paperID
stringlengths
36
36
pwc_id
stringlengths
8
47
arxiv_id
stringlengths
6
16
nips_id
float64
url_abs
stringlengths
18
329
url_pdf
stringlengths
18
742
title
stringlengths
8
325
abstract
stringlengths
1
7.27k
authors
stringlengths
2
7.06k
published
stringlengths
10
10
conference
stringlengths
12
47
conference_url_abs
stringlengths
16
198
conference_url_pdf
stringlengths
27
199
proceeding
stringlengths
6
47
taskID
stringlengths
7
1.44k
areaID
stringclasses
688 values
embedding
stringlengths
9.26k
12.5k
umap_embedding
stringlengths
29
44
1edb8be9-9f77-40b5-8909-3638403e0e69
pcace-a-statistical-approach-to-ranking
2112.15571
null
https://arxiv.org/abs/2112.15571v1
https://arxiv.org/pdf/2112.15571v1.pdf
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability
In this paper we introduce a new problem within the growing literature of interpretability for convolution neural networks (CNNs). While previous work has focused on the question of how to visually interpret CNNs, we ask what it is that we care to interpret, that is, which layers and neurons are worth our attention? Due to the vast size of modern deep learning network architectures, automated, quantitative methods are needed to rank the relative importance of neurons so as to provide an answer to this question. We present a new statistical method for ranking the hidden neurons in any convolutional layer of a network. We define importance as the maximal correlation between the activation maps and the class score. We provide different ways in which this method can be used for visualization purposes with MNIST and ImageNet, and show a real-world application of our method to air pollution prediction with street-level images.
['Seth Flaxman', 'Esra Suel', 'Sílvia Casacuberta']
2021-12-31
null
null
null
null
['air-pollution-prediction']
['miscellaneous']
[ 3.85114878e-01 2.81988263e-01 2.88292140e-01 -6.28077030e-01 1.29927501e-01 -5.86421967e-01 4.76447880e-01 3.88522834e-01 -5.86027205e-01 5.32994449e-01 2.94688016e-01 -6.88234925e-01 -3.82832795e-01 -7.23946810e-01 -4.87776756e-01 -5.59844851e-01 -1.30907163e-01 2.22964864e-02 1.01033784e-01 -5.64840920e-02 1.72819436e-01 8.03425193e-01 -1.45148218e+00 6.09809756e-01 5.11767328e-01 1.07522702e+00 -8.66758525e-02 7.11190820e-01 -1.30644470e-01 6.81211233e-01 -7.46638060e-01 -2.45613962e-01 1.83082059e-01 -4.75810736e-01 -1.06509316e+00 -8.49247649e-02 7.18051434e-01 6.42066523e-02 2.65053511e-02 1.31128395e+00 2.21252307e-01 1.72596827e-01 8.07199121e-01 -1.21705997e+00 -5.61057448e-01 4.82953757e-01 -1.96735561e-01 8.29047620e-01 -3.33454072e-01 2.57401168e-01 1.17699873e+00 -4.41651165e-01 3.57802808e-01 1.45912397e+00 5.06292582e-01 3.82910907e-01 -1.44461679e+00 -3.26877683e-01 4.20863509e-01 1.44396439e-01 -1.06602538e+00 -1.54858172e-01 3.50855201e-01 -8.63651037e-01 7.86830485e-01 6.66552305e-01 8.45077693e-01 7.62547553e-01 -1.52348906e-01 3.61096770e-01 1.23871684e+00 -4.24221128e-01 4.54390436e-01 2.16906682e-01 5.25464416e-01 7.83310473e-01 5.77586532e-01 -7.17611983e-02 -1.92484245e-01 1.65653780e-01 1.05051899e+00 5.77518381e-02 -9.72106233e-02 -4.82582999e-03 -1.26793158e+00 8.17105532e-01 9.26737726e-01 4.40875918e-01 -2.56456554e-01 5.35339534e-01 1.27323017e-01 2.19619840e-01 5.73901236e-01 7.70990193e-01 -4.48393226e-01 3.05257320e-01 -6.96702898e-01 1.94816217e-01 6.11112595e-01 3.17791253e-01 6.73502505e-01 1.30757987e-01 -2.62740344e-01 6.53941035e-01 2.87210435e-01 1.95212662e-03 3.42280716e-02 -9.99926329e-01 3.03190053e-01 9.31910932e-01 -1.75447285e-01 -1.03795838e+00 -4.79941666e-01 -4.88100797e-01 -8.60701740e-01 1.06363440e+00 7.69612908e-01 -1.47841588e-01 -8.86145532e-01 1.43946731e+00 -1.40705720e-01 -3.85452732e-02 -1.68430403e-01 9.30028379e-01 9.35767949e-01 3.18822742e-01 3.98022830e-01 4.32762414e-01 1.62509000e+00 -7.43029416e-01 -2.89878100e-01 -3.70634675e-01 4.61271286e-01 -3.28060597e-01 1.15971994e+00 1.63466141e-01 -8.68697226e-01 -5.58078766e-01 -1.12563431e+00 1.46989385e-02 -9.53290701e-01 2.03488007e-01 4.84917074e-01 6.26320422e-01 -1.07185817e+00 8.42936277e-01 -8.38589072e-01 -4.06192958e-01 7.02819109e-01 3.52828801e-01 -3.05953205e-01 4.43762600e-01 -1.08583403e+00 1.10743570e+00 6.40326798e-01 2.79118419e-01 -4.94373769e-01 -5.12766898e-01 -5.87272167e-01 4.56544518e-01 -9.25912932e-02 -7.51410425e-01 1.20161605e+00 -1.37418664e+00 -7.26970851e-01 8.94750178e-01 -8.19277465e-02 -4.57627326e-01 3.35428029e-01 3.78973335e-02 -3.51177901e-01 8.43425915e-02 -2.80454755e-01 8.96856844e-01 5.03315330e-01 -1.23958826e+00 -8.64321649e-01 -2.77778238e-01 5.20013213e-01 7.28304386e-02 -5.42246878e-01 5.83727239e-03 -3.45852643e-01 -5.83763659e-01 1.15635999e-01 -9.19826686e-01 -5.25304735e-01 5.52518129e-01 -4.76832420e-01 -1.90927938e-01 6.40151203e-01 -5.24479270e-01 1.01274133e+00 -2.15967417e+00 -6.43486977e-02 4.72285271e-01 7.61953533e-01 3.95900071e-01 -4.19737473e-02 -2.30172113e-01 -5.68851948e-01 6.89323664e-01 -3.84032607e-01 -5.59423529e-02 5.93596473e-02 2.62269855e-01 -1.37580723e-01 2.83921093e-01 5.97680330e-01 8.87733519e-01 -1.02428067e+00 -3.31009835e-01 3.24569136e-01 7.01874793e-01 -2.74390727e-01 -1.48975611e-01 -9.06069577e-02 3.12320858e-01 -3.98761392e-01 1.44949540e-01 3.31182867e-01 -4.80975658e-01 1.40993604e-02 -2.28534922e-01 -3.26914668e-01 2.10492179e-01 -1.18872762e+00 8.08456481e-01 -7.75158107e-02 1.32315052e+00 -4.91542928e-02 -8.55184317e-01 5.93966246e-01 1.21619247e-01 5.71150817e-02 -7.47219801e-01 1.49172559e-01 1.90674849e-02 3.48862767e-01 -5.22182882e-01 2.74713159e-01 6.35884926e-02 4.45642591e-01 4.09556031e-01 -2.53979087e-01 3.43145728e-01 3.74421567e-01 -1.30133018e-01 1.10173154e+00 -3.15111279e-01 3.46496463e-01 -5.94434321e-01 3.42646211e-01 1.08066015e-01 6.14656769e-02 6.79443598e-01 -7.92217776e-02 8.43444109e-01 1.05015004e+00 -9.16327655e-01 -1.05434537e+00 -1.01959217e+00 -3.77975069e-02 1.01858759e+00 -2.53146261e-01 -2.15180174e-01 -1.01727867e+00 -6.04613304e-01 -3.41857783e-02 4.92518693e-01 -1.09965694e+00 1.88081846e-01 -5.73739111e-01 -9.68252420e-01 4.15388376e-01 7.09544301e-01 3.81760389e-01 -1.33394098e+00 -1.05335355e+00 -9.10046101e-02 1.13966748e-01 -8.81368279e-01 5.31698689e-02 4.63859767e-01 -1.11265671e+00 -1.34154785e+00 -5.73960423e-01 -6.92308187e-01 1.16442537e+00 1.47454008e-01 1.52281427e+00 4.77071941e-01 -3.65586638e-01 -1.57641638e-02 7.86636397e-02 -7.48025358e-01 -2.71895140e-01 1.84037164e-01 -5.01451075e-01 -1.14479251e-01 2.86638170e-01 -3.86635274e-01 -9.51396406e-01 4.60620485e-02 -1.19785452e+00 1.74017847e-01 6.71097279e-01 4.28778261e-01 4.71310169e-01 2.02631772e-01 7.13064224e-02 -1.02228367e+00 1.01179135e+00 -2.88099825e-01 -6.68702841e-01 2.22575426e-01 -5.17084658e-01 3.53991061e-01 4.76355255e-01 -9.77755487e-02 -5.57173789e-01 1.14158981e-01 -2.10354760e-01 -6.25226796e-02 -5.03788054e-01 4.38332647e-01 8.45705271e-02 -3.38838361e-02 8.52408409e-01 -3.66198897e-01 -3.19821090e-01 -5.94122708e-01 3.63438904e-01 2.06202015e-01 3.48938286e-01 -2.39154294e-01 7.21210063e-01 5.46408713e-01 2.48801455e-01 -8.56511176e-01 -7.17394471e-01 -2.88302094e-01 -9.07818735e-01 -1.99571192e-01 1.22133112e+00 -5.06837785e-01 -9.58280206e-01 1.34601751e-02 -1.34370303e+00 -4.02613044e-01 -3.16471338e-01 2.23629341e-01 -4.66441028e-02 -7.71073997e-02 -1.71378955e-01 -8.94937515e-01 -1.09541178e-01 -1.18478382e+00 7.45765448e-01 2.52509058e-01 -5.35990834e-01 -1.39094710e+00 -1.73366532e-01 -9.26515833e-02 5.77020288e-01 5.10840774e-01 1.41439283e+00 -5.30310273e-01 -5.57930171e-01 1.27873212e-01 -7.80931652e-01 4.83778268e-01 1.60065927e-02 8.10202658e-02 -1.21431434e+00 1.52872175e-01 -2.41337314e-01 1.82136998e-01 1.27955329e+00 4.49645907e-01 1.69674098e+00 -6.24460280e-01 -2.65045941e-01 3.72884244e-01 1.36976707e+00 5.73889501e-02 6.99935496e-01 3.97732377e-01 7.77307332e-01 9.40886319e-01 -1.94264874e-02 -6.20635115e-02 6.06076159e-02 5.16284704e-01 8.25442135e-01 -8.08447897e-01 -1.59048095e-01 1.02604978e-01 -1.14087872e-01 2.79261380e-01 -3.35030586e-01 -3.25863957e-01 -1.06647670e+00 5.28976619e-01 -1.86760020e+00 -9.14591849e-01 -4.55336601e-01 1.93863213e+00 4.29102421e-01 3.53544891e-01 1.17770676e-02 3.06091011e-01 6.54833317e-01 1.49955228e-01 -3.01929474e-01 -5.07028818e-01 5.23659103e-02 2.56096393e-01 4.75536644e-01 4.75114524e-01 -1.27498496e+00 4.17101681e-01 7.08906603e+00 4.40353662e-01 -1.19450557e+00 -1.56835735e-01 1.19163120e+00 -1.27891116e-02 -1.74684286e-01 -2.04939798e-01 -3.79223824e-01 3.44456851e-01 8.03216338e-01 3.84263247e-01 2.75473148e-01 7.05067456e-01 4.08042550e-01 -1.07182987e-01 -1.34913814e+00 8.71638358e-01 -3.89492720e-01 -1.52672589e+00 -5.81209324e-02 5.56147248e-02 6.23880088e-01 9.75164697e-02 2.78597176e-01 -3.17234039e-01 3.87968242e-01 -1.58373821e+00 7.40784228e-01 6.72325373e-01 5.08198500e-01 -4.82049257e-01 5.45234680e-01 1.23424421e-03 -1.17501307e+00 5.54978214e-02 -3.13910991e-01 -3.12109649e-01 -2.55398989e-01 6.40973985e-01 -9.17882919e-01 -1.37096047e-01 9.32684362e-01 3.83883774e-01 -9.89917219e-01 1.30355275e+00 -3.50865483e-01 6.44832432e-01 -1.54587835e-01 -2.62289971e-01 4.24233615e-01 -6.55353367e-02 2.46716633e-01 1.46399009e+00 1.67038992e-01 -1.28098145e-01 -3.69438946e-01 1.06213498e+00 -5.69794662e-02 -2.73326129e-01 -5.36197305e-01 -1.35912433e-01 3.28087844e-02 1.49301529e+00 -1.31892133e+00 -4.36753631e-01 -2.66752094e-01 6.52194142e-01 4.03828502e-01 5.95378458e-01 -4.93523210e-01 -4.24554825e-01 9.97974992e-01 3.37191373e-01 1.07682422e-01 -3.54686052e-01 -7.72262573e-01 -5.64023077e-01 -1.04708798e-01 -5.81362188e-01 2.61021584e-01 -9.62624609e-01 -1.10155880e+00 7.84955740e-01 5.45622548e-03 -1.01189995e+00 1.56729400e-01 -1.26713145e+00 -8.64493132e-01 1.03260756e+00 -1.52471507e+00 -5.27155697e-01 -4.66989815e-01 4.72548865e-02 2.80557930e-01 8.98453891e-02 8.69873405e-01 2.14244619e-01 -5.05521357e-01 2.80067045e-02 5.89681864e-02 4.71757621e-01 5.75013421e-02 -1.69622350e+00 8.95960271e-01 6.56377017e-01 4.01814371e-01 7.64768422e-01 9.29795504e-01 -1.01705439e-01 -5.73363245e-01 -1.20340240e+00 9.00966227e-01 -6.51365280e-01 5.45538902e-01 -2.95741767e-01 -7.86771238e-01 4.85468507e-01 3.64210725e-01 1.23354025e-01 6.71477258e-01 1.98487148e-01 -3.33670586e-01 -1.38639256e-01 -9.23190057e-01 8.96889925e-01 8.32341135e-01 -2.81848043e-01 -5.02633393e-01 1.95739597e-01 4.77004319e-01 -9.58095714e-02 -4.14232165e-01 1.88985124e-01 5.39358914e-01 -1.04325926e+00 1.05091488e+00 -8.81839395e-01 5.26149333e-01 -5.54430425e-01 2.58158743e-01 -1.48673093e+00 -4.61701035e-01 1.34989947e-01 2.31034458e-01 7.10642517e-01 8.01778793e-01 -6.37580633e-01 7.94295549e-01 5.68334520e-01 -3.63028049e-02 -7.85165548e-01 -7.62372077e-01 -4.51807052e-01 -8.56435075e-02 -3.56273055e-01 5.65712631e-01 7.91594446e-01 -3.55713844e-01 3.47525775e-01 8.97355601e-02 1.87694728e-01 3.46879303e-01 -3.61033171e-01 2.06496820e-01 -1.70634806e+00 2.13542618e-02 -9.54107523e-01 -5.12880504e-01 -5.68593442e-01 -1.72650635e-01 -8.77368152e-01 -3.96125764e-02 -1.89672804e+00 1.78061575e-01 -2.03760237e-01 -6.93862379e-01 7.56723642e-01 -1.66017190e-01 6.66290283e-01 2.88857013e-01 -2.63420939e-02 -4.84623790e-01 -1.00791447e-01 1.12148976e+00 -2.92375445e-01 8.71793851e-02 -1.76256612e-01 -9.37333047e-01 9.66294289e-01 9.63428497e-01 -5.45933783e-01 -3.21737379e-01 -7.38909781e-01 5.98283827e-01 -7.14700878e-01 9.78734910e-01 -1.21219873e+00 7.82112405e-02 -1.91620201e-01 9.23101962e-01 -3.10943961e-01 1.69068992e-01 -9.72910881e-01 1.13117151e-01 6.57712758e-01 -7.20075846e-01 5.25595844e-01 3.41185778e-01 3.09850514e-01 -1.58138365e-01 -3.35770100e-01 8.17041159e-01 -4.33070958e-01 -7.85790026e-01 1.16975673e-01 -5.05756438e-01 -4.90830687e-04 5.46730280e-01 -8.34188387e-02 -5.59348404e-01 -1.38873443e-01 -9.12397027e-01 3.54421660e-02 1.60586342e-01 4.28545207e-01 5.80581903e-01 -1.35133922e+00 -4.38840836e-01 7.18817785e-02 9.56109986e-02 -2.08645523e-01 -1.17509790e-01 5.80591202e-01 -8.56710613e-01 4.33579952e-01 -4.02662724e-01 -4.94831532e-01 -1.48542631e+00 7.71735013e-02 5.77984691e-01 -2.41430759e-01 -3.99618417e-01 7.70356953e-01 5.48406184e-01 1.05463155e-01 2.84400970e-01 -6.74985826e-01 -7.01679945e-01 1.18786909e-01 6.78019464e-01 3.96472633e-01 2.65141279e-01 -4.60034728e-01 -3.61452371e-01 2.43365914e-01 2.66822547e-01 -9.83799174e-02 1.39228010e+00 1.89805329e-01 -1.64294735e-01 5.00070393e-01 1.13972855e+00 -5.01691341e-01 -1.27490950e+00 1.48482665e-01 2.73054421e-01 -1.93300724e-01 2.77090985e-02 -8.62250566e-01 -1.29094362e+00 1.42383468e+00 1.01225924e+00 6.89030409e-01 9.63716507e-01 -6.42367154e-02 1.31712973e-01 6.08129025e-01 -5.05810320e-01 -1.02338648e+00 9.37848166e-02 6.28391623e-01 8.54721248e-01 -1.20068538e+00 -4.14692275e-02 -1.55210629e-01 -3.76516342e-01 1.33374023e+00 4.63707328e-01 -1.26716524e-01 7.41278887e-01 1.29540309e-01 1.72808990e-01 -5.87819040e-01 -4.88114804e-01 -5.67382753e-01 6.78219914e-01 5.46836913e-01 7.49726534e-01 1.61404267e-01 4.17457670e-02 1.81691825e-01 -2.84927726e-01 -2.17226759e-01 1.43775806e-01 5.88159502e-01 -8.47939074e-01 -8.05308402e-01 -3.43302757e-01 6.60206735e-01 -5.58078349e-01 -3.01542252e-01 -6.60782576e-01 7.14110136e-01 4.27375883e-01 7.27215052e-01 2.89962173e-01 -2.27760747e-01 4.11025047e-01 1.78499110e-02 1.97508723e-01 -6.99116647e-01 -7.11170971e-01 -3.94567609e-01 1.07110351e-01 -2.73764342e-01 -3.92189533e-01 -2.90958405e-01 -1.14558411e+00 -1.79507911e-01 1.94826603e-01 5.17672580e-03 8.11355770e-01 1.01582289e+00 -3.62201147e-02 9.92079735e-01 4.48782556e-02 -6.76158011e-01 1.10581875e-01 -7.02592075e-01 -4.16537285e-01 5.01690865e-01 6.38578475e-01 -3.79586995e-01 -5.03721535e-01 1.63678318e-01]
[8.882684707641602, 5.486849784851074]
5f3fd0a0-00a7-4642-adf0-318fb91ad03b
invisible-backdoor-attack-with-dynamic
2211.10933
null
https://arxiv.org/abs/2211.10933v2
https://arxiv.org/pdf/2211.10933v2.pdf
Invisible Backdoor Attack with Dynamic Triggers against Person Re-identification
In recent years, person Re-identification (ReID) has rapidly progressed with wide real-world applications, but also poses significant risks of adversarial attacks. In this paper, we focus on the backdoor attack on deep ReID models. Existing backdoor attack methods follow an all-to-one or all-to-all attack scenario, where all the target classes in the test set have already been seen in the training set. However, ReID is a much more complex fine-grained open-set recognition problem, where the identities in the test set are not contained in the training set. Thus, previous backdoor attack methods for classification are not applicable for ReID. To ameliorate this issue, we propose a novel backdoor attack on deep ReID under a new all-to-unknown scenario, called Dynamic Triggers Invisible Backdoor Attack (DT-IBA). Instead of learning fixed triggers for the target classes from the training set, DT-IBA can dynamically generate new triggers for any unknown identities. Specifically, an identity hashing network is proposed to first extract target identity information from a reference image, which is then injected into the benign images by image steganography. We extensively validate the effectiveness and stealthiness of the proposed attack on benchmark datasets, and evaluate the effectiveness of several defense methods against our attack.
['Cairong Zhao', 'Cheng Deng', 'Duoqian Miao', 'Dongsheng Li', 'Shuguang Dou', 'Xinyang Jiang', 'Wenli Sun']
2022-11-20
null
null
null
null
['image-steganography', 'open-set-learning']
['computer-vision', 'miscellaneous']
[ 2.22792551e-01 -3.06846648e-01 4.28701192e-02 -2.80219197e-01 -3.58668298e-01 -1.05202460e+00 6.51440024e-01 -1.88160494e-01 -3.74112815e-01 7.33972847e-01 -8.65594074e-02 -7.39485398e-02 5.54741807e-02 -1.18499899e+00 -8.24213207e-01 -9.11301136e-01 -1.22962177e-01 3.88231933e-01 4.98317853e-02 -3.69477063e-01 -9.41643026e-03 3.65768820e-01 -1.31835985e+00 1.89501364e-02 5.62943876e-01 5.50597191e-01 -4.77711052e-01 3.38847488e-01 1.68609753e-01 1.75371408e-01 -9.91263926e-01 -7.77631104e-01 7.17974663e-01 -5.02538443e-01 -5.15328407e-01 -5.30215740e-01 4.75597233e-01 -5.54785013e-01 -9.14720893e-01 1.37319207e+00 7.32371032e-01 -1.62179336e-01 3.69453818e-01 -1.58735156e+00 -8.67889404e-01 5.81675231e-01 -5.01386821e-01 3.06579471e-01 5.54945707e-01 2.46485770e-01 4.17223334e-01 -5.90718269e-01 3.99128556e-01 1.43819475e+00 5.91517746e-01 8.78096163e-01 -1.01477814e+00 -1.48259044e+00 1.30257547e-01 5.00494659e-01 -1.86005056e+00 -3.95288855e-01 5.17154336e-01 -9.33872908e-02 2.26023883e-01 5.73094845e-01 4.71499413e-01 1.40021122e+00 1.21750310e-01 3.19991022e-01 1.20915782e+00 -1.92148745e-01 -8.58230069e-02 3.85685980e-01 1.86024532e-01 3.80844325e-01 6.72641158e-01 7.32129216e-01 -2.75114924e-01 -5.71980536e-01 5.90236068e-01 1.68037504e-01 -4.78787422e-01 -3.01534459e-02 -1.08302474e+00 8.86139750e-01 3.92189592e-01 -9.96747538e-02 5.20263575e-02 2.97245546e-03 2.90176660e-01 3.63692760e-01 -6.28434122e-02 1.26700941e-02 -2.74524856e-02 3.89575750e-01 -4.22939330e-01 5.04152596e-01 9.04366970e-01 6.04130983e-01 8.49567056e-01 -1.77866995e-01 -1.59179717e-01 2.57333457e-01 2.31029138e-01 8.59674692e-01 5.51535368e-01 -2.98456639e-01 3.87088031e-01 3.10868323e-01 -6.74810447e-03 -1.42817879e+00 -1.86408181e-02 -6.14692390e-01 -9.59234238e-01 -1.01713955e-01 4.70360279e-01 -1.39452651e-01 -7.75148928e-01 2.08117080e+00 6.99544430e-01 7.50453353e-01 2.83492237e-01 7.44066060e-01 7.98699498e-01 6.72082603e-01 -7.96631947e-02 -4.12788168e-02 1.57130277e+00 -6.31332755e-01 -5.94137311e-01 -1.47952914e-01 4.45469230e-01 -5.30014515e-01 5.57764173e-01 7.26873353e-02 -4.47941720e-01 -5.08953393e-01 -1.20474589e+00 3.05318058e-01 -5.43446720e-01 -3.26752335e-01 2.77599156e-01 1.28250694e+00 -7.65851617e-01 4.27451916e-02 -2.56611466e-01 -2.56608903e-01 3.44535351e-01 7.88524032e-01 -7.64652789e-01 -3.66589934e-01 -1.79001617e+00 4.37088072e-01 5.47377229e-01 3.08406502e-01 -1.14784074e+00 -4.89223003e-01 -1.01291335e+00 1.88982394e-02 3.31075072e-01 -5.69553435e-01 7.41423249e-01 -7.19063997e-01 -1.09215486e+00 8.72457862e-01 -4.31371592e-02 -6.34072006e-01 5.90604603e-01 1.42766656e-02 -8.17206025e-01 -7.12604001e-02 1.87304780e-01 3.91952127e-01 1.02122521e+00 -1.31717110e+00 -3.52814853e-01 -5.96935809e-01 2.56022990e-01 -8.45576823e-02 -4.41898018e-01 7.46231079e-02 -2.02705637e-01 -7.38044739e-01 -1.90221056e-01 -1.14913642e+00 -2.03329101e-02 -2.63803393e-01 -6.69113934e-01 1.03593193e-01 1.27878523e+00 -5.26918054e-01 1.04039717e+00 -2.23991203e+00 -4.11583871e-01 5.97102106e-01 1.37969792e-01 6.28400207e-01 -2.30093226e-01 3.35283458e-01 -2.33666554e-01 2.24959701e-01 2.93546915e-02 -1.14057079e-01 -8.68657529e-02 3.17759335e-01 -6.78022921e-01 6.73706889e-01 -3.63577813e-01 7.79959500e-01 -8.54072392e-01 -3.92347634e-01 3.66810597e-02 6.31289482e-01 -3.55987549e-01 1.74492076e-01 3.61334831e-01 6.00383103e-01 -3.91999274e-01 5.58834672e-01 1.14139986e+00 3.10093653e-03 3.53123881e-02 -6.18714988e-02 2.46925607e-01 -1.88830018e-01 -1.32409918e+00 8.11488748e-01 -1.23803420e-02 2.31078133e-01 -2.32749075e-01 -6.83070898e-01 8.90651703e-01 3.48343164e-01 1.04151070e-01 -6.06744170e-01 1.66941807e-01 1.43694431e-01 2.00414121e-01 -2.18731493e-01 3.39918524e-01 6.26169220e-02 -2.99736768e-01 5.24290621e-01 -2.38604769e-01 8.32930744e-01 -2.50544339e-01 1.18902326e-01 8.63596678e-01 -2.79767483e-01 1.36917159e-01 -8.26771706e-02 1.02561271e+00 -2.42902994e-01 8.63000154e-01 1.04848778e+00 -3.79013300e-01 5.33016324e-01 1.84916884e-01 -6.42267466e-01 -7.80629218e-01 -1.11338913e+00 -2.44735897e-01 6.00287855e-01 7.09240258e-01 -3.13693136e-01 -8.74705672e-01 -1.11868310e+00 3.03154349e-01 2.14660242e-01 -7.01423705e-01 -4.81768340e-01 -7.12772012e-01 -7.85007000e-01 1.22754896e+00 5.94245642e-02 1.12454998e+00 -7.28789926e-01 9.30698216e-02 6.27106279e-02 -3.57315689e-01 -1.13600671e+00 -7.75096357e-01 -7.58304775e-01 -2.13360742e-01 -1.36208045e+00 -7.16991663e-01 -8.68325055e-01 8.98551643e-01 5.47287405e-01 3.89403790e-01 2.42470309e-01 -2.75740027e-01 1.74400926e-01 -5.48911579e-02 -4.16255474e-01 -4.72618729e-01 -1.45459071e-01 5.39948463e-01 6.61025286e-01 5.29685199e-01 -2.65290767e-01 -7.93511212e-01 8.41983318e-01 -8.18893313e-01 -4.34012383e-01 3.64630073e-01 9.06130314e-01 3.78354490e-01 4.55746502e-01 6.77953362e-01 -8.34583044e-01 3.79396647e-01 -5.93308568e-01 -5.89504182e-01 3.29753786e-01 -2.84734726e-01 -6.84691891e-02 7.50423670e-01 -8.69007826e-01 -6.76847279e-01 -5.71764670e-02 -2.25054801e-01 -4.71266091e-01 1.26837594e-02 7.41300136e-02 -6.46876156e-01 -6.46809399e-01 5.73012829e-01 6.15380406e-01 2.70055309e-02 -1.72275022e-01 1.48719504e-01 7.40985870e-01 9.57523346e-01 -4.62916672e-01 1.59805536e+00 7.09067464e-01 -3.18260081e-02 -5.40700674e-01 -3.82221192e-01 -1.86089486e-01 -8.66031200e-02 -1.18529990e-01 5.85907519e-01 -1.02463067e+00 -1.15183997e+00 1.02291811e+00 -1.10560143e+00 1.90066114e-01 1.04552142e-01 4.15960848e-01 1.46406293e-01 7.30897367e-01 -3.69098186e-01 -5.37191987e-01 -5.62672436e-01 -1.17900789e+00 6.52572691e-01 5.82945406e-01 7.96798989e-02 -8.42826843e-01 -7.97351822e-02 3.29603493e-01 2.81723499e-01 5.75063944e-01 6.04655564e-01 -1.14146399e+00 -6.56193078e-01 -6.30103648e-01 -1.32900730e-01 1.70265555e-01 3.52216452e-01 -4.62297469e-01 -9.85872865e-01 -7.86700368e-01 1.36835575e-01 -4.05198336e-02 7.12895393e-01 -2.08081722e-01 1.01229465e+00 -7.99812555e-01 -6.68191254e-01 9.06838119e-01 1.15071046e+00 2.37583533e-01 7.90825009e-01 6.20037735e-01 8.24470758e-01 5.45516491e-01 4.73386765e-01 4.00168747e-01 6.25907540e-01 7.14585125e-01 3.56648386e-01 2.48619057e-02 2.58673191e-01 -5.00636160e-01 4.24705923e-01 1.29056573e-02 2.07555071e-01 -3.78094435e-01 -5.67483366e-01 4.22271729e-01 -1.55934453e+00 -1.09049737e+00 1.41762763e-01 2.57342219e+00 7.57609487e-01 7.94074982e-02 9.87441391e-02 3.73855680e-02 1.35960007e+00 1.71671674e-01 -5.38158953e-01 -8.31433609e-02 -1.86562076e-01 8.14476833e-02 6.71852589e-01 3.03226590e-01 -1.20088804e+00 8.38761628e-01 5.38271427e+00 7.16132939e-01 -1.21579218e+00 1.52345598e-01 5.26384592e-01 1.83687419e-01 -1.76376715e-01 1.97282538e-01 -1.26977003e+00 8.18737507e-01 6.18283868e-01 -4.63615447e-01 4.07354742e-01 6.51917279e-01 -2.57658243e-01 3.54597390e-01 -1.16525662e+00 1.13176751e+00 3.24008912e-01 -1.12893701e+00 3.10800523e-01 4.71529454e-01 6.22544587e-01 -5.88279068e-01 4.10233021e-01 3.56858224e-01 2.09660992e-01 -9.44498062e-01 4.34650809e-01 6.10913150e-02 9.86857355e-01 -1.05453336e+00 8.60322893e-01 3.38355571e-01 -1.26815569e+00 -2.87999481e-01 -4.86881644e-01 2.66237944e-01 -1.37265041e-01 8.19961280e-02 -5.32244325e-01 7.29479194e-01 5.94515920e-01 1.91448107e-01 -4.92927551e-01 1.00571752e+00 -2.81455398e-01 3.57986510e-01 -5.01690626e-01 2.43257165e-01 8.52930844e-02 2.47970238e-01 6.82726860e-01 9.21686292e-01 3.11535209e-01 2.08259284e-01 2.27641121e-01 7.34076619e-01 -2.98606634e-01 -5.38939796e-02 -7.89749146e-01 2.72807062e-01 9.35110569e-01 9.47279513e-01 -3.12998235e-01 -2.37324774e-01 -4.16798294e-02 1.03173876e+00 -2.57291108e-01 3.41678679e-01 -1.01108479e+00 -6.59041703e-01 1.03420472e+00 2.90813986e-02 9.11057964e-02 -6.95508346e-02 3.30101907e-01 -1.37983835e+00 -8.41001347e-02 -1.20678830e+00 7.37132013e-01 -1.01390153e-01 -1.23830903e+00 4.86914158e-01 -5.03600501e-02 -1.30666041e+00 -1.13881484e-01 -1.45173490e-01 -8.90056610e-01 9.18306530e-01 -1.53435481e+00 -1.33957529e+00 -3.48504514e-01 1.13799906e+00 -1.06325753e-01 -3.82132798e-01 9.88734543e-01 4.06506926e-01 -8.00263464e-01 1.51368558e+00 1.15692683e-01 6.99563861e-01 8.54897320e-01 -6.26628995e-01 7.86757171e-01 1.16616571e+00 2.90154256e-02 1.01265132e+00 4.94962424e-01 -7.72738576e-01 -1.52579319e+00 -1.22192848e+00 6.84075058e-01 -2.36819997e-01 2.46192366e-01 -7.35236347e-01 -9.87801015e-01 9.06712592e-01 -2.28061914e-01 2.68075407e-01 6.69182539e-01 -4.37242389e-01 -8.33472133e-01 -3.21684420e-01 -1.60669470e+00 4.49391067e-01 8.55142593e-01 -6.78739190e-01 -3.87495697e-01 2.52672136e-01 6.45502865e-01 -4.54443157e-01 -4.76733327e-01 3.86936903e-01 7.83398271e-01 -5.66921175e-01 1.37355244e+00 -3.97083372e-01 -2.62089640e-01 -4.09273088e-01 5.27636260e-02 -9.21809018e-01 -1.30667746e-01 -8.81863058e-01 -1.39625818e-01 1.41577196e+00 -2.36396119e-01 -1.39284754e+00 9.56358433e-01 2.68758953e-01 5.32379448e-01 -1.85579598e-01 -1.17365539e+00 -1.06047404e+00 -4.09467407e-02 1.37911752e-01 1.26704943e+00 1.15463984e+00 -4.58521724e-01 -1.88493684e-01 -6.91870868e-01 9.76580620e-01 1.21883857e+00 -1.66445971e-01 1.15757322e+00 -1.20073628e+00 -2.74368107e-01 1.24030419e-01 -8.16381574e-01 -7.52672374e-01 2.72066057e-01 -7.78285921e-01 -3.45992476e-01 -7.85170615e-01 2.15472430e-01 -6.28152549e-01 -4.54430252e-01 5.22710443e-01 -3.07883769e-01 6.62598610e-01 1.96820885e-01 4.55176383e-01 -7.08734915e-02 4.11105514e-01 9.34459150e-01 -3.83017391e-01 -4.18646894e-02 1.71512112e-01 -7.81208277e-01 3.49866480e-01 6.59007132e-01 -7.23348618e-01 -4.70224887e-01 -9.73221734e-02 -1.64573997e-01 -1.03467852e-01 7.47527361e-01 -1.12467527e+00 3.90872508e-01 9.46317837e-02 4.36243057e-01 -3.63242716e-01 2.67383188e-01 -7.05781877e-01 4.14443523e-01 8.92210901e-01 6.64026514e-02 -2.46732067e-02 1.81897014e-01 7.09259629e-01 6.73624873e-02 7.10181370e-02 7.13855624e-01 2.33167931e-02 -8.02368879e-01 6.15316033e-01 1.88212529e-01 -1.27633378e-01 1.30378580e+00 -5.33664763e-01 -8.46125901e-01 -3.07297856e-01 -5.45143485e-01 4.33672518e-01 4.86990690e-01 5.86815536e-01 7.36446619e-01 -1.38266993e+00 -9.24283087e-01 8.08845818e-01 2.68080086e-01 -3.09001595e-01 5.53479612e-01 3.00475895e-01 -4.16460037e-01 2.55087376e-01 -3.04077089e-01 -4.35957253e-01 -1.62869930e+00 8.27992797e-01 5.55525243e-01 -1.18752159e-01 -5.16956091e-01 7.74880290e-01 6.87572181e-01 -4.74964261e-01 2.13961542e-01 5.97163320e-01 -2.34312296e-01 -3.05504322e-01 9.83921230e-01 2.44326547e-01 -4.29552257e-01 -1.10302889e+00 -4.91686940e-01 6.16020739e-01 -5.20208061e-01 7.32354224e-02 6.52745962e-01 -1.16554491e-01 -2.39423454e-01 -4.03006196e-01 1.27854657e+00 1.22913472e-01 -7.27871060e-01 -4.33595717e-01 -4.19549465e-01 -8.70345473e-01 -4.35194254e-01 -5.07497549e-01 -9.23762858e-01 5.48367500e-01 9.95580912e-01 9.09182131e-02 8.77108634e-01 -3.23622406e-01 1.33002293e+00 4.82032835e-01 6.49997771e-01 -4.99513328e-01 -1.31312072e-01 2.50178903e-01 4.64710951e-01 -1.12518704e+00 -1.41916260e-01 -4.61632878e-01 -2.43501768e-01 8.36621463e-01 7.11870134e-01 -2.89274156e-02 6.46574557e-01 -5.88681139e-02 7.78369457e-02 2.06633493e-01 -1.77007496e-01 1.61059633e-01 -1.28268644e-01 8.20916176e-01 -6.01109028e-01 4.33673449e-02 -1.19247988e-01 5.82382441e-01 -3.89735222e-01 -1.88235641e-01 5.13320506e-01 6.95627749e-01 -3.14413868e-02 -1.49160230e+00 -8.96724880e-01 -1.20648667e-01 -6.44779861e-01 1.35630727e-01 -2.98915476e-01 7.38844037e-01 3.80320668e-01 8.78152013e-01 -1.66749269e-01 -8.73776495e-01 1.11418292e-01 -1.98056117e-01 2.12819442e-01 -4.13024485e-01 -6.54900432e-01 -4.75792140e-01 -2.16537505e-01 -2.42076442e-01 1.24580711e-01 -3.77882600e-01 -1.08700049e+00 -7.95793116e-01 -4.35817033e-01 3.86192709e-01 5.27801871e-01 7.88655341e-01 3.54718745e-01 -5.76035902e-02 1.20126593e+00 -5.09546161e-01 -7.26491332e-01 -4.12109882e-01 -4.11357462e-01 3.08802068e-01 4.46144611e-01 -6.20133400e-01 -4.30917859e-01 -2.94348538e-01]
[13.213784217834473, 1.0628199577331543]
8c7fcc4f-8983-46eb-9c2b-243957a9123c
experimental-assessment-of-polynomial
2011.08520
null
https://arxiv.org/abs/2011.08520v1
https://arxiv.org/pdf/2011.08520v1.pdf
Experimental assessment of polynomial nonlinear state-space and nonlinear-mode models for near-resonant vibrations
In the present paper, two existing nonlinear system identification methodologies are used to identify data-driven models. The first methodology focuses on identifying the system using steady-state excitations. To accomplish this, a phase-locked loop controller is implemented to acquire periodic oscillations near resonance and construct a nonlinear-mode model. This model is based on amplitude-dependent modal properties, i.e. does not require nonlinear basis functions. The second methodology exploits uncontrolled experiments with broadband random inputs to build polynomial nonlinear state-space models using advanced system identification tools. The methods are applied to two experimental test rigs, a magnetic cantilever beam and a free-free beam with a lap joint. The respective models of both methods and both specimens are then challenged to predict dynamic, near-resonant behavior observed under different sine and sine-sweep excitations. The vibration prediction of the nonlinear-mode and state-space models clearly highlight the capabilities and limitations of the models. The nonlinear-mode model, by design, yields a perfect match at resonance peaks and high accuracy in close vicinity. However, it is limited to well-spaced modes and sinusoidal excitation. The state-space model covers a wider dynamic range, including transient excitations. However, the real-life nonlinearities considered in this study can only be approximated by polynomial basis functions. Consequently, the identified state-space models are found to be highly input-dependent, in particular for sinusoidal excitations where they are found to lead to a low predictive capability.
['Malte Krack', 'Matthew S. Allen', 'Jean-Philippe Noël', 'Simon Peter', 'Matthew R. W. Brake', 'Ali Tatar', 'Gleb Kleyman', 'Maren Scheel']
2020-11-17
null
null
null
null
['cantilever-beam']
['miscellaneous']
[ 4.24716324e-01 -1.25663340e-01 -7.95674324e-02 4.22061205e-01 -5.48005402e-01 -5.96380949e-01 3.45696002e-01 -3.49133551e-01 1.44040018e-01 6.58815622e-01 -4.63665336e-01 -1.48934603e-01 -8.76665890e-01 -3.42643440e-01 -3.27858388e-01 -9.57315326e-01 -2.80749388e-02 2.29690507e-01 1.30260155e-01 -4.29178029e-01 1.96525961e-01 5.68650961e-01 -1.65195692e+00 -3.82156402e-01 5.97332597e-01 8.23151231e-01 9.24882144e-02 6.87594175e-01 5.54148436e-01 2.85567313e-01 -4.95635420e-01 5.63064277e-01 -1.63148679e-02 -5.08029640e-01 -5.55765569e-01 8.93321261e-02 -1.79533377e-01 -3.69688123e-01 -1.30357042e-01 7.91114628e-01 6.17063224e-01 2.37286463e-01 7.26501524e-01 -9.68487978e-01 -3.31665128e-01 2.48315662e-01 -1.10233359e-01 2.91032661e-02 5.33196926e-01 2.83943802e-01 6.81850612e-01 -1.05317867e+00 4.18601096e-01 7.22399533e-01 9.52393591e-01 5.11179686e-01 -1.90849745e+00 -4.87301111e-01 -6.57193005e-01 -9.95202363e-02 -1.41635621e+00 -4.08315927e-01 1.55096674e+00 -7.14637220e-01 7.80507863e-01 4.45859492e-01 4.57285315e-01 7.34463155e-01 3.88413191e-01 -1.53695807e-01 1.27844810e+00 -6.59923732e-01 1.22465014e-01 1.87347189e-01 4.01407838e-01 3.21901947e-01 9.58090499e-02 7.26169050e-01 -2.39928842e-01 -3.49846184e-01 1.13814259e+00 -3.23354691e-01 -6.24275684e-01 -3.11335772e-01 -8.47299457e-01 5.23785949e-01 7.38700852e-02 9.16869938e-01 -5.92748940e-01 -9.67826843e-02 1.06910236e-01 4.40799385e-01 -4.62868214e-02 6.57675505e-01 -1.93202808e-01 -1.94385886e-01 -8.95845056e-01 3.09503049e-01 8.79628897e-01 3.46361130e-01 7.00001001e-01 7.26207793e-01 2.35535651e-01 6.85564399e-01 3.99463475e-01 8.10394883e-01 5.11548102e-01 -7.63213158e-01 -1.32267982e-01 3.23587388e-01 4.78658974e-01 -1.07295215e+00 -8.86670351e-01 -3.97732049e-01 -7.37681150e-01 2.07236394e-01 5.33751190e-01 -3.30275983e-01 -6.20455563e-01 1.57430327e+00 2.52857298e-01 -9.13086757e-02 2.96773165e-01 9.90432858e-01 5.78310072e-01 7.54393518e-01 -4.67159152e-01 -8.96174133e-01 1.16647112e+00 -3.01539361e-01 -1.08636475e+00 1.27062142e-01 1.50274679e-01 -7.78043866e-01 1.31293511e+00 3.66611093e-01 -1.09233952e+00 -8.28200877e-01 -8.95506978e-01 7.51319826e-01 1.35052294e-01 2.95187384e-01 -3.05362314e-01 4.86034989e-01 -6.94100380e-01 6.75846398e-01 -1.01221704e+00 -1.41451329e-01 -7.50694871e-01 2.18110532e-01 -7.52608804e-03 6.21109426e-01 -1.48072159e+00 9.23852205e-01 3.19944382e-01 3.90492409e-01 -4.71682906e-01 -1.00797594e+00 -3.55790824e-01 7.68816248e-02 1.03569716e-01 -2.78924555e-01 1.21074808e+00 -5.69903851e-01 -2.12326002e+00 1.86303973e-01 -2.41845429e-01 -2.56298799e-02 7.20225498e-02 1.34673845e-02 -7.84678757e-01 3.74863952e-01 -3.18526387e-01 -5.65936148e-01 1.00363386e+00 -1.52463293e+00 2.37688914e-01 3.01724583e-01 -4.96426940e-01 -2.43773952e-01 -4.71224010e-01 -1.44948483e-01 3.81959349e-01 -4.75376576e-01 4.45402533e-01 -1.06842661e+00 -6.21223375e-02 -6.69238567e-01 -5.94086707e-01 1.73585340e-01 9.79788840e-01 -4.41272646e-01 1.54795718e+00 -2.00065804e+00 4.80081746e-03 6.56209707e-01 -2.87431359e-01 2.56812960e-01 2.58516282e-01 1.25674832e+00 -3.68668735e-01 -1.52730912e-01 -2.54845023e-01 4.35700297e-01 -1.16537422e-01 -1.00202203e-01 -2.78756022e-01 3.80339652e-01 4.83541012e-01 5.50290525e-01 -3.88891101e-01 1.15148157e-01 2.35896602e-01 4.97927606e-01 -5.03732800e-01 2.58986920e-01 2.48762533e-01 7.36954689e-01 -3.70997757e-01 5.98859191e-01 3.83468777e-01 -4.71049584e-02 1.00530326e-01 -7.94729590e-01 -6.31210029e-01 -1.41931131e-01 -1.51139867e+00 8.55494201e-01 -5.04372537e-01 4.64833945e-01 4.76031542e-01 -1.31493497e+00 1.34711063e+00 9.08913732e-01 6.48553431e-01 -4.42246944e-01 1.79897696e-01 7.73150265e-01 2.89846629e-01 -8.79334748e-01 1.06892429e-01 -5.33823133e-01 1.05693445e-01 2.42668405e-01 8.41427594e-02 -4.28349167e-01 1.10362405e-02 -5.08806944e-01 5.93392611e-01 6.15664423e-02 2.72745252e-01 -6.73946321e-01 1.03900695e+00 1.66382819e-01 4.39498335e-01 2.92302072e-01 2.52122015e-01 3.52268308e-01 2.48522341e-01 -8.21702033e-02 -9.26261663e-01 -7.57172167e-01 -5.64321995e-01 4.93351728e-01 2.03883663e-01 2.44205758e-01 -5.70534647e-01 6.12472594e-01 -7.70295188e-02 7.31940567e-01 -1.91984251e-01 -6.75246000e-01 -8.63982737e-01 -6.65021598e-01 3.99002343e-01 2.46940196e-01 -2.03425735e-01 -8.76558363e-01 -7.75762320e-01 6.30048990e-01 -6.91822991e-02 -8.87640119e-01 -1.01722680e-01 3.60243171e-01 -8.72555256e-01 -1.15804470e+00 -5.22881389e-01 -7.76436031e-01 5.90256691e-01 -5.38063705e-01 7.33307362e-01 -8.85393918e-02 -3.09433490e-01 7.50844657e-01 -9.47825909e-02 -1.92454457e-01 -8.78351927e-01 -2.74349868e-01 6.01955533e-01 1.81105912e-01 -1.93533301e-01 -7.25148857e-01 -5.07405937e-01 8.32849026e-01 -7.32093155e-01 -5.28035998e-01 5.98302126e-01 1.18397033e+00 5.98666966e-01 5.24448395e-01 1.02100277e+00 -4.20227200e-01 8.30738485e-01 -1.84395894e-01 -8.55978966e-01 -1.48858935e-01 -7.17386603e-01 -2.16536388e-01 9.80684876e-01 -9.70271945e-01 -1.00821590e+00 8.62752125e-02 -1.10967703e-01 -6.34306312e-01 -2.10543290e-01 9.40926909e-01 6.06581233e-02 -3.27705532e-01 8.80403697e-01 5.99141657e-01 6.38381243e-01 -6.08117044e-01 -2.54139751e-01 6.66163981e-01 9.74220455e-01 -7.35600889e-01 1.24376261e+00 -1.28121570e-01 3.86411309e-01 -1.32942522e+00 -1.05160773e-01 -3.36485445e-01 -4.08372551e-01 -5.90358317e-01 2.13518336e-01 -4.07411575e-01 -1.11019540e+00 7.96481311e-01 -7.67668426e-01 -2.69812226e-01 -5.07945061e-01 8.28655660e-01 -8.74813974e-01 1.59888282e-01 -7.38519847e-01 -1.48016524e+00 -5.36675394e-01 -1.10272944e+00 6.25500739e-01 3.34754586e-01 -4.74697620e-01 -1.11918294e+00 2.30022222e-01 -3.10734119e-02 7.46337295e-01 7.46819615e-01 1.08956301e+00 -3.71993929e-01 -3.31578888e-02 -5.24923265e-01 7.34388888e-01 2.49220014e-01 2.11422116e-01 4.89970297e-01 -8.09185028e-01 -6.65819824e-01 6.46352470e-01 -1.53792739e-01 -3.81367728e-02 5.25154173e-01 1.56970173e-01 -2.10475937e-01 -1.58735916e-01 8.06743558e-03 1.84844220e+00 4.31280166e-01 3.09593022e-01 -1.39143970e-02 3.95917684e-01 7.07006812e-01 5.38218439e-01 2.22194329e-01 -4.08490121e-01 8.34641039e-01 4.72901225e-01 -5.45737073e-02 2.56896347e-01 5.44450656e-02 4.28806812e-01 1.05331886e+00 -2.82114625e-01 1.02822594e-01 -1.05922747e+00 5.01037180e-01 -1.21490741e+00 -9.22171235e-01 -5.74500442e-01 2.20119452e+00 8.63550901e-01 1.08794980e-01 1.89904273e-01 8.65859151e-01 7.67454445e-01 -3.95228833e-01 -5.13635159e-01 -3.75880688e-01 6.56872839e-02 2.88748920e-01 1.20988600e-01 4.87641931e-01 -7.12608695e-01 1.03525013e-01 6.65828705e+00 4.03476715e-01 -1.67353857e+00 -3.80476952e-01 -1.80407658e-01 2.20303133e-01 -6.66715503e-02 -3.55622582e-02 -7.28427231e-01 5.01189649e-01 1.34175849e+00 -3.85136455e-01 5.12507319e-01 6.42741680e-01 6.96013153e-01 1.18349260e-02 -7.33083963e-01 5.45921147e-01 -4.34786171e-01 -1.10798597e+00 -4.57914174e-01 -1.12315483e-01 6.54997349e-01 -7.67202973e-01 5.62958159e-02 -4.03068289e-02 -7.03523755e-01 -7.24898100e-01 6.99136734e-01 1.01752841e+00 9.26729083e-01 -6.58800304e-01 6.98472917e-01 7.88235784e-01 -1.06857359e+00 -4.27548796e-01 6.86715078e-03 -1.66194454e-01 7.11370111e-01 6.44074202e-01 -3.25072736e-01 6.43128216e-01 3.35042536e-01 2.36118808e-01 2.58224726e-01 6.78217709e-01 2.93510407e-01 1.23886275e+00 -4.86382723e-01 -9.30259898e-02 -1.86726183e-01 -2.89410681e-01 8.74007046e-01 6.18505955e-01 5.39402664e-01 3.29174131e-01 7.31889755e-02 1.25059021e+00 9.40193355e-01 -1.17435530e-01 -2.13061839e-01 -1.65953845e-01 5.43981433e-01 1.08734989e+00 -1.24038905e-01 3.26353431e-01 -2.71002412e-01 -2.15342175e-02 -6.50039852e-01 6.04707301e-01 -7.64886677e-01 -5.60047448e-01 3.59279096e-01 6.18063450e-01 1.44932747e-01 -3.87503117e-01 -3.80564630e-02 -5.67485809e-01 -1.16777405e-01 -6.61060631e-01 -2.67841369e-01 -6.15379155e-01 -1.12180281e+00 5.17897129e-01 4.83740151e-01 -1.70179760e+00 -9.38632071e-01 -6.63695514e-01 -8.87884259e-01 1.14531803e+00 -1.27486742e+00 -8.22357178e-01 -1.56004772e-01 5.91535687e-01 -4.50885333e-02 -3.69005650e-02 9.84026432e-01 4.19177890e-01 -5.83476424e-01 2.81373054e-01 3.78718793e-01 -8.93857628e-02 3.03184986e-01 -9.11914408e-01 -3.70393306e-01 6.39761746e-01 -6.82460606e-01 9.59126592e-01 1.30356061e+00 -3.32699209e-01 -1.71381485e+00 -6.32553577e-01 4.88466650e-01 1.63829014e-01 8.75206590e-01 1.84584726e-02 -1.48283899e+00 3.87527347e-02 -1.29225135e-01 1.76745683e-01 3.90535831e-01 -6.51448548e-01 4.79613483e-01 -1.51926288e-02 -1.05137348e+00 2.14891493e-01 1.93932772e-01 -6.06078506e-01 -7.29557812e-01 5.30854091e-02 3.13115537e-01 -4.62218255e-01 -1.50066972e+00 7.22266495e-01 5.40419698e-01 -5.54665089e-01 8.74991298e-01 -2.05479890e-01 2.11891666e-01 -5.92747569e-01 1.48482054e-01 -1.31849456e+00 -4.97341335e-01 -1.09873521e+00 -3.78882378e-01 1.37566590e+00 3.73679549e-01 -1.09362924e+00 4.99847054e-01 4.90665138e-01 -8.54895711e-02 -7.59255767e-01 -9.48567510e-01 -1.23548329e+00 7.89139867e-02 1.22485757e-02 5.05045541e-02 6.76970482e-01 3.00062984e-01 2.70994961e-01 -1.60804093e-01 5.07250190e-01 5.02638817e-01 2.94427782e-01 5.60858667e-01 -1.38937676e+00 -1.49034947e-01 -1.66991323e-01 -1.95805043e-01 -5.73482096e-01 -1.38582319e-01 -1.55158848e-01 2.56761640e-01 -7.73266494e-01 -4.89484668e-01 -3.14970523e-01 -2.30379507e-01 2.34794900e-01 -7.22266808e-02 2.41563246e-01 -2.50943244e-01 5.16082168e-01 9.25755322e-01 4.48265016e-01 1.03994751e+00 1.02185898e-01 -5.74906766e-01 5.41408420e-01 1.78128593e-02 5.56883752e-01 7.97440469e-01 -2.11163774e-01 -6.34958148e-01 3.55210692e-01 7.74027482e-02 5.29972374e-01 6.18162513e-01 -1.37349904e+00 2.40263537e-01 -2.05964282e-01 -1.74946278e-01 -5.57156026e-01 1.45803511e-01 -1.21464360e+00 9.79379177e-01 8.78610015e-01 -5.55084385e-02 -1.02166116e-01 3.29804778e-01 4.49955940e-01 -5.39576590e-01 -2.66574949e-01 1.01528192e+00 4.70059454e-01 -2.68110275e-01 -5.53545237e-01 -6.80698156e-01 -2.66544223e-01 7.97995865e-01 -7.04061508e-01 -5.49766719e-02 -2.93591768e-01 -9.68411386e-01 -2.65255392e-01 2.49351710e-01 -6.67304918e-02 2.59135872e-01 -1.32578945e+00 -5.30210555e-01 6.09212339e-01 -2.82197654e-01 -3.02796572e-01 5.04661918e-01 1.26733506e+00 -3.68628621e-01 6.08260691e-01 -9.73152518e-02 -9.71903920e-01 -1.05632877e+00 4.48714644e-01 7.01358736e-01 -8.05878043e-02 -1.86209083e-01 2.58120477e-01 -3.65334481e-01 -3.75669360e-01 -4.16645139e-01 -4.24676806e-01 -3.22634071e-01 5.43962233e-02 7.07353875e-02 5.00675678e-01 1.97757170e-01 -8.88636351e-01 -2.03110188e-01 1.20803916e+00 7.39351213e-01 -7.99705088e-02 1.15753448e+00 2.78150924e-02 -1.28897028e-02 7.82907665e-01 1.08820319e+00 7.32174292e-02 -1.04642165e+00 -2.17881650e-01 -1.79255292e-01 8.61647800e-02 -3.11383847e-02 -5.79007030e-01 -9.10692394e-01 4.48474288e-01 5.83421946e-01 9.03458059e-01 1.45291495e+00 -3.93394738e-01 4.60491985e-01 2.15700746e-01 2.65168268e-02 -9.74655867e-01 2.48419736e-02 4.04999197e-01 1.06044924e+00 -6.25414610e-01 -2.59529036e-02 -6.01553142e-01 -4.20595556e-02 1.49295485e+00 5.02610564e-01 -2.25372419e-01 8.59184623e-01 4.67722565e-01 4.98834290e-02 -4.98414785e-02 -4.49087530e-01 2.87242591e-01 5.19285977e-01 4.00331408e-01 5.18570483e-01 -3.84166062e-01 -6.28459096e-01 6.99098527e-01 -1.32893160e-01 1.60417542e-01 5.22821724e-01 1.04074991e+00 -4.24095839e-01 -8.37109923e-01 -1.01521504e+00 1.46123737e-01 -3.97416472e-01 4.29222643e-01 7.08987489e-02 1.15329731e+00 -5.05097389e-01 1.03710437e+00 6.47465661e-02 -3.57147068e-01 1.07373178e+00 2.65744060e-01 -4.60097864e-02 -2.00025469e-01 -6.00984931e-01 4.20407921e-01 -6.20367341e-02 -3.86102408e-01 -5.34897745e-01 -5.57489634e-01 -1.32768238e+00 -7.67133338e-03 -1.08808184e+00 3.03474128e-01 4.40029263e-01 5.81832051e-01 8.46557245e-02 7.34864652e-01 9.14876282e-01 -1.12382913e+00 -1.05518579e+00 -1.00985384e+00 -7.74595380e-01 2.60193974e-01 5.35644829e-01 -8.69478941e-01 -7.86144674e-01 1.74097463e-01]
[5.853240489959717, 3.0029609203338623]
76f6873b-6374-49aa-9b90-e1f84fb1aeff
deep-pixel-wise-binary-supervision-for-face
1907.04047
null
https://arxiv.org/abs/1907.04047v1
https://arxiv.org/pdf/1907.04047v1.pdf
Deep Pixel-wise Binary Supervision for Face Presentation Attack Detection
Face recognition has evolved as a prominent biometric authentication modality. However, vulnerability to presentation attacks curtails its reliable deployment. Automatic detection of presentation attacks is essential for secure use of face recognition technology in unattended scenarios. In this work, we introduce a Convolutional Neural Network (CNN) based framework for presentation attack detection, with deep pixel-wise supervision. The framework uses only frame level information making it suitable for deployment in smart devices with minimal computational and time overhead. We demonstrate the effectiveness of the proposed approach in public datasets for both intra as well as cross-dataset experiments. The proposed approach achieves an HTER of 0% in Replay Mobile dataset and an ACER of 0.42% in Protocol-1 of OULU dataset outperforming state of the art methods.
['Anjith George', 'Sebastien Marcel']
2019-07-09
null
null
null
null
['face-presentation-attack-detection']
['computer-vision']
[ 4.84987199e-01 -3.20694059e-01 -3.59340869e-02 -1.47046655e-01 -6.03996098e-01 -8.84541392e-01 6.24351025e-01 2.43577920e-03 -5.48414230e-01 3.80488366e-01 -1.64583862e-01 -7.18057096e-01 1.59499258e-01 -6.74201369e-01 -5.60874045e-01 -7.62318194e-01 -1.52252927e-01 -5.26062787e-01 -1.15690291e-01 3.26111093e-02 2.22910672e-01 9.34355140e-01 -1.27856469e+00 4.87799019e-01 3.63389449e-03 1.60800242e+00 -7.38429964e-01 9.23638821e-01 3.92866313e-01 2.76073605e-01 -9.71785724e-01 -8.66720855e-01 4.77818936e-01 7.03638270e-02 -4.53219295e-01 -1.49734452e-01 6.81276321e-01 -6.98791683e-01 -6.80155933e-01 7.78589308e-01 1.07258785e+00 -5.51153421e-01 2.75967091e-01 -1.44617140e+00 -3.00679475e-01 2.56877899e-01 -9.58580196e-01 5.27441859e-01 5.36834598e-01 1.72946557e-01 3.23786855e-01 -6.05769575e-01 2.45254755e-01 9.53943193e-01 6.10467136e-01 6.94850922e-01 -9.71144676e-01 -1.15722358e+00 -5.57148814e-01 1.86057806e-01 -1.55089843e+00 -6.30817652e-01 7.78265774e-01 5.02978601e-02 8.04279983e-01 1.13296628e-01 1.15258612e-01 1.37208986e+00 1.78054586e-01 4.90124762e-01 1.22634554e+00 -4.03452665e-01 -2.32950002e-02 -3.51094152e-03 8.33722949e-02 6.08103037e-01 5.68986118e-01 1.16140522e-01 -7.56048262e-01 -2.83703029e-01 4.53975737e-01 1.02720261e-01 -8.40741247e-02 4.72785652e-01 -5.76934934e-01 5.01168072e-01 1.02918409e-01 2.22887009e-01 -3.88046592e-01 2.88475752e-01 6.41119719e-01 2.59845465e-01 3.04770749e-02 -5.52286565e-01 -4.07872349e-01 -2.49094993e-01 -9.08629596e-01 4.99277227e-02 5.36492825e-01 5.48957467e-01 1.83149815e-01 3.02222878e-01 -6.85504004e-02 4.35421050e-01 4.07097191e-01 7.75836825e-01 3.42726320e-01 -2.94673502e-01 4.74303484e-01 4.10459340e-01 -2.96978951e-02 -1.06548548e+00 -1.72575504e-01 -2.96964832e-02 -8.96419287e-01 1.81279659e-01 4.57608104e-01 -5.28463900e-01 -1.04129291e+00 1.49790680e+00 1.88183919e-01 6.56455994e-01 7.42318481e-02 2.84826636e-01 7.21781254e-01 3.19913536e-01 2.98235804e-01 -1.02959245e-01 1.64156771e+00 -1.70278117e-01 -6.49728000e-01 5.58182120e-01 3.61490697e-01 -1.00522494e+00 5.77441335e-01 5.81323206e-01 -8.79492819e-01 -3.81798863e-01 -1.34799373e+00 3.77197593e-01 -4.35578704e-01 1.40612155e-01 5.02643049e-01 1.97721577e+00 -1.11182761e+00 1.89773083e-01 -5.92118084e-01 -3.31931442e-01 1.15317559e+00 1.09196067e+00 -7.39403605e-01 2.26603616e-02 -9.72090304e-01 2.81658798e-01 -1.49908112e-02 1.69423133e-01 -7.54868686e-01 -4.36513692e-01 -6.72540724e-01 4.62097451e-02 -3.97311598e-02 1.64720923e-01 1.14949441e+00 -6.47963524e-01 -1.46548998e+00 8.42735946e-01 -3.93669270e-02 -7.25789607e-01 3.15864950e-01 -2.50316560e-01 -8.66541803e-01 3.30169052e-01 -5.69698513e-01 4.22390521e-01 1.01943779e+00 -8.14128995e-01 -4.22749877e-01 -5.36178529e-01 1.17210992e-01 -4.39961106e-01 -7.52547085e-01 5.31232476e-01 -4.97387499e-02 -5.27941346e-01 -2.56283879e-01 -9.43413556e-01 5.50838590e-01 5.52504882e-03 -2.33775973e-01 -7.49398693e-02 1.75957632e+00 -8.36619496e-01 1.01626921e+00 -1.99607635e+00 -7.53430545e-01 3.49737585e-01 -4.53634858e-02 8.93913150e-01 1.32900067e-02 4.91998225e-01 -1.49288684e-01 3.38187158e-01 8.84939730e-02 -2.21657783e-01 -1.66612506e-01 -2.12507471e-01 -2.67978996e-01 7.71601260e-01 3.18349570e-01 7.62146175e-01 -2.22524881e-01 -9.37181562e-02 1.77062705e-01 1.05621767e+00 -1.59730613e-01 1.18025608e-01 3.99649948e-01 1.16109170e-01 -1.90335006e-01 1.15194356e+00 1.28297317e+00 1.47367507e-01 1.72398791e-01 -2.58922637e-01 2.21438393e-01 -6.46263286e-02 -1.26296282e+00 1.17379630e+00 -2.71631390e-01 8.26054752e-01 4.26158048e-02 -5.42372704e-01 6.52827203e-01 8.23412180e-01 1.99769393e-01 -7.87342370e-01 7.13946164e-01 -8.73502530e-03 1.19271487e-01 -4.56856936e-01 1.06246032e-01 2.73664534e-01 1.01242483e-01 6.83206558e-01 7.96907097e-02 9.86340284e-01 -2.52261549e-01 9.57730785e-02 1.20964420e+00 -1.66130036e-01 1.62708625e-01 -8.02272037e-02 7.10577250e-01 -8.55172276e-01 1.33890852e-01 6.53912544e-01 -5.99442422e-01 2.16641590e-01 2.71203637e-01 -6.97085679e-01 -7.01998174e-01 -8.49505544e-01 -1.55651003e-01 7.15363681e-01 -9.44668204e-02 -3.68440181e-01 -1.07842183e+00 -1.07896686e+00 -1.28189802e-01 -1.97702944e-01 -7.13468552e-01 1.12152390e-01 -6.85898483e-01 -6.89045608e-01 1.42066860e+00 4.93296504e-01 1.09006643e+00 -1.01262891e+00 -9.02451694e-01 -2.04266652e-01 1.80149049e-01 -1.54818034e+00 -2.41749734e-01 -3.74553531e-01 -4.14728105e-01 -1.29639816e+00 -6.76814139e-01 -5.06206870e-01 5.77393651e-01 2.44007930e-01 4.12963182e-01 4.99900281e-01 -6.74696863e-01 4.98089135e-01 -1.89114571e-01 -5.86038828e-01 -5.85679039e-02 -1.24963839e-02 1.27023116e-01 5.98917484e-01 6.51418090e-01 -3.60860288e-01 -1.03559041e+00 2.39124104e-01 -1.12031424e+00 -7.97931194e-01 3.21856499e-01 6.38680398e-01 -2.70561606e-01 1.25016689e-01 6.09042406e-01 -7.55473435e-01 7.01755464e-01 -2.37280712e-01 -5.86034358e-01 2.19676033e-01 -4.21220601e-01 -4.32483763e-01 2.90717870e-01 -5.98275125e-01 -9.74210024e-01 1.92872733e-01 -7.28504360e-02 -1.13002984e-02 -5.52609146e-01 6.28165603e-02 -4.62953210e-01 -7.12037265e-01 4.97542471e-01 1.61164999e-01 -2.19016239e-01 -2.27540225e-01 -3.83027233e-02 1.07937133e+00 4.14163142e-01 -4.24801111e-01 9.09638226e-01 5.66866398e-01 2.63652295e-01 -1.11283815e+00 -2.98896562e-02 -2.42648855e-01 -3.31311852e-01 -2.48707250e-01 4.77341771e-01 -7.94308782e-01 -1.56865048e+00 1.02934134e+00 -1.16962326e+00 2.00358063e-01 7.59521365e-01 -5.59549518e-02 5.41446619e-02 7.95350492e-01 -7.44185865e-01 -1.22069418e+00 -8.22276711e-01 -1.15713775e+00 1.11857426e+00 4.33731854e-01 4.05254867e-03 -6.04061306e-01 -3.01292419e-01 4.53920245e-01 7.86399841e-01 5.71834922e-01 1.97859943e-01 -7.32713759e-01 -4.45819616e-01 -9.00753438e-01 -5.50580442e-01 1.52520895e-01 3.37405384e-01 5.55919856e-03 -1.62013745e+00 -5.73174775e-01 -2.42785230e-01 -3.65544319e-01 5.61179459e-01 1.55525833e-01 1.28020275e+00 -4.82710928e-01 -4.13753949e-02 5.01182258e-01 1.58368063e+00 2.62186319e-01 1.11628139e+00 3.15553218e-01 4.11240399e-01 3.33656222e-01 2.82364488e-02 7.13055849e-01 -3.04093845e-02 6.47976279e-01 2.75331259e-01 1.19014631e-03 7.66748264e-02 1.02673799e-01 2.48507708e-01 -2.43171602e-01 3.59442271e-02 -5.45610547e-01 -9.00414586e-01 2.20488921e-01 -1.41027987e+00 -1.04058850e+00 1.13453515e-01 2.24859619e+00 3.15345287e-01 8.74926045e-04 3.76883119e-01 7.48865128e-01 7.34859228e-01 -1.96536314e-02 -1.96471944e-01 -7.63332903e-01 -1.64862812e-01 9.37859654e-01 7.45645523e-01 1.51363760e-01 -1.31965590e+00 8.03527594e-01 5.59652424e+00 6.03427947e-01 -1.48861623e+00 1.80572897e-01 1.02951300e+00 1.34071708e-01 5.25298417e-01 -5.38280547e-01 -9.12087739e-01 5.74135900e-01 1.41760027e+00 3.14450800e-01 9.07151699e-02 4.59229678e-01 8.62734914e-02 -1.26581505e-01 -6.67677283e-01 1.43249917e+00 3.16207290e-01 -1.47020388e+00 -5.06407171e-02 4.51867878e-01 4.00875032e-01 -4.34697211e-01 5.79226315e-01 -3.60752881e-01 -3.11400503e-01 -1.31518030e+00 1.66374400e-01 -1.88971177e-01 1.11228526e+00 -1.18649948e+00 1.22538030e+00 -2.73080051e-01 -1.28121722e+00 -3.58768702e-02 1.04292564e-01 2.00050309e-01 1.32878730e-02 -1.50165290e-01 -9.25310731e-01 2.64079243e-01 6.25366509e-01 3.58461179e-02 -5.56567729e-01 8.93221498e-01 1.04933880e-01 9.70198929e-01 -5.97279251e-01 1.94746211e-01 3.30925025e-02 6.79117680e-01 5.80199882e-02 1.45163691e+00 4.64559227e-01 1.16788745e-01 -2.19813004e-01 -1.15547515e-01 -4.81008112e-01 2.71985587e-02 -7.15929985e-01 -7.44618401e-02 4.24300283e-01 1.32103038e+00 -8.55683148e-01 3.14486586e-02 -3.80273730e-01 1.14887285e+00 -3.56171578e-01 2.42849633e-01 -8.23068917e-01 -6.26513898e-01 5.15663266e-01 1.56555682e-01 3.99655372e-01 -2.61819571e-01 -4.04840678e-01 -8.33749771e-01 1.81019992e-01 -1.04002321e+00 6.62807703e-01 -1.89037360e-02 -7.82804310e-01 7.86487937e-01 -2.13620320e-01 -1.05241883e+00 -1.55534551e-01 -8.79266977e-01 -6.28430724e-01 8.92746747e-01 -1.60113120e+00 -1.72411728e+00 -3.40239137e-01 9.36503232e-01 1.58334494e-01 -6.20667934e-01 9.55996633e-01 5.74560821e-01 -7.20182478e-01 1.51879466e+00 -4.70802486e-01 6.72390640e-01 5.43884456e-01 -7.39286184e-01 5.65317392e-01 1.18611598e+00 6.23953491e-02 8.97553623e-01 3.20516646e-01 -5.16768396e-01 -1.69086158e+00 -7.57930219e-01 5.28012931e-01 -2.63593495e-01 3.44590187e-01 -4.51502532e-01 -5.62831581e-01 2.39540145e-01 5.70429385e-01 2.33390033e-01 1.20303655e+00 -3.94133896e-01 -8.52548897e-01 -3.14936638e-01 -1.82623065e+00 4.65263933e-01 3.79567027e-01 -7.46014059e-01 3.44391048e-01 -6.71330616e-02 1.01563372e-01 -2.12390736e-01 -7.16300964e-01 3.78774196e-01 1.19909143e+00 -9.14864480e-01 9.47170377e-01 -4.32882041e-01 -1.77361965e-01 -2.34888494e-01 -3.53502661e-01 -1.14444442e-01 4.12256747e-01 -1.23648441e+00 -5.25206923e-01 1.46960354e+00 3.33559245e-01 -4.30258244e-01 1.38345301e+00 7.29732156e-01 7.34233439e-01 -3.48646551e-01 -1.12388170e+00 -5.72501481e-01 -3.58879685e-01 -5.33698618e-01 5.78320265e-01 5.97831845e-01 -3.01609606e-01 -1.43783301e-01 -6.34257674e-01 6.68623328e-01 9.47180271e-01 -6.66445076e-01 7.80613065e-01 -1.03550029e+00 6.83863238e-02 7.48254068e-04 -1.05542338e+00 -2.40660533e-01 -5.51540293e-02 -1.47728667e-01 -6.14159942e-01 -4.89327550e-01 2.65733153e-01 1.88016668e-01 -5.46375573e-01 7.03560770e-01 3.40887129e-01 1.15067124e+00 2.52803892e-01 -3.30609381e-01 -1.99125186e-01 -6.41478375e-02 1.98190749e-01 -6.81498572e-02 -1.38903586e-02 3.15296575e-02 -5.18852353e-01 3.67173463e-01 1.22689939e+00 -2.41554886e-01 -2.48368099e-01 -1.44711835e-02 -2.39248008e-01 -2.14252427e-01 3.19360942e-01 -1.12553930e+00 1.51589110e-01 4.81589884e-02 8.42238724e-01 -6.10436499e-01 2.90274948e-01 -9.89851952e-01 -1.13053396e-01 5.71602225e-01 -1.75576702e-01 5.54393232e-01 7.58488595e-01 4.26909536e-01 2.48372182e-01 1.50967821e-01 7.95060158e-01 3.48613650e-01 -4.03730959e-01 4.68493551e-01 -2.43006259e-01 -5.27515352e-01 1.02354133e+00 -7.14045942e-01 -5.64552844e-01 -3.60537797e-01 -3.49876076e-01 -5.12646258e-01 1.96262076e-01 4.00534272e-01 9.73770618e-01 -1.05697477e+00 -5.60857356e-01 5.84133983e-01 4.86580990e-02 -9.22463119e-01 3.48307639e-01 3.11673701e-01 -7.49296546e-01 4.33763057e-01 -5.78671694e-01 -4.14412439e-01 -2.23513603e+00 2.35821277e-01 1.51361451e-01 2.30409592e-01 -3.49363446e-01 6.36739552e-01 -3.52994472e-01 2.34966129e-01 4.94734079e-01 3.18471968e-01 -1.62041754e-01 -2.86251575e-01 1.39391565e+00 3.23622912e-01 4.96898115e-01 -9.52347934e-01 -5.28147757e-01 3.27472597e-01 -3.54381710e-01 -3.73807728e-01 9.82220411e-01 1.23034589e-01 1.15390897e-01 -4.59751129e-01 1.44625628e+00 8.69626775e-02 -9.85009491e-01 1.00088216e-01 2.59643383e-02 -7.05643594e-01 1.20581709e-01 -9.75315332e-01 -1.15702558e+00 9.75098252e-01 1.47411418e+00 1.49242312e-01 1.21634686e+00 -5.74906170e-01 1.06256843e+00 5.05084813e-01 2.10297331e-01 -5.61359763e-01 4.87533920e-02 -5.20394593e-02 3.76369029e-01 -1.29040182e+00 -8.83781239e-02 -3.11262250e-01 -3.03239018e-01 1.27465796e+00 4.83003646e-01 7.46457651e-02 1.02323353e+00 5.70629656e-01 2.24705130e-01 -1.31159604e-01 -4.10848796e-01 1.10239610e-01 2.24721789e-01 9.76117313e-01 4.69149709e-01 -1.62357792e-01 -6.63034990e-02 1.92346215e-01 1.51863441e-01 1.39931262e-01 5.59438229e-01 1.38666272e+00 3.12636457e-02 -1.39511609e+00 -4.02322829e-01 9.51098353e-02 -1.37015224e+00 1.10714152e-01 -4.71125066e-01 6.48154438e-01 1.55300394e-01 1.22909462e+00 -2.71974713e-01 -5.60422957e-01 -2.47905143e-02 8.81823972e-02 4.26004618e-01 4.47565084e-03 -9.33386862e-01 7.27579072e-02 -3.33542041e-02 -4.28572685e-01 -5.55846632e-01 -3.78764093e-01 -7.18914449e-01 -6.88458383e-01 -2.03017756e-01 -2.83768833e-01 1.07950485e+00 8.65941763e-01 5.96491873e-01 -3.23071890e-02 8.36485445e-01 -5.15207589e-01 -2.33830392e-01 -7.21167147e-01 -3.43312770e-01 2.92990804e-01 4.46937650e-01 -3.76711756e-01 1.68685749e-01 2.44535297e-01]
[13.070781707763672, 1.1432968378067017]
475409d4-4376-4b56-b267-2903f935878d
tad-transfer-learning-based-multi-adversarial
2210.15700
null
https://arxiv.org/abs/2210.15700v1
https://arxiv.org/pdf/2210.15700v1.pdf
TAD: Transfer Learning-based Multi-Adversarial Detection of Evasion Attacks against Network Intrusion Detection Systems
Nowadays, intrusion detection systems based on deep learning deliver state-of-the-art performance. However, recent research has shown that specially crafted perturbations, called adversarial examples, are capable of significantly reducing the performance of these intrusion detection systems. The objective of this paper is to design an efficient transfer learning-based adversarial detector and then to assess the effectiveness of using multiple strategically placed adversarial detectors compared to a single adversarial detector for intrusion detection systems. In our experiments, we implement existing state-of-the-art models for intrusion detection. We then attack those models with a set of chosen evasion attacks. In an attempt to detect those adversarial attacks, we design and implement multiple transfer learning-based adversarial detectors, each receiving a subset of the information passed through the IDS. By combining their respective decisions, we illustrate that combining multiple detectors can further improve the detectability of adversarial traffic compared to a single detector in the case of a parallel IDS design.
['Wim Mees', 'Tayeb Kenaza', 'Jean-Michel Dricot', 'Thibault Debatty', 'Richard Bauwens', 'Islam Debicha']
2022-10-27
null
null
null
null
['network-intrusion-detection']
['miscellaneous']
[ 1.95237041e-01 -9.53049958e-03 1.51577219e-01 8.84868857e-03 -3.90443951e-01 -6.89220488e-01 9.65646505e-01 -8.47778320e-02 -5.12982130e-01 4.31062996e-01 -3.59871626e-01 -8.20634007e-01 1.59832241e-04 -1.06707966e+00 -6.95340037e-01 -4.52574760e-01 -4.68203515e-01 7.24967957e-01 5.83106816e-01 -7.66345620e-01 3.21971923e-01 1.16586828e+00 -1.20557034e+00 4.17291611e-01 1.20385721e-01 6.41165316e-01 -7.24384665e-01 9.35250401e-01 -7.06187636e-02 8.25168133e-01 -1.24062574e+00 -2.27502868e-01 6.07955754e-01 -3.35446745e-01 -5.54677665e-01 -2.33831450e-01 4.05820131e-01 -4.72392619e-01 -7.52944171e-01 8.78401995e-01 5.68202436e-01 9.29587614e-03 6.97008491e-01 -1.63990176e+00 -3.26773226e-01 5.65356970e-01 -1.28214210e-01 6.15361810e-01 2.66675383e-01 4.87679124e-01 5.28708518e-01 -2.24485949e-01 2.29541376e-01 1.44433248e+00 6.55045569e-01 9.18070376e-01 -1.27723932e+00 -1.07004702e+00 5.66433519e-02 7.35230595e-02 -1.04817545e+00 -5.21813035e-01 9.44615185e-01 -2.30178475e-01 9.54066873e-01 1.55851141e-01 -9.17611346e-02 1.51446688e+00 3.83823812e-01 4.22585130e-01 9.80977416e-01 -5.98413765e-01 3.52641225e-01 3.76104802e-01 -7.20994398e-02 5.62159836e-01 2.38975227e-01 8.48330021e-01 3.15212250e-01 -4.15201187e-01 5.17182946e-01 -6.44101724e-02 2.09424317e-01 -1.47768363e-01 -4.43342507e-01 1.08215189e+00 6.53083980e-01 6.12945616e-01 -4.04493213e-01 1.98510662e-01 7.39431202e-01 8.33862066e-01 2.69889325e-01 7.93819368e-01 -5.24800241e-01 2.03763202e-01 -4.74630892e-01 1.55543908e-01 1.09263098e+00 4.26653326e-01 4.74209428e-01 7.12004066e-01 -2.80256361e-01 2.96593159e-01 2.36732867e-02 5.47341943e-01 1.59291491e-01 -4.22033548e-01 1.08338796e-01 4.22000587e-01 7.18015879e-02 -9.12098527e-01 -5.23635983e-01 -3.36968273e-01 -4.21660990e-01 7.49438763e-01 4.38479662e-01 -6.14952564e-01 -9.27639723e-01 1.59248412e+00 2.15636328e-01 3.67315471e-01 1.85660779e-01 3.35541070e-01 -4.85644490e-02 4.53849018e-01 2.66928256e-01 1.34087771e-01 1.03280795e+00 -5.14944315e-01 -2.18081772e-01 -2.43168443e-01 5.55199742e-01 -5.91598451e-01 5.47257900e-01 2.25454256e-01 -5.41949332e-01 -5.93082428e-01 -1.17349744e+00 1.03347635e+00 -8.70286345e-01 -7.19059765e-01 1.79583743e-01 1.43896723e+00 -8.40809107e-01 5.89468241e-01 -6.53936923e-01 -2.98392475e-01 3.79174620e-01 6.35336220e-01 -1.15655690e-01 2.26932600e-01 -1.58765590e+00 1.18154490e+00 2.89129794e-01 -5.84167004e-01 -1.45711911e+00 -4.59938645e-01 -4.83106107e-01 1.23392202e-01 3.64513844e-01 -3.99919927e-01 1.35713863e+00 -1.05024052e+00 -1.31251860e+00 8.00997615e-01 5.30621469e-01 -9.13060784e-01 4.98136967e-01 4.23984155e-02 -9.97637153e-01 2.16334730e-01 -2.50254363e-01 9.50983837e-02 1.26991987e+00 -1.42346895e+00 -5.97116530e-01 -1.85170114e-01 3.82180870e-01 -5.20675480e-01 -5.91515064e-01 4.86255199e-01 2.92937189e-01 -5.21897793e-01 -7.44890034e-01 -8.43542457e-01 -4.66234297e-01 -3.74105453e-01 -4.64871138e-01 1.16113894e-01 1.49655604e+00 -1.04863606e-01 9.54989791e-01 -2.13737011e+00 -2.28015959e-01 5.17636895e-01 8.53990391e-02 1.14700556e+00 -3.05835664e-01 5.51643372e-01 -3.86378855e-01 3.53708416e-01 -4.62660901e-02 2.66747251e-02 1.96505353e-01 2.45372698e-01 -5.18690288e-01 4.19537008e-01 5.90634167e-01 5.31683505e-01 -7.55308867e-01 -3.18104215e-02 5.83391249e-01 3.06572407e-01 -5.40776372e-01 4.21557784e-01 -1.42407402e-01 5.01676381e-01 -7.94061482e-01 4.80774730e-01 4.64282155e-01 3.84073675e-01 -5.87892719e-02 2.61672646e-01 2.58331686e-01 7.63379931e-02 -9.14839327e-01 4.58857387e-01 -4.45650548e-01 4.80607331e-01 4.91501987e-02 -1.30189610e+00 1.02677214e+00 4.38546747e-01 5.18454969e-01 -8.88812423e-01 5.63429475e-01 6.85829595e-02 4.54049140e-01 -1.27686217e-01 -1.50752723e-01 -4.54763681e-01 -3.93042594e-01 7.28832603e-01 1.60504747e-02 3.74228358e-01 -3.22236889e-03 9.67082232e-02 1.89848006e+00 -7.43839443e-01 2.30190963e-01 1.09632492e-01 9.80877697e-01 -1.95284367e-01 1.24968998e-01 1.29563451e+00 -5.76241434e-01 -1.93406105e-01 5.55030465e-01 -7.92084217e-01 -1.14538693e+00 -1.20630777e+00 2.58439127e-02 1.22701681e+00 -3.83701622e-01 5.67168603e-03 -9.41181004e-01 -1.24820852e+00 2.99622774e-01 9.69422817e-01 -7.03115702e-01 -8.78479481e-01 -8.98971379e-01 -6.96009457e-01 1.42074037e+00 4.69452590e-01 4.82777953e-01 -1.42990386e+00 -5.51843941e-01 3.60256791e-01 6.77190542e-01 -1.10234272e+00 4.05210480e-02 4.56232041e-01 -2.96073645e-01 -1.25627470e+00 -8.97504911e-02 -5.26553392e-01 3.27523887e-01 -1.28775463e-01 1.03831530e+00 1.78955019e-01 -4.37725514e-01 5.01065016e-01 -5.36849260e-01 -7.54660249e-01 -1.21384358e+00 1.15538232e-01 5.90228558e-01 5.81805557e-02 6.94185078e-01 -5.67131102e-01 -1.59289479e-01 4.11918372e-01 -1.14107561e+00 -1.10903478e+00 6.41787648e-01 8.25097501e-01 -2.53675431e-01 2.91027099e-01 8.81665945e-01 -1.11008501e+00 8.73319268e-01 -6.35191917e-01 -6.57449663e-01 -7.56508410e-02 -6.38963401e-01 1.41182750e-01 1.33426166e+00 -7.12364018e-01 -7.92324126e-01 -3.43360603e-01 -3.70257407e-01 -6.75442636e-01 -6.47791624e-01 -1.45391211e-01 -1.61004603e-01 -7.02436268e-01 1.29545593e+00 1.66233063e-01 6.74415752e-02 -1.10486105e-01 2.63525248e-01 6.55419230e-01 1.73814714e-01 -7.11399913e-01 1.36395192e+00 2.59260088e-01 1.44814014e-01 -6.97168350e-01 -5.31435907e-01 -1.40122294e-01 -4.07172799e-01 -2.31068552e-01 3.11634243e-01 -1.85304552e-01 -7.60762930e-01 5.22986472e-01 -7.99011707e-01 -3.50017458e-01 -3.86011571e-01 -1.18426554e-01 -5.74730158e-01 1.38162166e-01 -7.81646967e-01 -7.88005471e-01 -3.03976744e-01 -1.21001315e+00 5.01637280e-01 -2.45598610e-02 1.43461013e-02 -1.17949009e+00 4.29820091e-01 -1.01458624e-01 9.00673211e-01 3.74015301e-01 8.98143172e-01 -1.70587218e+00 -1.71531692e-01 -8.98062527e-01 5.15846871e-02 6.76682889e-01 1.01603143e-01 4.19208109e-02 -1.13836908e+00 -5.87287903e-01 1.33983761e-01 -1.13417700e-01 5.82545877e-01 -1.26523699e-03 8.63382697e-01 -3.94743413e-01 -5.15513778e-01 3.90845567e-01 1.21100330e+00 6.94550991e-01 6.24644637e-01 8.25053632e-01 5.14962614e-01 3.88069838e-01 2.47085854e-01 3.22050244e-01 -5.92846811e-01 5.85397303e-01 6.16031289e-01 -1.91445008e-01 1.93168446e-01 6.88089151e-03 5.56405544e-01 -4.32460159e-02 3.33260983e-01 -4.98119742e-01 -1.09631574e+00 7.95712620e-02 -1.34597600e+00 -1.16783512e+00 3.07575941e-01 2.08417439e+00 2.50591278e-01 8.37809145e-01 4.70929950e-01 4.13241386e-01 7.77981281e-01 1.55032337e-01 -5.31572104e-01 -9.60925519e-01 2.51313925e-01 7.15350926e-01 7.04766393e-01 4.11967456e-01 -1.52089107e+00 1.08520341e+00 7.25385666e+00 5.54114997e-01 -1.08150804e+00 -5.62570281e-02 2.13279635e-01 1.44392237e-01 3.59807551e-01 -1.69370577e-01 -6.91351712e-01 3.19945514e-01 1.77895617e+00 -1.92371562e-01 3.93581837e-01 1.06183863e+00 -7.33896121e-02 5.99570334e-01 -1.15010679e+00 9.25361812e-02 -3.07238325e-02 -1.00459707e+00 3.47138226e-01 2.68521369e-01 3.97973627e-01 -8.68167207e-02 3.42489362e-01 9.52559114e-01 7.38399208e-01 -1.01230037e+00 2.98080035e-02 1.87885299e-01 3.03454340e-01 -1.21747172e+00 8.98567557e-01 3.28452468e-01 -7.70231307e-01 -4.60830241e-01 -1.36915594e-01 -1.20265767e-01 -1.81639552e-01 7.81612378e-03 -1.14747894e+00 2.67966270e-01 2.93704003e-01 1.34301875e-02 -6.22756779e-01 7.26581931e-01 -1.18532524e-01 8.83658290e-01 -2.85156131e-01 -9.30566899e-03 7.06975698e-01 3.51995230e-01 8.04944277e-01 1.35065174e+00 -2.58924991e-01 -1.96799815e-01 5.79487741e-01 6.02189302e-01 -4.93012331e-02 -2.12925449e-01 -1.11174273e+00 -1.45270959e-01 5.67859352e-01 1.02487826e+00 -4.84883577e-01 -3.29029590e-01 -2.39159703e-01 7.32354581e-01 2.09275395e-01 2.60181129e-01 -1.01408887e+00 -5.91992438e-01 9.87632751e-01 1.32508233e-01 3.38414013e-01 1.72921032e-01 1.47178054e-01 -7.12749779e-01 -4.70578194e-01 -1.32053041e+00 5.05499661e-01 1.13801361e-04 -1.67349505e+00 6.48136497e-01 -3.76246087e-02 -1.12824965e+00 -4.64868844e-01 -8.80423188e-01 -1.16567850e+00 8.38918746e-01 -1.11177754e+00 -9.55480039e-01 2.23612487e-01 7.63049781e-01 1.76698893e-01 -8.53364885e-01 1.10959744e+00 3.72181386e-01 -8.30671489e-01 1.04490018e+00 6.14638887e-02 6.54851198e-01 7.13007689e-01 -1.18861282e+00 8.81544054e-01 9.10433531e-01 -9.92025957e-02 5.08076906e-01 9.45592165e-01 -4.40993339e-01 -1.04343069e+00 -1.25177431e+00 -5.09482399e-02 -6.89858258e-01 1.03878534e+00 -2.07571596e-01 -9.56206799e-01 1.00650072e+00 -8.58225599e-02 1.01514302e-01 6.51378036e-01 2.01117471e-02 -7.21213520e-01 -1.56064123e-01 -1.70006871e+00 7.70151138e-01 4.55182105e-01 -6.04994893e-01 -6.47801876e-01 3.88289273e-01 6.48669899e-01 1.17760420e-01 -6.25477016e-01 3.79749596e-01 2.13107839e-01 -1.14143741e+00 1.35503018e+00 -1.37966037e+00 -3.19656730e-02 -1.47186860e-01 -7.08158612e-02 -1.39388824e+00 -4.97766852e-01 -5.25435805e-01 -3.84251326e-01 1.10579789e+00 1.80597767e-01 -1.02754080e+00 7.89270937e-01 1.54233128e-01 8.15653205e-02 -3.86469603e-01 -9.10485327e-01 -1.07208896e+00 5.38615346e-01 -3.69714499e-01 3.80465388e-01 9.57648039e-01 -2.23196507e-01 3.41787636e-01 -2.89716750e-01 4.84504461e-01 6.67949617e-01 -5.77133656e-01 9.87707317e-01 -1.10957682e+00 -3.41980159e-01 -5.43091774e-01 -9.94003892e-01 -7.20969215e-02 4.06604737e-01 -5.40843010e-01 -2.01573700e-01 -5.99897146e-01 -3.99906307e-01 -4.61968720e-01 -8.15744340e-01 6.23902500e-01 -9.15517882e-02 9.69926417e-02 1.42255247e-01 -1.17165163e-01 -2.98419833e-01 1.33673042e-01 6.38570726e-01 -3.23874563e-01 6.22573197e-02 2.63416797e-01 -6.13377810e-01 7.38332391e-01 1.12024105e+00 -7.60373294e-01 -1.29018217e-01 2.41135985e-01 -5.74816227e-01 -1.17748156e-01 3.10251325e-01 -1.37910247e+00 1.62366256e-01 3.16664241e-02 5.44222116e-01 9.43474099e-02 2.04498157e-01 -8.66499186e-01 -3.49239945e-01 1.04873013e+00 -2.51008064e-01 6.51330352e-02 5.59519053e-01 5.29784441e-01 3.14460248e-02 -1.74031258e-01 1.16320503e+00 -2.29437947e-01 -7.47289121e-01 2.43140504e-01 -9.00593579e-01 9.59536433e-02 1.49738538e+00 1.60509095e-01 -4.20047671e-01 -2.86698997e-01 -6.17285073e-01 -1.65531747e-02 4.41259265e-01 4.62692142e-01 4.21881497e-01 -9.47401643e-01 -7.15248287e-01 4.88812327e-01 5.97873442e-02 -9.32165504e-01 -1.10252745e-01 2.03438342e-01 -4.87551570e-01 5.04875243e-01 -7.36863077e-01 -1.55837119e-01 -1.13467491e+00 1.38242781e+00 7.98216701e-01 -5.22332132e-01 -4.09513086e-01 6.23673916e-01 -1.23079993e-01 -6.12414479e-01 2.16458097e-01 5.56019485e-01 -5.30119762e-02 -3.75741810e-01 7.47538507e-01 2.67051309e-01 1.10818125e-01 -3.65977287e-01 -5.27305245e-01 5.61626256e-02 -5.95263720e-01 1.00892007e-01 7.40863502e-01 6.33006215e-01 2.90664643e-01 5.52424006e-02 1.00281894e+00 -1.76185966e-01 -7.72212088e-01 -2.40364000e-01 1.18350007e-01 -3.91614527e-01 -1.35956243e-01 -7.74414539e-01 -1.04321897e+00 7.63618767e-01 7.90440142e-01 7.38028288e-01 1.14232671e+00 -5.22621393e-01 6.13565266e-01 7.62338161e-01 4.27854002e-01 -5.69678366e-01 3.49462420e-01 6.82847917e-01 3.34174752e-01 -1.13945413e+00 -3.15088928e-01 -2.89057996e-02 -2.65839547e-01 1.13194549e+00 8.06474745e-01 -7.27129221e-01 6.82163417e-01 5.55061281e-01 1.29996583e-01 -1.72954857e-01 -6.48726404e-01 -2.25772470e-01 -8.25306028e-02 1.03877115e+00 -1.06713325e-01 6.84185326e-02 2.26300120e-01 -3.46979350e-02 1.63769111e-01 -5.66133976e-01 4.97672737e-01 1.29071641e+00 -7.36076832e-01 -1.47506237e+00 -8.58643174e-01 3.78126800e-01 -5.54560721e-01 1.98616043e-01 -9.17673171e-01 1.08723307e+00 -5.13100289e-02 1.17389333e+00 6.64410926e-03 -8.34264755e-01 6.86704576e-01 3.18133652e-01 2.29788318e-01 -5.27433872e-01 -1.11319745e+00 -5.38641453e-01 9.80156884e-02 -5.14580965e-01 1.31901994e-01 -3.26705962e-01 -8.38390350e-01 -7.44162798e-01 -7.61420503e-02 1.32493913e-01 4.89020079e-01 1.13624346e+00 2.03190655e-01 1.16260302e+00 1.13059556e+00 -9.41306472e-01 -1.20875263e+00 -9.21041548e-01 -4.60279644e-01 5.82159281e-01 4.15526003e-01 -8.31235826e-01 -6.86643779e-01 -4.81457055e-01]
[5.51564884185791, 7.566676616668701]
2dea7051-53c3-4f1d-9097-debdf20442fe
a-generative-model-for-user-simulation-in-a
null
null
https://aclanthology.org/E14-1066
https://aclanthology.org/E14-1066.pdf
A Generative Model for User Simulation in a Spatial Navigation Domain
null
['Mark Steedman', 'Aciel Eshky', 'Ben Allison', 'Subramanian Ramamoorthy']
2014-04-01
null
null
null
eacl-2014-4
['user-simulation']
['natural-language-processing']
[-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01 -8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01 -2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00 -3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01 -9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01 7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01 7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00 -1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01 3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01 9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01 5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00 -5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01 1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00 7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01 -1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02 -1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01 1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00 1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01 3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01 8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01 9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01 -9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01 -1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01 -2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01 -8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00 1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01 8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00 -6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01 -6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01 3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01 4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02 4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01 1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01 9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01 -1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01 -7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00 -1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02 1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01 -1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01 -1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01 -4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01 -1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01 6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01 -1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00 -7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01 -1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01 3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01 -1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01 1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01 3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00 -2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01 2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01 -1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01 4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01 2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00 1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01 -3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00 7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01 3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01 -2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01 7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01 -2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01 6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00 7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00 -3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01 -6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00 3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01 1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01 -5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01 -5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01 -2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01 -1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01 5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01 -2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01 -4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01 5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01 -6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00 1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01 8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02 -6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01 -1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01 1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01 8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03 3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01 8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01 -1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01 6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01 -9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01 -1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00 -5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02 -5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01 1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01 -4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01 1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01 6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01 5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01 1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01 1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01 1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01 1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00 -8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01 -1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01 6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01 4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00 -1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00 -7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00 2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01 -4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02 1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01 3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01 9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01 7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01 6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01 1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01 -1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00 3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01 9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01 -4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01 4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00 2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01 5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01 2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01 -2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01 -6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01 -1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01 -5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01 -1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00 -6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01 -1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01 1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02 1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01 5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01 -4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01 -1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01 6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01 7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01 1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01 1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01 8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01 8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00 -4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01 -5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02 5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01 -2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00 -3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01 6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01 5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00 3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01 -8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00 -8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01 3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01 -3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05 -1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01 8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02 6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01 5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00 1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01 2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02 -1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01 -4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02 9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01 -8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02 7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01 -3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01 -1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01 -1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01 -2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01 1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03 6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01 -4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01 9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01 8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01 1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01 -1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01 8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01 5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01 9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01 -4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01 1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01 -9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00 5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01 -7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00 -6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01 -5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01 -5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01 4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01 -9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00 -8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00 -5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01 -2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00 -3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02 2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01]
[-7.413116931915283, 3.5917794704437256]
5b4dd31d-6ebb-4793-9b66-995275c84656
generalizable-lightweight-proxy-for-robust
2306.05031
null
https://arxiv.org/abs/2306.05031v1
https://arxiv.org/pdf/2306.05031v1.pdf
Generalizable Lightweight Proxy for Robust NAS against Diverse Perturbations
Recent neural architecture search (NAS) frameworks have been successful in finding optimal architectures for given conditions (e.g., performance or latency). However, they search for optimal architectures in terms of their performance on clean images only, while robustness against various types of perturbations or corruptions is crucial in practice. Although there exist several robust NAS frameworks that tackle this issue by integrating adversarial training into one-shot NAS, however, they are limited in that they only consider robustness against adversarial attacks and require significant computational resources to discover optimal architectures for a single task, which makes them impractical in real-world scenarios. To address these challenges, we propose a novel lightweight robust zero-cost proxy that considers the consistency across features, parameters, and gradients of both clean and perturbed images at the initialization state. Our approach facilitates an efficient and rapid search for neural architectures capable of learning generalizable features that exhibit robustness across diverse perturbations. The experimental results demonstrate that our proxy can rapidly and efficiently search for neural architectures that are consistently robust against various perturbations on multiple benchmark datasets and diverse search spaces, largely outperforming existing clean zero-shot NAS and robust NAS with reduced search cost.
['Sung Ju Hwang', 'Minseon Kim', 'Hyeonjeong Ha']
2023-06-08
null
null
null
null
['architecture-search']
['methodology']
[-1.67712048e-02 -7.44920790e-01 1.72184333e-01 -1.30903870e-01 -1.08595026e+00 -9.53036070e-01 4.96654421e-01 -2.73524016e-01 -4.58056301e-01 4.58860070e-01 -1.36632055e-01 -2.65833944e-01 -1.57002702e-01 -4.87641186e-01 -1.05138206e+00 -9.32915688e-01 9.66981500e-02 2.08954047e-02 1.89292923e-01 -3.72643083e-01 2.37583369e-01 4.78616923e-01 -1.56869006e+00 -2.55766362e-01 8.14481914e-01 1.00453961e+00 3.72467153e-02 6.59419775e-01 2.57442325e-01 4.13581163e-01 -7.56467581e-01 -4.78347003e-01 6.85249686e-01 -1.38474435e-01 -4.98242617e-01 -5.01269579e-01 8.71491373e-01 -3.77690077e-01 -6.45586789e-01 1.48835862e+00 8.72891486e-01 2.21854404e-01 2.49253720e-01 -1.20552611e+00 -9.42101479e-01 4.47669625e-01 -2.95268059e-01 4.97227877e-01 -2.57300381e-02 6.64780378e-01 9.85526741e-01 -8.55090618e-01 2.97896206e-01 1.02350318e+00 6.44331515e-01 7.87232220e-01 -1.22176993e+00 -9.42638218e-01 6.04694068e-01 2.98892051e-01 -1.33574283e+00 -1.03667426e+00 6.92911685e-01 -9.09967870e-02 1.06460130e+00 4.33250338e-01 9.28886235e-02 1.56548846e+00 1.17184490e-01 6.42431676e-01 7.31847048e-01 -8.05739239e-02 6.28168583e-01 -2.58841366e-01 1.00639373e-01 5.38274229e-01 4.39506322e-01 2.58697748e-01 -4.87214208e-01 -2.16574669e-01 4.50069129e-01 -4.37562801e-02 -4.72460955e-01 -4.32770878e-01 -1.08177114e+00 5.68109214e-01 6.81096315e-01 1.37608677e-01 -3.25414449e-01 2.85304576e-01 5.78394234e-01 7.11371481e-01 -4.18560505e-02 9.43454444e-01 -5.62677622e-01 -8.70442390e-02 -5.80392420e-01 2.72360802e-01 7.12413490e-01 8.80077481e-01 4.69874799e-01 6.86638474e-01 -1.08029224e-01 7.67803252e-01 2.11130921e-02 6.75376832e-01 6.78738177e-01 -8.33703816e-01 5.90586185e-01 3.75649214e-01 -1.78920045e-01 -1.19738591e+00 -1.39657721e-01 -6.88304067e-01 -9.79493380e-01 2.36865968e-01 1.27578840e-01 -2.39947796e-01 -1.03300858e+00 2.16728258e+00 2.59201199e-01 4.60965484e-01 2.57528812e-01 1.01406753e+00 8.01074266e-01 5.17467797e-01 -2.70355970e-01 3.41626108e-02 1.02060854e+00 -1.06011975e+00 -3.61047506e-01 -6.21541560e-01 2.33906969e-01 -4.16495889e-01 1.25701356e+00 2.16133058e-01 -1.08630633e+00 -3.64345163e-01 -1.27308440e+00 2.83353090e-01 -2.85661966e-01 -2.96485275e-01 2.46772930e-01 8.09879601e-01 -1.11338496e+00 4.39597726e-01 -9.15528774e-01 -2.20107213e-02 3.51429164e-01 4.92177784e-01 -3.29588860e-01 -5.12164272e-02 -1.11295784e+00 7.14862585e-01 1.30112961e-01 2.70052463e-01 -1.40362501e+00 -7.08399832e-01 -7.39402294e-01 3.02318037e-01 6.30090952e-01 -5.82296848e-01 1.09078884e+00 -8.89596045e-01 -1.48769557e+00 2.56113827e-01 4.57216315e-02 -5.75497746e-01 3.27165306e-01 -3.78689945e-01 -4.79537368e-01 -6.16126582e-02 -2.56422669e-01 2.81650275e-01 1.09216917e+00 -1.15284383e+00 -2.04836652e-01 -2.96504080e-01 2.16743246e-01 9.16665420e-02 -8.23137224e-01 1.83368236e-01 -7.44256616e-01 -8.58432889e-01 -1.37977675e-01 -1.18516922e+00 -4.21995789e-01 -1.61712185e-01 -5.42600453e-01 3.17294478e-01 6.10694170e-01 -4.50190276e-01 1.05551505e+00 -2.23140788e+00 3.28564048e-01 1.94988579e-01 1.37402773e-01 6.49204135e-01 -6.35489523e-01 1.54872658e-02 -1.39776953e-02 2.86943793e-01 -1.35205090e-01 -2.62331724e-01 1.61818415e-01 4.47414182e-02 -6.32587016e-01 4.37240928e-01 1.50962844e-01 8.92584264e-01 -7.42960811e-01 -1.21104188e-01 -1.59688085e-01 5.19018292e-01 -6.13640130e-01 3.47328216e-01 1.51112126e-02 3.13761890e-01 -4.19628739e-01 7.72174180e-01 4.20681089e-01 -1.87224314e-01 3.11611649e-02 -4.91879061e-02 1.86952323e-01 1.44425791e-03 -1.09566140e+00 1.38660693e+00 -5.53657651e-01 6.30258083e-01 2.88545996e-01 -8.93262625e-01 8.24032366e-01 1.88667685e-01 1.16857469e-01 -8.90617132e-01 1.37388408e-01 2.08603010e-01 4.45671156e-02 -1.52873546e-01 2.64247000e-01 4.87840116e-01 -5.91357388e-02 5.84486723e-01 -9.86254513e-02 1.93996385e-01 -3.72374132e-02 -8.66308361e-02 1.59560442e+00 -2.39439741e-01 2.47910656e-02 -5.07543534e-02 4.17587727e-01 -2.94481277e-01 7.70178556e-01 1.03710103e+00 -3.70581448e-01 7.51600146e-01 1.30800426e-01 -6.09707534e-01 -9.38602686e-01 -9.67697620e-01 1.90817028e-01 1.27244294e+00 2.76690125e-01 -2.22203463e-01 -8.33766937e-01 -5.76195359e-01 -3.31388205e-01 4.44378316e-01 -6.12723410e-01 -5.89296520e-01 -6.39615059e-01 -8.41950536e-01 7.10686445e-01 3.96843523e-01 4.69102591e-01 -1.03332698e+00 -8.20002079e-01 -7.00914348e-03 5.21190315e-02 -1.06718731e+00 -7.44275033e-01 1.35188773e-01 -6.54444754e-01 -1.02187359e+00 -5.14211178e-01 -8.50956738e-01 7.77137876e-01 4.50455576e-01 9.99117792e-01 2.40098447e-01 -4.53536212e-01 2.88595498e-01 -2.29736641e-01 -1.46089643e-01 -3.04325730e-01 1.96062043e-01 4.51256335e-01 1.71161760e-02 -1.86910838e-01 -6.68949664e-01 -7.50932992e-01 4.23262000e-01 -1.11618972e+00 -4.74549532e-01 7.07320571e-01 1.00108063e+00 6.43205822e-01 -3.39371674e-02 5.80036342e-01 -4.83721167e-01 9.82573688e-01 -6.49780393e-01 -6.88273787e-01 5.76227546e-01 -9.01034653e-01 2.82979786e-01 1.04778516e+00 -7.33562350e-01 -6.18759871e-01 -1.35885835e-01 -1.34558037e-01 -9.87550557e-01 -1.29727662e-01 3.75092506e-01 -1.23869605e-01 -4.54427451e-01 9.71513212e-01 5.86925983e-01 -8.23028609e-02 -5.03068686e-01 1.24387175e-01 1.98719248e-01 9.09818530e-01 -6.07793987e-01 1.29281890e+00 1.32177828e-03 -1.24648266e-01 -4.98319179e-01 -6.63034320e-01 -1.45967662e-01 -2.86416739e-01 1.94028169e-01 3.31590712e-01 -9.07517076e-01 -4.23022062e-01 6.39009655e-01 -8.16558599e-01 -1.22184008e-01 4.06245105e-02 6.71036318e-02 -3.65770072e-01 4.15615857e-01 -4.41893220e-01 -5.18023491e-01 -9.25453126e-01 -1.60086179e+00 5.25394320e-01 3.21920425e-01 9.08512250e-02 -7.52278566e-01 1.44606397e-01 7.82455951e-02 8.94688010e-01 2.69153804e-01 8.65233123e-01 -8.31507981e-01 -7.31177568e-01 -4.37345535e-01 2.77259387e-02 3.97558689e-01 4.02200557e-02 1.27830327e-01 -8.94870043e-01 -8.08213830e-01 2.24902201e-03 -5.73707819e-01 6.93021417e-01 9.03802663e-02 1.33757663e+00 -8.44935119e-01 -3.27744149e-02 1.15861535e+00 1.50914359e+00 1.61063984e-01 3.70176941e-01 6.40956998e-01 5.58089256e-01 5.17292693e-02 3.37102771e-01 1.73454776e-01 3.34190205e-02 7.33245194e-01 8.38355184e-01 1.73782021e-01 2.72882115e-02 1.05089068e-01 6.26812935e-01 8.33035588e-01 1.32799506e-01 -1.54064938e-01 -9.24596071e-01 7.23092914e-01 -1.73379493e+00 -9.02462423e-01 6.69244051e-01 2.22957540e+00 8.86963010e-01 2.17446655e-01 -1.01167582e-01 -1.31525919e-01 6.12142563e-01 3.56503338e-01 -1.32137549e+00 -4.10390079e-01 -1.31374121e-01 1.35488614e-01 3.94853383e-01 -6.23969873e-03 -1.02031589e+00 7.20248640e-01 6.81395912e+00 4.87057805e-01 -1.32741165e+00 -5.15373871e-02 5.33377767e-01 -6.00140095e-01 -2.45561630e-01 -2.82950729e-01 -5.97514987e-01 5.50806642e-01 1.02894533e+00 -3.77062172e-01 8.11881542e-01 1.16645372e+00 -4.11357582e-01 6.85649574e-01 -8.86296093e-01 1.01485884e+00 1.41923100e-01 -1.39287543e+00 -1.69918500e-02 -2.64267892e-01 1.01796854e+00 4.65934187e-01 6.54581368e-01 3.92667592e-01 5.05887866e-01 -1.11798239e+00 7.35496402e-01 3.32560539e-01 6.50075376e-01 -7.28552282e-01 5.96396506e-01 2.84301192e-01 -9.56898749e-01 -4.31927562e-01 -3.74507457e-01 4.03223127e-01 -3.91151339e-01 -5.64255007e-03 -5.45751035e-01 1.93424955e-01 9.61299717e-01 6.88735843e-02 -8.55884016e-01 1.21422398e+00 -5.05436212e-02 5.31798899e-01 -2.67758518e-01 -1.14875644e-01 3.75084877e-01 1.81854516e-01 6.99371338e-01 8.13043535e-01 5.01735926e-01 -3.06523532e-01 6.63504526e-02 6.75502241e-01 -2.74276167e-01 -5.25893830e-02 -5.81248462e-01 4.96524833e-02 9.63139892e-01 9.96336997e-01 -3.44141364e-01 8.49626213e-02 -3.42545182e-01 7.42234528e-01 5.27692020e-01 5.03464460e-01 -9.45415556e-01 -5.47348976e-01 1.23316932e+00 -4.79048908e-01 4.29133117e-01 -1.80868745e-01 -2.42435127e-01 -1.26009095e+00 3.03286761e-01 -1.60372233e+00 3.60229552e-01 -2.74350584e-01 -1.31416917e+00 1.03620970e+00 -3.07099104e-01 -1.09831786e+00 -2.97042608e-01 -2.93481827e-01 -8.75250936e-01 5.67228019e-01 -1.46826184e+00 -8.98175418e-01 -2.09216952e-01 7.90629983e-01 6.43278539e-01 -6.53032959e-01 9.87529814e-01 6.03522398e-02 -1.32028759e+00 1.29637694e+00 4.67974693e-01 2.76091322e-02 8.10987771e-01 -1.01948988e+00 1.07353675e+00 1.36584926e+00 3.31919849e-01 1.11621356e+00 8.74597251e-01 -2.58425027e-01 -2.03618765e+00 -1.11051631e+00 3.98141593e-02 -3.04521084e-01 7.59214878e-01 -1.87308118e-01 -1.12769783e+00 4.73546505e-01 -6.58996915e-03 3.42432171e-01 4.75980908e-01 1.17500700e-01 -8.85673761e-01 -3.42359513e-01 -9.14834440e-01 1.09642100e+00 1.11995125e+00 -5.09316385e-01 -2.43037850e-01 2.60515690e-01 9.57181394e-01 -5.52658796e-01 -6.98692381e-01 3.79349530e-01 4.04593736e-01 -7.72670984e-01 1.29992461e+00 -8.49748969e-01 1.01073407e-01 -2.66987115e-01 -2.17185915e-01 -1.46278965e+00 -3.43740731e-01 -1.02284622e+00 -4.65747118e-01 9.39917445e-01 5.26408494e-01 -8.34204018e-01 5.81160605e-01 8.59484732e-01 -1.90144032e-01 -8.90044868e-01 -1.03396988e+00 -1.04341352e+00 6.29787520e-02 -2.25760639e-01 1.03202665e+00 7.63889551e-01 -6.36756063e-01 -1.21021792e-01 -5.40724277e-01 4.97596174e-01 6.65698946e-01 2.22074285e-01 9.14855063e-01 -8.33479106e-01 -2.45091960e-01 -6.66707993e-01 -3.49017620e-01 -5.87939739e-01 3.40850800e-01 -5.79814494e-01 3.54967535e-01 -9.57734644e-01 8.19501281e-03 -4.99288410e-01 -7.22749591e-01 6.83283746e-01 -4.96237844e-01 1.67112768e-01 1.74794868e-01 4.36735094e-01 -7.14494586e-01 5.97286582e-01 6.40658557e-01 -2.81516641e-01 -5.53260967e-02 -3.14008072e-02 -1.05766869e+00 5.08228064e-01 8.60204458e-01 -4.27507430e-01 -4.96719718e-01 -9.86801386e-01 2.73776412e-01 -4.23735648e-01 3.53819937e-01 -1.33407676e+00 6.06219053e-01 -3.16899955e-01 1.19100660e-01 2.14750953e-02 2.05941752e-01 -7.63321459e-01 1.22178614e-01 4.29551750e-01 -4.61520016e-01 4.86548960e-01 3.50164473e-01 8.45117807e-01 -1.64405629e-01 -2.30773926e-01 8.49458575e-01 7.69716054e-02 -9.09512520e-01 6.78993821e-01 2.39889219e-01 2.17012346e-01 1.17040253e+00 -6.40021339e-02 -7.19874084e-01 -3.03499937e-01 -3.68946791e-01 3.48013610e-01 6.76094413e-01 6.96520448e-01 7.64635265e-01 -1.25365806e+00 -6.91215694e-01 3.63942415e-01 6.11389913e-02 5.26984558e-02 3.84973198e-01 4.54318434e-01 -4.48401064e-01 3.44989032e-01 -3.44372004e-01 -3.47790509e-01 -1.30251360e+00 8.26062560e-01 4.48937744e-01 -1.17201090e-01 -5.04942775e-01 1.11137044e+00 8.96360874e-02 -4.21419144e-01 6.96367502e-01 1.52731806e-01 1.23719819e-01 -4.45925474e-01 7.48344004e-01 1.24130152e-01 2.52476275e-01 -4.86933172e-01 -3.88847113e-01 4.92975950e-01 -2.93999642e-01 2.57582366e-01 1.48583567e+00 2.21609436e-02 1.49295732e-01 3.10883578e-02 1.14921713e+00 -1.39827922e-01 -1.65308356e+00 -5.41248024e-01 -2.17116624e-01 -5.29428840e-01 1.25051409e-01 -6.27717137e-01 -1.50198662e+00 6.71569288e-01 6.88650250e-01 1.23878621e-01 1.37567496e+00 -3.59845489e-01 9.79330420e-01 9.92117584e-01 3.05365831e-01 -9.26921487e-01 3.24283153e-01 6.09757185e-01 1.02458096e+00 -1.11418736e+00 -1.57756075e-01 2.38128066e-01 -6.31510615e-01 9.12339211e-01 9.27580714e-01 -1.65236384e-01 3.86562824e-01 3.14603209e-01 1.54434338e-01 -7.31590576e-03 -1.16071916e+00 1.90480292e-01 3.21100324e-01 7.18725860e-01 -2.44104445e-01 -3.08385193e-01 4.25257415e-01 4.19753402e-01 -2.13445053e-01 -7.29202032e-01 2.10712194e-01 9.84406352e-01 -2.81017840e-01 -7.73467898e-01 -3.99295121e-01 2.16779083e-01 -6.68176770e-01 -1.16914347e-01 -3.22781831e-01 3.28495830e-01 -4.38127190e-01 8.67656410e-01 -2.57974178e-01 -6.55077338e-01 4.45897400e-01 2.69849189e-02 9.92759690e-02 -3.08866173e-01 -7.30892479e-01 -4.80996966e-01 -2.32733250e-01 -7.90615201e-01 2.28188217e-01 -6.25137150e-01 -6.93818390e-01 -3.02871108e-01 -2.55561054e-01 -1.02426752e-01 8.33413541e-01 7.83424020e-01 7.91146457e-01 4.32276309e-01 9.52300131e-01 -6.65227175e-01 -1.36325824e+00 -5.38192213e-01 3.17659527e-02 4.29021031e-01 6.66771650e-01 -4.87989247e-01 -4.80538696e-01 -1.81950837e-01]
[5.560215950012207, 7.951155185699463]
0b41c858-f852-4f60-87a5-2f7b8272f050
habicrowd-a-high-performance-simulator-for
2306.11377
null
https://arxiv.org/abs/2306.11377v1
https://arxiv.org/pdf/2306.11377v1.pdf
HabiCrowd: A High Performance Simulator for Crowd-Aware Visual Navigation
Visual navigation, a foundational aspect of Embodied AI (E-AI), has been significantly studied in the past few years. While many 3D simulators have been introduced to support visual navigation tasks, scarcely works have been directed towards combining human dynamics, creating the gap between simulation and real-world applications. Furthermore, current 3D simulators incorporating human dynamics have several limitations, particularly in terms of computational efficiency, which is a promise of E-AI simulators. To overcome these shortcomings, we introduce HabiCrowd, the first standard benchmark for crowd-aware visual navigation that integrates a crowd dynamics model with diverse human settings into photorealistic environments. Empirical evaluations demonstrate that our proposed human dynamics model achieves state-of-the-art performance in collision avoidance, while exhibiting superior computational efficiency compared to its counterparts. We leverage HabiCrowd to conduct several comprehensive studies on crowd-aware visual navigation tasks and human-robot interactions. The source code and data can be found at https://habicrowd.github.io/.
['Anh Nguyen', 'Thieu Vo', 'Huynh Thi Thanh Binh', 'Dzung Nguyen', 'Baoru Huang', 'Minh Nhat Vu', 'Toan Tien Nguyen', 'An Dinh Vuong']
2023-06-20
null
null
null
null
['human-dynamics', 'visual-navigation']
['computer-vision', 'robots']
[-5.55465281e-01 -2.13353172e-01 2.60890692e-01 1.23332553e-01 8.42460468e-02 -3.69142324e-01 7.36664712e-01 -1.51279539e-01 -7.25889444e-01 6.98392749e-01 1.70155659e-01 -3.80320340e-01 2.16110468e-01 -5.55786133e-01 -4.22095060e-01 -5.66040814e-01 -4.35132354e-01 4.10279125e-01 6.33650720e-01 -9.48531985e-01 5.23983762e-02 2.27849901e-01 -1.90721178e+00 -3.97748828e-01 1.06276464e+00 6.02132499e-01 4.22894508e-01 8.35450888e-01 1.06584810e-01 7.78196931e-01 -5.43872595e-01 -1.67647436e-01 2.81837791e-01 -4.83734339e-01 -3.84553611e-01 -4.36668396e-01 -1.21615313e-01 -2.20889807e-01 -8.24803352e-01 8.83169711e-01 1.03500319e+00 3.23515892e-01 6.26931787e-01 -1.98652887e+00 -7.46691465e-01 7.40366578e-02 -5.30711830e-01 3.31484467e-01 9.02232289e-01 7.30578661e-01 4.70322877e-01 -8.85440350e-01 7.22617447e-01 1.49209797e+00 4.94575024e-01 8.45880568e-01 -6.92979336e-01 -6.81362212e-01 3.54058534e-01 2.43815109e-01 -1.36821437e+00 -3.32534850e-01 4.17552620e-01 -5.53612590e-01 1.05453968e+00 -3.55237387e-02 1.24019468e+00 1.33003652e+00 2.94513255e-01 9.87282515e-01 9.09855485e-01 -2.91654110e-01 5.15225410e-01 -2.21815750e-01 -7.27992281e-02 8.90855491e-01 4.59257215e-01 3.76092702e-01 -8.07487369e-01 4.89723496e-02 7.59220958e-01 -3.11109960e-01 -3.73910367e-01 -1.05339313e+00 -1.29963529e+00 5.65972984e-01 7.32324779e-01 5.90071417e-02 -3.49942118e-01 3.65114778e-01 4.69760716e-01 6.10185154e-02 7.99802691e-02 1.00002371e-01 3.18427235e-01 -4.92649764e-01 -5.53741381e-02 8.63738894e-01 8.14775169e-01 1.23246968e+00 3.80792856e-01 1.33550256e-01 -7.87561685e-02 4.33979213e-01 3.10032606e-01 9.47826326e-01 2.93057889e-01 -1.13945961e+00 2.03903466e-01 6.07647955e-01 4.55567718e-01 -1.26940846e+00 -6.57983124e-01 1.44443050e-01 -7.68001854e-01 7.36496091e-01 3.99693072e-01 -3.19928885e-01 -7.84921646e-01 1.76694775e+00 5.72672248e-01 3.70261483e-02 2.18656629e-01 1.44667637e+00 1.15033090e+00 4.87086624e-01 1.78519651e-01 2.16099858e-01 1.16936541e+00 -1.30913854e+00 -7.33757794e-01 -4.49839026e-01 5.61979830e-01 -2.33306408e-01 1.21006429e+00 -2.00094772e-03 -1.01923192e+00 -2.50579894e-01 -1.02066314e+00 -7.73736686e-02 -5.05907893e-01 -4.18632179e-01 7.37371266e-01 5.05498707e-01 -1.20718622e+00 -1.80894524e-01 -9.60804522e-01 -8.46554399e-01 2.24217653e-01 1.70974836e-01 -4.33518440e-01 6.26761541e-02 -1.21313655e+00 1.11887181e+00 -5.71263842e-02 9.14350972e-02 -1.21911705e+00 -2.47584790e-01 -9.68054712e-01 -3.55127633e-01 6.07976258e-01 -1.02561295e+00 1.48503864e+00 -2.85099536e-01 -1.57193804e+00 7.61558175e-01 -2.57815540e-01 -2.94839323e-01 1.00569320e+00 -2.61458755e-01 -2.07404539e-01 -1.66373655e-01 2.80374110e-01 7.15591431e-01 1.40500948e-01 -1.60520685e+00 -6.83044851e-01 -2.95425206e-01 3.00535083e-01 6.84156239e-01 -5.63550070e-02 -3.45278472e-01 -8.82877171e-01 -3.22446972e-01 -3.30755264e-01 -1.24897754e+00 -4.71834540e-01 3.54023665e-01 -3.34392160e-01 -1.06390774e-01 6.80886745e-01 1.26120159e-02 9.80859935e-01 -1.75012028e+00 5.60766101e-01 -1.79050595e-01 4.62346315e-01 3.25483710e-01 -5.01140915e-02 7.00918078e-01 7.55033672e-01 -1.95525616e-01 -1.88399538e-01 -5.65345705e-01 4.36623663e-01 1.67426690e-02 -2.26944522e-03 5.32345355e-01 -5.06355226e-01 1.14243317e+00 -1.27786231e+00 -3.78061891e-01 2.57536799e-01 6.66535795e-01 -5.25193512e-01 1.32603168e-01 -9.18660909e-02 5.99582374e-01 -4.83141869e-01 6.31449819e-01 6.43492758e-01 -8.27654153e-02 -6.50984887e-03 4.98081505e-01 -3.69948536e-01 -3.06652129e-01 -9.70417261e-01 1.92458630e+00 -2.48070568e-01 7.38591194e-01 2.19750419e-01 -4.09412891e-01 5.84020317e-01 -3.40798795e-02 2.97039211e-01 -1.11633563e+00 3.59024376e-01 1.93226412e-01 -1.80808790e-02 -5.73228657e-01 8.39693904e-01 3.15551728e-01 -2.14373022e-01 2.87786990e-01 -3.48697990e-01 -1.81345761e-01 2.22015738e-01 3.05698663e-01 1.17104971e+00 2.99880385e-01 4.57186013e-01 -3.27392787e-01 3.34484637e-01 5.19828081e-01 4.89034742e-01 9.21729267e-01 -8.90864849e-01 3.75716448e-01 1.07112102e-01 -4.21201408e-01 -8.60407531e-01 -1.17070830e+00 4.09882039e-01 1.08448124e+00 1.22972178e+00 -3.97473872e-01 -8.06953192e-01 -2.80353218e-01 2.39035100e-01 5.24704039e-01 -8.14376712e-01 -3.89496833e-02 -6.28277600e-01 -5.52673876e-01 7.13455319e-01 3.53661954e-01 8.04245412e-01 -1.38337624e+00 -1.49709380e+00 1.32204248e-02 -2.62217373e-01 -1.12208891e+00 -2.60088593e-01 -2.10127801e-01 -1.57825887e-01 -1.20541155e+00 -1.02872562e+00 -8.55960548e-01 3.53121668e-01 9.56340075e-01 1.11502552e+00 3.56208593e-01 -3.44418913e-01 7.83088624e-01 -4.54089493e-01 -6.02265954e-01 -2.45073378e-01 -3.00654415e-02 3.88353616e-01 -6.55032039e-01 4.31111515e-01 -3.02229792e-01 -9.73964870e-01 6.33197188e-01 -3.70663315e-01 2.22824976e-01 2.25569621e-01 5.83764911e-01 2.10585475e-01 -4.86078501e-01 2.24113867e-01 -1.86390340e-01 8.98850262e-01 -4.98831987e-01 -5.62924922e-01 -3.04483026e-02 -1.92087919e-01 -3.68623465e-01 4.29212004e-01 -3.88205975e-01 -9.22637045e-01 -2.71678060e-01 1.44518599e-01 -9.71502289e-02 -2.46609986e-01 3.03509593e-01 -3.45491022e-02 -2.79656410e-01 7.82473803e-01 2.32609451e-01 7.38932937e-02 7.58706629e-02 2.89185107e-01 4.97155249e-01 6.41100109e-01 -5.05174696e-01 7.11769640e-01 7.07519412e-01 -8.34437385e-02 -9.94751096e-01 -3.47253270e-02 -2.32989833e-01 -4.60115284e-01 -5.80160081e-01 1.03267908e+00 -1.03642273e+00 -1.32455552e+00 8.58113825e-01 -9.32177246e-01 -8.68180692e-01 7.80885145e-02 3.25349003e-01 -7.60293782e-01 3.42577040e-01 -4.37951624e-01 -1.09012187e+00 -1.06112011e-01 -1.45152164e+00 1.00466001e+00 6.24337792e-01 -1.94104075e-01 -9.03959155e-01 3.50962758e-01 -2.17165872e-02 5.06649911e-01 3.13241422e-01 3.91370863e-01 -4.68531922e-02 -6.53341174e-01 1.20516792e-01 -1.27885222e-01 -7.16888726e-01 -2.18165994e-01 -3.30976933e-01 -6.10989511e-01 -4.94786859e-01 -5.10356724e-01 -4.20644015e-01 5.39456546e-01 3.27688903e-01 2.57285476e-01 4.03011531e-01 -8.08075190e-01 5.18389404e-01 1.03206193e+00 5.44224977e-01 5.62023282e-01 9.53456044e-01 5.99389255e-01 4.38210398e-01 7.84928739e-01 6.53800249e-01 1.12465835e+00 9.61538970e-01 6.79400802e-01 -5.00283018e-02 -1.23462960e-01 -3.81882936e-01 2.59453297e-01 5.90645790e-01 -3.96319300e-01 -7.56420195e-01 -1.45826340e+00 5.85680068e-01 -2.17851543e+00 -9.01460648e-01 -1.03244931e-02 1.78718233e+00 8.21804777e-02 1.89843196e-02 5.05611360e-01 -1.71134472e-01 6.13277018e-01 1.46207780e-01 -8.37645769e-01 3.83146927e-02 -2.78136224e-01 -6.11545980e-01 2.20927969e-01 5.20797491e-01 -8.91232729e-01 1.29689741e+00 6.12653351e+00 3.35797668e-01 -8.19406688e-01 5.10933846e-02 -8.92952606e-02 -9.62512940e-02 -9.89259183e-02 -1.52686596e-01 -6.25751317e-01 4.09642726e-01 3.93571943e-01 -4.81307864e-01 5.19426644e-01 8.49758327e-01 3.30011129e-01 -5.74423969e-01 -7.93831885e-01 1.10775483e+00 1.09399959e-01 -9.91489112e-01 -1.69775654e-02 2.11223423e-01 4.94354099e-01 1.34486616e-01 2.34641731e-01 4.67674702e-01 7.63706267e-01 -1.09585500e+00 1.06900311e+00 3.77190322e-01 3.55811775e-01 -7.67358661e-01 5.61048985e-01 5.37264407e-01 -1.39198518e+00 -1.53302401e-01 -4.09026653e-01 -4.21885073e-01 6.23525858e-01 -1.89777464e-01 -4.31221515e-01 4.05475408e-01 1.16982841e+00 5.53076923e-01 -3.87701929e-01 1.35202110e+00 -2.91003175e-02 -2.25408420e-01 -2.07583115e-01 -6.20678365e-01 4.28242743e-01 -2.68146485e-01 9.21895564e-01 1.02060187e+00 4.14117515e-01 2.45082200e-01 3.51874173e-01 6.03702664e-01 3.12025964e-01 -5.19322902e-02 -1.12434793e+00 2.62430787e-01 6.82994723e-01 7.22778022e-01 -7.50834882e-01 -1.22038096e-01 -2.96766222e-01 1.21905208e+00 4.96184021e-01 5.31274736e-01 -1.10881126e+00 -4.61876631e-01 1.18230295e+00 -8.01967233e-02 3.12451776e-02 -7.32555091e-01 -4.66627814e-02 -1.09378600e+00 4.61686263e-03 -8.42066288e-01 -8.64685178e-02 -1.01759613e+00 -8.79425108e-01 8.99311602e-01 4.44021672e-02 -1.32584238e+00 -1.09343201e-01 -4.01268154e-01 -4.14792746e-01 5.68540215e-01 -1.25990450e+00 -1.14936960e+00 -1.14595366e+00 5.38263619e-01 3.97941530e-01 -3.12457770e-01 7.17512429e-01 2.60304864e-02 -5.71484864e-01 5.47271490e-01 -8.10037851e-02 -7.97479898e-02 5.26188493e-01 -1.00134504e+00 1.00958061e+00 8.57563257e-01 -4.09607053e-01 4.67614263e-01 1.00314057e+00 -7.90409386e-01 -1.71874797e+00 -5.57413876e-01 3.96363020e-01 -6.45229757e-01 4.75672185e-01 -6.89361572e-01 -5.86578012e-01 5.47294736e-01 3.87771308e-01 -3.26961540e-02 2.75346041e-01 -4.10692275e-01 3.03366836e-02 5.30657649e-01 -9.19566393e-01 1.50855660e+00 2.04750037e+00 -1.97311252e-01 -2.47322515e-01 -6.07195310e-02 7.46024787e-01 -8.03213239e-01 -3.13386112e-01 2.16760322e-01 7.77856708e-01 -1.39388597e+00 1.07835722e+00 -2.13770062e-01 3.46331671e-02 -6.79908872e-01 -2.05257490e-01 -1.61717224e+00 -3.22218359e-01 -6.51793003e-01 -1.62741482e-01 6.59600675e-01 9.29026902e-02 -7.19941258e-01 7.48414755e-01 4.53325689e-01 -1.54887602e-01 -5.97208023e-01 -8.91751945e-01 -9.64843333e-01 3.39690782e-02 -1.74801394e-01 5.90959847e-01 4.98113722e-01 2.25746796e-01 5.26941679e-02 -5.49371302e-01 1.90837026e-01 6.07830942e-01 -2.54743874e-01 1.43239188e+00 -9.49549675e-01 1.61823586e-01 -6.25849485e-01 -6.67465150e-01 -1.34615242e+00 3.13784093e-01 -5.97700655e-01 3.98544014e-01 -1.92164695e+00 1.55181125e-01 -4.63759720e-01 3.09238285e-01 1.77604362e-01 -2.78799295e-01 1.85529798e-01 5.70466697e-01 2.64361680e-01 -9.77729261e-01 1.19044828e+00 1.54227877e+00 -7.20140804e-03 -4.75239456e-01 -4.59528387e-01 -5.66827178e-01 6.90418780e-01 6.84914887e-01 -2.14265734e-02 -5.67952752e-01 -6.71523511e-01 8.45247693e-03 1.65341944e-01 6.31833196e-01 -1.41911387e+00 8.15240204e-01 -2.24571303e-01 3.46148945e-02 -4.57425267e-01 6.03188276e-01 -6.54611468e-01 1.13035150e-01 7.76771784e-01 6.48073182e-02 6.97412372e-01 3.30989331e-01 8.36867571e-01 -3.75194736e-02 3.58124822e-01 4.54713702e-01 -2.05188245e-01 -1.32319713e+00 3.38541925e-01 -8.93630862e-01 4.67682838e-01 1.36578655e+00 -5.07203937e-01 -7.18859017e-01 -6.59863710e-01 -2.98437834e-01 6.69170141e-01 1.13967299e+00 6.68714166e-01 7.14953959e-01 -1.24630332e+00 -3.77707660e-01 -1.09510042e-01 4.06107068e-01 4.46522562e-03 4.08507943e-01 6.87530398e-01 -9.20169771e-01 4.74812239e-01 -5.39106488e-01 -6.67289972e-01 -1.09796607e+00 5.73407292e-01 4.17128682e-01 2.08370507e-01 -9.40039158e-01 7.05772042e-01 4.67477590e-01 -6.61509573e-01 4.82375413e-01 1.59670804e-02 -1.23177223e-01 -4.46438015e-01 5.59630930e-01 5.93577325e-01 -5.04256964e-01 -1.01872671e+00 -7.56928205e-01 7.14669049e-01 4.54820991e-01 -3.45476210e-01 1.06261146e+00 -5.64747453e-01 4.31001127e-01 3.57666194e-01 6.66546285e-01 -1.50219291e-01 -1.47223413e+00 2.28278413e-02 -2.99753487e-01 -3.85998756e-01 -2.87123352e-01 -5.74955165e-01 -7.30360866e-01 7.66597211e-01 7.25232303e-01 -8.90342370e-02 6.99796557e-01 -1.63549691e-01 7.24505484e-01 6.72777474e-01 1.16816390e+00 -7.40736663e-01 2.92271942e-01 9.16073442e-01 9.72609162e-01 -1.38040447e+00 -3.89190316e-01 -3.56652021e-01 -1.11849999e+00 5.10052502e-01 1.23367500e+00 -1.48463741e-01 5.13934314e-01 4.61082727e-01 4.33028072e-01 -3.19562018e-01 -5.65651238e-01 -5.67721307e-01 -2.30841905e-01 1.15473044e+00 1.09378852e-01 -5.92050329e-02 1.93680972e-02 4.90814656e-01 -3.59855652e-01 4.65886258e-02 6.25309408e-01 1.31656528e+00 -4.20031130e-01 -5.68892062e-01 -2.33049870e-01 -4.06267792e-01 2.05627143e-01 2.35741466e-01 -4.76524681e-01 1.20792603e+00 -2.20073625e-01 1.06131470e+00 -3.38742509e-03 -4.83408898e-01 7.19874918e-01 -4.32655126e-01 4.13013428e-01 -1.35681868e-01 -5.36478698e-01 -4.33286548e-01 1.76803377e-02 -8.26506615e-01 -3.17164093e-01 -4.72939014e-01 -1.60037804e+00 -7.96839595e-01 1.41492575e-01 6.75572604e-02 4.44576144e-01 5.91391802e-01 6.88989699e-01 4.41232294e-01 -9.82732698e-02 -1.57157743e+00 9.82055962e-02 -4.97874022e-01 -3.42013627e-01 4.03839648e-01 3.70139092e-01 -1.46851373e+00 -2.98135906e-01 -4.53798264e-01]
[4.63317346572876, 0.68758624792099]
3ded8005-8ea5-4e95-bc0b-0bf1820cf6b9
evaluating-prompt-based-question-answering
2305.12900
null
https://arxiv.org/abs/2305.12900v2
https://arxiv.org/pdf/2305.12900v2.pdf
Evaluating Prompt-based Question Answering for Object Prediction in the Open Research Knowledge Graph
There have been many recent investigations into prompt-based training of transformer language models for new text genres in low-resource settings. The prompt-based training approach has been found to be effective in generalizing pre-trained or fine-tuned models for transfer to resource-scarce settings. This work, for the first time, reports results on adopting prompt-based training of transformers for \textit{scholarly knowledge graph object prediction}. The work is unique in the following two main aspects. 1) It deviates from the other works proposing entity and relation extraction pipelines for predicting objects of a scholarly knowledge graph. 2) While other works have tested the method on text genera relatively close to the general knowledge domain, we test the method for a significantly different domain, i.e. scholarly knowledge, in turn testing the linguistic, probabilistic, and factual generalizability of these large-scale transformer models. We find that (i) per expectations, transformer models when tested out-of-the-box underperform on a new domain of data, (ii) prompt-based training of the models achieve performance boosts of up to 40\% in a relaxed evaluation setting, and (iii) testing the models on a starkly different domain even with a clever training objective in a low resource setting makes evident the domain knowledge capture gap offering an empirically-verified incentive for investing more attention and resources to the scholarly domain in the context of transformer models.
['Sören Auer', 'Moussab Hrou', "Jennifer D'Souza"]
2023-05-22
null
null
null
null
['general-knowledge', 'relation-extraction']
['miscellaneous', 'natural-language-processing']
[ 1.45315722e-01 5.56524038e-01 -6.20342731e-01 -1.63350180e-01 -8.46594691e-01 -7.47404993e-01 9.54331279e-01 1.38544515e-01 -3.02715123e-01 6.83163941e-01 4.01692450e-01 -6.51177526e-01 -5.96104920e-01 -8.53460014e-01 -7.16295600e-01 5.93023258e-04 1.09660529e-01 9.29427564e-01 3.88187736e-01 -2.38240927e-01 2.85034031e-01 4.17456418e-01 -1.18328822e+00 1.66899204e-01 8.11299443e-01 7.96622217e-01 1.22390591e-01 3.83131087e-01 -4.70958017e-02 1.07058883e+00 -3.50388646e-01 -9.09261703e-01 1.23818792e-01 1.99003760e-02 -1.32498550e+00 -1.18946351e-01 7.68656075e-01 -2.31825057e-02 -4.85801011e-01 4.99958217e-01 2.29247168e-01 1.68181613e-01 7.80406713e-01 -1.02736115e+00 -1.10667872e+00 1.11535680e+00 -1.62166208e-01 6.30013704e-01 3.42742354e-01 9.32780057e-02 1.51253402e+00 -7.36905694e-01 1.01756155e+00 1.07215476e+00 9.94595170e-01 1.04089156e-01 -1.11316562e+00 -7.03541696e-01 2.78848648e-01 2.34929562e-01 -1.21914780e+00 -6.21757507e-01 4.46270883e-01 -4.58011091e-01 1.59535015e+00 1.95093289e-01 3.64317238e-01 1.35953081e+00 -2.26408303e-01 7.11728156e-01 1.07011497e+00 -5.49443483e-01 -2.65707880e-01 3.63457859e-01 2.37661615e-01 7.08433270e-01 4.94241714e-01 -8.18876550e-02 -7.22723007e-01 -6.57620430e-02 4.55241352e-01 -5.04924536e-01 -1.44389659e-01 1.38294563e-01 -1.18971109e+00 6.88326478e-01 1.05174385e-01 6.71233535e-01 -3.09244931e-01 -1.00001797e-01 4.74179059e-01 2.85488009e-01 6.75279677e-01 8.99375856e-01 -9.49265063e-01 -5.06185174e-01 -9.89668012e-01 2.75642395e-01 1.37202168e+00 1.23693788e+00 4.14372653e-01 -7.93708116e-02 -2.29156137e-01 8.24382365e-01 4.36442979e-02 2.69996554e-01 4.63373721e-01 -7.56381810e-01 8.19399118e-01 5.54625750e-01 -3.33725750e-01 -9.16283727e-01 -3.44140381e-01 -7.03148544e-01 -2.60613590e-01 -5.08131564e-01 7.83665776e-01 -8.56766328e-02 -6.36518180e-01 1.58597541e+00 -9.84839723e-03 1.52276218e-01 6.38197809e-02 3.08327705e-01 1.14420557e+00 4.16786939e-01 4.32790369e-01 7.29927886e-03 1.38288522e+00 -6.33962512e-01 -4.51667219e-01 -5.29630601e-01 8.72841239e-01 -7.86048532e-01 1.39221287e+00 3.30561489e-01 -8.67646635e-01 -3.26770633e-01 -7.77777314e-01 -3.45908374e-01 -7.28192747e-01 6.19717501e-02 9.49323356e-01 6.19162917e-01 -1.04352319e+00 5.90614319e-01 -6.20203555e-01 -8.74636710e-01 4.91060525e-01 1.17721938e-01 -3.29983473e-01 -1.86272323e-01 -1.31578183e+00 1.25973701e+00 4.32433039e-01 -4.52042252e-01 -4.52114701e-01 -1.10252500e+00 -8.63345265e-01 3.05982977e-01 7.70487368e-01 -6.16030753e-01 1.22050059e+00 -6.77603900e-01 -1.23646617e+00 1.11479115e+00 -1.97846871e-02 -3.59215051e-01 2.98274100e-01 -6.98015839e-02 -4.24002826e-01 -1.47950232e-01 4.18363243e-01 7.26332292e-02 4.24044281e-01 -9.76840377e-01 -6.04366422e-01 -2.20132470e-01 1.83067486e-01 1.58933386e-01 -7.86762595e-01 1.71744004e-01 -4.61314827e-01 -6.88058317e-01 -3.97090822e-01 -6.08758032e-01 4.00286287e-01 -6.91948831e-01 -4.56907213e-01 -8.00431490e-01 8.22646379e-01 -6.66716039e-01 1.32725906e+00 -1.75569665e+00 -1.45953611e-01 1.14604823e-01 2.47186929e-01 8.78546610e-02 2.24645268e-02 5.79816520e-01 -7.07541257e-02 5.70447862e-01 3.30719709e-01 -2.68857688e-01 2.93366641e-01 2.45857313e-01 -5.50522566e-01 2.34773103e-02 1.91661373e-01 1.08789682e+00 -8.79637003e-01 -7.81269431e-01 -1.54197916e-01 8.67440030e-02 -3.84271622e-01 -1.71683893e-01 -3.20918411e-01 -8.59180763e-02 -6.09573305e-01 7.12791681e-01 5.73802218e-02 -5.87130308e-01 3.77345592e-01 -2.66878337e-01 -3.94049436e-02 7.97409654e-01 -6.92668915e-01 1.41885209e+00 -4.28282320e-01 8.46887589e-01 -3.59304488e-01 -1.11125064e+00 5.96028566e-01 2.86980063e-01 4.77651119e-01 -6.95572734e-01 -1.19795613e-01 2.40591660e-01 -1.31122582e-02 -6.94392979e-01 6.25002801e-01 -4.51926559e-01 -5.94728105e-02 4.42051649e-01 4.43015993e-01 -2.13312104e-01 3.19403499e-01 4.24898207e-01 1.57711291e+00 3.31820041e-01 9.03851166e-02 -2.79640704e-01 8.70261639e-02 2.77548552e-01 2.88584083e-01 8.22479546e-01 1.61682978e-01 1.94269307e-02 4.76348966e-01 -3.70670785e-03 -8.75449061e-01 -7.01681733e-01 -3.68056655e-01 1.50317502e+00 -2.48025984e-01 -7.30585039e-01 -2.55701870e-01 -1.00621986e+00 3.14327866e-01 1.20036256e+00 -5.22106528e-01 -4.15888876e-02 -5.42576253e-01 -7.69119561e-01 9.11500692e-01 6.20125055e-01 3.53013486e-01 -8.91978860e-01 -5.02887778e-02 1.79642767e-01 -2.06084788e-01 -1.66318619e+00 -6.51859120e-02 2.64444321e-01 -7.48410761e-01 -1.14566743e+00 -2.76246548e-01 -6.56967700e-01 5.13782129e-02 -1.02626979e-01 1.61045969e+00 -3.81677188e-02 9.42391232e-02 7.80455887e-01 -5.18962622e-01 -5.28942287e-01 -3.62193674e-01 6.98264539e-01 -2.05016375e-01 -6.36167049e-01 7.09828854e-01 -5.55386007e-01 -6.79488704e-02 1.67425722e-01 -5.70066929e-01 -7.13763908e-02 6.72511935e-01 6.70296729e-01 2.59413570e-01 3.92502844e-01 9.09225285e-01 -1.17574787e+00 8.09403479e-01 -8.12454522e-01 -1.34986073e-01 4.74003166e-01 -9.73939002e-01 -9.98508558e-02 6.07086360e-01 -4.82591838e-01 -1.12074375e+00 -5.81947505e-01 1.71343058e-01 -3.49815860e-02 1.99357606e-02 9.94868457e-01 7.08312378e-04 -4.37144339e-02 8.14605534e-01 -7.53483251e-02 -3.56345505e-01 -5.95595241e-01 4.73366886e-01 5.88563979e-01 4.29026604e-01 -1.34287024e+00 9.63927388e-01 1.78445101e-01 1.96005739e-02 -6.89729750e-01 -1.18142080e+00 -3.08067173e-01 -6.51583850e-01 9.89230797e-02 4.61296022e-01 -8.01886857e-01 -6.98780119e-01 -4.76053543e-02 -6.75474167e-01 -7.26885378e-01 -4.41051573e-01 3.81314576e-01 -4.00798559e-01 3.48608375e-01 -5.90504289e-01 -4.51130360e-01 -2.24325538e-01 -7.07782269e-01 8.83128345e-01 -6.17025718e-02 -3.82008463e-01 -1.46290183e+00 -1.52495608e-01 6.57256484e-01 3.27006131e-01 6.32104799e-02 1.33032668e+00 -1.28610480e+00 -3.94733757e-01 -3.45851660e-01 -2.89481074e-01 2.62794644e-01 9.62007269e-02 3.64975706e-02 -9.70027149e-01 -1.98749173e-02 -2.09661812e-01 -6.22861147e-01 6.26890123e-01 -6.68328330e-02 1.04596817e+00 -3.96009296e-01 -5.91981828e-01 3.32250476e-01 1.18796575e+00 -1.45445898e-01 2.81661749e-01 6.09141707e-01 6.53674364e-01 4.36326385e-01 5.35389900e-01 1.95077136e-01 8.94311190e-01 7.22431540e-01 3.01135574e-02 1.21798337e-01 -2.90050954e-01 -3.60803217e-01 2.84871459e-01 5.15581608e-01 -1.87206596e-01 -5.06674230e-01 -1.28359139e+00 8.85173440e-01 -1.67321491e+00 -1.01688063e+00 -9.61373299e-02 1.88103151e+00 1.33628881e+00 4.39232290e-01 2.12855533e-01 -2.14772195e-01 2.28338405e-01 -5.67778759e-02 -3.59843135e-01 -1.69784367e-01 -1.19211026e-01 6.19158149e-01 6.48506105e-01 2.45489031e-01 -8.44295621e-01 1.30667758e+00 6.75033379e+00 1.11133885e+00 -9.35785174e-01 1.77935228e-01 3.73837113e-01 -1.72330782e-01 -3.54352415e-01 3.23946327e-01 -1.11695898e+00 3.10878366e-01 1.10948277e+00 -4.29958522e-01 5.23907840e-01 7.70429373e-01 -1.53737962e-01 9.22466889e-02 -1.52217710e+00 5.51456273e-01 8.73459429e-02 -1.38978517e+00 8.07116479e-02 2.51101851e-01 3.65074456e-01 2.20699459e-01 1.31489471e-01 8.72978032e-01 7.01194108e-01 -1.27819824e+00 7.05020308e-01 4.49894249e-01 8.07410359e-01 -3.79388183e-01 5.43385327e-01 4.87583280e-01 -8.71669114e-01 -1.04015050e-02 -1.13862813e-01 -1.05255172e-01 -1.73095897e-01 5.07543862e-01 -1.20259297e+00 6.85204327e-01 7.56731510e-01 1.03075337e+00 -1.05315077e+00 3.70224327e-01 -1.01344205e-01 1.22157359e+00 -4.34962839e-01 1.27255455e-01 2.45126978e-01 2.29140192e-01 4.84605134e-01 1.64414036e+00 7.91625008e-02 9.76150706e-02 7.06367418e-02 9.94398475e-01 -4.49825674e-01 9.84266400e-02 -7.38302231e-01 -5.71190059e-01 6.61834478e-01 1.26738000e+00 -4.53035533e-01 -4.86314833e-01 -6.21667385e-01 3.21130991e-01 5.51338732e-01 3.16352338e-01 -5.84208846e-01 -3.13227713e-01 6.31650630e-03 5.00701487e-01 4.75203484e-01 -2.94122957e-02 -5.26311994e-01 -1.22519124e+00 3.77901681e-02 -9.37671483e-01 7.22044766e-01 -7.80441999e-01 -1.73457801e+00 2.40527049e-01 3.66997212e-01 -4.63545620e-01 -4.25872207e-01 -8.33660722e-01 -3.44990671e-01 8.96744728e-01 -1.66437173e+00 -1.47441232e+00 -1.70517534e-01 6.01792753e-01 3.94600809e-01 -3.76089990e-01 8.03746521e-01 3.57417762e-01 -5.40066957e-01 7.21130252e-01 -1.07386298e-01 2.54095674e-01 9.75003481e-01 -1.38368559e+00 2.83173651e-01 7.48331130e-01 2.69480169e-01 8.43395710e-01 5.88764668e-01 -8.67090046e-01 -1.43399775e+00 -8.22072685e-01 1.29252911e+00 -1.18894601e+00 1.19532180e+00 -2.51217782e-01 -9.71065402e-01 1.43375945e+00 2.14694783e-01 -3.09993654e-01 7.61726618e-01 8.69221747e-01 -5.53824246e-01 7.16162771e-02 -1.03377092e+00 3.86313409e-01 1.34775758e+00 -6.55843318e-01 -9.43852425e-01 6.78125679e-01 4.66739684e-01 -3.84581625e-01 -1.62177968e+00 4.96153444e-01 3.50678682e-01 -4.19772148e-01 9.80672419e-01 -8.99432421e-01 6.49943531e-01 2.47958124e-01 -2.46333525e-01 -1.03349018e+00 -6.08891368e-01 -5.56284070e-01 -2.75222868e-01 1.81410658e+00 4.71923679e-01 -5.42622030e-01 6.07531309e-01 7.22050369e-01 -2.79575735e-01 -8.85953128e-01 -7.91339457e-01 -8.46960783e-01 4.55856740e-01 -6.55372560e-01 5.09038687e-01 1.42761779e+00 2.78211802e-01 7.46449053e-01 2.84075201e-01 -8.17542672e-02 2.75500149e-01 1.34913139e-02 7.77487993e-01 -1.41702807e+00 -4.10402566e-01 -6.23567164e-01 -1.55199766e-01 -9.02114332e-01 6.01835012e-01 -1.36904514e+00 -3.19729418e-01 -1.70324576e+00 3.41603845e-01 -8.65942657e-01 -1.14316940e-01 9.59098876e-01 -2.14509383e-01 -1.82606027e-01 -2.51700673e-02 2.38033891e-01 -4.43536729e-01 1.96556553e-01 9.41391826e-01 -6.57701027e-03 1.08073734e-01 -2.07728356e-01 -1.36812186e+00 6.48953259e-01 4.32856202e-01 -2.89491624e-01 -5.91771543e-01 -3.22731942e-01 5.45068145e-01 -2.52528816e-01 4.48984325e-01 -4.60715413e-01 1.47513643e-01 -2.55682796e-01 2.47806057e-01 -1.03703253e-01 1.11238271e-01 -7.91594267e-01 -1.50624573e-01 -7.47620985e-02 -3.06126595e-01 -1.77160814e-01 5.48762679e-01 4.27741021e-01 1.34306505e-01 -3.09170067e-01 3.15133303e-01 -2.35729992e-01 -8.39666545e-01 9.19533968e-02 -2.15268403e-01 7.17344344e-01 5.42005837e-01 -4.61728871e-01 -5.94696283e-01 -2.49072894e-01 -4.90753084e-01 -7.10238740e-02 2.95165926e-01 5.83829403e-01 1.12499222e-01 -9.22363698e-01 -8.75328243e-01 -2.99978077e-01 2.67920315e-01 -1.75075576e-01 -2.62164891e-01 9.38421130e-01 1.00546107e-01 6.19755149e-01 2.76136518e-01 -3.05054694e-01 -1.02017343e+00 4.33214247e-01 2.05522448e-01 -8.50203931e-01 -6.95665538e-01 8.54966342e-01 -7.69756958e-02 -3.58615577e-01 5.59627190e-02 -3.24302942e-01 -1.38018802e-01 5.64234070e-02 -2.12628394e-01 3.37105691e-01 2.74779111e-01 -4.37906384e-01 -4.05243278e-01 2.71316588e-01 -1.99672237e-01 6.32662773e-02 1.66050398e+00 1.38857946e-01 -2.31065545e-02 4.74403530e-01 8.81930888e-01 4.24595416e-01 -6.68580651e-01 -6.38541996e-01 4.01610523e-01 -2.65691340e-01 2.17665434e-01 -1.35915685e+00 -7.75124669e-01 3.93039346e-01 -1.57114327e-01 2.88696229e-01 8.61472905e-01 4.11740303e-01 5.44670939e-01 4.80097026e-01 2.40325898e-01 -1.03983462e+00 -1.66656505e-02 7.22261250e-01 8.14190209e-01 -9.75700140e-01 4.80134189e-01 -3.86113256e-01 -7.14850008e-01 1.06145799e+00 6.35734916e-01 1.56364426e-01 6.11762643e-01 2.37393051e-01 -4.85042125e-01 -7.04439223e-01 -9.17223454e-01 -3.03014182e-02 5.42771220e-01 5.78560054e-01 6.99446082e-01 -2.48103812e-01 -2.53162570e-02 8.74808371e-01 -6.24157012e-01 1.39122859e-01 2.43365154e-01 7.51755357e-01 -5.33650443e-02 -8.34265292e-01 6.17908128e-03 8.11061025e-01 -6.80538535e-01 -4.63178158e-01 -6.92219615e-01 1.34275913e+00 8.73037353e-02 9.93453026e-01 -2.10249960e-01 -3.50199282e-01 5.10799170e-01 3.12749207e-01 5.76584160e-01 -1.02232826e+00 -8.99824202e-01 -3.74515146e-01 6.77264154e-01 -2.45891541e-01 -1.98521912e-01 -8.86114120e-01 -9.38193202e-01 -5.15800536e-01 -4.23261970e-01 1.26984045e-01 3.38847160e-01 1.24134755e+00 4.52010900e-01 6.36316597e-01 -1.02434196e-01 -3.61090213e-01 -6.30970955e-01 -1.28152442e+00 -4.89998072e-01 5.38754582e-01 -1.09517582e-01 -6.87689185e-01 -3.41266304e-01 9.66378301e-02]
[9.948092460632324, 8.512968063354492]
395fc019-46a4-4dea-b1ba-cda4a9506e45
solving-single-objective-tasks-by-preference
null
null
https://openreview.net/forum?id=HJxV5yHYwB
https://openreview.net/pdf?id=HJxV5yHYwB
Solving single-objective tasks by preference multi-objective reinforcement learning
There ubiquitously exist many single-objective tasks in the real world that are inevitably related to some other objectives and influenced by them. We call such task as the objective-constrained task, which is inherently a multi-objective problem. Due to the conflict among different objectives, a trade-off is needed. A common compromise is to design a scalar reward function through clarifying the relationship among these objectives using the prior knowledge of experts. However, reward engineering is extremely cumbersome. This will result in behaviors that optimize our reward function without actually satisfying our preferences. In this paper, we explicitly cast the objective-constrained task as preference multi-objective reinforcement learning, with the overall goal of finding a Pareto optimal policy. Combined with Trajectory Preference Domination we propose, a weight vector that reflects the agent's preference for each objective can be learned. We analyzed the feasibility of our algorithm in theory, and further proved in experiments its better performance compared to those that design the reward function by experts.
