paperID
stringlengths
36
36
pwc_id
stringlengths
8
47
arxiv_id
stringlengths
6
16
nips_id
float64
url_abs
stringlengths
18
329
url_pdf
stringlengths
18
742
title
stringlengths
8
325
abstract
stringlengths
1
7.27k
authors
stringlengths
2
7.06k
published
stringlengths
10
10
conference
stringlengths
12
47
conference_url_abs
stringlengths
16
198
conference_url_pdf
stringlengths
27
199
proceeding
stringlengths
6
47
taskID
stringlengths
7
1.44k
areaID
stringclasses
688 values
embedding
stringlengths
9.26k
12.5k
umap_embedding
stringlengths
29
44
8dbfbba1-6155-4ec3-93c0-9db805674773
a-new-class-of-efficient-adaptive-filters-for
2104.09641
null
https://arxiv.org/abs/2104.09641v2
https://arxiv.org/pdf/2104.09641v2.pdf
A New Class of Efficient Adaptive Filters for Online Nonlinear Modeling
Nonlinear models are known to provide excellent performance in real-world applications that often operate in non-ideal conditions. However, such applications often require online processing to be performed with limited computational resources. To address this problem, we propose a new class of efficient nonlinear models for online applications. The proposed algorithms are based on linear-in-the-parameters (LIP) nonlinear filters using functional link expansions. In order to make this class of functional link adaptive filters (FLAFs) efficient, we propose low-complexity expansions and frequency-domain adaptation of the parameters. Among this family of algorithms, we also define the partitioned-block frequency-domain FLAF, whose implementation is particularly suitable for online nonlinear modeling problems. We assess and compare frequency-domain FLAFs with different expansions providing the best possible tradeoff between performance and computational complexity. Experimental results prove that the proposed algorithms can be considered as an efficient and effective solution for online applications, such as the acoustic echo cancellation, even in the presence of adverse nonlinear conditions and with limited availability of computational resources.
['Aurelio Uncini', 'Amir Hussain', 'Michele Scarpiniti', 'Simone Scardapane', 'Alireza Nezamdoust', 'Danilo Comminiello']
2021-04-19
null
null
null
null
['acoustic-echo-cancellation', 'acoustic-echo-cancellation']
['medical', 'speech']
[ 2.05474272e-01 -3.68905634e-01 3.28902513e-01 -2.74199724e-01 -5.76902270e-01 -4.98440087e-01 1.13903262e-01 7.72671252e-02 -5.32026947e-01 5.40706336e-01 2.66722832e-02 -1.83255777e-01 -5.97108305e-01 -4.22495931e-01 -4.92835462e-01 -7.69153059e-01 -3.51336867e-01 8.39648247e-02 1.45619243e-01 -2.21431717e-01 9.04139802e-02 6.69474900e-01 -1.66699505e+00 -2.32747152e-01 1.15392017e+00 1.00564241e+00 2.64616907e-01 7.58236825e-01 8.67207795e-02 1.43351465e-01 -4.09443974e-01 -1.44894764e-01 5.15885353e-01 -4.01018649e-01 -1.49539495e-02 -1.11895606e-01 2.60364294e-01 -3.55835289e-01 -1.64086923e-01 1.03792441e+00 9.43333447e-01 6.72355831e-01 4.60380763e-01 -6.61437690e-01 -1.52254049e-02 3.75470489e-01 -1.14152990e-01 3.30812544e-01 2.95260102e-01 -9.87702683e-02 6.70327902e-01 -1.24296868e+00 1.73211291e-01 9.07126546e-01 9.61343110e-01 2.69969821e-01 -1.10840452e+00 -8.33369136e-01 4.23723049e-02 3.56375784e-01 -1.59485328e+00 -1.01097107e+00 7.81361401e-01 -2.24547371e-01 6.14481151e-01 4.34681028e-01 4.61665660e-01 3.11342448e-01 -1.35378942e-01 3.43420953e-01 8.90877783e-01 -6.82781756e-01 1.63405895e-01 -1.28618442e-02 1.05380468e-01 4.14634973e-01 2.92550564e-01 1.88376501e-01 -6.80566370e-01 -4.27581519e-01 6.45004034e-01 -2.15987250e-01 -7.45070457e-01 -9.33767855e-03 -8.03992033e-01 5.76232553e-01 1.67997316e-01 6.39318168e-01 -4.75534022e-01 -1.97676659e-01 2.85554141e-01 4.36840951e-01 6.12084806e-01 3.72673154e-01 -2.76390225e-01 -1.25437737e-01 -1.11074126e+00 3.71255785e-01 9.88472879e-01 7.73464322e-01 4.88381416e-01 5.53120136e-01 1.60737291e-01 1.21767819e+00 2.38244474e-01 7.08289623e-01 4.78220791e-01 -4.48253185e-01 3.51950467e-01 -2.00768873e-01 3.31552744e-01 -1.09835720e+00 -6.77238643e-01 -9.81753945e-01 -8.91206264e-01 -1.62460476e-01 4.21489030e-01 -1.96975708e-01 -4.59856451e-01 1.55632174e+00 5.11995733e-01 5.22902191e-01 1.31041020e-01 9.59486365e-01 3.74631792e-01 9.84249115e-01 -1.74752206e-01 -8.74884069e-01 9.33573604e-01 -6.55478954e-01 -1.17512882e+00 -7.84660596e-03 3.84494245e-01 -1.19136965e+00 7.78356671e-01 5.03606081e-01 -1.23972189e+00 -6.03687763e-01 -9.20197248e-01 4.48744267e-01 5.28851151e-02 3.02735358e-01 9.25441384e-02 8.25620830e-01 -1.08426821e+00 6.14415050e-01 -5.59995353e-01 1.28599346e-01 -4.12176847e-01 4.36088532e-01 -9.77276266e-02 2.49162778e-01 -1.25585747e+00 6.33970976e-01 8.38622749e-02 9.47573125e-01 -4.09728557e-01 -7.61650145e-01 -5.87859213e-01 2.32560515e-01 3.94801557e-01 -2.42632449e-01 1.28629434e+00 -9.91038620e-01 -1.67228353e+00 1.61233485e-01 -3.23678136e-01 -5.73309064e-01 5.43181777e-01 -5.83877504e-01 -7.52328217e-01 2.24665955e-01 -4.77990478e-01 -4.07966912e-01 1.43731999e+00 -8.94086897e-01 -4.60181981e-01 -1.53545672e-02 -2.92823106e-01 4.48113412e-01 -8.64786088e-01 -1.56602487e-01 -1.47727072e-01 -7.07705796e-01 2.86835879e-01 -8.24626744e-01 -2.74496913e-01 1.90963373e-02 1.45421894e-02 2.21082509e-01 5.33835530e-01 -8.76463950e-01 1.63336420e+00 -2.28040171e+00 -2.28218287e-02 5.45321941e-01 -2.08427072e-01 6.88700795e-01 8.72851685e-02 6.27270341e-01 1.53522030e-01 -3.28776687e-01 -2.49365121e-01 -1.24102861e-01 -1.32367536e-01 -1.80001915e-01 -1.71605676e-01 6.71502650e-01 -2.53378421e-01 4.86974381e-02 -5.42926490e-01 -2.01809019e-01 2.72034556e-01 5.38124919e-01 -7.11131215e-01 5.38751602e-01 2.13690013e-01 4.66200352e-01 -3.84448558e-01 2.70813465e-01 8.28425407e-01 3.72582942e-01 1.78957134e-01 -5.77919126e-01 -4.76633638e-01 -8.35658461e-02 -1.69905376e+00 1.10232008e+00 -9.16809976e-01 5.98605573e-01 8.65238070e-01 -1.17118239e+00 1.03317368e+00 5.80162108e-01 5.47665954e-01 -6.49579883e-01 -4.06815223e-02 6.90534115e-01 2.54486263e-01 -6.68265879e-01 4.02638435e-01 -3.91566008e-01 3.36844862e-01 1.53078418e-02 -8.39603618e-02 -6.44964278e-02 3.11913311e-01 -2.86780626e-01 6.84858382e-01 -3.05027217e-01 5.90082109e-01 -5.41610599e-01 1.07704079e+00 -5.89275181e-01 5.40236533e-01 7.17981517e-01 2.80171223e-02 2.04133168e-01 -2.73320436e-01 -1.09992705e-01 -8.55132997e-01 -5.94048619e-01 -2.24673808e-01 8.52491915e-01 4.09938395e-02 -1.93087071e-01 -5.80273032e-01 2.81247795e-01 -9.95808393e-02 2.76888222e-01 1.82015955e-01 3.74980830e-02 -9.72532749e-01 -4.29121166e-01 3.66773903e-01 1.22463301e-01 3.81269306e-01 -4.06650662e-01 -5.11442184e-01 6.28693342e-01 -5.55466563e-02 -1.16659367e+00 -6.63839400e-01 -1.01407422e-02 -9.06639814e-01 -8.15998137e-01 -1.12124109e+00 -8.14942002e-01 5.68484902e-01 3.59815180e-01 6.46530211e-01 1.30381420e-01 3.17454003e-02 5.74690104e-01 -5.27706921e-01 -1.83005556e-01 -3.11847508e-01 -1.20927036e-01 4.07516181e-01 6.33256674e-01 -4.28749621e-01 -7.97576189e-01 -7.43776381e-01 5.56034386e-01 -1.02730000e+00 -2.48896465e-01 4.33912426e-01 1.05552280e+00 3.77540708e-01 3.49914521e-01 8.72562826e-01 -8.19696724e-01 9.03551579e-01 -3.10724169e-01 -9.05042946e-01 1.17314845e-01 -4.97850269e-01 -4.07574438e-02 1.44013691e+00 -6.90707147e-01 -1.32933903e+00 -2.40494460e-02 -5.98969281e-01 -2.98466802e-01 2.69590527e-01 7.47092187e-01 -7.91856125e-02 -6.70112252e-01 6.15074039e-01 4.13554877e-01 -2.36229375e-01 -7.18347132e-01 1.02531396e-01 8.08000028e-01 4.68703717e-01 -3.88916343e-01 9.58009958e-01 1.99339449e-01 1.92729533e-01 -1.48255992e+00 -3.76907051e-01 -7.29837239e-01 -1.49945930e-01 -4.54002261e-01 8.73644501e-02 -6.68611467e-01 -7.16646612e-01 4.70166117e-01 -7.70408511e-01 -5.49596548e-02 4.97489423e-02 9.31022525e-01 -3.94855469e-01 5.30285001e-01 -4.90169019e-01 -1.45231545e+00 -5.03481805e-01 -8.32001507e-01 3.77233237e-01 3.07424366e-01 7.29076713e-02 -9.73392606e-01 -1.87434033e-01 -1.48921713e-01 8.95789921e-01 -8.75003859e-02 4.82962400e-01 -4.90446210e-01 -3.38771760e-01 -1.85283273e-01 2.83784539e-01 3.96805525e-01 -1.39694922e-02 -2.59345323e-01 -8.00820827e-01 -5.56633472e-01 2.76452392e-01 2.21482635e-01 3.71910036e-01 6.14265800e-01 8.34534049e-01 -4.19186532e-01 -1.25193581e-01 8.01448524e-01 1.58599973e+00 4.78663951e-01 2.28344426e-01 -2.17066839e-01 1.59234986e-01 4.45990890e-01 7.09918678e-01 7.78400540e-01 -2.36537069e-01 8.32307100e-01 -1.94304865e-02 -1.16601460e-01 1.40422687e-01 -6.87083304e-02 1.81545854e-01 1.50151718e+00 -5.13924193e-03 -4.35015351e-01 -6.08170390e-01 5.19717276e-01 -1.60256124e+00 -6.75073802e-01 -6.74222559e-02 2.51608086e+00 6.32109225e-01 -1.19485483e-01 -2.13943776e-02 4.67126131e-01 7.04912126e-01 8.00018162e-02 -4.72549260e-01 -4.06886131e-01 1.80485938e-02 3.94588590e-01 5.76746583e-01 8.35633039e-01 -8.35547864e-01 3.15899760e-01 6.12362385e+00 1.00579369e+00 -1.13646960e+00 1.90843642e-01 3.28145176e-02 1.67162731e-01 -1.36289209e-01 -5.17408922e-02 -8.04983497e-01 4.39499050e-01 1.25166667e+00 -4.55028892e-01 4.67237145e-01 5.16032398e-01 5.80116093e-01 -1.45702139e-02 -5.42821288e-01 1.05709195e+00 -1.16629370e-01 -9.00418520e-01 -3.67357105e-01 -3.71222854e-01 4.44408447e-01 -6.68556988e-01 8.26511439e-03 -4.88187447e-02 -7.34647810e-01 -6.19624972e-01 5.73367894e-01 7.23097086e-01 6.74980521e-01 -6.91143572e-01 5.17303407e-01 5.81105351e-01 -1.56009674e+00 -3.47997487e-01 -2.99991697e-01 -1.18394449e-01 4.64158446e-01 9.34843302e-01 -5.80923319e-01 5.51885366e-01 3.27473909e-01 2.27203876e-01 3.23224992e-01 1.61701918e+00 2.43280068e-01 8.19839239e-01 -6.80578768e-01 -3.13792944e-01 4.05556746e-02 -2.70185083e-01 7.15541542e-01 1.30407274e+00 8.48199427e-01 5.77798307e-01 1.66586846e-01 2.30494916e-01 1.78148150e-01 5.91150522e-01 -2.51774102e-01 -9.42031201e-03 5.87663472e-01 9.69362259e-01 -4.87969309e-01 -1.10423341e-01 -3.30881745e-01 5.71244895e-01 -2.47554511e-01 4.70464081e-01 -5.96936166e-01 -6.70188487e-01 3.98507506e-01 4.11352485e-01 1.26264036e-01 -6.62794054e-01 2.29082569e-01 -9.86679137e-01 8.19669962e-02 -8.74067962e-01 2.40574300e-01 -3.44991356e-01 -9.29633915e-01 6.17474139e-01 1.41363844e-01 -1.63357496e+00 -3.83430451e-01 -4.35920864e-01 -2.34832004e-01 8.17293584e-01 -1.63274217e+00 -6.72869503e-01 -1.02157228e-01 6.49040818e-01 6.37929916e-01 -3.10493242e-02 7.71787643e-01 9.22188878e-01 -1.04519859e-01 8.34850609e-01 7.26498961e-01 -4.83037204e-01 6.62190795e-01 -6.62154078e-01 -2.08771735e-01 9.94913101e-01 -1.50524396e-02 7.77918041e-01 1.14331579e+00 -4.31830674e-01 -1.49039650e+00 -5.82751453e-01 7.69896090e-01 7.75708914e-01 4.15570199e-01 -3.95018727e-01 -1.14351904e+00 -2.04139445e-02 -1.30223289e-01 6.78138137e-02 7.31268644e-01 -9.69339013e-02 2.31164113e-01 -6.18881881e-01 -9.90664005e-01 3.71967733e-01 9.71701443e-01 -3.46460164e-01 -1.45005062e-01 5.33899605e-01 3.48007262e-01 -6.97394550e-01 -9.11670446e-01 4.10632461e-01 7.38549054e-01 -8.85553360e-01 9.53003645e-01 6.10141549e-03 -3.45365673e-01 -4.12784338e-01 -5.26208729e-02 -1.46670198e+00 -3.16151381e-01 -1.28977764e+00 -6.29937351e-02 9.91116107e-01 3.00609082e-01 -1.03984082e+00 4.06801760e-01 4.23081100e-01 -2.13679194e-01 -5.80747664e-01 -9.88678098e-01 -9.01868701e-01 -4.10499036e-01 -3.26690346e-01 1.54678196e-01 4.52743053e-01 -3.48778740e-02 -8.89181942e-02 -7.89011121e-01 5.06372213e-01 6.48667574e-01 5.11795692e-02 5.40232003e-01 -9.45683956e-01 -7.31146276e-01 -4.21839906e-03 -3.08566362e-01 -1.37789392e+00 1.10997744e-01 -3.35159242e-01 2.92144060e-01 -9.78330791e-01 -5.56710124e-01 -7.41987884e-01 -1.84512556e-01 -2.20124602e-01 -4.23718952e-02 1.16436653e-01 2.22793087e-01 1.00948416e-01 2.17911266e-02 5.23475587e-01 9.17085886e-01 2.42284417e-01 -3.85305226e-01 6.63919985e-01 -1.05935492e-01 6.84285462e-01 5.32039464e-01 -2.27266416e-01 -6.92625344e-01 -2.95038849e-01 6.99478909e-02 4.74956691e-01 -2.34251544e-01 -1.23474836e+00 6.41600788e-01 3.72771546e-02 8.48397538e-02 -4.12602395e-01 6.21693134e-01 -1.08255315e+00 4.96083409e-01 5.56621194e-01 -3.69438797e-01 -1.18163042e-01 2.80989110e-01 5.58581889e-01 -4.90912765e-01 -4.02952194e-01 9.85240579e-01 1.96146592e-01 -5.56862354e-01 7.74535313e-02 -5.57250738e-01 -2.33149052e-01 6.46611989e-01 -2.15873405e-01 9.56754535e-02 -1.03307271e+00 -9.34119999e-01 3.80763435e-03 -1.47101164e-01 -8.09708387e-02 6.88367188e-01 -9.39960182e-01 -6.16849959e-01 5.20315051e-01 -4.06092525e-01 -5.52651525e-01 8.63367915e-01 8.64994586e-01 -6.31837845e-01 5.06317079e-01 1.60765439e-01 -3.44321728e-01 -1.35466254e+00 1.96374372e-01 4.34930384e-01 -2.21929640e-01 -4.05898422e-01 8.46431732e-01 5.34241796e-02 -7.96691477e-02 2.41538048e-01 -2.07691684e-01 -1.93501174e-01 -1.11203663e-01 6.29970849e-01 4.77874756e-01 3.58826011e-01 -6.85045719e-01 -1.84208840e-01 8.89690399e-01 4.63797539e-01 -3.54788661e-01 1.12004793e+00 -3.43295872e-01 5.14556952e-02 2.12711424e-01 1.16506433e+00 5.26485384e-01 -9.95289803e-01 -5.04347682e-01 -2.43413746e-01 -7.18135118e-01 1.83206853e-02 -4.03107405e-01 -8.91158700e-01 7.43960738e-01 8.54216874e-01 2.93884188e-01 1.74297106e+00 -8.03906620e-01 9.67910707e-01 3.10225487e-01 3.60765159e-01 -1.09140217e+00 -2.73357600e-01 3.00367117e-01 8.57573450e-01 -5.89414775e-01 9.81386527e-02 -6.86853170e-01 1.74543500e-01 1.36644363e+00 3.07829320e-01 -2.20308661e-01 9.68218982e-01 3.77111673e-01 3.99465151e-02 5.65062284e-01 -4.23138171e-01 -1.61291867e-01 4.02525216e-01 3.46456438e-01 5.32939434e-01 1.78816449e-03 -1.16714704e+00 5.27658463e-01 -7.88568612e-03 -1.86898440e-01 4.07721639e-01 7.69037843e-01 -6.40021384e-01 -1.07064307e+00 -7.90131032e-01 4.69450742e-01 -5.38825929e-01 -8.30860808e-02 3.26796144e-01 4.82483774e-01 -2.15902314e-01 1.20425212e+00 -2.62282938e-01 -2.43872792e-01 6.41655147e-01 -6.49626777e-02 3.13882232e-01 -1.26333758e-01 -7.87372589e-01 6.93484783e-01 2.34530330e-01 -3.03196490e-01 -3.84187192e-01 -3.72064531e-01 -1.10577261e+00 -1.10599548e-01 -7.75025129e-01 5.45093715e-01 7.84633100e-01 7.14314163e-01 2.25122035e-01 4.39092278e-01 8.41674685e-01 -9.22952890e-01 -8.47828865e-01 -7.77772665e-01 -7.68074572e-01 1.97446346e-01 5.05282819e-01 -5.89721262e-01 -5.11556983e-01 -1.42818198e-01]
[15.070866584777832, 5.77302885055542]
bb6b05b1-1ecb-4680-8293-77b41af11e3e
structural-explanations-for-graph-neural
2302.02139
null
https://arxiv.org/abs/2302.02139v1
https://arxiv.org/pdf/2302.02139v1.pdf
Structural Explanations for Graph Neural Networks using HSIC
Graph neural networks (GNNs) are a type of neural model that tackle graphical tasks in an end-to-end manner. Recently, GNNs have been receiving increased attention in machine learning and data mining communities because of the higher performance they achieve in various tasks, including graph classification, link prediction, and recommendation. However, the complicated dynamics of GNNs make it difficult to understand which parts of the graph features contribute more strongly to the predictions. To handle the interpretability issues, recently, various GNN explanation methods have been proposed. In this study, a flexible model agnostic explanation method is proposed to detect significant structures in graphs using the Hilbert-Schmidt independence criterion (HSIC), which captures the nonlinear dependency between two variables through kernels. More specifically, we extend the GraphLIME method for node explanation with a group lasso and a fused lasso-based node explanation method. The group and fused regularization with GraphLIME enables the interpretation of GNNs in substructure units. Then, we show that the proposed approach can be used for the explanation of sequential graph classification tasks. Through experiments, it is demonstrated that our method can identify crucial structures in a target graph in various settings.
['Makoto Yamada', 'Ayato Toyokuni']
2023-02-04
null
null
null
null
['graph-classification']
['graphs']
[ 3.49821985e-01 5.68835557e-01 -4.81594384e-01 -4.43474442e-01 1.50664821e-01 -1.98793098e-01 3.10440809e-01 3.19808513e-01 3.52166921e-01 6.04133904e-01 1.27873316e-01 -5.28706789e-01 -6.53713882e-01 -6.91914976e-01 -8.01019847e-01 -6.84826791e-01 -3.04669976e-01 3.89829189e-01 -2.43485197e-01 -7.89631754e-02 -3.75476480e-02 3.79476130e-01 -1.01933491e+00 6.10463880e-03 1.19806981e+00 7.82921016e-01 -9.76381078e-02 3.89511049e-01 -6.46436289e-02 9.20344055e-01 1.20614216e-01 -5.04791558e-01 1.37865826e-01 -4.44289774e-01 -5.50455511e-01 1.41352981e-01 2.81174153e-01 1.52751058e-01 -5.64634442e-01 1.12132597e+00 1.14169158e-01 2.95964390e-01 6.91868246e-01 -1.62890375e+00 -9.02898848e-01 1.05277598e+00 -6.66751504e-01 7.49445185e-02 -5.43576442e-02 -2.77785510e-01 1.61425948e+00 -8.81348729e-01 3.75891745e-01 1.33426487e+00 6.57074869e-01 3.16767395e-01 -1.30218685e+00 -6.23306036e-01 4.26941305e-01 2.88490206e-01 -1.05856466e+00 1.19276740e-01 1.05505526e+00 -3.52245837e-01 7.20057249e-01 3.09437841e-01 5.93881905e-01 8.98000479e-01 2.43792653e-01 7.85237312e-01 5.37410200e-01 -2.66118169e-01 3.45146805e-02 -4.87750024e-03 5.69231749e-01 1.34652376e+00 6.04285598e-01 -8.26840326e-02 -4.80384648e-01 -2.31473401e-01 9.03413534e-01 4.78284538e-01 -4.29455519e-01 -5.09484172e-01 -8.55718076e-01 1.29277658e+00 1.07947505e+00 8.95858034e-02 -3.11421722e-01 2.85518885e-01 3.62132311e-01 1.63037986e-01 7.49505818e-01 3.89800519e-01 -3.45124424e-01 6.51749313e-01 -2.95886844e-01 -3.40150028e-01 7.78205156e-01 7.59436131e-01 6.37663543e-01 3.40415061e-01 -6.47082329e-02 6.23634994e-01 5.52751005e-01 1.49742916e-01 2.09609866e-01 -4.16809142e-01 4.34649259e-01 1.06846881e+00 -6.18282020e-01 -1.52387810e+00 -5.56900084e-01 -8.60467494e-01 -1.63908744e+00 -2.41773844e-01 1.71650559e-01 -3.35128270e-02 -8.50366890e-01 1.93697703e+00 2.25340411e-01 4.60335225e-01 -1.00274704e-01 9.80008721e-01 9.63261127e-01 3.65094990e-01 1.61903817e-02 -1.76733807e-02 1.09281075e+00 -1.18572032e+00 -6.44617319e-01 -3.24554324e-01 7.13650227e-01 -1.35100320e-01 9.00203347e-01 6.34537488e-02 -5.30935705e-01 -4.65284497e-01 -8.79647195e-01 5.43664135e-02 -1.10580333e-01 -7.07081147e-03 1.23125768e+00 1.75268322e-01 -8.27389061e-01 7.79478550e-01 -7.29050279e-01 -4.37090665e-01 3.88255209e-01 5.00650167e-01 -4.63017404e-01 -1.31851777e-01 -1.11940908e+00 2.85952330e-01 5.29260695e-01 5.69577694e-01 -3.86454612e-01 -2.19767004e-01 -1.13430786e+00 5.73867559e-01 6.12110972e-01 -8.87730002e-01 3.82242501e-01 -1.10935044e+00 -9.94569063e-01 3.51560533e-01 -1.69595238e-02 -5.77994049e-01 5.77909611e-02 4.49139699e-02 -2.63448983e-01 -4.68186140e-02 1.30244553e-01 3.54579315e-02 8.87392521e-01 -9.69570279e-01 -2.96151731e-02 -4.93952870e-01 -4.63089384e-02 -2.25549638e-02 -4.67979580e-01 -4.43414986e-01 -4.00836349e-01 -7.60010421e-01 5.57059944e-01 -9.81108606e-01 -4.87912118e-01 -1.36041254e-01 -9.61116314e-01 -2.35654384e-01 5.80300927e-01 -6.45205736e-01 1.20963955e+00 -1.98365057e+00 5.32694995e-01 8.51262093e-01 1.00374544e+00 -2.94103706e-03 -2.33710662e-01 3.19208771e-01 -3.92060727e-01 2.85117179e-01 -3.55005234e-01 -2.57753938e-01 1.61580276e-02 3.72622341e-01 -1.92654595e-01 4.19218749e-01 1.52803093e-01 1.12380683e+00 -8.18649709e-01 -2.72856265e-01 -6.80470616e-02 4.41643506e-01 -6.10512972e-01 2.05656230e-01 -1.51784748e-01 5.16428530e-01 -7.03753650e-01 5.01096129e-01 3.55429083e-01 -1.00973284e+00 5.33774555e-01 -1.19018830e-01 4.58505005e-01 -1.49980247e-01 -9.16704297e-01 1.19480586e+00 -1.10500842e-01 5.68934798e-01 5.46771325e-02 -1.40700996e+00 9.32042301e-01 1.67608723e-01 1.69327617e-01 -1.55320838e-01 2.54352409e-02 2.16809750e-01 4.59318787e-01 -3.51273715e-01 3.39230336e-03 6.21961728e-02 1.52888864e-01 4.20200884e-01 -1.52717933e-01 5.09206057e-01 1.06072813e-01 5.71318090e-01 1.21144354e+00 -2.62606114e-01 4.56658751e-01 -1.84114844e-01 6.58372104e-01 -3.87207210e-01 5.61727881e-01 6.99834406e-01 1.98058382e-01 3.71169984e-01 8.03564250e-01 -6.89728141e-01 -7.64585853e-01 -7.52505898e-01 2.32395619e-01 9.98921037e-01 1.24396786e-01 -3.78812522e-01 -4.67681050e-01 -9.75456417e-01 1.92674145e-01 4.22516346e-01 -8.12136054e-01 -5.00313759e-01 -3.47208202e-01 -7.10247338e-01 2.63397843e-01 7.02681243e-01 3.50194812e-01 -9.93454814e-01 3.28856468e-01 4.19457443e-02 -3.78643163e-02 -1.05456173e+00 -5.69064379e-01 1.97513402e-01 -1.02193952e+00 -1.23082316e+00 -2.36896902e-01 -7.42347419e-01 1.13812780e+00 4.60750669e-01 9.10330772e-01 7.22388744e-01 -8.89561549e-02 2.63085812e-01 -2.69597977e-01 -6.63755387e-02 -1.23354688e-01 1.65526330e-01 1.93673596e-01 4.55820739e-01 -6.97001629e-03 -7.68457472e-01 -3.08157861e-01 1.70728147e-01 -9.61206496e-01 4.59942967e-01 7.61791766e-01 1.10246778e+00 4.46820736e-01 -6.49818182e-02 4.56430107e-01 -1.34322679e+00 8.32066000e-01 -7.01551437e-01 -4.16330427e-01 4.15164024e-01 -9.74845827e-01 5.82646906e-01 8.83891702e-01 -2.71592021e-01 -6.00009501e-01 -8.03622231e-02 2.13939860e-01 -6.57860637e-01 3.22447568e-01 1.13223040e+00 -2.12732702e-01 -2.18969882e-01 2.83495218e-01 6.22155629e-02 1.69191688e-01 -4.68653470e-01 2.51558691e-01 3.27233970e-02 2.00832263e-01 -1.66105717e-01 1.10306907e+00 2.18249261e-01 5.44576883e-01 -6.89166963e-01 -1.06752408e+00 -2.83734918e-01 -4.97325808e-01 -1.94651425e-01 7.87519217e-01 -5.79131961e-01 -7.53354132e-01 4.53320779e-02 -1.11383080e+00 -4.48236875e-02 1.71736196e-01 5.79918206e-01 -1.01741597e-01 6.13706231e-01 -6.62365139e-01 -7.39176750e-01 -5.70931613e-01 -9.70552802e-01 6.22832358e-01 3.16632837e-01 -3.25053371e-02 -1.50717723e+00 -1.83616161e-01 4.02602911e-01 1.90266788e-01 4.09147114e-01 1.42812002e+00 -1.10591590e+00 -7.07627237e-01 -2.55212724e-01 -6.17119014e-01 8.49700049e-02 1.03077792e-01 -2.84948438e-01 -4.57727492e-01 -3.58318031e-01 -3.56859863e-01 3.11296545e-02 1.08456481e+00 5.40570021e-01 1.26422894e+00 -6.32075429e-01 -4.62863475e-01 7.99630046e-01 1.27739990e+00 -3.59237432e-01 1.77402556e-01 2.50863787e-02 1.38958097e+00 4.88760799e-01 7.58573562e-02 2.00057819e-01 2.64739215e-01 4.75937009e-01 8.32514107e-01 -3.73348594e-01 2.67004132e-01 -5.10468602e-01 1.73890173e-01 8.75374794e-01 -3.78206313e-01 -5.43660820e-01 -7.98378706e-01 7.43564889e-02 -2.51032400e+00 -6.25772417e-01 -7.07412124e-01 1.93059385e+00 9.51455608e-02 8.54234323e-02 -2.17490405e-01 -7.70775676e-02 1.04268968e+00 1.89595312e-01 -8.13112557e-01 -2.36750752e-01 -1.26620531e-01 -1.30894631e-01 3.53421122e-01 5.43103695e-01 -8.75567853e-01 7.90070772e-01 4.84204769e+00 5.98300040e-01 -7.77567089e-01 -1.27007082e-01 6.86916173e-01 5.04218698e-01 -5.35885274e-01 1.62376747e-01 -3.74696225e-01 1.78624183e-01 5.60683250e-01 -7.61539936e-02 5.20657599e-01 8.78222466e-01 2.00978383e-01 4.32576507e-01 -1.03445280e+00 7.93831289e-01 8.41431394e-02 -1.25180221e+00 2.56777853e-01 3.16266775e-01 6.47801161e-01 -2.17073202e-01 -4.22776630e-03 2.19727561e-01 1.94771826e-01 -1.16547418e+00 1.52142271e-01 5.70237279e-01 3.91883552e-01 -6.20046556e-01 8.60488415e-01 3.92192304e-01 -1.43493426e+00 -2.36813337e-01 -3.76323193e-01 -2.74384677e-01 6.38118461e-02 7.45375216e-01 -9.36167181e-01 8.43150616e-01 3.20728004e-01 1.03310835e+00 -6.31375551e-01 8.29466462e-01 -6.52758241e-01 8.63403320e-01 -1.56600326e-01 -1.88517615e-01 2.38773510e-01 -6.57626629e-01 7.82101274e-01 5.81581593e-01 2.23306894e-01 9.49699432e-02 2.73458153e-01 1.05780697e+00 -2.06459492e-01 2.31013656e-01 -7.20007539e-01 -3.06411177e-01 5.65823093e-02 1.39960229e+00 -9.74066973e-01 -4.85595912e-02 -2.09535554e-01 9.93390381e-01 7.72736907e-01 5.09322405e-01 -8.35535109e-01 -1.35703593e-01 2.72186518e-01 4.49536927e-02 1.66543886e-01 -1.59730837e-01 -2.25929990e-01 -1.42818308e+00 -1.08885244e-01 -6.17858529e-01 6.98174715e-01 -5.62862039e-01 -1.52579844e+00 6.50851548e-01 -2.85847455e-01 -8.56065512e-01 -1.01435833e-01 -6.09263420e-01 -9.50226843e-01 5.78093290e-01 -1.34573531e+00 -1.33171737e+00 -3.98696393e-01 5.35497010e-01 3.12230587e-01 -2.35284507e-01 6.34556532e-01 4.27783243e-02 -1.06262934e+00 4.88982111e-01 2.17687085e-01 2.81552017e-01 2.51426369e-01 -1.29634118e+00 2.64675051e-01 9.37944949e-01 4.68695462e-01 8.38071942e-01 6.77226424e-01 -9.09607291e-01 -1.40329480e+00 -1.26644278e+00 7.30141640e-01 -3.10403458e-03 7.60883152e-01 -4.09332216e-01 -1.12898469e+00 9.85673666e-01 -8.69882628e-02 2.92775989e-01 6.56617939e-01 5.20809352e-01 -4.20545220e-01 6.40373379e-02 -6.70542300e-01 5.43465376e-01 1.15676475e+00 -2.76072234e-01 -1.81836523e-02 5.53071737e-01 8.83876741e-01 -5.86097278e-02 -7.03840256e-01 4.84194368e-01 4.79630262e-01 -7.86017537e-01 8.36587369e-01 -1.10798109e+00 5.96648932e-01 -1.81155846e-01 1.11252472e-01 -1.28429043e+00 -6.74624622e-01 -5.02772272e-01 -4.26471561e-01 1.03317177e+00 6.32596672e-01 -9.74075437e-01 9.07730818e-01 6.43974364e-01 -1.06257528e-01 -8.99721384e-01 -6.86416209e-01 -5.09834647e-01 -6.16111517e-01 -1.03109315e-01 4.09399152e-01 1.01213014e+00 -7.83640593e-02 9.26613033e-01 -6.72799289e-01 3.27274621e-01 8.63576591e-01 3.85136485e-01 7.40934491e-01 -1.69436491e+00 -5.76044619e-01 -4.01806116e-01 -5.09771526e-01 -8.90196383e-01 6.16634011e-01 -1.44944394e+00 -3.16443086e-01 -1.57794261e+00 4.69570994e-01 -2.51866072e-01 -2.72904426e-01 6.07786834e-01 -5.25558174e-01 6.76921103e-03 1.17042229e-01 3.19821388e-01 -6.39862895e-01 7.90248632e-01 1.06573749e+00 -2.72871315e-01 -1.85642332e-01 2.76684880e-01 -7.67464936e-01 8.32447410e-01 6.43303096e-01 -4.18879926e-01 -5.28017700e-01 -2.77225792e-01 4.20273781e-01 8.03906545e-02 5.13852537e-01 -6.16496444e-01 1.38558447e-01 3.36910561e-02 3.16695333e-01 -1.71504945e-01 -5.32726422e-02 -8.73052418e-01 2.68293411e-01 6.36077583e-01 -4.73382145e-01 -6.09739162e-02 -1.95653185e-01 1.23900485e+00 -1.30596459e-01 7.91334081e-03 3.59045506e-01 1.45447344e-01 -4.28634197e-01 7.17537224e-01 -6.85487017e-02 -3.13748360e-01 6.10965014e-01 -1.03425828e-03 -6.86202720e-02 -7.12331593e-01 -8.59182179e-01 4.71108079e-01 -3.39228809e-02 2.76867568e-01 7.71699250e-01 -1.44327700e+00 -6.52225435e-01 2.68132180e-01 8.26957300e-02 -1.06917970e-01 2.09109321e-01 1.20446396e+00 -1.91517100e-01 3.91764492e-01 2.47586399e-01 -5.58368206e-01 -1.29979181e+00 5.32062888e-01 1.89858079e-01 -7.59815812e-01 -7.40349770e-01 7.45415449e-01 6.01531863e-01 -5.89524865e-01 1.95835054e-01 -1.22501843e-01 -4.85775560e-01 -3.94430339e-01 1.79202668e-02 2.24075764e-01 -3.23538750e-01 -4.62043524e-01 -1.69545412e-01 3.25937390e-01 6.23139925e-02 5.65640330e-01 1.56154525e+00 -9.04682800e-02 -3.76706451e-01 2.64590234e-01 1.01908302e+00 -1.28791720e-01 -9.76599813e-01 -4.70783919e-01 1.54150113e-01 -2.90154982e-02 -2.27676798e-02 -4.00018394e-01 -1.36136818e+00 8.03816319e-01 -1.13752848e-02 6.69590235e-01 9.55282152e-01 8.15035477e-02 6.42149091e-01 3.95217925e-01 -6.53290376e-02 -4.18253005e-01 -5.48965186e-02 4.84056711e-01 9.57308531e-01 -1.37347209e+00 -2.68557388e-02 -9.16103721e-01 -4.10109401e-01 1.29500294e+00 6.92341447e-01 -1.06619392e-02 5.93189895e-01 -4.06491429e-01 -6.19655490e-01 -4.97212678e-01 -5.79501331e-01 -1.88794166e-01 7.55971253e-01 2.46686265e-01 2.82658815e-01 9.44811478e-02 -2.56631464e-01 9.39462543e-01 1.59849435e-01 -4.95746523e-01 1.88473687e-01 2.83947974e-01 -2.83175886e-01 -9.18969631e-01 -5.93291000e-02 7.41989315e-01 -1.89127520e-01 -3.60950619e-01 -6.87900245e-01 7.40282714e-01 -3.83972794e-01 7.98811913e-01 -2.99671590e-01 -4.95485455e-01 2.10462697e-02 -1.15646102e-01 2.12662835e-02 -6.67148292e-01 -3.19324523e-01 -4.81171906e-02 1.46025598e-01 -4.44021612e-01 -2.06642181e-01 -1.82381243e-01 -1.47013879e+00 -2.40320489e-01 -7.13846147e-01 5.14130950e-01 3.32211047e-01 1.11076927e+00 5.21009862e-01 6.04376733e-01 6.82835221e-01 -6.67399108e-01 -4.39793199e-01 -9.15087223e-01 -8.36297095e-01 4.34501976e-01 1.82905942e-01 -6.46344662e-01 -6.78944111e-01 -2.98166364e-01]
[7.380868434906006, 6.256572723388672]
7cb85883-603d-4ed8-a810-faeb333ffac6
word-reordering-for-zero-shot-cross-lingual
null
null
https://aclanthology.org/2021.emnlp-main.338
https://aclanthology.org/2021.emnlp-main.338.pdf
Word Reordering for Zero-shot Cross-lingual Structured Prediction
Adapting word order from one language to another is a key problem in cross-lingual structured prediction. Current sentence encoders (e.g., RNN, Transformer with position embeddings) are usually word order sensitive. Even with uniform word form representations (MUSE, mBERT), word order discrepancies may hurt the adaptation of models. In this paper, we build structured prediction models with bag-of-words inputs, and introduce a new reordering module to organizing words following the source language order, which learns task-specific reordering strategies from a general-purpose order predictor model. Experiments on zero-shot cross-lingual dependency parsing, POS tagging, and morphological tagging show that our model can significantly improve target language performances, especially for languages that are distant from the source language.
['Xiaoling Wang', 'Yuanbin Wu', 'Fei Huang', 'Zhongqiang Huang', 'Tao Wang', 'Yong Jiang', 'Tao Ji']
null
null
null
null
emnlp-2021-11
['morphological-tagging']
['natural-language-processing']
[ 4.87127192e-02 1.63076781e-02 -6.84508324e-01 -7.52131879e-01 -7.67568588e-01 -6.28554046e-01 4.46728356e-02 4.01088566e-01 -6.21604443e-01 6.44377887e-01 7.70702600e-01 -7.46451497e-01 3.80326092e-01 -6.82413220e-01 -8.27613354e-01 -1.27919629e-01 1.27903745e-02 5.49347520e-01 3.66196901e-01 -4.69444454e-01 5.44208474e-02 -2.42916811e-02 -8.01111102e-01 5.70228994e-01 1.09395337e+00 3.29087406e-01 6.23765588e-01 6.16592586e-01 -6.29276574e-01 6.15687549e-01 -2.61405110e-01 -7.86617935e-01 3.20780501e-02 -4.27807152e-01 -9.25935566e-01 -3.24702173e-01 2.63017356e-01 -9.25234705e-02 -1.37125209e-01 9.68126893e-01 1.64286271e-01 -2.82081030e-02 4.77446944e-01 -4.10142601e-01 -1.12891865e+00 1.29667783e+00 -7.37834722e-02 4.39122289e-01 2.24899836e-02 -1.18966028e-01 1.68793273e+00 -9.15317893e-01 7.01853573e-01 1.34579825e+00 6.94849312e-01 8.88482928e-01 -1.35316789e+00 -4.46403027e-01 4.58749771e-01 1.23426914e-01 -1.02768743e+00 -5.47643960e-01 7.37228990e-01 -2.91769475e-01 1.67024803e+00 -1.42896295e-01 2.14873865e-01 1.09356236e+00 6.79742575e-01 7.31664777e-01 6.84424639e-01 -9.87306893e-01 -5.46203852e-02 1.15923978e-01 5.22114158e-01 7.17900932e-01 3.83086443e-01 -8.05899277e-02 -5.67844987e-01 1.70471817e-02 2.35057548e-01 -3.17115963e-01 3.12012341e-02 -3.00490111e-01 -7.80847728e-01 1.06135726e+00 1.18666008e-01 6.44296408e-01 2.17679795e-02 -1.58758238e-01 6.81383073e-01 1.75033897e-01 8.50660324e-01 6.11692011e-01 -1.18496311e+00 -4.33117412e-02 -5.10505795e-01 -3.32295895e-01 7.92730689e-01 8.49615097e-01 8.42811763e-01 7.24444538e-02 -7.15857297e-02 1.17501426e+00 3.36533546e-01 3.46186727e-01 1.00910091e+00 -2.05224231e-01 7.32809603e-01 3.82258952e-01 -4.34544742e-01 -4.50760841e-01 -2.75577873e-01 -3.09543073e-01 -4.61581290e-01 -6.00566030e-01 5.92485368e-02 -2.35331804e-01 -8.18863988e-01 1.75156438e+00 -8.54596943e-02 -1.69141144e-01 4.70068276e-01 3.57508779e-01 6.07010961e-01 1.04251528e+00 5.79642773e-01 -2.41170287e-01 1.43956923e+00 -1.07506728e+00 -6.01229489e-01 -1.02729166e+00 1.19852364e+00 -6.44992888e-01 1.21169925e+00 4.86531120e-04 -1.06486297e+00 -7.64450669e-01 -8.92699242e-01 -4.16202486e-01 -3.79834950e-01 -3.89719568e-02 5.27843475e-01 4.06905174e-01 -9.55588698e-01 6.70692801e-01 -8.06769848e-01 -3.73340636e-01 -1.94224477e-01 1.87988743e-01 -4.92065102e-01 -1.51593283e-01 -1.63375831e+00 1.27770329e+00 8.09104264e-01 -3.96089137e-01 -2.56434411e-01 -7.54338622e-01 -1.29955161e+00 1.62912846e-01 -2.55144745e-01 -1.71592399e-01 1.38038468e+00 -8.82244289e-01 -1.50831318e+00 1.04280603e+00 -6.17919564e-01 -7.53138661e-01 -4.57064062e-01 -4.43502516e-01 -5.50864339e-01 -4.29067045e-01 3.21261317e-01 6.00823760e-01 2.89274782e-01 -8.34243476e-01 -9.03969586e-01 -3.40422451e-01 -3.72002780e-01 3.00757557e-01 -6.44571781e-01 3.76585186e-01 -1.89130038e-01 -5.09033382e-01 -1.67970896e-01 -6.05144203e-01 -4.92465496e-01 -9.91191387e-01 -1.40286654e-01 -8.44147027e-01 1.65026426e-01 -1.09667015e+00 1.60392785e+00 -2.02866054e+00 4.81729396e-02 -3.32510084e-01 -5.16563475e-01 3.17396581e-01 -2.77625412e-01 4.86202657e-01 -1.48167565e-01 4.24235642e-01 -1.11012615e-01 -5.23105919e-01 -3.40392813e-02 7.67813921e-01 -2.73518652e-01 1.45454437e-01 5.11858582e-01 9.18153286e-01 -9.27522659e-01 -5.66167355e-01 -5.41281328e-02 2.92238533e-01 -7.59376287e-01 4.13732141e-01 -2.88777292e-01 1.51560605e-01 3.07142381e-02 2.95872211e-01 2.54071087e-01 3.19053680e-02 7.79460788e-01 6.84479699e-02 -2.37073809e-01 1.53707600e+00 -3.47077608e-01 1.62158811e+00 -1.12397432e+00 2.81212986e-01 -4.52845246e-01 -9.51379001e-01 1.10829628e+00 3.31279844e-01 1.93537205e-01 -8.10398102e-01 -2.27672487e-01 3.33958238e-01 4.64088261e-01 -2.63225228e-01 6.57851577e-01 -4.68224436e-01 -5.39673328e-01 1.45349666e-01 6.25936925e-01 1.74458176e-01 3.25650305e-01 -1.35856271e-01 1.17772460e+00 2.00383455e-01 8.94290566e-01 -3.82801145e-01 3.22736651e-01 1.21221855e-01 1.02302158e+00 3.01077038e-01 -1.88145635e-03 3.20433676e-01 3.75815660e-01 -6.74440026e-01 -1.05280328e+00 -9.21195388e-01 -3.71458411e-01 1.93147182e+00 -1.66142434e-01 -7.07397580e-01 -4.55764115e-01 -1.11933339e+00 -1.23318031e-01 1.15210938e+00 -2.23359272e-01 -1.32049769e-01 -1.40869367e+00 -6.69674575e-01 4.58126396e-01 6.39657497e-01 -2.82728553e-01 -1.27449000e+00 1.46547243e-01 7.83935070e-01 -1.65457085e-01 -1.37201810e+00 -6.69247806e-01 9.47426677e-01 -1.01928377e+00 -6.42958641e-01 -1.59810513e-01 -1.50234294e+00 6.08763874e-01 -2.21043512e-01 1.64198995e+00 -1.28535911e-01 4.26310837e-01 -2.25632817e-01 -6.80786908e-01 -2.24232435e-01 -8.26885402e-01 6.96455181e-01 2.56146491e-01 -2.79330552e-01 8.40275884e-01 -2.96369016e-01 -6.08147979e-02 -1.06913485e-01 -5.87430656e-01 -1.21762063e-02 6.37539268e-01 9.53601062e-01 6.55629396e-01 -3.50452125e-01 2.86106795e-01 -1.34807050e+00 5.16033292e-01 -4.17906523e-01 -5.52603066e-01 3.73523086e-01 -5.84841728e-01 6.39757812e-01 1.19253457e+00 -2.28497908e-01 -1.17762637e+00 3.59168380e-01 -6.44427896e-01 2.70627439e-01 -2.62681663e-01 5.18934429e-01 -5.53402960e-01 4.23093945e-01 6.07754707e-01 3.29951346e-01 -5.16934812e-01 -9.57424521e-01 3.69146794e-01 5.86245358e-01 2.85787344e-01 -4.59936231e-01 5.53882360e-01 -3.77159059e-01 -5.42665362e-01 -6.37480557e-01 -1.20036066e+00 -6.00045979e-01 -1.09364605e+00 5.86066008e-01 9.33921337e-01 -9.27198589e-01 3.72063518e-02 -1.14425875e-01 -1.80757117e+00 -3.58024538e-01 -1.68419629e-01 4.47136581e-01 -8.21429677e-03 2.93441564e-01 -1.04875541e+00 -4.48038816e-01 -4.38529879e-01 -8.61421943e-01 9.14747417e-01 5.66477366e-02 -3.71279538e-01 -1.53161418e+00 6.68781877e-01 -3.44139407e-03 2.08756596e-01 -7.27840126e-01 1.39207637e+00 -1.16208863e+00 -9.32526588e-03 6.29055575e-02 2.06707925e-01 6.98047459e-01 3.06480169e-01 -3.04148972e-01 -5.30740380e-01 -8.24477300e-02 -2.65138090e-01 -1.06270507e-01 8.02526176e-01 3.08771670e-01 8.41453552e-01 -6.35593116e-01 -3.73767436e-01 6.34057522e-01 1.44713116e+00 2.93700427e-01 3.58502924e-01 2.91731447e-01 8.15202892e-01 6.08465493e-01 4.17366117e-01 -5.22437282e-02 6.44609630e-01 4.49660450e-01 2.89426297e-02 2.01556832e-01 -1.64944202e-01 -8.15840364e-01 9.43024635e-01 1.84913707e+00 4.59358990e-01 -4.33193356e-01 -1.04950023e+00 8.10609043e-01 -1.41565382e+00 -4.65480983e-01 3.95096466e-02 1.91982138e+00 1.31874597e+00 3.31083387e-01 -3.81969929e-01 -3.43668342e-01 7.34904170e-01 2.99079478e-01 -1.60143346e-01 -1.04468727e+00 3.63439620e-02 6.12749398e-01 8.31520379e-01 9.28219318e-01 -1.03898358e+00 1.76779485e+00 6.19048214e+00 7.01123834e-01 -1.02908576e+00 3.67631674e-01 5.35367608e-01 4.58685160e-01 -5.35689175e-01 2.84455150e-01 -1.68497050e+00 5.70962071e-01 1.38548815e+00 -1.05610751e-01 1.26334548e-01 1.15867293e+00 -1.49223298e-01 4.48552698e-01 -1.23157561e+00 5.26915669e-01 2.72532165e-01 -1.17398775e+00 9.83468071e-02 -1.47312909e-01 4.50281322e-01 3.87194544e-01 -4.29706424e-01 7.28119075e-01 8.88358295e-01 -9.59812164e-01 2.92523205e-01 -1.90516427e-01 7.85045564e-01 -7.66088843e-01 8.54280174e-01 4.13391292e-01 -1.21460569e+00 3.43033940e-01 -8.71216297e-01 -2.04824254e-01 4.65795428e-01 5.14662266e-01 -9.81080711e-01 3.93964380e-01 3.82233411e-01 8.55545878e-01 -6.07572258e-01 4.91293997e-01 -7.24891484e-01 1.18042052e+00 3.36636826e-02 -4.24423128e-01 1.92531496e-01 6.38271943e-02 3.01734418e-01 1.69120097e+00 2.27072090e-01 -9.14644822e-02 3.49163890e-01 -6.30497709e-02 -1.97716653e-01 6.40205443e-01 -6.77578926e-01 4.75839600e-02 3.91238362e-01 1.07844603e+00 -3.22556257e-01 -2.80823559e-01 -7.06741691e-01 1.14148366e+00 1.05863988e+00 -1.12846233e-01 -4.09931481e-01 -3.06704819e-01 1.01009870e+00 9.34087783e-02 5.28688788e-01 -4.91532147e-01 -2.76509285e-01 -1.26013637e+00 -3.00530754e-02 -6.07380092e-01 4.26629394e-01 -2.89291263e-01 -1.68909383e+00 9.18352127e-01 -2.76347578e-01 -9.38624203e-01 -4.13070828e-01 -1.18510568e+00 -6.73078001e-01 7.84422278e-01 -1.68041229e+00 -9.78546917e-01 8.67144406e-01 -6.56347275e-02 1.07728148e+00 -3.09049398e-01 1.27241194e+00 2.40761086e-01 -5.02083659e-01 7.20013976e-01 1.27214104e-01 5.76582789e-01 7.51580358e-01 -1.37519252e+00 9.53008473e-01 1.09754944e+00 7.72239387e-01 5.78329682e-01 4.69774008e-01 -6.83416367e-01 -1.11539972e+00 -1.30233026e+00 2.05358601e+00 -4.57955539e-01 9.55392718e-01 -7.28417218e-01 -1.14087641e+00 9.05456543e-01 5.16187489e-01 1.93873480e-01 1.13387883e+00 7.64654875e-01 -3.59149247e-01 -1.76723674e-01 -4.25016224e-01 6.76449299e-01 1.21759248e+00 -4.80484962e-01 -1.03224790e+00 3.39771986e-01 1.15584826e+00 -2.09531114e-01 -6.46504402e-01 2.80481905e-01 2.70372808e-01 -5.29509723e-01 6.54276073e-01 -1.17057168e+00 5.48711479e-01 2.73535311e-01 -2.40443379e-01 -1.90019953e+00 -9.88186717e-01 -3.88436019e-01 -2.29630759e-03 1.44497418e+00 8.92604053e-01 -5.10155380e-01 6.55994177e-01 1.44316107e-01 -4.50760186e-01 -5.48112273e-01 -9.15241063e-01 -1.12605870e+00 6.34649336e-01 -4.67687041e-01 4.33419526e-01 7.79502571e-01 3.46855670e-01 1.21044958e+00 -3.52258056e-01 2.54942834e-01 2.51406133e-01 -9.54544991e-02 1.94603369e-01 -1.11486232e+00 -5.51788509e-01 -1.35571167e-01 -3.04506004e-01 -1.46175337e+00 8.82034481e-01 -1.33657765e+00 5.65074503e-01 -1.44606364e+00 -2.81526037e-02 -5.28950810e-01 -6.26720786e-01 6.75025582e-01 -4.64261144e-01 -7.09172040e-02 1.87036989e-03 -2.43381225e-02 -6.12721562e-01 5.38877785e-01 6.87728405e-01 2.82208920e-02 -7.80281276e-02 -2.15399355e-01 -6.65853798e-01 8.49484444e-01 1.03862655e+00 -1.00606227e+00 5.07671237e-02 -1.07754540e+00 3.29729497e-01 -5.31530865e-02 -4.08625513e-01 -7.04631448e-01 6.72953716e-03 -1.61644980e-01 2.24882036e-01 -3.70912373e-01 -1.06745139e-01 -6.69962049e-01 -5.73489666e-01 4.72661316e-01 -4.98928159e-01 4.04430568e-01 1.77200407e-01 1.69164956e-01 -3.16502571e-01 -8.37408423e-01 6.54709220e-01 -2.56266683e-01 -1.00897503e+00 2.81522602e-01 -4.36350346e-01 4.89185333e-01 4.43696737e-01 1.38665766e-01 -5.23945391e-02 1.04398347e-01 -3.83978605e-01 -9.06467587e-02 2.39094585e-01 7.59051919e-01 1.73003286e-01 -1.35561097e+00 -8.06564331e-01 3.07203472e-01 3.04849952e-01 -2.09940717e-01 -2.42618755e-01 1.04039453e-01 -2.55517483e-01 6.65163517e-01 -9.53422487e-03 -1.84400558e-01 -1.27361798e+00 4.45434570e-01 5.57768531e-02 -1.00133586e+00 -3.94989192e-01 1.11218393e+00 2.71066606e-01 -8.51416111e-01 -1.18483879e-01 -6.22142136e-01 -2.84733057e-01 -1.95376009e-01 3.98851395e-01 -2.79355347e-01 3.03761065e-01 -7.76903152e-01 -6.28154874e-01 3.74893904e-01 -4.48153347e-01 1.09516181e-01 1.46386933e+00 -7.99814612e-02 -1.43944219e-01 6.37894511e-01 1.20090461e+00 3.96971047e-01 -9.60394502e-01 -4.94264901e-01 7.80331612e-01 2.54985578e-02 -1.98709503e-01 -5.11420548e-01 -5.34938693e-01 1.05773461e+00 5.57056554e-02 1.52427331e-01 6.64979815e-01 2.49170497e-01 1.20519137e+00 2.97387868e-01 3.15784216e-01 -1.22214293e+00 -2.48189837e-01 1.41644847e+00 4.25640672e-01 -1.44590306e+00 -4.35632855e-01 -2.77686685e-01 -7.05192924e-01 1.10778356e+00 8.85484993e-01 -2.69434124e-01 6.98932111e-01 4.22185719e-01 1.23619124e-01 3.06468248e-01 -1.11422801e+00 -3.02834004e-01 4.07203287e-01 5.11309266e-01 1.17960870e+00 2.70702124e-01 -5.80524325e-01 1.01455927e+00 -4.54213768e-01 -6.29520893e-01 3.03480625e-02 7.02578068e-01 -6.68444753e-01 -1.89604211e+00 8.15969147e-03 3.29488575e-01 -7.40753531e-01 -8.85027289e-01 -1.20309010e-01 4.81532514e-01 3.22930664e-01 7.18832672e-01 5.00094414e-01 -2.39793733e-01 3.46596330e-01 6.40393972e-01 3.11820686e-01 -1.41705573e+00 -7.00101256e-01 -1.73297614e-01 4.63406175e-01 -2.82509744e-01 1.02689937e-01 -5.81827343e-01 -1.30895972e+00 2.03039497e-01 -1.15621328e-01 3.42333466e-01 4.72669780e-01 1.10507369e+00 3.12014371e-01 3.44669342e-01 6.07333004e-01 -4.00450051e-01 -4.41878021e-01 -1.23044229e+00 -3.83219838e-01 2.60703892e-01 9.44642872e-02 -1.01939857e-01 -1.29310101e-01 2.79143095e-01]
[10.511908531188965, 9.765788078308105]
0a9e1d5c-5ff8-4a99-9edd-833347621d04
gesture2path-imitation-learning-for-gesture
2209.09375
null
https://arxiv.org/abs/2209.09375v1
https://arxiv.org/pdf/2209.09375v1.pdf
Gesture2Path: Imitation Learning for Gesture-aware Navigation
As robots increasingly enter human-centered environments, they must not only be able to navigate safely around humans, but also adhere to complex social norms. Humans often rely on non-verbal communication through gestures and facial expressions when navigating around other people, especially in densely occupied spaces. Consequently, robots also need to be able to interpret gestures as part of solving social navigation tasks. To this end, we present Gesture2Path, a novel social navigation approach that combines image-based imitation learning with model-predictive control. Gestures are interpreted based on a neural network that operates on streams of images, while we use a state-of-the-art model predictive control algorithm to solve point-to-point navigation tasks. We deploy our method on real robots and showcase the effectiveness of our approach for the four gestures-navigation scenarios: left/right, follow me, and make a circle. Our experiments indicate that our method is able to successfully interpret complex human gestures and to use them as a signal to generate socially compliant trajectories for navigation tasks. We validated our method based on in-situ ratings of participants interacting with the robots.
['Sören Pirk', 'Alexander Toshev', 'Tingnan Zhang', 'Leila Takayama', 'Anthony Francis', 'Emre Fisher', 'Edward Lee', 'Catie Cuan']
2022-09-19
null
null
null
null
['social-navigation']
['robots']
[ 1.11574784e-01 3.48329186e-01 1.94824219e-01 -4.80994403e-01 -7.55496919e-02 -4.32743073e-01 8.95721018e-01 -4.44653332e-01 -7.54132688e-01 5.83895981e-01 2.20549345e-01 3.79534177e-02 -7.45564401e-02 -4.52366382e-01 -5.39635718e-01 -2.77728558e-01 -3.60132188e-01 8.20241451e-01 5.70638888e-02 -5.52806616e-01 3.69989097e-01 6.04933977e-01 -1.57178676e+00 9.08683836e-02 5.63541114e-01 5.54563284e-01 2.86073595e-01 9.10555840e-01 2.25695506e-01 8.32941234e-01 -2.50050634e-01 6.91191629e-02 1.87093690e-01 -4.69592959e-01 -6.43744588e-01 -7.10495189e-02 -2.62971312e-01 -5.92333436e-01 -1.69293761e-01 5.18782258e-01 3.90615404e-01 5.91299295e-01 1.10056984e+00 -1.58511233e+00 -2.94103742e-01 5.74956477e-01 3.78185362e-02 -6.65318429e-01 1.00581098e+00 5.18556237e-01 7.00873435e-01 -6.24426842e-01 9.88522887e-01 1.62973702e+00 5.50199389e-01 9.94815588e-01 -1.13275659e+00 -6.24123514e-01 2.31576398e-01 2.70261914e-01 -1.08110440e+00 -4.31202978e-01 3.65091294e-01 -5.14346838e-01 1.06929314e+00 4.86285128e-02 1.04855061e+00 1.61469460e+00 -3.05818170e-02 7.92169392e-01 6.90343678e-01 -3.95641297e-01 4.65536714e-01 -1.45798758e-01 -4.62247699e-01 5.44644058e-01 -1.44711792e-01 2.72237986e-01 -6.65861666e-01 7.84177706e-02 1.01757503e+00 -6.07522987e-02 -1.15927905e-01 -6.86856568e-01 -1.51299119e+00 6.18509054e-01 9.12523746e-01 3.17932725e-01 -7.00605154e-01 6.86413586e-01 -1.82319775e-01 2.16929778e-01 -1.83985889e-01 5.30054092e-01 -1.58168271e-01 -7.30105937e-01 -2.12816283e-01 5.74354410e-01 1.12031674e+00 1.14615035e+00 3.36631626e-01 -4.72942352e-01 4.49687056e-02 6.83112383e-01 7.72465944e-01 5.87408543e-01 3.97283077e-01 -1.67046368e+00 2.69210368e-01 6.29245281e-01 6.74320817e-01 -9.38451111e-01 -6.49340749e-01 5.50808489e-01 -4.75668997e-01 6.84486449e-01 5.14830589e-01 -2.15929925e-01 -5.95693111e-01 1.66061902e+00 3.48822594e-01 -1.91057622e-01 -3.65870595e-02 1.20075083e+00 3.36283594e-01 3.66105795e-01 3.43424588e-01 2.30654284e-01 9.18937266e-01 -1.09357941e+00 -5.91216505e-01 -1.86460108e-01 8.23081553e-01 -2.07267210e-01 1.21970546e+00 5.28165877e-01 -5.87505937e-01 -3.06061864e-01 -7.61647224e-01 8.24832544e-02 -2.33110443e-01 1.44546643e-01 4.49248165e-01 3.46005499e-01 -9.76760864e-01 7.02724159e-01 -1.09885740e+00 -1.14753950e+00 2.47001410e-01 5.02865791e-01 -6.27399564e-01 1.46588534e-01 -6.14686668e-01 1.04268086e+00 6.25329651e-03 1.95003018e-01 -7.00792134e-01 1.68207124e-01 -7.55232275e-01 -2.40813851e-01 -6.57394603e-02 -6.52973413e-01 1.54038072e+00 -9.19760227e-01 -2.10751390e+00 6.37365162e-01 -6.38000742e-02 -2.41128013e-01 1.08800864e+00 -6.99626148e-01 1.62000790e-01 2.82578498e-01 1.15316242e-01 1.31576145e+00 5.38506687e-01 -1.58387339e+00 -4.17493761e-01 -2.45119944e-01 -5.57571426e-02 5.24949670e-01 -1.68323115e-01 -1.37077972e-01 -1.91889465e-01 -3.06997478e-01 1.19744487e-01 -1.58728933e+00 -4.06060487e-01 5.84115744e-01 -4.86245811e-01 -2.52472460e-01 8.55884910e-01 -2.62469679e-01 4.95832741e-01 -1.99526465e+00 5.89478374e-01 5.55004835e-01 -1.83998987e-01 8.92078225e-03 -2.13800520e-01 6.10782444e-01 5.66304028e-01 -4.11020555e-02 -1.01873249e-01 -6.94277048e-01 3.55318546e-01 3.89087707e-01 -1.13982812e-01 3.57672215e-01 -1.59944415e-01 9.19145405e-01 -1.17357779e+00 -3.58491749e-01 4.51483518e-01 5.94740450e-01 -5.26436329e-01 5.06191909e-01 -3.43699694e-01 1.27777505e+00 -5.31923652e-01 3.70412588e-01 -1.74375519e-01 3.50438878e-02 3.40782374e-01 5.69217622e-01 -7.24487454e-02 -1.23037338e-01 -9.28345621e-01 1.78657293e+00 -5.52401006e-01 6.81137741e-01 2.68924773e-01 -4.37893003e-01 7.77610064e-01 1.85906500e-01 2.96798855e-01 -5.02166331e-01 4.34470564e-01 3.79709065e-01 -9.74089205e-02 -1.00157177e+00 2.07878470e-01 2.04674318e-01 -8.36586803e-02 8.84985745e-01 -4.47482347e-01 -6.31576836e-01 -1.35787562e-01 1.99790969e-02 1.11136866e+00 8.09345901e-01 9.41649154e-02 1.72304109e-01 3.96237105e-01 1.37527119e-02 -1.83259636e-01 8.41649055e-01 -2.93638289e-01 4.75487173e-01 2.30365992e-01 -3.73155743e-01 -9.38068449e-01 -1.07612538e+00 7.06244528e-01 1.45972931e+00 2.95985758e-01 3.18355151e-02 -8.08491647e-01 -4.21171278e-01 -3.89673747e-02 1.07726908e+00 -5.90026915e-01 5.38944229e-02 -7.61648238e-01 2.45751873e-01 6.09330416e-01 4.33379710e-01 4.79367554e-01 -1.73137212e+00 -1.38001621e+00 1.05818674e-01 -1.72404811e-01 -1.01785159e+00 -1.59417763e-01 -2.23784849e-01 -5.37368238e-01 -1.20610034e+00 -8.76355171e-01 -8.27004790e-01 8.86059403e-01 1.81457177e-01 4.12286788e-01 2.25223809e-01 4.68264930e-02 1.13997483e+00 -7.92116702e-01 -3.75639647e-01 -6.60048246e-01 6.27799854e-02 3.39343369e-01 -8.20768476e-02 2.12724775e-01 -8.89657438e-01 -5.86506546e-01 7.03974485e-01 -3.71776670e-01 1.23118483e-01 5.49553990e-01 5.50123632e-01 -1.33002743e-01 -8.77538383e-01 1.88494250e-01 -1.19340777e-01 9.52693284e-01 -3.12516749e-01 -2.63209552e-01 9.63657498e-02 -1.95173040e-01 -4.44173180e-02 8.35248902e-02 -7.42960036e-01 -9.59104002e-01 6.08142018e-01 1.71983227e-01 -1.32078260e-01 -4.91527885e-01 1.27249762e-01 2.33382910e-01 -9.66405421e-02 7.95029402e-01 -7.54666403e-02 4.93582577e-01 -5.53734861e-02 7.64143765e-01 1.07332766e+00 4.81533140e-01 -5.66966116e-01 6.13847494e-01 6.14457130e-01 -6.71734065e-02 -1.16795230e+00 2.29390666e-01 -2.61214346e-01 -1.07127059e+00 -9.05138493e-01 9.23566580e-01 -5.98493040e-01 -1.58431339e+00 6.43069565e-01 -1.32889009e+00 -1.23405397e+00 7.16737881e-02 6.52659178e-01 -1.13515484e+00 9.57903638e-02 -4.50284928e-01 -1.25579190e+00 7.14043900e-02 -1.15199995e+00 1.29040694e+00 1.31568104e-01 -1.07678187e+00 -5.32603800e-01 1.79873351e-02 1.03350192e-01 5.82067490e-01 3.12308997e-01 4.63030219e-01 -5.79651296e-01 -4.58538890e-01 -2.18581140e-01 -4.66412492e-02 -3.31867754e-01 -1.07661709e-02 -1.73203796e-01 -5.76459765e-01 3.67276482e-02 -6.36948168e-01 -6.69951737e-01 2.72835612e-01 9.28654447e-02 5.51426411e-01 -2.66230226e-01 -6.11387134e-01 1.04795709e-01 4.48570818e-01 3.24108034e-01 5.29191613e-01 4.19040918e-01 5.90132236e-01 1.14353037e+00 7.20170021e-01 4.12906736e-01 7.25636959e-01 9.61222470e-01 4.51978922e-01 6.39451981e-01 2.64218301e-01 -4.78231907e-01 5.95011532e-01 1.94655880e-01 -4.87037063e-01 -2.09934697e-01 -1.07304597e+00 2.03863382e-01 -2.25373387e+00 -7.29739547e-01 -2.05098644e-01 1.80099273e+00 4.40774888e-01 -2.60251135e-01 9.12353247e-02 -1.50070369e-01 4.93089080e-01 -4.60829467e-01 -5.98845780e-01 -3.46055686e-01 4.28123742e-01 -3.61894757e-01 1.55200049e-01 5.68277061e-01 -9.31250095e-01 1.19956195e+00 6.13568926e+00 -9.95389298e-02 -1.06153703e+00 -1.77203655e-01 1.91488534e-01 -1.92663044e-01 2.38958880e-01 -3.43938917e-01 -1.77191749e-01 9.32119265e-02 5.82998157e-01 4.68198866e-01 8.57240796e-01 1.01373124e+00 5.91507018e-01 -5.95037282e-01 -1.52506387e+00 1.06752217e+00 -4.14737687e-02 -6.96016371e-01 -3.45786184e-01 1.01764463e-01 4.16542113e-01 -1.23692125e-01 -2.12360203e-01 3.22045922e-01 5.71761966e-01 -1.41803491e+00 1.02173531e+00 7.97434032e-01 5.29643297e-01 -1.51340112e-01 3.94618005e-01 7.41671085e-01 -9.41178739e-01 -4.00617361e-01 2.84355998e-01 -5.87821960e-01 5.73396266e-01 -5.22133470e-01 -1.14853847e+00 -3.37614775e-01 7.88053751e-01 6.67797685e-01 1.24583691e-02 6.95956707e-01 -7.41803169e-01 -4.31626849e-02 -6.63531363e-01 -9.41592336e-01 1.55519232e-01 -3.05317342e-01 6.31126761e-01 9.08651590e-01 5.65209925e-01 3.50312203e-01 5.07931821e-02 7.74985671e-01 3.10918361e-01 -5.46101071e-02 -1.01540959e+00 4.25039604e-02 4.14804518e-01 7.42586374e-01 -8.77541065e-01 3.45023326e-03 2.47314528e-01 1.32177496e+00 2.77978718e-01 5.26106417e-01 -5.61201155e-01 -2.19267175e-01 6.62047446e-01 -1.06969588e-01 6.05482124e-02 -8.55868995e-01 -1.70174718e-01 -7.28630066e-01 2.48599257e-02 -6.54163122e-01 -3.45425427e-01 -1.20981073e+00 -8.89782369e-01 4.40223634e-01 8.38706121e-02 -1.39915586e+00 -8.38800073e-01 -5.81385672e-01 -4.77625817e-01 3.13517213e-01 -8.34421277e-01 -1.32972240e+00 -8.43034446e-01 3.91702175e-01 5.12480676e-01 -8.63014981e-02 1.03512430e+00 -2.25284681e-01 1.01738796e-01 1.32891357e-01 -2.30396360e-01 1.17679365e-01 6.86849296e-01 -8.86886656e-01 2.83825338e-01 7.54667670e-02 -1.65481776e-01 6.87563717e-01 6.59273863e-01 -7.31050909e-01 -1.35016215e+00 -5.81270874e-01 6.07262552e-01 -6.29143357e-01 5.06917179e-01 -4.96932775e-01 -2.82553166e-01 1.04888952e+00 -6.72462732e-02 -3.65605652e-01 4.43042159e-01 -1.48721844e-01 -6.61988705e-02 4.27136213e-01 -1.22178018e+00 1.16160154e+00 1.67169940e+00 -2.29892716e-01 -7.55723774e-01 2.35814497e-01 3.90641302e-01 -2.99257189e-01 -1.78268939e-01 -1.87067557e-02 1.22983301e+00 -9.79209602e-01 7.75361836e-01 -4.07846928e-01 4.30738479e-01 -2.31079206e-01 -2.33292848e-01 -1.43171501e+00 9.38583314e-02 -7.33730912e-01 2.61126906e-01 6.21731639e-01 3.83108765e-01 -7.23171175e-01 7.59064436e-01 9.91941035e-01 3.11502337e-01 -2.50116944e-01 -1.15220094e+00 -6.13443315e-01 -2.71089315e-01 -6.90544069e-01 4.07041699e-01 4.39652592e-01 6.88196421e-01 1.33809373e-01 -3.73073310e-01 -1.01732649e-01 3.18262577e-01 -4.99140710e-01 1.43707871e+00 -1.21625793e+00 1.06380535e-02 -6.39519930e-01 -3.62242579e-01 -1.27897882e+00 3.25785488e-01 -5.40925503e-01 7.82928467e-01 -1.65081012e+00 -3.52671117e-01 -5.75376928e-01 6.55672610e-01 4.31656092e-01 4.70090181e-01 1.18589789e-01 6.21729672e-01 5.03140152e-01 -7.70840824e-01 9.17105556e-01 1.09707499e+00 1.24821709e-02 -6.30874574e-01 -2.73911525e-02 -5.07452637e-02 8.94012570e-01 6.74617112e-01 -2.48991370e-01 -1.89793125e-01 -2.05598056e-01 3.17191571e-01 2.73624007e-02 7.13234842e-01 -1.23495293e+00 5.62708676e-01 -2.07558438e-01 3.03984404e-01 -1.09421998e-01 7.91077197e-01 -1.08758843e+00 2.44204149e-01 8.76844227e-01 -5.98943949e-01 -1.99143454e-01 -2.42927000e-01 6.73257113e-01 2.86696106e-01 6.58216476e-02 2.68134028e-01 -1.51077136e-01 -7.43977070e-01 -3.38849217e-01 -1.01645911e+00 -5.72626412e-01 1.35615396e+00 -3.50842774e-01 5.17745353e-02 -1.16742802e+00 -9.74260092e-01 7.25437403e-01 6.36329651e-01 7.41050839e-01 7.51901209e-01 -1.25551832e+00 -3.53370011e-01 2.56006539e-01 1.90561011e-01 -5.27325273e-02 -1.15544043e-01 7.33298540e-01 -9.77167368e-01 2.78363258e-01 -2.62382865e-01 -8.47675025e-01 -1.08884525e+00 -1.56407934e-02 4.00567710e-01 3.04461122e-01 -5.86291969e-01 8.32553267e-01 -2.13677838e-01 -1.16188133e+00 5.55699885e-01 -4.65360761e-01 -4.32374120e-01 -1.57921001e-01 4.09798354e-01 5.00198960e-01 -8.30748677e-01 -7.99913406e-01 -2.78313249e-01 7.18763530e-01 7.34821379e-01 -8.36241305e-01 1.45422232e+00 -2.20314026e-01 9.37433615e-02 6.46230400e-01 7.90710747e-01 -4.45329607e-01 -1.62851596e+00 1.86433896e-01 -2.69102119e-02 -3.52339864e-01 -8.74134302e-01 -8.75258744e-01 -3.57541829e-01 6.89722657e-01 5.35856605e-01 2.65218634e-02 4.96358544e-01 -1.73867978e-02 6.46855295e-01 1.25282753e+00 1.05126882e+00 -1.30855596e+00 6.52549684e-01 6.83323801e-01 1.46655405e+00 -1.33466840e+00 -2.40626231e-01 -2.62256175e-01 -8.69948506e-01 1.23376048e+00 4.85484332e-01 -2.54433751e-01 6.66605473e-01 -1.30378261e-01 2.67825514e-01 1.00492977e-01 -3.17534804e-01 -3.31119671e-02 -1.72612175e-01 1.03247511e+00 5.01189269e-02 3.51077378e-01 -2.35289354e-02 3.04604441e-01 -4.91382957e-01 2.32488200e-01 5.19919395e-01 1.18035758e+00 -5.08258998e-01 -8.80820036e-01 -5.39040327e-01 4.88840789e-02 4.86482978e-01 5.96806228e-01 -7.45924711e-01 9.25937772e-01 -2.52520561e-01 1.35327077e+00 -4.99782227e-02 -5.91912746e-01 5.52894115e-01 1.47959515e-01 5.09737372e-01 -4.22432870e-01 -4.14253086e-01 -2.88187385e-01 1.44215301e-01 -1.11707985e+00 -6.27415359e-01 -9.68408644e-01 -1.72475421e+00 -8.43020827e-02 3.16987514e-01 -3.62294495e-01 9.47377861e-01 1.11477327e+00 3.02253127e-01 3.78724299e-02 2.81834811e-01 -2.05473852e+00 -4.03009713e-01 -1.24372256e+00 -1.72181666e-01 5.25698543e-01 2.28222162e-01 -8.90145242e-01 -3.47292751e-01 3.46315205e-02]
[5.061191558837891, 0.5625148415565491]
4fdcf9a3-bdaa-4d66-813d-1a34e359b252
large-displacement-3d-object-tracking-with
2207.12620
null
https://arxiv.org/abs/2207.12620v1
https://arxiv.org/pdf/2207.12620v1.pdf
Large-displacement 3D Object Tracking with Hybrid Non-local Optimization
Optimization-based 3D object tracking is known to be precise and fast, but sensitive to large inter-frame displacements. In this paper we propose a fast and effective non-local 3D tracking method. Based on the observation that erroneous local minimum are mostly due to the out-of-plane rotation, we propose a hybrid approach combining non-local and local optimizations for different parameters, resulting in efficient non-local search in the 6D pose space. In addition, a precomputed robust contour-based tracking method is proposed for the pose optimization. By using long search lines with multiple candidate correspondences, it can adapt to different frame displacements without the need of coarse-to-fine search. After the pre-computation, pose updates can be conducted very fast, enabling the non-local optimization to run in real time. Our method outperforms all previous methods for both small and large displacements. For large displacements, the accuracy is greatly improved ($81.7\% \;\text{v.s.}\; 19.4\%$). At the same time, real-time speed ($>$50fps) can be achieved with only CPU. The source code is available at \url{https://github.com/cvbubbles/nonlocal-3dtracking}.
['Xueying Qin', 'Fan Zhong', 'Xinran Lin', 'Xuhui Tian']
2022-07-26
null
null
null
null
['3d-object-tracking']
['computer-vision']
[-2.53640950e-01 -4.61738527e-01 6.92837453e-03 3.36232521e-02 -9.40038562e-01 -5.55368066e-01 1.32061347e-01 2.34715551e-01 -5.51708937e-01 6.06806576e-01 -4.49432641e-01 -1.36325091e-01 4.82585207e-02 -6.37215555e-01 -5.85724115e-01 -6.93677366e-01 3.70162725e-02 5.24317563e-01 8.21015120e-01 1.09057650e-01 2.72207469e-01 8.12722743e-01 -1.36428261e+00 -5.30562341e-01 7.17482448e-01 9.91515577e-01 2.94355720e-01 7.47360706e-01 -9.95479617e-03 -2.71433182e-02 -5.53320646e-01 -7.12590069e-02 2.78422594e-01 -3.41897368e-01 -2.23814577e-01 5.59959114e-02 4.51398700e-01 -2.92872518e-01 8.60131010e-02 1.16588438e+00 9.28747654e-01 2.32274145e-01 2.68941432e-01 -8.20380569e-01 2.16140017e-01 -1.96668774e-01 -9.49977994e-01 1.68579713e-01 4.44944739e-01 1.42106503e-01 3.54778498e-01 -9.96186674e-01 6.84679329e-01 9.17365789e-01 9.03101981e-01 3.85705262e-01 -1.08165872e+00 -8.16240489e-01 -3.68707813e-02 -1.18729144e-01 -1.69751525e+00 -3.77560645e-01 8.14175248e-01 -4.28236663e-01 5.14508247e-01 4.15058136e-01 7.92909980e-01 2.29250252e-01 4.58892673e-01 1.33975387e-01 8.68185163e-01 -4.08349991e-01 7.81868026e-02 -2.91318893e-01 -1.47166133e-01 8.26315045e-01 4.55181748e-01 2.86657840e-01 -2.60849208e-01 -1.93122178e-01 1.19268870e+00 -9.59584210e-03 -4.33123022e-01 -4.72310275e-01 -1.37634766e+00 5.09768665e-01 3.82718116e-01 2.38714218e-01 -2.56932080e-01 3.03108364e-01 2.34963104e-01 -9.51575637e-02 4.74554479e-01 5.92660308e-02 -3.54520410e-01 -4.24128652e-01 -9.26005065e-01 5.18702269e-01 5.06894410e-01 8.65290105e-01 7.78050125e-01 1.89062413e-02 1.35493474e-02 5.24255991e-01 4.54871625e-01 8.64745438e-01 1.58388808e-01 -1.06091845e+00 2.53102720e-01 4.08245653e-01 4.36857343e-01 -1.13322365e+00 -7.35376060e-01 -4.82232720e-01 -7.38309979e-01 5.41132390e-01 6.49669409e-01 -2.08709806e-01 -6.67834282e-01 1.28404403e+00 1.04882276e+00 3.26531798e-01 -4.02074784e-01 9.35808659e-01 5.45530438e-01 5.63271880e-01 -2.58446097e-01 -7.08226740e-01 1.22910380e+00 -6.57191575e-01 -8.21880519e-01 4.62472513e-02 5.33475637e-01 -1.26019919e+00 7.18631566e-01 1.42745748e-01 -1.14010489e+00 -6.28869772e-01 -9.05781150e-01 2.56002784e-01 1.46242663e-01 -1.41217247e-01 1.78975239e-01 4.44175631e-01 -8.95174563e-01 6.03781998e-01 -1.04724693e+00 -2.21068621e-01 3.07820410e-01 6.16409004e-01 6.10431619e-02 5.34105673e-02 -6.22992456e-01 7.55364180e-01 3.81640643e-01 1.31338716e-01 -1.98455468e-01 -6.22318268e-01 -5.08021414e-01 -3.19024712e-01 6.58112466e-01 -4.85754997e-01 1.16869140e+00 -3.33092779e-01 -1.71930325e+00 6.92248106e-01 -4.84953701e-01 -3.30676213e-02 5.85562706e-01 -3.80531728e-01 -4.69164439e-02 1.30453482e-01 -4.28266786e-02 3.42634380e-01 7.63374329e-01 -1.16249681e+00 -3.26298565e-01 -3.47499639e-01 -3.71270418e-01 2.52425909e-01 -4.83780121e-03 1.43887952e-01 -9.21226501e-01 -6.88152373e-01 4.37305480e-01 -1.19147086e+00 -2.77725160e-01 2.97857761e-01 -7.61155188e-02 2.76374575e-02 9.16759312e-01 -4.61992294e-01 1.35290754e+00 -2.03423166e+00 -1.84954852e-01 9.29753184e-02 1.83843151e-01 4.48094070e-01 2.87522495e-01 1.03692442e-01 2.32752070e-01 -2.58664876e-01 -1.50728360e-01 -2.85400778e-01 -2.45288610e-01 -1.76546618e-01 2.65102744e-01 7.91460156e-01 -3.96363586e-01 8.60101461e-01 -8.28820050e-01 -7.61976600e-01 4.62780505e-01 5.78145444e-01 -2.93412268e-01 -5.89991435e-02 -1.02379974e-02 6.82235718e-01 -6.78310037e-01 6.85215592e-01 9.09438908e-01 -1.31390139e-01 -1.76585373e-02 -2.90829033e-01 -5.04110932e-01 -1.30569130e-01 -1.62974811e+00 1.69600081e+00 -5.47216423e-02 3.37182164e-01 2.44937718e-01 -6.15008533e-01 1.07560265e+00 3.27038109e-01 7.93509603e-01 -5.13397098e-01 5.17365932e-01 4.76468384e-01 -1.59621030e-01 3.49754430e-02 2.11003125e-01 -2.56516598e-03 1.00846916e-01 4.33065712e-01 -4.60444242e-01 -3.70362759e-01 2.30877072e-01 -1.80245817e-01 6.78110301e-01 5.42920589e-01 4.01580125e-01 -3.26873183e-01 6.45881176e-01 8.17783363e-03 8.50282311e-01 4.18687880e-01 -3.52617264e-01 6.06660604e-01 -2.10526567e-02 -3.80862951e-01 -7.91703045e-01 -7.13562489e-01 -2.75025368e-01 5.70273280e-01 7.04076171e-01 -5.30409575e-01 -6.58589780e-01 -2.66073883e-01 6.86774915e-03 1.93150610e-01 -5.05495593e-02 1.91180691e-01 -1.02679169e+00 -5.41838586e-01 4.10642922e-02 4.79537338e-01 4.16626215e-01 -7.50208318e-01 -1.06965351e+00 5.00145435e-01 4.64021526e-02 -1.09757459e+00 -7.39296317e-01 -1.56809598e-01 -1.43047464e+00 -9.96725917e-01 -8.36027384e-01 -5.98733068e-01 8.41275275e-01 3.34537387e-01 6.88172817e-01 4.79764819e-01 -1.88602716e-01 2.10500941e-01 -3.04195136e-01 -2.89886802e-01 -1.66285008e-01 -2.70111889e-01 1.88683093e-01 -3.39342952e-01 1.29014596e-01 -3.88404936e-01 -7.51846135e-01 7.48997867e-01 -5.55344164e-01 9.14243832e-02 2.14165628e-01 6.68145120e-01 1.11510575e+00 -1.01375006e-01 1.76361457e-01 -3.05524558e-01 1.61008731e-01 3.39502901e-01 -1.31219912e+00 -3.76564935e-02 -4.11714673e-01 -1.50381416e-01 3.58865410e-01 -7.01918602e-01 -7.67266929e-01 3.97895515e-01 -2.34329104e-01 -6.34767890e-01 -9.90574062e-02 1.35575354e-01 6.77455515e-02 -5.44707119e-01 4.99603033e-01 9.03302506e-02 2.19203442e-01 -5.80714703e-01 2.80387234e-04 1.72049627e-01 3.93891335e-01 -5.02404869e-01 1.18632734e+00 5.36881089e-01 2.80687958e-01 -8.20759654e-01 -3.13405007e-01 -4.26519364e-01 -8.14921737e-01 -5.67039847e-01 7.55794108e-01 -6.73021555e-01 -9.43661749e-01 6.02767229e-01 -1.14834762e+00 -3.46888751e-01 -1.92392305e-01 7.58801103e-01 -3.50427091e-01 6.93114758e-01 -4.02255654e-01 -7.87459075e-01 -4.71945792e-01 -1.29045832e+00 9.02836382e-01 4.42130178e-01 -1.80212840e-01 -8.36858332e-01 6.27083555e-02 1.53697124e-02 3.41371208e-01 5.72327375e-01 9.88651291e-02 -8.61348733e-02 -8.68037879e-01 -3.94822478e-01 -1.08234867e-01 -1.47086978e-01 1.72820762e-01 1.58475652e-01 -5.31091213e-01 -6.20442271e-01 2.30443757e-02 2.11043775e-01 2.66613156e-01 6.82839274e-01 7.86364436e-01 2.58444268e-02 -6.08635843e-01 6.67038798e-01 1.53059721e+00 4.93569285e-01 3.64734650e-01 4.07617360e-01 6.43464923e-01 5.33342585e-02 1.14861429e+00 5.89830756e-01 1.50983721e-01 1.14531088e+00 3.70604008e-01 -6.02797493e-02 -1.67459399e-01 7.20001832e-02 1.93703413e-01 8.44558775e-01 -4.23750907e-01 9.44446400e-02 -8.64648938e-01 3.17614913e-01 -1.81704450e+00 -7.15087235e-01 -5.07529497e-01 2.67480874e+00 8.45903754e-01 3.22019577e-01 1.88311532e-01 -2.02558022e-02 8.90835047e-01 8.71611387e-02 -4.81996983e-01 -8.99932384e-02 2.60259897e-01 3.34801018e-01 6.58965886e-01 8.60208392e-01 -1.07973230e+00 8.69171977e-01 4.88666630e+00 8.15447092e-01 -1.30035496e+00 1.60108060e-01 5.20495586e-02 -1.69263378e-01 6.15205877e-02 9.98158306e-02 -1.14165139e+00 6.12970710e-01 5.70589423e-01 -1.43525854e-01 -4.04870845e-02 5.43064237e-01 2.41837755e-01 -4.80473906e-01 -3.93803537e-01 1.16110921e+00 -4.61037420e-02 -1.32463562e+00 -6.20027721e-01 3.24794687e-02 5.39639771e-01 -1.45357028e-01 -4.00189698e-01 -1.86527327e-01 -1.86695337e-01 -4.22519386e-01 7.40710378e-01 3.05822015e-01 9.34564590e-01 -7.28668749e-01 5.60333192e-01 5.14683187e-01 -1.76812005e+00 3.74672681e-01 -3.15709382e-01 2.23458648e-01 5.69460988e-01 7.76412785e-01 -4.36797976e-01 6.07805192e-01 7.56428063e-01 4.39500630e-01 -2.72949010e-01 1.37614810e+00 -1.82121664e-01 1.10489301e-01 -8.46871912e-01 -2.12654307e-01 -3.06925356e-01 -2.63068348e-01 9.77507770e-01 9.45477843e-01 5.93134165e-01 4.36270088e-01 4.10443693e-01 4.95493233e-01 3.28953654e-01 1.66937694e-01 -1.91521913e-01 4.43563342e-01 5.19038498e-01 1.15511501e+00 -9.68919933e-01 -1.60471439e-01 -2.33997837e-01 8.50676298e-01 -4.16972823e-02 1.42739847e-01 -1.12000310e+00 -5.37310600e-01 2.61193812e-01 3.12333256e-01 4.96125847e-01 -7.61182964e-01 -2.41978407e-01 -1.10829449e+00 1.55631647e-01 -4.45491880e-01 3.26717556e-01 -5.38645923e-01 -4.65471774e-01 5.77398181e-01 1.89611658e-01 -1.56432259e+00 -1.37375891e-01 -3.17890763e-01 -4.55235273e-01 7.48467624e-01 -1.44235778e+00 -9.33003187e-01 -3.50935102e-01 5.74797928e-01 4.83613729e-01 4.05132085e-01 5.77347875e-01 4.13846314e-01 -3.85939509e-01 5.69204986e-01 6.51053339e-02 -1.69187244e-02 8.47298086e-01 -7.45564520e-01 1.74735799e-01 9.39626753e-01 -2.06996799e-01 5.03424287e-01 7.29032755e-01 -9.01448727e-01 -1.44896364e+00 -7.49786913e-01 9.58450913e-01 -2.01770902e-01 3.99804324e-01 -2.05599427e-01 -1.02208805e+00 3.52859288e-01 -1.03661560e-01 3.34560066e-01 1.94573984e-01 -3.53554457e-01 2.84956843e-01 -2.51328409e-01 -1.13586926e+00 4.30706233e-01 1.01053834e+00 2.32101902e-02 -1.68134272e-01 8.31810459e-02 5.19019067e-01 -1.18027687e+00 -1.05399489e+00 4.97833490e-01 6.28006399e-01 -8.43213141e-01 1.12746286e+00 4.59758312e-01 -4.64061201e-01 -8.01493347e-01 1.30657762e-01 -6.15309596e-01 -3.62198204e-01 -1.02300334e+00 -3.23800564e-01 9.70716298e-01 1.07810441e-02 -9.38632488e-01 7.25279868e-01 4.21303660e-01 -1.26618698e-01 -8.87668729e-01 -1.27239716e+00 -9.00098681e-01 -2.71074951e-01 -3.28969926e-01 3.86230677e-01 6.40939116e-01 -3.46307933e-01 -1.11349579e-02 -2.52725065e-01 4.01485294e-01 9.53510642e-01 5.03463447e-01 8.87707472e-01 -1.29161704e+00 -1.66425437e-01 -1.99525937e-01 -3.70818019e-01 -1.41219819e+00 -3.66594046e-01 -3.68060529e-01 1.25505239e-01 -1.15542901e+00 -9.96918008e-02 -7.39909649e-01 4.82720807e-02 4.21269655e-01 -2.29545638e-01 4.94445562e-01 4.05079722e-01 3.46982121e-01 -4.28730667e-01 3.76904845e-01 1.51690400e+00 4.58848566e-01 -4.64922518e-01 1.89342394e-01 -1.40162647e-01 7.92458236e-01 9.38354969e-01 -6.41173303e-01 6.38486594e-02 -4.17492360e-01 -1.22076489e-01 2.10080624e-01 3.47525120e-01 -1.06261694e+00 2.46405408e-01 -2.04211831e-01 3.77175212e-01 -1.09540927e+00 4.52797711e-01 -7.90953755e-01 3.34173441e-01 7.46050477e-01 4.71929520e-01 2.66387701e-01 4.18638021e-01 3.15314114e-01 2.71309577e-02 -3.04565877e-01 1.10214043e+00 1.79405808e-02 -5.50973058e-01 4.93486106e-01 -7.93304518e-02 -6.19128011e-02 1.30352914e+00 -6.75121248e-01 1.97322736e-03 -2.51559645e-01 -6.85958385e-01 1.40391752e-01 9.15135205e-01 7.86693394e-03 5.42170107e-01 -1.38028610e+00 -4.68608350e-01 4.80881073e-02 -2.59792775e-01 4.15780932e-01 3.14022213e-01 1.28568697e+00 -8.39213848e-01 2.38209873e-01 1.06282800e-01 -1.02918422e+00 -1.55165589e+00 3.16922933e-01 3.17479640e-01 -1.29653141e-01 -6.53339624e-01 7.76097655e-01 -1.99078605e-01 -1.04767390e-01 1.03284575e-01 -2.16135710e-01 9.02846605e-02 -1.11266613e-01 3.53996277e-01 5.78768671e-01 -1.41766984e-02 -7.96815097e-01 -6.25297189e-01 1.42867529e+00 2.30214804e-01 3.84665420e-03 1.10938191e+00 -1.84480086e-01 5.70104411e-03 7.03858137e-02 1.16567314e+00 3.53525341e-01 -1.46591270e+00 -8.07607770e-02 -2.66662985e-01 -8.69819164e-01 -9.55222547e-02 -2.84058869e-01 -1.08385253e+00 7.38631606e-01 9.31505859e-01 -1.61308706e-01 1.17388201e+00 -1.21034153e-01 1.04101002e+00 -7.61789382e-02 4.84271139e-01 -9.51398551e-01 -2.91772597e-02 5.49493670e-01 7.05814123e-01 -9.90779757e-01 6.66180372e-01 -6.26996338e-01 -1.99167818e-01 1.19748509e+00 5.75623810e-01 -6.68915734e-02 6.12078786e-01 3.95268381e-01 1.51266664e-01 -6.17782809e-02 -7.55780414e-02 -6.07184395e-02 3.90537471e-01 3.82251143e-01 2.71575928e-01 -1.91003576e-01 -6.32929564e-01 -1.34563506e-01 2.22844109e-01 -6.94655161e-03 2.24204704e-01 1.33915174e+00 -5.32060027e-01 -1.39073956e+00 -8.17802131e-01 8.85140430e-03 -4.20953155e-01 3.43331635e-01 2.23521918e-01 8.69837224e-01 -1.04754418e-02 6.09025538e-01 5.95144071e-02 -5.65677248e-02 4.21000093e-01 -2.14211926e-01 6.13491416e-01 -1.96011841e-01 -4.80742395e-01 8.94798934e-01 -1.47460684e-01 -8.33530188e-01 -5.33862233e-01 -8.38714719e-01 -1.68806946e+00 -3.22454840e-01 -6.47194028e-01 7.73607492e-02 4.85872656e-01 4.89048898e-01 5.19879580e-01 1.12359338e-01 4.68074262e-01 -1.28806496e+00 -2.47437865e-01 -4.79862094e-01 -3.05187196e-01 1.63194418e-01 2.51278102e-01 -8.90646040e-01 -2.93435186e-01 -2.24784128e-02]
[6.955056667327881, -2.2484281063079834]
9386a8a7-1c6b-40ed-9d0a-74c1d2253239
blenderproc
1911.01911
null
https://arxiv.org/abs/1911.01911v1
https://arxiv.org/pdf/1911.01911v1.pdf
BlenderProc
BlenderProc is a modular procedural pipeline, which helps in generating real looking images for the training of convolutional neural networks. These can be used in a variety of use cases including segmentation, depth, normal and pose estimation and many others. A key feature of our extension of blender is the simple to use modular pipeline, which was designed to be easily extendable. By offering standard modules, which cover a variety of scenarios, we provide a starting point on which new modules can be created.
['Mohamad Elbadrawy', 'Youssef Zidan', 'Maximilian Denninger', 'Martin Sundermeyer', 'Dmitry Olefir', 'Ahsan Lodhi', 'Harinandan Katam', 'Dominik Winkelbauer']
2019-10-25
null
null
null
null
['depth-image-estimation', '3d-object-recognition', 'surface-normals-estimation']
['computer-vision', 'computer-vision', 'computer-vision']
[-7.90089667e-02 1.64837301e-01 1.11449204e-01 -4.17436361e-01 -1.42901823e-01 -6.48985922e-01 6.43276513e-01 -7.51191005e-02 -1.10355206e-02 3.43400568e-01 -2.02711985e-01 -3.69116396e-01 2.75764465e-02 -9.66072440e-01 -5.15026569e-01 -3.32000971e-01 -1.82659671e-01 5.16808569e-01 9.10719693e-01 -4.84091610e-01 2.39544794e-01 1.13820589e+00 -1.85517180e+00 1.96838334e-01 4.07215714e-01 1.01901150e+00 2.38584712e-01 6.99081898e-01 -2.81379521e-01 5.50381899e-01 -4.84400600e-01 -4.35924292e-01 3.76579821e-01 -9.83195305e-02 -8.17351282e-01 -5.78504577e-02 4.75120842e-01 -3.50093424e-01 -1.27698341e-02 4.96298134e-01 4.82104272e-01 -1.72606651e-02 3.54488194e-01 -1.20240474e+00 3.59086424e-01 3.48532319e-01 -2.77843297e-01 -1.87563166e-01 4.44617629e-01 1.67324662e-01 5.38384914e-01 -7.66844034e-01 6.94125891e-01 1.16658854e+00 9.97040868e-01 4.01221007e-01 -9.10235584e-01 -5.15243709e-01 -2.06976324e-01 -1.83064789e-01 -7.64737070e-01 -2.13845581e-01 8.51410747e-01 -4.05091047e-01 7.99156189e-01 4.62841481e-01 1.10089099e+00 7.58792400e-01 3.67879331e-01 8.93806636e-01 1.12014437e+00 -2.71417350e-01 2.13324532e-01 -7.71384537e-02 -2.49122262e-01 7.54988551e-01 -1.66919410e-01 1.38985321e-01 -2.85129935e-01 -8.47947896e-02 1.45025861e+00 -1.48663431e-01 -4.22660075e-02 -7.21004486e-01 -1.09600687e+00 6.43079460e-01 5.67841947e-01 9.93635952e-02 -2.86205932e-02 4.36378181e-01 3.07877988e-01 3.88832949e-02 1.85611337e-01 4.61478055e-01 -7.09238827e-01 -1.30099297e-01 -9.57382500e-01 6.67278469e-01 7.91047037e-01 9.33766603e-01 9.92029905e-01 1.22951595e-02 2.97875702e-01 6.65622890e-01 4.22978550e-01 1.66471630e-01 3.29496950e-01 -1.47043955e+00 -5.58213443e-02 6.52235091e-01 -1.92010835e-01 -5.33994436e-01 -6.09994948e-01 -2.60841519e-01 -3.01658452e-01 9.50133979e-01 2.86594987e-01 -2.30127141e-01 -1.17838347e+00 8.42573643e-01 5.70337653e-01 -9.82955471e-02 -4.37183380e-01 5.31055510e-01 1.28899097e+00 2.10523218e-01 -3.19307223e-02 5.53592443e-01 1.18262935e+00 -9.47713375e-01 -1.85469821e-01 -3.75297546e-01 3.66751432e-01 -1.15223706e+00 8.42134237e-01 5.51826298e-01 -1.36322629e+00 -3.03638011e-01 -1.02285624e+00 -2.79489696e-01 -6.94742918e-01 -3.33229035e-01 1.26035368e+00 6.69350863e-01 -1.30305851e+00 9.42316294e-01 -9.42732036e-01 -3.77307504e-01 6.89130306e-01 4.73706067e-01 -3.71559143e-01 1.69483379e-01 -6.54089510e-01 9.64623272e-01 5.08960247e-01 1.03941709e-01 -7.98291266e-01 -6.80732429e-01 -1.07153988e+00 -2.65043169e-01 -8.05259869e-02 -9.42348480e-01 1.52479160e+00 -8.55410457e-01 -1.61845446e+00 1.15262318e+00 1.53907746e-01 -3.11742365e-01 9.28027630e-01 -1.18522316e-01 2.48150408e-01 7.48585910e-02 -1.14878342e-02 1.18081224e+00 4.71970826e-01 -1.07357407e+00 -4.57771689e-01 -1.07180826e-01 2.50342280e-01 3.28869313e-01 4.53177571e-01 2.71284312e-01 -6.58633590e-01 -7.18857586e-01 1.83757484e-01 -6.80247366e-01 -4.60502118e-01 6.61798954e-01 -3.39407623e-01 7.93037638e-02 1.17626560e+00 -3.50320965e-01 3.50612283e-01 -1.94547117e+00 -1.38533324e-01 2.32365668e-01 8.91935229e-02 2.49857947e-01 1.61581874e-01 5.96629083e-01 -2.20869422e-01 -2.50202660e-02 -3.66295218e-01 -6.86043978e-01 -6.92144558e-02 2.42812544e-01 -7.55977184e-02 2.82680452e-01 1.97761387e-01 9.55486774e-01 -6.54005826e-01 -4.37018245e-01 8.39296103e-01 6.43320322e-01 -2.05859110e-01 1.99702933e-01 -4.35934931e-01 6.90093994e-01 -1.61433369e-01 7.62346804e-01 7.54314959e-01 1.90634102e-01 -5.39326847e-01 1.16880551e-01 -4.56891596e-01 3.47635567e-01 -1.44940412e+00 2.00831842e+00 -4.95882273e-01 8.93029332e-01 3.05364609e-01 -3.20724458e-01 8.41361463e-01 5.72633930e-02 3.65539551e-01 -2.25280985e-01 4.00718391e-01 2.29119390e-01 -1.50943413e-01 -3.53359371e-01 4.86984968e-01 -8.98337737e-02 2.76185751e-01 4.36696321e-01 9.06931013e-02 -6.68782294e-01 1.79073825e-01 -4.09780852e-02 8.10854495e-01 6.78372324e-01 3.90899420e-01 -2.49781534e-01 2.29776397e-01 2.81170607e-01 1.68710530e-01 3.83735895e-01 -7.75076747e-02 1.07642615e+00 4.60441142e-01 -6.91607833e-01 -9.19142604e-01 -9.73890662e-01 -4.71892923e-01 8.59612048e-01 1.11141570e-01 -3.00631315e-01 -6.92535937e-01 -2.73884207e-01 -3.29926074e-01 1.73292622e-01 -7.68130064e-01 6.17628276e-01 -6.20597243e-01 -2.53073871e-01 3.36448818e-01 7.94483960e-01 7.16827989e-01 -1.48686659e+00 -1.12946153e+00 3.67061235e-02 5.48103571e-01 -9.92342532e-01 7.85254762e-02 3.67417693e-01 -1.23226452e+00 -1.14674675e+00 -7.14242458e-01 -8.61893594e-01 5.21661997e-01 7.51414001e-02 1.30376279e+00 4.41107243e-01 -5.17538428e-01 5.10680020e-01 -2.20566705e-01 -7.34089375e-01 -2.66817033e-01 2.83408105e-01 -7.93049753e-01 -7.14049816e-01 -3.09343278e-01 -6.35092556e-01 -7.95950174e-01 2.67480463e-01 -1.18335521e+00 4.43330735e-01 2.40245357e-01 1.32283673e-01 5.35918772e-01 -4.05028105e-01 -5.16539775e-02 -9.52872753e-01 5.66196382e-01 -1.89007834e-01 -6.80991828e-01 -1.55377105e-01 2.00188532e-02 -2.47187182e-01 3.07253599e-01 -5.32721318e-02 -8.77576292e-01 2.93795705e-01 -8.74945045e-01 5.26492707e-02 -7.28221297e-01 2.30584338e-01 -2.28643909e-01 -5.26859224e-01 4.35968846e-01 -1.78000376e-01 1.20380677e-01 -4.40033913e-01 4.90505457e-01 2.55866319e-01 5.39254129e-01 -4.30876583e-01 6.49373829e-01 6.39425635e-01 2.35608757e-01 -7.23123193e-01 -2.79783428e-01 -2.68250614e-01 -9.19123590e-01 -3.11045825e-01 7.26993084e-01 -5.09501278e-01 -4.78179485e-01 8.91631722e-01 -1.25768626e+00 -8.00418854e-01 -2.79748201e-01 -4.89139110e-02 -5.41630149e-01 -1.78219695e-02 -6.22895062e-01 -3.51119190e-01 -1.98158279e-01 -1.48932004e+00 1.16522181e+00 8.27417552e-01 -3.59110564e-01 -1.53489077e+00 2.41795536e-02 -1.07291453e-02 4.13993925e-01 6.65986419e-01 4.76506263e-01 -1.97881222e-01 -8.51535082e-01 -2.80807257e-01 3.98795977e-02 1.64129272e-01 -1.11857437e-01 7.18297064e-01 -1.14185047e+00 3.22624482e-02 -3.32043797e-01 -3.07399958e-01 5.06858230e-01 4.15532768e-01 1.31687319e+00 3.39651674e-01 -6.39138639e-01 1.01396286e+00 1.34338868e+00 2.45873228e-01 1.14863813e+00 6.74326837e-01 7.00167537e-01 7.03046262e-01 3.46423388e-01 8.60871375e-02 3.94774020e-01 6.31052792e-01 8.45465839e-01 -6.57583833e-01 -2.90857077e-01 -7.82658011e-02 -1.75079331e-01 1.88666165e-01 -1.61522999e-01 4.18565899e-01 -1.04699934e+00 3.50437075e-01 -1.47978628e+00 -6.68146074e-01 -5.75922787e-01 2.09771657e+00 5.91022134e-01 7.63919353e-02 2.70385414e-01 1.12702101e-01 1.11327402e-01 -1.86330099e-02 -1.49868995e-01 -7.85724342e-01 1.76373601e-01 7.75276780e-01 5.48804283e-01 4.66433883e-01 -1.18125606e+00 1.05030048e+00 8.00027084e+00 4.59195226e-01 -1.45031512e+00 -1.31656244e-01 5.30458093e-01 2.93653667e-01 -3.40746224e-01 1.83391780e-01 -5.27597129e-01 2.54647613e-01 4.60061431e-01 1.32822230e-01 5.25962003e-02 9.61163163e-01 1.16710298e-01 -6.13549829e-01 -8.87126207e-01 7.18295276e-01 -8.47554281e-02 -1.73470485e+00 -4.75605786e-01 -2.12722376e-01 6.34374619e-01 3.52708995e-01 -2.51010329e-01 3.12443357e-02 3.93963695e-01 -1.17059147e+00 7.82843947e-01 2.89531887e-01 7.24825263e-01 -7.62569129e-01 5.60954154e-01 3.14639628e-01 -9.97043133e-01 5.10007620e-01 -5.46986684e-02 -2.76122630e-01 2.87781298e-01 3.88131708e-01 -8.32091451e-01 5.01251578e-01 8.33263218e-01 4.56982106e-01 -7.57631660e-01 1.94401395e+00 -4.45301324e-01 9.54750031e-02 -5.50023019e-01 1.65106550e-01 9.00596455e-02 -3.01706307e-02 2.21341744e-01 1.42654479e+00 -1.31529570e-03 -5.19635618e-01 -4.10397910e-02 7.67349720e-01 2.46382698e-01 7.10751414e-02 -8.05421293e-01 6.65121257e-01 2.72115618e-01 1.57396543e+00 -1.50385678e+00 5.19229658e-02 -1.54251173e-01 1.00245619e+00 2.32672736e-01 1.03839912e-01 -8.21094334e-01 -7.80935764e-01 4.79122937e-01 3.61236811e-01 4.34434056e-01 -5.86492538e-01 -7.37832308e-01 -6.25513256e-01 -1.20247155e-01 -6.27660036e-01 -1.04321958e-02 -1.18919933e+00 -6.86156750e-01 6.94651961e-01 4.91624743e-01 -1.14278173e+00 -2.28028432e-01 -9.66527104e-01 -1.20945966e+00 8.15009236e-01 -1.34684634e+00 -1.46213913e+00 -7.56990373e-01 2.74684280e-01 5.45406282e-01 7.25778118e-02 8.95402193e-01 1.97325155e-01 -4.18472439e-01 1.34302333e-01 -4.33363736e-01 2.19742909e-01 3.79151791e-01 -1.27867317e+00 7.95322716e-01 7.16077089e-01 4.30640653e-02 7.08513319e-01 6.99193895e-01 -5.18769383e-01 -9.02078688e-01 -7.19596326e-01 1.97289377e-01 -3.80991012e-01 4.50206190e-01 -3.53678852e-01 -5.47459662e-01 8.19478631e-01 4.97893244e-01 5.50782457e-02 5.68790674e-01 -2.16247752e-01 -9.78186578e-02 7.32929781e-02 -1.35075557e+00 7.65283585e-01 7.43019402e-01 1.80320069e-02 -2.74143010e-01 9.06518176e-02 2.53430009e-01 -1.37381518e+00 -7.83660829e-01 4.46995378e-01 7.85582781e-01 -1.62886477e+00 9.98924732e-01 -3.56932580e-02 6.40155435e-01 -3.61600429e-01 5.22251785e-01 -1.26839018e+00 7.55783245e-02 -8.04210842e-01 1.14666726e-02 1.05361545e+00 2.42623478e-01 -7.76997089e-01 9.70381379e-01 6.52480304e-01 -4.19397056e-01 -1.04820204e+00 -7.88655400e-01 -3.14245909e-01 2.14246869e-01 -7.74175048e-01 7.69548059e-01 5.10259509e-01 -3.66501778e-01 -5.24794534e-02 1.85104027e-01 -1.50571987e-01 3.83042604e-01 2.88338540e-03 1.07889760e+00 -1.39563906e+00 -2.23987147e-01 -6.86444223e-01 -6.29759550e-01 -1.33432829e+00 -2.65727341e-01 -6.13776147e-01 -1.36699453e-01 -2.12065673e+00 -4.91299897e-01 -7.89245903e-01 5.13857782e-01 5.81831098e-01 1.93709865e-01 7.24513710e-01 8.81265700e-02 1.17534354e-01 -3.60104479e-02 7.91459531e-02 1.53162622e+00 3.44535828e-01 -2.26212963e-01 2.24284440e-01 -5.38926005e-01 1.09334004e+00 8.50609303e-01 -3.37849855e-01 -3.56648803e-01 -6.52568042e-01 2.08386540e-01 -5.52106440e-01 4.86211479e-01 -1.40512574e+00 7.55663030e-03 -1.35597840e-01 6.64157569e-01 -9.26067531e-01 5.44224024e-01 -8.34678650e-01 4.37373936e-01 2.70642877e-01 1.35073304e-01 2.58707494e-01 5.21455407e-01 -1.51633888e-01 7.05106184e-02 -5.89921355e-01 8.62396300e-01 -7.10621357e-01 -8.13042164e-01 3.42946023e-01 -1.89176857e-01 -2.70395666e-01 1.45323634e+00 -8.76473069e-01 -2.03854501e-01 -3.13144922e-01 -5.81696033e-01 1.29794031e-01 1.04326582e+00 3.29015285e-01 6.12128615e-01 -1.18610346e+00 -2.84179509e-01 3.92724693e-01 -3.82033512e-02 6.41124249e-01 4.30523828e-02 6.71334386e-01 -1.56430387e+00 -1.35579351e-02 -5.08931100e-01 -7.78715134e-01 -1.11840200e+00 -1.21661700e-01 7.62774825e-01 1.52018249e-01 -8.62090528e-01 9.22127247e-01 -2.47993514e-01 -5.43406069e-01 2.05464691e-01 -4.75750804e-01 -5.83228916e-02 -1.87228277e-01 5.44242799e-01 3.09641212e-01 4.25393909e-01 -5.08008242e-01 -3.25214773e-01 7.25670874e-01 2.01345965e-01 -1.44760534e-01 1.48304355e+00 2.60211498e-01 -3.65526915e-01 4.61010545e-01 8.13828111e-01 1.29600644e-01 -1.55750597e+00 4.73922163e-01 -3.82918000e-01 -4.46268737e-01 2.55460851e-02 -6.59380019e-01 -1.29483092e+00 1.00026059e+00 6.17703080e-01 2.79217333e-01 9.14595008e-01 2.50997961e-01 7.67491400e-01 -1.73064590e-01 6.73222780e-01 -6.95178747e-01 -3.03710163e-01 6.50134563e-01 9.99603271e-01 -9.02761996e-01 1.79799423e-01 -6.08408511e-01 -2.97894835e-01 1.59871745e+00 6.26028001e-01 -3.41424853e-01 7.33284175e-01 7.36382723e-01 5.59275031e-01 -5.83673418e-01 -4.45714965e-02 -1.97164387e-01 1.71716005e-01 1.15824771e+00 8.24821651e-01 -7.96613768e-02 -1.87260479e-01 -1.70687139e-01 -5.87945163e-01 -8.64134803e-02 5.24259508e-01 1.20396519e+00 -2.51026660e-01 -1.64226770e+00 -5.10943353e-01 2.64687300e-01 -3.76303554e-01 2.01251507e-01 -3.78200263e-01 9.07538593e-01 4.70183253e-01 3.42857063e-01 1.71769187e-01 -3.80578786e-02 2.55235106e-01 -2.31035307e-01 7.56587803e-01 -8.04736912e-01 -8.79516125e-01 -1.56424135e-01 7.96550810e-02 -7.24667668e-01 -4.78198171e-01 -4.82864261e-01 -1.17753422e+00 -2.26593286e-01 -1.39955115e-02 -5.27486801e-01 9.08734441e-01 9.06165779e-01 2.11557955e-01 4.37764347e-01 7.64964893e-02 -1.67367554e+00 4.39164758e-01 -8.56627882e-01 -3.76963735e-01 1.40048549e-01 2.20941961e-01 -8.00062895e-01 3.54253016e-02 2.76368279e-02]
[8.737567901611328, -2.8661885261535645]
399ec814-a1a9-427e-9448-2b1051188906
speaker-recognition-with-two-step-multi-modal
2210.15903
null
https://arxiv.org/abs/2210.15903v1
https://arxiv.org/pdf/2210.15903v1.pdf
Speaker recognition with two-step multi-modal deep cleansing
Neural network-based speaker recognition has achieved significant improvement in recent years. A robust speaker representation learns meaningful knowledge from both hard and easy samples in the training set to achieve good performance. However, noisy samples (i.e., with wrong labels) in the training set induce confusion and cause the network to learn the incorrect representation. In this paper, we propose a two-step audio-visual deep cleansing framework to eliminate the effect of noisy labels in speaker representation learning. This framework contains a coarse-grained cleansing step to search for the peculiar samples, followed by a fine-grained cleansing step to filter out the noisy labels. Our study starts from an efficient audio-visual speaker recognition system, which achieves a close to perfect equal-error-rate (EER) of 0.01\%, 0.07\% and 0.13\% on the Vox-O, E and H test sets. With the proposed multi-modal cleansing mechanism, four different speaker recognition networks achieve an average improvement of 5.9\%. Code has been made available at: \textcolor{magenta}{\url{https://github.com/TaoRuijie/AVCleanse}}.
['Haizhou Li', 'Zhan Shi', 'Kong Aik Lee', 'Ruijie Tao']
2022-10-28
null
null
null
null
['speaker-recognition']
['speech']
[ 1.30992070e-01 -6.79761842e-02 3.24238271e-01 -5.45345187e-01 -1.24227941e+00 -2.98375696e-01 2.84738749e-01 -9.76353064e-02 -1.81352809e-01 6.13254011e-01 2.87067354e-01 -4.97952104e-02 8.15578476e-02 -4.56031770e-01 -6.07356310e-01 -9.70264256e-01 2.46531263e-01 4.42512855e-02 -1.51946247e-01 -4.35588621e-02 3.17194015e-02 1.69896141e-01 -1.76122415e+00 2.88417339e-01 7.48838305e-01 1.00084627e+00 8.75795111e-02 6.60989463e-01 -1.34375766e-01 6.43519580e-01 -9.38224912e-01 -1.25041142e-01 2.34643817e-02 -5.26132941e-01 -5.40840030e-01 -1.61252543e-01 4.62222338e-01 -1.10313281e-01 -3.36841911e-01 1.34059775e+00 8.22922945e-01 3.16507787e-01 4.63422179e-01 -1.23146582e+00 -6.20820045e-01 6.30061686e-01 -4.51516807e-01 2.81463474e-01 1.74335316e-01 1.64940417e-01 6.87540054e-01 -1.16247344e+00 1.35466859e-01 1.17029834e+00 4.43748206e-01 9.30638969e-01 -1.02408254e+00 -1.18899488e+00 1.07618444e-01 4.39699352e-01 -1.90161788e+00 -1.14285994e+00 9.36270654e-01 -2.84397274e-01 5.44007063e-01 5.83818436e-01 1.75796911e-01 1.22511780e+00 -2.66722620e-01 5.70355475e-01 1.14797175e+00 -4.80530053e-01 3.07663292e-01 2.54005462e-01 5.47540426e-01 5.33329248e-01 -2.64306110e-03 2.03391433e-01 -7.83630252e-01 1.26484200e-01 3.45486760e-01 -4.86006252e-02 -4.75831389e-01 3.29877436e-01 -8.41745734e-01 5.89778900e-01 5.70353925e-01 3.11884910e-01 -3.70138168e-01 -1.32920057e-01 1.69989690e-01 1.58935487e-01 3.75970572e-01 -5.19473739e-02 -7.15771317e-02 -9.87869874e-02 -1.08236516e+00 -1.76969960e-01 7.51033545e-01 7.50373900e-01 5.40247500e-01 6.17894411e-01 -1.58381477e-01 1.34586298e+00 5.19018054e-01 7.86866546e-01 5.41438222e-01 -6.41744196e-01 3.08649331e-01 5.23804724e-02 -8.26191753e-02 -7.54575133e-01 -4.49672788e-02 -7.06757843e-01 -1.04957688e+00 3.13584805e-01 1.93021923e-01 -1.54436052e-01 -1.28200221e+00 1.79932821e+00 3.54263484e-01 3.81779283e-01 8.26623514e-02 1.08168447e+00 1.41042149e+00 8.91517937e-01 8.62689763e-02 -1.95432112e-01 1.25119281e+00 -9.60213959e-01 -8.84845674e-01 -2.32392743e-01 -3.88561077e-02 -8.87707293e-01 1.08476615e+00 6.21388853e-01 -8.95312250e-01 -6.62668169e-01 -1.16185260e+00 8.42061117e-02 -2.60862976e-01 7.76359513e-02 -7.68887177e-02 8.02963436e-01 -1.10311449e+00 2.59381890e-01 -6.29957855e-01 -1.16223276e-01 5.51965356e-01 1.30300596e-01 -2.46764898e-01 -2.60841429e-01 -1.05344629e+00 5.69132447e-01 7.76507407e-02 3.61095160e-01 -1.36710012e+00 -4.61911082e-01 -7.33671486e-01 2.18358085e-01 4.46903437e-01 -1.16540015e-01 1.25675130e+00 -1.04610717e+00 -1.53240204e+00 6.32159293e-01 -6.53720140e-01 -1.28481865e-01 2.47130126e-01 -2.57431507e-01 -7.99165487e-01 -1.26289636e-01 -1.01996176e-01 4.24798518e-01 1.10062230e+00 -1.45892823e+00 -3.74215543e-01 -3.83261710e-01 -3.98587763e-01 6.29457906e-02 -2.98208386e-01 1.76217541e-01 -4.23775822e-01 -8.59587491e-01 2.21346542e-01 -6.86398745e-01 3.26759964e-01 -3.19494158e-01 -5.51452935e-01 -1.41951621e-01 5.60521841e-01 -1.11462247e+00 1.11892033e+00 -2.43774986e+00 -1.85277462e-01 3.24581116e-01 1.24930181e-01 3.86177689e-01 -2.81260401e-01 1.09575056e-01 -2.64076561e-01 1.99286267e-01 -1.62662566e-01 -5.44964492e-01 1.18686512e-01 -5.53629585e-02 -1.74465165e-01 4.87917364e-01 6.62223399e-02 3.69610846e-01 -5.60320258e-01 -1.86636910e-01 1.73338115e-01 9.91086721e-01 -1.66586831e-01 2.67606318e-01 2.81774670e-01 3.87368232e-01 -5.67151718e-02 9.25494373e-01 8.64571512e-01 1.26641933e-02 -1.58900589e-01 -3.87290120e-02 -9.10299364e-03 4.84593987e-01 -1.56736052e+00 1.32437265e+00 -3.19011539e-01 6.70097828e-01 6.24723971e-01 -7.21016645e-01 1.01390231e+00 5.32856047e-01 2.63563991e-02 -7.14224041e-01 2.49146700e-01 1.37202501e-01 -9.66481045e-02 -2.78205901e-01 2.49913111e-01 -2.87731558e-01 2.35899150e-01 2.45557204e-01 7.41153955e-02 1.21147960e-01 -1.82812825e-01 -5.11530712e-02 6.92637622e-01 -3.50886852e-01 -6.26946427e-03 -1.55747116e-01 6.64055705e-01 -4.81307238e-01 9.02198017e-01 7.04164982e-01 -4.26981419e-01 6.82642937e-01 -3.54318507e-02 -1.65825918e-01 -6.29208922e-01 -1.10073054e+00 -1.81982338e-01 1.24177527e+00 4.43314351e-02 -3.62746298e-01 -8.79628599e-01 -3.45961332e-01 -2.73984522e-01 8.24099958e-01 -4.16371554e-01 -2.30832353e-01 -3.44973743e-01 -4.64051425e-01 6.10209405e-01 3.49700749e-01 5.80909193e-01 -1.16247201e+00 9.44673195e-02 -1.83605269e-01 -3.33536536e-01 -7.18582213e-01 -5.11450052e-01 3.34343970e-01 -3.91629070e-01 -6.20159924e-01 -6.44409895e-01 -8.90631080e-01 6.98947072e-01 3.91860783e-01 7.82572567e-01 9.21085030e-02 1.66599043e-02 8.38641003e-02 -3.59445006e-01 -5.66920519e-01 -4.76318955e-01 -2.13628069e-01 2.44540453e-01 1.44464478e-01 5.77379286e-01 -4.25805777e-01 -5.01289785e-01 4.56379592e-01 -7.42861807e-01 -1.39892578e-01 3.18720728e-01 1.04458749e+00 6.80846930e-01 1.06259927e-01 7.54240632e-01 -2.86392152e-01 5.31973720e-01 -3.85524929e-01 -5.18833578e-01 7.69869238e-02 -4.87644821e-01 -2.47208953e-01 5.53378582e-01 -3.56351823e-01 -9.98452723e-01 -4.64418866e-02 -5.23637176e-01 -5.19138634e-01 -7.19330788e-01 3.36881399e-01 -4.47974980e-01 1.61759436e-01 7.26061285e-01 4.69212145e-01 -4.14972492e-02 -8.32465529e-01 8.02869946e-02 1.13146186e+00 5.07218003e-01 -2.08721504e-01 8.15648973e-01 2.12021440e-01 -6.85723901e-01 -1.10810363e+00 -6.78287506e-01 -4.28271890e-01 -1.38666973e-01 -2.78119981e-01 6.07390523e-01 -1.17145956e+00 -4.84671265e-01 7.38555789e-01 -8.25969517e-01 -3.04566264e-01 -2.60094583e-01 4.70552534e-01 1.26456782e-01 3.04228783e-01 -5.16738176e-01 -9.59972620e-01 -5.69089413e-01 -1.21106672e+00 8.43842685e-01 5.49784958e-01 -1.23874411e-01 -4.21088308e-01 -1.74198717e-01 6.29743755e-01 5.78473330e-01 -2.80599505e-01 3.97672117e-01 -8.46253574e-01 -5.25915504e-01 -1.79323152e-01 -5.75633198e-02 7.88906634e-01 2.81325191e-01 -1.59651309e-01 -1.73019087e+00 -4.63950485e-01 2.45586753e-01 -1.48337901e-01 9.34510171e-01 4.23843354e-01 1.12443829e+00 -3.62724274e-01 -7.79228657e-02 6.56260192e-01 1.03770125e+00 4.60218012e-01 5.41443050e-01 7.42271692e-02 6.94259226e-01 3.96769196e-01 1.42233327e-01 3.07440430e-01 1.02511838e-01 5.32615900e-01 2.32982427e-01 1.66565124e-02 -5.30566454e-01 -1.11925073e-01 5.12957156e-01 1.03867733e+00 1.51286349e-01 -2.51701802e-01 -9.66808438e-01 5.87805271e-01 -1.29170656e+00 -9.62899804e-01 1.52093530e-01 2.28970838e+00 9.37887728e-01 7.94027597e-02 5.10983653e-02 4.65791464e-01 9.65790033e-01 2.61422813e-01 -4.87054646e-01 -1.78803921e-01 -1.44677818e-01 3.92902434e-01 4.49939966e-02 7.96964169e-01 -1.08785772e+00 6.88268900e-01 5.10358286e+00 9.01617408e-01 -1.52799010e+00 2.71573395e-01 7.33660221e-01 -4.10547405e-01 -1.62776053e-01 -4.99672621e-01 -8.58556390e-01 6.25878096e-01 1.02948928e+00 4.10055779e-02 6.48572147e-01 8.49196732e-01 2.87410766e-01 5.34489937e-02 -8.06839287e-01 1.44195700e+00 4.04017299e-01 -1.00574982e+00 -2.03445077e-01 -1.44749656e-01 4.69899029e-01 2.16131732e-01 1.42177895e-01 3.82405728e-01 1.82178929e-01 -1.13728428e+00 8.90045524e-01 5.83689690e-01 7.18770683e-01 -6.93223417e-01 7.33213365e-01 2.00011507e-01 -1.07881629e+00 -3.60060371e-02 -6.05278760e-02 1.85516030e-01 -3.74710746e-02 7.23762631e-01 -9.32179272e-01 3.16330791e-01 1.02781391e+00 3.00174981e-01 -3.35902274e-01 1.21111608e+00 -4.36589271e-01 9.96716917e-01 -3.69223028e-01 1.90864298e-02 -2.90695786e-01 1.77027378e-02 7.96062052e-01 1.28689277e+00 3.29108924e-01 1.30623383e-02 -1.52336955e-01 6.46627724e-01 -2.76904583e-01 -5.86515181e-02 -1.79621831e-01 2.52062261e-01 7.15864956e-01 1.00338316e+00 -3.33279669e-01 -3.51172864e-01 -1.16154917e-01 7.56764472e-01 1.05331473e-01 5.87243319e-01 -8.78561735e-01 -6.14538491e-01 7.67425179e-01 -5.96091300e-02 4.80488926e-01 -8.54690559e-03 -4.07233715e-01 -1.06597519e+00 2.56639510e-01 -1.11077023e+00 3.20428967e-01 -6.70174599e-01 -1.23013651e+00 8.35546970e-01 -3.83458525e-01 -1.00891447e+00 -2.55165435e-02 -3.27117980e-01 -6.69949651e-01 1.24150252e+00 -1.48917377e+00 -8.04758847e-01 -5.72664440e-01 6.41901314e-01 7.52677858e-01 -3.49621415e-01 8.49767685e-01 5.69788456e-01 -9.01500940e-01 9.61566269e-01 3.40393484e-01 3.04341525e-01 8.49471331e-01 -1.00610435e+00 1.28870890e-01 1.08778477e+00 1.96897253e-01 5.78545570e-01 6.61298692e-01 -3.84989381e-01 -1.15537369e+00 -1.08894551e+00 9.10409868e-01 -1.43532053e-01 1.48086905e-01 -5.13910890e-01 -1.20863640e+00 4.84741807e-01 3.95736873e-01 -6.77125975e-02 7.70296574e-01 1.53548747e-01 -6.32038713e-01 -5.84390521e-01 -1.14454830e+00 3.65578413e-01 7.03882515e-01 -7.96201110e-01 -6.13819242e-01 1.94110870e-01 4.76606131e-01 -2.10032254e-01 -6.04974985e-01 1.65561616e-01 3.99917096e-01 -7.98940957e-01 9.26812530e-01 -1.45168632e-01 -2.49532107e-02 -5.20634174e-01 -2.84765720e-01 -1.45042396e+00 -4.16007966e-01 -6.01069868e-01 -2.74626259e-02 1.55743968e+00 4.48187649e-01 -7.12365031e-01 5.18732488e-01 3.76586199e-01 -3.49609613e-01 -3.17878366e-01 -1.26756883e+00 -6.72192872e-01 -1.48620769e-01 -5.77671409e-01 6.87369525e-01 9.81935441e-01 -9.20275822e-02 2.92533576e-01 -4.65199113e-01 4.50535953e-01 7.95309961e-01 -1.52050868e-01 5.71926832e-01 -1.06240475e+00 -1.72551706e-01 -4.34061557e-01 -4.86416779e-02 -8.99841249e-01 -8.72287452e-02 -7.77346075e-01 3.43760729e-01 -1.43083358e+00 9.61565226e-02 -2.96414256e-01 -7.86447525e-01 6.93998694e-01 -2.45272174e-01 3.21200550e-01 2.36191273e-01 1.82466850e-01 -4.64075953e-01 6.47872150e-01 8.03027391e-01 -4.09389615e-01 -2.17996165e-01 -4.56808172e-02 -8.30714524e-01 5.65842390e-01 1.06363225e+00 -5.79587638e-01 -1.67155147e-01 -5.19263148e-01 -3.29939991e-01 -1.59046039e-01 4.78426635e-01 -1.16053987e+00 1.47274435e-01 4.05993238e-02 4.46706563e-01 -4.29923236e-01 7.28118896e-01 -6.05159163e-01 2.56615579e-01 3.05092007e-01 -3.86965215e-01 -4.18208718e-01 3.52007747e-01 2.86146820e-01 -3.71017516e-01 -1.70790821e-01 9.74767089e-01 -1.77075509e-02 -5.42055190e-01 4.79426607e-02 -2.92535812e-01 -1.71111345e-01 6.10324800e-01 -8.42903927e-02 -5.04859030e-01 -5.08378208e-01 -9.72493112e-01 7.63310567e-02 1.00571997e-01 5.71583331e-01 7.48360157e-01 -1.30425274e+00 -9.12230730e-01 4.48466867e-01 5.00434414e-02 -1.16849311e-01 7.42284000e-01 5.60961783e-01 -7.51341358e-02 1.40262321e-01 -6.28890619e-02 -6.23003960e-01 -1.64468169e+00 1.99708730e-01 4.43968415e-01 3.90873820e-01 -3.25565726e-01 1.22954869e+00 1.38181522e-01 -2.40709290e-01 7.38509357e-01 -3.27927113e-01 -1.04063287e-01 3.88735905e-02 9.30637121e-01 4.09776241e-01 2.61277914e-01 -9.38936710e-01 -5.78309059e-01 2.81163722e-01 -1.33391649e-01 1.00433826e-04 1.31109834e+00 -1.78154051e-01 1.33219078e-01 3.75518620e-01 1.06212401e+00 1.69694602e-01 -1.00781250e+00 -3.04260135e-01 -4.23643321e-01 -4.01172936e-01 2.51693070e-01 -1.10668933e+00 -1.15942538e+00 1.00876629e+00 1.13097310e+00 2.95220286e-01 1.18095994e+00 -7.05688540e-03 6.04452193e-01 1.31977439e-01 -1.51062161e-01 -9.93497849e-01 -1.67166054e-01 5.28315067e-01 1.10226429e+00 -1.34262002e+00 -3.52551311e-01 -1.92203641e-01 -5.92818856e-01 7.50705898e-01 4.77469116e-01 2.36240581e-01 7.18438804e-01 1.24292359e-01 5.30125141e-01 -5.07276505e-02 -4.67497826e-01 -9.42751914e-02 2.98656404e-01 5.83115160e-01 3.11945945e-01 2.72087634e-01 2.03974023e-01 8.15733790e-01 -3.05036694e-01 -1.72341079e-01 1.43707931e-01 7.53530085e-01 -5.40724933e-01 -7.84333110e-01 -9.06983137e-01 1.85503826e-01 -4.21941400e-01 -2.00970784e-01 -2.90927917e-01 3.37175488e-01 7.61033371e-02 1.43792045e+00 -2.66733859e-02 -5.08804739e-01 4.38801318e-01 4.89398897e-01 -4.37057056e-02 -4.40233946e-01 -5.45538962e-01 5.08600771e-01 1.23907238e-01 -3.59464794e-01 -1.69382796e-01 -5.47296047e-01 -1.02798498e+00 -2.79952466e-01 -2.96096504e-01 3.19920450e-01 7.57664442e-01 5.75051725e-01 4.62840736e-01 7.19688058e-01 6.46153331e-01 -7.32928753e-01 -5.16460538e-01 -1.27013087e+00 -5.73953092e-01 3.78512502e-01 7.33601749e-01 -5.35562634e-01 -6.81670189e-01 1.83242977e-01]
[14.582782745361328, 5.928656101226807]
f3b723fb-2477-4f19-afd4-3e9c2bfe3976
encoder-decoder-based-convolutional-neural
2003.05586
null
https://arxiv.org/abs/2003.05586v5
https://arxiv.org/pdf/2003.05586v5.pdf
Encoder-Decoder Based Convolutional Neural Networks with Multi-Scale-Aware Modules for Crowd Counting
In this paper, we propose two modified neural networks based on dual path multi-scale fusion networks (SFANet) and SegNet for accurate and efficient crowd counting. Inspired by SFANet, the first model, which is named M-SFANet, is attached with atrous spatial pyramid pooling (ASPP) and context-aware module (CAN). The encoder of M-SFANet is enhanced with ASPP containing parallel atrous convolutional layers with different sampling rates and hence able to extract multi-scale features of the target object and incorporate larger context. To further deal with scale variation throughout an input image, we leverage the CAN module which adaptively encodes the scales of the contextual information. The combination yields an effective model for counting in both dense and sparse crowd scenes. Based on the SFANet decoder structure, M-SFANet's decoder has dual paths, for density map and attention map generation. The second model is called M-SegNet, which is produced by replacing the bilinear upsampling in SFANet with max unpooling that is used in SegNet. This change provides a faster model while providing competitive counting performance. Designed for high-speed surveillance applications, M-SegNet has no additional multi-scale-aware module in order to not increase the complexity. Both models are encoder-decoder based architectures and are end-to-end trainable. We conduct extensive experiments on five crowd counting datasets and one vehicle counting dataset to show that these modifications yield algorithms that could improve state-of-the-art crowd counting methods. Codes are available at https://github.com/Pongpisit-Thanasutives/Variations-of-SFANet-for-Crowd-Counting.
['Ken-ichi Fukui', 'Pongpisit Thanasutives', 'Boonserm Kijsirikul', 'Masayuki Numao']
2020-03-12
null
null
null
null
['object-counting']
['computer-vision']
[ 5.33438027e-02 -1.03402592e-01 2.54686594e-01 -2.79362172e-01 -6.06855452e-01 -1.88564971e-01 6.71928227e-01 -6.58131689e-02 -8.55547130e-01 6.66625738e-01 2.57920235e-01 -1.29104570e-01 5.55692613e-01 -1.15030897e+00 -8.54247689e-01 -6.02757394e-01 -9.28361043e-02 2.58120805e-01 8.39363873e-01 -2.43770123e-01 -9.62317437e-02 4.73370880e-01 -1.57038260e+00 4.55593944e-01 9.44252014e-01 9.80120063e-01 3.28129381e-01 9.67335045e-01 -2.84153283e-01 1.17812192e+00 -7.43769348e-01 -9.30033922e-01 3.31530690e-01 -1.70764312e-01 -3.43855560e-01 -2.72715956e-01 9.69244063e-01 -7.71302104e-01 -7.45477915e-01 9.88267303e-01 6.26435161e-01 -5.23374639e-02 4.88061219e-01 -1.07209468e+00 -4.01106685e-01 4.67000008e-01 -8.59082699e-01 6.56573653e-01 1.08025454e-01 3.64608586e-01 3.70696932e-01 -8.87468040e-01 1.46753237e-01 1.59462619e+00 1.00501454e+00 4.75398928e-01 -6.82883501e-01 -9.56080496e-01 1.87021986e-01 -3.45465019e-02 -1.36442506e+00 -3.24513406e-01 2.24596739e-01 -4.30674970e-01 9.21135008e-01 5.20023629e-02 9.57493067e-01 9.57404435e-01 2.78442264e-01 9.95086074e-01 7.52799451e-01 -7.81699270e-02 2.10531056e-01 -1.59244686e-01 1.00745142e-01 1.09508538e+00 7.95678377e-01 2.38424749e-03 -3.13857704e-01 -1.80619404e-01 1.07005954e+00 3.98327976e-01 -7.78708905e-02 1.15986548e-01 -1.02218556e+00 1.06152809e+00 9.05861974e-01 3.18312824e-01 -3.23098749e-01 4.95911747e-01 5.77395558e-01 -8.42010826e-02 4.92498726e-01 -4.18432010e-03 -5.87848090e-02 2.18200207e-01 -1.13450217e+00 4.90593404e-01 5.41989982e-01 8.62524271e-01 8.24542344e-01 2.46427506e-01 -8.41411054e-01 5.48474431e-01 3.79117168e-02 9.82727647e-01 1.84619293e-01 -1.10172236e+00 7.53320217e-01 5.22306681e-01 1.48075134e-01 -9.97055531e-01 -4.89032269e-01 -1.66092128e-01 -1.04053330e+00 3.89547758e-02 4.22292709e-01 -5.05106390e-01 -1.03757834e+00 1.75462008e+00 2.21986666e-01 5.77402294e-01 -1.18168771e-01 9.18502450e-01 9.10457671e-01 6.84267044e-01 3.42432052e-01 1.73171401e-01 1.66969979e+00 -9.57882285e-01 -4.15676504e-01 -3.97998393e-01 6.34688258e-01 -2.49267444e-01 5.88052928e-01 -2.61632532e-01 -1.04639494e+00 -6.18814588e-01 -1.02572918e+00 -1.36896208e-01 -4.85923916e-01 2.10437164e-01 5.55012941e-01 7.12756276e-01 -1.15305662e+00 2.68239111e-01 -9.02345955e-01 -4.14591670e-01 8.02520514e-01 2.24705830e-01 -2.22500265e-01 -1.32377476e-01 -1.26187968e+00 9.72092748e-01 3.36930126e-01 -4.57125157e-02 -8.35571468e-01 -4.54991460e-01 -1.21627092e+00 6.11900166e-02 1.68509260e-01 -1.03198910e+00 1.15962183e+00 -6.24361873e-01 -1.13772798e+00 6.30770802e-01 -6.15369499e-01 -7.31351852e-01 6.11668110e-01 1.01407217e-02 -1.11304991e-01 3.48877162e-01 5.84115565e-01 1.10271680e+00 7.69224882e-01 -9.58489239e-01 -9.53614056e-01 -2.72583485e-01 1.28871143e-01 2.30819248e-02 -1.97363108e-01 2.38700241e-01 -3.71461004e-01 -6.10729456e-01 -5.69650650e-01 -5.53466082e-01 -2.77934432e-01 -8.97656719e-04 -1.99525520e-01 1.08717820e-02 9.55012977e-01 -7.14185953e-01 1.16606784e+00 -1.90422916e+00 -3.73611540e-01 -1.93075687e-01 4.76175308e-01 7.15352416e-01 -4.35499996e-01 1.58535540e-01 4.23029840e-01 -1.46854416e-01 -6.63992465e-01 -7.46170282e-01 -2.07103267e-01 2.23666936e-01 3.73047255e-02 4.50116485e-01 5.43298662e-01 1.19817138e+00 -1.10231233e+00 -6.14244640e-01 4.29459959e-01 7.49634385e-01 -6.03196621e-01 1.53736085e-01 3.06811687e-02 5.55426538e-01 -2.39658043e-01 6.92881227e-01 1.14650726e+00 -1.14977822e-01 -3.04693907e-01 3.39838713e-02 -3.05744469e-01 -2.56450117e-01 -1.00725484e+00 1.24938416e+00 -4.53704745e-01 3.77057493e-01 1.68281779e-01 -5.04743993e-01 8.42106342e-01 4.64202873e-02 1.21606939e-01 -7.20191836e-01 4.85123485e-01 3.51205409e-01 -3.63527596e-01 -3.82680804e-01 8.40837359e-01 2.84306090e-02 -2.12528408e-01 -1.65398493e-01 2.62035698e-01 9.84863788e-02 6.27462327e-01 1.69855654e-01 1.15769112e+00 -3.71121168e-01 3.12432826e-01 -3.28404009e-01 6.93978846e-01 -1.82816237e-01 6.83283567e-01 9.30683911e-01 -4.25220370e-01 6.80644572e-01 3.73417169e-01 -7.32089460e-01 -9.24292684e-01 -8.06741297e-01 -9.06672180e-02 1.07577503e+00 6.82764649e-02 -1.35673359e-01 -1.00525069e+00 -5.76650858e-01 2.34714746e-02 5.22073865e-01 -7.68610716e-01 3.30114037e-01 -1.05337358e+00 -8.10086966e-01 9.88121510e-01 8.36371303e-01 1.25146997e+00 -8.68180215e-01 -1.08181751e+00 1.90138310e-01 -3.77298445e-01 -1.46177244e+00 -8.90138328e-01 -1.42320856e-01 -4.43227470e-01 -1.25527573e+00 -1.09331322e+00 -5.86733282e-01 3.41917068e-01 5.63274503e-01 1.14204705e+00 9.01388749e-02 -8.51392746e-02 1.43534049e-01 -2.36647293e-01 -6.93993688e-01 -2.38943160e-01 9.17227268e-02 -2.42722332e-01 1.01348028e-01 6.74397230e-01 -3.93494159e-01 -7.98812151e-01 1.50088370e-01 -9.14793015e-01 -1.38738826e-01 4.66425627e-01 6.72648966e-01 2.48809099e-01 -3.23298723e-01 4.08664405e-01 -4.64403778e-01 3.17561567e-01 -5.71562171e-01 -9.04363096e-01 -7.61891343e-03 3.61431062e-01 -1.96566537e-01 7.01868474e-01 -1.73543364e-01 -8.89913440e-01 -6.71607628e-02 -3.67256194e-01 -5.59826374e-01 -1.05940878e-01 -2.94430494e-01 -1.44030169e-01 -1.56496719e-01 4.87237900e-01 1.91229016e-01 -2.17222229e-01 1.16815767e-03 9.21674371e-02 4.67537045e-01 6.21679127e-01 -1.90802738e-01 5.69014847e-01 8.50891948e-01 -1.56262308e-01 -9.54843163e-01 -8.26866448e-01 -4.53804463e-01 -5.45842052e-01 -1.29547313e-01 1.35944450e+00 -1.30329788e+00 -6.64453208e-01 9.39825177e-01 -1.66141891e+00 -3.27908635e-01 -3.76919091e-01 3.98914009e-01 -2.60119468e-01 3.17183942e-01 -9.16735411e-01 -1.11495614e+00 -5.21010160e-01 -1.18909395e+00 1.55583048e+00 4.77090329e-01 3.12480450e-01 -9.19043124e-01 1.90381017e-02 1.74614295e-01 6.55614316e-01 4.66480017e-01 3.09466362e-01 -5.49932539e-01 -6.65941119e-01 -4.12204303e-02 -6.58776999e-01 2.64484704e-01 -4.81465012e-01 -4.44841892e-01 -1.08539724e+00 -3.99015456e-01 -1.66244492e-01 -1.23145781e-01 1.52890527e+00 6.66638672e-01 9.92551506e-01 -4.39025611e-01 -2.30501890e-01 8.77964914e-01 1.50883675e+00 -1.61471143e-01 8.50853264e-01 1.25763848e-01 8.65827858e-01 2.35577300e-01 2.12941751e-01 3.68969679e-01 9.76531923e-01 6.47329032e-01 5.01240969e-01 -2.12678328e-01 -3.00992906e-01 -4.00516301e-01 4.66981947e-01 5.51253915e-01 -3.46114248e-01 -3.11361760e-01 -8.42455685e-01 6.35927022e-01 -1.90262985e+00 -1.39045548e+00 -1.97820351e-01 1.90599108e+00 3.25210065e-01 -2.64030993e-01 4.73607630e-01 -1.70608968e-01 1.02155113e+00 4.80126739e-01 -3.15317810e-01 -3.65559578e-01 -3.46810669e-01 1.01999976e-01 9.44757879e-01 6.69604957e-01 -1.32404506e+00 1.03728449e+00 5.07536650e+00 9.33890522e-01 -8.43484223e-01 4.70670760e-01 5.87697268e-01 -4.70455550e-03 1.70025125e-01 -4.41751063e-01 -1.28143775e+00 6.82052255e-01 8.34496319e-01 3.21695507e-01 1.31630078e-01 6.09092116e-01 6.87604770e-02 -3.70222569e-01 -4.71678257e-01 9.66625392e-01 2.11945355e-01 -1.17030597e+00 1.45312935e-01 -9.81187448e-02 7.03426540e-01 4.30753648e-01 -3.15734953e-01 6.22243762e-01 4.14731532e-01 -7.43410289e-01 9.58817601e-01 4.58044678e-01 8.40241253e-01 -8.60817671e-01 1.31755245e+00 4.12280232e-01 -1.74086118e+00 -2.93412626e-01 -7.48553216e-01 -2.52929442e-02 4.72654969e-01 7.07174838e-01 -3.73312324e-01 3.80958736e-01 7.85224915e-01 4.88000482e-01 -5.85800707e-01 1.16501379e+00 -1.03357919e-01 3.36401194e-01 -4.64816660e-01 -2.05334313e-02 4.29821253e-01 5.49706742e-02 6.31574214e-01 1.92200005e+00 5.60732186e-01 1.20376073e-01 3.61077249e-01 6.82805359e-01 -1.19687274e-01 -3.58128190e-01 -7.33137369e-01 7.53032863e-01 6.64602160e-01 1.07334673e+00 -6.56623840e-01 -7.21810758e-01 -4.11304146e-01 8.98387790e-01 4.08906996e-01 2.66375810e-01 -1.31284308e+00 -3.49942774e-01 6.09885097e-01 4.85342205e-01 7.88553953e-01 -6.63566291e-02 -5.69186844e-02 -1.22016597e+00 -9.69217941e-02 -4.92306530e-01 3.52977276e-01 -2.99739748e-01 -1.20728862e+00 8.30164075e-01 4.05940533e-01 -8.38836670e-01 1.12191297e-01 -5.32266021e-01 -8.22481811e-01 8.63864958e-01 -1.93121696e+00 -1.38283575e+00 -7.32739866e-01 6.37972832e-01 5.39878845e-01 -1.78332597e-01 3.85500491e-01 3.88998598e-01 -5.11973977e-01 6.73191905e-01 -3.49604547e-01 5.52046359e-01 2.53566980e-01 -1.09995651e+00 8.59416246e-01 1.14372766e+00 -3.85975420e-01 2.52714336e-01 2.09594935e-01 -8.27730596e-01 -7.72573531e-01 -1.79240358e+00 9.21662867e-01 -6.13649249e-01 3.48516673e-01 -5.76719284e-01 -7.80343950e-01 4.84110922e-01 1.25349686e-01 3.22057575e-01 2.36069277e-01 -5.93910515e-01 -4.34154332e-01 9.20162350e-02 -1.39910817e+00 2.87512422e-01 1.11792612e+00 -2.51883805e-01 -3.98399919e-01 1.64487034e-01 7.32629061e-01 -4.67853844e-01 -5.19667447e-01 4.15344119e-01 2.25623459e-01 -1.35849202e+00 8.57841730e-01 2.59274155e-01 3.21925819e-01 -5.46464503e-01 -2.41553858e-01 -9.65878427e-01 -4.99973953e-01 -2.30661288e-01 -4.30797279e-01 8.30453277e-01 6.35376424e-02 -9.76697266e-01 6.96016014e-01 1.13812536e-01 -2.60564446e-01 -6.53423131e-01 -1.14944971e+00 -9.03546810e-01 1.66720644e-01 -9.87997353e-02 1.06326056e+00 4.92056310e-01 -4.91695017e-01 2.38666475e-01 -3.93624932e-01 2.70707548e-01 8.55620384e-01 -4.12668139e-01 8.54836404e-01 -8.97419512e-01 -6.55913427e-02 -4.19604182e-01 -5.89922428e-01 -1.33174121e+00 -3.54563706e-02 -6.38015866e-01 -3.67462561e-02 -1.52174842e+00 4.09753770e-01 -6.60362318e-02 2.05559611e-01 3.75989377e-01 -4.78785992e-01 5.29081881e-01 6.70278728e-01 4.81553935e-02 -8.79021645e-01 6.87429190e-01 1.19624639e+00 -1.59944490e-01 6.04650145e-03 -8.29642043e-02 -3.43467444e-01 8.46768737e-01 9.31641996e-01 -4.17471945e-01 -7.84320850e-03 -8.37825835e-01 -3.72571498e-01 -2.25099474e-02 8.42926204e-01 -1.48663008e+00 3.59588861e-01 3.38954628e-01 5.29352129e-01 -7.04857349e-01 4.55246568e-01 -5.00285804e-01 -2.46970728e-01 7.48659909e-01 2.93708384e-01 2.65980631e-01 3.25526118e-01 5.67124128e-01 -2.19573379e-01 -5.43895401e-02 1.05015683e+00 -3.43594909e-01 -6.88892961e-01 6.28143489e-01 -3.68020773e-01 1.65091977e-01 9.06576335e-01 -4.85943258e-01 -6.18003309e-01 -2.47275189e-01 -5.78237623e-02 3.67245346e-01 4.44899082e-01 1.25449866e-01 5.49565256e-01 -1.22798800e+00 -1.20276427e+00 1.88410029e-01 -3.02722603e-02 1.91265389e-01 4.34032083e-01 8.31282556e-01 -7.34318614e-01 6.33801758e-01 -5.96518144e-02 -6.59545422e-01 -8.29598069e-01 3.76240402e-01 5.64198554e-01 -6.12696469e-01 -5.25851846e-01 8.52213442e-01 4.46005344e-01 -4.96181428e-01 -7.20333029e-03 -6.35049701e-01 -3.01603764e-01 -3.99521366e-02 1.10938478e+00 6.31282210e-01 -1.19077139e-01 -9.61935401e-01 -3.96323204e-01 5.65075576e-01 2.52135873e-01 1.43891841e-01 1.14436185e+00 4.22841609e-02 1.39561072e-01 2.01738477e-02 1.13338625e+00 -1.42312855e-01 -1.69834745e+00 -2.24915203e-02 -4.38238263e-01 -5.97510099e-01 -1.24525793e-01 -3.24204177e-01 -1.25082469e+00 8.84916604e-01 5.59426486e-01 -1.50506437e-01 9.90822196e-01 -2.33416408e-01 1.10757029e+00 1.58853948e-01 7.80201077e-01 -6.24247789e-01 -7.53700435e-02 9.89165068e-01 7.81359196e-01 -1.43686628e+00 -3.09351176e-01 -2.13663757e-01 -6.12671852e-01 7.84648478e-01 8.65363896e-01 -3.59927326e-01 4.10487682e-01 6.45025432e-01 -2.43479252e-01 -3.65316629e-01 -2.76116371e-01 -6.11091912e-01 -7.08222091e-02 8.31903875e-01 1.27845287e-01 1.33723766e-01 1.73199296e-01 4.36037123e-01 -1.26431212e-01 7.16164932e-02 2.00690642e-01 8.07835639e-01 -7.57943153e-01 -4.75709468e-01 -7.33423352e-01 6.13413811e-01 -2.36731708e-01 -2.00720072e-01 1.60909176e-01 7.53995597e-01 6.66212499e-01 9.56148148e-01 3.52133572e-01 -2.70028889e-01 5.32087803e-01 -3.52074742e-01 4.02387410e-01 -3.06145281e-01 -7.92530656e-01 -3.84114951e-01 6.35792175e-03 -6.23205245e-01 -5.42429090e-01 -6.31246388e-01 -9.66689169e-01 -9.17976141e-01 -3.53558123e-01 -6.44317716e-02 1.58005968e-01 7.04799414e-01 2.05210254e-01 4.99026954e-01 1.85963467e-01 -1.38361549e+00 -5.38551547e-02 -1.17200541e+00 -5.04632413e-01 1.15478776e-01 3.97446632e-01 -6.23766601e-01 -1.00108854e-01 -3.24147284e-01]
[8.413675308227539, -0.3091357350349426]
563947ec-f9d5-4faa-9c14-a5ece1a67cae
universal-perturbation-attack-on
2211.00366
null
https://arxiv.org/abs/2211.00366v1
https://arxiv.org/pdf/2211.00366v1.pdf
Universal Perturbation Attack on Differentiable No-Reference Image- and Video-Quality Metrics
Universal adversarial perturbation attacks are widely used to analyze image classifiers that employ convolutional neural networks. Nowadays, some attacks can deceive image- and video-quality metrics. So sustainability analysis of these metrics is important. Indeed, if an attack can confuse the metric, an attacker can easily increase quality scores. When developers of image- and video-algorithms can boost their scores through detached processing, algorithm comparisons are no longer fair. Inspired by the idea of universal adversarial perturbation for classifiers, we suggest a new method to attack differentiable no-reference quality metrics through universal perturbation. We applied this method to seven no-reference image- and video-quality metrics (PaQ-2-PiQ, Linearity, VSFA, MDTVSFA, KonCept512, Nima and SPAQ). For each one, we trained a universal perturbation that increases the respective scores. We also propose a method for assessing metric stability and identify the metrics that are the most vulnerable and the most resistant to our attack. The existence of successful universal perturbations appears to diminish the metric's ability to provide reliable scores. We therefore recommend our proposed method as an additional verification of metric reliability to complement traditional subjective tests and benchmarks.
['Dmitriy Vatolin', 'Anastasia Antsiferova', 'Ekaterina Shumitskaya']
2022-11-01
null
null
null
null
['no-reference-image-quality-assessment']
['computer-vision']
[ 1.29591912e-01 -3.07222277e-01 2.24826932e-01 -1.48777202e-01 -7.28010058e-01 -8.36095393e-01 4.83423024e-01 -6.44884678e-03 -4.60000753e-01 6.29268348e-01 -3.86254668e-01 -4.88975823e-01 -1.88267633e-01 -8.43695402e-01 -7.86278367e-01 -8.29379201e-01 -3.30654591e-01 -5.01928210e-01 3.15753013e-01 -4.19632405e-01 4.24340934e-01 8.57583702e-01 -1.50436652e+00 4.10122424e-01 6.17564023e-01 1.20579600e+00 -5.53623021e-01 1.10844946e+00 3.76131684e-01 8.94567549e-01 -1.27343953e+00 -9.17530596e-01 6.14896417e-01 -2.44985327e-01 -8.50395441e-01 -4.58676308e-01 6.65927470e-01 -4.26987827e-01 -3.49887609e-01 1.46943367e+00 6.35447621e-01 -2.06618831e-01 6.05988622e-01 -1.85065281e+00 -4.94549721e-01 6.24980092e-01 -2.49513999e-01 5.20856440e-01 4.92286921e-01 6.14133775e-01 6.83341205e-01 -2.60915041e-01 4.38899577e-01 1.05343151e+00 8.39162171e-01 6.14446342e-01 -9.93799031e-01 -9.29871082e-01 -3.05658132e-01 5.32217205e-01 -1.46319509e+00 -2.07572430e-01 7.59699821e-01 -2.96323806e-01 4.38194305e-01 6.54046535e-01 1.12860538e-01 1.35334718e+00 5.03795862e-01 2.56570876e-01 1.05260885e+00 -1.68014064e-01 1.83331594e-01 1.29711032e-01 -5.68743497e-02 4.78634000e-01 1.38856530e-01 3.73553306e-01 -2.99168408e-01 -1.74587503e-01 3.96928102e-01 -4.14426893e-01 -4.56324518e-01 3.80184911e-02 -1.01333034e+00 6.87556148e-01 5.04969060e-01 4.31461781e-01 -1.16504863e-01 3.35040599e-01 6.96881533e-01 7.41666675e-01 -4.24774438e-02 8.23501945e-01 -2.67182201e-01 -3.42708409e-01 -7.78204262e-01 2.04915747e-01 6.43229008e-01 6.42139852e-01 4.93499190e-01 2.22923845e-01 -2.62060940e-01 3.85090768e-01 -2.91267373e-02 6.37593985e-01 5.75810671e-01 -9.03406620e-01 1.48480937e-01 3.56955707e-01 1.09252200e-01 -1.36877596e+00 -3.06765825e-01 -2.98982471e-01 -7.90008307e-01 7.78546572e-01 5.09766519e-01 -3.73406266e-03 -5.19310415e-01 1.54774106e+00 -5.93384206e-02 2.03655124e-01 1.88788682e-01 7.03314245e-01 7.40653932e-01 2.64231890e-01 -5.69712147e-02 -2.87811719e-02 9.96267378e-01 -5.01341760e-01 -4.83757406e-01 5.01053214e-01 5.59786260e-01 -8.62087369e-01 1.31382871e+00 6.58125699e-01 -8.99445117e-01 -8.04936349e-01 -1.69196832e+00 5.22614956e-01 -6.59056783e-01 -4.32405502e-01 1.85881674e-01 1.34594655e+00 -9.39419329e-01 1.07778907e+00 -3.91956717e-01 8.71541351e-02 4.60577160e-01 4.25778329e-01 -4.68677014e-01 3.56443644e-01 -1.50868630e+00 1.01856232e+00 3.14003795e-01 -7.45563284e-02 -1.14132810e+00 -6.76580489e-01 -3.37809443e-01 2.35194596e-03 -2.26796418e-01 -1.66167229e-01 1.04844391e+00 -1.23474026e+00 -1.50161719e+00 7.30234742e-01 7.85454690e-01 -7.17533112e-01 7.63277173e-01 -3.44166644e-02 -8.82780850e-01 3.48650247e-01 -2.96602845e-01 4.19532120e-01 1.17432868e+00 -1.15392911e+00 -4.42110211e-01 1.20285355e-01 5.59815943e-01 -3.29140097e-01 -6.14326119e-01 3.03297818e-01 1.83793277e-01 -6.44136250e-01 -3.50041121e-01 -6.57139182e-01 9.36534926e-02 -2.71449331e-04 -5.10483980e-01 2.23373756e-01 9.39294875e-01 -4.66330349e-01 1.23665154e+00 -2.22612476e+00 -2.28859767e-01 3.93132269e-01 1.99035645e-01 6.67816162e-01 -3.41926843e-01 7.17632547e-02 -4.07890379e-01 5.75043559e-01 -6.94001764e-02 2.88135439e-01 -1.59832742e-02 -5.39336205e-02 -2.20855176e-01 7.25825965e-01 2.75979489e-01 7.93540478e-01 -7.27295637e-01 -2.95607865e-01 2.84235984e-01 3.47070009e-01 -4.86669630e-01 2.17839912e-01 1.66808486e-01 -1.60402525e-02 -6.50973022e-02 6.90941691e-01 8.72391760e-01 2.08776593e-01 -3.60232502e-01 -5.34957111e-01 2.25539833e-01 -3.06373209e-01 -1.26081169e+00 8.33284676e-01 -3.38719875e-01 8.97028804e-01 -3.44128311e-01 -9.35378909e-01 9.70753193e-01 2.04933137e-01 3.23716581e-01 -6.58029795e-01 4.42031115e-01 1.44957900e-01 2.97596484e-01 -4.82235968e-01 4.70824182e-01 1.62643552e-01 -5.52231036e-02 2.05815449e-01 1.36278123e-01 -1.43591538e-01 1.10491939e-01 1.60830483e-01 1.46207988e+00 -2.78487086e-01 1.35998905e-01 -2.40804017e-01 9.96223986e-01 -4.84453797e-01 2.60782659e-01 8.04853082e-01 -7.14525938e-01 5.54823577e-01 7.85902083e-01 -5.08601665e-01 -1.10542607e+00 -1.23889875e+00 -1.01694107e-01 7.21835256e-01 2.19546691e-01 -3.23634356e-01 -1.04123724e+00 -9.11165476e-01 -9.26103145e-02 4.47987676e-01 -7.66086876e-01 -5.94634891e-01 -3.12472671e-01 -6.23186648e-01 1.47355461e+00 2.91814208e-01 7.28089213e-01 -1.10114813e+00 -5.96187770e-01 -6.33063763e-02 1.42616602e-02 -1.12381971e+00 -2.26935476e-01 -5.32985991e-03 -4.73195106e-01 -1.48084676e+00 -4.07365292e-01 -2.51730472e-01 3.98855895e-01 -4.22678068e-02 1.05652153e+00 4.74567413e-01 -1.80983737e-01 3.18315744e-01 -6.47738576e-01 -2.66931742e-01 -1.08151972e+00 -1.43114716e-01 3.53619188e-01 7.82687366e-02 1.01865269e-01 -5.85879803e-01 -4.95687395e-01 6.82833731e-01 -1.12166178e+00 -7.38971889e-01 2.21173897e-01 6.23432696e-01 1.44060552e-01 2.25435361e-01 5.70645690e-01 -4.60107207e-01 8.85851204e-01 -2.78847992e-01 -6.22399449e-01 2.25021422e-01 -6.00331783e-01 -1.18595948e-02 1.05292499e+00 -8.03324699e-01 -4.40633804e-01 -3.78275096e-01 -3.15254062e-01 -6.75200105e-01 -2.03759849e-01 2.65319139e-01 -3.93388152e-01 -8.59589577e-01 1.42928600e+00 -1.23756036e-01 -8.18572752e-03 2.17226781e-02 3.60843420e-01 6.18371308e-01 8.59710455e-01 -2.25025743e-01 1.37968421e+00 1.49632096e-01 1.24188736e-01 -6.75829172e-01 -1.61515787e-01 -2.21623704e-02 -3.08971792e-01 -5.81541955e-01 5.69445491e-01 -3.46934766e-01 -1.09186494e+00 8.77923071e-01 -1.11198401e+00 -1.42648876e-01 -1.02725320e-01 1.79230586e-01 -4.92976755e-01 7.19560981e-01 -4.86755133e-01 -4.39691812e-01 -4.40289438e-01 -1.38261807e+00 3.62790644e-01 2.35301018e-01 -4.60038260e-02 -7.27656722e-01 -1.69756532e-01 4.93388027e-02 7.08044469e-01 7.84990668e-01 5.88243663e-01 -6.62296832e-01 -2.49727592e-01 -4.47455317e-01 -1.88201055e-01 1.08431041e+00 9.04151723e-02 6.27900720e-01 -1.06738770e+00 -3.76228392e-01 -2.13635713e-02 -2.99227834e-01 1.82225645e-01 6.05072156e-02 1.32661343e+00 -4.95966941e-01 2.19151691e-01 9.58185017e-01 1.41943014e+00 2.93305516e-01 1.22584963e+00 8.50722373e-01 4.97025460e-01 7.18425661e-02 3.05610299e-01 2.20732003e-01 -4.33225185e-01 7.68784821e-01 8.27503562e-01 -1.60552934e-02 6.22316711e-02 1.88166991e-01 8.94573271e-01 4.01986450e-01 -1.36240855e-01 -2.61031806e-01 -6.82319522e-01 -2.29412764e-02 -1.11551809e+00 -1.22715211e+00 -9.17548016e-02 2.18123651e+00 5.71602464e-01 6.75239146e-01 1.69228375e-01 8.89656544e-01 6.62233829e-01 6.59914166e-02 -3.36429417e-01 -8.98368239e-01 -3.12255114e-01 3.25611264e-01 7.14342058e-01 2.65979856e-01 -1.24401510e+00 7.01619029e-01 6.78499079e+00 9.54384744e-01 -1.26985896e+00 3.22494991e-02 6.07136369e-01 5.94213381e-02 1.59437079e-02 -4.68289047e-01 -3.47038567e-01 7.02070773e-01 1.26985741e+00 -3.51250947e-01 3.85689348e-01 9.54547644e-01 3.47556099e-02 1.57148823e-01 -1.05308580e+00 1.03804111e+00 1.38609588e-01 -1.34456134e+00 2.45578274e-01 -1.08828407e-03 5.63960314e-01 -3.05087626e-01 2.88701296e-01 1.53147131e-01 9.88597125e-02 -1.23589158e+00 7.06324339e-01 3.40418518e-01 9.27623987e-01 -1.09223187e+00 1.14172268e+00 -1.42578900e-01 -9.29698527e-01 -5.66751286e-02 -4.76836979e-01 1.41059279e-01 -3.39761674e-01 2.76904225e-01 -5.01442611e-01 5.77204883e-01 7.21177399e-01 2.50284404e-01 -1.04798639e+00 9.83474791e-01 -3.82701010e-01 5.83945632e-01 -1.17913216e-01 -1.01709597e-01 2.03737691e-01 2.77472377e-01 6.44947410e-01 1.02676284e+00 1.53048918e-01 -1.58572778e-01 -4.22174484e-01 6.84839487e-01 -1.96169049e-01 1.56073391e-01 -6.20595813e-01 9.99464095e-02 4.96296853e-01 1.13356888e+00 -6.74480021e-01 -7.75339222e-03 -1.02966934e-01 1.03256774e+00 -1.51909128e-01 3.79834548e-02 -1.35906982e+00 -6.43136561e-01 9.38690960e-01 -2.56543815e-01 2.07627285e-02 7.73288608e-02 -1.29901260e-01 -8.69778633e-01 3.85549180e-02 -1.51239669e+00 2.58849740e-01 -6.55301213e-01 -1.12013471e+00 9.36318457e-01 -1.35947898e-01 -1.75749028e+00 -1.23053521e-01 -7.17674375e-01 -6.60503447e-01 6.81906641e-01 -1.08372200e+00 -8.25392783e-01 -5.61128139e-01 9.24011469e-01 7.40647912e-02 -5.58530211e-01 8.04315448e-01 4.08299744e-01 -4.16712344e-01 1.43859327e+00 -9.72030982e-02 3.56417179e-01 5.48097789e-01 -1.02550077e+00 4.27973002e-01 1.31879175e+00 9.20583159e-02 2.62761235e-01 9.23710644e-01 -1.26493827e-01 -9.86352146e-01 -8.64035785e-01 5.47569916e-02 -5.50634563e-01 8.24542761e-01 -3.69298570e-02 -9.36004519e-01 1.17948838e-01 6.09082803e-02 1.39170885e-01 5.93157470e-01 -2.84142584e-01 -7.53199935e-01 -3.93039703e-01 -1.50694025e+00 6.30868971e-01 6.06778383e-01 -6.95175290e-01 -3.77844632e-01 1.57005087e-01 7.51873076e-01 -1.98626444e-01 -1.12976694e+00 2.44263574e-01 6.01514101e-01 -1.37137437e+00 1.06701779e+00 -4.64319706e-01 6.06068492e-01 -3.28759313e-01 -3.99420559e-01 -1.29794681e+00 -1.67966157e-01 -7.40838349e-01 2.77186409e-02 1.13432932e+00 3.84793967e-01 -5.59898317e-01 6.92619026e-01 2.49742821e-01 7.49782026e-02 -4.13651586e-01 -1.08065867e+00 -1.18707168e+00 2.18928576e-01 -6.81559205e-01 8.37211907e-01 9.56217706e-01 -2.86125429e-02 -4.34267521e-01 -4.65663105e-01 4.37857121e-01 6.54789388e-01 -7.23447740e-01 1.01880348e+00 -8.53650451e-01 -6.86773881e-02 -8.11685145e-01 -1.39067757e+00 -6.73352554e-02 -7.70190954e-02 -6.05639517e-01 -8.27317014e-02 -6.19943976e-01 -1.81326821e-01 -1.63182706e-01 -7.35600948e-01 3.53012532e-01 -9.57750827e-02 6.45815849e-01 4.07694638e-01 3.08473110e-02 -3.97697181e-01 7.25312606e-02 8.55050862e-01 -3.41111451e-01 1.33220971e-01 -8.45102966e-03 -4.62572366e-01 5.08492887e-01 9.85784948e-01 -5.78160763e-01 -2.58474261e-01 9.50680375e-02 1.92235261e-01 -4.70347613e-01 5.44157386e-01 -1.77584386e+00 5.65805957e-02 -1.60282925e-02 2.45317578e-01 -1.72460917e-02 -2.65288502e-01 -8.98238122e-01 1.25238463e-01 8.30195665e-01 -3.00346285e-01 2.66043872e-01 2.75453150e-01 1.23654373e-01 -2.77484447e-01 -4.73249435e-01 1.16988492e+00 2.45327413e-01 -6.68949008e-01 2.20249042e-01 -3.86917502e-01 -1.31767854e-01 1.16964078e+00 -3.83581400e-01 -5.43692946e-01 -3.77612203e-01 -4.25546259e-01 -2.42594615e-01 5.79933405e-01 5.37629247e-01 7.61326909e-01 -1.42860937e+00 -7.07476139e-01 1.80707321e-01 1.56519935e-01 -7.52558231e-01 2.12109953e-01 3.89818966e-01 -1.02450681e+00 -7.14696795e-02 -9.38522100e-01 -4.91888523e-01 -1.52233231e+00 8.59068930e-01 7.62067318e-01 -1.71965644e-01 -2.13799596e-01 7.49574065e-01 -2.81679571e-01 -3.03824525e-02 3.93331736e-01 -3.19878548e-01 -2.21794903e-01 -8.19163918e-02 7.14415371e-01 6.89555824e-01 2.80680925e-01 -6.34187877e-01 -4.33744818e-01 3.08921576e-01 2.07221791e-01 1.00453123e-01 8.80141914e-01 1.78654134e-01 -7.36258691e-03 2.28369180e-02 1.47989440e+00 -9.81742069e-02 -9.63297188e-01 2.95272380e-01 -1.53750226e-01 -5.72305024e-01 -9.56744179e-02 -8.30978751e-01 -1.30652177e+00 7.70325124e-01 1.19169736e+00 6.76055133e-01 1.38389802e+00 -7.30290890e-01 5.08221090e-01 3.04516673e-01 3.64088267e-01 -8.56557727e-01 3.80366743e-01 3.21390003e-01 1.01516032e+00 -1.15340734e+00 1.61627680e-02 -1.14375763e-01 -3.28857213e-01 1.30298722e+00 7.31044471e-01 -1.69904619e-01 5.51827490e-01 4.25317705e-01 3.33787382e-01 9.47826132e-02 -3.63648891e-01 2.94587821e-01 2.96948135e-01 8.47796500e-01 4.19147275e-02 4.27262448e-02 -3.29224259e-01 3.97336274e-01 -4.67134267e-01 -1.10315368e-01 9.79224741e-01 5.33181131e-01 -2.19572917e-01 -1.01334929e+00 -7.29043782e-01 3.80858511e-01 -6.65537775e-01 5.84383868e-02 -2.59246737e-01 8.85273814e-01 3.14656794e-01 1.15177524e+00 -2.63173074e-01 -1.26220155e+00 5.74392736e-01 -9.17931050e-02 2.53817648e-01 1.87742323e-01 -1.03358662e+00 -6.81228340e-01 -8.71062949e-02 -9.68167245e-01 -4.14957076e-01 -2.95179158e-01 -8.04426014e-01 -9.05286849e-01 -2.70475179e-01 2.87260432e-02 6.90019727e-01 7.12059259e-01 -8.82467702e-02 5.82407117e-01 1.09368026e+00 -6.72632456e-01 -7.74894714e-01 -9.46408987e-01 -4.05235082e-01 8.02766025e-01 2.82157779e-01 -6.63372576e-01 -8.48008811e-01 6.49154931e-02]
[5.508032321929932, 7.900035858154297]
a85d73e8-a1c4-416a-b1f2-0d7da4ffbd17
real-time-physics-based-object-pose-tracking
2211.13572
null
https://arxiv.org/abs/2211.13572v2
https://arxiv.org/pdf/2211.13572v2.pdf
Real-Time Physics-Based Object Pose Tracking during Non-Prehensile Manipulation
We propose a method to track the 6D pose of an object over time, while the object is under non-prehensile manipulation by a robot. At any given time during the manipulation of the object, we assume access to the robot joint controls and an image from a camera. We use the robot joint controls to perform a physics-based prediction of how the object might be moving. We then combine this prediction with the observation coming from the camera, to estimate the object pose as accurately as possible. We use a particle filtering approach to combine the control information with the visual information. We compare the proposed method with two baselines: (i) using only an image-based pose estimation system at each time-step, and (ii) a particle filter which does not perform the computationally expensive physics predictions, but assumes the object moves with constant velocity. Our results show that making physics-based predictions is worth the computational cost, resulting in more accurate tracking, and estimating object pose even when the object is not clearly visible to the camera.
['Mehmet Dogar', 'Rafael Papallas', 'Zisong Xu']
2022-11-24
null
null
null
null
['pose-tracking']
['computer-vision']
[ 1.21570505e-01 5.60530610e-02 7.48405382e-02 1.98350519e-01 -1.17329553e-01 -5.51533341e-01 4.18292880e-01 2.26287737e-01 -7.50141621e-01 4.54705268e-01 -3.82683843e-01 5.78711592e-02 -6.16716556e-02 -6.30946219e-01 -9.99454796e-01 -5.94426394e-01 -2.08296720e-03 1.04811406e+00 7.05023944e-01 1.17728494e-01 4.82151836e-01 9.89869475e-01 -1.53556812e+00 -3.34990442e-01 3.96580130e-01 8.16474855e-01 9.20410931e-01 1.16191125e+00 3.06879997e-01 7.50068128e-01 -2.59203345e-01 6.90802187e-02 4.08362389e-01 5.25579900e-02 -5.26585102e-01 5.84630847e-01 3.23749512e-01 -4.40512419e-01 -3.96130443e-01 1.09364808e+00 1.03447944e-01 4.73047465e-01 4.07454073e-01 -9.70832467e-01 2.37027556e-01 6.79138452e-02 -6.03123426e-01 -3.65082502e-01 6.39893889e-01 3.41610163e-01 4.91439939e-01 -5.67873478e-01 1.04903924e+00 1.19386208e+00 4.77060288e-01 3.54255706e-01 -1.11518812e+00 -2.21977741e-01 3.35921407e-01 3.25420409e-01 -1.29129100e+00 -2.06564054e-01 7.92631626e-01 -6.11909389e-01 5.96486092e-01 9.87532288e-02 8.58028948e-01 7.02667117e-01 6.90866470e-01 4.80301708e-01 9.93317008e-01 -5.81872106e-01 3.95316124e-01 -3.37661169e-02 -7.74611160e-03 7.19335914e-01 2.97913700e-01 2.90755421e-01 -2.09741533e-01 -2.56601363e-01 9.84973729e-01 2.23614350e-01 -4.08672720e-01 -9.92175877e-01 -1.33135402e+00 2.49254733e-01 3.79245222e-01 -1.92662418e-01 -8.97837639e-01 4.34073061e-01 -6.67145252e-02 -1.71705961e-01 -7.90099334e-03 3.05492282e-01 -2.90355742e-01 -3.44903350e-01 -5.74474216e-01 4.50214237e-01 1.08929789e+00 1.09659457e+00 5.99811614e-01 -3.20785820e-01 1.07696831e-01 1.59329146e-01 4.86872911e-01 5.97288013e-01 -8.97222459e-02 -1.19387162e+00 4.72839147e-01 3.26442689e-01 8.21508229e-01 -9.42766607e-01 -2.60411918e-01 -4.57806736e-02 -6.70915991e-02 9.21254635e-01 5.91615975e-01 -1.64706454e-01 -9.52859044e-01 1.27494562e+00 7.71017313e-01 1.66277230e-01 -2.39347115e-01 1.20899880e+00 -1.90518722e-01 7.32735991e-01 -2.42649063e-01 -2.16846049e-01 1.35374713e+00 -7.54077315e-01 -7.83754647e-01 -3.85366529e-01 1.01312213e-01 -8.83927345e-01 4.20272946e-01 7.89245665e-01 -1.16348016e+00 -6.66759551e-01 -1.13521218e+00 1.75734162e-01 9.92752612e-02 2.30016261e-01 1.70493588e-01 5.12995757e-02 -5.78805208e-01 9.53089833e-01 -1.71918595e+00 -6.16188705e-01 -1.70154065e-01 6.00065708e-01 -3.84830505e-01 2.68079340e-02 -4.48187023e-01 1.63280499e+00 4.38264072e-01 2.08017364e-01 -1.09279180e+00 -7.78662786e-02 -6.46097302e-01 8.90022889e-03 7.93490827e-01 -6.21063113e-01 1.40313995e+00 -6.38967037e-01 -1.87387323e+00 3.71404439e-01 -1.64522558e-01 -1.51911348e-01 7.87646651e-01 -7.31592000e-01 3.44010621e-01 2.85742968e-01 -2.52807468e-01 3.79637182e-01 9.25199747e-01 -1.65025508e+00 -6.24611199e-01 -5.56719184e-01 1.81735054e-01 5.93403339e-01 3.04668903e-01 -3.84054273e-01 -8.63819301e-01 -9.81403291e-02 3.92358422e-01 -1.52424765e+00 -4.01205510e-01 5.52510560e-01 -3.17941457e-01 9.38221887e-02 1.04464483e+00 -4.07286316e-01 4.58151966e-01 -1.81110823e+00 5.43927610e-01 1.83794945e-01 -9.41676125e-02 7.73785710e-02 1.21754162e-01 5.59433997e-01 1.80136383e-01 -6.28445089e-01 2.05567926e-01 -4.38267112e-01 -3.88148725e-01 3.04322749e-01 -1.90876499e-01 6.64870918e-01 -1.80857956e-01 5.09228408e-01 -9.88456190e-01 -3.51587713e-01 4.54417795e-01 4.31088984e-01 -4.48995501e-01 5.34199238e-01 -4.74649638e-01 6.75168514e-01 -7.54618824e-01 2.21042886e-01 5.51146865e-01 6.75584376e-03 4.77318197e-01 -3.82524461e-01 -4.16373998e-01 3.88310738e-02 -1.58794725e+00 1.69506752e+00 -3.72643024e-01 1.76103070e-01 5.72081089e-01 -6.46154344e-01 7.48532891e-01 2.60455817e-01 4.78720963e-01 4.87152636e-02 2.33892471e-01 5.88991195e-02 -2.36584130e-03 -5.40085912e-01 4.24032003e-01 -7.48448521e-02 3.59491408e-01 2.82227904e-01 1.99150089e-02 -5.53964317e-01 4.09179702e-02 -1.87743232e-01 1.24482310e+00 7.14081228e-01 2.96180040e-01 1.09402046e-01 2.62419224e-01 4.15005565e-01 3.37450087e-01 7.37863719e-01 3.95739526e-02 3.83854300e-01 -1.61268450e-02 -2.70817518e-01 -1.03958452e+00 -1.02367735e+00 3.09757620e-01 4.45898145e-01 7.94666231e-01 -8.01087543e-02 -6.12556040e-01 -2.78916419e-01 3.12625438e-01 5.99784553e-01 -3.50439370e-01 -1.90344095e-01 -8.39464068e-01 -1.16258927e-01 -4.50485170e-01 4.49372858e-01 7.64189735e-02 -7.64225185e-01 -1.31156385e+00 3.91090095e-01 -2.08239276e-02 -1.01616728e+00 -2.72129327e-01 2.50863940e-01 -1.07358515e+00 -1.16653717e+00 -3.71799648e-01 -4.09146488e-01 9.79234219e-01 1.20523445e-01 3.93847376e-01 4.19859216e-02 -2.91112036e-01 8.19476187e-01 -3.14771891e-01 -4.25236553e-01 -4.28468794e-01 -5.29622734e-01 1.04889587e-01 -1.73020497e-01 -2.83459067e-01 -3.12754303e-01 -4.36612308e-01 3.23675543e-01 -4.28991079e-01 1.41943485e-01 5.36671102e-01 4.48801517e-01 5.92858136e-01 4.54011112e-01 -6.56507194e-01 -3.15761179e-01 8.78051743e-02 6.24171309e-02 -1.06665885e+00 1.71166100e-02 -1.45851955e-01 -2.66290531e-02 3.69878858e-01 -8.99869502e-01 -1.22820628e+00 9.15344954e-01 2.60134459e-01 -8.12940121e-01 -2.22613156e-01 3.64657521e-01 -2.49845460e-02 -2.38912553e-01 3.14202815e-01 -5.99489808e-02 4.55167681e-01 -6.94613039e-01 1.76446751e-01 2.69241273e-01 6.63296640e-01 -6.55926347e-01 8.85254204e-01 6.71538591e-01 4.06843632e-01 -6.78616107e-01 -5.32265365e-01 -4.72862840e-01 -1.11924994e+00 -4.83739138e-01 9.06387627e-01 -6.00393534e-01 -1.34339905e+00 4.29418147e-01 -1.42188096e+00 -2.50101566e-01 -2.37244815e-01 1.07800889e+00 -8.25468063e-01 4.14619923e-01 -5.22096336e-01 -1.18793869e+00 -7.16112135e-03 -1.26904702e+00 1.17292976e+00 1.19646572e-01 -1.38314843e-01 -6.03013992e-01 -4.46015708e-02 2.36087456e-01 -4.93139103e-02 3.44445974e-01 5.37830770e-01 -3.54455203e-01 -1.09382617e+00 -7.46566892e-01 2.89705962e-01 -1.00633942e-01 3.53992470e-02 8.27200189e-02 -5.69922686e-01 -3.52197766e-01 3.65997761e-01 1.05927430e-01 1.95622221e-01 3.45630765e-01 9.43821430e-01 -1.47169814e-01 -8.16634238e-01 7.82064870e-02 1.53586769e+00 5.45536280e-01 3.11112285e-01 3.41245234e-01 7.35454857e-01 6.26879513e-01 1.30382454e+00 5.01159608e-01 2.38960117e-01 1.16386139e+00 1.00343525e+00 3.34776610e-01 2.07829684e-01 -2.35666543e-01 3.74336898e-01 4.19671476e-01 -3.93003404e-01 -2.58749276e-01 -8.94217908e-01 1.57812461e-01 -2.19086385e+00 -6.13075852e-01 -2.89818823e-01 2.68646884e+00 3.71726096e-01 2.47007132e-01 -1.19196407e-01 -1.47108465e-01 7.81401694e-01 -4.03799534e-01 -6.69020593e-01 -1.38902646e-02 9.03165519e-01 -1.39629915e-01 8.78362298e-01 8.23394835e-01 -8.58655930e-01 9.00160313e-01 5.77174616e+00 1.63719833e-01 -1.16536069e+00 -1.35606304e-01 -4.27821994e-01 -4.06517014e-02 4.73583549e-01 4.61740613e-01 -8.95917594e-01 2.49643743e-01 6.21886313e-01 -4.96609556e-03 4.04609680e-01 9.94257271e-01 2.19008043e-01 -7.17220485e-01 -1.35483599e+00 4.70334232e-01 1.16364054e-01 -8.44598293e-01 -2.51999229e-01 1.40852690e-01 4.27619331e-02 -1.69355705e-01 -3.78227234e-01 -3.68552245e-02 3.39295566e-01 -2.23896608e-01 1.14230359e+00 9.68949378e-01 -5.39947860e-02 -4.70793307e-01 5.12779176e-01 1.03498518e+00 -1.08412290e+00 -2.08013877e-01 -3.30136657e-01 -3.24562222e-01 6.82388365e-01 4.41747457e-01 -9.95755851e-01 3.55362803e-01 3.83468181e-01 2.43693277e-01 -9.75675788e-03 1.34597456e+00 -3.16882193e-01 1.21621825e-01 -5.85338116e-01 -1.68086529e-01 -1.72547907e-01 -1.91979378e-01 1.07648170e+00 4.59344804e-01 3.25185418e-01 1.82978988e-01 8.72968972e-01 7.89704144e-01 4.86502767e-01 -3.07800800e-01 -4.04597700e-01 2.85620362e-01 1.60171315e-01 1.12126422e+00 -9.02468264e-01 -3.54592085e-01 -1.20346718e-01 1.27437913e+00 2.54638284e-01 9.61693451e-02 -6.85334623e-01 -2.41014317e-01 3.63414168e-01 2.82170713e-01 4.77445632e-01 -8.48653138e-01 2.89857388e-01 -9.95982528e-01 1.30916581e-01 -3.32029939e-01 -1.88452512e-01 -1.37696266e+00 -6.24105394e-01 1.83276072e-01 4.04736847e-01 -1.36525965e+00 -2.56557256e-01 -7.91329980e-01 -3.17115813e-01 8.24813247e-01 -1.17962956e+00 -8.26902092e-01 -3.15996885e-01 4.14892100e-02 5.90359151e-01 6.29896641e-01 6.85606718e-01 -3.41740489e-01 -1.25716776e-01 -4.42748576e-01 -3.12744498e-01 -2.36418679e-01 4.98723060e-01 -1.28694856e+00 -5.12093492e-02 5.36883712e-01 -2.79237151e-01 6.40595913e-01 1.00423479e+00 -1.12780046e+00 -2.13177729e+00 -6.11437380e-01 4.10115838e-01 -7.55678177e-01 7.07411408e-01 -5.30461788e-01 -9.09336925e-01 8.73877823e-01 -3.00410956e-01 2.50993252e-01 -1.52841911e-01 -2.71876097e-01 5.06000817e-01 -6.46811724e-02 -1.03575158e+00 4.91121680e-01 5.97818851e-01 -1.31044835e-01 -9.73396719e-01 5.41368723e-01 3.88969362e-01 -1.10512090e+00 -8.78534675e-01 4.42487866e-01 8.67538750e-01 -2.65931606e-01 9.71071362e-01 -2.46523678e-01 -5.95922545e-02 -6.90053821e-01 1.90452471e-01 -1.15185070e+00 -3.81180674e-01 -4.54017341e-01 -2.54019737e-01 5.99931836e-01 -5.81763871e-02 -3.61318469e-01 1.05578887e+00 8.15072179e-01 6.59123436e-02 -5.63728213e-01 -1.00153875e+00 -8.36608171e-01 -4.93438512e-01 -3.33216608e-01 -3.26999240e-02 3.33156049e-01 8.60493407e-02 1.40634924e-02 -5.29647648e-01 9.88564491e-01 6.86683595e-01 2.62136996e-01 1.16158819e+00 -1.31364715e+00 -3.74179304e-01 2.64536113e-01 -6.58701479e-01 -1.24584746e+00 1.16060533e-01 -3.48159313e-01 6.74182117e-01 -1.45005691e+00 2.60975599e-01 -8.87712240e-02 1.89291611e-01 2.99280852e-01 -1.58343434e-01 -3.89751166e-01 4.81320620e-01 3.45527291e-01 -3.22329521e-01 2.75605261e-01 1.48716128e+00 3.63958716e-01 -2.16940433e-01 2.99685061e-01 3.87502909e-01 1.00383353e+00 3.40382963e-01 -6.64214849e-01 -1.21999241e-01 -4.13229734e-01 -1.67848140e-01 6.87620699e-01 5.42605400e-01 -1.25717402e+00 5.62539816e-01 -2.68931985e-01 5.00286281e-01 -7.11800039e-01 8.81304622e-01 -1.61336613e+00 5.48199594e-01 1.15660906e+00 -8.34396183e-02 6.86739059e-03 2.67775774e-01 8.28563392e-01 2.77706534e-01 -4.90642101e-01 7.21359134e-01 -2.62706131e-01 -5.09623230e-01 2.38122597e-01 -5.51572323e-01 -9.29873049e-01 1.33278573e+00 -4.04331028e-01 -7.55832298e-05 -3.77375007e-01 -1.34812438e+00 1.79639995e-01 9.04387116e-01 4.05263931e-01 5.05244672e-01 -9.31775212e-01 -6.49260804e-02 9.78765935e-02 -1.60855532e-01 1.67027861e-01 -1.22809792e-02 8.59856963e-01 -8.09837341e-01 9.30203944e-02 -4.82899360e-02 -1.00063848e+00 -1.44134974e+00 7.21633017e-01 2.00341284e-01 -1.81986198e-01 -7.27253199e-01 4.85450387e-01 -2.30170153e-02 -3.61868471e-01 2.01416954e-01 -3.65669191e-01 -9.91671979e-02 -4.32577252e-01 2.39412829e-01 5.28899133e-01 -1.10535979e-01 -5.64862728e-01 -1.59789458e-01 1.06536984e+00 -5.07966280e-02 -2.89717019e-01 1.28573251e+00 -2.11560547e-01 -4.72097397e-02 7.34180152e-01 7.03206360e-01 3.70844789e-02 -1.73229635e+00 -1.03169687e-01 -5.76711670e-02 -7.60685086e-01 8.73268098e-02 -7.86112368e-01 -6.19713902e-01 8.05424690e-01 6.61503017e-01 -1.17794715e-01 7.55232334e-01 -1.51159063e-01 4.70615923e-01 6.19980156e-01 9.81132567e-01 -1.05184460e+00 9.64660123e-02 5.36092639e-01 9.80549276e-01 -8.81999373e-01 5.34732044e-01 -7.30700314e-01 -4.35833812e-01 1.23356736e+00 8.16104293e-01 -4.17417169e-01 6.07806921e-01 3.80559325e-01 -9.39699411e-02 -3.64088863e-02 -7.19509900e-01 1.57116149e-02 3.14593673e-01 2.98634857e-01 -2.26809874e-01 -1.16030566e-01 1.37984976e-01 -2.33694792e-01 1.21431224e-01 2.01666147e-01 5.82797885e-01 1.63328767e+00 -8.67403328e-01 -1.08518696e+00 -8.47073376e-01 5.13599776e-02 -1.94016740e-01 4.42623794e-01 -3.07708085e-01 9.39715087e-01 -5.13003990e-02 5.70978343e-01 2.46391937e-01 -1.66605543e-02 7.21169293e-01 -5.54550365e-02 9.01420951e-01 -9.53050435e-01 -1.12042762e-01 3.97403568e-01 -1.70891076e-01 -9.33938742e-01 -2.38803640e-01 -7.80122280e-01 -1.47655177e+00 2.25930080e-01 -7.43120193e-01 3.10025774e-02 1.13949549e+00 7.84835517e-01 2.76662618e-01 2.11452782e-01 4.05734628e-01 -1.68147635e+00 -7.11610198e-01 -7.50710249e-01 -5.01813233e-01 1.31353065e-01 4.21644956e-01 -1.10674000e+00 -3.42358977e-01 -9.80654452e-03]
[5.972313404083252, -0.8771315813064575]
00490bd7-60b7-482f-aa91-7cee16f6d420
enhancing-speech-articulation-analysis-using
2305.10775
null
https://arxiv.org/abs/2305.10775v1
https://arxiv.org/pdf/2305.10775v1.pdf
Enhancing Speech Articulation Analysis using a Geometric Transformation of the X-ray Microbeam Dataset
Accurate analysis of speech articulation is crucial for speech analysis. However, X-Y coordinates of articulators strongly depend on the anatomy of the speakers and the variability of pellet placements, and existing methods for mapping anatomical landmarks in the X-ray Microbeam Dataset (XRMB) fail to capture the entire anatomy of the vocal tract. In this paper, we propose a new geometric transformation that improves the accuracy of these measurements. Our transformation maps anatomical landmarks' X-Y coordinates along the midsagittal plane onto six relative measures: Lip Aperture (LA), Lip Protusion (LP), Tongue Body Constriction Location (TTCL), Degree (TBCD), Tongue Tip Constriction Location (TTCL) and Degree (TTCD). Our novel contribution is the extension of the palate trace towards the inferred anterior pharyngeal line, which improves measurements of tongue body constriction.
['Carol Y. Espy-Wilson', 'Mark Tiede', 'Ahmed Adel Attia']
2023-05-18
null
null
null
null
['anatomy']
['miscellaneous']
[-5.36205590e-01 1.22122020e-01 -4.48596239e-01 3.90521390e-03 -9.83533859e-01 -8.32114577e-01 3.46903920e-01 1.18564017e-01 -2.35047787e-01 2.98080832e-01 7.48997092e-01 -3.32660884e-01 -1.74659476e-01 -1.81321621e-01 -3.64355326e-01 -6.33977354e-01 2.67698139e-01 5.03947377e-01 1.63568944e-01 2.27275431e-01 3.19380969e-01 6.17787600e-01 -1.15157425e+00 -2.67698288e-01 4.21009868e-01 6.80064559e-01 3.07139039e-01 6.77053988e-01 -2.80397773e-01 -9.76936668e-02 -6.98208630e-01 -4.43479598e-01 -2.21227840e-01 -3.29549253e-01 -6.59957469e-01 -1.99368671e-01 2.01973930e-01 -3.71298015e-01 2.30283618e-01 8.29189599e-01 6.35387123e-01 -6.00869060e-02 6.05080009e-01 -7.70796657e-01 -3.39420199e-01 5.00211716e-01 -6.74315929e-01 1.79503560e-01 1.32114962e-01 -1.75026909e-01 7.18461752e-01 -7.62052596e-01 9.13563848e-01 1.03563333e+00 9.80918825e-01 8.48401308e-01 -5.26301563e-01 -3.61018002e-01 -1.79482132e-01 -1.47587702e-01 -1.25699174e+00 -5.76937973e-01 7.16038406e-01 -5.47270238e-01 5.05456626e-01 2.60223716e-01 6.14065528e-01 6.37682140e-01 1.07576430e-03 3.10647368e-01 1.11791420e+00 -7.75897503e-01 2.99802244e-01 -1.52046084e-01 -1.41902268e-01 6.80361390e-01 -6.62694871e-02 -8.80996510e-03 -6.06897295e-01 -8.75665471e-02 6.53637350e-01 -2.42708147e-01 -2.64337182e-01 1.89122055e-02 -8.72836709e-01 5.66675782e-01 5.78362606e-02 5.98775446e-01 -7.02077448e-02 -2.77650859e-02 3.07366461e-01 -3.38669121e-01 2.57342845e-01 5.17401733e-02 -3.41950625e-01 -5.27836263e-01 -7.86058187e-01 -1.30280584e-01 3.46893966e-01 6.81577682e-01 -1.83840364e-01 -2.40618944e-01 3.96029472e-01 1.31986678e+00 9.25014138e-01 3.55387837e-01 8.99612486e-01 -1.04320574e+00 5.54609835e-01 3.18580031e-01 -4.85140949e-01 -2.28189811e-01 -5.70573807e-01 -1.88798964e-01 -2.71114036e-02 1.92251042e-01 8.85032594e-01 -3.76800925e-01 -7.68566430e-01 1.71203411e+00 7.75598884e-01 -1.82909071e-01 -3.12988579e-01 9.08169448e-01 7.92431355e-01 9.61875319e-02 2.33474225e-01 -2.35532358e-01 1.65243435e+00 -7.31552303e-01 -8.26584101e-01 4.63844910e-02 7.23861873e-01 -1.29342163e+00 1.18097544e+00 -1.33433267e-01 -1.45748031e+00 -8.12437013e-02 -6.59085691e-01 -3.43820035e-01 -2.44370073e-01 2.87807673e-01 1.89913362e-01 9.68756378e-01 -6.79054499e-01 2.09239587e-01 -1.17268813e+00 -1.16558351e-01 1.51065037e-01 3.37734371e-01 -7.29366779e-01 6.21740222e-01 -4.95540082e-01 1.05812764e+00 -4.50442553e-01 2.48420462e-01 -1.16440177e-01 -9.42824066e-01 -7.68661678e-01 -1.47345796e-01 1.58684090e-01 -3.44306558e-01 1.37805676e+00 -5.55778714e-03 -2.12467980e+00 9.53375936e-01 -1.61723867e-01 1.08499147e-01 3.74863088e-01 4.48562764e-02 -3.51794690e-01 4.50291634e-01 -1.70147084e-02 4.64957684e-01 5.29985845e-01 -1.15166986e+00 -5.60547173e-01 -1.02596414e+00 -5.03246009e-01 3.42973381e-01 1.90329537e-01 2.33799651e-01 -2.08313614e-01 -5.21692157e-01 8.20487082e-01 -9.61552739e-01 2.78840423e-01 5.67714453e-01 -3.23287308e-01 -2.57299095e-01 8.24586987e-01 -1.11789191e+00 1.01805520e+00 -2.46961379e+00 -2.07567975e-01 1.94143146e-01 2.71894217e-01 4.05994862e-01 3.69748384e-01 4.15424466e-01 3.02610379e-02 4.07861263e-01 -1.80811867e-01 -5.60337782e-01 6.27664551e-02 1.67748645e-01 -6.10710233e-02 8.97896886e-01 -7.19519794e-01 7.27574289e-01 -5.71505845e-01 -8.44697416e-01 3.41777027e-01 5.09748816e-01 -5.35701632e-01 -1.56764537e-01 5.08627221e-02 2.73493975e-01 -4.84562010e-01 9.09679294e-01 5.92319548e-01 5.49420357e-01 2.34898120e-01 -6.31432682e-02 -5.53044438e-01 6.41208887e-01 -6.37594759e-01 1.66164529e+00 -7.30760872e-01 3.84295732e-01 6.97058737e-01 -1.57124609e-01 6.62384272e-01 6.36129081e-01 5.65731525e-01 -3.87858391e-01 2.47289509e-01 4.64234918e-01 3.59274149e-01 -5.92326641e-01 -2.33110949e-01 -6.28849387e-01 4.12019610e-01 5.05613804e-01 1.22173935e-01 -4.02459860e-01 -2.53225863e-01 -4.10511911e-01 7.84963593e-02 6.19929694e-02 4.19578850e-01 -3.58370513e-01 4.79972094e-01 -5.93064249e-01 2.24835947e-01 -2.81701475e-01 -3.79184335e-01 8.21986616e-01 7.51738608e-01 -1.13611743e-02 -9.24627602e-01 -1.38550258e+00 -7.35703766e-01 7.50394285e-01 -3.27803403e-01 -3.38342279e-01 -1.32530963e+00 -4.47759449e-01 -1.41681299e-01 7.20735073e-01 -3.72485727e-01 2.80936509e-01 -7.24309564e-01 -4.72333550e-01 7.84073114e-01 3.69219780e-01 1.91539153e-02 -8.40257227e-01 -4.28719014e-01 -1.24899015e-01 -8.31561461e-02 -9.94027972e-01 -8.98975313e-01 -2.85181582e-01 -6.51458919e-01 -9.38525617e-01 -7.16691911e-01 -7.42896795e-01 7.58615792e-01 -4.60093349e-01 2.96723127e-01 4.32644673e-02 -2.96256989e-01 1.88867509e-01 -9.48473141e-02 -5.19056737e-01 -7.12628722e-01 -6.34826571e-02 3.84402484e-01 -4.30402815e-01 -1.10182732e-01 -5.08147120e-01 -6.43356681e-01 4.97149378e-01 -3.14905286e-01 -4.52309489e-01 -6.45181313e-02 2.38396838e-01 6.13542676e-01 -4.68136370e-01 4.77010876e-01 -1.99722499e-01 7.96631873e-01 -2.27735668e-01 -5.90970278e-01 3.04918468e-01 -4.56549257e-01 -4.40173090e-01 3.39564323e-01 -2.12369516e-01 -8.78942609e-01 -4.98144478e-01 -1.10116112e+00 -6.94152266e-02 -2.60051340e-01 2.14141637e-01 -2.40400601e-02 -8.75756070e-02 2.77036935e-01 -1.13162763e-01 5.59768438e-01 -7.72657454e-01 3.01619560e-01 8.80623221e-01 7.54809558e-01 -5.15181720e-01 1.52550355e-01 4.67058986e-01 6.09256290e-02 -1.11322474e+00 -3.90030116e-01 -4.39700276e-01 -1.20753920e+00 -2.49617636e-01 1.01617050e+00 -1.65045008e-01 -1.04416656e+00 1.76199507e-02 -6.25738502e-01 -1.13836139e-01 -3.21129382e-01 9.53825057e-01 -4.80365366e-01 5.82917929e-01 -3.39343637e-01 -7.75875390e-01 -6.54903948e-01 -1.43529665e+00 1.19813335e+00 2.21774504e-02 -4.93902445e-01 -1.34930587e+00 2.18062341e-01 4.36190963e-01 1.71152279e-01 3.04930717e-01 1.16365695e+00 -2.84471631e-01 2.14244589e-01 -2.53619999e-01 4.24410254e-01 2.49635398e-01 3.66023421e-01 5.94375670e-01 -9.04825091e-01 2.69478142e-01 3.80689085e-01 1.77209958e-01 2.85595953e-01 1.11763942e+00 9.70213652e-01 -2.44353265e-01 -3.54201823e-01 8.12161624e-01 9.38031197e-01 3.90529871e-01 3.02827507e-01 -5.34132458e-02 3.01154792e-01 7.00979590e-01 3.20167840e-01 5.50280549e-02 4.15675938e-01 9.09344494e-01 2.30053827e-01 1.42939582e-01 -8.37694705e-01 -3.11423928e-01 2.78311878e-01 1.39671564e+00 -2.52198279e-01 2.03265592e-01 -8.87701154e-01 6.09855175e-01 -5.98497152e-01 -3.90532613e-01 -1.39232576e-01 2.29813933e+00 8.48530531e-01 -1.30133927e-01 3.29586774e-01 2.49973848e-01 7.33894587e-01 8.99523124e-02 -8.23874250e-02 -7.44217753e-01 5.53231597e-01 1.90715238e-01 3.83282125e-01 1.22293985e+00 -2.39570156e-01 5.95744789e-01 7.03359222e+00 5.81732452e-01 -1.49427378e+00 3.54111552e-01 1.02949878e-02 -2.56062672e-02 -2.52052903e-01 -2.79672593e-01 -1.08549500e+00 5.56971610e-01 7.02205479e-01 7.45539293e-02 3.31438303e-01 7.16911376e-01 1.77398548e-02 1.43553436e-01 -5.91438234e-01 3.61282051e-01 -7.69126043e-02 -1.24150157e+00 -6.32770836e-01 2.93354034e-01 5.92056513e-02 1.77223966e-01 5.30625045e-01 -3.22963804e-01 -4.59150136e-01 -5.33477306e-01 7.52840161e-01 4.96320836e-02 1.51416171e+00 -2.88099736e-01 7.27111325e-02 2.14776680e-01 -1.09920323e+00 1.13064900e-01 8.69843736e-03 4.81808394e-01 4.25496608e-01 -9.05558020e-02 -1.71290517e+00 -6.68346733e-02 1.25004500e-01 -2.78767586e-01 -1.95709392e-02 9.64582860e-01 -3.85121286e-01 5.27814209e-01 -6.63774252e-01 1.03124660e-02 2.29730040e-01 -1.39013410e-01 6.85097754e-01 5.51864386e-01 4.43276882e-01 -2.54690517e-02 -6.25158906e-01 8.30885470e-01 -2.31816277e-01 4.16192114e-01 3.53703499e-02 2.21359804e-01 6.13635123e-01 1.26109767e+00 -8.35740626e-01 2.71465123e-01 -3.62090737e-01 -4.17265333e-02 -7.40250573e-02 -3.39924879e-02 -5.16004980e-01 1.99239388e-01 6.60321712e-01 4.54514474e-01 -2.81028777e-01 -1.51111022e-01 -3.92501444e-01 -6.06389582e-01 2.75058836e-01 -3.25773686e-01 3.40786517e-01 -5.57830334e-01 -5.73694408e-01 3.36185157e-01 -1.16871722e-01 -8.31037939e-01 -4.75074053e-01 -6.70759737e-01 -8.10397625e-01 9.89861608e-01 -1.09339345e+00 -1.21312428e+00 2.00251311e-01 2.80003279e-01 5.91022551e-01 5.74150085e-02 1.04621255e+00 2.59101272e-01 -2.61649311e-01 7.72265732e-01 8.27562287e-02 8.32770839e-02 3.86595041e-01 -1.46299958e+00 3.80251914e-01 2.40290910e-01 -1.58325653e-04 1.04657972e+00 3.96717280e-01 -5.84751189e-01 -9.72435057e-01 -6.87547565e-01 9.16472554e-01 -5.07749677e-01 6.11554265e-01 -4.13992733e-01 -6.26035511e-01 9.20163095e-01 -2.40829125e-01 -6.61658123e-02 1.03808808e+00 2.56041348e-01 -1.72683045e-01 -4.93618697e-02 -1.20325899e+00 7.28800118e-01 5.25650680e-01 -5.71298599e-01 -5.65427423e-01 6.13056660e-01 2.85162479e-01 -9.44481790e-01 -1.50405300e+00 -3.07106469e-02 1.13832390e+00 -5.27364552e-01 1.09930265e+00 -1.79032803e-01 2.00954244e-01 -5.93913049e-02 1.98028311e-01 -1.04326439e+00 2.62067527e-01 -6.46883547e-01 1.21290728e-01 1.09949470e+00 6.09326422e-01 -6.51657462e-01 7.75921404e-01 4.28997874e-01 -7.22700000e-01 -7.92865217e-01 -1.75331748e+00 -1.92847118e-01 5.33828855e-01 -2.98645109e-01 6.21324062e-01 7.48192430e-01 5.71108460e-01 -1.46738559e-01 3.38085562e-01 2.46414602e-01 2.90154725e-01 -1.46112293e-01 2.57232994e-01 -7.74352372e-01 -1.61282104e-02 -8.40648413e-01 -1.78022068e-02 -4.93875682e-01 -1.19431980e-01 -8.38394165e-01 -4.33115959e-01 -1.44169033e+00 -4.15224314e-01 -6.31590009e-01 2.87815094e-01 1.78866863e-01 1.52837098e-01 -1.03262343e-01 1.78672418e-01 1.66275844e-01 6.13752306e-01 1.22712649e-01 1.69684207e+00 6.73355997e-01 -2.58197367e-01 4.10019726e-01 -3.47744286e-01 1.42392242e+00 7.32858360e-01 -5.41381657e-01 -4.76363957e-01 -4.25108850e-01 -4.45353836e-01 6.67834342e-01 -1.26425385e-01 -3.69594365e-01 2.91299999e-01 1.67296275e-01 1.26576647e-02 -6.80997968e-01 6.59954846e-01 -6.09396517e-01 -1.66451856e-01 5.95876753e-01 -2.58752853e-01 3.13455045e-01 -2.26310529e-02 -1.82138637e-01 1.19312964e-01 -7.74995565e-01 9.16237950e-01 -1.19763844e-01 3.50541383e-01 4.95653003e-02 -3.47627312e-01 -2.95749726e-03 8.80260825e-01 -1.17611438e-01 -4.79541063e-01 -6.02338538e-02 -1.09206665e+00 -3.85496795e-01 3.47532034e-01 2.06449449e-01 4.68269348e-01 -8.28441918e-01 -4.60714102e-01 3.05120051e-01 -3.05970877e-01 1.34132832e-01 2.18306571e-01 1.38016272e+00 -1.01776183e+00 5.51678836e-01 -3.26053090e-02 -6.01144135e-01 -1.61083245e+00 1.81349248e-01 8.06225181e-01 1.94628835e-01 -8.24721098e-01 9.76031482e-01 1.38051406e-01 -7.42076516e-01 1.31068662e-01 -7.43197262e-01 -2.29155451e-01 -9.43248123e-02 2.71074235e-01 5.95914125e-01 6.49656951e-02 -9.06635761e-01 -3.29711199e-01 1.28039598e+00 1.03887789e-01 -3.26595306e-01 7.37905979e-01 -4.20779973e-01 -1.50964484e-01 2.18662485e-01 1.28731740e+00 9.89595950e-01 -7.70846009e-01 3.46853226e-01 -3.06303203e-01 -3.90597284e-01 7.76482895e-02 -1.01603317e+00 -8.26087356e-01 1.13450718e+00 3.31947476e-01 6.90450743e-02 6.58146918e-01 4.00293291e-01 7.69621313e-01 -5.91605544e-01 -1.71815261e-01 -1.12310433e+00 -4.32732731e-01 -1.29458308e-01 1.03834295e+00 -5.14821172e-01 -1.05307505e-01 -9.00043011e-01 -5.63702524e-01 1.07571864e+00 2.43060142e-01 4.22822624e-01 9.30596232e-01 6.41381562e-01 5.55776715e-01 -1.90013126e-01 -3.48023295e-01 3.27118970e-02 3.99963558e-01 6.10540926e-01 5.69649398e-01 1.82424188e-01 -7.94667482e-01 3.00684869e-01 -1.05407882e+00 -5.46580672e-01 1.95032775e-01 5.52269816e-01 -4.10791010e-01 -1.11026418e+00 -5.13767481e-01 7.11565316e-02 -8.77559364e-01 -2.04069633e-02 -1.30468875e-01 1.21294808e+00 4.67944562e-01 5.43906152e-01 1.72365963e-01 2.73686975e-01 2.57096231e-01 2.43836835e-01 5.48811257e-01 -4.66784209e-01 -4.85670835e-01 8.14559579e-01 9.90177020e-02 -2.67320150e-03 9.20064524e-02 -1.02093399e+00 -1.83466852e+00 -1.35581806e-01 -5.79645693e-01 2.14473560e-01 1.78730762e+00 1.06891191e+00 -1.40242383e-01 4.02328253e-01 3.47774833e-01 -2.32090160e-01 -5.48981130e-01 -1.01232874e+00 -7.37323999e-01 -4.79097804e-03 4.80499089e-01 -7.19449401e-01 -5.20513773e-01 -9.36139375e-02]
[14.29703140258789, 4.960597515106201]
27a45146-ba0a-4eb0-b65f-6b0bb8c29cb4
robustness-of-demonstration-based-learning
2210.10693
null
https://arxiv.org/abs/2210.10693v1
https://arxiv.org/pdf/2210.10693v1.pdf
Robustness of Demonstration-based Learning Under Limited Data Scenario
Demonstration-based learning has shown great potential in stimulating pretrained language models' ability under limited data scenario. Simply augmenting the input with some demonstrations can significantly improve performance on few-shot NER. However, why such demonstrations are beneficial for the learning process remains unclear since there is no explicit alignment between the demonstrations and the predictions. In this paper, we design pathological demonstrations by gradually removing intuitively useful information from the standard ones to take a deep dive of the robustness of demonstration-based sequence labeling and show that (1) demonstrations composed of random tokens still make the model a better few-shot learner; (2) the length of random demonstrations and the relevance of random tokens are the main factors affecting the performance; (3) demonstrations increase the confidence of model predictions on captured superficial patterns. We have publicly released our code at https://github.com/SALT-NLP/RobustDemo.
['Diyi Yang', 'Ruiyi Zhang', 'Yanzhe Zhang', 'Hongxin Zhang']
2022-10-19
null
null
null
null
['few-shot-ner']
['natural-language-processing']
[-1.35075748e-01 1.81155726e-01 -3.00928783e-02 -3.85941178e-01 -4.97135550e-01 -6.95156157e-01 5.93625128e-01 1.38401426e-02 -6.55721962e-01 7.82832503e-01 3.54446620e-01 -3.96856368e-01 1.39778703e-01 -4.32378173e-01 -9.00276959e-01 -5.33905983e-01 -5.31148501e-02 2.55035073e-01 4.43533570e-01 -4.48974401e-01 2.59661287e-01 3.33932549e-01 -1.41460884e+00 2.10105613e-01 8.63237798e-01 2.39360761e-02 7.52896190e-01 9.24970388e-01 -3.29835564e-01 7.79248595e-01 -6.69236600e-01 -1.64030418e-01 2.45918959e-01 -5.74043572e-01 -8.24324608e-01 -5.27426422e-01 2.72927374e-01 -4.67621893e-01 -3.40415865e-01 1.04792297e+00 4.91064012e-01 3.88976812e-01 6.05025113e-01 -1.29000759e+00 -6.21596277e-01 9.32163417e-01 -1.73120394e-01 3.90899748e-01 3.06906790e-01 6.69964075e-01 9.06643212e-01 -6.82066441e-01 8.27857912e-01 1.05273819e+00 6.49143219e-01 9.88838255e-01 -9.04209495e-01 -6.85595930e-01 2.14950562e-01 3.71775448e-01 -1.03748298e+00 -3.85080397e-01 6.41026258e-01 -3.58880579e-01 1.09469640e+00 7.83069357e-02 7.01427937e-01 1.48856664e+00 -2.05242664e-01 9.58934069e-01 1.06022012e+00 -5.91216385e-01 1.67316124e-01 1.68662906e-01 3.69186372e-01 7.82688022e-01 1.67171787e-02 4.76548612e-01 -4.92454886e-01 1.57961875e-01 5.40633976e-01 1.31464228e-01 -2.23105192e-01 -3.03470641e-01 -1.13543618e+00 6.84475243e-01 3.40169370e-01 5.68619430e-01 -2.33153537e-01 3.30576867e-01 4.52528536e-01 5.04579902e-01 -1.25166476e-01 6.74809635e-01 -4.86826867e-01 -5.56514561e-01 -9.08358455e-01 1.13620289e-01 7.10988164e-01 8.95764589e-01 6.11037135e-01 1.45002708e-01 -2.01292902e-01 6.90872133e-01 2.95667350e-02 2.28589728e-01 7.27354705e-01 -9.01387632e-01 3.83708656e-01 3.61362070e-01 2.86009312e-01 -2.03579888e-01 -2.57943571e-01 -9.95322391e-02 -1.99529842e-01 4.49492931e-01 7.43789911e-01 -4.36922491e-01 -9.53038216e-01 1.88599348e+00 -1.31229581e-02 1.90326437e-01 2.09234670e-01 8.15118134e-01 8.65000367e-01 6.44254088e-01 4.26167518e-01 1.21225417e-01 1.03343236e+00 -1.37137818e+00 -5.71552515e-01 -1.41328514e-01 1.08779669e+00 -6.47255123e-01 1.69271326e+00 -5.98122664e-02 -7.55721390e-01 -8.36622298e-01 -1.11592138e+00 -3.14109623e-02 -4.82268035e-01 1.78580827e-04 3.63532513e-01 4.06655043e-01 -8.92142415e-01 1.07501233e+00 -9.08727288e-01 -5.71350396e-01 2.62396961e-01 1.15582533e-01 -1.91467926e-01 -4.36787643e-02 -1.31493974e+00 1.16405129e+00 3.18715870e-01 -1.98477522e-01 -1.24858630e+00 -5.87501585e-01 -8.41744125e-01 2.43046343e-01 2.45494023e-01 -4.62549895e-01 1.49320972e+00 -6.93722546e-01 -1.49152696e+00 5.16316712e-01 -1.94279939e-01 -4.44543481e-01 7.55393445e-01 -4.35454607e-01 -5.46897165e-02 -3.36734541e-02 -4.30756509e-02 1.16079652e+00 3.68716091e-01 -1.10668087e+00 -5.15033722e-01 2.31739610e-01 2.39649028e-01 3.33931834e-01 -2.12196067e-01 -8.14677849e-02 1.63471028e-01 -3.50704938e-01 -4.64953154e-01 -7.69760787e-01 -2.59280592e-01 1.71338283e-02 -2.84956247e-01 -5.42236388e-01 6.06379509e-01 -6.13482654e-01 7.75347888e-01 -2.14417505e+00 -1.73101857e-01 -4.00725394e-01 -7.21427128e-02 5.87414503e-01 -5.39747715e-01 9.56062376e-01 1.54471874e-01 2.64410734e-01 1.13376029e-01 -2.40801007e-01 1.63857281e-01 1.56902686e-01 -3.89674962e-01 1.06934704e-01 -4.17312086e-02 1.18325329e+00 -1.17693901e+00 -3.32705826e-01 3.72452825e-01 2.99017936e-01 -2.91916311e-01 4.02135640e-01 -3.41891468e-01 4.32834059e-01 -3.12355995e-01 2.60561168e-01 2.19116509e-01 -1.10994391e-01 -1.98906511e-01 8.63101035e-02 -3.31717968e-01 6.77564383e-01 -8.46606255e-01 1.75486112e+00 -3.10617626e-01 8.89385700e-01 -3.90618384e-01 -7.05663621e-01 8.06278586e-01 3.60839367e-01 -1.55739769e-01 -4.79336888e-01 -1.15742430e-01 -3.40754911e-02 4.93303239e-01 -7.92905629e-01 3.14857244e-01 -3.05536300e-01 2.17049837e-01 6.09077871e-01 6.16583563e-02 -1.18341833e-01 3.61491621e-01 3.53402972e-01 1.15892613e+00 5.33008933e-01 2.59859145e-01 2.09236350e-02 -3.53161320e-02 3.30623984e-01 4.57027346e-01 1.07293332e+00 -5.89521170e-01 3.75685215e-01 3.11496317e-01 -2.79548049e-01 -1.26904762e+00 -9.27861810e-01 4.74058062e-01 1.21759629e+00 2.31160030e-01 -4.48162615e-01 -7.03803837e-01 -8.93976033e-01 -3.10499012e-01 1.23001468e+00 -5.02677679e-01 -1.00280136e-01 -4.68816072e-01 -1.53039277e-01 8.50182176e-01 7.16772258e-01 3.87069017e-01 -1.53657889e+00 -9.99489427e-01 2.11884007e-02 -1.03881687e-01 -8.43543887e-01 -4.35962498e-01 4.73261982e-01 -9.20334280e-01 -8.95849288e-01 -7.93399215e-01 -9.76927459e-01 7.09432900e-01 3.32262009e-01 6.64763868e-01 4.75308031e-01 -2.12648124e-01 2.28357658e-01 -5.17565668e-01 -5.66466808e-01 -6.51902199e-01 -5.64656183e-02 1.64774805e-02 -9.96245623e-01 3.38013321e-01 -7.12134242e-01 -5.19180834e-01 1.47464320e-01 -4.18527722e-01 3.84357780e-01 6.63289726e-01 8.43241572e-01 8.17775652e-02 -1.97417319e-01 5.02984107e-01 -8.27579439e-01 8.85498941e-01 -1.13087557e-01 -2.38486409e-01 2.04933032e-01 -5.51835239e-01 2.56087184e-01 8.01188946e-01 -7.23093987e-01 -1.00386798e+00 -4.59525362e-02 -3.88404459e-01 -3.81141275e-01 -6.56969786e-01 3.05029452e-01 2.56269038e-01 1.34616628e-01 7.81361461e-01 4.35941517e-01 -7.66979456e-02 -5.74685574e-01 5.01615822e-01 3.14241618e-01 1.27623394e-01 -5.41304886e-01 8.38818908e-01 6.25089183e-02 -4.97805536e-01 -8.27866316e-01 -5.19890010e-01 -4.57501650e-01 -7.80026913e-01 -1.16721570e-01 6.02205396e-01 -7.29445279e-01 -4.16888893e-01 1.31557062e-01 -1.14676011e+00 -1.07998848e+00 -4.87998694e-01 5.95763206e-01 -4.46213394e-01 4.79389995e-01 -9.31149602e-01 -8.66909623e-01 -2.17177182e-01 -1.07616806e+00 5.48953712e-01 5.74778914e-01 -5.06904483e-01 -8.01780105e-01 3.76580358e-01 1.70800447e-01 3.45404893e-01 -1.38313994e-01 9.87646937e-01 -1.09587395e+00 -3.82489264e-01 -3.57480086e-02 4.50789072e-02 2.30045244e-01 -9.03203711e-02 5.09851575e-02 -9.60555077e-01 -1.15553513e-01 -1.63930327e-01 -5.96203148e-01 5.89102328e-01 6.43658862e-02 8.07579637e-01 -2.79102892e-01 -4.14486676e-01 3.61923784e-01 1.19606376e+00 1.29577681e-01 5.78040957e-01 4.23309654e-01 4.14419919e-01 6.75185144e-01 7.32954562e-01 -3.63450684e-02 7.71984309e-02 3.09817255e-01 2.21671492e-01 -7.30473101e-02 -3.78764302e-01 -7.96588838e-01 6.14592433e-01 8.08876157e-01 1.37124836e-01 -5.74378558e-02 -9.25008416e-01 6.78817511e-01 -1.78556085e+00 -1.26191962e+00 9.04166326e-02 1.80588937e+00 7.97216296e-01 3.50988507e-01 1.45378187e-01 -1.90819025e-01 6.89310014e-01 1.27589673e-01 -5.47275066e-01 -3.67252201e-01 1.58341497e-01 -4.61828709e-02 1.89366370e-01 7.04903781e-01 -5.72583973e-01 1.15274000e+00 6.43836784e+00 7.62980700e-01 -1.00282633e+00 8.91894996e-02 2.12118298e-01 -2.04975471e-01 -1.52417392e-01 1.36637971e-01 -9.75862861e-01 6.27846479e-01 1.00193393e+00 -2.94964701e-01 2.15966389e-01 1.04772985e+00 4.86578494e-01 1.83940306e-02 -1.34493399e+00 4.48051661e-01 -1.16574422e-01 -1.29814839e+00 -3.44677828e-02 -3.55805643e-03 4.86032069e-01 4.04435247e-01 -2.64902472e-01 8.35749447e-01 6.71699584e-01 -1.09119093e+00 6.70558989e-01 2.18850583e-01 3.70613933e-01 -2.76493996e-01 5.69709718e-01 8.81120622e-01 -7.72051573e-01 5.95471859e-02 -5.71149886e-01 -4.08458918e-01 1.82405517e-01 -1.97875611e-02 -1.25850260e+00 7.16401711e-02 4.68309969e-01 3.53682727e-01 -5.31753123e-01 1.21174121e+00 -7.63679326e-01 8.98289919e-01 -2.81614691e-01 -5.63515961e-01 4.21903193e-01 3.42515744e-02 6.06706977e-01 1.42619407e+00 1.94773257e-01 2.25342259e-01 6.03374746e-03 9.30700362e-01 3.16320471e-02 1.50661794e-02 -7.50341296e-01 -2.72143304e-01 7.59247839e-01 1.07569396e+00 -8.09969425e-01 -4.31767404e-01 -3.43286633e-01 8.82008791e-01 6.16837084e-01 4.38298196e-01 -7.78533638e-01 -4.15763110e-01 5.16204953e-01 -9.86581147e-02 4.75222200e-01 -3.01472872e-01 -1.54670835e-01 -9.97277081e-01 -1.86976016e-01 -8.37155938e-01 1.74422160e-01 -1.06254935e+00 -9.40948188e-01 3.54436427e-01 -1.41098946e-01 -1.09670007e+00 -2.42572889e-01 -4.71570730e-01 -1.23857760e+00 8.09594274e-01 -1.47012508e+00 -8.98857892e-01 -2.02037469e-01 2.12069884e-01 1.13834929e+00 3.63720283e-02 9.70000088e-01 -9.10505131e-02 -4.04153943e-01 4.97461766e-01 -4.58294787e-02 3.73127759e-01 6.90851271e-01 -1.36604631e+00 6.72453105e-01 9.26559389e-01 5.31509757e-01 9.22385633e-01 1.21529424e+00 -6.64827108e-01 -9.61820245e-01 -4.91729707e-01 8.41405749e-01 -4.78005469e-01 5.94086707e-01 -2.87662834e-01 -9.80160296e-01 7.13810205e-01 3.17357361e-01 -3.00018430e-01 7.32365310e-01 2.56977141e-01 -3.83718520e-01 3.93222123e-01 -9.81544554e-01 1.03779709e+00 1.09797120e+00 -4.43486989e-01 -1.15714252e+00 3.56819183e-01 8.29239190e-01 -1.24007776e-01 -4.42820638e-01 1.20737985e-01 6.32046223e-01 -8.74983549e-01 6.70286655e-01 -8.17478359e-01 5.12664795e-01 -2.49374196e-01 1.53476939e-01 -1.46772134e+00 -2.29119912e-01 -4.52411979e-01 1.17375189e-02 1.05837595e+00 6.45924509e-01 -3.06130856e-01 7.94598818e-01 5.46452582e-01 -2.71074116e-01 -6.92565620e-01 -5.48958004e-01 -1.04199672e+00 1.43272147e-01 -1.42696351e-01 2.07555920e-01 9.47398305e-01 5.63394845e-01 4.27021652e-01 -3.34459335e-01 -5.99342622e-02 3.43006223e-01 7.26199448e-02 8.93211007e-01 -8.79121602e-01 -3.51064205e-01 -4.15336877e-01 -4.30479348e-02 -1.37557280e+00 -1.02717364e-02 -9.27293360e-01 4.05592114e-01 -1.68657851e+00 3.29435319e-01 -4.05197650e-01 -2.74948567e-01 6.48030460e-01 -3.23493123e-01 -2.49032229e-01 5.14813304e-01 3.45136911e-01 -6.52866304e-01 3.98434937e-01 1.14761055e+00 1.48428470e-01 -2.46768847e-01 -1.11447856e-01 -4.76213187e-01 7.20907807e-01 9.89698470e-01 -6.49294972e-01 -5.20107269e-01 -3.78886640e-01 -4.73562814e-02 -9.28770751e-02 1.54933527e-01 -1.02525520e+00 3.69923204e-01 -2.18379691e-01 3.28551620e-01 -3.45761091e-01 3.59569997e-01 -4.58451957e-01 -2.32799992e-01 9.99505818e-01 -8.25338900e-01 3.37315979e-03 3.07423979e-01 4.80326056e-01 1.22582987e-01 -8.12172472e-01 6.70280337e-01 -3.71025175e-01 -1.08898878e+00 -7.50827268e-02 -4.49793220e-01 7.28279650e-02 8.14630806e-01 -3.04131687e-01 -4.95102853e-01 -5.15051663e-01 -7.29204655e-01 4.44711804e-01 7.10467577e-01 5.01840472e-01 4.32074904e-01 -8.28695416e-01 -4.81961846e-01 -1.84893191e-01 -4.33255434e-02 -2.69944906e-01 1.46283686e-01 6.48772597e-01 -4.32719678e-01 3.27063829e-01 -3.20154637e-01 -3.85803312e-01 -1.51706219e+00 5.22728264e-01 2.84891695e-01 -1.56094953e-01 -1.05573034e+00 9.83729482e-01 1.38501555e-01 -5.12715578e-01 5.82134485e-01 -3.75615060e-01 -2.34430760e-01 -2.57579714e-01 5.42663336e-01 2.09826440e-01 -4.14092392e-01 -1.28255878e-02 -1.23447798e-01 1.59244552e-01 -3.50159496e-01 -2.94462085e-01 1.48514259e+00 -6.15228452e-02 7.04602957e-01 8.48405123e-01 7.45740533e-01 -3.78785841e-02 -1.63886142e+00 9.40075815e-02 1.70296937e-01 -1.85123548e-01 -4.86695290e-01 -1.11016929e+00 -3.60640526e-01 1.25671148e+00 4.22963262e-01 2.32698023e-03 2.92042702e-01 1.35831209e-02 8.36726904e-01 7.08545446e-01 2.26024404e-01 -9.38473701e-01 3.36840779e-01 6.17605150e-01 5.63861609e-01 -1.20195377e+00 -2.32117504e-01 -1.73324227e-01 -8.29637647e-01 1.10191572e+00 9.14051473e-01 -2.12511525e-01 3.29645984e-02 2.56238520e-01 2.73466051e-01 -2.04957217e-01 -1.02357173e+00 -2.29505002e-01 -1.65144190e-01 7.86805451e-01 4.50595409e-01 -1.21204935e-01 -3.01915586e-01 5.77393472e-01 -4.41401511e-01 1.38423443e-02 6.01451516e-01 8.64989281e-01 -8.34632695e-01 -8.83445799e-01 1.20661519e-01 1.38951436e-01 -1.30022585e-01 -3.48421752e-01 -3.41681272e-01 9.79974091e-01 -1.00802898e-01 7.42535949e-01 -3.81760597e-01 -2.15943843e-01 2.23038793e-01 6.64987564e-01 4.74382371e-01 -9.52093482e-01 -5.51174462e-01 -3.36510181e-01 2.03762069e-01 -2.85209268e-01 -3.66294980e-02 -5.80322325e-01 -1.59689176e+00 -1.09217666e-01 -2.83648908e-01 4.59706247e-01 7.51816511e-01 1.11968517e+00 2.32182056e-01 5.09944677e-01 5.00530824e-02 -6.83318436e-01 -9.35014009e-01 -1.26369548e+00 -1.81227952e-01 5.36404908e-01 2.14755386e-01 -4.85182852e-01 -7.02137709e-01 1.09208114e-01]
[10.590140342712402, 8.513237953186035]
4d2abcf7-0d8d-4f4b-86f2-9db715beae2b
classification-of-long-sequential-data-using
2201.02143
null
https://arxiv.org/abs/2201.02143v2
https://arxiv.org/pdf/2201.02143v2.pdf
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks
Classification of long sequential data is an important Machine Learning task and appears in many application scenarios. Recurrent Neural Networks, Transformers, and Convolutional Neural Networks are three major techniques for learning from sequential data. Among these methods, Temporal Convolutional Networks (TCNs) which are scalable to very long sequences have achieved remarkable progress in time series regression. However, the performance of TCNs for sequence classification is not satisfactory because they use a skewed connection protocol and output classes at the last position. Such asymmetry restricts their performance for classification which depends on the whole sequence. In this work, we propose a symmetric multi-scale architecture called Circular Dilated Convolutional Neural Network (CDIL-CNN), where every position has an equal chance to receive information from other positions at the previous layers. Our model gives classification logits in all positions, and we can apply a simple ensemble learning to achieve a better decision. We have tested CDIL-CNN on various long sequential datasets. The experimental results show that our method has superior performance over many state-of-the-art approaches.
