196e-01 2.30240583e-01 2.40939215e-01 1.51066244e-01 9.54387307e-01 -2.18849570e-01 -3.87449950e-01 -3.93039078e-01 -7.95353472e-01 -6.48865461e-01 1.13162684e+00 -7.07680881e-01 -4.61086780e-01 -3.42182189e-01 -8.04706156e-01 -2.23822966e-02 7.49335587e-01 2.21764803e-01 5.03365457e-01 -1.06674647e+00 2.79848580e-03 4.64823171e-02 4.86562215e-02 -7.88112998e-01 5.42530417e-01 1.16386056e+00 -6.82950795e-01 5.75919747e-01 -6.37216449e-01 -2.70071894e-01 -1.26194882e+00 8.00406992e-01 5.93517959e-01 4.21599776e-01 -2.95310885e-01 1.81269348e-01 -3.28786582e-01 7.04385564e-02 -1.15475059e-01 -6.01875961e-01 -2.00116605e-01 2.36995652e-01 2.10872725e-01 7.90044010e-01 -1.78283915e-01 -2.84437716e-01 -4.68748957e-01 4.98993605e-01 7.98607111e-01 -5.34826256e-02 5.66347301e-01 -4.42660004e-01 -4.42171156e-01 1.08212936e+00 1.10507238e+00 -2.30734915e-01 -7.34152496e-01 7.07171559e-01 -2.31764570e-01 -4.28361505e-01 -1.56998262e-01 -8.07514548e-01 -4.46277022e-01 5.04860163e-01 1.03934968e+00 6.91574037e-01 1.71759450e+00 -6.06111944e-01 6.73711777e-01 3.28735590e-01 2.23453566e-01 -1.67797184e+00 -4.67354842e-02 -1.41421845e-02 7.87777543e-01 -9.89290774e-01 1.98837876e-01 -3.68050814e-01 -7.19841480e-01 1.32024479e+00 6.37409270e-01 1.91780210e-01 6.63536012e-01 -1.12164170e-01 1.31156802e-01 2.19366327e-01 -7.78761268e-01 -3.78804244e-02 2.24034667e-01 7.32344925e-01 9.41603541e-01 6.27528131e-01 -6.92570448e-01 2.31202647e-01 -4.81698841e-01 -3.02837533e-03 5.64285457e-01 7.48877227e-01 -1.00441301e+00 -5.36918223e-01 -7.45899498e-01 2.46077016e-01 -5.22883013e-02 4.25567895e-01 -4.49969828e-01 6.71659291e-01 2.82715529e-01 1.46300983e+00 -6.73605725e-02 -6.16432846e-01 4.18504000e-01 6.78280115e-01 3.35094869e-01 -2.14059293e-01 -6.03646100e-01 9.99181345e-02 1.35004327e-01 -7.46370316e-01 -4.20807511e-01 -4.08311427e-01 -1.08067286e+00 -6.35811687e-01 1.21235006e-01 1.82609499e-01 9.54731941e-01 7.71535099e-01 -9.94343609e-02 6.31146491e-01 9.43596363e-01 -6.69097900e-01 -4.39728610e-02 -1.00127363e+00 -8.57609332e-01 2.18123928e-01 2.84842014e-01 -2.95266718e-01 -6.13098860e-01 -1.46641266e-02]
[13.74846076965332, 3.021015167236328]
8f434662-0b67-4dbd-9b4a-baf4dde9b68e
learning-state-aware-visual-representations
2209.13583
null
https://arxiv.org/abs/2209.13583v1
https://arxiv.org/pdf/2209.13583v1.pdf
Learning State-Aware Visual Representations from Audible Interactions
We propose a self-supervised algorithm to learn representations from egocentric video data. Recently, significant efforts have been made to capture humans interacting with their own environments as they go about their daily activities. In result, several large egocentric datasets of interaction-rich multi-modal data have emerged. However, learning representations from videos can be challenging. First, given the uncurated nature of long-form continuous videos, learning effective representations require focusing on moments in time when interactions take place. Second, visual representations of daily activities should be sensitive to changes in the state of the environment. However, current successful multi-modal learning frameworks encourage representation invariance over time. To address these challenges, we leverage audio signals to identify moments of likely interactions which are conducive to better learning. We also propose a novel self-supervised objective that learns from audible state changes caused by interactions. We validate these contributions extensively on two large-scale egocentric datasets, EPIC-Kitchens-100 and the recently released Ego4D, and show improvements on several downstream tasks, including action recognition, long-term action anticipation, and object state change classification.
['Abhinav Gupta', 'Unnat Jain', 'Pedro Morgado', 'Himangi Mittal']
2022-09-27
null
null
null
null
['action-anticipation']
['computer-vision']
[ 3.15584809e-01 -2.42161781e-01 -2.49966979e-01 -5.58184266e-01 -3.84566635e-01 -3.60811949e-01 6.57827437e-01 4.86936197e-02 -1.51495457e-01 4.78336722e-01 1.08215487e+00 7.41318524e-01 -1.54010952e-01 -5.50187290e-01 -9.26910639e-01 -2.97185570e-01 -4.94349182e-01 2.14158073e-01 3.12951319e-02 -2.74915516e-01 9.40081328e-02 3.50877792e-01 -1.92870879e+00 6.51654661e-01 2.11157680e-01 7.40963578e-01 4.90591116e-02 9.39853489e-01 6.29430652e-01 1.13829136e+00 -2.31837273e-01 3.69719267e-01 8.57620761e-02 -4.55698997e-01 -6.46284699e-01 3.53699386e-01 4.59825128e-01 -5.53137362e-01 -1.04624856e+00 5.75310767e-01 6.22771084e-01 7.67079473e-01 6.19211376e-01 -1.24924111e+00 -3.08552444e-01 4.10535753e-01 -2.88170725e-01 5.61553478e-01 8.81758749e-01 4.38188881e-01 8.49678218e-01 -3.90636116e-01 7.95713186e-01 1.31494594e+00 3.90337616e-01 5.63687444e-01 -1.12758934e+00 -3.90329272e-01 4.49123532e-01 7.38817215e-01 -8.83580923e-01 -9.27637577e-01 1.10328543e+00 -6.49905920e-01 1.29548490e+00 -2.33353544e-02 8.87414515e-01 1.77673078e+00 1.91739738e-01 1.19076967e+00 4.96268392e-01 -1.69925958e-01 3.32478732e-01 -3.42937082e-01 -3.25532794e-01 3.53071988e-01 -2.61949807e-01 -7.28724673e-02 -1.03465426e+00 1.08915597e-01 5.79451263e-01 3.02411348e-01 -2.37239853e-01 -8.10125232e-01 -1.52588332e+00 4.33735669e-01 3.28853637e-01 1.86312154e-01 -6.49758816e-01 5.27516305e-01 7.75827706e-01 2.14851186e-01 4.72804248e-01 4.26498413e-01 -3.84949595e-01 -9.11482573e-01 -3.85410637e-01 2.62790054e-01 3.31726462e-01 8.04557443e-01 5.38442731e-01 1.83750719e-01 -1.54004410e-01 5.57308555e-01 -3.89151610e-02 3.40307653e-01 7.15803325e-01 -1.19851995e+00 5.06041110e-01 4.79177386e-01 1.04696266e-01 -1.13424659e+00 -6.14860177e-01 -1.76091477e-01 -4.35612977e-01 -2.51985312e-01 1.98386565e-01 -8.79681185e-02 -3.94803971e-01 1.96535397e+00 2.57626444e-01 5.22852540e-01 5.02804853e-02 7.53405094e-01 4.34620380e-01 4.59028333e-01 2.12095439e-01 -8.41766596e-02 1.01609278e+00 -6.79360449e-01 -8.01261127e-01 -4.44837153e-01 7.86092699e-01 -2.22668976e-01 8.22924793e-01 4.08106565e-01 -1.01331794e+00 -8.01607847e-01 -7.92222619e-01 1.95369005e-01 -2.15388700e-01 3.89741710e-03 8.55814397e-01 1.54426634e-01 -6.38080716e-01 7.57440031e-01 -1.23408556e+00 -6.10329747e-01 2.31566578e-01 1.95038810e-01 -7.02845037e-01 7.73297623e-02 -1.11383605e+00 6.38697267e-01 3.72911870e-01 -7.40846694e-02 -1.24471188e+00 -4.74230170e-01 -1.12640142e+00 1.32473027e-02 2.92077333e-01 -4.79820311e-01 1.36727941e+00 -1.11418045e+00 -1.42466664e+00 5.76907754e-01 -1.96006641e-01 -5.77708542e-01 3.36757958e-01 -6.94246233e-01 -5.91341615e-01 4.96601433e-01 9.24752951e-02 7.55730391e-01 7.97561824e-01 -6.71931982e-01 -4.84633356e-01 -4.92770195e-01 3.55084091e-01 5.66032887e-01 -5.62876880e-01 -2.24844128e-01 -1.85219571e-01 -5.59505165e-01 -1.34445289e-02 -1.15181148e+00 -1.57381818e-02 -7.45313540e-02 -1.24387126e-02 -2.61859238e-01 8.85903180e-01 -3.99559587e-01 9.52692270e-01 -2.38482809e+00 4.21496689e-01 -2.80163139e-01 -8.41575414e-02 -5.12392148e-02 -1.88123673e-01 5.42528450e-01 -4.74499255e-01 -4.41305757e-01 4.25174564e-01 -3.02387655e-01 -1.10770114e-01 1.60528362e-01 -3.72671396e-01 5.83517790e-01 1.29606515e-01 8.34565818e-01 -1.33301663e+00 -2.86171854e-01 6.28497541e-01 4.31770235e-01 -9.23412502e-01 3.67095202e-01 -1.58857569e-01 6.96255326e-01 -5.12859881e-01 6.06469274e-01 -1.11133486e-01 -2.01469809e-01 5.40302321e-02 -3.83505464e-01 3.08832601e-02 2.70206213e-01 -9.92815018e-01 2.19708681e+00 -5.28323829e-01 9.46218431e-01 -4.82304215e-01 -1.35202670e+00 4.38396960e-01 4.87913549e-01 1.22943103e+00 -6.34798765e-01 6.00788258e-02 -5.51461399e-01 -3.08248907e-01 -1.05433536e+00 4.93692964e-01 2.11327642e-01 -1.34957731e-01 4.28933769e-01 2.47728080e-01 -3.94396158e-03 2.51148075e-01 3.49657625e-01 1.41763484e+00 6.33194864e-01 3.86299998e-01 3.72232974e-01 2.18835667e-01 -1.29876554e-01 7.02880323e-01 5.88028014e-01 -7.14434206e-01 6.06483042e-01 4.36090380e-01 -6.43800616e-01 -5.93366325e-01 -1.06936181e+00 3.47143859e-01 1.31627095e+00 5.61112724e-02 -5.93165278e-01 -4.26642925e-01 -5.18574834e-01 -2.05252171e-01 7.40018845e-01 -7.51524925e-01 -6.34365618e-01 -5.94174087e-01 -3.53753299e-01 2.77277291e-01 9.16673541e-01 4.32808012e-01 -1.33242881e+00 -8.72137904e-01 3.44654053e-01 -5.68779469e-01 -1.28263426e+00 -3.77983272e-01 7.12708607e-02 -8.15850019e-01 -1.24312997e+00 -3.63569707e-01 -3.28013182e-01 4.80589956e-01 4.36094850e-01 1.03917730e+00 -8.47532868e-01 -5.16406178e-01 1.41113603e+00 -5.03105640e-01 -2.13275164e-01 1.27968132e-01 -3.05336297e-01 6.09943509e-01 2.16674790e-01 5.13111472e-01 -8.70881438e-01 -6.92439318e-01 2.63470024e-01 -5.23342073e-01 1.36818439e-02 2.93715745e-01 5.54385781e-01 4.99449253e-01 -2.17739955e-01 5.84154308e-01 -4.09325004e-01 1.85866341e-01 -7.28867769e-01 8.82458687e-02 2.63929218e-02 6.03790917e-02 -1.03538945e-01 4.08103734e-01 -6.41000867e-01 -1.18083763e+00 4.54267263e-01 2.76042581e-01 -7.07514226e-01 -4.74925220e-01 2.55823612e-01 -1.97268892e-02 4.32572603e-01 8.69644761e-01 2.15763062e-01 -1.16878025e-01 -1.19563721e-01 4.19611335e-01 4.95154321e-01 7.16643929e-01 -5.12892425e-01 4.54815924e-01 7.94226944e-01 -2.09917367e-01 -1.05416107e+00 -8.21362376e-01 -6.49882615e-01 -8.03450823e-01 -7.36121416e-01 9.16289032e-01 -1.37315381e+00 -8.45218062e-01 4.23955530e-01 -8.34903479e-01 -4.16956216e-01 -5.24671912e-01 9.10353363e-01 -1.32255399e+00 4.62953687e-01 -2.36156493e-01 -6.54348314e-01 1.06541969e-01 -7.43541062e-01 1.05477262e+00 1.35156184e-01 -7.35821307e-01 -9.02864575e-01 4.79410738e-01 4.54540431e-01 7.29517713e-02 5.03795028e-01 3.46739858e-01 -2.70746350e-01 -3.65718812e-01 -2.94013441e-01 3.31594080e-01 2.16839224e-01 5.63867986e-01 -2.19997123e-01 -1.01106882e+00 -4.06772584e-01 -2.66917855e-01 -7.40344822e-01 6.68058813e-01 5.90533078e-01 1.40360892e+00 -1.28543586e-01 -3.93159389e-01 6.18823111e-01 7.23041534e-01 1.68526769e-01 4.40756172e-01 2.72273093e-01 5.37393928e-01 6.79607391e-01 8.47526848e-01 1.01729929e+00 5.18464506e-01 7.96080947e-01 5.88416338e-01 4.39699054e-01 -1.62877105e-02 -4.21457738e-01 7.64433742e-01 5.54556906e-01 -3.16759288e-01 -1.82443127e-01 -6.12698913e-01 7.63889074e-01 -2.05818415e+00 -1.60265589e+00 4.44352716e-01 1.89594460e+00 3.54870319e-01 1.10669084e-01 1.75712287e-01 -5.40052392e-02 3.56336832e-01 5.74051380e-01 -1.06788135e+00 -3.03703882e-02 6.51093246e-03 -4.03316140e-01 -1.17417444e-02 -4.32894826e-02 -1.58252871e+00 8.31050277e-01 6.47804356e+00 -5.76589676e-03 -1.06768167e+00 -1.19551718e-01 2.86037952e-01 -7.57342398e-01 1.90539584e-01 -2.97069728e-01 -3.56681585e-01 3.24007422e-01 1.00886524e+00 -1.43562406e-01 5.06888032e-01 1.14452577e+00 6.81222737e-01 -1.11930236e-01 -1.58369577e+00 1.35853493e+00 3.13678920e-01 -1.00976133e+00 -1.95038170e-01 -2.24733040e-01 6.81751609e-01 3.15539628e-01 1.07329778e-01 5.36148787e-01 1.82791471e-01 -6.19113147e-01 5.32378137e-01 7.82298505e-01 5.18499374e-01 -6.19760990e-01 5.35922498e-02 2.97908604e-01 -1.36469400e+00 -4.32743847e-01 -1.08295888e-01 -3.85036349e-01 2.93657482e-01 1.62811309e-01 -6.45724356e-01 1.54088318e-01 8.91494870e-01 1.62469780e+00 -5.29543340e-01 6.55106604e-01 -1.41675025e-01 4.59022075e-01 -1.99453428e-01 3.31161827e-01 7.10227489e-02 1.32540300e-01 7.94820964e-01 9.72899616e-01 2.46729657e-01 2.40768477e-01 2.07897648e-01 3.56592566e-01 2.21559852e-01 -2.90919751e-01 -1.20397496e+00 -3.71850371e-01 1.35104120e-01 9.37684476e-01 -2.80286938e-01 -3.86401922e-01 -4.34532762e-01 1.12230289e+00 3.52141142e-01 4.57164317e-01 -8.73154938e-01 -1.64229900e-01 1.23420978e+00 1.27504067e-03 7.55363628e-02 -4.79634762e-01 4.77976829e-01 -1.58326256e+00 -2.01038457e-02 -9.06729102e-01 5.57126999e-01 -1.02823472e+00 -7.72324085e-01 7.50664324e-02 2.35603794e-01 -1.73022306e+00 -1.01503742e+00 -2.70002007e-01 -5.09016454e-01 1.92164872e-02 -1.13004446e+00 -1.00368941e+00 -5.92791677e-01 8.15820694e-01 1.08320892e+00 -2.52231151e-01 8.26582313e-01 2.26726219e-01 -4.99788970e-01 2.58181781e-01 8.00843313e-02 6.36279434e-02 1.00696301e+00 -1.02964747e+00 3.03675681e-01 6.82554781e-01 2.68190235e-01 5.39783299e-01 8.26542020e-01 -6.02222562e-01 -1.74405003e+00 -1.00178039e+00 4.17972326e-01 -6.51367426e-01 6.04165435e-01 -3.18092048e-01 -4.96816725e-01 1.18878019e+00 -1.42501667e-01 1.60112470e-01 6.97773099e-01 1.75772995e-01 -2.01658726e-01 -2.11002231e-01 -7.80774593e-01 7.15062976e-01 1.47758842e+00 -8.11108112e-01 -7.71571636e-01 6.25286698e-01 3.73650759e-01 -3.33138406e-01 -6.84908748e-01 3.31696212e-01 7.84091711e-01 -9.36291277e-01 1.12230325e+00 -1.02581739e+00 4.38977301e-01 -1.16274655e-01 -2.47834682e-01 -1.69743729e+00 -4.23223108e-01 -7.73774147e-01 -5.32398999e-01 8.88324976e-01 -3.92128229e-01 -2.49873281e-01 8.23741257e-01 5.66931844e-01 -2.06461772e-01 -2.23443553e-01 -8.17950547e-01 -7.13655949e-01 -7.05350518e-01 -4.79505420e-01 2.79296398e-01 7.72037804e-01 4.94345546e-01 6.50790781e-02 -7.76669145e-01 -1.25765204e-02 5.41881979e-01 -1.09788388e-01 1.12232792e+00 -1.09081626e+00 -2.85389274e-01 1.12886308e-02 -9.49812949e-01 -1.22101128e+00 4.71050858e-01 -4.36856598e-01 4.44265082e-02 -1.22415149e+00 1.61983609e-01 1.85915589e-01 -5.73679805e-01 4.64024514e-01 1.93019852e-01 -3.96270417e-02 -6.09613024e-02 5.90668805e-02 -1.06540835e+00 9.18955386e-01 9.55529511e-01 -3.37576658e-01 -2.83605695e-01 3.04487925e-02 -2.92350024e-01 9.37076211e-01 6.64796829e-01 -1.14138156e-01 -7.97549367e-01 -4.69632536e-01 2.86826193e-01 8.13359916e-02 3.29776078e-01 -1.51369512e+00 1.44517571e-01 -3.47041875e-01 4.87095267e-01 -6.66249633e-01 1.04197502e+00 -7.05520391e-01 6.91443458e-02 4.43425447e-01 -6.45994902e-01 -6.49419650e-02 7.90548846e-02 1.12741768e+00 -3.14109713e-01 3.58280510e-01 4.45692033e-01 -1.97524264e-01 -1.22993624e+00 2.69022524e-01 -6.31501317e-01 1.94648176e-01 1.23169816e+00 -3.23112279e-01 -1.06193833e-01 -8.39642465e-01 -9.64902043e-01 2.99985617e-01 2.63408870e-01 9.83808339e-01 5.73350251e-01 -1.32153308e+00 -3.11906576e-01 2.02181786e-01 5.00458002e-01 -3.68007869e-01 7.44810939e-01 7.53433049e-01 -1.44375935e-01 4.75134850e-01 -6.94139123e-01 -7.10917890e-01 -1.28276253e+00 4.56720084e-01 2.35169753e-01 1.89614668e-01 -8.35156679e-01 6.17718875e-01 3.69198322e-01 -1.06549278e-01 3.34923297e-01 -3.64376217e-01 -5.60208321e-01 3.04273635e-01 6.33777082e-01 6.34672165e-01 -2.62653679e-01 -7.45005488e-01 -3.89892280e-01 3.77267122e-01 1.55279180e-02 7.71586671e-02 1.57934701e+00 -2.41101667e-01 4.42585319e-01 8.25500548e-01 1.11679196e+00 -5.83766103e-01 -1.86996210e+00 -2.76553512e-01 -2.79070228e-01 -6.24954700e-01 4.89724893e-03 -2.77479649e-01 -8.28022838e-01 9.24327850e-01 7.30315626e-01 -2.46878579e-01 1.03226149e+00 -5.09081222e-02 7.03598261e-01 8.58797908e-01 4.56361920e-01 -1.39927375e+00 8.32358301e-01 6.30392432e-01 8.81620467e-01 -1.36657715e+00 4.74381596e-02 1.39226452e-01 -8.80649924e-01 1.00247347e+00 7.98460007e-01 -6.25274032e-02 5.56791127e-01 -3.88573319e-01 -2.89969087e-01 -2.42911264e-01 -9.29663897e-01 -1.63305685e-01 1.59829453e-01 7.89275348e-01 3.12024087e-01 3.07941604e-02 4.88524705e-01 1.67092502e-01 3.56114213e-03 6.02989737e-03 5.41428864e-01 1.08272278e+00 -2.76507139e-01 -5.02750695e-01 -9.86574963e-02 3.17053109e-01 -7.11474121e-02 5.82671106e-01 -2.69684702e-01 4.59738553e-01 -1.21323064e-01 9.93566811e-01 3.26373518e-01 -4.52023327e-01 4.92142856e-01 1.92825571e-01 6.13419294e-01 -7.32177079e-01 -1.69844329e-01 -2.41989002e-01 1.38961121e-01 -1.26361537e+00 -6.23940170e-01 -1.12095439e+00 -9.93220568e-01 -2.97971945e-02 2.08301723e-01 -1.92993179e-01 4.97849286e-01 9.07397687e-01 6.29961550e-01 7.65906215e-01 6.38093591e-01 -1.43467748e+00 -4.53131288e-01 -9.05827284e-01 -4.89221096e-01 7.63082683e-01 4.55133170e-01 -1.05113316e+00 -3.36000741e-01 3.52438390e-01]
[8.316567420959473, 0.5888233780860901]
7a794f08-bd3c-49cb-b437-56bcb232dbd3
deep-learning-inversion-a-next-generation
1902.06267
null
http://arxiv.org/abs/1902.06267v1
http://arxiv.org/pdf/1902.06267v1.pdf
Deep-learning inversion: a next generation seismic velocity-model building method
Seismic velocity is one of the most important parameters used in seismic exploration. Accurate velocity models are key prerequisites for reverse-time migration and other high-resolution seismic imaging techniques. Such velocity information has traditionally been derived by tomography or full-waveform inversion (FWI), which are time consuming and computationally expensive, and they rely heavily on human interaction and quality control. We investigate a novel method based on the supervised deep fully convolutional neural network (FCN) for velocity-model building (VMB) directly from raw seismograms. Unlike the conventional inversion method based on physical models, the supervised deep-learning methods are based on big-data training rather than prior-knowledge assumptions. During the training stage, the network establishes a nonlinear projection from the multi-shot seismic data to the corresponding velocity models. During the prediction stage, the trained network can be used to estimate the velocity models from the new input seismic data. One key characteristic of the deep-learning method is that it can automatically extract multi-layer useful features without the need for human-curated activities and initial velocity setup. The data-driven method usually requires more time during the training stage, and actual predictions take less time, with only seconds needed. Therefore, the computational time of geophysical inversions, including real-time inversions, can be dramatically reduced once a good generalized network is built. By using numerical experiments on synthetic models, the promising performances of our proposed method are shown in comparison with conventional FWI even when the input data are in more realistic scenarios. Discussions on the deep-learning methods, training dataset, lack of low frequencies, and advantages and disadvantages of the new method are also provided.
['Jianwei Ma', 'Fangshu Yang']
2019-02-17
null
null
null
null
['seismic-imaging']
['miscellaneous']
[ 3.96238975e-02 -1.31524652e-01 2.55132586e-01 -1.66288212e-01 -8.57908607e-01 -3.39798741e-02 4.35833216e-01 -3.02818239e-01 -6.24745846e-01 7.02290177e-01 -1.39459401e-01 -4.49851036e-01 -4.26672429e-01 -1.10678458e+00 -7.40276158e-01 -1.13228011e+00 -2.74619460e-01 6.01092398e-01 3.87264341e-01 -1.73229620e-01 4.20593202e-01 5.48063219e-01 -1.20237792e+00 -2.82615781e-01 9.32718635e-01 1.11468792e+00 3.55059236e-01 4.54854190e-01 -1.50220320e-01 6.57236457e-01 -2.67862827e-01 2.69225657e-01 -1.85589888e-03 -3.49023879e-01 -7.33154655e-01 -1.65261731e-01 -4.65918124e-01 -5.88971078e-01 -3.49497944e-01 7.70870566e-01 5.93633771e-01 3.20258230e-01 7.60440707e-01 -9.01256084e-01 8.64328593e-02 5.64664781e-01 -6.29369199e-01 5.64005934e-02 -7.40755424e-02 3.25720608e-02 5.33718526e-01 -1.10997188e+00 2.71453530e-01 7.14489520e-01 9.86923695e-01 1.59448236e-01 -1.10363483e+00 -7.46931076e-01 -4.10636485e-01 4.75862592e-01 -1.36329865e+00 -4.44198340e-01 1.19635701e+00 -7.31259763e-01 7.19712615e-01 1.30425110e-01 7.28044808e-01 8.55259955e-01 -1.13956228e-01 5.51863849e-01 7.33404458e-01 -3.02667558e-01 3.25211883e-01 -2.04304516e-01 2.02835468e-03 5.24699330e-01 2.66243309e-01 1.53052285e-01 -4.29306269e-01 -4.56433482e-02 1.08788049e+00 -1.68214604e-01 -6.16221726e-01 5.40080294e-02 -1.15471327e+00 7.36380279e-01 2.49903038e-01 3.63349736e-01 -6.83019757e-01 2.65735209e-01 4.69746649e-01 -3.98144685e-03 5.72859466e-01 5.09334266e-01 -2.47735858e-01 -4.25078213e-01 -1.51662445e+00 2.40425080e-01 6.18103802e-01 2.88393587e-01 1.07612133e+00 7.38699913e-01 5.76219738e-01 6.70377731e-01 2.84395069e-01 8.03366184e-01 6.62092566e-01 -7.95215964e-01 2.82939106e-01 1.49324283e-01 2.02482864e-01 -1.05298638e+00 -6.97309017e-01 -3.43297094e-01 -1.25508249e+00 1.58648178e-01 4.43590075e-01 -3.93978298e-01 -7.65584469e-01 1.16170764e+00 1.17226183e-01 6.74665749e-01 2.05887392e-01 9.41202521e-01 7.51925766e-01 1.03312480e+00 -3.77996892e-01 -2.01087520e-01 8.45424652e-01 -6.06108725e-01 -6.58268452e-01 -3.15691233e-01 6.27051950e-01 -4.02039766e-01 9.09529388e-01 3.27905715e-01 -7.74005175e-01 -5.98156095e-01 -1.14542174e+00 2.13271871e-01 5.04563600e-02 4.53631841e-02 6.90800607e-01 2.64049232e-01 -7.76832581e-01 1.04585683e+00 -1.21910501e+00 3.04251462e-01 7.74374455e-02 1.38609186e-01 -3.21680635e-01 2.81938493e-01 -1.51764703e+00 5.86818218e-01 4.37124312e-01 9.24258888e-01 -1.06805396e+00 -7.90876687e-01 -7.97600269e-01 2.47754231e-01 1.30514115e-01 -1.76795512e-01 1.05990982e+00 -5.52905798e-01 -1.68960285e+00 9.35736522e-02 -1.08713880e-01 -2.17586651e-01 6.67988658e-01 -2.71096081e-01 -2.34870657e-01 3.34452093e-01 -4.62863520e-02 -6.26886487e-02 7.81514108e-01 -1.17942131e+00 -2.47985408e-01 2.13210657e-01 -3.10069680e-01 -3.37578952e-01 -2.40177929e-01 -3.36696267e-01 -2.37190202e-01 -3.23460579e-01 5.52642286e-01 -5.83261371e-01 -3.93747598e-01 -2.67509609e-01 -3.40365648e-01 1.13104261e-01 6.60241067e-01 -1.03493404e+00 1.00842607e+00 -2.02103567e+00 8.90937001e-02 4.80801493e-01 5.99890426e-02 4.17154253e-01 1.69368982e-01 4.78397697e-01 -2.27627113e-01 2.09355640e-04 -6.03439212e-01 -1.29313961e-01 -3.08275670e-01 -6.39965874e-04 -3.26097757e-01 4.36040699e-01 2.79857963e-01 5.05737185e-01 -7.86820114e-01 -4.49384689e-01 2.62342602e-01 4.93553609e-01 -4.51040626e-01 5.32247066e-01 5.17091192e-02 9.98193622e-01 -5.03107846e-01 2.86983997e-01 1.01714838e+00 -2.53787369e-01 4.71089371e-02 -3.95549536e-01 -4.30042207e-01 1.78208724e-01 -1.38525712e+00 1.45245075e+00 -8.02090049e-01 5.58500826e-01 3.55157852e-02 -1.66391683e+00 1.22497094e+00 5.78643382e-01 4.69677150e-01 -6.78674698e-01 -5.81400050e-03 7.47945666e-01 -6.06874339e-02 -1.08365655e+00 2.33797893e-01 -2.57856160e-01 6.90160990e-02 5.72219014e-01 -1.63430959e-01 -2.46595949e-01 -3.68938744e-02 -6.92512617e-02 6.06986701e-01 4.58838135e-01 -7.70824328e-02 -2.27463454e-01 6.20641410e-01 4.17424552e-02 7.70647526e-01 5.47429860e-01 4.96312648e-01 6.70252144e-01 5.29976070e-01 -5.97854853e-01 -1.24063253e+00 -6.51608467e-01 -2.15545148e-01 4.22543198e-01 8.69839415e-02 1.16402045e-01 -4.54491675e-01 7.42031485e-02 -3.24364811e-01 4.07468349e-01 -4.49421465e-01 -2.04226881e-01 -9.59089160e-01 -9.28530276e-01 6.96052015e-01 7.51215637e-01 6.69172823e-01 -1.03824043e+00 -8.29655409e-01 6.20145440e-01 -4.87054557e-01 -1.02631700e+00 3.90808374e-01 8.88043270e-02 -1.21664786e+00 -7.32307255e-01 -8.88551235e-01 -6.19530320e-01 4.58619803e-01 -5.52472845e-02 6.00558877e-01 2.09750906e-01 9.54005122e-02 -3.59116137e-01 -2.80144602e-01 -2.34591931e-01 -2.28022173e-01 4.44992632e-02 -1.06490046e-01 2.86076427e-01 -7.95380473e-02 -9.95614290e-01 -6.61736250e-01 1.30339414e-01 -7.73721993e-01 5.10065913e-01 5.34705400e-01 1.10629594e+00 3.12920719e-01 1.40294477e-01 7.25444078e-01 -7.18298435e-01 2.45926455e-01 -5.17960012e-01 -8.61506343e-01 -6.04516454e-02 -1.72536537e-01 1.60890430e-01 6.58006132e-01 -3.83916438e-01 -1.45853353e+00 -1.95859119e-01 -7.05970466e-01 -2.32582539e-01 4.40308489e-02 1.17905188e+00 1.49824889e-02 -1.27577111e-01 5.50101817e-01 5.49427330e-01 -1.23078600e-01 -7.63416409e-01 -2.28734747e-01 7.26006866e-01 5.46458840e-01 -5.82960904e-01 9.06646550e-01 6.16477668e-01 1.72128588e-01 -1.31074429e+00 -4.72731948e-01 -2.74539411e-01 -9.22558367e-01 -3.82314593e-01 6.89537346e-01 -7.66525269e-01 -6.65439069e-01 