['Feng Chen', 'Shangqi Guo', 'Jinsheng Ren']
2019-09-25
null
null
null
null
['multi-objective-reinforcement-learning']
['methodology']
[-1.52840093e-02 -2.22967952e-01 -2.66243815e-01 -2.21122548e-01 -4.20565426e-01 -6.23578548e-01 -2.09404305e-02 -5.14949076e-02 -7.46594191e-01 1.10589933e+00 1.14723057e-01 -6.44949451e-02 -7.96150446e-01 -4.67309356e-01 -3.60061884e-01 -9.17958140e-01 -1.12405054e-01 6.36352599e-01 1.53436614e-02 -3.10681313e-01 6.69512928e-01 2.09546864e-01 -1.20895767e+00 -3.33711982e-01 1.31785953e+00 1.01817715e+00 5.14845610e-01 4.24525142e-01 3.37205604e-02 4.60545272e-01 -6.50126517e-01 -3.27449918e-01 1.33818090e-01 -1.08455211e-01 -7.99360216e-01 2.75255442e-01 -6.00311637e-01 -2.79125929e-01 3.20815623e-01 1.18078351e+00 5.11999071e-01 4.25470591e-01 6.34707212e-01 -1.54479373e+00 -5.22240937e-01 5.60909867e-01 -6.50516212e-01 -1.13777392e-01 9.37604904e-02 2.98878133e-01 1.18642187e+00 -2.34113142e-01 2.17840999e-01 1.11564302e+00 -2.42459252e-02 5.48003018e-01 -1.08470368e+00 -2.02454895e-01 5.46812892e-01 2.71374941e-01 -1.01872540e+00 8.80034268e-02 8.08746040e-01 -3.48627865e-01 2.83761173e-01 1.94572300e-01 5.20717859e-01 1.03219652e+00 2.44607776e-01 8.50494564e-01 1.05379224e+00 -5.46882022e-03 4.81628180e-01 3.14888239e-01 -1.97907507e-01 2.97312856e-01 3.32375944e-01 3.47431183e-01 -2.06514820e-01 -1.14658192e-01 5.00779390e-01 4.74413596e-02 -5.05556345e-01 -6.87325835e-01 -9.84116673e-01 7.50330985e-01 2.49767989e-01 1.31785944e-01 -5.42047441e-01 2.24681467e-01 1.03053972e-01 2.83456773e-01 -2.57482305e-02 8.75239193e-01 -4.70304579e-01 -1.70719609e-01 -4.21137094e-01 2.56716013e-01 4.77876574e-01 6.11058235e-01 6.15509808e-01 6.40039593e-02 -4.37684566e-01 5.59554040e-01 3.57756734e-01 2.05565706e-01 1.76909909e-01 -1.25689387e+00 4.89592046e-01 4.93466824e-01 9.74665582e-01 -8.49612355e-01 -3.59304070e-01 -9.03098464e-01 -4.66119051e-01 6.94540381e-01 6.22771025e-01 -6.11158431e-01 -3.67063522e-01 1.82508576e+00 1.87722385e-01 -3.43370676e-01 -1.81773286e-02 1.42288494e+00 -2.31976599e-01 4.74619031e-01 4.76260073e-02 -4.32996750e-01 8.71399283e-01 -7.98457801e-01 -8.09338808e-01 -2.42524832e-01 1.50762469e-01 -4.76008445e-01 1.19519043e+00 4.32381809e-01 -9.08377409e-01 -6.65391609e-02 -8.69878829e-01 6.97708309e-01 1.50924651e-02 5.30355945e-02 5.66143513e-01 5.19089460e-01 -7.55483091e-01 6.49055958e-01 -2.31642425e-01 4.00452651e-02 1.55538455e-01 6.39071345e-01 2.13113323e-01 3.91750574e-01 -1.10616469e+00 1.06915450e+00 4.18668449e-01 1.61105216e-01 -1.05567920e+00 -4.22851980e-01 -2.32275501e-01 2.72615433e-01 1.15154970e+00 -6.22229517e-01 1.39568913e+00 -1.19521117e+00 -1.78658903e+00 1.36699408e-01 2.04800218e-01 3.50492820e-02 8.04329515e-01 -1.32534429e-01 -2.08473593e-01 -1.95073947e-01 -7.05153961e-03 2.79599875e-01 1.01053619e+00 -1.58192325e+00 -8.67557526e-01 -1.39531061e-01 5.34892023e-01 5.58860421e-01 -6.12491965e-01 -3.13192271e-02 -7.87696242e-02 -3.02173913e-01 -5.86037636e-01 -7.41597772e-01 -6.61800385e-01 -2.17996299e-01 -2.60899365e-01 -1.85021579e-01 3.87589484e-01 -1.62488446e-01 1.33898127e+00 -1.85340393e+00 5.24284661e-01 2.79733539e-01 2.32820809e-01 6.79612234e-02 -2.55237937e-01 2.57063329e-01 4.23095822e-01 1.39404938e-01 -2.26604268e-01 -7.81781375e-02 3.13888252e-01 2.89582670e-01 -1.65402368e-01 3.64369363e-01 1.76164925e-01 6.41043425e-01 -1.22064114e+00 -3.74159783e-01 -1.05462953e-01 -3.00477892e-02 -5.49446464e-01 3.74668419e-01 -4.97694701e-01 4.82037157e-01 -1.13551164e+00 5.19624770e-01 3.70433927e-01 -2.93909520e-01 2.84838885e-01 7.22209588e-02 -2.30461314e-01 -3.03333044e-01 -1.27885878e+00 1.26351666e+00 -4.56151873e-01 -3.68518080e-03 3.66560906e-01 -1.10650110e+00 8.72198939e-01 2.45546907e-01 7.25379646e-01 -4.34664369e-01 4.86427903e-01 3.38639289e-01 2.28599936e-01 -6.24019146e-01 6.26547575e-01 -1.31654814e-01 -6.60548136e-02 4.58282918e-01 -3.05088609e-01 6.74722418e-02 1.64450869e-01 -2.45890424e-01 7.00375974e-01 2.40871727e-01 2.42635667e-01 -5.38975239e-01 5.21473706e-01 2.97897477e-02 7.86386728e-01 7.05166996e-01 -4.59377319e-01 1.44814342e-01 7.13098884e-01 -1.48034036e-01 -5.81536651e-01 -7.61297286e-01 1.91344693e-01 9.02578592e-01 5.84778607e-01 2.11135581e-01 -3.23323131e-01 -7.46246040e-01 -2.53243297e-02 6.94837213e-01 -4.83783126e-01 -1.17994897e-01 -3.19059402e-01 -8.20336938e-01 -9.23881531e-02 1.79750368e-01 3.49847198e-01 -8.43698502e-01 -1.12887621e+00 4.70389664e-01 -1.54166996e-01 -7.15253532e-01 -1.07215381e+00 2.01139405e-01 -6.34868622e-01 -1.01949084e+00 -1.00482380e+00 -3.07870954e-01 8.08877766e-01 1.20987087e-01 9.30409551e-01 -6.68128282e-02 3.63286622e-02 4.46321040e-01 -2.84988701e-01 -2.27995694e-01 1.44202486e-01 -7.40882084e-02 1.38219342e-01 4.96392608e-01 -1.99117362e-01 -5.21419883e-01 -6.96677327e-01 5.34594178e-01 -9.45120692e-01 -2.93700814e-01 6.80500746e-01 7.59479344e-01 2.64505118e-01 4.38925654e-01 8.74670267e-01 -3.16021234e-01 1.16183710e+00 -4.66699690e-01 -1.01885116e+00 5.81455410e-01 -5.72181523e-01 5.58850050e-01 9.02794659e-01 -7.81740427e-01 -1.16163409e+00 4.02562283e-02 4.31546241e-01 -2.30041578e-01 2.75349021e-01 5.73529065e-01 -3.97969157e-01 -7.71106407e-02 1.29169658e-01 -3.83449607e-02 -1.00124476e-03 -2.02397063e-01 2.18905643e-01 4.17828560e-01 8.50044638e-02 -1.20221829e+00 6.89390898e-01 8.22732151e-02 1.84684679e-01 -3.12149584e-01 -8.08339536e-01 -4.10321318e-02 -8.11723396e-02 -7.19004452e-01 7.13413715e-01 -2.71743536e-01 -1.49675381e+00 1.10508077e-01 -1.19884765e+00 -2.27208346e-01 -1.51815131e-01 5.63732922e-01 -6.77612126e-01 1.48968801e-01 1.68960646e-01 -1.33358455e+00 1.16392843e-01 -1.29356349e+00 3.23824227e-01 5.08925200e-01 -1.22509435e-01 -9.28980350e-01 1.78455766e-02 9.17675197e-02 6.67455852e-01 2.04438284e-01 8.49078536e-01 -1.52183503e-01 -7.45477438e-01 2.39658549e-01 -7.96838552e-02 -7.24910647e-02 8.54104012e-02 -3.23924907e-02 -4.20558155e-01 -2.35852927e-01 1.73837990e-01 -3.57087523e-01 4.92387503e-01 4.12425160e-01 1.29038203e+00 -6.25180185e-01 -1.16596982e-01 3.23407024e-01 1.66446018e+00 7.07795203e-01 2.07289502e-01 5.01986146e-01 2.45912254e-01 9.24543083e-01 9.26789224e-01 8.21159542e-01 2.76893884e-01 7.49765694e-01 9.88882363e-01 2.04116166e-01 7.24960029e-01 7.43301213e-02 4.22401339e-01 1.76478609e-01 -4.65162575e-01 -5.36835790e-01 -5.48146725e-01 5.51675141e-01 -2.36351299e+00 -9.38036025e-01 1.82746887e-01 2.37146950e+00 7.72885144e-01 1.15806744e-01 4.43221688e-01 -6.98923245e-02 8.20352018e-01 -6.77194372e-02 -8.78119111e-01 -4.72459197e-01 9.04716030e-02 -3.62357646e-01 5.93920767e-01 6.17510617e-01 -7.42938697e-01 4.35764670e-01 6.01330948e+00 8.17661762e-01 -1.12788165e+00 -1.51682496e-01 6.58862770e-01 -3.92219007e-01 -6.91800535e-01 -4.02523614e-02 -5.67110300e-01 6.40274048e-01 2.78150469e-01 -7.88340509e-01 9.57129836e-01 6.62041485e-01 4.89744782e-01 -1.92340806e-01 -8.17628384e-01 7.16917634e-01 -4.49602664e-01 -7.11264968e-01 -3.50328863e-01 3.10967803e-01 7.16639459e-01 -5.97567916e-01 3.14228773e-01 1.70544818e-01 7.21455097e-01 -1.02841711e+00 8.28802705e-01 5.89425564e-01 3.91245425e-01 -1.01710665e+00 6.10476971e-01 5.93971968e-01 -9.88835990e-01 -5.23465037e-01 -1.98497310e-01 -1.62179857e-01 3.68685991e-01 6.03252470e-01 -2.92683661e-01 7.10076571e-01 2.70328641e-01 3.73545468e-01 1.75332934e-01 1.32136691e+00 -3.21517646e-01 -2.42775530e-02 -1.33818969e-01 -6.22799158e-01 5.29995799e-01 -5.31438589e-01 7.21415877e-01 4.71987307e-01 5.92249155e-01 8.71393364e-03 3.95057648e-01 1.10475039e+00 1.98514134e-01 -6.32538423e-02 -3.07777882e-01 -1.74773902e-01 3.27224433e-01 1.32059264e+00 -5.81310093e-01 6.60859197e-02 6.08817814e-03 7.99798131e-01 3.98344338e-01 6.15133107e-01 -1.21537459e+00 -3.19832921e-01 8.82254183e-01 -3.48307729e-01 1.62091747e-01 -1.91941455e-01 -2.83916384e-01 -9.86279845e-01 2.07814835e-02 -7.35166252e-01 1.73428491e-01 -3.40762645e-01 -1.38835323e+00 5.35929739e-01 -2.83919666e-02 -1.39778101e+00 -2.71551614e-03 -5.84202945e-01 -7.50134110e-01 8.18910956e-01 -1.77667987e+00 -2.88742661e-01 9.65084136e-02 5.85892439e-01 2.85631061e-01 -3.08141205e-02 3.53609264e-01 2.64722288e-01 -7.62106657e-01 3.06771040e-01 2.65247703e-01 -5.63549280e-01 5.15721202e-01 -1.24993515e+00 -6.81713700e-01 5.14833689e-01 -4.94239926e-01 2.98619777e-01 9.48476255e-01 -3.76799554e-01 -1.43951833e+00 -7.57465065e-01 6.40370965e-01 8.68496299e-02 9.67596292e-01 1.62424475e-01 -4.56967801e-01 1.46620050e-01 1.35138258e-01 -3.80263239e-01 3.72911602e-01 -9.08815190e-02 2.55678713e-01 -2.23924085e-01 -1.17080462e+00 9.11750495e-01 9.85654116e-01 8.92444402e-02 -3.72570127e-01 -1.02880802e-02 5.94158649e-01 -6.48661554e-02 -6.09594107e-01 2.78043002e-01 4.58903700e-01 -6.16726398e-01 8.74391198e-01 -8.29591036e-01 4.85383898e-01 -4.75443333e-01 -7.23626241e-02 -1.83274317e+00 -4.36162978e-01 -8.18294048e-01 5.97799197e-03 9.73185420e-01 4.02163625e-01 -7.90670753e-01 6.13094568e-01 8.64562809e-01 9.48108081e-03 -8.93442631e-01 -8.48280013e-01 -1.21015120e+00 -1.22629091e-01 9.59458128e-02 7.15015709e-01 6.89476907e-01 1.44496769e-01 3.01720709e-01 -8.15918207e-01 2.39316940e-01 9.49043453e-01 3.59190226e-01 2.31854230e-01 -1.12922299e+00 -6.08697176e-01 -8.00846279e-01 5.01640737e-01 -1.01917875e+00 9.33695436e-02 -4.46196944e-01 3.35112542e-01 -1.41262257e+00 -1.59600358e-02 -6.66479051e-01 -5.34779847e-01 2.69993007e-01 -3.06220353e-01 -5.72441697e-01 3.45671624e-01 4.04639542e-02 -7.73512602e-01 9.48040307e-01 1.79135311e+00 -2.49369666e-01 -3.61691624e-01 2.54829347e-01 -9.93580043e-01 4.94943887e-01 1.13192666e+00 -5.98537445e-01 -6.51822269e-01 -5.63705444e-01 2.59199381e-01 6.45817995e-01 -3.04903667e-02 -6.27681017e-01 2.51051784e-01 -1.19000173e+00 -1.86753795e-01 -2.07152575e-01 4.39861268e-01 -1.23506665e+00 8.45036879e-02 4.83123779e-01 -3.58587563e-01 -5.64052574e-02 -3.20654452e-01 5.12131512e-01 -9.10711735e-02 -5.94805658e-01 5.71562529e-01 -1.13780327e-01 -5.93577266e-01 4.69889075e-01 -4.82228696e-01 2.53186822e-02 1.25489736e+00 7.64622092e-02 -2.75810421e-01 -4.79330212e-01 -5.47969043e-01 8.79877329e-01 1.50682107e-01 3.27779651e-01 5.28541565e-01 -1.09877729e+00 -5.33680439e-01 -4.86560285e-01 -2.23916128e-01 -3.42949688e-01 1.15133058e-02 8.41244340e-01 2.06121519e-01 3.86248231e-01 -4.54899788e-01 -4.10410054e-02 -9.16172326e-01 6.45396709e-01 4.31818247e-01 -6.56905890e-01 1.94603354e-01 3.77975702e-01 5.61037809e-02 -1.51803613e-01 4.02512908e-01 -6.88668266e-02 -5.58170259e-01 2.07203865e-01 2.19870701e-01 5.54317474e-01 -5.69959044e-01 -2.72802301e-02 -3.26077193e-01 6.57402933e-01 2.68772691e-01 -3.43210936e-01 1.30434644e+00 -2.60362864e-01 1.22019917e-01 8.12484622e-02 7.03415394e-01 -1.40158087e-01 -1.57221127e+00 1.62057169e-02 1.79721743e-01 -7.08294153e-01 5.79347722e-02 -9.71462548e-01 -1.08929431e+00 5.92148542e-01 1.97027773e-01 3.55723888e-01 1.33166993e+00 -4.91945177e-01 4.64236528e-01 4.52885091e-01 7.42390871e-01 -1.37797868e+00 4.78211939e-01 5.74063420e-01 8.28536212e-01 -1.23497212e+00 -2.90944934e-01 -9.81760100e-02 -9.78537619e-01 1.09292948e+00 7.72326946e-01 -6.30324185e-02 3.73948604e-01 5.94919212e-02 -1.72381550e-01 6.08870871e-02 -6.55860722e-01 -4.47487056e-01 2.04777420e-01 5.15481532e-01 4.95344261e-03 2.22167209e-01 -7.46884704e-01 7.31684268e-01 3.78574610e-01 1.40672937e-01 5.00243127e-01 8.39293063e-01 -6.75657809e-01 -1.58583713e+00 -5.82703233e-01 2.83645213e-01 -2.98446834e-01 3.54643553e-01 -1.45552441e-01 3.46307993e-01 4.10783151e-03 1.22260571e+00 -2.91806459e-01 -1.90861091e-01 3.11318576e-01 -4.18739319e-01 4.15495783e-01 -2.16481119e-01 -6.44245684e-01 -1.30129000e-02 8.11368451e-02 -5.34650207e-01 -3.49413574e-01 -3.83900762e-01 -1.15808034e+00 -2.46734813e-01 -7.40925297e-02 4.06200141e-01 5.02376676e-01 9.38501894e-01 1.17860056e-01 8.09428453e-01 9.97068465e-01 -6.30611897e-01 -1.16397703e+00 -2.78710335e-01 -6.74138010e-01 8.33687186e-02 3.55770230e-01 -9.24252927e-01 -4.05556560e-01 -5.27594686e-01]
[4.394063472747803, 2.485564708709717]
5c503cab-7030-458d-a17d-cefc0de2f08b
scalable-deletion-robust-submodular
null
null
https://icml.cc/Conferences/2018/Schedule?showEvent=1927
http://proceedings.mlr.press/v80/kazemi18a/kazemi18a.pdf
Scalable Deletion-Robust Submodular Maximization: Data Summarization with Privacy and Fairness Constraints
Can we efficiently extract useful information from a large user-generated dataset while protecting the privacy of the users and/or ensuring fairness in representation? We cast this problem as an instance of a deletion-robust submodular maximization where part of the data may be deleted or masked due to privacy concerns or fairness criteria. We propose the first memory-efficient centralized, streaming, and distributed methods with constant-factor approximation guarantees against any number of adversarial deletions. We extensively evaluate the performance of our algorithms on real-world applications, including (i) Uber-pick up locations with location privacy constraints; (ii) feature selection with fairness constraints for income prediction and crime rate prediction; and (iii) robust to deletion summarization of census data, consisting of 2,458,285 feature vectors. Our experiments show that our solution is robust against even $80%$ of data deletion.
['Morteza Zadimoghaddam', 'Amin Karbasi', 'Ehsan Kazemi']
2018-07-01
null
null
null
icml-2018-7
['data-summarization']
['miscellaneous']
[ 2.92559117e-01 2.08101407e-01 -3.31580788e-01 -4.99198228e-01 -1.05095911e+00 -9.14806962e-01 -3.72225642e-02 6.14832938e-01 -7.31269538e-01 9.76772189e-01 4.56550896e-01 -2.82990307e-01 -2.89640248e-01 -8.31386805e-01 -7.47645199e-01 -7.13125646e-01 -5.95366895e-01 4.15928334e-01 -3.60022277e-01 -3.27940024e-02 1.50330171e-01 6.08886182e-01 -1.11050224e+00 -1.86287481e-02 8.75957668e-01 1.05897820e+00 -4.08792675e-01 3.52725565e-01 6.38160348e-01 4.13756341e-01 -3.66776139e-01 -8.72860849e-01 1.07650268e+00 1.73933655e-01 -6.99641705e-01 -1.51392832e-01 2.76495010e-01 -9.82827961e-01 -3.68833840e-01 1.26296723e+00 6.84170842e-01 1.61314189e-01 4.58089292e-01 -1.76878524e+00 -5.35326958e-01 7.92644680e-01 -1.10412920e+00 -1.06098495e-01 2.40113676e-01 -1.17708586e-01 8.04787576e-01 -6.12435758e-01 7.60314524e-01 1.00376213e+00 6.09187126e-01 4.54552323e-01 -1.49498165e+00 -8.47632229e-01 5.59664192e-03 -3.11753094e-01 -1.85833383e+00 -8.04588437e-01 3.58368605e-01 -1.85168728e-01 5.78205884e-01 1.16375375e+00 -3.36251641e-03 5.48547089e-01 -9.22269523e-02 8.83952558e-01 4.72203255e-01 2.18514517e-01 4.53587502e-01 4.19952899e-01 5.77647574e-02 2.14460209e-01 1.06388688e+00 -1.70502663e-01 -5.08365452e-01 -1.44162750e+00 2.28613131e-02 2.59410113e-01 -3.12406123e-01 -5.72425067e-01 -6.03117764e-01 1.03732467e+00 -3.01656369e-02 -6.27317131e-01 -4.70613182e-01 2.11751059e-01 3.32742244e-01 2.63859272e-01 6.49994791e-01 1.51087448e-01 -6.55352175e-01 2.97212601e-01 -1.00819647e+00 9.76083159e-01 7.53528893e-01 1.26418543e+00 5.69468975e-01 -9.70857218e-02 -2.17228815e-01 4.03861105e-01 1.94080994e-02 8.24933767e-01 -4.14350368e-02 -1.07527530e+00 1.03304958e+00 3.46010774e-01 6.08611882e-01 -1.42656267e+00 -2.79616684e-01 1.46408215e-01 -9.65921223e-01 -3.69455032e-02 2.48780698e-01 -8.80212545e-01 -1.79314166e-01 1.99033153e+00 6.18273020e-01 -3.08404982e-01 -1.48719952e-01 6.55366838e-01 3.45817059e-01 4.83305871e-01 -3.10204700e-02 -6.15556359e-01 1.00543523e+00 -9.62762162e-02 -5.56380093e-01 -8.02346915e-02 6.52860105e-01 -4.89130169e-02 -7.14961765e-03 2.65737981e-01 -1.39522684e+00 4.71020162e-01 -5.94152033e-01 -2.25989804e-01 -2.48025522e-01 -4.26674813e-01 7.87150145e-01 1.17468333e+00 -7.97422588e-01 2.07374722e-01 -5.76628447e-01 3.19667794e-02 1.06595266e+00 6.50014460e-01 -8.29225183e-01 -1.29870787e-01 -9.84127641e-01 1.31237224e-01 1.36114098e-03 -2.45337903e-01 -6.18682206e-01 -1.10907626e+00 -9.87998247e-01 3.44168544e-01 3.82192522e-01 -5.34833491e-01 6.24783337e-01 -5.86717546e-01 -1.93873599e-01 7.73489833e-01 -2.96675056e-01 -6.45746291e-01 9.60110605e-01 2.20338106e-02 -1.36735633e-01 1.51890889e-01 3.29354644e-01 2.71831959e-01 7.05913484e-01 -1.33929753e+00 -8.84396613e-01 -9.71074641e-01 -3.17910910e-01 2.58365005e-01 -9.54015315e-01 2.62883067e-01 4.61617783e-02 -8.56242061e-01 -2.87492603e-01 -6.79193735e-01 -7.45932639e-01 2.11486131e-01 -6.70803249e-01 4.11829770e-01 7.09518850e-01 -1.10173011e+00 1.46032345e+00 -2.23380733e+00 -2.35394776e-01 6.59935594e-01 2.74213016e-01 -8.65538120e-02 -3.05944592e-01 6.57558084e-01 1.70920521e-01 4.75846797e-01 -5.95014036e-01 -6.77145958e-01 1.62640154e-01 -2.58002698e-01 -4.98068452e-01 1.00541985e+00 -4.90619779e-01 7.60547996e-01 -6.80546761e-01 -6.60393611e-02 -4.72270697e-01 1.67794079e-02 -8.06853831e-01 -9.03442204e-02 2.46837303e-01 -2.04734191e-01 -5.01418293e-01 8.42379451e-01 1.57873404e+00 4.09558654e-01 4.17191476e-01 4.97416914e-01 3.30080956e-01 -2.60019153e-01 -1.58444369e+00 1.27662134e+00 1.74796820e-01 1.11630522e-01 9.45827544e-01 -7.41761863e-01 5.92154920e-01 1.05717197e-01 8.33616793e-01 -3.28629345e-01 -6.19241074e-02 -3.80654745e-02 -6.50240779e-01 -3.05385411e-01 8.70555282e-01 1.26971126e-01 -5.87413013e-01 9.83006895e-01 -6.17964566e-01 2.60692179e-01 -2.96415359e-01 4.80164587e-01 1.24179685e+00 -8.78539801e-01 3.48624170e-01 -3.95836174e-01 -2.46609017e-01 -3.13098073e-01 9.83405948e-01 1.01503491e+00 -2.89679468e-01 7.47680128e-01 6.74230814e-01 -4.83190000e-01 -7.39422321e-01 -9.90788281e-01 -4.94982861e-02 1.21660399e+00 6.44237548e-02 -2.48627931e-01 -6.29919231e-01 -9.79627550e-01 1.06331837e+00 8.47686529e-01 -6.60627246e-01 7.94943795e-02 -5.78673184e-02 -1.14558995e+00 6.24181211e-01 3.14646930e-01 1.66006520e-01 -3.42208952e-01 -4.16897297e-01 -5.07470891e-02 -2.78755814e-01 -8.05238545e-01 -9.63155389e-01 -1.04542524e-01 -6.59850895e-01 -9.14572775e-01 -4.74297136e-01 -3.42695653e-01 1.21384490e+00 5.03805518e-01 5.71861029e-01 5.32745663e-03 -4.63928610e-01 4.33545411e-01 1.01332165e-01 -7.57693172e-01 2.88164049e-01 -3.63662001e-03 2.39846796e-01 3.74033719e-01 3.77396494e-01 -6.25579000e-01 -6.33377016e-01 -1.20850123e-01 -1.23962414e+00 -6.44124568e-01 -1.87398553e-01 3.01933646e-01 4.84582573e-01 3.60450059e-01 7.35237062e-01 -1.20209980e+00 8.50772083e-01 -1.05179954e+00 -6.30810022e-01 1.69077650e-01 -4.10339534e-01 -4.19605702e-01 4.66128975e-01 -5.13403490e-02 -9.07673240e-01 3.82021695e-01 2.19440401e-01 8.36411044e-02 1.50929824e-01 2.77929991e-01 -6.54121459e-01 -2.43934572e-01 4.22042668e-01 2.38261893e-01 -6.69749156e-02 -3.63874555e-01 4.54774410e-01 9.71082389e-01 2.79375255e-01 -5.82639217e-01 8.15065324e-01 9.15930212e-01 6.79934472e-02 -8.14108253e-01 -1.04296133e-01 -4.05816525e-01 -1.80717930e-01 5.25354028e-01 1.79700077e-01 -1.10765302e+00 -9.58576202e-01 6.10018492e-01 -8.61381829e-01 -7.14180022e-02 -4.78891075e-01 2.01321002e-02 -3.25634062e-01 7.22971797e-01 -2.68373847e-01 -1.16336274e+00 -6.66516364e-01 -6.24435008e-01 7.85138369e-01 -8.89261663e-02 -9.82168615e-02 -5.70394874e-01 -1.15829252e-01 6.16245985e-01 2.81939715e-01 7.47848451e-01 6.12192154e-01 -9.60655451e-01 -4.62235004e-01 -9.06675279e-01 -1.55848086e-01 1.21402971e-01 4.26152684e-02 -4.61831838e-01 -8.19562674e-01 -8.57368350e-01 -1.63297519e-01 -3.62241596e-01 7.54757345e-01 3.89580667e-01 1.83264804e+00 -1.34336996e+00 -3.78849685e-01 9.47239876e-01 1.38962471e+00 -8.57012644e-02 6.30227983e-01 -9.60168466e-02 3.06663543e-01 7.79363513e-01 6.52915359e-01 1.58852911e+00 6.60836220e-01 2.76679426e-01 6.43861592e-01 1.86486781e-01 9.81660366e-01 -3.81061673e-01 1.24217920e-01 -2.24431425e-01 1.26740828e-01 -4.51941639e-01 -5.38908541e-01 9.84999359e-01 -2.06934404e+00 -1.14298403e+00 1.82343319e-01 2.77216268e+00 8.16608608e-01 -5.66006899e-01 4.67603415e-01 -2.51677066e-01 5.62283814e-01 3.79430592e-01 -7.43163526e-01 -6.66733980e-01 -3.30650359e-01 -3.23354565e-02 1.42613864e+00 3.07926297e-01 -1.25936651e+00 3.26262295e-01 6.38646460e+00 9.56485331e-01 -3.80480349e-01 1.39438480e-01 1.27554238e+00 -9.00107622e-01 -8.97846937e-01 -3.12109232e-01 -6.57907605e-01 6.29483640e-01 4.85299736e-01 -7.56381094e-01 7.19356060e-01 9.92919743e-01 8.90289396e-02 -8.09290931e-02 -8.40982378e-01 9.42686617e-01 1.26916677e-01 -1.40869224e+00 -9.58438441e-02 6.03994071e-01 1.17598414e+00 -1.95196733e-01 2.79662311e-01 -1.89808846e-01 6.40416503e-01 -1.10005891e+00 5.04890800e-01 3.68922323e-01 9.99802649e-01 -1.42797208e+00 5.43248296e-01 5.42990685e-01 -8.59762371e-01 -4.73776013e-01 -6.06926262e-01 -2.19773571e-03 1.48657694e-01 6.95950627e-01 -2.77271301e-01 5.76705337e-01 8.22615802e-01 -8.37358925e-03 -2.99321264e-01 9.16297555e-01 3.13140839e-01 4.04298067e-01 -8.87653708e-01 2.01159731e-01 -1.77158445e-01 -1.15435813e-02 6.51772201e-01 1.16202116e+00 4.30694997e-01 4.69723195e-01 -4.92975058e-04 5.88161945e-01 -6.16713941e-01 2.54374236e-01 -9.94808435e-01 3.09772551e-01 1.03631997e+00 1.11023438e+00 -6.96460679e-02 1.30417943e-01 -1.05693743e-01 9.25147951e-01 1.91633046e-01 4.32503909e-01 -5.98687291e-01 -6.15291595e-01 1.35258973e+00 3.60480636e-01 4.14386272e-01 1.29732564e-01 -7.50625372e-01 -1.04444063e+00 2.60027617e-01 -8.06232452e-01 8.58841538e-01 -5.95248975e-02 -1.34625208e+00 -2.46206298e-01 -8.00596625e-02 -6.15548730e-01 -2.43315827e-02 1.52016282e-01 -5.15778363e-01 8.92893016e-01 -1.09124386e+00 -9.48168635e-01 2.62141019e-01 8.41543019e-01 -3.82092863e-01 -2.27336124e-01 6.88724518e-01 2.92311311e-01 -5.54921448e-01 1.27824771e+00 6.94543421e-01 1.53125182e-01 4.15423214e-01 -9.93753970e-01 3.73040110e-01 1.22737384e+00 -5.46068549e-01 6.97241306e-01 4.79948848e-01 -7.75036037e-01 -1.71432424e+00 -1.53876293e+00 1.21063817e+00 -4.10244137e-01 1.33107886e-01 -7.87938833e-01 -4.89502639e-01 1.00615442e+00 -2.05477417e-01 3.59205872e-01 1.08339918e+00 -2.22547755e-01 -3.38929802e-01 -4.69691306e-01 -2.32415915e+00 4.48222667e-01 1.17753863e+00 -1.58937678e-01 1.96181089e-02 4.26785439e-01 6.69568479e-01 -2.72127241e-01 -7.64410257e-01 9.52521563e-02 5.63671172e-01 -5.61870575e-01 1.13746357e+00 -9.68600154e-01 -3.30220349e-02 1.36084810e-01 -5.16087294e-01 -8.30457568e-01 -3.83247077e-01 -1.21066046e+00 -1.84152365e-01 1.52995729e+00 4.03453887e-01 -8.45841825e-01 9.65611100e-01 1.81243551e+00 8.64297986e-01 -4.21021134e-01 -1.21246791e+00 -5.60598373e-01 1.41528055e-01 -3.01429003e-01 1.20621324e+00 1.19449210e+00 8.87298808e-02 -7.26936221e-01 -1.03819191e+00 5.49570501e-01 1.18293297e+00 1.34786174e-01 1.02362537e+00 -8.66133273e-01 -1.33743715e-02 4.23234366e-02 -2.26559043e-01 -4.86986548e-01 1.35547027e-01 -7.51680315e-01 -3.71735722e-01 -1.15419412e+00 6.26536489e-01 -4.53659981e-01 -1.57203168e-01 8.81568551e-01 -2.09594667e-01 1.24825165e-02 2.50218600e-01 -3.50971550e-01 -5.56889355e-01 5.27671754e-01 2.80296445e-01 -2.36700043e-01 -2.06256673e-01 3.84098411e-01 -1.57837260e+00 3.71000707e-01 6.06536508e-01 -8.17976534e-01 -3.73481274e-01 -4.70107943e-01 3.57041806e-01 2.17779025e-01 2.55316228e-01 -3.42866123e-01 1.36583745e-01 -8.39355648e-01 3.84349883e-01 -5.63021243e-01 1.18287809e-01 -1.20448494e+00 3.09380591e-01 5.16448796e-01 -4.69031274e-01 -7.66864195e-02 1.35758873e-02 6.83755457e-01 2.99547046e-01 -1.36175632e-01 4.45390761e-01 2.34819986e-02 -2.44654998e-01 8.89832497e-01 -2.18162969e-01 3.32780123e-01 1.44793808e+00 -4.33417223e-02 -5.16328871e-01 -7.45404661e-01 -3.18149179e-01 8.94412577e-01 5.13483822e-01 8.81696716e-02 7.49426365e-01 -1.26073730e+00 -1.17127061e+00 2.45522991e-01 8.70179608e-02 1.04998671e-01 4.96579647e-01 3.49285305e-01 -1.36322260e-01 1.48788884e-01 4.31006812e-02 4.11467999e-01 -1.53516150e+00 8.54811847e-01 -1.97425440e-01 4.20739762e-02 -1.21161744e-01 9.98945415e-01 8.77733678e-02 -4.77801263e-01 4.23533082e-01 2.81723291e-01 4.66557175e-01 3.00675720e-01 9.94140267e-01 9.89383459e-01 -1.13936812e-01 -5.29996395e-01 -5.92481554e-01 -3.50754052e-01 2.16433294e-02 -1.02806248e-01 1.68707430e+00 -5.37868559e-01 -3.65107775e-01 -5.46656430e-01 1.27832997e+00 5.56850731e-01 -1.00307870e+00 -9.93284434e-02 -3.97905201e-01 -1.14214361e+00 -3.01258028e-01 -5.41782141e-01 -1.49068928e+00 1.50939927e-01 1.87223375e-01 1.88922420e-01 1.31164563e+00 -4.39881891e-01 1.11095202e+00 1.43293887e-01 7.50037491e-01 -1.16705549e+00 -1.02835786e+00 -3.72305512e-01 8.28265965e-01 -1.12870800e+00 4.33144808e-01 -2.39933714e-01 -7.37297118e-01 5.33641875e-01 2.86997378e-01 -4.26624939e-02 9.15360093e-01 4.94317263e-01 -3.89280945e-01 2.76790142e-01 -7.22579539e-01 4.03701514e-01 -2.01637462e-01 9.42408442e-01 -3.98224384e-01 5.35167456e-01 -4.82175559e-01 1.33528221e+00 3.69212069e-02 -1.13893166e-01 6.53413236e-01 1.13174820e+00 -2.28052318e-01 -7.75854170e-01 -4.90073949e-01 8.81407499e-01 -8.28361392e-01 -1.22356817e-01 -5.07746577e-01 2.49613076e-01 8.56064186e-02 1.07037485e+00 -2.20367331e-02 -6.77912086e-02 1.11424811e-01 -3.05792183e-01 -9.71776024e-02 -4.19952899e-01 -7.50418186e-01 -4.40321654e-01 7.67714828e-02 -7.52273321e-01 2.83841997e-01 -1.16078913e+00 -9.39127326e-01 -9.24700499e-01 -2.71575898e-02 1.36203751e-01 4.45966244e-01 3.82949203e-01 8.80525410e-01 -6.20661616e-01 1.23883379e+00 -3.69134307e-01 -1.17574084e+00 -2.74364859e-01 -1.22329009e+00 5.78216851e-01 4.08807516e-01 2.21803337e-01 -3.71183425e-01 -3.17451477e-01]
[6.480630874633789, 5.207437038421631]
6d20cc38-32b1-4b62-9eb0-92d7f8eb07b9
unit-based-speech-to-speech-translation
2305.15405
null
https://arxiv.org/abs/2305.15405v1
https://arxiv.org/pdf/2305.15405v1.pdf
Unit-based Speech-to-Speech Translation Without Parallel Data
We propose an unsupervised speech-to-speech translation (S2ST) system that does not rely on parallel data between the source and target languages. Our approach maps source and target language speech signals into automatically discovered, discrete units and reformulates the problem as unsupervised unit-to-unit machine translation. We develop a three-step training procedure that involves (a) pre-training an unit-based encoder-decoder language model with a denoising objective (b) training it with word-by-word translated utterance pairs created by aligning monolingual text embedding spaces and (c) running unsupervised backtranslation bootstrapping off of the initial translation model. Our approach avoids mapping the speech signal into text and uses speech-to-unit and unit-to-speech models instead of automatic speech recognition and text to speech models. We evaluate our model on synthetic-speaker Europarl-ST English-German and German-English evaluation sets, finding that unit-based translation is feasible under this constrained scenario, achieving 9.29 ASR-BLEU in German to English and 8.07 in English to German.
['Eunsol Choi', 'David Harwath', 'Anirudh Srinivasan', 'Anuj Diwan']
2023-05-24
null
null
null
null
['speech-to-speech-translation']
['speech']
[ 6.97574556e-01 5.12286067e-01 -7.40410462e-02 -6.88668072e-01 -1.68265259e+00 -6.43307269e-01 8.50054741e-01 -1.65565088e-01 -4.72912401e-01 7.12097824e-01 4.70731676e-01 -8.01355064e-01 6.46273196e-01 -3.46688062e-01 -9.07004297e-01 -4.23951209e-01 3.76963288e-01 8.63990247e-01 -1.52857140e-01 -2.73852468e-01 -3.74937952e-01 -1.78759061e-02 -8.23486209e-01 5.42492390e-01 8.77788901e-01 4.68880981e-01 4.04773623e-01 1.09957707e+00 -1.05025746e-01 5.86377978e-01 -6.58880115e-01 -5.91741443e-01 3.92186403e-01 -1.18975282e+00 -6.40427411e-01 2.80844897e-01 1.62719622e-01 -3.85184959e-02 -2.15247318e-01 9.75674510e-01 5.66016734e-01 -2.43610248e-01 5.91836154e-01 -6.41627192e-01 -8.15876901e-01 9.43123162e-01 -8.64539146e-02 -1.44325448e-02 3.31091553e-01 -9.87089425e-02 1.04761994e+00 -1.24234116e+00 7.43023336e-01 1.29064429e+00 3.66167992e-01 5.84948242e-01 -1.70298421e+00 -4.23432022e-01 -3.53184760e-01 -2.87622869e-01 -1.40112340e+00 -1.26851296e+00 4.58891183e-01 -3.70867044e-01 1.52853680e+00 3.01806718e-01 1.58017159e-01 1.45661330e+00 1.79632053e-01 5.90632021e-01 1.06317222e+00 -9.91315365e-01 2.70206600e-01 4.31507379e-01 -4.31992263e-01 3.68783742e-01 -2.54803449e-01 3.63594055e-01 -6.84814572e-01 1.87850315e-02 4.35284644e-01 -7.53191948e-01 9.77580715e-03 1.19668588e-01 -1.64675653e+00 9.02134597e-01 -1.41211674e-01 4.03761804e-01 -3.76510412e-01 5.87615632e-02 4.89884377e-01 1.07452095e+00 8.58813584e-01 1.64225370e-01 -5.37355483e-01 -2.08562002e-01 -1.28162408e+00 -3.08916360e-01 8.84995937e-01 1.25005054e+00 6.90655053e-01 5.44215858e-01 1.12764649e-01 1.02150476e+00 3.02609503e-01 1.10257602e+00 8.84495080e-01 -6.61050975e-01 8.05334151e-01 -1.91176623e-01 -1.17017351e-01 -2.65572071e-01 2.71934450e-01 -4.26730543e-01 -5.02233803e-01 -3.12391341e-01 -8.22332427e-02 -4.10406262e-01 -9.13607419e-01 1.75953162e+00 3.16546969e-02 -1.42675057e-01 7.16418922e-01 4.86524105e-01 3.55159551e-01 1.18357956e+00 -2.57595360e-01 -5.40762961e-01 1.07980895e+00 -1.11759913e+00 -8.90500724e-01 -5.60824394e-01 7.77294457e-01 -1.15103209e+00 1.04730332e+00 -5.96181825e-02 -1.45006442e+00 -7.82910407e-01 -9.95379865e-01 5.16713969e-02 -1.73709020e-01 4.53550667e-01 -3.51985514e-01 6.75386488e-01 -1.34418666e+00 2.24789590e-01 -8.99244606e-01 -5.51338077e-01 -4.09154147e-01 2.96299398e-01 -5.51077962e-01 2.20070586e-01 -1.33001041e+00 1.15850258e+00 4.03207511e-01 -2.80466825e-01 -1.02141225e+00 -1.27765223e-01 -1.19859898e+00 -1.19729467e-01 -1.01501770e-01 -5.43841898e-01 1.59428000e+00 -1.46914065e+00 -2.01164246e+00 8.16467702e-01 -6.47040904e-01 -7.47103035e-01 2.89234787e-01 2.88600139e-02 -7.52916992e-01 -7.21015269e-03 2.99914777e-01 4.93507445e-01 1.06595814e+00 -1.10733485e+00 -6.39164448e-01 -1.55954942e-01 -6.92006111e-01 3.75794172e-01 -1.72032803e-01 5.27366757e-01 -1.58255592e-01 -8.38003457e-01 1.67456001e-01 -8.61971319e-01 1.10226870e-02 -6.28106713e-01 -2.98093945e-01 1.44712776e-01 4.64425653e-01 -1.17056298e+00 1.18324542e+00 -2.03414011e+00 5.00033677e-01 6.78936020e-02 -4.57741320e-01 2.60066390e-02 -5.16446650e-01 8.15238118e-01 -2.98384279e-01 -1.47927716e-01 -5.34596980e-01 -1.04415429e+00 7.96176419e-02 5.18126190e-01 -5.65507710e-01 3.68346423e-01 3.82929623e-01 9.70683753e-01 -8.39152038e-01 -2.94179887e-01 1.69789225e-01 4.46164906e-01 -3.58922780e-01 4.89901334e-01 -5.30879421e-04 5.20873189e-01 1.94500238e-01 5.15035272e-01 1.99189156e-01 4.93239790e-01 3.55726659e-01 2.10913971e-01 -2.21994549e-01 1.08899188e+00 -6.42430723e-01 1.79506385e+00 -8.56654048e-01 8.61585617e-01 2.23637506e-01 -1.10301125e+00 1.04152679e+00 8.02741170e-01 1.24921851e-01 -7.85346210e-01 4.45772633e-02 8.32356632e-01 5.34318872e-02 -2.77563870e-01 3.30381632e-01 -5.10830939e-01 -2.73645371e-01 5.04410326e-01 6.73754871e-01 -5.45972228e-01 2.16132645e-02 -1.49568275e-01 9.62027431e-01 1.38873056e-01 2.70860612e-01 -2.19356090e-01 3.77079666e-01 -2.81917062e-02 2.50480801e-01 3.42064172e-01 1.31231740e-01 6.54526711e-01 1.21865079e-01 3.58052738e-02 -1.42525375e+00 -1.27666831e+00 1.80056900e-01 1.15437400e+00 -5.50196350e-01 -4.47777003e-01 -1.08810925e+00 -4.94437069e-01 -5.17225325e-01 1.30308974e+00 -2.52271056e-01 -1.03425823e-01 -7.69801259e-01 -3.18447977e-01 1.05452728e+00 1.05473533e-01 -6.05758615e-02 -9.50799584e-01 1.54621392e-01 6.67157650e-01 -5.35319626e-01 -1.33781242e+00 -1.00750959e+00 5.63223362e-01 -7.22410619e-01 -2.80743420e-01 -8.42306435e-01 -1.20957720e+00 6.56946659e-01 -1.08429231e-01 1.06050229e+00 -7.54830062e-01 3.05494308e-01 2.04623848e-01 -4.21883792e-01 -1.63584813e-01 -1.50636113e+00 1.83016166e-01 4.91867214e-01 3.04251522e-01 4.97082680e-01 -4.70808446e-01 1.43144578e-01 3.61120373e-01 -7.25650132e-01 3.90586928e-02 8.41975093e-01 9.17721927e-01 6.37738407e-01 -5.63024521e-01 5.64225078e-01 -5.57575166e-01 7.61088490e-01 -3.23667705e-01 -4.75227654e-01 2.40242943e-01 -5.65665841e-01 1.75135583e-01 7.73877025e-01 -4.87329811e-01 -8.38216782e-01 3.46345127e-01 -3.96100670e-01 -3.61746311e-01 -3.74762230e-02 5.30467868e-01 -3.63411367e-01 4.47261274e-01 9.38915730e-01 8.02263439e-01 4.96245325e-02 -4.19348687e-01 6.46234572e-01 1.45406234e+00 7.41444707e-01 -3.79149437e-01 1.03654742e+00 -1.03773035e-01 -8.19468200e-01 -1.09432578e+00 -2.45943651e-01 -4.47422773e-01 -8.69017780e-01 1.71115264e-01 1.09615886e+00 -1.22667694e+00 2.75825322e-01 1.35547504e-01 -1.60079062e+00 -4.88344401e-01 -5.27686298e-01 7.72309184e-01 -7.49791503e-01 3.09696853e-01 -6.79980397e-01 -6.27538979e-01 -4.68971759e-01 -1.27039397e+00 1.37039602e+00 -6.21885955e-01 -4.92301673e-01 -9.88016486e-01 4.84777987e-01 2.79724538e-01 5.10473073e-01 -3.83978307e-01 5.73920786e-01 -9.77442682e-01 -8.69095549e-02 -2.31645241e-01 1.65487766e-01 1.03352201e+00 4.17991430e-01 -3.37732255e-01 -8.84882987e-01 -4.47291136e-01 2.35799894e-01 -1.57811493e-01 4.09233779e-01 1.05230965e-01 -9.98312607e-02 -5.51394403e-01 1.42882630e-01 5.59113860e-01 1.04223537e+00 2.94185072e-01 4.72341001e-01 -8.62317719e-03 3.96319598e-01 6.52309537e-01 1.90869570e-01 -2.29225770e-01 3.45522344e-01 7.44596183e-01 -2.99008280e-01 -2.13797525e-01 -4.07134533e-01 -6.56838834e-01 1.37810528e+00 1.91025579e+00 5.15334189e-01 -2.48671681e-01 -7.73435295e-01 8.67265999e-01 -1.46019745e+00 -6.77933037e-01 1.33261532e-01 2.29754806e+00 1.13782477e+00 2.23070964e-01 3.13819526e-03 -1.72754839e-01 7.53069878e-01 -4.18720730e-02 -7.13321716e-02 -8.11662793e-01 -1.45383596e-01 4.90318149e-01 5.29540718e-01 1.16719043e+00 -7.81977355e-01 1.35504937e+00 6.12940741e+00 6.78358078e-01 -1.23972678e+00 6.44927979e-01 5.07951140e-01 1.84853286e-01 -4.07184124e-01 1.95231199e-01 -6.47790253e-01 2.84561455e-01 1.94852412e+00 -3.00250113e-01 7.61795461e-01 5.87964714e-01 3.65209818e-01 5.29996514e-01 -1.35000992e+00 9.11115170e-01 3.07083279e-01 -1.02325618e+00 1.38482183e-01 -9.59443226e-02 6.73522592e-01 5.44751227e-01 -2.43992835e-01 3.47355574e-01 2.86881655e-01 -9.21511233e-01 1.07170010e+00 -8.80824327e-02 1.44122481e+00 -5.28828263e-01 5.51898539e-01 4.75840032e-01 -1.06701374e+00 5.42538702e-01 -4.00331527e-01 2.40883425e-01 3.70190799e-01 2.52561897e-01 -1.20181561e+00 6.61242902e-01 7.08649904e-02 5.62479854e-01 -1.92175824e-02 9.45335254e-02 -3.86082023e-01 1.11312568e+00 -3.23652059e-01 9.65523645e-02 2.39092991e-01 -4.15634453e-01 7.86978900e-01 1.77514672e+00 7.75542140e-01 -4.84437913e-01 1.71039179e-01 6.46589816e-01 -1.39768273e-01 3.95508498e-01 -7.52989829e-01 -4.24333662e-01 4.69060689e-01 6.42764449e-01 -4.41037327e-01 -6.13287628e-01 -4.00962889e-01 1.64071739e+00 -1.90614183e-02 5.11592805e-01 -4.68410730e-01 -6.26802385e-01 5.88680744e-01 1.03301987e-01 2.22983345e-01 -4.92019922e-01 -9.19817239e-02 -1.37050247e+00 7.59729967e-02 -1.21305025e+00 -3.28024209e-01 -6.60689414e-01 -9.85835969e-01 1.33525193e+00 -3.20237666e-01 -1.17770302e+00 -9.57650840e-01 -3.62639397e-01 -3.71790677e-01 1.29882908e+00 -1.24637222e+00 -1.30670130e+00 5.48017144e-01 4.55532223e-01 1.08699787e+00 -6.19646847e-01 1.21765578e+00 3.12310547e-01 -1.31242126e-01 7.49037206e-01 4.69104797e-01 3.44395876e-01 9.12100792e-01 -1.22828460e+00 1.17587590e+00 1.14527214e+00 6.24606431e-01 5.48151016e-01 8.24274898e-01 -4.89948899e-01 -1.26129413e+00 -1.23715150e+00 1.74887264e+00 -6.81990564e-01 9.77723241e-01 -1.08407605e+00 -5.50074637e-01 9.97259974e-01 7.73217499e-01 -3.93084466e-01 6.61288559e-01 -2.44080544e-01 -2.37416744e-01 -7.08882883e-02 -7.12072492e-01 6.57697082e-01 8.11763287e-01 -1.10746574e+00 -9.48830545e-01 4.62023348e-01 1.15156865e+00 -3.32859099e-01 -7.04419553e-01 -2.63408329e-02 2.43663758e-01 -3.31090152e-01 6.69857144e-01 -5.06817222e-01 3.06149334e-01 -2.48593971e-01 -7.63344646e-01 -1.83500791e+00 1.42752275e-01 -1.18892407e+00 2.66012311e-01 1.07313979e+00 1.05148828e+00 -7.07422733e-01 1.29870623e-01 -1.35571286e-01 -5.98272741e-01 -1.95593864e-01 -1.41050661e+00 -9.03548360e-01 2.42825255e-01 -4.65966225e-01 3.13559026e-01 7.89930999e-01 1.17294863e-01 9.09574628e-01 -4.51390207e-01 1.45938918e-01 4.25039023e-01 -2.75336206e-01 8.25608790e-01 -6.79107368e-01 -6.56065285e-01 -9.81465727e-02 -2.05811813e-01 -1.35308862e+00 3.69440258e-01 -1.26268971e+00 4.98013645e-01 -1.37355995e+00 -3.36535513e-01 1.61379680e-01 7.63492584e-02 4.64586407e-01 2.82007158e-01 2.50755399e-01 -9.64294747e-02 2.33070418e-01 -1.55949667e-01 6.86486244e-01 6.27466857e-01 -1.95072904e-01 -1.73487872e-01 -4.98979865e-03 -3.83454591e-01 1.67407319e-01 6.15971446e-01 -7.42967606e-01 -3.88095379e-01 -6.22053683e-01 -1.78907886e-01 3.70191842e-01 -1.82832673e-01 -7.22105384e-01 7.18503520e-02 2.11909544e-02 -8.98351595e-02 -2.15378270e-01 3.02117288e-01 -7.35197484e-01 7.68567920e-02 4.83156681e-01 -4.85226005e-01 3.62330139e-01 1.36968881e-01 2.35439748e-01 -5.29498756e-01 -1.04340248e-01 8.18823159e-01 6.03955388e-02 -8.48432258e-02 -1.70274183e-01 -7.35252202e-01 -8.85816142e-02 6.83208585e-01 -1.53869301e-01 1.36806861e-01 -6.73492849e-01 -9.07323062e-01 -2.71403849e-01 3.65856230e-01 5.85261881e-01 4.86750275e-01 -1.43208575e+00 -1.42466080e+00 8.49908292e-01 2.01403826e-01 -5.47956407e-01 -5.14411509e-01 6.96827769e-01 -4.21208709e-01 7.05347359e-01 2.95302331e-01 -6.95245087e-01 -1.30888712e+00 1.86097726e-01 2.89465040e-01 -3.24202850e-02 -2.79694825e-01 8.26309860e-01 -6.07621931e-02 -1.03034985e+00 2.82960455e-03 -3.89506608e-01 6.05513871e-01 -1.94053605e-01 2.47403741e-01 -1.60018831e-01 4.26354945e-01 -1.23454881e+00 -2.49865457e-01 2.16068178e-01 1.84016861e-02 -9.94413793e-01 1.16302931e+00 -4.47447836e-01 -9.51574221e-02 6.72318161e-01 1.47588193e+00 4.46413666e-01 -7.57393003e-01 -4.41122115e-01 1.89956263e-01 1.11609243e-01 -1.32870480e-01 -7.13812292e-01 -3.42267722e-01 9.65588093e-01 3.36081445e-01 2.57125497e-02 9.13075984e-01 -5.70681617e-02 1.02016366e+00 5.26064456e-01 3.33117634e-01 -1.34142125e+00 -2.57786512e-01 8.18608701e-01 8.78261030e-01 -1.10392118e+00 -7.07466245e-01 2.34069563e-02 -6.28374577e-01 1.03647316e+00 -1.73339710e-01 3.09506860e-02 4.44003642e-01 4.32990938e-01 6.17840648e-01 3.25378895e-01 -8.97167206e-01 -1.43853068e-01 3.77986372e-01 4.73935336e-01 7.05837250e-01 2.92601317e-01 -1.66304141e-01 2.56526887e-01 -5.89275241e-01 -3.33463907e-01 3.47600192e-01 6.64765656e-01 -4.10519809e-01 -1.68072295e+00 -3.90165985e-01 -8.30134302e-02 -3.11875880e-01 -6.53001606e-01 -6.84328079e-01 4.35629308e-01 -2.96156317e-01 1.23321331e+00 -3.76379080e-02 -5.31473339e-01 4.02812660e-01 5.34016311e-01 2.32334375e-01 -1.04122150e+00 -4.75780487e-01 6.75636590e-01 3.99716586e-01 -3.70285809e-01 -1.56677723e-01 -6.44296646e-01 -1.01592302e+00 -3.04877013e-03 -3.28436375e-01 4.83398378e-01 1.11949265e+00 9.63433802e-01 3.85332584e-01 5.27582824e-01 8.79422545e-01 -7.29881883e-01 -9.72584784e-01 -1.38292778e+00 -1.52948782e-01 1.39704555e-01 5.40723503e-01 2.03176290e-01 -4.32885498e-01 5.41822374e-01]
[14.535393714904785, 7.145258903503418]
4deb0894-1045-40e9-b99a-b84ae900638c
revisiting-shadow-detection-a-new-benchmark
1911.06998
null
https://arxiv.org/abs/1911.06998v3
https://arxiv.org/pdf/1911.06998v3.pdf
Revisiting Shadow Detection: A New Benchmark Dataset for Complex World
Shadow detection in general photos is a nontrivial problem, due to the complexity of the real world. Though recent shadow detectors have already achieved remarkable performance on various benchmark data, their performance is still limited for general real-world situations. In this work, we collected shadow images for multiple scenarios and compiled a new dataset of 10,500 shadow images, each with labeled ground-truth mask, for supporting shadow detection in the complex world. Our dataset covers a rich variety of scene categories, with diverse shadow sizes, locations, contrasts, and types. Further, we comprehensively analyze the complexity of the dataset, present a fast shadow detection network with a detail enhancement module to harvest shadow details, and demonstrate the effectiveness of our method to detect shadows in general situations.
['Pheng-Ann Heng', 'Chi-Wing Fu', 'Xiaowei Hu', 'Tianyu Wang', 'Qiong Wang', 'Yitong Jiang']
2019-11-16
null
null
null
null
['shadow-detection']
['computer-vision']
[ 6.46842360e-01 -3.62799048e-01 2.44624034e-01 -5.66014290e-01 -4.63049896e-02 -5.61156929e-01 2.74439991e-01 -5.19851029e-01 1.01677917e-01 1.00754154e+00 2.11009800e-01 -5.76752365e-01 4.99020070e-01 -5.86546361e-01 -3.01585436e-01 -9.94713962e-01 -1.94710582e-01 3.34608644e-01 1.15597689e+00 -2.53421247e-01 6.77822530e-02 6.58977687e-01 -1.40941584e+00 9.63159278e-03 1.01791763e+00 8.87602150e-01 7.68009484e-01 8.54769945e-01 2.09974289e-01 6.23615563e-01 -1.09068215e+00 1.08775022e-02 2.49479398e-01 -3.45083594e-01 -4.11705673e-02 1.99566707e-01 3.78673464e-01 -6.60661221e-01 -6.97390735e-01 5.37535310e-01 7.42054701e-01 -8.58107582e-02 4.07344639e-01 -1.48249280e+00 -2.31053054e-01 -1.07605837e-03 -4.27837878e-01 3.02236229e-01 4.97104555e-01 9.14970487e-02 6.09025598e-01 -9.42192256e-01 3.99639875e-01 1.17326498e+00 6.46439910e-01 -3.87798250e-02 -7.25204289e-01 -9.08940494e-01 3.26582730e-01 3.25710624e-01 -1.09557199e+00 -3.60616922e-01 7.16268837e-01 2.88969129e-01 4.16990519e-01 5.08086383e-01 9.20043945e-01 1.35210514e+00 4.20578688e-01 9.95787084e-01 1.79351485e+00 -6.77345395e-02 4.76955660e-02 9.13854539e-02 3.87626588e-02 8.86301160e-01 5.22246420e-01 1.97517827e-01 -5.44327259e-01 -1.86299190e-01 4.66665566e-01 2.12139383e-01 -7.77793467e-01 -5.28951228e-01 -1.10768282e+00 4.24761623e-01 6.20724261e-01 -2.47109219e-01 9.02772322e-02 9.97901894e-03 3.54841584e-03 -2.39277542e-01 4.41671573e-02 -8.72816145e-02 -3.23630482e-01 3.79410565e-01 -7.67957866e-01 6.11531921e-02 1.04534173e+00 1.32815564e+00 7.49962032e-01 4.40844372e-02 -4.32828456e-01 5.22959888e-01 5.86435162e-02 1.50705004e+00 -1.19726934e-01 -7.50451326e-01 2.86299109e-01 4.22139317e-01 1.91568196e-01 -1.29050410e+00 -5.81120431e-01 -3.09047401e-01 -9.86527681e-01 1.69121236e-01 1.30451456e-01 -1.48201302e-01 -1.10245216e+00 1.24577153e+00 3.79941285e-01 3.41391683e-01 1.36414424e-01 8.86560321e-01 1.09777498e+00 6.33453250e-01 -4.27468240e-01 -3.27376395e-01 1.17181659e+00 -9.65514004e-01 -8.51213276e-01 -6.46045804e-01 -1.71367541e-01 -9.49428678e-01 1.35093939e+00 1.27323240e-01 -1.07026726e-01 -2.71198332e-01 -1.14858794e+00 1.89078927e-01 -5.37047148e-01 2.48463273e-01 1.10366380e+00 6.60454929e-01 -6.26636028e-01 -5.67272827e-02 -2.60401011e-01 -5.23969352e-01 5.97985446e-01 -1.16391838e-01 1.97167322e-01 -4.02562052e-01 -1.01030743e+00 6.32322431e-01 9.43325534e-02 3.62333357e-01 -1.28498316e+00 -3.49529058e-01 -5.59529126e-01 -1.69460531e-02 1.07063258e+00 -2.86514372e-01 9.36468005e-01 -3.90619457e-01 -1.10337853e+00 3.01113993e-01 -3.55217963e-01 -2.54714340e-01 5.71219921e-01 -3.46753359e-01 -6.55077696e-01 -1.76863536e-01 1.20496072e-01 5.72111830e-03 6.83560252e-01 -2.13202667e+00 -6.44702017e-01 7.64921447e-03 2.88529396e-01 4.72574979e-01 5.21531813e-02 -1.51946455e-01 -6.49565339e-01 -5.44258595e-01 9.35727134e-02 -1.23829043e+00 -3.45486522e-01 9.28808674e-02 -8.88504624e-01 5.29425800e-01 1.47733426e+00 -3.26675773e-01 1.22624266e+00 -2.08182454e+00 -6.69339955e-01 2.44122282e-01 2.02909112e-01 1.68634221e-01 3.19492996e-01 5.52215517e-01 6.16815269e-01 -4.82046038e-01 -7.70152271e-01 -2.44436711e-01 -3.65627073e-02 7.55653560e-01 -8.43198359e-01 4.63469863e-01 -4.64817494e-01 7.74746835e-01 -8.77866626e-01 -9.09498394e-01 3.36401850e-01 2.42556691e-01 1.15813144e-01 5.43239772e-01 -1.26666114e-01 -3.42715867e-02 -4.80109870e-01 1.30599129e+00 1.11972845e+00 -1.96188599e-01 3.68551344e-01 -1.96199223e-01 1.77337939e-03 -1.52486756e-01 -1.25887620e+00 9.80674148e-01 -3.40482354e-01 1.33368862e+00 1.95351288e-01 -7.79112950e-02 6.08228505e-01 -2.45444492e-01 2.17686847e-01 -5.61214864e-01 -5.07108085e-02 1.37202203e-01 -6.88355789e-02 -3.62265527e-01 6.47730231e-01 1.72892451e-01 -1.23182073e-01 4.74572122e-01 -7.70455301e-01 -3.59801114e-01 -1.87839791e-01 4.26035166e-01 1.39874232e+00 -5.24588563e-02 3.79144192e-01 -3.03586036e-01 1.28953189e-01 1.48737252e-01 5.65805674e-01 9.51220274e-01 -3.60748112e-01 8.47112477e-01 9.10502076e-02 -2.09014431e-01 -3.10946852e-01 -1.34487689e+00 -2.17806965e-01 1.21932578e+00 1.04913735e+00 -1.88699186e-01 -3.37681681e-01 -7.90722013e-01 2.89282233e-01 4.32184160e-01 -5.66401064e-01 1.57729104e-01 -5.95040381e-01 -1.20351732e+00 5.92632115e-01 5.31360865e-01 1.08188820e+00 -1.25981522e+00 -1.26419461e+00 -2.82591313e-01 -3.85773361e-01 -1.53014338e+00 -2.90202707e-01 3.46111685e-01 -2.28246972e-01 -1.41366136e+00 -4.32151049e-01 -5.14321387e-01 5.54799259e-01 1.43181992e+00 1.41793740e+00 4.92055833e-01 -7.70651639e-01 2.03856587e-01 -4.11999404e-01 -9.56641734e-01 1.20370112e-01 -4.99022335e-01 -4.19346914e-02 -1.43006310e-01 -4.21204627e-01 -4.93419051e-01 -9.57896888e-01 8.29814851e-01 -6.88535929e-01 3.59394908e-01 1.00837934e+00 6.94327235e-01 2.27922469e-01 2.55158573e-01 -2.14735106e-01 -1.11199486e+00 3.71536613e-01 -2.48139352e-01 -6.20112896e-01 4.48655844e-01 -6.76347613e-01 -5.51408291e-01 4.47452635e-01 -4.84046154e-02 -1.54123724e+00 3.49105112e-02 4.85087037e-01 7.93801621e-02 -2.32245043e-01 -2.46070012e-01 -5.82514524e-01 -3.35234821e-01 4.97818798e-01 3.15305978e-01 -7.51245856e-01 -5.43636642e-02 2.39362314e-01 5.29291272e-01 7.19122529e-01 -3.78270745e-01 1.37692142e+00 1.13711405e+00 1.70264840e-01 -1.04157114e+00 -1.15917194e+00 -4.81727362e-01 -5.98684490e-01 -4.41112608e-01 2.65355796e-01 -7.59760022e-01 -4.44138885e-01 7.63096273e-01 -8.73858273e-01 -9.86312687e-01 1.29009023e-01 -1.04938209e-01 -4.47925627e-02 6.18003249e-01 -2.98975259e-02 -9.25769985e-01 -1.22075580e-01 -8.70531499e-01 1.27928472e+00 3.89757723e-01 5.49371421e-01 -8.03850591e-01 -1.81025509e-02 9.48892608e-02 3.77508640e-01 4.97787386e-01 4.99222815e-01 1.99803993e-01 -1.17481327e+00 1.42586932e-01 -8.80079746e-01 4.27528061e-02 3.54065657e-01 -2.80182734e-02 -1.24980259e+00 -1.40863419e-01 -3.63830656e-01 -9.22313407e-02 1.08091283e+00 3.06868613e-01 1.39462233e+00 -1.27973603e-02 -8.70325804e-01 7.75621712e-01 1.56504345e+00 6.42489791e-02 6.32702887e-01 1.27818193e-02 8.94576252e-01 2.91786969e-01 1.19343817e+00 5.85257828e-01 4.03230667e-01 4.14392471e-01 5.80384672e-01 -7.92719960e-01 -5.34673333e-01 9.58430469e-02 2.32056573e-01 2.03571334e-01 -1.76664487e-01 -8.78454983e-01 -8.83377850e-01 1.83932975e-01 -1.62677848e+00 -8.54536831e-01 -3.84285897e-01 1.68374395e+00 2.62866080e-01 4.51874346e-01 -3.34949940e-01 -2.56507304e-02 4.34646308e-01 7.81511784e-01 -8.47454786e-01 4.40440774e-01 -7.48660803e-01 -9.43867937e-02 1.02573478e+00 4.53733355e-01 -9.14453506e-01 1.27366400e+00 7.38492155e+00 6.47153080e-01 -8.13786030e-01 -2.00247288e-01 2.26152793e-01 3.91590834e-01 -3.39372128e-01 3.64586025e-01 -6.61193252e-01 4.19820368e-01 1.49854183e-01 2.13633433e-01 3.63517702e-01 8.28748107e-01 8.84779915e-02 -1.05307305e+00 -3.80473554e-01 9.04415131e-01 3.41216177e-01 -1.14622509e+00 -3.38668764e-01 7.36397952e-02 7.68824756e-01 1.28595635e-01 -1.40970439e-01 2.01749206e-01 5.90274096e-01 -9.19680655e-01 4.48463231e-01 2.70261407e-01 9.06958520e-01 -2.10644275e-01 8.11106205e-01 2.72361726e-01 -1.55417311e+00 -2.55997717e-01 -4.65894043e-01 -1.96979925e-01 2.98060983e-01 9.43004429e-01 -1.16777766e+00 5.56356609e-01 1.00898778e+00 4.77619171e-01 -8.62767160e-01 9.27687883e-01 -4.08106208e-01 6.55633211e-01 -4.64979768e-01 -1.95913687e-01 -7.89262503e-02 -1.74776375e-01 3.00536484e-01 1.61684859e+00 -1.31912548e-02 4.39954460e-01 5.44632435e-01 1.21927813e-01 8.05670619e-02 -4.02784139e-01 -7.27906168e-01 3.76325816e-01 7.23493993e-01 1.51169467e+00 -1.24382961e+00 -4.92827564e-01 -1.77394763e-01 1.20296729e+00 -1.50411814e-01 5.91924071e-01 -1.38891757e+00 -4.30465311e-01 6.72569394e-01 4.12965938e-02 -1.46360293e-01 -4.42845106e-01 -3.66464883e-01 -9.32439089e-01 3.86180133e-02 -7.17273414e-01 3.40226516e-02 -1.18742228e+00 -7.70890355e-01 4.24819231e-01 9.75662246e-02 -1.05535650e+00 6.26513660e-01 -6.69696033e-01 -9.11951482e-01 3.34226221e-01 -1.80039573e+00 -1.19150960e+00 -1.60197806e+00 7.61913002e-01 7.00371206e-01 2.65455619e-02 6.16275012e-01 1.00231208e-01 -5.37846327e-01 1.65145040e-01 3.06208789e-01 9.57194045e-02 1.07969224e+00 -1.34285235e+00 3.96918267e-01 9.16712523e-01 -1.44340187e-01 2.46052369e-01 1.01391697e+00 -7.72599518e-01 -1.57362449e+00 -9.77669895e-01 1.59975126e-01 -4.53944355e-01 4.37581360e-01 -8.58191013e-01 -5.96704900e-01 3.45689207e-01 1.31874889e-01 9.41982269e-02 4.15891796e-01 -3.07766423e-02 -8.11756626e-02 -3.20758283e-01 -9.58324909e-01 7.95430899e-01 1.71463335e+00 -3.07939649e-01 -8.55326951e-02 7.68795192e-01 7.06542373e-01 -8.36986065e-01 -2.91135311e-02 7.44409144e-01 8.95860791e-01 -1.69162869e+00 1.05679166e+00 1.92651391e-01 2.79023461e-02 -5.37698746e-01 -6.07565522e-01 -1.08462942e+00 -1.24097675e-01 -4.75424558e-01 -3.15182626e-01 1.05993068e+00 2.17020884e-02 -7.05546200e-01 8.93576145e-01 -1.52151182e-01 -4.95959729e-01 -9.83673573e-01 -5.65074921e-01 -6.12041831e-01 -1.00132644e+00 -3.71808290e-01 7.41366565e-01 2.44215712e-01 -7.86655545e-01 2.12808967e-01 -6.13312960e-01 6.90541625e-01 7.67498493e-01 1.07390559e+00 1.41316938e+00 -1.15328109e+00 -1.29623756e-01 4.09346521e-02 -2.67301165e-02 -1.23608017e+00 9.46962237e-02 -8.93641934e-02 7.56491840e-01 -1.93478918e+00 6.47990048e-01 -9.03445423e-01 -2.56923903e-02 3.05233747e-01 -4.72366035e-01 4.11388785e-01 7.43956789e-02 3.55990797e-01 -7.37103999e-01 6.06767833e-01 1.40454614e+00 3.43082957e-02 9.48350206e-02 3.12888682e-01 -3.47691923e-01 9.26455438e-01 6.90182865e-01 -2.20450833e-01 -6.44198239e-01 -2.28928164e-01 -3.30958158e-01 -1.79171667e-01 6.23418391e-01 -1.32615483e+00 -7.76973367e-02 -8.36664200e-01 7.76568651e-01 -1.17596996e+00 8.48682225e-01 -9.65400517e-01 -4.80978936e-02 5.84865868e-01 4.62576658e-01 -2.59676993e-01 -1.34071270e-02 9.28418219e-01 2.58222371e-01 5.28349102e-01 7.52629936e-01 -2.50134133e-02 -1.20438409e+00 4.08895493e-01 -1.55842274e-01 1.03216410e-01 1.11795926e+00 -4.34558421e-01 -6.80412352e-01 -5.70638776e-01 3.55960317e-02 3.00873369e-01 7.93430209e-01 1.05479620e-01 8.63432705e-01 -8.78723741e-01 -2.83019602e-01 1.46044776e-01 2.33432218e-01 5.19115739e-02 1.28873348e-01 5.78948677e-01 -5.89272916e-01 1.66125774e-01 -1.61252245e-01 -6.15360260e-01 -1.62456751e+00 2.73890436e-01 2.34482914e-01 -4.69108112e-02 -8.86308193e-01 7.05924869e-01 8.44222128e-01 -2.27860600e-01 4.38533276e-01 -4.47333276e-01 3.24484706e-01 -3.52284044e-01 1.66712359e-01 4.79058921e-01 -2.30392173e-01 -5.45356512e-01 -5.08087754e-01 4.18704122e-01 7.05784261e-01 1.96066424e-01 8.31568837e-01 -2.96580613e-01 1.11630403e-01 4.37201560e-01 5.33072233e-01 4.57312346e-01 -1.48891366e+00 -1.80990547e-01 -3.99288744e-01 -9.52361465e-01 -4.15094137e-01 -9.28429544e-01 -8.72779429e-01 5.75751960e-01 6.48220956e-01 1.15642324e-01 1.39108157e+00 1.29517734e-01 1.07667744e+00 8.24564159e-01 7.15008855e-01 -1.12283361e+00 3.22633684e-01 7.50462949e-01 8.36036682e-01 -1.61152279e+00 6.84669137e-01 -1.00521696e+00 -7.35293508e-01 7.75456250e-01 6.23823643e-01 6.60129040e-02 7.57682323e-01 7.25262403e-01 2.70075589e-01 -2.68144637e-01 -2.62464315e-01 -5.00599384e-01 -7.06182495e-02 9.30353165e-01 -2.23637074e-01 5.26503623e-01 1.85889646e-01 1.56695142e-01 -3.67913991e-01 -5.13755858e-01 6.45163894e-01 1.14674842e+00 -9.75480735e-01 -6.20231926e-01 -7.75563717e-01 5.78596592e-01 2.70204544e-01 -6.88857138e-02 -8.60660136e-01 9.90214527e-01 2.55855858e-01 1.12600183e+00 -5.31974912e-01 -3.31719488e-01 3.32896173e-01 -6.90748334e-01 2.80635774e-01 -4.97513771e-01 1.98961958e-01 -1.64537281e-01 2.30753392e-01 -7.64572561e-01 -2.79675633e-01 -5.31865597e-01 -1.35824645e+00 -2.97689825e-01 -3.89537334e-01 -1.07263379e-01 5.30880272e-01 9.25451577e-01 2.32189540e-02 7.01801896e-01 7.22769320e-01 -1.21862912e+00 4.79607843e-02 -7.89209485e-01 -8.43392193e-01 3.98021415e-02 5.58033884e-01 -1.27361965e+00 -3.77174199e-01 -1.24840006e-01]
[10.83560848236084, -4.096983432769775]
ac25ddb5-6092-4ffd-9a2f-00246c699245
deepfakeart-challenge-a-benchmark-dataset-for
2306.01272
null
https://arxiv.org/abs/2306.01272v2
https://arxiv.org/pdf/2306.01272v2.pdf
DeepfakeArt Challenge: A Benchmark Dataset for Generative AI Art Forgery and Data Poisoning Detection
The tremendous recent advances in generative artificial intelligence techniques have led to significant successes and promise in a wide range of different applications ranging from conversational agents and textual content generation to voice and visual synthesis. Amid the rise in generative AI and its increasing widespread adoption, there has been significant growing concern over the use of generative AI for malicious purposes. In the realm of visual content synthesis using generative AI, key areas of significant concern has been image forgery (e.g., generation of images containing or derived from copyright content), and data poisoning (i.e., generation of adversarially contaminated images). Motivated to address these key concerns to encourage responsible generative AI, we introduce the DeepfakeArt Challenge, a large-scale challenge benchmark dataset designed specifically to aid in the building of machine learning algorithms for generative AI art forgery and data poisoning detection. Comprising of over 32,000 records across a variety of generative forgery and data poisoning techniques, each entry consists of a pair of images that are either forgeries / adversarially contaminated or not. Each of the generated images in the DeepfakeArt Challenge benchmark dataset has been quality checked in a comprehensive manner. The DeepfakeArt Challenge is a core part of GenAI4Good, a global open source initiative for accelerating machine learning for promoting responsible creation and deployment of generative AI for good.
['Dayou Mao', 'Alexander Wong', 'Carol Xu', 'Hossein Aboutalebi']
2023-06-02
null
null
null
null
['data-poisoning']
['adversarial']
[ 5.0488478e-01 9.7303346e-02 4.9850482e-01 9.5219128e-02 -1.0225378e+00 -9.2484432e-01 1.1398598e+00 -3.7586734e-01 6.6898842e-03 6.1221170e-01 4.8318598e-01 -2.2392406e-01 3.2491454e-01 -8.1724501e-01 -8.9983076e-01 -8.8344026e-01 1.8993768e-01 5.3038502e-01 -2.2056603e-01 -1.6357957e-01 1.8379526e-01 5.5231255e-01 -1.5263126e+00 5.0800788e-01 4.9806693e-01 8.2801574e-01 -3.3338514e-01 9.5451051e-01 2.8382158e-01 9.3063533e-01 -1.2740608e+00 -1.1826601e+00 2.5623187e-01 -8.2305610e-01 -8.0957836e-01 4.5727071e-01 6.2286723e-01 -3.5331649e-01 -5.5416101e-01 1.0230197e+00 8.8737601e-01 -1.4908201e-01 6.0202450e-01 -1.7485578e+00 -1.1637673e+00 5.0898749e-01 -3.7188953e-01 2.6965860e-01 1.8490028e-01 9.4743508e-01 8.5500085e-01 -9.0729254e-01 8.9063895e-01 1.5445404e+00 4.9722180e-01 7.4234116e-01 -1.2749563e+00 -7.0325744e-01 -5.7332718e-01 1.4449334e-01 -1.0829097e+00 -7.5358719e-01 6.0189831e-01 -4.6458021e-01 8.3849031e-01 3.9508927e-01 5.5358356e-01 1.7204218e+00 2.5288370e-01 1.0559322e+00 8.9248592e-01 -3.4625325e-02 2.8964126e-01 -1.6886394e-02 -6.1695397e-01 5.6431407e-01 8.9697219e-02 3.2452896e-01 -4.4971386e-01 -3.3622786e-01 5.1062649e-01 -2.5853422e-01 -1.9689760e-01 -3.4941204e-02 -1.0773298e+00 1.0759119e+00 3.8394794e-01 -4.3772295e-02 -3.9757419e-01 3.9851478e-01 4.6715140e-01 1.4119306e-01 4.5773444e-01 8.3475137e-01 2.7988833e-01 -1.8958057e-01 -6.8300903e-01 7.6460302e-01 6.5490758e-01 7.9431230e-01 3.6044291e-01 6.0960847e-01 -3.6403313e-01 7.2534800e-01 3.6460605e-02 6.6356152e-01 3.3571738e-01 -8.1916231e-01 3.3158892e-01 5.6377226e-01 -2.3032548e-02 -1.1226546e+00 2.8361782e-01 -2.5969380e-01 -9.2026162e-01 3.5703665e-01 2.2419657e-01 -1.6729370e-01 -1.1701616e+00 1.4306848e+00 2.0135696e-01 -4.8980698e-02 2.2272198e-01 8.8094074e-01 1.0165588e+00 7.6655728e-01 4.6934448e-02 1.7310826e-01 1.1881746e+00 -8.5634911e-01 -5.2709019e-01 -4.0914130e-01 2.1061181e-01 -9.7933352e-01 9.5508474e-01 6.7068332e-01 -1.0918397e+00 -1.6746196e-01 -9.3493861e-01 -5.6272060e-02 -5.3285903e-01 -4.3863085e-01 4.2205864e-01 8.6987495e-01 -9.1462582e-01 3.4027132e-01 -2.0912485e-01 -1.5576975e-01 1.0159024e+00 -3.5288714e-02 -4.1692883e-01 -4.7612169e-01 -1.0468960e+00 7.5644904e-01 2.4470289e-01 -6.9327675e-02 -1.3635461e+00 -7.0696425e-01 -5.5167168e-01 -3.4090701e-01 2.9723945e-01 -6.3275814e-01 1.0833750e+00 -1.0768673e+00 -7.6630104e-01 1.1035746e+00 4.3338630e-01 -6.6767049e-01 9.8378593e-01 -2.3618658e-01 -6.0402089e-01 -3.7030790e-02 1.1817164e-01 8.3967209e-01 1.3546852e+00 -1.3377956e+00 -3.7606001e-01 -2.7161878e-01 -2.9888836e-01 -2.0246583e-03 -1.9710557e-01 1.1395710e-01 -2.8201047e-01 -1.0933352e+00 -6.0931814e-01 -9.5965171e-01 1.6694942e-01 -1.5550543e-01 -9.1340524e-01 -1.8263564e-01 1.2670039e+00 -7.0553154e-01 7.3061550e-01 -2.1214468e+00 1.1981678e-01 -1.8843822e-01 3.9648598e-01 5.8616966e-01 -2.7683678e-01 5.2469641e-01 -1.3715057e-01 6.3092238e-01 -2.8145733e-01 -3.7775332e-01 6.3886411e-02 1.1952096e-01 -7.9865098e-01 4.0516073e-01 5.3293473e-01 1.1842670e+00 -9.0497810e-01 -1.0181072e-01 1.0734436e-01 6.8876463e-01 -4.2053574e-01 3.2246235e-01 -4.9218476e-01 1.8368393e-01 -1.4524899e-01 8.5373467e-01 3.7177831e-01 -3.2856863e-02 -5.2516896e-01 -1.4524558e-01 1.7794423e-01 -3.3215534e-02 -6.9147992e-01 1.2703253e+00 1.7861033e-02 7.9894841e-01 -1.8952636e-01 -3.3838344e-01 7.2173011e-01 3.6616826e-01 8.1990033e-02 -7.1421897e-01 2.1911786e-01 -4.1228067e-03 -8.8507056e-02 -3.4440115e-01 7.1609789e-01 -1.3891311e-02 -1.5844455e-01 8.7568945e-01 -4.8778825e-02 -5.3740948e-01 2.3940569e-01 5.7535100e-01 1.6210115e+00 1.6713809e-02 -1.1946905e-01 1.9589730e-01 4.0074468e-02 3.2025775e-01 1.5255238e-01 7.1577495e-01 -1.0103399e-01 9.9497813e-01 3.2844484e-01 -6.6484153e-01 -1.4832047e+00 -1.1508994e+00 2.3087029e-01 8.4222740e-01 -2.1924147e-01 -2.5315151e-01 -9.5260441e-01 -6.3711262e-01 7.6436453e-02 9.2984527e-01 -7.5832075e-01 -5.9402794e-01 -4.3374071e-01 -8.7846404e-01 1.1894298e+00 1.5849584e-01 7.0286369e-01 -1.8087487e+00 -4.4647864e-01 1.7338212e-01 -2.8031871e-01 -9.3792337e-01 -5.1983225e-01 -2.1375220e-01 -2.1071336e-01 -1.1565959e+00 -7.1684575e-01 -3.8060588e-01 3.7819719e-01 2.1596862e-01 1.4659001e+00 2.3987566e-01 -9.4889486e-01 5.0668901e-01 -4.4480014e-01 -6.4987481e-01 -1.2726047e+00 -2.9288870e-01 -3.0581200e-01 5.3696811e-02 -8.9276627e-02 -2.0622808e-01 -6.0597342e-01 2.0429911e-01 -1.3877103e+00 -3.0387197e-02 4.4383577e-01 6.2853718e-01 3.0696115e-01 1.5953491e-02 6.3788164e-01 -9.7651458e-01 1.0265977e+00 -7.3816717e-01 -2.7086207e-01 1.9040737e-01 -4.1366231e-01 -1.9592182e-01 6.0501361e-01 -4.4831055e-01 -8.2957685e-01 -3.2678607e-01 -1.4630058e-01 -7.0568979e-01 -2.7074805e-01 1.0484244e-01 -3.2671657e-01 1.7113127e-01 1.0025505e+00 4.2588297e-01 -1.2389590e-02 -1.5920594e-01 7.6857597e-01 6.1231804e-01 1.0680350e+00 -2.6450339e-01 9.9673647e-01 2.2933102e-01 -1.7425032e-01 -8.5393524e-01 -4.2944232e-01 1.7328633e-01 1.8725793e-01 -3.8860598e-01 7.8328818e-01 -6.3249433e-01 -3.8234511e-01 1.0681641e+00 -1.0898316e+00 -1.7936413e-01 -3.7065247e-01 -5.0226355e-01 -4.9135995e-01 1.4178854e-01 -5.4252702e-01 -7.1354300e-01 -7.2336870e-01 -1.2292997e+00 9.3795764e-01 2.7320376e-02 -4.1826758e-01 -6.2552053e-01 2.6350481e-02 7.7747333e-01 4.0630373e-01 7.3209786e-01 1.0197468e+00 -7.1994370e-01 -7.0431411e-01 -4.5636111e-01 -1.8549395e-01 4.3727627e-01 7.0881560e-02 2.2966318e-01 -1.0656457e+00 -1.9658697e-01 -2.1115121e-01 -8.4388906e-01 6.9740075e-01 -2.3208775e-01 8.8546121e-01 -7.2206670e-01 5.2298371e-02 4.2510673e-01 1.1289525e+00 4.0514651e-01 1.2126039e+00 1.9543734e-01 8.5062265e-01 3.2502347e-01 1.5670674e-01 5.5043292e-01 -2.4391230e-02 3.7783191e-01 8.4359807e-01 -1.3926032e-01 -5.7125890e-01 -4.1328463e-01 1.8109131e-01 8.8510655e-02 1.8833175e-01 -9.7039288e-01 -8.8014847e-01 7.0912701e-01 -1.5541490e+00 -1.3571383e+00 -6.7481376e-02 1.8913854e+00 7.9906058e-01 -5.6480821e-03 2.9286617e-01 1.9052608e-01 7.0632219e-01 2.0049487e-01 -7.8153467e-01 -5.6900126e-01 -4.6093386e-01 2.1373443e-01 1.8664135e-01 -6.6160552e-02 -1.1234235e+00 9.9368519e-01 6.2061563e+00 9.2444819e-01 -9.1822028e-01 -3.3818614e-02 1.0328696e+00 -1.0258255e-01 -4.4344217e-01 -4.6481383e-01 -4.5144635e-01 6.9625682e-01 7.1634716e-01 -1.9185922e-01 8.1292689e-01 7.5840336e-01 1.7696528e-03 -2.4748178e-02 -9.2733365e-01 9.6052152e-01 4.4159359e-01 -1.7395549e+00 2.9318029e-01 2.0575295e-01 9.8198920e-01 1.7455909e-02 5.2769077e-01 3.6960579e-02 8.5897136e-01 -1.3274311e+00 9.7964215e-01 1.8155563e-01 8.0967480e-01 -9.6657926e-01 4.7798064e-01 9.9360190e-02 -4.5342544e-01 1.0338433e-01 -1.2008268e-01 3.3960351e-01 6.8173677e-02 5.1325333e-01 -9.9852180e-01 -4.8586298e-02 6.6171640e-01 3.1804660e-01 -6.5275228e-01 8.4556288e-01 -2.5642082e-01 6.7516983e-01 5.5210173e-02 2.8327176e-01 2.6049000e-01 1.0879182e-01 8.6162376e-01 9.7447550e-01 9.2810243e-02 -1.9312876e-01 -3.4581167e-01 1.3105941e+00 -5.8277041e-01 -4.1261649e-01 -8.3093923e-01 -8.0003679e-01 4.3379828e-01 1.2240484e+00 -6.3570130e-01 -1.6626577e-01 -8.9515731e-02 1.2286501e+00 -3.8348675e-02 2.4359339e-01 -9.3451488e-01 -8.7868750e-02 7.3112202e-01 1.2742826e-01 2.2828732e-01 2.1185890e-01 -2.6948798e-01 -6.9459069e-01 -2.2875822e-01 -1.5419501e+00 2.6654845e-01 -1.0549667e+00 -1.4761653e+00 9.6459854e-01 -2.7824801e-01 -7.6025498e-01 -5.8358300e-01 -7.3327996e-02 -6.9095862e-01 8.9916044e-01 -7.0785880e-01 -1.3735528e+00 -3.6427286e-01 6.8508863e-01 7.1341580e-01 -5.6498885e-01 7.6616722e-01 5.7409540e-02 -5.8653033e-01 5.0510305e-01 -1.2893498e-01 2.2980899e-01 6.4422059e-01 -9.0512037e-01 1.1513897e+00 1.2484666e+00 3.4320888e-01 1.8738207e-01 8.4059304e-01 -9.2984116e-01 -1.5699862e+00 -1.4497739e+00 4.7947836e-01 -7.2775370e-01 5.2800393e-01 -3.7259963e-01 -7.4212646e-01 5.9561092e-01 4.3326494e-01 -2.0818996e-01 2.4906150e-01 -7.3173052e-01 -5.8015627e-01 3.1533268e-01 -1.4330045e+00 7.5198555e-01 9.2752582e-01 -4.3455291e-01 -3.7267303e-01 4.4809088e-01 6.5414959e-01 -2.8656289e-01 -4.4583464e-01 1.4398998e-01 1.9740111e-01 -9.7440755e-01 1.0366585e+00 -5.7072890e-01 1.0702276e+00 -1.4116366e-01 1.6969904e-02 -1.3676233e+00 -2.8612208e-01 -1.0372787e+00 -1.3145287e-01 1.4893939e+00 9.7478203e-02 -2.8272620e-01 8.3419555e-01 7.9825699e-01 -2.2820558e-01 -4.0628168e-01 -6.2861961e-01 -5.3968000e-01 3.0591138e-02 -1.9074094e-01 6.5932709e-01 8.1210184e-01 -7.5942409e-01 2.7578366e-01 -7.1974379e-01 -2.6906738e-01 7.9101360e-01 -7.2219633e-02 1.1520660e+00 -7.4460226e-01 -2.1764325e-01 -5.3912228e-01 -5.3740817e-01 -3.2151562e-01 -2.9875085e-01 -7.0315516e-01 1.5010443e-01 -1.3969275e+00 2.0146638e-01 -1.5976588e-01 3.8472864e-01 6.8541002e-01 -3.0018985e-01 9.5369941e-01 3.3699152e-01 3.8106877e-01 -2.7851528e-01 4.0541893e-01 1.1596574e+00 -3.5485384e-01 2.6222980e-01 -9.0355821e-02 -8.9451772e-01 4.2520493e-01 6.2162447e-01 -5.3460354e-01 -3.7877885e-01 -4.2530918e-01 3.5064861e-01 -3.1351748e-01 8.9051014e-01 -9.2205459e-01 -2.3197317e-01 -1.2588258e-02 5.1259565e-01 -4.8123455e-01 3.2409844e-01 -4.7380072e-01 6.2428451e-01 4.4024587e-01 -2.3356204e-01 2.8223091e-01 2.6329565e-01 5.3197503e-01 1.9267147e-05 3.1582005e-02 8.3517081e-01 -3.4245080e-01 -7.6490402e-01 2.7240351e-01 -3.8902774e-01 5.2618206e-01 1.0300978e+00 -2.7418688e-01 -8.6891288e-01 -5.8559781e-01 -3.9200017e-01 -1.8861137e-01 5.7626963e-01 8.3442187e-01 7.8820032e-01 -1.3104336e+00 -9.4623905e-01 1.8686958e-01 1.6498539e-01 -7.9185873e-02 1.8014500e-01 1.4646432e-01 -5.0886232e-01 -1.0186126e-01 -2.2827055e-01 -2.2010344e-01 -1.3060150e+00 7.5303280e-01 1.5501021e-01 7.1915695e-03 -7.2892612e-01 1.0529218e+00 2.3657337e-01 2.2086198e-02 1.2716578e-01 4.0714034e-01 4.2154813e-01 -1.8928082e-01 7.7123427e-01 6.1172187e-01 2.1784319e-01 -8.6785799e-01 -1.1437195e-01 -3.1257790e-01 -1.1691562e-01 -1.1882746e-01 1.3293205e+00 2.6752949e-01 2.2409638e-02 -2.9764870e-02 1.0369599e+00 -7.6103158e-02 -1.3214847e+00 5.1348846e-02 -4.3169278e-01 -4.2661211e-01 -3.6794122e-02 -1.3960167e+00 -1.3196825e+00 7.2298646e-01 4.6643227e-01 4.0450230e-01 9.8270279e-01 1.2711304e-01 9.7688508e-01 -6.7373790e-02 1.7190292e-01 -5.6877679e-01 5.3809106e-01 1.7935587e-01 1.4745058e+00 -1.0587938e+00 -2.4205787e-02 -1.0959272e-01 -9.8859996e-01 6.7120755e-01 5.0636160e-01 -1.2772512e-01 -1.1763111e-01 3.5789055e-01 8.7831914e-02 -3.5787082e-01 -7.4299580e-01 1.3639988e-01 2.4793877e-01 7.7562571e-01 1.2994613e-01 2.3542253e-02 4.1413462e-01 2.7272624e-01 -4.9970451e-01 -1.6730198e-01 4.9018216e-01 7.6208633e-01 -1.3489094e-01 -9.5944840e-01 -6.2357986e-01 4.6347389e-01 -5.0879705e-01 -2.9995331e-01 -1.1343832e+00 7.3511392e-01 1.7500396e-01 1.1402403e+00 9.0104364e-02 -4.1652682e-01 1.3082707e-01 1.1362078e-02 4.2916933e-01 -2.9417998e-01 -1.0327622e+00 6.8500568e-03 2.0431037e-01 -5.3118181e-01 1.0348036e-02 -5.4079396e-01 -8.2288414e-01 -8.5165107e-01 -3.0209761e-02 -3.1203988e-01 7.1569717e-01 7.8677005e-01 5.1409042e-01 3.5050836e-01 4.7529805e-01 -6.0556018e-01 -3.5925710e-01 -6.7584890e-01 -2.5976452e-01 8.4694028e-01 7.2078206e-02 -1.9420101e-01 -3.6190537e-01 2.9481980e-01]
[12.443496704101562, 1.0989665985107422]
184705b0-ed15-49c7-a9e0-3a0c043e1320
hierarchical-multi-scale-attention-networks
1708.07590
null
http://arxiv.org/abs/1708.07590v2
http://arxiv.org/pdf/1708.07590v2.pdf
Hierarchical Multi-scale Attention Networks for Action Recognition
Recurrent Neural Networks (RNNs) have been widely used in natural language processing and computer vision. Among them, the Hierarchical Multi-scale RNN (HM-RNN), a kind of multi-scale hierarchical RNN proposed recently, can learn the hierarchical temporal structure from data automatically. In this paper, we extend the work to solve the computer vision task of action recognition. However, in sequence-to-sequence models like RNN, it is normally very hard to discover the relationships between inputs and outputs given static inputs. As a solution, attention mechanism could be applied to extract the relevant information from input thus facilitating the modeling of input-output relationships. Based on these considerations, we propose a novel attention network, namely Hierarchical Multi-scale Attention Network (HM-AN), by combining the HM-RNN and the attention mechanism and apply it to action recognition. A newly proposed gradient estimation method for stochastic neurons, namely Gumbel-softmax, is exploited to implement the temporal boundary detectors and the stochastic hard attention mechanism. To amealiate the negative effect of sensitive temperature of the Gumbel-softmax, an adaptive temperature training method is applied to better the system performance. The experimental results demonstrate the improved effect of HM-AN over LSTM with attention on the vision task. Through visualization of what have been learnt by the networks, it can be observed that both the attention regions of images and the hierarchical temporal structure can be captured by HM-AN.
['Bai-Ling Zhang', 'Shi-Yang Yan', 'Wenjin Lu', 'Jeremy S. Smith']
2017-08-25
null
null
null
null
['hard-attention']
['methodology']
[ 3.89392883e-01 -1.72918320e-01 4.11935635e-02 -4.80648503e-03 -2.70534873e-01 9.03092604e-03 3.80128860e-01 -4.88377094e-01 -4.92584318e-01 6.69368386e-01 2.43164271e-01 -6.29443908e-03 1.30749550e-02 -4.73317355e-01 -5.65295756e-01 -1.09557164e+00 1.83966547e-01 -1.32386684e-01 5.38689017e-01 -1.12732932e-01 4.04328406e-01 4.82682407e-01 -1.73692536e+00 4.87498969e-01 8.58069420e-01 1.07883275e+00 6.83793724e-01 8.07156324e-01 -1.90815404e-01 1.20128798e+00 -6.09033346e-01 3.69395167e-01 -1.37839988e-01 -7.53057778e-01 -6.68778896e-01 6.94721565e-02 -2.55741358e-01 -1.49711564e-01 -3.55908453e-01 8.64741981e-01 5.13533294e-01 4.02540028e-01 6.26999259e-01 -6.84961259e-01 -6.52936041e-01 3.61615002e-01 -7.64470398e-01 5.37152588e-01 1.20320823e-02 1.90285116e-01 6.76800489e-01 -7.70869851e-01 2.67708182e-01 1.40960133e+00 3.52020293e-01 6.39445484e-01 -8.17389965e-01 -4.69023019e-01 4.05403674e-01 7.71908760e-01 -1.20220780e+00 -7.85032213e-02 8.06070924e-01 -4.58269984e-01 1.10565591e+00 1.11374669e-01 6.23316646e-01 1.21628714e+00 7.35977054e-01 1.01220870e+00 1.25416410e+00 -4.39362496e-01 3.58760618e-02 -1.33872658e-01 1.15378998e-01 5.31778336e-01 -3.87147546e-01 1.12632141e-01 -3.91496003e-01 2.27364406e-01 1.07190943e+00 2.96083212e-01 -1.86608627e-01 2.53889441e-01 -7.55574882e-01 5.03273070e-01 7.37213731e-01 7.02475846e-01 -5.25474131e-01 2.28832886e-01 5.69749355e-01 -8.78726877e-03 2.75649399e-01 5.77497371e-02 -3.41058165e-01 3.10530216e-02 -6.56578720e-01 -4.48264092e-01 9.13854986e-02 5.17906904e-01 5.36018610e-01 4.40622926e-01 -3.68436635e-01 7.95411527e-01 3.31743032e-01 4.67997819e-01 1.17643666e+00 -6.58971310e-01 1.33898556e-01 7.30782986e-01 -1.07340932e-01 -8.03494155e-01 -5.68515062e-01 -2.32390642e-01 -1.34722364e+00 2.30061546e-01 1.37154087e-01 -1.06904872e-01 -1.19515228e+00 1.48188543e+00 1.27648070e-01 3.60294640e-01 2.57316142e-01 9.65033829e-01 7.47784019e-01 1.03598738e+00 2.94229239e-02 -4.98815954e-01 1.32194209e+00 -1.08512306e+00 -9.80435371e-01 -2.66739041e-01 2.38242134e-01 -4.33275163e-01 8.98977578e-01 2.94692099e-01 -7.84003079e-01 -9.87137556e-01 -9.07705188e-01 1.30051319e-02 -4.01722163e-01 3.10797781e-01 3.16793144e-01 -3.25765498e-02 -9.60908830e-01 7.56863594e-01 -1.02633500e+00 -4.47965384e-01 2.41356120e-02 3.53266209e-01 6.54064566e-02 4.05776411e-01 -1.55438769e+00 9.03269291e-01 6.45537198e-01 8.26622188e-01 -8.63230467e-01 8.88177082e-02 -5.62863052e-01 3.33210789e-02 3.46643329e-01 -3.90098333e-01 1.14330363e+00 -1.34852707e+00 -1.91720605e+00 2.25440845e-01 -2.18778208e-01 -4.93817389e-01 9.04158205e-02 -2.70821184e-01 -2.29519397e-01 3.17661881e-01 -2.63688147e-01 5.15658081e-01 9.06377673e-01 -8.30745339e-01 -5.89947402e-01 -4.39412713e-01 -2.50874490e-01 2.89316475e-01 -3.46714467e-01 2.50615746e-01 -2.84301311e-01 -7.12627530e-01 9.06640440e-02 -9.06098962e-01 -4.06600028e-01 -5.50141931e-01 -2.01265395e-01 -4.43898976e-01 1.03738213e+00 -8.50673318e-01 1.37691784e+00 -2.04521632e+00 3.90765905e-01 -8.83581787e-02 -3.04078877e-01 4.86252248e-01 4.13560420e-02 2.92789638e-01 -1.36112705e-01 -7.94621184e-02 -2.22854868e-01 1.41067967e-01 -4.83303159e-01 3.74516696e-01 -2.32705370e-01 1.78405866e-01 1.92366809e-01 9.55546737e-01 -6.20820701e-01 -6.03361070e-01 3.87748152e-01 5.32114685e-01 7.62103312e-03 3.85008752e-01 -1.85860187e-01 6.83416247e-01 -4.74975497e-01 3.17609042e-01 1.74483538e-01 -3.36127222e-01 5.33030219e-02 -9.19721350e-02 -2.74234265e-01 -1.46221191e-01 -9.24164414e-01 1.34980917e+00 -4.56694365e-01 6.91480935e-01 2.93761268e-02 -1.11830628e+00 1.16700780e+00 6.10470951e-01 4.90476787e-01 -8.50219905e-01 2.68941879e-01 -2.48574354e-02 1.39818013e-01 -8.99801075e-01 2.73215532e-01 -1.52547881e-01 1.61770090e-01 1.66513488e-01 -1.52777478e-01 1.91359267e-01 -6.08074851e-02 -2.28504822e-01 7.20652103e-01 3.63853097e-01 2.48310164e-01 -1.02698922e-01 9.02565062e-01 -4.59769696e-01 7.12609291e-01 5.63996673e-01 -1.97439238e-01 3.82895142e-01 2.07492501e-01 -5.13938546e-01 -1.03504419e+00 -4.22584713e-01 1.55058131e-01 1.21935260e+00 4.77944389e-02 -2.22801026e-02 -6.38073146e-01 -3.72577280e-01 -4.38564181e-01 3.31378430e-01 -7.50338972e-01 -3.18323731e-01 -7.09494650e-01 -7.70219862e-01 3.86777520e-01 8.13848317e-01 8.42928410e-01 -1.82789791e+00 -1.00082517e+00 3.78089219e-01 -1.35999039e-01 -9.76497293e-01 -3.61521930e-01 1.74469009e-01 -1.02622795e+00 -8.02572548e-01 -8.97079170e-01 -7.62454748e-01 3.44792038e-01 -9.55687761e-02 3.68800789e-01 -1.05464935e-01 -2.75724411e-01 1.43686563e-01 -4.96465296e-01 -2.72156030e-01 -2.14221731e-01 3.36355641e-02 1.98810194e-02 3.74452293e-01 2.47300014e-01 -7.37506866e-01 -5.65836668e-01 3.85685295e-01 -9.26885843e-01 1.56701311e-01 9.76428568e-01 9.07914639e-01 4.33195472e-01 3.51711959e-02 7.15145588e-01 -4.13124353e-01 4.92703736e-01 -1.12704784e-01 -6.15786672e-01 3.67952347e-01 -3.12466055e-01 4.15573210e-01 1.01992631e+00 -6.29556537e-01 -1.29149711e+00 1.76616058e-01 -1.83347523e-01 -7.28729546e-01 -2.01244414e-01 5.88674188e-01 -6.18228409e-03 1.88188955e-01 3.06299806e-01 7.34340250e-01 -1.38709977e-01 -3.49454582e-01 1.59869537e-01 8.75284791e-01 3.57853264e-01 -2.67377198e-01 1.58364296e-01 3.11176300e-01 -5.89358695e-02 -1.19494081e+00 -7.45933473e-01 -4.52724338e-01 -7.90201247e-01 -4.49985117e-01 1.41965723e+00 -5.70877969e-01 -9.87560093e-01 9.09267366e-01 -1.51437271e+00 -3.87295514e-01 -3.50666977e-02 6.45405769e-01 -6.58889234e-01 4.09384131e-01 -1.00148642e+00 -1.30173981e+00 -5.33556938e-01 -1.06469214e+00 8.39519858e-01 6.08255982e-01 1.27625629e-01 -9.71598804e-01 -1.58314899e-01 1.73494935e-01 3.53358954e-01 1.15199469e-01 8.20244014e-01 -3.38863075e-01 -6.50804341e-01 2.27431208e-01 -8.79948884e-02 4.68479961e-01 4.26046737e-02 2.23601729e-01 -9.71403897e-01 -1.26802206e-01 4.50324029e-01 -3.25092554e-01 1.14785087e+00 7.86223531e-01 1.25770760e+00 -3.35704237e-01 -1.97945639e-01 2.69417375e-01 1.27543664e+00 8.29124987e-01 9.47830498e-01 3.39795172e-01 6.77824497e-01 5.84553361e-01 5.25663793e-01 4.75022852e-01 -1.91944912e-02 5.55160463e-01 3.85152370e-01 -2.00491637e-01 1.93355069e-01 -6.44427687e-02 6.81425691e-01 1.20095026e+00 -5.17497003e-01 9.64301522e-04 -6.90318763e-01 3.76591980e-01 -2.23242116e+00 -1.05586195e+00 -2.57618260e-02 1.92481613e+00 7.30329037e-01 3.33173007e-01 -8.64912849e-03 -2.00019628e-02 1.08230758e+00 2.65343517e-01 -9.20907676e-01 -6.39304221e-01 -1.35063648e-01 -3.76467593e-02 2.77054191e-01 4.48843718e-01 -9.28701282e-01 8.82395387e-01 5.66430998e+00 8.92472446e-01 -1.42422855e+00 -1.49093404e-01 6.27287686e-01 1.79342777e-01 3.09054703e-01 -2.87450612e-01 -8.66782665e-01 4.84461427e-01 1.10388088e+00 8.81202593e-02 2.87110716e-01 5.32485187e-01 6.76338255e-01 -1.73542708e-01 -6.79742932e-01 9.36283708e-01 -4.65248339e-02 -8.41329575e-01 -1.69596672e-02 -1.58682913e-01 5.03834963e-01 -1.04684629e-01 -3.51264291e-02 2.92717904e-01 2.40673557e-01 -9.39551055e-01 3.48868400e-01 9.63623226e-01 4.81162578e-01 -7.26376295e-01 9.50210035e-01 5.74494600e-01 -1.50920951e+00 -5.21533787e-01 -4.44135934e-01 -1.63834184e-01 6.76467866e-02 3.30916584e-01 -5.61396480e-01 5.96687675e-01 8.49631727e-01 8.64267468e-01 -4.20018405e-01 8.40446293e-01 -4.58968312e-01 5.74417114e-01 -1.65376827e-01 -2.84265697e-01 4.82262731e-01 -3.09626937e-01 3.75224978e-01 1.13910043e+00 3.06905389e-01 3.64631653e-01 1.75006643e-01 7.77114332e-01 3.22730094e-01 1.04921028e-01 -6.78205609e-01 -7.16878548e-02 1.09331021e-02 1.27233315e+00 -9.15054440e-01 -4.53482091e-01 -2.27855399e-01 9.94729996e-01 2.34113351e-01 6.16900682e-01 -9.31749821e-01 -4.92592007e-01 1.31843790e-01 -3.01053017e-01 5.68539917e-01 -2.58928418e-01 -9.45994332e-02 -8.94530416e-01 -3.41205448e-02 -6.31742120e-01 4.92233127e-01 -1.16294563e+00 -9.45576727e-01 7.32764840e-01 -2.23354161e-01 -1.07331669e+00 -2.27836713e-01 -4.32042629e-01 -6.10274076e-01 8.85669768e-01 -1.23267782e+00 -8.97737861e-01 3.02995611e-02 6.10486329e-01 1.01296163e+00 1.60584562e-02 5.50019324e-01 -1.61222797e-02 -9.00411904e-01 2.09649816e-01 2.75463700e-01 1.38121411e-01 4.05197352e-01 -9.73822355e-01 -1.97006632e-02 8.94701838e-01 -1.83848038e-01 4.42692965e-01 5.74001253e-01 -6.48140430e-01 -9.09014404e-01 -1.03745794e+00 4.52602148e-01 -3.59879099e-02 7.40994036e-01 -2.70500094e-01 -1.17192483e+00 5.96312523e-01 5.18010914e-01 -2.13188380e-01 1.94606230e-01 -2.58285731e-01 7.61090219e-02 -2.25127071e-01 -6.48195565e-01 5.38325489e-01 6.26813471e-01 -6.69036388e-01 -7.73236156e-01 2.19433621e-01 8.53638411e-01 -2.03691542e-01 -8.37086201e-01 4.87512767e-01 5.60305715e-01 -9.77463484e-01 6.07938826e-01 -5.37128866e-01 4.83152956e-01 -3.72269869e-01 1.51799053e-01 -1.23125768e+00 -4.74552333e-01 -5.05279243e-01 -1.61187261e-01 1.03069901e+00 2.38135934e-01 -6.98715150e-01 5.43287635e-01 3.60403836e-01 -2.33202934e-01 -9.19598699e-01 -9.02953088e-01 -8.26730669e-01 -1.60170779e-01 1.58401281e-02 5.22799976e-02 4.08707440e-01 -5.70012219e-02 7.38234282e-01 -5.36109805e-01 2.19006553e-01 1.55009329e-01 1.04904264e-01 1.79832309e-01 -1.05126178e+00 -2.93818325e-01 -4.65865463e-01 -3.21188390e-01 -1.25330794e+00 1.83302388e-01 -3.41083407e-01 3.30650777e-01 -1.62597764e+00 1.50818720e-01 2.04125583e-01 -7.54902661e-01 4.75946009e-01 -2.89162785e-01 -1.28685534e-01 1.71676710e-01 3.76452297e-01 -6.20256126e-01 8.21454108e-01 1.49145424e+00 -1.30473569e-01 -4.59797442e-01 1.27458632e-01 -1.16794139e-01 7.54581511e-01 7.64895141e-01 -2.70989895e-01 -3.83660316e-01 -1.03009373e-01 -1.56718999e-01 3.90075058e-01 1.58983275e-01 -1.04921806e+00 5.05904436e-01 -2.55224138e-01 4.13945854e-01 -7.83724487e-01 3.75550479e-01 -8.71509910e-01 -8.43660012e-02 6.75977349e-01 -3.75921994e-01 1.64374128e-01 2.75604069e-01 4.97718096e-01 -4.07531232e-01 -1.74732700e-01 8.38179648e-01 -4.22323704e-01 -8.19080651e-01 1.06804334e-01 -8.86289895e-01 -2.57481992e-01 1.03462172e+00 -2.95033842e-01 -1.70469582e-01 -3.12653661e-01 -9.32249367e-01 2.84436822e-01 -1.03496820e-01 3.38370919e-01 8.34476233e-01 -1.34087145e+00 -4.33572352e-01 2.14315042e-01 -3.09661597e-01 -3.56406495e-02 6.25700355e-01 9.79356587e-01 -1.23270690e-01 6.88857853e-01 -4.34414029e-01 -6.73282981e-01 -1.31792414e+00 8.38503003e-01 5.43743491e-01 -4.86097246e-01 -5.18618107e-01 6.72307253e-01 3.84927571e-01 -5.92625625e-02 1.89716503e-01 -5.81307769e-01 -7.85702646e-01 4.99730445e-02 5.97589910e-01 3.26698661e-01 -2.08552480e-01 -5.87705076e-01 -2.98837900e-01 8.32193553e-01 -1.58863455e-01 -7.04160184e-02 1.33280492e+00 -2.38676801e-01 -3.05833340e-01 9.72531497e-01 8.74545634e-01 -6.10549450e-01 -1.49806178e+00 -1.33081838e-01 1.18968427e-01 2.20048070e-01 -1.45983800e-01 -5.10492265e-01 -9.78445172e-01 1.22943544e+00 7.31634855e-01 3.75020266e-01 1.41668832e+00 -2.83164918e-01 8.10253143e-01 3.58700871e-01 -1.11286528e-02 -1.40133429e+00 3.85343909e-01 8.08973432e-01 1.00251329e+00 -1.02466142e+00 -3.12705547e-01 8.54202732e-02 -6.25189245e-01 1.42179322e+00 9.14995432e-01 -7.52150789e-02 4.24436808e-01 1.12808384e-01 6.57459199e-02 -3.52767808e-03 -9.18795168e-01 -3.58667463e-01 1.81835771e-01 2.70520508e-01 3.30826372e-01 -2.85383493e-01 -1.82115287e-01 4.58315134e-01 3.20878983e-01 2.33769670e-01 3.93550783e-01 8.38455200e-01 -7.37478316e-01 -7.00995743e-01 -4.36555654e-01 2.80834168e-01 -3.52774978e-01 -6.52395561e-02 -3.47763211e-01 4.72447634e-01 -3.69638018e-02 8.58353138e-01 2.63763275e-02 -5.51261663e-01 2.44899720e-01 1.47181138e-01 2.86342889e-01 -3.89556438e-01 -5.52700281e-01 2.83432037e-01 -3.52305830e-01 -4.08164978e-01 -6.48429692e-01 -3.79630387e-01 -1.58369458e+00 2.97668189e-01 -4.53386664e-01 2.32533887e-01 3.86305392e-01 1.26152658e+00 2.65883833e-01 9.51658010e-01 6.33900046e-01 -9.37135220e-01 -3.73475313e-01 -1.28401768e+00 -5.40564299e-01 1.69213131e-01 3.94821703e-01 -4.69817489e-01 -3.11590672e-01 4.60495427e-02]
[8.040557861328125, 0.6490355730056763]
518b47db-3132-4fc9-a013-627134e051b0
attention-guided-generative-models-for
2110.06393
null
https://arxiv.org/abs/2110.06393v1
https://arxiv.org/pdf/2110.06393v1.pdf
Attention-guided Generative Models for Extractive Question Answering
We propose a novel method for applying Transformer models to extractive question answering (QA) tasks. Recently, pretrained generative sequence-to-sequence (seq2seq) models have achieved great success in question answering. Contributing to the success of these models are internal attention mechanisms such as cross-attention. We propose a simple strategy to obtain an extractive answer span from the generative model by leveraging the decoder cross-attention patterns. Viewing cross-attention as an architectural prior, we apply joint training to further improve QA performance. Empirical results show that on open-domain question answering datasets like NaturalQuestions and TriviaQA, our method approaches state-of-the-art performance on both generative and extractive inference, all while using much fewer parameters. Furthermore, this strategy allows us to perform hallucination-free inference while conferring significant improvements to the model's ability to rerank relevant passages.
['Bing Xiang', 'Zhiheng Huang', 'Davis Liang', 'Peng Xu']
2021-10-12
null
null
null
null
['triviaqa']
['miscellaneous']
[ 3.53332758e-01 5.77090561e-01 3.70247304e-01 -3.40671688e-01 -1.69848764e+00 -7.13784993e-01 7.98201442e-01 -8.71142372e-02 -3.50034148e-01 7.72186637e-01 6.71210229e-01 -5.81733525e-01 1.37768745e-01 -8.75647068e-01 -9.63326871e-01 -1.16458602e-01 4.48551536e-01 8.21803868e-01 2.04314053e-01 -6.53659165e-01 2.25292251e-01 -5.38738072e-02 -1.35478973e+00 6.16815805e-01 1.29625010e+00 5.70637167e-01 2.72035033e-01 1.17891467e+00 -4.83957440e-01 1.33189034e+00 -8.75451326e-01 -9.50614810e-01 -1.65137932e-01 -9.11189198e-01 -1.45304513e+00 -2.37704828e-01 5.54181516e-01 -6.44643128e-01 -5.21553934e-01 6.71270967e-01 5.16808987e-01 2.37687200e-01 6.12312376e-01 -5.96821964e-01 -1.18621707e+00 6.59031451e-01 -5.31194918e-02 3.63343954e-01 6.68249369e-01 3.66300851e-01 1.60293925e+00 -9.51333523e-01 4.46037263e-01 1.38053715e+00 2.32205003e-01 7.16955125e-01 -1.34016192e+00 -1.94186643e-01 -5.75154535e-02 5.44096291e-01 -8.46011817e-01 -6.93021774e-01 4.99088645e-01 8.58628079e-02 1.38028896e+00 4.49967295e-01 3.04971993e-01 9.94216979e-01 9.30787474e-02 1.18033469e+00 7.26180375e-01 -4.05428320e-01 3.07748206e-02 -2.73099422e-01 -2.64708325e-02 7.96133757e-01 -3.25136244e-01 -3.44846308e-01 -4.15764987e-01 -7.26493746e-02 4.52317119e-01 -3.95800620e-01 -4.46442813e-01 1.59725487e-01 -1.01909196e+00 9.36534464e-01 5.44619977e-01 6.76559731e-02 -4.28508282e-01 2.93773293e-01 1.97731137e-01 4.64501292e-01 4.22517538e-01 9.72306132e-01 -4.46186423e-01 -2.44290531e-01 -7.81479776e-01 4.11019176e-01 1.00987494e+00 7.98483610e-01 6.99451864e-01 5.76198287e-03 -7.02617228e-01 7.91524410e-01 6.25309944e-02 6.72179818e-01 3.43099684e-01 -1.23692143e+00 6.90541267e-01 3.41822505e-01 1.30586158e-02 -5.96070647e-01 1.54058216e-02 -6.70088947e-01 -3.76621336e-01 -3.92261684e-01 3.86920452e-01 -9.73544270e-02 -1.10911632e+00 1.78690565e+00 -1.79908052e-03 -9.36449096e-02 3.25303823e-01 6.04844570e-01 8.35903287e-01 9.18876708e-01 1.06426805e-01 1.70833215e-01 1.58914924e+00 -1.14044762e+00 -7.04949617e-01 -5.24399459e-01 7.00866044e-01 -6.80701613e-01 1.43342566e+00 1.92012593e-01 -1.48320293e+00 -5.36602020e-01 -7.46594787e-01 -6.32318020e-01 9.84882638e-02 -2.51724899e-01 2.43369132e-01 3.22912216e-01 -1.09405124e+00 4.08993065e-01 -6.54664993e-01 -1.67855725e-01 4.78284061e-01 1.46780297e-01 -4.22866419e-02 -3.45860958e-01 -1.14261508e+00 1.10621607e+00 2.10588917e-01 -9.78205353e-02 -1.15357947e+00 -7.86961436e-01 -8.04797590e-01 4.71564382e-01 5.05356193e-01 -1.43479717e+00 1.75336456e+00 -6.00026011e-01 -1.69649053e+00 5.94273806e-01 -6.22138798e-01 -5.96010387e-01 1.03865482e-01 -5.86997926e-01 -2.71093190e-01 6.29320323e-01 1.27483159e-01 8.16626728e-01 7.33429849e-01 -1.03187072e+00 -2.80878305e-01 -1.97980747e-01 4.93171245e-01 2.17091337e-01 -2.53296822e-01 -1.14266284e-01 -4.60718989e-01 -3.77112329e-01 -1.06488317e-01 -6.83762252e-01 -6.00513779e-02 -5.35930216e-01 -5.04791677e-01 -5.04839361e-01 4.42166597e-01 -1.17705345e+00 1.19893157e+00 -1.65676200e+00 3.99470627e-01 -3.26839924e-01 3.12779903e-01 3.51358473e-01 -5.05602241e-01 6.62895381e-01 2.89508909e-01 1.52543619e-01 -4.89451230e-01 -4.80542451e-01 1.87575787e-01 3.51118416e-01 -7.01832414e-01 -2.72294641e-01 8.11348915e-01 1.65920424e+00 -1.01287937e+00 -4.11779195e-01 -2.53455907e-01 2.68869340e-01 -9.74030852e-01 5.86174309e-01 -8.55715215e-01 3.68902564e-01 -4.36066687e-01 2.70509660e-01 1.46301806e-01 -6.00508332e-01 7.45427459e-02 6.07204996e-02 5.32712340e-01 1.05225956e+00 -2.11702645e-01 1.87653661e+00 -8.26117158e-01 6.75499439e-01 -1.02811925e-01 -7.12222517e-01 6.00049138e-01 3.40694934e-01 -3.55252236e-01 -1.12741172e+00 -6.09092861e-02 1.25553176e-01 1.36188567e-01 -7.65411377e-01 8.05401742e-01 -2.66497374e-01 -7.14802044e-03 5.64885080e-01 4.71519798e-01 -3.38322043e-01 3.64037305e-01 6.44920349e-01 1.22081327e+00 3.31020176e-01 -1.73870334e-03 -4.24903585e-04 4.53787386e-01 3.79204974e-02 1.76014397e-02 8.46417964e-01 3.51153016e-01 6.98331475e-01 4.73239839e-01 9.81122628e-02 -1.05510712e+00 -1.32280159e+00 3.74467790e-01 1.26073432e+00 -3.54113460e-01 -5.05954087e-01 -8.57081175e-01 -8.07070732e-01 -2.17253760e-01 1.30395710e+00 -6.12358987e-01 -3.76714647e-01 -1.02459407e+00 -3.55822623e-01 8.44144046e-01 6.26123130e-01 4.66447502e-01 -1.13190269e+00 -4.14309680e-01 3.58356655e-01 -8.22456419e-01 -1.02086532e+00 -4.61949676e-01 -4.28922698e-02 -9.76526141e-01 -7.03470051e-01 -8.57971013e-01 -6.14101708e-01 4.95697439e-01 5.61710484e-02 1.82656646e+00 1.78614378e-01 1.09768875e-01 4.67937618e-01 -3.81330907e-01 -1.92090273e-01 -6.86454594e-01 5.51771402e-01 -7.22688913e-01 -1.97788715e-01 2.13643640e-01 -6.59131110e-01 -5.42342484e-01 -7.86605775e-02 -9.96500134e-01 -2.33415533e-02 7.91853249e-01 9.56816435e-01 3.65912944e-01 -8.77799690e-01 1.02058291e+00 -8.59789133e-01 1.02673137e+00 -5.46725273e-01 -2.85719484e-01 4.30317938e-01 -2.88447738e-01 6.33981407e-01 8.08066607e-01 -5.71215488e-02 -1.30841446e+00 -6.86900377e-01 -6.80001199e-01 -2.48858467e-01 -9.06679109e-02 6.01354361e-01 -1.93038106e-01 3.78010780e-01 7.27188349e-01 5.37558675e-01 3.46618257e-02 -5.52771628e-01 8.70485425e-01 3.69369835e-01 8.19226861e-01 -6.68524146e-01 7.48765469e-01 1.39005795e-01 -3.77170742e-01 -5.17861784e-01 -1.26783276e+00 -2.70105153e-01 -1.98755413e-01 1.44394934e-01 1.12193727e+00 -7.54261136e-01 -7.78048992e-01 -4.65213694e-02 -1.46559668e+00 -2.41464630e-01 -4.03701246e-01 9.42116231e-02 -5.33678114e-01 3.63828391e-01 -8.82946074e-01 -7.51356721e-01 -6.14338219e-01 -8.51809502e-01 1.00510490e+00 1.80141181e-01 -3.92877996e-01 -1.01204205e+00 2.18942180e-01 9.69514132e-01 6.58639610e-01 -2.47750536e-01 1.37562907e+00 -8.63319933e-01 -1.04692698e+00 1.87299386e-01 -1.74374968e-01 3.86995077e-01 -2.18773976e-01 -5.40311158e-01 -1.14997280e+00 -4.01098765e-02 1.09411791e-01 -6.33464873e-01 1.16557920e+00 -1.12543993e-01 1.05185270e+00 -6.78206146e-01 4.83897440e-02 3.46735567e-01 1.06577539e+00 6.51430935e-02 1.07719600e+00 4.66078259e-02 6.52460456e-01 5.25857985e-01 1.07589744e-01 -1.87455509e-02 8.45098555e-01 4.00385529e-01 4.45568532e-01 3.38256955e-02 -4.52931970e-01 -6.32968962e-01 3.70880455e-01 1.16325676e+00 2.10045055e-01 -4.78139371e-01 -8.15678000e-01 9.50186551e-01 -1.51130533e+00 -1.14793837e+00 -7.10187107e-02 1.98005557e+00 9.80909348e-01 5.07342890e-02 -1.02142021e-01 -2.42672488e-01 1.67945251e-01 2.17070609e-01 -5.07846296e-01 -5.88614404e-01 -4.76276949e-02 8.62232327e-01 -1.85951322e-01 8.07035029e-01 -5.30822396e-01 9.38594937e-01 6.63713455e+00 7.17440605e-01 -6.23139441e-01 2.15447038e-01 4.89642501e-01 -9.05229524e-02 -1.06088877e+00 1.13608919e-01 -6.35257840e-01 2.00414106e-01 1.29590464e+00 -3.21245492e-02 4.35276002e-01 3.39242518e-01 -3.16397399e-01 -6.99845841e-03 -1.14399219e+00 5.08566678e-01 4.92182255e-01 -1.43229985e+00 4.98316854e-01 -1.43155381e-01 6.21534586e-01 4.51946110e-02 8.94276574e-02 7.66452253e-01 5.09706855e-01 -1.13802087e+00 4.92313743e-01 5.58996856e-01 5.20887554e-01 -8.16616476e-01 6.19994044e-01 4.89912361e-01 -5.86435497e-01 -5.11474460e-02 -2.62897789e-01 -1.37464181e-01 6.66097403e-01 3.89256179e-01 -1.04139948e+00 7.50094831e-01 2.78382391e-01 1.22243412e-01 -6.79884493e-01 8.08057010e-01 -6.85307503e-01 9.97722924e-01 -1.17264360e-01 -2.07538038e-01 3.21877986e-01 8.96077380e-02 5.40892124e-01 1.02858019e+00 2.03515619e-01 2.09288090e-01 -2.82959908e-01 1.19731545e+00 -5.31832397e-01 -8.17300081e-02 -3.35267335e-01 -2.25835830e-01 2.66135633e-01 8.66421461e-01 5.60041703e-03 -5.72429657e-01 -3.38039368e-01 1.29445422e+00 6.70301437e-01 5.40362477e-01 -7.30712533e-01 -6.70459628e-01 3.62567604e-01 -5.28451279e-02 6.65131509e-01 -2.28297666e-01 -1.62444636e-01 -1.33477056e+00 3.24265137e-02 -1.27439523e+00 3.70766312e-01 -1.01025152e+00 -1.13055313e+00 8.11229408e-01 -1.56080544e-01 -6.17004693e-01 -7.41352499e-01 -2.68107533e-01 -5.72089970e-01 1.08509040e+00 -1.75721037e+00 -1.16755116e+00 5.10020740e-02 4.46740657e-01 7.06146896e-01 7.22459108e-02 9.70094681e-01 2.50633627e-01 -1.62154898e-01 6.36210501e-01 -1.28028080e-01 1.32957160e-01 5.96977413e-01 -1.37497985e+00 8.16901565e-01 9.65490699e-01 6.03736639e-01 8.41809630e-01 6.01472318e-01 -4.06541467e-01 -1.42446053e+00 -8.94872427e-01 1.26295412e+00 -1.02805078e+00 4.66508865e-01 -3.67790043e-01 -1.19195545e+00 8.27616453e-01 8.80685270e-01 -6.30763292e-01 6.75785184e-01 4.11598325e-01 -6.41818285e-01 1.17374964e-01 -6.98554873e-01 7.42645264e-01 9.01362121e-01 -9.81283247e-01 -1.31148052e+00 1.82215497e-01 1.16705155e+00 -3.46969068e-01 -6.86668217e-01 1.31795630e-01 2.28344589e-01 -7.95506060e-01 9.56172407e-01 -8.92306864e-01 1.00458252e+00 -1.19758025e-01 -5.51838167e-02 -1.37303531e+00 -3.76117140e-01 -8.25739205e-01 -5.30604482e-01 1.07973075e+00 7.57393897e-01 -5.64877033e-01 6.10303342e-01 2.99149901e-01 -5.21195889e-01 -8.22385371e-01 -7.91774452e-01 -6.27940118e-01 4.35555547e-01 -2.03997090e-01 6.80606604e-01 4.71568346e-01 -1.55964300e-01 1.17161369e+00 -2.45326996e-01 -1.04159713e-02 3.98311347e-01 1.48057193e-01 8.08780670e-01 -8.16633523e-01 -8.12761128e-01 -2.80947417e-01 2.02551633e-01 -1.88353074e+00 2.20739171e-01 -1.10514688e+00 1.57467619e-01 -1.98460507e+00 1.69750214e-01 1.22855872e-01 -1.72029343e-02 3.23135883e-01 -6.94576859e-01 1.79355949e-01 3.97798717e-01 4.53371145e-02 -8.23743582e-01 9.08932686e-01 1.56045818e+00 -8.43238384e-02 2.35955864e-01 -3.86438340e-01 -1.03911138e+00 2.28788391e-01 6.46933317e-01 -4.38584417e-01 -6.00145042e-01 -1.18348253e+00 4.37333316e-01 3.19554687e-01 4.69847381e-01 -8.17270398e-01 2.46406049e-01 3.14779848e-01 1.90594971e-01 -5.63289344e-01 5.47947466e-01 -1.30908221e-01 -4.62410271e-01 3.17335606e-01 -6.13182485e-01 3.25109065e-01 3.52664798e-01 5.50078332e-01 -4.33511823e-01 -2.73213446e-01 4.39433038e-01 -2.99699575e-01 -3.82924974e-01 -7.20450729e-02 -2.77246773e-01 8.56435835e-01 3.14435393e-01 1.50103390e-01 -7.40636289e-01 -9.03700531e-01 -5.63498855e-01 4.06754464e-01 1.02822371e-01 3.48939955e-01 6.69990420e-01 -1.04917192e+00 -1.12657034e+00 -6.18040375e-02 7.51318261e-02 -1.06102385e-01 3.04650217e-01 6.71077967e-01 -3.56461823e-01 8.03696930e-01 8.48834366e-02 -3.96300614e-01 -9.42694068e-01 3.51405919e-01 2.96825081e-01 -6.49775922e-01 -4.17983472e-01 1.19061399e+00 3.37754756e-01 -5.89388371e-01 -2.63102263e-01 -3.06159407e-01 -2.65565682e-02 -9.55350921e-02 5.77576339e-01 2.33442008e-01 1.98757544e-01 -9.69295725e-02 -3.50179151e-02 1.49898067e-01 -4.43539113e-01 -4.44544196e-01 1.08737016e+00 -1.14800513e-01 4.97470377e-03 4.90682907e-02 1.30356264e+00 1.35379702e-01 -1.04460514e+00 -2.26216346e-01 -4.43975776e-02 -1.93496197e-01 -1.79977149e-01 -1.14688540e+00 -5.07861912e-01 1.26473963e+00 -1.33836970e-01 2.16878295e-01 9.81611311e-01 2.51286566e-01 1.33899105e+00 6.85819864e-01 5.63071556e-02 -6.33770525e-01 5.25864422e-01 9.57113326e-01 1.07533169e+00 -1.06057119e+00 -5.43359220e-01 -9.21500027e-02 -5.83083928e-01 8.34041715e-01 5.36700785e-01 -7.96222761e-02 -1.45177558e-01 -9.93988290e-02 5.37973945e-04 -1.94034278e-01 -1.16352832e+00 -4.33020622e-01 4.97135967e-01 4.16449070e-01 4.82743889e-01 -2.22572863e-01 1.28609361e-02 4.61349815e-01 -4.30691063e-01 -1.20651118e-01 3.67001563e-01 6.55447304e-01 -5.91947734e-01 -1.12314832e+00 -8.88979584e-02 4.76910770e-01 -7.85542309e-01 -6.59347892e-01 -3.01843703e-01 5.08905351e-01 -5.75426638e-01 1.15551972e+00 9.24612880e-02 -4.63739522e-02 4.00346845e-01 5.28056145e-01 8.46102715e-01 -6.74742043e-01 -7.53927112e-01 -2.91377336e-01 6.01908803e-01 -4.21519458e-01 8.38223025e-02 -2.35188380e-01 -1.13368571e+00 -1.85667068e-01 -3.86468977e-01 4.73016530e-01 2.46020243e-01 1.22363067e+00 8.54827464e-01 9.14077997e-01 2.36367121e-01 -1.06941618e-01 -9.35116470e-01 -1.10445035e+00 1.49165124e-01 3.68101954e-01 4.57160830e-01 -1.30406143e-02 -1.92392215e-01 8.01703632e-02]
[11.283794403076172, 8.085051536560059]
06462998-0d84-4599-9a68-4977e955e313
using-meta-knowledge-mined-from-identifiers-1
null
null
https://aclanthology.org/2021.acl-long.545
https://aclanthology.org/2021.acl-long.545.pdf
Using Meta-Knowledge Mined from Identifiers to Improve Intent Recognition in Conversational Systems
In this paper we explore the improvement of intent recognition in conversational systems by the use of meta-knowledge embedded in intent identifiers. Developers often include such knowledge, structure as taxonomies, in the documentation of chatbots. By using neuro-symbolic algorithms to incorporate those taxonomies into embeddings of the output space, we were able to improve accuracy in intent recognition. In datasets with intents and example utterances from 200 professional chatbots, we saw decreases in the equal error rate (EER) in more than 40{\%} of the chatbots in comparison to the baseline of the same algorithm without the meta-knowledge. The meta-knowledge proved also to be effective in detecting out-of-scope utterances, improving the false acceptance rate (FAR) in two thirds of the chatbots, with decreases of 0.05 or more in FAR in almost 40{\%} of the chatbots. When considering only the well-developed workspaces with a high level use of taxonomies, FAR decreased more than 0.05 in 77{\%} of them, and more than 0.1 in 39{\%} of the chatbots.
['Henrique Ferreira', 'Gabriel Malfatti', 'Maira de Bayser', 'Melina Guerra', 'Mauro Pichiliani', 'Julio Nogima', 'Heloisa Candello', 'Ana Appel', 'Victor Henrique Alves Ribeiro', 'Paulo Cavalin', 'Claudio Pinhanez']
2021-08-01
null
null
null
acl-2021-5
['intent-recognition']
['natural-language-processing']
[ 4.91992868e-02 7.12018728e-01 3.80584180e-01 -3.47240269e-01 -3.78900379e-01 -5.64690113e-01 6.38815463e-01 7.31222238e-03 -5.53389609e-01 6.98485196e-01 2.52717167e-01 -2.82395124e-01 -2.60515362e-01 -4.28824514e-01 -5.01591086e-01 -3.85283053e-01 1.08012214e-01 4.60795492e-01 2.28706643e-01 -4.78934735e-01 4.80354190e-01 -9.20236632e-02 -1.57026875e+00 7.49872565e-01 7.47040391e-01 6.17604673e-01 3.25279862e-01 5.97385824e-01 -4.02460694e-01 1.08822584e+00 -1.25389862e+00 -5.89876413e-01 -1.07514225e-01 -3.00060093e-01 -1.03651524e+00 -3.37277949e-01 1.11120872e-01 -2.29443535e-01 -1.71402439e-01 8.25841069e-01 1.69607908e-01 3.63274738e-02 7.14155436e-01 -1.22854412e+00 -4.20861214e-01 1.17949748e+00 -7.14837313e-02 -1.27468249e-02 7.23156095e-01 7.52303973e-02 1.15334225e+00 -6.51600957e-01 7.54103005e-01 1.00061142e+00 8.60119998e-01 6.42396748e-01 -1.14932370e+00 -5.66236436e-01 -5.90466522e-02 -1.31700383e-02 -1.18517625e+00 -3.22989255e-01 3.73920321e-01 -7.30041265e-01 1.57154548e+00 2.52688080e-01 5.40256143e-01 1.18966305e+00 -1.40061658e-02 4.73696858e-01 7.83740580e-01 -7.35732079e-01 1.35990173e-01 6.41340792e-01 5.73153138e-01 4.78775859e-01 1.84237868e-01 -1.51131183e-01 -4.03218567e-01 -3.36499691e-01 6.83245420e-01 -1.73162088e-01 -8.54704157e-02 4.33141291e-01 -1.03387344e+00 8.80792975e-01 -1.16708362e-02 8.91128123e-01 -2.02277154e-01 1.74161702e-01 5.85203767e-01 4.43400979e-01 4.93419647e-01 9.82723176e-01 -4.17565525e-01 -9.80407119e-01 -3.83622825e-01 1.04473330e-01 1.38061023e+00 1.06188214e+00 6.93870783e-01 -7.10847080e-02 -6.01578923e-03 1.15644622e+00 -1.18892141e-01 -8.86436403e-02 6.82737410e-01 -1.12179554e+00 6.30563974e-01 1.15721190e+00 2.47130573e-01 -8.05181146e-01 -6.21718347e-01 -3.01089793e-01 -2.93029696e-01 9.03659388e-02 6.50805235e-01 -4.12574410e-01 -4.92468297e-01 1.57956493e+00 -5.90311959e-02 -4.43971843e-01 -4.17791121e-02 4.19393241e-01 6.13064110e-01 2.87846953e-01 -2.47052565e-01 -2.40400031e-01 1.46909440e+00 -6.03342533e-01 -7.38360167e-01 -3.06517899e-01 1.08956349e+00 -7.81494975e-01 1.17643785e+00 2.97626883e-01 -6.67497456e-01 -3.90851706e-01 -1.11017215e+00 4.67298597e-01 -3.17406178e-01 -8.69412497e-02 5.53641677e-01 9.78456855e-01 -9.71283913e-01 7.54767478e-01 -5.36370337e-01 -3.16569477e-01 1.72945112e-01 5.78366160e-01 -4.13603932e-01 4.56171185e-02 -1.04637182e+00 1.16571593e+00 3.78689438e-01 -3.96513909e-01 -4.76792872e-01 -8.66223574e-01 -7.52381504e-01 8.36888105e-02 4.93184447e-01 -2.45529115e-01 1.41770029e+00 -8.37991655e-01 -1.32235229e+00 6.99302852e-01 2.52403080e-01 -3.50284666e-01 3.98791909e-01 -3.71898264e-01 -1.55940548e-01 -2.55865365e-01 6.59240410e-02 2.68692076e-01 4.12307709e-01 -8.23388517e-01 -6.89638615e-01 -6.28720562e-04 6.70825005e-01 -8.95543471e-02 -6.58488393e-01 1.54445380e-01 -3.72287333e-02 -2.80604243e-01 -2.12205797e-01 -9.68627810e-01 1.05572194e-01 -4.53845590e-01 -2.06144661e-01 -5.27985990e-01 5.43293536e-01 -6.66184843e-01 1.25606871e+00 -2.01024866e+00 4.31504399e-02 -1.67481199e-01 5.33381283e-01 2.03981459e-01 -8.53590518e-02 8.33736241e-01 -8.51230025e-02 3.40367913e-01 1.19795986e-01 -3.52282554e-01 2.34697595e-01 2.16197118e-01 1.40296340e-01 1.67504415e-01 2.00959221e-01 4.37400311e-01 -7.89580166e-01 -1.54375046e-01 1.25670418e-01 1.33421272e-01 -5.19319236e-01 2.17185333e-01 -1.39065772e-01 -2.24835396e-01 -1.92360923e-01 1.96993545e-01 2.56264582e-02 -1.48611292e-01 2.47286543e-01 4.02358949e-01 -2.01519117e-01 8.17504883e-01 -9.40741003e-01 1.38580513e+00 -9.72682714e-01 9.87119377e-01 -2.47534573e-01 -7.23444641e-01 9.48255360e-01 7.07184434e-01 1.69701055e-01 -3.69619757e-01 4.73313369e-02 3.88656616e-01 5.56599498e-01 -5.48261166e-01 4.97816831e-01 -1.41296819e-01 -1.44058883e-01 8.26943874e-01 2.45083705e-01 -4.59497571e-02 3.33283365e-01 3.63967381e-02 1.68713796e+00 -2.54913419e-01 3.12397718e-01 -4.82351743e-02 4.26585138e-01 4.90574539e-02 2.92280912e-01 9.42220986e-01 1.23383820e-01 6.48860991e-01 9.76649165e-01 -6.11519635e-01 -9.65228736e-01 -3.06622654e-01 -6.13676980e-02 1.29474604e+00 -4.54207063e-01 -6.56234682e-01 -1.04380488e+00 -9.62293506e-01 -1.59892604e-01 9.83220160e-01 -5.97190857e-01 -3.73682141e-01 -5.63229918e-01 -5.64248979e-01 1.03524137e+00 4.98318851e-01 2.09664553e-01 -1.36377251e+00 -7.84548640e-01 4.25163388e-01 -1.81664795e-01 -1.13779092e+00 -3.04878075e-02 5.53054810e-01 -6.62684679e-01 -1.10304630e+00 -4.82625544e-01 -4.99749511e-01 3.56193721e-01 -2.82391667e-01 1.02599490e+00 5.23399651e-01 -1.55204967e-01 1.34932483e-02 -8.05588722e-01 -4.54119831e-01 -1.05795491e+00 2.20123887e-01 1.72009114e-02 -5.10141313e-01 5.23579001e-01 -6.37277722e-01 2.12004647e-01 4.68961179e-01 -4.40454692e-01 -5.92822954e-02 4.28976953e-01 1.05494368e+00 -6.05270386e-01 -2.60322630e-01 6.44572794e-01 -1.16911840e+00 8.48136663e-01 -4.05430228e-01 -4.37129170e-01 -6.58185035e-02 -6.46524668e-01 2.23383173e-01 6.30105615e-01 -7.73024619e-01 -7.90424168e-01 -3.06121647e-01 -3.08331072e-01 -1.97900370e-01 -3.82952005e-01 5.22105575e-01 3.06617051e-01 1.65397733e-01 9.71845329e-01 -4.27277572e-03 4.90291826e-02 -6.10884726e-01 -1.88606195e-02 1.07362759e+00 4.73777130e-02 -4.87614870e-01 3.63496870e-01 -1.80399314e-01 -6.01418138e-01 -9.56050158e-01 -3.40324461e-01 -5.61158299e-01 -3.29515219e-01 -2.23368600e-01 6.25327647e-01 -3.17433715e-01 -9.83184457e-01 3.49381864e-01 -1.52350152e+00 -4.70662534e-01 -2.33440265e-01 5.34057975e-01 -5.36327243e-01 2.55068421e-01 -6.06565535e-01 -1.15118349e+00 -5.23180440e-02 -1.34535122e+00 7.64176548e-01 -1.11705356e-03 -1.11726451e+00 -8.21039021e-01 -1.82979386e-02 4.40254420e-01 5.12917519e-01 -7.88963586e-02 1.19252443e+00 -1.39846539e+00 7.20802024e-02 -4.67807144e-01 -3.21869575e-03 6.97906971e-01 2.44779855e-01 -2.12710917e-01 -1.13359785e+00 1.48971021e-01 2.54242420e-01 4.09954116e-02 2.08479181e-01 -3.02599043e-01 3.61762077e-01 -5.11416376e-01 -3.03035885e-01 -1.42691255e-01 8.58918846e-01 7.69818425e-01 6.42194867e-01 3.40366602e-01 3.87561828e-01 8.40297341e-01 4.70298290e-01 5.17692029e-01 1.30251065e-01 9.32970405e-01 4.90469158e-01 5.99703312e-01 1.11741573e-01 2.95704365e-01 7.04351842e-01 8.20213914e-01 -3.20423722e-01 -2.18307137e-01 -1.20771086e+00 6.70629025e-01 -1.63350141e+00 -8.54780614e-01 -4.10224915e-01 1.77979386e+00 1.03550529e+00 3.13226730e-01 1.77960649e-01 3.61980557e-01 8.20604861e-01 -1.43368587e-01 -1.43253375e-02 -7.17831492e-01 5.15272021e-01 7.89001361e-02 3.61509398e-02 2.64610678e-01 -7.84819543e-01 5.84415257e-01 6.08863688e+00 5.27176619e-01 -6.68502927e-01 2.36836106e-01 1.97644204e-01 -3.28762494e-02 4.07991968e-02 1.07799314e-01 -6.25737429e-01 6.03446603e-01 1.29443705e+00 8.41893926e-02 5.75844646e-01 1.10902071e+00 -2.65560001e-01 -3.75571072e-01 -1.45598769e+00 8.09536278e-01 9.32561681e-02 -1.41867363e+00 -7.39237547e-01 7.64092207e-02 5.86678028e-01 -4.38032299e-02 -5.08592188e-01 6.25173986e-01 4.43367064e-01 -1.07081163e+00 6.91263497e-01 3.58437896e-01 5.50263464e-01 -4.76501465e-01 1.36548674e+00 9.16654885e-01 -5.52300513e-01 -1.22703962e-01 -2.77657241e-01 -7.44233251e-01 -1.13847658e-01 4.88052130e-01 -1.33369184e+00 4.24507499e-01 7.38596022e-01 3.76156390e-01 -3.12008262e-01 7.77274966e-01 -1.66337937e-01 6.82585359e-01 -5.83533466e-01 -7.10394382e-01 9.89506692e-02 -7.66059710e-03 4.79381114e-01 1.32653117e+00 -1.30326655e-02 -1.02004178e-01 -3.03667963e-01 9.82846797e-01 -7.08602509e-03 -2.51232266e-01 -5.90240836e-01 -3.76666784e-01 5.65216660e-01 1.05345905e+00 -4.55444366e-01 -3.00692648e-01 -3.05873573e-01 7.75133014e-01 1.69233426e-01 9.10419375e-02 -7.82862306e-01 -9.72425520e-01 7.81749308e-01 4.90414537e-02 1.46756396e-01 2.11340949e-01 -3.53201389e-01 -5.92995584e-01 2.87313104e-01 -1.06396294e+00 1.23831658e-02 -6.55641675e-01 -1.01167440e+00 8.33509386e-01 1.57648817e-01 -9.81322765e-01 -7.32994080e-01 -7.18253613e-01 -6.43263996e-01 9.62639093e-01 -4.26486999e-01 -6.58157110e-01 -3.78905177e-01 -9.23740342e-02 5.19456208e-01 -3.38381350e-01 1.08066452e+00 3.44955146e-01 -2.99094588e-01 5.94376087e-01 -2.81801045e-01 3.65695834e-01 6.09413743e-01 -1.30501819e+00 4.12826151e-01 2.80311525e-01 2.19490543e-01 1.19942832e+00 9.46536720e-01 -3.32606345e-01 -1.04697025e+00 -6.58314824e-01 1.03962970e+00 -7.25569069e-01 6.43005788e-01 -5.64955175e-01 -9.57485735e-01 9.11459148e-01 3.40343177e-01 -5.61897397e-01 4.18517321e-01 6.16348624e-01 -4.85093087e-01 3.99091363e-01 -1.17916620e+00 5.62803447e-01 1.06728876e+00 -7.48243093e-01 -1.13789320e+00 4.48560685e-01 8.14705491e-01 -4.10052478e-01 -9.60810602e-01 -5.08717634e-02 6.64265037e-01 -1.16141772e+00 6.75070643e-01 -5.81746042e-01 6.11255586e-01 -1.00459578e-03 1.32922381e-01 -1.18280005e+00 -4.46549430e-02 -4.67816710e-01 6.10061400e-02 1.48636580e+00 4.90066469e-01 -9.15265083e-01 6.53924167e-01 5.51641762e-01 -4.59350854e-01 -5.40734947e-01 -1.11801362e+00 -7.53516436e-01 -1.47279082e-02 -6.44144654e-01 3.20262223e-01 8.38544250e-01 7.39315093e-01 3.24751109e-01 -7.28580430e-02 -3.47984940e-01 -2.15078697e-01 -5.15727639e-01 6.46395922e-01 -1.20384300e+00 -5.17643452e-01 -4.18910414e-01 -7.14701295e-01 -5.70984244e-01 1.27820030e-01 -7.13564992e-01 2.31711701e-01 -1.62243330e+00 7.71320835e-02 -3.60964358e-01 1.19058669e-01 9.66710448e-01 7.52255991e-02 1.26769170e-01 1.91280544e-01 3.38358358e-02 -3.02006662e-01 -3.04647069e-02 4.69692200e-01 -5.82267977e-02 -1.54176593e-01 1.06949933e-01 -6.69381440e-01 9.94353771e-01 6.95742249e-01 -9.97806549e-01 -1.99480116e-01 -2.20362574e-01 3.43504995e-01 1.21147528e-01 1.30044624e-01 -1.11450934e+00 6.28296733e-02 1.00737683e-01 -2.32894808e-01 -2.46840432e-01 5.16908467e-01 -7.61547089e-01 2.54716069e-01 6.53424442e-01 -4.38120961e-01 1.33362813e-02 2.84054190e-01 1.42211974e-01 -6.16554469e-02 -9.55896735e-01 2.63665259e-01 -1.88460737e-01 -4.18968141e-01 -9.96606410e-01 -1.01919067e+00 1.99356824e-01 9.44061697e-01 -4.59985197e-01 -4.95198727e-01 -4.20455307e-01 -5.50220847e-01 -2.00214133e-01 4.05776232e-01 6.48895383e-01 1.57726049e-01 -6.40966177e-01 -2.81593293e-01 8.84733796e-02 1.64767474e-01 -2.93074101e-01 -4.43376824e-02 1.02604604e+00 -5.33760667e-01 4.29729909e-01 -2.56844997e-01 -3.62533391e-01 -1.40791202e+00 -5.24404198e-02 3.74693632e-01 -2.56512433e-01 -4.58205372e-01 1.02285063e+00 3.89141552e-02 -6.18110418e-01 3.45601171e-01 -6.48915052e-01 -1.91537634e-01 2.26335675e-01 4.69689220e-01 5.10809481e-01 2.72514403e-01 -2.17541263e-01 -6.21310234e-01 1.41493276e-01 -2.39255130e-01 -3.37498128e-01 1.42293823e+00 5.93575597e-01 -1.69648439e-01 8.97378862e-01 1.12670720e+00 1.85454004e-02 -7.78664649e-01 4.42162365e-01 4.47249562e-01 -1.20921835e-01 -4.99262840e-01 -9.95994627e-01 -4.13288355e-01 8.10912311e-01 1.27520129e-01 6.61575675e-01 4.26668108e-01 8.90573189e-02 2.31220126e-01 6.37699544e-01 7.55468130e-01 -9.95625257e-01 1.96782783e-01 1.02160549e+00 9.96367574e-01 -8.50149095e-01 -1.75411120e-01 -2.69505650e-01 -7.55131841e-01 1.26641321e+00 5.15893161e-01 -1.28747299e-01 1.23093024e-01 4.16869581e-01 1.45086601e-01 -3.80322129e-01 -9.58465457e-01 2.98000097e-01 -9.81738791e-02 7.01473176e-01 6.43152356e-01 -7.97362104e-02 -3.77805233e-01 1.10257828e+00 -2.95599371e-01 -2.18160495e-01 8.98589313e-01 9.73130286e-01 -3.47562551e-01 -1.07513177e+00 -3.99769813e-01 7.59216666e-01 -4.29333180e-01 -1.88368171e-01 -6.01692379e-01 1.20707560e+00 1.84348091e-01 1.14649713e+00 1.29393965e-01 -8.78444135e-01 5.01013041e-01 8.40092480e-01 8.97793472e-02 -1.16459882e+00 -1.49571157e+00 -3.78809571e-01 7.90162623e-01 -5.07208467e-01 -1.03800088e-01 -6.63870990e-01 -1.27316594e+00 -1.46965876e-01 -6.55564666e-01 2.31276467e-01 7.72033215e-01 1.26928508e+00 1.12900898e-01 7.78499782e-01 1.34164289e-01 -6.04342699e-01 -8.10813010e-01 -1.52856445e+00 -4.18043107e-01 2.13353455e-01 3.67003344e-02 -8.90663385e-01 -7.41770506e-01 -2.44325772e-02]
[12.52093505859375, 7.787801265716553]
1baaffdc-34ce-4445-8bbe-fc36d07ebf12
a-survey-of-software-defined-smart-grid
2306.14697
null
https://arxiv.org/abs/2306.14697v1
https://arxiv.org/pdf/2306.14697v1.pdf
A Survey of Software-Defined Smart Grid Networks: Security Threats and Defense Techniques
Smart grids are replacing conventional power grids due to rising electricity use, failing infrastructure, and reliability problems. Two-way communication, demand-side administration, and real-time pricing make smart grids (SGs) dependent on its communication system. Manual network administration slows down SG communication. SG networks additionally utilize hardware and software from several vendors, allowing devices to communicate. Software-defined SGs (SD-SG) use software-defined networking (SDN) to monitor and regulate SG global communication networks to address these concerns. SDN separates the data plane (routers and switches) from the control plane (routing logic) and centralizes control into the SDN controller. This helps network operators manage visibility, control, and security. These benefits have made SDN popular in SG architectural and security studies. But because SD-SGs are vulnerable to cyberattacks, there are concerns about the security of these SD-SG networks. Cybercriminals can attack software-defined communication networks, affecting the power grid. Unauthorized access can be used to intercept messages and introduce false data into system measurements, flood communication channels with fraudulent data packets, or target controllers, a potential single point of failure, to cripple SDN networks. Current research reflects this paradigm as defense and security against such attacks have developed and evolved. There is a need for a current study that provides a more detailed analysis and description of SD-SG network security dangers and countermeasures, as well as future research needs and developing threats for the sector. To fill this void, this survey is presented.
['Janise McNair', 'Sharon Boamah', 'Dennis Agnew']
2023-06-26
null
null
null
null
['security-studies']
['miscellaneous']
[-3.20077628e-01 -3.95708345e-02 -3.97710800e-01 -1.19302273e-01 3.64233375e-01 -1.18188989e+00 3.53648782e-01 -1.21430166e-01 3.34872395e-01 9.29935098e-01 -1.59206763e-01 -7.15021193e-01 -5.81143685e-02 -1.30018711e+00 3.05037111e-01 -9.64356244e-01 -5.06577909e-01 2.61230767e-02 2.95836210e-01 -3.31714824e-02 2.72580862e-01 9.23043787e-01 -7.40552068e-01 -3.59442651e-01 5.03532171e-01 1.09070575e+00 -3.93600553e-01 2.12279558e-01 6.04229458e-02 5.33250511e-01 -1.46104395e+00 5.35982311e-01 3.40732306e-01 -4.34159428e-01 -7.44548082e-01 1.51336446e-01 -6.31347954e-01 -6.15474403e-01 1.03394590e-01 1.33567536e+00 1.19664550e-01 -1.04736373e-01 -1.86086714e-01 -2.03323054e+00 -4.24588323e-01 6.12273037e-01 -5.05234241e-01 2.86888093e-01 2.97634304e-01 9.44720626e-01 9.04482126e-01 3.20645571e-02 4.26045984e-01 5.59937954e-01 3.52951735e-01 1.92162976e-01 -1.54542673e+00 -1.38368714e+00 4.07007523e-02 1.57982409e-01 -1.10213447e+00 -3.48782808e-01 4.59994495e-01 -3.23592648e-02 1.34788346e+00 3.33190590e-01 8.35310698e-01 6.56554103e-01 4.45385575e-01 -1.80984765e-01 1.01411593e+00 -2.12677047e-01 6.97575331e-01 5.54021671e-02 4.47231203e-01 -2.16654301e-01 1.00924313e+00 2.07507983e-01 1.61855385e-01 -2.05215916e-01 8.01591277e-01 -3.98117363e-01 -9.62924123e-01 -1.31826952e-01 -7.77996182e-01 9.88220990e-01 1.97978050e-01 9.61982965e-01 -4.45867687e-01 -1.79037899e-01 8.03715289e-01 5.70298314e-01 -1.18152224e-01 8.07302654e-01 -7.39585340e-01 -3.20587069e-01 -5.80829203e-01 -5.30310094e-01 1.36618614e+00 7.54133642e-01 2.62749821e-01 9.51909661e-01 6.30357206e-01 -1.54658034e-01 4.87094671e-01 6.54822826e-01 3.95437181e-02 -7.71091521e-01 -2.07616985e-01 1.93722188e-01 -4.37425673e-02 -1.04599118e+00 -6.96255445e-01 -4.34672177e-01 -1.03481400e+00 8.70485604e-01 2.79213011e-01 -3.75564933e-01 -1.25301272e-01 1.26214433e+00 2.15801429e-02 3.67106646e-02 2.73882803e-02 7.22288191e-01 -1.58297345e-02 7.69064844e-01 -4.26547527e-02 -4.54441786e-01 1.11371446e+00 -4.97643590e-01 -1.18993008e+00 2.92495549e-01 5.81689835e-01 -6.82035208e-01 4.83630627e-01 4.22581732e-01 -8.49185407e-01 -3.18753831e-02 -1.60056329e+00 8.77473176e-01 -4.58076745e-01 -8.03600907e-01 2.39249513e-01 1.12900293e+00 -1.15915024e+00 3.93245518e-01 -1.08994627e+00 -6.13334954e-01 2.51545340e-01 4.58720505e-01 -4.34866585e-02 5.16542554e-01 -1.28092003e+00 1.19613314e+00 2.93073475e-01 -1.43497169e-01 -7.35908210e-01 -5.97271502e-01 -8.81373167e-01 2.91720599e-01 3.52492303e-01 -3.54725718e-01 1.02593064e+00 -5.98308027e-01 -1.53227830e+00 -5.17066754e-02 7.25895345e-01 -6.92153215e-01 -2.90688872e-01 5.05651116e-01 -1.44332421e+00 4.21027005e-01 3.01569015e-01 -4.93091613e-01 4.37263668e-01 -8.80218685e-01 -6.21728718e-01 -1.44876972e-01 -5.58387078e-02 -6.34516180e-01 1.39279276e-01 3.71998340e-01 1.18950641e+00 -3.41816187e-01 2.67056935e-02 -2.58842021e-01 -2.65950173e-01 -2.69794077e-01 -5.47229588e-01 -1.28432050e-01 1.84733045e+00 -2.59464353e-01 9.69983220e-01 -2.03784013e+00 -8.34442616e-01 7.92139649e-01 4.17482585e-01 6.21802986e-01 3.93376797e-01 6.00888014e-01 -3.22717011e-01 4.38658237e-01 2.27946550e-01 4.34292436e-01 3.30630749e-01 4.26239401e-01 -3.80614072e-01 9.80234265e-01 -2.43047148e-01 4.51430976e-01 -6.07364833e-01 4.42081213e-01 7.21202374e-01 2.68443257e-01 1.65106639e-01 -1.30509824e-01 1.57053307e-01 7.49406099e-01 -3.89471084e-01 5.71287215e-01 9.80661273e-01 -5.12611091e-01 6.08806491e-01 -3.41113538e-01 -6.52978003e-01 7.16146111e-01 -1.28354549e+00 6.93432450e-01 -2.09886760e-01 4.16560799e-01 6.76013827e-01 -1.29280710e+00 6.76815331e-01 6.36261284e-01 5.46442032e-01 -6.69608533e-01 3.32698435e-01 2.05174029e-01 -3.22941504e-02 -1.09355062e-01 -3.44407618e-01 -7.52342343e-02 -3.92169468e-02 1.13447082e+00 -1.37560129e-01 -1.87723473e-01 6.98874965e-02 9.59690809e-02 1.31387687e+00 -4.58319396e-01 5.61842978e-01 -7.75854528e-01 8.25392544e-01 -1.54709443e-03 9.11603391e-01 3.29917014e-01 -5.45347273e-01 -6.84148252e-01 4.95813608e-01 -5.71949005e-01 -6.27355456e-01 -1.23923612e+00 -9.68048126e-02 1.61014974e-01 4.52651754e-02 -6.36475682e-01 -3.46741408e-01 -7.61714578e-01 -8.25455636e-02 1.59004366e+00 3.86556715e-01 -2.77378678e-01 -4.19042945e-01 -4.76743639e-01 4.57283467e-01 4.37628150e-01 7.21884549e-01 -8.35541248e-01 -7.92518675e-01 6.91335022e-01 4.05200332e-01 -1.27006066e+00 -2.75673389e-01 2.66226649e-01 -5.03644109e-01 -1.65219593e+00 4.14507955e-01 -2.90238589e-01 7.14959204e-01 2.48564735e-01 1.04198468e+00 2.58615404e-01 -1.37829810e-01 3.23088586e-01 -2.39557907e-01 -6.91503882e-02 -5.84060788e-01 -4.29434031e-01 4.89619404e-01 -2.86205500e-01 6.78981841e-01 -1.20241809e+00 -4.41219091e-01 6.10328734e-01 -5.88097632e-01 -3.94855499e-01 -1.82502389e-01 2.90500641e-01 -7.74643049e-02 8.79153371e-01 1.13592470e+00 -4.10400689e-01 5.12167692e-01 -4.32425529e-01 -1.57021677e+00 -1.80047765e-01 -1.19109070e+00 -6.22848511e-01 1.26119196e+00 2.61689246e-01 -4.58415240e-01 -7.18956113e-01 1.16334118e-01 2.39475556e-02 -5.17306745e-01 1.27082855e-01 -6.57826781e-01 -6.47739768e-01 -4.84368131e-02 3.02211624e-02 5.09055078e-01 -1.27022952e-01 -8.44037607e-02 4.45160985e-01 2.38761809e-02 -8.13028403e-03 1.27271914e+00 6.70386672e-01 -4.22708094e-02 -9.59363461e-01 -2.26123169e-01 1.62462041e-01 -1.34160087e-01 -1.07925922e-01 8.23755383e-01 -5.30291855e-01 -1.17685950e+00 4.50647682e-01 -1.06577289e+00 -9.91360247e-02 -3.25590223e-01 5.64101636e-01 1.27749309e-01 3.65692139e-01 -1.03962994e+00 -2.39564478e-01 -5.12738228e-01 -1.20939875e+00 -2.57355481e-01 4.85525280e-01 -6.57564640e-01 -1.15651095e+00 -3.72130275e-01 6.02722540e-02 1.25625944e+00 4.27749455e-01 8.03736508e-01 -8.81301999e-01 -1.03065658e+00 4.83236946e-02 -3.24211299e-01 7.49006450e-01 9.48928118e-01 2.09077492e-01 -5.27849734e-01 -9.50892866e-01 6.79903984e-01 3.02722782e-01 -5.81962466e-01 3.70661259e-01 7.46538281e-01 -6.76497102e-01 -1.92711383e-01 7.30837166e-01 1.70116377e+00 7.95790553e-01 4.68954325e-01 6.61186755e-01 2.31055617e-01 9.35776159e-02 1.96799561e-01 6.16117358e-01 2.07299173e-01 6.10222816e-02 7.49699950e-01 -2.57226855e-01 4.43951815e-01 4.18932259e-01 3.14020693e-01 7.95547426e-01 3.45930755e-01 -7.87772015e-02 -5.61645508e-01 -6.52136952e-02 -8.49774182e-01 -9.49338436e-01 -3.31174940e-01 1.88943744e+00 1.88798867e-02 6.40057564e-01 -1.63703486e-02 4.03245062e-01 7.39440322e-01 -2.73374617e-02 -6.07393682e-01 -5.04415035e-01 -1.92510948e-01 4.26440120e-01 8.74329507e-01 2.91909188e-01 -5.14719188e-01 3.13052624e-01 5.76576805e+00 3.00267011e-01 -1.30315185e+00 2.28412524e-01 2.90619463e-01 3.75193387e-01 1.63240716e-01 3.50058138e-01 -5.50682068e-01 6.12933815e-01 1.23833001e+00 -9.64439392e-01 4.85398144e-01 5.72978973e-01 1.12352479e+00 -1.58059120e-01 -7.56716251e-01 6.45745218e-01 -4.29988235e-01 -1.39825845e+00 -3.24166030e-01 3.38165760e-01 5.58556378e-01 6.54283091e-02 -7.15359688e-01 -1.19672880e-01 7.22350478e-01 -6.37598336e-01 1.98708609e-01 -2.13915035e-01 3.47705096e-01 -1.16167629e+00 7.78891265e-01 -1.92180425e-01 -1.29323673e+00 -1.97561219e-01 2.30982065e-01 -4.12128925e-01 8.25177789e-01 6.75621748e-01 -2.66098499e-01 7.95462906e-01 8.11367095e-01 6.01916552e-01 2.59784050e-02 7.01826215e-01 -7.29367495e-01 9.57645059e-01 -3.80646318e-01 3.56770843e-01 3.02437097e-01 -5.83871424e-01 7.13496745e-01 2.58749217e-01 -1.28525630e-01 1.87770322e-01 4.29458439e-01 1.25722694e+00 3.56136948e-01 -7.03155279e-01 -6.33719921e-01 -8.30638036e-02 8.04194570e-01 1.44506204e+00 -1.17482340e+00 -2.53377378e-01 -9.24084187e-01 4.34057295e-01 -8.20242584e-01 4.63473737e-01 -7.62969911e-01 -8.96604717e-01 1.38042736e+00 1.92166403e-01 -5.60794063e-02 -6.12030745e-01 -6.93215668e-01 -9.27024484e-01 -5.56088805e-01 -1.18843710e+00 4.53288078e-01 -4.58389342e-01 -1.57318532e+00 5.05295515e-01 -3.03118020e-01 -1.23665309e+00 4.86137606e-02 -4.49921414e-02 -9.66970325e-01 7.19490409e-01 -1.25395441e+00 -6.68330193e-01 1.08600065e-01 9.01461899e-01 1.87283084e-01 -1.14006475e-01 1.11471748e+00 3.15317541e-01 -5.87879002e-01 7.71828070e-02 -7.35950330e-03 4.47303653e-01 1.97989821e-01 -8.24549437e-01 3.67805749e-01 1.21662295e+00 -5.49815595e-01 3.58188808e-01 6.71767354e-01 -5.28533220e-01 -1.47375667e+00 -6.70136154e-01 3.53188753e-01 3.06691051e-01 1.26268709e+00 -3.20292860e-01 -7.15060472e-01 1.06176543e+00 9.00649011e-01 -9.94958282e-02 9.84090626e-01 -4.61453408e-01 2.63370126e-01 -2.90484518e-01 -1.66887367e+00 3.03733855e-01 1.85345888e-01 -5.39653778e-01 -4.31230515e-01 1.16557091e-01 5.32890081e-01 2.89369375e-01 -1.01062751e+00 -1.69583205e-02 -9.59405750e-02 -9.20166016e-01 4.61219043e-01 -1.93297401e-01 -9.09883976e-01 -7.92223632e-01 -3.56543399e-02 -1.65872490e+00 -3.19600940e-01 -1.11961019e+00 1.60202742e-01 1.29002881e+00 2.13422272e-02 -1.83031416e+00 4.49632943e-01 5.11723697e-01 -1.84526414e-01 6.67345747e-02 -1.03888690e+00 -1.13962400e+00 -2.70750403e-01 -3.02420288e-01 1.38279045e+00 1.70779371e+00 7.77483940e-01 3.76428515e-01 4.20545429e-01 1.06595397e+00 1.23513567e+00 9.87869874e-02 5.06301641e-01 -1.09656334e+00 4.23539013e-01 -5.30553460e-01 -6.52175546e-01 -4.44681078e-01 -3.64423916e-03 -3.90960991e-01 -8.39740336e-01 -1.43233514e+00 -9.48532462e-01 -2.77474195e-01 -1.57943383e-01 5.67348421e-01 1.02618504e+00 -1.61932290e-01 5.48796356e-01 -5.43304458e-02 -1.64107427e-01 2.02259198e-01 8.89807880e-01 -5.08617125e-02 4.24339324e-02 7.31917992e-02 -5.45961380e-01 6.91519439e-01 1.61182058e+00 -2.12715805e-01 -5.19656777e-01 -6.83373399e-03 -3.79821211e-01 3.31014693e-01 2.56158054e-01 -1.10994494e+00 5.69299281e-01 -2.11405799e-01 2.74512053e-01 -4.64836717e-01 -3.82480711e-01 -1.64696479e+00 5.21075308e-01 1.06269777e+00 6.07502401e-01 4.56056416e-01 -5.73577173e-03 -5.75063452e-02 -9.08298418e-02 3.56855690e-01 1.21383047e+00 1.71776973e-02 -3.93302023e-01 1.46725699e-01 -1.42381990e+00 -2.43932918e-01 1.64623046e+00 -3.57181579e-01 -7.61569262e-01 -4.07693505e-01 -1.03153598e+00 8.11610579e-01 5.42427540e-01 3.39241415e-01 3.81011814e-01 -8.74243438e-01 -3.40091176e-02 1.06400251e+00 -7.04416275e-01 -4.40637201e-01 -1.05761833e-01 1.00921047e+00 -6.58085048e-01 6.00089192e-01 -5.01059175e-01 -4.31643307e-01 -9.54407096e-01 3.89907449e-01 7.13391602e-01 -1.09204262e-01 -8.41757596e-01 3.18134278e-02 -2.03661829e-01 3.39127146e-02 -9.64911580e-02 -4.17139292e-01 -1.57308541e-02 -1.89247251e-01 7.92415321e-01 8.86851430e-01 -1.46858871e-01 -3.43966573e-01 -4.08595413e-01 -4.79335412e-02 1.52372364e-02 4.62108612e-01 1.15018368e+00 -6.45670533e-01 -9.48963702e-01 1.83630679e-02 8.07971835e-01 -2.13286072e-01 -5.20055652e-01 4.57812667e-01 3.05434793e-01 -6.99445069e-01 3.72637004e-01 -8.55175316e-01 -1.76053727e+00 -1.75311361e-04 2.30861679e-01 1.23848224e+00 1.18254960e+00 -3.96307915e-01 7.33590126e-01 -3.07609290e-01 1.17777920e+00 -1.02038288e+00 -2.99326539e-01 2.90095806e-01 4.45719883e-02 -3.96871656e-01 -2.02377513e-01 -7.05109715e-01 2.06026621e-02 1.43362629e+00 9.19054091e-01 -1.05466414e-02 1.29923284e+00 9.58539784e-01 8.86138380e-02 -5.27540982e-01 -5.77579319e-01 5.43325245e-01 -1.27988350e+00 1.01081991e+00 -2.93707222e-01 3.19516599e-01 -3.67827117e-01 4.82373655e-01 -3.95789888e-04 1.85054064e-01 1.32677257e+00 1.03906250e+00 -3.33843112e-01 -1.35052061e+00 -5.79555273e-01 4.87077981e-01 -7.90804565e-01 3.02772254e-01 4.45477515e-01 9.15624261e-01 -3.89259234e-02 1.67589605e+00 1.64420858e-01 -2.26050280e-02 3.48127723e-01 -3.58054847e-01 -3.65423679e-01 -3.83824348e-01 -6.22811139e-01 -5.04629463e-02 2.81472147e-01 -8.25427592e-01 -5.74471755e-03 -5.15272141e-01 -1.67238522e+00 -1.09473526e+00 -6.83592618e-01 7.42823958e-01 6.19424641e-01 7.28731155e-01 2.45186448e-01 6.42254055e-01 1.10914576e+00 -3.34529817e-01 -7.36563981e-01 -4.45118904e-01 -1.46434736e+00 -1.39182433e-01 4.82989281e-01 -4.33991402e-01 -1.18299866e+00 -5.11252642e-01]
[5.913158893585205, 2.607565402984619]
5671a576-a98c-4b3f-b7ac-45306510b5db
a-novel-approach-for-generating-customizable
2212.06701
null
https://arxiv.org/abs/2212.06701v1
https://arxiv.org/pdf/2212.06701v1.pdf
A Novel Approach For Generating Customizable Light Field Datasets for Machine Learning
To train deep learning models, which often outperform traditional approaches, large datasets of a specified medium, e.g., images, are used in numerous areas. However, for light field-specific machine learning tasks, there is a lack of such available datasets. Therefore, we create our own light field datasets, which have great potential for a variety of applications due to the abundance of information in light fields compared to singular images. Using the Unity and C# frameworks, we develop a novel approach for generating large, scalable, and reproducible light field datasets based on customizable hardware configurations to accelerate light field deep learning research.