['Zhirong Yang', 'Tong Yu', 'Ruslan Khalitov', 'Lei Cheng']
2022-01-06
null
null
null
null
['long-range-modeling']
['natural-language-processing']
[ 1.50303140e-01 -5.58063805e-01 -3.06860059e-01 -2.67738372e-01 -1.27253577e-01 -4.13612843e-01 4.19477999e-01 -6.76086321e-02 -5.57576120e-01 7.70468950e-01 -1.10890511e-02 -6.14668906e-01 1.16139568e-01 -6.51163638e-01 -5.55859625e-01 -8.92618597e-01 -2.20270932e-01 2.66873538e-01 5.63841760e-01 -3.84232402e-01 2.29832605e-01 4.33851033e-01 -1.10603178e+00 7.68074572e-01 5.86950541e-01 1.24370980e+00 1.81295976e-01 6.85803950e-01 -4.15875942e-01 1.21232355e+00 -6.60267770e-01 -6.60150498e-02 -7.40126744e-02 -4.96358603e-01 -7.60348141e-01 -5.95666587e-01 -3.12526762e-01 -1.00587539e-01 -4.17176276e-01 6.83218956e-01 5.15130579e-01 -3.17694340e-03 6.36941254e-01 -1.13396144e+00 -4.07020211e-01 1.02380574e+00 -5.10906219e-01 6.19731724e-01 -1.12060167e-01 -1.41725942e-01 9.59989071e-01 -5.70237398e-01 2.90411562e-01 1.03233826e+00 1.03642392e+00 3.69156480e-01 -9.37263489e-01 -8.77024055e-01 3.95834565e-01 4.81523901e-01 -9.52969432e-01 6.19099252e-02 8.54292631e-01 -4.14754659e-01 1.15955913e+00 7.40717128e-02 7.59538352e-01 1.37918961e+00 3.50055218e-01 1.13822687e+00 9.92469788e-01 -2.17747718e-01 1.27545863e-01 -4.08680111e-01 4.81307000e-01 3.34393173e-01 -3.06188673e-01 3.14149559e-02 -3.82477760e-01 -3.70964259e-02 8.33740354e-01 5.93841434e-01 -1.65510327e-01 1.49671361e-01 -1.32694435e+00 7.10370481e-01 6.60375416e-01 7.74289608e-01 -3.97111923e-01 2.11650774e-01 8.03849876e-01 7.19264030e-01 5.15842497e-01 1.51355341e-01 -7.97907829e-01 -4.47629511e-01 -6.80444062e-01 3.15528475e-02 6.13713861e-01 5.10429263e-01 2.92315483e-01 1.32813752e-01 -2.48532176e-01 9.55471635e-01 -4.29640532e-01 4.31781933e-02 1.10531235e+00 -4.01691288e-01 5.62149942e-01 7.21309245e-01 -2.70188689e-01 -9.77114797e-01 -7.21013665e-01 -6.40918672e-01 -1.44157422e+00 -8.10724497e-02 4.39297616e-01 -3.77458185e-01 -8.78265917e-01 1.49138665e+00 -2.75242120e-01 3.29837263e-01 1.44549385e-01 6.33812726e-01 6.28833652e-01 1.11862755e+00 -1.58473983e-01 -3.51284206e-01 1.00148988e+00 -1.02653539e+00 -6.65764093e-01 7.95306638e-03 6.40328526e-01 -5.40084004e-01 7.47693956e-01 5.10585725e-01 -5.96749723e-01 -7.69250631e-01 -9.79033530e-01 2.39518449e-01 -4.11751330e-01 2.73320287e-01 5.35524189e-01 1.91823974e-01 -8.34532261e-01 1.04995871e+00 -1.02270019e+00 -2.62360632e-01 2.12894917e-01 3.73787254e-01 -4.47059311e-02 5.32345593e-01 -1.39972961e+00 7.01759577e-01 6.27416909e-01 4.75990802e-01 -6.28880262e-01 -3.30731481e-01 -5.26952386e-01 2.50715800e-02 7.46002048e-02 4.43090126e-02 1.38471437e+00 -1.11956584e+00 -1.56467855e+00 2.85667688e-01 -7.63239190e-02 -8.89358401e-01 5.18147945e-01 -1.06515639e-01 -5.75247347e-01 -1.08670205e-01 -2.54616827e-01 2.94167012e-01 7.19448149e-01 -4.88925785e-01 -6.90762043e-01 -2.93165982e-01 -3.38005930e-01 -1.17030464e-01 -5.18250823e-01 6.67851344e-02 -6.50605783e-02 -1.00985682e+00 1.21533401e-01 -1.12444258e+00 -4.23375815e-01 -4.19376522e-01 -3.23666215e-01 -6.99369609e-01 1.11622405e+00 -4.74676222e-01 1.55486774e+00 -2.12096739e+00 1.61671326e-01 4.41070572e-02 -2.67931521e-02 5.81042171e-01 -9.42678377e-02 5.94780564e-01 -2.76051104e-01 7.26651624e-02 2.07897983e-02 -5.48659675e-02 -4.18757051e-01 1.75218910e-01 -6.16316438e-01 2.67683417e-01 1.93609402e-01 1.03738737e+00 -8.16912472e-01 -1.68090388e-01 5.86738773e-02 2.12587133e-01 -1.83693111e-01 1.08773008e-01 -2.36372471e-01 4.64163125e-01 -5.56550086e-01 2.27772340e-01 2.21538901e-01 -5.72178602e-01 3.53661180e-01 -3.99046578e-02 -2.08719924e-01 3.26536983e-01 -7.81661868e-01 1.36769152e+00 -3.74962300e-01 9.54313636e-01 -8.71221006e-01 -1.40114677e+00 1.22900414e+00 5.10904789e-01 6.20925844e-01 -7.82634616e-01 1.85547903e-01 4.78980005e-01 4.01769012e-01 -4.58457828e-01 3.04956704e-01 2.23270394e-02 -1.17007799e-01 6.84301972e-01 -5.20127080e-02 3.30910027e-01 7.60922730e-02 -1.63823664e-01 1.14967573e+00 8.84023588e-03 1.13071412e-01 -2.45391577e-02 5.06820202e-01 -3.54595304e-01 8.35268080e-01 7.14104474e-01 -1.76813796e-01 5.11159539e-01 8.45890462e-01 -1.19926631e+00 -1.29649198e+00 -4.47323740e-01 5.60429692e-02 1.03607726e+00 -1.09362014e-01 -2.27923259e-01 -3.84837061e-01 -6.24343872e-01 -1.57518610e-01 1.72085792e-01 -7.81754434e-01 -4.34593782e-02 -9.30227399e-01 -8.66793096e-01 8.24388564e-01 9.55729723e-01 6.30387247e-01 -1.57866621e+00 -6.15794837e-01 6.73161268e-01 -3.64342541e-01 -9.40144181e-01 -2.43934661e-01 6.01501405e-01 -1.10225964e+00 -8.14830184e-01 -9.52893913e-01 -9.91838455e-01 1.98613673e-01 -6.00927025e-02 7.44255722e-01 -2.27366015e-02 1.09602623e-02 -5.48122287e-01 -6.56775355e-01 -3.92334491e-01 -2.60999471e-01 6.80115938e-01 1.22711636e-01 2.47434288e-01 3.28736633e-01 -8.40333045e-01 -6.02344990e-01 5.48776031e-01 -6.90973997e-01 3.20389052e-03 4.64938909e-01 9.47418213e-01 3.57445359e-01 1.61401436e-01 8.45431685e-01 -7.90325940e-01 6.87858284e-01 -3.23416352e-01 -3.37456912e-01 2.43955612e-01 -3.17223758e-01 3.13136667e-01 1.14546955e+00 -7.78637648e-01 -6.59841418e-01 -8.18904415e-02 -3.42546254e-01 -5.26636004e-01 1.06986471e-01 6.72964215e-01 5.67759514e-01 2.37413183e-01 6.08439326e-01 5.77407062e-01 1.25342548e-01 -6.35339081e-01 -1.40626729e-01 8.39634240e-01 1.95658907e-01 -3.23798120e-01 1.84850305e-01 2.58265555e-01 -3.45540911e-01 -6.52303934e-01 -7.87798941e-01 -3.05367410e-01 -6.06822670e-01 -2.12982103e-01 6.36754215e-01 -6.24956548e-01 -9.26915646e-01 1.06676972e+00 -1.26761043e+00 -6.17607653e-01 6.04768768e-02 4.50173289e-01 -3.37402195e-01 1.50412530e-01 -9.47900772e-01 -8.67960334e-01 -4.54269201e-01 -1.07284069e+00 5.73394358e-01 1.29416406e-01 -2.05708042e-01 -9.53101218e-01 1.14224322e-01 -3.46048713e-01 6.03214741e-01 3.16396981e-01 8.77202570e-01 -9.37108874e-01 -1.65049925e-01 -1.78460196e-01 -6.28775731e-02 4.39887792e-01 3.65934223e-02 1.32158309e-01 -7.73019195e-01 -3.69009167e-01 -8.94282237e-02 -4.99063790e-01 1.15481830e+00 3.81510675e-01 1.67850733e+00 -2.01868221e-01 -5.31610906e-01 5.34810841e-01 1.17046905e+00 6.75127149e-01 6.81032836e-01 4.49821353e-01 5.34329653e-01 2.54519522e-01 3.70000958e-01 3.74758303e-01 3.65135223e-02 5.86409152e-01 2.66665101e-01 -4.25855443e-02 2.33890265e-01 -1.16272174e-01 4.52574670e-01 1.25802410e+00 -3.82827699e-01 -3.38040441e-01 -9.54432487e-01 4.72907722e-01 -2.23807716e+00 -1.26110113e+00 -1.88478902e-01 1.79904783e+00 8.03005517e-01 4.27026659e-01 1.78556412e-01 5.36518335e-01 7.07376361e-01 4.23961908e-01 -5.81396043e-01 -5.00837803e-01 -2.47112125e-01 2.49517620e-01 3.13035578e-01 -1.73509777e-01 -1.17004871e+00 7.29278326e-01 6.60166836e+00 9.43405747e-01 -1.56985879e+00 -3.33393365e-02 8.50186348e-01 1.77015632e-01 5.95831722e-02 -3.85914743e-01 -8.73614967e-01 7.43092179e-01 1.10540926e+00 4.00310308e-02 1.89539552e-01 5.62182248e-01 5.53372167e-02 3.09105277e-01 -9.38100755e-01 8.82578552e-01 -3.22999418e-01 -1.46433449e+00 5.06920666e-02 -2.31499046e-01 8.39693904e-01 3.24086517e-01 9.49289426e-02 4.41561311e-01 3.82560790e-01 -1.03270996e+00 5.34224749e-01 4.43671346e-01 7.71191537e-01 -8.87856424e-01 1.01828194e+00 5.76241374e-01 -1.35843301e+00 -5.56551814e-01 -3.28415215e-01 -3.27808261e-01 7.27412179e-02 5.80227017e-01 -5.54885328e-01 5.45574725e-01 9.78004456e-01 1.17702460e+00 -2.73701727e-01 8.88277769e-01 -1.26794335e-02 8.57413650e-01 -2.57313639e-01 -5.60900450e-01 5.36510706e-01 -1.04008272e-01 1.43324450e-01 1.22351396e+00 3.47102433e-01 9.68608484e-02 1.61075458e-01 2.83988446e-01 -4.38464284e-02 9.95079055e-02 -5.71090460e-01 -1.91089466e-01 1.53902873e-01 9.09849644e-01 -8.02724957e-01 -2.80372322e-01 -3.20425779e-01 8.42064559e-01 5.81374884e-01 3.62753153e-01 -7.96556175e-01 -5.72832406e-01 4.11379784e-01 -3.10312480e-01 4.97640550e-01 -2.20185637e-01 -2.01220006e-01 -1.18255258e+00 5.62599264e-02 -7.83231318e-01 6.08037829e-01 -5.43343127e-01 -1.20545948e+00 9.66614664e-01 -5.29028773e-01 -1.58761716e+00 -3.11225832e-01 -7.50166237e-01 -6.82281911e-01 6.64254129e-01 -1.39166057e+00 -8.83650839e-01 -3.71691734e-02 7.04727769e-01 7.42816329e-01 -3.74267638e-01 7.24905014e-01 3.36334944e-01 -6.21855915e-01 6.24939561e-01 3.66150856e-01 6.80887282e-01 3.82421076e-01 -9.55040276e-01 5.63551486e-01 6.12221718e-01 3.01624071e-02 4.53556329e-01 3.50863516e-01 -5.10805428e-01 -9.63005185e-01 -1.14365292e+00 8.29801381e-01 -4.39533331e-02 7.86700785e-01 -2.15238139e-01 -1.06338048e+00 7.45062828e-01 1.44365937e-01 7.09772855e-02 5.41427195e-01 2.04985172e-01 -3.82462978e-01 -3.55608046e-01 -4.05463964e-01 5.19551098e-01 9.69029903e-01 -4.76965398e-01 -5.24943829e-01 2.40109805e-02 7.95575678e-01 -2.23080158e-01 -6.62711203e-01 6.12108648e-01 8.26971173e-01 -9.72440183e-01 5.99427879e-01 -7.87116468e-01 7.62747109e-01 -2.13205352e-01 1.58782661e-01 -1.45017695e+00 -2.75481492e-01 -5.28676033e-01 -1.30158991e-01 7.49975145e-01 5.43192089e-01 -7.70172715e-01 7.23710299e-01 -2.57994145e-01 -7.33564720e-02 -1.02360845e+00 -7.51253426e-01 -8.35213900e-01 9.62810889e-02 -5.19267142e-01 5.70595980e-01 9.39989924e-01 1.66683886e-02 3.92734915e-01 -6.40776873e-01 -2.42425725e-01 1.55100718e-01 4.66479152e-01 3.62715721e-01 -1.26775885e+00 -1.13600105e-01 -7.24001229e-01 -4.39211160e-01 -1.23936009e+00 1.12695158e-01 -8.50859284e-01 -1.26703322e-01 -1.17532277e+00 5.42169735e-02 -6.67406201e-01 -7.40594983e-01 6.78466439e-01 2.96032727e-02 2.47901589e-01 3.67189595e-03 4.02108997e-01 -5.10216057e-01 5.30988455e-01 1.24783587e+00 -2.17602611e-01 -2.39497781e-01 3.99551332e-01 -4.46281396e-02 4.90762979e-01 1.08674467e+00 -3.24646771e-01 -2.28413716e-01 -3.78072977e-01 2.76361525e-01 3.31587732e-01 1.51658673e-02 -1.05494535e+00 5.00214875e-01 5.23410924e-02 6.03440225e-01 -9.59099710e-01 1.03167124e-01 -7.70239830e-01 3.17405343e-01 8.21624458e-01 -6.41470194e-01 3.62220705e-01 -1.47944000e-02 4.77015495e-01 -5.12241244e-01 2.93129049e-02 6.65803790e-01 -1.76122218e-01 -7.14614987e-01 5.35606027e-01 -4.61086094e-01 -2.88351655e-01 8.15531850e-01 -2.77550295e-02 -2.28635922e-01 -3.60543817e-01 -8.40100706e-01 2.56911188e-01 -5.65235987e-02 6.88944638e-01 4.83927339e-01 -1.48753548e+00 -6.46650612e-01 2.71047205e-01 -1.10625951e-02 -1.52068704e-01 8.39366540e-02 7.59625077e-01 -5.52692533e-01 6.40773952e-01 -4.45112139e-01 -7.58281171e-01 -1.07605255e+00 5.45281887e-01 5.78713059e-01 -6.40102804e-01 -6.83989167e-01 6.59554899e-01 -7.93368965e-02 -5.43157518e-01 4.04376358e-01 -4.87747043e-01 -5.71007550e-01 2.88752913e-01 6.06681764e-01 3.08957279e-01 1.53918996e-01 -2.51072586e-01 -1.81890965e-01 7.05369949e-01 -4.62171823e-01 9.20046940e-02 1.55724490e+00 3.05988491e-01 -1.81901619e-01 9.78614748e-01 1.41853905e+00 -6.91529751e-01 -1.13275719e+00 -5.40483654e-01 1.15770958e-01 2.73195766e-02 -3.30253750e-01 -4.60004598e-01 -1.26680446e+00 1.15646219e+00 3.60303193e-01 7.36490428e-01 1.12090123e+00 -3.28256756e-01 9.55011666e-01 4.35651541e-01 4.07260716e-01 -1.14353740e+00 3.19714487e-01 1.09709525e+00 7.17864037e-01 -1.08292341e+00 -4.83808905e-01 1.25519484e-01 -5.64520359e-01 1.56949723e+00 6.39200628e-01 -1.79755002e-01 7.66010523e-01 3.12309325e-01 1.26007199e-01 1.63045488e-02 -1.11660361e+00 5.00128604e-02 -1.07765019e-01 7.36807883e-02 5.52090585e-01 1.14206947e-01 -3.32836181e-01 4.91871476e-01 -1.80059254e-01 1.00836366e-01 2.97670156e-01 8.49688947e-01 -3.01325470e-01 -1.14874554e+00 -2.32353341e-02 6.30179107e-01 -6.76083386e-01 3.12955976e-02 -6.98175952e-02 4.67059702e-01 -2.23128334e-01 6.18644834e-01 3.60759914e-01 -7.14770675e-01 1.70974404e-01 2.07828015e-01 1.14141874e-01 -2.34544694e-01 -8.56002390e-01 -6.54212683e-02 -2.27129832e-01 -4.70076174e-01 -4.25128162e-01 -6.08544648e-01 -1.22870517e+00 -3.01055402e-01 -2.33128473e-01 2.78634310e-01 4.34312373e-01 8.99349689e-01 2.05457136e-01 7.87852705e-01 1.01857257e+00 -8.18486691e-01 -5.96479177e-01 -1.14538002e+00 -3.63339514e-01 2.73106962e-01 6.52463794e-01 -3.02040458e-01 -1.52365386e-01 -7.22427070e-02]
[10.817400932312012, 6.287044525146484]
957c1301-0052-4f28-af73-8d2005f3767d
multilingual-and-cross-lingual-document
2101.11302
null
https://arxiv.org/abs/2101.11302v2
https://arxiv.org/pdf/2101.11302v2.pdf
Multilingual and cross-lingual document classification: A meta-learning approach
The great majority of languages in the world are considered under-resourced for the successful application of deep learning methods. In this work, we propose a meta-learning approach to document classification in limited-resource setting and demonstrate its effectiveness in two different settings: few-shot, cross-lingual adaptation to previously unseen languages; and multilingual joint training when limited target-language data is available during training. We conduct a systematic comparison of several meta-learning methods, investigate multiple settings in terms of data availability and show that meta-learning thrives in settings with a heterogeneous task distribution. We propose a simple, yet effective adjustment to existing meta-learning methods which allows for better and more stable learning, and set a new state of the art on several languages while performing on-par on others, using only a small amount of labeled data.
['Ekaterina Shutova', 'Pushkar Mishra', 'Helen Yannakoudakis', 'Niels van der Heijden']
2021-01-27
null
https://aclanthology.org/2021.eacl-main.168
https://aclanthology.org/2021.eacl-main.168.pdf
eacl-2021-2
['cross-lingual-document-classification']
['natural-language-processing']
[-1.68601036e-01 -4.82867420e-01 -6.33290410e-01 -2.35544771e-01 -1.41641915e+00 -5.90162516e-01 1.03096390e+00 1.09713569e-01 -9.51331437e-01 8.80142987e-01 1.34476036e-01 -2.76580602e-01 3.65078487e-02 -3.59218389e-01 -6.00907207e-01 -3.25606227e-01 1.17727995e-01 8.28476667e-01 7.45271221e-02 -3.20496261e-01 -7.87528604e-02 2.11693719e-01 -1.35081422e+00 4.87841517e-01 7.93004692e-01 3.39948267e-01 1.60385832e-01 5.87773442e-01 -4.57215101e-01 6.49177432e-01 -6.33776784e-01 -7.51305997e-01 1.39807433e-01 -1.57276578e-02 -9.76203442e-01 3.10477242e-02 7.65504897e-01 -1.23257544e-02 -1.64821520e-01 8.77377093e-01 7.89849877e-01 2.15013623e-01 7.49972165e-01 -9.37489450e-01 -6.63272858e-01 8.06679726e-01 -4.39878851e-01 4.90038723e-01 -3.85785848e-02 -1.64516687e-01 8.61717343e-01 -1.10474718e+00 7.37167656e-01 1.19553483e+00 9.60950375e-01 7.41637349e-01 -1.09209752e+00 -6.23944044e-01 3.38411450e-01 1.54859796e-01 -1.29440713e+00 -7.49878466e-01 4.03952748e-01 -2.68144429e-01 1.33593428e+00 -1.16208307e-01 -4.71056774e-02 1.65928066e+00 2.23207083e-02 8.53400946e-01 1.36097062e+00 -1.02940667e+00 1.51483774e-01 5.69051266e-01 4.19962071e-02 5.39357483e-01 2.63556421e-01 -2.71763742e-01 -5.73776066e-01 -2.07417339e-01 1.25268856e-02 -1.26442850e-01 5.56976795e-02 -2.47383073e-01 -1.27489436e+00 7.81150401e-01 -1.26710787e-01 7.79944003e-01 2.22975053e-02 -1.87440529e-01 7.51181781e-01 5.15660465e-01 1.15346622e+00 2.93421477e-01 -8.79884958e-01 -1.80652589e-01 -1.16652143e+00 2.07509249e-02 9.15875554e-01 1.04651904e+00 5.52344620e-01 1.73386082e-01 -1.56311586e-01 1.38460720e+00 -1.03651479e-01 5.51425219e-01 9.86901164e-01 -5.46006024e-01 8.57218802e-01 3.65850955e-01 4.13514003e-02 -2.82355785e-01 -4.21277046e-01 -7.03945875e-01 -8.39639127e-01 -1.25670612e-01 3.71880263e-01 -3.28822076e-01 -1.06387329e+00 1.81307220e+00 9.48927104e-02 1.47563025e-01 2.28940889e-01 3.00760984e-01 5.34307539e-01 5.94798028e-01 2.01621294e-01 -3.24691772e-01 1.25971937e+00 -1.45379519e+00 -5.80623090e-01 -4.75684464e-01 1.00436556e+00 -7.93224514e-01 1.16428161e+00 4.79398936e-01 -8.73631597e-01 -5.33820212e-01 -9.77992177e-01 -8.58720541e-02 -9.11381066e-01 1.56660363e-01 6.91642880e-01 8.89947355e-01 -9.26528871e-01 4.25590605e-01 -6.85586870e-01 -7.30536044e-01 1.82615638e-01 2.57827103e-01 -5.98994851e-01 -4.42551911e-01 -1.15052068e+00 1.16767311e+00 6.17227316e-01 -2.35824808e-01 -9.19356585e-01 -5.78292906e-01 -6.12702131e-01 -2.01941013e-01 4.91272599e-01 -6.84432983e-01 1.35810626e+00 -9.46568787e-01 -1.35352325e+00 1.22058332e+00 -9.13839415e-02 -5.15039444e-01 8.55347395e-01 -2.08124906e-01 -7.34208286e-01 -3.69297624e-01 1.10020474e-01 4.67942894e-01 7.57448494e-01 -1.11081970e+00 -8.31373274e-01 -3.83934498e-01 -1.64079949e-01 2.97704339e-01 -8.35887253e-01 1.58155054e-01 -6.65832281e-01 -7.21868038e-01 -4.87675190e-01 -8.27807248e-01 -9.55973640e-02 -6.80969417e-01 -1.94492012e-01 -2.98912227e-01 4.48581487e-01 -5.01863718e-01 1.18899000e+00 -1.75918949e+00 2.51834959e-01 -2.89508939e-01 -2.33121797e-01 5.80734372e-01 -4.09206241e-01 7.27467716e-01 1.59765527e-01 1.60659537e-01 -1.89397573e-01 -9.37357485e-01 -1.19991466e-01 1.57351673e-01 -2.14286000e-01 4.51447427e-01 -1.77111477e-01 7.70599127e-01 -1.00161886e+00 -5.69739878e-01 -1.57482026e-03 3.91800493e-01 -3.29657555e-01 1.45454183e-01 -1.09479338e-01 1.75206885e-01 -2.23194301e-01 7.33987391e-01 3.97109687e-01 -1.20538533e-01 4.66426909e-01 -8.58062506e-03 -1.62385285e-01 7.47951269e-02 -1.10647774e+00 2.11198187e+00 -1.03036666e+00 5.67961931e-01 -1.77023597e-02 -1.10248959e+00 7.65912235e-01 4.04147357e-01 3.28425229e-01 -6.90535486e-01 6.51463792e-02 6.21550143e-01 -1.05032802e-01 -3.45209539e-01 5.41710377e-01 -1.32767186e-01 -1.41810909e-01 5.93296707e-01 7.37917900e-01 1.85874656e-01 4.18398440e-01 5.36140092e-02 8.27749133e-01 1.38019666e-01 4.33178633e-01 -4.01092619e-01 4.67000246e-01 7.76675865e-02 1.86957613e-01 1.22394598e+00 -1.40382931e-01 2.51461267e-01 -2.82013059e-01 -5.96077502e-01 -1.34123671e+00 -6.44272268e-01 -2.63465136e-01 1.87068760e+00 -4.06256258e-01 -3.67838711e-01 -6.69158518e-01 -7.69079387e-01 -1.78140011e-02 7.19409883e-01 -5.65604031e-01 -5.41580208e-02 -4.98872459e-01 -1.35178661e+00 6.33584976e-01 4.12718028e-01 4.54248518e-01 -8.33411694e-01 -9.87340361e-02 3.05287510e-01 5.41963317e-02 -1.23596990e+00 -2.74229676e-01 4.66702998e-01 -7.68740714e-01 -6.25851393e-01 -1.00529242e+00 -8.34960580e-01 2.41046533e-01 2.87820816e-01 1.37807751e+00 -3.21172535e-01 -2.95278639e-01 4.76581693e-01 -3.00340742e-01 -4.52186763e-01 -6.70133293e-01 8.65333617e-01 3.89916569e-01 -1.28925994e-01 5.19546270e-01 -2.84084737e-01 -8.10471326e-02 -1.83854371e-01 -6.64707124e-01 -1.42752782e-01 4.63024557e-01 1.01768327e+00 2.86215186e-01 -7.57398903e-02 7.05893099e-01 -1.41050601e+00 6.66174889e-01 -6.72323287e-01 -3.69648218e-01 6.34824872e-01 -8.24073672e-01 8.91687572e-02 7.64662921e-01 -5.81187904e-01 -1.12162411e+00 -4.07474995e-01 1.29511163e-01 -2.85857975e-01 -6.57645240e-02 5.66756845e-01 1.12968609e-01 3.27961408e-02 7.78355658e-01 1.48643628e-01 -4.51014698e-01 -8.67985427e-01 6.27777100e-01 9.40737188e-01 4.44000334e-01 -8.65100086e-01 5.59607685e-01 5.19039631e-01 -3.99496436e-01 -5.96326888e-01 -1.18861449e+00 -5.51403999e-01 -1.07429445e+00 1.57872111e-01 3.72753143e-01 -1.19105947e+00 -4.41356413e-02 5.26615500e-01 -8.99607897e-01 -4.44448024e-01 -4.30795141e-02 5.91986656e-01 -2.92435229e-01 1.26203209e-01 -5.26708126e-01 -7.66076148e-01 -5.20798445e-01 -9.46386874e-01 1.09518027e+00 -1.42592505e-01 1.39334425e-01 -1.55925763e+00 5.93966663e-01 2.49389470e-01 5.05368531e-01 -1.76429197e-01 9.13653553e-01 -1.17143834e+00 7.78320134e-02 -2.28967637e-01 -1.55162727e-02 4.80113238e-01 3.42954814e-01 -7.78559223e-02 -1.35965002e+00 -9.23743546e-01 -4.19107854e-01 -7.98161447e-01 1.12372935e+00 1.80615529e-01 8.59757602e-01 -6.90986887e-02 -3.57979685e-01 6.29739404e-01 1.59141886e+00 -9.42988470e-02 -1.20112091e-01 8.60729098e-01 6.71311498e-01 5.46463430e-01 3.32514524e-01 2.81658113e-01 4.91752237e-01 7.82426596e-01 -1.52621940e-01 -1.79656856e-02 -3.46125185e-01 -1.13431327e-01 2.65280187e-01 1.29715800e+00 7.26065263e-02 -4.97100264e-01 -1.26107860e+00 8.11297297e-01 -1.85297525e+00 -8.78915191e-01 5.36129951e-01 2.37089896e+00 1.01196861e+00 2.38192484e-01 2.55126745e-01 -1.97642684e-01 6.44377708e-01 1.52298331e-01 -4.54174638e-01 -4.00517702e-01 -3.83590996e-01 2.32631579e-01 5.88835001e-01 5.37371993e-01 -1.37931931e+00 1.35146332e+00 7.44845581e+00 9.59851205e-01 -1.26899850e+00 7.53287971e-01 6.22356176e-01 -2.45740116e-01 -8.35992545e-02 -2.66173512e-01 -1.17205322e+00 3.02438110e-01 1.32949710e+00 -3.19965869e-01 3.19496423e-01 9.61162806e-01 -3.38342488e-01 2.23651752e-01 -1.15573692e+00 9.43493307e-01 4.33275461e-01 -1.26345026e+00 9.29172337e-02 -1.67517573e-01 1.12400472e+00 7.65618742e-01 1.39625162e-01 8.10354233e-01 4.83946681e-01 -8.58928740e-01 5.23708761e-01 1.89802781e-01 8.90726626e-01 -8.43731821e-01 6.14869177e-01 6.19551480e-01 -8.42349946e-01 -2.19503209e-01 -5.80078781e-01 2.88415611e-01 -1.27724126e-01 3.32494289e-01 -7.72586048e-01 6.90970898e-01 6.75474703e-01 6.49825335e-01 -8.83136928e-01 7.83031166e-01 2.90833443e-01 6.20260239e-01 -1.75685465e-01 7.67305866e-02 4.34958935e-01 2.23439291e-01 4.00423199e-01 1.80027759e+00 2.39408344e-01 -5.79612792e-01 4.86434132e-01 2.08206639e-01 -4.61118728e-01 5.84566772e-01 -6.77702427e-01 -4.14259173e-03 5.42110801e-01 1.29032409e+00 -4.49901193e-01 -5.50584555e-01 -7.09518254e-01 9.81783390e-01 8.50586176e-01 3.32837909e-01 -3.41547728e-01 -1.59223452e-01 1.76660985e-01 -3.63222659e-01 1.13863066e-01 -1.69865459e-01 1.23430453e-01 -1.68794703e+00 -1.38830841e-01 -1.08731699e+00 7.82157779e-01 -3.17600101e-01 -1.58155560e+00 8.99319947e-01 2.53380984e-01 -1.08512652e+00 -7.06089795e-01 -9.30388331e-01 -2.69862115e-01 8.64081502e-01 -1.81671786e+00 -1.64096475e+00 7.88754299e-02 6.16257131e-01 9.74195719e-01 -9.88792896e-01 1.08108687e+00 5.67644417e-01 -6.72348976e-01 9.52201962e-01 7.88907945e-01 3.25620510e-02 1.13285816e+00 -1.26729441e+00 3.79493326e-01 7.23643243e-01 6.20011330e-01 5.86984277e-01 4.92100328e-01 -4.02224660e-01 -1.41496491e+00 -1.07401907e+00 1.04490626e+00 -6.81245923e-01 8.16457629e-01 -6.94481671e-01 -8.66145074e-01 8.41351986e-01 3.80831003e-01 1.14318870e-01 7.72281945e-01 6.78820133e-01 -7.70831347e-01 -2.17421576e-01 -9.32372153e-01 4.94563580e-01 8.11105669e-01 -7.55918443e-01 -6.08838558e-01 7.87440538e-01 4.33548182e-01 -2.13689104e-01 -8.03538024e-01 3.41109157e-01 4.91515845e-01 -6.40371382e-01 8.98231208e-01 -1.13153136e+00 2.23235235e-01 2.95789361e-01 -3.38217586e-01 -1.54681504e+00 -2.99609482e-01 -3.94859612e-01 -1.02242097e-01 1.55130947e+00 6.15959942e-01 -5.24740815e-01 5.14119983e-01 1.19381532e-01 -1.03801928e-01 -6.15947604e-01 -1.14044869e+00 -1.16147411e+00 7.29650021e-01 -4.93981659e-01 2.19828784e-01 1.41038799e+00 -2.61230201e-01 3.75758827e-01 -7.82519042e-01 -7.50079826e-02 6.78893805e-01 4.09684442e-02 7.24923491e-01 -1.04353130e+00 -4.10674155e-01 -4.64809299e-01 8.27935785e-02 -3.59914064e-01 7.28702009e-01 -1.32111824e+00 -3.12561810e-01 -1.13456237e+00 6.08106315e-01 -3.54860663e-01 -6.99522793e-01 5.80104232e-01 -2.02008605e-01 3.66450876e-01 2.48249564e-02 4.27898824e-01 -7.80148864e-01 2.61232913e-01 5.95800400e-01 -4.88665849e-01 -7.97364339e-02 5.82774810e-04 -5.02569377e-01 5.67104518e-01 5.37346423e-01 -4.94721979e-01 -3.13434929e-01 -9.21339631e-01 1.31686255e-01 -5.34502387e-01 -1.94332436e-01 -9.10796046e-01 1.63947821e-01 5.70563152e-02 3.66712600e-01 -2.67619878e-01 2.58791745e-01 -6.61533058e-01 -3.50676924e-01 2.80114293e-01 -5.16624570e-01 2.52854496e-01 4.61287707e-01 4.20207411e-01 -1.58157364e-01 -5.68179548e-01 8.45716357e-01 -5.02424955e-01 -9.23544705e-01 3.92586857e-01 -5.99789768e-02 4.08839971e-01 6.40844226e-01 8.08771178e-02 -4.10099268e-01 -6.88084587e-02 -5.27926445e-01 -5.58576407e-03 3.96814317e-01 8.69273245e-01 -1.06044322e-01 -1.29158390e+00 -1.06486702e+00 -1.01878516e-01 4.85458285e-01 -5.75919449e-01 2.02678442e-01 5.60820818e-01 -1.97633579e-01 6.95390403e-01 -1.79539677e-02 -5.33382297e-01 -9.97461259e-01 6.20323837e-01 4.31983918e-01 -6.36984289e-01 -4.54095721e-01 8.02614152e-01 -2.53567129e-01 -9.30509150e-01 3.95139188e-01 5.10481000e-02 -1.82518288e-01 3.78494442e-01 4.97354329e-01 2.60096520e-01 4.86292303e-01 -5.87052703e-01 -4.08798844e-01 4.54014480e-01 -5.72651803e-01 -4.03681338e-01 1.26119661e+00 -1.38899937e-01 1.57022014e-01 1.16073680e+00 1.24755311e+00 7.74875805e-02 -8.67532849e-01 -7.56291807e-01 2.87800670e-01 -2.63976842e-01 1.74005345e-01 -9.24202561e-01 -7.55063236e-01 9.38398421e-01 7.24461555e-01 -1.09208763e-01 8.29403341e-01 -2.37585120e-02 4.36266541e-01 7.97020793e-01 5.67280531e-01 -1.39775050e+00 5.98983318e-02 6.09740436e-01 3.69580716e-01 -1.69470251e+00 2.04867825e-01 2.25390479e-01 -6.09891653e-01 1.04706514e+00 5.52354693e-01 1.93677887e-01 6.42789543e-01 2.28669688e-01 2.11690933e-01 2.29601726e-01 -1.18587935e+00 -1.08592540e-01 4.58405107e-01 5.44453323e-01 8.19181144e-01 -4.57570478e-02 -4.80288789e-02 3.27457339e-01 1.39723560e-02 -2.04622284e-01 2.46370509e-01 1.01806390e+00 -2.81402379e-01 -1.35721004e+00 -7.22148865e-02 2.07445115e-01 -7.82022595e-01 -3.91033113e-01 -2.42957622e-01 1.06173170e+00 1.03108481e-01 7.12654650e-01 4.61307950e-02 -2.12266669e-02 2.15552956e-01 5.04040539e-01 6.34509623e-01 -9.63965535e-01 -7.41867304e-01 1.73470855e-01 1.85013741e-01 -1.10011443e-01 -6.97412610e-01 -5.92387676e-01 -4.28796828e-01 -5.50907440e-02 -2.70236015e-01 1.06590137e-01 7.71291077e-01 1.26115692e+00 3.10407311e-01 2.07137793e-01 6.32608294e-01 -7.08844662e-01 -8.39818239e-01 -1.26689982e+00 -4.81979281e-01 3.80597621e-01 2.72702456e-01 -5.65693974e-01 -2.22970948e-01 -3.01164836e-02]
[10.936445236206055, 9.672897338867188]
e4bb81a1-8479-4e77-89f9-4c84d92e23c7
zero-shot-anomaly-detection-with-pre-trained
2306.09269
null
https://arxiv.org/abs/2306.09269v1
https://arxiv.org/pdf/2306.09269v1.pdf
Zero-Shot Anomaly Detection with Pre-trained Segmentation Models
This technical report outlines our submission to the zero-shot track of the Visual Anomaly and Novelty Detection (VAND) 2023 Challenge. Building on the performance of the WINCLIP framework, we aim to enhance the system's localization capabilities by integrating zero-shot segmentation models. In addition, we perform foreground instance segmentation which enables the model to focus on the relevant parts of the image, thus allowing the models to better identify small or subtle deviations. Our pipeline requires no external data or information, allowing for it to be directly applied to new datasets. Our team (Variance Vigilance Vanguard) ranked third in the zero-shot track of the VAND challenge, and achieve an average F1-max score of 81.5/24.2 at a sample/pixel level on the VisA dataset.
['Bernhard Kainz', 'Johanna P. Müller', 'James Batten', 'Matthew Baugh']
2023-06-15
null
null
null
null
['zero-shot-segmentation', 'anomaly-detection']
['computer-vision', 'methodology']
[ 7.20108375e-02 -4.04294617e-02 1.26708955e-01 -5.08860312e-02 -6.11318052e-01 -5.70719838e-01 6.67243302e-01 4.08634037e-01 -5.42434990e-01 7.20684379e-02 -2.07238510e-01 -1.92575261e-01 1.58513084e-01 -2.80111343e-01 -6.08725727e-01 -2.34567046e-01 -1.16537780e-01 6.58716932e-02 9.41873610e-01 7.24489316e-02 3.45890850e-01 5.44578135e-01 -1.92238593e+00 4.02984440e-01 6.22907698e-01 9.92140770e-01 -1.62191138e-01 9.76265252e-01 -1.09749630e-01 6.33337200e-01 -5.77093124e-01 -2.15418637e-01 4.82892722e-01 -2.54526705e-01 -5.38106382e-01 -7.48104602e-02 1.13476896e+00 -3.69183898e-01 -2.34950408e-01 1.16356814e+00 5.23672223e-01 2.68896282e-01 4.39573646e-01 -1.54152203e+00 -1.72472820e-01 1.52472019e-01 -8.12063336e-01 1.15327787e+00 1.30566776e-01 7.33579755e-01 9.16806042e-01 -1.09801543e+00 7.87458420e-01 8.61808479e-01 7.07994461e-01 3.77791405e-01 -1.28496039e+00 -5.23952186e-01 4.29891616e-01 3.95541012e-01 -1.38343060e+00 -7.19641030e-01 1.84951872e-01 -7.00715184e-01 1.23472559e+00 1.17255509e-01 6.68801785e-01 1.18078911e+00 -4.83632013e-02 9.50142920e-01 8.09789777e-01 -2.24950746e-01 5.49635172e-01 -6.51278645e-02 3.52000356e-01 5.53331614e-01 4.94436711e-01 1.32898808e-01 -5.66744745e-01 -6.36848658e-02 2.87453055e-01 -2.48749673e-01 -6.57694042e-02 -5.23994625e-01 -9.93430078e-01 3.72558266e-01 3.92180353e-01 1.29979849e-01 -5.29463053e-01 1.06826760e-01 4.49528247e-01 -9.56043508e-03 3.97181660e-01 3.79895061e-01 -2.16288954e-01 -3.16858679e-01 -1.27817512e+00 2.35521570e-01 3.13405782e-01 8.65268111e-01 4.31490660e-01 2.17616871e-01 -6.21815741e-01 4.01988983e-01 2.85842568e-01 3.08060348e-01 9.96879786e-02 -1.07435286e+00 -3.69296148e-02 5.84445596e-01 6.51805550e-02 -7.56187797e-01 -3.97037983e-01 -3.81650001e-01 -2.11268649e-01 7.69425333e-01 4.31442648e-01 -6.12414628e-02 -1.45668316e+00 1.28840661e+00 3.77351046e-01 5.51868796e-01 -2.99398154e-01 6.60844743e-01 7.29264915e-01 3.31838667e-01 2.72151887e-01 -3.50973681e-02 1.15675187e+00 -8.02149057e-01 -4.72389221e-01 -3.97316366e-01 5.75724363e-01 -5.31526089e-01 1.01080739e+00 5.74021399e-01 -8.97022128e-01 -5.08949339e-01 -1.22865725e+00 2.43607268e-01 -4.86131847e-01 -3.72733116e-01 2.09704652e-01 5.80823839e-01 -9.96205151e-01 4.31386024e-01 -9.88402009e-01 -7.15450227e-01 8.44928682e-01 -5.43044508e-02 -2.32808009e-01 -8.14687088e-02 -6.39541209e-01 8.15434039e-01 2.79805034e-01 -2.40640968e-01 -1.08392072e+00 -9.35440600e-01 -8.84226084e-01 -8.04752409e-02 5.73470652e-01 -2.71253943e-01 1.26940608e+00 -7.09272504e-01 -7.12945461e-01 1.00962937e+00 -9.75001678e-02 -6.91714525e-01 8.14543009e-01 -2.01963499e-01 -4.81492460e-01 2.74113327e-01 3.94063085e-01 7.23928273e-01 8.18623304e-01 -9.70916271e-01 -1.06305122e+00 -2.92584687e-01 -1.78035319e-01 -1.14138030e-01 -5.05542830e-02 2.66978264e-01 -6.93483055e-01 -4.82001513e-01 -1.38597146e-01 -6.41333759e-01 -1.07185081e-01 1.92832023e-01 -3.40649754e-01 1.03489852e-04 1.04045391e+00 -7.45050669e-01 1.06418097e+00 -2.46081614e+00 -3.96913826e-01 2.90824026e-01 4.89836693e-01 5.44400156e-01 -5.95148094e-02 -3.54066528e-02 -1.02984466e-01 1.09441146e-01 -1.65320426e-01 -4.52162176e-01 -2.08855167e-01 4.96582761e-02 -1.51280537e-01 5.58742106e-01 3.76813382e-01 8.14642251e-01 -9.46480930e-01 -3.37334991e-01 4.13606048e-01 4.13243994e-02 -4.39676464e-01 -7.69565105e-02 -1.83090687e-01 1.43552989e-01 6.64160121e-03 9.54471529e-01 7.27550924e-01 -4.34631519e-02 -4.04294908e-01 1.55913889e-01 -3.97249669e-01 -1.26279920e-01 -1.32307267e+00 1.54422832e+00 2.72655159e-01 9.48967159e-01 -6.45681918e-02 -3.96053582e-01 6.11868024e-01 -4.27096039e-02 5.75696409e-01 -8.31408739e-01 -6.17384724e-02 -1.82315946e-01 1.45942718e-01 -4.37755823e-01 4.05205041e-01 4.22307283e-01 1.79865927e-01 2.08615780e-01 2.03646019e-01 3.96080345e-01 4.85900819e-01 5.01808941e-01 1.54503250e+00 9.12465602e-02 2.32023165e-01 -1.82622373e-01 1.64379254e-01 1.48672581e-01 6.49328053e-01 1.15414262e+00 -8.93975735e-01 8.69645417e-01 6.54492557e-01 -3.91270608e-01 -9.93977964e-01 -1.34854400e+00 -2.29588002e-01 9.22890007e-01 8.70865360e-02 -4.97699261e-01 -7.06748843e-01 -8.72349143e-01 5.96401431e-02 1.04082739e+00 -7.75470138e-01 -2.92066097e-01 -5.11275381e-02 -5.21040916e-01 7.40647674e-01 6.75265074e-01 3.35889965e-01 -9.86100733e-01 -1.02571809e+00 6.79892078e-02 1.41139567e-01 -1.10542881e+00 -2.66185343e-01 1.63558647e-01 -5.12455106e-01 -1.32315576e+00 -3.03476512e-01 -1.75285041e-01 3.21668506e-01 3.50280493e-01 7.97462344e-01 -8.55988786e-02 -9.94346440e-01 6.66586518e-01 -3.71665448e-01 -6.82920694e-01 -1.18105121e-01 -1.56315550e-01 1.40917599e-01 4.66277674e-02 6.84583783e-01 -1.89886495e-01 -5.68499446e-01 2.52834380e-01 -7.27785528e-01 -3.65597010e-01 8.76253694e-02 3.80613923e-01 6.76877975e-01 -2.89405853e-01 3.40995550e-01 -5.83594739e-01 3.25221092e-01 -5.19899905e-01 -9.74673033e-01 6.43924549e-02 -8.38559270e-01 -3.68922800e-01 2.02021953e-02 -2.99267054e-01 -7.41985917e-01 1.42812967e-01 1.15851469e-01 -7.80968070e-01 -4.57494289e-01 -4.95184213e-02 -9.69732255e-02 -1.65004402e-01 1.01240957e+00 -4.53872560e-03 -1.05297022e-01 -4.68698204e-01 4.81552184e-01 5.22558153e-01 9.39895511e-01 1.58339890e-03 6.23791397e-01 5.37253141e-01 -1.85396194e-01 -9.86903131e-01 -6.99127078e-01 -8.11839700e-01 -6.51784778e-01 -4.11821634e-01 1.02627134e+00 -7.72301018e-01 -4.25063580e-01 5.91939270e-01 -8.61174226e-01 -2.25467071e-01 -5.60217142e-01 1.93675846e-01 -2.58639097e-01 3.56336504e-01 -1.40226558e-01 -7.90742397e-01 -3.15991670e-01 -8.56243670e-01 7.64302850e-01 3.89987916e-01 -4.23140436e-01 -5.87313831e-01 1.51492998e-01 1.30788863e-01 4.52899516e-01 4.30268466e-01 3.83240581e-01 -1.12104249e+00 -5.02624214e-01 -4.53695089e-01 -3.45979184e-01 5.47911108e-01 -2.30969369e-01 5.28200686e-01 -1.41292846e+00 -2.06480220e-01 -3.22484523e-01 8.38870779e-02 1.18441057e+00 5.70313632e-01 1.00064600e+00 3.29964906e-01 -3.26273531e-01 5.90868235e-01 9.72554147e-01 8.35052878e-02 7.24956214e-01 5.34282744e-01 6.07788444e-01 3.60214353e-01 7.39417255e-01 4.53692317e-01 1.92338154e-01 5.58685541e-01 7.92701364e-01 -3.92230898e-02 -2.89018184e-01 -1.23553626e-01 1.25447705e-01 -2.79575199e-01 1.66698426e-01 -3.15507241e-02 -1.30241513e+00 9.06893790e-01 -1.90383804e+00 -1.13720202e+00 -4.51845437e-01 2.39661264e+00 3.03268749e-02 5.30710757e-01 4.12206113e-01 -1.00278169e-01 7.89391816e-01 1.83916420e-01 -8.01454604e-01 -3.09259623e-01 -5.22268079e-02 7.22743869e-02 6.14310563e-01 3.60799491e-01 -1.35135901e+00 1.03887212e+00 7.32867861e+00 4.54421252e-01 -8.42606544e-01 2.10130177e-02 3.52198750e-01 -7.14866161e-01 2.96190202e-01 3.44740339e-02 -8.84136796e-01 6.23268127e-01 1.03713536e+00 -3.35521519e-01 2.81849414e-01 9.81854260e-01 1.23399332e-01 -5.24862230e-01 -9.05434489e-01 8.46116781e-01 1.98692009e-01 -1.33009434e+00 -2.14293703e-01 1.44383952e-01 6.50090039e-01 6.89161122e-01 1.22020245e-02 4.22590196e-01 2.38536030e-01 -9.72615361e-01 6.65699244e-01 6.69368386e-01 5.18702686e-01 -7.18672574e-01 6.62600577e-01 2.93156654e-01 -9.06984091e-01 -1.47400886e-01 -1.99270383e-01 8.14991370e-02 1.31339848e-01 3.95328462e-01 -9.90236163e-01 2.11394936e-01 1.10915661e+00 6.21511996e-01 -1.15186822e+00 1.75845671e+00 -1.41121387e-01 6.44224405e-01 -4.63195294e-01 4.05299157e-01 8.31120312e-02 3.59648049e-01 1.02430654e+00 1.20401478e+00 4.59554121e-02 -1.73969358e-01 2.90829092e-01 8.72589648e-01 4.17226404e-02 -1.46192864e-01 -6.49194717e-01 8.86485726e-02 3.87326986e-01 1.35983253e+00 -7.58809626e-01 -3.87129933e-01 -4.13338751e-01 9.47539926e-01 9.28547047e-03 2.35907748e-01 -8.32553089e-01 -4.39212054e-01 1.02729142e+00 2.54238546e-01 6.88904464e-01 4.30978537e-02 -3.23690325e-01 -8.91793728e-01 4.76742089e-02 -8.34178567e-01 5.71996331e-01 -7.46939540e-01 -1.14011753e+00 4.17626649e-01 6.16401508e-02 -1.12246609e+00 -5.49956150e-02 -5.12547076e-01 -9.22731936e-01 7.96089053e-01 -1.26871324e+00 -1.02251458e+00 -6.18427873e-01 5.26811421e-01 4.32117224e-01 -3.02629232e-01 4.99507397e-01 2.32945055e-01 -7.67985046e-01 6.79934680e-01 -2.48608559e-01 5.69847822e-02 7.99694836e-01 -1.35066581e+00 1.04215693e+00 1.56511605e+00 2.63262063e-01 5.04457831e-01 8.50353301e-01 -8.11200917e-01 -9.04361486e-01 -1.14248610e+00 3.51246715e-01 -9.96963978e-01 7.90241599e-01 -1.57046959e-01 -1.17396390e+00 7.32104123e-01 -4.47991751e-02 5.36583602e-01 4.88199502e-01 7.23157004e-02 -5.25176704e-01 1.22155793e-01 -1.32332635e+00 4.64209199e-01 9.64908838e-01 -3.69157970e-01 -5.72418332e-01 4.39121611e-02 4.76898849e-01 -3.32601726e-01 -4.34215695e-01 3.65025312e-01 2.93664336e-01 -1.06018889e+00 7.59316504e-01 -7.97074795e-01 -3.23485285e-02 -6.69402063e-01 -1.15407564e-01 -9.14443195e-01 -4.64736879e-01 -5.02239406e-01 -4.27927077e-01 1.20049012e+00 2.91209400e-01 -4.26566333e-01 5.56549668e-01 5.82312047e-01 -2.09245712e-01 -2.21513346e-01 -1.14226818e+00 -8.60682070e-01 -4.26554322e-01 -8.31896186e-01 1.24664269e-01 7.50164151e-01 -3.13645601e-01 -6.62467629e-02 -2.32053787e-01 4.93509561e-01 8.18813086e-01 -4.04799044e-01 9.57986355e-01 -1.40099251e+00 -2.77555257e-01 -5.14393389e-01 -1.00290942e+00 -3.68927896e-01 -4.37547475e-01 -7.67081022e-01 6.27180487e-02 -1.54717171e+00 1.41265646e-01 2.39668548e-01 -6.16246521e-01 8.45135748e-01 -2.47605264e-01 5.53732157e-01 3.09384018e-01 1.38512000e-01 -1.05180252e+00 1.55105174e-01 4.30695653e-01 -4.30240482e-02 -2.19661012e-01 5.69451302e-02 -7.29958892e-01 8.12428236e-01 7.15878069e-01 -5.35341740e-01 -1.36444911e-01 5.14114322e-03 -1.73306152e-01 -7.69280136e-01 6.51109695e-01 -1.40095270e+00 2.54494786e-01 -4.96814623e-02 6.61323190e-01 -7.56726980e-01 6.97571188e-02 -5.38871944e-01 -2.01810971e-01 4.76602048e-01 -5.10978587e-02 -4.75894697e-02 7.57974684e-01 7.16980338e-01 2.21480668e-01 -8.21243450e-02 1.00113249e+00 1.45033941e-01 -1.31854141e+00 2.93339461e-01 -4.82198179e-01 2.71170378e-01 1.58118939e+00 -4.42484081e-01 -6.57293737e-01 -1.15213744e-01 -8.46843004e-01 5.71043432e-01 8.44019592e-01 7.96206534e-01 3.96108329e-01 -8.85649323e-01 -5.82937896e-01 4.16973442e-01 7.78751075e-01 -2.61937261e-01 4.52464551e-01 1.00591457e+00 -5.21196306e-01 -1.23906724e-01 -4.10792679e-01 -9.47505414e-01 -1.44635797e+00 6.53124869e-01 4.96355027e-01 2.61248201e-01 -1.06306994e+00 8.04405987e-01 -1.88180640e-01 9.88268331e-02 3.89919013e-01 -1.26505122e-02 -1.67253073e-02 1.70640990e-01 1.13026357e+00 7.18205929e-01 2.14140713e-01 -4.23433363e-01 -7.70023882e-01 2.19170302e-02 -4.26594019e-01 -2.26079628e-01 1.10205007e+00 1.15501732e-01 2.50755936e-01 4.91391927e-01 7.16120243e-01 -5.40805142e-03 -1.62741053e+00 -1.23061404e-01 3.09163541e-01 -6.48095965e-01 3.36992472e-01 -9.40622509e-01 -7.11148083e-01 8.44574094e-01 1.13241529e+00 1.85679376e-01 7.34094620e-01 7.09391907e-02 3.96958619e-01 1.48544326e-01 -3.75966989e-02 -1.23562515e+00 -7.36365542e-02 5.31923950e-01 4.82269198e-01 -1.32323217e+00 -1.15552377e-02 6.83518276e-02 -7.48087108e-01 7.63925254e-01 8.48782599e-01 -4.03048135e-02 2.42805809e-01 3.90219569e-01 1.43238053e-01 -3.65370989e-01 -8.08929801e-01 -4.55863297e-01 4.99348968e-01 9.29626644e-01 -1.01560205e-01 -3.55772972e-01 1.46583572e-01 3.41288120e-01 2.97911644e-01 -5.50527759e-02 5.11049449e-01 8.83948624e-01 -9.22670722e-01 -4.68610495e-01 -2.12463692e-01 5.88421941e-01 -3.13907206e-01 -7.95030445e-02 -5.73163331e-01 5.85268199e-01 1.80201575e-01 8.88861597e-01 3.14876556e-01 -2.65107334e-01 6.06697202e-01 3.97329509e-01 1.05364084e-01 -6.35838091e-01 -5.32640398e-01 -7.58058652e-02 -7.77033567e-02 -1.12444460e+00 2.72270292e-01 -9.61603522e-01 -1.11374259e+00 -2.62796551e-01 3.22292931e-02 -3.92777175e-01 7.91334748e-01 7.38663018e-01 6.61369801e-01 8.04106236e-01 7.87674934e-02 -6.89981997e-01 -2.85722345e-01 -8.96480441e-01 -4.54608679e-01 2.19843552e-01 4.11273390e-01 -5.47726512e-01 -4.15630281e-01 -7.87918568e-02]
[8.634286880493164, 0.15152281522750854]
2ab996e2-d6ce-4370-ba6b-be76e6d4502e
neural-relation-extraction-with-selective
null
null
https://aclanthology.org/p16-1200
https://aclanthology.org/p16-1200.pdf
Neural Relation Extraction with Selective Attention over Instances
null
['Huanbo Luan', 'Yankai Lin', 'Maosong Sun', 'Zhiyuan Liu', 'Shiqi Shen']
2016-08-01
neural-relation-extraction-with-selective-1
https://aclanthology.org/P16-1200
https://aclanthology.org/P16-1200.pdf
acl-2016-8
['relationship-extraction-distant-supervised']
['natural-language-processing']
[-2.44508207e-01 3.89024585e-01 -2.65282035e-01 -2.15905145e-01 -8.60921741e-02 -7.76765764e-01 4.48510379e-01 -7.23253429e-01 -5.48377395e-01 1.31954515e+00 3.66348401e-02 -9.49533224e-01 -2.40340635e-01 -1.05564880e+00 -8.44053447e-01 -8.75781775e-01 -7.42435038e-01 6.86515033e-01 1.44298598e-01 -6.52004302e-01 8.47113907e-01 6.29996777e-01 -1.62287033e+00 5.77558100e-01 6.81926727e-01 5.49597681e-01 5.66466339e-02 1.04480565e+00 6.13576770e-02 1.59847176e+00 -6.05450153e-01 -4.56729174e-01 1.43710867e-01 -1.88022718e-01 -5.35770595e-01 -3.36825520e-01 7.91536197e-02 -5.88986814e-01 -3.10633808e-01 6.07356608e-01 1.14270830e+00 -5.53557873e-02 1.07025254e+00 -1.51067197e+00 -7.97060013e-01 5.44234335e-01 2.30399013e-01 1.20632313e-01 6.10446513e-01 -1.79472014e-01 3.51212233e-01 -1.36621380e+00 6.32680655e-01 8.64870071e-01 9.47046995e-01 5.99273622e-01 -1.20647264e+00 -5.60552299e-01 -7.17137158e-01 -2.57835120e-01 -1.59567785e+00 -6.30042374e-01 6.23617955e-02 -3.34735900e-01 1.69142139e+00 6.72587395e-01 1.35647905e+00 1.47341585e+00 1.36649036e+00 4.72517729e-01 1.13904178e+00 -3.16340059e-01 3.65351558e-01 6.43754780e-01 -2.29148138e-02 5.51889002e-01 1.19686353e+00 6.76312149e-01 -5.60917914e-01 -7.92779744e-01 1.11365557e+00 -3.12949389e-01 2.60771513e-01 -7.06989706e-01 -1.06566191e+00 7.88466871e-01 -1.33808568e-01 2.20882341e-01 -3.46203089e-01 -9.92989019e-02 2.24548295e-01 4.12961632e-01 -2.94082850e-01 4.77862865e-01 -8.89795244e-01 -1.87686309e-01 -1.01472771e+00 1.91863477e-01 1.30615628e+00 1.45811689e+00 4.72722203e-03 3.70100170e-01 1.66493103e-01 2.89523482e-01 5.29429734e-01 1.05927479e+00 4.36951250e-01 -1.33365822e+00 -9.55119133e-02 4.20878716e-02 6.12505674e-01 -1.13473701e+00 -7.12930143e-01 -2.41300568e-01 -9.54724610e-01 5.18771529e-01 -1.59270123e-01 -4.59180593e-01 -7.59686172e-01 4.79171664e-01 -1.81984559e-01 -3.19489211e-01 5.45619786e-01 2.69257158e-01 7.28577793e-01 1.45816103e-01 9.25893057e-03 -4.73371416e-01 8.38296890e-01 -1.26899445e+00 -1.11426139e+00 2.33304992e-01 6.82289064e-01 -1.11704338e+00 4.06794518e-01 4.29345578e-01 -1.87200487e+00 -9.69799384e-02 -1.08317137e+00 1.19022481e-01 -7.97166348e-01 -2.57194549e-01 6.66624963e-01 1.49922979e+00 -1.63972652e+00 6.47176981e-01 -6.05021298e-01 5.40335439e-02 -4.73218322e-01 9.07614470e-01 -3.47142309e-01 2.90655226e-01 -1.28751957e+00 9.52449858e-01 -1.04219764e-01 3.03568155e-01 -3.30324143e-01 -1.84501112e-01 -1.03385210e+00 -6.24127567e-01 -2.59417385e-01 -1.07312346e+00 1.36302292e+00 1.09815992e-01 -1.30379498e+00 1.00962746e+00 -4.14315462e-01 -1.14109404e-01 6.61359608e-01 -1.52096570e-01 -8.18174660e-01 1.58321753e-01 2.87593510e-02 3.47163439e-01 5.30214727e-01 -9.69232559e-01 -6.31655395e-01 -1.00153096e-01 -2.54188716e-01 2.48816490e-01 1.43904146e-03 2.05205917e-01 6.38460100e-01 -9.53604504e-02 1.91062525e-01 -8.61961663e-01 -3.21419090e-01 -7.61404037e-01 -1.77353188e-01 -3.84736449e-01 5.59762537e-01 -2.92163283e-01 1.33848476e+00 -1.84365213e+00 -4.54683900e-01 2.94456817e-03 2.53527164e-01 3.89016122e-02 2.33101144e-01 1.23831403e+00 -2.43849114e-01 1.06667292e+00 3.98064762e-01 9.52541176e-03 3.13382268e-01 5.07273376e-01 2.86674555e-02 2.51206756e-01 9.43330750e-02 1.15280068e+00 -1.09214199e+00 -5.20940363e-01 5.57267785e-01 4.60968643e-01 -3.84588838e-01 6.24593735e-01 9.30012882e-01 2.99172718e-02 -8.94021094e-02 1.33241999e+00 1.05377018e+00 -2.90812284e-01 -2.46628653e-02 3.44544262e-01 -6.44541264e-01 6.00222833e-02 -7.41804183e-01 9.49429095e-01 1.31349964e-02 1.99757457e-01 1.74998537e-01 -6.80728197e-01 3.94654661e-01 1.10545933e+00 4.45659161e-01 -9.24297392e-01 -1.69569388e-01 9.00310338e-01 1.03920102e-01 -9.62983370e-01 6.40755475e-01 -1.72503099e-01 7.69825354e-02 1.40852645e-01 -3.61913115e-01 -3.84120375e-01 5.52458428e-02 4.19574350e-01 1.00224769e+00 -1.33707494e-01 5.48685491e-01 -8.72328460e-01 6.88946426e-01 -2.01589778e-01 3.00597936e-01 1.23978651e+00 -2.90862411e-01 9.21478033e-01 3.19022417e-01 -5.37574828e-01 -5.72780192e-01 -1.20098352e+00 -4.80556756e-01 9.86326516e-01 -1.58388391e-01 -3.87671381e-01 -7.10155964e-01 -2.63155133e-01 -1.85071185e-01 4.93483543e-01 -5.93591571e-01 5.23159266e-01 -5.14705896e-01 -6.85349941e-01 7.65277922e-01 3.17972392e-01 6.49624616e-02 -1.49228525e+00 -5.70813596e-01 3.34754556e-01 -1.07132711e-01 -5.39811492e-01 -1.57590687e-01 6.12205923e-01 -1.19366693e+00 -1.01526415e+00 -8.75530541e-01 -1.03603637e+00 7.18889177e-01 2.44572356e-01 1.18463767e+00 2.84042627e-01 -2.87709564e-01 6.49904788e-01 -1.31030381e-02 -2.67939389e-01 -3.16364132e-02 -5.78750819e-02 5.01899779e-01 -1.07851994e+00 6.46393359e-01 -3.92214775e-01 -1.00622165e+00 5.35368681e-01 -3.85821253e-01 -2.04611585e-01 7.85597622e-01 1.04281425e+00 1.42742008e-01 -1.33182362e-01 2.41971418e-01 -1.16735983e+00 1.11498392e+00 -4.85333532e-01 1.30341025e-02 2.62960047e-01 -8.53362501e-01 -4.53584343e-01 2.27881029e-01 -1.33037493e-02 -6.33760452e-01 -2.51423597e-01 -4.14545417e-01 3.22794706e-01 -4.06866640e-01 3.34393084e-02 2.24873364e-01 -5.26000679e-01 5.21005154e-01 1.50258854e-01 -4.07556817e-02 1.21735156e-01 6.30975887e-02 3.75316888e-01 3.67786407e-01 -7.01224983e-01 5.19809723e-01 1.93325520e-01 -3.00995037e-02 -1.28791058e+00 2.66786069e-01 -1.64763972e-01 -6.60750508e-01 -2.69126564e-01 7.75121748e-01 -9.50198710e-01 -6.35705650e-01 5.21708906e-01 -9.54387486e-01 -1.36340424e-01 -5.25335252e-01 6.30965471e-01 -7.02474535e-01 2.94757709e-02 -4.17852998e-01 -1.17976546e+00 -4.78847146e-01 -1.38869667e+00 9.59160328e-01 3.85633826e-01 -2.05811903e-01 -1.19790471e+00 3.38975668e-01 8.99848714e-02 4.29175526e-01 7.39965662e-02 5.03531873e-01 -2.80004859e-01 -2.98304528e-01 -2.85470933e-01 1.59573574e-02 -1.65876746e-01 -3.09365243e-02 4.80770379e-01 -5.48391879e-01 -4.37962860e-01 2.44738594e-01 -4.86500829e-01 -7.51581416e-02 7.11018145e-01 4.09077644e-01 -6.02920949e-01 -7.12544680e-01 5.56552589e-01 1.27709007e+00 4.72497940e-01 5.88340998e-01 6.77552521e-01 9.28869769e-02 5.17871320e-01 4.48484391e-01 2.08113909e-01 1.07506551e-01 1.08483166e-01 1.14217520e-01 -2.17137560e-01 9.45900455e-02 -1.75644696e-01 4.44304377e-01 1.09980536e+00 -8.23837519e-01 -2.15223029e-01 -4.88283783e-01 6.68056428e-01 -1.69156313e+00 -1.31570101e+00 -6.70152605e-01 9.76623476e-01 3.78074080e-01 3.38884830e-01 1.58041969e-01 1.21232189e-01 5.47049284e-01 -4.76693302e-01 -1.27305150e-01 -9.16352808e-01 -3.82233024e-01 4.21136379e-01 7.14838982e-01 6.51479006e-01 -6.10602558e-01 5.08361042e-01 1.25505590e+01 5.49717486e-01 -5.10860123e-02 1.27314463e-01 3.14815581e-01 1.99914098e-01 -2.24020526e-01 1.62632689e-01 -1.04165065e+00 9.26906094e-02 1.64754760e+00 -4.36735392e-01 3.93212438e-01 6.44444764e-01 3.94769877e-01 -1.96429595e-01 -9.78620768e-01 5.21999180e-01 1.12709433e-01 -1.50397491e+00 -3.76861334e-01 9.64888573e-01 5.80093563e-01 -1.81895152e-01 6.81941509e-01 4.33209062e-01 7.39425182e-01 -1.14519978e+00 7.88427055e-01 3.18626672e-01 8.87266219e-01 -8.18826377e-01 1.07315242e+00 2.76328743e-01 -1.04355454e+00 1.15487054e-02 -5.90443075e-01 -9.22581375e-01 1.62244976e-01 2.02188566e-01 -5.61583102e-01 4.06869203e-01 6.19966745e-01 2.15250537e-01 -8.53338003e-01 1.45581341e+00 -4.29231405e-01 4.22687940e-02 -3.00976187e-01 -4.39922899e-01 4.83290881e-01 5.28384298e-02 3.26606274e-01 1.02295005e+00 2.89785862e-01 5.45581102e-01 -2.62208551e-01 2.92286038e-01 6.63503349e-01 5.84383309e-03 -1.38496268e+00 -8.68683681e-02 3.54620427e-01 9.69217539e-01 -3.99494410e-01 -3.56748998e-02 -6.11456513e-01 6.62115753e-01 -1.66942239e-01 5.75146377e-01 -2.92761147e-01 -8.89406264e-01 4.33969021e-01 -2.30117049e-02 -2.88469017e-01 -1.35338321e-01 -3.23372036e-01 -1.02459288e+00 -6.06416404e-01 -3.90122980e-01 7.32179061e-02 -8.63867998e-01 -1.79313409e+00 6.85844719e-01 -3.50327820e-01 -1.03178740e+00 -9.29034173e-01 -9.72984850e-01 -2.90242791e-01 6.67755604e-01 -6.59234166e-01 -1.30476952e+00 1.77773401e-01 4.65253919e-01 1.82401046e-01 -5.88519633e-01 1.09945750e+00 -1.42670095e-01 -3.18711132e-01 1.08882773e+00 3.51253241e-01 -3.05974871e-01 8.32965672e-01 -1.16271269e+00 4.23785180e-01 1.09189451e-02 -6.59259140e-01 1.28460062e+00 6.81860268e-01 -6.81785107e-01 -1.16639841e+00 -1.52893141e-01 1.38110602e+00 -9.15031374e-01 5.27874053e-01 -1.02810413e-01 1.46300867e-01 6.57190859e-01 9.07351732e-01 -5.09461224e-01 1.08935249e+00 -1.13616258e-01 4.93123859e-01 8.23448122e-01 -1.38805819e+00 5.99272728e-01 1.21222687e+00 -4.81854081e-01 -8.27020168e-01 3.28937650e-01 9.94227231e-01 -5.60786903e-01 -1.34066856e+00 6.99696779e-01 1.14132881e+00 -1.04883564e+00 1.54237401e+00 -1.16912270e+00 4.08816934e-01 1.70770600e-01 -2.18455836e-01 -6.52935803e-01 -5.24122715e-01 -8.07741940e-01 -3.97186369e-01 3.40213925e-01 8.64144087e-01 -1.16800272e+00 5.53630650e-01 1.39166510e+00 -3.58625412e-01 -4.51715857e-01 -8.63314152e-01 -1.06149745e+00 -4.66870656e-03 1.81816339e-01 3.85523647e-01 8.18638563e-01 7.09820271e-01 2.02331603e-01 -2.05201268e-01 -4.37674336e-02 6.59316301e-01 -4.87512946e-01 5.82342803e-01 -8.74011815e-01 2.49149442e-01 -3.85976404e-01 -2.94489831e-01 -2.90531307e-01 -3.26795012e-01 -4.87107635e-01 -8.59293997e-01 -1.53084815e+00 8.49664882e-02 1.97367743e-01 -2.33256146e-01 3.44385266e-01 6.77823246e-01 2.45789096e-01 -2.27382466e-01 1.17054820e-01 -1.86927155e-01 -9.06788632e-02 9.18564737e-01 1.10557920e-03 -2.17724726e-01 3.92412305e-01 -1.01716614e+00 9.60534811e-01 7.85404518e-02 -6.09580100e-01 -5.51487744e-01 1.64939865e-01 5.71885824e-01 3.57775450e-01 4.49405432e-01 -9.70509052e-01 9.87445056e-01 -4.32846308e-01 6.12257063e-01 -1.43385470e+00 -2.65485227e-01 -9.00021493e-01 3.61826897e-01 6.29400074e-01 4.08042461e-01 3.53796333e-01 2.26811334e-01 -9.13986787e-02 -2.01378226e-01 -6.44658387e-01 4.43001747e-01 -7.45609999e-01 -4.55086857e-01 -3.90635371e-01 -1.02313221e+00 -9.67486948e-03 7.88939476e-01 -4.61360693e-01 -6.47767961e-01 -1.95199717e-02 -1.44608676e+00 7.30553791e-02 8.33678424e-01 1.34732248e-02 6.98022604e-01 -1.44444084e+00 -1.11748077e-01 6.18802965e-01 -5.42432606e-01 -4.98194307e-01 2.20674574e-01 1.06156552e+00 -1.31528914e+00 1.26915324e+00 -5.21896303e-01 -2.05424115e-01 -8.96585643e-01 7.19095051e-01 3.15837234e-01 1.75098896e-01 -3.93049836e-01 7.00151443e-01 1.12239346e-02 -6.58594191e-01 1.24011397e-01 2.97559589e-01 -4.87763733e-01 -2.52128989e-01 9.22277749e-01 1.17918742e+00 1.32526740e-01 -3.91715407e-01 -5.58191121e-01 4.39446121e-01 2.08604142e-01 -6.12734079e-01 1.38662541e+00 -2.20989168e-01 -7.44191706e-01 5.00318348e-01 7.50003338e-01 -7.33495504e-02 -3.28966863e-02 1.27011871e+00 4.80256975e-03 -5.47239244e-01 -3.11336160e-01 -7.82959402e-01 -3.42039734e-01 5.93214929e-01 6.17733955e-01 4.59080935e-01 9.69997942e-01 -6.47576571e-01 7.70057857e-01 7.64313757e-01 7.83133745e-01 -1.22997761e+00 -6.36951804e-01 3.69483382e-01 9.39836800e-01 -9.30032432e-01 1.30400375e-01 -3.14221263e-01 -5.55534840e-01 1.08689797e+00 5.38173854e-01 -1.62142932e-01 1.17091513e+00 6.96656525e-01 -1.75611794e-01 -4.53250527e-01 -1.04549897e+00 9.83817875e-02 2.10727617e-01 1.32608259e+00 8.26061428e-01 1.41275764e-01 -1.40426433e+00 8.46834600e-01 -6.34404242e-01 4.76996809e-01 9.47268784e-01 1.55018985e+00 -5.12773991e-01 -1.41692734e+00 -4.41162825e-01 2.31142953e-01 -2.82854587e-01 -3.49930972e-01 -8.62966061e-01 1.09929097e+00 1.97083559e-02 1.37330377e+00 -4.48758155e-01 -4.63731140e-01 8.27405751e-01 3.19600284e-01 4.41484600e-01 -1.25142381e-01 -8.94688129e-01 6.48750722e-01 3.84649158e-01 -1.05672014e+00 -7.94483483e-01 -1.27049911e+00 -1.08188879e+00 -1.16740942e+00 -3.07217389e-01 4.65777248e-01 2.31674016e-01 3.19533348e-01 -2.09303293e-02 1.56313553e-03 6.67447627e-01 -1.00111675e+00 -1.97397545e-01 -6.07395887e-01 -1.20775104e+00 -5.56946039e-01 3.94425273e-01 -5.85869551e-01 -1.15223050e+00 -6.24734610e-02]
[-1.5392036437988281, 15.869193077087402]
73fdbca0-1497-4f0a-9c2e-07f1cbba48f6
a-fully-end-to-end-deep-learning-approach-for
1703.04699
null
http://arxiv.org/abs/1703.04699v1
http://arxiv.org/pdf/1703.04699v1.pdf
A fully end-to-end deep learning approach for real-time simultaneous 3D reconstruction and material recognition
This paper addresses the problem of simultaneous 3D reconstruction and material recognition and segmentation. Enabling robots to recognise different materials (concrete, metal etc.) in a scene is important for many tasks, e.g. robotic interventions in nuclear decommissioning. Previous work on 3D semantic reconstruction has predominantly focused on recognition of everyday domestic objects (tables, chairs etc.), whereas previous work on material recognition has largely been confined to single 2D images without any 3D reconstruction. Meanwhile, most 3D semantic reconstruction methods rely on computationally expensive post-processing, using Fully-Connected Conditional Random Fields (CRFs), to achieve consistent segmentations. In contrast, we propose a deep learning method which performs 3D reconstruction while simultaneously recognising different types of materials and labelling them at the pixel level. Unlike previous methods, we propose a fully end-to-end approach, which does not require hand-crafted features or CRF post-processing. Instead, we use only learned features, and the CRF segmentation constraints are incorporated inside the fully end-to-end learned system. We present the results of experiments, in which we trained our system to perform real-time 3D semantic reconstruction for 23 different materials in a real-world application. The run-time performance of the system can be boosted to around 10Hz, using a conventional GPU, which is enough to achieve real-time semantic reconstruction using a 30fps RGB-D camera. To the best of our knowledge, this work is the first real-time end-to-end system for simultaneous 3D reconstruction and material recognition.
['Cheng Zhao', 'Rustam Stolkin', 'Li Sun']
2017-03-14
null
null
null
null
['material-recognition']
['computer-vision']
[ 4.74794000e-01 4.62097228e-02 2.53968269e-01 -4.00875241e-01 -7.45622694e-01 -5.23694456e-01 6.63667858e-01 1.80092677e-01 -4.09565210e-01 1.53985888e-01 -3.84737372e-01 -4.30036098e-01 1.81362540e-01 -7.89297581e-01 -9.71397519e-01 -4.62118655e-01 2.97489107e-01 9.74765897e-01 5.05615354e-01 1.74358904e-01 2.49940470e-01 9.48433936e-01 -1.62923741e+00 2.53407270e-01 1.95848599e-01 1.30303931e+00 7.85840333e-01 7.12786198e-01 -1.71208516e-01 4.03836191e-01 -2.34369725e-01 3.40366475e-02 4.93966281e-01 -1.02763139e-02 -9.60537732e-01 7.46118724e-01 3.15306097e-01 -3.80743742e-01 -2.35719115e-01 8.10249209e-01 3.93049091e-01 6.66465163e-02 8.39436769e-01 -7.86110222e-01 7.75304288e-02 1.03776278e-02 -4.16400194e-01 -4.27696407e-01 6.93115592e-01 6.69094920e-02 4.43863541e-01 -8.57662976e-01 5.70205331e-01 1.19077373e+00 7.00156868e-01 4.06672359e-01 -1.12086785e+00 -2.57438719e-01 -6.29845932e-02 -1.05453283e-01 -1.21886241e+00 -3.05497676e-01 7.59885252e-01 -5.04481852e-01 1.25517380e+00 1.85765326e-01 7.83728540e-01 7.30182767e-01 2.16490831e-02 9.33656096e-01 1.25419390e+00 -6.16828978e-01 4.73432094e-01 -1.32213354e-01 -1.90289602e-01 8.64066601e-01 -6.35277107e-02 -1.04029983e-01 -1.82940125e-01 3.25299919e-01 1.15348625e+00 2.79275864e-01 -6.57348633e-02 -6.76315367e-01 -1.41231000e+00 3.85870039e-01 3.45319778e-01 3.15058976e-01 -4.23147887e-01 2.30865613e-01 2.38056183e-01 1.02980435e-01 4.77927119e-01 -4.42065857e-03 -6.48685575e-01 -1.12116754e-01 -9.14423048e-01 2.89656818e-02 8.49629700e-01 1.06311810e+00 9.83462870e-01 -2.86525041e-01 2.66228557e-01 7.47526050e-01 4.88646656e-01 7.27667809e-01 1.30065992e-01 -1.09121895e+00 3.28435957e-01 5.06239653e-01 1.78582460e-01 -6.74514413e-01 -5.57387531e-01 -7.28690401e-02 -5.53124309e-01 4.67195451e-01 4.18044388e-01 3.03692967e-01 -1.32108581e+00 8.21639717e-01 5.89437962e-01 4.09303196e-02 -1.96571704e-02 1.14875841e+00 7.56367683e-01 3.64137381e-01 -1.90109745e-01 2.11744666e-01 1.33322668e+00 -1.03987992e+00 -2.76277751e-01 -4.17816788e-01 5.37547708e-01 -9.60644782e-01 8.34826052e-01 5.16145706e-01 -1.03416061e+00 -4.28669363e-01 -9.52538788e-01 -2.85179526e-01 -2.88542747e-01 1.12192966e-01 7.23950684e-01 5.78402519e-01 -6.93878710e-01 6.42588794e-01 -1.20006514e+00 -4.77961600e-01 5.13322830e-01 5.56798816e-01 -6.33049548e-01 -4.60076511e-01 -5.52050114e-01 9.04657841e-01 3.78729373e-01 1.91276997e-01 -9.98839378e-01 -3.05372357e-01 -8.34405780e-01 -3.99280459e-01 6.41396940e-01 -8.57638121e-01 1.47674429e+00 -7.65810013e-01 -1.84810162e+00 1.34912217e+00 -3.63342129e-02 -9.62304175e-02 6.18911386e-01 -2.67567664e-01 1.56811818e-01 1.76444635e-01 -2.95801163e-02 5.84221542e-01 6.89058542e-01 -1.48857462e+00 -3.25462162e-01 -4.43629950e-01 1.55967340e-01 2.53006816e-01 2.24727884e-01 8.50993469e-02 -7.81321704e-01 -2.93255568e-01 7.14886963e-01 -9.36581254e-01 -4.24018294e-01 1.88428104e-01 -4.72999811e-01 5.44804484e-02 7.40572870e-01 -6.95206046e-01 8.58617388e-03 -2.04087210e+00 1.66292891e-01 1.23734780e-01 -1.50755823e-01 -1.64206624e-02 2.57792264e-01 3.20540369e-02 1.92267731e-01 -4.65469271e-01 -6.98989987e-01 -8.99335146e-01 2.90989995e-01 3.36107433e-01 1.05035432e-01 7.53889203e-01 1.69163402e-02 8.10786843e-01 -8.03170085e-01 -4.87866998e-01 8.14126313e-01 7.01042414e-01 -2.93583751e-01 2.59792566e-01 -3.91143441e-01 6.44874454e-01 -3.92274678e-01 8.90040636e-01 8.40386271e-01 -3.27182189e-03 1.91712558e-01 -2.89152920e-01 -5.16500473e-02 3.19058657e-01 -1.26605737e+00 2.37367487e+00 -7.83769846e-01 1.69857472e-01 5.11634231e-01 -1.31913114e+00 1.01423049e+00 1.71611905e-01 6.73509002e-01 -7.53488600e-01 2.77544469e-01 5.98116517e-01 -8.07025552e-01 -1.76576927e-01 5.34782469e-01 -2.22977489e-01 -3.26091409e-01 3.77335668e-01 -1.01423971e-01 -9.64015424e-01 -2.31575817e-01 -1.17641099e-01 1.07471180e+00 6.66939259e-01 -1.67067423e-02 1.47060910e-02 2.15871155e-01 3.44123334e-01 1.30013898e-01 4.43707347e-01 1.34238213e-01 8.87248218e-01 -7.39836022e-02 -3.79100412e-01 -1.15055037e+00 -1.14327681e+00 -5.97246028e-02 5.32265246e-01 5.73728859e-01 -6.79258555e-02 -7.75955975e-01 -6.77910149e-01 -9.99272913e-02 4.54837292e-01 -8.54309425e-02 3.55697691e-01 -6.25556409e-01 -3.94599080e-01 9.58678871e-02 5.24084508e-01 5.66464543e-01 -1.08085155e+00 -1.10568595e+00 3.04191351e-01 3.22184293e-03 -1.45198572e+00 -4.63524740e-03 4.85710979e-01 -1.13000548e+00 -1.07784295e+00 -7.23131239e-01 -9.82944846e-01 9.12979901e-01 3.82859081e-01 1.21946812e+00 -1.34544581e-01 -4.91991222e-01 7.42508113e-01 -2.25123659e-01 -8.83215573e-03 -3.74627590e-01 -1.63482189e-01 -1.54889524e-01 -3.42953861e-01 -2.42961384e-02 -5.14507771e-01 -5.16155839e-01 4.65693921e-01 -8.46000552e-01 4.89515752e-01 7.40994871e-01 5.95201731e-01 1.07570601e+00 2.92422771e-01 -2.48711720e-01 -8.01057339e-01 -9.89986211e-02 -8.06513280e-02 -6.38862312e-01 1.67532295e-01 -1.09221786e-01 -1.11382589e-01 3.96611720e-01 -2.31825739e-01 -9.62107718e-01 8.53638470e-01 -4.63165700e-01 -6.82379961e-01 -7.96046972e-01 1.70084313e-01 -3.52487624e-01 5.44292182e-02 2.02166170e-01 2.15810657e-01 -1.67822823e-01 -7.33918905e-01 4.46712822e-01 8.35844159e-01 8.00734818e-01 -6.06924891e-01 6.10024214e-01 6.12016916e-01 1.14810400e-01 -8.78969848e-01 -6.03622735e-01 -6.74984992e-01 -1.04484367e+00 -3.68723661e-01 8.56309414e-01 -1.03098190e+00 -6.01476550e-01 7.27575064e-01 -1.25617278e+00 -8.46258938e-01 -3.01514685e-01 5.51145315e-01 -1.13710093e+00 4.06510919e-01 -6.17397070e-01 -8.22813451e-01 -2.51176715e-01 -1.22528636e+00 1.74185562e+00 -1.41715050e-01 6.37037680e-03 -6.72168016e-01 -3.87118161e-01 7.03180850e-01 1.06064387e-01 3.91021222e-01 4.14037526e-01 -2.19078027e-02 -7.98589051e-01 -3.07099342e-01 -3.28155756e-01 1.33681700e-01 8.84771198e-02 -5.12962699e-01 -1.03601265e+00 -9.38341618e-02 1.36542946e-01 -4.01246428e-01 8.42971623e-01 1.09403938e-01 1.14662325e+00 2.47457474e-01 -4.48107690e-01 4.11199391e-01 1.47116578e+00 7.29011698e-03 7.05018103e-01 3.62275869e-01 9.97057796e-01 5.65471768e-01 8.19346786e-01 3.49846601e-01 4.50898916e-01 8.32728922e-01 6.16503239e-01 -3.03720295e-01 -3.70587915e-01 -6.86801299e-02 3.57677966e-01 7.16248631e-01 -1.58195749e-01 -1.04069170e-02 -1.02178395e+00 4.07671273e-01 -1.66085970e+00 -5.19739032e-01 -2.60827243e-01 2.14190316e+00 5.73214650e-01 2.06318542e-01 -6.67666942e-02 4.66870338e-01 5.76887608e-01 -2.75088608e-01 -5.58396399e-01 -2.45399714e-01 2.25836486e-01 4.76583689e-01 7.45889902e-01 4.72810358e-01 -1.23146331e+00 9.30271864e-01 5.40168953e+00 9.49114740e-01 -1.09395027e+00 1.15249529e-01 4.68077868e-01 1.47567675e-01 -8.05353969e-02 -3.73047180e-02 -5.48163891e-01 1.85026377e-01 5.51584423e-01 8.34112465e-01 4.90358740e-01 9.10795689e-01 -5.42488834e-03 -5.60491681e-01 -1.09332335e+00 1.29877782e+00 -1.69287249e-02 -9.54304993e-01 -5.87104976e-01 9.29562449e-02 5.24135232e-01 1.13571733e-01 -4.58978266e-01 -7.52079561e-02 2.29192987e-01 -9.02294755e-01 1.29793620e+00 5.82805634e-01 8.60137284e-01 -5.52803814e-01 6.73924029e-01 6.17820203e-01 -1.11097980e+00 2.48636052e-01 -2.04556376e-01 7.39542991e-02 4.47403699e-01 1.06148875e+00 -1.00242448e+00 7.08426476e-01 7.49444127e-01 6.81086183e-01 -1.70721829e-01 8.37481260e-01 -2.36369759e-01 1.80216700e-01 -7.74002075e-01 1.35777175e-01 1.76586434e-02 -1.19163767e-02 1.91366851e-01 1.25936961e+00 3.87013108e-01 1.06487945e-02 5.76100469e-01 6.35507166e-01 2.09395550e-02 -1.97899848e-01 -4.28079665e-01 5.47281317e-02 3.95012200e-02 1.10692549e+00 -1.49166620e+00 -2.62322694e-01 -3.19809347e-01 1.54676580e+00 1.00217819e-01 -2.18257710e-01 -6.76246405e-01 -2.62793422e-01 1.02347218e-01 3.01474780e-01 6.40691996e-01 -8.73705804e-01 -5.66675901e-01 -9.53115106e-01 1.81608781e-01 -3.35651249e-01 -1.21255048e-01 -8.12375844e-01 -1.27216721e+00 3.72520357e-01 -9.05670598e-02 -1.14328921e+00 -2.91135814e-02 -7.57024109e-01 -1.85186192e-02 6.69636846e-01 -1.46766508e+00 -1.29910374e+00 -3.18917274e-01 5.89577734e-01 6.64149702e-01 3.24932486e-01 1.06045890e+00 3.62936735e-01 -1.68737173e-01 -3.39205042e-02 -1.85810607e-02 -5.40077053e-02 2.95358926e-01 -1.16472518e+00 4.66059268e-01 5.77709138e-01 1.86986119e-01 4.25880775e-03 5.26505828e-01 -7.34045923e-01 -1.88431883e+00 -1.04024041e+00 6.45109594e-01 -3.27125698e-01 1.39122561e-01 -6.35490716e-01 -4.68105733e-01 4.44151700e-01 -1.98122784e-01 3.03892106e-01 1.65240481e-01 -1.62299171e-01 -6.51550665e-02 2.05272719e-01 -1.37188148e+00 1.33551449e-01 1.44069958e+00 -6.05413795e-01 -3.63485277e-01 5.93892157e-01 5.11948287e-01 -9.87571239e-01 -9.94293213e-01 5.23141861e-01 5.41924298e-01 -8.99635017e-01 1.21056032e+00 1.76062837e-01 2.79265791e-01 -5.61218202e-01 -5.17478406e-01 -9.39600468e-01 8.79532546e-02 -1.27364948e-01 -1.55677706e-01 8.50424051e-01 4.96053211e-02 -3.58453631e-01 1.05915809e+00 6.83291018e-01 -6.39285624e-01 -6.18844092e-01 -9.69989896e-01 -7.88422883e-01 -3.53969574e-01 -9.59195912e-01 4.42640901e-01 6.23252869e-01 -4.43564981e-01 4.25287485e-02 -1.31219894e-01 2.16025263e-01 5.95480204e-01 6.27408683e-01 9.08306360e-01 -1.03094482e+00 -4.55896258e-01 -2.44432241e-01 -6.13699436e-01 -1.47897434e+00 1.41410127e-01 -9.74082112e-01 5.57120740e-01 -1.90307236e+00 1.02430627e-01 -8.75052273e-01 2.12558344e-01 5.58299959e-01 4.27890927e-01 5.89327037e-01 2.26064935e-01 9.68118683e-02 -8.03290665e-01 4.19223368e-01 1.25755739e+00 -3.57936054e-01 -1.01839386e-01 -4.02814560e-02 -1.64151162e-01 7.89932191e-01 8.72993827e-01 -5.12793005e-01 4.18052450e-02 -6.28594458e-01 -1.86386138e-01 2.76293047e-02 6.40395522e-01 -1.11085355e+00 1.23081028e-01 -6.25615790e-02 5.57453275e-01 -8.62325430e-01 7.43330002e-01 -1.09690106e+00 3.82206291e-01 4.04821038e-01 3.66661727e-01 -4.29817587e-01 1.95433885e-01 4.38172936e-01 4.95125614e-02 -3.21307182e-01 6.65155411e-01 -5.44053257e-01 -8.59411359e-01 1.60599560e-01 -4.06632185e-01 -4.55975801e-01 1.08839715e+00 -4.79362100e-01 3.62985790e-01 1.61404848e-01 -8.40126812e-01 -1.85507804e-01 9.10534620e-01 1.19361043e-01 8.36566210e-01 -1.12868702e+00 -3.83247018e-01 1.99558944e-01 -2.19271034e-01 8.79564941e-01 2.53237814e-01 5.75179935e-01 -9.74551558e-01 3.37881058e-01 -5.63669316e-02 -1.05464458e+00 -1.12756217e+00 4.23527956e-01 2.49315381e-01 -2.49882683e-01 -9.75404501e-01 6.39768541e-01 -1.20540902e-01 -7.60550320e-01 1.85034439e-01 -4.80219603e-01 2.92959720e-01 -3.37819755e-01 2.53154933e-02 1.84608951e-01 5.92120051e-01 -7.58119881e-01 -5.15178502e-01 1.02511978e+00 2.62396365e-01 -1.17713809e-01 1.55159426e+00 -3.25695910e-02 5.20868897e-02 4.31755632e-01 1.17990339e+00 -3.00755709e-01 -1.41548491e+00 -1.52087748e-01 -6.01599589e-02 -5.65698624e-01 3.26609343e-01 -8.27912688e-01 -1.15562820e+00 8.95524561e-01 5.98858654e-01 -9.80660617e-02 1.15112638e+00 3.85016173e-01 1.10088706e+00 4.43905205e-01 1.10298324e+00 -1.05835080e+00 2.15671230e-02 5.16655564e-01 6.90205634e-01 -1.08357251e+00 3.27709138e-01 -8.05906057e-01 -4.23770010e-01 1.14825952e+00 2.35144973e-01 -1.64857730e-01 5.99135160e-01 4.00831997e-01 -1.76293075e-01 -2.81534940e-01 -9.92459208e-02 -3.01933110e-01 2.38222778e-02 5.81149817e-01 2.28760596e-02 3.51457655e-01 2.40362614e-01 2.69852191e-01 -6.04918674e-02 -2.37204619e-02 1.75456271e-01 1.42012548e+00 -3.47866863e-01 -1.22077417e+00 -6.47101104e-01 1.96336180e-01 -8.95852223e-02 3.43870789e-01 -1.81646988e-01 3.36289555e-01 2.69380569e-01 8.92943561e-01 2.28320792e-01 -3.45145941e-01 5.81970870e-01 -9.73825604e-02 1.10700917e+00 -6.57367110e-01 -3.27653021e-01 1.47975370e-01 1.54701442e-01 -7.19249129e-01 -8.01011264e-01 -8.83017540e-01 -1.65343297e+00 -3.51711549e-02 -3.02676767e-01 -4.34658468e-01 1.24861896e+00 1.00471365e+00 1.06098585e-01 3.89978588e-01 6.79907918e-01 -1.58539248e+00 2.58384775e-02 -7.45054483e-01 -7.04057157e-01 3.96779180e-01 -5.31661436e-02 -9.91525412e-01 -2.97859926e-02 2.29902640e-01]
[8.276694297790527, -2.702944755554199]
7af74764-25cd-4382-ac79-066d94b65bd5
a-time-vertex-signal-processing-framework
1705.02307
null
http://arxiv.org/abs/1705.02307v1
http://arxiv.org/pdf/1705.02307v1.pdf
A Time-Vertex Signal Processing Framework
An emerging way to deal with high-dimensional non-euclidean data is to assume that the underlying structure can be captured by a graph. Recently, ideas have begun to emerge related to the analysis of time-varying graph signals. This work aims to elevate the notion of joint harmonic analysis to a full-fledged framework denoted as Time-Vertex Signal Processing, that links together the time-domain signal processing techniques with the new tools of graph signal processing. This entails three main contributions: (a) We provide a formal motivation for harmonic time-vertex analysis as an analysis tool for the state evolution of simple Partial Differential Equations on graphs. (b) We improve the accuracy of joint filtering operators by up-to two orders of magnitude. (c) Using our joint filters, we construct time-vertex dictionaries analyzing the different scales and the local time-frequency content of a signal. The utility of our tools is illustrated in numerous applications and datasets, such as dynamic mesh denoising and classification, still-video inpainting, and source localization in seismic events. Our results suggest that joint analysis of time-vertex signals can bring benefits to regression and learning.
['Nathanaël Perraudin', 'Andreas Loukas', 'Benjamin Ricaud', 'Francesco Grassi']
2017-05-05
null
null
null
null
['video-inpainting']
['computer-vision']
[ 3.29907835e-01 7.53323957e-02 5.07466257e-01 3.37086990e-03 -8.34405243e-01 -3.79627854e-01 4.32120115e-01 1.91994369e-01 6.88977027e-03 4.00166005e-01 1.85846865e-01 4.19613495e-02 -6.77206874e-01 -7.83569276e-01 -6.31187439e-01 -9.39267755e-01 -7.00106382e-01 -2.75025889e-02 1.09929167e-01 -4.90378171e-01 1.84241645e-02 7.45658338e-01 -1.30623555e+00 9.05380398e-02 4.56125826e-01 9.42496657e-01 -3.03537756e-01 9.74925041e-01 1.42382324e-01 6.31743729e-01 -3.97605479e-01 -1.67755261e-01 1.21733963e-01 -5.52834392e-01 -6.18062735e-01 2.33627126e-01 2.01571271e-01 2.22570561e-02 -6.58511043e-01 8.97194743e-01 4.34358120e-01 2.56477505e-01 4.41851258e-01 -1.10209715e+00 -3.60518694e-01 4.77032334e-01 -5.26520371e-01 2.58459002e-01 4.44156229e-01 -2.67224789e-01 8.45923007e-01 -7.53287852e-01 6.73396647e-01 1.15151739e+00 1.19276369e+00 -9.49334204e-02 -1.62473488e+00 -1.10318206e-01 -2.02024922e-01 4.55889195e-01 -1.37607265e+00 -3.97884905e-01 1.63521421e+00 -5.88365734e-01 6.75335944e-01 4.65921611e-01 7.60280252e-01 7.58039057e-01 3.42461228e-01 6.08732939e-01 1.03310978e+00 -5.81874669e-01 -5.88437095e-02 -5.95750749e-01 1.54486939e-01 7.62607813e-01 -2.45462492e-01 -2.58084703e-02 -7.65936136e-01 -4.06572402e-01 7.85181165e-01 -2.13229254e-01 -4.64060009e-01 -2.96809256e-01 -1.27837849e+00 9.78069067e-01 3.22204828e-02 6.85567975e-01 -5.40907919e-01 3.84885162e-01 6.17272913e-01 6.86457813e-01 1.17175817e+00 2.01933369e-01 -8.24168622e-02 -1.14040472e-01 -1.01891768e+00 2.14425460e-01 8.16187203e-01 4.66659814e-01 6.98208928e-01 4.93098855e-01 2.33909905e-01 6.29527152e-01 1.80618942e-01 5.76351643e-01 -1.35489125e-02 -1.22373581e+00 7.94073120e-02 -7.77588189e-02 -1.74148947e-01 -1.45974362e+00 -5.32236755e-01 -5.41373074e-01 -9.94106472e-01 1.30316943e-01 6.17355764e-01 -1.19273469e-01 -1.99543819e-01 1.76892531e+00 2.75635898e-01 7.21394837e-01 -2.32266530e-01 5.99124730e-01 3.93993944e-01 6.53877854e-01 -5.74388564e-01 -7.07956672e-01 9.66955960e-01 -2.60526448e-01 -1.03214180e+00 3.10452849e-01 2.54240870e-01 -8.04138958e-01 5.36322355e-01 6.94878578e-01 -1.44790649e+00 -5.15537798e-01 -9.20467794e-01 1.77302301e-01 -7.83818588e-02 -4.09798384e-01 3.50026965e-01 3.39678079e-01 -1.15438986e+00 1.15753317e+00 -1.06417537e+00 -8.05417970e-02 -6.81436062e-02 1.79214813e-02 -3.33602130e-01 9.36506242e-02 -1.20585597e+00 7.17144072e-01 -5.09991527e-01 2.89500624e-01 -5.43662548e-01 -8.68112326e-01 -8.24593067e-01 -2.70328075e-01 2.80849606e-01 -3.76595497e-01 6.45214677e-01 -7.83754766e-01 -1.38218462e+00 5.93479931e-01 -4.52670306e-02 -4.63620603e-01 5.49138069e-01 3.29417028e-02 -6.12033427e-01 4.92527157e-01 5.45580350e-02 -4.01448965e-01 1.55149305e+00 -9.06793296e-01 2.01646537e-02 -3.57631385e-01 -4.15161192e-01 -2.29179874e-01 -1.94425240e-01 -1.38311833e-01 -5.91144189e-02 -1.22264814e+00 5.12197137e-01 -6.48302138e-01 -1.67371467e-01 1.39159570e-02 -8.69021788e-02 2.11572438e-01 7.90960073e-01 -1.14203417e+00 1.12073338e+00 -2.39340425e+00 9.40209389e-01 4.51710939e-01 4.19736743e-01 -3.21451247e-01 -4.26959386e-03 9.56932664e-01 -4.64545757e-01 -3.67019773e-01 -5.48001468e-01 -4.48134005e-01 -2.38749772e-01 2.43723571e-01 -5.61349511e-01 1.09375715e+00 1.55035466e-01 6.67283714e-01 -7.93163180e-01 -2.32169881e-01 2.62318641e-01 7.38802612e-01 -4.73528624e-01 -1.37739420e-01 1.61299244e-01 6.94768131e-01 -2.05248430e-01 4.25406605e-01 4.75216001e-01 1.09421521e-01 -2.97729988e-02 -6.31976783e-01 -3.02537590e-01 -6.07507750e-02 -1.50076294e+00 1.83183455e+00 -2.82951802e-01 8.37955177e-01 7.36373782e-01 -1.53091860e+00 6.94421232e-01 4.80447292e-01 1.21009731e+00 -5.06428361e-01 7.97483772e-02 3.43374580e-01 -2.54826963e-01 -5.77123284e-01 1.96848184e-01 -2.16208667e-01 -4.33012247e-02 2.57127345e-01 2.16308877e-01 -2.45147437e-01 1.78691208e-01 3.65543216e-02 1.43559623e+00 -1.17853563e-03 7.64199793e-02 -4.53304291e-01 5.07902384e-01 -2.03337312e-01 2.64369637e-01 3.21168274e-01 2.08939444e-02 5.11295795e-01 6.46613598e-01 -3.54413062e-01 -8.63911152e-01 -9.49935019e-01 -3.67275804e-01 7.72171795e-01 -4.19012934e-01 -4.27415252e-01 -6.59496903e-01 -9.60911363e-02 1.51740834e-01 2.98811495e-01 -7.17627406e-01 -1.41723678e-01 -9.24642801e-01 -6.27037346e-01 5.54811895e-01 2.48229057e-01 7.18181059e-02 -4.11775321e-01 -3.28842521e-01 5.83888412e-01 -2.28737950e-01 -1.01157665e+00 -3.04579377e-01 1.73241943e-01 -1.16066372e+00 -9.52966213e-01 -8.26996624e-01 -5.93375027e-01 2.37758443e-01 1.55741602e-01 9.08858120e-01 -1.57976419e-01 -4.31282401e-01 1.15737081e+00 -3.22386503e-01 -6.36271685e-02 -4.85225260e-01 -6.22759223e-01 5.35738096e-02 7.15850413e-01 -4.01591778e-01 -1.26174712e+00 -2.07296044e-01 1.81314617e-01 -8.93092930e-01 -1.96492419e-01 1.24932572e-01 6.54386044e-01 7.00696468e-01 2.88115501e-01 5.32087266e-01 -4.81598675e-01 6.67699397e-01 -4.84855205e-01 -4.94569987e-01 -6.87096035e-03 -2.69490719e-01 9.20559615e-02 4.60145146e-01 -5.44918299e-01 -6.03437483e-01 1.15139820e-02 -3.00872568e-02 -5.88865876e-01 3.72104734e-01 9.06333447e-01 2.34252125e-01 -5.16565561e-01 5.57497323e-01 1.57012761e-01 3.51234108e-01 -6.83658719e-01 5.46681345e-01 5.64931333e-02 7.95850337e-01 -6.73654556e-01 9.20197785e-01 7.97701299e-01 7.70625174e-01 -1.59626985e+00 -1.89385012e-01 -5.23536086e-01 -7.19310641e-01 -5.75916529e-01 8.47580910e-01 -6.25926852e-01 -5.15170872e-01 5.93484402e-01 -1.13119638e+00 -3.84384245e-01 -5.37172377e-01 5.24685383e-01 -6.83340609e-01 8.63348305e-01 -9.11028504e-01 -8.18319619e-01 4.46349420e-02 -7.43675053e-01 1.20139718e+00 -5.65891564e-01 -9.71734971e-02 -1.41839647e+00 4.06023324e-01 -7.92166144e-02 2.82432199e-01 9.31069911e-01 7.86972702e-01 -1.43575162e-01 -2.73118287e-01 -2.99703866e-01 3.65736425e-01 3.32260549e-01 5.50851747e-02 1.19813427e-01 -8.57621789e-01 -3.27571303e-01 6.86969995e-01 2.30806202e-01 6.48775280e-01 6.74787462e-01 7.71446466e-01 -1.05726846e-01 -1.13115378e-01 7.75852263e-01 1.41143823e+00 -2.38579020e-01 3.32015306e-01 -2.97902554e-01 7.27003813e-01 9.50319290e-01 2.05681995e-01 5.19841313e-01 -2.81069875e-02 8.13071668e-01 3.31801981e-01 1.41588375e-02 -2.40391240e-01 1.19991735e-01 3.87330145e-01 1.43572915e+00 -4.54275221e-01 1.08870178e-01 -8.63071263e-01 6.54892743e-01 -1.76290941e+00 -1.12946653e+00 -8.11710596e-01 2.08706427e+00 5.13065934e-01 -8.41028616e-03 2.53210217e-01 8.72669697e-01 6.14804268e-01 3.79827112e-01 -2.11555481e-01 -1.22676946e-01 -1.61378130e-01 4.73906815e-01 4.73580837e-01 8.28150451e-01 -1.01101232e+00 3.11374627e-02 6.24110651e+00 7.24890590e-01 -1.14926755e+00 3.31259876e-01 -1.03254713e-01 1.94586009e-01 -2.16628850e-01 -9.79372635e-02 6.66123107e-02 2.36073077e-01 1.05864811e+00 -3.34250599e-01 7.03524053e-01 3.46937507e-01 2.34919816e-01 3.75221789e-01 -1.04203737e+00 1.00588202e+00 2.69811243e-01 -1.40327871e+00 -4.73427653e-01 1.55272499e-01 4.32555318e-01 9.21583455e-03 -1.12309277e-01 -1.29233211e-01 -2.77123243e-01 -6.77927852e-01 9.48505580e-01 8.70508790e-01 5.90000451e-01 -6.26177013e-01 2.46920437e-01 3.09196919e-01 -1.68335819e+00 1.13531031e-01 7.20958486e-02 -1.77620932e-01 6.81670070e-01 1.04639125e+00 -2.39894524e-01 9.77034450e-01 4.05748039e-01 1.29470050e+00 -2.84643114e-01 8.89960408e-01 2.61261046e-01 6.72434509e-01 -5.24025857e-01 5.86645365e-01 -4.21648435e-02 -5.81531465e-01 1.03929794e+00 1.14389825e+00 3.82843614e-01 3.42479676e-01 1.28784329e-01 5.95709562e-01 4.29276496e-01 2.95937285e-02 -6.70660317e-01 5.90975247e-02 -1.23031199e-01 1.00430310e+00 -9.14238036e-01 -3.85552458e-02 -6.23033822e-01 7.69938827e-01 -1.85961634e-01 4.82420743e-01 -6.68408930e-01 -3.99048537e-01 3.92112523e-01 3.19385290e-01 3.56868058e-01 -8.08362007e-01 -1.25698641e-01 -1.07341468e+00 7.43767470e-02 -7.54400671e-01 4.05202955e-01 -6.18006706e-01 -1.30283570e+00 3.86569738e-01 3.05766612e-01 -1.32432997e+00 -2.31357217e-01 -6.16753042e-01 -6.67651236e-01 5.98514676e-01 -1.14698100e+00 -1.05830669e+00 -1.16576903e-01 9.50096428e-01 2.73475707e-01 1.47786558e-01 7.13421941e-01 6.23707592e-01 -2.10182250e-01 -6.59413859e-02 2.21062511e-01 1.04526065e-01 3.99042189e-01 -1.15129280e+00 3.49870861e-01 1.01092660e+00 3.94612312e-01 2.65055954e-01 1.13077152e+00 -6.73901439e-01 -1.94129908e+00 -6.58360124e-01 5.68118453e-01 -3.30574512e-01 1.13718462e+00 -3.12747240e-01 -1.14495897e+00 6.60507083e-01 7.07016047e-03 3.24193448e-01 4.34000432e-01 -1.87371671e-01 -8.34992304e-02 -2.07774892e-01 -8.68844032e-01 2.58946061e-01 8.78892064e-01 -9.43585217e-01 -5.72484553e-01 4.72256124e-01 3.87947470e-01 -2.91960359e-01 -1.20570874e+00 3.43345582e-01 3.15910876e-01 -7.77318597e-01 1.25543177e+00 -2.99449176e-01 9.82285067e-02 -1.85573876e-01 -4.78036404e-01 -1.25200868e+00 -3.60458106e-01 -1.40961063e+00 -3.65059495e-01 1.03012681e+00 -7.15738609e-02 -6.01326048e-01 2.80950159e-01 1.75073251e-01 -3.50421607e-01 -5.61043382e-01 -1.33270442e+00 -7.06386089e-01 -7.23362118e-02 -9.50551212e-01 7.66336843e-02 1.12750149e+00 1.27038509e-01 9.43825096e-02 -5.16565204e-01 3.15591216e-01 1.03292525e+00 -2.26239339e-02 3.83489311e-01 -1.38432646e+00 -6.68457568e-01 -4.12673742e-01 -5.72260916e-01 -7.41044044e-01 7.26763383e-02 -8.51647675e-01 -1.92703709e-01 -1.25760269e+00 -6.29536152e-01 -6.30152896e-02 -5.97865246e-02 -1.31129891e-01 4.01224434e-01 3.93254697e-01 -1.12888590e-01 1.35163978e-01 -1.25784567e-02 3.49611521e-01 9.17026639e-01 5.62380627e-03 -5.42088374e-02 -1.57646351e-02 1.51146203e-01 8.68164837e-01 2.03098625e-01 -3.80850703e-01 -3.26332539e-01 -3.11568320e-01 6.01880729e-01 7.12515652e-01 5.92059672e-01 -1.00022447e+00 2.92432725e-01 1.02390617e-01 -9.47466642e-02 -2.69736499e-01 5.76829910e-01 -8.78797352e-01 5.96610188e-01 4.26142335e-01 -1.15608767e-01 2.34689698e-01 -4.30216780e-03 9.11707938e-01 -3.86074454e-01 1.42539153e-02 6.90583587e-01 1.15645632e-01 -3.99345994e-01 -8.33039638e-03 -3.98381025e-01 5.84255829e-02 8.22579682e-01 -9.73410383e-02 1.24545015e-01 -6.49705231e-01 -1.08782327e+00 -2.73960382e-01 8.14192221e-02 -1.18163027e-01 5.25371134e-01 -1.27008164e+00 -8.65122497e-01 4.90705520e-01 -3.23699623e-01 -4.02325243e-01 4.43541884e-01 1.41772020e+00 -5.47798157e-01 -5.75503260e-02 -1.71195362e-02 -7.83207476e-01 -1.21045160e+00 4.78030324e-01 3.56737018e-01 -6.92386478e-02 -9.53388453e-01 7.45080650e-01 -2.28896573e-01 1.52237490e-01 1.07985899e-01 -6.37357116e-01 -1.16445217e-02 5.08746624e-01 3.48267049e-01 8.01309466e-01 2.54918903e-01 -9.60903585e-01 -1.92444727e-01 1.05452347e+00 7.34835267e-01 -4.60093260e-01 1.67335761e+00 -1.24343842e-01 -4.70780462e-01 8.97072792e-01 1.42389047e+00 4.51737851e-01 -1.24157190e+00 -2.08820611e-01 -1.53037727e-01 -2.65948921e-01 2.67605096e-01 -7.53455684e-02 -1.13535500e+00 7.47297049e-01 2.30792835e-01 9.98993516e-01 1.26590073e+00 -1.78075824e-02 6.84036493e-01 1.58768013e-01 4.06889170e-01 -8.21817994e-01 1.18176877e-01 2.33408138e-01 1.25101149e+00 -5.79670012e-01 1.61943153e-01 -5.78007400e-01 6.68203235e-02 1.39727759e+00 -6.18238032e-01 -6.43482685e-01 1.09220123e+00 3.27287525e-01 -3.06019068e-01 -4.54425454e-01 -3.77087414e-01 -3.19230221e-02 6.16940498e-01 6.04981065e-01 2.85455585e-01 -4.21765149e-02 -2.75282413e-01 2.61248261e-01 -5.95197678e-02 -4.38537866e-01 6.00562811e-01 8.05233061e-01 -2.09937632e-01 -1.20322490e+00 -6.71720088e-01 1.49600327e-01 -5.70084214e-01 2.82973081e-01 -1.01029120e-01 7.43450582e-01 -2.17835680e-01 8.79317701e-01 -2.39183873e-01 -1.62608311e-01 5.12382567e-01 2.92890370e-01 6.32373273e-01 -3.15716237e-01 -2.90017188e-01 5.49509406e-01 2.12764576e-01 -7.01219976e-01 -7.10704207e-01 -9.96688306e-01 -8.99084747e-01 -2.85193801e-01 -1.76995367e-01 1.72505304e-01 7.56095350e-01 8.35048556e-01 -2.40160916e-02 9.67449427e-01 5.22802055e-01 -1.31990945e+00 -2.91511238e-01 -5.99257946e-01 -9.37256515e-01 3.85513067e-01 8.49116325e-01 -6.63768172e-01 -7.29275823e-01 1.95149064e-01]
[15.397059440612793, 5.605896949768066]
5e06b808-c0d5-4fbe-8e3e-6e5a863fb694
a-generic-diffusion-based-approach-for-3d
2210.05669
null
https://arxiv.org/abs/2210.05669v2
https://arxiv.org/pdf/2210.05669v2.pdf
A generic diffusion-based approach for 3D human pose prediction in the wild
Predicting 3D human poses in real-world scenarios, also known as human pose forecasting, is inevitably subject to noisy inputs arising from inaccurate 3D pose estimations and occlusions. To address these challenges, we propose a diffusion-based approach that can predict given noisy observations. We frame the prediction task as a denoising problem, where both observation and prediction are considered as a single sequence containing missing elements (whether in the observation or prediction horizon). All missing elements are treated as noise and denoised with our conditional diffusion model. To better handle long-term forecasting horizon, we present a temporal cascaded diffusion model. We demonstrate the benefits of our approach on four publicly available datasets (Human3.6M, HumanEva-I, AMASS, and 3DPW), outperforming the state-of-the-art. Additionally, we show that our framework is generic enough to improve any 3D pose prediction model as a pre-processing step to repair their inputs and a post-processing step to refine their outputs. The code is available online: \url{https://github.com/vita-epfl/DePOSit}.
['Alexandre Alahi', 'Taylor Mordan', 'Sara Rajabzadeh', 'Yasamin Medghalchi', 'Mohammadreza Mofayezi', 'Ali Rasekh', 'Saeed Saadatnejad']
2022-10-11
null
null
null
null
['human-pose-forecasting']
['computer-vision']
[ 1.09907992e-01 2.03172311e-01 3.41595143e-01 -4.46701556e-01 -7.47907758e-01 -4.22461241e-01 6.14142954e-01 -9.07047391e-02 -4.54297543e-01 5.69104493e-01 4.22037572e-01 8.56190920e-02 1.94723457e-01 -5.80456078e-01 -9.80084360e-01 -4.25371081e-01 -3.17792371e-02 7.39365935e-01 3.23923260e-01 -3.22518289e-01 -2.11761057e-01 2.40578681e-01 -1.52996850e+00 2.63765454e-01 6.09995067e-01 1.09103656e+00 1.73198283e-02 8.64491463e-01 4.22307998e-01 5.70321798e-01 -4.18266028e-01 -5.56616068e-01 3.54461998e-01 -1.60038128e-01 -6.52340412e-01 1.90389112e-01 3.03293437e-01 -4.61241961e-01 -4.66544509e-01 6.93683386e-01 6.95670187e-01 2.32288763e-01 5.39328158e-01 -1.12391806e+00 -3.83129716e-01 2.31514107e-02 -2.97982335e-01 -3.59013267e-02 6.43674791e-01 3.35809261e-01 5.21432459e-01 -1.12746000e+00 9.01491344e-01 1.46035063e+00 1.02715790e+00 7.20647335e-01 -1.10438931e+00 -2.69620627e-01 4.81118739e-01 2.49073610e-01 -1.21856046e+00 -4.46074545e-01 6.24220133e-01 -7.19229341e-01 8.55527937e-01 1.85391888e-01 8.35610330e-01 1.81386125e+00 4.11566824e-01 9.53322828e-01 7.79675126e-01 -1.73251666e-02 2.88882583e-01 -4.98291701e-01 -1.30914748e-01 5.39057136e-01 -1.77797452e-01 3.22739959e-01 -8.18521798e-01 -1.00373939e-01 6.69474661e-01 1.62949741e-01 -1.60743505e-01 -1.99696764e-01 -1.29322231e+00 5.11209726e-01 4.32872921e-01 -2.13942841e-01 -8.10105026e-01 2.56290764e-01 7.56373331e-02 2.78956354e-01 1.03654206e+00 -1.94513872e-01 -6.27550483e-01 -3.03253233e-01 -9.37278330e-01 7.35568523e-01 7.46488988e-01 9.25235271e-01 3.79850119e-01 -2.50706881e-01 -1.80012748e-01 6.22491241e-01 3.95087332e-01 5.86467028e-01 1.32281214e-01 -1.06686819e+00 4.52128381e-01 1.44288063e-01 5.23088336e-01 -9.46374655e-01 -7.03558624e-01 -5.07448018e-01 -9.22073245e-01 1.81497842e-01 5.59473515e-01 -3.75745147e-01 -1.19201994e+00 1.71844292e+00 8.36900353e-01 4.15857911e-01 -2.51654983e-01 1.22763836e+00 6.65452242e-01 7.41183579e-01 9.35272574e-02 -1.09491022e-02 1.08463335e+00 -1.12408733e+00 -5.97075701e-01 -4.93324727e-01 4.29700881e-01 -8.22357297e-01 5.42679787e-01 7.11216033e-01 -1.20635128e+00 -8.87616277e-01 -7.90469229e-01 -3.42877835e-01 -1.26613542e-01 7.24024996e-02 3.28155130e-01 1.64843962e-01 -9.59194362e-01 9.19228911e-01 -1.32935607e+00 -3.74158055e-01 1.93385720e-01 1.41859218e-01 -3.86612415e-01 -1.73171312e-01 -1.16291165e+00 1.04189813e+00 2.45678835e-02 6.23171806e-01 -1.07591140e+00 -5.00664592e-01 -8.25094104e-01 -4.60249007e-01 5.84454417e-01 -1.07256496e+00 1.41423953e+00 -6.02019846e-01 -1.43070877e+00 5.30604482e-01 -3.08604926e-01 -6.08901918e-01 1.20316434e+00 -8.86166453e-01 -1.26804188e-01 -1.52111992e-01 3.92824747e-02 7.55033970e-01 9.55247760e-01 -1.19433987e+00 -5.30070186e-01 -6.02003038e-01 -1.92975894e-01 3.25928122e-01 2.18788460e-01 -2.78076589e-01 -7.69607782e-01 -8.58543813e-01 3.31353545e-01 -1.23056042e+00 -6.59888327e-01 1.53029308e-01 -3.51323396e-01 2.41388790e-02 5.23347676e-01 -1.05145240e+00 1.02447319e+00 -1.79015291e+00 6.25152051e-01 1.09290607e-01 1.43297032e-01 1.95944998e-02 -1.63117290e-01 5.31738162e-01 1.16042815e-01 -2.92369753e-01 -3.72596681e-01 -1.07622027e+00 2.58980747e-02 4.18545604e-01 -1.96343273e-01 6.84559703e-01 1.46399185e-01 1.02465272e+00 -9.32030678e-01 -1.31203666e-01 4.24554437e-01 9.06835914e-01 -5.33158243e-01 1.78671107e-01 -5.07331014e-01 1.11432028e+00 -3.18008870e-01 6.45491064e-01 5.91924369e-01 -1.06725983e-01 -4.40564752e-02 -1.10098191e-01 -7.81036988e-02 3.86777781e-02 -1.48699021e+00 2.07937455e+00 -3.52910638e-01 2.28498265e-01 2.44234335e-02 -6.61505401e-01 6.99069798e-01 3.83494675e-01 6.47481680e-01 -3.56901199e-01 2.57214814e-01 1.04943693e-01 -4.95243937e-01 -4.77530777e-01 5.90839505e-01 -5.50045725e-03 -1.13294005e-01 7.43878409e-02 1.59437343e-01 -1.42890373e-02 -1.67022735e-01 1.13305971e-01 1.15492213e+00 6.70494080e-01 -1.29542276e-01 1.71736956e-01 2.88912714e-01 -5.19960113e-02 8.50597978e-01 6.82078838e-01 -2.43302137e-01 1.11945665e+00 2.90509433e-01 -5.72571099e-01 -1.10568810e+00 -1.05641997e+00 1.77398890e-01 8.89026880e-01 1.17462963e-01 -4.42742884e-01 -6.68881953e-01 -6.52827024e-01 9.54479203e-02 5.00518322e-01 -7.77604938e-01 -2.01453771e-02 -5.44536352e-01 -5.47249675e-01 2.12331995e-01 6.36060417e-01 1.92591071e-01 -8.81441951e-01 -6.26220286e-01 3.70169282e-01 -4.31996077e-01 -1.12907541e+00 -4.97386068e-01 -2.85767317e-02 -8.10737848e-01 -8.42800617e-01 -1.04439688e+00 -3.89238149e-01 5.11284292e-01 -2.16819927e-01 1.08915353e+00 5.11752404e-02 -1.64131746e-01 5.00847399e-01 -3.82851422e-01 -4.47819918e-01 -2.84696996e-01 -4.51354496e-02 3.89210969e-01 1.94344278e-02 7.02021495e-02 -6.66460454e-01 -9.35134828e-01 3.50390673e-01 -6.03852212e-01 1.11170493e-01 3.56795162e-01 7.70169139e-01 9.47553217e-01 -3.81509453e-01 3.04105639e-01 -7.62236357e-01 3.93419176e-01 -6.16742074e-01 -5.17900646e-01 -4.46407311e-02 -3.42233360e-01 -9.78326201e-02 1.97406068e-01 -4.76940364e-01 -1.10039115e+00 6.46995664e-01 -6.20971620e-01 -5.85285485e-01 -3.33013564e-01 4.26258683e-01 3.93001437e-02 2.54823953e-01 7.09896147e-01 4.46782038e-02 4.70375456e-02 -9.23696935e-01 4.75171804e-01 3.45258355e-01 8.60368788e-01 -3.63445163e-01 8.79069448e-01 6.39030993e-01 4.16854918e-02 -5.67622125e-01 -1.04903245e+00 -4.86374974e-01 -9.93650615e-01 -6.54490590e-01 9.06843126e-01 -1.23920262e+00 -6.16473258e-01 7.62069881e-01 -1.47287810e+00 -4.95422065e-01 -3.06957841e-01 3.97017300e-01 -6.94335699e-01 4.89730895e-01 -8.15910101e-01 -9.07202184e-01 -2.89110929e-01 -9.45485651e-01 1.47323203e+00 -1.53342769e-01 -4.58678573e-01 -8.04417849e-01 9.95624438e-02 3.83583009e-01 9.73026454e-02 6.06215656e-01 7.68205971e-02 -2.51643181e-01 -4.23949301e-01 -4.42390323e-01 3.65927756e-01 4.14171696e-01 -2.65561819e-01 -2.75423348e-01 -8.35675120e-01 -3.18033069e-01 9.37817171e-02 -3.65996212e-01 1.08137393e+00 4.46316034e-01 8.62201512e-01 -9.65626910e-02 -2.51728684e-01 5.28104663e-01 9.03398037e-01 -3.44757736e-01 5.36182225e-01 1.36642590e-01 6.62811935e-01 6.19714379e-01 7.90186346e-01 7.36908615e-01 6.46881998e-01 6.60279691e-01 5.02266467e-01 1.10606384e-02 -2.27384254e-01 -4.92784202e-01 3.18166077e-01 8.76026154e-01 -3.52181196e-01 -3.89046818e-01 -1.05922127e+00 5.59639633e-01 -2.19481373e+00 -8.15605819e-01 -2.95645177e-01 2.09929323e+00 6.10143900e-01 1.49012625e-01 2.31685504e-01 7.50583708e-02 3.90700191e-01 2.32176408e-01 -6.72815979e-01 8.27672780e-02 2.02416480e-02 4.38778810e-02 3.86587411e-01 8.04401577e-01 -1.21556032e+00 9.49041426e-01 5.95631218e+00 5.06095350e-01 -6.71892107e-01 3.12831163e-01 5.83564222e-01 -3.98252845e-01 1.46159558e-02 -1.00807957e-01 -7.99832642e-01 3.75845432e-01 8.55039239e-01 3.36654633e-01 2.37194747e-01 6.90923333e-01 4.47647333e-01 -2.10513309e-01 -1.13762915e+00 8.43328953e-01 -2.20591612e-02 -1.02898049e+00 -2.12572932e-01 -7.18145370e-02 7.80113101e-01 1.65816560e-01 1.57559633e-01 1.96204334e-01 3.08284551e-01 -7.64601707e-01 1.18557072e+00 1.03750706e+00 4.47707087e-01 -5.15596747e-01 6.43258750e-01 6.80590630e-01 -1.06429148e+00 7.02970326e-02 -1.29811674e-01 -3.16932082e-01 7.84609497e-01 8.64307642e-01 -3.62367600e-01 6.41073525e-01 8.63078654e-01 9.33167160e-01 -4.36591953e-01 9.38122749e-01 -4.55680817e-01 4.19864804e-01 -5.83094954e-01 3.85371745e-01 -4.72078249e-02 2.11982802e-02 7.34554529e-01 8.83427739e-01 4.26691592e-01 2.79445648e-01 3.38330805e-01 5.32664835e-01 1.86278969e-01 -4.33252573e-01 -2.52529144e-01 4.64887738e-01 1.31475642e-01 8.89607906e-01 -5.69962084e-01 -3.08162212e-01 -2.66402274e-01 1.47553730e+00 1.70279518e-01 4.25800443e-01 -9.76332307e-01 2.03066036e-01 6.69851363e-01 1.63365930e-01 3.80385190e-01 -6.18513227e-01 -3.07671666e-01 -1.26683044e+00 3.25142354e-01 -6.69432938e-01 3.60363901e-01 -7.19520032e-01 -1.44628155e+00 6.33278787e-01 1.40797789e-03 -1.32294810e+00 -4.88167644e-01 -4.22132432e-01 -1.72221258e-01 7.70395339e-01 -1.09162331e+00 -1.21362936e+00 -3.72711629e-01 4.78357852e-01 6.59561932e-01 4.37962770e-01 4.89967734e-01 3.96933019e-01 -2.91085362e-01 1.87588573e-01 -9.50861797e-02 -1.04420148e-01 6.75126553e-01 -1.06153393e+00 1.01947689e+00 9.19519484e-01 2.20326222e-02 1.51773587e-01 1.12500274e+00 -1.08431613e+00 -1.31310284e+00 -1.22457910e+00 1.13529909e+00 -9.32750463e-01 5.54761589e-01 -5.99090874e-01 -7.77166963e-01 9.21027243e-01 -2.08274424e-01 1.88518852e-01 1.75213024e-01 3.80418710e-02 1.36357009e-01 2.38832369e-01 -9.48585272e-01 4.70263988e-01 1.65901732e+00 -1.85920477e-01 -5.11209369e-01 4.76076096e-01 7.26143897e-01 -1.04471374e+00 -9.48203027e-01 6.08853221e-01 6.42910421e-01 -9.23036873e-01 1.16560018e+00 -3.93553466e-01 4.06617612e-01 -1.80184767e-01 -1.10853299e-01 -1.34413195e+00 -1.57976255e-01 -7.19241142e-01 -5.52216411e-01 8.06147277e-01 3.64358217e-01 -4.08204794e-01 1.04202390e+00 6.85647249e-01 -6.75872937e-02 -8.69895041e-01 -1.21575963e+00 -7.54450262e-01 -2.55123805e-02 -8.28977942e-01 3.37905556e-01 3.17654818e-01 -5.48025072e-01 1.26223221e-01 -1.04226470e+00 3.32958817e-01 7.84108698e-01 -2.00227380e-01 1.00517702e+00 -1.14579284e+00 -3.93638372e-01 1.63619578e-01 -3.40995729e-01 -1.56911063e+00 -9.75341126e-02 -3.38513851e-01 3.81881982e-01 -1.59963644e+00 -3.19538772e-01 -8.94946381e-02 6.49867728e-02 4.31922495e-01 -1.87711388e-01 3.36509645e-01 3.53190452e-01 2.90678024e-01 -7.17666090e-01 9.29484785e-01 1.23521030e+00 1.92021951e-02 -2.38205403e-01 3.95106673e-01 -4.54930216e-02 9.42638218e-01 4.66998249e-01 -6.22906685e-01 -2.29267374e-01 -7.66365588e-01 2.22306490e-01 3.16669136e-01 7.32321978e-01 -1.35207546e+00 3.08185458e-01 8.64162445e-02 6.87702119e-01 -9.29837942e-01 8.78481746e-01 -7.24192679e-01 4.50448126e-01 6.24410093e-01 -1.96310177e-01 1.83423743e-01 -2.25455519e-02 9.94809151e-01 -5.18426746e-02 2.81088352e-01 3.99226338e-01 -1.72373623e-01 -6.79588258e-01 6.61426783e-01 -3.77618104e-01 -9.70274583e-02 8.60646546e-01 -1.14716310e-02 8.71702209e-02 -6.56538248e-01 -1.32299292e+00 5.09328485e-01 3.74582320e-01 6.93038523e-01 6.60947502e-01 -1.25644004e+00 -8.70039582e-01 3.17682214e-02 -2.20773499e-02 4.05143529e-01 6.70749605e-01 9.33913529e-01 -3.25063348e-01 2.02903599e-02 8.74016136e-02 -7.41440237e-01 -1.13038301e+00 4.82142478e-01 2.58209199e-01 -2.12445214e-01 -7.87789464e-01 1.11909842e+00 -2.04236850e-01 -5.28266311e-01 5.44888139e-01 -4.78894413e-01 5.40001392e-02 6.42090337e-03 3.19068372e-01 4.25397873e-01 4.41921838e-02 -9.59910274e-01 -4.04045165e-01 5.63805044e-01 3.18669736e-01 -3.50638688e-01 1.49648893e+00 -4.23518986e-01 2.96063304e-01 5.29604673e-01 9.59903300e-01 -3.62042636e-01 -1.71876633e+00 -3.19052607e-01 -1.15483560e-01 -2.86073387e-01 -1.30874142e-01 -8.68371010e-01 -9.25026715e-01 7.45277643e-01 6.68201864e-01 -2.48287812e-01 9.23265696e-01 7.19005689e-02 1.12682378e+00 1.74926460e-01 4.29114908e-01 -1.17842841e+00 4.22961749e-02 6.50265336e-01 1.32109821e+00 -1.21406841e+00 4.21041399e-02 -4.95905697e-01 -6.77896261e-01 8.10073972e-01 5.10766029e-01 -2.34374300e-01 8.74688029e-01 1.15676045e-01 1.48511782e-01 -7.76261985e-02 -9.29620147e-01 -2.32884049e-01 5.36157846e-01 4.49656665e-01 2.06333965e-01 -7.84879699e-02 -2.39425227e-01 8.53986979e-01 -3.77080023e-01 3.29420954e-01 1.61026254e-01 1.18456554e+00 -2.10076153e-01 -9.77989972e-01 -4.64010537e-01 1.92332014e-01 -3.00091565e-01 1.60744086e-01 -3.07629704e-01 4.09271836e-01 3.39901477e-01 9.71905053e-01 -1.10265024e-01 -7.40358889e-01 7.78094292e-01 7.87447765e-02 3.94262016e-01 -4.46753919e-01 -5.59139192e-01 1.26273453e-01 9.66279656e-02 -1.02611303e+00 -3.84821087e-01 -9.03684139e-01 -9.97452557e-01 -4.11047459e-01 2.84701716e-02 -2.45868832e-01 4.98937964e-01 9.23860848e-01 4.68613327e-01 5.39721906e-01 1.00703724e-01 -1.40649045e+00 -6.29217267e-01 -1.07677352e+00 -3.05454582e-01 6.13136351e-01 5.12951732e-01 -8.22010636e-01 -2.07658380e-01 2.82321125e-01]
[7.1702165603637695, -0.5548414587974548]
0b2d0687-74b8-49ad-a905-c18f76ef2434
insurance-contract-for-high-renewable-energy
2209.10363
null
https://arxiv.org/abs/2209.10363v1
https://arxiv.org/pdf/2209.10363v1.pdf
Insurance Contract for High Renewable Energy Integration
The increasing penetration of renewable energy poses significant challenges to power grid reliability. There have been increasing interests in utilizing financial tools, such as insurance, to help end-users hedge the potential risk of lost load due to renewable energy variability. With insurance, a user pays a premium fee to the utility, so that he will get compensated in case his demand is not fully satisfied. A proper insurance design needs to resolve the following two challenges: (i) users' reliability preference is private information; and (ii) the insurance design is tightly coupled with the renewable energy investment decision. To address these challenges, we adopt the contract theory to elicit users' private reliability preferences, and we study how the utility can jointly optimize the insurance contract and the planning of renewable energy. A key analytical challenge is that the joint optimization of the insurance design and the planning of renewables is non-convex. We resolve this difficulty by revealing important structural properties of the optimal solution, using the help of two benchmark problems: the no-insurance benchmark and the social-optimum benchmark. Compared with the no-insurance benchmark, we prove that the social cost and users' total energy cost are always no larger under the optimal contract. Simulation results show that the largest benefit of the insurance contract is achieved at a medium electricity-bill price together with a low type heterogeneity and a high renewable uncertainty.
['Xiaojun Lin', 'Jianwei Huang', 'Hao Wang', 'Dongwei Zhao']
2022-09-21
null
null
null
null
['total-energy']
['miscellaneous']
[-3.09114724e-01 4.42095876e-01 -4.98737007e-01 1.26798809e-01 -7.96043217e-01 -7.32051194e-01 -8.50122944e-02 -2.30281129e-02 8.20175856e-02 1.28693998e+00 2.43080959e-01 -3.56517971e-01 -3.11316758e-01 -1.12547207e+00 -3.75221848e-01 -1.05380070e+00 -2.14463659e-03 1.44158930e-01 -6.06309712e-01 -2.65067548e-01 -5.76088913e-02 1.40933171e-01 -1.13918805e+00 -5.60682356e-01 1.56584787e+00 1.47131681e+00 2.90636361e-01 -1.60408437e-01 3.33409220e-01 7.20233619e-02 -5.22345006e-01 -8.69646072e-02 3.90463769e-01 -3.23905110e-01 -2.88120121e-01 -8.91964808e-02 -1.25350237e+00 -4.73394841e-01 2.62963563e-01 1.34502089e+00 5.83462119e-01 2.70944387e-02 4.87575293e-01 -1.61796188e+00 -7.93560386e-01 7.85878003e-01 -5.51088393e-01 -2.13148981e-01 3.15742850e-01 -1.25627339e-01 1.15380120e+00 -2.86405832e-01 1.64198026e-01 5.57261944e-01 2.73504317e-01 6.09827459e-01 -1.21694100e+00 -4.46929216e-01 1.49483263e-01 -2.02085480e-01 -1.33770442e+00 -1.30400524e-01 7.48277187e-01 -2.89915353e-01 8.90390277e-01 6.03096187e-01 8.00742030e-01 3.20595115e-01 2.92414337e-01 4.71468091e-01 1.21269441e+00 -3.39282691e-01 6.22600913e-01 3.27945381e-01 -1.99052557e-01 -2.27431133e-01 6.20237410e-01 2.68118054e-01 2.34175809e-02 -3.81385267e-01 4.27204758e-01 -2.17889622e-02 -6.93509996e-01 -2.39584923e-01 -5.24878860e-01 8.44590485e-01 2.30560750e-01 3.23670059e-01 -5.95954180e-01 -9.40776691e-02 -1.84152704e-02 4.32278305e-01 5.04399061e-01 1.13888077e-01 -5.29815972e-01 1.98245645e-01 -5.16938686e-01 6.11652136e-02 8.81893337e-01 8.33284855e-01 3.76281053e-01 2.81876087e-01 -9.19343978e-02 5.55193067e-01 2.25514844e-01 7.09324598e-01 1.89790517e-01 -9.10163641e-01 5.67121983e-01 3.03324580e-01 1.00594640e+00 -5.10994196e-01 -8.51887390e-02 -6.55344844e-01 -9.45486188e-01 3.56261283e-01 2.91895419e-01 -6.88562393e-01 -9.20481086e-02 2.09654737e+00 -4.00358215e-02 -3.02879483e-01 2.24227265e-01 6.07701242e-01 -1.29641742e-01 6.21515751e-01 -4.41965848e-01 -1.16605222e+00 1.34595442e+00 -2.88124204e-01 -9.34017181e-01 2.17072368e-01 2.28942782e-01 -2.29675889e-01 7.15539277e-01 -7.65943080e-02 -1.59815371e+00 3.39200467e-01 -1.00607705e+00 6.41846120e-01 -1.71444073e-01 -1.08931325e-01 1.54226050e-01 1.09724009e+00 -9.67542410e-01 4.39332008e-01 -4.87958789e-01 1.06443323e-01 2.66708642e-01 2.76455224e-01 4.17811215e-01 2.66787916e-01 -1.36625779e+00 9.37028408e-01 -8.39396492e-02 1.78569466e-01 -5.20401359e-01 -7.41304338e-01 -6.29718781e-01 5.91403306e-01 7.03808486e-01 -6.31876469e-01 1.22969007e+00 -5.34030020e-01 -1.37137127e+00 9.54730511e-02 3.05612050e-02 -5.15750527e-01 8.02098393e-01 2.53927469e-01 -1.84630677e-01 -2.46480346e-01 3.56631517e-01 -4.72095609e-01 -5.24847629e-03 -1.32044458e+00 -6.87496066e-01 -5.51247656e-01 2.04022363e-01 3.80616248e-01 -2.85712928e-01 -2.68721670e-01 5.03472269e-01 -7.51792371e-01 -2.63448089e-01 -7.54870892e-01 -4.86635536e-01 -6.11157537e-01 -4.09057558e-01 -4.04247910e-01 4.38961655e-01 -7.92934000e-01 9.61879075e-01 -1.79855514e+00 -5.15616983e-02 3.96159559e-01 -5.47870636e-01 -4.03054297e-01 3.23950708e-01 5.15100658e-01 -5.59030473e-02 6.16839528e-01 -4.65439916e-01 -2.14569598e-01 5.05344272e-01 5.15612423e-01 -4.00001585e-01 3.62286121e-01 -2.73364782e-01 7.56472528e-01 -6.69278204e-01 4.11440074e-01 -1.26166120e-01 -5.66441044e-02 -3.37415695e-01 2.06860572e-01 -2.07698256e-01 3.23906004e-01 -7.63419867e-01 7.73614526e-01 7.66569495e-01 -1.98281884e-01 2.49692634e-01 2.43271947e-01 -2.72597939e-01 8.48607719e-02 -1.32843149e+00 1.27509558e+00 -8.42891693e-01 -2.30980992e-01 5.39499581e-01 -1.16660738e+00 3.19212139e-01 4.72280264e-01 8.32927465e-01 -5.59352875e-01 -1.23406857e-01 4.02866662e-01 -2.89820790e-01 -2.77737439e-01 1.52588859e-01 -3.92049283e-01 -1.14864677e-01 8.51454258e-01 -6.51195109e-01 -6.22455925e-02 -1.41176090e-01 7.28866458e-02 7.26931930e-01 -2.78069258e-01 3.65466535e-01 -7.50820279e-01 2.18680695e-01 -6.43998742e-01 1.13498175e+00 1.82059035e-01 1.43546388e-01 -4.21319231e-02 8.37015688e-01 2.43989661e-01 -5.87965131e-01 -1.05330634e+00 -1.46723136e-01 3.84423971e-01 1.59051359e-01 2.78409630e-01 -6.04073942e-01 -6.35543048e-01 4.60645944e-01 1.21916449e+00 -4.14603502e-01 5.79714067e-02 3.30420025e-02 -1.21416342e+00 -4.85711664e-01 2.72547156e-01 4.01717663e-01 -5.08958340e-01 -9.32160735e-01 1.32499352e-01 -4.35148686e-01 -6.56905234e-01 -8.42220545e-01 2.19268888e-01 -3.35618138e-01 -7.84830689e-01 -9.62725043e-01 -1.35266006e-01 8.40193927e-01 2.09047988e-01 9.83185351e-01 5.88841736e-02 5.72992265e-02 5.40257275e-01 -5.48260547e-02 -3.87010813e-01 -1.55326128e-02 -6.40418679e-02 1.87181115e-01 1.92767731e-03 -5.24343133e-01 -7.76295364e-01 -7.95652449e-01 4.92113292e-01 -7.03121305e-01 -2.60411918e-01 2.63367128e-02 8.62424016e-01 5.59751511e-01 9.99194622e-01 1.65929508e+00 -3.81244600e-01 7.66155481e-01 -8.28684151e-01 -1.13739371e+00 5.73956907e-01 -1.14984310e+00 -6.88428432e-02 3.31557989e-01 7.95629174e-02 -1.18772018e+00 -7.93930069e-02 1.12609819e-01 1.75593153e-01 5.78679681e-01 6.82078183e-01 -1.02465892e+00 7.36578926e-02 -3.50251317e-01 1.29681313e-02 -1.52909085e-01 -4.73968387e-01 1.14504695e-01 6.43974483e-01 1.92289233e-01 -8.20724666e-01 9.64679837e-01 3.87131453e-01 1.31549895e-01 -3.66192102e-01 -4.52095538e-01 9.68043208e-02 1.47169143e-01 -1.85802788e-01 7.00467527e-01 -1.05405712e+00 -1.28227174e+00 2.09743738e-01 -8.17724347e-01 -9.57530215e-02 -8.49665284e-01 2.35968843e-01 -7.89638400e-01 3.96304399e-01 -1.21009409e-01 -1.75867403e+00 -2.52580166e-01 -1.07007611e+00 1.94459081e-01 4.66109991e-01 4.93634164e-01 -7.07754374e-01 -2.50042766e-01 3.81092101e-01 7.47301638e-01 6.68691158e-01 8.85085046e-01 1.76589601e-02 -9.28768277e-01 -2.31581517e-02 9.47009400e-02 4.31643873e-01 5.37879825e-01 -4.09269631e-01 -5.75275898e-01 -6.21437192e-01 5.28171062e-01 -1.03945762e-01 2.78887928e-01 5.88408589e-01 9.41892743e-01 -8.77492249e-01 -1.84189633e-01 2.77032584e-01 1.84703183e+00 5.08940876e-01 5.69634557e-01 1.35980263e-01 -4.29743044e-02 9.04578805e-01 6.31369889e-01 8.85795355e-01 8.46280575e-01 7.39966035e-01 7.32645869e-01 2.04082370e-01 9.49867904e-01 -7.90370777e-02 2.61070430e-01 4.63801146e-01 -4.21567649e-01 -1.97912797e-01 -3.62855196e-01 6.39421225e-01 -1.99630785e+00 -1.03415918e+00 3.38136554e-01 2.85301924e+00 9.27982807e-01 -3.85096148e-02 3.99096459e-01 3.41757387e-01 4.75028992e-01 -1.39243931e-01 -9.35595036e-01 -3.65586668e-01 -5.25568664e-01 -2.14157701e-01 8.57016385e-01 4.51793998e-01 -3.68059725e-01 -2.42020011e-01 6.01897812e+00 7.86526620e-01 -5.52889884e-01 2.37851903e-01 1.22584844e+00 -2.65811682e-01 -1.08472264e+00 1.25457704e-01 -4.99419212e-01 9.14609432e-01 8.70773673e-01 -1.18546963e+00 8.20200980e-01 5.72291076e-01 7.35065997e-01 -4.89885449e-01 -7.01540351e-01 2.09702298e-01 -5.03862739e-01 -1.26223922e+00 -8.41049850e-01 7.06580281e-01 9.98905301e-01 -2.05565780e-01 -2.11670846e-02 -6.60407618e-02 5.64591825e-01 -8.12120378e-01 7.04386413e-01 7.27481067e-01 6.75422013e-01 -1.50608444e+00 6.61854625e-01 4.86339331e-01 -1.49359941e+00 -5.20327985e-01 -1.07900187e-01 -1.48699321e-02 8.47860217e-01 1.08735442e+00 1.97509885e-01 1.04450095e+00 7.70167172e-01 2.15358451e-01 3.61400098e-01 7.28388667e-01 -2.54806280e-01 7.70528689e-02 -4.04493123e-01 2.63642550e-01 -4.16223586e-01 -7.52160132e-01 3.45357627e-01 2.75545180e-01 8.44592154e-01 4.53299075e-01 2.96693176e-01 1.16861415e+00 -8.44436064e-02 -1.03798173e-01 -6.19166672e-01 -3.19989547e-02 7.34084666e-01 1.08015156e+00 -4.95795488e-01 9.37324092e-02 -5.15377522e-01 6.16486073e-01 -3.53340477e-01 5.33699036e-01 -7.04000533e-01 -1.86699942e-01 8.10322464e-01 -6.37176856e-02 3.43963951e-02 5.64000346e-02 -9.48522210e-01 -1.15809894e+00 4.24324721e-01 -2.47497976e-01 5.08088350e-01 -6.37232363e-01 -1.33110178e+00 4.85559553e-02 -1.90034628e-01 -9.91097271e-01 -4.99089748e-01 1.38652578e-01 -9.59274054e-01 1.46726024e+00 -2.13390684e+00 -6.72735631e-01 3.52083623e-01 4.79242057e-01 1.82724312e-01 -8.36678594e-03 8.18390906e-01 2.57747918e-01 -8.22048366e-01 3.76318038e-01 5.73747694e-01 -4.47578609e-01 -3.35734606e-01 -1.60111129e+00 -2.62086809e-01 7.35103846e-01 -5.44134498e-01 1.84605509e-01 6.35377526e-01 -6.08032823e-01 -1.54390180e+00 -6.56912625e-01 8.28092933e-01 -2.43385788e-02 7.21262693e-01 -2.16819063e-01 -6.19370043e-01 2.39037737e-01 5.88716149e-01 -1.55014619e-01 6.34043276e-01 -4.02240932e-01 2.14656159e-01 -1.89324319e-01 -1.86834240e+00 4.60070878e-01 8.77636194e-01 -3.26768130e-01 -4.98898849e-02 3.45424920e-01 8.09628546e-01 1.20406784e-01 -1.22555959e+00 4.78403330e-01 5.43008924e-01 -6.26205623e-01 8.04414809e-01 -1.14256203e-01 -1.51854783e-01 -1.82124883e-01 -5.07883191e-01 -1.67568350e+00 1.45922571e-01 -1.10129344e+00 -1.43873259e-01 1.58651245e+00 4.80303258e-01 -1.20937204e+00 5.32252610e-01 1.21065247e+00 1.39445782e-01 -9.11513865e-01 -1.69195449e+00 -1.18921137e+00 3.09966385e-01 1.02933705e-01 1.06220758e+00 9.79026914e-01 5.04021943e-01 -1.86878711e-01 -4.19918597e-01 3.42314541e-01 9.57562149e-01 4.28257912e-01 -1.11521848e-01 -9.62182641e-01 -3.57190847e-01 -5.11916637e-01 6.50819004e-01 -4.68381643e-01 6.42109066e-02 -6.13779962e-01 -1.22855835e-01 -1.72483552e+00 8.21979642e-02 -5.94020188e-01 -5.05800366e-01 3.80328864e-01 1.51836529e-01 -3.23351473e-01 2.86668956e-01 5.86344898e-02 3.36655557e-01 1.10695362e+00 9.30661738e-01 -3.24172191e-02 -2.21002102e-01 8.50208759e-01 -1.11024070e+00 5.29146552e-01 8.58276069e-01 -2.05589995e-01 -6.74692392e-01 8.82196128e-02 4.97853786e-01 8.63351464e-01 3.20079029e-02 -2.74072081e-01 -5.63879684e-02 -8.30294907e-01 -3.80790889e-01 -8.02115917e-01 -2.85812910e-03 -1.28038430e+00 7.33781338e-01 6.96140170e-01 9.62086618e-02 1.38397723e-01 -5.05018115e-01 7.82162249e-01 3.05691481e-01 -3.97110820e-01 5.73283553e-01 -1.93881150e-02 3.30037653e-01 2.34902546e-01 -4.31038737e-01 -8.46172124e-02 1.33941245e+00 2.03560948e-01 -4.34615850e-01 -8.08116674e-01 -8.05400550e-01 1.05658352e+00 6.49967432e-01 2.12870210e-01 9.91204232e-02 -1.55289185e+00 -5.28735995e-01 -2.24728391e-01 -3.94292384e-01 -1.36686042e-01 3.22030336e-01 6.12397552e-01 6.10901356e-01 2.93119341e-01 1.64341569e-01 -3.25086340e-02 -6.00609839e-01 4.18715239e-01 6.46589160e-01 -3.91495317e-01 -2.96301901e-01 1.24070249e-01 -2.72342879e-02 1.65991142e-01 7.56489113e-02 -3.51462960e-01 -8.22439976e-03 4.65517551e-01 3.07799131e-01 6.48623347e-01 -1.26708865e-01 -3.00091803e-01 -2.14983717e-01 3.53192151e-01 6.78775847e-01 -2.61594385e-01 1.44204986e+00 -7.32200682e-01 -1.18018121e-01 1.78342804e-01 6.40962660e-01 2.11599946e-01 -1.16679835e+00 1.40478648e-02 1.66849971e-01 -4.01508600e-01 2.22539455e-02 -1.07104969e+00 -1.62835872e+00 1.73623949e-01 3.77572685e-01 1.23683405e+00 1.49628735e+00 -2.92252600e-01 6.59455359e-01 -2.23258868e-01 9.18217003e-01 -1.42684150e+00 -5.22152483e-01 -8.55762884e-02 1.18454921e+00 -7.76899934e-01 -1.19895123e-01 -2.83635348e-01 -5.78154862e-01 3.50603133e-01 -1.54845994e-02 -7.32293958e-03 1.11245453e+00 4.22700197e-01 -6.00337863e-01 5.65869212e-01 -7.17882037e-01 -2.61285037e-01 -2.11111605e-02 5.00164628e-01 8.47736076e-02 6.99657679e-01 -9.41746652e-01 1.51356435e+00 3.60999778e-02 6.19936325e-02 9.15737152e-01 9.73071396e-01 -1.92480028e-01 -1.21496153e+00 -3.33405644e-01 6.14154875e-01 -6.63482845e-01 2.90204734e-01 1.80182934e-01 2.22850993e-01 2.09749892e-01 1.21447062e+00 -1.43658459e-01 2.40995526e-01 6.48162365e-01 -1.01125069e-01 3.60784829e-02 -4.39861864e-01 -1.26203716e-01 3.19012761e-01 1.06437154e-01 -2.27733344e-01 -5.29437840e-01 -8.92948389e-01 -1.31693017e+00 -2.66381949e-01 -7.63654709e-01 7.28971481e-01 7.62973428e-01 1.00821078e+00 1.25427634e-01 4.90513414e-01 1.64712775e+00 -6.83226883e-01 -1.23504961e+00 -3.23739290e-01 -1.27786863e+00 -2.83299774e-01 2.16876253e-01 -4.46880221e-01 -9.03194189e-01 -6.63934469e-01]
[5.490260124206543, 2.6501708030700684]
c446dac0-691a-40a1-9d05-a30efdf4db23
remote-photoplethysmography-correspondence
null
null
http://openaccess.thecvf.com/content_ECCV_2018/html/Siqi_Liu_Remote_Photoplethysmography_Correspondence_ECCV_2018_paper.html
http://openaccess.thecvf.com/content_ECCV_2018/papers/Siqi_Liu_Remote_Photoplethysmography_Correspondence_ECCV_2018_paper.pdf
Remote Photoplethysmography Correspondence Feature for 3D Mask Face Presentation Attack Detection
3D mask face presentation attack, as a new challenge in face recognition, has been attracting increasing attention. Recently, remote Photoplethysmography (rPPG) is employed as an intrinsic liveness cue which is independent of the mask appearance. Although existing rPPG-based methods achieve promising results on both intra and cross dataset scenarios, they may not be robust enough when rPPG signals are contaminated by noise. In this paper, we propose a new liveness feature, called rPPG correspondence feature (CFrPPG) to precisely identify the heartbeat vestige from the observed noisy rPPG signals. To further overcome the global interferences, we propose a novel learning strategy which incorporates the global noise within the CFrPPG feature. Extensive experiments indicate that the proposed feature not only outperforms the state-of-the-art rPPG based methods on 3D mask attacks but also be able to handle the practical scenarios with dim light and camera motion.
['Si-Qi Liu', 'Xiangyuan Lan', 'Pong C. Yuen']
2018-09-01
null
null
null
eccv-2018-9
['face-presentation-attack-detection']
['computer-vision']
[ 3.41124356e-01 -4.34803754e-01 2.16104146e-02 -2.26807147e-01 -6.33614838e-01 -4.65366453e-01 4.63479966e-01 -5.08476794e-01 -3.75801474e-02 4.83003616e-01 5.19165024e-02 3.92638259e-02 2.61602476e-02 -2.72288859e-01 -2.99078703e-01 -1.02707744e+00 8.74078348e-02 -4.07294959e-01 3.57381180e-02 1.70271188e-01 2.49787793e-01 7.72594512e-01 -1.63883579e+00 -4.87567298e-02 5.95315874e-01 1.18062866e+00 -1.80836484e-01 4.55317646e-01 8.01933631e-02 1.70142964e-01 -7.82168567e-01 -2.93170124e-01 5.65592349e-01 -6.36267960e-01 -6.55019656e-02 2.64010638e-01 4.16457325e-01 -2.19843239e-01 -3.79015386e-01 9.71147001e-01 1.12938595e+00 -2.18903020e-01 2.05290467e-01 -1.16354883e+00 -1.13392487e-01 1.49420816e-02 -9.39549804e-01 5.12968361e-01 5.88761747e-01 2.66551942e-01 2.42944121e-01 -1.01030409e+00 3.73642921e-01 1.07808006e+00 5.96257329e-01 7.97805786e-01 -1.24967945e+00 -9.25554037e-01 -2.78632879e-01 4.53318119e-01 -1.44013309e+00 -5.63717186e-01 1.38455796e+00 -6.12439029e-02 2.18375653e-01 6.60981596e-01 5.87658048e-01 1.16796720e+00 1.12620890e-01 4.74744856e-01 1.81467581e+00 -3.56579453e-01 -7.18713328e-02 2.22854674e-01 -2.71871686e-01 4.07115519e-01 1.77450106e-01 3.87999475e-01 -6.81583345e-01 -4.40736294e-01 7.06931889e-01 -3.16086382e-01 -8.47656190e-01 -3.33534211e-01 -8.22246552e-01 4.96221185e-01 -2.00772315e-01 4.20947880e-01 -1.46737680e-01 -3.89728993e-02 2.21934974e-01 1.65844485e-01 4.08438832e-01 6.46071136e-02 -2.32568473e-01 -3.40657264e-01 -7.13466406e-01 -2.12463483e-01 9.01205242e-01 4.50359792e-01 4.41870719e-01 3.13418597e-01 -1.85430303e-01 7.86113739e-01 2.24046841e-01 7.06762254e-01 3.48447323e-01 -7.08929241e-01 2.06838399e-01 3.48627925e-01 -5.82238324e-02 -1.19053829e+00 -2.37786740e-01 -3.31688493e-01 -7.48903871e-01 1.32543027e-01 3.49295825e-01 -9.66777280e-02 -6.63847744e-01 1.62031472e+00 6.29401147e-01 7.97126234e-01 -6.48112074e-02 1.03218305e+00 1.22054946e+00 3.47481847e-01 -3.09209287e-01 -8.54579568e-01 1.23617744e+00 -2.59448349e-01 -9.38682377e-01 4.14539091e-02 1.26598313e-01 -1.08135772e+00 6.46047354e-01 5.18304765e-01 -8.39172184e-01 -5.96254945e-01 -1.06693137e+00 5.10161877e-01 4.82623912e-02 2.63031393e-01 2.07184598e-01 1.48057640e+00 -8.96769643e-01 5.05701661e-01 -4.68239516e-01 -2.16988504e-01 1.56740189e-01 4.09932315e-01 -6.68133616e-01 -1.35501549e-01 -1.01998246e+00 8.00100088e-01 -1.39021456e-01 5.29820085e-01 -6.73400819e-01 -5.13996482e-01 -7.77911425e-01 -2.18961403e-01 5.11050344e-01 3.95643860e-02 6.65696442e-01 -4.65784520e-01 -2.08367062e+00 1.00074971e+00 -2.78037697e-01 -6.10391311e-02 5.60042858e-01 3.62435319e-02 -7.54941463e-01 5.37529290e-01 -4.96976495e-01 5.18311374e-02 1.54966664e+00 -1.32249081e+00 5.48051931e-02 -4.32475120e-01 -4.95622247e-01 2.27414161e-01 -2.10899755e-01 2.31728405e-01 -4.10768569e-01 -5.87553322e-01 2.16752574e-01 -8.42407882e-01 2.54157752e-01 -7.07179978e-02 -2.26739570e-01 -1.74523294e-02 1.27546680e+00 -5.88209629e-01 1.12372768e+00 -2.24534082e+00 -2.88041025e-01 3.62632275e-01 -4.05748636e-02 9.51149523e-01 -1.32764310e-01 4.11281496e-01 -1.40248194e-01 -1.02603585e-01 -2.12146685e-01 -2.28749454e-01 -2.31104180e-01 1.50915429e-01 -2.61843711e-01 1.04578841e+00 2.77255941e-02 5.99880517e-01 -5.06377220e-01 -3.18513215e-01 4.30924505e-01 8.10102046e-01 1.75133795e-02 1.56194150e-01 6.24081731e-01 8.67388964e-01 -2.75647521e-01 8.22217762e-01 1.40524817e+00 2.68612236e-01 5.69448620e-02 -3.54794115e-01 1.21047713e-01 -3.39239478e-01 -1.24225593e+00 1.22420633e+00 -4.83690426e-02 5.08958042e-01 3.28480452e-01 -8.54549706e-01 1.44944680e+00 6.49190485e-01 5.93586087e-01 -5.73609889e-01 3.33271921e-01 2.41038933e-01 1.33134186e-01 -7.22448528e-01 -1.08481340e-01 -3.42677742e-01 2.97273397e-01 4.01491642e-01 -7.78476670e-02 -8.83504674e-02 -1.64878562e-01 -3.33078504e-01 8.77108753e-01 6.07607290e-02 2.72839576e-01 -2.46853411e-01 1.18471539e+00 -9.68412459e-01 8.69300723e-01 4.31787312e-01 -6.49180055e-01 9.51801419e-01 6.22308016e-01 -2.95942664e-01 -3.83169323e-01 -8.35697412e-01 -2.62984842e-01 1.89489990e-01 4.28402811e-01 -2.59520501e-01 -6.23979926e-01 -8.51233542e-01 2.17716441e-01 -1.07812323e-02 -6.02055550e-01 -1.65633529e-01 -6.10596418e-01 -9.95392025e-01 7.01285481e-01 2.23903432e-01 6.69052660e-01 -8.20675492e-01 -6.15563571e-01 2.29511168e-02 -1.95646569e-01 -1.46298933e+00 -6.24487698e-01 -3.16991806e-01 -5.66426158e-01 -1.29988194e+00 -7.10599959e-01 -3.03511024e-01 5.70288956e-01 5.25529385e-01 5.21693826e-01 1.34004816e-01 -7.00463235e-01 6.77584052e-01 -3.28331381e-01 -2.55537033e-01 -3.27683151e-01 -6.03506148e-01 1.83378845e-01 9.12960172e-01 4.74039882e-01 -6.91144347e-01 -8.88553977e-01 7.85116732e-01 -6.84481144e-01 -3.79419386e-01 3.62498671e-01 6.68278098e-01 3.63851905e-01 3.63554470e-02 7.52851725e-01 -6.29844308e-01 5.65984428e-01 1.59716025e-01 -4.94959712e-01 9.56734791e-02 -4.03424561e-01 -4.25263017e-01 3.50972444e-01 -6.46987438e-01 -1.15033436e+00 -1.22990921e-01 -4.54268642e-02 -7.17549920e-01 -2.36972585e-01 1.64054945e-01 -4.35962230e-01 -8.58121395e-01 5.40897310e-01 4.45428431e-01 3.42248321e-01 -5.80046415e-01 -7.06150457e-02 7.50287116e-01 5.63470006e-01 -2.18591824e-01 1.11521709e+00 6.42284214e-01 4.42051917e-01 -1.08776093e+00 -3.91723871e-01 -7.43530929e-01 -3.80244076e-01 -3.09645921e-01 3.96021098e-01 -7.85326242e-01 -1.15374565e+00 8.73866200e-01 -9.45607841e-01 1.58994839e-01 1.29547954e-01 6.26692533e-01 -4.33323473e-01 9.50029135e-01 -5.17618716e-01 -1.22058594e+00 -3.39165002e-01 -1.10936332e+00 9.14258063e-01 5.25726736e-01 1.71036959e-01 -6.93186164e-01 -7.97032937e-02 3.34544837e-01 5.68539917e-01 6.08719349e-01 2.74694085e-01 -4.15767252e-01 -2.54614592e-01 -6.89183414e-01 -1.95347711e-01 5.94736457e-01 5.44782698e-01 -1.51422217e-01 -1.39368570e+00 -4.36140686e-01 7.58683383e-01 -3.15561704e-02 5.87566733e-01 2.89472282e-01 1.02074194e+00 -5.61756007e-02 -1.28293276e-01 7.16655374e-01 1.23549283e+00 3.26560467e-01 8.17825615e-01 -1.52776822e-01 4.90172714e-01 6.88167572e-01 5.90354741e-01 6.41214728e-01 -2.45567366e-01 7.67687082e-01 3.64944696e-01 -2.64574975e-01 -1.81634977e-01 1.51292495e-02 3.65521967e-01 3.78973514e-01 -1.50849164e-01 -1.05426729e-01 -3.54230165e-01 1.20388433e-01 -1.47208858e+00 -8.53642464e-01 1.25039625e-03 2.45947957e+00 6.09706640e-01 -1.44002363e-01 -7.95750022e-02 4.36249256e-01 9.71255481e-01 4.56281006e-01 -3.91328573e-01 -3.16647589e-01 -3.75515372e-01 4.57021028e-01 2.64015287e-01 2.06455052e-01 -9.83586729e-01 4.78271127e-01 5.84776115e+00 7.93605328e-01 -1.41750073e+00 -2.58354023e-02 4.36707497e-01 2.69724548e-01 8.83659422e-02 -1.82050258e-01 -9.00056839e-01 6.28419578e-01 5.38743019e-01 -1.15108311e-01 2.34245896e-01 4.22591299e-01 3.25632453e-01 -2.56052941e-01 -7.17847347e-01 1.49782860e+00 8.09513450e-01 -7.14526832e-01 -4.38510090e-01 2.13670135e-01 3.23247075e-01 -7.74585664e-01 3.21104676e-01 -2.97029823e-01 -7.37893224e-01 -9.38372374e-01 -1.68341473e-01 2.78022438e-01 9.03529704e-01 -7.86367536e-01 7.27906704e-01 8.95279869e-02 -1.12197208e+00 5.07476106e-02 -3.50120336e-01 3.03695589e-01 7.84518272e-02 5.01767039e-01 -7.69714653e-01 7.00375795e-01 4.14321035e-01 5.42526960e-01 -4.55552429e-01 1.25264704e+00 -5.16871154e-01 5.29858768e-01 -3.80323231e-01 3.09466779e-01 -2.72190034e-01 -6.85396940e-02 8.82188261e-01 8.98558915e-01 4.85935718e-01 2.69166052e-01 -1.10967010e-01 5.31321049e-01 1.11916378e-01 1.52461290e-01 -5.81278205e-01 -2.40036175e-02 2.90699989e-01 1.61087739e+00 -6.43868864e-01 1.14667388e-02 -3.76862615e-01 9.06832218e-01 -4.59400624e-01 2.94855654e-01 -6.79963410e-01 -3.82917464e-01 6.33455575e-01 1.11849472e-01 3.69065613e-01 -6.05438985e-02 1.07283190e-01 -1.19058025e+00 2.52060324e-01 -1.00569534e+00 3.91377926e-01 -5.86278558e-01 -1.13684940e+00 5.89938641e-01 -8.97172838e-02 -1.72476530e+00 -4.59219329e-03 -4.64172363e-01 -8.10046613e-01 9.07426298e-01 -1.76648235e+00 -1.04707980e+00 -6.36828601e-01 7.74790585e-01 1.90948203e-01 -3.22537087e-02 7.98933804e-01 1.85443506e-01 -5.28392792e-01 7.50477433e-01 -2.38111123e-01 -3.97780463e-02 1.00399816e+00 -7.29536951e-01 -1.55482059e-02 9.95900095e-01 -4.32164520e-02 4.06257153e-01 7.70801663e-01 -5.47831237e-01 -1.65729690e+00 -5.70533335e-01 5.53715289e-01 -2.01863110e-01 1.95881352e-01 -4.15178239e-01 -1.02869439e+00 6.44299313e-02 9.15964320e-02 6.11224294e-01 8.02169979e-01 -5.02934158e-01 -3.63057315e-01 -5.69350302e-01 -1.39468336e+00 2.36188933e-01 7.60844707e-01 -4.34448749e-01 -3.77472132e-01 -6.25239983e-02 7.02873841e-02 -6.27693534e-01 -9.12526548e-01 8.95252228e-01 6.42678738e-01 -1.21928489e+00 7.97513127e-01 2.38233969e-01 -3.77573788e-01 -4.62343574e-01 9.54742357e-02 -1.05642450e+00 1.79232180e-01 -1.31870258e+00 -2.25521028e-01 1.34065771e+00 -7.32007921e-02 -9.52294528e-01 9.26720560e-01 4.81355846e-01 1.65116340e-01 -3.17278832e-01 -1.30074060e+00 -1.01923418e+00 -5.86927056e-01 -2.61700928e-01 3.44946325e-01 7.53394663e-01 2.66803175e-01 -1.91667870e-01 -8.13450277e-01 1.99778140e-01 8.31983805e-01 1.76832736e-01 8.63932014e-01 -1.19790804e+00 -3.17447186e-01 -6.07933141e-02 -7.95288086e-01 -6.17578983e-01 -2.22168509e-02 -2.71523535e-01 -6.88606054e-02 -7.75122106e-01 5.40318377e-02 -2.01953650e-02 -2.97144592e-01 6.38552085e-02 -2.66905636e-01 8.96752000e-01 2.06744745e-01 -1.20672286e-01 6.57408834e-02 4.70861584e-01 1.21673155e+00 2.07288608e-01 -4.28404719e-01 2.96033263e-01 -5.41204870e-01 5.30042827e-01 7.37946510e-01 -2.51376033e-01 -3.45175952e-01 2.54546344e-01 -4.24100220e-01 3.64459068e-01 3.54813099e-01 -1.08420742e+00 2.99558312e-01 1.22936711e-01 5.35663307e-01 -6.45246327e-01 7.88719118e-01 -8.26811790e-01 2.86621571e-01 5.84158957e-01 2.65977025e-01 -1.85198262e-01 3.07757318e-01 5.75766563e-01 -3.23651850e-01 -1.56649724e-02 1.08755696e+00 -2.68137865e-02 -2.53369302e-01 4.28420663e-01 -2.04136133e-01 -2.57362753e-01 1.10126054e+00 -6.07777417e-01 -4.82865810e-01 -4.42886710e-01 -5.80897212e-01 -2.04106271e-01 2.19381377e-01 4.33059931e-01 8.80360484e-01 -1.20559776e+00 -6.84928298e-01 9.25912440e-01 3.71511430e-02 -7.23135829e-01 5.86473703e-01 1.33985615e+00 -2.49704793e-01 1.58303782e-01 -6.57214224e-02 -7.20953047e-01 -1.85510385e+00 5.67933261e-01 2.52986968e-01 -2.47465260e-02 -6.85571015e-01 5.56321859e-01 1.24656476e-01 9.77281928e-02 2.08170742e-01 2.69360930e-01 -3.10101181e-01 -2.39972040e-04 7.89101422e-01 3.87547761e-01 2.48273998e-01 -8.92076313e-01 -3.48255008e-01 1.08625638e+00 5.70202358e-02 -2.56110579e-02 1.01167166e+00 -3.73041123e-01 -2.68504882e-05 2.02367287e-02 1.16056192e+00 2.85592228e-01 -1.22545421e+00 -1.72692969e-01 -1.60988748e-01 -1.26547158e+00 -2.21965924e-01 -5.90636194e-01 -1.15527058e+00 9.62182641e-01 8.89292121e-01 1.96059942e-01 1.52206039e+00 -3.72574300e-01 5.87778032e-01 -2.32431963e-01 2.98383713e-01 -7.81169713e-01 3.97483110e-01 -1.39586359e-01 9.20970321e-01 -1.05515862e+00 1.03860304e-01 -9.09042895e-01 -5.13263583e-01 1.25140226e+00 5.02658784e-01 9.60222483e-02 7.70296335e-01 2.03062624e-01 3.30548137e-01 1.01681218e-01 -4.50897127e-01 -2.08146095e-01 4.23193365e-01 8.12379599e-01 8.37294608e-02 -3.20128709e-01 -5.39315760e-01 2.76008636e-01 1.62240639e-01 3.63898166e-02 5.36868095e-01 7.58198261e-01 -1.96189687e-01 -1.35829008e+00 -5.26391685e-01 1.18486837e-01 -9.25073326e-01 3.75128865e-01 -3.68096650e-01 8.91036451e-01 4.40940307e-03 1.03193903e+00 -4.40265268e-01 -4.43884671e-01 3.47050905e-01 2.14798637e-02 6.87157929e-01 -2.15280399e-01 -4.70057756e-01 6.41832113e-01 -1.24455445e-01 -7.12832332e-01 -7.52361834e-01 -5.22656977e-01 -6.58969760e-01 -2.40507275e-01 -5.13563812e-01 -2.32202839e-03 5.42562127e-01 7.67645717e-01 2.72517711e-01 -2.01157138e-01 1.33021021e+00 -8.11951458e-01 -4.04247254e-01 -9.19846296e-01 -9.84935582e-01 4.04851139e-01 4.08079058e-01 -6.64327681e-01 -8.94363105e-01 -6.25648201e-02]
[13.732780456542969, 2.421980857849121]
73e73c2f-73a8-4a46-bb55-6a74255034a0
multimodal-performers-for-genomic-selection
null
null
https://doi.org/10.1016/j.atech.2021.100017
https://doi.org/10.1016/j.atech.2021.100017
Multimodal Performers for Genomic Selection and Crop Yield Prediction
Working towards optimal crop yields is a crucial step towards securing a stable food supply for the world. To this end, approaches to model and predict crop yields can help speed up research and reduce costs. However, crop yield prediction is very challenging due to the dependencies on factors such as genotype and environmental factors. In this paper we introduce a performer-based deep learning framework for crop yield prediction using single nucleotide polymorphisms and weather data. We compare the proposed models with traditional Bayesian-based methods and traditional neural network architectures on the task of predicting barley yields across 8 different locations in Norway for the years 2017 and 2018. We show that the performer-based models significantly outperform the traditional approaches, achieving an R score of 0.820 and a root mean squared error of 69.05, compared to 0.807 and 71.63, and 0.076 and 149.78 for the best traditional neural network and traditional Bayesian approach respectively. Furthermore, we show that visualizing the self-attention maps of a Multimodal Performer network indicates that the model makes meaningful connections between genotype and weather data that can be used by the breeder to inform breeding decisions and shorten breeding cycle length. The performer-based models can also be applied to other types of genomic selection such as salmon breeding for increased Omega-3 fatty acid production or similar animal husbandry applications. The code is available at: https://github.com/haakom/pay-attention-to-genomic-selection.
['Keith L. Downing', 'Muath Alsheikh', 'Stein Bergersen', 'Susanne Windju', 'Håkon Måløy']
2021-10-20
null
null
null
smart-agricultural-technology-2021-10
['crop-yield-prediction', 'crop-yield-prediction']
['computer-vision', 'miscellaneous']
[-1.46993071e-01 -6.75465018e-02 -3.26176196e-01 -5.37150085e-01 -2.03155205e-01 -5.41820467e-01 3.36685367e-02 5.75034976e-01 -7.66119640e-03 6.98769808e-01 7.85294697e-02 -4.99079943e-01 -3.70061904e-01 -1.16631782e+00 -9.65239346e-01 -1.00693357e+00 -4.11475152e-01 1.35479137e-01 -3.06467891e-01 -5.13951182e-01 9.74575728e-02 2.98227429e-01 -1.76021004e+00 -2.72058137e-02 8.92427742e-01 8.16238403e-01 7.24127293e-01 7.48009920e-01 7.71693736e-02 -8.59174058e-02 -4.32800651e-01 -3.61241519e-01 -7.81333447e-02 -3.73719662e-01 -1.23646855e-01 -6.98495984e-01 9.06342864e-02 -3.24969292e-01 1.19874246e-01 1.14252710e+00 7.99762666e-01 -4.48558107e-02 6.71357095e-01 -1.09729612e+00 -1.19533169e+00 1.23713613e+00 -9.78929162e-01 -2.37605438e-01 -1.80773616e-01 -2.83360947e-02 7.53001690e-01 -4.60314870e-01 1.85896039e-01 1.17411482e+00 8.30582142e-01 1.66139990e-01 -1.41798913e+00 -7.30843842e-01 -4.70169559e-02 2.86040008e-01 -1.16150951e+00 -2.40256757e-01 3.72212082e-01 -4.38926011e-01 8.19350064e-01 3.32305700e-01 8.39616001e-01 7.93020427e-01 4.48150426e-01 6.04040384e-01 6.85640514e-01 -4.34305429e-01 1.82886779e-01 -2.66073912e-01 1.48240238e-01 6.80565178e-01 5.99245965e-01 3.64607215e-01 -7.02680409e-01 1.06357485e-01 5.58568478e-01 -1.73082605e-01 -6.30399734e-02 -3.39185596e-01 -1.14277256e+00 9.94027019e-01 8.90193522e-01 1.43545225e-01 -7.92044640e-01 2.36143306e-01 2.83693731e-01 2.61537749e-02 6.42145038e-01 6.60148501e-01 -1.07603502e+00 8.10400993e-02 -1.04700649e+00 2.74236947e-01 8.29760373e-01 6.88874900e-01 5.95359802e-01 5.03371477e-01 -2.70083211e-02 9.24351633e-01 4.24107373e-01 1.08806384e+00 3.91498767e-02 -7.89030969e-01 -2.27797002e-01 1.59088984e-01 2.31946766e-01 -1.30119777e+00 -7.29816616e-01 -3.84855807e-01 -1.08556616e+00 1.35973006e-01 5.19269109e-01 -4.78985161e-01 -9.48378742e-01 1.98826194e+00 1.01515211e-01 -8.86555910e-02 1.81816682e-01 7.94556618e-01 9.48896646e-01 9.56357837e-01 3.88532728e-01 3.02502196e-02 1.33102381e+00 -2.46973932e-01 -7.91927457e-01 -1.27030760e-01 9.13036764e-01 -6.72591746e-01 7.16988027e-01 2.85590440e-01 -7.99117506e-01 -5.46170890e-01 -1.18661082e+00 3.59457940e-01 -8.58780146e-01 7.95672059e-01 8.69217753e-01 8.93137693e-01 -1.09992623e+00 7.64935195e-01 -1.00059831e+00 -7.80043900e-01 3.16630751e-01 3.15250248e-01 -2.69728005e-01 9.39211100e-02 -1.14631939e+00 1.23589003e+00 7.75937498e-01 7.71228552e-01 -7.58481205e-01 -1.03655124e+00 -8.21995795e-01 4.13719207e-01 6.61157221e-02 -2.98617423e-01 7.95808494e-01 -7.43976772e-01 -1.47535884e+00 6.61110520e-01 -9.37741846e-02 -4.14419889e-01 -3.11016321e-01 -6.07036591e-01 -1.85871199e-01 -4.30024505e-01 -6.75504878e-02 9.66918945e-01 1.02586374e-01 -9.93934274e-01 -5.92625022e-01 -5.82136810e-01 -4.00836617e-01 -8.07419419e-02 -2.85345703e-01 1.22933999e-01 3.21346819e-01 -4.75902945e-01 1.28392465e-02 -9.85057175e-01 -2.16362774e-01 -1.60288990e-01 -2.40817577e-01 4.06344794e-02 3.93189132e-01 -1.36043453e+00 8.23658109e-01 -1.79676580e+00 2.91452140e-01 2.94992402e-02 -3.27270418e-01 5.58868527e-01 -4.64122802e-01 3.01508367e-01 -8.85608569e-02 1.76779211e-01 -1.96883097e-01 6.94002688e-01 1.91749781e-01 -1.73755661e-02 1.52135357e-01 3.80328804e-01 7.83253968e-01 9.51500237e-01 -9.79651034e-01 2.39585549e-01 3.24058115e-01 6.10927343e-01 -2.26894468e-01 2.21441209e-01 -2.63962090e-01 7.04121143e-02 -2.51286536e-01 8.83813024e-01 1.09079921e+00 3.54599088e-01 4.38774943e-01 -2.32024625e-01 -3.69664907e-01 -2.22921565e-01 -8.38018715e-01 1.60971498e+00 -2.91025251e-01 7.01788187e-01 6.83857426e-02 -1.30020761e+00 1.50773454e+00 5.61057925e-02 8.76359716e-02 -4.55109596e-01 -1.07179200e-02 2.67431945e-01 5.46022892e-01 -3.89485151e-01 4.69669700e-01 3.53149325e-01 -2.53849328e-02 -4.40060273e-02 3.31333965e-01 2.53913999e-02 2.05413863e-01 -3.52019846e-01 5.29995203e-01 1.00042403e+00 2.87966877e-01 -7.75766313e-01 -5.02049923e-02 1.23610105e-02 8.75387788e-01 6.05643332e-01 -1.83307275e-01 1.64324790e-01 8.52513671e-01 -4.56662208e-01 -1.02673924e+00 -6.95159733e-01 -3.34173530e-01 1.52827156e+00 -3.69940192e-01 -2.80930419e-02 -5.30235291e-01 -1.15969293e-01 3.84247333e-01 1.15229726e+00 -8.82543981e-01 -4.00139034e-01 -1.34816334e-01 -1.49055219e+00 5.53542912e-01 7.58079827e-01 4.74771321e-01 -1.08015311e+00 -8.11679542e-01 1.85582682e-01 -7.02133700e-02 -4.16976362e-01 4.25004601e-01 8.79370570e-01 -6.35035574e-01 -3.94095302e-01 -1.09754527e+00 -5.30582368e-01 1.54033899e-01 3.33120190e-02 1.24275458e+00 -8.15096051e-02 -2.88756877e-01 -4.74372894e-01 -4.79016483e-01 -1.03936732e+00 -3.73785555e-01 5.30102253e-01 2.64158100e-02 -6.38326108e-01 9.03125107e-01 -3.74652833e-01 -5.28960288e-01 -6.47258386e-02 -5.36385119e-01 7.05157891e-02 7.26478696e-01 1.07422411e+00 1.23737298e-01 -2.39866257e-01 9.99570966e-01 -4.28579509e-01 1.57501981e-01 -8.54820132e-01 -1.00141048e+00 7.10547507e-01 -4.40391064e-01 5.78771532e-02 3.02688200e-02 -1.61233902e-01 -1.12144172e+00 2.92509645e-01 -6.70793727e-02 3.65242392e-01 -4.85769540e-01 1.08163607e+00 -2.38783360e-01 3.65568995e-01 4.66718316e-01 -2.43041217e-01 -3.24355811e-02 -2.94188648e-01 5.23910344e-01 3.60388964e-01 2.70565182e-01 -3.58686835e-01 3.91365319e-01 -4.20469373e-01 2.59348035e-01 -9.94889140e-01 -5.46628654e-01 4.10147160e-02 -9.29022789e-01 -2.47596264e-01 9.41181958e-01 -8.43048394e-01 -9.62008655e-01 6.30883873e-01 -9.37194347e-01 -6.94491327e-01 2.88585335e-01 7.18812525e-01 -3.70254457e-01 -2.42314801e-01 -2.84686238e-01 -9.09291267e-01 -3.78325641e-01 -8.20376217e-01 8.19186985e-01 7.12355077e-01 -1.21112913e-01 -8.94052625e-01 -3.88732329e-02 -2.61982620e-01 6.59273684e-01 5.57350457e-01 1.17249036e+00 -3.92791390e-01 9.32524800e-02 -1.18796222e-01 -3.96568060e-01 1.17780253e-01 2.10380957e-01 5.07811785e-01 -1.18480837e+00 1.43954381e-01 -6.85168386e-01 -4.81343776e-01 9.62210000e-01 1.19145036e+00 7.69207537e-01 3.58006954e-01 -1.24586172e-01 6.50594354e-01 1.41653812e+00 3.77401322e-01 5.56498706e-01 2.31539235e-01 5.62138617e-01 1.13353908e+00 8.55897486e-01 3.80873114e-01 2.15957463e-01 3.15919787e-01 6.40472114e-01 -4.36831236e-01 2.68214852e-01 -9.75804701e-02 3.12128782e-01 3.88417870e-01 -2.32208759e-01 -3.62916082e-01 -1.26153111e+00 7.34528601e-01 -2.16544437e+00 -1.01303458e+00 -4.60589707e-01 2.31935644e+00 8.06985915e-01 -4.50608462e-01 -6.34591877e-02 -2.26825520e-01 6.39504790e-01 -3.40138562e-02 -6.94341600e-01 -9.49640334e-01 -5.18521249e-01 3.04540515e-01 1.04053009e+00 1.32457346e-01 -1.26860368e+00 1.26609802e+00 5.99989080e+00 5.81665158e-01 -9.79407787e-01 -3.77044588e-01 9.54070747e-01 4.27255742e-02 1.05207488e-01 -1.37356743e-01 -7.77200758e-01 8.22153613e-02 1.38692272e+00 -9.01104137e-03 3.62121075e-01 5.72298408e-01 4.58832592e-01 -6.02049172e-01 -7.88440168e-01 2.47889459e-01 -1.60951644e-01 -1.03696167e+00 -5.40362179e-01 -8.63998681e-02 6.21920943e-01 -1.51352407e-02 -2.43041012e-02 2.63217479e-01 8.57863247e-01 -1.12800860e+00 3.60864401e-01 7.39790082e-01 4.24128354e-01 -1.00179958e+00 1.20566750e+00 -2.57871170e-02 -1.00350273e+00 7.24733174e-02 -9.69240308e-01 -9.28893387e-02 -1.26196325e-01 8.24279487e-01 -4.56860840e-01 8.40954959e-01 1.28253198e+00 7.19470739e-01 -5.32401383e-01 1.01202774e+00 -1.50436476e-01 9.40532506e-01 -3.96870166e-01 -2.70539880e-01 1.52049169e-01 -2.91559488e-01 1.76785346e-02 1.22349668e+00 9.24772561e-01 -2.75800288e-01 -2.12532669e-01 9.38875020e-01 3.02292973e-01 1.61972776e-01 -7.54759789e-01 -2.61051178e-01 3.77853304e-01 1.35407627e+00 -8.68270218e-01 1.10038497e-01 -1.99894458e-01 6.61644220e-01 1.34028465e-01 4.02163804e-01 -7.32159376e-01 -7.22572148e-01 6.95535719e-01 -6.48556888e-01 6.42008305e-01 -1.23694539e-01 -3.89956176e-01 -6.31036937e-01 -3.60130608e-01 -7.01464534e-01 -7.54157975e-02 -9.84884739e-01 -9.70226109e-01 5.01374602e-02 6.46703392e-02 -4.52406973e-01 -9.62729827e-02 -9.49978769e-01 -3.89885545e-01 1.44612408e+00 -1.53412354e+00 -1.38250375e+00 -1.96881682e-01 -5.44803858e-01 1.70003235e-01 -2.65123785e-01 1.41825092e+00 -1.16983443e-01 -8.72741878e-01 3.41627032e-01 6.00895047e-01 -1.06893353e-01 8.39814842e-01 -1.32421017e+00 5.36380470e-01 8.38603079e-01 -2.36288041e-01 2.65234470e-01 7.65704870e-01 -7.96357334e-01 -1.47507489e+00 -9.93317664e-01 8.91226470e-01 5.12710996e-02 6.42386436e-01 -3.67620349e-01 -9.24330294e-01 3.77917409e-01 5.45414448e-01 -5.19794524e-01 9.04616773e-01 6.55911684e-01 -1.35981098e-01 -2.97282368e-01 -1.00858784e+00 3.80394071e-01 5.97639859e-01 8.79859179e-02 2.04961315e-01 1.46782681e-01 5.38135052e-01 -1.94362993e-03 -1.17814231e+00 4.55024540e-01 1.16813910e+00 -7.11634755e-01 8.48827422e-01 -6.87119067e-01 6.57328427e-01 -8.01493376e-02 -5.09745955e-01 -1.95892215e+00 -7.20336914e-01 -2.84426361e-01 2.04933465e-01 1.56790328e+00 6.64983451e-01 -3.91532987e-01 4.98202324e-01 4.11636919e-01 -4.95239422e-02 -4.25459564e-01 -3.27123463e-01 -4.28789496e-01 4.86445516e-01 -4.74938639e-02 1.00767839e+00 8.94230127e-01 -1.53018057e-01 -1.53073281e-01 -5.30843914e-01 5.16534805e-01 3.89222443e-01 2.84965653e-02 4.14282709e-01 -1.40046299e+00 1.82126984e-01 -6.31356001e-01 -3.99847448e-01 -1.19213305e-01 1.57151029e-01 -7.22023010e-01 3.73545796e-01 -1.44996846e+00 1.75196499e-01 -4.20008272e-01 -4.70282286e-01 8.95882964e-01 -5.82687795e-01 5.15735038e-02 1.34027973e-01 -5.85338116e-01 4.69237238e-01 4.74909604e-01 5.87323129e-01 -1.03974799e-02 -3.29678655e-01 -3.55407633e-02 -8.80189180e-01 5.42532265e-01 1.53981364e+00 -3.96449476e-01 -1.82527646e-01 -6.76601291e-01 6.32777870e-01 -1.35143613e-02 3.05235445e-01 -5.96423566e-01 -4.92549419e-01 -4.33057666e-01 8.69930267e-01 -7.99231112e-01 -8.46068189e-03 -3.86535734e-01 5.82596706e-03 7.09532320e-01 -4.30586517e-01 2.31924385e-01 8.10194969e-01 2.11404428e-01 2.99439996e-01 -3.29241097e-01 3.33136171e-01 1.09783754e-01 -7.09208667e-01 -1.35070398e-01 -5.67790329e-01 -7.33164966e-01 8.16798091e-01 2.07136557e-01 -4.21695739e-01 -2.12385014e-01 -7.05431521e-01 5.03659666e-01 5.88493561e-03 6.11427724e-01 3.67109656e-01 -1.27462161e+00 -1.36748946e+00 1.66584685e-01 1.01981208e-01 -5.64218640e-01 2.40057066e-01 7.17819452e-01 -8.58685672e-01 4.75255519e-01 -8.26703370e-01 -6.61137044e-01 -1.15451705e+00 2.55225837e-01 7.97959417e-02 9.16508585e-02 -6.26835749e-02 8.47129107e-01 4.58263904e-02 -6.12511635e-01 1.75791696e-01 -3.81976485e-01 -6.35873020e-01 4.13121969e-01 3.47605348e-01 3.93500596e-01 5.62366433e-02 -5.74023962e-01 -2.54649252e-01 3.31573188e-01 2.91229457e-01 8.70844424e-02 1.79784751e+00 9.58315060e-02 -1.59763411e-01 7.63752043e-01 5.68731070e-01 -8.27670276e-01 -1.05927610e+00 1.12052612e-01 3.79883915e-01 -3.02112371e-01 5.30207396e-01 -1.30688679e+00 -1.19012415e+00 1.06296921e+00 1.31967545e+00 1.45327106e-01 1.21468675e+00 -3.90437216e-01 1.92118973e-01 6.92948639e-01 -6.70453981e-02 -9.21277940e-01 -7.77856231e-01 3.56830597e-01 1.01341105e+00 -1.54707289e+00 -5.25592379e-02 3.24613936e-02 -5.83825469e-01 1.27778542e+00 4.43587393e-01 6.92425445e-02 7.17052042e-01 3.94088894e-01 1.96644247e-01 1.76925167e-01 -6.84094906e-01 -3.83069187e-01 1.05821386e-01 1.32341838e+00 1.24984610e+00 8.02491248e-01 -2.24416673e-01 5.58004975e-01 -2.76790619e-01 8.16102773e-02 2.85805821e-01 7.01894879e-01 -4.14627492e-01 -1.06590545e+00 -5.28477073e-01 6.43854737e-01 -2.86274672e-01 -3.52750301e-01 -3.14638644e-01 6.04842365e-01 6.74746260e-02 9.32567418e-01 1.58761844e-01 -2.21557111e-01 9.25169513e-03 4.03237164e-01 3.82734507e-01 -3.54864031e-01 -6.58192635e-01 2.32069865e-01 2.39111066e-01 -3.00370365e-01 -6.33987486e-01 -9.09043014e-01 -6.43466890e-01 -6.51956797e-01 -7.16926098e-01 -2.64099032e-01 1.17357540e+00 3.20108354e-01 3.77041012e-01 7.00644493e-01 3.41827512e-01 -1.12376869e+00 -2.69107014e-01 -1.34630859e+00 -7.66155303e-01 -3.59575123e-01 3.04593630e-02 -5.70965469e-01 3.00430596e-01 9.52843428e-02]
[9.347122192382812, -1.6211140155792236]
6e0d02d4-1411-4470-8f8c-fcf596248751
improving-self-organizing-maps-with
2009.02174
null
https://arxiv.org/abs/2009.02174v1
https://arxiv.org/pdf/2009.02174v1.pdf
Improving Self-Organizing Maps with Unsupervised Feature Extraction
The Self-Organizing Map (SOM) is a brain-inspired neural model that is very promising for unsupervised learning, especially in embedded applications. However, it is unable to learn efficient prototypes when dealing with complex datasets. We propose in this work to improve the SOM performance by using extracted features instead of raw data. We conduct a comparative study on the SOM classification accuracy with unsupervised feature extraction using two different approaches: a machine learning approach with Sparse Convolutional Auto-Encoders using gradient-based learning, and a neuroscience approach with Spiking Neural Networks using Spike Timing Dependant Plasticity learning. The SOM is trained on the extracted features, then very few labeled samples are used to label the neurons with their corresponding class. We investigate the impact of the feature maps, the SOM size and the labeled subset size on the classification accuracy using the different feature extraction methods. We improve the SOM classification by +6.09\% and reach state-of-the-art performance on unsupervised image classification.
['Benoit Miramond', 'Laurent Rodriguez', 'Lyes Khacef']
2020-09-04
null
null
null
null
['unsupervised-image-classification', 'unsupervised-mnist']
['computer-vision', 'methodology']
[ 3.26039493e-01 -1.17140241e-01 9.14728194e-02 -4.52323169e-01 -1.24714095e-02 -2.84083128e-01 7.25781024e-01 3.00229698e-01 -9.17891860e-01 8.35653245e-01 6.18799180e-02 2.34657481e-01 -2.77847677e-01 -9.00451958e-01 -7.27454364e-01 -1.09410417e+00 -4.91020717e-02 4.60101992e-01 7.35641003e-01 9.70185548e-02 7.25157738e-01 6.62177086e-01 -2.24461007e+00 7.15845942e-01 6.08346760e-01 1.26909959e+00 4.23175275e-01 3.03501368e-01 -3.98346812e-01 8.50111961e-01 -4.54539657e-01 5.09273946e-01 2.54847437e-01 -5.25447428e-01 -3.80898625e-01 -1.23583907e-02 -1.11208335e-01 3.33202600e-01 -2.67738461e-01 8.14581096e-01 5.70470095e-01 -3.69983837e-02 1.00740647e+00 -1.09025776e+00 -1.12314165e-01 6.26178026e-01 -2.03244900e-03 5.08644044e-01 -2.37501279e-01 -2.33403267e-03 2.68129379e-01 -9.09457624e-01 7.50161469e-01 4.41888064e-01 5.95813274e-01 5.99405468e-01 -1.32248366e+00 -7.83245265e-01 -3.74527514e-01 4.60568726e-01 -1.30251682e+00 -5.43346703e-01 7.69295692e-01 -6.71651125e-01 1.01978946e+00 -8.25722590e-02 7.67620623e-01 9.33060467e-01 3.18603009e-01 2.11927369e-01 1.72708726e+00 -5.96569896e-01 8.48264039e-01 4.38079566e-01 3.79601240e-01 3.07830095e-01 1.16746180e-01 3.57877225e-01 -9.48769689e-01 1.16043024e-01 6.16391718e-01 1.61067829e-01 9.57075655e-02 -3.47549647e-01 -1.27111626e+00 7.31641173e-01 4.52028632e-01 7.76051283e-01 -4.26675767e-01 -6.19303547e-02 4.37866986e-01 3.92171443e-01 1.22045845e-01 6.74174726e-01 -4.08792287e-01 -7.86807854e-03 -1.33544064e+00 3.32840011e-02 6.44088328e-01 7.30744958e-01 8.75252545e-01 3.85106325e-01 -1.36177972e-01 9.77278233e-01 3.28091644e-02 2.46960968e-01 1.09828353e+00 -6.83427453e-01 -2.55354017e-01 8.72591496e-01 -3.26125205e-01 -7.31483281e-01 -6.51696861e-01 -3.81129801e-01 -6.76819563e-01 5.95450640e-01 3.29513937e-01 -1.68766290e-01 -1.10961604e+00 1.12079799e+00 -3.17669660e-01 6.04150295e-02 1.67602092e-01 6.46004736e-01 8.14731836e-01 7.36544132e-01 -1.70445427e-01 -3.02979261e-01 1.01283789e+00 -8.71158779e-01 -5.10054588e-01 -1.81561172e-01 4.31453317e-01 -4.30649966e-01 6.21906221e-01 5.96610844e-01 -7.23699749e-01 -4.94040340e-01 -1.24380600e+00 5.41593611e-01 -8.47531557e-01 3.53806973e-01 5.53664744e-01 4.22673523e-01 -1.14539707e+00 8.52264583e-01 -8.22420001e-01 -6.17259800e-01 5.38641214e-01 8.15456212e-01 -5.40507019e-01 2.36179426e-01 -5.37466407e-01 7.40084589e-01 9.87676322e-01 -4.34661984e-01 -7.88871467e-01 -2.86737591e-01 -3.00808489e-01 2.39341155e-01 -3.67085755e-01 -1.89654410e-01 5.36231697e-01 -9.55014229e-01 -1.63701487e+00 8.11615944e-01 -1.47419214e-01 -8.02937865e-01 -1.33179147e-02 4.43903387e-01 -3.54406863e-01 1.80300653e-01 -1.37593716e-01 8.42478871e-01 8.65773797e-01 -1.17330968e+00 -6.49832606e-01 -3.94565344e-01 -7.49477804e-01 -2.68756777e-01 -8.14185917e-01 -5.10664172e-02 3.96038353e-01 -5.42999029e-01 4.51929331e-01 -9.29594100e-01 -5.12733730e-03 -2.55966485e-01 -6.11597188e-02 -6.04299568e-02 9.16376829e-01 -2.06412330e-01 7.79365361e-01 -2.37085342e+00 2.03734078e-02 4.07397181e-01 -2.09152768e-03 2.17763260e-01 9.94981453e-02 4.09219712e-01 -2.13107355e-02 -2.36099765e-01 -4.15659457e-01 2.47268438e-01 -3.46852362e-01 2.09697798e-01 -1.91564754e-01 1.14836089e-01 3.38704407e-01 5.80331743e-01 -7.06747890e-01 -3.63065124e-01 1.58507481e-01 3.05071235e-01 -2.95977354e-01 3.45315725e-01 1.72734126e-01 6.25181258e-01 -7.48311132e-02 4.83876914e-01 3.37032557e-01 -1.77715309e-02 2.23833248e-02 3.08617596e-02 -5.94004631e-01 1.43334687e-01 -1.05990803e+00 1.52974403e+00 -2.18307540e-01 8.32470953e-01 -5.94057739e-01 -1.39543962e+00 1.62967169e+00 3.08468997e-01 5.47261178e-01 -7.52913177e-01 1.32565632e-01 7.05133915e-01 3.99463356e-01 -2.24206850e-01 -1.42465040e-01 -1.12691328e-01 4.19560492e-01 2.47708499e-01 9.44878578e-01 2.80270517e-01 4.14324701e-01 -2.89706051e-01 1.25380588e+00 -2.10736081e-01 -3.17190588e-02 -8.74760211e-01 3.77670050e-01 4.17181365e-02 4.23030078e-01 5.47177315e-01 1.79068521e-01 5.92601001e-01 4.06947941e-01 -6.47702456e-01 -1.02452791e+00 -9.94975567e-01 -6.06366694e-01 8.80490541e-01 -1.30685240e-01 -2.13578075e-01 -7.25784004e-01 -3.06068122e-01 -1.81244403e-01 5.57712734e-01 -6.19633734e-01 -4.13484305e-01 -3.15895319e-01 -1.07676029e+00 5.07290065e-01 5.66844583e-01 6.23076618e-01 -1.65036929e+00 -9.69601631e-01 3.36595118e-01 4.01353449e-01 -9.23192859e-01 5.13459682e-01 1.15267408e+00 -1.23407543e+00 -6.85530186e-01 -6.62767112e-01 -1.27868915e+00 1.03986907e+00 -2.79865921e-01 4.96268749e-01 -1.99141800e-01 -2.64208823e-01 2.02748794e-02 -5.91464460e-01 -6.27583146e-01 -9.45155248e-02 1.88292295e-01 1.99397296e-01 1.25477135e-01 6.13017738e-01 -1.07916605e+00 -3.84925753e-01 2.90833920e-01 -8.89611840e-01 -8.21988359e-02 7.88604259e-01 1.09439373e+00 7.73926258e-01 2.68381655e-01 7.64514863e-01 -1.01010084e+00 2.77333111e-01 -3.79583776e-01 -2.36088544e-01 -2.46267423e-01 -8.50914001e-01 5.11828780e-01 9.19137239e-01 -4.85005051e-01 -6.06148005e-01 5.23411810e-01 -6.45222291e-02 -1.06964715e-01 -5.52302837e-01 4.05302793e-01 2.46787533e-01 -5.20220399e-01 1.06382453e+00 7.49835670e-01 -4.86144200e-02 -4.70492601e-01 -3.78901511e-01 8.76386821e-01 3.62025738e-01 -3.10333341e-01 5.35224736e-01 4.29127097e-01 -7.75060132e-02 -8.68774414e-01 -2.61288315e-01 -5.56676090e-01 -8.13765049e-01 -2.22733676e-01 6.41523540e-01 -4.37937438e-01 -2.29684517e-01 6.94987178e-01 -8.83628070e-01 -3.32528442e-01 -5.04551113e-01 7.12406874e-01 -8.24603617e-01 -2.57900238e-01 -5.55167675e-01 -5.77851951e-01 -3.45937431e-01 -9.06259894e-01 5.13567924e-01 3.70209754e-01 1.20162420e-01 -5.42419612e-01 1.94381282e-01 -3.53564590e-01 6.37595892e-01 1.80762082e-01 9.84885454e-01 -1.10431635e+00 -1.32783026e-01 -4.87722382e-02 -9.43317041e-02 2.47680068e-01 5.92764392e-02 -2.04519898e-01 -1.22514796e+00 -2.16263324e-01 1.35553092e-01 -2.33578801e-01 1.33210468e+00 3.11972171e-01 1.26266468e+00 -2.38622546e-01 -3.72121602e-01 5.77205420e-01 1.55493379e+00 5.28445244e-01 8.48932445e-01 7.16088951e-01 2.72203475e-01 6.01472676e-01 2.12256536e-01 3.95685613e-01 -4.01438236e-01 2.66132772e-01 2.54483640e-01 4.00065839e-01 1.11291945e-01 1.49428435e-02 2.59422690e-01 1.23119104e+00 -4.01174039e-01 1.63281456e-01 -1.05722129e+00 5.39563000e-01 -1.87295973e+00 -8.50236833e-01 2.08263144e-01 2.38133979e+00 7.18585432e-01 3.94059241e-01 1.47468701e-01 7.12251186e-01 7.27633715e-01 -2.20691100e-01 -3.53130490e-01 -3.71933401e-01 -4.19248372e-01 6.03584886e-01 5.59586167e-01 -1.88551411e-01 -9.45578516e-01 7.71972597e-01 6.24062538e+00 5.64409137e-01 -1.66143513e+00 -4.56880406e-02 3.78253311e-01 2.80379560e-02 2.77393103e-01 -8.03518668e-02 -7.83950388e-01 9.27669346e-01 1.30301583e+00 -1.76090300e-02 5.69297493e-01 7.17831373e-01 -1.46618724e-01 -9.59303156e-02 -8.83421779e-01 1.17374003e+00 9.88476127e-02 -1.55882049e+00 5.53131588e-02 -1.48924878e-02 8.52885604e-01 2.82804519e-01 -1.32394820e-01 1.93033069e-01 -4.20908570e-01 -1.02868748e+00 4.19689417e-01 8.49007726e-01 5.22339344e-01 -8.68579149e-01 1.02634549e+00 4.63027298e-01 -7.85990953e-01 -3.77473325e-01 -6.91500902e-01 -1.98366314e-01 -5.32937288e-01 6.02396667e-01 -7.17861414e-01 -2.02912018e-01 9.25420463e-01 7.43618727e-01 -7.26334155e-01 1.50986993e+00 1.21631294e-01 8.40658247e-01 -4.07753766e-01 -4.07869548e-01 8.14272836e-02 1.25488769e-02 3.50486279e-01 1.39339089e+00 5.47641814e-01 -8.10959563e-02 -1.70738354e-01 7.74686992e-01 4.81231995e-02 2.25179121e-01 -6.62078857e-01 -3.72342944e-01 5.51656902e-01 1.21492040e+00 -1.27481556e+00 -3.47220063e-01 -1.68748405e-02 7.22770214e-01 2.99285471e-01 1.93508193e-01 -1.92238539e-01 -8.39776874e-01 -8.46118554e-02 4.23107058e-01 6.10168755e-01 -2.39744499e-01 -5.45386851e-01 -8.75779450e-01 -7.47045726e-02 -3.06223243e-01 2.19053961e-02 -6.66854858e-01 -1.12049890e+00 8.41326118e-01 -3.12712044e-01 -1.37396276e+00 -5.07347524e-01 -1.00261176e+00 -7.08208501e-01 3.42407137e-01 -1.33195734e+00 -7.22273529e-01 -2.42482886e-01 4.76914823e-01 3.66488308e-01 -7.64396667e-01 1.09107888e+00 1.99653551e-01 -3.13151702e-02 3.23909163e-01 7.51147687e-01 2.79737115e-01 5.74226856e-01 -1.15034342e+00 -1.44744664e-01 4.81912583e-01 4.00022715e-01 3.92470568e-01 4.29031610e-01 -2.09906712e-01 -1.08545232e+00 -1.06362045e+00 8.46123338e-01 8.80424753e-02 4.28708375e-01 -4.93202597e-01 -8.56810212e-01 2.66975909e-01 8.35468993e-02 3.68350595e-01 8.12027693e-01 -1.97980031e-01 -3.25779855e-01 -3.64258975e-01 -1.23312223e+00 1.53375611e-01 8.11593592e-01 -2.98556477e-01 -6.49721324e-01 1.13973685e-01 1.59794673e-01 2.31692672e-01 -1.04761851e+00 4.22375590e-01 5.57429552e-01 -1.04015267e+00 5.49992800e-01 -4.22604471e-01 5.23683846e-01 -4.48845804e-01 -1.18108235e-01 -1.54536152e+00 -5.26249468e-01 1.06507711e-01 -6.75396472e-02 1.08581150e+00 5.82239866e-01 -8.15116405e-01 8.64174843e-01 -7.20383301e-02 -1.86059996e-01 -7.93919027e-01 -9.66661870e-01 -1.03086054e+00 1.45248026e-02 1.57289490e-01 1.71409220e-01 9.93896961e-01 3.63965780e-01 2.69468993e-01 6.43629814e-03 -2.14401320e-01 4.56681907e-01 5.17710000e-02 2.28619874e-01 -1.70004869e+00 -1.40438348e-01 -3.54311585e-01 -1.33966386e+00 -1.41945004e-01 1.09956991e-02 -1.07434130e+00 2.40557656e-01 -1.22725785e+00 1.35129720e-01 -3.08178306e-01 -1.05985093e+00 6.62391126e-01 5.33712983e-01 4.05553311e-01 7.92131498e-02 3.86805326e-01 -4.29730505e-01 2.48906463e-01 5.02280772e-01 -1.98077276e-01 -3.29317898e-01 -1.36309981e-01 -1.65868700e-01 5.63255370e-01 1.09765923e+00 -8.63761067e-01 -9.51701254e-02 -1.43400699e-01 -1.94770187e-01 -4.60095763e-01 3.03030550e-01 -2.00584650e+00 6.57151341e-01 1.53487578e-01 7.78211772e-01 -2.66824961e-01 1.43907115e-01 -8.36188316e-01 5.12622781e-02 6.56611204e-01 -5.10272563e-01 -2.54254311e-01 3.10542196e-01 3.50412011e-01 -4.08496857e-01 -6.41562641e-01 9.19437230e-01 -2.07328811e-01 -9.24923480e-01 -8.38823691e-02 -8.07939947e-01 -2.30031461e-01 7.93817639e-01 -5.82922459e-01 -1.47764012e-01 2.52162308e-01 -8.71003807e-01 -3.96816969e-01 5.13257146e-01 1.52469784e-01 6.72958970e-01 -1.33449960e+00 -5.15543818e-01 5.96147418e-01 3.87171924e-01 -3.49927604e-01 -1.80786654e-01 7.09262848e-01 -5.10631323e-01 3.70994478e-01 -1.21882582e+00 -6.71763957e-01 -8.76600623e-01 5.29288411e-01 6.02314435e-02 2.06198186e-01 -3.86351287e-01 5.53718686e-01 -2.96496868e-01 -5.19014239e-01 1.66747391e-01 -4.72078519e-03 -6.33399189e-01 1.61321387e-02 5.52956402e-01 4.46430743e-01 4.03762460e-01 -4.21857238e-01 -2.94222742e-01 4.95936632e-01 -7.36662280e-03 -1.40114218e-01 1.72708750e+00 5.33214271e-01 -3.51623654e-01 1.01336622e+00 1.13939106e+00 -4.48136657e-01 -9.71258461e-01 -9.66785699e-02 4.20248926e-01 -8.43759254e-02 1.21658303e-01 -8.11149597e-01 -1.02539325e+00 1.01663208e+00 1.13994634e+00 1.69326350e-01 1.07070398e+00 -2.87768453e-01 4.90778238e-01 8.10565472e-01 7.11435139e-01 -1.33641410e+00 -9.74956602e-02 6.04631126e-01 5.11535645e-01 -1.11101985e+00 -2.07980812e-01 -8.79727677e-02 -2.37533629e-01 1.59791243e+00 5.81913829e-01 -7.71371484e-01 8.44241679e-01 4.64740366e-01 -1.05307899e-01 -2.35021506e-02 -6.35701954e-01 -1.69999570e-01 7.90026486e-02 7.77981222e-01 3.56206238e-01 -2.73221899e-02 -5.61126232e-01 7.17486501e-01 -2.58603156e-01 3.03759784e-01 3.38201880e-01 1.11664641e+00 -9.12569940e-01 -1.04962850e+00 -9.75796953e-02 1.12394261e+00 -1.41192228e-01 -1.36564106e-01 -5.17185926e-01 2.63163924e-01 3.12621087e-01 5.71138680e-01 3.36437941e-01 -8.28205884e-01 3.27829160e-02 3.82047415e-01 4.56539661e-01 -7.31743813e-01 -6.29382133e-01 -2.43831947e-01 -3.86259437e-01 -9.36574712e-02 -5.17791331e-01 -5.46182692e-01 -1.54020226e+00 5.17650023e-02 -2.55014628e-01 3.25163603e-01 9.14559662e-01 9.34327006e-01 5.06525457e-01 3.96805197e-01 8.14372718e-01 -1.05540907e+00 -1.12668969e-01 -9.38628078e-01 -8.89358819e-01 1.45020470e-01 -1.13717400e-01 -8.32734466e-01 -5.15768945e-01 2.96377599e-01]
[8.210295677185059, 2.7004010677337646]
db162006-5ec8-4539-8cf0-7cdf186c339a
distributed-learning-via-filtered
2007.09392
null
https://arxiv.org/abs/2007.09392v1
https://arxiv.org/pdf/2007.09392v1.pdf
Distributed Learning via Filtered Hyperinterpolation on Manifolds
Learning mappings of data on manifolds is an important topic in contemporary machine learning, with applications in astrophysics, geophysics, statistical physics, medical diagnosis, biochemistry, 3D object analysis. This paper studies the problem of learning real-valued functions on manifolds through filtered hyperinterpolation of input-output data pairs where the inputs may be sampled deterministically or at random and the outputs may be clean or noisy. Motivated by the problem of handling large data sets, it presents a parallel data processing approach which distributes the data-fitting task among multiple servers and synthesizes the fitted sub-models into a global estimator. We prove quantitative relations between the approximation quality of the learned function over the entire manifold, the type of target function, the number of servers, and the number and type of available samples. We obtain the approximation rates of convergence for distributed and non-distributed approaches. For the non-distributed case, the approximation order is optimal.
['Guido Montúfar', 'Yu Guang Wang']
2020-07-18
null
null
null
null
['geophysics']
['miscellaneous']
[-3.99761200e-01 -7.35596791e-02 1.02571048e-01 -1.27288878e-01 -8.51986349e-01 -4.26605374e-01 3.47773492e-01 3.95654291e-01 -4.28365648e-01 8.74772668e-01 -2.79587567e-01 -1.72630996e-01 -3.71743053e-01 -8.63647640e-01 -1.07069635e+00 -8.74019027e-01 -3.35898757e-01 7.93602884e-01 1.51543040e-02 2.78762549e-01 -1.06109761e-01 8.51115823e-01 -1.40382147e+00 -2.16359496e-01 7.06801653e-01 1.06232536e+00 3.19511592e-02 9.73621011e-01 -2.40633667e-01 1.69614375e-01 -4.37546968e-01 -1.51113287e-01 4.97525841e-01 -4.87775147e-01 -6.03550732e-01 1.99495733e-01 3.11195284e-01 2.08974019e-01 -2.21085072e-01 1.36023653e+00 4.56095994e-01 2.52781957e-01 1.03647220e+00 -1.42410827e+00 -2.38962218e-01 2.13616565e-01 -5.48914969e-01 2.16870561e-01 -2.62305200e-01 -4.25631776e-02 4.60729182e-01 -8.37634742e-01 3.07267994e-01 1.18195951e+00 5.78419089e-01 3.77717465e-01 -1.39174390e+00 -2.02378720e-01 -3.20360929e-01 -1.37081996e-01 -1.15951526e+00 -2.80781627e-01 3.09886932e-01 -6.44648552e-01 2.04000801e-01 3.99104178e-01 3.30964088e-01 4.34919983e-01 3.79835427e-01 2.47099668e-01 8.63688231e-01 -5.01638710e-01 6.60778582e-01 4.81662065e-01 -1.16088241e-02 8.29976022e-01 4.08565134e-01 -5.98890744e-02 -3.88956785e-01 -6.78893268e-01 9.94714856e-01 1.93482608e-01 -1.77621037e-01 -4.37065810e-01 -1.17200947e+00 8.58222723e-01 1.73040092e-01 1.50765792e-01 -6.34814024e-01 3.71566638e-02 2.86714345e-01 8.56669188e-01 8.55978727e-01 2.03047246e-01 -6.36394680e-01 9.88095030e-02 -5.31551659e-01 1.55731216e-01 1.02995384e+00 9.84974444e-01 8.50303352e-01 -1.35117114e-01 9.22788754e-02 5.24417579e-01 -2.60859188e-02 7.98189998e-01 3.43602687e-01 -8.72352302e-01 3.15041453e-01 1.61997199e-01 4.37612563e-01 -7.38623798e-01 -3.95684868e-01 -5.26382662e-02 -1.08308554e+00 2.20711455e-01 7.45551109e-01 -3.45785111e-01 -1.53125465e-01 1.68703246e+00 8.89020920e-01 2.71765471e-01 -1.14973972e-03 1.00048637e+00 1.99297056e-01 6.07524097e-01 -3.17274898e-01 -5.78855753e-01 9.99374211e-01 -6.72497869e-01 -4.16278571e-01 5.82773209e-01 3.90949935e-01 -6.33010805e-01 8.30145895e-01 3.69228929e-01 -1.12090540e+00 -4.84322727e-01 -5.12594283e-01 2.28440821e-01 -2.60661364e-01 7.43152946e-02 4.35637981e-02 2.31424749e-01 -1.06255054e+00 9.09837961e-01 -9.25649524e-01 -3.17522913e-01 1.67675525e-01 3.57312530e-01 -2.59586334e-01 5.50342798e-02 -5.01353562e-01 6.10532165e-01 -1.24518402e-01 -1.12158410e-01 -6.76155269e-01 -8.10204744e-01 -3.39223146e-01 1.56454265e-01 -9.24801081e-02 -8.45896661e-01 9.59262550e-01 -9.91248190e-01 -1.44155693e+00 5.26041150e-01 -8.89833421e-02 -3.52278709e-01 8.64772260e-01 2.51872331e-01 -1.29836127e-01 2.39864066e-02 1.12194926e-01 1.51295036e-01 1.13253224e+00 -6.25060260e-01 -5.36135614e-01 -6.98448598e-01 -5.65004587e-01 4.81065139e-02 -4.59854335e-01 -2.58382231e-01 1.46730348e-01 -3.53124022e-01 3.29175964e-02 -7.91040182e-01 -2.72601694e-01 4.75607902e-01 -7.93207884e-02 -2.75987178e-01 6.11236989e-01 -3.87256354e-01 3.04059148e-01 -2.32865596e+00 4.40073043e-01 2.78010488e-01 2.12234482e-01 -3.04027826e-01 -1.36865199e-01 5.19662857e-01 6.60639182e-02 -2.05581218e-01 -1.27346382e-01 -3.12365592e-01 -4.76886891e-02 -3.98317352e-02 -2.54342288e-01 1.18302000e+00 6.79273903e-02 4.10210222e-01 -7.97169566e-01 -2.69104332e-01 -1.78857166e-02 1.47372067e-01 -2.05526009e-01 5.17480016e-01 -4.29468483e-01 4.44510698e-01 -5.84061384e-01 9.07681137e-02 7.63921082e-01 -5.50719917e-01 2.08643861e-02 2.26781368e-01 8.40877071e-02 -6.28200397e-02 -1.57122612e+00 1.29443252e+00 -5.53986847e-01 4.61391687e-01 6.50481999e-01 -1.26613748e+00 8.51984382e-01 4.01722401e-01 8.94560099e-01 -7.74182333e-03 1.86807215e-02 4.81055498e-01 -4.26551670e-01 -6.01801217e-01 -2.65654065e-02 -3.33986133e-01 2.07824141e-01 5.73364139e-01 -6.00804798e-02 3.24974814e-03 -5.87745868e-02 -1.96008340e-01 1.11688507e+00 -3.70994031e-01 1.11860037e-01 -7.46744573e-01 5.21967173e-01 9.06166658e-02 1.71418443e-01 3.96320432e-01 1.58066928e-01 4.37430203e-01 6.28330886e-01 -5.40164948e-01 -1.28415430e+00 -1.04418421e+00 -3.05226088e-01 8.93629849e-01 1.24590121e-01 1.79782584e-01 -1.01658988e+00 -5.04340529e-01 5.49029291e-01 3.11764210e-01 -4.47380215e-01 -7.32436925e-02 -2.24838376e-01 -5.70397317e-01 6.91146329e-02 8.60228464e-02 1.30267441e-01 -7.94940531e-01 -3.72195929e-01 1.99825644e-01 1.94843560e-01 -7.91883469e-01 -8.31203878e-01 1.11974394e-02 -1.13319767e+00 -1.09886873e+00 -7.01585948e-01 -7.44185984e-01 9.22932446e-01 2.46815324e-01 9.08805132e-01 -1.71704069e-01 -2.60985404e-01 6.37488186e-01 3.00221652e-01 -5.24257481e-01 -6.08336866e-01 -2.74413005e-02 4.81346846e-01 5.14059424e-01 -2.66442727e-02 -4.26989019e-01 -3.26347739e-01 3.04752648e-01 -9.02026713e-01 -2.69646406e-01 8.72643813e-02 6.93332613e-01 6.81831658e-01 1.05863191e-01 7.65268981e-01 -6.80061340e-01 6.40448213e-01 -8.37500215e-01 -1.10528111e+00 2.97100931e-01 -5.17387867e-01 2.59874851e-01 9.19226646e-01 -7.73705602e-01 -3.58624816e-01 4.46876064e-02 5.65202951e-01 -7.66091943e-01 2.82424204e-02 1.82552814e-01 -4.89858612e-02 -1.43928513e-01 7.94250488e-01 6.09138235e-02 7.71212935e-01 -6.02326393e-01 2.48321861e-01 8.76790881e-01 3.93371344e-01 -8.29194903e-01 5.33343673e-01 4.72675860e-01 4.59712774e-01 -1.18380070e+00 -2.25068763e-01 -5.33227324e-01 -4.59968239e-01 -2.06579253e-01 3.95756900e-01 -6.22469664e-01 -7.41599977e-01 4.70657825e-01 -1.21081412e+00 -3.16666782e-01 -7.09829330e-01 6.80522382e-01 -9.01052713e-01 2.27600150e-02 -5.35816729e-01 -9.15540695e-01 -3.00812900e-01 -8.30486357e-01 1.04301524e+00 -2.48566433e-03 2.17424914e-01 -1.19254887e+00 1.28764108e-01 -2.18434602e-01 4.52952892e-01 3.27726752e-01 1.00475919e+00 -7.44081020e-01 -6.04514539e-01 -3.72953564e-01 -1.58791635e-02 2.11828172e-01 2.48307005e-01 -1.97120681e-01 -5.34028292e-01 -4.44006681e-01 4.29817915e-01 -2.28794977e-01 2.05095410e-01 5.02271771e-01 1.10745263e+00 -7.27604270e-01 -3.43716204e-01 3.33404720e-01 1.35976577e+00 -5.98252594e-01 4.69413809e-02 -1.31316319e-01 2.92748630e-01 7.29939044e-01 4.17453527e-01 5.57285428e-01 8.97058919e-02 2.85122931e-01 2.35901162e-01 8.51171166e-02 2.95586169e-01 6.94266334e-02 3.13833326e-01 7.92293191e-01 4.13587302e-01 5.43809645e-02 -6.12594903e-01 3.72458220e-01 -1.97233820e+00 -7.07578957e-01 -1.84274629e-01 2.76406503e+00 8.20644796e-01 -3.72817338e-01 5.70525646e-01 -1.61168918e-01 1.07071328e+00 -6.40564501e-01 -8.37661207e-01 -1.62021875e-01 -3.05063860e-03 -4.55847792e-02 7.80393600e-01 5.13696074e-01 -6.89386487e-01 1.89489022e-01 5.97121048e+00 7.12096989e-01 -1.26190770e+00 2.47071952e-01 7.19365478e-01 -1.04158431e-01 -1.81622028e-01 -4.40370739e-01 -4.83011872e-01 6.31794035e-01 1.33177280e+00 -4.07385647e-01 8.89360607e-01 8.11499000e-01 2.06014007e-01 1.20703638e-01 -1.28728986e+00 9.62978959e-01 -3.79233062e-01 -1.27090120e+00 -2.84939587e-01 3.97513688e-01 7.70118952e-01 2.64394134e-01 -6.84604943e-02 -1.73542202e-01 1.69075176e-01 -8.19338977e-01 4.72377241e-01 9.67994153e-01 7.02752531e-01 -6.65970325e-01 4.11782026e-01 8.82584095e-01 -8.61154020e-01 -2.74801254e-02 -6.32554650e-01 1.79113567e-01 -2.93388009e-01 7.52956569e-01 -6.74037874e-01 4.82511729e-01 5.91787815e-01 3.42455089e-01 -7.27806315e-02 1.13422966e+00 7.30014384e-01 6.22881472e-01 -7.91921854e-01 -3.61657917e-01 -2.45325595e-01 -8.75759006e-01 5.40597081e-01 7.24506259e-01 4.40341175e-01 6.54106364e-02 3.19643021e-01 9.00615990e-01 -2.06275091e-01 3.51280898e-01 -6.02589071e-01 1.65573224e-01 4.31338996e-01 1.29590368e+00 -6.28513873e-01 -3.05460423e-01 -4.07907665e-01 5.72648287e-01 5.97050011e-01 3.65917087e-01 -4.56723332e-01 -2.10051984e-01 7.24240124e-01 4.33007896e-01 2.15187818e-01 -2.55150795e-01 -3.70133519e-01 -9.83287454e-01 2.20988438e-01 -6.25339866e-01 4.97509122e-01 -2.12709725e-01 -1.64986622e+00 2.60048449e-01 4.71559167e-02 -1.05792940e+00 -2.48359412e-01 -5.49407423e-01 -6.25725806e-01 9.93587434e-01 -1.10761893e+00 -4.52961117e-01 3.10360081e-02 5.72640121e-01 1.69714034e-01 -4.25286800e-01 5.94819903e-01 6.77955300e-02 -2.49617845e-01 1.99486718e-01 8.67205024e-01 -1.03973798e-01 4.52504843e-01 -1.28117108e+00 1.13034673e-01 4.50978488e-01 4.08573262e-02 8.88239220e-02 7.21120179e-01 -3.45204651e-01 -1.72136056e+00 -1.27127481e+00 6.40541971e-01 -2.01487571e-01 7.70855308e-01 -2.97508568e-01 -1.08697832e+00 2.26139545e-01 -4.19889912e-02 6.19472146e-01 2.59830266e-01 -3.55947435e-01 5.67571707e-02 -4.50815737e-01 -1.57876039e+00 1.30796254e-01 4.79735374e-01 -2.89783806e-01 2.06818789e-01 8.27857971e-01 5.41539967e-01 -2.85233855e-01 -1.14043784e+00 -9.77326035e-02 -2.71526556e-02 -3.87099892e-01 6.35326922e-01 -1.06218147e+00 -9.06999260e-02 -1.28563434e-01 -1.00189067e-01 -1.34971988e+00 -3.73947397e-02 -9.03222203e-01 -2.88850188e-01 8.84892344e-01 2.43585765e-01 -9.42460954e-01 6.32716715e-01 5.63224316e-01 3.35146666e-01 -7.19771862e-01 -1.32527030e+00 -8.56614769e-01 3.87439847e-01 1.82981879e-01 5.80350637e-01 6.43700778e-01 -3.19199078e-02 2.99660742e-01 -7.67780095e-03 2.99168587e-01 9.54541504e-01 2.19183445e-01 8.32736552e-01 -1.43676770e+00 -4.55748320e-01 -3.51835996e-01 -3.03693980e-01 -6.95801020e-01 3.50222707e-01 -9.48281229e-01 2.86823884e-02 -9.51452792e-01 -7.88847879e-02 -7.21632123e-01 1.02329120e-01 -7.92276412e-02 -4.46943566e-02 -4.25424427e-01 -1.54551834e-01 3.82597268e-01 -3.15948218e-01 4.74307299e-01 1.14372396e+00 -3.85488081e-03 -2.26170033e-01 5.81895828e-01 9.05773789e-03 2.36770183e-01 7.17291415e-01 -5.58153152e-01 -2.92597085e-01 -2.43360192e-01 -1.63858399e-01 4.44418907e-01 3.32470834e-01 -8.02507281e-01 3.95699471e-01 -3.20043713e-01 2.04441592e-01 -7.68064111e-02 1.51348159e-01 -1.00186467e+00 1.92338943e-01 4.76048976e-01 -4.78340149e-01 3.70768577e-01 -1.36965469e-01 9.72865880e-01 1.06628515e-01 -2.06835732e-01 1.06626761e+00 -5.96673321e-03 5.20986438e-01 7.09376752e-01 -2.06434578e-01 3.24169874e-01 1.16543090e+00 4.12805021e-01 -4.64591272e-02 -5.03505051e-01 -6.76330090e-01 2.03463420e-01 4.22957242e-01 1.74315900e-01 4.11453247e-01 -1.33237660e+00 -9.27257478e-01 4.64449435e-01 -3.47387612e-01 2.45680913e-01 -2.32380942e-01 9.40981269e-01 -3.02033961e-01 -6.15604445e-02 6.94257542e-02 -6.59323335e-01 -9.02827680e-01 7.56784856e-01 5.78436911e-01 3.13579619e-01 -4.53364491e-01 2.53631920e-01 -2.91695893e-01 -4.86292958e-01 3.51885706e-01 -2.33215973e-01 3.94671828e-01 -2.61555612e-01 3.65649730e-01 8.89454901e-01 2.52416760e-01 -1.83562353e-01 1.02050267e-01 2.05043748e-01 3.18060815e-01 -1.77354679e-01 1.35919988e+00 -1.36083111e-01 -5.30577242e-01 9.00281966e-01 1.45398307e+00 -2.99111158e-01 -1.14024246e+00 -6.87678993e-01 5.23481034e-02 -2.23120674e-01 -2.71391094e-01 -1.36128664e-02 -1.00640559e+00 7.05565751e-01 5.18694520e-01 7.36705244e-01 7.51865089e-01 2.92484254e-01 4.63908315e-01 3.83746326e-01 4.15203929e-01 -9.93823230e-01 4.47030179e-02 2.14322776e-01 7.64721215e-01 -9.45083320e-01 -2.81557351e-01 -7.78920203e-02 -2.13104174e-01 1.34896421e+00 4.28172857e-01 -4.35758531e-01 1.01449180e+00 3.68612707e-01 -1.23186775e-01 9.38456059e-02 -8.82228971e-01 2.03637093e-01 2.64656365e-01 3.82642716e-01 -1.60953624e-03 2.60807246e-01 -1.25608891e-01 2.03220084e-01 -4.93738316e-02 -1.97740093e-01 4.46646392e-01 5.11388302e-01 -5.54071903e-01 -8.44587803e-01 -5.98229527e-01 7.30564535e-01 -2.21721530e-01 3.82150143e-01 -9.94198606e-04 3.66519809e-01 -3.68855238e-01 5.11307180e-01 3.79650027e-01 2.34086007e-01 1.64444134e-01 3.25454399e-02 4.02249783e-01 -3.75416249e-01 -1.58516660e-01 7.34600425e-02 -3.93325329e-01 -1.29544705e-01 -1.12051971e-01 -9.59196091e-01 -1.12598002e+00 -5.42003036e-01 -2.62303084e-01 7.64652133e-01 9.64561403e-01 8.10130417e-01 6.77596331e-01 4.78332415e-02 1.16647613e+00 -6.65788531e-01 -1.62714839e+00 -1.09709454e+00 -9.43278968e-01 1.92137688e-01 6.97870851e-01 -2.36352623e-01 -5.61752617e-01 7.68415630e-02]
[6.858456611633301, 4.316257953643799]
cbc55542-e214-431d-a3c7-3ca0f3acf9b9
swapped-face-detection-using-deep-learning
1909.04217
null
https://arxiv.org/abs/1909.04217v1
https://arxiv.org/pdf/1909.04217v1.pdf
Swapped Face Detection using Deep Learning and Subjective Assessment
The tremendous success of deep learning for imaging applications has resulted in numerous beneficial advances. Unfortunately, this success has also been a catalyst for malicious uses such as photo-realistic face swapping of parties without consent. Transferring one person's face from a source image to a target image of another person, while keeping the image photo-realistic overall has become increasingly easy and automatic, even for individuals without much knowledge of image processing. In this study, we use deep transfer learning for face swapping detection, showing true positive rates >96% with very few false alarms. Distinguished from existing methods that only provide detection accuracy, we also provide uncertainty for each prediction, which is critical for trust in the deployment of such detection systems. Moreover, we provide a comparison to human subjects. To capture human recognition performance, we build a website to collect pairwise comparisons of images from human subjects. Based on these comparisons, images are ranked from most real to most fake. We compare this ranking to the outputs from our automatic model, showing good, but imperfect, correspondence with linear correlations >0.75. Overall, the results show the effectiveness of our method. As part of this study, we create a novel, publicly available dataset that is, to the best of our knowledge, the largest public swapped face dataset created using still images. Our goal of this study is to inspire more research in the field of image forensics through the creation of a public dataset and initial analysis.