9.46045637e-01 -1.22552431e+00 -4.89766657e-01 2.07297653e-02 9.81632710e-01 -2.01107204e-01 5.55288494e-01 -6.41788363e-01 -1.06730139e+00 -4.28994507e-01 -1.23261547e+00 9.03112710e-01 2.42256030e-01 2.23096348e-02 -1.21244121e+00 -3.68689820e-02 5.43043725e-02 5.42262733e-01 5.35388649e-01 9.14386928e-01 -3.68737012e-01 -6.06691658e-01 -4.41533506e-01 -2.09753633e-01 2.32950419e-01 -1.26237988e-01 8.92652869e-02 -1.24121058e+00 3.00447433e-03 3.14546674e-01 -3.63658130e-01 9.65552926e-01 5.56700885e-01 1.14190280e+00 5.29868267e-02 -1.41497925e-01 1.09383094e+00 1.46602798e+00 2.85495609e-01 6.79857135e-01 5.25824308e-01 8.84163797e-01 4.48982239e-01 4.54337269e-01 7.28624165e-01 2.96976008e-02 1.29275799e-01 3.57922852e-01 -3.14537138e-01 3.61174971e-01 -5.46875969e-03 -6.14123009e-02 1.27094865e+00 -8.90998662e-01 1.63823813e-01 -1.30081582e+00 6.74193084e-01 -1.75121653e+00 -1.00921571e+00 -3.85538459e-01 2.08798337e+00 7.49561727e-01 2.68035948e-01 -4.10855055e-01 6.43571496e-01 3.67458731e-01 3.44993740e-01 -3.75517935e-01 1.11353425e-02 1.96596190e-01 4.07817900e-01 3.51210713e-01 5.76684475e-01 -9.36954677e-01 6.28468037e-01 5.52955389e+00 5.99342525e-01 -1.60236704e+00 1.43801033e-01 2.91417062e-01 3.11873555e-01 -3.96755040e-01 -4.96122763e-02 -4.00293767e-01 2.66829431e-01 1.03527868e+00 -5.07261837e-03 1.55835286e-01 6.63015246e-01 6.24714553e-01 -2.96082318e-01 -8.59892905e-01 9.40249860e-01 -4.39253956e-01 -1.68140960e+00 -2.95760602e-01 -7.22904354e-02 4.35829937e-01 -3.74658182e-02 -4.36410040e-01 1.32455602e-01 -2.73712248e-01 -7.44764805e-01 8.27651799e-01 9.44957197e-01 9.60498452e-01 -9.42903876e-01 1.05202055e+00 5.34407735e-01 -1.32105529e+00 9.52185467e-02 -4.74964857e-01 -3.53683531e-01 6.39890969e-01 9.46389079e-01 -5.66408098e-01 8.53317618e-01 6.46001637e-01 6.94818139e-01 1.00276947e-01 1.06888509e+00 -3.66219759e-01 1.09267497e+00 -3.42315048e-01 7.89526477e-02 4.10929441e-01 -4.22887176e-01 3.15325230e-01 1.06746459e+00 7.24189281e-01 1.16333701e-01 4.22356986e-02 7.97872722e-01 3.69521230e-01 -1.62040979e-01 -4.00941402e-01 4.84256335e-02 3.38616014e-01 1.12056482e+00 -6.35152459e-01 -4.35318589e-01 -3.39442581e-01 3.87913465e-01 1.21822571e-02 5.82595527e-01 -9.27271366e-01 -7.10650742e-01 2.67282665e-01 2.29082674e-01 2.27316648e-01 -6.00410342e-01 -3.05338055e-01 -1.06535089e+00 5.06085297e-03 -3.43589514e-01 -6.50208518e-02 -6.63931012e-01 -7.26047635e-01 5.93434930e-01 1.84055835e-01 -1.41225493e+00 -4.53052789e-01 -4.98723179e-01 -9.51524854e-01 1.08434618e+00 -1.70716059e+00 -7.46251404e-01 -7.24295020e-01 3.02930743e-01 3.51283133e-01 7.13966936e-02 7.51157939e-01 5.25873005e-01 -6.59539223e-01 1.01536736e-01 5.51941156e-01 4.75532264e-01 2.79280186e-01 -7.65518010e-01 4.53370899e-01 9.99045253e-01 -3.39281440e-01 1.66699335e-01 8.13346684e-01 -6.00082815e-01 -1.14876580e+00 -7.94019997e-01 7.07545996e-01 4.49872166e-01 7.83531547e-01 -1.91289499e-01 -1.70587289e+00 4.72396046e-01 -1.67277038e-01 1.83786288e-01 4.07623291e-01 -1.93476453e-01 2.15589315e-01 -2.42224783e-01 -5.96141517e-01 2.23808557e-01 5.50343215e-01 -4.23007429e-01 -5.75993419e-01 2.32423827e-01 3.91355246e-01 -3.72065276e-01 -8.16977262e-01 5.49815476e-01 5.73841810e-01 -9.22369540e-01 9.04471278e-01 -2.28208855e-01 6.76831126e-01 -1.83376923e-01 2.47345880e-01 -1.39027154e+00 -3.23036492e-01 -4.38758701e-01 6.12380952e-02 8.93472791e-01 3.68432581e-01 -8.12193215e-01 7.75713086e-01 4.30034190e-01 -3.84015948e-01 -5.70106328e-01 -9.30836737e-01 -8.39199245e-01 1.31701659e-02 -7.77306318e-01 7.23845780e-01 9.67477143e-01 -1.33429557e-01 9.78327543e-03 -5.35681665e-01 5.90195656e-01 7.73121774e-01 1.96421623e-01 6.62158072e-01 -1.38811624e+00 -3.01120073e-01 -1.85606614e-01 -2.02557564e-01 -8.61748636e-01 -5.02238385e-02 -3.61133724e-01 3.34434807e-01 -1.64064968e+00 -3.28370780e-01 -6.31757021e-01 -1.13641955e-01 3.69159073e-01 -1.16628781e-01 4.48166020e-02 -3.65747035e-01 5.23420870e-01 3.14676702e-01 7.83421397e-01 1.30507410e+00 1.33840330e-02 -2.14938030e-01 1.75708264e-01 2.54795730e-01 1.11450291e+00 7.76634216e-01 -5.41973054e-01 -5.08327782e-01 -8.27880204e-01 3.96173298e-01 5.42264760e-01 3.41374904e-01 -1.23502278e+00 3.35502714e-01 -2.92384773e-01 2.38108814e-01 -6.94288075e-01 4.10413206e-01 -6.79065406e-01 3.04047614e-01 6.68213725e-01 1.74640387e-01 -2.62916625e-01 1.05227366e-01 2.62762964e-01 -5.60324252e-01 -6.67403996e-01 6.87490165e-01 -2.40508392e-01 -1.07870114e+00 2.30337590e-01 -4.58223611e-01 -1.37671351e-01 6.48095429e-01 -2.55628943e-01 2.45857462e-01 -3.24846953e-01 -6.58158958e-01 -1.41247168e-01 -1.56731009e-01 -3.24042857e-01 9.28863168e-01 -1.11308753e+00 -8.16205084e-01 5.44301689e-01 -2.12249890e-01 6.61373556e-01 7.00773954e-01 1.11018038e+00 -1.24784434e+00 8.73554125e-02 -1.82809711e-01 -7.89467692e-01 -4.54325914e-01 1.21906802e-01 5.47899783e-01 -2.25224182e-01 -9.51810956e-01 9.44056749e-01 8.47937092e-02 -2.05099702e-01 -9.53880847e-02 -2.99269974e-01 -3.78031164e-01 1.43055990e-01 6.03304625e-01 5.82182229e-01 1.65633425e-01 -4.50199753e-01 -1.97473347e-01 7.14428067e-01 3.28242034e-01 -3.77745807e-01 1.83486319e+00 2.09069341e-01 -6.16334728e-04 6.18989170e-01 1.16030180e+00 -3.77956927e-01 -1.37169671e+00 -3.09190035e-01 9.09976065e-02 -4.61497754e-01 3.32902491e-01 2.94043627e-02 -1.35293949e+00 1.56798518e+00 1.73421994e-01 -1.31702237e-02 1.02881861e+00 -3.81960362e-01 9.65098441e-01 4.86060560e-01 3.58707011e-01 -1.02759433e+00 9.18927863e-02 4.83829051e-01 9.66481864e-01 -1.10356390e+00 1.51443584e-02 -1.29402906e-01 -3.54781628e-01 1.45783651e+00 4.80773121e-01 -1.21253558e-01 9.15321887e-01 3.72638434e-01 2.25244552e-01 -8.55238885e-02 -2.66772062e-01 2.77545840e-01 -1.96926557e-02 3.72521847e-01 3.68319362e-01 -2.16803715e-01 -3.08899879e-02 6.52682722e-01 -1.71813667e-01 1.50874406e-01 6.32684231e-01 1.02673471e+00 -5.32549977e-01 -6.52357638e-01 -5.63607872e-01 2.31096819e-01 -1.10368885e-01 2.93924361e-02 6.58145189e-01 7.20569909e-01 -1.38570309e-01 6.00025356e-01 1.86621726e-01 -3.74069363e-01 2.21626595e-01 -7.03355391e-03 4.09256220e-02 -2.64906198e-01 5.38057648e-02 3.38236332e-01 1.59474283e-01 -2.53665090e-01 -4.32728350e-01 -5.87549865e-01 -1.56563735e+00 -2.87023783e-01 -4.88303602e-01 4.47141200e-01 5.94700336e-01 1.24305558e+00 -1.72814488e-01 7.27512479e-01 6.68530941e-01 -1.63016653e+00 -3.59259427e-01 -1.20562732e+00 -8.09385955e-01 2.21219018e-01 4.21128690e-01 -8.52476954e-01 -5.30618668e-01 1.53033867e-01]
[6.853077411651611, 2.547147750854492]
92c2b9cc-579d-4370-8a5e-7968e3ea2358
improving-universal-sound-separation-using
1911.07951
null
https://arxiv.org/abs/1911.07951v1
https://arxiv.org/pdf/1911.07951v1.pdf
Improving Universal Sound Separation Using Sound Classification
Deep learning approaches have recently achieved impressive performance on both audio source separation and sound classification. Most audio source separation approaches focus only on separating sources belonging to a restricted domain of source classes, such as speech and music. However, recent work has demonstrated the possibility of "universal sound separation", which aims to separate acoustic sources from an open domain, regardless of their class. In this paper, we utilize the semantic information learned by sound classifier networks trained on a vast amount of diverse sounds to improve universal sound separation. In particular, we show that semantic embeddings extracted from a sound classifier can be used to condition a separation network, providing it with useful additional information. This approach is especially useful in an iterative setup, where source estimates from an initial separation stage and their corresponding classifier-derived embeddings are fed to a second separation network. By performing a thorough hyperparameter search consisting of over a thousand experiments, we find that classifier embeddings from clean sources provide nearly one dB of SNR gain, and our best iterative models achieve a significant fraction of this oracle performance, establishing a new state-of-the-art for universal sound separation.
['Scott Wisdom', 'Efthymios Tzinis', 'John R. Hershey', 'Daniel P. W. Ellis', 'Aren Jansen']
2019-11-18
null
null
null
null
['audio-source-separation', 'sound-classification']
['audio', 'audio']
[ 3.36756855e-01 -2.85502285e-01 1.12158405e-02 -5.95128462e-02 -1.46614897e+00 -1.00024641e+00 2.25408003e-01 1.58082813e-01 -6.84238225e-02 4.66098368e-01 4.23260421e-01 -1.24921165e-01 -2.63681114e-01 -2.66452044e-01 -4.28608388e-01 -8.99314761e-01 -1.32284328e-01 2.16254115e-01 1.21766806e-01 5.15321568e-02 -7.66345635e-02 4.27206904e-01 -1.67453074e+00 6.69071227e-02 6.58292770e-01 1.10001731e+00 3.37874927e-02 1.07319939e+00 -1.66181937e-01 4.12328571e-01 -8.44541967e-01 -1.13138005e-01 3.12713653e-01 -7.48689055e-01 -6.48001373e-01 -4.70304489e-01 4.20542151e-01 -1.62272647e-01 -2.75783449e-01 1.13124108e+00 9.88950074e-01 3.13083500e-01 7.04310060e-01 -1.19440675e+00 -3.55929285e-01 9.91369247e-01 -6.54027015e-02 4.14655149e-01 2.78914899e-01 -2.27842897e-01 1.44561327e+00 -8.58555913e-01 -9.43000913e-02 9.08225477e-01 7.66589820e-01 5.26214957e-01 -1.23932803e+00 -9.05362904e-01 -6.53020442e-02 4.84663434e-02 -1.23564470e+00 -9.87611175e-01 1.01715434e+00 -2.15051964e-01 7.47197151e-01 5.04982173e-01 4.15746063e-01 9.84003186e-01 -4.93134439e-01 7.26182520e-01 5.85294068e-01 -6.18642271e-01 4.52766269e-01 3.70108366e-01 3.53882104e-01 2.11874947e-01 1.29175574e-01 -1.35815412e-01 -7.24511623e-01 -3.39139044e-01 4.68050867e-01 -2.94759780e-01 -6.52500987e-01 -2.40933493e-01 -1.03908372e+00 7.21208692e-01 3.70301932e-01 3.96618903e-01 1.91861521e-02 7.39122704e-02 2.33670264e-01 3.88974875e-01 3.07238996e-01 7.65430868e-01 -4.47586983e-01 -3.30889761e-01 -1.08117712e+00 -1.76292639e-02 1.25682175e+00 6.19298398e-01 5.11322379e-01 3.48239362e-01 1.82061881e-01 1.32405913e+00 1.81530669e-01 6.55646205e-01 6.66839480e-01 -9.24737036e-01 3.35408181e-01 -1.73119277e-01 -2.65048873e-02 -8.02557528e-01 -2.88853735e-01 -8.18478584e-01 -5.79039574e-01 2.38384902e-02 4.99580860e-01 -4.21949297e-01 -9.11466479e-01 1.88723922e+00 2.32561961e-01 6.39120221e-01 3.97061735e-01 8.98547173e-01 7.38889992e-01 6.59227192e-01 -4.27755058e-01 -1.08653970e-01 1.16776550e+00 -9.56349909e-01 -4.32053030e-01 -2.81471401e-01 1.23618804e-01 -7.96336055e-01 8.09439361e-01 5.28988242e-01 -9.83698010e-01 -5.23944378e-01 -1.27073038e+00 2.00618699e-01 -3.08501959e-01 -3.46688516e-02 4.25501257e-01 9.48637009e-01 -7.94274688e-01 5.21522105e-01 -6.75142348e-01 -8.57952461e-02 3.84034783e-01 3.52664679e-01 -1.86982125e-01 1.05604850e-01 -1.15794969e+00 2.82116592e-01 -1.72224283e-01 -1.99116301e-02 -1.20882893e+00 -9.54416633e-01 -6.72305465e-01 3.98190498e-01 1.09116063e-01 -4.62643474e-01 1.35342002e+00 -9.02099907e-01 -1.56578481e+00 3.39722246e-01 -2.42592469e-01 -5.07565618e-01 1.75667834e-02 -3.97033542e-01 -6.75993621e-01 5.49047053e-01 1.25747189e-01 2.13557005e-01 1.24931586e+00 -1.23999596e+00 -6.72888219e-01 -2.28097945e-01 -8.59158859e-02 1.43249661e-01 -6.66040003e-01 2.90318459e-01 -2.49546453e-01 -7.27088928e-01 2.95159757e-01 -8.94037902e-01 -1.03286151e-02 -3.54761034e-01 -4.84140098e-01 5.92264757e-02 3.68244022e-01 -6.50622666e-01 1.11060584e+00 -2.49131656e+00 2.14597329e-01 3.45155299e-01 2.57526815e-01 3.42575073e-01 -3.18347365e-01 1.44722715e-01 -2.48389348e-01 6.11050203e-02 -3.58397692e-01 -5.14030397e-01 2.40862817e-01 -2.33230695e-01 -6.79536879e-01 2.97835976e-01 1.64734125e-01 3.32022518e-01 -8.34282100e-01 -1.24047883e-01 -1.05829708e-01 5.79653621e-01 -6.74859405e-01 4.00579602e-01 1.39102086e-01 2.42540494e-01 -8.55523869e-02 