['Vidhi Chhabra', 'Aloukika Patro', 'Toure Smith', 'Julia Huang']
2022-12-13
null
null
null
null
['unity']
['computer-vision']
[-8.80985856e-02 -8.77862155e-01 1.66029513e-01 -5.69753587e-01 -3.18024099e-01 -3.77484828e-01 4.17417288e-01 -3.30396116e-01 -1.88019469e-01 9.04878318e-01 -2.63699889e-01 -2.65146285e-01 -1.62923876e-02 -1.01861191e+00 -7.38565266e-01 -8.46654773e-01 5.07770240e-01 2.26019830e-01 5.01568258e-01 -7.29764923e-02 3.97440970e-01 8.27154279e-01 -1.75981426e+00 2.79016584e-01 5.29615104e-01 1.19749117e+00 4.34371173e-01 3.27958792e-01 -1.33379519e-01 7.77356803e-01 -2.71666259e-01 -1.43844396e-01 5.32602847e-01 8.23094393e-04 -5.02956450e-01 -9.90324467e-02 9.82617319e-01 -7.25948393e-01 -5.30062616e-01 1.00633657e+00 8.28350723e-01 4.67908867e-02 2.30219275e-01 -1.19359052e+00 -6.93192482e-01 1.65655926e-01 -6.60568893e-01 3.95004958e-01 2.57155895e-01 6.90706074e-01 7.04176009e-01 -8.00475538e-01 6.93274379e-01 9.45906460e-01 4.52690572e-01 4.38167959e-01 -1.16982687e+00 -9.45343375e-01 -3.78106117e-01 3.55392694e-01 -1.11673510e+00 -5.02011120e-01 1.08324623e+00 -5.50541878e-01 9.61778104e-01 -3.04414004e-01 8.26587737e-01 9.94568229e-01 5.31053960e-01 3.86131346e-01 1.27526331e+00 -4.99634027e-01 2.76754826e-01 -8.20583627e-02 -2.48260126e-02 7.50627339e-01 3.24146688e-01 1.80602998e-01 -6.14274144e-01 1.20297216e-01 1.14121366e+00 2.43733317e-01 -2.14552552e-01 -2.89486319e-01 -1.47561920e+00 5.74266374e-01 5.37284315e-01 2.19647825e-01 -2.74351984e-01 3.66422474e-01 2.02984318e-01 1.31623466e-02 3.24026018e-01 3.70888114e-01 -3.36584896e-01 4.71822992e-02 -6.73746228e-01 3.20645124e-01 4.09527153e-01 1.07278633e+00 1.28265512e+00 6.26564398e-02 -1.38558000e-01 6.79279625e-01 1.41288325e-01 7.14506984e-01 4.52101976e-02 -1.04945588e+00 4.74627130e-03 6.38574064e-01 -3.87407653e-02 -9.45515633e-01 -5.81942618e-01 -2.23780796e-01 -9.81785536e-01 6.19349539e-01 3.86710554e-01 -1.04315039e-02 -8.30196798e-01 1.53411305e+00 3.84793192e-01 4.85675901e-01 -1.47761017e-01 9.75487351e-01 1.35241425e+00 4.84995902e-01 -2.00311899e-01 5.38622700e-02 1.01789701e+00 -5.84186137e-01 -3.37903619e-01 -3.22905816e-02 3.52694422e-01 -1.07788932e+00 1.30215478e+00 5.44696629e-01 -1.15113652e+00 -5.63221693e-01 -7.82085478e-01 -5.63811243e-01 -2.08137453e-01 3.81805226e-02 1.42430854e+00 4.00350600e-01 -1.08102489e+00 3.68153960e-01 -4.63638186e-01 -2.54199654e-01 8.46941173e-01 3.21532488e-01 -1.84142381e-01 -4.28907007e-01 -6.99004948e-01 3.74185145e-01 1.77763507e-01 -1.70126200e-01 -9.11927879e-01 -1.05087328e+00 -5.10791481e-01 -2.38366023e-01 2.91542634e-02 -8.55955184e-01 1.07311559e+00 -3.41529101e-01 -1.49157870e+00 9.47459579e-01 1.54623881e-01 -5.37811741e-02 1.56404972e-01 2.85136908e-01 -3.58431250e-01 1.45340890e-01 -5.28131574e-02 6.89533472e-01 8.42948139e-01 -1.04552233e+00 -7.42770255e-01 -2.39906490e-01 4.63025630e-01 -3.12126428e-01 -2.75983751e-01 1.93365425e-01 -2.91192591e-01 -1.48539945e-01 -1.08768441e-01 -9.45968807e-01 -3.61237735e-01 4.26717371e-01 -1.58268988e-01 -2.38850310e-01 9.72202897e-01 9.86199453e-02 8.20319712e-01 -2.08586454e+00 -4.49101001e-01 -1.59463231e-02 7.00068533e-01 3.83860767e-01 2.26412266e-02 1.18175365e-01 1.38841614e-01 -3.17664236e-01 2.59825379e-01 2.25000270e-02 -2.67552018e-01 2.49597192e-01 -3.24801207e-01 5.58876336e-01 -2.17319489e-01 7.88083613e-01 -8.48057926e-01 -5.07755041e-01 7.44350731e-01 5.31404078e-01 -8.47441435e-01 1.03699952e-01 -4.32527423e-01 7.31096983e-01 -4.52568918e-01 7.70742655e-01 9.54091787e-01 -6.11885071e-01 -4.44866478e-01 -6.43089533e-01 -4.52815533e-01 -6.30933733e-04 -1.22354817e+00 1.86484516e+00 -6.21421635e-01 8.78858745e-01 4.39874604e-02 -5.96113384e-01 8.33298922e-01 -3.01935039e-02 8.38684261e-01 -7.55101085e-01 2.52848536e-01 2.39254266e-01 -8.54732841e-02 -5.10167301e-01 4.23238814e-01 -1.36280134e-01 5.58032095e-01 6.11553729e-01 2.15289712e-01 -4.19108927e-01 4.59454030e-01 1.13303311e-01 1.16184521e+00 -1.89205870e-01 -2.14045957e-01 -3.32734257e-01 2.97836125e-01 -2.15964213e-01 5.75998425e-01 6.68359578e-01 -2.99916595e-01 6.55331790e-01 -1.03987411e-01 -1.05417430e+00 -1.15945399e+00 -7.94225514e-01 -6.95700467e-01 8.86366129e-01 3.66963267e-01 -3.88361514e-01 -3.95164430e-01 -2.83908308e-01 -1.72312316e-02 1.39183104e-01 -5.94381578e-02 3.01137298e-01 -4.50515628e-01 -8.92453909e-01 2.05259249e-01 4.78299111e-01 8.09924722e-01 -1.10230410e+00 -6.92947507e-01 2.01497842e-02 1.00140765e-01 -1.57947528e+00 -1.70112178e-01 -1.44356996e-01 -5.98024666e-01 -1.00328386e+00 -3.87839854e-01 -7.21327603e-01 5.49935162e-01 8.44292819e-01 1.39113522e+00 1.56007752e-01 -7.53506958e-01 4.22754198e-01 -9.45597738e-02 -6.50359511e-01 2.35576518e-02 -2.53264934e-01 1.64845034e-01 -4.34020087e-02 5.13612509e-01 -7.12887943e-01 -1.09598994e+00 1.55927882e-01 -9.99141097e-01 3.60781401e-01 6.41251564e-01 6.97569013e-01 7.45942533e-01 1.75024793e-02 2.03474373e-01 -7.47560263e-01 3.55277807e-01 -2.87101716e-01 -1.16761911e+00 1.51777893e-01 -6.02670550e-01 -8.34865570e-02 6.95526540e-01 -4.01085168e-01 -1.16733074e+00 -3.64027470e-02 -2.08865225e-01 -3.36904049e-01 -4.07334656e-01 1.08684577e-01 3.10855452e-02 -9.61408198e-01 9.45025086e-01 -7.68817216e-02 -4.25922900e-01 -3.20708066e-01 2.40075529e-01 5.92881382e-01 5.51629245e-01 -8.62466812e-01 7.55980313e-01 7.15342224e-01 5.09478509e-01 -9.87822294e-01 -8.14178824e-01 -4.88314748e-01 -5.73509872e-01 -3.78451288e-01 7.73055553e-01 -8.87094617e-01 -9.37331438e-01 6.96626127e-01 -1.42358160e+00 -2.65688032e-01 -2.04162896e-01 6.83280885e-01 -4.45202261e-01 2.29945406e-01 -4.51127440e-01 -3.25007379e-01 -4.71314162e-01 -1.45465696e+00 1.28126347e+00 5.55394173e-01 4.21341270e-01 -9.47267234e-01 1.78842574e-01 3.86637568e-01 5.82553566e-01 2.71145795e-02 9.83873785e-01 3.20796579e-01 -1.38500893e+00 4.48356867e-02 -6.84537828e-01 3.04792136e-01 6.91243932e-02 3.12706470e-01 -1.15457582e+00 -3.38585198e-01 -2.26915225e-01 -7.16672122e-01 4.76069003e-01 5.34431636e-01 1.66841865e+00 3.13756138e-01 -4.27511543e-01 1.27436638e+00 1.66147506e+00 3.64902280e-02 9.37126040e-01 1.97520420e-01 8.89118969e-01 1.13144971e-01 -3.01230289e-02 7.17046618e-01 1.98701397e-01 6.60990238e-01 3.80535632e-01 -3.72940242e-01 -4.67623472e-01 8.97731930e-02 -1.68488964e-01 6.39763713e-01 -2.47441113e-01 -6.20677657e-02 -8.98151517e-01 2.84576118e-01 -1.32067096e+00 -1.09861791e+00 -5.09919286e-01 1.96004367e+00 8.35628390e-01 -1.22010395e-01 -3.82946968e-01 8.59054457e-03 3.75004768e-01 1.12829104e-01 -7.12450147e-01 1.88311040e-01 -2.59831190e-01 4.68785197e-01 4.42949980e-01 4.25598361e-02 -8.01074445e-01 9.07473862e-01 7.45501280e+00 8.51948321e-01 -1.70919788e+00 1.94713026e-02 4.10999030e-01 -1.08317822e-01 -4.66958970e-01 1.11226194e-01 -1.04172873e+00 5.91008425e-01 2.87255883e-01 -1.29497409e-01 5.86011708e-01 8.57835829e-01 1.69373691e-01 -1.62097722e-01 -1.03637552e+00 1.61460125e+00 -2.15333104e-01 -1.77716434e+00 -6.57111928e-02 1.13302767e-01 1.08519697e+00 5.18610597e-01 8.59239027e-02 -1.22690000e-01 2.87421793e-01 -8.20676565e-01 2.74147093e-01 5.04400969e-01 1.11347914e+00 -3.89559329e-01 3.11330259e-01 2.57853270e-01 -8.36070001e-01 2.12845206e-01 -8.35460365e-01 -3.44053432e-02 7.36617371e-02 1.25846148e+00 -5.59857488e-01 2.64095366e-01 1.10733700e+00 8.56654167e-01 -6.22029483e-01 1.28132463e+00 2.07170397e-02 6.22026324e-01 -4.66598600e-01 -2.97890510e-02 -5.59960231e-02 -3.38824421e-01 1.15916230e-01 8.30207705e-01 3.16522956e-01 6.04866967e-02 2.47687101e-01 1.19412744e+00 -3.35362792e-01 -1.60594180e-03 -8.94253552e-01 2.50958055e-01 2.18337730e-01 1.71700740e+00 -6.87660396e-01 -2.94906809e-03 -9.98662353e-01 4.21076626e-01 3.13292712e-01 4.01979923e-01 -7.05614388e-01 -3.20137978e-01 7.64985919e-01 4.56422180e-01 -1.70514151e-01 -5.14608622e-01 -4.38166082e-01 -1.32900929e+00 1.66942962e-02 -5.81411958e-01 8.08231905e-03 -1.23074460e+00 -1.52554464e+00 4.43616509e-01 -1.23671077e-01 -1.13622141e+00 1.39253825e-01 -8.91149282e-01 -7.56093860e-01 8.03054214e-01 -1.83571434e+00 -1.35115647e+00 -9.43625867e-01 9.43293929e-01 9.61574093e-02 -4.29363012e-01 4.25829113e-01 6.74157977e-01 -4.68558043e-01 2.16151699e-01 3.03659558e-01 -5.67927957e-02 7.99282908e-01 -9.68372643e-01 3.12167436e-01 7.80377805e-01 2.82263875e-01 5.43159783e-01 3.42793703e-01 -3.92242551e-01 -1.80092537e+00 -9.92635608e-01 3.95310879e-01 -4.28612858e-01 5.48300028e-01 -3.88315767e-01 -8.06235135e-01 6.02550924e-01 2.76800513e-01 7.50070035e-01 6.76634789e-01 -6.99554309e-02 -1.18500918e-01 -6.49982095e-01 -1.13793874e+00 5.35878539e-01 1.25167108e+00 -5.98691165e-01 4.42695394e-02 7.70940065e-01 3.75478268e-01 -4.84212577e-01 -9.01007533e-01 4.99760926e-01 3.54402363e-01 -1.32866061e+00 1.12630713e+00 -1.89712912e-01 5.92624784e-01 -3.44234198e-01 -1.74662143e-01 -1.16874385e+00 -5.15145242e-01 -7.09290147e-01 6.44013984e-03 1.16900420e+00 -2.38746237e-02 -5.77258766e-01 9.25499678e-01 6.20323718e-01 -1.75847322e-01 -4.98216778e-01 -7.64029264e-01 -5.09022772e-01 -9.20135379e-02 -5.00123501e-01 8.57594371e-01 7.55348146e-01 -6.32115901e-01 4.12201852e-01 -3.08203369e-01 -5.46612293e-02 8.76055062e-01 6.36781752e-01 1.10751855e+00 -1.41610301e+00 -1.97003752e-01 -3.18189889e-01 -5.97500205e-01 -1.13584280e+00 1.68305844e-01 -9.89255250e-01 -7.91633204e-02 -1.47212112e+00 3.14904928e-01 -9.62543428e-01 -1.08956173e-01 3.53813469e-01 7.21754506e-02 5.31660914e-01 -8.14375579e-02 2.47310638e-01 -7.12377191e-01 4.01441216e-01 1.63517594e+00 -1.58708304e-01 1.19370103e-01 -1.78439543e-01 -4.57565129e-01 6.82946861e-01 5.12814641e-01 -1.73697397e-02 -4.22167867e-01 -7.97643960e-01 4.41236526e-01 -3.99442136e-01 5.48034608e-01 -1.38456714e+00 4.25578296e-01 -5.64098120e-01 6.09635592e-01 -4.74045217e-01 1.94437280e-01 -7.53931522e-01 1.62427172e-01 -7.05018500e-03 2.57262774e-02 -1.83252618e-01 1.20009020e-01 1.40560642e-01 -6.34985790e-02 -1.41064733e-01 1.12040830e+00 -3.21979076e-01 -1.05013812e+00 9.96578634e-01 1.11601345e-01 3.56363915e-02 1.04955935e+00 -4.19142703e-03 -8.30436409e-01 -8.23595971e-02 2.14600652e-01 -1.42804816e-01 6.08126760e-01 1.50050536e-01 6.66691661e-01 -1.53271866e+00 -6.09395027e-01 6.96107388e-01 4.16867852e-01 3.81125182e-01 3.62350017e-01 4.60799009e-01 -8.91853809e-01 3.52490425e-01 -7.13621676e-01 -9.53965604e-01 -8.99605572e-01 5.32834351e-01 1.80969059e-01 2.95485973e-01 -1.10408640e+00 5.30930042e-01 4.48660225e-01 -1.45386353e-01 -3.58820409e-02 -4.55693990e-01 1.39325514e-01 -6.48251355e-01 8.82392883e-01 3.33674610e-01 3.60266000e-01 -4.50652599e-01 -1.37392670e-01 9.59057868e-01 1.06748812e-01 4.43420768e-01 1.46330655e+00 4.31546569e-02 -2.13428259e-01 -6.66093305e-02 1.05244637e+00 7.94845298e-02 -1.30630660e+00 -3.91882151e-01 -6.47544742e-01 -9.27451789e-01 6.51647031e-01 -4.47078377e-01 -1.49792254e+00 1.11772335e+00 7.82148898e-01 -5.60785756e-02 1.21697760e+00 1.51848257e-01 1.08010054e+00 5.25444508e-01 7.74749398e-01 -1.05799639e+00 9.75814536e-02 5.15153766e-01 6.93372309e-01 -1.52786529e+00 1.72528271e-02 -3.18159372e-01 -1.28143266e-01 1.18419147e+00 7.76229262e-01 1.68154821e-01 7.94836879e-01 6.36116326e-01 1.93401620e-01 -3.79264712e-01 -6.95973039e-01 -2.27427915e-01 -3.67546380e-02 9.56772208e-01 5.54310083e-01 -2.18947113e-01 1.08570093e-03 1.00732282e-01 -5.68594970e-02 5.44251323e-01 5.32895803e-01 7.74529517e-01 -4.97029424e-01 -1.05220604e+00 -2.44297996e-01 6.20068491e-01 -3.44442308e-01 -1.76553950e-01 1.50923491e-01 2.76726574e-01 4.40179795e-01 8.30184340e-01 -4.52774949e-02 -3.57400537e-01 1.86372146e-01 -5.22333562e-01 8.88757229e-01 -4.99662578e-01 -1.69598877e-01 -2.38059014e-01 -4.97169971e-01 -6.54396176e-01 -5.60315609e-01 -1.87811598e-01 -1.03474462e+00 -8.35504889e-01 -1.72985688e-01 -5.20415306e-01 7.69696534e-01 8.72933924e-01 5.09740174e-01 1.96499422e-01 6.93607152e-01 -1.16474414e+00 3.54447751e-03 -7.02591300e-01 -7.14602351e-01 6.34041667e-01 1.23386852e-01 -9.93283093e-01 -2.58674286e-02 1.99513440e-03]
[9.604804039001465, -2.6068248748779297]
4a81901b-5ded-4c32-b27c-f751cc1165af
transferable-deep-learning-power-system-short
2303.07138
null
https://arxiv.org/abs/2303.07138v1
https://arxiv.org/pdf/2303.07138v1.pdf
Transferable Deep Learning Power System Short-Term Voltage Stability Assessment with Physics-Informed Topological Feature Engineering
Deep learning (DL) algorithms have been widely applied to short-term voltage stability (STVS) assessment in power systems. However, transferring the knowledge learned in one power grid to other power grids with topology changes is still a challenging task. This paper proposed a transferable DL-based model for STVS assessment by constructing the topology-aware voltage dynamic features from raw PMU data. Since the reactive power flow and grid topology are essential to voltage stability, the topology-aware and physics-informed voltage dynamic features are utilized to effectively represent the topological and temporal patterns from post-disturbance system dynamic trajectories. The proposed DL-based STVS assessment model is tested under random operating conditions on the New England 39-bus system. It has 99.99\% classification accuracy of the short-term voltage stability status using the topology-aware and physics-informed voltage dynamic features. In addition to high accuracy, the experiments show good adaptability to PMU errors. Moreover, The proposed STVS assessment method has outstanding performance on new grid topologies after fine-tuning. In particular, the highest accuracy reaches 99.68\% in evaluation, which demonstrates a good knowledge transfer ability of the proposed model for power grid topology change.
['Kai Wu', 'Peiyuan Sun', 'Zijian Lv', 'Xin Chen', 'Zijian Feng']
2023-03-13
null
null
null
null
['feature-engineering']
['methodology']
[-8.41622293e-01 -8.37218106e-01 9.03222710e-03 -1.88103035e-01 -7.37898171e-01 -7.94001102e-01 4.69166547e-01 3.02383780e-01 4.10699099e-01 1.21617270e+00 -2.09031656e-01 -2.82929659e-01 -5.62708735e-01 -1.06147492e+00 -3.64846706e-01 -1.07426190e+00 -9.23538327e-01 4.59761411e-01 -7.96608329e-02 -4.13022637e-01 -4.78595607e-02 9.15370822e-01 -1.07724309e+00 -2.64056146e-01 1.37947404e+00 1.14611089e+00 -2.84000393e-02 2.39615873e-01 1.97899222e-01 4.74001408e-01 -1.12255204e+00 5.03903329e-01 1.74786672e-01 -3.49910021e-01 -6.37260795e-01 -1.73525363e-01 -1.26859844e-01 -4.84928861e-02 -5.02644658e-01 1.32190716e+00 8.22260439e-01 3.33922863e-01 6.25609756e-01 -1.49187636e+00 -6.59459054e-01 6.32568002e-01 -6.03572071e-01 9.08550978e-01 4.70292538e-01 4.64137524e-01 7.22841203e-01 -5.61853349e-01 2.28697628e-01 9.60866690e-01 7.33423650e-01 -2.47151762e-01 -1.20793831e+00 -7.72205830e-01 1.94042534e-01 9.08390820e-01 -1.39526403e+00 2.76459992e-01 1.12749684e+00 -7.34937131e-01 1.15562236e+00 2.64046583e-02 8.99758160e-01 4.54193175e-01 8.38501275e-01 5.99783242e-01 1.20469785e+00 1.12777732e-01 3.53147060e-01 2.18291357e-02 2.87466235e-02 2.04458803e-01 8.07510689e-02 1.23798326e-01 -8.74572173e-02 1.88982695e-01 3.27591807e-01 -5.33783853e-01 -6.69002116e-01 -4.51107115e-01 -7.91920245e-01 7.65379488e-01 9.47355032e-01 7.09189236e-01 -1.42031565e-01 -4.37947541e-01 8.15005660e-01 6.54206097e-01 5.02290487e-01 4.07229275e-01 -9.09720778e-01 -2.15991020e-01 -7.92315006e-01 -2.42371801e-02 5.22095025e-01 5.68259597e-01 3.40536654e-01 1.32405126e+00 7.18701258e-02 4.35387254e-01 -1.56405225e-01 7.18061745e-01 7.59593070e-01 -3.91694635e-01 1.97849676e-01 6.13324881e-01 7.51078501e-02 -1.10759401e+00 -8.67826760e-01 -1.03647709e+00 -1.29931056e+00 5.22631764e-01 7.51876682e-02 -3.62225085e-01 -4.68721122e-01 1.70237279e+00 1.72960594e-01 1.61350623e-01 8.72883759e-03 5.90026498e-01 6.01975977e-01 1.19760728e+00 -2.51045853e-01 -7.73353517e-01 9.12455380e-01 -2.40696415e-01 -1.02988696e+00 4.67104048e-01 5.44764280e-01 -2.61104733e-01 7.85074413e-01 4.98955011e-01 -9.55246031e-01 -7.79884338e-01 -1.36519837e+00 6.70810401e-01 -6.56386197e-01 2.74659395e-02 1.85906559e-01 2.70413309e-01 -1.11199498e+00 8.21051419e-01 -6.75950289e-01 -2.32487828e-01 2.01140046e-01 3.02190483e-01 -5.39179482e-02 5.36388934e-01 -1.95089877e+00 1.35259235e+00 8.15469384e-01 1.65410921e-01 -9.11791325e-01 -1.02146661e+00 -8.17560077e-01 2.42289305e-01 2.25117058e-01 -3.02821994e-01 8.63065600e-01 -4.95584697e-01 -1.54582810e+00 -7.82014355e-02 1.37064278e-01 -6.18510783e-01 3.40831310e-01 4.18475837e-01 -1.16609216e+00 1.83638468e-01 5.36511838e-02 -4.86727983e-01 6.16297722e-01 -1.12982130e+00 -8.13551128e-01 -2.45208681e-01 -3.57840449e-01 2.00656205e-01 -3.65744799e-01 -5.02144277e-01 6.00390673e-01 -5.88505864e-01 -4.05914262e-02 -3.10007751e-01 6.65073991e-02 -5.27723491e-01 1.24949012e-02 -7.84959495e-01 1.38047755e+00 -1.06363165e+00 1.26327610e+00 -1.78674710e+00 1.30105764e-01 3.95458728e-01 -7.51898214e-02 4.89054441e-01 2.12267324e-01 5.13463199e-01 -3.94285619e-01 -3.11500043e-01 -1.37614310e-01 5.90968072e-01 3.50534230e-01 1.53646752e-01 -3.47676098e-01 5.22790253e-01 2.04497129e-02 9.17306304e-01 -1.04015613e+00 1.58464089e-01 8.34700286e-01 2.14592069e-01 1.06903262e-01 -1.96281359e-01 1.42272394e-02 7.35632658e-01 -2.57839859e-01 2.01258868e-01 9.26460385e-01 -8.94582644e-02 1.38097331e-01 -5.43663442e-01 3.63801443e-03 -1.18126392e-01 -1.25825286e+00 1.35949922e+00 -5.41866541e-01 6.03641629e-01 1.46366343e-01 -1.66913509e+00 1.11869144e+00 3.05994034e-01 9.03975904e-01 -1.14647281e+00 7.11923763e-02 -1.26546351e-02 1.13634996e-01 -2.45315805e-01 -9.85870063e-02 2.53569558e-02 -1.01462372e-01 2.08749771e-01 4.43687588e-01 -4.52189893e-01 3.96515071e-01 1.33106142e-01 4.93891478e-01 -1.16122700e-01 4.45287317e-01 -1.04257989e+00 1.05673265e+00 -8.79047737e-02 1.06670415e+00 1.67332590e-02 -3.20017219e-01 -4.22976822e-01 3.78929138e-01 -5.82973301e-01 -7.54668951e-01 -1.44292009e+00 -6.99340761e-01 2.00067267e-01 1.76971868e-01 -1.38558596e-01 -3.10786903e-01 -5.97777307e-01 3.30311507e-01 1.13310194e+00 -3.64177197e-01 -5.08249938e-01 -5.20081580e-01 -1.25102961e+00 -3.41959819e-02 7.67614603e-01 6.35781944e-01 -6.74280107e-01 -1.05933517e-01 5.79698920e-01 1.47850156e-01 -8.99903297e-01 5.93713969e-02 1.97161943e-01 -6.15453601e-01 -1.12192225e+00 -3.53910089e-01 -9.37191725e-01 3.13243181e-01 -5.33884168e-01 1.07951772e+00 -3.62965316e-01 -1.44705445e-01 5.91179878e-02 -7.56621286e-02 8.13190565e-02 -2.78874993e-01 -7.22071379e-02 8.10499430e-01 -2.84088314e-01 1.07666016e-01 -9.33616281e-01 -2.70482272e-01 2.59871215e-01 -3.05408031e-01 -4.96256799e-01 -2.11831275e-02 1.07401264e+00 4.21420276e-01 1.42357099e+00 1.40799749e+00 1.02882825e-01 7.57880211e-01 -6.07068658e-01 -1.28183854e+00 3.85827199e-02 -1.03017247e+00 -4.58958477e-01 1.49869180e+00 -1.59528136e-01 -9.59582746e-01 -4.49467719e-01 -1.12492904e-01 -3.24912548e-01 1.45301467e-03 7.21837759e-01 -6.61931157e-01 -3.10207367e-01 2.32610390e-01 5.04121244e-01 -1.47396997e-01 -6.01120770e-01 1.79802433e-01 4.12689269e-01 6.41712904e-01 -3.96294534e-01 1.33386254e+00 2.63409261e-02 3.01961660e-01 -7.59581447e-01 -2.58543819e-01 6.49953857e-02 -9.67795014e-01 -2.00043723e-01 5.19423664e-01 -8.91037345e-01 -9.73503232e-01 8.53410304e-01 -4.75031823e-01 -2.48971060e-01 -5.04824638e-01 3.07461768e-01 -2.40418762e-01 6.52462304e-01 -8.47669065e-01 -4.18049365e-01 -5.05920529e-01 -1.30665326e+00 2.46700868e-01 3.38729590e-01 3.14149201e-01 -1.75722277e+00 -1.42305031e-01 -3.18660975e-01 4.48470533e-01 7.87940383e-01 1.32225990e+00 -5.49102008e-01 -1.50625244e-01 -2.17916770e-03 5.44211417e-02 5.31326592e-01 5.42609632e-01 -9.62336920e-03 -5.24633944e-01 -1.17284477e+00 1.61883116e-01 1.69173703e-02 -2.38634646e-02 5.73151588e-01 1.02564490e+00 -2.55522609e-01 -2.19454154e-01 6.51402473e-01 1.72585094e+00 8.77962947e-01 7.86086991e-02 4.00622010e-01 5.36882520e-01 -1.18096210e-01 2.58548200e-01 5.42876720e-01 5.70363641e-01 5.52524805e-01 1.79595724e-01 -2.10784346e-01 1.85077235e-01 1.51105464e-01 4.56259876e-01 1.36823511e+00 6.05624914e-01 -1.14063248e-02 -9.37111795e-01 7.12721586e-01 -1.50709713e+00 -8.75835836e-01 -2.33010545e-01 1.77137578e+00 5.39184809e-01 3.82042944e-01 -1.00129031e-01 6.20702624e-01 4.73514289e-01 4.23846059e-02 -1.03150070e+00 -6.56246483e-01 -5.79434156e-01 6.59759939e-02 1.06854048e-02 4.89712328e-01 -9.67401385e-01 2.63591528e-01 5.24910355e+00 1.14159727e+00 -1.26950479e+00 6.52980134e-02 4.38456804e-01 2.52075642e-01 6.42915219e-02 -5.16460478e-01 -3.43449503e-01 8.65686357e-01 9.80781555e-01 -1.16298163e+00 3.77077371e-01 5.33079565e-01 6.45983160e-01 -1.34617314e-01 -8.30150127e-01 9.38938200e-01 -1.03190228e-01 -1.13047588e+00 1.99571609e-01 -2.24665031e-01 1.21914124e+00 1.21947572e-01 -8.07219520e-02 3.91873896e-01 3.29903245e-01 -7.65325189e-01 3.50764424e-01 4.49069381e-01 7.63693750e-01 -1.16463923e+00 1.02815735e+00 1.79546535e-01 -1.84571123e+00 -5.66485941e-01 -3.21572721e-02 -3.05850822e-02 5.53888738e-01 8.78023624e-01 -5.67994952e-01 1.52272260e+00 1.04561996e+00 1.37380624e+00 -6.87659323e-01 9.65477705e-01 -3.24588150e-01 7.57128537e-01 -3.31042379e-01 3.51182520e-01 2.66846716e-01 -4.53814983e-01 7.36926854e-01 6.77421689e-01 3.16127270e-01 -1.33571982e-01 6.75627947e-01 6.36479497e-01 2.02115864e-01 -2.25309312e-01 -3.53859961e-01 4.65724438e-01 6.19632006e-01 1.31344604e+00 -4.58975375e-01 -6.04725063e-01 -7.73081183e-02 2.96208650e-01 -1.63362101e-01 5.77236891e-01 -7.98005521e-01 -6.06334388e-01 7.60733783e-01 -2.70932317e-01 9.57047120e-02 -1.35094449e-01 -4.21180934e-01 -1.19582522e+00 -4.06013168e-02 -7.31308520e-01 6.38641834e-01 -9.20515954e-01 -1.81894290e+00 6.76080644e-01 1.59968585e-01 -1.50141656e+00 -4.04837251e-01 -3.63160819e-01 -1.11842155e+00 1.17217517e+00 -1.62781119e+00 -8.68014872e-01 -1.43234342e-01 7.59960473e-01 6.99871302e-01 -5.40203452e-01 6.18013322e-01 2.68720597e-01 -9.64242041e-01 4.87819672e-01 8.52675259e-01 2.29828954e-01 -1.06122442e-01 -1.70476675e+00 2.62085617e-01 1.12685788e+00 -4.38476115e-01 -4.49160747e-02 7.19860256e-01 -5.28642476e-01 -1.51967502e+00 -1.15135849e+00 1.47101507e-01 -9.26390290e-02 1.08011234e+00 -1.22318655e-01 -1.45391297e+00 4.45054650e-01 7.04964936e-01 -3.14598228e-03 2.73537397e-01 -3.54209334e-01 3.88469428e-01 -6.41477346e-01 -1.46880305e+00 1.67425394e-01 5.25304675e-01 -4.33776319e-01 -9.19579744e-01 3.33446056e-01 1.58397168e-01 -2.08625078e-01 -1.72200787e+00 8.41809571e-01 -2.46588513e-01 -1.80569872e-01 8.27710152e-01 -2.92361915e-01 -4.96871501e-01 -8.76500010e-01 8.83268937e-02 -2.29088736e+00 -8.17814648e-01 -6.63464308e-01 -4.44219112e-01 1.25886881e+00 9.75667611e-02 -1.21167564e+00 1.05787732e-01 -1.87102720e-01 -1.93300650e-01 -6.71466112e-01 -1.27777052e+00 -1.10699296e+00 7.96613157e-01 -6.71554506e-02 1.23124981e+00 1.66286767e+00 4.53826666e-01 3.09801191e-01 1.91627279e-01 6.84554636e-01 8.50721121e-01 4.33752418e-01 1.97671071e-01 -1.31752217e+00 3.39121640e-01 -7.12235749e-01 -6.97114289e-01 -2.43964657e-01 4.43806887e-01 -1.04125512e+00 -4.83230770e-01 -1.93247485e+00 -3.25238198e-01 -2.29504809e-01 -8.16866994e-01 3.25507820e-01 -7.22158551e-02 -1.01446010e-01 8.63505006e-02 -8.64102915e-02 -8.11771899e-02 1.14006388e+00 1.07965565e+00 -4.70110953e-01 -5.98279834e-02 -8.93331319e-02 2.43356094e-01 4.57973778e-01 1.39540792e+00 4.12608325e-01 -6.25907004e-01 -1.29150659e-01 -1.87394291e-01 3.02990645e-01 -1.04148582e-01 -1.41797221e+00 1.26070842e-01 9.20050591e-02 8.54359269e-01 -1.06248772e+00 -2.38594279e-01 -7.66420007e-01 3.60507280e-01 9.01926160e-01 3.28934520e-01 6.69058740e-01 7.12842345e-01 4.02183771e-01 -3.39586437e-01 4.90482152e-01 9.30634618e-01 2.42278904e-01 -1.28014386e+00 4.05510962e-01 -6.77898228e-01 7.80460611e-02 1.27409852e+00 -5.78487664e-02 -3.34993273e-01 -3.21970403e-01 -9.13293183e-01 1.01195371e+00 2.22588345e-01 7.04559684e-01 3.52319568e-01 -1.51655829e+00 -7.07809329e-01 4.75089967e-01 -2.59055406e-01 -3.21574152e-01 3.67268831e-01 8.11790884e-01 -2.69058883e-01 4.10277873e-01 -4.61596251e-01 -9.58434701e-01 -6.43541932e-01 6.64339185e-01 9.12121236e-01 -1.15119979e-01 -8.84935200e-01 2.50827342e-01 -2.65497625e-01 -3.96696299e-01 -1.35403052e-01 -3.51445258e-01 -5.69372356e-01 4.24697936e-01 2.97345132e-01 6.58785224e-01 5.81973910e-01 -7.35939384e-01 -3.02950263e-01 7.51833618e-01 4.44460005e-01 5.73314667e-01 1.29084086e+00 -3.86826664e-01 -1.36755511e-01 5.60894012e-01 1.22858620e+00 -5.59254467e-01 -1.21627927e+00 -1.74701586e-01 2.88918447e-02 -1.48047790e-01 4.52279389e-01 -1.38549078e+00 -1.66313398e+00 8.37218702e-01 9.44496393e-01 5.67380965e-01 1.32632565e+00 -6.58618212e-01 7.61691630e-01 -1.10905105e-02 8.99593115e-01 -1.21993744e+00 -5.58202028e-01 6.23824656e-01 7.37254798e-01 -8.34337592e-01 -1.45653933e-02 3.36783797e-01 -3.10619593e-01 1.17394590e+00 6.99336112e-01 -9.62945749e-04 9.19986784e-01 5.03782034e-01 -8.30496773e-02 -2.83062900e-03 -6.79557920e-01 2.59559780e-01 2.75609910e-01 8.82738650e-01 -1.40056267e-01 2.43758082e-01 -1.68672845e-01 2.52427042e-01 -3.75449032e-01 -2.06651375e-01 5.55832922e-01 6.84831858e-01 -2.45579615e-01 -5.63903332e-01 -2.97476023e-01 6.43123448e-01 -2.00622976e-01 4.85415667e-01 4.13799584e-01 8.05532336e-01 1.12141937e-01 9.39959586e-01 6.02252632e-02 -2.54630655e-01 5.06183207e-01 -4.06816714e-02 2.35223711e-01 -4.84336279e-02 -5.04667640e-01 -2.24607274e-01 -2.64735937e-01 -3.21854740e-01 1.79648608e-01 -6.96182787e-01 -1.44458163e+00 -4.70016181e-01 -2.44165644e-01 8.56735349e-01 4.16885495e-01 9.40839291e-01 1.01348348e-01 9.82571959e-01 1.29143775e+00 -7.89910257e-01 -6.91435874e-01 -1.00553989e+00 -1.02310598e+00 3.91702652e-01 4.20623094e-01 -1.10486186e+00 -6.48595870e-01 -3.92758667e-01]
[5.9634504318237305, 2.6055026054382324]
05fd7bd6-8a19-4a2c-a843-950c9ac1c6cb
self-supervised-learning-of-event-based
2106.01862
null
https://arxiv.org/abs/2106.01862v2
https://arxiv.org/pdf/2106.01862v2.pdf
Self-Supervised Learning of Event-Based Optical Flow with Spiking Neural Networks
The field of neuromorphic computing promises extremely low-power and low-latency sensing and processing. Challenges in transferring learning algorithms from traditional artificial neural networks (ANNs) to spiking neural networks (SNNs) have so far prevented their application to large-scale, complex regression tasks. Furthermore, realizing a truly asynchronous and fully neuromorphic pipeline that maximally attains the abovementioned benefits involves rethinking the way in which this pipeline takes in and accumulates information. In the case of perception, spikes would be passed as-is and one-by-one between an event camera and an SNN, meaning all temporal integration of information must happen inside the network. In this article, we tackle these two problems. We focus on the complex task of learning to estimate optical flow from event-based camera inputs in a self-supervised manner, and modify the state-of-the-art ANN training pipeline to encode minimal temporal information in its inputs. Moreover, we reformulate the self-supervised loss function for event-based optical flow to improve its convexity. We perform experiments with various types of recurrent ANNs and SNNs using the proposed pipeline. Concerning SNNs, we investigate the effects of elements such as parameter initialization and optimization, surrogate gradient shape, and adaptive neuronal mechanisms. We find that initialization and surrogate gradient width play a crucial part in enabling learning with sparse inputs, while the inclusion of adaptivity and learnable neuronal parameters can improve performance. We show that the performance of the proposed ANNs and SNNs are on par with that of the current state-of-the-art ANNs trained in a self-supervised manner.
['Federico Paredes-Vallés', 'Jesse Hagenaars', 'Guido de Croon']
2021-06-03
null
http://proceedings.neurips.cc/paper/2021/hash/39d4b545fb02556829aab1db805021c3-Abstract.html
http://proceedings.neurips.cc/paper/2021/file/39d4b545fb02556829aab1db805021c3-Paper.pdf
neurips-2021-12
['event-based-optical-flow']
['computer-vision']
[ 5.24189949e-01 -2.02893302e-01 4.18066859e-01 -2.65698522e-01 5.92722669e-02 -4.99593645e-01 6.12309813e-01 -4.67749760e-02 -1.10767674e+00 8.19853067e-01 -2.10996211e-01 -2.60306580e-04 -1.36803493e-01 -6.62787497e-01 -9.68110263e-01 -8.99631381e-01 -1.87768489e-01 3.63962315e-02 5.35315156e-01 3.64581198e-02 2.61095226e-01 7.27540195e-01 -1.78730834e+00 2.68297762e-01 5.33609688e-01 1.26641774e+00 3.50372881e-01 8.75133216e-01 -4.61721867e-02 8.48897636e-01 -4.99170810e-01 -1.20956585e-01 2.85971045e-01 -5.11587381e-01 -2.19479769e-01 -3.62744629e-01 2.61132121e-01 -1.09594740e-01 -5.31025767e-01 7.19061673e-01 5.65442741e-01 4.98899398e-03 6.39992356e-01 -1.18936920e+00 -2.59982556e-01 4.23121005e-01 -9.19443667e-02 4.34991509e-01 -1.56502724e-01 5.60592353e-01 5.24976015e-01 -6.60337389e-01 6.00113034e-01 7.71957397e-01 7.30541110e-01 8.24580133e-01 -1.26012099e+00 -6.83897972e-01 4.21799384e-02 1.58576250e-01 -1.03219926e+00 -7.27562606e-01 6.58938348e-01 -3.65963310e-01 1.25546288e+00 -2.33882576e-01 1.10826719e+00 1.14962864e+00 3.83263111e-01 5.12692213e-01 1.07641697e+00 -1.51033849e-01 7.92525411e-01 -1.31970018e-01 -5.42431790e-03 6.13301277e-01 3.10653418e-01 9.51273143e-02 -8.71720314e-01 2.85913765e-01 1.09719515e+00 -1.60067119e-02 -1.93896174e-01 -1.43473879e-01 -1.16320479e+00 3.66152108e-01 5.86358964e-01 3.38700771e-01 -3.00029069e-01 6.16382301e-01 2.72636861e-01 3.85293067e-01 -9.91203710e-02 5.01641691e-01 -3.10221076e-01 -3.48317355e-01 -1.16075587e+00 -1.67391449e-01 9.71238852e-01 4.22971576e-01 8.04425001e-01 3.75424355e-01 -1.72980819e-02 3.90403271e-01 1.22208260e-01 3.19474488e-01 6.85898364e-01 -1.17584419e+00 9.96307731e-02 5.83899975e-01 -1.48700044e-01 -5.35076559e-01 -5.75665474e-01 -4.96525288e-01 -1.00688684e+00 5.33449829e-01 7.16097176e-01 -2.72007078e-01 -9.30857599e-01 1.85814238e+00 -1.73174679e-01 4.82869685e-01 2.38977477e-01 9.89769936e-01 4.56130892e-01 6.71783268e-01 -1.28265575e-01 -3.81513447e-01 1.01238573e+00 -7.03003645e-01 -5.56749225e-01 -4.16413665e-01 2.32366070e-01 -2.70814568e-01 8.69035482e-01 4.22064185e-01 -1.37323618e+00 -4.72099572e-01 -1.15045607e+00 -1.41367495e-01 -4.22166139e-01 5.53071834e-02 6.53213561e-01 4.39496636e-01 -1.18507326e+00 9.18677568e-01 -1.36554897e+00 -3.78528833e-01 7.45636106e-01 7.46590137e-01 -2.01506376e-01 3.86886328e-01 -8.09451222e-01 7.36634016e-01 1.71203494e-01 2.54700661e-01 -9.34635520e-01 -7.46599019e-01 -3.85644555e-01 1.47437602e-01 -1.66775778e-01 -9.08296645e-01 9.92220819e-01 -1.14977086e+00 -1.90228570e+00 6.90588236e-01 -3.25580746e-01 -8.40663612e-01 3.85771066e-01 6.68561757e-02 -4.16546874e-02 2.17951372e-01 -3.95063996e-01 9.34478045e-01 8.36459160e-01 -8.53499532e-01 -4.15879190e-01 -3.68379384e-01 -5.41115254e-02 -8.50561708e-02 -7.21889615e-01 -1.64015606e-01 -1.56149819e-01 -3.58796060e-01 -4.26050499e-02 -7.84131289e-01 -1.65599182e-01 4.67877120e-01 1.48535073e-01 1.76593542e-01 6.90584183e-01 -3.18044238e-02 8.38025987e-01 -2.04242039e+00 2.51964301e-01 -3.97119038e-02 6.65995106e-02 3.33881915e-01 -8.68840069e-02 1.66865394e-01 1.72582224e-01 -4.12543505e-01 -5.39286494e-01 -5.16523242e-01 -2.69889027e-01 4.33034748e-01 -1.98849842e-01 3.80332857e-01 4.56683010e-01 9.90324140e-01 -7.31531560e-01 -2.24717021e-01 9.14604813e-02 7.54406631e-01 -5.87588072e-01 2.23154575e-01 -2.22394541e-01 7.32494533e-01 -1.23368345e-01 3.94371390e-01 2.13929951e-01 -3.48808527e-01 -1.10059783e-01 -2.09977522e-01 -5.76174974e-01 3.16932797e-01 -1.10954309e+00 2.00027394e+00 -5.79600990e-01 9.79043543e-01 9.36838090e-02 -1.14815855e+00 1.02461326e+00 8.67321715e-02 6.15236342e-01 -1.03092825e+00 2.02907518e-01 3.50709587e-01 2.80674815e-01 -3.38952243e-01 4.01696414e-02 9.19845514e-03 3.60918730e-01 4.17844713e-01 4.06645983e-01 1.39209181e-01 3.40747148e-01 -3.51444446e-02 1.40378237e+00 3.35325837e-01 -1.41543671e-01 -1.91142872e-01 2.99598753e-01 -2.24902660e-01 4.90996301e-01 7.23376095e-01 -9.48536396e-02 5.67414045e-01 4.57050145e-01 -3.82362306e-01 -1.08637106e+00 -1.17890370e+00 -1.31475195e-01 8.01532269e-01 -5.80804422e-02 -3.70765738e-02 -6.66249335e-01 6.35087192e-02 -2.24875376e-01 1.95201382e-01 -3.53917181e-01 -1.23668380e-01 -6.76787674e-01 -9.70894396e-01 7.51290202e-01 5.67392588e-01 4.83442545e-01 -1.29573250e+00 -1.58503795e+00 5.62188685e-01 3.62318873e-01 -1.34049249e+00 1.16794571e-01 8.39012861e-01 -1.00806701e+00 -7.69900501e-01 -6.21104240e-01 -7.06039011e-01 6.79615796e-01 -2.84278214e-01 8.15328181e-01 -4.07148868e-01 -4.82531846e-01 2.32233346e-01 4.99629043e-02 -4.11749959e-01 4.73197773e-02 8.66549164e-02 1.67753249e-02 2.16607258e-01 5.97619899e-02 -1.28157306e+00 -8.52005959e-01 7.86631927e-02 -1.14119267e+00 7.43405670e-02 6.72537386e-01 6.97602510e-01 6.57606006e-01 -3.02419305e-01 5.33642352e-01 -7.10833967e-01 2.83710629e-01 -2.01529667e-01 -7.69959509e-01 1.68151557e-02 -5.08995593e-01 4.22019631e-01 1.05022228e+00 -7.44669378e-01 -7.97807455e-01 5.98475575e-01 -1.41627446e-01 -4.30927932e-01 4.09966009e-03 2.19084710e-01 3.08639139e-01 -4.59387064e-01 7.32979417e-01 3.02932113e-01 6.86495155e-02 -5.43655306e-02 3.87876332e-02 2.92280465e-01 7.24612057e-01 -3.53775263e-01 5.06614089e-01 8.35473597e-01 3.79160196e-01 -6.62250996e-01 -4.75885719e-01 -1.98344857e-01 -5.74098706e-01 -3.52362633e-01 6.78879321e-01 -7.47927427e-01 -1.09976864e+00 8.72966588e-01 -1.36076272e+00 -7.21068919e-01 -7.03700721e-01 4.66156751e-01 -7.62343645e-01 -2.29596227e-01 -7.48300433e-01 -8.41768980e-01 -2.99051851e-01 -9.72159684e-01 6.89611018e-01 6.54910505e-01 1.50829718e-01 -8.84663284e-01 2.76382416e-01 -2.38237515e-01 8.22584927e-01 1.36993989e-01 5.28232872e-01 -4.02898937e-01 -7.45678484e-01 2.11992562e-01 -2.89941519e-01 2.20641419e-01 -1.01052850e-01 6.62893355e-02 -1.29017544e+00 -1.76227704e-01 1.42968804e-01 -3.79660845e-01 1.26389611e+00 4.74921435e-01 1.10068905e+00 -2.14464322e-01 -4.19326238e-02 9.78045404e-01 1.65007043e+00 1.61595136e-01 7.49616385e-01 2.15429008e-01 5.08122444e-01 5.46970308e-01 -3.69987547e-01 5.10710299e-01 3.46579760e-01 3.30638617e-01 6.32992566e-01 1.24597095e-01 -1.73894137e-01 2.80497912e-02 5.69170833e-01 9.37827229e-01 -2.25882873e-01 -3.07425875e-02 -7.48896062e-01 4.95448142e-01 -1.92127991e+00 -9.10954237e-01 1.32910281e-01 2.17404890e+00 9.67152655e-01 3.35925132e-01 2.73791961e-02 3.30450654e-01 3.71497840e-01 1.64723545e-02 -9.15357053e-01 -4.52336997e-01 -4.25548553e-01 5.25716245e-01 5.11806369e-01 2.47780561e-01 -7.42427945e-01 7.92808354e-01 5.52961969e+00 1.38394982e-01 -1.60212898e+00 5.42176217e-02 3.36878657e-01 -4.06930596e-01 -6.62200972e-02 -2.79069524e-02 -8.38447928e-01 5.77100456e-01 1.34686339e+00 2.14550391e-01 9.31912780e-01 2.41289601e-01 2.89956301e-01 -1.97838202e-01 -1.28186476e+00 1.11366880e+00 -1.40382633e-01 -1.54302752e+00 -1.50238588e-01 -2.15113312e-01 6.63958669e-01 3.11331391e-01 -7.60380924e-02 -3.35629694e-02 -5.93142621e-02 -1.01794004e+00 6.58295870e-01 9.78928924e-01 5.06034672e-01 -3.21848482e-01 4.70764816e-01 3.22909862e-01 -1.05368340e+00 -3.79717261e-01 -3.56796980e-01 -4.68399972e-01 1.57535002e-01 8.68488193e-01 -2.67375290e-01 2.88234395e-03 8.26034546e-01 9.21334982e-01 -5.49171627e-01 1.30080986e+00 5.80385141e-02 4.73636270e-01 -6.58922791e-01 -3.22648793e-01 1.60602123e-01 -1.65015802e-01 3.86329144e-01 1.29306424e+00 3.32234919e-01 7.50981737e-03 -4.22745258e-01 1.14848530e+00 -1.47981137e-01 -3.32819611e-01 -5.39088190e-01 -1.17525078e-01 4.12055492e-01 1.32071793e+00 -8.50806653e-01 -2.39254143e-02 -3.94309163e-01 8.42924178e-01 4.08450902e-01 3.98680896e-01 -5.69603145e-01 -4.58307117e-01 5.36229491e-01 1.61636263e-01 5.03898323e-01 -3.40524167e-01 -5.79068601e-01 -1.09958661e+00 1.78573787e-01 -2.27571189e-01 1.31970849e-02 -7.54009604e-01 -1.00790894e+00 6.65298760e-01 -5.63655138e-01 -9.98526037e-01 -4.30155069e-01 -8.06711495e-01 -7.00645566e-01 3.99498641e-01 -1.76999569e+00 -7.67375052e-01 -4.33784574e-01 8.13274205e-01 1.08856820e-01 1.22235622e-02 7.24769115e-01 3.46759349e-01 -6.05278194e-01 3.67947727e-01 1.77775715e-02 4.21684124e-02 5.28328240e-01 -8.71550024e-01 1.99617937e-01 1.15137684e+00 2.36833274e-01 4.14898574e-01 4.69594449e-01 -6.50796369e-02 -1.73366010e+00 -1.06889415e+00 5.81205487e-01 -4.66485210e-02 8.85283709e-01 -5.67382693e-01 -8.19680274e-01 4.11374301e-01 5.40219583e-02 5.11480868e-01 1.71586379e-01 -4.72735852e-01 -4.11483765e-01 -6.17134571e-01 -9.76829886e-01 5.60516059e-01 1.21411276e+00 -5.18295884e-01 -2.28775948e-01 -9.37785953e-02 3.27025831e-01 -1.28276110e-01 -6.25926614e-01 4.08052713e-01 8.18389058e-01 -1.17316794e+00 7.46825933e-01 -2.72006392e-01 4.77886617e-01 -3.49697739e-01 5.55214807e-02 -1.10337639e+00 6.19581863e-02 -8.26888323e-01 -4.34176981e-01 9.22927737e-01 3.11566263e-01 -7.86330044e-01 9.80146289e-01 3.59283715e-01 -2.39873439e-01 -8.67850721e-01 -1.19132471e+00 -6.09005034e-01 -8.00653994e-02 -2.78842598e-01 -8.15756768e-02 3.48541021e-01 -1.83358222e-01 2.69767076e-01 3.23731080e-02 4.54108305e-02 6.04264021e-01 -7.99396411e-02 2.99244523e-01 -1.27793014e+00 -4.05286312e-01 -5.61117649e-01 -6.23893619e-01 -9.88458574e-01 1.01266369e-01 -7.44761825e-01 2.16923967e-01 -1.36603236e+00 -6.05055541e-02 -2.97770828e-01 -4.62268084e-01 6.19269133e-01 3.65914971e-01 3.66222560e-01 2.82045364e-01 2.42158398e-01 -5.85536420e-01 3.51102829e-01 9.27128673e-01 1.08860247e-01 -3.20311069e-01 -1.59238905e-01 -1.99231684e-01 5.37304103e-01 7.34870791e-01 -5.31448722e-01 -3.71057868e-01 -7.07826853e-01 3.81721467e-01 -5.17024063e-02 6.53796613e-01 -1.62059081e+00 1.12916768e+00 2.46093333e-01 4.43414360e-01 -6.33701235e-02 5.32116413e-01 -8.15856934e-01 -1.17417602e-02 6.26801491e-01 -3.67852300e-01 1.35118082e-01 2.08832368e-01 3.67576540e-01 -1.82299823e-01 -2.22524315e-01 9.36404705e-01 -2.04105839e-01 -5.32685816e-01 2.29138628e-01 -6.07851982e-01 1.81508407e-01 7.77402163e-01 -5.73006511e-01 -5.38201630e-01 -7.55669177e-02 -5.47351003e-01 -9.59018916e-02 3.47832829e-01 6.17784262e-03 6.07043922e-01 -7.97762454e-01 -3.65296632e-01 5.69626808e-01 -1.85377508e-01 7.76685998e-02 -1.83196157e-01 8.89373302e-01 -3.98293108e-01 2.98545092e-01 -9.16863680e-01 -7.39494801e-01 -5.58399379e-01 1.25944957e-01 4.67479885e-01 -5.52484170e-02 -2.51920998e-01 7.76071012e-01 -1.38225526e-01 -1.82169080e-01 5.35705209e-01 -4.53935534e-01 -6.38418794e-02 -2.94221612e-03 2.95407504e-01 3.37663531e-01 1.96254551e-01 -8.04229975e-02 -4.05673712e-01 6.94363654e-01 2.28352264e-01 -2.71829635e-01 1.64278281e+00 1.01637796e-01 -1.92380771e-01 7.89592743e-01 1.02148771e+00 -5.13442934e-01 -1.81856406e+00 2.34124623e-02 -1.26102373e-01 2.71251738e-01 5.45464605e-02 -6.94921315e-01 -1.32628632e+00 1.23850119e+00 7.93207288e-01 9.89973545e-04 1.40808082e+00 -2.83482015e-01 7.91293740e-01 6.14723861e-01 3.47552419e-01 -9.68651772e-01 2.88786709e-01 7.22412288e-01 3.37486774e-01 -8.76814425e-01 -3.72257113e-01 9.58938822e-02 -1.82995677e-01 1.34144580e+00 5.98809838e-01 -5.19375503e-01 6.15574479e-01 8.47579241e-01 -1.48833200e-01 1.07779518e-01 -1.08197105e+00 -1.67651594e-01 -1.24391861e-01 5.33089221e-01 2.03988239e-01 -4.15762693e-01 -9.07921717e-02 3.76190156e-01 -2.51248050e-02 4.56796706e-01 5.22046268e-01 9.35277820e-01 -3.89400840e-01 -8.67612302e-01 1.27860770e-01 4.92985785e-01 -3.84405077e-01 -1.04703672e-01 -1.15716770e-01 4.58037406e-01 6.02858290e-02 4.98889089e-01 4.32589561e-01 -2.73144573e-01 2.38112658e-01 4.74226773e-02 7.37209320e-01 -3.53995204e-01 -8.10451210e-01 -2.21653074e-01 -3.42303425e-01 -7.16925859e-01 -7.73935378e-01 -5.37821054e-01 -1.71465409e+00 2.21928768e-02 8.59455243e-02 -2.76669264e-01 1.10620308e+00 1.09255612e+00 5.01447618e-01 6.60615325e-01 4.32544291e-01 -1.03834820e+00 -2.61316210e-01 -5.20897031e-01 -1.16309419e-01 9.49385539e-02 5.43763340e-01 -3.31875741e-01 -5.09501874e-01 2.98478037e-01]
[8.232086181640625, 2.3732922077178955]
e5673ae5-5c2c-4922-98b6-3199728913be
stprivacy-spatio-temporal-tubelet
2301.03046
null
https://arxiv.org/abs/2301.03046v2
https://arxiv.org/pdf/2301.03046v2.pdf
STPrivacy: Spatio-Temporal Privacy-Preserving Action Recognition
Existing methods of privacy-preserving action recognition (PPAR) mainly focus on frame-level (spatial) privacy removal through 2D CNNs. Unfortunately, they have two major drawbacks. First, they may compromise temporal dynamics in input videos, which are critical for accurate action recognition. Second, they are vulnerable to practical attacking scenarios where attackers probe for privacy from an entire video rather than individual frames. To address these issues, we propose a novel framework STPrivacy to perform video-level PPAR. For the first time, we introduce vision Transformers into PPAR by treating a video as a tubelet sequence, and accordingly design two complementary mechanisms, i.e., sparsification and anonymization, to remove privacy from a spatio-temporal perspective. In specific, our privacy sparsification mechanism applies adaptive token selection to abandon action-irrelevant tubelets. Then, our anonymization mechanism implicitly manipulates the remaining action-tubelets to erase privacy in the embedding space through adversarial learning. These mechanisms provide significant advantages in terms of privacy preservation for human eyes and action-privacy trade-off adjustment during deployment. We additionally contribute the first two large-scale PPAR benchmarks, VP-HMDB51 and VP-UCF101, to the community. Extensive evaluations on them, as well as two other tasks, validate the effectiveness and generalization capability of our framework.
['Shuicheng Yan', 'Mike Zheng Shou', 'Jussi Keppo', 'Pan Zhou', 'Xiangyu Xu', 'Jiahe Li', 'Jia-Wei Liu', 'Hehe Fan', 'Jun Liu', 'Ming Li']
2023-01-08
null
null
null
null
['facial-expression-recognition', 'video-understanding']
['computer-vision', 'computer-vision']
[ 3.77474606e-01 2.57498417e-02 -3.34889233e-01 -1.43907323e-01 -6.36415064e-01 -9.36533034e-01 3.00492167e-01 -1.49785981e-01 -5.72555065e-01 5.18370628e-01 3.69074583e-01 -3.83966476e-01 1.09163150e-01 -6.11278355e-01 -8.38119924e-01 -8.73924375e-01 -1.90297917e-01 -3.70120376e-01 1.78939566e-01 9.37267169e-02 1.98413734e-03 7.02470362e-01 -1.10291135e+00 3.12824905e-01 6.89830661e-01 1.16263974e+00 -6.16473436e-01 3.13964933e-01 3.69205743e-01 9.28694785e-01 -5.22581637e-01 -8.73439670e-01 9.15924728e-01 -6.81564808e-02 -4.99525458e-01 2.14074865e-01 5.13604939e-01 -8.98959994e-01 -1.11582530e+00 1.01801753e+00 4.31614488e-01 9.88489389e-02 4.82004210e-02 -1.63674188e+00 -6.65811062e-01 3.91001284e-01 -8.02640259e-01 4.39435504e-02 2.10575417e-01 7.73661494e-01 7.58226395e-01 -4.54696536e-01 3.77175331e-01 1.12482309e+00 7.56379545e-01 7.08396912e-01 -1.08227539e+00 -8.03391933e-01 4.40599740e-01 2.24735200e-01 -1.32193267e+00 -6.78734481e-01 6.70258343e-01 -2.62557507e-01 6.88163221e-01 5.81386507e-01 5.33451080e-01 1.43656325e+00 5.62921241e-02 9.91370261e-01 9.03786421e-01 1.21089198e-01 2.09846139e-01 -1.24720633e-01 -1.43159717e-01 4.64281738e-01 2.48199239e-01 1.44101426e-01 -5.50539255e-01 -4.29209888e-01 8.49785388e-01 1.69626370e-01 -6.50183260e-01 -6.44250751e-01 -1.11328423e+00 6.61071420e-01 1.42568007e-01 -3.14302504e-01 -1.64545506e-01 2.94893593e-01 7.95215964e-01 4.22236681e-01 1.84637055e-01 2.40412369e-01 -3.48405153e-01 -1.17832117e-01 -4.40904558e-01 2.99020559e-01 6.19128764e-01 1.08939707e+00 3.79888862e-01 -1.14990793e-01 -6.36267483e-01 2.50376195e-01 1.33399041e-02 2.52444148e-01 3.60167801e-01 -1.14356661e+00 9.51074600e-01 3.21978986e-01 6.52627572e-02 -1.44264221e+00 8.97588730e-02 -1.66737270e-02 -9.58676279e-01 1.29514024e-01 5.05608439e-01 -2.58785665e-01 -6.79410815e-01 1.92127359e+00 3.39742035e-01 4.13382500e-01 1.03194453e-01 9.18845713e-01 3.63791555e-01 3.22532475e-01 2.01926142e-01 -1.63019344e-01 1.32529187e+00 -9.20595586e-01 -6.50373101e-01 -7.44863600e-02 6.07389033e-01 -2.40178928e-01 1.06458473e+00 2.27285564e-01 -9.22209084e-01 -1.81537524e-01 -8.81724834e-01 -3.61277908e-02 -1.64444104e-01 5.38656227e-02 6.05690897e-01 8.94362152e-01 -7.14310825e-01 4.32538062e-01 -1.10213959e+00 -8.53652582e-02 9.90500510e-01 5.61521232e-01 -7.33115494e-01 1.07816100e-01 -1.22043169e+00 1.14286117e-01 2.54753351e-01 -5.65737262e-02 -8.28659773e-01 -7.39449024e-01 -9.17924821e-01 1.62084460e-01 7.29020357e-01 -5.83016217e-01 1.01994121e+00 -8.83310497e-01 -1.45522070e+00 7.90056765e-01 1.61600858e-01 -9.29340184e-01 1.18183219e+00 -2.23748952e-01 -3.99635583e-01 3.76618564e-01 -1.39287010e-01 4.23234314e-01 1.09432995e+00 -9.58659410e-01 -6.71089828e-01 -4.91876960e-01 4.41332161e-01 1.45067602e-01 -9.44189727e-01 -2.35372055e-02 -7.35179126e-01 -1.12919152e+00 -2.38439485e-01 -8.97999108e-01 -3.56538445e-01 6.26665294e-01 -6.12755418e-01 3.10180128e-01 1.14423347e+00 -6.94175661e-01 1.24896681e+00 -2.69106817e+00 -1.58993199e-01 1.40418082e-01 5.80196619e-01 6.09904766e-01 -1.93741679e-01 1.66675985e-01 -1.78030804e-01 3.04983944e-01 -2.54497051e-01 -4.58877236e-01 4.59690429e-02 1.10021748e-01 -6.87911928e-01 8.19547534e-01 1.83847770e-01 8.67461085e-01 -8.86021495e-01 -3.67479116e-01 2.86650091e-01 3.98907840e-01 -7.50408590e-01 2.43899859e-02 -3.93027291e-02 5.73592901e-01 -7.89690495e-01 6.54196024e-01 9.22355890e-01 6.40067384e-02 2.67984450e-01 -2.11897776e-01 1.52760208e-01 -6.89564720e-02 -9.70172822e-01 1.45012915e+00 -6.90779388e-02 4.70276564e-01 5.32055534e-02 -8.91690850e-01 4.87111181e-01 2.50217319e-01 7.63042629e-01 -5.52286088e-01 1.08401597e-01 -1.60625666e-01 -4.05712575e-01 -4.68559235e-01 3.72703344e-01 3.35992485e-01 -2.37550706e-01 3.04969877e-01 -4.57111955e-01 5.56775451e-01 -2.44113579e-01 4.37248051e-02 1.49550772e+00 3.35827805e-02 2.92410314e-01 2.25304887e-01 6.15174770e-01 -4.70078468e-01 1.06578052e+00 7.93697059e-01 -7.51118660e-01 6.19526029e-01 9.27400768e-01 -6.07316315e-01 -7.34749675e-01 -9.30964112e-01 1.92323878e-01 7.00267613e-01 3.31317902e-01 -5.46756089e-01 -7.87107825e-01 -1.24608302e+00 3.05423290e-01 3.62952530e-01 -5.86853802e-01 -4.86325771e-01 -8.21504831e-01 -4.12932456e-01 1.03638887e+00 5.32512307e-01 9.49768066e-01 -6.99813902e-01 -7.23806262e-01 -4.74225767e-02 -2.60630220e-01 -1.48254573e+00 -9.42753971e-01 -2.85833955e-01 -5.88317692e-01 -1.19652379e+00 -5.25594950e-01 -2.59459287e-01 6.62356675e-01 4.43586826e-01 5.75702488e-01 -7.22364932e-02 -9.93803069e-02 4.63339657e-01 -3.80022734e-01 -1.09041356e-01 -1.48357183e-01 -6.84963837e-02 8.94755274e-02 5.27779698e-01 3.15117061e-01 -7.59873629e-01 -7.34634697e-01 4.76582676e-01 -1.01461244e+00 -2.95845687e-01 4.00735527e-01 6.62498474e-01 7.81375229e-01 3.19793373e-01 -3.74507196e-02 -7.38770962e-01 4.13097441e-01 -3.39754552e-01 -6.73528135e-01 2.14074418e-01 -9.12272260e-02 -3.72415006e-01 8.73288274e-01 -5.48180521e-01 -7.86819160e-01 3.53513896e-01 4.05256748e-02 -1.09524083e+00 -1.03416048e-01 -9.55985412e-02 -7.56447434e-01 -4.55472797e-01 3.16063523e-01 3.99820507e-01 1.38318852e-01 -2.82700807e-01 3.11425835e-01 4.01228309e-01 7.55641937e-01 -4.45594549e-01 9.97094214e-01 8.34479928e-01 6.49615303e-02 -6.15982890e-01 -4.03468072e-01 -1.25924304e-01 -3.36732984e-01 1.37928948e-01 7.69926786e-01 -1.04514229e+00 -1.10964155e+00 8.61894011e-01 -1.01075923e+00 -1.41064063e-01 -5.19718111e-01 2.50221103e-01 -7.16307461e-01 1.01137757e+00 -4.70259786e-01 -6.26535058e-01 -1.83740944e-01 -1.21768844e+00 9.33085918e-01 3.99745554e-02 2.97304820e-02 -6.07384861e-01 -3.53284270e-01 4.10970122e-01 3.87940779e-02 6.35457456e-01 5.88001251e-01 -5.83668649e-01 -8.34404588e-01 -3.76603007e-01 -1.85624093e-01 5.04814863e-01 2.43472561e-01 -1.44977167e-01 -9.25482571e-01 -6.03134990e-01 1.80877745e-01 -3.27870995e-01 8.84244502e-01 9.50078964e-02 1.99079955e+00 -9.74186957e-01 -2.82711715e-01 1.23216736e+00 1.11086440e+00 1.19571798e-01 9.40466940e-01 4.27181244e-01 9.16589856e-01 2.88268209e-01 6.32797003e-01 8.63478065e-01 2.12802261e-01 7.16599822e-01 7.28287220e-01 -9.81088076e-03 1.07351273e-01 -4.80769902e-01 5.71962893e-01 5.16644400e-03 1.17797442e-02 -5.27968585e-01 -4.34269100e-01 3.54025602e-01 -2.03989601e+00 -1.03261983e+00 2.36129880e-01 2.42716265e+00 6.70022905e-01 1.05135189e-02 3.83821428e-01 9.36106369e-02 6.41427934e-01 6.04184210e-01 -7.94083178e-01 4.03749682e-02 -2.58231610e-01 -1.56817570e-01 1.04650104e+00 7.65589764e-03 -1.56115472e+00 9.57318425e-01 5.22978401e+00 8.43484342e-01 -1.03034186e+00 9.22118127e-02 7.44793773e-01 -3.17607611e-01 -1.69602334e-01 -6.41423464e-02 -4.98202026e-01 6.64518893e-01 4.36587334e-01 -6.11965768e-02 4.40235376e-01 7.61004806e-01 1.99037686e-01 4.67548132e-01 -1.03993654e+00 1.14738250e+00 -1.61206543e-01 -1.35131896e+00 9.86658558e-02 2.84396499e-01 3.24679881e-01 -3.40968579e-01 3.09173763e-01 1.89378541e-02 2.93941617e-01 -7.72016048e-01 7.11670101e-01 2.40931451e-01 9.32562053e-01 -9.29942667e-01 3.81198585e-01 8.13309625e-02 -1.05950642e+00 -4.09455329e-01 -3.33566368e-01 1.75893471e-01 5.15613444e-02 2.05006465e-01 -1.17083877e-01 6.58753157e-01 8.27595353e-01 7.83282280e-01 -3.92336577e-01 8.98575723e-01 -3.66822422e-01 4.79533434e-01 -3.04754138e-01 4.98954237e-01 2.73386627e-01 1.54441688e-02 7.79482663e-01 8.81079733e-01 1.36208221e-01 2.38108590e-01 4.42827754e-02 5.69131672e-01 -3.43176514e-01 -1.02654941e-01 -7.26118863e-01 -1.83855146e-01 5.82713366e-01 8.71384501e-01 -2.54387826e-01 1.60331756e-01 -5.09819925e-01 1.32539856e+00 1.72204524e-01 3.77124697e-01 -1.16853702e+00 -3.74421179e-01 1.41477501e+00 1.43943012e-01 5.26257157e-01 -1.51654646e-01 -1.65930420e-01 -1.51870251e+00 5.07579148e-01 -1.30250192e+00 5.67480505e-01 8.52481648e-03 -1.17795551e+00 2.60557622e-01 -1.95967004e-01 -1.51033819e+00 2.35028803e-01 -3.23906869e-01 -4.66234773e-01 3.90163392e-01 -1.36831653e+00 -1.18442774e+00 -2.35712826e-01 1.05426276e+00 1.46211013e-01 -2.02918306e-01 6.57788455e-01 4.37243551e-01 -8.34503114e-01 1.32540047e+00 3.68925817e-02 5.56604862e-01 5.44494033e-01 -7.52708793e-01 7.62642801e-01 1.10646594e+00 -1.14152562e-02 5.03531635e-01 3.34237844e-01 -5.25271177e-01 -1.63264477e+00 -1.51271796e+00 4.35262650e-01 -5.01026511e-01 6.11422360e-01 -6.54560924e-01 -8.73259485e-01 9.08094764e-01 -2.01769292e-01 5.21715462e-01 6.22010827e-01 -4.69335198e-01 -6.02518678e-01 -2.44874865e-01 -1.36052597e+00 8.93166244e-01 1.26838815e+00 -6.29728079e-01 -1.84262037e-01 4.65102166e-01 9.64170456e-01 -5.33839166e-01 -7.38468170e-01 3.92048031e-01 6.51373804e-01 -1.19475305e+00 1.20725620e+00 -8.34287107e-01 1.92206666e-01 -3.85682106e-01 -1.73267350e-01 -7.11976349e-01 -1.68951541e-01 -1.36759830e+00 -5.11527479e-01 1.32744372e+00 -1.17663845e-01 -9.00142968e-01 1.17800403e+00 8.44224334e-01 2.38460392e-01 -6.06464982e-01 -1.17355847e+00 -1.11943591e+00 -1.78461328e-01 -3.72310251e-01 1.03705800e+00 1.05815768e+00 -4.00778472e-01 -4.56308335e-01 -9.32267427e-01 5.09846509e-01 7.27579594e-01 -3.40671360e-01 1.07621014e+00 -4.82743263e-01 -4.65584785e-01 -2.44418353e-01 -7.65429974e-01 -1.13998652e+00 3.39105725e-01 -3.36032599e-01 -1.70905307e-01 -6.59344554e-01 -3.96426506e-02 -3.16076487e-01 -4.27562982e-01 8.40957582e-01 -4.12507057e-02 1.29151180e-01 3.36735755e-01 3.50758970e-01 -4.65885937e-01 7.61278212e-01 1.15412903e+00 -1.99698985e-01 -1.36266917e-01 2.46831432e-01 -8.28168154e-01 7.27891207e-01 7.43278503e-01 -4.74487484e-01 -7.04467297e-01 -6.56340599e-01 -3.31554025e-01 -2.84632593e-02 7.49083459e-01 -1.01408529e+00 8.69843364e-02 -3.75588417e-01 1.15077689e-01 -1.41809344e-01 2.99405813e-01 -1.14970791e+00 9.83758047e-02 5.23663819e-01 -3.13044310e-01 -4.44005691e-02 2.45960131e-01 9.98661697e-01 -1.45080283e-01 3.11021060e-01 8.11680555e-01 2.33000219e-02 -7.81853557e-01 8.98972392e-01 -1.92102343e-01 1.37536481e-01 1.50005925e+00 -4.91036147e-01 -4.78206545e-01 -4.62342352e-01 -4.30758238e-01 4.25286829e-01 8.63322079e-01 4.73710448e-01 5.73979259e-01 -1.26588321e+00 -4.56511945e-01 3.88597220e-01 2.32360601e-01 -1.39874190e-01 4.44098502e-01 8.92263114e-01 -3.93219709e-01 1.93257153e-01 -2.81550318e-01 -1.94781065e-01 -1.32967722e+00 8.45529020e-01 3.52272689e-01 -2.00920030e-01 -9.79098678e-01 8.47430527e-01 5.45252442e-01 -7.45522529e-02 6.31852627e-01 -2.07594603e-01 2.02416196e-01 -2.53130168e-01 6.44031882e-01 2.72879094e-01 -1.55064642e-01 -6.24526799e-01 -4.93812412e-01 2.94364840e-01 -1.76416561e-01 2.76704371e-01 1.11924601e+00 -2.23133355e-01 1.36740610e-01 -4.59241807e-01 1.27102876e+00 1.09455660e-01 -1.82582784e+00 -1.87629074e-01 -2.67532974e-01 -1.18975353e+00 -1.64961949e-01 -3.52614284e-01 -1.55834448e+00 6.50803745e-01 4.74183351e-01 7.34228492e-02 1.40299451e+00 -4.64274764e-01 1.13312876e+00 3.78219783e-01 2.59251237e-01 -8.76863360e-01 -4.33944911e-02 1.60393596e-01 5.96392989e-01 -9.87622917e-01 -1.88742764e-02 -6.84667230e-01 -7.10225582e-01 7.79265881e-01 7.19987094e-01 5.84291816e-02 4.37268645e-01 1.40751213e-01 -1.33739009e-01 2.16813281e-01 -4.64776903e-01 2.19463974e-01 -1.43868431e-01 8.02042663e-01 -2.67720163e-01 -8.66835341e-02 -1.28381476e-01 8.03370655e-01 2.11008951e-01 5.45185953e-02 4.29923147e-01 1.14167738e+00 2.63322324e-01 -1.08596146e+00 -1.61120117e-01 2.45047122e-01 -6.73800766e-01 9.98622626e-02 -4.47598785e-01 7.68502474e-01 1.94933459e-01 6.85410917e-01 -9.58801135e-02 -6.12050533e-01 4.40940261e-01 -4.34948564e-01 2.46097237e-01 -2.49028191e-01 -5.49235165e-01 -2.77169287e-01 1.51154790e-02 -1.10481119e+00 -1.01621121e-01 -8.73978257e-01 -8.48379791e-01 -6.47096395e-01 1.19438812e-01 -2.31709555e-01 -5.17348235e-04 6.97742641e-01 7.39611924e-01 1.94595233e-01 8.71484637e-01 -3.99748772e-01 -1.00947511e+00 -5.30259497e-02 -6.14477038e-01 4.70017552e-01 5.52033424e-01 -3.98233145e-01 -3.60926360e-01 3.20761949e-02]
[5.83485221862793, 6.745745658874512]
c32ffd4f-67b1-40d0-b557-f5f7c86c5427
conrpg-paraphrase-generation-using-contexts
2109.00363
null
https://arxiv.org/abs/2109.00363v1
https://arxiv.org/pdf/2109.00363v1.pdf
ConRPG: Paraphrase Generation using Contexts as Regularizer
A long-standing issue with paraphrase generation is how to obtain reliable supervision signals. In this paper, we propose an unsupervised paradigm for paraphrase generation based on the assumption that the probabilities of generating two sentences with the same meaning given the same context should be the same. Inspired by this fundamental idea, we propose a pipelined system which consists of paraphrase candidate generation based on contextual language models, candidate filtering using scoring functions, and paraphrase model training based on the selected candidates. The proposed paradigm offers merits over existing paraphrase generation methods: (1) using the context regularizer on meanings, the model is able to generate massive amounts of high-quality paraphrase pairs; and (2) using human-interpretable scoring functions to select paraphrase pairs from candidates, the proposed framework provides a channel for developers to intervene with the data generation process, leading to a more controllable model. Experimental results across different tasks and datasets demonstrate that the effectiveness of the proposed model in both supervised and unsupervised setups.
['Jiwei Li', 'Chun Fan', 'Fei Wu', 'Qinghong Han', 'Xiaofei Sun', 'Qing He', 'Xiang Ao', 'Yuxian Meng']
2021-09-01
null
https://aclanthology.org/2021.emnlp-main.199
https://aclanthology.org/2021.emnlp-main.199.pdf
emnlp-2021-11
['paraphrase-generation', 'paraphrase-generation']
['computer-code', 'natural-language-processing']
[ 5.75306118e-01 1.61792368e-01 -1.65918663e-01 -5.82999170e-01 -7.52448380e-01 -5.12213767e-01 6.98813796e-01 2.54941225e-01 -5.36889210e-02 7.30187416e-01 4.00505245e-01 -1.22838564e-01 -1.51568636e-01 -8.86017263e-01 -8.90723526e-01 -2.95872688e-01 6.11925900e-01 3.19682479e-01 1.01764016e-01 -2.62408733e-01 7.39179790e-01 8.41787644e-03 -1.87103999e+00 6.26076758e-01 1.51953471e+00 7.16666818e-01 6.76123679e-01 2.63953060e-01 -3.05882841e-01 7.89283693e-01 -5.68278968e-01 -5.98579824e-01 8.11553970e-02 -8.07814538e-01 -8.78323495e-01 -2.77732462e-02 2.46803924e-01 7.39901215e-02 3.07850718e-01 1.04767001e+00 2.47592270e-01 -1.65078267e-01 5.99451482e-01 -9.45589781e-01 -8.60736787e-01 9.58997726e-01 -1.43431768e-01 -3.08231935e-02 8.75564456e-01 2.26708502e-02 1.42047358e+00 -1.13278091e+00 5.80292702e-01 1.10670745e+00 3.33392113e-01 6.08074605e-01 -1.23142350e+00 -4.50339317e-01 1.94077264e-04 2.80164152e-01 -1.10424399e+00 -4.26936120e-01 9.60114837e-01 -4.55360800e-01 7.91936100e-01 3.02313298e-01 6.78874373e-01 1.34257150e+00 1.50043219e-01 7.34065056e-01 1.15882611e+00 -8.56598020e-01 3.87407064e-01 5.68095267e-01 2.91380972e-01 4.16781217e-01 3.40551764e-01 -3.15026313e-01 -6.91806674e-01 -3.47535491e-01 4.00156707e-01 4.33196779e-03 -2.65898347e-01 -3.65187913e-01 -1.17218900e+00 8.56927514e-01 1.51106596e-01 3.75411540e-01 -2.80181676e-01 -1.76733941e-01 2.32078001e-01 4.77276206e-01 3.22229087e-01 9.59964871e-01 -1.58917308e-01 -8.13876763e-02 -1.08817053e+00 3.56192380e-01 7.53945947e-01 1.26676726e+00 8.70059073e-01 -3.31487864e-01 -5.70882916e-01 1.03822768e+00 3.52808446e-01 5.24365067e-01 8.12433720e-01 -6.39416039e-01 8.23947132e-01 8.96335840e-01 4.75553453e-01 -8.46732497e-01 2.01553240e-01 -2.92089313e-01 -4.76549208e-01 -5.92799820e-02 9.24107656e-02 -1.15143526e-02 -6.33828580e-01 1.79095328e+00 -1.00038528e-01 6.99568689e-02 1.90774977e-01 5.87881148e-01 6.09674156e-01 5.34903109e-01 -1.39020368e-01 -2.32915029e-01 1.20493627e+00 -9.03169155e-01 -5.79380751e-01 -2.72115678e-01 3.46186370e-01 -7.82082021e-01 1.62202656e+00 1.99095488e-01 -1.16211367e+00 -7.82295585e-01 -1.23959732e+00 6.36100248e-02 -6.99913409e-03 3.54190052e-01 3.70737195e-01 5.36829591e-01 -9.79887724e-01 7.24877119e-01 -5.15610993e-01 -5.56152761e-01 1.83789968e-01 9.30453539e-02 -2.60202680e-02 3.49649489e-02 -1.24002123e+00 7.68748045e-01 4.80144978e-01 3.83915752e-02 -7.86352277e-01 -3.88719827e-01 -7.41044998e-01 3.32644761e-01 9.73437354e-02 -1.09411466e+00 1.12801445e+00 -1.32156956e+00 -1.68033910e+00 7.47577190e-01 -3.84856582e-01 -4.47482198e-01 3.27623576e-01 -4.38215047e-01 -2.11933367e-02 8.52700174e-02 3.04801464e-01 3.49332392e-01 1.01083899e+00 -1.09574342e+00 -5.50928235e-01 -8.71241465e-02 5.15750870e-02 3.66423249e-01 -6.17055833e-01 5.03337309e-02 -1.41917169e-01 -5.63997924e-01 -6.66323453e-02 -8.39950681e-01 -1.80484012e-01 -3.90658110e-01 -5.52526176e-01 -3.30866128e-01 3.75843823e-01 -6.03343666e-01 1.36141622e+00 -1.77469742e+00 3.82047683e-01 1.93598434e-01 -5.83877638e-02 1.73859805e-01 -9.53053981e-02 7.31806576e-01 -1.05912425e-01 7.51045123e-02 -2.83620775e-01 -4.12379891e-01 1.15180649e-02 -1.16435565e-01 -6.52306557e-01 -2.95802712e-01 4.21545774e-01 8.80088031e-01 -1.21037114e+00 -4.61581916e-01 -2.85278298e-02 -2.56898463e-01 -5.64549387e-01 7.18769014e-01 -3.40524405e-01 3.20373178e-01 -6.39954507e-01 2.75997490e-01 3.50588620e-01 -2.72687703e-01 2.32718065e-01 1.60587296e-01 1.14951335e-01 6.17066622e-01 -9.89208102e-01 1.83016443e+00 -8.55814755e-01 2.19518095e-01 -3.78318846e-01 -9.54334438e-01 1.24839234e+00 2.51411319e-01 7.53439497e-03 -3.66383612e-01 -2.28001326e-01 4.22724038e-01 -2.41959944e-01 -7.47894526e-01 5.08768559e-01 -7.93974176e-02 -2.53427565e-01 7.61240184e-01 4.87908684e-02 -4.21779990e-01 4.96657640e-01 3.15788478e-01 1.04654479e+00 1.94244996e-01 3.39554787e-01 -1.91112995e-01 8.35104346e-01 -4.72867526e-02 3.96811396e-01 9.89461422e-01 3.40010434e-01 6.25403941e-01 4.78415728e-01 -2.66315073e-01 -1.05454910e+00 -1.06428325e+00 1.72640413e-01 7.38700569e-01 2.27910176e-01 -5.04108548e-01 -8.29151750e-01 -7.55592287e-01 -3.29142869e-01 9.90520060e-01 -5.00257611e-01 -3.18796277e-01 -5.60104609e-01 -3.98909867e-01 2.76621819e-01 3.03424299e-01 2.98602045e-01 -1.47213662e+00 -4.54389602e-01 2.05813810e-01 -4.81210351e-01 -8.17714989e-01 -3.90370399e-01 -8.13677460e-02 -9.47682202e-01 -8.93838227e-01 -6.11531913e-01 -9.69639957e-01 9.41780448e-01 3.21173847e-01 1.23583913e+00 1.47317499e-01 2.42732823e-01 1.64718777e-01 -6.70513391e-01 -2.63268560e-01 -1.04688919e+00 3.21200222e-01 -2.17896104e-01 1.22733399e-01 3.95015448e-01 -8.83511066e-01 -5.03610671e-01 1.09826677e-01 -8.21978569e-01 5.06808996e-01 7.58721769e-01 1.00241399e+00 4.08354998e-01 -3.83558899e-01 1.07468891e+00 -1.07235050e+00 1.22637689e+00 -5.61717093e-01 -3.94579649e-01 7.31489718e-01 -8.49820375e-01 3.44841838e-01 1.15626478e+00 -3.05273771e-01 -1.31889355e+00 4.07291278e-02 1.36559114e-01 -9.80987921e-02 -1.25545532e-01 3.91939044e-01 -1.78406745e-01 3.83406132e-01 8.37891519e-01 6.94400728e-01 -3.61586511e-02 -4.99099910e-01 6.79187536e-01 9.35335875e-01 1.87090516e-01 -6.99189544e-01 8.28292847e-01 2.19235346e-01 -4.48072523e-01 -4.64774489e-01 -7.66380847e-01 -4.09537137e-01 -5.26202679e-01 -2.71670781e-02 7.00478971e-01 -8.57400358e-01 6.08876459e-02 1.38542980e-01 -1.41041815e+00 1.41418755e-01 -4.12723273e-01 2.14520693e-01 -6.45971119e-01 6.58363104e-01 -3.85616481e-01 -6.45618379e-01 -7.82471776e-01 -1.16238165e+00 1.15588593e+00 3.16623747e-01 -5.25817335e-01 -5.88486373e-01 1.97020769e-01 5.98860323e-01 3.95009428e-01 -7.78178275e-02 1.21697044e+00 -7.69597530e-01 -6.66465878e-01 -1.97776645e-01 -5.05071357e-02 5.42284966e-01 4.57268894e-01 -2.57801320e-02 -8.18414032e-01 -9.98063385e-02 2.14915425e-01 -6.23335421e-01 5.97391784e-01 4.93349333e-04 1.04459417e+00 -3.42668325e-01 -2.50389636e-01 2.19239131e-01 1.11193252e+00 -5.31859621e-02 6.94783211e-01 1.43233642e-01 4.36291218e-01 7.09303439e-01 8.22961867e-01 5.03895342e-01 2.19796196e-01 7.68982053e-01 1.40624762e-01 1.31853983e-01 3.81846428e-02 -7.63920903e-01 5.14283001e-01 1.05693650e+00 9.43904296e-02 -8.17925557e-02 -4.01728988e-01 7.01692104e-01 -2.02583027e+00 -1.14583147e+00 -9.15677398e-02 2.35111189e+00 1.17853105e+00 2.80701160e-01 -3.80465053e-02 1.53398607e-02 7.79447734e-01 2.62341220e-02 -2.81967342e-01 -5.07782876e-01 1.13851875e-01 5.00909686e-01 -2.43671477e-01 3.45906168e-01 -5.87214470e-01 8.97734225e-01 5.76551104e+00 9.01106775e-01 -8.52694333e-01 -1.48380801e-01 4.11307156e-01 8.62221345e-02 -7.87112772e-01 4.32260424e-01 -7.94764936e-01 8.32304537e-01 6.15696073e-01 -6.48065448e-01 4.24983531e-01 9.98411715e-01 6.64960563e-01 6.12702407e-02 -1.33135033e+00 6.95839703e-01 2.31150031e-01 -1.22339511e+00 5.35264850e-01 -4.44748878e-01 7.96359420e-01 -3.90945703e-01 -2.08895460e-01 2.37643629e-01 2.58045137e-01 -8.08401823e-01 7.77138114e-01 5.99809825e-01 5.07951379e-01 -5.05888045e-01 6.34246528e-01 6.54162765e-01 -1.03217947e+00 -1.53064415e-01 -6.37792706e-01 -1.26686662e-01 8.69468078e-02 7.01197326e-01 -1.15551269e+00 7.83635974e-01 1.64259031e-01 8.62689734e-01 -8.40385139e-01 9.66806889e-01 -8.03022563e-01 6.58983111e-01 6.23102933e-02 -4.95643944e-01 -2.50517905e-01 -4.95943487e-01 4.11896914e-01 1.19203866e+00 4.93583173e-01 -4.28331256e-01 -7.78180659e-02 1.37776923e+00 2.45120488e-02 3.99572521e-01 -7.18646944e-01 5.69675826e-02 7.20067322e-01 1.24791956e+00 -3.96528333e-01 -4.37153578e-01 -3.09671640e-01 1.09647131e+00 4.94993001e-01 2.49804363e-01 -7.64097810e-01 -6.27717257e-01 1.44489512e-01 1.34899795e-01 1.64839610e-01 2.12105379e-01 -4.46801037e-01 -1.35814285e+00 5.34646332e-01 -9.81108606e-01 7.23499358e-02 -8.55260670e-01 -1.36363375e+00 6.50568485e-01 1.30192772e-01 -1.51734436e+00 -4.43072140e-01 -1.88428164e-01 -1.19555891e+00 9.49640810e-01 -1.39685404e+00 -1.16922724e+00 -4.55876082e-01 3.55006456e-01 9.30651724e-01 -3.07541758e-01 8.08509171e-01 -7.34176785e-02 -4.06336844e-01 4.91949201e-01 -1.96637452e-01 -2.99736798e-01 7.05528617e-01 -1.37836969e+00 5.97548485e-01 9.75404263e-01 3.87204707e-01 1.25143743e+00 6.36845231e-01 -6.74668372e-01 -1.08190858e+00 -1.04665649e+00 1.22489333e+00 -4.44304615e-01 6.29427314e-01 -5.98317385e-01 -7.62934148e-01 3.01946193e-01 4.08466041e-01 -6.60091877e-01 6.65317774e-01 2.89688185e-02 -2.21703812e-01 -2.32267365e-01 -8.75911832e-01 6.98442876e-01 1.11524415e+00 -5.40351272e-01 -1.20715356e+00 5.65605044e-01 7.94042408e-01 -2.92754848e-03 -4.52093482e-01 6.57506362e-02 4.10588652e-01 -1.06880033e+00 6.68253005e-01 -5.25343597e-01 1.04284322e+00 -2.05585510e-01 1.95132315e-01 -1.37003028e+00 -2.23605707e-01 -6.95748031e-01 8.79428312e-02 1.44641864e+00 7.86195517e-01 -4.23051268e-01 6.56481087e-01 5.66080213e-01 -7.50630572e-02 -7.95181692e-01 -6.96244717e-01 -7.29511201e-01 -2.27754280e-01 -2.38067601e-02 6.75746322e-01 6.75228000e-01 4.78165984e-01 7.65830338e-01 -4.38102692e-01 -5.11843190e-02 4.51366931e-01 6.13099158e-01 9.46254253e-01 -1.00404108e+00 -7.35245466e-01 -1.93588272e-01 5.91595024e-02 -1.40040350e+00 3.08681369e-01 -1.07136023e+00 2.08902881e-01 -1.55903018e+00 5.46601236e-01 -3.92112195e-01 -2.84206182e-01 2.17811078e-01 -5.47678351e-01 -3.15745533e-01 1.67651996e-02 4.19893742e-01 -5.72191656e-01 6.35945499e-01 9.74052310e-01 -1.62011143e-02 -3.11879098e-01 4.20847207e-01 -9.52835858e-01 5.54791152e-01 6.88062787e-01 -5.35860598e-01 -8.98809791e-01 -4.68176186e-01 3.72606963e-01 4.81050573e-02 2.16554001e-01 -7.71747649e-01 1.52647719e-02 -3.16334635e-01 -1.27560228e-01 -2.02427834e-01 8.10564607e-02 -6.63128674e-01 1.37515850e-02 3.20704937e-01 -7.18144536e-01 1.84518069e-01 -3.12436789e-01 6.17911935e-01 -3.20597321e-01 -9.31892157e-01 6.32352531e-01 -1.56300813e-01 -4.10300553e-01 -3.05503219e-01 -2.12172404e-01 2.29153588e-01 8.93115163e-01 -3.34776968e-01 -1.70677155e-01 -4.10462201e-01 -3.51827353e-01 8.12906921e-02 6.75046504e-01 7.46914327e-01 7.63803542e-01 -1.23182559e+00 -7.26259530e-01 2.56044596e-01 4.55963612e-01 -1.29779652e-01 -2.33672276e-01 2.61757016e-01 -2.41030157e-01 2.76572466e-01 -4.23931703e-02 -4.72689360e-01 -1.14944375e+00 4.51477766e-01 -8.59847665e-02 -6.51132405e-01 -2.50937998e-01 7.34482408e-01 8.96541774e-02 -2.86478847e-01 -1.30531400e-01 -5.34731567e-01 -3.73386264e-01 -2.13945493e-01 4.68068302e-01 1.47923697e-02 4.48052697e-02 -1.94846272e-01 -5.40065207e-02 4.31481510e-01 -2.91254103e-01 -1.39641777e-01 1.28546989e+00 1.11390720e-03 -1.52550265e-01 3.77051711e-01 6.92986071e-01 2.23361820e-01 -7.95617878e-01 -4.62513827e-02 3.51903439e-01 -4.77748990e-01 -6.31359220e-01 -6.25726342e-01 -4.29943472e-01 6.52301610e-01 2.00607553e-01 4.14506435e-01 1.09807467e+00 -5.51107414e-02 7.80853271e-01 4.08842534e-01 6.24799311e-01 -9.81665492e-01 4.67106760e-01 2.20082596e-01 9.99198258e-01 -1.08145225e+00 -8.81035551e-02 -5.89531243e-01 -7.91414380e-01 1.04609334e+00 5.74883044e-01 -2.44971484e-01 5.92885539e-03 -2.92738110e-01 -1.92369223e-01 -5.61544970e-02 -1.00350142e+00 1.35739475e-01 1.56453758e-01 4.04714316e-01 5.21375537e-01 -1.91499323e-01 -8.41049492e-01 8.27238560e-01 -2.74207801e-01 2.11080000e-01 7.15535462e-01 7.84959793e-01 -5.63169718e-01 -1.58730876e+00 -7.60910660e-02 5.65438271e-01 -1.71178207e-01 -4.25196111e-01 -6.32309973e-01 9.67552885e-02 3.35060246e-02 1.12036896e+00 -4.53198522e-01 -2.50064850e-01 4.59774286e-01 2.09905237e-01 3.45075399e-01 -1.30636978e+00 -7.25142360e-01 -4.05062139e-01 2.77953476e-01 -3.36944729e-01 -2.87950307e-01 -4.73429859e-01 -8.52720559e-01 4.69347060e-01 -6.47928596e-01 5.36486804e-01 3.75093073e-01 1.06168056e+00 6.87205493e-01 1.50744215e-01 1.15604436e+00 -5.32389164e-01 -1.04773748e+00 -1.14854324e+00 -3.02772075e-01 1.01420283e+00 -2.99186051e-01 -3.98878127e-01 -4.33783978e-01 3.59493613e-01]
[11.657265663146973, 9.288808822631836]
84858811-11ad-4069-a2c4-4201eb6be177
identifying-water-stress-in-chickpea-plant-by
2104.07911
null
https://arxiv.org/abs/2104.07911v3
https://arxiv.org/pdf/2104.07911v3.pdf
Intelligent Monitoring of Stress Induced by Water Deficiency in Plants using Deep Learning
In the recent decade, high-throughput plant phenotyping techniques, which combine non-invasive image analysis and machine learning, have been successfully applied to identify and quantify plant health and diseases. However, these techniques usually do not consider the progressive nature of plant stress and often require images showing severe signs of stress to ensure high confidence detection, thereby reducing the feasibility for early detection and recovery of plants under stress. To overcome the problem mentioned above, we propose a deep learning pipeline for the temporal analysis of the visual changes induced in the plant due to stress and apply it to the specific water stress identification case in Chickpea plant shoot images. For this, we have considered an image dataset of two chickpea varieties JG-62 and Pusa-372, under three water stress conditions; control, young seedling, and before flowering, captured over five months. We have employed a variant of Convolutional Neural Network - Long Short Term Memory (CNN-LSTM) network to learn spatio-temporal patterns from the chickpea plant dataset and use them for water stress classification. Our model has achieved ceiling level classification performance of 98.52% on JG-62 and 97.78% on Pusa-372 chickpea plant data and has outperformed the best reported time-invariant technique by at least 14% for both JG-62 and Pusa-372 species, to the best of our knowledge. Furthermore, our CNN-LSTM model has demonstrated robustness to noisy input, with a less than 2.5% dip in average model accuracy and a small standard deviation about the mean for both species. Lastly, we have performed an ablation study to analyze the performance of the CNN-LSTM model by decreasing the number of temporal session data used for training.
['Tapan K. Gandhi', 'Rohan Wadhawan', 'Shiva Azimi']
2021-04-16
null
null
null
null
['plant-phenotyping']
['computer-vision']
[ 4.33856875e-01 -3.26628745e-01 4.29783091e-02 1.76348209e-01 -8.51609334e-02 -8.39877605e-01 1.03871904e-01 6.51927650e-01 -1.36857644e-01 3.60853821e-01 -6.33666396e-01 -5.63759804e-01 -2.68046290e-01 -9.34184611e-01 -4.25610662e-01 -8.52709293e-01 -5.18800616e-01 -3.58407609e-02 3.06095421e-01 -1.99352056e-01 -9.34790298e-02 9.42982435e-01 -1.44692624e+00 2.35972509e-01 5.96921921e-01 9.22874093e-01 9.41672921e-01 7.66884327e-01 1.19616605e-01 1.67063594e-01 -7.84910977e-01 4.36499059e-01 -1.14764310e-01 -2.00632274e-01 -8.04605663e-01 2.94757634e-01 2.09360644e-01 -3.27341169e-01 8.21255296e-02 5.28833508e-01 7.26183593e-01 -2.48861119e-01 2.04833552e-01 -1.00978136e+00 -8.52847874e-01 3.91963214e-01 -8.39183807e-01 1.73836008e-01 -8.74072388e-02 4.29328352e-01 4.42158103e-01 -4.54141378e-01 6.81027174e-01 8.35327327e-01 8.76654148e-01 1.27968073e-01 -1.62871885e+00 -1.48958072e-01 1.03446327e-01 2.65314281e-01 -1.28815854e+00 -1.84848122e-02 2.11139515e-01 -5.70943236e-01 1.11942255e+00 3.74148451e-02 7.66021788e-01 8.22735846e-01 3.15386713e-01 5.54268003e-01 9.67196584e-01 -2.91751564e-01 2.94182450e-01 -4.60962355e-01 -2.42876127e-01 4.98620093e-01 -1.25472946e-02 1.94847509e-01 4.09856588e-02 1.86346561e-01 7.02728271e-01 2.60754302e-02 -4.08998460e-01 -1.61399961e-01 -9.15728569e-01 3.81517917e-01 8.70903254e-01 6.97892845e-01 -6.27515852e-01 -3.14999260e-02 8.16129804e-01 1.35451555e-01 3.32110763e-01 5.16953170e-01 -1.23762321e+00 1.15931034e-01 -9.54158306e-01 -5.03443666e-02 7.02166915e-01 3.72130573e-01 2.73991942e-01 3.47503066e-01 -2.09044963e-01 9.11504507e-01 -4.25969958e-02 6.11906230e-01 1.68223158e-01 -7.95700967e-01 -3.57443243e-01 5.51607788e-01 1.52887851e-01 -1.22321594e+00 -6.75696492e-01 -2.76326180e-01 -9.70988035e-01 4.66863930e-01 5.14247000e-01 -2.61818198e-03 -1.30602920e+00 1.83882213e+00 -7.80961663e-02 1.97809841e-02 -9.47338045e-02 6.38572872e-01 5.95922351e-01 8.73367846e-01 4.17599797e-01 -3.57068896e-01 1.31619322e+00 -1.90618902e-01 -5.11352718e-01 -1.97791576e-01 8.02968442e-01 -6.53067112e-01 1.07246161e+00 3.86368185e-01 -7.49793708e-01 -5.20768404e-01 -1.04828608e+00 4.88102615e-01 -8.83334160e-01 6.78806067e-01 5.80187380e-01 4.57328290e-01 -9.66198325e-01 1.06156743e+00 -9.17475998e-01 -1.14125121e+00 5.88819206e-01 3.02340716e-01 -6.62824988e-01 -3.23110237e-03 -8.50498319e-01 9.63745117e-01 5.47534108e-01 8.49388778e-01 -1.18352997e+00 -9.51877713e-01 -4.44722742e-01 5.35338402e-01 3.02334219e-01 3.72285582e-02 8.73553574e-01 -5.42050064e-01 -1.64184153e+00 1.10450304e+00 3.48566286e-02 -2.91747481e-01 -2.86669672e-01 -4.95629311e-02 -4.06950086e-01 4.04241495e-02 9.55729559e-02 6.32337570e-01 3.68845344e-01 -1.24795735e+00 -4.36418951e-01 -5.95568359e-01 -1.92666739e-01 -5.44966400e-01 -3.29185903e-01 2.53125373e-02 1.33950159e-01 -3.51458579e-01 3.79784435e-01 -1.20050561e+00 -2.68909872e-01 3.50441784e-01 -2.74909943e-01 4.82696414e-01 1.39044631e+00 -8.56871545e-01 6.30912423e-01 -2.10595083e+00 9.18451250e-02 -1.95530921e-01 -1.28369749e-01 1.13224435e+00 -6.25129998e-01 4.55757976e-01 -3.69963318e-01 3.97707701e-01 -4.69850123e-01 9.94469896e-02 -5.03594875e-01 4.39006954e-01 -2.12985188e-01 4.53543037e-01 5.11675835e-01 6.94605649e-01 -7.80091166e-01 1.09932333e-01 5.30094862e-01 5.32239914e-01 2.31575742e-01 1.45134807e-01 -8.96818638e-02 2.91913122e-01 1.10632047e-01 1.14520490e+00 1.01556396e+00 -2.60465052e-02 3.64416599e-01 -1.92628458e-01 -7.02359915e-01 -3.76049727e-01 -6.73606813e-01 1.52582085e+00 -5.04959822e-01 7.17546105e-01 3.97370756e-01 -1.10088110e+00 9.86925602e-01 5.58091342e-01 7.29968429e-01 -4.39381331e-01 -7.98479915e-02 3.04447830e-01 2.49055594e-01 -3.68965030e-01 -5.15723974e-02 3.49776477e-01 5.01948297e-01 -2.14685872e-01 2.60530680e-01 -7.29756728e-02 3.84919316e-01 -1.15003332e-01 1.23568296e+00 2.28562608e-01 8.67661610e-02 -4.37232524e-01 4.63610709e-01 4.75915186e-02 7.18960047e-01 4.33188587e-01 -8.73780310e-01 5.29456019e-01 6.48974955e-01 -4.18321133e-01 -8.34796906e-01 -8.13333333e-01 -2.75238544e-01 1.02581584e+00 -3.10484409e-01 -1.03555612e-01 -3.46312553e-01 -2.70820171e-01 1.60170525e-01 5.13689637e-01 -7.84768522e-01 -3.37423176e-01 -2.51829892e-01 -1.09510970e+00 7.55707741e-01 6.30954862e-01 7.34344065e-01 -1.43352580e+00 -1.02295649e+00 5.62957227e-01 1.21455595e-01 -1.27298152e+00 5.49245119e-01 8.08806598e-01 -7.43307710e-01 -8.70768130e-01 -8.26854169e-01 -6.07338428e-01 1.75224766e-01 3.36014539e-01 9.54218030e-01 -4.38717790e-02 -9.45658743e-01 -2.11229213e-02 -4.06226754e-01 -3.52274597e-01 -1.83647931e-01 3.10700923e-01 -3.81156176e-01 -5.55905342e-01 1.89311132e-01 -9.18745518e-01 -5.54074943e-01 2.56144017e-01 -6.59794688e-01 -3.39768410e-01 5.62159300e-01 1.06848121e+00 4.77908581e-01 -4.20821235e-02 6.13159716e-01 -3.77559781e-01 -6.26028106e-02 -4.29651082e-01 -8.48416865e-01 5.18261731e-01 -5.14101207e-01 -5.62965155e-01 6.20321274e-01 -3.78328174e-01 -7.33517945e-01 4.31745380e-01 1.49397135e-01 -2.25755543e-01 -7.34890163e-01 1.01619637e+00 -2.30794385e-01 -2.21369699e-01 7.44823456e-01 9.90420859e-03 -5.78721687e-02 -2.93560207e-01 1.74442768e-01 3.42687368e-01 7.15970755e-01 -1.67696089e-01 5.58758140e-01 4.18198615e-01 4.83239740e-01 -1.12950754e+00 -7.93029606e-01 -4.62049454e-01 -8.81166637e-01 -3.46863091e-01 8.82863283e-01 -4.99474585e-01 -1.17621577e+00 1.12683892e+00 -1.04614580e+00 -7.34350085e-01 -1.23330325e-01 2.08271876e-01 -2.87464708e-01 2.54437357e-01 -7.63508201e-01 -7.64898241e-01 -4.91669804e-01 -9.26619053e-01 1.03630757e+00 3.87557566e-01 2.95356829e-02 -9.52470005e-01 5.33078909e-02 -4.06721741e-01 7.54165530e-01 8.38253677e-01 8.94922674e-01 -7.27051198e-02 -3.38486843e-02 -5.28378904e-01 -7.43221343e-01 2.23546103e-01 5.17281890e-01 8.55612457e-01 -1.24848795e+00 -4.29436833e-01 -2.87088394e-01 -5.00580192e-01 7.81524718e-01 9.61899936e-01 1.11461306e+00 4.61850017e-01 -3.51747751e-01 6.15387797e-01 1.67019761e+00 4.34535295e-01 6.47707164e-01 3.83014947e-01 6.63532078e-01 6.98996902e-01 6.44466758e-01 5.38255632e-01 -3.52695525e-01 4.71489966e-01 1.06245017e+00 -4.65822577e-01 7.03858286e-02 3.67025793e-01 1.97443545e-01 2.10365444e-01 3.06404140e-02 -5.43553293e-01 -1.19537866e+00 9.08471167e-01 -1.62631977e+00 -1.04555953e+00 -5.04955351e-01 1.98401320e+00 4.67270195e-01 -9.24963728e-02 -1.32140383e-01 4.68586832e-01 5.27404070e-01 2.53116369e-01 -6.95813000e-01 -6.01709664e-01 -5.11373281e-01 2.15255305e-01 8.23429704e-01 3.61380689e-02 -1.30754530e+00 1.17926264e+00 6.54862309e+00 1.68848276e-01 -1.68533230e+00 -2.26277739e-01 4.87589657e-01 2.89217263e-01 5.56840897e-01 3.52868408e-01 -3.12423050e-01 3.13531458e-02 1.17436707e+00 2.44755968e-01 2.16923237e-01 6.41771317e-01 4.97439235e-01 -3.84401292e-01 -6.30243242e-01 2.91837066e-01 -4.20072258e-01 -9.28850055e-01 -5.40431857e-01 4.36768420e-02 3.78987908e-01 1.44339010e-01 2.22717077e-02 1.42523915e-01 2.05414847e-01 -9.96941864e-01 -1.76291796e-03 1.21338539e-01 7.33758807e-01 -3.56634021e-01 6.58201754e-01 1.76203892e-01 -1.30372930e+00 -3.13409358e-01 -5.66789865e-01 9.47483908e-03 1.70057975e-02 8.07675898e-01 -7.23667860e-01 6.32424474e-01 9.57596481e-01 8.63864064e-01 -8.33441675e-01 9.17581379e-01 1.05509177e-01 9.37703669e-01 -3.42956960e-01 4.92880732e-01 3.08723778e-01 8.40149000e-02 2.50201076e-01 1.06118524e+00 6.00438237e-01 -9.73083079e-02 3.56204987e-01 8.25657129e-01 4.70748782e-01 -1.10220388e-01 -5.51904798e-01 -4.57161397e-01 2.19158933e-01 1.58472800e+00 -1.16721988e+00 2.31886227e-02 -6.88469931e-02 1.16587245e+00 2.45870464e-02 2.48449236e-01 -4.68252301e-01 -4.23538804e-01 4.58153784e-01 -3.07188362e-01 5.80240846e-01 -3.86711955e-01 -2.18312055e-01 -6.95745766e-01 -3.04428339e-01 -5.96685112e-01 1.20600536e-01 -1.02644539e+00 -9.30484891e-01 3.70897412e-01 -2.31054172e-01 -6.47422314e-01 5.94387092e-02 -1.04696786e+00 -7.92634964e-01 1.24909306e+00 -1.14322162e+00 -1.40029132e+00 -7.86804557e-01 -5.46242781e-02 3.35878670e-01 8.44069868e-02 1.56112289e+00 1.58903152e-01 -1.08022070e+00 -1.26591315e-02 2.35379413e-01 -3.24932605e-01 5.55797219e-01 -1.29190266e+00 4.55150813e-01 1.14850628e+00 -3.41306776e-01 2.04067409e-01 5.77355206e-01 -6.29784405e-01 -1.12226248e+00 -1.15317190e+00 7.90516078e-01 7.80784786e-02 5.69314659e-01 -5.90667352e-02 -1.25758266e+00 4.92750973e-01 1.17629178e-01 2.89954573e-01 5.16783178e-01 1.20698310e-01 -1.42012492e-01 -1.90635234e-01 -1.37008512e+00 4.73273307e-01 5.66925764e-01 -5.26329637e-01 4.30262744e-01 4.66204286e-01 4.71156329e-01 -1.28278717e-01 -1.32384384e+00 8.92152190e-01 6.19019806e-01 -7.40514815e-01 8.38293016e-01 -3.89014661e-01 3.26388687e-01 -4.90524799e-01 -3.34713340e-01 -1.50479496e+00 -8.92885447e-01 -2.68361002e-01 1.38125613e-01 1.52663493e+00 1.70112416e-01 -2.22100243e-01 5.01147568e-01 6.92972764e-02 -1.04626484e-01 -4.74384874e-01 -3.96760315e-01 -9.25551653e-01 1.58343360e-01 -7.78806061e-02 3.24118286e-01 9.91217792e-01 -3.89153421e-01 -2.79798955e-01 -1.52211905e-01 5.67608714e-01 7.72656053e-02 9.15620849e-02 3.22536260e-01 -1.31966722e+00 7.10393954e-03 -4.29367363e-01 -5.70752740e-01 -1.17661379e-01 1.38486519e-01 -5.60231268e-01 2.22765148e-01 -1.45565498e+00 -6.60743415e-02 -8.52953121e-02 -3.68858397e-01 9.68311071e-01 -1.46448776e-01 -7.18080625e-02 4.36781831e-02 -1.02083944e-01 5.04199803e-01 1.08232819e-01 9.87242103e-01 -1.34016976e-01 -2.98038930e-01 3.40916775e-02 -2.59555519e-01 3.63497525e-01 1.22795796e+00 -3.21580052e-01 -4.48042870e-01 -5.30320704e-01 -1.81762561e-01 -2.91156843e-02 7.67375767e-01 -1.16306543e+00 -4.18615639e-01 -3.33402961e-01 5.09228170e-01 -6.38612151e-01 1.45567283e-01 -8.05450857e-01 9.78340060e-02 9.26209211e-01 -3.41178775e-01 1.43189609e-01 9.09387529e-01 1.53488457e-01 6.33578375e-02 -3.05832207e-01 9.05587018e-01 -9.78361517e-02 -9.42203462e-01 2.93739170e-01 -9.31920350e-01 -6.40821874e-01 1.00862813e+00 7.20175654e-02 -5.21712840e-01 2.52471142e-03 -9.26330030e-01 7.47896954e-02 1.44137427e-01 3.69838238e-01 1.19988307e-01 -9.67311800e-01 -6.79945469e-01 4.14428860e-02 2.00782821e-01 -4.91045833e-01 4.65152800e-01 8.74176979e-01 -9.35803235e-01 4.59862262e-01 -9.13504243e-01 -1.03164411e+00 -1.11303592e+00 7.40575492e-01 3.98927331e-01 -1.24443270e-01 -2.59254396e-01 6.15218818e-01 -1.57215580e-01 -5.18582880e-01 1.58822294e-02 -6.39955223e-01 -3.58884990e-01 1.35388896e-01 1.76378831e-01 2.90541112e-01 3.62421602e-01 -5.39866924e-01 -4.72363025e-01 1.93372548e-01 2.29486853e-01 1.88705996e-01 1.45265388e+00 1.18539087e-01 -2.13175640e-01 8.56943905e-01 8.89584064e-01 -7.13082075e-01 -1.04643464e+00 2.15791434e-01 3.37837964e-01 -3.68155777e-01 3.36471111e-01 -1.16024888e+00 -1.30624282e+00 9.68299568e-01 1.45788717e+00 7.32177913e-01 1.52471495e+00 -6.15468681e-01 5.22687435e-01 5.07659674e-01 -2.01460570e-01 -6.88198268e-01 -5.32451689e-01 6.12702787e-01 9.21773374e-01 -1.24721265e+00 -2.76880562e-01 -3.38965446e-01 -9.00706276e-02 1.09506488e+00 8.16209793e-01 5.73599432e-03 6.95286095e-01 4.10015255e-01 3.11441392e-01 -2.62755990e-01 -9.44056213e-01 -4.77352440e-01 -3.53890419e-01 1.13166404e+00 7.87265420e-01 1.34137183e-01 7.71471625e-03 -1.21726088e-01 3.50915492e-01 2.69701689e-01 5.80352187e-01 1.23472297e+00 -2.88012922e-01 -8.41857374e-01 -1.79521531e-01 1.37100071e-01 -4.11857426e-01 4.04915027e-02 -5.51056981e-01 7.80149817e-01 6.69722110e-02 8.59914362e-01 -8.01724717e-02 -1.99093133e-01 5.14496803e-01 1.73682105e-02 3.19444805e-01 -5.34586132e-01 -6.98790729e-01 4.30115848e-04 -3.96067500e-01 -4.98196542e-01 -3.96144241e-01 -7.75506496e-01 -7.50568509e-01 -4.61808980e-01 -5.85260153e-01 -5.56503832e-01 7.85963833e-01 8.61128509e-01 5.75504363e-01 9.06832159e-01 6.55746520e-01 -1.06919670e+00 -1.26233801e-01 -1.12209082e+00 -8.28185201e-01 4.79639880e-02 1.52079672e-01 -5.86839795e-01 -5.59136830e-02 1.52789742e-01]
[9.159419059753418, -1.570779800415039]
1b2c8393-09b0-487c-bb5f-40d50e1d7997
anticipatory-music-transformer
2306.08620
null
https://arxiv.org/abs/2306.08620v1
https://arxiv.org/pdf/2306.08620v1.pdf
Anticipatory Music Transformer
We introduce anticipation: a method for constructing a controllable generative model of a temporal point process (the event process) conditioned asynchronously on realizations of a second, correlated process (the control process). We achieve this by interleaving sequences of events and controls, such that controls appear following stopping times in the event sequence. This work is motivated by problems arising in the control of symbolic music generation. We focus on infilling control tasks, whereby the controls are a subset of the events themselves, and conditional generation completes a sequence of events given the fixed control events. We train anticipatory infilling models using the large and diverse Lakh MIDI music dataset. These models match the performance of autoregressive models for prompted music generation, with the additional capability to perform infilling control tasks, including accompaniment. Human evaluators report that an anticipatory model produces accompaniments with similar musicality to even music composed by humans over a 20-second clip.
['Percy Liang', 'Chris Donahue', 'David Hall', 'John Thickstun']
2023-06-14
null
null
null
null
['music-generation', 'music-generation']
['audio', 'music']
[ 6.62223577e-01 1.62617788e-01 1.72154844e-01 -7.31369555e-02 -8.43868077e-01 -9.21631098e-01 1.11047518e+00 -1.05080627e-01 -3.59069481e-02 6.12346113e-01 8.73458683e-01 1.67425573e-01 -1.80367202e-01 -5.84834158e-01 -7.34978139e-01 -6.11778080e-01 -3.48727137e-01 8.23617816e-01 -2.44229689e-01 -1.36056721e-01 1.74039096e-01 2.42276207e-01 -1.45845854e+00 5.14907420e-01 3.15142572e-01 3.60716373e-01 2.48818710e-01 1.23145187e+00 2.47300714e-01 1.25276339e+00 -8.56395543e-01 5.70362695e-02 7.02247396e-02 -9.27894175e-01 -3.14640164e-01 7.18166977e-02 -8.26402605e-02 5.67078255e-02 -1.94078282e-01 3.83972079e-01 5.10210872e-01 5.21660388e-01 8.15474749e-01 -1.48556578e+00 -5.01805782e-01 1.34736121e+00 -1.10285267e-01 -3.00349861e-01 7.23624706e-01 2.81722307e-01 1.08942127e+00 -5.85130870e-01 8.49421144e-01 1.27541006e+00 6.42321885e-01 6.37339830e-01 -1.77586257e+00 -7.21986532e-01 3.70895937e-02 -4.49186951e-01 -1.26453614e+00 -7.66359031e-01 7.58795798e-01 -6.16887152e-01 7.68318176e-01 3.72738332e-01 1.00376403e+00 1.49801183e+00 1.90910682e-01 1.03777051e+00 6.64904475e-01 -4.98566806e-01 4.91090983e-01 -6.54537320e-01 -3.76935571e-01 1.21111413e-02 -4.87000644e-01 4.34391260e-01 -1.05826175e+00 -4.15459722e-01 9.96614814e-01 -2.21822262e-01 -2.25003377e-01 2.47981295e-01 -1.66834295e+00 6.08305275e-01 -2.59219408e-01 1.22426704e-01 -7.81917453e-01 7.66921580e-01 1.33353770e-01 3.04530978e-01 9.42304283e-02 9.10924315e-01 -4.06239957e-01 -5.46325743e-01 -1.26532781e+00 6.74685657e-01 1.12214577e+00 1.16633463e+00 1.20779961e-01 3.55110407e-01 -7.76516974e-01 2.47372076e-01 1.58212617e-01 4.69481230e-01 3.23175043e-01 -1.11410892e+00 8.05470571e-02 -2.43504420e-01 4.26273137e-01 -4.95679259e-01 1.95942223e-02 -3.10479701e-01 -7.03619063e-01 2.23656878e-01 5.50889492e-01 -3.37138653e-01 -9.52774346e-01 2.20367217e+00 3.00183855e-02 6.16202235e-01 -1.10366307e-01 3.88400018e-01 8.94043148e-02 9.25035954e-01 3.79145116e-01 -6.02763116e-01 8.38522315e-01 -5.60850382e-01 -7.91776240e-01 -3.56734693e-02 -3.03407311e-02 -1.09259963e+00 1.05393767e+00 7.14972317e-01 -1.52427626e+00 -7.70076096e-01 -8.09988379e-01 3.06569397e-01 6.37686789e-01 4.08550538e-02 7.62177169e-01 5.07112853e-02 -8.49569201e-01 8.80640447e-01 -1.02861404e+00 7.09995851e-02 -9.22144502e-02 9.05407965e-02 1.72562897e-02 7.28881180e-01 -1.02641141e+00 2.85294384e-01 2.15029240e-01 -1.18547842e-01 -1.59830403e+00 -9.55663919e-01 -4.26235110e-01 1.13258906e-01 1.82843417e-01 -5.45741141e-01 1.83724201e+00 -8.99455369e-01 -1.61797261e+00 6.11680567e-01 -2.10623935e-01 -5.68883061e-01 6.28518283e-01 -5.22555768e-01 -4.38480735e-01 -1.74547210e-01 2.24095598e-01 5.83229005e-01 1.26391470e+00 -9.87643301e-01 -4.48726505e-01 1.70746088e-01 -3.68998945e-01 7.36394674e-02 2.40000427e-01 1.80043191e-01 -3.71930093e-01 -1.16747808e+00 -1.25175506e-01 -1.32110131e+00 -4.46770847e-01 -6.12499297e-01 -7.98539519e-01 -1.67713821e-01 1.84402391e-01 -3.73884171e-01 1.55690730e+00 -2.35763717e+00 5.80502212e-01 4.83272411e-02 -1.81068927e-01 -5.81844568e-01 -2.27541715e-01 8.62641692e-01 -4.23674345e-01 1.73832983e-01 9.28299353e-02 -4.98897284e-01 2.91109800e-01 4.42855619e-02 -1.05855191e+00 1.39713168e-01 1.56290352e-01 7.67724931e-01 -9.18014526e-01 -2.41526872e-01 -2.25541592e-01 3.17022413e-01 -6.88584507e-01 6.37543440e-01 -9.07152534e-01 8.50213647e-01 -4.03292596e-01 3.59317333e-01 -2.52415150e-01 -1.16256051e-01 1.97097495e-01 2.34406382e-01 -4.29190546e-01 4.71691012e-01 -1.29515600e+00 1.87716293e+00 -3.48003864e-01 3.70050848e-01 -2.78392404e-01 -1.51756033e-01 9.60126042e-01 1.00067449e+00 5.55651546e-01 2.12974846e-02 -1.85532514e-02 -1.40050966e-02 1.74004287e-01 -1.90338582e-01 6.29898608e-01 -4.96763259e-01 -5.54243326e-01 8.62785578e-01 -8.25559497e-02 -8.52821112e-01 4.17331368e-01 2.65979677e-01 1.27812839e+00 5.76767266e-01 3.47725958e-01 1.17397569e-01 -1.97780937e-01 -4.16500308e-02 7.08220482e-01 1.08096552e+00 1.50998726e-01 8.39483798e-01 7.52790511e-01 -2.48125866e-01 -1.29956937e+00 -1.54419947e+00 3.89973730e-01 1.16064334e+00 -5.79588592e-01 -7.90963113e-01 -3.55711013e-01 1.20088279e-01 -2.04778284e-01 1.30236018e+00 -6.61258161e-01 -5.07169515e-02 -8.53625894e-01 -4.55160201e-01 5.43991864e-01 7.18614042e-01 -1.71986163e-01 -1.60645270e+00 -5.68009973e-01 7.28323340e-01 -1.92102417e-01 -6.06656134e-01 -9.23807025e-01 4.03524697e-01 -5.65322816e-01 -5.94512999e-01 -4.47136819e-01 -5.86951613e-01 1.32377461e-01 -7.14255154e-01 1.55891204e+00 -2.02152476e-01 -2.04037756e-01 4.30272073e-01 -4.89170663e-02 -7.71390915e-01 -8.70263994e-01 -6.27563298e-02 1.07441492e-01 -1.23066525e-03 -2.71393657e-01 -1.05507410e+00 -2.97974318e-01 4.80891131e-02 -9.27640080e-01 4.96066362e-01 2.68943191e-01 7.54010141e-01 8.19007635e-01 -1.82837993e-01 6.64769292e-01 -5.32028913e-01 8.07881653e-01 -2.77157277e-01 -3.27464521e-01 1.34352529e-02 -1.64831460e-01 1.53292581e-01 3.92003119e-01 -1.20038855e+00 -1.09326351e+00 4.33723778e-01 2.80294925e-01 -4.96881872e-01 -4.70530465e-02 4.87097979e-01 2.28866432e-02 9.80209172e-01 8.12253773e-01 9.75753963e-02 -2.99035251e-01 -1.03595130e-01 5.35142541e-01 -3.59024145e-02 1.03481460e+00 -9.46457207e-01 8.09523106e-01 2.41244018e-01 3.46234106e-02 -4.86793905e-01 -5.50553799e-01 4.66723293e-02 -4.55555320e-01 -4.91856068e-01 8.91329050e-01 -9.92536366e-01 -8.85330677e-01 2.66528219e-01 -1.26331580e+00 -8.43466640e-01 -9.71263945e-01 6.22403026e-01 -1.33842134e+00 -4.70398724e-01 -8.48816216e-01 -1.18381631e+00 -1.94830462e-01 -5.88794470e-01 1.15153265e+00 2.25076452e-01 -1.41441858e+00 -5.95916569e-01 5.00632823e-01 -4.35492933e-01 7.38175362e-02 6.90444887e-01 8.11757624e-01 -5.49361348e-01 -6.80945933e-01 -3.69749337e-01 8.90912294e-01 -8.05734321e-02 -7.18070716e-02 5.62218130e-01 -8.58144164e-01 2.28011478e-02 -8.05821642e-02 -2.90497988e-01 5.88587463e-01 6.06043458e-01 6.29504144e-01 -1.10326365e-01 -2.11871862e-01 3.17963958e-01 8.85275245e-01 6.46964490e-01 7.22090960e-01 -1.15532562e-01 2.95567453e-01 4.34594661e-01 5.29114068e-01 8.28849852e-01 -2.72468776e-01 4.83088762e-01 -2.88681686e-02 2.99847424e-01 -1.50689974e-01 -1.13452733e+00 6.31573319e-01 8.25333834e-01 -4.56690460e-01 -5.20060956e-01 -7.58492410e-01 7.25832105e-01 -1.91934848e+00 -1.61994946e+00 -1.78276286e-01 2.24008679e+00 1.15698385e+00 2.39047557e-01 1.36194050e-01 3.12523454e-01 7.53742099e-01 1.63919553e-01 -3.78000528e-01 -1.92561418e-01 -1.18309163e-01 6.86556518e-01 -1.13595970e-01 5.29423654e-01 -1.03405011e+00 9.29273427e-01 7.45758057e+00 6.63322449e-01 -8.40214312e-01 -2.44868308e-01 4.44086403e-01 -5.09238780e-01 -5.57430625e-01 2.63874650e-01 -5.83186030e-01 4.49556142e-01 1.04260588e+00 -5.06223500e-01 7.05843091e-01 5.05468309e-01 7.44060814e-01 1.83130220e-01 -1.63852429e+00 6.41714096e-01 -3.72111142e-01 -1.32289171e+00 1.04403488e-01 -1.52217224e-01 9.86953914e-01 -4.85597283e-01 2.36551106e-01 4.15071666e-01 1.02350330e+00 -1.13982725e+00 1.34087074e+00 1.09113896e+00 7.84456611e-01 -6.79612160e-01 -3.38743508e-01 2.53411144e-01 -1.10339224e+00 -3.78127466e-03 3.65958571e-01 -4.87090141e-01 7.82864809e-01 4.10326451e-01 -9.94599819e-01 -3.80541012e-02 1.44971952e-01 5.17446280e-01 2.78885849e-02 7.11922228e-01 -7.88303077e-01 1.13372445e+00 -1.99954584e-01 1.06940605e-02 -1.81240350e-01 -1.82095021e-01 7.72661865e-01 9.79811549e-01 6.24082923e-01 1.81936443e-01 1.66781098e-01 1.07512701e+00 1.12884499e-01 -2.28408337e-01 -5.08858025e-01 -6.19798481e-01 6.74285591e-01 9.78972912e-01 -6.45882070e-01 -5.38697243e-01 2.05433935e-01 9.57545459e-01 -1.73394427e-01 4.78762001e-01 -9.99544621e-01 5.95421530e-03 4.61292148e-01 7.15718716e-02 2.02617720e-01 -5.55975258e-01 -4.28275943e-01 -9.63177025e-01 -4.91683811e-01 -9.51347649e-01 1.84568867e-01 -1.39064336e+00 -1.17064750e+00 5.15110791e-01 -2.63741873e-02 -1.25918305e+00 -1.16824818e+00 2.26030409e-01 -1.04639542e+00 9.26705122e-01 -3.50038081e-01 -9.83236074e-01 1.20555416e-01 5.60348988e-01 6.85284734e-01 -1.74176507e-02 1.22397208e+00 -1.73104197e-01 -1.16169751e-01 -1.81281775e-01 -4.79609132e-01 -1.33942738e-01 8.37181330e-01 -1.39233136e+00 6.86444581e-01 8.23800802e-01 6.35454595e-01 7.11132407e-01 1.21882260e+00 -1.01648712e+00 -1.09722173e+00 -8.23709130e-01 1.20657134e+00 -7.26714909e-01 8.77907038e-01 -3.91958207e-01 -4.30612028e-01 1.01261365e+00 3.73643965e-01 -6.38189852e-01 6.37835443e-01 1.53675213e-01 2.82680057e-02 3.66014779e-01 -3.87659669e-01 1.06900287e+00 1.12498295e+00 -5.17498553e-01 -7.56922483e-01 1.58201501e-01 9.43903565e-01 -4.58595425e-01 -6.21973157e-01 2.29956537e-01 8.26909006e-01 -6.54038668e-01 7.94625878e-01 -7.87336588e-01 7.65780091e-01 -5.16377151e-01 -3.01852860e-02 -1.36203742e+00 -4.05154973e-01 -1.58656716e+00 -1.96587831e-01 1.44242394e+00 4.75473851e-01 2.42499366e-01 5.31294882e-01 7.38684893e-01 -1.87791809e-01 -2.18921620e-02 -4.90717351e-01 -6.71427011e-01 -3.61167222e-01 -7.88490355e-01 6.16245687e-01 7.18684316e-01 -1.45301551e-01 3.77727300e-01 -6.51436388e-01 1.45110711e-02 5.38714170e-01 2.90299863e-01 9.47724998e-01 -1.12307596e+00 -8.84105504e-01 -2.08647162e-01 7.69673735e-02 -7.18482733e-01 -8.55004601e-03 -7.78412998e-01 3.78547907e-01 -9.94755447e-01 -1.59107745e-01 -2.82185823e-01 -3.56009305e-02 4.70668018e-01 -8.84994119e-02 1.69329979e-02 6.14025831e-01 3.91840011e-01 -1.01068690e-01 6.65471017e-01 1.26703775e+00 -5.55764735e-02 -7.17864096e-01 3.16945702e-01 -5.16738415e-01 8.13772261e-01 5.41715980e-01 -6.20774627e-01 -6.51700735e-01 -1.06242724e-01 4.40783411e-01 7.11176634e-01 2.89942801e-01 -1.05652153e+00 3.87511015e-01 -3.87728453e-01 5.23537099e-01 -5.69437027e-01 3.94938529e-01 -1.58224955e-01 1.07718670e+00 3.31515312e-01 -9.58563566e-01 3.51393849e-01 2.66623124e-03 6.14623785e-01 -2.27159485e-01 9.02950466e-02 2.55162954e-01 -1.06248952e-01 -2.85719573e-01 1.56415135e-01 -6.95910811e-01 2.42655110e-02 7.98685014e-01 2.42487147e-01 2.61556417e-01 -8.07206810e-01 -1.50704718e+00 -2.10586786e-01 1.52028844e-01 3.40705603e-01 3.99468839e-01 -1.45655298e+00 -8.44050825e-01 6.41171932e-02 -2.85432070e-01 -9.08386111e-02 -9.39173475e-02 5.72099984e-01 -1.43930510e-01 -7.25148246e-02 -1.03974221e-02 -5.01096547e-01 -9.12806273e-01 5.58557034e-01 -1.89422369e-01 -3.50106180e-01 -5.39849043e-01 8.38506460e-01 4.68264632e-02 1.60207555e-01 1.59782842e-01 -3.63004416e-01 1.14995465e-01 2.21585691e-01 6.17777705e-01 8.74411538e-02 -5.79950929e-01 3.81601341e-02 1.43851474e-01 6.21991195e-02 2.94260651e-01 -1.04081762e+00 1.39559829e+00 1.47353783e-01 -4.55565192e-02 1.23234367e+00 4.45008844e-01 4.66316223e-01 -1.50849450e+00 3.43498796e-01 1.44323051e-01 -5.07623032e-02 -4.93854642e-01 -8.45140815e-01 -3.68266225e-01 3.31366152e-01 -1.06596693e-01 2.49773160e-01 1.07981551e+00 -1.91260856e-02 5.12653291e-01 -3.77607383e-02 3.72866422e-01 -8.95190775e-01 3.24569166e-01 4.97012556e-01 1.27253771e+00 -3.95924062e-01 -3.44970495e-01 -6.53491393e-02 -7.95106292e-01 9.70942676e-01 6.87458217e-02 -3.87015015e-01 4.78783190e-01 7.85182893e-01 -3.01051810e-02 2.52950117e-02 -1.45684874e+00 -1.00809470e-01 1.12541653e-01 4.13600713e-01 7.74422884e-01 3.48025113e-01 -2.09864467e-01 7.43400633e-01 -7.38955677e-01 3.45503569e-01 5.27813613e-01 8.07452619e-01 3.98603231e-02 -9.94325817e-01 -4.08746928e-01 6.54409006e-02 -3.23871344e-01 -4.08812881e-01 -3.07501048e-01 7.48641074e-01 6.33311719e-02 1.06309712e+00 3.89110714e-01 -3.03304434e-01 2.19162956e-01 3.35184097e-01 4.96004522e-01 -7.43941724e-01 -6.76441252e-01 7.45009422e-01 3.62817317e-01 -4.32600170e-01 -3.46003354e-01 -1.21896446e+00 -1.29360735e+00 -2.42338162e-02 1.03484467e-01 2.39792034e-01 3.50554138e-01 5.44293702e-01 1.15692116e-01 9.81216490e-01 6.81172073e-01 -1.12719357e+00 -4.34226096e-01 -1.15469420e+00 -7.35109985e-01 6.63674116e-01 4.61859256e-02 -4.76989010e-03 -4.42894548e-01 8.65187645e-01]
[15.750670433044434, 5.753371715545654]
c0756db4-8393-4af2-befa-8a48e7fac7c9
ada-vad-unpaired-adversarial-domain
null
null
https://ieeexplore.ieee.org/document/9746755
https://sigport.org/sites/default/files/docs/ADA-VAD_ICASSP2022_Poster_v2.pdf.pdf
ADA-VAD: Unpaired Adversarial Domain Adaptation for Noise-Robust Voice Activity Detection
Voice Activity Detection (VAD) is becoming an essential front-end component in various speech processing systems. As those systems are commonly deployed in environments with diverse noise types and low signal-to-noise ratios (SNRs), an effective VAD method should perform robust detection of speech region out of noisy background signals. In this paper, we propose adversarial domain adaptive VAD (ADA-VAD), which is a deep neural network (DNN) based VAD method highly robust to audio samples with various noise types and low SNRs. The proposed method trains DNN models for a VAD task in a supervised manner. Simultaneously, to mitigate the performance degradation due to back-ground noises, the adversarial domain adaptation method is adopted to match the domain discrepancy between noisy and clean audio stream in an unsupervised manner. The results show that ADA-VAD achieves an average of 3.6%p and 7%p higher AUC than models trained with manually extracted features on the AVA-speech dataset and a speech database synthesized with an unseen noise database, respectively.
['Jong Hwan Ko', 'Jiho Chang', 'Taesoo Kim']
2022-04-22
null
null
null
icassp-2022-4
['action-detection', 'activity-detection']
['computer-vision', 'computer-vision']
[ 1.06653765e-01 -4.21190500e-01 3.90702605e-01 -1.28268853e-01 -1.22431636e+00 -5.77392340e-01 5.19427001e-01 -3.16013455e-01 -2.19718024e-01 6.11680388e-01 4.51076835e-01 -3.69637281e-01 2.32009083e-01 -4.66876447e-01 -3.46456915e-01 -8.75910103e-01 1.41802937e-01 -1.00208297e-01 1.54575318e-01 -9.81308073e-02 -3.36685568e-01 6.31710529e-01 -1.52816844e+00 2.38574818e-01 6.14750206e-01 1.27537477e+00 2.68241405e-01 9.19001520e-01 -4.21933383e-02 5.64207256e-01 -1.26971912e+00 -7.00359195e-02 4.06778336e-01 -6.70732915e-01 1.06058056e-02 4.60768752e-02 2.77029783e-01 -2.52064615e-01 -7.18743742e-01 1.30104506e+00 1.23363781e+00 3.13327402e-01 7.89855599e-01 -1.06911886e+00 -2.42558479e-01 3.44569385e-01 -2.74997115e-01 5.78774691e-01 2.74616897e-01 4.83456612e-01 5.55312395e-01 -1.09558451e+00 1.36770844e-01 1.25206447e+00 3.92926604e-01 8.09815824e-01 -9.33176816e-01 -7.98448980e-01 -1.38631761e-01 2.10691273e-01 -1.25623560e+00 -9.65269327e-01 1.24375522e+00 -2.32975334e-01 8.32842708e-01 2.60464668e-01 2.09745437e-01 1.66874516e+00 -7.33611062e-02 8.21646750e-01 1.03278553e+00 -3.15725088e-01 4.99990880e-01 -3.55886370e-02 -4.56338346e-01 -9.42552090e-02 -2.75304824e-01 2.09041759e-01 -6.00345969e-01 -8.94645974e-02 4.72656310e-01 -5.90565085e-01 -3.11289251e-01 7.08758384e-02 -8.30749035e-01 4.97136891e-01 4.69873361e-02 2.98702627e-01 -6.22240067e-01 -2.70198643e-01 7.27228165e-01 5.54181039e-01 5.74852049e-01 2.22225308e-01 -5.12650847e-01 -3.54489326e-01 -7.65978813e-01 4.69067842e-02 6.56607985e-01 6.92516804e-01 -1.90604001e-01 1.06618989e+00 -3.34803820e-01 1.32615054e+00 3.58373433e-01 8.31606805e-01 7.76587009e-01 -7.83392429e-01 4.94477004e-01 -1.76544785e-01 4.72312979e-02 -6.77618325e-01 -7.54953474e-02 -9.17424262e-01 -9.24984157e-01 4.29721296e-01 2.88816839e-01 -3.72808367e-01 -1.07418597e+00 1.72506249e+00 3.50798130e-01 3.73154908e-01 5.63603222e-01 8.78037333e-01 8.59804451e-01 9.48074341e-01 -7.19212145e-02 -6.70070171e-01 1.06002033e+00 -8.06412697e-01 -1.22753251e+00 -4.04778719e-01 -9.89881381e-02 -1.10079432e+00 1.15963411e+00 7.73886919e-01 -1.09616613e+00 -7.74897277e-01 -1.21778679e+00 3.08044314e-01 -1.09651856e-01 -5.04489802e-02 -2.37577632e-01 1.01894879e+00 -8.18283856e-01 -1.33413421e-02 -6.02219343e-01 7.06617311e-02 4.52747494e-01 7.82978609e-02 -2.31035352e-01 3.97378765e-02 -1.31407571e+00 6.39839828e-01 -5.78739308e-03 1.34383321e-01 -1.52559364e+00 -3.22748184e-01 -7.09720552e-01 -7.63695389e-02 2.13615209e-01 -1.62281379e-01 1.50519073e+00 -1.03848076e+00 -1.86363328e+00 4.46488738e-01 -1.24151610e-01 -7.65639484e-01 6.57522678e-01 -2.21031502e-01 -1.16646433e+00 1.21807829e-01 -1.92732260e-01 -3.58828120e-02 1.44079423e+00 -1.08467281e+00 -3.04733217e-01 -1.18024580e-01 -6.71259999e-01 3.99917781e-01 -3.00797313e-01 2.20609173e-01 -1.03319593e-01 -1.00644600e+00 2.69394845e-01 -3.60069096e-01 7.79633000e-02 -1.40828505e-01 -2.06308216e-01 -9.04550180e-02 1.17496192e+00 -1.16629362e+00 1.07667887e+00 -2.57761836e+00 -1.65902644e-01 1.01881318e-01 -5.42365201e-02 1.04474020e+00 -1.93862006e-01 5.78265823e-02 2.30312310e-02 -3.27492774e-01 -2.79052585e-01 -2.50793934e-01 5.82524315e-02 2.24009599e-03 -2.69362658e-01 4.02684152e-01 3.17627102e-01 1.96699411e-01 -8.90859127e-01 -2.50228643e-01 3.94448996e-01 5.84483266e-01 -1.46439418e-01 6.12317383e-01 -9.81786922e-02 5.41074932e-01 1.45979635e-02 6.44252717e-01 8.60071421e-01 8.00804794e-01 -1.88460469e-01 2.96685891e-03 1.80184439e-01 4.28740352e-01 -1.35088944e+00 1.40681601e+00 -5.42613149e-01 8.90274942e-01 7.42652655e-01 -8.17511976e-01 1.35505950e+00 8.27165604e-01 1.29501969e-01 -7.63173580e-01 3.00364465e-01 4.79378521e-01 2.61172891e-01 -4.13641244e-01 -3.52857374e-02 -1.57840952e-01 2.27955863e-01 -1.89662114e-01 2.84121931e-01 -4.61579680e-01 -5.74077904e-01 -2.46983811e-01 1.39104068e+00 -4.64335263e-01 2.39989161e-01 7.68018737e-02 7.62220919e-01 -7.25305378e-01 7.29442179e-01 6.55736387e-01 -8.62323225e-01 6.84155345e-01 1.46736577e-01 1.88870266e-01 -9.26092565e-01 -1.33884490e+00 -1.57106131e-01 7.19056845e-01 -3.01322818e-01 1.55617416e-01 -8.29218686e-01 -3.26904833e-01 -3.89999986e-01 8.62064600e-01 -7.04114586e-02 -2.78952390e-01 -4.59591925e-01 -2.16924533e-01 1.00265670e+00 4.17670965e-01 7.84558713e-01 -1.14241624e+00 1.74791813e-01 4.72659379e-01 -1.13063380e-01 -1.24223125e+00 -4.56359237e-01 4.04221267e-01 -3.65230471e-01 -4.88077790e-01 -9.34773505e-01 -1.12553751e+00 4.85246927e-02 1.75202146e-01 7.04370916e-01 -6.87371731e-01 1.28347918e-01 1.77232236e-01 -4.33098584e-01 -7.27912009e-01 -1.11349654e+00 -2.99130559e-01 6.12079263e-01 2.86388040e-01 5.04531801e-01 -7.61733770e-01 -5.51110506e-01 4.44540620e-01 -6.77882254e-01 -5.04693270e-01 4.59671974e-01 1.10154891e+00 5.13099611e-01 4.69061494e-01 1.17099988e+00 -2.35551342e-01 1.02166510e+00 -5.81950545e-01 -4.59070742e-01 -2.88858443e-01 -1.51454628e-01 -4.64588046e-01 9.39738393e-01 -7.54838169e-01 -1.29710662e+00 -2.82662790e-02 -7.75517106e-01 -8.39229822e-01 -4.58986163e-01 2.43939281e-01 -9.88427818e-01 2.70029306e-01 1.07037258e+00 4.66677517e-01 -8.43880046e-03 -6.53998375e-01 1.78512901e-01 1.36668670e+00 9.19680536e-01 -1.58577383e-01 1.06345904e+00 -8.55323821e-02 -3.49001437e-01 -1.20443881e+00 -4.08519983e-01 -4.84464020e-01 -2.07217485e-01 -1.64915979e-01 6.78035796e-01 -1.14090943e+00 -1.21603729e-02 1.04759598e+00 -1.19485176e+00 -2.44275242e-01 -1.24849521e-01 7.68795669e-01 -3.39616895e-01 2.60436952e-01 -5.20960391e-01 -1.24823749e+00 -5.56008279e-01 -1.20757282e+00 5.56720674e-01 9.67431068e-02 -2.48011947e-02 -5.09506285e-01 -1.82009175e-01 4.35841590e-01 5.45470536e-01 1.19306467e-01 5.13640225e-01 -1.17540133e+00 2.14499254e-02 -2.76231706e-01 3.31144512e-01 1.39367867e+00 5.94020605e-01 -2.49749690e-01 -1.72755075e+00 -1.78297639e-01 5.45381665e-01 -6.39713779e-02 4.11486804e-01 5.32757223e-01 1.03606415e+00 -3.32098752e-01 2.74175525e-01 3.76586854e-01 7.93665648e-01 8.53303492e-01 6.33017480e-01 2.23308541e-02 3.85308802e-01 2.49617130e-01 7.28300810e-01 2.55865365e-01 -6.30355358e-01 4.97456163e-01 4.71097589e-01 1.48079386e-02 -6.26495719e-01 -3.05544794e-01 5.49913585e-01 1.24040735e+00 5.95973194e-01 -6.94663942e-01 -6.44026518e-01 7.69709885e-01 -1.17594218e+00 -9.13632333e-01 1.38094410e-01 2.16787958e+00 8.27817500e-01 5.21380186e-01 2.28444219e-01 9.26293075e-01 9.44525182e-01 3.39152098e-01 -8.30889463e-01 -5.77913404e-01 -5.06936014e-01 5.35607040e-01 1.54859141e-01 4.36400384e-01 -1.05379426e+00 7.45510578e-01 5.54358816e+00 1.23961401e+00 -1.17470574e+00 2.51953244e-01 4.92247134e-01 -2.89164744e-02 3.87167721e-03 -8.33807707e-01 -1.80039048e-01 5.91421664e-01 1.20865214e+00 -1.58868507e-02 5.15159726e-01 1.07805562e+00 6.01849973e-01 4.05105323e-01 -7.26679385e-01 1.18790984e+00 -7.16049299e-02 -6.83029652e-01 -2.37836197e-01 -1.39118776e-01 5.21598101e-01 -8.42648596e-02 4.50007200e-01 4.14701492e-01 -4.47594412e-02 -9.25926328e-01 6.78179622e-01 1.98279079e-02 8.63235533e-01 -8.94283891e-01 8.37672293e-01 3.63400310e-01 -1.00353360e+00 -7.37581030e-02 -1.65409833e-01 6.33430406e-02 1.74597243e-03 5.10096490e-01 -1.32571900e+00 1.62520498e-01 6.13661408e-01 1.34786323e-01 1.35573387e-01 1.05924320e+00 -3.43001068e-01 1.31125891e+00 -1.03654958e-01 -3.77269611e-02 -1.82705317e-02 1.52850181e-01 1.17361593e+00 1.30471003e+00 3.81770790e-01 -1.38558879e-01 -4.19072211e-01 3.10292453e-01 -4.25376475e-01 5.73795363e-02 -7.15513349e-01 -4.25522961e-02 1.05317318e+00 7.78369367e-01 -1.65686861e-01 -3.77107672e-02 -2.27510825e-01 1.01435256e+00 -3.96022409e-01 4.80690837e-01 -8.29790652e-01 -5.98975658e-01 1.07959819e+00 -8.97549167e-02 2.85736442e-01 -2.28339866e-01 -1.43927857e-01 -6.25538588e-01 1.73029184e-01 -1.36214292e+00 -4.46145870e-02 -8.74811590e-01 -1.42730618e+00 7.49475718e-01 -5.35907090e-01 -1.65352643e+00 -1.91519469e-01 -5.81923366e-01 -7.84092367e-01 1.13466835e+00 -1.29687893e+00 -6.48613572e-01 -1.18024580e-01 7.44632244e-01 1.12079108e+00 -7.44705915e-01 8.22388649e-01 5.84145844e-01 -5.80450177e-01 9.23922896e-01 4.34424818e-01 4.42327976e-01 7.75988579e-01 -1.10313976e+00 5.78944564e-01 1.41467416e+00 8.37989897e-02 1.95774347e-01 9.97599304e-01 -3.11330229e-01 -1.15202141e+00 -1.30135286e+00 3.99762064e-01 3.84480096e-02 4.03489113e-01 -5.81397116e-01 -1.07833648e+00 1.61620513e-01 2.82470882e-01 2.40104139e-01 5.90879321e-01 -4.68793422e-01 -2.62358218e-01 -4.80490893e-01 -1.45307779e+00 4.73179460e-01 8.96417201e-01 -7.82619298e-01 -8.56552243e-01 7.19233379e-02 1.06428170e+00 -5.68198085e-01 -6.40048087e-01 2.96351045e-01 1.32994667e-01 -6.91763341e-01 9.15445983e-01 -3.87971640e-01 -1.75372675e-01 -5.88333011e-01 -5.38979053e-01 -1.70237827e+00 7.73524959e-03 -9.32353139e-01 -3.34385574e-01 1.67871356e+00 3.00692528e-01 -5.96613050e-01 3.30040932e-01 -5.44226319e-02 -5.90930343e-01 -1.44078404e-01 -1.40507889e+00 -1.06111646e+00 -1.60087451e-01 -9.03102517e-01 5.79897821e-01 6.91432297e-01 -4.59092438e-01 2.59866536e-01 -4.92185265e-01 6.15946591e-01 4.40052629e-01 -9.48303640e-01 6.95131361e-01 -7.75326967e-01 -2.56575257e-01 -2.36967951e-01 -6.25944078e-01 -9.65777695e-01 1.11557901e-01 -4.38266873e-01 3.22461128e-01 -1.27341378e+00 -8.79255235e-01 6.04807176e-02 -6.86909735e-01 -7.24587291e-02 -6.46594241e-02 -7.17458501e-02 -1.56031042e-01 -1.35550037e-01 -5.88763319e-02 7.86938906e-01 1.08280098e+00 -4.21446770e-01 -4.49447006e-01 5.05118251e-01 -4.40740645e-01 7.45376229e-01 9.63979363e-01 -4.70314056e-01 -6.01671338e-01 -1.28064200e-01 -6.87851191e-01 2.43974283e-01 -8.23312905e-03 -1.32476032e+00 5.76856658e-02 8.07451829e-03 3.60495776e-01 -5.69062531e-01 8.50056112e-01 -7.74692118e-01 -6.80144131e-02 3.61199260e-01 -2.41675720e-01 -4.87779796e-01 4.02152777e-01 7.16446757e-01 -5.53190529e-01 7.20517635e-02 1.07131517e+00 9.60000083e-02 -5.52925825e-01 4.79146652e-03 -7.31350303e-01 4.89512496e-02 7.20172107e-01 -1.38913572e-01 -3.19687158e-01 -7.54544735e-01 -5.91292024e-01 -3.47953618e-01 -1.94303602e-01 4.46171373e-01 7.73287416e-01 -1.34010291e+00 -8.10249209e-01 4.94405448e-01 -4.25859317e-02 7.72818401e-02 3.85564089e-01 3.39484215e-01 -3.15060884e-01 -2.79701930e-02 -4.89179567e-02 -4.93192106e-01 -1.39220047e+00 4.92794573e-01 6.27520144e-01 4.21411753e-01 -2.60444164e-01 1.10380089e+00 -9.89280418e-02 -7.05176368e-02 7.42106020e-01 -2.41003439e-01 -7.55288452e-02 -1.91598028e-01 6.41223907e-01 5.35558701e-01 4.99894023e-01 -7.97601402e-01 -3.65466833e-01 -8.25854987e-02 2.58789867e-01 -3.71108830e-01 9.86265481e-01 -6.10824078e-02 5.19343972e-01 3.95208269e-01 1.15972865e+00 5.22399127e-01 -1.40244436e+00 -4.68127251e-01 -3.02431792e-01 -4.23414409e-01 3.95280957e-01 -9.91837859e-01 -9.95346367e-01 1.07025671e+00 1.15456104e+00 2.78474182e-01 1.48141861e+00 -3.32926333e-01 9.02297318e-01 1.42896501e-02 -4.20966633e-02 -1.23764920e+00 3.04358274e-01 3.38677913e-01 1.04076648e+00 -9.69991326e-01 -4.80598837e-01 9.71823279e-03 -7.50755012e-01 9.01057720e-01 6.11067116e-01 1.61399111e-01 6.57412529e-01 3.75630766e-01 6.79320455e-01 4.80463386e-01 -4.78155881e-01 -2.15210065e-01 1.87418520e-01 1.17558920e+00 -6.29740953e-02 4.68025506e-02 1.27738610e-01 8.37151587e-01 -2.56409019e-01 -4.72921431e-01 2.43565559e-01 6.60148144e-01 -5.54350615e-01 -8.49055767e-01 -7.70398438e-01 3.82405400e-01 -6.44298792e-01 -7.70491138e-02 -3.55316341e-01 3.18846345e-01 -3.67222242e-02 1.61188543e+00 -7.69036189e-02 -7.28148520e-01 6.51354790e-01 3.38460714e-01 -3.06025762e-02 -3.61780882e-01 -4.76939708e-01 5.46351612e-01 1.57824919e-01 2.39389632e-02 -1.19072266e-01 -6.71633661e-01 -9.48202014e-01 5.85284941e-02 -2.88075089e-01 2.86108870e-02 8.66569579e-01 7.30655611e-01 2.26042226e-01 8.10051084e-01 1.18712711e+00 -5.15963376e-01 -7.38440990e-01 -1.39490974e+00 -8.01576674e-01 2.69352436e-01 7.83346653e-01 -5.02740681e-01 -9.48533177e-01 -1.32850215e-01]
[14.903179168701172, 6.103391647338867]
b91c77e4-6267-44ff-a3f1-912116173966
simultaneous-fidelity-and-regularization
1804.04522
null
https://arxiv.org/abs/1804.04522v4
https://arxiv.org/pdf/1804.04522v4.pdf
Simultaneous Fidelity and Regularization Learning for Image Restoration
Most existing non-blind restoration methods are based on the assumption that a precise degradation model is known. As the degradation process can only be partially known or inaccurately modeled, images may not be well restored. Rain streak removal and image deconvolution with inaccurate blur kernels are two representative examples of such tasks. For rain streak removal, although an input image can be decomposed into a scene layer and a rain streak layer, there exists no explicit formulation for modeling rain streaks and the composition with scene layer. For blind deconvolution, as estimation error of blur kernel is usually introduced, the subsequent non-blind deconvolution process does not restore the latent image well. In this paper, we propose a principled algorithm within the maximum a posterior framework to tackle image restoration with a partially known or inaccurate degradation model. Specifically, the residual caused by a partially known or inaccurate degradation model is spatially dependent and complexly distributed. With a training set of degraded and ground-truth image pairs, we parameterize and learn the fidelity term for a degradation model in a task-driven manner. Furthermore, the regularization term can also be learned along with the fidelity term, thereby forming a simultaneous fidelity and regularization learning model. Extensive experimental results demonstrate the effectiveness of the proposed model for image deconvolution with inaccurate blur kernels, deconvolution with multiple degradations and rain streak removal.
['Ming-Hsuan Yang', 'WangMeng Zuo', 'David Zhang', 'Lei Zhang', 'Dongwei Ren']
2018-04-12
null
null
null
null
['image-deconvolution']
['computer-vision']
[ 3.10284048e-01 -5.99390209e-01 3.44277084e-01 -3.02946597e-01 -5.04639566e-01 -3.62681836e-01 3.00807506e-01 -4.79178429e-01 6.18201564e-04 1.03044808e+00 1.61477178e-01 7.31119439e-02 -2.05199346e-01 -4.11116093e-01 -6.65621579e-01 -1.09074426e+00 4.76564199e-01 4.64741439e-02 8.64949822e-03 4.04546745e-02 1.50000244e-01 2.92224169e-01 -1.50485098e+00 -4.66629267e-02 1.47449350e+00 7.57974207e-01 8.17322552e-01 7.42973983e-01 -9.35046896e-02 8.97462666e-01 -5.02205074e-01 1.48559004e-01 2.27481827e-01 -5.04219115e-01 -3.01314235e-01 6.94439232e-01 4.88817185e-01 -6.91684008e-01 -3.40590805e-01 1.38304913e+00 1.98484465e-01 6.99456334e-02 6.91393852e-01 -7.14135349e-01 -8.28389406e-01 -4.60280217e-02 -7.14687705e-01 1.33301750e-01 1.12327844e-01 2.03184187e-01 4.24568802e-01 -9.33733821e-01 1.21733241e-01 9.45794046e-01 6.20239377e-01 2.62261063e-01 -1.24990320e+00 -3.32976490e-01 1.06464557e-01 1.60928607e-01 -1.33602130e+00 -6.13298953e-01 7.69157767e-01 -6.10969067e-01 9.32456702e-02 3.10194999e-01 4.88269746e-01 6.00828886e-01 5.17383888e-02 4.02301133e-01 1.58475900e+00 -1.92705065e-01 2.10633382e-01 5.63277770e-03 3.89026195e-01 4.13593292e-01 5.27405918e-01 3.22143435e-01 -1.87692747e-01 -1.11773960e-01 9.18339014e-01 3.04829299e-01 -1.16372311e+00 -1.98214322e-01 -8.96159172e-01 4.27053809e-01 4.63235110e-01 1.42485723e-01 -5.87795973e-01 -1.00751251e-01 -1.81543753e-01 1.62256092e-01 5.21635592e-01 2.18126535e-01 -2.37550825e-01 3.31675977e-01 -1.37067509e+00 2.13727832e-01 6.52016580e-01 6.61000252e-01 1.12054563e+00 3.61173630e-01 -3.75296533e-01 1.00590765e+00 5.91168880e-01 8.28950822e-01 3.50073189e-01 -9.83171403e-01 1.29079789e-01 4.59066220e-02 1.04931724e+00 -6.51378810e-01 8.30563530e-02 -5.75238824e-01 -1.29638648e+00 5.59755564e-01 4.63439822e-01 -1.61970295e-02 -1.17894351e+00 1.52660680e+00 2.38972828e-01 8.77025545e-01 2.98704267e-01 1.54194117e+00 5.18028319e-01 7.57581174e-01 -2.26378903e-01 -7.88276494e-01 1.18000066e+00 -9.89458919e-01 -1.17753923e+00 -5.33209264e-01 -2.15782329e-01 -1.10064650e+00 8.46303225e-01 4.15121496e-01 -1.06526148e+00 -6.68813467e-01 -1.15068734e+00 -4.42951405e-03 3.30011427e-01 4.09659386e-01 2.12354690e-01 4.25717264e-01 -9.59913671e-01 5.50758064e-01 -6.49684370e-01 -7.32441917e-02 1.26770809e-01 -1.99781910e-01 -1.13549918e-01 -7.73286819e-01 -9.45654392e-01 1.01219308e+00 1.49241999e-01 8.48983407e-01 -1.22661412e+00 -6.84048474e-01 -4.90553558e-01 -9.53600332e-02 6.81547374e-02 -1.06623626e+00 9.05800164e-01 -1.13089991e+00 -1.40862882e+00 3.17564338e-01 -2.78188258e-01 -1.44574150e-01 6.32420421e-01 -5.50696969e-01 -4.66392547e-01 1.68904394e-01 -3.80149297e-02 -3.64208400e-01 1.63742685e+00 -1.90289140e+00 -2.96855599e-01 -2.66546607e-01 -4.07886039e-03 5.81604779e-01 3.06719154e-01 -2.00829297e-01 -2.17620254e-01 -6.87297881e-01 2.92194039e-01 -5.27500331e-01 -8.90934095e-02 2.21367598e-01 -2.46607855e-01 7.47690141e-01 7.57712662e-01 -1.23413372e+00 1.00481308e+00 -2.35980177e+00 1.97115064e-01 -2.24499881e-01 2.81662047e-01 3.50105613e-01 -5.10100983e-02 1.24581084e-01 2.92277969e-02 -2.68548340e-01 -9.27566290e-01 -4.10328537e-01 -3.42379779e-01 4.27163541e-01 -4.46649373e-01 8.21701705e-01 -5.18533885e-02 3.05027455e-01 -9.41777647e-01 4.70237099e-02 4.19884801e-01 7.98853040e-01 -3.58833116e-03 7.62098670e-01 -6.75490275e-02 7.88213730e-01 -3.00109863e-01 4.94435221e-01 1.47511721e+00 -1.49389997e-01 -5.58715761e-02 -6.14800572e-01 -3.37260425e-01 -3.48090470e-01 -1.38322961e+00 1.36983156e+00 -6.37871981e-01 3.55164587e-01 7.38317847e-01 -8.60865891e-01 8.28096092e-01 3.72098386e-01 1.31005878e-02 -9.37757641e-02 -1.94525808e-01 3.84701788e-01 -3.20285827e-01 -7.65293837e-01 3.46434772e-01 -7.12278903e-01 8.22093546e-01 1.10451944e-01 -1.78714231e-01 -2.05499217e-01 -2.42811322e-01 -1.45919815e-01 8.50817144e-01 1.12538420e-01 9.35071558e-02 -1.12549126e-01 6.00159168e-01 -2.58764237e-01 6.06937706e-01 7.94383109e-01 -1.18098497e-01 1.18188703e+00 -3.51706296e-01 -6.85662031e-02 -1.03756714e+00 -9.95021999e-01 -2.56343335e-01 4.54086632e-01 5.06679177e-01 2.53836811e-01 -6.65845275e-01 -1.34788662e-01 -1.45420611e-01 6.52001679e-01 -2.78842658e-01 1.15481773e-04 -3.46225709e-01 -1.19252372e+00 7.63701051e-02 -5.58458120e-02 9.26189005e-01 -6.44197404e-01 -4.62119281e-02 2.04134881e-01 -3.66148472e-01 -1.06421351e+00 -4.52798277e-01 -1.24176383e-01 -9.23870921e-01 -1.33999252e+00 -1.06830382e+00 -6.55030072e-01 8.80076587e-01 9.71437275e-01 7.62128115e-01 8.03427622e-02 -2.32205063e-01 2.16847554e-01 -2.62315601e-01 1.04861356e-01 -4.33683813e-01 -1.08114505e+00 -1.97886210e-02 7.09878981e-01 -4.00953382e-01 -7.14638650e-01 -8.25504899e-01 1.14067972e-01 -1.10099661e+00 2.59541363e-01 7.75523543e-01 1.01812708e+00 3.77996922e-01 5.34866929e-01 1.47535130e-01 -7.59877026e-01 5.30836403e-01 -5.51538646e-01 -6.91815376e-01 3.30162048e-01 -6.27884150e-01 -5.45301437e-02 5.24499059e-01 -5.13582945e-01 -1.73087668e+00 3.50539456e-03 3.12707633e-01 -8.59519243e-01 -3.11010689e-01 6.31717265e-01 -2.67336369e-01 -2.39045188e-01 5.94628751e-01 6.63119912e-01 -9.67738591e-03 -9.77345586e-01 4.21492785e-01 5.68205774e-01 6.66657269e-01 -3.26522022e-01 1.21367013e+00 6.30665720e-01 -2.17435583e-01 -1.00274289e+00 -8.74318123e-01 -6.96362793e-01 -3.47400725e-01 -2.34238923e-01 6.42444909e-01 -1.27983725e+00 -1.18305199e-01 1.04800260e+00 -1.28640378e+00 -3.14698458e-01 -8.78528059e-02 6.86826408e-01 -3.41870546e-01 9.03782964e-01 -5.93499839e-01 -1.10691619e+00 -1.44550443e-01 -9.03865159e-01 6.76135600e-01 4.65115160e-01 6.44697964e-01 -9.35062587e-01 -6.72772676e-02 5.31466901e-01 5.73354602e-01 6.46557137e-02 5.97212732e-01 2.99108654e-01 -8.97151887e-01 1.82847157e-02 -6.29002571e-01 8.50508451e-01 6.33978665e-01 -2.99160063e-01 -1.11063421e+00 -3.82143855e-01 7.60941565e-01 1.30996600e-01 9.88882065e-01 6.23365402e-01 5.81812263e-01 -5.49113154e-01 1.26744390e-01 7.99533367e-01 1.84316313e+00 -2.22616076e-01 7.17441678e-01 6.93193302e-02 9.13620889e-01 3.23475182e-01 6.35597527e-01 4.74241316e-01 9.09451023e-02 4.59151834e-01 5.53214252e-01 -1.11087039e-01 -5.42903244e-01 2.97164619e-01 3.17281753e-01 8.57858121e-01 -3.10222238e-01 -1.93443984e-01 -4.67122793e-01 6.11648440e-01 -1.84629607e+00 -8.67848933e-01 -5.10932863e-01 2.53763819e+00 9.51059878e-01 -3.62736881e-01 -5.75945079e-01 1.20617021e-02 8.88311505e-01 3.26369941e-01 -5.10602474e-01 2.81675696e-01 -3.91608834e-01 -9.61808637e-02 5.79661489e-01 9.66571629e-01 -8.77424777e-01 5.45594275e-01 5.51795912e+00 5.99229634e-01 -1.04924297e+00 2.43387997e-01 1.31448999e-01 3.36160064e-01 -3.61939669e-01 2.99140632e-01 -4.12513137e-01 7.54805148e-01 4.90455300e-01 -3.14290598e-02 1.00891161e+00 1.89458162e-01 8.44330490e-01 -3.34062546e-01 -6.07768714e-01 1.18514168e+00 -5.51913269e-02 -8.50206614e-01 -1.88661460e-02 -1.81371570e-01 8.71930361e-01 -2.09602833e-01 -9.78614688e-02 -1.19269855e-01 2.03455567e-01 -8.06650996e-01 5.63153386e-01 1.36057448e+00 6.11660480e-01 -2.08790198e-01 6.99194789e-01 6.29108548e-01 -7.78527379e-01 1.01145077e-03 -4.83987719e-01 -1.72057122e-01 2.55686581e-01 1.25216269e+00 -2.87764817e-01 9.95273888e-01 6.42697692e-01 8.51022184e-01 -1.78603709e-01 1.59139836e+00 -6.84310794e-01 8.09514642e-01 -4.88310866e-02 8.52888525e-01 -1.39055759e-01 -8.33942115e-01 8.63484502e-01 9.56087708e-01 5.97115815e-01 5.16798079e-01 6.37960806e-02 9.15190876e-01 1.84910789e-01 -3.46169382e-01 -2.38595203e-01 2.64373183e-01 2.19687879e-01 1.19855738e+00 -1.25308067e-01 -2.31785759e-01 -3.86269689e-01 1.42920792e+00 -1.37242109e-01 1.08477294e+00 -7.59441614e-01 8.06084722e-02 8.56358230e-01 5.76827750e-02 2.53651768e-01 -2.24653050e-01 -1.16163932e-01 -1.47967112e+00 8.89222249e-02 -6.42512500e-01 -1.99818790e-01 -1.29844511e+00 -1.55103838e+00 4.39063400e-01 -2.84121454e-01 -1.35576963e+00 3.24153900e-01 -4.01094019e-01 -6.78910673e-01 1.51805353e+00 -2.17774439e+00 -1.18765354e+00 -8.39299321e-01 4.83299136e-01 4.62462455e-01 2.18900681e-01 5.22638917e-01 3.58450353e-01 -6.06938541e-01 -3.14611524e-01 7.86530733e-01 -4.86826539e-01 9.46138561e-01 -1.24976516e+00 -4.83522683e-01 1.19915974e+00 -4.58783686e-01 5.17768860e-01 1.28889656e+00 -7.21262455e-01 -1.31048286e+00 -1.35276473e+00 3.87420952e-01 1.61067232e-01 5.77853441e-01 1.49559513e-01 -1.49925268e+00 3.39854598e-01 1.21377833e-01 4.37060624e-01 1.68951169e-01 -4.38541740e-01 -2.09671035e-01 -3.32685500e-01 -1.12893879e+00 2.03520700e-01 5.40690720e-01 -5.88301003e-01 -6.62258804e-01 5.80470264e-01 4.85180855e-01 -4.40936685e-01 -5.49933910e-01 4.68343407e-01 1.88596502e-01 -1.10194600e+00 1.10498857e+00 -1.36368781e-01 2.68761009e-01 -9.97504413e-01 -2.55269110e-01 -1.50867188e+00 -5.82463145e-01 -4.40889686e-01 -4.95210439e-01 1.43625474e+00 -1.74489498e-01 -4.68892664e-01 2.46134520e-01 4.68686461e-01 -2.67131418e-01 -7.85842165e-02 -5.76562881e-01 -7.07125783e-01 -3.70586842e-01 -2.72431085e-03 2.37396747e-01 1.02452886e+00 -8.76415968e-01 1.47358418e-01 -9.40016985e-01 1.11992931e+00 1.15279388e+00 3.11951816e-01 4.74254906e-01 -1.14344239e+00 -4.25020814e-01 -2.62491163e-02 1.19242072e-01 -1.20327961e+00 -1.32125795e-01 -3.21988702e-01 6.70780659e-01 -1.84904706e+00 2.69061804e-01 -3.64918530e-01 -3.03758770e-01 -5.76294586e-02 -5.68356931e-01 1.11716352e-01 -1.03226863e-01 8.63249362e-01 -3.68130095e-02 7.34534979e-01 1.41636539e+00 -1.52128384e-01 -7.99626559e-02 2.82061726e-01 -4.78201240e-01 6.91408634e-01 5.01863718e-01 -2.77504683e-01 -5.50372064e-01 -6.80409968e-01 -1.78030491e-01 3.09539914e-01 7.62829483e-01 -9.31898654e-01 2.88925290e-01 -4.23316956e-01 2.31062502e-01 -1.61346763e-01 5.60959220e-01 -8.44342589e-01 4.97174263e-01 -6.56229351e-03 1.26855507e-01 -8.79163504e-01 2.20397208e-02 1.00586581e+00 -3.86639297e-01 -3.92717749e-01 1.05862677e+00 -2.94348210e-01 -5.30717075e-01 2.53504843e-01 -3.05711359e-01 -3.55689198e-01 4.89569485e-01 -2.73477733e-01 -5.14426053e-01 -2.91720033e-01 -8.06782663e-01 -5.94491661e-02 5.98539531e-01 -2.03048456e-02 7.78642118e-01 -9.48255539e-01 -1.00993729e+00 -1.43831840e-03 -1.23951659e-01 1.70343351e-02 8.12469780e-01 8.64320457e-01 -6.01613402e-01 -1.67045102e-01 -3.51778157e-02 -2.57327348e-01 -1.10330331e+00 6.23700261e-01 6.36501849e-01 6.12245090e-02 -5.63056588e-01 6.75075233e-01 6.40345991e-01 -1.63895581e-02 -6.27810657e-02 -1.96828365e-01 -2.38080084e-01 -3.40873212e-01 7.02149808e-01 5.19684017e-01 -1.06496401e-01 -7.82038689e-01 9.95281786e-02 5.72386563e-01 2.20312774e-01 8.41504931e-02 1.23441327e+00 -8.12870979e-01 -4.03037906e-01 5.73679507e-01 7.85857677e-01 8.56631920e-02 -1.66534877e+00 -3.49139035e-01 -4.59174752e-01 -7.14002013e-01 5.91411471e-01 -1.04556572e+00 -1.09711838e+00 7.55924702e-01 8.94276023e-01 1.37159973e-01 1.41106379e+00 -4.51170921e-01 4.90698397e-01 -1.79005131e-01 4.25606780e-02 -5.88742077e-01 -1.47764996e-01 3.77777338e-01 1.11624849e+00 -1.19876444e+00 1.66020021e-01 -5.34298241e-01 -2.42149293e-01 1.00680244e+00 3.78459185e-01 -1.63816467e-01 6.33358538e-01 -4.20498215e-02 1.65457755e-01 1.80498883e-02 -1.76377594e-01 -1.67209327e-01 2.62914181e-01 4.81543005e-01 1.12854086e-01 -7.89821148e-04 -2.86204785e-01 5.64867914e-01 4.04208839e-01 2.25594625e-01 7.08844066e-01 6.92267358e-01 -7.57480919e-01 -7.50450730e-01 -1.02091157e+00 1.96939066e-01 -1.09376431e-01 -3.10580313e-01 2.87443072e-01 9.77173820e-02 2.08761588e-01 1.29506135e+00 -4.06777233e-01 1.21228747e-01 1.70531690e-01 -2.30283365e-01 4.94479835e-01 -6.27386034e-01 9.40083191e-02 3.14327568e-01 -7.15259388e-02 -2.52669483e-01 -6.67656600e-01 -5.63436925e-01 -8.57426167e-01 -1.28257245e-01 -5.08173943e-01 1.83736727e-01 5.83741248e-01 1.04492593e+00 9.87258330e-02 4.76120949e-01 6.78354979e-01 -9.13741946e-01 -4.74418312e-01 -1.12874317e+00 -1.21527731e+00 1.67375162e-01 1.06105518e+00 -6.20670497e-01 -9.51783478e-01 4.10580635e-01]
[11.535736083984375, -2.679246425628662]
a8459d1d-3449-4278-aff2-82b4473e4908
incremental-learning-on-food-instance
2306.15910
null
https://arxiv.org/abs/2306.15910v1
https://arxiv.org/pdf/2306.15910v1.pdf
Incremental Learning on Food Instance Segmentation
Food instance segmentation is essential to estimate the serving size of dishes in a food image. The recent cutting-edge techniques for instance segmentation are deep learning networks with impressive segmentation quality and fast computation. Nonetheless, they are hungry for data and expensive for annotation. This paper proposes an incremental learning framework to optimize the model performance given a limited data labelling budget. The power of the framework is a novel difficulty assessment model, which forecasts how challenging an unlabelled sample is to the latest trained instance segmentation model. The data collection procedure is divided into several stages, each in which a new sample package is collected. The framework allocates the labelling budget to the most difficult samples. The unlabelled samples that meet a certain qualification from the assessment model are used to generate pseudo-labels. Eventually, the manual labels and pseudo-labels are sent to the training data to improve the instance segmentation model. On four large-scale food datasets, our proposed framework outperforms current incremental learning benchmarks and achieves competitive performance with the model trained on fully annotated samples.