['Zohreh Raziei', 'Michael Hahsler', 'Paul Krueger', 'Eric C. Larson', 'Eli V. Olinick', 'Xinyi Ding']
2019-09-10
null
null
null
null
['image-forensics']
['computer-vision']
[ 9.60420966e-02 9.00320858e-02 2.52936333e-01 -5.30101657e-01 -8.50365698e-01 -7.66491234e-01 4.63564813e-01 -3.33971232e-01 -3.19304675e-01 5.97343385e-01 -9.67871174e-02 -1.89131573e-01 2.27856308e-01 -5.98321676e-01 -7.86318421e-01 -5.38545489e-01 -5.71733415e-02 3.82626355e-01 -4.84604724e-02 7.25221708e-02 2.97359377e-01 7.29846179e-01 -1.20704472e+00 5.45778036e-01 2.96963602e-01 8.90999734e-01 -3.95527124e-01 3.75028193e-01 5.12322068e-01 5.52445292e-01 -7.23535597e-01 -1.23312330e+00 6.62540734e-01 -3.52624536e-01 -6.54316783e-01 2.31294960e-01 9.48955953e-01 -9.45098698e-01 -3.38852286e-01 9.32586253e-01 7.48903990e-01 -2.77118981e-01 2.47316971e-01 -1.50511134e+00 -8.13833714e-01 2.04792082e-01 -7.95867503e-01 8.50791186e-02 3.63667071e-01 6.98578477e-01 6.75889075e-01 -7.22038686e-01 6.99043214e-01 1.23124576e+00 8.52775156e-01 6.63475811e-01 -1.13204646e+00 -1.16283655e+00 -6.50372863e-01 3.67159843e-01 -1.30342388e+00 -8.65626097e-01 6.56960964e-01 -4.68654096e-01 6.34928882e-01 1.21972688e-01 5.51585436e-01 1.36353219e+00 -3.87266241e-02 5.15043497e-01 1.54679716e+00 -3.84043008e-01 -4.55228202e-02 4.58459258e-01 -3.57500196e-01 5.67186415e-01 4.54867929e-01 2.71686524e-01 -5.62124252e-01 -3.07743967e-01 5.15690506e-01 -1.80160731e-01 -2.41093069e-01 -2.25617439e-01 -7.29548872e-01 7.41007745e-01 3.66840750e-01 2.17476159e-01 -3.13909113e-01 1.53662682e-01 2.39516377e-01 3.21063250e-01 3.09891760e-01 2.49259800e-01 -4.14889082e-02 -8.70925486e-02 -1.20144176e+00 1.60195455e-01 6.60315275e-01 4.37030077e-01 5.05857885e-01 -1.29258454e-01 9.92034003e-02 5.90648651e-01 1.36958525e-01 4.82877046e-01 2.88984299e-01 -1.12862456e+00 3.20465088e-01 2.89362967e-01 2.61211276e-01 -1.49956858e+00 5.31005207e-04 -1.99314073e-01 -5.22844791e-01 4.75841761e-01 5.88611305e-01 -7.05629736e-02 -6.75232470e-01 1.77249336e+00 1.95442885e-01 2.09091038e-01 -2.03985393e-01 8.38387668e-01 3.56947392e-01 3.11370343e-01 -1.03929453e-01 9.38727148e-03 1.27642679e+00 -3.87321562e-01 -3.73160750e-01 -1.22261837e-01 3.83505315e-01 -8.95835221e-01 8.96097839e-01 6.61108375e-01 -9.42062497e-01 -3.39510471e-01 -9.17327583e-01 1.49053901e-01 -1.04196943e-01 2.12062225e-01 6.53049588e-01 1.42221940e+00 -1.26931334e+00 5.80829620e-01 -6.24841392e-01 -5.88569462e-01 1.12065363e+00 4.77532327e-01 -9.52125371e-01 -1.92347199e-01 -9.98307109e-01 9.95339334e-01 -1.21515349e-01 5.66432215e-02 -1.00462973e+00 -5.34751832e-01 -4.44148511e-01 -1.23630889e-01 1.20323077e-01 -2.33008638e-01 1.02190804e+00 -1.26508176e+00 -9.33875144e-01 1.49170506e+00 6.38006181e-02 -6.56246960e-01 8.69391859e-01 4.03065421e-02 -3.89540404e-01 3.42335820e-01 1.81694910e-01 9.03652668e-01 1.02863705e+00 -1.47877085e+00 -2.28101149e-01 -6.32782996e-01 -1.55449778e-01 -2.36809134e-01 -6.01535916e-01 4.21119094e-01 -3.07302773e-01 -4.07723665e-01 -4.26379442e-01 -1.00865304e+00 4.17176992e-01 3.24943632e-01 -3.43021631e-01 1.62235245e-01 9.49601471e-01 -1.12123704e+00 6.31710112e-01 -2.25640774e+00 -4.63901758e-01 1.11279726e-01 2.83754945e-01 5.29646277e-01 -1.22621655e-01 4.69688714e-01 -2.64230341e-01 3.63695115e-01 -2.64763266e-01 -6.29085422e-01 -1.48020446e-01 -2.20876113e-01 -5.10501027e-01 8.94823134e-01 2.88223654e-01 8.75051260e-01 -6.51223004e-01 -4.66355145e-01 1.61477581e-01 6.00419879e-01 -4.22877878e-01 1.06198847e-01 4.20858622e-01 4.18730825e-01 1.21513911e-01 8.00815105e-01 9.90229309e-01 3.21414061e-02 2.65983731e-01 -3.07486087e-01 1.78810179e-01 -1.52534187e-01 -7.07748294e-01 9.15265322e-01 -2.05272064e-01 1.04915321e+00 1.31837681e-01 -7.33794630e-01 6.82505608e-01 3.16074044e-01 4.71548080e-01 -6.66405141e-01 2.36075506e-01 1.90934047e-01 2.24263087e-01 -5.28633893e-01 2.78685957e-01 -2.25863993e-01 3.55718434e-01 7.83154607e-01 -2.29521114e-02 -1.09640760e-02 -1.11013010e-01 2.34388933e-01 1.06649423e+00 -7.78525323e-02 -5.30257337e-02 3.14878851e-01 1.45020038e-01 -1.62230209e-01 2.48949707e-01 6.02719784e-01 -6.89318955e-01 8.59848440e-01 6.00147426e-01 -4.67949331e-01 -1.13123083e+00 -9.47735965e-01 -1.51038840e-01 4.64501321e-01 -1.87982023e-01 -1.59089983e-01 -1.07208145e+00 -7.27691412e-01 2.33325779e-01 5.21926939e-01 -7.29066610e-01 -1.07034855e-01 -4.94939059e-01 -7.31740713e-01 1.11418617e+00 2.18081236e-01 6.79716647e-01 -1.15518045e+00 -6.35520577e-01 -3.72800678e-01 -1.80637151e-01 -1.29439783e+00 -2.94891864e-01 -5.94939053e-01 -4.57210243e-01 -1.46961415e+00 -7.10782707e-01 -5.74355900e-01 6.31652296e-01 4.13312316e-01 8.44848394e-01 4.68074501e-01 -5.51637948e-01 4.81438726e-01 -1.97058514e-01 -2.97808379e-01 -4.88029689e-01 -5.12272835e-01 1.80442318e-01 2.11249650e-01 4.52928931e-01 -3.32916200e-01 -7.18740344e-01 4.42673445e-01 -9.75867212e-01 -3.36224794e-01 6.63019300e-01 6.98175669e-01 -8.28480870e-02 1.95077807e-01 3.67324859e-01 -7.67892122e-01 6.02710366e-01 -4.27484065e-01 -4.94599283e-01 2.79259562e-01 -5.11547148e-01 -5.12646616e-01 2.36484289e-01 -3.17406505e-01 -1.00975406e+00 -8.73077959e-02 1.08502641e-01 -5.11200130e-01 -1.43556044e-01 -3.61779332e-02 -8.41914956e-03 -5.18160701e-01 7.52829254e-01 6.47697318e-03 2.97705531e-01 -1.57548219e-01 2.23372921e-01 9.65293825e-01 5.75708985e-01 -3.02912712e-01 9.33205307e-01 8.58519912e-01 -1.50121912e-01 -8.44099522e-01 -2.81808943e-01 -1.30286336e-01 -4.57150608e-01 -4.73856807e-01 4.61944431e-01 -6.85246885e-01 -9.68507826e-01 9.94417667e-01 -1.18212867e+00 -2.07982749e-01 2.37702146e-01 2.04541162e-01 -2.90626019e-01 7.87428796e-01 -5.49512744e-01 -1.06016803e+00 -1.62643641e-01 -1.19308949e+00 1.02800333e+00 -4.56508137e-02 -2.74763823e-01 -7.87061036e-01 -1.41095966e-01 1.07851791e+00 4.45559949e-01 4.46016490e-01 3.39600503e-01 -6.05927050e-01 -5.92916727e-01 -5.88228941e-01 -4.83912975e-01 6.24247253e-01 2.70904124e-01 1.57809585e-01 -1.37844849e+00 -6.54321849e-01 1.33943275e-01 -6.97602212e-01 7.68716335e-01 1.14335872e-01 1.11437011e+00 -3.17900687e-01 -2.18547150e-01 3.31209779e-01 1.22340488e+00 3.21688280e-02 1.10087848e+00 3.68615240e-01 4.84624952e-01 1.03001702e+00 4.01335448e-01 3.00770521e-01 1.36176914e-01 7.51086473e-01 5.82700551e-01 -8.83532315e-02 -3.25813502e-01 -2.11066231e-01 4.94055033e-01 -2.20954120e-01 2.47424725e-03 -2.74573386e-01 -9.96218085e-01 4.61414516e-01 -1.33043337e+00 -1.31292331e+00 -1.30008282e-02 2.57455754e+00 5.62708557e-01 -6.15531132e-02 2.72557050e-01 1.37190791e-02 9.98225391e-01 -1.05880313e-01 -3.95704329e-01 -1.63295388e-01 -9.14605856e-02 3.20434779e-01 5.76146245e-01 3.05604786e-01 -1.00463855e+00 1.01364183e+00 6.48045111e+00 6.22315705e-01 -1.26805961e+00 2.25538060e-01 1.06305218e+00 -2.16922596e-01 3.96735407e-02 -5.86358011e-02 -4.11917806e-01 7.62719452e-01 8.16029847e-01 1.54650167e-01 5.40622711e-01 5.63621581e-01 2.73241490e-01 -2.01409370e-01 -9.83168125e-01 1.26075029e+00 5.05085230e-01 -1.12591171e+00 -2.09942251e-01 4.75845546e-01 4.85191256e-01 -2.23092288e-01 4.71517295e-01 -6.22832440e-02 1.86914384e-01 -1.31247389e+00 6.19845152e-01 2.20079646e-01 7.98660874e-01 -7.34230638e-01 8.63880754e-01 -7.33081345e-03 -4.65670526e-01 -6.35565296e-02 -2.27229223e-01 3.50070372e-02 1.89003810e-01 6.05788231e-01 -1.13983333e+00 8.65607336e-02 9.04629350e-01 3.92210811e-01 -6.07418478e-01 9.41971540e-01 -1.69723749e-01 7.19530582e-01 -1.89102843e-01 4.88769025e-01 -1.57000184e-01 6.66186959e-03 3.63519281e-01 9.53698814e-01 3.90181601e-01 -1.26386687e-01 -3.48081976e-01 9.94289696e-01 -5.05146921e-01 -7.58667886e-02 -8.49215984e-01 -2.11395279e-01 5.14157474e-01 1.43246603e+00 -6.37120247e-01 -8.03388730e-02 -2.35016540e-01 1.24028790e+00 2.69382089e-01 -5.22172973e-02 -9.39930201e-01 5.75451702e-02 5.83269536e-01 3.31193984e-01 -9.17572342e-03 -1.12702154e-01 -2.59832174e-01 -8.44324052e-01 3.41024041e-01 -1.16566825e+00 2.66426593e-01 -8.64457607e-01 -1.42171097e+00 5.14842451e-01 -5.69188185e-02 -1.06422770e+00 -1.22539364e-01 -6.65168762e-01 -5.57291687e-01 7.52306461e-01 -1.24489367e+00 -1.41713965e+00 -3.21208149e-01 3.88175517e-01 2.52802018e-02 -3.76912028e-01 5.89862943e-01 3.80650282e-01 -5.14123499e-01 8.60792577e-01 -2.61366546e-01 4.05096024e-01 1.13883352e+00 -7.33063340e-01 5.13377070e-01 8.73013556e-01 1.25828728e-01 8.05014372e-01 5.18277168e-01 -8.60617280e-01 -1.15470958e+00 -7.56871402e-01 6.47421300e-01 -6.23890579e-01 5.06807208e-01 -2.16652349e-01 -7.61142194e-01 7.30889261e-01 3.10663849e-01 -5.77668026e-02 8.18391502e-01 -1.86192706e-01 -6.47371829e-01 -1.63671792e-01 -1.79098547e+00 2.83935964e-01 7.10618436e-01 -6.44843996e-01 -3.54805201e-01 4.71405327e-01 7.00826719e-02 -9.39536616e-02 -5.42646885e-01 1.44111991e-01 9.68806863e-01 -1.55917513e+00 1.06239474e+00 -3.86820823e-01 4.81169462e-01 -1.76967252e-02 -3.91057460e-03 -1.01380634e+00 2.85875108e-02 -4.93356913e-01 2.23023966e-01 1.46220696e+00 7.19692037e-02 -6.93272233e-01 1.12037539e+00 9.86638367e-01 3.34852517e-01 -3.52316976e-01 -9.26241636e-01 -8.63603592e-01 6.71237782e-02 -4.56036001e-01 3.90356153e-01 1.13448739e+00 -3.87051523e-01 -4.46599156e-01 -7.99649835e-01 1.96629420e-01 9.63967264e-01 -1.34295121e-01 9.85353827e-01 -9.10339534e-01 -3.79993081e-01 -2.77906209e-01 -7.72392869e-01 -1.94254279e-01 2.44965553e-01 -6.73973262e-01 -3.40440184e-01 -8.97342622e-01 6.16293371e-01 -2.78636575e-01 1.02168217e-01 7.88734198e-01 1.41024649e-01 1.15124476e+00 2.86746055e-01 5.08176744e-01 -4.66757156e-02 6.97631463e-02 8.68462324e-01 -1.59741059e-01 2.32809216e-01 -2.30040982e-01 -8.44744980e-01 5.59547365e-01 1.08969867e+00 -5.36510646e-01 -1.44650310e-01 -3.81962687e-01 1.34320082e-02 -2.79227912e-01 8.12532365e-01 -1.09142458e+00 -1.76391508e-02 7.29567632e-02 6.80500567e-01 -1.33077025e-01 5.90591967e-01 -7.09942400e-01 2.20396027e-01 6.57881320e-01 -3.63045814e-03 -1.55127257e-01 2.62529790e-01 2.46589914e-01 1.65976826e-02 -1.39837086e-01 1.03199387e+00 -2.30461434e-01 -5.31342566e-01 1.85220301e-01 7.80871138e-02 -2.32715219e-01 1.19091380e+00 -3.70899737e-01 -5.07076919e-01 -7.70218730e-01 -3.61204714e-01 -1.70880139e-01 8.62195492e-01 3.29890132e-01 6.94740117e-01 -1.11883342e+00 -7.95866907e-01 1.62329793e-01 1.76122170e-02 -6.98842168e-01 2.14323059e-01 8.05540562e-01 -6.58890426e-01 1.43395409e-01 -5.79953909e-01 -4.62954253e-01 -1.65910411e+00 4.54933017e-01 2.76280642e-01 2.03161567e-01 -2.96391547e-01 7.36518383e-01 -1.85544435e-02 -2.82456189e-01 -1.16266377e-01 4.16299015e-01 1.70625150e-01 2.49826759e-02 7.38870502e-01 3.54373574e-01 1.70888141e-01 -1.00591469e+00 -4.33254004e-01 2.68278033e-01 -9.26763341e-02 -2.82976419e-01 1.36164474e+00 5.19275554e-02 -3.90726566e-01 -2.14566246e-01 1.20895445e+00 3.55710447e-01 -1.16010046e+00 3.35830629e-01 -3.04231465e-01 -1.19933665e+00 -9.56753939e-02 -8.99501681e-01 -1.35194468e+00 8.02304029e-01 9.38261807e-01 1.86367914e-01 9.59988117e-01 -9.82960314e-02 7.72550702e-01 1.42855763e-01 5.31975150e-01 -6.75948262e-01 3.49852204e-01 -1.96710780e-01 8.99577022e-01 -1.62193918e+00 6.98485449e-02 -3.46099257e-01 -6.65579438e-01 9.45689738e-01 5.94495058e-01 2.12550908e-02 1.73408136e-01 3.62320803e-02 1.56580269e-01 -1.95522234e-01 -2.19533563e-01 1.57047272e-01 -1.02895379e-01 9.93550837e-01 3.87044638e-01 -4.54334579e-02 -1.38141915e-01 9.44618955e-02 -3.66441131e-01 2.07142845e-01 5.88377357e-01 6.40154839e-01 -8.64860713e-02 -1.46673858e+00 -7.56128311e-01 3.37154895e-01 -5.39652586e-01 6.96480945e-02 -9.58766162e-01 8.92816424e-01 1.28757685e-01 1.12994719e+00 -5.81702143e-02 -3.81487906e-01 -5.64551316e-02 -4.36963178e-02 6.71287894e-01 -2.99873680e-01 -5.23726404e-01 -5.49411058e-01 -2.66298396e-03 -5.78068733e-01 -3.57013792e-01 -8.64993513e-01 -7.02723920e-01 -8.28235209e-01 -1.26166746e-01 -2.14149997e-01 8.17275465e-01 7.23901153e-01 3.77027601e-01 -2.98809558e-01 7.64573812e-01 -9.30721164e-01 -5.91816068e-01 -7.96944976e-01 -4.01114315e-01 6.99882329e-01 1.40053183e-01 -5.31474829e-01 -5.08432269e-01 4.44154888e-02]
[12.740562438964844, 1.0409080982208252]
562fda9f-ee37-4a74-a3e2-476316341ffd
instructions-as-backdoors-backdoor
2305.14710
null
https://arxiv.org/abs/2305.14710v1
https://arxiv.org/pdf/2305.14710v1.pdf
Instructions as Backdoors: Backdoor Vulnerabilities of Instruction Tuning for Large Language Models
Instruction-tuned models are trained on crowdsourcing datasets with task instructions to achieve superior performance. However, in this work we raise security concerns about this training paradigm. Our studies demonstrate that an attacker can inject backdoors by issuing very few malicious instructions among thousands of gathered data and control model behavior through data poisoning, without even the need of modifying data instances or labels themselves. Through such instruction attacks, the attacker can achieve over 90% attack success rate across four commonly used NLP datasets, and cause persistent backdoors that are easily transferred to 15 diverse datasets zero-shot. In this way, the attacker can directly apply poisoned instructions designed for one dataset on many other datasets. Moreover, the poisoned model cannot be cured by continual learning. Lastly, instruction attacks show resistance to existing inference-time defense. These findings highlight the need for more robust defenses against data poisoning attacks in instructiontuning models and underscore the importance of ensuring data quality in instruction crowdsourcing.
['Muhao Chen', 'Chaowei Xiao', 'Fei Wang', 'Mingyu Derek Ma', 'Jiashu Xu']
2023-05-24
null
null
null
null
['data-poisoning']
['adversarial']
[ 2.73047872e-02 -8.94258618e-02 -4.99171674e-01 3.04116547e-04 -9.45981324e-01 -1.40637362e+00 5.51354468e-01 1.80312917e-01 -6.88893199e-01 8.21821809e-01 1.35155367e-02 -7.43145227e-01 5.03467679e-01 -6.91650569e-01 -1.18560278e+00 -6.51869059e-01 4.74881351e-01 2.71317542e-01 4.80389357e-01 -4.06345487e-01 4.49256331e-01 6.01013541e-01 -1.25509381e+00 9.13125202e-02 9.39964235e-01 5.80785200e-02 -6.04649782e-01 8.33307624e-01 1.03938885e-01 1.13137853e+00 -1.38236749e+00 -8.40630174e-01 3.45340908e-01 9.21318084e-02 -5.44704974e-01 -4.16575760e-01 6.39464736e-01 -1.07142484e+00 -7.34574199e-01 1.08025002e+00 5.26602507e-01 -3.81155685e-02 1.38381258e-01 -1.88345444e+00 -1.02157307e+00 5.61557889e-01 -3.32379103e-01 2.59071052e-01 5.20830274e-01 9.73725557e-01 5.25517225e-01 -3.83474678e-01 2.93488413e-01 1.15214276e+00 1.71344832e-01 1.11698055e+00 -1.33990777e+00 -1.22731841e+00 -1.18227154e-01 -4.12273884e-01 -1.04829764e+00 -5.12878656e-01 2.38651961e-01 -5.66973746e-01 8.25222492e-01 3.97498965e-01 6.48723543e-02 1.95757079e+00 4.90975350e-01 7.61980653e-01 1.17230344e+00 1.14765139e-02 4.75746870e-01 2.49553129e-01 3.97014022e-01 8.28875661e-01 7.56894410e-01 5.63563228e-01 -9.62878048e-01 -9.43879545e-01 1.77537039e-01 -5.99852279e-02 -2.10239470e-01 -5.83854802e-02 -8.07730317e-01 1.16422522e+00 2.22657129e-01 -8.71238932e-02 1.17907964e-01 3.52220982e-01 6.03522658e-01 2.97212694e-02 1.04650334e-02 9.11987782e-01 -5.38430512e-01 -2.33288780e-01 -1.77461103e-01 4.77487147e-01 9.90227997e-01 1.08716476e+00 7.39994943e-01 3.45343262e-01 -3.05385828e-01 -1.17707759e-01 5.46513647e-02 1.01383126e+00 6.87812865e-01 -8.17818701e-01 6.23142540e-01 4.99465495e-01 4.64428425e-01 -1.01532984e+00 6.32115966e-03 2.37029806e-01 1.39667481e-01 1.01813085e-01 7.39056945e-01 -5.06536722e-01 -5.95806539e-01 1.70644093e+00 6.65054500e-01 1.63600445e-01 -1.66759968e-01 5.24798572e-01 5.66479325e-01 1.69847876e-01 4.52314079e-01 4.02529210e-01 1.45697260e+00 -5.17353773e-01 -7.43584931e-01 -2.76017517e-01 9.33788836e-01 -5.04063010e-01 1.68315768e+00 2.91502625e-01 -6.44765377e-01 -9.95287374e-02 -1.29554212e+00 -2.37255529e-01 -8.42855871e-01 -4.69301373e-01 6.30152225e-01 1.22671080e+00 -5.30122936e-01 1.27745748e-01 -9.70824182e-01 -3.04268915e-02 7.47857213e-01 5.91130674e-01 -2.63650626e-01 -3.39100882e-02 -1.28340018e+00 7.33442008e-01 6.35106163e-03 -6.12494707e-01 -1.72691369e+00 -1.04971802e+00 -7.56215692e-01 -2.38619596e-01 4.70130414e-01 -1.60321787e-01 1.37884760e+00 -5.76848835e-02 -1.41302490e+00 7.52193630e-01 -9.58824903e-02 -5.34905076e-01 4.83668745e-01 -4.64741886e-01 -2.68801361e-01 -4.39250423e-03 3.61451864e-01 3.97153109e-01 1.11008024e+00 -1.35965776e+00 -4.00726885e-01 -3.43368977e-01 4.65001911e-01 -2.68608510e-01 -7.66565144e-01 1.31770790e-01 2.12592497e-01 -4.01199073e-01 -8.23181391e-01 -1.11147308e+00 -1.08392630e-02 -2.59747207e-01 -6.09829068e-01 -5.95177002e-02 1.05701673e+00 -3.56721550e-01 1.09594333e+00 -2.25199795e+00 -4.56837296e-01 -2.49500990e-01 6.27036154e-01 8.74871075e-01 -2.52894223e-01 3.69735897e-01 4.26933706e-01 6.68135583e-01 4.63158898e-02 7.70032778e-02 2.46273726e-01 3.18365067e-01 -1.00893831e+00 6.75616205e-01 2.25294381e-01 1.14425218e+00 -1.14624465e+00 -1.24781460e-01 -1.33987859e-01 2.89545953e-01 -6.67521715e-01 3.29928458e-01 -4.41760778e-01 4.46742535e-01 -5.89314997e-01 6.20158970e-01 4.68857884e-01 5.85287660e-02 -1.71080530e-01 3.82690966e-01 3.19123864e-01 4.55928296e-01 -4.34660643e-01 1.04015613e+00 -2.74689406e-01 4.98499781e-01 -1.41588016e-03 -8.20287541e-02 6.62041783e-01 2.65213996e-01 5.40291816e-02 -5.72420537e-01 1.72654182e-01 2.21485823e-01 -1.06465265e-01 -7.95337260e-01 5.56607842e-01 1.52709335e-01 -4.87042367e-01 8.83011520e-01 -3.24908197e-01 -4.17126775e-01 -1.55498967e-01 4.74795699e-01 1.49830937e+00 -3.72865349e-01 7.68317608e-03 -6.90863729e-02 3.65748972e-01 5.07681668e-01 3.24198872e-01 1.10094643e+00 -8.60853255e-01 -1.59387648e-01 6.29395008e-01 -5.24558425e-01 -7.80766368e-01 -1.05077446e+00 3.04375496e-02 1.70213020e+00 -8.72059688e-02 -1.55682847e-01 -1.14254940e+00 -1.39308298e+00 6.29587948e-01 1.03432107e+00 -7.73743272e-01 -7.10401118e-01 -6.62436247e-01 -4.31480646e-01 1.64198351e+00 3.49988401e-01 3.94137442e-01 -6.64024711e-01 -4.27121907e-01 -4.21435991e-03 -6.91312924e-02 -1.12994778e+00 -9.78750706e-01 3.09907377e-01 -3.38481128e-01 -1.54148567e+00 9.73681584e-02 -4.13466275e-01 5.81344068e-01 6.76382959e-01 1.11988223e+00 5.79400003e-01 -1.37470797e-01 4.58447158e-01 -1.10257760e-01 -7.54604757e-01 -9.45318282e-01 3.11496049e-01 4.07944113e-01 -4.42112595e-01 1.29303586e+00 -1.48291066e-01 -2.00575054e-01 6.11675262e-01 -1.09180748e+00 -1.08458126e+00 -1.30589411e-01 5.27076542e-01 -6.25952100e-03 -3.32991898e-01 9.66310263e-01 -1.04000628e+00 1.03346598e+00 -6.74782515e-01 -1.13246155e+00 2.97560871e-01 -2.83250719e-01 4.35223198e-03 8.54015648e-01 -1.02669299e+00 -5.67536831e-01 1.17156683e-02 2.22302064e-01 -2.53409833e-01 -2.69070506e-01 -5.87479234e-01 -2.70581007e-01 -5.46893001e-01 1.51712263e+00 1.48372754e-01 -5.27693629e-02 8.32186043e-02 5.55146456e-01 7.15673029e-01 3.99418920e-01 -9.27273452e-01 1.23103929e+00 5.68497777e-01 -3.79223943e-01 -5.43634236e-01 -8.10655057e-01 5.39340489e-02 -3.55416059e-01 3.02805901e-01 1.19897580e+00 -9.24091399e-01 -1.40682328e+00 3.74489516e-01 -1.12267280e+00 -4.84243512e-01 -8.11576620e-02 6.27586097e-02 -9.20266509e-02 2.21236080e-01 -8.65458608e-01 -5.43600261e-01 -9.13151167e-03 -1.74012578e+00 9.80245233e-01 1.67865068e-01 -4.48249996e-01 -8.58534038e-01 7.88111687e-02 8.00513148e-01 3.24120373e-01 7.99081698e-02 8.69109929e-01 -1.32019722e+00 -6.89864755e-01 -5.76968312e-01 2.42876306e-01 6.12027459e-02 1.98800638e-01 1.73472732e-01 -1.34139085e+00 -3.46351206e-01 3.86188418e-01 -8.59154224e-01 2.10150346e-01 -4.87157941e-01 1.11867690e+00 -6.56877279e-01 -1.89517811e-01 3.96683186e-01 9.67573464e-01 3.34035009e-01 2.03047469e-01 1.73562005e-01 1.01766121e+00 3.62470686e-01 3.32610011e-01 2.68955410e-01 3.00854713e-01 2.80997068e-01 4.68434453e-01 5.21350205e-01 3.00928265e-01 -7.94170797e-01 6.71449602e-01 1.06873795e-01 9.30148780e-01 -1.99448958e-01 -9.78612542e-01 3.24644297e-01 -1.21573818e+00 -5.50013125e-01 -3.02848727e-01 2.34303331e+00 1.26201344e+00 7.46349767e-02 1.87161267e-01 -2.40120962e-01 4.20961231e-01 6.23047054e-02 -9.33645368e-01 -6.66496634e-01 1.69716850e-01 1.67435154e-01 9.56751645e-01 8.09841931e-01 -1.12511778e+00 1.38448441e+00 6.86073160e+00 8.17643583e-01 -1.00839639e+00 3.76093775e-01 4.19741720e-01 -3.28144431e-01 -5.93430698e-01 -1.24609999e-01 -1.28812146e+00 6.47648752e-01 1.13222373e+00 -4.36141163e-01 6.99851394e-01 8.73255193e-01 -4.03588042e-02 -1.47593290e-01 -1.28989148e+00 3.81533295e-01 2.16644295e-02 -1.17476547e+00 -1.05309039e-01 3.38537902e-01 8.15216243e-01 -3.33539099e-02 3.80718052e-01 6.32378221e-01 1.44493473e+00 -1.18748677e+00 2.99177706e-01 -2.44667321e-01 4.65572417e-01 -7.18837321e-01 1.93220451e-01 5.91634750e-01 -3.78881186e-01 -2.93445617e-01 -4.48627800e-01 -5.32914661e-02 -3.86058748e-01 1.75693050e-01 -1.10154045e+00 -3.63584995e-01 2.13483587e-01 -2.79025167e-01 -9.02487516e-01 3.56555760e-01 -7.32053518e-01 8.85819256e-01 -4.24790084e-02 -3.95493269e-01 3.17930311e-01 4.87123847e-01 2.99683839e-01 7.32801437e-01 -4.77612704e-01 1.35770127e-01 3.20070118e-01 8.92020106e-01 -5.35654843e-01 -3.51712614e-01 -1.37323391e+00 -2.90201962e-01 1.02145195e+00 9.28658128e-01 -1.13926329e-01 -3.30342621e-01 -2.17013225e-01 7.03813374e-01 5.62209904e-01 4.07516390e-01 -1.15029120e+00 -2.24734843e-01 1.18038034e+00 -4.49187830e-02 -3.63390237e-01 -3.27565134e-01 -5.22852719e-01 -1.01680124e+00 -1.58506557e-01 -1.72248554e+00 8.39335471e-02 -3.07874799e-01 -1.44374049e+00 1.07849769e-01 -1.54174745e-01 -7.03263462e-01 -7.62970746e-02 -5.85394740e-01 -4.85082895e-01 6.97614014e-01 -1.07172847e+00 -6.83349788e-01 7.58173615e-02 9.21916723e-01 3.19395572e-01 -2.16953442e-01 8.06895971e-01 1.14477962e-01 -8.93555284e-01 1.20585227e+00 -1.73402071e-01 3.76930773e-01 1.01969373e+00 -1.05341804e+00 7.32095361e-01 9.35145736e-01 -2.34048571e-02 1.21073568e+00 5.57058930e-01 -1.08684921e+00 -1.72194815e+00 -1.11374974e+00 5.54371119e-01 -1.49729776e+00 1.15961432e+00 -8.48426759e-01 -1.18230224e+00 8.19414735e-01 2.40525771e-02 9.67318118e-02 1.03552675e+00 -4.33467567e-01 -1.07441115e+00 2.54619151e-01 -1.55635917e+00 8.28652978e-01 5.71635842e-01 -1.22409093e+00 -3.06680053e-01 8.18145394e-01 1.45359278e+00 -5.22983372e-01 -6.40605628e-01 -3.79257649e-01 1.73841834e-01 -4.46474522e-01 7.53762484e-01 -1.41029501e+00 3.68023306e-01 -1.94362998e-01 -3.26779485e-01 -9.99968886e-01 2.21113667e-01 -9.25817966e-01 -1.71943679e-01 1.22880352e+00 3.99481446e-01 -8.81852508e-01 6.90046310e-01 1.37119424e+00 3.74519497e-01 -1.42129079e-01 -7.81171679e-01 -7.52266645e-01 8.34530413e-01 -1.20023131e-01 1.09033263e+00 1.16319835e+00 -5.71876355e-02 1.31026939e-01 -3.22706074e-01 7.04301655e-01 8.26180100e-01 -8.21911693e-01 1.33254123e+00 -5.11371076e-01 -1.08108349e-01 2.88391970e-02 1.02452189e-01 -7.07432687e-01 6.41810715e-01 -6.46886289e-01 1.73387930e-01 -4.61235017e-01 -5.59158288e-02 -2.11194053e-01 3.02803159e-01 7.44634807e-01 -7.88866818e-01 1.99236482e-01 2.04312056e-01 1.73092112e-01 -4.09476727e-01 3.29741627e-01 1.10206985e+00 -1.97200894e-01 -2.55584568e-02 -2.53897041e-01 -9.93573904e-01 6.45235062e-01 9.99136865e-01 -1.06470251e+00 -5.78279674e-01 -5.89195371e-01 1.51131243e-01 -2.82414556e-01 4.60880876e-01 -6.46643281e-01 4.29763943e-01 -3.44525725e-01 -6.31036758e-02 1.32033471e-02 -1.66136563e-01 -8.27540278e-01 -5.48885465e-01 8.21565211e-01 -5.61600268e-01 2.59941548e-01 4.15630519e-01 6.95550621e-01 4.46663827e-01 -3.89017135e-01 7.29172409e-01 -1.33024767e-01 -2.49116585e-01 1.48178250e-01 -6.94048285e-01 5.56664169e-01 1.45286644e+00 2.92753905e-01 -1.25529468e+00 -3.80312465e-02 -2.17168629e-01 2.88481921e-01 8.19882691e-01 4.89657760e-01 2.67593354e-01 -1.10754311e+00 -4.68605042e-01 3.99584949e-01 2.56853998e-01 -2.95023739e-01 -1.57544211e-01 1.99180827e-01 -3.78513217e-01 2.19039410e-01 1.50423020e-01 -4.35477376e-01 -1.03721666e+00 1.17920053e+00 3.55415225e-01 -7.57340416e-02 -7.10056769e-03 8.51808608e-01 1.55246630e-01 -8.75129342e-01 2.87540793e-01 -7.06749707e-02 3.56973529e-01 -2.52646118e-01 9.65471923e-01 4.92430270e-01 5.09979203e-02 -2.39339367e-01 -3.75024736e-01 -2.71436214e-01 -2.98379838e-01 1.60952378e-02 5.73452950e-01 3.17576081e-01 -5.67301959e-02 1.68112945e-02 1.19210887e+00 6.60008967e-01 -1.39531863e+00 -2.73730699e-02 -4.75241616e-02 -7.78907716e-01 -5.35702765e-01 -7.18180239e-01 -6.48848951e-01 8.02004218e-01 2.35377178e-01 3.55377585e-01 3.08952302e-01 -4.19732720e-01 9.44248915e-01 7.28984296e-01 6.46132410e-01 -7.33968556e-01 4.81583476e-01 3.67802203e-01 4.57161784e-01 -1.47453189e+00 -2.14684665e-01 -1.88290969e-01 -6.93997800e-01 4.95439738e-01 1.10395122e+00 -2.89879858e-01 2.88688928e-01 8.06724727e-01 1.40197694e-01 -2.62879610e-01 -6.72134161e-01 3.85218143e-01 -2.36962199e-01 1.13421726e+00 1.17942773e-01 2.91752875e-01 3.95151451e-02 4.60974962e-01 -3.04637969e-01 -2.05397651e-01 9.91359472e-01 9.94284809e-01 -5.02906919e-01 -1.13099539e+00 -8.61814737e-01 1.87247202e-01 -7.41605341e-01 -1.02193855e-01 -7.94042647e-01 9.16191876e-01 -1.53466001e-01 1.57909775e+00 -4.20861661e-01 -5.85814416e-01 2.83357888e-01 2.81838328e-01 -2.86195036e-02 -7.49399126e-01 -1.34334433e+00 -6.78927958e-01 -1.05571464e-01 -7.92225838e-01 4.52801675e-01 -2.68620253e-01 -1.12359524e+00 -9.33111370e-01 -2.34545544e-01 8.08870718e-02 5.03982484e-01 8.29811573e-01 4.29506898e-01 1.99229836e-01 8.23592544e-01 -2.45913580e-01 -1.34130561e+00 -4.52255845e-01 -1.66072801e-01 4.68450367e-01 4.60901856e-01 -4.59646583e-01 -6.72028780e-01 -1.33604929e-01]
[5.976677894592285, 7.808117866516113]
7b59f1df-80e6-4fb0-a553-66dc1adc58a1
consistency-based-semi-supervised-learning
null
null
http://papers.nips.cc/paper/9259-consistency-based-semi-supervised-learning-for-object-detection
http://papers.nips.cc/paper/9259-consistency-based-semi-supervised-learning-for-object-detection.pdf
Consistency-based Semi-supervised Learning for Object detection
Making a precise annotation in a large dataset is crucial to the performance of object detection. While the object detection task requires a huge number of annotated samples to guarantee its performance, placing bounding boxes for every object in each sample is time-consuming and costs a lot. To alleviate this problem, we propose a Consistency-based Semi-supervised learning method for object Detection (CSD), which is a way of using consistency constraints as a tool for enhancing detection performance by making full use of available unlabeled data. Specifically, the consistency constraint is applied not only for object classification but also for the localization. We also proposed Background Elimination (BE) to avoid the negative effect of the predominant backgrounds on the detection performance. We have evaluated the proposed CSD both in single-stage and two-stage detectors and the results show the effectiveness of our method.
['Jeesoo Kim', 'Nojun Kwak', 'Seungeui Lee', 'Jisoo Jeong']
2019-12-01
null
null
null
neurips-2019-12
['semi-supervised-object-detection']
['computer-vision']
[ 1.28676474e-01 -2.44659469e-01 1.42895579e-01 -4.27117437e-01 -5.17850459e-01 -3.67329299e-01 3.46529365e-01 3.13142657e-01 -6.24751329e-01 4.85982984e-01 -3.77180248e-01 -2.01213226e-01 2.97712088e-01 -7.88252771e-01 -5.50376773e-01 -8.45599174e-01 3.65032315e-01 1.79226086e-01 1.03552353e+00 2.84093142e-01 7.80650824e-02 6.21395290e-01 -1.44495094e+00 1.43854152e-02 8.41063976e-01 9.86371636e-01 6.69894695e-01 3.81490588e-01 -3.97109807e-01 6.66241884e-01 -5.15911818e-01 -1.20221145e-01 5.54413557e-01 -3.46282870e-01 -3.29077035e-01 5.38610399e-01 1.41805574e-01 -4.78896737e-01 4.84306626e-02 1.25135303e+00 3.21194440e-01 -8.26381221e-02 6.57921851e-01 -1.23161006e+00 8.65495577e-02 2.45863155e-01 -1.03474498e+00 2.81120002e-01 -2.58528054e-01 -3.66127975e-02 5.66821933e-01 -9.06606615e-01 2.41557777e-01 9.22156334e-01 4.85776097e-01 3.53931218e-01 -9.43105817e-01 -7.32748032e-01 1.95269004e-01 -9.73739848e-02 -1.55043256e+00 -3.75378489e-01 7.14419186e-01 -5.73960185e-01 3.28984141e-01 2.17744902e-01 5.36213219e-01 3.34788054e-01 -6.49012029e-02 6.96732223e-01 9.46668267e-01 -7.98902333e-01 3.45183015e-01 4.45182294e-01 3.97650778e-01 7.83275545e-01 7.97570944e-01 -2.56603003e-01 -7.62894005e-02 -5.67169115e-02 7.82297552e-01 1.70352325e-01 -1.92214884e-02 -4.53158170e-01 -8.57014239e-01 5.24811208e-01 2.93410271e-01 1.63582295e-01 -1.80960968e-01 -1.98232487e-01 4.55209583e-01 -2.19264984e-01 4.54490423e-01 1.24773439e-02 -1.61509246e-01 3.80728453e-01 -9.03101087e-01 -1.26637787e-01 4.40546840e-01 9.48936343e-01 6.63468480e-01 -1.76053882e-01 -3.63204390e-01 7.07798004e-01 3.86207938e-01 3.93929124e-01 5.84920347e-02 -4.32870954e-01 3.73142749e-01 1.06985378e+00 5.32685518e-01 -9.05724406e-01 -2.74939597e-01 -4.28121626e-01 -7.47118771e-01 4.17095155e-01 6.24102056e-01 -3.47361863e-02 -9.73453701e-01 1.38658977e+00 8.00167620e-01 7.62365982e-02 -3.05956692e-01 1.03384709e+00 5.66314220e-01 6.38133228e-01 2.57630974e-01 -5.47464132e-01 1.30367577e+00 -9.53667164e-01 -7.20838487e-01 -1.66062489e-01 6.76658571e-01 -8.51876915e-01 7.07688451e-01 2.51043320e-01 -6.21246696e-01 -7.11386859e-01 -1.14012408e+00 1.18336335e-01 -9.83361155e-02 7.41342545e-01 5.87589085e-01 7.45139956e-01 -3.90691727e-01 5.94705939e-02 -9.77251470e-01 -4.06969458e-01 4.29585099e-01 3.33983988e-01 -3.29072088e-01 8.45698081e-03 -5.73871970e-01 8.50646973e-01 7.64785230e-01 4.13626313e-01 -6.84276402e-01 -4.36163358e-02 -5.82298160e-01 7.36593604e-02 6.89024806e-01 -2.66065150e-02 1.07685196e+00 -8.20221961e-01 -1.02145696e+00 8.11495543e-01 -2.17151806e-01 -3.70230079e-01 8.00706685e-01 -2.00518101e-01 -1.81226104e-01 -9.78747606e-02 5.12510277e-02 3.59866053e-01 7.60174274e-01 -1.12557280e+00 -1.03539431e+00 -3.23041022e-01 -1.86011821e-01 1.15037963e-01 -3.98413301e-01 1.96002260e-01 -9.13386226e-01 -4.10904109e-01 4.40125495e-01 -8.21833968e-01 -3.78004074e-01 2.26635605e-01 -4.64206040e-01 -2.74761379e-01 1.17865336e+00 -7.44840384e-01 1.17486012e+00 -2.33425164e+00 -5.01575291e-01 1.92580253e-01 8.39901436e-03 5.24237633e-01 1.85740650e-01 -1.31195843e-01 3.51896107e-01 -1.25348374e-01 -1.48832440e-01 -3.90067160e-01 -3.23646605e-01 7.58365914e-02 -3.37893367e-02 4.81045425e-01 4.14592415e-01 3.59088868e-01 -5.94276667e-01 -9.10334289e-01 4.12413508e-01 1.70320272e-01 -2.22143754e-01 3.56797993e-01 -2.62505382e-01 1.84568942e-01 -5.76292932e-01 7.06175148e-01 1.03229296e+00 -1.80229500e-01 1.70356691e-01 -3.50685745e-01 -3.26165050e-01 -1.68213382e-01 -1.69458258e+00 1.08808792e+00 -1.71811193e-01 2.36828774e-01 2.60270238e-01 -8.17058682e-01 1.05187607e+00 -3.38118449e-02 4.18812215e-01 -4.66966033e-01 3.03735733e-01 2.12458849e-01 2.21197512e-02 -4.34238106e-01 4.08397883e-01 6.50832653e-02 3.27065945e-01 2.68254459e-01 -3.48975658e-01 1.89730152e-01 3.92458349e-01 1.58350453e-01 8.51068079e-01 1.86968163e-01 5.60775578e-01 -3.98267031e-01 6.47300005e-01 2.62588948e-01 1.08144200e+00 6.98675752e-01 -3.53909731e-01 3.75785500e-01 1.96158752e-01 -3.63120854e-01 -1.03061152e+00 -5.75739980e-01 -1.66549608e-01 7.28957534e-01 4.59594101e-01 -1.11910649e-01 -7.66469181e-01 -8.80889595e-01 -1.18338272e-01 4.04715776e-01 -2.61950433e-01 -7.53472140e-03 -4.06020761e-01 -1.00186265e+00 9.04879570e-02 6.88724577e-01 7.96225131e-01 -6.70059025e-01 -7.76449919e-01 9.08097774e-02 -8.34231675e-02 -1.20882475e+00 -4.48758423e-01 3.87135148e-01 -7.82070100e-01 -1.22054732e+00 -4.34252411e-01 -8.59591126e-01 1.08129239e+00 6.05467319e-01 6.01634622e-01 4.50744629e-01 -4.12932903e-01 -2.23072261e-01 -4.29002881e-01 -6.25579536e-01 -3.57135564e-01 -2.03748077e-01 2.43036281e-02 1.81795090e-01 3.43095839e-01 1.97863385e-01 -3.26966286e-01 6.36133969e-01 -7.31642604e-01 1.85023218e-01 8.21150541e-01 6.26191497e-01 7.15249121e-01 3.93515944e-01 4.44098443e-01 -8.78861189e-01 1.30857632e-01 5.42435125e-02 -1.30676925e+00 3.89682204e-01 -3.71922463e-01 -4.36415523e-02 3.12144637e-01 -4.38238740e-01 -1.30326235e+00 6.87908411e-01 7.61675239e-02 -3.38884830e-01 -1.05288826e-01 -1.67313479e-02 -4.82750535e-01 -2.21061215e-01 5.35075784e-01 2.20814094e-01 -8.37626085e-02 -5.93700230e-01 7.31915608e-02 8.51185977e-01 4.04227793e-01 -2.57395595e-01 8.30460429e-01 5.32433629e-01 1.03065953e-01 -8.29475820e-01 -8.39483380e-01 -9.41571832e-01 -8.16880822e-01 -3.26712787e-01 8.45534265e-01 -9.05174136e-01 -3.73607844e-01 3.97193849e-01 -1.12060559e+00 1.56223476e-02 8.55344161e-02 6.51475132e-01 1.85803816e-01 5.84120810e-01 -2.99917549e-01 -1.28222156e+00 -2.65971124e-01 -1.05061603e+00 8.79409611e-01 3.75468642e-01 3.58427912e-01 -4.63636965e-01 -2.64992833e-01 1.98771715e-01 4.70769890e-02 9.94994044e-02 5.51476896e-01 -7.07438707e-01 -8.70213270e-01 -5.40274978e-01 -5.75090647e-01 5.90888977e-01 2.25092337e-01 2.73787141e-01 -9.40747023e-01 -1.29671067e-01 1.05978228e-01 -1.12879299e-01 8.06558311e-01 3.61280173e-01 9.94579077e-01 8.85217786e-02 -6.41917646e-01 7.45002478e-02 1.53357530e+00 3.44538033e-01 4.06886905e-01 2.52834499e-01 6.49826944e-01 4.57364023e-01 1.19119060e+00 5.21820426e-01 -1.67515278e-01 6.96974456e-01 3.89476806e-01 -2.62166053e-01 -1.14883065e-01 -6.34381324e-02 1.11247383e-01 3.26687813e-01 7.02745840e-02 -2.20585793e-01 -7.54787564e-01 4.30571973e-01 -1.97141004e+00 -6.54816628e-01 -5.72875321e-01 2.46532130e+00 7.19190359e-01 4.55803066e-01 2.47149155e-01 3.01052094e-01 1.11957407e+00 -3.81323636e-01 -3.29242289e-01 1.98712364e-01 1.51963070e-01 -2.66889125e-01 5.71268737e-01 3.37785631e-01 -1.34059572e+00 7.46686041e-01 6.15670204e+00 8.95085156e-01 -1.03071928e+00 2.85329539e-02 5.16231596e-01 2.27733359e-01 4.32699174e-01 -2.19940934e-02 -1.28169048e+00 5.42069316e-01 1.30134404e-01 3.68578225e-01 -2.46937543e-01 1.28317857e+00 3.56720448e-01 -7.05798388e-01 -8.38390172e-01 9.19581056e-01 -2.18514487e-01 -1.05275393e+00 -9.84313115e-02 -1.77948862e-01 4.33459759e-01 -4.32054967e-01 -6.25270665e-01 1.06413066e-01 -9.64681953e-02 -3.13539326e-01 8.58895719e-01 1.00381836e-01 4.03789401e-01 -5.46347439e-01 9.15489972e-01 7.59364665e-01 -1.38949716e+00 -7.83363171e-03 -6.44973040e-01 -3.42325158e-02 1.24293014e-01 1.01165235e+00 -1.03073537e+00 3.05329084e-01 5.62485099e-01 2.30640277e-01 -7.84866810e-01 1.49842477e+00 -2.24674344e-01 6.29828453e-01 -5.28512418e-01 -2.08372399e-01 -7.67497122e-02 -2.66676933e-01 3.30379277e-01 1.32211876e+00 1.56026334e-01 2.04721034e-01 6.73287272e-01 6.61275208e-01 1.11429103e-01 1.72162831e-01 -3.41157407e-01 1.26632348e-01 5.93801081e-01 1.46475697e+00 -1.24991763e+00 -3.59187782e-01 -4.31314647e-01 7.75767148e-01 1.74819410e-01 8.63021892e-03 -9.35368717e-01 -3.16196650e-01 -3.79966795e-02 2.76041299e-01 3.13480854e-01 -4.06327158e-01 -3.39990318e-01 -9.30287540e-01 2.83950448e-01 -3.44488621e-01 4.49554890e-01 -4.86455888e-01 -9.86234248e-01 2.88669616e-01 -8.99019539e-02 -1.23420358e+00 2.98033416e-01 -6.11738443e-01 -5.71848333e-01 7.41817832e-01 -1.38665009e+00 -1.14045548e+00 -7.27570236e-01 3.59567046e-01 5.46616256e-01 7.85202757e-02 3.36795628e-01 5.73075712e-01 -1.02488983e+00 3.18023056e-01 -1.33699760e-01 3.72242212e-01 6.15046680e-01 -8.48792970e-01 -5.20342104e-02 1.32867169e+00 1.59490004e-01 4.23746735e-01 6.66051924e-01 -7.42645741e-01 -1.18243909e+00 -1.13710928e+00 5.32822013e-01 -1.35638192e-01 1.37176856e-01 -5.21047473e-01 -9.44782853e-01 4.36318159e-01 -3.48677516e-01 3.08959246e-01 3.30134541e-01 -7.45962337e-02 -3.69416326e-02 -3.36988628e-01 -1.13324881e+00 2.76694983e-01 7.84203172e-01 -1.84509717e-02 -4.57188934e-01 3.60547006e-01 6.21229410e-01 -3.65211070e-01 -1.41099989e-01 5.14603496e-01 3.63634586e-01 -9.47278976e-01 6.03803217e-01 -1.34192780e-01 -1.44527689e-01 -1.09995174e+00 1.27694393e-02 -5.83949625e-01 -3.50301445e-01 -8.74782279e-02 1.16506562e-01 1.49355280e+00 2.78171957e-01 -2.64969051e-01 7.53503084e-01 7.06214368e-01 -6.85269898e-03 -3.46951336e-01 -5.37221730e-01 -9.73550558e-01 -7.61733472e-01 -2.27182150e-01 1.55933723e-01 6.66937888e-01 -3.77507418e-01 1.93292558e-01 -3.38292241e-01 5.72837889e-01 7.39774704e-01 7.09557608e-02 9.24245536e-01 -1.18841016e+00 -1.88839808e-01 -5.59037738e-03 -4.78532523e-01 -7.34381437e-01 -2.94170588e-01 -4.46338713e-01 3.56683135e-01 -1.42262793e+00 6.15646660e-01 -7.98764288e-01 -2.26456225e-01 4.61378276e-01 -3.83735985e-01 2.72641391e-01 4.87362668e-02 3.81497711e-01 -7.58813083e-01 1.53651968e-01 9.28248107e-01 6.14641868e-02 -2.96593696e-01 1.85597152e-01 -2.78091848e-01 7.95295238e-01 7.25061536e-01 -6.46846652e-01 -2.14541808e-01 -2.08626062e-01 -1.85472250e-01 -2.70530373e-01 3.61077487e-01 -1.13621879e+00 2.09674224e-01 -2.75122643e-01 5.21156073e-01 -8.80553484e-01 4.93181199e-02 -1.03778183e+00 4.44099605e-02 6.96963310e-01 8.50516409e-02 -4.01683122e-01 2.36098945e-01 7.15494633e-01 -1.94731042e-01 -4.74259675e-01 1.20150781e+00 -4.80119102e-02 -1.01307702e+00 9.56467390e-02 6.64195791e-02 -3.73377115e-01 1.45649743e+00 -2.36487508e-01 -2.25026477e-02 2.60488689e-01 -4.13621664e-01 2.77676731e-01 5.31806111e-01 6.26577213e-02 2.42763430e-01 -1.09786522e+00 -5.05566120e-01 2.59927422e-01 1.90832689e-01 3.26481700e-01 -1.37296710e-02 6.62969530e-01 -5.56619048e-01 1.94457427e-01 -1.23765469e-01 -7.47065544e-01 -1.53126478e+00 6.68977618e-01 1.35105446e-01 -1.88444957e-01 -5.57640314e-01 7.81980991e-01 1.78384244e-01 4.38110940e-02 4.32366490e-01 -3.50990146e-01 -2.08372936e-01 -1.38915434e-01 6.58321500e-01 4.62411523e-01 2.41906345e-02 -2.06988722e-01 -5.10247231e-01 3.75662178e-01 -1.90117374e-01 1.04088463e-01 8.95946324e-01 -4.68162149e-02 -1.22640349e-01 2.93099552e-01 5.65168262e-01 1.65304244e-01 -1.38491082e+00 -2.28879899e-01 2.24302053e-01 -5.66464126e-01 1.59360588e-01 -5.73805213e-01 -8.67760837e-01 7.45594084e-01 7.01484382e-01 1.14574850e-01 1.06790674e+00 -1.79676518e-01 3.97130251e-01 4.54250216e-01 3.67182970e-01 -1.18780458e+00 7.80107826e-02 1.00753516e-01 3.80228132e-01 -1.56539643e+00 3.20392549e-01 -8.85234654e-01 -5.91530502e-01 9.97402191e-01 9.25858736e-01 5.93032390e-02 5.89019716e-01 4.85137314e-01 -3.10267042e-02 1.23289518e-01 -2.21503153e-01 -3.01129460e-01 2.66108364e-01 3.15820783e-01 3.29611689e-01 -1.10362917e-01 -4.67855453e-01 4.84472752e-01 6.31014585e-01 4.10972163e-02 2.25387484e-01 1.23494375e+00 -9.61149216e-01 -1.01274204e+00 -5.60912549e-01 4.91791219e-01 -2.57640719e-01 3.31607163e-01 -3.28203827e-01 7.55602300e-01 4.82564181e-01 9.74188626e-01 -1.40517622e-01 -1.13936238e-01 2.00738937e-01 3.18213254e-02 2.79891968e-01 -8.35958600e-01 -1.03678100e-01 2.52745956e-01 -2.07268056e-02 -2.45535702e-01 -5.68496764e-01 -4.96192515e-01 -1.51598501e+00 2.69776493e-01 -1.16036296e+00 5.88046685e-02 7.31402695e-01 9.05614614e-01 1.05451651e-01 4.03091162e-01 5.41633010e-01 -5.11851549e-01 -7.27792978e-01 -1.07011068e+00 -8.31287444e-01 3.07495803e-01 7.61446506e-02 -8.67569268e-01 -1.83335319e-01 2.00853631e-01]
[9.1648588180542, 1.1649394035339355]
bac627e2-eb02-4969-93a0-fc5cc5673336
assessing-the-use-of-prosody-in-constituency
2106.07794
null
https://arxiv.org/abs/2106.07794v1
https://arxiv.org/pdf/2106.07794v1.pdf
Assessing the Use of Prosody in Constituency Parsing of Imperfect Transcripts
This work explores constituency parsing on automatically recognized transcripts of conversational speech. The neural parser is based on a sentence encoder that leverages word vectors contextualized with prosodic features, jointly learning prosodic feature extraction with parsing. We assess the utility of the prosody in parsing on imperfect transcripts, i.e. transcripts with automatic speech recognition (ASR) errors, by applying the parser in an N-best reranking framework. In experiments on Switchboard, we obtain 13-15% of the oracle N-best gain relative to parsing the 1-best ASR output, with insignificant impact on word recognition error rate. Prosody provides a significant part of the gain, and analyses suggest that it leads to more grammatical utterances via recovering function words.
['Mari Ostendorf', 'Trang Tran']
2021-06-14
null
null
null
null
['constituency-parsing']
['natural-language-processing']
[ 4.99822170e-01 9.46202755e-01 -2.03145549e-01 -6.86646461e-01 -1.40060115e+00 -8.13168705e-01 7.51649961e-02 8.12638253e-02 -3.67862225e-01 5.71875393e-01 1.21274281e+00 -5.42470753e-01 2.80635655e-01 -4.43606138e-01 -4.80613947e-01 -2.81674892e-01 -7.98381567e-02 2.43247181e-01 -1.39669269e-01 -3.72049093e-01 -1.31010544e-03 1.32414149e-02 -9.09281671e-01 7.69895256e-01 2.60250032e-01 7.44705915e-01 5.42517975e-02 1.08411396e+00 -4.02215570e-01 9.33265269e-01 -9.05964792e-01 -5.60482085e-01 2.08434641e-01 -5.22828281e-01 -1.10344946e+00 1.41561016e-01 2.18739316e-01 -4.07773525e-01 -1.62143752e-01 6.86417878e-01 2.11164996e-01 7.52626732e-02 2.17750743e-01 -4.87514645e-01 -3.17881644e-01 1.31261218e+00 -3.32047045e-02 5.03067136e-01 7.20728695e-01 8.76725614e-02 2.03334475e+00 -6.89266324e-01 6.22156262e-01 1.54007304e+00 5.65890074e-01 6.70517981e-01 -1.59341812e+00 -2.76049793e-01 3.11927736e-01 -5.53170264e-01 -7.56581128e-01 -8.42820227e-01 7.53377855e-01 -2.15389952e-01 1.75473249e+00 3.42091382e-01 1.90674827e-01 1.15245998e+00 9.29041281e-02 8.57220292e-01 8.17270577e-01 -4.93088067e-01 3.33998837e-02 -8.11926201e-02 7.48660147e-01 5.22722542e-01 -3.25330973e-01 8.57774988e-02 -8.71860802e-01 -3.16026747e-01 3.36213678e-01 -6.32034600e-01 -3.97995472e-01 4.29264277e-01 -7.70485461e-01 9.81494904e-01 -6.02545077e-03 2.14915708e-01 -4.76532191e-01 -2.71735378e-02 5.95282912e-01 4.50508416e-01 4.37204152e-01 6.95797741e-01 -9.18771863e-01 -5.82689345e-01 -7.04280555e-01 -2.20879152e-01 1.09427929e+00 8.33260894e-01 5.91672122e-01 1.08346313e-01 -1.69651136e-01 1.21497750e+00 1.46530434e-01 3.47087771e-01 6.98706031e-01 -1.08981788e+00 8.03642571e-01 3.96702468e-01 -2.45116681e-01 -4.06283945e-01 -4.66835231e-01 -4.25482392e-02 6.06368482e-02 -3.89907748e-01 3.87660682e-01 -5.91560066e-01 -7.75529146e-01 1.94503558e+00 -3.09084412e-02 -4.14497614e-01 7.05321074e-01 4.48398590e-01 7.05792367e-01 9.82006669e-01 2.11545244e-01 -4.98806208e-01 1.59983909e+00 -9.59975004e-01 -6.53374493e-01 -4.84318078e-01 5.60701191e-01 -8.38388443e-01 1.05804420e+00 3.73778939e-01 -1.16362810e+00 -3.45893741e-01 -8.24570894e-01 -1.15018547e-01 3.19489717e-01 -1.38331398e-01 4.19434458e-01 8.94381881e-01 -1.08782303e+00 5.32698691e-01 -8.99256885e-01 -1.88631311e-01 -3.15583199e-02 4.25765187e-01 -4.75976348e-01 1.73505679e-01 -1.00064206e+00 7.83031464e-01 4.35396045e-01 -2.28011981e-01 -4.58061576e-01 -5.52936435e-01 -1.09588325e+00 2.44158849e-01 1.49422571e-01 6.09243661e-02 1.78367460e+00 -1.01387513e+00 -1.87081671e+00 5.61629772e-01 -4.46178734e-01 -5.79535604e-01 -4.70448993e-02 -3.44483614e-01 -1.99031472e-01 2.98910588e-01 5.33449017e-02 6.93235874e-01 3.67762625e-01 -7.88717866e-01 -6.58445776e-01 -9.48971212e-02 1.46881536e-01 3.46246332e-01 -1.18413977e-01 3.91777843e-01 1.13602258e-01 -4.22139376e-01 1.77140310e-01 -8.51717889e-01 -1.27238363e-01 -9.66513395e-01 -4.37269211e-01 -5.22592068e-01 4.16959941e-01 -1.19148731e+00 1.15263319e+00 -2.13805318e+00 -1.11010954e-01 1.40916869e-01 -2.44754791e-01 -6.23815767e-02 -3.93954098e-01 4.76150215e-01 1.34484190e-02 4.05797720e-01 -1.87103927e-01 -3.81365329e-01 -6.66388795e-02 4.50643688e-01 -5.68947554e-01 -1.18677191e-01 7.52474725e-01 7.47100174e-01 -5.61019897e-01 -6.66537806e-02 -1.23122260e-02 1.99876264e-01 -8.16732585e-01 3.27508360e-01 -2.12584525e-01 2.66548663e-01 -9.50296372e-02 7.36726165e-01 1.89353108e-01 1.99417517e-01 8.18273842e-01 1.93027020e-01 -1.39144704e-01 1.45662153e+00 -5.88176250e-01 1.34305716e+00 -7.09428787e-01 5.02936602e-01 4.75151867e-01 -6.62369549e-01 8.62501860e-01 6.63937271e-01 1.48559213e-02 -5.96253276e-01 -5.75964563e-02 1.06369168e-01 4.16171819e-01 -3.36859167e-01 6.08079433e-01 -4.31165308e-01 -4.54971015e-01 4.11324263e-01 4.01745379e-01 6.65722340e-02 -1.14400886e-01 8.56556371e-02 1.55629349e+00 -9.63831618e-02 5.11304140e-01 -2.43815780e-01 2.49526396e-01 4.94791344e-02 8.29581439e-01 6.55688226e-01 -1.68669105e-01 5.83724320e-01 9.25747514e-01 -1.30282924e-01 -8.03287208e-01 -9.61703837e-01 -7.28838891e-02 1.65851772e+00 -6.34448111e-01 -5.77889383e-01 -8.60077202e-01 -8.91527355e-01 -2.65317678e-01 1.06340826e+00 -1.23229757e-01 2.34509826e-01 -1.18678999e+00 -5.10413349e-01 8.60824287e-01 7.67342329e-01 -3.07139158e-01 -1.55843329e+00 -3.15404028e-01 5.99179626e-01 -2.96072423e-01 -1.36807930e+00 -5.05885124e-01 7.22303212e-01 -7.88108826e-01 -9.53785419e-01 -1.47805857e-02 -8.68934631e-01 1.79849461e-01 -1.10788837e-01 1.19727743e+00 -2.04836875e-02 2.44159251e-01 3.83238941e-01 -6.60521150e-01 -7.04065850e-03 -9.76644635e-01 2.03682855e-01 -1.28722219e-02 -4.13813144e-01 4.15857017e-01 -4.63014990e-01 -2.83477027e-02 -4.59825667e-03 -3.38716805e-01 -2.89930433e-01 5.14952183e-01 1.18137264e+00 2.36318439e-01 -3.68488103e-01 7.84159422e-01 -1.18200362e+00 5.67025840e-01 -2.51926780e-01 -4.52641129e-01 -7.93580189e-02 -2.70808280e-01 2.21320301e-01 6.51421905e-01 -1.87529936e-01 -1.29218113e+00 2.35495314e-01 -7.67148793e-01 6.43200204e-02 -4.19494957e-01 4.74800050e-01 -4.14118886e-01 5.41190922e-01 5.39340079e-01 -5.08431494e-02 -1.51997611e-01 -5.99377990e-01 4.53164846e-01 8.71620953e-01 4.34052408e-01 -7.05190480e-01 1.41126588e-01 -2.62593985e-01 -7.36436069e-01 -1.24333954e+00 -9.31850255e-01 -5.61055839e-01 -3.51747960e-01 3.61084878e-01 1.05954587e+00 -7.78021276e-01 -6.48989499e-01 -9.14049000e-02 -1.47634101e+00 -4.08700019e-01 -3.07296842e-01 5.78642845e-01 -5.15907466e-01 2.82281399e-01 -1.26939547e+00 -9.99107242e-01 -4.48764145e-01 -1.15708017e+00 1.02891564e+00 -7.06746355e-02 -7.23952830e-01 -6.09173596e-01 1.12047821e-01 7.31329918e-01 8.38450789e-02 -3.38854820e-01 1.23394680e+00 -1.38269663e+00 -3.07079017e-01 1.51061058e-01 2.31965825e-01 6.63848341e-01 1.02042332e-01 -2.68205047e-01 -1.42116857e+00 7.12673459e-03 1.43617555e-01 -3.74350965e-01 9.30234194e-01 3.12245607e-01 3.92190188e-01 -8.59034061e-01 6.08582385e-02 2.35542692e-02 9.54601884e-01 5.40405750e-01 3.10276985e-01 -1.90463483e-01 4.09523904e-01 1.05612147e+00 3.42434973e-01 9.70807225e-02 2.44641349e-01 2.50148803e-01 -3.54309380e-02 5.11154652e-01 -9.22313258e-02 -3.99632186e-01 8.67830694e-01 1.33925939e+00 4.89825904e-01 -3.48713845e-01 -1.05280507e+00 6.86903417e-01 -1.38977599e+00 -8.06378543e-01 1.40238255e-01 1.80704272e+00 1.05682254e+00 6.02800369e-01 4.30229791e-02 -2.14264933e-02 7.82997310e-01 3.85214865e-01 -8.53710920e-02 -8.85051548e-01 -8.52320343e-02 6.33246243e-01 3.29149604e-01 1.06192386e+00 -9.62404370e-01 1.22507012e+00 7.29182339e+00 3.34711283e-01 -8.91922295e-01 2.06443921e-01 6.52192891e-01 -8.18624645e-02 -4.11002725e-01 1.68042108e-01 -1.04056978e+00 2.36008137e-01 1.59638691e+00 1.55440450e-01 5.59630990e-01 9.55178618e-01 6.24570101e-02 1.26792669e-01 -1.34882212e+00 4.61270690e-01 -3.05214971e-02 -1.18771839e+00 -1.98460832e-01 -2.40512360e-02 3.06055874e-01 3.07509333e-01 -3.23279589e-01 6.64058983e-01 5.77100754e-01 -8.52761626e-01 7.75410593e-01 -1.87903613e-01 4.26564127e-01 -7.88878679e-01 9.24916327e-01 3.29802275e-01 -8.93370450e-01 -1.13485590e-01 -2.67131180e-01 -3.77594680e-01 4.92871344e-01 2.41188496e-01 -1.53585017e+00 -6.31261151e-03 2.83418059e-01 1.25048384e-01 -5.39762340e-02 2.68939465e-01 -4.91469681e-01 1.45659339e+00 -3.75225514e-01 -8.09684992e-02 8.76303017e-02 9.22305211e-02 8.35023403e-01 1.67439365e+00 -1.14034250e-01 5.12981117e-01 3.97119641e-01 3.45794737e-01 -4.53038812e-01 2.99400628e-01 -5.31582475e-01 -2.73752928e-01 7.22588599e-01 1.00863004e+00 -6.26902401e-01 -3.06338191e-01 -5.28864622e-01 6.94174111e-01 5.52986324e-01 -2.12993082e-02 -1.95784658e-01 -1.71805233e-01 9.53841448e-01 -2.72919148e-01 4.69231009e-01 -1.70285195e-01 -3.46424669e-01 -7.77281225e-01 4.78678234e-02 -9.72155035e-01 3.67552400e-01 -3.60701025e-01 -1.44270170e+00 8.20667863e-01 -3.91460776e-01 -4.14641172e-01 -6.31332934e-01 -7.06408858e-01 -7.65858471e-01 7.42926359e-01 -1.27948916e+00 -7.74465144e-01 4.79213208e-01 -1.59603074e-01 1.09623122e+00 -1.31156221e-01 1.14028323e+00 -1.73249349e-01 -5.66643178e-01 7.26526916e-01 -3.85104269e-01 4.74176496e-01 3.76386523e-01 -1.49070477e+00 8.19054127e-01 6.77351475e-01 3.88596445e-01 7.46091247e-01 5.80376446e-01 -5.46266496e-01 -1.10957682e+00 -8.93433034e-01 1.17085063e+00 -6.44624889e-01 7.96595216e-01 -5.93082905e-01 -9.07120645e-01 1.04425967e+00 5.50645590e-01 -4.15725380e-01 1.11864603e+00 6.40172601e-01 -4.27774131e-01 2.37551883e-01 -1.02866662e+00 3.26458812e-01 9.91247177e-01 -8.22612464e-01 -1.21216190e+00 3.92786860e-02 1.42493343e+00 -3.42214525e-01 -8.46971631e-01 1.16022989e-01 4.74318802e-01 -7.32362390e-01 4.11173105e-01 -6.89030826e-01 3.85706037e-01 3.32409382e-01 -6.85864031e-01 -1.28531468e+00 -1.75487205e-01 -8.12646687e-01 3.00246179e-01 1.55232036e+00 1.04107928e+00 -4.98194247e-01 7.63537645e-01 8.00612628e-01 -5.38484037e-01 -4.15042281e-01 -1.14861000e+00 -5.77957809e-01 8.72307569e-02 -7.32620537e-01 3.32743019e-01 7.28657782e-01 5.02036273e-01 9.97542322e-01 -6.98896050e-02 2.33602449e-01 2.64835302e-02 -1.69194728e-01 2.97973722e-01 -1.02455318e+00 -7.48238504e-01 -2.78154612e-01 -3.58753592e-01 -1.14601576e+00 6.36698484e-01 -8.93951237e-01 6.01318240e-01 -1.14925361e+00 2.14348305e-02 -1.41215250e-01 -2.83411086e-01 8.18923414e-01 -1.02799796e-01 -3.32568362e-02 3.86354923e-01 -1.59231856e-01 -3.41720968e-01 2.54631490e-01 3.64341497e-01 -1.75846252e-03 -5.58998108e-01 8.04934651e-03 -8.79603148e-01 9.94910419e-01 8.97644043e-01 -5.50458491e-01 3.94408964e-03 -4.06064391e-01 -2.27789432e-01 6.70073271e-01 -2.90279299e-01 -5.53437054e-01 -1.21770807e-01 3.05771604e-02 7.36532435e-02 -3.76823872e-01 4.85439211e-01 -4.46338892e-01 -4.50531662e-01 2.28162885e-01 -8.29031765e-01 1.68661773e-01 3.45330209e-01 4.09031302e-01 -2.28046611e-01 -4.56656009e-01 4.84372705e-01 -2.33680174e-01 -3.63790363e-01 -6.69902265e-01 -7.56280124e-01 3.07963103e-01 2.85747051e-01 6.49891421e-02 -3.54102820e-01 -3.46912980e-01 -9.41847146e-01 -8.98344144e-02 -1.46774866e-03 3.83062094e-01 3.05639923e-01 -7.22869694e-01 -6.19674504e-01 4.29937959e-01 -1.39169589e-01 -3.33148599e-01 -1.18843921e-01 4.66216385e-01 -1.99531093e-01 6.45617545e-01 1.62949845e-01 -4.56031293e-01 -1.52398884e+00 -3.71027738e-02 9.69174057e-02 -3.36751074e-01 -5.86255252e-01 1.10196841e+00 2.68356264e-01 -5.72068155e-01 2.30324343e-01 -7.02238262e-01 5.57935564e-03 1.12177499e-01 4.08714294e-01 2.02822357e-01 2.53720045e-01 -6.63019061e-01 -5.32741725e-01 -1.70510367e-01 -3.53426427e-01 -5.92524290e-01 1.21844077e+00 -2.16821488e-02 9.31036919e-02 3.71767849e-01 1.14230609e+00 6.83390915e-01 -1.26343572e+00 -4.08545602e-03 5.70290744e-01 6.41656145e-02 -8.03401992e-02 -1.02358389e+00 -5.04521966e-01 6.96437538e-01 -3.20610516e-02 3.32687765e-01 5.98324001e-01 2.63426542e-01 1.07056832e+00 7.24525928e-01 2.99521387e-01 -1.07070386e+00 2.40499172e-02 1.09554064e+00 7.61869609e-01 -1.06030369e+00 -5.22416472e-01 -4.61495757e-01 -1.03834379e+00 1.13845623e+00 4.29567128e-01 -2.42907718e-01 4.38337922e-01 5.01207411e-01 3.38114411e-01 -4.14568931e-03 -1.01920664e+00 -1.49061203e-01 -1.40033722e-01 3.41266990e-01 8.64365637e-01 4.13869649e-01 -3.53142530e-01 1.20751381e+00 -9.01833892e-01 -8.41723084e-01 5.49978077e-01 8.05143833e-01 -7.20680773e-01 -1.18409789e+00 -9.04388353e-02 4.15584892e-01 -9.19600427e-01 -5.41701734e-01 -6.18717790e-01 5.39467335e-01 -3.89696628e-01 1.45501614e+00 3.75003159e-01 -4.32812452e-01 5.24699032e-01 7.45454490e-01 5.45753427e-02 -1.19075513e+00 -1.03299832e+00 4.83461469e-01 1.01534951e+00 -6.68805957e-01 4.67291884e-02 -8.16304445e-01 -1.53761828e+00 1.95994422e-01 -4.26312000e-01 3.96236867e-01 5.37514269e-01 9.26775694e-01 2.63506591e-01 3.97766769e-01 6.55050755e-01 -5.77004075e-01 -9.46652472e-01 -1.17876279e+00 -2.23642305e-01 1.03283718e-01 5.08206844e-01 -7.02871159e-02 -4.30505753e-01 -5.30315079e-02]
[10.48840618133545, 9.508644104003906]
b2aecdee-60b2-485e-a942-5f8c4e4cd40b
massively-multi-lingual-event-understanding
2305.10561
null
https://arxiv.org/abs/2305.10561v1
https://arxiv.org/pdf/2305.10561v1.pdf
Massively Multi-Lingual Event Understanding: Extraction, Visualization, and Search
In this paper, we present ISI-Clear, a state-of-the-art, cross-lingual, zero-shot event extraction system and accompanying user interface for event visualization & search. Using only English training data, ISI-Clear makes global events available on-demand, processing user-supplied text in 100 languages ranging from Afrikaans to Yiddish. We provide multiple event-centric views of extracted events, including both a graphical representation and a document-level summary. We also integrate existing cross-lingual search algorithms with event extraction capabilities to provide cross-lingual event-centric search, allowing English-speaking users to search over events automatically extracted from a corpus of non-English documents, using either English natural language queries (e.g. cholera outbreaks in Iran) or structured queries (e.g. find all events of type Disease-Outbreak with agent cholera and location Iran).
['Elizabeth Boschee', 'Steven Fincke', 'Joel Barry', 'Shantanu Agarwal', 'Chris Jenkins']
2023-05-17
null
null
null
null
['event-extraction']
['natural-language-processing']
[-3.27955902e-01 -2.71145314e-01 -1.15540020e-01 -1.09139338e-01 -1.27915597e+00 -8.97395849e-01 8.93505573e-01 1.24427474e+00 -6.46387458e-01 7.21867800e-01 7.55629897e-01 -5.78719914e-01 -4.39225227e-01 -9.14902866e-01 -1.05247460e-01 -3.96425366e-01 -5.68051100e-01 7.30994046e-01 1.47790164e-01 -2.35063732e-01 1.91041663e-01 6.09581828e-01 -1.52260089e+00 5.27282298e-01 6.42030001e-01 3.50975126e-01 3.30552459e-01 7.53769100e-01 -4.62401778e-01 6.21001124e-01 -9.67742085e-01 2.18577478e-02 -3.95109743e-01 -2.63160199e-01 -7.44349837e-01 -6.38584733e-01 -3.63020480e-01 1.28734753e-01 -1.37647629e-01 5.84197819e-01 7.16604531e-01 -5.28776646e-02 5.99595904e-01 -1.05123639e+00 -2.36162588e-01 6.63518786e-01 -1.72067761e-01 7.27003515e-01 1.09791100e+00 -1.49228266e-02 5.63381135e-01 -1.16347671e+00 1.51299679e+00 1.30340326e+00 4.24123555e-01 -3.42406124e-01 -8.30505550e-01 -6.89315736e-01 -1.39381483e-01 1.59592360e-01 -1.61826563e+00 -2.32825354e-01 2.44566813e-01 -5.68728983e-01 1.88425148e+00 6.23225689e-01 5.50337553e-01 1.03880453e+00 6.36208534e-01 4.26704854e-01 8.21777582e-01 -6.24206543e-01 1.98348552e-01 2.00242147e-01 4.79250886e-02 3.85039955e-01 3.05248708e-01 7.30170757e-02 -9.02963579e-01 -8.36104453e-01 4.02891845e-01 2.09194366e-02 -1.44901782e-01 2.97528684e-01 -1.41384029e+00 9.02541637e-01 1.12549439e-01 3.75504702e-01 -8.72679949e-01 -5.42497933e-01 1.04064703e+00 2.96760172e-01 9.33496535e-01 2.18229905e-01 -8.90873849e-01 -2.55258352e-01 -8.43860805e-01 4.31997955e-01 1.00143075e+00 1.01413798e+00 5.61862946e-01 -1.33783922e-01 -1.78490177e-01 6.48792982e-01 3.83256376e-01 6.84537947e-01 1.98413894e-01 -6.60702363e-02 6.57920897e-01 8.31823528e-01 3.25130701e-01 -8.33297551e-01 -8.04771423e-01 6.46933094e-02 -4.25355941e-01 -1.54983908e-01 3.05561330e-02 -5.12841344e-01 -8.22170317e-01 1.46806371e+00 6.11548960e-01 -4.18500602e-01 5.91852129e-01 4.19447958e-01 1.37269270e+00 1.10629225e+00 6.87609911e-01 -7.32396126e-01 2.32273555e+00 -4.26443778e-02 -1.23323226e+00 -3.65972519e-02 9.59408224e-01 -1.03821218e+00 6.74335182e-01 1.48636267e-01 -7.99388587e-01 1.03107795e-01 -6.10814035e-01 9.41524506e-02 -1.43963528e+00 2.46423832e-03 1.84586674e-01 4.79388945e-02 -4.82048720e-01 1.03619806e-02 -1.03235054e+00 -1.10068929e+00 -7.28090852e-02 -1.61476657e-01 -5.33614695e-01 3.45980495e-01 -1.68618643e+00 1.14536226e+00 9.27241087e-01 -6.58075631e-01 -5.16038001e-01 -8.81413400e-01 -1.21525693e+00 -4.40762602e-02 5.61201334e-01 -1.51401505e-01 1.27015018e+00 3.05979133e-01 -5.38824201e-01 8.95127296e-01 -4.73145902e-01 -3.54940116e-01 1.01898327e-01 -4.11238730e-01 -1.22695947e+00 4.84580755e-01 7.60429442e-01 4.28034179e-02 -9.60629657e-02 -7.71606207e-01 -1.04255903e+00 -3.14851284e-01 -3.64846617e-01 1.45285100e-01 1.18813617e-03 1.28347325e+00 -5.67492723e-01 -1.07307506e+00 -4.28169489e-01 -3.07793409e-01 -3.21518183e-01 -4.64112222e-01 -3.42426717e-01 -7.08966672e-01 1.20837629e+00 -1.25776291e+00 2.03218174e+00 -1.95757353e+00 -4.11303371e-01 6.50116876e-02 -3.55987996e-01 -1.47856787e-01 3.02434713e-01 1.42456019e+00 -1.57173738e-01 2.78678238e-01 -3.16240564e-02 9.42700654e-02 -6.62878528e-02 2.60859460e-01 -3.21464509e-01 2.02854484e-01 4.17768180e-01 5.54133713e-01 -1.32491708e+00 -1.16546798e+00 4.86797750e-01 6.16289496e-01 -1.83767244e-01 8.77549872e-02 -9.33819562e-02 9.15821567e-02 -5.76969326e-01 6.86181605e-01 2.95658231e-01 -9.77054164e-02 3.40860724e-01 -1.75216302e-01 -9.66837525e-01 8.54600787e-01 -1.42971027e+00 1.54122174e+00 -3.91788512e-01 7.58878648e-01 -1.09661669e-01 -3.84524643e-01 6.38519347e-01 1.08141005e+00 5.56624949e-01 -8.16936493e-01 -3.09965998e-01 3.18757802e-01 -9.00160193e-01 -8.54637325e-01 7.16826200e-01 5.16717613e-01 -7.81183839e-01 6.79671168e-01 1.92307130e-01 3.58612299e-01 9.01100636e-01 5.26209414e-01 8.21868896e-01 2.99585313e-01 1.10881102e+00 -5.03835618e-01 8.96364450e-02 7.61969686e-01 4.13500309e-01 7.10579991e-01 5.02078414e-01 2.57994056e-01 2.61840492e-01 -5.38541734e-01 -7.69472301e-01 -9.00345087e-01 -5.47779262e-01 1.12930834e+00 -4.19163108e-01 -1.25131595e+00 -3.10580999e-01 -3.82147759e-01 -4.68116283e-01 1.18258548e+00 -4.93665129e-01 3.07116807e-01 -8.11731040e-01 -1.00814617e+00 5.92760623e-01 1.21259943e-01 1.81289509e-01 -1.51069474e+00 -1.73169208e+00 6.80824101e-01 -6.00484312e-01 -7.70165801e-01 -3.20176750e-01 7.60587156e-01 -2.29691133e-01 -1.04757631e+00 -4.56913322e-01 -7.55222917e-01 9.92697179e-02 -3.72550547e-01 1.58504605e+00 -7.23925352e-01 -1.01103210e+00 2.23688126e-01 -4.34707314e-01 -8.96983802e-01 -4.25436705e-01 -2.31886595e-01 -2.33249903e-01 -7.34685540e-01 9.01709199e-01 -2.34346390e-02 -4.07850116e-01 3.82348485e-02 -1.17773235e+00 -1.80350989e-01 -6.06294535e-02 2.13000238e-01 5.63467801e-01 1.82501003e-01 7.82640040e-01 -5.65596044e-01 8.11099768e-01 -1.10752845e+00 -5.98050475e-01 6.13497257e-01 -3.54859054e-01 -1.11712515e-01 2.72442162e-01 -2.96126485e-01 -1.34046268e+00 1.04012918e-02 7.94540867e-02 6.10768497e-02 -5.25633931e-01 1.39030921e+00 2.07436964e-01 1.04402781e+00 8.35771263e-01 2.85643250e-01 -7.73844838e-01 -6.92870259e-01 5.19818008e-01 1.01441503e+00 7.28529751e-01 -1.02942497e-01 5.11983372e-02 2.37803400e-01 -7.39740729e-01 -8.93217266e-01 -1.41357347e-01 -9.67791677e-01 -5.32317221e-01 -3.19305956e-01 1.12951064e+00 -1.11560571e+00 -4.64338183e-01 1.88695356e-01 -1.27803886e+00 -3.87465805e-02 -2.64814705e-01 6.14177048e-01 -2.00857446e-01 -2.36003608e-01 -5.00478804e-01 -9.54572797e-01 -6.66802943e-01 -5.17788827e-01 1.36457527e+00 2.94996738e-01 -7.10680723e-01 -1.04895484e+00 5.48891366e-01 -7.04549730e-01 7.76068494e-02 7.10720956e-01 7.77911901e-01 -1.24185312e+00 1.24846987e-01 -1.68300390e-01 -1.17179930e-01 -9.86315131e-01 6.48607075e-01 7.65914246e-02 -4.42145407e-01 -1.96999963e-02 -3.47093910e-01 -6.68524429e-02 3.50923896e-01 2.87527740e-01 3.19516808e-01 -7.07895994e-01 -1.14046347e+00 1.63006008e-01 1.49744368e+00 9.05150414e-01 3.09098035e-01 6.77217066e-01 -4.12341170e-02 6.17674410e-01 1.00734842e+00 1.07987082e+00 5.22852898e-01 7.45426118e-01 -1.88903287e-01 -3.33139211e-01 3.21542770e-01 -1.80263296e-01 7.95584098e-02 2.72754252e-01 2.84492165e-01 -5.35645068e-01 -1.22184157e+00 1.11010420e+00 -1.76906013e+00 -1.24383724e+00 -1.60491839e-01 2.08441377e+00 1.14016557e+00 -1.77235231e-01 8.29156190e-02 -1.89696193e-01 3.93580347e-01 -4.85599693e-03 -1.66491240e-01 -4.72819239e-01 -1.85667366e-01 3.37413311e-01 4.48672384e-01 3.57187480e-01 -1.40056252e+00 6.67230010e-01 6.19740248e+00 7.37556398e-01 -1.03533494e+00 9.29581970e-02 7.80842006e-02 -2.92616338e-01 -1.77192003e-01 -1.03662342e-01 -9.02145863e-01 2.92980939e-01 1.45567465e+00 -6.85413778e-01 -2.84384698e-01 5.63977897e-01 7.49450088e-01 -2.56326109e-01 -7.35232234e-01 8.67444217e-01 -1.29388854e-01 -1.68667185e+00 -9.45092067e-02 2.04699691e-02 1.32144496e-01 2.26388931e-01 -8.85480046e-01 2.48910293e-01 6.95950031e-01 -6.65193141e-01 8.42958033e-01 3.21708590e-01 1.04615188e+00 -9.48660314e-01 5.39729595e-01 3.06194991e-01 -1.91841352e+00 4.20595855e-01 3.30086112e-01 5.63444197e-01 8.57225239e-01 3.49959761e-01 -8.43296111e-01 1.28233445e+00 1.38901842e+00 6.59346044e-01 -5.09302557e-01 9.26935613e-01 3.09333593e-01 5.19709110e-01 -9.57063615e-01 -1.48965651e-02 1.93195835e-01 5.91083579e-02 7.82977164e-01 2.32012320e+00 6.50632799e-01 4.52817619e-01 3.49976152e-01 4.56827730e-01 5.31862319e-01 5.22392511e-01 -9.55977738e-01 -1.71230242e-01 6.99356914e-01 1.01776671e+00 -1.09991431e+00 -8.38499665e-01 -3.02718043e-01 6.32421911e-01 -1.05865791e-01 4.26970690e-01 -5.32377541e-01 -1.14409709e+00 3.86862546e-01 -8.69103894e-02 2.57164478e-01 -6.37659729e-02 2.75803864e-01 -8.82985353e-01 -3.63630593e-01 -9.24968004e-01 1.28375590e+00 -9.56612468e-01 -7.58090377e-01 9.36409295e-01 8.93246353e-01 -1.20354497e+00 -8.89315009e-01 -7.18055293e-02 -5.88660479e-01 9.71324265e-01 -8.09728980e-01 -9.04048979e-01 2.23781914e-01 7.16153979e-01 8.62688124e-01 1.16785191e-01 1.24289536e+00 7.53688574e-01 -3.78215462e-01 -3.31402011e-02 -1.02722412e-02 2.00738341e-01 7.80655861e-01 -1.15857446e+00 4.82329428e-01 6.42085135e-01 1.74470678e-01 6.68825567e-01 8.15431714e-01 -1.30556726e+00 -1.03963006e+00 -1.03700972e+00 1.85847294e+00 -2.83607453e-01 7.96452880e-01 -3.79412949e-01 -8.65361810e-01 7.11233020e-01 8.47938716e-01 -5.73626220e-01 7.89835036e-01 -1.28983393e-01 -7.36855045e-02 5.30616164e-01 -1.01734245e+00 7.27318764e-01 6.21643662e-01 -5.46930730e-01 -9.78038728e-01 6.95638835e-01 7.76392698e-01 -4.46261257e-01 -1.04161203e+00 1.92151010e-01 1.22922197e-01 -1.77114785e-01 1.13344073e+00 -6.47387028e-01 -2.64170438e-01 -3.62477809e-01 1.33813083e-01 -1.06012559e+00 1.23137861e-01 -7.78909862e-01 2.16833040e-01 1.34283817e+00 5.77700555e-01 -7.41374731e-01 -3.21158350e-01 -4.76130284e-02 -1.84737444e-01 -1.16167128e-01 -1.07435060e+00 -4.25320923e-01 -5.63878059e-01 -6.34824395e-01 4.31312412e-01 1.06973505e+00 4.97086555e-01 3.30034614e-01 -2.75279790e-01 4.99540448e-01 2.45210260e-01 1.36071369e-01 2.15927780e-01 -1.34151554e+00 4.81343448e-01 -1.75966591e-01 2.54265279e-01 -1.37232780e-01 -6.11440063e-01 -6.84483945e-01 -7.74033815e-02 -2.04983068e+00 -2.31929291e-02 -1.39928028e-01 -7.62437657e-02 8.13973069e-01 9.74074602e-02 -1.72021806e-01 -2.14799196e-01 2.57284015e-01 -5.37282526e-01 -4.34572902e-03 1.32584363e-01 1.79432645e-01 -6.97616875e-01 -5.22907972e-01 -2.74866223e-01 5.62647939e-01 6.21267140e-01 -1.10300493e+00 -9.88558680e-02 6.14896007e-02 5.23459196e-01 3.45858395e-01 2.22042546e-01 -4.15044904e-01 2.73969680e-01 -5.21842897e-01 1.97531849e-01 -1.55178738e+00 -2.24340465e-02 -4.99021173e-01 7.74893165e-01 6.72024012e-01 -1.19855374e-01 6.51510417e-01 8.12999904e-01 2.95297176e-01 -3.88854831e-01 -3.86271738e-02 9.45327133e-02 -4.10410583e-01 -6.25032723e-01 -1.10141613e-01 -1.09626782e+00 1.89949200e-01 8.67598772e-01 4.45993058e-02 -5.12645066e-01 -1.94994900e-02 -9.21069384e-01 4.56989765e-01 2.53787953e-02 5.69934130e-01 3.52356732e-01 -1.23732412e+00 -1.02770936e+00 -6.54784292e-02 5.85300148e-01 -1.97522491e-01 7.32848942e-02 4.67980236e-01 -7.98728287e-01 8.77669096e-01 2.07108129e-02 -4.21960413e-01 -1.40711093e+00 6.93821430e-01 -2.53625333e-01 -6.79842949e-01 -8.96367311e-01 2.81560689e-01 1.53014556e-01 -5.03358543e-01 2.09492698e-01 -3.04614514e-01 -6.84601068e-01 7.70715892e-01 9.52865660e-01 1.87601045e-01 2.56436110e-01 -6.68567598e-01 -1.15252697e+00 2.78132647e-01 2.44879425e-01 -5.23904979e-01 1.47054887e+00 -2.07096025e-01 1.12017684e-01 6.24575019e-01 9.58415568e-01 8.42533931e-02 -4.52465385e-01 -2.40014344e-01 5.57721734e-01 2.80213207e-01 -3.05892289e-01 -1.11368930e+00 -2.90084958e-01 2.86476731e-01 6.70940220e-01 6.18381917e-01 1.27275324e+00 5.96302092e-01 2.79696494e-01 2.79859662e-01 2.59029657e-01 -1.04378164e+00 -5.34771442e-01 3.83252084e-01 1.23625052e+00 -1.00967944e+00 1.06092572e-01 -1.82002559e-01 -5.43521941e-01 1.12403953e+00 -1.23850731e-02 4.83887583e-01 1.01239383e+00 5.59023619e-01 3.48870307e-01 -9.38393235e-01 -1.16329610e+00 -3.60189080e-01 3.56631428e-01 4.60806251e-01 6.14834130e-01 7.19023519e-04 -7.19862938e-01 2.56044865e-01 -1.98915869e-01 1.17769903e-02 -4.14391980e-02 1.52603912e+00 -2.45056197e-01 -8.65036607e-01 -7.11456120e-01 3.71480286e-01 -8.72483134e-01 -4.20708597e-01 -2.05795720e-01 1.16541684e+00 3.51550989e-02 1.05931067e+00 5.30557811e-01 3.52404505e-01 5.66374898e-01 3.66819024e-01 -3.21811348e-01 -5.76506376e-01 -1.13807034e+00 6.58958554e-01 6.63628042e-01 -2.20594287e-01 -4.17772293e-01 -1.03029251e+00 -1.52839029e+00 1.42194226e-01 -6.34324178e-02 4.83361423e-01 8.13957036e-01 7.21106648e-01 6.71973348e-01 4.34773266e-01 1.32880025e-02 -5.47034919e-01 3.40305567e-01 -1.10877728e+00 -8.90980810e-02 2.82612294e-01 1.83907658e-01 -4.52755779e-01 -1.07738122e-01 5.39007246e-01]
[8.893353462219238, 9.164680480957031]
59226799-fe22-49ec-baf3-b7dcb0f269d4
deep-semantic-multimodal-hashing-network-for
1901.02662
null
https://arxiv.org/abs/1901.02662v3
https://arxiv.org/pdf/1901.02662v3.pdf
Deep Semantic Multimodal Hashing Network for Scalable Image-Text and Video-Text Retrievals
Hashing has been widely applied to multimodal retrieval on large-scale multimedia data due to its efficiency in computation and storage. In this article, we propose a novel deep semantic multimodal hashing network (DSMHN) for scalable image-text and video-text retrieval. The proposed deep hashing framework leverages 2-D convolutional neural networks (CNN) as the backbone network to capture the spatial information for image-text retrieval, while the 3-D CNN as the backbone network to capture the spatial and temporal information for video-text retrieval. In the DSMHN, two sets of modality-specific hash functions are jointly learned by explicitly preserving both intermodality similarities and intramodality semantic labels. Specifically, with the assumption that the learned hash codes should be optimal for the classification task, two stream networks are jointly trained to learn the hash functions by embedding the semantic labels on the resultant hash codes. Moreover, a unified deep multimodal hashing framework is proposed to learn compact and high-quality hash codes by exploiting the feature representation learning, intermodality similarity-preserving learning, semantic label-preserving learning, and hash function learning with different types of loss functions simultaneously. The proposed DSMHN method is a generic and scalable deep hashing framework for both image-text and video-text retrievals, which can be flexibly integrated with different types of loss functions. We conduct extensive experiments for both single modal- and cross-modal-retrieval tasks on four widely used multimodal-retrieval data sets. Experimental results on both image-text- and video-text-retrieval tasks demonstrate that the DSMHN significantly outperforms the state-of-the-art methods.
['Zechao Li', 'Lu Jin', 'Jinhui Tang']
2019-01-09
null
null
null
null
['video-text-retrieval']
['computer-vision']
[-3.66488606e-01 -5.40086925e-01 -5.84869862e-01 -3.16275418e-01 -1.41382158e+00 -3.15623134e-01 5.15317440e-01 1.11167721e-01 -4.27356571e-01 2.01311082e-01 2.05512673e-01 2.98084050e-01 -2.31086701e-01 -6.30348980e-01 -7.46510863e-01 -1.01413023e+00 -2.53165543e-01 3.88087839e-01 1.28465056e-01 -2.66712494e-02 1.85642481e-01 3.52975577e-01 -1.77136600e+00 2.62090445e-01 1.71125978e-01 1.59812391e+00 1.88050985e-01 4.02034372e-01 2.10712641e-01 5.82192004e-01 2.16344874e-02 -2.64839083e-01 3.17484200e-01 4.08181846e-02 -5.43805480e-01 -2.16929287e-01 5.52206993e-01 -8.65312457e-01 -1.30936170e+00 8.16839576e-01 8.13975692e-01 3.77904683e-01 6.50962532e-01 -1.53761756e+00 -9.24655676e-01 2.50803642e-02 -4.36191410e-01 -1.59429446e-01 4.00849611e-01 2.88130529e-02 1.36967278e+00 -1.16625619e+00 5.29807508e-01 1.42206442e+00 6.42085433e-01 2.98271596e-01 -8.18476021e-01 -6.97835445e-01 -3.82380337e-01 5.27217209e-01 -2.07420278e+00 -2.66861290e-01 6.37785673e-01 -1.99101552e-01 7.73901999e-01 -1.06122784e-01 5.85177302e-01 7.24945605e-01 1.82412371e-01 1.18311167e+00 4.69195127e-01 5.21568693e-02 -4.79480661e-02 -4.07782085e-02 -1.72984555e-01 9.35149133e-01 -2.45547399e-01 1.36615127e-01 -8.42889428e-01 -3.02289158e-01 7.51118779e-01 6.19942248e-01 -1.42755628e-01 -5.12811482e-01 -1.37004459e+00 1.11379325e+00 7.70879626e-01 6.14678673e-02 -2.37360850e-01 4.60063338e-01 8.13733995e-01 2.59341300e-01 6.91197067e-02 -3.00819576e-01 -4.74327207e-02 1.19107507e-01 -1.14412510e+00 3.74471098e-01 5.73897004e-01 1.23114860e+00 1.17434466e+00 -3.51156771e-01 -3.22665393e-01 9.66884673e-01 6.76524520e-01 9.81575549e-01 6.27949774e-01 -8.06623399e-01 2.76495844e-01 4.02234316e-01 -1.64970428e-01 -1.29596162e+00 -2.14406297e-01 2.71886617e-01 -9.75631535e-01 -6.83601916e-01 -1.75595671e-01 5.58566034e-01 -8.72794688e-01 1.72745466e+00 3.15011472e-01 2.58571714e-01 -2.33946517e-02 1.28356993e+00 1.01675487e+00 1.02006805e+00 -5.50538003e-02 1.80310413e-01 1.37601912e+00 -1.04105687e+00 -6.47820055e-01 3.41558009e-01 6.98181629e-01 -8.12465250e-01 8.88292491e-01 -1.50841087e-01 -1.17207670e+00 -5.57249606e-01 -9.89026964e-01 -6.57516956e-01 -4.84042495e-01 -4.18662280e-02 3.35204810e-01 1.65807545e-01 -1.24025333e+00 7.85942748e-02 -6.84070885e-01 -3.46459508e-01 2.13856563e-01 4.36658055e-01 -4.57494497e-01 -5.19633591e-01 -1.66789877e+00 3.56006682e-01 4.76116300e-01 8.07922930e-02 -1.24390602e+00 -4.86887306e-01 -1.17770278e+00 3.57241988e-01 -2.00094074e-01 -6.76691353e-01 9.83117223e-01 -4.55298066e-01 -1.13512206e+00 1.05918026e+00 -3.56296636e-02 -1.64560050e-01 -1.33521436e-02 1.69005826e-01 -3.36471498e-01 8.26363564e-01 2.44374543e-01 1.25365853e+00 1.13580024e+00 -9.77383852e-01 -6.43247187e-01 -4.31270391e-01 -1.96989194e-01 4.53058690e-01 -7.05841124e-01 -1.61919966e-01 -9.49926257e-01 -6.02544129e-01 6.98136911e-02 -1.09896958e+00 4.56613928e-01 4.47754741e-01 -2.95184374e-01 -2.98640460e-01 1.21068287e+00 -5.90566933e-01 1.24254024e+00 -2.45159793e+00 3.97197425e-01 2.88688570e-01 5.27313799e-02 -1.59907609e-01 -4.98162568e-01 6.80572867e-01 3.27983588e-01 -3.44090700e-01 5.45965508e-03 -7.35544741e-01 6.17502332e-01 2.97554165e-01 -4.15891856e-01 8.33722651e-01 -7.51971230e-02 1.24786901e+00 -6.82328284e-01 -8.88963759e-01 2.71616429e-01 9.18114603e-01 -4.74117249e-01 3.58218223e-01 1.50507599e-01 -1.28919497e-01 -5.02476215e-01 1.08153665e+00 7.50839114e-01 -4.35072631e-01 -2.15637073e-01 -4.53911245e-01 1.12197220e-01 -7.62614161e-02 -8.76390874e-01 2.21205306e+00 -3.23750287e-01 6.72201693e-01 1.70298412e-01 -1.11529517e+00 6.52089179e-01 3.33727747e-01 6.94338858e-01 -1.13504946e+00 4.72143380e-04 4.82775033e-01 -9.55205619e-01 -5.55763841e-01 8.70811343e-01 -2.03684583e-01 -4.56680119e-01 5.33600032e-01 3.22795689e-01 5.50414138e-02 -6.98621199e-02 3.42491895e-01 6.85011208e-01 -3.88898551e-01 -2.62752265e-01 -2.04784982e-02 5.04250050e-01 -2.93708056e-01 2.02009395e-01 5.62973559e-01 -2.97654450e-01 7.80442715e-01 1.02053136e-02 -4.43727821e-01 -1.13749683e+00 -1.11285400e+00 -3.42434794e-01 1.28071249e+00 8.15781295e-01 -3.05231571e-01 -3.47069085e-01 -4.09058452e-01 3.16994220e-01 -2.97501713e-01 -4.80000585e-01 -4.72319335e-01 -2.88775623e-01 -2.93298185e-01 7.75605023e-01 2.96767920e-01 6.66218996e-01 -1.00533473e+00 -1.67682081e-01 -1.77433059e-01 -4.61976498e-01 -1.17637455e+00 -1.04766226e+00 -9.73278582e-02 -4.91168171e-01 -8.65606368e-01 -1.08391619e+00 -1.32222295e+00 2.74699479e-01 8.43698859e-01 6.80446625e-01 3.54700804e-01 -4.74500209e-01 9.64703798e-01 -4.39762056e-01 4.47662771e-01 1.58906534e-01 2.04025805e-01 3.55284698e-02 1.12854049e-01 3.18657964e-01 -2.75529414e-01 -1.08457899e+00 4.86238539e-01 -1.59449780e+00 -5.32496810e-01 5.66577077e-01 1.13709056e+00 7.16391087e-01 -3.89324948e-02 2.79767811e-01 1.32352188e-01 2.44288221e-01 -7.51145303e-01 -3.89375687e-01 3.84720355e-01 -2.07526505e-01 3.43686901e-02 2.16406375e-01 -3.88041824e-01 -3.45532894e-01 -2.09313095e-01 4.52963002e-02 -9.97831166e-01 1.66502461e-01 6.83447421e-01 1.62692778e-02 -4.55501437e-01 -2.64897309e-02 7.65125334e-01 1.46282330e-01 -1.06226824e-01 3.70189130e-01 7.76634037e-01 3.79342914e-01 -5.74547708e-01 8.23241234e-01 7.18730271e-01 5.50757758e-02 -7.51423776e-01 -5.62456548e-01 -9.30123627e-01 -3.83408189e-01 -7.66485333e-02 1.01402247e+00 -1.41859078e+00 -9.09759045e-01 7.10849762e-01 -1.03274143e+00 -1.19557291e-01 1.14715971e-01 4.55246359e-01 -6.46525681e-01 7.41167009e-01 -9.56554830e-01 -3.30962628e-01 -5.32902658e-01 -1.40755546e+00 2.03839302e+00 7.42615908e-02 4.86603349e-01 -1.12082040e+00 1.30272731e-01 3.70665789e-01 3.15372288e-01 -3.30728740e-01 1.02477133e+00 -4.60157007e-01 -9.85199809e-01 -4.75291342e-01 -6.54969454e-01 1.62423551e-01 -2.05139935e-01 -3.21839184e-01 -8.10690939e-01 -8.17476988e-01 -5.22489011e-01 -1.04348886e+00 9.34392095e-01 3.98521841e-01 1.16792881e+00 -2.47496277e-01 -1.89486325e-01 8.79059792e-01 1.42243290e+00 -1.77188218e-01 7.62673020e-01 3.68196815e-01 7.55528867e-01 3.97344857e-01 5.91953516e-01 7.04827309e-01 9.09696817e-01 9.16137576e-01 4.68666226e-01 -6.76404918e-03 1.54772431e-01 -4.53149587e-01 3.51778150e-01 1.00456345e+00 7.05905020e-01 -2.04563797e-01 -5.86539328e-01 6.75883114e-01 -2.06970572e+00 -1.04879010e+00 6.09850943e-01 2.13421059e+00 6.19259655e-01 -6.09091997e-01 1.33179992e-01 -1.02963701e-01 8.39063406e-01 4.32422787e-01 -5.00268102e-01 1.60812050e-01 -1.77300543e-01 -2.18021140e-01 2.79600561e-01 2.98667520e-01 -1.37167859e+00 8.31544280e-01 5.29579639e+00 1.16096473e+00 -1.28143728e+00 1.85058221e-01 1.95782840e-01 -1.78046405e-01 -3.65783453e-01 -2.31913656e-01 -8.48093212e-01 5.37050426e-01 6.91372871e-01 9.18142721e-02 5.07181406e-01 6.23068511e-01 -1.47809416e-01 2.85449058e-01 -9.78938282e-01 1.57412851e+00 2.66803294e-01 -1.35115695e+00 5.30491531e-01 5.43826707e-02 5.56143641e-01 8.28455910e-02 4.76196200e-01 4.52296615e-01 -2.95603633e-01 -8.58149588e-01 8.60104263e-01 3.32741529e-01 1.03241813e+00 -8.28190327e-01 6.09928668e-01 -1.00459464e-01 -1.68880343e+00 -2.51537383e-01 -4.80878204e-01 6.15652740e-01 1.14000052e-01 1.05114825e-01 -2.38204166e-01 4.82398838e-01 9.79078412e-01 1.21517754e+00 -3.02605391e-01 9.39627826e-01 4.42900568e-01 -1.76654041e-01 -3.46587658e-01 1.44262373e-01 7.35596657e-01 -2.52272189e-02 2.57681668e-01 1.28710961e+00 5.78938961e-01 -8.54472741e-02 3.19102228e-01 4.74319637e-01 -3.84796947e-01 1.47423178e-01 -7.19812334e-01 -1.49657175e-01 8.33471179e-01 1.21731555e+00 -3.04890007e-01 -1.51834294e-01 -5.42770922e-01 1.14099586e+00 1.36918291e-01 5.46278775e-01 -8.54099214e-01 -5.20134866e-01 7.08036482e-01 -1.09614648e-01 6.02169931e-01 -1.91954955e-01 4.88286823e-01 -1.24861658e+00 4.54079285e-02 -6.59713626e-01 7.21180379e-01 -9.01352763e-01 -1.41863728e+00 2.60725111e-01 -7.45683238e-02 -1.38121700e+00 4.92129177e-02 -4.75336313e-01 -1.46489590e-01 5.20824850e-01 -2.09736562e+00 -1.56234217e+00 -4.75960493e-01 1.37692606e+00 2.10483253e-01 -2.35333443e-01 5.91745496e-01 7.86811292e-01 -4.11493301e-01 9.38228607e-01 4.82432634e-01 2.10241824e-01 1.08459628e+00 -7.56843150e-01 -3.61526877e-01 1.61844596e-01 -1.01113304e-01 6.36593223e-01 -1.20121658e-01 -2.80532777e-01 -2.07791448e+00 -1.18991864e+00 6.66319013e-01 2.50299931e-01 8.79775524e-01 -3.99418324e-01 -8.76169026e-01 4.72066343e-01 3.89990993e-02 3.37343752e-01 7.80643404e-01 -4.26593184e-01 -8.49573612e-01 -3.30455869e-01 -9.24004376e-01 2.55425006e-01 5.80868781e-01 -1.37268054e+00 -2.12689310e-01 5.90665460e-01 9.04941857e-01 -3.29306185e-01 -1.27176309e+00 3.15428823e-01 8.57745707e-01 -7.39365995e-01 1.36117530e+00 -1.94121033e-01 4.13326532e-01 -2.08788320e-01 -8.63237619e-01 -6.15861833e-01 -1.19367562e-01 -4.15954530e-01 -7.65982121e-02 6.96705639e-01 -6.65450841e-02 -3.05024952e-01 5.16995609e-01 2.75274038e-01 -1.86803386e-01 -6.29963338e-01 -1.28808129e+00 -5.63379467e-01 -5.38546070e-02 -1.41816199e-01 4.17507797e-01 9.39813316e-01 2.99099740e-02 1.12870708e-02 -6.62971616e-01 3.17793548e-01 8.67644966e-01 3.13813090e-01 5.26584566e-01 -8.78615141e-01 9.62737873e-02 -4.13633287e-01 -9.01363790e-01 -1.38817704e+00 6.67602777e-01 -1.14601433e+00 1.91443935e-01 -1.10821378e+00 6.41295791e-01 -3.54590625e-01 -5.19449174e-01 4.33966100e-01 1.45394072e-01 5.41461706e-01 2.06940874e-01 7.46261120e-01 -1.38050652e+00 1.20746779e+00 1.13031602e+00 -4.08878267e-01 2.20593646e-01 -5.28821349e-01 -1.22510806e-01 -9.12651345e-02 9.96401384e-02 -3.81637096e-01 -3.98809791e-01 -5.30892730e-01 2.85043120e-01 3.21357459e-01 8.07287037e-01 -6.58722103e-01 6.63460493e-01 3.06917012e-01 1.76675603e-01 -7.99212575e-01 7.34828711e-01 -1.01068485e+00 -2.03134269e-01 3.28977436e-01 -5.30413687e-01 1.29794016e-01 8.02832544e-02 8.67316246e-01 -8.18317890e-01 8.64643455e-02 8.16669941e-01 1.94303647e-01 -8.11621547e-01 1.05134737e+00 -4.53540822e-03 -1.64635722e-02 8.31717551e-01 -5.21188118e-02 -2.44797081e-01 -7.10875630e-01 -4.87684667e-01 5.38740456e-01 6.02132738e-01 5.36417365e-01 1.19672704e+00 -1.93761754e+00 -4.03809100e-01 2.82572806e-01 5.26350796e-01 -1.05160043e-01 6.72729611e-01 8.88740420e-01 -4.62193131e-01 8.07506919e-01 -9.86093879e-02 -8.76042485e-01 -9.46188152e-01 6.46828592e-01 2.28133470e-01 -1.23090237e-01 -4.50746983e-01 6.87206149e-01 3.59787464e-01 -5.32583535e-01 7.17087984e-01 1.16726436e-01 2.88665652e-01 1.58884197e-01 5.83071351e-01 2.70139962e-01 -5.38206920e-02 -9.22197402e-01 -2.58012235e-01 9.35096025e-01 -1.78298041e-01 -5.46977967e-02 1.10327172e+00 -5.23551166e-01 -3.44373196e-01 1.87793165e-01 2.21473622e+00 -8.66026521e-01 -1.04451823e+00 -6.32350862e-01 -3.63151670e-01 -4.65412438e-01 3.18242699e-01 5.35558118e-03 -1.27334273e+00 1.10462523e+00 6.77641153e-01 -7.36495405e-02 1.26893318e+00 1.23216122e-01 1.59654713e+00 6.64276361e-01 3.28777611e-01 -1.05914152e+00 6.27338469e-01 5.65193892e-01 6.15209877e-01 -1.50306427e+00 -2.40238875e-01 2.99754381e-01 -4.91158605e-01 1.07030046e+00 2.14849606e-01 -6.22867942e-02 8.81634593e-01 -2.75891483e-01 -2.45554537e-01 -4.64275628e-01 -6.24479115e-01 6.57798490e-03 5.48883259e-01 2.77604967e-01 4.47868258e-02 -2.06906423e-01 2.64397889e-01 1.88396856e-01 4.52148676e-01 -2.55243838e-01 -2.53059417e-01 1.04363847e+00 -4.46806401e-01 -7.16158152e-01 -2.83342749e-01 4.69038039e-02 1.77001487e-02 -3.32173109e-01 -8.18189979e-02 8.34566057e-01 -3.90404880e-01 5.52484035e-01 1.70044139e-01 -5.01556814e-01 -4.09960886e-03 -9.84590426e-02 4.00536239e-01 -1.91172570e-01 -2.50792563e-01 2.72682786e-01 -6.98984325e-01 -7.95720577e-01 -5.52965999e-01 -4.91750807e-01 -1.36267853e+00 -5.93736589e-01 -1.32078558e-01 1.16120517e-01 6.33060515e-01 7.36847281e-01 4.98701781e-01 -2.70597935e-01 9.79145169e-01 -1.17885303e+00 -4.78446543e-01 -4.74726826e-01 -9.14888561e-01 6.52105391e-01 6.65885866e-01 -7.80116856e-01 -5.60877025e-01 -8.50633979e-02]
[11.449974060058594, 0.8966483473777771]
f54dde82-0d13-4f4a-8577-b3fc9b0e4a5e
an-lmi-framework-for-contraction-based
2301.08398
null
https://arxiv.org/abs/2301.08398v1
https://arxiv.org/pdf/2301.08398v1.pdf
An LMI Framework for Contraction-based Nonlinear Control Design by Derivatives of Gaussian Process Regression
Contraction theory formulates the analysis of nonlinear systems in terms of Jacobian matrices. Although this provides the potential to develop a linear matrix inequality (LMI) framework for nonlinear control design, conditions are imposed not on controllers but on their partial derivatives, which makes control design challenging. In this paper, we illustrate this so-called integrability problem can be solved by a non-standard use of Gaussian process regression (GPR) for parameterizing controllers and then establish an LMI framework of contraction-based control design for nonlinear discrete-time systems, as an easy-to-implement tool. Later on, we consider the case where the drift vector fields are unknown and employ GPR for functional fitting as its standard use. GPR describes learning errors in terms of probability, and thus we further discuss how to incorporate stochastic learning errors into the proposed LMI framework.
['Kenji Kashima', 'Yu Kawano']
2023-01-20
null
null
null
null
['gpr', 'gpr']
['computer-vision', 'miscellaneous']
[ 2.09338918e-01 1.28605485e-01 4.90230098e-02 5.17877042e-01 -5.20254195e-01 -6.22783482e-01 2.90486157e-01 -2.90515304e-01 -3.52586061e-01 1.04957175e+00 -7.13223696e-01 -4.21568125e-01 -6.09315872e-01 -3.38162959e-01 -7.86501467e-01 -1.21629858e+00 1.89811364e-01 3.45541447e-01 -1.82010829e-01 -9.58187580e-02 4.09621894e-02 5.70531487e-01 -9.89261389e-01 -8.24677408e-01 8.22533846e-01 7.46945620e-01 2.19876811e-01 6.88384652e-01 4.12409872e-01 5.17034113e-01 -5.32481492e-01 9.35586840e-02 2.62366742e-01 -3.37989450e-01 -1.98220104e-01 2.43583277e-01 -1.98270440e-01 1.78859308e-01 -1.26191244e-01 1.31856954e+00 5.80885589e-01 3.80236447e-01 9.06959713e-01 -1.27683651e+00 -5.57712793e-01 1.71179265e-01 -2.95827270e-01 -2.29170188e-01 -1.67218134e-01 1.27486289e-02 3.95276248e-01 -8.19935143e-01 4.10761982e-01 1.01487339e+00 7.32512534e-01 6.35175884e-01 -1.34674096e+00 -4.93421525e-01 1.29656151e-01 -2.18912661e-01 -1.61836267e+00 -2.00338483e-01 5.94714284e-01 -7.33455300e-01 5.19218981e-01 4.14163291e-01 3.78545433e-01 8.76092553e-01 4.15960163e-01 6.53999925e-01 9.00108814e-01 -4.59697634e-01 4.79480594e-01 2.36992404e-01 1.03956401e-01 4.06316996e-01 7.03529119e-01 3.22040200e-01 2.55031198e-01 -1.87403783e-01 1.22065151e+00 -2.10977435e-01 -5.81290543e-01 -5.23562014e-01 -9.54999685e-01 9.92821634e-01 -1.00562535e-01 2.63361037e-01 -4.41991687e-01 3.66709739e-01 9.29573700e-02 4.73060966e-01 4.02941793e-01 5.50150633e-01 -3.16790938e-01 -4.69272435e-02 -4.39724654e-01 5.05636036e-01 8.61482799e-01 1.23793483e+00 3.55103552e-01 6.39876783e-01 -6.88930601e-02 4.44001466e-01 4.19078916e-01 9.44223285e-01 1.13939218e-01 -1.16874135e+00 3.64723533e-01 6.02100939e-02 5.21161795e-01 -7.30385125e-01 -2.93809831e-01 -6.35064960e-01 -9.85906959e-01 4.34058428e-01 4.75162923e-01 -7.11466372e-01 -7.28726625e-01 1.84424675e+00 3.18476588e-01 3.16673547e-01 1.46720661e-02 6.89584255e-01 -4.06552702e-01 8.84313524e-01 -3.19460541e-01 -9.88402963e-01 5.87885976e-01 -4.75197345e-01 -1.23517370e+00 2.12364063e-01 4.26516235e-01 -4.90493506e-01 8.03130209e-01 5.63518763e-01 -1.26228869e+00 -2.28553683e-01 -9.51040447e-01 5.16555369e-01 -6.52798340e-02 3.22772175e-01 -1.23757072e-01 4.84814316e-01 -1.17173171e+00 7.13886738e-01 -1.02528405e+00 -1.81076705e-01 -1.61727950e-01 5.51315784e-01 -8.84232372e-02 4.88491297e-01 -1.11257803e+00 1.19891036e+00 1.08032510e-01 6.37869477e-01 -8.12758863e-01 -8.34282041e-01 -7.47733891e-01 -1.86243773e-01 7.05730140e-01 -7.03817189e-01 1.20724428e+00 -6.36605024e-01 -2.08320546e+00 2.33053550e-01 -1.18686520e-01 -2.80247062e-01 8.25693727e-01 -1.45872682e-01 -1.51831970e-01 7.53455702e-03 -2.34890342e-01 -4.40106124e-01 1.27568471e+00 -1.30007577e+00 -4.64852184e-01 -1.68441162e-01 -6.80521801e-02 -9.34918039e-03 -9.39729437e-02 -6.41256422e-02 -2.70443231e-01 -6.34169698e-01 -1.92154244e-01 -1.29553854e+00 -5.53099930e-01 -1.70420662e-01 -3.68107438e-01 -1.40628740e-01 8.57540905e-01 -5.50344765e-01 1.40868855e+00 -2.13270688e+00 5.82472563e-01 5.41449666e-01 -1.15848649e-02 4.04676735e-01 1.95747584e-01 5.65517008e-01 -4.40830998e-02 2.06411809e-01 -4.15109158e-01 -3.49167049e-01 1.07150234e-01 2.33335242e-01 -3.55417252e-01 8.46387625e-01 4.28245723e-01 4.63740438e-01 -6.77314878e-01 -4.81609441e-02 3.44671309e-01 5.91399789e-01 -1.79182291e-01 2.68808194e-02 -1.52665330e-02 6.63053513e-01 -8.79050672e-01 1.46989271e-01 4.67768401e-01 1.17888033e-01 7.37529341e-03 4.72336337e-02 -5.86774111e-01 -4.06432331e-01 -1.52882802e+00 1.03029656e+00 -6.75446451e-01 3.92960191e-01 7.98873544e-01 -1.46069431e+00 6.41273201e-01 6.60365939e-01 3.42429906e-01 1.00005113e-01 4.15449351e-01 3.79790306e-01 -1.14234924e-01 -3.77711296e-01 -1.16932154e-01 -5.38461685e-01 7.35996515e-02 -8.35910589e-02 -2.20997483e-01 -3.81571680e-01 2.89324641e-01 -4.44442213e-01 7.91289747e-01 2.31295414e-02 3.42691004e-01 -6.10300601e-01 1.01719570e+00 2.35196147e-02 6.40429676e-01 4.69400436e-01 3.68266851e-02 2.49406114e-01 4.96455103e-01 3.75185668e-01 -1.06555712e+00 -7.66684651e-01 -2.42244452e-01 2.73802727e-01 -6.43594787e-02 1.69207588e-01 -6.98391676e-01 2.10264623e-02 1.43098608e-01 7.31426001e-01 -6.66850388e-01 -3.67578894e-01 -6.29523575e-01 -5.33724606e-01 2.50483930e-01 4.04143512e-01 7.25719798e-03 -4.86660987e-01 -2.40046382e-01 4.48487669e-01 4.52052921e-01 -7.95269251e-01 -5.19678831e-01 3.95024389e-01 -7.29168415e-01 -8.72013569e-01 -1.10868907e+00 -7.82952607e-01 8.08975935e-01 -3.06577414e-01 3.72367620e-01 -3.50021720e-01 -7.80641139e-02 8.04926991e-01 1.57642111e-01 -5.94231009e-01 -5.31109035e-01 -2.09912419e-01 4.49165940e-01 1.04333699e-01 -4.51647133e-01 -2.97172695e-01 -1.14676785e-02 4.36978072e-01 -8.33279252e-01 -2.75395334e-01 3.01952422e-01 8.95113766e-01 7.99942493e-01 5.17993271e-01 7.62780249e-01 -5.92777431e-01 1.06488609e+00 -2.20942199e-01 -1.39426684e+00 3.84852946e-01 -7.80208349e-01 8.71674940e-02 8.85373831e-01 -7.89049208e-01 -1.03181994e+00 7.70243779e-02 2.14372069e-01 -7.78447151e-01 3.89221549e-01 8.67873967e-01 -2.60734230e-01 -3.23554754e-01 2.26459771e-01 5.22656962e-02 4.82741684e-01 -3.42543304e-01 2.83696592e-01 5.04816651e-01 3.70078504e-01 -7.21981466e-01 1.14142334e+00 2.27939636e-01 5.27346969e-01 -1.09253645e+00 -3.45364511e-01 -4.71772850e-01 -4.01518971e-01 -1.36768371e-01 7.51015723e-01 -6.57624185e-01 -1.14002466e+00 4.40417647e-01 -1.01339662e+00 -5.75662136e-01 -4.96407181e-01 4.95245904e-01 -1.12490022e+00 -8.62339337e-04 -6.25706315e-01 -1.59430885e+00 1.05639808e-01 -1.18797982e+00 6.11057997e-01 1.04701258e-01 -6.01182617e-02 -1.46704888e+00 7.40504861e-02 -3.00009698e-01 4.69239771e-01 4.30966556e-01 6.64180279e-01 -1.86994359e-01 -3.30262154e-01 -3.96117389e-01 3.24932963e-01 7.95930862e-01 -6.94316775e-02 1.92066193e-01 -5.09925604e-01 -4.71969247e-01 7.43798137e-01 3.42978448e-01 2.88223505e-01 8.59806359e-01 6.27791405e-01 -3.48196089e-01 -3.74440461e-01 4.31195796e-01 1.78660452e+00 5.08488417e-01 3.12419951e-01 2.03066885e-01 8.15066695e-01 6.73332512e-01 5.53261101e-01 4.23862308e-01 -1.46403685e-01 5.94862819e-01 1.13491036e-01 4.43118848e-02 5.37953138e-01 -1.39941107e-02 5.34920514e-01 7.46815920e-01 -3.01851958e-01 -1.00984722e-01 -6.40568435e-01 2.75998116e-01 -2.19018865e+00 -8.26933980e-01 -4.60141927e-01 2.75823474e+00 8.69164169e-01 -2.18089893e-01 8.43350440e-02 2.28894889e-01 1.13902843e+00 -7.62499750e-01 -4.34474260e-01 -3.09335023e-01 -4.61038761e-02 1.55524984e-01 1.02924180e+00 8.38412464e-01 -9.88252163e-01 3.36306959e-01 6.51216745e+00 8.45511019e-01 -1.16899776e+00 6.34856150e-02 1.75264925e-01 3.45768034e-01 8.66938904e-02 5.34446537e-02 -7.65411258e-01 4.47153956e-01 1.08558834e+00 -7.32799113e-01 5.93327045e-01 7.50798166e-01 1.00759149e+00 1.03259794e-01 -7.93739498e-01 8.72927129e-01 -3.92541230e-01 -8.29508901e-01 -5.32757342e-01 3.13884377e-01 9.91090059e-01 -7.12253690e-01 2.87058622e-01 3.35873991e-01 -7.14433417e-02 -8.72002125e-01 7.58735836e-01 7.25091159e-01 6.89028144e-01 -7.89077282e-01 7.14787066e-01 4.97616142e-01 -1.04707503e+00 -3.13453674e-01 -2.89981157e-01 -7.24438280e-02 5.92828095e-01 5.61196625e-01 -5.30363083e-01 6.37689948e-01 -2.23492458e-02 6.40578151e-01 1.94791798e-02 1.28247142e+00 -1.97224006e-01 6.09223425e-01 -4.07091290e-01 -5.15022054e-02 1.04310945e-01 -7.65200078e-01 8.86070549e-01 8.94899786e-01 7.10220754e-01 -1.96411923e-01 1.66865110e-01 9.69870448e-01 3.70395213e-01 -3.56219076e-02 -4.49623108e-01 -2.57365674e-01 1.26532078e-01 9.42789257e-01 -3.84487003e-01 -2.06881225e-01 -2.42091909e-01 7.38866448e-01 -2.23422825e-01 7.99896061e-01 -1.07445109e+00 -4.10067439e-01 7.34452546e-01 8.05649236e-02 2.22579300e-01 -5.87568164e-01 -1.77244350e-01 -9.82485414e-01 -5.00549970e-04 -6.77706003e-01 -9.07643363e-02 -3.92239749e-01 -1.16984737e+00 5.45428731e-02 2.88542956e-01 -1.32387161e+00 -5.57725012e-01 -7.65921295e-01 -6.07639015e-01 1.15971720e+00 -1.24841619e+00 -7.91182995e-01 3.44752580e-01 6.11806214e-01 2.56957561e-01 9.12145078e-02 4.87902552e-01 2.97586948e-01 -9.38185632e-01 5.26509695e-02 7.54094839e-01 -4.13501561e-01 5.40996969e-01 -1.47957504e+00 -3.35752875e-01 9.43580806e-01 -6.06993794e-01 8.72766674e-01 1.29168892e+00 -6.12671375e-01 -1.63429785e+00 -1.19834626e+00 6.20735645e-01 -2.04857260e-01 1.13716805e+00 -2.52786782e-02 -9.12254632e-01 6.81654334e-01 -1.76519826e-01 -1.57350793e-01 2.27864329e-02 -3.72346938e-01 5.77596128e-01 8.70394148e-03 -8.74474406e-01 6.11706436e-01 6.35649979e-01 -2.97227144e-01 -3.39073330e-01 3.07243586e-01 6.52747273e-01 -2.87136883e-01 -9.84719157e-01 5.32273948e-01 1.33667544e-01 7.31864497e-02 7.89225876e-01 -4.83152449e-01 -3.43418628e-01 -8.24435234e-01 1.89410627e-01 -1.40660059e+00 -2.93952525e-01 -1.48538315e+00 -2.93291241e-01 1.26326025e+00 5.91245770e-01 -8.99262547e-01 2.67522395e-01 7.53944397e-01 -1.94750756e-01 -7.47517765e-01 -9.38017368e-01 -1.37941694e+00 3.25220972e-01 -4.03750658e-01 -2.33095199e-01 6.22373402e-01 1.50466368e-01 1.63024738e-01 -5.18011451e-01 4.21746016e-01 6.02745414e-01 -4.96122152e-01 4.34350044e-01 -1.09595621e+00 -3.18862855e-01 -5.83454072e-01 -2.21160322e-01 -8.02826643e-01 3.68219167e-01 -3.46537173e-01 4.88171667e-01 -1.16860843e+00 -4.64361429e-01 -3.80445331e-01 -1.35514557e-01 -2.16528013e-01 -1.53908193e-01 -2.73017198e-01 1.52474478e-01 1.05316944e-01 -4.76022549e-02 6.30109251e-01 1.27387893e+00 2.02455483e-02 -4.69850779e-01 7.03594625e-01 -3.16843063e-01 5.44857323e-01 8.20037544e-01 -2.64073998e-01 -8.32991302e-01 4.15563658e-02 2.61132389e-01 3.54375094e-01 2.55789667e-01 -1.11777818e+00 3.40225667e-01 -4.28109825e-01 -1.10216230e-01 -3.00736547e-01 2.03760758e-01 -1.10489881e+00 5.63640237e-01 6.28912449e-01 -2.57056981e-01 6.70958459e-02 2.04501837e-01 7.58906841e-01 -2.14390948e-01 -6.21224821e-01 8.58553350e-01 2.85477370e-01 -1.23867184e-01 3.32439482e-01 -8.21605921e-01 -1.21204861e-01 1.16812396e+00 -8.44063908e-02 2.16647029e-01 -5.23524225e-01 -1.21207857e+00 2.60154009e-01 3.41163486e-01 -1.38674632e-01 3.16062689e-01 -1.10180986e+00 -3.40967000e-01 2.61419807e-02 -5.05167902e-01 -8.85115266e-02 2.25873604e-01 1.40023994e+00 -2.21617371e-01 6.23365939e-01 3.19968015e-01 -4.12883222e-01 -9.21333969e-01 7.59893179e-01 5.18844366e-01 -1.86303318e-01 -2.53182352e-01 5.56213200e-01 2.47477010e-01 -6.91394135e-02 1.81750357e-01 -6.09313846e-01 1.62874255e-02 -2.39622250e-01 2.82254308e-01 5.39253652e-01 -2.03765869e-01 -3.62614244e-01 -1.28916994e-01 8.03728878e-01 6.57183945e-01 -4.51279223e-01 8.96557093e-01 -5.47234416e-01 -3.31849419e-02 8.41070473e-01 1.09337687e+00 -1.34122506e-01 -1.41511643e+00 8.21426734e-02 2.06044719e-01 1.70425415e-01 3.55275422e-02 -2.99401104e-01 -7.82056570e-01 6.55699432e-01 4.47919190e-01 3.56440991e-01 9.56917882e-01 -5.65211773e-01 3.04519653e-01 3.73976797e-01 3.11300844e-01 -1.43441951e+00 -4.35129315e-01 7.72668302e-01 1.05694973e+00 -6.59239292e-01 -3.25984269e-01 -7.00200677e-01 -4.34222668e-01 1.25755811e+00 3.02085817e-01 -6.14632547e-01 9.56234932e-01 4.56982106e-01 -2.03092188e-01 4.30763394e-01 -5.47305584e-01 -3.46258759e-01 1.97689489e-01 7.25811243e-01 4.32188779e-01 -2.59220880e-02 -7.96471000e-01 4.91934836e-01 3.27969372e-01 1.81779742e-01 5.70814073e-01 8.41725945e-01 -3.53650182e-01 -1.12050569e+00 -6.44130230e-01 -1.38928303e-02 -4.61045742e-01 2.98599511e-01 1.98817313e-01 1.11656690e+00 -1.18938223e-01 9.76533949e-01 -2.53587663e-01 5.21014035e-02 5.50252676e-01 6.61294684e-02 4.95550305e-01 -6.20674551e-01 -1.76724911e-01 3.88364941e-01 -1.96370427e-02 -1.48180753e-01 -2.33708277e-01 -6.34098709e-01 -1.19205105e+00 -1.20339312e-01 -7.63265789e-01 2.97519922e-01 7.58507073e-01 1.10358262e+00 2.51239333e-02 5.91819108e-01 5.89433491e-01 -7.44239807e-01 -1.26888120e+00 -8.75577867e-01 -9.03327465e-01 -1.60073698e-01 4.20595139e-01 -9.23028827e-01 -8.32510710e-01 1.46322861e-01]
[5.286634922027588, 2.602344274520874]
09f5cda3-e88c-4d97-880f-df23b1a2f354
biologically-inspired-sleep-algorithm-for-1
null
null
https://openreview.net/forum?id=r1xGnA4Kvr
https://openreview.net/pdf?id=r1xGnA4Kvr
Biologically inspired sleep algorithm for increased generalization and adversarial robustness in deep neural networks
Current artificial neural networks (ANNs) can perform and excel at a variety of tasks ranging from image classification to spam detection through training on large datasets of labeled data. While the trained network may perform well on similar testing data, inputs that differ even slightly from the training data may trigger unpredictable behavior. Due to this limitation, it is possible to design inputs with very small perturbations that can result in misclassification. These adversarial attacks present a security risk to deployed ANNs and indicate a divergence between how ANNs and humans perform classification. Humans are robust at behaving in the presence of noise and are capable of correctly classifying objects that are noisy, blurred, or otherwise distorted. It has been hypothesized that sleep promotes generalization of knowledge and improves robustness against noise in animals and humans. In this work, we utilize a biologically inspired sleep phase in ANNs and demonstrate the benefit of sleep on defending against adversarial attacks as well as in increasing ANN classification robustness. We compare the sleep algorithm's performance on various robustness tasks with two previously proposed adversarial defenses - defensive distillation and fine-tuning. We report an increase in robustness after sleep phase to adversarial attacks as well as to general image distortions for three datasets: MNIST, CUB200, and a toy dataset. Overall, these results demonstrate the potential for biologically inspired solutions to solve existing problems in ANNs and guide the development of more robust, human-like ANNs.
['Ramyaa Ramyaa', 'Giri Krishnan', 'Timothy Tadros', 'Maxim Bazhenov']
2020-05-01
null
null
null
iclr-2020-1
['spam-detection']
['natural-language-processing']
[ 5.50668955e-01 -7.38743320e-02 5.46736300e-01 -3.14108849e-01 2.24221200e-01 -1.03314543e+00 4.58127677e-01 2.47510592e-03 -6.14175439e-01 8.21732223e-01 -1.56553879e-01 -3.15561861e-01 -8.22368264e-02 -7.54909754e-01 -8.04690421e-01 -9.34253037e-01 -1.75818786e-01 1.26834482e-01 2.83285588e-01 -5.24992526e-01 3.00749511e-01 1.06316566e+00 -1.47905779e+00 2.12241918e-01 6.48324728e-01 7.90730655e-01 -2.25693956e-01 7.99981296e-01 5.79629421e-01 6.00583613e-01 -1.55356026e+00 -3.54346067e-01 5.37162602e-01 -3.04253459e-01 -5.56104362e-01 -3.59089762e-01 3.25055182e-01 1.74093544e-01 -3.59730929e-01 1.02574801e+00 6.73637211e-01 3.22506815e-01 4.37371463e-01 -1.34797382e+00 -8.82781327e-01 3.07143688e-01 7.08342046e-02 7.50130236e-01 7.40859061e-02 6.56551182e-01 1.00731000e-01 -7.35449567e-02 6.78333789e-02 1.26059842e+00 9.15123045e-01 1.27151656e+00 -1.55721641e+00 -9.80104864e-01 -2.16452673e-01 -1.71868980e-01 -1.04349887e+00 -6.93505585e-01 5.35274506e-01 -1.44786835e-02 9.74374831e-01 5.43225527e-01 5.13489842e-01 1.61603451e+00 7.71517396e-01 1.24766596e-01 1.20805371e+00 -1.10858366e-01 6.42906368e-01 1.35028198e-01 -1.62586793e-01 4.24608797e-01 5.59449971e-01 6.39582157e-01 -5.81211329e-01 -1.34171799e-01 8.62109214e-02 -6.56934530e-02 -1.99136823e-01 2.16628611e-01 -8.73880446e-01 6.66819274e-01 8.54767561e-01 1.77298531e-01 -1.37760371e-01 2.63335556e-01 2.97093928e-01 5.52419066e-01 1.19858064e-01 1.21535456e+00 -5.41023433e-01 3.15469056e-01 -6.86110914e-01 -3.14101167e-02 8.91980529e-01 3.33805382e-01 2.75925100e-01 8.07161510e-01 9.00690332e-02 5.91616273e-01 4.89857011e-02 5.82347512e-01 9.80157673e-01 -7.71894693e-01 -6.19736910e-02 5.77899098e-01 -2.27486864e-01 -1.15584743e+00 -6.05389535e-01 -7.95058608e-01 -8.27365458e-01 7.87038147e-01 4.42720175e-01 -1.24304213e-01 -1.13558471e+00 2.10967350e+00 1.23291552e-01 1.70918122e-01 6.20135963e-01 4.58977312e-01 8.06071222e-01 5.20546019e-01 1.90906331e-01 1.32453203e-01 1.06200051e+00 -4.30129588e-01 -2.78101176e-01 -7.84605622e-01 1.29498765e-01 -3.21625501e-01 1.05098319e+00 4.13379908e-01 -9.25291717e-01 -5.68121374e-01 -1.48220599e+00 4.97992367e-01 -1.05889583e+00 -5.50774276e-01 4.84352946e-01 1.38325691e+00 -9.17187095e-01 9.25828397e-01 -9.19867992e-01 -5.89544713e-01 6.30936325e-01 9.16685641e-01 -3.28944743e-01 3.43853742e-01 -1.10976315e+00 1.11332500e+00 3.99942368e-01 6.25239238e-02 -1.17131186e+00 -5.91366172e-01 -5.59865713e-01 -1.29174965e-03 -2.15704918e-01 -6.22743726e-01 7.33121812e-01 -1.16939676e+00 -1.16413653e+00 8.20712149e-01 4.55245644e-01 -1.04745948e+00 8.85950103e-02 -2.34529488e-02 -6.73790753e-01 6.30435795e-02 -3.19028378e-01 7.96360970e-01 8.80252063e-01 -1.19977736e+00 9.75893587e-02 -4.70841408e-01 1.63465276e-01 -1.44062683e-01 -7.85234451e-01 -2.12176051e-02 6.92781031e-01 -1.09561491e+00 -1.32736549e-01 -1.11120355e+00 -8.80397037e-02 4.75330763e-02 -2.87089527e-01 4.23333973e-01 1.18967175e+00 -1.41581759e-01 6.61638260e-01 -2.19957185e+00 -3.10353279e-01 1.38316289e-01 -3.59417349e-02 8.52479100e-01 -2.44394660e-01 2.58596897e-01 -2.38960326e-01 5.81615508e-01 -3.61374676e-01 2.15841070e-01 -3.97278726e-01 5.96395373e-01 -4.63811636e-01 6.25709593e-01 3.22762042e-01 9.07165527e-01 -6.01264775e-01 1.03330508e-01 -1.71883166e-01 3.49557877e-01 -3.25141996e-01 1.37032166e-01 8.05273801e-02 4.31531280e-01 4.64486666e-02 7.31613398e-01 2.67217159e-01 1.80510789e-01 -3.97537351e-01 1.04066674e-02 3.06743532e-01 -3.12273018e-02 -5.46766281e-01 9.30765808e-01 -1.99997693e-01 7.87528872e-01 -1.18950941e-02 -9.96098936e-01 9.36858892e-01 6.86072409e-02 -1.84010118e-01 -6.68508351e-01 3.27920705e-01 -1.74061656e-01 5.72190285e-01 -2.28678420e-01 -7.13320822e-02 -3.19009095e-01 -1.34551032e-02 6.50517344e-01 4.87449393e-02 -3.49837720e-01 -4.79636490e-02 9.51335803e-02 1.53990769e+00 -3.75198156e-01 1.08335078e-01 -4.26644683e-01 3.96889299e-01 -4.46401201e-02 5.49511850e-01 1.07712376e+00 -3.79755586e-01 2.45740607e-01 9.07898992e-02 -6.27833068e-01 -7.98789322e-01 -1.32034981e+00 -1.60590395e-01 1.07848036e+00 1.71073526e-01 4.20858152e-02 -8.84706497e-01 -6.88716173e-01 9.13730264e-02 9.50822711e-01 -9.86913025e-01 -1.32787609e+00 -3.11033517e-01 -1.16667295e+00 1.41762400e+00 4.91912305e-01 8.03098977e-01 -1.32395065e+00 -1.14594841e+00 -9.28518325e-02 3.60485256e-01 -8.37163508e-01 -1.85487531e-02 8.35450888e-01 -8.41668844e-01 -9.63236749e-01 6.42518029e-02 -5.02815843e-01 8.01189899e-01 1.28466696e-01 9.64583933e-01 6.00504279e-01 -7.22508848e-01 2.83352286e-01 -1.75817579e-01 -1.08788478e+00 -9.35652554e-01 -2.81630218e-01 6.32693172e-01 -3.51080507e-01 4.32668813e-02 -8.79057169e-01 -5.05305111e-01 6.98637962e-01 -1.33971786e+00 -4.72740233e-01 5.12877285e-01 9.15987849e-01 -1.77305952e-01 4.40566480e-01 7.29322672e-01 -7.48579502e-01 6.74116373e-01 -4.37693775e-01 -2.23856822e-01 1.38371244e-01 -6.23979330e-01 1.76377892e-01 1.24419594e+00 -9.24469292e-01 -7.44091988e-01 -7.81610534e-02 -1.91139691e-02 -2.16764748e-01 -4.40607697e-01 -1.86199583e-02 -1.23510137e-01 -8.61976564e-01 1.56243289e+00 2.43120551e-01 7.46500641e-02 2.30465662e-02 -2.00988710e-01 3.12893480e-01 6.89373255e-01 -3.69646281e-01 1.41092443e+00 5.41360676e-01 2.49357790e-01 -9.77027237e-01 -7.32989430e-01 2.48698130e-01 -3.32054704e-01 -1.33541867e-01 6.54045701e-01 -3.99323612e-01 -6.77443087e-01 6.34046972e-01 -6.78693533e-01 -4.78358239e-01 -4.99058694e-01 -9.60866064e-02 -2.23729480e-02 9.14413407e-02 -3.43414873e-01 -6.71667933e-01 -5.42995155e-01 -7.33543813e-01 2.99164355e-01 6.10981464e-01 -2.99677730e-01 -9.38809752e-01 -3.46767046e-02 4.19957966e-01 7.79262006e-01 5.44891536e-01 9.34960067e-01 -1.18708050e+00 -7.54855424e-02 -3.71379048e-01 3.48143965e-01 6.31717682e-01 1.36191398e-01 6.75828755e-02 -1.25349665e+00 -5.65765679e-01 3.00505430e-01 -7.25595772e-01 8.77013087e-01 -7.44258910e-02 8.69390786e-01 -6.15862012e-01 -2.10688934e-01 8.75005066e-01 1.12442291e+00 4.83222634e-01 7.82141209e-01 6.78108454e-01 1.04056492e-01 4.90065515e-01 1.52864456e-01 -1.54403001e-01 -6.43108070e-01 1.11806750e-01 9.23844099e-01 -8.76102820e-02 1.25021741e-01 1.53561562e-01 4.27590966e-01 -7.65607208e-02 2.72838414e-01 -5.66328764e-01 -9.13448811e-01 1.06819391e-01 -1.19173265e+00 -1.14864135e+00 4.05977488e-01 1.97498274e+00 6.87671125e-01 6.13355458e-01 3.87614593e-02 3.38844150e-01 5.31988442e-01 -1.79703891e-01 -1.06267428e+00 -6.93388283e-01 -5.99659443e-01 4.81204867e-01 5.89647114e-01 -8.99046287e-02 -1.09717834e+00 9.20322895e-01 6.85429049e+00 3.02084953e-01 -1.28623378e+00 -1.78739697e-01 6.91020668e-01 -4.29979175e-01 1.85193032e-01 -2.85522223e-01 -4.39172834e-01 5.47820687e-01 1.45634508e+00 -9.82751697e-02 6.34800971e-01 7.00761378e-01 1.66762426e-01 -3.57348397e-02 -8.87694240e-01 4.81521398e-01 1.93111390e-01 -1.16256630e+00 1.06950112e-01 -1.49090648e-01 5.63349962e-01 5.58566786e-02 4.69194502e-01 2.45455295e-01 6.06714368e-01 -1.49234700e+00 6.36482894e-01 1.69128835e-01 2.70333767e-01 -8.56197238e-01 7.31299222e-01 4.80218619e-01 -5.20977914e-01 -6.41976953e-01 -4.83749241e-01 -1.95806965e-01 -6.40813708e-01 -1.25099318e-02 -8.95960093e-01 -5.69833107e-02 1.00459933e+00 8.43745470e-02 -1.39474809e+00 8.55893016e-01 -5.75168617e-02 7.25179017e-01 -2.96787590e-01 -2.07681730e-01 -1.35830240e-02 3.29774618e-01 6.00093365e-01 9.74076390e-01 -8.00336674e-02 2.38510862e-01 -3.11718643e-01 8.87728274e-01 -7.78947920e-02 -5.50057054e-01 -7.56657839e-01 -2.98972994e-01 4.93907750e-01 1.17314363e+00 -1.14304209e+00 4.81633171e-02 2.22959712e-01 9.08733726e-01 -2.99596358e-02 3.19477260e-01 -7.49115288e-01 -5.00698030e-01 8.22696745e-01 -1.66105047e-01 -2.13888392e-01 -1.30119309e-01 -5.49442887e-01 -7.25403786e-01 -3.75444651e-01 -1.26836085e+00 3.67667168e-01 -8.28003883e-01 -1.28847587e+00 8.24073017e-01 -2.61266291e-01 -7.60265350e-01 2.16457948e-01 -6.43530428e-01 -9.89913821e-01 4.82309282e-01 -8.35931838e-01 -1.11719370e+00 -4.18102711e-01 6.60011053e-01 4.53022182e-01 -6.08972669e-01 9.58515644e-01 -3.34875673e-01 -7.79956400e-01 7.74520755e-01 7.25575462e-02 1.17598116e-01 6.35730028e-01 -1.09570503e+00 6.36109710e-01 1.20382285e+00 3.86920899e-01 1.01865292e+00 1.01679182e+00 -5.66111207e-01 -1.09756148e+00 -1.23408318e+00 6.82825048e-04 -5.84670186e-01 3.22385639e-01 -4.64446604e-01 -8.33955646e-01 2.56364495e-01 1.90095469e-01 -1.64380930e-02 9.08765674e-01 -3.51020694e-01 -4.51185614e-01 -3.81310403e-01 -1.70902503e+00 8.76817286e-01 8.87334764e-01 -3.27126026e-01 -7.06809938e-01 2.78008729e-01 5.06098866e-01 -4.68457453e-02 -3.01075906e-01 4.57097113e-01 5.25118411e-01 -1.16053748e+00 1.27519894e+00 -8.97449553e-01 6.29400462e-02 -3.22903484e-01 6.60862774e-03 -1.38448739e+00 -3.09602618e-01 -7.74251878e-01 1.22177206e-01 1.15443957e+00 3.50324363e-01 -8.86485636e-01 8.32931757e-01 7.14037240e-01 -5.73869161e-02 -5.19492686e-01 -9.05735195e-01 -1.05466652e+00 2.05618978e-01 1.95522513e-02 3.11471552e-01 7.75138021e-01 -4.13566470e-01 1.13799125e-01 -1.65050942e-02 5.10785580e-01 5.77656865e-01 -5.78093350e-01 6.97716773e-01 -1.33597302e+00 -1.25443086e-01 -3.26546073e-01 -8.44715953e-01 4.55074124e-02 2.90512890e-01 -7.87142932e-01 4.78029214e-02 -8.34044456e-01 -2.37629592e-01 -1.76497683e-01 -4.15487766e-01 7.55756855e-01 4.30953540e-02 7.52291918e-01 3.47303785e-02 1.47398889e-01 -1.71380267e-01 4.85517047e-02 6.07783854e-01 -1.71942115e-01 -1.53457019e-02 1.51804060e-01 -1.00802147e+00 8.37215364e-01 1.21642184e+00 -9.05622363e-01 -4.79731739e-01 -2.07207337e-01 9.71638560e-02 -7.19500840e-01 7.49672949e-01 -1.63867795e+00 3.87069106e-01 -1.97336838e-01 1.12460458e+00 1.44306242e-01 4.33126718e-01 -8.42250586e-01 1.55454472e-01 1.15328741e+00 -4.27011639e-01 2.34910160e-01 7.26140857e-01 7.39584982e-01 3.50928426e-01 -2.22726390e-01 1.55633247e+00 -2.77562201e-01 -3.13466847e-01 -2.00346366e-01 -8.30834866e-01 2.14633226e-01 1.27043104e+00 -5.87691724e-01 -7.53847003e-01 -1.67528778e-01 -5.90416193e-01 -8.13400820e-02 6.63315296e-01 4.84328002e-01 6.71382308e-01 -6.91619813e-01 -3.04138035e-01 6.52286410e-01 -2.82080054e-01 -5.88331938e-01 -1.35775626e-01 3.06688070e-01 -5.67956030e-01 8.97219554e-02 -7.91730881e-01 -3.59131694e-01 -1.59035921e+00 8.10441613e-01 5.85295498e-01 3.26329380e-01 -8.99121314e-02 1.14627767e+00 4.37547304e-02 -2.35467747e-01 3.66226226e-01 1.57270283e-01 -6.16215803e-02 -4.39851761e-01 3.55029494e-01 2.05879599e-01 1.66237772e-01 -2.97385991e-01 -5.15998840e-01 1.09001242e-01 -1.20549507e-01 2.41311640e-01 1.31094742e+00 3.17377031e-01 -3.82665806e-02 1.34530932e-01 7.08059669e-01 -8.41757804e-02 -9.59820032e-01 3.73788625e-01 -2.33373083e-02 -2.76338309e-01 -2.39275709e-01 -1.21400023e+00 -9.30509388e-01 7.29730666e-01 8.78127813e-01 5.21239698e-01 1.43859339e+00 -3.11965436e-01 5.71532130e-01 8.64001274e-01 -2.71092774e-03 -9.04028118e-01 6.49877906e-01 2.04690769e-01 7.22940385e-01 -8.51737022e-01 1.72045484e-01 1.60838306e-01 -4.68729377e-01 1.13654530e+00 9.81983066e-01 -3.40094209e-01 3.48857403e-01 5.83183229e-01 2.51883209e-01 -4.98690531e-02 -9.39393163e-01 2.34227732e-01 1.61681280e-01 1.11750829e+00 -1.30655199e-01 -6.28916323e-01 2.78546602e-01 2.62341082e-01 -5.30421674e-01 -6.62789524e-01 6.15411401e-01 1.18465996e+00 -5.94574273e-01 -7.93900967e-01 -6.28409207e-01 2.97942072e-01 -6.79542124e-01 -1.76299121e-02 -1.16209722e+00 7.33418643e-01 2.08934069e-01 1.22498453e+00 -2.37182885e-01 -6.94129467e-01 2.23051801e-01 1.37106791e-01 1.76088467e-01 -6.97651625e-01 -1.31359208e+00 -6.06117725e-01 -6.84558377e-02 -4.24476743e-01 -2.64859796e-01 -4.88457263e-01 -9.70374882e-01 -3.15149754e-01 -3.84888470e-01 1.14661314e-01 7.00451970e-01 8.95163476e-01 2.96758890e-01 6.76204205e-01 4.66018319e-01 -7.66118407e-01 -7.84836054e-01 -6.51473761e-01 -2.24834025e-01 4.22064900e-01 3.29200089e-01 -5.68307281e-01 -9.17547822e-01 1.57567933e-01]
[5.635304927825928, 7.82358980178833]
62da7eae-290d-4ec8-a49f-a6f172a6211c
hybrik-transformer
2302.04774
null
https://arxiv.org/abs/2302.04774v4
https://arxiv.org/pdf/2302.04774v4.pdf
3D Human Pose and Shape Estimation via HybrIK-Transformer
HybrIK relies on a combination of analytical inverse kinematics and deep learning to produce more accurate 3D pose estimation from 2D monocular images. HybrIK has three major components: (1) pretrained convolution backbone, (2) deconvolution to lift 3D pose from 2D convolution features, (3) analytical inverse kinematics pass correcting deep learning prediction using learned distribution of plausible twist and swing angles. In this paper we propose an enhancement of the 2D to 3D lifting module, replacing deconvolution with Transformer, resulting in accuracy and computational efficiency improvement relative to the original HybrIK method. We demonstrate our results on commonly used H36M, PW3D, COCO and HP3D datasets. Our code is publicly available https://github.com/boreshkinai/hybrik-transformer.
['Boris N. Oreshkin']
2023-02-09
null
null
null
null
['3d-pose-estimation', '3d-human-pose-estimation', '3d-human-pose-and-shape-estimation', 'monocular-3d-human-pose-estimation']
['computer-vision', 'computer-vision', 'computer-vision', 'computer-vision']
[-4.95406210e-01 -1.35973776e-02 1.56911779e-02 -2.77105629e-01 -5.69344461e-01 -5.77987134e-01 5.54828286e-01 -5.52683592e-01 -2.71328181e-01 7.84751236e-01 4.68398869e-01 -3.78604084e-01 -1.65182903e-01 -5.44613421e-01 -1.16629231e+00 -3.94118726e-01 -1.95034161e-01 6.65817559e-01 -3.44512425e-02 -4.76871252e-01 2.63277292e-01 5.24069548e-01 -1.10043359e+00 1.74799547e-01 4.03291285e-01 1.11504066e+00 1.03347912e-01 8.89421463e-01 4.95184630e-01 6.18890226e-01 1.35902107e-01 -9.26940888e-02 5.33614457e-01 1.35492776e-02 -1.02843714e+00 -1.33076742e-01 2.77416289e-01 -6.83054686e-01 -4.16517019e-01 4.24423635e-01 7.54468322e-01 -8.02142918e-02 4.45790917e-01 -1.13807738e+00 -7.22654164e-01 2.41144836e-01 -5.03114581e-01 -1.06142581e-01 3.80220473e-01 1.36120424e-01 7.46361434e-01 -1.30425441e+00 6.72041178e-01 1.13021493e+00 1.39585555e+00 3.62223178e-01 -1.24004507e+00 -8.04861963e-01 -4.38724786e-01 1.94580004e-01 -1.48664832e+00 -3.16554338e-01 6.36676908e-01 -5.65046310e-01 1.27486980e+00 -4.34893593e-02 8.78346503e-01 1.13387203e+00 4.51837033e-01 5.60763121e-01 1.16286242e+00 -2.46673271e-01 -1.90361559e-01 -3.05317163e-01 -3.19068849e-01 9.14023280e-01 -1.05884094e-02 4.22899038e-01 -5.33192992e-01 -1.62390903e-01 8.64960074e-01 -6.56406209e-02 -2.78035283e-01 -7.07296550e-01 -1.17838132e+00 6.88889921e-01 7.95843780e-01 -5.37557244e-01 -2.89094806e-01 5.29902220e-01 2.63861805e-01 6.02071434e-02 3.90550047e-01 3.97050261e-01 -9.20473695e-01 -3.37913245e-01 -5.37058055e-01 9.01185870e-01 7.22130358e-01 9.10712361e-01 9.17044520e-01 -2.51346260e-01 5.15442073e-01 3.80959332e-01 5.10701418e-01 4.90864426e-01 4.35767978e-01 -1.47578120e+00 3.33186746e-01 2.71617502e-01 3.30608726e-01 -6.59124851e-01 -8.23785961e-01 -3.33051324e-01 -5.33023536e-01 4.18572247e-01 1.63949564e-01 -2.78272241e-01 -8.78230035e-01 1.55291820e+00 4.69555944e-01 -5.26522622e-02 3.29723060e-02 1.22249615e+00 6.24690533e-01 2.64472276e-01 -4.27406043e-01 7.09936619e-01 1.04327667e+00 -9.23553288e-01 -1.99072421e-01 4.11076508e-02 6.98824108e-01 -1.08921075e+00 1.05140972e+00 2.55862951e-01 -1.02420115e+00 -4.49290603e-01 -1.05438828e+00 -6.12211764e-01 -2.72329211e-01 3.26462477e-01 7.41037369e-01 6.80424944e-02 -8.79320145e-01 9.94681478e-01 -9.50426877e-01 -2.37551123e-01 3.90345454e-01 6.70356929e-01 -4.82763439e-01 2.03930378e-01 -1.14100075e+00 1.04761875e+00 2.76938140e-01 9.73066986e-02 -8.50588441e-01 -1.06497359e+00 -9.80295420e-01 -3.31782877e-01 2.65108764e-01 -9.96551633e-01 1.65050805e+00 -4.51811761e-01 -1.82288921e+00 8.79311621e-01 1.63943306e-01 -5.20026386e-01 7.63321757e-01 -1.01630986e+00 3.64827067e-01 -1.20185561e-01 -4.60163727e-02 7.74691522e-01 3.21262926e-01 -1.20349824e+00 -1.21255629e-01 -3.44531924e-01 9.07076299e-02 3.77190173e-01 5.69332838e-01 -5.13709486e-01 -2.37308815e-01 -5.44682562e-01 2.07088694e-01 -1.30342960e+00 -8.17368701e-02 2.33873114e-01 -4.84173238e-01 2.02289715e-01 8.12183261e-01 -1.00646043e+00 5.60560942e-01 -1.64543939e+00 4.83117193e-01 -6.74941912e-02 3.14587593e-01 2.98888117e-01 1.70901000e-01 6.44270182e-01 -1.96766570e-01 -1.84264705e-01 1.40257314e-01 -5.91220081e-01 -8.67814873e-04 3.29200298e-01 -3.73131305e-01 8.10592115e-01 3.03936005e-01 1.17012310e+00 -6.09357059e-01 -5.81153184e-02 4.72205848e-01 8.00488293e-01 -9.62136149e-01 1.70793533e-01 -3.45906019e-02 6.97455525e-01 -2.60684013e-01 6.71944141e-01 6.87096655e-01 8.54184479e-03 -1.98776647e-01 -5.85911453e-01 -4.45000589e-01 5.31945348e-01 -9.68109131e-01 2.09429288e+00 -4.90432203e-01 3.91189933e-01 1.21627919e-01 -7.47599900e-01 8.24757993e-01 2.10319251e-01 5.95710754e-01 -4.54065919e-01 4.45116431e-01 2.14064837e-01 -1.89551100e-01 -2.95151114e-01 4.18954074e-01 -2.20747337e-01 -6.03708550e-02 8.22916627e-02 3.38297933e-01 -4.61116940e-01 -2.99385220e-01 -1.03441045e-01 7.55651474e-01 1.11630535e+00 2.30605051e-01 -4.62411493e-01 3.04239929e-01 2.55793661e-01 3.85378361e-01 5.64902686e-02 6.48028180e-02 7.98030555e-01 4.33707386e-01 -9.07101631e-01 -1.56587744e+00 -1.28504026e+00 -3.02370023e-02 5.01586020e-01 1.37789622e-01 -4.73151714e-01 -6.66701078e-01 -9.10614580e-02 5.91425121e-01 3.04193348e-01 -8.09622169e-01 -2.02079117e-01 -7.67881691e-01 -6.33692980e-01 5.81686020e-01 7.59130299e-01 5.60067475e-01 -5.80138385e-01 -7.82072186e-01 -1.41593501e-01 -1.98101196e-02 -9.46297526e-01 -4.58675236e-01 3.13745826e-01 -6.96268499e-01 -1.33351672e+00 -5.18241286e-01 -4.60145026e-01 3.39968830e-01 1.11020260e-01 9.59005356e-01 -1.11845143e-01 -3.72591317e-01 1.46549225e-01 -3.07853192e-01 -5.20756066e-01 -7.29065090e-02 1.72749087e-01 4.79720712e-01 -5.64728260e-01 -1.96984485e-01 -7.46244252e-01 -7.64995873e-01 3.27852905e-01 -1.98304728e-01 7.71509230e-01 5.88730574e-01 9.50198710e-01 6.02499545e-01 -5.01678288e-01 2.77010519e-02 -4.32814389e-01 2.02465862e-01 -2.06443757e-01 -7.63801694e-01 -3.75141144e-01 -4.72921044e-01 1.15580276e-01 5.65238118e-01 -1.69314370e-01 -9.78386045e-01 4.34331954e-01 -5.81991673e-01 -7.51047134e-01 5.82598187e-02 2.05928400e-01 2.17994466e-01 -3.92645448e-01 6.66495621e-01 1.38597131e-01 4.48845625e-01 -8.40643466e-01 3.66374344e-01 5.39123356e-01 5.95339060e-01 -7.17544138e-01 9.88639534e-01 6.49293423e-01 3.06223273e-01 -5.57204068e-01 -9.45055902e-01 -7.38756433e-02 -1.12663293e+00 -7.08417669e-02 8.13566148e-01 -1.06384051e+00 -1.20157802e+00 6.35243893e-01 -1.00443983e+00 -9.82779741e-01 -5.71390092e-02 6.80045724e-01 -9.38356578e-01 2.77144611e-01 -8.72471690e-01 -3.76950026e-01 -7.44636416e-01 -1.27931523e+00 1.46158051e+00 3.02547906e-02 -3.49468648e-01 -6.81807041e-01 2.69748807e-01 1.84585094e-01 2.81871468e-01 7.14035511e-01 5.37378192e-01 -1.01880322e-03 -4.07663941e-01 -2.60503352e-01 -7.83767775e-02 3.17246944e-01 -1.62459284e-01 8.65898002e-03 -7.12271988e-01 -3.00234437e-01 -3.06682080e-01 -7.35970736e-01 5.32774508e-01 4.32894260e-01 1.06531656e+00 -3.07359099e-01 -1.36379912e-01 1.27063823e+00 1.40352106e+00 -1.93986550e-01 5.40100753e-01 6.10356092e-01 7.10210085e-01 2.17107803e-01 5.07249117e-01 4.24262851e-01 7.16027319e-01 8.66502643e-01 6.10598028e-01 -2.31904373e-01 -2.33758390e-01 -5.44813275e-01 2.26388320e-01 7.83990145e-01 -4.57863390e-01 4.55770075e-01 -1.00610995e+00 2.54007608e-01 -1.84074342e+00 -5.80623031e-01 -8.51890594e-02 1.87267506e+00 5.98504841e-01 3.83319184e-02 1.54398918e-01 1.48345590e-01 1.18520625e-01 -3.53943259e-01 -5.69371939e-01 -4.08188403e-01 2.06729412e-01 2.92198688e-01 8.77085268e-01 7.52095580e-01 -9.49752986e-01 9.02816057e-01 5.86460161e+00 3.21726918e-01 -1.34338105e+00 7.08306730e-02 2.42988765e-01 -2.46916443e-01 1.70848012e-01 1.31832704e-01 -8.39564085e-01 2.75323093e-01 5.10047615e-01 3.01922299e-02 6.10025764e-01 7.60364652e-01 1.03697203e-01 8.76302347e-02 -8.98054302e-01 7.71342993e-01 -2.48213395e-01 -1.64823604e+00 -2.36470476e-01 2.73286670e-01 4.65042919e-01 5.85719943e-01 -7.67869130e-02 2.61958688e-01 3.83234888e-01 -1.02131486e+00 1.20818126e+00 3.99871737e-01 8.27748477e-01 -7.13750124e-01 5.72010577e-01 4.09014404e-01 -1.17615557e+00 1.20749757e-01 -2.22550586e-01 -5.57402551e-01 2.28980169e-01 3.07454973e-01 -1.05961978e+00 7.69738495e-01 9.76344287e-01 7.78792977e-01 -1.54172465e-01 6.72558248e-01 -3.63879383e-01 2.27339581e-01 -3.61309201e-01 2.41542056e-01 2.22287208e-01 -2.75942404e-02 4.38923478e-01 9.37220216e-01 3.91156197e-01 1.00726768e-01 9.94817391e-02 8.35252225e-01 7.77369812e-02 -4.15129006e-01 -4.40796047e-01 2.65202075e-01 1.83309689e-01 1.32396364e+00 -3.56360346e-01 -5.33677936e-02 -2.45940134e-01 9.49575365e-01 3.61409992e-01 2.79469155e-02 -1.09247077e+00 -3.08446944e-01 1.26595569e+00 2.33849779e-01 4.14037138e-01 -7.09214032e-01 -1.86684057e-01 -1.15541327e+00 -2.08387539e-01 -3.15607905e-01 2.61317454e-02 -1.20031250e+00 -7.30828464e-01 3.95063907e-01 7.76413828e-02 -9.67675865e-01 -2.25671276e-01 -1.15639865e+00 -3.40182871e-01 1.04550600e+00 -1.45713139e+00 -1.46340680e+00 -5.56783795e-01 3.76263618e-01 2.28700563e-01 2.99817085e-01 8.94161165e-01 2.42227122e-01 -2.55575299e-01 2.69867569e-01 -6.19986877e-02 1.18074730e-01 5.79654038e-01 -1.37060046e+00 9.33974147e-01 2.62188315e-01 -3.57145727e-01 4.29845303e-01 7.50053763e-01 -4.55297947e-01 -1.80622017e+00 -1.02068675e+00 5.60330212e-01 -7.66813934e-01 5.17411470e-01 -4.46255237e-01 -5.80596507e-01 1.14931154e+00 -3.93094681e-02 1.40711963e-01 3.96110535e-01 -1.06897734e-01 -1.71605155e-01 -7.36876391e-03 -1.13481903e+00 5.65170527e-01 1.21229529e+00 -2.76568592e-01 -5.84303856e-01 2.70706564e-01 7.54421711e-01 -1.20077932e+00 -1.24232352e+00 5.65548539e-01 9.60346460e-01 -8.24884236e-01 1.33594918e+00 -5.37809312e-01 7.11911380e-01 -3.90253305e-01 -2.47075200e-01 -1.30322480e+00 -3.75370115e-01 -6.98621333e-01 -2.98986286e-01 6.33173645e-01 5.00151701e-02 -4.81307626e-01 8.55847538e-01 2.40501314e-01 -5.53602993e-01 -1.32963586e+00 -8.90771329e-01 -5.94878376e-01 2.61022240e-01 -3.91278446e-01 5.63120127e-01 5.98871946e-01 -1.33889169e-01 2.29128763e-01 -6.22960627e-01 1.73029244e-01 5.67759573e-01 2.40802497e-01 1.20453560e+00 -8.88972819e-01 -3.85743797e-01 -7.66714215e-02 -3.84224087e-01 -1.08222330e+00 2.78017148e-02 -9.54615533e-01 -9.56038982e-02 -1.24776947e+00 3.67327482e-02 -3.77740473e-01 2.71431118e-01 7.25679934e-01 4.05111164e-01 5.99445164e-01 4.71094735e-02 1.12040967e-01 -1.72187984e-01 6.87079549e-01 1.44790626e+00 6.02452755e-01 2.97815204e-02 -2.94449627e-01 -4.92647469e-01 9.41575110e-01 1.00220513e+00 -2.18379572e-01 4.58909720e-02 -6.88628316e-01 2.13662803e-01 4.53232182e-03 8.05338681e-01 -1.11200237e+00 -2.52446294e-01 1.55386003e-02 9.81757820e-01 -6.99493766e-01 7.49601483e-01 -5.00832081e-01 3.86384755e-01 1.12673450e+00 2.08646338e-03 3.54764611e-01 4.79762524e-01 1.27949744e-01 3.82991254e-01 3.53212208e-01 8.08263898e-01 -3.07068229e-01 -7.05714345e-01 2.17129678e-01 -7.47309551e-02 -1.75305068e-01 7.13740647e-01 -6.39304966e-02 -3.16865355e-01 -3.01768214e-01 -7.22457588e-01 1.95660710e-01 8.40162933e-01 3.61827374e-01 5.96243620e-01 -1.48812962e+00 -4.96852547e-01 3.28872621e-01 -2.60784924e-01 3.01431596e-01 2.57334928e-03 1.18111682e+00 -1.26516092e+00 4.43072319e-01 -5.11375904e-01 -5.37198305e-01 -1.01339161e+00 3.08950096e-01 5.98722100e-01 1.08553609e-02 -9.17744339e-01 8.26601803e-01 1.30089104e-01 -1.04076719e+00 -7.84229860e-02 -6.04174793e-01 4.03699398e-01 -5.34987211e-01 1.79001391e-01 5.19959331e-01 9.22551900e-02 -8.66674244e-01 -5.59863210e-01 7.46545672e-01 3.57514471e-01 -5.65771153e-03 1.60821593e+00 -1.89563841e-01 1.16905749e-01 -1.51161142e-02 1.47391295e+00 -6.05638996e-02 -1.54874802e+00 1.05412528e-01 -2.91094065e-01 -4.09009099e-01 -7.40240738e-02 -8.03335130e-01 -8.24818790e-01 8.72350872e-01 3.70521635e-01 -6.79380059e-01 9.07666206e-01 -1.23896683e-02 1.00760424e+00 3.82520437e-01 3.74431968e-01 -6.70263112e-01 6.98586702e-02 7.66943157e-01 1.24666953e+00 -9.59716618e-01 2.00284749e-01 -3.15825909e-01 -5.05108893e-01 1.28505743e+00 5.95522463e-01 -7.13774443e-01 7.69874454e-01 5.60950935e-01 6.78243414e-02 -2.19938591e-01 -6.84570789e-01 7.79648824e-03 3.41898263e-01 4.07704890e-01 5.50113976e-01 -7.30730072e-02 -5.71405962e-02 6.98486984e-01 -6.78021491e-01 3.05237293e-01 4.05712932e-01 1.02384663e+00 -1.48498446e-01 -9.23979104e-01 -4.21856195e-01 3.21190879e-02 -4.07511055e-01 1.75968215e-01 -3.13617647e-01 1.11743701e+00 2.36155093e-01 4.96197082e-02 1.20909497e-01 -7.85269082e-01 3.67692173e-01 -5.96317016e-02 7.68579304e-01 -2.81781793e-01 -2.60311753e-01 4.23763916e-02 8.30362737e-02 -9.29040253e-01 -7.25949258e-02 -6.04352772e-01 -1.41716468e+00 -6.18379891e-01 8.68083443e-03 -1.03024840e-01 8.45428944e-01 8.71510386e-01 6.40670121e-01 2.75480866e-01 1.69448465e-01 -1.83178246e+00 -6.29177034e-01 -8.65301490e-01 -3.20883006e-01 3.32284153e-01 5.20483434e-01 -1.10583341e+00 2.86729680e-03 1.41338417e-02]
[7.05758810043335, -1.0615205764770508]
424a0f54-e964-4391-ad71-c42cf3e7ec70
an-empirical-study-for-vietnamese
2010.09623
null
https://arxiv.org/abs/2010.09623v2
https://arxiv.org/pdf/2010.09623v2.pdf
An Empirical Study for Vietnamese Constituency Parsing with Pre-training
In this work, we use a span-based approach for Vietnamese constituency parsing. Our method follows the self-attention encoder architecture and a chart decoder using a CKY-style inference algorithm. We present analyses of the experiment results of the comparison of our empirical method using pre-training models XLM-Roberta and PhoBERT on both Vietnamese datasets VietTreebank and NIIVTB1. The results show that our model with XLM-Roberta archived the significantly F1-score better than other pre-training models, VietTreebank at 81.19% and NIIVTB1 at 85.70%.
['Ngan Luu-Thuy Nguyen', 'Kiet Van Nguyen', 'Duc-Vu Nguyen', 'Xuan-Thien Pham', 'Tuan-Vi Tran']
2020-10-19
null
null
null
null
['constituency-parsing', 'vietnamese-parsing', 'vietnamese-datasets']
['natural-language-processing', 'natural-language-processing', 'natural-language-processing']
[-2.22259209e-01 7.47898161e-01 -6.41252577e-01 -7.49791324e-01 -1.16487610e+00 -8.62621725e-01 4.51352328e-01 8.91852379e-03 -6.25944316e-01 1.32716525e+00 7.42515385e-01 -9.87263918e-01 4.97202754e-01 -8.90915155e-01 -8.73135388e-01 -1.30952671e-01 2.02334478e-01 6.09083891e-01 4.34611104e-02 -5.76685250e-01 2.70035088e-01 1.10301645e-02 -6.63016856e-01 6.02684975e-01 5.76361299e-01 4.12049085e-01 9.97146685e-03 1.28314662e+00 -4.62735295e-02 9.35437143e-01 -8.10747564e-01 -1.31402540e+00 -1.92399118e-02 -3.58173400e-01 -1.40285027e+00 -7.43417382e-01 8.41671765e-01 -4.37532902e-01 -4.02313858e-01 6.14498556e-01 3.11465323e-01 -1.73583388e-01 4.89613473e-01 -5.99282622e-01 -8.36053193e-01 1.38864231e+00 -1.62662491e-01 5.84270954e-01 3.28705341e-01 -2.67958604e-02 1.56400096e+00 -6.40235960e-01 1.36194038e+00 1.31081212e+00 8.44364822e-01 7.18922496e-01 -1.13122833e+00 -6.36242568e-01 1.40761375e-01 1.90905094e-01 -7.63729453e-01 -6.61291122e-01 5.52153707e-01 -6.82197651e-03 1.80038559e+00 1.65183529e-01 5.09057105e-01 1.27832890e+00 6.57224953e-01 9.57993627e-01 1.15839589e+00 -6.62374318e-01 -1.84487492e-01 2.09965408e-02 7.65930295e-01 8.52437079e-01 2.58908898e-01 2.52546817e-01 -5.15526533e-01 6.37455136e-02 6.89206004e-01 -9.93410647e-01 3.72074723e-01 6.96045101e-01 -7.36599982e-01 1.30095136e+00 2.44132012e-01 5.94957590e-01 -6.01424649e-02 1.66940853e-01 8.35917950e-01 4.42933887e-01 5.56545317e-01 3.59315127e-01 -9.21604276e-01 -2.45181546e-01 -8.58532608e-01 4.26218748e-01 9.64171946e-01 1.48829317e+00 4.46757317e-01 2.50414491e-01 -2.71728754e-01 5.66494286e-01 1.61567286e-01 1.45888761e-01 3.18844050e-01 -1.03693414e+00 1.12183034e+00 6.29570410e-02 -1.84761018e-01 -4.81196851e-01 -3.12209934e-01 -2.44454980e-01 -3.28174978e-01 -1.44576266e-01 6.20135248e-01 -4.63697582e-01 -9.69049692e-01 1.90355408e+00 -6.37153164e-03 -6.76900983e-01 6.30484283e-01 4.61720586e-01 1.01016903e+00 1.25016463e+00 7.26535916e-01 -1.76554039e-01 1.43989432e+00 -1.16868234e+00 -1.01270974e+00 -2.29040548e-01 8.63237798e-01 -7.58035123e-01 9.11830962e-01 1.13890097e-01 -1.42877388e+00 -8.61502707e-01 -1.16949463e+00 -7.82887042e-01 -5.24172366e-01 2.01071993e-01 9.07499611e-01 9.94349360e-01 -9.88463402e-01 6.55637562e-01 -5.66146314e-01 -3.36925238e-01 1.44916043e-01 6.40391558e-02 -3.81265581e-01 1.40725121e-01 -1.36351728e+00 1.14685059e+00 1.06802726e+00 -7.66276196e-02 -7.52143204e-01 -5.58687329e-01 -1.07835078e+00 6.24603257e-02 1.04171574e-01 -3.15335095e-01 1.58557427e+00 -5.26154518e-01 -1.70648122e+00 1.10596716e+00 -3.03553373e-01 -6.00721300e-01 2.47428313e-01 -6.11440003e-01 -4.36251372e-01 -3.96798365e-02 3.60404909e-01 7.27074444e-01 2.59603351e-01 -1.02014673e+00 -9.43048477e-01 -1.89275205e-01 1.13163851e-01 -7.75850285e-03 3.41950774e-01 3.54684144e-01 -6.81612790e-02 -6.01682723e-01 -1.33342713e-01 -6.21223271e-01 -2.76181828e-02 -1.19671011e+00 -5.53111613e-01 -6.07334316e-01 6.84686661e-01 -1.41660988e+00 1.60838091e+00 -1.65892017e+00 -1.32080510e-01 -1.22702681e-01 -1.39798343e-01 4.27174509e-01 -1.88545197e-01 7.47306168e-01 -8.52117464e-02 4.68157589e-01 -2.05932409e-01 -3.19099188e-01 -9.13593266e-03 6.92500353e-01 -2.80329764e-01 8.77345428e-02 5.53953111e-01 1.01479149e+00 -8.97138298e-01 -1.06114852e+00 -1.50655836e-01 2.54093166e-02 -8.11433613e-01 4.75266725e-01 -3.84889275e-01 2.70377725e-01 -1.71364263e-01 8.92576337e-01 4.26148921e-01 5.03816009e-01 7.68512547e-01 5.57536371e-02 -6.79669738e-01 9.59293842e-01 -3.46325547e-01 1.93918407e+00 -6.38623416e-01 8.50915313e-01 -2.54115984e-02 -6.25999212e-01 8.60703468e-01 6.00112081e-01 -2.55165398e-01 -8.36275578e-01 2.45451868e-01 4.22187001e-01 2.09473342e-01 -4.13594007e-01 1.02143264e+00 -1.15532108e-01 -6.47169113e-01 1.80811554e-01 6.22155368e-01 -9.26235318e-03 6.06657088e-01 3.55555445e-01 9.09686029e-01 5.29782951e-01 6.40441239e-01 -5.86254954e-01 5.12724876e-01 4.37304884e-01 9.78463531e-01 7.00456083e-01 -2.67280668e-01 3.15130115e-01 7.86569059e-01 -7.01842964e-01 -1.66246414e+00 -9.25102711e-01 -4.05797124e-01 1.38781667e+00 -7.21243322e-01 -6.47486567e-01 -9.46504354e-01 -1.11608076e+00 -5.04985809e-01 1.23766649e+00 -7.00017214e-01 5.43877006e-01 -1.64294124e+00 -5.01087904e-01 1.06578755e+00 8.88735831e-01 6.80675924e-01 -1.42653275e+00 -7.51572371e-01 8.05360317e-01 -2.76931167e-01 -1.17014408e+00 -3.98101717e-01 3.62376451e-01 -7.56847382e-01 -7.73139119e-01 -3.40030223e-01 -1.17273676e+00 -4.72279489e-02 -7.63512671e-01 1.66127062e+00 1.85052097e-01 8.98652077e-02 -3.65046769e-01 -5.53159714e-01 -4.50691074e-01 -7.76237786e-01 7.25908220e-01 -6.02791607e-01 -8.17359149e-01 4.20299917e-01 -1.80615634e-01 1.85429212e-02 -5.18654585e-01 -2.79650450e-01 1.86504364e-01 5.74274659e-01 1.19152200e+00 2.28166565e-01 -5.25041640e-01 5.83424747e-01 -1.53734469e+00 3.39975536e-01 -4.75618392e-01 -6.09293997e-01 3.10718864e-01 -5.81606090e-01 4.58179303e-02 6.76880240e-01 8.28062519e-02 -1.49213600e+00 -1.99388992e-02 -8.60123754e-01 3.92844528e-01 -1.13355115e-01 3.02518636e-01 -3.89041126e-01 6.43391311e-01 2.69249231e-01 -1.71051368e-01 -5.72198510e-01 -4.79729861e-01 5.96859276e-01 7.19400287e-01 8.65408957e-01 -8.68114650e-01 2.31779963e-01 -2.37629429e-01 -3.66223454e-01 -8.84511709e-01 -8.83732319e-01 -1.68453321e-01 -9.44567382e-01 2.05675028e-02 1.30656564e+00 -7.49144256e-01 -5.09013176e-01 -1.57090183e-03 -1.72894263e+00 -5.25184929e-01 -1.40445620e-01 1.23035550e-01 -5.14109135e-01 1.26978099e-01 -1.42861748e+00 -8.24754298e-01 -7.43457794e-01 -8.65362167e-01 8.85830164e-01 1.17029339e-01 -5.52307427e-01 -1.11204076e+00 4.07008439e-01 4.18174118e-01 9.18704718e-02 3.28198463e-01 1.36963141e+00 -6.64647639e-01 -1.82040185e-01 1.71986118e-01 -2.35313341e-01 2.97515951e-02 -4.36348587e-01 7.97309428e-02 -1.01562572e+00 -4.29012924e-02 -3.13393921e-01 -4.73956645e-01 7.05050409e-01 3.13755393e-01 4.75835890e-01 -6.79089010e-01 -2.63062939e-02 5.39298117e-01 1.71109009e+00 5.33233047e-01 8.02866101e-01 5.59476316e-01 5.02060890e-01 6.67936742e-01 6.34759128e-01 -1.29926026e-01 6.59025848e-01 4.01940376e-01 -4.18429635e-02 8.81246924e-02 -3.37964892e-01 -8.12350690e-01 3.54212254e-01 1.20255685e+00 -2.75931895e-01 -4.54993457e-01 -8.45471084e-01 8.08139741e-01 -1.73152983e+00 -9.06694472e-01 -3.57423723e-01 1.42459202e+00 1.04585600e+00 3.17203969e-01 2.28065312e-01 1.19255222e-01 4.04737055e-01 3.14765096e-01 -6.12778682e-03 -1.66848266e+00 -1.06026180e-01 7.84371078e-01 6.58584476e-01 8.81230235e-01 -1.10536444e+00 1.72920823e+00 7.43177652e+00 4.26241934e-01 -3.34203422e-01 4.90700632e-01 7.59531617e-01 3.80522907e-01 -2.18976021e-01 2.06351027e-01 -1.29002035e+00 2.12752879e-01 1.72388065e+00 7.18226805e-02 4.38283607e-02 8.73235226e-01 -3.43912393e-01 1.22417971e-01 -1.12383962e+00 1.83203459e-01 -6.36655912e-02 -1.50173783e+00 -1.93196252e-01 -1.15336500e-01 4.79700595e-01 -1.12058915e-01 -1.97950691e-01 8.99062634e-01 7.49697804e-01 -9.35370266e-01 1.13471162e+00 -1.40540808e-01 9.23386455e-01 -9.24898505e-01 9.79193866e-01 2.40215957e-01 -1.11650753e+00 3.51226926e-02 -6.95877790e-01 -1.59254700e-01 3.67442459e-01 -1.41838919e-02 -9.54714775e-01 7.80096650e-01 6.30784214e-01 4.09616023e-01 -1.90755248e-01 1.25507250e-01 -6.34276032e-01 1.24952137e+00 -4.58617620e-02 -3.05185169e-01 6.45428181e-01 -1.04532287e-01 2.88854539e-01 1.92735934e+00 -1.71426356e-01 4.97807860e-01 -5.58271892e-02 4.07234818e-01 -7.95479268e-02 3.15229028e-01 -4.78122294e-01 9.40448791e-02 3.88481408e-01 7.19992280e-01 -3.96882713e-01 -8.19640517e-01 -4.60042179e-01 7.92362273e-01 9.39352512e-01 5.35810925e-02 -8.47669721e-01 -4.45162833e-01 3.28749985e-01 -2.38785177e-01 5.01231551e-01 -3.72057319e-01 -5.62192261e-01 -1.00345325e+00 -3.73325735e-01 -8.81633759e-01 8.21079671e-01 -3.67956549e-01 -9.18395996e-01 1.05549502e+00 3.59503508e-01 -2.72051483e-01 -5.09472907e-01 -9.01182473e-01 -7.39321947e-01 7.98049212e-01 -1.40575314e+00 -1.48960090e+00 5.75416386e-01 1.67979762e-01 1.06756639e+00 -3.16739440e-01 1.13859332e+00 5.20342588e-02 -8.07930052e-01 8.81104767e-01 -1.88060731e-01 7.06359148e-01 2.05755234e-01 -1.50565720e+00 9.95725453e-01 1.09051347e+00 1.92462310e-01 5.73298573e-01 5.82853615e-01 -9.33768511e-01 -1.10502005e+00 -8.35632443e-01 1.96532965e+00 -6.28583372e-01 5.44201553e-01 -5.95717132e-01 -7.59519517e-01 1.35210717e+00 1.17244542e+00 -6.93826020e-01 5.75769544e-01 5.43344378e-01 -4.47135329e-01 2.62394607e-01 -1.17096472e+00 3.93595129e-01 1.16306758e+00 -3.15399915e-01 -1.23775613e+00 1.66326597e-01 1.02104950e+00 -5.22805750e-01 -1.23405981e+00 8.92463252e-02 6.19157672e-01 -9.21381831e-01 4.74515647e-01 -1.00287473e+00 8.00687730e-01 5.57412565e-01 -3.07724088e-01 -1.10532331e+00 -5.57561517e-01 -5.75244963e-01 5.01347817e-02 1.60534859e+00 9.76782918e-01 -5.83993137e-01 8.75997484e-01 5.02200425e-01 -5.07356286e-01 -3.59881967e-01 -1.30491817e+00 -6.40177965e-01 8.86975825e-01 -3.41635019e-01 5.45182467e-01 7.71161854e-01 7.10604861e-02 7.75689602e-01 -3.41404051e-01 -1.08816605e-02 5.75944841e-01 9.65535566e-02 4.55539852e-01 -5.94133139e-01 -2.78898448e-01 -6.41771406e-02 8.59616101e-02 -7.01378882e-01 4.47497100e-01 -9.17314172e-01 3.77720781e-02 -1.29577756e+00 -8.17022100e-02 -3.94261181e-01 9.51136500e-02 5.88125348e-01 -2.34092660e-02 -7.65515566e-02 3.17958623e-01 -1.71954378e-01 8.84787703e-04 2.03641634e-02 9.19413149e-01 8.00374821e-02 -6.76591881e-03 -4.15078580e-01 -4.96645093e-01 4.56414759e-01 1.22751486e+00 -8.20905030e-01 3.08498908e-02 -7.92738140e-01 2.84629781e-02 4.45035607e-01 -3.34795505e-01 -7.39808023e-01 -2.00273782e-01 6.49489239e-02 4.79496449e-01 -8.77197027e-01 1.39847070e-01 -2.17366442e-01 -2.65195280e-01 7.60882795e-01 -3.96379322e-01 7.70895779e-01 2.90863812e-01 2.96006864e-03 -1.79417089e-01 -5.42822540e-01 4.63378042e-01 -5.58660209e-01 -8.84878159e-01 -4.14413726e-03 -7.20678926e-01 2.80499697e-01 5.49389005e-01 -6.00519264e-03 -4.69617784e-01 -7.38492236e-02 -4.86479878e-01 2.91525647e-02 -3.03208437e-02 1.88559085e-01 3.90733033e-01 -9.70288217e-01 -1.16083598e+00 3.45272332e-01 -1.78967312e-01 -3.22044909e-01 -1.36710212e-01 -2.55287513e-02 -1.00150299e+00 9.63553488e-01 -4.48890477e-01 5.72256967e-02 -1.14200389e+00 4.54860568e-01 -3.05194467e-01 -8.88239980e-01 -6.48375988e-01 7.90027440e-01 -4.01534051e-01 -5.47449112e-01 -8.19367245e-02 -4.53057975e-01 -4.04030412e-01 -1.85534388e-01 2.07304180e-01 3.49115789e-01 -9.04681087e-02 -8.45618069e-01 -3.30140412e-01 2.09943995e-01 -3.41105014e-01 -5.31013548e-01 1.29692996e+00 1.59504890e-01 8.04713517e-02 1.81301281e-01 1.36905718e+00 3.28384101e-01 -8.44841897e-01 1.72850773e-01 3.89368415e-01 -1.89971924e-01 -1.18595719e-01 -1.10923028e+00 -6.45807087e-01 7.76546836e-01 5.10382764e-02 4.41243500e-02 7.50675797e-01 7.13759735e-02 1.12084174e+00 2.61464119e-01 3.80052149e-01 -1.31212890e+00 -5.33174157e-01 9.80661392e-01 8.27340484e-01 -1.12245905e+00 -6.16751872e-02 -4.11700875e-01 -7.31951535e-01 1.23014021e+00 7.12944806e-01 -3.50534588e-01 4.09234136e-01 3.66797835e-01 3.58491987e-01 -1.36226416e-02 -1.05580533e+00 -7.69197270e-02 -1.78028226e-01 4.86841798e-01 1.02586937e+00 3.87470573e-01 -9.60574925e-01 8.87324691e-01 -9.99401987e-01 -3.90524775e-01 4.31965441e-01 1.17451835e+00 -2.44193718e-01 -1.38514280e+00 -1.01407558e-01 -1.85767859e-02 -1.07266068e+00 -3.75857234e-01 -3.73562813e-01 1.56292427e+00 5.64449057e-02 9.03880775e-01 2.03507200e-01 -3.01441103e-01 3.03675711e-01 3.94831985e-01 5.16637743e-01 -6.42377377e-01 -1.23315918e+00 9.05617326e-02 1.14541018e+00 -2.77909875e-01 -1.88734263e-01 -7.97488213e-01 -1.14511323e+00 -6.06218636e-01 -1.38464779e-01 3.85191768e-01 6.50276124e-01 6.48963034e-01 -2.52895474e-01 3.74499649e-01 3.58374864e-01 -3.80773425e-01 -3.68203580e-01 -1.27947903e+00 -2.47641444e-01 8.77849907e-02 5.67783825e-02 -8.38995948e-02 1.47344753e-01 4.53785853e-03]
[10.365315437316895, 9.714954376220703]
3a28f9af-e5bc-47dc-bfb0-f35f45628568
mask-is-all-you-need-rethinking-mask-r-cnn
2109.03426
null
https://arxiv.org/abs/2109.03426v1
https://arxiv.org/pdf/2109.03426v1.pdf
Mask is All You Need: Rethinking Mask R-CNN for Dense and Arbitrary-Shaped Scene Text Detection
Due to the large success in object detection and instance segmentation, Mask R-CNN attracts great attention and is widely adopted as a strong baseline for arbitrary-shaped scene text detection and spotting. However, two issues remain to be settled. The first is dense text case, which is easy to be neglected but quite practical. There may exist multiple instances in one proposal, which makes it difficult for the mask head to distinguish different instances and degrades the performance. In this work, we argue that the performance degradation results from the learning confusion issue in the mask head. We propose to use an MLP decoder instead of the "deconv-conv" decoder in the mask head, which alleviates the issue and promotes robustness significantly. And we propose instance-aware mask learning in which the mask head learns to predict the shape of the whole instance rather than classify each pixel to text or non-text. With instance-aware mask learning, the mask branch can learn separated and compact masks. The second is that due to large variations in scale and aspect ratio, RPN needs complicated anchor settings, making it hard to maintain and transfer across different datasets. To settle this issue, we propose an adaptive label assignment in which all instances especially those with extreme aspect ratios are guaranteed to be associated with enough anchors. Equipped with these components, the proposed method named MAYOR achieves state-of-the-art performance on five benchmarks including DAST1500, MSRA-TD500, ICDAR2015, CTW1500, and Total-Text.
['Weiping Wang', 'Hongbin Wang', 'Ning Jiang', 'Zhihong Tian', 'Dayan Wu', 'Youhui Guo', 'Yu Zhou', 'Xugong Qin']
2021-09-08
null
null
null
null
['scene-text-detection']
['computer-vision']
[ 3.45470130e-01 -1.10098319e-02 -1.24465756e-01 -2.34505758e-01 -6.11786783e-01 -4.19473559e-01 2.91770428e-01 -8.69456008e-02 -3.38934928e-01 4.12628084e-01 -2.41605893e-01 -2.87419349e-01 1.53490096e-01 -6.40487373e-01 -6.46247864e-01 -8.53476524e-01 5.95796943e-01 5.85796714e-01 6.02719069e-01 1.12822898e-01 2.53158629e-01 3.08802992e-01 -1.29362059e+00 4.11978275e-01 1.17222869e+00 1.11160743e+00 6.07683957e-01 1.09288223e-01 -5.49466908e-01 5.91070831e-01 -8.21989715e-01 -4.95036066e-01 3.08604360e-01 -2.31371462e-01 -5.08081496e-01 4.33263779e-01 3.49876314e-01 -2.46350244e-01 -2.27269873e-01 1.11132360e+00 5.42448401e-01 -8.68699998e-02 6.48299575e-01 -9.45708215e-01 -2.80854702e-01 7.90443718e-01 -1.35757887e+00 8.22117403e-02 -2.17128456e-01 2.05354363e-01 9.14595664e-01 -8.74645233e-01 2.97037482e-01 1.10422742e+00 5.88945627e-01 3.89222026e-01 -9.84089911e-01 -7.91150391e-01 6.05607092e-01 3.79621610e-02 -1.51960135e+00 -2.88107842e-01 6.77270353e-01 -3.14644784e-01 5.05302846e-01 4.04681474e-01 4.15778756e-01 9.79300439e-01 -6.19258247e-02 1.22553456e+00 1.14034295e+00 -1.68911129e-01 2.51449589e-02 2.85617352e-01 1.37662604e-01 6.43575191e-01 3.49651515e-01 -4.42202747e-01 -1.89989567e-01 4.52690482e-01 7.18955874e-01 5.57644889e-02 -4.72854316e-01 -1.10443816e-01 -1.19499624e+00 5.40746689e-01 5.22427976e-01 2.03567430e-01 -1.08774595e-01 -8.83129239e-02 3.47183347e-01 -1.03950597e-01 5.15992701e-01 2.55144477e-01 -6.32717550e-01 2.63006240e-02 -1.07770872e+00 -1.02746114e-01 4.10384387e-01 8.44527423e-01 6.22035027e-01 -1.85362864e-02 -4.17086929e-01 1.15335691e+00 2.15143755e-01 4.22795266e-01 4.66853589e-01 -2.22240910e-01 9.87455487e-01 1.02394676e+00 -8.63178223e-02 -9.27300930e-01 -4.09863085e-01 -8.67559016e-01 -9.39318061e-01 2.47068387e-02 5.82680762e-01 -2.37432644e-01 -1.32330036e+00 1.20158648e+00 3.22415411e-01 2.91596383e-01 -2.06517667e-01 1.00552809e+00 9.39114869e-01 7.38940358e-01 -1.87140584e-01 -8.50874409e-02 1.44089448e+00 -1.24457002e+00 -5.64345539e-01 -6.54509127e-01 5.31298161e-01 -9.23824787e-01 1.08956122e+00 4.51217264e-01 -7.13191688e-01 -5.24210274e-01 -1.12700760e+00 4.13186438e-02 -4.40231830e-01 5.96153677e-01 3.37155521e-01 3.86631548e-01 -5.59113324e-01 2.76363283e-01 -6.95936501e-01 -2.29661435e-01 7.10813582e-01 3.16478670e-01 -6.82263374e-02 -1.32723063e-01 -6.74796820e-01 6.62993193e-01 6.15181088e-01 3.20600927e-01 -6.45818472e-01 -3.12774420e-01 -6.23494089e-01 9.39918235e-02 7.22735703e-01 -2.16499135e-01 8.56241703e-01 -9.60964501e-01 -1.34150326e+00 8.08428705e-01 -1.21140279e-01 -3.22292626e-01 9.87415135e-01 -1.12636454e-01 -3.21365863e-01 -8.24419037e-02 1.53471664e-01 7.68393993e-01 1.15209818e+00 -1.38290620e+00 -8.69195461e-01 -3.87852341e-01 -4.70562018e-02 3.34774971e-01 -4.07519460e-01 -1.63816959e-01 -9.99897897e-01 -8.53687704e-01 4.17725503e-01 -7.85961807e-01 -1.14036575e-01 -1.26007915e-01 -9.09288168e-01 -1.12076916e-01 1.08350825e+00 -5.29668570e-01 1.29396152e+00 -2.25086951e+00 -2.62376573e-02 -4.69623618e-02 1.12938933e-01 4.84692574e-01 -4.96012978e-02 -1.27180129e-01 5.96131794e-02 1.80794865e-01 -2.64765173e-01 -5.98988414e-01 -1.31445527e-01 2.14020804e-01 -3.40085417e-01 4.21949863e-01 2.52413601e-01 8.21913004e-01 -4.44091409e-01 -7.08677292e-01 3.87497395e-01 2.67282724e-01 -2.46191829e-01 9.40574631e-02 -4.74937886e-01 4.02979165e-01 -5.90027153e-01 8.02156925e-01 9.96581018e-01 -4.73394871e-01 -1.41397268e-01 -2.67878026e-01 -7.78422430e-02 9.44280401e-02 -1.54870510e+00 1.28177238e+00 -1.56628445e-01 5.73434949e-01 2.85143424e-02 -1.04690123e+00 9.04129028e-01 1.08000271e-01 1.62985593e-01 -7.03786433e-01 3.29988450e-01 1.59009367e-01 -1.01397652e-02 -5.64586043e-01 4.40445244e-01 1.31329060e-01 1.68578997e-01 2.71601915e-01 -4.21970993e-01 4.47281636e-02 1.75998151e-01 -1.55338109e-01 8.35479736e-01 1.18034489e-01 -4.45682220e-02 -1.56857148e-01 5.57804167e-01 -1.36089057e-01 6.24970734e-01 7.05045700e-01 -5.13634970e-03 9.68983114e-01 5.34774363e-01 -3.11825156e-01 -6.27094686e-01 -7.67388999e-01 -3.98438275e-01 1.05178177e+00 5.36918402e-01 -1.68382391e-01 -7.66710401e-01 -1.01848435e+00 -2.09580645e-01 5.54549158e-01 -6.31686509e-01 9.86547321e-02 -6.77738011e-01 -1.19245028e+00 4.07882392e-01 4.86455023e-01 8.49613726e-01 -1.17732334e+00 -3.69994074e-01 1.68678656e-01 -3.58706117e-01 -1.31127965e+00 -7.17634797e-01 5.07203102e-01 -8.64331245e-01 -1.01905167e+00 -7.29090989e-01 -8.19997668e-01 9.50265110e-01 4.85577941e-01 8.10489476e-01 1.48544490e-01 -2.01762468e-01 -3.61457467e-01 -4.53064173e-01 -3.28521073e-01 -1.84646115e-01 3.59176368e-01 -3.93299192e-01 3.57593328e-01 6.74623400e-02 -6.86232522e-02 -7.27182984e-01 7.41909385e-01 -1.00416183e+00 3.29337865e-01 7.78001487e-01 6.87252641e-01 7.48342276e-01 4.37291294e-01 4.96360332e-01 -8.87736976e-01 1.95809782e-01 -1.58519238e-01 -6.39097869e-01 3.43266845e-01 -4.27368373e-01 -1.38441920e-01 6.90422833e-01 -5.99125326e-01 -8.94428074e-01 1.78796634e-01 -1.26275152e-01 -2.72155821e-01 -1.56522810e-01 2.00797215e-01 -5.59020758e-01 1.04528785e-01 3.42710137e-01 4.22394991e-01 -3.35587204e-01 -6.01022840e-01 1.45589024e-01 8.84554744e-01 3.38570267e-01 -4.03641820e-01 8.48769426e-01 4.68727559e-01 -3.20773453e-01 -8.37104142e-01 -9.92698014e-01 -4.29222703e-01 -4.10362214e-01 1.18875457e-02 9.60853934e-01 -9.13865149e-01 -2.75231659e-01 6.92305326e-01 -1.09715521e+00 -4.96900290e-01 7.07612745e-03 5.18614799e-02 -4.21915576e-02 2.72928864e-01 -5.56821823e-01 -6.63782358e-01 -3.78403336e-01 -1.53140497e+00 1.26947272e+00 3.92255813e-01 2.10882500e-01 -5.44003487e-01 -6.15633130e-01 5.07633328e-01 1.95967123e-01 -8.04988574e-03 7.64449596e-01 -6.79884970e-01 -7.46706963e-01 -2.46989444e-01 -7.04536200e-01 3.45145136e-01 2.49156132e-01 3.42653990e-02 -1.05069458e+00 -2.33034447e-01 -5.49603719e-03 -6.02177083e-02 1.08646154e+00 3.75376016e-01 1.49903440e+00 -1.55148551e-01 -6.02149725e-01 6.61035419e-01 1.32872474e+00 1.67134643e-01 8.07619214e-01 3.40617806e-01 9.97533798e-01 4.02021140e-01 6.78775907e-01 2.12828904e-01 1.98177487e-01 6.87319517e-01 4.66418266e-01 -3.31770718e-01 -2.30134502e-01 -1.08611338e-01 3.01725954e-01 5.82008541e-01 3.01941544e-01 -5.79890668e-01 -7.38888919e-01 3.69857818e-01 -1.69136572e+00 -4.57902193e-01 -2.74137914e-01 2.14717698e+00 7.56362975e-01 6.01052046e-01 -6.35022819e-02 2.98326254e-01 9.83198881e-01 2.64171690e-01 -6.37823999e-01 1.49135992e-01 -2.21327364e-01 -2.06338968e-02 5.26290953e-01 2.41895497e-01 -1.22670913e+00 1.09405315e+00 4.55864954e+00 1.32431114e+00 -1.41581857e+00 2.83563863e-02 1.09253728e+00 9.62181240e-02 1.95872843e-01 -2.65288621e-01 -1.04908752e+00 7.45924711e-01 1.23240896e-01 4.84763175e-01 1.98045269e-01 6.98743165e-01 2.71120965e-01 -1.40609041e-01 -8.80856514e-01 1.00475252e+00 -2.04265863e-02 -1.05335259e+00 1.24716153e-02 -2.50346435e-04 7.35603452e-01 1.49081916e-01 9.86337960e-02 2.69362718e-01 -1.06432021e-01 -1.04781592e+00 7.99837768e-01 -2.33998690e-02 7.78961897e-01 -5.74254692e-01 7.51155078e-01 5.25663495e-01 -1.29093456e+00 -5.73631115e-02 -5.59799135e-01 3.92759472e-01 -9.42006037e-02 7.76909232e-01 -7.34357893e-01 4.99993116e-01 5.26262164e-01 6.85282946e-01 -7.27582872e-01 1.32437289e+00 -3.20945680e-01 6.24049008e-01 -3.55634391e-01 5.01232706e-02 2.16320679e-01 -1.68657929e-01 4.73163426e-01 1.24636793e+00 2.27645233e-01 -2.63419420e-01 4.09376979e-01 7.96506107e-01 -2.59694427e-01 2.21392870e-01 -1.44867361e-01 1.40991896e-01 3.74846905e-01 1.49705482e+00 -1.35634255e+00 -2.70857245e-01 -3.33962262e-01 1.11492872e+00 1.86889946e-01 3.83413494e-01 -1.10180509e+00 -2.71933436e-01 1.88903719e-01 2.61639595e-01 7.72286296e-01 1.45517275e-01 -6.15654588e-01 -1.30175042e+00 3.15339267e-01 -1.03348053e+00 3.15229803e-01 -5.23138404e-01 -1.11541951e+00 7.63744295e-01 -3.23495001e-01 -1.29901874e+00 5.23673117e-01 -6.87457800e-01 -6.40830159e-01 5.51656961e-01 -1.58380604e+00 -1.11742663e+00 -4.10008758e-01 3.30430508e-01 8.84998024e-01 7.55194128e-02 1.67748868e-01 5.20787477e-01 -1.29654503e+00 8.90522003e-01 1.56002091e-02 3.36478144e-01 6.83254242e-01 -1.16055214e+00 2.85558581e-01 7.48567045e-01 1.74453050e-01 2.45981723e-01 6.28799975e-01 -5.92143774e-01 -1.09159768e+00 -1.42825377e+00 3.59915048e-01 -3.72965872e-01 4.47618753e-01 -5.29044390e-01 -1.08794117e+00 4.15724725e-01 -1.02671400e-01 4.72513922e-02 -3.20164766e-03 -2.21857741e-01 -2.15423062e-01 -3.23535264e-01 -1.06651771e+00 7.26927996e-01 8.32781792e-01 -8.38517323e-02 -3.86834532e-01 4.63351846e-01 7.50435591e-01 -5.72799563e-01 -3.76759678e-01 5.13162017e-01 2.04225048e-01 -8.88384819e-01 7.33512461e-01 2.76904330e-02 4.22048897e-01 -5.82671940e-01 5.05795330e-03 -8.86708140e-01 1.37615129e-01 -3.59087080e-01 -7.47123957e-02 1.54532349e+00 5.32339752e-01 -7.95093477e-01 8.72937083e-01 2.20772132e-01 -1.49380401e-01 -9.39255476e-01 -9.16800618e-01 -7.05356419e-01 3.43522653e-02 -3.88601243e-01 6.39046311e-01 8.62641096e-01 -5.41305304e-01 5.30620813e-01 -2.85178781e-01 3.28669518e-01 3.42290342e-01 2.97158420e-01 7.77535141e-01 -1.13723671e+00 -4.51521099e-01 -6.11962974e-01 -3.11427675e-02 -1.65185666e+00 -1.30978703e-01 -6.60309374e-01 3.40076715e-01 -1.50279713e+00 3.03317487e-01 -8.88983965e-01 -2.66751111e-01 5.76547563e-01 -5.18308282e-01 3.96671951e-01 1.59266755e-01 3.21439743e-01 -7.82121301e-01 4.30046618e-01 1.49660802e+00 -3.31382543e-01 -2.51904815e-01 2.06693754e-01 -7.36515045e-01 7.86047935e-01 7.66836047e-01 -5.15092492e-01 -2.53586650e-01 -6.04821384e-01 7.60387927e-02 -8.33521485e-02 2.01797679e-01 -9.52277601e-01 7.67290518e-02 -6.86706826e-02 5.48362970e-01 -9.18817759e-01 2.21906990e-01 -9.14410174e-01 -1.95789590e-01 2.15177864e-01 -3.96170691e-02 -1.95343241e-01 2.60438234e-01 4.91025358e-01 2.04116590e-02 -4.24315870e-01 9.21094954e-01 -5.53417653e-02 -4.19143379e-01 3.80268067e-01 -5.26497141e-03 1.75819844e-01 8.23771417e-01 -3.70355397e-01 -5.26091814e-01 1.85060464e-02 -2.86936373e-01 4.56454724e-01 5.39504588e-01 4.42756116e-01 3.96137178e-01 -7.85829425e-01 -6.71286464e-01 1.61832005e-01 1.74605593e-01 6.18666351e-01 2.81830490e-01 1.02153325e+00 -3.95556837e-01 2.37063542e-01 4.50326204e-01 -8.65648031e-01 -1.07942545e+00 5.53103924e-01 4.17079985e-01 -4.33361083e-01 -8.99355412e-01 7.40399539e-01 6.42237246e-01 -2.72953510e-01 5.41527629e-01 -4.16524470e-01 -2.12391719e-01 5.82980253e-02 4.53089118e-01 1.07631065e-01 9.12839249e-02 -5.81516802e-01 -2.54740119e-01 7.23423898e-01 -4.21047688e-01 3.23251545e-01 1.01223898e+00 -1.62267938e-01 -5.20707406e-02 2.56800652e-01 9.12475586e-01 5.03179505e-02 -1.41366398e+00 -1.89374790e-01 -5.04372865e-02 -2.89842516e-01 2.90577635e-02 -8.99528444e-01 -1.41905951e+00 9.28206503e-01 6.11939192e-01 3.01217645e-01 1.11328328e+00 -5.98406382e-02 9.44115341e-01 2.39660084e-01 1.48898542e-01 -1.14751899e+00 1.64934263e-01 4.33037847e-01 6.10949814e-01 -1.40215456e+00 5.73953092e-02 -6.52668774e-01 -6.33925796e-01 9.15994585e-01 9.56072927e-01 1.59327626e-01 2.78434187e-01 3.64058316e-01 1.59145251e-01 -4.26529162e-02 -2.78897792e-01 -2.03371003e-01 4.37029779e-01 1.74449101e-01 2.16877848e-01 8.62936676e-02 -1.07688561e-01 5.55725813e-01 6.88960180e-02 -3.04560333e-01 3.72547656e-01 6.18680954e-01 -5.56345344e-01 -9.96271551e-01 -5.22357941e-01 8.57498765e-01 -6.49596751e-01 -1.71754181e-01 -2.38276720e-01 7.54019797e-01 4.08800572e-01 9.37903643e-01 2.66808420e-02 -2.90688664e-01 1.42333984e-01 -1.54237688e-01 2.19417155e-01 -6.56102955e-01 -4.22605544e-01 4.03313249e-01 -1.09564945e-01 -1.68812960e-01 -1.34834915e-01 -3.40557665e-01 -1.40721357e+00 -8.08372162e-03 -9.34785724e-01 -4.67772186e-02 4.53577936e-01 1.15489233e+00 1.94405735e-01 7.92274117e-01 5.06389499e-01 -5.68787873e-01 -4.52289939e-01 -1.08522499e+00 -4.90870923e-01 1.76992550e-01 2.46648431e-01 -5.99395871e-01 -3.64410609e-01 -1.41467839e-01]
[11.986595153808594, 2.2287213802337646]
5a1ad1cd-72a4-44d8-b247-9ecc093ef9f4
regulation-of-mouse-learning-and-mood-by-the
2306.14556
null
https://arxiv.org/abs/2306.14556v1
https://arxiv.org/pdf/2306.14556v1.pdf
Regulation of Mouse Learning and Mood by the Anti-Inflammatory Cytokine Interleukin-10
Major depressive disorder is a widespread mood disorder. One of the most debilitating symptoms patients often experience is cognitive impairment. Recent findings suggest that inflammation is associated with depression and impaired cognition. Pro-inflammatory cytokines are elevated in the blood of depressed patients and impair learning and memory processes, suggesting that an anti-inflammatory approach might be beneficial for both depression and cognition. Utilizing the learned helplessness paradigm, we first established a mouse model of depression in which learning and memory are impaired. We found that learned helplessness (LH) impaired novel object recognition (NOR) and spatial working memory. LH mice also exhibited reduced hippocampal dendritic spine density and increased microglial activation compared to non-shocked (NS) mice or mice that were subjected to the learned helpless paradigm but did not exhibit learned helplessness (non-learned helpless, or NLH). These effects were mediated by microglia, as treatment with PLX5622, which depletes microglia and macrophages, restored learning and memory and hippocampal dendritic spine density in LH mice. However, PLX5622 also impaired learning and memory and reduced hippocampal dendritic spine density in NLH mice, suggesting that microglia in NLH mice are involved in the production of molecules that promote learning and memory. We found that microglial interleukin (IL)-10 levels were reduced in LH mice and IL-10 administration was sufficient to restore NOR, spatial working memory, and hippocampal dendritic spine density in LH mice, and in NLH mice treated with PLX5622, consistent with a pro-cognitive role for IL-10. Altogether, these data demonstrate the critical role of IL-10 in promoting learning and memory after learned helplessness.
['Ryan Joseph Worthen']
2023-06-26
null
null
null
null
['object-recognition']
['computer-vision']
[-1.50313556e-01 -9.87913609e-01 -1.12711981e-01 1.16485812e-01 -2.78651923e-01 -1.88132301e-01 1.38520315e-01 1.06830454e+00 -1.07811964e+00 7.88451433e-01 2.77966391e-02 2.50557177e-02 -4.84955013e-02 -9.26106036e-01 -5.32202721e-01 -9.93739605e-01 1.09167434e-01 3.74576539e-01 -1.51438221e-01 -1.93646371e-01 3.48609686e-01 8.99709880e-01 -1.08963108e+00 2.12292179e-01 8.59660685e-01 3.47407013e-01 5.17865002e-01 3.67120326e-01 -2.83374906e-01 3.37577611e-01 -2.83096910e-01 4.77699131e-01 -1.22871548e-01 -3.66783351e-01 -2.47180313e-01 -1.67055786e-01 -2.22182840e-01 -3.62690032e-01 2.59136915e-01 6.40888214e-01 7.70681560e-01 1.98714092e-01 6.38395429e-01 -1.31957066e+00 9.91648287e-02 -5.01820028e-01 -7.27692783e-01 7.49005377e-01 -2.50145160e-02 -2.72988170e-01 -1.67372435e-01 -1.09079707e+00 1.86726615e-01 1.34566045e+00 3.48418534e-01 6.13276541e-01 -1.86150181e+00 -1.00929844e+00 -2.07233414e-01 1.95439398e-01 -1.11209476e+00 -5.16369939e-01 -1.57169234e-02 -5.75109243e-01 1.19893348e+00 -3.23746830e-01 1.45191777e+00 6.41019166e-01 9.32427704e-01 1.94354564e-01 1.20135522e+00 -2.96923012e-01 6.81302667e-01 -6.04247928e-01 2.85470784e-01 4.19506371e-01 8.08642030e-01 -3.90222490e-01 -8.77914190e-01 -4.46910888e-01 7.25388348e-01 6.67644262e-01 -2.83721000e-01 -3.55036914e-01 -7.78465807e-01 9.76127625e-01 -1.47292629e-01 4.05877411e-01 -3.02039742e-01 2.77090013e-01 7.74360776e-01 1.75138831e-01 1.80429041e-01 -9.21371356e-02 -2.18456104e-01 1.66194245e-01 -3.83201540e-01 2.63706118e-01 -1.49999410e-01 -5.84882855e-01 1.01602197e+00 2.08922878e-01 2.36660510e-01 1.05895317e+00 1.53361008e-01 1.35523522e+00 7.68535018e-01 -9.73215759e-01 -4.84041311e-02 1.04153407e+00 8.41229558e-02 -1.08546662e+00 -8.19758475e-01 -2.72312433e-01 -7.74559200e-01 7.50115812e-01 3.36360872e-01 -1.41598284e-01 -1.50342643e-01 1.83884764e+00 3.00824791e-01 -1.58554867e-01 2.63217129e-02 6.80016160e-01 -3.68566588e-02 3.50772679e-01 6.39006555e-01 -5.11195481e-01 1.16730332e+00 -9.86780971e-02 -5.52673101e-01 -6.51639104e-01 1.15664804e+00 -6.60257339e-01 8.93160224e-01 1.81441814e-01 -6.79009616e-01 7.10878223e-02 -9.35759127e-01 3.57261360e-01 -2.98356712e-01 -3.97926092e-01 3.75092477e-01 3.99871200e-01 -1.06632376e+00 4.83255744e-01 -1.08861041e+00 -1.02941871e+00 6.52101338e-01 3.06741416e-01 -8.81906986e-01 -4.95303839e-01 -7.09636390e-01 1.09858739e+00 -3.13473314e-01 -3.66524577e-01 -3.69203240e-01 -7.91679204e-01 -5.48952222e-01 2.47555971e-02 -6.92034662e-01 -1.29106736e+00 6.70497358e-01 -2.69194931e-01 -7.05436945e-01 9.43272829e-01 -4.05528873e-01 -6.38297737e-01 -5.57716548e-01 -6.45850956e-01 1.21819340e-02 1.02810442e+00 3.40225220e-01 6.71035469e-01 2.14545429e-01 -8.30017447e-01 -1.15395457e-01 -1.19711936e+00 -3.09578955e-01 4.63106111e-02 -2.61775941e-01 -1.74653530e-02 9.49076295e-01 -4.72342193e-01 7.17736259e-02 -7.89330244e-01 -2.85333604e-01 2.11749449e-01 3.69978786e-01 2.25348040e-01 6.26413822e-01 -2.13272125e-02 4.79370564e-01 -1.82287908e+00 -6.77738488e-01 -7.03345537e-02 1.41449779e-01 6.87751889e-01 -4.47424859e-01 5.95039546e-01 1.44511294e-02 6.16282880e-01 4.43315543e-02 1.62329540e-01 -4.49843228e-01 8.38439688e-02 -1.95405766e-01 1.06019247e+00 8.51496086e-02 7.85544038e-01 -7.92450130e-01 -2.63479888e-01 1.12159498e-01 1.00078046e+00 -4.96688157e-01 -3.02102923e-01 -1.05805822e-01 5.63585222e-01 -6.68599367e-01 3.87308061e-01 9.19101298e-01 2.14695036e-02 3.00577223e-01 5.00987589e-01 -3.18719923e-01 1.04880147e-01 -2.63638049e-01 1.25447822e+00 -3.77381682e-01 4.62901592e-01 3.88396114e-01 -9.19230521e-01 9.68980193e-01 8.70364308e-02 1.88425347e-01 -1.72751117e+00 3.87278676e-01 1.99161068e-01 -1.33369699e-01 -7.04551488e-02 -7.02057004e-01 -1.00489330e+00 4.15470004e-01 1.10874736e+00 -4.68799472e-01 1.78199977e-01 4.80997741e-01 4.86316293e-01 1.29465628e+00 -3.18015546e-01 3.73237431e-01 -6.50893092e-01 3.90229195e-01 -3.87793519e-02 6.47885740e-01 3.64499122e-01 -2.87179649e-01 2.58293360e-01 9.34102416e-01 -2.02985391e-01 -2.67538965e-01 -1.09969592e+00 -1.25892997e-01 8.86718273e-01 -1.45075871e-02 -2.58395433e-01 -4.71115649e-01 2.35142112e-01 3.45458150e-01 7.86190748e-01 -6.36700630e-01 -3.80162179e-01 -2.31822476e-01 -9.67474818e-01 8.15496564e-01 -7.88882095e-03 5.76809466e-01 -5.81507564e-01 -9.04633462e-01 1.21512458e-01 8.66336897e-02 -1.92427337e-01 3.12033594e-01 3.77943486e-01 -1.36705089e+00 -1.43780661e+00 -7.10412979e-01 -7.01395333e-01 8.62068534e-01 7.73480773e-01 3.58105659e-01 6.21346712e-01 -4.55036998e-01 4.72923905e-01 -8.81651230e-03 -4.44429070e-01 1.49415299e-01 -6.88919365e-01 3.62968087e-01 -4.79323894e-01 2.30302319e-01 -1.34434474e+00 -9.68175888e-01 -9.08520222e-02 -1.09237719e+00 -3.83123606e-01 5.29930830e-01 3.92922193e-01 8.94772410e-01 -5.27567923e-01 1.18703067e+00 -6.38809979e-01 4.82743084e-01 -4.57628250e-01 2.38066256e-01 -3.87609214e-01 -5.05225718e-01 -1.64646253e-01 3.38025808e-01 -1.93011656e-01 -8.61241043e-01 -5.45166314e-01 -9.88717154e-02 2.83659041e-01 -2.41651207e-01 5.13423443e-01 -2.24231571e-01 1.19591124e-01 6.92252457e-01 7.26134256e-02 6.18758559e-01 -3.00082862e-01 -3.33866894e-01 9.87603962e-02 -1.62078470e-01 -4.73045796e-01 1.92112237e-01 9.96444941e-01 5.87915063e-01 -1.08605814e+00 -6.94633663e-01 -5.42346835e-01 -3.21271449e-01 1.97438344e-01 8.74108315e-01 -1.07912111e+00 -8.66363168e-01 4.56577867e-01 -8.00174475e-01 -1.17179668e+00 2.91112453e-01 9.70425844e-01 -3.35898042e-01 9.88187194e-02 -6.50460303e-01 -3.70071173e-01 -7.00043559e-01 -5.01897991e-01 5.13887107e-02 -8.71696230e-03 -6.08189046e-01 -1.00878203e+00 8.25106382e-01 2.23700404e-01 6.17227137e-01 5.09692729e-01 2.24361563e+00 -6.28890336e-01 -3.77574340e-02 9.06030275e-03 -1.22484483e-01 -3.96953970e-02 -2.15156320e-02 -4.49240893e-01 -2.92967021e-01 2.69157067e-03 3.63064080e-01 -7.53048480e-01 5.93586504e-01 3.76241058e-01 -1.83102921e-01 -1.85075760e-01 -3.89669299e-01 7.20775574e-02 1.45300734e+00 3.57125074e-01 7.19021499e-01 8.16104710e-01 -3.18128943e-01 4.59312230e-01 4.40628201e-01 3.35392684e-01 -6.86445311e-02 1.23350240e-01 9.94699970e-02 -8.74162167e-02 -4.91113476e-02 4.09393668e-01 5.42592585e-01 4.18484092e-01 5.12597382e-01 1.41332984e-01 -8.58470500e-01 4.65717703e-01 -1.61864793e+00 -9.81933594e-01 -7.05981731e-01 2.08485699e+00 7.99665391e-01 -2.34317318e-01 9.34614241e-02 3.80612165e-02 4.76234108e-01 -4.10499245e-01 -5.66762507e-01 -5.85368872e-01 -5.13349295e-01 7.32141018e-01 -2.51326889e-01 4.24322546e-01 -6.59221783e-02 3.89391392e-01 5.93029737e+00 4.03753608e-01 -1.38753986e+00 1.57349840e-01 5.95162928e-01 -6.23420715e-01 -2.32495025e-01 1.87340215e-01 -3.27520967e-01 -2.04926714e-01 9.36058819e-01 -4.82665002e-01 2.48366445e-01 2.06980780e-01 6.96653068e-01 -1.15479314e+00 -4.04848546e-01 7.77158916e-01 1.26612872e-01 -1.07186913e+00 8.69567767e-02 1.00524686e-01 4.72693235e-01 -7.93607682e-02 -5.58661558e-02 2.43394807e-01 -2.40749508e-01 -1.01879108e+00 -2.04742644e-02 9.28045571e-01 2.95997381e-01 -1.41902518e+00 7.40718007e-01 5.46801746e-01 -5.18776059e-01 4.84224975e-01 -3.60488981e-01 -7.45258093e-01 2.99368221e-02 1.27080238e+00 -5.69521427e-01 -5.84445536e-01 4.74242568e-01 -1.29012644e-01 -8.84566486e-01 8.66007447e-01 -3.92500341e-01 2.93217182e-01 -2.07007274e-01 1.11048594e-01 -3.42212677e-01 -3.47950310e-01 2.71185935e-01 5.73120952e-01 3.46269131e-01 3.33110183e-01 -2.93628871e-01 4.76632923e-01 4.04722720e-01 3.31491321e-01 -7.88883030e-01 -4.07665938e-01 1.70773670e-01 1.25550079e+00 -1.35790646e+00 -3.91013324e-02 -1.69047505e-01 5.95158160e-01 5.46640337e-01 4.98728186e-01 5.08371741e-03 -2.61039764e-01 8.97577703e-01 6.70560718e-01 -1.38510659e-01 -4.85901326e-01 -5.67131221e-01 -2.61672050e-01 -8.32810402e-01 -4.72473323e-01 2.72127986e-02 -8.18922341e-01 -5.87024808e-01 -6.02165833e-02 -1.24581136e-01 -9.22058001e-02 8.35929289e-02 2.57409047e-02 -6.57389641e-01 6.84082329e-01 -1.18493521e+00 -5.32898247e-01 -1.87922511e-02 4.31749493e-01 -1.21037722e-01 3.26965570e-01 1.23213816e+00 -2.19656229e-01 -7.26824105e-01 -2.18121126e-01 4.96723242e-02 -2.52490431e-01 1.03473842e+00 -4.84938979e-01 -9.66989517e-01 3.84053439e-01 -2.90302664e-01 1.46347749e+00 3.91788483e-01 -9.83160853e-01 -9.02174473e-01 -1.57121110e+00 1.22031593e+00 2.32290417e-01 2.73588359e-01 -2.39957944e-01 -6.92346990e-01 3.00137460e-01 -2.39898916e-02 -4.98039216e-01 1.57192981e+00 -3.37021589e-01 -1.36697888e-01 1.33217677e-01 -1.37737966e+00 7.58483768e-01 4.60165411e-01 -5.64912915e-01 -3.00306141e-01 2.97792315e-01 8.26802999e-02 7.42840886e-01 -4.19889450e-01 3.38102490e-01 5.43365777e-01 -1.27925336e+00 9.62852180e-01 -2.84404367e-01 9.09185689e-03 -3.47322583e-01 -1.47820368e-01 -1.34775257e+00 -1.82592675e-01 1.27304345e-01 4.38858896e-01 1.06584704e+00 -1.82820871e-01 -5.78296363e-01 4.25877005e-01 3.65246743e-01 2.01524779e-01 -5.33631802e-01 -9.92917836e-01 -6.82166457e-01 5.03584027e-01 5.16559817e-02 -2.37276897e-01 3.96399349e-01 3.75789344e-01 5.44046283e-01 7.77208924e-01 -4.04255062e-01 3.68770897e-01 3.99929546e-02 4.91734147e-01 -1.01624954e+00 6.47242069e-01 3.14946286e-02 -1.96325868e-01 1.65593445e-01 6.35136902e-01 -1.10865772e+00 -5.91492951e-01 -2.24796534e+00 4.52022940e-01 8.08301494e-02 6.41439632e-02 7.69967496e-01 1.92960277e-02 4.77458626e-01 -3.85458469e-02 7.88718387e-02 -7.04868793e-01 6.69812262e-01 7.87269354e-01 2.22718582e-01 -5.80441177e-01 -4.23352510e-01 -9.10997987e-01 9.84480500e-01 1.48342323e+00 -8.76122952e-01 -4.29450601e-01 -2.18184248e-01 5.69501638e-01 -1.08431257e-01 5.66879869e-01 -1.10056388e+00 4.36668545e-02 -4.85722244e-01 8.42265666e-01 -6.24431193e-01 2.75317669e-01 -3.23063821e-01 1.26618490e-01 1.29498506e+00 1.49839178e-01 5.86727187e-02 4.41775471e-01 2.57539570e-01 3.41743678e-01 -1.57948554e-01 1.22858655e+00 1.64655433e-03 -3.67168784e-01 -4.18404341e-01 -2.22362733e+00 2.05220699e-01 8.70111465e-01 -1.68308645e-01 -6.13507688e-01 -3.61539684e-02 -7.17397392e-01 -1.01612411e-01 9.37580347e-01 -5.03271937e-01 8.01431477e-01 -1.33080387e+00 -1.78551570e-01 7.54095912e-02 -1.28693223e-01 -4.71939594e-01 8.80859196e-01 1.48888385e+00 -6.56583190e-01 6.53498292e-01 -6.05102539e-01 -2.49581799e-01 -1.07634044e+00 4.39230710e-01 -6.72741383e-02 -3.06790590e-01 -3.24862748e-01 5.22983313e-01 5.59339821e-01 2.04638809e-01 -1.79784492e-01 3.36487204e-01 -2.47780696e-01 3.91847610e-01 9.46988523e-01 8.64998996e-01 3.53261769e-01 -2.28141353e-01 -5.26072383e-01 3.78368825e-01 1.31005704e-01 -1.57754213e-01 1.41498470e+00 -3.93327028e-01 -7.86442280e-01 6.32887661e-01 9.57450092e-01 1.11846425e-01 -4.97953147e-01 1.93657711e-01 -3.22574615e-01 -1.09530136e-01 5.29995188e-03 -6.02611184e-01 -8.02121997e-01 1.20218432e+00 9.98391926e-01 -7.16314852e-01 7.30836511e-01 -3.03402245e-01 1.04298496e+00 6.96248531e-01 6.28928900e-01 -1.08677101e+00 8.63365054e-01 4.96428341e-01 1.05576396e+00 -1.45555690e-01 4.47835214e-02 -2.86919400e-02 -2.05164120e-01 5.98316491e-01 6.82446182e-01 -6.95244372e-01 5.70614457e-01 6.01812124e-01 3.80370110e-01 -2.67767668e-01 -1.07543504e+00 -5.26717603e-01 -6.17581248e-01 1.18776321e+00 4.35929805e-01 -3.59145671e-01 -6.65583253e-01 1.12347376e+00 6.24629185e-02 3.48221540e-01 7.33360469e-01 1.29566371e+00 -1.16648388e+00 -1.29271710e+00 -8.85919809e-01 6.02189183e-01 -5.48419535e-01 3.66107821e-02 -6.31271243e-01 8.70847762e-01 5.06940782e-01 1.11497927e+00 3.67097348e-01 2.25483134e-01 9.53430161e-02 5.96346200e-01 7.00252771e-01 -9.82652247e-01 -1.93348542e-01 5.18962324e-01 -2.71894962e-01 -2.81762779e-01 -4.53133941e-01 -6.45214617e-01 -2.15157962e+00 -3.73404205e-01 2.96616882e-01 6.65442795e-02 4.01157111e-01 8.78582299e-01 5.74896097e-01 7.86491260e-02 5.73202670e-02 -5.32507300e-01 2.51492023e-01 -6.70923948e-01 -1.41364288e+00 -4.31717746e-02 1.84957027e-01 -8.02117109e-01 -6.50598407e-01 3.43450978e-02]
[14.324746131896973, -2.743135690689087]
9de14740-3938-4692-a79b-76ffc4d3e580
bilingual-correspondence-recursive
null
null
https://aclanthology.org/D15-1146
https://aclanthology.org/D15-1146.pdf
Bilingual Correspondence Recursive Autoencoder for Statistical Machine Translation
null
['Deyi Xiong', 'Biao Zhang', 'Yang Liu', 'Min Zhang', 'Junfeng Yao', 'Jinsong Su']
2015-09-01
null
null
null
emnlp-2015-9
['learning-semantic-representations']
['methodology']
[-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01 -8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01 -2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00 -3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01 -9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01 7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01 7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00 -1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01 3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01 9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01 5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00 -5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01 1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00 7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01 -1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02 -1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01 1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00 1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01 3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01 8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01 9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01 -9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01 -1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01 -2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01 -8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00 1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01 8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00 -6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01 -6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01 3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01 4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02 4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01 1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01 9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01 -1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01 -7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00 -1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02 1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01 -1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01 -1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01 -4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01 -1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01 6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01 -1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00 -7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01 -1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01 3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01 -1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01 1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01 3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00 -2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01 2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01 -1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01 4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01 2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00 1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01 -3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00 7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01 3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01 -2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01 7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01 -2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01 6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00 7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00 -3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01 -6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00 3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01 1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01 -5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01 -5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01 -2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01 -1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01 5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01 -2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01 -4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01 5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01 -6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00 1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01 8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02 -6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01 -1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01 1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01 8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03 3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01 8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01 -1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01 6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01 -9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01 -1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00 -5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02 -5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01 1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01 -4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01 1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01 6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01 5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01 1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01 1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01 1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01 1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00 -8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01 -1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01 6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01 4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00 -1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00 -7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00 2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01 -4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02 1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01 3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01 9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01 7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01 6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01 1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01 -1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00 3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01 9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01 -4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01 4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00 2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01 5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01 2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01 -2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01 -6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01 -1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01 -5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01 -1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00 -6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01 -1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01 1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02 1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01 5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01 -4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01 -1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01 6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01 7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01 1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01 1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01 8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01 8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00 -4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01 -5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02 5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01 -2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00 -3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01 6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01 5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00 3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01 -8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00 -8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01 3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01 -3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05 -1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01 8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02 6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01 5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00 1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01 2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02 -1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01 -4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02 9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01 -8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02 7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01 -3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01 -1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01 -1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01 -2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01 1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03 6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01 -4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01 9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01 8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01 1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01 -1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01 8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01 5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01 9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01 -4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01 1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01 -9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00 5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01 -7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00 -6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01 -5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01 -5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01 4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01 -9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00 -8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00 -5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01 -2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00 -3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02 2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01]
[-7.361844539642334, 3.6810719966888428]
f08fa905-4e3d-4e50-8d8b-6e794a8b7da0
many-languages-one-parser
1602.01595
null
http://arxiv.org/abs/1602.01595v4
http://arxiv.org/pdf/1602.01595v4.pdf
Many Languages, One Parser
We train one multilingual model for dependency parsing and use it to parse sentences in several languages. The parsing model uses (i) multilingual word clusters and embeddings; (ii) token-level language information; and (iii) language-specific features (fine-grained POS tags). This input representation enables the parser not only to parse effectively in multiple languages, but also to generalize across languages based on linguistic universals and typological similarities, making it more effective to learn from limited annotations. Our parser's performance compares favorably to strong baselines in a range of data scenarios, including when the target language has a large treebank, a small treebank, or no treebank for training.