5.00177085e-01 6.01031482e-01 5.02964742e-02 2.13870071e-02 1.73519813e-02 3.39517653e-01 6.84115827e-01 -1.61893058e+00 1.72949731e+00 -5.99617064e-01 8.04045558e-01 5.46881557e-01 -9.82763886e-01 7.32958496e-01 6.39970362e-01 5.33758759e-01 -7.29654953e-02 1.56525001e-01 5.44109762e-01 1.69422120e-01 -1.77530929e-01 1.85669452e-01 -3.86095941e-01 5.39065525e-02 5.63641608e-01 5.06163776e-01 -3.12270880e-01 -5.49026392e-02 -7.86004774e-03 1.16531539e+00 -4.51153427e-01 -1.10098675e-01 -2.78184563e-02 3.51996481e-01 -4.47566003e-01 3.75327379e-01 9.61657405e-01 -3.80289823e-01 9.74748433e-01 2.06688061e-01 2.37182215e-01 -5.66095054e-01 -1.41710389e+00 -4.10496980e-01 1.24906480e+00 1.23103708e-03 -3.72934490e-01 -9.11173940e-01 -4.39055771e-01 1.83269363e-02 5.41235507e-01 -2.02482224e-01 -4.49596614e-01 -4.66074795e-01 -7.65718997e-01 9.11261082e-01 6.88782334e-01 -5.81239387e-02 -6.54870868e-01 -3.83741647e-01 1.82504728e-01 -1.08120717e-01 -1.02835965e+00 -3.86451185e-01 9.18134153e-01 -5.79900861e-01 -7.87161827e-01 -8.70777607e-01 -9.02301610e-01 1.99477166e-01 5.37098408e-01 8.65204275e-01 -3.44751358e-01 -1.19524978e-01 4.60722595e-01 -3.59607369e-01 -5.10218680e-01 -4.97461319e-01 1.85423866e-01 6.53107584e-01 2.47352317e-01 2.52540648e-01 -1.10370767e+00 -3.56777817e-01 1.92182675e-01 -6.29322171e-01 -6.66672051e-01 2.95101911e-01 5.62682331e-01 1.16100840e-01 4.09885556e-01 1.07899499e+00 -1.83574751e-01 7.94565499e-01 -6.80386662e-01 -1.01249717e-01 -9.01301131e-02 -2.26791531e-01 -3.16969934e-03 8.64610493e-01 -5.63120246e-01 -8.76492977e-01 -1.21375196e-01 -3.83505553e-01 -5.54549277e-01 -3.23759496e-01 2.46854097e-01 -3.71609271e-01 1.68869525e-01 7.53324807e-01 1.20781437e-01 -1.49875119e-01 -8.99177253e-01 4.35646325e-01 1.09969938e+00 7.35943198e-01 -4.07096624e-01 8.41703594e-01 2.34771147e-01 -3.79168093e-01 -9.32563484e-01 -9.34100032e-01 -7.30879784e-01 -5.46855509e-01 2.16398820e-01 6.25962913e-01 -9.25905168e-01 -3.26759905e-01 3.94973606e-01 -9.00214255e-01 -1.54025897e-01 -4.67623621e-01 8.57086658e-01 -2.89327562e-01 6.05697110e-02 -3.91846925e-01 -9.79385734e-01 -7.69752115e-02 -9.24318433e-01 9.79404151e-01 3.08144420e-01 -1.72829017e-01 -9.62707222e-01 3.55710298e-01 1.41452551e-01 3.49609107e-01 -4.60169852e-01 6.66859925e-01 -1.36595571e+00 -1.77018598e-01 -2.45139197e-01 8.05598646e-02 8.47771645e-01 5.17072201e-01 -3.11240464e-01 -1.66944158e+00 -1.83207721e-01 3.33777755e-01 -3.13162237e-01 1.14154828e+00 3.78988326e-01 8.91438484e-01 -4.40133624e-02 -2.03999117e-01 8.19102705e-01 1.05185390e+00 2.55256593e-01 1.81278035e-01 -1.39499798e-01 6.96579516e-01 2.14332417e-01 -4.87867929e-02 1.66489124e-01 -1.62496492e-01 5.00848353e-01 1.21973738e-01 -5.14080599e-02 -4.73499030e-01 -2.61797577e-01 3.60653847e-01 1.04520535e+00 4.28466886e-01 -1.83537096e-01 -7.38204956e-01 7.36838698e-01 -1.23436487e+00 -8.21066082e-01 3.81651968e-01 2.39016771e+00 1.15218985e+00 1.75248772e-01 2.12169096e-01 8.54468465e-01 6.27044857e-01 2.56384999e-01 -4.70298618e-01 -2.19390228e-01 1.97863691e-02 5.70450068e-01 1.84713498e-01 6.34036243e-01 -1.27205932e+00 5.78109145e-01 7.20286465e+00 9.71936226e-01 -1.18817866e+00 4.82482575e-02 5.66332154e-02 -3.73966873e-01 -3.52708012e-01 -1.93409041e-01 -6.31090224e-01 5.38182318e-01 1.27498221e+00 2.18619164e-02 6.99011803e-01 6.67006612e-01 -2.91504562e-01 6.94767684e-02 -1.36436880e+00 1.16122735e+00 3.14300001e-01 -9.81166422e-01 -1.44445851e-01 -2.73071945e-01 4.73492861e-01 5.76565526e-02 1.33387953e-01 2.11962014e-01 2.14078292e-01 -1.03009796e+00 6.72224164e-01 1.90468818e-01 6.81568146e-01 -8.26814830e-01 3.59195292e-01 2.28590563e-01 -1.11709535e+00 -3.81393373e-01 -3.30159873e-01 4.62782420e-02 5.71263954e-02 7.93188751e-01 -8.35880280e-01 5.43534577e-01 6.83529854e-01 5.70868492e-01 -3.49627405e-01 1.15373611e+00 -1.24996580e-01 1.26649308e+00 -6.78614199e-01 1.22424588e-01 -9.69119594e-02 -3.86975072e-02 9.38418865e-01 1.42697012e+00 2.95058101e-01 -1.30603790e-01 -7.78459460e-02 6.77807271e-01 -2.40712374e-01 -6.96860626e-02 -4.49695826e-01 -1.57437712e-01 6.88782871e-01 1.04108918e+00 -6.26510084e-01 -2.49106929e-01 -1.61294565e-01 7.54945874e-01 8.58342499e-02 4.69097227e-01 -8.84040415e-01 -9.77678716e-01 1.16154182e+00 -3.09752047e-01 5.54869592e-01 -1.61496475e-01 -2.21599743e-01 -1.22457016e+00 -4.15052138e-02 -9.09856498e-01 1.41428739e-01 -5.34924209e-01 -1.15046334e+00 5.99578857e-01 -2.70858556e-01 -1.28092933e+00 -2.10037306e-01 -5.34424245e-01 -6.62002504e-01 8.06612849e-01 -1.42599952e+00 -5.90528429e-01 -1.83086228e-02 4.95910436e-01 4.40621525e-01 -4.41783369e-01 9.81853127e-01 5.57180524e-01 -5.71346223e-01 8.47023964e-01 5.08724809e-01 3.04132015e-01 8.11341822e-01 -1.40169406e+00 1.28801957e-01 8.46916378e-01 8.86296272e-01 5.49530387e-01 6.94910824e-01 -4.02220525e-02 -1.38582551e+00 -8.10887992e-01 5.02174079e-01 -6.73877597e-01 7.57054210e-01 -5.63422740e-01 -8.75420690e-01 3.84742796e-01 7.62734562e-02 1.21631265e-01 1.13306177e+00 3.51694375e-01 -6.48966610e-01 -5.40298402e-01 -7.10667491e-01 3.12792152e-01 9.89819646e-01 -9.48557436e-01 -8.98677945e-01 1.03079006e-01 9.43950355e-01 -1.64144129e-01 -5.14757514e-01 4.62709405e-02 5.76503336e-01 -8.28309059e-01 1.24838793e+00 -8.26638222e-01 2.29063749e-01 -1.65141821e-01 -5.00509083e-01 -1.68042731e+00 -1.71723649e-01 -9.56704676e-01 -2.28504077e-01 1.61635375e+00 5.20448804e-01 -7.12281168e-01 3.12813371e-01 1.12965368e-01 -2.23660067e-01 -2.93067038e-01 -9.35739934e-01 -9.89882588e-01 2.22823530e-01 -8.82760346e-01 7.29371190e-01 7.20073640e-01 1.69979066e-01 5.47495544e-01 -2.17459172e-01 5.05084634e-01 5.53284168e-01 2.33773276e-01 6.04957461e-01 -1.28904092e+00 -6.34387434e-01 -5.30473650e-01 -3.25805455e-01 -1.34612107e+00 3.85874778e-01 -1.21455204e+00 3.22972357e-01 -1.33358634e+00 -4.46196226e-03 -6.99141383e-01 -9.16141510e-01 2.54957050e-01 -2.76487052e-01 4.31131929e-01 2.08209500e-01 1.09926805e-01 -3.24429035e-01 4.89804596e-01 6.19108021e-01 -2.76396513e-01 -4.16467279e-01 3.53364527e-01 -1.19565606e+00 8.01365376e-01 7.81274438e-01 -6.57945752e-01 -5.24983704e-01 -5.89529693e-01 -8.31391439e-02 -7.32036754e-02 4.19248372e-01 -1.45517671e+00 2.35250711e-01 2.26256058e-01 1.32402271e-01 8.32843129e-03 6.86744690e-01 -8.20503831e-01 -2.19376162e-01 -7.33472481e-02 -5.62216818e-01 -9.67846572e-01 2.72169620e-01 7.12676883e-01 -4.59056824e-01 -5.01865506e-01 6.97610974e-01 4.20264661e-01 -1.06097437e-01 -4.11904119e-02 -2.68488348e-01 4.54025596e-01 4.55096781e-01 -5.33876009e-02 5.14310673e-02 -6.02938712e-01 -8.84704232e-01 -2.23291650e-01 -5.35290316e-02 3.89177084e-01 3.54193836e-01 -1.38144124e+00 -7.21213937e-01 5.50721824e-01 -2.10724935e-01 -1.13874435e-01 -6.91828728e-02 7.60716438e-01 1.03597045e-01 2.58885711e-01 1.44203857e-01 -5.83080947e-01 -1.08375990e+00 4.49670255e-01 5.41819632e-01 3.07843626e-01 -5.07598281e-01 1.35019135e+00 2.96868116e-01 -1.98442176e-01 5.09340465e-01 -5.27407289e-01 5.81545644e-02 2.99172610e-01 7.18832612e-01 5.03015459e-01 2.15464905e-01 -4.49150026e-01 -5.37922025e-01 6.19157851e-01 4.62633789e-01 -4.87127393e-01 1.27287292e+00 2.08763834e-02 7.21901208e-02 6.29891694e-01 1.62847638e+00 8.69019210e-01 -1.14045990e+00 -2.33217821e-01 -3.80894661e-01 -5.50544918e-01 1.16595030e-01 -7.20560372e-01 -1.03946221e+00 1.16282463e+00 5.28110385e-01 7.30503082e-01 1.23613572e+00 2.70867795e-01 8.71895134e-01 3.39556456e-01 8.93389955e-02 -8.75920951e-01 6.91161677e-02 4.48252201e-01 7.19529450e-01 -1.04362559e+00 -5.25299191e-01 -1.23422541e-01 -3.30714613e-01 9.91765380e-01 3.05596441e-02 -1.87000856e-01 1.04515326e+00 6.37178540e-01 2.12171987e-01 1.89795703e-01 -4.24498886e-01 -2.45580837e-01 4.21214998e-01 7.30187058e-01 1.92152590e-01 1.17977656e-01 6.84325516e-01 1.29293954e+00 -5.53020418e-01 -5.24740815e-01 3.05295020e-01 5.84462166e-01 -8.28688741e-01 -9.07816887e-01 -6.14194274e-01 4.28805560e-01 -5.05091846e-01 -3.41327667e-01 -4.14580554e-01 7.25065470e-02 -1.21808767e-01 1.41865194e+00 -1.55637842e-02 -3.13483447e-01 2.55496174e-01 4.42387611e-01 3.08170110e-01 -6.78298295e-01 -3.41903895e-01 3.08472574e-01 1.35398775e-01 -1.92307487e-01 -1.71183184e-01 -5.92016518e-01 -1.30574930e+00 1.90184832e-01 -4.84582633e-01 5.44851780e-01 6.25804901e-01 8.16702366e-01 2.87741035e-01 7.49037087e-01 9.84515846e-01 -1.00655448e+00 -8.93565059e-01 -8.78725350e-01 -8.89455020e-01 1.82534248e-01 1.09844637e+00 -5.40684581e-01 -1.04641795e+00 1.53968081e-01]
[15.357918739318848, 5.47518253326416]
8dfcb46e-e2ed-4192-bc7d-66d3a2d1c73c
a-novel-dataset-and-a-two-stage-mitosis
2301.07627
null
https://arxiv.org/abs/2301.07627v1
https://arxiv.org/pdf/2301.07627v1.pdf
A novel dataset and a two-stage mitosis nuclei detection method based on hybrid anchor branch
Mitosis detection is one of the challenging problems in computational pathology, and mitotic count is an important index of cancer grading for pathologists. However, current counts of mitotic nuclei rely on pathologists looking microscopically at the number of mitotic nuclei in hot spots, which is subjective and time-consuming. In this paper, we propose a two-stage cascaded network, named FoCasNet, for mitosis detection. In the first stage, a detection network named M_det is proposed to detect as many mitoses as possible. In the second stage, a classification network M_class is proposed to refine the results of the first stage. In addition, the attention mechanism, normalization method, and hybrid anchor branch classification subnet are introduced to improve the overall detection performance. Our method achieves the current highest F1-score of 0.888 on the public dataset ICPR 2012. We also evaluated our method on the GZMH dataset released by our research team for the first time and reached the highest F1-score of 0.563, which is also better than multiple classic detection networks widely used at present. It confirmed the effectiveness and generalization of our method. The code will be available at: https://github.com/antifen/mitosis-nuclei-detection.
['Xiaonan Luo', 'Rushi Lan', 'Lingqi Zeng', 'Xipeng Pan', 'Bingbing Li', 'Hao Xu', 'Huadeng Wang']
2023-01-18
null
null
null
null
['mitosis-detection']
['medical']