['Wing-Kwong Chan', 'Chong-Wah Ngo', 'Yu Cao', 'Huu-Thanh Nguyen']
2023-06-28
null
null
null
null
['instance-segmentation', 'incremental-learning']
['computer-vision', 'methodology']
[ 4.38379019e-01 3.04814965e-01 -6.46754205e-01 -8.37145030e-01 -8.43248785e-01 -5.75315833e-01 -2.44668514e-01 8.43323469e-01 -4.13429260e-01 4.02875215e-01 -1.96520224e-01 -8.60424191e-02 2.17974290e-01 -9.29789722e-01 -9.27920878e-01 -7.48719156e-01 1.26204178e-01 8.97234261e-01 2.40767188e-02 1.26168609e-01 1.75401092e-01 -1.00723229e-01 -1.44599354e+00 5.36822021e-01 1.13728189e+00 1.36336100e+00 5.19969881e-01 7.45689392e-01 -3.99058253e-01 7.37292886e-01 -4.80974376e-01 -2.40558639e-01 4.35189635e-01 -5.38287640e-01 -8.45888674e-01 5.34513354e-01 2.31147692e-01 -5.21100402e-01 5.30508101e-01 1.31119156e+00 2.95238882e-01 -3.70442346e-02 4.67038393e-01 -1.23318565e+00 -4.46872979e-01 1.26652539e+00 -4.94833946e-01 3.11019514e-02 1.57017007e-01 6.15547001e-02 8.97212505e-01 -7.03143537e-01 2.91104913e-01 8.57801855e-01 8.09489548e-01 3.92829597e-01 -9.62772191e-01 -3.87645006e-01 5.99098265e-01 1.06751710e-01 -1.07439482e+00 -2.50590265e-01 7.76912630e-01 -3.08727801e-01 7.00662851e-01 1.42413512e-01 9.15975928e-01 5.58321536e-01 -1.82637334e-01 1.24760270e+00 8.49712014e-01 -3.53955388e-01 5.53993821e-01 2.88520399e-02 6.15878940e-01 6.08201981e-01 1.70427561e-01 -2.50838876e-01 -4.78476025e-02 3.47833663e-01 3.97989035e-01 1.30403683e-01 1.15934787e-02 -2.61134952e-01 -8.67968023e-01 1.09990132e+00 7.29115665e-01 4.53301370e-02 -5.12251556e-01 -3.49270463e-01 5.71875274e-01 1.21792555e-01 7.44080007e-01 4.37202960e-01 -1.12062871e+00 3.38064611e-01 -1.05255020e+00 7.57443532e-02 1.03549659e+00 1.10749793e+00 7.87354827e-01 -2.54297763e-01 -3.09441775e-01 8.76983225e-01 4.05891359e-01 2.39983529e-01 3.14942449e-01 -9.01391089e-01 4.09187794e-01 1.05914629e+00 2.84557462e-01 -8.20046604e-01 -8.35285366e-01 -5.08517504e-01 -7.80347824e-01 -1.35106415e-01 7.60514796e-01 -2.05336288e-01 -1.20095468e+00 1.25341856e+00 8.54269505e-01 -1.12039730e-01 -6.09006472e-02 9.84736741e-01 1.14868760e+00 8.26315582e-01 5.87667227e-01 -4.18932527e-01 1.34155774e+00 -1.64792049e+00 -6.53543115e-01 -3.76637518e-01 7.58977234e-01 -7.09351897e-01 9.28571880e-01 7.20617950e-01 -9.97863054e-01 -9.34538901e-01 -1.05663240e+00 -1.62416965e-01 -3.89459252e-01 3.45778763e-01 8.21133614e-01 5.19843638e-01 -7.41704106e-01 5.65488994e-01 -8.25693667e-01 -6.40176311e-02 5.95875859e-01 4.79654729e-01 2.87998319e-01 -2.80500442e-01 -8.92767847e-01 2.54473299e-01 1.03281629e+00 4.36138123e-01 -9.68178511e-01 -7.53378987e-01 -1.25425529e+00 -6.53253347e-02 6.15686834e-01 -3.58455360e-01 1.59115314e+00 -1.52293479e+00 -1.40797043e+00 9.95380282e-01 1.99340448e-01 -5.44389546e-01 4.98433799e-01 -1.78131431e-01 -5.16891293e-02 -1.46000832e-01 3.78733933e-01 1.17711425e+00 8.64523530e-01 -1.24628782e+00 -1.11637187e+00 -3.33302885e-01 3.06534529e-01 3.87610584e-01 1.77548975e-01 -4.21335965e-01 -3.53142828e-01 -2.52004594e-01 2.59540379e-01 -6.95837379e-01 -5.40873468e-01 -2.71178454e-01 -4.70539242e-01 -5.92181861e-01 2.69575775e-01 -6.97213829e-01 1.04587305e+00 -2.01921606e+00 -1.12260439e-01 -2.10667133e-01 -8.98353104e-03 1.77449554e-01 -7.87959695e-02 -2.40911305e-01 6.05300777e-02 -1.37777284e-01 -1.75473407e-01 -1.24163754e-01 1.10239878e-01 2.26267606e-01 3.72267187e-01 2.68042862e-01 1.55180424e-01 9.87419069e-01 -1.29644859e+00 -6.48140609e-01 2.81210989e-01 -8.31110589e-03 -6.05923772e-01 4.68192548e-01 -8.54438484e-01 5.49496889e-01 -4.01458800e-01 9.99408603e-01 8.47395062e-01 -3.71485293e-01 2.08495319e-01 -5.75759470e-01 -1.06762536e-01 -6.90157861e-02 -1.17493272e+00 1.83228946e+00 -1.25609383e-01 -3.68237555e-01 1.37539282e-01 -1.30228162e+00 8.10131550e-01 -2.25436725e-02 6.22729123e-01 -7.30968416e-01 5.11404157e-01 2.74182618e-01 -1.19202957e-01 -7.89423645e-01 5.30064404e-01 2.03367993e-01 -4.36276287e-01 1.49160951e-01 1.59727886e-01 -8.38274509e-02 8.67998123e-01 -2.89155275e-01 4.29682583e-01 6.97501302e-01 3.90393317e-01 -4.03914958e-01 5.22483110e-01 6.34295702e-01 8.46069872e-01 6.25303268e-01 -5.39078474e-01 2.28954837e-01 9.84009951e-02 -1.11224711e+00 -1.17480671e+00 -6.01450384e-01 1.01666808e-01 1.61447692e+00 1.78569928e-01 -2.31248531e-02 -1.18292189e+00 -1.15255010e+00 -2.48270348e-01 4.46345270e-01 -6.30280256e-01 -2.58775819e-02 -5.63023865e-01 -1.07711387e+00 -2.25114062e-01 6.94078922e-01 6.10046089e-01 -1.40785408e+00 -6.95040643e-01 5.88148594e-01 -4.57842618e-01 -8.09863091e-01 -5.59135497e-01 6.58291519e-01 -8.77212942e-01 -1.25772238e+00 -6.55182779e-01 -1.29643714e+00 9.45390105e-01 3.90599184e-02 1.51341736e+00 1.94267988e-01 -1.92786098e-01 -1.92236558e-01 -7.06201792e-01 -6.66673064e-01 -5.49925923e-01 5.36666632e-01 -3.28319967e-01 -2.16628283e-01 7.66289294e-01 2.57153600e-01 -1.07922387e+00 3.93395960e-01 -8.46586883e-01 2.73893565e-01 3.39360058e-01 6.30329967e-01 1.28740978e+00 3.35478514e-01 6.70429885e-01 -1.22374260e+00 1.46655038e-01 -5.12575388e-01 -5.74989438e-01 2.03273952e-01 -3.95714849e-01 -1.80179521e-01 8.63415301e-01 -6.15242660e-01 -8.20393860e-01 7.40362525e-01 -5.33819973e-01 2.74266511e-01 -3.95803690e-01 5.08156478e-01 -2.50175297e-01 3.26014757e-01 5.03636718e-01 -2.50456542e-01 -3.43660772e-01 -4.54034388e-01 4.24876601e-01 4.24180418e-01 3.44327360e-01 -4.96464223e-01 -2.48644184e-02 -5.37412241e-02 -4.87483472e-01 -1.99727699e-01 -1.72502244e+00 -7.36718774e-01 -1.00247180e+00 -1.52217239e-01 1.02510381e+00 -8.74961615e-01 -4.15930688e-01 6.68225706e-01 -6.78156018e-01 -9.64426517e-01 -5.38020551e-01 2.60212570e-01 -4.66785103e-01 1.92365143e-02 -7.55529284e-01 -6.67803764e-01 -6.23947740e-01 -1.19498277e+00 1.20672929e+00 5.06884038e-01 3.01148221e-02 -8.09229136e-01 -2.20206395e-01 5.37931263e-01 8.58854726e-02 3.55035096e-01 8.00903201e-01 -6.46660209e-01 -1.46056563e-01 -1.56454518e-01 -1.51428625e-01 3.97172213e-01 1.81909248e-01 -1.53622046e-01 -8.00753117e-01 -3.37790102e-01 2.36963168e-01 -6.53650582e-01 7.31019557e-01 9.21194136e-01 1.32313251e+00 -2.38783106e-01 -2.52329528e-01 6.12712204e-01 1.55517709e+00 5.14577985e-01 1.08213440e-01 4.29584980e-01 7.32748687e-01 5.31151831e-01 1.12623787e+00 2.56675333e-01 7.02729583e-01 1.51035398e-01 6.73382938e-01 -3.41996133e-01 4.81126010e-02 -2.04990685e-01 2.10469007e-01 1.07642686e+00 3.35884571e-01 -3.02587360e-01 -5.35381079e-01 5.90215087e-01 -1.92048109e+00 -3.58665109e-01 -3.08637589e-01 1.92992735e+00 9.18617487e-01 2.78837919e-01 3.97922039e-01 3.95711392e-01 5.82487226e-01 -2.49873638e-01 -1.10860217e+00 -4.83353406e-01 3.60011131e-01 4.47242558e-02 5.06771028e-01 3.33229959e-01 -1.67379999e+00 9.76761878e-01 5.91509676e+00 6.34166360e-01 -7.28895783e-01 1.08496450e-01 1.51627338e+00 2.06382602e-01 2.67313838e-01 -6.16150320e-01 -1.06607008e+00 4.88866478e-01 9.56047118e-01 4.33544934e-01 3.89370680e-01 1.19350994e+00 1.57421187e-01 -2.67779350e-01 -1.37909722e+00 6.42404795e-01 8.23552981e-02 -7.58288205e-01 -1.23005219e-01 -4.04358268e-01 9.43072557e-01 -7.46463239e-02 -1.34030223e-01 7.48552918e-01 6.18399978e-01 -7.32441723e-01 8.38544548e-01 1.66765302e-01 5.24806678e-01 -8.30506384e-01 9.90319252e-01 6.35925889e-01 -1.36358047e+00 -3.79532874e-01 -7.28296459e-01 -1.91645399e-02 1.23846292e-01 7.65150249e-01 -8.44082296e-01 4.73753780e-01 7.86112785e-01 4.54247564e-01 -5.99092841e-01 1.12070131e+00 -2.28044972e-01 4.79798257e-01 -3.86733592e-01 7.38534480e-02 5.32147944e-01 -4.34330881e-01 -4.20143396e-01 1.09709156e+00 1.34837970e-01 5.76965362e-02 1.00675178e+00 6.22081339e-01 -1.66812956e-01 4.26943570e-01 1.20717278e-02 1.65719822e-01 -5.11667319e-03 1.62275684e+00 -1.34191978e+00 -5.26727915e-01 -2.64922589e-01 1.07112706e+00 4.78872210e-01 -5.09273075e-02 -8.39583099e-01 2.38041386e-01 -1.04537509e-01 -2.14031905e-01 3.19803447e-01 2.91230828e-01 -3.06855619e-01 -6.85526431e-01 -2.29070559e-01 -8.55827928e-01 6.61000609e-01 -5.28649688e-01 -1.34662700e+00 5.43590009e-01 -2.35961840e-01 -8.50217044e-01 -1.38543814e-01 -5.97875714e-01 -2.19728202e-02 3.89482886e-01 -1.60104370e+00 -1.24295938e+00 -6.50437653e-01 1.74343690e-01 1.16961014e+00 4.25254762e-01 8.70166361e-01 4.24968272e-01 -6.48510218e-01 4.83361632e-01 -1.40457094e-01 2.32214510e-01 1.84897229e-01 -1.62814641e+00 3.27226371e-01 4.83541995e-01 -7.74397179e-02 -1.72484159e-01 5.33799112e-01 -6.67512178e-01 -1.07155693e+00 -1.47975302e+00 6.74640715e-01 -2.15778187e-01 2.56191224e-01 -4.31934804e-01 -7.36232996e-01 4.85795945e-01 -1.62944332e-01 1.24388203e-01 7.67103970e-01 -1.13595389e-01 1.45140067e-01 -1.46422714e-01 -1.51672745e+00 -4.93839663e-03 8.75777900e-01 2.54106939e-01 -2.61002600e-01 7.27161884e-01 9.71868277e-01 -7.22305000e-01 -9.04326856e-01 4.40840721e-01 4.73566711e-01 -5.33257186e-01 6.95139885e-01 -4.53833044e-01 4.86365676e-01 -6.78571612e-02 7.77372494e-02 -1.28317821e+00 -4.66446519e-01 -1.27971336e-01 -2.82700155e-02 1.18794477e+00 6.80789113e-01 1.12746246e-01 1.06688738e+00 6.55765057e-01 -2.07062215e-01 -9.62846160e-01 -2.92736083e-01 -2.73398846e-01 2.03098878e-02 -2.78801292e-01 8.47632229e-01 1.00602949e+00 -2.73490101e-01 3.35339665e-01 -6.15934506e-02 5.30563481e-02 6.56916082e-01 4.73831892e-01 5.71915984e-01 -1.20261514e+00 -1.05254091e-01 -1.70787632e-01 2.55486310e-01 -1.42921519e+00 -1.77512333e-01 -9.29085135e-01 5.96613526e-01 -1.83624685e+00 2.42258936e-01 -7.56686807e-01 -4.19635028e-01 5.99083185e-01 -5.20669818e-01 4.03023660e-01 -7.16744363e-02 3.27841286e-03 -1.09542274e+00 -1.25016451e-01 1.51277220e+00 -5.65397859e-01 -6.77499413e-01 2.41402492e-01 -7.12845385e-01 8.49619150e-01 1.08893669e+00 -4.93178278e-01 -5.47693908e-01 -6.28439724e-01 4.17007476e-01 -7.93370008e-02 -1.58950552e-01 -8.76185596e-01 -9.79312602e-03 -9.37964991e-02 5.77015698e-01 -8.89648795e-01 -2.31372476e-01 -9.56348956e-01 6.74450845e-02 5.68918467e-01 -5.13449728e-01 -1.34935915e-01 -3.63390446e-02 3.60906065e-01 2.34350517e-01 -6.02914691e-01 7.47157872e-01 -7.21515238e-01 -6.48886681e-01 6.79396272e-01 5.83252348e-02 -3.43366228e-02 1.01981640e+00 -2.33615279e-01 1.36574030e-01 2.27394387e-01 -1.18709517e+00 6.11649156e-01 2.09606990e-01 2.63914347e-01 1.56124264e-01 -1.19166565e+00 -7.95820832e-01 2.68785894e-01 5.82294725e-02 7.63852239e-01 2.87421227e-01 5.95075786e-01 -6.18176281e-01 1.92682624e-01 1.04028974e-02 -8.27161789e-01 -9.01899815e-01 1.16953743e+00 2.50003397e-01 -6.32338166e-01 -6.14633083e-01 9.98990119e-01 1.91954359e-01 -6.29877388e-01 4.32138979e-01 -9.99989033e-01 -5.15380442e-01 2.51557261e-01 7.09975004e-01 2.23066941e-01 1.67238370e-01 -5.76054394e-01 1.03332780e-01 2.87336409e-01 -2.54280597e-01 7.62354076e-01 1.37421834e+00 -2.13242486e-01 3.70263904e-02 5.16089261e-01 9.49282646e-01 -8.17800820e-01 -1.74055123e+00 -2.54029721e-01 4.08254489e-02 -4.20087390e-02 -8.16074666e-03 -1.16615772e+00 -1.38266706e+00 4.60103661e-01 9.11418676e-01 5.32556713e-01 1.18335736e+00 -8.28015059e-02 1.07772529e+00 6.51816875e-02 5.00708938e-01 -1.54139447e+00 -1.43482059e-01 3.89952183e-01 4.19322640e-01 -1.63172126e+00 -1.34350613e-01 -6.53623104e-01 -5.04437447e-01 9.92831528e-01 7.29020059e-01 -2.46205047e-01 5.56619346e-01 3.78636271e-01 2.56442010e-01 -2.93760002e-01 -1.70246363e-01 -1.33540288e-01 1.39796272e-01 7.59683430e-01 3.66356790e-01 4.46512908e-01 -3.19474965e-01 8.88533056e-01 -3.26562226e-01 2.48685047e-01 -6.95121735e-02 6.06689513e-01 -7.01837063e-01 -8.47713113e-01 -2.28532508e-01 6.59908235e-01 -5.14817774e-01 3.42904143e-02 -1.34078085e-01 5.04388511e-01 7.98322797e-01 1.10087872e+00 1.11121088e-01 8.82183909e-02 3.33342493e-01 -3.24036255e-02 5.10893524e-01 -8.20792913e-01 -8.42543006e-01 3.36980730e-01 8.75899941e-02 -3.12414259e-01 -7.81747043e-01 -5.56941748e-01 -1.37381911e+00 3.58876176e-02 -6.06609643e-01 2.66423613e-01 6.73092127e-01 9.69205856e-01 -3.04172099e-01 7.40366638e-01 7.22896099e-01 -1.03325021e+00 -3.81257623e-01 -1.06214547e+00 -3.48204285e-01 5.28506994e-01 1.27991304e-01 -3.56190532e-01 -6.52795136e-02 4.38445240e-01]
[9.713847160339355, 0.5356376767158508]
311ad86d-5e10-414d-ae3d-cc9093c31599
isar-imaging-analysis-of-a-hypersonic-vehicle
null
null
https://ieeexplore.ieee.org/document/9552517
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9552517
ISAR Imaging Analysis of a Hypersonic Vehicle Covered With Plasma Sheath
In this article, a hypersonic target electromagnetic (EM) scattering echo model combined with the inhomogeneous zonal medium model (IZMM) and the classical scattering center model (SCM) is proposed with a distributed satelliteborne array radar as the detection platform. A parallel physical optics (PO) method is used for multiview inverse synthetic aperture radar (ISAR) imaging of a moving hypersonic target covered with plasma sheath based on the analysis of high-resolution range profile in the S-X ultrawideband range, reconstructing 2-D EM scattering echo data (the target) and motion compensation. The results show that the surface of the inhomogeneous plasma sheath flow field is an excitation layer with random and irregular fluctuation characteristics, which increases the false scattering centroid of the 1-D range profile of the hypersonic target and can interfere with and disrupt the radar localization of the target along the radial direction. In addition, shallow scattering of EM waves occurs in the plasma sheath, and the average signal intensity of the target can gradually reduce from 0.5 × 10−5 at 60 km and 20 Ma to 0.1 × 10−5 at 30 km and 20 Ma, with a fivefold weakening of the overall scattered echo signal. In particular, the faster the hypersonic target travels at 30-km altitude, the weaker the imaged scattered echo signal becomes, with the average intensity of the imaged signal weakening by approximately threefold from 15 to 25 Ma. This study provides considerable technical support and data assurance to establish a synthetic aperture radar (SAR) automatic target recognition (ATR) database, and the findings of this study can be used as a reference for fine-structure feature analysis of hypersonic targets for feature extraction and the classification and identification of targets.
['Bian Zheng']
2021-10-09
null
null
null
journal-2021-10
['motion-compensation']
['computer-vision']
[ 0.55951536 -0.45245016 0.6713532 0.08018668 -0.34091377 -0.6057434 0.42850733 -0.96770823 -0.13593327 0.59817755 -0.27061206 -0.2914349 -0.5346201 -0.64174074 0.10941912 -1.2759154 -0.27300957 0.46700305 -0.04275592 -0.37128034 0.11698871 1.0885347 -1.482499 0.09945097 0.94781005 1.1970807 0.3281705 0.29250118 0.21524882 0.608422 -0.60302955 0.40454006 0.22276066 -0.24284418 -0.03029599 0.04027914 0.17331447 -0.02019093 -0.41520524 1.3122666 0.35320902 0.17739472 0.81892985 -0.572595 -0.31521863 0.03553086 -0.7547414 0.47421706 -0.24481696 0.14799626 0.26285735 -1.263251 0.35754308 0.43100727 0.5596489 0.20323808 -0.6324157 -0.52199864 -0.63235205 0.29241744 -1.510937 -0.33414856 0.83140606 -0.6069278 0.5798229 0.8166329 0.60536724 0.54229367 0.46740326 -0.17760628 1.2517011 -0.28923965 0.05098277 0.06308025 0.31380314 0.34280717 0.7205279 0.8699413 -0.1824294 -0.45069 0.33746222 -0.18449655 -1.1208928 -0.0128963 -0.7782112 0.63220453 0.1458705 0.56253856 -0.83519703 -0.48036093 -0.26565936 0.347488 0.51495093 0.7464607 -0.34131488 0.08046784 -0.89648056 0.20256896 0.63031965 0.07892109 0.7030821 0.73474896 0.25272587 0.5171916 0.40715358 1.8737763 0.20746674 -0.52281827 -0.18498042 0.2397576 0.48984557 -1.0551507 -0.3718539 -1.0202307 -0.85870534 0.4037731 0.08964312 -0.7557854 -0.7520213 1.2663436 0.37973806 0.32566187 0.5559672 1.4559784 0.6922447 1.0010487 -0.6807187 -0.6702574 1.2016639 -0.18777141 -0.7586403 -0.5731755 0.6450574 -0.94722027 0.04350619 0.14332744 -0.57297474 -0.2821215 -1.0439857 1.2837071 0.24356869 -0.08297443 0.3800451 0.37733865 -0.5921612 0.37257388 -0.5076546 0.08786117 -0.33795404 -0.23775703 -0.17982055 -0.34273574 -1.3164366 0.94395804 -0.26968306 0.68769765 -0.5490097 -1.1109809 -0.5321344 -0.18262415 -0.11538529 -0.4580593 0.6278885 -0.9622394 -1.1957886 0.5328966 0.03924939 -0.18165706 -0.0791418 -0.12816514 -1.1407094 0.44385847 0.07353939 -0.6234354 0.7381179 -1.4620026 -0.21847472 -0.8137625 -0.6883878 0.3050674 0.27795723 -0.07997923 0.71714747 -0.17127989 0.5028762 -0.9545466 -0.20249538 -0.7384387 -0.07146777 0.5944412 1.4350252 -0.38982883 0.7305791 -2.4349492 -0.06468773 0.4649323 0.13113174 0.48085877 -0.27045608 0.56811386 -0.17412247 -0.6692564 -0.48123944 0.81639934 -0.72047615 -0.41140923 -0.7840469 1.005354 -0.3162468 0.5370813 -0.5459794 0.5209738 0.04080411 0.376096 0.08249993 0.22788252 0.17966479 0.4400871 -0.6704896 0.509264 1.6560544 0.02921672 -0.15534213 -0.37132803 -0.90358484 -0.5620339 -1.1613703 0.51372045 -0.1181383 0.7080496 0.94464314 -0.68813705 1.3353887 0.19592562 0.5184648 -0.819691 -0.11451934 0.2945758 0.41845748 -0.8338508 0.28486276 -0.81507653 0.32436717 0.28491557 -0.75556695 -0.43920147 -0.5832754 -0.07992335 1.2248598 -0.49252602 -0.10098014 -0.6305067 0.68296665 0.42806402 0.4236626 0.5936428 0.3520106 0.3178369 -0.14747958 -0.5136176 -0.5787844 -1.036595 -0.611434 0.02164278 0.45301798 0.34916338 -0.14912489 -0.02514697 -0.01090743 0.94010186 -0.269392 -0.4709546 -0.36868784 -1.4078065 0.34422106 -0.14126682 0.69665116 -0.9807258 -0.6931544 -0.07561808 -0.2543508 -0.9901185 0.22752112 -0.00872124 -0.7179487 -1.2768838 -0.30546844 -0.18892443 0.5229912 0.76987165 0.7146588 -0.18927346 -0.5968392 0.5407191 -0.6143525 -0.48888898 -0.26243663 -1.0042499 0.17306435 0.4748858 0.29793 -0.38549948 -0.30678812 0.5644993 -0.78147864 -0.24357082 0.52831846 0.8730164 0.08098235 0.36424065 0.3607865 -0.37390685 0.19234632 -0.439481 -1.1095396 -0.25984955 -0.34693787 -0.39801365 0.5116047 -0.34702337 -1.5489167 -0.7126717 0.38396254 -0.3487349 -0.26689088 0.8951908 0.04515404 -0.61305404 0.8941743 0.7718244 0.20342281 -0.08554197 -0.3401723 0.6487478 0.27654397 0.23479187 1.52561 0.9161459 0.40900412 -1.8332844 -0.88577044 -0.5436347 -0.04552808 -0.5079886 0.61730945 -0.75192106 -0.36054936 0.6850351 -0.84291524 -0.34514448 -0.17744485 1.3362873 0.05406436 0.55682623 -0.29839465 -1.0638267 -0.48654097 -0.36052755 0.55481434 0.20656238 0.08352091 -0.8037795 0.43460423 0.43273434 0.84500384 0.21486583 0.7950202 -0.11083344 -0.6811321 -0.3183437 -0.25373325 0.13603635 0.00727733 -0.2653521 -0.6103702 -0.52796084 1.0819778 0.01826809 0.75847584 0.88441914 0.10121024 -0.02102215 -0.65452087 1.0679989 1.7622175 0.57288027 0.67099756 0.27834734 0.2939029 0.50536525 1.0876929 0.6445715 -0.5948409 0.40785125 0.47408265 -0.26706773 0.27331004 0.90870595 0.38149047 0.4180756 -0.30356646 0.02188292 -0.78842807 0.24209045 -1.2705992 -1.3383827 -0.82043475 2.3298957 -0.04285271 -0.59773546 -1.0964894 -0.26656333 0.50290763 0.318961 -0.27767876 0.19225189 -0.4772746 0.28999865 0.5359415 0.7451554 -0.3769005 0.39540234 5.09138 0.2863744 -1.757922 -0.2181209 -0.3623707 0.14299604 -0.59202415 0.05849507 -0.5640604 0.22280565 0.7985695 -0.21005937 0.31849813 0.32739854 0.4204343 -0.43632203 -0.1612743 1.0843912 0.1340467 -1.1624279 -0.01598259 0.24081717 0.5322446 0.48486876 0.09475204 0.11197852 -0.38343716 -0.69816905 0.2913322 1.0139841 0.8083149 -0.7635767 1.1036465 0.5563484 -0.899863 0.17179897 -0.5146341 -0.19013639 0.58842623 1.3306568 -0.69521725 0.9240481 0.6505596 0.38331357 0.14217253 0.78378695 0.12362099 0.5974072 -0.3534455 0.03189062 0.32034898 -0.96031475 1.4544686 0.64293873 0.948881 0.9794971 -0.06777985 0.9774711 0.59623533 -0.20366146 -0.937198 -0.11449336 0.26895666 1.6410205 -0.3484899 -0.06019635 -0.20218867 0.34338102 -0.7158339 0.7687207 -0.96268696 -0.56993544 0.88843906 0.5430859 0.3764283 -0.29024592 -0.05051436 -1.080776 -0.24242453 -0.4561799 -0.1171739 -1.1228039 -1.1151879 0.9287437 -0.02371501 -1.2512976 0.06595816 -0.6499979 -0.92962515 1.2651485 -1.4030215 -0.64379567 -0.7867861 0.40953857 -0.3141358 -0.34137025 0.9143876 -0.03934552 0.05278181 -0.57904047 0.44052097 -0.17402866 0.28476968 -0.4204453 -0.3314359 0.85422224 -0.48564714 0.27900383 1.1618676 -0.8947051 -1.817523 -1.2327173 0.2985388 -0.06977559 0.75040525 0.08170959 -0.7198671 0.37510124 0.13180579 0.08533152 0.72796446 -0.27507892 0.16087307 -0.0323918 -1.1765382 0.38463223 0.49680272 -0.02697794 -0.83281636 0.327169 0.1617761 -0.04904876 -0.54103905 1.4427766 0.2717676 -1.0796227 0.6181351 -0.37597132 -0.31434894 -0.56499225 -0.4543586 -1.4787289 -0.7178962 -0.20621386 0.34467646 0.587126 0.45551705 -1.0802293 0.6799269 -0.4159453 -0.4217855 -0.41062072 -1.0038359 -0.65085787 -0.33914596 -0.21048576 -0.24624573 1.021765 -0.10975 0.47883397 -0.02662535 1.2769079 1.1829712 0.7412401 0.3484387 -1.5949149 -0.07914703 0.24046315 -0.08829093 -0.5607893 0.03550606 -0.8090591 0.13346358 -1.2580113 -0.09943448 -0.4483506 0.19389217 -0.4739802 0.45060313 0.10133383 -0.09475376 0.36775783 0.2737708 0.78412217 1.0895356 -0.11710428 -0.03842186 0.3418447 -0.07857716 0.7046058 0.51251584 -0.4294887 -0.13015684 -0.07769543 0.12877211 0.44536448 0.369948 -1.4022235 0.14882459 -0.34596744 0.54694676 -0.73994315 0.4864844 -0.82246006 0.5801188 0.6233315 0.82525444 -0.5959105 0.2940717 0.330241 -0.45510298 -0.4366567 1.2868105 -0.08513466 -0.44883546 0.27902183 -0.93338376 -0.02372863 1.288709 -0.08555234 -0.39997864 -0.2882444 -0.51388067 -0.11228126 0.3264612 -0.15949701 0.9422738 -0.8492679 -1.0896987 0.6882705 0.03709448 -0.46952352 1.028896 1.2985768 -0.5045933 0.52692634 -0.0144532 -0.6083126 -1.2619377 0.10991938 0.9332104 0.07692064 -0.72119725 0.63907015 0.53930897 -0.44835192 -0.57746327 0.31200933 -0.41952112 -0.04977717 1.0114772 0.45882088 0.06864767 -0.63586956 -0.37654808 1.0155474 0.24600093 -0.08810961 1.2986648 -0.02396308 -0.58081853 0.29770187 0.6255188 0.6192149 -0.8604344 0.03508942 -0.5130665 -0.3448022 0.63028896 -0.80715317 -0.7888835 0.30719486 0.4272951 0.3526922 1.0544747 0.11194952 0.34478825 0.31596345 0.44962752 -0.5400708 -0.2187265 0.99687725 0.94487184 -0.47545904 -0.1317454 -0.5789358 -0.5616972 1.3369249 0.45854178 -0.18507914 0.94760466 0.7629421 0.426396 -0.71502465 -0.6058569 0.1277541 0.09252023 0.54532784 -0.04295363 0.10892706 -0.24598049 0.46946734 -0.01128927 -0.32576245 0.87754357 0.55702645 -0.98990834 -0.28886506 -1.1487068 0.3956571 -0.24292956 -0.14766411 0.05046436 0.57858586 -0.10176703 0.8226554 0.29909065 -0.07015405 0.39866695 0.01088742 0.30800033 -0.45788574 0.2598619 0.0737736 0.1336876 -0.1594225 -0.31131095 -0.6514446 -1.3367538 -0.04257444 -0.57172066 1.0738639 0.48639318 0.78556824 0.18479688 0.2753584 0.95938057 -0.8492172 -0.627679 -1.2225688 -1.5643917 -0.29250005 0.47419503 -0.7102996 -1.4463503 -0.66037077]
[6.81529426574707, 1.0786495208740234]
a1edc43b-3059-4d30-bcf4-3898b47c6a8a
combining-recurrent-convolutional-and-1
null
null
https://openreview.net/forum?id=yWd42CWN3c
https://openreview.net/pdf?id=yWd42CWN3c
Combining Recurrent, Convolutional, and Continuous-time Models with Linear State Space Layers
Recurrent neural networks (RNNs), temporal convolutions, and neural differential equations (NDEs) are popular families of deep learning models for time-series data, each with unique strengths and tradeoffs in modeling power and computational efficiency. We introduce a simple sequence model inspired by control systems that generalizes these approaches while addressing their shortcomings. The Linear State-Space Layer (LSSL) maps a sequence $u \mapsto y$ by simply simulating a linear continuous-time state-space representation $\dot{x} = Ax + Bu, y = Cx + Du$. Theoretically, we show that LSSL models are closely related to the three aforementioned families of models and inherit their strengths. For example, they generalize convolutions to continuous-time, explain common RNN heuristics, and share features of NDEs such as time-scale adaptation. We then incorporate and generalize recent theory on continuous-time memorization to introduce a trainable subset of structured matrices $A$ that endow LSSLs with long-range memory. Empirically, stacking LSSL layers into a simple deep neural network obtains state-of-the-art results across time series benchmarks for long dependencies in sequential image classification, real-world healthcare regression tasks, and speech. On a difficult speech classification task with length-16000 sequences, LSSL outperforms prior approaches by 24 accuracy points, and even outperforms baselines that use hand-crafted features on 100x shorter sequences.
['Christopher Re', 'Atri Rudra', 'Tri Dao', 'Khaled Kamal Saab', 'Karan Goel', 'Isys Johnson', 'Albert Gu']
2021-05-21
null
null
null
neurips-2021-12
['sequential-image-classification']
['computer-vision']
[ 2.60353208e-01 -3.89547199e-01 -2.61033595e-01 -2.56067425e-01 -3.28732044e-01 -3.80906552e-01 6.82340026e-01 -1.51662037e-01 -6.22079492e-01 6.41236544e-01 3.52501608e-02 -8.84536922e-01 -4.05537814e-01 -5.67086577e-01 -1.01356578e+00 -7.52119005e-01 -6.30942941e-01 2.21527386e-02 -3.36285025e-01 -4.76461738e-01 1.19823754e-01 5.25295138e-01 -1.15298653e+00 1.12300731e-01 5.61427832e-01 1.32737577e+00 2.18004286e-01 7.62426734e-01 -5.59101701e-02 1.19777298e+00 -3.26211959e-01 1.23068862e-01 4.36707318e-01 -3.56231689e-01 -8.63934219e-01 -2.56138682e-01 8.17436725e-02 -2.47530147e-01 -9.19508696e-01 5.92417836e-01 4.15374666e-01 4.32675391e-01 4.93349016e-01 -1.05586481e+00 -9.91403341e-01 5.49157917e-01 -3.49773556e-01 6.21554494e-01 -1.06793553e-01 5.69209516e-01 8.45941842e-01 -4.83830035e-01 5.29484451e-01 1.03324592e+00 1.17181611e+00 7.29994059e-01 -1.44378805e+00 -7.79297054e-01 5.05384386e-01 1.10219702e-01 -1.04207945e+00 -3.15679580e-01 5.22737384e-01 -3.51920605e-01 1.82199705e+00 1.95236832e-01 6.69243634e-01 1.44673634e+00 7.63582170e-01 9.00200784e-01 1.01193106e+00 -5.60940616e-02 2.94923365e-01 -5.56073070e-01 3.08997869e-01 8.42536926e-01 -3.20049584e-01 3.69241476e-01 -4.70548213e-01 8.23504233e-04 9.97668445e-01 5.32148778e-01 -2.68869340e-01 -1.56800747e-01 -1.35206592e+00 7.90992022e-01 5.18372178e-01 4.43644106e-01 -5.14941514e-01 7.12755501e-01 6.73103094e-01 7.62806714e-01 3.42282504e-01 7.05665708e-01 -7.57326186e-01 -2.79925853e-01 -8.19348335e-01 1.62935063e-01 6.60327852e-01 8.31595182e-01 4.62857306e-01 7.12826669e-01 -8.22656527e-02 7.13161588e-01 -2.90485173e-01 5.84778368e-01 1.09565246e+00 -1.07375717e+00 2.19997957e-01 1.90168962e-01 -1.63260028e-01 -7.14785635e-01 -7.60495245e-01 -8.18630636e-01 -1.45213127e+00 -2.33201310e-01 1.01426467e-02 -3.06975573e-01 -1.23639929e+00 2.19635391e+00 -4.16743129e-01 6.10776067e-01 1.11307904e-01 4.97260153e-01 2.50270635e-01 1.09295881e+00 -7.83764720e-02 -4.61013496e-01 8.08520317e-01 -9.12780941e-01 -6.43524706e-01 -2.83691853e-01 7.41549194e-01 -2.39310443e-01 9.08503950e-01 2.53812462e-01 -1.26749289e+00 -6.13298118e-01 -9.41793680e-01 -9.28197522e-03 -4.71521914e-01 -7.51779079e-02 8.59434605e-01 1.74330220e-01 -1.59478199e+00 1.24836099e+00 -1.35091639e+00 -2.97889024e-01 1.97201878e-01 5.83600223e-01 7.24549545e-03 2.95266867e-01 -1.40968871e+00 9.73021626e-01 -1.54553233e-02 3.00481915e-01 -1.02306414e+00 -1.16996098e+00 -8.98576975e-01 2.35311668e-02 1.88968360e-01 -7.85701394e-01 1.65524554e+00 -7.63823986e-01 -1.65948176e+00 4.25436467e-01 -1.25151008e-01 -1.40199697e+00 2.28123784e-01 -1.24189861e-01 -6.05923951e-01 -1.86844379e-01 -1.41277075e-01 6.80888593e-01 9.27888930e-01 -3.27869952e-01 -3.42301428e-01 8.66755843e-02 -1.69501901e-01 -2.07347870e-01 -3.20234388e-01 -2.67491043e-01 -4.77690957e-02 -9.21843767e-01 6.97527900e-02 -1.13156259e+00 -6.81746066e-01 -1.86383620e-01 -2.35022515e-01 -2.13923603e-01 7.51087844e-01 -5.99154413e-01 1.59938490e+00 -2.05058265e+00 2.16783062e-01 7.73473382e-02 3.27340007e-01 3.66498798e-01 -4.77265537e-01 6.58685684e-01 -6.44888341e-01 1.27965197e-01 -3.09266180e-01 -3.60945940e-01 1.23788364e-01 3.71528178e-01 -6.63279831e-01 3.78110319e-01 3.29802334e-01 1.31452024e+00 -7.59170353e-01 1.42021090e-01 1.73493117e-01 4.33637708e-01 -3.25229138e-01 -1.65063530e-01 -3.26687366e-01 1.25597760e-01 -2.11711839e-01 1.35616034e-01 1.39755100e-01 -7.22807765e-01 9.12225097e-02 -7.33605474e-02 -2.17930943e-01 5.88267982e-01 -6.11427128e-01 1.83730590e+00 -6.13754272e-01 8.86843503e-01 -3.24841976e-01 -1.48809302e+00 5.80800951e-01 3.24347079e-01 8.73652458e-01 -1.06377590e+00 1.22706629e-01 2.55474091e-01 1.67567015e-01 -4.17168170e-01 2.34625116e-01 -2.13074371e-01 -1.18660234e-01 7.66385317e-01 1.67295292e-01 -4.71162684e-02 1.18015006e-01 1.00525148e-01 1.51165795e+00 -9.57630128e-02 1.67259991e-01 -1.45163476e-01 1.49418414e-01 -3.35988402e-01 3.37937295e-01 1.02739561e+00 -1.10597618e-01 2.57815093e-01 3.49684983e-01 -7.20900595e-01 -1.30737102e+00 -1.06549299e+00 6.19906597e-02 1.12313771e+00 -5.01425505e-01 -3.00663173e-01 -3.78280908e-01 -1.01568684e-01 -1.40945213e-02 5.99571228e-01 -9.77805138e-01 -4.08401340e-01 -8.95622551e-01 -7.95637965e-01 6.74231112e-01 8.53604853e-01 4.46239263e-01 -1.24011886e+00 -8.46786559e-01 6.62025034e-01 -3.89756039e-02 -7.93793321e-01 -7.65626132e-01 7.30225205e-01 -9.73697066e-01 -5.87779880e-01 -8.17499995e-01 -7.90477216e-01 2.29115844e-01 6.62427098e-02 1.15218532e+00 -1.47027746e-01 -3.22587907e-01 4.72138375e-01 1.19556829e-01 -2.43419006e-01 -2.39987284e-01 2.65757173e-01 5.28180063e-01 -1.32699490e-01 2.57233474e-02 -9.22852933e-01 -6.94080949e-01 -9.34831798e-03 -9.68293369e-01 9.98981819e-02 6.19797707e-01 1.07586944e+00 5.18683493e-01 -2.13204250e-01 6.24241233e-01 -4.33115661e-01 9.27678943e-01 -4.28593367e-01 -4.37553793e-01 1.42026037e-01 -6.88408732e-01 5.26854157e-01 7.64097154e-01 -8.73492718e-01 -4.50852424e-01 -3.88579294e-02 -2.05141649e-01 -9.66958642e-01 3.70163202e-01 7.80575752e-01 7.38526940e-01 9.42106470e-02 5.40467739e-01 9.05821919e-01 5.09595394e-01 -2.55808651e-01 3.50174457e-01 8.68246928e-02 5.71657121e-01 -5.27897120e-01 3.62068504e-01 3.69022787e-01 -1.92717854e-02 -7.53321111e-01 -6.93514049e-01 -9.45268050e-02 -2.31656224e-01 2.08984882e-01 6.31294131e-01 -8.13288391e-01 -1.04557323e+00 6.99843407e-01 -1.01110923e+00 -9.30030942e-01 -6.33097112e-01 4.23603207e-01 -9.63174284e-01 -1.46550713e-02 -1.28564179e+00 -7.46519625e-01 -5.34592867e-01 -8.54969144e-01 6.90685332e-01 -8.07403326e-02 -2.14034334e-01 -1.04785073e+00 3.68822590e-02 -7.30565786e-01 8.49804401e-01 1.88797563e-01 1.11475742e+00 -4.67372268e-01 -3.23469162e-01 2.26118956e-02 8.44691619e-02 6.60851657e-01 -2.31497437e-02 -2.62078911e-01 -5.06636679e-01 -4.16792810e-01 3.81466001e-01 -2.20641002e-01 1.01990843e+00 9.12414372e-01 1.45783937e+00 -5.30653417e-01 -4.10741806e-01 7.03587234e-01 1.22261143e+00 7.43793011e-01 4.60110575e-01 1.12077385e-01 3.43442172e-01 5.96653819e-02 -1.11486405e-01 3.55193198e-01 2.94392288e-01 2.25577950e-01 2.26641148e-01 -1.15459614e-01 3.34788620e-01 -7.82428086e-02 6.37419701e-01 1.17957103e+00 -5.63470758e-02 -1.42639831e-01 -9.18644607e-01 4.78323221e-01 -1.92636549e+00 -1.24187219e+00 3.46347421e-01 1.80355489e+00 8.11990380e-01 3.59781533e-01 1.15359187e-01 2.60188133e-02 3.51811796e-01 4.51235384e-01 -1.17663777e+00 -4.83932227e-01 -2.09705248e-01 6.70927286e-01 6.27421141e-01 2.54694134e-01 -1.09346616e+00 6.92247391e-01 6.97524834e+00 6.85675383e-01 -1.72312367e+00 9.28885266e-02 8.86871219e-01 -5.78630209e-01 -4.52833287e-02 -6.70593500e-01 -5.55124402e-01 3.45400989e-01 1.70146966e+00 -2.52099484e-01 8.25614512e-01 4.74693835e-01 3.02789807e-01 5.32330155e-01 -1.42744231e+00 1.23110425e+00 -1.51930511e-01 -1.82193375e+00 -1.15252763e-01 2.66268682e-02 7.98206210e-01 6.15805805e-01 7.06272125e-01 7.84352779e-01 6.12688184e-01 -1.37938571e+00 6.29103839e-01 6.18251562e-01 7.67606258e-01 -4.47409719e-01 2.34844446e-01 3.44430894e-01 -1.18015480e+00 -5.32970309e-01 -5.37062809e-02 -3.93417865e-01 2.25573391e-01 1.77713722e-01 -4.10167933e-01 1.45968810e-01 7.65998065e-01 1.11859405e+00 -1.51359409e-01 5.76944530e-01 4.64096636e-01 6.59805954e-01 -5.16291678e-01 -3.39156806e-01 9.10588562e-01 -1.02458354e-02 2.06653744e-01 1.15288377e+00 3.96984607e-01 3.29108566e-01 -8.26736093e-02 8.26517105e-01 3.79001983e-02 -3.73440951e-01 -6.74748838e-01 -5.36550224e-01 2.17676356e-01 6.18471742e-01 -3.15139085e-01 -4.57522690e-01 -3.62242311e-01 8.92333031e-01 4.00245011e-01 6.74405634e-01 -1.00973701e+00 -3.17263901e-01 1.04262555e+00 -5.80344386e-02 5.74745297e-01 -6.35913908e-01 -6.20880015e-02 -1.09980822e+00 -7.55336583e-02 -9.99786377e-01 3.10857981e-01 -7.81688511e-01 -1.38117218e+00 8.95849526e-01 -3.22235703e-01 -1.36275578e+00 -8.32346380e-01 -7.05751061e-01 -2.84100890e-01 8.87268484e-01 -1.25367641e+00 -5.77692866e-01 3.88511628e-01 7.83426583e-01 7.27254808e-01 6.91786921e-03 8.46201658e-01 1.52930826e-01 -7.07096636e-01 5.16211808e-01 4.46753711e-01 2.03606039e-01 1.13461174e-01 -9.69453752e-01 1.00017893e+00 7.25774646e-01 3.73978689e-02 1.11579108e+00 6.48663521e-01 -4.09433037e-01 -1.65068662e+00 -1.20594573e+00 6.41970932e-01 -2.34828472e-01 1.09831071e+00 -3.69986415e-01 -9.54703450e-01 1.10103095e+00 3.13635468e-01 4.39622924e-02 2.79558301e-01 4.13161330e-02 -5.10251045e-01 -8.74367952e-02 -6.64842427e-01 7.23824203e-01 1.33362079e+00 -8.63937318e-01 -4.00684744e-01 3.47057432e-01 9.61737394e-01 -6.39115691e-01 -8.00845921e-01 3.60815555e-01 7.12194145e-01 -6.42763317e-01 1.15520561e+00 -1.16703153e+00 6.37012005e-01 1.88966647e-01 -8.72971639e-02 -1.57515430e+00 -3.96546751e-01 -1.05140483e+00 -4.05142814e-01 2.95630783e-01 4.81059432e-01 -8.34368169e-01 5.31745791e-01 4.59339559e-01 -4.34747100e-01 -1.22448719e+00 -9.10826504e-01 -1.11974847e+00 4.62831289e-01 -6.71242714e-01 5.58420181e-01 9.79179382e-01 2.94072777e-02 2.74532825e-01 -5.35018504e-01 -6.82353675e-02 8.87116417e-03 8.59642029e-02 1.25660777e-01 -8.82980525e-01 -3.54847521e-01 -9.36430871e-01 -9.74567384e-02 -1.51159072e+00 2.24614754e-01 -7.67092943e-01 2.14996785e-02 -1.21281123e+00 -2.13174328e-01 -3.94015193e-01 -8.09660673e-01 5.97478449e-01 1.58350393e-01 -2.01053068e-01 2.11150914e-01 6.45506084e-02 -4.78517324e-01 4.65974361e-01 9.52789843e-01 -2.26149067e-01 -2.37353176e-01 -7.33348951e-02 -5.35231054e-01 4.18825179e-01 6.90186203e-01 -1.52638584e-01 -5.81926227e-01 -6.91967368e-01 8.57809186e-02 5.44892013e-01 3.31542134e-01 -1.05763555e+00 5.17908931e-01 -2.14936495e-01 2.07930878e-01 -6.18461430e-01 5.75442135e-01 -5.78933775e-01 2.30488852e-01 9.71273839e-01 -7.26235271e-01 7.62312055e-01 3.79095227e-01 6.45146489e-01 3.20088081e-02 4.30085510e-01 5.61416805e-01 -2.50982136e-01 -7.18852878e-01 7.13540673e-01 -6.74942195e-01 -1.77292228e-02 6.32027090e-01 1.06817484e-02 -2.59363532e-01 -6.89157128e-01 -9.37554419e-01 2.26331025e-01 -2.87904054e-01 6.25823557e-01 4.40754116e-01 -1.28938615e+00 -4.15924489e-01 3.44411433e-01 -3.34282964e-01 -3.42893034e-01 4.90936995e-01 1.01561892e+00 -2.01361910e-01 8.56296778e-01 -2.07986802e-01 -7.85795510e-01 -5.18900156e-01 8.05092096e-01 8.22595179e-01 -5.06113529e-01 -7.21825123e-01 8.73720050e-01 1.59849554e-01 -3.75586718e-01 3.41219932e-01 -1.11538923e+00 3.11724961e-01 -1.39522791e-01 4.58355963e-01 9.21760723e-02 2.32223775e-02 -1.54394194e-01 -2.39840046e-01 4.52536732e-01 -2.95394599e-01 -8.85462910e-02 1.73318315e+00 -1.63905751e-02 1.51060864e-01 8.56909513e-01 1.50626075e+00 -8.89943480e-01 -1.49759471e+00 -6.14533067e-01 -1.22048147e-01 4.48665857e-01 -2.08981484e-01 -6.59915626e-01 -1.15439177e+00 1.02023387e+00 6.46963716e-01 3.83039355e-01 1.24617505e+00 -3.22480142e-01 1.07641768e+00 7.28285491e-01 2.34294206e-01 -1.00312448e+00 3.00011903e-01 1.05530989e+00 8.27140033e-01 -9.23772693e-01 -4.41883415e-01 3.77595365e-01 -4.11078334e-01 1.06078494e+00 3.80365163e-01 -3.97785664e-01 1.03274882e+00 5.10945678e-01 -1.71375602e-01 -1.06637880e-01 -1.36813843e+00 8.00543725e-02 -2.76605971e-03 2.67475992e-01 3.61566573e-01 -5.19732293e-03 -6.93390891e-02 5.93957603e-01 -3.64005506e-01 2.04284310e-01 2.92666107e-01 1.05114782e+00 -7.19895735e-02 -6.31532550e-01 1.85629562e-01 7.73051977e-01 -2.69382477e-01 -4.02898520e-01 2.80075014e-01 8.44470620e-01 -3.64357352e-01 4.64396745e-01 5.51517725e-01 -6.12260640e-01 1.57500833e-01 2.31953248e-01 3.47698152e-01 -2.89001316e-01 -7.63817012e-01 -1.62032340e-02 -2.85156727e-01 -8.08857262e-01 -2.71939605e-01 -8.73432755e-01 -1.28493488e+00 -6.31503403e-01 8.06197897e-02 -1.26344681e-01 5.48782349e-01 1.09839463e+00 6.37280643e-01 8.76416862e-01 5.69706202e-01 -8.28221798e-01 -9.54530060e-01 -8.91854405e-01 -4.15901989e-01 1.71209961e-01 9.90925193e-01 -2.74907023e-01 -2.05025271e-01 -1.13146212e-02]
[7.430160045623779, 3.3743021488189697]
56807d9d-4ffa-438c-b818-19f58a69f31f
image-forensics-detecting-duplication-of
1802.06515
null
https://arxiv.org/abs/1802.06515v3
https://arxiv.org/pdf/1802.06515v3.pdf
Image Forensics: Detecting duplication of scientific images with manipulation-invariant image similarity
Manipulation and re-use of images in scientific publications is a concerning problem that currently lacks a scalable solution. Current tools for detecting image duplication are mostly manual or semi-automated, despite the availability of an overwhelming target dataset for a learning-based approach. This paper addresses the problem of determining if, given two images, one is a manipulated version of the other by means of copy, rotation, translation, scale, perspective transform, histogram adjustment, or partial erasing. We propose a data-driven solution based on a 3-branch Siamese Convolutional Neural Network. The ConvNet model is trained to map images into a 128-dimensional space, where the Euclidean distance between duplicate images is smaller than or equal to 1, and the distance between unique images is greater than 1. Our results suggest that such an approach has the potential to improve surveillance of the published and in-peer-review literature for image manipulation.
['M. Cicconet', 'H. Elliott', 'D. Wainstock', 'M. Walsh', 'D. L. Richmond']
2018-02-19
null
null
null
null
['image-forensics']
['computer-vision']
[ 5.37642241e-01 -3.53250772e-01 -2.71893889e-01 -3.80499661e-01 -5.27816892e-01 -7.65933454e-01 3.71840209e-01 1.83059946e-01 -5.46413779e-01 5.76305509e-01 -3.59257847e-01 -4.74622756e-01 -2.39886716e-01 -3.90428066e-01 -1.01421022e+00 -5.19536734e-01 -2.92008482e-02 2.93018103e-01 -2.49229390e-02 2.15219140e-01 9.65458333e-01 1.05438077e+00 -1.51009583e+00 -2.88241021e-02 4.75436270e-01 7.39955366e-01 1.27872452e-01 8.70096684e-01 -2.57206917e-01 1.47555530e-01 -8.62193644e-01 -4.20761138e-01 6.51301503e-01 -5.57024181e-01 -7.38577425e-01 3.30423042e-02 8.61831605e-01 -3.79744947e-01 -1.17219836e-02 1.19985175e+00 4.37436372e-01 -1.74045086e-01 5.12929082e-01 -1.41298687e+00 -8.05810988e-01 2.66218543e-01 -8.71745944e-01 4.63017792e-01 3.11466753e-01 1.91917986e-01 3.42475235e-01 -8.04789901e-01 1.16175306e+00 1.02690744e+00 5.54418087e-01 9.56764221e-02 -1.12129557e+00 -8.05169582e-01 -4.71558779e-01 2.17700228e-01 -1.50410187e+00 -2.34905392e-01 4.77979064e-01 -4.62847978e-01 8.78289223e-01 2.15220928e-01 7.23909795e-01 4.94866133e-01 5.26839674e-01 7.38834171e-03 8.08342874e-01 -6.73178196e-01 1.45504966e-01 -6.32363465e-03 -4.14806426e-01 6.28367126e-01 6.84352875e-01 -1.66304365e-01 -6.22235596e-01 -1.28659561e-01 8.11822951e-01 -6.85195252e-02 -1.11722372e-01 -6.62556887e-01 -1.35487390e+00 6.31593645e-01 3.36322963e-01 4.60796207e-01 -3.72395843e-01 1.94607943e-01 2.22190544e-01 3.95879269e-01 8.66542980e-02 1.15117621e+00 -8.86993632e-02 -3.45756739e-01 -1.44700861e+00 3.08315337e-01 5.91208518e-01 9.64342773e-01 7.99573660e-01 -2.89142519e-01 3.01847190e-01 1.41520366e-01 6.88236265e-04 2.55408645e-01 5.45534074e-01 -1.20776820e+00 2.28659809e-01 5.95698774e-01 1.72283929e-02 -1.51835370e+00 -1.74739197e-01 -3.91644686e-02 -5.25853932e-01 3.62567127e-01 4.81432974e-01 1.75992996e-01 -5.53713024e-01 1.19293094e+00 3.73343080e-01 1.08274721e-01 -2.38321871e-01 6.14704847e-01 4.34243679e-01 3.59503239e-01 -2.80776650e-01 -1.07435510e-01 1.06058860e+00 -7.69052327e-01 -6.50159001e-01 2.05931067e-01 6.50848448e-01 -1.14926016e+00 6.50657177e-01 4.58820373e-01 -1.30657673e+00 -4.50526804e-01 -1.42592502e+00 -2.60736436e-01 -7.65846550e-01 2.41979137e-01 5.62874936e-02 6.27537787e-01 -1.00339103e+00 7.74505019e-01 -5.22716761e-01 -3.81654084e-01 5.32961607e-01 2.71651715e-01 -5.81435680e-01 -2.02686116e-01 -6.81669414e-01 9.99693334e-01 3.56233954e-01 -5.94865680e-02 -3.86810601e-01 -7.82771230e-01 -6.95946932e-01 4.46513444e-02 1.96529239e-01 -3.03257585e-01 8.02477539e-01 -1.09630382e+00 -1.09325182e+00 1.22759962e+00 3.84095684e-02 -4.54317033e-01 6.79500818e-01 2.08292395e-01 -2.30654523e-01 2.96258807e-01 3.02867025e-01 8.59570026e-01 1.17368400e+00 -1.00260580e+00 -6.93450987e-01 -5.21432817e-01 -3.06853026e-01 1.45560503e-01 -3.89609754e-01 3.45517159e-01 -4.29614365e-01 -6.20466828e-01 -9.27975122e-03 -1.12048745e+00 6.72357529e-02 6.98066533e-01 -3.70619655e-01 3.18848453e-02 1.06019974e+00 -5.86512327e-01 1.12445056e+00 -2.37600303e+00 -1.78014001e-04 4.00248706e-01 2.75838763e-01 4.91306067e-01 -2.33425498e-01 3.66636544e-01 -4.46874559e-01 4.69184339e-01 -3.23760509e-01 1.16444640e-02 -3.87786001e-01 -1.91577971e-01 2.03575771e-02 8.83068144e-01 2.62452424e-01 6.28166676e-01 -8.93855035e-01 -4.66196775e-01 2.24210143e-01 3.97394329e-01 3.44061339e-03 -2.82111168e-02 1.99617103e-01 1.01075709e-01 -2.28089504e-02 4.77205873e-01 1.13128734e+00 -1.06354572e-01 2.52009898e-01 -5.37247099e-02 -5.07191479e-01 -8.20627138e-02 -1.32560587e+00 1.64911902e+00 1.01890832e-01 1.14455009e+00 -1.92289054e-01 -8.64727914e-01 9.29360807e-01 -1.27044305e-01 4.24524158e-01 -5.11993766e-01 8.75068530e-02 3.91148418e-01 1.67768836e-01 -5.09734213e-01 7.04582810e-01 4.00144398e-01 3.21824878e-01 6.57725811e-01 -1.95368528e-01 -3.01803678e-01 6.23083472e-01 1.91513360e-01 1.01783240e+00 8.85513723e-02 2.12305516e-01 -1.37401566e-01 3.50354373e-01 1.27969950e-01 2.32877582e-01 8.35711062e-01 -4.21008050e-01 7.95408487e-01 7.48008549e-01 -4.32500988e-01 -1.48214233e+00 -6.35570109e-01 -2.02212185e-01 6.08523071e-01 3.31231087e-01 -9.52222422e-02 -8.10617089e-01 -3.47262233e-01 3.58771443e-01 5.86401582e-01 -5.15050352e-01 -3.37946713e-01 -6.68297350e-01 -1.23274468e-01 7.93309927e-01 2.31797874e-01 4.22822893e-01 -9.55051780e-01 -1.09209275e+00 2.50841100e-02 2.73594379e-01 -8.39470506e-01 -6.57191277e-01 -1.81548223e-02 -7.81580031e-01 -1.31374586e+00 -1.02800727e+00 -9.29821074e-01 9.43174779e-01 5.78683317e-01 7.40025103e-01 2.21785307e-01 -7.71011770e-01 6.35290593e-02 -3.60118635e-02 -3.08510125e-01 -4.31306779e-01 8.80731866e-02 -8.49745572e-02 -2.58269399e-01 5.92414260e-01 -5.32295145e-02 -5.46534717e-01 2.63000160e-01 -1.08997321e+00 -2.85455674e-01 5.11627853e-01 5.64006269e-01 5.15340567e-01 2.16146093e-02 2.76822537e-01 -2.73425132e-01 9.21346128e-01 -2.38208085e-01 -7.33179450e-01 4.59339052e-01 -6.73027158e-01 -8.55165571e-02 4.58259463e-01 -5.26499689e-01 -5.58851063e-01 2.98123956e-01 6.09176219e-01 -7.69934893e-01 -1.68328792e-01 4.62784559e-01 2.00018793e-01 -5.85695267e-01 6.64561749e-01 1.73623368e-01 3.32433730e-01 -1.38367891e-01 4.97315913e-01 6.69619083e-01 6.86164379e-01 -9.59755704e-02 6.41122878e-01 5.00732362e-01 1.41312733e-01 -8.10365260e-01 1.16755843e-01 -4.97712523e-01 -8.40999603e-01 -3.36050063e-01 7.88821697e-01 -5.49195230e-01 -4.67695147e-01 5.55431128e-01 -1.18946803e+00 1.95102677e-01 -1.47778064e-01 6.09245241e-01 -3.64704370e-01 7.09202945e-01 -8.96424279e-02 -3.23051155e-01 -1.64683789e-01 -1.44632792e+00 7.88310587e-01 3.39150816e-01 -4.07514989e-01 -3.95970255e-01 -9.75833610e-02 2.00434282e-01 4.66261744e-01 1.72335684e-01 9.62761879e-01 -6.76919580e-01 -5.89473426e-01 -5.99916697e-01 -3.86479199e-01 1.54697835e-01 1.60424396e-01 6.09200716e-01 -2.94753999e-01 -3.91329736e-01 -1.52669027e-01 -1.31337628e-01 4.17402923e-01 3.92414004e-01 1.31214511e+00 -1.14462212e-01 -4.14720535e-01 5.48952281e-01 1.17083514e+00 4.96681720e-01 6.69616520e-01 7.48040676e-01 4.08573180e-01 5.29356182e-01 4.57482845e-01 3.83439809e-01 8.58502835e-03 5.44436693e-01 3.30247611e-01 -1.33084543e-02 -1.28523409e-01 1.68707401e-01 -2.04785496e-01 3.23332042e-01 2.05212012e-01 -3.06755513e-01 -1.02270484e+00 6.78931475e-01 -1.44118249e+00 -8.30290973e-01 -1.43148303e-01 2.41790199e+00 6.93498850e-01 8.09434354e-02 -2.12686554e-01 -4.97436933e-02 1.11592162e+00 -1.35788321e-01 -6.99647665e-01 -7.19998062e-01 -7.08646700e-02 2.36613862e-02 9.41282988e-01 -5.58932051e-02 -9.33759689e-01 6.25761092e-01 6.72426367e+00 6.58896089e-01 -1.38772213e+00 -4.38030720e-01 5.86538374e-01 -1.20127529e-01 7.37101957e-02 -6.40128180e-02 -4.40569311e-01 5.77016711e-01 7.34287679e-01 -2.69619048e-01 3.93383741e-01 7.22343087e-01 1.23572737e-01 -4.37912226e-01 -1.01095045e+00 1.06071711e+00 5.04050076e-01 -1.61060834e+00 7.87777302e-04 2.22282156e-01 8.60160530e-01 -4.00016665e-01 2.69569248e-01 -4.29942936e-01 1.56146763e-02 -1.01024342e+00 5.23517609e-01 4.99085426e-01 8.82457376e-01 -8.21776688e-01 6.00563526e-01 -1.27515271e-02 -6.72096193e-01 3.12798351e-01 -3.27264696e-01 2.14337900e-01 -2.02501789e-01 3.77392590e-01 -9.42287743e-01 3.48645866e-01 8.59229088e-01 6.44645154e-01 -7.66802192e-01 1.35568452e+00 1.06692933e-01 9.16636214e-02 -3.49496841e-01 -2.67392043e-02 1.48125812e-01 -2.88519025e-01 5.67136824e-01 1.11919463e+00 5.44916272e-01 -4.88291681e-01 -1.35044903e-01 8.84780407e-01 -3.62237304e-01 1.31031126e-01 -9.21793103e-01 -4.63947773e-01 5.92205346e-01 1.13138914e+00 -1.02202535e+00 -4.30785209e-01 -2.66768277e-01 9.53379989e-01 -2.41277386e-02 1.41155988e-01 -5.55892467e-01 -1.03411269e+00 4.23888415e-01 -9.64400694e-02 6.17485106e-01 -2.60618120e-01 -4.81642663e-01 -6.32514894e-01 1.77057862e-01 -9.92401779e-01 1.47014663e-01 -1.02823794e+00 -8.21139753e-01 2.43693829e-01 8.96500647e-02 -1.15061963e+00 -3.04315180e-01 -6.27812266e-01 -4.49400365e-01 8.26778710e-01 -1.07757568e+00 -6.51224673e-01 -2.44872957e-01 2.08181411e-01 3.39953274e-01 -4.58886325e-01 4.46293145e-01 2.06064522e-01 -4.65597808e-01 5.86149573e-01 5.99523485e-01 8.33696276e-02 9.67953563e-01 -7.82834053e-01 2.91952729e-01 8.46863210e-01 -1.98325321e-01 8.32989693e-01 6.21909916e-01 -7.32708037e-01 -1.53307736e+00 -7.51632094e-01 1.09916663e+00 -4.58908863e-02 5.55010140e-01 -9.74911789e-04 -9.06790376e-01 4.63637084e-01 3.71924490e-01 -1.33910835e-01 5.15402615e-01 -6.14728272e-01 -3.33947182e-01 1.29211158e-01 -1.43760037e+00 6.64347887e-01 5.87641776e-01 -4.23075914e-01 -4.46701646e-01 2.76847124e-01 1.46297619e-01 -3.66000652e-01 -8.94018769e-01 -6.32560328e-02 6.87806368e-01 -6.93505943e-01 9.35211182e-01 -6.61479414e-01 8.49213839e-01 -3.76584858e-01 2.14726955e-01 -1.04371107e+00 -4.25584763e-02 -4.45126057e-01 2.88267195e-01 7.96699822e-01 1.88125491e-01 -3.56424630e-01 7.33308554e-01 5.84815621e-01 1.08639471e-01 -4.97220218e-01 -1.15784979e+00 -7.14224994e-01 9.94697735e-02 1.57957897e-01 6.69042349e-01 1.12628496e+00 -1.38036773e-01 -2.14495987e-01 -5.78537472e-02 -2.05521554e-01 3.42148423e-01 1.48822227e-02 9.36055839e-01 -9.60103214e-01 4.59126025e-01 -9.39219654e-01 -9.70453560e-01 -5.41429043e-01 6.69583604e-02 -6.76473081e-01 6.48144856e-02 -1.33607244e+00 1.12744085e-01 -9.04896408e-02 1.21439584e-01 3.08649838e-01 2.36124396e-01 2.68140227e-01 1.45835236e-01 3.32289577e-01 -2.95069635e-01 6.26348332e-02 1.00985551e+00 -2.48114079e-01 -3.72832455e-02 -5.56154370e-01 -4.27722692e-01 4.79443401e-01 8.95082414e-01 -8.31842244e-01 -9.94411707e-02 -3.61563355e-01 3.53091806e-01 -2.47416556e-01 1.74367204e-01 -9.59707320e-01 4.56967801e-01 -1.05139203e-01 5.89497209e-01 -6.58057988e-01 -1.08170383e-01 -8.51574659e-01 2.00885415e-01 6.51413143e-01 -6.85853124e-01 6.50923491e-01 2.69268066e-01 4.45943534e-01 -9.18169916e-02 -7.42365777e-01 7.34736383e-01 -3.03547025e-01 -5.59666276e-01 -6.77185282e-02 -5.66064835e-01 -2.31874064e-01 1.33442068e+00 -6.02395058e-01 -3.21512610e-01 -1.62852690e-01 -1.02115482e-01 -5.33312671e-02 7.18061030e-01 5.68489134e-01 6.28196776e-01 -1.04453719e+00 -5.86723566e-01 3.03597003e-01 1.37425110e-01 -2.42343843e-01 1.34746339e-02 5.97694695e-01 -1.22659612e+00 2.23540097e-01 -6.46693647e-01 -5.84283650e-01 -1.51429439e+00 7.28632450e-01 3.92323405e-01 5.67692444e-02 -3.83032203e-01 6.23235762e-01 -4.16929394e-01 -3.62381637e-01 3.07991356e-01 -2.17923410e-02 1.25508651e-01 -1.14927210e-01 5.47806978e-01 6.21778607e-01 3.07039857e-01 -7.21922159e-01 -3.65176231e-01 4.49820429e-01 -3.88267964e-01 -4.78923470e-02 1.04855239e+00 1.03751615e-01 -4.04814333e-01 1.58534944e-01 1.60187697e+00 -3.41994643e-01 -8.65596354e-01 9.61794853e-02 3.43945362e-02 -9.25598502e-01 5.39401099e-02 -4.08418745e-01 -1.04937065e+00 7.26221800e-01 9.24307406e-01 2.05651253e-01 7.24026680e-01 -3.22452813e-01 3.93768013e-01 6.02006018e-01 -2.36059010e-01 -1.43923700e+00 1.39221653e-01 1.84507221e-01 9.63946819e-01 -1.10805738e+00 4.75305498e-01 -2.69278456e-02 -2.89146692e-01 1.45010722e+00 5.31856179e-01 -1.14657439e-01 4.91589189e-01 1.62400588e-01 -2.18428075e-02 -3.04907292e-01 -1.45528033e-01 4.41502273e-01 9.37230065e-02 5.27649999e-01 3.38700324e-01 -2.77160555e-01 -5.36071420e-01 -4.94207233e-01 -1.97899997e-01 3.77194345e-01 7.03113317e-01 1.54155278e+00 -2.92277634e-01 -7.19705701e-01 -6.96616173e-01 5.92070878e-01 -2.80174047e-01 -8.66502002e-02 -6.82590008e-01 8.02374780e-01 1.57230839e-01 6.21621490e-01 4.82449293e-01 4.88309599e-02 1.79632425e-01 -1.22122325e-01 5.04846931e-01 -5.78000732e-02 -6.08562589e-01 -1.21234506e-01 -4.28152531e-01 -2.83480942e-01 -5.63947976e-01 -7.91022301e-01 -9.06405270e-01 -4.71313924e-01 -2.51927733e-01 -3.01951230e-01 1.27963746e+00 7.10066915e-01 7.90830195e-01 2.72264779e-01 4.57932353e-01 -9.07382429e-01 -4.97797310e-01 -6.15815818e-01 -5.28075933e-01 4.25677180e-01 1.22265428e-01 -5.54026425e-01 -3.59880179e-01 4.09567505e-01]
[12.035745620727539, 0.8549147844314575]
79c7c612-48f0-4fc9-bb36-6695735e55cd
unsupervised-image-matching-and-object
1904.03148
null
http://arxiv.org/abs/1904.03148v1
http://arxiv.org/pdf/1904.03148v1.pdf
Unsupervised Image Matching and Object Discovery as Optimization
Learning with complete or partial supervision is powerful but relies on ever-growing human annotation efforts. As a way to mitigate this serious problem, as well as to serve specific applications, unsupervised learning has emerged as an important field of research. In computer vision, unsupervised learning comes in various guises. We focus here on the unsupervised discovery and matching of object categories among images in a collection, following the work of Cho et al. 2015. We show that the original approach can be reformulated and solved as a proper optimization problem. Experiments on several benchmarks establish the merit of our approach.
['Patrick Perez', 'Yann Lecun', 'Kai Han', 'Francis Bach', 'Jean Ponce', 'Minsu Cho', 'Huy V. Vo']
2019-04-05
unsupervised-image-matching-and-object-1
http://openaccess.thecvf.com/content_CVPR_2019/html/Vo_Unsupervised_Image_Matching_and_Object_Discovery_as_Optimization_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/papers/Vo_Unsupervised_Image_Matching_and_Object_Discovery_as_Optimization_CVPR_2019_paper.pdf
cvpr-2019-6
['single-object-discovery']
['computer-vision']
[ 0.38673636 0.06548534 -0.465888 -0.5092344 -0.4405604 -0.49993882 0.7754321 0.18152449 -0.535016 0.32062954 -0.0683106 -0.03137114 -0.21099372 -0.4310087 -0.41867235 -0.8268449 -0.06307613 0.26528516 0.2827017 0.14087428 0.28643408 0.43445745 -1.6852611 0.09887974 0.6566105 0.9721534 0.1356323 0.16099073 -0.07432003 0.81745315 -0.36393112 -0.4218334 0.44436064 -0.19585422 -1.0348736 0.7709958 0.58850205 0.03943158 -0.14381093 1.2736195 0.24128775 0.14501855 0.5985842 -1.2803603 -0.31878242 0.4384933 -0.6451692 0.06543349 -0.04643017 -0.0980339 1.1738597 -0.9886193 0.4782397 0.9152097 0.54474765 0.32236642 -1.3708395 -0.46194738 0.20388378 0.33686522 -1.3597077 -0.484503 0.78443176 -0.7049057 0.49926642 0.19028652 0.29951653 0.7516678 -0.33262035 1.1757255 1.1756532 -0.6557089 0.24365515 0.16684954 0.48235315 0.6533888 0.3113713 -0.0103396 -0.36119136 -0.04304716 0.48800132 0.36976403 -0.15945467 -0.77794874 -1.2081859 0.92265487 0.5325235 0.35745895 -0.12548092 -0.27429268 0.3966787 0.19565964 0.57008827 0.8126812 -0.41924936 0.0352904 -0.88437474 0.03619884 0.7621425 0.91314 0.64402646 -0.13681686 0.07995732 1.0033327 0.14517173 0.08938468 0.39148098 -0.99239826 0.04006265 0.8367332 -0.1589881 -0.8287969 -0.28843778 -0.50816226 -1.0482936 0.1131539 0.4433223 0.20529744 -0.8800618 1.5297823 0.28054315 0.25163004 -0.23756751 0.81734353 0.70719826 0.304757 0.01974578 -0.40150413 1.0343373 -1.1744668 -0.6585403 -0.19815321 0.35099682 -0.69404066 0.6953846 0.540599 -0.6825527 -0.45143896 -0.7804546 0.13687566 -0.4352827 0.08889268 0.92568284 0.46686098 -0.87988967 0.4622089 -0.8545244 -0.52832615 0.79333586 0.42473668 -0.48030832 -0.16166975 -0.7155332 0.7999787 0.49945232 0.22202992 -0.54649246 -0.33158118 -0.81213963 -0.14964241 0.8351231 -0.4081385 1.2462314 -1.1690258 -1.2309549 1.2008469 0.02424527 -0.58077914 0.40209126 -0.26499566 -0.2005088 0.06377024 0.1359011 0.45762497 0.8959284 -1.0903926 -0.8801716 -0.4113765 0.08650117 0.01846764 -0.69672257 0.40362173 -0.5922319 -0.75921714 0.25357726 -1.0605686 -0.44742975 0.03751041 -0.4426886 -0.5865674 0.8688166 -0.2944757 1.0939162 -2.2506545 0.27151096 0.11752899 0.560959 0.40511134 0.30618396 0.20072402 -0.15377015 0.16065691 -0.82077354 -0.5782948 -0.10028629 0.28369108 -0.22883548 0.7328406 0.38464528 0.75664216 -0.9993538 -0.5257406 0.17678355 0.18372066 -0.34585205 0.3033951 -0.04769072 0.49333194 -0.35959932 0.7184165 0.3225153 -0.5200707 0.15241922 -0.03685621 -0.11806045 0.16042778 -1.2228004 1.4942966 0.03122406 0.8901638 0.11536601 -1.712636 0.7203559 0.13081066 0.7953206 -0.36524558 0.12393726 0.1142143 0.09753274 -0.5967089 0.2792276 -0.17652366 -0.1686933 0.39679393 0.18968675 0.12919247 0.42754874 0.2014975 0.9375022 -0.18834415 0.48586795 -0.38140595 0.5490505 0.01880484 0.5418715 0.8481818 -0.2547424 0.558535 0.22076833 -0.5072817 -0.87992287 -0.8802764 -0.3134694 1.0353726 0.05402412 -0.49993333 -0.61390686 -0.9662838 -0.03263219 0.03511204 -0.54240704 -0.05892477 -0.61316466 -0.5479678 0.32765394 0.47997156 0.56581086 -1.1596348 -0.60766876 -0.13753088 -0.11821507 -1.264161 -0.21829087 0.30259427 -0.87186974 -1.3391498 -0.7813746 -1.0459414 0.9233151 0.6038634 1.3662794 0.37760657 -0.52507126 0.5653478 -0.49548033 -0.5869728 -0.11014009 0.23123945 0.2225826 0.4047875 0.44172573 -0.4756584 -0.21235964 0.4525603 -1.164487 0.05751744 0.56958556 0.8832585 0.71205 0.19507518 0.5122422 -1.2858837 0.2184268 -0.5840509 -0.88899523 0.08305642 -0.85456103 -0.02528224 0.49375626 -0.26982942 -0.76321054 0.5165191 0.09698227 -0.40891117 -0.4108024 0.5735208 -0.37963492 -0.13463712 0.24546617 0.23226944 0.01939509 -0.80426025 0.35743552 0.70579857 0.58852774 -0.32993668 1.0995196 0.58069557 -0.09226546 -0.8852964 -1.1901605 -0.9865943 -1.0008205 -0.11990763 0.8282454 -0.7259527 -0.47265983 0.41319287 -0.8606679 -0.24263942 -0.26797178 0.41972524 -0.46171921 0.5264569 -0.31684473 -0.67503595 0.05576169 -1.0178928 0.8871318 0.27784702 0.05188004 -0.9514106 0.02349612 0.41555876 0.15332174 0.02138353 0.52394074 -0.88096493 -0.62121415 -0.31743136 -0.22014911 0.5793736 0.42376494 -0.07983355 -0.94326824 -0.23874368 0.18786296 -0.40230757 1.0921463 0.08613198 1.4405564 -0.28677016 -0.14734927 0.7221927 1.3901587 -0.26286408 0.28150862 0.45766038 0.78140765 0.8334979 0.7621659 0.22968031 0.16223311 0.81010556 0.5488323 -0.14057365 0.07683358 0.02852167 0.02870171 0.84039557 -0.24421754 0.25798512 -0.9909442 0.59084886 -2.04684 -1.1299024 -0.19413976 2.3039432 0.8192719 0.08676452 0.31830427 0.38277158 0.7174452 0.10725296 -0.2813354 0.16310553 -0.30494508 0.15854985 0.48104867 0.0249091 -1.5294898 0.8800668 6.620429 0.6381728 -1.0757214 0.07304895 0.5735841 0.26058063 0.26985162 -0.02512871 -0.62540454 0.47457078 0.43783355 -0.10204133 0.14587262 0.95918083 -0.11383227 -0.0790529 -1.1957445 1.1477753 0.20565543 -1.2111928 -0.31937978 0.1486576 1.0158997 0.08756406 0.04009383 0.29924148 0.19286382 -1.027895 0.47653642 0.20555055 0.49855986 -0.44669056 0.7769054 0.58048016 -1.2317351 -0.13934869 -0.38313293 -0.28545764 -0.05281878 0.6253301 -0.61969995 0.43455413 0.8553605 1.1218497 -0.7879589 1.5385609 -0.40173757 1.0277191 -0.33195668 0.24974896 0.17213404 -0.19424613 0.43795434 1.3317472 -0.34258342 0.11904417 0.662695 0.5618731 -0.23937954 0.0114479 -0.6246596 -0.12647875 0.18603534 1.4871038 -1.0287001 -0.45635417 -0.57033026 0.86887985 0.6515062 0.2345356 -0.513419 -0.21873882 0.47226676 -0.00937053 0.3737054 -0.34330007 -0.32517526 -1.3368257 0.11107489 -0.974522 0.58218056 -0.15282078 -1.4685155 0.3020576 0.01836065 -1.4300333 -0.09283759 -0.677822 -0.34386963 0.33026338 -1.644489 -1.0072253 -0.45433882 0.5657569 0.8181006 -0.25262025 0.81847817 0.5531213 -0.78268445 0.33947188 0.19856735 0.567761 0.7161457 -1.4999928 0.08394101 0.99967605 0.81356543 0.5214182 0.56729406 -0.21010327 -1.3390967 -1.0910193 0.9674285 -0.50828195 0.6810489 -0.4307693 -1.088298 0.73031986 0.21423033 0.2651836 0.72235173 0.15213045 -0.47167686 -0.16583882 -0.7273242 0.4322123 0.9751212 -0.49710014 -0.6178254 0.5166544 0.40268624 -0.21597633 -0.7698733 0.53130203 0.24388611 -1.0133104 0.964991 -0.68613654 0.41239074 -0.20364964 0.06957339 -1.0320989 -0.25001788 -0.7350082 -0.22159462 1.377723 0.12745567 -0.5080164 0.7211697 0.42008325 -0.07267889 -0.7982652 -0.611258 -0.96914506 -0.20909819 -0.45898983 0.1049176 1.1362057 0.04722361 0.4193893 -0.3888375 -0.01874833 1.0447987 0.27171382 0.862489 -1.5531253 -0.18097667 -0.74986863 -0.5773055 -1.1498677 0.4121113 -1.086565 0.33103454 -1.3592268 0.43560314 -0.54057944 -0.64208305 0.45646098 -0.3285802 0.6591588 0.3411071 0.7077507 -1.0160801 0.3599707 0.7114294 -0.29535112 0.11890242 0.4160327 -0.7100247 1.019858 0.8764676 -0.5351689 -0.14120305 -0.34161034 0.09541015 -0.5733296 0.4628899 -0.77516884 0.44930297 -0.2600555 -0.01407124 -0.45430893 0.02711992 -1.1796453 -0.28278494 0.2691741 -0.47875664 -0.1518214 -0.19102634 0.61256474 -0.5554143 -0.38842747 0.7864294 -0.11969291 -1.0022272 0.42533332 -0.16255611 0.07162285 1.0285808 -0.10348874 0.1381829 -0.11253224 -0.5837053 0.392888 0.39845276 0.42266512 0.46363804 -1.2284019 -0.6120334 0.01914128 0.37102428 0.24859613 -0.28660768 0.98263466 -0.06728029 0.47603047 0.03835301 -0.9149466 -1.387557 0.6149127 0.165633 -0.34464175 -0.6878609 0.70523334 0.3289875 -0.33191857 0.60761327 0.21987426 -0.4651619 -0.02976724 0.52447903 0.2750248 -0.08492688 -0.6715687 -0.32212216 0.42964312 -0.10619096 0.33496037 1.5260547 -0.18088154 -0.24806328 0.6872919 1.149868 -0.06868187 -1.147969 -0.633268 0.79258734 -0.4341368 -0.06117785 -0.46182427 -1.1994855 0.7376353 0.45307618 0.518067 1.1907996 0.3195007 0.42623278 0.5923118 0.34311214 -1.2358148 0.06970685 0.56375396 0.4759416 -1.798432 0.15702847 -0.5683963 -0.3228349 0.99952686 0.5281257 -0.30889952 0.7612048 0.13939714 -0.10178141 -0.19360068 -0.48692903 -0.66128105 0.5758414 0.57083726 0.464138 -0.12298968 -0.35834652 0.56129336 0.20112711 -0.14495288 0.26334053 1.1519413 -0.5224146 -1.1796572 -0.19953631 0.5625426 -0.55601853 -0.05735746 -0.52391785 0.6496145 0.19565906 0.9634901 -0.01181195 -0.15306872 0.16938008 -0.00929147 0.3208673 -0.9848263 -0.5866484 -0.02207817 -0.20152728 -0.51802915 -1.0237072 -0.502856 -0.9812153 0.31494087 -0.477425 0.14624444 0.51325226 1.1985068 0.08495618 0.24296507 0.9506793 -0.7001878 -0.69339395 -0.9291156 -0.6471594 0.68410236 0.3202368 -0.7975061 -0.39651847 0.53280777]
[9.465348243713379, 2.3677542209625244]
106770b0-0a19-4af6-9050-c5afb5db1817
graph-neural-network-aided-exploratory
2304.04497
null
https://arxiv.org/abs/2304.04497v1
https://arxiv.org/pdf/2304.04497v1.pdf
Graph Neural Network-Aided Exploratory Learning for Community Detection with Unknown Topology
In social networks, the discovery of community structures has received considerable attention as a fundamental problem in various network analysis tasks. However, due to privacy concerns or access restrictions, the network structure is often unknown, thereby rendering established community detection approaches ineffective without costly network topology acquisition. To tackle this challenge, we present META-CODE, a novel end-to-end solution for detecting overlapping communities in networks with unknown topology via exploratory learning aided by easy-to-collect node metadata. Specifically, META-CODE consists of three iterative steps in addition to the initial network inference step: 1) node-level community-affiliation embeddings based on graph neural networks (GNNs) trained by our new reconstruction loss, 2) network exploration via community affiliation-based node queries, and 3) network inference using an edge connectivity-based Siamese neural network model from the explored network. Through comprehensive evaluations using five real-world datasets, we demonstrate that META-CODE exhibits (a) its superiority over benchmark community detection methods, (b) empirical evaluations as well as theoretical findings to see the effectiveness of our node query, (c) the influence of each module, and (d) its computational efficiency.
['Won-Yong Shin', 'Ming Li', 'Cong Tran', 'Yu Hou']
2023-04-10
null
null
null
null
['community-detection']
['graphs']
[ 1.27579376e-01 2.17379570e-01 -2.04673246e-01 3.78295705e-02 -2.83514678e-01 -7.41512299e-01 4.55246866e-01 6.88576043e-01 -1.76136643e-01 5.79686880e-01 8.31668545e-03 -4.11708206e-01 -4.68686193e-01 -9.15807426e-01 -5.29258370e-01 -5.16790807e-01 -9.21831369e-01 8.23140740e-01 1.16833396e-01 1.80494800e-01 2.84901738e-01 4.36349928e-01 -7.92830944e-01 -2.33128741e-01 9.88740981e-01 6.21565998e-01 -1.89028516e-01 3.97017479e-01 -1.04071125e-01 6.94971681e-01 -1.14920422e-01 -3.99547786e-01 2.29096919e-01 -2.32448690e-02 -1.00928712e+00 2.72113889e-01 4.04440053e-02 -6.56282678e-02 -5.43559372e-01 1.16947532e+00 1.93237633e-01 -7.25335628e-02 3.53805542e-01 -1.57215488e+00 -5.01631737e-01 9.42673028e-01 -8.65310848e-01 1.70159906e-01 2.74368733e-01 2.18095347e-01 1.42415643e+00 -8.42318118e-01 1.02287579e+00 1.17056406e+00 9.41858470e-01 3.02905198e-02 -1.70507455e+00 -6.95031941e-01 2.21308336e-01 -1.18756190e-01 -1.76084208e+00 -2.59894431e-01 1.07819939e+00 -5.80401719e-01 5.07366180e-01 -1.15044087e-01 8.01583230e-01 9.46439505e-01 -3.11281621e-01 6.45755529e-01 6.48371637e-01 -3.83604579e-02 3.28151584e-01 1.59130186e-01 -5.45391813e-02 8.99688184e-01 4.65478122e-01 -1.41920939e-01 -3.15892786e-01 -5.74352622e-01 8.52540970e-01 1.19849525e-01 -2.83132941e-01 -9.40397382e-01 -1.22028494e+00 1.06092966e+00 1.05066192e+00 6.92986622e-02 -3.02470595e-01 2.08559707e-01 5.52572370e-01 3.58114570e-01 5.14590085e-01 3.97280216e-01 -1.32469729e-01 2.60557860e-01 -9.00911331e-01 -1.53375685e-01 1.24949312e+00 8.74500275e-01 8.08098316e-01 -2.33488932e-01 3.28985900e-01 5.74826539e-01 5.44516444e-01 -9.47301835e-02 -2.38819301e-01 -5.98579884e-01 5.84025145e-01 9.47465837e-01 -3.88352662e-01 -1.42288697e+00 -3.95857215e-01 -7.51998782e-01 -1.39662004e+00 -2.99129456e-01 3.67204636e-01 -1.65326729e-01 -2.10664451e-01 1.81976748e+00 5.62500000e-01 3.45972598e-01 -2.15202659e-01 6.09483063e-01 6.22022808e-01 2.03858972e-01 -2.01539904e-01 -5.12863928e-03 1.10206544e+00 -9.40781236e-01 -1.75883502e-01 3.07351421e-03 5.26904821e-01 -1.06774248e-01 5.73930383e-01 2.71138698e-02 -8.05114865e-01 -2.39526015e-02 -8.47183943e-01 2.42369249e-01 -3.22720140e-01 -1.33842945e-01 8.50146174e-01 4.44450289e-01 -1.33741140e+00 6.18947268e-01 -7.88814127e-01 -6.24300241e-01 8.51884484e-01 4.74947631e-01 -5.05823910e-01 -9.77869481e-02 -8.71106625e-01 -8.60628299e-03 5.12260556e-01 1.82255179e-01 -8.86436760e-01 -6.19185448e-01 -9.85695302e-01 4.76229161e-01 9.56511140e-01 -7.50298738e-01 3.84032369e-01 -7.56885648e-01 -8.50143790e-01 6.16123378e-01 -3.35264653e-02 -4.25870389e-01 4.72852290e-01 2.40028217e-01 -1.89768121e-01 5.63644886e-01 2.75419086e-01 4.86432761e-01 4.46161687e-01 -1.25351322e+00 -2.37074524e-01 -2.53122985e-01 -2.74163974e-03 -3.73242944e-02 -5.25278986e-01 -2.27331549e-01 -6.47626936e-01 -5.53111792e-01 4.75663334e-01 -9.62055445e-01 -4.81018096e-01 6.17936790e-01 -1.01553822e+00 -3.26713413e-01 7.58953393e-01 -4.47046697e-01 1.26580548e+00 -1.99412668e+00 1.78301990e-01 9.93757844e-01 1.22353649e+00 -1.83501363e-01 -3.08965564e-01 6.38955891e-01 -5.82600832e-02 5.86472452e-01 -3.60355288e-01 -2.70663798e-01 -3.08026016e-01 -3.14866722e-01 8.23235959e-02 6.00693226e-01 3.75946492e-01 7.77811944e-01 -1.20827103e+00 -6.69779181e-01 -1.48181707e-01 3.99626791e-01 -7.56239712e-01 -1.03424251e-01 1.06370181e-01 3.08903962e-01 -5.29832482e-01 1.05884159e+00 5.35243452e-01 -1.04896414e+00 8.52928877e-01 -1.59776032e-01 2.25524053e-01 3.81470434e-02 -1.29647386e+00 1.34259701e+00 1.22289017e-01 7.16365397e-01 5.91482341e-01 -1.15291762e+00 7.35854268e-01 1.86543748e-01 7.74457574e-01 -2.50584427e-02 -1.09541327e-01 5.44027016e-02 1.72950953e-01 -2.59323478e-01 1.40446633e-01 3.82947385e-01 1.55638292e-01 8.29775512e-01 -7.79686943e-02 5.29172063e-01 4.01532918e-01 9.79310989e-01 1.64861751e+00 -5.67586780e-01 1.54418916e-01 -3.11634570e-01 3.50185305e-01 -1.45020857e-01 5.21959305e-01 6.85467720e-01 -2.79280066e-01 2.34553143e-01 1.00608599e+00 -2.67017037e-01 -9.63901699e-01 -1.19445646e+00 1.17137782e-01 6.69077098e-01 3.23240399e-01 -4.50627953e-01 -4.85121131e-01 -8.45493078e-01 3.61242443e-01 -1.49541959e-01 -6.56339347e-01 1.01489602e-02 -4.42148209e-01 -6.29984021e-01 4.86776173e-01 3.58083397e-01 3.77440304e-01 -9.10506964e-01 1.16783097e-01 1.76757678e-01 -3.70125055e-01 -1.10854805e+00 -7.76358187e-01 1.13169849e-01 -1.17621315e+00 -1.56543589e+00 -2.85316825e-01 -9.29506660e-01 1.14503264e+00 4.92509991e-01 1.13447797e+00 6.60809457e-01 -2.67928064e-01 3.68285447e-01 -8.35275128e-02 4.61584359e-01 -9.39429402e-02 5.11714458e-01 1.41482979e-01 1.90425396e-01 1.67256787e-01 -1.17199862e+00 -6.92737877e-01 2.76120454e-01 -6.22619271e-01 -2.18904287e-01 8.05134833e-01 8.08036208e-01 2.23235726e-01 3.34733665e-01 6.13103151e-01 -9.84471500e-01 8.57135475e-01 -9.92795110e-01 -7.09454894e-01 1.95480272e-01 -7.74945617e-01 -3.09543852e-02 4.03214276e-01 -4.56988126e-01 -3.68567914e-01 -4.04396281e-02 4.04849470e-01 -4.55436677e-01 3.42972368e-01 1.05109346e+00 -1.65397018e-01 -2.19978690e-01 4.40109313e-01 2.27432638e-01 4.49474275e-01 -3.82602721e-01 1.67690679e-01 4.26207066e-01 3.81052911e-01 -5.79124629e-01 1.28090632e+00 6.59875691e-01 2.56091356e-02 -8.76018167e-01 -4.56949085e-01 -7.67870724e-01 -8.74863744e-01 -2.48874873e-01 3.21277827e-01 -9.98500645e-01 -1.01362991e+00 2.43085306e-02 -8.39157701e-01 -6.11251332e-02 6.99968785e-02 3.01247388e-01 1.07101701e-01 7.81615853e-01 -9.79965150e-01 -7.78769493e-01 -4.83367950e-01 -8.83281589e-01 5.36956429e-01 -6.97462484e-02 -1.44944459e-01 -1.39558864e+00 2.46061031e-02 3.77495497e-01 2.46143803e-01 5.39994717e-01 1.03076410e+00 -8.30832601e-01 -1.13522875e+00 -3.07117641e-01 -7.39951730e-01 -1.77631319e-01 1.72041103e-01 2.07118332e-01 -5.35578012e-01 -8.01206112e-01 -7.86333323e-01 -2.89968371e-01 7.30409145e-01 1.65191010e-01 1.10415280e+00 -3.69874835e-01 -8.07343960e-01 7.26522923e-01 1.50483799e+00 -4.51320767e-01 3.71226788e-01 8.74718577e-02 8.16213489e-01 5.44205487e-01 -6.52239993e-02 3.76277834e-01 4.58616138e-01 2.27390140e-01 7.04918563e-01 -2.21393436e-01 2.54123986e-01 -5.59267223e-01 7.65358359e-02 8.67729604e-01 1.66886210e-01 -2.20561206e-01 -1.06326187e+00 7.73089290e-01 -1.78413796e+00 -9.32319522e-01 -1.75433099e-01 2.11048794e+00 7.13591993e-01 3.32091063e-01 5.09364724e-01 -4.85335514e-02 1.05214977e+00 1.23987399e-01 -9.31735933e-01 2.59273678e-01 -3.06130778e-02 -2.12806925e-01 2.10195020e-01 1.52886912e-01 -1.12131560e+00 6.10343575e-01 5.77803278e+00 5.43179333e-01 -8.31570625e-01 -6.70171827e-02 6.82064533e-01 8.16722512e-02 -3.50743741e-01 3.84672105e-01 -3.47990394e-01 3.72364610e-01 3.78114134e-01 -1.21006608e-01 6.12720907e-01 9.10643995e-01 2.74913684e-02 2.59637535e-01 -1.13659132e+00 6.52749658e-01 -2.78096825e-01 -1.60057032e+00 -8.15229192e-02 6.51503921e-01 6.37487352e-01 3.05406779e-01 -3.07673156e-01 1.88075632e-01 5.85729480e-01 -9.93419707e-01 3.19992453e-01 2.25339741e-01 9.54730570e-01 -6.56763375e-01 5.24518728e-01 3.26436549e-01 -1.64193070e+00 -2.41929621e-01 -2.47137398e-01 2.20662802e-01 6.03016652e-02 9.92603421e-01 -9.09740210e-01 5.45706809e-01 5.68855226e-01 9.86906528e-01 -5.47163248e-01 1.36458492e+00 -6.99968636e-02 8.19208324e-01 -5.98974943e-01 -8.25971887e-02 2.81998068e-01 -3.57243001e-01 8.55378687e-01 9.18996811e-01 6.67516068e-02 -4.38437164e-01 4.75766540e-01 1.52124071e+00 -6.46395683e-01 -1.10858589e-01 -5.88974357e-01 -5.43192923e-01 9.97559071e-01 1.55093682e+00 -1.21474409e+00 8.78018737e-02 -2.20946401e-01 6.92767024e-01 8.13383043e-01 4.96392220e-01 -4.64332104e-01 -7.22235501e-01 4.76458013e-01 5.08846581e-01 3.04121315e-01 -1.76495999e-01 6.33398443e-02 -1.04466939e+00 1.15992337e-01 -6.47888362e-01 5.64144194e-01 -2.73563474e-01 -1.54519331e+00 4.24811959e-01 -3.19433272e-01 -1.03619277e+00 2.08874136e-01 -1.85276628e-01 -1.04047120e+00 5.92236102e-01 -1.19240355e+00 -1.04958045e+00 -3.97448808e-01 3.17608744e-01 -8.41859728e-02 -2.78776139e-01 4.63017732e-01 4.32817250e-01 -9.73736584e-01 7.12186098e-01 2.96141952e-01 7.57053792e-01 2.93991894e-01 -1.29202962e+00 4.47670013e-01 7.80731142e-01 -2.29465682e-02 9.34980929e-01 2.26524428e-01 -9.30094659e-01 -1.39778268e+00 -1.18808889e+00 7.28024840e-01 -1.94716543e-01 1.07685459e+00 -7.45457232e-01 -9.73427415e-01 6.29331887e-01 -1.72693372e-01 3.22087795e-01 6.34128988e-01 6.01773918e-01 -4.38056260e-01 -1.73531964e-01 -1.26234722e+00 5.93306243e-01 1.19753432e+00 -6.09977245e-01 1.03787161e-01 3.50666404e-01 7.70933330e-01 2.87919134e-01 -1.03531647e+00 1.85555339e-01 4.74803239e-01 -6.81366265e-01 1.01904976e+00 -4.45184290e-01 5.17806947e-01 -3.15503329e-01 2.61900425e-01 -9.75539207e-01 -4.71909672e-01 -7.88172603e-01 -4.04612273e-01 1.30435324e+00 4.60906863e-01 -6.39370799e-01 1.17265892e+00 2.06047446e-01 5.29998422e-01 -8.80311191e-01 -8.81295383e-01 -5.65952480e-01 -2.32483283e-01 9.69192088e-02 5.10905206e-01 1.43957543e+00 7.63359517e-02 5.84934533e-01 -2.99332058e-03 3.18254620e-01 1.10837269e+00 9.53768492e-02 7.91268945e-01 -1.87261498e+00 -2.71400154e-01 -6.39335513e-01 -3.37726057e-01 -1.02578843e+00 8.51762742e-02 -1.11598992e+00 -2.86691993e-01 -1.51317108e+00 6.99711680e-01 -9.27919924e-01 -1.84622779e-01 2.85863429e-01 -7.49731250e-03 3.04935239e-02 -1.96031690e-01 4.98462647e-01 -1.05013728e+00 5.20680189e-01 9.32058990e-01 -3.26899171e-01 -2.13241994e-01 1.24089785e-01 -9.34471548e-01 4.57301140e-01 5.02289057e-01 -5.90767443e-01 -4.17542189e-01 -3.86025421e-02 6.64993763e-01 2.53978670e-01 6.41173959e-01 -8.14717293e-01 5.89270890e-01 2.72611678e-01 1.81744099e-01 -6.57145739e-01 4.61339280e-02 -7.57125199e-01 5.38910031e-02 7.73751616e-01 -1.71392724e-01 -5.57055101e-02 -1.60376862e-01 1.15360653e+00 -9.72876549e-02 2.79889926e-02 5.05418181e-01 1.32064372e-02 -2.57344127e-01 6.16505146e-01 -2.54860282e-01 2.22775236e-01 8.70113075e-01 -5.03556311e-01 -2.43937969e-01 -4.65150148e-01 -6.84300959e-01 7.81331360e-01 5.72419882e-01 2.10850462e-02 6.00861669e-01 -1.17126691e+00 -7.93222189e-01 7.17071295e-02 2.34366924e-01 1.96867868e-01 2.66102180e-02 1.22123492e+00 -5.33763111e-01 -1.68677419e-02 2.90914208e-01 -8.76090169e-01 -1.33263099e+00 5.83051860e-01 3.12387854e-01 -6.25912428e-01 -7.27466643e-01 8.40354025e-01 1.43889207e-02 -8.55777025e-01 5.56035042e-01 1.29327387e-01 -4.62795459e-02 8.37800279e-03 1.30114658e-02 2.78154880e-01 -4.15112048e-01 -2.54829675e-01 -4.51674461e-01 9.92085263e-02 -2.25853488e-01 2.80163527e-01 1.42023528e+00 -2.41171643e-01 -4.70212311e-01 1.29752278e-01 1.16661441e+00 -7.82216266e-02 -1.10720944e+00 -6.81353629e-01 3.56299549e-01 -3.51549089e-01 -7.93899372e-02 -5.18853664e-01 -1.40010798e+00 6.00596368e-01 1.44420862e-01 4.02564377e-01 8.52302134e-01 9.84344259e-02 5.85044324e-01 6.71509504e-01 3.08245093e-01 -8.58194590e-01 4.10170734e-01 3.07725728e-01 4.60983604e-01 -1.43206906e+00 2.14590997e-01 -6.18403554e-01 -9.62087512e-02 1.02114582e+00 4.94732440e-01 8.31957757e-02 1.11370242e+00 -5.94505556e-02 -5.01735568e-01 -6.56647086e-01 -8.72225881e-01 7.72525966e-02 -1.68636329e-02 5.33304334e-01 7.24866986e-02 -2.13212267e-01 3.92744035e-01 3.76867294e-01 2.06088975e-01 -3.17457616e-01 4.26377773e-01 7.62808084e-01 -2.67957598e-01 -8.15801680e-01 -4.54364009e-02 8.48309338e-01 -1.51105538e-01 -1.83408752e-01 -8.14832866e-01 9.43829894e-01 -3.92728478e-01 8.71738970e-01 7.39059448e-02 -4.24233943e-01 -2.13665634e-01 -4.60963726e-01 -9.98087078e-02 -6.14834666e-01 -4.99768466e-01 -1.19161576e-01 6.03083856e-02 -3.72937143e-01 -1.54795825e-01 -6.01964533e-01 -9.08678710e-01 -7.90924132e-01 -6.91830933e-01 4.35296685e-01 4.01983023e-01 6.91373467e-01 6.58549488e-01 2.86820889e-01 9.47938323e-01 -6.52745247e-01 -4.66937274e-01 -8.88037741e-01 -7.15025723e-01 2.88858533e-01 2.91245401e-01 -5.71696222e-01 -7.11408675e-01 -3.98195386e-01]
[7.155932426452637, 5.977251052856445]
8821419c-f5b9-4dd3-95ae-f8f3cca2796f
interpretable-machine-learning-for-science
2305.01582
null
https://arxiv.org/abs/2305.01582v3
https://arxiv.org/pdf/2305.01582v3.pdf
Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl
PySR is an open-source library for practical symbolic regression, a type of machine learning which aims to discover human-interpretable symbolic models. PySR was developed to democratize and popularize symbolic regression for the sciences, and is built on a high-performance distributed back-end, a flexible search algorithm, and interfaces with several deep learning packages. PySR's internal search algorithm is a multi-population evolutionary algorithm, which consists of a unique evolve-simplify-optimize loop, designed for optimization of unknown scalar constants in newly-discovered empirical expressions. PySR's backend is the extremely optimized Julia library SymbolicRegression.jl, which can be used directly from Julia. It is capable of fusing user-defined operators into SIMD kernels at runtime, performing automatic differentiation, and distributing populations of expressions to thousands of cores across a cluster. In describing this software, we also introduce a new benchmark, "EmpiricalBench," to quantify the applicability of symbolic regression algorithms in science. This benchmark measures recovery of historical empirical equations from original and synthetic datasets.
['Miles Cranmer']
2023-05-02
null
null
null
null
['interpretable-machine-learning']
['methodology']
[-1.38760209e-01 -3.24874103e-01 -2.35585675e-01 -3.17750961e-01 -8.21490228e-01 -3.97449106e-01 4.97369081e-01 -1.26610905e-01 -1.62618726e-01 8.78855407e-01 -7.46908784e-01 -5.19606113e-01 -1.15353160e-01 -6.26189351e-01 -9.99658883e-01 -8.59624922e-01 -4.09790814e-01 1.00029564e+00 -1.17279189e-02 -4.05892789e-01 2.31018588e-01 8.19656789e-01 -1.63757956e+00 1.02200843e-01 7.94347644e-01 7.82009661e-01 -2.95954496e-01 8.41921747e-01 1.32238165e-01 8.32963705e-01 -5.29786050e-01 -2.56538570e-01 -6.90604374e-02 -4.27479804e-01 -5.06370425e-01 -1.02076757e+00 -8.15577433e-02 2.10917786e-01 -1.09898247e-01 8.18425834e-01 5.39240837e-01 2.35992204e-03 6.91703022e-01 -1.55679464e+00 -2.03251213e-01 8.72923136e-01 -5.28752744e-01 1.59613550e-01 3.26385051e-01 4.43823993e-01 8.09219003e-01 -6.37485743e-01 5.09034157e-01 1.39461672e+00 9.99411404e-01 1.63247332e-01 -1.84625435e+00 -9.94147062e-01 -5.70848286e-01 8.41141045e-02 -1.76236153e+00 -4.54903603e-01 4.17609334e-01 -4.96481031e-01 1.44889855e+00 7.02188015e-01 6.18482590e-01 1.29398739e+00 4.74530995e-01 5.96261799e-01 7.60251820e-01 -2.36241624e-01 4.62353855e-01 -4.67192940e-02 1.26868576e-01 9.10874784e-01 4.91957478e-02 5.53097785e-01 -6.52487278e-01 -9.07806396e-01 7.10219264e-01 -4.80085075e-01 -3.30935530e-02 -4.05810297e-01 -1.08268678e+00 8.77284110e-01 9.31619257e-02 9.67256550e-04 -2.50499785e-01 6.99641347e-01 5.83958149e-01 1.87538624e-01 3.54395837e-01 9.81910229e-01 -8.78766358e-01 -6.86289907e-01 -9.66659307e-01 8.16842556e-01 1.04119468e+00 7.78995156e-01 7.64900804e-01 3.92229766e-01 1.50964960e-01 6.41709685e-01 8.12440440e-02 5.15524328e-01 5.51848233e-01 -1.33526790e+00 -3.60393584e-01 6.72309101e-01 -2.37023726e-01 -8.46597075e-01 -6.66233838e-01 -4.94047165e-01 -6.49080098e-01 4.13218945e-01 1.19155273e-01 -2.73632020e-01 -4.92218584e-01 1.40956140e+00 4.47408706e-01 4.77752537e-01 4.03170362e-02 6.94174349e-01 6.83613420e-01 6.83181763e-01 4.39739525e-02 -2.91580647e-01 6.88460588e-01 -7.85385907e-01 -2.21049428e-01 3.40930969e-01 7.92660296e-01 -4.07066584e-01 9.64058995e-01 7.17095017e-01 -1.15254009e+00 -3.30572397e-01 -1.01411963e+00 -1.04260676e-01 -6.32305264e-01 7.56022856e-02 1.10513592e+00 3.77693504e-01 -9.15844142e-01 1.08122170e+00 -1.14899182e+00 2.84190446e-01 2.50207007e-01 6.68903828e-01 3.28398347e-02 4.78563488e-01 -1.09366107e+00 7.76291013e-01 3.15871924e-01 -1.19912475e-01 -7.35975027e-01 -1.19890296e+00 -8.01105142e-01 8.46705120e-03 3.61262143e-01 -6.85883462e-01 1.24955213e+00 -1.12536323e+00 -1.86847568e+00 9.17686164e-01 -3.36017787e-01 -4.82381254e-01 3.88846457e-01 2.78450977e-02 -5.08999467e-01 -2.46500164e-01 -4.45371121e-03 2.41685271e-01 8.74738991e-01 -7.14153945e-01 -2.03314815e-02 -5.54963708e-01 -9.38504159e-01 -4.82184410e-01 3.11978281e-01 4.42950726e-01 -4.69613343e-01 -6.98450863e-01 -2.30769172e-01 -1.12599587e+00 -4.13005173e-01 -2.69183815e-01 -2.25218892e-01 -2.34202906e-01 6.40663028e-01 -5.79218209e-01 1.26811290e+00 -1.97529137e+00 7.36832917e-01 5.82906425e-01 2.75500149e-01 3.55997160e-02 2.68225700e-01 1.63703993e-01 -6.28335476e-01 2.33878046e-02 -5.16068757e-01 4.68828902e-02 8.39771032e-02 6.78037852e-02 -4.39612031e-01 5.98990798e-01 4.11218345e-01 1.09060442e+00 -8.91634166e-01 -4.65588778e-01 -1.73460409e-01 3.65052253e-01 -4.76871967e-01 4.31405418e-02 -7.85447121e-01 4.21090901e-01 -6.36291862e-01 8.40641499e-01 5.03217638e-01 -4.67652410e-01 2.63909250e-01 3.67285252e-01 -3.37021619e-01 -1.53671466e-02 -1.02179849e+00 1.64731634e+00 -3.84528488e-02 6.00684583e-01 -1.16531566e-01 -8.97626162e-01 1.18753767e+00 -2.68988520e-01 5.29366016e-01 -2.89317936e-01 3.46207023e-01 5.01777411e-01 -9.91609618e-02 -2.73856372e-01 4.74564701e-01 4.82586503e-01 -3.09620470e-01 3.81621629e-01 -1.49586368e-02 -5.82850337e-01 2.20482484e-01 -1.97955035e-02 1.33886707e+00 8.55590940e-01 3.83283615e-01 -3.56708825e-01 6.93929613e-01 4.90533829e-01 3.88616830e-01 5.64163506e-01 5.55953026e-01 8.16465542e-02 9.52223837e-01 -5.88690519e-01 -1.13503718e+00 -1.00927591e+00 -4.63860542e-01 1.46565449e+00 -3.56956661e-01 -5.67611277e-01 -4.26176995e-01 1.04932651e-01 5.76756418e-01 1.15271008e+00 -5.22886932e-01 -3.63865614e-01 -5.89097381e-01 -9.02430713e-01 1.10576594e+00 2.50327289e-01 1.03130743e-01 -1.12961602e+00 -5.98353505e-01 1.49506569e-01 3.21946293e-01 -5.09329140e-01 2.20570192e-01 5.14342606e-01 -7.17675745e-01 -9.62218881e-01 -2.82739937e-01 -3.77243072e-01 2.37107024e-01 -5.86395979e-01 1.33480620e+00 3.39183658e-02 -8.68800104e-01 -1.01093724e-01 5.09915464e-02 -4.23347354e-01 -8.33382845e-01 2.54414707e-01 3.75057943e-02 -3.88107777e-01 5.18425226e-01 -8.45690429e-01 2.94840276e-01 1.62452981e-01 -3.55769366e-01 3.72611620e-02 1.03211991e-01 1.07806718e+00 7.88006783e-01 -3.12742978e-01 1.14127338e-01 -3.35202187e-01 5.49812078e-01 -6.57478809e-01 -1.44455194e+00 2.85852551e-01 -6.10651314e-01 6.05396867e-01 7.33759820e-01 -5.09322405e-01 -5.13360918e-01 3.01790476e-01 7.78525919e-02 -9.10201371e-01 2.92087615e-01 5.02006590e-01 2.31887400e-01 -2.93695450e-01 8.59813094e-01 4.63458061e-01 3.16842973e-01 -3.54639351e-01 2.49594569e-01 4.60564435e-01 7.64517605e-01 -1.15473056e+00 4.14236546e-01 -1.51330158e-01 4.45893168e-01 -9.15723920e-01 -1.61430255e-01 7.04844994e-03 -2.67971396e-01 -3.94115746e-02 4.92029488e-01 -8.65092099e-01 -1.32595479e+00 6.84012771e-01 -1.11603391e+00 -8.31595242e-01 -1.33695886e-01 2.06547633e-01 -7.89164364e-01 -1.10831022e-01 -3.70826095e-01 -6.48548365e-01 -3.07528079e-01 -1.21754444e+00 1.22839141e+00 1.94101587e-01 -7.08179653e-01 -6.45364702e-01 4.42648351e-01 -2.76730120e-01 2.48598844e-01 7.42732286e-01 9.99451756e-01 -6.55021429e-01 -3.30927938e-01 -4.13020290e-02 4.21837457e-02 8.55931491e-02 -6.88447356e-01 9.10679340e-01 -7.66560376e-01 7.77726695e-02 -2.79415518e-01 -5.16590536e-01 6.39158607e-01 3.27862501e-01 1.56393528e+00 -6.50368109e-02 -8.15948606e-01 1.32764828e+00 1.04657876e+00 8.77984464e-02 6.03975117e-01 4.29490596e-01 4.75257605e-01 2.59110451e-01 5.26506722e-01 5.92869520e-01 6.42462894e-02 7.53397226e-01 2.69094467e-01 2.49517784e-02 7.59425938e-01 1.63604572e-01 4.99701768e-01 4.74716812e-01 -3.69888365e-01 3.52805763e-01 -1.21335614e+00 -1.21498026e-01 -2.03234649e+00 -9.62124050e-01 -5.97158432e-01 2.01675153e+00 1.43525088e+00 -8.94575939e-02 2.71495432e-01 -1.75461680e-01 4.04866874e-01 -3.95697802e-01 -1.12662518e+00 -7.70105779e-01 -2.01229379e-01 9.09682333e-01 6.76136076e-01 4.27444428e-01 -6.98718488e-01 1.24176419e+00 7.15970230e+00 1.11093855e+00 -1.45479059e+00 -1.75919011e-01 6.98889077e-01 -3.40478778e-01 -4.93472107e-02 -4.83024940e-02 -8.26040864e-01 4.42388326e-01 1.50890803e+00 -4.95891541e-01 9.25578654e-01 1.26299524e+00 2.54170988e-02 -3.08498647e-02 -1.20224893e+00 7.43863165e-01 -2.29951367e-01 -1.55939937e+00 -4.99569058e-01 -2.37191573e-01 4.44412798e-01 3.68717283e-01 -7.64838755e-02 6.73982263e-01 6.94319189e-01 -1.46214354e+00 7.15998888e-01 7.73505628e-01 9.03663397e-01 -1.21242952e+00 2.07425743e-01 3.48675042e-01 -6.77277029e-01 1.02083735e-01 -2.18225002e-01 -1.06877768e-02 -3.50741804e-01 3.58782113e-01 -6.95412278e-01 3.11080039e-01 9.60029900e-01 8.10086071e-01 -7.32264340e-01 4.78641570e-01 -6.94273710e-02 6.22663498e-01 -5.43308735e-01 -3.77596915e-01 -1.61003947e-01 -4.68745857e-01 6.36313260e-01 1.33480346e+00 1.89004749e-01 2.44032647e-02 -3.31670463e-01 1.63578856e+00 3.67095500e-01 -1.10719919e-01 -5.13140976e-01 -2.62319177e-01 4.78453189e-01 1.09589279e+00 -3.65951747e-01 -3.48967671e-01 2.33766258e-01 6.30611479e-01 2.24252328e-01 2.79723227e-01 -1.40526211e+00 -5.94638705e-01 8.75592530e-01 -9.18765028e-04 3.23658347e-01 -4.84821826e-01 -3.95214826e-01 -9.85461950e-01 -5.31674743e-01 -1.64530551e+00 1.00751430e-01 -1.11552000e+00 -7.48024285e-01 3.59408796e-01 1.41488746e-01 -5.51325679e-01 -7.97420144e-01 -8.95686269e-01 -3.64238381e-01 9.66613352e-01 -8.39012325e-01 -6.69048727e-01 -2.40689829e-01 6.14994526e-01 -4.03627194e-02 -6.22833610e-01 1.08266914e+00 -1.81024313e-01 -1.08034873e+00 7.19034910e-01 5.46332955e-01 -3.33722234e-01 4.89894152e-01 -9.84367073e-01 6.11940563e-01 2.41517857e-01 -3.89656305e-01 8.80567491e-01 1.02301586e+00 -7.87302077e-01 -1.94779730e+00 -8.71172011e-01 4.79179561e-01 -2.92603165e-01 1.16837013e+00 -4.27617669e-01 -1.06794500e+00 8.37227941e-01 -3.13089937e-01 -7.78897256e-02 4.00565922e-01 1.01246700e-01 -3.51450384e-01 -2.48344392e-02 -9.49146450e-01 7.18397260e-01 8.09652507e-01 -1.10455364e-01 -1.95739090e-01 4.01259482e-01 7.83698678e-01 -8.13036621e-01 -1.25666404e+00 2.74617940e-01 7.40691245e-01 -9.23964918e-01 1.24418104e+00 -7.54837811e-01 8.22031558e-01 -2.15290979e-01 -2.79825367e-02 -9.19931054e-01 -7.03585297e-02 -1.24549198e+00 -5.33195615e-01 6.78931713e-01 6.00595176e-01 -9.76785600e-01 4.21155542e-01 4.24267530e-01 1.44548723e-02 -8.74479949e-01 -8.14034700e-01 -9.32731986e-01 1.15704626e-01 -3.85587692e-01 1.00161064e+00 1.09406066e+00 -2.72483528e-02 2.62377530e-01 -4.88511622e-02 4.50006686e-02 5.09362578e-01 1.73435152e-01 1.33528352e+00 -1.14185226e+00 -1.04516792e+00 -9.30375218e-01 -3.31052870e-01 -4.70897734e-01 5.41998684e-01 -1.09548104e+00 -2.20645472e-01 -1.58017963e-01 -2.59897977e-01 -4.07643586e-01 1.50931999e-01 6.93286240e-01 1.84154779e-01 -1.71759203e-01 -4.17722464e-01 2.20640510e-01 -1.39723510e-01 6.15440011e-01 6.88387930e-01 1.79466009e-02 -4.54929173e-01 -1.05636142e-01 -3.34786713e-01 8.44111562e-01 6.24135077e-01 -8.18546057e-01 2.62119949e-01 1.55401766e-01 5.38294911e-01 1.35474712e-01 6.84282303e-01 -8.48611474e-01 -7.39121251e-03 -3.55703533e-01 5.42613268e-01 -6.74021125e-01 3.36521178e-01 -2.46404186e-01 7.27469385e-01 6.31952643e-01 -3.10181975e-01 3.96172017e-01 5.82056046e-01 7.03023793e-03 1.13536045e-01 -1.40263692e-01 7.96207786e-01 -1.86566692e-02 -3.65602612e-01 -4.01466452e-02 -2.15174779e-01 8.67998451e-02 1.19960690e+00 1.07429035e-01 -1.75550804e-01 -7.18137575e-03 -5.91557920e-01 3.42757553e-01 6.55544758e-01 1.24999270e-01 2.37625301e-01 -9.98619854e-01 -9.37000692e-01 2.93005407e-01 -1.65010005e-01 -2.33439580e-02 -4.50122505e-01 1.09463453e+00 -1.06964469e+00 1.80925936e-01 2.08032113e-02 -8.15155566e-01 -1.21669102e+00 6.18918180e-01 5.40231586e-01 -4.13163871e-01 -4.69433695e-01 9.34721589e-01 -6.33982480e-01 -6.28931880e-01 -2.63844598e-02 -3.51869613e-01 3.41310114e-01 -3.80030215e-01 4.57965046e-01 7.62374997e-01 -1.89618394e-01 -2.64945239e-01 -4.22257453e-01 4.54142720e-01 3.68340433e-01 3.49525991e-03 1.81956851e+00 8.57210755e-01 -8.02632034e-01 8.40305686e-01 1.16410518e+00 -1.86925218e-01 -7.91526079e-01 1.86092705e-01 1.92486525e-01 1.27747685e-01 1.33204246e-02 -8.22721183e-01 -6.86268568e-01 3.85404795e-01 9.56494957e-02 -1.13624260e-01 9.41481471e-01 -9.40814987e-02 3.49830151e-01 8.15066814e-01 2.54014999e-01 -8.15617383e-01 -3.31193060e-01 6.62640691e-01 1.21655953e+00 -8.03756952e-01 5.41133463e-01 1.29682384e-02 -3.95356745e-01 1.35712028e+00 4.15515810e-01 -3.40901941e-01 3.89522195e-01 7.79421151e-01 -5.59047699e-01 -2.70504057e-01 -9.00611639e-01 3.03494841e-01 1.25084370e-01 3.06296527e-01 2.62222648e-01 4.20272984e-02 -2.53828801e-02 7.37159431e-01 -6.90219820e-01 3.25568348e-01 6.68228343e-02 7.22704351e-01 -5.42546585e-02 -1.11096847e+00 -7.22473681e-01 3.42381090e-01 -9.57581326e-02 -2.13039592e-01 -5.00241220e-01 1.03107321e+00 -7.68838674e-02 6.07206859e-02 7.00383261e-02 -3.38244021e-01 -4.02124561e-02 1.15284212e-01 6.50352120e-01 -1.81751877e-01 -8.75566959e-01 -8.05529878e-02 2.07019612e-01 -8.17950368e-01 2.78313547e-01 -9.72934127e-01 -1.51294613e+00 -7.00456738e-01 6.46577030e-03 1.01872750e-01 9.57112253e-01 7.26459384e-01 5.02452970e-01 5.59606671e-01 3.14617306e-01 -1.10656011e+00 -7.49471545e-01 -6.14098251e-01 -4.59852040e-01 -4.67157930e-01 -1.42645231e-02 -6.39825642e-01 -4.35437411e-01 -1.85118511e-01]
[8.486225128173828, 6.810619354248047]
15173198-2239-419f-afa5-b954371cff31
2nd-place-solution-for-visda-2021-challenge
2110.14240
null
https://arxiv.org/abs/2110.14240v1
https://arxiv.org/pdf/2110.14240v1.pdf
2nd Place Solution for VisDA 2021 Challenge -- Universally Domain Adaptive Image Recognition
The Visual Domain Adaptation (VisDA) 2021 Challenge calls for unsupervised domain adaptation (UDA) methods that can deal with both input distribution shift and label set variance between the source and target domains. In this report, we introduce a universal domain adaptation (UniDA) method by aggregating several popular feature extraction and domain adaptation schemes. First, we utilize VOLO, a Transformer-based architecture with state-of-the-art performance in several visual tasks, as the backbone to extract effective feature representations. Second, we modify the open-set classifier of OVANet to recognize the unknown class with competitive accuracy and robustness. As shown in the leaderboard, our proposed UniDA method ranks the 2nd place with 48.56% ACC and 70.72% AUROC in the VisDA 2021 Challenge.
['Qiang Wang', 'Pengfei Xu', 'Tengfei Xing', 'Yueming Zhang', 'Xingxu Yao', 'Xiangyu Yue', 'Shanghang Zhang', 'Sicheng Zhao', 'Xiaolin Song', 'Haojin Liao']
2021-10-27
null
null
null
null
['universal-domain-adaptation']
['computer-vision']
[-4.53758948e-02 -2.67586678e-01 -2.18123689e-01 -2.21819788e-01 -7.64701307e-01 -9.78779197e-01 8.86296034e-01 -1.25005543e-01 -2.83470571e-01 7.87065804e-01 -9.07045156e-02 -1.22381374e-01 2.44361743e-01 -3.11900020e-01 -6.02233052e-01 -6.34586334e-01 1.55286491e-01 4.78884995e-01 5.04933000e-01 -1.34211570e-01 -2.49077082e-01 5.63735425e-01 -1.36424732e+00 5.68742990e-01 7.90034652e-01 1.38139021e+00 -1.19726479e-01 5.59836805e-01 -1.27395675e-01 4.96873140e-01 -7.12612927e-01 -3.49798292e-01 3.42370957e-01 -3.69807899e-01 -8.11448157e-01 4.46758559e-03 8.32656384e-01 -2.77826339e-01 -3.20171386e-01 8.31484735e-01 6.92919075e-01 1.63488820e-01 1.19994426e+00 -1.40669405e+00 -8.59124184e-01 -3.42488009e-03 -6.68850899e-01 4.79137152e-01 1.42322928e-01 2.68988073e-01 8.48765969e-01 -1.10849226e+00 1.03091621e+00 1.09015465e+00 6.21011376e-01 7.14154243e-01 -1.49779773e+00 -9.61279869e-01 3.75081152e-01 4.85130161e-01 -1.34189439e+00 -3.18185806e-01 7.40835309e-01 -7.21715033e-01 1.04751289e+00 -1.07492134e-01 1.75857812e-01 1.71031129e+00 1.06893413e-01 1.00716186e+00 1.33263898e+00 -3.98622364e-01 3.10196489e-01 4.45581526e-01 2.34804377e-01 3.61747593e-01 2.69475251e-01 3.07466835e-01 -4.80741084e-01 -5.08848839e-02 5.36398828e-01 -3.80389214e-01 9.42379087e-02 -1.08941650e+00 -9.88359928e-01 7.69407749e-01 5.79613686e-01 1.24619557e-02 -1.31706074e-01 -4.26505297e-01 7.48653114e-01 4.60370153e-01 5.24482191e-01 5.28786540e-01 -6.18737996e-01 1.71455875e-01 -6.06396854e-01 1.38714597e-01 4.41812962e-01 9.94989395e-01 5.96392393e-01 2.09985957e-01 -3.45372319e-01 1.11637926e+00 2.06376463e-01 6.30420148e-01 6.59840882e-01 -4.65880096e-01 3.39800298e-01 5.77194452e-01 -1.12292297e-01 -7.25708306e-01 -5.16762376e-01 -7.27870643e-01 -7.73932934e-01 6.26917124e-01 7.23221898e-01 -1.09702079e-02 -1.27458990e+00 1.70664322e+00 3.86612505e-01 -4.59042825e-02 2.83799887e-01 8.22421730e-01 9.87823308e-01 4.97948706e-01 4.17042226e-01 1.25425681e-01 1.36988151e+00 -1.03826523e+00 -3.61362070e-01 -4.33001012e-01 3.71476829e-01 -5.98125994e-01 1.07077253e+00 4.04500872e-01 -4.42698628e-01 -9.20412123e-01 -1.40943229e+00 -7.34419599e-02 -7.11379886e-01 2.99245209e-01 2.62345731e-01 5.01778603e-01 -7.63500333e-01 1.58641994e-01 -5.94291389e-01 -7.53519535e-01 6.65954590e-01 8.93288031e-02 -6.89299405e-01 -1.82435423e-01 -1.15033352e+00 9.42113876e-01 4.68825370e-01 -6.55828655e-01 -1.17925811e+00 -8.87631595e-01 -7.73528337e-01 -6.85893744e-02 2.55896628e-01 -6.39121413e-01 1.16242182e+00 -1.27091968e+00 -1.47925651e+00 1.18644977e+00 8.14966634e-02 -6.82700992e-01 5.26852071e-01 -2.27677733e-01 -7.83540547e-01 1.77654296e-01 1.42065242e-01 7.72343874e-01 1.05158937e+00 -1.19369650e+00 -7.63858199e-01 -4.47349966e-01 -4.39517200e-01 1.31717086e-01 -3.44480097e-01 -1.99425846e-01 -2.36323133e-01 -7.64066339e-01 -2.13956565e-01 -7.86822796e-01 2.02018812e-01 7.84621388e-02 -1.65209725e-01 -2.93085217e-01 1.08385754e+00 -7.05861568e-01 1.10354412e+00 -2.45654583e+00 5.94447963e-02 2.00585380e-01 4.06349242e-01 6.28393948e-01 -3.41009259e-01 9.39612240e-02 -4.35774654e-01 -3.11735302e-01 -1.97702214e-01 -1.57842964e-01 1.17395818e-01 -6.52778819e-02 -4.13029611e-01 3.20579290e-01 4.63836759e-01 8.31333399e-01 -7.56098866e-01 -2.39104390e-01 1.68082297e-01 1.47217885e-01 -3.29056978e-01 2.67627001e-01 5.03204716e-03 3.80917788e-01 -2.67185271e-01 7.45704830e-01 9.52788830e-01 -2.86641091e-01 3.70891899e-01 -2.94811726e-01 1.56822875e-01 -3.23743816e-03 -1.06395483e+00 1.55749989e+00 -2.42735595e-01 8.21188927e-01 -2.60656655e-01 -7.79128015e-01 1.20968759e+00 -1.09613501e-01 2.34118327e-01 -1.05967879e+00 -2.92655602e-02 2.12385103e-01 -6.12709969e-02 -9.99469608e-02 2.01314956e-01 1.52110895e-02 -3.25589925e-01 -8.71848464e-02 8.42615485e-01 1.93516731e-01 -3.04339491e-02 2.38122880e-01 1.10813212e+00 2.74003416e-01 8.62638235e-01 -3.31125766e-01 5.78972161e-01 1.26475230e-01 4.59890366e-01 6.95409417e-01 -7.58292258e-01 7.27569044e-01 6.14616513e-01 -5.97076952e-01 -1.22957873e+00 -1.52376604e+00 -1.74463972e-01 1.51364875e+00 -3.37811783e-02 -4.36156318e-02 -4.39334095e-01 -1.24983478e+00 2.54447430e-01 6.82184577e-01 -8.16013575e-01 -4.23986256e-01 -6.34297580e-02 -2.93812990e-01 7.15973020e-01 6.94422543e-01 5.31390488e-01 -8.33341181e-01 -2.03258947e-01 3.64018567e-02 1.59073412e-01 -1.27616894e+00 -3.02726001e-01 4.57637906e-01 -5.11357188e-01 -1.08151495e+00 -9.62628543e-01 -8.83649588e-01 3.65649670e-01 6.02825806e-02 1.20207405e+00 -7.40352809e-01 -1.33901417e-01 3.39341104e-01 -3.99654508e-01 -3.93104136e-01 -2.50655353e-01 3.71365249e-01 1.60056189e-01 1.76643297e-01 5.14602482e-01 -3.85602474e-01 -3.16352606e-01 4.45879400e-01 -6.74362898e-01 -1.51055932e-01 6.17524862e-01 1.03232968e+00 7.73647547e-01 -5.00531018e-01 7.36929119e-01 -9.43807423e-01 5.82499564e-01 -6.10049129e-01 -6.66619241e-01 2.76321352e-01 -7.37573743e-01 1.58500243e-02 7.49228835e-01 -5.69722474e-01 -1.12688470e+00 4.29832518e-01 1.62313938e-01 -7.48872221e-01 -5.32273054e-01 1.88542865e-02 -3.99574846e-01 -2.94242054e-03 1.29865384e+00 3.16590786e-01 -6.61696419e-02 -5.74060559e-01 4.93896574e-01 6.28636241e-01 8.52841079e-01 -3.43265504e-01 9.45310652e-01 4.22804385e-01 -2.14471161e-01 -7.41289198e-01 -6.94809854e-01 -6.35920644e-01 -9.14767563e-01 5.49529493e-02 8.80781710e-01 -1.17928278e+00 -1.34414181e-01 7.23944008e-01 -9.46774542e-01 -4.89010245e-01 -2.91752398e-01 2.98628688e-01 -3.79861832e-01 2.51231194e-01 3.41277383e-02 -2.86872059e-01 -2.96263486e-01 -8.59087229e-01 7.03772366e-01 2.63324410e-01 -1.86669156e-01 -8.92114639e-01 3.90769094e-01 6.13915063e-02 4.42054242e-01 3.50635171e-01 7.24416375e-01 -1.35734916e+00 8.85170847e-02 -1.15253525e-02 -6.51895344e-01 6.17774069e-01 1.56832054e-01 -2.02866137e-01 -1.30117238e+00 -4.70066965e-01 -6.19885921e-01 -5.06376445e-01 1.00112545e+00 3.32821488e-01 9.42885041e-01 1.29207015e-01 -4.36808735e-01 7.64809430e-01 1.14306128e+00 2.50077277e-01 4.88645136e-01 5.65222383e-01 6.07221067e-01 2.52994984e-01 6.22362614e-01 3.92624259e-01 4.02438164e-01 9.28091347e-01 2.90876240e-01 -2.54803926e-01 -6.18763506e-01 -4.38449651e-01 4.44196254e-01 1.91389218e-01 4.03143227e-01 -1.79690748e-01 -1.12518835e+00 7.61985540e-01 -1.69059575e+00 -6.64622366e-01 4.67744954e-02 2.16104913e+00 5.27218103e-01 2.16998890e-01 6.53871179e-01 -4.09423918e-01 6.96348727e-01 4.51884270e-02 -9.04900849e-01 -4.36623603e-01 -4.39309984e-01 2.31110990e-01 5.97292364e-01 1.25355810e-01 -1.55670559e+00 1.14024103e+00 6.35880661e+00 1.08293712e+00 -1.06902647e+00 2.14624345e-01 4.45502460e-01 1.32469088e-01 2.19955310e-01 -3.87750149e-01 -8.13306332e-01 3.94338608e-01 1.02869165e+00 -1.34957343e-01 1.51769325e-01 1.23953080e+00 -4.60836112e-01 2.09299579e-01 -1.05207288e+00 1.03396177e+00 6.10317476e-02 -1.04829180e+00 1.63709074e-01 -2.68426836e-02 8.89994562e-01 2.00250551e-01 2.78777421e-01 9.01343167e-01 3.89754236e-01 -8.98075461e-01 5.24178326e-01 1.38337001e-01 1.24110723e+00 -7.46839821e-01 7.10779786e-01 -1.28426582e-01 -1.16044855e+00 -1.36852369e-01 -4.28919286e-01 2.40523592e-01 -2.64431149e-01 2.10992992e-01 -1.07311785e+00 5.06188273e-01 8.97635698e-01 7.57975399e-01 -9.27127242e-01 1.09708142e+00 -1.75529361e-01 6.54909730e-01 -1.87784344e-01 3.10336530e-01 1.48152530e-01 3.54927987e-01 7.07302034e-01 1.40164745e+00 -6.99598938e-02 -3.66077125e-01 9.11501795e-02 4.61909384e-01 -3.05345446e-01 5.22984602e-02 -8.90133679e-01 2.37724818e-02 4.43574607e-01 1.17607260e+00 -3.75258982e-01 -4.24588203e-01 -4.36953843e-01 1.27583456e+00 5.18436849e-01 4.53597277e-01 -8.51083994e-01 -4.24881071e-01 1.02376127e+00 3.69207859e-02 6.64133132e-01 -8.07496905e-02 -2.72435606e-01 -1.21408379e+00 -2.16974914e-01 -1.09442818e+00 9.51478899e-01 -6.79998755e-01 -1.72318411e+00 7.66598761e-01 4.42996174e-02 -1.60577583e+00 -2.57143676e-01 -1.07572901e+00 -2.09404454e-01 7.01248169e-01 -1.74873340e+00 -1.39234614e+00 -3.52661043e-01 7.78100669e-01 6.19207859e-01 -7.09972918e-01 8.46249282e-01 3.00089598e-01 -3.94857496e-01 1.19935215e+00 6.16563439e-01 2.74561226e-01 1.30617619e+00 -1.33206248e+00 6.29334331e-01 7.87176311e-01 2.08767205e-02 1.52108327e-01 4.11455572e-01 -4.45682317e-01 -8.23769033e-01 -1.27136803e+00 4.87444371e-01 -5.88995337e-01 7.61995971e-01 -5.47059238e-01 -1.16323614e+00 7.39738345e-01 1.71845570e-01 4.14797038e-01 6.27822399e-01 6.96133971e-02 -1.14775348e+00 -3.52248549e-01 -1.27570260e+00 2.70279616e-01 9.42782879e-01 -5.92546761e-01 -7.32127130e-01 1.73305999e-02 5.62377214e-01 -4.84668344e-01 -7.40506470e-01 2.54683882e-01 6.70866787e-01 -7.96673238e-01 1.11189759e+00 -1.03149068e+00 3.45227808e-01 -4.26391780e-01 -2.81256318e-01 -1.54643059e+00 -7.25471258e-01 -1.75928354e-01 -1.14489481e-01 1.27162516e+00 4.54575777e-01 -7.05921888e-01 4.27199662e-01 6.46083802e-02 -4.98332530e-02 -1.66880220e-01 -1.12013674e+00 -1.12280500e+00 2.76434928e-01 -2.92009860e-01 3.53038162e-01 1.10978651e+00 -2.86681712e-01 6.31651878e-01 -3.88920367e-01 1.37460321e-01 5.63532591e-01 -1.49473250e-01 9.43358243e-01 -1.40879834e+00 -1.43863767e-01 -3.95350754e-01 -6.40158117e-01 -9.04102147e-01 1.57895625e-01 -1.05478346e+00 -2.73849726e-01 -1.14720094e+00 2.19071448e-01 3.22067104e-02 -9.13743615e-01 6.72260880e-01 -2.37141382e-02 2.62701750e-01 3.29165339e-01 2.42714465e-01 -9.45200205e-01 5.67988932e-01 8.96712244e-01 -2.56381601e-01 -2.02254757e-01 -2.01108620e-01 -7.90770531e-01 5.60684919e-01 6.80838704e-01 -4.07916248e-01 -2.85251230e-01 -2.97345847e-01 -3.25927347e-01 -5.77729106e-01 4.60542351e-01 -1.23624706e+00 -1.65176094e-01 -7.29748011e-02 8.57599258e-01 -4.12914127e-01 8.67763311e-02 -8.37419569e-01 -8.51688609e-02 3.09545577e-01 -3.13438594e-01 -1.41544743e-02 7.16662049e-01 6.59461558e-01 -1.57396629e-01 2.95369178e-01 1.21087205e+00 3.19607764e-01 -1.47187448e+00 4.87870984e-02 -2.59068847e-01 2.97753513e-01 1.16066122e+00 -1.57529801e-01 -7.22812474e-01 -9.19415653e-02 -7.24435031e-01 2.66216040e-01 3.54255199e-01 7.98324883e-01 4.72928226e-01 -1.61707246e+00 -8.43733907e-01 3.34318042e-01 7.93417096e-01 -4.77984905e-01 4.49222833e-01 3.93087119e-01 -2.48875722e-01 4.12227571e-01 -8.42195809e-01 -6.23810709e-01 -1.15479279e+00 6.43168211e-01 4.22501266e-01 -5.67489803e-01 -2.92903036e-01 9.10752356e-01 6.01226151e-01 -6.13800228e-01 4.90322299e-02 4.72272746e-02 -3.73880506e-01 2.96631426e-01 6.31289482e-01 3.62887323e-01 2.14930862e-01 -5.89785516e-01 -7.86200345e-01 2.55144060e-01 -3.20164263e-01 2.02207491e-01 1.05706143e+00 -4.44379523e-02 5.61370313e-01 2.80703187e-01 1.27177620e+00 -2.65930355e-01 -1.46668196e+00 -4.93692607e-01 -6.25637323e-02 -2.79972374e-01 -3.63103449e-02 -1.48750627e+00 -7.14166045e-01 9.82644379e-01 1.31888998e+00 1.49530582e-02 1.19482994e+00 3.39531451e-02 3.67204607e-01 1.32221088e-01 -2.49128286e-02 -1.19068348e+00 1.65853538e-02 6.97891057e-01 9.72011507e-01 -1.54743969e+00 -4.14522216e-02 -2.64457073e-02 -1.20011413e+00 9.90404606e-01 1.08467567e+00 -6.65185899e-02 3.31694186e-01 -1.00974686e-01 3.99925560e-01 3.38485949e-02 -7.62751937e-01 -4.25972044e-01 7.86262274e-01 1.29374647e+00 9.26682130e-02 1.75519139e-01 -5.91024682e-02 8.57485712e-01 3.14602226e-01 -2.23055154e-01 -2.73606852e-02 4.21914399e-01 -3.55255783e-01 -9.67861831e-01 -2.94248164e-01 2.46112585e-01 -1.36905208e-01 1.26622915e-01 -6.27162755e-01 1.06520462e+00 -6.95792818e-03 5.94341338e-01 9.32359546e-02 -5.89666724e-01 6.89600527e-01 4.77717072e-01 1.97850853e-01 -4.37496841e-01 -4.07192081e-01 -1.04808643e-01 -3.49994674e-02 -4.84836787e-01 -3.47080566e-02 -5.86173415e-01 -8.78554761e-01 1.33759201e-01 2.09385455e-01 -3.26713860e-01 3.93685579e-01 7.56344974e-01 7.87681639e-01 5.22588909e-01 5.23268819e-01 -5.81412673e-01 -6.70036018e-01 -9.63581443e-01 -5.54361403e-01 6.17174208e-01 4.08816844e-01 -1.14338744e+00 -1.00941285e-01 -5.35714999e-02]
[10.153226852416992, 2.7321789264678955]
3ac10931-05fe-4302-8fea-097fa32a1c30
3d-high-resolution-cardiac-segmentation
1902.11000
null
http://arxiv.org/abs/1902.11000v1
http://arxiv.org/pdf/1902.11000v1.pdf
3D High-Resolution Cardiac Segmentation Reconstruction from 2D Views using Conditional Variational Autoencoders
Accurate segmentation of heart structures imaged by cardiac MR is key for the quantitative analysis of pathology. High-resolution 3D MR sequences enable whole-heart structural imaging but are time-consuming, expensive to acquire and they often require long breath holds that are not suitable for patients. Consequently, multiplanar breath-hold 2D cine sequences are standard practice but are disadvantaged by lack of whole-heart coverage and low through-plane resolution. To address this, we propose a conditional variational autoencoder architecture able to learn a generative model of 3D high-resolution left ventricular (LV) segmentations which is conditioned on three 2D LV segmentations of one short-axis and two long-axis images. By only employing these three 2D segmentations, our model can efficiently reconstruct the 3D high-resolution LV segmentation of a subject. When evaluated on 400 unseen healthy volunteers, our model yielded an average Dice score of $87.92 \pm 0.15$ and outperformed competing architectures.
['Daniel Rueckert', "Declan P. O'Regan", 'Stuart A. Cook', 'Giacomo Tarroni', 'Juan J. Cerrolaza', 'Carlo Biffi', 'Antonio de Marvao']
2019-02-28
null
null
null
null
['cardiac-segmentation']
['medical']
[-7.70384967e-02 1.02196865e-01 1.88174337e-01 -4.76339608e-01 -8.40475559e-01 -5.55918276e-01 6.17304407e-02 5.32702822e-03 -4.61935431e-01 7.05489635e-01 -1.13810390e-01 -2.73171484e-01 -8.27464238e-02 -5.88775814e-01 -4.00753856e-01 -7.18175054e-01 -2.67225385e-01 1.09476840e+00 1.27589926e-01 4.33659047e-01 -2.65155077e-01 6.48922801e-01 -6.92197323e-01 -1.76572874e-01 7.21848309e-01 5.92323780e-01 4.84758705e-01 8.67597103e-01 2.07581580e-01 5.77238441e-01 -2.46014684e-01 -1.24673173e-01 1.95500806e-01 -7.78628409e-01 -8.58660460e-01 2.22092554e-01 4.48454469e-01 -9.27462041e-01 -2.11894393e-01 8.01532805e-01 8.20540130e-01 -5.68251833e-02 6.27557516e-01 -5.19354761e-01 -3.26004297e-01 4.83848572e-01 -4.58696067e-01 7.36585259e-01 -2.69018590e-01 6.13355860e-02 8.86997163e-01 -7.22816288e-01 9.49786246e-01 4.40727264e-01 7.25514352e-01 6.34300530e-01 -1.62728369e+00 -1.55747607e-01 -4.45041776e-01 -3.50978017e-01 -1.03116977e+00 -2.34409705e-01 8.73084247e-01 -8.43809187e-01 7.43843079e-01 1.16866872e-01 1.00468099e+00 5.73275745e-01 5.39768994e-01 3.78631860e-01 1.15422952e+00 9.35481489e-02 5.50835654e-02 -2.29603410e-01 -2.28532180e-02 7.52688885e-01 3.53571653e-01 -1.14539396e-02 1.63028300e-01 -1.93561614e-01 1.33356285e+00 1.04374439e-01 -6.43976569e-01 -8.35001349e-01 -1.54323292e+00 9.46843743e-01 4.39999044e-01 7.03540802e-01 -7.42074430e-01 6.60968274e-02 3.12767565e-01 -1.96800698e-02 3.46077740e-01 4.48533744e-01 -2.40734905e-01 3.64996083e-02 -1.40775311e+00 1.74725741e-01 3.63139421e-01 2.34058768e-01 2.00299621e-01 2.88544148e-01 5.58485016e-02 6.92663133e-01 5.34022331e-01 4.76680517e-01 5.31984806e-01 -1.42491448e+00 -3.67492554e-03 2.05795512e-01 -1.09789088e-01 -7.88009167e-01 -6.32324219e-01 -5.39527357e-01 -1.16421604e+00 7.22580031e-02 4.41326559e-01 -1.18302308e-01 -1.01186860e+00 1.28359938e+00 5.09473145e-01 -5.00264168e-02 -2.22995490e-01 1.46062517e+00 9.57929969e-01 3.55136126e-01 1.29822958e-02 -7.35698164e-01 1.09885108e+00 -4.98480469e-01 -6.33706808e-01 -1.10123783e-01 5.64442039e-01 -3.57981056e-01 5.43241143e-01 3.27012576e-02 -1.40075171e+00 -4.44914281e-01 -9.50890958e-01 1.03634983e-01 5.06551683e-01 -7.47760534e-02 1.93306491e-01 5.97457409e-01 -9.80239570e-01 9.64750707e-01 -1.44917238e+00 2.86356956e-01 6.58977211e-01 1.47326171e-01 -5.02401173e-01 -1.00063659e-01 -9.43283975e-01 8.89910519e-01 1.74713776e-01 1.84059441e-01 -9.49515522e-01 -9.91962969e-01 -7.47947156e-01 -9.66829285e-02 7.10429475e-02 -9.25473511e-01 9.35247600e-01 -1.63636565e-01 -1.19111848e+00 1.26009488e+00 2.05319762e-01 -4.91559207e-01 6.55231476e-01 7.21412301e-02 -2.31675450e-02 7.43953347e-01 2.02136114e-01 5.84796429e-01 7.89346874e-01 -1.11948800e+00 2.34652534e-01 -5.94969869e-01 -5.41438520e-01 1.20759778e-01 4.76378471e-01 -1.85840309e-01 4.44510132e-02 -4.18269277e-01 7.83419311e-01 -8.36871147e-01 -5.29455841e-01 -1.55296981e-01 -2.19607279e-01 6.24848366e-01 5.45826912e-01 -1.23736405e+00 9.38199043e-01 -1.85087419e+00 2.13248521e-01 4.53302525e-02 8.94936979e-01 1.71270579e-01 4.85257834e-01 -3.63864869e-01 -1.41071692e-01 3.49118471e-01 -5.72943270e-01 -2.17805021e-02 -4.08313721e-01 1.68374106e-01 2.92389065e-01 7.42021382e-01 -2.14608058e-01 1.04005766e+00 -8.76768947e-01 -8.94902527e-01 4.30452943e-01 8.33555937e-01 -5.07343471e-01 4.33638990e-01 2.85417020e-01 1.13629687e+00 -5.02276361e-01 2.89569974e-01 4.96324390e-01 -6.06931925e-01 6.43294692e-01 -2.05166683e-01 2.18013190e-02 -2.32398510e-04 -7.65838921e-01 1.82821143e+00 3.48607078e-02 3.18857938e-01 3.06061655e-01 -1.10147965e+00 6.50939941e-01 7.88079381e-01 9.92068410e-01 -6.09267831e-01 3.13124329e-01 2.59651899e-01 3.05500150e-01 -4.55894381e-01 -2.52286345e-01 -9.97741222e-01 2.57764518e-01 6.57579005e-01 -2.56351158e-02 -5.71201682e-01 -4.93545160e-02 -7.47205596e-03 8.94411445e-01 1.03006117e-01 1.71522960e-01 -2.75184959e-01 3.19585949e-01 -2.80162722e-01 8.29101801e-01 6.05898857e-01 -7.04046130e-01 1.10402691e+00 3.95471901e-01 -9.62248564e-01 -1.44046319e+00 -1.33932495e+00 -4.62272823e-01 -3.07818558e-02 -3.08714122e-01 -1.17007131e-02 -8.08441997e-01 -6.60266042e-01 -2.32660338e-01 3.78172606e-01 -3.88227731e-01 3.89412105e-01 -9.82559443e-01 -9.20743465e-01 4.36515421e-01 5.44686079e-01 2.39046186e-01 -8.79162669e-01 -1.53782058e+00 5.64970255e-01 -5.59840322e-01 -1.15051341e+00 -1.87913388e-01 1.06160246e-01 -1.61562717e+00 -1.09584379e+00 -1.36183703e+00 -5.66216171e-01 5.16351879e-01 -2.58849084e-01 1.68691158e+00 9.68014300e-02 -7.12134540e-01 9.50068608e-02 8.29693303e-02 2.90596727e-02 -5.09397686e-01 -3.14839035e-01 8.34903941e-02 -3.15587997e-01 -4.09181923e-01 -8.66638362e-01 -8.19779575e-01 1.20794483e-01 -5.29770494e-01 2.88895480e-02 5.50515413e-01 1.01179504e+00 1.34889698e+00 -1.25870049e-01 2.97687143e-01 -8.23919237e-01 1.60833508e-01 -1.91954255e-01 -5.84483743e-01 9.17949248e-03 -6.69878244e-01 -1.44734427e-01 2.59509027e-01 -2.35832073e-02 -8.11793149e-01 3.14162998e-03 -3.06703150e-01 -7.21543014e-01 -2.17599481e-01 3.12283486e-01 3.68195355e-01 1.24134235e-01 5.92285931e-01 4.10040677e-01 3.30527812e-01 -3.66231740e-01 2.36895289e-02 8.02507997e-02 5.14102399e-01 -3.25465143e-01 5.30791283e-01 5.17023981e-01 2.49728292e-01 -9.11903560e-01 -5.02337098e-01 -1.98813677e-01 -1.16931009e+00 -2.77974248e-01 1.51853728e+00 -6.53952777e-01 -5.01564085e-01 1.26464903e-01 -7.87960887e-01 -4.21895415e-01 -4.45050567e-01 8.88760805e-01 -7.63683259e-01 6.84806228e-01 -8.98954928e-01 -4.42271590e-01 -6.85113788e-01 -1.42732728e+00 8.23663592e-01 -7.62062445e-02 -2.33836785e-01 -1.07306623e+00 3.32953364e-01 5.89815795e-01 4.68476921e-01 8.19346130e-01 1.09511995e+00 -3.45367283e-01 -6.34458482e-01 -5.90877011e-02 8.58869329e-02 5.98646402e-01 -6.75398409e-02 -4.08129603e-01 -5.76829851e-01 -2.23074228e-01 3.93325955e-01 -2.47638583e-01 5.28343260e-01 1.31147647e+00 9.04651642e-01 2.39589199e-01 -4.27472442e-02 6.92994595e-01 1.26119184e+00 2.05156833e-01 2.50472963e-01 -2.64912546e-01 8.36325705e-01 2.88235247e-01 1.74717084e-01 2.66206443e-01 2.01233879e-01 3.16278785e-01 3.25931102e-01 -9.28838328e-02 9.26110987e-03 8.33167285e-02 -3.43244731e-01 1.04254162e+00 -3.80352020e-01 2.81134069e-01 -1.15397823e+00 6.62850082e-01 -1.22679830e+00 -9.08491671e-01 -4.08832252e-01 2.05239534e+00 6.77199066e-01 1.45665765e-01 1.93281129e-01 9.97171029e-02 4.71440941e-01 3.51516485e-01 -4.74196404e-01 -2.70203277e-02 1.01205654e-01 2.65301526e-01 1.65172428e-01 6.03394985e-01 -1.03362489e+00 2.93839425e-01 6.91562557e+00 -2.26643786e-01 -1.11430848e+00 2.52735138e-01 7.80588210e-01 -3.39116454e-02 -3.59327346e-01 -1.77414000e-01 -2.29780942e-01 3.09331119e-01 1.02433646e+00 1.96184531e-01 4.86008637e-02 6.54131353e-01 1.05647646e-01 -3.98091897e-02 -1.00112092e+00 1.03669107e+00 -1.88161090e-01 -1.47517443e+00 -4.55086499e-01 2.03737766e-01 5.11198699e-01 2.96682030e-01 -2.07162589e-01 -3.97190005e-02 -3.62931877e-01 -1.25471926e+00 1.86443776e-01 4.48746741e-01 9.78964567e-01 -4.22061950e-01 6.99629366e-01 5.94470680e-01 -6.74938440e-01 4.88210678e-01 -1.43728539e-01 3.49235415e-01 5.24625540e-01 8.56430709e-01 -8.69845510e-01 3.47713381e-01 7.63754427e-01 3.99547994e-01 -7.80093595e-02 7.01828003e-01 -1.03586074e-02 6.66516483e-01 -2.65975088e-01 5.98129809e-01 6.39829189e-02 -3.82744879e-01 8.34016025e-01 6.95256114e-01 2.24699691e-01 5.10079920e-01 1.61711335e-01 1.31415725e+00 9.61196572e-02 -1.56287886e-02 -5.09640992e-01 -9.31369215e-02 3.79664786e-02 1.25336635e+00 -1.01914859e+00 -4.16319907e-01 -2.08652914e-01 8.66953671e-01 -3.89220417e-02 1.89888149e-01 -6.77121043e-01 2.30778307e-01 2.33754087e-02 5.84913254e-01 3.06124955e-01 -2.77409077e-01 -2.41449669e-01 -1.32043755e+00 -6.75023571e-02 -6.75391972e-01 3.88791800e-01 -6.41930997e-01 -9.21344101e-01 7.11043835e-01 -4.09031771e-02 -7.19467163e-01 -5.18449843e-01 -2.08690926e-01 -3.03973526e-01 1.16030788e+00 -1.21453655e+00 -6.80989563e-01 -1.01253547e-01 2.49890491e-01 1.81621045e-01 1.69837236e-01 1.07045984e+00 4.14474070e-01 -2.01764643e-01 1.65252620e-03 -2.43004158e-01 4.69599932e-01 2.81195372e-01 -1.59419036e+00 1.34774148e-01 7.05492198e-01 2.17590258e-01 5.74162900e-01 5.75343966e-01 -6.63534641e-01 -9.38752592e-01 -7.42462337e-01 1.01611328e+00 -3.66604745e-01 -5.99236600e-02 3.31227988e-01 -1.00165546e+00 8.88200939e-01 -1.32872656e-01 7.69200921e-01 9.25246298e-01 -2.89759308e-01 1.39947817e-01 2.60826230e-01 -1.43518543e+00 6.20171838e-02 4.51544285e-01 -3.52107704e-01 -6.80828929e-01 -8.87548029e-02 2.58595973e-01 -8.26281846e-01 -1.66752398e+00 4.03689444e-01 6.14565730e-01 -1.26062727e+00 1.24312198e+00 -3.87938470e-01 5.66930056e-01 -2.96045393e-01 9.95579641e-03 -9.71749842e-01 -3.98753226e-01 -2.50236839e-01 -1.43564165e-01 3.63427252e-01 1.07854187e-01 -4.13199037e-01 9.61235344e-01 6.77343488e-01 -2.04345837e-01 -8.54860783e-01 -9.24837470e-01 -3.24362695e-01 3.85080904e-01 -1.35278866e-01 7.55831972e-03 1.16012406e+00 -5.30242741e-01 2.97265142e-01 -2.27943197e-01 7.29062334e-02 1.20970750e+00 4.50964659e-01 3.12305577e-02 -1.50171721e+00 -4.69584584e-01 -3.08058560e-01 -3.65946710e-01 -6.90347731e-01 1.40878959e-02 -1.02251041e+00 -1.03000566e-01 -1.62010586e+00 4.03220743e-01 -3.11768860e-01 -2.88288176e-01 1.74341686e-02 -1.01181589e-01 4.98393565e-01 1.23664960e-02 3.12357217e-01 -1.07522383e-01 2.61341184e-01 1.70670748e+00 1.01816118e-01 -1.30600214e-01 -1.05090104e-01 -2.87071854e-01 8.13966215e-01 6.24907076e-01 -6.17038369e-01 -4.31971908e-01 -4.33128476e-01 -3.00168265e-02 9.80262458e-01 4.80624557e-01 -9.13061082e-01 -2.65376836e-01 2.01082975e-01 9.87613201e-01 -8.48826408e-01 2.76574850e-01 -7.32159197e-01 3.13105673e-01 6.64342225e-01 -1.79612175e-01 6.60753548e-02 -2.58481681e-01 2.23421812e-01 -2.02598557e-01 -1.24757297e-01 1.25642085e+00 -7.69751906e-01 -6.63065836e-02 6.64492428e-01 -4.54145998e-01 4.67488348e-01 8.26264918e-01 -1.71206832e-01 5.84056616e-01 -1.70487836e-01 -1.41938818e+00 -1.21944835e-02 3.25278640e-01 -2.96301872e-01 8.72823536e-01 -1.09620667e+00 -8.67104828e-01 2.32778549e-01 -5.43490708e-01 5.78364491e-01 7.13496983e-01 1.38541842e+00 -1.08812630e+00 4.11797345e-01 -4.03468698e-01 -1.11229289e+00 -1.04660547e+00 3.45814049e-01 9.54882681e-01 -6.65478349e-01 -1.30350864e+00 7.69830883e-01 1.06862761e-01 -5.61482251e-01 -2.77374297e-01 -2.17813864e-01 -8.07974786e-02 -1.48025125e-01 2.94409037e-01 1.26401767e-01 -7.90400133e-02 -8.85993481e-01 -3.70082438e-01 7.62133420e-01 1.68924391e-01 -1.58548579e-01 1.35491002e+00 -2.27318496e-01 3.24194096e-02 5.35828888e-01 1.10279131e+00 -3.78474057e-01 -1.24868500e+00 -1.12775015e-02 -2.89160192e-01 -3.35782111e-01 5.91813028e-01 -5.97163081e-01 -1.38736594e+00 1.26921296e+00 6.70814514e-01 6.82975352e-02 8.27010036e-01 -1.92642778e-01 1.05753398e+00 -1.43775776e-01 -1.49713298e-02 -7.25329161e-01 -1.58997968e-01 -6.93222061e-02 5.74434996e-01 -1.38351786e+00 1.46258384e-01 -2.00646847e-01 -7.24630177e-01 9.91247058e-01 1.30986571e-01 -1.52049005e-01 6.21508420e-01 1.72070786e-01 4.16125268e-01 -5.28887510e-01 -3.67131710e-01 1.50563836e-01 3.40845287e-01 5.43625236e-01 7.13892043e-01 1.65368959e-01 -2.85245121e-01 2.70274520e-01 1.15616299e-01 -5.57804219e-02 4.37222600e-01 8.93256962e-01 -2.55150616e-01 -8.07978690e-01 -1.32468805e-01 4.11643893e-01 -1.10354030e+00 5.47957905e-02 2.51487851e-01 7.14452684e-01 -9.20231193e-02 2.90786564e-01 6.46062940e-02 3.24474812e-01 3.08607239e-02 4.81857449e-01 8.48035395e-01 -4.93131816e-01 -4.08412516e-01 5.71909726e-01 -3.17353040e-01 -4.67818826e-01 -3.88927460e-01 -8.95079315e-01 -1.41367161e+00 -3.58397923e-02 1.44151598e-01 1.24051869e-01 5.93782067e-01 6.78122401e-01 1.64023831e-01 7.15246439e-01 4.60377008e-01 -7.18068898e-01 -4.59019840e-01 -8.09676349e-01 -8.89133155e-01 3.24120432e-01 5.90116143e-01 -3.52178305e-01 -1.51749551e-01 3.25692266e-01]
[14.002737998962402, -2.4329380989074707]
1e8ae94e-a3e0-486d-81a1-82086b1395a5
hierarchical-discriminative-learning-improves
2303.01605
null
https://arxiv.org/abs/2303.01605v1
https://arxiv.org/pdf/2303.01605v1.pdf
Hierarchical discriminative learning improves visual representations of biomedical microscopy
Learning high-quality, self-supervised, visual representations is essential to advance the role of computer vision in biomedical microscopy and clinical medicine. Previous work has focused on self-supervised representation learning (SSL) methods developed for instance discrimination and applied them directly to image patches, or fields-of-view, sampled from gigapixel whole-slide images (WSIs) used for cancer diagnosis. However, this strategy is limited because it (1) assumes patches from the same patient are independent, (2) neglects the patient-slide-patch hierarchy of clinical biomedical microscopy, and (3) requires strong data augmentations that can degrade downstream performance. Importantly, sampled patches from WSIs of a patient's tumor are a diverse set of image examples that capture the same underlying cancer diagnosis. This motivated HiDisc, a data-driven method that leverages the inherent patient-slide-patch hierarchy of clinical biomedical microscopy to define a hierarchical discriminative learning task that implicitly learns features of the underlying diagnosis. HiDisc uses a self-supervised contrastive learning framework in which positive patch pairs are defined based on a common ancestry in the data hierarchy, and a unified patch, slide, and patient discriminative learning objective is used for visual SSL. We benchmark HiDisc visual representations on two vision tasks using two biomedical microscopy datasets, and demonstrate that (1) HiDisc pretraining outperforms current state-of-the-art self-supervised pretraining methods for cancer diagnosis and genetic mutation prediction, and (2) HiDisc learns high-quality visual representations using natural patch diversity without strong data augmentations.