['Chris Dyer', 'Miguel Ballesteros', 'Waleed Ammar', 'Noah A. Smith', 'George Mulcaire']
2016-02-04
many-languages-one-parser-1
https://aclanthology.org/Q16-1031
https://aclanthology.org/Q16-1031.pdf
tacl-2016-1
['cross-lingual-zero-shot-dependency-parsing']
['natural-language-processing']
[-4.05858159e-01 2.27594785e-02 -5.26651919e-01 -5.78456342e-01 -1.18577147e+00 -1.07516742e+00 3.85012627e-01 5.70756435e-01 -8.68068278e-01 8.07673216e-01 6.81157291e-01 -9.21938479e-01 4.72183347e-01 -7.33018339e-01 -4.14694250e-01 -2.22633764e-01 -2.25068033e-01 5.01699686e-01 1.77729875e-01 -3.47654969e-01 -1.07875504e-01 4.33374077e-01 -7.18450010e-01 9.71906856e-02 9.10597384e-01 3.36116374e-01 6.08672023e-01 6.41950130e-01 -6.30080342e-01 8.10765207e-01 -5.09172678e-01 -4.42907244e-01 1.22121811e-01 -9.37651470e-02 -1.06005645e+00 -4.08203006e-01 2.62067676e-01 7.88779631e-02 8.29038769e-03 1.03233492e+00 1.76052883e-01 -1.01273112e-01 2.96243668e-01 -4.24557239e-01 -8.58745992e-01 9.96725738e-01 -4.04107988e-01 4.01268929e-01 4.23931241e-01 7.83399120e-02 1.60504854e+00 -5.85832715e-01 9.66264486e-01 1.63862610e+00 7.03536034e-01 4.78269160e-01 -1.17973185e+00 -5.42235792e-01 5.23368835e-01 -4.14167076e-01 -9.58725512e-01 -2.67647624e-01 2.91229457e-01 -3.12263966e-01 1.41079879e+00 -3.27125967e-01 3.43379229e-01 1.00940955e+00 4.35294509e-01 5.02643645e-01 1.16601098e+00 -7.58130312e-01 6.88498914e-02 1.85626447e-01 6.04279518e-01 7.91884422e-01 1.73893139e-01 -1.32491793e-02 -2.01450229e-01 -2.13791192e-01 4.19575572e-01 -5.08095503e-01 9.82833058e-02 2.90697992e-01 -1.03046656e+00 1.22892547e+00 2.16043279e-01 6.76436603e-01 3.31618413e-02 -1.54016420e-01 6.77287817e-01 3.40729237e-01 5.55687249e-01 5.34859776e-01 -1.04210770e+00 -2.72443853e-02 -5.04755020e-01 1.36546809e-02 1.08859301e+00 9.51714516e-01 9.82528031e-01 1.97195753e-01 2.64433473e-01 1.13042057e+00 3.41511667e-01 5.16249895e-01 6.03418827e-01 -7.03484356e-01 9.46978450e-01 2.93441892e-01 -9.06605273e-02 -3.11055750e-01 -6.56836033e-01 -2.69198883e-02 -2.42091149e-01 -8.81472155e-02 5.12354672e-01 -5.74467123e-01 -9.19284284e-01 2.12172198e+00 4.84313779e-02 -4.63316232e-01 3.50201190e-01 4.55165803e-01 6.21007979e-01 6.63369775e-01 6.01465881e-01 -1.29968673e-01 1.63925827e+00 -6.71130657e-01 -4.83641267e-01 -6.75051808e-01 1.11054087e+00 -9.59870219e-01 1.12311339e+00 -1.11508451e-01 -9.54132080e-01 -5.22742271e-01 -7.63496399e-01 -3.75403106e-01 -6.30450010e-01 -1.55078381e-01 9.21608806e-01 8.53384733e-01 -1.20865119e+00 3.22349280e-01 -8.66656780e-01 -6.47887647e-01 3.49374972e-02 1.51670381e-01 -7.15517104e-01 -4.20113444e-01 -1.29504251e+00 1.08263922e+00 6.21952951e-01 -2.99780637e-01 -3.85362715e-01 -4.28163409e-01 -1.48896360e+00 -1.68664321e-01 -2.64270246e-01 -2.87230641e-01 1.09563291e+00 -7.83852816e-01 -1.31436586e+00 1.01940727e+00 -2.92232156e-01 -2.02119216e-01 -1.50596857e-01 -2.37384692e-01 -5.04743993e-01 -4.15680371e-02 7.24122047e-01 6.50415659e-01 2.88315080e-02 -8.99949729e-01 -9.66726065e-01 -4.09946173e-01 2.74685502e-01 2.09501207e-01 -2.58799225e-01 7.04561234e-01 -4.03050154e-01 -5.96027613e-01 -1.27581909e-01 -8.65148306e-01 -4.99485344e-01 -7.97349215e-01 -3.33697200e-01 -5.90825737e-01 3.38450730e-01 -1.11227083e+00 1.21249056e+00 -2.09387040e+00 -1.85934409e-01 -6.35838835e-03 -2.96315312e-01 6.16436675e-02 -4.53947067e-01 3.75967383e-01 8.44019651e-03 5.24699926e-01 -8.20937827e-02 -3.63533258e-01 -9.48151276e-02 7.79486358e-01 3.74677218e-02 2.82953113e-01 5.69982767e-01 7.42731810e-01 -1.10117769e+00 -5.87145090e-01 3.69126499e-02 1.37313336e-01 -6.44559205e-01 1.16578035e-01 -8.90936852e-02 4.38941866e-01 -3.72818053e-01 7.43421853e-01 5.10012746e-01 3.62395465e-01 7.59971201e-01 1.68416739e-01 -4.91383553e-01 1.02052951e+00 -8.33410800e-01 1.61675394e+00 -1.01800752e+00 3.67380619e-01 1.97982505e-01 -7.53131211e-01 8.13365281e-01 3.59457076e-01 4.22450379e-02 -4.39450651e-01 -6.01319335e-02 4.92493272e-01 2.74141669e-01 -2.45045736e-01 3.53437692e-01 -3.28765869e-01 -8.31755400e-01 5.61634898e-01 5.39223552e-01 -1.23005547e-01 4.44942266e-01 2.65285760e-01 1.25678229e+00 1.31327048e-01 4.39060569e-01 -7.90643215e-01 2.31027231e-01 1.47835210e-01 1.00958419e+00 4.70770836e-01 -6.73997700e-02 1.37413993e-01 4.67527598e-01 -4.93862480e-01 -1.04899025e+00 -1.40781629e+00 -4.57383990e-01 1.65202665e+00 -2.91917115e-01 -4.36768502e-01 -5.27873337e-01 -9.18685257e-01 -1.75816752e-02 7.64671922e-01 -4.16054189e-01 3.53515565e-01 -1.07327592e+00 -7.53022611e-01 6.92252219e-01 8.81053507e-01 1.76915135e-02 -1.22343183e+00 5.66819906e-02 4.68018591e-01 -8.47211555e-02 -1.47132158e+00 -5.57949603e-01 8.52804363e-01 -8.38647008e-01 -1.01406789e+00 -1.16220713e-01 -1.41984677e+00 4.51202542e-01 -1.83987468e-01 1.44365764e+00 -1.05531216e-01 5.46358041e-02 1.38730347e-01 -4.80680406e-01 -2.96841294e-01 -6.96731389e-01 3.94682884e-01 2.96829760e-01 -6.80130720e-01 6.47403479e-01 -3.07746023e-01 1.91317648e-01 -1.56490505e-01 -6.42911673e-01 -5.73466182e-01 3.37775588e-01 8.87824774e-01 3.19209278e-01 -2.54672945e-01 5.51127732e-01 -1.29729164e+00 6.12599492e-01 -6.28149867e-01 -6.61750078e-01 3.00491005e-01 -1.26695052e-01 1.48438916e-01 9.16052282e-01 -2.37323821e-01 -1.24540603e+00 -3.27927805e-02 -5.08239508e-01 2.81493634e-01 -3.73523831e-01 6.14314079e-01 -4.83308166e-01 2.39530191e-01 5.87735057e-01 -2.82420307e-01 -5.17275691e-01 -8.21659803e-01 7.09412575e-01 6.80854261e-01 5.22821963e-01 -1.14367938e+00 6.64015651e-01 -5.31775169e-02 -5.32329559e-01 -9.18358803e-01 -8.08939219e-01 -3.31002504e-01 -1.26439333e+00 5.55012047e-01 1.32358325e+00 -1.17050219e+00 -1.34367540e-01 -1.16372876e-01 -1.37699354e+00 -4.41632241e-01 -1.59500510e-01 7.76311994e-01 1.69707672e-03 2.03476742e-01 -1.25797355e+00 -5.30922771e-01 -6.24598004e-02 -1.03435802e+00 8.02763820e-01 9.20682624e-02 -4.10310566e-01 -1.72695613e+00 2.72518635e-01 -7.14574158e-02 -1.52295697e-02 1.22290611e-01 1.42841578e+00 -9.76533055e-01 -1.72308445e-01 4.95924614e-02 -1.54078692e-01 5.71248114e-01 3.76605392e-01 5.52099757e-03 -7.11491585e-01 -2.88545519e-01 -3.27589571e-01 -5.36205828e-01 7.36977458e-01 2.55097628e-01 3.83272529e-01 -8.88626799e-02 -3.27827096e-01 6.08724296e-01 1.39944541e+00 1.17181279e-02 4.95459922e-02 3.25019836e-01 7.74029911e-01 7.39738226e-01 2.39924908e-01 -8.72852951e-02 9.65393782e-01 2.44279996e-01 -2.09311903e-01 -9.21162888e-02 1.91555098e-02 -3.05252254e-01 7.35831141e-01 1.59089923e+00 2.33066767e-01 8.20398703e-02 -1.25970888e+00 9.59977031e-01 -1.47035098e+00 -4.98512059e-01 -1.46399528e-01 1.86054862e+00 1.03950357e+00 1.87683925e-01 -3.28398757e-02 -6.68678999e-01 6.97975993e-01 2.09423974e-01 -1.09787427e-01 -1.22956955e+00 -3.34396571e-01 8.49504292e-01 6.37226105e-01 8.83776724e-01 -1.21838188e+00 1.60512459e+00 7.24491978e+00 4.19554979e-01 -9.34968650e-01 3.45461488e-01 3.56626302e-01 3.65569621e-01 -6.11625791e-01 3.37234467e-01 -1.18433630e+00 2.40214244e-01 1.15097201e+00 -3.34451254e-03 2.09696859e-01 7.16738462e-01 -1.84487402e-01 -7.77705684e-02 -1.05512917e+00 2.50645757e-01 -2.01480016e-01 -1.01552820e+00 -1.60149232e-01 5.73961949e-03 6.44951642e-01 7.20913768e-01 -3.75997424e-01 6.36330903e-01 1.40699387e+00 -1.00058186e+00 5.64792812e-01 -3.84953141e-01 1.01718473e+00 -7.94152975e-01 8.08348715e-01 3.20026129e-01 -1.53734016e+00 9.38796904e-03 -5.95801234e-01 -1.79415777e-01 3.86211723e-01 3.76713216e-01 -6.58574820e-01 6.24803782e-01 6.98372602e-01 6.41317666e-01 -4.83858466e-01 3.50490212e-01 -7.35744238e-01 1.01017570e+00 -4.11615640e-01 1.53368980e-01 5.94633400e-01 -1.92822322e-01 2.12008908e-01 1.92088461e+00 5.78704551e-02 -8.34605470e-02 7.19098091e-01 2.02754050e-01 -2.00285420e-01 5.84673226e-01 -6.63696051e-01 -5.43111414e-02 7.56741524e-01 1.30194247e+00 -6.27774537e-01 -3.23537588e-01 -1.04350889e+00 7.31689394e-01 9.37082946e-01 2.89262712e-01 -2.04295367e-01 -4.18757558e-01 9.37624514e-01 -3.32235038e-01 3.16369355e-01 -5.84492505e-01 -2.58524805e-01 -1.29524481e+00 -1.25568211e-01 -5.87721586e-01 7.33457029e-01 -2.51920342e-01 -1.59508097e+00 9.37449574e-01 -8.87493566e-02 -4.43539917e-01 -5.68279505e-01 -1.04983306e+00 -6.80961013e-01 1.43126655e+00 -1.76610875e+00 -1.39729428e+00 5.86087286e-01 4.95888829e-01 4.75016922e-01 -3.56271714e-01 1.27391577e+00 1.40536040e-01 -5.97882032e-01 6.55837119e-01 -1.12939870e-03 8.22390139e-01 8.63994002e-01 -1.65235090e+00 9.28825915e-01 8.20357442e-01 4.36090171e-01 9.79324460e-01 3.35146397e-01 -6.87416494e-01 -1.06417274e+00 -1.14184296e+00 1.61030245e+00 -7.16965914e-01 1.13764429e+00 -7.54768670e-01 -9.93806601e-01 1.23240912e+00 5.58394790e-01 1.52832866e-01 1.06720889e+00 9.83979106e-01 -8.11485708e-01 9.72479880e-02 -1.03327692e+00 2.74986863e-01 8.18244696e-01 -6.97758377e-01 -8.44029725e-01 3.80693346e-01 8.32468331e-01 -2.35530481e-01 -1.17314553e+00 -1.26212060e-01 5.52459002e-01 -3.86400789e-01 4.47699964e-01 -9.00362432e-01 2.16766834e-01 1.26180157e-01 -5.45407653e-01 -1.52560234e+00 -5.75359046e-01 -3.42658937e-01 6.56144857e-01 1.60830200e+00 8.59061956e-01 -8.47603381e-01 5.75030781e-02 5.25197268e-01 -3.07786614e-01 -4.41279799e-01 -9.26360786e-01 -9.52765048e-01 1.00259829e+00 -5.26478171e-01 6.11768961e-01 1.29777443e+00 1.14799470e-01 6.45115316e-01 1.83254093e-01 3.63677144e-01 3.95844400e-01 5.99984117e-02 3.97739410e-01 -1.44048452e+00 -2.94089973e-01 -2.87055075e-01 -1.94639862e-01 -8.96981955e-01 8.65608394e-01 -1.19940710e+00 1.46347597e-01 -1.41597843e+00 8.52139741e-02 -9.44162607e-01 -3.23862553e-01 7.58007884e-01 -3.49816740e-01 -4.31290865e-02 2.58727461e-01 -6.91797584e-02 -3.76310021e-01 -8.81340429e-02 6.58243835e-01 2.31384039e-01 -2.08121300e-01 -4.12655234e-01 -9.30265844e-01 9.28298295e-01 8.46150935e-01 -6.92511201e-01 1.66525498e-01 -9.60078657e-01 3.39223668e-02 -1.33312913e-03 -4.08250868e-01 -5.30814052e-01 -1.08922169e-01 -2.45255262e-01 3.74577314e-01 -5.95987514e-02 -1.21999040e-01 -3.31729144e-01 -6.07186019e-01 1.05069675e-01 -1.22513294e-01 4.59493011e-01 4.89863992e-01 1.39229536e-01 -3.19745898e-01 -4.41288799e-01 7.95601606e-01 -4.86918122e-01 -9.13550138e-01 1.80278599e-01 -4.82816905e-01 5.68951786e-01 4.96487290e-01 1.03687763e-01 -2.97086865e-01 9.23228264e-02 -6.47829711e-01 3.60593438e-01 6.72460794e-01 7.00775146e-01 -1.15904517e-01 -1.29925478e+00 -7.77870059e-01 3.57969433e-01 1.31765157e-01 -2.27266788e-01 -2.54954457e-01 1.98995292e-01 -4.55776840e-01 4.55149442e-01 -7.47213662e-02 -3.99127841e-01 -8.69415164e-01 3.04488778e-01 1.82979349e-02 -6.62036657e-01 -4.54438627e-01 8.98408651e-01 3.01668793e-01 -1.10204804e+00 -2.15402722e-01 -4.88668978e-01 -1.51060998e-01 8.36660564e-02 3.72970730e-01 -2.80443668e-01 -9.25836116e-02 -9.77836907e-01 -6.66514218e-01 5.41694045e-01 -2.20319927e-01 -3.39029729e-01 1.33312273e+00 -8.97669420e-02 -1.89748108e-01 6.16655052e-01 1.33999085e+00 5.94785869e-01 -8.77079844e-01 -4.03130144e-01 6.20653033e-01 -8.50775614e-02 -1.86493769e-01 -6.70596540e-01 -5.63068092e-01 8.95428121e-01 1.01285599e-01 2.41251048e-02 6.47517085e-01 3.26026380e-01 9.73453760e-01 1.56022504e-01 6.42387092e-01 -1.36071968e+00 -3.34558904e-01 1.26890802e+00 2.15767115e-01 -1.19832420e+00 -2.86150575e-01 -1.52292117e-01 -7.10629880e-01 1.21848118e+00 3.94306391e-01 -2.28386343e-01 8.12438607e-01 7.13111758e-01 6.04834557e-01 1.87761009e-01 -7.51475513e-01 -5.35332978e-01 -1.21031761e-01 8.32218707e-01 1.02246714e+00 4.06255662e-01 -3.78928065e-01 7.91039228e-01 -4.80214000e-01 -7.05342054e-01 2.50247955e-01 8.31121206e-01 -5.97033441e-01 -1.83070922e+00 -1.40727147e-01 2.02515393e-01 -7.71270812e-01 -5.11220217e-01 -1.70261517e-01 1.10599232e+00 3.14567000e-01 1.11875582e+00 3.86405617e-01 -1.21860206e-03 1.62955523e-01 3.04395318e-01 3.67393196e-01 -1.31807017e+00 -7.25296378e-01 1.68508198e-02 4.69394416e-01 -4.69043404e-01 -1.20271102e-01 -8.87958467e-01 -1.31813383e+00 -1.00489207e-01 -8.10078159e-02 2.64754146e-01 5.93018830e-01 1.14705980e+00 -8.29667076e-02 1.37437478e-01 5.95756948e-01 -5.04875004e-01 -2.21091062e-01 -1.07829285e+00 -7.23806679e-01 3.77135903e-01 1.31648287e-01 -2.17788756e-01 -9.37781949e-03 2.04099845e-02]
[10.49532699584961, 9.883546829223633]
045b07b0-66ac-45df-b0f9-8261469b7d7c
early-icu-mortality-prediction-and-survival
2109.03048
null
https://arxiv.org/abs/2109.03048v1
https://arxiv.org/pdf/2109.03048v1.pdf
Early ICU Mortality Prediction and Survival Analysis for Respiratory Failure
Respiratory failure is the one of major causes of death in critical care unit. During the outbreak of COVID-19, critical care units experienced an extreme shortage of mechanical ventilation because of respiratory failure related syndromes. To help this, the early mortality risk prediction in patients who suffer respiratory failure can provide timely support for clinical treatment and resource management. In the study, we propose a dynamic modeling approach for early mortality risk prediction of the respiratory failure patients based on the first 24 hours ICU physiological data. Our proposed model is validated on the eICU collaborate database. We achieved a high AUROC performance (80-83%) and significantly improved AUCPR 4% on Day 5 since ICU admission, compared to the state-of-art prediction models. In addition, we illustrated that the survival curve includes the time-varying information for the early ICU admission survival analysis.
['Chun-An Chou', 'Yilin Yin']
2021-09-06
null
null
null
null
['icu-mortality', 'respiratory-failure']
['medical', 'medical']
[ 4.46145721e-02 -5.93847454e-01 -9.12195072e-03 5.39103448e-02 -9.37339440e-02 -3.40577692e-01 -2.82755464e-01 4.36533540e-01 -5.77084541e-01 8.96432638e-01 -3.94396074e-02 -7.11261034e-01 -8.04784656e-01 -4.11182225e-01 4.37339395e-02 -7.55783260e-01 -3.78505588e-01 9.62169051e-01 1.45423546e-01 2.35668957e-01 8.66432711e-02 7.69145429e-01 -9.34939921e-01 2.22334504e-01 7.17906177e-01 8.21690738e-01 2.33266726e-01 9.61910009e-01 2.32206836e-01 8.47403944e-01 -3.51302564e-01 3.37042361e-01 1.68482766e-01 -7.08029926e-01 -4.26371545e-01 -6.70162797e-01 -8.58687401e-01 -5.93777835e-01 -9.76974592e-02 5.07940687e-02 9.29384291e-01 -5.46214618e-02 1.01505172e+00 -1.40320730e+00 4.00891691e-01 4.02157903e-01 3.48644853e-02 4.59635854e-01 1.09375156e-02 2.32793674e-01 3.29748809e-01 -7.99854636e-01 7.03862309e-02 5.76091707e-01 7.32566476e-01 8.17782938e-01 -8.28906059e-01 -5.24059355e-01 -3.94123435e-01 2.67135173e-01 -1.43990922e+00 6.41065314e-02 -4.58960533e-02 -7.89003789e-01 9.34533477e-01 5.30598015e-02 5.82883656e-01 7.53794670e-01 6.92124724e-01 -7.99167603e-02 7.62704194e-01 3.90536785e-02 -5.31326123e-02 -4.51563336e-02 2.92204559e-01 3.96527141e-01 5.25168657e-01 2.88000375e-01 -9.35292691e-02 -6.09827876e-01 8.36343646e-01 1.01716733e+00 -6.14489734e-01 -6.02631010e-02 -1.43381643e+00 6.25998676e-01 -7.03034848e-02 -7.58733675e-02 -8.54727089e-01 -2.01610208e-01 5.16936958e-01 1.91172361e-01 8.71633831e-03 3.55361104e-01 -1.13754070e+00 -2.86889106e-01 -3.75707269e-01 -4.60867137e-01 8.14593911e-01 6.82788193e-01 2.61044390e-02 -2.51100481e-01 -3.14193934e-01 5.42424560e-01 3.09996426e-01 6.46010816e-01 4.04157341e-01 -7.61435866e-01 1.79953292e-01 5.64362705e-01 4.79556859e-01 -3.31951261e-01 -8.98976505e-01 -3.77530426e-01 -1.13881183e+00 -1.67145178e-01 2.06401139e-01 -6.78946137e-01 -4.20294344e-01 1.31148374e+00 2.25245059e-02 3.07772905e-01 4.96174783e-01 6.25195622e-01 3.41927916e-01 4.66641456e-01 3.66607487e-01 -1.13161385e+00 1.14013040e+00 -6.52997613e-01 -6.40516698e-01 2.82548249e-01 8.63668501e-01 -3.61683279e-01 2.80349523e-01 4.66599405e-01 -7.17289150e-01 -6.24249429e-02 -5.25694489e-01 8.46289694e-01 2.34976575e-01 -8.50726068e-02 3.07527445e-02 1.75858259e-01 -6.51792288e-01 7.22486854e-01 -8.93885255e-01 -7.79316127e-01 8.35907757e-02 4.28313673e-01 -2.43828923e-01 -7.10515007e-02 -1.12158632e+00 1.03436816e+00 5.06126940e-01 -1.09885141e-01 -8.19067657e-01 -9.04764235e-01 -3.17185968e-01 2.50002500e-02 1.35404065e-01 -1.41600287e+00 8.17106366e-01 1.39172554e-01 -9.45209742e-01 3.29018176e-01 -2.78911680e-01 -4.26713943e-01 6.00885153e-01 -6.76013052e-01 -2.26641640e-01 5.68940163e-01 -3.68731797e-01 -3.07646960e-01 3.10962707e-01 -8.79415989e-01 -6.27582967e-01 -2.97140092e-01 -6.06038451e-01 2.37737700e-01 -6.85328692e-02 3.73769641e-01 3.59376341e-01 -2.84950703e-01 -2.03811288e-01 -9.03189898e-01 -5.01526654e-01 -5.52997410e-01 2.81340659e-01 1.72776822e-02 6.18274748e-01 -5.96388519e-01 1.73281574e+00 -2.16502714e+00 2.14078240e-02 -1.27824321e-01 2.89337486e-01 2.57433802e-01 4.83316302e-01 7.81300306e-01 -1.33403689e-01 3.99199903e-01 -2.52417445e-01 1.32109001e-01 -5.42211115e-01 1.66052818e-01 -2.08071813e-01 3.22925478e-01 1.46791577e-01 7.61078477e-01 -9.94252205e-01 -5.10199547e-01 4.88367289e-01 3.74600887e-01 -3.17942679e-01 1.18907166e+00 4.09585387e-01 1.01166463e+00 -5.65410554e-01 4.00676519e-01 2.68521637e-01 -5.50184309e-01 2.89240062e-01 4.06708300e-01 5.10244863e-03 -3.30139190e-01 -5.35018146e-01 9.85203207e-01 -5.48062883e-02 -9.03502032e-02 -2.48607785e-01 -6.15977645e-01 8.27311873e-01 9.76993501e-01 1.01333916e+00 4.63865511e-02 5.33834040e-01 2.55784810e-01 9.43603814e-02 -9.71956909e-01 -6.12101138e-01 -6.66255534e-01 3.09504479e-01 5.30745506e-01 -3.99533123e-01 3.49896997e-02 -3.26850057e-01 -2.56262392e-01 1.27869678e+00 -7.74640143e-02 7.23521292e-01 -3.56722683e-01 7.13005483e-01 1.76113863e-02 7.79922426e-01 5.36310494e-01 -5.27597010e-01 9.20749307e-01 2.67418027e-01 -4.35049713e-01 -6.89093053e-01 -9.97671425e-01 -5.08034110e-01 5.52051306e-01 -1.21368617e-01 1.12722993e-01 -4.04066265e-01 -4.47356105e-01 -6.78710192e-02 7.75950313e-01 -4.70947534e-01 -3.59338641e-01 -7.81365156e-01 -1.19031680e+00 3.97357285e-01 5.51599443e-01 -2.90999766e-02 -9.40673828e-01 -1.06600380e+00 6.95047796e-01 -1.52572483e-01 -7.59492755e-01 -1.25462621e-01 4.54327613e-01 -1.27581012e+00 -1.61975908e+00 -8.22540104e-01 -5.87444842e-01 3.45257282e-01 2.19394907e-01 8.98297608e-01 5.21654427e-01 -4.43949938e-01 2.80628324e-01 -3.08293313e-01 -6.65530801e-01 -5.70312619e-01 -9.37132314e-02 6.04585350e-01 -1.77073941e-01 4.71602201e-01 -4.95018274e-01 -1.25772929e+00 6.34183943e-01 -7.21499383e-01 -1.56731874e-01 4.69778448e-01 9.49443758e-01 6.80883110e-01 -3.20976883e-01 1.32750666e+00 -6.02305055e-01 4.79651749e-01 -1.15895879e+00 -4.22839560e-02 2.50936419e-01 -1.43884265e+00 -2.99561173e-01 8.33410740e-01 -3.94460201e-01 -5.58979988e-01 -3.08809847e-01 2.33999535e-01 -4.72338378e-01 -2.35794842e-01 1.97211459e-01 4.99019623e-01 7.98588932e-01 2.84813493e-01 1.50149107e-01 2.30380297e-01 -4.98758197e-01 -7.16103733e-01 8.86732519e-01 7.47904703e-02 -1.52525797e-01 3.57539177e-01 -1.89625025e-01 5.51921010e-01 -4.68961924e-01 -4.23978776e-01 -9.69609261e-01 -7.70194650e-01 -9.60010290e-02 1.28167534e+00 -9.18071330e-01 -1.04659629e+00 5.61719596e-01 -8.71536434e-01 -4.76253211e-01 -7.92524740e-02 1.05434930e+00 -6.08427465e-01 4.44289714e-01 -6.20151162e-01 -1.10044789e+00 -6.67581141e-01 -7.68792987e-01 3.59159589e-01 1.56999361e-02 -3.45801890e-01 -1.42226076e+00 5.31133175e-01 1.25347627e-02 4.86522764e-01 7.62120605e-01 1.27888477e+00 -1.05372322e+00 -8.48302320e-02 -2.02156603e-01 -4.63371426e-02 4.20597196e-01 4.44522321e-01 1.06736071e-01 -4.72349346e-01 -5.40372789e-01 2.46714458e-01 7.89643005e-02 3.86959165e-01 3.70366603e-01 8.92629027e-01 -2.28734445e-02 -4.87886041e-01 7.36235797e-01 1.61173260e+00 7.75917828e-01 3.71509910e-01 -4.29798849e-02 4.90450919e-01 4.52842712e-01 8.16660166e-01 9.58017588e-01 1.70660064e-01 4.97153737e-02 5.20098805e-01 1.23939648e-01 5.84042251e-01 1.02517121e-01 5.31992689e-02 9.85349715e-01 -3.55060786e-01 -6.81092024e-01 -1.38109744e+00 4.35494184e-01 -1.89893055e+00 -7.77947605e-01 -8.83386314e-01 2.45883775e+00 5.68901300e-01 -3.55112731e-01 1.39417369e-02 4.18532640e-02 5.96085906e-01 -7.18618035e-01 -5.75544834e-01 -3.45871568e-01 1.38990641e-01 2.36321017e-02 1.62293792e-01 2.47766718e-01 -6.33629262e-01 2.34140888e-01 7.39638567e+00 -3.30288917e-01 -8.27318072e-01 -5.43519631e-02 4.96458530e-01 -6.13200292e-02 5.13938189e-01 -1.69838056e-01 -3.63981903e-01 4.34871495e-01 1.49112988e+00 -1.95325628e-01 2.04151928e-01 5.31834185e-01 5.35461307e-01 3.59910764e-02 -1.18573368e+00 8.31915915e-01 -2.01005891e-01 -7.92800188e-01 -2.00016558e-01 -5.42059876e-02 3.58339339e-01 4.61394414e-02 -5.25381029e-01 6.18513674e-02 -1.71099573e-01 -1.15523243e+00 -1.59813792e-01 1.09734666e+00 1.24563420e+00 -7.26045489e-01 1.42853022e+00 6.85584784e-01 -8.62344503e-01 -4.53909665e-01 -2.13859931e-01 -1.66642964e-01 4.02953923e-01 3.59880835e-01 -1.35823834e+00 4.55801219e-01 6.05368912e-01 4.93428081e-01 -2.08191976e-01 1.13608301e+00 -4.65924256e-02 8.08436632e-01 -1.21640362e-01 1.30664587e-01 -4.39579934e-01 1.37548922e-02 4.57932949e-01 9.37056720e-01 5.55160105e-01 8.60544860e-01 -9.56284031e-02 3.94767851e-01 3.60713094e-01 3.71865481e-01 -8.80171299e-01 2.29585338e-02 4.09698576e-01 7.96924651e-01 -2.31656313e-01 -2.29326293e-01 -2.32815102e-01 7.17964351e-01 -1.36869699e-01 4.71236080e-01 -7.36473799e-01 -1.17930941e-01 4.83016253e-01 4.56060797e-01 -1.55083507e-01 -1.49631863e-02 -4.88134950e-01 -9.90958273e-01 -5.84716260e-01 -2.76917040e-01 6.48254514e-01 -6.15406692e-01 -1.15883517e+00 7.98382580e-01 1.19745739e-01 -1.27815413e+00 -5.39788246e-01 -5.13762712e-01 -7.68331945e-01 1.25182092e+00 -1.55033660e+00 -2.67092049e-01 -4.08010364e-01 5.29308915e-01 2.75215805e-01 -8.11191723e-02 1.33785200e+00 5.94334714e-02 -8.18847835e-01 1.44166991e-01 2.65240103e-01 -2.26648018e-01 8.63656759e-01 -9.84342873e-01 -5.44107854e-01 4.26390618e-01 -1.43404317e+00 8.21644425e-01 5.09921610e-01 -8.79407048e-01 -1.10334241e+00 -1.15453696e+00 8.20068181e-01 -8.64991844e-01 5.44213712e-01 5.43433189e-01 -1.10884082e+00 3.78144383e-01 6.45230699e-04 -2.07432196e-01 1.38606608e+00 -7.32319832e-01 4.22397792e-01 3.36031526e-01 -1.22818494e+00 1.89762205e-01 8.11987936e-01 7.89967552e-03 -7.83997893e-01 8.85108337e-02 7.19539881e-01 1.94147870e-01 -1.54315507e+00 1.15238047e+00 6.36785448e-01 -7.60715902e-01 7.62083173e-01 -9.35301781e-01 1.58078969e-01 -1.64145142e-01 -7.82171190e-02 -8.92473817e-01 -7.22528636e-01 -6.64567828e-01 -2.77889520e-01 7.10795879e-01 3.03508103e-01 -9.84073997e-01 7.62144700e-02 6.98274136e-01 9.25344303e-02 -1.16841698e+00 -7.13080108e-01 -5.33806562e-01 1.16340637e-01 1.40241638e-01 4.94319379e-01 6.58099592e-01 -1.09699748e-01 3.67723435e-01 -3.45915586e-01 1.39640808e-01 5.06563902e-01 -1.12614065e-01 4.48253334e-01 -1.64076805e+00 -1.84912667e-01 -1.15544207e-01 8.95979777e-02 -1.02904432e-01 -4.10463631e-01 -4.76662070e-01 -1.50936291e-01 -1.94459891e+00 6.80504024e-01 -5.06937921e-01 -1.08728361e+00 1.70876920e-01 -6.78879201e-01 -2.48181194e-01 1.92575753e-02 5.20126283e-01 -1.21143699e-01 2.51384795e-01 1.02962804e+00 6.36406183e-01 -4.35515463e-01 1.94410473e-01 -2.37969950e-01 5.27235329e-01 1.10603118e+00 -9.08693731e-01 -5.76895237e-01 9.14355293e-02 2.57905554e-02 8.91551256e-01 1.26853570e-01 -8.50674927e-01 -2.12516606e-01 -9.22433734e-01 3.22333723e-01 -7.20700800e-01 -2.07926154e-01 -1.23498070e+00 7.05738485e-01 1.27736771e+00 1.81068331e-01 4.83791441e-01 2.04842120e-01 5.58421373e-01 1.19038969e-01 -5.49529865e-02 9.04614270e-01 1.53141171e-01 -3.00132558e-02 6.70328021e-01 -7.45976448e-01 2.59763598e-01 1.41750586e+00 -5.94895594e-02 -3.31521541e-01 6.52336851e-02 -7.84031689e-01 3.79169941e-01 5.25583506e-01 2.35107914e-01 8.15907657e-01 -1.02021444e+00 -1.00360930e+00 1.81450889e-01 2.89404124e-01 -6.71840236e-02 4.10426557e-01 1.54787183e+00 -1.00012219e+00 4.31059331e-01 -6.59212023e-02 -5.56869864e-01 -1.06106067e+00 9.98645008e-01 4.66716945e-01 -3.79359215e-01 -5.23848176e-01 3.00760388e-01 5.16449511e-01 1.40292928e-01 1.23054534e-01 -1.18941903e-01 -4.76113170e-01 -7.29905739e-02 5.27858794e-01 7.61018693e-01 -2.78575808e-01 -3.01686496e-01 -8.91390085e-01 5.53822279e-01 4.78808343e-01 2.72869319e-01 1.33793545e+00 -3.61404181e-01 -2.89500117e-01 7.96129346e-01 1.04908800e+00 -3.39123845e-01 -1.02670443e+00 8.64807963e-02 -3.03921938e-01 -6.78234547e-02 -4.21573639e-01 -1.00439441e+00 -4.85358089e-01 1.03326643e+00 8.16645443e-01 4.89737839e-03 1.21901488e+00 -2.66480029e-01 8.19920838e-01 4.48113412e-01 4.65733021e-01 -5.41351914e-01 -1.07189678e-01 5.25997818e-01 7.97413468e-01 -1.20937157e+00 -1.96999922e-01 -5.72887175e-02 -7.34245121e-01 1.15775287e+00 3.27388525e-01 1.07619219e-01 1.00145221e+00 1.30397389e-02 3.97807091e-01 5.13249598e-02 -1.25422013e+00 4.57970381e-01 -8.33732709e-02 5.84757805e-01 3.82174164e-01 3.13376278e-01 -6.64133370e-01 9.59372699e-01 4.96817470e-01 3.66901100e-01 4.11137879e-01 9.16954577e-01 -6.49234831e-01 -9.34629917e-01 -2.49024034e-01 6.89109564e-01 -9.31078196e-01 -3.09175968e-01 -2.33645171e-01 4.73786473e-01 -1.21004879e-01 1.27096784e+00 -3.62670362e-01 -3.33918750e-01 3.70649129e-01 7.99730718e-01 8.85394216e-02 -5.23071349e-01 -6.60152793e-01 -1.88805640e-01 -1.91434041e-01 -9.74415839e-02 -1.17478229e-01 -5.09966910e-01 -1.86533165e+00 -9.38073173e-02 -2.11173341e-01 3.27001840e-01 3.38435888e-01 6.63353860e-01 6.82781219e-01 8.64647806e-01 1.13517356e+00 -1.55358329e-01 -6.31104589e-01 -1.18267179e+00 -6.41247869e-01 1.75311685e-01 5.71705103e-01 -6.00431561e-01 -1.01025641e+00 -1.86339971e-02]
[8.012141227722168, 6.118525981903076]
0c5ecb62-e3e4-4f6a-bd0d-195d8d5e24b9
augmenting-dl-with-adversarial-training-for
null
null
https://dl.acm.org/doi/abs/10.1145/3386580
https://dl.acm.org/doi/abs/10.1145/3386580
Augmenting DL with Adversarial Training for Robust Prediction of Epilepsy Seizures
Epilepsy is a chronic medical condition that involves abnormal brain activity causing patients to lose control of awareness or motor activity. As a result, detection of pre-ictal states, before the onset of a seizure, can be lifesaving. The problem is challenging because it is difficult to discern between electroencephalogram signals in pre-ictal states versus signals in normal inter-ictal states. There are three key challenges that have not been addressed previously: (1) the inconsistent performance of prediction models across patients, (2) the lack of perfect prediction to protect patients from any episode, and (3) the limited amount of pre-ictal labeled data for advancing machine learning methods. This article addresses these limitations through a novel approach that uses adversarial examples with optimized tuning of a combined convolutional neural network and gated recurrent unit. Compared to the state of the art, the results showed an improvement of 3x in model robustness as measured in reduced variations and superior accuracy of the area under the curve, with an average increase of 6.7%. The proposed method also exhibited superior performance with other advances in the field of machine learning and customized for epilepsy prediction including data augmentation with Gaussian noise and multitask learning.
['Hazem', 'Mohhamad; Hajj', 'Reem; Dhaybi', 'Marc; Mahmoud', 'Amir; Djandji', 'Hussein']
2020-06-01
null
null
null
null
['epilepsy-prediction']
['medical']
[ 5.13494253e-01 -6.49822503e-03 2.35007018e-01 -7.55110383e-02 -8.53148937e-01 -3.10019076e-01 2.39343569e-01 2.11541712e-01 -3.06877285e-01 9.91021633e-01 1.27163097e-01 -3.94965649e-01 -1.82612389e-01 -2.29331061e-01 -5.05119264e-01 -8.02588761e-01 -5.26680887e-01 1.80968717e-01 -3.29306524e-04 -7.72978738e-02 2.20844224e-01 4.63469505e-01 -1.15511990e+00 4.43531781e-01 7.72858918e-01 1.14332271e+00 2.55538728e-02 3.99175316e-01 3.28093022e-01 6.13051116e-01 -8.21291327e-01 3.18175286e-01 1.38654977e-01 -4.52824742e-01 -4.73692834e-01 -3.39566439e-01 -1.41401738e-01 -8.46177414e-02 -2.13784307e-01 9.05192435e-01 9.76939857e-01 -3.79891902e-01 5.07713020e-01 -1.16225779e+00 -3.15104067e-01 3.56331736e-01 -3.38679552e-01 5.53313613e-01 2.43585899e-01 5.32556921e-02 2.98259765e-01 -4.43111509e-01 7.56036416e-02 4.41223264e-01 6.46669328e-01 7.48382926e-01 -1.23957610e+00 -1.21712101e+00 -2.02527821e-01 2.12552115e-01 -1.36270225e+00 -4.18612361e-01 5.44299722e-01 -6.11441612e-01 1.23489738e+00 9.77555737e-02 8.88260484e-01 1.31331575e+00 7.09232926e-01 3.84781420e-01 1.53475869e+00 -1.27738506e-01 2.66492039e-01 -3.32307965e-02 9.78730805e-03 1.74189016e-01 -1.60985463e-03 4.04882193e-01 -5.44744849e-01 -2.46128067e-01 4.41240311e-01 3.11689172e-02 -5.32273054e-01 5.64204827e-02 -1.03030026e+00 6.09804094e-01 1.17142491e-01 6.88011587e-01 -5.69335282e-01 -1.33638114e-01 4.92011815e-01 4.23276722e-01 4.15144920e-01 7.08886385e-01 -6.78623199e-01 -2.83861279e-01 -1.18801403e+00 -1.22815728e-01 5.29410422e-01 3.92152816e-01 2.07265675e-01 4.32116151e-01 7.66619854e-03 4.55421954e-01 -2.47180134e-01 3.22929591e-01 1.19459498e+00 -1.59917716e-02 3.91058862e-01 7.06496119e-01 -2.94810645e-02 -6.88499928e-01 -7.64338374e-01 -9.26476300e-01 -9.14566994e-01 2.30984762e-01 2.06058830e-01 -4.43204224e-01 -1.00271380e+00 1.82560515e+00 -3.79881591e-01 5.73724210e-01 3.21969837e-01 4.15568709e-01 5.54404378e-01 1.85401693e-01 -2.23237686e-02 -3.69627446e-01 1.06196380e+00 -4.69013453e-01 -8.91944528e-01 -5.99206090e-01 6.03208780e-01 -4.69828933e-01 7.96644151e-01 6.38625085e-01 -7.72530735e-01 2.46932693e-02 -1.24116027e+00 6.66848600e-01 -5.12358487e-01 -7.45305419e-02 6.41912401e-01 7.08577633e-01 -1.06723118e+00 5.33111453e-01 -1.05830336e+00 -1.61178499e-01 4.63792533e-01 8.82968783e-01 -4.85926419e-01 4.79433924e-01 -1.32995701e+00 1.15978146e+00 3.86036724e-01 -1.27525985e-01 -8.71604025e-01 -8.73768806e-01 -5.22835612e-01 -1.06362797e-01 -6.58459887e-02 -1.58443466e-01 7.73753166e-01 -9.58520770e-01 -1.17744601e+00 5.91602802e-01 -3.02044377e-02 -8.33994925e-01 4.50043797e-01 -2.13277355e-01 -7.06885993e-01 -1.06656864e-01 -1.87606782e-01 2.58102596e-01 6.98818088e-01 -6.75454974e-01 -5.31080723e-01 -6.50652885e-01 -6.87789500e-01 -7.14874864e-02 -1.09293059e-01 1.71867743e-01 1.87788367e-01 -8.42430770e-01 1.91479594e-01 -9.37346995e-01 -1.23073630e-01 -7.03431845e-01 -3.30888510e-01 1.37564629e-01 9.52568948e-01 -8.74306858e-01 1.22506523e+00 -1.97361398e+00 -2.11887762e-01 1.17944121e-01 5.91463037e-02 4.78506565e-01 1.77717388e-01 1.69786856e-01 -5.84010482e-01 8.50167200e-02 -2.87264675e-01 5.04827201e-02 -4.54881340e-01 -8.39889795e-02 -4.62418556e-01 5.31894267e-01 1.64073795e-01 9.00656939e-01 -6.07308865e-01 2.42897153e-01 2.10147053e-01 7.09417522e-01 -6.76926225e-02 2.89075136e-01 3.69532973e-01 9.26788330e-01 -2.85136253e-01 7.27176547e-01 2.54283726e-01 -1.33402780e-01 -1.35373861e-01 3.90018662e-03 6.07503504e-02 4.89039898e-01 -1.01361108e+00 1.33105004e+00 -2.61776954e-01 5.89130223e-01 -2.91879624e-01 -1.27217901e+00 9.62095976e-01 7.81390429e-01 5.98919213e-01 -8.30049574e-01 2.18530491e-01 4.18932021e-01 4.51124758e-01 -5.00258684e-01 -1.90532744e-01 -2.50850350e-01 4.35880907e-02 4.88832146e-01 -1.37691066e-01 -5.90523221e-02 -3.33288431e-01 -2.94287831e-01 1.40981972e+00 -1.82344496e-01 4.68265682e-01 -2.52178818e-01 1.43594205e-01 -5.29208481e-01 8.29180121e-01 5.23315907e-01 -2.30970800e-01 5.62092364e-01 3.34579229e-01 -4.03945804e-01 -6.72504902e-01 -7.49322653e-01 -3.43720317e-01 4.39466298e-01 -2.64223933e-01 -8.83543566e-02 -7.70789683e-01 -3.14478636e-01 -2.47056574e-01 6.91422641e-01 -7.98496246e-01 -4.65250373e-01 -4.54382867e-01 -1.26353586e+00 8.06999624e-01 7.19846785e-01 5.24875581e-01 -1.23911703e+00 -1.07030106e+00 3.45202237e-01 -9.70665514e-02 -1.03967607e+00 -1.14076711e-01 7.12384880e-01 -9.06389236e-01 -1.07633221e+00 -5.51732004e-01 -7.08205342e-01 6.04334414e-01 -5.24315834e-01 7.64337063e-01 -9.25124213e-02 -3.62162173e-01 -1.60039607e-02 -1.64185882e-01 -6.47626519e-01 -1.53004020e-01 -6.04280904e-02 3.37161183e-01 -5.80541492e-02 5.77731729e-01 -1.00838399e+00 -7.80724168e-01 2.40364864e-01 -7.82002211e-01 -2.47987192e-02 8.39502752e-01 1.02396917e+00 6.38632774e-01 -7.45530725e-02 1.14549184e+00 -6.11209750e-01 7.56138444e-01 -3.99837732e-01 -2.87037015e-01 2.58937627e-01 -1.01948619e+00 -2.37518493e-02 6.01767004e-01 -6.26197457e-01 -4.10744309e-01 2.51448423e-01 3.95776406e-02 -2.30118424e-01 -1.90730691e-01 2.47971505e-01 4.49031442e-02 -2.10924491e-01 4.89527464e-01 4.69925493e-01 -1.07563540e-01 -1.99641183e-01 -5.13086140e-01 8.25258076e-01 5.14481425e-01 -3.41135426e-03 2.43376270e-01 2.28427872e-01 8.54375027e-03 -6.13356888e-01 -4.58784431e-01 -2.28921443e-01 -4.26783442e-01 8.60807672e-02 7.89768100e-01 -8.49194705e-01 -4.35704887e-01 7.09808350e-01 -8.10995638e-01 -4.45836991e-01 5.64826801e-02 7.98455358e-01 -5.22714019e-01 5.70650212e-02 -3.98603827e-01 -7.71414340e-01 -8.91960561e-01 -1.41876650e+00 5.21735072e-01 5.18777221e-02 -5.44134557e-01 -8.49518657e-01 7.42539465e-02 1.49541840e-01 6.45558238e-01 5.90828538e-01 9.82698321e-01 -1.25555193e+00 -6.57626316e-02 -5.47790885e-01 1.97428569e-01 4.86695588e-01 5.19319534e-01 -5.28296471e-01 -1.16956317e+00 -6.21812344e-01 3.45096231e-01 -4.11562204e-01 4.24688637e-01 4.78886276e-01 1.04565382e+00 -1.32965967e-01 -4.06029373e-01 8.21053505e-01 1.13574576e+00 8.80730867e-01 7.94013143e-01 4.04420018e-01 4.62625325e-02 2.38092989e-01 1.17943278e-02 3.14814210e-01 -1.49903268e-01 4.88946050e-01 4.23631966e-01 -1.26563519e-01 5.08927554e-02 5.82555197e-02 2.44701222e-01 5.67765772e-01 9.04747546e-02 1.28973320e-01 -1.14191937e+00 6.60375297e-01 -1.45950472e+00 -7.14265764e-01 3.20067346e-01 2.51571774e+00 6.70252860e-01 2.64853358e-01 -1.05462193e-01 4.96552646e-01 6.89750969e-01 -3.05286974e-01 -9.40467119e-01 -2.93799669e-01 -2.76646346e-01 6.21609390e-01 5.35273075e-01 2.43586630e-01 -9.45125580e-01 7.54724503e-01 7.04942417e+00 3.95219505e-01 -1.72432888e+00 1.82028398e-01 7.05075026e-01 -2.60461271e-01 2.59324521e-01 -2.68906474e-01 -5.17005742e-01 7.56823599e-01 1.13588393e+00 -1.89793453e-01 5.45530438e-01 3.61419737e-01 2.70232469e-01 -1.02186864e-02 -1.01849973e+00 1.12373590e+00 3.04867953e-01 -8.54709089e-01 -3.31811517e-01 -1.07839182e-02 5.67863107e-01 3.77078056e-01 2.26715267e-01 1.88454658e-01 -1.58490971e-01 -1.44891512e+00 2.95428395e-01 4.51716512e-01 9.72885549e-01 -8.42364430e-01 7.80346632e-01 3.34963560e-01 -8.84884059e-01 -2.69514352e-01 1.31772175e-01 -1.12678736e-01 -3.13132219e-02 3.43736619e-01 -9.90059614e-01 1.08463131e-01 8.30508113e-01 5.63245773e-01 -5.30399680e-01 1.17121673e+00 -3.19959700e-01 8.59063506e-01 -3.63603950e-01 3.15061733e-02 1.95405073e-02 3.26000601e-02 5.19712210e-01 1.00865841e+00 6.56188667e-01 -5.17893098e-02 -2.03718081e-01 5.38614035e-01 1.92797199e-01 -4.13403381e-03 -6.82938695e-01 -6.13169651e-03 2.54248589e-01 9.28986073e-01 -7.25542963e-01 4.75349203e-02 -3.69532853e-01 8.15124035e-01 -9.11861379e-03 2.05817595e-01 -5.59192061e-01 -4.73142296e-01 2.36219123e-01 3.24212462e-02 -4.87171784e-02 2.18463570e-01 -5.49958944e-01 -9.71071243e-01 1.42845720e-01 -1.04063630e+00 2.73260593e-01 -6.09320939e-01 -7.14913130e-01 1.10556352e+00 -4.01156694e-01 -1.23363829e+00 -6.91097677e-01 -4.56158578e-01 -7.60585189e-01 9.42379117e-01 -1.23164260e+00 -9.24386919e-01 -3.03055756e-02 7.62983561e-01 2.57296115e-01 -4.80723083e-01 1.38887596e+00 2.58167356e-01 -6.02458835e-01 7.06847191e-01 1.18117601e-01 3.65169421e-02 6.29459739e-01 -1.12301838e+00 7.13648647e-02 9.00584817e-01 -2.88742274e-01 4.43972945e-01 6.74726665e-01 -7.52948225e-01 -9.24058616e-01 -9.85104620e-01 7.01053619e-01 -1.70826882e-01 6.81231260e-01 -4.20934379e-01 -1.06225169e+00 7.08393633e-01 7.76208267e-02 -1.81040037e-02 8.22326183e-01 -2.50021040e-01 4.06463221e-02 -9.22150835e-02 -1.34703851e+00 4.62312967e-01 4.34616119e-01 -4.55179185e-01 -7.82013714e-01 2.21357197e-01 2.00689644e-01 -3.35791677e-01 -8.69551778e-01 7.67005205e-01 6.08331859e-01 -7.40018010e-01 5.52981555e-01 -5.18160403e-01 -9.50175431e-03 1.34766608e-01 -1.03189843e-02 -1.63932467e+00 2.90170386e-02 -9.20199037e-01 -6.08184934e-02 7.72046268e-01 7.39639461e-01 -9.90801871e-01 8.05544019e-01 7.38303721e-01 -1.80135772e-01 -1.24192464e+00 -1.06516349e+00 -6.44500792e-01 2.51808763e-01 -4.42196012e-01 5.42491496e-01 7.17243373e-01 3.63008946e-01 1.94262996e-01 -5.28044999e-01 1.83809057e-01 1.46441236e-01 -1.90865636e-01 9.42683220e-02 -1.07718277e+00 -8.22541863e-02 -3.10736746e-01 -7.83962011e-01 -1.86766699e-01 1.76818352e-02 -8.86590779e-01 -1.34674951e-01 -1.42489493e+00 1.48625791e-01 -2.22745702e-01 -8.71121109e-01 8.64681721e-01 -1.85161456e-02 2.43730471e-01 -2.74250507e-01 1.41120732e-01 -2.83179395e-02 1.26009017e-01 7.72909582e-01 -2.40955073e-02 -5.32708824e-01 3.32863003e-01 -7.27714837e-01 7.13010907e-01 1.28554273e+00 -6.99515343e-01 -4.86866742e-01 -8.92759264e-02 6.88204318e-02 1.55676425e-01 1.01809099e-01 -1.42905402e+00 2.57530451e-01 3.18776876e-01 6.69388711e-01 -4.94674563e-01 4.42912817e-01 -7.12129593e-01 2.22803161e-01 8.85811567e-01 -1.75537109e-01 3.53651494e-01 5.37065923e-01 3.35415035e-01 -1.52196229e-01 9.28345546e-02 7.85532832e-01 7.06406534e-02 -3.73447984e-01 1.70656919e-01 -6.91631258e-01 7.28415996e-02 1.25597203e+00 -3.35329056e-01 -1.57205641e-01 -3.60070765e-01 -1.01780832e+00 -3.76969092e-02 1.27779558e-01 3.98919761e-01 7.07183599e-01 -9.42276299e-01 -6.29251719e-01 5.73947608e-01 -9.40413389e-04 -4.21902090e-01 1.26399398e-01 1.17633760e+00 -1.31811872e-01 6.50099754e-01 -4.41495329e-01 -4.43615437e-01 -1.30689788e+00 2.79085338e-01 7.13253498e-01 -3.06742966e-01 -7.22104669e-01 5.24426341e-01 -3.74810882e-02 -7.04912469e-02 4.45134193e-01 -3.33339274e-01 -2.72652835e-01 -1.37140229e-02 7.11291730e-01 1.66549087e-01 7.85811186e-01 -4.90891844e-01 -4.94543880e-01 3.00130337e-01 -2.40896046e-01 6.01285063e-02 1.58370006e+00 3.72850269e-01 -2.14172937e-02 4.17410463e-01 9.88581240e-01 -3.40056926e-01 -1.08299685e+00 1.35596454e-01 3.84608172e-02 -4.12762463e-02 3.79741073e-01 -1.42864430e+00 -1.22153497e+00 9.11954641e-01 1.39459872e+00 5.86223118e-02 1.38940299e+00 -1.82158813e-01 6.85009003e-01 3.77772301e-01 4.86321896e-01 -1.00265586e+00 -1.17019951e-01 1.85375825e-01 9.40720499e-01 -9.29477811e-01 -3.08757305e-01 2.45747417e-01 -5.31177461e-01 8.67654026e-01 3.31609964e-01 -1.21669486e-01 7.98777699e-01 7.53530860e-01 1.94841444e-01 -1.57405108e-01 -7.06858575e-01 2.03953847e-01 2.09707648e-01 6.36736214e-01 4.70863789e-01 5.94184212e-02 -2.56515354e-01 9.91695166e-01 -2.56337404e-01 2.55972266e-01 3.28515261e-01 9.95124698e-01 -9.89676490e-02 -9.81146038e-01 -2.28655472e-01 1.04054892e+00 -1.15498543e+00 -3.46504629e-01 -2.93939054e-01 8.02193046e-01 1.47943929e-01 1.02334547e+00 -8.10156856e-03 -5.83006799e-01 3.30076605e-01 3.92478347e-01 2.70729542e-01 -4.96548295e-01 -7.43079364e-01 1.11564614e-01 -2.29305193e-01 -4.11038876e-01 -2.31612653e-01 -6.85615361e-01 -1.20995831e+00 3.56479079e-01 -3.83199453e-01 1.69375092e-01 8.33868265e-01 1.01797235e+00 5.19807160e-01 7.99490511e-01 4.62651253e-01 -4.96050000e-01 -3.77382398e-01 -1.23384035e+00 -6.98134601e-01 1.90324828e-01 5.28537929e-01 -6.15428746e-01 -6.79711461e-01 -1.72526196e-01]
[13.243879318237305, 3.526808261871338]
1a95340a-4928-4059-b122-c9636384262d
unified-chinese-license-plate-detection-and
2205.03582
null
https://arxiv.org/abs/2205.03582v1
https://arxiv.org/pdf/2205.03582v1.pdf
Unified Chinese License Plate Detection and Recognition with High Efficiency
Recently, deep learning-based methods have reached an excellent performance on License Plate (LP) detection and recognition tasks. However, it is still challenging to build a robust model for Chinese LPs since there are not enough large and representative datasets. In this work, we propose a new dataset named Chinese Road Plate Dataset (CRPD) that contains multi-objective Chinese LP images as a supplement to the existing public benchmarks. The images are mainly captured with electronic monitoring systems with detailed annotations. To our knowledge, CRPD is the largest public multi-objective Chinese LP dataset with annotations of vertices. With CRPD, a unified detection and recognition network with high efficiency is presented as the baseline. The network is end-to-end trainable with totally real-time inference efficiency (30 fps with 640p). The experiments on several public benchmarks demonstrate that our method has reached competitive performance. The code and dataset will be publicly available at https://github.com/yxgong0/CRPD.
['Mei Xie', 'Zheng Ma', 'Zhiwei Xie', 'Peicheng Wu', 'Xinchen Lu', 'Shuai Tao', 'Linjie Deng', 'Yanxiang Gong']
2022-05-07
null
null
null
null
['license-plate-detection']
['computer-vision']
[-5.68660498e-01 -5.95152497e-01 -2.43945807e-01 -1.78049371e-01 -1.26615608e+00 -4.57426995e-01 2.00334042e-01 -6.63274705e-01 -1.98984072e-01 4.94959205e-01 -2.58638233e-01 -2.89574713e-01 5.07976711e-01 -7.12327540e-01 -9.69659925e-01 -5.79013467e-01 4.41518366e-01 4.69998151e-01 7.03738093e-01 1.34653971e-01 3.79842937e-01 5.81309497e-01 -1.28830373e+00 3.74536127e-01 7.65256822e-01 1.10995746e+00 2.24051237e-01 4.89342481e-01 8.50281790e-02 7.10373461e-01 -3.60574841e-01 -7.57088900e-01 5.01763165e-01 3.31393182e-01 -6.09512448e-01 2.39622831e-01 6.29866779e-01 -5.06413341e-01 -7.83055007e-01 1.01600266e+00 6.85264289e-01 -1.10032953e-01 4.22696918e-01 -1.35995030e+00 -9.94608402e-01 1.68147162e-01 -9.97502208e-01 1.41009465e-02 -2.57064495e-02 3.03956062e-01 9.62985933e-01 -1.34735930e+00 4.11298782e-01 9.24265146e-01 8.81572664e-01 3.60978514e-01 -5.24481475e-01 -7.31524885e-01 -2.06144378e-02 1.90599561e-01 -1.74373460e+00 -3.37607652e-01 7.06189871e-01 -2.08533823e-01 6.17903352e-01 5.96488677e-02 2.90597647e-01 9.90323365e-01 -1.80692021e-02 1.13867819e+00 1.07027209e+00 -1.16807461e-01 -2.20279768e-01 8.09191838e-02 6.03735484e-02 1.18398595e+00 3.24631631e-01 -3.10047269e-01 -2.64603227e-01 3.91796410e-01 1.09150815e+00 -8.41697529e-02 -1.78964853e-01 -1.52550600e-02 -9.81568873e-01 4.73305047e-01 3.34627718e-01 -1.24135375e-01 1.18533619e-01 2.47996315e-01 4.29550052e-01 -1.81621596e-01 6.27679288e-01 3.44105661e-02 -3.35543811e-01 -2.06410781e-01 -6.15242243e-01 1.45541191e-01 6.48051083e-01 1.46108246e+00 6.35917366e-01 4.82707061e-02 -1.79921493e-01 1.05356085e+00 3.72376412e-01 8.29827428e-01 -2.26732977e-02 -8.50125909e-01 8.57566059e-01 6.61078811e-01 2.44580135e-02 -1.27496111e+00 -3.16330224e-01 -2.90205568e-01 -6.37036800e-01 1.63719416e-01 4.57687706e-01 -3.41060907e-01 -6.39601231e-01 8.43401909e-01 -8.21260288e-02 5.55792928e-01 -1.69570118e-01 1.01000631e+00 1.23272836e+00 9.28398788e-01 -2.93891668e-01 2.47976542e-01 1.42607296e+00 -1.63237047e+00 -3.48625630e-01 -3.00028920e-01 5.71689546e-01 -8.51937532e-01 1.33941960e+00 3.90182406e-01 -8.65486741e-01 -5.35989165e-01 -1.03245401e+00 -4.64275122e-01 -3.40687037e-01 1.00329161e+00 5.05297244e-01 6.82722211e-01 -8.98838103e-01 -1.56756550e-01 -6.67089820e-01 -1.58421233e-01 7.67797053e-01 2.40806952e-01 -1.88162223e-01 -3.22903544e-01 -8.77980173e-01 6.29882038e-01 6.51463792e-02 3.17465752e-01 -9.28801656e-01 -4.83952761e-01 -5.06250203e-01 -9.89510790e-02 5.72322547e-01 3.25885997e-03 1.23076880e+00 -5.80148757e-01 -1.75625598e+00 1.04757237e+00 6.49228469e-02 -1.08024336e-01 5.89965999e-01 -2.39074394e-01 -5.28981090e-01 1.08886056e-01 -1.05195038e-01 5.30305505e-01 4.42862719e-01 -1.20763063e+00 -8.57556045e-01 -1.28136858e-01 2.41858289e-02 8.37524608e-02 -1.24154739e-01 4.57048237e-01 -1.55786729e+00 -3.87900680e-01 -1.60934672e-01 -1.07614589e+00 9.23081785e-02 1.72084644e-01 -6.28753901e-01 -4.14375216e-01 9.96993244e-01 -6.71902835e-01 7.65215993e-01 -2.11871076e+00 -5.79784751e-01 -1.25058264e-01 2.31273770e-01 5.77904463e-01 -2.11731032e-01 9.35929269e-02 4.78677720e-01 8.11139122e-02 -8.51715505e-02 -6.86048865e-01 2.73422658e-01 -9.06789526e-02 -2.63023108e-01 7.94549823e-01 2.35439241e-01 1.09332693e+00 -4.15608436e-01 -6.31904125e-01 2.12212726e-01 4.49744165e-01 -2.17167109e-01 -3.69256958e-02 -4.74353023e-02 1.67005330e-01 -4.61092144e-01 1.24757123e+00 1.25435197e+00 -3.20218027e-01 -2.49630272e-01 -1.78214133e-01 -3.41318756e-01 -1.37183756e-01 -1.08153272e+00 1.35687768e+00 -1.93710521e-01 1.15515709e+00 -4.86668423e-02 -6.32064223e-01 1.18697596e+00 -2.80584749e-02 2.17217609e-01 -7.99152613e-01 1.62470162e-01 4.56134647e-01 -6.18840456e-01 -5.37966728e-01 6.53519154e-01 4.93061304e-01 -2.73260951e-01 -5.69052109e-03 -2.21068621e-01 1.24807976e-01 2.20877156e-01 -5.97906411e-02 7.69418836e-01 7.17227384e-02 -4.17574346e-01 -7.12539926e-02 8.47728074e-01 1.01587035e-01 9.74854410e-01 6.38340652e-01 -3.89875799e-01 9.78643000e-01 7.70581424e-01 -4.63438302e-01 -1.19659054e+00 -1.12249625e+00 -2.00665712e-01 8.37813377e-01 4.90960985e-01 -1.29402250e-01 -5.75415730e-01 -5.81587434e-01 -2.18281075e-02 1.89042047e-01 -1.32291779e-01 4.35564429e-01 -7.64250636e-01 -7.89902866e-01 1.22222078e+00 7.66084492e-01 1.21146882e+00 -6.98340714e-01 2.02335924e-01 -1.40405074e-01 -2.80342698e-01 -1.76113296e+00 -6.19251072e-01 -6.39474750e-01 -4.96308744e-01 -1.12726784e+00 -8.77380610e-01 -1.34878302e+00 5.64743400e-01 5.41328967e-01 1.01094604e+00 -1.55096143e-01 -1.65454552e-01 6.02830164e-02 -1.43063545e-01 -5.02191186e-01 1.10680228e-02 -6.27939031e-02 7.29244994e-03 7.07574859e-02 5.41899741e-01 1.84491977e-01 -5.05322337e-01 6.60452008e-01 -4.11539853e-01 2.07419559e-01 8.27970266e-01 3.15477103e-01 7.58365631e-01 -8.04093406e-02 3.66832018e-01 -5.29380620e-01 4.36955065e-01 -1.89384043e-01 -1.29494834e+00 2.67753035e-01 -2.20380902e-01 -5.47546029e-01 4.59655762e-01 -2.31155399e-02 -1.28677011e+00 1.96367353e-01 -3.78524691e-01 -6.24157131e-01 -2.40194738e-01 3.47117335e-01 -2.05807179e-01 -5.04040956e-01 9.51293856e-02 4.93018717e-01 -1.23789117e-01 -5.39978087e-01 7.14934841e-02 1.01480675e+00 7.08920479e-01 -6.19557083e-01 7.79413044e-01 5.38225532e-01 -1.11994162e-01 -9.86760736e-01 -6.54455423e-01 -6.34866774e-01 -4.20420259e-01 -4.26674366e-01 8.68954837e-01 -1.24668157e+00 -1.09128141e+00 1.17087007e+00 -1.10071909e+00 -3.65309298e-01 3.80880922e-01 5.24943769e-01 -4.19010162e-01 5.95663488e-01 -1.05366826e+00 -5.06348014e-01 -1.73568308e-01 -1.45286214e+00 1.29300106e+00 3.79301190e-01 1.01494133e+00 -6.00551784e-01 -1.45478286e-02 8.74136984e-01 2.21909136e-01 1.93818267e-02 2.00557694e-01 -3.28697354e-01 -1.19808710e+00 -4.44411784e-01 -9.63651001e-01 5.54324508e-01 -3.32848728e-01 4.48309273e-01 -9.68401730e-01 -2.38505891e-03 -4.87702936e-01 -4.84070808e-01 9.63867962e-01 2.60852724e-01 1.43902493e+00 -1.12145819e-01 -3.67107689e-01 7.61487484e-01 1.69332588e+00 -5.07338569e-02 1.01593721e+00 4.43782061e-01 9.52204168e-01 1.38972595e-01 5.88761330e-01 2.72574484e-01 7.32837081e-01 7.15600729e-01 3.25770706e-01 -2.08617523e-01 -8.46171007e-02 -1.24598503e-01 6.72198653e-01 9.80957091e-01 -4.58546221e-01 -5.14491200e-01 -1.40665090e+00 3.53048652e-01 -1.65988255e+00 -8.57237995e-01 -6.57265782e-01 1.90431964e+00 3.32194686e-01 1.89036056e-01 1.51010230e-01 -3.14634860e-01 9.84175801e-01 8.97626579e-02 -3.06928217e-01 -5.61418906e-02 -3.07493806e-01 -4.67353851e-01 8.89855206e-01 2.23333851e-01 -1.60154772e+00 1.04481304e+00 5.32838154e+00 1.02761543e+00 -1.17223263e+00 1.84158251e-01 8.67633164e-01 2.02890784e-01 3.32086653e-01 -4.24464285e-01 -1.35219562e+00 5.02636671e-01 6.88877106e-01 8.19368809e-02 -4.84360009e-02 9.46343303e-01 1.34020820e-01 1.29809320e-01 -5.94035566e-01 1.17684722e+00 2.72575229e-01 -1.55974865e+00 -2.29692832e-01 2.05649242e-01 8.50418866e-01 7.30294645e-01 2.53272712e-01 5.47691584e-01 1.41546980e-01 -7.73771465e-01 4.63822752e-01 5.80050588e-01 9.96819079e-01 -1.00099337e+00 1.00403321e+00 2.29450732e-01 -1.35558212e+00 -1.41527116e-01 -8.56544018e-01 2.00524345e-01 6.55783787e-02 3.39766771e-01 -6.43865526e-01 4.38610822e-01 6.24734938e-01 1.06154168e+00 -8.26789260e-01 1.40981960e+00 -3.07939917e-01 7.68179119e-01 -1.47842482e-01 -1.21242262e-01 5.56476891e-01 -3.88655037e-01 3.70656848e-01 1.44538283e+00 4.41684902e-01 -8.94746110e-02 3.20857763e-01 7.26574600e-01 -5.68554819e-01 8.45029801e-02 -4.29386675e-01 2.39764020e-01 3.19576710e-01 1.42316663e+00 -6.55686378e-01 -3.92144285e-02 -1.07523954e+00 8.52355659e-01 2.59979844e-01 2.48953655e-01 -1.54684377e+00 -3.64223897e-01 5.29961765e-01 -2.44623683e-02 2.88754880e-01 -4.28305537e-01 -1.23790875e-01 -1.38373637e+00 2.10116819e-01 -5.46452463e-01 1.30572930e-01 -8.88524055e-01 -1.41873705e+00 2.73708194e-01 -5.39822698e-01 -1.61146450e+00 8.42685044e-01 -1.20252633e+00 -6.31675124e-01 5.24702191e-01 -1.74185145e+00 -1.55614817e+00 -5.27492583e-01 5.24840832e-01 6.77750826e-01 -3.50950330e-01 2.45546490e-01 6.81986094e-01 -1.16822350e+00 7.35238075e-01 6.60913408e-01 8.89020264e-01 8.30366254e-01 -9.20486212e-01 4.55050230e-01 9.73690867e-01 -1.44343317e-01 -2.68690214e-02 -2.82803476e-02 -4.38831329e-01 -1.60915864e+00 -1.52165151e+00 6.31483853e-01 -5.75287342e-01 5.89744091e-01 -5.96151769e-01 -8.18248808e-01 8.80624533e-01 1.51284084e-01 3.57509375e-01 3.81054640e-01 -3.20645809e-01 -1.32649288e-01 -5.22101879e-01 -8.72835040e-01 5.82792759e-01 8.02700818e-01 -3.17094117e-01 -1.15460612e-01 7.28853047e-01 6.63178921e-01 -6.97314382e-01 -6.98203146e-01 1.88227937e-01 3.12989205e-01 -6.02390110e-01 9.69610631e-01 -8.58941022e-03 6.60546541e-01 -6.88724577e-01 -1.20947056e-01 -6.20801449e-01 -3.16467464e-01 -6.63363338e-02 4.30588640e-04 1.42439497e+00 4.90589976e-01 -6.37767553e-01 9.29049790e-01 5.18503726e-01 -6.29488170e-01 -8.79329443e-01 -8.98367882e-01 -1.06683695e+00 7.71574453e-02 -5.22337735e-01 5.20159543e-01 6.54996753e-01 -4.33083475e-01 2.52961479e-02 -6.19444072e-01 6.59224391e-01 8.09853971e-01 1.72620773e-01 9.62148905e-01 -1.01237583e+00 5.02671599e-02 -4.68913287e-01 -6.25951469e-01 -1.28486753e+00 1.52951539e-01 -8.00440192e-01 2.08191052e-01 -1.56881249e+00 3.79227668e-01 -4.13134933e-01 -1.84389114e-01 4.13308710e-01 1.33807361e-01 6.33016229e-01 1.91759303e-01 4.02381808e-01 -1.14912045e+00 4.78111804e-01 1.41239524e+00 -4.03330028e-01 7.54614174e-02 2.38497313e-02 -4.08288389e-01 9.43760157e-01 1.18587244e+00 -2.12504104e-01 1.44564277e-02 -8.69042039e-01 1.52583852e-01 -1.69137806e-01 4.70529675e-01 -1.27436054e+00 6.22085094e-01 -9.08582564e-03 4.16580617e-01 -1.06585789e+00 4.01190251e-01 -5.00765264e-01 -2.66945362e-01 2.70825148e-01 1.33584604e-01 -2.00104900e-02 3.82651299e-01 6.23909175e-01 -2.72013932e-01 5.99338673e-02 8.37646961e-01 2.18992122e-02 -1.46100664e+00 6.84476972e-01 -3.63745272e-01 2.18030542e-01 1.28148663e+00 -2.10699648e-01 -8.73901427e-01 -5.51912300e-02 -8.81610215e-02 4.43283379e-01 4.53269124e-01 6.06719673e-01 8.07211459e-01 -1.40391314e+00 -1.11338222e+00 -5.29983602e-02 2.99370587e-01 3.85527723e-02 3.88408422e-01 9.28406894e-01 -1.32876134e+00 8.30498040e-01 -2.42447808e-01 -6.90986156e-01 -1.12084317e+00 4.15954709e-01 3.60612631e-01 -1.27311066e-01 -7.12443173e-01 8.24711502e-01 2.34673657e-02 -7.96155572e-01 1.64948270e-01 -1.30206317e-01 -1.77069545e-01 -2.79271692e-01 5.00029802e-01 6.96583867e-01 -2.50750082e-03 -8.17676485e-01 -4.24538553e-01 7.72626400e-01 6.27092505e-03 3.55541110e-01 1.43064606e+00 -1.11572266e-01 -1.33287907e-01 1.31514683e-01 1.22330117e+00 1.30746916e-01 -1.55562365e+00 -2.11925358e-01 -2.49493465e-01 -7.10662782e-01 -5.96519094e-03 -5.41861475e-01 -1.51128817e+00 8.26235473e-01 3.79639804e-01 -5.23644865e-01 1.00486410e+00 -1.34229407e-01 9.77969229e-01 7.08176434e-01 6.13440514e-01 -1.41160393e+00 9.98190045e-02 7.88529932e-01 8.72031689e-01 -1.42836571e+00 -4.49290164e-02 -6.32127881e-01 -7.06259012e-01 1.21143663e+00 1.05281031e+00 -2.49536425e-01 3.81137669e-01 3.90994042e-01 2.96609830e-02 -7.63783744e-03 -4.14646745e-01 -2.75693387e-02 2.04168916e-01 3.56067538e-01 2.17030883e-01 1.53293192e-01 -8.06587636e-02 6.30632162e-01 3.69354546e-01 1.76009774e-01 7.83434272e-01 5.31160533e-01 -4.31007653e-01 -8.27165365e-01 -3.58823478e-01 4.12803411e-01 -5.12374818e-01 -6.43283203e-02 -1.62281483e-01 1.04811859e+00 3.04105021e-02 7.83787429e-01 1.43950343e-01 -2.01656118e-01 2.39392117e-01 -3.36198926e-01 8.03871900e-02 -3.43529612e-01 1.53765548e-02 -9.09490809e-02 2.12084576e-01 -5.47520220e-01 -1.23713896e-01 -5.26176512e-01 -1.17125773e+00 -6.56869769e-01 -3.25921416e-01 -3.04605037e-01 6.24047756e-01 5.70437014e-01 5.52403152e-01 2.13317201e-01 7.14604676e-01 -7.66718566e-01 -1.83236390e-01 -6.26999974e-01 -6.62322760e-01 -9.26495567e-02 -1.23288848e-01 -4.93872136e-01 -6.94111660e-02 8.96376744e-03]
[9.842683792114258, -4.902424335479736]
e277abb7-b05a-42d8-addd-cbd97e78d307
monograspnet-6-dof-grasping-with-a-single-rgb
2209.13036
null
https://arxiv.org/abs/2209.13036v2
https://arxiv.org/pdf/2209.13036v2.pdf
MonoGraspNet: 6-DoF Grasping with a Single RGB Image
6-DoF robotic grasping is a long-lasting but unsolved problem. Recent methods utilize strong 3D networks to extract geometric grasping representations from depth sensors, demonstrating superior accuracy on common objects but perform unsatisfactorily on photometrically challenging objects, e.g., objects in transparent or reflective materials. The bottleneck lies in that the surface of these objects can not reflect back accurate depth due to the absorption or refraction of light. In this paper, in contrast to exploiting the inaccurate depth data, we propose the first RGB-only 6-DoF grasping pipeline called MonoGraspNet that utilizes stable 2D features to simultaneously handle arbitrary object grasping and overcome the problems induced by photometrically challenging objects. MonoGraspNet leverages keypoint heatmap and normal map to recover the 6-DoF grasping poses represented by our novel representation parameterized with 2D keypoints with corresponding depth, grasping direction, grasping width, and angle. Extensive experiments in real scenes demonstrate that our method can achieve competitive results in grasping common objects and surpass the depth-based competitor by a large margin in grasping photometrically challenging objects. To further stimulate robotic manipulation research, we additionally annotate and open-source a multi-view and multi-scene real-world grasping dataset, containing 120 objects of mixed photometric complexity with 20M accurate grasping labels.
['Benjamin Busam', 'Nassir Navab', 'Federico Tombari', 'Fabian Manhardt', 'Yan Di', 'HyunJun Jung', 'Shun-Cheng Wu', 'Dianye Huang', 'Guangyao Zhai']
2022-09-26
null
null
null
null
['robotic-grasping']
['robots']
[-7.40901008e-02 -6.34297878e-02 1.25173077e-01 -3.30250531e-01 -5.99270880e-01 -8.85840595e-01 1.73809230e-01 -1.48701981e-01 9.49097648e-02 6.47215992e-02 -4.09517884e-02 2.12053210e-01 -3.44960541e-01 -6.71769202e-01 -1.03666759e+00 -7.16409385e-01 -1.70171589e-01 7.02503264e-01 2.65547186e-01 -2.16987863e-01 3.56851071e-01 9.17821229e-01 -1.72840118e+00 4.52335984e-01 4.40545708e-01 1.23973012e+00 5.54621398e-01 3.68806362e-01 -1.71188727e-01 2.11132482e-01 -2.87139714e-01 -2.52802432e-01 8.53116035e-01 5.64086854e-01 -4.95603919e-01 -1.10225193e-01 8.09321105e-01 -1.09976482e+00 -5.33969045e-01 8.00973058e-01 3.36469710e-01 -3.55195999e-01 6.03592038e-01 -1.44667864e+00 -7.71999300e-01 4.88466620e-01 -6.22919083e-01 -5.09766698e-01 5.72098851e-01 3.50789666e-01 8.11756194e-01 -9.08911645e-01 6.83648407e-01 1.78506374e+00 5.31048715e-01 6.91523015e-01 -8.81987751e-01 -4.52116460e-01 3.29812527e-01 -5.68320379e-02 -7.60816038e-01 -8.27518925e-02 9.88383889e-01 -4.65899587e-01 8.47064137e-01 -1.49460912e-01 4.23623532e-01 1.45564830e+00 1.98038250e-01 9.43738461e-01 9.56197500e-01 -2.89039798e-02 5.69781028e-02 -5.79194844e-01 -8.71347671e-04 7.48927236e-01 2.84208417e-01 7.67393112e-02 -5.05896628e-01 -1.60684243e-01 1.17847013e+00 5.28782427e-01 -1.52539045e-01 -1.19651604e+00 -1.61866760e+00 3.75557750e-01 8.51857722e-01 -3.12114209e-01 -4.88907337e-01 4.30713177e-01 1.35332838e-01 1.01548977e-01 2.16274872e-01 5.79384863e-01 -7.50948131e-01 -8.72112513e-02 2.55563557e-01 6.00440860e-01 7.83220112e-01 1.70345783e+00 8.35148990e-01 -3.61467540e-01 6.00050017e-02 5.85700035e-01 2.35249773e-01 9.01728690e-01 -4.44444388e-01 -1.49556458e+00 5.53622842e-01 8.87478709e-01 5.06924629e-01 -8.64365518e-01 -6.19467020e-01 1.62935972e-01 -3.07161450e-01 6.10562742e-01 8.19108188e-01 3.42800081e-01 -1.00384283e+00 1.32185602e+00 3.81773710e-01 -6.51607037e-01 -1.75562158e-01 1.09170377e+00 8.54372323e-01 1.12441972e-01 -3.28375220e-01 4.79710191e-01 1.25841272e+00 -8.16910625e-01 -1.77353680e-01 -4.97303568e-02 1.88470766e-01 -7.67151892e-01 1.05222678e+00 6.61116302e-01 -1.10349131e+00 -1.29289255e-01 -8.05383921e-01 -4.18254912e-01 -2.96166062e-01 2.06329346e-01 1.11346102e+00 2.31202841e-02 -6.55847967e-01 5.71706235e-01 -1.06146812e+00 -2.88722932e-01 6.70151830e-01 2.62792796e-01 -5.06239176e-01 -6.61403000e-01 -3.43304038e-01 9.80068803e-01 2.43474841e-01 2.48702198e-01 -1.16636002e+00 -9.85359430e-01 -6.20185971e-01 -2.87202090e-01 5.85191905e-01 -4.78957623e-01 1.17310345e+00 -1.68785334e-01 -1.50800180e+00 1.03845942e+00 2.38425493e-01 3.03240210e-01 6.83896065e-01 -6.83834910e-01 6.00171983e-01 4.74149466e-01 -4.75477949e-02 8.72454047e-01 9.01914060e-01 -1.82067728e+00 -1.64575756e-01 -1.06332970e+00 7.90530801e-01 1.98061392e-01 -1.10303067e-01 -5.07753193e-01 -1.93027064e-01 -2.59804875e-01 1.05020237e+00 -9.09001350e-01 1.77930355e-01 8.11743677e-01 -2.46120244e-01 -4.47354198e-01 1.19649529e+00 -3.53840083e-01 -2.65215278e-01 -2.03384686e+00 5.55045724e-01 -1.62906781e-01 1.91031396e-01 -2.70725250e-01 -4.52024281e-01 4.95535195e-01 4.48587060e-01 -5.06817520e-01 1.07594341e-01 -8.87522697e-02 3.22753370e-01 4.44058955e-01 -5.40084898e-01 6.56685293e-01 1.72415659e-01 1.14801860e+00 -1.07712901e+00 -1.12614602e-01 3.20489019e-01 5.11753917e-01 -5.79623461e-01 3.69330883e-01 -7.47305095e-01 3.96719903e-01 -7.52453208e-01 1.50152707e+00 1.03466356e+00 1.28094465e-01 -2.48572633e-01 -7.33263493e-01 -1.06777966e-01 -1.01975814e-01 -8.08120966e-01 2.49718094e+00 -3.69799286e-01 3.42840068e-02 5.77709973e-01 -7.13129580e-01 1.13669193e+00 -1.26294598e-01 8.38690221e-01 -3.28241408e-01 1.76345706e-01 3.65171909e-01 -4.23951566e-01 -8.00826430e-01 1.82792112e-01 3.98318201e-01 1.09380536e-01 1.84963077e-01 -1.53395068e-02 -7.63549685e-01 -4.95075583e-01 -2.45675724e-02 1.05559433e+00 8.19922388e-01 -5.19168317e-01 -2.53900170e-01 -2.72381395e-01 9.69124585e-02 1.29037529e-01 5.57939172e-01 -6.57013431e-02 7.98677802e-01 4.96479720e-01 -5.31324863e-01 -1.21996677e+00 -1.54881501e+00 -2.14387342e-01 9.37018275e-01 6.65324330e-01 6.74343258e-02 -4.54699129e-01 -4.04106975e-01 9.34056699e-01 3.42157818e-02 -5.82354903e-01 1.44058969e-02 -6.56086564e-01 -3.17951143e-01 7.16735050e-02 7.89030612e-01 4.21445906e-01 -9.78701055e-01 -1.11131907e+00 7.39589483e-02 -2.91070435e-02 -1.42305183e+00 2.21469164e-01 7.55312741e-02 -9.67208624e-01 -1.33609354e+00 -8.90959084e-01 -7.24021673e-01 6.68495417e-01 9.43953156e-01 8.83686066e-01 -2.50410199e-01 -7.38655269e-01 7.86502421e-01 -7.74467111e-01 -5.85758328e-01 5.28527126e-02 -3.46066356e-02 2.14431947e-03 -6.74549699e-01 3.36968511e-01 -5.19682229e-01 -8.47370863e-01 3.59972060e-01 -7.64828026e-01 -1.40470937e-01 6.51376426e-01 5.11039555e-01 2.61532009e-01 -5.84090889e-01 3.36336493e-01 1.67405963e-01 2.04868242e-02 -3.62595141e-01 -8.47842574e-01 2.08228946e-01 1.12644695e-01 -1.16298646e-01 4.76936996e-02 -5.28493702e-01 -7.21001804e-01 2.23357469e-01 3.13743353e-01 -9.27428126e-01 -9.48287770e-02 -9.91371796e-02 -2.14047417e-01 -2.40515068e-01 6.36071503e-01 -3.52877468e-01 3.85968059e-01 -6.59971058e-01 3.08398098e-01 4.91457283e-01 6.11729801e-01 -1.07280219e+00 7.73848236e-01 1.01272368e+00 2.52948850e-01 -4.99921173e-01 -9.10911679e-01 -3.66745710e-01 -1.05360246e+00 -2.35523269e-01 8.59894097e-01 -9.48622406e-01 -1.49149001e+00 9.06146049e-01 -1.60994053e+00 -4.02722955e-01 -3.60804014e-02 4.82907951e-01 -8.43708992e-01 3.02863568e-01 -5.77550352e-01 -7.32704580e-01 -1.96224689e-01 -1.15684414e+00 1.77838755e+00 -1.63489237e-01 3.89759660e-01 -2.02350527e-01 -7.26309597e-01 3.67240071e-01 2.40778551e-01 6.34171486e-01 9.90121782e-01 2.39881963e-01 -1.28454638e+00 -2.12174043e-01 -6.35402441e-01 1.59711450e-01 3.30131114e-01 2.99596172e-02 -1.01730156e+00 -4.06241924e-01 -1.76561713e-01 -7.35467911e-01 7.15895891e-01 2.67359942e-01 1.41918373e+00 2.53375262e-01 -2.46129438e-01 6.81859791e-01 1.29234338e+00 -1.46023586e-01 3.17639112e-01 2.39393920e-01 9.47201610e-01 1.06647372e+00 8.38431180e-01 5.74503899e-01 4.25311565e-01 6.34394884e-01 1.42600548e+00 3.16233993e-01 -2.49240380e-02 -1.54500306e-01 7.65204877e-02 3.04441750e-01 -3.67293388e-01 9.74711776e-02 -9.93849576e-01 2.85141319e-01 -1.62912214e+00 -5.05163670e-01 -1.98864892e-01 2.02223873e+00 5.11638165e-01 4.85482551e-02 -7.96728507e-02 -1.97091907e-01 1.70213193e-01 -1.11580364e-01 -1.04565656e+00 2.08108187e-01 -2.89245844e-01 -5.33030927e-02 6.50639057e-01 1.58953488e-01 -7.91030884e-01 9.54095662e-01 5.43261576e+00 7.90769234e-02 -9.35224712e-01 -3.38373929e-02 -3.14607739e-01 -2.58732527e-01 -3.37966293e-01 -1.55335635e-01 -5.79290628e-01 -2.68903952e-02 -2.98408210e-01 5.09567976e-01 6.10168099e-01 1.13152158e+00 -4.04515058e-01 -2.18596607e-01 -1.47958744e+00 1.17530799e+00 1.12443574e-01 -8.89713168e-01 -4.84841019e-02 -4.01310101e-02 6.17364049e-01 3.40101868e-01 7.49991015e-02 2.16613282e-02 2.63687134e-01 -7.61026323e-01 8.70311737e-01 5.78491449e-01 7.04551458e-01 -1.99928030e-01 3.34605366e-01 2.82387346e-01 -7.91741133e-01 -4.14192021e-01 -7.37105608e-01 -3.61567065e-02 -1.24079317e-01 5.00841737e-01 -5.84589541e-01 5.07399678e-01 1.28310037e+00 7.64618695e-01 -4.88068946e-02 7.97088861e-01 -8.36682096e-02 -4.42040920e-01 -4.52507049e-01 -2.63727140e-02 2.67635465e-01 -1.17124766e-02 5.93654037e-01 4.18089390e-01 2.43829265e-01 3.87190372e-01 1.47816435e-01 1.25167108e+00 4.18156832e-02 -5.01405954e-01 -7.57909954e-01 1.41822755e-01 4.18179303e-01 1.23748243e+00 -5.40794730e-01 7.86147639e-02 -1.64938420e-01 9.17848170e-01 3.14861357e-01 4.06507015e-01 -3.75475824e-01 -8.87127221e-02 8.61012757e-01 -2.48552021e-02 2.58167118e-01 -9.16223347e-01 -4.37328368e-01 -1.18847895e+00 7.07334101e-01 -5.06880999e-01 -2.89863169e-01 -1.21861172e+00 -1.51296914e+00 1.96608111e-01 3.49193513e-01 -1.04162049e+00 3.57265860e-01 -1.47584260e+00 8.66486505e-02 8.02857280e-01 -1.71108258e+00 -1.42936444e+00 -1.10977876e+00 4.64827389e-01 6.72771573e-01 6.34737909e-02 8.27553749e-01 -2.46082738e-01 2.42163822e-01 3.69994119e-02 1.01883225e-02 -1.40961468e-01 7.35110223e-01 -1.05716074e+00 3.87413800e-02 -1.83437720e-01 -5.42159796e-01 4.79611397e-01 4.61225569e-01 -4.55571562e-01 -2.62645888e+00 -6.41463876e-01 -9.03842077e-02 -1.05405498e+00 4.98504281e-01 -9.49198008e-01 -8.11429799e-01 6.10537231e-01 -3.48826736e-01 7.65745714e-02 -3.98911953e-01 -3.69318612e-02 -9.23358202e-01 -1.97177172e-01 -1.40476799e+00 4.73237485e-01 1.71864140e+00 -3.39672685e-01 -6.48028255e-01 8.14923823e-01 7.92138696e-01 -9.53212738e-01 -1.01787412e+00 9.78315413e-01 1.09087563e+00 -8.53725314e-01 1.40831792e+00 -4.61190611e-01 8.29972863e-01 6.27912441e-03 -6.09238625e-01 -9.56600070e-01 -7.27533177e-02 -3.38937253e-01 -3.98418307e-02 7.20279813e-01 -3.88368249e-01 -5.74333191e-01 8.79313886e-01 5.67229390e-01 -4.14666831e-01 -7.27003753e-01 -9.00228858e-01 -9.68108594e-01 2.97124863e-01 -1.87176093e-01 6.92449868e-01 6.34172142e-01 -4.45217118e-02 -5.64915061e-01 1.78293467e-01 5.03361225e-01 1.06163907e+00 7.19998300e-01 9.74010348e-01 -1.53362751e+00 2.26425871e-01 -3.76540571e-01 -5.18103421e-01 -1.32735384e+00 3.61595660e-01 -7.87073851e-01 4.72888142e-01 -1.49211478e+00 1.77089140e-01 -1.00517690e+00 1.59281522e-01 6.69653773e-01 3.00708324e-01 -8.01839028e-03 1.65286213e-01 4.06339288e-01 -2.14156911e-01 6.66598380e-01 1.71196222e+00 -2.35642582e-01 8.00201520e-02 -3.30303699e-01 -2.01090202e-01 6.82045281e-01 5.55425823e-01 -4.26687375e-02 -1.17312506e-01 -1.19613695e+00 1.08200796e-01 -2.12518163e-02 9.99570429e-01 -7.67950952e-01 -1.26954287e-01 -3.37517977e-01 3.29552978e-01 -8.49418044e-01 8.03251207e-01 -1.12981343e+00 -2.46075377e-01 2.97572345e-01 -1.69245049e-01 -6.84640603e-03 4.44288850e-02 5.69312692e-01 3.87624502e-01 -1.02243140e-01 4.22655344e-01 -4.41877663e-01 -6.28663540e-01 5.96098483e-01 4.38674182e-01 -3.23874950e-01 1.10302413e+00 -1.98539272e-01 -7.32149243e-01 2.58360896e-02 -3.79637331e-01 2.96045542e-01 8.59008789e-01 9.72369194e-01 8.45573068e-01 -1.18588996e+00 -6.65193856e-01 1.03440046e-01 4.11124855e-01 7.32520342e-01 1.98843688e-01 5.60782552e-01 -7.22470343e-01 2.32693329e-01 -5.81385732e-01 -1.23755884e+00 -8.07227492e-01 5.92746735e-01 6.68343157e-02 8.28491807e-01 -9.10550416e-01 9.26218688e-01 2.96105742e-01 -7.29972064e-01 6.41448557e-01 -6.46282852e-01 5.44207633e-01 -4.58043128e-01 4.77439761e-02 4.70394075e-01 6.22906461e-02 -1.25199303e-01 -2.94271857e-01 9.51494157e-01 -3.18410322e-02 3.24556351e-01 1.67622542e+00 9.57977846e-02 -3.23251843e-01 3.39541674e-01 1.25982273e+00 -4.44369107e-01 -2.04369020e+00 -2.17308030e-01 -3.94228250e-01 -8.24302495e-01 -3.77323061e-01 -8.59394193e-01 -1.05325568e+00 1.04791665e+00 4.46584016e-01 -9.76052284e-02 6.42118633e-01 5.78158140e-01 6.81792378e-01 9.39688504e-01 1.16882253e+00 -9.55606878e-01 6.03822172e-01 6.24454379e-01 1.69014418e+00 -1.53538024e+00 -2.18243313e-05 -7.93812633e-01 -9.24968570e-02 1.54969668e+00 9.79184687e-01 -4.54761982e-01 5.13513267e-01 3.03288639e-01 1.33361965e-01 -6.12234533e-01 -3.09309512e-01 1.98952705e-01 -2.32030987e-03 7.63702214e-01 -2.07375586e-01 -1.27215050e-02 3.60627979e-01 4.18124758e-02 -8.48197341e-02 -3.42712045e-01 8.45185071e-02 1.40809011e+00 -4.32250679e-01 -6.56131506e-01 -4.20671940e-01 2.05305114e-01 1.77994773e-01 4.24023479e-01 -2.84906328e-01 6.94755673e-01 -6.06922396e-02 6.48520947e-01 1.72229484e-01 -2.67198175e-01 6.89592957e-01 -2.73498833e-01 1.37970364e+00 -4.63947117e-01 -1.39403746e-01 -1.60470679e-01 -4.58005160e-01 -1.11070275e+00 -5.93270183e-01 -7.43595541e-01 -1.27905202e+00 1.36952680e-02 -1.78193778e-01 -7.59678543e-01 1.34909475e+00 7.43255079e-01 3.33882421e-01 1.37470126e-01 6.20609820e-01 -1.63107944e+00 -1.15294731e+00 -8.91294479e-01 -3.90084922e-01 5.25980949e-01 3.83977771e-01 -1.24723053e+00 -2.27389872e-01 -3.77954721e-01]
[5.862917423248291, -0.951188325881958]
f1d0c130-ad2d-45b6-8f72-00a58cf18846
synthetic-traffic-generation-with-wasserstein
null
null
https://ieeexplore.ieee.org/document/10001157
https://ieeexplore.ieee.org/document/10001157
Synthetic Traffic Generation with Wasserstein Generative Adversarial Networks
Network traffic data are critical for network research. With the help of synthetic traffic, researchers can readily generate data for network simulation and performance evaluation. However, the state-of-the-art traffic generators are either too simple to generate realistic traffic or require the implementation of original applications and user operations. We propose Synthetic PAcket Traffic Generative Adversarial Networks (SPATGAN) that are capable of generating synthetic traffic. The framework includes a server agent and a client agent, which transmit synthetic packets to each other and take the opponent's synthetic packets as conditional labels for the built-in Timing Synthesis Generative Adversarial Networks (TSynGAN) and a Packet Synthesis Generative Adversarial Networks (PSynGAN) to generate synthetic traffic. The evaluations demonstrate that the proposed framework can generate traffic whose distribution resembles real traffic distribution.
['Chih–Yu Wang', 'Po–Yu Chou', 'Yu–Ying Chen', 'Chao–Lun Wu']
2022-12-05
null
null
null
ieee-global-communications-conference-2022-12
['synthetic-data-generation', 'synthetic-data-generation', 'intelligent-communication']
['medical', 'miscellaneous', 'time-series']
[ 1.95926011e-01 -1.27640992e-01 7.79486671e-02 -1.63831905e-01 -1.51694998e-01 -6.48763835e-01 6.46473467e-01 -8.69004071e-01 -2.98684705e-02 1.16226161e+00 -5.31661630e-01 -9.33561146e-01 2.93600261e-01 -1.37161517e+00 -5.47652006e-01 -5.82557738e-01 1.07910074e-01 7.77747333e-01 7.85790443e-01 -2.51595676e-01 4.90141520e-03 7.89976895e-01 -1.11241639e+00 2.19801545e-01 8.01311672e-01 6.97940648e-01 -1.55444190e-01 1.04820037e+00 -4.98983175e-01 9.12636220e-01 -1.46936584e+00 -5.65008461e-01 4.84688044e-01 -6.92563236e-01 -3.46500009e-01 -2.10786268e-01 -3.58933210e-01 -5.08175135e-01 -8.50913703e-01 7.15908408e-01 4.50639188e-01 -1.75309703e-01 4.65659678e-01 -2.39551687e+00 -4.36583728e-01 8.91946971e-01 -2.21323654e-01 2.60894120e-01 -5.16537391e-02 9.34502244e-01 9.34509337e-02 -4.99238074e-02 4.53249037e-01 1.58290899e+00 3.26975822e-01 8.63999724e-01 -1.28118396e+00 -1.43053699e+00 -3.98350567e-01 -1.13953762e-01 -1.16116738e+00 -6.71271980e-01 8.19038451e-01 -1.02306530e-01 3.91052634e-01 5.03198743e-01 3.68858337e-01 1.73723030e+00 2.46327966e-01 2.16116294e-01 8.87205184e-01 -2.17405945e-01 2.85081744e-01 2.61280090e-01 -4.46623057e-01 2.05111966e-01 3.70726675e-01 5.88129520e-01 1.59908056e-01 -1.45835400e-01 1.17725253e+00 -5.74266277e-02 2.69488275e-01 1.01462618e-01 -8.70219231e-01 6.41380250e-01 3.15754980e-01 -2.23829955e-01 -5.06555796e-01 9.06356990e-01 6.12632215e-01 4.55073535e-01 2.67269779e-02 3.67684700e-02 2.19495013e-01 -1.93524837e-01 -8.47562909e-01 2.64347821e-01 1.09065640e+00 1.49248838e+00 6.58229768e-01 9.94647264e-01 -5.22230625e-01 2.55305707e-01 1.43764392e-01 1.24961805e+00 5.86204119e-02 -1.24209094e+00 2.07745284e-01 2.54050523e-01 -2.32814386e-01 -8.24388206e-01 1.39075607e-01 -6.93183243e-02 -7.56027639e-01 5.26983559e-01 3.19337815e-01 -7.88598061e-01 -7.18626320e-01 1.49982083e+00 -6.49871379e-02 6.87675536e-01 1.91423059e-01 4.69055325e-01 4.32656884e-01 8.30095708e-01 3.09228808e-01 8.86746496e-02 9.42385077e-01 -9.19848859e-01 -3.32427859e-01 1.66249454e-01 -9.30605903e-02 -1.01173818e+00 6.63414717e-01 -1.82726547e-01 -1.07555783e+00 -6.17760420e-01 -6.89162433e-01 9.12494481e-01 -3.30403239e-01 -3.30770761e-01 5.96527457e-01 1.39142776e+00 -1.07910681e+00 9.32550877e-02 -5.70888758e-01 -7.90576786e-02 4.83168721e-01 4.64909941e-01 2.84735352e-01 1.11652747e-01 -1.23282743e+00 2.46711701e-01 4.14923370e-01 -2.42685631e-01 -1.72073388e+00 -7.83326745e-01 -4.18221444e-01 1.09620593e-01 4.90047306e-01 -8.11567426e-01 1.19633341e+00 -1.10291660e+00 -1.73848152e+00 1.42879859e-01 3.69136959e-01 -4.70811993e-01 7.65993953e-01 5.21246433e-01 -9.76295769e-01 2.16113463e-01 1.13241583e-01 5.46309650e-01 1.01822579e+00 -1.50525486e+00 -4.57026482e-01 6.46444082e-01 2.44930297e-01 -5.84587216e-01 2.51155823e-01 2.42536023e-01 -1.69537857e-01 -9.03807461e-01 -8.79479706e-01 -9.24048662e-01 -2.75006026e-01 -3.25492546e-02 -9.02776062e-01 3.75229061e-01 1.61032200e+00 1.09857626e-01 9.08179522e-01 -1.85435104e+00 -7.33935058e-01 6.62818491e-01 1.94454193e-01 7.12342501e-01 -3.77502769e-01 6.39879465e-01 -6.08944036e-02 5.47096968e-01 3.57692659e-01 8.65430012e-02 1.91303775e-01 4.27552730e-01 -5.26088715e-01 8.12154822e-03 1.72844931e-01 1.07941270e+00 -8.43471408e-01 -5.20976424e-01 4.97872204e-01 3.07184547e-01 -6.04347706e-01 4.63667184e-01 -4.22906220e-01 5.86118579e-01 -5.74636221e-01 4.33722377e-01 8.22682738e-01 3.99568751e-02 1.55184641e-01 -5.96559867e-02 1.31819084e-01 -1.14950135e-01 -8.91335309e-01 3.54895294e-01 -6.21782541e-01 7.06673205e-01 -5.79374935e-03 -5.85284770e-01 1.04653990e+00 2.16557488e-01 2.50918418e-01 -5.86294770e-01 4.29435998e-01 6.03538230e-02 2.85418838e-01 -2.18372762e-01 4.41694073e-02 -1.15242697e-01 -1.02485165e-01 9.71789241e-01 -2.31700733e-01 -8.00390691e-02 4.73508060e-01 2.67264187e-01 1.54331267e+00 -3.39305401e-01 -4.01314825e-01 2.16066182e-01 6.88430607e-01 -2.77953297e-01 5.04370391e-01 8.55066776e-01 -7.44438842e-02 4.04890142e-02 9.62131977e-01 -2.56720781e-01 -1.52012348e+00 -1.66469872e+00 6.67928338e-01 9.23714459e-01 -4.01778296e-02 2.57162587e-03 -8.59552503e-01 -7.44775712e-01 -1.00503281e-01 9.16048646e-01 -2.21304536e-01 -2.71180838e-01 -8.11190188e-01 -2.43236378e-01 1.39179647e+00 3.22806716e-01 7.53435016e-01 -1.57554471e+00 -6.97919950e-02 4.54434365e-01 2.32406154e-01 -1.41966867e+00 -6.97115481e-01 -4.73782063e-01 -1.87549159e-01 -1.20998669e+00 -4.51157004e-01 -5.58872104e-01 7.68867612e-01 2.71325588e-01 1.02851188e+00 2.49853820e-01 -3.81434381e-01 7.60551393e-02 -4.38690841e-01 -2.93154746e-01 -1.46549046e+00 4.37126793e-02 1.51480420e-03 1.76921889e-01 -5.74418753e-02 -1.16011858e+00 -4.98955995e-01 7.35390782e-01 -1.16989374e+00 -9.81977955e-02 6.18819654e-01 4.24427837e-01 -9.39039700e-03 3.93593818e-01 8.50339472e-01 -1.38529992e+00 1.05117333e+00 -7.30759442e-01 -7.48812437e-01 4.92131151e-02 -4.02608812e-01 -3.73451598e-02 1.44632351e+00 -6.44106865e-01 -8.91308367e-01 -7.06916571e-01 8.26060679e-03 -8.05303931e-01 -1.81738138e-01 -3.59092087e-01 -2.93383777e-01 -2.32194960e-01 6.24576151e-01 3.78721774e-01 9.93750840e-02 2.47575134e-01 2.98773229e-01 5.30106366e-01 4.97161865e-01 -8.68241966e-01 1.36635172e+00 2.50921518e-01 3.18167388e-01 -7.06583858e-01 2.05763757e-01 6.43637061e-01 3.82347107e-02 -4.21848416e-01 3.97931725e-01 -3.63583326e-01 -1.30901098e+00 6.17225051e-01 -1.25304282e+00 -5.30657232e-01 -4.61470723e-01 -1.72486469e-01 -5.20379603e-01 1.34618908e-01 -7.54353464e-01 -7.39373326e-01 -3.23195606e-01 -1.46539176e+00 5.19827366e-01 4.57588762e-01 9.58007127e-02 -9.58296299e-01 -1.96912095e-01 -7.73870870e-02 1.23845708e+00 5.56039333e-01 9.61867750e-01 -5.64402223e-01 -1.09174132e+00 -1.73955187e-01 -5.52168846e-01 4.29425150e-01 2.12028638e-01 7.56111324e-01 -4.70466882e-01 -1.37448488e-02 -6.67816699e-01 2.68512011e-01 -7.78821260e-02 1.38142720e-01 1.18873882e+00 -6.15606189e-01 -3.31227928e-01 6.84176505e-01 1.22454584e+00 7.86215663e-01 1.16908193e+00 -5.84011972e-02 6.46806002e-01 6.92835972e-02 -7.52545893e-02 3.67194861e-01 -4.88388948e-02 5.24068475e-01 5.19347548e-01 -6.47651106e-02 -4.29805398e-01 -4.79823112e-01 4.03147042e-01 3.53487730e-01 1.34074558e-02 -8.79581034e-01 -7.11153865e-01 -1.64816491e-02 -1.29600966e+00 -1.42691588e+00 -1.86552703e-01 1.74669468e+00 4.00192261e-01 7.51954079e-01 3.74104589e-01 3.01063031e-01 1.05836868e+00 7.75807053e-02 -3.92304718e-01 -6.85291708e-01 8.40840116e-02 8.69536042e-01 8.66810262e-01 3.02520573e-01 -3.00437957e-01 1.14225268e+00 7.00945330e+00 1.22836566e+00 -1.06064236e+00 -3.53777260e-02 5.05566180e-01 3.03901196e-01 -5.47150850e-01 2.82282531e-01 -5.59593499e-01 1.30630732e+00 1.48844135e+00 -6.64734423e-01 7.31394827e-01 6.40381634e-01 6.60854995e-01 2.77893871e-01 -6.53163910e-01 6.66164398e-01 -4.38420296e-01 -1.49194741e+00 6.65748715e-01 -1.39304131e-01 5.16562700e-01 -4.31526244e-01 2.82722432e-02 5.78023553e-01 9.47886825e-01 -1.06666815e+00 3.17148775e-01 6.03760183e-01 1.10643125e+00 -1.09801948e+00 7.72465646e-01 1.35134354e-01 -1.11871564e+00 1.26976237e-01 -6.91874549e-02 3.22622478e-01 5.08507729e-01 2.60190427e-01 -1.06371582e+00 2.98282415e-01 -3.41419131e-02 -1.73182428e-01 -4.53749865e-01 8.92562866e-01 -2.11200178e-01 9.94411230e-01 -1.50686070e-01 -1.01276375e-01 2.52833635e-01 -1.75699756e-01 5.68023801e-01 1.01259649e+00 2.31083930e-01 -2.40309879e-01 1.89835280e-01 1.26311529e+00 -4.69894081e-01 -4.47113514e-01 -5.84813833e-01 -3.01878780e-01 1.07409835e+00 1.13261962e+00 -7.91779697e-01 -3.49384844e-01 -5.49386926e-02 7.01519251e-01 -4.50676113e-01 5.46492577e-01 -1.48354423e+00 -9.31266010e-01 8.79421294e-01 5.50226808e-01 -8.14386010e-02 -2.15439469e-01 -5.47041818e-02 -4.25720125e-01 -3.95183682e-01 -1.02840686e+00 -3.07943225e-01 -8.13825727e-01 -1.36057460e+00 8.65346134e-01 -8.73665139e-02 -1.22173846e+00 -2.83678293e-01 -3.41703027e-01 -1.33972800e+00 8.73375654e-01 -9.99647856e-01 -1.20025575e+00 -6.24275506e-01 8.43361855e-01 4.37237263e-01 -9.04096186e-01 4.95152861e-01 7.15184808e-01 -8.19403172e-01 1.03261638e+00 -1.94570780e-01 4.59280372e-01 4.12065744e-01 -7.01896787e-01 9.01270926e-01 9.32765663e-01 -4.64209616e-01 2.60676473e-01 7.87094951e-01 -6.56112790e-01 -1.25990927e+00 -1.31757879e+00 4.79130931e-02 -5.26852421e-02 6.97058678e-01 -3.29314619e-01 -2.82413691e-01 7.03436434e-01 2.62333661e-01 2.56819099e-01 5.24344027e-01 -1.03217101e+00 -2.23489523e-01 -4.31737512e-01 -1.48759198e+00 8.46932828e-01 8.18894744e-01 -3.26461315e-01 3.68205637e-01 8.55054110e-02 1.01563132e+00 -2.01332092e-01 -3.65709037e-01 -4.72391024e-02 4.05361056e-01 -9.64928746e-01 9.38603878e-01 -6.75901175e-01 1.86748698e-01 -4.08534139e-01 -1.33075891e-03 -1.16337740e+00 4.18034494e-02 -1.28028357e+00 1.44811839e-01 1.50833988e+00 2.87543088e-01 -8.72423768e-01 1.11808968e+00 3.41230065e-01 -6.08288944e-02 -7.02010989e-02 -5.86107492e-01 -1.09874570e+00 -2.60597646e-01 -4.54723090e-01 1.26788878e+00 5.56893945e-01 -6.36749566e-01 2.31780022e-01 -4.56468821e-01 -2.34469585e-02 7.11969316e-01 -4.19426352e-01 1.40202618e+00 -7.22979426e-01 -2.93961406e-01 -5.88004947e-01 -4.88186002e-01 -5.49036205e-01 4.15269524e-01 -6.46926999e-01 -1.78809628e-01 -8.74940455e-01 -3.55462849e-01 -8.50052536e-01 1.57908008e-01 2.42504284e-01 2.23279476e-01 2.90600240e-01 4.06625092e-01 -4.79448475e-02 -3.42222512e-01 3.85146022e-01 1.28200841e+00 -2.07776227e-03 6.00944720e-02 4.67117876e-01 -4.85343367e-01 2.49495521e-01 1.02484357e+00 -7.33714163e-01 -8.94666612e-01 7.82757998e-02 -3.27128232e-01 5.31204045e-01 6.02044106e-01 -1.22346783e+00 1.17994450e-01 -6.21748567e-01 1.76565975e-01 -2.41511390e-01 -8.27307347e-04 -1.04542065e+00 8.38915944e-01 6.56563878e-01 1.30386883e-03 3.75941545e-01 1.69190839e-01 3.75254154e-01 1.57997325e-01 1.66371629e-01 8.23784769e-01 8.02536458e-02 -2.91362166e-01 6.51725650e-01 -8.60507131e-01 4.11239684e-01 1.55812597e+00 -1.75947264e-01 -8.13021779e-01 -7.57971525e-01 -5.01104712e-01 5.21785691e-02 3.76305431e-01 3.10038269e-01 6.20579302e-01 -1.51705039e+00 -6.69242740e-01 4.85451639e-01 -3.97341102e-01 -5.91406584e-01 1.21423520e-01 1.92489251e-01 -1.29387617e+00 2.65656292e-01 -8.39123189e-01 -7.23022297e-02 -8.57749879e-01 6.92020535e-01 3.49417031e-01 -2.25902915e-01 -1.26619324e-01 2.45538473e-01 2.67728213e-02 -3.02647740e-01 -1.95443660e-01 3.11210483e-01 4.11322951e-01 -6.81954384e-01 2.85286993e-01 9.63611245e-01 -4.55227613e-01 -3.36131752e-01 -1.93156317e-01 -1.84765875e-01 2.34682277e-01 -1.33184940e-01 7.92330325e-01 1.55051202e-01 -1.16995022e-01 -3.58703554e-01 8.98407757e-01 -3.51145901e-02 -8.81590486e-01 3.22411880e-02 -6.06597245e-01 -5.68248093e-01 -4.92525160e-01 -5.31400919e-01 -1.66969287e+00 5.96154034e-01 2.05374151e-01 5.86398661e-01 1.11334991e+00 -6.72693193e-01 1.17597544e+00 1.08607568e-01 5.86164534e-01 -4.65567738e-01 2.20991448e-01 3.06494713e-01 2.53543973e-01 -5.49587607e-01 -5.66466451e-01 -7.97367215e-01 -5.70911348e-01 1.14528823e+00 9.58386540e-01 -5.71610510e-01 6.65228784e-01 1.00068974e+00 3.31056640e-02 1.33128002e-01 -8.32342982e-01 -4.15686481e-02 -5.69736302e-01 1.09531057e+00 -1.21881142e-01 2.41904855e-01 -2.29203645e-02 2.59605765e-01 -2.44513482e-01 6.97333217e-02 9.70486224e-01 6.90210104e-01 -2.57082134e-01 -1.62104654e+00 -3.73658687e-01 5.06574154e-01 -4.15776730e-01 4.04535420e-02 -1.76701248e-01 1.04152203e+00 8.91182870e-02 1.05284226e+00 1.50913820e-01 -7.14800060e-01 2.82024086e-01 -2.75403470e-01 -2.20230166e-02 -3.51568490e-01 -6.39797330e-01 -3.26421469e-01 2.78118074e-01 -5.03672779e-01 6.49901330e-02 1.02999225e-01 -1.09540057e+00 -1.51732862e+00 1.57460868e-01 3.14374119e-01 3.90996784e-01 5.63154519e-01 3.39767188e-01 1.08616865e+00 1.21315110e+00 -5.65427899e-01 -7.32432306e-02 -6.84568822e-01 -4.94984925e-01 2.67377168e-01 -9.42785889e-02 -4.85352039e-01 -3.10704291e-01 -5.44581749e-02]
[5.382530212402344, 7.479783058166504]
f5164fe8-1939-4ca1-af8c-66021265c343
agmn-association-graph-based-graph-matching
2301.04733
null
https://arxiv.org/abs/2301.04733v1
https://arxiv.org/pdf/2301.04733v1.pdf
AGMN: Association Graph-based Graph Matching Network for Coronary Artery Semantic Labeling on Invasive Coronary Angiograms
Semantic labeling of coronary arterial segments in invasive coronary angiography (ICA) is important for automated assessment and report generation of coronary artery stenosis in the computer-aided diagnosis of coronary artery disease (CAD). Inspired by the training procedure of interventional cardiologists for interpreting the structure of coronary arteries, we propose an association graph-based graph matching network (AGMN) for coronary arterial semantic labeling. We first extract the vascular tree from invasive coronary angiography (ICA) and convert it into multiple individual graphs. Then, an association graph is constructed from two individual graphs where each vertex represents the relationship between two arterial segments. Using the association graph, the AGMN extracts the vertex features by the embedding module, aggregates the features from adjacent vertices and edges by graph convolution network, and decodes the features to generate the semantic mappings between arteries. By learning the mapping of arterial branches between two individual graphs, the unlabeled arterial segments are classified by the labeled segments to achieve semantic labeling. A dataset containing 263 ICAs was employed to train and validate the proposed model, and a five-fold cross-validation scheme was performed. Our AGMN model achieved an average accuracy of 0.8264, an average precision of 0.8276, an average recall of 0.8264, and an average F1-score of 0.8262, which significantly outperformed existing coronary artery semantic labeling methods. In conclusion, we have developed and validated a new algorithm with high accuracy, interpretability, and robustness for coronary artery semantic labeling on ICAs.
['Weihua Zhou', 'Guang-Uei Hung', 'Drew Pienta', 'Michele Esposito', 'Jingfeng Jiang', 'Zhihui Xu', 'Chen Zhao']
2023-01-11
null
null
null
null
['graph-matching']
['graphs']
[ 1.97482944e-01 5.20551264e-01 -3.57557386e-01 -5.01747310e-01 -6.19696975e-01 -7.06066728e-01 -8.73706788e-02 3.18369180e-01 4.17294241e-02 4.18231696e-01 -6.39022663e-02 -9.00510192e-01 -1.72886327e-01 -1.05281866e+00 -2.37932801e-01 -3.91907483e-01 -2.13331982e-01 6.47141576e-01 1.75938725e-01 3.50541443e-01 -3.81941050e-02 6.62465811e-01 -8.72305453e-01 2.39142597e-01 8.85615289e-01 1.16726995e+00 -1.31700560e-01 6.52223766e-01 -5.98809004e-01 6.88105345e-01 -3.88210267e-01 -5.01058817e-01 1.94606200e-01 -8.23419511e-01 -8.76295447e-01 4.56655741e-01 2.91161779e-02 1.00604661e-01 -3.99544209e-01 1.09567451e+00 4.52636868e-01 -3.10338736e-01 5.92145026e-01 -9.70194221e-01 -8.26425374e-01 5.39446294e-01 -4.55964237e-01 2.80366480e-01 -2.28531539e-01 8.51776171e-03 1.07164752e+00 -5.92561126e-01 6.35680199e-01 1.11004746e+00 4.44947392e-01 3.47809881e-01 -1.14320147e+00 -6.42475665e-01 -1.70829613e-02 7.21269548e-02 -1.30015683e+00 5.82065657e-02 7.80147493e-01 -6.62090838e-01 1.97801441e-01 6.71520904e-02 8.72008860e-01 3.76612604e-01 2.67507523e-01 3.14932197e-01 7.99989223e-01 -4.33036327e-01 2.02510640e-01 9.74707007e-02 4.78720099e-01 1.25571871e+00 5.01521051e-01 4.74647619e-02 1.97902158e-01 -2.03207642e-01 1.15115607e+00 -1.59279816e-02 1.15459792e-01 -3.62139881e-01 -1.09348905e+00 9.22371387e-01 8.86443615e-01 2.82629788e-01 -4.79612619e-01 4.28524725e-02 5.28339505e-01 5.35854399e-02 2.17508283e-02 3.56637716e-01 -1.29580319e-01 5.11740685e-01 -2.79709160e-01 -4.82800007e-01 6.66253388e-01 7.28483498e-01 6.93938136e-01 8.45914260e-02 6.73249830e-03 5.82834721e-01 4.36983258e-01 3.75581801e-01 3.96075785e-01 -1.02784729e+00 2.22286344e-01 1.10407436e+00 -3.65822256e-01 -1.19429159e+00 -5.04733384e-01 -1.02155554e+00 -1.07510066e+00 1.19333886e-01 4.66403753e-01 -9.58067477e-02 -8.40013742e-01 1.44375920e+00 2.81536669e-01 5.44610798e-01 1.64516196e-01 1.02975821e+00 1.06664252e+00 -1.37090338e-02 7.07093060e-01 -5.48827499e-02 1.94034564e+00 -8.79844785e-01 -6.05308354e-01 -1.38411000e-01 9.54377115e-01 -6.22704566e-01 7.98942268e-01 -2.22766533e-01 -7.66409874e-01 -7.47175097e-01 -1.03613627e+00 1.26093134e-01 -1.01012243e-02 6.13111675e-01 7.51432478e-01 6.62769794e-01 -8.06587696e-01 2.17337936e-01 -6.95302665e-01 -4.45363410e-02 9.40267980e-01 3.17981690e-01 -4.44323331e-01 1.20020553e-01 -1.19208038e+00 6.13657653e-01 4.06008571e-01 1.30714446e-01 -3.99707973e-01 -7.24972427e-01 -9.19499338e-01 3.10833566e-02 2.61489570e-01 -1.13363183e+00 7.25693762e-01 -1.04241800e+00 -1.20781708e+00 1.24625754e+00 -1.92372575e-01 -4.47904199e-01 2.45112389e-01 3.19547445e-01 -7.03245699e-01 5.86784124e-01 3.82371873e-01 4.53421563e-01 3.59609723e-01 -9.69487846e-01 -6.82677925e-01 -4.53339726e-01 -2.08292715e-02 -1.28461748e-01 3.43802422e-02 -2.45756760e-01 -2.38100797e-01 -6.31801426e-01 6.43075049e-01 -9.48932409e-01 -5.95481873e-01 2.03913286e-01 -3.88414532e-01 5.44645041e-02 3.04991305e-01 -9.59042013e-01 1.30766904e+00 -2.35997605e+00 -8.75389799e-02 7.37259090e-01 8.29007983e-01 3.72050792e-01 -1.43786922e-01 -3.45350921e-01 -4.02143300e-01 3.88318032e-01 -3.96802157e-01 3.77879113e-01 -5.02036095e-01 1.20360926e-01 2.69893017e-02 2.13838667e-01 2.31285796e-01 1.35364974e+00 -1.06741965e+00 -8.43244731e-01 4.00302827e-01 3.42263907e-01 -3.46794009e-01 1.05969876e-01 9.75886658e-02 7.93017089e-01 -9.95471597e-01 4.06266868e-01 5.09803236e-01 -8.68911207e-01 6.99700773e-01 -4.81982529e-01 4.52242702e-01 3.77936289e-03 -1.12424541e+00 1.60741878e+00 -4.24039841e-01 2.45630533e-01 -4.90984410e-01 -1.09206092e+00 1.44705296e+00 5.32056093e-01 6.81734085e-01 -6.58501804e-01 3.50022316e-01 4.84076470e-01 2.54166454e-01 -6.52954042e-01 -6.52634323e-01 -8.77655149e-02 -6.50647748e-03 2.90739626e-01 -1.04987673e-01 2.99384475e-01 7.78196082e-02 1.32982790e-01 9.46086347e-01 -2.25890994e-01 6.16847932e-01 -1.63983896e-01 1.18826008e+00 2.35742941e-01 4.74576056e-01 4.65718448e-01 -2.45497033e-01 5.17264783e-01 7.23311007e-01 -9.45824623e-01 -8.01688194e-01 -1.36849189e+00 -4.53842953e-02 1.69770867e-01 2.88822174e-01 -3.39013219e-01 -6.69791818e-01 -1.11439431e+00 -2.69951195e-01 3.68322611e-01 -4.86950785e-01 -3.21353287e-01 -8.77492428e-01 -6.53076649e-01 3.16196382e-01 7.96578825e-01 7.68800855e-01 -8.34863603e-01 -2.78079212e-01 4.19122875e-01 -3.80278587e-01 -1.23995817e+00 -3.50720167e-01 -5.00031412e-01 -1.10310400e+00 -1.64600289e+00 -2.70440251e-01 -1.31597745e+00 9.66869831e-01 2.24497188e-02 1.12890470e+00 4.48289871e-01 -6.44880295e-01 -9.45633277e-02 -1.80952460e-01 -1.17080554e-01 -6.07075572e-01 6.91416785e-02 -5.89558005e-01 4.22800183e-01 3.99533242e-01 -5.84685087e-01 -9.25161064e-01 3.84325266e-01 -4.19194400e-01 -2.73679961e-02 9.14010286e-01 7.44077325e-01 9.08828378e-01 -5.48018739e-02 8.19201291e-01 -1.28212404e+00 1.62220120e-01 -4.85648274e-01 -5.63044310e-01 3.63535583e-01 -6.35362923e-01 -5.30406125e-02 7.22752750e-01 -5.31003103e-02 -8.30968022e-01 3.30477864e-01 -1.24394238e-01 -1.41218811e-01 -2.15312690e-01 5.85202932e-01 -2.20597982e-01 6.92186207e-02 8.35126817e-01 -1.65887289e-02 3.63618582e-01 -2.50229329e-01 5.59751987e-01 6.63523018e-01 8.27040553e-01 -3.37286681e-01 5.06588399e-01 4.04392570e-01 5.75614572e-01 -4.28267479e-01 -9.40730751e-01 -4.41346616e-01 -7.22562611e-01 -1.02099195e-01 1.21908617e+00 -7.59878516e-01 -6.15249991e-01 -8.75102654e-02 -1.00725973e+00 1.65929869e-01 -3.55979770e-01 8.42298985e-01 -4.07543302e-01 6.23806477e-01 -4.97255534e-01 -2.00973779e-01 -3.88137281e-01 -1.20919716e+00 8.63769710e-01 9.66751724e-02 -3.81146222e-01 -1.25679219e+00 -3.07453841e-01 3.68400007e-01 1.53074622e-01 4.77703571e-01 1.60158312e+00 -6.59717619e-01 -6.89932883e-01 -3.93482894e-01 -5.71365833e-01 2.18416259e-01 4.88193810e-01 -2.27886960e-01 -5.10703683e-01 1.39676735e-01 -3.37546915e-01 3.93831760e-01 4.56876546e-01 7.13684499e-01 1.17434573e+00 1.01727650e-01 -5.56440711e-01 6.52556658e-01 1.30503571e+00 5.24576545e-01 7.13672698e-01 3.52623582e-01 7.54588544e-01 5.72361052e-01 2.97851801e-01 3.18898931e-02 2.35984623e-01 3.53171289e-01 3.26886207e-01 -4.45556253e-01 -6.64455593e-01 -9.42731127e-02 -3.33026737e-01 5.65784693e-01 -1.34132663e-02 6.43774308e-03 -7.36651301e-01 3.14939916e-01 -1.62509024e+00 -4.33217138e-01 -6.52686357e-01 2.08767700e+00 5.51574230e-01 3.84452157e-02 -2.46485062e-02 1.19119836e-02 1.13169861e+00 -1.75401479e-01 -3.83293420e-01 -1.10148698e-01 1.99409481e-02 6.41353428e-01 3.34030062e-01 6.38410985e-01 -1.13665414e+00 8.64972711e-01 5.57343292e+00 4.05729085e-01 -1.04489124e+00 -4.97339889e-02 1.01874685e+00 8.34129214e-01 -2.45622784e-01 2.22048745e-01 -4.29146379e-01 3.40209723e-01 7.88947344e-01 -1.96315497e-01 2.96866875e-02 7.22106278e-01 3.59061174e-02 6.37116671e-01 -6.57118440e-01 7.26767182e-01 -2.91531831e-01 -1.58148968e+00 2.78766543e-01 -1.92735046e-01 4.67691094e-01 -6.19125903e-01 -4.08109464e-02 -1.06895573e-01 2.96382308e-01 -9.39026892e-01 5.59536405e-02 3.22894841e-01 1.15385401e+00 -3.98858547e-01 1.06092811e+00 -1.99842215e-01 -1.53398633e+00 -5.66992946e-02 -9.60030314e-03 3.71245325e-01 2.78610170e-01 5.80889583e-01 -8.52539241e-01 8.47527146e-01 2.66664654e-01 8.26769710e-01 -5.25885940e-01 9.32122886e-01 -4.81242299e-01 6.64611816e-01 2.26817846e-01 3.65106791e-01 1.76050469e-01 -5.86558163e-01 3.69635046e-01 7.61320472e-01 3.32764059e-01 1.63226798e-01 3.53535175e-01 7.67950058e-01 -4.56180163e-02 5.96180320e-01 -2.42462307e-01 1.11427689e-02 5.49971581e-01 1.32706964e+00 -1.06420314e+00 -7.80233622e-01 -4.24329817e-01 5.48921406e-01 5.09873182e-02 3.67601514e-01 -9.67254341e-01 -3.68259430e-01 2.98701704e-01 2.21815020e-01 4.72151786e-02 1.65688187e-01 -7.33672798e-01 -8.09119642e-01 -2.06792280e-02 -4.97913301e-01 8.56359661e-01 -5.34348607e-01 -1.26265299e+00 9.64810312e-01 -4.08856958e-01 -1.35218620e+00 5.27611412e-02 -5.60772479e-01 -5.09537101e-01 1.10994625e+00 -1.39814878e+00 -1.24849486e+00 -6.51480377e-01 1.53693929e-01 1.80436134e-01 -4.19577330e-01 1.12925673e+00 3.96253318e-01 -4.11809564e-01 3.96388412e-01 -5.22288918e-01 5.79719484e-01 3.32990289e-01 -1.17608011e+00 3.60374779e-01 5.85774362e-01 4.41603130e-03 5.28994977e-01 7.70819262e-02 -6.92497671e-01 -6.13179982e-01 -1.66193819e+00 1.12430763e+00 -1.53105870e-01 5.90761602e-01 4.02779698e-01 -9.05433953e-01 8.98083389e-01 -3.76445234e-01 4.41000819e-01 1.01411712e+00 -4.60942805e-01 -4.34461504e-01 -3.99214961e-02 -9.35225070e-01 5.71791172e-01 1.21799195e+00 -2.67319828e-01 -5.23452282e-01 4.24986988e-01 7.79826880e-01 -3.58648270e-01 -1.19646621e+00 4.48100746e-01 5.08981287e-01 -4.82860535e-01 1.38035643e+00 -9.80257630e-01 3.68183911e-01 -5.98405302e-01 1.80996042e-02 -9.10258114e-01 -7.45081961e-01 -1.37166843e-01 2.43795782e-01 6.79717422e-01 5.26747525e-01 -1.03068256e+00 8.80249798e-01 2.23706007e-01 -4.56499040e-01 -6.07826591e-01 -5.75051308e-01 -4.94849175e-01 -8.25328156e-02 -1.14009045e-01 7.50695229e-01 8.60328734e-01 -4.88998652e-01 4.14840609e-01 1.70055822e-01 4.28986102e-01 7.11295784e-01 3.86830747e-01 4.52293664e-01 -1.50179708e+00 -2.87554979e-01 -4.97734547e-01 -9.00813282e-01 -7.34992087e-01 2.95990855e-01 -1.65088809e+00 -7.80363202e-01 -1.74147630e+00 -7.59692937e-02 -8.34644735e-01 -5.33079207e-01 3.51286530e-01 -3.41209024e-01 4.47277874e-01 -2.73262888e-01 1.60830811e-01 -8.94545242e-02 -1.48546755e-01 1.65987790e+00 -6.59218431e-02 -3.55735779e-01 1.22520134e-01 -9.50199723e-01 6.60321712e-01 1.03752673e+00 -4.46539313e-01 -5.93238711e-01 -1.18324354e-01 -2.31278315e-01 2.65987873e-01 4.62805867e-01 -7.17559040e-01 -9.76761132e-02 1.63077608e-01 2.60077000e-01 -1.46738634e-01 -2.47210369e-01 -9.89133537e-01 5.90703547e-01 9.91416633e-01 -5.11107266e-01 -2.14528814e-01 -6.19011037e-02 5.00567257e-01 -4.66999382e-01 -1.20549276e-01 6.13302946e-01 -2.95432717e-01 -7.64010847e-01 5.31726360e-01 -3.21701139e-01 8.26380104e-02 1.30170059e+00 -2.31276318e-01 -2.44150788e-01 1.05843917e-01 -1.36136115e+00 -8.38768035e-02 -7.38282353e-02 2.33014315e-01 6.87260985e-01 -1.38382840e+00 -8.11635017e-01 4.85574692e-01 3.07046533e-01 -6.17490411e-02 4.33075160e-01 1.10474896e+00 -1.04901123e+00 3.92601490e-01 -1.98427469e-01 -7.12144554e-01 -1.17565453e+00 4.85428810e-01 6.00669086e-01 -1.93478793e-01 -9.40626621e-01 4.36020404e-01 4.38880503e-01 -3.21477562e-01 -1.98871687e-01 -6.48173392e-02 -3.87632608e-01 -3.21303457e-01 2.95007646e-01 2.50360131e-01 -3.04346271e-02 -7.39551961e-01 -2.91923046e-01 1.08500552e+00 2.31786802e-01 3.43450248e-01 7.66692042e-01 5.84367961e-02 -2.38068730e-01 -1.69556126e-01 1.34545338e+00 -2.17684790e-01 -4.88969386e-01 -3.72411221e-01 -1.29091784e-01 -4.27635610e-01 -1.70048967e-01 -7.38548100e-01 -1.52720761e+00 9.33470070e-01 7.00276852e-01 -5.05049266e-02 1.09441650e+00 1.67548478e-01 9.09525275e-01 -1.74873069e-01 1.95879832e-01 -2.32431605e-01 -2.83562243e-02 -1.99273363e-01 4.65929478e-01 -1.04969370e+00 -1.37303889e-01 -1.23353601e+00 -7.50198424e-01 1.43734133e+00 2.76645958e-01 -2.50577271e-01 9.29862201e-01 -1.81200832e-01 4.33653742e-01 -5.15961766e-01 -5.68546988e-02 -6.03880398e-02 4.76349264e-01 5.03362715e-01 3.56001407e-01 4.69896853e-01 -4.60177660e-01 6.38721108e-01 -1.06867708e-01 2.24890932e-01 1.74029451e-02 4.75455552e-01 -4.42551613e-01 -1.25840044e+00 4.17448804e-02 5.28312504e-01 -4.78885025e-01 1.80229992e-02 -2.13225514e-01 6.70691848e-01 1.74922466e-01 8.50103140e-01 1.22756183e-01 -3.42788845e-01 4.66614425e-01 1.51398569e-01 9.95525643e-02 -5.78293502e-01 -3.41383129e-01 1.51314378e-01 1.39900014e-01 -4.60461825e-01 -2.64282018e-01 -2.32724205e-01 -1.79566026e+00 1.61526948e-01 -1.29890874e-01 2.98447222e-01 3.33613157e-01 7.52861321e-01 7.18068004e-01 1.06930470e+00 7.95533538e-01 3.45965475e-01 -1.58234879e-01 -4.60476279e-01 -5.42201400e-01 7.06995606e-01 -7.58446567e-03 -5.24156809e-01 -3.84582430e-01 4.79125381e-01]
[14.556967735290527, -2.4355316162109375]
fba39afd-1c12-41f3-9dc7-da6fc0217920
vision-transformers-and-yolov5-based-driver
2209.01401
null
https://arxiv.org/abs/2209.01401v1
https://arxiv.org/pdf/2209.01401v1.pdf
Vision Transformers and YoloV5 based Driver Drowsiness Detection Framework
Human drivers have distinct driving techniques, knowledge, and sentiments due to unique driving traits. Driver drowsiness has been a serious issue endangering road safety; therefore, it is essential to design an effective drowsiness detection algorithm to bypass road accidents. Miscellaneous research efforts have been approached the problem of detecting anomalous human driver behaviour to examine the frontal face of the driver and automobile dynamics via computer vision techniques. Still, the conventional methods cannot capture complicated driver behaviour features. However, with the origin of deep learning architectures, a substantial amount of research has also been executed to analyze and recognize driver's drowsiness using neural network algorithms. This paper introduces a novel framework based on vision transformers and YoloV5 architectures for driver drowsiness recognition. A custom YoloV5 pre-trained architecture is proposed for face extraction with the aim of extracting Region of Interest (ROI). Owing to the limitations of previous architectures, this paper introduces vision transformers for binary image classification which is trained and validated on a public dataset UTA-RLDD. The model had achieved 96.2\% and 97.4\% as it's training and validation accuracies respectively. For the further evaluation, proposed framework is tested on a custom dataset of 39 participants in various light circumstances and achieved 95.5\% accuracy. The conducted experimentations revealed the significant potential of our framework for practical applications in smart transportation systems.
['Mallikharjuna Rao K', 'Jai Vardhan', 'Kundrapu Supriya', 'Ghanta Sai Krishna']
2022-09-03
null
null
null
null
['miscellaneous']
['miscellaneous']
[ 2.03913003e-02 5.03907204e-02 2.21113046e-03 -4.00276899e-01 -1.97318524e-01 -3.33891600e-01 4.40627843e-01 -2.81758100e-01 -2.52806932e-01 4.18224275e-01 -1.35764465e-01 -4.15126354e-01 -2.09453419e-01 -5.79138696e-01 -2.40688264e-01 -7.48287737e-01 3.81246984e-01 -2.73601443e-01 1.68588758e-01 -4.24595118e-01 3.96423399e-01 8.05617988e-01 -2.01451635e+00 3.95532288e-02 6.21948004e-01 1.17820418e+00 -2.44945139e-01 8.80426288e-01 4.08187240e-01 7.82839715e-01 -3.90682280e-01 -3.50926936e-01 5.42950809e-01 -7.22320052e-03 -2.46772796e-01 9.03638601e-02 5.79025507e-01 -3.50042492e-01 -5.12201726e-01 8.19751501e-01 6.59847558e-01 1.49290994e-01 5.81838250e-01 -1.78475177e+00 -6.95277929e-01 -3.35081160e-01 -6.60749137e-01 7.43533134e-01 -4.53752503e-02 5.17098188e-01 3.51009935e-01 -6.39613450e-01 -4.96201143e-02 8.95444214e-01 5.90298831e-01 4.97390389e-01 -5.31095266e-01 -1.06797254e+00 -2.21459910e-01 5.44434249e-01 -1.39968407e+00 -7.45645285e-01 9.72829998e-01 -5.08159578e-01 1.16398287e+00 7.74764270e-02 3.72168392e-01 6.85809731e-01 5.24718165e-01 5.08462191e-01 1.41462612e+00 -1.46543816e-01 -3.50927621e-01 8.76198828e-01 6.81304693e-01 8.98381233e-01 2.93364406e-01 5.52674353e-01 -3.13218236e-01 3.85671109e-01 -3.97209115e-02 1.28599787e-02 1.72514364e-01 9.25604627e-02 -5.47588468e-01 7.99672604e-01 2.06299111e-01 -4.40612957e-02 -3.70488584e-01 -7.66260028e-02 7.02472031e-01 2.40459263e-01 9.42602754e-02 -3.27070445e-01 -1.38413325e-01 -1.43070713e-01 -6.23437107e-01 1.71998933e-01 2.30289519e-01 8.54426503e-01 6.90244675e-01 4.73447144e-01 3.70206386e-02 6.03516102e-01 3.40585053e-01 8.32119465e-01 4.90433097e-01 -3.24775040e-01 1.85945719e-01 8.11085224e-01 -4.29328717e-03 -1.47458982e+00 -4.05657023e-01 -4.71228421e-01 -5.52393913e-01 6.88117504e-01 -8.39613029e-04 -2.58751541e-01 -9.71477628e-01 1.21235824e+00 3.40848595e-01 1.89032435e-01 4.61620092e-01 8.95494759e-01 1.18257058e+00 5.61797440e-01 8.97478238e-02 2.05125213e-01 1.57063293e+00 -6.16425097e-01 -7.35381722e-01 -2.14011714e-01 2.72355288e-01 -8.58791649e-01 7.03043044e-01 4.00247544e-01 -7.83431113e-01 -1.00816166e+00 -1.30434382e+00 6.57497300e-03 -6.98481441e-01 5.61715901e-01 4.44620699e-01 1.34125221e+00 -8.89106274e-01 -2.64694363e-01 -3.60710353e-01 -3.39759380e-01 6.89271510e-01 5.56821525e-01 -4.18480933e-01 9.73116010e-02 -1.12640536e+00 1.13704908e+00 1.78735778e-02 5.81717968e-01 -1.05689216e+00 -3.80068004e-01 -7.59301007e-01 -3.55476946e-01 2.00845778e-01 -2.53115743e-01 9.06185031e-01 -9.40362990e-01 -1.12667727e+00 1.14142323e+00 -2.50171363e-01 -7.16521561e-01 2.87992656e-01 1.21600237e-02 -9.75522578e-01 -4.95906360e-02 -2.65842304e-02 5.44740796e-01 1.09630275e+00 -8.12442482e-01 -1.03070903e+00 -6.23614013e-01 -7.24221095e-02 4.71552892e-04 -2.36135349e-01 1.36412323e-01 7.76326656e-02 -1.89460754e-01 -4.89364356e-01 -1.08612847e+00 5.52295625e-01 -4.06056643e-01 -2.64064908e-01 -4.72523004e-01 1.33661294e+00 -6.40971243e-01 1.02527344e+00 -2.23814440e+00 -6.71520710e-01 2.62767822e-01 2.82800078e-01 7.94698060e-01 1.56290308e-01 -9.11683869e-03 -2.20328987e-01 -3.97398561e-01 6.58682585e-02 1.72496870e-01 1.18370213e-01 -2.83129662e-02 -2.37403601e-01 7.49998093e-01 4.98280317e-01 7.40060866e-01 -1.89201757e-01 -4.32927132e-01 5.55794537e-01 6.31339371e-01 -1.35185376e-01 1.68298468e-01 5.23463845e-01 -5.57044670e-02 -4.85646844e-01 9.15086269e-01 9.50096607e-01 7.44595170e-01 -8.01592290e-01 -4.67854768e-01 -4.13543910e-01 -4.22483265e-01 -9.97503519e-01 6.69061482e-01 -4.49533880e-01 1.18084741e+00 6.05797656e-02 -1.26596892e+00 1.21311951e+00 3.31212223e-01 2.12163195e-01 -9.54731822e-01 6.68955624e-01 -9.92260873e-02 1.82464361e-01 -1.17058587e+00 3.74508381e-01 -8.79688561e-02 -2.93238033e-02 9.11874175e-02 -2.69471169e-01 3.68543148e-01 -4.30601984e-02 -1.45594567e-01 9.20354664e-01 1.63422823e-02 5.70035204e-02 -2.32849330e-01 1.18524122e+00 3.12625051e-01 2.19063118e-01 2.05157265e-01 -1.09207571e+00 5.27184829e-03 1.83088318e-01 -6.33550406e-01 -7.45867252e-01 -9.09402549e-01 -2.42375821e-01 8.38065743e-01 7.39772394e-02 3.07655931e-01 -7.35402048e-01 -4.92825031e-01 1.03439882e-01 6.77711606e-01 -7.51871109e-01 -6.32479787e-01 -3.50577295e-01 -6.91742659e-01 9.38649058e-01 4.21061605e-01 9.72345233e-01 -1.08381426e+00 -1.13715446e+00 -2.53991276e-01 4.39088762e-01 -1.22495782e+00 -1.79086939e-01 -2.72991657e-01 -2.57429123e-01 -1.23006332e+00 -2.88558304e-01 -9.58970249e-01 4.44394350e-01 7.48467565e-01 6.19698346e-01 1.20661303e-01 -7.90707648e-01 3.91158789e-01 -2.61054430e-02 -1.21550977e+00 -2.13698760e-01 -1.49717540e-01 8.77029151e-02 3.72801334e-01 1.19366503e+00 -1.24354213e-01 -8.69380713e-01 4.37405318e-01 -5.11110425e-01 -4.29437339e-01 8.42936397e-01 4.16264772e-01 1.28250653e-02 5.67142189e-01 1.09818614e+00 -5.79739869e-01 8.01627100e-01 -4.55901772e-01 -8.05711567e-01 -7.37974420e-02 -6.72688246e-01 -2.73454666e-01 4.93856817e-01 1.85387537e-01 -1.20418596e+00 2.76726652e-02 -1.04006357e-01 -1.69716313e-01 -7.29936004e-01 -1.28037944e-01 -9.40046534e-02 -1.16947576e-01 5.07418096e-01 1.10867083e-01 4.41898942e-01 1.47294581e-01 1.00697972e-01 1.26041257e+00 6.70169294e-01 2.14297518e-01 8.10950220e-01 4.39713120e-01 1.17438033e-01 -1.25888097e+00 -4.24522489e-01 -7.31146634e-01 -4.65882987e-01 -5.62836766e-01 1.13506281e+00 -9.79395866e-01 -1.42206717e+00 6.73145890e-01 -7.42805898e-01 3.92741412e-01 4.84140545e-01 4.33229029e-01 -6.40164167e-02 7.51403421e-02 1.78639054e-01 -1.22395098e+00 -6.26994789e-01 -1.25391304e+00 7.34090865e-01 3.79357874e-01 -3.64521854e-02 -7.26861954e-01 -1.75608471e-01 9.32309031e-01 5.33240795e-01 3.29353780e-01 5.98011911e-01 -3.41239870e-01 -3.94226938e-01 -6.45592153e-01 -5.99031210e-01 5.75011194e-01 1.55164391e-01 1.41196877e-01 -1.54828072e+00 1.01109065e-01 1.00236513e-01 -1.94920823e-01 7.42395818e-01 3.77334297e-01 7.37733483e-01 7.59382248e-02 -1.91773936e-01 2.97727793e-01 1.38849533e+00 7.14385867e-01 8.10893834e-01 3.83787155e-01 6.52665198e-01 8.10299039e-01 6.21923983e-01 1.84948564e-01 5.25977671e-01 3.23429614e-01 4.87698823e-01 -1.39344916e-01 -1.44480392e-01 1.14611752e-01 5.56099951e-01 1.39290228e-01 -2.44844779e-02 -5.33857197e-02 -7.64082730e-01 6.52834177e-01 -1.28553545e+00 -1.08254433e+00 -3.57643157e-01 1.75674856e+00 -1.70332678e-02 3.67847025e-01 4.80924129e-01 5.81223011e-01 6.07601583e-01 -6.81907162e-02 -7.06285238e-01 -1.02162218e+00 1.33539706e-01 1.72721609e-01 8.01433384e-01 3.31645697e-01 -1.15639329e+00 7.78176367e-01 4.78856421e+00 4.36841846e-01 -1.33554065e+00 -2.84041967e-02 5.50927877e-01 -1.48954630e-01 2.92095691e-01 -4.58026528e-01 -1.24321651e+00 4.71790314e-01 1.27587342e+00 1.07749432e-01 1.01851165e-01 8.68704557e-01 6.62177503e-01 -2.33784109e-01 -4.39337969e-01 1.02579391e+00 4.59018558e-01 -7.79869080e-01 -3.33340198e-01 -1.03968017e-01 2.12986484e-01 -2.35894740e-01 5.43878198e-01 4.38274890e-01 -2.92461395e-01 -1.28553462e+00 3.52065414e-01 5.93799770e-01 5.56095481e-01 -1.20196092e+00 1.11975873e+00 2.64101774e-01 -1.02878571e+00 -3.42499644e-01 -3.43898088e-01 -7.52356946e-02 -1.57528207e-01 8.48645903e-03 -1.22224665e+00 8.33802074e-02 7.96474040e-01 6.86143100e-01 -6.74940467e-01 4.78046685e-01 3.90643448e-01 5.39784253e-01 -1.94260702e-02 -2.09754139e-01 4.93288159e-01 -1.22138605e-01 2.87948191e-01 1.04066086e+00 2.03965321e-01 1.22595787e-01 -3.80726308e-01 7.57388413e-01 3.29451829e-01 9.86196473e-02 -1.12213218e+00 -1.35780722e-02 2.74949614e-02 1.43903124e+00 -4.47127938e-01 -5.02907634e-02 -6.63192809e-01 4.15426552e-01 -2.38535121e-01 7.76355416e-02 -1.18157244e+00 -7.65340865e-01 8.14495564e-01 4.22673494e-01 1.27073810e-01 7.08934590e-02 -2.48800188e-01 -2.62028277e-01 -7.26726428e-02 -6.86369061e-01 2.22744107e-01 -6.38112426e-01 -7.68651903e-01 8.23508143e-01 9.10531208e-02 -1.13085699e+00 6.01852350e-02 -9.71337855e-01 -8.21938097e-01 9.80568945e-01 -1.88654482e+00 -1.43185174e+00 -8.40552568e-01 7.53984988e-01 7.12291777e-01 -8.89282465e-01 3.02634358e-01 4.56855655e-01 -1.12435329e+00 7.78089106e-01 -5.70631206e-01 6.20513149e-02 6.11522019e-01 -7.83790588e-01 -2.46940106e-02 9.87734079e-01 -5.70513785e-01 4.07777220e-01 7.75719166e-01 -3.51222187e-01 -1.67698753e+00 -1.21130371e+00 5.66781580e-01 -6.25482857e-01 2.55420536e-01 -3.68310064e-02 -5.42416334e-01 6.45531178e-01 6.40483260e-01 -2.23625284e-02 6.31508350e-01 -5.35739064e-01 2.05987081e-01 -7.41731226e-01 -1.32870066e+00 2.74525374e-01 5.36025405e-01 -3.69867951e-01 -5.74807882e-01 5.12797269e-04 -9.68865082e-02 4.41525094e-02 -3.89710486e-01 2.93323159e-01 7.25839913e-01 -1.28627896e+00 8.71280074e-01 -3.87719125e-01 -3.84462588e-02 -4.85596985e-01 5.66144809e-02 -7.24785328e-01 -5.41401748e-03 -4.24544036e-01 3.27171236e-01 1.24480522e+00 2.45629504e-01 -8.07846248e-01 8.87338877e-01 7.96539426e-01 -3.86341840e-01 -6.18426144e-01 -6.02499902e-01 -2.62715220e-01 -2.57767409e-01 -5.50251901e-01 4.34138656e-01 2.87946880e-01 -5.77596128e-01 4.14714128e-01 -3.24344903e-01 3.94431561e-01 5.55262387e-01 -2.40757614e-01 1.01272225e+00 -1.05551481e+00 5.53343236e-01 -2.83270687e-01 -9.28860843e-01 -2.80461550e-01 3.22927773e-01 -7.44843364e-01 -1.22539856e-01 -1.02610290e+00 -4.92943414e-02 -1.95437267e-01 -3.71223420e-01 2.21288279e-01 6.78250119e-02 5.96563578e-01 -3.74824643e-01 -3.29201013e-01 -3.82347256e-02 2.28411049e-01 8.93025160e-01 -1.86486170e-01 -9.19548273e-02 3.09855759e-01 -7.38220930e-01 5.88190556e-01 1.05930686e+00 -1.08467869e-01 -9.49651420e-01 -6.19755574e-02 -6.33720681e-02 -3.92504275e-01 7.15989292e-01 -1.08439410e+00 2.75266111e-01 1.21939495e-01 4.66514468e-01 -9.60879683e-01 3.76213640e-01 -9.94681239e-01 -9.33396816e-02 4.54953611e-01 4.34214137e-02 4.45147276e-01 5.16326487e-01 4.77870822e-01 -1.84517667e-01 4.13605347e-02 9.00828063e-01 1.01410247e-01 -1.26033807e+00 1.27771303e-01 -6.34412229e-01 -3.11920047e-01 1.76051509e+00 -8.41669619e-01 -3.21690410e-01 -9.66644511e-02 -2.83364266e-01 2.20862657e-01 -1.04147114e-01 6.55674100e-01 1.01714838e+00 -1.08530867e+00 -6.44303083e-01 7.86704123e-01 3.84263694e-01 -6.03942692e-01 5.56011438e-01 9.30388033e-01 -5.63199937e-01 8.62327099e-01 -7.90189326e-01 -5.33979595e-01 -1.72802365e+00 6.72483265e-01 5.12299120e-01 6.96656525e-01 -5.00155985e-01 5.20764530e-01 -4.28749584e-02 9.07551206e-04 4.30976935e-02 -3.27231497e-01 -8.52381170e-01 1.36905849e-01 4.33536023e-01 8.00112784e-01 2.60948002e-01 -1.33093810e+00 -5.57743847e-01 8.76472592e-01 -9.07739401e-02 3.03929865e-01 8.91261935e-01 -3.43180746e-01 2.99699515e-01 -3.65354717e-02 1.26384497e+00 -1.48501530e-01 -9.46903884e-01 2.42105976e-01 -2.53707290e-01 -4.66349632e-01 5.22088110e-01 -6.71109200e-01 -1.20886970e+00 1.09575093e+00 1.32446527e+00 1.39849067e-01 1.07684159e+00 -4.91262823e-01 1.05755556e+00 2.38536403e-01 -2.63172120e-01 -1.18063021e+00 -2.75001645e-01 -6.69034198e-02 6.12836123e-01 -1.88217807e+00 -2.97931433e-01 -7.36324042e-02 -9.49982643e-01 1.05070066e+00 8.10321331e-01 -1.99415386e-01 9.51834559e-01 1.90079793e-01 4.55560863e-01 -5.88142514e-01 -6.25950098e-01 -4.03791040e-01 4.90278870e-01 7.43710637e-01 1.74702615e-01 6.06446564e-02 8.00141692e-02 4.60779428e-01 -3.14190686e-01 1.99730799e-01 4.29850310e-01 8.68197381e-01 -5.97944915e-01 -3.89326394e-01 -4.03599799e-01 5.53071856e-01 -5.52251935e-01 4.17134881e-01 -2.99515456e-01 1.00230646e+00 6.18299305e-01 1.41808069e+00 -1.45529853e-02 -4.76556957e-01 6.43478572e-01 1.72605008e-01 2.12268364e-02 -1.58564359e-01 -4.46829975e-01 -4.19551790e-01 1.02102697e-01 -3.07695955e-01 -4.44461316e-01 -6.24580860e-01 -1.11413825e+00 -4.90658492e-01 3.79922916e-04 -1.41646981e-01 7.62492836e-01 9.10476744e-01 3.11319262e-01 5.39260626e-01 6.89668536e-01 -8.06670785e-02 -2.56918311e-01 -8.56752813e-01 -4.48641241e-01 3.40099543e-01 7.02865362e-01 -1.00868833e+00 -3.06727618e-01 4.80843261e-02]
[7.932761192321777, -0.6844950914382935]
8fb8c129-9d21-4812-8464-f3d35c1eda6c
dag-matters-gflownets-enhanced-explainer-for
2303.02448
null
https://arxiv.org/abs/2303.02448v1
https://arxiv.org/pdf/2303.02448v1.pdf
DAG Matters! GFlowNets Enhanced Explainer For Graph Neural Networks
Uncovering rationales behind predictions of graph neural networks (GNNs) has received increasing attention over the years. Existing literature mainly focus on selecting a subgraph, through combinatorial optimization, to provide faithful explanations. However, the exponential size of candidate subgraphs limits the applicability of state-of-the-art methods to large-scale GNNs. We enhance on this through a different approach: by proposing a generative structure -- GFlowNets-based GNN Explainer (GFlowExplainer), we turn the optimization problem into a step-by-step generative problem. Our GFlowExplainer aims to learn a policy that generates a distribution of subgraphs for which the probability of a subgraph is proportional to its' reward. The proposed approach eliminates the influence of node sequence and thus does not need any pre-training strategies. We also propose a new cut vertex matrix to efficiently explore parent states for GFlowNets structure, thus making our approach applicable in a large-scale setting. We conduct extensive experiments on both synthetic and real datasets, and both qualitative and quantitative results show the superiority of our GFlowExplainer.
['Yan Pang', 'Jianye Hao', 'Zhigang Li', 'Yinchuan Li', 'Wenqian Li']
2023-03-04
null
null
null
null
['combinatorial-optimization']
['methodology']
[ 2.90884495e-01 8.59647512e-01 -3.76316667e-01 -3.62002462e-01 -3.27017993e-01 -4.11925256e-01 6.46309853e-01 -5.18974587e-02 1.94289200e-02 8.91622365e-01 1.31018624e-01 -6.90723360e-01 -1.88413620e-01 -1.08306170e+00 -1.18176162e+00 -5.93111694e-01 -4.27880958e-02 4.86397624e-01 1.99543372e-01 -5.61031746e-03 4.03868854e-02 2.97639221e-01 -1.16576147e+00 -2.31971033e-02 9.75588322e-01 4.84705031e-01 3.13241124e-01 3.33517700e-01 -4.56945188e-02 6.55434608e-01 -2.61410058e-01 -6.03021324e-01 3.07556480e-01 -6.22291803e-01 -6.91532195e-01 2.31077090e-01 4.17543799e-02 3.45475078e-02 -5.12416482e-01 1.12327945e+00 2.24450201e-01 4.13302369e-02 5.03292799e-01 -1.44362628e+00 -6.94609642e-01 1.29741526e+00 -5.65092683e-01 2.73695067e-02 -1.45033717e-01 2.19512254e-01 1.46030891e+00 -4.06480491e-01 7.27868021e-01 1.29720211e+00 4.43304569e-01 7.34916449e-01 -1.40685081e+00 -6.54636860e-01 7.54033029e-01 1.09502673e-01 -1.15990436e+00 -8.01691115e-02 9.91868198e-01 -2.44299397e-02 9.78504777e-01 1.59719035e-01 9.23578501e-01 1.28118873e+00 1.09449051e-01 8.08818996e-01 6.77033901e-01 -3.21044028e-01 4.67935920e-01 -1.18965626e-01 -1.02710739e-01 9.30267572e-01 8.21546435e-01 5.31952754e-02 -3.99726659e-01 -4.17419225e-02 9.50893342e-01 1.65158629e-01 -2.50678092e-01 -6.45907223e-01 -7.88798153e-01 1.10519612e+00 5.75256526e-01 8.54835808e-02 -3.91317904e-01 5.67104816e-01 -7.78321251e-02 9.11263898e-02 4.32161093e-01 5.47440350e-01 -3.72920394e-01 2.01886177e-01 -7.75370598e-01 2.89930701e-01 8.98476541e-01 9.78508234e-01 8.77018034e-01 2.39357680e-01 3.10906321e-02 5.05857527e-01 5.19510746e-01 2.14714721e-01 6.55299351e-02 -5.35567701e-01 5.39113343e-01 8.88352931e-01 -3.56552869e-01 -1.03167200e+00 -2.06012979e-01 -8.63086879e-01 -8.66829336e-01 -2.11488888e-01 -3.33912633e-02 -4.29865599e-01 -1.05163169e+00 2.12701130e+00 3.19352746e-01 4.08435315e-01 -1.11160681e-01 7.90680945e-01 5.67536354e-01 5.73272765e-01 5.23314141e-02 -4.61687334e-02 7.60526299e-01 -1.07320058e+00 -1.67785659e-01 -6.66497171e-01 5.63518643e-01 8.97759572e-02 8.58349025e-01 2.07091987e-01 -9.17733014e-01 1.17128501e-02 -8.14771295e-01 3.84405434e-01 7.29687735e-02 -8.39474350e-02 9.76722062e-01 4.66266155e-01 -1.29204571e+00 7.85951436e-01 -9.38127816e-01 -4.07992154e-01 5.58222711e-01 5.92061877e-01 -3.42713207e-01 -4.34911586e-02 -9.80669498e-01 4.76718038e-01 7.44150579e-01 7.22032040e-02 -1.21118367e+00 -4.98526454e-01 -8.45162749e-01 5.15267491e-01 8.55091572e-01 -9.40902710e-01 1.07666385e+00 -8.74399543e-01 -1.17178154e+00 2.67619520e-01 -1.03188872e-01 -7.06853628e-01 1.75679564e-01 1.14191115e-01 -1.09608106e-01 6.55274615e-02 -7.85387214e-03 7.60057032e-01 6.78902447e-01 -1.37822974e+00 -4.30288672e-01 -8.56080949e-02 2.37756819e-01 1.21484809e-02 -3.79136294e-01 -4.69518453e-01 -6.05171442e-01 -5.07655501e-01 3.10264587e-01 -1.04077435e+00 -7.03332305e-01 -3.50970119e-01 -1.16231894e+00 -2.39461049e-01 3.56625199e-01 -7.97161981e-02 1.28842032e+00 -1.64871001e+00 1.71193823e-01 5.14537036e-01 6.99446857e-01 1.65643692e-01 -4.02762443e-01 5.55257738e-01 -1.11265749e-01 4.86411065e-01 -1.54701069e-01 -2.73564726e-01 8.85809883e-02 3.53087366e-01 -4.02056187e-01 1.49591953e-01 2.75331885e-01 1.05903041e+00 -8.78365874e-01 -3.59543651e-01 -6.52415901e-02 3.28642249e-01 -9.72344398e-01 5.17932698e-02 -7.35468388e-01 4.42266203e-02 -8.42089295e-01 4.42598641e-01 4.41809505e-01 -7.85856128e-01 6.42260313e-01 2.27685228e-01 3.24383706e-01 3.48409116e-01 -9.05684352e-01 1.18316650e+00 -2.44306192e-01 3.64740014e-01 -3.35843742e-01 -1.08020806e+00 9.81170416e-01 -3.52004915e-02 6.50314316e-02 -2.72958726e-01 2.35622779e-01 1.20795734e-01 2.14907929e-01 -7.51416385e-02 2.50150949e-01 -4.31442745e-02 3.96706015e-02 5.24474144e-01 9.68798101e-02 3.16550106e-01 3.71988416e-01 5.97864091e-01 1.54591298e+00 9.24742743e-02 4.23512578e-01 -2.95179397e-01 4.70013022e-02 -1.01973332e-01 7.50364542e-01 9.89944875e-01 1.75798729e-01 4.10571754e-01 1.09623945e+00 -4.22685534e-01 -9.36178029e-01 -7.32507050e-01 6.52800739e-01 6.84028506e-01 1.04249865e-01 -4.99984235e-01 -9.52920318e-01 -9.53003347e-01 5.28791249e-02 8.87351096e-01 -8.17089975e-01 -4.02250230e-01 -4.35105711e-01 -6.45778239e-01 2.27359608e-01 5.33249438e-01 1.99489459e-01 -1.28793454e+00 -3.58910203e-01 2.90531874e-01 6.50082435e-03 -1.16692352e+00 -3.81881088e-01 3.21555585e-01 -1.18239081e+00 -1.03834879e+00 -2.08788320e-01 -5.89810312e-01 1.08996546e+00 3.36966932e-01 1.11056864e+00 4.40539569e-01 2.80389655e-02 5.89210093e-02 -2.28922993e-01 -2.43893608e-01 -4.07682091e-01 5.85076690e-01 -2.13373244e-01 -1.55291826e-01 9.85327736e-02 -9.72715259e-01 -4.69922632e-01 1.16861492e-01 -8.31178904e-01 6.42772079e-01 9.66873765e-01 6.37100875e-01 6.79903924e-01 1.77350547e-02 6.46903753e-01 -1.28734255e+00 6.70657694e-01 -5.97493112e-01 -7.22328544e-01 3.40658486e-01 -1.04261637e+00 6.88772082e-01 9.23813641e-01 -4.38014597e-01 -7.22584784e-01 7.64458627e-02 1.58407744e-02 -5.48896313e-01 -1.66463740e-02 7.17436850e-01 -2.89224744e-01 3.64040509e-02 3.02243412e-01 2.90639162e-01 -2.23775625e-01 -3.20671439e-01 3.22966337e-01 -1.61330044e-01 2.79706359e-01 -5.29244423e-01 1.09683120e+00 1.77549049e-01 2.80726641e-01 -4.81954217e-01 -8.69225860e-01 -2.30873879e-02 -9.32692364e-02 -1.39856949e-01 4.87175614e-01 -7.27468669e-01 -9.67583716e-01 -2.38473527e-02 -1.13545740e+00 -4.84814763e-01 -1.37264267e-01 2.78927565e-01 -3.99841905e-01 1.24400839e-01 -3.81600559e-01 -8.15071821e-01 -3.16065311e-01 -1.12069738e+00 6.39462113e-01 3.89476240e-01 -1.26509845e-01 -1.01784074e+00 6.21833764e-02 6.25156015e-02 2.10798651e-01 3.28087509e-01 1.18299437e+00 -1.01598704e+00 -1.20537126e+00 6.76860064e-02 -2.55193979e-01 -2.08200157e-01 -4.67192009e-02 -1.91115826e-01 -5.77106118e-01 -1.31865963e-01 -5.50269842e-01 -2.96540856e-01 1.20218003e+00 3.41993660e-01 1.30308819e+00 -7.25685120e-01 -6.67650640e-01 5.72715044e-01 1.50609660e+00 -1.81055777e-02 4.32901293e-01 2.88470149e-01 9.79858518e-01 3.15611064e-01 2.13156834e-01 3.38675261e-01 5.81602395e-01 3.85026753e-01 1.12352741e+00 -1.17145933e-01 1.10491842e-01 -8.50017667e-01 1.72520176e-01 4.85069811e-01 -1.86270729e-01 -8.80463064e-01 -7.36472011e-01 6.97540820e-01 -2.10809040e+00 -7.56217062e-01 1.47846356e-01 1.89948094e+00 5.34567237e-01 3.30819190e-01 3.06123551e-02 -1.72728106e-01 8.51015449e-01 3.33517253e-01 -8.10930908e-01 -1.20548815e-01 1.24149375e-01 1.19747827e-02 4.20300335e-01 4.04488206e-01 -7.40952194e-01 1.23755407e+00 5.46766424e+00 8.00581038e-01 -9.14204419e-01 -2.41493925e-01 8.05328250e-01 -6.74652383e-02 -1.02976584e+00 4.09346670e-01 -9.87164199e-01 2.42531970e-01 8.49742174e-01 -2.08892688e-01 6.52813971e-01 1.04182851e+00 2.46338248e-01 2.04221815e-01 -9.94539857e-01 4.91235644e-01 -6.62124082e-02 -1.56951392e+00 4.16859686e-01 2.97526300e-01 8.37646723e-01 3.39334719e-02 -1.05669655e-01 2.46794879e-01 8.46530139e-01 -8.84251356e-01 7.57467568e-01 2.36911193e-01 3.60271126e-01 -9.38416719e-01 4.11039591e-01 5.02261937e-01 -1.14795494e+00 -7.62813315e-02 -4.78629947e-01 1.56792760e-01 8.09292123e-02 6.83232248e-01 -1.18869472e+00 5.30171335e-01 2.66209155e-01 5.84736049e-01 -4.99015212e-01 8.33419144e-01 -7.47766614e-01 1.05122781e+00 -2.53769100e-01 -5.40593624e-01 3.98107439e-01 -1.67684451e-01 5.91217458e-01 8.00022185e-01 3.33911538e-01 4.37138602e-03 1.27556041e-01 1.30757117e+00 -4.22581971e-01 -1.51436612e-01 -5.53394914e-01 -5.85047066e-01 5.92331111e-01 1.29748440e+00 -1.18118358e+00 -2.98002660e-02 -3.61885875e-02 6.30653620e-01 7.13820696e-01 3.59843403e-01 -1.00415027e+00 -7.54838064e-02 4.52667207e-01 2.32527927e-01 6.29806995e-01 7.45395720e-02 -9.94106606e-02 -1.15298820e+00 -8.02287459e-02 -9.21890914e-01 2.32352808e-01 -5.76495945e-01 -9.90509391e-01 8.81011486e-01 8.50555375e-02 -6.53203487e-01 -3.64542305e-01 -2.65209734e-01 -9.17411923e-01 4.59165275e-01 -1.25773764e+00 -1.08518398e+00 -1.97512209e-01 3.44467133e-01 4.15808588e-01 -4.14622575e-02 4.64407682e-01 -1.40137762e-01 -8.20008934e-01 5.25125086e-01 -2.70763278e-01 -1.39075398e-01 -6.19708784e-02 -1.21748972e+00 9.08360541e-01 1.14904976e+00 4.25050467e-01 8.11718166e-01 1.04034162e+00 -9.32647228e-01 -1.45818615e+00 -1.34821463e+00 9.57631648e-01 1.45226732e-01 5.60062230e-01 -5.61265290e-01 -7.26844788e-01 8.65750253e-01 -4.55802260e-03 -2.54572965e-02 3.03435355e-01 4.05536324e-01 -2.59943366e-01 1.76917594e-02 -8.62055480e-01 9.03982580e-01 1.50186265e+00 2.10181624e-02 -3.73800695e-02 2.99746901e-01 1.03840530e+00 -2.42506519e-01 -2.37015739e-01 3.24096292e-01 2.79784590e-01 -9.37297106e-01 6.85621500e-01 -7.80576527e-01 7.62593746e-01 -1.22409202e-01 1.59629226e-01 -1.45497262e+00 -3.65820140e-01 -8.95487607e-01 -2.62487471e-01 1.06645536e+00 8.89128327e-01 -9.28142786e-01 1.16768527e+00 4.84359473e-01 -1.93183914e-01 -1.30766773e+00 -5.85578501e-01 -6.20520890e-01 -4.30493176e-01 -3.57535839e-01 8.96130741e-01 5.94461679e-01 -1.24846481e-01 4.90245551e-01 -4.24287885e-01 2.80111283e-01 6.69898987e-01 4.06592607e-01 7.81480551e-01 -1.26113749e+00 -7.87992656e-01 -2.83143967e-01 -2.80726403e-01 -1.06706464e+00 2.94983208e-01 -1.00279129e+00 1.51394844e-01 -1.89481771e+00 6.16324365e-01 -2.36646786e-01 -1.47071272e-01 9.68395770e-01 -2.67026156e-01 -1.43968433e-01 2.21060634e-01 -3.79406065e-02 -7.33791232e-01 8.26299310e-01 1.16892815e+00 8.40130374e-02 -1.51584625e-01 7.40147308e-02 -1.29235756e+00 7.12757468e-01 8.30569327e-01 -8.64911914e-01 -9.15040374e-01 -2.62297362e-01 4.20769215e-01 1.34973362e-01 5.22729516e-01 -6.99512303e-01 1.66970268e-02 -3.15587968e-01 2.24417765e-02 -3.91030729e-01 -7.14879707e-02 -4.51383412e-01 4.22412008e-01 4.75711823e-01 -4.59140658e-01 7.91773871e-02 -4.24101204e-02 9.40315723e-01 1.98443636e-01 -1.84091613e-01 4.82632786e-01 -1.75114125e-01 -3.69260430e-01 6.30883336e-01 -1.66835651e-01 1.15029611e-01 8.34255219e-01 -1.66006908e-01 -4.32203412e-01 -6.60584271e-01 -4.89357173e-01 2.11430937e-01 4.20671344e-01 3.05082947e-01 6.57768250e-01 -1.03471386e+00 -4.08420354e-01 8.45636576e-02 -1.35158122e-01 8.19868073e-02 4.78115231e-02 5.37922502e-01 -2.37414584e-01 5.35912037e-01 1.40797809e-01 -2.54799485e-01 -9.91050482e-01 5.37919343e-01 2.14757949e-01 -7.25382090e-01 -7.43299007e-01 9.43948030e-01 5.88116407e-01 -3.42848331e-01 -2.97849579e-03 -2.28698686e-01 -3.90175283e-02 -6.25843942e-01 -5.36494330e-02 6.61578998e-02 -2.15082273e-01 -2.05902562e-01 -1.30843490e-01 -6.10379428e-02 -3.65372777e-01 4.00928371e-02 1.72885430e+00 1.08493671e-01 1.92820400e-01 -8.09147507e-02 7.03482807e-01 -2.00349838e-01 -1.40266931e+00 -7.39036053e-02 -7.88366050e-02 -1.48838222e-01 -7.58302435e-02 -6.15330696e-01 -1.31482732e+00 6.62934065e-01 -2.38333583e-01 3.28750402e-01 1.04187441e+00 2.13733926e-01 7.36192942e-01 5.44619083e-01 4.36552912e-01 -4.47075695e-01 8.38188305e-02 3.43728095e-01 6.57927394e-01 -9.25778508e-01 -1.36002839e-01 -6.36392832e-01 -6.38840914e-01 8.87685835e-01 8.39712501e-01 -2.17222631e-01 3.83772999e-01 2.74519846e-02 -4.58724439e-01 -3.50900292e-01 -1.11494732e+00 -9.28847566e-02 2.00803876e-01 3.03650975e-01 8.32986981e-02 1.02838300e-01 -1.88432172e-01 8.41561675e-01 -2.37190500e-01 -1.25108212e-01 5.92792511e-01 5.94544590e-01 -4.73686963e-01 -1.27327549e+00 2.50093848e-01 6.49758339e-01 -1.68526113e-01 -2.82040000e-01 -6.47796512e-01 9.31255281e-01 -1.12331241e-01 7.27762282e-01 -2.96301007e-01 -6.23432219e-01 4.38373536e-02 -3.54201257e-01 3.72530967e-01 -8.27003896e-01 -3.89746606e-01 1.60140127e-01 1.13621905e-01 -5.94203711e-01 -7.39303092e-03 -4.83899444e-01 -1.39759588e+00 -3.91421139e-01 -6.87100589e-01 2.48099551e-01 3.99921596e-01 1.14496493e+00 6.03931367e-01 7.05123127e-01 5.14532685e-01 -5.83010197e-01 -6.35778010e-01 -6.35032713e-01 -5.89722335e-01 -4.43321727e-02 -1.18411286e-02 -6.53744340e-01 -3.71653229e-01 -3.54853719e-01]
[7.436333179473877, 6.238124847412109]
312aea8f-aa35-4068-994f-672039100f8c
defending-water-treatment-networks-exploiting
2008.12618
null
https://arxiv.org/abs/2008.12618v1
https://arxiv.org/pdf/2008.12618v1.pdf
Defending Water Treatment Networks: Exploiting Spatio-temporal Effects for Cyber Attack Detection
While Water Treatment Networks (WTNs) are critical infrastructures for local communities and public health, WTNs are vulnerable to cyber attacks. Effective detection of attacks can defend WTNs against discharging contaminated water, denying access, destroying equipment, and causing public fear. While there are extensive studies in WTNs attack detection, they only exploit the data characteristics partially to detect cyber attacks. After preliminary exploring the sensing data of WTNs, we find that integrating spatio-temporal knowledge, representation learning, and detection algorithms can improve attack detection accuracy. To this end, we propose a structured anomaly detection framework to defend WTNs by modeling the spatio-temporal characteristics of cyber attacks in WTNs. In particular, we propose a spatio-temporal representation framework specially tailored to cyber attacks after separating the sensing data of WTNs into a sequence of time segments. This framework has two key components. The first component is a temporal embedding module to preserve temporal patterns within a time segment by projecting the time segment of a sensor into a temporal embedding vector. We then construct Spatio-Temporal Graphs (STGs), where a node is a sensor and an attribute is the temporal embedding vector of the sensor, to describe the state of the WTNs. The second component is a spatial embedding module, which learns the final fused embedding of the WTNs from STGs. In addition, we devise an improved one class-SVM model that utilizes a new designed pairwise kernel to detect cyber attacks. The devised pairwise kernel augments the distance between normal and attack patterns in the fused embedding space. Finally, we conducted extensive experimental evaluations with real-world data to demonstrate the effectiveness of our framework.
['Leilei Sun', 'Jingbo Zhou', 'Pengyang Wang', 'Bowen Du', 'Yanjie Fu', 'Dongjie Wang']
2020-08-26
null
null
null
null
['cyber-attack-detection']
['miscellaneous']
[ 2.40810484e-01 -1.56634152e-01 4.82461005e-02 2.00591311e-01 -2.22266600e-01 -6.79908872e-01 6.36050045e-01 6.48072124e-01 -2.19449610e-01 1.37869362e-02 1.22625388e-01 -5.23931205e-01 -3.08429062e-01 -1.27982807e+00 -4.75179374e-01 -1.13388765e+00 -5.95531166e-01 -4.66654301e-01 3.96857440e-01 -1.86070070e-01 1.76310420e-01 8.20804477e-01 -7.68183768e-01 8.30640271e-02 7.30127275e-01 1.05937505e+00 -3.60907108e-01 4.55582231e-01 -1.71367899e-02 6.40061080e-01 -5.58302462e-01 1.90515637e-01 3.94179285e-01 -1.75677180e-01 -4.57147121e-01 -8.84758607e-02 -2.27739289e-01 -1.00203641e-01 -8.14661801e-01 1.15268648e+00 1.37803718e-01 8.25937539e-02 4.27754700e-01 -1.71858561e+00 -4.46844578e-01 4.53717977e-01 -4.57122058e-01 4.08446610e-01 3.81050825e-01 4.45708722e-01 7.88569510e-01 -3.97346824e-01 1.48992702e-01 1.05712080e+00 7.07032502e-01 1.77164659e-01 -1.00889051e+00 -6.90012157e-01 5.22763610e-01 3.36601347e-01 -1.20350349e+00 1.46963865e-01 1.13366401e+00 -5.29260099e-01 7.54698813e-01 3.58949900e-01 9.28062797e-01 1.17747796e+00 5.07610798e-01 6.93101645e-01 7.89759159e-01 4.05625328e-02 5.11458933e-01 -3.22061419e-01 1.76410899e-01 3.47553492e-01 2.34742731e-01 2.13113487e-01 -9.75341573e-02 -6.87976241e-01 3.44378173e-01 7.53825486e-01 -4.46496308e-01 -5.18557549e-01 -9.63497102e-01 8.26185226e-01 7.94433415e-01 5.22096813e-01 -4.40368086e-01 4.36285213e-02 5.99886835e-01 3.23137045e-01 2.31259152e-01 1.09096598e-02 -3.06360960e-01 3.53713244e-01 -2.55532056e-01 -1.82012632e-01 6.87770367e-01 2.60500312e-01 7.10444629e-01 2.65197754e-01 3.91218588e-02 1.24650531e-01 4.11823362e-01 6.79142594e-01 3.11373651e-01 -1.41561598e-01 6.68898702e-01 1.13671291e+00 4.17579897e-02 -1.51048505e+00 -4.41169322e-01 -7.98670575e-02 -1.13368523e+00 9.66167450e-02 6.11016713e-02 -2.09259108e-01 -8.36436987e-01 1.60045671e+00 5.71108878e-01 9.49998975e-01 2.49906912e-01 4.63449180e-01 4.79669720e-02 9.11778629e-01 3.31733048e-01 -2.21582800e-01 9.94221509e-01 -3.94703090e-01 -8.11813712e-01 5.75016439e-02 8.33762586e-01 -6.52358383e-02 5.41898429e-01 1.11391675e-02 -2.98188210e-01 4.46239412e-02 -1.11580837e+00 6.75492048e-01 -9.79347765e-01 -2.98944771e-01 1.87482312e-01 5.25317073e-01 -4.54282701e-01 5.98458767e-01 -1.15794623e+00 -3.65724534e-01 2.26230755e-01 1.38153896e-01 -3.72673690e-01 -3.72691080e-02 -1.52410078e+00 6.60139084e-01 5.28246224e-01 4.49752480e-01 -1.02015853e+00 -5.85204601e-01 -1.35189116e+00 -6.03107885e-02 4.12645578e-01 3.92971113e-02 5.40267766e-01 -3.04565161e-01 -8.67590129e-01 1.22278929e-01 2.31358603e-01 -5.41217387e-01 2.75726676e-01 -1.04874074e-01 -1.17073846e+00 1.48261651e-01 6.91545159e-02 -5.09650886e-01 9.30297315e-01 -1.16066980e+00 -4.63381350e-01 -6.95564151e-01 -1.32030368e-01 -2.38855064e-01 -8.74621451e-01 -2.67336935e-01 1.89819321e-01 -7.48049080e-01 2.92752117e-01 -8.65294874e-01 -4.75697339e-01 8.70493948e-02 -6.01962030e-01 -1.22399390e-01 1.67057133e+00 -6.97818518e-01 1.42124641e+00 -2.46047902e+00 4.88380305e-02 8.10667574e-01 1.58243850e-01 6.17273092e-01 -2.05633044e-01 9.40003455e-01 -2.59165704e-01 -3.76393087e-02 -7.86622941e-01 9.03406739e-02 -2.69991662e-02 4.75194216e-01 -7.37854302e-01 9.91536677e-01 2.67719358e-01 5.58768690e-01 -1.04854715e+00 5.94075322e-02 5.39640665e-01 4.92266148e-01 -6.52032420e-02 3.58240604e-01 3.23685668e-02 3.39905381e-01 -1.10030544e+00 6.26261175e-01 7.59216845e-01 -2.65752915e-02 7.60609508e-02 -3.08414906e-01 -1.76051080e-01 -2.26969197e-01 -1.40645111e+00 1.33550966e+00 -6.79022670e-02 7.52329677e-02 7.24782720e-02 -1.33834624e+00 9.18217421e-01 5.13511181e-01 9.31196392e-01 -5.86230755e-01 1.22430630e-01 7.78923631e-02 -3.00267369e-01 -7.07172334e-01 -9.87527221e-02 4.03795779e-01 -3.95425260e-01 5.77610552e-01 -3.28705996e-01 3.37773025e-01 -2.09259242e-01 3.63573670e-01 1.66798949e+00 -4.59335506e-01 2.52900869e-01 -1.84778273e-01 7.86478817e-01 -1.12073220e-01 6.63769484e-01 3.46014738e-01 -4.63159919e-01 -2.64276117e-01 4.60333526e-01 -8.42857838e-01 -7.40028381e-01 -1.23039579e+00 2.43512113e-02 7.20820487e-01 3.83019596e-01 -2.67507434e-01 -4.56271708e-01 -1.04896069e+00 4.20122087e-01 6.08400643e-01 -9.73603427e-01 -6.46987259e-01 -6.32948279e-01 -8.08109760e-01 8.21999788e-01 6.72959805e-01 4.87984151e-01 -8.81302357e-01 -5.32146573e-01 3.01147908e-01 7.78502002e-02 -1.08162582e+00 -4.45176691e-01 3.60487521e-01 -6.07651472e-01 -1.41137099e+00 -9.88583192e-02 -3.96227866e-01 5.03533542e-01 2.57912368e-01 2.35682800e-01 -2.88839340e-02 -4.76461947e-01 5.79656124e-01 -3.80275816e-01 -3.52227598e-01 -1.80575982e-01 -3.27126116e-01 4.23095793e-01 5.35876095e-01 3.16317052e-01 -8.07529509e-01 -6.61452889e-01 3.27660710e-01 -1.39150023e+00 -7.76110530e-01 4.43308353e-01 3.58939707e-01 2.84511715e-01 2.61938393e-01 3.29041868e-01 -4.34778154e-01 4.95586336e-01 -1.05473876e+00 -5.54409266e-01 2.85684884e-01 -4.80697542e-01 -6.62983358e-02 8.22243214e-01 -7.05858648e-01 -5.30862808e-01 6.26832694e-02 1.97335914e-01 -5.79109788e-01 -2.14364842e-01 4.39538240e-01 -3.39171141e-01 -1.95786357e-01 5.58246255e-01 5.11787295e-01 -7.57161006e-02 -4.41614121e-01 1.42205909e-01 3.52805555e-01 4.12644446e-01 -2.78373808e-01 1.46313572e+00 7.93063402e-01 1.63036734e-02 -9.24355090e-01 -4.47381824e-01 -6.48836553e-01 -3.57108563e-01 -3.91787104e-02 8.56489241e-01 -6.56161845e-01 -7.97799706e-01 6.20634198e-01 -8.49274039e-01 -1.20955206e-01 -2.85489321e-01 3.64958167e-01 7.27964565e-02 7.45953500e-01 -7.08597660e-01 -9.61583912e-01 -2.61147290e-01 -6.48584187e-01 1.02093565e+00 1.04156241e-01 1.69850528e-01 -1.25032759e+00 5.55956364e-01 -1.41374618e-01 3.04447621e-01 8.24392498e-01 7.42047131e-01 -1.06666136e+00 -3.36367667e-01 -5.25933146e-01 -7.12449029e-02 3.25893313e-01 4.47770923e-01 -4.68262061e-02 -7.95764327e-01 -7.01971829e-01 3.06634367e-01 7.86003470e-02 7.29691565e-01 4.02751379e-02 1.10206163e+00 -6.08916283e-01 -7.97224820e-01 5.42267740e-01 1.46330881e+00 5.64651012e-01 4.93293196e-01 3.53554040e-01 1.00667524e+00 3.92705262e-01 3.96587223e-01 5.93140960e-01 1.47721514e-01 3.16636920e-01 8.99183631e-01 -1.00737192e-01 7.61433780e-01 -1.83913901e-01 7.32363820e-01 7.57777750e-01 1.72522575e-01 -2.60008216e-01 -1.03745365e+00 8.06945145e-01 -1.96341753e+00 -9.17195857e-01 5.79542369e-02 1.90470719e+00 5.42497300e-02 -1.14653774e-01 -3.34252119e-02 6.40113950e-01 6.84285402e-01 5.88701069e-01 -8.04269075e-01 -1.88380018e-01 -6.20042272e-02 -2.26992033e-02 5.34300387e-01 2.11689577e-01 -1.35563612e+00 4.72426027e-01 4.83977365e+00 5.90898275e-01 -1.07605362e+00 -2.09914878e-01 -9.11337230e-03 3.97851974e-01 -1.23788618e-01 -1.22329436e-01 -2.21632719e-01 4.92313325e-01 7.21344292e-01 -1.17057182e-01 1.03254028e-01 7.40475655e-01 1.75522685e-01 5.20724833e-01 -8.76305997e-01 4.35446858e-01 -1.36058688e-01 -9.02118921e-01 8.23290572e-02 1.63044110e-01 4.09714311e-01 5.16304113e-02 1.08217150e-02 2.17588637e-02 4.80870068e-01 -9.30827141e-01 1.63978621e-01 3.40085745e-01 8.93398374e-02 -6.43037617e-01 7.17015445e-01 3.43924105e-01 -1.90471745e+00 -5.85524142e-01 -3.72469500e-02 2.01851264e-01 1.92663968e-02 5.05507231e-01 -3.68614316e-01 9.32299674e-01 7.88963020e-01 1.01233113e+00 -3.26608121e-01 8.89265299e-01 -2.49617934e-01 4.41465527e-01 -3.89072835e-01 2.01152831e-01 6.29112542e-01 -3.58528078e-01 7.64425695e-01 1.04969513e+00 4.03752655e-01 4.48027641e-01 5.77955067e-01 5.18415213e-01 3.84860992e-01 -6.05038134e-03 -1.17918897e+00 -1.11985445e-01 5.29236853e-01 1.11750531e+00 -4.59658653e-01 1.75547585e-01 -3.58773857e-01 8.79977703e-01 2.97260806e-02 6.87122405e-01 -7.92424023e-01 -5.90582013e-01 1.00707734e+00 -1.55209869e-01 2.32766077e-01 -2.34518766e-01 1.68420523e-02 -1.16839623e+00 1.78941324e-01 -6.17496669e-01 8.39236736e-01 -2.09117681e-01 -1.47237313e+00 4.29728687e-01 -9.93453190e-02 -1.45873201e+00 1.43465295e-01 -6.18045926e-01 -1.07561672e+00 5.00830650e-01 -1.35271668e+00 -1.21457922e+00 -3.98365617e-01 1.30399871e+00 -3.34112011e-02 7.17710927e-02 9.53661561e-01 1.84912011e-01 -8.74154687e-01 2.64903486e-01 5.73820947e-03 8.13521028e-01 -2.80016251e-02 -9.07152176e-01 2.74829268e-01 1.17951679e+00 2.20907684e-02 4.64358032e-01 5.11916280e-01 -8.46464396e-01 -1.67993057e+00 -1.42792487e+00 3.28945726e-01 -1.77442223e-01 1.30522597e+00 -4.00575489e-01 -1.25480723e+00 8.94761026e-01 -5.90718389e-02 5.61148882e-01 6.53634787e-01 -3.48984003e-01 -6.93526983e-01 -1.53734028e-01 -1.39813495e+00 5.57498634e-01 8.13164473e-01 -8.16476226e-01 -7.11545169e-01 2.89172798e-01 7.39628315e-01 5.56663945e-02 -1.01770842e+00 7.17459083e-01 2.07930684e-01 -5.24588227e-01 1.11901975e+00 -7.77499080e-01 -1.97106034e-01 -6.28296196e-01 -3.21690381e-01 -1.35535693e+00 -3.05866718e-01 -3.37083966e-01 -3.30130368e-01 8.97752345e-01 -4.98513877e-02 -1.06081927e+00 6.67240858e-01 2.68959284e-01 -1.76401645e-01 -5.85151792e-01 -1.17333436e+00 -1.05683768e+00 -1.16786219e-01 -5.74317396e-01 7.96526611e-01 1.43860602e+00 2.69976020e-01 -2.03969881e-01 -3.62821311e-01 1.09826779e+00 8.91267538e-01 -6.45948872e-02 3.06005418e-01 -1.12692559e+00 1.55652225e-01 -2.55127460e-01 -8.71509790e-01 -3.00740242e-01 3.79964560e-02 -4.48047221e-01 -1.77118927e-01 -1.22444403e+00 -1.59710318e-01 -2.38805637e-01 -8.63867342e-01 8.14268470e-01 -1.57196410e-02 -7.47578368e-02 -1.58314496e-01 3.69736515e-02 -2.26654425e-01 7.86720574e-01 7.26421118e-01 -5.46852469e-01 -2.59159088e-01 -1.04590051e-01 2.64525693e-02 7.96283424e-01 8.38037670e-01 -4.78213608e-01 -4.55905229e-01 -1.04950376e-01 -1.00801170e-01 6.14043027e-02 5.56405842e-01 -1.04380417e+00 3.29882890e-01 -5.09554386e-01 8.23501423e-02 -5.40934443e-01 1.44093692e-01 -1.52039456e+00 2.53372759e-01 1.01390421e+00 7.13597313e-02 1.89949557e-01 3.10688972e-01 1.21208632e+00 -2.35746756e-01 3.50282490e-01 5.90094268e-01 3.15225571e-01 -7.19438493e-01 7.25794673e-01 -5.26195109e-01 -2.89183289e-01 1.58203328e+00 -5.00674136e-02 -4.16552991e-01 1.25053376e-02 -8.38476717e-01 4.83106732e-01 1.73124939e-01 5.44706523e-01 8.07834387e-01 -1.53483200e+00 -4.24407393e-01 4.40777481e-01 4.22018677e-01 -1.48886055e-01 3.70424330e-01 6.99918032e-01 -1.91781566e-01 7.94182792e-02 -1.29605740e-01 -6.35927200e-01 -1.03569126e+00 8.40901554e-01 3.01415652e-01 -4.10399377e-01 -8.48652124e-01 3.61394078e-01 -6.98919757e-04 -4.43812162e-01 2.60959625e-01 -4.95918721e-01 -3.68006080e-01 6.14314165e-04 5.10887861e-01 4.53833342e-01 -1.13232531e-01 -6.33214116e-01 -6.50403440e-01 6.50777519e-01 1.44637376e-01 2.09371954e-01 1.39370430e+00 1.84973270e-01 -2.23940521e-01 3.69131029e-01 1.23240829e+00 -9.16493908e-02 -1.15392971e+00 -3.78173888e-01 2.15992048e-01 -3.26904863e-01 -1.71625122e-01 -3.09894919e-01 -1.25538373e+00 6.93676054e-01 8.19515526e-01 7.74926782e-01 1.35600424e+00 -2.35196292e-01 1.01126635e+00 4.59488153e-01 3.39937925e-01 -7.21384645e-01 3.70841414e-01 4.39054340e-01 4.53450710e-01 -9.22636092e-01 -3.56923342e-01 -3.17397535e-01 -3.65885258e-01 9.23907757e-01 3.77052873e-01 -4.00851935e-01 1.11293209e+00 3.78205538e-01 4.28995900e-02 -5.25187731e-01 -2.46682957e-01 1.62834764e-01 7.70518333e-02 6.61123693e-01 -4.85871017e-01 1.97158948e-01 2.55381852e-01 3.49542230e-01 3.66927236e-01 -5.25866508e-01 2.20536470e-01 1.12444842e+00 -4.29206997e-01 -9.31512296e-01 -4.36966598e-01 2.01126933e-01 -1.76064461e-01 2.29259312e-01 -2.12411255e-01 7.25741625e-01 1.40072599e-01 9.57720459e-01 -8.58044177e-02 -8.23131680e-01 6.01471663e-01 5.78568019e-02 -3.05098236e-01 -3.57271016e-01 -5.22832394e-01 -3.82655680e-01 -4.84856218e-01 -9.18327510e-01 -2.17343688e-01 -6.37449980e-01 -1.20995975e+00 -2.67110378e-01 -8.94458592e-02 4.20638949e-01 4.33033943e-01 1.01607931e+00 1.49370492e-01 4.63355273e-01 1.07535315e+00 -4.35732275e-01 -5.37279665e-01 -6.74944282e-01 -8.13825846e-01 6.83308363e-01 7.34294116e-01 -4.45605040e-01 -8.27154934e-01 -3.80981445e-01]
[7.195394992828369, 2.704976797103882]
dee0ba74-d430-4a53-b22a-87a7a4f89306
graph-neural-networks-for-improved-el-nino
2012.01598
null
https://arxiv.org/abs/2012.01598v3
https://arxiv.org/pdf/2012.01598v3.pdf
Graph Neural Networks for Improved El Niño Forecasting
Deep learning-based models have recently outperformed state-of-the-art seasonal forecasting models, such as for predicting El Ni\~no-Southern Oscillation (ENSO). However, current deep learning models are based on convolutional neural networks which are difficult to interpret and can fail to model large-scale atmospheric patterns called teleconnections. Hence, we propose the application of spatiotemporal Graph Neural Networks (GNN) to forecast ENSO at long lead times, finer granularity and improved predictive skill than current state-of-the-art methods. The explicit modeling of information flow via edges may also allow for more interpretable forecasts. Preliminary results are promising and outperform state-of-the art systems for projections 1 and 3 months ahead.
['Björn Lütjens', 'Salomey Osei', 'Willa Potosnak', 'Ernest Pokropek', 'Arthur Fender C. Bucker', 'Emma Erickson', 'Salva Rühling Cachay']
2020-12-02
null
null
null
null
['spatio-temporal-forecasting']
['time-series']
[-5.66077292e-01 1.07695274e-01 -2.07666948e-01 -3.50882977e-01 6.89952374e-01 -5.22301853e-01 1.11191523e+00 1.96924210e-01 2.10387528e-01 8.99110496e-01 4.06619042e-01 -1.33671248e+00 -3.61542255e-01 -1.40513730e+00 -4.09559995e-01 -3.42852235e-01 -9.46890950e-01 5.87237835e-01 -4.60805707e-02 -9.20120656e-01 -2.79028594e-01 7.46943057e-01 -1.01462018e+00 -4.75266166e-02 8.08849514e-01 7.31854796e-01 -3.20945650e-01 8.07470322e-01 -4.07730192e-01 8.61597300e-01 -2.63095081e-01 7.10357651e-02 7.81713575e-02 -5.38535237e-01 -5.47037661e-01 -3.01740021e-01 2.63863772e-01 -2.26468503e-01 -5.90976894e-01 8.24077666e-01 1.08827449e-01 2.15491533e-01 4.22274292e-01 -1.06751573e+00 -9.33480322e-01 7.32516229e-01 -3.98856133e-01 7.76133597e-01 -1.24137178e-01 1.66700691e-01 1.01908076e+00 -5.35256624e-01 7.20070958e-01 1.21976650e+00 1.23354161e+00 1.61449928e-02 -1.28128421e+00 -7.81733572e-01 5.17568469e-01 -8.55867788e-02 -7.38388360e-01 -6.94341063e-02 7.03046679e-01 -5.88048339e-01 1.46273494e+00 1.87887326e-01 9.88020301e-01 8.56946111e-01 8.91032279e-01 1.34093672e-01 1.07208562e+00 3.42460498e-02 -1.26884297e-01 -4.21775371e-01 -5.09124249e-02 6.06972516e-01 3.71844321e-01 5.71832299e-01 -4.20272171e-01 1.41207755e-01 7.73605227e-01 2.03621402e-01 -2.10822836e-01 3.81622761e-01 -1.12398481e+00 1.12594604e+00 1.29770613e+00 6.85618281e-01 -8.19977045e-01 5.09802580e-01 2.58520126e-01 4.31230456e-01 1.55067551e+00 4.57485855e-01 -7.02393532e-01 6.11731708e-02 -1.40546358e+00 4.75436598e-01 7.50323296e-01 3.91716570e-01 7.22190857e-01 9.19687927e-01 3.31269145e-01 3.81593734e-01 5.13523042e-01 5.21860719e-01 9.44128186e-02 -5.65112114e-01 4.86547142e-01 5.65984488e-01 4.54410501e-02 -1.40980804e+00 -1.30238605e+00 -9.34892356e-01 -1.54370105e+00 1.73016265e-01 1.87813491e-01 -1.00914466e+00 -1.20299017e+00 1.37733197e+00 -2.24072766e-02 3.92775446e-01 -2.24020015e-02 9.66746628e-01 8.01091671e-01 1.32436895e+00 -3.70364822e-02 6.50511235e-02 8.97823691e-01 -9.73387837e-01 -9.83341873e-01 -6.23884797e-01 6.97435379e-01 -3.25528920e-01 3.40143651e-01 -1.50452986e-01 -6.25347495e-01 -6.01863384e-01 -7.32675195e-01 5.04375994e-01 -1.20120013e+00 -2.84925133e-01 1.32781804e+00 3.45526278e-01 -1.65985990e+00 7.96660244e-01 -9.74422991e-01 -6.93141997e-01 1.53696701e-01 2.56124943e-01 -1.19630992e-01 5.70320547e-01 -1.85471165e+00 9.87136424e-01 3.45334619e-01 8.38543475e-01 -8.07484686e-01 -8.73716831e-01 -9.52214539e-01 4.27486986e-01 -5.24695277e-01 -8.35428119e-01 9.55303133e-01 -8.59455168e-01 -1.19719422e+00 2.28122666e-01 -6.26714677e-02 -8.21621180e-01 2.12888300e-01 8.89844820e-03 -1.00171554e+00 -1.38318583e-01 -5.70644997e-02 5.37712634e-01 2.38107383e-01 -9.58438337e-01 -4.37834263e-01 -3.20028625e-02 -4.25405391e-02 -2.07195375e-02 -9.98135060e-02 3.08633801e-02 2.90012956e-01 -8.67618024e-01 1.04257405e-01 -9.75476980e-01 -8.10773313e-01 -2.59567052e-01 -3.93349856e-01 -1.88919231e-01 1.06366670e+00 -8.05105090e-01 1.30475760e+00 -1.64823234e+00 -1.93521008e-01 2.36117661e-01 4.18048412e-01 4.34237570e-01 -1.52519062e-01 9.35038328e-01 -2.46124998e-01 4.89902556e-01 -3.60002071e-01 -4.12654400e-01 -1.03768282e-01 5.88748693e-01 -7.78763533e-01 4.89121795e-01 2.63123363e-01 1.11331666e+00 -8.90552044e-01 2.16798991e-01 4.41950679e-01 4.76556897e-01 -7.08701983e-02 1.15401767e-01 -5.45562029e-01 7.24815905e-01 -2.70907998e-01 1.05308942e-01 6.00280941e-01 -5.87151706e-01 2.90371418e-01 7.74627864e-01 -3.20915520e-01 5.43593347e-01 -6.15369797e-01 1.06246948e+00 -4.66959774e-01 1.31540775e+00 -2.15065219e-02 -9.01877046e-01 1.03709769e+00 4.95455056e-01 1.64656430e-01 -6.72516167e-01 -1.74572989e-01 1.27823874e-01 1.99279875e-01 -1.30708233e-01 5.31635046e-01 -1.57183826e-01 3.92672062e-01 4.08310473e-01 -5.54971583e-02 -6.58080056e-02 -1.74491405e-02 1.73167899e-01 5.64311743e-01 3.71599346e-02 -9.47051123e-02 -7.83768594e-01 -1.95365027e-03 1.98662743e-01 3.80332559e-01 6.41402662e-01 1.82625458e-01 2.92165518e-01 6.92258298e-01 -1.37803435e+00 -9.39446807e-01 -5.99140704e-01 -1.53071225e-01 1.09338987e+00 -4.12444115e-01 -2.56022841e-01 -2.75193959e-01 -4.60866898e-01 2.76738137e-01 7.81776905e-01 -8.86054993e-01 4.83333528e-01 -4.84398246e-01 -1.27294683e+00 7.03315854e-01 6.28965855e-01 3.03347081e-01 -1.20745552e+00 -9.95055363e-02 6.61114097e-01 1.61957830e-01 -1.10063565e+00 2.23220751e-01 2.36648202e-01 -1.22448742e+00 -5.97305715e-01 -5.34453809e-01 -2.97282577e-01 4.55784798e-01 -9.41315293e-02 1.50053930e+00 1.01973694e-02 4.21021670e-01 -1.99707851e-01 -5.90264760e-02 -4.88868207e-01 -3.16444606e-01 3.92181754e-01 1.93155751e-01 -8.65071118e-02 2.30981782e-01 -9.85027790e-01 -9.24758077e-01 3.89488786e-02 -8.15925717e-01 1.87224999e-01 1.20685630e-01 5.02945483e-01 -4.64904867e-02 1.75711401e-02 9.66103792e-01 -9.27884400e-01 8.66746843e-01 -1.00157535e+00 -9.48360205e-01 -2.61015326e-01 -1.28040981e+00 -4.36103828e-02 1.01671636e+00 7.08544627e-02 -9.84146655e-01 -4.44453478e-01 -3.91963543e-03 -2.89102525e-01 -3.38536471e-01 1.41419458e+00 1.12129629e+00 2.04902533e-02 5.88209510e-01 1.89293340e-01 -3.11521798e-01 -3.92613500e-01 5.65448940e-01 2.76454568e-01 2.83650458e-01 4.69366387e-02 7.06788540e-01 5.36266267e-01 3.53196323e-01 -8.26101661e-01 -5.41435421e-01 -2.50428319e-01 -5.53155899e-01 -4.94842470e-01 9.84559298e-01 -1.20019650e+00 -2.45953977e-01 6.30280972e-01 -1.34937167e+00 -6.91685617e-01 1.13223918e-01 4.68618661e-01 1.14531755e-01 -3.13932419e-01 -9.12883818e-01 -7.85926878e-01 -5.62554300e-01 -5.07276058e-01 6.46952927e-01 3.69597375e-01 -2.14891970e-01 -2.06091952e+00 6.34170711e-01 -3.32592309e-01 1.26836300e+00 7.83750534e-01 7.50567198e-01 -4.39750105e-01 -4.74124551e-01 -5.91463298e-02 -5.14719963e-01 -1.39026016e-01 1.55348539e-01 3.33662331e-01 -9.08335686e-01 -2.50337869e-01 -6.46098614e-01 2.76597589e-01 1.23569882e+00 8.15286815e-01 6.55334532e-01 -5.14231980e-01 -4.61001903e-01 9.68624175e-01 1.33656001e+00 5.41341342e-02 2.95926422e-01 3.31456035e-01 7.59151518e-01 5.66962838e-01 -1.49073884e-01 2.58654088e-01 6.51173830e-01 -5.85616566e-02 7.97986388e-01 -6.64739609e-01 -2.78184637e-02 -1.38031319e-01 8.35417584e-02 9.74279463e-01 -6.42750144e-01 -5.24891257e-01 -1.72396731e+00 1.05617464e+00 -2.12830925e+00 -9.22643244e-01 -7.30890095e-01 1.34561419e+00 1.97925210e-01 3.12864274e-01 -2.45491132e-01 -5.41361511e-01 3.25482875e-01 1.27250838e+00 -3.39405745e-01 -8.73194396e-01 -4.05499935e-01 3.06427836e-01 9.28655624e-01 6.19442642e-01 -1.16922581e+00 1.22542727e+00 7.43382168e+00 -1.47777781e-01 -1.53684080e+00 4.74854223e-02 8.95677090e-01 3.19604754e-01 -5.71423054e-01 1.04974933e-01 -7.30497718e-01 1.53349176e-01 1.69975603e+00 1.25627279e-01 4.96478021e-01 4.76321608e-01 9.06703711e-01 2.05623195e-01 -5.40216088e-01 2.01245204e-01 -5.91713846e-01 -2.13551569e+00 5.03072627e-02 2.23969728e-01 1.39908135e+00 1.19197476e+00 -5.91286458e-02 1.80788696e-01 9.47251916e-01 -1.28760397e+00 1.12064160e-01 8.46783817e-01 5.61706424e-01 -5.79620898e-01 9.65625405e-01 9.42485556e-02 -1.56251085e+00 2.08787285e-02 -4.08631891e-01 -7.60453880e-01 2.77481437e-01 8.18459988e-01 -6.22156441e-01 8.41047466e-01 8.98809195e-01 1.34695542e+00 -4.41115320e-01 6.53706610e-01 -2.81664729e-01 1.21551144e+00 -5.22611558e-01 -9.62531418e-02 1.18085778e+00 -4.48631853e-01 5.61031401e-01 1.41698909e+00 4.27397251e-01 -7.27433991e-03 -9.79620777e-03 7.45331407e-01 -1.74687609e-01 -1.53705761e-01 -1.27776921e+00 -1.96669608e-01 2.58466564e-02 9.21989560e-01 -6.38345003e-01 -3.33737135e-01 -6.44564390e-01 4.64647770e-01 2.60017097e-01 1.00618172e+00 -5.03366828e-01 -2.85909683e-01 9.95118320e-01 1.98932752e-01 3.03192496e-01 -6.52274191e-01 -4.26046401e-01 -1.09079432e+00 -5.14705002e-01 -3.80711466e-01 3.16671550e-01 -1.07410359e+00 -1.28516567e+00 8.56233299e-01 -2.61368811e-01 -1.01963544e+00 -5.95711291e-01 -5.94290137e-01 -1.38788116e+00 1.30265927e+00 -2.07227325e+00 -1.37589228e+00 2.11699102e-02 2.88345188e-01 2.49374181e-01 -9.16554332e-02 1.00868630e+00 -1.43279061e-01 -4.09650952e-01 -3.64350528e-01 6.49311543e-01 4.58861887e-01 2.26047412e-01 -1.43925714e+00 1.33763576e+00 1.15077567e+00 7.44807497e-02 3.84495944e-01 7.46186197e-01 -7.48465359e-01 -9.48070467e-01 -1.50883198e+00 1.42997253e+00 -7.49442056e-02 1.42774820e+00 -1.28640503e-01 -9.00278032e-01 1.22519982e+00 8.84988010e-01 3.85857999e-01 3.48340273e-01 6.84203506e-01 -1.99437216e-01 -2.69091278e-01 -4.24989372e-01 4.18622941e-01 5.92512488e-01 -5.86428821e-01 -4.00703698e-01 5.07123232e-01 7.72921562e-01 -1.18530378e-01 -9.85897601e-01 4.48123008e-01 3.12500238e-01 -8.50547016e-01 4.07454431e-01 -1.14178228e+00 5.77285945e-01 -1.65408909e-01 1.97292253e-01 -2.06006074e+00 -7.18619287e-01 -7.69767582e-01 -3.24233145e-01 6.32079184e-01 7.81399012e-01 -1.08055556e+00 6.01601958e-01 1.56214356e-01 -1.77122042e-01 -4.93213505e-01 -9.13265169e-01 -6.16558433e-01 3.88512731e-01 -4.91765082e-01 9.17615950e-01 1.62538087e+00 -1.30145356e-01 2.80929923e-01 -5.28478444e-01 6.84151053e-01 2.35029325e-01 4.53629136e-01 3.38774711e-01 -1.71303868e+00 2.87833303e-01 -7.51261115e-01 -2.91341305e-01 -7.16297805e-01 2.42934540e-01 -6.61553741e-01 -4.04524803e-01 -1.99066198e+00 -7.92221487e-01 -3.43729347e-01 -6.50313079e-01 7.43296087e-01 5.78729250e-02 1.87886789e-01 -1.25084221e-01 -1.40183512e-02 -4.12006937e-02 6.92251801e-01 1.15700173e+00 -6.02489337e-02 -2.46701002e-01 -9.52054411e-02 -1.29763708e-01 5.66893220e-01 1.05756724e+00 -4.13371116e-01 -1.94131628e-01 -7.13403344e-01 7.71245301e-01 3.37235570e-01 3.10626686e-01 -1.02072299e+00 2.41870672e-01 -1.61794588e-01 5.62635958e-01 -7.22323596e-01 -1.47015184e-01 -6.95235610e-01 3.66390824e-01 4.97759491e-01 -7.38162920e-03 6.05892301e-01 7.30174839e-01 5.60792029e-01 -5.40045917e-01 7.03558981e-01 2.83597201e-01 -1.36174470e-01 -6.78990304e-01 7.41192937e-01 -9.55440283e-01 -3.94507468e-01 5.00655830e-01 2.70523012e-01 -6.07015073e-01 -8.27736795e-01 -9.31085527e-01 6.23815000e-01 5.70959486e-02 6.78505063e-01 2.62134880e-01 -1.07205176e+00 -1.03954387e+00 2.25565821e-01 -2.85740852e-01 -1.89006522e-01 9.82480496e-02 6.14854097e-01 -1.09452283e+00 1.02708447e+00 -2.18425393e-01 -3.45019698e-01 -4.89796251e-01 2.56031960e-01 8.96392643e-01 -5.61701417e-01 -6.29408598e-01 5.59423029e-01 6.94841221e-02 -9.75257874e-01 -4.05297369e-01 -8.45666349e-01 -5.22349775e-01 3.71848255e-01 7.99539611e-02 7.20948279e-02 -7.90218078e-03 -5.90118051e-01 -3.30769300e-01 3.61071527e-01 5.61266661e-01 -4.66133505e-02 1.86403131e+00 -1.75471067e-01 -3.75155360e-01 7.19681382e-01 8.11041594e-01 -5.54665804e-01 -1.29980063e+00 -3.71045768e-02 6.82024658e-03 8.50889236e-02 5.14399827e-01 -8.34557474e-01 -1.57636464e+00 1.23159194e+00 4.64423180e-01 1.00437605e+00 9.51962292e-01 -4.49436188e-01 7.37866223e-01 3.98415476e-01 -1.61099270e-01 -6.21976137e-01 -8.92003477e-01 9.31791365e-01 8.80687237e-01 -1.24178874e+00 -1.65288951e-02 2.14719087e-01 -1.68608233e-01 1.48376405e+00 4.36384976e-01 -2.24092633e-01 1.45794952e+00 -1.49016716e-02 4.04301435e-01 -6.88923836e-01 -1.06595039e+00 -2.26703748e-01 6.42744541e-01 2.52215028e-01 6.34769082e-01 5.79653740e-01 1.55930787e-01 -1.49202064e-01 -2.81393647e-01 -1.16344988e-01 3.86248678e-01 3.52942348e-01 -2.62798399e-01 -3.78184855e-01 -1.86752275e-01 5.93955874e-01 -6.24086738e-01 -6.63223743e-01 -1.33921787e-01 8.32742333e-01 -3.59577537e-01 9.51964736e-01 5.45284510e-01 -1.99082941e-01 -1.10196739e-01 1.30520865e-01 -5.64285815e-01 -2.07102224e-01 -8.51975799e-01 -1.45192027e-01 4.45536256e-01 -5.55808902e-01 -4.96758014e-01 -3.53296518e-01 -9.61618662e-01 -9.62729871e-01 -4.70151566e-02 2.15018317e-01 6.42011225e-01 1.06910992e+00 6.22065961e-01 8.54462385e-01 5.92650950e-01 -1.16576314e+00 3.56049389e-01 -1.32552922e+00 -6.78773761e-01 -1.92820746e-02 8.83669436e-01 -1.78806633e-01 -3.94306958e-01 -2.77282566e-01]
[6.593557357788086, 2.8413736820220947]
5e70f77b-018d-4c51-abe7-2989f20fae70
a-novel-speech-feature-fusion-algorithm-for
2212.00329
null
https://arxiv.org/abs/2212.00329v1
https://arxiv.org/pdf/2212.00329v1.pdf
A Novel Speech Feature Fusion Algorithm for Text-Independent Speaker Recognition
A novel speech feature fusion algorithm with independent vector analysis (IVA) and parallel convolutional neural network (PCNN) is proposed for text-independent speaker recognition. Firstly, some different feature types, such as the time domain (TD) features and the frequency domain (FD) features, can be extracted from a speaker's speech, and the TD and the FD features can be considered as the linear mixtures of independent feature components (IFCs) with an unknown mixing system. To estimate the IFCs, the TD and the FD features of the speaker's speech are concatenated to build the TD and the FD feature matrix, respectively. Then, a feature tensor of the speaker's speech is obtained by paralleling the TD and the FD feature matrix. To enhance the dependence on different feature types and remove the redundancies of the same feature type, the independent vector analysis (IVA) can be used to estimate the IFC matrices of TD and FD features with the feature tensor. The IFC matrices are utilized as the input of the PCNN to extract the deep features of the TD and FD features, respectively. The deep features can be integrated to obtain the fusion feature of the speaker's speech. Finally, the fusion feature of the speaker's speech is employed as the input of a deep convolutional neural network (DCNN) classifier for speaker recognition. The experimental results show the effectiveness and performances of the proposed speaker recognition system.
['Ye Zhang', 'Chengben Xu', 'Biao Ma']
2022-12-01
null
null
null
null
['speaker-recognition', 'text-independent-speaker-recognition']
['speech', 'speech']
[-1.09303348e-01 -6.43639982e-01 2.31212720e-01 -5.77543795e-01 -5.01170933e-01 -2.83244699e-01 4.34875727e-01 -3.67838591e-01 -2.59042114e-01 1.01468183e-01 3.99156034e-01 -1.19544432e-01 -2.42969275e-01 -4.72469151e-01 -2.24217877e-01 -1.26087296e+00 3.23199318e-03 -4.24702205e-02 -2.94795215e-01 -2.49547556e-01 8.93117115e-02 4.74603891e-01 -1.95988750e+00 2.01360449e-01 7.04323232e-01 1.55646217e+00 4.49062884e-02 6.45668685e-01 -4.79830205e-01 6.72857106e-01 -8.68029654e-01 2.58156002e-01 6.78825798e-03 -1.54204905e-01 -3.91867340e-01 3.46989602e-01 -2.81294346e-01 -5.36202669e-01 -4.81777757e-01 7.97149360e-01 5.93837917e-01 4.93391216e-01 5.62699854e-01 -1.30755031e+00 -4.78362411e-01 5.91633320e-01 -2.18598023e-01 3.15656513e-01 1.98295906e-01 -1.58352062e-01 6.13530636e-01 -1.33228087e+00 6.75807893e-03 1.62507367e+00 1.89239055e-01 1.53925896e-01 -5.21096826e-01 -7.92404950e-01 2.07853705e-01 7.88812757e-01 -1.59325075e+00 -9.21028495e-01 1.26236451e+00 -3.06336880e-01 8.38136137e-01 5.32608867e-01 7.39348888e-01 7.94227958e-01 2.55145691e-03 1.08875644e+00 6.32415950e-01 -3.23963881e-01 1.27472207e-01 1.45112485e-01 4.52850878e-01 6.74647689e-01 -3.90608281e-01 -2.92128697e-02 -5.03245294e-01 -8.80609602e-02 3.66560996e-01 3.15369636e-01 -2.64464408e-01 3.24607998e-01 -1.18953145e+00 8.13740134e-01 1.15773842e-01 6.19936347e-01 -5.43985248e-01 -5.18094778e-01 5.20424128e-01 2.76491940e-01 4.23867732e-01 -5.49397767e-01 -3.66541862e-01 -3.22132595e-02 -6.63456619e-01 -1.89246520e-01 8.02739620e-01 6.21384203e-01 9.21815455e-01 5.40145755e-01 -9.40387696e-02 1.04071629e+00 8.33586574e-01 9.45081830e-01 9.59797382e-01 -3.84945124e-01 7.41191983e-01 8.18318248e-01 -6.61452534e-03 -1.13948441e+00 -3.99305463e-01 -3.89601946e-01 -1.01452422e+00 -2.27839127e-01 1.43817768e-01 -3.39853644e-01 -7.87827611e-01 1.27001786e+00 4.03050035e-01 1.07388236e-01 4.63325858e-01 1.05284798e+00 1.32946169e+00 1.03898942e+00 -4.15040702e-01 -4.82132316e-01 1.36119854e+00 -7.87490845e-01 -1.04188335e+00 -1.59694284e-01 3.38052571e-01 -1.01917946e+00 3.26570570e-01 1.15698427e-01 -6.41733706e-01 -1.00834692e+00 -1.12509382e+00 3.53995413e-02 -2.89435923e-01 5.68938136e-01 2.39691615e-01 5.28877676e-01 -7.42981851e-01 5.93522154e-02 -8.22139025e-01 2.20792860e-01 1.83593884e-01 4.22886640e-01 -4.50546890e-01 -7.88477585e-02 -1.32164490e+00 6.98921323e-01 2.03279212e-01 7.05177784e-01 -7.73408413e-01 -2.95033693e-01 -8.16708267e-01 3.01160604e-01 -5.27100302e-02 -2.29175195e-01 8.81881952e-01 -1.03311205e+00 -1.66530514e+00 -5.52637838e-02 -4.52757210e-01 1.43745661e-01 -8.00116062e-02 3.75463814e-01 -1.02244616e+00 1.19298577e-01 -9.63700265e-02 -5.97086139e-02 1.30900264e+00 -6.93486273e-01 -8.01443875e-01 -5.72368324e-01 -5.51623821e-01 3.55974227e-01 -6.28813326e-01 2.48436347e-01 -1.61092132e-01 -3.22948605e-01 6.46426499e-01 -5.71671486e-01 3.33314478e-01 -3.15735608e-01 -5.81202090e-01 -4.30895716e-01 1.32270491e+00 -1.01650655e+00 9.55926299e-01 -2.86151171e+00 4.17647272e-01 3.72107416e-01 1.79181218e-01 2.43832260e-01 -2.29258314e-01 2.70665407e-01 -2.83735037e-01 -3.57532561e-01 -3.73797677e-02 -3.88022900e-01 -8.48372653e-02 1.78817362e-01 -1.40291542e-01 4.96966094e-01 3.54095191e-01 5.59600949e-01 -4.95860189e-01 -3.92201632e-01 4.83887970e-01 6.00826919e-01 1.19202398e-01 3.73775572e-01 3.79544228e-01 4.81487930e-01 -5.92247665e-01 2.56707162e-01 9.69250917e-01 2.22896069e-01 -3.10006857e-01 -4.79209065e-01 -4.15033579e-01 4.86219406e-01 -1.45863390e+00 1.14723146e+00 -3.32453549e-01 3.97074908e-01 3.74990225e-01 -1.13651133e+00 1.35246038e+00 6.48974895e-01 3.82835269e-01 -2.26322681e-01 3.88092369e-01 2.25684494e-01 4.25041378e-01 -7.78093159e-01 2.02343948e-02 -4.64753695e-02 2.54092872e-01 3.53482515e-01 3.40862811e-01 2.23039672e-01 -6.93976805e-02 -1.44879952e-01 7.16093481e-01 -6.19157553e-01 -6.85607418e-02 -5.04672863e-02 1.27856350e+00 -5.17721653e-01 5.84293365e-01 -1.53606594e-01 -1.90103322e-01 1.68016821e-01 -5.08911610e-02 -5.74574351e-01 -6.35572731e-01 -7.81971216e-01 -7.39553049e-02 1.03254735e+00 -3.42668146e-02 2.22193561e-02 -3.06356549e-01 -4.78752464e-01 -1.01484489e-02 3.02946329e-01 -4.16681916e-01 -3.23289543e-01 -4.22478050e-01 -6.20319545e-01 3.88742208e-01 5.24424493e-01 8.59497428e-01 -6.83852315e-01 1.71707734e-01 4.00173426e-01 -3.41440201e-01 -7.53040493e-01 -4.82518643e-01 2.08988518e-01 -4.09281194e-01 -6.69522643e-01 -6.76904619e-01 -8.98361921e-01 4.22058314e-01 5.61752975e-01 -4.88256142e-02 2.65718903e-02 2.89112180e-01 1.89885840e-01 -2.36740351e-01 -3.04224461e-01 -4.90028441e-01 -4.24821526e-01 5.39020061e-01 9.68309999e-01 4.07107532e-01 -6.74852967e-01 -2.91953981e-01 1.42581567e-01 -7.57188559e-01 -1.63228497e-01 3.23265404e-01 9.51912522e-01 1.55161336e-01 3.58817935e-01 5.18964350e-01 1.43348753e-01 6.86688006e-01 -3.81420940e-01 -3.88354003e-01 -3.82586978e-02 3.28936316e-02 -1.63836315e-01 9.94833708e-01 -7.46209741e-01 -1.27127743e+00 1.68330878e-01 -3.10866565e-01 -6.42954051e-01 -2.45238304e-01 9.67746377e-01 -6.13624811e-01 -1.51134850e-02 1.93564817e-01 8.81165445e-01 3.53423536e-01 -5.77702463e-01 1.97827861e-01 1.33659494e+00 2.68319428e-01 1.19826794e-01 8.36421967e-01 2.76118636e-01 -3.92812014e-01 -1.14981389e+00 -5.11530995e-01 -7.23353088e-01 -5.68682611e-01 -1.55636385e-01 6.93152070e-01 -1.15656567e+00 -6.72354400e-01 1.09267068e+00 -1.32267284e+00 7.26311922e-01 1.02810282e-03 1.08615482e+00 -3.35317664e-02 6.44033492e-01 -6.92970455e-01 -9.42371964e-01 -5.41948915e-01 -1.53257263e+00 8.29690874e-01 6.08262479e-01 2.10332438e-01 -7.37235427e-01 -3.40145618e-01 3.47482860e-01 4.56963688e-01 -4.71798271e-01 6.77068114e-01 -1.23484397e+00 -3.07305276e-01 -4.15094197e-01 -8.00409075e-03 8.06267083e-01 6.13850713e-01 2.87549853e-01 -1.08785844e+00 -3.78577352e-01 7.74406254e-01 2.31005117e-01 6.42784119e-01 2.85830826e-01 5.91552317e-01 -5.90364575e-01 -7.86912292e-02 6.42660737e-01 8.28380585e-01 6.10557914e-01 2.18014866e-01 -2.00282991e-01 9.06116545e-01 4.71328616e-01 2.06109643e-01 5.30239224e-01 5.32629609e-01 3.63148749e-01 3.44186239e-02 1.03806347e-01 -3.95837650e-02 2.12439656e-01 6.81805134e-01 2.02732491e+00 -1.22788578e-01 -1.92396995e-02 -6.21531546e-01 3.05942535e-01 -1.56787694e+00 -1.04674637e+00 -1.32464483e-01 1.93585205e+00 3.09524715e-01 -2.07621753e-01 -8.94923136e-02 8.01020145e-01 1.09290183e+00 1.62121996e-01 -6.03645802e-01 -1.31867349e-01 -1.41564026e-01 -2.24584024e-02 -1.20791018e-01 3.00784767e-01 -1.04265642e+00 2.54720390e-01 4.78563929e+00 9.36847985e-01 -1.57418215e+00 -1.03203937e-01 4.56331074e-02 2.60819227e-01 -1.12678252e-01 -9.20063704e-02 -8.08538377e-01 6.44267142e-01 1.01367545e+00 -1.69589162e-01 6.24123693e-01 8.30631435e-01 2.60770589e-01 3.61868858e-01 -6.96157098e-01 1.23894024e+00 1.32049561e-01 -9.38126326e-01 -1.81008391e-02 -5.82854822e-02 1.57667041e-01 2.40081623e-01 1.06731273e-01 4.52529073e-01 4.17676866e-02 -5.54827332e-01 6.94311857e-01 7.34083414e-01 4.69913363e-01 -9.52775002e-01 9.09354806e-01 5.96433520e-01 -1.57016885e+00 -4.03622597e-01 -3.63669962e-01 -2.12838650e-01 -2.47730017e-02 7.40164161e-01 -6.39049232e-01 7.20741153e-01 5.46620846e-01 8.75586748e-01 -2.56748557e-01 6.70340836e-01 6.31365106e-02 6.04131758e-01 -5.81955969e-01 -2.18573198e-01 5.91946915e-02 -3.26895505e-01 7.18788385e-01 8.17992210e-01 4.02825177e-01 1.32495482e-02 1.57152250e-01 6.91473484e-01 2.16672003e-01 4.25249130e-01 -1.76551685e-01 -3.19464117e-01 8.25349271e-01 1.50415206e+00 -2.75261283e-01 -7.14374781e-01 -3.63762408e-01 7.03438461e-01 2.23554567e-01 4.48964387e-01 -4.68029141e-01 -8.55346441e-01 5.39010525e-01 -7.59568691e-01 6.30219638e-01 -2.31813580e-01 9.21996757e-02 -1.39155185e+00 3.36585492e-01 -7.34575808e-01 1.52741699e-02 -4.07653481e-01 -1.44461036e+00 6.64836049e-01 -4.23459828e-01 -1.56899309e+00 -2.47207567e-01 -2.66024560e-01 -1.00145638e+00 1.44547641e+00 -1.42976832e+00 -1.29200077e+00 -2.02928662e-01 9.77661669e-01 4.02370065e-01 -7.53419757e-01 1.01536155e+00 1.56317353e-01 -9.83752310e-01 4.09578621e-01 5.55716157e-01 3.90033633e-01 2.29492843e-01 -4.42087620e-01 2.48937309e-01 7.31346726e-01 -1.95275068e-01 5.62688589e-01 5.80347516e-02 -2.97536403e-01 -1.88071167e+00 -9.55653250e-01 9.07151103e-01 2.90852487e-01 5.80654383e-01 -2.74990261e-01 -1.01032162e+00 4.34532851e-01 -2.60597318e-01 1.86337247e-01 8.12962711e-01 -2.65429020e-01 -4.47143883e-01 -4.04661715e-01 -1.05899096e+00 4.71917130e-02 2.85206854e-01 -7.24327385e-01 -6.96406901e-01 3.11203122e-01 9.03554976e-01 -2.70429969e-01 -1.15549672e+00 4.22868207e-02 5.63495517e-01 -8.93941343e-01 9.82425451e-01 -2.98376977e-01 -2.94030681e-02 -6.19833827e-01 -2.59756416e-01 -1.34719074e+00 -6.35197580e-01 5.33614233e-02 1.55090019e-01 1.40186095e+00 1.27234355e-01 -9.84585166e-01 9.40091312e-02 3.18788648e-01 -4.07538325e-01 -4.44413900e-01 -1.54445827e+00 -5.38175285e-01 -4.05202299e-01 -5.03674924e-01 1.11330652e+00 8.90658259e-01 1.04311213e-01 4.89630342e-01 -1.51957810e-01 4.59982157e-01 3.32134575e-01 1.48550376e-01 3.70520651e-01 -1.19974244e+00 9.76138562e-02 -2.09760278e-01 -5.11536062e-01 -9.18455899e-01 3.00887614e-01 -9.71014619e-01 -7.82762915e-02 -1.40860295e+00 -2.27261886e-01 -2.11111367e-01 -3.35423738e-01 5.04263461e-01 -1.38168409e-01 -4.61395144e-01 1.77344233e-01 3.67953271e-01 5.94954528e-02 8.97155762e-01 1.17810011e+00 -5.28827846e-01 -3.38384002e-01 3.63370448e-01 -2.54952550e-01 5.43433249e-01 6.26818001e-01 -9.20644999e-02 -9.41374674e-02 -2.99605787e-01 -6.78139031e-01 3.62751722e-01 2.00014502e-01 -9.23783720e-01 4.41809922e-01 3.52588594e-02 8.56135428e-01 -8.08860123e-01 7.73845673e-01 -7.98537850e-01 -4.77752835e-02 5.35193145e-01 6.14595078e-02 -4.81393218e-01 1.54807925e-01 3.27445179e-01 -5.61288536e-01 -4.49218825e-02 4.63495255e-01 2.24817157e-01 -3.51454467e-01 2.75723517e-01 -6.99802399e-01 -8.26653242e-01 4.77225900e-01 -1.37959749e-01 -3.13443631e-01 -3.94052714e-01 -6.31671429e-01 1.05474606e-01 -3.87975693e-01 6.76159024e-01 1.08980405e+00 -1.61759722e+00 -9.69948411e-01 9.54967439e-01 -7.69392103e-02 2.77574807e-02 8.66339684e-01 9.09742355e-01 8.83346610e-03 3.35391551e-01 -1.48561627e-01 -7.50373602e-01 -1.15305746e+00 6.04463220e-01 2.43351877e-01 1.37201041e-01 -1.33621901e-01 8.10590982e-01 -1.08196445e-01 -6.13321662e-01 9.54510495e-02 -3.28278214e-01 -6.93937182e-01 3.76063526e-01 7.97111213e-01 3.61216009e-01 4.01259303e-01 -1.34044158e+00 -6.23609126e-01 4.18098897e-01 -1.39196590e-01 -1.45268336e-01 1.37830985e+00 -4.13557649e-01 -4.68206465e-01 4.03178841e-01 1.78096020e+00 2.77072638e-02 -6.43859088e-01 -5.56060910e-01 -4.45673972e-01 -2.85175294e-02 3.78913671e-01 -4.06182796e-01 -1.27368796e+00 1.00559545e+00 7.13540792e-01 1.31347999e-01 1.18014002e+00 -2.76591867e-01 8.97109449e-01 2.90766537e-01 -1.32411480e-01 -8.24963331e-01 -4.49530870e-01 6.00615621e-01 9.18406844e-01 -9.05677021e-01 -3.06580782e-01 -1.35676950e-01 -4.19167936e-01 1.59740233e+00 1.91026628e-01 -4.64954302e-02 9.72846925e-01 7.79221207e-02 3.53554666e-01 1.49661884e-01 -4.78864998e-01 -9.33159217e-02 6.44035101e-01 5.20976722e-01 9.14699510e-02 1.36781663e-01 -3.42346840e-02 1.05368721e+00 -3.63486052e-01 -2.49625847e-01 1.64103344e-01 7.43087471e-01 -4.99548018e-01 -8.92190635e-01 -7.90054262e-01 3.78693670e-01 1.19679630e-01 1.24840990e-01 9.00512561e-02 6.81136474e-02 1.88472465e-01 1.54405499e+00 2.12954190e-02 -1.14378667e+00 1.50831252e-01 3.76648426e-01 4.00860347e-02 -2.99442887e-01 -4.34799761e-01 3.67681473e-01 -1.50418252e-01 -1.15606166e-01 -3.49783480e-01 -4.08461004e-01 -1.39541340e+00 -1.55786902e-01 -6.94090545e-01 2.74659991e-01 1.14268041e+00 1.39297509e+00 3.08980703e-01 4.02053952e-01 1.50313032e+00 -9.30765688e-01 -5.80984831e-01 -1.32053721e+00 -7.57317543e-01 2.66658872e-01 6.62411630e-01 -5.54006755e-01 -7.78118789e-01 -3.22932079e-02]
[14.457198143005371, 6.015100002288818]
613070e2-1f67-4870-98e5-e68d45d60777
acsc-automatic-calibration-for-non-repetitive
2011.08516
null
https://arxiv.org/abs/2011.08516v1
https://arxiv.org/pdf/2011.08516v1.pdf
ACSC: Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems
Recently, the rapid development of Solid-State LiDAR (SSL) enables low-cost and efficient obtainment of 3D point clouds from the environment, which has inspired a large quantity of studies and applications. However, the non-uniformity of its scanning pattern, and the inconsistency of the ranging error distribution bring challenges to its calibration task. In this paper, we proposed a fully automatic calibration method for the non-repetitive scanning SSL and camera systems. First, a temporal-spatial-based geometric feature refinement method is presented, to extract effective features from SSL point clouds; then, the 3D corners of the calibration target (a printed checkerboard) are estimated with the reflectance distribution of points. Based on the above, a target-based extrinsic calibration method is finally proposed. We evaluate the proposed method on different types of LiDAR and camera sensor combinations in real conditions, and achieve accuracy and robustness calibration results. The code is available at https://github.com/HViktorTsoi/ACSC.git .