[-6.78843586e-03 1.15038320e-01 -4.33506489e-01 7.02124387e-02 -8.74984264e-01 -4.53192174e-01 2.80066550e-01 5.43028593e-01 -6.47567809e-01 7.54405081e-01 -6.72949702e-02 -3.79362911e-01 1.67398855e-01 -9.06793177e-01 -1.75448254e-01 -1.17473221e+00 3.31137300e-01 3.23879391e-01 5.33924162e-01 3.61007266e-02 3.28567088e-01 4.72015440e-01 -1.08768034e+00 6.46169707e-02 7.42008448e-01 7.20769882e-01 2.43530512e-01 8.49805832e-01 2.97998786e-02 5.15728533e-01 -4.23847467e-01 -3.53271544e-01 -1.85202897e-01 -2.93670893e-01 -6.73077583e-01 -1.17954426e-01 -3.62209603e-02 -1.35336429e-01 -3.32018733e-01 1.33338845e+00 5.55899799e-01 -3.40765774e-01 7.93901086e-01 -9.74589646e-01 -2.31788561e-01 7.87311018e-01 -9.64582920e-01 5.49282551e-01 -1.31298646e-01 3.82603109e-01 1.04429364e+00 -7.38377392e-01 8.11989546e-01 5.51520169e-01 5.39387763e-01 7.50252604e-01 -7.85716891e-01 -8.14466655e-01 -3.78508121e-01 3.63899678e-01 -1.64834189e+00 -2.77121454e-01 4.65437829e-01 -2.38786504e-01 5.57152689e-01 2.34223753e-01 6.87066615e-01 7.02359617e-01 4.11061496e-01 7.93522596e-01 8.78462672e-01 -2.08782926e-01 9.91782174e-02 1.04590356e-01 1.35789797e-01 6.28657699e-01 5.06597877e-01 -2.83158392e-01 -5.34379967e-02 2.68036544e-01 8.03654790e-01 2.25040212e-01 -3.53419334e-01 2.64477849e-01 -1.28075659e+00 7.28669703e-01 6.01600885e-01 7.38370717e-01 -9.08469558e-02 -7.11274967e-02 4.14773792e-01 -2.17725992e-01 4.05020952e-01 3.19392979e-01 -1.49028316e-01 4.64073643e-02 -8.86295736e-01 -2.04836771e-01 5.02500534e-01 4.10636067e-01 3.63230079e-01 -6.98636830e-01 -3.17067921e-01 5.75725913e-01 2.61021942e-01 1.32818535e-01 6.46469712e-01 -6.07877851e-01 -3.10591199e-02 1.05285501e+00 -1.91178069e-01 -9.09522474e-01 -8.46330464e-01 -8.96144688e-01 -1.45749819e+00 -3.36103365e-02 7.95779467e-01 1.26756668e-01 -8.96158755e-01 1.39601254e+00 4.39532250e-01 9.58320424e-02 -1.23275615e-01 1.05038881e+00 1.10010362e+00 4.12516594e-01 6.68867826e-02 -1.98772848e-01 1.69244087e+00 -9.61907208e-01 -6.33376658e-01 -3.29506001e-03 1.00818241e+00 -7.72542417e-01 6.92444801e-01 2.15585053e-01 -8.40958714e-01 -1.93521827e-01 -1.05044818e+00 -1.74071312e-01 -4.29304302e-01 5.15758097e-01 6.07479453e-01 4.55363244e-01 -1.12893724e+00 2.82152832e-01 -9.18796778e-01 -7.72936285e-01 5.43348730e-01 3.62563998e-01 -2.88480937e-01 1.20994203e-01 -9.01302099e-01 5.95470846e-01 4.51572150e-01 2.12985396e-01 -6.66711509e-01 -5.78163385e-01 -4.26604599e-01 1.86469406e-01 2.70825148e-01 -5.40563107e-01 1.23405397e+00 -2.30000585e-01 -1.08640051e+00 1.16687500e+00 -2.85870910e-01 -1.66334659e-01 4.03217733e-01 5.82310438e-01 -1.40913695e-01 3.29933763e-01 5.08062616e-02 8.82192850e-01 -2.01911014e-02 -7.56353199e-01 -1.11696851e+00 -3.08907688e-01 3.17804143e-02 1.20124005e-01 -4.31087375e-01 -4.28699166e-01 -7.97814965e-01 -3.86542231e-01 1.84492588e-01 -6.33254826e-01 -2.73308694e-01 9.86020416e-02 -5.74422300e-01 -5.19102633e-01 5.25755882e-01 -7.68200994e-01 1.30784738e+00 -2.29582429e+00 1.96032599e-02 4.24242556e-01 5.84136307e-01 3.02406073e-01 9.89548266e-02 -4.07848693e-02 3.71252112e-02 4.05640513e-01 -5.99046871e-02 -3.06824356e-01 -2.42237374e-01 -2.87399948e-01 3.86310875e-01 8.17814887e-01 2.02667147e-01 8.95302951e-01 -1.02933538e+00 -8.50032568e-01 -4.17153165e-02 4.27480131e-01 -3.21016103e-01 -1.25824632e-02 1.54310733e-01 3.60561877e-01 -1.50135472e-01 1.12989485e+00 5.87750554e-01 -8.31519306e-01 2.92414814e-01 -2.97259390e-01 7.08311945e-02 -7.67440498e-02 -9.38739896e-01 1.21415722e+00 1.00912422e-01 6.06692910e-01 1.05994670e-02 -7.93834150e-01 8.19676578e-01 3.68244648e-01 4.09083188e-01 -4.36860472e-01 5.41612387e-01 3.03661168e-01 2.81833023e-01 -2.41516128e-01 3.40598851e-01 9.21264365e-02 8.28550905e-02 1.24900699e-01 -1.52799517e-01 1.09727994e-01 6.84774101e-01 2.87515789e-01 1.41856468e+00 -3.78085762e-01 6.30027950e-01 -2.06665382e-01 8.25146675e-01 7.41490861e-04 9.00055766e-01 3.24835449e-01 -5.40034890e-01 6.25578403e-01 8.94372642e-01 -2.09808901e-01 -8.83566201e-01 -6.40220344e-01 -2.05245212e-01 5.89678168e-01 2.61666238e-01 -3.01732630e-01 -8.03542376e-01 -6.51499331e-01 -2.39531800e-01 9.81245860e-02 -8.57637703e-01 -5.46667166e-02 -2.13766620e-01 -1.08806121e+00 6.78939402e-01 5.60389698e-01 5.98976135e-01 -9.35936272e-01 -2.30882853e-01 9.84456912e-02 -3.57757121e-01 -8.23994756e-01 -5.55940211e-01 1.76719844e-01 -7.41392612e-01 -1.51833582e+00 -9.04350579e-01 -9.42650676e-01 1.06661570e+00 1.23062104e-01 5.55871964e-01 6.60125494e-01 -4.48276460e-01 -4.46907640e-01 -2.74617672e-01 -2.16984242e-01 -3.16960216e-01 5.69197953e-01 -3.59087855e-01 -1.01032667e-01 5.89922369e-01 -2.56160527e-01 -9.39212561e-01 3.09394360e-01 -8.38394821e-01 1.34972110e-01 1.00619245e+00 8.15159559e-01 8.23033392e-01 2.00523958e-01 5.19546449e-01 -9.22519863e-01 1.88444808e-01 -4.93839562e-01 -5.52973807e-01 -1.08545832e-02 -4.05630618e-01 -4.79588628e-01 6.28039718e-01 -3.48470360e-01 -6.65655971e-01 1.40883267e-01 -3.80940139e-01 1.44916940e-02 -9.68394727e-02 5.17408669e-01 -1.03898913e-01 -1.16405025e-01 4.63080764e-01 1.23341419e-01 7.20740259e-02 -6.89690486e-02 -3.74231547e-01 7.27539361e-01 7.45649576e-01 2.38444343e-01 5.39599836e-01 5.01811981e-01 3.01623404e-01 -5.94946325e-01 -8.27887475e-01 -8.91360998e-01 -2.25555062e-01 -2.51486272e-01 8.05847406e-01 -7.42326617e-01 -9.98633683e-01 8.30736756e-01 -8.76183689e-01 -1.53799355e-01 4.91755493e-02 4.03955251e-01 -5.16928770e-02 2.76485503e-01 -1.07505488e+00 -4.28832889e-01 -6.06417954e-01 -9.64618862e-01 8.71056736e-01 8.02452266e-01 -1.43177554e-01 -8.51926982e-01 4.38743131e-03 4.51445997e-01 3.34679842e-01 3.34704310e-01 7.73715317e-01 -7.12482810e-01 -4.58627969e-01 -3.57228667e-01 -3.94942611e-01 -8.79304633e-02 2.13856235e-01 4.88834441e-01 -9.36729431e-01 -4.26498264e-01 -4.98815835e-01 5.84122688e-02 1.05654550e+00 4.37957585e-01 1.31763065e+00 6.90078586e-02 -9.21543837e-01 6.27724290e-01 1.37380767e+00 2.14813516e-01 7.56371975e-01 5.64240992e-01 3.39158148e-01 2.61381477e-01 4.99873400e-01 1.41749218e-01 4.37916368e-01 8.23045149e-02 5.21091342e-01 -4.96421307e-01 -2.30543703e-01 -2.46018376e-02 -1.31221116e-01 7.67042279e-01 -9.85256210e-03 -5.48868597e-01 -1.20322478e+00 6.85796022e-01 -1.67453253e+00 -8.32415223e-01 -2.07773402e-01 1.87616241e+00 8.61846387e-01 3.74198049e-01 2.74343342e-02 5.44866860e-01 1.03246975e+00 -2.49689892e-01 -5.86347461e-01 8.97157714e-02 -1.30747750e-01 7.82117397e-02 3.64789486e-01 3.02112132e-01 -1.12780023e+00 6.54553533e-01 5.21667814e+00 1.09412384e+00 -1.08945847e+00 1.42690867e-01 1.16341031e+00 6.84740692e-02 1.78927869e-01 -1.54038563e-01 -1.13921678e+00 5.84690452e-01 5.01305163e-01 -2.47202590e-01 -1.95808873e-01 4.12321359e-01 1.17319457e-01 -3.74287307e-01 -8.23889792e-01 6.94054544e-01 -1.81907803e-01 -1.48334849e+00 -1.90720916e-01 3.51522565e-01 4.77705181e-01 -1.75530702e-01 -2.50829697e-01 2.88371414e-01 1.61422770e-02 -8.51038873e-01 -6.34142980e-02 5.14072895e-01 9.37020540e-01 -9.38310146e-01 1.50479114e+00 4.96069044e-01 -1.24686861e+00 1.86860608e-03 -2.93062627e-01 2.22783640e-01 -7.45270699e-02 9.41693604e-01 -1.00455773e+00 2.79818028e-01 5.26025712e-01 5.95379174e-01 -7.25374043e-01 1.62216783e+00 -3.18550438e-01 6.81848824e-01 -4.79811668e-01 -4.33508962e-01 7.30543062e-02 2.48445988e-01 4.54563648e-01 1.37121093e+00 3.92371535e-01 1.55544549e-01 -2.31334027e-02 4.99725103e-01 -3.95566702e-01 1.21542953e-01 -1.35621428e-02 1.03420764e-03 4.74166065e-01 2.00641751e+00 -1.43390858e+00 -2.67765880e-01 3.16832541e-03 3.56694937e-01 3.49906415e-01 7.07018329e-03 -8.02785039e-01 -7.27559566e-01 1.36493787e-01 1.37623653e-01 4.60298471e-02 2.76205331e-01 -2.49017984e-01 -8.71947646e-01 -3.15582305e-01 -5.50619125e-01 6.24478340e-01 -3.42785627e-01 -1.14001536e+00 2.60851413e-01 -5.47526717e-01 -1.10818338e+00 3.38140905e-01 -4.70460922e-01 -8.88576508e-01 5.98186076e-01 -1.44550860e+00 -8.61636996e-01 -5.32392681e-01 1.77088112e-01 3.08235139e-01 1.83803722e-01 6.10844016e-01 4.35562879e-01 -9.52053785e-01 8.67840409e-01 -9.60063562e-02 3.29979748e-01 7.76131868e-01 -1.33667123e+00 8.02999884e-02 8.30571890e-01 -6.13399327e-01 4.71738458e-01 4.17850405e-01 -5.95814407e-01 -9.30756092e-01 -1.10051501e+00 1.04403400e+00 9.37558934e-02 5.70911467e-01 -2.01337755e-01 -9.61302102e-01 3.35934073e-01 3.75166908e-02 -2.71245074e-02 8.28533828e-01 -2.24137723e-01 1.80914938e-01 -1.53382301e-01 -1.28708029e+00 5.34478903e-01 6.08167529e-01 -5.19368052e-02 1.11487759e-02 4.56166536e-01 4.27086473e-01 -6.80309176e-01 -9.99145508e-01 5.99439085e-01 4.55702156e-01 -6.68801904e-01 4.49001878e-01 1.95021197e-01 3.82207632e-01 -6.41187549e-01 2.34006494e-01 -9.83180761e-01 -6.52700186e-01 -2.79749662e-01 -6.41065836e-02 1.27495706e+00 7.14351475e-01 -6.61558688e-01 1.12568665e+00 -1.49863824e-01 -4.25834805e-02 -1.19067156e+00 -8.53175879e-01 -2.51932472e-01 -1.53735960e-02 2.06824929e-01 3.46252322e-01 7.56408453e-01 1.87574387e-01 3.90186071e-01 1.28981456e-01 2.44490534e-01 6.40011966e-01 -2.70269781e-01 6.09870315e-01 -1.09228325e+00 -1.44573018e-01 -8.56063068e-01 -6.16334438e-01 -6.96006358e-01 -2.22477153e-01 -1.01422298e+00 -4.87009101e-02 -1.53274167e+00 7.40647614e-01 -9.85952839e-02 -4.79664207e-01 6.75330698e-01 -4.32792574e-01 6.30856037e-01 -1.81463227e-01 1.97181240e-01 -6.33434474e-01 3.64697725e-02 1.47616172e+00 -2.47738764e-01 -5.39970770e-02 -1.09827541e-01 -9.50358212e-01 8.24680924e-01 1.24454045e+00 -3.37386727e-01 5.95231950e-02 1.75290450e-01 2.42425084e-01 -1.12161994e-01 1.88412473e-01 -1.17497337e+00 7.74365008e-01 -8.17352608e-02 7.38025129e-01 -9.68882501e-01 2.08383501e-01 -3.88982803e-01 3.21968235e-02 7.80468047e-01 -6.28732070e-02 -2.17338681e-01 7.19048679e-02 2.82758951e-01 -8.67510885e-02 -9.86864641e-02 7.72362173e-01 1.55977225e-02 -3.70035321e-01 4.50146019e-01 -4.53024596e-01 -2.76128381e-01 1.16595793e+00 -3.06439966e-01 -9.69066441e-01 2.80210320e-02 -5.15050054e-01 6.10460818e-01 4.87855464e-01 -8.91674906e-02 4.07043874e-01 -1.03832018e+00 -8.03868294e-01 -6.45720512e-02 2.47465879e-01 2.67580926e-01 3.47223014e-01 1.24733770e+00 -6.82226717e-01 2.62080729e-01 -6.49111159e-03 -7.68898845e-01 -1.42522895e+00 2.63999522e-01 4.02083695e-01 -7.73200214e-01 -4.40446198e-01 9.38615918e-01 1.19155698e-01 -2.60184139e-01 2.95303583e-01 -2.35275149e-01 -6.06693506e-01 1.11938864e-02 6.27135277e-01 4.43087816e-01 1.34931147e-01 -3.02481890e-01 -4.46158350e-01 4.34584230e-01 -4.91308987e-01 3.87539417e-01 1.03139997e+00 2.68398877e-02 -4.25204545e-01 1.69461355e-01 9.31833863e-01 -1.81431785e-01 -8.91944468e-01 -4.03711721e-02 -9.11174491e-02 -4.65582386e-02 6.35693669e-02 -8.08401406e-01 -1.39501190e+00 6.22785091e-01 5.32338202e-01 1.51951667e-02 1.35456479e+00 3.90811339e-02 7.57956028e-01 2.26224735e-01 3.60583924e-02 -8.20894539e-01 -7.99850896e-02 4.27328318e-01 3.42773706e-01 -1.07377636e+00 -2.50151195e-02 -5.55622518e-01 -9.89065878e-03 1.01702690e+00 9.17459786e-01 2.41520796e-02 4.01428610e-01 4.67666984e-01 6.09308667e-02 -2.17137530e-01 -8.37317526e-01 -1.00597210e-01 -2.45543402e-02 2.10332543e-01 5.96570075e-01 5.00327162e-02 -7.80919552e-01 6.13260567e-01 -1.77392647e-01 1.62712052e-01 6.13068342e-01 8.09832454e-01 -5.42618990e-01 -8.53127480e-01 -2.44403973e-01 6.78274572e-01 -8.43064010e-01 1.54541731e-01 -4.13262755e-01 8.72789919e-01 1.13259308e-01 7.99652278e-01 1.32609576e-01 -3.83461028e-01 8.22124630e-03 -3.29435587e-01 1.39300972e-01 -4.02591497e-01 -5.54536641e-01 1.64033577e-01 -2.08033890e-01 -2.84483701e-01 -3.44503671e-01 -4.04084593e-01 -1.51213753e+00 -4.81613368e-01 -5.60460031e-01 1.94267839e-01 4.42320943e-01 6.05078042e-01 1.03513643e-01 7.03643680e-01 5.07377863e-01 -5.25926888e-01 -2.04366937e-01 -1.17745447e+00 -6.93007529e-01 7.09818378e-02 2.86930710e-01 -4.53322679e-01 -6.43708766e-01 1.09698018e-02]
[15.053014755249023, -3.0807580947875977]
a696bae4-1871-4ae6-9b08-c9b50fdf1888
action-conditioned-3d-human-motion-synthesis
2104.05670
null
https://arxiv.org/abs/2104.05670v2
https://arxiv.org/pdf/2104.05670v2.pdf
Action-Conditioned 3D Human Motion Synthesis with Transformer VAE
We tackle the problem of action-conditioned generation of realistic and diverse human motion sequences. In contrast to methods that complete, or extend, motion sequences, this task does not require an initial pose or sequence. Here we learn an action-aware latent representation for human motions by training a generative variational autoencoder (VAE). By sampling from this latent space and querying a certain duration through a series of positional encodings, we synthesize variable-length motion sequences conditioned on a categorical action. Specifically, we design a Transformer-based architecture, ACTOR, for encoding and decoding a sequence of parametric SMPL human body models estimated from action recognition datasets. We evaluate our approach on the NTU RGB+D, HumanAct12 and UESTC datasets and show improvements over the state of the art. Furthermore, we present two use cases: improving action recognition through adding our synthesized data to training, and motion denoising. Code and models are available on our project page.