['Todd C. Hollon', 'Honglak Lee', 'Daniel A. Orringer', 'Christian W. Freudiger', 'Asadur Chowdury', 'Akhil Kondepudi', 'Xinhai Hou', 'Cheng Jiang']
2023-03-02
null
http://openaccess.thecvf.com//content/CVPR2023/html/Jiang_Hierarchical_Discriminative_Learning_Improves_Visual_Representations_of_Biomedical_Microscopy_CVPR_2023_paper.html
http://openaccess.thecvf.com//content/CVPR2023/papers/Jiang_Hierarchical_Discriminative_Learning_Improves_Visual_Representations_of_Biomedical_Microscopy_CVPR_2023_paper.pdf
cvpr-2023-1
['whole-slide-images']
['computer-vision']
[ 7.2912419e-01 1.5383075e-01 -2.7130568e-01 -1.8346517e-01 -1.0724519e+00 -5.1778543e-01 5.6537837e-01 5.6194985e-01 -2.1623354e-01 6.3096392e-01 2.7543467e-01 -3.1786376e-01 -6.3180290e-02 -5.4646128e-01 -8.1059420e-01 -1.1987801e+00 7.2512731e-02 6.0983390e-01 -1.6645376e-02 1.4293177e-01 -3.6462851e-02 6.4872199e-01 -1.2359885e+00 7.1212614e-01 5.7982892e-01 8.9315844e-01 2.8045952e-01 1.0428145e+00 1.4454342e-01 7.6693016e-01 -5.2098316e-01 1.4970498e-01 5.4323696e-02 -6.6305369e-01 -8.7818378e-01 2.2924125e-01 7.5899547e-01 4.1970439e-02 -3.0983868e-01 7.9048640e-01 4.8374382e-01 -3.7103361e-01 1.2853491e+00 -9.2621583e-01 -9.7651297e-01 -6.3953742e-02 -8.3989835e-01 5.4899734e-01 -6.8193130e-02 5.7426333e-01 1.0909572e+00 -6.0836613e-01 1.1846560e+00 8.9995617e-01 8.1453013e-01 7.1042097e-01 -1.9154791e+00 -3.3133230e-01 -2.0294689e-01 -5.8863927e-02 -1.2333544e+00 -3.4479928e-01 5.2877349e-01 -8.6688364e-01 1.1173887e+00 2.5452539e-01 8.5956818e-01 1.2904698e+00 5.4221910e-01 7.2741443e-01 1.2699441e+00 -3.6366236e-01 2.2816239e-01 -7.9954201e-03 1.9403228e-01 9.7141874e-01 2.2133565e-01 1.6077468e-01 -3.3347023e-01 -4.1920862e-01 9.5824873e-01 4.9992442e-01 -5.1867610e-01 -6.7568892e-01 -1.4454038e+00 8.6357570e-01 6.8531770e-01 4.6090013e-01 -5.3773083e-02 -4.5394129e-03 3.3944157e-01 3.1145105e-01 3.0299407e-01 5.7586211e-01 -3.3516344e-01 4.3660980e-01 -9.2461067e-01 -1.4162849e-01 4.8423314e-01 4.9695781e-01 9.1248804e-01 -1.4145181e-01 -4.1824701e-01 6.9756746e-01 3.4129884e-02 4.4983798e-01 5.7990360e-01 -6.5713829e-01 -2.0931564e-01 9.3191993e-01 -2.9899222e-01 -6.7922604e-01 -4.2516568e-01 -4.5081750e-01 -1.1429014e+00 2.8782943e-01 3.5439223e-01 1.5385233e-01 -1.5165334e+00 1.4830838e+00 2.2963803e-01 1.5008649e-01 2.1276073e-01 6.3403237e-01 1.1550683e+00 4.2403254e-01 1.2801002e-01 -3.2968327e-01 1.4068075e+00 -6.3451028e-01 -1.9301017e-01 -5.4962818e-02 8.0395383e-01 -4.8975402e-01 9.9773884e-01 1.3877960e-01 -7.4208432e-01 -3.7452233e-01 -1.0079639e+00 -2.7171168e-01 -4.2659277e-01 1.3179788e-01 4.9004081e-01 1.6289265e-01 -1.2219567e+00 4.5597586e-01 -9.5388120e-01 -5.7795930e-01 1.1464289e+00 3.0796394e-01 -7.5880772e-01 -3.1294402e-01 -4.2716980e-01 5.6771082e-01 -1.2400497e-01 -3.6085576e-01 -1.3083053e+00 -1.3645111e+00 -8.8743299e-01 -8.1840865e-02 -2.9469898e-01 -9.0223336e-01 6.9762069e-01 -1.1128298e+00 -8.6462373e-01 1.6465825e+00 -2.1899566e-01 -2.1056311e-01 2.6713121e-01 4.6367052e-01 -1.0922561e-01 6.4578778e-01 2.9478353e-01 9.0863281e-01 8.7799108e-01 -1.5422995e+00 -3.6180979e-01 -6.2053609e-01 -4.0120068e-01 2.0130211e-02 -1.5958573e-01 -4.9533185e-01 -2.4810734e-01 -6.8668574e-01 -1.5842661e-01 -6.5946984e-01 -3.6006269e-01 4.7134960e-01 -5.4585916e-01 8.8562146e-02 8.7444896e-01 -4.6267101e-01 4.8462683e-01 -2.3773267e+00 2.3572110e-01 1.5558895e-01 5.7692462e-01 1.0505201e-01 -2.5537366e-01 2.1668747e-01 -2.4104905e-01 -1.3559778e-02 -3.4186086e-01 -3.7352502e-01 -4.4866553e-01 3.2198700e-01 -9.8493703e-02 8.0177104e-01 5.4625541e-01 1.2317923e+00 -1.0140535e+00 -8.2020509e-01 -3.3260453e-03 7.0326716e-01 -4.2229864e-01 5.2974713e-01 -1.5796156e-01 6.9982159e-01 -1.5797421e-01 1.1567806e+00 3.6890545e-01 -1.1147207e+00 2.5578195e-01 -5.5947649e-01 3.1473258e-01 -1.8301347e-01 -3.2028791e-01 1.6889025e+00 -3.3570023e-03 5.8112401e-01 8.3094098e-02 -1.2710377e+00 5.2073753e-01 1.4874710e-01 7.8958881e-01 -4.2548224e-01 -2.4583291e-02 -3.0524479e-03 -1.4100361e-01 -6.3472468e-01 -2.9144010e-01 -3.9755231e-01 3.7055558e-01 2.4414961e-01 4.9659449e-01 -1.5910578e-01 2.5215644e-02 2.4209452e-01 1.5383124e+00 -1.3670123e-01 5.3642851e-01 -3.9303720e-01 1.2881728e-01 4.0169847e-01 7.1316195e-01 7.0629191e-01 -4.0055394e-01 9.6149385e-01 7.7891833e-01 -4.1853315e-01 -1.0808743e+00 -1.3817534e+00 -4.8809415e-01 7.9037338e-01 -9.9770926e-02 1.4406081e-02 -2.6126319e-01 -9.4054967e-01 4.5619634e-01 -1.8639128e-01 -1.2477170e+00 -8.7771468e-02 -2.3416252e-01 -9.2351061e-01 4.4238842e-01 6.1131358e-01 -1.0247900e-01 -8.5222590e-01 -5.8873421e-01 9.7841686e-03 2.8548968e-01 -7.9284555e-01 -3.4824976e-01 6.9038349e-01 -7.3395222e-01 -1.5908817e+00 -9.5542288e-01 -1.1587888e+00 1.2607937e+00 4.0677521e-01 1.3146553e+00 1.3736622e-01 -1.2778243e+00 7.0752943e-01 -1.3954477e-01 -2.7116337e-01 -5.7802665e-01 -3.8758397e-01 -3.3672193e-01 -5.8600262e-02 2.3592257e-01 -5.8640140e-01 -9.4188714e-01 -1.4233853e-01 -9.1809708e-01 -5.7541694e-02 8.5279596e-01 1.5901651e+00 1.2685724e+00 -3.9297569e-01 3.7861326e-01 -1.2989478e+00 4.2453278e-02 -5.6603539e-01 -2.2552906e-01 4.4294921e-01 -4.4887313e-01 -1.2587106e-01 6.4938229e-01 -4.5349535e-01 -5.5728066e-01 1.7012760e-01 2.0972592e-01 -8.9214146e-01 -2.8131109e-01 4.0596545e-01 2.5957423e-01 -2.7537507e-01 1.0095381e+00 3.1366688e-01 5.4030102e-01 -1.4122601e-02 1.4024843e-01 4.2369607e-01 5.8599490e-01 -2.6851115e-01 4.5203900e-01 9.1692859e-01 2.6930171e-01 -8.6453760e-01 -6.3510376e-01 -7.9530054e-01 -6.2566274e-01 2.8299907e-01 9.9180597e-01 -1.0772139e+00 -5.2264225e-01 2.1031441e-01 -6.1763668e-01 -6.2034315e-01 -5.2477396e-01 2.2635432e-01 -5.3831935e-01 4.5649648e-01 -8.7524146e-01 -4.2355764e-01 -4.4945991e-01 -1.0479105e+00 1.4490645e+00 1.6785951e-01 -2.4885426e-01 -1.2222284e+00 2.5653359e-01 4.1153458e-01 1.2698384e-01 6.4698356e-01 1.4072937e+00 -4.7540930e-01 -3.9897817e-01 -2.9376049e-02 -3.5376930e-01 2.6812646e-01 5.5479044e-01 7.9558812e-02 -1.0982100e+00 -7.5200969e-01 -4.4277316e-01 -8.4182900e-01 1.2081029e+00 5.5335510e-01 1.2125202e+00 -2.7547637e-01 -8.6059439e-01 9.9892074e-01 1.6193311e+00 -2.0107676e-01 3.8776249e-01 -1.7304590e-01 8.6999756e-01 5.1578838e-01 6.9114409e-02 1.2113380e-01 2.7195102e-01 3.0839202e-01 3.0899656e-01 -8.8284302e-01 -3.3912912e-01 -1.7863182e-02 6.1021123e-02 3.6483043e-01 1.9004750e-01 9.5584668e-02 -8.4046268e-01 8.8486981e-01 -1.6010994e+00 -7.9721898e-01 2.8298962e-01 1.9527702e+00 1.1462379e+00 -3.5441995e-01 1.6745086e-01 -7.6429002e-02 4.3798047e-01 -4.1569095e-02 -9.1781586e-01 6.7357600e-02 -2.9762414e-01 4.8630494e-01 3.3151814e-01 1.8359417e-01 -1.2010795e+00 5.7071531e-01 6.3866482e+00 5.2841473e-01 -1.3606955e+00 -3.0821905e-02 1.1609756e+00 -3.3868469e-02 -2.3639876e-01 -3.6051235e-01 -5.4277843e-01 1.7485793e-01 5.0186861e-01 1.5191987e-01 7.6720469e-02 6.9506466e-01 -2.0853724e-01 1.4872363e-01 -1.5447116e+00 1.1423215e+00 2.7437434e-01 -1.7708174e+00 2.7452919e-01 3.3430570e-01 8.0325705e-01 1.5502751e-01 2.8847969e-01 4.9001900e-03 4.3781316e-01 -1.5408617e+00 -2.7801776e-01 3.8831156e-01 1.3064741e+00 -3.8024685e-01 6.1667496e-01 -1.4326680e-01 -8.7923288e-01 -5.9328057e-02 -4.2600933e-01 6.1895013e-01 -4.8989898e-01 5.8504111e-01 -1.1435401e+00 4.5612523e-01 7.8705877e-01 1.1719418e+00 -7.3160779e-01 7.6920927e-01 2.9015723e-01 5.9544218e-01 7.7174783e-02 3.0959079e-01 1.8271808e-01 1.5919383e-01 2.2657716e-01 1.5541819e+00 6.8472996e-02 -1.5485977e-01 2.7865064e-01 9.6663886e-01 -5.6144513e-02 -9.5485330e-02 -7.7924049e-01 -2.8549537e-01 1.5967923e-01 1.4233073e+00 -8.0051029e-01 -3.2894769e-01 -3.5490751e-01 9.8361826e-01 6.0808879e-01 4.2449296e-01 -2.7438748e-01 4.8130807e-02 7.6689750e-01 2.5909767e-01 5.3223044e-01 3.7866521e-01 -2.1786751e-01 -1.1220527e+00 -3.8188931e-01 -1.0323483e+00 6.8856728e-01 -5.7906193e-01 -1.8889377e+00 3.2824117e-01 -4.6594614e-01 -1.3442146e+00 -9.9669129e-02 -9.2508703e-01 -5.2994937e-01 6.0888141e-01 -1.6721178e+00 -1.5658467e+00 -3.8532645e-01 8.0884701e-01 1.4432925e-01 -2.8854212e-01 1.3594744e+00 -1.7846380e-01 -4.2432824e-01 6.9819617e-01 3.0923313e-01 2.5749072e-01 7.7214152e-01 -1.5367099e+00 -1.5555276e-01 3.6355320e-01 1.6853268e-01 6.2214535e-01 2.4077226e-01 -4.6344715e-01 -1.5451648e+00 -1.2891481e+00 4.5571890e-01 -5.4559231e-01 5.2962595e-01 -1.5131491e-01 -1.0788044e+00 5.4862863e-01 8.4413990e-02 8.6181450e-01 1.3203831e+00 -3.2498103e-02 -6.7752570e-01 -1.6012846e-01 -1.4231730e+00 5.4328740e-01 8.1821507e-01 -7.3327917e-01 -4.2911470e-01 7.0440364e-01 2.0404644e-01 -2.3023207e-01 -1.0752786e+00 4.5601508e-01 3.8381606e-01 -7.6847130e-01 1.0889108e+00 -7.7098274e-01 5.5341774e-01 -2.8321984e-01 -1.5693736e-01 -1.2803814e+00 -6.1099547e-01 -2.0484029e-01 -1.3661745e-01 7.0831978e-01 1.9540766e-01 -4.1022527e-01 9.4402355e-01 -6.8199016e-02 -1.4872111e-01 -1.2409159e+00 -1.0733289e+00 -4.9728945e-01 3.1322673e-01 5.3442603e-01 -9.2367129e-03 1.0955040e+00 1.1820143e-01 3.7780532e-01 1.6853228e-01 1.3694020e-01 7.8685904e-01 3.0711430e-01 6.0396558e-01 -1.3017240e+00 -6.6636974e-01 -4.4534236e-01 -8.4952581e-01 -6.4540160e-01 4.3513186e-02 -1.1678126e+00 9.0263309e-03 -1.5994103e+00 7.1175265e-01 -3.1370354e-01 -5.9068561e-01 6.9978184e-01 -3.5332543e-01 5.6997138e-01 -3.4171325e-01 4.9113280e-01 -5.2132845e-01 8.5547961e-02 1.3653804e+00 -7.7736914e-01 4.7522433e-02 -5.7123607e-01 -9.1618162e-01 3.0191159e-01 3.7505054e-01 -2.2399443e-01 -3.9775661e-01 -1.7802998e-01 -1.9474502e-01 -9.8177560e-02 7.4398488e-01 -8.4596550e-01 4.5431409e-02 -1.3650297e-01 1.0907975e+00 -1.6000909e-01 2.8739026e-01 -5.4437339e-01 -6.8960123e-02 7.2303426e-01 -3.0667955e-01 -2.3310415e-01 -2.1383680e-02 8.9674067e-01 -1.0804051e-01 2.4276239e-01 1.1800604e+00 -4.3216389e-01 -3.0407634e-01 4.4245917e-01 -1.8964489e-01 1.5688576e-01 9.9498749e-01 -4.2623094e-01 -6.2809902e-01 1.0359777e-01 -5.2150702e-01 4.0385809e-02 9.0934473e-01 -1.2254775e-01 7.1528316e-01 -1.0069036e+00 -7.7071828e-01 3.9482510e-01 7.0426977e-01 4.1195345e-01 3.2072163e-01 9.8297423e-01 -5.4344887e-01 4.5953110e-02 -3.0229330e-01 -1.2236654e+00 -1.3444008e+00 5.4173672e-01 3.4529060e-01 -6.0547245e-01 -8.9543772e-01 1.0961955e+00 8.1090754e-01 -2.9567963e-01 -5.0556394e-03 -1.7433934e-01 -2.0723680e-01 -1.5511319e-01 5.5147129e-01 -2.3952328e-01 -8.6408091e-04 -5.7627559e-01 -4.3598491e-01 5.9912527e-01 -5.4200512e-01 4.3367013e-01 1.4842443e+00 4.4519964e-01 -8.1544526e-02 5.3831398e-01 1.4938241e+00 -2.1648352e-01 -1.3885888e+00 -1.8989240e-01 -3.7677425e-01 -2.0669012e-01 -5.4380442e-03 -8.5095102e-01 -1.0070577e+00 7.9970104e-01 7.4366510e-01 -1.0183932e-01 9.1434711e-01 2.7619863e-01 4.5351696e-01 2.9464674e-01 7.0802592e-02 -7.3363602e-01 3.6765164e-01 1.6858548e-01 6.7722136e-01 -1.5379547e+00 2.3883604e-01 -2.9798755e-01 -6.2892520e-01 1.0380658e+00 5.1373011e-01 -1.9508676e-01 4.8096484e-01 4.2246139e-01 3.4811416e-01 -5.3997767e-01 -8.3103853e-01 -2.5918886e-01 2.5137872e-01 1.1192738e+00 5.8697814e-01 -2.4856726e-02 2.5229833e-01 2.2020522e-01 2.7334040e-01 4.5494203e-02 1.5287112e-01 1.1557634e+00 -8.0922417e-02 -7.2788334e-01 -1.0626776e-01 8.9454550e-01 -3.6545849e-01 -1.1820297e-01 -4.8191667e-01 6.0760301e-01 1.3418728e-01 4.9936959e-01 3.6131287e-01 -9.8296739e-02 -8.6773150e-02 -1.8985987e-01 7.8233081e-01 -9.3319798e-01 -5.2925086e-01 1.1320268e-01 -4.6805242e-01 -3.0520362e-01 -4.1820338e-01 -4.2286962e-01 -1.2715149e+00 1.3861518e-01 1.0174551e-01 -7.5714655e-02 6.3499756e-02 7.4140847e-01 7.7534825e-01 6.5225142e-01 6.7770243e-01 -8.8945299e-01 -2.4811243e-01 -7.5644928e-01 -6.5043426e-01 8.0390394e-01 8.2376391e-01 -5.6448942e-01 -5.1897579e-01 3.6776963e-01]
[14.963303565979004, -2.88017201423645]
e339cc3e-5fd9-4314-b458-7980a0791d62
correction-of-cloud-removal-by-fusing-multi
1707.09959
null
http://arxiv.org/abs/1707.09959v1
http://arxiv.org/pdf/1707.09959v1.pdf
Correction of "Cloud Removal By Fusing Multi-Source and Multi-Temporal Images"
Remote sensing images often suffer from cloud cover. Cloud removal is required in many applications of remote sensing images. Multitemporal-based methods are popular and effective to cope with thick clouds. This paper contributes to a summarization and experimental comparation of the existing multitemporal-based methods. Furthermore, we propose a spatiotemporal-fusion with poisson-adjustment method to fuse multi-sensor and multi-temporal images for cloud removal. The experimental results show that the proposed method has potential to address the problem of accuracy reduction of cloud removal in multi-temporal images with significant changes.
['Qing Cheng', 'Zhiwei Li', 'Xinghua Li', 'Chengyue Zhang', 'Huanfeng Shen']
2017-07-25
null
null
null
null
['cloud-removal']
['computer-vision']
[ 3.69602203e-01 -1.27618325e+00 4.04017031e-01 -1.64627716e-01 -7.79774785e-01 -6.81999266e-01 3.53539139e-01 -8.82595330e-02 -3.68202299e-01 7.76425421e-01 -5.23737967e-01 -2.74559826e-01 -3.12981844e-01 -9.82962251e-01 2.82663144e-02 -1.11052012e+00 -1.02155589e-01 1.30471066e-01 4.52389956e-01 -3.10363799e-01 3.02177548e-01 1.07458043e+00 -1.81903601e+00 1.96369022e-01 1.12978458e+00 8.85953665e-01 8.07941020e-01 6.80046976e-01 -1.50148012e-02 2.69102484e-01 -3.05325687e-01 3.08188796e-01 6.27861142e-01 -2.01992333e-01 -3.61797661e-01 3.46889704e-01 2.99811006e-01 -1.97697222e-01 3.48570049e-01 1.17176735e+00 5.28729737e-01 1.32281199e-01 6.81193173e-01 -9.41720665e-01 -4.16907728e-01 -9.28134173e-02 -1.27943408e+00 8.69415820e-01 -2.55240887e-01 1.92740094e-02 2.54018456e-01 -1.13391268e+00 2.51626581e-01 9.68566239e-01 7.52696514e-01 -1.74476564e-01 -5.80477357e-01 -6.95496738e-01 1.47334218e-01 1.62936673e-01 -1.74001741e+00 -2.32587561e-01 2.91636348e-01 -5.39876640e-01 9.41244423e-01 6.30343318e-01 9.22747552e-01 -2.74264365e-01 3.54442805e-01 1.51589155e-01 1.76088464e+00 -5.08089304e-01 -1.50669128e-01 -1.26912311e-01 1.00236580e-01 -2.01123819e-01 7.86194384e-01 1.03497669e-01 4.50914353e-02 -1.55594781e-01 5.44040561e-01 5.47777295e-01 -1.15956880e-01 4.38944340e-01 -6.76766157e-01 8.54346812e-01 3.78281116e-01 6.12502635e-01 -8.08995008e-01 1.03520788e-01 3.40705663e-02 1.37971237e-01 1.01915348e+00 6.64613023e-02 -3.79340768e-01 3.63755733e-01 -1.33638752e+00 6.03446484e-01 -1.16797850e-01 9.49014962e-01 6.87826574e-01 4.35763270e-01 1.10296234e-01 4.61194396e-01 2.89784759e-01 1.35277760e+00 7.68799558e-02 -8.38343561e-01 2.18145803e-01 2.46881261e-01 4.08135802e-01 -9.85859931e-01 2.03882474e-02 -2.63376713e-01 -9.38191116e-01 3.47286135e-01 -4.22553957e-01 2.18398347e-01 -9.33156550e-01 3.94871950e-01 3.28621238e-01 3.70215297e-01 1.38780713e-01 8.79010916e-01 6.11788452e-01 9.58667815e-01 1.26988292e-01 -7.71069467e-01 1.15898967e+00 -5.91285944e-01 -1.15405750e+00 -1.04860455e-01 -1.42556489e-01 -1.04000986e+00 4.34228361e-01 2.14581504e-01 -7.37736404e-01 -2.09296077e-01 -5.15297592e-01 5.53549528e-01 -6.58830762e-01 -7.95498714e-02 5.20150721e-01 4.72813576e-01 -9.82026994e-01 3.14487547e-01 -6.39241159e-01 -3.38797987e-01 1.46572784e-01 -4.86023575e-02 1.35261700e-01 -1.69753700e-01 -8.38116407e-01 1.08128858e+00 4.16668206e-01 5.53006649e-01 -5.18710375e-01 -5.30188322e-01 -5.08965969e-01 -2.42307082e-01 1.03751265e-01 -3.00006598e-01 9.04788435e-01 -8.89553010e-01 -7.42122889e-01 7.56364584e-01 -4.68942136e-01 -2.17642233e-01 3.30581218e-01 -1.55209787e-02 -6.49931371e-01 4.85930741e-01 3.27871799e-01 -6.98773712e-02 9.07668352e-01 -1.58902299e+00 -8.83507550e-01 -5.40314436e-01 -5.38371921e-01 4.12672818e-01 2.16345057e-01 5.61970472e-01 -1.14735186e-01 -7.32065678e-01 4.58853215e-01 -8.45672667e-01 -4.48770881e-01 -1.82596982e-01 1.77279025e-01 3.37789476e-01 1.42316091e+00 -6.61900282e-01 9.92546856e-01 -2.04124713e+00 -5.00849187e-01 1.98759720e-01 -5.52724116e-02 7.14907467e-01 3.20067331e-02 4.85694945e-01 4.18755747e-02 4.89359230e-01 -6.47075713e-01 -2.72355855e-01 -8.19585741e-01 3.17405581e-01 -3.23679447e-01 8.53039861e-01 1.47379890e-01 4.99098182e-01 -6.81884110e-01 -5.91233909e-01 7.54296005e-01 6.51899755e-01 2.95734018e-01 -1.34733960e-01 6.22069836e-03 7.09531188e-01 -5.49060285e-01 1.01053286e+00 1.77561200e+00 1.83393985e-01 -1.00101672e-01 1.69341639e-01 -8.78270984e-01 -4.42943305e-01 -1.16621554e+00 7.92857111e-01 -2.51650631e-01 5.29413700e-01 4.41210955e-01 -4.43445235e-01 7.42039621e-01 4.23283547e-01 6.20610297e-01 -5.37859321e-01 -1.41789485e-02 5.23852408e-01 -3.62744957e-01 -8.37568521e-01 9.87667143e-01 -5.90195239e-01 4.79090452e-01 4.93205972e-02 -8.52896035e-01 -8.73027861e-01 -1.59406200e-01 -1.37388900e-01 2.11694717e-01 2.36979383e-03 5.09978533e-01 -2.72255391e-01 5.64947844e-01 4.89479989e-01 6.74407899e-01 6.70614064e-01 -4.23780620e-01 6.96098208e-01 -7.09656715e-01 -5.50603509e-01 -1.09007168e+00 -6.14840329e-01 -3.30958962e-01 4.30253416e-01 2.92241603e-01 2.46859133e-01 -1.67793334e-01 2.18470484e-01 1.42839491e-01 4.11869794e-01 -3.51715535e-01 6.20429456e-01 -3.64278883e-01 -1.29863620e+00 1.62122399e-01 1.46981046e-01 8.74631822e-01 -8.51268768e-01 -7.27913439e-01 2.26732790e-01 -5.11063278e-01 -1.25802374e+00 1.79641470e-01 -3.25276673e-01 -1.35739720e+00 -8.73367548e-01 -6.19108617e-01 -2.87023306e-01 2.86346555e-01 1.59077001e+00 9.64431047e-01 5.56293607e-01 -4.58228052e-01 2.32092038e-01 -7.94052005e-01 -8.49912286e-01 6.39895871e-02 -4.66528684e-01 -2.09446207e-01 2.82765646e-02 4.39457178e-01 -6.39029801e-01 -5.20348847e-01 1.49827167e-01 -1.19536018e+00 -2.75768876e-01 2.88243622e-01 1.29307166e-01 9.92053866e-01 6.57904327e-01 6.69584200e-02 -5.97104311e-01 1.72606021e-01 -5.62354267e-01 -1.16030753e+00 2.75412440e-01 -7.05207586e-01 -8.42149317e-01 -9.31788012e-02 6.55071437e-02 -1.26304662e+00 1.46503508e-01 4.09386277e-01 -5.76080084e-01 -2.15617314e-01 7.35170603e-01 2.78375000e-01 -6.40535057e-01 3.28611672e-01 5.18919408e-01 -3.07785541e-01 -5.38459301e-01 -3.15598324e-02 8.53627264e-01 3.40869904e-01 -1.66886300e-01 1.06735802e+00 1.12731326e+00 1.67450994e-01 -1.41541088e+00 -5.58834195e-01 -1.33917022e+00 -8.29883516e-01 -6.17165387e-01 1.03284633e+00 -1.26982021e+00 -1.82191685e-01 9.81143475e-01 -1.21271098e+00 -1.56956464e-02 1.27109528e-01 6.43041790e-01 1.61671340e-02 4.22912270e-01 -1.29849583e-01 -1.64566708e+00 -5.78149199e-01 -8.36496472e-01 1.11922908e+00 1.90483689e-01 8.13080788e-01 -8.18629205e-01 9.76879671e-02 4.30465519e-01 8.08517337e-01 6.65017486e-01 9.42029466e-04 2.34770551e-01 -9.75983918e-01 -9.02263969e-02 -5.36175847e-01 2.01090008e-01 3.72259915e-01 5.44144213e-01 -1.24795187e+00 -2.65762299e-01 2.60415703e-01 3.56964111e-01 9.99918759e-01 9.22653794e-01 9.43980992e-01 -3.88742499e-02 -3.01825821e-01 8.23087990e-01 2.40109515e+00 3.03651601e-01 8.74542356e-01 6.14869475e-01 5.82975030e-01 4.12841022e-01 1.20668054e+00 6.43943071e-01 2.47168139e-01 3.16390127e-01 8.25029492e-01 -3.40736389e-01 1.06486939e-01 8.05057347e-01 -2.67845124e-01 7.95764863e-01 -8.04299712e-01 -2.94834048e-01 -9.70727265e-01 9.27316785e-01 -1.75980985e+00 -1.39677250e+00 -1.13666606e+00 1.86273396e+00 2.57379472e-01 -7.17849731e-01 -1.95522606e-01 9.55058783e-02 1.00522947e+00 3.31441253e-01 -1.87954351e-01 -4.87096421e-02 -4.58236486e-01 2.51688451e-01 1.19273996e+00 6.26390278e-01 -1.25838161e+00 9.34413314e-01 7.17735338e+00 4.79740798e-01 -1.28184986e+00 7.24584341e-01 -3.07343639e-02 2.35084444e-01 -3.76773357e-01 4.61497046e-02 -6.55718505e-01 2.64925927e-01 7.00582385e-01 -2.09847823e-01 8.80818069e-02 2.13484213e-01 9.01823342e-01 -9.40235734e-01 2.62402356e-01 1.00376046e+00 -6.41741455e-02 -1.14107740e+00 6.60073981e-02 1.31171197e-01 1.15131891e+00 5.73059499e-01 -5.38476333e-02 -4.23059642e-01 1.03560956e-02 -7.88251579e-01 6.91682398e-01 8.08181345e-01 7.51965165e-01 -6.22387648e-01 9.33617294e-01 3.92150670e-01 -1.76875639e+00 1.47534490e-01 -5.61183989e-01 -4.46504772e-01 1.63035661e-01 9.79186893e-01 -3.89092475e-01 1.17724681e+00 1.06780362e+00 7.55316079e-01 -3.32048744e-01 1.47234011e+00 1.21138774e-01 2.01695189e-01 -3.81831020e-01 4.14291859e-01 3.43700022e-01 -8.01907718e-01 6.10794127e-01 1.20628917e+00 7.86435425e-01 8.82974982e-01 1.65970847e-01 4.72170651e-01 7.50323772e-01 -2.60404544e-03 -9.57198083e-01 1.32427230e-01 7.14045346e-01 1.05259132e+00 -7.49946713e-01 -4.38717663e-01 -3.53232771e-01 6.26854360e-01 -7.41306245e-01 2.84051597e-01 -6.67299211e-01 -4.95735519e-02 6.57172740e-01 1.94284350e-01 5.27639389e-01 -5.93608797e-01 -5.98591566e-01 -1.13712382e+00 1.88728906e-02 -5.30996919e-01 2.88213164e-01 -1.23421586e+00 -9.04659152e-01 5.80226898e-01 5.75891435e-01 -1.65241849e+00 2.94520468e-01 -2.70766646e-01 -6.77474439e-01 1.49396098e+00 -2.40726447e+00 -1.49151194e+00 -8.66959929e-01 7.63434350e-01 5.48901796e-01 1.97861120e-02 7.70830274e-01 2.27902934e-01 -2.13822588e-01 -5.44720292e-01 4.19788867e-01 -4.74627107e-01 2.68162668e-01 -9.21457231e-01 4.60069440e-02 1.56918538e+00 -6.33866668e-01 2.02542990e-01 9.16547835e-01 -9.43251967e-01 -1.03433824e+00 -1.58286285e+00 8.76155674e-01 4.70983535e-02 2.97369987e-01 3.38756472e-01 -9.64471221e-01 5.99312365e-01 2.86716938e-01 3.46540332e-01 5.02396405e-01 -5.46911955e-01 4.34547737e-02 -4.99247432e-01 -1.53037167e+00 -3.48623991e-02 2.58794665e-01 -3.42749745e-01 -3.26072633e-01 5.61544180e-01 3.88295352e-01 -2.01675221e-01 -7.53632069e-01 7.00614989e-01 4.02536064e-01 -1.15846360e+00 8.34420443e-01 3.20763916e-01 1.07451871e-01 -8.23070526e-01 -4.31891143e-01 -1.06171489e+00 -4.20310169e-01 -1.79146513e-01 6.54004335e-01 9.42420244e-01 -1.51024908e-02 -5.57139635e-01 2.26895064e-01 1.42612159e-01 -3.61921303e-02 2.15945393e-01 -1.01482725e+00 -9.91118729e-01 9.65581834e-02 -3.72980565e-01 6.52655780e-01 1.21372843e+00 -1.02484643e+00 -5.41787922e-01 -3.41505259e-01 8.18276227e-01 9.40543592e-01 4.69446152e-01 4.87168789e-01 -1.49712348e+00 4.17374402e-01 -8.94532949e-02 -1.92859396e-01 1.75944775e-01 -2.51862347e-01 -2.43141308e-01 7.09721074e-02 -1.66689014e+00 4.09922808e-01 -5.61535776e-01 -7.28726462e-02 2.77795851e-01 -2.93836355e-01 5.97014964e-01 3.55436802e-01 7.45572090e-01 -2.32939608e-02 3.82650703e-01 1.40172589e+00 -1.32425845e-01 -8.42282921e-02 1.09271713e-01 -6.65463656e-02 4.99021441e-01 1.08506644e+00 -8.62539589e-01 -1.94955140e-01 -7.66873837e-01 1.61097646e-01 1.17374852e-01 4.72325087e-01 -1.05500841e+00 -4.76125069e-02 -9.41790104e-01 4.95328084e-02 -1.34663510e+00 4.30608869e-01 -1.24366975e+00 6.39644027e-01 5.29382348e-01 6.59718096e-01 5.34817517e-01 4.58206654e-01 5.49186826e-01 -5.10842562e-01 -2.40772754e-01 1.21599233e+00 -6.28786027e-01 -9.73972797e-01 4.92948711e-01 -7.40392327e-01 -6.84050441e-01 1.25522923e+00 -4.92813647e-01 -2.89549619e-01 -1.54452011e-01 -7.19518185e-01 1.20438792e-01 5.65884531e-01 -1.09806314e-01 8.43674779e-01 -1.02726138e+00 -1.06418216e+00 -3.96950990e-02 2.50827909e-01 2.82755364e-02 4.54262376e-01 1.01890051e+00 -1.12119114e+00 2.11553842e-01 -3.24583620e-01 -8.04202318e-01 -1.67759418e+00 3.33695650e-01 6.78432524e-01 -2.41629034e-02 -5.07697165e-01 6.36816204e-01 -2.61915952e-01 -2.29619190e-01 -5.81625581e-01 -3.28989655e-01 -3.09058398e-01 9.33297873e-02 6.58018887e-01 4.20751750e-01 4.40234065e-01 -9.45720673e-01 -6.25200331e-01 9.39705670e-01 5.00641584e-01 -3.72123122e-01 1.63495433e+00 -5.68400264e-01 -7.02636957e-01 7.62981832e-01 5.99266469e-01 2.30610650e-02 -8.34131718e-01 -3.00661832e-01 -3.35808784e-01 -1.07362127e+00 4.63414550e-01 -5.62998414e-01 -1.33146894e+00 7.87909389e-01 9.38333035e-01 2.65814275e-01 1.60919964e+00 -5.97431660e-01 3.77469093e-01 1.27136722e-01 3.67843240e-01 -9.05708969e-01 -5.63396633e-01 6.47294700e-01 9.13943648e-01 -1.51537824e+00 7.18247414e-01 -8.11354101e-01 -4.63581204e-01 1.02007246e+00 2.63871759e-01 -7.75373355e-02 1.04311955e+00 2.93695182e-01 3.35012406e-01 -5.02315402e-01 -3.89908433e-01 -7.03859270e-01 -1.60386175e-01 8.82211626e-01 2.09699690e-01 4.30032462e-01 -4.23177481e-01 -4.44966137e-01 4.45330977e-01 8.50717798e-02 8.30426693e-01 1.30668163e+00 -6.93723023e-01 -8.38552654e-01 -1.36189675e+00 3.76542598e-01 -4.98091251e-01 -3.97682726e-01 -5.05186282e-02 8.11225772e-01 3.32892984e-01 1.32270706e+00 2.43773773e-01 -3.25925387e-02 -1.04038380e-02 -3.08381289e-01 3.06970894e-01 -6.48259342e-01 -7.04583287e-01 7.06956208e-01 -3.27596158e-01 -1.31219581e-01 -1.56386817e+00 -1.15976083e+00 -8.05593371e-01 -6.29218519e-01 -7.67090082e-01 1.80920422e-01 9.41373348e-01 9.10943806e-01 -3.74027528e-02 4.23663080e-01 9.46937621e-01 -1.22258472e+00 -5.82232885e-02 -1.11708581e+00 -1.27837050e+00 -1.45091698e-01 7.69652843e-01 -6.56285048e-01 -4.56599325e-01 1.96026921e-01]
[9.766403198242188, -1.7598479986190796]
4a57a840-9e4f-40e7-ba6d-3a8d033b5622
arrhythmia-classifier-using-convolutional
2202.12943
null
https://arxiv.org/abs/2202.12943v1
https://arxiv.org/pdf/2202.12943v1.pdf
Arrhythmia Classifier Using Convolutional Neural Network with Adaptive Loss-aware Multi-bit Networks Quantization
Cardiovascular disease (CVDs) is one of the universal deadly diseases, and the detection of it in the early stage is a challenging task to tackle. Recently, deep learning and convolutional neural networks have been employed widely for the classification of objects. Moreover, it is promising that lots of networks can be deployed on wearable devices. An increasing number of methods can be used to realize ECG signal classification for the sake of arrhythmia detection. However, the existing neural networks proposed for arrhythmia detection are not hardware-friendly enough due to a remarkable quantity of parameters resulting in memory and power consumption. In this paper, we present a 1-D adaptive loss-aware quantization, achieving a high compression rate that reduces memory consumption by 23.36 times. In order to adapt to our compression method, we need a smaller and simpler network. We propose a 17 layer end-to-end neural network classifier to classify 17 different rhythm classes trained on the MIT-BIH dataset, realizing a classification accuracy of 93.5%, which is higher than most existing methods. Due to the adaptive bitwidth method making important layers get more attention and offered a chance to prune useless parameters, the proposed quantization method avoids accuracy degradation. It even improves the accuracy rate, which is 95.84%, 2.34% higher than before. Our study achieves a 1-D convolutional neural network with high performance and low resources consumption, which is hardware-friendly and illustrates the possibility of deployment on wearable devices to realize a real-time arrhythmia diagnosis.
['Zhi Qi', 'Hao liu', 'Junguang Huang', 'Zhiqing Li', 'Ninghao Pu', 'Ao Wang', 'Hanshi Sun']
2022-02-27
null
null
null
null
['arrhythmia-detection']
['medical']
[ 6.84813708e-02 -1.48473725e-01 -1.86291456e-01 -3.11650097e-01 -2.92603076e-01 1.20624721e-01 -3.45245123e-01 2.88884908e-01 -6.01538301e-01 7.96077788e-01 -2.79319465e-01 -2.88791806e-01 -2.53689915e-01 -9.15476024e-01 -2.42304668e-01 -7.97998726e-01 -2.74703115e-01 7.33786263e-03 1.12118889e-02 4.22691181e-02 -1.50116876e-01 5.74791431e-01 -1.55632699e+00 2.12760150e-01 8.34578693e-01 1.46807694e+00 2.40195826e-01 4.41322088e-01 1.63131967e-01 3.18716288e-01 -8.33515584e-01 -4.43476051e-01 4.77482453e-02 -5.29951572e-01 -3.02273214e-01 -3.53468806e-01 6.49427176e-02 -5.56017935e-01 -3.13550800e-01 9.45905328e-01 1.07537460e+00 -3.51132661e-01 4.29216027e-01 -6.92179739e-01 -2.41918251e-01 6.39920771e-01 -2.99251795e-01 2.84463465e-01 -2.93317348e-01 -3.17844981e-03 5.17524600e-01 -4.65025455e-01 1.41354799e-01 6.45894825e-01 9.18298542e-01 5.42058468e-01 -7.60095596e-01 -8.61186862e-01 -5.02682865e-01 4.78095531e-01 -1.73085141e+00 -2.20187902e-01 8.78999233e-01 -9.01934132e-02 6.05327785e-01 4.21627909e-01 1.02797389e+00 9.60976303e-01 2.44489074e-01 4.59691495e-01 6.54973388e-01 -3.33118945e-01 2.72590488e-01 5.56899197e-02 -1.60121337e-01 5.74888647e-01 6.24112368e-01 -1.78746238e-01 -1.54365957e-01 7.03744218e-02 8.69971097e-01 4.31490928e-01 -4.43813741e-01 2.60526210e-01 -1.15982723e+00 5.93019605e-01 6.69603467e-01 7.46229231e-01 -4.02058899e-01 1.54721051e-01 7.13338912e-01 2.63935365e-02 2.86751330e-01 4.32302803e-01 -4.38533694e-01 -4.26641434e-01 -9.21547592e-01 3.35602532e-03 4.70173120e-01 4.06641930e-01 1.99724868e-01 3.83681864e-01 -2.38794118e-01 9.42377090e-01 -1.42300259e-02 5.00684440e-01 8.01427722e-01 -7.19701827e-01 2.24478543e-01 6.31826580e-01 -3.34803998e-01 -1.26455486e+00 -7.74363339e-01 -1.14289653e+00 -1.83214188e+00 -3.33694816e-02 2.78390825e-01 -1.08157001e-01 -4.41543043e-01 1.52494764e+00 6.71324432e-02 1.17765419e-01 6.70316964e-02 1.10836947e+00 8.95104587e-01 5.46878517e-01 4.24787402e-02 -3.93925399e-01 1.63739097e+00 -4.05372977e-01 -9.47386801e-01 2.28963763e-01 7.61454523e-01 -3.96542311e-01 1.07214141e+00 7.86604166e-01 -9.49370623e-01 -7.81509995e-01 -1.37174284e+00 8.21410790e-02 2.58917380e-02 7.38256276e-01 6.23806834e-01 8.60216558e-01 -8.13238025e-01 9.19589281e-01 -6.70024812e-01 -8.52187350e-02 8.96906435e-01 3.72315645e-01 -4.08293307e-02 2.43176967e-01 -1.33651388e+00 4.03542191e-01 5.89033663e-01 2.45143846e-01 -4.38234329e-01 -4.68407661e-01 -3.82232666e-01 4.51106936e-01 -3.93409170e-02 -5.65909863e-01 7.96094954e-01 -7.16333508e-01 -1.42196059e+00 5.00840425e-01 2.25844085e-01 -7.17592657e-01 4.00151581e-01 -1.01081476e-01 -7.23264992e-01 3.22479457e-01 -3.16266865e-01 4.09157693e-01 7.23607361e-01 -3.54220271e-01 -5.24919629e-01 -4.52657282e-01 -1.82524383e-01 -3.98276141e-03 -1.14736021e+00 -4.11429375e-01 -1.58539549e-01 -8.41972768e-01 1.55334994e-01 -6.31913364e-01 -1.59871802e-01 3.39534611e-01 -2.21971184e-01 -7.83661604e-02 5.58944762e-01 -7.25837469e-01 1.67996490e+00 -2.44775748e+00 -2.31255203e-01 6.61614770e-03 4.24781024e-01 7.77187288e-01 2.66473293e-01 -1.77609414e-01 1.54968172e-01 1.99443206e-01 -3.08415383e-01 -1.16027847e-01 -3.86491656e-01 2.16094758e-02 1.83283165e-02 3.58568817e-01 9.79309231e-02 7.40251601e-01 -4.71337587e-01 -4.54524696e-01 1.58526108e-01 7.80958831e-01 -4.67605650e-01 -2.89894044e-02 2.23976031e-01 2.94561505e-01 -3.85673046e-01 5.34866810e-01 7.90419042e-01 -1.40302360e-01 2.72797644e-01 -4.15595859e-01 1.28152609e-01 1.56571776e-01 -9.86185670e-01 1.81394088e+00 -3.64478052e-01 4.87606168e-01 -3.59661788e-01 -1.26909125e+00 1.34684455e+00 4.92214203e-01 4.84383553e-01 -9.16901827e-01 4.03696984e-01 4.79731530e-01 2.14351386e-01 -6.01719260e-01 5.44848433e-03 -1.05388403e-01 2.10447162e-02 -2.71593742e-02 -1.86283097e-01 2.88268209e-01 -3.02457716e-02 -2.93101639e-01 1.00354183e+00 -1.92969173e-01 2.33059019e-01 -2.84643501e-01 5.60237288e-01 -4.70053345e-01 7.69277275e-01 5.28208852e-01 -2.09362522e-01 5.38988233e-01 2.50548303e-01 -9.90342259e-01 -9.40822005e-01 -7.25178897e-01 -4.51571107e-01 1.75429717e-01 5.75375929e-02 -5.29256463e-01 -7.62108445e-01 -2.44498074e-01 -2.56748736e-01 1.21788777e-01 -2.22864166e-01 -4.56400275e-01 -7.10935473e-01 -1.01461375e+00 1.07796907e+00 4.43501353e-01 1.07345986e+00 -1.00026059e+00 -1.14287090e+00 4.60585594e-01 -2.41914764e-01 -1.01390898e+00 1.16521567e-01 -2.88485792e-02 -1.39045811e+00 -7.12661207e-01 -9.75752234e-01 -7.75366604e-01 2.36022145e-01 -2.46429890e-01 8.14444125e-01 2.79330015e-01 -6.30662799e-01 -5.65002143e-01 -2.52227426e-01 -4.95262384e-01 -2.01599985e-01 4.76240605e-01 2.45526806e-01 2.90579312e-02 1.82998881e-01 -7.75470376e-01 -1.08296502e+00 -4.41747457e-02 -6.96636200e-01 3.49785127e-02 8.62413228e-01 6.55454159e-01 5.38394034e-01 2.43432865e-01 9.93645430e-01 -5.75098336e-01 5.41917622e-01 -1.20745927e-01 -4.43864822e-01 1.40727619e-02 -7.06288338e-01 -2.64460534e-01 1.00886476e+00 -4.26887542e-01 -4.89177674e-01 7.29846805e-02 -6.71585321e-01 -3.76899689e-01 -8.70917514e-02 3.15959007e-01 -1.69058099e-01 1.77560478e-01 7.05464423e-01 2.48972505e-01 1.38771161e-01 -5.34278572e-01 -1.71447009e-01 9.68745291e-01 2.92668730e-01 -1.28215447e-01 3.02465320e-01 5.89960068e-02 3.02436709e-01 -8.97916198e-01 -3.69971901e-01 -2.13923659e-02 -2.86526203e-01 -8.86601955e-02 8.82255852e-01 -9.57415879e-01 -1.08835888e+00 4.42499280e-01 -1.12524509e+00 5.31194285e-02 -3.79661471e-01 7.37722516e-01 -1.23156488e-01 4.35183555e-01 -7.51496971e-01 -7.84514070e-01 -1.06086826e+00 -1.08132100e+00 6.52049959e-01 1.94901764e-01 -1.02171741e-01 -4.30405527e-01 -3.60920787e-01 -7.82717094e-02 7.48242557e-01 4.54940081e-01 9.18472230e-01 -2.82638937e-01 -3.11981857e-01 -2.31966361e-01 -2.30548069e-01 5.33286750e-01 1.43224165e-01 -3.38704586e-01 -9.75711703e-01 -3.54562283e-01 2.82675475e-01 -3.62972952e-02 6.83826804e-01 4.31156844e-01 1.85508454e+00 -4.30314213e-01 -2.76269525e-01 7.84744680e-01 1.31012785e+00 4.87647235e-01 1.00588834e+00 1.18266143e-01 4.31921750e-01 4.45817318e-03 2.73899406e-01 6.56291723e-01 -1.78207308e-02 6.41417027e-01 4.45605129e-01 -3.75792146e-01 -1.43041357e-01 2.40061924e-01 -1.37187809e-01 1.17529261e+00 -3.52374822e-01 -6.05955794e-02 -7.25414932e-01 2.85571426e-01 -1.44019926e+00 -7.85594404e-01 -1.87165901e-01 2.36344934e+00 9.95612502e-01 3.35323453e-01 1.75579693e-02 8.02257299e-01 5.52887738e-01 -1.81765005e-01 -4.19385701e-01 -5.20913005e-01 -4.38098498e-02 6.01078868e-01 1.66338459e-01 -2.62016356e-01 -1.06013215e+00 8.06260034e-02 4.67488432e+00 1.08907282e+00 -1.46853924e+00 2.18117982e-01 1.04347801e+00 -2.63084471e-01 3.55802953e-01 -5.95220625e-01 -7.16617763e-01 6.58905149e-01 1.21284020e+00 2.13340089e-01 6.09048419e-02 7.99207032e-01 1.47933573e-01 2.74699986e-01 -6.58009589e-01 1.47200620e+00 -2.12252513e-01 -1.37519109e+00 6.23982660e-02 -9.48054567e-02 2.24623039e-01 -3.63030910e-01 -5.86925261e-02 2.05563098e-01 -9.61688519e-01 -9.32888567e-01 3.40678781e-01 4.63509768e-01 1.37894118e+00 -1.06524682e+00 1.06356215e+00 4.55581665e-01 -1.11969340e+00 -2.92753786e-01 -6.11635983e-01 -2.53560483e-01 1.86169738e-04 1.27216053e+00 -6.84767842e-01 5.00086665e-01 1.02166462e+00 6.92266643e-01 -4.23456013e-01 1.22531736e+00 1.60883740e-01 7.52100587e-01 -3.58057976e-01 -3.52556825e-01 -2.58040816e-01 -4.69261818e-02 3.19942892e-01 1.10967457e+00 6.89007282e-01 2.05501258e-01 -1.09061241e-01 6.18250370e-01 -3.03425193e-01 2.78046966e-01 -4.13231909e-01 3.00672174e-01 4.01072532e-01 1.21554077e+00 -6.59068108e-01 -5.04797935e-01 5.56869507e-02 8.10798347e-01 -5.05515374e-02 -1.85923785e-01 -1.04626012e+00 -1.12434888e+00 3.71400386e-01 1.35997996e-01 5.31389341e-02 -1.97500158e-02 -5.16615689e-01 -1.03228939e+00 3.16567123e-01 -7.47336447e-01 1.67735711e-01 -2.83697248e-01 -7.71877527e-01 9.15610373e-01 -4.92739230e-01 -1.65416515e+00 9.19824094e-02 -3.95908266e-01 -2.39306793e-01 6.67591214e-01 -1.35157502e+00 -5.13028622e-01 -6.02347016e-01 2.51636416e-01 3.84166181e-01 -1.24410413e-01 1.21305776e+00 9.58269179e-01 -6.18656933e-01 9.38848495e-01 1.13644898e-02 1.37151897e-01 5.20502865e-01 -7.66818404e-01 -9.80470981e-03 6.26948655e-01 -2.80808154e-02 5.40472567e-01 1.07370399e-01 -3.35026145e-01 -1.11968553e+00 -1.16811991e+00 8.59876990e-01 3.47746283e-01 -5.12194708e-02 -2.85162270e-01 -9.92486060e-01 -1.60497114e-01 -7.90646523e-02 3.13961357e-02 6.47840559e-01 -2.42806211e-01 9.57587361e-02 -8.51986051e-01 -1.19128263e+00 5.69695473e-01 9.64677453e-01 -2.42475569e-01 -1.74197331e-01 2.22152457e-01 5.75963080e-01 -2.90901303e-01 -1.11798501e+00 8.22544217e-01 7.54960477e-01 -9.81111348e-01 9.64194000e-01 3.35162245e-02 4.89685863e-01 -2.39634961e-01 1.10217437e-01 -8.05887401e-01 -2.91202992e-01 -4.13220227e-01 -2.70891964e-01 1.14107275e+00 2.33358011e-01 -7.50653148e-01 6.82624221e-01 1.29567534e-01 -1.62230626e-01 -1.27851546e+00 -1.11240399e+00 -6.87234223e-01 -2.19364077e-01 -3.34300220e-01 6.38026655e-01 7.50711441e-01 -1.08762972e-01 1.82881922e-01 -4.53747869e-01 -1.66862041e-01 5.47404230e-01 -9.89973545e-02 2.43791595e-01 -1.51585472e+00 -2.88783371e-01 -5.09033024e-01 -7.30866253e-01 -8.55363369e-01 -5.41684508e-01 -8.04595232e-01 -3.68476659e-01 -1.29625070e+00 -1.27301231e-01 -7.48410761e-01 -5.76002002e-01 5.23892641e-01 1.24190658e-01 7.90712118e-01 -4.08388153e-02 2.39773452e-01 -2.77786911e-01 4.84652609e-01 1.18504727e+00 -2.27340594e-01 -2.86663353e-01 2.13240176e-01 -6.06688499e-01 7.00972617e-01 1.18774295e+00 -3.91459823e-01 -3.41770202e-01 -3.55460376e-01 5.24061471e-02 2.09839165e-01 2.51072943e-01 -1.69646680e+00 1.23183027e-01 6.09635472e-01 8.56416106e-01 -4.14809912e-01 3.86988103e-01 -7.79150367e-01 3.50374103e-01 1.13696742e+00 -1.41384467e-01 -1.14958666e-01 2.52942681e-01 2.70870745e-01 -2.39662647e-01 -1.15255639e-01 7.22837925e-01 7.48241544e-02 -2.60312617e-01 4.31953698e-01 -2.43888482e-01 -2.80352920e-01 9.23414886e-01 -1.78807095e-01 2.17149593e-02 4.11802493e-02 -7.34833181e-01 -4.05617476e-01 -1.24756120e-01 1.45547479e-01 8.25705230e-01 -1.35994518e+00 -6.17697895e-01 2.80547231e-01 -8.34152624e-02 7.83576444e-02 5.24526834e-01 9.19729352e-01 -8.62846375e-01 3.94682050e-01 -4.69949991e-01 -7.25700259e-01 -1.06748521e+00 3.13028842e-01 3.54461879e-01 -2.06716910e-01 -1.08804345e+00 4.72746402e-01 -3.00566137e-01 3.62103820e-01 4.05733407e-01 -6.26365066e-01 -3.70521039e-01 -4.46757264e-02 7.47719586e-01 4.42103803e-01 4.44393575e-01 -5.18455133e-02 -4.13489759e-01 7.02924907e-01 2.20769465e-01 5.87523639e-01 1.24381018e+00 1.94841936e-01 -8.14276040e-02 2.28482828e-01 1.24802363e+00 -3.12690169e-01 -8.13119173e-01 1.07886106e-01 -3.26078057e-01 -2.74061203e-01 1.08836576e-01 -7.08534837e-01 -1.50487876e+00 1.30285323e+00 1.25798655e+00 2.00084224e-01 1.71133578e+00 -5.15936196e-01 1.37678015e+00 3.85639489e-01 5.27703941e-01 -7.25600541e-01 -1.18843928e-01 2.22533345e-02 6.21885955e-01 -8.41270864e-01 1.04293682e-01 -1.55369520e-01 -2.53364623e-01 1.52709341e+00 2.68588305e-01 -1.42223477e-01 6.15862727e-01 2.67557055e-01 -9.26499218e-02 1.20592900e-01 -1.88689947e-01 1.65524736e-01 7.83427358e-02 4.25608844e-01 3.85525227e-01 2.13031605e-01 -7.84129262e-01 9.81795430e-01 -1.12705670e-01 4.58978117e-01 2.83921450e-01 4.88882959e-01 -3.59066844e-01 -1.03471196e+00 -3.11014894e-02 7.75430799e-01 -8.67763221e-01 -7.74568915e-02 3.81418288e-01 3.93658608e-01 5.07023752e-01 7.13656545e-01 -1.72096863e-02 -5.70624888e-01 2.34670877e-01 -6.84226900e-02 2.57973582e-01 -1.30076259e-01 -5.64636886e-01 -6.69763312e-02 -1.46091014e-01 -3.69568437e-01 -3.19924563e-01 -1.04323491e-01 -1.21388257e+00 -1.38159037e-01 -2.70319790e-01 6.73577487e-02 8.63239527e-01 6.21062756e-01 7.11025834e-01 9.55744505e-01 5.14702022e-01 -4.55686718e-01 -5.29881239e-01 -8.98002565e-01 -6.45024359e-01 3.21646631e-01 2.33488232e-01 -4.49820608e-01 -5.55292331e-02 -6.86094239e-02]
[14.05824089050293, 3.232600450515747]
66a06533-6bb0-4a47-b795-d2ce8dbcac40
mandarin-singing-voice-synthesis-with
2209.10446
null
https://arxiv.org/abs/2209.10446v1
https://arxiv.org/pdf/2209.10446v1.pdf
Mandarin Singing Voice Synthesis with Denoising Diffusion Probabilistic Wasserstein GAN
Singing voice synthesis (SVS) is the computer production of a human-like singing voice from given musical scores. To accomplish end-to-end SVS effectively and efficiently, this work adopts the acoustic model-neural vocoder architecture established for high-quality speech and singing voice synthesis. Specifically, this work aims to pursue a higher level of expressiveness in synthesized voices by combining the diffusion denoising probabilistic model (DDPM) and \emph{Wasserstein} generative adversarial network (WGAN) to construct the backbone of the acoustic model. On top of the proposed acoustic model, a HiFi-GAN neural vocoder is adopted with integrated fine-tuning to ensure optimal synthesis quality for the resulting end-to-end SVS system. This end-to-end system was evaluated with the multi-singer Mpop600 Mandarin singing voice dataset. In the experiments, the proposed system exhibits improvements over previous landmark counterparts in terms of musical expressiveness and high-frequency acoustic details. Moreover, the adversarial acoustic model converged stably without the need to enforce reconstruction objectives, indicating the convergence stability of the proposed DDPM and WGAN combined architecture over alternative GAN-based SVS systems.
['Yi-Wen Liu', 'Hsin-Min Wang', 'Yu Tsao', 'Yin-Ping Cho']
2022-09-21
null
null
null
null
['singing-voice-synthesis']
['speech']
[ 1.18229806e-01 3.84348482e-01 5.40673375e-01 -2.84685474e-02 -1.36004841e+00 -4.81858939e-01 3.69966984e-01 -1.02056754e+00 1.22539565e-01 6.11672521e-01 4.46245342e-01 4.35025059e-02 -3.70898545e-02 -4.77137476e-01 -6.41858339e-01 -9.55562532e-01 3.30864757e-01 2.43961826e-01 -2.20485538e-01 -2.27026701e-01 -3.75776857e-01 3.94004524e-01 -1.53732133e+00 1.26244789e-02 8.63420844e-01 9.28077757e-01 2.49751642e-01 1.20370185e+00 3.24548662e-01 7.37109423e-01 -9.09926891e-01 -4.14950460e-01 4.06063497e-01 -9.16232347e-01 -2.57140934e-01 1.62748769e-02 6.18816197e-01 -3.96825880e-01 -4.24347609e-01 8.94761622e-01 1.07995689e+00 5.45519590e-01 6.70614541e-01 -7.15197563e-01 -7.07304180e-01 7.53378689e-01 6.07880615e-02 -3.21740866e-01 3.35794836e-02 6.32291317e-01 1.37604105e+00 -1.05226374e+00 4.32557285e-01 1.25402486e+00 6.39130890e-01 8.67440999e-01 -1.17758584e+00 -6.82532012e-01 -5.38168132e-01 -1.32136136e-01 -1.22799802e+00 -7.79060245e-01 1.14077771e+00 -2.34154686e-01 6.01553738e-01 5.52827775e-01 6.26847088e-01 1.18563867e+00 -1.95543110e-01 7.12315500e-01 9.18224096e-01 -4.56849635e-01 1.20435372e-01 -8.28972906e-02 -5.10076344e-01 3.78117800e-01 -5.86297452e-01 4.18377787e-01 -7.89652646e-01 2.49483511e-02 7.81899571e-01 -5.69113314e-01 -2.41900846e-01 2.43183315e-01 -9.49374080e-01 6.27254307e-01 2.61888355e-01 5.64845026e-01 -6.00996912e-01 4.28442031e-01 2.55705237e-01 2.68957168e-01 2.62605429e-01 6.61903679e-01 9.54443812e-02 -3.32578927e-01 -1.49358833e+00 4.55048412e-01 7.13139713e-01 6.87991023e-01 -3.41012701e-02 1.31513453e+00 -5.42006314e-01 1.26513100e+00 4.92067516e-01 7.04541087e-01 5.18663108e-01 -1.41841531e+00 2.89470047e-01 -2.39412934e-01 -1.76252931e-01 -5.98081827e-01 1.85203403e-01 -9.43475842e-01 -8.83752525e-01 3.88781339e-01 1.51735842e-01 -3.20986688e-01 -7.45318413e-01 1.95978510e+00 2.65053242e-01 4.08371091e-01 2.00084791e-01 1.04887438e+00 9.07836139e-01 1.10559785e+00 -2.88032919e-01 -2.14920416e-01 8.85806501e-01 -1.23994851e+00 -1.14426219e+00 1.64288417e-01 -1.83618948e-01 -9.54478681e-01 1.43148780e+00 5.43745458e-01 -1.64363050e+00 -1.25880742e+00 -1.07224262e+00 -6.66181743e-02 4.66170639e-01 2.10927024e-01 -2.24825040e-01 7.24622011e-01 -1.30634975e+00 7.88773358e-01 -5.60167372e-01 3.97047937e-01 4.03617956e-02 2.19477788e-01 -3.26868221e-02 5.01060486e-01 -1.18862069e+00 3.64262313e-01 2.17963979e-01 3.26942265e-01 -1.35326159e+00 -9.18075919e-01 -5.93231678e-01 6.35363683e-02 -1.05055436e-01 -1.06711137e+00 1.36774969e+00 -8.90151262e-01 -2.43486166e+00 3.12969893e-01 1.15124501e-01 -4.11086947e-01 4.94397014e-01 -3.09956461e-01 -4.78624165e-01 3.55119593e-02 -3.15751433e-01 5.68645239e-01 1.37817085e+00 -1.36003613e+00 -3.92851233e-01 -1.06785342e-01 -4.74653423e-01 4.52041179e-01 -3.69127631e-01 -9.11088437e-02 -1.43368378e-01 -1.15227997e+00 -2.48213142e-01 -8.76614034e-01 5.49535118e-02 -6.35114372e-01 -5.71497679e-01 -4.31775972e-02 7.59634376e-01 -1.18194354e+00 1.18688262e+00 -2.28273726e+00 6.56643689e-01 9.43015516e-02 2.81674252e-03 5.27702570e-01 -2.29147956e-01 2.69644588e-01 1.13204056e-02 -2.63466746e-01 -4.23308134e-01 -8.08551073e-01 2.95323908e-01 7.89306685e-02 -5.03397822e-01 2.36865327e-01 1.74405612e-02 8.32045376e-01 -5.82164347e-01 -3.03389102e-01 2.56312907e-01 8.11119020e-01 -8.67402256e-01 8.72746468e-01 -1.57693148e-01 9.73656952e-01 6.26499532e-04 5.25648713e-01 2.59318560e-01 7.42903173e-01 -9.29513201e-02 -6.08173832e-02 8.08764100e-02 2.40401760e-01 -1.18149006e+00 1.84145164e+00 -7.48016953e-01 2.62671322e-01 7.12590992e-01 -5.64929128e-01 1.22608364e+00 7.91162312e-01 3.20353389e-01 -1.94688335e-01 2.76102126e-02 5.68136394e-01 1.97310269e-01 -2.52910584e-01 6.22315824e-01 -7.18679249e-01 1.92776680e-01 -7.26118833e-02 5.12426019e-01 -8.13278198e-01 -3.91660035e-01 -3.93342078e-01 8.35788310e-01 3.59151095e-01 -2.46524930e-01 -1.30739614e-01 6.66659057e-01 -5.92440009e-01 6.00349963e-01 4.15895492e-01 5.12044691e-02 9.27557170e-01 -9.11482424e-02 3.07099402e-01 -1.23124945e+00 -1.36512876e+00 1.84518725e-01 9.83543396e-01 -6.55208230e-01 -1.95476010e-01 -1.24581540e+00 -1.31464720e-01 -3.39136213e-01 1.10412896e+00 -7.20493942e-02 -6.46733167e-03 -7.96222866e-01 -5.21236099e-02 1.13648391e+00 2.85229415e-01 2.48826697e-01 -1.50560117e+00 6.40541539e-02 5.50103784e-01 -1.86034307e-01 -7.65578747e-01 -9.25372064e-01 -1.00830905e-01 -5.90605795e-01 -3.16322803e-01 -1.18933415e+00 -8.67237926e-01 -1.04903594e-01 -5.94916403e-01 8.19140911e-01 -5.56517065e-01 1.13279231e-01 3.47672522e-01 -5.93677349e-02 -2.34099716e-01 -1.11015236e+00 4.38002287e-04 5.21972060e-01 3.33592147e-01 -5.13030767e-01 -1.12840462e+00 -6.24262333e-01 1.45849228e-01 -9.75404084e-01 -1.69267744e-01 2.88949400e-01 1.23252380e+00 8.42599571e-01 1.35810703e-01 9.50257480e-01 -4.05657917e-01 9.87646222e-01 -7.49433711e-02 -4.94988173e-01 -2.11741075e-01 -4.13411617e-01 -2.90570557e-01 1.08351064e+00 -4.81044948e-01 -1.21509159e+00 -1.43414944e-01 -9.88633096e-01 -9.17930484e-01 -1.02486219e-02 1.07835695e-01 -5.90041518e-01 2.06795558e-01 4.98955190e-01 4.54606026e-01 6.03517964e-02 -6.21361315e-01 6.29076123e-01 1.02104855e+00 1.19043291e+00 -5.29173136e-01 9.35499668e-01 -2.22908333e-01 -1.10810153e-01 -1.07502007e+00 -4.24537361e-01 -1.33074015e-01 -2.93005079e-01 -3.75817329e-01 9.45604265e-01 -8.52513313e-01 -7.27480173e-01 6.20652616e-01 -1.07693207e+00 -5.01510322e-01 -8.11127841e-01 5.68007290e-01 -1.09880817e+00 3.75093877e-01 -8.58493447e-01 -1.19425082e+00 -8.65973353e-01 -1.29604423e+00 9.24653053e-01 4.22179587e-02 -2.37641841e-01 -7.67735302e-01 4.06028479e-01 7.71343827e-01 6.22841835e-01 4.15219784e-01 6.49649084e-01 -2.93556005e-01 -2.46825144e-01 -4.96939830e-02 6.93580747e-01 1.25296795e+00 -1.45259455e-05 4.41790223e-02 -1.42721641e+00 -3.14392030e-01 4.52971727e-01 -3.10319304e-01 5.85867465e-01 5.72078347e-01 7.28999674e-01 -4.82729226e-01 7.26264834e-01 8.00065100e-01 1.00919175e+00 2.83444196e-01 7.01767266e-01 -3.28092545e-01 8.90349627e-01 6.07359886e-01 4.16984797e-01 2.68769056e-01 -2.24427551e-01 8.10506165e-01 3.87401551e-01 -1.22414023e-01 -8.75836968e-01 -6.80286229e-01 7.94482052e-01 1.72530079e+00 -2.59994537e-01 -2.82043576e-01 -2.53295094e-01 4.52805787e-01 -1.32819033e+00 -9.87877905e-01 8.97149295e-02 2.13816047e+00 8.06516111e-01 -1.87140539e-01 2.49923766e-01 5.67071676e-01 6.48963928e-01 4.17614669e-01 -5.20758212e-01 -6.81247234e-01 -2.06406102e-01 6.14095867e-01 -8.75023082e-02 5.96779108e-01 -7.04811096e-01 9.21815097e-01 5.45912743e+00 1.35778773e+00 -1.03000855e+00 3.83366376e-01 3.62689346e-01 -3.48122030e-01 -5.60738146e-01 -4.52662110e-01 -6.59381866e-01 3.00364435e-01 1.34497070e+00 1.94034040e-01 1.06284893e+00 7.06332386e-01 4.71477687e-01 8.26137960e-01 -7.43912637e-01 8.27893734e-01 -5.76182865e-02 -1.10251272e+00 2.91250367e-03 5.00783809e-02 7.79626667e-01 -2.03162208e-01 5.46634793e-01 3.83154452e-01 -1.48589369e-02 -1.17610252e+00 1.25813019e+00 6.38306916e-01 1.30413449e+00 -9.45425808e-01 3.91297668e-01 3.98564696e-01 -1.05222154e+00 8.51044655e-02 1.24289609e-01 4.01192963e-01 5.18677890e-01 2.72718579e-01 -9.11244154e-01 6.05769038e-01 2.47934058e-01 1.49886176e-01 2.27695182e-01 5.20223200e-01 -3.53936642e-01 1.35143197e+00 -1.92132890e-01 2.56156683e-01 2.74306506e-01 -3.30374897e-01 1.22303927e+00 1.09839618e+00 6.70082450e-01 -1.33579239e-01 -3.34546775e-01 1.15962291e+00 -3.27625215e-01 2.62253016e-01 -5.05264342e-01 -3.53313267e-01 2.95028448e-01 1.11535847e+00 1.09053209e-01 -2.76777074e-02 1.23182878e-01 9.61882710e-01 -5.44662327e-02 3.38036031e-01 -8.41709971e-01 -3.51308405e-01 7.15520740e-01 1.81742415e-01 3.60664099e-01 -2.94920236e-01 -8.22794586e-02 -7.38173187e-01 -1.04556039e-01 -1.33748019e+00 -1.29593402e-01 -7.55460143e-01 -1.14080048e+00 1.05834317e+00 -6.34421885e-01 -1.21393502e+00 -7.14865208e-01 -2.94040531e-01 -8.12550366e-01 1.17200267e+00 -1.16542470e+00 -1.37744319e+00 1.87513128e-01 5.89620769e-01 8.42786551e-01 -6.85044050e-01 9.60395932e-01 3.91801924e-01 -3.24757785e-01 7.93422759e-01 3.31624389e-01 -1.59402847e-01 6.12424433e-01 -1.42400801e+00 3.83372188e-01 9.18157876e-01 3.51111680e-01 2.65171438e-01 9.18472886e-01 -3.62672508e-01 -1.37140226e+00 -1.20561814e+00 4.25706595e-01 -1.08202405e-01 4.81282175e-01 -2.18711704e-01 -7.64454186e-01 1.32100940e-01 5.54648221e-01 -2.27035910e-01 6.33127570e-01 -3.39766234e-01 9.33252461e-03 -3.02096516e-01 -1.19450140e+00 5.83588362e-01 8.16135466e-01 -6.52342558e-01 -6.42437518e-01 -2.07511298e-02 9.09487009e-01 -3.35088253e-01 -1.17133927e+00 4.02252942e-01 4.06332493e-01 -9.22715902e-01 9.74187732e-01 -3.62316012e-01 5.06373048e-01 -4.53891098e-01 -4.57373142e-01 -1.60531151e+00 -2.67671436e-01 -1.39699268e+00 -2.89625138e-01 1.77089536e+00 4.01627332e-01 -1.27738640e-01 3.97238493e-01 1.36700213e-01 -7.78958201e-01 -4.78173375e-01 -1.22989476e+00 -8.42518210e-01 2.61232406e-01 -5.90882838e-01 5.35204649e-01 4.70002979e-01 -5.31814933e-01 4.63766187e-01 -9.95271921e-01 1.55762538e-01 7.36530244e-01 -1.38552278e-01 9.84875321e-01 -6.49687946e-01 -9.41437960e-01 -4.41570044e-01 -3.29347118e-03 -8.29760432e-01 2.83715665e-01 -9.34911370e-01 3.79830271e-01 -1.18552423e+00 -5.73054731e-01 -1.49315894e-01 -4.22118634e-01 -7.28196353e-02 -1.84261128e-01 4.85659957e-01 5.00552654e-01 6.09102100e-02 5.18907718e-02 1.16310322e+00 1.69538534e+00 -8.85714442e-02 -4.28022504e-01 4.23862070e-01 -2.81690449e-01 6.51400447e-01 5.35911202e-01 -3.27296346e-01 -3.44214648e-01 -1.40749127e-01 -5.14180541e-01 7.26325989e-01 1.47688657e-01 -1.19361758e+00 1.03907868e-01 3.37775320e-01 -5.36563694e-02 -4.43143368e-01 1.03657365e+00 -6.03602409e-01 5.73872745e-01 2.71052420e-01 -4.28485930e-01 -4.37031716e-01 4.72596698e-02 4.68384802e-01 -5.85066438e-01 -9.67217013e-02 1.11069942e+00 1.97711855e-01 -1.31983003e-02 8.94299969e-02 -2.50492960e-01 7.74381235e-02 5.69325209e-01 -4.42012362e-02 3.70756507e-01 -5.62599957e-01 -9.10546958e-01 -4.32818681e-01 -6.30854890e-02 2.69804418e-01 6.38300717e-01 -1.55232894e+00 -1.12245905e+00 2.79685915e-01 -3.43742341e-01 -7.83732533e-02 6.37876093e-01 5.80808222e-01 -4.74526584e-01 2.06622615e-01 -1.59259439e-02 -2.98541486e-01 -1.13269520e+00 1.76991493e-01 5.59765816e-01 -2.43754461e-01 -7.04455256e-01 9.13069427e-01 1.02364138e-01 -6.61366880e-01 4.31929559e-01 1.44912256e-02 -3.65506820e-02 -3.09188783e-01 1.71136916e-01 6.49343312e-01 -1.74240783e-01 -6.91777110e-01 1.52872175e-01 3.39760691e-01 5.71572423e-01 -6.59856379e-01 1.36782885e+00 -5.31700589e-02 1.23297393e-01 5.50448835e-01 9.25942898e-01 7.72641540e-01 -1.41482437e+00 6.79605231e-02 -5.12597978e-01 -2.22702473e-01 4.05414730e-01 -7.02336907e-01 -1.20463085e+00 9.19035494e-01 4.21132505e-01 -3.19502875e-02 1.21669126e+00 -3.77518892e-01 1.30917847e+00 -4.74997647e-02 -5.75138964e-02 -1.06002259e+00 -2.79861339e-03 3.34382415e-01 1.37612247e+00 -5.96453428e-01 -7.43811727e-01 1.48399072e-02 -9.78057861e-01 9.56381440e-01 1.83609515e-01 -3.47430885e-01 5.36972165e-01 3.88272375e-01 2.81853884e-01 2.65607983e-01 -3.89268517e-01 1.27008796e-01 6.34667456e-01 5.54590404e-01 3.85341674e-01 1.73709586e-01 -8.05393904e-02 1.08337808e+00 -7.73607492e-01 -9.21480134e-02 -1.50266173e-03 -9.11891554e-03 -2.06212461e-01 -1.01040876e+00 -5.29902399e-01 -8.43050629e-02 -7.36102164e-01 -3.10046136e-01 -1.79577932e-01 2.57283390e-01 1.25229806e-01 1.16950834e+00 -2.84410685e-01 -6.43797219e-01 5.77477217e-01 3.35467786e-01 3.96842092e-01 -2.71565914e-01 -1.16853356e+00 7.13813066e-01 1.67124674e-01 -2.55588055e-01 -1.42520040e-01 -4.30268586e-01 -1.01052046e+00 -9.84881073e-02 -1.97724760e-01 2.81460464e-01 7.10086524e-01 6.00902617e-01 1.84977859e-01 1.15652013e+00 1.06846845e+00 -8.01822603e-01 -9.92290378e-01 -1.36061406e+00 -1.10985124e+00 3.11469495e-01 2.52282679e-01 -7.93357566e-02 -5.00285268e-01 1.51433021e-01]
[15.515559196472168, 6.167105197906494]
42b84c4e-d2f0-46f8-9b56-ce97949c57df
decomposing-normal-and-abnormal-features-of
2011.06224
null
https://arxiv.org/abs/2011.06224v1
https://arxiv.org/pdf/2011.06224v1.pdf
Decomposing Normal and Abnormal Features of Medical Images for Content-based Image Retrieval
Medical images can be decomposed into normal and abnormal features, which is considered as the compositionality. Based on this idea, we propose an encoder-decoder network to decompose a medical image into two discrete latent codes: a normal anatomy code and an abnormal anatomy code. Using these latent codes, we demonstrate a similarity retrieval by focusing on either normal or abnormal features of medical images.
['Ryuji Hamamoto', 'Tatsuya Harada', 'Yusuke Kurose', 'Ryuichiro Hataya', 'Kazuma Kobayashi']
2020-11-12
null
null
null
null
['content-based-image-retrieval']
['computer-vision']
[ 5.62546551e-01 2.47152030e-01 -4.91149843e-01 -4.74274337e-01 -6.01885200e-01 -3.58128458e-01 5.48588336e-01 3.64126116e-01 -2.00859625e-02 1.64797723e-01 7.05029607e-01 -3.22198682e-02 -1.35793179e-01 -6.10769570e-01 -2.66446471e-01 -7.81955719e-01 -1.96998313e-01 4.30358797e-01 -5.55704534e-02 3.66047561e-01 -1.67209670e-01 1.83418557e-01 -1.30967426e+00 7.30822623e-01 7.24081039e-01 9.74671423e-01 1.04967803e-01 5.12149751e-01 -2.95170788e-02 8.23877811e-01 -4.50170726e-01 -2.70695031e-01 8.01094994e-02 -8.10057819e-01 -9.30050910e-01 2.14230061e-01 2.03670725e-01 -4.21090692e-01 -5.92404008e-01 1.46147835e+00 1.61053106e-01 -3.22568893e-01 8.80208254e-01 -1.02799833e+00 -1.27812731e+00 3.48839551e-01 -2.26412073e-01 5.36269322e-03 5.48419058e-01 -2.08797261e-01 1.31717396e+00 -5.39475262e-01 6.18848979e-01 1.01905036e+00 4.84985352e-01 4.68301564e-01 -1.08543539e+00 -3.31116974e-01 -1.04429305e-01 2.25930467e-01 -1.35616207e+00 -3.20173651e-01 5.69793224e-01 -5.68079174e-01 5.69540501e-01 2.82965213e-01 9.31359529e-01 8.87935460e-01 9.05354321e-01 9.76711452e-01 7.39275277e-01 -1.56863645e-01 -2.52561029e-02 -2.04699591e-01 -2.04535872e-02 1.15292966e+00 2.28788882e-01 1.38559923e-01 -2.76938349e-01 -4.70549375e-01 7.20407546e-01 6.25230670e-01 -4.41085100e-01 -3.37994903e-01 -1.48938274e+00 1.16106319e+00 4.39334661e-01 3.64514887e-01 -4.07957524e-01 1.67252887e-02 6.76670849e-01 3.09417874e-01 1.37219384e-01 8.69957507e-02 2.43473157e-01 2.01094568e-01 -9.29338634e-01 -2.77579397e-01 5.52961767e-01 9.22787130e-01 2.77427077e-01 -2.37122789e-01 -2.25493476e-01 8.18273246e-01 7.96226025e-01 4.49075907e-01 1.15356815e+00 -7.82779396e-01 -1.14322295e-02 7.68196523e-01 -4.88853157e-01 -1.43777025e+00 -9.61064696e-02 -3.82385194e-01 -1.26654375e+00 -2.93918788e-01 -5.74325144e-01 6.37918353e-01 -1.20510018e+00 1.66240227e+00 -8.27226415e-02 1.70955390e-01 3.53295624e-01 7.47476280e-01 1.17632127e+00 5.15033245e-01 5.10143582e-04 -3.29288840e-01 1.52831233e+00 -1.16114140e+00 -1.15374219e+00 4.75710854e-02 3.87353241e-01 -9.40875232e-01 4.78023022e-01 1.56644970e-01 -1.36708796e+00 -4.08892483e-01 -1.19793797e+00 -2.10749075e-01 -9.00467932e-02 1.57223344e-01 7.54379809e-01 2.00377569e-01 -9.28147554e-01 3.12638074e-01 -1.09520364e+00 -1.12582624e-01 2.88881123e-01 2.41632715e-01 -7.19643056e-01 -8.91265571e-02 -1.12853718e+00 6.45303905e-01 1.96940362e-01 7.83679262e-02 -1.11513567e+00 -3.01587105e-01 -1.22750139e+00 7.34822378e-02 -3.42116207e-01 -8.60387504e-01 1.21490049e+00 -7.89956629e-01 -1.17295539e+00 1.37481594e+00 -1.93140298e-01 -2.45915368e-01 2.61784762e-01 3.72678429e-01 -8.41363788e-01 7.46474087e-01 5.19182384e-01 6.35492146e-01 8.35336506e-01 -8.82910073e-01 -5.04386783e-01 -2.29774222e-01 -2.60257348e-02 1.94114655e-01 -3.62319231e-01 -1.18844308e-01 -4.38366741e-01 -9.41485465e-01 8.17219079e-01 -7.51336753e-01 -2.75990814e-01 3.91503841e-01 -4.90298629e-01 1.41653031e-01 5.26276052e-01 -6.06772065e-01 1.17751145e+00 -2.49220562e+00 3.16289306e-01 2.95155764e-01 8.55793297e-01 -2.13420391e-01 -1.81618258e-01 2.10994899e-01 -5.34425557e-01 4.07759286e-02 -3.51949751e-01 -1.62814409e-01 -1.06163442e-01 4.11374807e-01 -2.12791920e-01 6.90698147e-01 -4.46274392e-02 1.06507921e+00 -1.03715634e+00 -8.88115823e-01 -1.36022091e-01 3.34295779e-01 -5.26381731e-01 3.69026572e-01 4.87516493e-01 3.50559324e-01 -5.12245357e-01 7.93289125e-01 4.29481596e-01 -5.89839697e-01 1.31203711e-01 -4.16496813e-01 3.15900385e-01 1.85221404e-01 -5.22163570e-01 2.01971960e+00 -1.56398803e-01 3.31389487e-01 1.53023124e-01 -1.04921865e+00 6.33119702e-01 7.23892391e-01 9.63889062e-01 -4.57623690e-01 1.00438140e-01 3.28623414e-01 -1.87926795e-02 -6.18558466e-01 2.15413719e-02 -5.59580922e-01 -1.99090958e-01 4.11310703e-01 1.52847692e-01 5.97719587e-02 4.55664322e-02 2.73212552e-01 1.32109892e+00 -4.65532392e-01 3.88603061e-01 -1.63576007e-01 7.40919530e-01 -2.01320544e-01 5.81304371e-01 3.76139075e-01 -2.81778991e-01 7.61736929e-01 6.10711575e-01 -6.70926630e-01 -9.39256489e-01 -1.66233206e+00 -4.81073946e-01 4.35647756e-01 2.13730738e-01 -6.98841274e-01 -3.83736789e-01 -7.68398166e-01 -5.69510087e-02 -1.48072287e-01 -8.35167706e-01 -8.99369717e-01 -1.92168355e-01 -5.15969217e-01 6.23406947e-01 5.09796381e-01 5.38686752e-01 -7.53599286e-01 -5.69826186e-01 -3.92855480e-02 -2.78671354e-01 -7.23179758e-01 -1.05702841e+00 1.42762810e-01 -7.59807944e-01 -9.85278308e-01 -1.02807295e+00 -1.23708677e+00 1.21807694e+00 1.41894236e-01 1.07805872e+00 4.35623407e-01 -7.70357251e-01 4.87041384e-01 -5.99892259e-01 1.69737414e-01 -7.97443330e-01 -2.12035835e-01 3.30392234e-02 1.82080150e-01 9.98211130e-02 -6.99250519e-01 -9.05771434e-01 1.28626749e-01 -1.24996591e+00 4.04323399e-01 1.04219532e+00 1.00208127e+00 7.95301139e-01 -1.75204530e-01 -5.52825034e-02 -7.46452749e-01 5.99727631e-01 -6.21496439e-01 -5.78085380e-03 5.24936855e-01 -6.52141869e-01 2.23663330e-01 4.59522247e-01 -2.65430719e-01 -4.70808834e-01 2.53312200e-01 -1.28759831e-01 -5.56240678e-01 -3.08531467e-02 7.25858092e-01 7.84043595e-02 -4.02803794e-02 3.80800217e-01 7.14726508e-01 1.57999218e-01 -3.70273978e-01 3.58389735e-01 8.19589436e-01 6.88588202e-01 -1.99199572e-01 4.45841879e-01 6.28408134e-01 7.45557249e-02 -3.39402854e-01 -8.25794995e-01 -5.17566621e-01 -6.99790359e-01 9.55762267e-02 1.28544831e+00 -8.35346043e-01 -3.90364558e-01 -1.20935731e-01 -1.01372349e+00 4.13384676e-01 -4.99037892e-01 6.21401310e-01 -5.73552907e-01 8.23056996e-01 -1.06317055e+00 1.62094668e-01 -4.21672672e-01 -1.41596091e+00 1.26706219e+00 -1.30626559e-01 -3.01832408e-01 -1.13253748e+00 2.57271528e-01 -1.02234311e-01 2.58531421e-01 2.25142077e-01 1.31407201e+00 -6.42605603e-01 -3.04307550e-01 -6.26769066e-01 -2.67577082e-01 2.67667443e-01 5.97940803e-01 -7.13479742e-02 -2.86816597e-01 -4.33102161e-01 2.92243659e-01 -2.18445078e-01 8.44175220e-01 2.20601484e-01 1.06288874e+00 -4.36636031e-01 -4.73026276e-01 1.06128168e+00 1.24060178e+00 2.60474294e-01 2.70280540e-01 -2.01830536e-01 4.75473315e-01 1.66272759e-01 4.33541201e-02 2.93770939e-01 4.68080878e-01 4.34735864e-01 2.40092725e-01 -3.70497614e-01 -1.57718658e-01 -2.69745111e-01 1.99614316e-01 1.44833302e+00 1.03319153e-01 2.92104959e-01 -9.81636345e-01 4.67786193e-01 -1.70685780e+00 -7.83620119e-01 1.73613355e-01 1.66827977e+00 1.03841460e+00 -1.24747954e-01 -4.83883291e-01 -2.34477296e-01 7.62885630e-01 2.41320431e-01 -5.07900417e-01 -1.92877471e-01 1.56175226e-01 -6.18435703e-02 1.36587352e-01 2.66351491e-01 -1.02442098e+00 3.24920893e-01 8.56212616e+00 6.77843988e-01 -1.26196635e+00 1.53996944e-01 4.53141212e-01 1.46334976e-01 -7.17561126e-01 -1.81240663e-01 -1.40204027e-01 4.95580763e-01 7.13665366e-01 -6.08052433e-01 3.38238925e-02 9.10104275e-01 -3.75385195e-01 4.28302765e-01 -1.26546657e+00 1.18889654e+00 5.40777981e-01 -1.38901377e+00 8.45427871e-01 8.63336474e-02 5.59638619e-01 -3.79128456e-01 3.08660924e-01 5.45612872e-02 1.73965484e-01 -1.10611796e+00 5.99721611e-01 7.11430967e-01 1.24126375e+00 -2.21405059e-01 7.25269794e-01 7.07466677e-02 -1.59256446e+00 -7.40718469e-03 -3.38903219e-01 4.58687693e-01 -6.16084039e-02 2.93101013e-01 -2.56791502e-01 6.57239139e-01 3.24199528e-01 1.14941430e+00 -4.67993081e-01 9.51025486e-01 -1.96236953e-01 1.68240979e-01 1.47199661e-01 7.11385190e-01 2.64786214e-01 -8.93857628e-02 2.78871179e-01 1.10940611e+00 3.33446413e-01 1.43806085e-01 6.20806634e-01 1.02533984e+00 5.19215362e-03 7.34585226e-02 -6.40431762e-01 -8.22666362e-02 -2.95115076e-02 1.29931545e+00 -9.43675101e-01 -6.19024098e-01 -4.76005703e-01 1.47975397e+00 -2.44556680e-01 9.24763232e-02 -7.99969792e-01 -3.79857540e-01 3.80866617e-01 -1.89303398e-01 -1.77260593e-01 2.37458035e-01 -1.24817550e-01 -1.49443078e+00 -5.61094917e-02 -7.47118771e-01 6.09801054e-01 -6.83980584e-01 -1.34276879e+00 9.55284715e-01 1.43396333e-01 -1.72735882e+00 -1.58717245e-01 -4.25715208e-01 -4.60257977e-01 5.61979234e-01 -1.33180213e+00 -1.28214800e+00 -4.91465002e-01 7.92967975e-01 2.06417441e-01 -5.10001004e-01 1.32010090e+00 5.20275891e-01 -1.55594304e-01 6.16895199e-01 1.23815082e-01 4.02388185e-01 6.19055688e-01 -1.27119946e+00 6.83872923e-02 4.29442555e-01 1.74383167e-02 1.00700176e+00 1.92519069e-01 -6.05953217e-01 -9.07598972e-01 -7.97458112e-01 7.70441413e-01 7.24101067e-02 4.72163856e-01 -6.68641999e-02 -7.22780347e-01 8.16239536e-01 2.61551678e-01 3.43489647e-01 1.27186120e+00 -3.28569323e-01 -4.66059446e-01 7.52452910e-02 -1.05238390e+00 5.30941486e-01 9.10134971e-01 -7.98621535e-01 -9.60845768e-01 5.36396921e-01 9.29656982e-01 -4.53077018e-01 -1.13183749e+00 6.05236530e-01 6.70628607e-01 -6.48889124e-01 9.82255220e-01 -5.94347894e-01 8.11423779e-01 1.00397561e-02 -1.64274246e-01 -1.03052926e+00 -7.52087772e-01 -1.08793184e-01 4.93835695e-02 5.38489759e-01 1.95106208e-01 -5.00139117e-01 7.35981464e-01 3.34031880e-01 -3.04580837e-01 -9.62413192e-01 -1.01064193e+00 -5.91423810e-01 -1.18817352e-01 5.23844063e-02 4.29285258e-01 1.16986763e+00 3.23736846e-01 9.90381464e-02 -1.25015318e-01 -9.24489200e-02 3.41968060e-01 4.08224702e-01 -1.85801342e-01 -1.09328318e+00 -1.75816655e-01 -5.91891229e-01 -9.62689877e-01 -1.04286945e+00 1.73888177e-01 -1.55007863e+00 6.08274676e-02 -1.62349546e+00 8.22767138e-01 5.63108921e-03 -6.39264822e-01 7.57970631e-01 1.32437676e-01 5.65942466e-01 -1.17678717e-01 7.77757525e-01 -8.54253471e-01 5.64116240e-01 1.18272161e+00 -3.72611195e-01 2.59084940e-01 -1.74770430e-01 -5.67990065e-01 8.48425031e-01 3.77126038e-01 -5.89282990e-01 -3.22494447e-01 -3.27278018e-01 3.11267197e-01 4.37259763e-01 1.02935150e-01 -9.14686918e-01 2.92888343e-01 2.72523481e-02 2.19471201e-01 -4.09118593e-01 1.10144965e-01 -9.30159330e-01 1.08193524e-01 1.06590927e+00 -7.77727008e-01 3.49212140e-01 -1.97993234e-01 4.94098663e-01 -9.59788084e-01 -2.10617691e-01 5.25538087e-01 -3.90840769e-01 -3.67243141e-01 6.50795698e-01 -6.46006763e-01 -3.27988386e-01 9.61143911e-01 -2.00280964e-01 -5.84226586e-02 -3.06943744e-01 -1.32940483e+00 7.53720924e-02 3.21641624e-01 3.93493772e-01 1.15766990e+00 -1.99101734e+00 -6.71841800e-01 6.44932330e-01 4.48344529e-01 -3.05919409e-01 3.21062148e-01 1.15769637e+00 -9.12511349e-01 5.53993046e-01 -5.58233321e-01 -6.93814099e-01 -1.46994555e+00 6.08253896e-01 3.49565625e-01 -4.34747845e-01 -8.25824618e-01 6.76380038e-01 4.96034235e-01 -1.00583605e-01 2.29180261e-01 -2.41262734e-01 -2.73875207e-01 1.60312410e-02 4.60163027e-01 -3.42667997e-01 -3.35766613e-01 -8.71207416e-01 -4.21146005e-01 7.77363658e-01 -2.41496846e-01 2.99640396e-03 9.74899888e-01 5.18922918e-02 -6.74525857e-01 3.37183356e-01 1.80618322e+00 -4.49629016e-02 -5.52988827e-01 -4.04517978e-01 -1.77801907e-01 -4.42303419e-01 -1.67606156e-02 -3.73516142e-01 -1.17488980e+00 8.34301412e-01 8.12303722e-01 2.32772425e-01 1.23380184e+00 2.97123313e-01 9.12953019e-01 2.12253973e-01 1.34220243e-01 -6.19956493e-01 2.49396175e-01 2.73521185e-01 9.72402453e-01 -1.00856149e+00 1.88383907e-01 -3.72272730e-01 -6.59759939e-01 1.20737541e+00 1.27352700e-02 -1.97430566e-01 9.71383154e-01 1.61810145e-01 1.30488440e-01 -5.81973016e-01 -8.03568363e-01 -8.34392458e-02 6.14411533e-01 2.42269561e-01 5.22491872e-01 1.00813165e-01 -4.36931163e-01 5.27923286e-01 -1.01021342e-01 -3.42587605e-02 1.03586935e-01 9.47600722e-01 -2.53041774e-01 -1.04678047e+00 -1.79908723e-01 6.32207513e-01 -8.20485055e-01 -2.60214567e-01 -2.31989026e-01 5.58472611e-02 3.12077552e-01 4.13070470e-01 1.23415835e-01 -5.80306888e-01 1.19131051e-01 1.00241853e-02 2.68915683e-01 -1.06041157e+00 -3.65208834e-01 1.16003700e-01 -5.26285648e-01 -6.64860904e-01 -3.08745384e-01 -3.94873619e-01 -1.31397343e+00 1.21404223e-01 -5.82817085e-02 4.12688375e-01 3.69009793e-01 7.40360677e-01 2.14999348e-01 7.86112785e-01 4.93280113e-01 -3.29048246e-01 -4.99061972e-01 -6.62882984e-01 -6.32892787e-01 8.18176270e-01 5.32239735e-01 -4.49220955e-01 -3.64891142e-01 4.11523908e-01]
[14.600654602050781, -1.742917776107788]
05b59ae1-32e6-49cd-add8-db12073afac3
inferring-player-location-in-sports-matches
2302.06569
null
https://arxiv.org/abs/2302.06569v1
https://arxiv.org/pdf/2302.06569v1.pdf
Inferring Player Location in Sports Matches: Multi-Agent Spatial Imputation from Limited Observations
Understanding agent behaviour in Multi-Agent Systems (MAS) is an important problem in domains such as autonomous driving, disaster response, and sports analytics. Existing MAS problems typically use uniform timesteps with observations for all agents. In this work, we analyse the problem of agent location imputation, specifically posed in environments with non-uniform timesteps and limited agent observability (~95% missing values). Our approach uses Long Short-Term Memory and Graph Neural Network components to learn temporal and inter-agent patterns to predict the location of all agents at every timestep. We apply this to the domain of football (soccer) by imputing the location of all players in a game from sparse event data (e.g., shots and passes). Our model estimates player locations to within ~6.9m; a ~62% reduction in error from the best performing baseline. This approach facilitates downstream analysis tasks such as player physical metrics, player coverage, and team pitch control. Existing solutions to these tasks often require optical tracking data, which is expensive to obtain and only available to elite clubs. By imputing player locations from easy to obtain event data, we increase the accessibility of downstream tasks.
['Sarvapali D. Ramchurn', 'Timothy J. Norman', 'Joseph Early', 'Tim Matthews', 'Ryan J. Beal', 'Gregory Everett']
2023-02-13
null
null
null
null
['pitch-control', 'sports-analytics']
['audio', 'computer-vision']
[-1.63389713e-01 -5.32250963e-02 -1.85233042e-01 1.22694537e-01 -6.96825087e-01 -6.47892833e-01 5.87293983e-01 4.50827926e-01 -7.77706206e-01 9.37318087e-01 3.09843779e-01 4.38166112e-02 -4.87363160e-01 -8.83023739e-01 -9.82386649e-01 -4.22493219e-01 -4.22430009e-01 1.09511101e+00 5.02863705e-01 -5.47606647e-01 2.30522245e-01 4.38960910e-01 -1.50788128e+00 1.59235194e-01 4.02508467e-01 4.51591104e-01 9.69627574e-02 1.17672896e+00 4.04691964e-01 1.62625325e+00 -7.90856659e-01 6.92251474e-02 4.74819869e-01 -1.84977025e-01 -6.82490826e-01 4.60271537e-02 6.58348724e-02 -4.93595302e-01 -8.07827473e-01 4.03906137e-01 4.73062098e-01 8.00788641e-01 5.61878085e-01 -1.76797855e+00 -2.92622477e-01 5.63677788e-01 -9.64444041e-01 5.02663553e-01 2.11825386e-01 7.06136227e-01 6.95530713e-01 -2.21390985e-02 6.43360257e-01 7.99263060e-01 1.02792549e+00 1.60655573e-01 -1.09993732e+00 -4.66593504e-01 1.38231173e-01 4.57092166e-01 -1.35602129e+00 -4.21169728e-01 2.75281042e-01 -7.06155896e-01 1.21966779e+00 1.03912801e-01 6.45059824e-01 9.63888049e-01 1.96364537e-01 5.70946872e-01 7.11217999e-01 4.68338653e-02 2.39369795e-01 -4.78361905e-01 8.45942367e-03 5.76065779e-01 -7.13313892e-02 2.43005782e-01 -1.04986453e+00 -6.73549399e-02 8.45198572e-01 1.52376533e-01 4.30056602e-01 -4.93670441e-02 -1.45808613e+00 7.82607734e-01 3.83154720e-01 -6.57071590e-01 -6.55739188e-01 4.93458509e-01 4.02269065e-01 1.97700948e-01 4.44936782e-01 5.18182218e-01 -2.09108025e-01 -7.74564147e-01 -7.68370330e-01 7.88237631e-01 7.54363179e-01 9.05766070e-01 5.25529981e-01 1.76828891e-01 -8.39608237e-02 4.94041204e-01 -9.22152251e-02 4.16752130e-01 7.85544813e-02 -1.22736394e+00 6.86918139e-01 5.66365361e-01 4.88406748e-01 -8.78168225e-01 -1.03715622e+00 -2.64644325e-01 -5.35683572e-01 5.20022094e-01 8.79271328e-01 -8.50306153e-01 -9.01002824e-01 1.78581810e+00 6.12858176e-01 8.84826660e-01 -2.38476284e-02 1.24117947e+00 6.51796937e-01 6.01374388e-01 -1.33999586e-02 2.14483276e-01 1.17290223e+00 -9.49824989e-01 -3.53629678e-01 -6.08539283e-01 7.92403162e-01 -4.62388605e-01 5.41002989e-01 2.16794401e-01 -9.49574292e-01 -2.45710567e-01 -7.14821339e-01 7.02600926e-02 -3.21957290e-01 -1.56739831e-01 6.98819101e-01 5.83450608e-02 -7.18791425e-01 3.77162069e-01 -1.18762410e+00 -1.60571426e-01 1.54668808e-01 6.21527851e-01 -3.49104911e-01 1.23583637e-01 -9.49280143e-01 1.15224874e+00 3.41079012e-02 1.55310363e-01 -1.29437029e+00 -8.95891547e-01 -9.89664555e-01 -2.98001200e-01 7.51033366e-01 -5.32560408e-01 1.30789638e+00 -3.63036811e-01 -1.23291755e+00 2.55653948e-01 1.27257615e-01 -7.48212218e-01 4.91021484e-01 -1.27681261e-02 -1.93750918e-01 -3.22420776e-01 5.22773683e-01 4.43951100e-01 3.89654785e-01 -8.85670304e-01 -1.10395312e+00 -3.67927790e-01 3.01138908e-01 5.92496932e-01 1.91033185e-01 -9.33241323e-02 -2.11816564e-01 -2.76288509e-01 -2.07924873e-01 -1.35086119e+00 -5.49741507e-01 -4.24676716e-01 -4.32489544e-01 -1.54892327e-02 5.65124273e-01 -8.52472246e-01 8.56670797e-01 -1.88381863e+00 5.05068600e-01 1.75260574e-01 3.78172040e-01 -4.35493350e-01 -3.08633566e-01 7.08133519e-01 4.69131112e-01 -6.17375493e-01 1.47503406e-01 -4.89768982e-01 2.36118749e-01 2.85962462e-01 -1.96640454e-02 8.27152431e-01 -1.35643944e-01 8.80016625e-01 -8.05465460e-01 -1.97694376e-01 3.55856299e-01 2.28186369e-01 -4.23651606e-01 -1.18677497e-01 -3.69118094e-01 6.04855597e-01 -1.96377322e-01 5.20778418e-01 1.34226903e-01 -4.50645760e-02 -2.72942870e-03 4.09730047e-01 -4.09963310e-01 1.83381379e-01 -1.44032109e+00 1.90353584e+00 -3.59205395e-01 8.00193012e-01 2.94010043e-01 -7.71845460e-01 5.80365896e-01 1.36020720e-01 1.03840113e+00 -6.85741127e-01 2.72649694e-02 -2.75073290e-01 2.78636068e-01 -5.22739589e-01 1.10541177e+00 1.56741381e-01 -6.15122437e-01 8.00014794e-01 -3.49635601e-01 1.16904005e-01 5.59751630e-01 1.68328822e-01 1.74561775e+00 2.13296688e-03 -2.30731085e-01 1.94824368e-01 -4.63191420e-01 9.11404848e-01 5.93704820e-01 9.68898058e-01 -2.23309115e-01 5.69526136e-01 4.99859661e-01 -7.02410817e-01 -1.25304043e+00 -8.77040088e-01 5.54195940e-01 1.54866982e+00 3.43163550e-01 -2.18665570e-01 -5.24175584e-01 -1.56637788e-01 2.09143773e-01 2.85019547e-01 -6.66888773e-01 -1.63352594e-01 -8.12819660e-01 -1.07199645e+00 6.96360648e-01 6.62424564e-01 1.21949345e-01 -1.10713542e+00 -8.21830750e-01 5.41873157e-01 -3.55897218e-01 -1.05365086e+00 -4.22858357e-01 1.23105593e-01 -1.32831037e-01 -1.17144454e+00 -3.59910905e-01 -4.25436437e-01 2.00656652e-01 3.32774557e-02 1.18251336e+00 2.18198542e-02 -5.27729452e-01 2.47006983e-01 -2.11049438e-01 -6.17011786e-01 -8.27837288e-02 4.59938973e-01 4.12515432e-01 -2.18516022e-01 5.36799431e-01 -4.37147647e-01 -4.97303933e-01 2.48875469e-01 -3.77160877e-01 1.44835711e-01 3.35211962e-01 5.31836569e-01 5.39856315e-01 1.63915068e-01 6.02626562e-01 -5.17497599e-01 5.41916013e-01 -1.08119798e+00 -6.29713714e-01 -2.82898128e-01 -1.40156515e-03 -3.13922286e-01 3.83613080e-01 -6.88864887e-01 -6.32259905e-01 2.34053895e-01 3.09344321e-01 -2.21910492e-01 -4.25683141e-01 6.31143332e-01 4.30489153e-01 1.73755497e-01 8.13232660e-01 -1.31544936e-02 3.91896576e-01 -9.20176134e-02 1.99077070e-01 5.34512103e-01 9.31365609e-01 -5.39525330e-01 5.98839700e-01 6.24605417e-01 2.79345870e-01 -8.28068376e-01 -6.87893033e-01 -4.61165011e-01 -4.77441221e-01 -5.77950120e-01 7.78525770e-01 -1.22846663e+00 -1.41106606e+00 5.26233196e-01 -8.94273698e-01 -1.17900229e+00 -4.46384221e-01 7.30369866e-01 -8.51503611e-01 -1.10751167e-01 -9.01542127e-01 -7.87428260e-01 2.42044762e-01 -9.91044819e-01 1.11857760e+00 2.65349269e-01 -3.10949296e-01 -9.16274011e-01 4.49227631e-01 6.31884992e-01 9.23389047e-02 5.72468877e-01 1.22402146e-01 -4.32795107e-01 -6.19100511e-01 -1.99907899e-01 1.51529521e-01 -7.48044610e-01 -1.14102550e-01 -3.28502178e-01 -4.73033935e-01 -3.60224545e-01 -7.15993941e-01 -2.24261269e-01 5.97451031e-01 9.03351247e-01 7.48511791e-01 -6.64141327e-02 -5.15110850e-01 3.11922342e-01 9.28830385e-01 -6.90137446e-02 4.03531492e-01 7.63212562e-01 8.49796593e-01 8.06630909e-01 8.17146778e-01 8.44060183e-01 1.09990168e+00 9.54673409e-01 6.97625041e-01 -2.26733714e-01 -2.00169474e-01 -9.95809510e-02 3.21228772e-01 9.64781940e-02 -2.37069011e-01 -6.42799377e-01 -1.06120503e+00 1.10104311e+00 -2.47529888e+00 -1.24024093e+00 -5.73562980e-01 1.97333944e+00 3.72301310e-01 5.09179644e-02 8.18801403e-01 -1.97540402e-01 6.52813494e-01 -9.18030273e-03 -7.41130888e-01 -2.29311451e-01 2.34828684e-02 -2.88016140e-01 1.10684681e+00 6.29853249e-01 -1.20645261e+00 7.87350833e-01 5.97712278e+00 5.45899630e-01 -5.36276639e-01 1.87740296e-01 1.97540998e-01 -1.04831612e+00 4.86642897e-01 -1.24660194e-01 -7.82173991e-01 6.11330390e-01 1.34237766e+00 1.52217433e-01 8.18903208e-01 3.20685089e-01 7.50083625e-01 -4.05140996e-01 -1.02177918e+00 6.42133355e-01 -1.34551242e-01 -1.55821407e+00 -8.78187060e-01 4.31900203e-01 7.75725126e-01 5.51856399e-01 6.71512261e-02 4.70901519e-01 1.19663453e+00 -1.29292119e+00 7.70335793e-01 7.80717373e-01 5.02003312e-01 -1.13472688e+00 7.34972715e-01 8.01822484e-01 -1.19181609e+00 -2.78842866e-01 -1.33537859e-01 -9.29119229e-01 6.02480412e-01 -1.20580327e-02 -8.85045290e-01 1.37835234e-01 8.24860573e-01 7.26537883e-01 -2.52236754e-01 1.10100007e+00 3.46514374e-01 3.53121012e-01 -8.41988206e-01 9.12346169e-02 4.81441081e-01 -1.86319128e-01 7.45309770e-01 6.97994232e-01 1.98440313e-01 1.56234086e-01 8.07288408e-01 3.96432251e-01 1.05749145e-01 -5.37413120e-01 -7.57543743e-01 4.34727848e-01 6.80537999e-01 1.08166385e+00 -6.66263402e-01 -9.38806981e-02 -3.65293652e-01 6.36943400e-01 5.34756005e-01 2.55396932e-01 -1.05484605e+00 -1.89744532e-01 1.23406255e+00 3.98566186e-01 1.53677300e-01 -4.92638022e-01 -2.74913728e-01 -5.75815856e-01 -1.29454866e-01 -6.95721686e-01 4.66675609e-01 -6.52238548e-01 -1.24199080e+00 1.67541653e-01 2.39112210e-02 -1.28760386e+00 -8.81939054e-01 -2.56413817e-01 -6.96328878e-01 6.68274164e-01 -1.08301628e+00 -1.40783799e+00 -3.56541365e-01 4.59851593e-01 4.95447367e-01 -3.81033748e-01 4.02305305e-01 3.17612886e-01 -7.83427775e-01 1.25525653e-01 2.66158491e-01 3.19116801e-01 4.55471158e-01 -1.23402596e+00 5.76929867e-01 8.38467240e-01 2.57626295e-01 -9.97930467e-02 9.70079541e-01 -9.68618453e-01 -1.55082679e+00 -1.29550123e+00 2.72291154e-01 -1.05441630e+00 8.48713875e-01 -2.11765513e-01 -4.96614009e-01 1.11074042e+00 1.05115939e-02 4.62505361e-03 4.64665830e-01 2.90549576e-01 3.48436266e-01 2.13935509e-01 -7.82548070e-01 6.97627842e-01 9.80697930e-01 -2.44699627e-01 -1.42289966e-01 6.04091465e-01 2.71340847e-01 -9.48400259e-01 -9.73382890e-01 7.74006173e-02 4.29396033e-01 -6.27753198e-01 1.11078560e+00 -7.34578252e-01 3.16877007e-01 -6.38028681e-01 1.40666649e-01 -1.66064465e+00 -3.48185807e-01 -5.32623887e-01 -1.98972583e-01 8.55982065e-01 4.89435136e-01 -2.68428236e-01 1.21507382e+00 8.41665387e-01 -3.70597720e-01 -1.84732422e-01 -1.06527722e+00 -6.10176384e-01 -2.94054411e-02 -4.72791493e-01 8.66162658e-01 7.52882302e-01 6.92206025e-02 2.39551082e-01 -8.95567179e-01 6.90906763e-01 7.14992464e-01 -3.23991701e-02 1.21611440e+00 -1.14347041e+00 -4.90001798e-01 -1.36450186e-01 -5.72025478e-01 -8.74731898e-01 3.93869519e-01 -4.54984069e-01 3.55619967e-01 -1.62555337e+00 2.01242074e-01 -7.49267280e-01 1.51457489e-01 4.78905290e-01 2.12782845e-01 6.62620187e-01 -1.95604749e-02 2.04255693e-02 -9.62428510e-01 2.55026132e-01 8.61734748e-01 -2.17483237e-01 -3.90673786e-01 1.12035675e-02 -2.01580361e-01 7.29380250e-01 9.15707469e-01 -6.14000797e-01 -2.59704620e-01 -9.18364346e-01 2.56206781e-01 4.39139932e-01 7.94058979e-01 -1.15882874e+00 7.44844079e-01 -6.44912183e-01 2.70766288e-01 -5.82395971e-01 1.01331115e+00 -6.37528479e-01 4.82409120e-01 2.47971237e-01 -2.16538414e-01 3.86450231e-01 2.67426550e-01 8.73834729e-01 1.98470373e-02 -1.47075519e-01 2.57739946e-02 -1.99106082e-01 -1.07564306e+00 4.24369931e-01 -7.64711618e-01 1.38613939e-01 1.38701487e+00 -2.45173991e-01 -6.58328295e-01 -6.95348203e-01 -9.07128751e-01 7.53917217e-01 4.17442322e-01 3.46293151e-01 2.78853238e-01 -9.99737501e-01 -1.14510810e+00 -1.11634061e-01 -9.01052579e-02 2.55766094e-01 6.48129344e-01 1.05708706e+00 -5.89862108e-01 -1.38732478e-01 -2.59021729e-01 -6.57893598e-01 -1.23515272e+00 2.02982768e-01 2.43108973e-01 -1.06199935e-01 -8.03444266e-01 5.96113741e-01 -3.35096151e-01 -6.34766519e-01 -2.94856727e-02 3.77421593e-03 -2.41887584e-01 -2.99766976e-02 5.17307639e-01 7.93936908e-01 -7.69124255e-02 -9.58245993e-01 -1.94652811e-01 1.17487334e-01 1.19652152e-01 -2.14778215e-01 1.66453302e+00 -2.22672313e-01 2.08522990e-01 4.74269748e-01 3.28498453e-01 -1.70151949e-01 -1.90296197e+00 -2.96666403e-03 -1.15001328e-01 -3.77381802e-01 1.11267254e-01 -5.10661662e-01 -9.03815150e-01 3.67166966e-01 2.53594697e-01 4.25704420e-01 3.87260079e-01 1.63432866e-01 8.91991258e-01 1.66242585e-01 5.73743045e-01 -1.19612741e+00 -1.83772162e-01 6.31217599e-01 4.64181930e-01 -1.35586774e+00 7.87372608e-03 9.71025750e-02 -8.96907449e-01 5.11275887e-01 1.01846743e+00 -3.07019353e-01 1.90999255e-01 8.61334980e-01 -4.23550121e-02 -4.58309770e-01 -1.05199349e+00 -3.33019078e-01 -1.86039865e-01 9.37241375e-01 -1.85536623e-01 3.29151988e-01 5.52136004e-01 4.42570537e-01 -6.29663646e-01 -3.11876357e-01 1.09694684e+00 9.75728750e-01 -2.74153233e-01 -5.11624038e-01 -5.59115887e-01 7.38143504e-01 -9.07312930e-02 2.62370497e-01 -1.10808067e-01 8.23559046e-01 1.49596468e-01 1.19062281e+00 7.42658556e-01 -3.39807212e-01 5.15461683e-01 -5.07099092e-01 2.34512225e-01 -6.69709980e-01 -6.68697059e-01 -3.74468148e-01 4.40642387e-01 -4.40854430e-01 -2.27271661e-01 -9.97366965e-01 -1.44824219e+00 -1.13343811e+00 -1.48612112e-01 -4.32215184e-02 4.60853577e-01 1.04757285e+00 5.20600438e-01 9.44901764e-01 1.20946318e-01 -1.18567574e+00 -6.99728951e-02 -1.08387291e+00 -6.38349056e-01 2.82846153e-01 4.83011454e-01 -1.05929041e+00 2.08900049e-02 -4.50848266e-02]
[5.788835525512695, 0.6786837577819824]
286a280b-4f71-4921-94c3-a0cc5e22768b
adversarial-continual-learning-for-multi
2107.08751
null
https://arxiv.org/abs/2107.08751v4
https://arxiv.org/pdf/2107.08751v4.pdf
Adversarial Continual Learning for Multi-Domain Hippocampal Segmentation
Deep learning for medical imaging suffers from temporal and privacy-related restrictions on data availability. To still obtain viable models, continual learning aims to train in sequential order, as and when data is available. The main challenge that continual learning methods face is to prevent catastrophic forgetting, i.e., a decrease in performance on the data encountered earlier. This issue makes continuous training of segmentation models for medical applications extremely difficult. Yet, often, data from at least two different domains is available which we can exploit to train the model in a way that it disregards domain-specific information. We propose an architecture that leverages the simultaneous availability of two or more datasets to learn a disentanglement between the content and domain in an adversarial fashion. The domain-invariant content representation then lays the base for continual semantic segmentation. Our approach takes inspiration from domain adaptation and combines it with continual learning for hippocampal segmentation in brain MRI. We showcase that our method reduces catastrophic forgetting and outperforms state-of-the-art continual learning methods.
['Anirban Mukhopadhyay', 'Camila Gonzalez', 'Marius Memmel']
2021-07-19
null
null
null
null
['continual-semantic-segmentation']
['computer-vision']
[ 5.37909269e-01 1.96137324e-01 -3.03060144e-01 -4.62965548e-01 -8.43101025e-01 -6.09797299e-01 3.97712201e-01 4.98889416e-01 -9.64709699e-01 9.51606929e-01 8.16895738e-02 -2.98568666e-01 -1.31342128e-01 -6.19649470e-01 -9.95534301e-01 -7.25589693e-01 -4.97122929e-02 5.95089674e-01 3.44178736e-01 -4.04526219e-02 -1.09271720e-01 4.90334123e-01 -1.01021159e+00 4.66353655e-01 8.09000492e-01 8.86449695e-01 1.19116172e-01 2.01466903e-01 -1.54732512e-02 7.50747263e-01 -3.83434325e-01 -2.99688220e-01 4.52568680e-01 -2.93525994e-01 -1.03661096e+00 1.85632035e-01 3.44101250e-01 -5.45628548e-01 -4.67086494e-01 9.84358370e-01 3.77029270e-01 5.65749779e-03 4.80701596e-01 -1.02038395e+00 -6.58521652e-01 4.20629382e-01 -6.00574315e-01 5.13363659e-01 -4.26829942e-02 2.61855036e-01 5.64535260e-01 -5.42368114e-01 8.71747792e-01 6.32753193e-01 8.03983748e-01 9.30588186e-01 -1.70897782e+00 -7.09880531e-01 2.55152285e-01 8.24227408e-02 -1.05322754e+00 -6.17733240e-01 6.93247855e-01 -4.09236491e-01 4.81831193e-01 1.38651520e-01 7.63521910e-01 1.47670269e+00 5.18504918e-01 9.69488323e-01 1.40617287e+00 -3.25179994e-01 6.13521814e-01 2.45817289e-01 1.62171334e-01 5.06814957e-01 1.57256976e-01 2.79776961e-01 -7.48148918e-01 -3.25915158e-01 5.88498473e-01 2.82901913e-01 -1.63039491e-01 -7.95057237e-01 -9.02489126e-01 7.37045228e-01 3.83920580e-01 3.57859701e-01 -3.71609777e-01 -1.05998330e-01 5.52592099e-01 7.85405099e-01 4.40435797e-01 5.04755795e-01 -6.60531998e-01 4.06673044e-01 -1.35177338e+00 1.74559414e-01 4.78480250e-01 6.01700068e-01 5.92452526e-01 -2.08030537e-01 -1.33932784e-01 5.36062598e-01 -2.68789262e-01 2.02878311e-01 7.84864962e-01 -7.00469971e-01 3.93850356e-02 1.07306935e-01 -8.82464051e-02 -6.41403913e-01 -3.88168037e-01 -4.64070499e-01 -8.27421844e-01 3.59615237e-01 5.31966805e-01 -1.47290617e-01 -1.21826267e+00 2.02961278e+00 3.31188738e-01 3.58480692e-01 -1.25572652e-01 6.17950737e-01 3.16628188e-01 1.36727812e-02 4.87520903e-01 -3.52154464e-01 1.16486657e+00 -6.35387361e-01 -7.00034678e-01 -5.21990001e-01 4.24844265e-01 -3.57308954e-01 9.92643058e-01 4.43500966e-01 -9.66729999e-01 -5.04380949e-02 -1.04844713e+00 -7.48192370e-02 -2.74190724e-01 -5.76574564e-01 6.18756652e-01 7.13579059e-01 -1.12942886e+00 8.52904022e-01 -1.33909345e+00 -1.02995679e-01 1.05488241e+00 5.57049692e-01 -5.34614503e-01 -2.55341023e-01 -1.19691932e+00 9.20050621e-01 3.85182649e-01 -3.54767561e-01 -1.06825924e+00 -1.15681243e+00 -6.35816991e-01 -1.61396757e-01 5.49144030e-01 -8.79502594e-01 1.15579581e+00 -1.29422379e+00 -9.37768996e-01 1.14343107e+00 9.47498977e-02 -1.16873431e+00 1.09004056e+00 -1.94248021e-01 -1.99632585e-01 2.29712591e-01 1.87276050e-01 6.78415477e-01 1.36927080e+00 -1.01514184e+00 -3.64324629e-01 -5.92228830e-01 -1.50137082e-01 1.16945043e-01 -5.95634520e-01 -5.41087687e-01 -1.87044710e-01 -7.56133020e-01 1.13486741e-02 -8.84128749e-01 -4.02149111e-01 5.02497613e-01 -2.50197202e-01 3.45273793e-01 8.22385311e-01 -8.21105123e-01 8.39207292e-01 -2.38950825e+00 8.74340683e-02 1.02739520e-01 5.69684386e-01 2.39980340e-01 -1.04702614e-01 -1.07777670e-01 -1.99814156e-01 -1.14770062e-01 -6.34500921e-01 -6.25795007e-01 -5.80887258e-01 3.26888829e-01 -2.71241784e-01 7.35619485e-01 4.32651378e-02 8.99502039e-01 -1.00418961e+00 -5.09488642e-01 -8.71428922e-02 3.64315718e-01 -8.92619729e-01 -5.01162489e-04 -2.82488614e-01 8.67593527e-01 -3.32591921e-01 4.70349997e-01 8.58823538e-01 -2.42659390e-01 1.58784822e-01 7.69833401e-02 1.50368825e-01 -7.21067190e-02 -5.04058063e-01 2.24064064e+00 -2.57689893e-01 3.68863434e-01 -4.08214331e-02 -1.32919157e+00 4.24683034e-01 3.51431847e-01 9.17887151e-01 -8.85988176e-01 -1.16189912e-01 4.07161295e-01 -2.62217075e-01 -2.80264497e-01 3.47349308e-02 -7.46259987e-01 -2.16444090e-01 4.62986678e-01 2.05059811e-01 1.12813763e-01 -3.77955794e-01 2.67775416e-01 1.47641718e+00 -1.30806133e-01 3.38009864e-01 -3.37262243e-01 4.65762615e-02 7.38747120e-02 8.50302756e-01 1.07029545e+00 -5.55666268e-01 5.62479556e-01 5.15586734e-01 -6.83016300e-01 -1.01609147e+00 -1.18825030e+00 -2.45675787e-01 8.91451359e-01 -1.95161581e-01 2.17047751e-01 -6.80132329e-01 -1.08521819e+00 1.99544713e-01 8.77458632e-01 -1.01192462e+00 -7.23690450e-01 -5.95474839e-01 -8.56263638e-01 3.19702774e-01 2.27246374e-01 3.56134325e-01 -8.41687918e-01 -8.88028383e-01 2.74917990e-01 -4.71748337e-02 -7.77658582e-01 -6.11306965e-01 4.80101109e-01 -1.19909275e+00 -9.68718469e-01 -8.44768882e-01 -5.59331238e-01 6.04119718e-01 2.02719152e-01 1.19156158e+00 -1.34278893e-01 -5.42878509e-01 6.38053834e-01 -7.62620419e-02 -4.69615877e-01 -4.38921273e-01 3.63336593e-01 -5.01843961e-03 6.24604784e-02 1.87539563e-01 -9.98898447e-01 -8.65375698e-01 -2.19296515e-01 -1.24337900e+00 -2.26011485e-01 5.31080425e-01 1.22875750e+00 8.17950249e-01 -7.29842335e-02 8.86912763e-01 -1.62283397e+00 3.63093823e-01 -7.60527968e-01 -4.55885410e-01 2.52585709e-01 -8.30713928e-01 1.58363611e-01 5.46070695e-01 -5.51697612e-01 -8.64454687e-01 4.71128315e-01 -1.99034691e-01 -6.46341741e-01 2.61647254e-02 3.48867893e-01 9.89211351e-02 -7.57956654e-02 8.87140334e-01 3.93087208e-01 3.51437151e-01 -4.29151833e-01 4.17054564e-01 1.29823193e-01 6.73841059e-01 -3.00046384e-01 6.18292749e-01 8.37785959e-01 -1.41822964e-01 -6.19005799e-01 -1.08940554e+00 -2.54687697e-01 -8.59895945e-01 5.11831194e-02 8.13262939e-01 -9.23613489e-01 -3.32606047e-01 5.64876914e-01 -9.25598443e-01 -3.77270013e-01 -8.94051373e-01 1.18020378e-01 -6.25723481e-01 2.62259662e-01 -3.67905200e-01 -3.59103709e-01 -3.79250914e-01 -8.75599861e-01 6.30242944e-01 -1.68503940e-01 -2.80603439e-01 -1.02888978e+00 -5.46180643e-02 1.70203447e-01 4.71500009e-01 3.84005308e-01 1.07029390e+00 -9.43363786e-01 -5.65205216e-01 -1.78673819e-01 1.90493882e-01 2.34565839e-01 1.42263710e-01 -9.17251229e-01 -9.23354328e-01 -8.02357018e-01 4.97904003e-01 -5.49951017e-01 1.21315122e+00 4.11052227e-01 1.39310157e+00 -4.44096118e-01 -4.02874768e-01 6.94214106e-01 1.50176120e+00 5.43632470e-02 6.17339849e-01 4.27184284e-01 4.23245609e-01 4.67156827e-01 3.56016010e-01 3.45377654e-01 1.41269207e-01 2.10267007e-01 3.23669195e-01 -2.22325459e-01 -1.62072629e-01 -1.96822271e-01 -2.03040123e-01 3.05818439e-01 5.57654083e-01 2.44978994e-01 -1.07420766e+00 7.69311011e-01 -1.66863298e+00 -8.12250316e-01 5.27240634e-01 2.42511415e+00 1.29978776e+00 1.51635051e-01 5.13121188e-02 -2.89153550e-02 4.19452727e-01 6.67256042e-02 -1.13549852e+00 -5.79834059e-02 4.36101072e-02 3.24556142e-01 8.11004758e-01 3.34085435e-01 -1.33770239e+00 8.87048900e-01 6.23587608e+00 7.78964996e-01 -1.32606483e+00 6.81113303e-01 9.76099491e-01 -5.17965138e-01 -4.60752904e-01 -1.89282149e-01 -3.14189821e-01 3.94865453e-01 1.01396215e+00 -2.44001970e-01 5.00880301e-01 8.01309705e-01 -1.20219819e-01 -8.23187754e-02 -1.24610090e+00 7.93130875e-01 -8.45463946e-02 -1.50931919e+00 -1.39396220e-01 1.37875536e-02 7.35662103e-01 2.12518677e-01 5.06784499e-01 2.52505720e-01 3.78041357e-01 -8.72626185e-01 6.24294698e-01 4.13538605e-01 9.54642475e-01 -6.73469067e-01 3.15550417e-01 6.07445776e-01 -4.58460808e-01 -3.24450821e-01 -2.46453002e-01 5.14865518e-01 -2.75388104e-03 8.56731236e-01 -9.52850997e-01 3.59592348e-01 5.61431170e-01 5.36760807e-01 -4.26465601e-01 1.02026880e+00 4.53795269e-02 5.34149468e-01 -2.05038562e-01 5.65256000e-01 1.21846505e-01 2.68377155e-01 5.90247393e-01 9.12245274e-01 1.62186876e-01 3.17378119e-02 1.51755750e-01 6.06869578e-01 -2.74134189e-01 9.94341820e-02 -8.29902411e-01 2.21426353e-01 5.03193557e-01 5.77938020e-01 -7.01289594e-01 -1.81255966e-01 -3.08219314e-01 1.40012729e+00 6.51579380e-01 6.13016728e-03 -5.42402744e-01 2.88304120e-01 4.82819736e-01 4.50350195e-01 2.47594714e-01 -1.35883167e-01 -6.37708247e-01 -1.19979846e+00 -5.23795784e-02 -9.93238032e-01 9.26775932e-01 -1.17379382e-01 -1.48631191e+00 5.94973624e-01 -2.09790498e-01 -8.91303480e-01 1.82106998e-02 -1.24562427e-01 -2.57483453e-01 7.24691272e-01 -1.73520672e+00 -1.13592362e+00 2.15181783e-01 9.88111019e-01 4.28539574e-01 -1.56589225e-01 1.00486052e+00 4.60137665e-01 -2.43063316e-01 9.13139284e-01 2.87634730e-01 6.00360287e-03 9.25216317e-01 -1.17719877e+00 2.32912034e-01 7.44991124e-01 1.29438698e-01 5.79750121e-01 7.04972684e-01 -8.53626490e-01 -1.10005748e+00 -1.11375141e+00 7.79377043e-01 -3.54662955e-01 5.75345159e-01 -3.54748100e-01 -1.23271799e+00 8.75753701e-01 -1.56896055e-01 4.84925777e-01 7.97489166e-01 1.21735282e-01 -4.13739294e-01 -2.72639424e-01 -1.52517653e+00 4.65107381e-01 9.56896842e-01 -6.14110768e-01 -6.84106171e-01 4.58728522e-01 8.27421129e-01 -3.46497267e-01 -5.40646374e-01 1.02972165e-01 3.98523211e-01 -8.87870908e-01 1.04097819e+00 -9.06495273e-01 3.28672856e-01 2.76257366e-01 1.42104387e-01 -1.36197519e+00 -5.87720312e-02 -7.34782934e-01 -1.74604565e-01 7.01828599e-01 3.14010829e-01 -7.58883595e-01 9.48322952e-01 9.86841202e-01 1.84444338e-01 -6.47028029e-01 -1.50801694e+00 -8.67563665e-01 6.13387287e-01 -2.30558708e-01 5.14694870e-01 1.21256363e+00 -3.04891616e-01 1.24695957e-01 -5.96882939e-01 1.37674958e-01 9.57754314e-01 3.36429626e-02 2.47974336e-01 -1.18167639e+00 -3.65942746e-01 7.20530674e-02 -2.07216308e-01 -8.00271034e-01 1.83379814e-01 -1.13432252e+00 -1.32090777e-01 -1.02017879e+00 2.10963577e-01 -7.04713702e-01 -8.35185349e-01 7.73779988e-01 -1.09046929e-01 1.25581011e-01 7.17516989e-02 4.29385006e-01 -5.57786405e-01 5.16540229e-01 1.28196740e+00 -2.21186042e-01 -3.32943678e-01 3.17730755e-02 -9.08101499e-01 4.78949696e-01 8.22549641e-01 -9.78905141e-01 -6.26897633e-01 -5.35434127e-01 -1.09632462e-01 1.95046037e-01 4.23776537e-01 -9.66901302e-01 5.35312414e-01 1.49920993e-02 3.60150278e-01 -2.78266460e-01 2.19273373e-01 -9.73039329e-01 3.09138447e-02 7.70103872e-01 -5.98945200e-01 -3.54471564e-01 2.85906613e-01 1.03054428e+00 1.01407461e-01 -5.83982058e-02 1.10767591e+00 -5.45231938e-01 -5.03210604e-01 7.21614957e-01 -2.75887638e-01 2.94802725e-01 1.05554259e+00 1.06270082e-01 1.33322537e-01 -9.68998671e-02 -1.26518798e+00 1.33928925e-01 4.08919781e-01 1.73958555e-01 5.73679149e-01 -1.03981805e+00 -6.98340356e-01 3.78850400e-01 -3.04793194e-02 -1.62429698e-02 6.41077876e-01 9.02365208e-01 -6.24592006e-02 3.20896916e-02 -4.88680899e-01 -4.08944458e-01 -1.05349219e+00 8.91112447e-01 3.68301541e-01 -6.04959548e-01 -8.65556180e-01 9.91952002e-01 2.61347711e-01 -2.79704005e-01 1.43627554e-01 2.13004962e-01 1.56887218e-01 3.14299613e-01 5.71330070e-01 -1.27429381e-01 3.33729655e-01 -3.82711156e-03 -3.75703037e-01 -2.54858196e-01 -8.39621663e-01 -2.59838760e-01 1.74273109e+00 -2.38430306e-01 1.10875908e-02 4.20881689e-01 1.15308201e+00 -2.74791181e-01 -1.72160101e+00 -6.68028235e-01 8.42682943e-02 -5.98693252e-01 2.59294778e-01 -1.02876413e+00 -1.14556050e+00 7.56264925e-01 9.36218858e-01 -1.05021790e-01 1.17868209e+00 -1.08551368e-01 1.11822712e+00 2.54796684e-01 6.37016535e-01 -1.19494247e+00 1.44770250e-01 1.23140715e-01 7.47619390e-01 -1.31773627e+00 3.21515985e-02 1.34162689e-02 -5.48473358e-01 8.40784729e-01 1.65686250e-01 -8.38101730e-02 9.28138435e-01 5.08179009e-01 1.08121829e-02 -1.79075763e-01 -6.04374945e-01 2.05393344e-01 1.58689935e-02 7.25816965e-01 -6.38846532e-02 7.68163614e-03 -2.13561103e-01 6.29582763e-01 1.15041323e-01 3.64599466e-01 3.63694787e-01 1.23737788e+00 -1.72023684e-01 -1.24446571e+00 -2.05548286e-01 6.18263841e-01 -7.79948950e-01 -2.86998332e-01 -5.51274754e-02 5.08503616e-01 1.70726970e-01 4.16118175e-01 -1.15198165e-01 -9.11763236e-02 2.69755244e-01 2.76453257e-01 4.40430641e-01 -6.47079110e-01 -4.56710875e-01 -1.84845895e-01 -2.74334252e-01 -5.64172089e-01 -7.57411867e-02 -1.12368548e+00 -9.84099329e-01 -2.67585456e-01 1.52352139e-01 -1.78921878e-01 3.35039705e-01 9.25140858e-01 3.73433143e-01 4.78563666e-01 5.55491090e-01 -3.24175000e-01 -8.38247180e-01 -2.48277515e-01 -6.17087841e-01 5.28903008e-01 9.11171913e-01 -5.34741938e-01 -1.46506891e-01 2.09058121e-01]
[14.607062339782715, -1.8672319650650024]
eaefbb05-adc0-408c-a59b-53093432bfbe
insights-from-insurance-for-fair-machine
2306.14624
null
https://arxiv.org/abs/2306.14624v1
https://arxiv.org/pdf/2306.14624v1.pdf
Insights From Insurance for Fair Machine Learning: Responsibility, Performativity and Aggregates
We argue that insurance can act as an analogon for the social situatedness of machine learning systems, hence allowing machine learning scholars to take insights from the rich and interdisciplinary insurance literature. Tracing the interaction of uncertainty, fairness and responsibility in insurance provides a fresh perspective on fairness in machine learning. We link insurance fairness conceptions to their machine learning relatives, and use this bridge to problematize fairness as calibration. In this process, we bring to the forefront three themes that have been largely overlooked in the machine learning literature: responsibility, performativity and tensions between aggregate and individual.
['Robert C. Williamson', 'Christian Fröhlich']
2023-06-26
null
null
null
null
['fairness', 'fairness']
['computer-vision', 'miscellaneous']
[ 1.08007513e-01 7.73506820e-01 -1.02658403e+00 -6.18117392e-01 -4.41367328e-01 -4.92556542e-01 4.75907266e-01 5.52914202e-01 -4.40640360e-01 6.03707016e-01 9.49068785e-01 -8.96583736e-01 -4.31418240e-01 -5.73126078e-01 -2.72671878e-01 -2.66927660e-01 4.10830528e-01 6.19538017e-02 -7.52504349e-01 -2.74081618e-01 3.64846945e-01 7.85012543e-02 -1.26707661e+00 1.86258614e-01 1.25103772e+00 6.18995488e-01 -8.25344622e-01 1.27531931e-01 -1.75353974e-01 1.71706438e+00 -1.88012376e-01 -1.10299838e+00 2.57154796e-02 -4.95024025e-01 -9.49744225e-01 -1.54383272e-01 3.60519916e-01 -3.18833411e-01 -2.97495037e-01 9.06100869e-01 1.76831543e-01 -3.26989472e-01 8.19126785e-01 -1.26186061e+00 -1.12617433e+00 9.24863875e-01 -1.39115438e-01 5.71979471e-02 1.60118520e-01 7.33588785e-02 1.39015138e+00 -3.19752516e-03 4.12620395e-01 1.40986693e+00 9.52534676e-01 6.75778925e-01 -1.22064221e+00 -4.53070819e-01 1.79861769e-01 -2.63452213e-02 -6.44978702e-01 -6.57566965e-01 5.48972905e-01 -9.62425172e-01 4.45864946e-01 5.18986285e-01 9.14324462e-01 8.06330085e-01 1.37580484e-01 6.66927516e-01 1.18917179e+00 -5.41602850e-01 5.97018972e-02 2.34377265e-01 3.02114040e-01 4.85372305e-01 6.46552563e-01 5.58923304e-01 -3.20267379e-01 -4.58024532e-01 5.83116710e-01 4.87606794e-01 -6.24969862e-02 1.16442181e-02 -7.97172368e-01 1.36736035e+00 4.58671510e-01 1.07973404e-01 -4.33830947e-01 2.47536793e-01 3.22786361e-01 5.95427811e-01 6.38686180e-01 3.31912428e-01 -2.40791917e-01 -2.32153088e-01 -3.63703489e-01 3.70893717e-01 8.60496998e-01 1.67887852e-01 4.50212121e-01 -2.04955801e-01 -2.12775916e-01 5.86217701e-01 6.79030716e-01 2.66163558e-01 -1.13028221e-01 -1.53725803e+00 2.60503322e-01 9.42472816e-01 3.57601613e-01 -8.72440755e-01 -1.72502980e-01 -3.03421259e-01 -3.64285529e-01 6.63750410e-01 8.12914312e-01 -3.62169027e-01 -1.34213969e-01 1.79866326e+00 1.50106177e-01 -6.00780070e-01 2.44658753e-01 9.19218004e-01 9.92117524e-02 -1.83930337e-01 5.48142612e-01 -1.21850230e-01 1.11076701e+00 -6.14289403e-01 -6.26626015e-01 -4.02580261e-01 7.96357870e-01 -5.04680574e-01 1.26352847e+00 1.94777027e-01 -1.19528973e+00 1.95507169e-01 -6.29571021e-01 -4.58922565e-01 -1.33883417e-01 -6.80145502e-01 1.14173210e+00 1.06364691e+00 -6.51635826e-01 1.02149856e+00 -4.27121460e-01 -2.12332770e-01 1.07507861e+00 -2.90427566e-01 1.36846498e-01 1.17222197e-01 -1.22090030e+00 1.21919692e+00 -1.85190529e-01 8.32457319e-02 -1.67233944e-01 -8.29608977e-01 -6.89352334e-01 -1.02739513e-01 4.56697226e-01 -9.08480883e-01 1.33005917e+00 -1.60473561e+00 -8.38152349e-01 1.12062192e+00 1.31194741e-01 -5.39857388e-01 9.42745686e-01 -2.86598891e-01 -3.83563936e-01 -4.87652719e-01 -1.02092111e-02 -4.44274545e-02 1.06477909e-01 -1.14516652e+00 -7.82789350e-01 -5.41792333e-01 3.13934892e-01 1.16013102e-01 -1.24333583e-01 4.09325212e-01 8.82689774e-01 -5.98748088e-01 -8.27327520e-02 -6.37311935e-01 -1.77113891e-01 9.14102420e-02 -3.20330560e-02 -3.68260622e-01 -2.49196533e-02 -4.35629785e-01 1.52396452e+00 -2.12607503e+00 -2.07814649e-01 1.50310427e-01 5.95922530e-01 -1.80761546e-01 4.82787758e-01 5.55581152e-01 -1.14508025e-01 4.76204336e-01 -2.54596472e-01 -1.16370462e-01 5.54359674e-01 4.12502438e-01 -2.41197020e-01 6.49921954e-01 -1.31188959e-01 1.16947842e+00 -8.50964069e-01 -4.50048476e-01 -8.83369241e-03 3.24404687e-01 -6.61432564e-01 -1.09519258e-01 1.11391306e-01 1.12786889e-01 -3.76680583e-01 8.79168332e-01 2.93630153e-01 -7.49971122e-02 3.85231286e-01 2.26256430e-01 -3.37487042e-01 5.20554245e-01 -5.56356609e-01 1.06859028e+00 1.91884488e-02 4.99416530e-01 1.48126617e-01 -9.22883689e-01 6.00676358e-01 4.71924156e-01 2.81726897e-01 -5.45742691e-01 2.56701916e-01 1.40184313e-01 4.47902411e-01 -6.25245988e-01 7.42877424e-02 -8.24453473e-01 -8.71550813e-02 9.87052321e-01 -5.32936931e-01 -6.88618869e-02 -4.54970092e-01 7.24544153e-02 5.35830081e-01 -1.73083857e-01 6.45707011e-01 -6.30225301e-01 6.32043928e-02 -2.63531413e-03 8.36346865e-01 5.88379443e-01 -7.26082325e-01 1.14379078e-01 8.96108270e-01 -8.65497351e-01 -8.71756673e-01 -1.14288151e+00 -4.52378571e-01 1.25725114e+00 -2.51729906e-01 1.72941014e-01 -7.98298657e-01 -7.22551107e-01 7.72979975e-01 7.22704470e-01 -9.62061942e-01 -1.65089637e-01 -1.03793822e-01 -6.30437016e-01 5.09987652e-01 2.95346349e-01 -1.40262172e-01 -8.12799811e-01 -9.20048177e-01 -2.17743278e-01 -1.42103121e-01 -4.68466371e-01 -1.01714805e-01 -1.22787468e-01 -8.31321478e-01 -1.39514351e+00 -1.03119321e-01 -1.78736255e-01 1.37407452e-01 -2.32774261e-02 1.50033712e+00 7.34133661e-01 -6.17003515e-02 5.70218027e-01 -1.43467531e-01 -1.10602832e+00 -8.32873762e-01 -3.30978781e-01 -8.60377029e-02 -2.51544535e-01 7.96384394e-01 -6.21272564e-01 -5.79059422e-01 -5.52473068e-02 -8.70695233e-01 -1.15885474e-01 1.61907688e-01 6.15808964e-01 -1.25932887e-01 -4.95498061e-01 1.08169067e+00 -1.45199513e+00 8.75303388e-01 -1.01383436e+00 -2.86300212e-01 2.85751581e-01 -1.35675848e+00 -1.48844898e-01 5.79752922e-02 2.36547943e-02 -1.07628548e+00 -8.00510824e-01 2.70754546e-01 2.64781266e-01 1.14681959e-01 6.50478244e-01 -5.46556041e-02 2.82516833e-02 1.02378368e+00 -6.89197719e-01 6.69689775e-01 -3.86691093e-01 6.32112026e-01 7.39474118e-01 2.34716371e-01 -6.11729980e-01 3.80615145e-01 5.56698322e-01 -3.65340829e-01 -1.49996415e-01 -1.17417526e+00 1.81372285e-01 -3.56835634e-01 -3.02722096e-01 8.00878584e-01 -8.33001196e-01 -1.13561702e+00 4.52422537e-02 -6.52838469e-01 -3.73704106e-01 -6.80702507e-01 6.35466754e-01 -5.78208447e-01 5.87102398e-02 -4.89790499e-01 -1.34835112e+00 -9.19594839e-02 -5.87517083e-01 1.57893255e-01 2.85056263e-01 -8.85864258e-01 -1.40474772e+00 4.41696756e-02 8.50381494e-01 5.42739093e-01 7.73753941e-01 1.15564513e+00 -6.39054775e-01 -3.61901164e-01 -2.59532422e-01 -9.78905894e-03 1.94011182e-01 3.32092226e-01 -1.21196762e-01 -1.19196868e+00 3.03187460e-01 3.49007577e-01 -5.60030282e-01 8.19178462e-01 3.05494606e-01 6.63096666e-01 -7.84135222e-01 1.49185181e-01 3.11873376e-01 1.53600049e+00 3.45807130e-05 4.77125049e-01 3.17330569e-01 4.93352443e-01 1.30646563e+00 5.24339855e-01 6.03404939e-01 1.03769743e+00 8.46846104e-02 4.45813209e-01 -2.56518692e-01 4.74847615e-01 -3.29649478e-01 -1.62354987e-02 5.27784489e-02 -3.06863397e-01 5.47068775e-01 -1.21877027e+00 3.63219649e-01 -2.08849669e+00 -1.34038973e+00 -2.23254263e-01 2.17737103e+00 1.05259001e+00 1.82039887e-01 4.33360577e-01 1.31102160e-01 3.04824442e-01 3.00981164e-01 -4.76189315e-01 -9.34574306e-01 6.35337532e-02 -3.31439644e-01 4.62197810e-01 9.70126688e-01 -8.77706945e-01 6.80357993e-01 7.55785513e+00 8.04378092e-02 -5.32436252e-01 1.43016756e-01 1.03172231e+00 -2.58129656e-01 -1.21803737e+00 9.81439054e-02 1.58801123e-01 3.55415016e-01 5.59960365e-01 -4.29756552e-01 6.60544455e-01 6.64207637e-01 3.86651635e-01 -2.95915246e-01 -1.33135784e+00 4.39367861e-01 -3.24013919e-01 -1.11241412e+00 -4.59655017e-01 3.25731754e-01 8.26837063e-01 -7.63301179e-02 2.28844374e-01 -1.07254572e-01 7.82530248e-01 -1.62569964e+00 9.58497643e-01 8.09909523e-01 4.12805587e-01 -5.06557763e-01 7.01946497e-01 1.59562722e-01 -2.16588706e-01 -6.08763635e-01 -1.48203418e-01 -8.91071081e-01 1.67331755e-01 6.15799606e-01 -6.11132532e-02 1.94953248e-01 2.81942457e-01 5.74199259e-01 3.86583917e-02 3.35372865e-01 3.57114784e-02 3.62370670e-01 3.15257281e-01 3.67243677e-01 1.03612892e-01 -4.06251013e-01 1.51352286e-01 8.19172204e-01 -3.76006097e-01 2.82561213e-01 -3.52584660e-01 1.23411262e+00 2.21069809e-02 -1.07025400e-01 -7.00011373e-01 -4.78384316e-01 4.56687361e-01 8.53833616e-01 -1.40839487e-01 -7.93018267e-02 -7.66158283e-01 3.00379723e-01 2.35982373e-01 3.53756487e-01 -6.62331462e-01 2.27315724e-01 1.48311865e+00 1.22938588e-01 -6.54281318e-01 1.88453168e-01 -9.52197313e-01 -1.04030073e+00 -1.98496431e-01 -1.00844133e+00 5.32115042e-01 -1.14540853e-01 -1.41571462e+00 -3.51189703e-01 -4.40697968e-01 -5.99002540e-01 -2.64268041e-01 -4.34813738e-01 -6.42090082e-01 1.04538238e+00 -1.60106552e+00 -1.12674391e+00 -3.20164599e-02 3.73976380e-01 -2.60990858e-01 3.97279561e-02 1.03917968e+00 7.40214586e-02 -3.99451762e-01 5.77264607e-01 9.24727991e-02 2.52415147e-03 5.34328043e-01 -1.33181226e+00 5.39301097e-01 3.63505781e-01 -1.36252493e-01 6.84334457e-01 4.48673218e-01 -5.50781071e-01 -1.04652810e+00 -4.66554284e-01 1.36359203e+00 -1.04601896e+00 7.67592728e-01 5.53791597e-02 -8.51443529e-01 8.93524766e-01 8.21417943e-02 -2.22524419e-01 1.28093016e+00 6.26489580e-01 -5.70934772e-01 -2.68303175e-02 -1.45368493e+00 6.63907349e-01 1.19786775e+00 -1.06616247e+00 -5.40785193e-01 5.99810630e-02 7.25708544e-01 -5.85180484e-02 -1.06306493e+00 -4.29705083e-02 1.26963449e+00 -1.32947242e+00 9.14629400e-01 -1.07167292e+00 6.84859216e-01 4.93109107e-01 -2.05138266e-01 -7.72630453e-01 -3.50834489e-01 -7.23514915e-01 3.60907733e-01 1.28331125e+00 5.26108623e-01 -1.05578613e+00 6.16666913e-01 1.54843235e+00 9.21876654e-02 -9.86166179e-01 -7.99982667e-01 -1.61765769e-01 7.82587588e-01 -4.94168311e-01 9.68980253e-01 1.57237649e+00 7.79366493e-01 -3.55157942e-01 -1.43605828e-01 -4.68641251e-01 7.30514884e-01 1.17661897e-02 4.10140812e-01 -1.88078725e+00 -3.70497331e-02 -7.98924744e-01 -8.11615288e-02 -1.71585120e-02 1.14692062e-01 -9.54151213e-01 -3.89529198e-01 -1.42254663e+00 4.38370019e-01 -6.59373939e-01 -4.52316374e-01 3.60620826e-01 -1.94920555e-01 -1.58283383e-01 4.92531329e-01 4.03502077e-01 -1.90780357e-01 8.24348256e-02 9.27613497e-01 3.16384017e-01 -5.00438102e-02 7.53786713e-02 -2.02194405e+00 1.06720328e+00 1.05557275e+00 -5.12838542e-01 -3.25764716e-01 -4.12349850e-01 5.33519804e-01 1.52076622e-02 6.57921672e-01 -1.67715982e-01 -2.07533449e-01 -1.12850881e+00 9.36040431e-02 5.38134634e-01 -1.54397279e-01 -1.02962852e+00 2.97349654e-02 6.11430824e-01 -8.00660193e-01 -3.17786224e-02 -2.01733634e-01 2.83104211e-01 9.12121683e-02 -1.00909740e-01 6.85638607e-01 -3.12877953e-01 1.75538287e-02 -3.28179933e-02 -1.09299205e-01 5.40011883e-01 7.62402475e-01 -1.49779856e-01 -7.11712420e-01 -5.43548584e-01 -6.37459040e-01 3.92600626e-01 9.13304985e-01 2.97300577e-01 9.21072438e-02 -1.35433936e+00 -6.79861128e-01 -9.69000999e-03 -9.85327084e-03 -4.69893754e-01 1.44657716e-01 8.51277292e-01 -2.57088691e-01 4.24729735e-01 -1.30703464e-01 2.59984672e-01 -8.23465705e-01 5.03644407e-01 7.57096231e-01 3.13936681e-01 -2.87299067e-01 5.52136481e-01 9.51039940e-02 -2.49392852e-01 2.82330304e-01 -2.62576014e-01 -2.09314197e-01 3.94740134e-01 3.75868022e-01 7.43803442e-01 -7.39098966e-01 -5.47248304e-01 -3.25434923e-01 2.48064443e-01 4.47426230e-01 -2.20376775e-01 1.01838028e+00 -3.92373174e-01 -4.58083779e-01 7.52218544e-01 8.99835587e-01 1.40624210e-01 -1.22373521e+00 -7.47139081e-02 4.76280540e-01 -8.00220788e-01 -2.55937874e-01 -1.04073644e+00 -5.53384066e-01 8.03313315e-01 4.30893481e-01 6.45528257e-01 8.04225385e-01 1.40722856e-01 2.35707790e-01 -1.73172832e-01 -1.51943699e-01 -1.34676147e+00 -4.11783040e-01 -8.42626393e-02 8.87239456e-01 -1.46628582e+00 1.93810407e-02 -1.01984449e-01 -9.99492228e-01 7.06260502e-01 3.04141968e-01 4.85542193e-02 8.02979231e-01 1.02152079e-01 5.12060165e-01 -6.64594918e-02 -6.61904395e-01 -2.16223553e-01 4.41818684e-02 5.55215120e-01 9.40032601e-01 6.35807157e-01 -9.36879933e-01 1.01651776e+00 -4.20590818e-01 3.73224586e-01 3.19049090e-01 6.91502571e-01 -5.67479908e-01 -1.25660133e+00 -2.93223143e-01 5.18661261e-01 -1.17011523e+00 -7.69627169e-02 -5.55959225e-01 6.95207298e-01 3.97775441e-01 1.04010487e+00 1.21596225e-01 -2.59423286e-01 2.22066492e-01 2.56448895e-01 2.11174399e-01 -2.60781467e-01 -9.25058365e-01 -1.89856201e-01 2.72163630e-01 -6.67397499e-01 -6.20622754e-01 -8.31549525e-01 -8.67749155e-01 -1.01408744e+00 1.93591461e-01 1.27457798e-01 2.54150301e-01 1.05842912e+00 2.59735018e-01 7.37185627e-02 4.86556739e-01 -6.23324402e-02 -8.74107301e-01 -4.69832808e-01 -5.96901536e-01 3.35125148e-01 7.93138385e-01 -3.31409097e-01 -5.38619637e-01 -3.44325989e-01]
[8.806891441345215, 5.53641414642334]
57a999b0-356c-440c-b082-785002bf4922
umduluth-cs8761-at-semeval-2018-task-9
1805.10271
null
http://arxiv.org/abs/1805.10271v1
http://arxiv.org/pdf/1805.10271v1.pdf
UMDuluth-CS8761 at SemEval-2018 Task 9: Hypernym Discovery using Hearst Patterns, Co-occurrence frequencies and Word Embeddings
Hypernym Discovery is the task of identifying potential hypernyms for a given term. A hypernym is a more generalized word that is super-ordinate to more specific words. This paper explores several approaches that rely on co-occurrence frequencies of word pairs, Hearst Patterns based on regular expressions, and word embeddings created from the UMBC corpus. Our system Babbage participated in Subtask 1A for English and placed 6th of 19 systems when identifying concept hypernyms, and 12th of 18 systems for entity hypernyms.
['Ted Pedersen', 'Arshia Z. Hassan', 'Manikya S. Vallabhajosyula']
2018-05-25
null
null
null
null
['hypernym-discovery']
['natural-language-processing']
[-6.52952641e-02 3.65305215e-01 -4.55725253e-01 -1.13494933e-01 4.89864312e-02 -4.32259083e-01 9.19533610e-01 7.87574887e-01 -1.03593242e+00 8.95022571e-01 3.63203824e-01 -5.46095908e-01 -5.66769302e-01 -1.14274478e+00 6.68920204e-02 -3.70488852e-01 -4.23495710e-01 9.94023442e-01 5.08015566e-02 -7.93223023e-01 1.64470658e-01 3.60295564e-01 -1.76156175e+00 1.42511636e-01 6.06428921e-01 5.60999334e-01 5.41067794e-02 4.48980302e-01 -7.18365252e-01 1.62592679e-01 -5.92566967e-01 -4.96682227e-01 2.59404629e-01 2.22713500e-01 -1.10118961e+00 -5.90075910e-01 4.44099635e-01 3.33973944e-01 -4.21382725e-01 1.14430320e+00 4.22593772e-01 2.93302953e-01 5.16709983e-01 -1.48123109e+00 -5.52015126e-01 8.94850194e-01 -8.59898776e-02 4.09076869e-01 6.64788663e-01 -5.90871334e-01 1.95544946e+00 -9.05396998e-01 9.83959794e-01 1.16541803e+00 2.50645369e-01 5.21872163e-01 -8.60371470e-01 -9.31541145e-01 -3.03025991e-01 5.22993505e-01 -1.66855419e+00 1.41054079e-01 -1.95510596e-01 -1.49676800e-01 1.77287412e+00 3.45661253e-01 8.58693600e-01 6.94517553e-01 -3.41018409e-01 1.75589904e-01 5.85277617e-01 -1.08373988e+00 8.46269876e-02 3.74604054e-02 8.67253482e-01 3.87394100e-01 1.05408180e+00 6.77826256e-02 -1.54941484e-01 -7.92845845e-01 2.99899608e-01 -9.89522859e-02 -2.37214878e-01 -1.08124614e-01 -1.03344750e+00 9.64256287e-01 1.52185366e-01 8.43073070e-01 -4.18772072e-01 -1.24861553e-01 3.95811945e-01 2.82287240e-01 -1.41802952e-01 1.67305601e+00 -5.46145141e-01 -1.03003621e-01 -4.37027395e-01 5.75569332e-01 1.13837266e+00 1.23750234e+00 8.69096339e-01 -4.91575241e-01 1.47764787e-01 1.09287941e+00 9.77635384e-02 2.13170886e-01 1.09641838e+00 -3.79699796e-01 2.77603995e-02 9.96407926e-01 -7.39026517e-02 -6.13132894e-01 -6.23417020e-01 1.10077128e-01 -6.48892298e-02 -2.50102043e-01 -2.95985699e-01 1.91744223e-01 -1.04211354e+00 1.45041907e+00 3.47562581e-01 7.87037760e-02 4.03670609e-01 4.89075452e-01 1.30977881e+00 5.63484788e-01 3.82402688e-01 -1.25338525e-01 1.94321740e+00 -3.58563364e-01 -8.38100135e-01 -7.83708785e-03 7.75864720e-01 -7.06018448e-01 8.34191978e-01 8.63382295e-02 -4.94687259e-01 2.10515842e-01 -1.13208747e+00 8.72843266e-02 -1.42384827e+00 -6.61952198e-01 8.18503678e-01 6.92326009e-01 -7.13080287e-01 3.25616986e-01 1.54124433e-02 -1.08933342e+00 -1.59480795e-01 3.40436071e-01 -5.91836512e-01 -7.46971443e-02 -2.06699228e+00 1.57377160e+00 1.43323720e+00 -8.15739155e-01 -2.74732202e-01 -7.85835326e-01 -1.17349160e+00 6.11394159e-02 3.13762754e-01 -3.90386879e-01 9.71701920e-01 -9.38429236e-02 -3.12132865e-01 1.11479068e+00 -5.17358147e-02 -6.69175804e-01 -6.17158234e-01 -7.93659687e-02 -1.66523278e+00 -1.41281532e-02 3.04125249e-01 4.62821335e-01 2.44885996e-01 -1.13559532e+00 -1.00807321e+00 5.96650839e-02 2.41595849e-01 4.15689737e-01 -8.71090353e-01 1.82206839e-01 -1.60904266e-02 -5.17666876e-01 6.77791908e-02 -7.04546154e-01 -2.30355769e-01 -7.21666396e-01 -3.73367459e-01 -6.40330434e-01 6.23341858e-01 -2.66464174e-01 1.77596962e+00 -1.76098728e+00 -4.82670128e-01 7.19403386e-01 5.61747193e-01 5.61466098e-01 -2.57344335e-01 8.40208888e-01 -8.73256564e-01 5.72682858e-01 1.16547875e-01 7.07270741e-01 5.26989065e-02 8.19969952e-01 -3.95337284e-01 -1.66391507e-01 -1.27632543e-01 6.45104706e-01 -1.34295487e+00 -4.96773452e-01 1.22294836e-01 -1.35684893e-01 -3.83629724e-02 -6.58627078e-02 1.06582336e-01 -9.35415387e-01 -7.09107891e-02 7.02342927e-01 1.87072888e-01 -9.84421815e-04 5.34966528e-01 -1.80182189e-01 1.50411446e-02 7.33723581e-01 -1.00092256e+00 1.11669421e+00 -6.45538449e-01 5.18396258e-01 -6.93557858e-01 -6.45361900e-01 7.51483917e-01 9.43164945e-01 6.72211826e-01 -4.98463362e-01 -1.84969343e-02 7.06394374e-01 3.47975999e-01 -9.08977568e-01 9.63001788e-01 -2.39528701e-01 -1.60742328e-01 3.89656752e-01 5.30807197e-01 -1.50675997e-01 7.37254977e-01 3.80813032e-01 1.56108260e+00 -7.51025021e-01 1.31671941e+00 -4.92982417e-01 1.81846455e-01 1.29826441e-01 4.11963224e-01 6.59414351e-01 7.26381689e-02 1.70861885e-01 5.54991364e-02 -6.98480308e-01 -1.15274751e+00 -1.22913873e+00 -6.80910707e-01 1.20308220e+00 2.16851130e-01 -1.39604163e+00 -4.58517931e-02 -5.62446535e-01 4.46526825e-01 1.15098059e+00 -5.45111358e-01 -1.92641973e-01 -3.27146858e-01 -7.01309860e-01 1.08548200e+00 9.22288746e-02 -2.37729684e-01 -1.26723123e+00 -7.90604055e-01 1.42459348e-01 -8.51279497e-02 -1.10730195e+00 -3.15221846e-02 6.42508209e-01 -4.54942167e-01 -1.34916604e+00 -2.17412248e-01 -1.07195497e+00 3.57118905e-01 9.33984965e-02 1.62828064e+00 3.17041397e-01 -8.65170121e-01 1.66119710e-01 -9.08182263e-01 -7.19476998e-01 -1.64839193e-01 2.99576581e-01 5.54980636e-01 -8.03155005e-01 1.31721437e+00 -5.83894730e-01 -3.77019122e-02 -4.78665866e-02 -1.16254079e+00 -6.80266380e-01 2.78748065e-01 9.22009349e-01 1.34634778e-01 1.08393706e-01 2.85860121e-01 -1.19773030e+00 1.16056752e+00 -7.98772812e-01 -8.14226940e-02 8.21219444e-01 -1.34861648e+00 3.15919250e-01 3.97777036e-02 -4.56849635e-01 -5.52152693e-01 -2.00409487e-01 -6.85508847e-02 3.12860496e-02 -1.16410322e-01 6.71497703e-01 -7.82620907e-02 -4.10962366e-02 1.04163206e+00 -2.60962486e-01 -6.51944160e-01 -2.52719939e-01 9.17633832e-01 7.78720200e-01 6.08057559e-01 -8.11538339e-01 7.45942712e-01 1.10278748e-01 -2.30608974e-02 -1.27872539e+00 -3.96087825e-01 -1.39869535e+00 -5.87088168e-01 1.67509317e-01 6.77951276e-01 -6.25513017e-01 -4.09272850e-01 -4.13328916e-01 -1.30160010e+00 7.56965101e-01 -4.94187832e-01 6.07678354e-01 7.57430792e-02 4.05509979e-01 -1.67556033e-01 -6.78283095e-01 -6.01941049e-01 -1.55955434e-01 6.96525574e-01 7.94921592e-02 -1.09578836e+00 -9.62273479e-01 4.90328133e-01 -1.38078973e-01 -2.32919790e-02 -2.43434329e-02 1.55983412e+00 -1.70438874e+00 4.49488223e-01 -7.14300692e-01 3.18104401e-02 -1.18269496e-01 4.01445180e-01 -6.19685724e-02 -7.77982533e-01 -3.16049904e-03 -4.51982558e-01 -2.53444284e-01 7.56566882e-01 -2.18550056e-01 6.93324864e-01 -5.88796973e-01 -6.65576577e-01 3.71309221e-01 1.59174788e+00 5.93591154e-01 7.86835670e-01 7.35222816e-01 5.76822400e-01 8.07482123e-01 5.96655488e-01 5.16590416e-01 1.29730940e-01 4.53350365e-01 3.41884196e-01 2.44284660e-01 4.52213734e-01 -2.95224458e-01 -3.60449970e-01 7.11920321e-01 5.37016615e-02 -2.63750166e-01 -1.32546234e+00 1.07217622e+00 -1.56330287e+00 -1.06220782e+00 -3.26267183e-01 2.10124922e+00 1.09020948e+00 -1.77024409e-01 -6.38029426e-02 1.13839664e-01 9.63810802e-01 6.19163252e-02 -1.28625825e-01 -5.58790863e-01 -3.15282673e-01 9.42715287e-01 7.44794965e-01 5.31704903e-01 -8.55482936e-01 1.24936807e+00 6.80420780e+00 8.76017511e-01 -2.99144328e-01 1.21427001e-02 -3.70546997e-01 -6.40904307e-02 -6.74466133e-01 4.70221609e-01 -9.01530266e-01 1.25313133e-01 6.38589680e-01 -8.26413810e-01 2.93988526e-01 7.47715116e-01 -7.81685412e-01 1.09378152e-01 -1.08087099e+00 1.14752543e+00 2.64680296e-01 -1.06214511e+00 5.44932306e-01 -5.77348657e-02 6.05911911e-01 8.32632929e-02 -4.56093341e-01 3.46660674e-01 7.83517957e-01 -1.41854107e+00 -3.23894322e-02 -2.13504694e-02 8.46012533e-01 -4.87735987e-01 7.68658757e-01 -1.30775748e-02 -1.42385995e+00 -1.54749468e-01 -7.41051555e-01 -4.81008030e-02 3.06974679e-01 6.21806681e-01 -1.58882987e+00 5.72125494e-01 6.55040383e-01 2.94164836e-01 -3.36384237e-01 1.36593020e+00 -7.10930824e-01 2.40872025e-01 -5.71084559e-01 -3.68354231e-01 2.24644050e-01 2.58502394e-01 8.35440338e-01 1.49769247e+00 3.71903211e-01 2.43930340e-01 -5.56715727e-02 5.63086689e-01 -7.36654550e-02 3.48440319e-01 -9.20580089e-01 -4.41931725e-01 1.18882775e+00 1.58611083e+00 -3.03018510e-01 -5.51283538e-01 -2.02319160e-01 5.02623737e-01 -3.16887125e-02 3.80421877e-01 -3.38588893e-01 -1.08304369e+00 1.19957352e+00 -1.19277857e-01 -2.48589620e-01 2.18396634e-01 -2.79158235e-01 -9.34510231e-01 -2.42907599e-01 -6.86875463e-01 1.18350196e+00 -6.65504396e-01 -1.70406568e+00 9.27571952e-01 2.22480804e-01 -1.15667915e+00 -5.41772842e-01 -1.00490284e+00 -5.72373688e-01 9.47669446e-01 -1.03416944e+00 -5.80310345e-01 -9.57060605e-02 3.67843956e-01 3.46502960e-02 -4.24986064e-01 1.64753640e+00 3.38088125e-01 9.23145637e-02 4.97730464e-01 -2.48336673e-01 1.66657954e-01 6.81009352e-01 -1.45656204e+00 7.14124620e-01 4.94858921e-01 6.80958211e-01 1.25800061e+00 8.41327965e-01 -8.99202228e-01 -4.91176218e-01 -6.19412601e-01 1.94811976e+00 -5.05814016e-01 9.38814163e-01 -1.67333886e-01 -1.01576924e+00 4.22421992e-01 3.19351107e-01 -2.22929850e-01 1.05240130e+00 7.40059733e-01 -9.40430701e-01 2.23855808e-01 -1.02425158e+00 7.76238441e-01 1.15407860e+00 -7.17347026e-01 -1.37620842e+00 3.39747936e-01 1.08905089e+00 3.13146263e-02 -1.04261017e+00 6.73770785e-01 6.28450990e-01 1.03495643e-01 1.10300481e+00 -1.30101120e+00 -5.18870950e-02 -2.97365218e-01 -3.88374388e-01 -1.49270248e+00 -3.19016725e-01 -5.98783791e-01 -3.55577916e-01 8.45913529e-01 9.52957988e-01 -5.46634614e-01 4.23721105e-01 6.40806377e-01 2.39230424e-01 -4.55723286e-01 -1.03411174e+00 -1.30215824e+00 -1.08840112e-02 -3.46534252e-01 1.14788115e+00 1.63786983e+00 1.21957612e+00 5.89372635e-01 1.14472352e-01 -1.36113599e-01 1.75545976e-01 -2.21098661e-01 8.98317844e-02 -1.59996092e+00 2.56213337e-01 -6.39984250e-01 -8.35220337e-01 -3.61844271e-01 3.49207610e-01 -1.22882581e+00 7.33976718e-03 -1.49182689e+00 6.77487254e-02 -2.95109421e-01 -4.61229563e-01 8.08169663e-01 -2.02944785e-01 -2.59766817e-01 -7.52999783e-02 -3.89454067e-02 -4.12391633e-01 2.41034120e-01 4.04816628e-01 -9.91693735e-02 3.06171719e-02 -5.31601965e-01 -5.13079584e-01 5.11636317e-01 7.05401838e-01 -6.86662078e-01 -3.84316236e-01 -1.42697126e-01 8.18490982e-01 -5.93455195e-01 2.63241269e-02 -5.34764886e-01 3.61077547e-01 -2.54801989e-01 -3.58406514e-01 -2.31751837e-02 2.00744241e-01 -1.07278836e+00 -6.60684034e-02 5.37348449e-01 -5.18466473e-01 5.52085102e-01 3.26453261e-02 2.24223003e-01 -3.15825313e-01 -9.50456500e-01 3.43987972e-01 -2.83212751e-01 -1.50766921e+00 5.99035807e-02 -4.05495644e-01 4.83649075e-01 9.10126746e-01 -2.71406472e-01 -4.91677672e-01 -2.11922005e-01 -4.41390932e-01 4.36748981e-01 1.31617144e-01 9.31898594e-01 7.63741672e-01 -1.61584938e+00 -4.02760088e-01 -1.65067881e-01 1.04175723e+00 -5.75726926e-01 -6.39310360e-01 -9.74249691e-02 -6.14018857e-01 5.48062623e-01 -2.66632050e-01 3.14282417e-01 -1.47565997e+00 4.52207983e-01 1.47522002e-01 -1.27743438e-01 -4.19519097e-01 9.81380582e-01 -1.51161328e-01 -7.09267259e-01 3.07338059e-01 -1.53743818e-01 -7.19900012e-01 3.61099660e-01 5.55987000e-01 4.98394817e-01 1.04151778e-01 -6.57623768e-01 -7.16324925e-01 2.43972212e-01 -9.71909761e-02 -5.01383424e-01 1.04984319e+00 4.51999843e-01 -7.26684630e-01 5.98348737e-01 1.21732557e+00 -4.25155640e-01 5.39622664e-01 -3.70204300e-01 9.33587492e-01 -4.35156524e-01 -5.76510012e-01 -8.76139939e-01 -4.16135371e-01 2.95123845e-01 4.53235894e-01 5.07410824e-01 6.85435772e-01 1.34533003e-01 9.83588874e-01 9.85199511e-01 5.58874846e-01 -1.28306472e+00 -5.09481311e-01 1.04460740e+00 5.47545731e-01 -7.98015773e-01 2.47482844e-02 -5.63196540e-01 -4.91218895e-01 1.27556801e+00 8.64538848e-01 1.30649284e-01 9.85936761e-01 7.71056488e-02 6.80112392e-02 -7.96996415e-01 -6.90270424e-01 -7.69779682e-01 4.58379477e-01 6.17309988e-01 6.28730655e-01 4.11836147e-01 -1.18663621e+00 6.07092083e-01 -5.09102762e-01 -5.27901053e-01 2.76360542e-01 7.86340177e-01 -6.41265213e-01 -1.38206029e+00 8.23393390e-02 8.39795768e-01 -2.46263534e-01 -1.07727110e+00 -7.13812649e-01 8.51511836e-01 5.79756200e-01 7.77154922e-01 1.45267278e-01 -6.05449736e-01 3.74793112e-01 4.47855413e-01 6.85666874e-02 -1.29330468e+00 -5.87415576e-01 -7.82804906e-01 7.12581515e-01 -2.27729127e-01 -2.13409498e-01 -4.20717388e-01 -1.62688410e+00 -8.84099677e-02 -6.39814854e-01 6.65817261e-01 3.21925431e-01 1.05018342e+00 -5.27929030e-02 2.24542078e-02 9.03869867e-02 3.83704334e-01 -3.26598912e-01 -1.09036994e+00 -8.78587425e-01 9.47071016e-01 -2.97385216e-01 -6.25668526e-01 -2.39925578e-01 -3.21333259e-01]
[9.864885330200195, 8.77247428894043]
5fa7208e-385f-43c2-ba40-7ec84d2c73cc
geometric-models-for-temporally-attributed
2108.12239
null
https://arxiv.org/abs/2108.12239v1
https://arxiv.org/pdf/2108.12239v1.pdf
Geometric Models for (Temporally) Attributed Description Logics
In the search for knowledge graph embeddings that could capture ontological knowledge, geometric models of existential rules have been recently introduced. It has been shown that convex geometric regions capture the so-called quasi-chained rules. Attributed description logics (DL) have been defined to bridge the gap between DL languages and knowledge graphs, whose facts often come with various kinds of annotations that may need to be taken into account for reasoning. In particular, temporally attributed DLs are enriched by specific attributes whose semantics allows for some temporal reasoning. Considering that geometric models and (temporally) attributed DLs are promising tools designed for knowledge graphs, this paper investigates their compatibility, focusing on the attributed version of a Horn dialect of the DL-Lite family. We first adapt the definition of geometric models to attributed DLs and show that every satisfiable ontology has a convex geometric model. Our second contribution is a study of the impact of temporal attributes. We show that a temporally attributed DL may not have a convex geometric model in general but we can recover geometric satisfiability by imposing some restrictions on the use of the temporal attributes.