['Dian Liu', 'Yunxiang He', 'Zhenchao Ouyang', 'Jianwei Niu', 'Jiahe Cui']
2020-11-17
null
null
null
null
['camera-auto-calibration', '3d-geometry-perception']
['computer-vision', 'computer-vision']
[ 1.62116051e-01 -6.40360117e-01 1.60797179e-01 -5.10141790e-01 -5.96055508e-01 -5.07107198e-01 3.44847053e-01 -2.04744875e-01 -1.36900619e-01 3.86063993e-01 -4.46263731e-01 -1.22497544e-01 -2.12376580e-01 -7.82559097e-01 -5.62103808e-01 -5.30459106e-01 3.43335420e-01 5.58536887e-01 5.12484848e-01 1.11179732e-01 4.23780769e-01 9.25335586e-01 -1.62904131e+00 -5.25985837e-01 1.16178334e+00 1.14236748e+00 4.70681250e-01 8.85914117e-02 -2.12369934e-01 -2.14416042e-01 -9.83836949e-02 4.72524716e-03 3.96120191e-01 -4.70913574e-02 2.13693138e-02 6.84802281e-03 3.93043399e-01 -2.29530320e-01 5.01731448e-02 1.01660395e+00 4.02515262e-01 -1.67203501e-01 6.78128958e-01 -1.31325948e+00 -2.99235761e-01 -1.21797867e-01 -9.30074155e-01 -5.29672384e-01 2.53930837e-01 -8.15790743e-02 4.31917071e-01 -1.15375614e+00 2.73183167e-01 1.00600278e+00 9.23040330e-01 1.03820316e-01 -9.71079707e-01 -1.24574137e+00 -2.72426277e-01 1.70915052e-01 -1.87276018e+00 -3.67364347e-01 9.79550898e-01 -3.10986787e-01 4.04838771e-01 1.34340748e-01 9.08786535e-01 5.65957606e-01 2.33661905e-01 1.11220002e-01 1.23256147e+00 -5.36654294e-01 7.23051056e-02 1.78068772e-01 -9.18859839e-02 4.89190370e-01 8.23010743e-01 3.63586932e-01 -3.69479299e-01 -1.06959328e-01 8.87201607e-01 1.94161251e-01 -2.57550508e-01 -7.38853037e-01 -8.86049330e-01 4.53383684e-01 5.16173899e-01 7.72142932e-02 -1.72462821e-01 -8.35389644e-02 -2.00087890e-01 -2.60400921e-01 2.29985848e-01 -3.98092344e-02 -2.23912328e-01 2.49221772e-02 -8.91516209e-01 -7.73263350e-02 3.66166830e-01 1.46076155e+00 1.13388777e+00 -3.73298004e-02 5.84836364e-01 6.77934229e-01 7.93678582e-01 1.38102436e+00 -5.56383729e-02 -7.88767517e-01 3.27560484e-01 7.53246725e-01 1.89652845e-01 -9.66360211e-01 -3.29959452e-01 -1.46505937e-01 -6.93233550e-01 2.60351270e-01 -1.48773804e-01 1.17124647e-01 -8.09296012e-01 1.01900053e+00 7.07594216e-01 3.80314291e-01 -1.66453630e-01 8.86858642e-01 6.05010509e-01 3.97735089e-01 -3.89099538e-01 -2.93725044e-01 9.89353120e-01 -2.83037692e-01 -4.85948414e-01 -1.77987352e-01 2.34242931e-01 -1.21960640e+00 9.27169800e-01 3.31249207e-01 -5.68350732e-01 -5.23624718e-01 -1.19725752e+00 8.36468711e-02 9.20245275e-02 2.52102286e-01 3.16992283e-01 5.78865409e-01 -5.72281539e-01 1.67992681e-01 -8.04883718e-01 -5.41734815e-01 2.14204460e-01 2.35577583e-01 -2.00756133e-01 -2.55736053e-01 -7.37329304e-01 8.81488860e-01 1.45473197e-01 3.35691839e-01 -2.26613618e-02 -7.38730371e-01 -6.61231875e-01 -3.85424525e-01 3.20311487e-01 -3.34195077e-01 1.10056877e+00 -4.63420868e-01 -1.52820456e+00 7.43002415e-01 -2.19359294e-01 5.07212579e-02 4.11526591e-01 -3.76166582e-01 -5.66091478e-01 6.63016411e-03 3.20492089e-01 2.06770197e-01 6.35259926e-01 -1.37897587e+00 -4.87099797e-01 -7.35700905e-01 -7.25720406e-01 1.16504975e-01 2.43321449e-01 -1.89007550e-01 -4.15901184e-01 -8.18445813e-03 7.52406240e-01 -1.07598972e+00 -7.51802698e-02 2.10433587e-01 -2.49807343e-01 1.71178967e-01 1.14424002e+00 -1.46847486e-01 8.30734611e-01 -2.42011428e+00 -3.78949463e-01 5.01577854e-01 -1.98817417e-01 2.21004516e-01 1.04672343e-01 5.27277291e-01 2.06193328e-01 -1.14371374e-01 -4.19446260e-01 -5.47942705e-02 -3.19347799e-01 -5.31852804e-03 -3.25218856e-01 6.20169997e-01 1.28338635e-01 5.70264220e-01 -5.63696325e-01 -6.40833497e-01 6.26977026e-01 6.32930398e-01 3.58650135e-03 4.31471951e-02 -5.34579717e-02 4.91829127e-01 -6.19673848e-01 1.09447074e+00 1.36295605e+00 1.07033350e-01 -1.39995039e-01 -4.47272241e-01 -7.38318682e-01 -1.81738436e-01 -1.60854745e+00 1.55432272e+00 -4.80050564e-01 2.85877258e-01 1.28701255e-01 -2.52791107e-01 1.53321838e+00 -5.51136658e-02 5.76415002e-01 -6.33385420e-01 1.80880785e-01 6.51319623e-01 -2.42641866e-01 -2.52628475e-01 4.50528800e-01 -1.12704456e-01 1.24721624e-01 2.48335823e-01 -4.41480607e-01 -9.50338125e-01 -3.58115077e-01 -1.26300350e-01 4.58259374e-01 5.00309825e-01 3.93301249e-01 -2.62837917e-01 6.41373038e-01 2.66864419e-01 6.06254697e-01 2.27770537e-01 8.11288431e-02 6.75240695e-01 -4.62514251e-01 -1.00361660e-01 -1.07602882e+00 -1.10613143e+00 -6.32683396e-01 -1.13737069e-01 6.91510975e-01 -1.24822840e-01 -3.43657643e-01 7.86247626e-02 4.45012927e-01 5.61835289e-01 -6.32892400e-02 3.93318497e-02 -4.60010380e-01 -2.39299893e-01 1.38628542e-01 4.08687592e-01 8.68751824e-01 -5.14973938e-01 -6.58795476e-01 3.75906080e-02 2.11690053e-01 -1.17043698e+00 -1.35343924e-01 -2.18041509e-01 -1.02518070e+00 -1.33823097e+00 -1.52336806e-01 -5.28400600e-01 6.06598198e-01 8.06208193e-01 6.70846045e-01 2.01094612e-01 -4.22616810e-01 5.00009716e-01 -2.85196781e-01 -7.46482372e-01 7.88126364e-02 -1.43242806e-01 2.79403448e-01 -4.42499034e-02 6.28603101e-01 -5.95375180e-01 -5.47346830e-01 7.63772845e-01 -4.83152926e-01 6.28070384e-02 7.38062322e-01 2.85663247e-01 9.61870790e-01 -6.03250675e-02 8.56336728e-02 -5.93335748e-01 9.76383761e-02 -5.91694005e-02 -1.45164144e+00 5.21125719e-02 -8.10519516e-01 -2.21885517e-01 2.09027663e-01 -1.71852440e-01 -9.75563467e-01 3.67411077e-01 3.99013385e-02 -5.40148973e-01 -3.58902395e-01 2.59621561e-01 -3.40088934e-01 -4.55973834e-01 5.87230265e-01 2.63233244e-01 9.96328741e-02 -5.17389357e-01 1.81137547e-01 9.69658196e-01 5.65903485e-01 -6.23613179e-01 1.53188324e+00 6.34626627e-01 4.05192137e-01 -1.19942474e+00 -5.58236122e-01 -6.28695965e-01 -9.35357988e-01 -4.04900253e-01 4.98071849e-01 -9.83093262e-01 -4.74994242e-01 6.56076372e-01 -1.14213169e+00 -2.48723663e-02 -1.89594358e-01 8.82278025e-01 -3.45312119e-01 4.58054006e-01 5.23799397e-02 -1.04530108e+00 -2.75372803e-01 -9.95770752e-01 1.18182695e+00 3.82821858e-01 4.62490059e-02 -4.36838329e-01 2.71305799e-01 1.95389897e-01 2.68307894e-01 2.44469658e-01 5.22490203e-01 2.39847720e-01 -1.21462452e+00 -3.24056923e-01 -3.45995814e-01 1.40039057e-01 2.83198059e-01 5.93142331e-01 -8.82638514e-01 -8.94239470e-02 1.66166648e-01 1.09362043e-01 2.50046700e-01 2.99043268e-01 7.63797104e-01 4.85374928e-01 -5.19835353e-01 8.89148474e-01 1.80312979e+00 1.45072401e-01 6.03427947e-01 3.73427987e-01 5.57230532e-01 3.18203837e-01 1.32430077e+00 3.95855844e-01 3.02926660e-01 7.89192438e-01 5.45618832e-01 1.10764235e-01 9.67402980e-02 -3.16773891e-01 2.20686523e-03 9.46021020e-01 -3.57940376e-01 2.62260228e-01 -1.01843596e+00 1.96230650e-01 -1.56467152e+00 -7.25021064e-01 -8.50983977e-01 2.51546502e+00 2.99568683e-01 -9.52757373e-02 -2.80281872e-01 9.01537836e-02 8.78525496e-01 -1.72657982e-01 -5.01341641e-01 -3.13042030e-02 2.91237477e-02 2.82384545e-01 7.62980938e-01 6.02702856e-01 -6.06896281e-01 8.85401964e-01 5.39574909e+00 5.28153837e-01 -1.38569248e+00 -9.42083448e-02 -2.73373067e-01 2.47441486e-01 -3.55700523e-01 1.84955493e-01 -1.08790159e+00 4.40567553e-01 6.71985269e-01 -2.60386348e-01 9.54251736e-02 7.43269265e-01 3.08718711e-01 -4.10913676e-01 -6.17713213e-01 1.20792246e+00 -1.45485535e-01 -9.02761221e-01 -2.08501384e-01 1.28617972e-01 4.37735975e-01 2.12997437e-01 -8.16161484e-02 -1.62212089e-01 -1.55855522e-01 -5.09110987e-01 7.55150974e-01 5.45893550e-01 1.21907938e+00 -6.39856637e-01 5.83243012e-01 4.35120344e-01 -1.59031415e+00 1.01460934e-01 -5.88989496e-01 -1.33760842e-02 1.15145192e-01 7.91021764e-01 -8.45023453e-01 8.84436607e-01 7.07958698e-01 7.04694092e-01 -5.78056455e-01 1.21815407e+00 -4.74256903e-01 4.05303150e-01 -6.59270763e-01 -4.22853753e-02 -2.07250670e-01 -8.94035339e-01 3.90581548e-01 8.26408803e-01 9.93699908e-01 3.35651070e-01 -8.79514869e-03 9.58479702e-01 2.82951146e-01 2.05748528e-01 -8.51026118e-01 3.34394783e-01 1.00699782e+00 1.37943900e+00 -4.61291969e-01 2.35278502e-01 -4.62378621e-01 3.47750694e-01 -1.43668532e-01 1.28001466e-01 -8.90307307e-01 -2.89268523e-01 3.94976050e-01 6.16454780e-01 8.93586874e-02 -7.20833957e-01 -5.00820935e-01 -1.06348789e+00 2.57076412e-01 -2.86058635e-01 -1.05893128e-01 -1.14178848e+00 -1.02533245e+00 2.72388399e-01 2.02175975e-01 -1.82240140e+00 2.21045867e-01 -5.32139480e-01 -6.52605593e-01 9.61394906e-01 -1.58472741e+00 -1.32838786e+00 -9.49064672e-01 5.34238577e-01 2.41944864e-01 4.06147633e-03 7.13872969e-01 2.24093020e-01 -3.83582711e-01 -2.97824368e-02 2.01517075e-01 -2.30093881e-01 7.87414670e-01 -6.18601799e-01 1.85447022e-01 8.68308365e-01 -1.38093710e-01 4.28022265e-01 5.45213819e-01 -9.37166452e-01 -1.57649720e+00 -9.83907759e-01 5.55539846e-01 -2.67750770e-01 5.53176463e-01 -3.76627088e-01 -8.58817458e-01 5.85694134e-01 -1.00097820e-01 -6.21984825e-02 4.11453307e-01 -1.46904230e-01 -1.30639747e-01 -5.65213561e-01 -1.22618914e+00 3.02308202e-01 1.10704875e+00 -3.73936504e-01 -4.64695126e-01 1.14527382e-01 5.00915408e-01 -5.31930625e-01 -7.09224403e-01 7.95914710e-01 6.79006338e-01 -9.83731568e-01 9.36062098e-01 4.53742117e-01 -1.51129002e-02 -8.73339534e-01 -4.17190492e-01 -8.67698967e-01 -3.72224420e-01 -1.14603169e-01 3.81232500e-01 1.28997755e+00 1.62998289e-01 -9.40312564e-01 6.84314013e-01 5.24273634e-01 -3.12988788e-01 -2.95155257e-01 -1.04169142e+00 -8.76903772e-01 -3.40041608e-01 -3.29634011e-01 7.32275307e-01 7.67579138e-01 -5.00102878e-01 3.29117239e-01 -8.07640702e-02 7.29904175e-01 1.06951427e+00 5.69287181e-01 1.14603305e+00 -1.74145985e+00 1.89494982e-01 6.94578514e-02 -5.27764440e-01 -7.82322645e-01 -3.36056463e-02 -5.45754135e-01 3.96073572e-02 -1.36714172e+00 -1.55048430e-01 -9.12930906e-01 2.17448443e-01 -6.10700957e-02 1.99703649e-01 2.43064567e-01 8.19756463e-02 5.50115347e-01 -6.16965815e-02 5.78835607e-01 9.54228938e-01 1.17657699e-01 -1.38081700e-01 2.19153807e-01 -1.71958894e-01 6.56398118e-01 8.71791065e-01 -4.22249854e-01 -3.59650731e-01 -5.95179677e-01 1.11346297e-01 -1.89114258e-01 3.22074860e-01 -1.36556709e+00 2.96976894e-01 -4.17049468e-01 4.01135892e-01 -1.24196088e+00 5.71597755e-01 -1.50422263e+00 7.39661574e-01 4.79630560e-01 7.01894641e-01 -2.02823617e-02 1.42812937e-01 3.44142169e-01 -7.06808716e-02 -3.92859042e-01 1.02261484e+00 4.50793393e-02 -5.68641543e-01 4.80585098e-01 2.28371203e-01 -3.86088282e-01 1.16460812e+00 -6.74686551e-01 -2.57120848e-01 -2.35888190e-04 -1.05428249e-02 1.83765396e-01 1.13738859e+00 -6.31792797e-03 8.87331426e-01 -1.55674744e+00 -4.82887477e-01 6.60521150e-01 3.71023357e-01 5.43779612e-01 1.98864177e-01 7.89226472e-01 -7.82439053e-01 3.21216077e-01 -2.11583301e-01 -1.15376163e+00 -1.27611899e+00 3.03895622e-01 2.69943267e-01 6.05042934e-01 -5.05963981e-01 3.44624400e-01 -2.93973029e-01 -5.97096801e-01 -2.61025667e-01 -3.81788015e-01 2.56685466e-01 -2.59049118e-01 1.45702690e-01 3.55472058e-01 9.21647698e-02 -8.04638863e-01 -5.05165875e-01 1.56922448e+00 4.76368368e-01 -1.96850710e-02 1.28253639e+00 -2.04769894e-01 -7.86416829e-02 5.24192095e-01 6.94017351e-01 4.18678492e-01 -9.62823272e-01 -2.96226770e-01 -3.62600349e-02 -1.06274986e+00 -7.93479607e-02 -2.94566751e-01 -8.47273946e-01 9.54759717e-01 6.81171000e-01 -1.10927902e-01 9.52903628e-01 -1.90003380e-01 6.08210027e-01 1.65715888e-01 9.48943377e-01 -8.76611650e-01 -4.29730326e-01 2.84576654e-01 8.40449333e-01 -1.23375201e+00 4.38799024e-01 -9.04872656e-01 -2.67354310e-01 1.25377059e+00 6.31676435e-01 -9.25463885e-02 6.71020269e-01 3.43504339e-01 1.83679461e-01 -1.28162965e-01 -9.68068987e-02 -1.54609144e-01 -1.27170943e-02 8.06203783e-01 1.17821619e-01 9.62947756e-02 -1.19744748e-01 8.94683525e-02 -2.28756055e-01 1.61587223e-01 4.69540030e-01 9.46950793e-01 -7.51050115e-01 -1.20465684e+00 -8.07374835e-01 2.25374684e-01 4.79278624e-01 2.42379427e-01 -2.52526313e-01 1.03203535e+00 7.51560777e-02 7.12807834e-01 1.56304389e-01 -4.68640596e-01 6.76254153e-01 -1.23857640e-01 5.10906816e-01 -5.66489995e-01 1.90039650e-01 3.42104614e-01 -2.35466331e-01 -4.92553085e-01 -4.96062875e-01 -8.84020388e-01 -1.29577005e+00 -2.83410221e-01 -6.99370682e-01 2.73912251e-01 1.03545129e+00 3.76483053e-01 3.63543034e-01 -3.68960708e-01 9.47654307e-01 -8.86204243e-01 -4.37763244e-01 -7.69116700e-01 -7.87429512e-01 3.68639641e-02 -3.93197760e-02 -9.48938608e-01 -4.53934640e-01 -3.62064302e-01]
[8.078310012817383, -2.601487398147583]
e4f6de7a-e953-40e8-a015-16ab02987bc8
structured-aspect-extraction
null
null
https://aclanthology.org/C16-1219
https://aclanthology.org/C16-1219.pdf
Structured Aspect Extraction
Aspect extraction identifies relevant features from a textual description of an entity, e.g., a phone, and is typically targeted to product descriptions, reviews, and other short texts as an enabling task for, e.g., opinion mining and information retrieval. Current aspect extraction methods mostly focus on aspect terms and often neglect interesting modifiers of the term or embed them in the aspect term without proper distinction. Moreover, flat syntactic structures are often assumed, resulting in inaccurate extractions of complex aspects. This paper studies the problem of structured aspect extraction, a variant of traditional aspect extraction aiming at a fine-grained extraction of complex (i.e., hierarchical) aspects. We propose an unsupervised and scalable method for structured aspect extraction consisting of statistical noun phrase clustering, cPMI-based noun phrase segmentation, and hierarchical pattern induction. Our evaluation shows a substantial improvement over existing methods in terms of both quality and computational efficiency.
['Omer Gunes', 'Giorgio Orsi', 'Tim Furche']
2016-12-01
structured-aspect-extraction-1
https://aclanthology.org/C16-1219
https://aclanthology.org/C16-1219.pdf
coling-2016-12
['aspect-extraction']
['natural-language-processing']
[ 3.07085097e-01 1.71467051e-01 -5.05887926e-01 -4.25755054e-01 -7.30680406e-01 -9.13061559e-01 6.39193714e-01 7.71830976e-01 -3.29967231e-01 5.44156015e-01 3.31199467e-01 -5.78044116e-01 9.76778939e-02 -8.99185240e-01 -2.49018237e-01 -5.81234097e-01 2.88293958e-01 6.26697183e-01 3.53775546e-02 9.51717049e-03 4.20388460e-01 2.84551620e-01 -1.44536078e+00 1.96199998e-01 6.59359515e-01 8.11615944e-01 -3.50480936e-02 2.36586824e-01 -8.01261842e-01 2.87585795e-01 -8.05432081e-01 -7.28990674e-01 -1.89820677e-01 -1.03611439e-01 -8.40591490e-01 5.84204674e-01 -2.98784733e-01 2.28768755e-02 3.79147112e-01 1.00291657e+00 6.33903816e-02 -8.12041610e-02 7.60957181e-01 -1.07227564e+00 -9.50535238e-02 9.31014419e-01 -7.25027144e-01 -8.27927217e-02 4.44443315e-01 -3.01161200e-01 1.51335800e+00 -1.04032600e+00 7.64673829e-01 8.86133373e-01 4.90830034e-01 7.84612726e-03 -1.03629112e+00 -2.42974594e-01 3.50449413e-01 -1.64779887e-01 -1.34330547e+00 -3.15963060e-01 7.09077537e-01 -3.25106710e-01 1.35018742e+00 4.07127351e-01 8.74949813e-01 5.10038555e-01 2.64609963e-01 9.63270068e-01 9.53663707e-01 -4.29388523e-01 4.33901876e-01 6.39260292e-01 6.87992036e-01 1.13123715e-01 7.82748759e-01 -5.25724828e-01 -4.02925760e-01 -4.69659567e-01 1.65318742e-01 -1.21302001e-01 5.81766032e-02 -8.56138617e-02 -8.38623047e-01 8.34072769e-01 -4.53670353e-01 4.56446737e-01 -7.59400070e-01 -4.04480219e-01 4.47330326e-01 -8.18735957e-02 4.81430948e-01 5.53439796e-01 -9.57180262e-01 -3.65549743e-01 -9.75976467e-01 2.84861833e-01 1.32489777e+00 1.58948100e+00 8.89365137e-01 -2.24753931e-01 -3.81478630e-02 6.20887816e-01 3.13262969e-01 5.43825269e-01 2.77522534e-01 -3.27112377e-01 3.30745846e-01 1.12534440e+00 1.05784267e-01 -7.91436434e-01 -4.48214084e-01 -5.45715630e-01 -4.55545366e-01 -3.20716083e-01 -9.24944356e-02 -2.36333475e-01 -9.89362657e-01 1.04142666e+00 7.05379248e-01 -7.13101804e-01 6.47179112e-02 3.76276195e-01 1.13063300e+00 6.00089312e-01 1.20132335e-01 -5.67448020e-01 2.08314347e+00 -7.46858180e-01 -9.10251379e-01 -2.73960292e-01 4.48645622e-01 -1.02958918e+00 7.86072195e-01 3.60517770e-01 -8.58180583e-01 5.61101828e-03 -8.54083121e-01 1.41940147e-01 -7.11395741e-01 6.95220158e-02 1.06061065e+00 7.05923378e-01 -4.80861723e-01 2.44641349e-01 -6.52264178e-01 -2.09336922e-01 2.91162193e-01 5.35414219e-01 -4.28887993e-01 -7.43409013e-03 -7.59603977e-01 3.46167177e-01 3.77135009e-01 -2.02436358e-01 5.04370704e-02 -5.42057633e-01 -1.13190866e+00 1.84662879e-01 8.55097294e-01 -5.84213197e-01 1.25248218e+00 -9.56391037e-01 -1.01102006e+00 7.04120874e-01 -6.25527680e-01 -1.20494127e-01 -4.78697717e-01 -2.76016444e-01 -5.64683139e-01 1.64011344e-01 4.48582739e-01 1.36195496e-01 9.23901379e-01 -1.11320102e+00 -9.66219842e-01 -4.33943152e-01 2.68334359e-01 3.39665204e-01 -3.72873276e-01 4.71687675e-01 -8.06819081e-01 -7.32548356e-01 4.83905040e-02 -8.56102169e-01 -5.04807651e-01 -7.75313437e-01 -8.04078519e-01 -3.94023806e-01 6.96314037e-01 -4.74657387e-01 1.59448409e+00 -1.98420513e+00 -1.01467602e-01 5.21931589e-01 5.49133778e-01 1.47749245e-01 1.81150943e-01 4.82009530e-01 -7.47508416e-03 5.47974348e-01 -1.93621472e-01 -1.12499729e-01 2.07155108e-01 1.70248672e-01 -1.28583252e-01 6.01997636e-02 2.87500590e-01 9.81467426e-01 -6.62978530e-01 -7.74997473e-01 -1.86839014e-01 3.39862794e-01 -2.97511190e-01 5.28857782e-02 -3.51282626e-01 -7.53334612e-02 -8.06272149e-01 8.58172178e-01 4.52677935e-01 -1.94413215e-01 1.24254033e-01 -3.97684187e-01 -3.17736447e-01 8.96245778e-01 -1.23295248e+00 1.04604256e+00 -4.82454479e-01 3.39001447e-01 -2.63885092e-02 -5.76227427e-01 5.57240486e-01 4.71712291e-01 6.87017858e-01 -2.43302003e-01 3.14553767e-01 2.56195605e-01 -3.88594046e-02 -1.71328545e-01 9.05175269e-01 -2.57685363e-01 -3.85911018e-01 5.36320031e-01 9.74280015e-02 -3.30251813e-01 7.69235551e-01 1.99574172e-01 1.10148406e+00 -5.58565222e-02 1.23649144e+00 -2.90260851e-01 4.82696563e-01 4.91331428e-01 6.29982948e-01 3.55874866e-01 2.14306802e-01 5.64011693e-01 7.17158198e-01 -7.04597309e-02 -9.59302127e-01 -5.02009928e-01 -1.83026731e-01 7.03289568e-01 -5.98049574e-02 -1.25757635e+00 -6.43724918e-01 -1.03858960e+00 -2.38211825e-01 7.84106016e-01 -4.45214093e-01 2.42933810e-01 -4.46912915e-01 -7.98266351e-01 3.64378951e-02 4.08486515e-01 1.38138637e-01 -1.02101123e+00 -3.21762711e-01 4.07119095e-01 -5.58081120e-02 -1.38812530e+00 -4.28131014e-01 4.94629443e-01 -6.33426547e-01 -9.25125718e-01 -2.91568071e-01 -7.11118996e-01 7.42596447e-01 1.40632480e-01 1.46595907e+00 -1.33142676e-02 3.92700732e-02 2.65164644e-01 -7.37991273e-01 -7.31186867e-01 -9.06147286e-02 5.21064699e-01 -2.30787128e-01 -2.20594928e-01 1.13053596e+00 -5.07928014e-01 -2.16049850e-01 1.57347843e-01 -1.11697268e+00 -1.86905369e-01 1.04858518e+00 6.05960727e-01 9.98133123e-01 6.44097090e-01 1.52632847e-01 -1.48917806e+00 7.54041195e-01 -3.36973429e-01 -4.19637710e-01 3.98880355e-02 -9.95650589e-01 8.80465358e-02 4.42993820e-01 -3.29974264e-01 -1.07815766e+00 4.34389561e-02 -4.78344828e-01 4.42799866e-01 -6.16745234e-01 1.01548600e+00 -5.46957672e-01 3.72799456e-01 1.31707326e-01 3.65055621e-01 -6.28638387e-01 -3.26692998e-01 2.87761301e-01 8.67325544e-01 -1.07756570e-01 -2.46882021e-01 1.00407994e+00 2.44220063e-01 -2.25929663e-01 -1.23110771e+00 -8.93917084e-01 -1.05047548e+00 -7.38174021e-01 2.34633178e-01 5.61116278e-01 -7.44958580e-01 -2.57609963e-01 1.13931179e-01 -1.01876616e+00 4.19202030e-01 -6.57041192e-01 3.69548708e-01 -1.54826015e-01 2.70754397e-01 -4.65424329e-01 -7.11994171e-01 -5.21925032e-01 -8.56076062e-01 1.40306640e+00 3.08815479e-01 -7.97233701e-01 -8.17521513e-01 -4.83691469e-02 3.39282423e-01 2.31660500e-01 -1.55873984e-01 1.23309135e+00 -1.21355879e+00 -3.86215955e-01 -5.55005550e-01 -1.57067943e-02 7.64220357e-02 4.67750669e-01 -6.64226413e-02 -7.56267846e-01 2.22484529e-01 1.53862566e-01 3.02713484e-01 3.87082189e-01 1.45421028e-01 2.89734751e-01 -8.78827751e-01 -4.99784291e-01 9.78412926e-02 1.30694783e+00 4.65626448e-01 5.61639547e-01 4.84485388e-01 6.55189812e-01 7.26210475e-01 1.01959729e+00 5.48321486e-01 4.24963146e-01 5.31032801e-01 -2.26413995e-01 1.02305174e-01 2.81975001e-01 -1.28060086e-02 2.02775359e-01 1.14068604e+00 1.84383228e-01 -1.19268343e-01 -6.92943335e-01 9.62928474e-01 -1.29982960e+00 -5.27044535e-01 -2.18853265e-01 1.90684938e+00 1.07721364e+00 5.36751628e-01 2.47513920e-01 3.56417090e-01 3.69011581e-01 5.49950115e-02 -2.07927719e-01 -5.13880789e-01 2.36403886e-02 3.41635019e-01 3.27043861e-01 2.52442390e-01 -1.20259631e+00 1.08179498e+00 5.05503082e+00 1.07140529e+00 -6.51056886e-01 3.29114012e-02 3.31406116e-01 2.03008190e-01 -7.52911508e-01 2.74186701e-01 -1.27900076e+00 9.06284712e-03 6.93029165e-01 -3.37205976e-01 -1.48784131e-01 1.10725462e+00 8.87513012e-02 -3.96423340e-01 -8.89397383e-01 6.88945174e-01 1.08101055e-01 -9.54123616e-01 3.48968148e-01 2.74198681e-01 7.20528841e-01 -4.40325499e-01 -2.17132032e-01 2.10752353e-01 -1.35031506e-01 -7.65586674e-01 4.77107823e-01 -7.04823807e-02 3.49334806e-01 -1.02742302e+00 1.26878631e+00 1.14048503e-01 -1.53298581e+00 4.37912554e-01 -1.13328472e-01 1.09692201e-01 3.74769419e-01 1.05247080e+00 -6.56202793e-01 5.64137340e-01 5.96359491e-01 5.78921914e-01 -3.57193410e-01 9.39327896e-01 -4.87214983e-01 8.32134664e-01 -3.83043349e-01 -4.83305484e-01 3.18868428e-01 -3.72802854e-01 8.16793263e-01 1.37154174e+00 3.90736908e-02 1.71856135e-01 1.81499422e-01 4.61540431e-01 6.77624270e-02 7.84761012e-01 -7.39385843e-01 -5.79444408e-01 1.35886863e-01 1.60912657e+00 -1.25934505e+00 -5.09159744e-01 -7.80266285e-01 5.64154744e-01 -2.24248543e-01 2.98744261e-01 -3.87250125e-01 -7.83923328e-01 6.21697724e-01 1.91917971e-01 9.80584145e-01 -1.89668015e-01 -6.88497841e-01 -1.09639168e+00 4.77297693e-01 -1.15844381e+00 1.88294932e-01 -2.12083787e-01 -9.77853060e-01 9.93053079e-01 3.66920382e-02 -1.33039272e+00 -6.09991193e-01 -4.96049613e-01 -4.08347636e-01 6.16184473e-01 -1.40481830e+00 -1.12287557e+00 2.14020401e-01 2.64144361e-01 6.92143142e-01 1.39773367e-02 8.48063767e-01 3.00188541e-01 -3.89723927e-01 4.48505461e-01 -3.61571908e-01 1.20478332e-01 2.14709297e-01 -1.42861462e+00 4.30364609e-01 7.89255381e-01 3.05848956e-01 1.04090726e+00 9.48414207e-01 -8.63235056e-01 -1.42361510e+00 -1.07333326e+00 1.61371946e+00 -3.93202037e-01 8.12228620e-01 -4.48823452e-01 -6.54657543e-01 5.47295332e-01 3.32445145e-01 -7.35307992e-01 1.14040709e+00 4.12596732e-01 -2.62494445e-01 -8.69548880e-03 -9.18853104e-01 7.51895487e-01 5.67195535e-01 -3.88780534e-01 -7.69317806e-01 1.53772712e-01 9.06015575e-01 -1.04993330e-02 -9.79029536e-01 3.51584047e-01 5.97862363e-01 -4.40003186e-01 6.09679341e-01 -5.51130474e-01 1.78095981e-01 -4.06121761e-01 -6.70144930e-02 -9.64754164e-01 -1.67221949e-03 -7.33028948e-01 -3.61202151e-01 1.81859767e+00 1.09152853e+00 -2.94737846e-01 8.54289472e-01 7.33052969e-01 1.93076238e-01 -7.99114764e-01 -5.25648773e-01 -5.47489762e-01 -4.50773597e-01 -7.44739056e-01 6.79989755e-01 5.58586836e-01 2.88725734e-01 1.22651327e+00 -1.06383711e-02 1.56908259e-01 5.81420064e-01 7.65886903e-01 5.09376943e-01 -1.08677793e+00 -3.26052904e-01 -5.34003854e-01 -4.59549576e-01 -9.45507824e-01 3.37323267e-03 -3.41726631e-01 1.39318287e-01 -1.68395245e+00 4.09431666e-01 -2.71688789e-01 2.52565801e-01 4.12125289e-01 -3.86108249e-01 5.98031320e-02 -3.60795617e-01 3.24724279e-02 -7.79895961e-01 4.53055650e-01 7.82127976e-01 -3.84439200e-01 -5.00474334e-01 6.86849833e-01 -1.19473565e+00 9.70665574e-01 8.95472884e-01 -8.08737338e-01 -2.51105279e-01 1.57578737e-01 6.25606716e-01 -4.47104186e-01 -4.81041521e-01 -5.10616183e-01 7.83502609e-02 -1.51130304e-01 -8.56317729e-02 -7.49988317e-01 5.81983998e-02 -1.11481464e+00 -1.94495529e-01 -2.10557636e-02 8.68767947e-02 2.28964120e-01 1.23473771e-01 2.51484424e-01 -5.85710824e-01 -6.19138777e-01 1.30120307e-01 -2.27916792e-01 -4.99649793e-01 2.08614290e-01 -7.74987996e-01 6.67669922e-02 6.77311301e-01 -1.00989908e-01 9.03747454e-02 -3.71412188e-01 -6.33111954e-01 -3.22534144e-02 3.13965589e-01 2.20896304e-01 6.19458675e-01 -1.05968523e+00 -3.36136967e-01 -4.33150455e-02 3.92580479e-01 1.52909443e-01 -3.53903830e-01 9.12330568e-01 -9.59575549e-02 6.64449155e-01 4.58484024e-01 -1.92679659e-01 -1.57912278e+00 7.10807681e-01 -4.48431820e-01 -7.97085345e-01 -4.90919709e-01 3.10772121e-01 1.76315412e-01 -3.57120872e-01 1.42795026e-01 -5.13501823e-01 -7.94387579e-01 4.74547267e-01 5.72599530e-01 -1.76651940e-01 2.70382315e-01 -8.35149944e-01 -3.87297392e-01 5.71913302e-01 -2.49970660e-01 -2.14922220e-01 1.33488262e+00 -3.50362450e-01 -4.83496070e-01 5.76656580e-01 1.03077555e+00 4.46925759e-01 -3.22633624e-01 -2.74446070e-01 5.49680173e-01 2.07005367e-02 -1.21677563e-01 -5.63894629e-01 -8.91329169e-01 4.17216778e-01 -2.13247508e-01 4.74038601e-01 1.22113752e+00 4.78012770e-01 8.66825879e-01 6.74928248e-01 3.47922832e-01 -1.11748302e+00 -5.55253685e-01 5.76204777e-01 4.02153879e-01 -1.05772614e+00 4.28317875e-01 -8.91157687e-01 -6.68379366e-01 8.18594933e-01 2.44794652e-01 3.33095253e-01 1.03271782e+00 6.88715696e-01 -1.13977287e-02 -5.44457853e-01 -7.39512861e-01 -6.92326427e-01 5.76320291e-01 3.74732763e-01 5.32501757e-01 4.59077721e-03 -7.88779497e-01 1.13476551e+00 -2.95283258e-01 -4.23644871e-01 3.91880393e-01 1.33683276e+00 -3.93925548e-01 -1.32685447e+00 -5.57724908e-02 8.67440939e-01 -1.21193445e+00 -7.37994611e-01 -6.54051900e-01 8.16368163e-01 7.64549971e-02 1.10734034e+00 -2.96734244e-01 -2.60382414e-01 5.00560403e-01 5.94487302e-02 -4.72507887e-02 -1.05457807e+00 -7.99096346e-01 6.82594478e-01 6.25764310e-01 -2.91706562e-01 -7.38472342e-01 -9.47880566e-01 -1.15626180e+00 1.77397862e-01 -6.01389945e-01 8.30432355e-01 8.37355018e-01 1.47888994e+00 2.60407180e-01 4.09193397e-01 5.08987904e-01 -3.08985204e-01 9.27951187e-02 -9.45756316e-01 -6.99291229e-01 1.57550052e-01 1.16410375e-01 -3.10830951e-01 -2.27593124e-01 2.07619652e-01]
[11.29774284362793, 6.736935138702393]
1c2b55b0-2748-4c64-878d-67c9c2eb05b1
egmm-an-evidential-version-of-the-gaussian
2010.01333
null
https://arxiv.org/abs/2010.01333v3
https://arxiv.org/pdf/2010.01333v3.pdf
EGMM: an Evidential Version of the Gaussian Mixture Model for Clustering
The Gaussian mixture model (GMM) provides a simple yet principled framework for clustering, with properties suitable for statistical inference. In this paper, we propose a new model-based clustering algorithm, called EGMM (evidential GMM), in the theoretical framework of belief functions to better characterize cluster-membership uncertainty. With a mass function representing the cluster membership of each object, the evidential Gaussian mixture distribution composed of the components over the powerset of the desired clusters is proposed to model the entire dataset. The parameters in EGMM are estimated by a specially designed Expectation-Maximization (EM) algorithm. A validity index allowing automatic determination of the proper number of clusters is also provided. The proposed EGMM is as simple as the classical GMM, but can generate a more informative evidential partition for the considered dataset. The synthetic and real dataset experiments show that the proposed EGMM performs better than other representative clustering algorithms. Besides, its superiority is also demonstrated by an application to multi-modal brain image segmentation.
['Quan Pan', 'Zhun-Ga Liu', 'Thierry Denoeux', 'Lianmeng Jiao']
2020-10-03
null
null
null
null
['brain-image-segmentation']
['medical']
[-2.29019284e-01 2.10502326e-01 1.16453506e-01 -2.68704355e-01 -5.79721808e-01 -1.62956312e-01 7.09418774e-01 1.85236156e-01 -4.37982827e-01 4.34723586e-01 -2.83754408e-01 5.11699654e-02 -6.82050943e-01 -4.58515465e-01 -2.70680487e-01 -1.34166420e+00 -7.35405907e-02 9.15330827e-01 -1.02023268e-02 4.14772838e-01 4.07761067e-01 6.32915974e-01 -1.73238909e+00 -1.11202732e-01 1.35777080e+00 9.11157548e-01 5.94180405e-01 2.41831422e-01 -5.21141626e-02 3.71448338e-01 -7.85777748e-01 -2.49610826e-01 -1.52146414e-01 -3.42589319e-01 -5.23274302e-01 7.48920262e-01 -4.08838391e-01 1.23887040e-01 3.47755551e-01 1.27544463e+00 3.09778690e-01 6.05423927e-01 1.33914590e+00 -1.29311144e+00 -3.11001688e-01 7.73108661e-01 -5.54901302e-01 -2.17578426e-01 -7.89381638e-02 -3.63487571e-01 4.16087568e-01 -8.47855628e-01 2.07342923e-01 1.20976532e+00 1.18246011e-01 3.31758559e-01 -1.24525714e+00 -3.15304339e-01 -3.15696150e-02 4.58874613e-01 -1.86888826e+00 -2.37661138e-01 8.55120301e-01 -6.96472228e-01 6.60682097e-02 3.67445976e-01 5.23293793e-01 4.25945818e-01 2.17050403e-01 6.94072843e-01 1.31571996e+00 -4.05015796e-01 7.47180223e-01 4.76874173e-01 2.66788751e-01 3.81191045e-01 4.40871030e-01 -3.93038541e-01 1.16225496e-01 -5.57822168e-01 4.69477862e-01 -1.04921296e-01 -2.57932335e-01 -7.38667488e-01 -8.12406421e-01 9.31471765e-01 3.22348215e-02 6.85520709e-01 -7.64024138e-01 -1.06190711e-01 2.36549713e-02 -6.57493472e-01 3.37250829e-01 5.84689751e-02 1.92210674e-01 3.50652277e-01 -1.48406160e+00 2.67921071e-02 5.39715052e-01 6.89953268e-01 6.61267459e-01 5.16364202e-02 -2.20403727e-02 7.70432830e-01 8.71008635e-01 5.12250245e-01 6.40862167e-01 -1.23448491e+00 -3.27436954e-01 5.08174002e-01 7.27333724e-02 -1.03546274e+00 -4.24465001e-01 -6.05254471e-01 -1.00519454e+00 2.02185482e-01 2.25677639e-01 -5.39909527e-02 -6.72827065e-01 1.50260389e+00 5.95173895e-01 2.46161923e-01 5.93757108e-02 6.41712904e-01 5.50809383e-01 5.89993417e-01 1.04237989e-01 -5.84869921e-01 1.24177957e+00 -2.62408108e-01 -8.90431404e-01 2.25207806e-01 5.72039485e-02 -5.94328642e-01 3.02027464e-01 9.00031269e-01 -9.54784632e-01 -5.51453531e-01 -7.98657238e-01 7.04308331e-01 -4.27151583e-02 4.88652319e-01 4.59707528e-01 8.53271186e-01 -9.81861711e-01 3.94782990e-01 -1.11313021e+00 -1.09172754e-01 1.69916168e-01 3.26555550e-01 -3.31926078e-01 1.38715029e-01 -7.03852654e-01 8.55453312e-01 9.83854353e-01 4.74146307e-01 -6.57720208e-01 -1.95056662e-01 -8.64814997e-01 -7.34369233e-02 -5.48161939e-02 -5.23732305e-01 7.55932629e-01 -6.26959562e-01 -1.49458528e+00 6.85790420e-01 -2.06300065e-01 -4.69052583e-01 3.71402264e-01 2.10331678e-01 -2.37397373e-01 6.29749060e-01 -4.40407805e-02 6.16039217e-01 1.17071092e+00 -1.86178327e+00 -3.02513510e-01 -5.40293932e-01 -6.15865052e-01 2.24733502e-02 -1.18787199e-01 -1.58369184e-01 -3.44016999e-01 -3.23588371e-01 5.41688621e-01 -7.90349245e-01 -4.55866039e-01 -7.41846621e-01 -6.22032821e-01 -4.98469561e-01 4.79171485e-01 -6.69551551e-01 1.23579252e+00 -2.24247932e+00 2.54447371e-01 6.72949314e-01 2.65655994e-01 -6.87022135e-02 6.26423240e-01 1.61816493e-01 -1.01968445e-01 -3.04622173e-01 -7.36648917e-01 -4.60992545e-01 2.16140524e-01 2.52551168e-01 3.12930435e-01 8.95314395e-01 -2.16937140e-01 2.06396759e-01 -7.50950277e-01 -9.67233479e-01 7.11904049e-01 5.57466149e-01 -2.52785712e-01 1.35685980e-01 -1.86163522e-02 5.02352953e-01 -4.15148139e-01 1.42775476e-01 1.08738971e+00 -1.71172410e-01 3.35046023e-01 -1.48966238e-01 2.70378534e-02 -7.70838261e-01 -1.49240243e+00 1.24702990e+00 8.75261426e-03 2.53564566e-01 2.68914551e-01 -1.28682530e+00 1.18880236e+00 4.31334347e-01 8.47405136e-01 2.50770897e-01 5.81329286e-01 9.04297233e-02 1.66773066e-01 -5.06019413e-01 4.43089694e-01 -3.42171401e-01 9.59439799e-02 2.38776863e-01 2.53988147e-01 -1.24820150e-01 2.42894888e-01 2.65791178e-01 2.15926245e-01 -1.16528437e-01 4.13408637e-01 -6.49253070e-01 7.66059518e-01 -1.70562044e-01 3.52768660e-01 5.43827593e-01 -8.85693282e-02 4.80777502e-01 1.14622265e-01 3.54366541e-01 -5.70323348e-01 -1.15162861e+00 -5.46712756e-01 3.40680182e-01 1.55696884e-01 7.55488053e-02 -1.25389504e+00 -2.06141964e-01 -2.29786769e-01 1.18055546e+00 -4.05748904e-01 -1.01262070e-01 7.16340821e-03 -1.42075968e+00 1.69858485e-01 -1.25743402e-02 5.08111656e-01 -7.65377522e-01 -4.99327123e-01 2.43259996e-01 -3.78940791e-01 -9.77419853e-01 1.12904802e-01 9.93501842e-02 -9.67874527e-01 -1.16717696e+00 -6.76917553e-01 -4.97576326e-01 8.26615691e-01 -1.33406743e-01 6.93844259e-01 -2.72785723e-01 -8.07349905e-02 6.02658689e-01 -2.41994560e-01 -1.61184058e-01 -7.31781483e-01 -5.01689196e-01 1.14659853e-01 6.61765814e-01 3.83498013e-01 -5.38726211e-01 -4.80022788e-01 2.11247534e-01 -9.60187078e-01 -3.05162877e-01 5.37479520e-01 4.88427281e-01 6.63649917e-01 9.01103079e-01 6.21718049e-01 -6.89577341e-01 6.06105685e-01 -7.08670378e-01 -5.44971585e-01 5.40845804e-02 -6.61581635e-01 -6.98126331e-02 4.18472677e-01 -3.17767143e-01 -1.44725502e+00 4.06141430e-02 -1.96004227e-01 -4.56821144e-01 -7.67481863e-01 4.07009900e-01 -5.47611713e-01 1.61198571e-01 5.12839377e-01 5.18200159e-01 1.64782390e-01 -6.76859856e-01 5.10304034e-01 8.09291244e-01 8.89543355e-01 -7.88663805e-01 3.10497791e-01 6.69098198e-01 1.50540277e-01 -1.12083590e+00 -1.69186458e-01 -6.32153392e-01 -8.31729233e-01 -5.05696177e-01 1.05794358e+00 -5.39052904e-01 -8.10683846e-01 5.20756960e-01 -9.55611825e-01 2.37866715e-01 -2.49529071e-02 9.49452639e-01 -7.78317153e-01 9.06037867e-01 -4.71958548e-01 -1.32435691e+00 -2.98764557e-01 -1.31052840e+00 6.41997397e-01 2.11295784e-01 -1.93230629e-01 -1.14750075e+00 -1.61160290e-01 5.01810253e-01 -1.50529832e-01 4.53381032e-01 9.64604497e-01 -9.06483293e-01 -2.26577416e-01 -3.04464340e-01 2.11330131e-01 6.73075557e-01 -3.65467444e-02 3.67525935e-01 -8.31508517e-01 -1.09666400e-01 5.79966128e-01 4.43273485e-01 7.16192126e-01 9.45287168e-01 1.08481324e+00 -7.08997920e-02 -3.95381898e-01 1.51251167e-01 1.44323492e+00 4.99072254e-01 5.48576295e-01 1.40637964e-01 4.25275385e-01 7.36414194e-01 6.88381493e-01 6.41552210e-01 2.95915544e-01 3.32070112e-01 4.05055106e-01 1.54557884e-01 3.21328700e-01 2.58138329e-01 1.16276965e-01 9.91265416e-01 -5.99718727e-02 -1.81202084e-01 -6.50172472e-01 5.35571516e-01 -1.89889300e+00 -9.35593307e-01 -4.47574824e-01 2.27987838e+00 4.10176963e-01 2.65321359e-02 3.39196473e-01 4.24029261e-01 1.29837847e+00 -3.08489680e-01 -1.83176368e-01 -1.92450568e-01 -8.06475133e-02 -1.54505065e-02 8.21959302e-02 4.57716793e-01 -1.06447411e+00 4.31939542e-01 6.11386442e+00 1.35737038e+00 -6.22897923e-01 1.47960961e-01 4.54737872e-01 3.91522616e-01 -2.06370935e-01 -1.43538415e-01 -5.40814519e-01 8.15156758e-01 9.51747179e-01 -2.05864564e-01 -2.90789623e-02 7.68987954e-01 4.86806035e-01 -5.73565364e-01 -6.25032365e-01 1.11288881e+00 6.19950928e-02 -7.81711280e-01 7.68405348e-02 2.41979212e-01 5.82413018e-01 -4.09715861e-01 1.03058107e-01 -2.31128424e-01 1.46653354e-01 -7.23721504e-01 7.45009363e-01 8.42882276e-01 1.46920502e-01 -1.14540398e+00 9.12975550e-01 7.38482773e-01 -7.59289503e-01 3.40198576e-02 -5.23388684e-01 3.96250129e-01 1.09291457e-01 1.07861245e+00 -8.98319244e-01 8.29855025e-01 3.13807189e-01 1.45390809e-01 -4.54115570e-01 1.36361432e+00 -6.37135580e-02 6.65245295e-01 -4.43288952e-01 1.11058779e-01 1.54373154e-01 -8.59482825e-01 7.10640311e-01 1.16845417e+00 4.49406952e-01 -2.69015301e-02 3.18675973e-02 1.24087799e+00 4.32613492e-01 2.98781425e-01 -1.56215653e-01 1.38354972e-01 7.27749944e-01 1.49834692e+00 -1.31177711e+00 -4.83821630e-01 1.74294502e-01 6.84043825e-01 -8.92542955e-03 2.34917879e-01 -6.00792885e-01 1.35708943e-01 1.28885493e-01 -2.00403064e-01 2.60786146e-01 -5.17538749e-02 -1.46069050e-01 -7.77366400e-01 -2.67727762e-01 -5.66743791e-01 5.00205755e-01 -7.18380809e-01 -1.23416591e+00 7.09171355e-01 7.12733924e-01 -1.06451058e+00 -4.83341426e-01 -5.04101098e-01 -6.08686864e-01 6.39885604e-01 -7.06868470e-01 -8.08901072e-01 5.76032586e-02 6.81600571e-01 8.24818760e-02 -1.57570958e-01 6.70692503e-01 2.69710124e-02 -6.59648538e-01 9.63999704e-02 5.87577522e-01 -1.63062632e-01 2.75241971e-01 -1.46822512e+00 -6.19123638e-01 8.97561610e-01 -6.16902038e-02 7.44246542e-01 1.12017083e+00 -4.90022421e-01 -8.02033365e-01 -7.95528412e-01 4.49065238e-01 -1.62170321e-01 4.18742597e-01 -2.33402476e-03 -8.36289108e-01 3.79434258e-01 1.24523900e-01 -5.76850772e-01 9.12418485e-01 -2.58621603e-01 3.40665221e-01 1.94670245e-01 -1.48037291e+00 2.75877237e-01 5.67403398e-02 -8.17301571e-02 -7.23706424e-01 2.54353791e-01 3.14723432e-01 7.80501887e-02 -1.43578649e+00 3.38903427e-01 2.60184318e-01 -1.18946266e+00 1.00210953e+00 8.70360434e-03 -4.87032086e-02 -6.03282034e-01 -1.47415906e-01 -1.37832201e+00 -4.61269617e-01 -2.62433320e-01 -1.96680993e-01 1.29342222e+00 -2.62193307e-02 -6.01677895e-01 7.01580048e-01 6.07189596e-01 -1.16663352e-01 -6.52384162e-01 -1.00439405e+00 -8.28115344e-01 -5.72777949e-02 -6.40824497e-01 4.83332932e-01 7.83529282e-01 1.00602195e-01 7.78596029e-02 -6.91363364e-02 4.06377375e-01 1.42861652e+00 1.92841768e-01 3.00161898e-01 -1.41468835e+00 -2.04304710e-01 -5.40300727e-01 -6.30200505e-01 -5.48412502e-01 3.47425848e-01 -7.91050673e-01 1.12333588e-01 -1.53535724e+00 2.93419003e-01 -3.55451435e-01 -2.93794841e-01 -2.79100329e-01 -2.75019646e-01 -1.01286985e-01 5.41485660e-02 2.42465362e-01 -5.65999508e-01 6.22165918e-01 1.00893652e+00 7.76537359e-02 -5.34279272e-02 4.34682727e-01 -5.72388709e-01 1.01619136e+00 8.07118118e-01 -4.52709585e-01 -5.04417896e-01 3.57165992e-01 -5.76022565e-01 1.91947713e-01 3.15327585e-01 -1.05315173e+00 3.03259194e-01 1.24535322e-01 4.22077298e-01 -1.10833585e+00 5.12104571e-01 -8.95769060e-01 7.41748691e-01 3.00648749e-01 -3.42861414e-02 -4.19246733e-01 -1.15320668e-01 5.78978121e-01 -2.84894794e-01 -8.22621763e-01 1.10376823e+00 -1.36834562e-01 -4.74814951e-01 2.04165876e-02 -7.66943455e-01 -4.18837219e-01 1.09636223e+00 -3.11815381e-01 2.06235513e-01 -3.50714386e-01 -1.27046573e+00 -5.64660728e-02 3.20507437e-01 -3.40320885e-01 6.96632564e-01 -1.24102521e+00 -6.85847163e-01 -2.10560173e-01 -1.39531314e-01 1.23692246e-03 6.37712479e-01 1.07303250e+00 -3.00629258e-01 4.09622580e-01 -4.02932242e-02 -8.17510426e-01 -1.00641966e+00 9.01959777e-01 3.07968289e-01 7.30218887e-02 -3.64852577e-01 5.21153212e-01 3.25927824e-01 -3.41399074e-01 -3.76404598e-02 -4.43569338e-03 -6.58091426e-01 3.86681333e-02 3.60906154e-01 7.96750367e-01 -2.75923312e-02 -1.01961052e+00 -2.83816874e-01 2.93171167e-01 4.45783406e-01 -3.06933403e-01 1.12883019e+00 -3.60546321e-01 -6.02352738e-01 4.86952633e-01 1.04243433e+00 -1.25772327e-01 -9.47288692e-01 -3.49446684e-02 1.16778806e-01 3.35572544e-03 2.16322392e-01 -4.07784790e-01 -8.46484005e-01 7.26181865e-01 5.90122342e-01 3.86703312e-01 1.13754261e+00 1.10307798e-01 1.91262662e-01 -2.63493005e-02 4.15703535e-01 -1.07099247e+00 -4.87499863e-01 -3.51664990e-01 5.73550522e-01 -8.98251832e-01 -6.40930459e-02 -4.85088974e-01 -6.34537160e-01 1.09072948e+00 1.78738177e-01 -2.21120685e-01 9.24198389e-01 5.86468726e-02 -2.84858644e-01 -3.29121709e-01 -2.42955625e-01 -2.66010106e-01 5.33112884e-01 7.81588256e-01 6.33847415e-02 5.64157426e-01 -6.60903156e-01 9.72890198e-01 -1.07309848e-01 -2.41167322e-01 4.98987377e-01 4.60554361e-01 -8.11154246e-01 -7.42352486e-01 -1.10128164e+00 3.36068362e-01 -3.63341749e-01 2.34829158e-01 -5.81940599e-02 7.48080790e-01 3.61667931e-01 1.45734906e+00 6.27565309e-02 -2.41050884e-01 -2.15217263e-01 1.12486988e-01 6.64406419e-01 -3.48916501e-01 -1.77854951e-02 6.52828872e-01 -2.26702332e-01 -1.17424630e-01 -6.72063947e-01 -9.10702050e-01 -1.52240872e+00 -1.40697971e-01 -6.30932570e-01 9.34237659e-01 9.17396963e-01 1.17108917e+00 -4.61166631e-03 2.89490610e-01 6.54169738e-01 -8.14905941e-01 -3.75401914e-01 -1.16179073e+00 -1.15080774e+00 3.07291925e-01 -2.40757540e-01 -8.97273958e-01 -5.57420552e-01 1.37291327e-01]
[7.3129377365112305, 4.335756778717041]
616340a6-70c0-4c4c-abff-71886d8afed9
exploiting-personalized-invariance-for-better
2211.11243
null
https://arxiv.org/abs/2211.11243v1
https://arxiv.org/pdf/2211.11243v1.pdf
Exploiting Personalized Invariance for Better Out-of-distribution Generalization in Federated Learning
Recently, data heterogeneity among the training datasets on the local clients (a.k.a., Non-IID data) has attracted intense interest in Federated Learning (FL), and many personalized federated learning methods have been proposed to handle it. However, the distribution shift between the training dataset and testing dataset on each client is never considered in FL, despite it being general in real-world scenarios. We notice that the distribution shift (a.k.a., out-of-distribution generalization) problem under Non-IID federated setting becomes rather challenging due to the entanglement between personalized and spurious information. To tackle the above problem, we elaborate a general dual-regularized learning framework to explore the personalized invariance, compared with the exsiting personalized federated learning methods which are regularized by a single baseline (usually the global model). Utilizing the personalized invariant features, the developed personalized models can efficiently exploit the most relevant information and meanwhile eliminate spurious information so as to enhance the out-of-distribution generalization performance for each client. Both the theoretical analysis on convergence and OOD generalization performance and the results of extensive experiments demonstrate the superiority of our method over the existing federated learning and invariant learning methods, in diverse out-of-distribution and Non-IID data cases.
['Jie Zhang', 'Song Guo', 'Xueyang Tang']
2022-11-21
null
null
null
null
['personalized-federated-learning']
['methodology']
[-3.37563396e-01 -4.56153542e-01 -5.36406398e-01 -4.67414469e-01 -8.83648694e-01 -7.25663424e-01 4.25957114e-01 -3.62067401e-01 8.49262029e-02 7.06449628e-01 1.83407947e-01 -1.86276630e-01 -7.81974792e-01 -5.68342209e-01 -7.48499990e-01 -1.20191872e+00 -2.07034275e-01 4.67706263e-01 -8.51489455e-02 4.03465889e-02 -1.58270568e-01 5.65906703e-01 -1.51045084e+00 4.48780626e-01 1.01478064e+00 1.32776153e+00 -7.34168068e-02 -1.45770935e-03 -5.11822402e-01 8.24352562e-01 -5.17146468e-01 -5.20959675e-01 6.34492338e-01 -3.31578851e-01 -5.06293833e-01 1.30130664e-01 6.45562589e-01 -3.70931059e-01 -8.43638599e-01 1.19196761e+00 6.43093467e-01 9.90569144e-02 5.52071571e-01 -1.49091482e+00 -9.68181610e-01 6.13135397e-01 -5.84666789e-01 3.43008071e-01 -6.46893680e-02 1.54325843e-01 8.56876493e-01 -8.32746625e-01 4.36214387e-01 1.16049004e+00 5.71912169e-01 3.61499071e-01 -1.13173425e+00 -6.96017206e-01 4.74173903e-01 3.56416792e-01 -1.29940760e+00 -1.59462243e-01 8.39301765e-01 -3.07783544e-01 1.51263371e-01 3.18551302e-01 5.99271990e-03 1.25379050e+00 1.53334895e-02 1.13891232e+00 1.08268702e+00 -1.08888924e-01 3.28108579e-01 4.53257889e-01 1.45616725e-01 1.93853915e-01 1.97580114e-01 5.78110479e-02 -5.12746572e-01 -5.14689744e-01 2.80616432e-01 6.32379830e-01 -4.96551573e-01 -8.65275204e-01 -5.75272918e-01 6.99939907e-01 3.14929277e-01 2.69851267e-01 -4.25494015e-01 -4.86464590e-01 6.35908008e-01 5.89311302e-01 3.93908888e-01 -3.60362321e-01 -9.13128555e-01 1.60894498e-01 -7.20027685e-01 2.43550122e-01 6.71933711e-01 1.18793333e+00 1.23045135e+00 1.65589247e-02 -3.33552510e-01 8.59341025e-01 -2.12246459e-02 4.55102682e-01 8.67352128e-01 -6.19928539e-01 7.70034969e-01 8.33921373e-01 -2.78805662e-02 -7.34879613e-01 -1.74016997e-01 -8.39456141e-01 -9.65879619e-01 -4.67539802e-02 4.07757044e-01 -2.67563164e-01 -3.05992514e-01 1.92740226e+00 7.41736174e-01 1.82556763e-01 -8.99288803e-03 7.52380669e-01 2.84098923e-01 2.93847799e-01 -1.75991967e-01 -4.66069013e-01 8.05341899e-01 -9.44838583e-01 -6.05519712e-01 3.66108477e-01 6.27740860e-01 -5.37312329e-01 9.87314522e-01 4.35772687e-01 -5.08579612e-01 -2.42283314e-01 -5.39919674e-01 4.05446291e-01 -2.46746838e-01 -3.50130528e-01 7.92741954e-01 6.58591449e-01 -7.68405676e-01 4.43657041e-01 -2.85749316e-01 -2.64631450e-01 8.48737419e-01 3.83258402e-01 -5.72767854e-01 -5.25868475e-01 -1.04686558e+00 1.35598585e-01 2.98449546e-01 -3.38897198e-01 -8.33698809e-01 -1.05555665e+00 -2.86439627e-01 1.20530389e-01 5.72282612e-01 -5.17932534e-01 1.26218331e+00 -1.11633968e+00 -1.18711960e+00 3.96986246e-01 1.86065182e-01 1.30323309e-03 8.62277448e-01 1.64789781e-02 -5.92773914e-01 -1.30136460e-01 -2.61664391e-04 -4.87207502e-01 8.01580667e-01 -1.16039097e+00 -8.43228638e-01 -9.60179806e-01 1.17639347e-03 -2.00713007e-03 -9.07068610e-01 -1.62921086e-01 -4.20764267e-01 -6.76118851e-01 -8.08181465e-02 -6.15479648e-01 2.46554032e-01 8.39487242e-04 -1.48787722e-01 -5.66521049e-01 1.44551742e+00 -2.42012724e-01 1.17342329e+00 -2.31765938e+00 -2.63726920e-01 1.65361807e-01 6.69327453e-02 2.55119085e-01 -3.27058524e-01 7.09483862e-01 -1.61823630e-01 -2.45165050e-01 2.31550649e-01 -2.03736082e-01 2.96256900e-01 4.22537804e-01 -4.94394630e-01 7.74862587e-01 -4.17005479e-01 5.53031325e-01 -7.38471448e-01 -4.62034464e-01 -8.64060298e-02 3.61314505e-01 -6.49433076e-01 5.53901255e-01 -1.33589298e-01 5.89898884e-01 -8.64600837e-01 8.88095737e-01 1.21525216e+00 -3.24779689e-01 3.85314226e-01 -3.04814428e-01 -2.02221312e-02 -6.40818775e-02 -1.25339592e+00 1.61947846e+00 -6.20423794e-01 -1.25781506e-01 3.19735348e-01 -1.20045030e+00 6.98001862e-01 4.08292145e-01 9.69058394e-01 -8.76471698e-01 -1.77673958e-02 2.89764881e-01 -3.40619117e-01 -6.09030485e-01 -3.87391746e-02 -2.22501695e-01 7.47813955e-02 8.11350286e-01 4.03467387e-01 8.97877395e-01 -2.21594721e-01 1.86303318e-01 9.61450934e-01 -3.30975465e-02 -1.11472256e-01 -5.40752470e-01 5.49216926e-01 -5.39266586e-01 9.12340760e-01 9.16010082e-01 -3.90401274e-01 3.56922358e-01 3.72062236e-01 -6.12593651e-01 -6.99927509e-01 -9.24446523e-01 -4.13149118e-01 1.46532810e+00 3.05859029e-01 -2.92287264e-02 -5.47129691e-01 -1.17773438e+00 5.59615433e-01 5.54908335e-01 -5.01127601e-01 -3.68393630e-01 -3.87078285e-01 -8.47612381e-01 3.89654696e-01 2.36924529e-01 4.93611723e-01 -4.80765879e-01 -1.03080859e-02 1.22873195e-01 3.14161107e-02 -7.48641551e-01 -8.01476538e-01 3.36568624e-01 -8.45268130e-01 -1.15266204e+00 -5.68232119e-01 -5.31687021e-01 3.71167094e-01 5.52016437e-01 7.68275023e-01 -3.18842739e-01 -1.73910886e-01 6.60078108e-01 -3.71323735e-01 1.54462783e-02 -5.72227081e-03 9.18157771e-02 3.77534926e-01 6.87126935e-01 4.91681397e-01 -8.33135843e-01 -7.46123314e-01 5.58849752e-01 -1.26583183e+00 -7.03737795e-01 6.06731176e-01 1.03608346e+00 4.98990834e-01 2.89080471e-01 8.76350462e-01 -1.06180620e+00 3.90382081e-01 -1.20901394e+00 -2.75793463e-01 7.02953100e-01 -8.04868400e-01 1.54085368e-01 1.18707478e+00 -7.06688225e-01 -1.35956061e+00 -4.00768667e-01 3.37167531e-01 -8.95010352e-01 1.32057201e-02 1.23464711e-01 -8.57665300e-01 -1.20673537e-01 5.41733980e-01 3.69756490e-01 6.42986745e-02 -1.07928693e+00 3.63898456e-01 1.07355928e+00 4.49926972e-01 -1.10137796e+00 8.78463089e-01 4.23877776e-01 -1.73828647e-01 -2.63517618e-01 -8.20053637e-01 -4.78119880e-01 -3.03299636e-01 4.86888178e-02 -2.57764626e-02 -8.92990649e-01 -7.73174644e-01 5.18280864e-01 -7.65467405e-01 -4.25541177e-02 -5.25527894e-01 5.17425299e-01 -5.59693813e-01 5.29177427e-01 -3.14694703e-01 -7.81866372e-01 -3.61076891e-01 -1.01052177e+00 6.16927445e-01 3.02884877e-01 5.30080974e-01 -1.08189964e+00 2.47606397e-01 2.21462518e-01 5.91030002e-01 9.15871263e-02 1.15667164e+00 -1.15139365e+00 -5.22140563e-01 -3.71177018e-01 -2.08917543e-01 4.21605796e-01 5.97923279e-01 -5.16953945e-01 -9.48299110e-01 -7.37314880e-01 4.19122159e-01 -4.99444067e-01 4.74103868e-01 -1.77120462e-01 1.48354673e+00 -8.42672646e-01 -9.05602798e-02 8.14039111e-01 1.51638710e+00 -8.14447477e-02 1.79743513e-01 2.38875911e-01 4.17341858e-01 4.61563945e-01 3.78377378e-01 1.04087424e+00 2.37385362e-01 8.55241537e-01 6.54348075e-01 2.92604268e-01 -6.01006486e-02 -3.89145374e-01 3.56116354e-01 5.94904780e-01 4.98233914e-01 -3.37365031e-01 -3.97614688e-01 4.58849818e-01 -2.00020289e+00 -9.81370807e-01 2.83069819e-01 2.32096362e+00 7.02876627e-01 -6.47000253e-01 3.63944918e-01 -1.81917608e-01 1.13376141e+00 2.86265854e-02 -1.22785938e+00 -1.19530663e-01 -5.00985026e-01 -1.08525440e-01 4.65321302e-01 -1.95291251e-01 -9.00293827e-01 3.84183645e-01 5.27467871e+00 1.16076446e+00 -1.17230833e+00 4.83189464e-01 5.81873298e-01 -1.96306989e-01 -5.53947985e-01 -1.71312883e-01 -6.97541893e-01 7.93109894e-01 5.46796918e-01 -4.05142397e-01 6.60950065e-01 1.24059176e+00 -8.28695744e-02 5.62839985e-01 -1.13385844e+00 1.24075603e+00 -5.42902276e-02 -9.72435296e-01 3.55750769e-01 2.35112667e-01 1.08579707e+00 2.41386399e-01 3.85269731e-01 5.53086102e-01 1.99441403e-01 -4.45428252e-01 5.13277769e-01 5.54985583e-01 8.23466301e-01 -9.12277758e-01 6.24452829e-01 6.26887918e-01 -9.14753675e-01 -6.39305174e-01 -4.22488987e-01 3.81009191e-01 -3.59132707e-01 7.25768805e-01 -6.22495227e-02 1.04996014e+00 9.81061459e-01 3.89682859e-01 -3.73859763e-01 1.03083384e+00 4.37667519e-01 3.62520218e-01 -3.14782947e-01 4.65498894e-01 1.88819826e-01 -2.27383479e-01 4.13061976e-01 9.23062980e-01 4.12456274e-01 -2.29976445e-01 2.32276216e-01 5.92695355e-01 -3.81298512e-01 3.38314205e-01 -3.72633666e-01 2.25862935e-01 3.63739401e-01 1.10189664e+00 1.61580920e-01 -7.44618177e-02 -7.79493213e-01 8.37585688e-01 5.58923483e-01 5.80665767e-01 -7.58946061e-01 -2.71321386e-01 1.00957167e+00 8.07420835e-02 5.45382321e-01 3.44710380e-01 2.34505072e-01 -1.64516127e+00 3.59402567e-01 -1.26453722e+00 9.81646061e-01 2.11276233e-01 -2.21578908e+00 5.73229313e-01 -2.35662535e-01 -1.32083344e+00 -1.01436570e-01 -4.04101640e-01 -7.16780305e-01 6.83660567e-01 -1.56095862e+00 -1.15091968e+00 -1.73985183e-01 1.40021360e+00 1.61874667e-01 -5.59395671e-01 5.68242729e-01 9.66919780e-01 -7.72285163e-01 1.43450189e+00 1.04403961e+00 -2.50596374e-01 9.33720946e-01 -7.95961201e-01 -5.71802616e-01 4.53449428e-01 -1.36024788e-01 7.42410958e-01 2.02135935e-01 -2.97551394e-01 -2.04066420e+00 -1.43262553e+00 2.53480852e-01 -2.37773806e-02 7.10072160e-01 -1.22335300e-01 -1.03307760e+00 7.57897735e-01 -4.14695516e-02 7.93172121e-01 9.15350139e-01 1.58132598e-01 -1.00874281e+00 -8.16474378e-01 -1.51978695e+00 8.15609023e-02 1.25133026e+00 -5.92387199e-01 -1.90546736e-01 5.40526628e-01 6.06005669e-01 8.24262798e-02 -8.77155304e-01 3.72357339e-01 4.31167364e-01 -1.20018065e+00 6.98602974e-01 -1.17171800e+00 -3.60898107e-01 -1.22868642e-01 -7.21629322e-01 -9.64261949e-01 -4.95237231e-01 -9.29014862e-01 -5.83232939e-01 1.70787692e+00 -2.15802327e-01 -1.01665831e+00 7.61922956e-01 6.57773972e-01 -1.31451428e-01 -8.05754423e-01 -1.27776444e+00 -1.25069356e+00 2.62768269e-01 -1.71339184e-01 1.19955802e+00 9.46231127e-01 2.63748262e-02 -2.19694376e-01 -5.88639557e-01 2.30992541e-01 9.23406899e-01 6.71441257e-01 8.84407520e-01 -1.03850830e+00 -5.29272079e-01 -3.17626178e-01 -4.61250961e-01 -1.22376800e+00 4.13059890e-01 -1.18629014e+00 -5.29520690e-01 -7.88277507e-01 4.75233257e-01 -7.82485008e-01 -8.18063021e-01 4.40481931e-01 -3.24368477e-02 -1.65971294e-01 1.14068560e-01 6.00928426e-01 -9.68978226e-01 9.81190979e-01 1.00143051e+00 -1.32558867e-01 -5.85457981e-02 2.72425622e-01 -9.75747585e-01 1.78455397e-01 5.98861516e-01 -4.65553075e-01 -4.23837036e-01 -4.08775538e-01 -3.34195644e-01 -4.83024083e-02 2.40110233e-01 -7.28395045e-01 2.80161202e-01 -5.11575937e-01 1.77525595e-01 -3.92859817e-01 -3.08517396e-01 -1.16722453e+00 2.76420683e-01 1.77790776e-01 -7.87460431e-02 -2.58495897e-01 -1.81367144e-01 7.76583552e-01 -2.60044158e-01 1.07765839e-01 8.05494070e-01 1.34658113e-01 -3.47985029e-01 1.10603964e+00 3.19230378e-01 3.85281175e-01 1.05234110e+00 1.38211966e-01 -5.28800726e-01 -3.68993968e-01 -3.17562193e-01 2.28745520e-01 4.31479901e-01 4.26217973e-01 9.40347612e-02 -1.53101242e+00 -5.30039728e-01 3.25214803e-01 2.32066691e-01 -1.38885632e-01 9.03310716e-01 8.08344603e-01 1.27601460e-01 4.04548585e-01 2.46734396e-02 -4.64771569e-01 -4.92253006e-01 1.14173019e+00 4.30260807e-01 -2.34475821e-01 -6.63340390e-01 4.91218358e-01 6.30071282e-01 -8.30852032e-01 5.30936241e-01 4.68414217e-01 4.39427823e-01 8.48374888e-02 6.72290206e-01 6.57370329e-01 3.19060415e-01 -4.80274081e-01 -4.20827538e-01 3.51617098e-01 -3.24385792e-01 6.30553067e-01 1.48935914e+00 -2.41929606e-01 -1.34961084e-01 1.97401017e-01 1.73759902e+00 9.36049223e-02 -1.47676742e+00 -8.62416863e-01 -2.04215169e-01 -7.66558170e-01 -2.38720849e-01 -7.14931428e-01 -1.53342056e+00 6.56471550e-01 8.34051192e-01 2.28422478e-01 1.18161094e+00 5.35429902e-02 8.49311531e-01 1.64224163e-01 7.00294316e-01 -9.65832114e-01 1.05762772e-01 2.59752452e-01 6.28054500e-01 -1.08110774e+00 -2.22905993e-01 9.72066522e-02 -4.11812037e-01 1.18422854e+00 7.24127352e-01 5.93371391e-02 8.43416214e-01 1.66027918e-02 2.70948019e-02 1.38096571e-01 -7.44885445e-01 1.82879031e-01 -1.19013622e-01 5.80577791e-01 -1.23307899e-01 -1.38674915e-01 -1.48695901e-01 9.55717146e-01 2.43888453e-01 -1.14951923e-01 -5.81917912e-03 7.20271647e-01 4.80750762e-02 -1.32170451e+00 -4.61683631e-01 3.68107378e-01 -4.77952689e-01 4.54047084e-01 -5.19046895e-02 6.32840753e-01 3.43001366e-01 8.96528482e-01 -1.83900788e-01 -4.41949815e-01 3.20308447e-01 2.17236936e-01 2.87140638e-01 -2.13303596e-01 -5.19988894e-01 -4.81915362e-02 -7.23048508e-01 -5.77975571e-01 -1.38224736e-01 -6.01154745e-01 -8.77476096e-01 -4.71200734e-01 -3.84302974e-01 3.60003740e-01 3.99523258e-01 7.48542190e-01 7.87597656e-01 3.13150301e-03 1.58590734e+00 -4.39147860e-01 -1.56093073e+00 -5.83618045e-01 -1.16194355e+00 7.52339363e-01 4.20320272e-01 -7.28593826e-01 -9.02819514e-01 -5.79788625e-01]
[5.827668190002441, 6.314483642578125]
c158a2b9-e869-430b-b028-e99197a8f36c
icsvr-investigating-compositional-and
2306.16533
null
https://arxiv.org/abs/2306.16533v1
https://arxiv.org/pdf/2306.16533v1.pdf
ICSVR: Investigating Compositional and Semantic Understanding in Video Retrieval Models
Video retrieval (VR) involves retrieving the ground truth video from the video database given a text caption or vice-versa. The two important components of compositionality: objects \& attributes and actions are joined using correct semantics to form a proper text query. These components (objects \& attributes, actions and semantics) each play an important role to help distinguish among videos and retrieve the correct ground truth video. However, it is unclear what is the effect of these components on the video retrieval performance. We therefore, conduct a systematic study to evaluate the compositional and semantic understanding of video retrieval models on standard benchmarks such as MSRVTT, MSVD and DIDEMO. The study is performed on two categories of video retrieval models: (i) which are pre-trained on video-text pairs and fine-tuned on downstream video retrieval datasets (Eg. Frozen-in-Time, Violet, MCQ etc.) (ii) which adapt pre-trained image-text representations like CLIP for video retrieval (Eg. CLIP4Clip, XCLIP, CLIP2Video etc.). Our experiments reveal that actions and semantics play a minor role compared to objects \& attributes in video understanding. Moreover, video retrieval models that use pre-trained image-text representations (CLIP) have better semantic and compositional understanding as compared to models pre-trained on video-text data.
['Vasudev Lal', 'Avinash Madasu']
2023-06-28
null
null
null
null
['video-retrieval', 'video-understanding', 'retrieval']
['computer-vision', 'computer-vision', 'methodology']
[ 2.18694672e-01 -5.27654409e-01 -4.35676962e-01 -2.04282179e-01 -6.90953374e-01 -7.81682730e-01 8.16862822e-01 -1.13976829e-01 -3.17131996e-01 3.75957936e-01 2.98055440e-01 1.97358839e-02 -3.08244795e-01 -5.09888172e-01 -9.33991015e-01 -4.53304410e-01 -2.83018090e-02 4.44351792e-01 4.66085494e-01 -1.55174345e-01 3.70604187e-01 1.37278482e-01 -2.09412646e+00 6.78300202e-01 4.53817457e-01 1.21284318e+00 4.23929244e-01 8.00386727e-01 -3.69766653e-01 1.27739716e+00 -5.40207922e-01 -3.01667541e-01 2.21087769e-01 -5.43553650e-01 -1.04614961e+00 5.16304262e-02 7.13452518e-01 -6.27662659e-01 -8.08574557e-01 1.00284171e+00 3.04475576e-01 3.39444399e-01 8.65534246e-01 -1.47973847e+00 -8.14940214e-01 5.68475544e-01 -1.52439669e-01 5.95510960e-01 8.91238749e-01 -4.98733111e-02 1.07758260e+00 -8.22753966e-01 1.09241664e+00 1.27910006e+00 2.41003096e-01 5.80072522e-01 -7.60202765e-01 -6.56384110e-01 2.94994622e-01 6.63702607e-01 -1.71604764e+00 -6.60574794e-01 3.80481273e-01 -5.01935184e-01 1.02977622e+00 2.89411187e-01 6.13387704e-01 1.07222569e+00 1.36629045e-01 1.12315023e+00 3.74869287e-01 -1.25827417e-01 3.60060409e-02 2.55567282e-01 1.28710777e-01 5.20695567e-01 1.52600547e-02 -1.55608550e-01 -7.77202368e-01 8.42141137e-02 6.69776022e-01 1.55056000e-01 -7.51497149e-01 -3.00573796e-01 -1.29233658e+00 6.48051798e-01 1.57572851e-01 3.74170810e-01 -2.79750824e-01 4.75033969e-01 7.79495180e-01 7.43843079e-01 1.58841208e-01 2.52609789e-01 -2.78133690e-01 -2.38594249e-01 -1.17766964e+00 2.89013118e-01 6.11315548e-01 1.48154628e+00 8.57368767e-01 -3.92717160e-02 -2.99446791e-01 7.02369750e-01 2.61963785e-01 6.89853609e-01 7.55250573e-01 -8.72067988e-01 5.26478231e-01 3.72837871e-01 -5.06629311e-02 -1.10052109e+00 1.60028636e-01 1.98605523e-01 -2.29725450e-01 -4.37133968e-01 -8.36408511e-03 4.27512109e-01 -1.16936946e+00 1.49343300e+00 -2.29650989e-01 4.64868426e-01 1.73032999e-01 1.22519577e+00 1.48257959e+00 9.29506600e-01 3.44836742e-01 -1.48275211e-01 1.35821891e+00 -1.02942669e+00 -8.29341829e-01 -4.32494842e-02 7.42486179e-01 -8.85804117e-01 8.72340977e-01 2.19103456e-01 -1.08885288e+00 -7.20719635e-01 -8.74070287e-01 -2.02848986e-01 -7.24458873e-01 3.19447741e-02 2.16174871e-01 4.72810715e-01 -1.38929152e+00 4.72054154e-01 -3.29479128e-01 -6.45689428e-01 1.26062214e-01 2.52793729e-01 -5.32476127e-01 -3.58928233e-01 -1.36324477e+00 4.99885142e-01 6.47822976e-01 -1.87181607e-01 -1.34389901e+00 -6.29284143e-01 -8.26183200e-01 -1.81000996e-02 7.91680515e-01 -8.23671639e-01 9.76208270e-01 -1.70308375e+00 -1.20469117e+00 1.08457422e+00 -2.41679162e-01 -3.03767800e-01 3.65279973e-01 -4.48452771e-01 -5.05469918e-01 1.03141677e+00 2.62824118e-01 1.03658891e+00 1.36778867e+00 -1.27398467e+00 -6.89702034e-01 -1.40198201e-01 4.25292522e-01 3.74753922e-01 -2.02414110e-01 2.36564279e-01 -1.21254957e+00 -8.32990587e-01 5.59212491e-02 -9.88415539e-01 5.76348126e-01 -6.42939508e-02 -1.06142052e-01 -2.26676047e-01 1.13395095e+00 -8.64100218e-01 1.36409724e+00 -2.04119635e+00 5.27667880e-01 6.09192140e-02 3.27596925e-02 2.28815764e-01 -3.04840088e-01 6.58066213e-01 -2.38874421e-01 4.44532365e-01 3.84040684e-01 -7.76188225e-02 -1.87595084e-01 6.47382066e-02 -4.71715122e-01 2.37027630e-01 5.27414531e-02 9.92724717e-01 -9.98843312e-01 -8.40130687e-01 3.38655978e-01 4.08360004e-01 -6.13323331e-01 3.42164963e-01 -4.59215343e-01 2.03474462e-02 -7.35510886e-01 9.19964373e-01 3.19924921e-01 -2.01147035e-01 1.37815461e-01 -4.07126397e-01 1.97551578e-01 1.35572553e-02 -1.11823213e+00 1.81721556e+00 -2.17467114e-01 9.62610245e-01 -2.29686454e-01 -9.13125992e-01 4.54767525e-01 6.79231524e-01 5.81444919e-01 -8.52829456e-01 1.70182869e-01 8.48590732e-02 -5.90966225e-01 -9.27113891e-01 1.02717984e+00 9.26010981e-02 3.89039330e-02 4.53101188e-01 3.15625727e-01 1.94743723e-02 4.58809435e-01 7.62310147e-01 9.78495359e-01 4.42273408e-01 -6.60908595e-02 -2.45865196e-01 7.63190448e-01 2.53235966e-01 1.87516689e-01 8.38424504e-01 -1.14859536e-01 9.76147950e-01 4.03381884e-01 -2.76507437e-01 -8.37956965e-01 -9.84811723e-01 2.76109934e-01 1.34557736e+00 6.83787525e-01 -8.99303973e-01 -5.80835223e-01 -5.35251379e-01 -1.56487346e-01 4.10137802e-01 -4.81880367e-01 -3.63349885e-01 -4.66854721e-01 -4.23868373e-02 5.31790733e-01 6.16121352e-01 4.32228476e-01 -1.12130666e+00 -4.82888848e-01 -7.20024630e-02 -5.54465592e-01 -1.38034928e+00 -6.61574662e-01 -3.88919026e-01 -7.29628921e-01 -1.29978395e+00 -7.04914272e-01 -7.52257407e-01 5.43885529e-01 8.52080226e-01 1.32196093e+00 6.55111790e-01 -9.79698449e-02 1.23240817e+00 -1.08083832e+00 1.03900336e-01 -1.98901504e-01 -1.11617386e-01 3.93752158e-02 2.26670895e-02 4.13946778e-01 -5.35894819e-02 -5.62691569e-01 5.35974324e-01 -1.49736691e+00 -1.57269195e-01 3.05627555e-01 6.07199788e-01 5.98647594e-01 4.71549332e-02 2.33361647e-01 -7.29988098e-01 3.98772866e-01 -6.26727998e-01 -3.04246813e-01 6.14105582e-01 -2.60056973e-01 1.08400488e-03 4.11140829e-01 -5.42519569e-01 -8.44654560e-01 -2.23281562e-01 2.43786559e-01 -1.41003561e+00 1.46511480e-01 5.22455871e-01 -7.44121969e-02 1.73064426e-01 3.11523974e-01 4.73029554e-01 -2.04746529e-01 -3.39573711e-01 3.58019948e-01 5.14701545e-01 3.40593576e-01 -7.42568433e-01 6.66616917e-01 5.14716506e-01 -4.58398342e-01 -9.44519579e-01 -2.78952926e-01 -8.59207749e-01 -5.62723517e-01 -5.20886004e-01 1.08859861e+00 -1.25295758e+00 -3.81694824e-01 2.94997603e-01 -8.84463072e-01 -1.20901637e-01 4.01374176e-02 4.68223274e-01 -7.26852775e-01 4.79899168e-01 -5.30366063e-01 -4.09997672e-01 -3.37801397e-01 -1.37471378e+00 1.40054226e+00 9.74697843e-02 -1.58762887e-01 -8.06202829e-01 -3.52357775e-01 4.89174753e-01 1.86375231e-01 -3.43264759e-01 9.04617012e-01 -6.53651536e-01 -1.06223536e+00 -5.73283201e-03 -4.36191261e-01 2.92250782e-01 -1.39681011e-01 4.24835712e-01 -8.31481397e-01 -4.74052012e-01 -4.23960447e-01 -4.88447547e-01 1.06757081e+00 4.05298173e-01 1.01599634e+00 -1.36169329e-01 -4.91797000e-01 6.31029010e-01 1.70941687e+00 3.93881589e-01 1.07072997e+00 3.65121454e-01 5.96546769e-01 4.56475049e-01 8.97611678e-01 1.01592064e-01 3.11631531e-01 7.45921671e-01 3.04301679e-01 5.03226519e-01 -1.93311334e-01 -4.20340389e-01 6.86808288e-01 9.36147094e-01 -2.38918483e-01 -6.32394969e-01 -7.76321888e-01 5.52662313e-01 -1.99121094e+00 -1.18484521e+00 9.53841209e-02 2.14498162e+00 3.73570442e-01 -1.22687288e-01 1.39432179e-03 -4.10404876e-02 6.96479380e-01 3.19741994e-01 -2.22392485e-01 -1.39949501e-01 -1.44762442e-01 -9.53696482e-03 3.19503129e-01 1.40252456e-01 -1.05882299e+00 1.30097139e+00 6.07463121e+00 1.03743017e+00 -1.18906093e+00 1.06280483e-01 2.88910240e-01 -1.53669059e-01 -3.45880330e-01 1.57573074e-01 -7.25293756e-01 4.71474558e-01 8.07234466e-01 -2.05287546e-01 5.19862592e-01 7.44116306e-01 2.24631131e-02 -2.54763007e-01 -1.46397710e+00 1.28795660e+00 6.06746316e-01 -1.46715605e+00 8.37383509e-01 -4.15984094e-01 5.44416785e-01 -1.55796528e-01 -1.86232880e-01 5.98234057e-01 -1.61059156e-01 -8.92871618e-01 1.23736918e+00 6.96627200e-01 9.42552388e-01 -3.12957257e-01 7.41275370e-01 -1.46711469e-01 -1.44020057e+00 1.79945920e-02 -4.48185712e-01 5.55766463e-01 1.05986260e-01 -1.87857032e-01 -4.78353500e-01 8.88394356e-01 1.12781978e+00 1.19609332e+00 -6.38218641e-01 7.81751275e-01 3.84212881e-02 2.84359753e-01 5.49880117e-02 1.35158256e-01 3.02447915e-01 -1.79063052e-01 5.83195269e-01 1.16490293e+00 2.56753653e-01 2.91533113e-01 1.36143491e-01 7.13632643e-01 -2.17891067e-01 1.87171549e-01 -6.08107030e-01 -5.13736844e-01 3.99546802e-01 8.06492686e-01 -9.14344311e-01 -6.66820884e-01 -5.81935406e-01 1.00620079e+00 -2.48150513e-01 7.04245329e-01 -9.37595844e-01 -1.28083155e-01 7.77935684e-01 2.24918097e-01 4.78996694e-01 1.09611042e-01 6.54320359e-01 -1.37715280e+00 4.23169173e-02 -1.08786714e+00 6.70264482e-01 -1.43925369e+00 -9.95355844e-01 6.34169579e-01 3.30487341e-01 -1.45077085e+00 -3.87111574e-01 -5.40093184e-01 -2.09459156e-01 2.82362789e-01 -1.56705737e+00 -9.22330678e-01 -5.10249615e-01 1.09372175e+00 9.71730173e-01 -2.70571917e-01 4.09159422e-01 5.91197968e-01 -3.75740528e-01 3.40690970e-01 3.18078548e-02 2.28978455e-01 8.33933413e-01 -6.78305864e-01 -2.74106801e-01 6.15386844e-01 2.23253354e-01 6.55723095e-01 5.27909040e-01 -7.42335796e-01 -1.91138089e+00 -1.02158582e+00 4.94221658e-01 -6.13115132e-01 5.26031256e-01 -1.86896008e-02 -8.81206095e-01 8.95492613e-01 1.83683902e-01 -2.46912852e-01 4.28350061e-01 -4.45243776e-01 -5.25906265e-01 -3.31187285e-02 -7.35995293e-01 5.54813206e-01 1.24869001e+00 -9.71163869e-01 -8.33291471e-01 2.51861006e-01 9.91472483e-01 -1.44814774e-01 -7.82530487e-01 3.34080070e-01 6.50924385e-01 -9.09996152e-01 1.24868762e+00 -7.34016180e-01 5.92217088e-01 -3.25778574e-01 -4.16238129e-01 -7.97983170e-01 5.84276393e-02 -3.38167399e-01 1.70916751e-01 1.19524252e+00 4.53400165e-02 -1.78710744e-01 5.23305535e-01 4.95325893e-01 -1.66060831e-02 -1.64118439e-01 -5.95245600e-01 -8.75200748e-01 -3.64189297e-01 -5.47993302e-01 3.93865377e-01 9.66753125e-01 -1.35770857e-01 1.35584012e-01 -3.29331189e-01 1.46092819e-02 1.43379048e-01 1.40720710e-01 7.56370664e-01 -9.08203781e-01 1.28792077e-01 -4.00947541e-01 -7.33276486e-01 -1.22776449e+00 3.61587256e-01 -9.17387605e-01 -2.35553235e-01 -1.37047601e+00 4.24704343e-01 -2.77802616e-01 -2.36507133e-01 2.43563101e-01 -2.39131259e-04 2.85036266e-01 4.92447406e-01 7.23929524e-01 -1.13930082e+00 3.85192692e-01 9.83940065e-01 -3.45610023e-01 -9.13390592e-02 -4.40507591e-01 -3.00055504e-01 3.54135543e-01 3.63978148e-01 -5.37245095e-01 -7.91454434e-01 -6.76298499e-01 4.36850607e-01 3.74702543e-01 3.79970610e-01 -8.67539167e-01 2.06964374e-01 -7.18429014e-02 9.94135067e-02 -5.51347613e-01 5.19746065e-01 -9.27246511e-01 4.53309447e-01 2.75161956e-02 -4.12223667e-01 3.11727852e-01 8.87557343e-02 7.32182860e-01 -6.37523890e-01 -5.78736603e-01 1.39876500e-01 -4.16890293e-01 -1.40253174e+00 2.91289836e-01 -6.43426538e-01 1.42467782e-01 9.76605475e-01 -5.84145069e-01 -3.79747629e-01 -8.54864478e-01 -7.12673128e-01 2.66630739e-01 6.59677565e-01 9.91756082e-01 8.23368013e-01 -1.23463619e+00 -4.63363975e-01 -4.88746054e-02 4.54981774e-01 -4.07619208e-01 3.35827619e-01 6.02979779e-01 -8.29789281e-01 7.61328220e-01 -1.92535758e-01 -7.62349725e-01 -1.43371093e+00 7.89564013e-01 1.94926590e-01 2.51051158e-01 -5.05571723e-01 7.33690202e-01 3.76901031e-01 1.71783611e-01 4.08605307e-01 -2.84382910e-01 -2.80567169e-01 3.62995148e-01 6.16903722e-01 1.82427496e-01 -1.49506524e-01 -1.11177719e+00 -4.26279217e-01 8.37577820e-01 1.67374220e-02 3.13434675e-02 1.02665126e+00 -3.46535087e-01 -1.63904667e-01 2.02399686e-01 1.45134163e+00 -3.32553744e-01 -7.06087768e-01 -2.34691530e-01 -2.77899187e-02 -6.65344656e-01 1.22954361e-01 -3.75441372e-01 -1.40774310e+00 7.18026817e-01 5.13127744e-01 1.24128006e-01 1.27437019e+00 1.76986381e-01 6.47501349e-01 4.37737405e-01 4.88453120e-01 -1.22524583e+00 4.40890878e-01 2.33296081e-01 8.25740874e-01 -1.16189015e+00 1.15792274e-01 -5.11153221e-01 -7.65027404e-01 1.19225812e+00 4.83968794e-01 3.05961855e-02 5.11267781e-01 -4.03863162e-01 -7.60032684e-02 -4.62328523e-01 -9.42166865e-01 -4.59965020e-01 4.58715051e-01 3.45663965e-01 1.98562086e-01 -2.60819912e-01 -1.14293076e-01 2.96758175e-01 2.59898573e-01 2.32246533e-01 4.25363272e-01 1.08376038e+00 -2.72299618e-01 -7.70937979e-01 -3.05916131e-01 3.89461815e-01 -4.52975631e-01 -2.31430992e-01 -4.37270194e-01 9.35946822e-01 -1.27954319e-01 9.96396482e-01 1.33001283e-01 -5.51581502e-01 1.52986333e-01 2.49297023e-01 3.83180022e-01 -5.90081096e-01 -6.34463489e-01 5.52177206e-02 1.40849471e-01 -8.14394712e-01 -8.42107475e-01 -5.45965075e-01 -1.12248743e+00 -2.86263257e-01 -4.50220704e-01 1.98794097e-01 4.77718264e-01 9.10447955e-01 2.82131702e-01 3.61768275e-01 2.23699108e-01 -7.81781137e-01 1.03385359e-01 -5.75881004e-01 -3.97228241e-01 9.03840840e-01 1.40492583e-03 -7.09970832e-01 -5.06977260e-01 6.40520096e-01]
[10.273093223571777, 0.8577874302864075]
28b221c0-1aa2-412f-91b3-955830e263f8
two-dimensional-deep-regression-for-early
2111.08069
null
https://arxiv.org/abs/2111.08069v1
https://arxiv.org/pdf/2111.08069v1.pdf
Two-dimensional Deep Regression for Early Yield Prediction of Winter Wheat
Crop yield prediction is one of the tasks of Precision Agriculture that can be automated based on multi-source periodic observations of the fields. We tackle the yield prediction problem using a Convolutional Neural Network (CNN) trained on data that combines radar satellite imagery and on-ground information. We present a CNN architecture called Hyper3DNetReg that takes in a multi-channel input image and outputs a two-dimensional raster, where each pixel represents the predicted yield value of the corresponding input pixel. We utilize radar data acquired from the Sentinel-1 satellites, while the on-ground data correspond to a set of six raster features: nitrogen rate applied, precipitation, slope, elevation, topographic position index (TPI), and aspect. We use data collected during the early stage of the winter wheat growing season (March) to predict yield values during the harvest season (August). We present experiments over four fields of winter wheat and show that our proposed methodology yields better results than five compared methods, including multiple linear regression, an ensemble of feedforward networks using AdaBoost, a stacked autoencoder, and two other CNN architectures.
['John W. Sheppard', 'Giorgio Morales']
2021-11-15
null
null
null
null
['crop-yield-prediction', 'crop-yield-prediction']
['computer-vision', 'miscellaneous']
[ 2.90693223e-01 -1.53683409e-01 -1.35966703e-01 -4.80233699e-01 1.05343349e-01 -5.36086380e-01 2.58280426e-01 4.65835989e-01 -2.41590098e-01 8.28302264e-01 3.66936699e-02 -7.83381999e-01 -3.16545933e-01 -1.70816410e+00 -7.69951701e-01 -7.83144832e-01 -6.71011508e-01 -5.84084056e-02 -7.09893554e-02 -8.28137994e-01 -1.98426381e-01 9.14170325e-01 -1.76570714e+00 1.15836136e-01 6.23801947e-01 1.53593314e+00 2.91644752e-01 8.36008012e-01 1.71548665e-01 2.32847348e-01 -1.75592318e-01 2.35985667e-01 4.54971462e-01 -7.76287122e-03 -2.85178095e-01 -1.33793533e-01 2.17036501e-01 -7.08655477e-01 -2.72096917e-02 9.32191074e-01 2.44849518e-01 -3.13031107e-01 5.59541285e-01 -9.94205296e-01 -7.07782209e-01 6.05758369e-01 -6.43543720e-01 2.48717051e-02 -4.90652710e-01 -9.80291292e-02 5.92925251e-01 -3.49021405e-01 1.99226379e-01 9.04169083e-01 8.75930846e-01 -3.67865086e-01 -1.15431666e+00 -4.45200324e-01 -2.18776211e-01 -7.15437904e-02 -1.00978172e+00 1.57578848e-02 1.47455990e-01 -4.92723107e-01 6.91525042e-01 1.48659587e-01 1.04832280e+00 4.42526758e-01 9.30321097e-01 4.66327757e-01 9.09565687e-01 -4.67205346e-01 2.88540959e-01 -4.57914203e-01 1.35335118e-01 6.25757158e-01 5.10489821e-01 8.41015518e-01 -1.66249216e-01 -2.40284011e-01 9.33071434e-01 2.94550508e-01 -1.50218740e-01 -1.76916137e-01 -9.67983782e-01 1.06062043e+00 1.06894732e+00 1.79717302e-01 -1.20478833e+00 -1.96790844e-01 2.24641487e-01 5.34886599e-01 7.25828528e-01 1.56503052e-01 -1.08349085e+00 5.83179116e-01 -1.15743196e+00 5.10892868e-01 7.85954416e-01 7.81647503e-01 1.04731715e+00 4.74755645e-01 1.18761241e-01 3.92117590e-01 1.12945288e-01 1.32000268e+00 2.86981940e-01 -4.51872051e-01 -1.33592142e-02 7.82932222e-01 3.01727295e-01 -1.37286949e+00 -6.89031601e-01 -1.55971199e-01 -1.25667882e+00 5.24422050e-01 9.48011801e-02 -7.49926507e-01 -1.06120563e+00 1.19184470e+00 -1.35584518e-01 -3.31084609e-01 5.02794921e-01 9.70069826e-01 9.95774090e-01 9.61271703e-01 3.56102914e-01 -7.83990398e-02 1.33996034e+00 -4.22790855e-01 -6.86061323e-01 -1.59224674e-01 6.99335933e-01 -5.07212639e-01 -6.38881400e-02 1.43330008e-01 -5.52788556e-01 -6.40683711e-01 -1.15285647e+00 6.52449548e-01 -1.23384213e+00 9.13901508e-01 8.32604349e-01 2.01513916e-01 -9.21237290e-01 9.43202913e-01 -7.66845286e-01 -6.16882741e-01 1.04687028e-01 2.53942132e-01 -6.65811956e-01 2.47584611e-01 -1.18242466e+00 1.16625118e+00 8.72222841e-01 9.74818289e-01 -4.54014778e-01 -5.49059331e-01 -9.89476860e-01 3.55110466e-01 -9.76326987e-02 -1.12105154e-01 7.47255862e-01 -1.18653595e+00 -1.34154487e+00 7.36132264e-01 3.33522618e-01 -6.62572861e-01 -2.74633259e-01 -4.27839905e-01 -7.18590915e-01 -2.86260933e-01 8.04390665e-03 6.49318278e-01 4.71087784e-01 -7.54329681e-01 -9.11291778e-01 -8.10901344e-01 -3.49696636e-01 -1.20701768e-01 -2.26168036e-01 -4.86237518e-02 8.02542984e-01 -3.77808899e-01 5.52690625e-01 -8.51480842e-01 -4.68502581e-01 -1.79633588e-01 -1.46185026e-01 4.51872021e-01 8.34969282e-01 -9.40358102e-01 6.45800889e-01 -2.04940414e+00 -4.32606339e-02 2.50257879e-01 -2.87122816e-01 4.16412324e-01 -3.05368245e-01 2.57778168e-01 -2.39251927e-01 -1.91275552e-01 -4.84718651e-01 9.31016028e-01 -4.35861796e-01 4.50311691e-01 -2.70957649e-01 2.31085166e-01 7.31061578e-01 8.02445412e-01 -5.80373526e-01 2.93066148e-02 3.02936226e-01 1.59561887e-01 2.90346652e-01 4.30083036e-01 -3.05282682e-01 -2.10524440e-01 -4.96680051e-01 8.98328424e-01 1.36881161e+00 2.49385178e-01 2.09302723e-01 -3.68323028e-01 -9.75081444e-01 -5.56658387e-01 -8.67127299e-01 1.16557622e+00 -2.21141398e-01 6.43032789e-01 6.83077127e-02 -1.13087571e+00 1.68172550e+00 3.56893510e-01 2.09850669e-01 -4.37323302e-01 2.44349912e-01 2.54555136e-01 6.54304102e-02 -3.45129609e-01 7.07260072e-01 4.31489468e-01 1.12159312e-01 1.25548452e-01 4.00303960e-01 6.64367974e-02 2.13508263e-01 -6.26257598e-01 6.91736221e-01 5.00977576e-01 5.71858883e-01 -8.06987584e-01 1.01554021e-01 4.95623976e-01 5.28286755e-01 4.05519158e-01 -9.77852345e-02 3.87054175e-01 5.90125263e-01 -1.26629555e+00 -1.05285871e+00 -7.64568388e-01 -3.31747562e-01 1.32192433e+00 -3.66013497e-01 4.50483769e-01 -2.30638817e-01 -6.18806146e-02 5.29001057e-01 3.74254763e-01 -8.57836485e-01 8.69552419e-02 -2.38363177e-01 -1.52970910e+00 4.61015433e-01 7.38024235e-01 8.19823027e-01 -1.54396760e+00 -1.19078743e+00 5.25292754e-01 2.10661992e-01 -7.59894669e-01 7.64463723e-01 1.06784713e+00 -1.16451156e+00 -7.40312219e-01 -8.04776013e-01 -5.63814223e-01 2.89262682e-01 7.34675080e-02 1.18051529e+00 -2.68586397e-01 -2.54008085e-01 -5.35610378e-01 -6.05183542e-01 -1.05282998e+00 -1.22384168e-01 4.70615655e-01 -3.68093401e-01 -1.96338117e-01 8.72024119e-01 -5.85107684e-01 -2.91004628e-01 -1.56927690e-01 -8.04645836e-01 8.82414430e-02 9.83914137e-01 6.89037025e-01 2.58527189e-01 -2.14589626e-01 5.66291571e-01 -4.01684970e-01 1.26639739e-01 -8.84660900e-01 -1.04849720e+00 4.37410355e-01 -1.95862114e-01 1.31062521e-02 2.99407661e-01 1.47800744e-01 -7.92247713e-01 5.68207681e-01 3.35807532e-01 2.20979869e-01 -7.65641153e-01 1.16323292e+00 1.27148733e-01 -7.71096162e-03 8.35213661e-01 1.93104297e-01 1.67344764e-01 -2.63700873e-01 2.14011773e-01 7.13881135e-01 6.77949667e-01 1.76301561e-02 3.76742780e-01 1.37363285e-01 2.61697859e-01 -1.12001443e+00 -7.14056253e-01 -1.60616741e-01 -1.12626493e+00 -3.36953670e-01 6.77834749e-01 -1.07976198e+00 -5.76954186e-01 7.83328474e-01 -1.18232095e+00 -3.11422944e-01 -3.50269745e-03 7.90108919e-01 -3.82326454e-01 -5.06829441e-01 -3.46548349e-01 -5.95010579e-01 -8.61681879e-01 -6.42754972e-01 7.93337941e-01 4.95548517e-01 2.54902989e-01 -7.52298057e-01 2.65180282e-02 -6.79050684e-01 8.29060555e-01 9.59752858e-01 1.01618040e+00 -3.63396078e-01 -1.68850217e-02 -4.21689510e-01 -7.80125260e-01 3.55399579e-01 3.70772094e-01 6.16263568e-01 -7.85359383e-01 1.93019435e-02 -4.84409243e-01 -3.65860045e-01 1.03804719e+00 1.12082970e+00 8.37131619e-01 2.13539869e-01 -1.96502000e-01 6.23865545e-01 1.83277476e+00 3.30433309e-01 5.45028567e-01 4.36358303e-01 1.64039388e-01 5.73531985e-01 6.12211645e-01 6.30150795e-01 8.17507356e-02 -6.85952604e-02 9.64200556e-01 -6.41808927e-01 6.89201593e-01 3.41294497e-01 7.10148364e-02 2.73531884e-01 -6.14860833e-01 -2.33614236e-01 -1.02104652e+00 7.05508709e-01 -2.01469612e+00 -9.79748666e-01 -2.73856640e-01 1.98280501e+00 3.64870340e-01 -2.67838180e-01 -1.57956019e-01 2.21073508e-01 6.61452770e-01 3.35015386e-01 -4.16218460e-01 -7.73627937e-01 -7.14727044e-01 5.99754214e-01 1.47930992e+00 2.61193458e-02 -1.60924530e+00 1.19435585e+00 6.36667538e+00 -1.29845977e-01 -1.37677848e+00 -6.14907861e-01 4.88374829e-01 3.81092727e-01 3.56724322e-01 -1.69865161e-01 -6.39547467e-01 -2.19879851e-01 1.22626793e+00 2.56177872e-01 3.80380340e-02 9.84888673e-01 1.14171609e-01 -5.31789839e-01 -5.20251930e-01 -8.29677358e-02 -2.30166987e-01 -1.24556732e+00 -1.31328881e-01 -1.42094165e-01 6.78034008e-01 2.91597575e-01 -2.61538327e-01 2.04027817e-01 7.46945977e-01 -8.94706845e-01 2.33416766e-01 8.68592262e-01 6.05001628e-01 -7.23824084e-01 1.22997940e+00 9.42148268e-02 -1.23963118e+00 -1.90233007e-01 -8.38324428e-01 -3.82527471e-01 -3.98062825e-01 7.46627986e-01 -3.55254173e-01 8.95594001e-01 1.05360472e+00 8.89414310e-01 -4.28973943e-01 7.98987091e-01 1.18166625e-01 6.40062094e-01 -5.02777398e-01 -5.65335080e-02 6.03167713e-01 -2.85193145e-01 -7.62493610e-02 1.02702594e+00 7.57856786e-01 4.74664330e-01 7.31038004e-02 7.50579238e-01 3.64791721e-01 1.91788331e-01 -9.47809517e-01 1.27950534e-01 1.57528996e-01 1.43862164e+00 -4.54384565e-01 -4.75371964e-02 -1.94431305e-01 4.39937025e-01 -1.78629592e-01 2.80803680e-01 -3.88274565e-02 -6.27641618e-01 5.36480367e-01 -3.47663224e-01 5.16564906e-01 -7.60722086e-02 -3.28154922e-01 -6.14609540e-01 -1.84298366e-01 -5.27105153e-01 -9.65837166e-02 -1.10360456e+00 -8.02145839e-01 5.59974790e-01 -5.58634289e-02 -1.14728582e+00 -3.03716093e-01 -1.09797168e+00 -7.14716136e-01 1.40417600e+00 -1.73426902e+00 -1.25458062e+00 -8.03314507e-01 4.35128016e-03 4.21794392e-02 -6.66306555e-01 1.78878629e+00 -2.18738526e-01 -3.22170466e-01 -2.76108921e-01 5.73235750e-01 2.64506698e-01 2.60757029e-01 -1.05236197e+00 5.66979349e-01 6.05506539e-01 -5.34976959e-01 -3.32659781e-01 3.99501592e-01 -6.45159304e-01 -1.05720997e+00 -1.51152265e+00 1.11876714e+00 6.31128132e-01 6.25381589e-01 5.28826356e-01 -6.46072865e-01 9.67205286e-01 1.71942815e-01 4.10284638e-01 5.30387342e-01 1.19756043e-01 1.14871301e-01 -4.79164779e-01 -1.04319119e+00 7.97723159e-02 1.71791717e-01 2.40619063e-01 -1.24159403e-01 1.19104646e-01 3.91640663e-01 -3.57580811e-01 -1.06073081e+00 8.19122314e-01 9.97926950e-01 -7.81243622e-01 5.30499458e-01 -7.43810236e-01 9.47724462e-01 -1.89319737e-02 -6.36748731e-01 -1.90288055e+00 -6.96588516e-01 3.49201590e-01 3.08408469e-01 5.59313834e-01 4.33156461e-01 -2.44266525e-01 6.03139043e-01 4.31917831e-02 1.25286877e-01 -4.18537736e-01 -3.38784575e-01 -3.62078786e-01 2.56982386e-01 1.57355309e-01 1.02089012e+00 6.98417127e-01 -4.74488795e-01 -1.70236886e-01 -2.93491334e-01 7.40217149e-01 3.70152354e-01 3.98628950e-01 4.51915205e-01 -1.93615139e+00 6.21050060e-01 -1.18614018e-01 -7.88447559e-01 -2.20839128e-01 -2.44233105e-02 -3.22755069e-01 7.43419304e-02 -1.20790446e+00 -3.15203190e-01 -3.38516444e-01 -2.91903883e-01 1.04146135e+00 -6.78884611e-03 -7.32590258e-03 -7.23180473e-02 -3.73071551e-01 6.02928579e-01 4.26804960e-01 7.97932804e-01 -1.24875240e-01 -4.08089072e-01 2.34452248e-01 -1.51573032e-01 6.18613243e-01 1.06320906e+00 -3.15051556e-01 2.76328087e-01 -7.50158668e-01 1.37049034e-01 6.47056997e-01 5.18747926e-01 -1.29007554e+00 -1.75796419e-01 -4.60596114e-01 9.11773860e-01 -1.22358668e+00 -1.52173698e-01 -8.63777578e-01 -1.84523724e-02 5.75818360e-01 -2.01736286e-01 3.14132154e-01 6.81408823e-01 7.19695911e-02 -2.66652852e-01 -1.32842168e-01 3.66217434e-01 -1.18789606e-01 -9.50686038e-01 3.77672255e-01 -7.44227290e-01 -1.09586763e+00 7.26354301e-01 1.58397824e-01 -2.22288713e-01 5.26017323e-02 -7.30893254e-01 2.77491957e-01 -4.44348574e-01 6.35569513e-01 4.33470190e-01 -1.37982726e+00 -1.36804879e+00 7.96716571e-01 2.63888091e-01 -1.45169199e-01 1.92200076e-02 3.03617358e-01 -1.13662231e+00 5.14797032e-01 -1.33882701e+00 -6.95317924e-01 -9.65501904e-01 8.37082937e-02 4.48192447e-01 -1.42004848e-01 -1.29408807e-01 4.93759841e-01 -4.96061534e-01 -6.49632037e-01 -1.54979825e-01 -6.42516553e-01 -8.67860258e-01 3.94689560e-01 4.71487492e-01 6.83910996e-02 5.37954569e-01 -5.68626940e-01 -6.61492050e-02 2.26081371e-01 2.09191948e-01 1.90647140e-01 1.82915652e+00 5.06287575e-01 -3.93921942e-01 5.24665058e-01 7.40208745e-01 -1.17788887e+00 -8.88050556e-01 -5.03959477e-01 1.51807368e-01 -5.95785491e-02 7.38254249e-01 -9.15869236e-01 -1.52937305e+00 7.09140718e-01 1.30139053e+00 4.28008556e-01 1.45405984e+00 -9.06849623e-01 3.53655249e-01 9.15338814e-01 8.16377997e-03 -8.94068480e-01 -9.24689114e-01 7.90314615e-01 9.80298340e-01 -1.65342748e+00 4.34248522e-02 -1.02808336e-02 -2.80342400e-01 1.80631888e+00 4.17700768e-01 -4.50347900e-01 1.26322532e+00 4.78756249e-01 3.70561868e-01 -1.11767158e-01 -5.57490528e-01 -6.63002372e-01 -2.14307010e-01 6.01273477e-01 6.73884690e-01 9.24002826e-01 -1.10452101e-01 2.73282170e-01 -3.78095567e-01 5.59383214e-01 2.96232015e-01 1.08863044e+00 -8.15330148e-01 -4.97926176e-01 -6.91588998e-01 8.37802351e-01 -1.35819331e-01 -2.49985337e-01 -1.06385887e-01 7.53195763e-01 2.43095875e-01 6.56442463e-01 5.27334809e-01 -3.71182948e-01 3.87125582e-01 -7.29331821e-02 9.51848552e-02 -2.23249376e-01 -6.17373347e-01 -2.43370831e-01 -2.88390219e-01 -1.57279581e-01 -6.62499189e-01 -5.98847032e-01 -4.82355207e-01 -7.62129605e-01 -4.27586466e-01 -2.30032250e-01 1.04348576e+00 8.98245990e-01 4.46925275e-02 5.00211000e-01 7.88710237e-01 -1.20755756e+00 -4.05332953e-01 -1.48224258e+00 -1.20377111e+00 -4.73728567e-01 5.30275166e-01 -4.32450145e-01 1.07633449e-01 2.06969678e-01]
[9.374858856201172, -1.6208165884017944]
4e52bbec-c887-4c5a-a5a4-fcf78a3701de
gans-in-computer-vision-ebook
null
null
https://github.com/The-AI-Summer/GANs-in-Computer-Vision
https://theaisummer.com/gans-computer-vision-ebook/
GANs in computer vision ebook
In this article-series we are reviewing the most fundamental works of Generative Adversarial Networks in Computer Vision. We start from the very beginning from concepts such as generative learning, adversarial learning. We provide some code and illustrations for educational purposes. The goal is to focus on the intuition of the models, by tackling the multiple problems that arise when training a GAN. We have thoroughly analyzed more than 20 papers in 6 different articles in a chronological order. We will continue to update the GAN series, based on the newer publications or older ones that we skipped. We do hope that this series will provide you a big overview of the field, so that you will not need to read all the literature by yourself, independent of your background on GANs.
['Nikolas Adaloglou', 'Sergios Karagianakos']
2020-06-10
null
null
null
ebook-2020-6
['video-to-video-synthesis']
['computer-vision']
[ 3.30719441e-01 7.07845688e-01 4.09259871e-02 -1.90143138e-01 -5.87271750e-01 -6.87720537e-01 5.77389300e-01 -8.65124762e-01 -6.04841299e-03 9.58141744e-01 -8.05311427e-02 -4.02639747e-01 -4.79490235e-02 -7.64624596e-01 -5.90713382e-01 -9.79692936e-01 1.77216493e-02 1.65349960e-01 -2.93983221e-01 -4.98114794e-01 1.21329941e-01 3.64911973e-01 -1.41399932e+00 4.53843102e-02 8.54828358e-01 5.17605841e-01 -1.56009600e-01 9.58735466e-01 -5.99250421e-02 1.07685900e+00 -1.02265239e+00 -1.12327254e+00 1.84019417e-01 -1.02283370e+00 -7.72321165e-01 1.73433330e-02 4.14892405e-01 -2.81626999e-01 -3.40482086e-01 1.02225840e+00 6.44240856e-01 -1.75090581e-01 8.03576708e-01 -1.37485015e+00 -9.84348238e-01 6.89686835e-01 -3.04057896e-01 2.66492069e-01 4.30326276e-02 6.86589554e-02 5.64050972e-01 -4.85817939e-01 4.73717928e-01 8.80329847e-01 9.79872644e-01 1.41824782e+00 -7.62969971e-01 -5.52048504e-01 3.31409156e-01 1.54032797e-01 -9.62989330e-01 -2.45560825e-01 9.46756065e-01 -5.88582635e-01 8.00087988e-01 4.33199555e-01 9.12613511e-01 1.68814325e+00 5.62034488e-01 8.08702230e-01 1.07994831e+00 -6.37410223e-01 -5.29460423e-02 -1.13154277e-01 -5.24203740e-02 5.32044172e-01 8.38652179e-02 6.32664144e-01 -2.13623986e-01 3.31868052e-01 1.01035714e+00 -1.28306970e-01 -1.50295764e-01 -6.16403371e-02 -8.92881513e-01 1.22668016e+00 4.81487364e-01 5.43876231e-01 -1.38781950e-01 3.42884898e-01 2.07779855e-01 5.39290905e-01 2.68671840e-01 2.72319108e-01 1.75251245e-01 -1.71625808e-01 -1.00143957e+00 1.77832440e-01 7.89031744e-01 1.09910083e+00 2.58520246e-01 8.82039428e-01 1.14932418e-01 7.71102190e-01 2.99255937e-01 5.33347726e-01 6.43261850e-01 -9.04830039e-01 -8.37997571e-02 -3.82575303e-01 -2.94852555e-01 -6.29515231e-01 -5.82203791e-02 -3.29192072e-01 -1.16499507e+00 6.57485068e-01 8.65163654e-02 -7.84532249e-01 -1.23841822e+00 1.62448382e+00 -1.74932092e-01 4.26825285e-02 -2.11082324e-02 4.86708939e-01 1.34923530e+00 4.73521233e-01 1.06127746e-02 -1.50519744e-01 1.12636435e+00 -1.35034621e+00 -1.01107705e+00 -2.49942675e-01 -2.27635071e-01 -1.11932409e+00 6.51568115e-01 4.44259554e-01 -1.42735410e+00 -7.96300292e-01 -1.26110697e+00 1.02770366e-01 -5.70789814e-01 -2.88975477e-01 1.12136757e+00 1.20155013e+00 -1.33127093e+00 7.05188572e-01 -1.03847551e+00 -6.16772354e-01 2.65042454e-01 1.07844628e-01 3.02498657e-02 1.72764465e-01 -1.32984722e+00 1.18734896e+00 -1.48126660e-02 7.83292130e-02 -9.30752039e-01 -5.19092798e-01 -7.82669425e-01 -5.80716193e-01 1.19409747e-01 -1.44618762e+00 1.59243691e+00 -1.36861753e+00 -1.73675084e+00 1.06361866e+00 -5.85369766e-02 -5.09919226e-01 7.62643278e-01 -3.86671722e-01 -6.74092650e-01 -4.08423655e-02 -2.95386314e-01 6.87136889e-01 1.07806575e+00 -1.50960708e+00 -5.27145863e-01 -2.16354713e-01 3.57312888e-01 1.07592843e-01 2.61054933e-01 1.18732132e-01 -2.17452824e-01 -1.22622097e+00 -3.12721759e-01 -9.75925386e-01 -2.85040319e-01 -4.45620745e-01 -4.85944867e-01 -1.17573723e-01 7.25491464e-01 -3.93718332e-01 1.04629338e+00 -1.87411177e+00 2.48876646e-01 -4.14667845e-01 3.94382119e-01 3.39906037e-01 6.05746992e-02 7.43726373e-01 -4.86395538e-01 2.66558558e-01 -3.20365846e-01 -5.16511619e-01 -3.85356583e-02 4.19603407e-01 -6.40801191e-01 2.15242729e-01 1.46776229e-01 1.52943349e+00 -8.63034248e-01 -2.65345842e-01 4.57686692e-01 9.01688397e-01 -6.56110942e-02 2.79579103e-01 3.25912565e-01 5.06900787e-01 -6.47194386e-02 5.48449576e-01 7.32560813e-01 7.19431117e-02 -1.70817927e-01 -5.99803366e-02 1.89609498e-01 1.03035614e-01 -7.23759115e-01 1.39719832e+00 -4.07406688e-01 8.58406067e-01 5.50510436e-02 -1.16412687e+00 6.69624507e-01 5.55001795e-01 2.80162632e-01 -3.83231461e-01 2.67598443e-02 2.11635068e-01 1.11250184e-01 -2.96866566e-01 7.12576061e-02 -5.96246302e-01 2.40710005e-02 3.05333018e-01 2.97667056e-01 -3.93172085e-01 1.91141158e-01 1.41207859e-01 7.50185370e-01 1.61209017e-01 4.97583896e-01 -9.69366636e-03 4.86789107e-01 -1.87606066e-01 8.07005912e-02 1.12534535e+00 -6.48648888e-02 8.17765415e-01 4.17243063e-01 -6.12623990e-01 -9.47290003e-01 -1.47800589e+00 2.34270878e-02 8.47957075e-01 -3.94818813e-01 -3.43368262e-01 -9.90924418e-01 -7.34981120e-01 -3.21687132e-01 7.93130040e-01 -1.14618766e+00 1.85087440e-03 -6.76333308e-01 -8.96835148e-01 5.29885352e-01 8.11574161e-01 4.19930458e-01 -1.45818186e+00 -2.77858824e-01 -2.09597200e-01 2.23126054e-01 -5.26985288e-01 -1.82327539e-01 3.50056261e-01 -9.69530582e-01 -8.01835775e-01 -1.09960616e+00 -1.00412571e+00 7.71523118e-01 1.96426418e-02 1.69883752e+00 3.36404294e-01 2.71756621e-03 6.76846862e-01 -6.19631886e-01 -7.84480810e-01 -8.25169921e-01 1.00480318e-01 -4.13635761e-01 -6.75189912e-01 4.22711909e-01 -8.20993781e-01 -5.21332800e-01 -3.29686068e-02 -9.78359461e-01 1.02877267e-01 5.70247889e-01 9.84957933e-01 2.68667400e-01 -8.73512849e-02 6.29651427e-01 -1.32596791e+00 7.88516879e-01 -2.42534608e-01 -2.00929210e-01 9.91699770e-02 -6.93065882e-01 -4.12392348e-01 6.50780737e-01 -1.68368816e-01 -8.11795890e-01 -3.27936649e-01 -7.89438307e-01 -1.76033497e-01 -2.40981907e-01 1.86888516e-01 7.18193650e-02 -3.05125892e-01 5.73610008e-01 1.58843666e-01 4.52924781e-02 -2.31752217e-01 5.87604642e-01 3.89106393e-01 7.63360143e-01 -1.56195894e-01 1.16148448e+00 2.98165888e-01 -2.14358117e-03 -4.98308957e-01 -5.43932557e-01 2.81546593e-01 -7.04905808e-01 -2.44578764e-01 7.74936378e-01 -4.65191841e-01 -5.11045218e-01 7.70347118e-01 -9.25321579e-01 -4.43330258e-01 -6.72562182e-01 1.36612311e-01 -1.00953341e+00 3.15211743e-01 -9.42271173e-01 -5.20169318e-01 -4.36619788e-01 -1.26086307e+00 6.41802728e-01 6.09219849e-01 -8.43716636e-02 -1.76884079e+00 2.68064439e-01 2.35419929e-01 6.66196167e-01 5.81394732e-01 5.95182538e-01 -4.12411988e-01 -4.38182890e-01 -3.34108502e-01 4.43148911e-01 6.20082200e-01 2.79350281e-01 3.82631093e-01 -1.27383876e+00 -2.62983382e-01 3.91224653e-01 -1.15852259e-01 9.11848783e-01 7.04870939e-01 1.26992333e+00 -1.97389781e-01 -2.41889134e-01 8.62338483e-01 1.37770259e+00 6.54640615e-01 1.10009754e+00 3.37690979e-01 6.85712814e-01 4.52123523e-01 1.97214425e-01 -1.90032944e-01 5.55246882e-02 4.03890699e-01 4.33731884e-01 -4.21926856e-01 -5.93895018e-01 -2.33736962e-01 3.47573668e-01 8.19018185e-01 -7.04956770e-01 -4.60821956e-01 -6.11062288e-01 3.54408622e-01 -1.45440972e+00 -1.17948580e+00 1.72078609e-01 2.00058270e+00 6.45529747e-01 -3.86681855e-02 2.90045232e-01 6.81125000e-02 7.41100371e-01 2.98241645e-01 -3.48077893e-01 -6.50928736e-01 -3.68767278e-03 6.32372797e-01 2.79434413e-01 8.13850105e-01 -1.15427649e+00 8.29367220e-01 8.74367905e+00 6.85420036e-01 -1.19660807e+00 7.40242079e-02 5.95132530e-01 -7.89371207e-02 -4.97337639e-01 -2.39602104e-01 -4.98081356e-01 4.28335220e-01 9.61593151e-01 -2.84689039e-01 5.80524325e-01 8.55514348e-01 -3.04741412e-01 2.60253906e-01 -1.02777159e+00 9.37308192e-01 3.33464146e-01 -1.37173963e+00 -2.83086207e-02 -1.31940514e-01 9.43520069e-01 -2.67690867e-02 4.69323754e-01 5.07653892e-01 6.37566090e-01 -1.56125629e+00 3.75297964e-01 5.19878805e-01 6.76734209e-01 -8.14895451e-01 7.49715149e-01 5.09254523e-02 -7.55523443e-01 1.81066915e-01 -1.58869550e-01 6.10226020e-02 3.90851647e-01 4.45184588e-01 -3.23472768e-01 7.02196777e-01 5.52908361e-01 7.34888256e-01 -5.56472123e-01 1.02601707e+00 -7.51088917e-01 5.37331045e-01 2.05588669e-01 3.61016346e-03 7.87849948e-02 -1.45228818e-01 5.31292021e-01 1.17798054e+00 2.46215850e-01 1.66024477e-03 -4.74878281e-01 8.14960599e-01 1.68999791e-01 -2.21306488e-01 -7.71179140e-01 -1.23957798e-01 9.80442390e-03 1.29267502e+00 -7.09416747e-01 -2.11315036e-01 -7.63699532e-01 1.11011636e+00 -1.95131242e-01 3.05550367e-01 -1.00120127e+00 -6.09021485e-01 5.12906969e-01 -3.78635079e-02 2.20895201e-01 -1.23373799e-01 -5.99389493e-01 -9.09932494e-01 -3.11106801e-01 -1.20350111e+00 3.07027280e-01 -1.01249611e+00 -1.52453661e+00 9.28065121e-01 7.56359473e-02 -1.00815749e+00 -8.98545325e-01 -6.25278592e-01 -9.65952218e-01 9.46277976e-01 -1.10935736e+00 -1.12340534e+00 -4.56956357e-01 2.59852409e-01 6.82901561e-01 -2.85544872e-01 1.04914820e+00 9.33901519e-02 -6.15102172e-01 8.48557413e-01 7.11371303e-02 2.98272550e-01 7.02108800e-01 -1.50962758e+00 9.24031854e-01 8.86064827e-01 2.64142364e-01 9.58895385e-01 8.49961936e-01 -4.98583496e-01 -8.56804609e-01 -6.91662550e-01 7.61945128e-01 -7.05608726e-01 4.41295981e-01 -1.59334540e-01 -5.51919699e-01 1.29796851e+00 9.69179034e-01 -3.94700497e-01 7.73230135e-01 -4.25129607e-02 4.29575033e-02 6.46031275e-02 -1.28409445e+00 6.45512760e-01 1.02126336e+00 -1.25797480e-01 -6.92118168e-01 2.93628484e-01 4.17572528e-01 -7.59970009e-01 -9.03073072e-01 3.71875823e-01 6.09978437e-01 -1.33245683e+00 1.10704076e+00 -5.49866438e-01 5.99755228e-01 1.59747824e-02 2.97087580e-01 -1.59423780e+00 -5.55925369e-01 -9.28396523e-01 -1.14646234e-01 1.11894345e+00 1.34341821e-01 -9.30017233e-01 7.23974168e-01 2.02690989e-01 -2.88685203e-01 -9.08128917e-01 -7.57185459e-01 -5.84054291e-01 5.90570509e-01 -3.13049227e-01 5.07312655e-01 6.33077860e-01 -2.91875511e-01 2.77702183e-01 -5.42952478e-01 -3.85530829e-01 6.43374920e-01 -9.50102359e-02 8.74977112e-01 -9.68385577e-01 -1.31181791e-01 -7.46549249e-01 -6.31380379e-01 -1.02906501e+00 -1.55640677e-01 -6.57618821e-01 -1.93019271e-01 -1.56073844e+00 1.96719185e-01 1.18898220e-01 -1.51437983e-01 4.15593743e-01 -3.35506946e-01 9.23626184e-01 1.86492175e-01 2.05506682e-02 -8.90909433e-02 1.91883847e-01 1.42579710e+00 -5.10596037e-02 2.07184896e-01 4.91897374e-01 -1.29829550e+00 8.17645133e-01 9.84180212e-01 -1.75688118e-01 -7.08934844e-01 -3.56074154e-01 8.67167041e-02 -3.64721239e-01 5.78207552e-01 -1.11297786e+00 -2.25892723e-01 -9.33574289e-02 6.48499608e-01 -4.29624677e-01 2.02422649e-01 -6.74630821e-01 4.08674210e-01 5.63526869e-01 -5.80361113e-02 2.97852069e-01 2.27850378e-01 1.33511364e-01 -2.45269880e-01 -7.36541927e-01 1.07350838e+00 -3.66099477e-01 -7.25282729e-01 2.46539846e-01 -4.60781157e-01 5.68295922e-03 1.36500621e+00 -1.88104033e-01 -3.16005856e-01 -9.63088810e-01 -1.03656030e+00 -2.41173238e-01 5.61498344e-01 7.05894470e-01 3.74898523e-01 -1.35757625e+00 -5.80601156e-01 3.03111970e-01 -2.85623044e-01 -2.73113042e-01 4.64863956e-01 6.00814402e-01 -6.62090182e-01 6.56859636e-01 -5.43816805e-01 -2.66621381e-01 -1.18219960e+00 7.45095909e-01 7.47042894e-01 -9.31291580e-02 -6.14570737e-01 1.06977761e+00 1.18219398e-01 2.86683328e-02 1.54819816e-01 1.73823074e-01 -3.38583976e-01 -1.20768264e-01 4.84214783e-01 2.91480988e-01 9.50898826e-02 -3.95956486e-01 -1.89328253e-01 7.43515134e-01 -1.31814733e-01 -3.16647999e-02 1.22724771e+00 -1.59024727e-02 -2.90963184e-02 5.51769376e-01 6.85017526e-01 1.39672801e-01 -1.07341099e+00 4.20357585e-01 -9.62941527e-01 -2.12693349e-01 -2.77360052e-01 -7.83456206e-01 -1.63960528e+00 9.60268795e-01 6.70843363e-01 7.08045304e-01 1.49152291e+00 2.11401403e-01 5.76922119e-01 -2.75016099e-01 1.58796743e-01 -7.14084744e-01 1.19449057e-01 4.63528961e-01 1.09870470e+00 -7.39684939e-01 1.35447577e-01 -3.67797494e-01 -6.21022761e-01 1.26573563e+00 5.20025551e-01 -4.86786872e-01 7.09699333e-01 5.50707340e-01 4.31859791e-01 -8.77186581e-02 -3.77551079e-01 -1.08713992e-01 3.39247495e-01 1.54404712e+00 8.51418257e-01 -9.31984708e-02 -4.48727489e-01 3.51699293e-01 -1.02158761e+00 -1.82777822e-01 3.96886110e-01 7.01799572e-01 -1.07968085e-01 -1.79412842e+00 -4.42661643e-01 2.60466039e-01 -6.29702628e-01 -1.47211298e-01 -3.84701848e-01 1.12326109e+00 2.70533055e-01 8.35001945e-01 -2.58245748e-02 -4.86734748e-01 1.10472590e-01 2.09132805e-01 1.02680159e+00 -3.38259935e-01 -5.23543239e-01 -1.70935154e-01 -1.19878672e-01 -1.49417475e-01 -7.15828598e-01 -5.72298229e-01 -6.16894305e-01 -8.45540643e-01 4.59012613e-02 4.58869413e-02 4.74851489e-01 6.70407832e-01 -7.86872059e-02 8.60706091e-01 3.83398682e-01 -8.56827974e-01 -2.85911620e-01 -1.06138194e+00 -5.06584287e-01 7.83304498e-02 3.97756368e-01 -4.84146327e-01 -4.96347010e-01 2.90379733e-01]
[11.732053756713867, -0.1784614622592926]
30d81e0e-f2f2-452e-8a53-c7ea4116e27e
adversarial-evasion-attacks-practicality-in
2306.05494
null
https://arxiv.org/abs/2306.05494v1
https://arxiv.org/pdf/2306.05494v1.pdf
Adversarial Evasion Attacks Practicality in Networks: Testing the Impact of Dynamic Learning
Machine Learning (ML) has become ubiquitous, and its deployment in Network Intrusion Detection Systems (NIDS) is inevitable due to its automated nature and high accuracy in processing and classifying large volumes of data. However, ML has been found to have several flaws, on top of them are adversarial attacks, which aim to trick ML models into producing faulty predictions. While most adversarial attack research focuses on computer vision datasets, recent studies have explored the practicality of such attacks against ML-based network security entities, especially NIDS. This paper presents two distinct contributions: a taxonomy of practicality issues associated with adversarial attacks against ML-based NIDS and an investigation of the impact of continuous training on adversarial attacks against NIDS. Our experiments indicate that continuous re-training, even without adversarial training, can reduce the effect of adversarial attacks. While adversarial attacks can harm ML-based NIDSs, our aim is to highlight that there is a significant gap between research and real-world practicality in this domain which requires attention.
['Ashraf Matrawy', 'Mohamed el Shehaby']
2023-06-08
null
null
null
null
['adversarial-attack', 'network-intrusion-detection']
['adversarial', 'miscellaneous']
[ 1.52751803e-01 1.49321124e-01 -4.46675569e-02 -3.58179748e-01 -2.11574882e-01 -9.33944046e-01 7.08947659e-01 -3.44279036e-02 -3.80149901e-01 5.85933089e-01 -5.51653266e-01 -8.97215724e-01 -7.54077965e-03 -9.41339195e-01 -6.42755210e-01 -3.01748604e-01 -4.17122006e-01 4.30430323e-01 2.52634853e-01 -1.76485285e-01 1.82911754e-01 1.19946468e+00 -9.63170588e-01 1.06634423e-01 5.58466733e-01 7.53122330e-01 -9.63949025e-01 8.23971689e-01 -8.05807412e-02 1.10557902e+00 -1.18404865e+00 -9.93555486e-01 6.80945516e-01 -7.67420977e-02 -7.36068368e-01 -4.40606803e-01 6.17611289e-01 -4.29631323e-01 -4.60984081e-01 1.05037618e+00 3.60276759e-01 -2.35881478e-01 5.31991243e-01 -2.19673228e+00 -4.47031677e-01 3.81598085e-01 -2.75033087e-01 3.09405982e-01 1.35882333e-01 6.01471007e-01 8.07515204e-01 -2.73427516e-01 4.42739636e-01 1.46428442e+00 9.42981958e-01 9.00613487e-01 -1.02218831e+00 -1.28954411e+00 -5.49860373e-02 -2.38354132e-02 -1.06153035e+00 -6.08538866e-01 6.06931567e-01 -3.17672938e-01 9.11957383e-01 4.08643484e-01 2.25733802e-01 1.42013562e+00 4.41391617e-01 6.21500671e-01 9.59568143e-01 -3.38427156e-01 3.19749385e-01 4.14516807e-01 -2.69885454e-02 6.09049857e-01 6.42445207e-01 7.01217890e-01 6.05592057e-02 -7.53963947e-01 4.98003691e-01 1.16319135e-01 2.78214812e-01 -2.06534430e-01 -4.66212779e-01 1.26682746e+00 5.43727517e-01 1.77969009e-01 -3.10020000e-01 -8.17412212e-02 5.87599576e-01 5.76048493e-01 3.22240233e-01 7.83166766e-01 -6.79931343e-01 9.25324857e-02 -6.33545578e-01 2.64858305e-01 1.29385591e+00 3.54334325e-01 4.11765814e-01 5.70207179e-01 4.34982479e-01 4.87004042e-01 3.27447057e-01 7.96764255e-01 2.50379946e-02 -7.02845871e-01 2.99041003e-01 5.41907489e-01 -2.60167837e-01 -1.42752981e+00 -3.44877183e-01 -1.42866239e-01 -6.97038829e-01 6.65650487e-01 5.97097278e-01 -7.08651185e-01 -7.29474604e-01 1.69965959e+00 2.68687069e-01 4.94474947e-01 2.19044805e-01 3.32745671e-01 4.20528978e-01 2.03912631e-01 5.05605280e-01 -1.69763286e-02 7.22914875e-01 -4.68175739e-01 -3.35088372e-01 -4.48192745e-01 5.39087772e-01 -6.18241012e-01 6.89578116e-01 2.34329373e-01 -7.64810741e-01 -1.37773618e-01 -1.09008968e+00 7.76089787e-01 -8.47964942e-01 -8.09971511e-01 9.66674030e-01 1.52072501e+00 -5.57889342e-01 5.85412621e-01 -7.88993776e-01 -3.61912578e-01 8.56699884e-01 6.50165558e-01 -4.32152420e-01 1.24398544e-01 -1.48667252e+00 1.17850614e+00 8.65555108e-02 -3.28036696e-01 -6.77701592e-01 -8.46527755e-01 -7.49848664e-01 -1.25615612e-01 4.33488965e-01 -3.10187727e-01 1.12168181e+00 -1.03948927e+00 -1.01193178e+00 6.15371764e-01 3.19007427e-01 -9.54912424e-01 5.31501234e-01 2.03824975e-02 -1.07107270e+00 2.12295204e-02 -4.26082239e-02 2.74671465e-01 9.77055728e-01 -1.25642049e+00 -5.48682690e-01 -3.89549643e-01 2.49810174e-01 -3.01829189e-01 -5.77852011e-01 2.89410293e-01 3.25386763e-01 -5.49590349e-01 -3.53696048e-01 -9.03904796e-01 -4.69877779e-01 -1.16231278e-01 -5.35721838e-01 -5.80644831e-02 1.40016091e+00 -1.50240675e-01 9.67465162e-01 -1.95157278e+00 -6.11321211e-01 5.71355641e-01 4.14847881e-01 1.04788578e+00 -4.55039851e-02 4.79322106e-01 -1.51369765e-01 7.12212086e-01 -4.51241173e-02 1.92243680e-02 -8.73523429e-02 3.76500279e-01 -8.96002769e-01 3.98139775e-01 5.63370347e-01 8.09845686e-01 -7.15296865e-01 -2.10451439e-01 4.78755534e-01 3.87651354e-01 -6.29391253e-01 2.76086599e-01 -1.44598320e-01 2.39624932e-01 -4.12502199e-01 9.36473846e-01 6.72098458e-01 9.37719867e-02 2.36074552e-01 8.18730965e-02 4.35075879e-01 -3.34737152e-02 -1.00416529e+00 2.66300946e-01 -9.90985185e-02 4.87414837e-01 1.11845151e-01 -9.43166375e-01 7.92818844e-01 1.92017853e-01 5.03546596e-01 -6.59833789e-01 2.76986837e-01 1.31229937e-01 4.29751635e-01 -2.56496459e-01 1.00278303e-01 -1.98690653e-01 -2.12559924e-01 6.13446176e-01 -1.49361551e-01 5.65427914e-02 2.13236697e-02 3.39096129e-01 1.56771362e+00 -6.69503510e-01 3.49037200e-01 2.58758545e-01 5.96813679e-01 4.86751907e-02 6.19151890e-01 1.13439608e+00 -6.03833258e-01 -1.76340431e-01 5.15747488e-01 -7.63051271e-01 -9.04692173e-01 -1.18533552e+00 -1.97029933e-02 8.58787239e-01 -4.99698408e-02 -3.10185075e-01 -5.95030725e-01 -1.47287643e+00 3.57682437e-01 7.94034123e-01 -5.16279101e-01 -5.10971189e-01 -6.00610435e-01 -8.35568011e-01 1.40515292e+00 4.39418912e-01 5.63684702e-01 -1.27256620e+00 -3.81506622e-01 9.99865159e-02 4.11846429e-01 -1.28419590e+00 1.72439322e-01 -1.79974493e-02 -5.76478660e-01 -1.75561059e+00 1.97114751e-01 -3.06619972e-01 6.90781891e-01 1.56608243e-02 9.94017065e-01 4.24153268e-01 -6.19924366e-01 5.43727577e-01 -2.69567370e-01 -1.00738204e+00 -1.02708244e+00 -3.61650735e-02 4.27150697e-01 -1.31882846e-01 8.24221253e-01 -6.21002972e-01 3.17299180e-02 3.92942786e-01 -9.96174037e-01 -8.37428808e-01 6.60789013e-01 5.34505725e-01 -1.75390884e-01 5.89779258e-01 9.32352424e-01 -1.55189252e+00 8.52458358e-01 -7.62133002e-01 -4.53522176e-01 1.25789329e-01 -8.30990613e-01 -4.40168262e-01 1.07024193e+00 -7.73793519e-01 -5.40787518e-01 -3.31855416e-01 -3.72215807e-01 -4.28697914e-01 -5.79168260e-01 3.01208366e-02 -1.89939529e-01 -8.07994306e-01 1.04954243e+00 -2.39374563e-01 1.94982767e-01 -1.09434083e-01 8.07897076e-02 5.44570625e-01 8.22989941e-02 -5.33908069e-01 1.47056949e+00 2.46619672e-01 1.61972955e-01 -8.76588345e-01 -8.06987882e-01 -2.68844943e-02 -2.60778993e-01 -1.51271835e-01 3.18911254e-01 -2.54551113e-01 -9.49928343e-01 5.56942165e-01 -8.66690516e-01 -2.04312652e-01 -1.00626618e-01 1.57483846e-01 -5.81016839e-02 3.61988604e-01 -7.23002553e-01 -7.77622581e-01 -3.86287123e-01 -1.11793911e+00 4.45012487e-02 2.51730800e-01 -2.73942590e-01 -1.18533409e+00 -4.81538363e-02 4.33313727e-01 7.07099497e-01 6.17974520e-01 9.25737441e-01 -1.53035760e+00 -2.48526335e-01 -7.30829120e-01 -1.58335268e-01 6.46449327e-01 7.52588138e-02 2.42291823e-01 -1.00020659e+00 -3.60664308e-01 2.33510509e-02 -4.62848365e-01 1.57876909e-01 -1.29464895e-01 8.43928337e-01 -7.35585988e-01 -2.51561105e-01 3.20788056e-01 1.33079374e+00 5.39330304e-01 4.85411435e-01 4.89438087e-01 6.27888680e-01 4.32331890e-01 4.85225409e-01 2.54488200e-01 -8.07845220e-02 1.99140504e-01 8.15552533e-01 -3.39996189e-01 2.25292370e-01 -2.09328026e-01 2.40942329e-01 -1.64270923e-01 1.45339698e-01 -2.29492605e-01 -1.06811643e+00 -6.34554699e-02 -1.36673272e+00 -1.25129938e+00 1.19226500e-01 2.14135289e+00 4.94570822e-01 6.65092409e-01 2.81741172e-01 3.27142566e-01 5.08849144e-01 1.61890462e-01 -8.20264935e-01 -8.32136393e-01 1.69447102e-02 4.08479303e-01 8.22836220e-01 4.38295484e-01 -1.37133789e+00 1.23075020e+00 7.11793947e+00 5.33995092e-01 -1.25792420e+00 -1.40893608e-01 4.61548835e-01 1.33190900e-01 2.52128899e-01 -1.33516654e-01 -7.50457644e-01 3.50708216e-01 1.11775386e+00 -1.67719454e-01 5.44535041e-01 1.03271067e+00 -1.96153685e-01 4.21487570e-01 -1.00779521e+00 4.09581989e-01 1.64603323e-01 -1.34946442e+00 2.77774602e-01 3.13561171e-01 4.86169428e-01 -4.24874946e-03 2.49416351e-01 7.41971493e-01 9.46859956e-01 -1.27566445e+00 1.64197341e-01 -9.21264067e-02 2.43368283e-01 -1.29877579e+00 9.17000115e-01 4.28280979e-01 -7.02547550e-01 -3.47537011e-01 -2.14763224e-01 -1.52121246e-01 -2.11367086e-01 4.04137611e-01 -1.23980045e+00 1.57605797e-01 4.82689351e-01 3.30757827e-01 -7.52073467e-01 5.76085746e-01 -1.66102096e-01 9.53086019e-01 -2.17792183e-01 1.10610805e-01 3.35262895e-01 2.14933932e-01 6.36028349e-01 1.12156641e+00 -5.65478742e-01 -3.32566947e-02 5.19832313e-01 5.08625865e-01 -1.07163846e-01 -1.56963184e-01 -1.08375251e+00 -4.11911011e-01 8.05491209e-01 1.14173400e+00 -5.42483151e-01 -8.14366266e-02 -3.94239306e-01 5.99248648e-01 1.74232379e-01 1.85047463e-01 -9.44607496e-01 -3.42082500e-01 1.13552487e+00 1.72926486e-01 -1.47412196e-01 -1.07502922e-01 -3.86697918e-01 -8.61065447e-01 -2.71323621e-01 -1.44936395e+00 6.01569712e-01 -1.04865655e-02 -1.71584392e+00 5.72997570e-01 -4.32880878e-01 -9.62904930e-01 -3.81904393e-01 -5.86394489e-01 -8.61335516e-01 5.64933717e-01 -1.14930081e+00 -1.43138337e+00 2.50936925e-01 8.21918368e-01 1.94904670e-01 -7.61805117e-01 1.04356194e+00 4.39780682e-01 -6.99765325e-01 1.13886273e+00 -2.44841605e-01 6.99319482e-01 6.85502708e-01 -9.13284600e-01 7.25461364e-01 1.01006293e+00 1.17887527e-01 8.42874944e-01 7.11899042e-01 -7.64211655e-01 -1.24280667e+00 -1.21442723e+00 5.53423107e-01 -7.67304361e-01 9.27229762e-01 -2.87080437e-01 -8.22532475e-01 1.04070485e+00 -3.24281335e-01 1.06222123e-01 9.43776071e-01 1.77489504e-01 -9.07054305e-01 9.57052931e-02 -1.99527943e+00 8.73550057e-01 6.22886360e-01 -5.45294225e-01 -3.66761506e-01 3.74990851e-01 5.82539797e-01 -5.35060726e-02 -8.38660061e-01 7.28540063e-01 4.24290597e-01 -1.05312431e+00 1.41852880e+00 -1.14957774e+00 6.22981228e-02 -2.78146919e-02 -3.68709862e-02 -9.66818452e-01 -5.82319200e-02 -4.17446166e-01 -3.96470249e-01 1.29588342e+00 2.48504147e-01 -1.17411208e+00 1.04478025e+00 8.68272007e-01 5.20672858e-01 -5.78954637e-01 -5.75820208e-01 -9.08878326e-01 2.32153326e-01 -6.35594130e-01 5.05001605e-01 1.42596436e+00 -3.65803152e-01 1.61498919e-01 -4.70352381e-01 6.86324596e-01 9.09267783e-01 -5.66802084e-01 1.05997908e+00 -1.44872701e+00 -9.61496234e-02 -3.82030100e-01 -8.59731853e-01 -1.11092841e-02 4.58937109e-01 -6.00854278e-01 -4.98417497e-01 -7.51031697e-01 -3.24525654e-01 -7.75342882e-01 -1.95580259e-01 8.18452358e-01 2.28785072e-02 5.29181540e-01 3.96389425e-01 2.51689523e-01 -3.49150300e-01 -1.63650185e-01 7.08029628e-01 -1.28888026e-01 -1.00168400e-01 4.64269638e-01 -8.32518935e-01 9.77873266e-01 1.10549974e+00 -6.53842568e-01 -4.00376529e-01 1.38474301e-01 -6.54168054e-02 -2.12467209e-01 4.22721058e-01 -1.09482598e+00 3.12923789e-01 -5.11670232e-01 5.56886017e-01 -9.24812779e-02 1.47388563e-01 -1.06975567e+00 -1.13204025e-01 7.84043610e-01 -1.19164020e-01 -4.07212600e-02 4.42644745e-01 4.54927564e-01 1.34840488e-01 -5.44174798e-02 1.07850826e+00 2.14271955e-02 -5.16215444e-01 5.62522233e-01 -4.64408696e-01 2.23126784e-01 1.40934026e+00 -1.50798678e-01 -4.06804234e-01 -2.39857465e-01 -5.45331538e-01 -4.36651483e-02 4.75501776e-01 5.43058634e-01 4.88158554e-01 -8.67811322e-01 -4.74780649e-01 6.95727646e-01 -2.25290924e-01 -4.46184784e-01 -1.28274381e-01 1.87732384e-01 -4.02393371e-01 2.26358786e-01 -4.19513494e-01 -1.46827489e-01 -1.61321521e+00 7.47557521e-01 3.89138967e-01 -3.99678528e-01 -3.78969252e-01 7.64279187e-01 -2.25616992e-01 -7.89581418e-01 4.89883661e-01 5.91466248e-01 -5.08695021e-02 -4.37361300e-01 6.60404444e-01 3.84186417e-01 -9.20418650e-02 -4.57388639e-01 -5.89227736e-01 -1.46100491e-01 -6.22804224e-01 2.53375709e-01 1.08347142e+00 4.41648901e-01 -4.01170515e-02 -5.94971329e-02 8.09792638e-01 1.77738935e-01 -7.93230951e-01 -7.67116994e-02 2.28313208e-01 -5.54585397e-01 -2.88906127e-01 -1.13497949e+00 -1.14758265e+00 5.74955583e-01 4.55515593e-01 6.99699521e-01 8.92858982e-01 -3.80699784e-01 9.00151134e-01 7.17725873e-01 4.17097330e-01 -7.23610699e-01 1.04996666e-01 6.34897113e-01 3.58175665e-01 -1.40177977e+00 -1.02139987e-01 -4.43770200e-01 -6.10370517e-01 9.83102083e-01 9.63898301e-01 -3.76571804e-01 8.14414799e-01 4.98103708e-01 3.32766414e-01 -1.79943621e-01 -4.76826876e-01 3.96572351e-01 -1.48533568e-01 9.69916046e-01 -3.33986580e-02 1.24787554e-01 1.62835002e-01 2.50370383e-01 -2.59607285e-01 -3.53845060e-01 4.92496938e-01 1.10906923e+00 -1.88791603e-01 -1.43570805e+00 -5.57395995e-01 6.90759540e-01 -7.62267828e-01 3.32050584e-02 -9.34773207e-01 1.07544136e+00 1.75632104e-01 1.29195333e+00 -1.69530749e-01 -7.83511996e-01 3.88037652e-01 9.91742685e-03 9.05740038e-02 -5.10759354e-01 -1.07808185e+00 -9.01556969e-01 8.64644498e-02 -6.88365221e-01 -2.18919795e-02 -4.43484485e-01 -1.11889374e+00 -1.14018250e+00 -2.69796729e-01 1.72420770e-01 7.39381492e-01 1.04564118e+00 2.74472982e-01 3.92746627e-01 9.81840611e-01 -4.41059202e-01 -8.30279171e-01 -5.65260708e-01 -4.55440253e-01 5.88521063e-01 2.19243765e-01 -5.58527350e-01 -8.25598717e-01 -3.71087253e-01]
[5.532015800476074, 7.538974761962891]
6d9913a8-8164-43d6-9253-6faa68540b89
improving-ctc-based-speech-recognition-via
2203.03582
null
https://arxiv.org/abs/2203.03582v1
https://arxiv.org/pdf/2203.03582v1.pdf
Improving CTC-based speech recognition via knowledge transferring from pre-trained language models
Recently, end-to-end automatic speech recognition models based on connectionist temporal classification (CTC) have achieved impressive results, especially when fine-tuned from wav2vec2.0 models. Due to the conditional independence assumption, CTC-based models are always weaker than attention-based encoder-decoder models and require the assistance of external language models (LMs). To solve this issue, we propose two knowledge transferring methods that leverage pre-trained LMs, such as BERT and GPT2, to improve CTC-based models. The first method is based on representation learning, in which the CTC-based models use the representation produced by BERT as an auxiliary learning target. The second method is based on joint classification learning, which combines GPT2 for text modeling with a hybrid CTC/attention architecture. Experiment on AISHELL-1 corpus yields a character error rate (CER) of 4.2% on the test set. When compared to the vanilla CTC-based models fine-tuned from the wav2vec2.0 models, our knowledge transferring method reduces CER by 16.1% relatively without external LMs.
['Pengyuan Zhang', 'Ji Xu', 'Gaofeng Cheng', 'Long Ma', 'Yike Zhang', 'Songjun Cao', 'Keqi Deng']
2022-02-22
null
null
null
null
['auxiliary-learning']
['methodology']
[ 2.19363526e-01 2.35245749e-01 -1.41064599e-01 -1.77656457e-01 -9.95123208e-01 -2.17067048e-01 5.61785102e-01 -1.68127760e-01 -7.12338448e-01 6.74950182e-01 3.76722246e-01 -6.33322060e-01 4.13908541e-01 -4.28515464e-01 -6.16323352e-01 -6.17347062e-01 4.49068785e-01 4.79078263e-01 4.62100744e-01 -1.97164431e-01 4.86938320e-02 -1.04992718e-01 -9.92209256e-01 4.38737839e-01 9.88344133e-01 9.69531953e-01 4.91614699e-01 9.11054552e-01 -4.71186399e-01 1.03740513e+00 -6.47329092e-01 -5.57204783e-01 -3.10017377e-01 -3.60661894e-01 -8.08232963e-01 -4.55250084e-01 -1.78394690e-02 -1.68162286e-01 -7.88230658e-01 6.99660242e-01 6.20374978e-01 3.23580116e-01 7.55815208e-01 -9.28670168e-01 -8.52265596e-01 8.87016177e-01 -2.25003898e-01 2.78897583e-01 -1.25539914e-01 4.90101837e-02 1.02094805e+00 -8.40284526e-01 1.85991228e-01 1.22561622e+00 5.99092364e-01 9.95626867e-01 -9.61233377e-01 -5.92161238e-01 4.52421159e-01 6.10404789e-01 -1.58864772e+00 -7.81596243e-01 6.46227360e-01 -2.69700348e-01 1.66992152e+00 2.07122043e-01 3.10341001e-01 1.46131670e+00 8.77742618e-02 1.36812580e+00 5.63606679e-01 -7.52791822e-01 1.96899362e-02 3.67162734e-01 2.36300036e-01 4.96123940e-01 -3.05390060e-01 8.01726058e-02 -5.79371393e-01 3.83911468e-02 5.52370965e-01 -3.76578480e-01 -4.56228346e-01 1.44454390e-01 -9.65395868e-01 9.39868152e-01 1.82265982e-01 4.23623472e-01 -2.22903743e-01 3.28130811e-01 5.82104862e-01 1.69450387e-01 6.46995604e-01 9.21263099e-02 -8.03045213e-01 -4.73238736e-01 -9.22959149e-01 -7.12780654e-01 6.44833207e-01 1.03593826e+00 3.87505621e-01 5.74825764e-01 -5.55999756e-01 1.30939686e+00 5.89863300e-01 6.03420079e-01 1.12449884e+00 -1.53675541e-01 8.76788735e-01 2.49747187e-01 -4.37013447e-01 -3.04169625e-01 1.47292852e-01 -6.47251606e-01 -7.82674909e-01 -3.28601897e-01 -1.16526507e-01 -3.48824054e-01 -1.23588109e+00 1.63526380e+00 -2.70023167e-01 3.06286395e-01 4.34293777e-01 4.41540420e-01 8.93831611e-01 1.07477486e+00 1.96246132e-01 -1.15948498e-01 1.02680457e+00 -1.47354233e+00 -1.00422513e+00 -2.03394324e-01 1.00840604e+00 -4.90890682e-01 8.95466447e-01 3.00795227e-01 -9.25890923e-01 -6.37059987e-01 -1.08565748e+00 -2.55156085e-02 -4.89077181e-01 3.65065545e-01 9.07887518e-03 8.28665257e-01 -1.22326112e+00 2.69616038e-01 -8.80960941e-01 -3.75368685e-01 3.37213635e-01 2.46091515e-01 -5.62740490e-02 2.22530320e-01 -1.25456023e+00 1.06392825e+00 5.58808923e-01 2.15041175e-01 -1.05885077e+00 -1.54998586e-01 -8.43727887e-01 3.26537579e-01 1.52695358e-01 -2.80722708e-01 1.39151347e+00 -9.97524858e-01 -2.18145013e+00 1.96183011e-01 -4.92416173e-01 -6.42695129e-01 2.96544224e-01 -2.51429766e-01 -5.99186599e-01 -5.41038029e-02 -3.02141011e-01 5.95873475e-01 7.59220183e-01 -9.71646547e-01 -5.84865391e-01 1.84170738e-01 -3.78423572e-01 2.05848396e-01 -8.25264633e-01 -2.93609425e-02 -7.47088253e-01 -6.20199800e-01 -2.52801180e-01 -7.71055043e-01 -1.70857329e-02 -3.87409419e-01 -4.07230496e-01 -5.17598689e-01 9.45418119e-01 -1.02819693e+00 1.62735951e+00 -2.05533648e+00 2.17708021e-01 -8.37128311e-02 -9.18180719e-02 8.88759553e-01 -3.89326394e-01 4.36275721e-01 6.12274893e-02 1.79828748e-01 -2.12401107e-01 -6.26563847e-01 -3.60030979e-02 3.12457323e-01 -4.07547593e-01 -8.18028767e-03 3.94119322e-01 1.07969928e+00 -6.96274519e-01 -3.75736982e-01 2.60568738e-01 6.50657773e-01 -3.79840195e-01 2.17228889e-01 -2.75057822e-01 2.28904396e-01 -3.26835364e-01 1.17825642e-01 3.99568200e-01 8.63632001e-03 1.40622109e-01 1.19878493e-01 -8.07189271e-02 6.96678936e-01 -5.58168530e-01 1.60278189e+00 -7.73038745e-01 9.23700273e-01 -2.83401281e-01 -9.50748444e-01 9.97486055e-01 8.23935270e-01 -1.87597722e-01 -7.51210392e-01 2.51326203e-01 1.24353275e-01 -7.88826309e-03 -2.57568449e-01 3.52688909e-01 -1.75402139e-03 1.54912382e-01 3.03545237e-01 4.10126925e-01 1.58824325e-01 -3.03616226e-01 2.10295036e-01 1.11418331e+00 1.43832445e-01 -6.72081038e-02 1.75195575e-01 8.00557613e-01 -3.44700247e-01 5.88073075e-01 6.86347067e-01 -1.60079241e-01 6.82770431e-01 2.20206514e-01 -5.55814654e-02 -8.03094804e-01 -7.97404230e-01 6.45725653e-02 9.86254752e-01 -3.27535063e-01 -5.35812974e-01 -7.70584166e-01 -1.00454342e+00 -1.96177602e-01 1.16111779e+00 -5.04840195e-01 -4.74657416e-01 -4.14925963e-01 -4.43247914e-01 9.72129405e-01 9.05860245e-01 5.71679175e-01 -9.76287425e-01 3.56983207e-02 4.61278945e-01 -4.56213057e-01 -1.18801355e+00 -6.78539872e-01 4.85498875e-01 -6.83524311e-01 -4.31321800e-01 -9.95414376e-01 -7.29243100e-01 3.37451011e-01 1.51681662e-01 5.86766779e-01 -4.31483202e-02 3.37148696e-01 2.80500442e-01 -8.04134429e-01 -4.02169079e-01 -3.69525164e-01 2.82491624e-01 3.51151526e-02 3.54409367e-01 4.58790809e-01 -1.50847286e-01 -1.03330091e-01 2.32003450e-01 -5.54051220e-01 1.20240025e-01 6.30666077e-01 1.18502617e+00 3.35821122e-01 -1.27982289e-01 6.26674891e-01 -4.72490221e-01 3.89866620e-01 -3.92099351e-01 -2.83147186e-01 5.57282329e-01 -4.70647365e-01 3.69649678e-01 5.77283561e-01 -7.78423131e-01 -1.30703878e+00 -5.35432845e-02 -4.40744907e-01 -6.52357876e-01 5.90110570e-02 6.01024806e-01 -1.90503553e-01 2.12889031e-01 3.77825260e-01 6.71861827e-01 -3.62971455e-01 -7.24053085e-01 3.27972502e-01 1.20383251e+00 2.40690783e-01 -2.29871318e-01 4.40168053e-01 -1.28164470e-01 -9.94621456e-01 -1.04748964e+00 -8.13298285e-01 -4.36600834e-01 -5.39640665e-01 -9.71044321e-03 1.09236753e+00 -1.03415334e+00 -3.86270761e-01 5.00947535e-01 -1.43879473e+00 -7.16209173e-01 -7.07824379e-02 9.42391932e-01 -3.26946050e-01 4.45095003e-01 -8.85082960e-01 -1.12029362e+00 -5.04964232e-01 -1.03393912e+00 8.21683526e-01 -1.37322843e-01 -9.70583484e-02 -1.20198011e+00 9.76442918e-03 5.57339787e-01 6.73392832e-01 -6.48504138e-01 9.39756453e-01 -8.25894415e-01 -2.10301384e-01 -1.76754296e-01 -8.42427909e-02 8.15647602e-01 -9.48351175e-02 -1.69686809e-01 -1.41345537e+00 -4.01101708e-01 -1.04885869e-01 -1.72409460e-01 1.09141397e+00 2.71156907e-01 1.15520465e+00 -2.95688361e-01 -4.67604518e-01 4.13969487e-01 1.06638324e+00 5.91787457e-01 8.47452283e-01 1.39468282e-01 8.08608115e-01 1.64197952e-01 1.15523174e-01 1.04553811e-01 3.37477207e-01 9.18475747e-01 9.08646360e-02 4.64632809e-02 -5.77897906e-01 -4.54513431e-01 7.99770176e-01 1.82819676e+00 9.91402268e-02 -7.54809260e-01 -9.85453665e-01 5.52531779e-01 -1.89934492e+00 -8.03392112e-01 -2.06610367e-01 2.13715768e+00 8.99077952e-01 3.11264068e-01 -2.30235890e-01 7.84454942e-02 7.88902938e-01 -7.35864863e-02 -4.15176511e-01 -6.55599654e-01 -2.32604176e-01 2.83395141e-01 4.21641439e-01 6.64837003e-01 -8.90800834e-01 1.37289453e+00 5.76307106e+00 1.26181591e+00 -1.21641445e+00 6.08441293e-01 3.39310437e-01 1.75284058e-01 -2.06196338e-01 1.20835798e-02 -1.12523043e+00 5.26540518e-01 1.51553917e+00 -4.06769104e-02 1.07880563e-01 6.58936262e-01 -8.10224563e-03 2.81944364e-01 -9.61420953e-01 9.55945909e-01 3.57639700e-01 -1.04137492e+00 2.93405086e-01 1.77838281e-02 5.49826682e-01 3.13223273e-01 8.48631114e-02 9.29382563e-01 4.16918427e-01 -8.93657565e-01 7.79644489e-01 4.83389795e-01 9.99371052e-01 -5.99775612e-01 1.01538229e+00 4.64868814e-01 -1.24711931e+00 -3.34118344e-02 -4.61929321e-01 1.16971225e-01 2.10950479e-01 1.50911525e-01 -1.07239580e+00 5.58558881e-01 2.96747774e-01 5.46629369e-01 -2.96393424e-01 1.03743398e+00 -5.16033649e-01 1.33281744e+00 -1.52646109e-01 -3.14152956e-01 4.32106823e-01 3.58673692e-01 3.13616633e-01 1.62408543e+00 3.04153502e-01 -8.94980580e-02 -2.97720730e-01 4.75618064e-01 -8.94322172e-02 2.30590820e-01 -4.23703313e-01 -1.93333998e-01 4.44690168e-01 8.10591340e-01 -2.08104566e-01 -5.38048744e-01 -6.16807044e-01 1.33550060e+00 5.94500303e-01 5.45636535e-01 -9.68272448e-01 -7.00079858e-01 3.14097822e-01 -2.96677351e-01 8.52474689e-01 -3.38584632e-01 9.65797063e-03 -1.33109295e+00 -1.50930092e-01 -5.99008143e-01 4.00439054e-02 -8.83248985e-01 -1.11161077e+00 1.01544034e+00 -3.37302268e-01 -1.15759909e+00 -1.63977474e-01 -6.17596269e-01 -7.30595171e-01 9.74347353e-01 -1.71572089e+00 -1.12775993e+00 1.31943882e-01 5.11532307e-01 1.04226983e+00 -5.37425041e-01 1.09862173e+00 3.76810968e-01 -9.86169934e-01 1.21874595e+00 4.98481005e-01 4.12997395e-01 4.99987096e-01 -9.04142261e-01 5.00459790e-01 7.91357934e-01 2.65650898e-01 2.20057607e-01 -2.56910343e-02 -5.38464129e-01 -1.16917121e+00 -1.26367140e+00 1.31319392e+00 -5.65433860e-01 5.21375775e-01 -5.17141998e-01 -1.13648963e+00 8.36874664e-01 4.82288718e-01 -2.65097529e-01 7.04785049e-01 1.49931893e-01 -6.45013511e-01 2.29027271e-02 -6.31606817e-01 6.67259753e-01 7.65089989e-01 -8.07636917e-01 -8.67060125e-01 1.15417451e-01 1.01649165e+00 4.92160358e-02 -6.24354601e-01 8.43909979e-02 3.24371666e-01 -2.18597010e-01 6.09578252e-01 -6.17134571e-01 -5.77862840e-04 -1.15619026e-01 -3.60513121e-01 -1.51142871e+00 -4.30125117e-01 -4.32540417e-01 -2.28843316e-01 1.36758268e+00 9.62191403e-01 -6.62021697e-01 3.85068327e-01 2.69203365e-01 -5.16945124e-01 -3.11386466e-01 -1.31290197e+00 -1.24274921e+00 3.27357680e-01 -7.86152065e-01 2.78439134e-01 8.94446135e-01 2.00787932e-01 8.55673254e-01 -3.80040079e-01 7.04136789e-02 1.60381690e-01 -7.07252741e-01 5.26652873e-01 -9.55581665e-01 -3.65147471e-01 -5.48378229e-01 -3.55257928e-01 -1.58249676e+00 4.03069019e-01 -1.08727062e+00 3.07016402e-01 -1.55471611e+00 7.86186606e-02 -3.47124547e-01 -6.31053388e-01 8.82134616e-01 -5.49340844e-02 -6.83914348e-02 1.93856612e-01 1.19153954e-01 -6.08729184e-01 1.21172428e+00 8.65571916e-01 -4.46341008e-01 -2.01950103e-01 -1.72642931e-01 -2.72575140e-01 4.41733807e-01 8.37557614e-01 -4.38500762e-01 -4.23820615e-01 -9.12149131e-01 -3.96288157e-01 1.17530741e-01 -1.21812083e-01 -1.10617363e+00 6.05100393e-01 2.87692279e-01 1.69409782e-01 -5.59989691e-01 8.28761816e-01 -5.18179774e-01 -3.05755675e-01 4.56905276e-01 -4.85382944e-01 -3.95260125e-01 5.29874444e-01 7.03472078e-01 -3.86426359e-01 -3.41854721e-01 5.28678417e-01 1.59215167e-01 -6.23757660e-01 1.03320442e-01 -9.06292856e-01 -1.74401123e-02 6.77743077e-01 -1.32328197e-01 -4.11338329e-01 -7.06227362e-01 -8.61472547e-01 2.50922173e-01 -3.49001974e-01 5.79580069e-01 8.03922832e-01 -1.41011691e+00 -1.00241756e+00 2.69531429e-01 2.66684771e-01 -5.37061930e-01 1.99192584e-01 9.16203976e-01 -8.95312149e-03 8.78293693e-01 3.09819251e-01 -5.09392560e-01 -1.11296177e+00 3.72814298e-01 3.37595314e-01 -2.51468331e-01 -4.43985015e-01 1.17415714e+00 3.94553870e-01 -5.02523303e-01 5.37602067e-01 -2.08578631e-01 -3.16105217e-01 -1.89808294e-01 4.90062714e-01 1.61355197e-01 2.29082957e-01 -5.80869317e-01 -4.57315415e-01 3.55181664e-01 -4.46407139e-01 -5.50316751e-01 1.07202327e+00 -1.40581906e-01 4.86676574e-01 6.10808253e-01 1.32935476e+00 -2.37419516e-01 -1.08527255e+00 -5.15362740e-01 5.12668528e-02 -4.14332598e-02 4.85054731e-01 -1.01456845e+00 -1.14967024e+00 1.45482969e+00 4.59481090e-01 -9.48525444e-02 7.23592877e-01 -2.13742346e-01 1.00736845e+00 4.28635567e-01 1.65508464e-01 -1.21213138e+00 9.08066407e-02 1.19781947e+00 8.82278979e-01 -1.01976979e+00 -7.25443721e-01 -1.06110156e-01 -9.59744096e-01 1.03034949e+00 7.42999136e-01 3.58986825e-01 6.46983385e-01 1.21438257e-01 1.50334314e-01 3.90319824e-01 -1.32560885e+00 -3.46548647e-01 2.48208269e-01 6.63278222e-01 5.13180792e-01 6.52469397e-02 -1.07158303e-01 7.65557945e-01 8.36745501e-02 -2.06201687e-01 3.78610253e-01 8.29645395e-01 -3.92515928e-01 -1.07832110e+00 -7.03102648e-02 2.89114624e-01 -1.97073221e-01 -6.41763091e-01 -2.36584499e-01 2.65158921e-01 -3.04859817e-01 1.32606375e+00 8.44961628e-02 -8.23950052e-01 2.54892856e-01 5.81393838e-01 1.80430740e-01 -7.07760930e-01 -6.40012264e-01 2.88334668e-01 3.04076821e-01 -9.76066068e-02 9.00466591e-02 -4.28952515e-01 -1.08892453e+00 1.35805206e-02 -9.26919222e-01 4.94174957e-01 7.82445490e-01 9.68242466e-01 4.36168164e-01 8.31122577e-01 5.05369425e-01 -4.83442605e-01 -5.49638689e-01 -1.34187090e+00 -3.57771993e-01 -1.73614547e-01 3.15535307e-01 -5.02734125e-01 -3.99610966e-01 -2.12081693e-04]
[14.434467315673828, 6.847388744354248]
23023824-304d-4e65-88f6-44ccb8f0e3f7
few-shot-fine-tuning-vs-in-context-learning-a
2305.16938
null
https://arxiv.org/abs/2305.16938v2
https://arxiv.org/pdf/2305.16938v2.pdf
Few-shot Fine-tuning vs. In-context Learning: A Fair Comparison and Evaluation
Few-shot fine-tuning and in-context learning are two alternative strategies for task adaptation of pre-trained language models. Recently, in-context learning has gained popularity over fine-tuning due to its simplicity and improved out-of-domain generalization, and because extensive evidence shows that fine-tuned models pick up on spurious correlations. Unfortunately, previous comparisons of the two approaches were done using models of different sizes. This raises the question of whether the observed weaker out-of-domain generalization of fine-tuned models is an inherent property of fine-tuning or a limitation of the experimental setup. In this paper, we compare the generalization of few-shot fine-tuning and in-context learning to challenge datasets, while controlling for the models used, the number of examples, and the number of parameters, ranging from 125M to 30B. Our results show that fine-tuned language models can in fact generalize well out-of-domain. We find that both approaches generalize similarly; they exhibit large variation and depend on properties such as model size and the number of examples, highlighting that robust task adaptation remains a challenge.
['Yanai Elazar', 'Dietrich Klakow', 'Shauli Ravfogel', 'Tiago Pimentel', 'Marius Mosbach']
2023-05-26
null
null
null
null
['domain-generalization']
['methodology']
[-1.19887851e-01 -3.80633324e-01 -3.25336546e-01 -5.08939445e-01 -8.30195069e-01 -7.09440947e-01 9.08615232e-01 1.90092012e-01 -8.21734428e-01 8.08804750e-01 3.24841648e-01 -1.67002961e-01 -2.70345181e-01 -5.68879366e-01 -6.08002543e-01 -4.32962328e-01 1.86281782e-02 5.86354911e-01 6.29300356e-01 -4.31083083e-01 3.05338979e-01 2.60828763e-01 -1.20956683e+00 1.53597161e-01 6.83832109e-01 4.79087174e-01 1.23276822e-01 6.61422551e-01 -3.24847490e-01 2.67119169e-01 -7.64595032e-01 -2.38988698e-01 1.91270411e-01 -2.95335859e-01 -6.47192717e-01 -2.51281410e-01 5.72103739e-01 -1.22332154e-03 -1.79780945e-01 8.75340819e-01 5.63978136e-01 6.75433338e-01 8.57214689e-01 -8.95196557e-01 -9.74486947e-01 5.42166770e-01 -3.26267481e-01 7.84645200e-01 -3.58719490e-02 2.23844454e-01 8.84203911e-01 -9.26168919e-01 5.28069735e-01 1.29160547e+00 9.04257715e-01 8.37366939e-01 -1.50354850e+00 -7.84985185e-01 3.58995795e-01 -1.44533172e-01 -1.33986604e+00 -6.53618038e-01 3.18274498e-01 -7.88869381e-01 1.13097823e+00 -1.74336135e-01 3.06561291e-01 1.46100748e+00 1.44836605e-01 1.01148896e-01 1.05698204e+00 -7.02182889e-01 5.74455857e-01 5.06333470e-01 2.99914747e-01 1.28832251e-01 3.44624609e-01 3.16514492e-01 -4.32791382e-01 -4.91546780e-01 7.20198512e-01 -1.03362173e-01 -1.78921036e-02 -6.04630113e-01 -1.02677023e+00 1.12462544e+00 2.31286615e-01 7.21862674e-01 4.29747663e-02 -2.25235671e-02 6.59542859e-01 3.56119692e-01 6.37427270e-01 8.68299484e-01 -8.29313993e-01 -2.20873028e-01 -8.57262790e-01 2.50317276e-01 6.68749392e-01 7.45362639e-01 7.50188828e-01 1.59939289e-01 -2.99938112e-01 1.18884623e+00 -2.83879071e-01 1.40198216e-01 1.16782773e+00 -6.57118201e-01 3.94592822e-01 2.26481110e-01 1.79644488e-02 -3.62321198e-01 -4.61603522e-01 -4.69112366e-01 -3.55687022e-01 -6.06358871e-02 6.26549959e-01 -3.89308989e-01 -9.09143507e-01 2.17209744e+00 -5.90468459e-02 -6.67502657e-02 -7.28142187e-02 6.45052195e-01 4.45413291e-01 2.91147351e-01 6.70665801e-01 -9.47664231e-02 1.13042152e+00 -7.98957348e-01 -3.07201475e-01 -6.58510029e-01 7.84314871e-01 -6.36361539e-01 1.68550587e+00 -7.22464100e-02 -6.69220328e-01 -7.37359762e-01 -8.51297438e-01 -2.51627825e-02 -7.22686589e-01 -3.87472183e-01 4.37464446e-01 7.86281884e-01 -6.99229002e-01 6.26022756e-01 -3.48099023e-01 -8.62733305e-01 2.75723368e-01 2.02915296e-01 -2.49513134e-01 -2.63617504e-02 -1.27352726e+00 1.13717997e+00 6.79033339e-01 -8.37474644e-01 -6.46969557e-01 -9.92775619e-01 -5.89172304e-01 2.23878369e-01 2.63444930e-01 -7.16012478e-01 1.31193280e+00 -7.35984921e-01 -1.12423754e+00 8.06384325e-01 -9.75231901e-02 -3.64241898e-01 1.86699048e-01 -1.30438760e-01 -5.53966045e-01 -4.17103469e-01 1.40685797e-01 5.33117831e-01 7.48719335e-01 -9.01969969e-01 -4.13182259e-01 -3.59823763e-01 1.48728326e-01 6.54530823e-02 -4.69416291e-01 -7.43299946e-02 -1.64612055e-01 -8.16763937e-01 -4.44797486e-01 -8.18971455e-01 -1.89298242e-01 -4.79148388e-01 2.13114843e-01 -2.93827564e-01 4.49546576e-01 -1.59797505e-01 1.34953189e+00 -2.44054341e+00 -2.92354882e-01 1.21519249e-02 -1.87884614e-01 3.66779506e-01 -5.38106382e-01 5.28777897e-01 -1.69680789e-01 2.74320692e-01 -5.27468435e-02 -1.95991054e-01 5.14252670e-02 2.92062193e-01 -2.62412786e-01 1.26756027e-01 1.15083873e-01 8.50493848e-01 -9.36514497e-01 -3.47302675e-01 5.42281754e-02 2.46659055e-01 -5.77492476e-01 -1.19703844e-01 -3.08080763e-01 3.27129513e-01 -3.88220787e-01 3.69851515e-02 2.69084662e-01 -2.08162263e-01 7.51483291e-02 1.62263379e-01 7.41359890e-02 3.32245886e-01 -9.11728740e-01 1.69508028e+00 -6.51969194e-01 6.36330962e-01 -4.89408642e-01 -9.48970139e-01 8.60772312e-01 2.27993757e-01 2.92286668e-02 -9.02099788e-01 -6.75941929e-02 2.85811841e-01 3.04762781e-01 -3.80217910e-01 5.16298711e-01 -7.29960740e-01 -2.36690015e-01 5.08781970e-01 3.69720936e-01 -2.12784097e-01 3.84501755e-01 1.53567091e-01 8.33677232e-01 -5.72461747e-02 7.05669820e-01 -4.78054971e-01 6.56936243e-02 -1.04260623e-01 3.18039358e-01 1.16112530e+00 -3.75427395e-01 3.88997734e-01 1.34627029e-01 -1.95936933e-01 -1.19700336e+00 -1.16068172e+00 -3.72922063e-01 1.92194140e+00 -3.56576443e-01 -4.40298498e-01 -6.04195535e-01 -6.87859535e-01 1.55952290e-01 1.00462663e+00 -8.82177234e-01 -5.08736372e-01 -4.09369767e-01 -7.66637802e-01 4.48239088e-01 6.38689816e-01 -1.44057227e-02 -9.03756320e-01 -3.54780585e-01 3.05537760e-01 1.80374622e-01 -1.11041892e+00 -6.01522326e-01 4.88221079e-01 -1.05031741e+00 -7.97727585e-01 -8.08872640e-01 -6.67402267e-01 3.39564502e-01 2.21998990e-01 1.46529925e+00 -1.30004004e-01 -1.20029718e-01 4.67388332e-01 -2.49202266e-01 -5.35063207e-01 -5.24132848e-01 5.81806481e-01 2.86201924e-01 -4.30755943e-01 7.86374032e-01 -7.00658023e-01 -2.36767814e-01 3.21533263e-01 -8.07977080e-01 -7.32213736e-01 6.14920855e-01 9.75101709e-01 2.45621622e-01 -1.17807508e-01 1.00708282e+00 -1.22238326e+00 1.11610901e+00 -5.77260673e-01 -3.24128717e-01 3.23888183e-01 -7.52539039e-01 3.07242334e-01 5.49672544e-01 -8.45779955e-01 -9.99691129e-01 -4.14166868e-01 1.09899148e-01 -2.81401157e-01 -2.51920670e-01 3.28857780e-01 2.10124686e-01 -5.19460998e-02 1.27656007e+00 -3.24279927e-02 -3.81006569e-01 -5.89540780e-01 4.70257342e-01 4.18860227e-01 1.39587343e-01 -6.97029173e-01 7.36817718e-01 1.53167516e-01 -4.29722100e-01 -8.49555075e-01 -1.16762066e+00 -5.10620296e-01 -6.01396084e-01 3.60016465e-01 6.76954448e-01 -9.04321969e-01 5.50923049e-02 -8.73704925e-02 -7.05769241e-01 -7.92199612e-01 -6.87994480e-01 5.14472604e-01 -4.26172465e-01 1.71312243e-01 -3.44548941e-01 -5.87948024e-01 -8.47403258e-02 -7.55580485e-01 7.26776123e-01 1.90357417e-01 -6.32458448e-01 -1.38598013e+00 2.93155491e-01 -2.19591912e-02 7.40229785e-01 -2.07955763e-01 1.13061750e+00 -1.09470963e+00 -2.61851423e-03 -1.11217253e-01 -9.24400389e-02 3.36736977e-01 2.45219544e-01 -2.86390603e-01 -1.11448777e+00 -3.99228930e-01 -8.01929235e-02 -4.53198522e-01 9.42233443e-01 4.39554662e-01 9.58003700e-01 -3.34502868e-02 -3.25388759e-01 3.40858728e-01 1.37604034e+00 5.58747118e-03 2.93327659e-01 5.12463748e-01 2.92966217e-01 4.09277856e-01 4.65857863e-01 3.27715993e-01 7.53624663e-02 8.49645138e-01 -3.98656487e-01 3.57315749e-01 -2.20012084e-01 -2.86454976e-01 2.19109386e-01 5.16259074e-01 2.49013484e-01 4.40063253e-02 -9.44099307e-01 7.87110269e-01 -1.61129951e+00 -1.04952514e+00 4.08844471e-01 2.34247661e+00 9.25516963e-01 5.29017746e-01 4.45368916e-01 -2.21895173e-01 6.44924343e-01 1.13862157e-01 -6.14946067e-01 -6.79314256e-01 -1.44614369e-01 2.88822144e-01 3.04629743e-01 5.16545415e-01 -8.14590991e-01 9.84445572e-01 7.00211287e+00 9.67504203e-01 -1.22914004e+00 4.72578764e-01 3.52306515e-01 -3.78006190e-01 -1.17164560e-01 -6.16117232e-02 -9.98272121e-01 4.34420854e-01 1.12919271e+00 -3.89199913e-01 4.63397533e-01 9.43479121e-01 -1.19291984e-01 -3.86180244e-02 -1.29800200e+00 6.92650855e-01 1.29899040e-01 -1.05232513e+00 2.89655793e-02 -5.54461591e-02 1.05275249e+00 4.49312240e-01 2.66301017e-02 9.49182808e-01 2.27902874e-01 -7.87613392e-01 6.22334778e-01 3.06219518e-01 7.58727729e-01 -5.11699736e-01 3.84332567e-01 6.57087803e-01 -7.40301549e-01 -2.61909634e-01 -6.18099689e-01 -2.48342112e-01 -5.94599172e-02 4.77379918e-01 -9.53709424e-01 -9.15692002e-02 7.82829165e-01 1.04691572e-01 -8.98437500e-01 8.98914158e-01 8.77823681e-02 6.96080923e-01 -1.45680949e-01 -1.45275384e-01 2.33602881e-01 3.32800150e-01 3.94690186e-01 1.61089551e+00 1.56224981e-01 -1.23311572e-01 2.06343874e-01 6.64171994e-01 8.28997716e-02 5.75810447e-02 -6.44562721e-01 -2.40612835e-01 6.87184453e-01 8.61382425e-01 -3.49501610e-01 -4.44693357e-01 -5.64381719e-01 5.12915671e-01 6.15082681e-01 5.54612637e-01 -4.33592379e-01 -3.13502163e-01 7.06684470e-01 3.46125275e-01 5.64523220e-01 -3.42702210e-01 -3.56285512e-01 -1.18321538e+00 -1.40418023e-01 -7.82654643e-01 6.01570189e-01 -5.30206442e-01 -1.67758071e+00 4.01958644e-01 2.21667469e-01 -7.76183426e-01 -4.51105475e-01 -5.47006249e-01 -5.84633827e-01 9.35358882e-01 -1.25706208e+00 -6.33483052e-01 -1.76515117e-01 4.69657928e-01 7.90177286e-01 -4.17744517e-01 1.05701768e+00 1.29386112e-01 -2.44490057e-01 9.01242971e-01 4.82679129e-01 2.02390570e-02 1.17902792e+00 -1.06104147e+00 6.26932621e-01 5.60797989e-01 2.12726563e-01 9.70555782e-01 7.17187941e-01 -3.93336266e-01 -6.21016800e-01 -9.50481594e-01 9.39088285e-01 -8.01729918e-01 7.48029768e-01 -5.35173953e-01 -1.12281692e+00 7.58097172e-01 3.41333970e-02 1.01070806e-01 8.41126144e-01 6.60624504e-01 -7.31070161e-01 -5.41546308e-02 -1.06969702e+00 6.24664605e-01 1.06782448e+00 -7.24604189e-01 -8.98216844e-01 1.85327709e-01 8.07750762e-01 2.36124136e-02 -8.10328543e-01 1.90635681e-01 4.77726758e-01 -9.93671536e-01 8.93197000e-01 -1.03768027e+00 6.74128309e-02 2.89666802e-01 -4.22226816e-01 -1.69899333e+00 -7.99698293e-01 -2.20786393e-01 9.65841189e-02 1.34928989e+00 5.74294329e-01 -6.85968876e-01 5.03553808e-01 4.33978736e-01 1.22582894e-02 -4.97648180e-01 -7.41028905e-01 -1.23042834e+00 6.78210497e-01 -4.02826101e-01 5.11327088e-01 1.04990900e+00 -9.94981602e-02 8.80016387e-01 6.69716746e-02 -3.07263643e-01 3.27609181e-01 -2.80093342e-01 7.36868382e-01 -1.36979735e+00 -5.12376189e-01 -4.59443897e-01 -7.64005110e-02 -6.93090022e-01 3.71136516e-01 -5.97433090e-01 -1.53641999e-02 -1.02329981e+00 3.53910983e-01 -5.97635567e-01 -5.53268254e-01 2.74200499e-01 -3.16775471e-01 2.14873537e-01 2.32248798e-01 2.11262807e-01 -5.37927091e-01 3.19275498e-01 1.01653767e+00 -4.48338091e-02 -3.46561342e-01 -8.79078433e-02 -9.69042659e-01 7.09792137e-01 9.25819278e-01 -5.09021342e-01 -6.13485813e-01 -4.81119603e-01 6.77509159e-02 -4.16294396e-01 1.32733554e-01 -1.09067535e+00 -4.47602943e-03 -2.68527836e-01 5.37092030e-01 7.98257142e-02 4.79551345e-01 -5.15017331e-01 -2.78319895e-01 1.00557767e-01 -5.51046729e-01 3.09229232e-02 6.03345811e-01 6.90488994e-01 4.78876345e-02 -5.63184619e-01 1.09869206e+00 -4.58363444e-01 -9.94086921e-01 -3.31694297e-02 -2.04602763e-01 8.18467259e-01 7.19758451e-01 -3.42722356e-01 -3.06103408e-01 -2.18813866e-01 -7.86695838e-01 -2.55377740e-01 4.35631543e-01 7.31803954e-01 2.99084447e-02 -1.22173238e+00 -6.58812404e-01 2.36771137e-01 6.40952885e-01 -5.59723616e-01 2.20197976e-01 5.87443352e-01 3.64440203e-01 6.02375507e-01 -1.18212678e-01 -5.08475602e-01 -9.29159522e-01 7.49634445e-01 2.29088575e-01 -2.79466242e-01 -2.45320901e-01 7.32980907e-01 5.87005734e-01 -6.76763773e-01 1.47329569e-01 -1.29051805e-01 8.63632783e-02 1.99533045e-01 4.53291088e-01 1.66087046e-01 5.04735261e-02 -2.39212960e-01 -4.27096725e-01 6.90662682e-01 -3.51018190e-01 -1.12551853e-01 1.10603869e+00 -2.50121951e-01 4.90764320e-01 9.25606728e-01 9.74644184e-01 -5.02161635e-03 -1.12123239e+00 -5.62576592e-01 2.08258793e-01 -3.59628528e-01 -3.42900604e-01 -9.59400833e-01 -3.71566743e-01 9.13254440e-01 6.02465987e-01 1.28553003e-01 6.94125831e-01 2.46621713e-01 4.57837492e-01 5.22063971e-01 4.19930845e-01 -1.32344317e+00 3.97914827e-01 8.53601217e-01 7.70630002e-01 -1.33505034e+00 1.00186523e-02 1.19825706e-01 -6.27427876e-01 7.45387554e-01 7.59085476e-01 -2.00711876e-01 6.12621605e-01 -5.16669676e-02 1.34808302e-01 1.84372604e-01 -9.20801342e-01 -1.08899392e-01 2.42340267e-01 8.64152730e-01 6.68103039e-01 -2.08315812e-02 -1.67870849e-01 6.06841862e-01 -3.73133063e-01 2.09144820e-02 2.95089722e-01 7.26956666e-01 -7.13384688e-01 -1.01199138e+00 -2.74511248e-01 4.72914577e-01 -2.87388295e-01 -2.73684263e-01 -3.84636730e-01 1.07025719e+00 2.47765601e-01 8.05000901e-01 1.49962306e-01 -4.58174683e-02 5.29707015e-01 6.15650833e-01 6.36100709e-01 -1.13205075e+00 -6.37860596e-01 -3.24991137e-01 5.56342304e-02 -7.91346431e-02 -4.22198065e-02 -5.44623494e-01 -7.95463860e-01 -4.42711897e-02 -4.59747523e-01 2.07363337e-01 4.65351641e-01 1.06304467e+00 4.00072843e-01 3.73252124e-01 2.14301601e-01 -6.46814108e-01 -1.14410138e+00 -1.38732266e+00 -6.28045559e-01 6.32124126e-01 3.56088966e-01 -7.83918858e-01 -4.74703312e-01 -1.96330249e-01]
[10.69269847869873, 8.314579963684082]
eb564e12-0bb8-458b-8e51-004a32832e15
bright-graph-neural-networks-in-real-time
2205.13084
null
https://arxiv.org/abs/2205.13084v2
https://arxiv.org/pdf/2205.13084v2.pdf
BRIGHT -- Graph Neural Networks in Real-Time Fraud Detection
Detecting fraudulent transactions is an essential component to control risk in e-commerce marketplaces. Apart from rule-based and machine learning filters that are already deployed in production, we want to enable efficient real-time inference with graph neural networks (GNNs), which is useful to catch multihop risk propagation in a transaction graph. However, two challenges arise in the implementation of GNNs in production. First, future information in a dynamic graph should not be considered in message passing to predict the past. Second, the latency of graph query and GNN model inference is usually up to hundreds of milliseconds, which is costly for some critical online services. To tackle these challenges, we propose a Batch and Real-time Inception GrapH Topology (BRIGHT) framework to conduct an end-to-end GNN learning that allows efficient online real-time inference. BRIGHT framework consists of a graph transformation module (Two-Stage Directed Graph) and a corresponding GNN architecture (Lambda Neural Network). The Two-Stage Directed Graph guarantees that the information passed through neighbors is only from the historical payment transactions. It consists of two subgraphs representing historical relationships and real-time links, respectively. The Lambda Neural Network decouples inference into two stages: batch inference of entity embeddings and real-time inference of transaction prediction. Our experiments show that BRIGHT outperforms the baseline models by >2\% in average w.r.t.~precision. Furthermore, BRIGHT is computationally efficient for real-time fraud detection. Regarding end-to-end performance (including neighbor query and inference), BRIGHT can reduce the P99 latency by >75\%. For the inference stage, our speedup is on average 7.8$\times$ compared to the traditional GNN.
['Jiawei Jiang', 'Ce Zhang', 'Ramesh Raghunathan', 'Yinan Shan', 'Yang Zhao', 'Zitao Zhang', 'Susie Xi Rao', 'Zhichao Han', 'Mingxuan Lu']
2022-05-25
null
null
null
null
['entity-embeddings']
['methodology']
[-2.81569749e-01 1.89016517e-02 -4.78596270e-01 -2.55392283e-01 -1.97875306e-01 -2.89425045e-01 2.61373907e-01 5.88506162e-01 -4.65876520e-01 1.31738365e-01 -3.89722496e-01 -1.04181635e+00 4.95207570e-02 -1.49698770e+00 -9.46981728e-01 6.96625561e-02 -7.62628376e-01 6.36971295e-01 4.12833631e-01 -3.40148032e-01 1.29698470e-01 4.79281336e-01 -7.47278929e-01 2.79613197e-01 7.83619106e-01 1.29992890e+00 -4.29102302e-01 7.68104076e-01 -3.69567364e-01 1.10906732e+00 -3.94545615e-01 -1.17332995e+00 4.02646154e-01 -2.30606552e-02 -4.22695339e-01 -5.41252434e-01 1.81336328e-01 -7.62442470e-01 -7.46945977e-01 1.19177175e+00 2.70409048e-01 -3.47272575e-01 1.38829201e-01 -1.60523808e+00 -5.55828214e-01 1.15571499e+00 -6.57168627e-01 2.71323562e-01 2.14221552e-01 2.36950949e-01 1.19831133e+00 -5.00308037e-01 7.79853463e-01 1.03879571e+00 9.76763308e-01 2.75217108e-02 -1.18360138e+00 -8.40232432e-01 5.26168764e-01 9.90200564e-02 -9.71313834e-01 -6.96047843e-02 8.25600863e-01 2.20279768e-02 1.51184165e+00 1.37341902e-01 6.98601723e-01 9.22256351e-01 4.99490350e-01 9.49454069e-01 1.54806405e-01 -1.73597962e-01 1.89392418e-01 -5.12409490e-03 2.77277082e-01 9.25628722e-01 7.21500635e-01 1.70941383e-01 -4.96090770e-01 -6.49238884e-01 8.81794035e-01 4.09938902e-01 1.54741794e-01 -3.22897553e-01 -8.38588715e-01 9.76166904e-01 7.12989032e-01 -1.07223755e-02 -5.38885772e-01 6.90752804e-01 9.22349989e-01 8.37902725e-01 3.02763969e-01 3.84984650e-02 -5.58573782e-01 -1.60035133e-01 -5.45480251e-01 1.81146532e-01 1.53593850e+00 1.14114904e+00 6.23182058e-01 9.32667032e-02 2.92001754e-01 3.89075875e-01 4.41504449e-01 4.30033833e-01 3.64157446e-02 -4.48781043e-01 9.79041278e-01 9.19553876e-01 -1.80686086e-01 -1.56053925e+00 -3.48496705e-01 -4.25670415e-01 -1.10050523e+00 -2.26030648e-01 4.68564481e-01 -1.54554203e-01 -6.08318448e-01 1.22060525e+00 2.67207146e-01 4.72735882e-01 -2.87945360e-01 7.30233610e-01 2.46116742e-01 4.63371128e-01 1.08794495e-01 -9.67879221e-02 1.24471962e+00 -8.68634701e-01 -3.90580207e-01 -2.14604229e-01 9.60925937e-01 -5.20675242e-01 6.31458282e-01 4.81602311e-01 -8.76059532e-01 -1.58528358e-01 -1.04505837e+00 3.81501839e-02 -4.91869003e-01 -3.69706035e-01 1.31103706e+00 6.28064752e-01 -7.58160472e-01 7.22440362e-01 -9.86289382e-01 -1.38774768e-01 3.79766881e-01 6.77491724e-01 -7.58374855e-02 -4.23270762e-02 -1.53265882e+00 4.31666523e-01 3.26591462e-01 5.00288427e-01 -4.49254274e-01 -6.28696680e-01 -8.94321859e-01 1.86728805e-01 6.13455772e-01 -6.56549335e-01 1.18688428e+00 -9.17783558e-01 -1.32709634e+00 3.78482640e-01 2.75114864e-01 -1.03889370e+00 9.16003525e-01 -6.19132333e-02 -9.22373474e-01 -2.95537319e-02 -2.63589740e-01 -3.58638674e-01 6.11198962e-01 -7.97515094e-01 -7.90654600e-01 -2.69200265e-01 2.28363648e-01 -2.80123472e-01 -2.03327984e-01 2.68212054e-03 -7.56442130e-01 -6.92866921e-01 8.74537081e-02 -7.00703800e-01 -3.33088249e-01 -3.03900559e-02 -4.43246722e-01 -1.91755295e-01 5.20991862e-01 -8.44839990e-01 1.71454120e+00 -1.87922299e+00 -6.96570098e-01 8.85088444e-01 3.56318146e-01 3.28722000e-01 6.48577586e-02 7.03107297e-01 2.20586106e-01 3.06533668e-02 2.32313335e-01 -2.09593307e-03 3.41925353e-01 9.71471742e-02 -3.81899744e-01 4.04333919e-01 -2.12664288e-02 1.21797431e+00 -9.54942584e-01 -2.73275822e-01 3.25875431e-02 1.15244739e-01 -5.78990757e-01 6.64593950e-02 -5.33059716e-01 -4.18133706e-01 -3.61777723e-01 7.97827005e-01 9.20946836e-01 -5.28199732e-01 9.24731433e-01 -1.26838669e-01 4.13839161e-01 4.49177682e-01 -1.40791523e+00 1.43614888e+00 -4.18842256e-01 -8.20540637e-02 1.71768606e-01 -9.79591846e-01 7.51346946e-01 -8.96696299e-02 4.32469666e-01 -1.09869194e+00 3.88116017e-02 3.36727619e-01 -1.78327441e-01 -1.69257984e-01 3.92830133e-01 2.51682013e-01 -3.96829367e-01 7.55682647e-01 -2.01480761e-01 6.40462637e-01 1.76663339e-01 4.84823078e-01 1.50149179e+00 -3.06893706e-01 5.53205013e-02 2.02394098e-01 2.15058029e-01 6.44670427e-02 8.76934826e-01 1.00653255e+00 -1.48684382e-01 -1.82455137e-01 1.14256883e+00 -1.05263793e+00 -7.88613200e-01 -1.10812497e+00 5.23015559e-01 1.07326329e+00 3.02323699e-01 -4.77249503e-01 -2.85993010e-01 -1.19764030e+00 8.87146354e-01 6.28374040e-01 -1.97619647e-01 -2.58825630e-01 -1.13164663e+00 -8.06131065e-01 7.00316191e-01 6.20414793e-01 6.33294106e-01 -1.03190756e+00 -4.75304434e-03 8.12169433e-01 2.26857513e-01 -9.73158896e-01 -6.83515728e-01 -1.02208018e-01 -1.04864860e+00 -1.42312133e+00 8.55206773e-02 -8.13426673e-01 6.07817709e-01 2.33424548e-02 1.34306729e+00 4.07775372e-01 -1.17292181e-01 -1.03048287e-01 -2.00114995e-02 -1.98089167e-01 -5.87134957e-01 9.32675302e-02 -1.86995771e-02 6.60908744e-02 8.30235124e-01 -7.21719384e-01 -9.12832797e-01 3.34058851e-01 -7.82097399e-01 -2.10087553e-01 6.86967731e-01 7.23838985e-01 4.25795615e-01 1.96534932e-01 6.42846584e-01 -1.54963398e+00 7.33975649e-01 -6.58219099e-01 -1.17606330e+00 3.83052409e-01 -1.28470683e+00 -7.14971721e-02 1.02259028e+00 -3.79325271e-01 -6.12186670e-01 -2.52865225e-01 -1.09802239e-01 -4.11272466e-01 5.24359584e-01 6.73115671e-01 1.00353554e-01 -1.36518806e-01 4.13364828e-01 6.55316887e-03 1.44499466e-01 -3.48351777e-01 4.00886863e-01 6.81260586e-01 1.84716508e-01 -3.67096812e-01 6.00745320e-01 2.79726982e-01 -2.74137318e-01 -2.64022171e-01 -4.72167172e-02 -4.01360631e-01 -8.99742246e-02 1.76923558e-01 7.78369233e-02 -8.10223818e-01 -1.51816404e+00 6.12033725e-01 -1.06603694e+00 -3.24339122e-01 6.44174665e-02 2.78499305e-01 -1.86758071e-01 5.73332787e-01 -1.44154561e+00 -6.91996038e-01 -8.31910908e-01 -6.89099133e-01 4.68531787e-01 -9.48549882e-02 -4.00888361e-03 -1.03875184e+00 -2.62257695e-01 9.47750956e-02 3.77300352e-01 1.03044853e-01 1.12406707e+00 -8.75049889e-01 -1.07873380e+00 -6.42276645e-01 -5.86787045e-01 2.10239187e-01 -3.03596705e-01 -2.78064072e-01 -3.56675088e-01 -4.65439230e-01 -2.59227455e-01 1.84807017e-01 7.93704808e-01 8.84682685e-02 9.52363849e-01 -7.19757140e-01 -3.98979038e-01 7.60094643e-01 1.72319221e+00 2.25109801e-01 5.38214207e-01 2.02963740e-01 7.77855039e-01 7.46458471e-02 5.25333226e-01 3.34245682e-01 5.37714779e-01 3.48141491e-01 5.03435493e-01 -8.65596980e-02 2.32566401e-01 -8.21353912e-01 3.97083879e-01 9.02239501e-01 2.14024231e-01 -3.00735354e-01 -7.85970032e-01 3.55046898e-01 -2.20674586e+00 -9.46781397e-01 -1.52373478e-01 2.27972364e+00 5.41665494e-01 7.66501725e-01 2.85663277e-01 -8.46446231e-02 6.27605081e-01 1.57985073e-02 -8.48653734e-01 -8.35155308e-01 4.00257975e-01 4.38502729e-02 1.12337804e+00 4.27236140e-01 -9.37797487e-01 6.80447340e-01 5.45973158e+00 6.52261436e-01 -9.98821497e-01 -6.01782743e-03 5.76915622e-01 6.32099882e-02 -4.36762899e-01 9.19000357e-02 -7.39763558e-01 7.59149551e-01 1.24050725e+00 -8.05131122e-02 7.39233792e-01 1.10941923e+00 -6.03786707e-02 1.96594372e-01 -1.02921152e+00 1.03486061e+00 -2.92259187e-01 -1.59528267e+00 1.29631579e-01 1.24362223e-01 2.59795070e-01 3.19403946e-01 -4.44227368e-01 7.63749957e-01 6.69397354e-01 -6.20304704e-01 3.51486295e-01 4.45369124e-01 7.00541556e-01 -1.19956994e+00 9.54045773e-01 3.50109637e-01 -1.26561797e+00 -3.18146467e-01 -3.17098290e-01 1.01538204e-01 1.80181772e-01 1.00033116e+00 -9.52369213e-01 8.36292982e-01 5.79708219e-01 4.86271381e-01 -1.19268335e-01 7.29000211e-01 -1.37772225e-02 5.57425976e-01 -6.50035024e-01 -3.68337601e-01 1.49152309e-01 -3.41264904e-01 1.70041874e-01 1.37417281e+00 7.49256834e-02 -2.41150051e-01 2.63545662e-01 7.76170075e-01 -6.55702412e-01 -2.62356941e-02 -5.67449570e-01 -1.69012830e-01 4.22832966e-01 9.31646347e-01 -5.81240654e-01 -3.22816789e-01 -7.54999876e-01 1.16558015e+00 4.80772108e-01 4.19690698e-01 -1.00224626e+00 -7.95640886e-01 6.19369030e-01 3.48821729e-01 4.56295192e-01 -7.64088184e-02 -1.68446660e-01 -1.33524299e+00 4.07469332e-01 -9.45159197e-01 8.21123600e-01 9.36143771e-02 -1.65673757e+00 2.58546114e-01 -6.82358623e-01 -9.38414931e-01 -2.67575890e-01 -6.31270170e-01 -6.00961030e-01 7.99967051e-01 -1.58549452e+00 -1.14107645e+00 2.33796805e-01 5.92410505e-01 -9.90877226e-02 -3.23933479e-03 7.44429052e-01 6.45058334e-01 -5.96576869e-01 1.06412983e+00 1.01441421e-01 7.01667011e-01 3.41408461e-01 -1.23827696e+00 1.15592206e+00 9.33939278e-01 1.95044547e-01 8.57533634e-01 2.22873196e-01 -1.11504769e+00 -2.10978675e+00 -1.18433118e+00 1.20269656e+00 -1.20812871e-01 1.00683236e+00 -6.43370271e-01 -8.09223890e-01 1.07643914e+00 -3.55643004e-01 3.99992526e-01 3.28988612e-01 5.20543277e-01 -6.59028471e-01 -7.46534467e-01 -1.21500075e+00 5.25191963e-01 1.20682943e+00 -6.57960355e-01 -9.11199749e-02 3.57265115e-01 7.09398031e-01 -4.29097980e-01 -1.09641993e+00 2.50289172e-01 7.43697286e-01 -9.80120182e-01 9.30886686e-01 -7.62894988e-01 -1.90632075e-01 -6.36917725e-02 3.20630729e-01 -7.47830391e-01 -1.95781261e-01 -1.04192340e+00 -9.65224743e-01 9.04052556e-01 6.06466770e-01 -1.13325930e+00 1.16744614e+00 6.23138964e-01 3.95888984e-01 -8.29822719e-01 -6.85146332e-01 -7.08200693e-01 -4.64127272e-01 -8.07266533e-01 8.00063550e-01 1.05878580e+00 2.06158251e-01 1.19097054e-01 -2.70642668e-01 4.56863523e-01 8.06735456e-01 5.18598914e-01 8.43261898e-01 -9.88938570e-01 -6.50055766e-01 -3.58223766e-01 -5.74092090e-01 -1.10902274e+00 -3.03377807e-01 -9.65569675e-01 -5.87144434e-01 -1.42460465e+00 -2.35511869e-01 -6.41407192e-01 -7.61274219e-01 2.36381382e-01 1.50432870e-01 -3.14268708e-01 2.45279744e-02 1.26674727e-01 -6.61152720e-01 2.67529837e-03 7.40476370e-01 -2.24858746e-01 -2.95377553e-01 3.70796323e-01 -6.48876607e-01 5.23997605e-01 7.77813613e-01 -4.80467856e-01 -3.17605436e-01 -4.25679237e-01 7.91316450e-01 3.41814369e-01 2.85694033e-01 -4.18444008e-01 4.90202904e-01 5.24208993e-02 1.80493772e-01 -6.05405033e-01 -2.24577561e-01 -8.68412375e-01 1.46932319e-01 7.79491544e-01 1.06530406e-01 3.73109937e-01 -2.05040157e-01 1.13922668e+00 -9.61066484e-02 2.75291950e-01 2.36696824e-01 -1.42011210e-01 -5.29148221e-01 7.22777605e-01 1.27186865e-01 -5.43416254e-02 8.80371451e-01 -2.19666120e-02 -4.10595030e-01 -4.53659803e-01 -6.27866983e-01 6.76851451e-01 2.08843410e-01 3.90518308e-01 5.60127258e-01 -1.26623225e+00 -3.41392636e-01 4.14964944e-01 7.61745125e-02 -5.03275618e-02 6.72370568e-02 8.54650736e-01 -1.04173625e+00 3.53118420e-01 3.70407134e-01 -2.16108978e-01 -7.38573134e-01 8.24600339e-01 3.49238932e-01 -9.05031383e-01 -6.49334610e-01 7.04846084e-01 -5.70547104e-01 -6.18520737e-01 5.23911059e-01 -6.74206793e-01 4.50569659e-01 -3.03467244e-01 3.99870187e-01 5.26762426e-01 2.35665619e-01 2.41037518e-01 -3.16450894e-01 -4.17464264e-02 -5.32392144e-01 5.15892267e-01 1.31469929e+00 1.55054256e-01 -3.24352622e-01 1.05833545e-01 1.23503256e+00 5.19530848e-02 -8.30696404e-01 -4.61281568e-01 3.78742427e-01 -3.58856857e-01 -1.15278766e-01 -8.55854988e-01 -1.33256495e+00 4.12482977e-01 1.64004445e-01 5.55342138e-01 9.07919765e-01 -5.75747848e-01 1.61500335e+00 5.67210793e-01 8.63281250e-01 -1.33452034e+00 -3.89808238e-01 2.92487115e-01 3.80435497e-01 -1.01970410e+00 -5.58434613e-02 -5.70681095e-01 -3.79260302e-01 1.13447630e+00 5.04782975e-01 -5.01589060e-01 1.11243629e+00 3.00046444e-01 -2.13968158e-02 -3.29928756e-01 -7.42608249e-01 3.82685602e-01 -2.39153296e-01 2.52937108e-01 -1.11917466e-01 1.75078019e-01 -2.80902147e-01 8.55446100e-01 2.40388215e-01 3.69742721e-01 1.31452397e-01 7.96267569e-01 1.16159990e-02 -1.22959125e+00 3.45142901e-01 9.70179915e-01 -5.38461864e-01 -1.07014246e-01 4.99551073e-02 9.25864756e-01 -1.30407766e-01 7.39779353e-01 9.85657498e-02 -6.31722152e-01 7.29154229e-01 -7.59729519e-02 3.65551040e-02 -2.98464894e-01 -1.02441037e+00 -1.81396708e-01 5.41266501e-01 -1.15071452e+00 4.93532985e-01 -2.67801523e-01 -1.32244349e+00 -1.20307314e+00 -5.09095252e-01 1.50018215e-01 4.51002866e-01 2.43214309e-01 6.98813379e-01 2.04761833e-01 7.60196865e-01 5.41642494e-02 -9.40005541e-01 -6.13055706e-01 -8.60339046e-01 4.48187888e-01 -2.09822832e-03 -8.65683425e-03 -3.67448211e-01 -4.97874320e-01]
[7.0106353759765625, 6.023726463317871]
0a6ff4f6-d756-4346-8724-2c6eb1d82593
towards-unbiased-multi-label-zero-shot
2203.03483
null
https://arxiv.org/abs/2203.03483v1
https://arxiv.org/pdf/2203.03483v1.pdf
Towards Unbiased Multi-label Zero-Shot Learning with Pyramid and Semantic Attention
Multi-label zero-shot learning extends conventional single-label zero-shot learning to a more realistic scenario that aims at recognizing multiple unseen labels of classes for each input sample. Existing works usually exploit attention mechanism to generate the correlation among different labels. However, most of them are usually biased on several major classes while neglect most of the minor classes with the same importance in input samples, and may thus result in overly diffused attention maps that cannot sufficiently cover minor classes. We argue that disregarding the connection between major and minor classes, i.e., correspond to the global and local information, respectively, is the cause of the problem. In this paper, we propose a novel framework of unbiased multi-label zero-shot learning, by considering various class-specific regions to calibrate the training process of the classifier. Specifically, Pyramid Feature Attention (PFA) is proposed to build the correlation between global and local information of samples to balance the presence of each class. Meanwhile, for the generated semantic representations of input samples, we propose Semantic Attention (SA) to strengthen the element-wise correlation among these vectors, which can encourage the coordinated representation of them. Extensive experiments on the large-scale multi-label zero-shot benchmarks NUS-WIDE and Open-Image demonstrate that the proposed method surpasses other representative methods by significant margins.
['Fushuo Huo', 'Yuanyuan Xu', 'Jingcai Guo', 'Song Guo', 'Ziming Liu']
2022-03-07
null
null
null
null
['multi-label-zero-shot-learning']
['computer-vision']
[ 2.94681519e-01 -4.84021753e-02 -3.30621868e-01 -5.13392508e-01 -7.01700151e-01 -1.65087327e-01 5.61852872e-01 2.10543916e-01 -2.05218256e-01 5.29219329e-01 3.06881636e-01 3.59079957e-01 -1.47254556e-01 -9.10212636e-01 -4.89399940e-01 -1.05678725e+00 7.72817850e-01 1.62995875e-01 3.95083755e-01 -1.51374564e-01 1.05476871e-01 -1.74741112e-02 -1.82074738e+00 3.99951130e-01 6.97955966e-01 1.09938228e+00 2.12783515e-01 -4.12987359e-02 -3.25693578e-01 7.01599836e-01 -6.01907670e-01 -2.21493259e-01 -1.92768816e-02 -6.23694360e-01 -4.33150411e-01 4.44187015e-01 3.38795751e-01 -1.40973642e-01 -9.42085162e-02 1.39360809e+00 5.47010303e-01 3.56586605e-01 9.19370234e-01 -1.39125264e+00 -8.33851933e-01 4.12570596e-01 -9.20247436e-01 2.13675618e-01 -1.41348630e-01 2.02561513e-01 1.20795441e+00 -1.01499248e+00 5.12427747e-01 1.30553436e+00 2.91037053e-01 5.90537190e-01 -1.05973184e+00 -7.89486408e-01 3.21309626e-01 3.64966571e-01 -1.50999308e+00 -2.01003999e-01 9.66513336e-01 -4.06714231e-01 2.76065022e-01 2.01245949e-01 3.15952092e-01 1.10495448e+00 -2.39796285e-02 7.55138040e-01 9.80062425e-01 -4.10364807e-01 3.49926293e-01 3.42048675e-01 4.70132977e-01 4.34658855e-01 3.28849167e-01 -2.68464237e-01 -3.06945980e-01 -1.72729447e-01 4.14101332e-01 5.15341341e-01 -2.97561377e-01 -6.81374550e-01 -1.04857326e+00 1.10550022e+00 4.79828954e-01 4.51033145e-01 -2.60937870e-01 -2.21045494e-01 5.40339947e-01 -1.20432638e-01 4.35235053e-01 8.57496485e-02 -2.94402480e-01 4.43350673e-01 -5.93249142e-01 -6.79229796e-02 8.79338309e-02 1.02284837e+00 1.24777699e+00 -1.64886162e-01 -7.53176093e-01 1.05301261e+00 3.79554272e-01 1.28961459e-01 8.55793834e-01 -4.84115094e-01 3.43511432e-01 9.63291585e-01 -3.16086970e-02 -1.16909969e+00 -2.13683769e-01 -6.49021685e-01 -8.83376837e-01 5.81110315e-03 1.75001189e-01 -7.52221420e-02 -1.08000934e+00 1.83544564e+00 5.11395693e-01 4.86497641e-01 1.16931289e-01 9.40047204e-01 9.86369014e-01 5.75401902e-01 2.68282294e-01 -3.16184998e-01 1.45719993e+00 -1.11011982e+00 -8.12819302e-01 -3.37705910e-01 6.77317142e-01 -4.11099732e-01 1.19897950e+00 -1.95364401e-01 -4.05995607e-01 -6.50331974e-01 -1.19537389e+00 1.28235862e-01 -4.65408295e-01 -6.67564571e-02 4.02930260e-01 4.11734074e-01 -2.42752403e-01 4.17729855e-01 -2.94050723e-02 -3.76066446e-01 6.04226947e-01 -1.31034568e-01 -1.26525000e-01 -4.00128543e-01 -1.49083292e+00 5.14893234e-01 5.11550248e-01 -1.95703283e-01 -9.88150716e-01 -6.71896756e-01 -9.36748862e-01 2.66824484e-01 5.23055911e-01 -2.94203281e-01 8.40231478e-01 -1.03204191e+00 -9.19365585e-01 7.56769538e-01 -2.35862378e-02 8.04569721e-02 2.76292384e-01 2.42542848e-01 -5.66444397e-01 7.34392703e-02 4.57592219e-01 8.23484361e-01 8.59522700e-01 -1.44626832e+00 -7.60055006e-01 -3.26092511e-01 2.91300416e-02 4.17715222e-01 -6.43603921e-01 -1.63769320e-01 -2.77468503e-01 -5.44220746e-01 6.17620572e-02 -5.34307361e-01 -1.56616315e-01 -1.91979170e-01 -3.69648397e-01 -3.98870677e-01 8.39240491e-01 -8.91524553e-02 1.13831246e+00 -2.37107944e+00 -4.85808179e-02 -3.76792327e-02 2.07005367e-01 1.94286764e-01 -1.35056242e-01 6.20402582e-02 -2.01546118e-01 -1.61138829e-02 -3.14078212e-01 3.70259606e-03 -1.57145083e-01 3.25041264e-01 -3.11572731e-01 4.80590940e-01 2.92760640e-01 8.10465097e-01 -1.23780477e+00 -7.04154015e-01 3.29785079e-01 4.08582687e-01 -2.18476251e-01 1.57772794e-01 -2.00286750e-02 2.91632652e-01 -4.81083900e-01 6.35779858e-01 6.11077428e-01 -3.96371484e-01 6.83810469e-03 -3.36737961e-01 2.22514749e-01 -3.98767263e-01 -1.27531981e+00 1.38181555e+00 -2.68883407e-01 -1.40591413e-02 -1.98890716e-01 -1.02346253e+00 9.71522093e-01 3.75007451e-01 4.22239393e-01 -6.24943614e-01 5.08059025e-01 1.29338309e-01 -7.38664791e-02 -4.11505550e-01 6.45676181e-02 -5.84684372e-01 -1.18801698e-01 3.95712435e-01 2.81639546e-01 2.41412804e-01 6.26076087e-02 1.13961004e-01 5.50432682e-01 -2.96173573e-01 5.38299024e-01 -2.71225989e-01 5.73627532e-01 -4.40579772e-01 8.47688258e-01 5.32852530e-01 -6.23446286e-01 7.83029139e-01 4.15788829e-01 -1.75436929e-01 -9.19044316e-01 -7.20114291e-01 -2.41917402e-01 1.41895556e+00 7.40088046e-01 -4.75293100e-02 -6.05614483e-01 -9.88403678e-01 -6.38759807e-02 8.94575715e-01 -1.02359033e+00 -6.52859330e-01 9.90021527e-02 -9.76220548e-01 1.83145836e-01 4.40356344e-01 3.25235128e-01 -1.15956199e+00 -6.25516653e-01 9.44042802e-02 -1.61226615e-01 -7.22698390e-01 -5.45016527e-01 3.11804086e-01 -4.52962548e-01 -1.22589517e+00 -1.09162426e+00 -8.39501679e-01 8.44723761e-01 8.03602159e-01 7.40251184e-01 -5.87761309e-03 -2.01133758e-01 9.44828987e-02 -5.26851237e-01 -2.47223571e-01 4.89536263e-02 -2.02086762e-01 -1.12859681e-01 7.75656939e-01 7.15911984e-01 -3.80971313e-01 -5.34692943e-01 4.96660829e-01 -9.91873205e-01 -1.90815516e-02 4.81887490e-01 1.16408682e+00 6.93260610e-01 1.24762334e-01 8.77304077e-01 -1.02600455e+00 5.07167637e-01 -1.00637567e+00 8.64508003e-02 4.23483372e-01 -5.88218093e-01 -1.03479631e-01 6.77047312e-01 -5.85369825e-01 -1.05337834e+00 -1.29783228e-01 1.39186308e-01 -7.07512498e-01 -3.38651627e-01 8.87121707e-02 -5.77879608e-01 1.35038838e-01 5.70581853e-01 3.13799024e-01 -1.79076165e-01 -2.13889673e-01 4.85309511e-01 7.24174201e-01 3.02470243e-03 -3.58703345e-01 4.75905269e-01 6.19414032e-01 -1.87224418e-01 -5.48363984e-01 -1.23581600e+00 -8.77863169e-01 -4.70134199e-01 -2.66877234e-01 8.88355672e-01 -8.78827929e-01 -6.99702799e-02 4.01988894e-01 -8.62760365e-01 2.50548363e-01 -4.09730464e-01 2.50688702e-01 -3.68293434e-01 2.95376837e-01 -3.84967744e-01 -6.77691221e-01 -1.61805078e-01 -1.26524270e+00 1.23360848e+00 6.01958096e-01 -8.12778156e-03 -7.91441560e-01 -1.15942974e-02 1.39123857e-01 1.69373840e-01 1.77394956e-01 9.91334796e-01 -8.99280727e-01 -6.56331629e-02 -2.46545717e-01 -5.75132608e-01 2.53390640e-01 3.12508434e-01 -1.16839804e-01 -1.16965365e+00 -2.19131246e-01 2.59534903e-02 -6.97361946e-01 9.67202306e-01 2.26727173e-01 1.01469994e+00 -3.61798890e-02 -3.68629277e-01 1.61188975e-01 1.50799084e+00 2.13871539e-01 4.94442195e-01 6.42113090e-02 8.89241576e-01 8.32259834e-01 8.24821055e-01 5.76107621e-01 1.66141421e-01 6.66715860e-01 6.10095680e-01 -1.07213907e-01 -9.09929723e-02 -2.78197348e-01 -4.35074158e-02 6.98805451e-01 3.05682063e-01 -8.36555287e-02 -4.72117394e-01 6.77494347e-01 -1.87782192e+00 -9.74330366e-01 -2.09004413e-02 2.12888718e+00 7.57047415e-01 9.37400386e-02 -5.98215684e-02 1.40747935e-01 1.39198899e+00 5.09951711e-01 -6.85684562e-01 4.93587963e-02 -2.54100114e-01 -1.24157228e-01 2.62808472e-01 2.29676038e-01 -1.09561431e+00 7.65010834e-01 4.94994688e+00 1.34749448e+00 -9.86065269e-01 4.79590207e-01 8.55706990e-01 -6.06600903e-02 -5.94590902e-01 -5.87781519e-02 -9.34364736e-01 7.08274007e-01 5.63799858e-01 -3.39923352e-01 8.32780004e-02 1.09421921e+00 -1.35872722e-01 1.52657703e-01 -6.99677825e-01 8.68048787e-01 2.44011655e-01 -9.90198195e-01 2.70695448e-01 -1.38503715e-01 9.47977304e-01 -3.34521562e-01 -7.29123428e-02 6.44803703e-01 1.31624371e-01 -7.40354419e-01 6.89641893e-01 4.65981573e-01 7.87826955e-01 -8.50235105e-01 8.64031613e-01 4.07926172e-01 -1.35793626e+00 -2.62610108e-01 -8.22955608e-01 1.32848933e-01 1.61771048e-02 6.26018047e-01 -3.25699925e-01 4.76119548e-01 4.23232585e-01 7.79117584e-01 -7.33676434e-01 8.54049921e-01 -2.47494906e-01 3.25328946e-01 1.72192782e-01 -4.04745936e-02 4.61474508e-01 -1.49107631e-03 1.91502973e-01 8.40793610e-01 2.36828491e-01 5.57902120e-02 3.49495798e-01 7.94280291e-01 -8.60927701e-02 4.94026631e-01 -5.05327106e-01 1.77160740e-01 5.13157308e-01 1.45701420e+00 -8.05767000e-01 -7.06718862e-01 -5.84017277e-01 7.83359766e-01 4.36597943e-01 3.83661807e-01 -9.77862477e-01 -5.27848542e-01 5.40652633e-01 -1.81532681e-01 3.52005631e-01 5.17249346e-01 -2.80831456e-01 -1.17195237e+00 -2.14934930e-01 -5.09904981e-01 6.78413391e-01 -7.03432620e-01 -1.47573578e+00 4.20869708e-01 -2.26902112e-01 -1.38780224e+00 2.40786761e-01 -2.43854329e-01 -7.80117154e-01 9.11183894e-01 -1.63437915e+00 -1.11344063e+00 -5.04861176e-01 6.18300617e-01 8.69557023e-01 -5.41572571e-02 7.69808054e-01 4.44516540e-01 -8.07230353e-01 6.20111465e-01 1.77850306e-01 -9.45931301e-02 8.81845236e-01 -8.62211466e-01 -1.82698354e-01 6.44717276e-01 1.09249368e-01 5.20792127e-01 5.59797108e-01 -6.53722942e-01 -6.52938187e-01 -1.38658285e+00 6.26837850e-01 -1.34222135e-01 5.21144450e-01 -1.51643008e-01 -1.10996175e+00 3.60025495e-01 8.94899741e-02 4.40781265e-01 8.32813561e-01 -6.58121705e-02 -6.15716755e-01 -1.31916299e-01 -1.10592449e+00 4.94173914e-01 7.59698212e-01 -4.65487510e-01 -5.95257640e-01 2.88720906e-01 9.58745122e-01 1.51783347e-01 -6.14306569e-01 5.50738811e-01 3.07511657e-01 -9.44338620e-01 7.80163825e-01 -6.38504624e-01 6.72468841e-01 -5.05703807e-01 -3.13372701e-01 -1.36572349e+00 -8.02582026e-01 2.80176103e-01 -1.14785269e-01 1.45778489e+00 1.24652222e-01 -4.34085429e-01 4.72379744e-01 2.18157798e-01 -1.43420726e-01 -8.31526935e-01 -8.16810429e-01 -5.70272088e-01 -1.47852618e-02 -1.38481453e-01 6.58445954e-01 1.32360637e+00 -5.30191362e-02 6.60667837e-01 -5.42405248e-01 9.22939926e-02 6.46322012e-01 2.38523662e-01 3.45550537e-01 -1.29000306e+00 -1.15494139e-01 -4.69991416e-01 -4.72284198e-01 -4.90218848e-01 1.75151721e-01 -9.10663068e-01 1.37391612e-01 -1.49248815e+00 6.54690146e-01 -3.88589025e-01 -9.09030557e-01 5.36759853e-01 -7.24274933e-01 4.13326114e-01 -5.53826522e-03 3.31330091e-01 -8.37709725e-01 8.71818483e-01 1.36390007e+00 -3.36252868e-01 2.38577351e-01 -2.80587673e-01 -1.11432719e+00 6.05674684e-01 5.87263227e-01 -4.88836706e-01 -7.22290576e-01 4.94173504e-02 -1.62800893e-01 -3.88450235e-01 2.72049278e-01 -1.06571567e+00 7.69898519e-02 -3.97519141e-01 3.17223430e-01 -2.80795276e-01 1.51729256e-01 -7.97589183e-01 -1.48158863e-01 3.45055401e-01 -5.32345295e-01 -7.24848688e-01 -2.67252594e-01 1.00927019e+00 -2.07517773e-01 -4.13759649e-01 1.23206210e+00 -2.56718904e-01 -1.03606439e+00 5.39796233e-01 4.69131358e-02 3.52578670e-01 1.48495388e+00 -1.36099011e-01 -3.69881600e-01 -4.92301174e-02 -4.40941215e-01 3.15774709e-01 4.23102558e-01 5.93149245e-01 5.01337528e-01 -1.72406113e+00 -6.02215707e-01 2.91457564e-01 8.42321455e-01 -1.39872789e-01 8.01496208e-01 6.53723180e-01 1.71061039e-01 1.89487904e-01 -3.43737960e-01 -3.97912920e-01 -1.06238723e+00 1.10581517e+00 2.25564688e-01 -1.50352985e-01 -5.69439769e-01 9.59989548e-01 8.25256765e-01 -3.12373638e-01 1.10484801e-01 2.98369527e-01 -7.66379833e-01 6.23466671e-01 7.81747282e-01 1.84182972e-01 -2.31360942e-01 -1.05015135e+00 -3.62040877e-01 6.05029345e-01 -1.73746571e-01 3.52355719e-01 9.80013192e-01 -2.24945650e-01 1.11940287e-01 8.51787448e-01 1.32666445e+00 -1.88665152e-01 -1.30027783e+00 -4.43157554e-01 -2.00278610e-01 -5.18229365e-01 -3.75587009e-02 -3.90527278e-01 -1.29020727e+00 1.16943431e+00 6.01258874e-01 1.07026972e-01 8.98473144e-01 7.80317634e-02 7.12010562e-01 -1.85295045e-01 4.17714119e-01 -1.16614723e+00 1.91342816e-01 1.94777444e-01 3.94980848e-01 -1.41761875e+00 -2.05558538e-01 -5.00091195e-01 -8.98716033e-01 9.22970057e-01 9.44951832e-01 -8.45050905e-03 4.62275743e-01 -3.58521849e-01 -6.41802326e-02 -2.60924131e-01 -5.55860758e-01 -4.15571630e-01 2.44180724e-01 4.61455584e-01 2.70615906e-01 1.77391052e-01 -3.85171264e-01 8.49667490e-01 6.65814221e-01 -2.90792853e-01 3.80441695e-01 6.87338173e-01 -8.67190301e-01 -7.34725296e-01 -3.30532432e-01 5.77513635e-01 -8.82131904e-02 -1.80071011e-01 -9.84764472e-02 3.69246364e-01 5.71190476e-01 9.26640391e-01 3.09862569e-03 -4.67182517e-01 1.69073030e-01 2.76131243e-01 3.16151381e-02 -9.08754885e-01 -2.34834522e-01 1.08188480e-01 -2.24835351e-01 -2.42790252e-01 -3.28451604e-01 -3.99125159e-01 -1.18353367e+00 1.61027387e-01 -4.42082345e-01 1.27222553e-01 7.56296739e-02 9.81068850e-01 2.90631890e-01 8.49588096e-01 7.94214129e-01 -5.92303336e-01 -6.36626661e-01 -1.06506276e+00 -9.78701830e-01 8.87599289e-01 -4.91565168e-02 -1.22481585e+00 -6.31537914e-01 -2.76892424e-01]
[10.036310195922852, 2.6022746562957764]
ce757fca-30b7-4950-b710-a4e26fe94324
sequential-person-recognition-in-photo-albums
1611.09967
null
http://arxiv.org/abs/1611.09967v1
http://arxiv.org/pdf/1611.09967v1.pdf
Sequential Person Recognition in Photo Albums with a Recurrent Network
Recognizing the identities of people in everyday photos is still a very challenging problem for machine vision, due to non-frontal faces, changes in clothing, location, lighting and similar. Recent studies have shown that rich relational information between people in the same photo can help in recognizing their identities. In this work, we propose to model the relational information between people as a sequence prediction task. At the core of our work is a novel recurrent network architecture, in which relational information between instances' labels and appearance are modeled jointly. In addition to relational cues, scene context is incorporated in our sequence prediction model with no additional cost. In this sense, our approach is a unified framework for modeling both contextual cues and visual appearance of person instances. Our model is trained end-to-end with a sequence of annotated instances in a photo as inputs, and a sequence of corresponding labels as targets. We demonstrate that this simple but elegant formulation achieves state-of-the-art performance on the newly released People In Photo Albums (PIPA) dataset.
['Anton Van Den Hengel', 'Bohan Zhuang', 'Chunhua Shen', 'Yao Li', 'Lingqiao Liu', 'Guosheng Lin']
2016-11-30
sequential-person-recognition-in-photo-albums-1
http://openaccess.thecvf.com/content_cvpr_2017/html/Li_Sequential_Person_Recognition_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/papers/Li_Sequential_Person_Recognition_CVPR_2017_paper.pdf
cvpr-2017-7
['person-recognition']
['computer-vision']
[ 4.20928448e-01 -4.70281899e-01 1.25318691e-01 -8.30570519e-01 -2.76680112e-01 -5.24568796e-01 7.93597221e-01 -2.32482895e-01 -2.55490661e-01 4.73140359e-01 3.60266954e-01 3.78720462e-01 2.97209680e-01 -4.25596744e-01 -8.61170650e-01 -4.58478481e-01 1.75856426e-01 2.84253001e-01 1.24923820e-02 -1.68331131e-01 -1.66319218e-02 4.85540599e-01 -1.83781493e+00 6.22636199e-01 2.99022168e-01 8.98268104e-01 5.00648767e-02 6.39996231e-01 1.53351039e-01 1.07824063e+00 -2.16421112e-01 -9.55822885e-01 3.92528087e-01 -4.80963677e-01 -6.83575988e-01 4.87001717e-01 1.17647517e+00 -3.14621866e-01 -7.05434501e-01 7.54470587e-01 5.00476480e-01 2.45089680e-01 6.08455002e-01 -1.28842247e+00 -9.00567651e-01 4.37862694e-01 -6.55831575e-01 -1.76439788e-02 6.32247925e-01 1.37387291e-01 1.02893174e+00 -8.66896272e-01 6.74611628e-01 1.35888505e+00 8.52263153e-01 7.72543669e-01 -1.28158009e+00 -3.85800004e-01 6.32909834e-01 6.00508273e-01 -1.53383625e+00 -7.67474771e-01 7.87764966e-01 -5.83456218e-01 8.20285439e-01 2.97272831e-01 8.07766497e-01 1.41444695e+00 -3.60467553e-01 8.45853150e-01 9.03253257e-01 -4.80293810e-01 -2.27870673e-01 1.67639673e-01 1.11295238e-01 8.17027330e-01 -2.31225938e-01 -9.57736149e-02 -5.96383989e-01 1.00426465e-01 6.88654602e-01 5.59029698e-01 -8.18766281e-02 -3.43315423e-01 -1.06940806e+00 3.08507174e-01 6.59409463e-01 1.10668659e-01 -4.12858218e-01 2.98428208e-01 1.68953076e-01 1.33542316e-02 4.46878284e-01 -7.51806721e-02 -1.57303512e-01 1.32693782e-01 -5.68840086e-01 1.56112254e-01 4.97151077e-01 9.46302533e-01 7.80940711e-01 -2.50047177e-01 -2.93845922e-01 1.09838188e+00 1.95952669e-01 3.60866040e-01 2.29456156e-01 -7.87754774e-01 3.53002876e-01 6.75912440e-01 1.78298861e-01 -1.22591031e+00 -3.75594079e-01 -1.70753822e-01 -9.39332426e-01 -1.58280745e-01 4.73697007e-01 5.16051017e-02 -8.23075294e-01 2.03016376e+00 4.09607887e-01 5.77179015e-01 -4.11476567e-02 9.58514869e-01 8.13929021e-01 5.36519170e-01 6.49223626e-02 -2.93413736e-02 1.53904831e+00 -1.16054749e+00 -4.66124862e-01 -4.39623237e-01 2.73740649e-01 -8.99992049e-01 6.37871087e-01 -5.01555204e-02 -1.01364398e+00 -8.87533545e-01 -5.52953660e-01 -3.86116236e-01 -2.92413056e-01 6.09518766e-01 3.51127923e-01 2.95428008e-01 -1.19153571e+00 4.87339526e-01 -3.85611206e-01 -9.50927854e-01 3.60893250e-01 2.66992420e-01 -4.71616805e-01 -3.09746444e-01 -7.67607391e-01 8.12540889e-01 -1.30647510e-01 5.04328132e-01 -5.80429912e-01 -3.70983452e-01 -8.83382738e-01 -1.70476109e-01 4.34495091e-01 -9.74262774e-01 1.16036355e+00 -1.49616981e+00 -1.37785709e+00 1.34886050e+00 -5.99011660e-01 -5.38928628e-01 6.33378088e-01 -3.29986632e-01 -4.86601979e-01 -9.18578170e-03 7.89902955e-02 8.07804465e-01 9.01460946e-01 -1.34219801e+00 -6.84155226e-01 -4.71303582e-01 4.65952307e-02 2.85856932e-01 -1.44341335e-01 4.71020758e-01 -7.81830728e-01 -5.31598747e-01 -1.67096764e-01 -1.16894281e+00 -1.54351965e-01 1.29772589e-01 -3.89857590e-01 -3.68546486e-01 3.95668536e-01 -8.42554390e-01 7.13040292e-01 -2.18750358e+00 1.60785094e-01 8.78145546e-03 1.66209023e-02 1.29668236e-01 -3.90682280e-01 7.17167437e-01 -6.30857274e-02 -1.81979805e-01 -1.24407252e-02 -6.94865465e-01 7.32032359e-02 1.33555785e-01 -3.43173623e-01 3.96113247e-01 3.18419814e-01 1.03672874e+00 -7.22250104e-01 -3.55244279e-01 1.91582754e-01 8.00114036e-01 -1.34869352e-01 4.13898408e-01 -1.69669241e-01 3.74432921e-01 -2.31319238e-02 5.85152507e-01 4.96199489e-01 -3.55942249e-01 3.63288552e-01 -3.65659505e-01 -4.85344557e-03 1.03328146e-01 -1.04446304e+00 1.65077770e+00 -2.72592992e-01 6.88584566e-01 -2.76466846e-01 -7.41541326e-01 8.72514427e-01 3.70023102e-01 1.88205570e-01 -7.36802995e-01 -6.29536062e-02 -3.42528552e-01 -1.15132086e-01 -7.42552102e-01 4.80787218e-01 7.60651305e-02 4.65332307e-02 4.24289972e-01 -7.48895407e-02 5.72104990e-01 2.79839635e-01 9.62846428e-02 7.24398077e-01 4.25317407e-01 3.41930062e-01 2.74478346e-01 6.24680221e-01 -3.80745739e-01 7.38339067e-01 7.40633011e-01 -1.06500939e-01 7.41548955e-01 1.61343724e-01 -9.25827146e-01 -1.24961257e+00 -6.72673225e-01 2.67256826e-01 1.23544693e+00 2.01516613e-01 -2.72130907e-01 -5.45931160e-01 -5.14224887e-01 -6.75975978e-02 2.35387802e-01 -9.24086154e-01 1.96151584e-01 -7.54732490e-01 -3.22730333e-01 3.97643745e-01 6.18619502e-01 4.92588729e-01 -1.08198190e+00 -3.45131397e-01 -5.76494113e-02 -2.81938285e-01 -1.53344786e+00 -8.67289603e-01 -6.62566841e-01 -3.71321678e-01 -1.05954576e+00 -7.43891656e-01 -1.11467981e+00 8.25702369e-01 5.91481447e-01 1.28749132e+00 2.26342604e-01 -6.55821562e-01 5.31155050e-01 -3.19349289e-01 -4.74850349e-02 5.20268939e-02 -3.13059509e-01 4.11473587e-02 8.98154914e-01 2.90230900e-01 -4.87832874e-01 -7.57454574e-01 4.29878384e-01 -4.86379772e-01 3.31488132e-01 4.16223466e-01 7.27591932e-01 3.72006923e-01 -2.74958879e-01 2.66194791e-01 -8.56448233e-01 7.50910938e-02 -2.32035384e-01 -4.31084186e-01 7.81498849e-01 1.75350919e-01 -3.27385962e-01 5.41159511e-01 -4.50978279e-01 -1.26795781e+00 6.18960977e-01 1.28523707e-01 -5.55178404e-01 -3.60889435e-01 2.67119315e-02 -1.03728957e-01 2.62653921e-02 4.07138377e-01 3.07570249e-01 2.81295814e-02 -4.51201737e-01 4.69687939e-01 4.08750743e-01 6.88473165e-01 -3.63230050e-01 6.36807084e-01 5.72484910e-01 -6.39557019e-02 -7.82803833e-01 -1.04401886e+00 -5.92709541e-01 -1.05181384e+00 -4.69449699e-01 8.12328637e-01 -1.25785685e+00 -1.10561895e+00 6.44709349e-01 -1.27118123e+00 -2.16145843e-01 5.40478379e-02 2.44824037e-01 -2.59360939e-01 3.08344573e-01 -6.31724119e-01 -1.07759142e+00 -1.63133398e-01 -7.23472595e-01 1.02653766e+00 3.95786434e-01 -9.79543850e-02 -8.16279292e-01 -1.49818927e-01 6.00151956e-01 1.05387811e-02 2.37718374e-01 4.17768836e-01 -3.92196715e-01 -8.49028349e-01 -1.73951730e-01 -4.47353572e-01 1.37120157e-01 2.19290286e-01 1.18675634e-01 -1.03635550e+00 -1.32916480e-01 -2.98768699e-01 -3.94097328e-01 8.85428488e-01 1.70863599e-01 9.02021945e-01 -4.78537351e-01 -3.83930504e-01 5.43215752e-01 1.34365928e+00 8.01438093e-02 5.56796789e-01 -1.66545644e-01 1.11625719e+00 1.05936229e+00 3.62247765e-01 3.91555041e-01 7.06822038e-01 1.05849707e+00 8.69472697e-02 -1.54520243e-01 -2.16165438e-01 -3.61785948e-01 4.00911063e-01 4.67324317e-01 -2.59894371e-01 -1.66990727e-01 -7.99652219e-01 4.60523397e-01 -2.20229435e+00 -1.58981383e+00 -2.48715281e-02 2.13677168e+00 6.07426643e-01 -5.20212471e-01 5.38427234e-01 -4.21286792e-01 1.17437053e+00 1.07522950e-01 -4.80936378e-01 1.60296820e-02 -2.63233840e-01 -4.06300038e-01 1.86520636e-01 3.59439194e-01 -1.22845638e+00 1.05987215e+00 6.24857807e+00 3.93179148e-01 -9.29284513e-01 -1.09125644e-01 7.39809871e-01 -3.27325523e-01 1.32711783e-01 -2.27310643e-01 -9.20776784e-01 5.37933886e-01 4.60754842e-01 1.88365668e-01 7.23858297e-01 5.23062766e-01 8.94750357e-02 1.90062121e-01 -1.42697823e+00 1.30289578e+00 7.45105684e-01 -1.28023326e+00 2.26687100e-02 -1.41310528e-01 7.24947095e-01 -1.66320175e-01 1.33153573e-01 2.28449013e-02 4.51709598e-01 -1.02031529e+00 7.80383527e-01 9.57589030e-01 5.22205114e-01 -5.92147231e-01 5.26902437e-01 8.12654495e-02 -1.28931129e+00 -1.66567892e-01 -4.10413951e-01 -3.79828572e-01 3.99850845e-01 2.64851570e-01 -9.52958167e-01 5.22985101e-01 7.29968011e-01 1.26128602e+00 -7.69466817e-01 9.94549215e-01 -2.72994876e-01 7.48870522e-02 -1.02862708e-01 8.43255669e-02 -4.74804975e-02 -2.44366273e-01 5.19726910e-02 1.17915010e+00 1.84648141e-01 3.19910198e-01 4.88581806e-01 7.68501699e-01 -4.15015221e-01 -3.89267616e-02 -7.47184753e-01 1.46058530e-01 4.53210354e-01 1.31363034e+00 -5.47242761e-01 -3.44416887e-01 -6.15399122e-01 1.27810407e+00 6.40002012e-01 4.66785133e-01 -6.16137743e-01 3.29677463e-01 8.96585464e-01 -1.43946290e-01 4.20216769e-01 4.47698757e-02 2.20673159e-01 -1.21372020e+00 3.71932566e-01 -7.97973752e-01 4.98647094e-01 -9.96224105e-01 -1.86162436e+00 6.38825357e-01 -4.45653319e-01 -1.29581654e+00 -2.76786298e-01 -5.05959630e-01 -5.18237650e-01 8.54217172e-01 -1.34903073e+00 -1.77242613e+00 -3.72461319e-01 7.94755042e-01 5.85139811e-01 -2.26599231e-01 6.84261203e-01 3.35305214e-01 -8.57497871e-01 5.89813292e-01 -6.05248939e-03 6.26510680e-01 7.52923906e-01 -9.31868851e-01 7.16202974e-01 1.06251669e+00 5.71998835e-01 6.25583768e-01 4.96970534e-01 -4.97738242e-01 -1.30486953e+00 -1.16200590e+00 1.35696793e+00 -5.04599988e-01 4.86455441e-01 -6.21802688e-01 -7.24531472e-01 1.07096303e+00 3.38563770e-01 1.51159197e-01 7.98826635e-01 4.77304012e-01 -7.82889426e-01 -2.93001860e-01 -7.36204207e-01 7.96658158e-01 1.42860234e+00 -8.83347392e-01 -3.73977512e-01 4.90925759e-01 5.54275095e-01 -3.16589355e-01 -5.45400202e-01 5.67046963e-02 8.26804101e-01 -9.44485426e-01 1.28519893e+00 -6.40420914e-01 4.70040351e-01 -4.23728198e-01 -8.10368061e-02 -9.43537354e-01 -4.16749299e-01 -4.97167081e-01 2.84361899e-01 1.67042279e+00 1.82532802e-01 -3.47096115e-01 6.04751825e-01 9.05090630e-01 3.11391830e-01 -4.79348123e-01 -5.93400657e-01 -4.94559169e-01 -6.47852540e-01 -2.08357558e-01 5.19124031e-01 9.56121862e-01 -2.38530710e-01 6.73162758e-01 -1.19327462e+00 2.73247421e-01 5.99432230e-01 3.68973255e-01 9.53332603e-01 -1.16125083e+00 -3.46990615e-01 -2.38883719e-01 -5.91014743e-01 -9.64184642e-01 3.43854964e-01 -7.29105890e-01 6.64229915e-02 -1.46111059e+00 5.47432899e-01 -4.16246742e-01 -1.57216132e-01 5.77931285e-01 -3.06615561e-01 6.29912019e-01 6.45605028e-01 4.06563461e-01 -7.95082211e-01 4.82928216e-01 7.51254916e-01 -3.08220327e-01 -3.57617289e-02 -7.24839931e-03 -4.92067009e-01 6.70733571e-01 5.10291457e-01 -2.56931245e-01 -2.79489547e-01 -7.02587664e-01 3.27083796e-01 1.41382953e-02 8.50555480e-01 -8.58029604e-01 4.28783119e-01 4.05347943e-02 7.71634817e-01 -5.64586699e-01 8.66573274e-01 -8.13314319e-01 2.94078171e-01 1.68604389e-01 -6.24401033e-01 2.53898174e-01 -1.38828203e-01 7.14428008e-01 -1.46288261e-01 -9.67415050e-03 4.97248918e-01 -1.96124047e-01 -1.05293560e+00 5.00471473e-01 6.06867149e-02 -1.17078617e-01 1.04620242e+00 -2.57781148e-01 -2.45005459e-01 -4.44970191e-01 -8.12778890e-01 2.63687462e-01 5.45040786e-01 5.31629145e-01 5.33953488e-01 -1.46543741e+00 -9.03352320e-01 -2.38534119e-02 2.51231372e-01 -4.06974345e-01 8.38770509e-01 5.54304957e-01 -1.92646831e-01 1.99037924e-01 -3.70190978e-01 -7.20788538e-01 -1.99108052e+00 8.23539615e-01 2.89350182e-01 1.14132993e-01 -5.61039746e-01 1.13551629e+00 3.64446193e-01 -4.11510617e-01 3.06681335e-01 2.48039901e-01 -3.78453255e-01 2.28048772e-01 7.64678359e-01 8.16503614e-02 -4.45998341e-01 -1.21445465e+00 -3.99105847e-01 9.18469429e-01 -3.08696449e-01 1.63890943e-02 1.32235456e+00 -4.03954178e-01 -2.70668119e-01 7.11380124e-01 1.17022002e+00 -2.04305515e-01 -1.43762600e+00 -8.15394342e-01 -1.65248334e-01 -6.55212104e-01 -6.95060670e-01 -8.72095227e-01 -1.04133701e+00 8.99314165e-01 5.18330336e-01 -8.28168020e-02 1.10967743e+00 1.22948661e-01 6.27121687e-01 2.96857804e-01 2.19495147e-01 -8.89746070e-01 1.59264088e-01 2.83575654e-01 8.51115882e-01 -1.32534039e+00 -1.15378633e-01 -5.77784240e-01 -1.05219209e+00 9.26440477e-01 5.43739736e-01 -4.43779267e-02 1.57922670e-01 -3.71832341e-01 2.09658518e-01 1.42781779e-01 -9.29660559e-01 -6.23276830e-01 4.54831421e-01 6.37738824e-01 4.13427562e-01 4.30628322e-02 1.51305020e-01 1.77183658e-01 -4.39767092e-02 -9.93021578e-02 1.75347224e-01 5.48874438e-01 -3.64479516e-03 -1.25265944e+00 -2.18652695e-01 7.34163150e-02 -2.96522051e-01 -1.58182070e-01 -6.47293925e-01 4.80127782e-01 2.67455995e-01 8.93556714e-01 3.75334084e-01 -4.24095333e-01 3.46194923e-01 2.13944837e-01 6.10422194e-01 -4.30545658e-01 -7.03289747e-01 -1.98666319e-01 1.58044249e-01 -5.25653243e-01 -7.95174062e-01 -9.96780813e-01 -7.31336474e-01 -3.64958614e-01 2.80737817e-01 -3.23594064e-01 3.14782590e-01 1.06663203e+00 5.56370854e-01 2.40617126e-01 7.58239985e-01 -8.74739110e-01 -1.00819850e-02 -8.24077606e-01 -3.93545806e-01 9.22890723e-01 3.49891603e-01 -4.01956707e-01 1.59973890e-01 6.11260951e-01]
[14.52519702911377, 0.9661141037940979]
8e4978a6-2674-46bb-865b-c5e67792c5ea
barcode-annotations-for-medical-image
1505.05212
null
http://arxiv.org/abs/1505.05212v1
http://arxiv.org/pdf/1505.05212v1.pdf
Barcode Annotations for Medical Image Retrieval: A Preliminary Investigation
This paper proposes to generate and to use barcodes to annotate medical images and/or their regions of interest such as organs, tumors and tissue types. A multitude of efficient feature-based image retrieval methods already exist that can assign a query image to a certain image class. Visual annotations may help to increase the retrieval accuracy if combined with existing feature-based classification paradigms. Whereas with annotations we usually mean textual descriptions, in this paper barcode annotations are proposed. In particular, Radon barcodes (RBC) are introduced. As well, local binary patterns (LBP) and local Radon binary patterns (LRBP) are implemented as barcodes. The IRMA x-ray dataset with 12,677 training images and 1,733 test images is used to verify how barcodes could facilitate image retrieval.