['Gül Varol', 'Michael J. Black', 'Mathis Petrovich']
2021-04-12
null
http://openaccess.thecvf.com//content/ICCV2021/html/Petrovich_Action-Conditioned_3D_Human_Motion_Synthesis_With_Transformer_VAE_ICCV_2021_paper.html
http://openaccess.thecvf.com//content/ICCV2021/papers/Petrovich_Action-Conditioned_3D_Human_Motion_Synthesis_With_Transformer_VAE_ICCV_2021_paper.pdf
iccv-2021-1
['human-action-generation']
['computer-vision']
[ 5.32690227e-01 1.46825835e-01 -1.21182665e-01 -2.98816651e-01 -8.81673276e-01 -4.98427093e-01 8.11160207e-01 -1.09715235e+00 -2.62936860e-01 6.81456447e-01 8.04214716e-01 1.98855445e-01 3.36081386e-01 -5.46551943e-01 -1.00981987e+00 -8.41663301e-01 1.80578470e-01 7.83545792e-01 1.49799973e-01 -4.30493057e-02 -1.34130239e-01 3.59690964e-01 -1.60741901e+00 6.69855177e-01 2.82049477e-01 7.82170892e-01 2.56356508e-01 1.24767315e+00 2.95890540e-01 1.15859747e+00 -5.44113576e-01 -1.74464822e-01 1.82007939e-01 -9.91784871e-01 -9.43773866e-01 5.81889689e-01 3.95918369e-01 -7.70903826e-01 -5.34852147e-01 4.96569961e-01 5.48556387e-01 4.60224271e-01 8.62680197e-01 -1.28536856e+00 -4.57052559e-01 5.04243195e-01 1.20192626e-02 -2.63411134e-01 7.34307528e-01 5.75627148e-01 7.12784111e-01 -5.79760969e-01 1.26514196e+00 1.33410895e+00 6.03615522e-01 1.23159015e+00 -1.33207214e+00 -1.24011308e-01 -1.60253197e-01 2.31162310e-01 -9.54668343e-01 -7.30638742e-01 7.13964164e-01 -6.11984491e-01 1.26033664e+00 1.93317711e-01 1.01472473e+00 2.13771081e+00 4.85992432e-02 1.35005391e+00 4.15477872e-01 -2.01035291e-01 3.70184034e-01 -8.63772690e-01 -6.44689798e-01 5.96362174e-01 -4.67148364e-01 2.13510588e-01 -4.77508783e-01 -1.01269871e-01 1.12587810e+00 -1.70360461e-01 -2.56817728e-01 -6.63280070e-01 -1.50048840e+00 6.60019100e-01 -7.46055618e-02 7.97045380e-02 -8.34396541e-01 8.34334254e-01 3.41877252e-01 -1.10739775e-01 1.15154505e-01 7.83506185e-02 -2.37708613e-01 -7.34687626e-01 -1.28922331e+00 6.26954794e-01 7.73121655e-01 8.09140563e-01 3.78681391e-01 4.41987038e-01 -5.25227368e-01 5.08063555e-01 2.89638817e-01 6.67529404e-01 6.81236207e-01 -1.90039742e+00 3.36513638e-01 -6.22844286e-02 3.42749536e-01 -6.37185335e-01 -1.44597933e-01 6.60308674e-02 -6.70626760e-01 2.98361719e-01 4.30932462e-01 -2.47389957e-01 -1.36632514e+00 1.75363743e+00 2.50059009e-01 5.01656115e-01 1.70910984e-01 1.05939722e+00 4.63215768e-01 8.11576068e-01 3.17857653e-01 -6.47245422e-02 8.67184758e-01 -1.09723079e+00 -8.50686669e-01 -3.22687447e-01 5.13746858e-01 -4.77111906e-01 6.67011201e-01 6.12720668e-01 -1.33215773e+00 -8.45245779e-01 -8.50439012e-01 -3.35148066e-01 2.32550830e-01 2.22217694e-01 4.55353290e-01 4.71729726e-01 -1.07765675e+00 9.87547100e-01 -1.56929541e+00 -2.31342077e-01 2.17470706e-01 1.65110394e-01 -5.14152586e-01 4.90798168e-02 -1.05232716e+00 6.62379026e-01 4.55250442e-01 1.90931752e-01 -1.54225314e+00 -1.99280605e-01 -1.14285064e+00 -2.85709977e-01 1.87659964e-01 -1.20781302e+00 1.54151714e+00 -1.13923454e+00 -1.92790866e+00 6.03593111e-01 -9.07510966e-02 -7.05268085e-01 8.49375904e-01 -4.68348324e-01 -1.30323976e-01 3.64124507e-01 7.68325990e-03 1.20614827e+00 1.15414178e+00 -9.97138023e-01 -3.12699020e-01 2.71263961e-02 -1.32536814e-01 2.84933358e-01 3.16737801e-01 -2.63003945e-01 -7.13690281e-01 -8.32593322e-01 -1.25876755e-01 -1.22424471e+00 -4.50461715e-01 -4.14562784e-02 -3.34169924e-01 1.95505157e-01 8.86011958e-01 -1.16529655e+00 1.03120267e+00 -1.89129817e+00 1.09152400e+00 -1.34074360e-01 -2.45730445e-01 9.90327299e-02 -2.86522180e-01 3.02571237e-01 -1.65165693e-01 -1.90035626e-01 -6.21893346e-01 -8.54394674e-01 3.28617990e-01 8.78043890e-01 -2.13864163e-01 3.31285536e-01 1.78408235e-01 1.21576679e+00 -9.32337165e-01 -5.14752209e-01 5.63074410e-01 6.52273893e-01 -8.16857100e-01 3.78407061e-01 -7.64893591e-01 8.99272740e-01 -3.68668586e-01 5.52304745e-01 2.37762984e-02 -1.32628649e-01 3.11318040e-01 -6.22485951e-02 2.48545572e-01 1.38225527e-02 -1.24700940e+00 2.51890135e+00 -2.38082290e-01 5.08181334e-01 -2.11273983e-01 -8.83313179e-01 5.31117678e-01 6.48550391e-01 8.49393368e-01 -3.23459178e-01 1.57870919e-01 -1.11610189e-01 -3.98187071e-01 -8.17135036e-01 5.97457945e-01 -1.97880208e-01 -1.74790099e-01 3.99648756e-01 3.41461152e-01 -1.25797957e-01 1.35339364e-01 1.01997806e-02 1.31470108e+00 1.22918522e+00 1.99676037e-01 5.03128767e-01 3.49872082e-01 1.18371099e-01 4.33634371e-01 5.54570198e-01 -1.39721081e-01 1.06823719e+00 4.78027791e-01 -3.85228038e-01 -1.38829994e+00 -1.13635981e+00 4.72771913e-01 8.47960174e-01 -4.82925177e-01 -3.37300062e-01 -9.28828299e-01 -4.97455090e-01 -1.79553121e-01 9.26099777e-01 -7.66345143e-01 -8.69471356e-02 -1.08342254e+00 -2.59366542e-01 6.99678481e-01 1.06627536e+00 3.46432805e-01 -1.57485187e+00 -1.10864627e+00 3.71058971e-01 -7.46103168e-01 -1.16753232e+00 -4.69445139e-01 -2.26004615e-01 -8.76781166e-01 -7.99217165e-01 -1.10457039e+00 -4.86870050e-01 1.56622425e-01 -5.24206281e-01 1.29847682e+00 -3.42729777e-01 -2.86080986e-01 7.58125126e-01 -3.69189113e-01 1.52460903e-01 -8.04474652e-01 -7.47170225e-02 2.11527478e-02 2.00946932e-03 -5.44127449e-02 -6.02706671e-01 -7.30182111e-01 -1.03792734e-02 -1.02566826e+00 2.33422786e-01 5.26549101e-01 8.51096690e-01 7.03539848e-01 -5.99971473e-01 -7.88656920e-02 -3.21090639e-01 5.98918982e-02 -3.84668648e-01 -2.32570469e-01 -1.53155243e-02 2.66291529e-01 3.51414859e-01 2.01259017e-01 -6.57299221e-01 -1.23757255e+00 8.88696432e-01 -4.61932391e-01 -9.92442310e-01 -4.31694686e-01 8.93258378e-02 -2.53745675e-01 5.97046852e-01 6.78074777e-01 3.63958180e-01 1.64869085e-01 -4.20269847e-01 8.25827837e-01 2.51835078e-01 1.10297549e+00 -5.86068094e-01 4.54933524e-01 6.42600238e-01 -5.69034554e-02 -7.83765256e-01 -1.96884230e-01 -1.40205950e-01 -8.98098052e-01 -4.31331992e-01 1.62183344e+00 -9.37299728e-01 -5.20425975e-01 7.06732213e-01 -1.26214778e+00 -9.03091431e-01 -5.39323092e-01 5.31546116e-01 -1.48146927e+00 5.72468460e-01 -7.14532495e-01 -8.06585789e-01 -1.08429845e-02 -1.16128302e+00 1.59156466e+00 -3.31012517e-01 -7.30974197e-01 -7.98189938e-01 3.92492324e-01 2.85542995e-01 -4.98296171e-02 8.92610669e-01 3.82065594e-01 -1.06028371e-01 -8.10748219e-01 -4.39991541e-02 6.69180810e-01 4.98535484e-01 -5.57392649e-02 -3.93556282e-02 -6.79070532e-01 -1.60834640e-02 -2.95884222e-01 -6.46606028e-01 9.22748744e-01 7.52930641e-01 1.01586974e+00 -3.29993755e-01 -3.11659306e-01 8.53525221e-01 1.01267552e+00 1.52667001e-01 1.13507259e+00 1.50786236e-01 8.20466399e-01 5.40993690e-01 5.61331749e-01 6.82967663e-01 7.69947544e-02 8.01029384e-01 3.85816127e-01 4.14801210e-01 -2.35403299e-01 -5.62073708e-01 6.87095106e-01 4.57867980e-01 -5.88699520e-01 -3.87384802e-01 -8.44219744e-01 6.19382620e-01 -1.93775535e+00 -1.45434368e+00 6.93805963e-02 1.74868083e+00 7.55829036e-01 -1.92527443e-01 4.37050641e-01 1.20271072e-01 2.73050219e-01 3.70414406e-01 -5.55445552e-01 -3.76194268e-02 -1.35838129e-02 3.91602993e-01 3.15918714e-01 5.96872926e-01 -1.15907133e+00 1.09822845e+00 6.54586744e+00 6.03673577e-01 -9.02916968e-01 3.53477038e-02 3.16139132e-01 -3.16670775e-01 -2.21878484e-01 -9.48744640e-02 -4.17869925e-01 2.80602217e-01 1.09756720e+00 3.76721382e-01 3.79615277e-01 8.27135444e-01 2.83159196e-01 7.93954283e-02 -1.22799444e+00 1.05338132e+00 9.96479541e-02 -1.31247401e+00 6.55954853e-02 -5.83443940e-02 7.55099714e-01 -1.40467539e-01 -2.35921424e-02 3.78801495e-01 5.72438717e-01 -1.17279875e+00 1.16452360e+00 1.03580654e+00 8.03488374e-01 -4.13388371e-01 2.15308771e-01 3.77161562e-01 -9.35986519e-01 7.08021522e-02 5.95387593e-02 -1.19610485e-02 8.32390010e-01 -1.76997781e-01 -4.30541605e-01 5.29032946e-01 5.43913066e-01 9.31994438e-01 -2.92980731e-01 5.28347313e-01 -4.89097446e-01 6.29828930e-01 -2.02935606e-01 3.00452918e-01 2.12696984e-01 -7.34195411e-02 6.38481200e-01 1.06537664e+00 5.01426876e-01 2.56732553e-01 1.56858876e-01 7.51239598e-01 3.35740566e-01 -5.02593398e-01 -6.04564905e-01 -2.41834998e-01 2.77170818e-03 7.24177718e-01 -4.23430920e-01 -6.44467711e-01 2.37835478e-02 1.83594918e+00 -1.00736678e-01 5.51197946e-01 -1.08525288e+00 2.63409644e-01 6.38550997e-01 -1.62671700e-01 7.05765009e-01 -5.58770478e-01 9.70714837e-02 -1.28029001e+00 -1.60066724e-01 -1.07738113e+00 2.50145882e-01 -1.04030073e+00 -6.61769092e-01 4.22986418e-01 3.45074892e-01 -1.38674104e+00 -1.47495544e+00 -4.89918351e-01 -1.27500951e-01 6.21715724e-01 -4.58749354e-01 -1.24419630e+00 -2.35594556e-01 5.58179498e-01 8.02439988e-01 5.64849600e-02 9.20490563e-01 1.19360343e-01 -9.36682373e-02 1.11413663e-02 -2.10101813e-01 2.07477406e-01 3.75378966e-01 -1.20094609e+00 9.56027806e-01 7.08350599e-01 3.42970490e-01 1.82169095e-01 1.07906449e+00 -8.81278455e-01 -1.32726943e+00 -1.04206693e+00 5.38226247e-01 -9.79066610e-01 2.92928994e-01 -2.13452414e-01 -5.54436386e-01 1.24628389e+00 2.45211810e-01 -6.02248274e-02 3.36968571e-01 -5.95125794e-01 1.02540731e-01 6.23045743e-01 -7.98221648e-01 6.46682560e-01 1.62140775e+00 -3.73194814e-01 -7.71068156e-01 9.24412757e-02 4.93243039e-01 -8.46150517e-01 -7.92264938e-01 2.55831897e-01 9.72757459e-01 -8.82877648e-01 1.31979358e+00 -9.00478899e-01 9.01298285e-01 -2.87727892e-01 -3.72548729e-01 -1.26205087e+00 -2.73873985e-01 -6.44837737e-01 -6.17255211e-01 7.12838411e-01 7.43446276e-02 2.16823906e-01 1.30110407e+00 5.31242192e-01 -1.72052562e-01 -3.68617147e-01 -8.80886912e-01 -6.84024513e-01 -1.64145976e-02 -6.43218100e-01 3.42119694e-01 5.64978361e-01 -6.52484477e-01 -1.67918019e-02 -1.07366860e+00 -2.03668829e-02 7.09778309e-01 -1.99723944e-01 1.12376225e+00 -5.30730009e-01 -8.70485127e-01 -7.42987096e-02 -5.33878744e-01 -1.44451940e+00 3.22338134e-01 -4.88452941e-01 4.28320765e-01 -1.71034884e+00 -1.92344978e-01 5.20189166e-01 2.60483176e-01 5.49997807e-01 3.85618992e-02 2.51009464e-01 2.41124928e-01 1.05571777e-01 -6.48539066e-01 9.40718353e-01 1.29549468e+00 -1.64802074e-01 -1.61645353e-01 -1.71229288e-01 3.28123569e-01 6.96824789e-01 3.74926209e-01 -2.97849566e-01 -4.97679234e-01 -5.21984041e-01 -1.64019495e-01 7.67226398e-01 8.50052834e-01 -1.34053218e+00 -6.87298714e-04 -2.18900546e-01 7.83389688e-01 -8.36225510e-01 8.80529642e-01 -5.75396836e-01 8.51948559e-01 6.40358567e-01 -3.52753162e-01 1.02782100e-02 3.28610912e-02 5.80814064e-01 -8.39797929e-02 7.84318447e-02 4.06814039e-01 -4.88819152e-01 -1.15847230e+00 2.48881847e-01 -6.38890743e-01 -8.86595696e-02 7.98109233e-01 -4.37711239e-01 2.42999792e-01 -7.54073858e-01 -1.43157208e+00 -4.82198484e-02 5.54986835e-01 5.27903914e-01 7.66120195e-01 -1.68346775e+00 -6.76415265e-01 8.49488378e-02 -1.45256892e-01 -5.70388809e-02 5.21080792e-01 5.54840326e-01 -7.28817344e-01 2.68597305e-01 -6.21252954e-01 -7.34260619e-01 -1.11182439e+00 4.56705928e-01 4.02900159e-01 -9.84843746e-02 -6.94665074e-01 7.37903714e-01 -4.17698324e-02 -2.70537317e-01 1.06401697e-01 -3.77054274e-01 -2.48869490e-02 -1.81533933e-01 3.12799007e-01 5.48788369e-01 -5.35988331e-01 -9.75291789e-01 -2.07100734e-01 3.69996876e-01 5.95704556e-01 -9.16106701e-01 1.13874662e+00 7.17211440e-02 3.65051180e-01 4.91899908e-01 1.09352195e+00 -4.03620541e-01 -1.97151709e+00 3.02039534e-01 -9.93455127e-02 -3.33682358e-01 -4.60726619e-01 -5.61468780e-01 -8.70315075e-01 7.84183145e-01 4.63475168e-01 -4.44487035e-01 1.02151644e+00 -6.23122528e-02 9.38423574e-01 2.69635230e-01 2.82326192e-01 -1.08869886e+00 4.24593627e-01 5.20651639e-01 1.15096736e+00 -8.28811228e-01 -2.58765727e-01 4.29540426e-02 -9.85155344e-01 9.79931831e-01 4.13418412e-01 -2.24413171e-01 1.90943733e-01 1.27720371e-01 1.38477623e-01 1.79425664e-02 -8.11985552e-01 -3.04270983e-01 3.44371647e-01 8.77753973e-01 2.80335695e-01 5.23574874e-02 -7.01065138e-02 3.36161196e-01 -3.48982424e-01 4.71928954e-01 3.07173997e-01 1.01935863e+00 -1.53925851e-01 -1.29435110e+00 -4.58851516e-01 -3.64271156e-03 -3.01771104e-01 2.36473352e-01 -2.44510055e-01 7.87262738e-01 2.37348065e-01 5.57671905e-01 9.13234279e-02 -4.76832807e-01 2.86968380e-01 4.79470909e-01 8.82082939e-01 -4.45394129e-01 -5.06112613e-02 1.83145523e-01 3.73427570e-01 -1.08889759e+00 -7.23047137e-01 -1.13314080e+00 -1.20455158e+00 1.84225459e-02 4.29534286e-01 -2.54783958e-01 4.05189425e-01 8.54389846e-01 1.29950330e-01 7.33810425e-01 -1.15102373e-01 -1.46984613e+00 -6.20288312e-01 -1.05141366e+00 -2.49688566e-01 8.44157338e-01 3.70976001e-01 -6.48609281e-01 -2.08630487e-02 8.26787353e-01]
[7.304480075836182, -0.1261584311723709]
d81af21e-531b-40a2-b814-d5787c2488b2
schnet-a-continuous-filter-convolutional
1706.08566
null
http://arxiv.org/abs/1706.08566v5
http://arxiv.org/pdf/1706.08566v5.pdf
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
Deep learning has the potential to revolutionize quantum chemistry as it is ideally suited to learn representations for structured data and speed up the exploration of chemical space. While convolutional neural networks have proven to be the first choice for images, audio and video data, the atoms in molecules are not restricted to a grid. Instead, their precise locations contain essential physical information, that would get lost if discretized. Thus, we propose to use continuous-filter convolutional layers to be able to model local correlations without requiring the data to lie on a grid. We apply those layers in SchNet: a novel deep learning architecture modeling quantum interactions in molecules. We obtain a joint model for the total energy and interatomic forces that follows fundamental quantum-chemical principles. This includes rotationally invariant energy predictions and a smooth, differentiable potential energy surface. Our architecture achieves state-of-the-art performance for benchmarks of equilibrium molecules and molecular dynamics trajectories. Finally, we introduce a more challenging benchmark with chemical and structural variations that suggests the path for further work.