['Jeff Z. Pan', 'Ana Ozaki', 'Camille Bourgaux']
2021-08-27
null
null
null
null
['knowledge-graph-embeddings', 'knowledge-graph-embeddings']
['graphs', 'methodology']
[-1.27751842e-01 8.62685740e-01 -2.75313914e-01 -4.94351208e-01 1.15599565e-01 -6.30463183e-01 8.60362530e-01 5.80658019e-01 -8.98841619e-02 4.87760931e-01 2.29845688e-01 -1.78824738e-01 -9.59146321e-01 -1.39903700e+00 -6.97519839e-01 -4.24796164e-01 -5.66658974e-01 7.76705027e-01 6.63188577e-01 -5.77485085e-01 -1.74367607e-01 8.12218130e-01 -1.85614538e+00 3.06711704e-01 7.50907898e-01 6.63732886e-01 -1.64946228e-01 2.73719877e-01 -3.07810962e-01 8.78147125e-01 -5.61590120e-02 -5.64859867e-01 1.80979017e-02 2.74637714e-03 -1.10441351e+00 -1.87383853e-02 2.34653756e-01 2.20203534e-01 -1.60322756e-01 1.13243449e+00 -2.11507380e-01 2.77862191e-01 5.88121593e-01 -1.84925592e+00 -6.93821847e-01 7.85668552e-01 2.68773705e-01 -1.26388669e-01 6.05879962e-01 -4.48579758e-01 1.19793081e+00 -3.88125896e-01 1.07948101e+00 1.23616612e+00 6.01170540e-01 4.92663622e-01 -1.39359653e+00 1.14385135e-01 1.20576404e-01 6.36733294e-01 -1.58395326e+00 -2.14120522e-01 6.31060779e-01 -4.48274791e-01 8.06253493e-01 4.49058890e-01 6.97646081e-01 8.61383498e-01 -2.39949580e-02 4.46591109e-01 1.06274736e+00 -7.63784945e-01 4.71695811e-01 5.00177205e-01 5.91895938e-01 8.67836118e-01 7.67294168e-01 5.15725724e-02 -4.15837526e-01 -1.66262373e-01 4.24622238e-01 -2.76421160e-01 -2.74397194e-01 -9.19329822e-01 -8.95186663e-01 8.72595966e-01 3.13932449e-01 7.87186563e-01 -6.50715232e-02 1.59294143e-01 3.48101676e-01 2.43426725e-01 8.82894546e-02 3.49217027e-01 -3.55588108e-01 3.94307584e-01 -2.63106495e-01 4.73352462e-01 1.05882561e+00 1.40334690e+00 6.52539909e-01 -4.08630520e-01 2.03263849e-01 3.10738832e-02 2.38609910e-01 1.34844869e-01 -1.69673532e-01 -9.60316837e-01 -7.59940222e-02 1.02502716e+00 3.52569848e-01 -1.04653645e+00 -6.98419750e-01 -1.22099735e-01 -3.15113306e-01 -1.00414902e-01 6.39908612e-01 7.81550765e-01 -1.15707695e-01 1.94896901e+00 3.81846607e-01 8.21022317e-03 4.36095417e-01 5.02036572e-01 3.23968172e-01 1.77467585e-01 3.40278335e-02 -3.87896866e-01 1.52315497e+00 -2.09249601e-01 -8.17996502e-01 2.86639541e-01 9.69107389e-01 2.07132220e-01 1.00060105e+00 3.22259396e-01 -1.13728023e+00 5.99079318e-02 -9.88020599e-01 -1.75231934e-01 -8.13198686e-01 -5.21910787e-01 7.00852275e-01 7.38216877e-01 -9.61942911e-01 5.12381136e-01 -6.63933933e-01 -7.24202156e-01 2.92251427e-02 1.16491549e-01 -5.27849913e-01 -9.05921608e-02 -1.43174255e+00 1.04902685e+00 6.65042043e-01 -1.32625774e-01 -5.74428380e-01 -4.14681047e-01 -9.44931030e-01 4.20917347e-02 1.02197766e+00 -6.27707064e-01 8.73278677e-01 -6.35661662e-01 -8.49562049e-01 1.19212747e+00 6.56494945e-02 -7.12616801e-01 5.31978190e-01 3.44918400e-01 -1.10076869e+00 2.17540294e-01 9.21082944e-02 -9.73475575e-02 2.40437999e-01 -1.12324071e+00 -5.17689109e-01 -7.50722408e-01 9.29908454e-01 -2.68761098e-01 -2.68037289e-01 -1.79983869e-01 -7.20614344e-02 -5.03451079e-02 1.60289213e-01 -8.23807478e-01 4.11527753e-02 -1.53755993e-01 -3.48914623e-01 -5.47437191e-01 4.58751202e-01 9.80468690e-02 1.28245425e+00 -2.08382177e+00 3.93510133e-01 4.61659312e-01 2.07435608e-01 -2.99575865e-01 3.71762246e-01 6.26605928e-01 -3.48965600e-02 3.88073027e-01 -1.27914503e-01 4.10036184e-02 7.23458588e-01 7.37626433e-01 -3.91400278e-01 6.86031938e-01 -2.39333957e-01 6.48743629e-01 -8.70876670e-01 -6.98735297e-01 1.90127701e-01 2.11975306e-01 -7.76348293e-01 -2.45206922e-01 -9.38424408e-01 1.28125930e-02 -4.42600101e-01 3.68100822e-01 5.90194821e-01 -1.11189321e-01 6.26236677e-01 -3.43087375e-01 -3.32721651e-01 4.00575884e-02 -1.40183854e+00 1.65532398e+00 -2.56594658e-01 -2.31559314e-02 -1.76185489e-01 -8.53566527e-01 7.53641248e-01 4.16232795e-01 4.06090558e-01 -6.35643542e-01 -1.57067813e-02 2.65405297e-01 -4.05098259e-01 -7.94725060e-01 6.01645052e-01 -4.92795557e-01 -4.29506004e-01 2.56173164e-02 -1.99521095e-01 1.85221866e-01 3.78581017e-01 2.96270967e-01 9.08918977e-01 3.82679045e-01 3.89902830e-01 -8.04451823e-01 8.26881051e-01 3.92376184e-01 7.87715435e-01 3.56809318e-01 3.70491147e-02 -6.66359020e-03 8.68158519e-01 -6.16084278e-01 -9.43882763e-01 -1.18576992e+00 -5.24600983e-01 8.47375154e-01 4.79301453e-01 -8.03205192e-01 -5.72049975e-01 -4.71870333e-01 -1.16332993e-01 1.16862500e+00 -7.95272708e-01 -4.23307449e-01 -3.11015844e-01 -2.15135917e-01 8.85276258e-01 5.00361979e-01 1.11356318e-01 -6.15204811e-01 -1.00425482e+00 9.25259367e-02 -1.08337924e-01 -1.30711591e+00 1.56538934e-01 4.98516075e-02 -7.04840779e-01 -1.55980539e+00 3.83166492e-01 -3.94460946e-01 4.88714874e-01 -4.27055329e-01 1.10228205e+00 1.36067405e-01 3.69679704e-02 8.19906592e-01 -5.89580417e-01 -3.62708777e-01 -3.22903335e-01 -2.75281370e-01 3.60322446e-01 2.55557954e-01 4.81835455e-01 -5.58727145e-01 -5.88433966e-02 1.93574414e-01 -1.40953314e+00 8.37279037e-02 -3.03455114e-01 2.30413124e-01 6.29895091e-01 4.13208425e-01 1.99139893e-01 -9.49878693e-01 1.49551407e-01 -4.27993625e-01 -8.38247597e-01 6.16727710e-01 -5.89784682e-01 7.70044208e-01 6.01892650e-01 -5.51452972e-02 -1.12544119e+00 -3.25909704e-01 4.11311686e-01 -3.72105956e-01 -1.66047737e-01 9.32368040e-01 -6.09082997e-01 2.90942669e-01 6.89122617e-01 -2.11408809e-01 -2.23750681e-01 -2.99983561e-01 5.49377978e-01 2.90945768e-02 4.11274374e-01 -1.20036876e+00 5.77684939e-01 9.38777804e-01 9.14278805e-01 -7.08340049e-01 -6.27481937e-01 -1.24503665e-01 -7.38065541e-01 -8.51404890e-02 9.65896606e-01 -3.00668210e-01 -1.08930051e+00 -3.27655643e-01 -1.00585353e+00 -1.68298587e-01 -6.96288764e-01 2.17742667e-01 -9.95327175e-01 2.98388243e-01 -2.79172182e-01 -9.59678352e-01 4.41837162e-01 -7.96446204e-01 4.58996654e-01 -3.25390518e-01 -2.43338078e-01 -1.30901527e+00 7.15056285e-02 -6.66016415e-02 7.53117800e-02 6.41710758e-01 1.58788991e+00 -9.55834389e-01 -4.17845875e-01 -1.31295979e-01 1.26136437e-01 -1.77509025e-01 -1.95917413e-01 -8.35330039e-03 -6.69194460e-01 7.08126929e-03 -3.42068970e-02 2.64398217e-01 1.20587923e-01 5.98040083e-03 6.41649544e-01 -6.41665220e-01 -3.56005192e-01 3.07521254e-01 1.90702069e+00 6.47517741e-02 6.99530721e-01 5.74508965e-01 3.24451655e-01 8.75611305e-01 5.77801645e-01 2.50875086e-01 7.15561330e-01 1.06985927e+00 7.31172502e-01 7.17636645e-01 2.78950870e-01 -1.97569460e-01 1.44475117e-01 2.55947977e-01 -4.28712696e-01 8.00534189e-02 -1.03358769e+00 6.49062753e-01 -1.94346881e+00 -1.21223176e+00 -7.67435789e-01 2.47411156e+00 7.23069608e-01 -5.38106402e-03 2.86898643e-01 2.34010682e-01 7.79538929e-01 -1.25596955e-01 7.76992813e-02 -5.05248725e-01 -3.15408468e-01 1.98647659e-02 4.53352809e-01 9.49901581e-01 -6.66147113e-01 5.64403713e-01 5.45974636e+00 1.87791169e-01 -5.20579994e-01 3.17043543e-01 -5.40387392e-01 9.51392949e-02 -8.46456707e-01 5.27796686e-01 -5.61879396e-01 1.83955580e-01 9.99301732e-01 -5.68089128e-01 2.85053641e-01 7.60309458e-01 -8.03564787e-02 8.94029066e-02 -1.58468461e+00 3.40530396e-01 -1.94062799e-01 -1.31723630e+00 1.11492045e-01 3.12458009e-01 4.83551919e-01 -6.05750084e-01 -3.60524774e-01 1.13044776e-01 3.51654261e-01 -9.48468387e-01 1.16245878e+00 1.05248702e+00 6.36482179e-01 -8.98754060e-01 7.22566128e-01 2.17941076e-01 -1.42881525e+00 -2.23134503e-01 -2.70984173e-01 -1.60827748e-02 1.08833328e-01 5.00636160e-01 -4.43162948e-01 1.22008026e+00 4.76685822e-01 5.44429660e-01 -3.30529302e-01 6.72173262e-01 -1.32650286e-01 -8.77647195e-03 -3.70375574e-01 3.27895641e-01 1.24630235e-01 -4.70174372e-01 6.85474217e-01 8.69121075e-01 3.72583479e-01 1.92588389e-01 -5.83345257e-02 1.21738923e+00 3.67804587e-01 -7.56755993e-02 -9.08528149e-01 1.50391355e-01 4.43085819e-01 5.71663678e-01 -5.94238400e-01 -2.73169458e-01 -5.66813290e-01 4.38185304e-01 9.13639665e-02 2.50285387e-01 -9.56810474e-01 6.30852506e-02 6.51359856e-01 6.77829146e-01 -1.66837089e-02 -1.10463679e-01 5.55573851e-02 -1.15293145e+00 1.00413002e-01 -3.04239124e-01 9.23802614e-01 -8.64292264e-01 -9.62698042e-01 5.07737577e-01 6.75701201e-01 -1.00895619e+00 -1.91013813e-02 -6.42772615e-01 4.90193348e-03 4.39988792e-01 -1.45140040e+00 -1.16400826e+00 -1.64618641e-01 1.17064238e+00 -2.76178658e-01 4.22289550e-01 1.12896311e+00 -4.48734649e-02 -2.09118277e-01 8.22703466e-02 -3.27297062e-01 -3.57459962e-01 2.34934449e-01 -1.46013439e+00 -3.69972020e-01 8.76989245e-01 8.82476121e-02 6.71929657e-01 1.20708895e+00 -4.49715734e-01 -1.70662105e+00 -1.10878837e+00 1.42750299e+00 -6.16206646e-01 7.35232115e-01 -8.34892243e-02 -1.01218724e+00 1.49638641e+00 -2.08094195e-01 3.53596300e-01 4.10537899e-01 2.23385721e-01 -8.48189175e-01 -3.54455709e-01 -1.43508232e+00 5.85403144e-01 1.40214598e+00 -6.70956969e-01 -9.39283192e-01 1.19060196e-01 7.71856606e-01 -2.22052485e-02 -1.17164552e+00 5.24781823e-01 2.91456610e-01 -1.28928471e+00 8.58113647e-01 -7.89014697e-01 -2.05430493e-01 -7.24294603e-01 -5.25519311e-01 -8.15376878e-01 -2.53495812e-01 -2.98471600e-01 -2.96073914e-01 1.01692450e+00 1.31270647e-01 -8.41545522e-01 3.68340731e-01 9.29732382e-01 -2.95318335e-01 -2.86388010e-01 -1.11306906e+00 -1.36707926e+00 5.00108227e-02 -7.54453361e-01 8.77385378e-01 1.12540424e+00 8.12855244e-01 -2.05547050e-01 1.16614290e-01 4.78440017e-01 7.79264808e-01 1.47672370e-01 7.38798231e-02 -1.94505429e+00 -1.10769652e-01 -4.52400982e-01 -9.03177142e-01 -3.81174944e-02 3.40394795e-01 -1.34616506e+00 -3.38410735e-01 -1.58411336e+00 -2.73567110e-01 -6.65287018e-01 8.97727981e-02 5.88953078e-01 8.38461280e-01 -2.19577178e-01 -1.00841872e-01 3.80131826e-02 -7.51805604e-01 2.70155638e-01 7.85044372e-01 -1.15058832e-02 -6.58724383e-02 -4.27713543e-01 -4.87977952e-01 8.60088527e-01 6.00998938e-01 -3.26328337e-01 -6.88092053e-01 -1.70888901e-01 1.13453782e+00 2.58222014e-01 7.05800891e-01 -8.67523134e-01 5.19324899e-01 -5.19083917e-01 -7.45665252e-01 1.09274387e-01 1.80732399e-01 -1.41734064e+00 8.96099567e-01 3.14417601e-01 -4.08311456e-01 -1.78173482e-01 3.02116610e-02 5.82423627e-01 -2.47799270e-02 -5.10308504e-01 6.38155043e-01 -1.56221926e-01 -8.45834076e-01 5.69114387e-02 -1.03619725e-01 -9.40691316e-05 1.46321535e+00 -2.87458003e-01 -2.07365081e-01 1.58806145e-01 -1.28829992e+00 -6.61567003e-02 9.33477759e-01 1.06830388e-01 3.20269704e-01 -1.45694911e+00 -1.25158548e-01 -1.69126093e-01 6.53788686e-01 -2.82884780e-02 1.75884634e-01 1.07816243e+00 -3.75456154e-01 5.92625916e-01 -1.22145951e-01 -2.72945851e-01 -1.00467777e+00 1.23643684e+00 5.31226218e-01 -5.70787080e-02 -8.41347635e-01 3.73451233e-01 -5.02524413e-02 -1.38188079e-01 2.30393052e-01 -7.30588138e-01 -1.84783727e-01 1.99250221e-01 2.68729925e-01 5.24976075e-01 6.32206500e-02 -8.13704312e-01 -8.48155379e-01 4.85330671e-01 4.45666999e-01 -7.46414214e-02 1.31241977e+00 -2.50550807e-01 -5.95560253e-01 8.18495333e-01 7.40666449e-01 1.83703721e-01 -5.87606132e-01 -3.29536706e-01 5.13673961e-01 -7.60087594e-02 -3.35237592e-01 -4.21383590e-01 -6.19452536e-01 3.83169085e-01 -6.49778768e-02 9.57597256e-01 8.84898961e-01 5.27270555e-01 2.68282574e-02 1.60365358e-01 1.03623772e+00 -1.00603509e+00 -3.92990828e-01 3.99690628e-01 8.92200828e-01 -3.91508698e-01 -1.98471993e-01 -8.15497816e-01 -3.34701300e-01 1.27522099e+00 1.45158350e-01 3.12758144e-03 4.75432336e-01 2.91295737e-01 -6.49766803e-01 -6.96617246e-01 -6.62864268e-01 -4.98960674e-01 3.07774190e-02 6.09920144e-01 -3.94966714e-02 3.14240783e-01 -5.55256784e-01 9.83703256e-01 -2.22894654e-01 1.88851789e-01 8.77589583e-01 1.04183817e+00 -2.98285306e-01 -1.09591508e+00 -3.71011764e-01 -1.21739961e-01 -2.20262140e-01 1.78416759e-01 -1.80040121e-01 1.16579700e+00 4.88555998e-01 8.93173575e-01 1.88920200e-01 -2.64732659e-01 6.19297802e-01 4.16586578e-01 9.66723502e-01 -5.42572558e-01 -3.92243685e-03 -7.06558347e-01 2.92143166e-01 -4.93026555e-01 -7.53906965e-01 -5.66186011e-01 -1.59605157e+00 -5.57940900e-01 -2.07889140e-01 5.01427293e-01 1.95011318e-01 1.22929823e+00 3.95052880e-02 3.81258577e-01 -4.16727588e-02 -1.14998929e-01 -2.71642059e-01 -3.68701071e-01 -1.12819266e+00 6.15260899e-01 2.03309387e-01 -8.12978566e-01 -4.87246543e-01 6.76565543e-02]
[8.724778175354004, 6.905439376831055]
a0c78263-bda1-47f6-8cd6-2f99b7c3bc52
cross-modal-learning-for-audio-visual-video
2104.04598
null
https://arxiv.org/abs/2104.04598v2
https://arxiv.org/pdf/2104.04598v2.pdf
Cross-Modal learning for Audio-Visual Video Parsing
In this paper, we present a novel approach to the audio-visual video parsing (AVVP) task that demarcates events from a video separately for audio and visual modalities. The proposed parsing approach simultaneously detects the temporal boundaries in terms of start and end times of such events. We show how AVVP can benefit from the following techniques geared towards effective cross-modal learning: (i) adversarial training and skip connections (ii) global context aware attention and, (iii) self-supervised pretraining using an audio-video grounding objective to obtain cross-modal audio-video representations. We present extensive experimental evaluations on the Look, Listen, and Parse (LLP) dataset and show that we outperform the state-of-the-art Hybrid Attention Network (HAN) on all five metrics proposed for AVVP. We also present several ablations to validate the effect of pretraining, global attention and adversarial training.
['Ganesh Ramakrishnan', 'Preethi Jyothi', 'Rishabh Dabral', 'Jayaprakash Akula', 'abhishek', 'Jatin Lamba']
2021-04-03
null
null
null
null
['video-grounding']
['computer-vision']
[ 4.99076396e-01 2.46026561e-01 1.19003460e-01 -4.68751818e-01 -1.52857327e+00 -6.54291153e-01 7.07325935e-01 2.81775333e-02 -2.45436162e-01 3.37529987e-01 4.93034840e-01 -1.43908873e-01 9.51734185e-02 -4.25076842e-01 -1.03876400e+00 -4.30701792e-01 -5.60009897e-01 2.22177580e-01 3.19027483e-01 3.03932074e-02 -1.00780003e-01 2.81033844e-01 -1.63866782e+00 8.87440920e-01 8.28055516e-02 1.24880743e+00 -6.44488335e-02 1.38184786e+00 -8.14694613e-02 1.21375704e+00 -5.98689795e-01 -3.28806818e-01 9.66609456e-04 -6.62493169e-01 -1.07245183e+00 -2.76970286e-02 7.89999008e-01 -2.56756157e-01 -3.65642577e-01 6.72811210e-01 6.47076368e-01 1.82350665e-01 4.30355906e-01 -1.44822907e+00 -5.73063254e-01 9.09373641e-01 -4.65996355e-01 5.53348780e-01 7.09482253e-01 6.67382330e-02 1.21037090e+00 -7.68120527e-01 6.51907206e-01 1.36789882e+00 7.80165553e-01 6.14597321e-01 -1.08861387e+00 -6.87108576e-01 4.43787992e-01 5.44128358e-01 -1.15263391e+00 -6.51934564e-01 1.00984621e+00 -5.59513450e-01 1.11943865e+00 3.22849870e-01 4.51778442e-01 1.58355904e+00 -1.37371734e-01 7.87261486e-01 6.62350297e-01 -6.07027590e-01 1.90071352e-02 -1.88112333e-01 1.18506864e-01 6.37260377e-01 -8.32803726e-01 2.78885305e-01 -8.53930116e-01 3.95737495e-03 4.53310519e-01 -4.32157129e-01 -3.17029804e-01 -2.70345390e-01 -1.06169283e+00 7.23033309e-01 3.27478260e-01 2.93809563e-01 -2.34107226e-01 5.09125054e-01 9.61059391e-01 3.36910874e-01 2.25426853e-01 9.90498960e-02 -3.25251698e-01 -1.06194057e-01 -1.02921128e+00 2.14571301e-02 3.71587455e-01 8.43049884e-01 4.32290286e-01 3.54903907e-01 -5.00010550e-01 6.12481952e-01 3.15524578e-01 2.17921987e-01 3.05166066e-01 -1.28956294e+00 6.25073910e-01 -1.22119285e-01 -1.29142329e-01 -7.76962698e-01 -2.89878428e-01 5.20796403e-02 -4.52936560e-01 1.28385305e-01 1.58679634e-01 -2.34011739e-01 -1.05923522e+00 2.05886269e+00 1.10696644e-01 6.17898524e-01 1.51466027e-01 7.47301996e-01 1.27306712e+00 9.06235635e-01 5.69855809e-01 -1.43955216e-01 1.15902722e+00 -1.08458579e+00 -8.18125784e-01 -2.92317361e-01 4.86009680e-02 -4.96966660e-01 9.41105783e-01 2.38721207e-01 -1.31606460e+00 -9.36661184e-01 -1.00450492e+00 -9.00104269e-02 -2.62972057e-01 5.24778711e-03 4.13589805e-01 4.11089778e-01 -1.22841918e+00 5.32841742e-01 -9.06885326e-01 -3.23465437e-01 2.47459620e-01 2.67862201e-01 -4.42059875e-01 2.46375114e-01 -1.29437840e+00 2.95322269e-01 3.53826612e-01 5.94008304e-02 -1.64707208e+00 -6.00173771e-01 -1.10526776e+00 1.48863629e-01 2.69929022e-01 -5.00089586e-01 1.32263827e+00 -1.65145433e+00 -1.45160234e+00 1.07348204e+00 -8.47408548e-02 -7.12558091e-01 2.02762425e-01 -4.81446445e-01 -4.94207084e-01 8.21797371e-01 5.00131026e-02 1.11861193e+00 1.22504878e+00 -1.34552681e+00 -6.87344670e-01 -1.09550998e-01 2.86134332e-01 3.02580837e-02 7.72908553e-02 3.32573354e-01 -7.98878491e-01 -6.91937089e-01 -3.19551468e-01 -7.09383607e-01 3.37845653e-01 -1.69304132e-01 -4.24031824e-01 1.23936264e-02 8.46682847e-01 -9.80316818e-01 1.13678122e+00 -2.36113000e+00 5.11449099e-01 -1.82282746e-01 -1.18434705e-01 8.18780139e-02 -4.41174746e-01 4.88219649e-01 -6.46666765e-01 2.42932945e-01 -4.82220016e-02 -7.13044643e-01 -1.25049487e-01 2.29789898e-01 -5.13976693e-01 2.50788331e-01 5.01934826e-01 5.67800760e-01 -8.51966321e-01 -6.53584301e-01 1.98988095e-01 7.89785743e-01 -7.00835764e-01 6.31070197e-01 -1.79785147e-01 6.05098188e-01 1.84166133e-02 7.97095001e-01 1.81287736e-01 2.36228615e-01 1.87690452e-01 -3.16066474e-01 5.01496643e-02 2.22284421e-01 -9.42443013e-01 1.94497490e+00 -5.23391306e-01 1.06716847e+00 4.28734481e-01 -1.04306364e+00 4.62874681e-01 7.62877941e-01 4.65718299e-01 -5.58162749e-01 1.58175781e-01 -3.49379718e-01 -4.20328200e-01 -6.32228076e-01 2.49057591e-01 -2.92201675e-02 -3.56872886e-01 -2.82195564e-02 7.93329954e-01 3.65935564e-01 6.40348345e-02 3.91390443e-01 1.12158799e+00 3.99408460e-01 5.52605465e-02 2.78170973e-01 6.97060823e-01 -3.10002357e-01 6.30150914e-01 7.68609583e-01 -4.48501617e-01 9.18172538e-01 7.65983701e-01 -2.68022150e-01 -7.22792506e-01 -1.18471408e+00 2.71500736e-01 1.63488686e+00 -1.35566443e-01 -5.40227115e-01 -7.78561234e-01 -8.01282942e-01 -4.03635293e-01 6.72416747e-01 -9.51920867e-01 -1.14625320e-02 -6.73820436e-01 -8.44841376e-02 7.66232848e-01 9.46671069e-01 2.68762350e-01 -1.36115384e+00 -6.49976075e-01 9.26560387e-02 -4.85651851e-01 -1.31412899e+00 -4.44020867e-01 4.04028684e-01 -4.84686464e-01 -1.14208221e+00 -5.05259871e-01 -9.01189506e-01 -4.69953939e-02 -7.50477985e-02 1.42679560e+00 -3.30060035e-01 -6.25142530e-02 1.13951254e+00 -7.28441834e-01 -2.16263428e-01 -6.12093031e-01 -2.26374164e-01 -4.16263312e-01 1.27428502e-01 -2.52754465e-02 -8.20901394e-01 -3.17873359e-01 5.58319278e-02 -8.27716172e-01 -1.82270072e-02 3.66315097e-01 7.92784214e-01 8.03299904e-01 -2.52432168e-01 4.75543022e-01 -6.78043664e-01 2.51440912e-01 -4.98510242e-01 -4.09911901e-01 2.28644803e-01 5.65958880e-02 -1.48784995e-01 4.36487675e-01 -4.56548005e-01 -9.88500178e-01 2.64291883e-01 -4.02639359e-01 -1.00585437e+00 -4.77724522e-01 3.83752763e-01 -3.04839075e-01 1.92078039e-01 4.83721495e-01 -3.05521581e-02 -3.95772934e-01 -3.37098241e-01 5.54605901e-01 4.07982975e-01 1.08224452e+00 -4.57790881e-01 4.68361020e-01 4.57380682e-01 -2.02189416e-01 -7.60637879e-01 -7.53179073e-01 -3.66426736e-01 -6.65513277e-01 -5.02434194e-01 1.47059512e+00 -1.21303105e+00 -6.08049929e-01 1.67681828e-01 -1.31645989e+00 -4.56182182e-01 -2.60412335e-01 2.46460289e-01 -9.09997702e-01 3.27286243e-01 -6.37082040e-01 -8.08780015e-01 -2.51075268e-01 -9.64705288e-01 1.37943959e+00 3.79741974e-02 -2.40856633e-01 -8.89353573e-01 2.36515835e-01 4.14212704e-01 -3.61723676e-02 6.73210084e-01 7.85959661e-01 -7.66310096e-01 -5.24225533e-01 -6.70783520e-02 -1.02254182e-01 2.94303179e-01 -3.32067668e-01 2.59257168e-01 -1.47489965e+00 -8.33690986e-02 -2.74045378e-01 -5.71389496e-01 9.79008257e-01 4.44779456e-01 1.08335018e+00 -2.20873415e-01 -5.45080565e-02 7.98266470e-01 1.36490309e+00 2.87870020e-01 5.92716992e-01 3.15852612e-01 7.10480869e-01 4.58878696e-01 4.97707069e-01 3.08374405e-01 2.05872372e-01 7.58842647e-01 8.54216218e-01 -7.21184984e-02 -4.72850084e-01 -3.15957844e-01 6.83141828e-01 5.88398516e-01 2.69449875e-02 -4.15217161e-01 -8.17098141e-01 9.28586781e-01 -1.76026750e+00 -1.23203003e+00 1.28988981e-01 2.00552559e+00 5.49143493e-01 2.12194130e-01 2.32639313e-01 2.90981829e-01 7.44848967e-01 4.41088796e-01 -2.18493998e-01 -7.70580888e-01 7.35523459e-03 3.89655292e-01 1.93902552e-02 5.25000095e-01 -1.62655532e+00 8.48745346e-01 6.76110601e+00 4.05665874e-01 -1.02931786e+00 4.42239106e-01 4.01520938e-01 -1.65698990e-01 3.98785621e-03 -2.12798908e-01 -4.84574586e-01 1.53554648e-01 1.41069007e+00 4.18273658e-01 4.32925999e-01 7.13354349e-01 -6.29691556e-02 1.99516580e-01 -1.44825542e+00 9.83286083e-01 2.48214021e-01 -1.17392635e+00 2.89722532e-02 -5.33998668e-01 2.93011248e-01 1.24930218e-01 -1.62152633e-01 5.62968969e-01 5.82707822e-02 -8.49585056e-01 1.11681259e+00 3.75940502e-01 7.33039021e-01 -8.47539186e-01 5.10082543e-01 -2.40310371e-01 -1.60048676e+00 -2.10066795e-01 1.94873706e-01 3.84515315e-01 4.30456281e-01 -1.42999440e-01 -4.12527204e-01 7.08126307e-01 1.07503831e+00 7.26491630e-01 -5.22124827e-01 6.80065036e-01 -3.18058670e-01 8.03011596e-01 -1.56151280e-02 6.62185729e-01 3.66824061e-01 3.38192344e-01 7.39626467e-01 1.57259274e+00 5.57827614e-02 -2.55527675e-01 1.25082329e-01 6.30930960e-01 4.82556550e-03 -1.26487449e-01 -5.20013154e-01 -1.36555985e-01 3.14038843e-01 9.69541013e-01 -5.93621433e-01 -1.97516307e-01 -6.55282140e-01 9.94153678e-01 2.30405912e-01 4.23866183e-01 -1.31825113e+00 -2.49591187e-01 7.41730034e-01 -1.22628659e-01 8.36358786e-01 4.32333164e-02 2.53736705e-01 -8.72365296e-01 -1.94167331e-01 -8.54007125e-01 8.13467026e-01 -1.22459269e+00 -9.55072165e-01 9.51297641e-01 1.21946402e-01 -1.08412158e+00 -6.51354969e-01 -3.19332749e-01 -8.08853209e-01 5.54010928e-01 -1.49922562e+00 -1.37650585e+00 -3.06138724e-01 9.35844600e-01 8.37435842e-01 -3.91076654e-02 9.56453979e-01 5.01782775e-01 -5.29315531e-01 6.73359215e-01 -3.50332201e-01 4.63841647e-01 6.49312079e-01 -1.27159476e+00 2.55006224e-01 1.02669930e+00 4.96417403e-01 -5.30100614e-02 6.90797508e-01 -3.42580229e-01 -1.13633287e+00 -1.21412444e+00 5.80904305e-01 -3.57661009e-01 6.97690308e-01 -4.23076153e-01 -8.18004966e-01 1.20393908e+00 7.00148106e-01 1.05170952e-02 7.97307551e-01 1.28165498e-01 -5.90175211e-01 -1.42225936e-01 -8.28155577e-01 2.60122716e-01 8.87725174e-01 -9.84159172e-01 -7.25642025e-01 2.98857331e-01 1.03966975e+00 -3.86328846e-01 -8.01625013e-01 3.38844061e-01 4.72780257e-01 -1.24276865e+00 1.29708397e+00 -8.72422874e-01 6.34239137e-01 -8.06198716e-02 -4.12404388e-01 -8.39237928e-01 -2.79424042e-01 -8.53032529e-01 -1.78667098e-01 1.76688814e+00 2.11190447e-01 1.00777447e-01 3.93487602e-01 1.38879046e-01 -4.83194500e-01 -2.82883465e-01 -1.14943790e+00 -5.83811581e-01 -1.90603524e-01 -8.50730300e-01 1.38673652e-02 8.11585784e-01 -2.39047334e-01 5.18251717e-01 -6.76049948e-01 5.94825864e-01 3.44549149e-01 5.58983684e-02 5.10677576e-01 -8.77584815e-01 -5.02320290e-01 -1.97380111e-01 -6.35125399e-01 -5.32430470e-01 4.78817493e-01 -5.71407676e-01 1.84564844e-01 -1.30447221e+00 -1.81758571e-02 2.61848241e-01 -4.20321882e-01 5.92653096e-01 7.51839280e-02 2.60169327e-01 3.44811320e-01 -6.03355318e-02 -9.61860120e-01 3.30324739e-01 5.55797458e-01 -2.89688796e-01 -1.00353532e-01 -3.31362933e-01 -4.12473798e-01 6.80908442e-01 4.78506088e-01 -5.42519808e-01 -4.83494788e-01 -5.39678156e-01 2.65318472e-02 5.50648868e-01 5.88656783e-01 -1.25551856e+00 -2.62228791e-02 3.04354221e-01 2.58604169e-01 -6.72136068e-01 6.16536558e-01 -8.01465213e-01 1.27728119e-01 7.08878711e-02 -6.14128828e-01 1.61301672e-01 6.09015763e-01 8.94964814e-01 -6.40115142e-01 -1.36340484e-02 8.56167316e-01 -4.16204259e-02 -9.67362165e-01 -8.28898996e-02 -5.29126108e-01 2.68770486e-01 1.03344059e+00 -6.82650181e-03 -8.26818123e-02 -6.95142984e-01 -1.39970291e+00 1.67590961e-01 1.66025069e-02 5.02973020e-01 5.45384526e-01 -1.40734458e+00 -5.66143811e-01 7.00280294e-02 1.98585670e-02 -4.06073511e-01 4.20588464e-01 7.26059854e-01 -4.42251652e-01 3.77240777e-01 -2.71294802e-01 -7.87701905e-01 -1.69109547e+00 9.42013919e-01 3.38979155e-01 -2.45495796e-01 -4.96629626e-01 1.06606114e+00 1.38483226e-01 -6.30350262e-02 8.16688657e-01 -3.14399004e-01 -3.85592431e-01 3.21070164e-01 6.10983253e-01 1.52889624e-01 2.15217695e-02 -8.73825610e-01 -5.14497161e-01 4.88797635e-01 2.24657327e-01 -3.35771471e-01 1.30126429e+00 -1.80638194e-01 3.81466985e-01 6.11972094e-01 1.25115561e+00 3.32762115e-02 -1.39318788e+00 1.23930983e-02 -3.11852604e-01 -9.50713381e-02 1.19209394e-01 -7.12864876e-01 -1.27456331e+00 1.14753687e+00 8.54274035e-01 4.89886612e-01 1.60536158e+00 3.27310383e-01 5.49626291e-01 -9.19692665e-02 -1.70103654e-01 -7.81371117e-01 1.09491013e-01 2.78003275e-01 1.03479648e+00 -1.03490973e+00 -3.91305417e-01 -2.87631214e-01 -8.29368711e-01 1.11735463e+00 3.94656867e-01 -5.65271042e-02 6.00568712e-01 2.52755791e-01 1.87702522e-01 -8.90931040e-02 -9.15545821e-01 -4.12451297e-01 3.88525814e-01 9.14854586e-01 4.50840622e-01 -3.11243206e-01 3.48876238e-01 7.33060956e-01 2.44231388e-01 -2.51951784e-01 3.07458013e-01 9.92295444e-01 -3.51383388e-02 -8.98238003e-01 -3.59386533e-01 -3.59557122e-01 -8.38010132e-01 -1.57244623e-01 -7.10387647e-01 1.06285298e+00 1.54480383e-01 1.02310276e+00 3.45670670e-01 -5.60330510e-01 3.14141363e-01 3.85540903e-01 4.46044028e-01 -4.40518320e-01 -9.30842876e-01 3.39016318e-01 3.87341827e-01 -9.88443613e-01 -9.36710596e-01 -6.68488503e-01 -1.12823725e+00 2.61135519e-01 -3.72745446e-03 1.34536326e-02 4.30354357e-01 7.28441656e-01 4.45626318e-01 1.11091971e+00 4.95139092e-01 -1.22873282e+00 2.11422425e-02 -9.00577605e-01 -1.74899086e-01 5.59078097e-01 4.76799995e-01 -5.91639519e-01 -4.45966661e-01 5.67165792e-01]
[10.076506614685059, 1.0087207555770874]
fd1368b4-7971-41f7-b3ff-e7df548867cf
improving-mutual-information-estimation-with-1
2303.06992
null
https://arxiv.org/abs/2303.06992v1
https://arxiv.org/pdf/2303.06992v1.pdf
Improving Mutual Information Estimation with Annealed and Energy-Based Bounds
Mutual information (MI) is a fundamental quantity in information theory and machine learning. However, direct estimation of MI is intractable, even if the true joint probability density for the variables of interest is known, as it involves estimating a potentially high-dimensional log partition function. In this work, we present a unifying view of existing MI bounds from the perspective of importance sampling, and propose three novel bounds based on this approach. Since accurate estimation of MI without density information requires a sample size exponential in the true MI, we assume either a single marginal or the full joint density information is known. In settings where the full joint density is available, we propose Multi-Sample Annealed Importance Sampling (AIS) bounds on MI, which we demonstrate can tightly estimate large values of MI in our experiments. In settings where only a single marginal distribution is known, we propose Generalized IWAE (GIWAE) and MINE-AIS bounds. Our GIWAE bound unifies variational and contrastive bounds in a single framework that generalizes InfoNCE, IWAE, and Barber-Agakov bounds. Our MINE-AIS method improves upon existing energy-based methods such as MINE-DV and MINE-F by directly optimizing a tighter lower bound on MI. MINE-AIS uses MCMC sampling to estimate gradients for training and Multi-Sample AIS for evaluating the bound. Our methods are particularly suitable for evaluating MI in deep generative models, since explicit forms of the marginal or joint densities are often available. We evaluate our bounds on estimating the MI of VAEs and GANs trained on the MNIST and CIFAR datasets, and showcase significant gains over existing bounds in these challenging settings with high ground truth MI.
['Alireza Makhzani', 'Roger Grosse', 'Greg Ver Steeg', 'Marzyeh Ghassemi', 'Sicong Huang', 'Rob Brekelmans']
2023-03-13
improving-mutual-information-estimation-with
https://openreview.net/forum?id=T0B9AoM_bFg
https://openreview.net/pdf?id=T0B9AoM_bFg
iclr-2022-4
['mutual-information-estimation']
['methodology']
[ 3.05244207e-01 8.56346339e-02 -3.90626162e-01 -2.09212765e-01 -1.41828251e+00 -5.73676109e-01 5.08842289e-01 -1.89283371e-01 -4.52855289e-01 1.11087251e+00 -9.92791951e-02 -3.54892462e-01 -2.75476754e-01 -7.75342405e-01 -1.13445985e+00 -1.00819242e+00 -8.49024057e-02 8.66799414e-01 3.59772108e-02 1.89879745e-01 1.32294476e-01 2.20256567e-01 -1.25192130e+00 -3.03321242e-01 8.86918843e-01 1.08411300e+00 2.06693888e-01 9.27318156e-01 8.48784596e-02 5.01306176e-01 -4.87641633e-01 -3.27692807e-01 9.09299031e-02 -7.69379377e-01 -7.92824626e-01 -2.47805804e-01 2.14670986e-01 -4.62809741e-01 -2.00494900e-01 1.11403000e+00 2.21650437e-01 9.74393934e-02 1.34192324e+00 -1.43197238e+00 -3.67741466e-01 7.10661709e-01 -8.11424315e-01 4.08865273e-01 -1.53642282e-01 -3.10060680e-01 1.20027542e+00 -5.51527143e-01 3.73501688e-01 9.82539475e-01 6.31956041e-01 5.25986671e-01 -1.40074909e+00 -6.72178388e-01 1.62010238e-01 3.29472631e-01 -1.64751220e+00 -3.65824878e-01 5.47067463e-01 -3.68252754e-01 8.01773667e-01 1.63626030e-01 3.45809221e-01 1.02501893e+00 1.37460932e-01 1.14288712e+00 9.35812116e-01 -6.29905343e-01 4.72699791e-01 2.14592174e-01 2.77423233e-01 6.94134712e-01 4.18804467e-01 4.51127347e-03 -4.89886850e-01 -5.10261774e-01 9.56864238e-01 -1.42973825e-01 -5.16213536e-01 -3.68594795e-01 -8.76293600e-01 9.47439671e-01 1.85321003e-01 8.05924162e-02 -1.49766698e-01 5.99653244e-01 5.25734387e-02 -5.42437509e-02 6.37434721e-01 -2.26344988e-02 -5.15582800e-01 -4.36288625e-01 -1.13842809e+00 1.38942078e-01 1.02874708e+00 9.21363413e-01 9.05983448e-01 -1.64826974e-01 -1.79492980e-01 7.02068746e-01 4.62703347e-01 7.57501006e-01 1.13717085e-02 -1.20753598e+00 5.33130467e-01 -2.28899837e-01 3.68327916e-01 -4.76222992e-01 7.24038631e-02 -5.64629138e-01 -8.96935463e-01 -1.08246982e-01 6.18407786e-01 -1.94441229e-01 -1.01613104e+00 2.38221717e+00 2.82224417e-01 3.98778707e-01 -8.50792229e-02 6.10662639e-01 1.63585067e-01 8.71726513e-01 -2.69179881e-01 -3.89052957e-01 1.05103183e+00 -7.28080571e-01 -5.60487986e-01 -2.23186702e-01 3.55523944e-01 -1.75190896e-01 9.35050607e-01 4.50090945e-01 -1.29149461e+00 -2.61110440e-02 -1.06199229e+00 -3.59269045e-02 9.96021777e-02 -8.28404576e-02 7.29396343e-01 7.69289613e-01 -1.08846962e+00 8.23664248e-01 -1.21345222e+00 3.17156054e-02 5.62377095e-01 3.94633472e-01 6.96500093e-02 -1.30275398e-01 -8.74748945e-01 5.80252469e-01 1.81590751e-01 9.39058810e-02 -1.04075444e+00 -7.85273850e-01 -7.60446548e-01 2.00174063e-01 3.44121009e-01 -8.64107370e-01 1.34811103e+00 -8.41540456e-01 -1.50301301e+00 3.79638553e-01 -4.37538654e-01 -5.05174935e-01 3.80723327e-01 -1.06906526e-01 2.21050918e-01 3.13029647e-01 -1.45080656e-01 4.20673519e-01 7.47234762e-01 -1.11442780e+00 -1.76472932e-01 -3.63015711e-01 6.19879812e-02 9.55285728e-02 -2.32578605e-01 -4.75912869e-01 -5.44494450e-01 -2.83886075e-01 9.31912754e-03 -8.30454111e-01 -1.05678111e-01 -9.71600227e-03 -5.74144304e-01 -7.46235177e-02 2.91637719e-01 -4.72391814e-01 1.09567344e+00 -1.79597855e+00 2.40977600e-01 3.97591203e-01 3.15329403e-01 -1.38979927e-01 1.94885477e-01 2.29751229e-01 4.05254930e-01 3.51716429e-01 -6.03114307e-01 -4.55274522e-01 3.27370107e-01 4.03805912e-01 -7.27139115e-02 5.21911800e-01 -5.70336431e-02 9.21548307e-01 -7.83000469e-01 -5.07356048e-01 3.50814648e-02 7.16274142e-01 -7.34170020e-01 5.93210123e-02 -1.50657058e-01 2.85666823e-01 -4.48593020e-01 1.41125157e-01 8.05501342e-01 -7.51399100e-01 1.98087022e-01 -2.30982438e-01 3.88731360e-01 3.23206723e-01 -1.05168819e+00 1.45837224e+00 -7.09702373e-01 5.70225894e-01 2.14447737e-01 -1.22934234e+00 1.83755517e-01 2.38094434e-01 3.28464150e-01 -2.08625525e-01 2.61524469e-01 6.49159327e-02 -1.91903010e-01 9.38260704e-02 6.15564808e-02 -4.76441503e-01 -5.04030176e-02 5.60952783e-01 1.75925061e-01 8.88298005e-02 2.11639583e-01 5.88283360e-01 1.18741298e+00 9.15127173e-02 2.20235795e-01 -4.32229459e-01 7.92157650e-02 -5.66405118e-01 4.17102993e-01 1.00050414e+00 -4.40291129e-02 7.19916046e-01 6.52580321e-01 4.11773771e-01 -1.02543294e+00 -1.63929880e+00 -4.86354381e-01 6.20678365e-01 1.54692516e-01 -2.05582261e-01 -9.82437909e-01 -6.44410610e-01 -3.94207299e-01 7.99722135e-01 -7.58652031e-01 -2.88842600e-02 -6.99187070e-03 -1.30465186e+00 2.62944132e-01 5.55921257e-01 5.09952366e-01 -3.56928080e-01 -2.64412940e-01 1.13540873e-01 -3.73070389e-01 -1.02511334e+00 -7.10030794e-01 4.41503853e-01 -8.34170341e-01 -9.77150083e-01 -7.91581511e-01 -2.58604258e-01 5.40448129e-01 -5.96316867e-02 1.28688657e+00 -1.70255348e-01 -1.29338518e-01 5.60464680e-01 4.86086234e-02 -2.65574276e-01 -3.62826169e-01 1.14540458e-01 -1.97082162e-01 -2.36368567e-01 1.13173641e-01 -7.96127439e-01 -7.46903419e-01 1.92747593e-01 -8.90338302e-01 9.28186998e-02 6.25993669e-01 9.13124025e-01 7.68847764e-01 -9.22690555e-02 5.57457805e-01 -8.74214172e-01 1.83744341e-01 -7.89770722e-01 -7.39721477e-01 2.72771955e-01 -7.48116076e-01 6.45955682e-01 3.78534079e-01 -4.12453741e-01 -1.09697735e+00 -2.68464327e-01 -4.28573519e-01 -5.35322547e-01 1.63063183e-01 4.24696505e-01 -3.28044474e-01 1.85999602e-01 3.68256152e-01 2.52836626e-02 -3.58240634e-01 -4.40447390e-01 3.21001470e-01 5.00996113e-01 6.43563867e-01 -8.92433286e-01 6.15883768e-01 4.85666424e-01 1.38938159e-01 -5.81617951e-01 -1.05790365e+00 -4.08660084e-01 -3.56527656e-01 1.22522868e-01 6.63783669e-01 -7.98869789e-01 -7.67856419e-01 2.95985937e-01 -9.21480119e-01 -5.94352841e-01 -3.10386181e-01 6.16711080e-01 -7.66473174e-01 4.07127887e-01 -8.21012616e-01 -1.18284011e+00 -3.74653190e-01 -1.04160035e+00 1.13371944e+00 3.04235872e-02 1.89161822e-01 -1.28617871e+00 1.34958535e-01 1.05051093e-01 2.13054642e-01 1.19668990e-01 8.71642709e-01 -3.57306451e-01 -7.46478558e-01 -7.59379640e-02 -2.41246656e-01 4.24227357e-01 -1.05494432e-01 -1.11059606e-01 -1.01524389e+00 -1.59684971e-01 -2.06596740e-02 -2.74515152e-01 1.17787933e+00 1.00276220e+00 1.30392432e+00 -4.77446765e-01 -5.01448452e-01 6.97247505e-01 1.64552450e+00 -3.52496617e-02 5.93109906e-01 -2.35033169e-01 5.17790318e-01 -1.58752069e-01 2.69304097e-01 6.70200109e-01 4.55838352e-01 6.30487680e-01 2.59957105e-01 2.35088378e-01 1.47876143e-01 -2.50650018e-01 4.15639102e-01 8.66973639e-01 -5.84885776e-02 -6.04157090e-01 -4.14245248e-01 6.13721132e-01 -1.63022661e+00 -1.01838601e+00 8.01899731e-02 2.54386902e+00 1.20344961e+00 8.70961919e-02 1.03183910e-01 1.28398553e-01 5.62302530e-01 -6.97972849e-02 -9.35381413e-01 -3.16539370e-02 1.09244734e-01 5.39950252e-01 7.67665863e-01 9.27904487e-01 -8.43968332e-01 4.24424499e-01 6.56537151e+00 1.14000988e+00 -4.60654378e-01 5.71285605e-01 9.58389163e-01 -3.07873309e-01 -7.73068964e-01 -6.09936006e-02 -1.01458514e+00 5.55677593e-01 1.23781347e+00 -1.26468986e-01 6.26253545e-01 6.96041882e-01 -2.98586369e-01 -5.24113953e-01 -1.28555715e+00 9.53805447e-01 -1.67991683e-01 -1.20455515e+00 -4.40041155e-01 5.45328557e-01 8.13552380e-01 3.10363472e-01 1.94272473e-01 2.31335163e-01 6.61365628e-01 -8.74206483e-01 5.51448941e-01 4.41227496e-01 8.37374032e-01 -9.83458579e-01 5.60654640e-01 5.93094468e-01 -1.04922652e+00 4.03908879e-01 -4.30663496e-01 8.63662288e-02 1.79411411e-01 1.14845705e+00 -5.61762393e-01 3.46151382e-01 3.92250210e-01 3.79186779e-01 -1.74462760e-03 8.16999674e-01 -1.95137396e-01 1.07627559e+00 -1.02618802e+00 1.72798131e-02 5.23414416e-03 -5.09221852e-01 4.63753253e-01 1.00082445e+00 4.02469456e-01 3.69264744e-02 -1.07361883e-01 1.26669192e+00 -3.96680653e-01 -2.40993664e-01 -1.96090832e-01 -3.32540907e-02 5.88685930e-01 1.04507780e+00 -7.81369567e-01 -3.96053225e-01 -2.47633293e-01 1.20226359e+00 4.01197970e-01 5.79396307e-01 -1.17587054e+00 -2.06958517e-01 7.46121764e-01 -1.60890236e-01 6.28042936e-01 -2.19844177e-01 -1.16181597e-01 -1.27289891e+00 9.73815247e-02 -3.59594405e-01 3.39909315e-01 -3.52779657e-01 -1.25632131e+00 2.71641582e-01 5.04155993e-01 -5.90202212e-01 -7.44509220e-01 -4.51936632e-01 -5.07076085e-01 9.51116025e-01 -1.50663185e+00 -7.43756056e-01 6.36327416e-02 3.71007353e-01 2.64242589e-01 4.43729907e-01 6.56663537e-01 2.50020683e-01 -7.33985364e-01 8.21082473e-01 6.64989412e-01 -1.41055003e-01 8.48496184e-02 -1.45877445e+00 3.95456612e-01 6.99599087e-01 4.67272490e-01 3.55111361e-01 7.37916172e-01 -4.11202252e-01 -1.35351825e+00 -7.01988459e-01 3.07056695e-01 -4.27623123e-01 5.61674714e-01 -5.29050350e-01 -7.70762801e-01 8.50364923e-01 -4.35488112e-02 1.32406920e-01 6.36775613e-01 2.09414244e-01 -1.78502932e-01 1.50293201e-01 -1.19388986e+00 2.71752775e-01 1.09623086e+00 -4.45949763e-01 1.17584206e-02 5.25878131e-01 5.04481018e-01 -1.81019336e-01 -9.31285977e-01 1.95351273e-01 5.27106106e-01 -9.84835625e-01 1.01673329e+00 -2.19018966e-01 2.57610857e-01 4.60412260e-03 -4.89962220e-01 -1.16894507e+00 6.85284138e-02 -5.72809696e-01 -5.85826099e-01 1.24123001e+00 6.01913571e-01 -5.39215326e-01 8.55083048e-01 7.50077426e-01 1.43227264e-01 -1.00718558e+00 -1.05473077e+00 -9.93742049e-01 3.48159999e-01 -8.64095509e-01 3.67949158e-01 4.23569560e-01 -2.03365847e-01 3.51001173e-01 -3.28890145e-01 3.25974613e-01 1.07777023e+00 -1.02256782e-01 4.00207967e-01 -1.09017956e+00 -9.65514600e-01 -3.60646397e-01 -1.64149746e-01 -1.47492564e+00 2.42347479e-01 -8.69311631e-01 1.40307143e-01 -1.52922177e+00 7.68972158e-01 -4.11525100e-01 -3.01858127e-01 7.41421208e-02 -3.19357246e-01 2.94481814e-01 -1.51742280e-01 1.68885395e-01 -5.83031952e-01 7.62938917e-01 8.23902905e-01 -3.41091789e-02 9.75123122e-02 1.34850100e-01 -6.29247069e-01 7.48220742e-01 6.59741819e-01 -4.78575677e-01 -7.57595599e-01 -1.48469910e-01 2.95334488e-01 9.37372446e-02 4.26557004e-01 -9.71327782e-01 1.08729012e-01 -6.36047721e-02 3.61220688e-01 -6.48593307e-01 6.03460550e-01 -4.46099699e-01 9.12422165e-02 1.39545113e-01 -2.94470817e-01 -5.13001084e-01 -1.36930530e-03 9.10179138e-01 2.07451820e-01 -5.85319340e-01 8.61560702e-01 2.08749752e-02 -1.08796142e-01 6.57902956e-01 -2.16673911e-01 5.39426267e-01 5.73606610e-01 6.98540881e-02 -7.58355260e-02 -8.07406485e-01 -5.83532155e-01 -1.55068431e-02 3.39101821e-01 -4.19730395e-01 5.66590965e-01 -1.30605435e+00 -5.72813094e-01 -4.33067307e-02 -2.79090852e-01 1.88149139e-01 1.66613981e-01 1.01628673e+00 -1.01772234e-01 1.14328645e-01 4.60637450e-01 -6.58741653e-01 -8.31897259e-01 4.48442429e-01 3.28703851e-01 -5.17929375e-01 -3.16463470e-01 1.05087793e+00 7.41868079e-01 -2.59067491e-02 1.50500670e-01 -3.21515083e-01 4.82680887e-01 -3.50768209e-01 6.44505739e-01 3.24435741e-01 -8.70361403e-02 -2.24248677e-01 -2.34295726e-01 4.15800363e-01 -1.90485254e-01 -5.99432826e-01 1.14250255e+00 -4.56100076e-01 1.94004163e-01 7.83373594e-01 1.67867255e+00 -1.85278878e-01 -1.59134662e+00 -3.61122072e-01 -2.50347137e-01 -2.65627593e-01 5.25993168e-01 -6.57940567e-01 -1.14737952e+00 1.06826234e+00 5.13527930e-01 -4.16625962e-02 1.14828968e+00 4.39340711e-01 8.55483592e-01 3.49804312e-01 4.80343997e-01 -9.12664413e-01 -1.35748625e-01 1.82463974e-01 4.17403966e-01 -1.08422422e+00 4.07662056e-02 -2.92628974e-01 -3.22272599e-01 7.22071230e-01 1.82142720e-01 1.21615954e-01 8.78647149e-01 6.68336570e-01 -6.22308552e-01 2.34724190e-02 -8.00758302e-01 -2.91920125e-01 4.20489043e-01 4.89712983e-01 3.32759321e-01 1.47973122e-02 -1.73747335e-02 5.90755105e-01 -8.07338804e-02 -9.02016982e-02 4.00326550e-01 7.17149377e-01 -4.57582027e-01 -9.89801586e-01 -5.70857562e-02 7.17095137e-01 -8.01262617e-01 -5.16367912e-01 6.16118722e-02 6.34392738e-01 -4.20605004e-01 8.46581817e-01 2.23441750e-01 -4.52689640e-02 -3.95870656e-01 2.62077618e-03 1.03847313e+00 -2.96904683e-01 2.96325475e-01 1.04978666e-01 -1.36139998e-02 -3.98471385e-01 -4.46858138e-01 -6.79050028e-01 -1.27283990e+00 -5.35296500e-01 -7.46849835e-01 3.44062567e-01 8.83814514e-01 1.32295799e+00 1.88301593e-01 3.16142052e-01 5.88470221e-01 -9.14836049e-01 -7.31932163e-01 -9.17598248e-01 -8.04645956e-01 2.62299785e-03 4.13935006e-01 -7.35522330e-01 -6.98519886e-01 -1.25999808e-01]
[7.127038955688477, 3.9796037673950195]
c496fdd8-16ae-45a3-a28b-9ead4f19d41b
sparsely-constrained-neural-networks-for
2011.04336
null
https://arxiv.org/abs/2011.04336v2
https://arxiv.org/pdf/2011.04336v2.pdf
Sparsely constrained neural networks for model discovery of PDEs
Sparse regression on a library of candidate features has developed as the prime method to discover the partial differential equation underlying a spatio-temporal data-set. These features consist of higher order derivatives, limiting model discovery to densely sampled data-sets with low noise. Neural network-based approaches circumvent this limit by constructing a surrogate model of the data, but have to date ignored advances in sparse regression algorithms. In this paper we present a modular framework that dynamically determines the sparsity pattern of a deep-learning based surrogate using any sparse regression technique. Using our new approach, we introduce a new constraint on the neural network and show how a different network architecture and sparsity estimator improve model discovery accuracy and convergence on several benchmark examples. Our framework is available at \url{https://github.com/PhIMaL/DeePyMoD}
['Remy Kusters', 'Gijs Vermarien', 'Gert-Jan Both']
2020-11-09
null
null
null
null
['model-discovery']
['miscellaneous']
[-4.43859175e-02 -4.57042605e-02 -3.89713168e-01 -2.99657822e-01 -7.88730383e-01 -3.30109566e-01 5.68887353e-01 -2.78379053e-01 -1.38414726e-01 8.79403234e-01 2.16321334e-01 -1.11000217e-01 -4.65189040e-01 -4.84349310e-01 -6.80257261e-01 -7.20073700e-01 -3.66970211e-01 2.82700330e-01 -1.09303802e-01 -1.08635955e-01 1.00189492e-01 7.26572573e-01 -1.36288977e+00 3.13317746e-01 5.14038384e-01 1.19319785e+00 6.36002980e-03 5.38743734e-01 2.88962632e-01 7.91676044e-01 -8.92898738e-02 1.64317861e-01 6.02193296e-01 -3.00040841e-01 -5.44772387e-01 -3.27810735e-01 4.90393549e-01 -2.20944390e-01 -8.77210319e-01 8.15898418e-01 3.95681500e-01 2.33517408e-01 6.44434094e-01 -1.21380568e+00 -5.21000326e-01 2.70350069e-01 -4.89789397e-01 6.21774614e-01 -1.54131604e-02 3.41387698e-03 9.31989312e-01 -1.15814662e+00 6.66006744e-01 7.03409731e-01 1.18143392e+00 4.32219535e-01 -1.51592374e+00 -4.96692955e-01 -2.49346886e-02 6.07192516e-02 -1.65332961e+00 -7.13597536e-01 9.11064088e-01 -5.14844179e-01 9.66253042e-01 3.52869749e-01 6.60827398e-01 1.30953264e+00 2.46996462e-01 6.23723090e-01 1.06989372e+00 -4.48496975e-02 3.58098328e-01 -6.74825758e-02 1.47952840e-01 6.33544981e-01 3.73987287e-01 3.34770977e-01 -5.08206487e-01 -5.23699641e-01 1.17623258e+00 1.62899956e-01 -3.51948798e-01 -5.67656815e-01 -8.65428984e-01 1.11808801e+00 3.48553509e-01 5.39475620e-01 -4.93062824e-01 3.39886546e-01 2.13668019e-01 4.34971303e-01 6.28959537e-01 6.70073986e-01 -7.42472112e-01 -1.10939503e-01 -1.27968073e+00 2.88915515e-01 9.99656081e-01 6.92653656e-01 9.35089469e-01 4.16578293e-01 6.32266179e-02 7.45066822e-01 -4.77173291e-02 2.50562102e-01 4.06655312e-01 -1.39332199e+00 -2.23474447e-02 1.87703028e-01 2.58285645e-02 -1.25953960e+00 -5.29185653e-01 -7.46749222e-01 -1.22204614e+00 1.03865094e-01 5.00331104e-01 -5.46591103e-01 -6.62678063e-01 1.55143034e+00 2.80737013e-01 5.38319588e-01 -3.36364418e-01 9.96278942e-01 6.11940682e-01 5.80817759e-01 -4.86718744e-01 -1.45980179e-01 5.79167783e-01 -5.95898569e-01 -3.96485299e-01 1.48341926e-02 6.53364241e-01 -3.69066149e-01 6.60996377e-01 5.40845513e-01 -1.09489048e+00 -2.47306868e-01 -7.27385998e-01 5.22218682e-02 -2.40414217e-01 3.46286483e-02 8.93591940e-01 8.97879675e-02 -1.24825919e+00 1.07677495e+00 -1.02182901e+00 -2.50467002e-01 6.26601994e-01 4.73156691e-01 -4.28815186e-01 -1.02168983e-02 -9.62724268e-01 8.21836352e-01 -1.89977914e-01 2.26206288e-01 -8.15502524e-01 -1.11372828e+00 -8.42900515e-01 -4.58488911e-02 4.45633754e-02 -7.31808186e-01 1.08826089e+00 -1.12987864e+00 -1.20201397e+00 5.93131244e-01 -2.90163100e-01 -7.03549683e-01 3.68020862e-01 -1.69731572e-01 -2.92003155e-01 1.38162121e-01 1.88528776e-01 3.08273852e-01 1.04056191e+00 -1.14337742e+00 -3.71289939e-01 -1.07604660e-01 -3.50763977e-01 -3.23708594e-01 -5.97192869e-02 -7.24946111e-02 5.49585093e-03 -5.75798154e-01 1.90644532e-01 -7.55874753e-01 -7.40685701e-01 1.34434894e-01 -1.97191522e-01 1.27251759e-01 7.35609770e-01 -5.25268853e-01 1.17342222e+00 -2.05272555e+00 1.93717957e-01 4.56156552e-01 5.42383611e-01 -2.46607792e-02 -2.37165675e-01 4.78634447e-01 -3.70121568e-01 -2.27107219e-02 -5.85789740e-01 -3.53818148e-01 -3.40519011e-01 1.39569923e-01 -3.50958854e-01 9.71502542e-01 5.26132226e-01 7.48025179e-01 -7.21418500e-01 -1.00249946e-01 3.37389708e-02 9.42574620e-01 -5.73908389e-01 6.00857250e-02 1.02615925e-02 6.93539500e-01 -5.12603462e-01 6.05573654e-01 5.62879264e-01 -6.57723486e-01 -1.18603297e-02 -1.09686755e-01 -1.40813902e-01 1.12952158e-01 -1.37886822e+00 1.82144475e+00 -4.38875794e-01 8.34374905e-01 4.13373709e-01 -1.36967874e+00 9.65937078e-01 3.07514429e-01 1.12458122e+00 -4.66274142e-01 2.36201584e-01 3.78841430e-01 -1.88720729e-02 -5.26300728e-01 1.48620293e-01 -4.43289056e-02 2.74962753e-01 2.08599702e-01 9.29425210e-02 7.55747110e-02 1.01499045e-02 -6.61079213e-02 1.57201266e+00 1.90595746e-01 2.02087358e-01 -6.18690372e-01 2.84998000e-01 3.42995286e-01 6.38376951e-01 7.42249012e-01 9.64586437e-02 9.05317485e-01 4.71443117e-01 -8.01696956e-01 -1.27665865e+00 -6.62369370e-01 -5.63205123e-01 7.27464795e-01 -4.07653481e-01 -3.18879396e-01 -3.93159926e-01 -2.52822429e-01 2.07160577e-01 3.09213191e-01 -8.98624420e-01 -3.00740004e-02 -7.93347299e-01 -8.06560576e-01 5.15519559e-01 4.11710650e-01 -6.24378920e-02 -8.00957024e-01 -5.51931262e-01 5.46647832e-02 1.91279531e-01 -9.60682571e-01 -1.16228834e-01 6.42541766e-01 -9.99569297e-01 -9.75039899e-01 -6.54425681e-01 -5.87083995e-01 7.41004825e-01 -2.06991564e-02 1.08083844e+00 7.85180647e-03 -5.62964320e-01 3.29568565e-01 -5.25455549e-02 7.03982338e-02 5.88300312e-03 2.94515997e-01 2.11707696e-01 1.64302662e-01 2.72628069e-01 -1.17411351e+00 -5.29973924e-01 -1.03205882e-01 -7.54005909e-01 -1.88431352e-01 3.57720286e-01 8.51369083e-01 7.80530989e-01 -2.86410451e-01 4.48649704e-01 -6.77987635e-01 5.99006176e-01 -1.07676089e+00 -7.62316108e-01 -3.84508520e-01 -3.82995784e-01 2.08097011e-01 7.06182122e-01 -5.39658070e-01 -4.90893692e-01 4.62203443e-01 -1.25445858e-01 -1.04611385e+00 -2.07287088e-01 8.33905995e-01 4.22384262e-01 -3.36505502e-01 8.29630613e-01 2.03631192e-01 2.46294782e-01 -7.73087800e-01 5.23664095e-02 5.81484251e-02 3.61227214e-01 -5.97725391e-01 8.15574884e-01 7.04283535e-01 4.71552491e-01 -9.35928524e-01 -8.78556132e-01 -5.79598248e-01 -8.51128101e-01 1.77010089e-01 2.44233474e-01 -1.05475056e+00 -5.20002723e-01 1.06679730e-01 -1.03308368e+00 -6.40496254e-01 -7.32132673e-01 6.20454967e-01 -5.70456803e-01 3.62914726e-02 -5.00642538e-01 -6.26893759e-01 -1.31374031e-01 -6.19825959e-01 9.38928664e-01 -1.51900247e-01 -4.98508394e-01 -1.10262299e+00 5.64138889e-01 -2.80574977e-01 7.77457595e-01 5.15517294e-01 4.50099111e-01 -6.59231842e-01 -5.00304878e-01 -3.31115097e-01 -1.23628333e-01 3.14454645e-01 1.54161537e-02 8.93384889e-02 -9.94371235e-01 -3.08271050e-01 3.38756710e-01 -1.56926885e-01 9.84823883e-01 9.42122936e-01 1.24013805e+00 -4.51210082e-01 -2.77070910e-01 1.26499486e+00 1.59898293e+00 -3.47679973e-01 3.83792430e-01 1.11574046e-01 7.42685080e-01 3.52941990e-01 5.55797108e-02 6.75898671e-01 4.47163172e-02 4.14062172e-01 2.98857510e-01 -2.73253798e-01 1.01515390e-01 -5.08954674e-02 3.42205673e-01 7.72788882e-01 -1.99826047e-01 2.94618517e-01 -1.04513276e+00 7.09871233e-01 -1.94646299e+00 -1.10097182e+00 -3.15709382e-01 1.94129729e+00 6.93377376e-01 -2.52585351e-01 2.53594041e-01 -5.17113460e-03 3.82508159e-01 3.12396854e-01 -7.19507933e-01 -2.35146154e-02 -3.37794036e-01 4.51616377e-01 7.02925026e-01 6.54982150e-01 -1.17168498e+00 5.98600566e-01 7.13568878e+00 5.03675282e-01 -1.44437742e+00 2.52616644e-01 5.48441470e-01 -5.60200036e-01 -3.04673731e-01 -9.52984616e-02 -9.14990664e-01 2.20776811e-01 1.09911025e+00 -1.52955696e-01 5.29109538e-01 8.72420073e-01 5.46729088e-01 2.11461827e-01 -1.18976319e+00 9.20013607e-01 -1.11988969e-01 -1.74249160e+00 -4.03007865e-01 1.95074394e-01 8.57146502e-01 8.16766500e-01 2.01499328e-01 -8.06177184e-02 3.21938008e-01 -1.45419002e+00 4.06263262e-01 7.86724865e-01 8.68729353e-01 -3.42650145e-01 3.40523958e-01 3.00844163e-01 -1.04236794e+00 -1.51689753e-01 -3.66368175e-01 -4.47936952e-01 2.08511599e-03 8.65348876e-01 -4.29785460e-01 6.59935847e-02 8.00794482e-01 1.21429110e+00 -2.87715524e-01 1.13753462e+00 3.27158451e-01 7.83895373e-01 -6.77759588e-01 2.96101540e-01 3.21547031e-01 -2.81440914e-01 7.41728008e-01 1.24971414e+00 5.76483786e-01 4.29273769e-02 1.67682901e-01 1.13559377e+00 1.59344986e-01 -8.66372809e-02 -1.04454541e+00 6.41764998e-02 2.84585565e-01 1.28074598e+00 -5.02965808e-01 4.45598140e-02 -5.04504561e-01 5.98028660e-01 3.79175842e-01 7.59644568e-01 -6.99501336e-01 -7.05576763e-02 9.59537268e-01 4.85567659e-01 5.98225415e-01 -5.87742150e-01 -4.59526062e-01 -1.41314030e+00 1.48498401e-01 -9.37307000e-01 2.53544718e-01 -4.90847379e-01 -1.38895690e+00 5.00315964e-01 -4.09966409e-02 -1.12254739e+00 -2.58485258e-01 -6.00964248e-01 -6.27784491e-01 9.02859151e-01 -1.43076456e+00 -7.84624636e-01 -1.46000981e-01 7.44173408e-01 3.60277563e-01 -2.55206734e-01 7.87749708e-01 3.42022777e-01 -6.26871824e-01 1.38660610e-01 5.68960905e-01 1.43524140e-01 2.07176730e-01 -9.11941409e-01 3.27795953e-01 7.29990542e-01 2.48019740e-01 6.02473617e-01 7.87707567e-01 -4.88364577e-01 -1.53661668e+00 -9.95671451e-01 6.34299755e-01 -6.20818794e-01 1.02970254e+00 -2.56983787e-01 -1.12482238e+00 7.91464090e-01 -5.39231785e-02 5.58717310e-01 5.72851181e-01 1.97979182e-01 -2.94723332e-01 -5.81500344e-02 -9.92108643e-01 1.83148935e-01 9.65349317e-01 -5.79803944e-01 -1.83340341e-01 3.80993128e-01 3.78926158e-01 -2.92641014e-01 -1.03235900e+00 4.82434899e-01 4.89271194e-01 -8.47793460e-01 1.01601768e+00 -8.21366012e-01 5.88106751e-01 -2.04478458e-01 -2.67957836e-01 -1.16373169e+00 -5.62721848e-01 -9.90583479e-01 -6.59757972e-01 4.26604301e-01 5.44764519e-01 -7.41701841e-01 9.88967419e-01 5.53935409e-01 -1.33526161e-01 -1.28235328e+00 -1.08468866e+00 -8.01063776e-01 3.57395917e-01 -4.30244178e-01 3.03143799e-01 1.16929960e+00 -2.16169760e-01 1.28573403e-01 -4.79303688e-01 2.35770956e-01 5.58271229e-01 6.06093109e-02 5.39396107e-01 -1.36633170e+00 -3.69316310e-01 -5.51943541e-01 -2.79206842e-01 -9.49190319e-01 2.50953943e-01 -9.66141939e-01 -2.14677587e-01 -1.21775019e+00 -1.42204747e-01 -5.89855552e-01 -3.43122721e-01 4.34721529e-01 4.51549321e-01 2.24138677e-01 -1.82258636e-01 4.27684665e-01 -2.46422723e-01 5.92547953e-01 9.59841788e-01 1.07699171e-01 -1.95521504e-01 -2.00482477e-02 -6.21420145e-01 7.37185001e-01 9.84768093e-01 -8.30615759e-01 -1.91204458e-01 -4.81626511e-01 3.11450899e-01 5.65145612e-02 7.50640810e-01 -1.02942693e+00 3.10009927e-01 -3.54721338e-01 4.99047101e-01 -2.11210281e-01 5.29973447e-01 -8.42372298e-01 3.63225847e-01 3.49593133e-01 -3.54971260e-01 1.55915067e-01 2.44211987e-01 3.95835817e-01 -2.40284875e-01 -1.61359176e-01 7.58570671e-01 -8.83157328e-02 -4.16521072e-01 6.44544840e-01 -3.29284430e-01 2.18123496e-01 6.58714116e-01 -1.03039049e-01 1.03072152e-02 -4.19062585e-01 -8.83724093e-01 -3.70466784e-02 4.59478676e-01 9.67460796e-02 5.28257370e-01 -1.30643451e+00 -9.28113580e-01 4.51517761e-01 -4.00524378e-01 8.16813484e-02 -1.91523209e-02 1.25026512e+00 -3.35663378e-01 2.76059687e-01 -2.12622702e-01 -6.40708864e-01 -8.04149449e-01 3.20720702e-01 7.52418995e-01 -2.11676117e-02 -8.83150935e-01 8.50546181e-01 -1.16454780e-01 -3.04660916e-01 1.52415633e-01 -3.91316265e-01 8.54010358e-02 -7.47809708e-02 2.75881052e-01 3.75236243e-01 -7.42577985e-02 -7.68003702e-01 -2.70294636e-01 5.31554282e-01 3.33765924e-01 9.83374342e-02 1.93689406e+00 2.34513611e-01 -1.46919772e-01 6.87348962e-01 1.60796297e+00 -1.51973128e-01 -1.46329558e+00 -2.62853324e-01 -1.30292252e-02 -3.76613498e-01 2.33145773e-01 -2.45349273e-01 -1.33947110e+00 6.86172009e-01 3.04551631e-01 3.80372673e-01 8.34726036e-01 -3.29801030e-02 5.61011195e-01 7.21656561e-01 3.97550799e-02 -8.33415866e-01 -2.01079637e-01 7.72290826e-01 1.01719797e+00 -1.30366886e+00 1.46266118e-01 -6.86168373e-02 -2.77727723e-01 1.04699183e+00 2.54347652e-01 -8.86911094e-01 1.27364969e+00 5.34859478e-01 -1.78501844e-01 -5.41489840e-01 -8.52276087e-01 -4.29222398e-02 3.07193696e-01 5.56492031e-01 4.86160278e-01 -3.43212783e-01 7.38889948e-02 5.69003761e-01 -1.31203353e-01 2.94722080e-01 3.81954044e-01 7.79287398e-01 -1.87903598e-01 -7.90709436e-01 -1.67194411e-01 8.07651520e-01 -4.58823830e-01 -3.41157526e-01 -1.91885948e-01 7.54040182e-01 -1.44259080e-01 3.49865705e-01 1.34606123e-01 -1.09883964e-01 5.29032946e-02 -3.85110751e-02 3.32236588e-01 -5.87927818e-01 -4.83529001e-01 -4.07155696e-03 6.94342628e-02 -8.04468572e-01 -4.93758023e-01 -9.31577563e-01 -9.63427126e-01 -3.58540326e-01 -3.86610925e-02 1.60160974e-01 4.55338746e-01 8.28805685e-01 7.07074761e-01 9.63298976e-02 6.35208666e-01 -1.09119189e+00 -6.01931095e-01 -6.76268995e-01 -6.38162374e-01 5.12000620e-02 8.08182120e-01 -5.71164250e-01 -7.30248749e-01 3.40867154e-02]
[6.63385534286499, 3.5245778560638428]
1c38895a-8083-459d-9bdd-33ff62b270e1
allo-centric-occupancy-grid-prediction-for
2301.04454
null
https://arxiv.org/abs/2301.04454v1
https://arxiv.org/pdf/2301.04454v1.pdf
Allo-centric Occupancy Grid Prediction for Urban Traffic Scene Using Video Prediction Networks
Prediction of dynamic environment is crucial to safe navigation of an autonomous vehicle. Urban traffic scenes are particularly challenging to forecast due to complex interactions between various dynamic agents, such as vehicles and vulnerable road users. Previous approaches have used egocentric occupancy grid maps to represent and predict dynamic environments. However, these predictions suffer from blurriness, loss of scene structure at turns, and vanishing of agents over longer prediction horizon. In this work, we propose a novel framework to make long-term predictions by representing the traffic scene in a fixed frame, referred as allo-centric occupancy grid. This allows for the static scene to remain fixed and to represent motion of the ego-vehicle on the grid like other agents'. We study the allo-centric grid prediction with different video prediction networks and validate the approach on the real-world Nuscenes dataset. The results demonstrate that the allo-centric grid representation significantly improves scene prediction, in comparison to the conventional ego-centric grid approach.
['Christian Laugier', 'Anne Spalanzani', 'Lukas Rummelhard', 'Rabbia Asghar']
2023-01-11
null
null
null
null
['video-prediction']
['computer-vision']
[-2.22995758e-01 1.24417461e-01 1.43808335e-01 -2.86867827e-01 1.11759022e-01 -2.66104043e-01 9.12756681e-01 -1.28670752e-01 -2.22625777e-01 9.72386658e-01 2.45510787e-01 -2.03956679e-01 1.97288021e-02 -1.12621582e+00 -6.45501375e-01 -6.47138298e-01 -1.45832241e-01 6.20060205e-01 1.03491974e+00 -3.15364987e-01 1.65377513e-01 5.91048658e-01 -1.90897131e+00 1.04089849e-01 6.36254132e-01 6.31895721e-01 6.24544144e-01 6.65557265e-01 7.05689192e-02 1.17929542e+00 -9.16750953e-02 -9.19547528e-02 2.87395775e-01 1.56535245e-02 -3.88354093e-01 2.10797414e-01 3.62764567e-01 -2.96542615e-01 -7.57528305e-01 9.85147834e-01 1.93791658e-01 6.47124171e-01 3.56412500e-01 -1.42874801e+00 2.28766635e-01 1.29189059e-01 -4.35206056e-01 3.49788874e-01 2.31186807e-01 2.30675474e-01 3.80653292e-01 -5.12867153e-01 1.08074772e+00 1.38053811e+00 6.67519569e-01 3.59442562e-01 -9.87542987e-01 -6.46298766e-01 4.89421427e-01 1.02722132e+00 -1.56784129e+00 -5.04143059e-01 7.43123651e-01 -5.56178927e-01 8.42398167e-01 3.02902907e-01 9.36119914e-01 8.11095595e-01 6.58906281e-01 4.47990000e-01 8.52178216e-01 1.33275762e-02 4.23664391e-01 1.57145992e-01 5.36864102e-02 4.30643678e-01 7.10543096e-02 3.36211592e-01 -3.71330619e-01 1.23598225e-01 5.39908469e-01 -1.42742498e-02 -4.84041609e-02 -9.00288820e-01 -1.06966352e+00 6.18122935e-01 4.56562102e-01 -1.88379526e-01 -8.40768695e-01 1.26237035e-01 2.83032775e-01 -1.55147329e-01 6.95103347e-01 -1.27368629e-01 3.25358822e-03 -2.84656137e-01 -7.74819553e-01 5.85024834e-01 5.44268608e-01 1.08318841e+00 1.05247700e+00 2.65086234e-01 -7.66434520e-02 4.73383635e-01 9.07816514e-02 3.98303807e-01 1.38024390e-01 -1.13669407e+00 2.00975940e-01 3.42892319e-01 4.17108923e-01 -1.37456298e+00 -6.63709641e-01 -5.10766804e-01 -9.19757783e-01 5.16003728e-01 2.48199925e-01 -4.10745740e-01 -7.88148522e-01 1.58480525e+00 7.35617459e-01 9.97001469e-01 1.52449548e-01 8.14418316e-01 3.92832488e-01 9.46705520e-01 7.58889765e-02 -2.82222539e-01 9.93479490e-01 -1.34240067e+00 -7.75170028e-01 -2.23093048e-01 6.37113690e-01 -4.61938202e-01 3.33817244e-01 1.37383461e-01 -6.48846447e-01 -6.75103366e-01 -7.58568108e-01 4.33732033e-01 -5.48680365e-01 -4.48509127e-01 2.94658840e-01 3.80156428e-01 -1.30279934e+00 1.08836882e-01 -7.74229288e-01 -6.44266546e-01 1.70798913e-01 6.42221943e-02 -2.92003661e-01 -2.56210297e-01 -1.07164466e+00 1.25365758e+00 5.36717832e-01 -2.87274700e-02 -9.23474014e-01 -7.07859516e-01 -9.46072400e-01 -2.01737024e-02 3.69451016e-01 -5.78214169e-01 1.03085721e+00 -7.08192468e-01 -1.15656865e+00 2.13628292e-01 -5.60954034e-01 -9.52569544e-01 8.58117938e-01 -8.53967518e-02 -5.25885940e-01 -3.27338994e-01 1.36773050e-01 7.82496631e-01 3.33484411e-01 -1.49291360e+00 -1.13261127e+00 -6.10107742e-02 3.44430983e-01 7.40341365e-01 3.68269265e-01 -5.13291478e-01 -5.98049998e-01 -1.00600459e-01 -6.08662926e-02 -1.23691571e+00 -7.72552848e-01 -2.33493328e-01 -1.80838406e-01 -3.56314033e-02 1.29215324e+00 -3.49939048e-01 1.08524191e+00 -2.01970124e+00 -4.75435585e-01 1.98694810e-01 2.44798750e-01 2.00791523e-01 5.60413152e-02 5.00652552e-01 6.09325096e-02 -3.72262925e-01 3.61848086e-01 -3.28974992e-01 -1.06452495e-01 4.74439561e-01 -2.68277764e-01 5.58371425e-01 -6.25523567e-01 6.55475259e-01 -1.00852776e+00 -4.32030082e-01 9.65442359e-01 7.54904866e-01 -6.90059483e-01 -1.05134495e-01 -1.72943965e-01 5.36044478e-01 -4.25773501e-01 -2.73219720e-02 1.00316727e+00 1.51806146e-01 1.11979000e-01 7.43990019e-02 -6.89044893e-01 2.97199041e-02 -1.15363181e+00 1.14465070e+00 -3.58794898e-01 1.10304010e+00 -9.09493715e-02 -5.83650649e-01 7.09343076e-01 1.76448226e-01 4.93421167e-01 -1.03486872e+00 -1.83973402e-01 -2.54073918e-01 -1.78406611e-01 -1.83405161e-01 9.72895920e-01 2.26326808e-01 1.56636700e-01 -1.15360804e-02 -7.44144917e-01 1.44185036e-01 3.45811546e-01 1.05666548e-01 1.01497984e+00 5.37071526e-02 2.63106376e-01 -2.66640395e-01 5.76152503e-01 4.73560035e-01 8.24335277e-01 8.80301595e-01 -4.51008976e-01 4.05706286e-01 2.29665726e-01 -1.04469156e+00 -1.31895411e+00 -7.86097527e-01 3.43760513e-02 5.92239201e-01 8.29838514e-01 -3.36374104e-01 -8.23557317e-01 -2.99776345e-01 -2.44795740e-01 9.88930762e-01 -5.86504161e-01 1.09089233e-01 -7.16438353e-01 -5.89400768e-01 -1.43664867e-01 3.27070132e-02 7.10498214e-01 -7.65409708e-01 -9.08347905e-01 5.55347323e-01 -3.17687154e-01 -1.38730145e+00 -6.48219883e-02 -5.36876380e-01 -3.17208499e-01 -1.14833260e+00 -1.62166193e-01 -3.20602357e-01 5.30323744e-01 9.05071497e-01 8.37012649e-01 -1.29309356e-01 1.02367505e-01 2.58372575e-01 -3.09916139e-01 -3.89432847e-01 -3.22764874e-01 -1.96568683e-01 2.46413648e-01 2.54921019e-01 3.60763550e-01 -5.99708915e-01 -8.37342680e-01 5.90301692e-01 -3.17635685e-01 7.81332374e-01 -3.73907946e-02 3.92311931e-01 6.28513277e-01 5.59223711e-01 3.20077837e-01 -8.88585150e-01 1.50925681e-01 -8.35899055e-01 -8.95331621e-01 -1.73814982e-01 -4.61023152e-01 -5.14753997e-01 5.71017981e-01 5.67310713e-02 -1.17784894e+00 2.51851022e-01 -3.94378304e-02 -4.77500558e-01 -3.75890136e-01 8.78697485e-02 -2.64191460e-02 -1.53197005e-01 3.93360227e-01 2.74123341e-01 -2.12517515e-01 -6.61275908e-02 1.49044991e-01 3.06733936e-01 4.80513871e-01 6.05893992e-02 8.50520909e-01 7.97052920e-01 2.36987859e-01 -1.10770941e+00 -4.49850798e-01 -4.92817163e-01 -6.14533603e-01 -9.28191245e-01 7.92781532e-01 -1.18923128e+00 -6.14190817e-01 4.18531179e-01 -1.32318652e+00 -5.30141056e-01 -2.20756799e-01 5.79071820e-01 -7.85483360e-01 3.46278727e-01 -1.57556996e-01 -8.70868385e-01 1.96530044e-01 -1.06139970e+00 6.29498065e-01 2.37487644e-01 -5.94901554e-02 -1.08881307e+00 4.65818822e-01 8.88980404e-02 5.61231732e-01 4.43796039e-01 4.11094546e-01 -1.29923373e-01 -1.06365275e+00 -9.11449268e-02 -1.54264539e-01 -3.65127295e-01 -1.67235322e-02 -1.51350617e-01 -8.37451935e-01 -1.74168423e-01 -2.26558939e-01 6.17535710e-01 5.61935723e-01 4.88043785e-01 8.23347569e-01 -3.28857183e-01 -7.33100474e-01 4.61940080e-01 1.35979366e+00 5.65547347e-01 9.27429795e-01 7.06383944e-01 6.85460746e-01 6.39941275e-01 1.07600594e+00 5.60517251e-01 8.71924341e-01 1.03458405e+00 7.83594131e-01 3.71219702e-02 -2.09681407e-01 -2.16223240e-01 7.80292004e-02 4.36231345e-01 -1.11889057e-01 -5.99392593e-01 -1.07690799e+00 7.78577387e-01 -2.36364174e+00 -1.37187314e+00 -3.63095313e-01 1.97062278e+00 -2.58311927e-01 1.06850699e-01 -2.84647532e-02 -2.27027774e-01 9.06544983e-01 3.85410875e-01 -5.09802341e-01 -2.50480890e-01 -7.79884160e-02 -8.22896242e-01 7.63652921e-01 9.78316188e-01 -1.13385332e+00 1.35825014e+00 6.31203508e+00 8.70589852e-01 -9.44854140e-01 3.50691259e-01 4.77099687e-01 9.09374561e-03 -5.09791896e-02 9.01342258e-02 -9.48893011e-01 6.49574161e-01 1.08981872e+00 -4.30161297e-01 2.43942603e-01 8.44793558e-01 9.33009624e-01 -4.39611375e-01 -5.68307221e-01 8.78615201e-01 -1.47871464e-01 -1.61699402e+00 4.25531194e-02 3.11976433e-01 8.68460715e-01 3.89480233e-01 -1.54151231e-01 1.79382712e-01 5.84942341e-01 -6.51868820e-01 7.23206639e-01 8.24849784e-01 1.76975995e-01 -8.75320375e-01 7.55739152e-01 6.38078094e-01 -1.47623205e+00 1.29581243e-01 -5.48156381e-01 -3.62394869e-01 6.91559732e-01 2.69758224e-01 -1.12398863e+00 4.16382283e-01 5.69873512e-01 8.82435381e-01 -4.12879258e-01 1.43854463e+00 4.39927667e-01 2.77098715e-01 -3.30138713e-01 2.83357412e-01 5.92815995e-01 -3.56849164e-01 1.04208803e+00 1.04782176e+00 4.36931461e-01 1.44773647e-01 3.74810845e-01 2.16737494e-01 6.12058163e-01 -4.69324589e-02 -1.10963416e+00 8.17184627e-01 4.73450273e-01 8.60776842e-01 -5.58885038e-01 -5.47399104e-01 -4.36968625e-01 5.47457457e-01 1.73510432e-01 6.03957534e-01 -9.38456476e-01 2.92762190e-01 1.09348130e+00 4.94536638e-01 3.06748152e-01 -4.43699062e-01 2.58589014e-02 -8.39229882e-01 -3.48781914e-01 -2.15929389e-01 -4.41872189e-03 -9.65798676e-01 -4.54507291e-01 9.34529305e-01 1.98625848e-01 -1.59544539e+00 -5.12589753e-01 -1.27237543e-01 -6.58256114e-01 5.68561018e-01 -1.68836987e+00 -1.17240703e+00 -6.66965663e-01 6.33422911e-01 9.14744139e-01 -2.21163273e-01 4.31326210e-01 2.36025766e-01 -4.12631363e-01 -1.03490390e-01 4.20965135e-01 -4.38142121e-01 1.72528520e-01 -8.93002152e-01 5.38601995e-01 1.07744682e+00 -2.60896623e-01 -2.25199372e-01 1.24511564e+00 -8.17257166e-01 -9.71715748e-01 -1.64097941e+00 8.52260590e-01 -3.31662089e-01 4.17524457e-01 -1.47761449e-01 -7.11096525e-01 8.71874034e-01 2.36080915e-01 1.57216322e-02 1.75862208e-01 -2.30434895e-01 1.98704660e-01 -2.59301662e-01 -9.81837273e-01 9.90111411e-01 9.65227306e-01 -1.00607388e-01 -3.62819876e-03 3.64438802e-01 4.77770776e-01 -4.83267695e-01 -2.97547638e-01 4.13087308e-01 6.66659236e-01 -1.34146965e+00 8.24122310e-01 -7.74600506e-02 -1.36472821e-01 -5.95054209e-01 -2.08268330e-01 -1.42417991e+00 -7.15937793e-01 -3.45299035e-01 3.16298082e-02 7.44852602e-01 9.17032808e-02 -7.08773077e-01 1.19421816e+00 6.80702865e-01 -3.92012477e-01 -3.27095836e-01 -1.25697386e+00 -5.42281330e-01 -3.60099941e-01 -6.19226038e-01 7.87011385e-01 6.75370097e-01 -2.63536990e-01 -1.53084807e-02 -8.95579338e-01 5.89883983e-01 6.56417251e-01 -1.54843077e-01 1.31306183e+00 -1.12777054e+00 3.56689453e-01 -1.34006277e-01 -1.03326023e+00 -1.03921056e+00 2.13782251e-01 -2.57865101e-01 5.86512387e-02 -1.64675975e+00 9.70960632e-02 -6.33264065e-01 -1.46796238e-02 -3.63984890e-02 2.23011807e-01 3.15501302e-01 2.32148305e-01 1.38126448e-01 -9.97984946e-01 7.50750005e-01 1.17816067e+00 1.29481107e-02 -1.96364567e-01 -6.10142061e-03 5.95426597e-02 8.81808579e-01 9.17313516e-01 -2.61976391e-01 -7.40517020e-01 -2.96232164e-01 6.16526790e-02 1.64823636e-01 4.71225679e-01 -1.63421154e+00 6.78069472e-01 -4.45658535e-01 3.31488326e-02 -1.21272898e+00 8.78870904e-01 -1.14671946e+00 1.04201448e+00 4.48058099e-01 2.31951773e-01 1.48485199e-01 3.80355388e-01 8.77549529e-01 -2.73453712e-01 2.27962092e-01 7.09169149e-01 -1.44446298e-01 -1.50118268e+00 4.94636565e-01 -9.11047518e-01 -5.08159995e-01 1.61510658e+00 -7.11880505e-01 -3.72088820e-01 -7.45430052e-01 -7.73089170e-01 6.16916180e-01 7.30338216e-01 5.99732459e-01 5.39106846e-01 -1.29921794e+00 -5.80792129e-01 2.18498498e-01 -5.31729348e-02 -4.36061248e-02 9.24827278e-01 6.96725070e-01 -8.60341489e-01 6.40060961e-01 -4.10979837e-01 -7.19601452e-01 -1.42518198e+00 5.93273163e-01 4.94322568e-01 -2.62772650e-01 -9.72981811e-01 1.10530831e-01 9.38112497e-01 -3.19468409e-01 -1.10272668e-01 1.78391695e-01 -6.07144773e-01 -7.95574784e-02 6.30347192e-01 6.24977767e-01 -2.42168158e-01 -1.44893444e+00 -1.48088172e-01 5.10513246e-01 -8.79228786e-02 1.45564703e-02 1.10841405e+00 -1.05813313e+00 1.65770426e-01 4.02312279e-01 6.05456710e-01 -1.79457083e-01 -1.67565048e+00 -2.61731029e-01 -3.68922949e-01 -6.56945765e-01 1.54758438e-01 -2.32223973e-01 -8.80389631e-01 5.80464363e-01 8.63723993e-01 1.48076624e-01 5.77943981e-01 -4.50880915e-01 6.62966192e-01 2.52906680e-01 9.08378899e-01 -1.03996992e+00 -5.92021942e-01 9.52209830e-01 6.22308791e-01 -9.00340617e-01 -1.58946633e-01 -6.51575625e-01 -6.58909678e-01 8.17531645e-01 9.30088043e-01 -7.75647983e-02 8.32481205e-01 -1.23125643e-01 1.44943912e-02 -1.13357469e-01 -1.08733654e+00 -3.68350148e-01 -1.63307548e-01 8.14607084e-01 -4.10115331e-01 2.34706864e-01 2.33282670e-01 -1.44389495e-01 -4.86200541e-01 -1.23900428e-01 8.36201012e-01 6.98559761e-01 -6.05368018e-01 -6.12521708e-01 -3.07792157e-01 3.20082784e-01 1.03121765e-01 2.17182174e-01 3.32447946e-01 8.44847083e-01 3.30885082e-01 9.80588377e-01 6.16261303e-01 -4.21624124e-01 2.66903967e-01 -2.40156189e-01 -7.45207295e-02 -2.80466795e-01 -1.20248448e-03 -9.92508158e-02 3.64491373e-01 -8.13923717e-01 -3.44432890e-01 -9.12824452e-01 -9.05459583e-01 -8.63937914e-01 2.61904653e-02 2.54760981e-01 5.60090840e-01 1.00345778e+00 6.41981363e-01 5.48688591e-01 5.50454617e-01 -1.31857824e+00 4.80806857e-01 -6.94618404e-01 -5.60350358e-01 1.18007325e-01 5.23489714e-01 -9.26983654e-01 -2.62470301e-02 -1.54280141e-01]
[5.9248223304748535, 0.8181715607643127]
62efb6ee-8efd-41a8-9b0b-8cb2a3653793
precise-stock-price-prediction-for-optimized
2203.01326
null
https://arxiv.org/abs/2203.01326v1
https://arxiv.org/pdf/2203.01326v1.pdf
Precise Stock Price Prediction for Optimized Portfolio Design Using an LSTM Model
Accurate prediction of future prices of stocks is a difficult task to perform. Even more challenging is to design an optimized portfolio of stocks with the identification of proper weights of allocation to achieve the optimized values of return and risk. We present optimized portfolios based on the seven sectors of the Indian economy. The past prices of the stocks are extracted from the web from January 1, 2016, to December 31, 2020. Optimum portfolios are designed on the selected seven sectors. An LSTM regression model is also designed for predicting future stock prices. Five months after the construction of the portfolios, i.e., on June 1, 2021, the actual and predicted returns and risks of each portfolio are computed. The predicted and the actual returns indicate the very high accuracy of the LSTM model.
['Saikat Mondal', 'Abhishek Dutta', 'Sidra Mehtab', 'Jaydip Sen']
2022-03-02
null
null
null
null
['stock-price-prediction']
['time-series']
[-5.88321924e-01 -6.78011850e-02 -2.93945849e-01 -1.35643795e-01 -4.97955233e-01 -7.40144253e-01 7.02035666e-01 -3.08830440e-01 -3.30553025e-01 8.09370518e-01 5.09418070e-01 -5.94021857e-01 -4.24130797e-01 -1.12198281e+00 -5.31012356e-01 -4.41123039e-01 -3.18002015e-01 1.92317888e-01 -1.05991244e-01 -2.29243953e-02 6.55471921e-01 4.38144445e-01 -1.14205408e+00 2.73219258e-01 3.49913090e-01 1.74735999e+00 3.20035219e-01 2.78702885e-01 -3.27561885e-01 7.33382881e-01 -4.99996722e-01 -8.69019151e-01 7.85945952e-01 1.43739367e-02 -8.58089924e-02 -5.20607173e-01 -3.77266079e-01 -7.71676242e-01 -1.76581562e-01 9.87065673e-01 6.19690344e-02 1.09050246e-02 4.99613702e-01 -6.79758787e-01 -5.65673351e-01 1.19248736e+00 -3.32951277e-01 3.88812780e-01 -4.58453298e-01 -6.04314506e-02 1.44718707e+00 -1.08057272e+00 1.06123284e-01 4.54967737e-01 6.07458472e-01 6.03200272e-02 -8.09371054e-01 -9.30137634e-01 2.56157462e-02 6.62239566e-02 -9.58786607e-01 -2.34956548e-01 6.60433233e-01 -7.16580331e-01 9.58217382e-01 1.39812052e-01 9.64460373e-01 5.96423864e-01 9.02727723e-01 2.96058118e-01 9.94278729e-01 -1.82120025e-01 1.81312457e-01 2.22948536e-01 -2.96862125e-01 -9.78462473e-02 7.71103859e-01 4.52274650e-01 -4.38667148e-01 -1.40937954e-01 5.41008472e-01 3.14562649e-01 2.14523897e-01 2.42649108e-01 -1.23948538e+00 7.47268021e-01 1.80178270e-01 4.98242736e-01 -1.05692446e+00 2.78373629e-01 1.26923978e-01 3.84578466e-01 5.55366039e-01 5.05386531e-01 -7.73354828e-01 5.16888220e-03 -1.20157647e+00 1.98769823e-01 7.00907528e-01 4.93800879e-01 2.66571283e-01 5.71555614e-01 -2.22691670e-01 3.44398856e-01 2.17105433e-01 7.77874768e-01 5.75024843e-01 -9.93445694e-01 6.82985544e-01 3.29040349e-01 6.25086606e-01 -1.10247147e+00 -1.78157404e-01 -9.73316252e-01 -5.59155345e-01 1.24737121e-01 4.20399249e-01 -4.39906150e-01 -4.66554075e-01 1.19455230e+00 -5.86094022e-01 1.83267206e-01 2.54886568e-01 1.62016273e-01 1.00728460e-01 1.07457197e+00 -1.04111105e-01 -3.70635122e-01 9.63798046e-01 -5.99965394e-01 -7.08992660e-01 -3.58855277e-01 1.07271433e-01 -5.10318995e-01 1.81177214e-01 4.17384535e-01 -1.12515378e+00 -1.61720619e-01 -8.07039738e-01 9.29502666e-01 -4.24433887e-01 1.62849322e-01 5.02816379e-01 3.20066124e-01 -7.53137529e-01 1.05600154e+00 -6.04632437e-01 6.85298264e-01 1.31607160e-01 4.15462822e-01 2.64018297e-01 8.85199249e-01 -1.46655571e+00 1.26097322e+00 7.22321808e-01 3.70440423e-01 -7.21923292e-01 -6.18274927e-01 -1.55655384e-01 4.59544063e-01 3.27944867e-02 5.66003174e-02 1.32455420e+00 -1.01087117e+00 -1.24914265e+00 1.12098359e-01 5.53965688e-01 -1.07578039e+00 4.46560532e-01 -2.28479549e-01 -4.37525451e-01 -4.08863783e-01 -1.84384063e-01 -1.72856510e-01 4.71689790e-01 -7.81599045e-01 -1.18234050e+00 -1.21869221e-01 -1.96745783e-01 -1.56119436e-01 -8.47184002e-01 1.38535663e-01 1.82065353e-01 -9.34424460e-01 -8.70109499e-02 -7.02644229e-01 -2.40570217e-01 -7.97216296e-01 -4.02267762e-02 3.26763004e-01 -2.00389978e-02 -1.50938690e+00 1.42685866e+00 -1.69273818e+00 -5.19533873e-01 4.87092644e-01 -1.72393173e-01 3.33990194e-02 2.15979040e-01 3.10224414e-01 -3.85724127e-01 2.29075029e-01 6.32846430e-02 1.54714137e-01 2.99547255e-01 1.26194516e-02 -1.05718887e+00 2.11961627e-01 5.04240319e-02 1.13146508e+00 -4.80664402e-01 2.72732764e-01 2.66995970e-02 -9.92533043e-02 -1.31956980e-01 3.49118114e-01 -2.44976431e-01 8.29741582e-02 -4.49216872e-01 4.72937435e-01 3.92508894e-01 -1.21909395e-01 9.14007351e-02 1.59719706e-01 -6.05361402e-01 5.46465337e-01 -7.58982241e-01 6.15761101e-01 -3.65933955e-01 3.62757593e-01 -5.31912088e-01 -6.54216528e-01 1.19182014e+00 5.15272319e-01 6.75530434e-01 -9.37652230e-01 2.18016584e-03 7.32627094e-01 1.67895451e-01 6.21763356e-02 6.10279024e-01 -4.81726110e-01 -2.08461955e-01 7.89261162e-01 -2.32102811e-01 2.89247245e-01 5.78447059e-02 -5.34585714e-01 6.36801302e-01 7.50577152e-02 2.34929383e-01 -3.05525661e-01 1.06677428e-01 -3.10313672e-01 7.80497849e-01 3.37284565e-01 2.65593618e-01 1.39850259e-01 6.18500292e-01 -6.41457438e-01 -9.37213361e-01 -9.02346194e-01 4.22192477e-02 6.72747254e-01 -7.93383896e-01 4.13523138e-01 -3.76767546e-01 -3.28059763e-01 2.64691740e-01 1.24629271e+00 -6.64538383e-01 8.01477581e-02 -4.54270273e-01 -1.00469685e+00 1.94962680e-01 4.37766403e-01 4.76968110e-01 -1.20528364e+00 -9.30590093e-01 5.49066722e-01 1.48039982e-02 -6.07243299e-01 -2.45379612e-01 2.55241454e-01 -9.13732529e-01 -7.07470357e-01 -1.11388004e+00 -1.62863702e-01 2.60761589e-01 -3.55540514e-01 1.10878742e+00 -4.33360517e-01 6.97956204e-01 -2.58716643e-01 1.04329698e-01 -1.17278183e+00 6.29647300e-02 2.75035501e-02 1.92303956e-02 2.76618004e-01 6.32323399e-02 -3.97007823e-01 -5.50454855e-01 1.35573903e-02 -4.10447806e-01 -1.80156261e-01 7.07285225e-01 6.38757944e-01 4.75357771e-01 4.33731467e-01 8.68688762e-01 -3.33374143e-01 5.69890618e-01 -6.68972611e-01 -1.24450719e+00 4.82336611e-01 -1.08171749e+00 6.94679469e-02 4.24077183e-01 -3.80984724e-01 -1.21744895e+00 -2.32434258e-01 6.94229081e-02 -2.39529327e-01 8.10701609e-01 9.74609554e-01 2.59000033e-01 2.94278294e-01 -1.28231987e-01 3.41846526e-01 -3.96572679e-01 -7.53968954e-01 -9.50460285e-02 4.84523594e-01 6.21506333e-01 -3.21857452e-01 8.76020670e-01 4.84667718e-02 -2.56597728e-01 -8.03385228e-02 -8.75636339e-01 3.25162590e-01 -5.29697061e-01 -4.90815669e-01 3.37402791e-01 -9.00596917e-01 -4.18766111e-01 6.51877403e-01 -8.39385986e-01 -4.30514067e-01 -5.79051614e-01 7.81306863e-01 -4.34694350e-01 -3.14745784e-01 -4.70727891e-01 -1.32036817e+00 -8.73301268e-01 -7.69291878e-01 1.25274703e-01 2.07338795e-01 -3.12712967e-01 -1.10038066e+00 -3.17505263e-02 -7.87028819e-02 8.17793846e-01 4.74038959e-01 8.99588287e-01 -1.00065327e+00 -6.57388210e-01 -5.31805754e-01 -1.48523793e-01 6.72860444e-01 3.84501457e-01 2.12112963e-01 -5.84204972e-01 -1.61258340e-01 4.55618411e-01 3.77600461e-01 7.79105902e-01 7.12778330e-01 6.59663439e-01 -8.28906178e-01 3.33850831e-01 4.43645477e-01 1.52001786e+00 9.35994804e-01 5.79502165e-01 9.54064488e-01 2.02031806e-02 9.44490194e-01 7.32020795e-01 8.23247612e-01 3.23227942e-01 2.74202168e-01 3.64049613e-01 4.28265452e-01 5.47506392e-01 -4.29505736e-01 6.65863395e-01 1.25137794e+00 -2.59603053e-01 2.05867693e-01 -1.08065808e+00 6.06487930e-01 -1.51297891e+00 -9.82854307e-01 2.67558753e-01 2.49496841e+00 5.88317156e-01 7.90098310e-01 8.33836719e-02 9.01838243e-02 4.52061474e-01 3.86409760e-01 -5.80097139e-01 -3.09781879e-01 -2.16573685e-01 4.52654511e-02 1.26214218e+00 2.61367857e-01 -9.16620970e-01 6.10372126e-01 7.32231283e+00 4.03056264e-01 -1.15574396e+00 -1.52350590e-01 1.16590524e+00 -3.48157078e-01 -8.29629064e-01 1.94170609e-01 -1.03327668e+00 1.02838767e+00 1.55382526e+00 -9.46603537e-01 4.44866419e-01 8.16105545e-01 3.75648826e-01 3.37138586e-02 -3.78457963e-01 4.07483637e-01 -3.67824733e-01 -1.62110782e+00 3.85623015e-02 4.99544650e-01 8.98458958e-01 5.58497682e-02 5.09721756e-01 8.79856274e-02 4.90755409e-01 -8.20775092e-01 1.29901350e+00 1.50351381e+00 4.01670486e-01 -1.29577041e+00 1.12379682e+00 4.09381151e-01 -1.13546503e+00 -6.63862646e-01 -3.81956488e-01 -2.13476643e-01 2.28019476e-01 8.99452329e-01 -2.23959327e-01 3.49642873e-01 7.63472855e-01 5.80098987e-01 -3.19163650e-01 7.67441273e-01 -4.59414572e-02 5.54362714e-01 -9.38280299e-02 -1.02192961e-01 3.77934992e-01 -5.91655850e-01 1.55112624e-01 7.58291304e-01 1.09870005e+00 -1.63085952e-01 -5.58340013e-01 8.62692893e-01 -4.81747724e-02 -1.37185931e-01 -5.96975446e-01 -4.08852875e-01 4.50441301e-01 7.79812872e-01 -3.07807028e-01 -1.13191314e-01 -5.83062887e-01 2.93480419e-02 -1.18803047e-01 3.60096663e-01 -5.69832802e-01 -3.71556461e-01 5.68915963e-01 7.35122487e-02 4.61872399e-01 -2.96144307e-01 -9.24596488e-01 -9.21863139e-01 -1.07481591e-02 -7.48367786e-01 2.04146370e-01 -5.52741528e-01 -1.11081064e+00 4.44842905e-01 6.26294091e-02 -1.29029417e+00 -6.77363992e-01 -6.38597369e-01 -8.96197081e-01 1.14634299e+00 -1.54574144e+00 -4.99609053e-01 6.65297031e-01 -3.20152380e-02 7.14732185e-02 -8.78409982e-01 5.33117056e-01 -5.05313762e-02 -6.57009184e-01 1.16114222e-01 8.27916324e-01 2.92450905e-01 7.25815399e-03 -1.23405898e+00 1.10035336e+00 9.06013787e-01 4.13513593e-02 4.30613786e-01 5.54260373e-01 -9.53631639e-01 -9.46597934e-01 -1.15630913e+00 1.36088216e+00 -8.97149593e-02 1.19305861e+00 1.07177049e-01 -7.30501294e-01 1.03904533e+00 1.57936960e-01 -6.23974562e-01 5.94616592e-01 -4.87537324e-01 1.98613331e-01 -6.69907570e-01 -9.04803514e-01 5.23195088e-01 1.72404632e-01 -2.57732481e-01 -7.44871497e-01 -9.13151130e-02 4.12552029e-01 4.76973467e-02 -1.35810518e+00 3.72051626e-01 1.03705525e+00 -9.10476863e-01 1.02796090e+00 -3.12380165e-01 1.54410660e-01 4.02070940e-01 -3.62580568e-01 -1.38860214e+00 -4.89939004e-01 -5.38484335e-01 -3.38783443e-01 1.34829342e+00 7.33917892e-01 -1.23288202e+00 8.02336872e-01 1.06370783e+00 3.55182707e-01 -9.51885879e-01 -1.15067208e+00 -8.43031108e-01 2.98207194e-01 -3.65616411e-01 1.28551483e+00 5.30869067e-01 -4.23281461e-01 -5.21988571e-01 -6.24007285e-01 -9.94296893e-02 9.37381864e-01 4.40950602e-01 3.12727481e-01 -1.28114569e+00 -3.78239192e-02 -8.24723423e-01 2.39282876e-01 -3.39212984e-01 1.69408888e-01 -5.13467908e-01 -4.20171618e-01 -1.45768249e+00 -1.39640778e-01 -2.13539153e-01 -1.09069884e+00 3.64660084e-01 2.19580054e-01 -1.89956009e-01 4.55821157e-01 4.86308217e-01 3.69752616e-01 6.35057032e-01 8.63329947e-01 -1.18542202e-01 7.81001300e-02 5.08976996e-01 -9.13398445e-01 9.04126704e-01 1.34806597e+00 -4.60362792e-01 7.61287808e-02 -2.90594220e-01 5.77712119e-01 3.29605430e-01 -4.33397666e-02 -7.67668009e-01 -6.36197180e-02 -7.17937589e-01 6.54822946e-01 -1.01107168e+00 2.58838892e-01 -6.74368024e-01 8.54120970e-01 9.02205825e-01 -3.74829799e-01 6.50031984e-01 1.00790203e-01 2.21708640e-01 -3.18463057e-01 -5.31356335e-01 4.86141354e-01 -3.64848763e-01 -4.39434975e-01 2.40728304e-01 -5.00447214e-01 -2.34848797e-01 9.78179574e-01 -1.15641870e-01 1.96607620e-01 -4.37738538e-01 -6.79121375e-01 2.71268368e-01 1.82756782e-02 3.66838515e-01 6.77464187e-01 -1.50663126e+00 -8.13440084e-01 -2.95607344e-04 -3.99661839e-01 -7.46307075e-01 -2.48782560e-01 2.23285586e-01 -4.56840962e-01 8.03395927e-01 -4.40773726e-01 4.18413967e-01 -4.20640677e-01 2.46214032e-01 5.93960285e-01 -9.36053395e-01 -3.71502519e-01 5.46705008e-01 1.14756487e-01 2.18328446e-01 1.73241109e-01 -4.81462598e-01 -6.17310643e-01 7.60417104e-01 7.48792112e-01 4.62098747e-01 6.25625327e-02 -5.58899879e-01 -1.28672630e-01 4.95809823e-01 2.31597751e-01 -4.78008509e-01 1.99269819e+00 -5.60223199e-02 -2.84916669e-01 8.49348545e-01 8.05217326e-01 -2.38527447e-01 -1.43462324e+00 -2.38423645e-01 9.85350013e-01 -5.35181344e-01 7.06552044e-02 -7.80286372e-01 -1.63859439e+00 6.83928788e-01 3.35564107e-01 1.61269769e-01 1.01514125e+00 -7.34724164e-01 1.06248677e+00 2.59497672e-01 5.69017529e-01 -1.32407737e+00 -3.08874696e-01 5.99052250e-01 1.19520783e+00 -5.44015527e-01 4.94784750e-02 5.50768435e-01 -6.02340579e-01 1.10938835e+00 -9.48735103e-02 -2.69329846e-01 1.00686395e+00 2.34484136e-01 -9.59284604e-02 1.73813984e-01 -9.22455966e-01 2.81912565e-01 4.62002873e-01 1.14819005e-01 7.20620230e-02 3.52255464e-01 -2.24228248e-01 1.27732670e+00 -4.81530726e-01 -9.71091762e-02 5.55540085e-01 5.89726388e-01 -5.04568160e-01 -8.51293564e-01 -5.15103102e-01 1.06048787e+00 -1.16628754e+00 -2.18915388e-01 -1.30466282e-01 4.21000600e-01 -3.22932035e-01 5.58107615e-01 3.68972689e-01 -4.64934617e-01 5.60074329e-01 2.29079381e-01 -2.98220068e-01 -2.62209386e-01 -9.04416144e-01 9.69965756e-02 1.58298910e-01 -1.27371356e-01 1.52936131e-01 -8.82436752e-01 -1.06420374e+00 -4.82526451e-01 -3.09460163e-01 1.61189899e-01 6.03932917e-01 8.38415682e-01 -2.36990675e-02 3.61414641e-01 1.17162561e+00 -9.97389197e-01 -1.23557484e+00 -8.07478964e-01 -1.09071815e+00 -2.65798301e-01 2.42419183e-01 -4.21900868e-01 -6.14669800e-01 -2.47669175e-01]
[4.5837016105651855, 4.109222888946533]
92cd9d70-46f3-4093-a4d8-502c940a874a
deep-stable-multi-interest-learning-for-out
2304.05615
null
https://arxiv.org/abs/2304.05615v1
https://arxiv.org/pdf/2304.05615v1.pdf
Deep Stable Multi-Interest Learning for Out-of-distribution Sequential Recommendation
Recently, multi-interest models, which extract interests of a user as multiple representation vectors, have shown promising performances for sequential recommendation. However, none of existing multi-interest recommendation models consider the Out-Of-Distribution (OOD) generalization problem, in which interest distribution may change. Considering multiple interests of a user are usually highly correlated, the model has chance to learn spurious correlations between noisy interests and target items. Once the data distribution changes, the correlations among interests may also change, and the spurious correlations will mislead the model to make wrong predictions. To tackle with above OOD generalization problem, we propose a novel multi-interest network, named DEep Stable Multi-Interest Learning (DESMIL), which attempts to de-correlate the extracted interests in the model, and thus spurious correlations can be eliminated. DESMIL applies an attentive module to extract multiple interests, and then selects the most important one for making final predictions. Meanwhile, DESMIL incorporates a weighted correlation estimation loss based on Hilbert-Schmidt Independence Criterion (HSIC), with which training samples are weighted, to minimize the correlations among extracted interests. Extensive experiments have been conducted under both OOD and random settings, and up to 36.8% and 21.7% relative improvements are achieved respectively.
['Liang Wang', 'Shu Wu', 'Zhenxi Zhu', 'Zhaocheng Liu', 'Qiang Liu']
2023-04-12
null
null
null
null
['sequential-recommendation']
['miscellaneous']
[-7.18188137e-02 -2.48349145e-01 -2.66875803e-01 -4.71779346e-01 -7.17547536e-01 -2.33094409e-01 3.74660641e-01 -3.75228599e-02 -8.34764466e-02 8.37172389e-01 5.11946917e-01 2.50915527e-01 -2.54890382e-01 -8.32507968e-01 -6.16832495e-01 -7.29587615e-01 -2.36515269e-01 3.46429974e-01 1.00370750e-01 -1.53831556e-01 3.14134359e-01 3.56583446e-02 -1.47515726e+00 4.38841283e-01 1.04048836e+00 1.19161773e+00 1.76293805e-01 1.72897458e-01 -1.11787573e-01 9.26420629e-01 -5.85259259e-01 -1.45012707e-01 1.81014717e-01 -4.32402849e-01 -5.38254023e-01 -1.27335936e-01 5.87307848e-02 -2.37419367e-01 -7.20760971e-02 8.71589303e-01 4.58293885e-01 5.29565156e-01 7.16823578e-01 -1.35926461e+00 -1.13978243e+00 7.42522299e-01 -7.97838330e-01 1.66557550e-01 8.26181769e-02 -4.70344424e-01 1.44338262e+00 -1.31000090e+00 2.43166834e-01 1.22250962e+00 5.59919715e-01 1.24828964e-01 -9.68789339e-01 -8.73167634e-01 5.00230312e-01 3.26516956e-01 -1.33594179e+00 -2.96493107e-03 7.70246983e-01 -2.48896126e-02 5.45827746e-01 3.51006001e-01 5.66283226e-01 1.23620021e+00 2.55942881e-01 1.29875970e+00 7.53907561e-01 3.08078714e-03 1.28020067e-02 5.01917481e-01 2.77167857e-01 9.89433303e-02 4.99142468e-01 8.75385012e-03 -3.60054493e-01 -2.32725471e-01 4.24688220e-01 4.84721541e-01 -3.50381941e-01 -2.58748502e-01 -1.04540861e+00 9.66118276e-01 3.38905931e-01 5.74905515e-01 -4.05894458e-01 -4.46127623e-01 2.26141587e-01 4.59200829e-01 8.65444899e-01 3.79248500e-01 -4.91479069e-01 2.22684905e-01 -1.06090105e+00 3.97165298e-01 5.00316679e-01 9.79154289e-01 6.90580904e-01 -9.47349519e-02 -4.43101346e-01 1.01595163e+00 6.38601840e-01 2.39503056e-01 8.92673254e-01 -4.41677660e-01 4.12110716e-01 5.46971560e-01 3.04421306e-01 -1.55678129e+00 -4.03550148e-01 -1.09027636e+00 -1.13620281e+00 -2.78641343e-01 8.46879631e-02 -3.01086187e-01 -2.85502493e-01 1.49924278e+00 2.78385282e-01 5.49350739e-01 2.00365067e-01 9.62624550e-01 9.13928568e-01 7.59230971e-01 -2.33256608e-01 -6.25218689e-01 7.51025796e-01 -1.07891798e+00 -5.09165347e-01 -1.58839732e-01 4.38505322e-01 -7.69425273e-01 9.84501958e-01 5.29871583e-01 -1.05881691e+00 -7.79667258e-01 -1.01172078e+00 1.84357375e-01 -8.08218867e-02 7.56278336e-02 3.92181784e-01 1.02368936e-01 -5.59850216e-01 8.38851810e-01 -2.22614616e-01 1.58785656e-03 4.54324722e-01 3.73081893e-01 9.69230756e-02 -1.45037994e-01 -1.51910186e+00 5.09122491e-01 2.57787406e-01 8.09216723e-02 -5.26530027e-01 -8.85949433e-01 -6.41936958e-01 2.02426016e-01 5.24996758e-01 -3.21286768e-01 8.89923155e-01 -1.13384306e+00 -1.10058904e+00 2.41019297e-02 -2.33638600e-01 -1.97619289e-01 4.45644855e-01 -4.84321475e-01 -9.39896524e-01 -4.18868184e-01 3.09543401e-01 -3.36078145e-02 7.45312572e-01 -1.39419580e+00 -1.05854583e+00 -1.91148445e-01 -2.48073936e-01 2.58504748e-01 -5.05586505e-01 -1.40223816e-01 -2.44886369e-01 -8.50208759e-01 5.17578274e-02 -6.18516326e-01 -2.45656088e-01 -4.89523977e-01 -2.54594117e-01 -4.59377050e-01 8.40748727e-01 -3.75374556e-01 1.50289297e+00 -1.96605933e+00 -1.15534827e-01 2.28947014e-01 2.73503333e-01 2.16871649e-01 -3.71596456e-01 3.38894203e-02 -4.82316837e-02 3.77674140e-02 4.19482976e-01 -1.37721106e-01 -1.88423604e-01 1.10547189e-02 -3.52926373e-01 2.74985611e-01 -4.04152088e-03 6.27440929e-01 -1.09792984e+00 -2.70460099e-01 3.81831117e-02 3.76336157e-01 -7.73708761e-01 3.13072115e-01 -1.52823627e-01 2.82874823e-01 -7.21986949e-01 4.44448709e-01 1.13980854e+00 -5.86791277e-01 1.32753015e-01 -3.54736865e-01 -1.76489532e-01 2.75494516e-01 -1.40045977e+00 1.11262143e+00 -7.09885120e-01 7.59530738e-02 -4.36187446e-01 -1.11702228e+00 1.01503563e+00 1.71866417e-01 7.65849948e-01 -4.98579830e-01 1.67068675e-01 -4.86769527e-02 -1.69173300e-01 -2.92842776e-01 8.08552384e-01 -6.13767505e-02 7.39473011e-03 5.11874318e-01 -5.94451837e-03 5.96895516e-01 -1.26943111e-01 2.54965294e-02 5.94933331e-01 -8.27499777e-02 3.72390658e-01 -2.52238601e-01 6.38414502e-01 -2.71071434e-01 8.13426495e-01 8.60268712e-01 7.86668360e-02 6.77812099e-01 2.66444504e-01 -2.12984815e-01 -7.94772744e-01 -9.80106056e-01 1.42875493e-01 1.13078427e+00 4.71664399e-01 -1.64670855e-01 1.32669330e-01 -1.00175166e+00 -4.63567227e-02 9.56963062e-01 -6.24920964e-01 -3.83671910e-01 -2.18028367e-01 -9.49917078e-01 -1.12453371e-01 2.09074259e-01 3.25064480e-01 -9.34081316e-01 2.34227568e-01 5.31920671e-01 -4.05931503e-01 -5.33472538e-01 -6.87914550e-01 -2.72202864e-02 -7.97709823e-01 -9.23647165e-01 -9.89743173e-01 -5.98132551e-01 5.29427171e-01 8.57147574e-01 1.16275358e+00 -1.62045419e-01 2.85917222e-01 -8.73747617e-02 -7.36561179e-01 -2.11625934e-01 -2.52833832e-02 1.41334943e-02 1.83211088e-01 4.04587954e-01 5.97834110e-01 -6.74362719e-01 -5.66664338e-01 5.66429496e-01 -7.56347001e-01 -3.64970744e-01 6.13955855e-01 1.27700114e+00 6.21016264e-01 3.21920872e-01 9.95843649e-01 -1.03542304e+00 7.70601153e-01 -1.19581318e+00 -1.09738722e-01 3.33552718e-01 -1.02648616e+00 -1.32836606e-02 1.23847210e+00 -5.79169929e-01 -1.18874013e+00 -6.28572941e-01 -5.31037562e-02 -6.21107757e-01 -7.35256914e-03 6.59979820e-01 -2.62319207e-01 3.39802295e-01 3.87628555e-01 3.39717954e-01 -3.21862996e-01 -6.17594481e-01 2.97193885e-01 7.28663325e-01 -7.70898834e-02 -2.25950241e-01 6.13255203e-01 2.51513153e-01 -3.75845551e-01 -7.34789550e-01 -1.47217798e+00 -7.61118889e-01 -3.57061744e-01 3.77914421e-02 2.23861605e-01 -1.10593283e+00 -3.59170973e-01 2.72415936e-01 -9.14702475e-01 3.68353516e-01 -2.56547779e-01 9.31944907e-01 -1.94990724e-01 5.90498805e-01 -1.88320190e-01 -8.19800317e-01 -4.90724027e-01 -6.86192632e-01 5.93780518e-01 5.55520654e-01 -1.68522298e-01 -9.70021129e-01 -2.15820894e-02 1.77881941e-01 3.72848928e-01 -1.48162246e-01 7.49207139e-01 -1.13853467e+00 -1.85340554e-01 -2.11485088e-01 -3.10696781e-01 4.46800470e-01 3.89408886e-01 -2.11013183e-01 -5.42957067e-01 -4.62986290e-01 9.74140987e-02 -1.89435750e-01 8.05475354e-01 3.98074567e-01 1.16420424e+00 -5.74328303e-01 -2.76073992e-01 3.70453060e-01 1.21380913e+00 2.01376706e-01 5.82691252e-01 1.61402985e-01 5.62928677e-01 2.56204814e-01 1.09091663e+00 9.92448568e-01 5.69461942e-01 5.05793333e-01 3.75053048e-01 -9.40690562e-03 4.04042363e-01 -2.26278499e-01 4.24311459e-01 1.05786705e+00 -2.77121365e-01 -5.85008025e-01 1.06753349e-01 4.42327619e-01 -1.95901680e+00 -1.20945656e+00 -1.68434441e-01 2.41151404e+00 6.61815464e-01 1.29654586e-01 2.57674396e-01 -1.35877997e-01 7.58559465e-01 3.90931189e-01 -9.00508404e-01 5.44997454e-02 -1.31063163e-01 5.87145835e-02 2.74638563e-01 1.45976573e-01 -1.12753963e+00 5.90258121e-01 5.34478617e+00 9.86241221e-01 -9.82194364e-01 1.03875294e-01 6.19757533e-01 -4.81905669e-01 -6.00515783e-01 -2.99055934e-01 -9.18923974e-01 5.36116421e-01 5.25759876e-01 -5.36256969e-01 9.92205590e-02 1.00960493e+00 5.71571171e-01 9.71670300e-02 -6.93270087e-01 7.88462579e-01 2.83299208e-01 -9.18091238e-01 1.81603953e-01 -8.91317613e-03 8.54247451e-01 -3.03204544e-02 1.90700859e-01 6.64729893e-01 5.73241472e-01 -5.69590926e-01 3.55512977e-01 8.70933473e-01 2.72500336e-01 -1.11279774e+00 9.57374215e-01 4.02709961e-01 -1.41225553e+00 -1.34004951e-01 -9.29654360e-01 1.32868484e-01 -8.83211382e-03 9.72541213e-01 -3.59295934e-01 8.65779400e-01 6.80579066e-01 1.32026005e+00 -1.90982208e-01 1.00019705e+00 4.22779471e-02 6.18217945e-01 -1.26057506e-01 -3.50406855e-01 1.55053437e-01 -4.15952742e-01 6.73289001e-01 8.48630309e-01 8.99234056e-01 -4.34678718e-02 2.14053035e-01 8.29379380e-01 -9.71927345e-02 4.78901982e-01 -1.91162467e-01 9.02654305e-02 2.46405631e-01 1.33563864e+00 -1.59946471e-01 -4.13387716e-01 -6.15857482e-01 1.11824811e+00 2.70560652e-01 2.32252419e-01 -9.80740845e-01 -3.60508263e-01 7.38319457e-01 1.16491199e-01 5.87769389e-01 1.59132421e-01 -3.33533362e-02 -1.54160619e+00 5.65443560e-02 -7.40332127e-01 5.10500669e-01 -4.04319376e-01 -1.73896182e+00 4.00465369e-01 -2.84924060e-01 -1.79981685e+00 -5.93579300e-02 8.39739740e-02 -8.59511018e-01 8.98155391e-01 -1.63605094e+00 -9.11739528e-01 -8.33563656e-02 5.59655726e-01 7.15686917e-01 -3.67047399e-01 5.64231396e-01 4.30355698e-01 -6.11052394e-01 9.45098758e-01 7.88143754e-01 -3.14591169e-01 8.09695780e-01 -1.05439353e+00 -4.37839329e-02 4.35720742e-01 5.79179078e-02 6.81894243e-01 4.92910504e-01 -4.80537057e-01 -9.89980578e-01 -1.58949161e+00 1.13072324e+00 1.16716251e-01 5.04337311e-01 -4.25831880e-03 -1.04704046e+00 4.45366383e-01 -1.20839491e-01 9.85844210e-02 1.13497496e+00 4.40122724e-01 -2.38559633e-01 -1.44322276e-01 -1.10017633e+00 4.96875912e-01 9.40103769e-01 1.08412672e-02 -6.76604390e-01 2.26297200e-01 6.41910195e-01 2.21780449e-01 -9.65291977e-01 3.34161878e-01 7.14792252e-01 -1.16411281e+00 1.17220259e+00 -9.30847287e-01 6.40451491e-01 -1.48264706e-01 -1.56119347e-01 -1.80333567e+00 -1.11060309e+00 -1.59997642e-01 -3.52888227e-01 1.39252353e+00 5.16079545e-01 -3.02526593e-01 7.20678687e-01 2.57639647e-01 2.91531943e-02 -9.10498023e-01 -4.94397134e-01 -7.24479675e-01 -3.76209281e-02 -2.32912570e-01 6.82055771e-01 9.85993743e-01 1.47393495e-01 6.62431896e-01 -1.06287766e+00 2.41880596e-01 5.80544293e-01 6.35308266e-01 4.92923945e-01 -1.44367290e+00 -4.43322003e-01 -3.00046355e-01 4.82026860e-03 -1.47949708e+00 -1.72307733e-02 -8.54241312e-01 -1.05185091e-01 -1.46175742e+00 1.31430700e-01 -5.22003949e-01 -9.17130113e-01 9.38281938e-02 -3.90924066e-01 5.16232848e-03 1.00669473e-01 3.76367748e-01 -1.11239529e+00 9.12502885e-01 1.32052279e+00 -1.39154106e-01 -4.60493028e-01 8.08367252e-01 -1.31275225e+00 7.70881414e-01 7.98827529e-01 -4.64382470e-01 -4.99688029e-01 7.95696378e-02 7.40623996e-02 -2.07953565e-02 -9.32297707e-02 -9.51501608e-01 -2.32510120e-02 -2.35453159e-01 7.75281310e-01 -9.68253553e-01 7.03089833e-02 -8.99718285e-01 5.35582751e-02 1.54422730e-01 -5.36940932e-01 -3.51030707e-01 -1.41202688e-01 7.69167781e-01 -2.51992345e-01 -3.45350474e-01 7.81594455e-01 -2.24891633e-01 -5.96035957e-01 5.44599056e-01 -3.65655303e-01 3.05873573e-01 8.73974919e-01 3.15840244e-02 7.98141807e-02 -4.43209261e-01 -8.70907426e-01 4.81384635e-01 -2.65079707e-01 7.63554335e-01 6.84638917e-01 -1.81463850e+00 -8.13173771e-01 1.83232576e-01 1.67854711e-01 -1.05266109e-01 6.32689416e-01 6.29330575e-01 5.35286605e-01 2.71351188e-01 1.44804016e-01 -1.34365082e-01 -1.20472801e+00 6.44800067e-01 6.57042563e-02 -7.22949445e-01 -1.08822167e-01 8.86708260e-01 2.76508152e-01 -3.46917897e-01 -1.51559906e-02 -2.82357872e-01 -7.65256166e-01 6.42200351e-01 7.38349736e-01 5.94861031e-01 -1.60578042e-01 -6.55695617e-01 -1.40329987e-01 3.31591547e-01 -5.78827262e-01 4.62842464e-01 1.61665368e+00 -5.38131952e-01 1.24479316e-01 6.76958442e-01 1.47421587e+00 5.42578921e-02 -9.81342077e-01 -7.65956044e-01 -2.36355811e-01 -5.57641566e-01 1.58819601e-01 -6.72159493e-01 -1.21992373e+00 6.86494708e-01 4.01653409e-01 4.25816894e-01 9.58906114e-01 -1.14504896e-01 1.05893588e+00 2.95042217e-01 1.94824621e-01 -1.14684176e+00 1.16095230e-01 8.62089515e-01 9.54013705e-01 -1.35580540e+00 8.39888528e-02 -7.24309012e-02 -7.84171581e-01 9.48806345e-01 7.24837184e-01 -2.00817853e-01 1.08748281e+00 -1.91868573e-01 -3.53862077e-01 1.54649019e-01 -6.78534389e-01 -5.03915884e-02 5.36190093e-01 4.79927242e-01 4.53593910e-01 -5.65600805e-02 -4.35872585e-01 1.32770920e+00 1.63392723e-01 2.21240237e-01 2.92546034e-01 3.80387872e-01 -6.18648171e-01 -9.94255543e-01 -1.77956954e-01 1.07308722e+00 -5.00239372e-01 -2.45749891e-01 -2.44856309e-02 3.71975482e-01 3.84104788e-01 1.17971551e+00 3.90565433e-02 -8.03241611e-01 5.06330192e-01 -2.71889448e-01 -1.30126953e-01 -5.59574306e-01 -4.71260697e-01 3.56365174e-01 -1.01985350e-01 -3.58629078e-01 -3.50670576e-01 -7.74904966e-01 -1.05566823e+00 -1.48596630e-01 -7.59155154e-01 5.75821102e-01 -1.33421421e-01 1.05193782e+00 4.80619431e-01 6.82020903e-01 1.42214870e+00 -7.02180386e-01 -7.86844850e-01 -1.15913045e+00 -1.08211207e+00 4.68200684e-01 1.41686782e-01 -8.36097240e-01 -6.29338861e-01 -4.07747656e-01]
[10.168803215026855, 5.557633876800537]
f4f0f26b-c43f-44f0-9e12-daaca0cf5374
slim-u-net-efficient-anatomical-feature
2302.11524
null
https://arxiv.org/abs/2302.11524v1
https://arxiv.org/pdf/2302.11524v1.pdf
Slim U-Net: Efficient Anatomical Feature Preserving U-net Architecture for Ultrasound Image Segmentation
We investigate the applicability of U-Net based models for segmenting Urinary Bladder (UB) in male pelvic view UltraSound (US) images. The segmentation of UB in the US image aids radiologists in diagnosing the UB. However, UB in US images has arbitrary shapes, indistinct boundaries and considerably large inter- and intra-subject variability, making segmentation a quite challenging task. Our study of the state-of-the-art (SOTA) segmentation network, U-Net, for the problem reveals that it often fails to capture the salient characteristics of UB due to the varying shape and scales of anatomy in the noisy US image. Also, U-net has an excessive number of trainable parameters, reporting poor computational efficiency during training. We propose a Slim U-Net to address the challenges of UB segmentation. Slim U-Net proposes to efficiently preserve the salient features of UB by reshaping the structure of U-Net using a less number of 2D convolution layers in the contracting path, in order to preserve and impose them on expanding path. To effectively distinguish the blurred boundaries, we propose a novel annotation methodology, which includes the background area of the image at the boundary of a marked region of interest (RoI), thereby steering the model's attention towards boundaries. In addition, we suggested a combination of loss functions for network training in the complex segmentation of UB. The experimental results demonstrate that Slim U-net is statistically superior to U-net for UB segmentation. The Slim U-net further decreases the number of trainable parameters and training time by 54% and 57.7%, respectively, compared to the standard U-Net, without compromising the segmentation accuracy.
['Subir Kumar Saha', 'SH Chandrashekhara', 'Kashish Verma', 'Deepak Raina']
2023-02-22
null
null
null
null
['anatomy']
['miscellaneous']
[ 3.14227045e-01 5.56321740e-01 -1.45151585e-01 -2.49858737e-01 -4.05459493e-01 -5.54767728e-01 -1.17775232e-01 -7.60555565e-02 -4.63453114e-01 5.36925495e-01 -2.09250942e-01 -5.92844188e-01 -7.47298077e-02 -6.82209373e-01 -8.31648648e-01 -6.20976210e-01 -2.25184828e-01 2.17696741e-01 3.94001245e-01 -5.40470593e-02 8.52114055e-03 5.55356562e-01 -7.94674695e-01 -1.67607460e-02 1.25971162e+00 1.09681189e+00 5.64332426e-01 5.66222370e-01 -3.49181831e-01 6.06009543e-01 -3.31210792e-01 -3.40064943e-01 3.10328573e-01 -7.33922958e-01 -1.12722707e+00 -8.26307982e-02 5.23796558e-01 -3.38090330e-01 -4.46990967e-01 1.25876307e+00 6.72582448e-01 2.26894006e-01 3.85077566e-01 -5.04428744e-01 -6.63098335e-01 5.85383415e-01 -6.32030785e-01 6.45942509e-01 -1.19103521e-01 -4.34086099e-02 5.55277705e-01 -3.27963740e-01 9.71103668e-01 1.05649102e+00 1.08949804e+00 7.38625586e-01 -1.18561149e+00 -6.55438721e-01 -1.92212611e-01 -1.37627602e-01 -8.75801980e-01 1.22251108e-01 6.72928333e-01 -3.12528878e-01 3.47608656e-01 5.77256918e-01 7.02670038e-01 8.02149892e-01 3.64182532e-01 1.07976747e+00 9.65598881e-01 -3.05414110e-01 -5.83016202e-02 -2.17651054e-01 3.25955719e-01 1.11919415e+00 2.70259529e-01 -3.02125532e-02 2.69038111e-01 2.73073930e-02 1.60418403e+00 -2.28194296e-02 -4.41107690e-01 -5.83903074e-01 -8.32570255e-01 5.99153876e-01 8.99429083e-01 7.20002472e-01 -1.67601198e-01 -5.80993388e-03 5.80276549e-01 -1.27329439e-01 2.03339919e-01 7.07414091e-01 -2.02505037e-01 1.18338682e-01 -7.39899039e-01 -9.71449390e-02 4.14480716e-01 1.00155592e+00 4.03928697e-01 -2.32274562e-01 -4.92694914e-01 9.14924264e-01 -8.96899030e-02 1.22667678e-01 7.79446959e-01 -1.07140410e+00 3.68676960e-01 7.03020751e-01 -2.40346074e-01 -8.09377313e-01 -7.22093046e-01 -6.35103464e-01 -1.10126877e+00 -2.25354671e-01 6.07030690e-01 -3.03023934e-01 -1.59651828e+00 1.37604773e+00 2.63388723e-01 3.42009753e-01 -2.45052055e-01 1.12508130e+00 1.10236216e+00 2.99633920e-01 -4.05502357e-02 -7.21196011e-02 1.28915036e+00 -1.05417717e+00 -8.62134755e-01 -3.00103843e-01 6.17638707e-01 -5.77361465e-01 9.51715112e-01 -1.81097407e-02 -1.28947425e+00 -5.53311288e-01 -9.44937646e-01 -2.22833484e-01 -7.63653144e-02 2.38141969e-01 7.94975519e-01 8.04372251e-01 -9.44279552e-01 9.49032962e-01 -1.24763870e+00 -1.78637117e-01 6.52328968e-01 5.58117032e-01 -3.13175291e-01 6.34277239e-02 -1.07243276e+00 9.41970527e-01 5.58801651e-01 4.73438233e-01 -4.09199804e-01 -7.27375507e-01 -1.30282712e+00 2.56192386e-01 3.75564605e-01 -5.20769477e-01 1.29437482e+00 -7.50957966e-01 -1.37111866e+00 7.70791531e-01 -3.34182344e-02 -4.18208182e-01 9.64271486e-01 1.28798276e-01 -5.73708350e-03 2.85025775e-01 6.16973341e-02 4.21265990e-01 4.40524012e-01 -1.44556558e+00 -4.73208666e-01 -4.52012807e-01 -8.40670541e-02 6.38680607e-02 -1.04742497e-01 -2.84113616e-01 -9.35041308e-01 -7.25168347e-01 8.37783217e-01 -9.34753239e-01 -5.34043312e-01 9.11834277e-03 -2.77295619e-01 1.83372483e-01 8.79243433e-01 -1.00150919e+00 1.25403559e+00 -2.12074065e+00 -5.43183200e-02 3.16026300e-01 3.50606889e-01 6.21889591e-01 1.66426480e-01 -5.36585271e-01 9.24717113e-02 1.39179811e-01 -6.11767828e-01 -1.43573731e-01 -3.96580994e-01 7.26203859e-01 2.35738769e-01 5.56593895e-01 -8.35429430e-02 1.14695108e+00 -1.21357501e+00 -8.44404459e-01 3.46542567e-01 1.59534484e-01 -6.02875710e-01 2.18219787e-01 3.29852611e-01 7.84130573e-01 -4.66814011e-01 7.22984374e-01 8.90134931e-01 -3.31210077e-01 3.32537413e-01 -2.17099339e-01 1.27343938e-01 -1.45419613e-01 -1.15007424e+00 1.79399490e+00 -4.76675540e-01 3.67467582e-01 4.63832527e-01 -1.03050673e+00 7.85717130e-01 2.11610615e-01 5.59820950e-01 -9.80591416e-01 3.84517074e-01 6.37718201e-01 2.55184621e-01 -7.35793114e-01 3.06965113e-01 -1.28295273e-01 1.56244084e-01 2.35286690e-02 3.45199704e-01 -9.11640450e-02 3.91179562e-01 -2.07545340e-01 7.50100076e-01 7.39277378e-02 1.96213752e-01 -4.75170702e-01 5.54946661e-01 -2.87125468e-01 7.00101614e-01 1.02525449e+00 -6.31485045e-01 8.26293945e-01 5.34352362e-01 -5.18571198e-01 -7.55531251e-01 -9.73502040e-01 -7.24692822e-01 4.80760634e-01 8.49384964e-01 4.04735416e-01 -8.74639690e-01 -9.14696515e-01 5.53081557e-02 2.98308492e-01 -9.42899764e-01 3.84544209e-03 -1.04528260e+00 -8.60132158e-01 6.88534915e-01 6.97636187e-01 6.58477843e-01 -1.29163873e+00 -6.91523314e-01 2.45134339e-01 -2.52321661e-01 -9.98248458e-01 -6.40591443e-01 2.98343092e-01 -1.27801740e+00 -1.21056759e+00 -1.19181120e+00 -1.17389035e+00 1.14130747e+00 2.20760028e-03 7.94628799e-01 -1.55467847e-02 -4.34122503e-01 -1.79106474e-01 9.81045328e-03 -8.54316503e-02 -4.61004138e-01 3.49496789e-02 -4.46421593e-01 -3.95211875e-01 -7.55372643e-02 -1.55807346e-01 -7.88113177e-01 3.72318149e-01 -9.88470733e-01 3.65037657e-02 6.72768772e-01 1.31127191e+00 6.53269589e-01 -3.05267215e-01 1.85399488e-01 -1.13738418e+00 5.54769337e-01 -2.54520863e-01 -4.10999358e-01 1.88677907e-01 -4.61741626e-01 -1.86447993e-01 4.32474524e-01 -5.01380026e-01 -1.14012849e+00 -1.31242558e-01 -1.77331164e-01 -4.49737012e-01 1.07344411e-01 3.16639006e-01 5.11012077e-01 -5.47616482e-01 5.50557017e-01 2.36417904e-01 1.68986171e-01 -4.52417046e-01 4.74206470e-02 4.39141631e-01 8.89050901e-01 -5.19966245e-01 1.69221923e-01 4.03686076e-01 -5.06382026e-02 -6.51615083e-01 -6.85529828e-01 -8.03547919e-01 -6.47548795e-01 -1.30231567e-02 8.46929014e-01 -4.05902594e-01 -6.02662981e-01 2.87885249e-01 -1.05516958e+00 -4.36255544e-01 -2.61903465e-01 4.27562475e-01 -4.85900700e-01 5.54902256e-01 -1.41222823e+00 -4.68036890e-01 -6.16783857e-01 -1.47661412e+00 7.01484740e-01 8.32593381e-01 -3.54235107e-03 -1.03413022e+00 -3.05032492e-01 4.16799217e-01 3.93492818e-01 4.29749876e-01 8.86422038e-01 -5.12567401e-01 -2.07019657e-01 -2.14113906e-01 -6.71160579e-01 3.58909994e-01 3.33062321e-01 -5.89230478e-01 -8.48358870e-01 -2.14282736e-01 1.09632023e-01 -2.96531487e-02 9.03015316e-01 9.29288924e-01 1.67433631e+00 5.64542003e-02 -3.90170097e-01 1.07627177e+00 1.28639066e+00 5.76116085e-01 4.81405109e-01 3.72704238e-01 7.23349452e-01 2.97389001e-01 4.57834035e-01 3.35658900e-02 -5.82718365e-02 1.81480601e-01 5.32162070e-01 -8.79508793e-01 -1.39560357e-01 8.20169821e-02 -4.50917006e-01 5.13454974e-01 -3.34983677e-01 4.12292570e-01 -8.96290243e-01 7.97456324e-01 -1.81350505e+00 -5.11568666e-01 -7.20304847e-02 1.94416797e+00 1.13128161e+00 2.21030906e-01 -2.86833823e-01 -3.76774698e-01 6.67998493e-01 1.75818168e-02 -5.42501628e-01 -3.98043185e-01 2.58422107e-01 2.50284135e-01 9.63937104e-01 5.02381146e-01 -1.39021480e+00 6.53795063e-01 6.28502655e+00 7.96007633e-01 -1.31229496e+00 9.82837528e-02 9.53777194e-01 3.09824705e-01 5.37733622e-02 -4.60654825e-01 -4.98627514e-01 4.11454082e-01 1.19743526e-01 2.39653200e-01 7.60062560e-02 7.49519706e-01 -1.94869284e-02 -1.16232425e-01 -7.94069529e-01 8.30498815e-01 -9.45577845e-02 -1.57327282e+00 -3.46215904e-01 -1.10547125e-01 9.35362637e-01 -4.95138131e-02 -2.04795152e-01 3.71215552e-01 1.59247108e-02 -1.03243721e+00 3.63861829e-01 1.52055189e-01 8.16491663e-01 -5.68577170e-01 1.37989056e+00 2.20413029e-01 -9.28489685e-01 3.20257917e-02 -3.19732636e-01 3.50727707e-01 -6.47761375e-02 1.93139032e-01 -8.48489404e-01 6.17931902e-01 8.49461973e-01 1.89278111e-01 -4.67020541e-01 1.26435614e+00 1.19203530e-01 3.84322643e-01 -2.73088723e-01 2.14868039e-01 7.44922698e-01 -4.58683103e-01 3.43588948e-01 1.57940590e+00 3.83418798e-01 2.34549657e-01 2.28453726e-01 1.09052241e+00 -1.81997254e-01 5.79484664e-02 -3.81590009e-01 3.43995601e-01 3.65123302e-02 1.23444748e+00 -1.09544480e+00 -3.97219688e-01 -1.49865821e-01 1.00380361e+00 1.19751997e-01 3.72261882e-01 -6.06514931e-01 -3.77272487e-01 1.13165257e-02 -1.06368087e-01 2.32276723e-01 1.89934954e-01 -8.01173151e-01 -8.58328879e-01 2.38591805e-02 -2.90428281e-01 5.02747357e-01 -2.28409126e-01 -8.93499196e-01 6.40626073e-01 -2.45326266e-01 -1.05122268e+00 9.92905870e-02 -5.82079232e-01 -5.77086866e-01 9.20117199e-01 -1.64126706e+00 -1.04994166e+00 -3.81306857e-01 1.53014809e-01 4.43972915e-01 4.84184325e-01 5.51512241e-01 4.42125052e-01 -5.36694527e-01 6.41533494e-01 2.40073562e-01 5.03708720e-01 5.85941076e-01 -1.67982590e+00 1.82175040e-01 8.01667392e-01 -5.48148453e-01 9.48850036e-01 5.46646893e-01 -7.92982817e-01 -1.01668823e+00 -8.99829030e-01 6.25759125e-01 4.46996139e-03 5.12841702e-01 -3.23073678e-02 -9.51994002e-01 7.93356121e-01 -1.33197039e-01 6.79580450e-01 4.38290775e-01 -1.93754509e-01 4.03206468e-01 2.33689174e-01 -1.46824932e+00 5.94476998e-01 8.24253201e-01 1.91466864e-02 -5.62581658e-01 2.47688126e-02 5.31586111e-01 -1.40858889e+00 -1.13760602e+00 7.27648795e-01 5.77262521e-01 -7.98028469e-01 1.10831285e+00 -3.12580973e-01 6.71456635e-01 4.53726165e-02 5.88651538e-01 -1.10720539e+00 -2.95213044e-01 -4.67556953e-01 -1.39273882e-01 6.78038836e-01 2.24390820e-01 -4.70586002e-01 1.13021839e+00 5.86216807e-01 -6.02114320e-01 -9.95453119e-01 -1.04464948e+00 -4.33016896e-01 9.87239764e-04 1.34779904e-02 2.48555504e-02 1.16414297e+00 -3.08694765e-02 -3.91322106e-01 4.14751563e-03 2.49570068e-02 6.22675300e-01 2.48874903e-01 3.05814654e-01 -9.82707500e-01 -1.03413038e-01 -7.00953543e-01 -1.26226649e-01 -1.05634892e+00 -3.95610213e-01 -9.54028249e-01 1.32292911e-01 -1.67246652e+00 1.21872015e-01 -6.61462963e-01 -3.80723834e-01 3.75901818e-01 -6.00791752e-01 3.40742916e-01 2.19221070e-01 8.71954188e-02 -1.53007448e-01 2.36886069e-01 2.42533040e+00 -1.66123644e-01 -5.65676630e-01 3.27505618e-01 -3.00996065e-01 8.66001129e-01 4.68654364e-01 -5.19220717e-02 -1.19505458e-01 -1.27673402e-01 -6.59877300e-01 4.11264360e-01 1.14823364e-01 -5.93577147e-01 8.44327211e-02 5.53569086e-02 7.16849744e-01 -5.41265547e-01 -9.15933102e-02 -8.46491396e-01 -2.41896823e-01 9.46845829e-01 -1.34116143e-01 -5.16015410e-01 5.03828228e-01 1.79348350e-01 -3.52571130e-01 -6.38222814e-01 1.04938734e+00 -6.17623031e-01 -7.07892716e-01 2.84657776e-01 3.21220309e-02 -1.72394916e-01 9.55939710e-01 -4.83385980e-01 3.46032828e-02 1.57194689e-01 -1.08411694e+00 5.77717245e-01 1.75148800e-01 6.02312796e-02 4.99764889e-01 -9.78692591e-01 -1.77444264e-01 4.66441065e-01 -2.67413437e-01 7.86167264e-01 5.80510974e-01 1.22096038e+00 -1.32801700e+00 4.87313062e-01 -3.63683224e-01 -7.62833953e-01 -1.09043634e+00 2.72835314e-01 8.14511657e-01 -7.88148642e-01 -1.06508648e+00 1.06865108e+00 4.34336215e-01 -9.24322784e-01 3.85411024e-01 -7.75846362e-01 -4.55208600e-01 -1.70778081e-01 2.74676085e-01 3.56317937e-01 1.09403953e-01 -3.81670177e-01 8.79149046e-03 3.14826876e-01 -2.47449428e-01 5.48628747e-01 1.07929122e+00 -1.33351758e-01 -1.15625143e-01 -7.93225616e-02 9.78967428e-01 -2.95648336e-01 -1.37859094e+00 -3.09479058e-01 6.73969463e-02 -3.19415569e-01 2.26406693e-01 -7.79228926e-01 -1.28304970e+00 5.60919225e-01 8.39326978e-01 1.06369928e-01 9.54724014e-01 -1.98784381e-01 1.20100081e+00 -9.91741121e-02 2.21532911e-01 -1.04923725e+00 -2.90511638e-01 4.45629150e-01 6.11178577e-01 -1.32556331e+00 -1.55463889e-01 -6.87556207e-01 -4.95139688e-01 1.28641236e+00 9.22686279e-01 -3.27904344e-01 3.20022970e-01 2.40656167e-01 3.19913626e-01 -2.49594837e-01 5.43351889e-01 -3.43120587e-03 4.74086702e-01 2.48473212e-01 3.94671649e-01 2.19941717e-02 -8.01187694e-01 7.16776848e-01 -4.43058610e-02 3.67815085e-02 5.42878628e-01 1.01993215e+00 -2.52716631e-01 -7.17993498e-01 -5.41698158e-01 6.22661710e-01 -8.37565005e-01 1.20456062e-01 2.22752631e-01 9.62172091e-01 2.99345881e-01 1.96334258e-01 1.68688484e-02 1.67153388e-01 3.98024708e-01 -2.52103478e-01 6.41312838e-01 -4.83971864e-01 -7.41075993e-01 4.89751428e-01 -2.12495834e-01 -6.16729736e-01 -1.35887489e-01 -3.22632968e-01 -1.59976494e+00 5.72347715e-02 -3.78777742e-01 -5.03763929e-02 5.06041884e-01 9.72058713e-01 -1.74091250e-01 1.04258311e+00 2.56459445e-01 -1.07542360e+00 -5.99188805e-01 -1.06533861e+00 -6.80470765e-01 6.75284803e-01 5.18956423e-01 -5.93359470e-01 -6.96787909e-02 -8.61073285e-02]
[14.541326522827148, -2.6660821437835693]
4147e864-d338-4b2e-8419-3a439835db6a
coda-an-end-to-end-neural-program-decompiler
null
null
http://papers.nips.cc/paper/8628-coda-an-end-to-end-neural-program-decompiler
http://papers.nips.cc/paper/8628-coda-an-end-to-end-neural-program-decompiler.pdf
Coda: An End-to-End Neural Program Decompiler
Reverse engineering of binary executables is a critical problem in the computer security domain. On the one hand, malicious parties may recover interpretable source codes from the software products to gain commercial advantages. On the other hand, binary decompilation can be leveraged for code vulnerability analysis and malware detection. However, efficient binary decompilation is challenging. Conventional decompilers have the following major limitations: (i) they are only applicable to specific source-target language pair, hence incurs undesired development cost for new language tasks; (ii) their output high-level code cannot effectively preserve the correct functionality of the input binary; (iii) their output program does not capture the semantics of the input and the reversed program is hard to interpret. To address the above problems, we propose Coda1, the first end-to-end neural-based framework for code decompilation. Coda decomposes the decompilation task into of two key phases: First, Coda employs an instruction type-aware encoder and a tree decoder for generating an abstract syntax tree (AST) with attention feeding during the code sketch generation stage. Second, Coda then updates the code sketch using an iterative error correction machine guided by an ensembled neural error predictor. By finding a good approximate candidate and then fixing it towards perfect, Coda achieves superior with performance compared to baseline approaches. We assess Coda’s performance with extensive experiments on various benchmarks. Evaluation results show that Coda achieves an average of 82% program recovery accuracy on unseen binary samples, where the state-of-the-art decompilers yield 0% accuracy. Furthermore, Coda outperforms the sequence-to-sequence model with attention by a margin of 70% program accuracy. Our work reveals the vulnerability of binary executables and imposes a new threat to the protection of Intellectual Property (IP) for software development.