['Hamid. R. Tizhoosh']
2015-05-19
null
null
null
null
['medical-image-retrieval', 'medical-image-retrieval']
['computer-vision', 'medical']
[ 3.19391072e-01 -1.07418612e-01 -5.71628988e-01 -4.99420613e-01 -1.15208030e+00 -4.12721157e-01 7.29564309e-01 7.70047843e-01 -4.08166796e-01 7.05298960e-01 8.18362087e-02 -4.15118873e-01 -4.76634949e-01 -9.42012012e-01 -1.73764035e-01 -8.24949503e-01 4.83694375e-02 2.81592399e-01 2.13639215e-01 2.85530508e-01 5.60028374e-01 9.30285156e-01 -1.56538486e+00 6.56203210e-01 4.24145460e-01 1.26531327e+00 2.94335186e-01 6.87614560e-01 -3.19345951e-01 7.88666070e-01 -8.94392192e-01 -1.48414776e-01 1.50304809e-02 -1.62939414e-01 -9.42107081e-01 1.75971955e-01 2.95445353e-01 -1.25928506e-01 -3.34916711e-01 9.42820311e-01 4.68584895e-01 1.01003751e-01 1.16380978e+00 -8.31095457e-01 -1.15866971e+00 1.85479283e-01 -4.93790954e-01 3.38079572e-01 5.48048854e-01 -2.47651652e-01 7.17530370e-01 -9.95325863e-01 7.14554727e-01 8.46349478e-01 6.22570097e-01 3.13159645e-01 -8.34186673e-01 -2.90435553e-01 -5.86071670e-01 4.16352689e-01 -1.80947161e+00 -5.98279834e-02 4.84172344e-01 -5.68499625e-01 5.00332773e-01 6.02302790e-01 4.38116550e-01 5.88964760e-01 4.68051285e-01 4.19127494e-01 1.32399499e+00 -7.59623289e-01 1.92970321e-01 2.74949998e-01 3.03947091e-01 1.05947638e+00 2.94989228e-01 2.83964407e-02 -3.37862909e-01 -3.77256185e-01 6.72225237e-01 3.53138387e-01 -1.81946114e-01 -2.88932383e-01 -1.13279116e+00 8.54724646e-01 8.05594504e-01 7.71636605e-01 -4.27031845e-01 9.40025672e-02 4.92816627e-01 -1.65052429e-01 2.20095143e-01 2.73192257e-01 5.72175235e-02 2.40072921e-01 -7.51902759e-01 -1.34775996e-01 2.82307059e-01 6.48524046e-01 8.06805074e-01 -4.95224625e-01 -5.87906539e-01 1.23106670e+00 3.34566772e-01 5.54670751e-01 8.89873683e-01 -6.01301014e-01 -1.00998394e-01 7.14064002e-01 -1.31105915e-01 -1.47003007e+00 -3.72841060e-01 -1.24071822e-01 -7.17758298e-01 1.12366967e-01 2.24504888e-01 8.26793194e-01 -1.31418562e+00 7.31092513e-01 5.27831838e-02 -1.90405831e-01 1.07130475e-01 9.36057270e-01 1.22186768e+00 4.39951539e-01 1.18723065e-01 1.67477712e-01 1.84899354e+00 -8.69035661e-01 -6.69723332e-01 2.25131139e-01 6.95103526e-01 -1.01424098e+00 8.20458710e-01 1.03125520e-01 -7.57705808e-01 -6.58517420e-01 -7.53356278e-01 -1.30431071e-01 -9.15898383e-01 5.35181224e-01 5.19612908e-01 9.48491514e-01 -1.00681150e+00 1.36419475e-01 -6.26181066e-01 -4.15292531e-01 3.64808142e-01 2.13574260e-01 -5.08032084e-01 -3.16495091e-01 -8.39800596e-01 9.94390607e-01 2.92004764e-01 -8.11926052e-02 -6.75648153e-01 -3.60476136e-01 -1.02884817e+00 -9.81433690e-02 -3.37433875e-01 -2.39641070e-01 8.01891387e-01 -5.49684227e-01 -9.32001352e-01 1.33100951e+00 -6.46675006e-02 -3.62280548e-01 1.52256936e-01 4.31926340e-01 -4.78295803e-01 9.51767802e-01 1.89847842e-01 9.72345769e-01 6.40919566e-01 -1.19668245e+00 -5.27764738e-01 -5.80656901e-02 -5.11698350e-02 -1.97469473e-01 -2.62616068e-01 1.54681429e-01 -3.09229881e-01 -6.63656116e-01 2.81467617e-01 -7.14678824e-01 -1.33200521e-02 3.63543868e-01 -4.38691974e-01 -3.38814020e-01 8.88132215e-01 -6.23445690e-01 9.92576897e-01 -2.20288968e+00 -4.40043479e-01 7.71173894e-01 5.49802594e-02 1.45347938e-01 -1.25882924e-02 1.65860757e-01 -1.90056458e-01 2.32670099e-01 -1.84717014e-01 1.10368691e-01 -1.63740322e-01 5.07497609e-01 -1.02011733e-01 6.64361835e-01 1.52790830e-01 9.92080152e-01 -7.24150419e-01 -1.11045408e+00 5.63557625e-01 8.22274208e-01 -6.96376711e-02 -3.16454381e-01 5.00111222e-01 3.37538987e-01 -5.17821610e-01 1.07276726e+00 4.96417254e-01 -3.14277709e-01 -2.23173499e-01 -4.66949970e-01 2.02967480e-01 -2.38224983e-01 -5.47577441e-01 1.34672761e+00 -5.10401905e-01 6.74264312e-01 -5.86725473e-01 -8.66778910e-01 1.27907372e+00 2.86935180e-01 7.66977847e-01 -1.02156305e+00 2.00620219e-02 3.37732702e-01 -3.26833040e-01 -5.36767900e-01 7.05567062e-01 6.26302958e-02 -5.05810976e-02 1.35368347e-01 -1.83030710e-01 2.04629302e-02 2.09246427e-01 -5.75891435e-02 1.26043344e+00 -1.22432865e-01 6.28962696e-01 -2.74588466e-01 8.72509956e-01 3.13729972e-01 -3.34971473e-02 8.32366467e-01 -2.17916593e-01 9.87107694e-01 -3.35782431e-02 -6.30002439e-01 -1.00547493e+00 -1.16436613e+00 -8.52086663e-01 7.70538867e-01 1.47533938e-01 -2.75075257e-01 -4.03038174e-01 -6.65331185e-01 -7.91169554e-02 1.15052238e-01 -7.70959556e-01 3.02612707e-02 -1.83779195e-01 -5.67104042e-01 6.05618417e-01 4.16275710e-01 4.90683377e-01 -1.13785243e+00 -9.49812472e-01 -2.25117534e-01 -6.24527521e-02 -8.33808124e-01 -4.30596828e-01 1.83832198e-01 -5.63760996e-01 -1.30616260e+00 -1.21105099e+00 -9.27018404e-01 1.30642259e+00 2.58804530e-01 1.01696837e+00 3.44707936e-01 -1.12134945e+00 7.05451310e-01 -7.96983182e-01 6.92272782e-02 -4.62372273e-01 -1.52082622e-01 -4.39045489e-01 -2.45425537e-01 2.58235097e-01 3.78553927e-01 -7.64671803e-01 3.83044153e-01 -1.15729010e+00 -2.94230402e-01 6.91148877e-01 1.06286609e+00 8.50298047e-01 -5.83571009e-02 3.00928764e-02 -8.25943530e-01 4.17801529e-01 -2.39848152e-01 -3.67836893e-01 5.40892899e-01 -4.54058945e-01 -1.00572646e-01 1.23781465e-01 -2.68483758e-01 -6.79264069e-01 1.07579388e-01 -1.06441371e-01 -3.00926834e-01 -3.60453755e-01 7.98754752e-01 6.44636571e-01 -5.39396524e-01 1.08883047e+00 2.90347904e-01 -6.54325560e-02 -2.06846550e-01 1.99161232e-01 1.06914639e+00 6.85778618e-01 -5.27837098e-01 5.21705329e-01 4.98146325e-01 2.39135697e-01 -8.12527597e-01 -5.44152558e-01 -9.72945511e-01 -6.64609373e-01 -2.49540791e-01 9.53662694e-01 -5.96222997e-01 -5.78350604e-01 -1.42303631e-01 -8.64337921e-01 9.14253592e-02 -3.50628406e-01 3.48695248e-01 -5.57400286e-01 4.55071926e-01 -7.05650389e-01 -8.03237021e-01 -2.84389138e-01 -1.22188485e+00 1.48643506e+00 3.26847285e-01 -2.54864126e-01 -9.82052445e-01 -1.46054521e-01 4.39071238e-01 5.51205099e-01 2.38715276e-01 9.86494780e-01 -5.59579790e-01 -2.52214015e-01 -5.52592456e-01 -6.17752612e-01 6.85412139e-02 3.75479639e-01 4.53588665e-02 -9.11516905e-01 -8.56781229e-02 -4.22083586e-01 -1.35199934e-01 7.16459215e-01 3.30111384e-01 1.57685864e+00 -3.51139903e-01 -6.68397307e-01 2.15231985e-01 1.48190260e+00 7.39644766e-01 1.11076450e+00 3.91970664e-01 3.45504254e-01 5.93516648e-01 8.58046830e-01 3.28793824e-01 2.43954174e-02 7.15086043e-01 2.31574982e-01 -3.66047055e-01 -3.60172600e-01 -1.20171783e-02 -1.09958515e-01 5.51798999e-01 4.36143670e-03 1.15611970e-01 -1.21038365e+00 4.02113169e-01 -1.36246252e+00 -9.01731908e-01 -9.57348347e-02 2.05177498e+00 7.61076450e-01 -3.26742589e-01 -2.22564653e-01 3.08065295e-01 9.29685116e-01 -1.62322015e-01 1.17522553e-01 -1.82873771e-01 -2.87945401e-02 6.05497599e-01 7.45879412e-01 3.49448711e-01 -1.31845570e+00 4.81896579e-01 6.87791348e+00 1.13021660e+00 -1.39334130e+00 1.03531957e-01 9.89439011e-01 8.00741494e-01 -4.64244653e-03 -3.18640798e-01 -5.90063572e-01 3.91528428e-01 7.07606435e-01 1.28826469e-01 -1.31134465e-01 9.02684808e-01 -1.11557052e-01 -4.54403728e-01 -6.23297930e-01 1.35895967e+00 3.78192037e-01 -1.48351753e+00 1.44724362e-02 1.13841437e-01 5.41533709e-01 -3.24128240e-01 2.20126808e-01 -4.86892499e-02 -1.43979609e-01 -1.20917428e+00 5.18963814e-01 9.44874287e-01 1.03123188e+00 -5.74973941e-01 1.11314309e+00 -2.40568921e-01 -1.18615925e+00 -1.25539545e-02 -5.82772791e-01 5.55074155e-01 -4.78538781e-01 4.04965252e-01 -1.27959800e+00 6.42624438e-01 7.35790074e-01 4.71485972e-01 -1.20882261e+00 1.64613020e+00 -2.82050557e-02 2.27063641e-01 -8.29054937e-02 1.01884097e-01 2.16137007e-01 2.11486332e-02 -9.17666405e-02 1.36593115e+00 5.96659303e-01 -1.74445122e-01 2.30477795e-01 5.61458290e-01 2.48089403e-01 4.96557355e-01 -6.63524985e-01 -1.61281124e-01 3.84372920e-01 1.52947628e+00 -1.27998006e+00 -4.57440764e-01 -2.73360699e-01 8.51118267e-01 -3.67629498e-01 2.60798573e-01 -6.70300424e-01 -6.71056390e-01 6.87007084e-02 1.67351335e-01 7.31366575e-02 -1.44582048e-01 3.32981981e-02 -6.20061755e-01 -4.25994784e-01 -4.55305547e-01 5.62335193e-01 -1.23878908e+00 -1.41568398e+00 5.14100790e-01 9.24788713e-02 -1.45207512e+00 -1.44826934e-01 -9.66114461e-01 -8.12205002e-02 6.55009449e-01 -1.42813551e+00 -1.31014800e+00 -6.42813027e-01 5.47631919e-01 2.25791886e-01 -9.46825445e-02 1.17289233e+00 4.95261818e-01 1.00183614e-01 3.33937585e-01 2.55686373e-01 5.92624187e-01 7.44577289e-01 -1.11761856e+00 -6.32474780e-01 1.73554942e-01 4.27618980e-01 6.48003876e-01 3.58443618e-01 -3.11022639e-01 -8.28308642e-01 -9.78976250e-01 8.03281426e-01 -2.40775332e-01 3.82934570e-01 2.14579731e-01 -7.01526344e-01 1.45882711e-01 -6.43561780e-02 7.57541478e-01 9.10224974e-01 -5.01661956e-01 -3.67603630e-01 -2.40446925e-01 -1.50759649e+00 2.01615825e-01 4.04794484e-01 -9.56963480e-01 -3.06184053e-01 6.83129549e-01 3.56291868e-02 -6.30507231e-01 -1.14995611e+00 4.02429283e-01 5.01587451e-01 -6.24346316e-01 1.42303681e+00 -1.09738119e-01 2.52781749e-01 -6.46346509e-01 -3.30125213e-01 -7.94502914e-01 -5.49775884e-02 1.76140577e-01 4.19867963e-01 9.13860202e-01 1.74163967e-01 -4.49977934e-01 6.70877576e-01 3.20999056e-01 -2.03210667e-01 -6.32281840e-01 -1.14839327e+00 -7.76964366e-01 -1.06003940e-01 -9.49384645e-02 3.63945544e-01 9.61812198e-01 7.32682794e-02 -3.53453487e-01 4.95854206e-02 -9.05227959e-02 2.44944632e-01 1.83450396e-03 2.89974749e-01 -9.41376448e-01 -2.88364850e-02 -4.94352639e-01 -1.20547843e+00 -3.20925325e-01 -4.01607947e-03 -1.21334529e+00 1.68715969e-01 -1.73378766e+00 3.72240990e-01 -9.14821029e-01 -6.37042224e-01 9.13303196e-01 2.51383454e-01 1.10499442e+00 -3.37959826e-02 4.14287537e-01 -5.21933675e-01 -8.95270854e-02 1.06476474e+00 -5.92980206e-01 2.60018259e-01 -1.86073333e-01 -2.49601826e-01 3.46917242e-01 6.87793791e-01 -5.79388440e-01 -3.93299051e-02 2.06689164e-01 -1.51361659e-01 1.74674645e-01 7.27475762e-01 -1.06141949e+00 3.97732526e-01 2.86765434e-02 6.82108521e-01 -6.03516877e-01 4.42175210e-01 -1.06317663e+00 2.83166796e-01 8.37084174e-01 -4.77126032e-01 1.99475825e-01 -4.19542901e-02 4.20456290e-01 -6.30561471e-01 -8.74374866e-01 6.99470818e-01 -1.23307392e-01 -7.66531467e-01 4.99594286e-02 -4.93904024e-01 -6.61440194e-01 1.25417650e+00 -5.20829499e-01 -7.38497972e-01 -1.03565089e-01 -7.52406299e-01 -3.52333724e-01 3.92462999e-01 1.32287487e-01 1.02142119e+00 -1.48062849e+00 -2.59971559e-01 1.05910592e-01 7.81066775e-01 -3.97433400e-01 2.61246651e-01 8.21508527e-01 -1.11401737e+00 7.67595232e-01 -3.70186239e-01 -8.76339138e-01 -1.59405220e+00 4.89797086e-01 1.28186077e-01 -5.98709881e-02 -5.28367579e-01 3.96633863e-01 -6.21423200e-02 -1.02604680e-01 -6.48551732e-02 -2.97177970e-01 -4.76584762e-01 1.51848331e-01 4.76769000e-01 4.50659841e-02 1.74000993e-01 -9.41162109e-01 -5.29222488e-01 8.55765164e-01 1.10525973e-02 1.33489324e-02 8.82480085e-01 8.66151452e-02 -2.82514572e-01 2.83421010e-01 1.41150653e+00 -9.85095277e-03 -4.76466060e-01 -8.59806836e-02 3.84809434e-01 -7.93325305e-01 -4.14710119e-02 -8.27222645e-01 -1.04839516e+00 8.05286586e-01 1.14195681e+00 2.62151599e-01 1.11528826e+00 4.56709266e-01 2.47489035e-01 4.35243428e-01 5.83259106e-01 -7.88553357e-01 2.58250564e-01 1.24296859e-01 6.84626162e-01 -1.03795493e+00 1.50051773e-01 -4.81136560e-01 -4.49709952e-01 1.55994999e+00 -6.79609319e-03 -7.52608851e-02 5.17879307e-01 1.72506481e-01 2.35338137e-01 -2.91051149e-01 -1.60582915e-01 -2.80786425e-01 6.06018305e-01 8.65621030e-01 6.09509945e-01 -3.05933561e-02 -5.94461501e-01 -6.37562424e-02 8.12189057e-02 -1.51959315e-01 2.96379268e-01 1.22340918e+00 -4.84827012e-01 -1.21281183e+00 -8.67265165e-01 6.48237288e-01 -7.42293298e-01 6.54337853e-02 -8.85903910e-02 6.86580539e-01 8.76977667e-02 7.91665435e-01 2.82384396e-01 -2.02440117e-02 -2.23800868e-01 -3.72911207e-02 4.27796721e-01 -6.07288718e-01 -5.58039725e-01 -1.08649954e-01 -1.92572400e-01 -2.65820533e-01 -8.49321723e-01 -3.32793057e-01 -1.46013951e+00 1.90913126e-01 -3.95608097e-01 2.34901339e-01 9.80746686e-01 7.48677254e-01 9.32852272e-03 5.06725669e-01 1.90974340e-01 -4.14033622e-01 2.70276591e-02 -6.11878514e-01 -5.75854540e-01 5.57500362e-01 1.48406774e-01 -7.68094003e-01 -1.22973159e-01 3.81855339e-01]
[14.292566299438477, -1.4684250354766846]
e56279bd-1067-4f38-a98c-9c38ef01c9a6
ldfa-latent-diffusion-face-anonymization-for
2302.08931
null
https://arxiv.org/abs/2302.08931v1
https://arxiv.org/pdf/2302.08931v1.pdf
LDFA: Latent Diffusion Face Anonymization for Self-driving Applications
In order to protect vulnerable road users (VRUs), such as pedestrians or cyclists, it is essential that intelligent transportation systems (ITS) accurately identify them. Therefore, datasets used to train perception models of ITS must contain a significant number of vulnerable road users. However, data protection regulations require that individuals are anonymized in such datasets. In this work, we introduce a novel deep learning-based pipeline for face anonymization in the context of ITS. In contrast to related methods, we do not use generative adversarial networks (GANs) but build upon recent advances in diffusion models. We propose a two-stage method, which contains a face detection model followed by a latent diffusion model to generate realistic face in-paintings. To demonstrate the versatility of anonymized images, we train segmentation methods on anonymized data and evaluate them on non-anonymized data. Our experiment reveal that our pipeline is better suited to anonymize data for segmentation than naive methods and performes comparably with recent GAN-based methods. Moreover, face detectors achieve higher mAP scores for faces anonymized by our method compared to naive or recent GAN-based methods.
['Martin Lauer', 'Jannik Quehl', 'Royden Wagner', 'Kevin Rösch', 'Marvin Klemp']
2023-02-17
null
null
null
null
['face-detection', 'face-anonymization']
['computer-vision', 'computer-vision']
[ 2.41733700e-01 4.35036302e-01 2.46141702e-01 -5.61371744e-01 -7.40446746e-01 -8.28350663e-01 7.19017446e-01 -4.74665821e-01 -4.80528742e-01 7.33101904e-01 1.28801197e-01 -3.32542866e-01 3.83099884e-01 -1.22672081e+00 -8.73920977e-01 -3.52741390e-01 2.75042236e-01 6.35971010e-01 -6.78361133e-02 -6.41215146e-02 -2.60327637e-01 1.01425576e+00 -1.34092867e+00 2.55412340e-01 9.77745473e-01 7.51533329e-01 -8.21645856e-01 4.56131905e-01 1.21102436e-02 3.44532847e-01 -6.54943883e-01 -1.18135011e+00 8.15729320e-01 -4.56027925e-01 -7.78494000e-01 -1.15970150e-01 9.24697936e-01 -7.57742584e-01 -5.40862560e-01 8.94470870e-01 5.50958872e-01 -3.22499461e-02 7.70277441e-01 -1.63536692e+00 -9.36764956e-01 3.51269960e-01 -4.06270176e-01 -1.50727764e-01 2.48624116e-01 5.31205416e-01 3.29892844e-01 -4.81766373e-01 7.55767405e-01 1.49670386e+00 8.19081187e-01 9.72461402e-01 -1.27858126e+00 -9.09196675e-01 4.13337350e-02 -1.21709682e-01 -1.27700567e+00 -7.72493660e-01 5.73229611e-01 -4.74439889e-01 3.37117732e-01 2.92196244e-01 4.43459958e-01 1.56995535e+00 -2.25818500e-01 5.76818109e-01 9.10027742e-01 -5.18195108e-02 3.09631914e-01 2.18807459e-01 -2.05447912e-01 4.68020797e-01 2.81482577e-01 6.91591874e-02 -2.42798641e-01 -1.52407244e-01 5.75594902e-01 -2.14354515e-01 6.29554763e-02 -3.23144972e-01 -6.08253181e-01 9.33213890e-01 5.80773592e-01 -8.41065422e-02 -4.24724042e-01 1.78338796e-01 2.43515998e-01 2.61716153e-02 5.94621360e-01 1.51177019e-01 2.48190194e-01 2.43582636e-01 -1.05618489e+00 4.61582810e-01 6.17253244e-01 9.49170530e-01 6.98448360e-01 1.81591809e-01 -3.89173239e-01 4.71096784e-01 7.05099776e-02 6.05182648e-01 -6.67534620e-02 -9.45021808e-01 4.61983263e-01 5.14914215e-01 1.64958909e-01 -9.08018053e-01 1.57258268e-02 4.44087237e-02 -8.78184438e-01 4.80216205e-01 5.15569091e-01 -2.71303475e-01 -1.21030807e+00 1.70460343e+00 4.88746077e-01 2.07963079e-01 -1.63306948e-02 6.66095912e-01 6.35138929e-01 3.02335352e-01 3.95523608e-01 2.73383558e-01 1.15725422e+00 -5.96369028e-01 -6.07614398e-01 -1.37149673e-02 2.37452433e-01 -6.38903975e-01 1.03888440e+00 1.20643794e-03 -1.11020720e+00 -4.70681638e-01 -7.16659129e-01 -1.47520289e-01 -7.32433558e-01 6.85708001e-02 3.65414023e-01 1.64992750e+00 -1.30162871e+00 4.73728895e-01 -6.87830567e-01 -6.62759662e-01 1.36656308e+00 5.49104095e-01 -5.30077815e-01 -1.09218575e-01 -1.12062061e+00 5.94795704e-01 6.40667453e-02 1.18660079e-02 -1.03179562e+00 -7.54522085e-01 -9.14464712e-01 -2.23524436e-01 7.34465104e-03 -8.29352796e-01 9.74839628e-01 -1.02937996e+00 -1.45433080e+00 1.16600251e+00 -1.07595690e-01 -8.25811028e-01 1.30308902e+00 -2.82532632e-01 -4.07021374e-01 2.67383873e-01 9.81249809e-02 1.12920141e+00 1.03724146e+00 -1.26896286e+00 -3.58759224e-01 -3.01960826e-01 1.48512751e-01 -1.83300480e-01 -4.63448882e-01 1.99285433e-01 -3.33738267e-01 -4.79505658e-01 -4.91199404e-01 -1.01184106e+00 -1.22816190e-01 3.27955872e-01 -7.13083684e-01 1.18473642e-01 1.38046098e+00 -8.85908723e-01 7.47782290e-01 -2.05954075e+00 -3.09455842e-01 4.37041134e-01 3.44452232e-01 7.78439760e-01 -1.77590176e-01 1.34042218e-01 -5.98493405e-02 5.42474627e-01 -4.35624272e-01 -8.62613559e-01 2.40780011e-01 1.17757142e-01 -5.09895742e-01 5.67140520e-01 4.67414379e-01 1.11985004e+00 -5.73159158e-01 -2.38081113e-01 3.62857014e-01 7.28264987e-01 -5.30092597e-01 2.30617329e-01 -2.27151290e-01 8.05377305e-01 -3.21453661e-01 6.79124296e-01 1.28250992e+00 4.35915112e-01 -1.28404349e-01 1.00810058e-01 1.29236743e-01 -1.94765210e-01 -7.55265415e-01 1.21355855e+00 -2.94827998e-01 5.28099179e-01 2.46353492e-01 -3.98537099e-01 7.54346311e-01 1.41941294e-01 3.18480998e-01 -6.53784752e-01 1.91752911e-01 -5.44946939e-02 -4.75786269e-01 -2.39559576e-01 4.12357539e-01 1.55688629e-01 4.41698544e-03 5.45524299e-01 -2.98143268e-01 8.87934119e-02 2.46792026e-02 3.22326660e-01 9.45004046e-01 1.25284672e-01 -3.08202863e-01 1.84823461e-02 5.47259212e-01 -2.68487424e-01 4.92594838e-01 5.45765817e-01 -3.21009874e-01 8.25564146e-01 7.07952023e-01 -5.78685403e-01 -1.35638785e+00 -1.24295568e+00 -4.16858122e-02 5.29559731e-01 -2.47831777e-01 -1.42800078e-01 -1.63269365e+00 -1.18056560e+00 1.60329208e-01 7.49457240e-01 -8.29491138e-01 -1.97501123e-01 -6.25435352e-01 -6.84470356e-01 1.18674374e+00 4.75955606e-01 9.57901239e-01 -9.06067669e-01 -1.60405472e-01 -1.70498669e-01 2.66462956e-02 -1.29417717e+00 -5.24766445e-01 -8.88664544e-01 -1.90950781e-01 -1.14537632e+00 -8.34432006e-01 -4.07651007e-01 8.64381969e-01 -8.36101770e-02 8.95000458e-01 -1.61068752e-01 -2.26098835e-01 5.59706390e-01 -9.25554931e-02 -5.81799567e-01 -7.18337536e-01 2.33969495e-01 7.30090290e-02 5.14795840e-01 5.87221742e-01 -5.01742303e-01 -8.01015377e-01 4.80479777e-01 -9.61828530e-01 -3.18163514e-01 2.84720898e-01 2.13327453e-01 4.27346945e-01 5.04097231e-02 6.05834961e-01 -1.27289212e+00 5.96849918e-01 -5.26110351e-01 -8.33812416e-01 2.27532402e-01 -3.42757523e-01 -3.38583678e-01 6.90161228e-01 -1.62137687e-01 -1.16535747e+00 3.43227208e-01 -3.92839879e-01 -4.81697053e-01 -6.50580466e-01 -3.88188899e-01 -9.01040375e-01 -4.45546240e-01 7.01677680e-01 -1.55768842e-01 1.28193244e-01 -3.18856716e-01 6.60738468e-01 7.57201850e-01 5.64100146e-01 -4.39441800e-01 1.25335884e+00 8.47382963e-01 6.48055077e-02 -8.73426735e-01 -1.86953336e-01 1.92672893e-01 -7.54869342e-01 -2.64251500e-01 1.13559234e+00 -9.46299672e-01 -8.30015898e-01 8.78960252e-01 -1.13855529e+00 -2.19870090e-01 -3.70114505e-01 1.89886242e-02 -3.50404352e-01 3.47334206e-01 -3.20424736e-01 -7.71734953e-01 -2.57005036e-01 -1.08887410e+00 1.11025965e+00 2.09691748e-01 -2.28196174e-01 -8.67220461e-01 -1.62964687e-01 6.22720838e-01 6.72604620e-01 8.44274819e-01 5.22256255e-01 -5.33929527e-01 -8.33971381e-01 -3.99059772e-01 -2.58701712e-01 5.10092258e-01 1.26500741e-01 1.95187613e-01 -1.33707571e+00 -3.15924615e-01 -3.72672409e-01 -1.51220590e-01 7.39870131e-01 2.80967087e-01 1.27851987e+00 -6.29699647e-01 -3.63765508e-01 9.32878315e-01 1.08046985e+00 -3.80869373e-03 1.20914114e+00 4.32102755e-02 1.03460109e+00 9.34212744e-01 -2.39650114e-03 4.45857793e-02 3.55560094e-01 5.23615241e-01 4.42636520e-01 -4.84556764e-01 -2.49790430e-01 -5.76348484e-01 1.90361142e-01 -2.92711914e-01 1.07016191e-01 -5.05802155e-01 -8.30591917e-01 4.84759212e-01 -1.46995592e+00 -9.38681126e-01 -2.55004227e-01 2.18513799e+00 3.77381146e-01 -4.37709987e-02 5.62277973e-01 -1.93196982e-01 8.96939993e-01 -6.12829365e-02 -6.75874233e-01 -4.98540342e-01 -2.37633541e-01 3.95918041e-01 7.27414310e-01 3.65558714e-01 -1.32389629e+00 1.19622648e+00 6.42861319e+00 5.96687138e-01 -8.40349734e-01 2.31060728e-01 1.11668301e+00 -2.21705586e-01 -5.22390246e-01 -2.28179425e-01 -7.72233546e-01 5.56022823e-01 1.12903154e+00 -3.90743613e-02 4.10057664e-01 8.33018184e-01 2.84335881e-01 3.20023865e-01 -1.00604331e+00 7.63867736e-01 4.67545167e-02 -1.30156291e+00 2.84210593e-01 3.92883718e-01 8.93894851e-01 -2.67849088e-01 5.59595704e-01 -3.13163735e-02 6.87120795e-01 -1.45249164e+00 5.69196463e-01 6.41035497e-01 1.00631177e+00 -1.06402695e+00 5.40936887e-01 -1.61401719e-01 -9.91529763e-01 1.46337971e-01 -3.01992118e-01 4.68446583e-01 3.22890043e-01 4.62786943e-01 -7.40779042e-01 5.02690673e-01 6.21964097e-01 4.63711709e-01 -7.20001638e-01 7.83830762e-01 -3.30295622e-01 5.19454598e-01 -4.24678683e-01 6.08807862e-01 1.95565775e-01 -3.46386701e-01 3.59803021e-01 9.16814446e-01 2.46607378e-01 -7.54656494e-02 -2.57347047e-01 1.22722244e+00 -6.46986544e-01 -2.50459816e-02 -1.02253914e+00 -1.08241268e-01 4.68836457e-01 1.13207507e+00 -5.28393149e-01 -4.18073162e-02 -2.46179730e-01 1.27267718e+00 1.65498525e-01 5.14722705e-01 -9.67228532e-01 -2.21302569e-01 1.02791166e+00 5.42970538e-01 2.59633303e-01 1.79659203e-02 -3.13362002e-01 -8.59378219e-01 1.90206334e-01 -8.96138728e-01 2.50834674e-01 -5.49131215e-01 -1.44503331e+00 8.39140117e-01 -2.01440379e-01 -9.65289176e-01 -2.08117276e-01 -4.57074136e-01 -7.31272936e-01 1.19640374e+00 -1.33352077e+00 -2.07343674e+00 -4.36416328e-01 8.01584661e-01 -3.29009034e-02 -4.49366510e-01 8.00718904e-01 4.59176093e-01 -8.58280301e-01 1.07664382e+00 1.30637279e-02 5.76844990e-01 5.87976933e-01 -1.02065921e+00 1.36076045e+00 1.35050225e+00 -1.26136839e-01 5.69171011e-01 3.19837272e-01 -9.42197204e-01 -9.27252889e-01 -1.70630884e+00 5.14345288e-01 -9.67955768e-01 1.28468543e-01 -6.95728898e-01 -7.87867725e-01 1.08811498e+00 1.82712495e-01 2.51952163e-03 6.81994498e-01 -3.37321013e-01 -3.87043893e-01 -1.67246416e-01 -1.80233490e+00 5.63405335e-01 1.18281102e+00 -6.38311028e-01 -1.04559124e-01 3.81816417e-01 4.86508787e-01 -2.56090373e-01 -6.02902114e-01 1.13776132e-01 3.97362024e-01 -1.06279135e+00 1.07755470e+00 -7.80509889e-01 1.87314972e-01 -3.03308457e-01 2.38379702e-01 -1.07089317e+00 8.47727209e-02 -9.32805121e-01 1.75198108e-01 1.78467298e+00 9.27590653e-02 -8.74660552e-01 1.27657247e+00 1.27430451e+00 2.67968476e-01 -1.31348342e-01 -9.67647433e-01 -8.58688831e-01 4.02665645e-01 -2.75293767e-01 1.28320527e+00 9.48785365e-01 -9.82931197e-01 -2.39065573e-01 -4.80006933e-01 4.29795235e-01 9.96348083e-01 -4.92981970e-01 1.17893362e+00 -1.05781794e+00 3.57676744e-01 -2.84704685e-01 -5.81190526e-01 -3.80885839e-01 5.51528871e-01 -7.37108290e-01 -6.01684570e-01 -1.34584475e+00 -2.67873764e-01 -5.19019544e-01 2.35138401e-01 5.81945479e-01 8.27297792e-02 6.41474247e-01 -1.27074486e-02 -1.37985172e-02 -5.59797399e-02 6.09386444e-01 7.39926755e-01 -1.60126835e-01 -8.45159218e-02 2.62667328e-01 -8.63076210e-01 6.06264770e-01 8.60106766e-01 -5.08705735e-01 -4.06654924e-01 -4.03233200e-01 -1.39963463e-01 -6.09106243e-01 8.22005510e-01 -1.12876916e+00 1.61348328e-01 1.00926414e-01 6.32288635e-01 -3.39407474e-01 1.94337547e-01 -9.26485181e-01 4.76152450e-01 2.16085359e-01 -7.06513226e-02 -7.44382292e-02 3.59469831e-01 4.89949107e-01 4.15967740e-02 2.24292353e-01 9.70844150e-01 -5.24196364e-02 -5.11713266e-01 7.61712670e-01 -2.95175403e-01 4.33699563e-02 1.40465605e+00 -3.92530411e-01 -4.31075841e-01 -4.77248281e-01 -5.40998995e-01 2.64975220e-01 9.87656891e-01 3.87965530e-01 5.53938210e-01 -1.31025779e+00 -9.48172629e-01 5.31845391e-01 3.08625456e-02 2.25106459e-02 4.49585438e-01 2.14770988e-01 -8.14387619e-01 1.50674313e-01 -5.33928454e-01 -1.66260034e-01 -1.20757055e+00 6.19054854e-01 4.80892539e-01 1.74481660e-01 -4.18280572e-01 8.13154757e-01 2.06164867e-01 -5.94514132e-01 -9.19701997e-03 1.91032901e-01 -3.68773006e-02 7.34970495e-02 6.57656312e-01 5.88459015e-01 1.40003413e-01 -1.04394114e+00 -2.54595459e-01 4.08989280e-01 -1.79737359e-01 -9.20552462e-02 1.12023139e+00 3.05726919e-02 -7.18681589e-02 -5.12616873e-01 1.16689765e+00 1.35525301e-01 -1.57901227e+00 2.22162768e-01 -4.05045778e-01 -7.85616636e-01 -2.87475646e-01 -6.16241038e-01 -1.39175689e+00 8.25250864e-01 7.60904491e-01 3.70528512e-02 1.06152451e+00 -3.20843458e-01 1.02526200e+00 -4.82647531e-02 3.08559179e-01 -8.40484858e-01 -3.70099843e-01 2.12094258e-03 7.02822328e-01 -1.12084544e+00 -2.47364491e-01 -6.89054966e-01 -5.74101567e-01 7.66435742e-01 6.44929826e-01 7.25187063e-02 4.07376289e-01 1.14523992e-01 3.06603104e-01 9.80631635e-02 5.26149683e-02 -7.30815306e-02 2.66522199e-01 1.10695851e+00 -2.00761169e-01 6.13876954e-02 2.86333442e-01 2.28724673e-01 -5.76635540e-01 -4.47416827e-02 4.11196142e-01 7.47970819e-01 2.15592831e-01 -1.51822340e+00 -4.70916808e-01 2.98985422e-01 -4.15697545e-01 1.07970089e-01 -8.07563663e-01 8.31319630e-01 2.15318412e-01 9.28035438e-01 1.93475813e-01 -3.12786281e-01 4.75449920e-01 -6.81436015e-03 1.24326020e-01 -3.39022100e-01 -7.49340177e-01 -6.90542042e-01 1.02319740e-01 -7.64690101e-01 -2.50178605e-01 -8.21935236e-01 -6.92768157e-01 -9.93499100e-01 3.04858267e-01 -1.45651460e-01 6.70290828e-01 7.22232699e-01 5.64068437e-01 2.19479904e-01 6.52012110e-01 -6.74158335e-01 -7.44706690e-02 -4.74258870e-01 -4.60646957e-01 6.73427999e-01 1.52932033e-01 -3.19384664e-01 -2.27081820e-01 1.54710904e-01]
[12.781546592712402, 0.7018473744392395]
0a1664d3-24ce-4541-a8dc-c3410ef67035
self-supervised-and-weakly-supervised
2212.03125
null
https://arxiv.org/abs/2212.03125v4
https://arxiv.org/pdf/2212.03125v4.pdf
Self-supervised and Weakly Supervised Contrastive Learning for Frame-wise Action Representations
Previous work on action representation learning focused on global representations for short video clips. In contrast, many practical applications, such as video alignment, strongly demand learning the intensive representation of long videos. In this paper, we introduce a new framework of contrastive action representation learning (CARL) to learn frame-wise action representation in a self-supervised or weakly-supervised manner, especially for long videos. Specifically, we introduce a simple but effective video encoder that considers both spatial and temporal context by combining convolution and transformer. Inspired by the recent massive progress in self-supervised learning, we propose a new sequence contrast loss (SCL) applied to two related views obtained by expanding a series of spatio-temporal data in two versions. One is the self-supervised version that optimizes embedding space by minimizing KL-divergence between sequence similarity of two augmented views and prior Gaussian distribution of timestamp distance. The other is the weakly-supervised version that builds more sample pairs among videos using video-level labels by dynamic time wrapping (DTW). Experiments on FineGym, PennAction, and Pouring datasets show that our method outperforms previous state-of-the-art by a large margin for downstream fine-grained action classification and even faster inference. Surprisingly, although without training on paired videos like in previous works, our self-supervised version also shows outstanding performance in video alignment and fine-grained frame retrieval tasks.
['Deng Cai', 'Boxi Wu', 'Yuqi Lin', 'Chenxi Huang', 'Renbo Tu', 'Minghao Chen']
2022-12-06
null
null
null
null
['action-classification', 'video-alignment']
['computer-vision', 'computer-vision']
[ 4.40395623e-01 -4.23721462e-01 -6.17062449e-01 -4.49756861e-01 -9.87451911e-01 -4.14833188e-01 8.10158610e-01 -6.47277981e-02 -4.31861997e-01 6.90833747e-01 7.22700298e-01 1.97797984e-01 -1.03012137e-01 -4.66069996e-01 -9.43629086e-01 -8.44328821e-01 -3.61894518e-01 1.63151413e-01 3.55196953e-01 -3.50387767e-02 3.17763746e-01 3.23442608e-01 -1.67322290e+00 7.11660087e-01 3.49870026e-01 1.19572747e+00 2.27185205e-01 7.16142416e-01 4.85456437e-02 1.57383895e+00 -2.43541047e-01 -1.93386585e-01 4.72655296e-01 -7.57213235e-01 -9.70223010e-01 3.01800966e-01 7.39539981e-01 -4.95875090e-01 -6.33393943e-01 7.79807448e-01 3.83240342e-01 5.71278989e-01 3.71793181e-01 -1.41860175e+00 -5.83657920e-01 3.76348346e-01 -6.50690138e-01 5.24002075e-01 5.82954288e-01 1.69338793e-01 1.11962080e+00 -7.10338295e-01 7.13164210e-01 1.21505570e+00 7.30353475e-01 3.87233108e-01 -9.92175877e-01 -4.10629809e-01 3.81531566e-01 7.71984696e-01 -1.14975858e+00 -3.82145554e-01 5.59791923e-01 -5.04434824e-01 1.29587281e+00 1.42350867e-01 6.49917364e-01 1.26739120e+00 1.34844303e-01 1.04172444e+00 8.59347463e-01 -2.63361663e-01 1.49330214e-01 -4.53626722e-01 -2.88629562e-01 7.37236142e-01 -3.83095205e-01 1.24714207e-02 -8.08464587e-01 -7.50474706e-02 8.64802301e-01 3.56572598e-01 -2.91124493e-01 -5.72522402e-01 -1.67710423e+00 6.89620554e-01 6.02223240e-02 5.24625301e-01 -5.02737641e-01 4.25970197e-01 8.69568586e-01 4.96643931e-01 5.29468060e-01 1.44713536e-01 -4.83850032e-01 -7.15867579e-01 -1.15853512e+00 1.75040990e-01 4.36110407e-01 8.18323314e-01 7.39010155e-01 8.93247966e-03 -4.96725529e-01 7.02448547e-01 -1.59532744e-02 1.94053248e-01 9.78673935e-01 -1.24847150e+00 4.70179379e-01 2.54980505e-01 -2.47077066e-02 -8.39062333e-01 -8.38337988e-02 7.00340420e-02 -6.35968506e-01 -3.54086794e-02 3.61388624e-01 2.59829909e-01 -6.16400599e-01 1.87677646e+00 1.41411722e-01 9.52275038e-01 -7.84759670e-02 9.49780345e-01 3.95093232e-01 6.62763476e-01 1.39360026e-01 -4.34139520e-01 9.98112977e-01 -1.48204529e+00 -6.88023210e-01 8.08857903e-02 8.25204015e-01 -5.41645229e-01 9.06520784e-01 1.49074718e-01 -1.21703506e+00 -8.73992145e-01 -1.00572765e+00 -1.32867515e-01 -2.93272793e-01 -1.10073695e-02 6.07419968e-01 1.06298752e-01 -1.10986328e+00 9.86831963e-01 -9.92749512e-01 -5.24146676e-01 4.84388441e-01 5.05107790e-02 -6.72688127e-01 -1.66273862e-01 -1.13988352e+00 7.24395990e-01 3.28950435e-01 -3.07347029e-01 -9.45774138e-01 -6.43081903e-01 -1.01789188e+00 -4.36303318e-02 4.94775355e-01 -5.97089767e-01 1.12902617e+00 -1.35842800e+00 -1.63387585e+00 8.94660175e-01 -1.88368708e-01 -8.28673184e-01 5.32892466e-01 -5.62194169e-01 -3.07030559e-01 6.49168909e-01 2.48077959e-01 7.26942003e-01 1.14935446e+00 -5.34665346e-01 -7.01033175e-01 -1.76535010e-01 3.75174254e-01 2.89899588e-01 -3.13859552e-01 8.64048153e-02 -4.73426610e-01 -1.02122653e+00 -2.01495379e-01 -8.64108980e-01 -4.28184196e-02 3.16211224e-01 2.42476672e-01 -2.91866362e-01 9.16896343e-01 -6.92677259e-01 1.21145737e+00 -2.21989369e+00 5.72225928e-01 -2.71376222e-01 -8.93659443e-02 3.00069004e-01 -4.69413877e-01 5.90276718e-01 -4.75933075e-01 -2.96923399e-01 -1.65235326e-01 -3.48364085e-01 -4.42820117e-02 3.98734123e-01 -3.58957738e-01 6.90491021e-01 2.64534146e-01 9.90077674e-01 -1.34439027e+00 -6.73140943e-01 4.63437468e-01 3.63741070e-01 -7.16599047e-01 4.85428721e-01 -1.05369046e-01 4.71911460e-01 -2.19664991e-01 6.62962139e-01 2.37108126e-01 -3.37937951e-01 1.90365493e-01 -3.88446689e-01 -6.13070186e-03 1.20167367e-01 -1.07507348e+00 2.34539914e+00 -4.45132136e-01 7.30204701e-01 -3.85921061e-01 -1.52885175e+00 4.58456755e-01 3.55667502e-01 1.14634645e+00 -7.35224843e-01 -2.13843793e-01 -1.33938298e-01 -4.70634043e-01 -8.23622406e-01 4.68940258e-01 -9.98188332e-02 1.02273554e-01 5.86048961e-01 4.16879803e-01 3.59731704e-01 3.68284643e-01 2.27364957e-01 1.21653378e+00 9.32766318e-01 5.92944920e-01 1.47893980e-01 6.87069774e-01 -4.66832340e-01 6.35771632e-01 6.08274102e-01 -4.52051610e-01 7.64078796e-01 4.54264462e-01 -5.24361253e-01 -8.11309934e-01 -9.64105189e-01 2.58830994e-01 1.48747575e+00 9.48035717e-02 -8.49585176e-01 -5.84894359e-01 -9.94521022e-01 -6.09253906e-02 2.48755544e-01 -6.72216594e-01 -1.96512386e-01 -8.78669441e-01 -2.27982432e-01 3.78647089e-01 9.96260285e-01 6.48264647e-01 -1.10850453e+00 -6.83503032e-01 1.80136397e-01 -4.20141667e-01 -1.24868512e+00 -8.66664231e-01 -3.58453915e-02 -7.85347581e-01 -1.13915849e+00 -7.89169669e-01 -6.66962624e-01 2.68822432e-01 5.63831508e-01 1.16447687e+00 -4.50759977e-02 -2.55570024e-01 8.90976131e-01 -7.62838900e-01 3.26063126e-01 -4.48001456e-03 -3.77426565e-01 1.75412491e-01 3.11046422e-01 3.19379807e-01 -6.45936966e-01 -6.72019780e-01 3.81517917e-01 -9.47375417e-01 -1.16323233e-01 4.82196212e-01 9.05362606e-01 8.65144312e-01 -2.63235778e-01 3.97450387e-01 -5.63420236e-01 -7.78072774e-02 -6.25509441e-01 -2.62234747e-01 4.04257715e-01 -2.29379997e-01 5.71776778e-02 5.52449167e-01 -5.16824365e-01 -8.93282175e-01 4.11217399e-02 -1.39711881e-02 -1.05732226e+00 -8.00149217e-02 2.92015404e-01 1.03384135e-02 7.49464631e-02 3.23852807e-01 3.75900328e-01 3.44481431e-02 -3.01515222e-01 5.20605087e-01 3.94457281e-01 6.18288279e-01 -5.29318392e-01 5.48208833e-01 7.02035725e-01 -1.57898404e-02 -6.78137362e-01 -9.11395192e-01 -7.54375041e-01 -9.09378171e-01 -3.05641025e-01 1.15284383e+00 -9.73101020e-01 -5.23437142e-01 5.03736675e-01 -7.89103508e-01 -4.92572725e-01 -6.35455966e-01 7.21479952e-01 -1.34874284e+00 8.22924435e-01 -5.56061745e-01 -4.22069430e-01 6.32355586e-02 -1.01621497e+00 1.37202132e+00 -2.64824450e-01 -2.00763732e-01 -1.05527139e+00 3.99867058e-01 4.67840880e-01 1.97762936e-01 3.73299420e-01 3.58415186e-01 -4.64702129e-01 -6.21764362e-01 -4.35262844e-02 1.73859093e-02 6.24233305e-01 2.08130255e-01 -1.83204308e-01 -7.36149192e-01 -4.90434557e-01 -1.82683058e-02 -6.57303631e-01 1.15568697e+00 4.72303092e-01 1.55583322e+00 -2.34741673e-01 -9.84736755e-02 8.54984283e-01 1.29497564e+00 -2.26839334e-02 8.96534324e-01 4.15881693e-01 7.43504584e-01 4.28838104e-01 1.13142419e+00 6.51312232e-01 1.88502699e-01 9.42618906e-01 4.11569893e-01 2.48816714e-01 -2.26330608e-01 -3.40561062e-01 7.61586607e-01 6.93776488e-01 -5.36675990e-01 -6.58434629e-02 -2.21351355e-01 3.99880469e-01 -2.46436501e+00 -1.77804291e+00 5.03999531e-01 2.19934392e+00 6.32495522e-01 -1.33746222e-01 3.58565599e-01 3.11643407e-02 5.62585652e-01 9.05961990e-01 -5.16476274e-01 -1.09079286e-01 -1.11473896e-01 1.56845942e-01 4.25959617e-01 1.42854497e-01 -1.57495952e+00 8.28729212e-01 5.81924343e+00 9.04944420e-01 -9.67499316e-01 2.63686866e-01 4.02887791e-01 -3.65095764e-01 6.87660649e-02 -1.06460422e-01 -4.00920749e-01 5.72512567e-01 1.02946258e+00 -1.22999279e-02 4.09660399e-01 8.03719938e-01 1.65938124e-01 1.32461982e-02 -1.40213275e+00 1.33917940e+00 4.75440979e-01 -1.68275416e+00 4.31159586e-02 -1.71259537e-01 7.76135266e-01 4.66173589e-02 -1.91508412e-01 4.23246205e-01 -2.97812317e-02 -8.07787836e-01 7.47508764e-01 6.33964062e-01 7.72141457e-01 -4.25688326e-01 5.78144133e-01 3.65457423e-02 -1.59781480e+00 -3.46332699e-01 -2.60323256e-01 -8.10045451e-02 3.65156949e-01 6.93739206e-02 -1.48805037e-01 5.88332891e-01 9.03723717e-01 1.72329831e+00 -4.17616397e-01 7.88977027e-01 3.33578549e-02 4.17708606e-01 1.64204016e-01 5.10701299e-01 5.25965154e-01 -2.63166547e-01 4.35884118e-01 1.33736360e+00 2.44200692e-01 1.14359468e-01 4.02305454e-01 5.74480258e-02 -6.70877695e-02 -1.13425642e-01 -6.07510626e-01 -1.58267185e-01 1.00586355e-01 1.13192034e+00 -4.19721127e-01 -5.07620990e-01 -8.48415494e-01 1.46742463e+00 4.77596968e-01 2.63227612e-01 -1.14074016e+00 5.30969761e-02 9.56124127e-01 1.46592662e-01 7.93109119e-01 -1.66094258e-01 5.64728618e-01 -1.37837195e+00 5.63923456e-02 -8.67868125e-01 7.82855809e-01 -6.83078706e-01 -1.29327083e+00 2.48697042e-01 1.42803803e-01 -1.91342998e+00 -7.24091470e-01 -4.59643573e-01 -4.38407660e-01 1.82461575e-01 -1.55934417e+00 -1.23749530e+00 -1.94155335e-01 1.05752730e+00 1.01532316e+00 -3.51064235e-01 7.51371801e-01 4.76743132e-01 -2.15654701e-01 5.78123689e-01 1.67651340e-01 9.11809355e-02 1.04205120e+00 -1.19465911e+00 9.47596356e-02 6.90257788e-01 4.85148698e-01 2.46831059e-01 4.12578344e-01 -3.37671280e-01 -1.43053257e+00 -1.21458709e+00 6.96709156e-01 -3.72354180e-01 8.14105392e-01 -1.67719014e-02 -8.55706632e-01 9.66735601e-01 2.36531869e-01 5.27216315e-01 8.19964230e-01 -2.90605426e-01 -6.42916143e-01 -2.21438482e-01 -9.09772336e-01 3.28741699e-01 1.42486870e+00 -8.32219601e-01 -6.37610555e-01 7.15023339e-01 6.07363641e-01 -3.14391226e-01 -1.03583860e+00 3.20035160e-01 6.97232664e-01 -1.19890594e+00 1.15915775e+00 -1.05969405e+00 6.11471891e-01 -3.30145329e-01 -6.03933752e-01 -1.01166975e+00 -4.96996075e-01 -7.31194079e-01 -4.26527977e-01 1.00669789e+00 -3.91263276e-01 -2.86141962e-01 6.79711938e-01 -2.44329572e-02 -2.94159681e-01 -9.05181468e-01 -9.54399884e-01 -9.33025181e-01 -2.35730827e-01 -3.26732814e-01 3.01535219e-01 9.71017957e-01 4.09980081e-02 -1.07131243e-01 -8.24158013e-01 -1.75431266e-01 4.27046686e-01 3.50635946e-01 7.31368065e-01 -6.18936896e-01 -5.83477914e-01 -3.31274509e-01 -1.00255930e+00 -1.30183828e+00 5.44091582e-01 -7.71199167e-01 -1.21245012e-02 -1.17795789e+00 3.95347685e-01 2.55817562e-01 -6.71528697e-01 4.60699379e-01 -7.96352327e-02 4.93587345e-01 1.95369720e-01 3.32606316e-01 -1.26126790e+00 6.11739814e-01 9.27136481e-01 -1.13194101e-01 1.66662887e-01 -1.78435698e-01 -1.70399219e-01 7.53542602e-01 4.07097876e-01 -9.88124013e-02 -5.63741744e-01 -2.81751513e-01 -1.14234991e-01 1.46403372e-01 3.47219706e-01 -1.10522640e+00 6.47594396e-04 -3.01723957e-01 2.61951745e-01 -5.78207791e-01 4.94878620e-01 -6.84590757e-01 -1.04164220e-02 2.55498409e-01 -6.23300016e-01 1.79622844e-01 -1.87997460e-01 8.90470803e-01 -5.98839998e-01 -3.47190909e-02 7.19609737e-01 -3.09877366e-01 -1.30978525e+00 5.78824103e-01 -2.52399832e-01 2.12865472e-01 1.25565624e+00 -3.45587283e-01 -2.29022413e-01 -6.02079988e-01 -7.43887484e-01 9.98759866e-02 4.67952788e-01 6.33703947e-01 6.67825401e-01 -1.68053067e+00 -6.51123643e-01 1.00535981e-01 3.07005644e-01 -5.71586192e-01 5.01410723e-01 1.05488837e+00 -2.76254207e-01 3.51018131e-01 -4.83214676e-01 -7.09006310e-01 -1.35957825e+00 6.74646854e-01 1.65512830e-01 -4.53970671e-01 -7.29099572e-01 7.69299984e-01 2.25159436e-01 -3.68205309e-02 3.23506743e-01 -1.23866044e-01 -2.42034778e-01 2.84556597e-01 8.74114037e-01 5.37088513e-01 -1.57780305e-01 -1.03181279e+00 -3.73462617e-01 6.93213642e-01 -5.22205867e-02 1.96110383e-01 1.45455158e+00 -1.37999460e-01 8.60831607e-03 6.24400496e-01 1.65868950e+00 -3.51119787e-01 -1.80500984e+00 -3.31620753e-01 -6.54649436e-02 -8.49780858e-01 -2.34896213e-01 -2.20800713e-01 -1.20067978e+00 7.19987392e-01 5.72321236e-01 -8.09400678e-02 1.28756046e+00 1.63053006e-01 9.18413401e-01 3.83084595e-01 3.27262342e-01 -1.24403143e+00 7.30631411e-01 5.19958258e-01 8.77153814e-01 -1.32192028e+00 1.66199714e-01 8.77294913e-02 -8.70061338e-01 1.03779459e+00 5.50836802e-01 -2.62146473e-01 5.42385876e-01 -3.99725810e-02 -2.23461628e-01 -1.37899956e-02 -8.55317652e-01 -2.39877507e-01 2.41243422e-01 6.39138758e-01 4.26285714e-01 -1.97815016e-01 -1.38799742e-01 1.46601334e-01 3.28787684e-01 2.07218990e-01 2.15143740e-01 1.19403017e+00 -2.33826548e-01 -1.04076207e+00 3.60033810e-02 4.77611274e-01 -3.79825741e-01 -1.14383409e-03 2.65514590e-02 6.10227585e-01 1.19558282e-01 5.63784957e-01 3.78727496e-01 -3.96646947e-01 8.23525041e-02 8.11826140e-02 7.39513338e-01 -4.59185481e-01 -4.04761136e-01 -3.13064158e-02 2.97484528e-02 -1.34715164e+00 -1.27175570e+00 -9.87324476e-01 -1.04263031e+00 -5.37128001e-02 1.24989323e-01 -1.89635620e-01 1.05043761e-01 1.03852952e+00 3.06796700e-01 3.13628823e-01 7.73012936e-01 -1.21195257e+00 -5.91781735e-01 -8.30643117e-01 -7.12649703e-01 8.92449498e-01 4.51876044e-01 -8.15178573e-01 -2.94946581e-01 4.15081501e-01]
[8.641005516052246, 0.7576315999031067]
f7e058ea-6237-40ab-8b37-0f295551d6b0
parameter-selection-why-we-should-pay-more
2107.05393
null
https://arxiv.org/abs/2107.05393v1
https://arxiv.org/pdf/2107.05393v1.pdf
Parameter Selection: Why We Should Pay More Attention to It
The importance of parameter selection in supervised learning is well known. However, due to the many parameter combinations, an incomplete or an insufficient procedure is often applied. This situation may cause misleading or confusing conclusions. In this opinion paper, through an intriguing example we point out that the seriousness goes beyond what is generally recognized. In the topic of multi-label classification for medical code prediction, one influential paper conducted a proper parameter selection on a set, but when moving to a subset of frequently occurring labels, the authors used the same parameters without a separate tuning. The set of frequent labels became a popular benchmark in subsequent studies, which kept pushing the state of the art. However, we discovered that most of the results in these studies cannot surpass the approach in the original paper if a parameter tuning had been conducted at the time. Thus it is unclear how much progress the subsequent developments have actually brought. The lesson clearly indicates that without enough attention on parameter selection, the research progress in our field can be uncertain or even illusive.
['Chih-Jen Lin', 'Si-An Chen', 'Tsung-Han Yang', 'Jie-Jyun Liu']
2021-07-08
null
https://aclanthology.org/2021.acl-short.104
https://aclanthology.org/2021.acl-short.104.pdf
acl-2021-5
['medical-code-prediction']
['medical']
[ 3.40226829e-01 8.12015980e-02 -3.54912996e-01 -4.32569951e-01 -5.76047003e-01 -4.86184299e-01 3.55063200e-01 6.48034573e-01 -5.35216749e-01 8.70742440e-01 3.06023676e-02 -4.25642401e-01 -5.46070278e-01 -4.71364528e-01 -3.96785498e-01 -1.01626456e+00 1.43903896e-01 5.02610445e-01 2.44187132e-01 -3.29626016e-02 5.85569918e-01 2.14955539e-01 -1.74119163e+00 1.34507373e-01 6.05762362e-01 5.38973331e-01 6.79883808e-02 1.99250653e-01 -2.44018659e-01 7.19251871e-01 -6.69427872e-01 -5.41468441e-01 5.44808768e-02 -4.41484094e-01 -8.73998940e-01 5.91031350e-02 1.14357434e-01 1.49666384e-01 4.70404446e-01 9.57116306e-01 4.73832518e-01 -1.71050400e-01 6.22795463e-01 -9.27876651e-01 -2.35473529e-01 7.56570101e-01 -5.40401816e-01 1.18304946e-01 1.23690821e-01 -9.80445370e-02 9.68961537e-01 -5.12242913e-01 4.40217257e-01 8.09548080e-01 7.86208212e-01 2.80307114e-01 -1.07997894e+00 -6.76746607e-01 1.86961561e-01 1.03106856e-01 -1.42228007e+00 -1.08184554e-01 6.21649921e-01 -7.56621599e-01 6.35437965e-01 3.16914767e-01 5.88184237e-01 1.05898559e+00 2.73707598e-01 1.94794044e-01 1.49107885e+00 -7.72789538e-01 1.77503332e-01 6.62640631e-01 3.53205353e-01 5.46261132e-01 6.40328646e-01 6.41233549e-02 -1.43082812e-01 -4.68190670e-01 2.92286485e-01 -6.77788705e-02 -1.70883164e-01 -1.18900351e-01 -1.10679317e+00 1.04106307e+00 -1.31038412e-01 8.37539434e-01 -1.40311822e-01 -3.20635885e-01 6.29311264e-01 4.84877735e-01 3.55081528e-01 6.65528536e-01 -5.37427485e-01 -4.11220372e-01 -9.18125331e-01 -2.18422376e-02 8.78899276e-01 2.61982530e-01 3.77020687e-01 -4.24704581e-01 2.24412888e-01 8.81334662e-01 1.23126939e-01 1.12973582e-02 5.43797195e-01 -7.35731542e-01 3.28833349e-02 7.42898107e-01 4.01084796e-02 -1.04816115e+00 -6.82851076e-01 -5.61431170e-01 -7.18990088e-01 2.11522549e-01 8.11765134e-01 -2.10040987e-01 -4.78176773e-01 1.39518881e+00 1.14107803e-01 -1.71791852e-01 -3.05152208e-01 7.44707882e-01 6.04798555e-01 1.41160041e-01 4.11056221e-01 -4.60223019e-01 1.43141007e+00 -6.05423331e-01 -7.76753247e-01 -1.27618909e-01 8.24813128e-01 -9.90242243e-01 1.09555614e+00 9.20397997e-01 -5.95852554e-01 -4.29049492e-01 -1.01978934e+00 4.18612361e-01 -3.85737151e-01 -7.71442056e-02 8.84582639e-01 1.00559986e+00 -6.73862755e-01 5.42943895e-01 -5.80607116e-01 -4.78031099e-01 8.10727105e-02 3.47302705e-01 -3.10058415e-01 -3.13494243e-02 -1.16805136e+00 1.10408044e+00 4.14391547e-01 -8.62469524e-02 -1.98265806e-01 -3.57833683e-01 -3.34806979e-01 -2.02585250e-01 7.61142731e-01 -4.81331140e-01 9.08279061e-01 -8.98289621e-01 -1.24725640e+00 1.14455009e+00 1.50377840e-01 -2.20920950e-01 6.99199021e-01 6.19982183e-03 -4.15523708e-01 -9.67441127e-02 -9.04723629e-02 2.93961346e-01 5.82966268e-01 -1.12592673e+00 -7.12396383e-01 -2.60972351e-01 6.01186827e-02 -3.64042819e-02 -1.00302391e-01 3.96436602e-01 -1.74923107e-01 -6.70635283e-01 5.13579957e-02 -1.05637825e+00 -2.25518644e-01 -4.15321380e-01 -9.30607617e-02 -3.52021098e-01 2.68984854e-01 -1.35246247e-01 1.49631047e+00 -2.28672838e+00 -3.41832861e-02 8.93599093e-02 1.28895849e-01 -2.72017741e-03 3.68172050e-01 5.97124338e-01 -3.83680016e-01 3.83692861e-01 -3.33959311e-01 2.86472384e-02 -1.46776095e-01 1.02923378e-01 -1.60297230e-01 6.21055186e-01 -1.98378488e-01 3.76697928e-01 -9.01045382e-01 -5.11479080e-01 1.54435560e-01 4.16352302e-01 -2.92082042e-01 -2.94748366e-01 1.22141596e-02 3.31933439e-01 -4.70123500e-01 5.02622724e-01 3.63457412e-01 -5.68270564e-01 2.71639764e-01 6.43088901e-03 -1.92578673e-01 1.43276766e-01 -1.23548508e+00 1.16047812e+00 -1.14365317e-01 4.51769054e-01 -4.48376060e-01 -1.17689872e+00 8.15728426e-01 5.02724409e-01 6.69182658e-01 -3.85352284e-01 2.25432158e-01 5.34082174e-01 3.94092798e-01 -6.80272102e-01 3.40571076e-01 -4.16585952e-01 3.14495713e-02 5.19101858e-01 -3.88904810e-01 -9.03562680e-02 5.06038405e-02 -3.13767135e-01 8.45731854e-01 -5.18199541e-02 5.92069745e-01 -4.00415361e-01 5.70553899e-01 5.74813932e-02 3.68921995e-01 7.31743276e-01 -1.69033527e-01 6.25887096e-01 7.15700150e-01 -4.68080461e-01 -7.28243351e-01 -5.08928180e-01 -7.89609730e-01 9.96837676e-01 -2.72717953e-01 -3.81484777e-01 -5.63857794e-01 -8.27861249e-01 -3.38169150e-02 5.34400761e-01 -6.37376845e-01 -2.45123021e-02 -3.60526979e-01 -1.36668479e+00 4.88609880e-01 -2.78735422e-02 7.15935379e-02 -9.75051939e-01 -8.74480784e-01 1.48562074e-01 2.50532315e-03 -7.84819067e-01 5.22479676e-02 3.79701406e-01 -9.84771788e-01 -1.24008751e+00 -8.45939577e-01 -4.98321533e-01 5.79169035e-01 1.15348376e-01 9.70762372e-01 3.52667302e-01 2.67562084e-03 3.72305550e-02 -5.84070563e-01 -6.01447403e-01 -7.49141097e-01 3.39844853e-01 -1.59589097e-01 -1.68689281e-01 6.20171130e-01 -3.73887300e-01 -3.53769720e-01 4.15244460e-01 -8.79755735e-01 -3.40076089e-01 6.83868051e-01 8.62234056e-01 1.93368226e-01 2.16812029e-01 9.36418533e-01 -1.48587096e+00 4.76932138e-01 -4.93691683e-01 -3.41789931e-01 1.96091101e-01 -1.15713429e+00 1.82920709e-01 2.87248135e-01 -4.50035542e-01 -7.49016523e-01 -2.16696993e-01 -1.47671923e-01 8.27457011e-02 -5.51247358e-01 5.45604050e-01 2.06714839e-01 -8.87660906e-02 7.52549410e-01 -1.10334292e-01 -1.11516595e-01 -4.64864939e-01 -2.42444500e-01 8.45837355e-01 -1.48979172e-01 -3.68145198e-01 2.94688970e-01 4.39345032e-01 -1.36168942e-01 -6.59718633e-01 -8.95094872e-01 -5.05235851e-01 -4.49311852e-01 -7.44679570e-02 5.96504450e-01 -5.58682561e-01 -5.13289452e-01 3.32921296e-01 -6.93004489e-01 -2.04542890e-01 -1.96768597e-01 5.99555612e-01 -3.24421912e-01 5.82401872e-01 -2.76360393e-01 -7.14254379e-01 1.91908389e-01 -1.40422237e+00 5.85218132e-01 -9.11853984e-02 -6.04167104e-01 -1.12231696e+00 2.21597385e-02 6.65614247e-01 3.52784097e-01 1.06619984e-01 1.10362196e+00 -9.20434952e-01 -1.00486197e-01 -2.70418674e-01 1.24703278e-04 1.59337550e-01 4.99216497e-01 2.73692489e-01 -1.10571837e+00 -1.67154044e-01 2.45906383e-01 -1.71855137e-01 7.33229756e-01 3.99496526e-01 1.12289071e+00 8.36537331e-02 -3.11109453e-01 1.44613385e-01 1.58553410e+00 4.86695945e-01 3.82881194e-01 6.76260114e-01 3.33417982e-01 8.66194844e-01 6.38871849e-01 3.97449285e-01 2.63595164e-01 7.52575934e-01 2.08276019e-01 -2.63521634e-03 2.52119362e-01 2.51124293e-01 2.10951865e-02 6.46282673e-01 -3.02315235e-01 -7.78764561e-02 -1.11034894e+00 4.50780779e-01 -1.50829399e+00 -8.13945472e-01 -1.73637331e-01 2.53249717e+00 8.78272593e-01 5.28738558e-01 2.82070339e-01 5.01851797e-01 7.48900354e-01 1.31792098e-01 -9.02954862e-02 -6.07985139e-01 -8.84224176e-02 -2.46038273e-01 4.29097116e-01 3.36094081e-01 -9.28048670e-01 4.28590328e-01 6.94630194e+00 9.09222543e-01 -1.21683574e+00 3.28737870e-02 7.82247543e-01 5.14432043e-02 -2.11825058e-01 1.00703105e-01 -7.25244224e-01 6.10874772e-01 1.07212186e+00 -2.70976834e-02 2.38055154e-03 5.81678510e-01 2.34418437e-01 -6.06330276e-01 -8.80760372e-01 8.77007902e-01 9.23591480e-02 -8.31997037e-01 -3.98891509e-01 2.44223878e-01 4.52087432e-01 -1.43085420e-01 2.83410475e-02 2.57823706e-01 2.03861389e-02 -1.09123707e+00 4.23782706e-01 4.49465513e-01 5.29386282e-01 -6.72871590e-01 1.03615844e+00 5.16558647e-01 -4.45989192e-01 -2.70511895e-01 -2.17283845e-01 -2.86423564e-01 9.34848115e-02 9.30721283e-01 -8.07049453e-01 4.70168710e-01 3.90917927e-01 4.22291487e-01 -7.81323075e-01 1.28905332e+00 2.13145595e-02 1.08614552e+00 -2.44253367e-01 -1.70332938e-01 2.63391346e-01 -1.73871323e-01 4.16291475e-01 1.29427230e+00 6.29176423e-02 -6.23632558e-02 -1.17091402e-01 2.62117654e-01 3.74048680e-01 5.20182133e-01 -6.36420488e-01 2.12856773e-02 2.92476982e-01 1.17397368e+00 -1.20877087e+00 -1.80421174e-01 -7.89179981e-01 6.02156281e-01 1.37386993e-01 3.81370448e-02 -7.17607081e-01 1.64413080e-02 1.41449735e-01 2.19471380e-01 1.02613240e-01 2.26279125e-01 -4.75276113e-01 -8.59288096e-01 -1.04703389e-01 -9.41164315e-01 6.44566059e-01 -2.16040835e-01 -1.18704343e+00 3.94884050e-01 3.88955444e-01 -1.13316524e+00 -7.29069486e-02 -4.86650616e-01 -9.34429094e-02 4.86951411e-01 -1.27498567e+00 -4.38308269e-01 1.09472767e-01 -1.51602507e-01 3.46221417e-01 -1.15066878e-01 9.15031195e-01 4.99308556e-01 -5.51385283e-01 5.76156378e-01 1.66837677e-01 -1.89940453e-01 1.05013418e+00 -1.06026959e+00 -4.30262327e-01 3.20131093e-01 9.76602510e-02 5.73311806e-01 9.93178189e-01 -5.12395561e-01 -5.65204382e-01 -4.45515692e-01 1.20000482e+00 -5.73182702e-01 6.82406485e-01 5.58662601e-02 -1.12067044e+00 4.97935444e-01 2.34302983e-01 -3.69161189e-01 1.06298888e+00 3.44929785e-01 -7.63806477e-02 8.84402171e-02 -1.04787779e+00 3.54185462e-01 6.71006620e-01 -7.16049075e-02 -6.52695060e-01 3.64917576e-01 3.71784240e-01 -2.55995780e-01 -1.03841746e+00 3.60707909e-01 6.27696157e-01 -1.17210925e+00 7.30871916e-01 -4.52425331e-01 3.09685707e-01 5.40201925e-03 -4.10122164e-02 -1.09865510e+00 -1.92808360e-01 -1.22065134e-01 5.63069880e-01 1.23212087e+00 5.81539094e-01 -8.14422905e-01 5.55570126e-01 6.02978647e-01 5.49830273e-02 -9.87372041e-01 -7.68213749e-01 -5.40019512e-01 3.00951362e-01 -4.63569999e-01 4.68436360e-01 1.29337847e+00 7.88841322e-02 2.24764705e-01 -2.46758282e-01 -2.11146280e-01 4.03413624e-01 1.55679926e-01 3.24972481e-01 -1.51596403e+00 -2.91001797e-01 -6.04566693e-01 -2.45930865e-01 -2.35463530e-01 -9.64818969e-02 -7.35219300e-01 -2.85969347e-01 -1.18699622e+00 4.62826192e-01 -8.15527439e-01 -4.52299029e-01 4.60185975e-01 -4.02296066e-01 9.78032202e-02 9.67034623e-02 2.94236541e-01 -3.14418703e-01 -2.87938803e-01 1.25213385e+00 1.59005523e-01 -1.52092442e-01 3.28866005e-01 -1.05743742e+00 9.05187070e-01 9.22136188e-01 -8.48212659e-01 -4.20376807e-01 1.38814360e-01 6.51768327e-01 -6.25495799e-03 1.78575382e-01 -7.40429401e-01 8.54659155e-02 -2.89014935e-01 6.28535748e-02 -2.83625305e-01 3.59021164e-02 -1.06665456e+00 5.16652942e-01 5.73097169e-01 -4.08925146e-01 1.78868920e-02 2.03438058e-01 4.22361881e-01 -1.17616348e-01 -7.49520838e-01 6.69924378e-01 -3.32212955e-01 -5.30720234e-01 -2.23993912e-01 -4.78113949e-01 -1.37902703e-02 1.00227654e+00 -3.98538053e-01 -4.66791317e-02 -1.68535873e-01 -7.22567618e-01 -2.35452816e-01 6.30548954e-01 2.84878224e-01 1.44866496e-01 -8.15527260e-01 -6.97215378e-01 -1.95006486e-02 2.43213862e-01 -2.98970014e-01 2.74330437e-01 1.24121213e+00 -3.19352090e-01 5.62594235e-01 1.37743261e-02 -5.48770905e-01 -1.33688962e+00 6.20122433e-01 2.54592627e-01 -3.10479194e-01 -7.78787673e-01 4.63056713e-01 -1.10525250e-01 -1.51275039e-01 3.08846414e-01 -2.43034884e-01 -6.72343552e-01 6.31384611e-01 3.16795766e-01 4.34713840e-01 2.34375566e-01 -4.84745622e-01 -3.28124195e-01 7.17025757e-01 -1.57776102e-01 -7.27156028e-02 1.22767663e+00 -6.09420910e-02 -9.48719531e-02 1.02341676e+00 8.51000667e-01 3.12737346e-01 -7.84466863e-01 1.16578110e-01 2.25746840e-01 -4.53899026e-01 -1.30066589e-01 -8.33982766e-01 -8.79608393e-01 6.55297220e-01 4.71657068e-01 4.91724402e-01 1.06565630e+00 -9.28688794e-02 8.35994110e-02 2.25519523e-01 4.78837311e-01 -1.08731508e+00 -3.79983902e-01 2.96207368e-01 6.90948904e-01 -1.49899316e+00 2.39891723e-01 -4.46899354e-01 -6.92327261e-01 1.09021437e+00 1.67802826e-01 1.98488101e-01 7.76434720e-01 2.30738029e-01 2.58726299e-01 -2.85474777e-01 -7.28195846e-01 -1.15933530e-02 2.14989623e-03 2.75463104e-01 8.81871939e-01 -9.11052898e-02 -1.05194259e+00 3.39174956e-01 -1.95964709e-01 2.58306772e-01 6.62052512e-01 7.16137409e-01 -4.52674061e-01 -1.37741077e+00 -5.64291060e-01 7.25264013e-01 -9.57242429e-01 8.41576979e-03 -1.98059052e-01 1.17739201e+00 3.68001401e-01 9.06888664e-01 -1.42586246e-01 -1.09596141e-01 2.23906934e-01 3.25019777e-01 4.21550810e-01 -6.52671039e-01 -8.04518104e-01 2.91070268e-02 1.25168458e-01 -8.60489160e-02 -7.39458144e-01 -8.88941646e-01 -1.04440606e+00 -9.73151997e-02 -5.72759449e-01 5.59085786e-01 5.19472599e-01 9.47857678e-01 -1.61769524e-01 4.18893039e-01 3.20446759e-01 -1.89775839e-01 -5.77605784e-01 -9.82398510e-01 -6.50137067e-01 3.39683026e-01 2.48272002e-01 -8.57388794e-01 -7.73501575e-01 -1.28912881e-01]
[8.721521377563477, 4.649308681488037]
deed8e78-baa2-43cf-9957-929b8bfaf68a
transition-based-dependency-parsing-with-3
null
null
https://aclanthology.org/D16-1254
https://aclanthology.org/D16-1254.pdf
Transition-Based Dependency Parsing with Heuristic Backtracking
null
['Miguel Ballesteros', 'Chris Dyer', 'Jacob Buckman']
2016-11-01
null
null
null
emnlp-2016-11
['transition-based-dependency-parsing']
['natural-language-processing']
[-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01 -8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01 -2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00 -3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01 -9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01 7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01 7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00 -1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01 3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01 9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01 5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00 -5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01 1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00 7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01 -1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02 -1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01 1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00 1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01 3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01 8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01 9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01 -9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01 -1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01 -2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01 -8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00 1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01 8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00 -6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01 -6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01 3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01 4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02 4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01 1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01 9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01 -1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01 -7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00 -1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02 1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01 -1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01 -1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01 -4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01 -1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01 6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01 -1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00 -7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01 -1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01 3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01 -1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01 1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01 3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00 -2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01 2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01 -1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01 4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01 2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00 1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01 -3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00 7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01 3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01 -2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01 7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01 -2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01 6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00 7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00 -3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01 -6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00 3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01 1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01 -5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01 -5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01 -2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01 -1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01 5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01 -2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01 -4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01 5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01 -6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00 1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01 8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02 -6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01 -1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01 1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01 8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03 3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01 8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01 -1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01 6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01 -9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01 -1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00 -5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02 -5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01 1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01 -4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01 1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01 6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01 5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01 1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01 1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01 1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01 1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00 -8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01 -1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01 6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01 4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00 -1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00 -7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00 2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01 -4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02 1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01 3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01 9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01 7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01 6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01 1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01 -1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00 3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01 9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01 -4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01 4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00 2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01 5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01 2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01 -2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01 -6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01 -1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01 -5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01 -1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00 -6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01 -1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01 1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02 1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01 5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01 -4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01 -1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01 6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01 7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01 1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01 1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01 8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01 8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00 -4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01 -5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02 5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01 -2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00 -3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01 6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01 5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00 3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01 -8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00 -8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01 3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01 -3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05 -1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01 8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02 6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01 5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00 1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01 2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02 -1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01 -4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02 9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01 -8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02 7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01 -3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01 -1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01 -1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01 -2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01 1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03 6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01 -4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01 9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01 8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01 1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01 -1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01 8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01 5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01 9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01 -4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01 1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01 -9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00 5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01 -7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00 -6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01 -5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01 -5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01 4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01 -9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00 -8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00 -5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01 -2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00 -3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02 2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01]
[-7.224766731262207, 3.7800936698913574]
64283fb1-6c28-4c3a-87a6-e1cfe9275b06
cross-modal-attention-congruence
2212.10549
null
https://arxiv.org/abs/2212.10549v2
https://arxiv.org/pdf/2212.10549v2.pdf
Cross-modal Attention Congruence Regularization for Vision-Language Relation Alignment
Despite recent progress towards scaling up multimodal vision-language models, these models are still known to struggle on compositional generalization benchmarks such as Winoground. We find that a critical component lacking from current vision-language models is relation-level alignment: the ability to match directional semantic relations in text (e.g., "mug in grass") with spatial relationships in the image (e.g., the position of the mug relative to the grass). To tackle this problem, we show that relation alignment can be enforced by encouraging the directed language attention from 'mug' to 'grass' (capturing the semantic relation 'in') to match the directed visual attention from the mug to the grass. Tokens and their corresponding objects are softly identified using the cross-modal attention. We prove that this notion of soft relation alignment is equivalent to enforcing congruence between vision and language attention matrices under a 'change of basis' provided by the cross-modal attention matrix. Intuitively, our approach projects visual attention into the language attention space to calculate its divergence from the actual language attention, and vice versa. We apply our Cross-modal Attention Congruence Regularization (CACR) loss to UNITER and improve on the state-of-the-art approach to Winoground.
['Louis-Philippe Morency', 'Ruslan Salakhutdinov', 'Paul Pu Liang', 'Rulin Shao', 'Rohan Pandey']
2022-12-20
null
null
null
null
['visual-reasoning', 'visual-reasoning']
['computer-vision', 'reasoning']
[ 3.01649958e-01 6.56735152e-02 -1.48113519e-01 -2.40040585e-01 -4.26933169e-01 -6.80594146e-01 9.60448742e-01 1.47312716e-01 -4.27383661e-01 5.65136336e-02 4.69908178e-01 -2.78117776e-01 -7.76864141e-02 -5.75215816e-01 -1.10055709e+00 -5.03726423e-01 2.94419557e-01 4.72168028e-01 1.58568099e-01 -5.50714135e-01 2.04946488e-01 2.58893162e-01 -1.61920130e+00 7.35917449e-01 5.44729590e-01 7.67980576e-01 5.89326859e-01 7.38367260e-01 -2.59936988e-01 9.34747815e-01 -2.37394080e-01 -4.33598906e-01 1.89410031e-01 -4.40370619e-01 -1.23589754e+00 2.19623819e-01 1.16580462e+00 6.47349982e-03 -3.57256949e-01 1.45004463e+00 1.21815249e-01 1.39642373e-01 6.70751035e-01 -1.39330387e+00 -1.47986555e+00 6.62165523e-01 -9.43967402e-01 1.80913195e-01 4.11229283e-01 8.29999223e-02 1.73217237e+00 -1.07622993e+00 7.57882357e-01 1.60850310e+00 4.91974115e-01 4.89331901e-01 -1.48477101e+00 -1.68341011e-01 6.15025222e-01 4.23309684e-01 -1.28121531e+00 -2.22246468e-01 6.21791303e-01 -7.43447304e-01 1.13147306e+00 4.78792101e-01 6.74748242e-01 9.60181653e-01 9.06213894e-02 7.29610026e-01 9.64666963e-01 -6.68304563e-01 -1.57862589e-01 2.59175757e-03 3.75381887e-01 8.05225432e-01 -1.23979390e-01 -5.24971001e-02 -8.11874032e-01 2.83174545e-01 6.45655215e-01 -1.92868367e-01 -3.45135272e-01 -4.78734255e-01 -1.41390824e+00 7.76937485e-01 8.30973327e-01 3.44067216e-01 -2.21057385e-01 4.78640705e-01 1.67556003e-01 -1.40390862e-02 2.26897672e-01 4.08951461e-01 -3.96242812e-02 4.34958518e-01 -5.46914399e-01 2.03249320e-01 3.11330169e-01 1.08203101e+00 9.21738267e-01 -3.47298205e-01 -2.97941417e-01 7.51832128e-01 6.44235134e-01 4.24264252e-01 3.41711164e-01 -9.18426633e-01 5.86321056e-01 6.92631304e-01 -1.86090872e-01 -1.18379116e+00 -4.31707978e-01 -2.52945185e-01 -7.50007987e-01 1.63892850e-01 4.90198702e-01 3.03807974e-01 -9.31338131e-01 2.02830696e+00 -5.32310866e-02 1.21342622e-01 1.08826399e-01 1.11643040e+00 9.30360973e-01 6.88136816e-01 1.78884745e-01 2.57763714e-01 1.85867667e+00 -9.37141895e-01 -5.26615560e-01 -5.42073965e-01 4.02272791e-01 -8.42487514e-01 1.56894135e+00 -1.65572479e-01 -1.07800865e+00 -6.21455073e-01 -9.01586711e-01 -6.17224038e-01 -4.32583570e-01 5.06970547e-02 5.32725990e-01 5.03428318e-02 -1.22800827e+00 1.11394539e-01 -6.17566526e-01 -8.06487441e-01 2.66566455e-01 7.32854679e-02 -6.83740258e-01 7.41757900e-02 -1.07601106e+00 1.26364541e+00 2.35443413e-01 2.85714716e-01 -7.89930403e-01 -6.57605827e-01 -1.11045098e+00 -5.12530766e-02 3.64342153e-01 -1.02970552e+00 1.13783658e+00 -1.28090167e+00 -9.48600292e-01 1.50801218e+00 -3.00734371e-01 -3.90926480e-01 2.56867051e-01 -3.59793514e-01 -1.56397671e-02 4.21625227e-02 3.91362339e-01 1.04772532e+00 7.81078637e-01 -1.71226501e+00 -6.98218107e-01 -5.45366943e-01 6.17568374e-01 4.57764983e-01 -9.32189524e-02 1.64219871e-01 -6.66231096e-01 -5.88761449e-01 4.90850896e-01 -9.96074855e-01 8.33483487e-02 2.40988374e-01 -7.08944917e-01 -2.95166343e-01 8.11749876e-01 -5.23410380e-01 1.01464176e+00 -2.03726697e+00 5.49426377e-01 6.36565760e-02 2.94719994e-01 -1.25030413e-01 -3.72443289e-01 3.51476252e-01 -4.74376410e-01 1.11964410e-02 -3.22661936e-01 -4.65547889e-01 1.26111493e-01 4.71038222e-01 -5.09515524e-01 5.41993976e-01 3.56995225e-01 1.09555221e+00 -1.11919773e+00 -3.13117713e-01 8.09634253e-02 5.23078918e-01 -6.60141766e-01 4.17846143e-02 -3.07419538e-01 2.41891682e-01 8.93968642e-02 4.92949665e-01 3.48532349e-01 -4.13370669e-01 1.06533570e-02 -6.85624599e-01 -1.80165917e-01 3.21227044e-01 -9.74005699e-01 1.77381063e+00 -4.50700313e-01 8.91414702e-01 -4.72847670e-02 -1.00310576e+00 6.16366506e-01 -8.82996991e-02 1.70184359e-01 -6.84542716e-01 -6.66615292e-02 -2.81872720e-01 2.45254979e-01 -7.20590234e-01 5.32229602e-01 -1.81336790e-01 4.67800647e-02 2.76131898e-01 6.66581914e-02 -1.39918804e-01 1.25964014e-02 4.59566861e-01 4.06611413e-01 4.07142341e-01 1.86951950e-01 -4.16400522e-01 5.81073880e-01 4.70336042e-02 3.00973058e-02 7.00367272e-01 -6.50806203e-02 5.51281929e-01 6.00308836e-01 -2.18162388e-01 -9.40353572e-01 -1.25695288e+00 8.03985521e-02 1.65798235e+00 3.17338556e-01 -5.78409612e-01 -6.62029505e-01 -3.62544477e-01 -2.81422734e-02 7.10802615e-01 -1.02497232e+00 -1.47745490e-01 -4.06884134e-01 -4.76676047e-01 5.11032343e-01 7.60921776e-01 4.80861694e-01 -8.70023727e-01 -7.03979969e-01 -1.60866216e-01 -3.46182257e-01 -1.17495155e+00 -6.56838536e-01 1.44919381e-01 -1.17731124e-01 -8.67974877e-01 -6.62144601e-01 -1.12215972e+00 7.65702188e-01 3.44453961e-01 1.37170315e+00 3.20166443e-03 -1.55484915e-01 7.76214957e-01 -1.14144251e-01 -3.83780271e-01 -2.66667247e-01 -2.58894712e-01 -5.82177304e-02 3.17776084e-01 2.50333309e-01 -2.31651098e-01 -4.31548774e-01 1.52151629e-01 -9.01853323e-01 4.18110937e-01 2.15216741e-01 9.38921630e-01 6.30980194e-01 -4.07838017e-01 3.84379551e-02 -4.91674304e-01 4.71927643e-01 -2.17573866e-01 -5.05971014e-01 5.21104634e-01 -9.88194942e-02 2.48336613e-01 1.89335868e-01 -4.50130403e-01 -6.38063014e-01 8.20609033e-02 1.89857155e-01 -4.96195644e-01 4.23218012e-02 5.99825203e-01 -2.58494914e-01 1.16743729e-01 5.92183173e-01 1.03556246e-01 -6.82084356e-04 -9.93245915e-02 1.00344646e+00 2.76350558e-01 9.78382647e-01 -6.95276678e-01 5.84209204e-01 7.71422029e-01 1.59153432e-01 -9.15987313e-01 -1.06468618e+00 -4.46116865e-01 -7.61784613e-01 -1.54026583e-01 1.31180513e+00 -7.40294695e-01 -9.62741911e-01 2.24967480e-01 -1.54289746e+00 -2.36678109e-01 -1.13951087e-01 3.40601981e-01 -5.61586380e-01 4.97589469e-01 -3.52897167e-01 -5.95518529e-01 7.01080337e-02 -1.15117633e+00 1.24389958e+00 -2.73035076e-02 -3.52240801e-01 -1.09105182e+00 2.92158313e-02 3.24036866e-01 6.97794035e-02 -5.53209260e-02 1.22064281e+00 -2.30348468e-01 -5.14453351e-01 2.87671119e-01 -7.15844631e-01 2.50993282e-01 4.11821455e-02 1.88071132e-01 -9.76256311e-01 7.86674861e-03 -1.77310556e-01 -7.50173330e-02 1.04496253e+00 2.89542228e-01 7.54358590e-01 -3.01584482e-01 -1.91969335e-01 4.85416263e-01 1.31480014e+00 -1.88428760e-01 5.13494313e-01 3.50624859e-01 1.26709223e+00 9.89503622e-01 3.21769387e-01 -8.29654932e-02 7.73464739e-01 1.00152671e+00 7.06964374e-01 -1.72884062e-01 -3.98642838e-01 -2.91891128e-01 4.27335471e-01 4.35926527e-01 -1.67938337e-01 -9.83318239e-02 -1.19706059e+00 5.80816627e-01 -2.09569430e+00 -1.01069951e+00 -2.48385996e-01 2.00452614e+00 7.22451687e-01 -1.51290566e-01 -6.56909719e-02 -2.95409650e-01 6.18083894e-01 1.30069107e-01 -1.48730278e-01 -3.65665078e-01 -4.29401755e-01 -9.18163732e-02 2.95343548e-01 1.06057131e+00 -1.14753020e+00 1.27028811e+00 5.87257910e+00 4.26582873e-01 -1.24557102e+00 -6.54113106e-03 2.99254507e-01 1.19168356e-01 -5.06019592e-01 1.67150006e-01 -7.20687449e-01 1.10951133e-01 2.28221536e-01 7.81319439e-02 5.11101484e-01 4.19034094e-01 -2.41291104e-03 -7.82227442e-02 -1.57687771e+00 1.10889137e+00 5.73640108e-01 -1.31978381e+00 4.45703477e-01 -1.24366470e-01 5.34522355e-01 -1.05052106e-01 2.92522162e-01 3.39650512e-02 2.95605063e-01 -1.19178653e+00 1.11136734e+00 6.81602478e-01 6.16033494e-01 -3.15558612e-01 2.89309144e-01 1.02876894e-01 -1.40430200e+00 1.05639197e-01 -2.18440533e-01 -1.11001968e-01 1.29930750e-01 -3.72024812e-02 -6.73110247e-01 4.38723564e-01 7.92386711e-01 7.66688406e-01 -6.79122210e-01 4.62962270e-01 -2.73893893e-01 -5.91530763e-02 -1.29004195e-01 2.08865270e-01 6.05584621e-01 -3.26298654e-01 7.16215134e-01 1.20725632e+00 2.38432754e-02 -2.21272007e-01 1.12756155e-01 1.18775892e+00 1.22251846e-01 -2.71558613e-02 -8.10178459e-01 2.58874327e-01 2.06250958e-02 9.46993053e-01 -4.60644066e-01 -4.13655072e-01 -5.63280523e-01 1.08373940e+00 4.92602468e-01 5.26386976e-01 -9.01854336e-01 1.50623471e-01 7.35119879e-01 1.02917425e-01 2.09007263e-01 -2.34828830e-01 -3.54253143e-01 -9.58222687e-01 5.88617250e-02 -7.62085974e-01 3.52100343e-01 -1.29778278e+00 -1.52166927e+00 6.60794854e-01 4.38371338e-02 -9.76696789e-01 9.30827558e-02 -8.84517729e-01 -4.14143771e-01 1.06603324e+00 -1.14881539e+00 -1.72211444e+00 -3.12194407e-01 8.22587013e-01 3.96224558e-01 6.92362115e-02 7.23703802e-01 1.49319321e-01 -2.70983666e-01 5.95845163e-01 -6.72141969e-01 1.99213937e-01 5.18780529e-01 -1.36904824e+00 2.46801168e-01 9.86324251e-01 6.65519178e-01 8.57042789e-01 7.22458303e-01 -3.73339653e-01 -1.34113514e+00 -9.94851947e-01 1.07995796e+00 -8.19850743e-01 1.12092793e+00 -4.74206090e-01 -9.56723273e-01 1.06108570e+00 4.73228842e-01 -2.34592035e-02 3.61635000e-01 2.05143079e-01 -1.05425370e+00 3.23966183e-02 -4.79357004e-01 1.03964496e+00 1.11997473e+00 -1.18812513e+00 -9.12262797e-01 3.65261227e-01 6.63751543e-01 -4.96806443e-01 -3.56402487e-01 3.13206673e-01 5.76372623e-01 -8.25057983e-01 1.19635856e+00 -1.09448528e+00 6.63085520e-01 -6.46180570e-01 -5.55197477e-01 -1.17274857e+00 -4.19631004e-01 -3.73614609e-01 3.18545878e-01 1.10827529e+00 3.99817705e-01 -2.82509118e-01 3.60659450e-01 4.23375517e-01 -1.79285720e-01 -5.81635833e-01 -1.02982712e+00 -5.22130251e-01 1.13789633e-01 -6.10204518e-01 5.52199557e-02 1.04440033e+00 8.31186995e-02 7.95727193e-01 -3.64388227e-01 5.12494564e-01 3.31896096e-01 5.27933463e-02 5.34713864e-01 -8.29298198e-01 -4.54924732e-01 -9.39747393e-01 -5.95526934e-01 -1.23788440e+00 3.81616056e-01 -1.20764351e+00 1.81516841e-01 -1.87034917e+00 3.41279119e-01 -8.70219693e-02 -1.17078543e-01 7.29060471e-01 -2.31994301e-01 3.34090441e-01 5.43201506e-01 1.22182086e-01 -5.56476891e-01 2.93116868e-01 1.28371084e+00 -5.66832304e-01 1.99128315e-02 -4.22244668e-01 -8.53408813e-01 9.80457962e-01 2.86976427e-01 -6.65552616e-02 -4.10193980e-01 -8.62028599e-01 6.20169461e-01 -3.22416037e-01 9.94862497e-01 -5.14110863e-01 4.28032219e-01 -1.82544112e-01 -3.19608264e-02 -3.89648438e-01 4.45052147e-01 -8.64191949e-01 -6.62019253e-02 2.47295931e-01 -6.88680112e-01 4.07890677e-01 2.52185047e-01 4.45743829e-01 -1.45146966e-01 5.98056130e-02 6.60382688e-01 -1.26596376e-01 -9.16074455e-01 7.02763125e-02 -1.83375061e-01 1.49097785e-01 7.93427944e-01 -1.15198679e-01 -5.87213576e-01 -3.37937415e-01 -9.20556784e-01 2.82658339e-01 3.80812228e-01 5.87336361e-01 5.69651902e-01 -1.36018121e+00 -7.95703828e-01 5.93879148e-02 5.74147522e-01 7.78995827e-03 1.73765793e-01 1.03605366e+00 -3.70344609e-01 2.82791853e-01 -2.56289124e-01 -1.02078128e+00 -1.42454529e+00 7.11906433e-01 6.27405822e-01 1.50946930e-01 -6.76483750e-01 1.17249775e+00 8.76423299e-01 -2.22435176e-01 3.58964354e-01 -7.12794006e-01 -2.43325695e-01 1.62155524e-01 4.52320278e-01 -1.43674344e-01 -1.78916261e-01 -1.22616792e+00 -6.06742203e-01 1.08049285e+00 1.01821445e-01 -2.93874651e-01 7.43379116e-01 -2.41172999e-01 -5.83896577e-01 7.00297236e-01 1.04605150e+00 3.39638405e-02 -1.16582835e+00 -3.30981165e-01 1.26061486e-02 -2.87152320e-01 -1.97166622e-01 -6.60253882e-01 -9.19557452e-01 1.02119720e+00 4.97574806e-01 2.80839503e-01 8.36681485e-01 6.57479346e-01 9.75371972e-02 3.48239452e-01 -1.17383741e-01 -7.84961045e-01 1.96068719e-01 8.53555679e-01 1.39698958e+00 -1.24363816e+00 -2.07694530e-01 -4.44600105e-01 -9.16540146e-01 8.70867252e-01 6.18336618e-01 -7.33910948e-02 5.94475091e-01 6.03583753e-02 2.96410680e-01 -4.64869916e-01 -6.03739083e-01 -6.09930515e-01 8.13832462e-01 7.37651348e-01 5.28052568e-01 1.75104752e-01 1.82447612e-01 2.62663662e-01 -2.84607589e-01 -6.59563124e-01 2.22231328e-01 4.87702459e-01 -3.13002944e-01 -7.51762033e-01 -4.99674290e-01 -6.85162172e-02 -9.73610207e-02 -5.55205464e-01 -6.15690351e-01 7.94688284e-01 4.94235456e-01 7.33120739e-01 4.22794759e-01 -4.48472723e-02 4.54084724e-01 -1.28989413e-01 7.60884583e-01 -7.26711214e-01 -3.81943107e-01 1.62294045e-01 -7.68092200e-02 -5.64102232e-01 -8.44951689e-01 -3.37971061e-01 -1.27734876e+00 -2.37266291e-02 5.54151013e-02 -4.03984010e-01 3.63080621e-01 1.04830229e+00 9.93163064e-02 5.73096931e-01 1.04492996e-02 -7.64885962e-01 -1.97227091e-01 -6.83740616e-01 -2.82081425e-01 8.77640307e-01 4.38272178e-01 -7.96089172e-01 -2.15155661e-01 3.67687523e-01]
[10.593247413635254, 1.6743592023849487]
75e312ff-0f8a-4d23-b3ba-6f35777142ed
inductive-relation-prediction-from-relational
2304.00215
null
https://arxiv.org/abs/2304.00215v3
https://arxiv.org/pdf/2304.00215v3.pdf
Inductive Relation Prediction from Relational Paths and Context with Hierarchical Transformers
Relation prediction on knowledge graphs (KGs) is a key research topic. Dominant embedding-based methods mainly focus on the transductive setting and lack the inductive ability to generalize to new entities for inference. Existing methods for inductive reasoning mostly mine the connections between entities, i.e., relational paths, without considering the nature of head and tail entities contained in the relational context. This paper proposes a novel method that captures both connections between entities and the intrinsic nature of entities, by simultaneously aggregating RElational Paths and cOntext with a unified hieRarchical Transformer framework, namely REPORT. REPORT relies solely on relation semantics and can naturally generalize to the fully-inductive setting, where KGs for training and inference have no common entities. In the experiments, REPORT performs consistently better than all baselines on almost all the eight version subsets of two fully-inductive datasets. Moreover. REPORT is interpretable by providing each element's contribution to the prediction results.
['Zhendong Mao', 'Quan Wang', 'Jiaang Li']
2023-04-01
null
null
null
null
['inductive-relation-prediction']
['graphs']
[-8.78400952e-02 8.57980192e-01 -8.07507515e-01 -4.30307478e-01 -8.14540163e-02 -6.62557423e-01 7.29220569e-01 6.24291897e-01 1.47019401e-02 8.10377479e-01 6.24632955e-01 -4.65364426e-01 -4.46864247e-01 -1.52659464e+00 -9.01602030e-01 -2.07832336e-01 -3.20772529e-01 8.00679445e-01 3.59730601e-01 -2.96310216e-01 -4.58969563e-01 6.90659210e-02 -1.17538702e+00 2.90830940e-01 7.13055849e-01 7.85768449e-01 -4.40714300e-01 2.16876552e-01 -2.57311702e-01 1.35905552e+00 -1.49015686e-03 -1.21311271e+00 -1.34238750e-01 -7.24557638e-02 -1.28419089e+00 -4.82141167e-01 1.82857782e-01 -1.69134676e-01 -6.08772039e-01 6.58089638e-01 5.93678802e-02 7.14632124e-02 7.61528313e-01 -1.37114871e+00 -8.95582080e-01 1.49233246e+00 -1.76818684e-01 2.09722713e-01 5.84060013e-01 -5.51418066e-01 1.95356035e+00 -1.05982816e+00 9.80547667e-01 1.21526659e+00 9.40903962e-01 1.30292401e-01 -1.61784160e+00 -3.60333562e-01 3.21374387e-01 5.39719820e-01 -1.36208808e+00 -1.71087131e-01 7.45253921e-01 -3.77121866e-01 1.16521871e+00 2.90875643e-01 5.35279274e-01 1.07013309e+00 -2.85741448e-01 7.20179915e-01 7.54759789e-01 -5.02966762e-01 -9.62605625e-02 4.72939789e-01 6.07478261e-01 6.48055792e-01 7.95661628e-01 -4.63762730e-02 -6.40031636e-01 -1.25107408e-01 4.49339509e-01 -1.50558576e-01 -1.59912154e-01 -5.90109110e-01 -1.23526299e+00 9.00782466e-01 6.15633845e-01 2.09586084e-01 -2.46229157e-01 1.04789652e-01 4.21145707e-01 2.47395173e-01 5.66598892e-01 4.62391287e-01 -8.10455799e-01 3.24673325e-01 -2.87442565e-01 3.11426789e-01 1.19578505e+00 1.39552057e+00 9.62343752e-01 -4.71447706e-01 -2.12458611e-01 4.76704061e-01 4.23205078e-01 9.94144455e-02 -9.15457588e-03 -6.97797477e-01 7.21152902e-01 1.02112222e+00 -1.06573440e-01 -1.23722708e+00 -2.98840791e-01 -5.61128438e-01 -5.47870517e-01 -6.59438789e-01 1.27037361e-01 -1.06330961e-01 -4.39439982e-01 1.94269979e+00 7.29970515e-01 2.36607552e-01 4.96104360e-01 3.19397867e-01 1.36456156e+00 3.43546689e-01 3.38605940e-01 -6.20498769e-02 1.46016085e+00 -9.67155397e-01 -6.99761391e-01 -2.14895159e-01 1.11666310e+00 -1.01661548e-01 7.88872957e-01 -2.20706478e-01 -7.69223452e-01 -2.46222958e-01 -8.70466590e-01 -4.14422750e-01 -8.48800957e-01 -5.28571121e-02 1.13695014e+00 2.69688368e-01 -8.88971508e-01 4.80338693e-01 -6.20235860e-01 -3.46960574e-01 2.47402862e-01 3.08396906e-01 -6.50298178e-01 -8.33633766e-02 -1.94057870e+00 1.03217709e+00 9.93045270e-01 3.84165421e-02 -2.66172081e-01 -9.50853705e-01 -1.20337403e+00 2.13932499e-01 8.15906525e-01 -1.11401927e+00 8.78209710e-01 -3.98396730e-01 -9.03739393e-01 7.71378815e-01 -2.85248905e-01 -6.27977431e-01 7.39601478e-02 -2.97915727e-01 -4.60392743e-01 -6.11680672e-02 2.10066274e-01 3.56878936e-01 1.09083921e-01 -1.39799750e+00 -6.29769385e-01 -4.03269142e-01 7.06824780e-01 2.53501803e-01 -4.54892665e-01 -3.85881364e-01 -4.14104283e-01 -5.33718348e-01 5.31819537e-02 -7.89416730e-01 7.75567070e-02 -4.81047958e-01 -1.03799212e+00 -7.11549819e-01 6.63498998e-01 -4.02275622e-01 1.56424820e+00 -1.68601620e+00 3.55211794e-01 2.74099380e-01 4.47293133e-01 -9.50055867e-02 3.50062311e-01 7.17796147e-01 -3.72445494e-01 1.50762588e-01 1.45964086e-01 -2.00207591e-01 2.97389448e-01 5.61328471e-01 -6.49962783e-01 -1.43774331e-01 3.58640283e-01 1.45805514e+00 -1.12769294e+00 -7.56532490e-01 -8.53698626e-02 1.79201424e-01 -6.86049819e-01 2.63096988e-02 -3.26144367e-01 1.44160269e-02 -5.02109468e-01 6.56555653e-01 1.78749740e-01 -5.96786439e-01 7.19164371e-01 -6.39751911e-01 3.94377351e-01 8.50278318e-01 -1.16920984e+00 1.30271721e+00 -5.13113856e-01 4.13310051e-01 -5.00706553e-01 -1.07585537e+00 7.11200714e-01 3.34142923e-01 2.78091997e-01 -9.46498439e-02 -3.34879607e-01 -9.59904119e-02 -8.56368020e-02 -4.10316229e-01 5.54203451e-01 -3.51833820e-01 -9.33321565e-02 4.19545621e-01 4.08523440e-01 3.24439913e-01 2.80190200e-01 7.96217322e-01 1.11613727e+00 3.41660023e-01 5.36307216e-01 -1.90669343e-01 3.55934590e-01 -1.64438337e-02 6.70216918e-01 5.71228683e-01 4.32328910e-01 -2.04086751e-01 8.11595976e-01 -3.64491314e-01 -6.88664913e-01 -1.34034717e+00 -3.10695350e-01 1.20586514e+00 3.23959053e-01 -1.03852296e+00 -1.24848455e-01 -1.03580117e+00 3.50593030e-01 1.04290092e+00 -1.01097035e+00 -3.71711820e-01 -2.30801627e-01 -6.21720314e-01 5.59975922e-01 9.10812199e-01 1.93364143e-01 -8.69719625e-01 1.75994039e-01 2.36568838e-01 -4.38864201e-01 -1.44627345e+00 2.36135080e-01 2.87883729e-01 -9.22092795e-01 -1.17400599e+00 3.25776726e-01 -6.73237205e-01 4.49001819e-01 -2.89473414e-01 1.66504300e+00 -5.82367480e-02 1.37696654e-01 3.73995662e-01 -3.97247404e-01 -3.05210978e-01 -9.94230881e-02 4.54326779e-01 1.54434396e-02 -1.07288517e-01 7.11002231e-01 -8.65460098e-01 -1.76668912e-01 4.87502441e-02 -5.86840510e-01 3.07164729e-01 4.33921933e-01 8.12954366e-01 4.88731712e-01 3.58989894e-01 7.07903504e-01 -1.62195170e+00 3.71108472e-01 -9.67641413e-01 -1.31937182e-02 6.25126898e-01 -9.12716568e-01 4.22007978e-01 5.00998259e-01 -1.28212199e-01 -1.29498780e+00 -3.57068151e-01 2.32368141e-01 -4.21812274e-02 4.75745872e-02 1.02433991e+00 -3.96025628e-01 3.78594577e-01 5.96590757e-01 -7.50793368e-02 -6.57540143e-01 -3.58116001e-01 8.46009791e-01 1.48020998e-01 3.78807932e-01 -1.00269771e+00 1.01339829e+00 4.22380894e-01 3.06023777e-01 -3.38361979e-01 -1.28663623e+00 -3.77442151e-01 -8.26966405e-01 1.74231991e-01 6.12186551e-01 -1.01239586e+00 -7.55662560e-01 -2.14622840e-01 -1.12675488e+00 -3.94662507e-02 -6.04988694e-01 6.06315970e-01 -1.51951149e-01 2.03731433e-01 -8.70716453e-01 -5.87248147e-01 -2.25054845e-01 -5.28063059e-01 8.23468387e-01 -6.95832521e-02 -4.11045879e-01 -1.66041577e+00 1.59956217e-01 3.79864931e-01 -3.20678949e-02 2.95008570e-01 1.32128012e+00 -9.33931470e-01 -6.68127894e-01 -1.97053596e-01 -3.64436239e-01 -8.27701092e-02 2.48650208e-01 -4.69780974e-02 -9.08134401e-01 2.66104758e-01 -6.44934416e-01 -4.57646817e-01 1.08017290e+00 -1.84226707e-01 8.06408465e-01 -6.38548851e-01 -8.37998688e-01 3.42221826e-01 1.33994544e+00 -2.81179130e-01 5.78552067e-01 1.83834091e-01 1.12796521e+00 8.76790404e-01 5.17347634e-01 1.17603548e-01 1.25853682e+00 7.00614572e-01 2.61856943e-01 9.61573496e-02 8.10004473e-02 -8.94435644e-01 1.27550304e-01 8.67202520e-01 -5.07258356e-01 -1.40337348e-01 -8.76043320e-01 7.21138775e-01 -1.94243050e+00 -1.05696702e+00 -3.02773029e-01 1.88135076e+00 1.54614437e+00 2.04183564e-01 -1.35420367e-01 1.08512662e-01 6.13010287e-01 -2.52066161e-02 -2.65152723e-01 -2.32613951e-01 -2.64036626e-01 2.81638354e-01 3.47908050e-01 6.37516201e-01 -1.13333273e+00 1.04210329e+00 6.27457333e+00 5.95297754e-01 -3.18241119e-01 5.78746498e-02 1.79338574e-01 2.44106129e-01 -8.83133829e-01 5.11684120e-01 -1.14873242e+00 8.74587893e-02 8.47145259e-01 -2.86663681e-01 7.80812874e-02 8.68948042e-01 -6.29555762e-01 9.43194777e-02 -1.65487719e+00 3.96260232e-01 -2.21029401e-01 -1.38908863e+00 2.46351272e-01 -9.91545431e-03 7.25284517e-01 -2.51212418e-01 -2.60315508e-01 6.88545763e-01 8.58020782e-01 -1.00902069e+00 4.89763886e-01 7.06362307e-01 6.55342638e-01 -5.32306790e-01 9.35044229e-01 4.80086319e-02 -1.48988223e+00 3.22497636e-02 -1.39723897e-01 -1.16914220e-01 3.55445072e-02 7.52869785e-01 -9.23509836e-01 1.16606104e+00 5.76038599e-01 1.14878392e+00 -6.69718802e-01 2.61550128e-01 -7.73471117e-01 8.04787397e-01 -3.39819551e-01 1.50468737e-01 -9.37726945e-02 -1.45760342e-01 4.83468652e-01 1.40725935e+00 -1.51955232e-01 1.45974204e-01 1.55905467e-02 9.77839112e-01 -4.25566524e-01 1.50992088e-02 -8.86000514e-01 -9.43559557e-02 7.23712444e-01 1.21248066e+00 -3.70756924e-01 -5.24300754e-01 -6.87200844e-01 4.38591540e-01 8.08179736e-01 4.49573368e-01 -7.33332694e-01 -3.56803924e-01 4.12441164e-01 6.53372929e-02 5.84020436e-01 1.22816697e-01 -3.42083275e-01 -1.40174091e+00 2.78950125e-01 -2.05512226e-01 8.66620243e-01 -6.08010530e-01 -1.49828386e+00 2.49788299e-01 4.21107560e-01 -7.23483980e-01 -3.50460649e-01 -4.30735797e-01 -4.80160832e-01 6.89280152e-01 -1.66208982e+00 -1.65233982e+00 -3.75069156e-02 6.34557605e-01 -1.76007792e-01 2.46005312e-01 1.05791795e+00 2.94231713e-01 -5.22731602e-01 7.07873166e-01 -3.06079865e-01 4.17094588e-01 5.09839416e-01 -1.57486761e+00 1.92846313e-01 6.67126834e-01 5.68659425e-01 1.08559275e+00 5.72710991e-01 -6.67296112e-01 -1.31924844e+00 -1.24883425e+00 1.56749678e+00 -9.49829340e-01 1.03265083e+00 -4.32801276e-01 -1.01322913e+00 1.52100062e+00 8.61625595e-04 2.74974644e-01 1.01568019e+00 1.17407882e+00 -9.03928399e-01 -2.27979645e-01 -7.85856009e-01 5.79511166e-01 1.48476636e+00 -8.55590641e-01 -1.04538286e+00 2.11933896e-01 1.11009204e+00 -2.34926954e-01 -1.45825195e+00 6.99028492e-01 4.53407258e-01 -6.03280723e-01 1.20603800e+00 -1.15073991e+00 7.61934340e-01 -3.14951390e-01 -1.93299159e-01 -1.07224917e+00 -5.75603783e-01 -1.33257672e-01 -9.89271700e-01 1.59745002e+00 9.28980708e-01 -6.56569839e-01 6.51970685e-01 6.01522982e-01 1.44902915e-01 -1.01487494e+00 -5.41682363e-01 -6.65658236e-01 -1.51237726e-01 -4.60853696e-01 7.11355448e-01 1.40414858e+00 5.39174914e-01 1.04626477e+00 -1.31252810e-01 3.36490989e-01 6.59105539e-01 6.38511062e-01 6.06567800e-01 -1.52464926e+00 -4.73915458e-01 3.25626545e-02 -6.85370564e-01 -7.24593520e-01 5.53326368e-01 -1.34383500e+00 -4.67123747e-01 -1.85423708e+00 3.32248062e-01 -7.75876403e-01 -3.73029500e-01 7.71492600e-01 -4.65141654e-01 5.01643792e-02 -2.57336795e-01 8.52972269e-02 -6.91077173e-01 6.39455318e-01 9.27210987e-01 -1.71527863e-01 -4.05415632e-02 -1.09397449e-01 -1.03217268e+00 6.55987561e-01 5.25756538e-01 -4.12137657e-01 -8.37115586e-01 -2.41064578e-01 9.42024767e-01 -1.52595460e-01 5.03132522e-01 -3.18343699e-01 3.56972426e-01 -1.25417128e-01 1.16241589e-01 -2.82861829e-01 2.45696649e-01 -8.67840052e-01 4.00014997e-01 -4.95182164e-02 -5.53257227e-01 -2.98202962e-01 4.75875475e-02 8.93101156e-01 -3.85844350e-01 3.89282196e-03 -3.63071933e-02 1.53002322e-01 -7.90842175e-01 2.76241362e-01 3.65974724e-01 4.85544860e-01 9.60608959e-01 -8.55212733e-02 -3.66194338e-01 -1.73992440e-01 -1.12450302e+00 2.55621284e-01 7.68795088e-02 3.28112543e-01 3.54095131e-01 -1.71444559e+00 -6.13395393e-01 -1.78748921e-01 5.16325831e-01 3.59202087e-01 -9.06824246e-02 9.66796398e-01 5.15039936e-02 5.77066243e-01 3.57114017e-01 -1.46641597e-01 -1.06072962e+00 7.73775995e-01 1.57792836e-01 -7.83737838e-01 -6.93182230e-01 8.89535248e-01 3.70456994e-01 -6.37279093e-01 6.22765440e-03 -4.64553416e-01 -4.66233760e-01 3.20017248e-01 1.06094666e-01 2.33813897e-01 2.35206280e-02 -5.97732544e-01 -4.54318851e-01 1.37045801e-01 -1.71518832e-01 2.05106363e-01 1.34077466e+00 -1.41671777e-01 -4.28139150e-01 7.98158705e-01 9.97289300e-01 1.96329579e-01 -5.98042846e-01 -8.61066878e-01 4.42615539e-01 -1.07140832e-01 -1.08422935e-01 -7.57515907e-01 -9.27697957e-01 4.87187594e-01 -5.80188394e-01 2.62969643e-01 6.50152862e-01 5.69399238e-01 5.00492990e-01 6.36952996e-01 4.59592551e-01 -7.18810618e-01 -4.01396245e-01 4.93222654e-01 6.33922160e-01 -1.09797204e+00 1.78677276e-01 -1.03342402e+00 -6.09226465e-01 9.85984027e-01 6.32609427e-01 2.41767898e-01 8.67877960e-01 2.55691826e-01 -5.97756684e-01 -4.99736071e-01 -1.10408831e+00 -3.24429840e-01 4.45634484e-01 7.20584154e-01 6.16726398e-01 3.58047485e-01 -6.26906902e-02 1.04332876e+00 -3.10404450e-01 -5.27669154e-02 1.40847892e-01 7.78786898e-01 3.44544463e-02 -1.16466975e+00 2.79944032e-01 6.90796733e-01 -3.12243789e-01 -5.04613161e-01 -5.60404718e-01 8.92503798e-01 3.21888387e-01 6.91460431e-01 -1.74184263e-01 -5.75618565e-01 3.83709431e-01 2.83545375e-01 5.02686262e-01 -8.12779725e-01 -2.29300022e-01 -8.27732742e-01 6.50773704e-01 -3.43756557e-01 -6.20219648e-01 -5.75052500e-01 -1.25024021e+00 -5.04676282e-01 -7.48667419e-01 3.83461922e-01 -4.80387583e-02 1.06852579e+00 3.98537129e-01 5.80167234e-01 3.23955387e-01 1.04648143e-01 -1.42878637e-01 -9.25064266e-01 -7.79403269e-01 4.93695885e-01 -7.25162551e-02 -9.79959846e-01 -2.23220542e-01 2.05638945e-01]
[8.956839561462402, 7.9471659660339355]
613b151b-4fcd-4e3e-82e3-b8e2c445850f
policy-based-self-competition-for-planning
2306.04403
null
https://arxiv.org/abs/2306.04403v1
https://arxiv.org/pdf/2306.04403v1.pdf
Policy-Based Self-Competition for Planning Problems
AlphaZero-type algorithms may stop improving on single-player tasks in case the value network guiding the tree search is unable to approximate the outcome of an episode sufficiently well. One technique to address this problem is transforming the single-player task through self-competition. The main idea is to compute a scalar baseline from the agent's historical performances and to reshape an episode's reward into a binary output, indicating whether the baseline has been exceeded or not. However, this baseline only carries limited information for the agent about strategies how to improve. We leverage the idea of self-competition and directly incorporate a historical policy into the planning process instead of its scalar performance. Based on the recently introduced Gumbel AlphaZero (GAZ), we propose our algorithm GAZ 'Play-to-Plan' (GAZ PTP), in which the agent learns to find strong trajectories by planning against possible strategies of its past self. We show the effectiveness of our approach in two well-known combinatorial optimization problems, the Traveling Salesman Problem and the Job-Shop Scheduling Problem. With only half of the simulation budget for search, GAZ PTP consistently outperforms all selected single-player variants of GAZ.
['Dominik Gerhard Grimm', 'Jakob Burger', 'Quirin Göttl', 'Jonathan Pirnay']
2023-06-07
null
null
null
null
['combinatorial-optimization']
['methodology']
[ 9.69118178e-02 5.24286211e-01 -3.62569213e-01 -2.80586239e-02 -8.08431804e-01 -6.15090251e-01 5.37855685e-01 2.97095329e-01 -8.27324450e-01 1.11808014e+00 -1.01387925e-01 -3.88202459e-01 -5.67714751e-01 -7.45387197e-01 -7.05229402e-01 -8.56367946e-01 -3.41925621e-01 1.10751796e+00 5.26666045e-01 -3.86357635e-01 3.57428551e-01 1.55107185e-01 -1.19600904e+00 -4.46928106e-03 8.86532664e-01 7.58930981e-01 4.42791432e-01 8.77116501e-01 1.01594046e-01 7.92174339e-01 -7.29609907e-01 -1.09515630e-01 4.71175700e-01 -5.01136720e-01 -1.04983854e+00 2.16006085e-01 -6.69756949e-01 -1.89058617e-01 -2.28352159e-01 1.08260012e+00 1.62078038e-01 4.80832070e-01 3.64299268e-01 -1.59308088e+00 1.72068059e-01 1.14073110e+00 -6.56793654e-01 4.70740527e-01 1.64111018e-01 5.18884301e-01 9.19898331e-01 2.90007800e-01 8.63106072e-01 1.19138980e+00 2.48014227e-01 3.67804438e-01 -1.29474020e+00 -2.19489798e-01 4.88832235e-01 1.01106480e-01 -9.93474782e-01 -1.28655910e-01 5.34091890e-01 -1.33222029e-01 1.08788681e+00 8.27052146e-02 7.43998945e-01 6.47490561e-01 4.17213947e-01 8.77304971e-01 1.28748512e+00 -2.06934422e-01 6.20070815e-01 -4.52246107e-02 -3.57335269e-01 5.99550486e-01 -8.71177316e-02 5.85745871e-01 -4.65600908e-01 -3.08216929e-01 6.82633281e-01 -2.24788517e-01 1.00469189e-02 -4.55117971e-01 -1.21736848e+00 6.53328896e-01 3.25266272e-01 1.37745678e-01 -8.55323911e-01 4.37664688e-01 2.63008475e-01 6.56402707e-01 2.26039007e-01 9.60417151e-01 -3.43735963e-01 -5.85557461e-01 -7.86746621e-01 7.47511744e-01 7.64049828e-01 8.26423764e-01 5.91688216e-01 -7.03050494e-02 -4.85323370e-01 2.63393641e-01 -1.36929959e-01 3.53966467e-02 2.96024550e-02 -1.54550517e+00 6.25570953e-01 2.79059947e-01 7.79989302e-01 -4.98897284e-01 -6.37895286e-01 -6.97554171e-01 -6.00161292e-02 5.10948241e-01 7.42085755e-01 -4.93860632e-01 -8.87418270e-01 1.68794918e+00 3.51990312e-01 1.96921024e-02 9.76275504e-02 1.00887156e+00 -3.33310544e-01 7.05438733e-01 -1.67391792e-01 -6.45688057e-01 8.63075018e-01 -1.16429305e+00 -4.18914765e-01 -3.32497090e-01 7.21811533e-01 -2.41527542e-01 7.24411845e-01 5.11255085e-01 -1.69494498e+00 -9.47034135e-02 -7.61627376e-01 7.23077059e-01 6.96387365e-02 -5.29420078e-01 4.76753533e-01 3.13902467e-01 -1.04727721e+00 1.04811072e+00 -1.17924595e+00 -1.31333649e-01 2.94662327e-01 4.81314898e-01 4.29233909e-02 6.30351529e-02 -9.28429663e-01 9.98041511e-01 5.68210542e-01 -1.14464790e-01 -1.34043050e+00 -3.82261872e-01 -2.90032178e-01 2.32251614e-01 1.32439101e+00 -7.19199061e-01 1.77793014e+00 -7.42421985e-01 -1.55873311e+00 4.19047266e-01 1.16865180e-01 -9.25969124e-01 8.53335202e-01 2.16314688e-01 1.72695145e-01 3.85476798e-02 2.73939699e-01 5.79064012e-01 5.49446583e-01 -1.25209665e+00 -1.13094175e+00 -3.30853879e-01 5.12294352e-01 7.58460820e-01 1.83175668e-01 -1.08983509e-01 -3.91835272e-01 1.85833368e-02 -1.73269510e-01 -1.10773039e+00 -9.26485717e-01 -5.56833327e-01 -4.51612383e-01 -4.16057914e-01 1.59911253e-02 -9.95341595e-03 1.31052589e+00 -1.67827547e+00 2.93427646e-01 4.11409199e-01 5.37173450e-02 -1.48261830e-01 -2.72224396e-01 6.89891458e-01 5.28985202e-01 1.13009801e-03 -1.70651168e-01 -1.56095386e-01 1.01378381e-01 5.97843647e-01 -1.43082723e-01 4.53034729e-01 -8.52208510e-02 7.93293357e-01 -1.40319526e+00 -2.22759396e-01 -1.72270060e-01 -4.67082143e-01 -6.05970323e-01 1.28383383e-01 -7.78479695e-01 4.27033007e-01 -8.93283427e-01 2.35682368e-01 2.63493657e-01 -6.92194849e-02 3.10966045e-01 7.05147982e-01 -5.03841460e-01 3.88000578e-01 -9.93604064e-01 1.50155187e+00 -2.84676373e-01 1.08711526e-01 3.82140756e-01 -9.10783231e-01 6.35496259e-01 -3.59313451e-02 6.24016821e-01 -8.01620305e-01 1.31260142e-01 1.63981810e-01 2.03558654e-01 -2.95723587e-01 5.47690213e-01 -2.03003660e-01 -1.29763320e-01 6.71082497e-01 -3.87377828e-01 -2.54711270e-01 5.22268057e-01 2.60326296e-01 1.64077866e+00 3.09604615e-01 -1.75018199e-02 -2.46255532e-01 9.22389105e-02 7.00350046e-01 6.31758571e-01 1.30964112e+00 -3.37360352e-01 7.74114504e-02 1.24267292e+00 -1.51784047e-01 -1.04880619e+00 -9.59523618e-01 4.19791251e-01 1.15061128e+00 4.31202263e-01 -2.46737316e-01 -7.38602161e-01 -7.45803595e-01 4.35924195e-02 1.01408720e+00 -7.25946844e-01 1.45475278e-02 -6.59315467e-01 -4.58944917e-01 1.64997280e-01 3.14901620e-01 4.20315206e-01 -1.21939778e+00 -1.20510316e+00 5.81302345e-01 -4.27550152e-02 -6.60777688e-01 -6.80227160e-01 5.55449307e-01 -7.80905545e-01 -1.03639841e+00 -6.03943765e-01 -4.20690835e-01 6.34228170e-01 1.96707815e-01 9.42865014e-01 -1.43432140e-01 1.94022045e-01 2.16707274e-01 -1.21510327e-01 -2.73761332e-01 -5.15927315e-01 2.93485641e-01 3.05260681e-02 -5.35472810e-01 -1.07544556e-01 -4.13872957e-01 -6.28983915e-01 4.09444690e-01 -5.74517965e-01 6.60429448e-02 4.65331346e-01 9.61497903e-01 6.33658886e-01 7.67648458e-01 6.41472161e-01 -9.66304600e-01 1.14399469e+00 -5.37969947e-01 -1.03036606e+00 2.42830843e-01 -8.38866234e-01 3.85362417e-01 6.87428653e-01 -4.68321532e-01 -1.03526938e+00 3.43093872e-02 3.52197647e-01 -5.23478746e-01 1.77094221e-01 6.28987610e-01 2.47643948e-01 3.01673472e-01 5.19906878e-01 2.44361788e-01 1.49501354e-01 -2.24530697e-01 2.44716436e-01 4.33332883e-02 7.82407880e-01 -8.39395881e-01 6.08774900e-01 2.36764818e-01 5.78998774e-02 -1.62267104e-01 -5.91774523e-01 -4.79858249e-01 -4.53324988e-02 -3.60464633e-01 5.59027076e-01 -4.07115996e-01 -1.35833812e+00 1.70293912e-01 -9.36888576e-01 -9.04594660e-01 -5.86534500e-01 1.63161844e-01 -1.12104189e+00 -7.55618885e-02 -4.11515594e-01 -1.34226632e+00 2.25759551e-01 -1.09547114e+00 5.63808799e-01 4.06188846e-01 1.14919700e-01 -7.95781553e-01 1.86163709e-01 2.01554418e-01 3.51515025e-01 1.83702365e-01 7.36015558e-01 -5.83149195e-01 -7.73148239e-01 1.92966804e-01 2.06588149e-01 -2.40686879e-01 -2.35450193e-01 -3.34779292e-01 -3.43260944e-01 -3.97503316e-01 8.19325149e-02 -2.44255096e-01 7.03503370e-01 6.06685579e-01 7.98128664e-01 -6.50535226e-01 -6.12613976e-01 1.94788396e-01 1.21715069e+00 7.42165983e-01 4.38413262e-01 1.02573979e+00 -8.39405730e-02 6.43070281e-01 1.13297033e+00 6.72919393e-01 3.58695686e-01 7.82502770e-01 8.79849374e-01 3.12182784e-01 5.86588562e-01 -3.98017913e-01 4.43022192e-01 7.55527988e-02 -3.00786734e-01 -3.63464862e-01 -8.81696224e-01 6.08701706e-01 -2.16930747e+00 -1.11553907e+00 2.30505481e-01 2.39824724e+00 8.92385244e-01 9.17695999e-01 6.80406928e-01 -6.41212845e-03 4.26929712e-01 4.36623618e-02 -9.46662962e-01 -7.45677531e-01 2.44767651e-01 -9.08037350e-02 9.78604198e-01 6.23864889e-01 -6.96930289e-01 1.03738654e+00 6.18174696e+00 7.14175880e-01 -5.62604845e-01 9.48185474e-02 6.37586355e-01 -4.18658882e-01 -2.09478348e-01 1.70986772e-01 -6.06570005e-01 3.47761750e-01 1.07321000e+00 -7.27918386e-01 9.57107484e-01 8.51751149e-01 4.46336001e-01 -6.83876276e-01 -1.01267254e+00 2.90715337e-01 -5.45689702e-01 -1.38055062e+00 -6.43355727e-01 2.32888818e-01 8.25601935e-01 5.06031923e-02 8.04246515e-02 4.63408738e-01 1.01032293e+00 -8.57883573e-01 8.62130463e-01 3.02701205e-01 3.54675949e-01 -1.14023972e+00 5.96886873e-01 8.94319475e-01 -9.07756627e-01 -4.82879698e-01 -2.12821797e-01 -2.39612415e-01 4.77984130e-01 -2.38158256e-02 -1.33603358e+00 5.19811511e-01 3.50962728e-01 -2.37957649e-02 2.29621734e-02 1.17248952e+00 -1.28874645e-01 3.64037603e-01 -5.66882849e-01 -1.47395849e-01 9.29317534e-01 -3.31043363e-01 8.29305410e-01 7.14644134e-01 1.18063174e-01 2.30270639e-01 7.37889290e-01 9.34088290e-01 3.32162470e-01 -5.09828329e-01 -3.76582265e-01 -2.50611246e-01 5.32518208e-01 8.31852794e-01 -1.03095615e+00 -7.90531933e-02 1.42656282e-01 7.15858817e-01 1.76592708e-01 3.58397990e-01 -7.40876615e-01 -1.75536945e-01 5.76364756e-01 1.66897565e-01 1.99536607e-01 -2.57493764e-01 -3.17229509e-01 -4.67938900e-01 -1.21167459e-01 -7.85571754e-01 4.36170161e-01 -7.28342772e-01 -6.99128866e-01 6.85861886e-01 9.68240201e-02 -9.20290291e-01 -5.60286105e-01 -9.35867652e-02 -6.70368910e-01 6.60789073e-01 -1.44228494e+00 -4.05884236e-01 2.28062510e-01 3.74825329e-01 7.84114778e-01 -5.91202453e-02 2.47441202e-01 -4.54079032e-01 -5.49504519e-01 1.68931648e-01 1.49615005e-01 -5.68525493e-01 1.86195701e-01 -1.45368743e+00 3.96888018e-01 5.84089041e-01 -2.92541116e-01 1.26152828e-01 1.22051358e+00 -8.10237169e-01 -1.42569649e+00 -6.00751579e-01 4.61264193e-01 -1.61711872e-01 9.38930035e-01 1.28704950e-01 -7.11198211e-01 6.09979033e-01 1.20157331e-01 -4.71885055e-01 -3.66044819e-01 9.55111980e-02 3.44403416e-01 -5.00997379e-02 -1.04096854e+00 7.98027694e-01 1.21151567e+00 1.35183290e-01 -5.46906054e-01 4.27757800e-01 7.56902874e-01 -6.50221527e-01 -5.35598934e-01 6.88882694e-02 1.39071196e-01 -9.62886751e-01 5.37731051e-01 -8.27157855e-01 2.52149612e-01 -9.15764496e-02 3.57965350e-01 -1.80257058e+00 -3.93169671e-01 -1.27082932e+00 1.14885919e-01 6.91196918e-01 5.96045792e-01 -6.51321948e-01 1.10706031e+00 6.36823475e-01 -2.61550128e-01 -1.01292062e+00 -1.21644986e+00 -1.11458027e+00 8.51910785e-02 -1.67619541e-01 5.64642310e-01 4.19927269e-01 2.81131327e-01 1.29692942e-01 -3.44493747e-01 5.99189214e-02 7.60097206e-01 7.40961134e-02 5.70230484e-01 -9.18528974e-01 -6.22661889e-01 -6.69004619e-01 2.37387359e-01 -1.10794163e+00 7.64399171e-02 -7.14365363e-01 4.48641419e-01 -1.57717133e+00 2.29232341e-01 -9.30260837e-01 -3.81148815e-01 5.11246383e-01 1.06616512e-01 -6.23435736e-01 5.54519176e-01 3.20185035e-01 -9.92236197e-01 3.93167496e-01 1.65477443e+00 -2.28526406e-02 -7.86547422e-01 5.15973151e-01 -5.54420590e-01 4.65322465e-01 8.65781009e-01 -7.26292312e-01 -5.83441854e-01 -3.46277922e-01 3.81435841e-01 1.00776458e+00 -5.43525741e-02 -7.20507920e-01 6.47100985e-01 -8.38975847e-01 -3.63623261e-01 -4.79001462e-01 2.99705356e-01 -5.77975094e-01 2.78876722e-01 9.14155006e-01 -8.29487026e-01 4.34577256e-01 -3.09852194e-02 8.22563350e-01 1.80612817e-01 -3.63806993e-01 5.16872227e-01 -3.06622088e-01 -3.78476322e-01 2.42179558e-01 -6.49033546e-01 1.40524641e-01 1.25390267e+00 -1.98160782e-01 -4.84612852e-01 -5.00429749e-01 -8.70522082e-01 1.21192765e+00 4.74306583e-01 6.13133684e-02 3.62453640e-01 -7.88435102e-01 -6.18265152e-01 -1.74033731e-01 -2.57000238e-01 1.29522949e-01 1.43352062e-01 1.03276455e+00 -2.65876263e-01 5.45389593e-01 -3.42705876e-01 -3.57694864e-01 -8.48713338e-01 8.35799932e-01 5.19037902e-01 -8.79718482e-01 -7.24681377e-01 5.79732120e-01 1.15847655e-01 8.11056793e-03 3.89949679e-01 -1.51565790e-01 -3.00294012e-02 -7.02485666e-02 3.45878184e-01 6.28941774e-01 -2.52501279e-01 3.45151797e-02 -3.05293977e-01 -1.91778287e-01 -1.46347657e-01 -7.55647182e-01 1.40399396e+00 -1.86053813e-01 2.03834668e-01 3.97195429e-01 4.24804062e-01 -3.41166049e-01 -1.82015097e+00 -2.82168895e-01 3.14545065e-01 -5.42220950e-01 4.16678004e-02 -1.05384088e+00 -8.96834612e-01 3.30023259e-01 -1.26667945e-02 6.41733587e-01 1.00215459e+00 -4.10126001e-02 6.22074306e-01 4.43711847e-01 8.69237006e-01 -1.47663903e+00 9.41436887e-02 4.55403119e-01 7.21748173e-01 -8.25699329e-01 -2.34731779e-01 6.40489236e-02 -1.15598309e+00 8.36280465e-01 5.44748843e-01 -1.28455877e-01 -1.23316254e-02 4.03287411e-01 -1.63566560e-01 -1.15317300e-01 -1.43260181e+00 -4.77702379e-01 -3.47202092e-01 5.67025125e-01 -4.80652273e-01 1.95580199e-01 -3.78057837e-01 3.30450714e-01 -1.47799850e-01 3.05939633e-02 8.28862309e-01 1.14396322e+00 -8.00691247e-01 -1.08207715e+00 -3.86843801e-01 5.09452701e-01 -3.23980927e-01 3.98724616e-01 -2.74359196e-01 6.57769978e-01 -2.10620522e-01 1.00708604e+00 1.88693866e-01 -1.20419256e-01 3.62040609e-01 -1.33149818e-01 4.54906166e-01 -5.67408144e-01 -8.17363858e-01 3.53866041e-01 4.20857787e-01 -7.35549033e-01 -1.42173171e-01 -8.35116744e-01 -1.30471194e+00 -5.14640212e-01 -1.28904700e-01 4.93256181e-01 5.15133262e-01 9.07366276e-01 1.03184119e-01 7.05491602e-01 9.11086380e-01 -7.45903969e-01 -1.20091414e+00 -4.62335169e-01 -6.13817394e-01 -6.10358315e-03 2.50575364e-01 -8.69016707e-01 -2.28484616e-01 -6.39993191e-01]
[4.174142360687256, 2.129335641860962]
20ba1f95-bbaf-4979-9411-f66729a0e31e
koala-an-index-for-quantifying-overlaps-with
2303.14770
null
https://arxiv.org/abs/2303.14770v1
https://arxiv.org/pdf/2303.14770v1.pdf
Koala: An Index for Quantifying Overlaps with Pre-training Corpora
In very recent years more attention has been placed on probing the role of pre-training data in Large Language Models (LLMs) downstream behaviour. Despite the importance, there is no public tool that supports such analysis of pre-training corpora at large scale. To help research in this space, we launch Koala, a searchable index over large pre-training corpora using compressed suffix arrays with highly efficient compression rate and search support. In its first release we index the public proportion of OPT 175B pre-training data. Koala provides a framework to do forensic analysis on the current and future benchmarks as well as to assess the degree of memorization in the output from the LLMs. Koala is available for public use at https://koala-index.erc.monash.edu/.
['Ehsan Shareghi', 'Gholamreza Haffari', 'Xuanli He', 'Thuy-Trang Vu']
2023-03-26
null
null
null
null
['memorization']
['natural-language-processing']
[-7.46012926e-02 -1.16014160e-01 -2.04572871e-01 -1.55146653e-02 -1.21915042e+00 -8.42463255e-01 4.60286230e-01 4.71450895e-01 -7.30593860e-01 6.04479671e-01 3.44426960e-01 -1.02504230e+00 -1.35698706e-01 -5.90524912e-01 -7.87930965e-01 -4.87323284e-01 -4.86579956e-03 5.20271897e-01 1.06763005e-01 2.14205552e-02 4.80764270e-01 4.23960745e-01 -1.01631892e+00 4.78420109e-01 3.70618463e-01 2.44675100e-01 3.43126237e-01 7.91587293e-01 -6.58953711e-02 3.66662264e-01 -6.06506228e-01 -1.07375026e+00 2.87905484e-01 -1.85337380e-01 -1.05085099e+00 -5.20310044e-01 2.97401756e-01 -4.30527553e-02 -6.52250886e-01 9.33962762e-01 8.17623556e-01 -1.57632843e-01 2.38959849e-01 -9.45714414e-01 -2.77155012e-01 1.40429831e+00 -2.13412821e-01 1.01601529e+00 2.60036767e-01 4.49149340e-01 1.15602231e+00 -7.23102331e-01 1.02986860e+00 1.12732744e+00 6.89670146e-01 1.39005482e-01 -1.14249146e+00 -7.61385202e-01 -6.21755242e-01 4.03004676e-01 -1.35840499e+00 -8.93590033e-01 4.33580816e-01 -2.35358089e-01 1.42195308e+00 3.71157467e-01 2.78663278e-01 1.32732809e+00 6.48454810e-03 8.05042982e-01 9.45799410e-01 -8.45414221e-01 2.21121013e-02 3.30415219e-02 5.11832476e-01 5.46181679e-01 5.68490386e-01 1.35891512e-03 -7.96718895e-01 -6.89862549e-01 1.50399551e-01 -4.24487203e-01 8.92339926e-03 1.20366111e-01 -7.94688821e-01 8.74478042e-01 -4.61120427e-01 5.87688208e-01 -2.84705628e-02 7.48084709e-02 8.52660596e-01 5.63976288e-01 3.17431569e-01 3.18166047e-01 -4.81954366e-01 -8.41651142e-01 -1.27002227e+00 1.49834394e-01 8.29638302e-01 7.59080172e-01 3.70657861e-01 -2.55917460e-01 3.51194024e-01 8.72275412e-01 1.83333188e-01 3.02568018e-01 7.92500436e-01 -9.75998878e-01 1.03267217e+00 3.98528241e-02 -4.29975480e-01 -7.03924775e-01 3.40671977e-03 -4.87187892e-01 -2.34998062e-01 -3.01135212e-01 7.83065975e-01 1.82770044e-01 -2.00368270e-01 1.66269827e+00 6.57721385e-02 2.13295281e-01 3.85045782e-02 1.97335720e-01 3.08406800e-01 5.51248193e-01 -9.18880105e-02 -4.96998876e-02 1.17683029e+00 -6.43124580e-01 -4.35266256e-01 -1.90821439e-01 1.29227877e+00 -1.00314236e+00 1.20366919e+00 6.12347662e-01 -1.34183729e+00 5.78367077e-02 -8.83570433e-01 -1.14898667e-01 -2.55782127e-01 -2.00504467e-01 5.43871403e-01 1.08127081e+00 -9.38941181e-01 8.78259301e-01 -1.20787036e+00 -5.77675104e-01 6.15210593e-01 -1.05283633e-02 -4.68536377e-01 -2.52196193e-01 -1.09797549e+00 8.38815033e-01 4.18661118e-01 -3.92369717e-01 -5.99255443e-01 -5.35364151e-01 -6.20831013e-01 -1.64990276e-01 2.35389754e-01 1.09771140e-01 1.16315329e+00 -2.87091851e-01 -8.52608979e-01 1.14253259e+00 -4.31768822e-05 -6.90567553e-01 4.70864266e-01 -2.72902340e-01 -4.95422453e-01 2.16801643e-01 -1.06461033e-01 -8.93874317e-02 2.84683406e-01 -6.69786930e-01 -1.28220558e-01 -4.51072633e-01 -5.10713816e-01 -3.10093790e-01 -5.14182925e-01 7.01384664e-01 -5.76039910e-01 -9.20778930e-01 -2.29548737e-01 -8.92771959e-01 3.98052074e-02 -4.43381518e-01 -4.99968916e-01 -2.52912611e-01 3.96119356e-01 -1.10530114e+00 1.82120419e+00 -2.27293706e+00 -2.59219170e-01 3.81330729e-01 -2.15616077e-01 6.92758083e-01 -4.68679845e-01 1.04644704e+00 -6.18112879e-03 4.20759529e-01 -3.13136339e-01 -6.56472981e-01 -6.67790044e-03 3.23775858e-01 -6.57819808e-01 8.59319866e-01 -1.44033030e-01 7.27181196e-01 -7.52797067e-01 -7.04532862e-01 -2.31895268e-01 -4.22272757e-02 -5.50117850e-01 4.03115638e-02 1.12274446e-01 -1.33505717e-01 -1.88792020e-01 8.11123490e-01 5.60533822e-01 2.77857739e-03 3.69332284e-01 4.83921617e-01 -1.18159279e-01 1.00122631e+00 -1.02199650e+00 1.81049597e+00 -1.34519577e-01 8.49107206e-01 1.91627145e-01 -1.04990613e+00 7.04494238e-01 2.01152176e-01 5.63844852e-02 -6.59552813e-01 1.52551129e-01 3.61720771e-01 2.05946118e-01 -2.09737390e-01 6.03117645e-01 1.37956128e-01 3.51563357e-02 1.09464514e+00 1.35596976e-01 2.80416906e-01 5.41478455e-01 6.43518686e-01 1.45937717e+00 -1.29996344e-01 6.01214767e-02 -1.55340195e-01 4.56963331e-01 4.15880792e-02 2.83042759e-01 7.33933926e-01 -1.64380044e-01 3.21172208e-01 4.35883492e-01 -4.80424538e-02 -1.45014894e+00 -9.81771231e-01 -6.23270750e-01 1.10810089e+00 -6.08067811e-01 -1.02125943e+00 -9.27167952e-01 -3.36524367e-01 7.46862367e-02 1.03263128e+00 -7.90564343e-03 -2.48472318e-01 -8.52698684e-01 -5.30973732e-01 1.63920569e+00 2.31451020e-01 -3.13654804e-04 -1.41659808e+00 -3.63071024e-01 9.59681869e-02 -3.12779218e-01 -1.01116347e+00 -3.02109420e-01 4.32204425e-01 -1.09075248e+00 -1.03163600e+00 -1.65799409e-01 -5.92140555e-01 1.91075534e-01 -3.99164595e-02 1.10672677e+00 5.04082024e-01 -5.00642419e-01 1.83969885e-01 -4.64528590e-01 -2.52627790e-01 -1.03746140e+00 4.52512443e-01 1.45586759e-01 -8.22879851e-01 6.17558897e-01 -7.65507400e-01 -2.95653883e-02 1.71069354e-01 -1.02139068e+00 -3.67810994e-01 4.20691520e-01 5.97008348e-01 3.77553433e-01 5.66897951e-02 3.55501473e-01 -8.82908702e-01 6.38662159e-01 -9.16096568e-01 -5.28915286e-01 3.04111749e-01 -6.99459255e-01 1.03098460e-01 5.64400852e-01 -2.76459426e-01 -6.09836221e-01 -4.73032832e-01 -4.67106164e-01 -2.19117314e-01 -1.46103457e-01 7.48887420e-01 -1.70872957e-02 4.08285141e-01 7.05374956e-01 3.30208004e-01 1.51890770e-01 -1.04846716e+00 2.36987576e-01 1.05651212e+00 6.91313684e-01 -8.42596710e-01 8.41774881e-01 6.36210665e-02 -3.02683383e-01 -8.90487552e-01 -3.25303972e-01 -5.51265121e-01 -5.99806607e-01 3.77640337e-01 1.14447378e-01 -6.32465363e-01 -1.26008436e-01 4.82840806e-01 -6.85363889e-01 -7.19252527e-01 -1.38987631e-01 3.49020302e-01 -5.41340292e-01 1.09069061e+00 -9.78623450e-01 -7.11007416e-01 -6.05052531e-01 -8.77971828e-01 5.45913219e-01 -4.24297065e-01 -5.79564810e-01 -7.67399549e-01 3.01479578e-01 6.89682186e-01 6.18368201e-03 -3.89699936e-01 1.03414214e+00 -1.20087564e+00 -3.09768885e-01 -2.42466643e-01 2.87125260e-01 2.26235032e-01 -4.24313962e-01 1.78370818e-01 -7.86003232e-01 -6.17788255e-01 -1.86903358e-01 -5.72391629e-01 7.28859782e-01 2.24186182e-02 1.12377739e+00 -3.82982492e-01 -2.98323333e-01 7.83790290e-01 1.10264432e+00 -2.45062739e-01 7.38187909e-01 8.01231802e-01 -1.38822962e-02 5.56849062e-01 6.85180783e-01 6.03570998e-01 -2.52927840e-01 4.04900342e-01 -9.35050249e-02 6.12815797e-01 2.87422780e-02 -6.03781581e-01 8.05011451e-01 1.17290354e+00 3.49508703e-01 -4.62470233e-01 -1.15103579e+00 6.12698436e-01 -1.37177896e+00 -1.41544938e+00 -1.57478720e-01 2.28050208e+00 1.18113720e+00 4.52386439e-01 3.17969203e-01 4.71185029e-01 6.51661336e-01 5.49734570e-03 -4.15012658e-01 -7.29446232e-01 -4.26979214e-01 6.34851456e-01 7.36415625e-01 3.79317164e-01 -6.26893044e-01 9.57345128e-01 6.21394348e+00 1.44239092e+00 -7.59271324e-01 2.84919649e-01 6.17229342e-01 -4.41630244e-01 -4.08793211e-01 2.08591580e-01 -1.03007877e+00 8.43494654e-01 1.86113763e+00 -5.10523736e-01 6.42821848e-01 8.35918844e-01 4.42637578e-02 -2.06082106e-01 -7.08788037e-01 8.01981807e-01 -3.15963656e-01 -1.39417315e+00 -4.26804274e-01 5.82774222e-01 4.58576493e-02 6.55747950e-01 7.05314204e-02 2.13174373e-01 4.84942436e-01 -9.62810934e-01 9.11101162e-01 1.61449000e-01 1.07082558e+00 -9.03411329e-01 5.17626405e-01 9.24574077e-01 -7.55340338e-01 -1.29571006e-01 -7.09144294e-01 -2.28994638e-02 2.13013113e-01 5.26284516e-01 -8.40177596e-01 2.39935026e-01 5.91448128e-01 3.28739256e-01 -9.14455056e-01 1.01974225e+00 -6.06943518e-02 1.56248224e+00 -7.48509288e-01 1.97618380e-01 1.08307235e-01 -1.98460728e-01 6.13209963e-01 1.59381735e+00 3.91333342e-01 -1.36991829e-01 -2.96231031e-01 4.48349327e-01 -1.06888339e-01 3.02305609e-01 -6.17491186e-01 -7.92925477e-01 1.01149535e+00 1.04432714e+00 -7.12099195e-01 -2.63691455e-01 -3.01570475e-01 7.48247445e-01 6.97079122e-01 -1.34884804e-01 -5.60329020e-01 -3.46362233e-01 7.28865564e-01 2.11809307e-01 2.87642866e-01 -5.82850516e-01 -7.14398623e-02 -1.01616549e+00 2.30009761e-02 -1.29184937e+00 9.07762110e-01 -5.44422686e-01 -1.05422640e+00 3.97389650e-01 -6.80436492e-02 -4.58553046e-01 -5.24339795e-01 -5.87639928e-01 -5.83189785e-01 8.50177765e-01 -9.47277188e-01 -7.82681823e-01 5.04171193e-01 4.79003221e-01 3.01697254e-01 -4.89652544e-01 8.26229572e-01 4.86618966e-01 -7.54984558e-01 1.19325852e+00 6.95178211e-01 2.82864600e-01 8.01199436e-01 -8.48289609e-01 9.31148291e-01 9.84246254e-01 6.14809453e-01 1.12933242e+00 7.34522760e-01 -9.08719122e-01 -1.57334077e+00 -6.43547177e-01 1.21448183e+00 -8.55343044e-01 1.07632279e+00 -5.49821615e-01 -9.17487144e-01 8.25869083e-01 9.53462273e-02 -3.27662945e-01 1.10790193e+00 9.73386467e-02 -4.79731381e-01 3.11743170e-01 -9.24226522e-01 3.54657352e-01 1.23310959e+00 -9.24243152e-01 -7.16973603e-01 3.10609251e-01 4.70229328e-01 -1.05312392e-01 -8.41076314e-01 -1.19015783e-01 3.60723644e-01 -9.70206976e-01 9.51270103e-01 -7.23514140e-01 3.88973951e-01 3.08168501e-01 -2.90127665e-01 -7.55713761e-01 -1.04408331e-01 -8.92734051e-01 -1.56096712e-01 1.53488100e+00 3.22385013e-01 -5.15591562e-01 9.30114031e-01 3.78885150e-01 -1.69894263e-01 -6.54960871e-01 -1.08520341e+00 -1.02039242e+00 6.40706301e-01 -1.02239752e+00 4.19654191e-01 8.10703516e-01 1.52225941e-01 -1.53442889e-01 -1.68754622e-01 -1.32069424e-01 5.76927423e-01 -1.13401935e-01 8.42917860e-01 -7.25626051e-01 -5.94674110e-01 -4.27875876e-01 -2.33275205e-01 -5.47258794e-01 2.15700641e-01 -1.59152627e+00 -5.70042491e-01 -9.28185463e-01 2.56866723e-01 -5.53113282e-01 -2.91233450e-01 5.70144892e-01 2.10593581e-01 3.24810028e-01 4.59372364e-02 5.33234656e-01 -4.97292995e-01 -1.02350265e-02 4.11168039e-01 4.08506036e-01 1.20828047e-01 -1.12724848e-01 -5.82435310e-01 3.87961149e-01 1.18666494e+00 -9.49021399e-01 8.87937471e-02 -3.62771690e-01 3.08305889e-01 -3.78888436e-02 8.40856060e-02 -9.12239134e-01 1.91575795e-01 -1.92652233e-02 -7.45706111e-02 -8.51289153e-01 1.00667015e-01 -3.05279046e-01 4.52667326e-01 6.38867974e-01 -4.50222880e-01 4.51285809e-01 2.82208741e-01 2.40206257e-01 9.07762498e-02 -9.05199349e-01 5.77882349e-01 -1.03983402e-01 -2.42686644e-01 6.85788617e-02 -6.19069338e-01 4.78194535e-01 4.84815091e-01 -1.29107267e-01 -3.07074994e-01 -8.35445374e-02 -5.06718576e-01 -1.23079002e-01 8.12391460e-01 6.69993460e-02 1.54338032e-01 -8.81755292e-01 -5.65246761e-01 2.07518369e-01 3.97729799e-02 -6.13019466e-01 -4.52798158e-02 7.88718283e-01 -7.05257416e-01 5.70025086e-01 -1.24827623e-01 9.25384089e-02 -1.65635562e+00 5.15450239e-01 -1.65946990e-01 -5.16024113e-01 -6.00026786e-01 8.35870445e-01 -8.07514191e-01 -4.46254462e-01 2.45437667e-01 2.09838912e-01 3.38265330e-01 -5.85539173e-03 6.24215662e-01 7.00247467e-01 2.49396056e-01 -7.51426578e-01 -2.43815467e-01 -1.44607469e-01 4.13472317e-02 -4.28779453e-01 1.69358575e+00 -3.18779349e-02 -2.48782977e-01 4.06554699e-01 1.44814563e+00 6.45566642e-01 -5.19755304e-01 -4.09696996e-01 5.26812315e-01 -5.65715730e-01 -9.92909521e-02 -6.10390306e-01 -7.09419012e-01 9.41092551e-01 6.75774515e-02 8.67738109e-03 6.39920712e-01 1.33877173e-01 1.27427793e+00 6.58056378e-01 3.33033979e-01 -1.23413551e+00 -1.47675052e-01 7.45010555e-01 4.07656670e-01 -5.98148167e-01 1.03031792e-01 1.16192728e-01 -3.32260638e-01 1.02731836e+00 7.80881792e-02 9.06607062e-02 5.64839065e-01 6.71913028e-01 5.57679124e-03 3.32902558e-03 -8.36001873e-01 2.45541051e-01 -2.90150404e-01 2.09944919e-01 4.35080618e-01 -1.42222509e-01 -5.40658355e-01 9.00368810e-01 -8.71703923e-01 -1.65704027e-01 4.08437103e-01 1.08287227e+00 -3.03334355e-01 -1.71948445e+00 -5.14143288e-01 6.14870369e-01 -1.17797685e+00 -7.16463506e-01 -4.60756063e-01 5.05324841e-01 -3.23721588e-01 9.87084210e-01 -1.34625332e-02 -2.52067417e-01 -2.02251971e-01 6.52437508e-01 3.58430356e-01 -4.83311355e-01 -8.56708705e-01 -3.45623977e-02 5.50133526e-01 -4.81406599e-01 3.35636169e-01 -1.20971930e+00 -1.17922497e+00 -9.75655317e-01 -5.07846653e-01 4.67228472e-01 6.86704993e-01 6.21047616e-01 4.70662445e-01 -4.21085507e-01 2.33960047e-01 -3.93863946e-01 -1.13217032e+00 -1.02218354e+00 -6.53317332e-01 5.28629124e-01 -2.50850111e-01 -2.35079497e-01 -5.68647325e-01 -1.85166404e-01]
[10.623682975769043, 9.771267890930176]
09c88e1b-41c3-4f67-869f-78c2faa4fe9f
video-instance-segmentation-by-instance-flow
2110.10599
null
https://arxiv.org/abs/2110.10599v1
https://arxiv.org/pdf/2110.10599v1.pdf
Video Instance Segmentation by Instance Flow Assembly
Instance segmentation is a challenging task aiming at classifying and segmenting all object instances of specific classes. While two-stage box-based methods achieve top performances in the image domain, they cannot easily extend their superiority into the video domain. This is because they usually deal with features or images cropped from the detected bounding boxes without alignment, failing to capture pixel-level temporal consistency. We embrace the observation that bottom-up methods dealing with box-free features could offer accurate spacial correlations across frames, which can be fully utilized for object and pixel level tracking. We first propose our bottom-up framework equipped with a temporal context fusion module to better encode inter-frame correlations. Intra-frame cues for semantic segmentation and object localization are simultaneously extracted and reconstructed by corresponding decoders after a shared backbone. For efficient and robust tracking among instances, we introduce an instance-level correspondence across adjacent frames, which is represented by a center-to-center flow, termed as instance flow, to assemble messy dense temporal correspondences. Experiments demonstrate that the proposed method outperforms the state-of-the-art online methods (taking image-level input) on the challenging Youtube-VIS dataset.
['Yan Lu', 'Xiao Li', 'Jinglu Wang', 'Xiang Li']
2021-10-20
null
null
null
null
['video-instance-segmentation']
['computer-vision']
[ 4.10627037e-01 -2.44675040e-01 -4.17342871e-01 -3.73504192e-01 -8.31823051e-01 -6.69102132e-01 4.82526630e-01 2.17518240e-01 -4.34347123e-01 3.80781025e-01 -2.26521462e-01 1.27331108e-01 -7.51372278e-02 -5.86368620e-01 -9.49550688e-01 -6.22643173e-01 -1.62761316e-01 2.31979370e-01 8.60897005e-01 -2.21546106e-02 2.44870707e-01 4.85169679e-01 -1.74227703e+00 5.02318919e-01 6.50586545e-01 1.26082957e+00 4.00932044e-01 5.25113761e-01 -3.69325966e-01 6.50583625e-01 -2.85495818e-01 -3.50025952e-01 4.33655292e-01 -2.81693399e-01 -8.78046751e-01 6.62091434e-01 8.64193201e-01 -3.55991125e-01 -2.37999842e-01 1.14318228e+00 1.62445903e-01 1.37599021e-01 2.32968912e-01 -1.19482648e+00 -6.45887330e-02 3.45838249e-01 -6.68635011e-01 3.69113058e-01 4.46994692e-01 2.40095973e-01 1.02267170e+00 -8.98332477e-01 1.04588056e+00 1.20101058e+00 5.43152630e-01 3.54160815e-01 -1.24256420e+00 -3.91499490e-01 6.76508009e-01 4.17444766e-01 -1.13138902e+00 -4.24344242e-01 8.10941577e-01 -5.74953794e-01 5.55500925e-01 2.23766267e-01 9.22256470e-01 7.43509412e-01 -4.81108651e-02 1.02952540e+00 8.41383815e-01 -5.77712059e-02 1.29578575e-01 -2.00932205e-01 1.12038285e-01 7.96395540e-01 6.33666068e-02 8.60040709e-02 -8.22623610e-01 3.12093854e-01 9.45481062e-01 3.12085897e-01 -4.54441965e-01 -7.52994716e-01 -1.60179138e+00 4.74437475e-01 7.19719648e-01 4.62222964e-01 -4.12746519e-01 3.54660630e-01 5.14543176e-01 -3.32534201e-02 4.36951280e-01 -5.86650036e-02 -5.77811897e-01 3.68081816e-02 -1.34972656e+00 1.20392986e-01 4.33892936e-01 1.28204608e+00 9.93014157e-01 -2.01449960e-01 -4.47669655e-01 3.89241576e-01 1.64550662e-01 1.38852134e-01 2.20892891e-01 -1.14102709e+00 5.03805161e-01 5.78413248e-01 1.94091529e-01 -1.05965745e+00 -3.82068366e-01 -5.74458063e-01 -5.77647090e-01 1.08593497e-02 8.11225295e-01 2.89231509e-01 -7.23406613e-01 1.42055094e+00 7.37912357e-01 7.84400642e-01 -2.67432362e-01 1.07357275e+00 6.33909225e-01 5.41180253e-01 2.10048705e-01 -3.25970024e-01 1.77535605e+00 -1.33391511e+00 -5.90878963e-01 -2.61994064e-01 5.02739012e-01 -6.34723365e-01 7.38554537e-01 3.20061147e-01 -1.28012037e+00 -8.14167559e-01 -6.72541022e-01 -1.81780860e-01 -3.91164571e-01 4.59514186e-02 4.70872015e-01 3.91381890e-01 -8.11363518e-01 7.00341582e-01 -1.07161069e+00 -1.89221710e-01 7.95526087e-01 1.26962483e-01 -5.36453485e-01 -9.17401165e-02 -7.22992003e-01 4.72085625e-01 5.68285286e-01 3.68529171e-01 -9.21826124e-01 -8.54401112e-01 -9.92108405e-01 4.79043871e-02 6.43157184e-01 -7.73431480e-01 1.02601612e+00 -1.15717781e+00 -1.22633839e+00 7.98480213e-01 -5.14666736e-01 -5.75133562e-01 7.00692058e-01 -2.83079892e-01 9.30175483e-02 5.82327724e-01 3.10228050e-01 8.57402623e-01 1.02553928e+00 -1.32982361e+00 -1.09404564e+00 -3.66355956e-01 1.06817745e-01 9.09927487e-02 -2.25638255e-01 8.78305882e-02 -1.00165951e+00 -6.73502564e-01 4.05792326e-01 -7.44432747e-01 -2.26369143e-01 5.07703006e-01 -3.56208473e-01 -1.50597647e-01 1.06695902e+00 -6.60849452e-01 1.24886239e+00 -1.97835124e+00 1.58338502e-01 -8.12291726e-02 5.22479527e-02 3.18731159e-01 -6.65947795e-02 1.20367959e-01 5.88712841e-02 -3.61858726e-01 -3.02739918e-01 -5.26454329e-01 -1.89777121e-01 1.64647430e-01 9.10435396e-04 6.78624690e-01 3.85229409e-01 1.05307186e+00 -1.23941886e+00 -8.46120894e-01 6.18556738e-01 4.78741378e-01 -7.40695894e-01 4.12677713e-02 -4.07145649e-01 8.61055493e-01 -5.19147038e-01 8.36583495e-01 7.09129930e-01 -3.82738441e-01 -1.15035564e-01 -5.40223598e-01 -1.94815293e-01 -1.64641619e-01 -1.33183610e+00 2.24395704e+00 -2.65625715e-01 5.96414030e-01 1.43683046e-01 -1.16770756e+00 5.84436536e-01 6.30254671e-02 8.95948768e-01 -5.19779503e-01 1.44877313e-02 2.56897986e-01 -2.76386410e-01 -5.20100236e-01 4.58730608e-01 3.69411826e-01 4.69109565e-02 -1.17149994e-01 1.84542716e-01 -3.66966613e-03 5.13215125e-01 1.43869624e-01 8.32186997e-01 5.99932909e-01 2.41262168e-01 -2.34419763e-01 9.28579032e-01 1.03753611e-01 6.58680141e-01 5.80993831e-01 -3.94037515e-01 8.41938615e-01 3.32326770e-01 -5.10482907e-01 -8.67297947e-01 -7.50051022e-01 -3.15658569e-01 9.43242550e-01 6.31113648e-01 -5.48200488e-01 -8.40630233e-01 -8.71340811e-01 -9.19914395e-02 1.47317737e-01 -5.55326462e-01 3.59078795e-01 -7.66958475e-01 -2.35938609e-01 8.74194410e-03 5.36174059e-01 6.18180871e-01 -7.98406541e-01 -1.08382523e+00 6.74071431e-01 -4.44266260e-01 -1.52241611e+00 -7.16128945e-01 1.82740152e-01 -9.50333834e-01 -1.34648979e+00 -9.57762122e-01 -6.43641353e-01 6.26559138e-01 4.84804183e-01 1.17920566e+00 1.19149752e-01 -4.59925622e-01 3.93014282e-01 -4.63985205e-01 4.05659676e-02 -5.09478822e-02 -1.15141734e-01 -4.10892397e-01 3.26526165e-01 1.45887546e-02 -3.57141823e-01 -1.15500438e+00 5.85114181e-01 -9.43829834e-01 1.69685826e-01 3.05305749e-01 7.82366574e-01 9.16207254e-01 -2.59403676e-01 1.94590092e-01 -7.38953769e-01 -3.21292192e-01 -7.42439106e-02 -6.93865836e-01 2.97197282e-01 -9.92376506e-02 -1.25996083e-01 4.05986875e-01 -2.00923964e-01 -7.00731635e-01 5.75171411e-01 -7.98967481e-02 -7.46569097e-01 -1.79221049e-01 -4.02015522e-02 -1.11857563e-01 -1.27723545e-01 2.48999462e-01 3.70490372e-01 -2.14717343e-01 -4.02333230e-01 6.62050784e-01 2.52958804e-01 7.45665371e-01 -5.85711539e-01 7.07377791e-01 8.97116601e-01 -8.19638371e-03 -4.85672534e-01 -1.06637335e+00 -8.90479207e-01 -1.13085830e+00 -5.81076205e-01 1.15928805e+00 -1.02803183e+00 -6.10817134e-01 2.75315940e-01 -1.37726665e+00 -2.20019937e-01 -4.17023867e-01 2.31042653e-01 -8.66999686e-01 4.52032328e-01 -4.80548888e-01 -4.97770965e-01 -9.80434418e-02 -1.40093553e+00 1.69652319e+00 2.47004613e-01 1.57076821e-01 -9.00595307e-01 -3.60279411e-01 3.02936554e-01 1.01727881e-01 3.29206914e-01 3.39432418e-01 -2.93273449e-01 -1.03787267e+00 5.03936363e-03 -3.72893155e-01 2.11663991e-01 -6.79980665e-02 7.45564103e-02 -8.64194274e-01 -2.53311813e-01 -2.54879594e-01 2.27251217e-01 9.15716171e-01 4.95405316e-01 1.43150115e+00 -1.62708506e-01 -5.71421683e-01 8.39076340e-01 1.56733382e+00 -3.27636302e-02 5.02004743e-01 4.44963932e-01 8.69224429e-01 7.03808784e-01 9.36123788e-01 3.97489071e-01 3.29753458e-01 1.06777132e+00 6.16234064e-01 -5.40981889e-02 -3.68715823e-01 -7.88544267e-02 2.01923028e-01 3.68280500e-01 -2.50564404e-02 -1.36658708e-02 -6.70851886e-01 6.48831427e-01 -2.05994296e+00 -1.02858353e+00 -4.37767744e-01 1.97626626e+00 5.64544976e-01 1.25556722e-01 3.30256224e-01 7.86199793e-02 8.39986861e-01 2.76854753e-01 -5.00449181e-01 2.30698094e-01 -4.83927056e-02 1.33255096e-02 6.12938106e-01 3.14681500e-01 -1.40063298e+00 1.01463091e+00 5.44421673e+00 9.65824306e-01 -9.72758591e-01 3.19703102e-01 7.16330647e-01 7.28614181e-02 2.61045713e-02 1.03027165e-01 -8.65844846e-01 6.37786329e-01 3.96617234e-01 1.78124085e-01 -8.86540022e-03 8.73904705e-01 3.34145129e-01 -2.25539014e-01 -1.33229220e+00 1.00535572e+00 -1.51538655e-01 -1.54400396e+00 -1.61856383e-01 -1.43758312e-01 8.46294761e-01 -1.56052783e-01 -1.56961486e-01 -9.98235568e-02 -4.07517195e-01 -5.15402377e-01 1.15020311e+00 4.47007626e-01 5.84164858e-01 -4.73480970e-01 3.40821892e-01 2.34553114e-01 -1.62494230e+00 -1.64123505e-01 -3.09272647e-01 3.87611449e-01 4.05478001e-01 6.30809009e-01 -3.57852250e-01 8.24012697e-01 7.71579266e-01 1.21963727e+00 -4.79157358e-01 1.28653574e+00 5.30706495e-02 2.16509849e-01 -3.02664340e-01 3.95901203e-01 4.87030983e-01 -2.63474435e-01 5.12936175e-01 1.42250872e+00 4.15006995e-01 5.10685146e-02 2.71063536e-01 7.70564854e-01 2.23027468e-01 -2.50034817e-02 -2.55112797e-01 4.20643002e-01 3.07973146e-01 1.41700327e+00 -1.25033247e+00 -6.44627690e-01 -5.82626343e-01 1.23078716e+00 -1.99905504e-02 2.57863581e-01 -1.05717754e+00 2.16729138e-02 6.89789832e-01 2.56636977e-01 7.44507790e-01 -3.79672855e-01 -1.58087790e-01 -1.34800482e+00 9.75094512e-02 -6.06951654e-01 3.80031109e-01 -6.62901282e-01 -1.02505124e+00 5.01703620e-01 -1.44876670e-02 -1.71183288e+00 -9.15165767e-02 -6.44962847e-01 -3.43561113e-01 3.86123687e-01 -1.87565517e+00 -1.17127085e+00 -5.98549485e-01 9.52172518e-01 9.64219987e-01 3.54359776e-01 3.00682783e-01 6.09040499e-01 -4.84275818e-01 3.48600030e-01 -5.87964337e-03 2.35571295e-01 5.06590962e-01 -1.01526403e+00 1.35439217e-01 1.12992442e+00 4.90437239e-01 3.53108644e-01 5.34207940e-01 -4.76294070e-01 -1.41753328e+00 -1.37398827e+00 5.45372367e-01 -5.73343873e-01 5.70453703e-01 -3.98944497e-01 -8.50647867e-01 4.77184802e-01 -3.97950672e-02 8.07835937e-01 -1.38270166e-02 -4.81323242e-01 -2.21310854e-01 -1.76189363e-01 -9.31769490e-01 3.72429401e-01 1.42841327e+00 -3.60154122e-01 -2.65761554e-01 5.00432730e-01 6.96827114e-01 -6.46844625e-01 -8.63848150e-01 3.19753259e-01 4.02902097e-01 -1.17778420e+00 1.27098095e+00 -3.35478365e-01 4.66764957e-01 -7.47720003e-01 2.87984731e-03 -7.52214432e-01 5.91448508e-02 -6.51795745e-01 -2.53016561e-01 1.28350806e+00 -1.35891929e-01 -2.62947232e-01 1.00722885e+00 3.09628338e-01 -1.70374513e-01 -7.57613599e-01 -1.07900155e+00 -8.32005084e-01 -3.06627482e-01 -7.04510272e-01 3.53551924e-01 6.35881186e-01 -3.13268125e-01 -1.88452601e-01 -1.81305006e-01 2.04858601e-01 8.40392172e-01 3.96763235e-01 7.58976877e-01 -1.04817033e+00 -2.13756070e-01 -5.68330765e-01 -7.77473450e-01 -1.54408371e+00 1.08934842e-01 -8.14040601e-01 2.23188266e-01 -1.45871711e+00 7.02350512e-02 -4.67289209e-01 -1.45859599e-01 2.67492890e-01 -3.94120991e-01 6.10026360e-01 4.90027666e-01 2.96814829e-01 -1.01323783e+00 3.89947265e-01 1.55694377e+00 -6.18451498e-02 2.72162147e-02 -3.89099941e-02 -2.14023754e-01 7.40479290e-01 2.92869031e-01 -4.76318240e-01 -2.14072317e-01 -4.07612979e-01 -2.04847485e-01 3.18586111e-01 7.24524856e-01 -1.22819173e+00 4.38234508e-01 -4.07119729e-02 3.65731001e-01 -8.52613330e-01 3.98001641e-01 -1.10014296e+00 1.14142649e-01 3.65523309e-01 -2.21887469e-01 -5.73319197e-02 -3.39667387e-02 9.47417378e-01 -5.34642041e-01 -1.44742444e-01 8.34973693e-01 -1.52521178e-01 -1.17252719e+00 7.00616300e-01 8.24967772e-02 -2.73493323e-02 1.35506570e+00 -5.68973422e-01 -7.77352750e-02 2.08215117e-02 -9.71771419e-01 2.91105449e-01 5.11034131e-01 4.27783877e-01 5.53448975e-01 -1.13890135e+00 -5.54311693e-01 2.46230468e-01 1.61445409e-01 3.22161853e-01 4.79246646e-01 1.24820209e+00 -5.70387781e-01 4.50495273e-01 -1.83847725e-01 -1.30998933e+00 -1.12336183e+00 6.62415683e-01 4.20795202e-01 -1.18593924e-01 -1.05448020e+00 9.81886804e-01 5.74276030e-01 2.93281972e-02 2.80034304e-01 -5.53505123e-01 -6.59701973e-02 3.03432375e-01 5.43144405e-01 1.53620481e-01 1.54969707e-01 -9.44264650e-01 -5.15083492e-01 1.08296180e+00 2.18082666e-01 9.18540508e-02 1.19444931e+00 -4.52746183e-01 5.06883822e-02 2.72922844e-01 1.38240147e+00 -2.98843563e-01 -1.91314709e+00 -3.78785968e-01 8.69748369e-02 -8.54905903e-01 -8.62617269e-02 -2.66108304e-01 -1.37486327e+00 9.87492383e-01 6.05038345e-01 2.17504740e-01 1.17803383e+00 3.05100344e-02 9.42524970e-01 -1.29127830e-01 5.72495162e-01 -9.55566168e-01 1.52597502e-01 2.22663820e-01 5.10485828e-01 -1.22338974e+00 -1.18356086e-01 -8.34256232e-01 -4.45330352e-01 1.39059401e+00 4.67735350e-01 -2.00448141e-01 5.16723394e-01 1.76797852e-01 -2.22785145e-01 -1.42703075e-02 -5.87692618e-01 -6.41778648e-01 4.47293371e-01 5.24858534e-01 2.91192383e-01 -3.65825802e-01 -2.89652258e-01 2.98590094e-01 3.26933563e-01 -2.74892449e-02 2.13810369e-01 7.49335289e-01 -4.88193244e-01 -1.04909968e+00 -4.83625501e-01 1.24056362e-01 -3.55220348e-01 1.45828381e-01 3.02448511e-01 8.49491060e-01 4.45323557e-01 8.30195844e-01 2.41686553e-01 -2.55463808e-03 3.37777913e-01 -2.81177890e-02 5.65262735e-01 -4.98460203e-01 -6.37013793e-01 3.35109591e-01 -2.19914258e-01 -1.20512187e+00 -9.79786456e-01 -9.46611285e-01 -1.21848762e+00 1.06245652e-01 -3.17108899e-01 -5.08220643e-02 6.55238569e-01 8.40300143e-01 2.83309370e-01 7.43908525e-01 4.93416965e-01 -1.39390504e+00 -1.31368294e-01 -3.37243974e-01 -3.67816210e-01 6.18501186e-01 5.32318592e-01 -7.06499279e-01 -1.71116203e-01 5.05360126e-01]
[9.131818771362305, -0.08862917870283127]
bb0b9647-8988-4f15-a663-a1b8982a9cae
3d-dense-face-alignment-with-fused-features
2203.04643
null
https://arxiv.org/abs/2203.04643v1
https://arxiv.org/pdf/2203.04643v1.pdf
3D Dense Face Alignment with Fused Features by Aggregating CNNs and GCNs
In this paper, we propose a novel multi-level aggregation network to regress the coordinates of the vertices of a 3D face from a single 2D image in an end-to-end manner. This is achieved by seamlessly combining standard convolutional neural networks (CNNs) with Graph Convolution Networks (GCNs). By iteratively and hierarchically fusing the features across different layers and stages of the CNNs and GCNs, our approach can provide a dense face alignment and 3D face reconstruction simultaneously for the benefit of direct feature learning of 3D face mesh. Experiments on several challenging datasets demonstrate that our method outperforms state-of-the-art approaches on both 2D and 3D face alignment tasks.
['Yalin Zheng', 'Xiaowei Huang', 'Yihong Qiao', 'Xiaoyun Yang', 'Yitian Zhao', 'Dongxu Gao', 'Xu Chen', 'Yanda Meng']
2022-03-09
null
null
null
null
['3d-face-reconstruction', 'face-alignment', 'face-reconstruction']
['computer-vision', 'computer-vision', 'computer-vision']
[-1.23681992e-01 2.97602236e-01 8.20718110e-02 -7.31147647e-01 -2.32105657e-01 -2.15996087e-01 5.31548262e-01 -1.96062565e-01 -5.76369949e-02 -6.18345402e-02 -4.60375508e-04 -1.02002509e-02 1.35267526e-01 -8.12677503e-01 -8.72045994e-01 -1.80463418e-01 -8.27947408e-02 6.16235495e-01 -2.74258912e-01 -7.94899985e-02 -5.55180721e-02 1.36518645e+00 -1.50277436e+00 1.33093759e-01 3.51343244e-01 1.31725228e+00 -5.55901349e-01 5.02367556e-01 -2.16127768e-01 3.25423658e-01 -6.68982938e-02 -6.07299507e-01 5.63683271e-01 -1.14990659e-01 -6.59026146e-01 3.18054765e-01 1.36299682e+00 -4.84976232e-01 -4.61051524e-01 8.36902797e-01 5.26504457e-01 -2.65858233e-01 5.22592545e-01 -1.29255593e+00 -6.46403193e-01 -4.39277887e-02 -9.34986353e-01 -2.54214257e-01 3.34913969e-01 -3.70070301e-02 6.23396635e-01 -1.33937943e+00 5.34182966e-01 1.72749841e+00 1.10243654e+00 5.62300026e-01 -1.36455286e+00 -9.58377182e-01 2.22199693e-01 -2.22708866e-01 -1.63068390e+00 -7.33364105e-01 1.19854748e+00 -4.31712627e-01 1.25146902e+00 -3.19513828e-01 8.52813005e-01 6.25344753e-01 -6.05645850e-02 3.47088873e-01 6.70364678e-01 -9.33989659e-02 -3.85348707e-01 -7.09096193e-01 -4.94578987e-01 1.48438883e+00 1.26476452e-01 7.58577883e-02 -5.68078458e-01 -7.96720311e-02 1.33830166e+00 7.35515803e-02 1.75336853e-01 -5.56709826e-01 -7.16126680e-01 6.66357577e-01 7.08170176e-01 -4.10231017e-02 -5.34841120e-01 3.51525456e-01 1.36904985e-01 2.15046123e-01 1.09979188e+00 -1.52112082e-01 -5.67479849e-01 3.16165715e-01 -8.22677672e-01 3.81952465e-01 7.02949643e-01 8.89527202e-01 8.85327995e-01 1.98638856e-01 -9.22341496e-02 6.92233860e-01 5.25653183e-01 5.71291924e-01 -3.79699796e-01 -1.11686373e+00 2.96560675e-01 9.20252919e-01 -3.61228406e-01 -1.19137192e+00 -5.51508665e-01 -2.85157800e-01 -9.91655111e-01 4.69845414e-01 2.56567270e-01 -1.19466782e-01 -1.30722558e+00 1.75946867e+00 8.07348430e-01 7.32478261e-01 -4.47131842e-01 7.78288186e-01 1.27820897e+00 1.57615393e-01 -8.00080001e-02 1.77009925e-01 1.11255503e+00 -1.00210738e+00 -4.47115541e-01 -1.64662227e-01 1.26050234e-01 -7.37736881e-01 5.92005968e-01 -1.58516347e-01 -1.59589338e+00 -8.04620087e-01 -9.42632258e-01 -4.16272908e-01 -1.59867942e-01 4.36079912e-02 5.50384521e-01 2.80307293e-01 -1.42936087e+00 6.29491568e-01 -1.00578618e+00 -7.83106759e-02 1.15983641e+00 8.49452794e-01 -8.04821491e-01 -9.70042050e-02 -3.95375282e-01 6.03473485e-01 -2.52614766e-01 4.01592106e-01 -8.87885511e-01 -1.03647995e+00 -1.16335297e+00 1.14774942e-01 2.21480981e-01 -9.83560801e-01 1.14585543e+00 -7.25957215e-01 -1.56900334e+00 1.39094949e+00 -3.57703477e-01 1.34348676e-01 4.11448479e-01 -2.90506303e-01 -3.71775478e-02 7.82193393e-02 -4.70375754e-02 8.24470937e-01 1.01220965e+00 -1.18388605e+00 -2.70055234e-01 -8.60488653e-01 -9.02196318e-02 1.92396641e-02 -6.55514598e-02 8.41464326e-02 -9.68722343e-01 -4.54503477e-01 4.20381665e-01 -7.75455117e-01 -9.80288908e-02 7.49920130e-01 -4.10044402e-01 -3.89971107e-01 1.00849581e+00 -5.51893532e-01 4.53444481e-01 -1.93705320e+00 5.14698327e-01 3.72110218e-01 6.33943796e-01 3.17614228e-01 -4.33622360e-01 -8.07637274e-02 -2.43936613e-01 -3.44496709e-03 -1.39967412e-01 -1.11054504e+00 -5.22870310e-02 3.69112752e-02 1.44525468e-01 8.50050092e-01 7.01431274e-01 1.26301086e+00 -5.61932921e-01 -5.22589564e-01 2.99712241e-01 1.07123268e+00 -7.61158824e-01 5.30399263e-01 -2.27355853e-01 6.69298291e-01 -1.24268211e-01 9.44128454e-01 9.68613505e-01 -4.67648625e-01 1.72091424e-01 -4.37120169e-01 2.26278067e-01 1.88327998e-01 -9.39030886e-01 2.05106330e+00 -5.41561782e-01 4.40880299e-01 4.42605019e-01 -9.08444107e-01 9.02572215e-01 3.25558186e-01 6.87459767e-01 -7.17467427e-01 3.42788577e-01 -7.34536648e-02 -3.11874747e-01 -1.56525567e-01 -1.05565153e-01 1.03027552e-01 2.96700537e-01 5.12360990e-01 5.31827271e-01 -1.36906058e-01 -3.18620056e-01 -1.85097039e-01 6.43870115e-01 4.22584623e-01 4.28394377e-02 -1.44114673e-01 4.81042117e-01 -5.69559336e-01 5.07565081e-01 1.80668771e-01 1.31106272e-01 6.99160039e-01 5.03630877e-01 -9.64437068e-01 -1.20292127e+00 -1.03500414e+00 -7.24154478e-03 7.72621453e-01 -1.11141115e-01 -4.53198701e-01 -8.75575960e-01 -8.61980379e-01 4.60274696e-01 -3.37250620e-01 -8.76489937e-01 2.24018365e-01 -9.14899826e-01 -1.77538693e-01 5.18793285e-01 6.19072795e-01 5.45262635e-01 -7.81980217e-01 -6.18366934e-02 -1.13881491e-02 2.76091367e-01 -1.59912598e+00 -6.01526737e-01 -1.86162442e-01 -8.36744010e-01 -1.15621734e+00 -2.93259323e-01 -1.02764237e+00 1.10037911e+00 1.84413806e-01 1.39102221e+00 7.38178492e-01 -3.31801474e-01 2.35633373e-01 2.79426098e-01 -3.04421961e-01 -1.37220278e-01 1.37087762e-01 1.36990920e-01 8.38711113e-02 1.84380725e-01 -1.12365723e+00 -6.51755512e-01 2.05407992e-01 -5.02599418e-01 2.03357235e-01 2.95020968e-01 4.93502736e-01 7.92505801e-01 -4.13215131e-01 1.93061411e-01 -7.79466569e-01 2.07472876e-01 -1.81277305e-01 -8.75188172e-01 4.84966822e-02 -4.59354550e-01 -3.32659744e-02 4.45759445e-01 -2.05488890e-01 -5.21233141e-01 3.25778753e-01 -4.47291017e-01 -9.88065720e-01 -3.25640053e-01 9.78871286e-02 -3.33034486e-01 -6.91804588e-01 1.70742020e-01 -2.72883117e-01 4.54619527e-01 -6.54595792e-01 4.43194389e-01 3.42363000e-01 6.45443380e-01 -5.97463727e-01 1.11509645e+00 6.00625575e-01 6.31306410e-01 -5.64139783e-01 -9.58337367e-01 5.45786582e-02 -1.24962783e+00 -4.05710161e-01 9.39246714e-01 -1.10151458e+00 -1.00196505e+00 7.84402430e-01 -1.47924936e+00 -3.18068653e-01 7.71545470e-02 -3.43788229e-02 -4.58601743e-01 7.38752633e-02 -6.35958910e-01 -2.69122481e-01 -4.96617645e-01 -1.24318337e+00 1.68114209e+00 3.14764977e-01 4.48713414e-02 -9.91238832e-01 -1.73081577e-01 1.78106472e-01 2.58563936e-01 5.80021620e-01 7.56582677e-01 -2.64260411e-01 -6.12125158e-01 -2.76327550e-01 -4.94246602e-01 2.73384571e-01 2.70238757e-01 1.40505731e-01 -1.05697942e+00 -4.92480159e-01 -3.96636128e-01 -3.24193984e-01 5.08908153e-01 4.27176058e-01 1.36600828e+00 -3.61691594e-01 -2.34599620e-01 1.41190588e+00 1.25655222e+00 -3.69527102e-01 3.66564184e-01 -3.00763577e-01 1.35512710e+00 5.50525069e-01 4.66517806e-02 2.22071409e-01 4.83756274e-01 7.79083014e-01 7.77482748e-01 -5.52071571e-01 -4.48278099e-01 -3.39942425e-01 -1.45336971e-01 6.29182696e-01 -3.17795336e-01 2.82007247e-01 -8.57354164e-01 3.08318287e-01 -1.64226615e+00 -4.54006732e-01 1.36806697e-01 1.83326745e+00 5.23237109e-01 -1.53526366e-01 1.20415226e-01 -2.94648409e-01 6.25607550e-01 3.15580636e-01 -5.72777212e-01 -3.28730524e-01 1.68472052e-01 6.99622393e-01 2.40168437e-01 5.38213551e-01 -1.16115403e+00 1.12507308e+00 6.73171854e+00 3.12975049e-01 -1.14347124e+00 -1.97772495e-02 6.90023184e-01 -1.88593447e-01 -4.20797132e-02 -2.77190328e-01 -8.24318767e-01 1.51866656e-02 4.76590961e-01 3.03761154e-01 5.42577863e-01 5.89297533e-01 -1.39791802e-01 6.27896428e-01 -1.34386516e+00 1.19070542e+00 2.56366104e-01 -1.64773083e+00 2.43779153e-01 3.12519282e-01 9.09009933e-01 1.76657036e-01 6.69673383e-02 -2.84099251e-01 3.93962502e-01 -1.59671807e+00 6.75171435e-01 4.76516128e-01 1.12837040e+00 -9.91268992e-01 5.15186667e-01 -1.37145773e-01 -1.43109107e+00 2.44089603e-01 -1.32832468e-01 -6.06252886e-02 7.38965943e-02 4.03263301e-01 -7.30890274e-01 4.95060593e-01 8.41482997e-01 8.99617732e-01 -4.61949766e-01 6.74263477e-01 -1.53011084e-01 7.09605515e-02 -3.49304676e-01 6.40529633e-01 1.91185549e-01 -1.89906597e-01 3.73041034e-01 8.15919220e-01 2.85131693e-01 1.63948506e-01 1.59324229e-01 1.11727846e+00 -7.42335558e-01 -8.01414624e-02 -7.73885667e-01 4.84466553e-02 4.95580882e-01 1.48237777e+00 -6.34702146e-01 2.22306624e-02 -6.91962659e-01 7.78240383e-01 7.88140237e-01 1.73044056e-01 -6.65451765e-01 -3.20521407e-02 1.19129801e+00 2.03389913e-01 6.42773390e-01 -4.61211056e-01 -3.54309827e-01 -7.70556033e-01 8.73100385e-02 -6.40554309e-01 1.26842707e-01 -5.37254453e-01 -1.52404428e+00 7.22554445e-01 -3.12813401e-01 -9.44544375e-01 -1.04057722e-01 -6.34519160e-01 -5.61326861e-01 1.10894620e+00 -1.58941603e+00 -1.74287295e+00 -5.34110725e-01 9.06853795e-01 8.10366496e-02 -2.34720871e-01 7.71637201e-01 4.06185538e-01 -4.95820254e-01 8.41295898e-01 -6.91652834e-01 6.72065496e-01 3.44610751e-01 -8.79527032e-01 1.14928579e+00 5.88672757e-01 3.07961524e-01 4.27154899e-01 -2.64441855e-02 -6.53998971e-01 -1.53324485e+00 -1.35781205e+00 8.27133894e-01 -4.36296821e-01 1.40885398e-01 -5.62154531e-01 -7.85496473e-01 8.55343699e-01 7.41647333e-02 6.07683420e-01 4.90083963e-01 3.55648786e-01 -7.68970490e-01 -2.16369152e-01 -1.20714700e+00 5.77793956e-01 1.55236173e+00 -7.91046202e-01 -1.54362261e-01 2.62561768e-01 7.75655925e-01 -9.41331446e-01 -1.11739433e+00 6.97769403e-01 7.74673879e-01 -8.31667781e-01 1.42568541e+00 -8.87805045e-01 5.52513778e-01 -1.71696380e-01 -1.92651656e-02 -1.05179596e+00 -2.85050809e-01 -5.57127118e-01 -3.52155209e-01 8.60939026e-01 1.05456144e-01 -2.42425755e-01 9.08816457e-01 4.23541367e-01 -2.18654335e-01 -1.03137314e+00 -1.07290971e+00 -2.26449147e-01 3.28464173e-02 -3.38438392e-01 1.19392514e+00 8.60950053e-01 -7.23019302e-01 3.12940538e-01 -2.40711376e-01 4.78513837e-01 8.51126909e-01 2.37299412e-01 1.00833106e+00 -1.57549465e+00 2.69512177e-01 -6.22900128e-01 -6.83137894e-01 -1.00047874e+00 7.05041170e-01 -1.20259500e+00 -1.69177607e-01 -1.35859919e+00 5.09099755e-03 -2.78999686e-01 6.60958290e-02 7.68622816e-01 1.61858257e-02 7.85962999e-01 4.29052627e-03 -2.17419937e-01 -2.94350415e-01 4.31557864e-01 1.56424797e+00 -1.03602953e-01 -3.41273621e-02 -2.83787638e-01 -5.75161517e-01 8.40740681e-01 3.29961479e-01 -4.00817037e-01 -8.68196189e-02 -9.26764369e-01 -4.01458293e-02 2.45358869e-02 6.66159391e-01 -7.45952785e-01 3.55462700e-01 7.97865819e-03 9.12119627e-01 -7.23224819e-01 5.40418506e-01 -8.72873306e-01 9.94704515e-02 3.92404310e-02 -7.58813322e-02 3.34037811e-01 4.33528274e-01 3.18065763e-01 -1.44657111e-02 5.04346848e-01 9.16445017e-01 -8.33517835e-02 -1.42400861e-01 1.29516625e+00 5.64406812e-01 -1.12418294e-01 7.43805528e-01 -1.99909762e-01 5.51827885e-02 -1.83197752e-01 -7.11769044e-01 1.55912429e-01 6.43245399e-01 5.60755312e-01 8.48808169e-01 -1.60104692e+00 -7.89026618e-01 8.20817947e-01 -1.73652962e-01 7.00259089e-01 1.47541955e-01 6.62386656e-01 -5.82793891e-01 1.21772781e-01 -4.96177346e-01 -9.56673741e-01 -1.49996555e+00 1.62606969e-01 7.51332045e-01 -5.07780234e-04 -7.58961678e-01 1.05889237e+00 -2.54257247e-02 -8.52960706e-01 4.73765165e-01 2.86874305e-02 -1.64871886e-02 -2.53209859e-01 3.48706186e-01 -9.87286717e-02 2.94470549e-01 -1.03623712e+00 -4.19588447e-01 1.09512663e+00 -3.66954342e-03 2.75070339e-01 1.77152240e+00 1.43103257e-01 -5.45293391e-01 -1.16134830e-01 1.61231279e+00 -2.09139720e-01 -1.61875665e+00 -3.36760402e-01 -4.32576507e-01 -5.70111513e-01 1.98727220e-01 -4.13039774e-01 -1.99092913e+00 9.61571932e-01 4.37920928e-01 -2.36338928e-01 9.82839823e-01 2.20787197e-01 8.49628747e-01 1.48733184e-01 9.27831084e-02 -5.99401593e-01 2.19938919e-01 5.30403972e-01 8.80069315e-01 -1.04478145e+00 2.80676316e-02 -6.91391230e-01 8.07127208e-02 1.23935938e+00 8.74765217e-01 -4.66851771e-01 1.10014629e+00 5.89264214e-01 -6.67781057e-03 -8.07345629e-01 -5.21852195e-01 -1.70695797e-01 6.37216449e-01 5.84321499e-01 4.40407813e-01 -2.50681400e-01 4.11987841e-01 2.27598563e-01 -1.17575608e-01 -4.31235321e-02 -2.04833925e-01 8.81319761e-01 2.35318765e-01 -1.09483695e+00 -1.30863056e-01 2.56159753e-01 -4.02325869e-01 3.80824618e-02 -5.12853086e-01 8.22220087e-01 1.78582072e-01 4.63656843e-01 5.73441744e-01 -4.80738968e-01 4.75711077e-01 5.06020635e-02 1.00608301e+00 -5.41197062e-01 -5.24570107e-01 4.16590646e-02 -1.92102328e-01 -1.05383575e+00 -6.13623917e-01 -4.74034160e-01 -1.15453243e+00 -7.11516201e-01 1.18644699e-01 -3.37552398e-01 6.94835484e-01 9.73310709e-01 7.85246849e-01 4.44692016e-01 8.26836884e-01 -1.41426408e+00 -7.08998591e-02 -7.98191786e-01 -3.65335137e-01 3.97536635e-01 4.74090904e-01 -9.47995186e-01 -1.00977048e-01 -9.12913382e-02]
[13.235624313354492, 0.11884382367134094]
1cfc19b6-3822-4014-99da-c8c7c4037684
sat-size-aware-transformer-for-3d-point-cloud
2301.06869
null
https://arxiv.org/abs/2301.06869v1
https://arxiv.org/pdf/2301.06869v1.pdf
SAT: Size-Aware Transformer for 3D Point Cloud Semantic Segmentation
Transformer models have achieved promising performances in point cloud segmentation. However, most existing attention schemes provide the same feature learning paradigm for all points equally and overlook the enormous difference in size among scene objects. In this paper, we propose the Size-Aware Transformer (SAT) that can tailor effective receptive fields for objects of different sizes. Our SAT achieves size-aware learning via two steps: introduce multi-scale features to each attention layer and allow each point to choose its attentive fields adaptively. It contains two key designs: the Multi-Granularity Attention (MGA) scheme and the Re-Attention module. The MGA addresses two challenges: efficiently aggregating tokens from distant areas and preserving multi-scale features within one attention layer. Specifically, point-voxel cross attention is proposed to address the first challenge, and the shunted strategy based on the standard multi-head self attention is applied to solve the second. The Re-Attention module dynamically adjusts the attention scores to the fine- and coarse-grained features output by MGA for each point. Extensive experimental results demonstrate that SAT achieves state-of-the-art performances on S3DIS and ScanNetV2 datasets. Our SAT also achieves the most balanced performance on categories among all referred methods, which illustrates the superiority of modelling categories of different sizes. Our code and model will be released after the acceptance of this paper.
['Xiangyang Gong', 'Fangyu Liu', 'Chinwai Chiu', 'Yongping Xiong', 'Junjie Zhou']
2023-01-17
null
null
null
null
['point-cloud-segmentation']
['computer-vision']
[-2.66701542e-02 -1.83765128e-01 -6.69736192e-02 -3.55372548e-01 -8.46449971e-01 -2.87489653e-01 2.52958447e-01 7.83213675e-02 -3.64590168e-01 3.12529981e-01 -3.60381813e-03 -5.74421026e-02 -3.33272636e-01 -9.31391478e-01 -8.81984055e-01 -8.53499830e-01 -1.84033047e-02 6.67694449e-01 9.09849644e-01 -1.49218351e-01 5.33478260e-01 8.29694331e-01 -1.74242830e+00 3.32326740e-01 9.83599365e-01 1.34893978e+00 6.85873628e-01 4.77798253e-01 -4.76512462e-01 4.95996714e-01 -4.67939973e-01 -8.92119780e-02 3.59433949e-01 1.99464634e-01 -9.39266503e-01 6.91883117e-02 6.44717634e-01 -2.57432669e-01 -1.25688598e-01 8.74399006e-01 5.27119160e-01 2.47347102e-01 5.11766136e-01 -1.26716948e+00 -8.26626301e-01 6.08200669e-01 -9.65990305e-01 7.35470951e-01 -2.53430694e-01 2.17313305e-01 1.02074075e+00 -8.97191525e-01 2.34256759e-02 1.32229400e+00 4.19485599e-01 3.74646991e-01 -8.66293073e-01 -8.05155933e-01 6.47587597e-01 4.26312566e-01 -1.50246727e+00 -1.96739491e-02 7.12373257e-01 -3.53203744e-01 1.06313670e+00 2.68788666e-01 6.32492542e-01 3.45970333e-01 1.10418268e-01 9.15653110e-01 8.45908761e-01 -5.58515489e-02 1.65966377e-01 -5.24669476e-02 1.77963853e-01 4.47062224e-01 1.28242418e-01 -3.12116593e-01 -2.98978597e-01 1.05815502e-02 1.06893849e+00 3.24521124e-01 -1.71172112e-01 -3.10469329e-01 -1.14814806e+00 8.71014357e-01 9.60123718e-01 3.45630229e-01 -6.02185011e-01 2.84000516e-01 3.02147537e-01 -7.70445541e-02 3.67397934e-01 3.38545442e-01 -7.69602895e-01 3.00383031e-01 -8.26792657e-01 2.66931176e-01 1.24082521e-01 1.25439715e+00 9.14055169e-01 -1.24009453e-01 -6.03395641e-01 7.75029898e-01 2.27257922e-01 4.86675739e-01 6.09063387e-01 -6.65869474e-01 5.52296937e-01 8.31772864e-01 -1.88653409e-01 -8.54396045e-01 -3.27608347e-01 -6.45384073e-01 -6.82663977e-01 1.80484354e-01 1.17661864e-01 1.78654283e-01 -1.38767874e+00 1.47806275e+00 5.25494635e-01 3.44732851e-01 -3.55086923e-01 1.04110539e+00 1.04115164e+00 6.90322697e-01 3.46268505e-01 2.16636568e-01 1.50593233e+00 -1.34385192e+00 -2.63534874e-01 -3.29186827e-01 7.18498901e-02 -5.66662967e-01 1.11899292e+00 6.13127686e-02 -1.31858563e+00 -7.86906064e-01 -8.36826026e-01 -3.39373112e-01 -5.44544041e-01 -7.89567009e-02 7.22049892e-01 2.40965754e-01 -9.62185740e-01 3.77034873e-01 -7.31529653e-01 -2.23641530e-01 9.42001700e-01 8.02785277e-01 2.22574547e-03 1.34744599e-01 -8.75040233e-01 3.58201504e-01 2.65992224e-01 1.37610897e-01 -7.84850955e-01 -8.58516276e-01 -5.47506928e-01 4.36488599e-01 3.42057019e-01 -7.61225998e-01 1.17143953e+00 -1.09802306e+00 -1.23797035e+00 6.97506189e-01 -1.47873953e-01 -2.81146437e-01 1.76077619e-01 -2.37329870e-01 9.78383571e-02 2.24550694e-01 4.04168010e-01 9.65504408e-01 1.02007580e+00 -1.22807002e+00 -1.04471064e+00 -5.85054576e-01 5.61529174e-02 4.14587140e-01 -2.22867295e-01 -7.16237053e-02 -8.74525070e-01 -5.55421412e-01 3.20972830e-01 -5.46724737e-01 -3.37988168e-01 -1.18623443e-01 -3.05889994e-01 -5.24988413e-01 9.62549150e-01 -8.50150809e-02 1.15633976e+00 -2.09937572e+00 1.21927321e-01 1.01012997e-01 3.84336948e-01 3.06470603e-01 -1.62715822e-01 -8.29127952e-02 -7.92429224e-03 4.78084721e-02 -1.80148333e-01 -2.26310387e-01 -1.49000332e-01 2.09966674e-01 -2.64476538e-01 2.66506732e-01 3.66769552e-01 1.06573141e+00 -7.64930904e-01 -7.71642089e-01 3.95024449e-01 4.17366594e-01 -7.56324768e-01 1.54476270e-01 -7.99919590e-02 2.83941567e-01 -8.51967990e-01 8.61197650e-01 1.01110899e+00 -4.82445717e-01 -4.20437187e-01 -3.74855876e-01 -2.54204959e-01 1.14478260e-01 -1.11951780e+00 1.48234379e+00 -2.54596472e-01 1.85315698e-01 1.03118174e-01 -6.71040177e-01 8.43458652e-01 -1.47623777e-01 5.38555145e-01 -6.82794154e-01 3.62394184e-01 1.14470407e-01 -1.81392916e-02 -3.73192638e-01 6.72227919e-01 -1.11865755e-02 -5.06473407e-02 -1.78635102e-02 1.59673482e-01 -5.84808476e-02 -8.24482590e-02 1.07471757e-01 8.26536655e-01 -1.04804151e-01 1.11842021e-01 -4.56434399e-01 6.10995591e-01 -5.98187037e-02 5.50040603e-01 8.60760093e-01 -3.83111924e-01 8.52191389e-01 1.83240622e-01 -5.32581627e-01 -7.78944373e-01 -9.29277956e-01 -2.11205289e-01 1.45315373e+00 5.61016679e-01 -4.10584286e-02 -7.43887126e-01 -8.01223457e-01 2.10115224e-01 3.50611031e-01 -8.91864181e-01 -1.96790532e-03 -6.46002650e-01 -5.81113756e-01 5.54449707e-02 1.03110540e+00 6.62792385e-01 -1.39077139e+00 -8.36104631e-01 1.04343735e-01 -1.28737062e-01 -7.88778782e-01 -6.74558103e-01 3.64382356e-01 -7.69742608e-01 -9.59295452e-01 -7.83363879e-01 -9.52839077e-01 6.71862543e-01 6.64637804e-01 1.05499673e+00 2.41616532e-01 -9.48001817e-03 1.91148296e-01 -3.84047955e-01 -5.34694970e-01 5.37887335e-01 4.92964983e-01 -2.86391377e-01 2.52867401e-01 4.23085451e-01 -5.31295896e-01 -8.42345893e-01 4.35232252e-01 -9.54756081e-01 -1.58003092e-01 8.24844003e-01 5.56051195e-01 1.02471519e+00 -7.08637014e-02 4.68289077e-01 -7.43129909e-01 1.89951137e-01 -5.43541551e-01 -5.02722323e-01 1.34636909e-01 -3.76193732e-01 -2.02389732e-02 5.56404591e-01 -4.01835829e-01 -8.06785226e-01 -3.18338722e-02 -2.69152403e-01 -7.30648875e-01 -1.48914590e-01 -2.49468740e-02 -4.91191894e-01 -3.62478524e-01 1.34053063e-02 3.53742331e-01 -5.97797573e-01 -4.56420749e-01 3.25926363e-01 6.61932349e-01 4.94362444e-01 -7.10045695e-01 6.14003897e-01 6.01004839e-01 -2.48132139e-01 -5.91902196e-01 -8.45739722e-01 -6.21120155e-01 -7.87557364e-01 6.96120504e-03 1.05675614e+00 -8.01712871e-01 -7.55388379e-01 6.48223102e-01 -9.74358320e-01 -3.07242781e-01 -6.51750326e-01 1.87849388e-01 -4.83612508e-01 2.58015785e-02 -4.37836617e-01 -4.64285791e-01 -5.37675440e-01 -1.41025770e+00 1.46359575e+00 6.29782319e-01 4.25295115e-01 -6.29208028e-01 -2.16874734e-01 2.47721598e-01 5.26602447e-01 -6.87965453e-02 7.36386836e-01 -5.85666239e-01 -1.01977468e+00 1.98620304e-01 -6.75953388e-01 7.34881079e-03 -1.13104314e-01 -1.66693524e-01 -1.03954220e+00 -3.21699709e-01 -1.38240680e-01 -1.61618054e-01 1.14786088e+00 7.68658042e-01 1.80714154e+00 -4.36984636e-02 -5.24131477e-01 1.06747413e+00 1.48356092e+00 2.27972791e-01 6.69117630e-01 5.64211488e-01 1.02288580e+00 2.87015676e-01 6.31306767e-01 2.78706342e-01 5.42457521e-01 5.54717779e-01 8.11605752e-01 -3.30599576e-01 -1.43100381e-01 -2.34569851e-02 -2.54297584e-01 5.60971916e-01 -1.08336143e-01 -2.78496951e-01 -7.94882476e-01 9.12748516e-01 -1.78639269e+00 -8.26826990e-01 -2.00463980e-01 2.00280929e+00 3.63352537e-01 2.52796799e-01 4.48252670e-02 -1.41467497e-01 7.22944021e-01 2.68792689e-01 -7.45662749e-01 -2.96624482e-01 -6.98352680e-02 3.51968348e-01 7.88574874e-01 2.82876134e-01 -1.25353670e+00 1.01139832e+00 5.83872318e+00 1.19274151e+00 -1.29303956e+00 2.83321470e-01 7.53455758e-01 -1.11893155e-01 -2.25873828e-01 -1.06318220e-01 -1.00397551e+00 6.01102352e-01 3.68422359e-01 4.77460511e-02 1.33468717e-01 9.44823325e-01 -1.46522090e-01 9.02286470e-02 -6.78496540e-01 9.38587368e-01 1.67401060e-02 -1.22888863e+00 3.52671355e-01 -2.72452366e-03 7.31992304e-01 4.52745050e-01 1.38047174e-01 3.80808949e-01 8.67218673e-02 -8.73105466e-01 9.72727001e-01 4.15619224e-01 7.36549735e-01 -9.32716489e-01 6.92693770e-01 9.89687368e-02 -1.74058235e+00 -3.92806828e-01 -6.87963545e-01 1.89340129e-01 5.00773173e-03 3.11177731e-01 -3.27575743e-01 4.98590022e-01 1.15864003e+00 5.05241692e-01 -7.26225436e-01 1.28466368e+00 9.54186842e-02 4.58311170e-01 -4.15743530e-01 7.09118769e-02 6.13183439e-01 8.09714720e-02 5.02235651e-01 1.15569460e+00 1.65746048e-01 2.07229331e-01 2.37084284e-01 8.30404222e-01 -6.46781363e-03 1.11953475e-01 -1.53464908e-02 5.09067774e-01 5.48179507e-01 1.38884938e+00 -1.07777655e+00 -4.24144506e-01 -4.33494091e-01 8.41181874e-01 6.03519142e-01 1.77969381e-01 -8.81689489e-01 -4.86035258e-01 7.02492356e-01 3.99131536e-01 1.06863523e+00 7.85681307e-02 -4.92345929e-01 -8.14202011e-01 -1.10124968e-01 -4.80968416e-01 5.47217011e-01 -8.42276990e-01 -1.28379202e+00 9.47689891e-01 4.21387069e-02 -1.09445465e+00 5.28347433e-01 -5.53454459e-01 -7.85121620e-01 9.33586776e-01 -1.81481731e+00 -1.46515632e+00 -5.88693500e-01 7.62824178e-01 9.42570925e-01 9.46008116e-02 1.81086004e-01 3.99056941e-01 -5.44890404e-01 6.65251493e-01 -1.50797874e-01 -6.72131255e-02 3.72758210e-01 -1.38621402e+00 4.18373019e-01 5.85541189e-01 -2.07012728e-01 5.07317126e-01 1.87006593e-01 -5.40407002e-01 -1.05482566e+00 -1.28517854e+00 7.08034873e-01 -3.93453598e-01 4.54961568e-01 -2.29560718e-01 -1.14892590e+00 7.39997745e-01 4.92963083e-02 2.92862326e-01 2.32457116e-01 -1.35245770e-02 -1.49724320e-01 -3.00678819e-01 -1.09355438e+00 1.58544749e-01 9.97630656e-01 -8.57169330e-02 -5.76793492e-01 1.37816504e-01 1.01890337e+00 -5.92092514e-01 -7.05793679e-01 5.02278626e-01 2.96544999e-01 -8.84806216e-01 1.09860945e+00 -4.08528596e-01 3.50720942e-01 -5.15739620e-01 -2.79899865e-01 -9.45337892e-01 -1.05820680e+00 -1.71433419e-01 1.20766154e-02 1.30853558e+00 1.66262269e-01 -6.64010882e-01 7.71519184e-01 3.17548811e-01 -4.97476727e-01 -1.14024222e+00 -9.43358958e-01 -4.45317537e-01 1.42149329e-01 -2.25797489e-01 1.22767437e+00 7.70325959e-01 -7.06023455e-01 4.05610293e-01 1.16844833e-01 5.00599086e-01 5.67283630e-01 4.55866814e-01 5.43553352e-01 -1.14618421e+00 -1.66511193e-01 -7.52791166e-01 -4.88616765e-01 -1.37058711e+00 -2.86216468e-01 -7.91305840e-01 4.39209826e-02 -1.55572712e+00 5.16115010e-01 -7.95779109e-01 -6.44621193e-01 5.53488970e-01 -4.95657325e-01 2.39085048e-01 2.72151709e-01 3.33388656e-01 -8.71811867e-01 6.15924001e-01 1.43782043e+00 -2.40237549e-01 -2.77213365e-01 4.54813987e-02 -9.57410276e-01 6.84801400e-01 7.38958657e-01 -5.06839156e-01 -4.48831320e-01 -7.36209095e-01 -2.84862429e-01 -4.16299194e-01 5.01598835e-01 -1.19128633e+00 3.48149866e-01 -3.19470584e-01 4.90700662e-01 -1.16860306e+00 1.41067654e-01 -9.06392872e-01 -2.46951222e-01 1.84659347e-01 -8.31433386e-02 1.59788504e-01 3.56666058e-01 5.44192612e-01 -8.99959505e-02 -6.72606938e-03 8.64953160e-01 -1.87826842e-01 -9.32733476e-01 8.46688211e-01 1.03495538e-01 9.50482041e-02 1.10330093e+00 -3.69830072e-01 -2.46493429e-01 1.56298175e-01 -5.46938777e-01 6.00551844e-01 3.71883392e-01 4.70148772e-01 6.11816049e-01 -1.26173449e+00 -6.39442265e-01 4.29275960e-01 9.88581181e-02 6.19418979e-01 6.12538695e-01 7.38269091e-01 -4.24634367e-01 3.96974653e-01 -2.67781585e-01 -8.85233283e-01 -1.08194745e+00 7.64840364e-01 4.27785665e-01 -3.23993176e-01 -6.40970290e-01 1.28769255e+00 8.51143003e-01 -2.40229398e-01 1.34971917e-01 -5.37733734e-01 -3.99219692e-01 -1.22685678e-01 5.67116797e-01 3.27027351e-01 1.27746418e-01 -8.04602861e-01 -5.29195726e-01 9.94221807e-01 -3.96919996e-01 4.70010251e-01 1.39054453e+00 -2.36521840e-01 1.50055289e-02 2.19122082e-01 1.04183495e+00 -3.83363478e-02 -1.56840730e+00 -2.42880926e-01 -5.73812306e-01 -5.84302068e-01 3.41616452e-01 -6.34151101e-01 -1.55962193e+00 8.33225310e-01 6.16660297e-01 2.10423529e-01 1.48524761e+00 3.44083875e-01 9.64236021e-01 -1.35732695e-01 2.59023577e-01 -8.24257135e-01 -6.44668564e-03 5.22476912e-01 8.27575982e-01 -1.06653690e+00 -5.35494536e-02 -4.55858052e-01 -6.24922395e-01 7.10466743e-01 1.14596856e+00 -3.73196661e-01 6.06837869e-01 2.32519612e-01 -9.78601947e-02 -5.45480847e-01 -5.84147990e-01 -4.20320839e-01 4.70050812e-01 5.21869481e-01 2.62961704e-02 5.27296253e-02 -9.47827697e-02 6.99147642e-01 4.44665179e-02 -2.20435739e-01 -1.48532707e-02 8.53718102e-01 -7.38089561e-01 -6.81183279e-01 -5.39545834e-01 6.92963719e-01 -3.16909522e-01 -1.51629582e-01 -1.30021349e-01 7.98694968e-01 6.15277827e-01 6.03058934e-01 5.39643586e-01 -3.51875603e-01 4.72120166e-01 -3.74657571e-01 4.03946459e-01 -5.55824935e-01 -9.13716853e-01 7.51674101e-02 -7.50585735e-01 -6.47913635e-01 -3.67117882e-01 -6.43919468e-01 -1.43071914e+00 -2.50296861e-01 -4.90115911e-01 1.57099187e-01 3.75282347e-01 8.00453842e-01 4.99720871e-01 9.92173731e-01 6.20291114e-01 -1.19350970e+00 -2.94257611e-01 -8.49575341e-01 -5.70780396e-01 2.77825892e-01 4.64793980e-01 -8.22058320e-01 -1.97480798e-01 -2.59984732e-01]
[7.924476146697998, -3.3699522018432617]
d48338a5-0a2b-4e66-9adc-ddca46335359
attention-u-net-learning-where-to-look-for
1804.03999
null
http://arxiv.org/abs/1804.03999v3
http://arxiv.org/pdf/1804.03999v3.pdf
Attention U-Net: Learning Where to Look for the Pancreas
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.
['Nils Y. Hammerla', 'Kensaku Mori', 'Loic Le Folgoc', 'Steven McDonagh', 'Mattias Heinrich', 'Jo Schlemper', 'Daniel Rueckert', 'Ozan Oktay', 'Matthew Lee', 'Kazunari Misawa', 'Bernhard Kainz', 'Ben Glocker']
2018-04-11
null
null
null
null
['pancreas-segmentation']
['medical']
[ 5.08709669e-01 5.90903819e-01 -2.45846063e-01 -3.27940464e-01 -7.01913893e-01 -1.81749880e-01 1.47038713e-01 4.76829678e-01 -5.33071816e-01 4.26709324e-01 7.47003853e-02 -3.66156667e-01 7.89828449e-02 -6.86759830e-01 -8.06214094e-01 -8.16549063e-01 -1.49426207e-01 1.19020171e-01 4.34692472e-01 2.24136170e-02 -8.50855559e-02 5.65993726e-01 -9.01005149e-01 4.39602554e-01 7.54816771e-01 1.16989625e+00 5.72887719e-01 6.41722023e-01 1.88955903e-01 1.13425469e+00 -3.34604323e-01 -1.73433512e-01 1.94596291e-01 -3.12695146e-01 -9.01783884e-01 -1.88406810e-01 3.53075117e-01 -2.51417816e-01 -3.99285257e-01 1.19323754e+00 6.28446519e-01 2.12618083e-01 5.44235885e-01 -6.28763974e-01 -7.52850115e-01 6.12234056e-01 -4.63031560e-01 8.07642996e-01 -4.61075068e-01 -4.67152195e-03 9.48760331e-01 -6.80344820e-01 5.14593661e-01 9.11532044e-01 7.22856939e-01 6.35805249e-01 -1.16269374e+00 -4.26419765e-01 3.19678634e-01 -4.64233831e-02 -1.21932077e+00 -1.04696520e-01 7.95405447e-01 -2.47822687e-01 1.00550401e+00 4.29853678e-01 4.46536183e-01 8.37191582e-01 6.33191466e-01 1.05566204e+00 5.04468858e-01 -2.43283272e-01 5.75364567e-02 2.75322553e-02 2.63910145e-01 9.26810741e-01 4.00759459e-01 -1.58383414e-01 2.19197739e-02 -4.74422835e-02 1.12197292e+00 3.58814478e-01 -3.82758021e-01 -5.06681383e-01 -1.15334547e+00 9.26266015e-01 1.24955940e+00 4.95506376e-01 -5.87106109e-01 2.69319475e-01 6.32272959e-01 -6.84441626e-02 6.11037850e-01 4.91630495e-01 -5.08907676e-01 5.56180358e-01 -6.17697656e-01 -5.22749797e-02 1.79046884e-01 9.40982640e-01 3.86270642e-01 1.12353571e-01 -5.80821216e-01 8.17985952e-01 -1.62839547e-01 -2.79565305e-02 7.30840743e-01 -2.95057714e-01 2.28259698e-01 7.93909907e-01 -2.29070216e-01 -8.51575315e-01 -8.49636257e-01 -9.90981340e-01 -1.02178156e+00 1.44289955e-01 1.13475978e-01 -3.18077743e-01 -1.36185539e+00 1.52339411e+00 2.44308874e-01 1.32852763e-01 -7.03703985e-02 1.04541516e+00 1.40795326e+00 2.36018911e-01 5.21223366e-01 1.16945446e-01 1.33620560e+00 -1.35184073e+00 -5.76970637e-01 -3.97321701e-01 8.42589974e-01 -4.28292722e-01 9.60677743e-01 -4.50957678e-02 -1.05014360e+00 -4.40106541e-01 -1.07933342e+00 -3.96307141e-01 -1.98496804e-01 3.23743463e-01 6.86749518e-01 4.20781016e-01 -1.12287390e+00 5.74988127e-01 -1.04036486e+00 -2.64422864e-01 9.45298672e-01 7.25712419e-01 -1.83196679e-01 9.95924249e-02 -9.42452312e-01 8.71310234e-01 5.51217496e-01 1.33852780e-01 -1.15646958e+00 -7.78196335e-01 -9.84252751e-01 6.36710823e-01 2.95557171e-01 -7.16198683e-01 1.35825813e+00 -1.46461809e+00 -1.14228070e+00 7.59283125e-01 1.56401590e-01 -7.25734174e-01 4.47021216e-01 -2.65452921e-01 -6.59917947e-04 3.97994131e-01 -4.29499298e-02 8.53792548e-01 7.62222826e-01 -9.72866178e-01 -4.88800198e-01 -2.13543981e-01 1.65671587e-01 2.23875731e-01 -2.83011317e-01 -1.10076517e-01 -4.69931513e-01 -1.12312257e+00 1.89378753e-01 -8.62262070e-01 -8.36936653e-01 5.74084185e-02 -4.71475273e-01 9.54032317e-02 8.49482775e-01 -6.24525011e-01 1.03625774e+00 -1.93329358e+00 1.60878241e-01 7.19337084e-04 3.69867176e-01 3.16699058e-01 -1.15654148e-01 -3.16876203e-01 -3.52777898e-01 -4.47126999e-02 -3.01170260e-01 -5.65883890e-02 -6.89208984e-01 2.52226889e-01 1.79240063e-01 4.52574044e-01 3.30206871e-01 1.46327329e+00 -9.64563608e-01 -5.94595432e-01 4.31243718e-01 4.89571959e-01 -7.60043085e-01 9.84580591e-02 -7.24329874e-02 6.43401861e-01 -5.53345978e-01 7.36549258e-01 3.85677278e-01 -6.79667294e-01 1.42870590e-01 -1.90002352e-01 2.64803201e-01 1.27323121e-01 -4.64203775e-01 1.75226450e+00 -5.24190247e-01 3.90834302e-01 1.76674813e-01 -1.22358763e+00 6.58117592e-01 3.81139815e-01 5.87458134e-01 -6.76943779e-01 5.84376335e-01 6.90350085e-02 4.33646709e-01 -4.38363522e-01 3.38054329e-01 -1.72609165e-01 -7.94455707e-02 -1.08914180e-02 4.22986060e-01 4.36570019e-01 -6.06125705e-02 5.83973266e-02 8.80321085e-01 -1.98422715e-01 5.57256103e-01 -7.87998438e-01 5.92716694e-01 4.35108133e-03 4.43727225e-01 9.71608877e-01 -2.45355904e-01 6.47640526e-01 3.89984906e-01 -9.06776905e-01 -7.53747225e-01 -7.73100019e-01 -1.02099717e-01 1.31746387e+00 1.95465907e-01 -1.69360675e-02 -7.42670178e-01 -1.04836822e+00 -2.72458822e-01 2.83995003e-01 -1.14734423e+00 -1.96228564e-01 -7.87079573e-01 -8.30561996e-01 1.71136096e-01 9.18074191e-01 2.25563228e-01 -1.37357998e+00 -1.03819251e+00 2.70947218e-01 -4.69246805e-02 -9.04951930e-01 -4.97046888e-01 6.77835703e-01 -1.25125504e+00 -1.16509700e+00 -1.07685542e+00 -1.23073459e+00 1.32261825e+00 4.71004918e-02 1.20412827e+00 2.15295538e-01 -5.39947033e-01 2.64199916e-02 -3.32658648e-01 -5.15002489e-01 -2.03327298e-01 6.39064252e-01 -5.70476592e-01 -2.14869410e-01 6.54678419e-02 -2.76673883e-01 -9.79656696e-01 8.20978358e-02 -8.81676316e-01 3.80525321e-01 8.92503560e-01 1.19788218e+00 7.72668898e-01 -4.86408085e-01 5.10659099e-01 -1.28675508e+00 2.23765358e-01 -4.84914303e-01 -3.83051127e-01 6.40106648e-02 -1.88669980e-01 2.67471951e-02 7.00594544e-01 -4.10291910e-01 -9.40915108e-01 2.72679597e-01 -1.89401746e-01 -5.85117698e-01 -4.15730057e-04 5.90759456e-01 2.82107443e-01 -3.71338576e-01 5.59540868e-01 2.12258950e-01 -2.39030212e-01 -4.93121445e-01 5.96948061e-03 1.86961964e-01 6.22589231e-01 -1.78240955e-01 1.91349775e-01 5.21817744e-01 8.05215538e-02 -5.83851814e-01 -1.00715351e+00 -4.00870055e-01 -7.84017861e-01 4.20479253e-02 9.12714660e-01 -8.97455335e-01 -4.42646265e-01 1.17401183e-01 -8.21712673e-01 -3.35535794e-01 -3.69483769e-01 3.33864093e-01 -3.17956835e-01 5.68923950e-02 -8.83667886e-01 -2.86922604e-01 -8.96875620e-01 -1.33110881e+00 1.00868952e+00 4.55478907e-01 -2.26369694e-01 -1.13273895e+00 -3.70984197e-01 -7.97196552e-02 5.44808626e-01 4.87107664e-01 1.12498379e+00 -8.80441725e-01 -5.79027414e-01 -1.55889347e-01 -4.34924066e-01 2.07696319e-01 3.59076858e-01 -5.24388015e-01 -9.44185674e-01 -5.37205338e-01 -1.30791321e-01 -1.60446554e-01 1.15857935e+00 1.02386749e+00 1.79244053e+00 -3.81569326e-01 -5.11558414e-01 9.26363587e-01 1.41605687e+00 2.26565093e-01 3.81191820e-01 2.58535773e-01 7.79045403e-01 2.91802198e-01 3.04194808e-01 1.61113858e-01 -1.42038226e-01 3.13295215e-01 8.11722279e-01 -7.90947378e-01 -1.30773082e-01 1.10919029e-01 -2.31212541e-01 4.63541329e-01 -3.60337868e-02 3.81848123e-03 -9.78230059e-01 1.04791248e+00 -1.77604902e+00 -4.21418786e-01 6.75315708e-02 1.74467838e+00 5.55605114e-01 1.20625950e-01 -2.49568015e-01 -2.52938002e-01 6.52603924e-01 1.02270745e-01 -5.82409501e-01 -3.94461781e-01 2.50299960e-01 4.36917990e-01 7.94361532e-01 4.59699005e-01 -1.55998027e+00 7.95950532e-01 6.25113487e+00 7.37563372e-01 -1.52906859e+00 3.84437054e-01 1.25482035e+00 -3.03287148e-01 7.91408792e-02 -6.55748069e-01 -4.01815116e-01 1.38751805e-01 5.70973694e-01 -1.04939841e-01 -3.25999975e-01 1.13685286e+00 3.05019207e-02 7.09249377e-02 -1.07420897e+00 8.54413271e-01 -5.66776320e-02 -1.61255860e+00 1.54758409e-01 -3.97653162e-01 9.48233604e-01 3.57099265e-01 2.55369663e-01 3.16815794e-01 1.70061752e-01 -1.28536081e+00 4.54452097e-01 6.70836940e-02 8.52337837e-01 -8.16840529e-01 1.07391882e+00 2.99139060e-02 -9.50136721e-01 -1.67777449e-01 -3.45489889e-01 7.42730200e-02 -2.02703580e-01 6.30538836e-02 -9.97263014e-01 3.83470386e-01 9.07365143e-01 5.55939078e-01 -6.25897765e-01 1.12676275e+00 -1.48719372e-02 4.28459883e-01 -1.36616707e-01 3.56735475e-02 7.34423459e-01 3.69162798e-01 4.32086647e-01 1.40948200e+00 1.71968862e-01 2.03076020e-01 1.31317109e-01 6.29560888e-01 -2.47068420e-01 3.02790880e-01 -4.04979289e-01 2.43321165e-01 -1.71908215e-01 1.39576626e+00 -1.25599968e+00 -5.95912397e-01 -4.13318515e-01 9.68190134e-01 3.18748534e-01 2.73494124e-01 -8.74546766e-01 -2.43297711e-01 4.68299806e-01 2.04380244e-01 6.77127481e-01 3.75726998e-01 -6.87815309e-01 -9.17419314e-01 -2.52878398e-01 -4.48003232e-01 7.67699301e-01 -5.15927017e-01 -1.01406169e+00 9.40339386e-01 -1.66220114e-01 -1.16385281e+00 1.41916513e-01 -7.03687012e-01 -6.33755445e-01 6.92488253e-01 -1.67588711e+00 -1.30399585e+00 -4.65352356e-01 6.58218086e-01 6.18588805e-01 1.25039920e-01 9.03607547e-01 2.03869268e-01 -3.83552551e-01 6.07993066e-01 -2.09306292e-02 3.88125360e-01 3.49611402e-01 -1.20971000e+00 2.82971144e-01 7.14046597e-01 -1.09056912e-01 6.60121918e-01 4.73811418e-01 -5.40215969e-01 -5.96389949e-01 -1.56656659e+00 6.31716013e-01 -9.68475938e-02 2.64729708e-01 -2.58586735e-01 -8.94813240e-01 1.00120151e+00 2.63212889e-01 6.70461476e-01 5.92850208e-01 8.83258879e-03 1.31319475e-03 6.15883544e-02 -1.24146736e+00 4.64002162e-01 6.99985862e-01 -1.08087033e-01 -3.93850893e-01 4.47285026e-01 7.25712776e-01 -9.46092844e-01 -8.42498899e-01 6.25849009e-01 3.46347213e-01 -6.61636531e-01 1.13360059e+00 -7.44108379e-01 6.20413482e-01 5.45511656e-02 2.19665661e-01 -1.19944918e+00 -6.87580109e-01 -2.04952598e-01 -6.33059517e-02 2.22763106e-01 4.73929584e-01 -3.73221815e-01 9.30934548e-01 5.13553679e-01 -5.64761758e-01 -1.08801210e+00 -9.83626783e-01 -1.78430960e-01 1.81585982e-01 -5.26046613e-03 2.83714026e-01 1.00384200e+00 -2.02420384e-01 1.81227803e-01 -2.55029589e-01 2.95603871e-01 4.48760271e-01 1.67219788e-01 9.30948406e-02 -1.06521046e+00 -2.31915578e-01 -4.34868455e-01 -4.82835263e-01 -7.81255305e-01 -2.61992723e-01 -1.09955716e+00 -1.78187743e-01 -1.59273696e+00 4.33570772e-01 -2.05301836e-01 -1.00480950e+00 9.49372768e-01 -4.42392021e-01 6.22416317e-01 1.23659149e-01 2.79923584e-02 -6.55320227e-01 4.31851178e-01 1.60887659e+00 -3.32639277e-01 -2.15143099e-01 -2.73194909e-02 -7.90025175e-01 8.69279504e-01 7.26894557e-01 -5.31403065e-01 -4.23129022e-01 -5.53560257e-01 -4.61065710e-01 -5.82904033e-02 4.50002134e-01 -9.54855740e-01 6.74002916e-02 2.40468919e-01 8.28586221e-01 -5.17691374e-01 -1.64929390e-01 -9.40538406e-01 -2.16885760e-01 8.83033335e-01 -4.92740870e-01 -1.02511771e-01 6.72610581e-01 3.50968838e-01 -3.29434991e-01 -2.97925286e-02 1.18691111e+00 -4.56552982e-01 -7.23335385e-01 4.92546946e-01 -2.13553056e-01 -2.86921382e-01 1.21934342e+00 -2.29490013e-03 -3.02922120e-03 -1.35843113e-01 -1.31684744e+00 1.34749025e-01 1.45402208e-01 4.07937318e-01 5.71565509e-01 -1.16548908e+00 -4.71225142e-01 2.78236896e-01 1.60084873e-01 3.58878046e-01 6.55772746e-01 9.67657685e-01 -8.39814126e-01 8.13726008e-01 -3.83995146e-01 -8.27691078e-01 -1.29854810e+00 6.32181942e-01 7.30085373e-01 -7.14819074e-01 -8.75081420e-01 1.18868923e+00 1.01622880e+00 -2.77850181e-01 1.94279030e-01 -9.01370168e-01 -3.54931116e-01 -3.92382205e-01 6.42777741e-01 -1.87638372e-01 3.25851202e-01 -5.90074539e-01 -4.34604228e-01 6.64069504e-02 -5.18018425e-01 7.60070503e-01 1.49885798e+00 1.42560557e-01 2.16285586e-01 -1.35204524e-01 1.16390479e+00 -5.45098007e-01 -1.41315889e+00 -3.23391318e-01 -1.48788661e-01 -1.24271058e-01 4.87059921e-01 -9.22784567e-01 -1.61444485e+00 8.74785483e-01 7.66661584e-01 -2.82614231e-01 1.26470447e+00 4.96908799e-02 6.04014933e-01 9.91001725e-02 1.17561907e-01 -6.63486004e-01 5.30073531e-02 3.35813612e-01 9.81092811e-01 -1.30417824e+00 -2.74367556e-02 -3.55210334e-01 -6.37978971e-01 9.52241004e-01 9.60852444e-01 -3.68429154e-01 6.71277106e-01 3.49309176e-01 9.37261507e-02 -4.52106237e-01 -5.75993180e-01 -2.07738668e-01 5.00458360e-01 4.76656049e-01 5.98352909e-01 -6.66718036e-02 -1.18627571e-01 8.51469517e-01 3.04374367e-01 -6.45871460e-02 3.36167276e-01 9.87736702e-01 -3.60361665e-01 -6.22926593e-01 -9.14275274e-02 6.60636544e-01 -1.07535923e+00 -4.01195765e-01 -1.01965427e-01 8.60321045e-01 9.28606838e-02 1.78139836e-01 1.52376845e-01 1.68041456e-02 1.10334948e-01 -7.32393861e-02 4.15051520e-01 -8.30858588e-01 -1.03137708e+00 3.24758410e-01 -2.93525875e-01 -4.73350197e-01 -2.89907694e-01 -3.51488769e-01 -1.14090919e+00 2.37718657e-01 -2.65760601e-01 -6.60150871e-02 9.56484303e-02 5.96154094e-01 3.30282807e-01 1.15828824e+00 6.64418712e-02 -8.61848712e-01 -1.97041482e-01 -1.09723520e+00 -3.02845508e-01 4.43531543e-01 5.97157717e-01 -5.60482681e-01 2.76849747e-01 5.79970442e-02]
[14.679428100585938, -2.5836570262908936]
3e3e3e76-2aa7-40c3-85ff-ce3d549dc83c
extended-pipeline-for-content-based-feature
1805.05324
null
http://arxiv.org/abs/1805.05324v1
http://arxiv.org/pdf/1805.05324v1.pdf
Extended pipeline for content-based feature engineering in music genre recognition
We present a feature engineering pipeline for the construction of musical signal characteristics, to be used for the design of a supervised model for musical genre identification. The key idea is to extend the traditional two-step process of extraction and classification with additive stand-alone phases which are no longer organized in a waterfall scheme. The whole system is realized by traversing backtrack arrows and cycles between various stages. In order to give a compact and effective representation of the features, the standard early temporal integration is combined with other selection and extraction phases: on the one hand, the selection of the most meaningful characteristics based on information gain, and on the other hand, the inclusion of the nonlinear correlation between this subset of features, determined by an autoencoder. The results of the experiments conducted on GTZAN dataset reveal a noticeable contribution of this methodology towards the model's performance in classification task.