['Klaus-Robert Müller', 'Pieter-Jan Kindermans', 'Kristof T. Schütt', 'Huziel E. Sauceda', 'Alexandre Tkatchenko', 'Stefan Chmiela']
2017-06-26
schnet-a-continuous-filter-convolutional-1
http://papers.nips.cc/paper/6700-schnet-a-continuous-filter-convolutional-neural-network-for-modeling-quantum-interactions
http://papers.nips.cc/paper/6700-schnet-a-continuous-filter-convolutional-neural-network-for-modeling-quantum-interactions.pdf
neurips-2017-12
['formation-energy']
['miscellaneous']
[ 3.16858031e-02 -2.77545750e-01 -1.72889456e-01 -4.80373114e-01 -5.85193217e-01 -6.31392241e-01 7.91435897e-01 5.23912072e-01 -5.63914239e-01 9.75855529e-01 -5.63106872e-02 -5.81967771e-01 -2.61387751e-02 -1.02368426e+00 -1.10629463e+00 -1.00100315e+00 -5.99675894e-01 4.87935632e-01 -1.17906690e-01 -2.82762170e-01 3.77583653e-01 9.01423097e-01 -1.16819942e+00 4.76232737e-01 7.48704612e-01 7.85159767e-01 -1.33158013e-01 5.89773595e-01 7.33056664e-02 7.02896237e-01 -2.94434756e-01 -1.43944383e-01 8.81441161e-02 -4.99352217e-01 -9.56717074e-01 -6.33407235e-01 5.07418513e-01 -1.38266042e-01 -5.73060811e-01 9.35458660e-01 5.82984209e-01 5.89786947e-01 1.06008112e+00 -5.23077846e-01 -7.21045196e-01 4.21242923e-01 -1.56942531e-01 7.31213763e-02 2.17174768e-01 4.62708861e-01 1.07036936e+00 -7.84660459e-01 9.10534203e-01 1.26468897e+00 6.82935715e-01 5.27984440e-01 -1.65695739e+00 -6.60336673e-01 -8.18288848e-02 4.18781340e-01 -1.22502899e+00 -3.18573892e-01 3.37799340e-01 -4.71875608e-01 1.62249827e+00 -6.20279275e-02 5.84639668e-01 1.15502965e+00 7.41837442e-01 1.07026078e-01 6.25546932e-01 -2.64643639e-01 5.12452841e-01 -4.53930110e-01 6.35052770e-02 6.48679852e-01 1.25472412e-01 5.79612195e-01 -6.48600042e-01 -2.27668136e-01 6.28702462e-01 1.76896140e-01 -4.76588830e-02 -4.72950101e-01 -1.28171122e+00 9.63203490e-01 9.51125443e-01 1.26691282e-01 -5.09868860e-01 5.57340741e-01 3.68148655e-01 1.34532019e-01 1.51367769e-01 9.46383119e-01 -4.95460391e-01 -1.80367947e-01 -7.13409424e-01 7.02349842e-01 8.13476980e-01 4.68762517e-01 9.59683776e-01 -1.53355047e-01 5.97508140e-02 1.01288363e-01 1.73052385e-01 1.43017218e-01 -4.96095791e-02 -8.98221791e-01 -1.82999894e-02 2.83960700e-01 2.78226465e-01 -5.69720268e-01 -7.00319171e-01 -1.21575609e-01 -1.03051209e+00 4.18195188e-01 4.67622042e-01 -2.04872042e-01 -8.80212426e-01 1.51584291e+00 2.88830370e-01 1.11302927e-01 1.11825638e-01 7.19148576e-01 7.33178496e-01 9.14428771e-01 1.02934964e-01 -1.22914180e-01 9.66659427e-01 -6.79283798e-01 -5.09990573e-01 3.26988071e-01 9.22092319e-01 -5.68652272e-01 5.80971003e-01 5.00334561e-01 -1.12417674e+00 -5.11413932e-01 -1.23262548e+00 -5.04639030e-01 -7.45013714e-01 -2.63517886e-01 1.24924982e+00 4.65025753e-01 -7.40945756e-01 1.60482347e+00 -1.20224309e+00 3.51953432e-02 4.67136294e-01 8.19567263e-01 -4.74973679e-01 7.51135573e-02 -1.40938866e+00 8.93222332e-01 4.70822364e-01 6.02799021e-02 -1.05620813e+00 -1.02056575e+00 -6.14762545e-01 1.86328351e-01 2.25158595e-02 -6.04816437e-01 1.14202821e+00 -4.47560191e-01 -1.56404066e+00 3.81736130e-01 -3.15062910e-01 -7.50432730e-01 2.20421821e-01 -5.03398851e-03 -2.25696698e-01 -1.58804078e-02 -3.18331897e-01 9.32098746e-01 2.41084427e-01 -6.62625551e-01 -1.09224327e-01 -4.93426956e-02 2.44080663e-01 -7.76208472e-03 5.10851713e-03 -2.82500923e-01 1.36646435e-01 -2.00018704e-01 -1.96035177e-01 -1.00143635e+00 -6.29689276e-01 -1.92232296e-01 -4.85997647e-01 -4.33329582e-01 3.47593874e-01 -9.12880003e-02 9.97906625e-01 -1.79706335e+00 4.86714125e-01 3.42754245e-01 2.49067619e-01 1.67102009e-01 5.11542708e-02 8.60084772e-01 -3.90750557e-01 3.07325393e-01 6.45426428e-03 -1.66685227e-02 1.61307584e-02 -7.95170143e-02 -1.79948553e-01 5.96982658e-01 3.26054186e-01 9.87957478e-01 -9.31842029e-01 1.25795797e-01 3.29481483e-01 9.16676760e-01 -9.62166011e-01 6.64563477e-02 -6.84422791e-01 6.12397254e-01 -2.78697878e-01 2.62376428e-01 7.23320067e-01 -4.01984215e-01 1.34472534e-01 -2.75656313e-01 -4.45722044e-01 7.64920294e-01 -8.88733327e-01 1.96627760e+00 -1.45755619e-01 3.50690931e-01 -2.62189567e-01 -8.69634271e-01 7.43824720e-01 2.67174512e-01 8.50227833e-01 -6.28448546e-01 -8.66012648e-02 1.97272226e-01 5.58796346e-01 -7.67611265e-02 3.94988507e-01 -2.95655608e-01 2.60989279e-01 3.11333954e-01 1.53253093e-01 -2.95248836e-01 3.05888355e-01 2.00324714e-01 9.53901410e-01 2.65096039e-01 1.01069167e-01 -4.48336035e-01 4.33731526e-01 6.32861182e-02 1.41384810e-01 5.99287987e-01 1.01598971e-01 3.89299333e-01 5.58980823e-01 -1.09115648e+00 -1.32282746e+00 -8.73354435e-01 -5.14397681e-01 8.23068321e-01 -1.55822724e-01 -8.36550236e-01 -7.60179460e-01 -2.51884133e-01 1.03026889e-01 4.39291447e-01 -7.78507411e-01 -3.59668642e-01 -3.94684017e-01 -7.94453681e-01 1.01369709e-01 2.71507144e-01 4.01136726e-02 -1.16569269e+00 -2.88897693e-01 5.23038149e-01 4.49963301e-01 -7.10648775e-01 -2.58135140e-01 8.10044229e-01 -5.89888871e-01 -1.32111490e+00 -2.79320627e-01 -2.92394787e-01 2.09180966e-01 -4.49716337e-02 1.18011975e+00 -1.89326957e-01 -6.74318790e-01 -2.03381121e-01 1.21961825e-01 -4.49558228e-01 -4.48929995e-01 2.92197406e-01 2.46850550e-01 -3.11979562e-01 7.38597214e-01 -5.76833189e-01 -1.05535340e+00 -2.34512195e-01 -7.28727102e-01 -1.29811734e-01 1.61623865e-01 9.74884570e-01 8.14087629e-01 -8.25110003e-02 2.45795608e-01 -8.12454522e-01 5.48511624e-01 -4.73725289e-01 -6.71424389e-01 -7.79917985e-02 -4.44996893e-01 4.62960005e-01 9.76489007e-01 -1.10894755e-01 -5.69167435e-01 3.93860608e-01 -2.71162778e-01 -1.45981684e-01 -2.24721476e-01 5.93931735e-01 2.24979043e-01 -3.80719185e-01 9.22887802e-01 -1.05012044e-01 -2.83078492e-01 -4.51548845e-01 5.00147283e-01 2.46820614e-01 2.55419672e-01 -8.39173079e-01 3.03406566e-01 4.97573346e-01 7.48907745e-01 -1.03797126e+00 -6.06102347e-01 -2.52774984e-01 -1.01883972e+00 3.59017760e-01 1.09830678e+00 -9.02900159e-01 -1.55755508e+00 -4.41079959e-02 -1.33170938e+00 -3.27385277e-01 -1.26040265e-01 6.40531063e-01 -5.53201675e-01 3.94536465e-01 -6.50740981e-01 -5.60756683e-01 -2.73573250e-01 -1.25194097e+00 1.04970551e+00 1.25968084e-01 -3.21676075e-01 -1.03620803e+00 3.40189487e-01 -2.37588987e-01 3.01016718e-01 6.18878007e-01 1.10895026e+00 -4.12140191e-01 -8.18025589e-01 -9.89492834e-02 5.91860972e-02 -2.87404470e-02 4.13386375e-02 4.33447927e-01 -9.43779767e-01 -5.47297537e-01 -6.91481292e-01 -6.85752451e-01 1.39129758e+00 5.81056893e-01 1.45735073e+00 -2.92750616e-02 -3.69627059e-01 9.78675187e-01 1.07768893e+00 4.53918338e-01 4.70227957e-01 -5.65497950e-03 8.02924752e-01 2.84898907e-01 2.74108863e-03 5.10141253e-01 6.75118482e-03 5.51655173e-01 6.00400090e-01 -1.56845763e-01 3.43609273e-01 -2.54810959e-01 3.52755874e-01 3.97703737e-01 -4.22627360e-01 -3.08637470e-01 -8.80275667e-01 -9.62364767e-03 -1.55382502e+00 -1.16335309e+00 -2.11932853e-01 2.27964139e+00 8.94104719e-01 1.06738418e-01 1.64861217e-01 -6.44136369e-02 1.21287838e-01 8.02978873e-02 -9.22946990e-01 -7.16627479e-01 7.55099505e-02 8.80102217e-01 5.82524538e-01 7.43837059e-01 -1.27268898e+00 1.03235984e+00 7.02212667e+00 6.83805168e-01 -1.25185013e+00 -3.00743729e-01 7.77560472e-01 -1.38059825e-01 -3.27169627e-01 3.02826491e-04 -9.19664502e-01 3.08764100e-01 1.50029325e+00 -2.67432141e-03 7.68304288e-01 4.94374186e-01 3.43013644e-01 7.91526809e-02 -1.61461806e+00 8.36561978e-01 -7.98778713e-01 -2.12565494e+00 1.68492272e-01 3.41673762e-01 9.09266055e-01 4.69366789e-01 2.26550296e-01 9.77255106e-02 2.89015919e-01 -1.92550457e+00 2.07282871e-01 5.12381256e-01 1.02231741e+00 -9.89366353e-01 2.69453913e-01 1.59788594e-01 -9.70099747e-01 3.62902343e-01 -8.92355502e-01 -2.87190497e-01 -2.78879344e-01 2.53403068e-01 -7.39751995e-01 3.65478814e-01 4.07573432e-01 1.01273906e+00 -1.28006980e-01 7.77779341e-01 1.30857557e-01 3.44153881e-01 -3.29315901e-01 -3.67559433e-01 6.56121969e-01 -4.83717978e-01 -1.49807647e-01 1.22062337e+00 1.69346303e-01 1.48271799e-01 2.02556297e-01 1.11279380e+00 -2.82654136e-01 5.29088937e-02 -7.11533546e-01 -5.21521807e-01 2.97467291e-01 9.89038467e-01 -4.37440485e-01 -1.51463374e-01 -4.29131806e-01 7.24797249e-01 3.59396219e-01 4.87950474e-01 -6.77735090e-01 -5.48368573e-01 1.15496969e+00 -9.18103661e-03 3.01758528e-01 -6.30740523e-01 1.36536941e-01 -1.06724632e+00 -5.99343061e-01 -8.13732743e-01 -2.71831136e-02 -3.24917614e-01 -1.09014225e+00 3.37894171e-01 -3.66456568e-01 -5.74324191e-01 -2.63661742e-01 -1.26022255e+00 -5.41151047e-01 1.25972331e+00 -1.48839676e+00 -5.30027211e-01 4.61790413e-02 5.69126248e-01 5.15216440e-02 1.66812949e-02 1.36407650e+00 1.18054472e-01 -4.27115083e-01 2.73507118e-01 7.31366396e-01 -1.63917914e-01 7.20047295e-01 -1.54057443e+00 9.08080220e-01 1.99881285e-01 3.85111362e-01 1.11603606e+00 6.95160151e-01 -4.05248284e-01 -1.78140700e+00 -9.55527425e-01 6.58590913e-01 -4.67455149e-01 6.60624266e-01 -6.81833684e-01 -9.63626027e-01 3.74862522e-01 2.14208841e-01 3.58713895e-01 7.98350513e-01 2.71119952e-01 -4.31161135e-01 7.72622451e-02 -8.85361850e-01 3.27906728e-01 9.30743754e-01 -9.33054686e-01 5.73504195e-02 8.26147974e-01 6.56367004e-01 -5.71038187e-01 -1.15566528e+00 1.06583700e-01 6.24611139e-01 -1.19400656e+00 1.25671744e+00 -1.22536707e+00 6.25072002e-01 -1.74154609e-01 4.03501503e-02 -1.32249379e+00 -5.86594582e-01 -1.03205478e+00 -1.76774666e-01 2.80057222e-01 6.31302476e-01 -3.33842516e-01 1.07752645e+00 7.01420188e-01 -1.48025542e-01 -9.02471006e-01 -9.41205442e-01 -5.86465478e-01 8.02956939e-01 -1.21360220e-01 6.49236023e-01 8.40539098e-01 3.57181340e-01 5.38653553e-01 -2.34519497e-01 3.82906571e-02 3.95222336e-01 1.84016600e-01 4.92310017e-01 -1.09915674e+00 -3.83216113e-01 -4.22204435e-01 -2.67994493e-01 -1.18846500e+00 2.28987649e-01 -9.73218083e-01 -3.55670094e-01 -1.26309860e+00 1.92056626e-01 -1.75268814e-01 -6.68795824e-01 1.81204379e-01 1.62344173e-01 8.08066055e-02 -2.73330975e-02 -1.24755025e-01 -4.94302154e-01 6.50314331e-01 1.34180629e+00 -3.51566494e-01 -2.38846526e-01 -1.84953138e-01 -2.94346422e-01 2.84523368e-01 6.88777566e-01 -2.82918781e-01 -1.74231485e-01 -6.36406392e-02 5.38043261e-01 -1.18131086e-01 2.34069154e-01 -1.08132505e+00 1.92639008e-01 -3.02630633e-01 7.45305657e-01 -6.23403251e-01 5.43433070e-01 -5.87990582e-01 9.17864516e-02 6.42898977e-01 -5.65959930e-01 -1.71943739e-01 1.14937253e-01 5.80540955e-01 -1.84868768e-01 1.05255701e-01 9.43037927e-01 -3.85486096e-01 -1.26566842e-01 8.36837709e-01 -3.23536485e-01 -3.85425031e-01 7.66458571e-01 1.47882804e-01 -1.97296217e-01 -1.83675364e-01 -8.05969238e-01 1.17942631e-01 6.02907181e-01 1.91560388e-02 2.70233780e-01 -1.12279868e+00 -3.91378611e-01 1.72518939e-01 -3.30338143e-02 1.73389375e-01 2.18971789e-01 3.38547617e-01 -8.89161348e-01 9.92713273e-01 -1.30529657e-01 -4.15024906e-01 -8.26761365e-01 7.59232163e-01 7.39246666e-01 -6.86487257e-02 -3.14710408e-01 9.27861333e-01 3.09273183e-01 -3.44007105e-01 1.84900388e-01 -8.78193915e-01 2.92726718e-02 -1.78291902e-01 5.08889318e-01 1.07906081e-01 2.55159855e-01 -4.43107545e-01 -4.25805300e-01 4.01148945e-01 -2.97133088e-01 4.16408777e-01 1.57411218e+00 5.16760945e-01 -1.02284163e-01 3.59443843e-01 1.34905148e+00 -2.34606966e-01 -1.61663711e+00 -1.96464593e-03 2.58591305e-02 -3.56048644e-02 1.52912647e-01 -7.35322356e-01 -3.74568075e-01 1.53112376e+00 5.09068310e-01 1.18043199e-01 3.44158828e-01 -4.13423598e-01 7.89748490e-01 1.15489733e+00 2.22653493e-01 -7.82644153e-01 4.02982859e-03 9.86946821e-01 5.45416355e-01 -1.35643470e+00 2.59577423e-01 6.19814023e-02 -7.50415400e-02 1.73394835e+00 2.95413405e-01 -2.93921351e-01 6.57416046e-01 5.13017885e-02 -4.33401972e-01 -4.09109622e-01 -9.53572631e-01 -1.47534756e-03 2.58444667e-01 4.99708027e-01 1.23044324e+00 1.60067856e-01 1.82627775e-02 1.41496018e-01 -1.39062777e-01 -2.06658542e-01 3.14682811e-01 6.25263691e-01 -5.41523516e-01 -1.44712901e+00 4.92789373e-02 1.24404684e-01 -6.18748486e-01 -4.02463377e-01 -6.04027152e-01 6.08158112e-01 3.00700247e-01 6.14832640e-01 3.30791920e-02 -1.45141512e-01 1.74061641e-01 1.17333874e-01 7.41469383e-01 -7.09091604e-01 -5.99825025e-01 -7.96736553e-02 -1.71015039e-01 -8.41305017e-01 -4.03336525e-01 -3.96348894e-01 -1.58943570e+00 -7.22861409e-01 -1.37197018e-01 5.32173097e-01 6.68407619e-01 6.53988421e-01 5.88980377e-01 6.40871048e-01 4.83292401e-01 -1.31092727e+00 -6.29383385e-01 -8.80947292e-01 -5.11963069e-01 3.30579370e-01 7.82162309e-01 -5.44935882e-01 -2.11199299e-02 -9.32433084e-02]
[5.225337982177734, 5.494143962860107]
93a93fac-6eb1-4234-9abe-e95de1bce438
offline-reinforcement-learning-with-value-1
2110.09796
null
https://arxiv.org/abs/2110.09796v1
https://arxiv.org/pdf/2110.09796v1.pdf
Offline Reinforcement Learning with Value-based Episodic Memory
Offline reinforcement learning (RL) shows promise of applying RL to real-world problems by effectively utilizing previously collected data. Most existing offline RL algorithms use regularization or constraints to suppress extrapolation error for actions outside the dataset. In this paper, we adopt a different framework, which learns the V-function instead of the Q-function to naturally keep the learning procedure within the support of an offline dataset. To enable effective generalization while maintaining proper conservatism in offline learning, we propose Expectile V-Learning (EVL), which smoothly interpolates between the optimal value learning and behavior cloning. Further, we introduce implicit planning along offline trajectories to enhance learned V-values and accelerate convergence. Together, we present a new offline method called Value-based Episodic Memory (VEM). We provide theoretical analysis for the convergence properties of our proposed VEM method, and empirical results in the D4RL benchmark show that our method achieves superior performance in most tasks, particularly in sparse-reward tasks.