['Haolan Liu', 'Yuandong Tian', 'Huili Chen', 'Farinaz Koushanfar', 'Xinyun Chen', 'Jishen Zhao', 'Cheng Fu']
2019-12-01
null
null
null
neurips-2019-12
['computer-security']
['miscellaneous']
[ 4.95869339e-01 -1.23047881e-01 -7.27289855e-01 5.17877042e-02 -6.93628132e-01 -8.33368361e-01 2.08942682e-01 7.00982660e-02 1.15021087e-01 2.32351556e-01 -1.84918106e-01 -1.31277800e+00 4.57441509e-01 -7.52487004e-01 -1.06413591e+00 -1.58228859e-01 1.66462943e-01 -2.03174483e-02 3.00987512e-01 -1.91891909e-01 6.40170217e-01 2.80159473e-01 -1.24544537e+00 4.03808951e-01 9.99897003e-01 7.91767240e-01 4.50495705e-02 8.71578991e-01 -5.73495850e-02 8.03950548e-01 -7.03309298e-01 -7.33679473e-01 3.17390978e-01 -2.17118442e-01 -8.95588815e-01 -2.81539112e-01 1.55072987e-01 -6.55691683e-01 -4.28366393e-01 1.63359165e+00 -1.05151303e-01 -6.86327696e-01 4.74295259e-01 -1.35434341e+00 -9.37511444e-01 8.76407027e-01 -8.09218943e-01 1.72423705e-01 1.87132061e-01 5.65108001e-01 9.46236491e-01 -6.60913765e-01 3.62589449e-01 1.04422534e+00 5.91013134e-01 7.22509861e-01 -1.21794713e+00 -7.68417478e-01 -6.09554239e-02 9.13857222e-02 -1.15103626e+00 -2.73385376e-01 6.79081202e-01 -5.31998277e-01 1.34629643e+00 3.50150406e-01 1.59998268e-01 1.23560393e+00 5.94815373e-01 5.46635628e-01 8.21011603e-01 -2.20633358e-01 2.38706604e-01 1.51439071e-01 6.00828230e-01 9.21532929e-01 5.22717893e-01 4.67350692e-01 6.53666779e-02 -4.73882109e-01 3.42604145e-02 1.39069185e-01 -3.38677317e-01 1.12171263e-01 -7.80752063e-01 7.96468556e-01 3.90125275e-01 1.18137911e-01 3.19788605e-02 2.91495323e-01 7.99311757e-01 5.01624405e-01 -3.97902764e-02 6.52035534e-01 -4.79122847e-01 -3.26879919e-01 -9.98621821e-01 4.74615172e-02 8.70062351e-01 7.73171782e-01 5.69832504e-01 4.67597663e-01 1.11990131e-01 1.98361278e-01 4.63635772e-01 5.20840228e-01 7.15611696e-01 -3.91533524e-01 8.23440135e-01 8.38597775e-01 -4.25388038e-01 -1.18772078e+00 1.18327059e-01 -3.97909373e-01 -7.07453430e-01 5.67966521e-01 1.53975800e-01 8.67802128e-02 -8.22702050e-01 1.43126380e+00 -1.01955324e-01 1.00749418e-01 1.14762299e-01 4.14566249e-01 3.87904942e-01 6.98296607e-01 -2.60330737e-01 -2.51222979e-02 1.44303071e+00 -9.97232318e-01 -3.33199859e-01 -5.63844204e-01 6.74875617e-01 -4.59954411e-01 1.07363212e+00 3.36663216e-01 -6.82743907e-01 -4.44632649e-01 -1.61575997e+00 1.64284036e-01 -2.63770908e-01 5.22316918e-02 3.22477609e-01 1.11013365e+00 -8.98420036e-01 5.30511796e-01 -9.28622842e-01 3.07441145e-01 5.13659418e-01 4.43167180e-01 -2.10393533e-01 9.39301848e-02 -7.99213648e-01 3.94700021e-01 5.51270366e-01 -6.75772950e-02 -1.35117555e+00 -7.45772779e-01 -1.02735198e+00 2.80760497e-01 3.67339522e-01 -3.30970794e-01 1.17898452e+00 -1.07831740e+00 -1.40276241e+00 5.84151149e-01 -1.95990324e-01 -7.29310691e-01 2.22531959e-01 -1.16295688e-01 -5.65556407e-01 -1.45219624e-01 -3.55740376e-02 3.33827781e-03 1.32226133e+00 -1.14157093e+00 -4.58157182e-01 -1.94570780e-01 9.87036899e-02 -6.32640004e-01 -5.91051280e-01 1.95588410e-01 -1.53639421e-01 -7.15872824e-01 -4.35063332e-01 -1.00580645e+00 -4.02644463e-03 -3.81220877e-01 -7.61253715e-01 2.05833316e-01 1.18427336e+00 -1.09419441e+00 1.84053564e+00 -2.33566570e+00 1.01766065e-01 1.85133561e-01 5.08317530e-01 7.72807121e-01 -1.26202747e-01 5.51359020e-02 -5.02818465e-01 5.86974680e-01 -6.01381838e-01 -5.08678108e-02 -2.10539140e-02 -2.65391558e-01 -1.04014599e+00 3.91192406e-01 2.96586335e-01 1.23963630e+00 -7.90721714e-01 -1.61613598e-02 -2.00109273e-01 8.95040184e-02 -8.24404597e-01 2.39062309e-01 -5.04660964e-01 -4.20670025e-02 -3.12403232e-01 9.07711387e-01 7.00426579e-01 -4.15052593e-01 1.76903397e-01 -8.18552077e-02 1.03766046e-01 4.40449566e-01 -5.35688877e-01 1.06487250e+00 -5.66803694e-01 8.88908863e-01 -2.60197997e-01 -7.61814594e-01 7.82063425e-01 2.59838756e-02 -2.73564637e-01 -4.10378844e-01 2.22986147e-01 3.92347187e-01 2.71176219e-01 -4.52381492e-01 6.25399768e-01 1.64788947e-01 -3.50364298e-01 8.06612670e-01 -4.02858853e-01 7.16717169e-02 -2.52064049e-01 2.11743876e-01 1.48275137e+00 -3.67694907e-02 4.80060518e-01 6.43502772e-02 6.57288671e-01 7.35083744e-02 4.32056367e-01 6.26600266e-01 -1.22714482e-01 2.32350901e-01 9.23120975e-01 -3.85490566e-01 -1.10219502e+00 -7.24308848e-01 1.83422998e-01 6.93796873e-01 1.59339830e-02 -5.83414018e-01 -1.14121604e+00 -1.24057388e+00 -1.49344072e-01 1.05403459e+00 -5.39551258e-01 -7.01843560e-01 -8.99251580e-01 -6.79888070e-01 1.11550820e+00 6.67130291e-01 4.85052794e-01 -8.61883700e-01 -5.93455255e-01 -2.70738034e-03 -8.49124268e-02 -9.48145986e-01 -8.39779973e-01 8.99872556e-02 -7.41719007e-01 -1.18534732e+00 -1.53970152e-01 -6.65542543e-01 8.54950845e-01 1.60794482e-01 8.32351565e-01 5.68558753e-01 -1.65121421e-01 -2.50255704e-01 -2.49173611e-01 6.05282094e-03 -1.20121372e+00 1.76166177e-01 -1.13211177e-01 -1.51183799e-01 4.26189572e-01 -4.10668731e-01 -1.19110651e-01 1.53865397e-01 -1.09307587e+00 -1.44333705e-01 6.26567245e-01 9.62447703e-01 2.30923936e-01 4.37240601e-01 2.61450410e-01 -9.01990116e-01 5.16507328e-01 -5.62788844e-01 -1.04267848e+00 2.18024909e-01 -7.59290218e-01 3.87732744e-01 1.23267555e+00 -5.12799680e-01 -7.91172802e-01 -1.11466885e-01 -3.46108079e-01 -6.01276040e-01 1.56168327e-01 4.61189538e-01 -4.26990598e-01 -1.51705638e-01 8.38627875e-01 4.84535515e-01 9.30295587e-02 -2.18495890e-01 4.33991849e-02 8.92048478e-01 7.33258665e-01 -5.18763661e-01 1.30790329e+00 7.88743719e-02 -8.49931687e-02 -4.65978384e-01 -3.19358826e-01 2.08951280e-01 -3.51148188e-01 2.92989463e-01 6.83612347e-01 -5.27786136e-01 -8.01984906e-01 7.82414973e-01 -1.38284791e+00 -3.08939278e-01 1.59844741e-01 -1.97089285e-01 -1.17319100e-01 9.37533915e-01 -8.33293974e-01 -5.05815566e-01 -5.98991692e-01 -1.96007884e+00 9.42847729e-01 -6.79359585e-03 -3.18598896e-01 -6.63463116e-01 -2.36978799e-01 3.93983871e-01 3.22755933e-01 1.42642096e-01 1.62947130e+00 -7.45739222e-01 -8.08503389e-01 -3.38315904e-01 -2.25593910e-01 6.24512911e-01 8.13633874e-02 1.52661875e-01 -8.27310503e-01 -5.12617290e-01 1.87145472e-01 -1.85568094e-01 6.31071329e-01 -2.58343726e-01 1.31166804e+00 -7.14325190e-01 -3.70801777e-01 9.26251113e-01 1.37485600e+00 4.29488540e-01 7.46163130e-01 2.91511625e-01 8.21166337e-01 1.61171228e-01 3.65469247e-01 1.64798602e-01 2.44764052e-02 5.53542256e-01 9.37192380e-01 4.63088214e-01 -1.04863398e-01 -5.91983378e-01 9.54732537e-01 7.75268853e-01 4.34865713e-01 -1.86960325e-01 -1.10461044e+00 3.84641916e-01 -1.33772659e+00 -7.43378103e-01 -1.74236491e-01 2.33709097e+00 8.21784258e-01 4.77694839e-01 -5.41112795e-02 3.54037255e-01 7.03506887e-01 1.17058456e-01 -7.39792645e-01 -7.86663473e-01 3.05604845e-01 2.91986316e-01 7.81701267e-01 5.07030547e-01 -9.04527187e-01 9.06685591e-01 5.56300545e+00 9.73040164e-01 -1.33189976e+00 1.33253306e-01 5.95175982e-01 3.74203026e-01 -5.37546933e-01 3.60399663e-01 -1.03272927e+00 7.98259139e-01 1.34527206e+00 -3.19004178e-01 7.92454481e-01 1.21866035e+00 -4.26561415e-01 4.24565911e-01 -1.15350926e+00 6.50489211e-01 1.95045993e-01 -1.28803813e+00 -1.96482334e-02 2.49992952e-01 4.66830403e-01 -1.25972882e-01 3.89477938e-01 4.93633747e-01 3.67072344e-01 -1.22816503e+00 9.39728081e-01 -4.01655473e-02 1.15765572e+00 -8.32140744e-01 6.58661366e-01 3.97024035e-01 -1.13235641e+00 -4.84540194e-01 -1.95179686e-01 1.76143885e-01 -9.84150693e-02 2.83027977e-01 -9.84988511e-01 3.15341592e-01 4.25808549e-01 5.62960327e-01 -8.96123886e-01 5.32832801e-01 -5.14404833e-01 9.00491893e-01 1.76624462e-01 -8.96547958e-02 1.90689206e-01 2.73488194e-01 7.75426686e-01 1.17083776e+00 3.74194384e-01 -3.40824634e-01 -6.41179234e-02 1.24070799e+00 -3.42955589e-01 -4.54822510e-01 -6.52393341e-01 -5.29000342e-01 4.66812581e-01 8.99067998e-01 -6.15678072e-01 -1.73328787e-01 -3.64689648e-01 1.00611186e+00 2.72731125e-01 1.71701089e-01 -1.15787101e+00 -6.39326215e-01 7.73468912e-01 5.22429124e-02 4.24730927e-01 -1.20999351e-01 -5.73710203e-01 -1.25232065e+00 1.46916956e-01 -1.55952799e+00 1.85885429e-01 -4.54281121e-01 -7.36650348e-01 9.43038821e-01 -2.01883718e-01 -1.18206930e+00 -4.04941052e-01 -7.92394817e-01 -6.18890703e-01 8.17745864e-01 -1.31151652e+00 -1.00052595e+00 -1.80040207e-02 -1.82346571e-02 6.76562369e-01 -5.52243829e-01 6.65306449e-01 1.41322464e-01 -8.50283504e-01 1.12039912e+00 -6.17165864e-02 4.23857480e-01 8.00683200e-02 -9.81532931e-01 1.24743426e+00 1.50854313e+00 -2.09729552e-01 9.58844602e-01 5.33257544e-01 -1.10431826e+00 -1.88148522e+00 -1.29958475e+00 7.02784657e-01 -5.84476590e-01 1.05940866e+00 -4.88282949e-01 -1.14128160e+00 8.67178142e-01 1.40136024e-02 -8.68094638e-02 4.54364538e-01 -5.29951036e-01 -9.85444963e-01 1.89495072e-01 -1.00446987e+00 6.87803745e-01 6.78565085e-01 -8.70088518e-01 -4.64665204e-01 7.84485117e-02 1.20410287e+00 -3.90491188e-01 -5.05201161e-01 1.16661191e-01 5.07013619e-01 -8.97700548e-01 8.96130383e-01 -7.46677458e-01 1.04714012e+00 -5.38068533e-01 -2.85143197e-01 -9.46718574e-01 -2.10192189e-01 -8.11536670e-01 -6.69837892e-01 1.19392622e+00 5.18845379e-01 -7.39618897e-01 6.41249180e-01 3.82946372e-01 -1.24600835e-01 -7.80644238e-01 -7.22027540e-01 -8.94906461e-01 1.61588758e-01 -6.74945354e-01 9.38294113e-01 7.22145319e-01 -2.39782743e-02 2.34326318e-01 -4.07551140e-01 4.30656165e-01 5.58728039e-01 2.51360536e-01 6.92884803e-01 -6.05283082e-01 -9.72309232e-01 -6.13154292e-01 -3.52784425e-01 -1.06884205e+00 6.82383657e-01 -1.17083681e+00 -4.29804958e-02 -6.09786630e-01 3.38317424e-01 -2.25176185e-01 -1.02436002e-02 7.18330145e-01 -2.91666567e-01 9.79535729e-02 1.92835420e-01 2.16106847e-01 -3.18043046e-02 1.88177302e-01 5.11713088e-01 -5.96673429e-01 4.54934612e-02 1.05500497e-01 -9.84441578e-01 6.72339022e-01 6.85972095e-01 -7.77619362e-01 -3.53960752e-01 -4.26535100e-01 4.19844091e-01 1.57126635e-01 5.08875251e-01 -8.27217340e-01 3.94047163e-02 -1.77746072e-01 -2.62174428e-01 -3.64867389e-01 -1.83024019e-01 -8.09677303e-01 1.75189540e-01 1.05243576e+00 -1.51046455e-01 3.45761508e-01 2.76074350e-01 6.19571924e-01 -4.13595214e-02 -7.83931494e-01 8.82270575e-01 1.13953106e-01 -6.42481148e-01 1.74004585e-01 -3.46769780e-01 5.13992757e-02 1.08071709e+00 -2.53172517e-01 -6.33331120e-01 8.16247389e-02 3.87120023e-02 -2.79216468e-01 8.93049836e-01 6.27573371e-01 6.78189993e-01 -9.69367921e-01 -4.54442322e-01 6.16004348e-01 9.80639085e-02 -4.15601492e-01 -6.62737042e-02 5.46942532e-01 -7.40159333e-01 4.51095551e-01 -1.56900957e-02 -3.13812494e-01 -1.56273544e+00 1.12750673e+00 2.95319021e-01 -5.43127835e-01 -4.41764504e-01 5.73893189e-01 2.84097791e-01 -2.85176873e-01 -7.66698942e-02 -3.88752520e-01 1.68398336e-01 -6.25446558e-01 8.85390818e-01 2.54001826e-01 1.39449388e-01 -6.81469977e-01 -4.21888232e-01 2.41194427e-01 -4.19602931e-01 3.87249023e-01 1.12340379e+00 3.43118340e-01 -4.35377330e-01 -1.55203238e-01 1.50246656e+00 2.76485324e-01 -9.03274894e-01 8.28537915e-04 8.34268332e-02 -5.96249044e-01 5.44231990e-03 -7.34802008e-01 -1.07835734e+00 1.07449746e+00 2.34638304e-01 1.15128204e-01 1.18919230e+00 -3.48446280e-01 1.23842621e+00 2.66374528e-01 3.78775358e-01 -3.40582520e-01 2.36299947e-01 6.48512244e-01 4.69315290e-01 -9.76532698e-01 -1.64986178e-01 -3.73370737e-01 -3.61508787e-01 1.32081306e+00 6.71034932e-01 4.22566235e-02 3.22821289e-01 8.21895242e-01 -4.10371482e-01 1.25444695e-01 -6.20671093e-01 5.10685980e-01 2.63568938e-01 5.61158895e-01 -6.86786789e-03 5.30731976e-02 6.09743334e-02 9.24024045e-01 -2.52554148e-01 -2.34841213e-01 8.35950375e-01 1.01529491e+00 -1.83694690e-01 -1.25305748e+00 -4.98372972e-01 4.85219240e-01 -7.46628225e-01 -4.97558832e-01 -3.30747992e-01 4.59117532e-01 -1.70065150e-01 8.09157252e-01 -4.33267325e-01 -9.92209077e-01 -1.49718039e-02 -1.79130398e-02 5.15999086e-03 -6.74014449e-01 -8.84773672e-01 -4.62270945e-01 -1.28745630e-01 -5.08862853e-01 5.85978627e-01 -4.23810899e-01 -1.16628051e+00 -5.53024590e-01 -2.55747527e-01 -1.72238991e-01 5.83797216e-01 7.54152477e-01 6.83872521e-01 7.46350288e-01 7.10694790e-01 -5.15442431e-01 -1.01522470e+00 -4.69062746e-01 -5.35719767e-02 1.92619443e-01 6.51742518e-01 -2.53332675e-01 -5.05763173e-01 2.67756552e-01]
[7.058852195739746, 7.820750713348389]
9707fede-911e-448e-b0e4-0447f1f50ebe
steadyflow-spatially-smooth-optical-flow-for
null
null
http://openaccess.thecvf.com/content_cvpr_2014/html/Liu_SteadyFlow_Spatially_Smooth_2014_CVPR_paper.html
http://openaccess.thecvf.com/content_cvpr_2014/papers/Liu_SteadyFlow_Spatially_Smooth_2014_CVPR_paper.pdf
SteadyFlow: Spatially Smooth Optical Flow for Video Stabilization
We propose a novel motion model, SteadyFlow, to represent the motion between neighboring video frames for stabilization. A SteadyFlow is a specific optical flow by enforcing strong spatial coherence, such that smoothing feature trajectories can be replaced by smoothing pixel profiles, which are motion vectors collected at the same pixel location in the SteadyFlow over time. In this way, we can avoid brittle feature tracking in a video stabilization system. Besides, SteadyFlow is a more general 2D motion model which can deal with spatially-variant motion. We initialize the SteadyFlow by optical flow and then discard discontinuous motions by a spatial-temporal analysis and fill in missing regions by motion completion. Our experiments demonstrate the effectiveness of our stabilization on real-world challenging videos.
['Shuaicheng Liu', 'Ping Tan', 'Jian Sun', 'Lu Yuan']
2014-06-01
null
null
null
cvpr-2014-6
['video-stabilization']
['computer-vision']
[-1.52351066e-01 -4.32128757e-01 -2.88046986e-01 3.32852788e-02 -4.37936671e-02 -5.17659068e-01 3.48520070e-01 -3.43227297e-01 -1.97641432e-01 7.94386089e-01 4.43332762e-01 9.09918472e-02 1.27840236e-01 -3.97686660e-01 -6.01309478e-01 -8.72188270e-01 -6.16512299e-02 -6.68277204e-01 7.16897130e-01 1.81455025e-03 2.22523123e-01 4.12989825e-01 -1.04869807e+00 5.64175099e-03 7.78696835e-01 6.59601271e-01 3.00708324e-01 5.57821870e-01 -4.69136797e-02 9.71172333e-01 -2.84810603e-01 1.82472408e-01 3.15312028e-01 -5.90478241e-01 -7.84603834e-01 6.58504486e-01 7.59080827e-01 -6.37562394e-01 -7.11143136e-01 1.15535367e+00 5.60824238e-02 5.09957314e-01 3.84036498e-03 -1.18578780e+00 -5.08063316e-01 2.13506013e-01 -8.78717542e-01 5.57188809e-01 6.42760336e-01 4.96152222e-01 3.37787032e-01 -8.19184065e-01 1.01291049e+00 1.46416104e+00 6.22933328e-01 5.76098442e-01 -1.18744659e+00 -2.67266661e-01 6.07260108e-01 5.34128360e-02 -1.10852027e+00 -5.84100962e-01 5.86153865e-01 -5.13371050e-01 3.49405855e-01 3.07661325e-01 8.17892790e-01 6.16972804e-01 3.15798610e-01 7.87602067e-01 3.40112507e-01 -1.24353833e-01 4.12764139e-02 -7.71403372e-01 3.98820899e-02 8.94582033e-01 8.93375352e-02 -3.45038585e-02 -5.00818193e-01 -2.20892683e-01 1.38802373e+00 2.70250440e-01 -9.57899392e-01 -4.83929634e-01 -1.78780043e+00 4.03105289e-01 3.41401488e-01 2.54567921e-01 -3.52552295e-01 2.72653759e-01 3.51860404e-01 1.33443788e-01 3.55039477e-01 2.44730394e-02 -6.31977469e-02 3.68996188e-02 -1.15195811e+00 2.46125981e-01 2.85639912e-01 9.32863772e-01 1.03039765e+00 2.63822287e-01 -6.14179134e-01 2.95757920e-01 3.99807930e-01 4.31588203e-01 5.03461361e-01 -1.70990396e+00 1.37790322e-01 3.35796326e-01 5.00992417e-01 -1.23370564e+00 -1.40472323e-01 5.03711179e-02 -9.89256978e-01 4.74353544e-02 3.45175147e-01 -2.79376715e-01 -6.52419448e-01 1.55092549e+00 6.98137760e-01 1.15531158e+00 -1.33895740e-01 1.14920735e+00 5.26288986e-01 9.13168669e-01 -3.05031985e-02 -8.71576905e-01 8.65292549e-01 -1.13667285e+00 -1.19096744e+00 3.18139970e-01 3.99831325e-01 -7.98421383e-01 8.18365932e-01 1.36493728e-01 -1.28973567e+00 -6.57797396e-01 -8.00091743e-01 5.80547750e-02 3.69613916e-01 -1.77345201e-01 2.45120898e-01 -9.36459284e-03 -1.07777715e+00 8.20161879e-01 -1.24148619e+00 -1.86998114e-01 1.18866362e-01 4.10624556e-02 -4.89070863e-01 6.24790192e-02 -1.04673207e+00 2.49480382e-01 2.57911384e-01 3.46272051e-01 -6.81465209e-01 -8.10640216e-01 -1.08518147e+00 -9.54780802e-02 2.34001935e-01 -8.04282188e-01 1.09951437e+00 -1.16785014e+00 -1.53636611e+00 4.49931860e-01 -9.09179091e-01 -2.84814119e-01 7.03408480e-01 -4.40408498e-01 -3.62814575e-01 1.92218006e-01 1.48312360e-01 3.78139049e-01 1.11034071e+00 -1.15438509e+00 -5.35899758e-01 2.61176854e-01 -1.83886811e-01 1.50235653e-01 -2.27053061e-01 1.04636431e-01 -8.07868779e-01 -9.11358953e-01 2.47413740e-01 -8.91793668e-01 -4.93788332e-01 3.86424333e-01 -2.92915821e-01 1.48518354e-01 1.35246968e+00 -4.55899119e-01 1.78752613e+00 -2.44153929e+00 2.97257513e-01 -2.75734067e-02 3.03107798e-01 5.00103176e-01 -2.08626643e-01 2.96599232e-02 3.78668471e-03 -6.00710623e-02 -2.73022324e-01 -2.18019009e-01 -6.54639125e-01 1.41202301e-01 -4.51336384e-01 6.57664239e-01 1.20248139e-01 7.19915509e-01 -1.30214953e+00 -6.34058774e-01 4.74079221e-01 5.42133331e-01 -5.27409673e-01 2.45190620e-01 -4.86039817e-02 9.28813338e-01 -5.80582559e-01 4.47831988e-01 9.85389948e-01 -2.09818482e-01 -3.80028933e-02 -2.23925114e-01 -5.72275639e-01 -3.70340228e-01 -1.50549543e+00 1.90249240e+00 1.16685174e-01 6.60681546e-01 4.27666962e-01 -4.74263608e-01 6.72192395e-01 1.93358064e-01 8.93514752e-01 3.44443806e-02 1.15008667e-01 -7.96377286e-02 -4.68816668e-01 -8.01864445e-01 7.41578460e-01 3.70423257e-01 4.70535904e-01 4.26057056e-02 -2.87568927e-01 1.85255602e-01 3.57984215e-01 2.44739667e-01 8.23918104e-01 4.21151578e-01 1.29196504e-02 -4.60707814e-01 1.07314849e+00 -8.33877102e-02 1.20717812e+00 3.54168355e-01 -6.50841832e-01 1.01736701e+00 2.09393620e-01 -5.37167549e-01 -7.30618417e-01 -1.08169532e+00 1.93155259e-02 5.48433959e-01 8.10172081e-01 -7.20101595e-01 -7.70912290e-01 -3.58848870e-01 -9.00678188e-02 -1.98519081e-01 -4.95700806e-01 7.16052600e-04 -1.08529067e+00 -3.40054542e-01 3.42914462e-02 3.18046421e-01 7.06362724e-01 -7.54835546e-01 -5.70362926e-01 4.65240628e-01 -4.42393780e-01 -1.07809496e+00 -1.25477791e+00 -7.64242589e-01 -1.11495006e+00 -1.14969766e+00 -1.06621349e+00 -9.89835203e-01 7.38308430e-01 9.48060811e-01 8.89097810e-01 4.81133521e-01 2.57461652e-04 2.06252441e-01 -1.63496539e-01 5.49874306e-01 -2.06913024e-01 -3.69255692e-01 2.34622523e-01 5.04172742e-01 -9.42445397e-02 -3.45152527e-01 -9.38273609e-01 5.29268801e-01 -1.12029922e+00 -1.39969755e-02 -2.30093017e-01 8.12938035e-01 9.88498569e-01 -2.64141828e-01 9.43809226e-02 -4.73004431e-01 4.26496357e-01 -3.91210705e-01 -6.53419316e-01 2.26550490e-01 2.04381272e-01 -9.39677283e-02 5.33299506e-01 -6.41799748e-01 -1.04006529e+00 3.10996383e-01 1.97342306e-01 -1.19195402e+00 8.37188065e-02 2.17274919e-01 -4.97213453e-02 -1.68681562e-01 2.97297120e-01 3.70074958e-01 2.76714414e-01 -2.82517254e-01 4.60232675e-01 1.45278022e-01 9.90025163e-01 -3.86634827e-01 7.49259531e-01 9.42365944e-01 1.54314384e-01 -9.59982872e-01 -6.27803326e-01 -5.06841958e-01 -9.55740392e-01 -4.75767821e-01 1.04221416e+00 -9.14526820e-01 -8.37048292e-01 6.77645385e-01 -1.26508188e+00 -3.03258359e-01 -1.66637525e-01 7.38159716e-01 -4.76164579e-01 1.07675314e+00 -7.80284524e-01 -5.02658844e-01 -1.36809587e-01 -1.06034207e+00 8.38955462e-01 6.22860193e-01 -2.45351598e-01 -1.18962634e+00 3.81153315e-01 -3.41099203e-01 1.62873909e-01 4.83531147e-01 8.35075080e-02 5.65992713e-01 -8.63820910e-01 2.64259875e-01 9.31150392e-02 2.27363989e-01 4.48785663e-01 6.59283042e-01 -4.59351093e-01 -4.90713954e-01 -3.73074859e-02 3.31392288e-01 9.48008299e-01 8.24176133e-01 9.70231831e-01 -1.46480858e-01 -4.90383983e-01 9.67761576e-01 1.29234076e+00 7.41682723e-02 6.80718362e-01 3.56584489e-01 8.60264838e-01 2.33128205e-01 7.75171340e-01 4.02357489e-01 6.72444478e-02 5.42042434e-01 2.76014358e-01 -1.62769601e-01 -2.31206059e-01 -3.27840507e-01 5.31278372e-01 8.05819631e-01 -1.86438411e-01 6.14213049e-02 -4.47108537e-01 6.97585940e-01 -2.27856207e+00 -1.33385503e+00 -6.39585376e-01 2.16837502e+00 6.24921441e-01 -1.51686877e-01 6.63149506e-02 -4.84545268e-02 1.13446808e+00 5.12974739e-01 -4.91842270e-01 1.43803179e-01 -3.72948259e-01 -4.28065091e-01 4.24300343e-01 9.03179824e-01 -1.29824853e+00 9.77244258e-01 6.88843107e+00 3.89557183e-01 -1.35321808e+00 -6.68537468e-02 3.10750008e-01 -1.79640040e-01 -2.25813642e-01 1.30007774e-01 -5.61827481e-01 8.52105439e-01 1.78526863e-01 -2.68260986e-01 1.29396483e-01 5.28910875e-01 9.41921771e-01 -3.02461416e-01 -6.31645620e-01 1.04441345e+00 -1.47100538e-01 -1.67858589e+00 2.73247734e-02 -2.58412719e-01 1.02921224e+00 -3.09182942e-01 -9.07489434e-02 -3.41341168e-01 1.33389637e-01 -5.21370769e-01 6.78573012e-01 7.67656803e-01 5.31908810e-01 -4.52031374e-01 1.95198923e-01 1.62885398e-01 -1.66476965e+00 1.11638382e-01 -4.64156091e-01 3.15847807e-02 8.05280447e-01 6.49136007e-01 2.89058447e-01 6.48483634e-01 6.45132065e-01 1.49336934e+00 -2.14810371e-01 1.30433297e+00 -2.91964132e-02 3.20287764e-01 -6.79781735e-02 5.75031281e-01 3.17251056e-01 -6.33633733e-01 7.97552645e-01 1.10847509e+00 4.54056203e-01 3.22056532e-01 4.05421942e-01 5.26593447e-01 2.18726501e-01 -7.28259757e-02 -4.80157018e-01 5.77612817e-01 4.71001118e-01 1.18968868e+00 -4.82811630e-01 -5.21116734e-01 -5.65885484e-01 1.23424780e+00 -1.04979672e-01 6.87127948e-01 -8.93480122e-01 -2.37135768e-01 1.17495906e+00 2.25631356e-01 2.54585892e-01 -5.78311801e-01 1.70214161e-01 -1.77494311e+00 8.97065178e-02 -1.66078091e-01 3.04307252e-01 -8.90010118e-01 -1.07304525e+00 5.55842936e-01 -1.65778995e-01 -1.83415842e+00 4.39134724e-02 -7.18869194e-02 -1.00107348e+00 8.29324543e-01 -1.65591967e+00 -5.69483638e-01 -6.11814439e-01 1.12494576e+00 5.71922779e-01 2.93436646e-01 1.39612466e-01 1.79171905e-01 -8.15156162e-01 8.59095156e-02 2.41868809e-01 2.12506995e-01 9.30049419e-01 -7.37960935e-01 2.09222198e-01 1.28713369e+00 -2.52841204e-01 7.61731863e-01 5.92651069e-01 -8.06943893e-01 -1.22366214e+00 -1.34992969e+00 6.85240865e-01 -1.63780391e-01 6.59418106e-01 2.44114637e-01 -1.42593896e+00 6.83132470e-01 3.99361014e-01 6.15394831e-01 1.39924452e-01 -7.78631747e-01 1.78028345e-01 7.23535344e-02 -9.60235775e-01 5.68524778e-01 1.24812555e+00 -1.86662018e-01 -4.53050762e-01 4.67266217e-02 6.92178190e-01 -6.49686873e-01 -7.75281250e-01 2.36700282e-01 2.81622261e-01 -9.10080969e-01 9.32059765e-01 -5.37267208e-01 2.73943454e-01 -1.10927069e+00 2.39881933e-01 -1.16889453e+00 -7.01185882e-01 -1.35969579e+00 -4.67983931e-01 1.23911572e+00 -3.85089427e-01 -2.13280052e-01 7.61001587e-01 4.60393012e-01 -1.41508654e-01 -4.35511500e-01 -7.22461045e-01 -9.17400181e-01 -1.14086613e-01 4.58200313e-02 4.48421866e-01 1.17771256e+00 6.02557836e-03 -2.59549826e-01 -4.24106807e-01 3.11952949e-01 6.96795404e-01 9.12241172e-03 7.98764348e-01 -9.62500453e-01 1.31893262e-01 -3.33531827e-01 -4.40136045e-01 -1.57286787e+00 4.36106592e-01 -3.74725670e-01 5.89965731e-02 -1.35562265e+00 -3.23318169e-02 -1.55935828e-02 -1.02438115e-01 3.26740295e-02 -5.90543091e-01 3.50262746e-02 3.06251884e-01 7.42444694e-01 -4.61843610e-01 6.53984547e-01 1.67807353e+00 3.79222743e-02 -5.04561067e-01 -2.32251391e-01 7.62273818e-02 9.47247088e-01 4.53263551e-01 -9.76042300e-02 -3.91347528e-01 -6.81686878e-01 -4.96005058e-01 2.89402753e-01 2.52853841e-01 -9.87135828e-01 2.40964800e-01 -8.06927562e-01 3.14252615e-01 -5.04093051e-01 3.35302092e-02 -6.61759496e-01 2.88954079e-01 5.64519465e-01 -1.19395636e-01 3.15311193e-01 -2.50280816e-02 6.56034410e-01 -4.52482909e-01 2.02813577e-02 9.06269431e-01 -4.23871167e-02 -1.07395804e+00 6.88446224e-01 -4.88320768e-01 -1.13258705e-01 1.35136938e+00 -4.32205826e-01 -1.19181380e-01 -2.74562657e-01 -9.50204611e-01 5.13169944e-01 8.75726461e-01 3.85764539e-01 6.87764287e-01 -1.67382669e+00 -5.98413765e-01 3.73130709e-01 -3.12389374e-01 2.19740540e-01 4.81278270e-01 9.46592093e-01 -8.72343838e-01 -7.59266242e-02 -2.31118172e-01 -8.79500210e-01 -1.33156598e+00 8.01007032e-01 5.80189109e-01 1.86428592e-01 -9.59384263e-01 6.64236665e-01 4.30192173e-01 3.93259943e-01 9.39617530e-02 -4.66498196e-01 -2.06339329e-01 -1.70914859e-01 1.01650739e+00 5.47706783e-01 -4.47686166e-01 -8.79420757e-01 -4.13023889e-01 9.54555869e-01 3.72983187e-01 -2.80924160e-02 8.75354111e-01 -7.72551358e-01 -3.26580584e-01 2.94044495e-01 1.13527441e+00 1.74011096e-01 -2.14948654e+00 -1.06781319e-01 -2.79679120e-01 -1.13112974e+00 -9.01530385e-02 3.04406673e-01 -1.63737047e+00 4.19591665e-01 2.66814560e-01 1.33978069e-01 1.13220751e+00 -3.74035388e-01 1.05778265e+00 -5.41420057e-02 7.79490396e-02 -7.70002663e-01 -1.52513199e-02 7.24872947e-01 6.28902853e-01 -8.94725621e-01 7.86031261e-02 -7.16672361e-01 -5.23463845e-01 1.30023146e+00 6.96277082e-01 -4.66359496e-01 8.16479802e-01 1.41575590e-01 1.55063555e-01 3.37111712e-01 -5.87369561e-01 -9.42684785e-02 -4.59557623e-02 5.94171703e-01 4.42706168e-01 -4.10220563e-01 -5.03889501e-01 5.69444820e-02 5.82652569e-01 4.25742358e-01 8.33136976e-01 1.09304321e+00 -4.09506053e-01 -9.12036479e-01 -6.39999807e-01 -2.38772735e-01 -2.02299416e-01 2.69111902e-01 1.17243595e-01 3.66731614e-01 6.59875199e-02 9.73349333e-01 3.83909941e-01 -2.08138287e-01 3.35889816e-01 -2.75367469e-01 3.02382618e-01 -2.89885342e-01 -3.76190752e-01 4.18360978e-01 -4.66425121e-01 -9.50813234e-01 -8.42706740e-01 -8.33451331e-01 -1.51422298e+00 -6.39130533e-01 -1.62504777e-01 4.29056399e-02 -1.44683808e-01 5.71610868e-01 4.70058262e-01 3.60085398e-01 8.49315047e-01 -1.01189613e+00 2.50401720e-02 -5.82817137e-01 -5.62423527e-01 7.13924348e-01 8.80054057e-01 -6.79492950e-01 -2.22114280e-01 8.38094950e-01]
[10.650837898254395, -1.4319148063659668]
1729cb9d-9291-4086-8828-e2bbc275146c
spcl-a-new-framework-for-domain-adaptive
2111.12358
null
https://arxiv.org/abs/2111.12358v2
https://arxiv.org/pdf/2111.12358v2.pdf
SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning
Although there is significant progress in supervised semantic segmentation, it remains challenging to deploy the segmentation models to unseen domains due to domain biases. Domain adaptation can help in this regard by transferring knowledge from a labeled source domain to an unlabeled target domain. Previous methods typically attempt to perform the adaptation on global features, however, the local semantic affiliations accounting for each pixel in the feature space are often ignored, resulting in less discriminability. To solve this issue, we propose a novel semantic prototype-based contrastive learning framework for fine-grained class alignment. Specifically, the semantic prototypes provide supervisory signals for per-pixel discriminative representation learning and each pixel of source and target domains in the feature space is required to reflect the content of the corresponding semantic prototype. In this way, our framework is able to explicitly make intra-class pixel representations closer and inter-class pixel representations further apart to improve the robustness of the segmentation model as well as alleviate the domain shift problem. Our method is easy to implement and attains superior results compared to state-of-the-art approaches, as is demonstrated with a number of experiments. The code is publicly available at https://github.com/BinhuiXie/SPCL.
['Mingjia Li', 'Shuang Li', 'Binhui Xie']
2021-11-24
null
null
null
null
['synthetic-to-real-translation']
['computer-vision']
[ 4.69526738e-01 2.96220090e-03 -5.07779717e-01 -6.71835601e-01 -7.20813632e-01 -7.31441855e-01 4.11092788e-01 1.42104402e-01 -2.61047572e-01 5.91743827e-01 -1.59937307e-01 1.34740129e-01 -9.82841775e-02 -8.25319529e-01 -5.86711764e-01 -8.27446282e-01 5.10737598e-01 5.31050503e-01 4.42318290e-01 7.97441825e-02 2.81675279e-01 3.75151038e-01 -1.39318645e+00 2.59757787e-01 1.11120093e+00 1.04267883e+00 4.42240745e-01 -4.70413687e-03 -3.19924206e-01 1.91512764e-01 -4.95300591e-01 -1.10419514e-02 2.60197431e-01 -4.21444356e-01 -9.12721872e-01 4.20014352e-01 5.64521909e-01 3.77829233e-03 -5.07300049e-02 1.47979712e+00 2.50479281e-01 1.80031314e-01 7.50295341e-01 -1.12687230e+00 -7.11521208e-01 2.77512997e-01 -6.97922885e-01 1.27840400e-01 -1.08124211e-01 -7.58106858e-02 1.06800461e+00 -8.49445045e-01 5.57453275e-01 1.16166759e+00 2.97617078e-01 5.36593139e-01 -1.25286102e+00 -7.26096511e-01 5.58405221e-01 2.91111976e-01 -1.41083622e+00 -2.55522430e-01 1.12290144e+00 -4.23640966e-01 3.46399277e-01 3.75920869e-02 5.43411791e-01 9.77364421e-01 -3.33274156e-01 1.03342128e+00 1.12871170e+00 -3.77079070e-01 3.55749369e-01 2.07182795e-01 3.49806607e-01 4.56555396e-01 2.02992886e-01 9.13497643e-04 -3.49104553e-01 8.35558549e-02 8.92208695e-01 1.16346851e-01 -1.85302094e-01 -8.97520959e-01 -1.01670039e+00 8.84705067e-01 7.72072852e-01 4.10171896e-01 -2.98421234e-01 -2.55500197e-01 1.68343171e-01 -4.77923714e-02 5.81831872e-01 2.97955394e-01 -5.47409356e-01 3.12748104e-01 -1.06306911e+00 1.44204542e-01 4.08965796e-01 8.53931725e-01 1.19255388e+00 -1.61165684e-01 -7.73071591e-03 1.07355642e+00 3.24985802e-01 3.61162007e-01 6.06517136e-01 -1.04367507e+00 3.14535558e-01 8.10895741e-01 -1.63326517e-01 -9.02265847e-01 -2.97909290e-01 -4.71637219e-01 -5.82020462e-01 1.51866972e-01 7.19338715e-01 1.32090569e-01 -1.22530460e+00 1.62981582e+00 5.56622446e-01 2.47136161e-01 6.19226955e-02 1.10292637e+00 7.24613547e-01 4.99638826e-01 2.33502135e-01 1.35517299e-01 1.31390047e+00 -1.15470827e+00 -3.18590820e-01 -7.61970401e-01 3.77034754e-01 -6.59210682e-01 1.11737430e+00 3.74702252e-02 -7.19572842e-01 -7.30527580e-01 -9.40758348e-01 -2.61399131e-02 -4.29482400e-01 2.10134298e-01 4.73530203e-01 3.98629487e-01 -6.77426100e-01 3.56996775e-01 -7.40909934e-01 -4.66463596e-01 7.77693450e-01 2.06577048e-01 -2.89335459e-01 -2.57904649e-01 -1.10701263e+00 4.86867666e-01 8.40645194e-01 -3.84298339e-02 -6.57729387e-01 -5.73042095e-01 -9.18423474e-01 4.42444831e-02 3.25155675e-01 -4.03524786e-01 1.20613575e+00 -1.50117266e+00 -1.31965101e+00 1.08430898e+00 -2.45203435e-01 -1.02068640e-01 3.04331094e-01 -2.84873843e-02 -2.72430956e-01 3.19733024e-01 4.86453682e-01 1.01194286e+00 9.92663741e-01 -1.35444176e+00 -7.62333512e-01 -5.65067708e-01 -1.01236008e-01 4.25192505e-01 -3.83105844e-01 -2.44664535e-01 -6.35977328e-01 -8.13658476e-01 5.79813659e-01 -8.83522570e-01 -2.98367232e-01 2.32067913e-01 -3.22612524e-01 -1.51868135e-01 9.70140815e-01 -4.42400247e-01 8.20863068e-01 -2.39774013e+00 2.32102685e-02 1.59772411e-01 3.29985283e-02 4.02943373e-01 -9.16731134e-02 -1.48262046e-02 -4.20736261e-02 -2.02258974e-01 -6.74381673e-01 -6.10747468e-03 -1.20668903e-01 3.12587559e-01 -2.53529072e-01 4.35138762e-01 3.48974347e-01 7.88384795e-01 -9.09715116e-01 -5.58551431e-01 3.45410943e-01 3.00529093e-01 -3.90894592e-01 1.01915330e-01 -2.89051950e-01 8.02158952e-01 -8.59107614e-01 6.87910318e-01 8.39363813e-01 -3.86252463e-01 1.70795083e-01 -7.26835430e-02 1.70691743e-01 1.32762939e-01 -1.20767581e+00 1.84313273e+00 -7.30893314e-02 4.02661949e-01 4.66332324e-02 -1.49098432e+00 1.13718021e+00 -2.48489939e-02 3.07150990e-01 -9.02747273e-01 2.50298325e-02 3.42536360e-01 -1.76510260e-01 -1.57192349e-01 3.47848892e-01 -1.53341845e-01 -2.44627669e-01 1.68269768e-01 2.91492958e-02 -1.33727878e-01 2.88778823e-02 -1.46975398e-01 4.79318440e-01 3.08028281e-01 3.89234602e-01 -3.02967131e-01 6.13887310e-01 2.73637742e-01 8.97514105e-01 4.43786263e-01 -4.47659820e-01 7.21569657e-01 1.17956817e-01 -2.03982249e-01 -7.55408764e-01 -1.20914340e+00 -3.34353745e-01 1.14136386e+00 7.51440942e-01 9.51993242e-02 -9.48926389e-01 -9.57542181e-01 9.99388844e-02 6.20831907e-01 -3.60930830e-01 -2.34378070e-01 -5.22996008e-01 -5.17302573e-01 1.79130614e-01 7.72479773e-01 8.42075288e-01 -1.02366865e+00 -3.81262749e-01 1.37763858e-01 -2.35617921e-01 -1.09501874e+00 -3.93669099e-01 2.19711155e-01 -1.15341258e+00 -9.62376058e-01 -9.63214397e-01 -1.17759955e+00 9.66375053e-01 3.94381136e-01 8.26720178e-01 -3.22824240e-01 -2.04625025e-01 1.71898827e-01 -3.77692878e-01 -1.26103804e-01 -9.12759006e-02 2.13988975e-01 -2.84156054e-01 9.48547199e-02 7.00865328e-01 -3.55177671e-01 -7.10912287e-01 5.89154363e-01 -8.86500120e-01 -7.21912086e-03 5.31313837e-01 8.76570106e-01 1.01767886e+00 -4.38108742e-02 5.80452502e-01 -1.08030355e+00 2.45835111e-01 -5.35387695e-01 -6.05907559e-01 2.08166406e-01 -4.58215594e-01 -6.65983651e-03 6.16645098e-01 -2.90925354e-01 -1.18801630e+00 3.80167872e-01 1.04274474e-01 -2.83616453e-01 -6.26888752e-01 2.95844853e-01 -4.50710475e-01 6.75090030e-02 7.06600308e-01 2.26476148e-01 -1.99551299e-01 -5.68759441e-01 5.28422296e-01 7.26268768e-01 5.73299229e-01 -7.16244578e-01 7.38298178e-01 5.84415793e-01 -3.55289966e-01 -7.03660786e-01 -9.88803923e-01 -7.34103918e-01 -9.96234715e-01 1.53757939e-02 7.74177074e-01 -9.51955676e-01 1.89784259e-01 5.36349893e-01 -8.05264235e-01 -3.54610533e-01 -3.57308447e-01 2.98629045e-01 -5.67877114e-01 4.81996864e-01 -2.87292421e-01 -3.01377237e-01 -2.13753395e-02 -1.17893982e+00 1.11430144e+00 5.58359921e-01 -2.16078416e-01 -1.12218046e+00 -1.55335769e-01 4.64786410e-01 8.50335956e-02 2.45427862e-02 8.62638354e-01 -7.02170610e-01 -5.36402166e-01 -1.40786424e-01 -5.02021730e-01 3.99832010e-01 3.08360755e-01 -2.28782430e-01 -1.07379293e+00 -3.09756696e-01 -3.81375179e-02 -2.13592872e-01 9.59367931e-01 4.64669138e-01 1.26125062e+00 1.29395336e-01 -5.61205089e-01 5.40466368e-01 1.20648408e+00 1.39553681e-01 3.64321202e-01 4.85642791e-01 6.79690599e-01 7.50445008e-01 1.09322917e+00 2.01541260e-01 3.85704458e-01 7.60093689e-01 2.52231479e-01 -4.32829142e-01 -3.33364248e-01 -3.00975263e-01 6.71262667e-02 3.29628915e-01 4.33642656e-01 -1.06262006e-02 -9.82306719e-01 7.00293362e-01 -1.91116118e+00 -5.25949061e-01 1.54717967e-01 2.03922176e+00 7.77352870e-01 6.44141436e-03 3.56240124e-02 3.76934931e-02 1.05402935e+00 1.67237625e-01 -8.69336247e-01 -4.88033742e-02 -1.32123321e-01 1.07814603e-01 4.27427590e-01 2.85209388e-01 -1.37352288e+00 1.36163306e+00 5.52333403e+00 9.47954953e-01 -1.28519714e+00 -8.19753483e-03 6.31928861e-01 3.31701100e-01 -9.17443261e-02 -1.22315921e-02 -7.93231487e-01 5.36874115e-01 3.72850001e-01 1.47677716e-02 1.37106776e-01 1.05018544e+00 -4.43771034e-02 -1.28923625e-01 -1.02848232e+00 8.62878621e-01 -4.62339260e-02 -9.63494837e-01 7.52887651e-02 -1.04101531e-01 8.43603551e-01 -7.28185996e-02 1.73705131e-01 1.44016683e-01 1.38634592e-01 -7.94378340e-01 6.93969548e-01 9.20379087e-02 6.94274783e-01 -6.07228577e-01 3.95919889e-01 3.83667260e-01 -1.21027172e+00 -3.64481024e-02 -5.31043470e-01 8.35305825e-02 -7.07331300e-02 5.99056482e-01 -7.24493921e-01 4.68684405e-01 6.68394029e-01 8.63733947e-01 -4.81971830e-01 1.02977633e+00 -4.92525667e-01 4.87827241e-01 -1.25316516e-01 3.98141593e-01 4.11532611e-01 -2.17752308e-01 3.55284631e-01 1.02305949e+00 1.82252198e-01 -1.26799151e-01 5.14608502e-01 9.26839411e-01 -6.99689388e-02 9.40520093e-02 -3.25785100e-01 4.86590713e-02 6.33690894e-01 1.16870606e+00 -9.73579168e-01 -3.88346285e-01 -3.68678123e-01 1.11961162e+00 3.73692900e-01 6.76766574e-01 -7.06660986e-01 -3.12177867e-01 7.97164083e-01 2.95654908e-02 5.67244232e-01 -1.58831060e-01 -5.43719053e-01 -1.16893673e+00 9.49806124e-02 -6.65516078e-01 6.01018012e-01 -4.39055800e-01 -1.38093805e+00 3.82496238e-01 -1.57511625e-02 -1.33940887e+00 -1.10110819e-01 -6.42679036e-01 -4.43163484e-01 8.54111075e-01 -1.87460506e+00 -1.15862620e+00 -4.65086102e-01 6.77939892e-01 6.51646256e-01 -5.59408665e-02 7.51873255e-01 2.78316170e-01 -4.68108684e-01 6.53383076e-01 3.15914959e-01 2.37531573e-01 8.88921857e-01 -1.07016456e+00 2.19445542e-01 8.48230302e-01 1.80156767e-01 4.02081341e-01 4.17340428e-01 -5.31248569e-01 -6.44602358e-01 -1.21257269e+00 4.88719881e-01 -1.60338014e-01 5.09028494e-01 -1.72201782e-01 -1.16271544e+00 5.81779361e-01 -2.52357125e-01 2.57581860e-01 7.34295905e-01 -6.69061672e-03 -5.25897861e-01 -1.93551525e-01 -1.25728166e+00 3.60026509e-01 9.39139009e-01 -5.21389008e-01 -6.79469228e-01 1.53647974e-01 3.57197315e-01 -3.32883030e-01 -6.38898313e-01 3.65279853e-01 3.04480553e-01 -7.67205775e-01 9.35533345e-01 -2.33698562e-01 2.29319721e-01 -6.10195339e-01 -1.42454401e-01 -1.29796505e+00 -4.16383386e-01 1.45145282e-01 2.41336361e-01 1.29547906e+00 3.77337784e-01 -7.36285329e-01 1.01633680e+00 4.64894205e-01 -1.54680684e-01 -4.23096120e-01 -9.06376183e-01 -8.33830118e-01 3.04562688e-01 -2.72966832e-01 4.91866887e-01 1.05487573e+00 -2.69985259e-01 3.15058649e-01 5.92791252e-02 3.68461460e-01 7.12572098e-01 6.51712954e-01 5.30806243e-01 -1.39474964e+00 -1.59492001e-01 -5.14460504e-01 -4.76245701e-01 -1.34252632e+00 4.02564019e-01 -1.10101247e+00 1.93208694e-01 -1.55389988e+00 2.20159739e-01 -7.46993303e-01 -5.40493190e-01 6.49623513e-01 -3.17787558e-01 3.56500983e-01 1.72286704e-01 4.38124985e-01 -5.75687945e-01 4.86570418e-01 1.40620065e+00 -2.94152707e-01 -1.78953290e-01 2.41446178e-02 -8.82442713e-01 8.07272732e-01 1.00520313e+00 -5.02713919e-01 -4.85155106e-01 -4.83158678e-01 -5.61174154e-01 -3.73426139e-01 3.99568319e-01 -9.67826307e-01 1.29460365e-01 -1.60210431e-01 5.75001001e-01 -3.25358927e-01 2.24358886e-01 -8.50587547e-01 -1.69547051e-01 2.49453932e-01 -2.31396005e-01 -7.53411055e-01 2.11521119e-01 5.54328203e-01 -5.58801830e-01 -2.96846062e-01 1.18340933e+00 -1.18188567e-01 -1.35448456e+00 2.58876890e-01 -5.47021665e-02 1.72855020e-01 1.16054809e+00 -5.96589744e-01 -2.97822297e-01 6.83423728e-02 -6.69517756e-01 3.34441841e-01 8.42549384e-01 4.25958455e-01 4.52463269e-01 -1.20034409e+00 -3.68600428e-01 4.32479829e-01 4.59066421e-01 3.17453444e-01 3.95961702e-01 5.70303619e-01 -2.68169910e-01 2.99199194e-01 -4.26574141e-01 -8.98214579e-01 -1.12454104e+00 5.03953338e-01 3.34763199e-01 6.74100651e-04 -5.42929351e-01 9.40952420e-01 8.44078422e-01 -5.93510091e-01 1.60104468e-01 -1.07772246e-01 -2.06234649e-01 1.01891331e-01 2.87160188e-01 1.72677726e-01 -1.25872746e-01 -7.81051397e-01 -4.26610142e-01 1.00208879e+00 -2.65064865e-01 2.15510517e-01 1.03234005e+00 -3.34993094e-01 1.00200929e-01 2.67151713e-01 1.21849597e+00 -3.08236718e-01 -1.62868357e+00 -6.33412778e-01 1.56431645e-01 -5.20115256e-01 1.37576845e-03 -8.23312461e-01 -1.19060266e+00 9.76446331e-01 8.02199721e-01 -1.62495479e-01 1.32003725e+00 3.49283159e-01 7.33654499e-01 1.04852788e-01 2.78881937e-01 -1.25856245e+00 1.19144067e-01 4.04622793e-01 4.01799917e-01 -1.49661410e+00 -1.57135040e-01 -7.34456122e-01 -8.86849165e-01 9.95764315e-01 6.29169822e-01 -2.18099758e-01 4.33902234e-01 -2.15024948e-01 3.74400765e-01 -1.29157037e-01 -1.47695309e-02 -3.07126641e-01 4.48698014e-01 7.17330933e-01 3.26493979e-01 2.39993602e-01 -2.66238526e-02 5.02448738e-01 8.58507827e-02 -1.57997310e-01 1.38013186e-02 8.74616146e-01 -6.11287594e-01 -1.32664883e+00 -3.44150782e-01 1.10222273e-01 -2.01390341e-01 4.80217226e-02 -4.18197215e-01 7.16034174e-01 1.06544338e-01 8.37140381e-01 1.40813857e-01 -3.45589742e-02 3.02369893e-01 3.45329531e-02 3.04380238e-01 -8.00313294e-01 -1.64687738e-01 2.89234161e-01 -2.53954351e-01 -4.85617608e-01 -5.18550515e-01 -6.62396967e-01 -1.57841635e+00 2.13823035e-01 -1.66313469e-01 9.94298309e-02 4.13199455e-01 8.50470662e-01 3.64634246e-01 3.90037090e-01 5.26159406e-01 -7.72566557e-01 -4.14156705e-01 -6.08885646e-01 -6.77724481e-01 5.23767471e-01 1.33087307e-01 -9.01863337e-01 -1.35291353e-01 7.32966214e-02]
[9.676398277282715, 1.306711196899414]
5251eeaf-ff48-49ce-9ec2-4103c79b9bba
graph-boosted-active-learning-for-multi
null
null
https://link.springer.com/chapter/10.1007%2F978-3-030-88361-4_11
https://link.springer.com/content/pdf/10.1007%2F978-3-030-88361-4_11.pdf
Graph-boosted Active Learning for Multi-Source Entity Resolution
Supervised entity resolution methods rely on labeled record pairs for learning matching patterns between two or more data sources. Active learning minimizes the labeling effort by selecting informative pairs for labeling. The existing active learning methods for entity resolution all target two-source matching scenarios and ignore signals that only exist in multi-source settings, such as the Web of Data. In this paper, we propose ALMSER, a graph-boosted active learning method for multi-source entity resolution. To the best of our knowledge, ALMSER is the first active learning-based entity resolution method that is especially tailored to the multi-source setting. ALMSER exploits the rich correspondence graph that exists in multi-source settings for selecting informative record pairs. In addition, the correspondence graph is used to derive complementary training data. We evaluate our method using five multi-source matching tasks having different profiling characteristics. The experimental evaluation shows that leveraging graph signals leads to improved results over active learning methods using margin-based and committee-based query strategies in terms of F1 score on all tasks.
['Christian Bizer', 'Anna Primpeli']
2021-09-30
null
null
null
international-semantic-web-conference-2021-9
['entity-resolution']
['natural-language-processing']
[ 2.02749759e-01 6.67397499e-01 -1.27816129e+00 -5.03972590e-01 -1.69985485e+00 -4.74112362e-01 6.02639139e-01 9.76734042e-01 -3.79807204e-01 8.70121419e-01 3.30525666e-01 1.27089605e-01 -5.19812286e-01 -8.24465275e-01 -8.78242671e-01 -9.06962156e-02 -2.48852074e-01 8.15737307e-01 4.45930004e-01 -1.56939045e-01 3.78115475e-02 2.50523806e-01 -1.04367721e+00 4.51385647e-01 1.10156882e+00 6.63641572e-01 -2.23687142e-01 1.35904297e-01 -5.60899138e-01 1.07349539e+00 -4.22005445e-01 -8.36808205e-01 3.01866710e-01 -1.26267344e-01 -9.20728505e-01 -4.89371896e-01 7.62445748e-01 2.17815027e-01 -1.08171061e-01 6.63359821e-01 5.91284096e-01 2.55335942e-02 4.44442600e-01 -1.29089367e+00 -4.89445210e-01 1.31448960e+00 -5.78063309e-01 3.65728885e-01 7.33152628e-01 -4.14295614e-01 1.67087030e+00 -1.10657847e+00 9.60404932e-01 9.60306525e-01 8.24052811e-01 3.19915235e-01 -1.50672019e+00 -7.79824317e-01 3.56805086e-01 3.01453412e-01 -1.41947341e+00 -9.50073600e-01 8.13778877e-01 -2.38224626e-01 8.98434281e-01 4.14469689e-01 1.06155358e-01 1.02366590e+00 -3.82103980e-01 1.11190486e+00 5.66177607e-01 -8.32968652e-01 2.56357700e-01 4.26986009e-01 4.53963637e-01 7.46173680e-01 8.15210998e-01 -1.17619351e-01 -1.22411108e+00 -8.13262999e-01 1.75996989e-01 -1.65461972e-01 -9.56681669e-02 -8.02848399e-01 -1.01526546e+00 8.10460925e-01 3.22907418e-01 2.62961954e-01 -3.96395892e-01 -1.39110819e-01 1.91979650e-02 3.04528534e-01 6.66110873e-01 8.50243032e-01 -5.70110738e-01 4.04938757e-01 -1.08889401e+00 -7.26110488e-02 1.17066169e+00 1.39599657e+00 1.10451365e+00 -5.16218424e-01 -3.34926188e-01 9.16322231e-01 5.56894124e-01 2.29561538e-01 -5.40191829e-02 -7.05577731e-01 1.04378927e+00 1.23184907e+00 1.23995349e-01 -8.93585920e-01 -4.40383554e-01 -3.78266305e-01 -2.80191749e-01 -2.55213648e-01 3.22056741e-01 -1.69880956e-01 -3.93795639e-01 1.69631314e+00 5.44197083e-01 3.46631482e-02 5.94367459e-02 4.60507244e-01 1.30383801e+00 1.01221427e-01 3.46330851e-01 -5.27517617e-01 9.94571865e-01 -8.40964735e-01 -8.07200134e-01 -3.72971117e-01 7.56207943e-01 -5.28103232e-01 5.19926488e-01 -1.62673309e-01 -8.18391204e-01 -7.02705011e-02 -1.13419294e+00 1.34161830e-01 -4.92785066e-01 4.12033778e-03 9.68591511e-01 5.48717678e-01 -6.27675533e-01 3.51768792e-01 -6.92624807e-01 -4.09499526e-01 5.86139679e-01 3.27580839e-01 -4.48218584e-01 3.59414704e-02 -1.54730678e+00 7.93941498e-01 3.82689059e-01 -5.11199296e-01 -1.99702591e-01 -1.19338727e+00 -9.28855062e-01 1.80604115e-01 9.61065531e-01 -5.90742350e-01 9.77748752e-01 -6.93418384e-01 -6.74004197e-01 9.84734893e-01 -2.28258505e-01 -5.87271094e-01 4.86208826e-01 -1.41695321e-01 -7.04984128e-01 -5.46490736e-02 3.92763644e-01 2.31068701e-01 3.56173962e-01 -1.26561606e+00 -5.93146026e-01 -3.35696012e-01 1.15585268e-01 1.49455398e-01 -3.36389452e-01 -9.49706789e-03 -6.64296210e-01 -4.87197816e-01 -8.25491827e-03 -7.31959581e-01 -1.47011518e-01 -1.34812623e-01 -4.68632013e-01 -5.85337579e-01 3.63375962e-01 -2.83341795e-01 1.56364167e+00 -1.67774427e+00 -1.26560986e-01 3.96231592e-01 4.78807628e-01 1.63477883e-01 1.38872176e-01 8.17161083e-01 7.20760301e-02 1.34359464e-01 -1.31180780e-02 -6.53418183e-01 1.27148122e-01 -1.36061355e-01 -2.41998255e-01 2.75034130e-01 1.12183496e-01 1.10996664e+00 -9.89832819e-01 -1.13666761e+00 -3.93507153e-01 2.85668788e-03 -1.15043081e-01 2.61514246e-01 -2.15417817e-01 -3.75532694e-02 -4.63116080e-01 8.83676887e-01 3.74771059e-01 -6.25018716e-01 5.65232098e-01 -1.41290292e-01 1.14724152e-01 3.37600291e-01 -1.30250371e+00 1.95106483e+00 -3.31661463e-01 3.85700107e-01 -4.47983220e-02 -7.85112262e-01 9.98068631e-01 3.58505934e-01 7.76550233e-01 -8.55506361e-01 -5.03549874e-01 3.89145494e-01 -4.07256573e-01 -3.95748705e-01 5.18474162e-01 6.12834513e-01 -3.12023610e-01 5.40109634e-01 2.95137733e-01 7.38989234e-01 4.97561663e-01 7.93563902e-01 1.25345981e+00 -4.24664803e-02 6.96721733e-01 -1.17418863e-01 3.75004858e-01 1.37466952e-01 9.79177117e-01 1.17983937e+00 7.63187930e-02 2.97793150e-01 1.86941087e-01 7.19102025e-02 -5.79032779e-01 -9.25529301e-01 -7.02638999e-02 1.43581676e+00 3.56954157e-01 -8.09975922e-01 -2.70736307e-01 -1.06287241e+00 3.58708262e-01 5.33082485e-01 -5.03279865e-01 1.00185946e-02 -7.05634773e-01 -8.62303257e-01 5.21328628e-01 3.96396071e-01 1.20585598e-01 -7.98721910e-01 3.33970599e-02 2.54570782e-01 -2.42843524e-01 -9.81889606e-01 -3.41521204e-01 1.46175444e-01 -6.43512249e-01 -1.45398784e+00 -2.42641076e-01 -6.14606380e-01 4.06232834e-01 -6.99292943e-02 1.59558749e+00 -6.83359150e-03 -2.50642598e-01 6.75451577e-01 -3.39277208e-01 -6.03264630e-01 -1.78350732e-01 7.64313579e-01 -3.28272223e-01 6.30280599e-02 7.31696308e-01 -3.72969657e-01 -3.24102640e-01 2.16618463e-01 -4.26639169e-01 -2.02699408e-01 7.09639907e-01 5.12882233e-01 6.79758430e-01 -4.20844734e-01 1.03606761e+00 -1.85720181e+00 4.58824992e-01 -1.03457355e+00 -6.34894371e-01 9.77189958e-01 -1.37097239e+00 2.84025639e-01 2.11508989e-01 -3.65252435e-01 -1.24734867e+00 2.87367582e-01 3.96596700e-01 1.44651100e-01 1.51774749e-01 5.64057946e-01 -3.69642526e-01 -7.58929476e-02 1.16732895e+00 -4.39624548e-01 -6.71917975e-01 -6.27199292e-01 3.34882528e-01 5.11207819e-01 3.79064351e-01 -4.97731090e-01 9.96446788e-01 2.77320713e-01 -1.32765114e-01 -2.00833172e-01 -1.01580286e+00 -9.99508858e-01 -8.07830811e-01 -6.22715652e-02 3.59522223e-01 -1.15621901e+00 -3.00963998e-01 2.21745856e-03 -8.25254440e-01 6.27416447e-02 -3.14369887e-01 4.45247799e-01 -2.64279217e-01 1.47264600e-01 -3.58952314e-01 -8.15752268e-01 -6.06564283e-01 -4.80755240e-01 8.71229351e-01 2.79149443e-01 -4.07954961e-01 -1.18057251e+00 5.33896983e-01 6.57790363e-01 4.29592162e-01 3.16118926e-01 6.65299416e-01 -1.33861160e+00 -9.61059153e-01 -3.52424413e-01 5.95450141e-02 -8.40597093e-01 1.98248148e-01 -4.82210189e-01 -8.94550323e-01 -2.66742051e-01 -7.49819398e-01 -4.30156589e-01 9.22466576e-01 -2.02457368e-01 4.20601994e-01 -4.98548985e-01 -8.19953144e-01 3.57458562e-01 1.44544578e+00 4.15898003e-02 2.90180504e-01 4.62945700e-01 7.44694769e-01 5.82768798e-01 8.92485917e-01 2.37305343e-01 6.26522303e-01 1.05124927e+00 4.66640890e-02 -5.04481733e-01 -2.31785625e-01 -5.74366033e-01 -4.47384901e-02 4.25832868e-01 3.20527554e-01 -3.72614771e-01 -1.05243123e+00 6.49087131e-01 -2.29002166e+00 -1.01329529e+00 -1.32698178e-01 2.31094623e+00 1.35690236e+00 1.98377505e-01 7.73587599e-02 -6.14634268e-02 9.33164597e-01 2.01645374e-01 -7.55478680e-01 3.51374418e-01 -3.18302065e-01 1.04570538e-01 6.93678319e-01 4.94637221e-01 -1.24720275e+00 6.28845513e-01 5.45750475e+00 7.09379077e-01 -6.08034432e-01 2.55892694e-01 1.35597020e-01 -9.66108441e-02 -3.94283324e-01 3.71309102e-01 -1.27319252e+00 3.44686866e-01 7.36023784e-01 -4.12766069e-01 -5.42234071e-02 9.16718125e-01 -4.85826731e-01 8.23187679e-02 -1.48905337e+00 8.62672925e-01 5.85056357e-02 -1.64461970e+00 -1.93493009e-01 -3.19081731e-02 7.52424359e-01 9.46345255e-02 -4.30832744e-01 3.55208635e-01 6.54086232e-01 -7.46911287e-01 5.05718052e-01 7.72625685e-01 6.57078266e-01 -4.34186071e-01 5.55109441e-01 4.31755543e-01 -1.31583941e+00 7.08377287e-02 4.65892284e-04 6.50042117e-01 1.14713855e-01 6.87649429e-01 -1.18063426e+00 8.97591770e-01 4.54656392e-01 5.91793060e-01 -8.97190571e-01 1.21250927e+00 -3.74780856e-02 7.63051331e-01 -2.69508183e-01 1.38332874e-01 -4.96896982e-01 3.35490227e-01 6.32634699e-01 1.47919154e+00 -2.61117965e-01 -8.58244225e-02 3.31292689e-01 7.82735765e-01 -6.14400387e-01 4.35389549e-01 -5.55907786e-01 -4.50379625e-02 1.19874656e+00 1.30358887e+00 -3.90151620e-01 -1.77751288e-01 -6.33105755e-01 4.70362693e-01 7.51618266e-01 3.33723187e-01 -4.26000327e-01 -4.58095938e-01 5.41398674e-03 3.71621847e-01 -1.30606731e-02 1.86140314e-01 -2.09003195e-01 -1.36476576e+00 1.10684624e-02 -5.99075913e-01 1.14081597e+00 -2.36021593e-01 -1.44441700e+00 1.99319050e-01 2.96960324e-01 -9.79911149e-01 -4.47821498e-01 2.26353928e-01 -4.54827487e-01 6.17709458e-01 -1.60547042e+00 -1.30012167e+00 -3.01665485e-01 5.24826527e-01 2.81469643e-01 -5.54006577e-01 9.06454265e-01 7.45972693e-01 -6.03907406e-01 1.28640473e+00 -4.00244346e-04 7.12338448e-01 1.20072448e+00 -1.50133133e+00 4.94281381e-01 9.34608519e-01 7.08736658e-01 9.34450388e-01 3.30402434e-01 -7.75542915e-01 -1.42495680e+00 -1.01601911e+00 1.40630174e+00 -6.96640611e-01 4.53810692e-01 -7.19891250e-01 -1.11153233e+00 8.42742205e-01 6.70351982e-02 1.36256903e-01 1.17536509e+00 8.02119315e-01 -7.74077296e-01 -3.33237708e-01 -1.21907032e+00 2.09429637e-01 1.34991384e+00 -6.02082014e-01 -6.39647603e-01 3.12198341e-01 6.60915613e-01 -3.23478460e-01 -1.25169313e+00 6.06012166e-01 2.54095793e-01 -4.75508600e-01 1.13412273e+00 -8.04666877e-01 -8.69188458e-02 -1.33958146e-01 -2.19139308e-02 -9.11063492e-01 -4.55503076e-01 -7.36685932e-01 -7.41461694e-01 1.95699346e+00 1.24929464e+00 -6.57086611e-01 9.14515793e-01 8.67531478e-01 1.52404219e-01 -5.07370532e-01 -7.80923784e-01 -4.94432539e-01 -3.85872245e-01 1.01313978e-01 6.94819033e-01 1.48570263e+00 2.49793559e-01 6.47430122e-01 -2.13807479e-01 2.14214310e-01 1.06917048e+00 5.89851141e-01 7.96203494e-01 -1.65457428e+00 -3.76388848e-01 3.57586406e-02 -1.01760715e-01 -6.40343726e-01 3.22320223e-01 -1.18018246e+00 -3.66185576e-01 -1.56264901e+00 3.53001058e-01 -1.25100374e+00 -3.84681672e-01 6.67856336e-01 -4.11823750e-01 6.15507970e-03 -4.30662408e-02 6.21233463e-01 -1.33690631e+00 4.45168056e-02 2.27903605e-01 -3.03199708e-01 -2.98768550e-01 1.36599183e-01 -9.37719941e-01 2.56958008e-01 6.35943174e-01 -7.36230671e-01 -5.07571876e-01 -1.29563078e-01 6.04699910e-01 2.98778862e-01 -2.08096877e-01 -5.52682281e-01 9.26885307e-01 -3.36065888e-01 3.01706344e-01 -4.43853885e-01 9.15673673e-02 -6.28228366e-01 4.73039657e-01 -1.66053578e-01 -1.04226804e+00 -3.97169232e-01 -1.93749726e-01 9.11829293e-01 -1.26649216e-01 -1.69406265e-01 4.26303089e-01 -6.09463826e-02 -9.28134799e-01 4.57735628e-01 2.10596114e-01 6.89239621e-01 7.29328454e-01 4.47558984e-02 -6.95280850e-01 -1.33635879e-01 -6.50145113e-01 4.19731200e-01 3.67911875e-01 6.21375978e-01 1.35871053e-01 -1.45268047e+00 -8.54780734e-01 -2.23322153e-01 7.99093127e-01 -8.04781169e-03 -2.29083896e-01 7.30245829e-01 2.14463532e-01 4.49769437e-01 1.92852229e-01 -3.28909427e-01 -1.58263171e+00 4.28498089e-01 1.68224573e-01 -6.19794488e-01 -3.38725477e-01 6.60443783e-01 -2.19886243e-01 -4.81813371e-01 5.28695345e-01 5.56855381e-01 -6.25267088e-01 5.90160251e-01 2.92488754e-01 5.10178089e-01 5.97139716e-01 -3.45698327e-01 -6.32806480e-01 8.12821910e-02 -3.10449690e-01 1.54551402e-01 1.33435512e+00 -1.88226938e-01 1.02165364e-01 5.53178906e-01 1.02935469e+00 7.16594934e-01 -7.31325984e-01 -1.07573259e+00 9.70296681e-01 -3.84415001e-01 -2.05779687e-01 -9.69520688e-01 -1.07055998e+00 -1.56692434e-02 3.75890583e-01 1.79664403e-01 7.37083137e-01 3.29868644e-01 4.78413135e-01 5.88873982e-01 7.67845929e-01 -1.18246973e+00 -8.60158503e-02 -7.09060729e-02 4.98484999e-01 -1.65030551e+00 4.84809339e-01 -7.65996933e-01 -4.74690586e-01 6.09206200e-01 6.58553064e-01 3.29062492e-01 4.70331341e-01 3.22988957e-01 5.56583665e-02 -4.28797811e-01 -1.07368791e+00 -3.00025582e-01 6.25695169e-01 5.21769941e-01 5.39868116e-01 -3.40143703e-02 -4.78243083e-01 6.14047766e-01 2.34085709e-01 -2.70874888e-01 1.56143367e-01 1.10440254e+00 -2.72733957e-01 -1.47872019e+00 -2.08091304e-01 5.63947082e-01 -5.15747726e-01 -1.49066478e-01 -1.00149858e+00 7.26792336e-01 7.86112472e-02 1.16627228e+00 -1.26353562e-01 -5.41499350e-03 3.71130079e-01 2.30375230e-01 3.52996469e-01 -8.49252641e-01 -9.08845127e-01 -4.61706012e-01 7.92204976e-01 -5.79971015e-01 -7.51684606e-01 -7.10295320e-01 -1.18862486e+00 -1.39839798e-01 -7.64300406e-01 5.74810266e-01 2.10031822e-01 5.82947254e-01 7.44156301e-01 -8.34954605e-02 4.62544173e-01 1.32882997e-01 -2.32245788e-01 -7.29293823e-01 -3.24602216e-01 5.49369991e-01 2.89566845e-01 -7.75217950e-01 -1.79044962e-01 -1.59498349e-01]
[9.364476203918457, 8.618194580078125]
222c6d5d-a661-4132-b3da-57e70890e4a0
tyolov5-a-temporal-yolov5-detector-based-on
2111.08867
null
https://arxiv.org/abs/2111.08867v2
https://arxiv.org/pdf/2111.08867v2.pdf
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video
Timely handgun detection is a crucial problem to improve public safety; nevertheless, the effectiveness of many surveillance systems still depends of finite human attention. Much of the previous research on handgun detection is based on static image detectors, leaving aside valuable temporal information that could be used to improve object detection in videos. To improve the performance of surveillance systems, a real-time temporal handgun detection system should be built. Using Temporal Yolov5, an architecture based on Quasi-Recurrent Neural Networks, temporal information is extracted from video to improve the results of handgun detection. Moreover, two publicly available datasets are proposed, labeled with hands, guns, and phones. One containing 2199 static images to train static detectors, and another with 5960 frames of videos to train temporal modules. Additionally, we explore two temporal data augmentation techniques based on Mosaic and Mixup. The resulting systems are three temporal architectures: one focused in reducing inference with a mAP$_{50:95}$ of 55.9, another in having a good balance between inference and accuracy with a mAP$_{50:95}$ of 59, and a last one specialized in accuracy with a mAP$_{50:95}$ of 60.2. Temporal Yolov5 achieves real-time detection in the small and medium architectures. Moreover, it takes advantage of temporal features contained in videos to perform better than Yolov5 in our temporal dataset, making TYolov5 suitable for real-world applications. The source code is publicly available at https://github.com/MarioDuran/TYolov5.
['Leonardo Chang', 'Cuauhtemoc Daniel Suarez-Ramirez', 'Miguel Gonzalez-Mendoza', 'Mario Alberto Duran-Vega']
2021-11-17
null
null
null
null
['image-augmentation']
['computer-vision']
[ 1.51328044e-02 -1.40252665e-01 -1.85311139e-01 1.12077389e-02 -5.87542295e-01 -4.67692941e-01 3.23698163e-01 -2.36573160e-01 -6.14628255e-01 2.75183648e-01 -1.03427604e-01 -2.72825330e-01 3.89749222e-02 -9.35299754e-01 -8.16816568e-01 -8.11556041e-01 -1.59819156e-01 -1.26896063e-02 7.60235846e-01 -3.35913062e-01 -1.50561765e-01 3.86176795e-01 -1.45348704e+00 3.17059636e-01 4.70909774e-01 1.03210354e+00 2.69662976e-01 9.23864245e-01 4.30810273e-01 9.98847842e-01 -7.70820498e-01 -5.54573774e-01 4.08663124e-01 -3.64021689e-01 -4.82883096e-01 -1.53492033e-01 3.36922407e-01 -6.55451179e-01 -8.50697041e-01 9.76513445e-01 5.14952719e-01 1.42057523e-01 2.99854070e-01 -1.07141244e+00 -3.86450082e-01 5.81021249e-01 -5.16149223e-01 5.20093322e-01 4.04658407e-01 5.93119264e-01 5.32452345e-01 -4.72953558e-01 5.08365095e-01 1.09476423e+00 8.29492688e-01 6.72842383e-01 -8.57648790e-01 -7.93141186e-01 1.89795718e-01 4.37155098e-01 -1.34508371e+00 -3.85747552e-01 5.63327432e-01 -6.70857072e-01 8.83057773e-01 2.41588891e-01 7.80327797e-01 1.52345252e+00 1.11807380e-02 6.76366627e-01 6.14005506e-01 -2.14467764e-01 -1.12154275e-01 4.38309163e-02 1.71606854e-01 8.32402885e-01 -2.11161226e-02 2.96680510e-01 -3.41025174e-01 1.89283043e-01 9.06478226e-01 3.52868676e-01 -1.24160416e-01 1.60039201e-01 -9.89911795e-01 9.25135314e-01 4.21843082e-01 4.94448990e-01 -2.94697613e-01 2.98264802e-01 5.19291043e-01 2.18444958e-01 2.45817870e-01 2.46975884e-01 -2.32765242e-01 -1.63485423e-01 -8.32862139e-01 1.01952672e-01 2.28977978e-01 9.85136807e-01 4.51573193e-01 2.94989258e-01 -6.07815683e-01 5.89444637e-01 -1.53806016e-01 8.78417313e-01 2.00330958e-01 -8.83910656e-01 5.08087337e-01 7.13271976e-01 -7.56521448e-02 -1.04798949e+00 -5.74194789e-01 -1.52628988e-01 -7.49500573e-01 1.03381812e-03 5.25964439e-01 -3.31407130e-01 -9.57686067e-01 1.64316869e+00 9.82778370e-02 1.01190388e-01 -1.64579630e-01 8.67362261e-01 8.48912418e-01 8.33646417e-01 -4.88180034e-02 -1.34228438e-01 1.60342121e+00 -8.24822009e-01 -5.24605155e-01 -1.02441251e-01 5.27104497e-01 -5.37374079e-01 7.66446888e-01 2.73411930e-01 -7.34559119e-01 -5.31693697e-01 -7.16287553e-01 1.48876727e-01 -3.39421332e-01 4.40949142e-01 3.39856893e-01 7.10881352e-01 -9.67827082e-01 3.04408967e-01 -1.08296168e+00 -3.54007006e-01 1.87879503e-01 2.66097128e-01 -2.59827316e-01 -4.00758535e-02 -1.29016829e+00 8.59890878e-01 3.99355888e-01 3.22949111e-01 -1.10128677e+00 -1.97034642e-01 -1.01082385e+00 -1.83291957e-01 8.02987695e-01 -2.24215508e-01 1.18181682e+00 -5.54237783e-01 -1.15855718e+00 6.05173230e-01 -1.09769002e-01 -6.97979748e-01 7.28198528e-01 -1.12502664e-01 -3.30204725e-01 3.64976108e-01 6.72547817e-02 4.99691397e-01 9.93651032e-01 -6.58456504e-01 -6.83030367e-01 -3.39375734e-01 3.26204419e-01 -2.06065178e-01 -4.55958933e-01 3.66173148e-01 -9.23050761e-01 -6.92027748e-01 -5.27206600e-01 -1.17745781e+00 -4.98009026e-02 -2.56655037e-01 -3.18973392e-01 -2.82403827e-01 9.63176310e-01 -1.20266879e+00 1.31611454e+00 -2.06698370e+00 9.91793200e-02 -1.15375914e-01 3.90397981e-02 6.34207249e-01 -8.10374394e-02 3.46481562e-01 1.30002826e-01 -2.22752199e-01 -1.19875878e-01 -1.39863625e-01 -3.91395718e-01 -5.97878657e-02 9.31868237e-03 3.03975701e-01 3.15223336e-01 6.91283226e-01 -9.09693241e-01 -4.71659034e-01 4.39209640e-01 6.65494561e-01 -5.34962118e-01 2.29040742e-01 -1.79550737e-01 4.01803046e-01 -3.87076586e-01 8.04787278e-01 3.50932389e-01 -2.21288502e-02 7.74609596e-02 -1.17109664e-01 -4.31581885e-01 -2.88387805e-01 -8.96511495e-01 1.42708933e+00 -9.53699648e-02 7.40468264e-01 -2.69572139e-02 -8.16993475e-01 7.11601853e-01 5.96693277e-01 6.91387832e-01 -7.63643682e-01 5.63403666e-01 -2.88974464e-01 -1.59953177e-01 -7.43153512e-01 5.79360306e-01 3.17056000e-01 -7.95477331e-02 8.51776749e-02 5.26565909e-02 3.02772909e-01 7.42677510e-01 2.21613556e-01 1.38364959e+00 -5.78842275e-02 -2.06206426e-01 1.31174877e-01 2.90116280e-01 6.13209195e-02 6.33608758e-01 8.51813734e-01 -1.92968890e-01 4.95785236e-01 5.84139407e-01 -4.76008415e-01 -1.01128733e+00 -7.52095222e-01 9.57387462e-02 1.08924782e+00 7.48266056e-02 -3.42948556e-01 -1.00875163e+00 -6.43646717e-01 -2.90015608e-01 4.38385814e-01 -8.23669255e-01 -3.52673501e-01 -8.20091367e-01 -7.77727067e-01 8.31398964e-01 8.14862788e-01 7.04317451e-01 -1.30145359e+00 -1.08225620e+00 1.31280512e-01 -4.63595390e-01 -1.17650509e+00 -5.43347299e-01 -4.48485576e-02 -4.20514494e-01 -1.39190114e+00 -8.56925726e-01 -4.30162579e-01 3.19055766e-01 3.87137234e-01 6.50698125e-01 -4.16833498e-02 -6.76561773e-01 3.13652426e-01 -6.59133136e-01 -4.19099480e-01 -2.72280812e-01 1.38859913e-01 1.45527020e-01 -2.03654706e-01 3.83534819e-01 -8.88845623e-02 -4.04701948e-01 4.30487216e-01 -8.81408870e-01 -1.69457197e-02 4.98325557e-01 7.28766024e-01 -7.15694670e-03 -3.56761403e-02 2.88685530e-01 -3.82984012e-01 1.55817270e-01 -3.02235603e-01 -8.52560699e-01 1.88665375e-01 -6.66937307e-02 -2.08864570e-01 5.55808127e-01 -6.58403397e-01 -8.26347053e-01 1.19950958e-01 -4.53267574e-01 -8.74472380e-01 1.41891241e-01 2.99619604e-02 1.62846908e-01 3.00753176e-01 6.56063080e-01 3.18951190e-01 2.83790454e-02 -4.19736385e-01 -5.87784871e-03 3.96252871e-01 6.40801430e-01 -1.12208188e-01 5.60355067e-01 3.53315622e-01 -4.68426377e-01 -1.03561819e+00 -6.73407555e-01 -4.75665510e-01 -4.82857138e-01 -4.02767628e-01 1.20211112e+00 -8.39072227e-01 -9.36315536e-01 7.33016431e-01 -1.02934039e+00 -3.86629164e-01 6.13576025e-02 5.54081321e-01 -2.20645651e-01 2.40745917e-01 -8.36716831e-01 -1.05125713e+00 -4.39820588e-01 -1.24677455e+00 1.02196693e+00 1.83982775e-01 1.11906692e-01 -5.07132590e-01 -1.20934784e-01 3.66542429e-01 2.83497125e-01 2.98150331e-01 3.28096926e-01 -3.55821729e-01 -5.13416886e-01 -4.66896296e-01 -3.28402311e-01 3.75212461e-01 1.01199239e-01 1.17692746e-01 -1.02066839e+00 -5.28597414e-01 -2.17528075e-01 -4.49547172e-02 1.17561579e+00 6.07403040e-01 9.34131444e-01 -2.98291206e-01 -4.41565663e-01 4.44069237e-01 1.02798927e+00 7.79709816e-01 6.45022273e-01 3.21805418e-01 6.67076409e-01 3.50629300e-01 6.29534066e-01 5.51252484e-01 3.28740090e-01 9.07396376e-01 5.52447975e-01 -1.32830203e-01 -1.31054834e-01 -4.94328439e-02 5.75419426e-01 4.43841398e-01 -4.99942988e-01 -2.00202331e-01 -9.66000021e-01 6.12918317e-01 -1.91117358e+00 -1.45956326e+00 1.61628529e-01 2.05854297e+00 5.01688838e-01 6.00337908e-02 6.57834113e-01 2.78784752e-01 9.43046868e-01 2.29044482e-01 -3.46562386e-01 4.71436046e-02 -1.77572407e-02 -3.11615169e-01 5.48895836e-01 1.72975540e-01 -1.47585428e+00 9.53868091e-01 5.48012018e+00 6.20786428e-01 -1.25219560e+00 1.45406991e-01 3.69196147e-01 -3.16203564e-01 5.43216944e-01 -2.95666456e-01 -9.54115987e-01 8.96254361e-01 8.29892278e-01 3.05768132e-01 3.29194367e-01 8.73457909e-01 2.99686462e-01 -1.28932059e-01 -8.34023893e-01 9.26229298e-01 2.11027980e-01 -1.24029636e+00 -2.19003290e-01 -9.01167318e-02 3.83687437e-01 -1.99260600e-02 1.82139892e-02 4.55408663e-01 1.66593120e-01 -7.86083281e-01 8.36280286e-01 5.46896458e-01 9.01361108e-01 -8.52684557e-01 1.04352748e+00 4.57654715e-01 -1.40520775e+00 -3.41267347e-01 -2.60887384e-01 6.14862740e-02 1.33954391e-01 2.39601627e-01 -7.70807922e-01 4.96373504e-01 1.21368790e+00 6.40251875e-01 -6.01503253e-01 7.71804452e-01 -1.68109268e-01 4.95831311e-01 -3.21565956e-01 -7.12503791e-02 2.85361409e-01 2.33810805e-02 5.92712522e-01 1.55029154e+00 3.20643842e-01 2.13380083e-01 2.75809109e-01 3.90486300e-01 6.82516620e-02 -3.81626874e-01 -8.74150634e-01 2.05539182e-01 4.60112035e-01 9.89350319e-01 -6.34437144e-01 -4.42057610e-01 -3.13565701e-01 7.50686109e-01 1.09601011e-02 6.97896183e-02 -1.37784672e+00 -4.47321594e-01 3.84778410e-01 1.68817058e-01 3.95785838e-01 -1.44166142e-01 2.39163786e-01 -1.28212416e+00 1.45718023e-01 -9.14952934e-01 6.64803386e-01 -4.62024063e-01 -7.03863621e-01 9.27907348e-01 2.18706191e-01 -1.22241044e+00 -4.55865681e-01 -5.72344005e-01 -4.74504352e-01 4.14562672e-01 -8.46835077e-01 -1.29042733e+00 -5.06259143e-01 6.95585310e-01 6.73766434e-01 -1.15193598e-01 4.75068271e-01 5.86258054e-01 -1.00692058e+00 6.84741974e-01 -1.72794461e-01 7.07064927e-01 4.84991193e-01 -7.44149864e-01 2.91344732e-01 1.16498029e+00 -2.54926056e-01 3.61240447e-01 6.81437135e-01 -5.79088509e-01 -1.48670220e+00 -1.32063663e+00 3.84162784e-01 -6.43711090e-01 4.84971493e-01 -2.50699878e-01 -7.77943432e-01 7.89851904e-01 8.98047984e-02 -2.00128153e-01 8.61906186e-02 -2.46884018e-01 -3.58974069e-01 -8.96825120e-02 -1.05697608e+00 4.20598686e-01 1.10388827e+00 -3.44243467e-01 -3.94999117e-01 2.91775584e-01 6.79653108e-01 -4.28298473e-01 -6.26502573e-01 4.97566640e-01 6.08255327e-01 -9.95184660e-01 9.53098774e-01 -1.46740869e-01 3.10954303e-01 -1.77636221e-01 1.42742068e-01 -9.03340936e-01 -2.67799467e-01 -2.68499494e-01 -1.19700797e-01 1.04460847e+00 1.93821773e-01 -5.40838897e-01 8.45427155e-01 2.51108885e-01 -5.42410575e-02 -4.73820448e-01 -8.64275038e-01 -1.06618059e+00 -3.04510117e-01 -4.82401848e-01 1.85083792e-01 7.72193849e-01 -1.20970197e-01 1.30963549e-01 -9.29896653e-01 2.11249620e-01 4.87695426e-01 1.82967838e-02 7.19742358e-01 -8.30821037e-01 -2.53823906e-01 -3.99191409e-01 -5.46510756e-01 -8.81608665e-01 -2.78868794e-01 -4.88109291e-01 4.05112430e-02 -1.29341078e+00 4.09945637e-01 -1.17775388e-01 -1.20509081e-01 8.81226599e-01 -2.24196464e-02 4.89911139e-01 4.16535884e-01 -3.98078822e-02 -5.54359317e-01 3.30493242e-01 7.49043047e-01 -3.85576785e-01 -3.25562567e-01 1.18897267e-01 -1.80780515e-01 7.77076483e-01 8.82912874e-01 -4.71507728e-01 -6.66397661e-02 -6.42880380e-01 -1.65285066e-01 4.61177379e-01 6.43699706e-01 -1.10859346e+00 3.33414406e-01 8.86152149e-04 3.66528958e-01 -7.85919666e-01 7.24291086e-01 -6.16422653e-01 1.16078265e-01 9.34504867e-01 6.08370043e-02 2.52938032e-01 3.28167558e-01 4.27070946e-01 -1.29763827e-01 -1.57289907e-01 9.12233710e-01 -1.79990634e-01 -8.52743506e-01 3.35031331e-01 -6.25378728e-01 -2.16920063e-01 1.20984542e+00 -2.60013461e-01 -4.01914150e-01 -1.96633667e-01 -6.22676909e-01 3.17524344e-01 2.75500566e-01 6.77987874e-01 5.49298346e-01 -1.03837264e+00 -6.84429109e-01 5.08863516e-02 6.88937977e-02 -2.20342249e-01 5.23619533e-01 9.40448880e-01 -4.25932854e-01 5.89893937e-01 -2.37888694e-01 -7.54088283e-01 -1.58451796e+00 7.95406401e-01 2.42526963e-01 -2.04650909e-01 -7.91272402e-01 9.29099917e-01 4.11000289e-02 -1.49272382e-01 3.63846600e-01 -3.41010302e-01 -4.03493911e-01 2.38834575e-01 7.72645175e-01 5.54643810e-01 -3.98472510e-02 -6.47716522e-01 -4.56060112e-01 5.60397029e-01 5.17936647e-02 8.17079395e-02 1.29668438e+00 3.77856851e-01 1.66647866e-01 1.67390153e-01 8.23116004e-01 -2.06129670e-01 -1.35194123e+00 -1.48644686e-01 -9.71889198e-02 -4.20459032e-01 -2.26250753e-01 -5.72872996e-01 -1.21523130e+00 7.25784361e-01 7.12766051e-01 1.71737924e-01 1.25522411e+00 -3.73198860e-03 6.86947584e-01 5.45402408e-01 4.55581725e-01 -8.75720620e-01 1.92395046e-01 6.25985503e-01 8.35439861e-01 -1.21531498e+00 -3.22478324e-01 -1.85933352e-01 -6.40429914e-01 8.83419275e-01 6.72693789e-01 -6.98580146e-02 2.12476864e-01 3.30128670e-01 -2.86820997e-02 -2.56415278e-01 -6.17485404e-01 -3.16523790e-01 1.15531124e-01 4.22644526e-01 1.67821527e-01 -5.98843694e-02 -1.39435753e-02 5.16183972e-01 -2.20992602e-02 -1.35751471e-01 3.05193096e-01 9.60322678e-01 -3.27494115e-01 -5.65753698e-01 -5.53878248e-01 4.18391705e-01 -5.59042752e-01 1.11225605e-01 -2.61974484e-01 8.91076386e-01 2.99055547e-01 1.10481906e+00 6.22997992e-03 -5.93390286e-01 5.54933250e-01 -1.57687008e-01 3.15675944e-01 -3.76870215e-01 -7.12334335e-01 -8.03304184e-03 2.70957574e-02 -5.28816104e-01 -3.12286317e-01 -6.28783405e-01 -8.93914521e-01 -4.56201375e-01 -3.91983747e-01 4.15515825e-02 4.33042645e-01 8.36685181e-01 -1.70555990e-02 8.10377419e-01 4.27760124e-01 -9.56264555e-01 -2.75436550e-01 -1.20306337e+00 -2.26716489e-01 1.57281026e-01 3.61673236e-01 -7.72730052e-01 -1.41403982e-02 2.09095865e-01]
[8.057464599609375, 0.6200469732284546]
29129db4-3a4c-4b18-8617-12076f40f7bb
a-normalized-gaussian-wasserstein-distance
2110.13389
null
https://arxiv.org/abs/2110.13389v2
https://arxiv.org/pdf/2110.13389v2.pdf
A Normalized Gaussian Wasserstein Distance for Tiny Object Detection
Detecting tiny objects is a very challenging problem since a tiny object only contains a few pixels in size. We demonstrate that state-of-the-art detectors do not produce satisfactory results on tiny objects due to the lack of appearance information. Our key observation is that Intersection over Union (IoU) based metrics such as IoU itself and its extensions are very sensitive to the location deviation of the tiny objects, and drastically deteriorate the detection performance when used in anchor-based detectors. To alleviate this, we propose a new evaluation metric using Wasserstein distance for tiny object detection. Specifically, we first model the bounding boxes as 2D Gaussian distributions and then propose a new metric dubbed Normalized Wasserstein Distance (NWD) to compute the similarity between them by their corresponding Gaussian distributions. The proposed NWD metric can be easily embedded into the assignment, non-maximum suppression, and loss function of any anchor-based detector to replace the commonly used IoU metric. We evaluate our metric on a new dataset for tiny object detection (AI-TOD) in which the average object size is much smaller than existing object detection datasets. Extensive experiments show that, when equipped with NWD metric, our approach yields performance that is 6.7 AP points higher than a standard fine-tuning baseline, and 6.0 AP points higher than state-of-the-art competitors. Codes are available at: https://github.com/jwwangchn/NWD.
['Lei Yu', 'Wen Yang', 'Chang Xu', 'Jinwang Wang']
2021-10-26
null
null
null
null
['small-object-detection']
['computer-vision']
[-2.31781334e-01 -1.61539257e-01 5.44746742e-02 -2.33741790e-01 -9.07542527e-01 -5.36816537e-01 3.45600128e-01 3.19144189e-01 -5.71676970e-01 2.10925445e-01 -2.73653537e-01 -1.88802525e-01 3.16238075e-01 -6.94263995e-01 -8.04076552e-01 -6.75207913e-01 8.02786276e-02 2.46136904e-01 9.40843761e-01 -2.19353363e-02 5.17387390e-02 4.01192665e-01 -1.33609164e+00 -1.51451141e-01 6.72472715e-01 1.43195128e+00 1.95008129e-01 4.76116538e-01 5.98200671e-02 1.24352194e-01 -6.71658754e-01 -3.61785889e-01 7.24754035e-01 1.32264579e-02 -2.22529806e-02 -1.60742868e-02 7.32058764e-01 -4.96274292e-01 -3.77855957e-01 1.28114033e+00 7.39725411e-01 -7.34061822e-02 7.28056550e-01 -1.18473172e+00 -7.31856227e-01 5.56231797e-01 -9.67988193e-01 5.36482871e-01 1.16623953e-01 1.02198087e-01 1.00925744e+00 -1.22903681e+00 3.03400695e-01 1.34035468e+00 7.82203853e-01 4.88922119e-01 -1.11107004e+00 -6.77831233e-01 1.85639873e-01 7.86931813e-02 -1.79596937e+00 -2.17904136e-01 3.70583802e-01 -2.65083075e-01 5.05785704e-01 2.85176486e-01 2.87562340e-01 7.23256528e-01 5.75381331e-02 9.19991136e-01 7.05807030e-01 -3.25511754e-01 2.16677576e-01 2.68183529e-01 7.47045428e-02 7.32525110e-01 7.46161282e-01 -2.25884661e-01 7.10324794e-02 -2.30140612e-01 6.06206119e-01 3.19328696e-01 -8.78788754e-02 -6.41174972e-01 -1.19477320e+00 8.32134187e-01 7.81991959e-01 1.64380148e-01 4.43553599e-03 2.77391165e-01 2.18588158e-01 6.41507953e-02 3.39076847e-01 1.00342140e-01 -1.87119916e-01 1.90919518e-01 -5.36581755e-01 2.19544590e-01 5.85043073e-01 1.00024152e+00 4.97591585e-01 -2.95130253e-01 -4.93024111e-01 6.46479547e-01 2.91220218e-01 7.44599640e-01 2.64475256e-01 -5.84610939e-01 5.47408342e-01 6.45419657e-01 3.31220657e-01 -1.02498126e+00 -3.97945225e-01 -4.57787305e-01 -5.16379952e-01 2.30804294e-01 6.60485923e-01 1.30090313e-02 -8.10043335e-01 1.54176843e+00 6.29174590e-01 -6.72803670e-02 -2.13541150e-01 9.73482609e-01 7.99191952e-01 4.24906522e-01 -1.42353296e-01 5.57756983e-02 1.41630924e+00 -7.80122638e-01 -2.67966568e-01 -2.99652189e-01 6.39283240e-01 -7.85916388e-01 1.05387414e+00 8.80423412e-02 -8.92660737e-01 -5.86804450e-01 -1.22768831e+00 1.00056767e-01 -3.63519073e-01 1.73213974e-01 3.74777377e-01 7.22299874e-01 -6.49859130e-01 2.74719179e-01 -7.31869757e-01 -5.17509401e-01 6.09463274e-01 2.06809327e-01 -9.82982218e-02 -8.10779780e-02 -7.77532637e-01 7.83463180e-01 4.63105261e-01 -1.88588008e-01 -7.41940677e-01 -5.79513013e-01 -7.20120370e-01 4.45529595e-02 7.46893287e-01 -4.48098958e-01 1.22571361e+00 -1.23245597e-01 -7.09277511e-01 8.38617682e-01 7.91567788e-02 -6.84460044e-01 7.90416658e-01 -1.50235549e-01 -1.77105755e-01 -1.98919084e-02 3.00187856e-01 5.61153114e-01 8.73278081e-01 -1.05407965e+00 -9.21220243e-01 -4.73033518e-01 1.08076178e-01 4.79019061e-03 -7.07517862e-01 8.64305794e-02 -6.98506892e-01 -6.46654427e-01 3.33113402e-01 -7.88719893e-01 -2.94926345e-01 6.20974243e-01 -5.72200358e-01 -5.80608666e-01 1.04310894e+00 5.89508414e-02 1.41382325e+00 -2.30571532e+00 -4.01280850e-01 6.09319359e-02 5.26168048e-01 3.35750908e-01 -1.44562945e-01 -2.49326434e-02 3.91225517e-01 7.77265206e-02 -1.03479691e-01 -3.41001689e-01 2.02962309e-01 -1.05056107e-01 -1.01878144e-01 7.42405057e-01 -7.54366815e-02 7.54549026e-01 -9.74002421e-01 -5.40734887e-01 2.70075262e-01 3.97730559e-01 -5.62173910e-02 -5.55121414e-02 2.22636536e-02 -1.95058540e-01 -7.13356316e-01 1.01917529e+00 9.48708057e-01 -1.66367650e-01 -3.80026758e-01 -3.53771359e-01 -1.38641238e-01 -1.26834184e-01 -1.48445833e+00 1.31172979e+00 -6.15836941e-02 4.11196172e-01 -1.14493772e-01 -7.85414279e-01 1.08464980e+00 -7.40141720e-02 3.53717238e-01 -4.90626425e-01 3.76090050e-01 4.20544147e-01 2.34223194e-02 -1.40484557e-01 2.21458763e-01 9.92014483e-02 -2.00625256e-01 3.48542750e-01 -2.85788208e-01 2.02798136e-02 5.30311167e-01 2.82259792e-01 1.34151804e+00 -4.10573959e-01 4.32698041e-01 -1.46343768e-01 2.31422812e-01 -3.28029931e-01 7.17382252e-01 1.10858667e+00 -5.38695693e-01 8.65054131e-01 2.99309224e-01 -4.09567177e-01 -9.23034251e-01 -1.34546745e+00 -5.29225469e-01 9.99364078e-01 6.06087446e-01 -4.88710195e-01 -7.54757881e-01 -9.01784599e-01 5.20070076e-01 2.23435163e-01 -7.65275717e-01 -1.93746731e-01 -4.20318812e-01 -9.98823702e-01 4.65871751e-01 8.19986165e-01 4.59037542e-01 -5.52654445e-01 -9.17362928e-01 1.73262611e-01 1.30468458e-01 -1.31614304e+00 -7.58653522e-01 1.55288443e-01 -6.86045647e-01 -1.04212308e+00 -9.11797822e-01 -5.39830744e-01 6.76872611e-01 7.17001140e-01 8.45424533e-01 -5.32606058e-02 -6.10421240e-01 1.21240959e-01 -4.08963650e-01 -7.61377096e-01 1.48935337e-02 -2.14478090e-01 3.51378918e-01 -3.44837122e-02 5.75835586e-01 -2.70828247e-01 -9.58223879e-01 6.63075805e-01 -7.50051677e-01 -4.67702627e-01 7.97172785e-01 5.09272873e-01 8.31699789e-01 -7.23785982e-02 2.41956919e-01 -5.98519027e-01 3.25379699e-01 -3.62408936e-01 -8.17227662e-01 1.58622652e-01 -4.51156676e-01 -2.13740692e-02 4.66516167e-01 -7.30641484e-01 -4.65296835e-01 9.27292928e-02 2.28635788e-01 -6.42191231e-01 7.96526521e-02 -9.77367982e-02 -1.88425183e-01 -3.36589724e-01 7.68757105e-01 -2.84804888e-02 -4.88816857e-01 -5.28977931e-01 2.46494427e-01 7.25274622e-01 4.61346984e-01 -2.88594395e-01 1.09183037e+00 8.66826296e-01 -1.17026091e-01 -5.37767529e-01 -1.02532351e+00 -9.05141532e-01 -6.06610775e-01 6.61794618e-02 4.98371214e-01 -8.38309765e-01 -5.78026712e-01 2.93934226e-01 -9.49872255e-01 5.97186666e-03 -3.99338424e-01 4.02170032e-01 -1.56813338e-01 3.75093907e-01 -3.83890390e-01 -8.01177800e-01 -4.65857089e-01 -1.00048566e+00 1.13545370e+00 3.48660618e-01 1.34146899e-01 -4.99961048e-01 -2.12071955e-01 1.74254015e-01 3.57623726e-01 4.70039189e-01 3.75681728e-01 -6.68974042e-01 -4.69157159e-01 -8.01399946e-01 -6.11277521e-01 2.62484401e-01 6.45282073e-03 -1.10973217e-01 -7.45905280e-01 -4.96070683e-01 -7.78414011e-02 -2.31209755e-01 1.22245526e+00 5.08523166e-01 1.07963502e+00 3.16589400e-02 -6.66927755e-01 5.85623920e-01 1.44659519e+00 -4.43027057e-02 3.33444446e-01 5.79864383e-01 6.48953140e-01 1.79220945e-01 8.91336143e-01 7.51256049e-01 2.19359681e-01 7.83488810e-01 6.30360842e-01 6.39642328e-02 -1.69866815e-01 -7.65751451e-02 3.20280045e-01 1.93682060e-01 5.73387928e-02 -3.66967708e-01 -8.40582848e-01 5.80124676e-01 -1.94967210e+00 -7.98228502e-01 -1.93369851e-01 2.39294791e+00 4.44665164e-01 6.70340180e-01 4.08432394e-01 8.03254470e-02 8.20010126e-01 1.09014802e-01 -7.37231314e-01 -5.03950426e-03 -1.34623483e-01 -2.98044682e-01 8.41972888e-01 -4.55355495e-02 -1.48130059e+00 7.40617573e-01 5.55390310e+00 1.06587791e+00 -8.00602138e-01 2.86222011e-01 4.27977443e-01 -3.40004861e-01 2.51376808e-01 -2.82252878e-01 -1.32192409e+00 5.18939018e-01 4.58284110e-01 -2.10714877e-01 -2.78838068e-01 1.20286322e+00 2.09138483e-01 -1.14468209e-01 -1.14429200e+00 1.05261612e+00 5.59820645e-02 -8.92671704e-01 3.46916728e-02 -1.37745566e-03 6.64155185e-01 1.79011598e-01 3.15931886e-01 2.19742134e-01 1.18501782e-01 -6.51440024e-01 9.22542274e-01 -4.42965142e-02 6.26224101e-01 -5.92896402e-01 8.20501745e-01 2.50560135e-01 -1.59993637e+00 -2.79876858e-01 -1.06814837e+00 2.44455710e-01 4.82704453e-02 7.79235125e-01 -7.51911461e-01 -4.74609761e-03 1.06011057e+00 4.73106265e-01 -7.78149962e-01 1.58615911e+00 -9.17016715e-02 3.66658419e-01 -7.81042516e-01 -3.02052408e-01 3.32875520e-01 1.27439320e-01 7.94835031e-01 1.22458816e+00 4.87777054e-01 5.05125336e-02 3.26269656e-01 9.41168666e-01 -3.58492702e-01 1.38362557e-01 -3.95230591e-01 4.05957401e-01 7.51918554e-01 1.44854164e+00 -1.00950134e+00 -3.19384515e-01 -5.60819507e-01 8.09885263e-01 2.77009279e-01 5.17068096e-02 -1.07390416e+00 -5.57933688e-01 6.48969293e-01 2.19946086e-01 8.14774930e-01 9.93723273e-02 -1.79170787e-01 -9.80747402e-01 5.64194679e-01 -4.60033774e-01 4.78781432e-01 -4.08634543e-01 -1.31371701e+00 4.39729899e-01 -1.85021728e-01 -1.48868263e+00 4.01269525e-01 -6.83344662e-01 -8.20273399e-01 3.01706493e-01 -1.27843297e+00 -9.98415530e-01 -4.95868325e-01 4.76734817e-01 4.94347066e-01 1.00463241e-01 3.77628058e-01 3.77720624e-01 -6.58853710e-01 9.85884428e-01 4.69905674e-01 3.46109211e-01 8.14670980e-01 -1.34587884e+00 5.34441173e-01 9.33444738e-01 2.10002512e-01 3.30724150e-01 8.52766752e-01 -3.39848489e-01 -1.26169908e+00 -1.27910495e+00 3.67339879e-01 -7.04317987e-01 8.33036482e-01 -5.49153984e-01 -7.61322975e-01 4.14722711e-01 -5.58796465e-01 8.63207281e-01 3.21868837e-01 -2.46247411e-01 -5.95021129e-01 -3.22207570e-01 -1.25615001e+00 4.08140302e-01 1.07384658e+00 -9.48631614e-02 -3.60111028e-01 4.47496504e-01 7.61898339e-01 -2.74756849e-01 -6.17835462e-01 6.58234417e-01 6.04806721e-01 -1.06767273e+00 1.17039621e+00 -9.68241990e-02 -2.50969887e-01 -5.53944230e-01 -3.53647739e-01 -8.62530231e-01 -3.31788659e-01 -4.86964077e-01 -3.10599446e-01 1.09905493e+00 4.01884407e-01 -5.82880378e-01 6.96047843e-01 3.25273782e-01 -5.71202822e-02 -9.34137940e-01 -9.79462504e-01 -1.27746022e+00 -1.14912912e-01 -4.74406540e-01 4.43771571e-01 4.02067244e-01 -1.69023558e-01 1.11110136e-01 -4.62977588e-02 3.29664528e-01 1.05817854e+00 2.12768838e-01 7.21423090e-01 -1.39992678e+00 -1.73422590e-01 -5.59551716e-01 -8.55092168e-01 -1.23164523e+00 -5.07538557e-01 -5.42560697e-01 2.35097274e-01 -1.37248659e+00 5.70906103e-01 -6.45782351e-01 -7.45784461e-01 4.16741312e-01 -3.05960655e-01 7.28042722e-01 3.20525438e-01 2.56739169e-01 -1.08521247e+00 5.42573988e-01 1.02569592e+00 -2.83312976e-01 -7.28704110e-02 2.11352527e-01 -6.80109978e-01 9.67758000e-01 7.32750118e-01 -7.14071095e-01 8.95392373e-02 -3.55458796e-01 -7.04837590e-02 -5.29362142e-01 3.49487245e-01 -1.32761419e+00 3.18582624e-01 2.00753257e-01 3.54087740e-01 -6.50252402e-01 2.00077072e-01 -6.92474365e-01 -5.42522967e-01 5.69539487e-01 4.00624499e-02 -2.49997333e-01 1.41821742e-01 7.98033535e-01 2.61293314e-02 -1.77299395e-01 1.01597631e+00 3.18934992e-02 -8.43509674e-01 5.03461421e-01 4.54315096e-02 9.84847471e-02 1.45009506e+00 -4.11037385e-01 -3.87073517e-01 -6.70459345e-02 -4.43411827e-01 3.49507540e-01 4.35331851e-01 3.52126509e-01 7.34199107e-01 -1.44482327e+00 -8.36489618e-01 -1.71627596e-01 4.74413335e-01 9.86794662e-03 -1.69477463e-01 1.10363317e+00 -2.96006471e-01 3.54228586e-01 1.24629743e-01 -6.72357500e-01 -1.54063213e+00 5.95568419e-01 2.41337374e-01 -3.23994644e-02 -6.59730434e-01 1.19668686e+00 5.32600939e-01 -1.76056802e-01 5.65072596e-01 -5.56214333e-01 1.09872706e-01 -6.20184988e-02 8.47708344e-01 6.11332834e-01 -2.09236126e-02 -5.20033598e-01 -5.36520660e-01 7.36275315e-01 -2.53751516e-01 4.33456630e-01 1.10851634e+00 -1.08589739e-01 3.31860453e-01 2.69952446e-01 1.09944868e+00 -1.17403395e-01 -1.38840806e+00 -4.78331327e-01 -1.40986554e-02 -6.13579512e-01 -2.84092706e-02 -2.45893642e-01 -9.74183798e-01 8.00400019e-01 1.01127112e+00 3.20120722e-01 7.96754360e-01 5.59250355e-01 1.01041245e+00 5.96403301e-01 4.43313032e-01 -1.00915051e+00 1.08066879e-01 2.64669925e-01 6.79367006e-01 -1.62933743e+00 1.36210471e-01 -4.71872866e-01 -1.77404925e-01 9.82497513e-01 7.81612992e-01 -1.94583595e-01 5.78045189e-01 5.18650055e-01 5.02877310e-02 -2.59778276e-02 -3.84986490e-01 -5.51733375e-01 3.54825526e-01 4.67239678e-01 1.02282070e-01 3.21152285e-02 -3.05299729e-01 5.37646592e-01 1.14161968e-01 -3.33007008e-01 3.63869160e-01 8.73403013e-01 -1.02608752e+00 -6.11234903e-01 -6.89928472e-01 5.74629068e-01 -5.48236430e-01 1.24087650e-02 -2.53023297e-01 8.04856181e-01 2.98297703e-01 8.78789186e-01 1.20579995e-01 -4.36690301e-01 5.96416175e-01 -5.68775654e-01 3.39333862e-01 -7.00588107e-01 -4.42000963e-02 1.16405323e-01 -4.17849571e-01 -7.02298105e-01 -5.43190427e-02 -5.43969572e-01 -1.32070315e+00 -2.21809357e-01 -7.63723433e-01 -4.35752235e-02 3.74540806e-01 6.21456683e-01 9.23853666e-02 1.48398280e-01 5.86683214e-01 -9.18981612e-01 -1.03027904e+00 -1.03263986e+00 -7.16284037e-01 4.48543251e-01 2.61324912e-01 -8.14437211e-01 -5.39473593e-01 -3.79399627e-01]
[8.688347816467285, -0.44020959734916687]
477c287f-f9fe-4053-9f65-5744d46ca2ef
cross-task-attention-mechanism-for-dense
2206.08927
null
https://arxiv.org/abs/2206.08927v1
https://arxiv.org/pdf/2206.08927v1.pdf
Cross-task Attention Mechanism for Dense Multi-task Learning
Multi-task learning has recently become a promising solution for a comprehensive understanding of complex scenes. Not only being memory-efficient, multi-task models with an appropriate design can favor exchange of complementary signals across tasks. In this work, we jointly address 2D semantic segmentation, and two geometry-related tasks, namely dense depth, surface normal estimation as well as edge estimation showing their benefit on indoor and outdoor datasets. We propose a novel multi-task learning architecture that exploits pair-wise cross-task exchange through correlation-guided attention and self-attention to enhance the average representation learning for all tasks. We conduct extensive experiments considering three multi-task setups, showing the benefit of our proposal in comparison to competitive baselines in both synthetic and real benchmarks. We also extend our method to the novel multi-task unsupervised domain adaptation setting. Our code is available at https://github.com/cv-rits/DenseMTL.
['Raoul de Charette', 'Tuan-Hung Vu', 'Ivan Lopes']
2022-06-17
null
null
null
null
['2d-semantic-segmentation']
['computer-vision']
[ 1.85046792e-01 -2.31315896e-01 1.02171630e-01 -6.30676448e-01 -1.22274649e+00 -3.40712219e-01 6.41809762e-01 1.35805467e-02 -5.69277704e-01 5.86672068e-01 2.55728096e-01 1.01085581e-01 -6.82400391e-02 -5.15011847e-01 -9.32360470e-01 -5.08377254e-01 -3.49028893e-02 4.33484763e-01 2.98478603e-01 4.12053987e-02 1.99276522e-01 2.22936049e-01 -1.32327354e+00 4.94189590e-01 1.06670964e+00 1.06600153e+00 5.70619166e-01 5.64064741e-01 6.26892969e-02 5.72475970e-01 -2.31505617e-01 -3.38189363e-01 3.23643863e-01 9.10076126e-02 -9.64119375e-01 9.31591764e-02 7.08801210e-01 -7.61867017e-02 -8.58273506e-02 8.53318453e-01 8.43166113e-01 4.29851770e-01 6.17013395e-01 -9.70064640e-01 -4.36066598e-01 3.73537950e-02 -1.05633545e+00 1.92396775e-01 1.02259576e-01 -1.48909390e-02 1.10602438e+00 -1.13181102e+00 5.28619945e-01 1.19370961e+00 6.51005745e-01 2.37821177e-01 -1.31430840e+00 -5.52537203e-01 5.80875576e-01 3.55488777e-01 -1.41997814e+00 -4.26017612e-01 1.02352226e+00 -3.58572751e-01 1.01228654e+00 -1.93960145e-01 3.51252645e-01 1.39704943e+00 1.49932638e-01 1.22346282e+00 1.28601122e+00 -1.86220527e-01 9.75812599e-02 -1.27252981e-01 -9.86987725e-02 4.69826072e-01 1.41754031e-01 -1.47238150e-01 -6.13774717e-01 8.93543065e-02 7.87555456e-01 -2.37163231e-01 -1.40539512e-01 -5.87889016e-01 -1.21808863e+00 6.30730212e-01 5.26429474e-01 2.83315152e-01 -5.31497300e-01 3.41813207e-01 5.06435812e-01 8.25431049e-02 9.95776653e-01 2.99362123e-01 -7.92310417e-01 6.25973418e-02 -8.82030308e-01 2.47589946e-01 3.42658401e-01 9.10893857e-01 8.06031525e-01 -7.35095441e-02 -3.98956895e-01 1.18347013e+00 3.31701130e-01 5.25555074e-01 3.04298937e-01 -9.73830223e-01 5.51602662e-01 1.77470684e-01 4.13911194e-02 -9.45105731e-01 -5.93994558e-01 -6.94836617e-01 -8.08024347e-01 1.16270157e-02 3.73317450e-01 -2.49327585e-01 -8.77052963e-01 1.85131168e+00 3.71959537e-01 5.52434921e-01 -2.35786125e-01 8.93012583e-01 8.00753355e-01 3.96645099e-01 1.44015774e-01 3.57891560e-01 1.33071172e+00 -1.39207172e+00 -3.84934634e-01 -8.58343303e-01 4.84729856e-01 -8.44164670e-01 1.00529826e+00 4.59112734e-01 -9.70050812e-01 -7.77156830e-01 -8.23317230e-01 -3.82192343e-01 -2.21012458e-01 2.78723449e-01 8.45157146e-01 2.43360475e-01 -1.00746274e+00 4.61875588e-01 -9.84069049e-01 -2.70126194e-01 8.31440628e-01 2.28123143e-01 -2.80282289e-01 -2.78670818e-01 -8.33725393e-01 5.73691607e-01 2.16206253e-01 7.32155964e-02 -9.45417583e-01 -7.17243493e-01 -9.56294119e-01 -1.98300883e-01 4.03380305e-01 -9.68930423e-01 1.10277057e+00 -7.37622082e-01 -1.26744175e+00 1.15549505e+00 -3.51291984e-01 -2.62607485e-01 5.29169261e-01 -7.48733521e-01 -3.74024622e-02 5.08598052e-02 2.96320677e-01 8.26712132e-01 8.40803921e-01 -1.31074393e+00 -5.21690845e-01 -5.26476860e-01 -1.04436673e-01 4.22261506e-01 -1.55518040e-01 -2.07964733e-01 -7.76935756e-01 -9.04674828e-01 1.10040106e-01 -9.83813703e-01 -4.86300379e-01 4.64502759e-02 -4.20146734e-01 -5.80334663e-02 5.68593919e-01 -5.75550795e-01 6.82745874e-01 -2.18228412e+00 4.42909867e-01 -1.46049753e-01 1.26464203e-01 3.75671051e-02 -3.94365460e-01 1.03380479e-01 2.65918765e-02 -1.08611666e-01 -5.07427931e-01 -1.07336891e+00 -8.38316604e-02 3.35802287e-02 1.16392016e-01 5.05886257e-01 4.05029744e-01 1.14656115e+00 -8.05178940e-01 -4.79859114e-01 3.75439495e-01 5.86981297e-01 -5.10518134e-01 2.30568126e-01 -2.92059988e-01 9.19472992e-01 -7.02528954e-01 6.16873145e-01 9.31151211e-01 -5.28588235e-01 -1.00932263e-01 -3.71989369e-01 8.78889337e-02 2.68248409e-01 -1.19967139e+00 2.53637052e+00 -9.20099556e-01 6.30886734e-01 3.39780480e-01 -1.10801208e+00 8.01911592e-01 1.41218588e-01 4.63784426e-01 -9.73049104e-01 2.19227877e-02 2.17786327e-01 -4.24437761e-01 -3.99146885e-01 4.75233823e-01 1.02697514e-01 -6.72525093e-02 3.35912585e-01 2.15439186e-01 -3.60658526e-01 1.59201026e-03 7.86967054e-02 8.56365979e-01 4.96622056e-01 1.95455506e-01 -4.42648172e-01 4.26361561e-01 -3.69825751e-01 5.13279021e-01 6.20210230e-01 -9.08535346e-02 7.59218395e-01 4.23123799e-02 -1.31762043e-01 -8.48499477e-01 -9.32376683e-01 -2.33958647e-01 1.24458921e+00 3.01269382e-01 -7.96456411e-02 -2.57841796e-01 -6.23075545e-01 5.47171533e-02 5.61977446e-01 -6.27330840e-01 7.77552575e-02 -5.64112902e-01 -9.46169853e-01 2.83467144e-01 6.19628489e-01 7.80068398e-01 -7.79585361e-01 -5.77170908e-01 1.80355266e-01 -4.09013659e-01 -1.69503152e+00 -3.85911316e-01 3.67000133e-01 -8.72323036e-01 -9.14802074e-01 -1.09237218e+00 -7.88746536e-01 3.69245917e-01 4.35755640e-01 1.36308002e+00 -2.27523446e-01 -1.87013343e-01 6.12933338e-01 -2.68713862e-01 -3.34653974e-01 2.49854207e-01 4.27125454e-01 -3.84689718e-01 2.46764645e-01 7.31519312e-02 -8.47955644e-01 -8.05082321e-01 3.35106939e-01 -6.64810419e-01 2.69600898e-01 7.08161175e-01 7.33460188e-01 8.64155352e-01 -4.74953800e-01 5.38250506e-01 -9.15478170e-01 2.71069020e-01 -5.49913466e-01 -4.12665606e-01 1.46835044e-01 -2.94856876e-01 1.34643450e-01 3.22791845e-01 -3.98044735e-02 -1.33721411e+00 5.72300367e-02 -2.46245265e-01 -4.36667055e-01 -3.36903960e-01 2.54582375e-01 -2.73113638e-01 -2.38144353e-01 4.66279596e-01 9.19334888e-02 -3.69872540e-01 -6.28520072e-01 3.10726047e-01 2.18016073e-01 3.50111485e-01 -9.20087337e-01 5.91028929e-01 7.77370870e-01 1.21496201e-01 -8.94290924e-01 -1.15316236e+00 -7.37440526e-01 -8.17268074e-01 -7.01479614e-02 9.74224508e-01 -1.44620180e+00 -2.93933213e-01 8.03475678e-01 -1.29991007e+00 -7.99166620e-01 -3.61541994e-02 5.40758550e-01 -6.24436200e-01 3.45885158e-01 -4.28639621e-01 -6.43858373e-01 -2.16868892e-01 -1.17822158e+00 1.69845963e+00 5.92627637e-02 3.74091044e-02 -1.38321173e+00 1.40992343e-01 5.51292300e-01 4.04980898e-01 3.62916559e-01 4.68863338e-01 -5.36051571e-01 -7.67843485e-01 2.93233037e-01 -5.47146440e-01 3.23105097e-01 1.49936303e-02 -4.17727113e-01 -1.36743927e+00 -3.41742128e-01 -1.37401432e-01 -7.14557469e-01 1.41316640e+00 7.84997284e-01 1.43878806e+00 3.63878965e-01 -4.80774313e-01 1.01359475e+00 1.52141178e+00 -1.63402453e-01 5.26594698e-01 3.62628132e-01 1.01630771e+00 7.78239727e-01 7.51995385e-01 4.09395069e-01 7.66808212e-01 8.68514478e-01 4.03609902e-01 -4.67834383e-01 -2.81056374e-01 8.49854723e-02 -1.59535371e-02 4.74879354e-01 -1.36513516e-01 -3.83988529e-01 -9.72188771e-01 7.86609411e-01 -1.89398575e+00 -6.74906909e-01 -2.60841489e-01 1.98217618e+00 5.18891513e-01 1.60702392e-01 -2.05780528e-02 -2.04048887e-01 4.86790508e-01 5.47336757e-01 -6.27795041e-01 -1.14723109e-01 -3.72945935e-01 4.49687481e-01 5.12947738e-01 4.65509385e-01 -1.59279060e+00 1.05030906e+00 5.23292971e+00 1.05466473e+00 -1.02046490e+00 4.77943152e-01 9.24839795e-01 -2.02572107e-01 -3.84437442e-01 -3.05859208e-01 -6.55068338e-01 1.75981537e-01 5.20121753e-01 1.00260489e-01 7.02194795e-02 6.68340266e-01 8.29806328e-02 -3.63553315e-01 -1.01918054e+00 1.12871110e+00 5.85773997e-02 -1.20395148e+00 -2.71339923e-01 -7.26161674e-02 1.16130126e+00 5.82696915e-01 1.55318454e-01 1.29865110e-01 1.94543004e-01 -8.37240994e-01 7.60970116e-01 2.99289346e-01 6.11064851e-01 -4.45114136e-01 5.36816895e-01 -4.93553281e-03 -1.53559017e+00 6.98951408e-02 -9.52387825e-02 7.02261552e-02 3.45553786e-01 8.90127957e-01 -2.82691896e-01 1.01410139e+00 8.27800930e-01 1.23892021e+00 -6.47294044e-01 1.11061621e+00 -2.14158490e-01 2.74990767e-01 -2.95418769e-01 3.07793975e-01 2.50380814e-01 -1.89449072e-01 5.82971156e-01 1.46880066e+00 2.75814682e-01 -2.31741428e-01 3.57953310e-01 7.29399502e-01 -8.46472010e-02 1.88938260e-01 -5.43349087e-01 3.96431714e-01 2.24890947e-01 1.25507843e+00 -8.29784930e-01 -2.38742694e-01 -6.48377717e-01 1.33881474e+00 4.82940525e-01 5.04660249e-01 -8.53779018e-01 -1.22267842e-01 8.39314520e-01 -7.44734928e-02 5.12755692e-01 -5.46323061e-01 -5.84627867e-01 -1.17951047e+00 1.80806458e-01 -4.94343132e-01 3.87554973e-01 -6.12638772e-01 -1.31248963e+00 5.22471845e-01 4.88727205e-02 -9.85665143e-01 3.28049101e-02 -5.25858700e-01 -6.24995291e-01 7.83859909e-01 -2.06991863e+00 -1.43774617e+00 -5.67488194e-01 6.70400202e-01 8.35022628e-01 8.47028568e-02 5.32140791e-01 7.64410019e-01 -5.05428076e-01 4.58374739e-01 2.35173423e-02 -9.60046947e-02 9.51147735e-01 -1.25568724e+00 7.79697001e-01 8.96042347e-01 2.92363077e-01 2.56770756e-02 3.98679584e-01 -5.10212243e-01 -9.94704902e-01 -1.27265823e+00 4.82992500e-01 -4.02882218e-01 4.54887003e-01 -6.26149654e-01 -1.03087485e+00 7.18050480e-01 1.36909246e-01 1.26021162e-01 6.01723135e-01 2.63962030e-01 -3.80605847e-01 -1.13083674e-02 -7.50822127e-01 3.33141327e-01 1.40546846e+00 -5.24895906e-01 -9.11086425e-02 4.96213824e-01 7.19417095e-01 -5.61407804e-01 -7.60713398e-01 5.96346438e-01 3.60412478e-01 -1.10557437e+00 1.31819081e+00 -1.39871612e-01 4.64521974e-01 -1.34252295e-01 -3.33356947e-01 -1.40553653e+00 -3.63831669e-01 -3.99655968e-01 2.44852006e-02 1.01284027e+00 4.54919726e-01 -5.90738595e-01 7.21666336e-01 2.08181024e-01 -4.75506932e-01 -7.60003388e-01 -9.32395160e-01 -7.96854734e-01 1.76965430e-01 -7.72082269e-01 2.73095280e-01 8.12647521e-01 -6.99781597e-01 4.98900294e-01 -5.29377699e-01 2.33303308e-01 8.61600816e-01 2.59260505e-01 8.20621669e-01 -1.17805445e+00 -5.56477487e-01 -4.78548855e-01 -1.82869241e-01 -1.46167600e+00 2.49863788e-01 -9.55747843e-01 2.64898296e-02 -1.74130547e+00 1.29726112e-01 -4.47254330e-01 -2.87994653e-01 3.65683556e-01 -2.66648680e-01 3.20979267e-01 2.11609993e-02 6.81498125e-02 -9.36768234e-01 9.36340988e-01 1.41888142e+00 -9.24349949e-02 -2.12044761e-01 3.14952363e-03 -6.85634851e-01 6.85651958e-01 7.74117529e-01 -3.76918912e-01 -3.80106211e-01 -1.01764202e+00 5.94164021e-02 -3.10730368e-01 6.52480304e-01 -1.16487503e+00 1.41225055e-01 2.71249507e-02 3.73954147e-01 -4.29603338e-01 6.94424152e-01 -6.39534473e-01 -1.18048407e-01 8.46243501e-02 -2.59188324e-01 -2.93057770e-01 5.64987421e-01 6.81305110e-01 -2.52757102e-01 1.90090194e-01 9.20526266e-01 -4.14600372e-02 -1.14627683e+00 6.08387828e-01 1.42087534e-01 3.97935629e-01 1.03925169e+00 -8.69359151e-02 -9.82631966e-02 -2.38787413e-01 -7.21119463e-01 5.54090321e-01 3.23802799e-01 4.59364086e-01 6.39627039e-01 -1.14332783e+00 -8.76335919e-01 1.06790699e-01 3.15014482e-01 4.40107316e-01 6.98691368e-01 9.86725330e-01 -2.00480834e-01 4.52835292e-01 -1.99485794e-01 -7.92110145e-01 -1.03892076e+00 1.31010890e-01 3.62636358e-01 -4.62240487e-01 -5.62351048e-01 1.31100011e+00 6.69859111e-01 -4.52702761e-01 1.20178901e-01 -2.75421441e-01 -5.29440306e-03 3.45199294e-02 2.11685061e-01 2.63372511e-01 1.57632753e-01 -5.25358915e-01 -5.72055697e-01 9.76903260e-01 -7.98082948e-02 -4.52056713e-02 1.46767771e+00 -3.39004964e-01 1.98260501e-01 5.15805960e-01 1.36609495e+00 -1.43295184e-01 -1.66675651e+00 -4.56305295e-01 4.67222221e-02 -5.67124307e-01 3.46782178e-01 -5.88402987e-01 -1.20468247e+00 1.10120058e+00 5.02936304e-01 -3.68855238e-01 1.31851876e+00 1.84831440e-01 8.27715397e-01 1.58971623e-01 4.67036486e-01 -1.05155909e+00 5.29269159e-01 4.99668002e-01 9.28984821e-01 -1.77140462e+00 -7.07883462e-02 -6.07327878e-01 -8.02491188e-01 6.27761662e-01 7.98625648e-01 -2.61946559e-01 8.50205123e-01 1.39186099e-01 -1.60275996e-01 -2.78689235e-01 -7.54359066e-01 -5.92669070e-01 4.82414156e-01 7.53553569e-01 6.57664776e-01 -1.22857042e-01 1.01362489e-01 4.75737125e-01 3.03773791e-01 -2.06124652e-02 8.54945779e-02 7.54149973e-01 -8.12972188e-02 -1.12002051e+00 -8.06206688e-02 2.36550853e-01 -4.20566708e-01 -1.51068196e-01 -1.13078982e-01 5.75825274e-01 5.70428669e-02 8.06786597e-01 2.65626580e-01 -2.14374900e-01 3.13292354e-01 -8.09069127e-02 5.98579764e-01 -7.78737962e-01 -3.97814512e-01 2.11233184e-01 1.86372563e-01 -8.42130005e-01 -7.04632938e-01 -8.09430063e-01 -1.04452145e+00 9.34476852e-02 9.14132502e-03 -2.13957176e-01 6.39141917e-01 8.56239617e-01 6.56792581e-01 8.50149095e-01 5.14528453e-01 -1.12085044e+00 -6.84795752e-02 -9.63905752e-01 -4.15859610e-01 4.06772405e-01 2.30207279e-01 -9.37578380e-01 -1.11942589e-01 -1.38702914e-01]
[9.626075744628906, 1.2132996320724487]
6d59123a-2d3e-4e8e-b4eb-790844f53f3b
bigcolor-colorization-using-a-generative
2207.09685
null
https://arxiv.org/abs/2207.09685v1
https://arxiv.org/pdf/2207.09685v1.pdf
BigColor: Colorization using a Generative Color Prior for Natural Images
For realistic and vivid colorization, generative priors have recently been exploited. However, such generative priors often fail for in-the-wild complex images due to their limited representation space. In this paper, we propose BigColor, a novel colorization approach that provides vivid colorization for diverse in-the-wild images with complex structures. While previous generative priors are trained to synthesize both image structures and colors, we learn a generative color prior to focus on color synthesis given the spatial structure of an image. In this way, we reduce the burden of synthesizing image structures from the generative prior and expand its representation space to cover diverse images. To this end, we propose a BigGAN-inspired encoder-generator network that uses a spatial feature map instead of a spatially-flattened BigGAN latent code, resulting in an enlarged representation space. Our method enables robust colorization for diverse inputs in a single forward pass, supports arbitrary input resolutions, and provides multi-modal colorization results. We demonstrate that BigColor significantly outperforms existing methods especially on in-the-wild images with complex structures.
['Sunghyun Cho', 'Seung-Hwan Baek', 'Jonghyun Kim', 'Sehoon Kim', 'Hwayoon Lee', 'Seongtae Kim', 'Kyoungkook Kang', 'Geonung Kim']
2022-07-20
null
null
null
null
['colorization']
['computer-vision']
[ 5.27521372e-01 9.30314660e-02 2.45098367e-01 -1.92121446e-01 -6.04630530e-01 -7.74853885e-01 5.94000518e-01 -6.35367990e-01 -1.85275927e-01 6.76773071e-01 1.67407185e-01 -1.22513920e-01 4.49108034e-01 -9.45689678e-01 -8.55255723e-01 -7.92102993e-01 5.17589450e-01 -8.86789057e-03 -8.11651051e-02 -2.08145767e-01 8.56344327e-02 3.52881372e-01 -1.40508890e+00 1.85058683e-01 9.14068878e-01 6.12014711e-01 3.69459063e-01 7.09100604e-01 -7.41561577e-02 5.73541582e-01 -5.62201321e-01 -4.53427285e-01 4.25795466e-01 -8.02152038e-01 -4.10526037e-01 3.14926118e-01 5.62068939e-01 -4.88908172e-01 -3.29684049e-01 1.11208844e+00 2.78133124e-01 -5.32284714e-02 5.94519198e-01 -1.24165225e+00 -1.13790178e+00 4.16182846e-01 -8.57160211e-01 -3.71846884e-01 2.85682380e-01 3.92268181e-01 8.64482343e-01 -8.19734454e-01 6.95201337e-01 1.34726071e+00 2.72279382e-01 7.77672112e-01 -1.55028498e+00 -8.28164637e-01 2.77708799e-01 -1.97315961e-01 -1.30050862e+00 -2.60559648e-01 1.02129400e+00 -3.44131887e-01 3.08326989e-01 2.72690356e-01 8.14440131e-01 1.21148169e+00 -6.27494976e-02 6.54651582e-01 1.24172997e+00 -3.95106584e-01 2.53336698e-01 -1.77621901e-01 -7.08049059e-01 7.63824046e-01 2.76901901e-01 -1.44150741e-02 -5.13041139e-01 2.02976584e-01 1.23792279e+00 2.95662314e-01 -5.03846049e-01 -3.53535891e-01 -1.20465791e+00 7.16463506e-01 6.55922890e-01 5.12259230e-02 -3.20155978e-01 5.90847611e-01 -2.64722914e-01 -3.99966585e-03 2.99960494e-01 5.64154208e-01 7.36768320e-02 -3.61406431e-02 -9.57481861e-01 -3.30596715e-02 5.05483031e-01 9.39542890e-01 1.11509526e+00 3.47423494e-01 -3.14083189e-01 6.99946702e-01 1.70340553e-01 8.25842857e-01 8.38213041e-02 -1.08372295e+00 3.02749485e-01 5.48856914e-01 9.74329412e-02 -9.42057967e-01 2.81072035e-02 -3.07207555e-01 -1.13952506e+00 5.15569508e-01 2.71077454e-01 -2.10977823e-01 -1.30998981e+00 2.03999758e+00 2.88910896e-01 1.28016146e-02 7.78980255e-02 9.98742700e-01 4.81472045e-01 9.55048144e-01 -5.06007671e-02 2.64802277e-01 1.32989097e+00 -1.09804392e+00 -6.24483824e-01 -4.18407023e-01 2.72623431e-02 -8.11613083e-01 1.40099800e+00 3.71674687e-01 -1.07496405e+00 -4.57539558e-01 -1.06955338e+00 -2.69826770e-01 -1.79843605e-01 2.12950423e-01 5.93638718e-01 7.82091558e-01 -1.10456038e+00 1.88980281e-01 -6.38503551e-01 -1.34795219e-01 3.57714415e-01 -6.77210540e-02 -3.53272974e-01 -4.01596457e-01 -8.45001578e-01 3.68592352e-01 3.82780045e-01 1.61455825e-01 -9.85143542e-01 -6.51052713e-01 -8.78926992e-01 2.34990329e-01 3.33199680e-01 -8.84160817e-01 7.56983817e-01 -1.13175893e+00 -1.92616069e+00 6.04925811e-01 2.02830229e-02 1.24629505e-01 5.59575498e-01 -8.17977414e-02 -1.30588487e-01 2.21835777e-01 -4.87164967e-02 9.11367714e-01 1.33524442e+00 -1.67849171e+00 -2.93142676e-01 -1.20582022e-02 2.46604636e-01 5.60538694e-02 -3.25006902e-01 -3.64326537e-01 -8.36153746e-01 -8.58211279e-01 -6.84735999e-02 -9.08372819e-01 -2.37220973e-01 2.45992154e-01 -7.41783440e-01 5.68988502e-01 8.24519157e-01 -4.88673806e-01 9.47838545e-01 -2.32784796e+00 2.87830621e-01 2.40992531e-01 4.04837191e-01 1.29977554e-01 -4.51254249e-01 5.68384409e-01 1.81497317e-02 1.85998574e-01 -3.78046662e-01 -4.65198845e-01 3.86427110e-03 3.63464832e-01 -3.43678147e-01 2.29552045e-01 4.24127460e-01 9.78956819e-01 -8.34342659e-01 -3.51133525e-01 2.42396146e-01 8.59286427e-01 -8.34781349e-01 4.01793122e-01 -2.99721003e-01 7.03933835e-01 -3.61524493e-01 3.97554755e-01 1.10946846e+00 -3.42574030e-01 2.79378772e-01 -3.31074834e-01 -3.15246955e-02 -4.21159118e-01 -1.02504253e+00 1.99663329e+00 -6.88557565e-01 5.24326146e-01 2.05321506e-01 -6.06591225e-01 1.04388988e+00 -2.82885823e-02 7.53647909e-02 -7.29986012e-01 8.41959864e-02 1.96863100e-01 -2.74409890e-01 -9.14308056e-02 5.47743142e-01 -1.97220400e-01 -1.64826170e-01 5.68661332e-01 -1.50012538e-01 -3.50811929e-01 2.45249853e-01 3.03374797e-01 7.54624188e-01 3.37356359e-01 -1.82224154e-01 5.17623052e-02 3.73555303e-01 -5.20073354e-01 4.64283586e-01 4.66659397e-01 5.22052288e-01 1.20660949e+00 7.06839561e-01 -2.39117652e-01 -1.23747468e+00 -1.16476166e+00 3.98298502e-01 9.41890538e-01 4.47361320e-01 -4.30481583e-01 -8.32423031e-01 -3.85121614e-01 -1.98887825e-01 6.18420064e-01 -8.37956727e-01 -1.73479319e-01 -6.66754484e-01 -2.89739609e-01 4.31850374e-01 3.97843480e-01 7.31426954e-01 -8.71642947e-01 -7.45050311e-01 3.17092575e-02 -1.46122396e-01 -1.08492529e+00 -7.67421961e-01 -9.61879194e-02 -4.89647269e-01 -1.00803661e+00 -1.17061365e+00 -5.87288678e-01 1.00066948e+00 3.43777061e-01 1.00362897e+00 -9.52708274e-02 -4.03887361e-01 2.55493134e-01 -4.46273446e-01 -2.63041183e-02 -3.13394219e-01 -2.13435084e-01 -4.62014645e-01 4.21656609e-01 -3.45311105e-01 -7.50215650e-01 -1.06051815e+00 2.04411641e-01 -1.36832690e+00 6.93648696e-01 8.03307772e-01 1.04328299e+00 4.89836335e-01 -2.97090292e-01 7.99857378e-02 -1.08643162e+00 3.69648397e-01 -1.61891162e-01 -6.94331944e-01 4.54310685e-01 -3.91702682e-01 4.22560185e-01 8.63250315e-01 -4.11702156e-01 -1.27212846e+00 7.95643628e-02 6.86568860e-03 -5.87226152e-01 6.99109957e-02 2.27698922e-01 -2.84069836e-01 -1.38079152e-01 4.38496530e-01 4.55156952e-01 5.15507050e-02 -5.57045579e-01 9.27002788e-01 1.88973233e-01 6.25929952e-01 -7.68095672e-01 1.23759699e+00 6.76484287e-01 1.23065621e-01 -5.04001141e-01 -4.89381969e-01 2.19015688e-01 -4.04813796e-01 -3.96125689e-02 9.99381363e-01 -9.61805224e-01 -5.59055567e-01 4.92625952e-01 -1.05656374e+00 -4.38524783e-01 -2.67826468e-01 1.52038008e-01 -4.50177431e-01 3.58942360e-01 -5.06935060e-01 -6.31215811e-01 -3.87386650e-01 -1.19797599e+00 1.27880275e+00 4.04360175e-01 3.18750888e-01 -6.55474901e-01 -5.21330722e-03 -7.75662959e-02 6.42143726e-01 7.90471971e-01 7.84142673e-01 4.65472996e-01 -9.49226737e-01 1.47085367e-02 -6.06181264e-01 1.85622305e-01 3.12096655e-01 1.98645085e-01 -8.74240637e-01 -4.18450981e-01 -5.08751512e-01 -3.12237531e-01 1.01786602e+00 9.67403427e-02 1.35282004e+00 -4.61704642e-01 7.91580789e-03 1.13164949e+00 1.75181973e+00 1.79803252e-01 7.93854713e-01 8.32523704e-02 1.00445008e+00 3.78836513e-01 1.26552075e-01 6.12671852e-01 1.60153374e-01 4.47736442e-01 5.15986323e-01 -7.21999764e-01 -4.44322944e-01 -6.30134404e-01 3.34171236e-01 4.09348875e-01 -7.42929056e-02 -4.85456288e-01 -4.46265370e-01 3.32332224e-01 -1.45596409e+00 -7.69077778e-01 3.36777538e-01 1.84424758e+00 8.64628434e-01 -3.38021159e-01 -9.94426534e-02 -2.56669044e-01 7.85370588e-01 3.74171913e-01 -6.28646493e-01 -1.58120424e-01 -3.09994251e-01 4.21412438e-01 3.85713845e-01 4.40519452e-01 -6.45171225e-01 9.79797363e-01 5.89117384e+00 8.39146614e-01 -1.38120139e+00 -2.16799509e-03 8.42095435e-01 -1.68305933e-01 -1.02558482e+00 9.83496457e-02 -2.12236345e-01 5.36760628e-01 2.13119134e-01 9.44923386e-02 6.57123566e-01 6.48707449e-01 -7.06794262e-02 -3.49532701e-02 -8.59137356e-01 1.33810771e+00 7.16854483e-02 -1.34459746e+00 3.48969311e-01 1.68065652e-01 9.62201953e-01 -4.64503527e-01 5.69216669e-01 -6.32984191e-02 4.63274360e-01 -1.08782244e+00 9.88352060e-01 4.90507573e-01 1.50728202e+00 -7.75370002e-01 9.03987363e-02 -2.94175800e-02 -1.19279671e+00 9.02935937e-02 -3.40263337e-01 2.76018620e-01 3.19615364e-01 5.52530646e-01 -4.32930946e-01 5.26532173e-01 4.36002761e-01 5.67068636e-01 -6.31916761e-01 6.84294164e-01 -5.30527711e-01 4.15988684e-01 -2.91835070e-01 1.38366178e-01 2.99535334e-01 -3.69985789e-01 1.65403202e-01 1.15849590e+00 7.64074385e-01 8.11082944e-02 7.88528100e-03 1.39912641e+00 -8.31354409e-02 -2.33404800e-01 -5.33592463e-01 -2.93400586e-01 3.75718534e-01 1.33341384e+00 -6.08895004e-01 -1.77966207e-01 -3.14159125e-01 1.35780191e+00 1.64003164e-01 8.56803715e-01 -9.97125268e-01 -6.15899503e-01 5.75816393e-01 1.27137797e-02 5.10243058e-01 -3.18044186e-01 -1.36613935e-01 -1.46855581e+00 -1.01168640e-01 -8.37355256e-01 -3.75398882e-02 -1.02274978e+00 -9.97089326e-01 8.43897820e-01 -1.85475603e-01 -1.23134840e+00 -2.53207773e-01 -5.85896492e-01 -7.16827273e-01 1.01484835e+00 -1.66631842e+00 -1.63639235e+00 -6.91177309e-01 7.27148473e-01 9.83213857e-02 5.12390919e-02 7.21836329e-01 1.88576609e-01 -5.82472265e-01 7.09658086e-01 2.70586669e-01 8.84077698e-02 8.28391254e-01 -1.28951263e+00 4.85806704e-01 1.15688288e+00 5.17603494e-02 5.57955325e-01 5.44528484e-01 -4.00183558e-01 -1.74193263e+00 -1.01760697e+00 -2.45754527e-05 4.87648174e-02 1.90235704e-01 -7.06422985e-01 -6.19435310e-01 3.57893944e-01 6.00068092e-01 -1.28512841e-03 5.43351352e-01 -3.14073116e-01 -8.01386774e-01 -2.44506657e-01 -1.01615584e+00 7.60584414e-01 1.01020288e+00 -5.67333519e-01 1.06391698e-01 -2.06930831e-01 6.41396284e-01 -2.56859481e-01 -5.91728449e-01 1.85694788e-02 6.25345826e-01 -1.03950751e+00 9.60092425e-01 -9.10730734e-02 6.99017406e-01 -7.45500028e-01 -1.78345829e-01 -1.31682277e+00 -5.17188668e-01 -9.28276539e-01 2.11862803e-01 1.21674621e+00 2.89226323e-01 -5.55258870e-01 7.03605533e-01 5.01825035e-01 -8.77269357e-02 -4.23488498e-01 -5.51571190e-01 -4.70399737e-01 -3.81347649e-02 -8.45466629e-02 9.16705310e-01 6.55817389e-01 -4.42338347e-01 1.18585512e-01 -7.37864614e-01 -5.80945164e-02 7.64771044e-01 5.73069215e-01 9.98727739e-01 -7.79463351e-01 -5.93724370e-01 -3.52281243e-01 -1.87926888e-01 -1.20916414e+00 -1.46794468e-01 -5.34342885e-01 7.19515532e-02 -1.43696845e+00 2.74716586e-01 -4.07066286e-01 -2.41176113e-02 5.70958734e-01 -3.01755875e-01 7.79514909e-01 5.69561899e-01 9.50203836e-02 -4.30967242e-01 8.19006801e-01 1.86010683e+00 -2.79204190e-01 8.95669162e-02 -6.35047853e-01 -9.51692879e-01 3.47190052e-01 6.72520578e-01 -1.01413094e-01 -6.13705754e-01 -7.04802215e-01 4.42722231e-01 -8.53941888e-02 4.42960739e-01 -8.81715119e-01 -1.05210096e-01 -3.33504587e-01 7.43479729e-01 -4.02305633e-01 5.33702314e-01 -6.88344002e-01 6.12309515e-01 4.30636853e-01 -7.26118535e-02 -9.99300256e-02 8.50969031e-02 7.22161293e-01 -3.35203946e-01 8.43502581e-02 9.85671639e-01 -2.56333321e-01 -6.58975482e-01 4.03818190e-01 -1.37010012e-02 7.42946640e-02 8.90375376e-01 -3.25828940e-01 -4.33232099e-01 -5.55738449e-01 -4.74018842e-01 -1.00682847e-01 1.00387180e+00 2.43518978e-01 8.36278439e-01 -1.55991554e+00 -7.26008117e-01 5.79822242e-01 2.54961222e-01 1.68807179e-01 5.56603193e-01 4.03262854e-01 -9.72099662e-01 1.24239493e-02 -5.47460794e-01 -5.14823198e-01 -8.66058350e-01 6.76930189e-01 5.53758964e-02 -1.39214871e-02 -7.07285166e-01 9.52344775e-01 1.00186932e+00 -9.52940248e-03 -1.36665866e-01 -3.37995976e-01 1.60586640e-01 -2.38917455e-01 4.88477677e-01 -5.00315912e-02 -4.47084606e-01 -4.51035678e-01 1.44863687e-02 8.80190790e-01 1.53790295e-01 -3.80180806e-01 1.30568957e+00 -2.43117452e-01 -2.08463073e-01 4.82135564e-02 1.32643533e+00 2.88406789e-01 -1.85325491e+00 -1.91291332e-01 -7.26608634e-01 -9.95197713e-01 -1.03594422e-01 -6.92023218e-01 -1.47529876e+00 1.06510234e+00 5.50504088e-01 -5.00168353e-02 1.45408356e+00 -2.54603684e-01 8.71601760e-01 5.80276642e-03 3.54253650e-01 -8.10133576e-01 5.04571378e-01 2.40158558e-01 9.30725813e-01 -8.60054374e-01 -1.76141471e-01 -4.36111599e-01 -8.13049734e-01 1.22145772e+00 5.42755663e-01 -1.90724432e-01 3.27589780e-01 1.25426024e-01 -8.72235280e-03 -4.46732454e-02 -5.09424984e-01 -1.78975776e-01 3.58614504e-01 7.12327540e-01 2.91963547e-01 1.06273614e-01 2.69601922e-02 1.89935803e-01 -9.16494504e-02 -2.36519724e-01 6.30746543e-01 6.04639828e-01 -1.81482926e-01 -1.32887900e+00 -4.62679774e-01 -9.84954983e-02 -2.20220283e-01 -2.27830872e-01 -3.20596784e-01 6.12514019e-01 1.98159337e-01 7.21956015e-01 6.66267946e-02 -4.34129357e-01 1.67218838e-02 -2.53581226e-01 6.84488535e-01 -4.80360359e-01 -9.39340815e-02 4.87840205e-01 -1.88995332e-01 -7.14711130e-01 -2.94045419e-01 -1.68487862e-01 -8.67886066e-01 -3.79853398e-01 -2.42209826e-02 -5.32662831e-02 5.90941906e-01 3.22361320e-01 5.79892814e-01 5.36052644e-01 7.25667536e-01 -1.05242288e+00 -5.07825203e-02 -7.47846246e-01 -8.26051235e-01 6.03485227e-01 4.18593884e-01 -5.70050955e-01 -1.51462704e-01 1.96265280e-01]
[11.507645606994629, -0.8668014407157898]
2e499fa8-631a-496f-be37-b77f4585ca17
extrapolative-controlled-sequence-generation
2303.04562
null
https://arxiv.org/abs/2303.04562v3
https://arxiv.org/pdf/2303.04562v3.pdf
Extrapolative Controlled Sequence Generation via Iterative Refinement
We study the problem of extrapolative controlled generation, i.e., generating sequences with attribute values beyond the range seen in training. This task is of significant importance in automated design, especially drug discovery, where the goal is to design novel proteins that are \textit{better} (e.g., more stable) than existing sequences. Thus, by definition, the target sequences and their attribute values are out of the training distribution, posing challenges to existing methods that aim to directly generate the target sequence. Instead, in this work, we propose Iterative Controlled Extrapolation (ICE) which iteratively makes local edits to a sequence to enable extrapolation. We train the model on synthetically generated sequence pairs that demonstrate small improvement in the attribute value. Results on one natural language task (sentiment analysis) and two protein engineering tasks (ACE2 stability and AAV fitness) show that ICE considerably outperforms state-of-the-art approaches despite its simplicity. Our code and models are available at: https://github.com/vishakhpk/iter-extrapolation.
['Ankur P. Parikh', 'He He', 'Richard Yuanzhe Pang', 'Vishakh Padmakumar']
2023-03-08
null
null
null
null
['drug-discovery']
['medical']
[ 7.34824955e-01 1.58609927e-01 -1.26300976e-01 -3.72983366e-01 -7.20730186e-01 -8.78490150e-01 3.54639649e-01 3.73626590e-01 -2.56290495e-01 1.49552798e+00 -1.23182155e-01 -4.85796720e-01 1.72646612e-01 -5.62782109e-01 -1.17469561e+00 -7.56336808e-01 1.24612093e-01 6.90874219e-01 -5.68303801e-02 -5.25470674e-01 3.63236368e-01 3.22392315e-01 -1.39275229e+00 3.17814380e-01 1.30216694e+00 4.36249137e-01 2.40314201e-01 5.69912970e-01 1.10978633e-01 4.04296815e-01 -5.57722688e-01 -2.31421307e-01 1.24513194e-01 -9.22419727e-01 -6.86285973e-01 -2.29025558e-01 8.78309160e-02 -3.08480393e-02 3.14070195e-01 9.90382016e-01 7.00381994e-01 7.41160139e-02 8.36682677e-01 -1.00945485e+00 -7.01423705e-01 4.24885929e-01 -3.28415126e-01 -9.58106071e-02 4.55799907e-01 4.69403833e-01 9.21297371e-01 -8.48215759e-01 8.96345735e-01 8.32688868e-01 4.99913037e-01 8.46744299e-01 -1.69147873e+00 -5.73719263e-01 -3.01069673e-02 -7.79351592e-02 -1.22400415e+00 -4.33137864e-01 3.92184675e-01 -5.11560023e-01 1.06105912e+00 3.58522415e-01 5.11340916e-01 1.10165143e+00 2.30978355e-01 5.30648828e-01 9.98037875e-01 -3.41107786e-01 6.56760991e-01 9.91716608e-02 -3.60657543e-01 3.88151884e-01 8.81367028e-02 6.21327572e-02 -6.25822842e-01 -4.96949941e-01 2.54401267e-01 -2.33998194e-01 -3.98738921e-01 -4.93976533e-01 -1.26968002e+00 9.09738481e-01 4.03204449e-02 -3.93395126e-02 -6.42842531e-01 -6.54958934e-02 2.24682704e-01 1.61395952e-01 2.80603766e-01 1.01486957e+00 -7.94456303e-01 -3.82482648e-01 -5.85115135e-01 7.26948440e-01 7.89847314e-01 9.52906370e-01 6.09920859e-01 -1.13489494e-01 -1.76047534e-01 7.42560625e-01 -2.09054798e-01 1.53704420e-01 3.11951935e-01 -6.77107155e-01 1.88090891e-01 4.29420441e-01 4.30636436e-01 -3.68319720e-01 -1.73299670e-01 -3.90664220e-01 -5.36973536e-01 2.91259825e-01 5.71576416e-01 -3.59019995e-01 -9.65841055e-01 1.93628848e+00 4.42281634e-01 -1.09672166e-01 1.54823542e-01 7.83415496e-01 3.91143471e-01 7.68145263e-01 3.07211876e-01 -5.71809530e-01 1.08169174e+00 -7.05462992e-01 -5.29266477e-01 -6.98033050e-02 7.19788730e-01 -6.96440101e-01 1.21431649e+00 6.02621555e-01 -1.03205800e+00 -3.57234180e-01 -1.09838200e+00 3.10843110e-01 -2.71767050e-01 -4.85304222e-02 5.85145354e-01 5.90880096e-01 -6.71792686e-01 9.85178351e-01 -5.93624532e-01 -1.36708766e-01 3.33215684e-01 4.78202790e-01 -2.29770750e-01 1.63326532e-01 -1.21170533e+00 7.58124352e-01 6.77269697e-01 -1.51406869e-01 -7.89945424e-01 -1.06554294e+00 -5.70139945e-01 -1.79143369e-01 4.36261117e-01 -6.70957923e-01 1.29751992e+00 -1.04775918e+00 -1.55370486e+00 4.24054205e-01 -1.98142618e-01 -5.07969081e-01 6.67559624e-01 -1.16301529e-01 1.00610815e-01 -2.98454821e-01 -7.88634643e-02 8.23829949e-01 5.59611082e-01 -9.13240314e-01 -3.21987271e-01 -1.31506249e-01 -1.17046870e-01 1.33526772e-01 -5.12693673e-02 -7.59200950e-04 9.13326889e-02 -6.58341408e-01 -4.76921141e-01 -1.18496895e+00 -6.82292044e-01 -1.10945627e-01 -5.71368277e-01 -1.85184911e-01 2.35777438e-01 -6.67060316e-01 1.20943058e+00 -1.59945583e+00 4.81841683e-01 3.02637726e-01 -2.63863523e-03 5.12858927e-01 -6.42949045e-02 7.11144865e-01 -4.42088753e-01 2.04724282e-01 -6.65785909e-01 3.43003571e-01 -2.67383814e-01 -1.73594400e-01 -1.72417760e-01 1.71007693e-01 3.83133501e-01 9.05850887e-01 -1.02371681e+00 -8.15602988e-02 -2.40488485e-01 4.52971429e-01 -7.77743936e-01 2.10550666e-01 -1.01158369e+00 9.66847062e-01 -5.29676735e-01 3.70224625e-01 4.72891957e-01 -3.79452646e-01 3.99689078e-01 4.45330776e-02 -6.74656332e-02 1.19654931e-01 -6.62905037e-01 1.63944769e+00 -1.25467703e-01 1.27754614e-01 -6.29725933e-01 -6.22234404e-01 1.08409226e+00 2.04295486e-01 4.50428456e-01 -3.28068286e-01 -2.93229502e-02 3.59076589e-01 4.28122789e-01 -1.66972056e-01 2.62333512e-01 -2.80604720e-01 1.36593372e-01 4.39393759e-01 -4.27027643e-01 -1.77913025e-01 4.16361988e-01 1.38123855e-01 1.09517097e+00 6.73039377e-01 4.81067717e-01 -2.24546939e-01 4.52035278e-01 3.27404141e-01 8.25640559e-01 4.16181386e-01 5.51695414e-02 5.97095668e-01 8.57454300e-01 -2.60978311e-01 -1.61628568e+00 -7.56443024e-01 5.18395156e-02 8.79809380e-01 -2.78888911e-01 -6.03148699e-01 -9.81558621e-01 -6.32536590e-01 3.12508084e-02 9.56818879e-01 -4.64081228e-01 -3.57713729e-01 -6.15456343e-01 -9.05900776e-01 4.09305841e-01 3.37254524e-01 -1.85863122e-01 -1.09971690e+00 -5.17553449e-01 4.47058469e-01 -1.73356399e-01 -6.48223758e-01 -7.92158008e-01 1.61844105e-01 -5.47920585e-01 -7.65843034e-01 -9.18147981e-01 -6.73965573e-01 7.33695447e-01 -4.11255836e-01 1.02873874e+00 -1.75896175e-02 -3.53577077e-01 -4.38221365e-01 -3.85780305e-01 -6.50971949e-01 -8.76486182e-01 1.11959048e-01 6.04875572e-02 -3.49008650e-01 2.90526479e-01 -6.22603893e-01 -7.98520803e-01 3.80969405e-01 -8.83508980e-01 3.69772494e-01 5.31385362e-01 1.16267443e+00 9.14105952e-01 -3.33982229e-01 1.09496653e+00 -1.10799015e+00 9.14792717e-01 -3.69996518e-01 -6.27212882e-01 2.96873540e-01 -7.76629150e-01 3.71267796e-01 1.00291598e+00 -6.82495594e-01 -9.84390557e-01 4.80778307e-01 -4.08566684e-01 9.47492849e-03 -2.77043171e-02 5.23249805e-01 -1.99615538e-01 1.34827003e-01 1.01159763e+00 4.17807102e-01 3.45589787e-01 -2.97000349e-01 2.54300326e-01 5.62830508e-01 9.70953181e-02 -7.20947564e-01 4.17734355e-01 -5.03808931e-02 1.99973788e-02 -6.44368887e-01 -4.70332831e-01 8.20364989e-03 -2.77085125e-01 4.15061377e-02 5.99254012e-01 -7.00169265e-01 -8.42198193e-01 4.17818218e-01 -9.61957335e-01 -5.95659912e-01 -3.41467947e-01 2.15204805e-01 -9.81660604e-01 3.29171807e-01 -4.17950064e-01 -6.58932626e-01 -5.93775332e-01 -1.30973756e+00 9.05295789e-01 1.46179780e-01 -6.70070350e-01 -5.46306372e-01 1.14752889e-01 2.88116932e-01 2.84498036e-01 6.22356236e-01 1.15839553e+00 -8.15606356e-01 -5.71016848e-01 6.72854707e-02 3.10273737e-01 3.22172463e-01 2.94956863e-01 -5.53416274e-02 -4.62850571e-01 -3.50733936e-01 -4.45102990e-01 -5.11534333e-01 6.04600728e-01 2.50929743e-01 1.01961136e+00 -3.30778092e-01 -3.57953995e-01 3.28085840e-01 1.09811831e+00 5.56793690e-01 7.11275160e-01 1.91575319e-01 3.11502397e-01 5.64236581e-01 1.07297564e+00 6.64838552e-01 -1.83641061e-01 8.10163677e-01 1.33512974e-01 6.85554221e-02 1.69818565e-01 -4.86299038e-01 3.23572874e-01 1.19520910e-01 -3.51070687e-02 -4.70591128e-01 -8.33369553e-01 4.46367979e-01 -1.94214952e+00 -8.61162722e-01 -9.66545716e-02 2.28252721e+00 1.62339747e+00 8.23908970e-02 3.01173061e-01 -2.31138363e-01 7.05733836e-01 -3.93300235e-01 -1.27822232e+00 -5.62767148e-01 -1.55278563e-01 4.45832819e-01 3.80698264e-01 3.35949123e-01 -7.56071210e-01 9.85226989e-01 5.79373789e+00 9.61530149e-01 -9.69303548e-01 -3.54852080e-01 1.12110722e+00 -7.67727895e-03 -5.65879166e-01 1.40162662e-01 -7.91712999e-01 6.18847668e-01 1.11694503e+00 -3.61745864e-01 4.78342295e-01 6.54985726e-01 5.34214854e-01 1.43226609e-01 -1.14868140e+00 5.14653563e-01 -3.37491542e-01 -1.58634973e+00 1.27509579e-01 1.01531997e-01 8.84283125e-01 -4.14437503e-01 1.22060768e-01 6.10521389e-03 3.39798242e-01 -1.25739193e+00 5.27114034e-01 5.28844893e-01 9.45926070e-01 -9.82302547e-01 4.54105884e-01 5.03841758e-01 -5.17025769e-01 2.65322894e-01 -1.91853985e-01 2.57879525e-01 2.29705274e-01 5.72474718e-01 -1.18004692e+00 2.13770345e-01 2.79888093e-01 5.04334390e-01 -2.75398195e-01 7.15607405e-01 -2.57663071e-01 5.47620296e-01 -2.37236261e-01 -4.36677903e-01 -6.54859319e-02 -4.20205444e-01 5.08641958e-01 9.22473252e-01 3.60001415e-01 8.31341594e-02 5.73671274e-02 1.14210296e+00 -1.83535069e-01 3.76740605e-01 -4.76071507e-01 -4.18269336e-01 3.47298205e-01 7.98354983e-01 -4.50250775e-01 -2.58587569e-01 3.64525802e-02 1.05662262e+00 2.11101592e-01 2.97989726e-01 -1.02615094e+00 -6.76571548e-01 9.01118159e-01 1.57545373e-01 4.58903879e-01 -4.87303585e-02 -1.57930300e-01 -7.47746706e-01 7.68436259e-03 -1.37260425e+00 1.94497049e-01 -6.79099023e-01 -1.06161201e+00 5.00044644e-01 -2.93082654e-01 -1.11065078e+00 -5.03154039e-01 -4.51245040e-01 -3.08297813e-01 1.11963570e+00 -1.16693974e+00 -7.43138373e-01 1.62916109e-01 -5.26086465e-02 7.25479364e-01 -3.33268531e-02 7.29607582e-01 7.93091953e-02 -2.59713024e-01 8.09722900e-01 3.55134338e-01 -5.05534887e-01 8.33731532e-01 -1.06452727e+00 8.56395841e-01 4.85246807e-01 -4.63809818e-01 1.00214112e+00 1.26759124e+00 -9.98636067e-01 -1.32128131e+00 -1.17055750e+00 7.99046993e-01 -4.03396249e-01 4.21059310e-01 -4.19496983e-01 -9.42442477e-01 3.34396631e-01 7.46138692e-02 -4.94928926e-01 7.96322644e-01 -3.37503791e-01 -1.30049765e-01 4.15013105e-01 -1.28202558e+00 8.22571218e-01 1.23827434e+00 6.75984621e-02 9.89520699e-02 6.30135953e-01 9.82359052e-01 -4.30909067e-01 -9.76308763e-01 4.76016045e-01 5.74909329e-01 -7.61375368e-01 9.16372240e-01 -1.17368901e+00 6.17361665e-01 -6.25344217e-01 5.51514477e-02 -1.64155304e+00 -2.20285490e-01 -9.96625185e-01 -5.14330948e-03 8.90945971e-01 1.09352100e+00 -6.50033653e-01 1.06664717e+00 5.72257936e-01 1.23243630e-02 -1.11703181e+00 -5.88844121e-01 -9.09070492e-01 3.02745104e-01 2.00236380e-01 7.73671746e-01 7.60882080e-01 2.70867020e-01 5.25279164e-01 -4.87211198e-01 -3.08019489e-01 3.98090720e-01 4.79969755e-02 6.87719882e-01 -7.87012637e-01 -6.22127891e-01 -2.74009317e-01 -7.95021653e-02 -1.10038269e+00 5.33126593e-02 -8.43333542e-01 2.30124474e-01 -1.25173068e+00 2.38544434e-01 -4.68641579e-01 1.24382190e-02 4.92226064e-01 -4.84426737e-01 -9.36987158e-03 -4.94603403e-02 -5.11112399e-02 -1.94338635e-01 7.60459006e-01 1.25741315e+00 -8.91809314e-02 -4.66933876e-01 9.35537964e-02 -9.69504595e-01 2.05442384e-01 1.23684096e+00 -4.84964997e-01 -5.34166157e-01 3.17994267e-01 5.14407277e-01 5.74368611e-02 -8.08384046e-02 -5.80568016e-01 -2.08891898e-01 -4.73275244e-01 2.18414322e-01 -2.89306641e-01 3.45800787e-01 -2.97626346e-01 5.30668259e-01 6.91595495e-01 -7.02284575e-01 1.36127532e-01 2.16558307e-01 6.38312936e-01 3.02732497e-01 -2.59833544e-01 7.88725555e-01 -1.43297523e-01 -1.98618010e-01 3.09752733e-01 -4.47362304e-01 9.54431891e-02 1.21799028e+00 -1.78782880e-01 -3.32738787e-01 -4.59718615e-01 -6.65312529e-01 1.76911578e-01 7.76940465e-01 3.00232768e-01 8.11687887e-01 -9.47947085e-01 -9.60503817e-01 6.32091835e-02 4.15858030e-01 -4.90623601e-02 -8.43893066e-02 6.97597980e-01 -6.42275035e-01 3.79358441e-01 -8.87016803e-02 -4.17224199e-01 -1.37760997e+00 6.40328586e-01 3.36666256e-01 -7.02545512e-03 -2.91705489e-01 8.05005133e-01 2.26752490e-01 -6.26576900e-01 -1.29778638e-01 1.46540301e-02 9.99390930e-02 -3.29918444e-01 4.74601418e-01 1.38044655e-01 1.08136967e-01 -2.50141919e-01 -1.99777767e-01 2.47383595e-01 -3.81152183e-01 1.06055863e-01 1.45145059e+00 4.28347468e-01 -5.41063212e-02 1.99170485e-02 9.37621772e-01 -1.75574869e-01 -1.35919440e+00 1.59611721e-02 1.24711134e-01 -4.74120319e-01 -5.12651145e-01 -1.16503918e+00 -4.75147605e-01 4.27325398e-01 5.51724434e-01 -3.50580335e-01 8.87392700e-01 -6.66131675e-02 8.40706646e-01 4.44345772e-01 3.16552460e-01 -9.62884068e-01 -3.08592413e-02 2.57794946e-01 9.06477809e-01 -9.08267617e-01 1.51764210e-02 -4.70293969e-01 -9.54694092e-01 8.01677883e-01 5.82243979e-01 3.03861201e-01 1.46725357e-01 1.16844095e-01 -2.05136344e-01 1.29285529e-01 -1.02100003e+00 -6.64837891e-03 -1.72140852e-01 6.11539960e-01 8.05212855e-01 6.43154904e-02 -7.05859542e-01 2.34214857e-01 -2.16956586e-01 2.09597006e-01 5.94281197e-01 1.19047308e+00 -4.17911679e-01 -1.55067706e+00 -1.67562544e-01 4.95031893e-01 -5.08507133e-01 -3.88906181e-01 -7.66405523e-01 1.90469399e-01 -2.95809042e-02 9.16846335e-01 -5.08452594e-01 -2.10899949e-01 4.20331359e-01 1.58914715e-01 5.09022832e-01 -4.74807590e-01 -5.36937237e-01 -3.66047882e-02 3.92695367e-01 -1.71756059e-01 7.61555135e-02 -8.75845850e-01 -1.48877871e+00 -2.46561125e-01 -4.36118901e-01 5.89992523e-01 6.67676091e-01 4.52084869e-01 7.98923016e-01 4.98178512e-01 4.63818908e-01 -3.73801172e-01 -7.49118388e-01 -7.61020720e-01 -1.92960665e-01 4.61964995e-01 1.98999971e-01 -3.82239610e-01 9.93291661e-03 4.27827328e-01]
[4.726588249206543, 5.601823806762695]
41cc94c4-2ff6-4881-ba81-fdc807562956
humans-in-humans-out-on-gpt-converging-toward
2303.17276
null
https://arxiv.org/abs/2303.17276v1
https://arxiv.org/pdf/2303.17276v1.pdf
Humans in Humans Out: On GPT Converging Toward Common Sense in both Success and Failure
Increase in computational scale and fine-tuning has seen a dramatic improvement in the quality of outputs of large language models (LLMs) like GPT. Given that both GPT-3 and GPT-4 were trained on large quantities of human-generated text, we might ask to what extent their outputs reflect patterns of human thinking, both for correct and incorrect cases. The Erotetic Theory of Reason (ETR) provides a symbolic generative model of both human success and failure in thinking, across propositional, quantified, and probabilistic reasoning, as well as decision-making. We presented GPT-3, GPT-3.5, and GPT-4 with 61 central inference and judgment problems from a recent book-length presentation of ETR, consisting of experimentally verified data-points on human judgment and extrapolated data-points predicted by ETR, with correct inference patterns as well as fallacies and framing effects (the ETR61 benchmark). ETR61 includes classics like Wason's card task, illusory inferences, the decoy effect, and opportunity-cost neglect, among others. GPT-3 showed evidence of ETR-predicted outputs for 59% of these examples, rising to 77% in GPT-3.5 and 75% in GPT-4. Remarkably, the production of human-like fallacious judgments increased from 18% in GPT-3 to 33% in GPT-3.5 and 34% in GPT-4. This suggests that larger and more advanced LLMs may develop a tendency toward more human-like mistakes, as relevant thought patterns are inherent in human-produced training data. According to ETR, the same fundamental patterns are involved both in successful and unsuccessful ordinary reasoning, so that the "bad" cases could paradoxically be learned from the "good" cases. We further present preliminary evidence that ETR-inspired prompt engineering could reduce instances of these mistakes.