['Tina Raissi', 'Alessandro Tibo', 'Paolo Bientinesi']
2018-05-12
null
null
null
null
['music-genre-recognition']
['music']
[ 3.12550992e-01 -8.57297704e-02 4.44909632e-01 -1.82585746e-01 -3.32651615e-01 -5.93341589e-01 5.37680149e-01 4.64668244e-01 -4.18894380e-01 1.27914160e-01 1.53867468e-01 1.32743735e-02 -8.05891037e-01 -5.00544667e-01 2.91174725e-02 -6.95088983e-01 -3.85617971e-01 3.35508078e-01 1.69807911e-01 -4.70543683e-01 3.88289720e-01 5.23667812e-01 -1.83408463e+00 3.55119556e-01 2.87192822e-01 1.13748085e+00 -5.59725538e-02 6.27380192e-01 -1.27194235e-02 8.28997672e-01 -4.21330750e-01 -1.75460115e-01 1.13717817e-01 -5.14629245e-01 -7.47787654e-01 2.03009322e-01 -2.10818768e-01 -6.02706671e-02 1.35109171e-01 5.13780415e-01 3.93759876e-01 3.33190829e-01 4.62395370e-01 -6.88418269e-01 2.03868613e-01 8.29095840e-01 -1.39525771e-04 -1.29873291e-01 5.39157867e-01 -3.52673866e-02 1.24641633e+00 -8.22143376e-01 6.42833769e-01 7.85168529e-01 8.16295326e-01 -2.61764787e-02 -1.29268873e+00 -4.44879711e-01 -2.13064089e-01 1.74593970e-01 -1.17473543e+00 -4.96058315e-01 1.01425719e+00 -8.37313354e-01 7.30441153e-01 3.29577327e-01 1.18687439e+00 7.88175404e-01 -3.23436052e-01 5.35580575e-01 9.43916142e-01 -8.24373066e-01 2.83504844e-01 1.62387446e-01 5.74929595e-01 3.43294084e-01 -1.20104030e-01 2.74276704e-01 -8.25029254e-01 -4.85458486e-02 4.54904139e-01 -4.05149698e-01 -7.62017220e-02 -2.69691765e-01 -8.78387392e-01 6.69789255e-01 4.76689599e-02 9.08960760e-01 -6.86011910e-01 -3.54739845e-01 4.42512304e-01 4.74960059e-01 2.62613147e-01 7.08970845e-01 -3.40450883e-01 -4.37346995e-01 -1.27427423e+00 2.89356023e-01 8.48379672e-01 2.13787943e-01 5.80922008e-01 5.91525398e-02 -1.92649707e-01 7.15962827e-01 1.16410300e-01 -3.19298178e-01 6.32624745e-01 -7.17539430e-01 -1.09749675e-01 9.19470191e-01 -7.61371553e-02 -8.34148526e-01 -5.72942913e-01 -1.05827010e+00 -3.82463425e-01 2.98635840e-01 4.62969959e-01 -1.40275776e-01 -5.18422008e-01 1.39560807e+00 2.54079193e-01 3.94114777e-02 -5.43141849e-02 6.22497022e-01 5.05747914e-01 3.52830380e-01 -1.50580779e-02 -1.82661340e-01 1.32691014e+00 -5.24392545e-01 -5.27716041e-01 2.46890038e-01 3.07185322e-01 -7.14697778e-01 7.33180702e-01 7.58887053e-01 -8.47539902e-01 -9.07506883e-01 -1.21339834e+00 5.60344756e-02 -3.67597252e-01 4.85883981e-01 7.84058034e-01 3.72960806e-01 -7.17298925e-01 1.10617542e+00 -5.44726491e-01 -1.57426819e-01 -5.78888617e-02 4.04251099e-01 -2.35012054e-01 5.97036660e-01 -9.77783203e-01 5.99874437e-01 5.81429243e-01 2.83325404e-01 -4.14997399e-01 -5.45981884e-01 -5.61628640e-01 2.59579301e-01 1.72070846e-01 -3.20104480e-01 1.05055654e+00 -1.22050154e+00 -1.63464463e+00 5.98874927e-01 2.37092882e-01 -5.04287660e-01 4.24059153e-01 -2.24593043e-01 -1.51949555e-01 1.23592347e-01 -3.04471701e-01 3.15418869e-01 1.01094711e+00 -1.02770221e+00 -8.51052940e-01 -3.18543583e-01 -2.75599718e-01 2.21462265e-01 -6.37053013e-01 1.12233043e-01 -3.91230375e-01 -6.77407861e-01 2.90905058e-01 -8.69394720e-01 1.36822343e-01 -6.08324528e-01 -1.50255248e-01 -2.76315421e-01 5.68756461e-01 -9.59642112e-01 1.53266752e+00 -2.56814075e+00 4.53555375e-01 6.41477585e-01 4.16048653e-02 1.26188681e-01 2.74503410e-01 7.13333666e-01 -3.32459867e-01 -3.60785276e-01 -8.28388929e-02 -3.83809686e-01 1.02712803e-01 -2.58696467e-01 -3.30020905e-01 3.69869396e-02 3.31965357e-01 3.87324989e-01 -7.98156738e-01 -1.83946550e-01 2.19314083e-01 5.31117380e-01 -3.74168754e-01 8.59331489e-02 6.84952289e-02 5.57985008e-01 -2.98605621e-01 2.41466001e-01 2.43199952e-02 3.77832741e-01 2.21141800e-01 -2.76110172e-01 -5.03539443e-01 6.68297112e-01 -1.45953929e+00 1.44640005e+00 -1.54317603e-01 7.48676360e-01 -5.12398817e-02 -8.01025748e-01 1.19671428e+00 4.86262560e-01 7.67764807e-01 -1.99228480e-01 4.71793860e-01 3.28531653e-01 2.20348224e-01 -3.13928872e-01 6.71582103e-01 -4.59050909e-02 -4.77816956e-03 3.61481816e-01 4.26921278e-01 4.44502123e-02 5.70998490e-01 -7.71856755e-02 7.69325674e-01 6.58235431e-01 3.34708184e-01 -3.58296894e-02 5.72476208e-01 1.78355187e-01 4.55092221e-01 3.19753855e-01 8.39841142e-02 5.38585007e-01 5.48270404e-01 -5.04224479e-01 -7.31918335e-01 -4.81909513e-01 -9.65553671e-02 8.85003090e-01 -5.25996149e-01 -7.01448619e-01 -7.75773644e-01 -2.66894877e-01 -1.74716964e-01 4.59314167e-01 -6.93373144e-01 -2.03087151e-01 -3.93631160e-01 -6.37543559e-01 4.37374502e-01 1.22634225e-01 2.33388752e-01 -1.35822594e+00 -1.00477636e+00 5.40229261e-01 -1.18830420e-01 -6.59635663e-01 1.45274773e-01 6.97179496e-01 -9.27918017e-01 -8.89686525e-01 -3.36434901e-01 -5.42794347e-01 4.34644930e-02 -2.80011237e-01 8.27486455e-01 -3.22656035e-02 -2.48341590e-01 5.27567156e-02 -6.58265293e-01 -5.64129114e-01 -3.29638243e-01 1.55850977e-01 -1.73615724e-01 3.82725656e-01 3.62211645e-01 -8.60879123e-01 -4.00472075e-01 -1.31689951e-01 -6.59499168e-01 2.53430139e-02 6.59138858e-01 7.67418861e-01 3.47431064e-01 2.44646862e-01 5.04714251e-01 -4.98331010e-01 8.79646361e-01 -9.63406637e-02 -3.90515864e-01 -5.40850498e-02 -4.27860469e-01 -1.59359187e-01 4.16369587e-01 -5.87174296e-01 -7.96215296e-01 4.13761348e-01 -2.37173319e-01 -2.29556248e-01 -7.31671229e-02 7.67749906e-01 1.42414197e-01 9.29204822e-02 5.35448968e-01 4.26104784e-01 -1.62823442e-02 -7.37387657e-01 1.58462465e-01 7.71642804e-01 4.32340801e-01 -3.25734049e-01 6.72621071e-01 5.04258834e-02 -6.56911656e-02 -1.05570412e+00 -3.81972671e-01 -6.64024115e-01 -1.13812613e+00 -5.26034296e-01 5.89045584e-01 -6.27085209e-01 -7.01238453e-01 5.88530004e-01 -7.80078232e-01 -1.51447818e-01 -8.11964512e-01 7.09578454e-01 -3.74298960e-01 2.09545732e-01 -5.15113771e-01 -9.87824321e-01 -3.86843681e-01 -8.58040869e-01 7.16392756e-01 1.78793252e-01 -7.09842622e-01 -5.81851423e-01 2.33119100e-01 2.01095626e-01 1.46495014e-01 1.88414708e-01 9.57853496e-01 -1.01417375e+00 -1.83348835e-01 -5.75905085e-01 4.13550824e-01 5.45921683e-01 -2.03514826e-02 2.59802312e-01 -1.28080869e+00 -8.25066213e-03 3.07167202e-01 1.06942523e-02 6.56623662e-01 2.73464262e-01 6.84861422e-01 2.42142200e-01 2.11006310e-02 5.27795792e-01 1.13508236e+00 4.43063110e-01 4.36316073e-01 4.07767266e-01 2.11143091e-01 7.97484815e-01 4.39754128e-01 5.39901972e-01 1.13464974e-01 8.12289119e-01 1.25321612e-01 -7.05467444e-03 -1.55685097e-01 -1.04675712e-02 3.47344786e-01 1.08658397e+00 -2.77419776e-01 3.55743229e-01 -7.60153949e-01 3.94123048e-01 -1.64077413e+00 -9.12599623e-01 -2.20149290e-02 2.32039094e+00 4.82209980e-01 4.31140631e-01 4.70218271e-01 1.17499340e+00 2.75643200e-01 -1.76779360e-01 4.98909620e-04 -5.65788746e-01 1.07127830e-01 3.56709421e-01 -1.63402155e-01 2.71795541e-01 -1.16899800e+00 7.03626215e-01 6.28353500e+00 5.38220525e-01 -1.25878191e+00 -4.05866474e-01 6.66166767e-02 5.29211946e-03 1.73554987e-01 2.28080258e-01 -5.53132713e-01 3.05419445e-01 7.80316472e-01 1.50563642e-01 5.25846660e-01 5.13034284e-01 2.06555620e-01 -1.60440698e-01 -9.82020855e-01 6.83554232e-01 -2.39122540e-01 -9.91614878e-01 -1.33398190e-01 -1.23955071e-01 1.27415031e-01 -4.31258082e-01 -2.51648664e-01 3.54362130e-01 -4.06025983e-02 -5.59753716e-01 1.09850359e+00 7.54687250e-01 2.18854353e-01 -7.46341228e-01 6.76157653e-01 2.83211231e-01 -1.22715867e+00 -6.44223332e-01 2.37472728e-01 -3.90218019e-01 -1.64433196e-01 5.96087992e-01 -8.42417657e-01 9.16357815e-01 5.50586700e-01 6.77278519e-01 -5.20930231e-01 1.13675392e+00 -1.71468675e-01 8.11243117e-01 -2.10351840e-01 3.28551568e-02 1.53351143e-01 -4.02663589e-01 8.21000695e-01 1.44334579e+00 2.73250937e-01 -2.13068798e-01 -4.55142781e-02 5.72670341e-01 4.42459375e-01 3.80260497e-01 -2.98236340e-01 -5.59828952e-02 5.05944252e-01 1.42628527e+00 -8.91698539e-01 -7.61871636e-02 -1.24688847e-02 6.87592268e-01 9.99739915e-02 3.36217731e-02 -3.64421964e-01 -6.26097500e-01 1.37459397e-01 5.39135225e-02 5.56577682e-01 -3.41496617e-01 -4.54410672e-01 -7.31255770e-01 1.14227712e-01 -1.13664472e+00 3.55026633e-01 -5.83189726e-01 -7.20759690e-01 8.16265821e-01 -8.96195918e-02 -1.27471805e+00 -6.31408095e-01 -2.73145169e-01 -6.43492043e-01 1.02868426e+00 -9.56554055e-01 -1.27957141e+00 -1.56421617e-01 4.15462762e-01 2.66629666e-01 -2.53132313e-01 1.16790509e+00 3.12595308e-01 -5.69541872e-01 1.04972646e-01 -4.62662540e-02 1.04451448e-01 3.08911562e-01 -1.32841969e+00 -5.91792800e-02 9.44496751e-01 5.26343226e-01 6.23555660e-01 6.38975918e-01 -4.87009794e-01 -9.51229632e-01 -4.35635507e-01 1.12825823e+00 2.97998311e-03 7.07772493e-01 -3.83508146e-01 -6.37092948e-01 2.05643401e-01 4.53457516e-03 -7.00725794e-01 7.09910214e-01 3.53358150e-01 8.98809265e-03 -3.54334891e-01 -5.35921276e-01 3.43623757e-01 5.31253934e-01 -6.12810910e-01 -9.80181396e-01 -3.60334545e-01 3.96113507e-02 5.17576747e-03 -9.85356510e-01 2.88388669e-01 1.12106311e+00 -1.03666127e+00 7.33905256e-01 -2.25777358e-01 1.83882937e-01 -3.83915842e-01 1.98618263e-01 -1.13912344e+00 -4.82380033e-01 -9.43295956e-01 1.48376748e-01 1.59226048e+00 3.87727797e-01 -1.12035558e-01 4.20840859e-01 5.29841855e-02 -3.94063815e-02 -5.36083162e-01 -8.05424571e-01 -3.82524848e-01 -5.59839487e-01 -6.73458815e-01 2.65429229e-01 7.53769457e-01 3.34987670e-01 5.83870649e-01 -2.08046556e-01 -3.83702189e-01 3.73288929e-01 3.12632591e-01 6.28282726e-01 -1.74086285e+00 -5.56578219e-01 -5.68190038e-01 -4.75442350e-01 -4.65296984e-01 -4.23479587e-01 -7.74109840e-01 6.47042831e-03 -1.14301372e+00 -1.12228513e-01 -3.35663378e-01 -5.57486057e-01 3.73629242e-01 3.13855931e-02 2.37855226e-01 3.54767889e-01 3.56267512e-01 -6.55592233e-02 1.87937140e-01 6.01930082e-01 2.79883146e-01 -7.07748592e-01 2.55342841e-01 -5.43702781e-01 8.08890879e-01 5.80563664e-01 -3.86034936e-01 -3.44428837e-01 1.91055227e-03 2.22443655e-01 -1.40313745e-01 1.92081600e-01 -1.47735131e+00 2.05709800e-01 3.86175871e-01 4.03973788e-01 -6.45031869e-01 5.31515241e-01 -7.38890767e-01 4.33025330e-01 4.89388555e-01 -3.43534797e-01 -1.33795008e-01 1.64273858e-01 1.68935452e-02 -5.56876540e-01 -3.77927035e-01 4.10521179e-01 1.60406500e-01 -6.09201431e-01 -3.59533727e-01 -4.88326848e-01 -6.88669503e-01 6.96442187e-01 -3.84757727e-01 4.31878179e-01 -2.58946776e-01 -1.23575139e+00 -3.11125904e-01 -6.64702132e-02 2.71568120e-01 2.35952318e-01 -9.28691328e-01 -5.93774140e-01 4.80558574e-01 -1.65155992e-01 -4.09927547e-01 9.39805284e-02 9.13508832e-01 -2.74116874e-01 2.57526219e-01 -4.52339172e-01 -3.89838219e-01 -1.44051898e+00 1.27451196e-01 3.43375742e-01 -6.40958607e-01 -6.01361811e-01 6.90930724e-01 -3.13347548e-01 9.50835049e-02 3.36078048e-01 -2.42167875e-01 -9.25972998e-01 8.75864804e-01 3.70841205e-01 3.82321775e-01 4.38235164e-01 -7.15563238e-01 -2.24998608e-01 5.95958948e-01 3.56577665e-01 -4.27941740e-01 1.83710265e+00 -3.22447531e-02 -1.29883289e-01 8.41441095e-01 6.33416891e-01 1.51386932e-01 -1.07548177e+00 1.92067679e-02 5.43846488e-01 -7.06693297e-03 2.10396707e-01 -9.26888883e-01 -6.64414048e-01 7.00882375e-01 6.11590326e-01 5.87050438e-01 1.39362752e+00 -4.95883375e-01 2.00502157e-01 1.13212608e-01 6.54518157e-02 -1.20445120e+00 -1.75341621e-01 6.17771208e-01 8.37680876e-01 -4.22891349e-01 1.25173731e-02 -2.66117215e-01 -4.11645055e-01 1.59050930e+00 -1.11092560e-01 -1.27442062e-01 7.48136878e-01 3.24814439e-01 -7.05863461e-02 -2.68900841e-01 -7.54227400e-01 -4.32827383e-01 6.17894053e-01 2.89714724e-01 5.77090502e-01 -7.72321373e-02 -6.43736720e-01 1.06109321e+00 -5.06374657e-01 2.92708546e-01 1.01212762e-01 7.68569529e-01 -3.26437414e-01 -1.33085132e+00 -2.92214870e-01 1.55700058e-01 -4.76886362e-01 2.55611110e-02 -5.94101846e-01 8.68712187e-01 5.47476113e-01 9.75794435e-01 -2.00537369e-02 -8.11195314e-01 5.09767234e-01 5.83551228e-01 3.86688888e-01 -3.62127125e-01 -1.29895437e+00 5.30029893e-01 2.40407363e-01 -2.08890244e-01 -3.40520293e-01 -1.00983632e+00 -7.60377169e-01 3.33802432e-01 -3.46195728e-01 2.73848176e-01 9.94261146e-01 9.72023606e-01 7.67764151e-02 9.80230451e-01 7.69418240e-01 -1.07565963e+00 -4.21003520e-01 -1.24082303e+00 -4.48874950e-01 4.98305976e-01 8.53154436e-02 -4.78731811e-01 -1.45222187e-01 2.84407973e-01]
[15.817154884338379, 5.334970474243164]
fbc0554d-c8ae-4641-9623-12200c2054db
wider-face-and-pedestrian-challenge-2018
1902.06854
null
http://arxiv.org/abs/1902.06854v1
http://arxiv.org/pdf/1902.06854v1.pdf
WIDER Face and Pedestrian Challenge 2018: Methods and Results
This paper presents a review of the 2018 WIDER Challenge on Face and Pedestrian. The challenge focuses on the problem of precise localization of human faces and bodies, and accurate association of identities. It comprises of three tracks: (i) WIDER Face which aims at soliciting new approaches to advance the state-of-the-art in face detection, (ii) WIDER Pedestrian which aims to find effective and efficient approaches to address the problem of pedestrian detection in unconstrained environments, and (iii) WIDER Person Search which presents an exciting challenge of searching persons across 192 movies. In total, 73 teams made valid submissions to the challenge tracks. We summarize the winning solutions for all three tracks. and present discussions on open problems and potential research directions in these topics.
['Jian-Feng Wang', 'Yiheng Liu', 'Shiying Luo', 'Nikolay Sergievskiy', 'Boyan Zhou', 'Bingpeng Ma', 'Cheng Chi', 'Shifeng Zhang', 'Zuoxin Li', 'Ping Luo', 'Yuanjun Xiong', 'Ye Yuan', 'Xilin Chen', 'Wengang Zhou', 'Shuai Shao', 'Quanquan Li', 'Qiaokang Xie', 'Peng Cheng', 'Mingjun Sun', 'Lin Chen', 'Dongzhan Zhou', 'Dong Chen', 'Artem Vasenin', 'Zhen Lei', 'Yongjun Li', 'Yirong Mao', 'Xiang Ming', 'Stan Z. Li', 'Ruiping Wang', 'Hua Yang', 'Hongkai Zhang', 'Artem Kukharenko', 'Wu Liu', 'Wanli Ouyang', 'Shiguang Shan', 'Qiling Xu', 'Huaxiong Li', 'Hong Chang', 'Gang Yu', 'Chen Change Loy', 'Boxun Li', 'Ziyang Wu', 'Yuan Hong', 'Wei Xia', 'Tao Mei', 'Shuo Yang', 'Qingqiu Huang', 'Liangqi Li', 'Lei Lu', 'Junjie Yan', 'Fangyun Wei', 'Dahua Lin']
2019-02-19
null
null
null
null
['person-search']
['computer-vision']
[-1.18387774e-01 -2.05834076e-01 1.42957807e-01 -3.91533345e-01 -7.35981584e-01 -5.69642544e-01 6.30864620e-01 -4.66376603e-01 -4.24565315e-01 5.68631709e-01 2.64101118e-01 2.00383380e-01 2.70784676e-01 -3.66255701e-01 -5.10428011e-01 -3.63311261e-01 -1.65929988e-01 4.84489143e-01 -3.25051211e-02 -5.14700934e-02 9.61548164e-02 5.41261971e-01 -1.99537098e+00 5.31530380e-01 8.82224441e-02 1.09865832e+00 -2.78875649e-01 7.97838092e-01 3.04325074e-01 3.62848014e-01 -5.73580921e-01 -1.13709867e+00 4.15449500e-01 -1.13720894e-01 -9.33606625e-01 9.60558131e-02 1.47621703e+00 -5.18625081e-01 -4.52558428e-01 1.08598781e+00 9.99225020e-01 2.41287053e-01 3.68427217e-01 -1.54992032e+00 -5.89215457e-01 2.12228224e-01 -8.73949170e-01 6.24476910e-01 8.43606055e-01 1.34937510e-01 7.24859655e-01 -1.54139125e+00 5.85299313e-01 1.82564867e+00 8.72959733e-01 8.95774841e-01 -7.15513945e-01 -7.32065558e-01 3.80043596e-01 4.12520438e-01 -1.81871116e+00 -1.24394965e+00 -2.06171703e-02 -4.68971401e-01 8.37671936e-01 4.71017480e-01 7.29343891e-01 1.21789467e+00 -6.54312015e-01 8.39801311e-01 7.15139627e-01 -4.18704778e-01 -2.08845168e-01 2.44040340e-01 1.51566379e-02 7.63668478e-01 2.95718700e-01 -3.81773412e-02 -9.30027902e-01 -3.90555263e-01 6.13307774e-01 -5.33254504e-01 5.42551987e-02 4.29149382e-02 -9.45867538e-01 5.98134041e-01 8.50550160e-02 -1.09035581e-01 -1.33482218e-02 -9.62255970e-02 5.56399345e-01 -2.01283172e-01 4.13395524e-01 1.93307236e-01 -1.55391991e-01 3.44451959e-03 -8.50951850e-01 6.57382846e-01 6.70638859e-01 1.09940696e+00 2.19592899e-01 -1.88519642e-01 -3.87169242e-01 9.31231022e-01 4.55902755e-01 6.03319466e-01 -2.33577371e-01 -1.11672795e+00 2.79068589e-01 1.03525154e-01 3.70348126e-01 -9.35784400e-01 -3.12630743e-01 -1.02396071e-01 -2.71096975e-01 1.75817862e-01 6.70157671e-01 -2.65038043e-01 -4.74588394e-01 1.54585910e+00 7.84120739e-01 2.23330453e-01 -6.32227540e-01 8.92935932e-01 1.63814950e+00 2.57565409e-01 2.07240582e-01 -2.09385566e-02 1.90367365e+00 -9.79758620e-01 -4.66801584e-01 -3.18011194e-01 -1.86365828e-01 -1.06897235e+00 3.79154444e-01 1.51105836e-01 -1.35321701e+00 -6.55225873e-01 -6.34549677e-01 -1.77255347e-01 -4.85042781e-01 5.77404439e-01 5.69521129e-01 1.12148631e+00 -1.41192830e+00 6.11401536e-03 -4.55040038e-02 -9.58242595e-01 8.15015733e-01 6.68791950e-01 -4.75329250e-01 -1.01034753e-01 -8.68303418e-01 9.41425741e-01 -4.06073421e-01 1.29605174e-01 -7.08031058e-01 -7.08400548e-01 -7.87687600e-01 -1.88125506e-01 3.81069392e-01 -8.59149337e-01 1.29120052e+00 -5.96680939e-01 -1.12706578e+00 1.78987920e+00 -6.23419940e-01 -2.35058591e-01 6.10128582e-01 -4.02110726e-01 -7.18704641e-01 1.98550001e-01 3.77753645e-01 1.10299742e+00 9.26129997e-01 -8.55677962e-01 -1.08415687e+00 -5.07406831e-01 -8.82890001e-02 1.83128268e-01 -3.60776663e-01 1.13371038e+00 -8.84374738e-01 -3.89432311e-01 -4.89877939e-01 -7.66728520e-01 6.45863414e-02 3.95893246e-01 -3.82231534e-01 -5.62632024e-01 6.87633336e-01 -8.03553522e-01 8.65719616e-01 -1.97322702e+00 -1.74981490e-01 -6.96983784e-02 4.79269892e-01 5.05199850e-01 -1.34359658e-01 1.53419301e-01 3.65964044e-03 -5.04220873e-02 6.99352860e-01 -8.99727285e-01 9.08414945e-02 -4.79429901e-01 -1.90774247e-01 7.84421802e-01 5.57134151e-02 8.91908526e-01 -7.63692021e-01 -6.57094479e-01 1.49930030e-01 5.17693877e-01 -1.60613820e-01 -7.78442621e-03 3.71424794e-01 2.95815498e-01 -1.81501955e-01 1.23068142e+00 1.14297462e+00 1.35691054e-02 1.73598528e-04 -3.57287794e-01 -3.14498305e-01 9.25248265e-02 -1.31965482e+00 1.03773510e+00 2.30936497e-01 6.52918577e-01 7.62727022e-01 -5.79228938e-01 5.73271096e-01 1.76232681e-01 3.85704160e-01 -1.95592895e-01 6.45078197e-02 -1.36605263e-01 -3.86742383e-01 -3.06743056e-01 5.50661206e-01 2.59656191e-01 6.45374879e-02 1.15910113e-01 8.55579674e-02 6.25495076e-01 3.06322455e-01 2.00173467e-01 8.28498542e-01 5.58486059e-02 2.43097812e-01 -3.48995209e-01 8.79899561e-01 -4.36255813e-01 4.20061678e-01 8.48011792e-01 -9.55329120e-01 6.57834232e-01 5.92137016e-02 -8.82317007e-01 -7.62342453e-01 -1.19060779e+00 -1.53122559e-01 1.47073448e+00 2.24288236e-02 -6.58180654e-01 -9.47629929e-01 -7.13599682e-01 2.89442301e-01 -3.30661774e-01 -9.44998085e-01 4.85763252e-01 -5.26097596e-01 -7.23625958e-01 8.03061485e-01 5.12310743e-01 5.93707442e-01 -9.32574213e-01 -2.38906056e-01 -5.48074126e-01 -5.89576900e-01 -1.47774100e+00 -8.83848071e-01 -7.37248957e-01 1.17951579e-01 -1.26856065e+00 -1.00345218e+00 -9.33568835e-01 6.41271710e-01 4.92390186e-01 1.32814968e+00 2.78791159e-01 -8.94101799e-01 8.41605186e-01 -7.39579946e-02 -5.92273831e-01 2.20517993e-01 -1.33484647e-01 6.62101984e-01 2.21169621e-01 8.13861847e-01 1.54301286e-01 -6.21361136e-01 6.36551380e-01 1.88079029e-01 -4.83896464e-01 9.06445682e-02 4.35196310e-01 2.36728474e-01 -3.73734176e-01 5.78433216e-01 -3.80116761e-01 2.56632000e-01 -2.89088547e-01 -6.23646975e-01 4.46035832e-01 5.52615747e-02 -8.57619226e-01 -6.93460032e-02 -1.30895853e-01 -1.05356455e+00 3.54873747e-01 -4.31159914e-01 -1.36201099e-01 -2.70396918e-01 -6.36263609e-01 -3.20030749e-01 -7.84105539e-01 6.47790790e-01 -4.45143133e-02 -7.36885667e-02 -4.60052282e-01 2.41100758e-01 6.15605712e-01 8.39057088e-01 -7.00206578e-01 6.79886222e-01 7.52645552e-01 -1.11090533e-01 -1.14853370e+00 -9.24541593e-01 -9.52822626e-01 -6.88195407e-01 -6.34568036e-01 9.34053898e-01 -1.10819983e+00 -1.23146331e+00 7.44477093e-01 -1.25982666e+00 1.21985108e-01 -8.63406435e-02 -6.81555597e-04 -2.54119068e-01 4.86754566e-01 -6.81540668e-01 -1.21391606e+00 -4.77817744e-01 -8.39020193e-01 1.47082281e+00 5.49024761e-01 -4.44401443e-01 -4.99054462e-01 -9.93612781e-02 7.08415866e-01 2.17127204e-01 1.89275786e-01 -2.76947469e-01 -2.00374693e-01 -3.71988803e-01 -1.91024601e-01 -5.55635929e-01 -5.83382742e-03 -9.83019620e-02 2.58816063e-01 -1.35216808e+00 -4.79981065e-01 -4.84959692e-01 -5.20234287e-01 1.02413344e+00 5.64327776e-01 9.46081460e-01 -1.45278692e-01 -8.43052089e-01 5.88496149e-01 7.53448784e-01 -2.13419080e-01 6.61107719e-01 3.22201163e-01 4.37255353e-01 1.04274082e+00 5.82678795e-01 7.10820436e-01 5.27866304e-01 9.82262850e-01 3.04010630e-01 -1.08920321e-01 -3.87343705e-01 -5.81339970e-02 1.94176927e-01 -1.01937808e-01 -4.79089141e-01 7.51591623e-02 -7.26650655e-01 6.00668430e-01 -1.78003931e+00 -1.38910389e+00 -3.24460745e-01 2.12586975e+00 3.70931059e-01 -3.23663503e-01 1.09546053e+00 -2.41270319e-01 1.34893429e+00 -1.91686880e-02 -2.02378288e-01 -2.56938823e-02 -3.34285676e-01 1.51500374e-01 8.25295225e-02 2.78633326e-01 -1.82057154e+00 9.88243997e-01 8.19377327e+00 7.12163031e-01 -5.02765954e-01 2.45335653e-01 7.65006900e-01 -4.30820227e-01 7.68517733e-01 -5.40343881e-01 -1.89940238e+00 4.34075594e-01 4.35931861e-01 -5.08251414e-02 3.94151479e-01 9.91953611e-01 -1.89402282e-01 -1.05479755e-01 -9.59405422e-01 1.33807170e+00 4.71399218e-01 -1.41121340e+00 -2.67395020e-01 8.54793116e-02 6.38714015e-01 -6.99611604e-02 4.32795912e-01 2.68774092e-01 1.07365631e-01 -1.24068248e+00 9.02187467e-01 4.12763089e-01 1.00713837e+00 -6.65533125e-01 6.08980358e-01 -2.92736515e-02 -1.58200753e+00 -1.96038365e-01 -6.18100166e-01 -1.67105347e-01 1.20095037e-01 2.97614634e-01 -4.35743243e-01 2.09004745e-01 1.47944593e+00 5.65127075e-01 -6.96974635e-01 1.46690392e+00 8.93896446e-02 4.51840647e-02 -4.04144228e-01 8.16283282e-03 -3.13404202e-01 3.37683886e-01 5.35377324e-01 1.53860939e+00 5.14703989e-02 4.54057641e-02 3.23796213e-01 5.20604372e-01 -1.54112533e-01 -2.60618143e-02 -2.94195324e-01 4.09684062e-01 6.70958161e-01 1.63450778e+00 -7.41310537e-01 -1.37254953e-01 -5.07441461e-01 7.95725346e-01 2.97867209e-01 1.66080296e-01 -7.71622300e-01 1.23286322e-01 1.21612930e+00 4.02004331e-01 5.84588230e-01 9.21340138e-02 -3.64935696e-02 -8.41978490e-01 -2.95090545e-02 -9.68409061e-01 8.01333129e-01 -5.79609632e-01 -1.65146136e+00 5.17877996e-01 -8.69698003e-02 -7.56282449e-01 1.33684009e-01 -8.28792393e-01 -6.83907747e-01 9.74411011e-01 -1.11331713e+00 -1.58844161e+00 -3.82658392e-01 7.61124969e-01 3.69509131e-01 -4.45960909e-01 7.93831050e-01 7.29895055e-01 -7.59657502e-01 1.19504786e+00 -3.18526059e-01 2.92036951e-01 1.23066366e+00 -7.61046469e-01 9.51822400e-01 7.68084288e-01 -9.45123360e-02 7.77897239e-01 5.65872252e-01 -6.31777704e-01 -1.36663938e+00 -1.04486823e+00 1.02563834e+00 -1.12117887e+00 2.17581496e-01 -7.31330752e-01 -1.55924745e-02 6.09378397e-01 3.10406312e-02 3.73010486e-01 7.31926858e-01 4.28145796e-01 -4.10775423e-01 -8.75818431e-02 -1.56203282e+00 2.91635901e-01 1.41934848e+00 -3.72864068e-01 -1.15632296e-01 6.00342572e-01 4.21157070e-02 -5.33799350e-01 -3.44657004e-01 1.49266466e-01 1.04705894e+00 -9.91645217e-01 1.55049539e+00 -5.32787144e-01 6.73377588e-02 -2.22165361e-01 -9.66191441e-02 -5.25918305e-01 -6.33166969e-01 -8.25130463e-01 -3.69256973e-01 1.52870035e+00 -7.13124499e-02 -4.45530832e-01 1.02304232e+00 6.04840755e-01 2.84463793e-01 -8.35405231e-01 -1.11249638e+00 -7.21213818e-01 -2.73310065e-01 -8.14818144e-02 4.66777503e-01 7.17365682e-01 -2.50817001e-01 1.92387179e-01 -6.19549572e-01 1.47246905e-02 9.73087788e-01 -3.29683393e-01 1.11553240e+00 -1.12999392e+00 -1.49015710e-01 -5.24745047e-01 -5.95642090e-01 -1.09647679e+00 1.27956614e-01 -5.01430631e-01 -1.57855287e-01 -1.36425948e+00 5.51536739e-01 -9.90172327e-02 1.16630055e-01 3.70956808e-01 -3.50929916e-01 9.19100404e-01 2.56810516e-01 -4.27656546e-02 -1.22834921e+00 7.15329275e-02 7.44626343e-01 -8.49259272e-02 4.87374455e-01 4.48507756e-01 -1.14640713e+00 8.34293962e-01 3.22119951e-01 3.47313359e-02 2.52227187e-01 -2.60480255e-01 9.79592279e-02 -6.99598908e-01 7.23120332e-01 -9.44963157e-01 3.72939497e-01 9.20836553e-02 1.09470010e+00 -8.01313579e-01 8.95954311e-01 -1.50967225e-01 -3.13046366e-01 9.46860611e-02 2.65681088e-01 2.30924353e-01 3.91722172e-01 2.72821575e-01 8.75396430e-02 4.89464626e-02 9.72483993e-01 -4.70107794e-01 -9.92458940e-01 4.97559786e-01 -1.81412816e-01 1.85525194e-01 1.10163426e+00 -3.28641802e-01 -6.69568539e-01 -4.61706549e-01 -9.20842648e-01 5.23333192e-01 2.53207773e-01 6.12242758e-01 4.60549712e-01 -1.41589200e+00 -1.13227117e+00 5.17541207e-02 -8.49126955e-05 -8.90221417e-01 4.58510190e-01 7.28303194e-01 -9.17778909e-02 4.94110912e-01 -1.63644791e-01 -4.83792871e-01 -2.15062594e+00 4.56637233e-01 4.59869981e-01 8.19811672e-02 -1.95601285e-01 1.71337950e+00 3.17143589e-01 -3.95225912e-01 5.32563150e-01 9.15990710e-01 -3.98136675e-01 1.07325479e-01 1.42883015e+00 9.09066856e-01 -8.26548934e-02 -1.34667122e+00 -1.04656351e+00 6.18117154e-01 -1.08030848e-01 1.07788585e-01 9.73037899e-01 -2.57414311e-01 -4.01868224e-01 -2.92163104e-01 8.86396825e-01 1.45720437e-01 -9.81721580e-01 -1.08960450e-01 -1.59614787e-01 -9.36837256e-01 -4.52744931e-01 -8.15809071e-01 -6.89964890e-01 5.56759000e-01 8.30304742e-01 -4.15062085e-02 8.69494200e-01 4.56534982e-01 7.59644270e-01 5.99451698e-02 4.68830705e-01 -1.13377178e+00 -9.09223408e-02 5.92718244e-01 9.75844562e-01 -1.35576856e+00 2.75550693e-01 -9.25024331e-01 -2.35248923e-01 1.01107407e+00 1.09125209e+00 3.06968898e-01 6.68686152e-01 3.01537722e-01 -1.82800740e-01 -2.01502413e-01 -4.38601643e-01 -4.52396542e-01 6.25416636e-01 1.01670492e+00 3.58925641e-01 -4.21430022e-02 3.52561623e-02 7.50285327e-01 -2.73642600e-01 -2.12643176e-01 -1.44027248e-01 5.56534946e-01 -2.86661863e-01 -1.11034381e+00 -9.35928941e-01 4.63309944e-01 -6.30174756e-01 -1.62624533e-03 -9.86780882e-01 4.09745276e-01 6.95841134e-01 1.18134415e+00 -8.44230037e-03 -3.48791867e-01 3.86039764e-01 -5.85356839e-02 9.43665743e-01 -6.67117119e-01 -6.20527446e-01 -2.47273669e-01 5.89169443e-01 -6.66038990e-01 -3.23787600e-01 -1.11107290e+00 -4.34002221e-01 -7.99319506e-01 -2.40400210e-01 -1.26146972e-01 4.13391769e-01 7.47947812e-01 4.15336400e-01 -8.57912526e-02 3.37827742e-01 -1.26488173e+00 -4.14893866e-01 -6.96786284e-01 -4.47345018e-01 1.04616173e-01 1.69050932e-01 -8.68019521e-01 -2.30098553e-02 3.36637124e-02]
[14.013762474060059, 0.8720253109931946]
b1ae7d17-657c-4c03-9f91-3cf97a1b09b0
deep-leaning-based-ultra-fast-stair-detection
2201.05275
null
https://arxiv.org/abs/2201.05275v2
https://arxiv.org/pdf/2201.05275v2.pdf
Deep Leaning-Based Ultra-Fast Stair Detection
Staircases are some of the most common building structures in urban environments. Stair detection is an important task for various applications, including the environmental perception of exoskeleton robots, humanoid robots, and rescue robots and the navigation of visually impaired people. Most existing stair detection algorithms have difficulty dealing with the diversity of stair structure materials, extreme light and serious occlusion. Inspired by human perception, we propose an end-to-end method based on deep learning. Specifically, we treat the process of stair line detection as a multitask involving coarse-grained semantic segmentation and object detection. The input images are divided into cells, and a simple neural network is used to judge whether each cell contains stair lines. For cells containing stair lines, the locations of the stair lines relative to each cell are regressed. Extensive experiments on our dataset show that our method can achieve high performance in terms of both speed and accuracy. A lightweight version can even achieve 300+ frames per second with the same resolution. Our code and dataset will be soon available at GitHub.
['Zhiyong Tang', 'Shuang Qiu', 'Zhongcai Pei', 'Chen Wang']
2022-01-14
null
null
null
null
['line-detection']
['computer-vision']
[ 3.12887169e-02 -4.38405573e-01 -7.58853108e-02 -1.21657401e-01 -2.11600915e-01 -4.68565166e-01 1.22525118e-01 -4.93379235e-02 -5.48370421e-01 5.64545453e-01 -2.73667760e-02 -2.28519976e-01 -2.72979643e-02 -8.23280632e-01 -6.39711261e-01 -5.69294691e-01 3.20717752e-01 4.35726136e-01 9.71342504e-01 -4.41380709e-01 2.15671703e-01 4.57360268e-01 -1.58486700e+00 2.22840384e-01 7.56039858e-01 1.22407758e+00 5.40342152e-01 2.46026009e-01 1.74175709e-01 5.17793357e-01 -2.84589380e-01 3.28537405e-01 2.81882286e-01 -8.92941933e-03 -4.17380005e-01 2.68428802e-01 6.89815953e-02 -4.05020773e-01 -3.28121364e-01 8.09340119e-01 5.41363835e-01 7.66869783e-02 6.91446543e-01 -1.19614685e+00 -1.10148214e-01 1.65735215e-01 -9.24604833e-01 3.10796648e-01 2.49462247e-01 -4.40226048e-02 6.37055278e-01 -8.01611781e-01 4.01724279e-01 1.27821076e+00 6.96850479e-01 3.49449754e-01 -7.95775533e-01 -6.50747478e-01 1.24894567e-01 6.05007529e-01 -1.30414665e+00 -2.56343991e-01 5.91679096e-01 -5.77825725e-01 4.34621453e-01 2.09562838e-01 7.30347097e-01 6.93268597e-01 1.71847388e-01 1.07206917e+00 1.00317454e+00 -1.61698222e-01 3.98423284e-01 -5.04370332e-01 4.97815423e-02 9.11178827e-01 4.88504142e-01 -2.11356163e-01 -4.90213543e-01 1.83456913e-01 1.06571805e+00 -1.81458574e-02 -3.01718205e-01 -6.00564957e-01 -1.25351310e+00 6.29478753e-01 8.17773402e-01 -6.14239313e-02 -1.31106898e-01 1.32182240e-01 2.65266389e-01 -4.94176708e-02 1.77467987e-01 -1.83213964e-01 -2.34971806e-01 1.66872874e-01 -4.32729393e-01 2.13316977e-01 4.14180875e-01 8.51082504e-01 4.10790861e-01 -3.04079413e-01 5.24917804e-02 1.05544519e+00 9.03559923e-02 3.29371095e-01 5.30894816e-01 -8.87934923e-01 2.74613321e-01 6.43453360e-01 1.95048571e-01 -6.46005094e-01 -7.48354375e-01 -2.04474285e-01 -9.14570570e-01 6.99237406e-01 5.72493315e-01 -1.92628801e-01 -9.85273719e-01 1.08669770e+00 5.06391108e-01 -2.19099931e-02 -3.18861037e-01 1.19426119e+00 8.26213956e-01 5.61093211e-01 -1.70461565e-01 7.60799050e-02 1.67264628e+00 -9.99460876e-01 -3.65153402e-01 -7.17078805e-01 1.70630768e-01 -5.71305275e-01 1.08891070e+00 1.96493655e-01 -9.19801474e-01 -4.16262358e-01 -1.15146148e+00 -4.52459335e-01 -1.74157560e-01 3.83718789e-01 4.43835318e-01 1.78817540e-01 -5.94529808e-01 1.58526585e-01 -9.22236323e-01 -4.51222122e-01 4.90480244e-01 1.11329533e-01 -1.55810177e-01 4.18009982e-02 -6.56333208e-01 7.27921486e-01 2.41882965e-01 3.34240556e-01 -2.01283932e-01 -7.40074515e-02 -9.61963236e-01 -4.49992567e-02 6.17644489e-01 -9.18371737e-01 1.22279763e+00 -3.73764724e-01 -1.35964286e+00 1.01504731e+00 -1.48698077e-01 -3.19729328e-01 9.75250781e-01 -4.59126800e-01 2.70931840e-01 -1.13495246e-01 4.74771231e-01 4.36556399e-01 6.94154024e-01 -1.08075368e+00 -1.01308560e+00 -6.55465066e-01 -1.55636340e-01 5.22632599e-01 -1.27187639e-01 -1.93703026e-01 -5.42613804e-01 -3.64624381e-01 7.86506414e-01 -1.03896368e+00 -2.48884991e-01 6.01899445e-01 -6.09694123e-01 -3.47910881e-01 9.73134637e-01 -4.69245255e-01 6.90303028e-01 -2.07597733e+00 5.26491813e-02 -1.57785434e-02 8.72910693e-02 -2.21514344e-01 2.95838922e-01 2.21481156e-02 4.68806654e-01 -3.68565053e-01 -3.36311519e-01 4.63097207e-02 -2.72417128e-01 2.86973324e-02 4.33474174e-03 4.68805104e-01 -3.28174412e-01 6.96536124e-01 -8.14945042e-01 -4.30862755e-01 3.65977466e-01 2.17127725e-01 -8.53207558e-02 -1.75763100e-01 5.05397804e-02 3.95546615e-01 -6.80135667e-01 7.18113780e-01 5.07660449e-01 -2.75641441e-01 -9.07247886e-02 -2.94274390e-01 -3.77846420e-01 1.61166504e-01 -1.01290226e+00 1.43400526e+00 -3.43454301e-01 7.75661111e-01 2.16403067e-01 -8.21349323e-01 9.16763544e-01 -1.12538792e-01 5.28099775e-01 -6.62691593e-01 2.55014569e-01 4.47333962e-01 -3.20321955e-02 -4.50477719e-01 2.42098004e-01 7.10766464e-02 -1.10404618e-01 5.87545000e-02 -8.55359197e-01 -3.19044620e-01 3.64600159e-02 -2.99497157e-01 1.11929214e+00 2.01018691e-01 4.57911640e-01 -2.24175245e-01 2.82404840e-01 2.33690694e-01 6.85565591e-01 4.61137861e-01 -1.76476136e-01 7.57311881e-01 7.88382441e-02 -7.14888632e-01 -1.03196192e+00 -1.36360371e+00 -1.08621813e-01 9.23931658e-01 7.53072083e-01 6.46301806e-02 -7.05152690e-01 4.36548181e-02 1.55789837e-01 3.34198326e-02 -3.54971349e-01 -1.34131545e-02 -7.60024369e-01 -7.44774938e-01 3.37597430e-02 9.68054712e-01 1.07969737e+00 -1.24202645e+00 -1.42563212e+00 2.58227438e-01 -6.38064325e-01 -1.50613105e+00 -3.74019027e-01 1.71327457e-01 -7.79854298e-01 -1.15104222e+00 -7.62719810e-01 -1.36167037e+00 4.36068535e-01 5.99460363e-01 5.81957102e-01 6.26469925e-02 -5.95494509e-01 -3.58970463e-01 -1.91877767e-01 -3.58419806e-01 1.77545249e-01 2.43992116e-02 6.65845275e-02 -3.36275905e-01 -3.12400535e-02 -5.39113998e-01 -8.46865177e-01 7.68894553e-01 -2.49261096e-01 5.89226007e-01 4.91288960e-01 5.29690206e-01 6.75711274e-01 1.86725989e-01 2.40547344e-01 -5.22761464e-01 4.71265554e-01 -1.15566216e-01 -6.23892665e-01 -6.40040860e-02 1.23317286e-01 -1.97238550e-01 2.69600511e-01 -3.76117438e-01 -6.48888409e-01 3.79498720e-01 -2.91491270e-01 2.71931738e-02 -2.62138426e-01 1.99710265e-01 -8.89714882e-02 1.15322426e-01 6.43290877e-01 2.50193357e-01 -4.92802113e-02 -3.13404232e-01 2.32212134e-02 9.48970795e-01 8.31650913e-01 -2.51233757e-01 5.70656121e-01 9.58208740e-01 -8.60545039e-02 -1.02298665e+00 -9.31653738e-01 -5.92912078e-01 -6.22921050e-01 -3.15379858e-01 8.98646653e-01 -9.55347061e-01 -9.51428831e-01 1.03001225e+00 -9.56090808e-01 -7.17294097e-01 3.91790457e-02 2.33087406e-01 -7.37851799e-01 4.13045526e-01 -7.78271735e-01 -7.03751087e-01 -4.95168805e-01 -9.01328504e-01 1.27254450e+00 4.49098974e-01 -4.05982211e-02 -3.37440759e-01 -4.38882917e-01 6.44711733e-01 -2.27242019e-02 3.68993312e-01 9.60913658e-01 9.47625265e-02 -6.56510472e-01 -1.30938306e-01 -3.09361219e-01 -1.50329307e-01 4.39364731e-01 -4.33912367e-01 -7.41432667e-01 -1.31014958e-01 -2.90135443e-01 -2.26243079e-01 8.90662611e-01 7.16898203e-01 1.16951191e+00 -1.15828086e-02 -5.47226071e-01 4.34841633e-01 9.03452933e-01 2.55687416e-01 5.68212450e-01 9.79267955e-01 7.83383250e-01 5.99708319e-01 8.27699125e-01 3.47810090e-01 4.85344142e-01 8.37328494e-01 5.12092590e-01 -2.84225885e-02 -1.76543340e-01 1.44008156e-02 2.88286537e-01 2.45985478e-01 -1.46877497e-01 -7.60804117e-02 -9.58153248e-01 5.10152340e-01 -2.05117774e+00 -8.41388166e-01 -4.84056920e-01 2.09467483e+00 3.95352304e-01 4.49201465e-01 3.45984191e-01 4.08563763e-01 8.11958611e-01 -1.76915169e-01 -9.17295277e-01 2.48980895e-01 -3.75598148e-02 -3.38826925e-01 5.90943694e-01 2.99844205e-01 -1.12557268e+00 1.14707506e+00 5.56941509e+00 6.96188509e-01 -1.11790991e+00 -2.17415094e-01 3.81578118e-01 2.31363967e-01 3.22652102e-01 -4.65171009e-01 -5.81220746e-01 6.00804627e-01 -1.54621094e-01 3.58749516e-02 9.41787809e-02 8.17141712e-01 5.47010779e-01 -4.41802204e-01 -6.75107777e-01 1.19085944e+00 -1.52960598e-01 -1.08522213e+00 -3.38984102e-01 -4.45365757e-02 3.69214207e-01 2.29354754e-01 -2.58003443e-01 -1.95594445e-01 1.59681156e-01 -6.39379621e-01 1.11611366e+00 4.09065895e-02 6.14466190e-01 -5.46788573e-01 5.17740488e-01 7.87602305e-01 -1.55123854e+00 -3.71046990e-01 -5.23516297e-01 -3.92823160e-01 2.89645165e-01 5.42207420e-01 -6.61404073e-01 1.67370647e-01 1.02047372e+00 6.18331194e-01 -3.42438310e-01 1.47429729e+00 -4.93808627e-01 -5.44562179e-04 -7.14173853e-01 -3.20979714e-01 -1.28640920e-01 -4.24986959e-01 4.31753367e-01 7.61439681e-01 3.74059945e-01 1.89856321e-01 4.13697958e-01 3.37054938e-01 1.91437885e-01 9.48611088e-03 -4.67807591e-01 6.49516881e-01 4.94265020e-01 1.24399924e+00 -1.30491650e+00 -2.92623997e-01 -1.53318658e-01 1.29246712e+00 2.57417619e-01 1.64521202e-01 -5.62250793e-01 -3.20337594e-01 5.64172864e-01 5.81375778e-01 1.83745608e-01 -4.51777965e-01 -8.37324858e-01 -9.23463404e-01 3.50555211e-01 -2.93499470e-01 3.85628015e-01 -1.24996150e+00 -9.73252535e-01 5.33225358e-01 -2.95042425e-01 -1.45447552e+00 1.18308797e-01 -8.12901616e-01 -6.22901380e-01 2.02563807e-01 -1.13524437e+00 -1.03256559e+00 -1.04259324e+00 5.15821755e-01 1.00165439e+00 1.56506687e-01 4.60039943e-01 8.96765292e-02 -3.91844720e-01 5.39305480e-03 1.28271043e-01 3.00514251e-01 2.90851712e-01 -1.02638364e+00 5.10356069e-01 7.80006289e-01 -1.91806808e-01 -4.90812138e-02 7.46496916e-01 -6.56549394e-01 -8.27847898e-01 -9.35543597e-01 4.63942170e-01 -9.09101591e-02 4.54510003e-01 -4.67640638e-01 -6.97861195e-01 4.41661745e-01 -4.55495268e-01 -7.05251992e-02 1.12907238e-01 -9.00620669e-02 4.84389290e-02 -1.36223078e-01 -1.04262769e+00 8.51020098e-01 1.52381384e+00 7.19521567e-02 -4.41177785e-01 4.34406996e-01 9.13037509e-02 -8.10851634e-01 -2.41882294e-01 5.68798542e-01 7.89400280e-01 -8.69903147e-01 1.19022238e+00 7.93086737e-02 3.52697045e-01 -6.36176288e-01 2.71620918e-02 -1.12144578e+00 -4.44148034e-01 -3.35388556e-02 7.27299675e-02 4.52483356e-01 -3.88472117e-02 -5.02606511e-01 1.22574842e+00 2.52858669e-01 -3.64778221e-01 -6.75625741e-01 -1.09702528e+00 -8.22682798e-01 -2.95102537e-01 -7.23050982e-02 1.53785795e-01 5.12507796e-01 -1.60547309e-02 7.10139811e-01 -1.12256818e-01 3.85987550e-01 8.04544330e-01 6.12740576e-01 7.41397023e-01 -1.52031243e+00 1.49431348e-01 -5.33351541e-01 -6.00129545e-01 -1.44994724e+00 -2.30200469e-01 -4.53458637e-01 5.19348204e-01 -2.24445462e+00 9.47863758e-02 -5.89794576e-01 5.97769693e-02 7.35155344e-01 -1.25728488e-01 5.65958142e-01 4.49076891e-02 3.12690556e-01 -3.62512976e-01 5.26474774e-01 1.29352868e+00 -1.78147003e-01 -3.52618992e-01 2.72934735e-01 -3.30859542e-01 1.30599034e+00 1.00561702e+00 -1.38378382e-01 -2.97557771e-01 -5.35006106e-01 -1.93231031e-01 -7.66250193e-02 6.50036454e-01 -1.44448924e+00 3.49128962e-01 -3.02294016e-01 4.76805151e-01 -8.23299110e-01 6.39892459e-01 -6.92162514e-01 -5.27929179e-02 8.56297314e-01 2.26902500e-01 -2.28639424e-01 9.22045261e-02 3.14514101e-01 3.42640996e-01 -6.46295995e-02 1.06904829e+00 -9.67178047e-02 -1.06345415e+00 3.39189857e-01 -6.91099048e-01 -2.84466773e-01 1.18916798e+00 -7.11775243e-01 -3.06130111e-01 -3.94071639e-01 -6.09445035e-01 5.57996094e-01 6.28965080e-01 6.52856112e-01 9.11457658e-01 -9.33529973e-01 -6.02434397e-01 1.43208086e-01 1.85010374e-01 6.87871397e-01 5.43425940e-02 7.08996356e-01 -8.22368801e-01 -8.05689171e-02 -4.08471227e-01 -8.26718569e-01 -1.48735940e+00 -1.96008943e-02 5.18557191e-01 2.45699883e-01 -1.19738865e+00 6.85560763e-01 4.87449259e-01 -1.06011167e-01 1.43064618e-01 -4.07862544e-01 -2.06563562e-01 -2.04390958e-01 3.69146258e-01 4.73843515e-01 1.55579066e-03 -3.67373198e-01 -4.70688909e-01 1.05685329e+00 -8.03909323e-04 -1.63895860e-02 1.36621785e+00 -2.12247804e-01 1.48274571e-01 4.59259093e-01 6.15187287e-01 -2.31430262e-01 -1.47914827e+00 -3.93572412e-02 -1.57343194e-01 -3.18266720e-01 -2.09411591e-01 -5.29720247e-01 -8.18236172e-01 7.30702698e-01 7.00389385e-01 -4.12890911e-02 9.99463320e-01 1.68328285e-01 1.02406943e+00 5.19498348e-01 9.05649841e-01 -1.07982862e+00 1.91787094e-01 4.87709790e-01 8.59187424e-01 -1.15070009e+00 1.03271447e-01 -9.15215492e-01 -3.43341500e-01 1.03837764e+00 8.02273810e-01 -2.96100140e-01 4.09584641e-01 3.55625689e-01 2.28296131e-01 -8.19144547e-02 -1.30378664e-01 -3.38060796e-01 -5.24189621e-02 5.81931949e-01 -1.63850233e-01 6.33175522e-02 -4.04839844e-01 2.92518348e-01 -4.88968760e-01 1.97779462e-02 5.18637896e-01 1.21384883e+00 -1.01632988e+00 -5.85908949e-01 -3.86105061e-01 5.96900165e-01 -3.75888087e-02 3.01334649e-01 -1.61046028e-01 4.57961559e-01 -4.51338012e-03 8.95490527e-01 2.38809466e-01 -2.10602045e-01 6.18681729e-01 -4.49494153e-01 4.69534665e-01 -4.96904761e-01 2.02349886e-01 4.35074233e-02 -3.24443504e-02 -2.90458262e-01 -1.70748442e-01 -6.68944180e-01 -1.80818546e+00 -2.34293833e-01 -9.89269763e-02 -2.43962184e-01 6.15207076e-01 1.03204405e+00 1.38050001e-02 4.22929227e-01 3.73643488e-01 -9.98002172e-01 -4.16469350e-02 -7.96457112e-01 -5.77104270e-01 3.70169491e-01 2.17125177e-01 -1.02052534e+00 1.17191561e-01 2.43064329e-01]
[8.144654273986816, -1.9089630842208862]
e99b2966-fda7-4bf1-b0d7-b4ecb7c2f5d9
variable-selection-for-nonparametric-learning
1806.00569
null
http://arxiv.org/abs/1806.00569v2
http://arxiv.org/pdf/1806.00569v2.pdf
Variable Selection for Nonparametric Learning with Power Series Kernels
In this paper, we propose a variable selection method for general nonparametric kernel-based estimation. The proposed method consists of two-stage estimation: (1) construct a consistent estimator of the target function, (2) approximate the estimator using a few variables by l1-type penalized estimation. We see that the proposed method can be applied to various kernel nonparametric estimation such as kernel ridge regression, kernel-based density and density-ratio estimation. We prove that the proposed method has the property of the variable selection consistency when the power series kernel is used. This result is regarded as an extension of the variable selection consistency for the non-negative garrote to the kernel-based estimators. Several experiments including simulation studies and real data applications show the effectiveness of the proposed method.
['Mitsuaki Nishikimi', 'Kenta Kanamori', 'Wataru Kumagai', 'Kota Matsui', 'Takafumi Kanamori']
2018-06-02
null
null
null
null
['density-ratio-estimation']
['methodology']
[-8.33911523e-02 -3.65551084e-01 -6.21316254e-01 -5.50293088e-01 -7.62086272e-01 -3.90871800e-02 1.92653075e-01 -1.05083488e-01 -2.57305622e-01 1.28642762e+00 -4.05946344e-01 -3.15659881e-01 -2.15205163e-01 -7.84705698e-01 -5.32860696e-01 -8.33044589e-01 -1.85342103e-01 3.03593367e-01 1.71613619e-01 1.96173653e-01 4.35219288e-01 6.37030065e-01 -1.14647853e+00 -7.25205004e-01 1.20964503e+00 1.17828310e+00 -1.27774745e-01 6.48925126e-01 1.36264294e-01 4.67904121e-01 -3.77081335e-01 -1.34683862e-01 1.48622869e-02 -5.03004611e-01 -2.57364333e-01 6.29759654e-02 1.01323254e-01 -2.74928629e-01 2.64115661e-01 1.27014828e+00 3.37390929e-01 5.63403904e-01 1.30910587e+00 -1.35101068e+00 -7.28453100e-01 1.59191236e-01 -1.24123383e+00 1.59593046e-01 -7.61685371e-02 -6.17149770e-01 5.45152485e-01 -1.23166502e+00 1.15866713e-01 1.22654259e+00 9.43685412e-01 4.08915877e-02 -1.47860539e+00 -8.16279352e-01 -3.72646391e-01 9.20022726e-02 -1.68305910e+00 -2.45383874e-01 7.83540428e-01 -5.38468301e-01 4.10730988e-01 8.96515474e-02 3.17775756e-01 7.21268117e-01 3.81732404e-01 4.85968649e-01 1.45651472e+00 -4.69532847e-01 4.88390028e-01 5.00279725e-01 5.83005309e-01 7.04892039e-01 7.78015316e-01 1.80826262e-01 -1.36619374e-01 -1.01504052e+00 1.25458157e+00 -6.77315611e-03 -2.44437590e-01 -4.23100531e-01 -7.33965039e-01 1.53547490e+00 -3.39646548e-01 -5.01339510e-02 -4.73486096e-01 2.38806605e-01 4.73021775e-01 2.88915455e-01 1.09395576e+00 -1.93849877e-01 -3.60038459e-01 1.79652181e-02 -1.12610340e+00 2.12533221e-01 1.01423120e+00 1.25859892e+00 8.20946038e-01 5.19703329e-01 -5.25052845e-02 1.10737741e+00 3.63147676e-01 8.49338412e-01 4.02146786e-01 -6.43481433e-01 1.50405273e-01 -1.13107413e-01 4.90689695e-01 -6.88745618e-01 -3.13946933e-01 -4.66467589e-02 -1.14474785e+00 1.94798544e-01 4.06981200e-01 -4.26250756e-01 -5.37711143e-01 1.53172874e+00 3.86803955e-01 7.21938729e-01 -2.09645927e-01 5.92591822e-01 2.47908428e-01 7.79375017e-01 1.15041889e-01 -7.73027956e-01 1.10714757e+00 -5.35830677e-01 -9.59950686e-01 5.28643310e-01 2.25923583e-01 -7.64120221e-01 7.18371928e-01 4.00437713e-01 -7.49990225e-01 -6.26178920e-01 -9.83130038e-01 3.74588698e-01 1.54407145e-02 4.44267720e-01 7.74067819e-01 9.04874921e-01 -7.71276534e-01 3.29796255e-01 -6.99957430e-01 -2.40947917e-01 1.70711830e-01 3.22585404e-01 -4.21375275e-01 3.51154089e-01 -1.02622676e+00 6.63128257e-01 3.26943517e-01 1.39478222e-01 -3.15863341e-01 -5.39431512e-01 -1.00019956e+00 4.19761613e-02 7.07253739e-02 -5.56339443e-01 1.03995430e+00 -1.12590325e+00 -1.62646544e+00 3.80677700e-01 -5.59412658e-01 -2.64028341e-01 4.50563520e-01 -2.80888438e-01 -4.12352741e-01 -9.94087830e-02 1.56863376e-01 -4.46715832e-01 1.28367651e+00 -8.12440634e-01 -6.48091674e-01 -3.37103903e-01 -9.47122514e-01 -3.22162479e-01 7.70692006e-02 5.23569398e-02 -3.14173959e-02 -9.81713712e-01 -1.19491462e-02 -7.17378855e-01 -6.84583485e-02 -8.50014165e-02 -2.90067732e-01 -3.55604351e-01 7.98667848e-01 -7.57432878e-01 1.26479614e+00 -2.08997178e+00 -1.40740946e-01 8.30151081e-01 -1.42929167e-01 -2.31973991e-01 2.82515734e-01 3.87550324e-01 -2.06173584e-01 -2.09969766e-02 -5.52625239e-01 -1.42820254e-01 -2.22680539e-01 -3.20264876e-01 -4.60358411e-01 1.20621514e+00 1.00133456e-01 4.27043229e-01 -5.98592520e-01 -6.66301966e-01 2.00164124e-01 2.57304788e-01 -2.02832207e-01 3.94065797e-01 4.27766740e-01 -1.05994277e-01 -6.92262769e-01 7.78545916e-01 1.16783571e+00 -3.74786444e-02 5.92630031e-03 -8.93228501e-02 -1.29210785e-01 -5.56810737e-01 -1.54623008e+00 7.55533874e-01 -3.61328244e-01 5.68193316e-01 1.25859976e-01 -1.29750848e+00 1.28834474e+00 1.81633443e-01 1.72953099e-01 7.57032558e-02 1.17775597e-01 4.26992863e-01 -5.10394633e-01 -3.69831830e-01 3.66701275e-01 -6.28405333e-01 -1.19591832e-01 1.15558162e-01 1.44158557e-01 3.07422355e-02 -6.87574521e-02 -4.09020036e-01 5.61335325e-01 1.02647759e-01 1.24668753e+00 -6.82994545e-01 8.93793225e-01 -2.90192187e-01 6.23540521e-01 8.92662823e-01 -8.70342627e-02 7.90664330e-02 6.35303497e-01 -8.11363757e-03 -1.09255099e+00 -1.40788901e+00 -8.30975831e-01 8.81283462e-01 -9.64519829e-02 3.81673515e-01 -3.61192375e-01 -5.62689602e-01 5.49130976e-01 7.01740682e-01 -7.13674843e-01 1.63142644e-02 -2.57411897e-01 -8.53276968e-01 6.05662823e-01 6.10265672e-01 6.43582046e-01 -5.72434425e-01 7.36642405e-02 1.08254701e-01 2.76204854e-01 -4.77731854e-01 -5.33870816e-01 2.64600277e-01 -1.23040724e+00 -9.71412957e-01 -1.08088410e+00 -9.91425216e-01 5.05351901e-01 2.27622502e-02 6.43412113e-01 -2.83736855e-01 1.63490087e-01 2.45823175e-01 -2.25535661e-01 -1.64223924e-01 -1.39040664e-01 -2.29144946e-01 2.89158791e-01 1.46761701e-01 4.00266767e-01 -4.51380253e-01 -2.90047199e-01 4.47686911e-01 -6.89485967e-01 -6.03813291e-01 7.04683185e-01 1.50738204e+00 8.21321905e-01 2.99918830e-01 1.28004456e+00 -1.33742857e+00 1.08265769e+00 -8.85684788e-01 -1.15926027e+00 2.64552772e-01 -8.70537221e-01 2.40760192e-01 8.00296903e-01 -1.01491320e+00 -1.19541359e+00 1.25427125e-03 3.55960995e-01 -3.76291126e-01 1.93297759e-01 7.11768985e-01 -1.28027111e-01 -2.23419979e-01 3.36606354e-01 4.09250855e-01 2.38362432e-01 -6.06877089e-01 1.64495632e-01 8.76969874e-01 5.52779675e-01 -7.56950498e-01 8.95051718e-01 2.45033309e-01 4.79291767e-01 -1.15405262e+00 -2.32933044e-01 -7.07664609e-01 -2.30587110e-01 2.56633371e-01 5.46018243e-01 -7.96356499e-01 -9.56071138e-01 5.22594154e-01 -8.01756740e-01 -1.83893248e-01 1.55196311e-02 1.01348042e+00 -9.93192434e-01 5.73536813e-01 -5.42705595e-01 -1.50829518e+00 -3.17329496e-01 -7.60796428e-01 7.47583270e-01 2.84341067e-01 -9.39103067e-02 -1.42627287e+00 3.29114765e-01 -2.60854334e-01 2.53672928e-01 2.86800742e-01 8.95283699e-01 -9.27450597e-01 3.84401232e-02 -4.16485995e-01 -4.39655691e-01 5.92312992e-01 3.51121455e-01 1.05678484e-01 -5.20748138e-01 -3.19203883e-01 2.28441849e-01 -2.07331493e-01 5.68622708e-01 8.65429819e-01 1.15958619e+00 -3.45639199e-01 -1.82087392e-01 7.25956142e-01 1.71180177e+00 1.14562940e-02 6.40005171e-01 1.84345782e-01 2.88370579e-01 1.81883618e-01 1.05324292e+00 6.83340490e-01 -1.32289037e-01 5.26906610e-01 -3.05440605e-01 -2.41005182e-01 7.72182584e-01 -1.98327437e-01 3.57310265e-01 6.03454351e-01 1.61776543e-02 1.63864508e-01 -3.90952528e-01 3.82110745e-01 -2.21937370e+00 -1.16567290e+00 -4.92285520e-01 2.64735532e+00 1.08469474e+00 -3.10202777e-01 4.80881363e-01 -2.23126069e-01 1.21275246e+00 -2.98555374e-01 -4.79602277e-01 -7.15565383e-01 1.25229672e-01 6.29381061e-01 1.01263130e+00 5.39140821e-01 -1.25513923e+00 6.06331408e-01 7.19650030e+00 1.35173798e+00 -8.75241220e-01 9.93085280e-02 6.04640841e-01 6.16564333e-01 -3.83826457e-02 1.94663003e-01 -8.23131144e-01 7.15434134e-01 8.95411074e-01 -4.27620173e-01 2.47024924e-01 1.38746762e+00 4.03698325e-01 -5.75855911e-01 -5.83818316e-01 1.07608366e+00 -1.15597457e-01 -8.31309974e-01 -2.26624027e-01 7.78820217e-02 6.42390311e-01 -7.86597073e-01 -7.32215345e-02 5.10153174e-01 -8.94202366e-02 -1.14111567e+00 3.29002202e-01 9.32694256e-01 9.46550608e-01 -1.22997260e+00 1.10929382e+00 3.36616397e-01 -1.27308083e+00 2.47953460e-01 -7.55217016e-01 7.53718317e-02 5.85185811e-02 1.04568505e+00 -8.53730023e-01 3.70553225e-01 1.25586301e-01 4.61217135e-01 -1.99029550e-01 1.36899722e+00 -1.41597744e-02 9.98862028e-01 -2.41757706e-01 -2.63811022e-01 -2.77271122e-01 -7.68809617e-01 4.05971378e-01 1.26764226e+00 5.88568687e-01 -8.67878459e-03 -3.08464393e-02 1.03066349e+00 2.59476751e-01 5.56172907e-01 -5.63148379e-01 1.92805767e-01 6.71806514e-01 1.00651121e+00 -5.42801082e-01 -4.48405743e-01 -6.75947607e-01 9.01587069e-01 2.63101101e-01 6.74129367e-01 -9.76795673e-01 -9.25372422e-01 3.77878517e-01 -2.64684446e-02 5.44749141e-01 -2.57091671e-01 -4.08171833e-01 -1.02730477e+00 -1.93620652e-01 -4.62645590e-01 3.34706515e-01 -5.19330025e-01 -1.63859963e+00 -4.24691662e-02 5.53450584e-01 -1.02566648e+00 -3.40042174e-01 -5.65874934e-01 -7.77169943e-01 1.36119592e+00 -1.24388063e+00 -7.51461864e-01 2.47134976e-02 5.89192688e-01 2.13807940e-01 -3.51008326e-01 6.51144683e-01 1.07774220e-01 -4.36767906e-01 7.87666976e-01 6.71889424e-01 -6.17955960e-02 9.59264696e-01 -1.32807517e+00 -2.41729349e-01 6.68879509e-01 -5.26526868e-01 9.25186574e-01 8.02678406e-01 -9.99084592e-01 -1.05901825e+00 -9.43212748e-01 5.99018812e-01 1.99319839e-01 8.04179072e-01 -7.04499185e-02 -9.76833224e-01 6.66598380e-01 -2.44860500e-01 1.29419565e-01 8.24748695e-01 3.71700048e-01 -1.13834500e-01 -2.84128278e-01 -1.51957536e+00 1.33232608e-01 8.27588886e-02 -2.72168845e-01 -6.57987177e-01 8.26705471e-02 2.35696748e-01 9.23415006e-04 -1.21448350e+00 5.40599167e-01 9.10561502e-01 -6.29919708e-01 7.90411770e-01 -5.03988564e-01 -1.33016691e-01 -2.85781652e-01 -1.28993139e-01 -1.07136929e+00 -4.72739100e-01 -5.42956054e-01 -1.30697668e-01 1.28433990e+00 1.77973703e-01 -1.17117751e+00 4.37043250e-01 4.11265194e-01 4.63495702e-01 -6.73212767e-01 -1.24470329e+00 -1.11792147e+00 3.76722813e-02 -7.86078498e-02 2.24104002e-01 9.25723374e-01 -3.64408717e-02 1.45318925e-01 -7.55514681e-01 8.50131437e-02 9.57271874e-01 -4.71203923e-02 9.05833900e-01 -1.28208888e+00 -6.10197484e-01 -1.78300098e-01 -5.26770771e-01 -8.70050669e-01 5.45625687e-01 -3.63314688e-01 1.93263754e-01 -8.82577240e-01 4.51708138e-01 -4.35219586e-01 -3.51869494e-01 4.22136523e-02 -4.08819050e-01 -1.68213472e-01 -6.02713466e-01 8.64112675e-02 4.41567041e-03 6.39654815e-01 7.38186717e-01 3.13158125e-01 -4.40423340e-01 7.56577134e-01 -4.51825261e-01 5.83535492e-01 7.84562707e-01 -5.28270602e-01 -4.67693537e-01 8.36491227e-01 -2.49106094e-01 5.52398503e-01 3.79580945e-01 -5.16775668e-01 -2.33363315e-01 -6.29867673e-01 6.37070775e-01 -5.56865215e-01 3.53414491e-02 -7.62152672e-01 1.38807565e-01 2.63128340e-01 -3.10723595e-02 3.08841001e-03 1.29673600e-01 8.55680227e-01 -1.25321701e-01 -5.04214764e-01 1.20904136e+00 5.02712131e-01 -5.34596562e-01 6.19778559e-02 -5.12524843e-01 -4.79315557e-02 9.64314699e-01 -1.50600523e-01 -2.07960576e-01 -5.39322734e-01 -4.84066486e-01 -9.90298092e-02 3.06999415e-01 -3.49245340e-01 7.95098603e-01 -1.53369713e+00 -6.83235765e-01 2.35157117e-01 -7.50019103e-02 -5.34939885e-01 -1.02623962e-01 1.21754587e+00 -4.54611450e-01 2.13012740e-01 -1.17926868e-02 -4.27720815e-01 -1.09577632e+00 3.49106818e-01 6.09497912e-02 -1.04765840e-01 -2.93260902e-01 4.23833698e-01 2.23141834e-01 -9.43088010e-02 -1.67355642e-01 -2.91743070e-01 4.90426384e-02 -2.37160295e-01 4.37038898e-01 8.85091543e-01 -5.38815022e-01 -4.51539248e-01 -4.02388245e-01 5.08036613e-01 2.70163178e-01 -3.51471961e-01 1.03205812e+00 -5.07344306e-02 -4.32488650e-01 8.83242786e-01 1.53545809e+00 4.80380803e-01 -9.53554988e-01 3.30331991e-03 -4.49820515e-03 -5.62085390e-01 4.42062020e-02 -1.60230860e-01 -5.69324791e-01 2.89408028e-01 5.44267774e-01 1.00038953e-01 1.14168620e+00 -2.53944874e-01 3.82659703e-01 2.51846939e-01 3.19929928e-01 -1.26238644e+00 -5.31335771e-01 1.99762926e-01 6.99184418e-01 -1.21075332e+00 5.45042157e-01 -4.35855389e-01 -5.63952208e-01 1.37230742e+00 4.25389916e-01 -7.17809498e-01 1.11825156e+00 5.24864011e-02 -4.57630306e-01 3.94874245e-01 -4.91346806e-01 -1.22449458e-01 5.13807654e-01 6.94494069e-01 5.50335586e-01 1.98881730e-01 -1.07087326e+00 8.74255478e-01 1.33830830e-01 2.07046464e-01 4.67642665e-01 4.94869143e-01 -6.76063180e-01 -9.06910837e-01 -6.23202562e-01 7.66890645e-01 -4.31562752e-01 -6.38346523e-02 5.66401221e-02 1.29961252e+00 -4.86606836e-01 8.79147053e-01 -1.15721397e-01 3.77858058e-02 -1.09151630e-02 1.79630518e-01 2.92876035e-01 -3.83462906e-01 2.82515381e-02 4.09008831e-01 1.29469082e-01 -1.53111488e-01 -2.32495919e-01 -6.00888193e-01 -9.50341046e-01 -3.50568771e-01 -8.40625286e-01 4.88406897e-01 5.24714470e-01 6.34474158e-01 -2.28808358e-01 -1.26269162e-01 8.97071362e-01 -4.51029211e-01 -1.15529501e+00 -1.13841748e+00 -1.53842294e+00 1.12024896e-01 3.34159553e-01 -1.12817109e+00 -8.34013343e-01 -1.15827270e-01]
[7.357145309448242, 4.152252674102783]
3d68f6d4-d51c-42eb-841f-56673c3f1fc2
syntax-driven-approach-for-semantic-role
null
null
https://aclanthology.org/2022.lrec-1.772
https://aclanthology.org/2022.lrec-1.772.pdf
Syntax-driven Approach for Semantic Role Labeling
As an important task to analyze the semantic structure of a sentence, semantic role labeling (SRL) aims to locate the semantic role (e.g., agent) of noun phrases with respect to a given predicate and thus plays an important role in downstream tasks such as dialogue systems. To achieve a better performance in SRL, a model is always required to have a good understanding of the context information. Although one can use advanced text encoder (e.g., BERT) to capture the context information, extra resources are also required to further improve the model performance. Considering that there are correlations between the syntactic structure and the semantic structure of the sentence, many previous studies leverage auto-generated syntactic knowledge, especially the dependencies, to enhance the modeling of context information through graph-based architectures, where limited attention is paid to other types of auto-generated knowledge. In this paper, we propose map memories to enhance SRL by encoding different types of auto-generated syntactic knowledge (i.e., POS tags, syntactic constituencies, and word dependencies) obtained from off-the-shelf toolkits. Experimental results on two English benchmark datasets for span-style SRL (i.e., CoNLL-2005 and CoNLL-2012) demonstrate the effectiveness of our approach, which outperforms strong baselines and achieves state-of-the-art results on CoNLL-2005.
['Yan Song', 'Fei Xia', 'Han Qin', 'Yuanhe Tian']
null
null
null
null
lrec-2022-6
['semantic-role-labeling']
['natural-language-processing']
[ 1.52863964e-01 2.17977434e-01 -4.04459596e-01 -7.31659412e-01 -3.95597428e-01 -6.75967395e-01 5.15146911e-01 4.11801308e-01 -6.28525317e-01 7.06274152e-01 9.42095101e-01 -2.72932529e-01 2.43406519e-01 -8.56785119e-01 -7.07333565e-01 -3.97618860e-01 1.16642773e-01 4.82846498e-01 3.84390265e-01 -7.06816018e-01 1.67485982e-01 -1.63965985e-01 -1.10133612e+00 5.38120866e-01 9.17649090e-01 7.96345532e-01 8.00682187e-01 1.92729160e-01 -6.21303439e-01 1.28453672e+00 -7.38713264e-01 -3.55589956e-01 -3.61933500e-01 -5.04860044e-01 -1.08104956e+00 -1.30104095e-01 -2.34190419e-01 -3.86528373e-02 -2.30406955e-01 1.02680027e+00 1.48947194e-01 3.38147461e-01 2.04368562e-01 -8.06118309e-01 -6.12172067e-01 1.16874218e+00 -1.88665465e-01 3.37359279e-01 3.96445870e-01 2.45269015e-02 1.65280890e+00 -8.36953640e-01 6.70006990e-01 1.67841065e+00 9.12191346e-02 6.31102443e-01 -9.10089731e-01 -5.29276669e-01 5.61128914e-01 5.89013159e-01 -9.20930922e-01 -2.82377481e-01 1.04555273e+00 4.04232517e-02 1.02335346e+00 -2.46499106e-03 3.00529033e-01 1.16874433e+00 -2.31620483e-02 1.15231764e+00 9.66587305e-01 -4.54012036e-01 8.67024139e-02 -1.33817330e-01 5.63730597e-01 6.20663643e-01 -1.93742841e-01 -3.62502426e-01 -6.62476659e-01 5.99980354e-02 5.15085816e-01 -3.31945360e-01 -3.13120365e-01 1.50227621e-01 -1.18885219e+00 9.32382524e-01 5.25202692e-01 5.69404840e-01 -2.24241093e-01 5.27983755e-02 7.46549308e-01 2.24772617e-01 5.03170371e-01 6.18038177e-01 -7.45210707e-01 -2.84592152e-01 -2.03122869e-01 -6.16778173e-02 8.36474538e-01 8.86009812e-01 6.70831561e-01 -1.76534981e-01 -4.48526710e-01 1.08859098e+00 3.95915478e-01 1.45241663e-01 5.99051535e-01 -7.00380266e-01 9.36894238e-01 1.00608122e+00 -1.26238793e-01 -7.34826982e-01 -3.72895271e-01 -4.30611640e-01 -5.87716520e-01 -6.78142607e-01 2.37187579e-01 -7.71465478e-03 -7.67868340e-01 2.07863712e+00 2.56723076e-01 3.03511113e-01 4.88255918e-01 9.95251596e-01 1.24248052e+00 9.88523304e-01 4.62445617e-01 3.09269913e-02 1.65358317e+00 -1.17653048e+00 -7.15572536e-01 -7.09916592e-01 8.15279722e-01 -3.60440373e-01 1.43806469e+00 -2.26759374e-01 -7.01987028e-01 -5.53039789e-01 -8.98616135e-01 -2.86615640e-01 -2.32971743e-01 3.01043447e-02 6.04987025e-01 3.52094918e-02 -7.58349836e-01 3.97052586e-01 -6.31533682e-01 -1.31313652e-01 2.20725775e-01 6.49577007e-02 -3.00935507e-01 -2.48965994e-01 -1.97060609e+00 8.64428639e-01 8.75567555e-01 1.74207851e-01 -6.74057484e-01 -6.91685021e-01 -1.29046500e+00 2.62098968e-01 7.43423998e-01 -4.39080477e-01 1.24046457e+00 -7.68861592e-01 -1.32912052e+00 7.94696808e-01 -4.35260624e-01 -5.59095025e-01 -8.41312036e-02 -1.61860928e-01 -2.77571321e-01 2.58065373e-01 2.54008651e-01 5.06511688e-01 4.63707179e-01 -1.04493666e+00 -8.13548326e-01 -4.46089268e-01 7.36769974e-01 6.07189119e-01 -4.06433553e-01 4.22832072e-01 -5.37914813e-01 -6.65933967e-01 -2.08815336e-01 -8.11844647e-01 -2.57463068e-01 -7.09856987e-01 -3.60893846e-01 -9.30966377e-01 6.97452009e-01 -7.86553800e-01 1.34365702e+00 -2.21256471e+00 1.82756335e-01 -2.18076244e-01 5.42287230e-02 2.87347376e-01 -2.29072675e-01 4.98553038e-01 4.71214242e-02 2.13566616e-01 -4.00541157e-01 -3.21590960e-01 -3.08255330e-02 6.54424608e-01 -2.84485132e-01 3.25465798e-02 2.18841627e-01 9.58101571e-01 -1.23254466e+00 -4.98994291e-01 9.64931473e-02 2.05344662e-01 -3.25940937e-01 4.07162070e-01 -6.27097011e-01 6.72083497e-01 -7.47120976e-01 3.39411497e-01 1.15256093e-01 -3.83822799e-01 4.57575440e-01 -2.28406981e-01 1.50346860e-01 1.13528621e+00 -7.98587382e-01 1.82957017e+00 -9.26712811e-01 2.17724413e-01 5.80667704e-02 -1.04538286e+00 8.70524108e-01 4.09845591e-01 1.13458991e-01 -7.49460518e-01 9.86606702e-02 1.10545799e-01 4.39970940e-01 -2.85982728e-01 3.66599917e-01 -1.86162397e-01 -4.15031880e-01 3.13773125e-01 1.09123707e-01 2.36396238e-01 5.62020600e-01 3.23857367e-01 1.13086569e+00 -1.08025772e-02 5.39982796e-01 -4.26366121e-01 1.06979454e+00 1.33078061e-02 8.73241186e-01 3.95574093e-01 1.62192676e-02 1.77460328e-01 7.37292171e-01 -1.37763023e-01 -5.85332870e-01 -5.05967736e-01 1.57066807e-01 1.43151557e+00 3.95023793e-01 -7.53790140e-01 -6.34707868e-01 -1.11916137e+00 -1.28620639e-01 1.04468822e+00 -5.75853586e-01 -2.36191392e-01 -1.07743645e+00 -6.90003395e-01 5.19914329e-01 8.64022613e-01 7.36555755e-01 -1.55428553e+00 -3.10301363e-01 5.50474524e-01 -3.80576611e-01 -1.54157341e+00 -4.30721849e-01 1.56886235e-01 -6.34766579e-01 -1.10780621e+00 -6.51894463e-03 -8.38979363e-01 5.74187696e-01 1.45835191e-01 1.42578626e+00 2.98204362e-01 3.43539953e-01 -1.64065491e-02 -8.17152739e-01 -1.77674353e-01 -4.90727574e-01 1.76612720e-01 -3.12521785e-01 1.02845550e-01 4.16732311e-01 -3.43846202e-01 -4.54164565e-01 2.49272779e-01 -7.77219176e-01 1.39823779e-01 4.88007903e-01 9.58141446e-01 5.46292543e-01 2.18471929e-01 5.82781434e-01 -1.29129851e+00 7.26207078e-01 -5.65275609e-01 -3.27847838e-01 2.57270217e-01 -2.30736330e-01 4.41810757e-01 1.15055144e+00 -4.41113077e-02 -1.48141813e+00 -2.54150927e-01 -3.83138597e-01 1.18111476e-01 -1.21941537e-01 9.06516135e-01 -7.35052466e-01 5.33506453e-01 2.16260836e-01 3.76563042e-01 -3.14491332e-01 -7.17368126e-01 4.43955362e-01 5.84074378e-01 3.77189100e-01 -9.45075095e-01 4.16933626e-01 1.75878793e-01 -1.34475842e-01 -7.29701042e-01 -1.54940903e+00 -6.49046540e-01 -4.64092851e-01 3.03347737e-01 9.32900369e-01 -9.61667538e-01 -4.52939510e-01 2.90339410e-01 -1.43271053e+00 -2.79432148e-01 3.11185364e-02 2.75511205e-01 -2.44375452e-01 3.54877621e-01 -9.00395691e-01 -3.81297797e-01 -4.84720826e-01 -9.95816469e-01 9.91112411e-01 1.76976696e-01 -1.88468024e-01 -1.27028477e+00 -2.83453673e-01 5.80314219e-01 1.75737441e-01 -2.21289605e-01 1.31045663e+00 -1.07284927e+00 -2.81549215e-01 2.37374470e-01 -3.22363198e-01 5.52781224e-01 2.10566550e-01 -6.91840410e-01 -7.02890873e-01 -1.38320684e-01 1.07608289e-01 -3.87715131e-01 8.58242095e-01 -1.19960057e-02 1.24979448e+00 -4.77838039e-01 -2.28103712e-01 1.66498333e-01 1.11044788e+00 3.43013614e-01 5.19626260e-01 2.23466739e-01 9.81770456e-01 7.99518287e-01 1.02373433e+00 1.25992060e-01 7.96543658e-01 6.32965744e-01 3.30903143e-01 1.76443174e-01 -3.10188085e-01 -5.77612102e-01 4.49286968e-01 9.53543842e-01 1.09689355e-01 -3.65341097e-01 -8.41563225e-01 4.64425921e-01 -1.95502758e+00 -6.73422933e-01 -2.27676958e-01 1.71588457e+00 1.32749784e+00 2.92743087e-01 -2.82175213e-01 -2.84959711e-02 7.64105976e-01 7.32321501e-01 -5.49291909e-01 -1.69451579e-01 -6.70179203e-02 1.21533178e-01 2.11530089e-01 5.70343733e-01 -1.08746052e+00 1.60776782e+00 4.65002823e+00 9.16134655e-01 -8.25142980e-01 3.09196770e-01 4.46648955e-01 4.17964280e-01 -3.74761194e-01 1.83735773e-01 -1.11970282e+00 6.83221102e-01 8.14443767e-01 -2.52870142e-01 2.75901645e-01 8.19981694e-01 1.63396046e-01 -3.87737341e-02 -1.05142653e+00 7.12378740e-01 4.95722443e-02 -1.20181990e+00 -1.18866889e-02 -2.64602453e-01 3.46171826e-01 1.04581080e-01 -5.89571416e-01 6.77475750e-01 4.40323740e-01 -8.18147719e-01 6.19026482e-01 -1.21069744e-01 5.58766305e-01 -6.94592059e-01 9.57622409e-01 5.76220274e-01 -1.48622811e+00 -5.48006110e-02 -4.77498621e-01 -2.22943932e-01 2.32790545e-01 6.12689674e-01 -8.90909910e-01 6.13937616e-01 3.86609167e-01 1.11675799e+00 -4.99365568e-01 3.45745564e-01 -1.30085123e+00 1.02389538e+00 -4.49199528e-02 -3.96178871e-01 5.22606850e-01 -5.15162526e-03 5.95820487e-01 1.23694789e+00 -2.39457458e-01 3.71150851e-01 4.74269003e-01 6.87471747e-01 -4.36271489e-01 3.00645530e-01 -3.71555567e-01 -1.31241471e-01 6.07734263e-01 1.17523396e+00 -5.12121677e-01 -4.20687765e-01 -6.18703902e-01 8.66034985e-01 5.23903191e-01 1.36949405e-01 -5.71364701e-01 -1.63280725e-01 7.05976784e-01 4.91045341e-02 7.18818307e-02 -3.88460398e-01 -1.59174845e-01 -1.15730941e+00 1.31376162e-01 -8.42087865e-01 7.16898680e-01 -5.49445987e-01 -1.21437061e+00 6.56735003e-01 -1.49565085e-03 -7.75970697e-01 -3.49944264e-01 -5.59585273e-01 -6.04512215e-01 9.34056222e-01 -1.86933029e+00 -1.25488043e+00 2.81142518e-02 4.33487386e-01 1.06709242e+00 -8.32348093e-02 6.90633118e-01 8.58634710e-03 -3.87187570e-01 2.65787333e-01 -4.76402283e-01 5.79506159e-01 4.13936347e-01 -1.44623935e+00 5.71898282e-01 9.27424848e-01 2.09264398e-01 7.13211298e-01 4.18767154e-01 -7.07977235e-01 -1.43385088e+00 -1.22166073e+00 1.25697958e+00 -4.89682764e-01 8.81114066e-01 -5.77157319e-01 -1.13699472e+00 6.22662246e-01 2.21916914e-01 -4.18960080e-02 6.63624883e-01 4.43609625e-01 -1.53400853e-01 -9.65854968e-04 -5.94260871e-01 4.69627321e-01 1.40880764e+00 -6.74480736e-01 -1.22308862e+00 1.02937289e-01 1.24395299e+00 -5.04993260e-01 -5.56216657e-01 3.74054819e-01 -1.17581226e-02 -5.37490845e-01 7.88532734e-01 -7.97461569e-01 6.33682549e-01 -3.68085474e-01 -1.44234702e-01 -1.68138313e+00 -2.63859510e-01 -2.21826866e-01 -8.11108425e-02 1.41450179e+00 6.15207374e-01 -4.15337652e-01 5.17852068e-01 5.56510985e-01 -4.59079206e-01 -7.90458858e-01 -7.23261476e-01 -7.78966725e-01 -2.04117686e-01 -4.40377891e-01 7.14572489e-01 9.03240979e-01 -2.57106777e-02 1.13286436e+00 -1.73614770e-01 1.02151088e-01 2.75302023e-01 3.78257364e-01 3.61589909e-01 -1.22108364e+00 -2.52421528e-01 -1.29790545e-01 -1.37324765e-01 -1.23313069e+00 1.07295215e+00 -1.25167525e+00 1.08726777e-01 -1.87911570e+00 1.51882574e-01 -5.39387286e-01 -5.20177484e-01 8.91129315e-01 -6.36443138e-01 -3.09742421e-01 2.24601686e-01 4.25172560e-02 -8.86817038e-01 8.79659474e-01 1.35481215e+00 -1.14060767e-01 -6.58261999e-02 -1.81223944e-01 -1.01342070e+00 8.56434166e-01 8.24022233e-01 -4.70513165e-01 -6.30197048e-01 -8.14380169e-01 2.74243534e-01 1.17385581e-01 1.10921726e-01 -4.71395224e-01 2.25314558e-01 -2.92906731e-01 -1.13818184e-01 -2.98502207e-01 1.62644461e-01 -6.86831653e-01 -6.42369866e-01 1.98668718e-01 -5.34026146e-01 -2.26479806e-02 -1.80255651e-01 5.62954187e-01 -7.48239756e-01 -5.35291374e-01 4.53927547e-01 -5.45875311e-01 -1.30592549e+00 1.89986557e-01 6.52517304e-02 4.87082332e-01 5.88147879e-01 3.36620778e-01 -5.16479492e-01 -2.73619950e-01 -4.59512591e-01 6.72186852e-01 1.54969975e-01 8.80297005e-01 5.80430150e-01 -1.15812373e+00 -7.97526002e-01 -1.54164881e-02 3.20391208e-01 2.69706845e-01 1.15626782e-01 3.70582074e-01 -6.35738000e-02 4.79447722e-01 2.22988486e-01 -1.62023306e-01 -1.29642296e+00 2.77823955e-01 5.78904897e-02 -7.40510643e-01 -5.60118318e-01 8.67530406e-01 3.90899748e-01 -4.36962575e-01 4.22560843e-03 -3.00504923e-01 -7.08831131e-01 3.80081534e-02 6.83397472e-01 -1.70826823e-01 4.31226678e-02 -6.37009978e-01 -6.47015929e-01 1.97645321e-01 -1.01021454e-01 9.11742374e-02 1.31531203e+00 -1.00813322e-01 -5.34028709e-01 2.91627198e-01 1.08819866e+00 3.79050784e-02 -1.06555712e+00 -6.37220442e-01 4.90084499e-01 -2.39804134e-01 9.07794461e-02 -8.10234249e-01 -9.77769494e-01 9.65628028e-01 -3.94897461e-01 -4.67134155e-02 8.75516713e-01 4.80857313e-01 1.01507890e+00 4.03398931e-01 5.28672218e-01 -1.19290507e+00 1.71387866e-01 1.12792552e+00 9.92382348e-01 -1.20636809e+00 -4.17938709e-01 -9.00018930e-01 -9.86508846e-01 8.55746806e-01 8.62966478e-01 1.02537595e-01 4.04090494e-01 7.21650869e-02 -8.28351378e-02 -1.34569272e-01 -9.01706934e-01 -5.56210399e-01 2.69564956e-01 2.39289358e-01 7.18561530e-01 1.58916160e-01 -6.68877244e-01 1.06990814e+00 -1.74762979e-01 -4.28704321e-01 1.93405971e-01 9.27667558e-01 -4.00320500e-01 -1.46341670e+00 1.32606268e-01 3.36434513e-01 -5.72332442e-01 -5.50561726e-01 -3.45541060e-01 5.39387286e-01 -1.92839392e-02 1.21166492e+00 -1.62579134e-01 -1.07446671e-01 4.95866299e-01 1.42895833e-01 2.43160576e-01 -1.31284356e+00 -6.96620226e-01 -2.41406932e-01 7.44521677e-01 -5.90573311e-01 -4.49123859e-01 -3.32881242e-01 -1.93042254e+00 3.04844111e-01 1.41479880e-01 3.82335722e-01 5.11174142e-01 1.32255661e+00 2.89786428e-01 6.97919667e-01 6.45418763e-01 -5.69463335e-02 -4.64497060e-01 -1.08972347e+00 -4.09071743e-01 6.24755025e-01 -1.14304431e-01 -6.55645728e-01 -1.20533727e-01 -2.02641264e-01]
[10.425036430358887, 9.186175346374512]
ccbedebe-710a-423c-8a7d-87544b49d557
fedala-adaptive-local-aggregation-for
2212.01197
null
https://arxiv.org/abs/2212.01197v2
https://arxiv.org/pdf/2212.01197v2.pdf
FedALA: Adaptive Local Aggregation for Personalized Federated Learning
A key challenge in federated learning (FL) is the statistical heterogeneity that impairs the generalization of the global model on each client. To address this, we propose a method Federated learning with Adaptive Local Aggregation (FedALA) by capturing the desired information in the global model for client models in personalized FL. The key component of FedALA is an Adaptive Local Aggregation (ALA) module, which can adaptively aggregate the downloaded global model and local model towards the local objective on each client to initialize the local model before training in each iteration. To evaluate the effectiveness of FedALA, we conduct extensive experiments with five benchmark datasets in computer vision and natural language processing domains. FedALA outperforms eleven state-of-the-art baselines by up to 3.27% in test accuracy. Furthermore, we also apply ALA module to other federated learning methods and achieve up to 24.19% improvement in test accuracy.
['Haibing Guan', 'Ruhui Ma', 'Zhengui Xue', 'Tao Song', 'Hao Wang', 'Yang Hua', 'Jianqing Zhang']
2022-12-02
null
null
null
null
['personalized-federated-learning']
['methodology']
[-2.91089118e-01 -1.63408667e-01 -4.23754096e-01 -5.80443680e-01 -1.23341513e+00 -4.72024798e-01 6.67117178e-01 -3.33388746e-01 -3.42662334e-02 6.21894658e-01 2.84321487e-01 -1.42183363e-01 4.86102141e-03 -6.47209525e-01 -8.60347807e-01 -8.17839086e-01 -4.33118753e-02 3.76876593e-01 7.05197304e-02 3.43866557e-01 -3.31831753e-01 3.98998499e-01 -1.57627690e+00 8.94844413e-01 1.05158150e+00 1.38657200e+00 1.09453127e-01 5.27545214e-01 -3.20078701e-01 1.17547345e+00 -4.45636839e-01 -5.85256517e-01 3.11460674e-01 -2.78415769e-01 -8.35194588e-01 -6.23888001e-02 8.74220073e-01 -6.23722613e-01 -3.09524626e-01 9.38020647e-01 6.66952312e-01 1.05494961e-01 3.07214677e-01 -1.26316059e+00 -6.67117655e-01 1.02622759e+00 -1.69676960e-01 4.53316383e-02 -3.06871645e-02 5.01647055e-01 9.42732692e-01 -1.06281090e+00 4.37754244e-01 1.33174038e+00 4.79359269e-01 6.20931804e-01 -1.00532675e+00 -7.66938031e-01 5.22564530e-01 2.89537787e-01 -9.04597521e-01 -6.39196455e-01 7.12662160e-01 -1.02742828e-01 5.59537292e-01 3.80020976e-01 -1.08349219e-01 1.04765940e+00 1.42392352e-01 1.31281888e+00 1.13376653e+00 -1.93211660e-01 4.23545122e-01 1.63093209e-01 2.76884228e-01 7.67872453e-01 -5.15021607e-02 -3.26778851e-02 -8.48386407e-01 -6.64757490e-01 1.20332606e-01 2.52066314e-01 -1.30660266e-01 -2.94786751e-01 -7.36583769e-01 6.27810478e-01 5.60623169e-01 -7.57489055e-02 -5.29048622e-01 1.40146807e-01 4.56120938e-01 3.31669927e-01 6.47232592e-01 -4.67706285e-02 -9.73128498e-01 1.52806073e-01 -6.54684544e-01 3.03830475e-01 8.55082035e-01 7.44188011e-01 8.18152249e-01 -1.34293452e-01 -5.19777060e-01 9.47415054e-01 4.61416364e-01 4.85436410e-01 7.80705333e-01 -1.24044561e+00 6.27175152e-01 8.69109273e-01 -1.68758020e-01 -4.04352278e-01 8.02986324e-02 -8.65024447e-01 -6.38237119e-01 2.48862114e-02 5.57367243e-02 -3.41686666e-01 -4.89144534e-01 1.79041600e+00 7.79952526e-01 4.49140668e-01 1.04651935e-01 6.66702688e-01 8.96585405e-01 4.02419031e-01 2.80467212e-01 -5.16349077e-02 9.07031953e-01 -1.70912361e+00 -2.82240540e-01 -6.82505518e-02 6.97455049e-01 -5.44803083e-01 1.19314456e+00 3.55218530e-01 -8.72245908e-01 -3.65509242e-01 -6.63788676e-01 3.50856483e-01 -1.15489878e-01 1.13795847e-02 5.71585894e-01 4.23590958e-01 -9.26722288e-01 6.95726335e-01 -7.81402171e-01 -1.33082107e-01 6.84132457e-01 2.30969846e-01 -2.40660042e-01 -4.27290618e-01 -7.33730316e-01 2.22052962e-01 -8.77794996e-02 -6.14069998e-01 -1.30972457e+00 -1.17509532e+00 -4.78559136e-01 2.28962213e-01 1.95863858e-01 -7.56201267e-01 1.80433547e+00 -1.09992969e+00 -1.48329592e+00 4.93473738e-01 -2.07531869e-01 -5.84989369e-01 7.57674277e-01 -2.85901636e-01 -4.28834021e-01 -1.61115736e-01 -6.32052273e-02 3.20641488e-01 7.32905984e-01 -1.40708351e+00 -9.68570411e-01 -6.51434243e-01 -7.04676211e-02 9.18846354e-02 -7.30696857e-01 -1.48620173e-01 -7.01670229e-01 -5.23442328e-01 -2.51086593e-01 -5.87877452e-01 -7.69870654e-02 -1.03308506e-01 1.57858357e-02 -6.61017060e-01 1.26653850e+00 -6.10666513e-01 1.30540836e+00 -2.14060760e+00 -3.66777480e-01 -1.29002914e-01 3.45341712e-01 3.67320091e-01 -5.50405264e-01 2.75077164e-01 3.63270074e-01 -2.57124957e-02 5.46100959e-02 -8.60491812e-01 1.88161343e-01 2.33902708e-01 -3.62199664e-01 3.41568649e-01 -3.00366163e-01 9.84043121e-01 -8.34355354e-01 -6.02632642e-01 -1.22191556e-01 5.14018595e-01 -6.67110920e-01 4.26693201e-01 -6.84810221e-01 3.36769283e-01 -8.36956918e-01 8.78139794e-01 8.73616219e-01 -6.02395356e-01 3.26912254e-01 -1.43332034e-01 2.18931630e-01 5.32271087e-01 -9.78409410e-01 1.70830894e+00 -5.58354497e-01 -7.39866868e-02 3.84628296e-01 -5.43129146e-01 6.45286441e-01 3.80167723e-01 8.18396389e-01 -8.74953151e-01 5.83043583e-02 1.51832372e-01 -6.13970041e-01 -1.97401688e-01 7.41676763e-02 3.96922261e-01 2.95604318e-01 1.04357088e+00 2.87088096e-01 8.16996753e-01 -2.26919979e-01 3.67865890e-01 1.34672976e+00 2.70831902e-02 -2.42633358e-01 -2.07757503e-01 6.56784415e-01 -3.29036385e-01 7.81965077e-01 8.70116174e-01 -3.86535466e-01 3.15821677e-01 -2.45055370e-02 -7.25891709e-01 -4.62732941e-01 -8.96607101e-01 1.67904615e-01 1.87697613e+00 -1.38645992e-01 -5.30334830e-01 -7.89222121e-01 -1.52946496e+00 3.40672761e-01 6.86668217e-01 -3.86134177e-01 -2.05396786e-01 -3.65479529e-01 -5.38511097e-01 4.03091431e-01 4.25938159e-01 8.31675291e-01 -9.49150205e-01 -3.75223786e-01 2.35390916e-01 -3.18732560e-01 -8.75564516e-01 -8.60236824e-01 -1.30647510e-01 -9.00775194e-01 -1.02661872e+00 -2.79448330e-01 -4.33578044e-01 4.22178507e-01 4.20859575e-01 1.31693161e+00 9.00017172e-02 7.79114291e-02 4.86731350e-01 -4.12242830e-01 -3.33513290e-01 -4.06929463e-01 3.26517165e-01 -6.79409951e-02 5.75324535e-01 2.59691864e-01 -4.43078429e-01 -7.03363121e-01 5.37319601e-01 -8.32600772e-01 -1.26102313e-01 4.19713795e-01 8.66057873e-01 5.76690495e-01 -2.35689774e-01 7.85842657e-01 -1.06973147e+00 5.69107831e-01 -8.38235378e-01 -4.78648543e-01 6.44007027e-01 -1.08542109e+00 5.74872382e-02 9.92541373e-01 -4.15219575e-01 -1.37686646e+00 2.58607090e-01 1.07536472e-01 -7.54365325e-01 -1.77307073e-02 4.17923838e-01 -5.55970788e-01 -7.68996552e-02 7.93741524e-01 1.39928207e-01 8.00606310e-02 -1.04399335e+00 4.73905563e-01 9.60029781e-01 5.92845261e-01 -9.15621221e-01 3.20073098e-01 3.26474696e-01 -5.34053922e-01 7.89578632e-02 -9.83743310e-01 -4.29644883e-01 -9.78038907e-02 -1.26627102e-01 1.43143982e-01 -1.07088220e+00 -6.88314855e-01 5.52342653e-01 -8.90529215e-01 -6.01871014e-01 -3.37129384e-01 1.41979262e-01 -4.02630568e-01 2.03168646e-01 -6.00768030e-01 -5.79365194e-01 -9.76654828e-01 -1.04940963e+00 8.60585690e-01 2.87877470e-01 3.53550404e-01 -9.77043033e-01 1.80364698e-01 6.96759164e-01 7.52695322e-01 -8.39001462e-02 6.34365201e-01 -9.21742439e-01 -5.87825418e-01 -1.64849728e-01 -8.83045718e-02 4.78140116e-01 2.25249246e-01 -2.09476262e-01 -1.37811470e+00 -5.70116222e-01 -5.58719002e-02 -6.65571868e-01 8.75736535e-01 -1.16644916e-03 1.31917632e+00 -8.06536078e-01 -3.66739064e-01 7.29789853e-01 1.40604889e+00 -1.57334194e-01 3.09033059e-02 2.46530831e-01 5.25392234e-01 2.94354200e-01 4.71273065e-01 7.96717763e-01 6.25668108e-01 4.73447949e-01 6.55310929e-01 2.11375400e-01 -4.99306262e-01 -4.37892556e-01 6.45799220e-01 6.15852892e-01 5.06992161e-01 -2.17004448e-01 -6.96339369e-01 5.23131907e-01 -2.21055722e+00 -8.37379813e-01 3.06464523e-01 2.12341881e+00 8.81428719e-01 -5.00588596e-01 7.64008686e-02 -4.42200452e-01 5.33553302e-01 2.13121697e-01 -1.14654088e+00 -1.44471616e-01 -1.10804170e-01 -9.98397823e-03 4.76949722e-01 1.94027632e-01 -1.06743443e+00 9.62239265e-01 6.11848211e+00 8.83070827e-01 -1.31890666e+00 6.47870421e-01 9.75551724e-01 -4.09011006e-01 -3.09149981e-01 -3.04604083e-01 -9.31876659e-01 5.86965322e-01 1.04638600e+00 -3.82404178e-01 6.58073008e-01 1.39908886e+00 -3.87098975e-02 4.46088016e-01 -1.06721759e+00 8.52244318e-01 -4.82065184e-03 -1.45591724e+00 3.59446466e-01 6.09665699e-02 1.15010059e+00 7.53863573e-01 2.37422824e-01 4.49399024e-01 1.01108873e+00 -8.05521250e-01 4.88230228e-01 5.02073944e-01 5.96357226e-01 -7.71148682e-01 4.39807206e-01 7.01335311e-01 -1.12500250e+00 -4.90900338e-01 -3.52030218e-01 3.90731931e-01 -2.23357156e-01 4.32444006e-01 -7.10362613e-01 7.41518438e-01 1.03109550e+00 4.80585396e-01 -7.24069238e-01 1.03840232e+00 1.88363597e-01 1.04469156e+00 -3.96327317e-01 3.64743590e-01 1.96214601e-01 1.99348435e-01 1.69764698e-01 1.01025403e+00 -7.95117766e-03 -1.66480750e-01 3.05942386e-01 6.60095632e-01 -6.26862049e-01 2.94225007e-01 -1.41314417e-01 3.43496054e-01 7.08768606e-01 1.50484276e+00 2.44602889e-01 -3.85755032e-01 -5.57015359e-01 8.04593682e-01 7.17754066e-01 3.30731124e-01 -6.55345917e-01 1.88318431e-01 8.61722171e-01 -7.78770000e-02 2.84570277e-01 3.31380367e-01 -7.57312253e-02 -1.19343448e+00 2.24893287e-01 -1.49257052e+00 9.95846450e-01 -2.84111023e-01 -1.90332198e+00 7.76634157e-01 -3.64322692e-01 -9.84934330e-01 -2.86775738e-01 -6.48988262e-02 -8.02800655e-01 8.36185455e-01 -1.45554292e+00 -1.58997369e+00 -5.03922105e-01 1.10074270e+00 6.60691082e-01 -5.97786903e-01 7.90462732e-01 4.02604312e-01 -5.98395467e-01 1.14225578e+00 4.92572308e-01 -8.00772980e-02 9.16100502e-01 -8.21318388e-01 3.66769999e-01 6.77470744e-01 1.65060669e-01 3.79095763e-01 1.55300707e-01 -5.16538203e-01 -1.71115696e+00 -1.77667165e+00 8.62290204e-01 -5.31846642e-01 3.48812461e-01 -1.21454727e-02 -7.70507038e-01 8.02655995e-01 2.09637403e-01 6.94461942e-01 6.84205353e-01 -8.86163674e-03 -8.29231143e-01 -5.98158062e-01 -1.52312636e+00 2.69135743e-01 1.04596221e+00 -3.78908306e-01 6.28138706e-02 5.78542233e-01 1.03738225e+00 -2.15764180e-01 -8.65783036e-01 4.71971035e-01 4.59281474e-01 -1.06703365e+00 7.34039485e-01 -9.25400615e-01 9.20074359e-02 1.03375845e-01 -5.75759411e-01 -1.14152682e+00 -5.11631727e-01 -7.30415463e-01 -6.88621163e-01 1.40971971e+00 2.63792962e-01 -9.68269229e-01 1.03285420e+00 9.51736212e-01 -1.65326018e-02 -1.13447607e+00 -9.30321217e-01 -7.43266761e-01 1.96813717e-01 -4.60183144e-01 1.28251135e+00 7.97123671e-01 -2.85644442e-01 -4.35852557e-02 -1.62491798e-01 1.18925147e-01 1.14263666e+00 2.37948269e-01 1.00549221e+00 -1.06822550e+00 -5.82917929e-01 -3.27722430e-01 2.16864586e-01 -1.12135911e+00 4.57723320e-01 -1.06004488e+00 -4.79034752e-01 -1.33298314e+00 4.27958131e-01 -6.85471594e-01 -8.00481915e-01 7.95383573e-01 -2.65420914e-01 -5.97802140e-02 4.86005604e-01 4.85366583e-01 -1.07168424e+00 7.94966877e-01 1.00712323e+00 -3.52479607e-01 -1.52252108e-01 2.27434009e-01 -8.84969771e-01 3.88736784e-01 7.53425300e-01 -4.89937484e-01 -3.89611334e-01 -7.70325184e-01 -4.91846293e-01 -1.28616795e-01 2.72933811e-01 -7.83035040e-01 5.01806974e-01 -2.09992692e-01 2.70094037e-01 -5.31523228e-01 -9.11319107e-02 -7.92258203e-01 2.24688917e-01 2.24352852e-01 -4.87377435e-01 7.17823254e-03 -6.90732226e-02 4.70315307e-01 -1.28176868e-01 2.48309940e-01 7.51094520e-01 3.33623178e-02 -3.94080400e-01 8.51497710e-01 3.11922789e-01 -2.66516116e-02 9.78324533e-01 5.07185400e-01 -6.65404022e-01 -3.34841043e-01 -4.99870002e-01 6.24511302e-01 3.43136519e-01 5.44035137e-01 3.28223109e-01 -1.44162834e+00 -7.57598698e-01 3.09111923e-01 5.16760424e-02 -5.31193055e-02 3.52816731e-01 7.07506537e-01 -1.19906381e-01 4.33036894e-01 2.84199566e-01 -4.45632339e-01 -1.27456963e+00 4.90436465e-01 7.37076044e-01 -4.84552681e-01 -5.36005497e-01 8.42555285e-01 1.46148100e-01 -1.02839720e+00 7.04680085e-01 1.20622143e-01 2.16427311e-01 -4.70343739e-01 8.49138260e-01 6.95979774e-01 3.39313239e-01 -5.55394530e-01 -3.80818546e-01 -5.01778051e-02 -3.00001770e-01 1.67894676e-01 1.41881204e+00 -7.65841827e-02 -1.21989951e-01 5.20549566e-02 1.37066972e+00 -2.72223186e-02 -1.63245368e+00 -9.43730593e-01 -2.41942987e-01 -4.83159423e-01 1.90202430e-01 -1.21262085e+00 -1.55312192e+00 3.02452385e-01 7.86429167e-01 -2.72347420e-01 1.14362085e+00 1.22081861e-01 9.50467944e-01 3.49078178e-01 5.83466828e-01 -8.37562084e-01 -1.20369121e-01 3.80354792e-01 7.91816235e-01 -1.12874949e+00 -1.33706287e-01 9.27635804e-02 -6.17951214e-01 6.94650054e-01 8.49534988e-01 6.36282712e-02 9.30324137e-01 1.30831793e-01 3.79753202e-01 8.21062848e-02 -1.53803122e+00 3.80537033e-01 2.85380840e-01 2.57973164e-01 1.59245640e-01 9.06055048e-02 -6.60353974e-02 1.13186109e+00 1.28438562e-01 2.06901908e-01 -3.35292220e-01 8.99918377e-01 -2.21639678e-01 -1.31610787e+00 -3.43648195e-01 4.31815058e-01 -6.63702071e-01 1.96515903e-01 -5.03491282e-01 5.05343825e-02 -5.25965064e-04 1.21584451e+00 -2.26943910e-01 -6.47322178e-01 1.02334820e-01 3.47931266e-01 6.37379810e-02 -2.82862067e-01 -1.06675100e+00 4.35837023e-02 -1.93163887e-01 -1.08823001e+00 -2.95715332e-02 -5.93285143e-01 -1.25888658e+00 -5.09617805e-01 -2.74728298e-01 3.25802147e-01 7.54927158e-01 8.32407773e-01 1.00833023e+00 2.23848224e-01 1.14193380e+00 -5.48676550e-01 -1.29994881e+00 -8.44897807e-01 -3.50047708e-01 5.05142450e-01 2.78091550e-01 -2.29762912e-01 -4.58205342e-01 -5.16012497e-02]
[5.829578876495361, 6.287938594818115]
3a5563e4-542b-49c6-89e3-474f5244c583
3d-object-classification-via-spherical
1712.04426
null
http://arxiv.org/abs/1712.04426v1
http://arxiv.org/pdf/1712.04426v1.pdf
3D Object Classification via Spherical Projections
In this paper, we introduce a new method for classifying 3D objects. Our main idea is to project a 3D object onto a spherical domain centered around its barycenter and develop neural network to classify the spherical projection. We introduce two complementary projections. The first captures depth variations of a 3D object, and the second captures contour-information viewed from different angles. Spherical projections combine key advantages of two main-stream 3D classification methods: image-based and 3D-based. Specifically, spherical projections are locally planar, allowing us to use massive image datasets (e.g, ImageNet) for pre-training. Also spherical projections are similar to voxel-based methods, as they encode complete information of a 3D object in a single neural network capturing dependencies across different views. Our novel network design can fully utilize these advantages. Experimental results on ModelNet40 and ShapeNetCore show that our method is superior to prior methods.
['Qi-Xing Huang', 'Karthik Ramani', 'Zhangjie Cao']
2017-12-12
null
null
null
null
['3d-object-classification', '3d-classification']
['computer-vision', 'computer-vision']
[-1.11096904e-01 9.55641195e-02 -1.03965513e-01 -4.64812011e-01 -1.55222282e-01 -6.84495330e-01 6.55940533e-01 -3.60532820e-01 -4.55940589e-02 -2.16780931e-01 2.72984445e-01 -2.37676516e-01 3.06236297e-01 -8.41668487e-01 -8.23518693e-01 -4.04938161e-01 2.59783238e-01 7.38266408e-01 5.99742651e-01 1.24876358e-01 2.99957335e-01 1.15862215e+00 -1.21300304e+00 2.51743555e-01 3.18685412e-01 1.40133560e+00 2.79359937e-01 2.58686662e-01 -2.16749340e-01 2.52883971e-01 -1.65228158e-01 -3.07877436e-02 5.58303177e-01 1.27598375e-01 -5.83855271e-01 3.81171525e-01 7.02544212e-01 -5.43819845e-01 -4.65424418e-01 7.77016282e-01 3.89484048e-01 -1.78800613e-01 9.91672873e-01 -1.02841830e+00 -8.83733511e-01 1.45410359e-01 -5.95267951e-01 -1.22975856e-01 3.74403298e-01 -1.27596661e-01 7.90218771e-01 -1.29118383e+00 7.67155826e-01 1.40789282e+00 6.88689470e-01 5.99059641e-01 -1.04561412e+00 -3.58497173e-01 4.05320615e-01 1.74389668e-02 -1.14281607e+00 -1.89610288e-01 1.26156020e+00 -7.19652534e-01 1.05440831e+00 -2.58696117e-02 9.74273443e-01 8.86177361e-01 2.49129444e-01 1.15806913e+00 1.16164720e+00 -2.72200167e-01 1.92183197e-01 2.57625408e-03 8.61180797e-02 7.11356163e-01 -1.48536628e-02 -4.24659252e-02 -2.73253024e-01 -3.09299212e-02 1.27944219e+00 4.39062446e-01 -4.03250992e-01 -1.31265891e+00 -1.07415962e+00 6.84746981e-01 7.17474103e-01 -1.29214540e-01 -1.88729241e-01 1.16897248e-01 2.91998778e-02 -8.85283947e-02 7.33697772e-01 1.10587224e-01 -3.62953722e-01 2.06577808e-01 -5.62338650e-01 6.97415099e-02 7.27731228e-01 1.04135919e+00 5.73485911e-01 -3.51262763e-02 2.77119219e-01 8.26982796e-01 6.18125439e-01 6.29045188e-01 3.81421357e-01 -1.02504349e+00 3.26644927e-01 8.25723290e-01 -3.26262295e-01 -9.29977715e-01 -6.39397621e-01 -3.36102217e-01 -8.78723443e-01 4.65936810e-01 2.32113972e-01 3.53394270e-01 -1.25514960e+00 1.36981261e+00 3.39634359e-01 -4.70564999e-02 -3.16047549e-01 1.03982759e+00 1.02786124e+00 3.99937093e-01 -6.11133218e-01 3.88222426e-01 1.07918346e+00 -9.55230415e-01 3.87689434e-02 -1.68409199e-01 8.14175606e-02 -5.66191435e-01 9.26193178e-01 2.54690617e-01 -1.34700429e+00 -6.07472062e-01 -1.05562067e+00 -1.46845341e-01 -3.62663388e-01 -8.10551941e-02 6.45028830e-01 5.73036075e-01 -1.38371861e+00 4.25918341e-01 -1.03398621e+00 -1.99263006e-01 8.06541026e-01 1.24095201e-01 -3.87335598e-01 -8.49571005e-02 -4.95939076e-01 8.21527123e-01 8.55129957e-03 -1.79042235e-01 -1.02278876e+00 -8.60459268e-01 -1.06610191e+00 -3.62217873e-02 -3.21257226e-02 -9.23478007e-01 1.28928804e+00 -3.85936022e-01 -1.69268394e+00 1.35811245e+00 -2.22977325e-01 -1.02840163e-01 4.25772786e-01 -1.35659054e-01 2.36306325e-01 4.61578459e-01 5.22883646e-02 8.58100533e-01 7.85053372e-01 -1.59626245e+00 -1.65539265e-01 -9.74228561e-01 1.53851375e-01 5.93799055e-01 -1.72287613e-01 -2.63389736e-01 -7.56419659e-01 -3.95058841e-01 9.41407859e-01 -1.04168248e+00 -2.18819976e-01 5.03007948e-01 -4.01939601e-01 -2.11359695e-01 9.37348247e-01 -1.26864016e-01 2.64702082e-01 -1.99410641e+00 2.77130097e-01 2.00220749e-01 6.00480974e-01 7.61261061e-02 -9.18897390e-02 9.35068056e-02 -2.59291708e-01 1.19514674e-01 -1.73236579e-01 -4.69495893e-01 -1.28198996e-01 1.33044779e-01 -3.31906408e-01 6.96370065e-01 1.64628088e-01 1.10371006e+00 -5.68085790e-01 -2.63860583e-01 4.69005108e-01 6.97761118e-01 -6.62304521e-01 1.80729628e-02 -1.68856531e-01 2.78456837e-01 -5.56048036e-01 7.31207728e-01 1.04353821e+00 -4.22432750e-01 -2.87507981e-01 -2.47278571e-01 -3.48083558e-04 3.67010504e-01 -8.95312607e-01 2.00542808e+00 -5.20290792e-01 4.05366510e-01 -4.01965491e-02 -1.03138173e+00 1.06606293e+00 1.86140835e-01 5.83823919e-01 -5.12468219e-01 8.51048678e-02 -2.36767866e-02 -3.98886979e-01 -1.39344022e-01 1.23653166e-01 -8.91804248e-02 1.97655216e-01 7.30806768e-01 5.02815582e-02 -7.51217902e-01 -3.31772834e-01 1.17365599e-01 6.45520389e-01 4.32623655e-01 1.52327448e-01 -1.26558512e-01 3.27797651e-01 -3.38211954e-01 4.08872992e-01 4.36286598e-01 -1.50101796e-01 1.26571870e+00 5.22711456e-01 -7.22088873e-01 -1.02929628e+00 -1.52688205e+00 -5.16376495e-01 5.00066876e-01 4.62074131e-01 -1.34354293e-01 -4.18307960e-01 -7.22067118e-01 1.84588432e-01 3.26802850e-01 -6.30697727e-01 1.17340758e-02 -6.12137139e-01 -3.13112259e-01 2.30666827e-02 9.01817024e-01 5.05083501e-01 -7.15565681e-01 -8.74991834e-01 -1.37070790e-01 4.48000990e-02 -1.09234619e+00 -4.60059911e-01 2.65987098e-01 -1.27169621e+00 -1.00274611e+00 -1.08155930e+00 -9.86013353e-01 1.00515294e+00 7.56700456e-01 1.33821654e+00 -2.97805756e-01 -1.06197834e-01 7.66680539e-01 -2.60754794e-01 -4.51572478e-01 1.81905553e-02 -8.41907337e-02 1.04989693e-01 -2.87846953e-01 3.93412799e-01 -9.75062847e-01 -6.34008825e-01 5.14141679e-01 -6.00840271e-01 2.04407811e-01 6.51806891e-01 4.44131643e-01 8.86987209e-01 -2.49251276e-01 -1.13492027e-01 -7.33078241e-01 2.98674315e-01 -2.84662157e-01 -3.94791454e-01 3.02261468e-02 -2.55919039e-01 -1.38537228e-01 4.91919756e-01 -3.74858141e-01 -9.40141737e-01 3.45308989e-01 -1.44975707e-01 -8.69499266e-01 -4.42317337e-01 2.44273677e-01 -1.87040344e-01 -9.91288424e-02 4.61607188e-01 4.96730894e-01 1.85415968e-01 -6.88578129e-01 5.04420340e-01 3.46200436e-01 3.27354163e-01 -6.75625443e-01 7.63811052e-01 1.08926916e+00 -1.45425731e-02 -7.58743227e-01 -8.66038144e-01 -5.47907293e-01 -1.12144089e+00 -1.67978778e-01 7.92452991e-01 -8.83096516e-01 -7.00207412e-01 7.03441978e-01 -1.35213220e+00 -3.25722158e-01 -3.31366748e-01 4.94141728e-01 -8.08390319e-01 3.05781126e-01 -7.17720211e-01 -3.50980014e-01 -2.93537676e-01 -1.19163728e+00 1.38529205e+00 1.97337970e-01 1.40736073e-01 -9.10676599e-01 1.00304015e-01 1.98482126e-01 1.85664952e-01 1.20414004e-01 9.69294071e-01 -3.90176773e-01 -6.49508178e-01 -1.65945008e-01 -4.79205996e-01 3.13792616e-01 -2.09572483e-02 -2.03104615e-01 -1.10288441e+00 -1.82808623e-01 3.80877286e-01 -4.77125943e-01 8.71267974e-01 8.21483493e-01 1.62672579e+00 1.10397115e-01 -5.29873371e-01 1.11593783e+00 1.31208909e+00 1.25195444e-01 4.08963799e-01 3.41529101e-02 8.22253168e-01 3.82296085e-01 -3.64069194e-02 1.60202101e-01 6.02977097e-01 6.32179856e-01 6.57304466e-01 -2.16834009e-01 -3.34702104e-01 -3.83879632e-01 8.69889855e-02 9.64319110e-01 -1.92921206e-01 -7.49560259e-03 -1.02446783e+00 3.26263398e-01 -1.41910160e+00 -6.91799581e-01 -1.69744119e-02 1.93558919e+00 4.45664734e-01 3.18940222e-01 -7.26988837e-02 -1.41091853e-01 2.79776841e-01 2.58706748e-01 -8.64150584e-01 -2.18852580e-01 -5.44703864e-02 2.43312851e-01 3.15478235e-01 3.33765209e-01 -1.04145110e+00 7.29436159e-01 6.69328690e+00 4.43200648e-01 -1.32028520e+00 -1.98388606e-01 5.63956380e-01 -4.81923930e-02 -5.14619231e-01 -1.97434425e-01 -9.48790669e-01 1.38562575e-01 2.09977433e-01 -6.86231926e-02 1.10663082e-02 1.10381913e+00 -1.50359690e-01 1.25325769e-01 -1.52181864e+00 1.08030713e+00 5.05778611e-01 -1.47425854e+00 2.79931515e-01 1.76383212e-01 7.70852864e-01 6.00884855e-01 3.55072737e-01 4.55138832e-02 3.21829259e-01 -1.03358018e+00 9.76328671e-01 3.80726337e-01 8.50707710e-01 -3.84572744e-01 3.40018451e-01 4.87552226e-01 -1.22844100e+00 3.94731909e-01 -6.73637092e-01 -5.84785976e-02 1.78250328e-01 6.40242875e-01 -7.49616981e-01 2.96824306e-01 9.83418643e-01 1.08466244e+00 -3.76692116e-01 9.74178910e-01 -3.64146888e-01 1.05286509e-01 -6.20891273e-01 9.39275846e-02 2.91862935e-01 -3.32013637e-01 6.03847802e-01 8.66236031e-01 1.98397785e-01 1.45947680e-01 2.75995642e-01 1.22882688e+00 -6.31072521e-02 -2.72389472e-01 -1.05636537e+00 4.78014439e-01 2.69720912e-01 1.13740432e+00 -9.63386238e-01 -2.40000576e-01 -7.00000882e-01 8.95511270e-01 4.05708104e-01 3.59507978e-01 -5.03780127e-01 -4.63199429e-02 5.43932021e-01 3.17437887e-01 5.67207694e-01 -5.05519509e-01 -5.39529681e-01 -1.18515205e+00 2.58604586e-01 -3.81364882e-01 1.08534403e-01 -1.11288691e+00 -1.30117345e+00 5.50891697e-01 7.84999728e-02 -1.44713950e+00 4.81620915e-02 -1.18153679e+00 -6.25734866e-01 7.41535664e-01 -1.66737306e+00 -1.24787486e+00 -4.23837602e-01 6.44455671e-01 5.78956008e-01 -3.22306715e-02 8.10300291e-01 -3.43607701e-02 -7.20260739e-02 1.55025527e-01 -7.54366070e-02 2.18180150e-01 2.91502118e-01 -1.47855937e+00 6.46498561e-01 5.00872672e-01 3.98358464e-01 6.42767251e-01 -2.14428976e-01 -3.87579948e-01 -1.45789516e+00 -7.54417241e-01 4.23278570e-01 -8.01364303e-01 2.98291147e-01 -5.71241915e-01 -7.21188962e-01 7.91195691e-01 -4.16054688e-02 1.87196940e-01 6.17210567e-01 1.29534870e-01 -7.29047656e-01 6.37186766e-02 -8.81715298e-01 5.61196625e-01 1.32665968e+00 -6.33861244e-01 -7.54526317e-01 3.57624888e-01 7.72450924e-01 -9.67390418e-01 -7.90760636e-01 4.88065124e-01 7.11548984e-01 -1.20420325e+00 1.38144279e+00 -3.79910141e-01 6.88321948e-01 -1.31406456e-01 -2.32397452e-01 -1.64794087e+00 -3.66758466e-01 -5.85076883e-02 -1.40367866e-01 4.59646732e-01 2.30979905e-01 -6.82246447e-01 1.24235177e+00 4.13962513e-01 -5.40085495e-01 -1.15442407e+00 -6.39351070e-01 -7.67794311e-01 5.49014866e-01 -6.37824893e-01 5.59196830e-01 8.04782391e-01 -1.31196633e-01 2.71420687e-01 2.99542308e-01 2.45479316e-01 7.36522913e-01 6.56458437e-01 7.55084991e-01 -1.40835786e+00 -7.54726157e-02 -7.83785999e-01 -6.55101895e-01 -1.95413220e+00 6.40693828e-02 -1.28863764e+00 -1.90025494e-01 -1.64071321e+00 4.97153193e-01 -5.85422695e-01 -5.78092150e-02 3.86590302e-01 3.62705022e-01 3.34547460e-01 2.05899119e-01 3.17132652e-01 -3.05608720e-01 7.41764843e-01 1.72453928e+00 -1.56964704e-01 -1.29747525e-01 4.80511971e-02 -5.12433171e-01 1.28990591e+00 5.91964662e-01 -1.86341465e-01 -5.79617381e-01 -9.05964494e-01 3.12001109e-02 -2.37384886e-02 4.99377251e-01 -7.75273561e-01 3.38723928e-01 -5.40657379e-02 8.02281320e-01 -1.35722136e+00 5.70087135e-01 -9.08551097e-01 -3.03636700e-01 2.96147346e-01 -8.60627890e-02 -1.62778288e-01 9.56671387e-02 5.11757731e-01 -2.13922739e-01 8.51687789e-02 8.11683595e-01 -5.36903501e-01 -5.97928822e-01 8.66761863e-01 6.68192580e-02 1.35840937e-01 9.49196875e-01 -6.12208545e-01 -1.68261349e-01 -4.13184345e-01 -7.65975535e-01 1.79917455e-01 8.10111701e-01 5.17058909e-01 1.21854448e+00 -1.51935303e+00 -5.77707708e-01 5.47948956e-01 1.62075818e-01 6.88032925e-01 2.67731398e-02 5.83977818e-01 -6.88808203e-01 6.77470386e-01 -2.95573533e-01 -1.33324111e+00 -9.40499187e-01 4.09158200e-01 5.41214824e-01 1.47211820e-01 -1.05509198e+00 1.16122341e+00 9.96518731e-01 -9.86517787e-01 3.57094973e-01 -5.34848690e-01 -1.08845264e-01 -3.89987409e-01 2.60112077e-01 -1.17658950e-01 6.21505007e-02 -4.75824177e-01 -4.51061159e-01 1.18391335e+00 -8.87686312e-02 -6.62572384e-02 1.65258205e+00 1.15146182e-01 -2.69438699e-02 5.19286215e-01 1.56515968e+00 -2.63041168e-01 -1.50417233e+00 -5.09217978e-01 -5.85304320e-01 -5.90654552e-01 2.07969621e-01 -4.81328040e-01 -1.38191938e+00 1.26034105e+00 3.72000962e-01 4.46477272e-02 8.55592430e-01 4.43083107e-01 5.93316078e-01 3.05922717e-01 3.65128607e-01 -7.03145504e-01 3.10388267e-01 5.96179485e-01 1.15433943e+00 -1.14143217e+00 5.91289289e-02 -5.73836088e-01 -4.41072404e-01 1.26922250e+00 6.48922563e-01 -3.39515954e-01 1.06933010e+00 2.20689103e-01 -2.83126887e-02 -6.39440894e-01 -4.77548361e-01 8.83512944e-02 5.36594629e-01 8.62691104e-01 2.15263695e-01 1.00346863e-01 2.72300810e-01 3.10429394e-01 -2.74713635e-01 -3.07889313e-01 4.23799098e-01 7.42397070e-01 -2.33522847e-01 -7.31849074e-01 -2.98515648e-01 3.30499947e-01 -8.91880989e-02 1.09723590e-01 -5.22275150e-01 7.32636154e-01 -1.42279878e-01 2.84759074e-01 5.66188693e-01 -2.80546397e-01 4.74276334e-01 -1.42539918e-01 8.78675997e-01 -7.97270119e-01 3.04614633e-01 1.09092429e-01 -3.94025207e-01 -8.51067781e-01 -4.91931170e-01 -6.43511951e-01 -1.17240548e+00 -7.77869746e-02 -1.13209702e-01 -3.44939619e-01 8.63833487e-01 6.04562402e-01 3.57467979e-01 2.21865371e-01 9.09314811e-01 -1.47444212e+00 -5.16491532e-01 -5.13051689e-01 -5.61756015e-01 3.46759707e-01 1.59796804e-01 -8.24620485e-01 -4.10139948e-01 -4.55312897e-03]
[8.212218284606934, -3.394007682800293]
3f9b6815-5501-4c02-ac56-a072028b73fa
when-a-rf-beats-a-cnn-and-gru-together-a
2206.08004
null
https://arxiv.org/abs/2206.08004v1
https://arxiv.org/pdf/2206.08004v1.pdf
When a RF Beats a CNN and GRU, Together -- A Comparison of Deep Learning and Classical Machine Learning Approaches for Encrypted Malware Traffic Classification
Internet traffic classification is widely used to facilitate network management. It plays a crucial role in Quality of Services (QoS), Quality of Experience (QoE), network visibility, intrusion detection, and traffic trend analyses. While there is no theoretical guarantee that deep learning (DL)-based solutions perform better than classic machine learning (ML)-based ones, DL-based models have become the common default. This paper compares well-known DL-based and ML-based models and shows that in the case of malicious traffic classification, state-of-the-art DL-based solutions do not necessarily outperform the classical ML-based ones. We exemplify this finding using two well-known datasets for a varied set of tasks, such as: malware detection, malware family classification, detection of zero-day attacks, and classification of an iteratively growing dataset. Note that, it is not feasible to evaluate all possible models to make a concrete statement, thus, the above finding is not a recommendation to avoid DL-based models, but rather empirical proof that in some cases, there are more simplistic solutions, that may perform even better.
['Chen Hajaj', 'Amit Dvir', 'Ran Dubin', 'Ofek Bader', 'Adi Lichy']
2022-06-16
null
null
null
null
['traffic-classification']
['miscellaneous']
[-1.02422491e-01 -3.91734391e-01 -4.95798737e-01 -1.15088850e-01 -1.79108996e-02 -3.11124802e-01 6.99750364e-01 4.08821464e-01 -4.22801465e-01 8.13019037e-01 -5.08870542e-01 -1.09942830e+00 -5.01330853e-01 -8.89115512e-01 -2.80781746e-01 -7.05513716e-01 -4.72088009e-01 6.67236745e-01 5.13465405e-01 -3.60219270e-01 3.03617209e-01 1.03589487e+00 -1.52563953e+00 9.71199870e-02 4.67302233e-01 1.32339251e+00 -3.47991943e-01 5.10910988e-01 -4.19790804e-01 9.34131324e-01 -7.77872026e-01 -6.28305376e-01 2.27610528e-01 -2.15745300e-01 -6.98001504e-01 -7.79567733e-02 1.20301330e-02 -2.05911044e-02 -2.10906878e-01 8.32069218e-01 8.84981081e-02 -1.73768684e-01 6.94777250e-01 -1.72612572e+00 -1.58254862e-01 3.82508934e-01 -4.41147387e-01 7.05984175e-01 -1.89875923e-02 3.29071730e-01 9.98644471e-01 -1.29801989e-01 6.10305429e-01 1.16301429e+00 6.75421834e-01 1.90515831e-01 -1.07936621e+00 -6.98311508e-01 2.06313908e-01 5.72021365e-01 -1.07637572e+00 -8.10659900e-02 6.97844684e-01 -4.50032771e-01 5.55847526e-01 4.03953791e-01 5.87998986e-01 1.41112840e+00 3.27103525e-01 5.93961895e-01 9.61782753e-01 -1.13610074e-01 3.64907414e-01 5.11851549e-01 2.44214952e-01 5.62483609e-01 5.08494496e-01 6.29534274e-02 1.44990206e-01 -1.71509027e-01 4.13352132e-01 8.26820508e-02 -2.01004252e-01 -3.53049338e-01 -8.15750718e-01 9.53485191e-01 2.26160556e-01 7.58655787e-01 -4.72573996e-01 -1.22808307e-01 7.56142378e-01 7.76154101e-01 4.95366365e-01 3.83310586e-01 -6.19983912e-01 -3.93981069e-01 -9.52753127e-01 2.03204632e-01 1.08103704e+00 3.09362054e-01 5.67465365e-01 4.98140752e-01 1.71916097e-01 2.80439228e-01 -2.87887733e-03 1.49095356e-01 3.99949789e-01 -6.09997392e-01 3.48464958e-02 5.65373600e-01 -2.92905509e-01 -1.24550974e+00 -8.08286250e-01 -9.09151614e-01 -1.00595057e+00 5.08697987e-01 7.08900571e-01 -1.06986798e-01 -1.58144385e-01 1.50014603e+00 -2.99429949e-02 5.49899161e-01 -2.33635992e-01 5.83846092e-01 3.72542173e-01 5.57567239e-01 -6.55584335e-02 -5.06280482e-01 8.90752316e-01 -5.80768228e-01 -4.56875265e-01 1.85619920e-01 6.76563859e-01 -6.21181965e-01 7.71905899e-01 8.01734746e-01 -6.02028906e-01 -3.84997100e-01 -9.19200778e-01 6.17299199e-01 -7.59469032e-01 -4.24109578e-01 7.09860861e-01 1.15179062e+00 -8.87426913e-01 6.95677102e-01 -3.37971032e-01 -6.66890085e-01 3.42075199e-01 2.33750626e-01 -2.25235283e-01 2.53376573e-01 -9.87405956e-01 9.22198951e-01 2.86694884e-01 -2.04232529e-01 -8.27760339e-01 -4.39368278e-01 -1.05668515e-01 7.77573064e-02 6.42912447e-01 -1.98749810e-01 8.31374407e-01 -9.34520900e-01 -1.13328815e+00 8.59088600e-01 1.63361594e-01 -9.89929974e-01 6.88770831e-01 1.58024266e-01 -7.23806560e-01 -1.50680378e-01 -4.61253345e-01 7.16376677e-02 9.81480777e-01 -1.30541813e+00 -6.15202844e-01 -1.30772799e-01 3.65967065e-01 -6.37379587e-01 -4.26976442e-01 8.60912874e-02 1.02180816e-01 -4.40474838e-01 -2.42444649e-01 -6.70941055e-01 -9.39637497e-02 7.23006874e-02 -4.06682968e-01 -3.38734835e-01 1.08136427e+00 -3.37474912e-01 1.36818290e+00 -1.85117340e+00 -2.94884205e-01 3.38764876e-01 3.23553622e-01 7.37816155e-01 -1.64666682e-01 3.70559305e-01 -1.48353711e-01 4.50153589e-01 4.99632768e-02 -1.77704424e-01 1.68547288e-01 1.51592597e-01 -2.86815166e-01 5.94350338e-01 1.54151380e-01 5.74347854e-01 -7.90145159e-01 -2.85755247e-01 5.33966482e-01 3.55082750e-01 -5.21235645e-01 -2.25049719e-01 -4.95290697e-01 5.22018194e-01 -2.70544976e-01 5.45554459e-01 6.31777346e-01 -2.76257426e-01 1.31867975e-01 -1.07099876e-01 -9.81141478e-02 8.31410512e-02 -1.09097731e+00 8.37197900e-01 -6.55100882e-01 1.02948320e+00 -6.60529062e-02 -1.63668549e+00 9.25718069e-01 2.38736659e-01 7.78881073e-01 -1.04511452e+00 4.43621099e-01 2.05547184e-01 3.83541852e-01 -4.78923082e-01 -4.04841416e-02 4.89392020e-02 3.12233865e-01 5.58278203e-01 -1.45548597e-01 5.70760250e-01 4.19118881e-01 -2.29689732e-01 1.32050323e+00 -4.35046852e-01 3.49730402e-01 -6.86000735e-02 1.04689777e+00 -3.87179911e-01 3.61612499e-01 7.11764276e-01 -3.92018080e-01 8.07478428e-02 1.13683736e+00 -6.71625435e-01 -9.65391159e-01 -1.04778981e+00 -1.34902820e-01 9.93494809e-01 -1.23019964e-01 -2.43900910e-01 -6.28160775e-01 -9.00020540e-01 -1.48912966e-01 6.69380426e-01 -3.64605695e-01 -8.34545419e-02 -5.66848636e-01 -1.00904131e+00 6.43415332e-01 -2.06703737e-01 5.10475218e-01 -1.02983952e+00 -6.56919301e-01 2.34567940e-01 1.50097787e-01 -1.37243652e+00 4.44860995e-01 6.58186972e-02 -7.83536673e-01 -1.34622920e+00 -3.12616199e-01 -3.19410414e-01 8.88154656e-02 1.72587439e-01 1.18440008e+00 4.40850645e-01 -2.97086954e-01 6.93080649e-02 -5.34909129e-01 -2.35919669e-01 -8.42997611e-01 3.15243810e-01 1.13922551e-01 2.83690542e-01 5.00163436e-01 -9.33604300e-01 -2.20744327e-01 3.23272377e-01 -8.17954779e-01 -6.50977790e-01 8.11267018e-01 4.42429096e-01 -8.91804621e-02 5.36890984e-01 9.04283166e-01 -7.94208705e-01 7.04007268e-01 -7.99042404e-01 -6.41442895e-01 1.26713738e-01 -7.98955500e-01 -1.24437004e-01 1.11374199e+00 -4.58003223e-01 -4.03228104e-01 -7.22998738e-01 -4.97697890e-01 -4.35901463e-01 -4.38825369e-01 3.10192704e-01 2.73952838e-02 -9.71120223e-02 6.81702852e-01 3.62690419e-01 -7.00437501e-02 -4.57625329e-01 2.91887857e-02 6.42841697e-01 4.42076921e-02 -2.49392480e-01 9.94101107e-01 4.68730122e-01 3.60175610e-01 -1.17944419e+00 -6.00461245e-01 -2.90197104e-01 -5.06740749e-01 -3.32740575e-01 6.17235303e-01 -1.31850764e-01 -1.13636589e+00 1.47300392e-01 -1.19014418e+00 -2.95918006e-02 -1.81324810e-01 2.07804844e-01 -3.40781301e-01 5.66690445e-01 -4.36570406e-01 -1.02182329e+00 7.94823468e-03 -1.23014736e+00 3.80457103e-01 -7.44846603e-03 -4.39009853e-02 -1.30294073e+00 -2.35977039e-01 2.94182330e-01 7.23607361e-01 3.39117378e-01 1.40010428e+00 -1.27463496e+00 -5.36141336e-01 -4.66354430e-01 -3.84402692e-01 5.69769740e-01 6.42972812e-02 3.58616799e-01 -8.92179012e-01 -2.95141309e-01 1.29654184e-01 4.40669619e-02 5.05495071e-01 2.50982702e-01 1.37057567e+00 -3.31607610e-01 -1.97550040e-02 4.71794903e-01 1.42925298e+00 4.20667291e-01 6.64412975e-01 4.75030988e-01 3.77528220e-01 7.03490973e-01 3.18907440e-01 5.65897524e-01 7.03844428e-02 7.12231219e-01 9.86507773e-01 -7.99125209e-02 1.37914426e-03 2.94577390e-01 3.91426474e-01 5.37482262e-01 1.09415136e-01 -6.46030903e-01 -9.19124305e-01 1.46679506e-02 -1.51476002e+00 -1.24618781e+00 -4.89224941e-01 2.39645815e+00 -7.36872759e-03 8.79265726e-01 6.96003735e-01 6.62047446e-01 6.86409116e-01 2.87116885e-01 -2.54966468e-01 -7.16451466e-01 -2.14303181e-01 3.15395981e-01 3.59131753e-01 2.21122935e-01 -1.17012286e+00 5.52244723e-01 6.25013018e+00 1.13506019e+00 -1.57857955e+00 3.66821885e-01 6.83039784e-01 1.36714131e-01 -1.14558719e-01 -1.04362316e-01 -4.36712921e-01 6.50821090e-01 1.21210468e+00 -2.78060377e-01 3.62373412e-01 8.52454901e-01 5.11144996e-01 1.20079949e-01 -9.04773235e-01 1.05769384e+00 -7.15076551e-02 -1.46474099e+00 1.50807410e-01 3.47495973e-01 2.46432140e-01 -5.09664789e-02 2.16848642e-01 4.94893044e-01 -2.06253752e-01 -9.16826427e-01 3.40361476e-01 3.32031518e-01 2.07774401e-01 -8.58937740e-01 1.07419050e+00 5.38917065e-01 -7.83636630e-01 -5.11210084e-01 -1.90481767e-01 -8.37754235e-02 1.09528318e-01 7.65805304e-01 -6.02599680e-01 7.67024755e-01 2.28045478e-01 6.21947348e-01 -7.41760135e-01 1.30107737e+00 3.22684795e-01 7.79261768e-01 -6.80687577e-02 -1.74086586e-01 5.23021758e-01 -1.36386603e-01 7.01804996e-01 1.19541883e+00 8.47859308e-02 -5.63134611e-01 1.71418935e-01 7.61474848e-01 4.03302023e-03 3.36947501e-01 -6.93666697e-01 -9.06820446e-02 2.55726784e-01 1.27678776e+00 -1.05843127e+00 -1.25066295e-01 -5.74024677e-01 4.79629636e-01 -1.86389178e-01 2.03631267e-01 -1.16969717e+00 -1.63916215e-01 8.56869519e-01 5.77550650e-01 5.47316596e-02 -1.76484048e-01 -3.02480638e-01 -9.32889342e-01 -1.95760995e-01 -1.02128220e+00 3.34504247e-01 -1.66854694e-01 -1.35413957e+00 6.20827436e-01 -1.25535026e-01 -1.44850469e+00 -2.58956105e-01 -8.82343292e-01 -7.28355169e-01 2.71952063e-01 -1.53241789e+00 -5.63599169e-01 -2.24555373e-01 3.21608990e-01 4.78303015e-01 -5.84746599e-01 6.23085916e-01 8.88576686e-01 -8.37024391e-01 4.81313050e-01 1.54480800e-01 -1.10907818e-03 2.81900197e-01 -9.16796148e-01 9.03064013e-02 9.87542748e-01 2.00394809e-01 1.63998395e-01 9.27991688e-01 -2.33784109e-01 -1.10261476e+00 -8.57308984e-01 5.41422129e-01 -1.10700741e-01 8.90372276e-01 -1.73019215e-01 -8.91383290e-01 3.93206805e-01 -1.03755094e-01 -7.73997679e-02 5.55467308e-01 -3.58115397e-02 -3.00709635e-01 -5.27111828e-01 -1.16271842e+00 5.62262774e-01 8.44559431e-01 -2.97716022e-01 -2.07333136e-02 4.41456616e-01 4.80827928e-01 3.90679330e-01 -6.14680529e-01 3.71588767e-01 4.20152754e-01 -1.51312256e+00 9.63967264e-01 -6.40295684e-01 -9.33663845e-02 -1.00786677e-02 -5.24663180e-02 -8.53686094e-01 4.00213264e-02 -5.05597770e-01 -3.16874266e-01 1.11213326e+00 2.17594340e-01 -8.44312906e-01 1.01115727e+00 -1.38493702e-01 1.20483033e-01 -7.91034162e-01 -1.16918600e+00 -1.27163780e+00 1.54083058e-01 -9.51603174e-01 5.17039061e-01 1.06475246e+00 -4.44495976e-01 1.86611921e-01 -3.77239883e-01 -1.13009557e-01 5.71812153e-01 -1.92387909e-01 8.57378781e-01 -1.89966249e+00 -2.13984191e-01 -1.23117793e+00 -8.88304114e-01 -6.40190899e-01 4.77021933e-01 -7.72998631e-01 -8.12820077e-01 -1.22296667e+00 -3.63279194e-01 -7.01434672e-01 -4.51232076e-01 8.56394023e-02 6.26780033e-01 1.02674827e-01 1.38658643e-01 4.51390967e-02 -5.59321642e-01 1.61147535e-01 8.26147258e-01 -1.14763811e-01 4.73218486e-02 5.82622051e-01 -3.65455449e-01 7.91058898e-01 9.60840464e-01 -4.38872218e-01 -5.15817642e-01 1.38277411e-01 3.27742130e-01 -5.41244000e-02 5.01094162e-01 -1.26862025e+00 1.15118571e-01 -2.81246006e-01 -2.08383556e-02 -4.59974319e-01 1.59165055e-01 -9.15975630e-01 -8.02012607e-02 9.27895308e-01 -9.20104980e-02 9.19771269e-02 -2.69805882e-02 3.80919605e-01 -1.50526494e-01 -3.74582350e-01 8.95735800e-01 -7.71252662e-02 -7.64261544e-01 5.36588073e-01 -7.55008638e-01 -4.08085734e-02 1.12384081e+00 -3.34860653e-01 -3.70602608e-01 -6.91121280e-01 -6.07436121e-01 -1.66692480e-01 2.34158978e-01 5.94578862e-01 3.65838259e-01 -7.89606094e-01 -6.61875248e-01 -9.68400296e-03 -8.18029195e-02 -7.23145068e-01 1.20251365e-01 1.14439964e+00 -7.84848809e-01 7.47729063e-01 -4.10746306e-01 -5.98691583e-01 -1.20029235e+00 8.41963470e-01 4.03051049e-01 -5.03195822e-01 -3.92077178e-01 3.92901897e-01 -2.02713832e-01 -2.58345395e-01 6.71550751e-01 -8.94540250e-02 -3.36234540e-01 1.40597388e-01 4.84027147e-01 7.49242365e-01 2.60339290e-01 -4.54495549e-01 -4.65386003e-01 2.79534906e-01 4.54163738e-02 2.10779384e-01 1.00265110e+00 3.37903537e-02 -8.79717171e-02 6.28744721e-01 1.19613004e+00 -1.99305072e-01 -4.62735772e-01 -2.35828049e-02 4.48512971e-01 -3.71880800e-01 2.35175081e-02 -4.75080609e-01 -1.18527544e+00 1.36731732e+00 8.03578734e-01 1.03632629e+00 1.25471973e+00 -4.74757433e-01 6.58522189e-01 5.97409070e-01 4.76184309e-01 -6.95324540e-01 2.64941961e-01 5.55733681e-01 3.21616441e-01 -1.21743548e+00 -2.16654345e-01 -2.55737364e-01 -2.78131723e-01 1.48704541e+00 5.15946507e-01 -1.83012038e-02 9.46978509e-01 1.94248453e-01 -1.89065114e-01 4.00993191e-02 -9.92759526e-01 -5.58057308e-01 -1.30996719e-01 6.10821664e-01 3.48386884e-01 -2.01124117e-01 -2.87722886e-01 5.12130279e-03 5.25328293e-02 -1.85250968e-01 6.23456776e-01 5.43010950e-01 -5.80342114e-01 -1.25649607e+00 -2.69541502e-01 6.32498264e-01 -5.43303728e-01 1.89891055e-01 -2.19208628e-01 1.10157669e+00 3.54391873e-01 9.94082093e-01 8.95922184e-02 -6.61023915e-01 1.33919224e-01 3.43109705e-02 1.68353140e-01 -1.07913688e-01 -6.34091973e-01 -4.68691677e-01 1.01936258e-01 -4.34324235e-01 -2.08496526e-01 -2.83453792e-01 -7.12333024e-01 -1.11273885e+00 -1.39141470e-01 5.12870140e-02 7.56047130e-01 1.19211459e+00 -5.42873889e-02 6.83971286e-01 8.93712997e-01 -4.64290291e-01 -3.53978097e-01 -6.57305181e-01 -5.56300759e-01 3.93409997e-01 2.70734072e-01 -7.17319191e-01 -6.29059613e-01 -6.22645259e-01]
[5.118988037109375, 7.242120742797852]
7a484d84-ae6c-4d21-b747-ee9de5ad167b
gist-aiter-system-for-the-diarization-task-of
2209.10357
null
https://arxiv.org/abs/2209.10357v4
https://arxiv.org/pdf/2209.10357v4.pdf
GIST-AiTeR System for the Diarization Task of the 2022 VoxCeleb Speaker Recognition Challenge
This report describes the submission system of the GIST-AiTeR team at the 2022 VoxCeleb Speaker Recognition Challenge (VoxSRC) Track 4. Our system mainly includes speech enhancement, voice activity detection , multi-scaled speaker embedding, probabilistic linear discriminant analysis-based speaker clustering, and overlapped speech detection models. We first construct four different diarization systems according to different model combinations with the best experimental efforts. Our final submission is an ensemble system of all the four systems and achieves a diarization error rate of 5.12% on the challenge evaluation set, ranked third at the diarization track of the challenge.
['Hong Kook Kim', 'Ji Won Kim', 'Kyeong Wan Park', 'Yechan Yu', 'Dongkeon Park']
2022-09-21
null
null
null
null
['activity-detection']
['computer-vision']
[-6.86301738e-02 3.29336822e-01 -4.97555435e-02 -4.37905550e-01 -1.21331620e+00 -4.42233503e-01 6.75155520e-01 -3.04742277e-01 -4.05350983e-01 -6.60288483e-02 5.81239343e-01 -1.53885454e-01 2.63375282e-01 2.27556467e-01 1.16579339e-01 -4.82327849e-01 -3.66380870e-01 3.99998963e-01 1.77210927e-01 -1.50853261e-01 -3.04808803e-02 4.45054591e-01 -1.39177060e+00 3.56813669e-01 5.95617652e-01 8.52432728e-01 -3.74377221e-01 1.21628726e+00 7.33839944e-02 3.66352618e-01 -9.25238848e-01 -1.32675901e-01 -4.95741256e-02 -3.22615236e-01 -4.83549297e-01 -1.92679584e-01 6.41330063e-01 -1.70882434e-01 -6.18923604e-01 6.55240357e-01 1.28915334e+00 1.66530341e-01 6.17001891e-01 -1.47261024e+00 -3.62666577e-01 1.04065692e+00 -1.37913153e-01 7.82543480e-01 4.77686405e-01 5.41779958e-03 8.75234008e-01 -1.27139664e+00 3.15978795e-01 1.58862579e+00 6.05096579e-01 9.37956870e-01 -1.12055898e+00 -7.24146307e-01 1.05292127e-01 5.63342333e-01 -1.90829527e+00 -1.45636308e+00 8.04347038e-01 -3.71973097e-01 1.32243907e+00 7.56364882e-01 3.36646914e-01 1.31280208e+00 -5.18148959e-01 1.23680711e+00 6.75322413e-01 -2.98522830e-01 3.39412391e-01 4.33568299e-01 3.04394722e-01 3.28652322e-01 -5.80330610e-01 2.00542182e-01 -1.04831636e+00 -3.08574438e-01 6.15631938e-02 -8.68390977e-01 -1.62848100e-01 2.92546093e-01 -1.22531152e+00 7.36023903e-01 -1.68830812e-01 3.44891429e-01 -3.48418951e-01 -1.43729135e-01 5.89232445e-01 2.64371276e-01 5.58909059e-01 1.29199505e-01 -2.39475310e-01 -3.96971107e-01 -1.41192329e+00 8.10151398e-02 8.97399008e-01 8.48081112e-01 -2.27273494e-01 7.58856297e-01 -4.54699934e-01 1.27526331e+00 8.07355821e-01 4.59402442e-01 6.66792393e-01 -8.80504608e-01 3.16845834e-01 -2.15427846e-01 -3.89491677e-01 -4.65028256e-01 -2.17667788e-01 -3.58592868e-01 -5.67033172e-01 -1.59375027e-01 -8.03268552e-02 -3.81577134e-01 -8.96748245e-01 1.54465389e+00 4.09384668e-01 4.06366527e-01 2.44868547e-01 6.77070558e-01 1.33852053e+00 1.04763448e+00 4.22595441e-02 -2.32819557e-01 1.28433633e+00 -1.21529412e+00 -1.00616360e+00 -5.30584157e-02 1.83946624e-01 -8.82581949e-01 4.92635310e-01 6.53237820e-01 -1.08703113e+00 -4.72610891e-01 -1.22677422e+00 1.89046279e-01 -1.05219565e-01 7.32600689e-02 1.48834199e-01 1.31943679e+00 -1.54706240e+00 -2.44549066e-02 -6.86103463e-01 -4.09548402e-01 1.46170408e-01 2.04968259e-01 -1.53338447e-01 5.41439176e-01 -1.27342796e+00 7.98722625e-01 -3.43933702e-02 -9.17607844e-02 -9.58033860e-01 -1.02484381e+00 -7.82718301e-01 -3.08521055e-02 -1.34148598e-01 -6.23772964e-02 1.31121349e+00 -5.61186850e-01 -2.04756975e+00 9.61459696e-01 -4.15156782e-01 -6.20467365e-01 5.04719615e-01 6.70844018e-02 -1.17746902e+00 6.70806840e-02 -3.79850864e-01 7.87213206e-01 9.12232876e-01 -6.82997942e-01 -5.17436624e-01 -2.55620420e-01 -8.63114953e-01 2.44751185e-01 -3.99562359e-01 7.58288264e-01 -5.56998312e-01 -7.07206964e-01 2.57036053e-02 -6.04254007e-01 2.55902678e-01 -4.45876569e-01 -6.47412539e-01 -7.09555447e-01 9.06652689e-01 -1.25768864e+00 1.48542285e+00 -2.60747671e+00 1.97429776e-01 1.09494865e-01 2.40349874e-01 3.39668632e-01 -3.45446408e-01 2.45090514e-01 -2.72707045e-01 1.47856236e-01 2.42728397e-01 -9.27602232e-01 5.24374068e-01 -3.90559554e-01 -2.20798939e-01 5.03967345e-01 4.17898074e-02 4.13025677e-01 -3.84354115e-01 -5.16270041e-01 3.20353627e-01 8.81287277e-01 -4.65765715e-01 3.45199049e-01 3.69680822e-01 -8.56332034e-02 8.83365721e-02 8.53697419e-01 6.53620124e-01 6.43591762e-01 -4.38777208e-02 -2.37343356e-01 -1.87720716e-01 7.36368418e-01 -1.29740739e+00 1.34490323e+00 -1.22761622e-01 1.09794080e+00 5.45196414e-01 -5.87316632e-01 9.06837940e-01 8.33244562e-01 4.86230075e-01 -2.65084147e-01 -5.83136156e-02 4.73118499e-02 4.48188372e-02 -3.80363286e-01 2.76645839e-01 7.64523745e-02 8.11568052e-02 7.77100176e-02 4.36501592e-01 1.57197341e-02 -1.43646866e-01 2.74918795e-01 1.07737815e+00 -7.09062040e-01 1.08610056e-01 -2.53969938e-01 5.51042736e-01 -6.70183480e-01 6.45921588e-01 5.23567021e-01 -1.15871167e+00 6.79151654e-01 2.14709476e-01 2.24766552e-01 -8.01852107e-01 -1.26461399e+00 -4.00686473e-01 1.25616026e+00 -4.66426790e-01 -6.93647623e-01 -9.73944902e-01 -5.58281660e-01 -9.36512649e-02 9.70121145e-01 -3.80651772e-01 -9.89878774e-02 -5.39290667e-01 -5.42903304e-01 1.50934899e+00 3.62605244e-01 1.25674874e-01 -8.69117022e-01 6.12700880e-02 1.39136449e-01 -1.83228523e-01 -1.06412292e+00 -1.14729977e+00 9.30440426e-02 -3.16397846e-01 -4.13595855e-01 -7.55344629e-01 -9.51760411e-01 -2.46731564e-01 -9.29445922e-02 7.07594216e-01 -3.68418396e-01 -3.14745128e-01 5.17090261e-01 -1.68087244e-01 -4.59784180e-01 -7.17012823e-01 6.82388991e-02 5.55420458e-01 1.73085287e-01 6.10282183e-01 -2.30111063e-01 -3.73069793e-01 3.80794108e-01 -3.26904565e-01 -5.18442750e-01 1.04853734e-01 7.65932381e-01 2.15154082e-01 -3.07110131e-01 8.62942100e-01 -8.70127752e-02 6.55146122e-01 -3.15990925e-01 -4.45250273e-01 1.62064642e-01 -5.52081704e-01 -2.54624963e-01 -1.35738134e-01 -6.04719520e-01 -9.96329665e-01 8.77829269e-03 -8.18625927e-01 -4.34192061e-01 -3.60763967e-01 1.09308418e-02 -6.78181171e-01 1.07961163e-01 5.92328727e-01 5.18713474e-01 -6.98245913e-02 -7.61796355e-01 5.01578927e-01 1.40921617e+00 6.31931365e-01 -3.36551294e-02 4.39597309e-01 -3.41538787e-02 -9.80989158e-01 -1.59113002e+00 9.86375585e-02 -7.88596988e-01 -3.50809455e-01 -3.07515502e-01 8.36790085e-01 -1.08463347e+00 -5.82880855e-01 7.75463283e-01 -1.35934114e+00 -2.44224183e-02 -2.43851572e-01 5.42054534e-01 -1.59542635e-01 4.76735562e-01 -7.20821261e-01 -1.26630807e+00 -8.32991242e-01 -1.16729856e+00 1.08352315e+00 7.29622543e-02 -5.83005667e-01 -6.89961553e-01 5.34205794e-01 6.54352903e-01 7.15167761e-01 -3.87093097e-01 3.82860720e-01 -1.26012540e+00 1.31903157e-01 -7.32917786e-02 3.60287994e-01 7.17274785e-01 3.90733965e-02 2.63532102e-01 -1.54414415e+00 -3.73309910e-01 -2.14500830e-01 1.62225842e-01 9.85135198e-01 4.27164435e-01 8.36323559e-01 -2.75219798e-01 -3.23953211e-01 5.20846844e-01 4.87949163e-01 4.72825766e-01 5.11529803e-01 -1.81254864e-01 4.44266886e-01 6.54758871e-01 -1.20097967e-02 3.83448184e-01 4.38920140e-01 1.09642696e+00 -6.50448501e-02 2.24081159e-01 -6.26993537e-01 -1.33667260e-01 9.20263886e-01 1.38925791e+00 5.17830133e-01 -3.89780581e-01 -9.06559229e-01 8.32513571e-01 -1.31793475e+00 -1.24132991e+00 7.11399503e-03 2.00961137e+00 8.23942900e-01 -1.66318282e-01 7.79063821e-01 3.57743293e-01 9.38378811e-01 3.75448823e-01 -3.90968204e-01 -7.04397917e-01 -2.83125281e-01 6.49146289e-02 9.61331874e-02 8.33080292e-01 -1.34494638e+00 1.03056026e+00 8.06743145e+00 9.93413806e-01 -1.13768101e+00 4.48869705e-01 3.54097664e-01 -4.45853353e-01 4.99705970e-03 -6.88124657e-01 -1.14299870e+00 5.90394616e-01 1.74111319e+00 -4.33601648e-01 4.34207737e-01 9.43128347e-01 1.92585275e-01 4.81666267e-01 -1.07779789e+00 1.30239630e+00 7.46393442e-01 -1.03916049e+00 -3.06019157e-01 7.57365748e-02 2.99853235e-01 5.09907007e-01 2.74922073e-01 5.95974207e-01 7.11961985e-02 -9.49283481e-01 9.10292983e-01 2.47282058e-01 5.31223536e-01 -5.90357900e-01 4.27882820e-01 -4.90322076e-02 -1.10944057e+00 7.14727566e-02 1.70765981e-01 7.66525030e-01 3.09062183e-01 3.20538878e-01 -1.18039680e+00 1.58376079e-02 6.38126373e-01 2.53376961e-01 -3.59550387e-01 1.28543115e+00 3.93003412e-03 1.36327422e+00 -6.87253237e-01 -9.58870798e-02 -3.23879451e-01 4.48782504e-01 1.27605915e+00 1.71166790e+00 5.54868504e-02 -1.54644310e-01 -2.33906925e-01 4.72318828e-01 -1.66862845e-01 1.13032646e-01 -1.38752222e-01 -9.88824144e-02 9.72440958e-01 1.16308784e+00 -2.94951331e-02 -4.91471618e-01 -1.23394672e-02 9.51852858e-01 -1.73591122e-01 2.51733124e-01 -8.47545266e-01 -5.26345253e-01 1.10118032e+00 -2.14433938e-01 3.16762805e-01 -3.45381275e-02 -1.20002255e-01 -8.91762435e-01 -1.81019083e-01 -1.07685077e+00 4.55578864e-01 -3.17773551e-01 -1.16513610e+00 9.29694891e-01 -9.51770395e-02 -6.61963105e-01 -4.85217035e-01 -3.16082537e-01 -9.31812644e-01 9.49888825e-01 -1.09408784e+00 -7.96058178e-01 9.83908996e-02 4.63782847e-01 8.90158236e-01 -7.31328726e-01 9.68827486e-01 7.74543643e-01 -1.06045151e+00 1.46195006e+00 1.63551241e-01 3.25625092e-02 8.42479289e-01 -1.31226397e+00 8.68993223e-01 8.11554551e-01 1.84370905e-01 3.72474730e-01 7.77655959e-01 -1.37637854e-01 -1.31964684e+00 -9.88385856e-01 1.23773456e+00 -6.01557195e-01 6.63468957e-01 -7.23317027e-01 -8.67746532e-01 5.65070510e-01 5.45852482e-01 -4.05119836e-01 9.88206327e-01 2.23566741e-01 -5.03221691e-01 -2.80834377e-01 -1.13360226e+00 2.42178977e-01 5.09761572e-01 -6.93530619e-01 -7.79816687e-01 2.12824345e-01 8.00839841e-01 -9.84284878e-02 -9.13802683e-01 1.14922941e-01 5.84326863e-01 -4.69072402e-01 1.07184744e+00 -5.72423220e-01 -5.47221601e-01 -1.94153219e-01 -4.08684373e-01 -1.40853024e+00 -2.13470846e-01 -9.34140801e-01 -3.53797048e-01 1.85796571e+00 6.02763355e-01 -3.90950322e-01 5.87758958e-01 3.89687508e-01 -2.52022982e-01 -2.07384527e-01 -1.73475647e+00 -1.07468438e+00 2.24634632e-03 -7.18776941e-01 4.36864734e-01 8.69214535e-01 2.90517420e-01 4.26882625e-01 -4.43838239e-01 2.37219021e-01 7.87478507e-01 -6.11061692e-01 6.24290884e-01 -8.92462075e-01 -4.07012224e-01 -8.53574753e-01 -6.73540711e-01 -9.16438520e-01 9.65161547e-02 -9.44477260e-01 2.20844269e-01 -1.11221540e+00 -1.30941153e-01 1.57471597e-01 -5.49716592e-01 3.25831741e-01 -4.13392223e-02 1.19952798e-01 1.40842080e-01 -1.05118588e-01 -7.08043396e-01 6.14908218e-01 4.39588837e-02 -6.20062232e-01 -5.31643927e-01 2.90581882e-02 -5.25370181e-01 4.21446741e-01 8.00043464e-01 -1.69062868e-01 -8.30258057e-02 -2.06557795e-01 -7.44667649e-01 -6.28851056e-02 1.00337110e-01 -9.00864542e-01 3.15545887e-01 2.88630009e-01 -2.21063122e-02 -7.91216195e-01 7.15645790e-01 -1.29959196e-01 8.66349339e-02 2.20446646e-01 -4.78274196e-01 -2.69104183e-01 4.39673543e-01 8.88092816e-02 -2.70143867e-01 2.73197770e-01 9.20473158e-01 6.76146686e-01 -5.06960988e-01 1.17851593e-01 -8.15977812e-01 -3.40297893e-02 7.84751773e-01 2.20857393e-02 -2.41968781e-01 -3.66384327e-01 -1.06459022e+00 2.87981808e-01 -4.11162615e-01 8.84531379e-01 6.74449444e-01 -1.32404113e+00 -1.26413333e+00 3.26807678e-01 2.74543703e-01 -9.14422870e-01 4.03894186e-01 8.79978657e-01 -8.18317235e-02 5.19266486e-01 3.63415480e-01 -6.02016389e-01 -1.85886931e+00 8.26354474e-02 6.16284013e-01 1.33022428e-01 -2.71965683e-01 1.39677107e+00 -2.38915905e-01 -4.58210230e-01 7.88763762e-01 -8.68496895e-02 -2.51621902e-01 1.47349358e-01 1.02355409e+00 7.57094324e-01 3.61360312e-01 -9.45353687e-01 -1.01080370e+00 -2.47147214e-03 -2.59519309e-01 -5.85412920e-01 9.82675374e-01 -1.25762522e-01 3.31207603e-01 4.91165996e-01 1.28316748e+00 5.50188683e-02 -7.67181635e-01 -2.25642622e-01 3.38465720e-02 -4.10701148e-02 6.22271776e-01 -9.85508680e-01 -8.37074935e-01 1.07937551e+00 1.10212946e+00 2.73275375e-01 8.06603789e-01 1.98967934e-01 7.94515491e-01 4.02587056e-02 -3.03835481e-01 -1.18925023e+00 -3.33354771e-01 4.53084052e-01 1.30803275e+00 -1.05903506e+00 -4.05780047e-01 -2.46150479e-01 -6.45595193e-01 7.17015028e-01 3.93220425e-01 3.16524029e-01 9.46684897e-01 4.36214864e-01 3.47125828e-01 1.64564818e-01 -9.98565733e-01 1.82466079e-02 6.29841805e-01 8.22506309e-01 5.27173102e-01 3.08893621e-01 -5.93285337e-02 9.33284283e-01 -3.23655844e-01 -7.11108804e-01 -4.32650223e-02 3.73453021e-01 -4.23983037e-01 -8.82052541e-01 -6.02258801e-01 3.03215310e-02 -1.97115690e-01 -3.17312777e-01 -7.95973897e-01 2.35119939e-01 -3.07274908e-01 1.38792861e+00 -2.19574962e-02 -7.91604936e-01 6.02509737e-01 4.75689203e-01 1.01311341e-01 -3.12325329e-01 -7.30399430e-01 5.70534527e-01 4.62879926e-01 -5.00850439e-01 2.10109595e-02 -1.03163433e+00 -9.27653670e-01 -4.37286317e-01 -2.49795198e-01 3.43193710e-01 1.17414641e+00 6.18345976e-01 5.83121419e-01 6.06253743e-01 8.72663140e-01 -7.52118587e-01 -7.23902822e-01 -1.37190819e+00 -6.31954670e-01 -1.37870684e-01 5.87900341e-01 -3.25632423e-01 -8.02654862e-01 -1.33295897e-02]
[14.42809009552002, 6.040250778198242]
6ad03229-5f1f-4423-bffa-5e33bd9b56db
re-thinking-supertags-in-linear-context-free
null
null
https://openreview.net/forum?id=udaYBjwpU_M
https://openreview.net/pdf?id=udaYBjwpU_M
Re-thinking Supertags in Linear Context-free Rewriting Systems for Constituency Parsing
Recently, a supertagging-based approach for parsing discontinuous constituent trees with linear context-free rewriting systems (LCFRS) was introduced. We reformulate their algorithm for the extraction of supertags from treebanks to be more concise. Moreover, we add some extensions that give us control over the extraction process in terms of supertag granularity and which terminal symbols are associated with supertags. Our additions lead to an increase in parsing quality with LCFRS supertagging in all three compared treebanks. The scores are among the state of the art in discontinuous constituent parsing.
['Anonymous']
2021-11-16
null
null
null
acl-arr-november-2021-11
['constituency-parsing']
['natural-language-processing']
[ 1.51482671e-01 6.69202268e-01 1.03718936e-02 -5.36327541e-01 -1.24123967e+00 -9.76414979e-01 4.02761936e-01 2.82412589e-01 -2.76136428e-01 8.22592735e-01 3.62172335e-01 -7.05439806e-01 3.30813885e-01 -8.70481312e-01 -3.47564638e-01 -4.27533686e-01 -3.26783538e-01 2.90899009e-01 8.93751681e-01 -7.68029988e-01 -9.99845415e-02 2.21181825e-01 -9.33913231e-01 5.24567902e-01 8.08872640e-01 4.84327614e-01 4.30016518e-01 9.12009239e-01 -5.90161145e-01 5.42522490e-01 -7.17477620e-01 -7.83235669e-01 1.89876333e-01 -3.10645938e-01 -1.13303745e+00 -4.26617205e-01 2.22433835e-01 1.59566075e-01 7.36379027e-02 9.02216434e-01 6.24291524e-02 -2.74765700e-01 5.19171953e-02 -5.15084386e-01 -5.56311846e-01 1.30639160e+00 -2.35139012e-01 3.93947810e-01 4.36236739e-01 -5.26192367e-01 1.63806081e+00 -5.62791824e-01 9.95672822e-01 1.52214873e+00 5.44413090e-01 6.71903193e-01 -1.09032071e+00 -2.69240588e-02 5.60459077e-01 -3.46993238e-01 -6.81296170e-01 -5.21104813e-01 3.39623481e-01 -4.62368727e-02 1.41197491e+00 5.47051430e-01 2.59709001e-01 4.59603101e-01 3.79453331e-01 6.36071980e-01 9.85993266e-01 -1.12364924e+00 9.73280296e-02 -5.53590178e-01 6.98545575e-01 7.33883262e-01 2.57610142e-01 -7.17024207e-02 -3.51366550e-01 -1.95315704e-01 5.27879894e-01 -7.18510926e-01 2.27375731e-01 1.09497622e-01 -9.96919513e-01 1.18265080e+00 -5.93278781e-02 8.77314150e-01 7.75534138e-02 1.20221384e-01 8.20088029e-01 5.69998980e-01 7.34200120e-01 3.45948398e-01 -7.96166778e-01 -1.26987264e-01 -4.70336676e-01 5.04824966e-02 1.00876582e+00 1.35737824e+00 5.62598467e-01 -1.33483962e-03 -3.09282094e-02 8.11058462e-01 3.45259234e-02 3.93941402e-01 1.59757152e-01 -1.23563802e+00 8.49116921e-01 4.84874398e-01 6.32089600e-02 -1.77738518e-01 -4.39239502e-01 -1.60629563e-02 -1.08326919e-01 -2.04419896e-01 7.49825478e-01 -3.21110636e-01 -9.51238990e-01 1.79114223e+00 4.66302931e-01 -5.17420471e-01 4.68729883e-01 3.48925233e-01 4.84148651e-01 7.32598186e-01 4.02777404e-01 -5.15565097e-01 1.96246588e+00 -8.56471419e-01 -9.26961362e-01 -3.91720176e-01 1.34630108e+00 -8.33806515e-01 9.73885357e-01 2.06760824e-01 -1.40504587e+00 -1.35698736e-01 -7.66283035e-01 -4.46012586e-01 -2.90412724e-01 -2.14538127e-01 1.00245905e+00 9.92330134e-01 -1.41304731e+00 6.72504783e-01 -1.10025454e+00 -2.37607732e-01 -5.05659699e-01 3.60013098e-01 -4.75396603e-01 3.28319669e-01 -1.51505351e+00 9.07342196e-01 4.86325026e-01 9.38795432e-02 1.07841305e-01 -2.38042325e-01 -9.69569743e-01 -2.78016329e-01 4.30836737e-01 -4.56040710e-01 1.81866693e+00 -5.86768508e-01 -1.57335472e+00 1.18511987e+00 -3.38585854e-01 -5.15650451e-01 -5.49026765e-03 -2.46128008e-01 -3.45609725e-01 7.48032611e-03 3.73394161e-01 8.89923945e-02 1.52270362e-01 -8.56661856e-01 -1.21079278e+00 -3.25757027e-01 3.61306995e-01 1.28361076e-01 2.04983354e-01 8.22375000e-01 -4.20756936e-01 -6.13064051e-01 5.92461884e-01 -9.09674287e-01 -4.13452744e-01 -1.02516913e+00 -2.47896209e-01 -6.89513683e-01 4.18383330e-01 -8.29005659e-01 1.60140836e+00 -1.89286959e+00 3.70748669e-01 -2.54775316e-01 -5.27077243e-02 2.54768282e-01 -6.78857565e-02 7.98609912e-01 9.77226067e-03 4.33872133e-01 -3.49969566e-01 -4.28306520e-01 9.28024948e-02 9.35656130e-01 -3.08058590e-01 -8.45334679e-02 1.46606773e-01 9.75298047e-01 -1.03927124e+00 -6.71267867e-01 -3.76912765e-02 -1.71451837e-01 -2.11543828e-01 7.96455145e-02 -4.11734223e-01 7.40244985e-02 -5.53521276e-01 7.09214449e-01 4.43534285e-01 5.72570384e-01 8.96390259e-01 1.97010413e-01 -7.32742429e-01 1.05837452e+00 -7.45843053e-01 1.73580527e+00 -5.80893815e-01 -1.66650742e-01 2.64144301e-01 -4.90162373e-01 7.55969703e-01 5.17150402e-01 2.14762874e-02 -5.03387153e-01 -1.16829932e-01 5.40095687e-01 2.26335824e-01 -2.26692259e-01 9.95906234e-01 -2.61068374e-01 -8.89138460e-01 2.54038125e-01 6.30742013e-02 5.09243878e-03 6.09401882e-01 4.06000614e-01 1.26349771e+00 4.09406602e-01 5.22387683e-01 -5.44327736e-01 5.58964133e-01 7.88206309e-02 8.81784558e-01 7.01312006e-01 -1.88693888e-02 3.00794691e-01 9.74641085e-01 -3.45719963e-01 -1.05061316e+00 -1.02326536e+00 -1.17790036e-01 1.79733837e+00 -5.15146732e-01 -7.43086338e-01 -8.91016066e-01 -9.52951789e-01 -4.09175873e-01 7.03527093e-01 -5.99756062e-01 4.86412942e-01 -1.55851221e+00 -7.01450586e-01 8.55587959e-01 5.85551500e-01 -6.10090978e-02 -1.12660670e+00 -5.68040311e-01 7.71071374e-01 -3.73631954e-01 -1.52341425e+00 -3.85747850e-01 7.18261242e-01 -1.21862888e+00 -7.63930917e-01 -1.75668478e-01 -1.18337202e+00 2.28077695e-01 -1.42565951e-01 1.34644568e+00 3.01453650e-01 3.87881100e-01 -2.09854439e-01 -9.62554097e-01 -4.46246238e-03 -9.59039509e-01 6.41758919e-01 -4.93293017e-01 -6.54344916e-01 6.16692305e-02 -4.07821804e-01 -2.84064487e-02 -1.40590161e-01 -6.60996616e-01 -9.43849385e-02 2.06087202e-01 5.33738852e-01 3.83383632e-01 -8.36337388e-01 2.76086658e-01 -1.87164891e+00 4.27958250e-01 -7.42787495e-02 -7.61282742e-01 3.94490272e-01 -2.37182423e-01 4.63385016e-01 7.59691715e-01 2.21882865e-01 -1.39627028e+00 4.95433584e-02 -7.70284295e-01 7.18477964e-01 9.33438614e-02 5.94844222e-01 -3.44046503e-01 7.42683560e-02 3.63481343e-01 -3.00817460e-01 -5.54171979e-01 -8.16803992e-01 5.90745509e-01 3.93596113e-01 5.53428948e-01 -9.33988333e-01 4.67701852e-01 -3.88776399e-02 1.24722876e-01 -5.81710458e-01 -8.97629440e-01 -4.30436254e-01 -9.58021343e-01 3.83142382e-01 8.81986320e-01 -7.72668481e-01 -2.73110718e-01 5.01086414e-01 -1.50180984e+00 -3.10865611e-01 -2.38198742e-01 -8.66992027e-02 -2.64554352e-01 9.71192181e-01 -1.36678767e+00 -9.61180270e-01 -5.24651825e-01 -7.58413553e-01 1.35726118e+00 -2.37422049e-01 -1.80889592e-01 -1.17797911e+00 2.45694816e-01 -1.13877123e-02 3.76575552e-02 5.11676431e-01 1.23920679e+00 -7.30241239e-01 -2.72878975e-01 5.99288456e-02 7.98568577e-02 1.13986276e-01 1.55415148e-01 -9.36513245e-02 -4.97340381e-01 -1.85655151e-02 -6.00092970e-02 2.81678110e-01 6.04553998e-01 1.83516979e-01 -6.17633425e-02 -3.63654733e-01 -2.43311539e-01 3.89302313e-01 1.38437498e+00 4.05386627e-01 7.36360312e-01 6.82099938e-01 5.87739527e-01 7.63933659e-01 1.03075898e+00 -2.86255125e-02 5.84697187e-01 6.26494706e-01 2.79895306e-01 2.04547763e-01 4.57092561e-02 -1.16480835e-01 7.43353724e-01 1.41408110e+00 -3.08903288e-02 -2.58113205e-01 -8.39165926e-01 7.15796232e-01 -1.80596244e+00 -1.60241410e-01 -1.02089965e+00 1.78056109e+00 9.69157219e-01 3.01360697e-01 2.04344139e-01 9.93750989e-02 9.42640901e-01 2.78168470e-01 2.47850716e-01 -1.24310827e+00 -1.27567247e-01 8.41110408e-01 7.87069261e-01 1.12054467e+00 -1.09119153e+00 1.93706036e+00 6.97860336e+00 3.84066641e-01 -5.76253772e-01 5.31695426e-01 3.55414897e-02 4.25829917e-01 -4.69456017e-01 6.54399037e-01 -1.15827537e+00 1.14981614e-01 1.41508734e+00 1.50811732e-01 -7.75298923e-02 5.41642129e-01 -3.64624779e-04 -3.48027587e-01 -7.17428803e-01 -5.81909111e-03 -6.37078166e-01 -1.06315351e+00 -1.97143242e-01 -5.72631992e-02 2.93286800e-01 1.84005171e-01 -5.85498095e-01 1.22831777e-01 9.50721741e-01 -2.54100919e-01 8.38129938e-01 -1.67199001e-01 6.75695598e-01 -6.67437255e-01 7.84233391e-01 3.33608277e-02 -1.56772935e+00 1.58047289e-01 -4.05798614e-01 -2.94400245e-01 6.97931647e-01 4.02422875e-01 -5.18186271e-01 1.03807437e+00 4.21273172e-01 7.73849189e-02 -4.35487539e-01 2.66268790e-01 -8.07079196e-01 9.75140274e-01 -3.69706631e-01 -1.99372128e-01 5.81451118e-01 -4.09832150e-01 5.19530416e-01 1.43435383e+00 7.33266026e-02 3.99980783e-01 2.54998386e-01 -6.48656934e-02 3.67867529e-01 4.07194585e-01 -2.03815833e-01 3.29449296e-01 5.76775670e-01 1.30470717e+00 -9.97544289e-01 -4.84137803e-01 -4.29040074e-01 6.84169948e-01 6.43386841e-01 -1.72827736e-01 -4.21400547e-01 -5.20820439e-01 5.29219508e-01 1.12801380e-01 4.94591206e-01 -6.56370163e-01 -3.00431132e-01 -1.03516185e+00 1.21086583e-01 -7.35105395e-01 9.35074985e-01 -4.27599043e-01 -7.26915896e-01 1.02391624e+00 1.72008470e-01 -4.62327480e-01 -5.31286836e-01 -6.72461390e-01 -4.19356346e-01 9.18949962e-01 -1.58804142e+00 -1.24803197e+00 6.50457919e-01 2.15127662e-01 4.74541783e-01 3.65655869e-01 1.33153594e+00 5.70692644e-02 -4.67370242e-01 5.34696519e-01 -2.08161235e-01 3.79751116e-01 3.84740770e-01 -1.74440849e+00 1.50431752e+00 1.45555031e+00 6.18769415e-02 6.93778276e-01 8.43909442e-01 -6.85668468e-01 -1.19391727e+00 -8.63656938e-01 1.88466251e+00 -5.04372537e-01 1.05257976e+00 -7.86467552e-01 -1.09751379e+00 1.11458123e+00 3.14089537e-01 -2.36792788e-01 4.01956111e-01 5.97444415e-01 -3.75108272e-01 1.12745598e-01 -8.70958090e-01 4.93549287e-01 1.47764933e+00 -3.35738152e-01 -1.01668346e+00 2.15818256e-01 1.14629018e+00 -7.56871104e-01 -1.22132480e+00 1.40059590e-01 3.57554734e-01 -7.57879794e-01 3.90668809e-01 -5.15984833e-01 7.00318590e-02 -1.60568148e-01 -2.53298491e-01 -9.84930575e-01 -5.45429707e-01 -1.10301828e+00 2.23658711e-01 1.48700082e+00 6.77178860e-01 -8.90283108e-01 6.69578254e-01 6.24974549e-01 -9.46760654e-01 -2.86672920e-01 -1.26200247e+00 -7.86033511e-01 5.79266012e-01 -2.49477103e-01 4.74115938e-01 4.42336947e-01 5.55374563e-01 6.81307197e-01 -2.25385964e-01 1.96738809e-01 2.89332122e-01 2.25522950e-01 1.91082731e-01 -1.26402318e+00 -2.75061429e-01 2.10176885e-01 -1.92490935e-01 -9.00211692e-01 1.18398532e-01 -9.49664652e-01 2.05240965e-01 -1.63389444e+00 -4.74333137e-01 -6.04497135e-01 4.64022383e-02 8.67598236e-01 -2.43449077e-01 1.96108427e-02 2.75802463e-01 6.55836016e-02 -5.51161528e-01 -1.24496959e-01 8.43513191e-01 4.89833921e-01 -1.89073175e-01 -2.18774915e-01 -8.12466204e-01 6.29919231e-01 8.58350337e-01 -8.10999393e-01 8.66189152e-02 -7.99650431e-01 4.70634371e-01 5.37330210e-01 -4.13229972e-01 -4.08664733e-01 -1.45716920e-01 -1.23455256e-01 -6.55747771e-01 -4.89355147e-01 -9.71430764e-02 -2.92872041e-01 6.14732802e-02 5.23829877e-01 -4.08527590e-02 6.31477356e-01 9.84648019e-02 8.10341984e-02 -1.41513735e-01 -7.14896441e-01 5.03685892e-01 -6.08872414e-01 -8.26731145e-01 -1.34645805e-01 -7.63865709e-01 4.39980567e-01 6.25388086e-01 -2.78578579e-01 -2.45619074e-01 2.24983945e-01 -1.07227802e+00 -3.21445540e-02 3.04173172e-01 3.65515262e-01 -5.15969321e-02 -7.65949488e-01 -5.17172575e-01 -1.62636563e-01 -6.03459328e-02 -8.32250416e-02 -6.02627173e-02 3.18347752e-01 -7.84723997e-01 6.04708850e-01 1.29366502e-01 -1.53660923e-01 -1.58568287e+00 2.90644675e-01 7.25720152e-02 -9.14172769e-01 -7.23260164e-01 8.05301785e-01 -3.68110021e-03 -4.90811944e-01 -2.58529902e-01 -8.89465213e-01 -8.84588584e-02 4.21536155e-03 1.66841581e-01 -5.91750303e-03 4.88233298e-01 -7.85618961e-01 -6.02253437e-01 3.93240124e-01 -3.46785486e-01 -2.29859039e-01 1.29155052e+00 -3.06175470e-01 -5.84417224e-01 5.27289093e-01 8.52886796e-01 4.49138463e-01 -8.16756487e-01 -1.19225360e-01 8.74315798e-01 1.01002067e-01 -4.60578412e-01 -5.94931126e-01 -6.77954495e-01 4.06876922e-01 -3.86800319e-02 6.94413483e-01 7.62990773e-01 2.78839111e-01 1.18086421e+00 2.48421028e-01 7.26896286e-01 -1.17801797e+00 -7.76764274e-01 1.19659925e+00 4.46986794e-01 -4.63455677e-01 -3.79840493e-01 -1.23215175e+00 -4.13194478e-01 1.07427883e+00 6.09450713e-02 -3.12885791e-01 4.07190502e-01 7.91598856e-01 4.55214888e-01 -5.69379181e-02 -9.14514601e-01 -4.46597129e-01 -4.11289811e-01 5.94518065e-01 9.96229708e-01 3.95339429e-01 -1.29311323e+00 6.03424311e-01 -6.08819246e-01 -6.49894238e-01 7.19412029e-01 1.32205880e+00 -6.33221388e-01 -2.21432972e+00 -2.17186242e-01 4.47060205e-02 -1.14885020e+00 -6.61191344e-01 -3.97811532e-01 1.10029185e+00 -7.64433965e-02 1.10745740e+00 -8.59174281e-02 4.97891288e-03 6.57294631e-01 5.59942782e-01 7.05223382e-01 -1.31708467e+00 -1.14764094e+00 1.81292430e-01 9.76487637e-01 -2.54895747e-01 -3.43719244e-01 -1.04008484e+00 -1.64319980e+00 -1.90136731e-01 -7.36189544e-01 8.11790049e-01 3.98699850e-01 9.68622446e-01 1.30833924e-01 4.76905197e-01 4.44145828e-01 -3.29451680e-01 -4.29841191e-01 -9.23787415e-01 -6.16518378e-01 -4.93994579e-02 -9.47658941e-02 -2.35719979e-01 -8.26859102e-02 -3.51994820e-02]
[10.317934036254883, 9.723258018493652]
33d6a725-e74d-48c1-bd84-bab754d3aadd
flow-based-anomaly-detection
2010.03002
null
https://arxiv.org/abs/2010.03002v3
https://arxiv.org/pdf/2010.03002v3.pdf
OneFlow: One-class flow for anomaly detection based on a minimal volume region
We propose OneFlow - a flow-based one-class classifier for anomaly (outlier) detection that finds a minimal volume bounding region. Contrary to density-based methods, OneFlow is constructed in such a way that its result typically does not depend on the structure of outliers. This is caused by the fact that during training the gradient of the cost function is propagated only over the points located near to the decision boundary (behavior similar to the support vectors in SVM). The combination of flow models and a Bernstein quantile estimator allows OneFlow to find a parametric form of bounding region, which can be useful in various applications including describing shapes from 3D point clouds. Experiments show that the proposed model outperforms related methods on real-world anomaly detection problems.
['Przemysław Spurek', 'Jacek Tabor', 'Łukasz Struski', 'Marcin Sendera', 'Marek Śmieja', 'Łukasz Maziarka']
2020-10-06
null
null
null
null
['one-class-classifier']
['methodology']
[-7.07659960e-01 -1.60883889e-01 -2.15451717e-01 -3.65637958e-01 -1.98167950e-01 -4.35492814e-01 3.21716040e-01 8.34371567e-01 -2.52923351e-02 5.16065955e-01 -3.36795390e-01 -2.37975597e-01 -1.87508643e-01 -7.70590127e-01 -6.04454458e-01 -6.67070985e-01 -5.42020977e-01 5.03554702e-01 6.07676625e-01 9.70195420e-03 7.17769384e-01 1.08247864e+00 -1.48968363e+00 -6.16500974e-02 1.26010823e+00 1.27664959e+00 -7.35250533e-01 4.00499314e-01 -5.81323743e-01 3.34682196e-01 -7.07444370e-01 -5.58880232e-02 5.18074214e-01 -3.05962652e-01 -3.80454928e-01 -7.60571286e-02 7.28474021e-01 -3.58479381e-01 -5.98914959e-02 1.28130960e+00 -2.62496192e-02 2.92303890e-01 1.24937212e+00 -1.69933903e+00 -1.52502537e-01 -1.58164248e-01 -6.76913142e-01 5.47563255e-01 3.35361034e-01 -1.87422022e-01 7.52875447e-01 -9.68457460e-01 3.20096463e-01 1.13402021e+00 8.43176186e-01 2.24648923e-01 -9.85326648e-01 -3.94681484e-01 2.96958745e-01 1.08773552e-03 -1.53732646e+00 -1.26652479e-01 6.71634436e-01 -7.10355401e-01 6.12905979e-01 2.46167094e-01 6.85119092e-01 6.61383390e-01 5.96974373e-01 5.68502069e-01 5.48557937e-01 -1.40248254e-01 6.38078809e-01 6.18576817e-02 1.91474915e-01 7.87402034e-01 6.94401979e-01 -2.58235876e-02 -8.75714719e-02 -7.81909108e-01 7.27041960e-01 1.93707749e-01 -3.23845357e-01 -9.10011828e-01 -6.87934577e-01 9.50140357e-01 4.24151778e-01 2.25529581e-01 -5.16615529e-03 -9.76044685e-02 5.65058708e-01 3.28384668e-01 6.12680018e-01 4.31567490e-01 -1.53368577e-01 -1.56221747e-01 -1.15826690e+00 3.86985689e-01 9.33024287e-01 8.37770104e-01 6.32640660e-01 3.03976506e-01 -1.79481834e-01 4.80682462e-01 4.29974258e-01 3.08904976e-01 4.54066813e-01 -6.63853884e-01 3.14546317e-01 9.18637812e-01 8.35940018e-02 -1.13033473e+00 -3.09842348e-01 -3.40367436e-01 -7.30435789e-01 4.45830345e-01 8.43500555e-01 2.78456867e-01 -7.41323888e-01 1.00124323e+00 5.10124505e-01 5.47679305e-01 -2.93556422e-01 1.02735519e+00 4.02642906e-01 4.78531241e-01 -2.29253083e-01 -6.84853867e-02 5.19516826e-01 -2.96796441e-01 -3.46041828e-01 3.23431790e-01 9.84177351e-01 -3.23503673e-01 9.42925036e-01 5.60614645e-01 -5.06728232e-01 -1.14992246e-01 -1.05142879e+00 4.92447466e-01 -4.24786389e-01 -4.54017788e-01 3.24005932e-01 8.17923069e-01 -5.39987266e-01 9.48921323e-01 -8.13970149e-01 -3.06669414e-01 6.26413882e-01 5.42658567e-02 -4.59652096e-01 8.96178782e-02 -4.99064684e-01 6.46568835e-01 2.34717637e-01 -3.64965498e-02 -4.64975238e-01 -8.29938471e-01 -8.88173640e-01 9.83217657e-02 -3.00082043e-02 -1.63167164e-01 8.32149446e-01 -6.69053674e-01 -1.07882798e+00 5.53956151e-01 -2.13959351e-01 -5.13961196e-01 8.67995918e-01 -3.21695775e-01 -3.40515912e-01 1.52180687e-01 1.73131943e-01 -1.36641711e-01 1.08389223e+00 -1.08874619e+00 -4.29860681e-01 -5.90692759e-01 -6.49856865e-01 -3.49506974e-01 -2.62724776e-02 -3.06402475e-01 9.22327675e-03 -5.68375051e-01 5.30198038e-01 -5.34546673e-01 -3.16068262e-01 2.65297592e-01 -6.33126438e-01 -3.74854773e-01 1.29862320e+00 -1.40655801e-01 1.22194171e+00 -2.31937003e+00 -4.57763880e-01 9.36502874e-01 2.29865208e-01 1.69338867e-01 4.34718817e-01 2.55017042e-01 -1.72567517e-01 3.03383172e-01 -5.43751299e-01 4.34992947e-02 -1.88940942e-01 2.08333209e-01 -5.77923298e-01 1.14980185e+00 3.31316978e-01 2.09851742e-01 -8.76963317e-01 -5.80617487e-01 3.86059076e-01 -4.17709276e-02 -5.88306963e-01 1.55636922e-01 -1.58995781e-02 4.64972854e-01 -6.14582241e-01 8.70407701e-01 1.05061853e+00 2.02904984e-01 -6.35333061e-01 3.49253535e-01 -1.10780373e-01 -1.59649342e-01 -1.49785793e+00 1.13043547e+00 4.84293252e-02 4.70198870e-01 -1.13371149e-01 -1.24125123e+00 1.43587720e+00 3.73030603e-02 8.45996916e-01 -2.27527007e-01 1.15786314e-01 4.12570745e-01 -4.76832129e-02 -3.02368820e-01 1.57916859e-01 -2.22621094e-02 9.81902704e-02 -2.60195099e-02 -1.45878196e-01 -1.45157009e-01 2.24017739e-01 8.22426528e-02 1.14875126e+00 -1.45994663e-01 3.28925222e-01 -4.01612550e-01 6.88316166e-01 -5.72156534e-02 8.75460088e-01 7.89276659e-01 -5.91527104e-01 8.05361450e-01 1.00760412e+00 -4.65049088e-01 -9.45314407e-01 -1.32028258e+00 -7.42448092e-01 3.64477068e-01 2.40034461e-01 -2.50642091e-01 -5.09585917e-01 -1.03599024e+00 7.44204104e-01 7.12042630e-01 -4.47826028e-01 -2.23616406e-01 -5.64233422e-01 -2.45922849e-01 3.34931701e-01 4.08848524e-01 1.23897880e-01 -5.88533342e-01 -3.54039162e-01 3.37762031e-04 5.14943063e-01 -9.71752107e-01 -3.74462932e-01 1.31611809e-01 -1.39064610e+00 -1.45819509e+00 -4.58458960e-01 -3.68220240e-01 8.69988203e-01 -1.39432341e-01 9.42957580e-01 1.49856701e-01 -2.91426092e-01 3.37132573e-01 -3.48550767e-01 -4.49338138e-01 -2.66509384e-01 -1.30115747e-01 5.18125221e-02 2.69989014e-01 5.54323912e-01 -4.97391403e-01 -3.98223788e-01 3.90347540e-01 -5.23805976e-01 -1.03762007e+00 9.30240974e-02 6.80075407e-01 6.70478642e-01 7.98535421e-02 7.02296019e-01 -8.69462192e-01 6.13615394e-01 -7.71501541e-01 -9.40321267e-01 -6.49303570e-02 -5.55461228e-01 3.58653404e-02 9.15966213e-01 -2.83327907e-01 -5.02562523e-01 7.23819584e-02 1.17048658e-01 -1.02494931e+00 -5.21028399e-01 -2.27669701e-02 -4.50769812e-02 -1.79398388e-01 7.37236738e-01 -5.11900038e-02 8.28573704e-02 -4.90537912e-01 1.40970737e-01 6.30090594e-01 5.14361441e-01 -6.91244006e-01 8.71441841e-01 5.15767694e-01 5.30866265e-01 -1.19667339e+00 -6.11413240e-01 -1.02213013e+00 -7.57274806e-01 -2.25170180e-01 4.50027764e-01 -3.32637429e-01 -8.14945996e-01 1.26130268e-01 -9.37183201e-01 3.24770808e-01 -7.85154819e-01 5.12539983e-01 -4.89786983e-01 5.58206797e-01 -2.76213229e-01 -1.25326777e+00 -8.09467807e-02 -7.54278541e-01 9.03389573e-01 2.53302634e-01 -1.64224342e-01 -1.03872550e+00 3.14888507e-01 -5.30737817e-01 1.34835556e-01 7.14192390e-01 1.01324654e+00 -1.21406579e+00 -4.30925190e-01 -6.94493413e-01 -6.56105801e-02 5.34165323e-01 -9.51471552e-02 4.33941334e-01 -7.67010510e-01 -2.60282248e-01 7.61441737e-02 2.40377858e-01 8.30802083e-01 5.41941226e-01 1.47731388e+00 -9.27317590e-02 -4.72323805e-01 8.18315804e-01 1.36398423e+00 1.95188552e-01 5.06826401e-01 2.18537599e-01 5.21181226e-01 3.20710063e-01 5.73865533e-01 6.98265672e-01 -3.38245422e-01 3.43932331e-01 7.83250690e-01 1.30340442e-01 4.81543720e-01 -3.02989036e-01 1.61142677e-01 1.92879468e-01 3.76879185e-01 5.61819710e-02 -1.09796190e+00 6.62751794e-01 -1.94879115e+00 -9.96555388e-01 -5.74859083e-01 2.68265390e+00 1.25713840e-01 3.50917459e-01 4.08242673e-01 4.31605071e-01 6.70731366e-01 -7.52506964e-03 -6.55159175e-01 -9.20434594e-01 9.76466909e-02 1.69850886e-01 5.59673965e-01 3.77978206e-01 -1.24717391e+00 4.06708330e-01 6.53102398e+00 5.99629223e-01 -1.02730083e+00 -2.94213265e-01 3.70147943e-01 1.46607816e-01 -1.33992834e-02 3.95646989e-02 -7.50370264e-01 6.86393321e-01 5.68559647e-01 -1.40319109e-01 -3.76951993e-01 1.34432828e+00 1.59829259e-01 -4.29758966e-01 -1.02441227e+00 8.60037446e-01 -1.51517987e-01 -9.43169534e-01 1.55745409e-02 1.02003425e-01 5.33223093e-01 -1.06586039e-01 -1.16519533e-01 2.13251393e-02 -1.36006877e-01 -1.02393651e+00 3.44771475e-01 5.26538134e-01 4.37370509e-01 -1.02554703e+00 8.46924424e-01 4.39735115e-01 -1.08797061e+00 -2.74383098e-01 -5.58659792e-01 1.91909313e-01 -7.94738308e-02 1.17834210e+00 -1.07000339e+00 3.53345484e-01 8.05570602e-01 6.54906690e-01 -4.62270617e-01 1.86327314e+00 9.69070196e-02 6.85906589e-01 -6.66175842e-01 4.12808079e-03 1.06588729e-01 -5.95485151e-01 1.03230131e+00 1.15366507e+00 4.13544416e-01 -3.96358728e-01 4.85008657e-01 9.47472751e-01 3.47869873e-01 5.66101909e-01 -1.16694903e+00 3.02325755e-01 4.09326494e-01 9.37200725e-01 -8.53526592e-01 4.89597954e-02 -4.62498724e-01 5.74684918e-01 1.65610522e-01 2.88724899e-01 -5.09681702e-01 -6.61749661e-01 7.62175918e-01 6.63459659e-01 3.70974630e-01 -3.58130902e-01 -4.62126672e-01 -1.10314965e+00 2.26302415e-01 -2.76901275e-01 4.66096282e-01 -9.09400582e-02 -1.61403620e+00 3.38792235e-01 1.05399191e-01 -1.55852389e+00 -1.58742860e-01 -7.12146521e-01 -1.09583902e+00 6.34505153e-01 -1.17481875e+00 -4.59209234e-01 -3.30189019e-01 5.75815439e-01 1.17855899e-01 -2.82171816e-01 5.81348240e-01 5.69008142e-02 -6.81117237e-01 4.33858275e-01 2.56473958e-01 3.97784114e-01 6.60249054e-01 -1.46876633e+00 1.81417421e-01 9.03419614e-01 1.67134479e-01 3.65032613e-01 7.18854666e-01 -8.03557336e-01 -6.40008867e-01 -9.95989084e-01 4.28235620e-01 -3.85460407e-01 5.14226377e-01 -1.08527146e-01 -1.38708854e+00 2.92467982e-01 -4.42345232e-01 7.89963663e-01 4.86309618e-01 5.86425774e-02 -2.93880820e-01 -2.19246730e-01 -1.47197425e+00 6.59516752e-02 7.39662349e-01 -1.39524424e-02 -5.20390630e-01 1.88700736e-01 7.02207163e-02 -3.65181476e-01 -7.40267992e-01 4.33752179e-01 1.36857778e-01 -1.27911460e+00 7.18494952e-01 -8.78503919e-01 -1.31371990e-01 -5.01465261e-01 -2.61127725e-02 -1.22947037e+00 2.34581307e-02 -5.54953933e-01 -7.01076090e-01 8.76388371e-01 1.89775787e-03 -9.48466182e-01 1.03562033e+00 3.03437293e-01 -2.37526044e-01 -9.37611163e-01 -1.36567724e+00 -1.27269578e+00 2.51892000e-01 -3.05048585e-01 4.91915524e-01 8.58990908e-01 -3.03065237e-02 -2.85282880e-01 2.23964974e-01 2.65849769e-01 8.68252993e-01 -1.70160495e-02 8.38736892e-01 -1.93009639e+00 3.44572186e-01 -5.28965056e-01 -1.17457700e+00 -7.42007017e-01 3.64341825e-01 -8.84878337e-01 -1.99216723e-01 -1.07275176e+00 -4.89142150e-01 -7.65754163e-01 -1.93729639e-01 1.13792382e-01 1.90819353e-01 -1.94104269e-01 -3.05084139e-01 1.56453371e-01 -2.58977801e-01 7.05405474e-01 9.03015137e-01 3.08184475e-01 -4.81501669e-01 5.59521437e-01 -1.35062352e-01 1.02387619e+00 7.99910963e-01 -6.91570818e-01 -2.71380246e-01 4.41052198e-01 -1.70605138e-01 -1.93355590e-01 3.67609620e-01 -1.25977635e+00 2.11060762e-01 -3.05473626e-01 5.78240931e-01 -8.69513571e-01 -1.03406020e-01 -1.01171565e+00 -5.38426518e-01 3.41385245e-01 1.01930395e-01 2.25409493e-01 -2.49550678e-02 8.56443286e-01 -3.90301198e-01 -5.64799011e-01 1.02966368e+00 8.93046930e-02 -4.07943308e-01 5.08335769e-01 -1.75365120e-01 4.27629858e-01 1.35636997e+00 -5.66193759e-01 -2.69822598e-01 -3.62406880e-01 -6.16873264e-01 1.35298461e-01 5.29530823e-01 1.98953643e-01 7.67488837e-01 -1.41296208e+00 -4.41648453e-01 7.22495139e-01 3.23938549e-01 3.43651414e-01 -1.66282207e-01 8.65934968e-01 -8.55486631e-01 1.39026076e-01 -1.42489627e-01 -1.16575241e+00 -5.92020988e-01 4.71158862e-01 7.17575788e-01 1.12462528e-01 -9.74944770e-01 4.15139884e-01 -2.73470879e-02 -1.92363560e-01 3.44044149e-01 -5.79673350e-01 -3.84540260e-02 -1.37993112e-01 3.48014235e-01 6.67438149e-01 2.24911883e-01 -4.90188658e-01 -5.92262745e-01 4.67567235e-01 -2.29996815e-02 2.68241793e-01 9.10011888e-01 3.92954856e-01 7.41230547e-02 7.37429023e-01 1.27051437e+00 1.18078612e-01 -1.09560835e+00 1.42243221e-01 4.17382509e-01 -1.01933551e+00 -1.24186069e-01 3.81731801e-02 -1.01887131e+00 8.26841950e-01 7.05040872e-01 5.89744568e-01 7.03968525e-01 -2.51870185e-01 4.66594636e-01 2.72198051e-01 1.69199884e-01 -1.22465670e+00 9.66087431e-02 6.17705107e-01 7.67547667e-01 -1.16500199e+00 9.80315506e-02 -4.03069884e-01 -3.90831709e-01 1.31013632e+00 9.61428642e-01 -6.90395713e-01 1.17323828e+00 3.23892713e-01 -9.88645256e-02 -1.29280493e-01 -2.90917873e-01 -5.12735099e-02 4.30686891e-01 8.51079822e-01 1.09758832e-01 -1.90462336e-01 -1.54507132e-02 2.24627718e-01 -7.61108026e-02 -4.99292642e-01 5.66070735e-01 8.13856483e-01 -7.66940296e-01 -7.32959807e-01 -5.06279647e-01 8.47391844e-01 -3.30311596e-01 5.45750320e-01 -1.81811765e-01 9.25923169e-01 -6.64092749e-02 6.72949672e-01 6.92981899e-01 1.29399106e-01 6.26161993e-01 3.09979796e-01 9.06825215e-02 -5.63832581e-01 -3.55457246e-01 -1.58372506e-01 -4.92071480e-01 -8.95384133e-01 2.40331262e-01 -6.26662314e-01 -1.48151410e+00 -3.15427095e-01 -5.12493849e-01 3.73853952e-01 4.58818972e-01 8.55330706e-01 2.74703771e-01 -9.43195149e-02 7.86680818e-01 -4.51635838e-01 -6.99414372e-01 -6.55333817e-01 -1.10480940e+00 4.82389838e-01 7.54035413e-01 -9.99865294e-01 -8.81594241e-01 -5.46607792e-01]
[7.593977928161621, 2.4613823890686035]
9086bd35-91fd-44a0-92d0-a4ce7c16cf02
multi-granulariy-time-based-transformer-for
2304.05257
null
https://arxiv.org/abs/2304.05257v1
https://arxiv.org/pdf/2304.05257v1.pdf
Multi-granulariy Time-based Transformer for Knowledge Tracing
In this paper, we present a transformer architecture for predicting student performance on standardized tests. Specifically, we leverage students historical data, including their past test scores, study habits, and other relevant information, to create a personalized model for each student. We then use these models to predict their future performance on a given test. Applying this model to the RIIID dataset, we demonstrate that using multiple granularities for temporal features as the decoder input significantly improve model performance. Our results also show the effectiveness of our approach, with substantial improvements over the LightGBM method. Our work contributes to the growing field of AI in education, providing a scalable and accurate tool for predicting student outcomes.