['Bin Liang', 'Qianchuan Zhao', 'Chongjie Zhang', 'Jun Yang', 'Qihan Liu', 'Hao Hu', 'Yiqin Yang', 'Xiaoteng Ma']
2021-10-19
offline-reinforcement-learning-with-value
https://openreview.net/forum?id=RCZqv9NXlZ
https://openreview.net/pdf?id=RCZqv9NXlZ
iclr-2022-4
['d4rl']
['robots']
[-2.18807146e-01 2.16681600e-01 -7.41528928e-01 -2.65028000e-01 -8.63463581e-01 -4.99981165e-01 3.30192983e-01 1.07732967e-01 -6.61531389e-01 1.18019974e+00 2.14714766e-01 -2.07579032e-01 -4.30088520e-01 -5.49838841e-01 -1.01467264e+00 -7.24228203e-01 -5.41845024e-01 1.77844584e-01 3.69544467e-03 -1.46659836e-01 3.80481541e-01 3.13662976e-01 -1.10307193e+00 -8.09022188e-02 1.13208365e+00 1.07244968e+00 4.31736559e-01 1.84556454e-01 1.51611984e-01 1.22842968e+00 -3.09569985e-01 4.33922969e-02 7.27551222e-01 -5.29243648e-01 -7.36394942e-01 9.79626179e-02 -1.96197331e-01 -7.21631110e-01 -7.77950466e-01 8.21256697e-01 4.11603034e-01 8.04373145e-01 1.90517694e-01 -1.21144807e+00 -4.97443736e-01 8.39406431e-01 -4.19501364e-01 -2.55277809e-02 1.51553437e-01 5.58445334e-01 7.26011515e-01 -6.96358562e-01 6.12755001e-01 1.12314904e+00 5.85624278e-01 6.02874696e-01 -1.22665608e+00 -4.90019828e-01 4.68381733e-01 1.84196323e-01 -1.05307806e+00 -3.12605262e-01 6.31808162e-01 2.14818940e-02 1.00748563e+00 -1.89862281e-01 9.15142775e-01 1.13771498e+00 3.11649501e-01 1.13560700e+00 1.32226181e+00 -1.83219351e-02 7.17760980e-01 -1.81286469e-01 -2.34506875e-01 7.23337889e-01 -9.02616158e-02 6.88378513e-01 -7.49895632e-01 -1.65059909e-01 1.07092619e+00 -1.01638504e-03 -1.11292735e-01 -7.61550665e-01 -1.01925910e+00 1.01581001e+00 5.27790725e-01 -2.76515454e-01 -5.11009932e-01 5.43787003e-01 4.43311661e-01 6.19495809e-01 1.90058500e-01 4.74957705e-01 -4.11239862e-01 -5.21067977e-01 -7.50182152e-01 5.33241451e-01 4.31215912e-01 1.01830280e+00 6.11605585e-01 3.84732783e-01 -5.04589736e-01 7.45376885e-01 -1.70168541e-02 3.35451156e-01 6.40605450e-01 -1.63144302e+00 7.53543258e-01 3.67887080e-01 5.85913777e-01 -5.29509664e-01 -4.79267657e-01 -5.79254210e-01 -4.30234343e-01 1.86131760e-01 4.09740299e-01 -2.64312297e-01 -7.04671860e-01 1.89197671e+00 3.49422276e-01 4.25109774e-01 2.09244430e-01 1.02349186e+00 3.66416015e-02 6.17676616e-01 -5.94784282e-02 -6.26218796e-01 1.38397604e-01 -1.09595585e+00 -7.40536630e-01 -2.83620864e-01 8.68028760e-01 3.23682100e-01 1.40085161e+00 5.14234006e-01 -1.28131092e+00 -2.92250842e-01 -9.10177588e-01 1.61052883e-01 2.00500414e-01 2.43001506e-02 7.69878030e-01 8.84956494e-02 -9.00873661e-01 1.06463742e+00 -1.03781652e+00 1.74608186e-01 7.48328030e-01 4.76814270e-01 2.25576460e-02 -9.98636801e-03 -1.05614030e+00 8.37278605e-01 5.13159454e-01 9.87294540e-02 -1.63923502e+00 -6.65119290e-01 -8.20297062e-01 -1.16066121e-01 7.78177559e-01 -2.49541119e-01 1.46686649e+00 -9.41531241e-01 -1.93900549e+00 2.85398304e-01 5.78195192e-02 -9.71882343e-01 7.20840454e-01 -4.01078045e-01 8.40429440e-02 1.34297743e-01 -8.79258737e-02 6.59475029e-01 9.22185600e-01 -1.09899271e+00 -3.80332410e-01 -1.64164722e-01 7.01652467e-02 4.05275583e-01 -3.07534188e-01 -6.46240830e-01 -1.79487556e-01 -5.67245424e-01 -1.91486612e-01 -9.67077672e-01 -6.23895168e-01 -3.90379690e-02 2.50416607e-01 -2.28014633e-01 4.28927720e-01 -5.56304991e-01 1.26322937e+00 -1.99067211e+00 3.61909509e-01 3.57647210e-01 3.19670253e-02 1.51783312e-02 -3.68336380e-01 3.96953970e-01 4.80144322e-01 -3.81019473e-01 -5.15508890e-01 -1.61102846e-01 -4.77083772e-03 7.38064826e-01 -7.73967087e-01 6.42110527e-01 -1.93165332e-01 1.23174608e+00 -1.23962867e+00 -2.10592791e-01 -2.84842364e-02 4.16204194e-03 -8.02434742e-01 2.55595326e-01 -5.45433640e-01 7.31971741e-01 -6.47994399e-01 4.27860826e-01 3.51128787e-01 -6.33184910e-02 5.03974319e-01 5.83142579e-01 -1.89107388e-01 1.26930982e-01 -9.35217202e-01 1.98337650e+00 -7.03905404e-01 3.30949426e-01 1.15243852e-01 -1.05334330e+00 1.04707372e+00 -7.27110282e-02 6.79617345e-01 -1.13438094e+00 1.06271975e-01 1.30327150e-01 -2.23900303e-01 -3.56931984e-01 5.02078176e-01 1.78361386e-01 4.80824672e-02 3.45703751e-01 6.23260364e-02 7.04394700e-03 1.22491131e-02 1.18001644e-02 1.07679653e+00 5.69904685e-01 2.22365171e-01 -1.55347273e-01 1.19399749e-01 4.41229641e-02 8.47058356e-01 1.07787251e+00 -5.40089130e-01 -6.64307550e-02 5.85685194e-01 -2.42459148e-01 -8.67587388e-01 -1.10482931e+00 -3.11482958e-02 1.10950661e+00 3.11999589e-01 -2.14390963e-01 -4.49080586e-01 -9.46502388e-01 4.75885719e-01 9.23880041e-01 -7.03127801e-01 -4.29767042e-01 -8.75191450e-01 -3.45214754e-01 3.30558628e-01 7.61591673e-01 6.00093544e-01 -1.22567105e+00 -8.10594678e-01 4.66214508e-01 5.02918214e-02 -7.04780519e-01 -6.01364970e-01 3.47267538e-01 -1.38938081e+00 -7.48577774e-01 -6.23300016e-01 -6.25917554e-01 5.48340976e-01 8.78288671e-02 7.77981222e-01 -7.34419599e-02 1.19022176e-01 6.30613744e-01 -3.17985177e-01 -2.05797218e-02 -2.63565574e-02 -1.64926976e-01 2.51594126e-01 -2.22007245e-01 -1.66795641e-01 -4.84877467e-01 -6.12954497e-01 1.91436812e-01 -4.91068721e-01 -2.16401771e-01 4.23449457e-01 1.11427927e+00 9.07030404e-01 -2.14522347e-01 1.09179783e+00 -6.11625195e-01 8.14346910e-01 -7.58416295e-01 -9.44196761e-01 2.16037706e-01 -1.03667700e+00 3.80919069e-01 9.08718407e-01 -7.51189351e-01 -1.06472659e+00 1.72219634e-01 1.14785552e-01 -7.85971880e-01 5.63176751e-01 5.52395701e-01 2.11412877e-01 -1.58320755e-01 4.96874154e-01 6.46739125e-01 2.19038412e-01 -2.92601854e-01 5.47578275e-01 1.77537665e-01 3.90744597e-01 -8.90317678e-01 4.00732636e-01 3.71393144e-01 1.79156959e-02 -3.90135884e-01 -1.00242865e+00 -1.25918344e-01 -2.60801554e-01 -3.91119063e-01 2.40494773e-01 -9.67048168e-01 -1.02073658e+00 1.60262525e-01 -4.86885160e-01 -1.29855812e+00 -7.35162139e-01 6.18860543e-01 -1.35710478e+00 1.30007580e-01 -6.08004272e-01 -1.06336403e+00 -5.78579046e-02 -9.18609381e-01 5.04989445e-01 2.17705160e-01 2.82955438e-01 -9.11255598e-01 3.62540513e-01 -5.37203439e-02 3.16952556e-01 1.25568047e-01 5.55282414e-01 -1.90097108e-01 -5.13188541e-01 4.12877321e-01 1.27651066e-01 1.55725524e-01 -2.52611011e-01 -7.52376437e-01 -4.41076189e-01 -7.11071730e-01 1.58914328e-01 -9.93708313e-01 1.01525033e+00 4.28401291e-01 1.73148179e+00 -6.92044497e-01 -1.34571746e-01 8.79818082e-01 1.39929056e+00 4.23338950e-01 5.89402616e-01 5.33038437e-01 3.73596668e-01 3.18897754e-01 1.27453458e+00 1.14250040e+00 3.22226614e-01 4.09627408e-01 6.10509694e-01 5.32040238e-01 3.86710942e-01 -8.17905128e-01 7.76489556e-01 5.47105134e-01 2.13760324e-03 8.82535353e-02 -5.12898088e-01 5.14873207e-01 -2.37935758e+00 -9.66838717e-01 4.89102900e-01 2.37516451e+00 1.22921288e+00 2.81412713e-02 4.39996213e-01 -3.43255699e-01 2.08494246e-01 7.17543140e-02 -1.35302949e+00 -4.43477899e-01 8.85650590e-02 3.20863813e-01 8.60537291e-01 5.72883308e-01 -7.19425917e-01 1.04481673e+00 6.95932293e+00 8.33835661e-01 -8.94703746e-01 1.31652936e-01 4.16387528e-01 -5.78947067e-01 -3.09361309e-01 -6.16698200e-03 -7.07236469e-01 3.71372640e-01 8.96902502e-01 -1.40562937e-01 1.17214119e+00 1.17859244e+00 5.65197051e-01 -3.79408151e-02 -1.01258838e+00 9.29544628e-01 -3.77037048e-01 -1.40897202e+00 -4.54510510e-01 -4.89107519e-03 9.95512247e-01 2.90608313e-02 2.57058740e-01 1.01080477e+00 4.97530729e-01 -1.06327260e+00 7.44652748e-01 6.63142502e-01 6.99789345e-01 -1.10969901e+00 1.13287739e-01 6.13009274e-01 -8.96383286e-01 -7.96196342e-01 -5.61856627e-01 -1.73765823e-01 -6.33795559e-02 8.67740810e-02 -6.04407251e-01 1.63312510e-01 4.05136198e-01 1.01989126e+00 -2.87718624e-01 9.28779840e-01 -2.96711057e-01 6.18849695e-01 -8.24790373e-02 -1.98995307e-01 6.30195677e-01 -4.22326744e-01 4.05393898e-01 6.34852529e-01 1.94152221e-01 1.95524961e-01 5.26220202e-01 8.67876232e-01 -7.34575763e-02 1.99874360e-02 -6.99084640e-01 -2.05928162e-01 5.67963600e-01 7.67155588e-01 -2.55554438e-01 3.12467832e-02 -8.44923779e-02 8.56674790e-01 9.36865449e-01 4.65733141e-01 -9.61702585e-01 -1.44497991e-01 4.69070464e-01 -1.63382679e-01 3.55162889e-01 -7.20170319e-01 -2.77241915e-01 -1.06453300e+00 1.32060200e-02 -8.74388397e-01 3.78916144e-01 -3.29657346e-01 -9.53436315e-01 9.06293467e-02 7.13674817e-03 -1.28728843e+00 -3.79988521e-01 -2.77038872e-01 -3.35823089e-01 2.02966452e-01 -1.54279256e+00 -5.34915984e-01 8.15415829e-02 7.47292697e-01 6.62075937e-01 -2.70975113e-01 3.25671852e-01 -1.65139914e-01 -4.72995877e-01 7.11357355e-01 6.31488502e-01 -3.16947162e-01 4.86896634e-01 -1.09786785e+00 -5.57520613e-02 3.83118898e-01 -3.93350497e-02 4.46381390e-01 3.80455703e-01 -8.22891414e-01 -1.81288147e+00 -1.21388328e+00 -7.84251541e-02 -2.03951076e-01 6.98124886e-01 -2.14028969e-01 -7.75221944e-01 8.44713390e-01 -1.23270005e-01 1.30134434e-01 1.53035566e-01 -1.03375621e-01 -5.19655310e-02 -2.24778727e-01 -1.19826365e+00 7.02507496e-01 1.25571835e+00 -2.81885773e-01 -4.40553218e-01 3.53959203e-01 9.22842324e-01 -6.47372186e-01 -8.59069049e-01 1.66351199e-01 3.87194574e-01 -6.49879992e-01 9.91278768e-01 -8.78853083e-01 2.94504523e-01 7.94233233e-02 -1.29818067e-01 -1.48862064e+00 -1.83958113e-01 -1.04410648e+00 -9.21461463e-01 6.74551010e-01 1.17271446e-01 -7.13488162e-01 8.02101135e-01 4.78673607e-01 -2.41670623e-01 -1.36281204e+00 -9.61227894e-01 -1.30959189e+00 2.32698888e-01 -3.76313865e-01 3.88436377e-01 7.37180471e-01 2.91892588e-01 -3.51813257e-01 -7.16758668e-01 -1.73993587e-01 8.55415881e-01 2.64093101e-01 5.68601727e-01 -4.50154305e-01 -7.67144084e-01 -1.38799548e-01 3.48037362e-01 -1.47184432e+00 5.86508393e-01 -1.01568854e+00 2.27133706e-01 -1.25745332e+00 3.08989752e-02 -6.70612991e-01 -4.41862732e-01 5.62090039e-01 1.52632758e-01 -4.18945193e-01 3.00907940e-01 3.12162399e-01 -8.32166910e-01 1.32501125e+00 1.67506576e+00 1.01416036e-01 -8.73111784e-01 -5.10249324e-02 -3.82285595e-01 5.57584763e-01 1.03108299e+00 -4.96253580e-01 -8.60886157e-01 -3.79607379e-01 2.04775855e-01 6.96963966e-01 2.23577559e-01 -6.80980265e-01 7.56753832e-02 -8.48274767e-01 3.22741956e-01 -3.99300784e-01 3.24760020e-01 -5.06438196e-01 -4.36685979e-01 7.39420414e-01 -9.32918489e-01 -2.43099537e-02 5.85659444e-02 9.39689994e-01 1.85573459e-01 -2.01679841e-01 7.62554586e-01 -9.20662507e-02 -8.19700480e-01 6.23374641e-01 -2.48769611e-01 5.35323143e-01 1.18614268e+00 1.16818942e-01 -2.21018866e-01 -5.15098751e-01 -7.87349045e-01 9.09421384e-01 3.35134298e-01 1.70259297e-01 1.05561602e+00 -1.43114090e+00 -3.06694031e-01 2.35345960e-02 -2.12814867e-01 -2.95015931e-01 1.66326717e-01 8.76873493e-01 -1.42812476e-01 2.29115739e-01 -2.48572424e-01 -2.21579775e-01 -3.99405003e-01 7.72460639e-01 3.88289183e-01 -3.34634572e-01 -9.80179131e-01 5.57745099e-01 -2.28382915e-01 -4.97540951e-01 6.08868003e-01 -2.96581298e-01 -9.66690667e-03 -1.69410586e-01 3.72602761e-01 6.26098156e-01 -3.88383061e-01 1.57490179e-01 -1.57424003e-01 -2.35446822e-02 5.86226620e-02 -4.16485310e-01 1.54174685e+00 -1.47975340e-01 3.22858125e-01 5.07912755e-01 1.06254280e+00 -2.97749817e-01 -2.24905992e+00 -2.09664628e-01 1.46529824e-01 -6.99395895e-01 1.71938196e-01 -7.98918426e-01 -9.52509880e-01 4.41608548e-01 5.19276798e-01 -3.21869910e-01 1.01490116e+00 -3.64169925e-01 9.66838360e-01 8.38165879e-01 7.96627641e-01 -1.82730329e+00 3.74771118e-01 7.34344780e-01 9.81588185e-01 -1.18290091e+00 9.59655736e-03 3.79163414e-01 -1.17048812e+00 9.05461609e-01 7.75116920e-01 -6.23990238e-01 3.28674853e-01 -2.75262874e-02 -4.41681981e-01 1.80908337e-01 -1.08439982e+00 -2.30568543e-01 -2.00696006e-01 5.34979761e-01 -1.26433030e-01 3.80924940e-02 -4.38781977e-01 7.32462466e-01 4.70516421e-02 2.39212304e-01 4.98289257e-01 1.14579880e+00 -6.47251964e-01 -1.01503050e+00 -2.78723016e-02 4.99649942e-01 -3.79383378e-02 2.56929576e-01 -4.95193563e-02 7.44703948e-01 -4.05288428e-01 7.27796614e-01 -3.93351577e-02 -2.61447757e-01 3.94178368e-02 -1.72740474e-01 1.08426905e+00 -2.61958778e-01 -6.32784307e-01 -1.15526453e-01 -1.12906680e-01 -1.28958440e+00 -7.88879395e-02 -7.10338533e-01 -1.79396057e+00 -1.39227539e-01 1.39728561e-01 4.86632548e-02 3.89200121e-01 1.00993252e+00 4.21400219e-01 2.29648218e-01 1.08246362e+00 -6.02908194e-01 -1.50543702e+00 -4.53663558e-01 -7.01182961e-01 7.15778619e-02 4.21715319e-01 -9.28875923e-01 -2.52696306e-01 -4.81503010e-01]
[4.089904308319092, 2.2021965980529785]