['Tong Zhou']
2023-04-11
null
null
null
null
['knowledge-tracing']
['miscellaneous']
[ 1.07154131e-01 -2.12533712e-01 -7.67832279e-01 -6.93440020e-01 -7.43577421e-01 -6.25247359e-01 2.55586773e-01 6.02110147e-01 -2.18886837e-01 6.81094170e-01 3.60187471e-01 -6.91432595e-01 -5.67392826e-01 -9.85468507e-01 -6.46656692e-01 -2.37193517e-03 1.53807804e-01 2.83218533e-01 3.24235797e-01 -1.85161620e-01 4.84919429e-01 4.44825619e-01 -1.75117493e+00 3.03417355e-01 1.26771295e+00 5.85147798e-01 -5.35352603e-02 8.59159470e-01 -3.01926751e-02 1.15905988e+00 -6.73774958e-01 -5.78091085e-01 -1.32277414e-01 -4.97581095e-01 -1.04494321e+00 -2.15425611e-01 7.15201199e-01 -3.16573918e-01 -5.76710403e-01 5.05916417e-01 1.92460269e-01 6.06305182e-01 4.26032126e-01 -8.03206861e-01 -8.46297801e-01 9.01855469e-01 -2.94355810e-01 4.58290607e-01 6.59575045e-01 -2.52085980e-02 1.08209491e+00 -3.30501795e-01 4.91227865e-01 7.52279818e-01 4.56253171e-01 4.95693624e-01 -1.22237289e+00 -6.41959667e-01 5.05127728e-01 5.96875489e-01 -8.30062866e-01 -1.28979698e-01 6.57265067e-01 -5.86236596e-01 4.80795532e-01 2.93072850e-01 1.26004314e+00 9.47782874e-01 3.38872612e-01 1.18768775e+00 1.21727228e+00 -6.03706539e-01 3.59216705e-02 1.75857376e-02 7.38453984e-01 7.82688141e-01 -1.25597036e-02 7.40210265e-02 -8.73174429e-01 3.96425314e-02 2.41209105e-01 3.10067594e-01 -3.31169851e-02 -1.13408655e-01 -7.92575240e-01 4.86193568e-01 2.12638095e-01 2.92540103e-01 -1.16342813e-01 7.82937258e-02 -2.19444588e-01 6.74772978e-01 3.32235307e-01 5.90390086e-01 -6.45768464e-01 -6.51494861e-01 -1.01738667e+00 4.67278033e-01 9.70799148e-01 8.08713138e-01 4.17540252e-01 -1.77323371e-01 -4.49813068e-01 6.69207513e-01 2.11785272e-01 5.98224364e-02 8.20705414e-01 -7.67299116e-01 2.98956424e-01 9.21796679e-01 -1.56267121e-01 -6.33397222e-01 -2.59850055e-01 -6.62154615e-01 1.02626644e-01 -2.51507878e-01 3.89515132e-01 -1.23950139e-01 -1.13190305e+00 1.82258856e+00 3.91837442e-03 9.22279179e-01 1.74895488e-02 3.94167721e-01 7.54879475e-01 5.31844199e-01 2.91134238e-01 1.27790987e-01 1.04545510e+00 -8.97267461e-01 -4.26325768e-01 -2.67168224e-01 7.87588537e-01 -6.13917947e-01 9.21713471e-01 7.24394202e-01 -1.40289044e+00 -5.02875447e-01 -8.20194840e-01 1.12833770e-03 -2.36632571e-01 -2.46587873e-01 8.11720252e-01 8.25392723e-01 -1.03383601e+00 9.74593341e-01 -1.03489923e+00 -2.03420162e-01 4.29733336e-01 5.99568486e-01 2.22233742e-01 -2.22647786e-01 -8.47679555e-01 7.06554413e-01 -2.22186558e-02 -5.23777544e-01 -7.89090693e-01 -1.21824729e+00 -7.68742919e-01 4.59384769e-01 8.72400403e-02 -4.24989522e-01 1.65079439e+00 -3.02121967e-01 -1.74101114e+00 5.81590474e-01 -1.95236668e-01 -3.06106061e-01 2.42142275e-01 -2.76463360e-01 -3.61708552e-01 -4.13938463e-01 -2.24165499e-01 1.78625211e-01 -1.69241592e-01 -5.92870414e-01 -7.84722447e-01 -3.74484748e-01 -9.37979575e-03 1.29354328e-01 -8.62851441e-01 -1.78868011e-01 -5.35742402e-01 -2.30616689e-01 2.61269718e-01 -8.83746386e-01 -3.67645621e-01 -9.34023917e-01 5.07898740e-02 -6.04551375e-01 4.13283944e-01 -6.71481609e-01 1.91654444e+00 -1.65416551e+00 1.97469115e-01 6.10456705e-01 4.69334722e-02 7.79586434e-02 -1.35890469e-01 2.23291054e-01 2.80351967e-01 1.48548946e-01 5.24398267e-01 -1.25005335e-01 6.74338341e-02 9.46871042e-02 -3.21393639e-01 -1.10858098e-01 -3.36075053e-02 1.15360689e+00 -9.63819087e-01 -3.70162994e-01 1.17457382e-01 6.80548251e-02 -9.02229488e-01 3.59254122e-01 -7.89668784e-02 3.70791316e-01 -8.22746158e-01 5.37430048e-01 -1.06504433e-01 -2.01991975e-01 4.44344074e-01 7.21270680e-01 -1.57912895e-01 8.69785607e-01 -7.23204136e-01 1.68402970e+00 -5.09031355e-01 5.87871552e-01 -6.00504637e-01 -9.14639533e-01 1.09425473e+00 2.97176242e-01 5.86233437e-01 -7.93798804e-01 -1.61892980e-01 1.37480155e-01 1.01922378e-01 -4.48541224e-01 4.55651194e-01 2.61455178e-01 -1.53939202e-01 4.83437091e-01 2.14230508e-01 -1.65451780e-01 5.28757691e-01 2.38170981e-01 1.44719875e+00 3.88859540e-01 9.84679461e-02 -2.50590384e-01 5.35444856e-01 -4.39663082e-02 6.72416210e-01 8.86400640e-01 -1.13556050e-01 1.43338010e-01 4.34997886e-01 -5.95527112e-01 -5.34970462e-01 -9.04108882e-01 -1.44124582e-01 1.52735043e+00 -2.50750899e-01 -5.90578556e-01 -4.26606506e-01 -7.51191616e-01 4.02440637e-01 7.63970017e-01 -5.00529289e-01 -3.81460875e-01 -9.11319375e-01 -5.79348683e-01 -4.02859673e-02 6.97139859e-01 6.04582615e-02 -8.33010256e-01 -3.53029847e-01 3.63982469e-01 9.33992863e-02 -5.44169188e-01 -3.19359601e-01 8.93458426e-02 -1.08512926e+00 -7.77477741e-01 -1.80028319e-01 -9.67805266e-01 3.59437943e-01 4.59854640e-02 1.47713315e+00 5.34856975e-01 -1.97695106e-01 5.86689055e-01 -4.51926291e-02 -5.72101891e-01 -7.85348788e-02 4.57812428e-01 1.61162438e-03 -5.61626554e-01 7.63130128e-01 -7.33575106e-01 -7.10749507e-01 7.60588199e-02 -4.74986285e-01 -7.55728176e-03 2.45806456e-01 5.23543298e-01 3.90072674e-01 -2.78060853e-01 8.10649335e-01 -1.01458585e+00 7.51288295e-01 -7.04737842e-01 -6.54741108e-01 4.28617448e-01 -1.21617222e+00 3.84579264e-02 5.76606810e-01 -6.29394233e-01 -9.43582773e-01 -1.23345785e-01 -6.86159953e-02 5.58975264e-02 -4.20380905e-02 8.98770869e-01 1.97147101e-01 -1.93243042e-01 4.00923222e-01 1.45029247e-01 -5.60098886e-01 -7.44032562e-01 -1.30433515e-01 2.98115075e-01 5.18346667e-01 -1.07245409e+00 6.69712543e-01 -2.86814004e-01 4.40915450e-02 -2.11417794e-01 -1.42988849e+00 -4.98097450e-01 -6.42373860e-01 -3.25216264e-01 3.80079389e-01 -8.14661324e-01 -1.17541790e+00 3.46884578e-02 -3.83981436e-01 -5.46470046e-01 -2.26293579e-01 7.46517062e-01 -3.11187804e-01 -2.74753600e-01 -9.90385830e-01 -6.16491139e-01 1.43248975e-01 -1.26620173e+00 3.04511011e-01 9.13352787e-01 -2.98153847e-01 -1.35617137e+00 3.71295840e-01 8.99044931e-01 2.90679306e-01 -1.08831838e-01 1.08759689e+00 -1.04592407e+00 -8.02986503e-01 -1.31423146e-01 4.97417212e-01 -5.38730703e-04 -2.36180887e-01 2.35775467e-02 -7.28751957e-01 -1.73234344e-01 -4.77748454e-01 -6.08110964e-01 9.09897089e-01 3.96342397e-01 1.47995019e+00 -1.96716920e-01 -3.90031904e-01 5.99964440e-01 1.22416961e+00 4.33406800e-01 1.02726430e-01 6.06240392e-01 5.84099889e-01 4.61348116e-01 4.87790525e-01 2.70323247e-01 8.26900065e-01 5.65051019e-01 -9.96055156e-02 3.68871212e-01 -2.09109262e-02 -5.31416953e-01 4.93213296e-01 1.22672939e+00 -8.44376013e-02 -3.63422751e-01 -1.29858434e+00 7.91495144e-01 -1.69496429e+00 -9.41537917e-01 -1.36951119e-01 2.01413321e+00 9.31865931e-01 1.39729559e-01 4.15597782e-02 -1.30525976e-01 9.68594924e-02 -5.83151020e-02 -5.83646595e-01 -8.52160573e-01 4.22306597e-01 9.62807953e-01 3.22265327e-01 5.11848509e-01 -7.25643992e-01 9.70927894e-01 7.66443777e+00 3.23166400e-01 -7.55441368e-01 -1.52845562e-01 6.43398762e-01 -3.82242978e-01 -6.30610585e-01 -3.47824320e-02 -1.22911155e+00 2.35944226e-01 1.72244418e+00 -7.37928152e-01 4.05433863e-01 5.98793447e-01 -3.38693336e-03 1.41649768e-01 -1.20510781e+00 1.67055622e-01 1.50981545e-01 -1.19128776e+00 -1.24562755e-01 1.63468853e-01 1.38225341e+00 -2.54578471e-01 4.53548163e-01 7.43693471e-01 1.21639109e+00 -1.04003227e+00 4.12628204e-01 6.65215492e-01 5.04593104e-02 -1.10653174e+00 4.20037210e-01 3.37070256e-01 -8.44627082e-01 -4.45681483e-01 -1.45269796e-01 -4.54154015e-01 -5.02056301e-01 2.73589849e-01 -1.25202215e+00 3.16678017e-01 4.72683191e-01 8.14881921e-01 -9.09666300e-01 1.12859130e+00 -4.66718942e-01 1.36961997e+00 3.42942737e-02 -1.64462760e-01 1.78392142e-01 -1.52139202e-01 -7.87623599e-02 9.31622684e-01 7.34110832e-01 3.78168434e-01 6.12173021e-01 5.80978692e-01 -3.90788198e-01 1.68063805e-01 -4.35173362e-01 5.11445962e-02 6.59880161e-01 1.01426315e+00 -2.52812624e-01 -2.48872638e-01 -6.98084891e-01 5.69921076e-01 4.99706954e-01 2.63987184e-01 -4.19575363e-01 -1.63089693e-01 7.52688527e-01 5.04557602e-03 1.08532608e-01 -1.17189154e-01 -4.55004930e-01 -1.15612626e+00 -3.39280218e-01 -9.07766283e-01 7.88855910e-01 -4.02824432e-01 -8.77550542e-01 2.33350471e-02 -2.48732358e-01 -8.29003811e-01 -5.57555377e-01 -5.10831773e-01 -8.53442550e-01 9.22086239e-01 -1.54576838e+00 -7.70386338e-01 -3.20604742e-01 3.44129145e-01 3.34318340e-01 -2.80934632e-01 6.25678182e-01 1.31633341e-01 -9.47683632e-01 7.43217468e-01 2.99950868e-01 1.60480067e-01 6.95350945e-01 -1.42841411e+00 4.28932041e-01 8.21283937e-01 4.21700954e-01 6.67755961e-01 4.73910213e-01 -7.27186859e-01 -1.54331625e+00 -8.12968373e-01 1.09758508e+00 -8.59819889e-01 8.98185015e-01 1.49011299e-01 -8.45363617e-01 1.22647464e+00 4.01296746e-03 -4.16244298e-01 1.24957359e+00 8.50518107e-01 -3.65770385e-02 -2.39200622e-01 -7.71632969e-01 6.05039537e-01 9.30022240e-01 -1.86414570e-01 -9.36603963e-01 8.73489082e-02 6.04677856e-01 -6.49374425e-01 -1.53191650e+00 2.96290576e-01 7.49033153e-01 -6.01396978e-01 8.65497828e-01 -1.14181852e+00 8.42373967e-01 3.46835822e-01 2.41927400e-01 -1.46869326e+00 -6.43310666e-01 -3.72458786e-01 -3.83613288e-01 1.23351157e+00 5.68952858e-01 -2.17505157e-01 1.26360869e+00 1.19100416e+00 -3.42453063e-01 -1.14036548e+00 -5.45525432e-01 -4.45942134e-01 2.62652695e-01 -3.78403485e-01 1.07919657e+00 1.00698352e+00 4.05453205e-01 -7.84979090e-02 -1.04948781e-01 -7.46209361e-03 4.12047118e-01 7.01944709e-01 6.33920848e-01 -1.72492266e+00 -2.63563514e-01 -6.38748586e-01 -4.94401485e-01 -1.15768790e+00 3.90637279e-01 -1.07479906e+00 -3.28351259e-01 -1.39102757e+00 5.04827738e-01 -4.81472254e-01 -1.00317872e+00 7.30395257e-01 -5.88867486e-01 1.60993263e-01 6.29451051e-02 -2.37043366e-01 -6.95123553e-01 4.86961454e-02 1.34158683e+00 2.81014562e-01 -5.23628950e-01 3.00229877e-01 -9.61059332e-01 6.22763753e-01 7.58300066e-01 -3.52367193e-01 -5.20943344e-01 -4.62986737e-01 1.69525534e-01 3.38161260e-01 2.08879039e-02 -1.09861922e+00 3.78065437e-01 -7.39803433e-01 8.24353516e-01 -2.90885210e-01 1.15187913e-01 -5.02017379e-01 -4.17479604e-01 4.66200888e-01 -8.17854047e-01 2.92229474e-01 3.73110294e-01 3.14830750e-01 -1.95916876e-01 -4.21763241e-01 4.44486439e-01 3.19601446e-02 -6.81869566e-01 3.69286418e-01 -1.55483916e-01 -1.16054509e-02 1.02873957e+00 1.05876438e-01 -4.08093542e-01 -3.40363592e-01 -7.98504710e-01 6.12392426e-01 3.26024622e-01 6.74938798e-01 6.00951731e-01 -1.37509465e+00 -6.71229661e-01 4.03518349e-01 -1.96278140e-01 -2.68665105e-01 1.54335916e-01 5.31433880e-01 -1.17702849e-01 6.37223721e-01 -3.18347871e-01 -4.01268452e-01 -1.52076662e+00 9.27576050e-02 6.20264560e-03 -6.56324804e-01 -4.81371790e-01 8.56857479e-01 -3.90019029e-01 -5.37588596e-01 3.04780781e-01 -3.97815853e-01 -5.78279614e-01 -7.62498286e-03 5.83686948e-01 4.24016923e-01 1.52892068e-01 1.28241614e-01 1.25017832e-03 2.17805341e-01 -4.02798384e-01 -1.31513283e-01 1.96127701e+00 2.38445029e-01 3.71849120e-01 6.27001762e-01 7.43821383e-01 4.13873494e-01 -1.09100342e+00 -4.24564987e-01 5.15862703e-01 -4.86147583e-01 2.69903302e-01 -1.10223246e+00 -9.92745280e-01 4.62016761e-01 2.87202418e-01 -1.23591004e-02 1.09823430e+00 -1.05313323e-01 6.59481585e-01 3.21889281e-01 1.97385252e-01 -8.89120162e-01 1.10934861e-01 6.88502192e-01 2.39089876e-02 -1.07308424e+00 1.74438581e-01 1.19508371e-01 -4.45656091e-01 1.04957485e+00 1.10427809e+00 1.26564637e-01 3.99029136e-01 3.38454768e-02 -2.68688891e-02 2.12376900e-02 -1.46033478e+00 4.75785835e-03 8.28218102e-01 7.82432035e-03 1.10978019e+00 2.46302113e-01 -2.85476059e-01 7.90476739e-01 -7.09394693e-01 3.14194053e-01 7.43718624e-01 1.22853673e+00 -7.17882574e-01 -1.64424407e+00 -3.11945081e-01 8.45693231e-01 -5.82305491e-01 -1.13545574e-01 -2.51617134e-01 5.16202927e-01 -8.47443044e-02 8.84518087e-01 5.96741103e-02 -6.05688512e-01 5.83712995e-01 8.48592699e-01 7.67034113e-01 -8.36136520e-01 -1.01226878e+00 -4.84601766e-01 -2.37205565e-01 -5.51259279e-01 1.20451571e-02 -9.66611564e-01 -1.04423141e+00 -7.23246336e-01 6.35129735e-02 2.72948474e-01 5.64052820e-01 8.40596676e-01 2.94943452e-01 9.17419612e-01 5.71577549e-01 -9.96887088e-02 -7.00406909e-01 -7.03302264e-01 -2.26221323e-01 4.23577458e-01 1.94555685e-01 -3.79304737e-01 -1.29269585e-01 -7.38615021e-02]
[10.166895866394043, 7.1608991622924805]
684e562e-8979-4ef0-97f8-ac22d2161684
deviant-depth-equivariant-network-for
2207.10758
null
https://arxiv.org/abs/2207.10758v1
https://arxiv.org/pdf/2207.10758v1.pdf
DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection
Modern neural networks use building blocks such as convolutions that are equivariant to arbitrary 2D translations. However, these vanilla blocks are not equivariant to arbitrary 3D translations in the projective manifold. Even then, all monocular 3D detectors use vanilla blocks to obtain the 3D coordinates, a task for which the vanilla blocks are not designed for. This paper takes the first step towards convolutions equivariant to arbitrary 3D translations in the projective manifold. Since the depth is the hardest to estimate for monocular detection, this paper proposes Depth EquiVarIAnt NeTwork (DEVIANT) built with existing scale equivariant steerable blocks. As a result, DEVIANT is equivariant to the depth translations in the projective manifold whereas vanilla networks are not. The additional depth equivariance forces the DEVIANT to learn consistent depth estimates, and therefore, DEVIANT achieves state-of-the-art monocular 3D detection results on KITTI and Waymo datasets in the image-only category and performs competitively to methods using extra information. Moreover, DEVIANT works better than vanilla networks in cross-dataset evaluation. Code and models at https://github.com/abhi1kumar/DEVIANT
['Xiaoming Liu', 'Armin Parchami', 'Enrique Corona', 'Garrick Brazil', 'Abhinav Kumar']
2022-07-21
null
null
null
null
['3d-object-detection-from-monocular-images']
['computer-vision']
[-4.12544221e-01 -1.32286251e-01 -1.34164527e-01 -1.74513727e-01 -3.15767884e-01 -8.11518431e-01 6.45349205e-01 -8.12996507e-01 -6.27606034e-01 3.17360163e-01 7.77972117e-02 -3.07939321e-01 5.77178538e-01 -7.40161419e-01 -1.01565146e+00 -5.93534172e-01 1.05051585e-01 2.15197757e-01 4.64151651e-01 -2.27127850e-01 1.32945001e-01 7.47673452e-01 -1.16644752e+00 6.86598569e-02 1.70913056e-01 6.72456801e-01 3.53515483e-02 9.81173933e-01 1.75089121e-01 4.24969643e-01 1.83611531e-02 -2.37234756e-01 1.00384510e+00 -1.28635198e-01 -3.72180104e-01 -8.07347149e-02 1.17708731e+00 -8.95146966e-01 -1.10986125e+00 1.32781959e+00 4.39007401e-01 -3.45625728e-01 7.65087306e-01 -1.11553788e+00 -8.05213869e-01 4.18766022e-01 -6.00515246e-01 2.61453480e-01 5.36808521e-02 2.22060010e-01 9.35110271e-01 -1.57203555e+00 8.44401181e-01 1.65686572e+00 5.35641849e-01 6.34304225e-01 -1.04930091e+00 -6.78932190e-01 1.96149975e-01 2.52857238e-01 -1.55438316e+00 -3.54506284e-01 7.75234938e-01 -4.05137867e-01 1.05477011e+00 -1.39143365e-02 6.31999075e-01 1.09048748e+00 3.07219923e-01 9.28694010e-01 8.76245797e-01 -2.85999775e-01 2.95434166e-02 7.63466861e-03 -1.83058009e-01 8.85181129e-01 5.52883804e-01 2.68081665e-01 -4.03676957e-01 4.23761189e-01 1.51021731e+00 9.71759707e-02 -3.29113156e-01 -1.00982928e+00 -1.29485846e+00 8.94605577e-01 1.00691485e+00 2.14800145e-02 6.14544079e-02 3.68269831e-01 1.74102485e-01 3.66041303e-01 2.37932697e-01 4.14653599e-01 -3.45912099e-01 2.94188917e-01 -3.90093714e-01 1.81291252e-01 4.85706747e-01 1.32881296e+00 8.66437733e-01 2.80232936e-01 1.52266353e-01 3.88108701e-01 2.95812100e-01 8.37919712e-01 1.88839898e-01 -1.11478293e+00 5.02064586e-01 6.37271762e-01 -5.85694760e-02 -8.00532162e-01 -6.31221473e-01 -4.69783425e-01 -9.71012056e-01 5.90205252e-01 5.82489014e-01 -4.63802628e-02 -1.17522228e+00 1.73725092e+00 2.74165988e-01 -2.35251367e-01 -2.36109346e-02 1.26794481e+00 8.27490568e-01 4.29363132e-01 -6.41449928e-01 4.09361094e-01 1.03991866e+00 -9.04626906e-01 -1.38471559e-01 -6.09796166e-01 5.88062108e-01 -8.06884766e-01 8.22677195e-01 1.74420610e-01 -1.03407848e+00 -4.50591952e-01 -1.46737480e+00 -5.33112526e-01 -3.30133438e-01 1.68486208e-01 6.22513771e-01 7.08777845e-01 -1.22841418e+00 2.45656390e-02 -8.67668867e-01 -3.99705917e-01 3.37565273e-01 1.93942904e-01 -5.71592033e-01 -2.52891809e-01 -9.38844442e-01 9.90489781e-01 2.41849631e-01 3.67448069e-02 -9.27198529e-01 -4.50341493e-01 -1.11254382e+00 -1.73722386e-01 2.96879947e-01 -8.64604533e-01 1.19623017e+00 -6.97157979e-01 -1.13084781e+00 1.02220571e+00 -4.50568348e-02 -5.28288364e-01 1.11045253e+00 -2.34099954e-01 1.82264760e-01 1.77972436e-01 1.58617169e-01 1.10126066e+00 8.15672696e-01 -9.80584741e-01 -6.30402207e-01 -5.60153663e-01 4.84032303e-01 5.13313770e-01 -7.11290762e-02 -5.26194751e-01 -7.35157907e-01 -2.50804007e-01 6.67725205e-01 -9.43417013e-01 -6.44980371e-02 5.91339350e-01 -5.95269322e-01 -8.55190456e-02 9.60468233e-01 -2.92644769e-01 4.86095637e-01 -2.08655691e+00 1.96851909e-01 -1.35250106e-01 5.52454174e-01 -1.20864259e-02 -2.62964994e-01 -6.10789144e-03 -8.45116749e-02 -1.22694395e-01 8.78092945e-02 -2.63304025e-01 1.09072529e-01 2.40397863e-02 -1.42509460e-01 1.12062383e+00 1.61046252e-01 9.68050897e-01 -7.11007178e-01 -2.95875162e-01 6.21602416e-01 4.56629038e-01 -7.38191903e-01 -1.63185388e-01 7.60954395e-02 7.65348002e-02 -2.35548288e-01 8.98125648e-01 1.18302500e+00 4.50783335e-02 -3.20162326e-01 -3.87367487e-01 -3.77586484e-01 1.34593233e-01 -1.24888456e+00 1.67876017e+00 -1.61733344e-01 1.11470616e+00 1.08178772e-01 -7.14414835e-01 8.47757399e-01 -8.98259059e-02 2.46910676e-01 -6.00170672e-01 3.64647627e-01 4.42850173e-01 1.01956874e-01 1.30161736e-02 4.75359172e-01 1.01099804e-01 2.46198606e-02 -2.12161094e-02 7.43629187e-02 -5.41187942e-01 1.95931681e-02 3.49833935e-01 1.08476830e+00 8.52567032e-02 3.40979129e-01 -1.28772005e-01 3.79639030e-01 -1.43215954e-01 6.35725856e-01 7.87853420e-01 -4.28048491e-01 9.10379529e-01 4.94183928e-01 -6.90133095e-01 -1.55198157e+00 -1.49901581e+00 -3.72346252e-01 2.88327307e-01 5.05941689e-01 -1.56931169e-02 -7.03892112e-01 -6.63748741e-01 6.50894418e-02 1.82263568e-01 -6.87776685e-01 -9.02410538e-04 -4.64387447e-01 -3.36119324e-01 5.89843631e-01 6.82385623e-01 1.09455609e+00 -4.32300925e-01 -5.55386126e-01 -6.24442026e-02 1.58419505e-01 -1.44505072e+00 -6.96987569e-01 2.35652536e-01 -7.50519991e-01 -1.26355267e+00 -7.82398283e-01 -7.59574592e-01 7.03221440e-01 9.24393296e-01 7.50825226e-01 -5.05027533e-01 -4.94058043e-01 3.31627876e-01 -1.48029178e-01 -4.03446853e-01 -7.71930395e-03 7.24526867e-02 2.87185729e-01 -2.81837374e-01 6.88015699e-01 -4.39908057e-01 -8.92492771e-01 5.84943891e-01 -7.80572295e-01 3.81766975e-01 5.47298789e-01 8.50366890e-01 5.80594242e-01 -4.66605633e-01 -1.57135993e-01 -3.56481880e-01 -1.58742383e-01 -8.47681388e-02 -1.03293765e+00 -3.01171929e-01 -2.92558104e-01 5.78546375e-02 5.50513804e-01 -3.86821926e-01 -6.56130612e-01 4.75902915e-01 -2.79927012e-02 -7.98313320e-01 9.79927331e-02 -2.23934203e-01 -1.40468478e-01 -3.65418404e-01 1.01266682e+00 1.82363570e-01 -1.96183339e-01 -2.47887835e-01 4.32799667e-01 4.18518543e-01 5.42559028e-01 5.44658750e-02 1.32467639e+00 1.05334985e+00 2.86961287e-01 -9.08549130e-01 -7.68675685e-01 -4.08692122e-01 -1.10494173e+00 -9.10783634e-02 1.00265777e+00 -1.39248443e+00 -3.08729261e-01 8.27697098e-01 -1.28936803e+00 -2.82808095e-01 -1.22573674e-01 7.11957157e-01 -5.99433780e-01 3.54280353e-01 -6.21991813e-01 -3.96376520e-01 -1.28361180e-01 -1.19813180e+00 1.01598048e+00 1.96234155e-02 7.24273846e-02 -7.23374128e-01 -1.04333535e-01 -1.31323440e-02 2.35615686e-01 2.14231193e-01 5.96693397e-01 5.92493713e-02 -1.16674650e+00 -3.89366925e-01 -6.66845858e-01 4.66647923e-01 -1.37227848e-01 -2.84683332e-02 -1.15942979e+00 -4.11059529e-01 -1.38107287e-02 -2.30438575e-01 1.10841274e+00 6.12793088e-01 7.71495640e-01 2.63841916e-02 -9.33166519e-02 1.26258457e+00 1.36964786e+00 -2.64754277e-02 5.15602529e-01 5.76036990e-01 1.11758566e+00 1.79677904e-01 3.63309115e-01 1.14691041e-01 4.91819173e-01 6.72126591e-01 8.13397944e-01 -3.50032002e-01 -3.50128770e-01 -3.35476756e-01 5.27940094e-01 4.96108294e-01 -4.19396460e-02 9.28525925e-02 -6.71569645e-01 5.81151187e-01 -1.64918768e+00 -7.96898007e-01 -3.08985353e-01 2.01663613e+00 5.05366266e-01 2.88499564e-01 -8.94757956e-02 -8.82528126e-02 5.42325258e-01 2.74829865e-01 -1.01858532e+00 -3.89373720e-01 -5.99838674e-01 -7.14397579e-02 1.22943592e+00 6.70035779e-01 -1.28844583e+00 1.20302474e+00 5.40394449e+00 5.33096910e-01 -1.26354015e+00 1.27493232e-01 3.22110921e-01 -3.86793584e-01 -6.33042231e-02 -3.80217731e-02 -1.07759070e+00 -1.14911847e-01 1.24327853e-01 1.75741203e-02 3.11031193e-01 1.11826551e+00 1.70009062e-01 -3.97048593e-02 -1.40354717e+00 1.20964956e+00 1.08524278e-01 -1.41874015e+00 1.85534768e-02 2.53212959e-01 1.05133450e+00 7.03605533e-01 2.66447455e-01 7.32192174e-02 3.55786890e-01 -8.18445623e-01 9.83920753e-01 -1.27246931e-01 9.26237285e-01 -5.82635224e-01 5.88813663e-01 2.50495076e-01 -1.16673207e+00 7.81279653e-02 -9.64800060e-01 -4.43094037e-02 -7.56826922e-02 2.70606220e-01 -9.12412465e-01 1.89074073e-02 8.01501393e-01 9.44283605e-01 -4.72184926e-01 1.04261684e+00 -3.84148628e-01 -2.78828610e-02 -4.81687486e-01 1.14414148e-01 5.67478180e-01 -9.14441608e-03 8.43469381e-01 1.13027763e+00 3.78738463e-01 -2.59993613e-01 -1.43723920e-01 1.00808358e+00 -3.91255438e-01 -1.70371205e-01 -1.12480450e+00 4.74276960e-01 3.02443326e-01 1.13830924e+00 -5.05207598e-01 -8.50906968e-02 -6.08522236e-01 1.08663750e+00 2.21699461e-01 4.70551282e-01 -5.91298640e-01 -3.82606804e-01 1.12858486e+00 1.85196832e-01 3.11933726e-01 -7.01545835e-01 -4.37548816e-01 -1.50151765e+00 1.65524140e-01 -5.41559994e-01 7.44713545e-02 -9.01189625e-01 -1.09823775e+00 3.19311768e-01 -1.30538598e-01 -1.41912401e+00 1.58819836e-02 -1.37124860e+00 -4.57843333e-01 8.70681405e-01 -1.73317254e+00 -1.03182435e+00 -5.90595901e-01 7.75355220e-01 6.79167032e-01 -5.26929982e-02 3.13053191e-01 1.38390675e-01 -2.88287669e-01 6.38427377e-01 5.33066243e-02 4.76403177e-01 9.24984157e-01 -1.30097568e+00 8.92081261e-01 1.23994863e+00 1.95226848e-01 2.78157920e-01 5.43339968e-01 -3.62490267e-01 -1.71501112e+00 -1.10566103e+00 4.19454217e-01 -6.74155951e-01 6.29480779e-01 -7.94237792e-01 -6.13399863e-01 8.41339886e-01 -8.35053474e-02 1.49898589e-01 -1.69010833e-01 -3.80493402e-01 -8.85434687e-01 -1.07833654e-01 -9.78072882e-01 9.35741842e-01 1.42865551e+00 -5.92575192e-01 -2.45222703e-01 2.92344898e-01 7.55671918e-01 -8.45758259e-01 -3.16526443e-01 3.28516513e-01 6.79044306e-01 -1.24433589e+00 1.19641471e+00 -1.36356875e-01 4.23714340e-01 -4.95428950e-01 -4.52095389e-01 -1.06428671e+00 -2.82410562e-01 -3.27936977e-01 5.91097139e-02 4.93144333e-01 4.36483413e-01 -8.15933585e-01 1.00887144e+00 2.24407494e-01 -2.19872937e-01 -3.38503689e-01 -1.25834310e+00 -9.89135921e-01 4.39291507e-01 -4.85312849e-01 2.65564531e-01 8.32371414e-01 -4.00988370e-01 2.45742127e-01 -3.76695186e-01 3.14242631e-01 9.07847643e-01 -1.24614596e-01 1.05654788e+00 -8.31971645e-01 -1.80786178e-01 -5.82801878e-01 -8.93250227e-01 -1.58126903e+00 -2.21323177e-01 -9.74186361e-01 -1.47444502e-01 -1.24282420e+00 1.95188954e-01 -9.71162692e-02 7.06206039e-02 2.68296570e-01 2.10291326e-01 6.02103233e-01 1.79096952e-01 1.50139153e-01 -2.44728133e-01 5.15990674e-01 1.53541327e+00 -2.19256029e-01 -2.74512053e-01 -2.20516041e-01 -5.19875169e-01 9.91372108e-01 7.67361879e-01 -1.01627953e-01 -2.42702842e-01 -7.27366745e-01 1.44898400e-01 -3.07279915e-01 6.89777255e-01 -9.66844499e-01 2.70075858e-01 5.45361303e-02 7.58481562e-01 -8.50670993e-01 6.61906302e-01 -4.74117696e-01 -2.68569589e-01 6.09110415e-01 1.31724387e-01 3.66496630e-02 1.26030684e-01 4.24511939e-01 -5.87887838e-02 6.67757988e-02 1.20352614e+00 -2.47944176e-01 -1.01926172e+00 6.85760021e-01 -1.24602862e-01 3.03646531e-02 9.06902015e-01 -5.83229303e-01 -5.75165927e-01 -4.62983698e-01 -4.40326273e-01 1.01255387e-01 8.43787014e-01 6.01377606e-01 9.49804425e-01 -1.33738971e+00 -7.88833618e-01 3.42949569e-01 2.65583396e-01 3.15683633e-01 2.42020190e-01 7.51114130e-01 -9.96881664e-01 6.50429249e-01 -3.51028174e-01 -9.31259811e-01 -1.23085237e+00 4.02714998e-01 7.73992896e-01 2.64411837e-01 -8.31742227e-01 1.00692856e+00 9.20349360e-01 -5.02266228e-01 2.61534333e-01 -4.65576917e-01 4.12973732e-01 -2.86284626e-01 3.13291728e-01 1.14195161e-01 -6.01697639e-02 -6.49315536e-01 -3.25609863e-01 8.92841756e-01 -1.60708174e-01 -1.36511028e-01 1.07621026e+00 -2.30526119e-01 1.75263032e-01 2.33561024e-01 1.41332722e+00 -2.17416018e-01 -1.67320299e+00 -5.16845942e-01 -5.50563872e-01 -7.55634964e-01 2.73361087e-01 -2.86265671e-01 -9.99839067e-01 1.24837935e+00 7.81596363e-01 -2.49607131e-01 7.57490814e-01 7.28542060e-02 3.21418583e-01 7.11921871e-01 3.17131937e-01 -8.23928833e-01 3.37438546e-02 9.09916580e-01 9.46338356e-01 -1.48387730e+00 -1.81824639e-01 -4.14037108e-01 -1.54057637e-01 1.17864037e+00 1.01129580e+00 -4.13568139e-01 5.70422947e-01 6.40796572e-02 1.67385146e-01 -7.23565370e-02 -4.39349711e-01 -1.61794424e-01 2.89453626e-01 5.36987901e-01 4.95296828e-02 1.43722117e-01 -6.96099252e-02 -3.04491550e-01 -2.79863387e-01 -5.26928961e-01 7.73529530e-01 5.71328282e-01 -6.28399789e-01 -8.47304344e-01 -4.97363210e-01 -3.20699625e-02 1.96323264e-02 -1.11968189e-01 -6.35792434e-01 1.22871876e+00 3.93733718e-02 5.70301890e-01 6.06053956e-02 -4.35856849e-01 3.88418913e-01 -3.62647116e-01 6.51682675e-01 -5.56152999e-01 1.08916961e-01 1.36725232e-01 -1.79783121e-01 -7.16100216e-01 7.15087950e-02 -6.42991602e-01 -9.63095069e-01 -5.28500080e-01 -3.42118414e-03 -5.88380992e-01 8.84395897e-01 5.79101622e-01 3.34495008e-02 1.13948822e-01 7.32681632e-01 -1.11083531e+00 -4.85878348e-01 -7.65813112e-01 -5.46181798e-01 1.19233606e-02 6.09235585e-01 -6.55263007e-01 -6.49312317e-01 -4.60219502e-01]
[7.90233850479126, -2.5248119831085205]
80f631ce-8e46-4fad-9283-f2b3bcc72579
generalized-category-discovery
2201.02609
null
https://arxiv.org/abs/2201.02609v2
https://arxiv.org/pdf/2201.02609v2.pdf
Generalized Category Discovery
In this paper, we consider a highly general image recognition setting wherein, given a labelled and unlabelled set of images, the task is to categorize all images in the unlabelled set. Here, the unlabelled images may come from labelled classes or from novel ones. Existing recognition methods are not able to deal with this setting, because they make several restrictive assumptions, such as the unlabelled instances only coming from known - or unknown - classes, and the number of unknown classes being known a-priori. We address the more unconstrained setting, naming it 'Generalized Category Discovery', and challenge all these assumptions. We first establish strong baselines by taking state-of-the-art algorithms from novel category discovery and adapting them for this task. Next, we propose the use of vision transformers with contrastive representation learning for this open-world setting. We then introduce a simple yet effective semi-supervised $k$-means method to cluster the unlabelled data into seen and unseen classes automatically, substantially outperforming the baselines. Finally, we also propose a new approach to estimate the number of classes in the unlabelled data. We thoroughly evaluate our approach on public datasets for generic object classification and on fine-grained datasets, leveraging the recent Semantic Shift Benchmark suite. Project page at https://www.robots.ox.ac.uk/~vgg/research/gcd
['Andrew Zisserman', 'Andrea Vedaldi', 'Kai Han', 'Sagar Vaze']
2022-01-07
null
http://openaccess.thecvf.com//content/CVPR2022/html/Vaze_Generalized_Category_Discovery_CVPR_2022_paper.html
http://openaccess.thecvf.com//content/CVPR2022/papers/Vaze_Generalized_Category_Discovery_CVPR_2022_paper.pdf
cvpr-2022-1
['fine-grained-visual-recognition', 'open-world-semi-supervised-learning']
['computer-vision', 'computer-vision']
[ 7.28125334e-01 5.79937622e-02 -2.49675751e-01 -6.90714180e-01 -7.44030595e-01 -7.29014218e-01 8.19312453e-01 -1.39220968e-01 -6.67587817e-01 6.06535792e-01 7.12567046e-02 -3.59439105e-02 -1.15927458e-01 -5.62035799e-01 -9.87980604e-01 -9.12140548e-01 1.93325654e-01 8.18502843e-01 2.18338862e-01 -9.57516804e-02 3.16900432e-01 3.14280152e-01 -2.05098820e+00 2.72593766e-01 3.55879724e-01 1.05040264e+00 1.80540800e-01 4.86538112e-01 9.43343267e-02 5.18251479e-01 -4.03277248e-01 -2.37001464e-01 4.90674496e-01 -2.46177837e-01 -1.30908322e+00 5.71918726e-01 7.45574474e-01 4.38867719e-05 -2.12310389e-01 1.08945644e+00 4.15290684e-01 2.56716281e-01 8.77869189e-01 -1.40003324e+00 -7.01258361e-01 4.75342542e-01 -5.93323529e-01 3.07562590e-01 6.84946105e-02 8.68652016e-02 8.21941972e-01 -8.78687024e-01 7.84911036e-01 1.23425817e+00 6.63696408e-01 7.85553277e-01 -1.40152276e+00 -6.54925883e-01 5.31912863e-01 5.60214579e-01 -1.40964067e+00 -7.94317067e-01 7.27646708e-01 -5.56473672e-01 7.97853172e-01 2.18826100e-01 1.04019299e-01 1.19795632e+00 -4.71019566e-01 7.59305716e-01 1.32122886e+00 -6.85427248e-01 2.96437442e-01 8.27199891e-02 5.63503385e-01 3.44644874e-01 1.43605962e-01 2.57865280e-01 -1.99215010e-01 3.15399431e-02 2.65956104e-01 7.48033375e-02 -3.75018924e-01 -9.03283536e-01 -1.46373260e+00 7.22697914e-01 5.97859681e-01 2.13434964e-01 -2.00848848e-01 7.94529840e-02 4.26056832e-01 2.51698732e-01 3.26930493e-01 3.76938134e-01 -8.37187946e-01 3.78159493e-01 -5.94264209e-01 6.23559691e-02 6.68420553e-01 1.04152429e+00 1.07299185e+00 -4.57428724e-01 4.87441607e-02 1.03259349e+00 1.97615042e-01 4.94588971e-01 8.36534619e-01 -8.46412599e-01 1.58192798e-01 4.02421653e-01 6.24265522e-02 -7.69185603e-01 -3.70368242e-01 -4.84554797e-01 -7.10048556e-01 -8.09302106e-02 4.26210225e-01 1.70187503e-01 -1.58223426e+00 1.80161774e+00 3.97741765e-01 4.44312125e-01 2.97946781e-01 7.40409791e-01 8.89500320e-01 2.64894992e-01 -1.08219907e-01 -9.30489674e-02 1.24358773e+00 -1.25111938e+00 -3.06783080e-01 -4.46469665e-01 5.52660465e-01 -4.64184254e-01 7.82223940e-01 3.00689101e-01 -4.92488354e-01 -6.85066581e-01 -8.53307843e-01 2.10853115e-01 -7.97694862e-01 1.50236607e-01 5.48042655e-01 4.07389551e-01 -1.07022834e+00 4.30706650e-01 -4.75603253e-01 -6.35463953e-01 6.46533191e-01 3.82796705e-01 -6.19585454e-01 -5.69855273e-01 -8.26481044e-01 8.91689539e-01 7.68974006e-01 2.03351304e-01 -1.15414405e+00 -2.43008018e-01 -8.06451678e-01 -3.16318095e-01 6.07148170e-01 -5.33358753e-01 1.44102693e+00 -1.27575076e+00 -9.94605660e-01 1.37933099e+00 -8.62219110e-02 -4.36307102e-01 1.92277104e-01 7.13630915e-02 -4.47579950e-01 1.10677965e-01 3.32383335e-01 1.01404917e+00 9.41118360e-01 -1.63334274e+00 -9.12811816e-01 -5.63241959e-01 1.55945882e-01 2.88777232e-01 -4.24729548e-02 -2.62125105e-01 -4.43015307e-01 -4.91483688e-01 4.29863960e-01 -1.27444685e+00 -2.31336981e-01 -1.49455264e-01 -4.50920224e-01 -3.06148052e-01 7.87094414e-01 -1.13283604e-01 5.63216090e-01 -2.23473692e+00 1.69108465e-01 5.51759824e-02 9.79527459e-02 3.26453716e-01 -2.29380175e-01 -3.00767310e-02 -4.77599233e-01 -9.17666107e-02 -4.56490099e-01 -2.86848545e-01 6.96754530e-02 6.23037696e-01 -3.97974730e-01 4.35537815e-01 1.25215441e-01 8.38539064e-01 -1.06746554e+00 -2.17853829e-01 1.71235263e-01 1.70558825e-01 -3.19273829e-01 -9.64216664e-02 -1.03642106e-01 5.88995516e-01 -1.78223327e-02 6.94297075e-01 6.49319291e-01 -3.67746830e-01 1.15111925e-01 -2.15455428e-01 2.20386192e-01 -1.37888342e-01 -1.43355048e+00 1.77028298e+00 -1.83560207e-01 3.59471589e-01 -1.76353589e-01 -1.55961335e+00 6.25749528e-01 -7.29324669e-02 1.58086061e-01 -5.08691967e-01 7.12588653e-02 2.90269524e-01 3.50226760e-02 -4.03104484e-01 2.47406766e-01 -3.60396475e-01 -2.09469810e-01 2.47787341e-01 3.79382133e-01 5.79245687e-02 2.08052784e-01 -1.49308369e-02 9.63147998e-01 1.42330348e-01 3.59646529e-01 -2.07493648e-01 3.11677605e-01 1.41862020e-01 5.24704814e-01 1.06144333e+00 -3.90558273e-01 7.94099629e-01 -3.15825045e-02 -4.62020993e-01 -6.88732386e-01 -1.14053178e+00 -4.16612178e-01 1.26797915e+00 3.88666153e-01 4.98233475e-02 -4.56736684e-01 -1.16921937e+00 1.44962072e-01 4.96660501e-01 -9.17909026e-01 -3.48939300e-01 -1.46287322e-01 -8.23272943e-01 2.75234371e-01 4.60472256e-01 5.10680199e-01 -1.09127808e+00 -3.73688936e-01 -1.35358172e-02 -2.87694991e-01 -9.80962217e-01 -2.23564684e-01 5.44491172e-01 -4.86153573e-01 -1.27962506e+00 -6.14406645e-01 -1.09306681e+00 8.58390450e-01 5.51561475e-01 1.10909498e+00 -1.25631914e-01 -4.72915113e-01 5.52578032e-01 -5.62315702e-01 -3.70981902e-01 -1.67397752e-01 -1.07177176e-01 2.25401044e-01 2.88085014e-01 5.64051092e-01 -1.67692825e-01 -5.86555243e-01 6.09455109e-01 -9.70359087e-01 -1.30628347e-01 6.19205892e-01 9.10881341e-01 8.20178628e-01 2.29641959e-01 7.03657866e-01 -1.10661161e+00 -1.91187724e-01 -6.88414633e-01 -1.76736146e-01 2.49971971e-01 -4.97408926e-01 7.63652995e-02 3.58389348e-01 -6.28404140e-01 -7.54071772e-01 4.23649520e-01 2.86550377e-04 -5.14392376e-01 -7.33165383e-01 2.11572438e-01 -3.49225730e-01 -1.61200583e-01 7.83988595e-01 3.01181644e-01 -8.72748047e-02 -3.64212751e-01 6.39550149e-01 8.85995984e-01 8.37328970e-01 -4.31501448e-01 6.97929740e-01 8.12631667e-01 -3.83145988e-01 -6.93096936e-01 -1.01716709e+00 -1.01671100e+00 -9.95044470e-01 4.97462563e-02 5.28053224e-01 -9.90431964e-01 -4.77840602e-02 7.04136491e-01 -7.41147935e-01 -2.66325384e-01 -5.75182140e-01 3.20639104e-01 -7.23186493e-01 5.04610777e-01 -5.47207519e-02 -3.19366664e-01 1.75372080e-03 -1.18354547e+00 1.20919001e+00 1.22405164e-01 7.83354696e-03 -8.37944746e-01 -2.86677349e-02 4.94403988e-01 2.26039648e-01 3.08208615e-01 6.01242840e-01 -1.03127289e+00 -2.29391605e-01 -2.97636807e-01 -2.78524250e-01 6.22004509e-01 2.16752827e-01 -4.68788087e-01 -1.11939347e+00 -4.17365491e-01 -2.02810004e-01 -5.74273229e-01 1.34266436e+00 2.46989116e-01 1.13687539e+00 -2.19489977e-01 -7.40031242e-01 5.20590246e-01 1.28618300e+00 2.18392555e-02 4.77992713e-01 3.97281736e-01 8.33321810e-01 6.03716552e-01 6.33026540e-01 1.07561588e-01 5.89767158e-01 7.28860438e-01 5.66654384e-01 -1.05037279e-02 -1.96685985e-01 1.54136524e-01 -2.51486548e-03 3.82187426e-01 1.92842871e-01 -3.40286642e-01 -1.04764795e+00 8.37907374e-01 -1.96489632e+00 -8.85560632e-01 9.42420587e-02 2.18887568e+00 8.43192160e-01 8.39594826e-02 1.93587393e-02 2.61637866e-01 1.08785951e+00 -1.72990412e-01 -7.34082758e-01 3.51463817e-02 -1.18400127e-01 2.57167518e-01 6.23298287e-01 2.58222878e-01 -1.65572238e+00 9.61850643e-01 5.56591940e+00 6.86809242e-01 -9.73848045e-01 9.51499119e-02 5.84357142e-01 -1.18693309e-02 9.44017619e-02 2.76581049e-02 -9.72080290e-01 4.21208501e-01 8.88458014e-01 6.20596185e-02 2.68357366e-01 8.83254647e-01 -4.13957357e-01 -5.71725741e-02 -1.36381912e+00 1.13478267e+00 4.42411929e-01 -9.55422282e-01 1.51511535e-01 -9.95061267e-03 7.60534286e-01 3.52921635e-01 4.52987663e-02 5.17101467e-01 4.83905107e-01 -8.15913856e-01 7.65077770e-01 4.06356484e-01 9.18502033e-01 -4.10474181e-01 6.86344564e-01 3.66335809e-01 -8.95395458e-01 -3.22863966e-01 -3.11891884e-01 -2.45833956e-02 -2.94768572e-01 4.50554907e-01 -7.18136191e-01 4.97037351e-01 9.51405168e-01 1.03429639e+00 -8.88845980e-01 1.14269173e+00 -1.07738458e-01 4.73036051e-01 -4.37482476e-01 5.08601367e-01 2.73368359e-01 1.98400304e-01 1.84849873e-01 1.10409021e+00 6.25391444e-03 1.37482047e-01 3.47939730e-01 3.21292132e-01 -2.12148353e-01 -3.18139970e-01 -6.82804227e-01 3.05903554e-01 3.38102520e-01 1.18891382e+00 -1.07054603e+00 -4.47547257e-01 -3.65761012e-01 1.12492299e+00 3.47935826e-01 3.81656021e-01 -6.78101420e-01 -3.72155666e-01 5.37381709e-01 -2.38405675e-01 6.14001453e-01 1.79578632e-01 1.89931318e-01 -1.34677339e+00 4.73376773e-02 -7.84686923e-01 7.12176800e-01 -6.15374386e-01 -1.58099842e+00 5.04214764e-01 1.84790060e-01 -1.09903681e+00 -2.76617348e-01 -8.09894741e-01 -5.11363195e-03 4.39688176e-01 -1.90833688e+00 -1.19804323e+00 -3.68821919e-01 6.17268980e-01 6.77296579e-01 1.77491568e-02 8.02151918e-01 2.61380345e-01 -3.55048537e-01 4.84832108e-01 3.94087762e-01 2.58488029e-01 8.89814496e-01 -1.29417408e+00 3.09171528e-01 8.04901421e-01 3.39445621e-01 3.24690700e-01 5.61970472e-01 -3.07711035e-01 -1.12743497e+00 -1.51020002e+00 7.15623140e-01 -8.62757683e-01 5.63297331e-01 -4.79726583e-01 -9.22859907e-01 9.73577380e-01 -2.17757568e-01 6.34114087e-01 5.99591851e-01 3.33717763e-02 -6.95894897e-01 2.30154023e-02 -1.15385735e+00 1.94994643e-01 1.40250731e+00 -3.98988217e-01 -9.88105714e-01 5.91322899e-01 5.48776805e-01 -3.28866065e-01 -4.57189888e-01 7.10087180e-01 4.05036509e-01 -6.68431580e-01 1.23313332e+00 -6.39705777e-01 3.05820107e-01 -5.30902863e-01 -5.48619390e-01 -1.48914039e+00 -5.06292105e-01 5.32703474e-02 1.36448607e-01 1.16899967e+00 2.30158374e-01 -7.73757637e-01 6.85439885e-01 2.34910980e-01 -2.68853247e-01 -4.46950644e-01 -9.54881787e-01 -1.00363648e+00 1.02713622e-01 -2.96756327e-01 4.34607446e-01 1.21006095e+00 -4.59476322e-01 4.83028859e-01 -1.43355966e-01 2.33907178e-01 7.71483719e-01 3.61039817e-01 6.56306863e-01 -1.36250389e+00 -3.26795816e-01 -3.60777259e-01 -8.80669057e-01 -8.00609589e-01 4.43322450e-01 -1.14661658e+00 5.26946366e-01 -1.40997851e+00 5.07270515e-01 -6.32917702e-01 -5.77181160e-01 8.40235829e-01 -1.88180432e-01 7.49321759e-01 8.63872990e-02 4.40816730e-01 -1.04177678e+00 3.39185119e-01 7.83152223e-01 -4.55770552e-01 1.48844481e-01 -3.24189067e-02 -9.36744094e-01 8.38695765e-01 7.82641768e-01 -4.66086000e-01 -4.68748689e-01 -4.59864527e-01 -3.22838694e-01 -5.74785829e-01 7.25888431e-01 -1.07154560e+00 6.08913079e-02 -3.92509438e-03 3.00833464e-01 -3.93609613e-01 1.37646988e-01 -9.22838330e-01 1.38115451e-01 1.98209718e-01 -4.36720014e-01 -5.11593282e-01 1.48589954e-01 9.04933929e-01 -6.34087622e-02 -2.66434312e-01 9.86478567e-01 -2.71888226e-01 -1.44031596e+00 2.90522575e-01 7.08020106e-02 1.70679212e-01 1.24751973e+00 -4.41138148e-01 -5.95771313e-01 1.01317607e-01 -1.15687370e+00 2.48929128e-01 6.64052844e-01 6.92043543e-01 4.20966059e-01 -1.26822674e+00 -6.17994964e-01 2.15714276e-01 8.07154536e-01 2.11655408e-01 2.03099281e-01 6.58940554e-01 -1.02068298e-01 2.58656710e-01 -9.77656841e-02 -9.14403379e-01 -1.19415581e+00 9.95129943e-01 3.23783875e-01 1.14964746e-01 -3.99165601e-01 9.07261848e-01 5.44803202e-01 -9.23550308e-01 2.56375849e-01 -1.49008900e-01 -3.71682823e-01 1.64411172e-01 4.66548830e-01 4.67026569e-02 3.23556602e-01 -1.07422268e+00 -5.93341410e-01 6.85974061e-01 -3.12828392e-01 3.14805657e-01 1.16823936e+00 -3.91136378e-01 4.12600078e-02 6.28343165e-01 1.47829688e+00 -6.59648895e-01 -1.11752963e+00 -6.64980173e-01 1.00039423e-01 -3.02379906e-01 -8.46586600e-02 -9.85181987e-01 -9.21115100e-01 6.55522764e-01 9.81561244e-01 -3.80159542e-02 1.13919914e+00 4.86290991e-01 3.49670857e-01 5.30949712e-01 6.43428683e-01 -1.04143059e+00 -1.31320357e-02 6.24529660e-01 7.10120857e-01 -1.65809691e+00 -2.11751118e-01 -3.68306160e-01 -5.23699999e-01 8.04762304e-01 4.93656129e-01 -1.54394712e-02 5.95258772e-01 -2.79352307e-01 2.44038850e-01 -1.65685028e-01 -5.64849019e-01 -6.63502991e-01 2.39795819e-01 8.53912234e-01 -3.93121541e-02 1.59983158e-01 1.21282764e-01 3.81714851e-01 -9.00687557e-03 1.57550517e-02 5.43236434e-01 1.15491569e+00 -4.68631119e-01 -9.04779792e-01 -4.33399171e-01 7.33430922e-01 -1.50524139e-01 -1.77185647e-02 -4.51137006e-01 7.01734424e-01 5.40918946e-01 1.00712276e+00 1.91645190e-01 -3.93273115e-01 4.69666660e-01 2.15466946e-01 5.82159042e-01 -1.01586640e+00 -1.07934304e-01 -2.73366123e-01 -1.37813361e-02 -3.81660372e-01 -8.05057764e-01 -8.66745532e-01 -1.05858362e+00 2.04559743e-01 -4.81759578e-01 1.21042505e-01 5.68180621e-01 9.88309503e-01 3.82622033e-01 3.44822347e-01 7.30370581e-01 -1.12404442e+00 -5.99238396e-01 -7.80269921e-01 -5.95941722e-01 7.56407142e-01 4.62217450e-01 -1.02178419e+00 -7.28011131e-01 4.25572336e-01]
[9.768752098083496, 2.5030040740966797]
387c367c-0109-46f1-b6d2-f01b38e19507
multi-domain-conversation-quality-evaluation
1911.08567
null
https://arxiv.org/abs/1911.08567v1
https://arxiv.org/pdf/1911.08567v1.pdf
Multi-domain Conversation Quality Evaluation via User Satisfaction Estimation
An automated metric to evaluate dialogue quality is vital for optimizing data driven dialogue management. The common approach of relying on explicit user feedback during a conversation is intrusive and sparse. Current models to estimate user satisfaction use limited feature sets and employ annotation schemes with limited generalizability to conversations spanning multiple domains. To address these gaps, we created a new Response Quality annotation scheme, introduced five new domain-independent feature sets and experimented with six machine learning models to estimate User Satisfaction at both turn and dialogue level. Response Quality ratings achieved significantly high correlation (0.76) with explicit turn-level user ratings. Using the new feature sets we introduced, Gradient Boosting Regression model achieved best (rating [1-5]) prediction performance on 26 seen (linear correlation ~0.79) and one new multi-turn domain (linear correlation 0.67). We observed a 16% relative improvement (68% -> 79%) in binary ("satisfactory/dissatisfactory") class prediction accuracy of a domain-independent dialogue-level satisfaction estimation model after including predicted turn-level satisfaction ratings as features.
['Praveen Kumar Bodigutla', 'Lazaros Polymenakos', 'Spyros Matsoukas']
2019-11-18
null
null
null
null
['dialogue-management']
['natural-language-processing']
[-2.12045357e-01 5.82249582e-01 -3.42064142e-01 -1.15150654e+00 -1.23096585e+00 -4.11135226e-01 4.79840577e-01 3.20804268e-01 -5.05984783e-01 1.08047152e+00 7.84453034e-01 -1.75940424e-01 -7.35338731e-03 -3.35928500e-01 4.89103198e-01 -1.60759911e-02 1.97045058e-01 7.31728554e-01 -1.26577109e-01 -9.82317984e-01 6.43693686e-01 2.62453239e-02 -1.02084744e+00 7.10895777e-01 9.91277099e-01 9.42869842e-01 -1.66751817e-01 1.18814945e+00 -4.07039493e-01 8.50883961e-01 -1.11645162e+00 -5.40643156e-01 -2.15362445e-01 -7.59489238e-01 -1.51472867e+00 2.24688858e-01 -4.30663116e-03 -4.34241623e-01 -9.77632180e-02 3.00107330e-01 5.66243529e-01 3.98903072e-01 5.17168283e-01 -1.18895805e+00 -2.96143919e-01 2.44630605e-01 -2.30478123e-02 1.47845209e-01 1.31241441e+00 1.99219376e-01 1.27725542e+00 -6.35351181e-01 4.00061309e-01 1.17867362e+00 6.99185014e-01 8.93951297e-01 -1.34618783e+00 -3.41782033e-01 -2.28336558e-01 -8.36080611e-02 -6.68362558e-01 -7.23721027e-01 4.82466727e-01 -3.47744763e-01 1.38878024e+00 5.47702372e-01 5.11130035e-01 8.77786756e-01 -3.02887727e-02 5.87616682e-01 1.53745317e+00 -4.23743486e-01 1.01120993e-01 1.03367209e+00 5.66117704e-01 5.87583780e-01 -6.97946250e-01 -4.23066705e-01 -7.30145872e-01 -5.16172528e-01 1.47215068e-01 -4.00008202e-01 -7.72841275e-02 3.86939913e-01 -6.58389866e-01 1.26709580e+00 2.33625934e-01 3.22965056e-01 -5.76728210e-02 -8.59825194e-01 6.08444035e-01 1.07662106e+00 7.12372184e-01 1.01443541e+00 -9.41105068e-01 -1.05497575e+00 -4.38185811e-01 3.09529364e-01 1.62894797e+00 6.85868621e-01 6.75215900e-01 -1.91499770e-01 -3.35773170e-01 1.67400980e+00 -6.79286523e-03 9.62049589e-02 7.38615692e-01 -1.08118498e+00 4.51894730e-01 7.28443265e-01 5.50737023e-01 -1.03055048e+00 -1.00787449e+00 -9.12132263e-02 -4.95030850e-01 -2.91909158e-01 5.06279290e-01 -5.51658750e-01 -9.09038410e-02 1.56762278e+00 1.19224504e-01 -1.06581259e+00 2.65790254e-01 8.59574556e-01 1.24337053e+00 5.19591153e-01 -5.26430830e-02 -6.63611829e-01 1.18641257e+00 -9.51037645e-01 -9.61356461e-01 -1.39888853e-01 1.13184083e+00 -9.06761885e-01 1.58434451e+00 6.41904116e-01 -1.19521809e+00 -4.98016864e-01 -7.90174484e-01 4.36670193e-03 -1.04744993e-01 -2.75496483e-01 6.23074591e-01 9.60968733e-01 -1.22069418e+00 3.51405621e-01 -5.26416786e-02 -5.24975717e-01 -2.00570464e-01 6.19186223e-01 -4.48428482e-01 2.29334936e-01 -1.27360392e+00 1.44040728e+00 -4.45741743e-01 -5.09582996e-01 2.63315085e-02 -1.62971422e-01 -7.49558210e-01 -1.31755412e-01 -1.32874548e-01 -3.38522077e-01 1.87303936e+00 -1.11911213e+00 -2.03519320e+00 9.64918375e-01 -5.24963975e-01 -8.21932182e-02 3.08357388e-01 -1.23144954e-01 -5.79108357e-01 -2.24825904e-01 8.98920819e-02 2.92297512e-01 2.13069618e-01 -1.05844951e+00 -8.71335089e-01 -2.44387835e-01 2.67936021e-01 6.76884532e-01 -4.74025160e-01 2.64382869e-01 1.13239020e-01 1.70485944e-01 1.15764014e-01 -7.01741159e-01 -1.01701535e-01 -6.96620822e-01 1.46869957e-01 -5.96764743e-01 4.67100829e-01 -8.96373928e-01 1.58482194e+00 -1.52219093e+00 -6.23010956e-02 2.62355842e-02 3.60821486e-01 2.91496754e-01 -3.92240211e-02 6.26307964e-01 1.50896311e-01 1.29258811e-01 1.77542448e-01 -4.10355717e-01 3.36418077e-02 1.06523141e-01 3.65464628e-01 1.47003785e-01 2.46939316e-01 5.79753339e-01 -8.58882010e-01 -2.72968203e-01 2.42488563e-01 -1.12994932e-01 -8.53074729e-01 8.68302703e-01 1.76975220e-01 4.84886855e-01 -1.64492890e-01 3.26520860e-01 2.51821697e-01 -9.98182520e-02 2.11675927e-01 1.46863297e-01 -4.08773310e-02 9.55585897e-01 -5.63540637e-01 1.41025102e+00 -9.01051819e-01 6.19575858e-01 3.96211386e-01 -7.12984443e-01 1.58437920e+00 4.66894925e-01 5.15433788e-01 -8.68815720e-01 2.14234263e-01 -4.71995585e-02 2.29183733e-01 -8.23304057e-01 8.20672035e-01 -3.99011791e-01 -5.94649553e-01 5.56969225e-01 2.34894842e-01 -4.86641526e-01 -1.86928868e-01 2.68425912e-01 1.21514285e+00 -6.72010601e-01 5.00946701e-01 -1.51207805e-01 6.74642146e-01 9.41058397e-02 3.56132001e-01 5.74840367e-01 -7.12845802e-01 3.34736407e-01 8.75972033e-01 -4.09997791e-01 -8.50143611e-01 -3.37047994e-01 -8.47831815e-02 1.71408629e+00 -2.92050540e-01 -6.02760673e-01 -5.84780037e-01 -8.13248038e-01 -2.30412185e-01 8.85124922e-01 -3.49339336e-01 -1.37581483e-01 -1.30860925e-01 -6.29636168e-01 3.72377157e-01 4.77376357e-02 2.98589855e-01 -9.61554766e-01 5.59997633e-02 3.89349312e-01 -8.16563010e-01 -7.97322810e-01 -2.63010919e-01 2.89768547e-01 -6.07948840e-01 -6.24210536e-01 -2.01430544e-01 -6.34957969e-01 7.17266351e-02 1.06181301e-01 1.38666129e+00 1.27777532e-01 5.56842238e-02 4.23777521e-01 -7.11414933e-01 -6.81245923e-02 -6.69251740e-01 2.12583005e-01 2.33808771e-01 -3.33536267e-01 6.09517515e-01 -1.98156297e-01 -4.06217605e-01 7.86352515e-01 -1.46846592e-01 -1.22114271e-01 1.78895652e-01 1.30937886e+00 -5.46230078e-01 -6.48153305e-01 1.35582173e+00 -8.91716599e-01 1.51176488e+00 -5.71874738e-01 2.87948191e-01 -2.51424879e-01 -8.93942833e-01 -2.56846905e-01 3.80621344e-01 -7.81410336e-02 -1.28962028e+00 -3.28776270e-01 -8.22382629e-01 7.05529869e-01 -3.23365927e-01 4.29122657e-01 8.28868300e-02 6.60972670e-02 1.01768506e+00 -3.09448004e-01 4.52012390e-01 -2.58123875e-01 5.22904098e-02 1.46157956e+00 7.22963735e-02 -4.62797463e-01 -1.06847472e-01 -3.67460608e-01 -6.33203566e-01 -9.79318559e-01 -9.40133572e-01 -1.06598628e+00 -5.89374125e-01 -3.87576759e-01 5.72324634e-01 -6.82253122e-01 -1.00285113e+00 7.30552524e-02 -1.11396229e+00 -3.26451510e-01 1.27493367e-01 3.67827892e-01 -7.35213339e-01 3.17878991e-01 -8.35913777e-01 -1.28904593e+00 -4.85726923e-01 -8.14335823e-01 6.03312492e-01 2.43224800e-01 -1.25399327e+00 -1.08964562e+00 3.39143097e-01 1.05213106e+00 5.98846436e-01 -1.62288472e-01 6.52922690e-01 -1.02093685e+00 6.96216166e-01 -4.87515241e-01 -1.93135649e-01 4.69781578e-01 2.83917457e-01 -3.02911401e-01 -1.04834342e+00 -1.36328757e-01 3.23492199e-01 -1.03230095e+00 1.39773026e-01 6.32460862e-02 5.59147298e-01 -5.74873984e-01 2.61458755e-01 -2.73154825e-01 7.86750495e-01 3.59025627e-01 4.42742676e-01 1.27181828e-01 2.45497581e-02 1.04913414e+00 1.05301881e+00 9.03138697e-01 7.30022311e-01 9.22086418e-01 1.46956220e-02 -2.22059041e-01 4.45905715e-01 1.20821454e-01 4.36604083e-01 1.01231790e+00 1.69375315e-01 -2.19156116e-01 -7.83046126e-01 3.64954770e-01 -1.75434995e+00 -8.96537304e-01 -4.04659212e-01 1.96520281e+00 1.08288765e+00 3.63043040e-01 7.60395288e-01 1.73184708e-01 4.49798763e-01 -2.41687410e-02 -1.08238839e-01 -1.48123980e+00 2.36796141e-01 9.26856324e-02 -3.79095450e-02 1.06103361e+00 -6.72250450e-01 9.03250456e-01 7.01627684e+00 1.45580247e-01 -7.45497644e-01 1.38082772e-01 7.97935665e-01 8.35094543e-04 -9.83263329e-02 -2.93049634e-01 -6.25282645e-01 1.74878508e-01 1.43397665e+00 -1.27807975e-01 2.78684050e-01 8.63198400e-01 6.49494410e-01 -3.36596608e-01 -9.10672963e-01 8.00308645e-01 1.20928019e-01 -7.53880858e-01 -6.95814431e-01 -9.93134826e-02 5.23928761e-01 -2.46440843e-01 -2.43346646e-01 9.03244019e-01 5.80361009e-01 -1.14924288e+00 -1.35566965e-01 5.59556246e-01 7.21296132e-01 -8.77656937e-01 1.09312296e+00 5.82171977e-01 -3.79981041e-01 2.67123189e-02 -1.48613393e-01 -7.95483768e-01 1.13586687e-01 1.87428221e-01 -1.66727126e+00 -3.42084169e-02 5.48653126e-01 3.05740803e-01 -1.54678866e-01 3.52597564e-01 3.62850666e-01 5.54953158e-01 -4.75314036e-02 -5.57984531e-01 3.43460798e-01 -7.05976859e-02 1.16397388e-01 1.62315321e+00 -1.84391215e-01 4.13902670e-01 3.73118162e-01 1.88491493e-01 1.22305512e-01 4.71529931e-01 -5.36321998e-01 2.10850373e-01 3.56623918e-01 1.49534917e+00 -9.29791480e-02 -2.36741975e-01 -6.00360692e-01 9.88881648e-01 4.87912774e-01 -7.74898306e-02 -5.14821112e-01 -5.27469277e-01 7.63125598e-01 -1.52855711e-02 -5.48076928e-01 -4.95190825e-03 -8.06420565e-01 -8.70978594e-01 -2.95348644e-01 -1.25751781e+00 2.46710464e-01 -3.77175897e-01 -1.42754841e+00 7.39167511e-01 -4.69632745e-01 -9.31932747e-01 -5.12044489e-01 -3.72468829e-01 -5.15983403e-01 1.25903928e+00 -8.58282328e-01 -6.08861268e-01 -4.57933873e-01 4.76177961e-01 9.81600642e-01 -2.65680134e-01 1.46564686e+00 9.36034098e-02 -2.46473074e-01 8.08879435e-01 -2.07492024e-01 -3.72398682e-02 1.25306749e+00 -1.47683227e+00 -1.31809667e-01 -3.81865650e-01 -5.90878606e-01 4.35385942e-01 8.58538866e-01 -2.42844298e-01 -9.67537045e-01 -3.97557765e-01 1.47821844e+00 -7.69658267e-01 5.51357150e-01 -9.33398083e-02 -8.78819406e-01 2.29075924e-01 4.46126044e-01 -8.73018563e-01 1.38562357e+00 9.80285347e-01 -9.85955298e-02 -6.89557940e-02 -1.63183129e+00 2.16327578e-01 4.84518737e-01 -6.60728753e-01 -6.46936536e-01 4.43700999e-01 4.74695325e-01 -3.69616032e-01 -1.41330802e+00 1.81736037e-01 7.44917393e-01 -1.30214775e+00 4.27562803e-01 -8.37953568e-01 4.92770016e-01 5.77956736e-01 -1.70174658e-01 -1.51826358e+00 -3.85786802e-01 -8.09970438e-01 2.16715753e-01 1.16238654e+00 7.77823448e-01 -5.35501719e-01 7.95180976e-01 1.32959795e+00 -3.50013822e-01 -9.62542892e-01 -6.77370667e-01 -4.02670447e-03 1.11919299e-01 -2.20218882e-01 1.88228145e-01 1.02784967e+00 1.32124484e+00 1.11087716e+00 -6.78711772e-01 -5.35048723e-01 -3.67123902e-01 -3.70760441e-01 1.03467047e+00 -1.20739377e+00 -1.98096916e-01 -5.47504127e-01 -1.65253446e-01 -1.27523685e+00 7.88473338e-02 -4.47469622e-01 1.69404417e-01 -1.55888903e+00 8.90571699e-02 -5.48824310e-01 1.97226629e-02 2.52189368e-01 -2.97008187e-01 -1.05841480e-01 -2.64216125e-01 -4.06796932e-02 -7.46280432e-01 4.36569035e-01 1.01158917e+00 1.66941330e-01 -6.66940689e-01 5.25873661e-01 -1.03721511e+00 4.88471627e-01 1.11442375e+00 6.64942060e-03 -3.64652753e-01 4.59074182e-03 2.63636298e-02 8.65220964e-01 -3.63637388e-01 -6.08070254e-01 -3.80044393e-02 -3.32643747e-01 1.04550004e-01 -2.39144430e-01 7.56061971e-01 -2.88683891e-01 -5.22593200e-01 1.45963728e-01 -9.66289937e-01 1.19875893e-01 -1.55131044e-02 1.98071495e-01 -3.27033043e-01 -3.19793701e-01 8.15979064e-01 -2.78808683e-01 -3.95808101e-01 -3.44606757e-01 -8.23751092e-01 7.21644759e-02 5.91296256e-01 -8.32186043e-02 -2.31799230e-01 -1.24455798e+00 -1.07075882e+00 2.68221259e-01 1.72917247e-01 5.66320956e-01 5.42206168e-01 -9.04863477e-01 -7.21525908e-01 4.06530965e-03 3.28919500e-01 -6.28963411e-01 1.93551218e-03 8.21929634e-01 -1.56662896e-01 6.36382222e-01 -2.72729337e-01 -4.98354524e-01 -1.72714722e+00 -2.41030768e-01 2.78089017e-01 -3.64885569e-01 1.21271335e-01 9.88958359e-01 -5.90311050e-01 -1.03142846e+00 3.35675001e-01 1.02425225e-01 -4.38854277e-01 3.07274610e-01 3.83589208e-01 5.99001110e-01 3.83514851e-01 -6.69852495e-01 -7.55897984e-02 -1.70504197e-01 -1.67152688e-01 -4.97153014e-01 9.95090902e-01 -4.80676770e-01 -1.55505063e-02 8.95640790e-01 1.33630800e+00 5.89972222e-03 -6.04570091e-01 -2.69873112e-01 1.14068530e-01 -6.31291687e-01 -1.19095214e-01 -1.23407698e+00 -1.34144917e-01 6.97269201e-01 3.56613219e-01 8.28693449e-01 7.48149633e-01 -1.70284644e-01 6.25922203e-01 5.66111624e-01 3.03448439e-01 -1.49358416e+00 4.99001831e-01 9.69394445e-01 9.43988085e-01 -1.80637407e+00 -1.86060876e-01 -1.24582298e-01 -1.48502791e+00 9.31097925e-01 1.00335538e+00 2.70106345e-01 4.35174644e-01 -4.32317778e-02 4.91103709e-01 -1.57152921e-01 -1.18093169e+00 6.19182922e-02 1.50634468e-01 5.76751411e-01 1.32894695e+00 3.22845638e-01 -9.40181375e-01 7.26580679e-01 -5.86184740e-01 -3.47503215e-01 5.70100725e-01 7.09468424e-01 -9.38980103e-01 -1.25620568e+00 -6.14061132e-02 1.02008951e+00 -3.42264444e-01 1.99007705e-01 -9.26007330e-01 4.71549392e-01 -4.61705148e-01 2.01940751e+00 -1.36711031e-01 -9.27881300e-01 5.65567195e-01 5.20204306e-01 -4.26035747e-02 -9.05683994e-01 -1.25146759e+00 -1.23187844e-02 1.18449605e+00 -4.55338567e-01 -3.89115870e-01 -5.99508166e-01 -9.57057834e-01 -7.82899678e-01 -6.01651430e-01 7.24787533e-01 6.75413370e-01 8.96259248e-01 9.93171111e-02 2.75025934e-01 1.35750473e+00 -4.22467262e-01 -7.96055317e-01 -1.53738439e+00 -4.22433347e-01 6.24252260e-01 3.56087446e-01 -4.43888038e-01 -4.54471201e-01 -3.76343399e-01]
[12.859465599060059, 8.034111976623535]
e2b9a15a-85e3-441e-9208-624d8cecf37d
an-automatic-cardiac-segmentation-framework
1909.05488
null
https://arxiv.org/abs/1909.05488v1
https://arxiv.org/pdf/1909.05488v1.pdf
An Automatic Cardiac Segmentation Framework based on Multi-sequence MR Image
LGE CMR is an efficient technology for detecting infarcted myocardium. An efficient and objective ventricle segmentation method in LGE can benefit the location of the infarcted myocardium. In this paper, we proposed an automatic framework for LGE image segmentation. There are just 5 labeled LGE volumes with about 15 slices of each volume. We adopted histogram match, an invariant of rotation registration method, on the other labeled modalities to achieve effective augmentation of the training data. A CNN segmentation model was trained based on the augmented training data by leave-one-out strategy. The predicted result of the model followed a connected component analysis for each class to remain the largest connected component as the final segmentation result. Our model was evaluated by the 2019 Multi-sequence Cardiac MR Segmentation Challenge. The mean testing result of 40 testing volumes on Dice score, Jaccard score, Surface distance, and Hausdorff distance is 0.8087, 0.6976, 2.8727mm, and 15.6387mm, respectively. The experiment result shows a satisfying performance of the proposed framework. Code is available at https://github.com/Suiiyu/MS-CMR2019.
['Wei Wang', 'Kuanquan Wang', 'Yashu Liu', 'Gongning Luo', 'Chengqin Ye']
2019-09-12
null
null
null
null
['cardiac-segmentation']
['medical']
[-3.95551994e-02 5.10133728e-02 4.58846577e-02 -3.13477367e-01 -7.81225801e-01 -5.59754193e-01 -2.08136857e-01 -2.93114223e-02 -4.97346729e-01 7.66002536e-01 9.27259102e-02 -2.19258815e-01 1.98567554e-01 -5.32812119e-01 -3.16314191e-01 -6.44898176e-01 -4.07342374e-01 4.77901369e-01 4.43983257e-01 3.43768507e-01 3.18347931e-01 4.78398830e-01 -4.30314243e-01 2.08630219e-01 8.08218241e-01 9.46732342e-01 3.61690044e-01 8.84726226e-01 2.24201202e-01 6.25665963e-01 -3.32171768e-01 8.35536141e-03 5.18414557e-01 -8.23145807e-01 -9.30160582e-01 1.76397830e-01 7.42960647e-02 -4.72112268e-01 -2.19764844e-01 9.44928825e-01 7.60623038e-01 -1.80961773e-01 7.06277847e-01 -8.17695916e-01 -1.46772608e-01 5.81348598e-01 -6.42344773e-01 7.10641325e-01 -4.49594378e-01 1.14457689e-01 3.82934958e-01 -8.76977563e-01 9.82490659e-01 3.36343199e-01 7.98693419e-01 3.81040454e-01 -8.56017947e-01 -6.17144167e-01 -5.53369164e-01 1.75563693e-02 -1.33496177e+00 -8.43884330e-03 6.96839154e-01 -8.13464701e-01 4.79008555e-01 2.93287903e-01 9.74227250e-01 2.35943682e-02 5.59518933e-01 6.05835378e-01 1.22692108e+00 -1.49719298e-01 7.13834688e-02 -3.18655372e-01 1.92667335e-01 8.20677042e-01 2.59104848e-01 -2.33432561e-01 2.50546098e-01 -9.14326385e-02 1.04558241e+00 4.61806059e-02 -5.05956888e-01 -4.40942228e-01 -1.59954965e+00 7.33531833e-01 6.16910994e-01 4.45828170e-01 -4.03272301e-01 -1.38785858e-02 7.63923526e-01 1.48372147e-02 5.49395740e-01 1.54874071e-01 -3.68888468e-01 2.93802619e-01 -1.15643907e+00 -7.13300565e-03 3.15766126e-01 5.88233888e-01 4.19173628e-01 -9.83212963e-02 -1.81655571e-01 7.18322456e-01 3.42020065e-01 4.07791436e-01 7.43651152e-01 -1.20229185e+00 3.18126351e-01 5.07268131e-01 -3.04520875e-01 -9.08405900e-01 -5.39261520e-01 -6.69016778e-01 -1.25822592e+00 6.55926764e-02 4.80730981e-01 -3.70322496e-01 -1.04715562e+00 1.18846560e+00 3.88106227e-01 2.95652956e-01 -1.75130233e-01 1.23529017e+00 8.53971362e-01 3.01196218e-01 1.85940579e-01 -3.45897615e-01 1.09316528e+00 -9.82965648e-01 -6.21167004e-01 1.55817732e-01 1.15205562e+00 -8.00086081e-01 7.61251390e-01 -3.02205682e-02 -8.06596041e-01 -2.76522577e-01 -9.76872504e-01 4.44293052e-01 2.04745978e-01 3.71012300e-01 3.14760476e-01 4.37391698e-01 -1.04153359e+00 7.90721893e-01 -9.51543450e-01 -7.50455856e-02 9.06045556e-01 2.96096295e-01 -4.09495831e-01 -9.62195359e-03 -9.10771191e-01 6.18352950e-01 5.93625307e-01 1.81860909e-01 -6.49732590e-01 -6.91689610e-01 -3.49429071e-01 -4.64699239e-01 -8.79036710e-02 -5.43312192e-01 8.35655451e-01 -7.19201982e-01 -9.67892885e-01 1.28618932e+00 2.92908162e-01 -4.86995965e-01 7.76825964e-01 1.83664158e-01 -8.31879154e-02 6.89170480e-01 3.91063035e-01 6.63308084e-01 2.43175417e-01 -1.05259824e+00 -2.71250725e-01 -5.77308297e-01 -5.86180866e-01 2.29721680e-01 3.49754453e-01 1.62972927e-01 -1.12068333e-01 -7.35144913e-01 7.63522685e-01 -1.10039592e+00 -4.09998506e-01 -1.30309746e-01 -4.78750318e-01 3.29452842e-01 6.85249329e-01 -1.37309015e+00 1.10420656e+00 -2.04478550e+00 -4.14137363e-01 4.12768036e-01 6.79157019e-01 1.78176790e-01 2.54518777e-01 -3.86904746e-01 -2.23371953e-01 4.89366114e-01 -7.31232464e-01 2.19058290e-01 -6.12322032e-01 -4.05015826e-01 3.26416910e-01 8.62899661e-01 -3.68808746e-01 1.01212001e+00 -6.49959445e-01 -9.59884405e-01 9.25201252e-02 2.74830431e-01 -2.98299730e-01 2.87333816e-01 5.02284586e-01 9.80275989e-01 -4.62041348e-01 5.10049045e-01 7.94795096e-01 -2.86926955e-01 2.28483066e-01 -2.54718333e-01 1.11408599e-01 -3.58787149e-01 -8.79732370e-01 1.80879104e+00 2.19944254e-01 5.34246802e-01 -1.27866119e-01 -9.52704370e-01 9.88532722e-01 6.25677824e-01 1.12446523e+00 -3.96250069e-01 3.63686681e-01 5.87542176e-01 3.94977450e-01 -6.16684198e-01 -1.63487747e-01 -2.79172778e-01 1.68392435e-01 5.65892160e-01 -1.30269840e-01 -5.75876869e-02 1.59604684e-01 2.31952876e-01 8.61083865e-01 1.31337449e-01 2.96820372e-01 -5.75759768e-01 3.99370492e-01 1.79597944e-01 8.66137803e-01 5.35633028e-01 -9.17921841e-01 1.24004149e+00 3.75743568e-01 -6.99034810e-01 -1.17160845e+00 -9.12761807e-01 -3.12526852e-01 1.90358326e-01 1.15824006e-01 -3.94649729e-02 -1.18567634e+00 -8.31370294e-01 -4.57523048e-01 1.85845420e-01 -3.20092261e-01 1.17077544e-01 -1.00099051e+00 -9.76079285e-01 5.89626551e-01 5.68486154e-01 8.27206790e-01 -1.23364282e+00 -1.00150692e+00 3.05927336e-01 -6.44159436e-01 -8.68892014e-01 -7.12872684e-01 -2.70673305e-01 -1.64772916e+00 -1.16456962e+00 -1.21551239e+00 -1.12843740e+00 6.27549112e-01 -1.24927141e-01 1.00890744e+00 3.78261745e-01 -5.17356098e-01 -5.48601076e-02 -1.72430515e-01 -7.06036761e-02 -3.76166672e-01 -8.43632147e-02 -3.40199947e-01 -2.68129796e-01 -1.32534340e-01 -4.98037964e-01 -1.22949529e+00 2.23990217e-01 -4.09751803e-01 1.46810278e-01 5.06679535e-01 6.66949689e-01 9.91272986e-01 -4.77740645e-01 6.45903826e-01 -8.01957011e-01 2.83445626e-01 -2.17178330e-01 -2.92144835e-01 2.38765314e-01 -6.44741297e-01 -6.11193955e-01 1.53852418e-01 -2.30666831e-01 -5.00818670e-01 2.68850148e-01 1.00321211e-01 -3.92953247e-01 -2.34087855e-01 4.68697935e-01 1.84277371e-01 1.84572767e-02 4.68792111e-01 1.76888123e-01 2.74074614e-01 -1.74067482e-01 4.39167991e-02 5.88780761e-01 5.72444558e-01 -1.95357293e-01 1.88757002e-01 3.91428858e-01 1.48000702e-01 -4.56465781e-01 -3.00557017e-01 -5.68883002e-01 -1.16007030e+00 -5.43358684e-01 1.25927556e+00 -6.58299983e-01 -3.24568570e-01 6.08176172e-01 -1.03007400e+00 -5.59658170e-01 -2.80892640e-01 8.75155866e-01 -6.51039898e-01 5.86578131e-01 -9.00880933e-01 -2.64820784e-01 -9.57145512e-01 -1.24415386e+00 3.81294638e-01 5.70456162e-02 -1.22236103e-01 -1.01278317e+00 2.00556025e-01 4.85553354e-01 4.18332249e-01 7.55656958e-01 8.67068470e-01 -9.67412889e-01 -4.79577065e-01 -3.32983285e-01 -2.30683640e-01 5.25790989e-01 -1.09080583e-01 -3.22604567e-01 -5.93538642e-01 -1.44728273e-01 3.45709175e-01 -1.80538036e-02 8.10258746e-01 1.07772648e+00 1.22937775e+00 8.69258270e-02 -1.65007457e-01 6.86106384e-01 1.47592092e+00 5.74519575e-01 6.87097013e-01 3.06841224e-01 9.09263670e-01 2.98420697e-01 6.30199969e-01 2.82205909e-01 1.63613886e-01 2.25824416e-01 2.09768221e-01 -5.89017570e-01 -3.54893506e-01 2.64168948e-01 -2.32268229e-01 1.19213796e+00 -2.38939837e-01 1.95051655e-01 -1.47370708e+00 5.35601318e-01 -1.55448937e+00 -7.16460526e-01 -5.12814820e-01 2.07413769e+00 6.47345483e-01 -8.64743665e-02 8.06977302e-02 1.44730769e-02 1.10373414e+00 -1.42020702e-01 -3.32507759e-01 -5.17924316e-02 -6.47520646e-02 1.66725725e-01 5.78327537e-01 4.04004395e-01 -1.38396490e+00 6.45314753e-01 5.32003260e+00 4.78279293e-01 -1.22802794e+00 3.65009934e-01 1.30923820e+00 3.20197433e-01 3.01943481e-01 -3.18989949e-03 -4.58043180e-02 4.12529886e-01 6.06590807e-01 -1.96685754e-02 6.27596397e-03 5.47131717e-01 3.06377828e-01 -2.47118250e-01 -4.51899260e-01 9.39009130e-01 2.54563405e-03 -1.41738713e+00 -3.49257886e-01 5.93714509e-03 6.70051694e-01 1.70425966e-01 -2.76554555e-01 -1.62056103e-01 -6.28523767e-01 -1.00610363e+00 3.82904232e-01 6.62585914e-01 8.76217544e-01 -5.23272693e-01 1.10501635e+00 1.37503088e-01 -1.06455815e+00 4.17620212e-01 -7.23901317e-02 3.43670487e-01 4.92646359e-02 5.75282753e-01 -9.89394009e-01 3.68407369e-01 5.67734957e-01 6.18359149e-01 -6.29570603e-01 1.50591695e+00 2.21677095e-01 8.15028489e-01 -3.54342312e-02 4.26752716e-01 -7.84429461e-02 -5.52433074e-01 5.99311829e-01 1.09133148e+00 4.06088173e-01 2.54296809e-01 3.65100056e-01 6.94037497e-01 -1.00292703e-02 6.30463719e-01 -4.13478374e-01 3.35075289e-01 2.00257018e-01 1.37033534e+00 -1.61468554e+00 -6.50989771e-01 -7.70667270e-02 7.31394827e-01 -2.20131487e-01 3.26075286e-01 -7.89237618e-01 -3.46991390e-01 -3.34791452e-01 3.64114106e-01 -3.11389863e-02 -1.14344515e-01 -7.32709646e-01 -1.07110012e+00 -2.48127095e-02 -6.41255140e-01 4.26444679e-01 -6.79927588e-01 -8.83212030e-01 7.03365088e-01 -1.22630171e-01 -1.26327312e+00 1.44970104e-01 -1.64668977e-01 -7.69182742e-01 1.09120429e+00 -8.84857953e-01 -8.03921938e-01 -2.40705654e-01 3.19954097e-01 3.20248336e-01 -2.41432920e-01 7.72719085e-01 3.76693547e-01 -4.10577774e-01 1.41198471e-01 -3.57627682e-02 7.54634082e-01 6.38501585e-01 -1.19363332e+00 -5.11166826e-02 9.23059702e-01 -3.00417513e-01 4.37563390e-01 1.91802815e-01 -1.04172432e+00 -6.05530798e-01 -1.19105184e+00 8.53605449e-01 -4.00638059e-02 2.67926782e-01 1.38442725e-01 -8.77274394e-01 6.40552223e-01 1.28098160e-01 5.86477458e-01 6.47251487e-01 -6.59870684e-01 4.17516977e-01 1.36575475e-01 -1.31803060e+00 2.41270497e-01 5.90198457e-01 -1.03433900e-01 -3.39441419e-01 3.68297696e-01 3.21335286e-01 -6.70216382e-01 -1.43363941e+00 6.62835717e-01 5.12936413e-01 -9.38536286e-01 8.82337928e-01 -3.25739980e-01 4.67108458e-01 -4.16234463e-01 -1.25582470e-02 -8.66751611e-01 -2.07913309e-01 -1.59208968e-01 2.22861677e-01 7.81482816e-01 4.36648697e-01 -5.53923011e-01 9.17901993e-01 4.26351875e-01 -4.42974716e-01 -1.20932949e+00 -7.84337878e-01 -4.24763680e-01 4.77649242e-01 -1.33169025e-01 2.54870147e-01 1.01358581e+00 -3.05290163e-01 -9.16107669e-02 6.70752209e-03 -9.57908332e-02 8.64239752e-01 1.75466031e-01 1.91410765e-01 -1.04361880e+00 1.35414423e-02 -2.86463916e-01 -5.25454283e-01 -4.46006328e-01 -1.23592816e-01 -1.48342645e+00 -9.28854942e-02 -1.72676694e+00 6.78580463e-01 -5.75603366e-01 -5.50332487e-01 1.81152254e-01 -2.02004641e-01 6.45706415e-01 3.27978998e-01 5.50699472e-01 -3.54047894e-01 1.25000522e-01 1.92408395e+00 1.07644841e-01 -2.06947297e-01 3.70780081e-02 -2.37029776e-01 7.93289721e-01 1.66394854e+00 -6.41057551e-01 -4.10287410e-01 -7.06592798e-02 -4.73340660e-01 4.47541565e-01 5.65662920e-01 -1.07779348e+00 -5.18296547e-02 2.65510917e-01 7.52232850e-01 -7.13803053e-01 -2.25057900e-01 -5.15495360e-01 1.63232461e-01 9.34022367e-01 -4.22330767e-01 1.87065825e-01 -1.45710886e-01 4.50978614e-02 -1.61904499e-01 -2.33520970e-01 9.78667200e-01 -4.26513493e-01 -4.56160575e-01 7.00951159e-01 -3.21487159e-01 5.88498890e-01 1.03235328e+00 -4.08473969e-01 4.48169634e-02 4.24356237e-02 -1.28033316e+00 -2.03133654e-02 1.79887533e-01 -2.05465347e-01 8.56564224e-01 -1.38441539e+00 -1.00383508e+00 -1.50041744e-01 -2.97044307e-01 -9.67376232e-02 4.59479004e-01 1.44802356e+00 -1.16890359e+00 1.13191716e-01 -4.34872627e-01 -8.98484647e-01 -1.42354178e+00 1.99286044e-01 8.29464257e-01 -4.82573569e-01 -1.01232374e+00 5.18039525e-01 1.88722268e-01 -3.46720129e-01 -2.72711873e-01 -2.89507061e-01 -2.07129925e-01 -1.73643306e-01 1.24695979e-01 5.03395379e-01 -9.08499062e-02 -8.00845981e-01 -4.78775859e-01 7.94798017e-01 1.98963106e-01 -1.42845422e-01 1.06669283e+00 -2.40309045e-01 -3.98890585e-01 2.54757285e-01 1.43224514e+00 -3.87558937e-01 -1.03304851e+00 1.17340006e-01 2.21167598e-02 -3.85147214e-01 2.15924934e-01 -8.44112039e-01 -1.53343570e+00 9.49323356e-01 1.38185656e+00 -8.71918499e-02 9.66883123e-01 -1.44100338e-01 1.04430568e+00 -4.19419020e-01 1.49768800e-01 -8.58977020e-01 -1.87395230e-01 2.49228820e-01 8.71091604e-01 -1.34525430e+00 4.00936566e-02 -5.13043046e-01 -9.42555368e-01 1.15085018e+00 3.87364507e-01 -3.98543715e-01 8.51717174e-01 9.86071602e-02 5.45834601e-01 -2.28588969e-01 3.48211899e-02 2.91785359e-01 2.88206786e-01 5.02005637e-01 7.74854422e-01 3.20814073e-01 -6.96494043e-01 5.02452195e-01 3.05355228e-02 2.10821941e-01 3.90867293e-01 7.96959698e-01 -4.03152883e-01 -6.79429889e-01 -2.05918878e-01 6.94261193e-01 -8.61194730e-01 -1.31452128e-01 5.79475500e-02 8.26241553e-01 2.52349555e-01 5.60364783e-01 -1.11169972e-01 -1.41396523e-01 1.20776787e-03 1.46032646e-01 4.27721888e-01 -3.87937456e-01 -6.66293740e-01 4.54700977e-01 -3.03367347e-01 -3.53883594e-01 -3.79582852e-01 -6.79496884e-01 -1.76448655e+00 1.43462658e-01 -6.03401586e-02 5.93216382e-02 5.30637085e-01 5.77525079e-01 2.40393549e-01 4.92522091e-01 6.93830192e-01 -5.02911508e-01 -1.91271946e-01 -9.26435113e-01 -8.68412256e-01 4.84017074e-01 3.19006890e-02 -1.98211059e-01 -1.24888375e-01 4.70968068e-01]
[14.152968406677246, -2.409914970397949]
e08cfb8c-ba41-4875-99aa-c36076a756cc
auditing-predictive-models-for-intersectional
2306.13064
null
https://arxiv.org/abs/2306.13064v1
https://arxiv.org/pdf/2306.13064v1.pdf
Auditing Predictive Models for Intersectional Biases
Predictive models that satisfy group fairness criteria in aggregate for members of a protected class, but do not guarantee subgroup fairness, could produce biased predictions for individuals at the intersection of two or more protected classes. To address this risk, we propose Conditional Bias Scan (CBS), a flexible auditing framework for detecting intersectional biases in classification models. CBS identifies the subgroup for which there is the most significant bias against the protected class, as compared to the equivalent subgroup in the non-protected class, and can incorporate multiple commonly used fairness definitions for both probabilistic and binarized predictions. We show that this methodology can detect previously unidentified intersectional and contextual biases in the COMPAS pre-trial risk assessment tool and has higher bias detection power compared to similar methods that audit for subgroup fairness.
['Daniel B. Neill', 'Edward McFowland III', 'Kate S. Boxer']
2023-06-22
null
null
null
null
['fairness', 'fairness', 'bias-detection']
['computer-vision', 'miscellaneous', 'natural-language-processing']
[ 4.10401374e-01 3.35635871e-01 -9.73189890e-01 -7.67382622e-01 -8.00415754e-01 -6.04743838e-01 5.74241757e-01 7.98071742e-01 -6.33434415e-01 9.68643963e-01 5.62499046e-01 -1.10117805e+00 -4.69364464e-01 -8.79202902e-01 -2.36869052e-01 -4.20021743e-01 7.35058039e-02 4.66623753e-01 -2.29720827e-02 3.20232153e-01 4.55265045e-01 5.35423994e-01 -9.91047502e-01 6.19578540e-01 1.12733865e+00 4.99194413e-01 -1.04969394e+00 2.45296925e-01 4.76540238e-01 6.83592081e-01 -4.42374498e-01 -8.91502500e-01 2.12294266e-01 -4.33285534e-01 -6.80909991e-01 -7.65938818e-01 1.07354486e+00 -7.73126185e-01 1.43574759e-01 9.92405355e-01 6.24389410e-01 -5.31617180e-03 9.59239662e-01 -1.41470456e+00 -4.25495148e-01 1.03301108e+00 -3.62452626e-01 2.23104522e-01 2.01227456e-01 2.41187826e-01 1.13649797e+00 -3.18277031e-01 2.47220829e-01 1.52811921e+00 9.50173378e-01 6.89407110e-01 -1.67522025e+00 -1.48243928e+00 1.74048841e-01 -3.18211228e-01 -1.00508094e+00 -6.15619242e-01 3.46660540e-02 -6.73212767e-01 6.45040214e-01 7.61270106e-01 5.67940831e-01 7.73647249e-01 5.72321534e-01 -1.31796762e-01 1.71083534e+00 -2.34513059e-01 3.25801522e-01 1.67266473e-01 8.89728665e-01 5.29868305e-02 1.05871451e+00 9.10282433e-01 -2.89838582e-01 -1.28303623e+00 2.04830587e-01 7.71870762e-02 2.39033140e-02 -1.13520391e-01 -7.26796567e-01 1.09862459e+00 2.06165463e-01 -3.60801756e-01 -2.86556214e-01 1.68904766e-01 3.74732167e-01 -1.02148533e-01 4.97976452e-01 2.64288008e-01 -2.32514888e-01 2.75947958e-01 -1.20288873e+00 8.92344952e-01 5.75372934e-01 4.44166511e-01 3.54769856e-01 -1.72654092e-01 -8.99038434e-01 4.02954489e-01 3.89255464e-01 5.90979040e-01 -2.99658533e-02 -1.23464417e+00 5.47328353e-01 6.82843029e-01 4.74803627e-01 -4.52614218e-01 -5.00792265e-01 -5.17096460e-01 -8.02468300e-01 8.06727529e-01 7.16268897e-01 -1.06220566e-01 -5.77345014e-01 1.84966338e+00 4.85948890e-01 -7.12541282e-01 -7.30370134e-02 6.82412267e-01 4.87513185e-01 -1.84601471e-01 1.20874846e+00 -2.66530663e-01 1.35965705e+00 6.74912781e-02 -4.54938740e-01 -9.20841694e-02 7.00969279e-01 -3.50194991e-01 6.45294666e-01 7.41926804e-02 -1.06836474e+00 -3.50008383e-02 -7.49564111e-01 1.90293282e-01 -3.61843361e-03 -5.91848493e-01 8.04819703e-01 1.58526993e+00 -5.62876403e-01 7.93234646e-01 -1.22618161e-01 3.93960718e-03 9.38202858e-01 2.24883050e-01 -1.90650776e-01 -6.34893477e-02 -1.33243716e+00 9.79738116e-01 1.01170577e-01 -4.25631195e-01 -7.53723562e-01 -1.27455091e+00 -7.17548847e-01 3.39276344e-01 5.10598458e-02 -7.06409395e-01 1.08254981e+00 -1.09739327e+00 -3.54464591e-01 9.48426068e-01 -6.71729296e-02 -5.99822104e-01 9.83118892e-01 2.05304220e-01 -4.42703635e-01 -3.39188784e-01 5.52115977e-01 2.92411178e-01 2.17476681e-01 -9.54806805e-01 -8.53446186e-01 -7.71150231e-01 -2.02172119e-02 1.51218951e-01 1.58152580e-01 7.74835765e-01 1.10914814e+00 -5.84011912e-01 -1.89651132e-01 -6.94231093e-01 -5.61490357e-01 5.12822084e-02 -6.33740067e-01 -1.26279369e-01 1.40592083e-01 -6.31886303e-01 1.30699956e+00 -1.87046242e+00 -1.11181855e+00 6.58403337e-01 1.33860007e-01 2.05689922e-01 4.23354357e-01 1.77243762e-02 -5.21365702e-01 6.78672075e-01 -2.18761250e-01 1.49364501e-01 1.95560947e-01 -8.70381147e-02 -3.89954686e-01 8.31792951e-01 -1.96898013e-01 2.89072335e-01 -8.28562021e-01 -4.94482517e-01 -5.52581474e-02 -2.16050997e-01 -9.19132411e-01 -1.97284847e-01 6.32157266e-01 -3.54188792e-02 -1.75098255e-02 4.43374187e-01 1.11259818e+00 4.54562247e-01 4.78442758e-01 2.63760149e-01 -3.76055390e-01 7.54591048e-01 -1.14689362e+00 1.54955208e-01 2.21302062e-01 2.44230870e-02 -3.00943609e-02 -5.84476888e-01 7.47217298e-01 3.86511534e-01 8.52231160e-02 -4.25707608e-01 -2.01044247e-01 3.24103713e-01 4.35048223e-01 3.28827947e-01 4.42254871e-01 -1.03640223e+00 -2.37529650e-01 6.84599638e-01 -4.39333022e-01 3.18728179e-01 -5.18589973e-01 1.21637033e-02 8.33004773e-01 -5.34851730e-01 8.67476225e-01 -7.47844100e-01 2.34766424e-01 -9.69505534e-02 1.18331611e+00 1.43972647e+00 -8.74793530e-01 3.66122991e-01 8.76386225e-01 -5.45480132e-01 -8.34190786e-01 -1.18819070e+00 -8.37345302e-01 1.00077724e+00 -3.22088093e-01 -1.47092063e-02 -2.67818213e-01 -1.02490282e+00 7.72269547e-01 1.32134879e+00 -7.64340103e-01 -4.65495080e-01 1.49238750e-01 -1.12093580e+00 8.59680772e-01 4.23676372e-01 2.91875094e-01 -4.12917703e-01 -5.92116654e-01 -1.39799625e-01 9.97685790e-02 -4.52326030e-01 -5.04680812e-01 -6.20453171e-02 -8.60073209e-01 -1.65218651e+00 -4.18930531e-01 3.20547409e-02 4.14752960e-01 -6.09021299e-02 1.15658820e+00 2.26891786e-01 1.47290543e-01 2.14626417e-01 9.83992144e-02 -9.52642202e-01 -7.09008038e-01 -6.54345274e-01 1.17437445e-01 -2.92043358e-01 7.11830080e-01 -3.40237647e-01 -9.70113516e-01 4.37864929e-01 -4.38651562e-01 -2.73081750e-01 5.99772856e-02 5.76771259e-01 8.81729275e-02 -2.70124704e-01 9.35987234e-01 -1.41896653e+00 6.07780039e-01 -6.34177983e-01 -5.08102596e-01 4.24135253e-02 -1.45461679e+00 -5.55973470e-01 8.10908526e-02 -1.84995845e-01 -1.01366365e+00 -4.62596804e-01 3.49256963e-01 6.22269571e-01 -3.02432269e-01 1.82474583e-01 -2.29242295e-01 -6.01698942e-02 1.12039208e+00 -5.65511346e-01 7.40616173e-02 -3.41223240e-01 -1.32006288e-01 8.84475112e-01 4.75633815e-02 -7.00856328e-01 3.89615566e-01 4.22855049e-01 2.01407045e-01 1.27400771e-01 -6.53625906e-01 -2.62093723e-01 -9.79138836e-02 -6.79426193e-02 5.12014747e-01 -8.81100953e-01 -9.42936242e-01 4.52691615e-02 -8.39535236e-01 -3.17075551e-01 -3.77261221e-01 7.52101123e-01 -7.24928528e-02 3.72695237e-01 -5.75493053e-02 -1.39155710e+00 -5.59489191e-01 -8.09378266e-01 3.62314284e-01 5.70910834e-02 -9.46415842e-01 -6.12899840e-01 1.92043543e-01 3.21998000e-01 2.51775891e-01 5.04842103e-01 1.17448831e+00 -1.29661918e+00 1.31413683e-01 -5.44494629e-01 -4.30553496e-01 1.84567168e-01 -6.05794825e-02 1.04116172e-01 -7.63697684e-01 -2.75029808e-01 -4.29255009e-01 -3.94078046e-02 7.04829216e-01 6.75581634e-01 1.05212808e+00 -7.39237130e-01 -4.24709260e-01 2.01684192e-01 1.14683390e+00 2.91142255e-01 5.98806977e-01 2.06651688e-01 1.23786159e-01 8.58376145e-01 3.52364510e-01 5.96440434e-01 4.31716859e-01 7.44609535e-01 2.08603755e-01 -3.10710240e-02 2.54623562e-01 -1.70079365e-01 2.21276894e-01 -8.01021457e-01 -2.48092547e-01 3.70179802e-01 -1.09022808e+00 6.32326365e-01 -1.41496301e+00 -1.33592045e+00 -4.54508752e-01 2.77367902e+00 8.39276850e-01 3.23146760e-01 5.86944461e-01 1.61596745e-01 1.03690517e+00 -1.92586798e-02 -2.97849745e-01 -1.18988037e+00 4.58825827e-02 1.47055015e-01 8.93580496e-01 6.43662453e-01 -8.29721868e-01 2.23171622e-01 8.07365417e+00 5.08964896e-01 -1.98456779e-01 2.44806930e-01 1.16720271e+00 -2.09098026e-01 -7.76729882e-01 5.50304592e-01 -8.64041865e-01 5.67930937e-01 1.10264611e+00 -5.00210166e-01 -1.78850964e-01 7.56364882e-01 5.47986746e-01 -4.30949181e-01 -1.25096595e+00 5.79075068e-02 -4.90158379e-01 -1.16255403e+00 2.42812276e-01 5.09156942e-01 7.99855292e-01 -5.09236157e-01 2.28650756e-02 3.85583282e-01 8.89563262e-01 -1.21919787e+00 9.66206551e-01 5.04796386e-01 1.15852630e+00 -9.05544400e-01 8.96467566e-01 1.52652428e-01 -3.65876138e-01 -2.92599320e-01 -4.34964299e-01 -4.15392756e-01 -3.35790724e-01 9.90043342e-01 -7.15909004e-01 2.84808040e-01 6.46816790e-01 7.93798417e-02 -2.20783547e-01 1.14367759e+00 1.52193615e-02 9.39433873e-01 -1.40490578e-02 3.02888870e-01 3.10706627e-02 2.79116243e-01 6.60019577e-01 1.18923986e+00 1.05027832e-01 3.80422920e-01 -2.76673555e-01 9.88008738e-01 1.26950257e-03 5.08344062e-02 -5.00467479e-01 4.89980370e-01 7.00353205e-01 7.13612497e-01 -1.43093035e-01 -4.55968767e-01 -3.66723925e-01 -1.82065576e-01 -7.61685744e-02 2.22989157e-01 -3.71324688e-01 -1.10489003e-01 9.19059932e-01 3.89774084e-01 -6.69293106e-01 5.95823348e-01 -9.23092782e-01 -6.48836076e-01 -3.81582886e-01 -1.03094673e+00 1.25210929e+00 -3.04933578e-01 -1.26241028e+00 -4.36555386e-01 2.78234780e-01 -1.00762331e+00 -1.55784441e-02 -4.29699033e-01 -7.28343666e-01 1.66362298e+00 -1.26959801e+00 -9.64700043e-01 1.82791334e-02 4.86818999e-01 -4.18817282e-01 -8.56450796e-02 9.66549814e-01 5.18077686e-02 -3.25153917e-01 1.06546414e+00 -1.40116021e-01 1.10588059e-01 9.29807782e-01 -1.39195275e+00 2.19545849e-02 6.51564717e-01 -8.53906512e-01 6.20072961e-01 7.29941845e-01 -1.09938574e+00 -5.84243126e-02 -1.14402723e+00 1.41604316e+00 -6.46507680e-01 1.18037276e-01 1.78797990e-01 -6.73662305e-01 8.14461529e-01 -4.83702004e-01 -2.02138901e-01 1.43469286e+00 7.66890287e-01 -7.82877743e-01 -1.18222594e-01 -1.85549963e+00 6.15262926e-01 9.12701130e-01 -4.15025711e-01 -7.27267802e-01 1.41456291e-01 2.17650577e-01 -6.34447904e-03 -9.77680683e-01 4.23208177e-01 1.06202543e+00 -1.26545310e+00 8.64181340e-01 -1.25824559e+00 3.52061331e-01 1.45662367e-01 -2.30177507e-01 -1.06923568e+00 -7.01298535e-01 -4.07159328e-01 6.14018440e-01 1.27685487e+00 5.43195128e-01 -1.14309061e+00 7.23473251e-01 1.56927240e+00 1.46510810e-01 -2.63004154e-01 -1.38487160e+00 -4.69534665e-01 7.52027631e-01 -2.99307853e-01 1.04449356e+00 1.16581357e+00 3.00646037e-01 -4.52813566e-01 -1.67291641e-01 3.68752152e-01 1.23776674e+00 2.59592682e-01 3.66341263e-01 -1.47977841e+00 3.41797993e-02 -6.22124612e-01 -3.61269206e-01 4.05605078e-01 9.26431045e-02 -8.89520705e-01 -4.77235407e-01 -1.23004174e+00 8.37570012e-01 -9.14948106e-01 -4.82893825e-01 7.53549099e-01 -5.29724181e-01 -1.08677790e-01 1.33747548e-01 1.85182571e-01 9.02933851e-02 7.47222379e-02 7.23305523e-01 -1.24047600e-01 4.50409874e-02 4.22426432e-01 -1.57682049e+00 5.09771407e-01 6.63080990e-01 -1.02508008e+00 1.07267305e-01 4.29345936e-01 3.81814331e-01 1.00912772e-01 8.99835348e-01 -7.04615533e-01 -1.80297777e-01 -8.34989905e-01 7.37660825e-01 -1.67872772e-01 -5.35275161e-01 -7.34091520e-01 3.82773042e-01 9.27061915e-01 -9.75127578e-01 -3.92104566e-01 2.30723456e-01 3.40527952e-01 3.87150794e-01 -4.40802753e-01 9.58709419e-01 1.92341730e-02 3.47486973e-01 9.60286334e-02 -7.40371644e-01 1.57244001e-02 7.31645167e-01 -2.75976527e-02 -8.70436728e-01 -3.90107870e-01 -7.05925643e-01 2.20359355e-01 5.21858335e-01 -2.59832859e-01 5.43438457e-02 -1.44495368e+00 -1.01465118e+00 -1.17782615e-01 2.70673841e-01 -6.42486155e-01 2.61444837e-01 7.95767188e-01 -2.54179481e-02 3.85223448e-01 -3.58321905e-01 1.09857336e-01 -1.27058017e+00 3.56408089e-01 8.82143080e-01 -4.05489445e-01 -9.95862931e-02 2.37389192e-01 4.30345237e-01 -4.72704858e-01 -6.42765090e-02 4.62756678e-02 -1.77803054e-01 -5.53333089e-02 8.58420372e-01 8.71011853e-01 -5.00521772e-02 -7.22650111e-01 -6.31748557e-01 -2.05470458e-01 4.44204360e-02 -8.51165801e-02 8.27268183e-01 1.20594218e-01 -2.59891123e-01 -2.98182871e-02 6.08558536e-01 2.63601094e-01 -8.71438026e-01 2.33428180e-02 -7.00275004e-02 -9.08384204e-01 1.37299433e-01 -1.18120754e+00 -3.26157272e-01 4.71159130e-01 7.91701376e-01 2.29964525e-01 6.35686755e-01 -5.28800845e-01 -3.53836447e-01 -3.82950544e-01 2.55937099e-01 -9.58001375e-01 -9.34092402e-01 -2.00957954e-01 7.32792079e-01 -1.02209342e+00 6.45202458e-01 -3.16647202e-01 -5.56536674e-01 7.25511789e-01 4.43371266e-01 -2.50105672e-02 5.08110404e-01 -3.72059405e-01 -2.53297567e-01 -1.05009228e-01 -6.39580548e-01 2.39567339e-01 4.52144831e-01 9.39593792e-01 6.33046389e-01 7.06795096e-01 -1.14065731e+00 1.19392431e+00 -4.97438759e-02 -5.26512936e-02 6.00240529e-01 4.90407199e-01 -3.39575976e-01 -8.66199195e-01 -7.20753551e-01 1.22702181e+00 -9.81315613e-01 -2.60845214e-01 -4.58956987e-01 7.90367126e-01 2.88626671e-01 1.00671911e+00 2.81426907e-01 1.09538667e-01 5.98515809e-01 4.07116294e-01 -8.88831634e-03 -4.77625132e-01 -1.10620201e+00 -4.16466981e-01 8.68424237e-01 -7.34869421e-01 -3.56227398e-01 -1.08396971e+00 -5.88492215e-01 -6.64675474e-01 -2.06752732e-01 3.36589217e-01 3.66681591e-02 8.30914617e-01 8.73389766e-02 -7.19056726e-02 5.21443069e-01 -3.67069751e-01 -9.23941612e-01 -7.50659049e-01 -8.04176807e-01 3.46730977e-01 4.52039659e-01 -6.90026164e-01 -7.96043575e-01 -8.72636557e-01]
[8.837315559387207, 5.3762054443359375]
fe728266-c8b1-4af1-bad4-1a34695fb876
robust-face-recognition-via-multimodal-deep
1509.00244
null
http://arxiv.org/abs/1509.00244v1
http://arxiv.org/pdf/1509.00244v1.pdf
Robust Face Recognition via Multimodal Deep Face Representation
Face images appeared in multimedia applications, e.g., social networks and digital entertainment, usually exhibit dramatic pose, illumination, and expression variations, resulting in considerable performance degradation for traditional face recognition algorithms. This paper proposes a comprehensive deep learning framework to jointly learn face representation using multimodal information. The proposed deep learning structure is composed of a set of elaborately designed convolutional neural networks (CNNs) and a three-layer stacked auto-encoder (SAE). The set of CNNs extracts complementary facial features from multimodal data. Then, the extracted features are concatenated to form a high-dimensional feature vector, whose dimension is compressed by SAE. All the CNNs are trained using a subset of 9,000 subjects from the publicly available CASIA-WebFace database, which ensures the reproducibility of this work. Using the proposed single CNN architecture and limited training data, 98.43% verification rate is achieved on the LFW database. Benefited from the complementary information contained in multimodal data, our small ensemble system achieves higher than 99.0% recognition rate on LFW using publicly available training set.
['DaCheng Tao', 'Changxing Ding']
2015-09-01
null
null
null
null
['robust-face-recognition']
['computer-vision']
[ 2.11868420e-01 -1.71072349e-01 -7.94809163e-02 -9.38695014e-01 -6.01790130e-01 -1.54820323e-01 4.49942350e-01 -5.96994281e-01 -3.42881858e-01 5.43682635e-01 6.03579618e-02 1.55264974e-01 8.73980895e-02 -5.15068948e-01 -6.93645298e-01 -8.83046508e-01 -2.32362047e-01 -1.76350579e-01 -6.21611238e-01 -1.53296858e-01 -1.20494343e-01 6.69224143e-01 -1.94244540e+00 4.45283234e-01 3.97915155e-01 1.66374576e+00 -1.90557450e-01 3.52835506e-01 1.42406896e-01 6.10788524e-01 -4.58915919e-01 -7.84436285e-01 1.27598062e-01 -1.60104305e-01 -2.26435676e-01 2.67328709e-01 6.97996855e-01 -7.15105534e-01 -8.12119067e-01 7.38617897e-01 7.68971503e-01 -3.70914824e-02 5.00779629e-01 -1.35450995e+00 -7.20807791e-01 2.48321071e-01 -4.50638503e-01 -2.82310516e-01 1.23343781e-01 1.22803636e-01 7.30412841e-01 -1.41946912e+00 3.79461467e-01 1.32869613e+00 6.25874758e-01 8.26141894e-01 -1.03096712e+00 -1.09179544e+00 -3.69230449e-01 1.60374880e-01 -1.72441947e+00 -1.02697194e+00 9.73627746e-01 -2.03258410e-01 6.76775277e-01 4.25111949e-02 4.25275773e-01 1.31485093e+00 3.52841020e-02 6.64530277e-01 8.86421204e-01 -1.62462875e-01 -2.24097237e-01 1.48922518e-01 -1.89512260e-02 9.92974877e-01 1.67360410e-01 7.83530697e-02 -8.78562748e-01 -1.44071713e-01 4.80673283e-01 2.72520930e-01 -3.87356848e-01 2.96099298e-02 -9.06371593e-01 7.35883117e-01 4.70417589e-01 -1.55632673e-02 -3.13058436e-01 -1.22254528e-01 4.95070070e-01 3.57913405e-01 3.27912897e-01 -4.24482495e-01 -2.41201788e-01 1.56746089e-01 -7.52364755e-01 -1.06182499e-02 6.22020900e-01 9.12908316e-01 7.96511292e-01 2.60017753e-01 -1.01557180e-01 1.18667364e+00 6.86304629e-01 7.92273223e-01 5.14385343e-01 -6.53376341e-01 4.68888789e-01 7.08757222e-01 -3.60629052e-01 -1.37768221e+00 -3.18415076e-01 -3.27261269e-01 -1.20201981e+00 -1.03320338e-01 -2.50793733e-02 -4.20721412e-01 -7.12885797e-01 1.85712612e+00 1.35073155e-01 2.80694533e-02 1.14131510e-01 8.35392356e-01 1.30388880e+00 5.18849671e-01 7.08456710e-02 -4.93378192e-02 1.30103147e+00 -6.54891133e-01 -7.40550220e-01 1.70160994e-01 2.07585528e-01 -7.43930399e-01 5.82789004e-01 2.84578830e-01 -9.45619881e-01 -8.97690833e-01 -1.27854359e+00 -2.78251432e-02 -3.20654094e-01 9.43962574e-01 5.59355080e-01 7.56263614e-01 -9.76075232e-01 3.86381716e-01 -4.03850615e-01 -1.09506190e-01 9.48885679e-01 8.02436411e-01 -9.03671265e-01 -3.65610212e-01 -9.70855415e-01 3.94728780e-01 5.90452440e-02 7.61441410e-01 -1.04672348e+00 -3.20963770e-01 -1.07130671e+00 1.08946480e-01 4.03075144e-02 -1.36705786e-01 1.01272309e+00 -1.11112082e+00 -1.56940031e+00 8.19590271e-01 -2.99349964e-01 1.24749444e-01 1.93901405e-01 -9.04027745e-02 -8.08705330e-01 4.93536629e-02 -4.19334829e-01 5.16847908e-01 1.18500185e+00 -1.16039622e+00 -2.11209849e-01 -6.92496538e-01 -4.47577745e-01 -2.00723842e-01 -9.97058809e-01 2.79540345e-02 -6.22343004e-01 -4.09206837e-01 -7.85221606e-02 -7.96316385e-01 3.93548101e-01 1.56135857e-01 -3.82947743e-01 -3.33683699e-01 1.12654233e+00 -6.75233066e-01 1.07065654e+00 -2.35430121e+00 2.02433705e-01 2.71453470e-01 2.47187644e-01 4.78742570e-01 -6.17292106e-01 3.47085148e-01 -2.16397420e-01 -2.83918589e-01 -1.38276234e-01 -7.22094178e-01 7.04972148e-02 1.09411292e-01 -2.97909509e-03 5.83498061e-01 6.66271150e-01 8.38737369e-01 -2.15868384e-01 -3.50928068e-01 -5.78521267e-02 1.01775181e+00 -3.77328575e-01 6.00268185e-01 2.70998448e-01 1.60316721e-01 -3.17446738e-01 1.10375130e+00 9.52957451e-01 3.62164080e-02 1.87706962e-01 -6.52155578e-01 2.63227463e-01 -4.06379402e-01 -9.01060462e-01 1.64243793e+00 -3.16656053e-01 7.44651735e-01 2.00232625e-01 -9.67520714e-01 1.26287365e+00 4.13902909e-01 3.57242584e-01 -6.46301985e-01 5.90714395e-01 2.48309642e-01 1.50835142e-02 -6.02362633e-01 1.49225160e-01 5.35008609e-02 1.79235578e-01 2.47392684e-01 8.40575337e-01 5.03173113e-01 -2.90010367e-02 -2.27478772e-01 6.89155281e-01 -2.40054533e-01 -1.37425646e-01 1.86425988e-02 1.01662755e+00 -7.48374939e-01 6.08873844e-01 1.84991479e-01 -2.30155811e-01 4.46919739e-01 3.84080499e-01 -6.69143796e-01 -8.83775890e-01 -7.19729185e-01 -3.67104441e-01 9.65324700e-01 -3.47431958e-01 -3.70938808e-01 -6.31905138e-01 -5.54590344e-01 1.80990130e-01 -1.61801413e-01 -6.76699877e-01 -4.39946681e-01 -4.08295900e-01 -6.72557473e-01 7.22772658e-01 4.70867306e-01 9.91512179e-01 -9.39285874e-01 -7.14098886e-02 -8.76762941e-02 2.35015284e-02 -1.17157638e+00 -4.99525309e-01 -3.12143713e-01 -4.80417430e-01 -1.22905970e+00 -7.78016686e-01 -1.04502094e+00 8.28296721e-01 7.55712241e-02 7.62300313e-01 2.38322467e-01 -5.98625302e-01 3.64257544e-01 -1.87128559e-01 -2.29865253e-01 -3.41841625e-03 -1.53652921e-01 1.42438963e-01 8.11581016e-01 5.41372061e-01 -2.57319212e-01 -5.84336579e-01 3.06989223e-01 -7.27581799e-01 -2.09417894e-01 7.23753452e-01 1.24230945e+00 2.44499654e-01 -1.02577016e-01 6.60530031e-01 -4.28740621e-01 4.45777476e-01 -4.73901361e-01 -5.11578143e-01 2.37843618e-01 -9.61676836e-02 -2.71446735e-01 4.55560535e-01 -3.96312356e-01 -1.17687917e+00 1.84963480e-01 -3.35667908e-01 -4.37347353e-01 -2.21633106e-01 4.35913712e-01 -5.42336941e-01 -4.41584945e-01 1.80725649e-01 3.55302095e-01 4.78765965e-01 -3.74486864e-01 2.85252836e-02 1.12455785e+00 5.58206320e-01 -5.45555413e-01 6.68681204e-01 8.86735991e-02 4.99283187e-02 -9.29912031e-01 -4.05119538e-01 5.07608317e-02 -5.19838393e-01 -4.91053969e-01 4.33914125e-01 -1.14402282e+00 -1.28426301e+00 9.77935672e-01 -1.14699328e+00 1.91306233e-01 3.72716814e-01 4.36124295e-01 -1.61603421e-01 1.77579727e-02 -7.78423190e-01 -9.68072951e-01 -4.78810489e-01 -1.35161936e+00 1.17862356e+00 4.01300639e-01 2.87736982e-01 -5.28119028e-01 -2.72245675e-01 5.12653828e-01 6.60519958e-01 3.06743413e-01 7.13078976e-01 -5.59373736e-01 -3.40822667e-01 -5.61159015e-01 -4.27765816e-01 7.54663289e-01 3.25806856e-01 1.23787530e-01 -1.33104277e+00 -4.74110067e-01 -2.40456671e-01 -8.09895694e-01 9.65507627e-01 -8.65981355e-02 1.56483126e+00 -3.23736608e-01 -2.15872377e-02 7.83244610e-01 1.25422192e+00 2.98567414e-01 5.45344472e-01 -2.82638550e-01 5.44210076e-01 6.63622260e-01 -3.03703509e-02 6.17920041e-01 3.17603171e-01 3.91125828e-01 4.81445014e-01 -6.12553582e-02 2.67035216e-02 4.68213996e-03 3.57642025e-01 7.83400476e-01 -2.29549438e-01 4.64250613e-03 -6.84327304e-01 1.66399628e-01 -1.38896978e+00 -8.79939139e-01 4.93997782e-01 1.99566138e+00 6.82715416e-01 -5.50995171e-01 -6.82462975e-02 -7.86239877e-02 6.35120332e-01 1.45672590e-01 -6.48687720e-01 -1.59753151e-02 -3.29110116e-01 3.04981619e-01 5.96257218e-04 4.43291478e-02 -1.14891088e+00 4.75957453e-01 5.76563501e+00 6.12112582e-01 -1.36118686e+00 -7.50443786e-02 1.01618552e+00 -3.02966654e-01 9.98785570e-02 -8.76851439e-01 -8.13340783e-01 4.81013954e-01 9.49759901e-01 1.41998649e-01 3.66373867e-01 7.29411960e-01 -1.58135951e-01 4.39387679e-01 -1.01758397e+00 1.42535412e+00 5.86985826e-01 -1.14906406e+00 1.52466699e-01 2.17221648e-01 5.47180712e-01 -1.17633142e-01 5.93109608e-01 3.93098027e-01 -2.88548648e-01 -1.54528785e+00 2.42479503e-01 6.40052259e-01 1.13806677e+00 -1.11108851e+00 1.05273116e+00 -1.00203969e-01 -1.10137105e+00 -3.96815568e-01 -3.56461674e-01 3.92237157e-01 -3.62331867e-01 3.91729653e-01 -2.88179100e-01 5.56356072e-01 7.11517632e-01 9.36069548e-01 -4.85145420e-01 6.50554180e-01 2.50142783e-01 5.14313161e-01 -8.89150351e-02 1.20248728e-01 -7.14755654e-02 -6.43793866e-02 -5.29485289e-03 1.12741876e+00 4.54718620e-01 2.00292915e-01 -1.55630529e-01 6.10495389e-01 -8.62430871e-01 9.61718410e-02 -5.09778500e-01 -3.52300614e-01 3.37407976e-01 1.64971149e+00 1.57357424e-01 -1.95693895e-01 -8.24665010e-01 8.60703051e-01 3.54876250e-01 4.42298889e-01 -6.86557233e-01 -4.74248290e-01 9.90096092e-01 -4.25746977e-01 2.23677546e-01 -1.83294177e-01 3.07490945e-01 -1.14918268e+00 1.63648799e-01 -1.06556857e+00 1.61909208e-01 -4.00934458e-01 -1.47373891e+00 1.10993350e+00 -4.42942113e-01 -1.14060068e+00 -9.31363553e-02 -1.08915567e+00 -5.38898945e-01 1.01900482e+00 -1.55128729e+00 -1.35099673e+00 -6.95935249e-01 9.33310151e-01 3.02451909e-01 -9.72518504e-01 9.13684249e-01 6.67105615e-01 -1.15470111e+00 1.06800699e+00 2.44685318e-02 6.95074737e-01 8.00082684e-01 -5.44307828e-01 -1.48843661e-01 4.11814779e-01 -1.22935988e-01 7.88949013e-01 -9.23413560e-02 -2.30838731e-01 -2.00152278e+00 -1.26294768e+00 7.20709622e-01 6.77902028e-02 3.01106095e-01 -4.99773175e-01 -8.24158669e-01 5.85617185e-01 3.49627674e-01 4.38693106e-01 1.16001463e+00 -4.84934486e-02 -7.04010963e-01 -5.50950766e-01 -1.28912663e+00 3.53266358e-01 7.84083366e-01 -7.54731774e-01 -6.47149757e-02 2.12787732e-01 2.77066141e-01 -2.62330621e-01 -1.17586339e+00 5.90981066e-01 1.02698147e+00 -8.38132977e-01 8.84604931e-01 -7.41382241e-01 7.50221372e-01 -8.19115266e-02 -5.39442182e-01 -1.17209542e+00 -9.87645611e-02 -2.45755717e-01 -1.57328561e-01 1.40257657e+00 2.48066261e-01 -6.98631167e-01 6.29390895e-01 7.73144782e-01 8.11473355e-02 -9.94726300e-01 -9.89050567e-01 -3.41968089e-01 -3.20996165e-01 -1.78947210e-01 8.19624066e-01 8.09531212e-01 -2.73714900e-01 1.28497779e-01 -6.23323798e-01 8.14577788e-02 9.17885721e-01 6.02138862e-02 6.11161113e-01 -1.13809872e+00 1.26186326e-01 -1.62590995e-01 -6.09217286e-01 -6.31802917e-01 6.25935912e-01 -8.50265801e-01 -1.82271972e-01 -7.09954500e-01 4.26210880e-01 -4.46528383e-02 -5.09837329e-01 8.13076615e-01 2.09038228e-01 7.02698886e-01 1.38526574e-01 -6.61116838e-02 -3.17616761e-01 1.13692892e+00 1.05597126e+00 -4.85190928e-01 2.23097339e-01 -3.83040458e-01 -5.32874882e-01 5.19571602e-01 7.64333665e-01 2.15659991e-01 -1.88884392e-01 -5.66916943e-01 -3.75493377e-01 2.16605254e-02 4.29182082e-01 -9.02427077e-01 2.92940736e-01 2.76420176e-01 1.14408886e+00 -4.16262507e-01 6.23920560e-01 -8.80867839e-01 -1.36277666e-02 2.74127245e-01 -3.67781669e-01 -2.42159933e-01 4.23530847e-01 1.92348257e-01 -6.00670695e-01 1.91225573e-01 6.73624635e-01 2.99061596e-01 -7.05867648e-01 8.60075295e-01 -1.21437421e-04 -5.11837959e-01 7.67207742e-01 1.05012134e-01 -3.02113712e-01 -2.82529891e-01 -6.71204031e-01 1.33679524e-01 -9.59746391e-02 6.82787836e-01 1.02732325e+00 -1.87672067e+00 -8.87524962e-01 8.90547454e-01 3.30622852e-01 -4.07965064e-01 5.78608811e-01 5.71441114e-01 -2.00593062e-02 3.62414956e-01 -6.02665961e-01 -5.09126723e-01 -1.49783206e+00 5.11209667e-02 4.25522059e-01 4.74963933e-01 -1.96135968e-01 9.42300856e-01 -1.84507623e-01 -3.79291266e-01 3.35782170e-01 2.75405496e-01 -2.83054948e-01 2.51547933e-01 9.89117920e-01 1.24440186e-01 1.90511987e-01 -1.17105532e+00 -5.03247619e-01 6.68015838e-01 -1.87405497e-01 2.85594910e-01 1.47782195e+00 7.17266798e-02 -3.08130294e-01 3.59438430e-03 1.92448533e+00 -4.83522564e-01 -1.10456502e+00 -4.42259490e-01 -5.69686413e-01 -5.36899567e-01 8.38840306e-02 -5.19678891e-01 -1.72098660e+00 9.98229980e-01 8.60716820e-01 -4.95145559e-01 1.42657471e+00 -1.74307466e-01 8.72976542e-01 6.23886645e-01 2.58271962e-01 -9.40051019e-01 7.28621930e-02 3.31951559e-01 1.11181211e+00 -1.58949637e+00 -2.80782849e-01 -4.61691469e-02 -5.12648582e-01 1.43524945e+00 8.13218415e-01 2.53490265e-02 8.42185020e-01 1.70037180e-01 -8.03453252e-02 -1.25467822e-01 -7.86300659e-01 2.09185723e-02 5.40933192e-01 4.82079864e-01 5.80778897e-01 -5.79793751e-02 1.19775936e-01 1.06651092e+00 -1.01435229e-01 7.26790503e-02 -1.14714123e-01 5.88950336e-01 -1.24462821e-01 -8.07698309e-01 -2.13991657e-01 4.99713540e-01 -2.58718461e-01 2.64407933e-01 -2.65003413e-01 6.30365193e-01 2.73556471e-01 1.01537824e+00 1.96558997e-01 -7.67123818e-01 2.87201256e-01 2.24319682e-01 4.75594878e-01 -3.08056232e-02 -3.65565568e-01 -1.28661886e-01 -8.41817483e-02 -7.84220338e-01 -4.20253277e-01 -5.18699169e-01 -7.67449856e-01 -4.84589934e-01 7.90697634e-02 -1.37289718e-01 7.59229004e-01 8.05410147e-01 4.87769395e-01 3.00173491e-01 1.05035460e+00 -1.04720998e+00 -4.73149121e-01 -1.02591121e+00 -7.10597932e-01 5.24020970e-01 6.36650026e-01 -8.41737032e-01 -2.24857360e-01 5.85351251e-02]
[13.306188583374023, 0.940438985824585]
9c14cb71-e410-4a45-aea2-811d81713a65
sir-nerd-a-chinese-named-entity-recognition
null
null
https://aclanthology.org/W12-6322
https://aclanthology.org/W12-6322.pdf
SIR-NERD: A Chinese Named Entity Recognition and Disambiguation System using a Two-Stage Method
null
['Zehuan Peng', 'Xianpei Han', 'Le Sun']
2012-12-01
sir-nerd-a-chinese-named-entity-recognition-1
https://aclanthology.org/W12-6322
https://aclanthology.org/W12-6322.pdf
ws-2012-12
['chinese-named-entity-recognition']
['natural-language-processing']
[-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01 -8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01 -2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00 -3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01 -9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01 7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01 7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00 -1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01 3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01 9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01 5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00 -5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01 1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00 7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01 -1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02 -1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01 1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00 1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01 3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01 8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01 9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01 -9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01 -1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01 -2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01 -8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00 1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01 8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00 -6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01 -6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01 3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01 4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02 4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01 1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01 9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01 -1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01 -7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00 -1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02 1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01 -1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01 -1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01 -4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01 -1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01 6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01 -1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00 -7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01 -1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01 3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01 -1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01 1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01 3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00 -2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01 2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01 -1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01 4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01 2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00 1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01 -3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00 7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01 3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01 -2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01 7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01 -2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01 6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00 7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00 -3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01 -6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00 3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01 1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01 -5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01 -5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01 -2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01 -1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01 5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01 -2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01 -4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01 5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01 -6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00 1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01 8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02 -6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01 -1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01 1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01 8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03 3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01 8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01 -1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01 6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01 -9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01 -1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00 -5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02 -5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01 1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01 -4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01 1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01 6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01 5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01 1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01 1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01 1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01 1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00 -8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01 -1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01 6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01 4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00 -1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00 -7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00 2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01 -4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02 1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01 3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01 9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01 7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01 6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01 1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01 -1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00 3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01 9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01 -4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01 4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00 2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01 5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01 2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01 -2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01 -6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01 -1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01 -5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01 -1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00 -6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01 -1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01 1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02 1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01 5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01 -4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01 -1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01 6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01 7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01 1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01 1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01 8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01 8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00 -4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01 -5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02 5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01 -2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00 -3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01 6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01 5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00 3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01 -8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00 -8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01 3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01 -3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05 -1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01 8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02 6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01 5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00 1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01 2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02 -1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01 -4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02 9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01 -8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02 7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01 -3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01 -1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01 -1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01 -2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01 1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03 6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01 -4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01 9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01 8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01 1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01 -1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01 8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01 5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01 9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01 -4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01 1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01 -9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00 5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01 -7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00 -6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01 -5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01 -5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01 4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01 -9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00 -8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00 -5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01 -2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00 -3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02 2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01]
[-7.143136024475098, 3.8487985134124756]
bb7470ee-1239-4902-994e-e8605842fad3
dual-information-enhanced-multi-view
2211.14987
null
https://arxiv.org/abs/2211.14987v1
https://arxiv.org/pdf/2211.14987v1.pdf
Dual Information Enhanced Multi-view Attributed Graph Clustering
Multi-view attributed graph clustering is an important approach to partition multi-view data based on the attribute feature and adjacent matrices from different views. Some attempts have been made in utilizing Graph Neural Network (GNN), which have achieved promising clustering performance. Despite this, few of them pay attention to the inherent specific information embedded in multiple views. Meanwhile, they are incapable of recovering the latent high-level representation from the low-level ones, greatly limiting the downstream clustering performance. To fill these gaps, a novel Dual Information enhanced multi-view Attributed Graph Clustering (DIAGC) method is proposed in this paper. Specifically, the proposed method introduces the Specific Information Reconstruction (SIR) module to disentangle the explorations of the consensus and specific information from multiple views, which enables GCN to capture the more essential low-level representations. Besides, the Mutual Information Maximization (MIM) module maximizes the agreement between the latent high-level representation and low-level ones, and enables the high-level representation to satisfy the desired clustering structure with the help of the Self-supervised Clustering (SC) module. Extensive experiments on several real-world benchmarks demonstrate the effectiveness of the proposed DIAGC method compared with the state-of-the-art baselines.
['Haizhang Zhang', 'Chang-Dong Wang', 'Xi-Ran Zhu', 'Man-Sheng Chen', 'Jia-Qi Lin']
2022-11-28
null
null
null
null
['graph-clustering']
['graphs']
[-6.89233616e-02 1.56543236e-02 -3.34332436e-01 -7.85255730e-02 -5.41549385e-01 -2.65253156e-01 4.29482311e-01 1.12503260e-01 2.30707020e-01 1.00611664e-01 4.16510701e-01 1.79337114e-01 -5.53637564e-01 -6.83679044e-01 -1.26647964e-01 -1.20080090e+00 -1.52508169e-01 4.17686105e-01 -1.09549858e-01 1.30333513e-01 9.02104750e-02 -5.66377155e-02 -1.44464755e+00 4.78277743e-01 9.07160521e-01 6.47225559e-01 3.41810822e-01 -1.30015500e-02 -8.07505623e-02 7.02126801e-01 -1.00448035e-01 -5.68514131e-02 -2.29491554e-02 -5.46464086e-01 -4.42132980e-01 5.97221196e-01 -7.59531185e-02 2.01922879e-01 -3.00679713e-01 1.36975801e+00 3.40947360e-01 6.46478981e-02 7.60548055e-01 -1.44093370e+00 -6.40704393e-01 6.47744715e-01 -1.05983758e+00 -2.16154024e-01 1.08531713e-01 -2.25281611e-01 1.18628502e+00 -9.40820932e-01 6.22252584e-01 1.20622981e+00 1.84422240e-01 1.94199637e-01 -1.25902152e+00 -4.21980500e-01 4.84357446e-01 4.09316987e-01 -1.63520825e+00 -1.15939781e-01 1.25917292e+00 -4.76701617e-01 4.39962298e-01 9.13457647e-02 6.08594418e-01 7.54808187e-01 2.58671660e-02 8.99195075e-01 1.26326394e+00 -1.00168623e-01 8.20503086e-02 2.18976513e-01 1.70047596e-01 7.45054781e-01 2.15011925e-01 -2.60929793e-01 -3.45901757e-01 -1.37182593e-01 4.80818629e-01 3.79398942e-01 -5.71597993e-01 -9.39338744e-01 -1.28675878e+00 7.62988389e-01 6.06073439e-01 3.49160105e-01 -4.96796668e-01 -4.69283938e-01 3.44743371e-01 -7.67741501e-02 3.98543477e-01 -5.21682613e-02 -1.44750383e-02 2.91045815e-01 -6.79351270e-01 -5.05381763e-01 5.38911223e-01 1.11882877e+00 9.98146176e-01 -9.00420826e-03 1.05696820e-01 7.89521098e-01 6.67093277e-01 1.03927001e-01 3.89529109e-01 -8.63002658e-01 8.15615356e-01 1.35905731e+00 -5.16930342e-01 -1.67708337e+00 -2.88870692e-01 -6.84056461e-01 -1.57503700e+00 -1.52025834e-01 -1.90366432e-01 1.76887929e-01 -7.06936717e-01 1.62595713e+00 4.65305626e-01 -3.74435745e-02 2.56369889e-01 8.58695805e-01 1.06770885e+00 6.43280625e-01 -2.47288942e-01 -5.95465839e-01 1.15548801e+00 -8.48823369e-01 -7.83314764e-01 5.41781681e-03 3.13388318e-01 -4.91807401e-01 5.40522635e-01 2.39813000e-01 -7.33698189e-01 -6.49049461e-01 -1.20338857e+00 3.95041883e-01 -2.11682633e-01 1.60590947e-01 5.64143181e-01 3.26810449e-01 -9.47387516e-01 2.89089054e-01 -7.51390576e-01 -2.63133496e-01 2.11865187e-01 2.11321667e-01 -5.55664718e-01 -3.63362938e-01 -8.61733198e-01 2.47835398e-01 7.17753708e-01 3.11359137e-01 -5.62360764e-01 -1.66880563e-01 -7.02577829e-01 1.32732570e-01 7.66412795e-01 -5.45150578e-01 3.68671492e-02 -7.49260604e-01 -8.09477031e-01 5.67624629e-01 -6.69673532e-02 2.32085645e-01 1.57706946e-01 3.69112879e-01 -4.96724397e-01 4.15537506e-01 3.32586944e-01 6.12417400e-01 6.38156056e-01 -1.88186955e+00 -4.01154816e-01 -8.37360442e-01 -2.58906662e-01 6.81666136e-01 -5.11388004e-01 -4.90382403e-01 -1.01366770e+00 -5.54420710e-01 8.30940902e-01 -8.36800635e-01 -1.23236857e-01 -5.43019712e-01 -6.36439025e-01 -2.96758592e-01 9.03498948e-01 -6.29352093e-01 1.36636436e+00 -2.28050327e+00 7.49547303e-01 4.47967589e-01 6.89604759e-01 2.34451257e-02 4.44060704e-03 7.49872446e-01 -1.87365830e-01 3.26004885e-02 -2.05008537e-01 -3.64384979e-01 -1.68783337e-01 2.32987285e-01 2.80247539e-01 5.87717652e-01 -3.27082813e-01 5.39686084e-01 -7.77395248e-01 -7.86915243e-01 3.28340054e-01 4.42818046e-01 -2.93750882e-01 1.47674128e-01 2.85210311e-01 5.06664753e-01 -4.50036764e-01 6.56965077e-01 7.96356499e-01 -5.68695188e-01 7.55865037e-01 -5.75587451e-01 1.47532761e-01 -3.14092457e-01 -1.43948174e+00 1.56916118e+00 1.01133086e-01 1.23885028e-01 2.96437114e-01 -1.20728338e+00 7.62412250e-01 3.56195301e-01 7.53988862e-01 -3.98437947e-01 1.50497362e-01 -1.33129805e-01 1.11539342e-01 -3.49937201e-01 1.00670874e-01 1.06926830e-02 2.52605397e-02 4.06375408e-01 -3.12687503e-03 6.31517351e-01 1.58714518e-01 7.77210116e-01 5.82322955e-01 -3.02442163e-02 4.34674680e-01 -2.99230367e-01 8.81682873e-01 -1.91288292e-01 7.99568236e-01 2.65939116e-01 -3.12786192e-01 7.06900299e-01 5.20477772e-01 -1.85659036e-01 -7.00490355e-01 -9.40061390e-01 3.29920322e-01 6.47948742e-01 5.74639440e-01 -6.80759072e-01 -6.97689772e-01 -7.53754258e-01 -2.84078449e-01 3.54097545e-01 -6.73138022e-01 -2.60194600e-01 -2.74735838e-01 -8.12480032e-01 2.02929135e-02 4.76737082e-01 5.55193424e-01 -7.07077205e-01 1.50681138e-01 9.15859193e-02 -7.77762234e-01 -1.13153064e+00 -4.21621174e-01 5.35921268e-02 -8.73565793e-01 -1.25910509e+00 -3.72745693e-01 -8.84733200e-01 1.08242440e+00 9.79135334e-01 8.56543183e-01 2.19698265e-01 2.28353783e-01 4.75689262e-01 -5.21030724e-01 2.27216631e-01 -2.02772185e-01 8.03236738e-02 6.38047159e-02 5.30934632e-01 5.08575678e-01 -9.21775162e-01 -4.81611669e-01 4.21716958e-01 -8.81145775e-01 5.48634708e-01 7.03143358e-01 7.29132354e-01 8.05864096e-01 4.98336375e-01 4.58768815e-01 -8.49841118e-01 4.24495608e-01 -6.49019897e-01 -2.75641352e-01 4.62477058e-01 -1.08897507e+00 -1.16329707e-01 7.49564111e-01 -5.94091117e-02 -9.47435498e-01 2.46803439e-03 4.04800445e-01 -8.11428249e-01 -1.21283703e-01 8.61612976e-01 -7.14609563e-01 3.89662504e-01 -3.51090021e-02 6.40068412e-01 2.10535035e-01 -3.68753076e-01 3.96709740e-01 6.57459617e-01 3.49628508e-01 -4.94659841e-01 6.66246831e-01 6.42639875e-01 5.83446212e-03 -5.50621212e-01 -8.10733140e-01 -8.41503620e-01 -9.61156368e-01 -4.35406566e-01 1.07333136e+00 -1.21192503e+00 -7.18997061e-01 3.84491086e-01 -6.61383331e-01 4.82580900e-01 2.25080281e-01 4.60884750e-01 -3.15618306e-01 8.35774601e-01 -5.02095878e-01 -7.50556648e-01 -1.59272954e-01 -1.30435491e+00 8.85043919e-01 2.41661549e-01 2.14793563e-01 -1.14770579e+00 -2.45220259e-01 7.30506957e-01 -1.22306310e-01 3.70446295e-01 1.08837330e+00 -5.82615733e-01 -7.57715404e-01 -1.06067352e-01 -3.87049824e-01 2.69118279e-01 3.56305361e-01 -1.89635932e-01 -6.62552595e-01 -6.11021042e-01 1.50962994e-01 -5.92160337e-02 8.17296326e-01 3.32016468e-01 1.02045572e+00 -1.67147413e-01 -4.50617224e-01 6.07243717e-01 1.66359377e+00 3.02093625e-01 4.30664897e-01 1.70366362e-01 1.42645216e+00 7.99426734e-01 3.54143202e-01 3.86492103e-01 9.77067113e-01 4.16480541e-01 6.06280565e-01 -4.01867330e-02 1.20527856e-01 -3.13686371e-01 2.36056343e-01 1.60558140e+00 -2.01140538e-01 -2.64629215e-01 -7.68523157e-01 5.24621665e-01 -2.18349910e+00 -8.41968179e-01 -4.49698418e-01 1.94790697e+00 2.15811387e-01 -7.46639296e-02 5.17998310e-03 5.05162738e-02 1.19584465e+00 4.65654850e-01 -5.11019707e-01 3.05912316e-01 -2.51824707e-01 -7.24389493e-01 1.73204194e-03 1.65073335e-01 -1.12039053e+00 4.83318806e-01 4.69696188e+00 9.41464126e-01 -5.20790756e-01 -1.06531806e-01 5.84350109e-01 2.02774093e-01 -3.68267417e-01 1.45147845e-01 -4.92624462e-01 4.67069983e-01 4.59492952e-01 -6.78276867e-02 4.99920577e-01 6.71481133e-01 1.19275868e-01 -2.19950154e-02 -9.44254041e-01 1.08441305e+00 3.50803524e-01 -9.58036780e-01 3.59020025e-01 5.14373302e-01 8.05398405e-01 -2.21179634e-01 -3.86649668e-02 2.44575337e-01 3.34898591e-01 -6.00653291e-01 2.16860279e-01 4.81883585e-01 5.88670075e-01 -1.03165936e+00 7.76163578e-01 6.45380795e-01 -1.66784644e+00 -9.28372378e-04 -3.80205989e-01 2.31825441e-01 -3.49234119e-02 6.18726254e-01 -4.80461240e-01 1.42686617e+00 5.91349661e-01 1.22065485e+00 -7.71403849e-01 3.76820087e-01 -1.06301889e-01 5.40677786e-01 4.82991822e-02 2.95780212e-01 3.76569718e-01 -9.55737829e-01 5.42458236e-01 7.12826848e-01 2.06749868e-02 1.44544646e-01 6.79843426e-01 7.29281187e-01 7.62281343e-02 1.98976621e-01 -6.31459534e-01 -9.66085792e-02 4.26775903e-01 1.56121755e+00 -1.07309425e+00 -3.74769628e-01 -5.51417232e-01 8.54259193e-01 5.13980091e-01 4.59863514e-01 -5.44178903e-01 1.96137372e-02 2.53145546e-01 -2.37399563e-01 2.96191067e-01 -2.06924677e-01 -1.78875118e-01 -1.40164793e+00 2.21375510e-01 -1.00810611e+00 8.30527604e-01 -6.27467453e-01 -1.49838042e+00 4.92676646e-01 7.05053955e-02 -1.63404810e+00 -5.11434972e-02 -6.11257106e-02 -3.86064738e-01 7.68746555e-01 -1.11156917e+00 -1.42832673e+00 -3.98084730e-01 6.77678108e-01 4.74249452e-01 -3.83708805e-01 5.70934772e-01 3.32543284e-01 -8.85535598e-01 2.51652122e-01 3.69424582e-01 2.12821737e-01 4.92632598e-01 -1.25478089e+00 -1.77191019e-01 9.14607108e-01 5.53758740e-02 8.39543402e-01 2.17558607e-01 -7.27878928e-01 -1.50111902e+00 -1.15800977e+00 2.99704909e-01 -1.72459155e-01 3.29648077e-01 -2.83025533e-01 -1.03465700e+00 5.11962414e-01 3.10954183e-01 -2.45829105e-01 9.75481153e-01 2.04435214e-01 -4.72868621e-01 -1.46684542e-01 -7.49675512e-01 4.89050806e-01 8.92545462e-01 -5.79893708e-01 -3.59349847e-01 4.48409244e-02 5.66288173e-01 1.45977750e-01 -9.95227993e-01 5.06058514e-01 4.01039749e-01 -1.36789346e+00 9.32626545e-01 -2.91054219e-01 6.11614883e-01 -6.61035478e-01 -4.33187366e-01 -1.31328750e+00 -7.78210282e-01 -1.15150465e-02 -1.40904799e-01 1.76557243e+00 4.09831181e-02 -5.27903974e-01 6.47248387e-01 1.57105267e-01 -8.57618004e-02 -8.62723768e-01 -6.40636504e-01 -5.16640484e-01 -3.91791850e-01 -7.25246370e-02 3.52663666e-01 1.31429279e+00 3.33614349e-02 7.00011134e-01 -6.20713472e-01 4.88378257e-01 1.15548468e+00 6.55160189e-01 5.20471275e-01 -1.27947938e+00 -1.65728092e-01 -2.62380362e-01 -4.57303286e-01 -6.43853843e-01 3.43684256e-02 -1.28379905e+00 -1.44181773e-01 -1.92318296e+00 8.56446624e-01 -1.07250273e-01 -4.97892469e-01 1.51246116e-01 -5.99493802e-01 -1.04398072e-01 2.87888110e-01 7.71059155e-01 -1.01812339e+00 8.18363488e-01 1.26620793e+00 -2.31522024e-01 -1.06880367e-01 -2.48777613e-01 -1.11221623e+00 8.40513051e-01 4.61756915e-01 -3.26918274e-01 -6.89343631e-01 -2.46185780e-01 1.67806111e-02 3.25155318e-01 1.37954563e-01 -8.89962673e-01 5.69193721e-01 -6.77001700e-02 4.02320504e-01 -1.10482919e+00 1.76815256e-01 -9.72438276e-01 3.79011750e-01 1.70709804e-01 -1.20596245e-01 1.05503790e-01 -4.45237041e-01 1.06888223e+00 -5.09090126e-01 2.44906768e-01 6.80232227e-01 -4.27409023e-01 -7.71054029e-01 4.56399083e-01 -2.30115756e-01 -3.62308184e-03 9.48974550e-01 -3.47251028e-01 -1.85124859e-01 -4.78829563e-01 -8.22384953e-01 6.73631728e-01 5.80237448e-01 4.63858128e-01 7.41293013e-01 -1.69508803e+00 -6.30068779e-01 2.68660009e-01 3.38180780e-01 1.01680905e-01 7.14455485e-01 9.51085865e-01 -4.70359996e-02 1.96846247e-01 -6.52713585e-04 -9.29119229e-01 -1.36846566e+00 9.82584953e-01 -7.09535480e-02 -5.02256453e-01 -6.05637193e-01 3.83045763e-01 6.06597185e-01 -4.71313655e-01 1.13651305e-01 4.98804688e-01 -6.15128398e-01 4.30043727e-01 1.55608147e-01 5.20311832e-01 -2.53760874e-01 -1.05281842e+00 -4.11811799e-01 6.87666655e-01 -1.39263839e-01 1.51249051e-01 1.37056243e+00 -7.09939182e-01 -5.85058630e-01 5.86592317e-01 1.43839896e+00 -2.41928667e-01 -9.25814867e-01 -3.61586809e-01 -1.81760177e-01 -3.22719604e-01 -1.03117386e-02 -3.09937537e-01 -1.32905066e+00 8.92170310e-01 2.60248393e-01 3.02805036e-01 1.30077207e+00 7.40297139e-02 3.89122158e-01 1.37292251e-01 3.45072299e-01 -1.06200314e+00 2.07443297e-01 1.46331091e-03 5.32856226e-01 -1.17550421e+00 3.08141351e-01 -7.88154364e-01 -9.00213659e-01 8.66662920e-01 7.46165693e-01 1.01879209e-01 6.40307248e-01 -2.26868913e-01 3.85661758e-02 -7.64132857e-01 -7.68736362e-01 -2.06302166e-01 4.33365643e-01 6.74857676e-01 1.43072546e-01 2.24777520e-01 -1.08808964e-01 4.45964128e-01 3.53267521e-01 -7.01814413e-01 4.99316365e-01 5.74808359e-01 -1.42782375e-01 -8.50183964e-01 -2.69258440e-01 4.92080927e-01 -2.23180026e-01 8.88400972e-02 -5.83428144e-01 7.35627532e-01 7.98699260e-02 1.22447264e+00 -2.25551516e-01 -7.54922211e-01 -8.44195038e-02 -1.72011793e-01 1.89574901e-02 -5.18968463e-01 -1.69867307e-01 6.80755436e-01 -2.00674504e-01 -3.82084459e-01 -9.49139714e-01 -7.29213953e-01 -1.04509747e+00 -3.01264096e-02 -3.76471937e-01 3.74516159e-01 2.05148891e-01 8.37004304e-01 5.46318352e-01 5.48515737e-01 9.95804906e-01 -6.44151509e-01 -2.04368815e-01 -7.25316346e-01 -9.32454169e-01 6.45035625e-01 -6.36851639e-02 -6.39882386e-01 -4.50205147e-01 -3.72830941e-03]
[8.207466125488281, 4.75744104385376]
2138a529-57da-4fd2-83b1-4a418951ad74
clip2point-transfer-clip-to-point-cloud
2210.01055
null
https://arxiv.org/abs/2210.01055v2
https://arxiv.org/pdf/2210.01055v2.pdf
CLIP2Point: Transfer CLIP to Point Cloud Classification with Image-Depth Pre-training
Pre-training across 3D vision and language remains under development because of limited training data. Recent works attempt to transfer vision-language pre-training models to 3D vision. PointCLIP converts point cloud data to multi-view depth maps, adopting CLIP for shape classification. However, its performance is restricted by the domain gap between rendered depth maps and images, as well as the diversity of depth distributions. To address this issue, we propose CLIP2Point, an image-depth pre-training method by contrastive learning to transfer CLIP to the 3D domain, and adapt it to point cloud classification. We introduce a new depth rendering setting that forms a better visual effect, and then render 52,460 pairs of images and depth maps from ShapeNet for pre-training. The pre-training scheme of CLIP2Point combines cross-modality learning to enforce the depth features for capturing expressive visual and textual features and intra-modality learning to enhance the invariance of depth aggregation. Additionally, we propose a novel Dual-Path Adapter (DPA) module, i.e., a dual-path structure with simplified adapters for few-shot learning. The dual-path structure allows the joint use of CLIP and CLIP2Point, and the simplified adapter can well fit few-shot tasks without post-search. Experimental results show that CLIP2Point is effective in transferring CLIP knowledge to 3D vision. Our CLIP2Point outperforms PointCLIP and other self-supervised 3D networks, achieving state-of-the-art results on zero-shot and few-shot classification.
['WangMeng Zuo', 'Wanli Ouyang', 'Rynson W. H. Lau', 'Xiaoshui Huang', 'Yunhan Yang', 'Bowen Dong', 'Tianyu Huang']
2022-10-03
null
null
null
null
['training-free-3d-point-cloud-classification', '3d-point-cloud-classification', 'zero-shot-transfer-3d-point-cloud', 'point-cloud-classification']
['computer-vision', 'computer-vision', 'computer-vision', 'computer-vision']
[ 1.14666019e-02 -2.73541093e-01 -2.40949765e-01 -2.74305731e-01 -8.58004808e-01 -5.14562666e-01 8.01682353e-01 -2.63091296e-01 -1.65203944e-01 -1.62762105e-02 1.38408870e-01 -1.12893954e-01 2.78821081e-01 -9.95316625e-01 -8.89089048e-01 -4.90848839e-01 3.80882412e-01 3.71783406e-01 6.35966182e-01 -1.67723745e-01 1.94367751e-01 5.69812298e-01 -2.00104427e+00 6.17612898e-01 7.56171286e-01 1.28353214e+00 5.49469531e-01 5.23132443e-01 -7.43460596e-01 6.06292307e-01 -2.49771699e-01 -2.16400534e-01 4.75854784e-01 -1.19740039e-01 -4.68032598e-01 2.84126997e-01 9.48828280e-01 -6.57597005e-01 -3.62748921e-01 8.24242771e-01 8.68965030e-01 2.46667579e-01 6.61299586e-01 -1.38039303e+00 -1.04842699e+00 -1.47718519e-01 -7.13247895e-01 2.98114698e-02 4.43345934e-01 4.77524966e-01 7.48574913e-01 -1.43852794e+00 5.98033488e-01 1.49736142e+00 6.19434536e-01 8.46381903e-01 -9.18745100e-01 -7.67558694e-01 1.50609478e-01 3.47345173e-01 -1.15074384e+00 -3.33995610e-01 1.05166852e+00 -5.31890571e-01 1.38764060e+00 -1.12697132e-01 9.23399270e-01 1.40214396e+00 -9.35085267e-02 8.23226333e-01 9.61209059e-01 -3.66796464e-01 2.72193968e-01 -1.13099679e-01 -1.25616923e-01 7.22656131e-01 -3.46128196e-01 3.29229325e-01 -6.42610848e-01 1.48060337e-01 1.02492881e+00 1.94281667e-01 -1.56567559e-01 -7.81875312e-01 -1.12146485e+00 6.54305339e-01 5.22793174e-01 -8.38569924e-02 7.53578618e-02 -3.67028639e-02 5.39547980e-01 3.08455139e-01 7.09200919e-01 -5.00296578e-02 -3.88298810e-01 -6.57309443e-02 -5.42182088e-01 1.14839785e-01 3.88106287e-01 1.31709743e+00 9.33458507e-01 2.25337204e-02 -2.84257144e-01 1.06603682e+00 2.15064228e-01 8.55330050e-01 3.06546032e-01 -1.18288219e+00 7.23283827e-01 6.93401814e-01 -3.79763752e-01 -4.82528746e-01 -2.41428494e-01 -2.10135384e-03 -8.36463213e-01 5.80437064e-01 8.54836851e-02 1.69059888e-01 -1.15256143e+00 1.42118943e+00 4.15661782e-01 4.97431815e-01 1.48565248e-01 1.05354083e+00 1.42327929e+00 8.42528343e-01 1.72393043e-02 1.22397415e-01 1.17051029e+00 -1.19433916e+00 -1.83645472e-01 -1.72912747e-01 4.35419708e-01 -5.34150541e-01 1.66067338e+00 2.04201132e-01 -1.11350107e+00 -9.79395628e-01 -9.34433639e-01 -6.10510945e-01 -4.43720222e-01 -2.02052444e-01 4.98547763e-01 3.40371221e-01 -8.72301698e-01 3.06251645e-01 -6.52254999e-01 -3.61672133e-01 6.83301866e-01 -9.33591947e-02 -4.78779435e-01 -5.53707480e-01 -9.00090039e-01 6.03533566e-01 3.34806770e-01 -4.78346050e-01 -9.91890550e-01 -1.32084095e+00 -1.19886017e+00 -8.73759240e-02 3.11740845e-01 -1.14882755e+00 1.18065786e+00 -6.24888718e-01 -1.72741032e+00 1.35891569e+00 -4.95657185e-03 7.54916891e-02 4.90223140e-01 -1.30432025e-02 -2.59309888e-01 3.44377041e-01 2.60031492e-01 1.06210792e+00 1.04352689e+00 -1.37240195e+00 -7.60410547e-01 -5.88602781e-01 3.63493860e-01 5.06625116e-01 -2.70152599e-01 -3.53635609e-01 -1.01616573e+00 -3.27405185e-01 1.16130471e-01 -6.47899508e-01 1.51200756e-01 5.95780015e-01 1.52610103e-02 -4.97334838e-01 8.82007360e-01 -2.40449626e-02 4.46065784e-01 -2.34463382e+00 1.40488505e-01 -1.96820691e-01 1.78412065e-01 2.46039137e-01 -4.80288714e-01 3.10256749e-01 -1.90001335e-02 -3.03624809e-01 -8.43773782e-02 -8.12554002e-01 -1.82888191e-02 4.77585137e-01 -4.22641784e-01 2.82005847e-01 2.49129102e-01 1.03313518e+00 -1.03244603e+00 -5.39841890e-01 8.76728535e-01 5.74916601e-01 -6.67321384e-01 3.89645189e-01 -4.05899525e-01 4.13780123e-01 -1.34680554e-01 1.07283640e+00 9.47976828e-01 -2.85360754e-01 -4.88441050e-01 -3.45224053e-01 -1.70300394e-01 -1.34255633e-01 -7.40533531e-01 2.56419992e+00 -8.22666287e-01 3.07400197e-01 -3.34553480e-01 -6.82930112e-01 1.16744351e+00 1.61528047e-02 4.83395696e-01 -1.10610056e+00 1.21717706e-01 2.11189780e-03 -6.73127830e-01 -6.82203352e-01 2.48586684e-01 -1.85128912e-01 4.32205060e-03 1.19572885e-01 3.52101058e-01 -7.41784334e-01 -2.09200785e-01 -1.96962263e-02 7.23645210e-01 4.26618040e-01 5.19881025e-02 3.26071441e-01 4.74088371e-01 -1.35148212e-01 4.11878198e-01 4.87350225e-01 -1.78299248e-01 1.14799678e+00 2.02262640e-01 -2.55251914e-01 -1.09722745e+00 -1.43255699e+00 -1.44496530e-01 1.24689388e+00 4.74790424e-01 -2.61252075e-01 -2.83280283e-01 -6.09358191e-01 2.10529044e-01 7.41435528e-01 -5.46077251e-01 -2.36235276e-01 -4.01357636e-02 1.36295915e-01 3.58414859e-01 7.95352936e-01 8.36789906e-01 -8.78002405e-01 -6.55703425e-01 -1.65805727e-01 -1.29396524e-02 -1.39921439e+00 -5.30767202e-01 6.52094632e-02 -8.79716098e-01 -9.95432317e-01 -8.89921844e-01 -8.18718016e-01 4.00794268e-01 9.73994136e-01 1.10058618e+00 -3.42884272e-01 -3.46702076e-02 1.00923121e+00 -5.49001396e-01 -4.38112378e-01 -9.78420377e-02 -6.96908087e-02 -9.04838294e-02 -2.09231392e-01 5.81214011e-01 -9.08281267e-01 -6.91229284e-01 1.70012280e-01 -9.10187066e-01 1.83026388e-01 4.62475479e-01 7.10814953e-01 8.07253778e-01 -5.15028298e-01 2.00379401e-01 -5.52587926e-01 2.22992137e-01 -3.77993554e-01 -5.26029348e-01 1.71575472e-01 -3.34215939e-01 -3.28178644e-01 4.63666707e-01 -5.20104945e-01 -1.17084217e+00 1.35538235e-01 -3.01685274e-01 -1.55069005e+00 -3.04817766e-01 1.51555136e-01 -5.10632277e-01 -3.26746702e-01 6.99732065e-01 3.09665114e-01 1.95608497e-01 -5.64258337e-01 7.61356711e-01 5.74125111e-01 8.22663128e-01 -6.59136415e-01 8.30152571e-01 7.72218883e-01 -3.16293538e-02 -1.01616406e+00 -1.00975966e+00 -8.07439625e-01 -8.17126393e-01 -2.30104849e-01 9.63178337e-01 -1.27268612e+00 -4.79382008e-01 5.78680158e-01 -1.35339868e+00 -4.07764226e-01 -5.22786379e-01 3.01125497e-01 -9.45120931e-01 5.17500460e-01 -2.81876415e-01 -4.58870232e-01 -3.01739544e-01 -8.85708809e-01 1.54865265e+00 4.57067266e-02 3.37294638e-01 -9.54335332e-01 1.85741737e-01 4.14803982e-01 -1.58548150e-02 1.96063519e-01 9.47598040e-01 -2.99860928e-02 -6.27020657e-01 1.37271211e-01 -6.27679229e-01 5.61103225e-01 1.14200953e-02 -2.80093223e-01 -1.38449478e+00 -2.22580299e-01 -1.58616632e-01 -7.69384325e-01 9.94431138e-01 3.43824625e-01 1.43272161e+00 2.65994281e-01 -8.18971694e-02 1.31921840e+00 1.58758819e+00 -3.44072469e-02 8.26304317e-01 3.35286736e-01 1.09525251e+00 4.63213176e-01 5.39219916e-01 5.61066151e-01 7.38860786e-01 7.22053051e-01 7.21081078e-01 -1.27739727e-01 -4.87507284e-01 -6.09812975e-01 3.07145149e-01 7.75450349e-01 -2.40331441e-01 1.97613522e-01 -9.63743389e-01 4.64073509e-01 -1.68240297e+00 -1.08128965e+00 2.09123284e-01 2.03333068e+00 6.40310884e-01 4.13034558e-02 1.09583683e-01 -1.24078058e-01 2.83653527e-01 2.89057761e-01 -8.80331755e-01 -5.65332249e-02 -2.57423878e-01 1.32460177e-01 2.82505870e-01 3.37823600e-01 -9.68614519e-01 9.54241216e-01 5.31624603e+00 9.06003058e-01 -1.21478450e+00 3.17414105e-01 1.36195108e-01 -2.33220682e-01 -4.44495827e-01 -3.25298995e-01 -8.21627915e-01 3.09729874e-01 1.66259065e-01 -1.17617108e-01 2.21876323e-01 1.18539453e+00 7.55311176e-03 2.65306473e-01 -1.24473798e+00 1.78349853e+00 5.13556123e-01 -1.44987023e+00 2.54679680e-01 -9.20896009e-02 9.31505501e-01 4.34358746e-01 1.53462127e-01 5.72265387e-01 -1.27489552e-01 -7.30453670e-01 7.14801133e-01 5.55309296e-01 1.37822866e+00 -6.53582394e-01 2.80049413e-01 4.55222219e-01 -1.32617664e+00 -1.95767090e-01 -7.90568233e-01 -6.70106634e-02 8.19833651e-02 4.00828779e-01 -3.59403729e-01 6.12330794e-01 8.65812361e-01 1.26922536e+00 -4.27172542e-01 1.01928878e+00 -1.37532353e-01 -1.71006143e-01 -7.85304531e-02 2.91097283e-01 3.00233483e-01 -1.28003433e-01 5.02939582e-01 1.00462413e+00 4.34730768e-01 1.70386955e-01 2.95177817e-01 1.02644753e+00 5.85904643e-02 -1.52610198e-01 -1.00009346e+00 4.36204970e-01 4.95547980e-01 1.03798521e+00 -3.02221715e-01 -4.01065081e-01 -8.90709281e-01 1.10288727e+00 4.31664795e-01 3.82674932e-01 -7.49610126e-01 -2.56319433e-01 8.93907249e-01 1.29914597e-01 4.97755706e-01 -3.36862564e-01 -2.86653429e-01 -1.41088486e+00 3.39744389e-02 -5.42095423e-01 3.07966918e-01 -1.20767772e+00 -1.80434859e+00 3.47627223e-01 2.60967076e-01 -1.74094880e+00 -7.45424926e-02 -7.76641488e-01 -7.23377526e-01 7.58301914e-01 -1.93065214e+00 -1.66957211e+00 -8.47794414e-01 1.16384161e+00 9.68515277e-01 -3.56941551e-01 7.01459885e-01 1.98377952e-01 -6.59463778e-02 5.71656227e-01 -2.02112451e-01 -2.13733554e-01 7.02142298e-01 -1.10766542e+00 5.21309674e-01 3.39692056e-01 9.47646648e-02 4.85835597e-02 6.17824644e-02 -3.30862761e-01 -1.63719785e+00 -1.34232104e+00 4.08254325e-01 -6.66262507e-01 3.39275718e-01 -5.39008677e-01 -1.07003629e+00 3.78003567e-01 -5.31982929e-02 4.25112128e-01 5.35116434e-01 -8.21497664e-02 -8.49339128e-01 -2.29991406e-01 -9.51689541e-01 5.21539450e-01 1.68776011e+00 -1.01761329e+00 -8.33554745e-01 2.89055973e-01 1.08962488e+00 -7.26567149e-01 -7.49957323e-01 4.01801556e-01 4.84407157e-01 -1.30043721e+00 1.52297902e+00 -2.89361238e-01 8.24233711e-01 -1.04744628e-01 -4.71365958e-01 -1.21571577e+00 -4.23006654e-01 -5.70369698e-02 -3.94395471e-01 1.17862797e+00 -1.02887258e-01 -3.13548446e-01 7.56001532e-01 2.06754386e-01 -5.60625613e-01 -7.94201434e-01 -1.00145662e+00 -8.99932027e-01 2.64537424e-01 -8.36353719e-01 5.46859384e-01 9.28035140e-01 -3.20051551e-01 4.53030705e-01 -1.56044617e-01 8.17132890e-02 8.25876653e-01 3.03805649e-01 1.16721272e+00 -1.20444739e+00 -3.73013735e-01 -4.07982051e-01 -5.29645324e-01 -1.42762136e+00 4.03387696e-01 -1.06224597e+00 -1.99111238e-01 -1.66923821e+00 3.78291262e-03 -3.69450212e-01 -8.72352719e-02 5.32781184e-01 1.50792941e-01 3.82243663e-01 3.89872730e-01 3.30300748e-01 -5.50202787e-01 1.05944359e+00 1.68492305e+00 -4.92667824e-01 -4.03302640e-01 -9.01422277e-02 -3.40708643e-01 6.87698066e-01 4.52765375e-01 6.84663504e-02 -9.41061735e-01 -7.45116353e-01 -8.92260298e-02 -1.42172789e-02 7.44007409e-01 -1.16531122e+00 3.35126638e-01 -2.94460028e-01 4.42777902e-01 -1.11024737e+00 7.88085043e-01 -9.11952198e-01 -3.00503731e-01 -5.91714010e-02 6.10107072e-02 -2.20187634e-01 3.80932391e-01 7.35297084e-01 -1.36908114e-01 -6.51701167e-02 7.81464279e-01 -3.23612511e-01 -1.36299610e+00 7.55002081e-01 4.40254748e-01 1.55787036e-01 1.06598401e+00 -6.20022774e-01 -4.92917418e-01 -1.40772849e-01 -5.73740959e-01 2.98670501e-01 6.66379273e-01 7.42206633e-01 1.13229489e+00 -1.64746571e+00 -4.20516819e-01 5.43905377e-01 7.84705520e-01 4.81972605e-01 7.89509177e-01 4.63005006e-01 -3.82665813e-01 1.82258800e-01 -5.27338147e-01 -1.17658269e+00 -1.09529889e+00 7.58703291e-01 3.47854316e-01 3.51436257e-01 -1.28396416e+00 8.25843930e-01 5.83232284e-01 -6.57741308e-01 4.94589329e-01 -4.30556059e-01 1.16350515e-04 1.03813987e-02 6.44803405e-01 1.65768012e-01 6.71671182e-02 -3.24164867e-01 -1.77061498e-01 1.31556642e+00 1.44271001e-01 1.42843509e-02 1.25566900e+00 -2.23945305e-01 1.25925690e-01 8.25895667e-01 1.42695343e+00 -4.38888729e-01 -1.72452009e+00 -5.28307199e-01 -7.73414552e-01 -8.07702601e-01 1.51956767e-01 -5.36110103e-01 -9.76744235e-01 1.27800870e+00 7.33475089e-01 -2.42908210e-01 1.19370854e+00 2.29290083e-01 8.39495003e-01 3.24997514e-01 5.12011647e-01 -9.23107028e-01 6.10747993e-01 8.77080739e-01 9.65148151e-01 -1.57361257e+00 -3.04581225e-01 -4.45909500e-01 -7.32243180e-01 1.09754801e+00 1.07932973e+00 -9.15481895e-02 6.61954880e-01 -1.50366575e-01 1.46833450e-01 -1.97512567e-01 -8.03966999e-01 -4.59895879e-01 3.24365377e-01 1.35208166e+00 -1.86154246e-01 -3.20096105e-01 5.01660347e-01 4.52758849e-01 -4.06331457e-02 1.46034822e-01 1.29527539e-01 6.89366996e-01 -3.68902624e-01 -7.11073279e-01 -1.92781001e-01 -4.56437003e-03 4.86316383e-01 -2.30317321e-02 -2.17654839e-01 7.11712539e-01 4.99852121e-01 5.36930561e-01 4.35833812e-01 -5.82452655e-01 7.73181677e-01 -3.87089700e-02 7.80804813e-01 -8.60243320e-01 -1.12838961e-01 -6.28411695e-02 -3.82147163e-01 -7.13650882e-01 -5.50078094e-01 -3.03066850e-01 -1.12366164e+00 -3.15578133e-01 7.86884949e-02 -5.99107206e-01 5.85504234e-01 7.41599619e-01 5.37218690e-01 5.34506738e-01 7.80305743e-01 -1.36061764e+00 -5.18832624e-01 -6.61438942e-01 -6.00485861e-01 4.60425705e-01 3.85317355e-01 -1.06257451e+00 -3.37880880e-01 -5.62093109e-02]
[8.131536483764648, -3.289747714996338]
ce5c8afd-6249-480d-be93-666d4ccdaa1f
deep-bayesian-inference-for-seismic-imaging
2110.04825
null
https://arxiv.org/abs/2110.04825v3
https://arxiv.org/pdf/2110.04825v3.pdf
Deep Bayesian inference for seismic imaging with tasks
We propose to use techniques from Bayesian inference and deep neural networks to translate uncertainty in seismic imaging to uncertainty in tasks performed on the image, such as horizon tracking. Seismic imaging is an ill-posed inverse problem because of bandwidth and aperture limitations, which is hampered by the presence of noise and linearization errors. Many regularization methods, such as transform-domain sparsity promotion, have been designed to deal with the adverse effects of these errors, however, these methods run the risk of biasing the solution and do not provide information on uncertainty in the image space and how this uncertainty impacts certain tasks on the image. A systematic approach is proposed to translate uncertainty due to noise in the data to confidence intervals of automatically tracked horizons in the image. The uncertainty is characterized by a convolutional neural network (CNN) and to assess these uncertainties, samples are drawn from the posterior distribution of the CNN weights, used to parameterize the image. Compared to traditional priors, it is argued in the literature that these CNNs introduce a flexible inductive bias that is a surprisingly good fit for a diverse set of problems. The method of stochastic gradient Langevin dynamics is employed to sample from the posterior distribution. This method is designed to handle large scale Bayesian inference problems with computationally expensive forward operators as in seismic imaging. Aside from offering a robust alternative to maximum a posteriori estimate that is prone to overfitting, access to these samples allow us to translate uncertainty in the image, due to noise in the data, to uncertainty on the tracked horizons. For instance, it admits estimates for the pointwise standard deviation on the image and for confidence intervals on its automatically tracked horizons.
['Felix J. Herrmann', 'Gabrio Rizzuti', 'Ali Siahkoohi']
2021-10-10
null
null
null
null
['seismic-imaging']
['miscellaneous']
[ 2.81425327e-01 2.33995110e-01 3.91473711e-01 -1.58432797e-01 -1.03755510e+00 -3.83759707e-01 5.05918324e-01 -2.90532380e-01 -5.79654992e-01 8.24503243e-01 3.62124175e-01 -1.34684592e-01 -6.39850438e-01 -8.05121720e-01 -8.62754464e-01 -1.03545547e+00 -1.01739734e-01 4.92369711e-01 2.65511692e-01 1.49287790e-01 4.29311901e-01 4.82911766e-01 -1.24134338e+00 -1.69694886e-01 4.98209506e-01 1.22793043e+00 2.06831664e-01 3.26266080e-01 1.48563059e-02 5.98323345e-01 -4.77446795e-01 -3.72899771e-02 8.12298432e-02 -4.22899574e-02 -5.68210661e-01 5.05669452e-02 1.36478677e-01 -7.77509749e-01 -1.75533384e-01 1.25505054e+00 5.74536860e-01 2.35017225e-01 1.03878868e+00 -5.02151072e-01 -2.57393390e-01 6.35597229e-01 -5.08962810e-01 1.80964366e-01 3.56839821e-02 2.01307580e-01 5.68505943e-01 -1.08658028e+00 5.58387518e-01 1.15809667e+00 1.12769353e+00 1.38653994e-01 -1.29176641e+00 -1.47088900e-01 -2.94909805e-01 -2.13578686e-01 -1.18755841e+00 -4.05848294e-01 7.58734822e-01 -9.28300023e-01 5.10579109e-01 1.34410828e-01 3.67252171e-01 1.09009266e+00 2.60307074e-01 3.11204642e-01 1.00526226e+00 -4.28411782e-01 5.34104109e-01 -3.36178541e-02 -2.74036288e-01 3.58016044e-01 3.89736965e-02 4.45859194e-01 -4.69958693e-01 -1.84072599e-01 1.06215954e+00 -2.80838519e-01 -6.50631964e-01 -2.40753740e-01 -9.95180964e-01 9.22602355e-01 4.80519742e-01 4.67656972e-03 -3.45637113e-01 4.30147618e-01 3.26506525e-01 -2.77718633e-01 6.11919701e-01 4.50461060e-01 -1.90322801e-01 -2.07221718e-03 -1.25008500e+00 2.26188406e-01 7.73676157e-01 3.62356335e-01 7.63134003e-01 3.88452500e-01 -2.89350420e-01 5.10453701e-01 5.91861963e-01 6.43508017e-01 2.68470705e-01 -1.23786676e+00 1.56913891e-01 -1.54945567e-01 2.64773399e-01 -1.15062761e+00 -4.09129351e-01 -3.99963111e-01 -8.91821861e-01 8.24362814e-01 8.27472985e-01 -3.61292869e-01 -1.06700051e+00 1.69729376e+00 2.85258621e-01 1.20477028e-01 -5.24079911e-02 1.02416170e+00 4.45310056e-01 6.85860097e-01 -2.49719009e-01 -3.30277719e-02 1.10644233e+00 -2.19767779e-01 -6.67229831e-01 -3.50256026e-01 1.02657542e-01 -6.47688448e-01 7.03839004e-01 2.37642393e-01 -1.12864685e+00 -3.36760044e-01 -1.08577669e+00 2.52900243e-01 -5.52641302e-02 -1.48835406e-01 2.52368540e-01 4.45250154e-01 -8.55223119e-01 9.93342102e-01 -1.01745176e+00 1.56393990e-01 3.88713181e-01 1.72803015e-01 -3.19311880e-02 1.65694833e-01 -1.34652710e+00 1.12140512e+00 4.41437364e-01 5.74439287e-01 -1.01268315e+00 -8.13002467e-01 -9.66279268e-01 1.79022893e-01 3.75400424e-01 -4.96137887e-01 1.03691387e+00 -8.47821057e-01 -1.62451494e+00 4.70460922e-01 3.66277516e-01 -5.58397055e-01 9.63999212e-01 -1.26735225e-01 1.94971383e-01 1.90515488e-01 4.51832600e-02 5.60500860e-01 1.38663197e+00 -1.03028226e+00 -1.94293469e-01 -1.42767131e-01 -1.52208373e-01 -1.24506623e-01 1.04239866e-01 -2.61642635e-01 -1.97377324e-01 -6.19924009e-01 4.67481315e-01 -8.09889674e-01 -4.73071277e-01 2.08874181e-01 -1.03955232e-01 5.31848669e-01 5.68874061e-01 -8.49747956e-01 8.29833508e-01 -2.12545538e+00 -2.75093988e-02 4.10902321e-01 -2.22644582e-03 -7.22288638e-02 3.79900903e-01 1.43538192e-01 6.70669451e-02 -1.39245782e-02 -9.28454041e-01 -3.25504728e-02 -7.74730593e-02 1.70232728e-01 -4.68325377e-01 6.77051067e-01 4.12328482e-01 5.28641999e-01 -7.47356772e-01 -2.10492954e-01 2.29396641e-01 7.13673294e-01 -4.74345565e-01 1.73587114e-01 -3.71106625e-01 8.77539039e-01 -3.64420623e-01 1.81599751e-01 9.26596105e-01 -5.00806645e-02 -2.49182239e-01 -2.53069401e-01 -1.68030068e-01 2.20656190e-02 -1.40488517e+00 1.56906199e+00 -3.32817793e-01 5.57864070e-01 1.94586053e-01 -1.04214561e+00 9.57379818e-01 4.15767342e-01 2.12499842e-01 -2.21575692e-01 -3.76659483e-02 4.64330912e-01 -1.81527376e-01 -6.87018931e-01 3.66194785e-01 -5.05879581e-01 1.25655562e-01 1.31482869e-01 1.85411021e-01 -6.85389459e-01 -7.45922551e-02 -9.78502706e-02 8.64902914e-01 6.02503777e-01 -1.61732465e-01 -4.29100990e-01 2.95511156e-01 -4.42530327e-02 5.59067786e-01 9.24079001e-01 1.42442375e-01 1.11955512e+00 5.11098325e-01 -4.24885899e-01 -1.25929666e+00 -1.08738351e+00 -5.61212301e-01 1.69435754e-01 -3.58153254e-01 4.43259925e-01 -6.87117994e-01 -3.12014855e-02 -1.95401400e-01 6.66290641e-01 -4.63344812e-01 -1.38656259e-01 -3.80577475e-01 -9.35144067e-01 4.46878344e-01 4.40398365e-01 5.94665051e-01 -8.53263319e-01 -1.01859999e+00 5.10402024e-01 -2.23184973e-01 -1.05650866e+00 -1.87072828e-01 4.05323207e-01 -1.00455749e+00 -6.99325681e-01 -1.03575218e+00 -3.62360179e-02 5.47464907e-01 -6.73611641e-01 9.91037250e-01 -4.95677292e-01 -2.60933340e-01 5.13145685e-01 4.04726155e-02 -4.15771753e-01 -2.85526097e-01 -4.81713355e-01 -1.93013936e-01 1.17570393e-01 -3.21144074e-01 -6.45610988e-01 -5.66236734e-01 1.11656226e-01 -1.19859850e+00 -3.01711291e-01 2.78427124e-01 1.23482752e+00 4.39805448e-01 2.20870271e-01 3.55781943e-01 -5.97201705e-01 4.25930470e-01 -5.38755834e-01 -1.09637868e+00 -8.36503133e-02 -3.15836132e-01 3.43457699e-01 4.20689806e-02 -4.32273924e-01 -1.49687517e+00 3.19666304e-02 -2.26107970e-01 -3.51549387e-01 -2.56417412e-02 1.08572364e+00 2.52923071e-01 -1.14917226e-01 9.04466569e-01 -8.59366581e-02 1.77988663e-01 -2.13793144e-01 1.14057675e-01 3.57194036e-01 8.28365564e-01 -8.09291244e-01 4.27405119e-01 9.06284094e-01 3.66746217e-01 -8.78208220e-01 -1.12731004e+00 -1.73370838e-01 -4.44218934e-01 -4.44493413e-01 9.19855893e-01 -8.12681198e-01 -3.72295350e-01 4.87209439e-01 -1.17129505e+00 -3.14507157e-01 -5.86020529e-01 8.30966413e-01 -8.78930688e-01 4.62515622e-01 -4.62311536e-01 -1.26640785e+00 -9.01044980e-02 -1.23182583e+00 8.81904662e-01 2.52096504e-01 -1.27531156e-01 -1.13796461e+00 -1.73518792e-01 -6.73176721e-02 5.94927251e-01 5.34809351e-01 7.53869891e-01 -9.19376984e-02 -6.44304395e-01 -3.48269850e-01 -7.17205927e-02 5.90918601e-01 -3.56521547e-01 6.91062286e-02 -1.30383623e+00 -8.62007514e-02 7.13450670e-01 -2.92356133e-01 1.08081114e+00 1.12074935e+00 9.94013369e-01 -1.05975293e-01 4.88615595e-02 7.62445807e-01 1.53888142e+00 9.54737589e-02 8.88352156e-01 4.07145858e-01 1.53432533e-01 8.11978459e-01 3.40843737e-01 6.21171117e-01 -3.24907869e-01 3.33498776e-01 7.32678354e-01 2.20276862e-01 3.61532196e-02 5.85263632e-02 2.07450092e-01 2.90483057e-01 -2.16156483e-01 -1.42208233e-01 -1.11459172e+00 6.06037855e-01 -1.81766903e+00 -8.81003618e-01 -1.47458047e-01 2.40244317e+00 7.83709407e-01 4.31620806e-01 -4.91486967e-01 7.85188675e-02 6.45717382e-01 6.60237744e-02 -4.60636407e-01 -7.36326426e-02 -1.39568076e-01 6.92049861e-02 6.53538227e-01 7.04636157e-01 -9.67610419e-01 3.39628756e-01 6.32599592e+00 7.80412436e-01 -1.15329182e+00 -1.11095533e-01 8.02187860e-01 2.61617512e-01 -2.99260199e-01 2.84160346e-01 -6.68836653e-01 5.77037454e-01 8.56565714e-01 3.22297126e-01 2.81953603e-01 5.36294699e-01 3.13333601e-01 -6.42795444e-01 -9.33352411e-01 6.95644140e-01 -2.35380337e-01 -1.52722239e+00 -2.50502080e-01 -8.11718106e-02 8.45165849e-01 4.98966090e-02 2.73626328e-01 -2.04073727e-01 1.84395358e-01 -1.05746841e+00 1.00350130e+00 1.23044598e+00 7.11002588e-01 -6.98448062e-01 8.75811458e-01 4.38952118e-01 -3.98104072e-01 -1.02768287e-01 -5.36648393e-01 -2.56053686e-01 5.56232810e-01 1.27505076e+00 -7.05140948e-01 2.18946934e-01 9.46359515e-01 2.39608526e-01 7.04182684e-02 1.06025565e+00 -2.79925406e-01 6.36459708e-01 -7.23388016e-01 3.30439299e-01 5.03295302e-01 -4.81050849e-01 7.88254023e-01 9.52229202e-01 7.98379362e-01 -9.17138085e-02 -9.41048265e-02 1.44126141e+00 2.92920142e-01 -4.77734476e-01 -7.47461557e-01 1.90844029e-01 2.29182735e-01 9.96100605e-01 -7.41569757e-01 -1.20461352e-01 -2.31453434e-01 3.28887105e-01 3.31246331e-02 5.83788037e-01 -5.69894075e-01 -2.08952680e-01 6.48476928e-02 2.17375979e-01 4.80146676e-01 -3.23416859e-01 -3.43444854e-01 -7.20620990e-01 5.73915467e-02 -5.75524628e-01 2.50484943e-01 -1.09416866e+00 -1.23237097e+00 2.32501030e-01 2.57577658e-01 -1.05357456e+00 -3.79278958e-01 -7.00805902e-01 -6.28269315e-01 1.22478950e+00 -1.36430228e+00 -7.55474687e-01 -4.34636809e-02 1.80220127e-01 2.44418785e-01 6.02590516e-02 6.23591542e-01 5.40535785e-02 1.34382248e-02 -1.41866550e-01 4.77703482e-01 8.35496858e-02 4.37853336e-01 -1.07120144e+00 -1.21292677e-02 8.39428067e-01 -2.18559831e-01 3.37150604e-01 1.04470408e+00 -7.42324352e-01 -9.46195364e-01 -6.91330850e-01 3.00164849e-01 -3.95206124e-01 9.51264560e-01 9.22849327e-02 -1.17060363e+00 6.23022914e-01 -1.18444376e-01 3.46039683e-01 1.88306626e-02 -3.61238509e-01 3.62186357e-02 7.65236840e-02 -1.19282746e+00 3.63351554e-01 2.29473472e-01 -4.63199824e-01 -5.67362726e-01 1.97331190e-01 3.99467081e-01 -7.45729923e-01 -8.64141941e-01 6.37988746e-01 4.71539259e-01 -1.10871673e+00 1.08525813e+00 -1.16790920e-01 7.80628383e-01 -3.09836954e-01 -1.98322982e-01 -1.35604155e+00 -1.06410190e-01 -5.14122605e-01 3.33752744e-02 1.18522906e+00 3.91512692e-01 -6.40261769e-01 6.49041116e-01 8.00314009e-01 -2.06817910e-01 -3.77091557e-01 -1.29953706e+00 -7.48263299e-01 2.88000643e-01 -7.23618746e-01 2.65197486e-01 5.77993155e-01 -4.25511569e-01 -8.74950960e-02 -3.73763561e-01 5.88328362e-01 1.08188760e+00 -2.77123094e-01 1.67215422e-01 -1.14431250e+00 -3.87576878e-01 -2.75438935e-01 -2.00881228e-01 -8.40791941e-01 -1.27703309e-01 -4.61202472e-01 5.97108364e-01 -1.20759451e+00 -2.17829898e-01 -4.48219001e-01 1.04197517e-01 -2.62447804e-01 1.92518950e-01 5.21680787e-02 -2.30055451e-01 1.46251827e-01 4.03213352e-01 4.22335297e-01 1.16611445e+00 -1.59779847e-01 1.65625736e-01 8.68091285e-02 1.18751816e-01 1.35077703e+00 4.88057017e-01 -7.82361269e-01 -1.25154048e-01 -6.84327304e-01 7.55727887e-01 5.65457106e-01 7.02837169e-01 -1.13941813e+00 3.52936834e-01 5.00087813e-02 5.58784723e-01 -5.44508874e-01 3.85841280e-01 -8.77484143e-01 4.31872100e-01 3.98911804e-01 -2.26055741e-01 -5.40364444e-01 4.53401357e-02 7.23651767e-01 -3.53423327e-01 -1.13949084e+00 1.04982877e+00 -6.08994246e-01 -5.33338547e-01 2.47955695e-02 -5.30873477e-01 5.76596707e-02 3.72695267e-01 -1.98243290e-01 1.55662403e-01 -6.43745005e-01 -1.10823226e+00 -4.97957952e-02 1.46223143e-01 -3.96876067e-01 5.88321507e-01 -1.07801497e+00 -6.83739901e-01 1.05117343e-01 -2.86905140e-01 4.70773697e-01 3.36174637e-01 1.00864029e+00 -6.96391463e-01 2.55744755e-02 4.87520173e-02 -1.03852332e+00 -3.79659116e-01 3.06781203e-01 7.54413962e-01 -2.31233478e-01 -6.62567914e-01 1.07574308e+00 5.34263300e-03 -4.06778693e-01 3.20475101e-01 -5.79155862e-01 -1.28593415e-01 2.33128473e-01 4.34860945e-01 4.16336805e-01 2.02639773e-02 -2.90845066e-01 6.37375265e-02 7.15980768e-01 4.94728446e-01 -5.37796557e-01 1.36286509e+00 -2.21904665e-01 -1.00361094e-01 6.36799395e-01 8.22909236e-01 -3.15466970e-01 -1.93120646e+00 -2.92367339e-01 2.49889284e-01 -3.12800288e-01 4.73593175e-01 -6.05046868e-01 -9.17926133e-01 1.05949688e+00 6.91141427e-01 1.00797437e-01 7.85627306e-01 -3.04205984e-01 1.94605246e-01 3.63548994e-01 7.72611797e-02 -1.31738377e+00 7.43301809e-02 7.39302993e-01 1.08174872e+00 -1.39403999e+00 1.40439674e-01 1.43248048e-02 -3.50899190e-01 1.44764578e+00 1.86363272e-02 -2.30393693e-01 9.26197708e-01 5.29928029e-01 4.57682870e-02 -2.88883060e-01 -8.56986046e-02 6.38751313e-02 9.97770131e-02 6.24130130e-01 1.82537392e-01 -3.43650550e-01 -1.36786597e-02 2.19336227e-01 3.94432731e-02 1.58714548e-01 7.03641474e-01 8.54198277e-01 -5.08811474e-01 -3.18306923e-01 -1.08819520e+00 2.47097313e-01 -5.95342338e-01 -1.10025071e-01 5.54823399e-01 5.05760193e-01 1.30900247e-02 5.39430320e-01 2.24166349e-01 5.25953770e-01 2.38153320e-02 2.07627974e-02 3.78179908e-01 -3.50297064e-01 -9.37846079e-02 3.80495995e-01 5.57161756e-02 -2.43232697e-01 -4.62930024e-01 -7.28998184e-01 -1.22011733e+00 3.16384733e-01 -4.83736247e-01 8.88081454e-03 8.87340903e-01 1.13333750e+00 -3.12959135e-01 6.60145104e-01 1.65758431e-01 -1.35930204e+00 -1.01614153e+00 -9.82699752e-01 -8.05890083e-01 1.54825658e-01 4.28090900e-01 -7.28444517e-01 -7.96412945e-01 6.56963214e-02]
[6.842742919921875, 3.4971163272857666]
3e90a1ce-778e-48b6-881b-b65bd4724758
lr-csnet-low-rank-deep-unfolding-network-for
2212.09088
null
https://arxiv.org/abs/2212.09088v1
https://arxiv.org/pdf/2212.09088v1.pdf
LR-CSNet: Low-Rank Deep Unfolding Network for Image Compressive Sensing
Deep unfolding networks (DUNs) have proven to be a viable approach to compressive sensing (CS). In this work, we propose a DUN called low-rank CS network (LR-CSNet) for natural image CS. Real-world image patches are often well-represented by low-rank approximations. LR-CSNet exploits this property by adding a low-rank prior to the CS optimization task. We derive a corresponding iterative optimization procedure using variable splitting, which is then translated to a new DUN architecture. The architecture uses low-rank generation modules (LRGMs), which learn low-rank matrix factorizations, as well as gradient descent and proximal mappings (GDPMs), which are proposed to extract high-frequency features to refine image details. In addition, the deep features generated at each reconstruction stage in the DUN are transferred between stages to boost the performance. Our extensive experiments on three widely considered datasets demonstrate the promising performance of LR-CSNet compared to state-of-the-art methods in natural image CS.
['Zhenming Peng', 'Fabian Gieseke', 'Stefan Oehmcke', 'Christian Igel', 'Lei LI', 'Tianfang Zhang']
2022-12-18
null
null
null
null
['compressive-sensing']
['computer-vision']
[ 4.68685120e-01 -2.91357003e-02 9.42499191e-02 -1.74838871e-01 -8.34698200e-01 -8.74116644e-02 5.03071547e-01 -3.85134220e-01 -1.93194866e-01 5.60115457e-01 3.78656149e-01 4.02751528e-02 -6.82186931e-02 -6.53197587e-01 -9.47359741e-01 -8.10494363e-01 -1.70879588e-01 -8.88352022e-02 -1.09218545e-01 -2.69081116e-01 1.07042447e-01 3.52901399e-01 -1.22849929e+00 5.26855528e-01 9.87362206e-01 1.13168025e+00 5.40990949e-01 4.27941471e-01 8.82586539e-02 1.14842010e+00 -1.77126024e-02 -4.01965566e-02 4.84076649e-01 -6.25027478e-01 -5.06259024e-01 -1.67707633e-02 4.42472398e-01 -4.47340041e-01 -8.92505467e-01 1.16811955e+00 3.97372365e-01 2.09344372e-01 3.00924748e-01 -8.11968267e-01 -8.82788241e-01 8.72307062e-01 -6.37263536e-01 7.34893829e-02 4.41883296e-01 -1.36147276e-01 1.05910015e+00 -1.43762088e+00 6.41911805e-01 1.38762414e+00 7.62705863e-01 3.44604880e-01 -1.38145769e+00 -7.30388820e-01 1.91598281e-03 4.19414133e-01 -1.55204177e+00 -6.66736066e-01 1.14166772e+00 -2.31546536e-01 4.78866220e-01 5.31962067e-02 6.37346268e-01 9.65654373e-01 1.55399010e-01 9.78636324e-01 1.18968940e+00 -4.61617529e-01 2.32359827e-01 -3.60820621e-01 -1.99042261e-01 7.91027844e-01 9.82448235e-02 2.35584125e-01 -9.96972382e-01 -1.42867416e-01 1.03363609e+00 2.36659706e-01 -5.97324908e-01 -2.46480703e-01 -1.44664824e+00 9.46524203e-01 9.64305341e-01 4.83542740e-01 -8.76451612e-01 3.50872666e-01 4.73572053e-02 2.74200290e-01 3.87368590e-01 3.42850685e-01 -6.38622744e-03 4.40295875e-01 -1.20742214e+00 1.66666225e-01 5.07795513e-01 7.74498224e-01 1.00393128e+00 4.60973322e-01 -3.38075042e-01 9.91794884e-01 2.74145484e-01 4.53442991e-01 4.33068365e-01 -1.05168092e+00 1.87834978e-01 2.69065410e-01 -2.37366915e-01 -1.41977012e+00 -1.64608181e-01 -9.85450089e-01 -1.53204417e+00 -1.34265751e-01 -3.88846129e-01 3.16766836e-02 -8.30312192e-01 1.86947906e+00 -3.02621927e-02 1.04143119e+00 1.23140961e-01 1.07186973e+00 8.01487505e-01 7.93441176e-01 -2.60143936e-01 -2.10571215e-01 8.69037747e-01 -9.93098795e-01 -6.06035471e-01 -1.71663776e-01 1.61281884e-01 -6.33919001e-01 7.43136168e-01 5.28972507e-01 -1.06870985e+00 -6.87330544e-01 -1.07844448e+00 -6.28760085e-02 3.21718335e-01 3.36942554e-01 7.63950229e-01 6.63057044e-02 -1.25404489e+00 8.08351934e-01 -8.56318176e-01 7.36763850e-02 5.01376271e-01 6.23818897e-02 -4.10614073e-01 -5.91950536e-01 -1.32400715e+00 2.37072095e-01 1.48865834e-01 5.50012887e-01 -1.27807271e+00 -7.78839529e-01 -1.02847755e+00 5.41691557e-02 3.47154468e-01 -8.07750165e-01 7.18932211e-01 -1.05456007e+00 -1.56921697e+00 5.50179899e-01 -2.41671532e-01 -4.71007317e-01 1.84666768e-01 -3.91085297e-01 -3.28620970e-01 5.12289345e-01 2.83613086e-01 5.88363409e-01 1.45882010e+00 -1.38694942e+00 -3.14527780e-01 -1.49096116e-01 3.55681218e-02 5.52690513e-02 -2.15520367e-01 -3.49838257e-01 -4.02095020e-01 -1.17773020e+00 8.19011748e-01 -8.61234963e-01 -6.74151480e-01 -1.00262344e-01 -3.93206239e-01 2.73744226e-01 5.39939106e-01 -9.24358547e-01 1.44049430e+00 -2.40555525e+00 7.21744835e-01 3.71132165e-01 5.34803331e-01 1.19589888e-01 -6.04992509e-01 4.17015612e-01 -2.93832362e-01 -3.76318872e-01 -6.22494459e-01 -4.56122637e-01 -2.05320552e-01 1.98488727e-01 -4.25420046e-01 5.81919909e-01 3.15863073e-01 9.18158293e-01 -1.09636927e+00 -1.16756201e-01 1.57428712e-01 6.36714101e-01 -7.87123322e-01 2.74479479e-01 -9.60145295e-02 7.13607371e-01 -4.08904970e-01 4.99132752e-01 9.85322058e-01 -4.87329036e-01 4.48229201e-02 -7.29997396e-01 -3.96096148e-03 -2.77287792e-02 -1.49515021e+00 2.26212788e+00 -4.62491542e-01 4.48933840e-01 3.15908134e-01 -1.33404458e+00 7.30578601e-01 7.80304074e-02 6.62024796e-01 -6.68731570e-01 -4.82214615e-02 4.36424583e-01 -3.01101983e-01 -1.83071613e-01 4.80635375e-01 -1.53819054e-01 3.50937665e-01 2.05663487e-01 1.66626737e-01 -2.12263465e-02 2.09407255e-01 6.74366772e-01 9.79611278e-01 1.29511118e-01 2.08663285e-01 -4.73456949e-01 1.00199342e+00 -3.18544447e-01 7.36202538e-01 7.83809185e-01 3.77530158e-01 8.29392493e-01 1.82619259e-01 -4.38031375e-01 -7.60888934e-01 -1.12790334e+00 -2.74695940e-02 8.60788822e-01 1.87753171e-01 -6.37581825e-01 -6.53792024e-01 -1.84796944e-01 -1.94380939e-01 3.62124890e-01 -4.33644980e-01 -1.79154679e-01 -6.71864688e-01 -5.80696225e-01 3.04476976e-01 3.35968912e-01 7.87565470e-01 -8.13947380e-01 -3.06469291e-01 3.74236763e-01 -2.77566642e-01 -1.33284736e+00 -3.51267606e-01 4.07286771e-02 -7.44623363e-01 -9.06060040e-01 -9.62353647e-01 -8.00198793e-01 8.48714113e-01 5.66372156e-01 1.02120519e+00 9.32540074e-02 -1.94470271e-01 2.17718393e-01 -6.83306575e-01 1.93198755e-01 -1.91266820e-01 -9.74503830e-02 1.02078065e-01 5.18940806e-01 -1.41084403e-01 -8.57718110e-01 -8.78792465e-01 2.95518041e-02 -1.26890576e+00 1.94250464e-01 9.74703848e-01 1.28945172e+00 9.29699183e-01 -5.66730537e-02 4.84461129e-01 -1.02685666e+00 4.47803289e-01 -5.09633005e-01 -5.05407155e-01 1.24616981e-01 -4.14485157e-01 2.50439316e-01 7.93265879e-01 -2.29067698e-01 -8.74419153e-01 2.88927287e-01 -9.54823196e-02 -8.79775584e-01 3.07579219e-01 1.06439126e+00 2.50554025e-01 -3.92820090e-01 7.32070804e-01 5.70342600e-01 -4.00780439e-02 -4.69206810e-01 4.17521954e-01 2.25229979e-01 7.25870907e-01 -6.35365367e-01 1.24363661e+00 6.47092521e-01 2.55057126e-01 -1.05631804e+00 -1.16636217e+00 -3.29675138e-01 -4.72442925e-01 3.31710503e-02 6.85235262e-01 -1.46968997e+00 -3.24846566e-01 6.35122597e-01 -8.59533250e-01 -3.13416183e-01 -3.91623855e-01 5.56466401e-01 -3.46088290e-01 5.33443868e-01 -8.72972846e-01 -3.94554138e-01 -3.60837668e-01 -1.02074814e+00 1.04565871e+00 7.34755993e-02 3.84832144e-01 -6.43980384e-01 -8.67123380e-02 1.62173659e-01 6.73253059e-01 2.20254079e-01 5.55915773e-01 1.30115703e-01 -8.52245510e-01 2.99101949e-01 -4.10777211e-01 6.60663068e-01 -1.52104273e-01 -4.45025414e-01 -9.46786940e-01 -7.97714889e-01 5.33064269e-02 -3.70840549e-01 1.30467546e+00 7.27746606e-01 1.35378480e+00 -1.99166521e-01 -1.60559919e-02 1.22169697e+00 1.48054981e+00 -3.97329062e-01 6.63882732e-01 -3.10758837e-02 8.89415324e-01 2.21874595e-01 4.43850607e-01 6.66512907e-01 2.65528351e-01 3.87314856e-01 3.05574894e-01 -3.53984684e-01 -3.21226418e-01 -2.96560407e-01 5.44196308e-01 1.26038992e+00 6.33407012e-02 1.63468391e-01 -6.61441505e-01 2.99216092e-01 -1.80129421e+00 -8.67036223e-01 -8.83386731e-02 1.80247283e+00 5.87629855e-01 -2.45821089e-01 -3.61695141e-01 1.09096348e-01 5.17796099e-01 6.82565331e-01 -5.88889837e-01 3.66760522e-01 -4.96323824e-01 6.71239436e-01 3.57643634e-01 5.30991495e-01 -1.05329454e+00 9.80307221e-01 5.75747871e+00 8.83379042e-01 -1.37305498e+00 2.24442586e-01 5.45493126e-01 2.03020021e-01 -6.16578460e-01 1.27689585e-01 -1.97785035e-01 1.16896801e-01 4.34559137e-01 3.67251001e-02 9.19828713e-01 6.57902479e-01 -5.20997532e-02 1.69260204e-01 -9.08374012e-01 1.42896509e+00 1.36783034e-01 -1.68727326e+00 2.49078438e-01 -3.29805493e-01 1.11850214e+00 2.14438915e-01 1.57509670e-01 1.81267768e-01 1.52134210e-01 -1.01099277e+00 7.15787709e-01 5.13511539e-01 1.16058588e+00 -6.55213773e-01 5.10801315e-01 1.79008409e-01 -1.47182846e+00 -1.89926445e-01 -6.27153516e-01 1.70209646e-01 2.18324691e-01 1.03701437e+00 -1.37823507e-01 9.32388902e-01 6.77396953e-01 1.44931209e+00 -2.89432257e-01 5.77627480e-01 -4.17897314e-01 5.04199028e-01 -2.84268707e-01 6.67651057e-01 3.74450326e-01 -4.56491232e-01 6.04180098e-01 1.02975416e+00 5.19806504e-01 4.06998485e-01 3.03373456e-01 1.11746442e+00 -2.07888395e-01 -1.65032849e-01 -3.45866293e-01 -1.10553376e-01 2.06384644e-01 1.29774833e+00 -3.68849367e-01 -1.47336930e-01 -3.51348251e-01 1.35276818e+00 8.10904205e-02 6.20548785e-01 -4.28236812e-01 -1.91262171e-01 5.61641932e-01 7.59510649e-03 3.61946106e-01 -3.13656211e-01 5.03380373e-02 -1.71016681e+00 5.04921041e-02 -1.14050257e+00 2.17132717e-01 -6.47191167e-01 -1.29160094e+00 7.55834222e-01 -2.78556645e-01 -1.43874180e+00 -1.58788681e-01 -3.99577975e-01 -3.49439323e-01 9.01277244e-01 -2.05221534e+00 -1.34982049e+00 -6.83989465e-01 9.66266751e-01 4.90799159e-01 -2.46076494e-01 6.73341572e-01 6.80223882e-01 -4.83508766e-01 5.25863945e-01 1.22419871e-01 4.55463305e-02 5.58881879e-01 -8.89916241e-01 2.36529335e-01 1.25136137e+00 2.08874851e-01 8.87551904e-01 3.94942343e-01 -6.46297514e-01 -1.81659663e+00 -1.12052441e+00 3.84734809e-01 4.12275046e-01 6.20184422e-01 -2.25071937e-01 -7.54371345e-01 5.36140144e-01 -7.62571096e-02 5.53736567e-01 4.65958297e-01 -1.67258307e-01 -5.07635832e-01 -3.19340736e-01 -8.88120830e-01 2.94541001e-01 1.20446396e+00 -8.57999444e-01 -2.35803246e-01 2.18904436e-01 6.74103737e-01 -4.60852981e-01 -7.39026010e-01 4.19704825e-01 4.05317694e-01 -1.04043972e+00 1.13034296e+00 -1.79792657e-01 8.42153072e-01 -4.84125227e-01 -6.14712954e-01 -1.37853396e+00 -6.85786664e-01 -9.22586441e-01 -2.80025005e-01 7.21639514e-01 9.32398960e-02 -4.83752578e-01 6.78455770e-01 -9.69567820e-02 -4.85925436e-01 -7.40039766e-01 -7.81951666e-01 -4.62376773e-01 -3.19039106e-01 -3.90691727e-01 4.70359355e-01 1.21026504e+00 -5.68802297e-01 3.19826365e-01 -6.30158544e-01 4.33699042e-01 1.09866476e+00 2.24431351e-01 6.09622478e-01 -1.08486056e+00 -6.33322001e-01 -1.25106066e-01 -2.79994071e-01 -1.56711137e+00 3.49599361e-01 -1.07921362e+00 2.81560179e-02 -1.35342693e+00 1.89779729e-01 -5.16175389e-01 -5.99777281e-01 4.49066311e-02 -1.60644680e-01 4.03782010e-01 3.87145817e-01 3.69357377e-01 -4.31059957e-01 8.97054493e-01 1.32710254e+00 -8.40836540e-02 -2.74689943e-02 -3.36456925e-01 -6.73500121e-01 5.24717629e-01 2.47436658e-01 -3.37771088e-01 -4.20618176e-01 -6.43818021e-01 3.90435070e-01 4.03994620e-01 4.39784676e-01 -1.14787281e+00 3.67242098e-01 -2.01519188e-02 4.02219504e-01 -5.81032693e-01 3.26681823e-01 -7.36138582e-01 3.64342570e-01 6.05271339e-01 -3.81557345e-01 -1.80241078e-01 -3.38545293e-01 6.41951740e-01 -6.90611064e-01 8.46920013e-02 9.65796888e-01 -2.32091501e-01 -8.18657696e-01 6.25531971e-01 9.80179831e-02 -2.06575081e-01 6.78261459e-01 -7.86871016e-02 2.38405038e-02 -4.62819129e-01 -7.22829163e-01 7.32733170e-03 2.73198128e-01 4.15095054e-02 1.03172421e+00 -1.40290260e+00 -1.08356857e+00 6.75251424e-01 -4.82355170e-02 3.21418762e-01 5.90566218e-01 8.70345294e-01 -6.94889486e-01 7.92748407e-02 -1.70869306e-01 -7.19249666e-01 -5.25353193e-01 2.90838510e-01 1.39076307e-01 -2.91525573e-01 -7.54373908e-01 1.09441352e+00 3.15305501e-01 -2.96024591e-01 1.75681114e-02 -1.64744943e-01 -3.60475946e-03 -7.40251839e-02 5.78913569e-01 3.09253365e-01 -1.89128846e-01 -7.16544986e-01 -1.52642757e-01 6.74343526e-01 5.06619997e-02 -5.11521511e-02 1.83480370e+00 -1.37988597e-01 -5.03752887e-01 1.22737005e-01 1.25288057e+00 -4.30068225e-02 -1.27906990e+00 -8.39247108e-01 -1.34478226e-01 -6.06414020e-01 4.58844721e-01 -1.90029755e-01 -1.56567848e+00 7.47307837e-01 5.25961578e-01 -2.48503700e-01 1.56790161e+00 -2.29751602e-01 1.05960441e+00 3.70058358e-01 5.24602532e-01 -7.98800349e-01 4.05804455e-01 5.19178629e-01 1.17230248e+00 -1.14518642e+00 1.92072526e-01 -4.45101529e-01 -3.75263184e-01 1.07591355e+00 2.65842587e-01 -6.44264877e-01 8.40451360e-01 3.16874571e-02 -2.46524215e-01 -1.26819775e-01 -3.88369143e-01 -2.22823787e-02 3.91624659e-01 2.97502995e-01 2.28787541e-01 8.16901401e-02 -2.71211505e-01 4.08632219e-01 -1.95403602e-02 1.38995796e-01 3.20957303e-01 7.98723757e-01 -1.79419383e-01 -1.08562148e+00 -3.05116683e-01 4.57678735e-01 -3.23827893e-01 -3.97337079e-01 -1.70037709e-02 1.17359579e-01 9.41968150e-03 7.77287662e-01 -3.01650345e-01 -6.53556883e-01 9.73460004e-02 -5.53205431e-01 3.35650295e-01 -6.44068122e-01 -4.60323513e-01 2.96991229e-01 -4.10885990e-01 -1.10464728e+00 -5.69540679e-01 -6.46562099e-01 -1.17008984e+00 -1.72911435e-01 -1.24925233e-01 7.34966993e-02 5.44228196e-01 5.64112246e-01 4.76897985e-01 5.61127841e-01 1.01302743e+00 -1.11841226e+00 -6.69091046e-01 -8.63730431e-01 -7.11603045e-01 5.75353861e-01 6.94501340e-01 -4.32449937e-01 -4.56028938e-01 1.28342986e-01]
[11.258906364440918, -2.073730230331421]
c2304116-f92c-4b93-ba50-209d4aa750f4
dereverberation-using-joint-estimation-of-dry
2007.12581
null
https://arxiv.org/abs/2007.12581v1
https://arxiv.org/pdf/2007.12581v1.pdf
Dereverberation using joint estimation of dry speech signal and acoustic system
The purpose of speech dereverberation is to remove quality-degrading effects of a time-invariant impulse response filter from the signal. In this report, we describe an approach to speech dereverberation that involves joint estimation of the dry speech signal and of the room impulse response. We explore deep learning models that apply to each task separately, and how these can be combined in a joint model with shared parameters.
['Keunwoo Choi', 'Simon Durand', 'Sanna Wager']
2020-07-24
null
null
null
null
['room-impulse-response', 'speech-dereverberation']
['audio', 'speech']
[ 1.32576466e-01 -2.67325729e-01 7.21275747e-01 -3.62516373e-01 -1.29721928e+00 -5.37376881e-01 5.80730960e-02 -5.99430978e-01 -1.40260577e-01 5.63207209e-01 7.47303545e-01 -4.69876289e-01 -5.99635132e-02 -1.28994684e-03 -5.86813152e-01 -9.28336799e-01 -2.73506786e-03 -4.06984836e-01 -2.88807720e-01 -1.84987590e-01 -3.19100231e-01 7.39655733e-01 -1.32949734e+00 3.23552817e-01 8.57511878e-01 7.41977215e-01 2.89845318e-01 1.50365686e+00 6.97632551e-01 6.03545785e-01 -1.44293320e+00 3.18500519e-01 8.08909014e-02 -4.59518611e-01 -2.93593824e-01 9.46245044e-02 6.94304705e-01 -6.56760275e-01 -8.24624479e-01 7.16285944e-01 1.22533298e+00 6.37156308e-01 6.00538194e-01 -5.87163568e-01 -7.55264819e-01 5.40917635e-01 1.62882552e-01 5.09044766e-01 3.53310525e-01 2.36855537e-01 7.68950701e-01 -8.88586044e-01 2.77679809e-03 1.33908188e+00 8.01469147e-01 5.27617097e-01 -1.49882746e+00 -6.52392328e-01 -1.70954168e-01 1.96434647e-01 -1.00885868e+00 -1.29764616e+00 8.38950098e-01 -1.00525036e-01 1.62310576e+00 4.80007172e-01 2.10984841e-01 1.26584423e+00 4.09838945e-01 6.36164665e-01 9.55726504e-01 -3.94586265e-01 2.58877780e-02 -3.21367860e-01 3.04863334e-01 1.20046474e-02 -2.65517354e-01 5.90767145e-01 -5.84912956e-01 -7.74397701e-02 3.46775144e-01 -6.27263427e-01 -8.45474422e-01 4.27068204e-01 -5.75094402e-01 3.35564047e-01 3.70172024e-01 3.82690251e-01 -3.16820830e-01 3.83767575e-01 3.43144327e-01 7.01269031e-01 7.50727654e-01 5.76201379e-01 -4.75361854e-01 2.17696950e-02 -1.08461666e+00 3.35759282e-01 9.08409834e-01 6.77936673e-01 9.34233591e-02 9.46838200e-01 -4.53742176e-01 1.21827042e+00 3.19361597e-01 9.02989447e-01 3.08732957e-01 -8.44418883e-01 2.13304088e-01 -1.02677381e+00 3.26044679e-01 -4.86370087e-01 -7.20083058e-01 -5.76944888e-01 -4.99426275e-01 1.43344626e-01 2.61798173e-01 -5.82762241e-01 -1.32958841e+00 1.81305969e+00 -1.03540838e-01 3.11967045e-01 2.70621032e-01 9.25761700e-01 9.06031728e-01 9.72715020e-01 -1.63102612e-01 -3.82828027e-01 9.25613225e-01 -1.09137893e+00 -1.60127509e+00 -5.71647465e-01 1.83435932e-01 -1.25656331e+00 6.16288722e-01 7.64818728e-01 -1.21065748e+00 -9.15201545e-01 -1.33210671e+00 -3.60806674e-01 -6.18634410e-02 1.13160864e-01 2.18108390e-02 9.77510333e-01 -1.55376804e+00 6.96541905e-01 -6.97436094e-01 2.51018345e-01 -2.03544170e-01 1.60900980e-01 1.39858276e-02 2.71956295e-01 -1.25510645e+00 1.14842784e+00 -1.30757362e-01 3.56793523e-01 -1.18871129e+00 -6.64964378e-01 -8.34346175e-01 1.93926692e-01 -5.50138466e-02 -4.66175944e-01 1.98805869e+00 -8.29789102e-01 -1.85319543e+00 3.41351688e-01 -4.63931531e-01 -6.31447494e-01 -1.57768764e-02 -8.91524911e-01 -1.08138573e+00 -4.50477935e-02 -5.04767656e-01 -2.06483588e-01 1.73025405e+00 -1.22711968e+00 -2.96130329e-02 3.11256014e-02 -6.54637396e-01 1.60566837e-01 9.78817642e-02 1.29952997e-01 4.75221984e-02 -8.19796324e-01 1.15814164e-01 -5.95481455e-01 3.16209085e-02 -4.64577675e-01 -4.99350607e-01 2.41448969e-01 7.22085118e-01 -1.65542293e+00 1.31842375e+00 -2.34751940e+00 1.72595903e-01 -1.30073071e-01 -3.28225642e-02 5.40680647e-01 -4.99480516e-01 5.36497176e-01 -4.68970001e-01 -1.83561936e-01 -1.29939038e-02 -8.06265771e-01 -7.07160030e-03 -2.24889368e-01 -6.74253404e-01 6.88833237e-01 8.88703391e-02 4.11191165e-01 -4.66120452e-01 3.95643562e-01 3.44118536e-01 8.54647636e-01 -5.34050882e-01 5.67571521e-01 2.34332383e-01 3.28891248e-01 3.30066830e-01 3.74738008e-01 8.80352259e-01 7.10708916e-01 -3.39059263e-01 -5.81028879e-01 -2.24646583e-01 8.71922910e-01 -8.19953084e-01 1.40974462e+00 -7.48033822e-01 1.04568803e+00 1.09969568e+00 -6.25707924e-01 8.67732882e-01 8.81005168e-01 7.14267865e-02 -7.95481861e-01 2.07960099e-01 5.25561750e-01 3.84494931e-01 -6.02422178e-01 3.67638499e-01 -2.98053890e-01 2.52531797e-01 3.63411427e-01 3.29841048e-01 -7.87035048e-01 -4.96884346e-01 -2.39134043e-01 1.07771754e+00 -3.17296058e-01 7.06165507e-02 -8.31503943e-02 4.01234895e-01 -8.41199994e-01 2.03228489e-01 9.21617210e-01 -4.56719339e-01 8.06625485e-01 -2.44706094e-01 -1.18422590e-01 -1.14409518e+00 -1.34091103e+00 -1.04105279e-01 1.03030825e+00 -5.48337758e-01 6.50679246e-02 -9.44465160e-01 1.78519621e-01 -7.29686618e-02 1.33131647e+00 -8.03673789e-02 -4.86470491e-01 -7.82993615e-01 -3.21073681e-01 8.40720296e-01 4.21262860e-01 2.82911249e-02 -9.35187638e-01 -8.27381834e-02 4.63025361e-01 -3.54944438e-01 -8.68199766e-01 -8.79194260e-01 8.26204181e-01 -3.52308601e-01 -4.14882481e-01 -6.35052502e-01 -5.11555433e-01 -2.72005033e-02 6.84790313e-01 8.79747450e-01 -1.97142929e-01 -3.60172689e-01 5.99590719e-01 -1.56450301e-01 -7.29880273e-01 -7.79987574e-01 -2.72669762e-01 4.30096447e-01 -9.46464762e-02 1.11408848e-02 -8.04337204e-01 -4.66700196e-01 6.20424934e-02 -6.60999000e-01 -4.99712229e-01 1.20589651e-01 5.86854637e-01 3.54783460e-02 1.24394037e-01 7.48192847e-01 3.67533474e-04 1.17609537e+00 -2.66797151e-02 -3.12859714e-01 -1.80623159e-01 4.76867557e-02 -8.54655579e-02 7.53876984e-01 -5.23313999e-01 -1.41777086e+00 -2.80103207e-01 -7.30323255e-01 -4.87712502e-01 -1.41974792e-01 4.52464595e-02 -5.19212604e-01 1.77631915e-01 8.02970588e-01 -7.50829801e-02 2.64037531e-02 -6.91860080e-01 4.78325754e-01 9.85835552e-01 6.82865560e-01 -2.19524741e-01 8.30595851e-01 1.20642930e-01 -4.02135998e-01 -1.29053688e+00 -7.20136046e-01 -4.32137519e-01 -1.55072868e-01 -1.04725398e-01 9.09590960e-01 -1.05042660e+00 -2.99663514e-01 8.89404476e-01 -1.57073843e+00 -6.16094589e-01 -2.12814167e-01 9.08442795e-01 -6.74977541e-01 -1.71614066e-02 -8.07983279e-01 -1.30355799e+00 -5.26007950e-01 -9.90874887e-01 8.45167875e-01 1.26289442e-01 -3.47567409e-01 -7.48321414e-01 3.23030859e-01 1.87821507e-01 8.12934160e-01 -4.22368407e-01 4.70072091e-01 -5.87580979e-01 -1.77796572e-01 -2.22243145e-01 2.16909632e-01 1.14567244e+00 5.15886784e-01 -6.89091086e-02 -1.94911969e+00 -4.96706516e-01 8.35423827e-01 -5.17006032e-02 1.03742135e+00 1.17759287e+00 9.33070004e-01 -1.38372496e-01 1.07109562e-01 7.41251528e-01 9.25103426e-01 5.08947730e-01 7.73740232e-01 -9.18990225e-02 4.96264547e-01 4.94990885e-01 -2.84190327e-02 1.81062445e-01 -4.17437375e-01 4.06211942e-01 1.80133790e-01 -4.64014798e-01 -6.77447319e-01 1.78847224e-01 6.89101040e-01 1.17648637e+00 2.81667352e-01 -7.34248817e-01 -4.30375755e-01 5.80342531e-01 -1.13537180e+00 -1.11147749e+00 -2.01980144e-01 2.08160472e+00 6.44570529e-01 -8.18753168e-02 -2.11366490e-01 2.82463491e-01 5.66398919e-01 6.82326019e-01 -6.16994441e-01 -1.25619853e+00 -2.59724706e-01 5.64781487e-01 6.34397447e-01 1.26413202e+00 -1.04131341e+00 6.12322628e-01 8.62360668e+00 5.47175229e-01 -9.48530495e-01 9.50516611e-02 3.09940070e-01 -4.53368366e-01 -2.25818336e-01 -5.72356761e-01 -4.47663069e-01 -6.38918504e-02 1.55272186e+00 -1.50009751e-01 1.00465298e+00 4.51502413e-01 9.78470743e-01 1.75288722e-01 -1.18805766e+00 8.40606689e-01 3.54811728e-01 -3.98975432e-01 -7.09488750e-01 -1.48958087e-01 3.71217251e-01 1.78592298e-02 5.12955368e-01 3.30424756e-01 9.35724005e-02 -1.17805839e+00 7.16279328e-01 7.54938722e-01 4.07054484e-01 -6.81495249e-01 2.29088634e-01 1.03041321e-01 -9.01124060e-01 -3.10449302e-01 -1.65610150e-01 -5.16853221e-02 3.44420314e-01 7.86231339e-01 -9.43371773e-01 2.70925760e-01 7.01071322e-01 2.07961112e-01 4.83222529e-02 1.17768550e+00 -3.96322906e-01 9.31617081e-01 -2.05166623e-01 4.60151851e-01 -1.95117101e-01 2.16285437e-01 9.67674136e-01 1.40624905e+00 5.50554276e-01 1.27055764e-01 -2.40068346e-01 8.80098045e-01 -4.28640991e-02 -4.36894268e-01 -5.55849314e-01 -8.94248579e-03 5.25266469e-01 9.18651819e-01 1.54621348e-01 -7.24311471e-02 -2.83507079e-01 1.02233613e+00 -1.28678441e-01 9.12625194e-01 -7.35039771e-01 -6.90203428e-01 1.10633981e+00 -1.96480587e-01 5.27623117e-01 -3.76605570e-01 -1.14559665e-01 -7.60749936e-01 3.36527899e-02 -1.19656646e+00 -4.05108333e-01 -1.21793652e+00 -1.20980394e+00 5.45264602e-01 -1.51948139e-01 -8.56448531e-01 -2.46616632e-01 -7.40248263e-01 -7.69550562e-01 1.57981908e+00 -1.41158605e+00 -4.98613834e-01 2.17682108e-01 3.39282900e-01 7.54358649e-01 1.45594344e-01 8.95141959e-01 3.95468444e-01 -4.79845107e-01 4.53677267e-01 4.07803625e-01 -2.65642285e-01 1.07584918e+00 -1.28638828e+00 9.75059628e-01 1.20327449e+00 -1.46266147e-01 6.76275730e-01 1.46285295e+00 -3.80043566e-01 -1.13401973e+00 -7.35734463e-01 7.46970356e-01 -3.19237083e-01 4.43563402e-01 -6.36105061e-01 -1.24718237e+00 5.76788962e-01 5.70238352e-01 -3.06416869e-01 7.11716831e-01 1.13199480e-01 -4.10197258e-01 -3.26996148e-01 -9.19443011e-01 4.91302431e-01 6.03575766e-01 -1.13604069e+00 -7.82014191e-01 2.31511086e-01 1.14626896e+00 -6.37925744e-01 -3.94326061e-01 -1.10650435e-01 5.76446116e-01 -8.12764764e-01 1.22435129e+00 -1.97864279e-01 -2.41052970e-01 -2.26088002e-01 -2.87331581e-01 -2.19834232e+00 -5.23146391e-01 -1.19710171e+00 -3.33368570e-01 1.05619061e+00 2.95849383e-01 -5.40089905e-01 -1.35146245e-01 6.54144943e-01 -7.84135163e-01 2.95759588e-01 -1.09793413e+00 -9.59593296e-01 1.74243718e-01 -6.59501076e-01 3.75591546e-01 1.86311767e-01 -3.71712238e-01 4.31629032e-01 -8.96142423e-01 6.19401634e-01 4.31690127e-01 -4.30665582e-01 4.38190788e-01 -8.58576775e-01 -6.08334243e-01 -2.58600473e-01 3.78314167e-01 -1.18841207e+00 1.02021232e-01 -2.49860108e-01 7.95742512e-01 -1.58458543e+00 -8.08572054e-01 3.98939431e-01 -3.88404846e-01 -4.23213467e-02 -3.73629391e-01 -4.06797886e-01 2.29698941e-01 -4.05193478e-01 1.14172675e-01 7.27756023e-01 1.09635866e+00 -2.22332224e-01 -5.96121728e-01 2.43464082e-01 -4.62714612e-01 5.33610106e-01 8.11750233e-01 -4.72386539e-01 -5.31375408e-01 -8.14848840e-01 -3.83298278e-01 2.52916038e-01 3.53723377e-01 -1.19786143e+00 1.53160453e-01 3.59332681e-01 3.74631435e-01 -6.00409806e-01 7.79304028e-01 -7.35016763e-01 2.39611994e-02 1.61329538e-01 -5.32298207e-01 -3.21908802e-01 7.29040146e-01 5.08875489e-01 -1.29116818e-01 -1.09239846e-01 9.14109468e-01 1.62825227e-01 3.70122194e-02 -2.40365371e-01 -1.01324642e+00 -2.80070037e-01 9.30562243e-02 1.29171297e-01 -2.52969444e-01 -7.51394272e-01 -9.83481348e-01 -3.63357455e-01 -2.95204431e-01 4.73587096e-01 6.38696730e-01 -1.06929934e+00 -9.66431499e-01 3.58199924e-01 -6.32359505e-01 -5.25321782e-01 6.18761659e-01 6.34162009e-01 -8.58146697e-02 6.39947057e-01 1.87034696e-01 -1.04890786e-01 -1.37087119e+00 6.44896626e-01 1.08884561e+00 1.67450115e-01 -6.25011146e-01 1.22290957e+00 1.68467030e-01 -1.29177332e-01 5.09395897e-01 -5.05812526e-01 3.36791538e-02 -1.73479840e-01 1.08106172e+00 3.79471183e-01 4.89968956e-01 -5.84281445e-01 -1.82033807e-01 9.29612592e-02 -9.14347395e-02 -6.70136034e-01 1.04519272e+00 -4.66249406e-01 1.05161510e-01 7.10112512e-01 1.33690190e+00 2.88106412e-01 -1.21179485e+00 -1.38264239e-01 -4.88053620e-01 -3.04594636e-01 6.65229619e-01 -9.82976675e-01 -6.71307385e-01 8.45220387e-01 8.51178169e-01 5.07733881e-01 1.54108667e+00 -5.05888522e-01 7.79618025e-01 4.56612527e-01 -3.42903972e-01 -1.35554373e+00 1.03237264e-01 6.64853990e-01 1.22981060e+00 -7.06166089e-01 -1.00377776e-01 -1.53560219e-02 -1.40031651e-01 1.19166589e+00 2.09764913e-01 -2.39013225e-01 8.19303632e-01 5.83271205e-01 3.60746533e-01 1.46743551e-01 -7.96277225e-01 -1.46168545e-01 4.96211410e-01 1.14841664e+00 7.77615428e-01 9.84500423e-02 3.80201265e-02 5.79634726e-01 -5.17298222e-01 -5.21809042e-01 3.67323667e-01 5.62420845e-01 -8.85070801e-01 -8.41249883e-01 -1.00662720e+00 1.03223450e-01 -4.51773077e-01 -4.09531265e-01 -4.38836753e-01 1.37381768e-02 -1.80594072e-01 1.74962378e+00 -5.17262183e-02 -2.94938952e-01 8.16585422e-01 3.47501427e-01 3.00449699e-01 -3.05619448e-01 -8.55669975e-01 9.09279346e-01 4.26137090e-01 -5.62587321e-01 -8.77272710e-02 -4.96836215e-01 -8.02299798e-01 -1.00260332e-01 -4.28941250e-01 -8.44175890e-02 7.79411972e-01 8.25828731e-01 2.47391164e-02 1.41674507e+00 8.95689726e-01 -1.09310174e+00 -8.32716703e-01 -1.09552824e+00 -8.41904879e-01 -2.19064187e-02 1.45668232e+00 -1.87365524e-02 -1.07965887e+00 -8.41495395e-02]
[15.099871635437012, 5.946348190307617]
0a810469-aa60-4530-b75d-a32387186eb5
learning-to-identify-physical-parameters-from
2009.08292
null
https://arxiv.org/abs/2009.08292v1
https://arxiv.org/pdf/2009.08292v1.pdf
Learning to Identify Physical Parameters from Video Using Differentiable Physics
Video representation learning has recently attracted attention in computer vision due to its applications for activity and scene forecasting or vision-based planning and control. Video prediction models often learn a latent representation of video which is encoded from input frames and decoded back into images. Even when conditioned on actions, purely deep learning based architectures typically lack a physically interpretable latent space. In this study, we use a differentiable physics engine within an action-conditional video representation network to learn a physical latent representation. We propose supervised and self-supervised learning methods to train our network and identify physical properties. The latter uses spatial transformers to decode physical states back into images. The simulation scenarios in our experiments comprise pushing, sliding and colliding objects, for which we also analyze the observability of the physical properties. In experiments we demonstrate that our network can learn to encode images and identify physical properties like mass and friction from videos and action sequences in the simulated scenarios. We evaluate the accuracy of our supervised and self-supervised methods and compare it with a system identification baseline which directly learns from state trajectories. We also demonstrate the ability of our method to predict future video frames from input images and actions.
['Jörg Stückler', 'Michael Möller', 'Rama Krishna Kandukuri', 'Jan Achterhold']
2020-09-17
null
null
null
null
['predict-future-video-frames']
['computer-vision']
[ 4.38683659e-01 7.02489465e-02 -3.48467350e-01 -2.62057960e-01 -2.00232342e-01 -3.38588089e-01 9.88803685e-01 -3.65323365e-01 -8.36884305e-02 6.32761300e-01 2.80299067e-01 -1.17705077e-01 -1.95957616e-01 -6.24951541e-01 -1.24674475e+00 -9.26642001e-01 -3.86897564e-01 1.38558194e-01 1.86044484e-01 3.19913983e-01 9.26489010e-02 5.14891982e-01 -1.60767794e+00 3.93948495e-01 3.57144982e-01 9.56454694e-01 4.50721681e-01 1.22617888e+00 4.22426283e-01 1.66865444e+00 -2.99608968e-02 4.35958743e-01 4.18646336e-01 -5.66920757e-01 -7.59804666e-01 4.69744503e-01 4.14024264e-01 -7.35164642e-01 -1.13872421e+00 8.13190222e-01 -2.62144536e-01 4.11795557e-01 8.69991481e-01 -1.33151221e+00 -6.60778642e-01 1.93374872e-01 2.48188954e-02 1.22201212e-01 5.22737920e-01 5.42998791e-01 7.20198572e-01 -3.52183670e-01 7.11733639e-01 1.28123188e+00 4.76139814e-01 8.19934726e-01 -1.08648777e+00 -8.03782046e-02 3.07066619e-01 5.61018229e-01 -9.37698364e-01 -5.15872955e-01 8.52677703e-01 -7.55951345e-01 9.80992198e-01 -8.40137899e-03 7.47812033e-01 1.36881459e+00 6.12983465e-01 9.94158387e-01 7.30378926e-01 -3.52412611e-01 4.73146975e-01 -2.46348783e-01 -2.16497391e-01 1.09755599e+00 -1.99139684e-01 4.80038017e-01 -5.92268884e-01 -6.08834513e-02 1.13923836e+00 3.32040370e-01 -3.47700387e-01 -6.40941083e-01 -1.49502170e+00 5.14316022e-01 2.28621989e-01 -2.62580335e-01 -5.97562134e-01 1.03470790e+00 1.83855131e-01 1.03777401e-01 2.39969075e-01 1.17276676e-01 -3.54509860e-01 -3.60672057e-01 -5.32563627e-01 1.60955086e-01 6.55796409e-01 7.33646929e-01 5.79744041e-01 4.10606742e-01 5.93995769e-03 2.72318423e-01 2.44603693e-01 6.96653485e-01 5.17206907e-01 -1.57863390e+00 1.49408624e-01 1.81722537e-01 5.25512636e-01 -9.18722689e-01 -2.82208957e-02 3.69899988e-01 -6.51202738e-01 2.97812402e-01 7.17695430e-02 -1.33402422e-01 -1.03064954e+00 1.63922989e+00 -8.43235627e-02 9.81290638e-01 3.30308765e-01 1.07615268e+00 3.47369969e-01 1.20970893e+00 3.64639312e-02 -3.81509393e-01 6.29680514e-01 -8.81875753e-01 -6.05817914e-01 8.68436694e-03 4.54503119e-01 -1.28874749e-01 8.04890811e-01 2.91370660e-01 -1.10996544e+00 -8.49928737e-01 -9.23376024e-01 1.70018882e-01 9.91247501e-03 2.03723192e-01 6.20623946e-01 5.54020852e-02 -9.65006113e-01 1.16967356e+00 -1.69325161e+00 -3.18818361e-01 1.63689017e-01 3.87879163e-01 -3.82542312e-01 2.95487463e-01 -9.89592195e-01 7.95821786e-01 3.51694852e-01 9.44965705e-02 -1.66197598e+00 -3.93574774e-01 -1.09250259e+00 -1.35755688e-01 4.04701769e-01 -7.06696212e-01 1.36567402e+00 -1.11707854e+00 -2.02727628e+00 3.37646365e-01 -2.82777369e-01 -8.28984320e-01 2.73791134e-01 -5.19222021e-01 -1.57081872e-01 5.52916586e-01 -1.61068633e-01 7.51064301e-01 1.01386428e+00 -1.08335912e+00 -4.24527675e-01 2.35028371e-01 3.70492369e-01 1.32108763e-01 8.93801078e-03 -4.10926640e-01 -1.65651113e-01 -3.66789043e-01 3.28161977e-02 -1.22650242e+00 -3.49119276e-01 1.54348895e-01 -1.71778753e-01 1.06965795e-01 1.11361337e+00 -4.48466897e-01 5.36561430e-01 -1.78060675e+00 7.80227184e-01 -2.58645892e-01 6.28194436e-02 8.79540388e-03 -6.48371503e-02 3.80246997e-01 -9.96256620e-03 -2.04259932e-01 4.29367414e-03 -8.29727352e-02 -1.67773739e-01 7.21108139e-01 -7.32749403e-01 7.57296860e-01 3.24863046e-01 1.03972781e+00 -1.08728671e+00 -2.18130440e-01 6.90315127e-01 5.84840775e-01 -4.38060105e-01 4.25152779e-01 -6.67172968e-01 8.63616884e-01 -6.08163834e-01 2.44270518e-01 -9.89051629e-03 -4.10738260e-01 2.29774907e-01 -1.94400832e-01 -1.88399598e-01 2.65509248e-01 -8.63021612e-01 1.54223406e+00 -5.07998168e-01 8.21237862e-01 -2.69087166e-01 -1.36114728e+00 4.86336231e-01 4.15254414e-01 8.74773979e-01 -4.80923355e-01 7.90923275e-03 -3.81605744e-01 -2.81233221e-01 -1.03857625e+00 3.07037711e-01 -1.73858449e-01 -8.75089467e-02 5.09487927e-01 2.48132616e-01 -7.04820007e-02 -1.47610381e-01 3.51348013e-01 1.21500194e+00 7.14168489e-01 -1.05988570e-01 6.47527799e-02 5.79675138e-01 -7.99420699e-02 4.51582462e-01 6.32390916e-01 -6.26822114e-02 3.06971014e-01 4.91136104e-01 -7.11815715e-01 -1.23871148e+00 -1.31305349e+00 2.41238341e-01 7.69777715e-01 3.65234941e-01 -4.87468779e-01 -4.82492894e-01 -3.78723204e-01 -1.20598361e-01 5.78547239e-01 -7.67957330e-01 -5.93438864e-01 -6.76593721e-01 -1.76460698e-01 7.75876865e-02 8.11484993e-01 2.76350051e-01 -1.22240257e+00 -1.04436028e+00 2.26622671e-01 -2.51826458e-02 -1.41939688e+00 2.92725731e-02 1.30053060e-02 -7.97227621e-01 -1.09509027e+00 -3.86734992e-01 -5.22227228e-01 7.07012236e-01 1.03319786e-01 5.75525939e-01 -1.50193319e-01 -3.31416875e-01 1.12905633e+00 -1.61570594e-01 -1.11377295e-02 -7.84399390e-01 -5.25040746e-01 6.57972217e-01 2.22405791e-01 -6.96115270e-02 -5.67625880e-01 -6.72547817e-01 2.48174861e-01 -8.08391869e-01 5.88580132e-01 1.75921977e-01 6.60324514e-01 5.71530819e-01 -5.62204458e-02 -3.51243354e-02 -3.74864191e-01 8.84295851e-02 -3.82126659e-01 -8.47797751e-01 3.05296659e-01 8.74445662e-02 3.52674156e-01 7.58395910e-01 -6.39019251e-01 -1.13022482e+00 5.77400029e-01 3.83572757e-01 -1.00306082e+00 -3.18138748e-01 2.99557894e-01 6.50579622e-03 7.18497559e-02 2.85894990e-01 4.09717321e-01 1.19605184e-01 -2.03065798e-01 5.01936376e-01 2.52010673e-01 7.61932611e-01 -7.43018091e-01 7.00551271e-01 7.78259814e-01 2.41888404e-01 -8.54817331e-01 -9.04501855e-01 -2.60565162e-01 -9.02948439e-01 -5.73040783e-01 1.12684226e+00 -8.64828467e-01 -9.90917385e-01 5.49931824e-01 -1.08599389e+00 -8.03039014e-01 -3.56033057e-01 7.91802227e-01 -1.27461040e+00 5.43755412e-01 -9.88823831e-01 -9.89062667e-01 2.88392514e-01 -1.17727613e+00 1.20317638e+00 2.30102129e-02 -1.23605877e-02 -1.23193741e+00 2.21807033e-01 -2.24116929e-02 -2.03162841e-02 5.18050134e-01 6.53902531e-01 2.56659955e-01 -9.28220809e-01 5.28604016e-02 1.45601645e-01 3.27486843e-01 3.87268335e-01 2.14209884e-01 -7.65055895e-01 -1.64070129e-01 1.26455769e-01 -4.40932482e-01 9.56937850e-01 7.18170166e-01 1.44087803e+00 -5.04860759e-01 -4.33940351e-01 6.57119811e-01 1.25930691e+00 3.51108998e-01 5.20565450e-01 -3.64316553e-02 8.83879006e-01 6.10927999e-01 2.89217055e-01 3.76432598e-01 -2.19724290e-02 5.57434678e-01 5.42293668e-01 2.86439776e-01 2.05787390e-01 -4.25725818e-01 1.00561512e+00 9.16205823e-01 -4.19273466e-01 -1.61773399e-01 -9.29008782e-01 2.05670044e-01 -2.23004746e+00 -1.41253376e+00 2.15737745e-01 1.99189818e+00 4.15063769e-01 1.84848607e-01 -1.60599306e-01 -2.34926164e-01 5.26296973e-01 8.23251009e-02 -8.71713698e-01 -1.37923300e-01 2.01948792e-01 -6.11419827e-02 5.10607541e-01 5.59043050e-01 -1.28236246e+00 9.79999125e-01 6.91037703e+00 1.67717412e-01 -1.35727739e+00 -1.03766881e-01 6.03841305e-01 -1.55693874e-01 3.56517062e-02 5.46911731e-02 -4.36232120e-01 2.84067601e-01 1.26462555e+00 2.75199451e-02 4.81174111e-01 7.87375033e-01 5.61966538e-01 -2.39302516e-01 -1.59121335e+00 1.04038930e+00 2.08463687e-02 -1.75893676e+00 2.49606878e-01 8.48508030e-02 8.10641050e-01 1.45587936e-01 -2.84958072e-03 2.34250277e-01 3.41375947e-01 -1.03536761e+00 9.01384354e-01 1.08289087e+00 6.85102761e-01 -2.07264528e-01 1.34992585e-01 5.72053432e-01 -1.10140693e+00 -1.93502873e-01 -4.10514832e-01 -5.94810843e-01 5.75254917e-01 -1.17777251e-01 -3.31187725e-01 8.00128505e-02 3.55152667e-01 1.31299412e+00 -1.68274596e-01 6.06601179e-01 -1.55791983e-01 8.23540211e-01 -3.28284472e-01 9.53732803e-02 4.04695183e-01 -4.35041606e-01 5.28693199e-01 7.55885839e-01 1.60995647e-01 2.39274174e-01 4.33677703e-01 9.29307461e-01 2.26366118e-01 -7.22046137e-01 -8.52313876e-01 -2.92389303e-01 -3.52854341e-01 8.05001557e-01 -6.96334600e-01 -6.30501509e-01 -4.11621064e-01 1.08265948e+00 6.49457350e-02 6.26426935e-01 -1.21150541e+00 4.00680155e-01 7.61174798e-01 6.99858516e-02 4.56564456e-01 -7.81346560e-01 4.99758571e-01 -1.63438666e+00 -1.61746040e-01 -1.26169130e-01 -2.01715946e-01 -1.07307565e+00 -8.94310772e-01 1.28014609e-01 5.65487027e-01 -1.38761687e+00 -6.59433484e-01 -9.44899797e-01 -6.28450990e-01 2.90155530e-01 -1.20667958e+00 -8.85825574e-01 -3.41926277e-01 6.07717037e-01 7.15878308e-01 -2.58301318e-01 7.35244393e-01 -2.82545686e-01 -4.40496862e-01 -1.70578629e-01 3.21886212e-01 2.81273872e-01 2.03860309e-02 -1.14208722e+00 4.16769892e-01 6.46843314e-01 4.72493947e-01 4.78342682e-01 8.15895379e-01 -7.56463051e-01 -1.93181551e+00 -1.13836324e+00 -5.78697734e-02 -5.07864594e-01 8.30967247e-01 -4.48296547e-01 -8.29929352e-01 9.97342169e-01 7.03837052e-02 5.14626622e-01 2.49030590e-01 -4.50531572e-01 -5.49839549e-02 1.81914553e-01 -5.23157597e-01 5.55719793e-01 1.17332315e+00 -7.67880142e-01 -6.64812505e-01 5.99915862e-01 5.85125685e-01 -3.97857785e-01 -5.11099458e-01 2.82219231e-01 6.74594879e-01 -7.17961252e-01 1.00095534e+00 -1.08171332e+00 5.85299790e-01 -1.68062776e-01 -1.70905575e-01 -1.05775809e+00 -2.39241749e-01 -6.48171186e-01 -6.70872092e-01 4.84786779e-01 -7.86132291e-02 -1.76727265e-01 9.99650061e-01 7.20778167e-01 1.18377671e-01 -6.95393503e-01 -7.47201085e-01 -9.06322420e-01 -5.94251156e-02 -6.56618595e-01 7.91209936e-02 6.59569561e-01 -4.81772572e-02 2.20328227e-01 -7.76541412e-01 4.10178423e-01 5.99536836e-01 3.41407835e-01 7.22974896e-01 -6.81750476e-01 -6.42843544e-01 8.46209899e-02 -8.46213341e-01 -1.46170878e+00 6.35086536e-01 -5.27497768e-01 2.25663275e-01 -1.47353184e+00 3.01953912e-01 -8.49248692e-02 -3.23064893e-01 2.36956209e-01 3.59121740e-01 -5.79825640e-02 3.03975701e-01 4.10782963e-01 -9.16842878e-01 8.24730873e-01 1.00395191e+00 -2.42065698e-01 -9.58297998e-02 -1.25528678e-01 4.01084483e-01 1.01075399e+00 7.66822875e-01 -1.72884658e-01 -6.89311385e-01 -4.13420498e-01 1.20144218e-01 5.30566752e-01 1.07741547e+00 -1.20508838e+00 1.60783753e-02 -6.35845780e-01 3.49592328e-01 -3.77622455e-01 7.59816408e-01 -7.31427252e-01 1.78792387e-01 7.44557023e-01 -5.82594812e-01 -2.62342721e-01 3.29084210e-02 9.60798085e-01 6.09335257e-03 2.99686734e-02 4.04632270e-01 -2.81056136e-01 -1.10261786e+00 4.81582344e-01 -9.77385700e-01 -3.96405339e-01 1.21580577e+00 -3.02149922e-01 7.11243926e-03 -7.88794219e-01 -1.11238849e+00 6.58650026e-02 4.58270311e-01 5.29689729e-01 8.73558402e-01 -1.35106707e+00 -3.02563250e-01 1.94705978e-01 -2.48553976e-02 -2.39657313e-01 2.22459808e-01 6.28150702e-01 -7.93034315e-01 4.37764972e-01 -5.24826527e-01 -9.93258536e-01 -8.89718473e-01 7.20391810e-01 5.02658546e-01 2.61236817e-01 -1.02393806e+00 4.14593428e-01 5.81455469e-01 -1.10687889e-01 1.88448668e-01 -8.20630372e-01 4.42837402e-02 -7.32000232e-01 4.33127612e-01 2.07856387e-01 -6.92676485e-01 -9.32224095e-01 -6.10869080e-02 5.52095592e-01 3.09763223e-01 -1.57811612e-01 1.42386591e+00 -7.25604966e-02 2.15816960e-01 9.13423002e-01 1.27320540e+00 -4.75863755e-01 -2.20947933e+00 4.26407298e-03 -1.08816229e-01 -2.48975471e-01 9.61508825e-02 -1.84311509e-01 -9.84669030e-01 9.30875599e-01 4.36396807e-01 1.05838794e-02 7.19528198e-01 1.76006347e-01 8.55214119e-01 7.90241301e-01 5.26678622e-01 -9.32467520e-01 5.08798420e-01 5.06313801e-01 7.63790488e-01 -1.20520771e+00 6.68009520e-02 -1.97464287e-01 -6.09762371e-01 1.27973020e+00 6.29323184e-01 -5.25950193e-01 7.43987620e-01 2.80344367e-01 -2.76548207e-01 -1.80375993e-01 -1.25243211e+00 9.77746397e-02 2.80536443e-01 4.71065402e-01 5.30927666e-02 -4.41807434e-02 5.90426445e-01 -5.60966209e-02 1.58609137e-01 1.21163480e-01 6.87227905e-01 1.03968954e+00 -3.44018251e-01 -7.72363722e-01 -1.39080748e-01 3.08448225e-01 -1.01517975e-01 3.71857852e-01 -1.15714364e-01 4.52601075e-01 8.75996309e-04 4.55537409e-01 3.05738837e-01 -3.46489251e-01 -9.92911607e-02 -4.35763113e-02 8.88080537e-01 -6.14287674e-01 1.74865380e-01 -7.03995079e-02 -2.45283753e-01 -9.84826386e-01 -9.48721588e-01 -8.81227434e-01 -1.46942949e+00 -3.97269577e-02 -7.88566023e-02 6.75319554e-03 4.78536934e-01 1.14304280e+00 1.62292883e-01 5.62925637e-01 3.94933403e-01 -1.26506543e+00 -3.95645469e-01 -6.28293037e-01 -2.75996149e-01 6.40648901e-01 7.03326464e-01 -1.04932058e+00 -2.34587669e-01 9.62326705e-01]
[8.48789119720459, 0.2133188247680664]