['Vincent Wang-Maścianica', 'Philipp Koralus']
2023-03-30
null
null
null
null
['common-sense-reasoning']
['reasoning']
[-5.72639257e-02 7.32121348e-01 2.85435438e-01 -3.70321542e-01 -4.94179875e-01 -5.88932097e-01 9.17457461e-01 1.10370211e-01 -2.77534723e-01 6.79394901e-01 5.40769219e-01 -8.32867563e-01 -4.31106687e-01 -9.97981191e-01 -6.94001496e-01 -2.91310847e-01 2.22304195e-01 8.45054686e-01 4.12595719e-02 -5.30683041e-01 7.96292603e-01 1.84376404e-01 -1.07672668e+00 6.91426158e-01 8.79573643e-01 5.71111143e-01 -5.53738624e-02 8.54449689e-01 4.82021868e-02 1.54106712e+00 -7.43151844e-01 -1.04618561e+00 -3.75147946e-02 -3.32668334e-01 -8.85224879e-01 -4.99653637e-01 3.17987144e-01 3.34601812e-02 -3.83148313e-01 9.02550638e-01 5.31882823e-01 5.84102012e-02 9.64284301e-01 -1.01653707e+00 -1.22835684e+00 1.24701762e+00 -2.36499190e-01 2.83238441e-01 7.20982492e-01 5.71575463e-01 1.03167474e+00 -7.62741804e-01 4.30060506e-01 1.99887598e+00 8.02723587e-01 6.95345581e-01 -1.50701678e+00 -6.08735263e-01 -1.35695815e-01 2.49697845e-02 -1.12849212e+00 -2.61411399e-01 2.28775784e-01 -5.88243067e-01 1.38262951e+00 2.25992844e-01 7.03539789e-01 1.48131120e+00 7.22253323e-01 6.09732330e-01 1.68193483e+00 -6.31255865e-01 4.60686415e-01 9.05798823e-02 2.23845318e-01 5.54498732e-01 4.78238851e-01 4.39273715e-01 -6.71162605e-01 -3.45005006e-01 8.45933437e-01 -5.21408379e-01 6.95057167e-03 4.71254915e-01 -1.43256402e+00 8.83387148e-01 4.16629136e-01 4.55860317e-01 -4.26713616e-01 2.69785076e-01 1.89347968e-01 3.38700235e-01 1.86715081e-01 9.33070183e-01 -6.50646150e-01 -3.76006901e-01 -7.12956905e-01 8.11999261e-01 1.23442352e+00 6.83327377e-01 1.92859724e-01 7.85756558e-02 -4.14129257e-01 6.75514996e-01 2.74157315e-01 6.90602422e-01 6.98529601e-01 -1.28393734e+00 4.87088054e-01 4.78509516e-01 3.61390591e-01 -1.46117496e+00 -7.25630105e-01 -5.12160063e-01 -4.43993300e-01 1.56894073e-01 8.17453206e-01 -7.53318816e-02 -5.45227766e-01 1.96239340e+00 -3.86899352e-01 -6.13792300e-01 3.17223340e-01 6.72764719e-01 4.64021176e-01 6.42483354e-01 4.37948793e-01 3.80520895e-02 1.52296436e+00 -5.11395991e-01 -4.18361783e-01 -7.95545995e-01 8.99403572e-01 -8.13340366e-01 1.40113461e+00 6.05307877e-01 -1.26411307e+00 -4.35847640e-01 -6.70664787e-01 -1.14289872e-01 -1.34974852e-01 -1.89232469e-01 7.42896497e-01 6.63217425e-01 -1.16603589e+00 6.51814044e-01 -2.55473763e-01 -3.12037259e-01 3.88279408e-01 -7.63414279e-02 1.21846810e-01 -2.06572756e-01 -1.46726477e+00 1.51144218e+00 5.28366745e-01 9.14134905e-02 -6.67837203e-01 -4.74777073e-01 -4.41364616e-01 3.13418299e-01 3.59865457e-01 -8.26722801e-01 1.50327182e+00 -7.45923877e-01 -1.26015699e+00 1.06840301e+00 -1.67631749e-02 -4.90446597e-01 6.92958117e-01 -2.30454773e-01 -6.65009260e-01 -2.29928359e-01 2.11478800e-01 5.48805773e-01 5.33774674e-01 -8.92891645e-01 -2.18841180e-01 -4.93131801e-02 1.25097126e-01 5.13155498e-02 5.70856571e-01 2.05650285e-01 7.19904780e-01 -7.90942609e-01 1.35156348e-01 -6.78429961e-01 -2.40415167e-02 -2.90227085e-01 -4.39075857e-01 -6.47288799e-01 -1.59420282e-01 -6.54805005e-01 1.09552455e+00 -1.97559273e+00 -1.78628489e-01 2.58156508e-01 4.89293188e-01 1.78451892e-02 -1.17145278e-01 5.29238164e-01 -1.36488572e-01 5.03934681e-01 1.85438320e-01 2.27749303e-01 7.40017593e-01 3.05737257e-01 -7.09134877e-01 -7.48885497e-02 2.20420271e-01 1.22829938e+00 -1.01328337e+00 -3.94505709e-01 -6.24455176e-02 -7.22617432e-02 -7.99234688e-01 -1.12881750e-01 -4.11873579e-01 -1.15049845e-02 -2.78122306e-01 4.19530988e-01 1.21631354e-01 -5.03034472e-01 9.02575701e-02 2.28513062e-01 -5.78458197e-02 7.89538622e-01 -6.18532002e-01 9.63768005e-01 -2.59628803e-01 6.60721660e-01 -6.48596704e-01 -5.85692286e-01 8.74001205e-01 3.00966084e-01 -7.30919957e-01 -1.02702105e+00 3.10254157e-01 4.55819786e-01 7.25429654e-01 -5.66364229e-01 5.45212805e-01 -8.12711298e-01 -4.01899725e-01 6.57674372e-01 -7.68208876e-02 -5.40313721e-01 2.45904580e-01 4.11156446e-01 1.09616983e+00 -1.74316123e-01 4.45744991e-01 -5.61254263e-01 3.10530365e-01 1.18204527e-01 4.67052728e-01 1.38704097e+00 -3.50059010e-02 2.64225185e-01 1.02385151e+00 -5.57677865e-01 -1.10493731e+00 -1.03596306e+00 -1.03620417e-01 1.21025717e+00 -3.86024565e-01 -4.69430268e-01 -7.43802249e-01 -1.44234374e-01 1.12001877e-03 1.90048575e+00 -6.70536041e-01 -3.91087055e-01 -4.76741344e-01 -6.39619708e-01 9.07451570e-01 4.99661744e-01 5.14137447e-01 -1.33729506e+00 -7.80023277e-01 4.00871783e-01 -2.36096114e-01 -9.00977671e-01 1.79307386e-01 1.38437245e-02 -7.61923194e-01 -8.85117233e-01 -3.02207559e-01 -2.33899817e-01 4.82996225e-01 -3.36580336e-01 1.38794065e+00 2.00511321e-01 -1.98116563e-02 1.72247097e-01 -2.59777099e-01 -4.66496021e-01 -8.90511334e-01 -4.85217214e-01 1.32912993e-01 -7.36808658e-01 6.27880454e-01 -4.30426329e-01 -2.54137963e-01 3.97738159e-01 -4.05333668e-01 2.75656164e-01 7.16392159e-01 8.76040220e-01 -2.79489011e-01 -2.27216352e-02 4.38568741e-01 -7.01754391e-01 1.01831567e+00 -3.82711202e-01 -3.04722875e-01 2.98388183e-01 -6.46828949e-01 2.88233221e-01 5.52076280e-01 -5.41521192e-01 -1.23331034e+00 -1.17623508e+00 9.31690782e-02 2.62317479e-01 -5.63616604e-02 4.68245506e-01 2.95676231e-01 2.61368543e-01 1.24478054e+00 1.81890488e-01 -4.22556341e-01 -1.37330294e-01 3.32536221e-01 3.96026760e-01 4.56022620e-01 -1.29543698e+00 5.63074946e-01 -2.71599054e-01 -4.01336253e-01 -3.15431118e-01 -1.19423532e+00 5.51047266e-01 9.23366100e-02 2.29794011e-02 7.23244786e-01 -8.15302372e-01 -1.09296978e+00 3.43811184e-01 -1.29840446e+00 -7.14920223e-01 -4.02801633e-01 3.87603849e-01 -7.93789387e-01 -3.90560664e-02 -8.83323669e-01 -9.57303762e-01 -1.64233521e-01 -1.00821412e+00 6.42229259e-01 2.75280058e-01 -1.13063037e+00 -1.01581812e+00 -1.10241190e-01 4.80673552e-01 5.52293360e-01 -1.42303482e-01 1.52220225e+00 -1.16622031e+00 -2.96538502e-01 -1.35595322e-01 -3.51569891e-01 2.23202676e-01 -4.80851948e-01 7.51872966e-03 -7.62600422e-01 1.62080035e-01 3.32051963e-01 -5.80901265e-01 4.81558502e-01 1.14184514e-01 6.78742409e-01 -6.30581319e-01 -1.21209949e-01 -1.29260011e-02 1.10608864e+00 3.25591803e-01 7.59171128e-01 2.65431732e-01 2.66062468e-01 6.74195170e-01 2.40463212e-01 2.01389551e-01 4.91455853e-01 2.73024708e-01 -3.87097359e-01 6.65169954e-01 7.74125084e-02 -6.56850636e-01 5.63697457e-01 6.40366495e-01 -3.29795003e-01 -4.30224270e-01 -1.38236344e+00 1.06009170e-01 -1.71863782e+00 -1.23865366e+00 -1.54848784e-01 1.93371439e+00 1.00651503e+00 7.29670167e-01 -2.64936954e-01 8.16126689e-02 5.81840098e-01 -2.22428776e-02 -2.36617386e-01 -9.20454681e-01 -2.85303861e-01 2.60758579e-01 2.05377340e-02 5.80231488e-01 -2.39426270e-01 1.00663781e+00 7.53352451e+00 7.88523972e-01 -7.02349901e-01 -4.71845903e-02 7.75973320e-01 7.70473480e-03 -5.26227176e-01 7.03715906e-02 -4.90879893e-01 4.26462322e-01 1.28078055e+00 -5.32163858e-01 5.63924432e-01 6.67948604e-01 1.84373200e-01 -4.86681402e-01 -1.42845726e+00 9.01285470e-01 -2.96863914e-02 -1.13536024e+00 9.99762043e-02 -1.48801148e-01 6.05161548e-01 -3.23165745e-01 3.29578482e-02 8.56056929e-01 9.90492940e-01 -1.29755545e+00 1.39936554e+00 6.45990670e-01 2.74785906e-01 -4.06187803e-01 7.94491529e-01 6.70868635e-01 -1.84129387e-01 -2.61974216e-01 -5.96653283e-01 -9.07002509e-01 -5.74329216e-03 6.73109770e-01 -6.41781449e-01 -8.69174004e-02 3.97889525e-01 2.72680134e-01 -7.16371000e-01 3.87469977e-01 -9.03407454e-01 8.47570360e-01 -2.46063739e-01 -4.30114001e-01 1.03219248e-01 2.16829479e-01 5.33976674e-01 1.18511772e+00 1.83399826e-01 5.11343360e-01 -4.05091107e-01 1.48876739e+00 1.33903965e-01 -2.33358636e-01 -3.15540254e-01 -3.33837420e-01 5.80715299e-01 7.76034534e-01 -7.28055000e-01 -6.43504798e-01 -5.93753569e-02 4.44405705e-01 4.09954518e-01 3.55142951e-01 -8.00827086e-01 -4.54452708e-02 1.74729228e-01 -4.56802137e-02 -9.53691304e-02 -2.48764697e-02 -6.10900283e-01 -1.27789676e+00 -2.80098289e-01 -1.17064250e+00 1.44913808e-01 -1.47663486e+00 -1.65259397e+00 4.27471459e-01 6.97850585e-02 -3.13224107e-01 -3.19861025e-01 -9.05432522e-01 -6.52118623e-01 1.06920195e+00 -6.31179631e-01 -5.51035702e-01 1.23483993e-01 2.35343367e-01 3.49260271e-01 5.55217592e-03 8.55844557e-01 -2.83384025e-01 -2.76927888e-01 3.95397782e-01 -3.47363740e-01 1.87795132e-01 5.78377783e-01 -1.24829853e+00 7.89408028e-01 5.29978573e-01 -5.37523292e-02 1.07250881e+00 1.11303437e+00 -5.98528683e-01 -7.94591188e-01 -4.38801944e-01 1.34871483e+00 -1.01943696e+00 9.90886211e-01 -2.20710933e-01 -8.58063459e-01 1.00973523e+00 -1.11271767e-03 -5.46812713e-01 4.69702482e-01 2.60317057e-01 -8.03909123e-01 4.56890315e-01 -1.20884085e+00 1.07107604e+00 1.11370373e+00 -6.75987244e-01 -1.69597208e+00 4.28918004e-01 6.23033226e-01 -4.31404352e-01 -6.77587032e-01 -1.57190591e-01 5.82034290e-01 -1.18726563e+00 8.47822428e-01 -7.04039156e-01 1.05140924e+00 1.46691322e-01 -3.49055707e-01 -1.42271316e+00 -7.52643049e-01 -6.01255357e-01 2.20279053e-01 9.83868778e-01 5.90013623e-01 -1.07308936e+00 2.51051337e-02 1.15935361e+00 3.19187558e-04 -4.16477710e-01 -7.67687917e-01 -6.19136810e-01 6.15956366e-01 -6.67686224e-01 3.55773777e-01 8.39441478e-01 3.14751297e-01 4.78392750e-01 2.07357183e-02 -1.80949032e-01 6.11335218e-01 -1.05221733e-01 3.24999511e-01 -1.29697239e+00 -5.47483325e-01 -7.83107162e-01 -2.10995644e-01 -6.72559977e-01 7.90566877e-02 -9.29949045e-01 -2.22513974e-02 -1.38500512e+00 2.45690256e-01 -3.75886708e-01 1.85474023e-01 5.96934736e-01 -2.64366865e-01 -2.45213524e-01 5.34195125e-01 3.54903758e-01 -2.81844616e-01 1.25981420e-01 1.29756105e+00 1.90263346e-01 1.69293746e-01 -4.04647827e-01 -1.18872869e+00 1.09153831e+00 8.26034427e-01 -6.39428556e-01 -1.89402893e-01 -3.46147358e-01 1.20234215e+00 1.77877188e-01 8.41311276e-01 -9.38652337e-01 5.93499243e-02 -3.52667928e-01 6.76384807e-01 -8.41219947e-02 -8.42589587e-02 -3.63283098e-01 8.93210173e-02 6.68462574e-01 -8.21981668e-01 2.14957163e-01 3.07524800e-01 3.42643112e-01 2.47685954e-01 -1.67908877e-01 4.68810111e-01 -5.52342653e-01 -5.35161197e-01 -8.18192661e-01 -7.22834826e-01 5.93154550e-01 5.58111012e-01 -3.52666751e-02 -1.06793785e+00 -2.75998294e-01 -8.49991977e-01 1.93575136e-02 2.57689118e-01 2.90028989e-01 3.98814976e-01 -1.00391257e+00 -8.82283449e-01 -4.91071492e-02 -1.07911728e-01 -3.16942394e-01 1.77269623e-01 9.99214947e-01 -6.25962317e-01 6.43422663e-01 -2.35140413e-01 -1.21243440e-01 -4.30982381e-01 5.25081992e-01 4.02222484e-01 -2.60331482e-01 -5.43254316e-01 1.08975732e+00 3.58073205e-01 -4.49406952e-01 -3.04981112e-01 -6.64655209e-01 2.83769011e-01 -1.66163951e-01 5.48078060e-01 3.63666475e-01 -3.92531455e-01 -2.05324590e-01 -3.00102174e-01 3.45169812e-01 -2.43983790e-01 -2.73541152e-01 9.47784364e-01 1.04049236e-01 -3.22697073e-01 7.82134175e-01 3.96353006e-01 -1.08943716e-01 -6.89750552e-01 -1.11870781e-01 1.38694257e-01 -2.99635798e-01 -3.23249847e-01 -1.61107624e+00 -1.62828833e-01 9.34696078e-01 -2.45924011e-01 2.40428448e-01 4.04732168e-01 1.74041286e-01 2.90010542e-01 7.11416066e-01 8.23217452e-01 -8.93824339e-01 6.84689134e-02 7.88481534e-01 1.28477788e+00 -7.66348362e-01 -5.86417466e-02 1.25545993e-01 -7.17365503e-01 1.02015889e+00 5.79605401e-01 -2.65981555e-01 6.63173525e-03 -3.33335772e-02 -1.70211673e-01 -3.78131866e-01 -1.38405764e+00 4.98434424e-01 -4.30054888e-02 3.39383900e-01 5.70087373e-01 4.67672318e-01 -4.90676761e-01 9.19518828e-01 -9.69879389e-01 2.37983227e-01 6.61804199e-01 8.70823085e-01 -4.33834881e-01 -5.49614608e-01 -7.21622229e-01 4.58561122e-01 -2.50545710e-01 -4.64208066e-01 -4.08834100e-01 8.94610763e-01 1.12799414e-01 9.13525701e-01 2.12163907e-02 -3.08706194e-01 2.51818061e-01 5.17174840e-01 6.76356673e-01 -5.58636725e-01 -7.96081543e-01 -3.10852617e-01 4.52330530e-01 -4.93736893e-01 -4.75960560e-02 -4.75658715e-01 -1.19020271e+00 -9.54325318e-01 -4.91818972e-02 3.09757348e-02 4.09698300e-02 1.15126073e+00 8.22422430e-02 4.44818109e-01 -2.86446959e-01 -5.84188819e-01 -1.05626822e+00 -1.14081168e+00 -5.93572319e-01 2.47651577e-01 -1.28015399e-01 -5.83415926e-01 -8.30948532e-01 -2.47182027e-01]
[9.742290496826172, 7.506002902984619]
7a8bc600-3b76-401e-b00b-a85a82f319c3
towards-clustering-friendly-representations
2106.09874
null
https://arxiv.org/abs/2106.09874v1
https://arxiv.org/pdf/2106.09874v1.pdf
Towards Clustering-friendly Representations: Subspace Clustering via Graph Filtering
Finding a suitable data representation for a specific task has been shown to be crucial in many applications. The success of subspace clustering depends on the assumption that the data can be separated into different subspaces. However, this simple assumption does not always hold since the raw data might not be separable into subspaces. To recover the ``clustering-friendly'' representation and facilitate the subsequent clustering, we propose a graph filtering approach by which a smooth representation is achieved. Specifically, it injects graph similarity into data features by applying a low-pass filter to extract useful data representations for clustering. Extensive experiments on image and document clustering datasets demonstrate that our method improves upon state-of-the-art subspace clustering techniques. Especially, its comparable performance with deep learning methods emphasizes the effectiveness of the simple graph filtering scheme for many real-world applications. An ablation study shows that graph filtering can remove noise, preserve structure in the image, and increase the separability of classes.
['Ling Tian', 'Guangchun Luo', 'Zhao Kang', 'Zhengrui Ma']
2021-06-18
null
null
null
null
['graph-similarity']
['graphs']
[-7.12807663e-03 -2.50250399e-01 -1.56057671e-01 -2.75388986e-01 -4.26633894e-01 -7.78698504e-01 4.69686061e-01 1.83540300e-01 -1.06404208e-01 4.62948419e-02 4.48940098e-01 -2.45393328e-02 -3.24498773e-01 -5.73833346e-01 -3.89678091e-01 -1.19081044e+00 -7.63191581e-02 2.71266490e-01 -2.90046372e-02 1.76010564e-01 1.01065353e-01 7.00968504e-01 -1.49758506e+00 4.48657453e-01 8.61805081e-01 6.89439595e-01 1.91853434e-01 1.23864628e-01 -2.76217580e-01 3.67644221e-01 -3.83730859e-01 6.11775592e-02 2.84359127e-01 -4.41055149e-01 -6.46130204e-01 5.40506661e-01 4.34602827e-01 1.55609146e-01 -6.13722563e-01 1.36995554e+00 2.11041003e-01 4.05340731e-01 7.84348071e-01 -1.16731870e+00 -5.89825034e-01 4.91039127e-01 -7.42651165e-01 -1.46680087e-01 4.17675860e-02 -1.53955817e-01 1.01721954e+00 -7.73272038e-01 6.22556448e-01 1.15595508e+00 6.56575859e-01 3.18422526e-01 -1.71749187e+00 -5.56991816e-01 2.21552983e-01 1.21537633e-01 -1.51506114e+00 -3.31547469e-01 1.11702454e+00 -5.06377876e-01 4.67893749e-01 3.91096979e-01 6.61769867e-01 8.06417584e-01 -7.26956204e-02 1.05712855e+00 9.40719664e-01 -2.06074744e-01 4.57229465e-01 -1.64162993e-01 5.13687074e-01 4.78823394e-01 3.52521002e-01 -3.32895637e-01 -3.21542829e-01 -1.53151840e-01 5.50029159e-01 3.34839165e-01 -5.73027670e-01 -1.14240026e+00 -1.21166372e+00 8.29063833e-01 6.95634305e-01 5.99717498e-01 -1.54683620e-01 -5.16945571e-02 3.92703474e-01 1.31189615e-01 3.47111046e-01 4.69899297e-01 8.66700709e-02 3.69186610e-01 -1.21795917e+00 -8.80440399e-02 5.48783362e-01 8.71758282e-01 7.80347109e-01 3.10067628e-02 -1.41957700e-01 7.44215250e-01 1.84684351e-01 2.39154458e-01 3.90134335e-01 -1.01858222e+00 1.22214131e-01 9.18202162e-01 -2.98552513e-01 -1.28209376e+00 -4.73976731e-01 -6.87882364e-01 -1.41182876e+00 5.80385402e-02 5.01991391e-01 2.10184753e-01 -9.49149907e-01 1.63764095e+00 1.72572464e-01 2.12687507e-01 -6.56895638e-02 8.99322450e-01 8.21658015e-01 4.05706167e-01 -1.27876088e-01 -3.06831211e-01 9.25496101e-01 -7.38389075e-01 -7.95976102e-01 -1.15347937e-01 4.88700151e-01 -5.36446393e-01 9.86790419e-01 4.28113520e-01 -6.48903668e-01 -5.76773345e-01 -9.55552161e-01 3.40028666e-02 -3.10618967e-01 2.27392539e-01 8.66496921e-01 5.50401151e-01 -9.69152153e-01 6.94463253e-01 -9.37245488e-01 -5.94401717e-01 5.58224678e-01 4.64812487e-01 -6.82872057e-01 -2.20834389e-01 -5.80193102e-01 1.97350785e-01 4.39183980e-01 -9.78562166e-04 -6.02958381e-01 -3.39218467e-01 -6.98058903e-01 2.33461708e-01 2.40169659e-01 -7.16972411e-01 4.37786847e-01 -9.13843095e-01 -9.87591028e-01 7.62180686e-01 -3.41396868e-01 -2.01013952e-01 2.08440766e-01 -1.07503161e-01 -2.87616223e-01 4.31653500e-01 -7.59363174e-04 3.18440825e-01 1.19393194e+00 -1.54047012e+00 -2.90695310e-01 -6.22408330e-01 -3.93537551e-01 2.38598347e-01 -7.56967783e-01 -1.54679477e-01 -8.44236135e-01 -8.19991589e-01 7.33601809e-01 -9.06163454e-01 -4.05377537e-01 -1.77050292e-01 -4.64882016e-01 -1.36611387e-01 1.16387141e+00 -6.30686104e-01 1.33474910e+00 -2.71656489e+00 4.75530863e-01 5.75864792e-01 7.03451455e-01 7.23906383e-02 -1.48883477e-01 5.50996721e-01 -3.95329833e-01 5.15302904e-02 -3.80787998e-01 -2.55525887e-01 -1.23180717e-01 2.12926622e-02 -3.97081792e-01 9.12272513e-01 -1.74081713e-01 7.28701472e-01 -9.15514886e-01 -3.78619075e-01 3.35068882e-01 5.96102595e-01 -5.23252249e-01 7.18651786e-02 2.35145822e-01 4.78753537e-01 -3.50088775e-01 3.07188153e-01 7.45235443e-01 -4.18850809e-01 4.06603187e-01 -5.38014174e-01 1.91804022e-01 -6.71291491e-03 -1.42930150e+00 1.90066540e+00 1.75410360e-01 6.95470214e-01 4.18526202e-01 -1.39845049e+00 7.61698484e-01 -1.30186127e-02 8.38346303e-01 -2.13326097e-01 1.00006171e-01 -4.99547906e-02 4.44920212e-02 -1.33305341e-01 1.18218914e-01 1.39326498e-01 9.80314091e-02 4.60006624e-01 1.83818850e-03 -1.16947256e-02 1.79631263e-01 4.70733970e-01 1.02760911e+00 -2.02422231e-01 6.52499646e-02 -7.41571724e-01 3.80460322e-01 1.66875161e-02 5.27988434e-01 6.25067174e-01 -1.90240264e-01 9.06487107e-01 3.05633336e-01 -2.82186776e-01 -7.16707230e-01 -1.17691028e+00 -7.83581212e-02 8.36219490e-01 3.63698512e-01 -6.27197146e-01 -1.01079893e+00 -8.48643422e-01 4.73386608e-02 4.96031880e-01 -6.41742587e-01 -5.59109926e-01 -4.39433068e-01 -8.43071282e-01 1.71272233e-01 5.85744917e-01 4.56874430e-01 -5.65538585e-01 -1.28489316e-01 -1.07331663e-01 -3.11161906e-01 -8.99727166e-01 -6.25717103e-01 2.50496864e-01 -1.05285418e+00 -1.07911408e+00 -4.16100055e-01 -1.02210486e+00 1.13195944e+00 1.11048460e+00 9.20824468e-01 2.06747651e-01 -8.92948955e-02 4.69373137e-01 -3.42243046e-01 1.56505704e-01 -1.67712748e-01 6.57649040e-02 1.79967150e-01 2.64227808e-01 6.96062088e-01 -7.20908284e-01 -6.21860623e-01 2.53713191e-01 -1.00861967e+00 -5.92144877e-02 4.23379868e-01 8.59273195e-01 6.76669836e-01 7.41076589e-01 2.54870504e-01 -7.72118211e-01 6.42305076e-01 -1.44298822e-01 -2.73657769e-01 1.88512638e-01 -4.28377241e-01 5.78331985e-02 9.63509917e-01 -3.14270735e-01 -5.59385300e-01 5.06772816e-01 4.07932609e-01 -7.47718692e-01 -3.62704784e-01 4.59388614e-01 -4.11680162e-01 -8.33771843e-03 6.09436035e-01 4.15439546e-01 2.63552010e-01 -6.67932808e-01 6.38414383e-01 5.98860085e-01 5.79088926e-01 -4.19498414e-01 1.16314936e+00 9.34402049e-01 1.26709817e-02 -1.14051032e+00 -6.56888485e-01 -9.20850039e-01 -1.12830353e+00 -1.09197974e-01 7.87343860e-01 -1.03033459e+00 -4.99547660e-01 1.66242197e-01 -7.11527228e-01 -7.65740871e-02 -2.80125797e-01 4.24835950e-01 -3.96504819e-01 8.15694034e-01 -3.62079710e-01 -5.55625439e-01 -1.04487605e-01 -9.98877883e-01 9.63027060e-01 7.17711821e-03 -2.86737502e-01 -1.03853881e+00 -2.30642587e-01 2.33003274e-01 7.17654882e-04 1.09284885e-01 1.04093528e+00 -5.63753426e-01 -4.99957234e-01 -2.53223091e-01 -2.13160887e-01 2.33382300e-01 4.32712942e-01 -6.44160062e-03 -9.95812953e-01 -8.23828399e-01 1.20062925e-01 5.06070033e-02 1.32602024e+00 4.75770712e-01 1.38707924e+00 -6.33107796e-02 -6.17068708e-01 9.25367594e-01 1.31864583e+00 -7.88834319e-03 4.66131032e-01 2.60629207e-02 1.18706286e+00 7.26568103e-01 1.47625655e-01 6.59755245e-02 9.86449942e-02 5.20369709e-01 2.34735340e-01 -3.46779466e-01 -2.70067334e-01 -6.70142099e-02 3.40834737e-01 1.04076111e+00 7.93996602e-02 1.12497643e-01 -1.00023532e+00 5.61239541e-01 -2.10795593e+00 -1.04243898e+00 -3.38245094e-01 2.39456606e+00 4.42589313e-01 -2.11625710e-01 3.01026404e-01 3.46525133e-01 8.62253726e-01 2.02675626e-01 -5.28303027e-01 2.09427357e-01 -3.31672579e-01 -1.67088479e-01 2.90134162e-01 2.32599989e-01 -1.50064492e+00 9.76589322e-01 6.45588064e+00 9.11238730e-01 -1.18594396e+00 -2.74830729e-01 4.52932000e-01 3.91208380e-03 -2.60248750e-01 1.45062979e-03 -3.57738107e-01 2.82857835e-01 3.87879938e-01 -2.98129022e-01 7.04493284e-01 8.41709554e-01 1.49558231e-01 2.41319343e-01 -1.21348679e+00 1.18513060e+00 9.58660617e-02 -1.30274785e+00 3.05927843e-01 1.51388779e-01 6.89476788e-01 -1.03829928e-01 1.04474761e-01 -3.60993408e-02 3.60280335e-01 -1.06949520e+00 4.69607770e-01 2.70121455e-01 5.14915168e-01 -9.33930695e-01 3.50003839e-01 2.92014301e-01 -1.30857968e+00 -1.74944833e-01 -6.73160076e-01 1.16795458e-01 -2.87833691e-01 9.57328498e-01 -5.16517103e-01 6.35143816e-01 8.20532680e-01 1.09213030e+00 -8.08713675e-01 1.09070373e+00 2.97937775e-03 6.32145107e-01 -3.01023304e-01 4.01933163e-01 1.67115211e-01 -7.93497145e-01 5.58108568e-01 1.26442742e+00 1.74983963e-01 1.65615659e-02 4.12338108e-01 9.42685425e-01 -7.03403875e-02 2.69065291e-01 -8.80813420e-01 -2.37397000e-01 3.11060011e-01 1.37089324e+00 -1.27855229e+00 -1.49922535e-01 -4.31661963e-01 1.02859020e+00 3.54254246e-01 7.12085247e-01 -4.22055900e-01 -3.95899117e-01 6.33755445e-01 1.10867143e-01 4.16510522e-01 -6.77830398e-01 -6.79493129e-01 -1.36106670e+00 -5.15570231e-02 -1.01515496e+00 6.13440812e-01 -3.22192192e-01 -1.38908350e+00 4.27566558e-01 -2.45344549e-01 -1.45815670e+00 1.02464564e-01 -4.72779810e-01 -5.82052410e-01 5.63893795e-01 -9.48437274e-01 -1.19857049e+00 -4.63414133e-01 8.87445092e-01 3.02708715e-01 -2.25516215e-01 6.88208461e-01 1.11466102e-01 -7.71851718e-01 3.38232309e-01 6.52935803e-01 3.66483688e-01 7.22973704e-01 -1.41424465e+00 1.61982656e-01 1.19665205e+00 6.03324413e-01 1.12840891e+00 5.67842305e-01 -6.67596757e-01 -1.70628762e+00 -1.26112545e+00 3.34038168e-01 -4.52134013e-01 6.11477494e-01 -6.59878314e-01 -1.23889625e+00 5.56113541e-01 2.62726903e-01 -3.12923454e-02 9.33698654e-01 3.20144027e-01 -6.04767382e-01 -2.36698076e-01 -7.82615125e-01 7.32114971e-01 1.13969195e+00 -6.50437176e-01 -5.65142751e-01 4.53428417e-01 4.39958453e-01 1.36633947e-01 -6.95776105e-01 2.87366033e-01 2.84492493e-01 -1.02728975e+00 1.17183697e+00 -7.46597707e-01 1.39664263e-01 -5.81162274e-01 -2.43834153e-01 -1.40224242e+00 -9.91381884e-01 -6.38316989e-01 -2.27748930e-01 1.22601283e+00 8.08950700e-03 -3.09926808e-01 8.84052396e-01 5.63905716e-01 1.62494499e-02 -3.75727147e-01 -6.39338851e-01 -9.95314121e-01 1.09715849e-01 -2.43861899e-01 5.06225467e-01 1.40865612e+00 2.48234376e-01 4.53828037e-01 -3.07498500e-02 3.23679060e-01 9.40534592e-01 6.69898331e-01 8.69707704e-01 -1.51416385e+00 -1.26266882e-01 -7.30321407e-01 -4.86147821e-01 -1.01445282e+00 4.32434440e-01 -1.21048880e+00 -1.27479360e-01 -1.74015701e+00 4.09249514e-01 -1.97729334e-01 -4.35672790e-01 3.64212602e-01 -3.44323218e-01 2.12850675e-01 2.37033501e-01 6.11681938e-01 -6.90256953e-01 6.37629867e-01 1.08793819e+00 -3.71587515e-01 -3.32051516e-01 -1.31078258e-01 -9.48812425e-01 6.73774779e-01 6.77999914e-01 -1.89763650e-01 -6.07108355e-01 -3.53272408e-01 -8.99820179e-02 -5.60143054e-01 1.79127917e-01 -1.08041060e+00 3.50059509e-01 -7.84588382e-02 4.90716189e-01 -5.96406639e-01 8.01161155e-02 -1.02867711e+00 2.42514819e-01 3.33978117e-01 -9.57417637e-02 -3.49902332e-01 1.27629519e-01 7.55845606e-01 -4.02054638e-01 1.94637954e-01 9.46457326e-01 2.58819852e-03 -7.37059116e-01 2.27884546e-01 -2.25617617e-01 -1.44763201e-01 1.04037130e+00 -5.20728767e-01 -1.16336852e-01 -4.68070596e-01 -7.56243587e-01 1.90240458e-01 8.26985478e-01 3.59238148e-01 5.87246358e-01 -1.45239782e+00 -4.96664226e-01 4.13093567e-01 6.39995635e-02 5.88486344e-02 6.46575242e-02 8.97235513e-01 -2.38496527e-01 2.00694337e-01 -2.89242100e-02 -9.35396194e-01 -1.31771898e+00 1.09855068e+00 6.26815259e-02 7.67399296e-02 -1.00071716e+00 6.75473034e-01 7.34580576e-01 -1.65989518e-01 3.50160092e-01 -1.51974261e-01 -2.87209868e-01 2.33704850e-01 4.34352577e-01 3.31197560e-01 3.51781137e-02 -7.77348995e-01 -3.95898908e-01 7.20589042e-01 -6.12055510e-02 3.27475518e-01 1.53324032e+00 -2.60740519e-01 -4.38002527e-01 3.14280033e-01 1.23582935e+00 9.04448256e-02 -1.14712977e+00 -1.47278011e-01 8.44709352e-02 -5.65664947e-01 2.55366445e-01 -1.73473954e-01 -1.38167834e+00 1.00575840e+00 3.32437873e-01 5.84945679e-01 1.34134185e+00 5.15178554e-02 5.51734328e-01 4.52441543e-01 2.12019250e-01 -1.10659528e+00 7.81244272e-03 2.07583666e-01 8.19280148e-01 -1.08413625e+00 1.67508468e-01 -7.63396680e-01 -4.25662607e-01 1.17659867e+00 2.98115075e-01 -2.27357000e-01 7.79714227e-01 7.33496761e-03 1.44127533e-01 -4.44749773e-01 -1.64185494e-01 -2.94070929e-01 6.75206661e-01 7.54592419e-01 4.00279254e-01 1.12012792e-02 -4.28382680e-02 4.71848160e-01 -1.92432418e-01 -5.69977582e-01 3.41118366e-01 4.64143276e-01 -3.55050445e-01 -8.79951298e-01 -5.25427520e-01 5.23785889e-01 -1.46294117e-01 8.95387307e-02 -8.69036317e-01 5.99393249e-01 -2.18897909e-01 1.04761350e+00 8.58193263e-03 -4.73387808e-01 1.03583418e-01 -2.45758444e-02 2.44954258e-01 -7.06096530e-01 -3.67370009e-01 6.18154466e-01 -3.80098909e-01 -8.23137224e-01 -5.79094768e-01 -7.58952618e-01 -1.30262399e+00 -2.06152856e-01 -2.06020936e-01 2.88401872e-01 2.65448779e-01 7.84441888e-01 6.35447562e-01 4.80884880e-01 6.71442866e-01 -7.74455130e-01 -2.72067517e-01 -4.29153353e-01 -8.50216866e-01 1.01401913e+00 2.65844405e-01 -6.41009331e-01 -4.84964013e-01 2.93536276e-01]
[7.968088626861572, 4.10377311706543]
ad23964e-263c-4fff-941e-26e3df0821e1
probabilistic-robust-linear-quadratic
2105.07668
null
https://arxiv.org/abs/2105.07668v2
https://arxiv.org/pdf/2105.07668v2.pdf
Probabilistic Robust Linear Quadratic Regulators with Gaussian Processes
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design. While learning-based control has the potential to yield superior performance in demanding applications, robustness to uncertainty remains an important challenge. Since Bayesian methods quantify uncertainty of the learning results, it is natural to incorporate these uncertainties into a robust design. In contrast to most state-of-the-art approaches that consider worst-case estimates, we leverage the learning method's posterior distribution in the controller synthesis. The result is a more informed and, thus, more efficient trade-off between performance and robustness. We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin. The formulation is based on a recently proposed algorithm for linear quadratic control synthesis, which we extend by giving probabilistic robustness guarantees in the form of credibility bounds for the system's stability.Comparisons to existing methods based on worst-case and certainty-equivalence designs reveal superior performance and robustness properties of the proposed method.
['Sebastian Trimpe', 'Matthias Neumann-Brosig', 'Alexander von Rohr']
2021-05-17
null
null
null
null
['robust-design']
['miscellaneous']
[ 1.00433946e-01 2.28903458e-01 -1.96783125e-01 1.48794994e-01 -1.10981536e+00 -7.58109987e-01 5.95969379e-01 3.10854226e-01 -1.03222296e-01 1.08197260e+00 -2.08972827e-01 -4.32736993e-01 -8.57847691e-01 -6.96281195e-01 -8.06994140e-01 -1.06043017e+00 -3.38481106e-02 2.24521637e-01 2.19635502e-01 6.34889528e-02 2.01000869e-01 6.08456671e-01 -1.30549371e+00 -6.72728598e-01 9.54970539e-01 1.06285095e+00 -1.52906865e-01 5.04160404e-01 5.97952187e-01 3.03412914e-01 -4.35598969e-01 4.17460389e-02 2.58604318e-01 -1.14142001e-01 -3.47188525e-02 -1.69582918e-01 -1.75713733e-01 -1.16409391e-01 -6.86514601e-02 1.26589477e+00 6.74108624e-01 4.37303305e-01 9.34004068e-01 -1.31428766e+00 -1.86856225e-01 3.47710192e-01 -3.14893872e-01 -3.31113666e-01 2.03440681e-01 1.53241515e-01 6.98210478e-01 -5.83382905e-01 1.31376669e-01 1.43429375e+00 6.45516217e-01 2.70603687e-01 -1.43395388e+00 -6.34258509e-01 1.61304906e-01 -3.76448274e-01 -1.55688286e+00 -4.14859086e-01 4.47081387e-01 -8.36181045e-01 2.29639411e-01 4.76613268e-02 1.27269387e-01 8.44056487e-01 6.78717017e-01 6.06963813e-01 1.24561489e+00 -3.49594384e-01 6.14760935e-01 1.25713721e-01 -2.46581852e-01 4.89711434e-01 8.12293768e-01 6.81492746e-01 -1.22899376e-01 -3.27712387e-01 8.49828959e-01 -3.08240533e-01 -4.30497676e-01 -7.70639122e-01 -1.08349323e+00 9.17364657e-01 9.11399052e-02 -2.29705170e-01 -4.85815912e-01 5.11421442e-01 1.81908071e-01 -1.83800429e-01 4.32512850e-01 4.87856627e-01 -3.14474702e-01 -7.15015307e-02 -7.40548730e-01 7.07140923e-01 1.00540495e+00 9.09116447e-01 1.55156165e-01 4.08376575e-01 -4.76068258e-01 2.15728492e-01 8.54335368e-01 8.70748162e-01 -1.30851224e-01 -1.04700744e+00 2.57557929e-01 3.18920501e-02 8.03383172e-01 -9.95143652e-01 -6.36002794e-02 -5.16867697e-01 -6.96910739e-01 7.33477414e-01 5.00181913e-01 -5.55247664e-01 -8.94155443e-01 1.88400352e+00 4.12028611e-01 2.12837085e-01 1.66960239e-01 5.98650932e-01 -2.82897323e-01 8.24979246e-01 -1.82591572e-01 -6.23081446e-01 9.29786623e-01 -1.86221108e-01 -9.85349119e-01 1.65251300e-01 -1.02169208e-01 -6.31432354e-01 4.97184068e-01 5.45930266e-01 -9.60420310e-01 -1.71264917e-01 -1.22351336e+00 6.90834999e-01 -4.56298590e-02 4.61025015e-02 -7.68117234e-03 9.67021406e-01 -7.29695797e-01 7.87327349e-01 -1.04532468e+00 -6.64077401e-02 -4.33819629e-02 4.36930150e-01 1.44043535e-01 3.12268585e-01 -1.25147879e+00 1.34096122e+00 5.88961482e-01 4.16572720e-01 -1.08155942e+00 -8.41169357e-01 -9.48429227e-01 -4.70187142e-02 9.49430168e-01 -6.19387984e-01 1.45531428e+00 -1.77850887e-01 -2.23833251e+00 -2.00414345e-01 1.17870666e-01 -5.29160500e-01 7.28652298e-01 -4.32037026e-01 -1.94545686e-02 2.78914999e-02 -2.22922429e-01 1.37921974e-01 1.36420000e+00 -1.27566850e+00 -5.52283645e-01 2.70411223e-02 -9.13249999e-02 -8.72221291e-02 2.78768927e-01 -7.33008906e-02 -7.70845115e-02 -7.06043661e-01 -8.16381574e-02 -1.25929248e+00 -6.02513194e-01 9.85493809e-02 -5.25376022e-01 -2.15425149e-01 6.63202941e-01 -4.50927794e-01 1.26146603e+00 -1.71654320e+00 3.15517277e-01 5.22485435e-01 -1.46645814e-01 3.03051710e-01 6.17384493e-01 6.06990039e-01 1.69117913e-01 6.39808476e-02 -3.60278755e-01 -4.07420471e-02 5.71938515e-01 -2.69727260e-02 -6.44080400e-01 9.23377454e-01 6.19037569e-01 2.66707718e-01 -8.42443943e-01 -1.25853673e-01 5.37022769e-01 4.26557094e-01 -2.99000829e-01 1.22713208e-01 -3.46285015e-01 3.95555109e-01 -7.94368684e-01 2.92358518e-01 2.87508398e-01 2.18937069e-01 -5.26025221e-02 -7.99900964e-02 -3.42070311e-01 -3.00329089e-01 -1.59917724e+00 9.73195374e-01 -4.26068783e-01 2.28489697e-01 3.96122575e-01 -7.20073462e-01 9.04965580e-01 5.66345632e-01 2.25174710e-01 3.71707737e-01 4.76760834e-01 2.24602968e-01 -1.25861630e-01 -6.13587052e-02 2.93375611e-01 -3.86419684e-01 -3.59226257e-01 1.55048355e-01 -1.47021860e-01 -9.35794950e-01 3.95930298e-02 -1.27311483e-01 6.70483232e-01 3.97638887e-01 5.43455303e-01 -7.84512818e-01 5.46386182e-01 -2.86962092e-01 7.86034822e-01 4.83508438e-01 -3.16337079e-01 1.56461403e-01 6.18203759e-01 3.80537838e-01 -9.12593305e-01 -1.12333548e+00 -1.23076826e-01 2.11317733e-01 -1.25582129e-01 -8.85177031e-02 -5.88339746e-01 3.57584283e-02 2.86962509e-01 9.97535408e-01 -5.64982057e-01 -3.94921511e-01 -1.86003923e-01 -3.94854307e-01 2.30444804e-01 5.01571596e-01 1.98117900e-03 -1.59444585e-01 -5.08319497e-01 4.90687549e-01 5.47988951e-01 -7.51587629e-01 -3.18798393e-01 1.23566642e-01 -7.11736381e-01 -1.04884923e+00 -8.45060229e-01 -8.32894742e-02 4.91589129e-01 -3.95056367e-01 4.53573704e-01 -7.33187556e-01 -5.16477711e-02 6.19823992e-01 1.99803054e-01 -9.13262486e-01 -5.53818166e-01 -3.42801571e-01 6.89371824e-01 -4.40286286e-02 -6.07500494e-01 -2.03271374e-01 -2.65597939e-01 3.69827718e-01 -7.48045146e-01 -4.18655545e-01 4.78976071e-01 8.78822088e-01 7.53400505e-01 7.90439546e-01 7.78014123e-01 -5.64888239e-01 9.03270900e-01 -4.85628039e-01 -1.65758240e+00 1.70961648e-01 -9.20076013e-01 3.60869199e-01 6.54550910e-01 -4.77405280e-01 -1.22999907e+00 3.72053862e-01 3.75211924e-01 -7.09150553e-01 1.82006091e-01 7.08112657e-01 -3.32208544e-01 -3.76650915e-02 5.48368692e-01 -2.94202954e-01 3.90962332e-01 -1.13143250e-01 5.86899936e-01 3.52902979e-01 5.72898984e-01 -1.01657057e+00 1.08430135e+00 8.49783942e-02 5.59160233e-01 -6.91259921e-01 -6.79646254e-01 -2.60213494e-01 -3.75047892e-01 -2.85613537e-01 6.25173211e-01 -8.00806999e-01 -1.07816839e+00 3.42959017e-01 -8.54924977e-01 -8.52471143e-02 -2.01564118e-01 6.91874504e-01 -1.05742598e+00 5.28697707e-02 -3.19782436e-01 -1.76763272e+00 -3.05639971e-02 -1.34660983e+00 8.98095131e-01 3.28516573e-01 -2.13697448e-01 -1.18192327e+00 1.24953605e-01 -2.69749075e-01 3.06844592e-01 9.16339993e-01 7.61863291e-01 -3.27437639e-01 -5.14488459e-01 -5.09174466e-01 9.87968817e-02 4.81338859e-01 6.86341822e-02 3.92689884e-01 -7.45401502e-01 -4.85392243e-01 3.16238046e-01 6.60091639e-02 4.78755802e-01 7.60107875e-01 3.87386292e-01 -4.59010899e-01 -4.68601823e-01 -1.34544641e-01 1.61237347e+00 3.22089881e-01 2.78992444e-01 2.98030078e-02 4.35207188e-01 8.68971884e-01 9.10825312e-01 6.79168105e-01 -1.05599523e-01 5.29641211e-01 4.23757643e-01 5.49930155e-01 5.17014503e-01 -2.63509512e-01 5.44985592e-01 4.62577045e-01 1.91428870e-01 -2.17459545e-01 -8.73825669e-01 4.42115933e-01 -2.13689470e+00 -7.99980164e-01 3.30308974e-02 2.80513906e+00 8.89152169e-01 3.58770251e-01 6.46777451e-02 3.15905690e-01 1.14698970e+00 -1.96528405e-01 -6.21544659e-01 -2.22708732e-01 3.16554636e-01 -8.16594437e-02 9.95743454e-01 6.07745886e-01 -1.13830638e+00 3.89874309e-01 6.71731377e+00 1.06057954e+00 -7.84741998e-01 -2.44332865e-01 3.37761879e-01 1.65660828e-01 -4.42659408e-02 9.26520154e-02 -1.06275010e+00 4.24082726e-01 1.22539699e+00 -8.51359248e-01 2.62373567e-01 8.65386724e-01 8.63465071e-01 -3.23432863e-01 -9.83488798e-01 5.64532340e-01 -3.90596956e-01 -9.76086259e-01 -3.60232532e-01 1.28046185e-01 1.08554280e+00 -6.63662136e-01 4.59296286e-01 2.68693060e-01 6.43129230e-01 -9.91635323e-01 9.71898675e-01 9.79874849e-01 5.59872866e-01 -1.18080103e+00 8.29494953e-01 3.16777647e-01 -1.03524470e+00 -3.28131109e-01 -1.08636186e-01 6.89779446e-02 5.29030263e-01 9.50553834e-01 -7.76251495e-01 7.45832086e-01 1.47524923e-01 4.56963092e-01 4.22478504e-02 1.41458786e+00 -4.45207566e-01 5.82120359e-01 -5.43291509e-01 -1.92263037e-01 1.07023939e-01 -2.48150289e-01 1.01020849e+00 7.34577417e-01 5.61131775e-01 1.01632960e-02 3.68070185e-01 1.04628277e+00 3.52572083e-01 -3.01043689e-01 -7.00373828e-01 -3.47038805e-01 7.08337426e-01 7.32515872e-01 -5.03320396e-01 -1.24479443e-01 6.55732006e-02 1.07756101e-01 -2.98768193e-01 3.36612523e-01 -7.82250464e-01 -5.56288064e-01 5.90044141e-01 -1.96348861e-01 3.35040420e-01 -5.24971783e-01 -2.28047252e-01 -4.51752931e-01 -1.25073507e-01 -7.79368639e-01 1.24223493e-01 -5.03905833e-01 -1.32777393e+00 1.35278314e-01 5.57546377e-01 -1.46461296e+00 -7.34037697e-01 -7.03259230e-01 -4.72061038e-01 1.08133698e+00 -1.17539775e+00 -8.84791791e-01 5.92963934e-01 1.97009429e-01 3.08379829e-01 5.10459840e-02 5.51329136e-01 -2.74214149e-01 -7.61761904e-01 1.65015593e-01 6.96589887e-01 -5.29533982e-01 8.02506864e-01 -1.33883309e+00 -2.45758697e-01 1.13366938e+00 -6.69430315e-01 7.49132276e-01 1.45263553e+00 -8.55352759e-01 -1.59066021e+00 -1.23090780e+00 1.41678661e-01 -4.35121119e-01 1.26103008e+00 8.82500634e-02 -6.87322736e-01 3.31724107e-01 -1.65127456e-01 -1.84551790e-01 9.95042324e-02 -2.47595251e-01 6.22779131e-02 -4.73113097e-02 -1.29304397e+00 7.03855872e-01 6.46885037e-02 -3.86898667e-01 -6.98233485e-01 8.92175175e-03 8.87414098e-01 -4.82741654e-01 -1.17953706e+00 6.36121631e-01 5.04350483e-01 -1.49811611e-01 8.28473032e-01 -3.32114279e-01 -1.76903710e-01 -9.47659492e-01 -1.83313638e-01 -1.67939341e+00 -1.07345775e-01 -1.29279494e+00 -3.24771196e-01 1.30123961e+00 4.73714054e-01 -6.81844890e-01 2.72185922e-01 8.84164989e-01 -2.05447853e-01 -6.36988342e-01 -1.01803577e+00 -1.30487502e+00 3.30042809e-01 -4.64493662e-01 7.96582326e-02 3.19143087e-01 3.89993042e-02 -6.06292672e-02 -3.54305476e-01 8.24858963e-01 1.04317224e+00 -2.08731547e-01 4.11305249e-01 -1.32520747e+00 -1.32318556e-01 -5.34962237e-01 -3.13493162e-01 -4.28057164e-01 3.38844448e-01 -8.68572593e-02 8.86356413e-01 -1.27881384e+00 -4.07419264e-01 -3.07714403e-01 -2.66933471e-01 -2.37448923e-02 -2.55681723e-01 -2.80369312e-01 4.86560464e-02 -1.38180941e-01 -2.83148229e-01 8.93131793e-01 9.20446217e-01 7.72734880e-02 -2.92447150e-01 6.12506568e-01 -3.42333198e-01 6.75216973e-01 7.67233193e-01 -3.66491050e-01 -7.20424712e-01 2.94258565e-01 2.30356559e-01 3.04839730e-01 1.94421381e-01 -1.14718902e+00 4.24901009e-01 -3.94110918e-01 -3.32054347e-02 -6.35998845e-01 1.72677398e-01 -9.15756941e-01 4.63616908e-01 5.93253493e-01 -2.88855523e-01 -1.83149576e-01 4.24912006e-01 1.29516315e+00 -7.12328404e-02 -3.57906640e-01 1.00066030e+00 3.30896020e-01 -1.03021696e-01 1.74700961e-01 -8.63586128e-01 -1.94826767e-01 1.14485443e+00 1.57177076e-01 -2.24515460e-02 -6.13974452e-01 -6.76943660e-01 3.46459627e-01 2.03291714e-01 1.96004048e-01 3.23752314e-01 -1.17682934e+00 -4.48825806e-01 -3.98564935e-01 -1.92825869e-01 4.55916375e-02 -3.08228447e-03 6.50654554e-01 -5.33767305e-02 6.69103265e-01 1.54269829e-01 -6.77340925e-01 -6.01983309e-01 6.68536961e-01 2.46559441e-01 -6.13278598e-02 4.55359519e-02 4.80526358e-01 -4.00339849e-02 -8.53014067e-02 2.02008024e-01 -5.67118227e-01 1.00302704e-01 -7.01077357e-02 5.14597833e-01 7.37883508e-01 -5.23235910e-02 -3.87149870e-01 -1.38114125e-01 4.84457165e-01 4.01302963e-01 -5.65125823e-01 8.82466078e-01 -2.75330156e-01 1.16206676e-01 7.45524108e-01 5.91421843e-01 -6.48058355e-02 -1.87031424e+00 -6.24854490e-02 3.82734179e-01 -2.78227895e-01 4.08891976e-01 -7.10891724e-01 -6.38214767e-01 5.64588666e-01 6.46283805e-01 1.07483134e-01 6.73309565e-01 -6.00146770e-01 1.78706944e-01 3.52154464e-01 5.34541786e-01 -1.16501367e+00 -2.26666465e-01 5.62273383e-01 9.65359867e-01 -9.15895760e-01 2.27329001e-01 -4.76228178e-01 -3.99625719e-01 1.03061891e+00 2.18760535e-01 -4.45469588e-01 8.70018244e-01 5.27440846e-01 -3.67429972e-01 4.05089438e-01 -7.73570120e-01 -6.16414733e-02 5.10905623e-01 6.65207624e-01 6.38792515e-02 1.47952914e-01 -2.20163733e-01 6.64847434e-01 2.28930265e-01 -5.59983663e-02 5.14734924e-01 1.11646318e+00 -5.62184095e-01 -9.01535153e-01 -8.67727637e-01 1.98306456e-01 -4.75915462e-01 2.51882643e-01 3.20316106e-01 7.86740243e-01 -4.62126821e-01 1.19299126e+00 -4.04098064e-01 4.28010412e-02 5.91389298e-01 1.11570917e-02 3.93564850e-01 -6.47463500e-01 -6.81955814e-02 3.15794289e-01 2.22390637e-01 -4.59371299e-01 -1.97911695e-01 -7.54721522e-01 -1.02142525e+00 -1.82969108e-01 -8.38245869e-01 2.95863479e-01 7.79616892e-01 9.77130353e-01 2.51551807e-01 6.11997187e-01 5.60738623e-01 -1.05949581e+00 -1.28887701e+00 -7.34005570e-01 -7.85126984e-01 -4.96118605e-01 2.83762395e-01 -1.27670419e+00 -5.51252127e-01 2.51833238e-02]
[5.076535224914551, 2.4790050983428955]
bcb4a796-130e-46c3-92d5-a2b4994a63c5
sun-exploring-intrinsic-uncertainties-in-text
2209.06442
null
https://arxiv.org/abs/2209.06442v2
https://arxiv.org/pdf/2209.06442v2.pdf
SUN: Exploring Intrinsic Uncertainties in Text-to-SQL Parsers
This paper aims to improve the performance of text-to-SQL parsing by exploring the intrinsic uncertainties in the neural network based approaches (called SUN). From the data uncertainty perspective, it is indisputable that a single SQL can be learned from multiple semantically-equivalent questions.Different from previous methods that are limited to one-to-one mapping, we propose a data uncertainty constraint to explore the underlying complementary semantic information among multiple semantically-equivalent questions (many-to-one) and learn the robust feature representations with reduced spurious associations. In this way, we can reduce the sensitivity of the learned representations and improve the robustness of the parser. From the model uncertainty perspective, there is often structural information (dependence) among the weights of neural networks. To improve the generalizability and stability of neural text-to-SQL parsers, we propose a model uncertainty constraint to refine the query representations by enforcing the output representations of different perturbed encoding networks to be consistent with each other. Extensive experiments on five benchmark datasets demonstrate that our method significantly outperforms strong competitors and achieves new state-of-the-art results. For reproducibility, we release our code and data at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/sunsql.
['Yongbin Li', 'Min Yang', 'Luo Si', 'Fei Huang', 'Binhua Li', 'Xiangpeng Wei', 'Bowen Li', 'Binyuan Hui', 'Lihan Wang', 'Bowen Qin']
2022-09-14
null
https://aclanthology.org/2022.coling-1.471
https://aclanthology.org/2022.coling-1.471.pdf
coling-2022-10
['text-to-sql']
['computer-code']
[ 1.27830684e-01 4.58907962e-01 -4.11451273e-02 -9.40153658e-01 -1.22663569e+00 -8.33610833e-01 1.00049399e-01 2.15390697e-01 -2.10979149e-01 4.47747946e-01 2.00491980e-01 -3.37561309e-01 -3.61199319e-01 -9.92384970e-01 -1.28631222e+00 -3.66465628e-01 4.09748346e-01 5.47168076e-01 2.22125039e-01 -7.93541074e-02 6.56642765e-02 1.16865426e-01 -1.46919906e+00 5.50398886e-01 9.76150393e-01 1.22597623e+00 2.02725321e-01 3.26371491e-01 -5.19587636e-01 7.20278740e-01 -4.92676079e-01 -7.59397686e-01 1.16744436e-01 2.19547153e-02 -9.17731285e-01 -6.09811723e-01 4.98777717e-01 -1.13878958e-01 -3.88070554e-01 1.49655890e+00 3.61099958e-01 1.13492489e-01 2.26948023e-01 -1.09447563e+00 -1.15471947e+00 1.23233902e+00 -1.72738656e-01 7.38572329e-02 1.26659364e-01 -1.20944023e-01 1.40227425e+00 -9.02963638e-01 3.62917453e-01 1.69895327e+00 4.56161886e-01 5.27989149e-01 -1.15579355e+00 -7.72937775e-01 4.78160590e-01 2.49395609e-01 -1.27327633e+00 -3.92285585e-01 8.18629980e-01 -9.07323882e-03 9.13218737e-01 3.45961362e-01 -2.54452586e-01 1.33076882e+00 1.13566972e-01 9.51169848e-01 6.89013064e-01 -2.59847790e-01 2.03605279e-01 1.07209072e-01 3.77628207e-01 7.92056978e-01 2.01305315e-01 2.11838439e-01 -6.22833908e-01 -2.01119974e-01 3.16783518e-01 -2.96940863e-01 -1.09075725e-01 -3.86666983e-01 -8.74743462e-01 1.03948617e+00 4.17823166e-01 1.59861565e-01 5.43425269e-02 2.79352874e-01 4.21301663e-01 2.71019548e-01 2.40172893e-01 7.09927857e-01 -8.92008960e-01 -9.91911292e-02 -4.15824801e-01 2.15185061e-01 6.38940454e-01 1.17613852e+00 7.36557186e-01 -1.02565259e-01 -3.08147937e-01 7.69438446e-01 3.95113260e-01 2.07396090e-01 5.42920589e-01 -1.08641911e+00 8.40520322e-01 6.69886589e-01 -2.22199112e-01 -9.04162765e-01 -3.47348213e-01 -3.85709107e-01 -6.20897472e-01 -2.94654459e-01 3.87909472e-01 -8.10672268e-02 -8.04752827e-01 2.13327432e+00 2.63837606e-01 6.00959966e-03 2.48559743e-01 6.00248396e-01 1.10061717e+00 5.69900155e-01 4.54820469e-02 2.32653022e-01 1.34470391e+00 -8.13006461e-01 -6.39462948e-01 -6.14091754e-01 6.27606392e-01 -4.59233880e-01 1.43415594e+00 1.76466018e-01 -8.93759906e-01 -5.40586352e-01 -9.17162359e-01 -3.34460020e-01 -5.33665776e-01 -1.04237035e-01 5.02973974e-01 5.16120434e-01 -4.89537507e-01 6.86064601e-01 -8.09660137e-01 -7.21145421e-02 2.59660542e-01 2.81511426e-01 -3.56395513e-01 -1.75859556e-01 -1.67729616e+00 7.54645586e-01 8.58718753e-01 1.00497887e-01 -4.82454240e-01 -8.89763415e-01 -1.00272715e+00 3.08452845e-01 7.33575940e-01 -5.50331891e-01 1.27475882e+00 -4.72063154e-01 -1.24769604e+00 4.76963013e-01 -2.47242421e-01 -2.81084239e-01 2.84067601e-01 -3.67566168e-01 -2.58939892e-01 -1.66589141e-01 2.83967592e-02 7.09366620e-01 4.96204376e-01 -1.26677537e+00 -4.36094075e-01 -4.72125202e-01 1.70597851e-01 -2.20019501e-02 -2.36800328e-01 1.04564473e-01 -5.49577534e-01 -5.17413557e-01 5.25550127e-01 -6.56612456e-01 6.39893161e-03 -1.16968602e-01 -7.38734543e-01 -4.51602161e-01 3.93956542e-01 -5.31961977e-01 1.12383962e+00 -2.18248296e+00 2.43519396e-01 -1.93456709e-02 6.49740323e-02 -5.36024943e-02 -4.49852467e-01 2.15476856e-01 -1.78398237e-01 4.12229568e-01 -3.83088976e-01 -2.64213324e-01 3.37062091e-01 5.45288205e-01 -6.52985215e-01 -6.44545406e-02 6.13117218e-01 9.64276314e-01 -7.99122632e-01 -4.50383693e-01 -7.76846632e-02 2.91926265e-01 -6.07938826e-01 4.59955037e-01 -6.04153454e-01 1.62777677e-01 -6.45888507e-01 7.67218232e-01 8.34886014e-01 -1.33876413e-01 1.19286940e-01 -3.89466107e-01 4.13335860e-01 6.98217094e-01 -1.26568258e+00 1.83266962e+00 -3.25362831e-01 2.93230359e-02 -2.24388078e-01 -1.07335675e+00 1.14929736e+00 -3.64758074e-02 6.72184676e-02 -6.82779908e-01 -3.64876539e-02 3.25436071e-02 -9.80109125e-02 -5.18228471e-01 4.23583180e-01 2.09119961e-01 -4.64823216e-01 1.79206550e-01 3.03021789e-01 -1.32071078e-01 2.06698179e-02 1.81289345e-01 9.67939258e-01 2.98189700e-01 -1.76681131e-02 -2.48930246e-01 1.55691147e-01 -3.33976746e-01 9.56802905e-01 9.38076913e-01 -1.10895790e-01 7.42513418e-01 9.44720864e-01 -2.36478969e-01 -6.48378372e-01 -1.45981777e+00 -3.76150250e-01 1.38882399e+00 7.46492669e-03 -4.25124705e-01 -7.12519288e-01 -9.01996017e-01 2.18586922e-01 1.15816855e+00 -8.17987263e-01 -4.50080246e-01 -4.76280898e-01 -7.16746807e-01 9.14691210e-01 7.50984848e-01 2.85691470e-01 -8.57346117e-01 -2.16674551e-01 2.07185626e-01 -3.58728290e-01 -1.13429642e+00 -3.43420327e-01 7.30658770e-01 -8.42990696e-01 -1.04879200e+00 1.08106963e-01 -5.94464958e-01 4.67594683e-01 -2.76404619e-01 1.34438729e+00 -1.97669402e-01 2.69544739e-02 4.92750220e-02 -3.31023604e-01 -4.00431693e-01 -4.62229997e-01 1.93537578e-01 -9.60710719e-02 -4.01556492e-01 5.11324704e-01 -4.69579309e-01 -8.73346031e-02 1.63256332e-01 -1.25489080e+00 -1.52793735e-01 3.44453603e-01 9.11582947e-01 8.46968472e-01 1.62808761e-01 6.32713616e-01 -1.07454753e+00 6.62997246e-01 -7.33717322e-01 -7.15521216e-01 6.34977341e-01 -7.00101674e-01 8.48530173e-01 6.28768742e-01 -4.15973425e-01 -1.15631247e+00 1.21451236e-01 -1.35128066e-01 -5.23187518e-01 -1.51980653e-01 6.89610183e-01 -7.64634728e-01 3.92220557e-01 6.40025735e-01 1.30650382e-02 -3.59488219e-01 -7.16573060e-01 8.18210781e-01 4.78280276e-01 6.66730046e-01 -1.12731910e+00 6.78530753e-01 -7.04721222e-03 -3.21618915e-01 -6.75157458e-02 -1.18860233e+00 5.29093631e-02 -4.10991997e-01 3.58713478e-01 7.03135192e-01 -6.98831737e-01 -4.21776205e-01 1.45883873e-01 -1.31645548e+00 1.01663470e-01 -2.72536188e-01 2.04938546e-01 -2.94046015e-01 2.64927417e-01 -6.73701763e-01 -5.45789003e-01 -2.03943565e-01 -1.34323466e+00 9.40198302e-01 2.92967051e-01 -1.25586718e-01 -7.36304581e-01 -1.34133533e-01 4.32173312e-01 3.16064477e-01 -1.06790185e-01 1.53408659e+00 -1.17307162e+00 -6.45996690e-01 5.62986471e-02 -3.05204481e-01 3.97910923e-01 1.44597879e-02 6.40710592e-02 -1.19743490e+00 9.11704004e-02 5.53750470e-02 -4.69378650e-01 1.14379883e+00 1.16466455e-01 1.65146649e+00 -3.31327945e-01 -4.55187857e-02 6.65004313e-01 1.29611933e+00 -1.32903326e-02 5.23696601e-01 2.89017051e-01 6.61143780e-01 9.07568693e-01 4.92767453e-01 2.90023208e-01 5.83012879e-01 3.10244054e-01 8.52472365e-01 4.93237436e-01 2.03867406e-01 -6.46797478e-01 3.09121013e-01 8.17914844e-01 6.86667502e-01 -2.94945776e-01 -7.77861416e-01 4.68995422e-01 -1.92471421e+00 -5.19960105e-01 2.49054074e-01 2.04534721e+00 1.08015847e+00 1.76609859e-01 -5.06063640e-01 -2.83318967e-01 7.34375834e-01 3.07628721e-01 -8.79785120e-01 -5.15166640e-01 -2.26136163e-01 1.72961697e-01 3.36161464e-01 5.17062962e-01 -1.09424341e+00 1.14925814e+00 5.78154421e+00 8.11242998e-01 -7.38380194e-01 1.70391556e-02 6.75442636e-01 -2.30262235e-01 -8.81625116e-01 -4.25267499e-03 -1.11907029e+00 3.48465502e-01 1.05226719e+00 -1.06928967e-01 4.50096697e-01 1.01832998e+00 -2.43036523e-01 1.74496695e-01 -1.44210160e+00 5.12766957e-01 -2.01641381e-01 -1.28872085e+00 1.53880104e-01 -3.44717711e-01 3.29393417e-01 1.84020028e-01 2.07503885e-01 5.52706182e-01 6.13022625e-01 -1.13435996e+00 7.37584352e-01 6.53761744e-01 5.29769123e-01 -8.13918650e-01 7.19820321e-01 2.42800072e-01 -1.07512248e+00 -2.17325315e-01 -7.54795849e-01 4.01988596e-01 -2.35836074e-01 8.15788031e-01 -4.60916966e-01 7.09289253e-01 1.01720273e+00 2.70164996e-01 -8.56214941e-01 3.41617286e-01 -3.27932358e-01 3.93259674e-01 -3.99726331e-01 2.12607626e-03 1.60729270e-02 3.75178345e-02 2.79242367e-01 1.00282240e+00 3.60401303e-01 -2.19560161e-01 -1.56630352e-01 1.53112066e+00 -4.43627089e-01 -3.16695869e-02 -5.51434457e-01 -1.38670012e-01 9.01407421e-01 9.60597694e-01 -3.29074822e-02 1.99251063e-03 -3.28811407e-01 5.82047284e-01 8.26771259e-01 1.86413556e-01 -8.70104313e-01 -4.42429781e-01 8.17932129e-01 -3.78918946e-01 2.92776644e-01 2.01519534e-01 -4.17120934e-01 -1.20178294e+00 5.08086443e-01 -1.02090991e+00 6.51213050e-01 -7.72276819e-01 -1.58181536e+00 6.44743025e-01 7.71251991e-02 -6.55283332e-01 -4.01436120e-01 -7.55808830e-01 -4.94082093e-01 8.34054351e-01 -1.42448950e+00 -1.03167939e+00 1.61214963e-01 3.66123348e-01 3.01570147e-01 -1.87926337e-01 1.04933000e+00 -4.89708297e-02 -6.59293950e-01 9.30599928e-01 1.98326603e-01 2.85882860e-01 7.21017897e-01 -1.23785710e+00 6.13387942e-01 9.81625140e-01 2.80401856e-01 7.74832308e-01 6.08289957e-01 -5.87975919e-01 -1.55858576e+00 -1.19153631e+00 8.78951967e-01 -6.70074224e-01 8.61065984e-01 -3.81217033e-01 -1.38319087e+00 8.25607479e-01 7.82987569e-03 1.54249489e-01 5.88414311e-01 4.06318456e-01 -1.01759565e+00 -2.44614646e-01 -1.23206127e+00 4.08873141e-01 9.20402348e-01 -7.08036005e-01 -8.29387069e-01 2.45952919e-01 1.47436345e+00 -5.30771911e-01 -1.07698214e+00 5.99122703e-01 3.76441330e-01 -9.03486133e-01 8.39272082e-01 -1.07805026e+00 3.97884786e-01 -1.04496896e-01 -8.37315142e-01 -1.20929909e+00 -1.13719001e-01 -2.30987832e-01 -2.67764449e-01 1.53904748e+00 6.93092346e-01 -7.17191577e-01 7.41551876e-01 1.01014280e+00 -2.08517179e-01 -8.46547067e-01 -1.31827724e+00 -8.77738237e-01 6.47132874e-01 -8.26701820e-01 1.02785587e+00 8.38445187e-01 -1.23161800e-01 1.18598394e-01 -3.56430225e-02 7.15480149e-01 5.75761139e-01 1.00623548e-01 1.23004884e-01 -1.24730361e+00 -5.39008856e-01 -3.13642293e-01 -6.15647212e-02 -9.35789049e-01 5.34178019e-01 -9.65857446e-01 1.48668200e-01 -1.16647255e+00 1.03397854e-01 -4.47246909e-01 -6.46529377e-01 6.10423923e-01 -3.64220917e-01 -5.48173368e-01 2.24935204e-01 -1.91407666e-01 -4.53872561e-01 5.25683045e-01 8.97166610e-01 -2.15256527e-01 1.14452302e-01 -9.29814875e-02 -1.29595518e+00 5.72979212e-01 9.48342085e-01 -8.60273182e-01 -4.27185476e-01 -1.00406408e+00 6.03953898e-01 -9.85234678e-02 2.13905513e-01 -6.65989995e-01 2.26374447e-01 -1.42112941e-01 1.07894763e-01 -5.28361380e-01 2.95167238e-01 -6.62461817e-01 -1.53033480e-01 2.25891322e-01 -8.30355287e-01 8.17941204e-02 2.83986866e-01 6.47010326e-01 -2.51125515e-01 -6.51496351e-01 6.14218175e-01 -2.16340110e-01 -5.90658426e-01 2.33259499e-01 1.97195262e-01 5.85450411e-01 4.86024559e-01 5.09266496e-01 -7.36079216e-01 -1.48408204e-01 -4.20997739e-01 3.38063329e-01 1.04736201e-02 8.09807301e-01 5.80464602e-01 -1.25375450e+00 -6.68720603e-01 3.18073750e-01 4.38767195e-01 4.42936927e-01 1.43178180e-01 1.53731301e-01 -1.88734680e-02 5.85647762e-01 1.65115908e-01 -4.55387473e-01 -8.67040753e-01 5.61885357e-01 5.25677025e-01 -3.43866110e-01 -2.05362514e-01 1.14204776e+00 2.84706861e-01 -1.17583859e+00 6.47857487e-01 -7.25489914e-01 1.16558122e-02 -1.48159772e-01 3.40689510e-01 9.17018056e-02 2.10414097e-01 -1.68532893e-01 -5.21784544e-01 2.16285765e-01 -3.05281371e-01 1.01733662e-01 1.28758192e+00 2.71955822e-02 -1.36539996e-01 4.67196763e-01 1.24573338e+00 -1.12555355e-01 -1.23744488e+00 -6.09585047e-01 3.67349505e-01 -3.43243897e-01 5.85017027e-03 -9.98910606e-01 -1.21153545e+00 1.04998362e+00 5.80302835e-01 6.66762590e-02 9.54282939e-01 2.87303388e-01 5.71456492e-01 9.34029281e-01 -1.65280551e-02 -1.09920466e+00 -6.06279038e-02 6.49677396e-01 1.05244136e+00 -1.42193472e+00 -3.83641183e-01 -3.70258719e-01 -6.90858424e-01 1.21470547e+00 8.55415523e-01 1.76141113e-01 5.03874540e-01 5.01354635e-01 7.60945752e-02 7.28384852e-02 -1.07700062e+00 1.31484613e-01 2.90779799e-01 6.17659092e-01 4.51446593e-01 5.20519465e-02 2.26152524e-01 1.32577693e+00 -2.16316879e-01 -3.72657448e-01 3.70979846e-01 6.59143090e-01 -4.90993470e-01 -1.28173292e+00 -1.72339454e-01 4.16094065e-01 -4.32240337e-01 -4.52770174e-01 -3.08968902e-01 6.39967501e-01 -4.50600199e-02 1.00837231e+00 8.40108320e-02 -4.43698823e-01 4.57119524e-01 5.10564685e-01 2.28478760e-01 -5.79436064e-01 -4.41729158e-01 -3.13113183e-01 2.55311370e-01 -8.02530527e-01 1.83075607e-01 -5.06651402e-01 -1.47536051e+00 -8.00992399e-02 -1.70783684e-01 6.85247034e-02 7.93525457e-01 8.98365676e-01 7.36219347e-01 7.22682178e-01 4.28605616e-01 -1.34886252e-02 -1.23283672e+00 -8.90241504e-01 -4.53307390e-01 1.66957900e-01 7.90547766e-03 -5.76031208e-01 -3.48191053e-01 -4.09377575e-01]
[10.02431869506836, 7.916052341461182]
96fe82cc-4620-4d3f-9eca-1066889ff1a5
negation-detection-in-dutch-clinical-texts-an
2209.00470
null
https://arxiv.org/abs/2209.00470v1
https://arxiv.org/pdf/2209.00470v1.pdf
Negation detection in Dutch clinical texts: an evaluation of rule-based and machine learning methods
As structured data are often insufficient, labels need to be extracted from free text in electronic health records when developing models for clinical information retrieval and decision support systems. One of the most important contextual properties in clinical text is negation, which indicates the absence of findings. We aimed to improve large scale extraction of labels by comparing three methods for negation detection in Dutch clinical notes. We used the Erasmus Medical Center Dutch Clinical Corpus to compare a rule-based method based on ContextD, a biLSTM model using MedCAT and (finetuned) RoBERTa-based models. We found that both the biLSTM and RoBERTa models consistently outperform the rule-based model in terms of F1 score, precision and recall. In addition, we systematically categorized the classification errors for each model, which can be used to further improve model performance in particular applications. Combining the three models naively was not beneficial in terms of performance. We conclude that the biLSTM and RoBERTa-based models in particular are highly accurate accurate in detecting clinical negations, but that ultimately all three approaches can be viable depending on the use case at hand.
['Saskia Haitjema', 'Miguel A. R. Rios', 'Sebastiaan R. S. Arends', 'Myrthe M. Hemker', 'Marijn Schraagen', 'Sander C. Tan', 'Leon C. Reteig', 'Bram van Es']
2022-09-01
null
null
null
null
['negation-detection']
['natural-language-processing']
[ 4.00249213e-01 2.13039353e-01 -3.38018984e-01 -4.19911802e-01 -1.16071749e+00 -6.35991454e-01 3.26227307e-01 1.12574637e+00 -8.35923791e-01 8.63917112e-01 3.71321678e-01 -8.55824172e-01 -4.64861631e-01 -5.58081508e-01 -2.07576826e-01 -3.99683177e-01 9.78685245e-02 6.56676412e-01 3.42876285e-01 -8.35702196e-02 5.99229448e-02 1.78842172e-01 -1.19319999e+00 8.92492652e-01 7.07483888e-01 7.43484199e-01 -1.13866806e-01 6.89771414e-01 -1.91370696e-01 1.17370486e+00 -4.23529983e-01 -4.57566619e-01 -2.59480596e-01 -6.77923024e-01 -8.65607738e-01 -3.57314557e-01 1.35420427e-01 -1.98431417e-01 3.02854359e-01 8.04321408e-01 6.24281764e-01 -2.15812892e-01 6.74053490e-01 -6.19960546e-01 -8.17503780e-02 5.80759108e-01 1.65876061e-01 3.42935085e-01 6.13643765e-01 -5.42235672e-02 8.42157841e-01 -6.41781509e-01 9.92220879e-01 9.19617414e-01 1.04905963e+00 6.63124681e-01 -1.09822261e+00 -4.25159365e-01 4.71543195e-03 -4.36863489e-02 -1.10707414e+00 -4.39071417e-01 1.72015131e-02 -5.57725012e-01 1.48147035e+00 3.01535964e-01 5.42691231e-01 6.77643955e-01 5.06570518e-01 4.25329357e-01 1.21222436e+00 -7.33133614e-01 2.63378918e-01 2.24052057e-01 2.65368849e-01 7.65750945e-01 5.45947611e-01 -8.03349391e-02 -2.25859717e-01 -1.02054536e+00 3.60781848e-01 -1.74730122e-01 -1.61758021e-01 6.91873953e-02 -1.24855185e+00 7.24366903e-01 1.43798694e-01 7.69657910e-01 -4.77647156e-01 -2.35593036e-01 9.03658926e-01 3.42969179e-01 2.80000627e-01 5.65628231e-01 -8.13600779e-01 -1.76160857e-01 -1.26663327e+00 2.38490209e-01 1.09028745e+00 5.62574565e-01 -1.45371497e-01 -3.69734108e-01 -3.47459197e-01 8.79701078e-01 3.09596777e-01 2.35856235e-01 8.02889645e-01 -8.49827468e-01 2.60247529e-01 7.74627864e-01 1.20230064e-01 -8.12563181e-01 -8.38902235e-01 -1.89666912e-01 -4.69485939e-01 -2.75558114e-01 5.12682140e-01 -2.35672638e-01 -1.09579051e+00 1.52667618e+00 2.02477798e-01 -3.79917204e-01 3.89350712e-01 5.22819340e-01 9.71919060e-01 2.88589913e-02 5.23402691e-01 -5.06726444e-01 1.72918534e+00 -2.12609008e-01 -1.18992078e+00 -1.31917849e-01 1.68815267e+00 -1.00169814e+00 5.50303519e-01 4.82607603e-01 -9.76006031e-01 7.67341256e-02 -9.72767949e-01 8.19847882e-02 -4.01871711e-01 1.01587079e-01 1.21111006e-01 6.42851770e-01 -9.68328178e-01 6.65340304e-01 -1.07883358e+00 -6.35747373e-01 3.03303063e-01 4.99586463e-01 -4.00623053e-01 -2.65827663e-02 -1.25840485e+00 1.30186200e+00 3.84999663e-01 5.50067313e-02 -2.30771527e-01 -2.91864604e-01 -9.76879597e-01 -1.75649121e-01 4.28700238e-01 -6.92120671e-01 1.65678787e+00 -5.57109058e-01 -6.75728202e-01 1.19592047e+00 -2.86383063e-01 -5.85735083e-01 4.55992073e-01 1.13548674e-01 -4.77388501e-01 1.23896398e-01 1.39718801e-01 2.78102428e-01 1.57022625e-01 -8.42278421e-01 -7.65329480e-01 -4.00405169e-01 -3.43658090e-01 2.53642257e-02 -2.04478242e-02 3.49764496e-01 1.06137708e-01 -5.25525093e-01 -3.64594832e-02 -8.33717287e-01 -3.54899406e-01 -1.46841943e-01 -2.74934202e-01 -4.45382118e-01 3.46617222e-01 -6.91624880e-01 1.59543145e+00 -1.77978277e+00 -6.10238791e-01 1.38223886e-01 3.46950322e-01 6.15891159e-01 1.90478951e-01 4.79785860e-01 -1.33146957e-01 5.75348854e-01 -1.32330731e-01 1.68478742e-01 -4.02904958e-01 4.53174382e-01 6.84738085e-02 2.84891337e-01 3.75249237e-01 8.83734763e-01 -1.10888100e+00 -9.75448608e-01 8.19044039e-02 5.06077290e-01 -5.28356731e-01 -2.12576851e-01 -1.40957430e-01 5.20111471e-02 -5.58547854e-01 7.15948522e-01 9.08861111e-04 -4.60791886e-01 7.44353414e-01 -1.38692930e-02 1.81006804e-01 9.43841398e-01 -8.80908370e-01 1.23528326e+00 -1.34023130e-01 2.26226375e-01 3.23007368e-02 -6.84929013e-01 6.04593456e-01 9.18586433e-01 3.38232279e-01 -5.85440636e-01 -6.77304436e-03 7.83609033e-01 4.04297024e-01 -8.38208497e-01 1.62592188e-01 -7.32782304e-01 7.26049244e-02 3.46702516e-01 -2.39712700e-01 -1.07944966e-03 3.60941380e-01 1.03324838e-01 1.32384503e+00 4.41661254e-02 1.02244508e+00 -3.40039551e-01 4.93425459e-01 5.40625632e-01 9.19127762e-01 7.73305833e-01 -3.33078980e-01 5.00830114e-01 6.34749413e-01 -4.09228832e-01 -4.94147092e-01 -4.17362124e-01 -5.21469057e-01 7.03907371e-01 -6.87282085e-01 -6.21506751e-01 -5.20321071e-01 -9.33886349e-01 -1.86666325e-01 7.84499168e-01 -6.10218763e-01 3.13888267e-02 -5.98515272e-01 -8.86573434e-01 8.30063283e-01 5.46577096e-01 -2.75580317e-01 -1.15717685e+00 -8.85049403e-01 6.65335894e-01 -2.81678170e-01 -1.05520594e+00 -2.41163671e-01 6.45622253e-01 -1.07741451e+00 -1.40341783e+00 -6.60640478e-01 -8.04047704e-01 4.51888770e-01 -4.27278608e-01 1.22195494e+00 3.32434446e-01 -2.52598524e-01 3.31397265e-01 -4.93749082e-01 -6.23473585e-01 -9.81355667e-01 4.46547754e-02 -1.43947601e-01 -7.98279881e-01 1.02286994e+00 2.89022829e-02 -4.77928400e-01 -2.50461092e-03 -1.13360000e+00 -4.42878157e-01 5.90201735e-01 9.90632594e-01 6.65330052e-01 -3.97844523e-01 7.05055177e-01 -1.59600210e+00 9.31040943e-01 -2.99845994e-01 -5.23489006e-02 2.85101533e-01 -1.07168031e+00 1.25976920e-01 3.42275381e-01 -2.09176376e-01 -6.49019897e-01 2.79748887e-02 -4.88771886e-01 1.77891046e-01 -2.37232000e-01 1.04582071e+00 3.96726072e-01 2.42960870e-01 1.03944087e+00 -1.63502321e-01 1.41147330e-01 -4.15232658e-01 -2.42787823e-01 8.38938236e-01 -9.17010680e-02 -1.40757725e-01 -8.44616294e-02 1.81002855e-01 -4.34812680e-02 -6.04317367e-01 -9.98749077e-01 -5.17244160e-01 -4.70912248e-01 1.65512487e-01 9.24461842e-01 -6.73152030e-01 -4.84665573e-01 -3.72585543e-02 -9.95315492e-01 -3.37433219e-01 -4.73744273e-01 6.24775589e-01 -2.47137547e-01 4.09041524e-01 -9.63155508e-01 -7.50641167e-01 -4.99712944e-01 -1.12678289e+00 9.37615395e-01 -2.28666991e-01 -9.58941162e-01 -1.22351468e+00 2.59566277e-01 7.55002573e-02 1.59438476e-01 3.32699299e-01 1.40852320e+00 -1.54726386e+00 3.09588820e-01 -5.40607393e-01 -2.42570136e-02 2.68295884e-01 4.59777772e-01 -1.00437976e-01 -6.77426040e-01 -1.34776533e-01 2.91670054e-01 -3.68170738e-01 7.73230553e-01 4.19863611e-01 5.28739750e-01 -3.07453930e-01 -5.89622676e-01 -1.36826113e-01 1.32501912e+00 6.21539712e-01 3.65631461e-01 3.86123627e-01 3.68019044e-01 5.73848367e-01 6.76666677e-01 1.82304814e-01 3.53569716e-01 3.47285062e-01 -1.92872882e-01 -1.45426050e-01 3.53972940e-03 2.46560457e-03 9.58416685e-02 8.74852955e-01 9.12150815e-02 -1.00082457e-01 -1.36142349e+00 6.37429953e-01 -1.82795370e+00 -6.51459396e-01 -3.16713989e-01 2.09556341e+00 1.12311471e+00 5.50616384e-01 1.33329937e-02 3.48380893e-01 3.33168387e-01 -3.48945677e-01 -1.97491914e-01 -6.20434284e-01 4.45550047e-02 2.15765089e-01 4.54946756e-01 3.89704287e-01 -9.06910121e-01 4.52823400e-01 7.21815681e+00 4.73215163e-01 -9.20785964e-01 2.81318247e-01 4.68733579e-01 -8.50794688e-02 -8.50883722e-02 -1.48947418e-01 -8.40679348e-01 2.63020664e-01 1.22764730e+00 8.00248235e-02 -4.51977283e-01 5.73816419e-01 4.99640971e-01 -3.04084927e-01 -1.38589275e+00 4.88008857e-01 -8.91741216e-02 -1.32588780e+00 3.70435268e-02 1.30122885e-01 4.33250964e-01 -6.40663877e-02 -2.56347448e-01 2.91443557e-01 1.62669241e-01 -9.83819664e-01 2.44833112e-01 4.02783483e-01 8.85967314e-01 -1.28072113e-01 1.42771542e+00 3.07934254e-01 -6.79869235e-01 2.46905237e-01 2.14108415e-02 1.96394641e-02 5.70938475e-02 6.28229082e-01 -1.22485924e+00 5.51995218e-01 5.22911966e-01 4.13492143e-01 -4.59290057e-01 1.01920402e+00 -2.17316840e-02 7.58268893e-01 -3.45523924e-01 -1.53727636e-01 3.46509516e-01 2.90661663e-01 3.44341874e-01 1.66067529e+00 1.03214033e-01 3.20914060e-01 2.23062605e-01 3.83286744e-01 1.29348248e-01 3.58957946e-01 -6.40586376e-01 -1.79420128e-01 2.93215752e-01 9.65821385e-01 -1.03701663e+00 -6.86300337e-01 -4.88435119e-01 3.53401899e-01 -3.00819073e-02 9.58434939e-02 -3.25729936e-01 -2.47459263e-01 2.14882977e-02 5.99683523e-01 2.78007895e-01 4.47437942e-01 -2.97243029e-01 -9.20603812e-01 1.93936471e-02 -1.23306334e+00 9.79953349e-01 -5.09545267e-01 -1.22493553e+00 7.92856038e-01 -9.57813933e-02 -1.25788391e+00 -7.83111691e-01 -7.95228124e-01 1.55420350e-02 7.09930539e-01 -1.38258028e+00 -7.57357299e-01 1.64089501e-01 2.92833537e-01 2.13863164e-01 1.76599011e-01 1.30716670e+00 2.92166382e-01 -3.40099603e-01 4.86998707e-01 -1.00230388e-02 3.16087633e-01 1.10578144e+00 -1.26749766e+00 -6.09031133e-02 3.94922048e-01 -1.36498481e-01 9.40008163e-01 7.44483769e-01 -9.30652976e-01 -6.99207664e-01 -9.33576047e-01 1.63560343e+00 -5.63542187e-01 4.47725832e-01 1.30683616e-01 -1.20827734e+00 7.82734573e-01 -1.04328141e-01 -2.06637025e-01 1.13050139e+00 1.47933692e-01 -2.42396325e-01 4.10957128e-01 -1.35530627e+00 3.67166847e-01 5.79180956e-01 -5.37362874e-01 -1.12672210e+00 6.14989817e-01 4.99456495e-01 -3.50899607e-01 -1.15645874e+00 7.34647512e-01 4.84891444e-01 -8.06791782e-01 4.76556450e-01 -9.78071570e-01 2.95639187e-01 -9.21143368e-02 -4.48313355e-02 -7.59759009e-01 -6.49346858e-02 -1.49954230e-01 1.92755342e-01 8.21665406e-01 1.08083403e+00 -7.39983916e-01 7.02991009e-01 8.94037366e-01 1.41464353e-01 -1.03737795e+00 -9.72135365e-01 -3.63587707e-01 2.10466474e-01 -5.51563740e-01 -2.30670329e-02 1.06601584e+00 4.70962286e-01 3.65374416e-01 2.99711257e-01 -2.69468486e-01 4.54075634e-02 -2.11518511e-01 -9.78442356e-02 -1.24718559e+00 -2.51131970e-02 -2.85214961e-01 -4.36199158e-01 -2.77402073e-01 -2.98755467e-01 -1.04317486e+00 1.30501678e-02 -2.07625508e+00 3.84746790e-01 -4.59685057e-01 -4.96039987e-01 1.01048052e+00 -2.85602391e-01 1.68385461e-01 -2.32413575e-01 2.48825341e-01 -5.53002357e-01 -2.55208671e-01 7.58880138e-01 5.49464226e-02 -4.19725180e-01 2.68829819e-02 -7.99131095e-01 9.57779408e-01 5.68800151e-01 -1.08313417e+00 -8.23700354e-02 -7.09135309e-02 5.28670907e-01 2.28508487e-01 1.70469642e-01 -5.45076907e-01 3.64396304e-01 1.46448418e-01 4.03568625e-01 -4.46689069e-01 -5.20136319e-02 -6.82998657e-01 -1.79218411e-01 1.01907110e+00 -6.75363600e-01 2.11841717e-01 4.86095846e-01 4.36891079e-01 -2.96088576e-01 -5.79466581e-01 4.94612902e-01 -5.19066989e-01 -1.16146870e-01 -4.13853526e-01 -9.14148390e-01 3.48232031e-01 7.51094520e-01 -2.64725149e-01 -1.94305211e-01 -2.13838458e-01 -1.17936087e+00 2.57789552e-01 2.53059119e-01 2.78292969e-02 5.62072635e-01 -8.48151982e-01 -7.26803958e-01 -1.06477968e-01 2.74862677e-01 -1.60078168e-01 6.90688705e-03 1.16712880e+00 -6.41220510e-01 9.00057852e-01 2.48326898e-01 -5.87100804e-01 -1.63691199e+00 6.05133355e-01 5.12218773e-01 -9.07756448e-01 -3.87250215e-01 4.80328053e-01 -2.36668050e-01 -4.92324233e-01 2.79593766e-01 -8.53910446e-01 -3.34310174e-01 3.86947155e-01 5.13693154e-01 3.55562977e-02 7.43638575e-01 -4.32482153e-01 -8.38331759e-01 1.53611064e-01 -5.31004786e-01 -2.38974020e-01 1.16676021e+00 3.20999205e-01 -2.02912927e-01 6.63456261e-01 7.78815687e-01 -1.05185993e-01 -7.80018941e-02 -2.93760866e-01 5.96692502e-01 1.18278459e-01 1.54378921e-01 -1.22592163e+00 -3.37998658e-01 5.96545100e-01 5.25002182e-01 3.56271297e-01 9.69118834e-01 -2.29253694e-01 4.09226328e-01 4.96485412e-01 1.02676086e-01 -1.05073965e+00 -4.71168578e-01 2.83024341e-01 3.68251592e-01 -1.25944638e+00 1.48887306e-01 -3.28155786e-01 -7.39299655e-01 1.07164800e+00 4.32383008e-02 3.32423985e-01 7.49673903e-01 4.67035949e-01 4.83867794e-01 -5.88145733e-01 -1.04774344e+00 -1.42981231e-01 2.86234617e-01 3.81328285e-01 1.14139807e+00 -6.52980208e-02 -9.52992082e-01 7.34204471e-01 1.52209520e-01 4.94105339e-01 5.58138549e-01 1.41988456e+00 -1.86699346e-01 -1.41278219e+00 -3.47379267e-01 1.22623682e+00 -1.16736865e+00 -4.09358501e-01 -5.05577087e-01 9.54066873e-01 1.88334614e-01 1.08533239e+00 -3.69350791e-01 -1.20520599e-01 5.88778317e-01 6.31054759e-01 3.16238999e-01 -1.02031565e+00 -1.09932363e+00 3.73978466e-01 6.49581015e-01 -3.84898573e-01 -7.32785404e-01 -7.49471903e-01 -1.31255782e+00 3.08449119e-01 -5.97816110e-01 3.39744925e-01 3.85768145e-01 1.11338580e+00 3.55401307e-01 5.93906879e-01 -3.28900933e-01 1.48189247e-01 -7.51806319e-01 -1.05718529e+00 -2.56699443e-01 1.42178193e-01 4.47966993e-01 -3.51035267e-01 -2.89342403e-01 9.39239413e-02]
[8.44442367553711, 8.759385108947754]
2f053290-1cb1-4b58-9ec3-d2d685107e4e
a-survey-of-deep-visual-cross-domain-few-shot
2303.09253
null
https://arxiv.org/abs/2303.09253v1
https://arxiv.org/pdf/2303.09253v1.pdf
A Survey of Deep Visual Cross-Domain Few-Shot Learning
Few-Shot transfer learning has become a major focus of research as it allows recognition of new classes with limited labeled data. While it is assumed that train and test data have the same data distribution, this is often not the case in real-world applications. This leads to decreased model transfer effects when the new class distribution differs significantly from the learned classes. Research into Cross-Domain Few-Shot (CDFS) has emerged to address this issue, forming a more challenging and realistic setting. In this survey, we provide a detailed taxonomy of CDFS from the problem setting and corresponding solutions view. We summarise the existing CDFS network architectures and discuss the solution ideas for each direction the taxonomy indicates. Furthermore, we introduce various CDFS downstream applications and outline classification, detection, and segmentation benchmarks and corresponding standards for evaluation. We also discuss the challenges of CDFS research and explore potential directions for future investigation. Through this review, we aim to provide comprehensive guidance on CDFS research, enabling researchers to gain insight into the state-of-the-art while allowing them to build upon existing solutions to develop their own CDFS models.
['Zhaoxiang Zhang', 'Zhi Gong', 'Junsong Fan', 'Yuxi Wang', 'Lijuan Duan', 'Wenjian Wang']
2023-03-16
null
null
null
null
['cross-domain-few-shot', 'cross-domain-few-shot-learning']
['computer-vision', 'computer-vision']
[ 1.42334074e-01 -1.21804193e-01 -6.16226673e-01 -9.35186148e-01 -1.04118013e+00 -5.97563267e-01 3.40286314e-01 -8.17271024e-02 -1.39172539e-01 7.88414419e-01 -2.17433885e-01 -4.12040532e-01 -1.89993940e-02 -8.56028676e-01 -6.18748248e-01 -6.07485056e-01 6.03940003e-02 6.95229828e-01 6.68538928e-01 3.91251221e-02 -6.56629354e-02 5.54035068e-01 -1.67900956e+00 4.06246096e-01 6.36731267e-01 1.07939434e+00 1.74173072e-01 6.13087952e-01 -4.00685877e-01 4.71118331e-01 -1.02437997e+00 -5.88187218e-01 2.63823897e-01 -3.48953277e-01 -6.56693757e-01 -2.28552371e-02 4.76076543e-01 -4.23867166e-01 -2.74565697e-01 9.69280481e-01 7.14061737e-01 3.82776529e-01 1.01340222e+00 -1.73431253e+00 -9.20331776e-01 5.01991868e-01 -5.30606270e-01 6.66212559e-01 -6.71217591e-02 6.41830191e-02 8.63331616e-01 -6.15886390e-01 7.26778686e-01 1.00222898e+00 7.93423474e-01 8.23676705e-01 -1.11687934e+00 -8.35500062e-01 2.45787486e-01 4.77861285e-01 -1.09992540e+00 -4.19149250e-01 4.50968862e-01 -3.04378092e-01 9.53065574e-01 2.20398176e-02 6.09357834e-01 1.35869062e+00 -8.94857385e-06 1.25547516e+00 8.18767130e-01 -3.95919025e-01 6.79483652e-01 2.94377208e-01 6.72692120e-01 1.05610415e-01 1.75394744e-01 1.48735046e-01 -5.23578942e-01 1.10547252e-01 4.22222376e-01 -1.42642722e-01 1.56374827e-01 -9.60785031e-01 -6.29296958e-01 9.85623658e-01 4.22548473e-01 4.29427505e-01 1.32693365e-01 -5.61499558e-02 5.15048444e-01 3.81539434e-01 7.29508102e-01 1.64739132e-01 -6.86686337e-01 -3.49170178e-01 -1.12421894e+00 4.69986767e-01 8.16707790e-01 1.35567486e+00 4.22582746e-01 3.59169900e-01 -2.61763632e-01 9.54229355e-01 1.62116550e-02 2.65262187e-01 2.03184471e-01 -9.15412009e-01 2.27363989e-01 1.44845648e-02 -1.28668800e-01 -2.47169703e-01 -1.05489224e-01 -4.54347581e-01 -3.16542715e-01 2.18128562e-01 5.64927936e-01 -3.29800248e-01 -1.18028247e+00 1.57374811e+00 1.87810823e-01 5.60481429e-01 4.71317694e-02 5.42339444e-01 9.76868153e-01 5.75503767e-01 2.53476292e-01 -8.39918479e-03 9.45889115e-01 -8.23944211e-01 -4.28768486e-01 -2.51628131e-01 3.50900263e-01 -5.80258250e-01 1.03935933e+00 2.14910209e-02 -6.99265480e-01 -6.06220245e-01 -1.17418706e+00 1.99424073e-01 -8.59083533e-01 -6.18395448e-01 8.60893607e-01 9.54389215e-01 -7.51504779e-01 7.46261001e-01 -9.07358050e-01 -8.48471999e-01 8.17976832e-01 1.46866649e-01 2.17394859e-01 -3.76525015e-01 -1.29388130e+00 9.17657733e-01 1.85485035e-01 -5.95089674e-01 -8.52777481e-01 -1.23638749e+00 -8.14985394e-01 3.33865255e-01 3.92514467e-01 -4.43249136e-01 1.99307585e+00 -5.30832708e-01 -1.26542473e+00 7.18739629e-01 1.30379766e-01 -4.16125625e-01 3.65063846e-01 1.36072055e-01 -6.61116540e-01 -9.50345397e-02 2.43228406e-01 7.89588630e-01 5.29472053e-01 -1.05760849e+00 -1.03481150e+00 -7.97567517e-02 -3.60985138e-02 3.17237824e-02 -2.70285547e-01 3.28325033e-01 -3.87690067e-01 -5.76813936e-01 -5.50137758e-01 -5.86423635e-01 1.03523538e-01 1.13611460e-01 -1.53801069e-01 -2.13595450e-01 1.00521243e+00 3.18601215e-03 9.41006720e-01 -2.16581583e+00 -3.37754905e-01 -2.48489618e-01 1.39631167e-01 4.49660808e-01 -1.21302836e-01 4.31322277e-01 -2.00063169e-01 -2.53011227e-01 -1.78162202e-01 -1.35051444e-01 1.33763507e-01 3.28266233e-01 -4.70110953e-01 3.26332927e-01 2.48220995e-01 1.06604159e+00 -1.06385612e+00 -1.65153101e-01 3.52009714e-01 2.94150054e-01 -2.44079083e-01 1.67344689e-01 -2.41930723e-01 4.55939710e-01 -3.19573998e-01 8.92751038e-01 7.06453741e-01 -4.06763285e-01 -1.42925128e-01 2.04371149e-03 -8.86550397e-02 -4.99181189e-02 -1.07218766e+00 1.52665889e+00 -1.31148830e-01 8.14082563e-01 -3.85437757e-01 -1.35017300e+00 7.34531701e-01 1.43908784e-01 5.57180166e-01 -6.54996753e-01 1.98572069e-01 1.61736727e-01 1.48936301e-01 -2.49191046e-01 1.68355703e-01 -4.96372014e-01 -1.99524507e-01 2.29216382e-01 5.90483665e-01 1.13269491e-02 4.07189459e-01 1.61356553e-01 1.09013712e+00 7.32792392e-02 4.86985654e-01 -9.68248323e-02 -1.15730017e-01 4.22730036e-02 5.52967668e-01 1.04164481e+00 -6.60688519e-01 5.66166818e-01 4.19006854e-01 -4.34767544e-01 -9.93697166e-01 -1.64328575e+00 -4.46144938e-01 1.45467579e+00 6.35984242e-02 8.76538306e-02 -7.56071925e-01 -8.86768758e-01 2.90220946e-01 1.05580938e+00 -6.69402242e-01 -2.37357125e-01 -1.15258396e-01 -1.11672163e+00 6.05581999e-01 1.11636388e+00 3.09578717e-01 -9.19407904e-01 -5.52402735e-01 7.45532736e-02 2.10652694e-01 -9.20252264e-01 3.60893123e-02 5.43475866e-01 -6.73929632e-01 -1.23896945e+00 -1.33881247e+00 -9.62761939e-01 1.51152566e-01 3.99868608e-01 1.11307967e+00 -4.94527817e-01 -5.57615161e-01 5.40054500e-01 -4.09533054e-01 -6.87384546e-01 -2.27737159e-01 2.70436913e-01 -1.34046212e-01 -4.08988982e-01 9.25911248e-01 -4.90699857e-01 -3.87912035e-01 2.46832058e-01 -5.66975415e-01 -3.49518150e-01 2.81281263e-01 9.06305254e-01 3.98656547e-01 -1.28508031e-01 9.38158214e-01 -1.24766374e+00 7.19327569e-01 -8.22981894e-01 -6.04072988e-01 4.23150688e-01 -8.19555998e-01 -3.48215222e-01 3.48759800e-01 -3.92302334e-01 -1.44075716e+00 -2.02071458e-01 -2.31844455e-01 -3.75877291e-01 -5.17060161e-01 1.49828762e-01 -6.85685202e-02 -1.63803533e-01 7.25992322e-01 -1.02711245e-02 -3.21395069e-01 -7.54028022e-01 6.73027754e-01 9.16113496e-01 4.16780293e-01 -6.08989179e-01 5.66111207e-01 2.20238835e-01 -3.94661516e-01 -8.40239525e-01 -1.13563859e+00 -7.70398438e-01 -7.74838507e-01 -3.01348090e-01 7.90116489e-01 -6.74078286e-01 -1.76443458e-01 6.37110353e-01 -9.65267539e-01 -4.08196867e-01 -7.31571436e-01 3.54743928e-01 -7.43975401e-01 1.26789451e-01 -9.19009328e-01 -5.93147337e-01 -1.23786717e-03 -1.18840778e+00 8.77709925e-01 5.46544552e-01 -1.54355854e-01 -1.06533504e+00 1.35892630e-01 1.37451738e-01 5.99191427e-01 2.98435567e-03 1.14095092e+00 -1.05667770e+00 -3.20320308e-01 -2.69388825e-01 -4.83625561e-01 2.65989333e-01 1.37578174e-02 -9.74015053e-03 -1.30523396e+00 -2.26147249e-01 -2.58539051e-01 -4.69555348e-01 7.84508228e-01 6.22339010e-01 1.14101458e+00 6.67768836e-01 -5.16361117e-01 5.44515312e-01 1.20953691e+00 5.51965237e-01 3.29088777e-01 1.87844291e-01 2.98812002e-01 4.38341051e-01 8.09738696e-01 3.43145728e-01 1.94328472e-01 5.17671168e-01 9.45993587e-02 -1.06205575e-01 -5.47839642e-01 -1.16312439e-02 -6.89108670e-02 8.58918190e-01 2.55336195e-01 -6.19554281e-01 -1.13146698e+00 4.37698305e-01 -1.65038657e+00 -8.87894094e-01 1.09918423e-01 2.07625389e+00 6.20726347e-01 2.36622617e-01 1.20750055e-01 -9.62971523e-02 1.06626916e+00 4.56164666e-02 -1.01066935e+00 -2.21902952e-01 8.48979354e-02 5.38061082e-01 4.61057216e-01 9.14137736e-02 -1.26738262e+00 1.06584466e+00 7.69892406e+00 1.01912224e+00 -9.47979510e-01 2.12181076e-01 7.55268276e-01 -2.68895745e-01 1.26649663e-01 -1.91503331e-01 -1.08327293e+00 5.18561542e-01 9.79292691e-01 -3.43680650e-01 1.57447264e-01 1.08477223e+00 -3.34850878e-01 -1.10047258e-01 -1.36508465e+00 7.79571533e-01 5.84291480e-02 -1.28637147e+00 -2.53457546e-01 -1.78783938e-01 8.30571890e-01 3.58895451e-01 2.87619770e-01 9.74545062e-01 4.15099680e-01 -5.69701970e-01 4.71264690e-01 2.10408181e-01 1.17279875e+00 -6.44666374e-01 5.74529946e-01 2.27275804e-01 -1.20786905e+00 -1.05993010e-01 -6.36210442e-01 -1.12780116e-01 2.77162880e-01 3.69761080e-01 -7.89842725e-01 4.25467134e-01 8.75742972e-01 8.69278967e-01 -5.01025736e-01 1.47243500e+00 5.23951240e-02 7.87702382e-01 -1.05650142e-01 -2.11495925e-02 1.98355287e-01 2.14740276e-01 2.57590830e-01 1.21177745e+00 3.40230584e-01 -7.32009113e-02 2.18528956e-01 7.98297524e-01 -1.14903331e-01 -1.01839945e-01 -4.95889664e-01 -1.75289944e-01 5.75552225e-01 8.65303099e-01 -1.09288895e+00 -6.10788047e-01 -1.11488068e+00 8.03340971e-01 2.38599822e-01 5.70829690e-01 -9.01553333e-01 -7.14303434e-01 8.49967301e-01 2.92136800e-02 3.66783768e-01 2.30272591e-01 -2.38565519e-01 -1.13170922e+00 -3.65846336e-01 -4.28820848e-01 7.04414845e-01 -5.80893755e-01 -1.97052646e+00 2.12140694e-01 4.94328648e-01 -1.21216762e+00 -1.55945599e-01 -7.23697543e-01 -7.65472770e-01 6.09684944e-01 -1.62147045e+00 -1.00289512e+00 -1.98402256e-01 3.30618024e-01 9.55697596e-01 -5.18352091e-01 8.12886119e-01 7.64566958e-01 -5.40491879e-01 6.94943070e-01 6.13631308e-01 1.36318877e-01 1.18340552e+00 -1.21444094e+00 9.04146552e-01 4.80134428e-01 6.05977587e-02 3.84138137e-01 6.89683437e-01 -8.67725372e-01 -8.46910894e-01 -1.13387728e+00 5.07606149e-01 -1.92209318e-01 8.32231939e-01 -3.98696840e-01 -1.01380193e+00 8.24114680e-01 1.03219479e-01 3.55078608e-01 1.03044701e+00 3.03174734e-01 -3.52076411e-01 -2.12013409e-01 -1.24438274e+00 3.02216649e-01 1.13130546e+00 -2.50127882e-01 -6.33188486e-01 2.95493811e-01 5.14730871e-01 -4.41487193e-01 -7.28498042e-01 3.76796037e-01 5.38120449e-01 -9.80565786e-01 9.46822941e-01 -1.04123735e+00 7.69235864e-02 1.27906442e-01 -2.15161130e-01 -1.45748079e+00 -4.03181732e-01 -2.84369104e-02 -3.30241650e-01 1.36713171e+00 3.26482773e-01 -4.97013688e-01 1.04436851e+00 8.00624847e-01 -2.91936219e-01 -8.05703700e-01 -9.70937192e-01 -1.27310276e+00 5.12850642e-01 -8.11657965e-01 6.10925972e-01 9.07126546e-01 1.65998582e-02 2.91129023e-01 -1.59081921e-01 -2.83164740e-01 6.68961644e-01 1.55750811e-01 5.12856007e-01 -1.30494416e+00 -1.92261383e-01 -4.05616194e-01 -6.30574226e-01 -1.06835377e+00 1.47728339e-01 -1.06359720e+00 1.66088089e-01 -1.46507812e+00 4.13144618e-01 -3.73737484e-01 -5.98012328e-01 4.23711151e-01 3.21756564e-02 3.42841744e-01 2.64776528e-01 -1.11645818e-01 -7.80333459e-01 5.42047858e-01 9.51529622e-01 -1.50489703e-01 5.18164523e-02 4.19811815e-01 -6.90693736e-01 6.45867884e-01 9.25422966e-01 -3.88085246e-01 -7.60890901e-01 -2.61273712e-01 -3.17848265e-01 -1.85944438e-01 -2.04325989e-02 -1.14565217e+00 2.14926213e-01 -1.90858752e-01 7.35719442e-01 -6.06395364e-01 2.69463539e-01 -5.93152940e-01 -2.88224906e-01 1.53840303e-01 -2.85454214e-01 -3.60862106e-01 2.71064341e-01 8.08750629e-01 -1.11971729e-01 -4.68564957e-01 1.24405921e+00 -1.44124627e-01 -1.33362865e+00 5.22854626e-01 -4.97551829e-01 4.37876284e-01 1.59170735e+00 -2.18632802e-01 -3.69075894e-01 -2.82829851e-01 -8.08608830e-01 2.58762568e-01 3.14535618e-01 6.89882457e-01 3.37588042e-01 -1.34547353e+00 -3.40248406e-01 1.14466347e-01 4.83868033e-01 -2.52834767e-01 3.62599671e-01 3.59743148e-01 -1.62027106e-01 3.51107031e-01 -3.49503428e-01 -4.91061836e-01 -1.10446346e+00 6.61224425e-01 1.20309949e-01 7.77730122e-02 -5.76418817e-01 1.02824628e+00 4.12047923e-01 -4.65080172e-01 5.63169241e-01 -1.83528274e-01 -1.55274436e-01 1.33948907e-01 5.45362473e-01 6.69206500e-01 8.58299136e-02 -1.66786745e-01 -3.41032296e-01 1.58084169e-01 -2.70644188e-01 2.04023182e-01 1.49552965e+00 -7.36652389e-02 5.99803627e-01 8.32165360e-01 1.20074821e+00 -5.56964278e-01 -1.49738085e+00 -3.23794872e-01 1.83887973e-01 -4.49115098e-01 -2.13602543e-01 -1.08997130e+00 -1.11054003e+00 1.17426455e+00 7.84592271e-01 6.77128583e-02 8.66502106e-01 3.73239726e-01 9.23643649e-01 1.55720755e-01 2.79971719e-01 -1.30535376e+00 -3.86604406e-02 5.23057163e-01 2.52583891e-01 -1.30009019e+00 -2.41318047e-01 -4.62095410e-01 -5.90260804e-01 1.21691620e+00 7.42817461e-01 -9.31119695e-02 1.00720537e+00 5.71048558e-01 -5.17017394e-02 -7.01981038e-02 -4.95895743e-01 -3.50295961e-01 1.34499148e-01 1.38307798e+00 3.89374554e-01 -7.26239011e-02 2.81480044e-01 8.26589823e-01 5.96402660e-02 1.68210164e-01 3.29081655e-01 1.05453348e+00 -6.25211000e-01 -1.32047248e+00 -1.44530103e-01 9.01575089e-01 -1.51430115e-01 -7.90908560e-03 -1.53983980e-01 8.16492856e-01 2.80606657e-01 7.41327345e-01 2.99733758e-01 -1.66923389e-01 4.02050734e-01 4.35910881e-01 6.24354422e-01 -1.12920606e+00 -1.11751407e-01 -4.08433005e-02 -1.09534554e-01 -2.73059726e-01 -1.16941564e-01 -8.04687917e-01 -1.10528195e+00 -3.91206920e-01 -3.79010648e-01 -9.07321572e-02 5.95828712e-01 9.58935976e-01 2.47517049e-01 7.34504640e-01 1.85082689e-01 -6.95923030e-01 -6.64763868e-01 -7.18606472e-01 -9.30994272e-01 4.79750223e-02 5.66037148e-02 -1.09917176e+00 4.53585163e-02 3.24550718e-02]
[9.95096206665039, 2.8570895195007324]
39d4ab56-bbc7-49ca-8cb6-aa69ca7fecc7
samsung-r-d-institute-poland-submission-to
null
null
https://aclanthology.org/2021.wat-1.27
https://aclanthology.org/2021.wat-1.27.pdf
Samsung R&D Institute Poland submission to WAT 2021 Indic Language Multilingual Task
This paper describes the submission to the WAT 2021 Indic Language Multilingual Task by Samsung R&D Institute Poland. The task covered translation between 10 Indic Languages (Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil and Telugu) and English. We combined a variety of techniques: transliteration, filtering, backtranslation, domain adaptation, knowledge-distillation and finally ensembling of NMT models. We applied an effective approach to low-resource training that consist of pretraining on backtranslations and tuning on parallel corpora. We experimented with two different domain-adaptation techniques which significantly improved translation quality when applied to monolingual corpora. We researched and applied a novel approach for finding the best hyperparameters for ensembling a number of translation models. All techniques combined gave significant improvement - up to +8 BLEU over baseline results. The quality of the models has been confirmed by the human evaluation where SRPOL models scored best for all 5 manually evaluated languages.
['Paweł Przybysz', 'Marcin Chochowski', 'Marcin Szymański', 'Adam Dobrowolski']
null
null
null
null
acl-wat-2021-8
['transliteration']
['natural-language-processing']
[-3.93300727e-02 -1.57812595e-01 -2.86688730e-02 -2.79113322e-01 -1.41127467e+00 -1.09878409e+00 1.01858890e+00 -1.22313976e-01 -5.54148853e-01 1.30573189e+00 2.76555240e-01 -9.47234392e-01 1.55271128e-01 -3.45941335e-01 -6.56526327e-01 -2.80562162e-01 1.91481590e-01 1.25440955e+00 -4.15254757e-02 -7.38993406e-01 2.66769260e-01 3.02666038e-01 -5.46488047e-01 3.44290882e-01 1.29493535e+00 9.74024460e-02 2.98231393e-01 7.97615170e-01 1.91014558e-02 2.99244046e-01 -6.08751118e-01 -7.13896155e-01 3.42915624e-01 -8.45570564e-01 -1.22420764e+00 -2.16290995e-01 3.66574138e-01 -1.39662961e-03 1.39875561e-01 8.18632483e-01 6.07955456e-01 -2.11216837e-01 6.89609766e-01 -5.30366838e-01 -7.53120780e-01 9.40619528e-01 -4.18602407e-01 2.85762906e-01 4.00778145e-01 -2.70223647e-01 7.53167212e-01 -1.06887734e+00 9.66643572e-01 1.26062036e+00 5.40405631e-01 3.25387239e-01 -1.18521202e+00 -4.29444402e-01 -4.88173127e-01 2.16015965e-01 -1.24616981e+00 -4.12980229e-01 1.26663148e-01 -2.65126109e-01 1.44909275e+00 2.19755054e-01 2.42000461e-01 8.93190503e-01 3.34726065e-01 4.58919108e-01 1.56015933e+00 -1.11290860e+00 -6.73905089e-02 6.60502374e-01 -1.75867513e-01 3.75404745e-01 2.34847572e-02 -1.64403707e-01 -2.14640856e-01 -1.82890251e-01 5.44021666e-01 -8.66844296e-01 1.79941833e-01 2.23464206e-01 -1.69604695e+00 6.51903749e-01 -1.20691605e-01 6.44399285e-01 -3.27217162e-01 -3.95929515e-01 6.58841610e-01 9.88712668e-01 6.66507423e-01 5.51187277e-01 -1.00176132e+00 -4.27757770e-01 -8.49072158e-01 -3.14947031e-02 7.52323687e-01 1.00711262e+00 6.14313304e-01 -2.42018048e-02 1.88417420e-01 1.35810876e+00 8.89645740e-02 9.03165877e-01 7.82983482e-01 -3.26343119e-01 1.04922712e+00 2.37315357e-01 2.86869168e-01 -2.63474077e-01 -1.22932941e-01 -2.39785537e-01 -3.95586669e-01 -2.63232619e-01 5.09296536e-01 -6.84624970e-01 -1.09191298e+00 1.50115764e+00 2.45346069e-01 -5.99996328e-01 6.02503955e-01 7.10788667e-01 2.98337102e-01 9.69515264e-01 -9.66358483e-02 -4.09704953e-01 1.16250801e+00 -1.20389426e+00 -6.75318837e-01 4.49302681e-02 7.64090538e-01 -1.80791450e+00 1.10772407e+00 3.66294503e-01 -1.15902030e+00 -7.24194288e-01 -9.84109342e-01 3.26597653e-02 -3.93418133e-01 6.00314915e-01 2.80139625e-01 7.68061876e-01 -1.10189891e+00 4.79140997e-01 -8.32479000e-01 -9.04244781e-01 -2.93615460e-01 5.53205848e-01 -5.55549204e-01 -4.57713529e-02 -1.36234665e+00 1.45716178e+00 7.12716579e-01 -2.16400802e-01 -6.42547905e-01 -1.59517098e-02 -4.17355269e-01 -5.40448606e-01 -2.76223868e-01 -3.60401392e-01 1.11948669e+00 -1.28650868e+00 -1.88013446e+00 1.05470443e+00 -1.07253850e-01 -4.80371982e-01 6.11051798e-01 -4.07442927e-01 -7.05477893e-01 -2.57717550e-01 2.15921327e-01 4.17056799e-01 4.77987468e-01 -7.67336965e-01 -7.46696949e-01 -2.90868789e-01 -3.13085735e-01 5.40257514e-01 -1.60514653e-01 6.50426745e-01 -2.85611361e-01 -6.08763576e-01 -2.14623418e-02 -1.16445506e+00 -3.86462733e-02 -1.20138943e+00 -2.31530964e-01 8.34928651e-04 6.65066898e-01 -1.37858844e+00 1.00270605e+00 -1.80088139e+00 4.50549334e-01 7.13395746e-03 -7.88049042e-01 3.98429483e-01 -2.46868894e-01 9.16856408e-01 -5.90313412e-02 -8.14097971e-02 -5.68815432e-02 2.36823335e-02 -5.80986701e-02 3.56935710e-01 -2.16548786e-01 2.90716738e-01 1.36472136e-01 8.86741817e-01 -7.20612466e-01 -3.55685115e-01 2.26424962e-01 3.96138430e-01 2.34522112e-02 8.73873942e-03 -1.09694555e-01 6.07596219e-01 -4.61145975e-02 6.39638901e-01 5.67630172e-01 4.94353235e-01 3.85315150e-01 1.86541602e-01 -3.11691225e-01 8.29012513e-01 -8.07399690e-01 1.78528452e+00 -6.59763813e-01 6.30448520e-01 -2.89399058e-01 -7.72762299e-01 1.16868484e+00 6.10237360e-01 1.28564117e-02 -7.52970457e-01 1.99826345e-01 9.94899392e-01 3.04549128e-01 -4.80605900e-01 6.96648777e-01 -1.81872606e-01 -9.98970717e-02 6.96139872e-01 4.31770384e-01 -3.10982198e-01 4.49453473e-01 -2.29641378e-01 5.09481609e-01 5.10874569e-01 4.74907309e-01 -6.73471749e-01 7.76993215e-01 5.47402561e-01 3.14146042e-01 3.47460896e-01 -2.56359689e-02 4.58468944e-01 1.27794579e-01 -4.38285172e-01 -1.57195115e+00 -9.65995967e-01 -1.07099682e-01 1.27349520e+00 -3.48461717e-01 -2.95964420e-01 -9.83115137e-01 -8.36884797e-01 -6.73858523e-01 9.18789864e-01 -2.06784010e-01 2.73580343e-01 -1.14605367e+00 -1.14308572e+00 6.45056546e-01 -9.38738808e-02 5.21750450e-01 -9.68337774e-01 1.36388451e-01 4.44575071e-01 -5.45568109e-01 -1.07253480e+00 -5.02437055e-01 3.04905981e-01 -1.15775239e+00 -4.13807333e-01 -1.05939198e+00 -1.16108990e+00 3.51323664e-01 -1.91196144e-01 1.20099127e+00 -5.42036414e-01 1.62661999e-01 -1.68168753e-01 -4.19515312e-01 -4.63912398e-01 -1.12284935e+00 6.35016441e-01 2.24315807e-01 -6.01045549e-01 5.53614378e-01 -3.42191815e-01 -8.65296945e-02 4.97764140e-01 -3.42862457e-01 2.76686121e-02 8.55963349e-01 7.92424619e-01 3.19227874e-01 -4.08756524e-01 5.68337619e-01 -9.50619400e-01 7.68347621e-01 -1.82215258e-01 -4.32323217e-01 6.21948540e-01 -6.31564558e-01 8.39068145e-02 6.06193066e-01 -5.63921809e-01 -1.13053942e+00 5.56301363e-02 -3.93557280e-01 4.99056756e-01 -1.25001431e-01 4.11862433e-01 -1.69945836e-01 -5.69546521e-02 1.04064000e+00 4.43408072e-01 -3.09020370e-01 -5.47456145e-01 4.50061291e-01 1.15988719e+00 3.61539602e-01 -8.01143229e-01 7.05084085e-01 -2.30684623e-01 -4.27256495e-01 -8.00246835e-01 -1.02234520e-01 -2.14657724e-01 -9.98321116e-01 1.29760608e-01 5.34507453e-01 -1.01532698e+00 4.09155399e-01 5.07658124e-01 -1.28711402e+00 -3.64475161e-01 3.32762152e-02 9.49140191e-01 -4.54455495e-01 3.31546932e-01 -8.74150038e-01 -3.36959779e-01 -8.26414049e-01 -1.13211775e+00 7.54798174e-01 -5.96352071e-02 -3.78047138e-01 -1.19678330e+00 5.95405519e-01 3.42698544e-01 5.84189236e-01 -1.88759014e-01 1.12338150e+00 -8.59472752e-01 -5.88620082e-03 -5.32110706e-02 -6.16602078e-02 5.68918824e-01 2.92234004e-01 -1.08393252e-01 -5.51064968e-01 -3.19501042e-01 -2.45197564e-01 -4.11815733e-01 2.79822439e-01 1.17631573e-02 -2.00820759e-01 -2.90315628e-01 -4.08535488e-02 5.81542440e-02 1.38409317e+00 4.43213254e-01 6.19608402e-01 7.27763355e-01 3.64842206e-01 2.80321687e-01 8.15934658e-01 -2.23765671e-01 3.72214824e-01 9.27145541e-01 -2.97578901e-01 -1.11861885e-01 -1.00354262e-01 -1.94964428e-02 7.79350877e-01 1.33304799e+00 -3.84490848e-01 -4.24409918e-02 -1.05797136e+00 7.41713703e-01 -1.60523641e+00 -4.04304832e-01 -3.07236850e-01 2.42487264e+00 1.29738975e+00 1.19252235e-01 2.76554912e-01 -1.94099858e-01 5.75041354e-01 -5.87735176e-01 2.05819622e-01 -1.11760926e+00 -1.36290625e-01 5.71317255e-01 6.05900645e-01 9.09482419e-01 -8.32598031e-01 1.58813560e+00 5.95251083e+00 8.51559699e-01 -1.30287910e+00 5.77780485e-01 4.01987672e-01 3.20523798e-01 -1.56633761e-02 1.47822782e-01 -8.52677703e-01 2.46635929e-01 1.58888721e+00 -2.01240614e-01 5.53320765e-01 4.94033307e-01 2.05601320e-01 5.43607138e-02 -8.54184031e-01 4.71761674e-01 8.20687041e-02 -9.18115377e-01 -1.07788322e-02 -1.69699773e-01 1.22009480e+00 6.99134886e-01 -2.80601531e-01 5.75924814e-01 3.76888931e-01 -6.67739987e-01 5.09068668e-01 -1.71372928e-02 7.22138166e-01 -8.81707370e-01 8.57937872e-01 4.42533225e-01 -5.17005563e-01 3.99446607e-01 -6.41567826e-01 1.35425932e-03 7.54331797e-02 2.17614025e-01 -1.27554142e+00 9.19645786e-01 3.10671896e-01 2.85988629e-01 -4.31524962e-01 6.57994449e-01 -3.22687238e-01 9.55142260e-01 -5.17262936e-01 -5.31681515e-02 4.85349029e-01 -3.45431209e-01 4.13454145e-01 1.63969827e+00 5.30256629e-01 -4.67515051e-01 -5.63656464e-02 7.43725747e-02 1.25470296e-01 8.50945354e-01 -4.28118736e-01 -1.35871410e-01 6.23578355e-02 1.05298626e+00 -6.75716996e-01 -5.58764577e-01 -2.24359646e-01 1.29648459e+00 4.00971882e-02 3.04855078e-01 -6.10243022e-01 -4.21204656e-01 2.71394163e-01 -5.94421774e-02 4.60678004e-02 -5.86017013e-01 -1.47183180e-01 -1.22915995e+00 -8.26515630e-02 -1.43534684e+00 2.38018900e-01 -4.22046781e-01 -8.56013536e-01 1.18412268e+00 5.16045913e-02 -1.16773343e+00 -6.93204939e-01 -5.75495660e-01 -3.42500210e-01 1.49572754e+00 -1.06184566e+00 -1.38812983e+00 5.57246447e-01 3.23188782e-01 8.64055574e-01 -6.47379398e-01 1.17246437e+00 6.58653319e-01 -2.23627955e-01 6.10360980e-01 6.05677426e-01 1.10754948e-02 1.13607585e+00 -1.31894183e+00 7.85595000e-01 9.17043030e-01 4.33260620e-01 7.33534873e-01 8.00838888e-01 -6.23246312e-01 -1.10777032e+00 -9.11827266e-01 1.78614998e+00 -3.87019694e-01 7.71174610e-01 -3.13381821e-01 -5.95681667e-01 7.84224808e-01 9.14369762e-01 -7.40127861e-01 5.83730578e-01 2.91212559e-01 1.10192988e-02 4.10688445e-02 -9.76075470e-01 5.24027646e-01 3.50823820e-01 -3.38466585e-01 -7.77034342e-01 7.37280786e-01 3.32165837e-01 -5.04409313e-01 -9.11042094e-01 8.17834884e-02 5.13677120e-01 -3.56346786e-01 7.38386393e-01 -7.04979539e-01 3.91424179e-01 -2.71007389e-01 -2.13739052e-01 -1.68454361e+00 -1.22999325e-02 -7.54876792e-01 4.27050471e-01 1.33646047e+00 1.04074836e+00 -6.40829325e-01 2.57910371e-01 -2.81496812e-02 2.56689433e-02 -1.93318665e-01 -8.62534761e-01 -8.06719661e-01 6.17686629e-01 -8.33496526e-02 2.57017493e-01 9.53868151e-01 1.64935157e-01 9.32106674e-01 -6.23532653e-01 -1.66730434e-01 2.71048129e-01 1.40387136e-02 8.30046177e-01 -7.35525668e-01 -4.75750089e-01 -2.52031744e-01 -2.28572935e-01 -8.00556302e-01 -1.21304736e-01 -1.05263734e+00 -1.21632695e-01 -1.60308731e+00 -4.77309003e-02 -3.85844290e-01 -2.55857054e-02 4.58632290e-01 -1.70026183e-01 6.21609032e-01 3.82778607e-02 3.54376167e-01 -1.67537019e-01 -5.67654818e-02 1.20616722e+00 -3.15563241e-03 -3.40856165e-01 1.43121988e-01 -3.74484271e-01 1.57071158e-01 9.92779315e-01 -5.67748010e-01 -2.99473464e-01 -8.98780942e-01 9.04790834e-02 1.11298606e-01 -4.08166200e-01 -7.08139241e-01 -1.97392985e-01 -8.36946890e-02 3.03794444e-01 -4.02571589e-01 3.12032383e-02 -5.81484139e-01 3.09444547e-01 6.58955514e-01 -9.76685584e-02 5.24345160e-01 4.42617923e-01 -2.51690418e-01 -2.02433363e-01 -2.60586798e-01 7.97189593e-01 -3.16813946e-01 -6.51749730e-01 -3.69815677e-01 -5.20866454e-01 -2.19062775e-01 8.24898660e-01 6.85456842e-02 -9.91585851e-02 -1.85565323e-01 -7.78396547e-01 -4.66757305e-02 3.59798670e-01 5.18730700e-01 -8.60326067e-02 -1.21849096e+00 -1.35040283e+00 2.65906185e-01 -8.17884281e-02 -7.82883763e-01 -3.84396076e-01 9.92256403e-01 -9.31788683e-01 7.26469278e-01 -6.58875644e-01 -5.18728495e-01 -1.44600213e+00 1.26975328e-01 2.37832695e-01 -5.98391831e-01 -1.45197853e-01 5.72319090e-01 -5.65773845e-01 -1.05186892e+00 -9.13323313e-02 -3.55269648e-02 -8.22395086e-02 -1.33906037e-01 2.15845257e-01 2.68261105e-01 5.55353701e-01 -8.84081781e-01 -3.07906896e-01 5.94877481e-01 -4.04875845e-01 -7.79351711e-01 9.30873692e-01 -3.59960347e-01 -3.55992198e-01 4.27743137e-01 9.50786054e-01 1.45742923e-01 -3.00276399e-01 -2.36321375e-01 3.28584552e-01 -1.34712383e-01 -3.36008251e-01 -1.48555672e+00 -2.35126391e-01 8.66806388e-01 6.43668592e-01 -1.58388987e-01 1.03080344e+00 -4.24524754e-01 6.70127928e-01 6.07931733e-01 6.90899670e-01 -1.30867279e+00 -6.37216806e-01 9.75206792e-01 7.09320724e-01 -1.23332345e+00 -1.81211531e-01 8.01449120e-02 -7.13021219e-01 1.41685712e+00 1.57522336e-01 5.37002757e-02 2.41328612e-01 1.35437146e-01 7.34506845e-01 4.20340925e-01 -6.96521103e-01 -3.17900516e-02 3.53792459e-01 5.31829000e-01 1.01940846e+00 2.99496263e-01 -1.35639572e+00 4.44017462e-02 -4.46191877e-01 -2.16880832e-02 4.61861819e-01 7.24464655e-01 -2.69396394e-01 -1.74357951e+00 -5.67660630e-01 -6.58585830e-03 -8.39959860e-01 -3.49944830e-01 -6.58976614e-01 1.06086636e+00 8.96276012e-02 9.27528203e-01 -3.42145205e-01 -3.25251430e-01 1.92071363e-01 3.82245213e-01 7.63022423e-01 -6.00216925e-01 -1.00684261e+00 5.89567661e-01 5.14349341e-01 2.03867242e-01 -1.48623616e-01 -7.96551108e-01 -8.63095880e-01 -2.03931853e-01 -3.51659894e-01 8.00398886e-01 1.17550027e+00 1.20347297e+00 -2.01191697e-02 4.33112159e-02 5.49876869e-01 -4.83225465e-01 -5.92421412e-01 -1.68863392e+00 -3.43410224e-02 -9.54232365e-03 -1.28771052e-01 5.63032106e-02 1.05424136e-01 3.71834189e-01]
[11.443184852600098, 10.46853256225586]
f0114910-f1e4-4755-b07f-04444cb6e987
polyu-cbs-comp-at-semeval-2021-task-1-lexical
null
null
https://aclanthology.org/2021.semeval-1.70
https://aclanthology.org/2021.semeval-1.70.pdf
PolyU CBS-Comp at SemEval-2021 Task 1: Lexical Complexity Prediction (LCP)
In this contribution, we describe the system presented by the PolyU CBS-Comp Team at the Task 1 of SemEval 2021, where the goal was the estimation of the complexity of words in a given sentence context. Our top system, based on a combination of lexical, syntactic, word embeddings and Transformers-derived features and on a Gradient Boosting Regressor, achieves a top correlation score of 0.754 on the subtask 1 for single words and 0.659 on the subtask 2 for multiword expressions.
['Chu-Ren Huang', 'Qin Lu', 'Wenjie Li', 'Emmanuele Chersoni', 'Jinghang Gu', 'Rong Xiang']
2021-08-01
null
null
null
semeval-2021
['lexical-complexity-prediction']
['natural-language-processing']
[-2.94366956e-01 -4.10916768e-02 -5.82193397e-02 -5.12488008e-01 -7.07317770e-01 -4.17633325e-01 7.37680316e-01 6.43794179e-01 -1.04072917e+00 5.46846449e-01 4.86713797e-01 -4.62998927e-01 1.52106553e-01 -3.06671649e-01 -3.38523626e-01 -1.46952942e-01 -1.37743264e-01 2.30821207e-01 1.52649134e-01 -5.66985071e-01 2.39125818e-01 1.51092848e-02 -1.07224166e+00 6.83630884e-01 2.23337278e-01 1.20692444e+00 3.01852554e-01 8.93145859e-01 -3.25740457e-01 8.00661862e-01 -5.47014892e-01 -8.01685333e-01 -1.66901216e-01 1.78272687e-02 -1.01842558e+00 -4.59911287e-01 3.88603091e-01 2.05323040e-01 -2.57859170e-01 8.20328593e-01 5.07858217e-01 4.13575411e-01 6.26944602e-01 -7.98548937e-01 -6.20703220e-01 1.08754408e+00 -1.18295718e-02 8.22875321e-01 6.06309533e-01 -1.05514430e-01 1.78906906e+00 -1.56803584e+00 7.01282740e-01 1.24581552e+00 6.07027054e-01 5.66789269e-01 -1.11825049e+00 -2.33958110e-01 3.25703830e-01 6.34121954e-01 -1.32042670e+00 -5.07622778e-01 5.15096784e-01 -5.04512429e-01 2.15843439e+00 1.28231451e-01 4.97700900e-01 1.27753222e+00 4.65106547e-01 7.79674828e-01 1.16563165e+00 -8.61651957e-01 2.46729925e-01 7.24425018e-02 8.12134504e-01 4.95424986e-01 -5.81651274e-03 -1.90575942e-01 -6.08863115e-01 -3.35704386e-02 -1.64704353e-01 -5.75487077e-01 9.37761888e-02 2.51798183e-01 -7.19211102e-01 1.04199624e+00 -4.28789817e-02 8.98015082e-01 -3.49646211e-01 1.81569591e-01 7.96013415e-01 3.35311323e-01 8.61535132e-01 5.75592756e-01 -1.05479991e+00 -5.58773279e-01 -6.29311740e-01 4.33749944e-01 7.54423201e-01 7.66709924e-01 2.97770113e-01 -1.40356466e-01 -4.35363024e-01 1.18383646e+00 1.62709519e-01 1.33387506e-01 7.85993874e-01 -2.90519774e-01 5.38993597e-01 4.05273706e-01 -1.70435309e-01 -7.59141028e-01 -7.84617245e-01 -2.53053874e-01 -1.02230728e-01 -2.87664562e-01 2.04115734e-01 -4.73688126e-01 -6.89880788e-01 1.85241747e+00 -5.26042329e-03 -1.57923192e-01 -5.70436418e-02 6.11681461e-01 1.08428323e+00 7.03798175e-01 5.53460419e-01 -1.98195145e-01 1.54504287e+00 -1.09520757e+00 -9.39434588e-01 -5.64616621e-01 9.51833606e-01 -8.98221910e-01 1.16294897e+00 4.97825056e-01 -1.21786630e+00 -6.86692894e-01 -1.09261990e+00 -3.22377592e-01 -7.71798313e-01 2.23715082e-02 2.88626701e-01 5.44742167e-01 -1.00316560e+00 1.80891037e-01 -4.24031794e-01 -2.78467655e-01 -2.88343638e-01 -2.63830461e-02 -3.84346217e-01 6.69424841e-03 -1.66550910e+00 1.44107068e+00 5.91284215e-01 -1.59983188e-01 -3.21779877e-01 -6.70733869e-01 -1.00901580e+00 -5.66680618e-02 1.15291514e-01 -2.73969710e-01 1.27907956e+00 -5.24311602e-01 -1.35674071e+00 1.04592824e+00 -2.16629878e-01 -6.37637675e-01 3.23633909e-01 -5.40837407e-01 -6.71362460e-01 -3.60772371e-01 -6.24978356e-02 2.66827732e-01 3.68180037e-01 -4.41451102e-01 -6.91207647e-01 -3.89337927e-01 2.39161029e-01 1.19973235e-01 -4.71553653e-01 5.60205758e-01 -1.76399395e-01 -5.82155228e-01 -5.40835619e-01 -7.12046862e-01 -2.25983202e-01 -9.32409942e-01 -9.37026665e-02 -9.03498828e-01 2.99586028e-01 -1.04788029e+00 1.71479881e+00 -2.03974319e+00 4.21435386e-01 -1.08120970e-01 -1.16421049e-02 2.25585282e-01 -3.11658859e-01 6.44406736e-01 -4.56501961e-01 1.29154176e-01 7.38473907e-02 -6.27675653e-01 1.89671919e-01 -7.79300183e-02 -1.02378137e-01 1.85287893e-01 4.17001516e-01 9.63563800e-01 -1.01045525e+00 -3.22554201e-01 7.74656460e-02 9.96902436e-02 -4.20514703e-01 3.17566663e-01 -1.66198730e-01 -3.73962671e-01 2.52357051e-02 4.11197469e-02 3.19041967e-01 2.69470423e-01 4.39484477e-01 4.99177948e-02 -2.46827722e-01 8.54608417e-01 -8.04395556e-01 1.61155295e+00 -1.10008967e+00 7.89526105e-01 -1.66212752e-01 -7.77529120e-01 9.00569379e-01 3.07964593e-01 2.44968131e-01 -6.46009147e-01 2.60783523e-01 -7.31841289e-03 1.47137001e-01 -6.80165946e-01 8.19906116e-01 -1.26872852e-01 -4.50272143e-01 1.90017726e-02 4.95887339e-01 -1.15538515e-01 5.83655059e-01 2.85100713e-02 1.45325041e+00 -1.00951143e-01 6.68847799e-01 -6.10106647e-01 9.30564046e-01 -3.38591903e-01 1.91989511e-01 2.90578544e-01 -2.35657766e-01 3.00356627e-01 7.03437567e-01 -5.90206683e-01 -1.09748459e+00 -6.57589495e-01 -2.98355877e-01 1.65966511e+00 -3.59813154e-01 -1.03558779e+00 -7.23104894e-01 -7.38213599e-01 -1.16553679e-02 1.23342741e+00 -6.26311183e-01 -7.76173547e-02 -6.93269670e-01 -6.33039236e-01 5.48125625e-01 6.36155665e-01 -3.08249533e-01 -1.17805946e+00 -2.39800811e-01 5.04054546e-01 -2.45611936e-01 -1.57583141e+00 -5.42962670e-01 4.23283815e-01 -4.88370568e-01 -7.39060879e-01 -1.75361037e-01 -8.65069687e-01 -3.37948650e-02 -3.91829878e-01 1.41721141e+00 -9.52681825e-02 -3.34712714e-01 5.73319234e-02 -7.41679609e-01 -4.77566123e-01 -3.12730074e-01 2.77955294e-01 1.75425634e-01 -1.69766605e-01 8.13110232e-01 -1.51533410e-01 -4.53760475e-02 -1.40207514e-01 -5.78650951e-01 -3.02564204e-01 2.07570285e-01 9.71096873e-01 1.99049130e-01 -5.51166058e-01 5.30684054e-01 -8.45488012e-01 1.07029629e+00 -6.14818990e-01 -3.65493596e-01 2.74993062e-01 -6.19296134e-01 -2.24644020e-02 6.64888322e-01 -3.97540927e-01 -7.12871969e-01 -8.18678513e-02 -7.57059515e-01 5.62855266e-02 -5.45828678e-02 6.74486279e-01 -1.65063292e-01 4.75278795e-01 8.23237896e-01 2.13467851e-02 -5.46520889e-01 -4.99866843e-01 6.40574872e-01 8.31434131e-01 1.50990307e-01 -7.28557706e-01 2.06184074e-01 -4.25171882e-01 -2.81568259e-01 -1.29033530e+00 -9.86927330e-01 -6.33884430e-01 -5.35354853e-01 -1.41168013e-01 9.63866711e-01 -8.65949690e-01 -4.23619032e-01 3.76405358e-01 -1.68405068e+00 -2.07586542e-01 -1.95443347e-01 4.27170634e-01 -3.21251988e-01 4.44891721e-01 -5.67190289e-01 -8.76872122e-01 -5.45710027e-01 -8.08160841e-01 9.91470456e-01 -2.75355548e-01 -7.97949195e-01 -1.20016396e+00 3.13927412e-01 3.01598728e-01 4.35599953e-01 -9.83275846e-02 1.10233939e+00 -1.14870703e+00 3.66565764e-01 -3.37299287e-01 -1.05685517e-01 6.64641201e-01 -1.91579238e-01 -1.15249299e-01 -9.64541256e-01 -2.02725112e-01 -1.16467439e-01 -5.02071738e-01 8.59783053e-01 2.94606358e-01 9.93907630e-01 -1.31841023e-02 1.35394379e-01 1.89985946e-01 1.24662507e+00 -3.81097384e-02 2.97974616e-01 1.76274106e-01 3.81046295e-01 5.57072043e-01 4.43045855e-01 5.04770577e-01 3.50092292e-01 8.68105412e-01 1.60588846e-01 5.42941988e-01 -1.79952443e-01 -1.10247247e-02 6.74112022e-01 1.33389199e+00 2.26116460e-02 -3.40537339e-01 -1.18850911e+00 7.86054850e-01 -1.71820974e+00 -4.97360080e-01 -4.65258420e-01 1.68667459e+00 7.91182578e-01 4.34617370e-01 6.01351000e-02 -2.93700323e-02 5.92870712e-01 5.47028363e-01 1.23435505e-01 -1.23377132e+00 -2.11545065e-01 5.62799573e-01 2.29992092e-01 8.98385644e-01 -1.13565278e+00 1.33813643e+00 7.24216843e+00 1.04392695e+00 -6.45314395e-01 5.07547140e-01 4.13561434e-01 -8.04969966e-02 -1.46999191e-02 -2.96377689e-01 -1.19083834e+00 5.45483530e-01 1.77069521e+00 -3.64395559e-01 2.46602193e-01 9.32415128e-01 -8.48154575e-02 -7.06042647e-02 -1.25171673e+00 7.97178328e-01 4.75636929e-01 -1.06721210e+00 -2.19556391e-01 -2.28432447e-01 4.41271454e-01 3.76622230e-01 -2.90716261e-01 8.64212453e-01 1.87487155e-01 -1.00209916e+00 7.97493219e-01 3.92470300e-01 5.87236702e-01 -8.37739289e-01 1.03122079e+00 3.85197908e-01 -1.01316988e+00 1.69917718e-02 -3.15627068e-01 -5.20808160e-01 1.91379860e-01 5.88550210e-01 -8.01909745e-01 3.25233072e-01 3.46329927e-01 5.06935239e-01 -4.89634573e-01 4.46008325e-01 -5.89002967e-01 8.27618062e-01 -7.89706334e-02 -7.38600552e-01 3.13747823e-01 2.14408457e-01 4.84131694e-01 2.16434383e+00 -1.17418468e-01 1.85357071e-02 1.79212779e-01 2.52763510e-01 -2.08386153e-01 8.48143101e-01 -4.30293471e-01 5.65459058e-02 3.07418764e-01 1.42254055e+00 -1.34894446e-01 -3.35500211e-01 -4.87216532e-01 6.68440223e-01 9.21375692e-01 -7.48293474e-02 -6.72441244e-01 -4.67263550e-01 7.41833389e-01 -1.92181721e-01 3.48432362e-01 -5.11411607e-01 -3.90137732e-01 -1.12435544e+00 1.29262239e-01 -5.91831684e-01 3.34363222e-01 -5.26241779e-01 -1.56197500e+00 9.75407839e-01 -1.78502575e-02 -4.16097581e-01 -3.61786872e-01 -1.22184706e+00 -5.13321459e-01 1.14907658e+00 -1.41676319e+00 -8.34407449e-01 1.87428191e-01 1.97317854e-01 9.22528982e-01 -4.03513461e-01 1.06702518e+00 2.08251312e-01 -5.09630084e-01 7.45847046e-01 -6.84588328e-02 1.35908797e-01 5.19774914e-01 -1.41039288e+00 9.25697029e-01 6.74645722e-01 3.74690980e-01 3.95350069e-01 8.39434147e-01 -4.10355568e-01 -1.13418806e+00 -8.82350266e-01 1.95802140e+00 -8.23911726e-01 1.26672506e+00 -6.54503167e-01 -6.47708118e-01 4.53755170e-01 3.24577004e-01 1.03214726e-01 6.75049901e-01 5.98926246e-01 -4.53682959e-01 1.65911302e-01 -7.17162371e-01 3.30372542e-01 9.15811062e-01 -7.89109409e-01 -1.24100161e+00 5.76783419e-01 9.10944760e-01 -4.26066339e-01 -1.03100407e+00 2.01464966e-01 5.47314942e-01 -4.51776057e-01 8.22777510e-01 -1.24290013e+00 9.25983846e-01 3.86996418e-01 -5.92397153e-01 -1.47570705e+00 -6.15476131e-01 -1.80453584e-01 -3.24597806e-01 9.63866532e-01 7.81433523e-01 -1.65433601e-01 3.51649612e-01 4.39991981e-01 -2.13164866e-01 -9.45996344e-01 -1.45402586e+00 -1.02492058e+00 4.62642252e-01 -1.07266438e+00 1.70333862e-01 6.65401340e-01 3.96473140e-01 9.67727780e-01 -1.73531786e-01 -2.62965441e-01 3.19313928e-02 -4.65108365e-01 2.70770758e-01 -8.96129727e-01 -3.04616541e-01 -4.71717954e-01 -6.59041822e-01 -6.47959411e-01 6.94987953e-01 -1.12224734e+00 3.87133062e-02 -1.25646102e+00 -3.83765716e-03 3.14897895e-01 -6.28097117e-01 3.06340337e-01 -3.43694061e-01 -9.59627330e-02 3.26161504e-01 -5.28409183e-01 -6.20800018e-01 4.78129208e-01 4.83254433e-01 -8.63305628e-02 1.45251647e-01 -3.49771291e-01 -4.77972388e-01 6.69744849e-01 7.01784611e-01 -3.97528827e-01 2.36008823e-01 -4.99098033e-01 5.60287237e-01 -3.24290663e-01 -1.37949526e-01 -6.40945375e-01 -8.17338154e-02 -4.13704803e-03 6.56968728e-02 -4.48785424e-01 5.00624776e-01 -5.92725992e-01 -3.82436544e-01 3.91921490e-01 -5.76860547e-01 5.09291947e-01 4.79936808e-01 2.26750284e-01 -2.75455505e-01 -6.70051992e-01 5.19658148e-01 7.57753551e-02 -9.06764150e-01 -2.40790546e-01 -6.39017165e-01 5.30445755e-01 9.21833038e-01 2.59595424e-01 -1.40958652e-01 -5.25930896e-02 -8.23455513e-01 1.47390231e-01 -2.46596158e-01 9.23125863e-01 4.31446493e-01 -1.24742556e+00 -1.03261518e+00 -2.18568370e-02 4.36970294e-01 -7.75304556e-01 7.61993900e-02 5.00074387e-01 -2.64188945e-01 5.68256676e-01 -6.48593083e-02 -1.26977429e-01 -1.54463601e+00 3.56676370e-01 2.01496631e-01 -7.43160665e-01 -2.33593374e-01 1.17454612e+00 -3.82974476e-01 -3.66722852e-01 4.81541734e-03 -4.85354394e-01 -4.11848426e-01 4.80751663e-01 7.76847601e-01 4.95150566e-01 6.99212730e-01 -7.30566025e-01 -6.45452261e-01 3.71602654e-01 -3.25499147e-01 -2.41109103e-01 1.44890082e+00 1.27435505e-01 -2.56792516e-01 7.88627088e-01 1.46683753e+00 -1.07292086e-01 -4.22179550e-01 -4.66666251e-01 6.78591430e-01 -4.07737400e-03 3.77502292e-01 -8.83736193e-01 -4.40288723e-01 9.37055826e-01 3.20078731e-01 3.27193320e-01 5.29777586e-01 3.41745913e-02 8.41548800e-01 6.01469398e-01 9.25108567e-02 -1.59396076e+00 -2.33576596e-01 1.45431459e+00 1.09998858e+00 -1.04229188e+00 -9.53284465e-03 -1.51324168e-01 -5.90296984e-01 1.37399662e+00 4.56412911e-01 -3.33149850e-01 8.14668119e-01 2.81709313e-01 -1.89499632e-01 -4.40480970e-02 -1.33636534e+00 -1.23931080e-01 5.59371471e-01 1.98902488e-01 9.78352070e-01 3.93394887e-01 -1.15474498e+00 1.03251290e+00 -3.99791300e-01 -2.46068031e-01 3.89397174e-01 6.84231341e-01 -4.75714564e-01 -1.17742765e+00 9.22462791e-02 2.04326913e-01 -7.38245308e-01 -5.27427375e-01 -4.98431385e-01 5.65276444e-01 1.34871602e-01 9.93470073e-01 7.67452642e-02 -4.99816120e-01 7.83382297e-01 6.65061653e-01 4.31198061e-01 -8.53067458e-01 -9.47945654e-01 -3.21964324e-01 8.09151411e-01 -5.57717383e-01 -5.14265113e-02 -7.59296834e-01 -9.12338793e-01 6.20332025e-02 -4.76575643e-02 1.17664136e-01 1.06847548e+00 1.12642086e+00 -3.18441391e-02 6.52330041e-01 5.16216457e-01 -5.25818527e-01 -7.83902705e-01 -1.44731700e+00 -4.28266674e-01 3.77899230e-01 -2.42348872e-02 -3.07915300e-01 -3.37752581e-01 -1.92285553e-01]
[10.56201171875, 10.34835147857666]
41f0b08e-5d03-4591-8467-aeffecf677d9
exploiting-the-intrinsic-neighborhood
2110.04202
null
https://arxiv.org/abs/2110.04202v3
https://arxiv.org/pdf/2110.04202v3.pdf
Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation
Domain adaptation (DA) aims to alleviate the domain shift between source domain and target domain. Most DA methods require access to the source data, but often that is not possible (e.g. due to data privacy or intellectual property). In this paper, we address the challenging source-free domain adaptation (SFDA) problem, where the source pretrained model is adapted to the target domain in the absence of source data. Our method is based on the observation that target data, which might no longer align with the source domain classifier, still forms clear clusters. We capture this intrinsic structure by defining local affinity of the target data, and encourage label consistency among data with high local affinity. We observe that higher affinity should be assigned to reciprocal neighbors, and propose a self regularization loss to decrease the negative impact of noisy neighbors. Furthermore, to aggregate information with more context, we consider expanded neighborhoods with small affinity values. In the experimental results we verify that the inherent structure of the target features is an important source of information for domain adaptation. We demonstrate that this local structure can be efficiently captured by considering the local neighbors, the reciprocal neighbors, and the expanded neighborhood. Finally, we achieve state-of-the-art performance on several 2D image and 3D point cloud recognition datasets. Code is available in https://github.com/Albert0147/SFDA_neighbors.
['Shangling Jui', 'Luis Herranz', 'Joost Van de Weijer', 'Yaxing Wang', 'Shiqi Yang']
2021-10-08
null
http://proceedings.neurips.cc/paper/2021/hash/f5deaeeae1538fb6c45901d524ee2f98-Abstract.html
http://proceedings.neurips.cc/paper/2021/file/f5deaeeae1538fb6c45901d524ee2f98-Paper.pdf
neurips-2021-12
['source-free-domain-adaptation']
['computer-vision']
[ 4.67398949e-02 -1.74541265e-01 -4.63314831e-01 -5.14913738e-01 -6.88831925e-01 -7.42250264e-01 4.03845131e-01 1.24871977e-01 -2.75161296e-01 7.80384660e-01 2.77912647e-01 1.83784127e-01 -1.09964453e-01 -7.87235677e-01 -8.25291038e-01 -9.22669411e-01 2.80291140e-01 3.91515255e-01 1.98886558e-01 -3.94317973e-03 5.03241085e-02 5.98676085e-01 -1.32053351e+00 2.95017093e-01 1.04155850e+00 1.14209437e+00 7.71148354e-02 -1.08825073e-01 -1.94975287e-01 3.99928451e-01 -6.40039325e-01 2.64700688e-02 5.36547661e-01 -2.40227610e-01 -5.96255302e-01 1.58969551e-01 4.16300386e-01 -6.31848052e-02 -8.66888985e-02 1.18296611e+00 4.23381925e-01 2.63857186e-01 7.85975218e-01 -1.38365352e+00 -9.27636027e-01 3.59118767e-02 -6.34717345e-01 8.13307688e-02 6.97448105e-02 -3.93170305e-02 8.20708573e-01 -1.09380567e+00 7.89111018e-01 8.97982538e-01 4.67952549e-01 5.21588266e-01 -1.34377015e+00 -1.08372712e+00 4.51305479e-01 1.75500184e-01 -1.64859855e+00 -3.43390346e-01 1.12694263e+00 -3.94600630e-01 5.02641797e-01 3.28742340e-02 3.23212385e-01 1.30639780e+00 -1.95363969e-01 7.03770041e-01 9.22738492e-01 -3.44061583e-01 4.04727429e-01 4.30020720e-01 2.87271053e-01 1.31238908e-01 2.44472697e-01 1.38229728e-01 -5.38060963e-01 -4.18674022e-01 6.74211562e-01 1.76960394e-01 -4.08476382e-01 -9.34626997e-01 -1.07908297e+00 7.96358645e-01 7.03827918e-01 3.07796299e-01 -2.96502620e-01 -4.67686862e-01 1.44297957e-01 2.92343736e-01 4.75009143e-01 1.89764410e-01 -5.85835338e-01 1.96803495e-01 -4.29499418e-01 -1.33298233e-01 5.63604891e-01 1.26135397e+00 1.16887379e+00 -3.14361632e-01 1.85537651e-01 1.16998684e+00 1.95372850e-01 6.17760003e-01 5.37585378e-01 -8.28029633e-01 4.19221908e-01 8.36552620e-01 2.09051013e-01 -9.32386279e-01 -1.66242048e-01 -4.98858631e-01 -1.01142740e+00 2.14498311e-01 5.64734519e-01 5.26805315e-03 -8.43063235e-01 1.94653535e+00 6.88722551e-01 4.92164135e-01 1.97261140e-01 1.02703393e+00 6.60138309e-01 5.98932505e-01 -5.69403498e-03 -1.05809398e-01 1.05701792e+00 -6.26252234e-01 -4.37611818e-01 -3.08180988e-01 5.85955501e-01 -6.13662004e-01 1.24860311e+00 6.01595081e-02 -3.15031201e-01 -4.92204159e-01 -1.00264204e+00 4.55950871e-02 -4.64225382e-01 1.47628546e-01 1.92903042e-01 3.43212038e-01 -5.19702792e-01 3.36967736e-01 -5.93357146e-01 -5.05440891e-01 6.02197289e-01 4.30086732e-01 -6.21709526e-01 -2.75690556e-01 -1.26002550e+00 5.01788735e-01 3.04067731e-01 -3.39783698e-01 -5.04312873e-01 -8.86244655e-01 -7.05394208e-01 -1.81717649e-01 4.07567948e-01 -5.55987120e-01 8.21231723e-01 -1.08814323e+00 -1.13371825e+00 9.61132646e-01 -3.15516800e-01 -1.24958307e-01 2.52955228e-01 -1.38179407e-01 -6.44209266e-01 3.44007066e-03 2.88682759e-01 4.94178295e-01 9.69344139e-01 -1.50732648e+00 -7.67193079e-01 -6.05565608e-01 -2.73615181e-01 1.20850109e-01 -7.02104270e-01 -4.24920470e-01 -5.05071998e-01 -7.20027924e-01 1.52256310e-01 -1.08277619e+00 -8.88257939e-03 1.92558214e-01 -2.18351379e-01 -2.01559722e-01 9.69996989e-01 -2.85091758e-01 1.12056339e+00 -2.61405945e+00 -5.80284968e-02 6.15143597e-01 1.45605609e-01 2.23322868e-01 -2.41705090e-01 1.00267194e-01 -1.77062497e-01 -1.02757201e-01 -4.57353860e-01 -1.24542765e-01 -1.09277338e-01 4.15977210e-01 -4.19591665e-01 5.09722352e-01 1.10727459e-01 5.83694220e-01 -7.84752786e-01 -2.98432410e-01 6.54886514e-02 4.45980579e-01 -4.58651274e-01 9.61484909e-02 3.13827656e-02 6.12172127e-01 -7.15043366e-01 6.57450199e-01 1.06592011e+00 -5.34464359e-01 -3.39507945e-02 -3.20040941e-01 1.81022912e-01 8.29851106e-02 -1.38654852e+00 1.69020760e+00 -3.19664061e-01 2.40569666e-01 2.03543261e-01 -9.43042815e-01 1.29479647e+00 9.86470748e-03 7.54218459e-01 -6.24078691e-01 -1.86153520e-02 4.57186908e-01 -2.54640281e-01 -9.44208447e-03 2.29938343e-01 -1.86250005e-02 -4.21288572e-02 2.74005443e-01 -1.27572790e-01 2.34814197e-01 -2.89928049e-01 6.09512180e-02 8.14438820e-01 -1.15655169e-01 4.46432441e-01 -2.62584269e-01 5.18446922e-01 2.37602666e-01 9.39500928e-01 4.56591010e-01 -4.02989149e-01 7.49788761e-01 1.49470240e-01 -1.97557539e-01 -1.03630614e+00 -1.23649681e+00 -3.26469034e-01 9.15962160e-01 5.60493946e-01 -1.01087965e-01 -5.47492087e-01 -8.78349245e-01 3.38112801e-01 5.69880009e-01 -6.70751989e-01 -5.53329766e-01 -4.92610961e-01 -5.17696202e-01 3.80622357e-01 4.80241716e-01 5.30987918e-01 -7.03133643e-01 -4.93836999e-02 1.35663718e-01 -1.73139974e-01 -9.35379803e-01 -7.86175370e-01 1.62802055e-01 -8.46893013e-01 -9.92006540e-01 -7.47313499e-01 -8.70711982e-01 8.30626965e-01 4.22557533e-01 9.34196532e-01 -2.21468717e-01 2.74327427e-01 3.49384248e-01 -4.11691993e-01 -1.89636379e-01 -2.89641291e-01 2.83789068e-01 2.47678533e-01 2.92202175e-01 9.47509110e-01 -7.95312643e-01 -5.09231389e-01 6.97579443e-01 -8.34982216e-01 -3.67716968e-01 5.52521050e-01 9.75218117e-01 1.01954508e+00 -4.68258299e-02 6.73012853e-01 -1.01580739e+00 4.94751960e-01 -7.05356658e-01 -5.44070184e-01 1.06204726e-01 -6.48016393e-01 -1.08110994e-01 6.67803049e-01 -7.67868340e-01 -9.85426903e-01 4.44267541e-01 1.22395702e-01 -8.90497923e-01 -5.43485820e-01 2.57284999e-01 -6.01513803e-01 -1.28864229e-01 9.63145792e-01 1.68393299e-01 1.57214150e-01 -6.41872108e-01 2.50264943e-01 8.66478682e-01 4.37337935e-01 -7.56436825e-01 8.67053628e-01 6.74268603e-01 -1.72127441e-01 -7.82882571e-01 -8.57486725e-01 -8.22172165e-01 -7.95005798e-01 2.18210593e-01 3.95173430e-01 -1.07621205e+00 -1.62628993e-01 2.82355815e-01 -9.50988114e-01 -1.27168939e-01 -4.87523556e-01 3.96791488e-01 -3.32951695e-01 4.14518952e-01 -1.38713703e-01 -3.49666893e-01 -7.90619850e-02 -8.74222577e-01 8.87221158e-01 1.86505020e-01 -1.60298198e-01 -9.41421807e-01 8.86005089e-02 8.03652033e-02 1.44117132e-01 2.87228465e-01 7.04406977e-01 -9.26011741e-01 -4.08846498e-01 -9.79013965e-02 -3.37040305e-01 5.39842665e-01 6.82051718e-01 -3.51108849e-01 -9.21649277e-01 -3.73557895e-01 8.72720629e-02 2.67367642e-02 7.30345786e-01 3.28803807e-01 9.90380049e-01 -2.61340618e-01 -5.44959664e-01 6.53511941e-01 1.29120851e+00 9.62175429e-02 4.24960405e-01 3.36508691e-01 8.61211061e-01 5.36349237e-01 8.34043324e-01 5.31157613e-01 2.68632054e-01 7.10863888e-01 2.08949089e-01 -7.09199980e-02 -1.01155110e-01 -3.70271504e-01 2.76715100e-01 4.99096811e-01 3.96827638e-01 -1.27801985e-01 -1.04143763e+00 8.16894352e-01 -1.95492530e+00 -6.71334147e-01 -1.28144607e-01 2.41933799e+00 8.38832259e-01 -5.97791336e-02 1.70160145e-01 -2.18009397e-01 9.68345046e-01 -1.47282749e-01 -9.12579060e-01 1.47159368e-01 -3.77081752e-01 -1.41780414e-02 6.25930130e-01 4.21793789e-01 -1.24110496e+00 8.41394305e-01 5.19955730e+00 1.00474524e+00 -1.10558236e+00 8.09543952e-02 3.99642855e-01 -1.95527807e-01 -2.07305923e-01 -1.06038846e-01 -8.57749641e-01 6.52809024e-01 5.50425649e-01 -3.36715847e-01 3.12468529e-01 1.20406115e+00 2.00499836e-02 2.35305086e-01 -1.15397799e+00 1.01082945e+00 -1.65630117e-01 -1.20829761e+00 3.25693563e-02 3.38251144e-01 8.04793775e-01 1.29415959e-01 5.72716519e-02 8.35671946e-02 3.12844962e-01 -6.46357894e-01 4.59883064e-01 2.15019822e-01 8.11384618e-01 -7.95335710e-01 5.87276399e-01 4.23068225e-01 -1.18074930e+00 -1.93541929e-01 -6.55128837e-01 2.56944895e-01 -1.72943860e-01 8.85213494e-01 -6.69235766e-01 5.39902806e-01 9.55387294e-01 1.16591823e+00 -4.16262567e-01 8.88873160e-01 -9.85850766e-02 4.62093711e-01 -6.66212559e-01 2.41307333e-01 -4.23453785e-02 -2.80610353e-01 7.62609601e-01 8.93224180e-01 3.39094430e-01 2.14934558e-01 2.28091687e-01 8.79678071e-01 -2.49904335e-01 2.52540559e-01 -8.32116902e-01 3.18858922e-01 9.26458895e-01 8.45632970e-01 -2.31326684e-01 -1.97925046e-01 -4.90002245e-01 1.08789361e+00 3.67456704e-01 5.27274370e-01 -5.78247488e-01 -2.67270595e-01 1.19676256e+00 1.72003657e-01 3.81621838e-01 -3.65027152e-02 -5.79995394e-01 -1.30950367e+00 3.01877767e-01 -8.41810346e-01 7.54788756e-01 -4.81336236e-01 -1.92807543e+00 4.04255718e-01 -1.22753426e-01 -1.74225760e+00 7.47439489e-02 -4.55069572e-01 -3.47103447e-01 8.79258573e-01 -1.53902936e+00 -1.08040512e+00 -4.31499273e-01 1.07452047e+00 6.80576637e-02 -2.19165877e-01 7.03160822e-01 6.09072149e-01 -3.56278390e-01 8.86735082e-01 5.62030792e-01 1.73632085e-01 1.21529067e+00 -9.19487715e-01 2.10827533e-02 6.76217914e-01 5.62331043e-02 7.94290662e-01 3.10911834e-01 -6.64133668e-01 -9.50852871e-01 -1.42437065e+00 6.70570374e-01 -5.91050804e-01 5.36390066e-01 -3.83116096e-01 -1.42238152e+00 5.58652163e-01 -3.30803633e-01 3.29986453e-01 8.97643805e-01 1.08757660e-01 -6.14831924e-01 -4.42027539e-01 -1.42007494e+00 3.78060400e-01 1.09906244e+00 -4.77845311e-01 -5.67151904e-01 2.57302672e-01 6.93763137e-01 -2.61963099e-01 -1.00107288e+00 3.57116282e-01 2.09375679e-01 -6.94986045e-01 1.14242959e+00 -4.22251612e-01 7.80027658e-02 -7.33462274e-01 -3.41337353e-01 -1.37691700e+00 -5.40694714e-01 -1.46410808e-01 -4.58919397e-03 1.49025929e+00 4.01232302e-01 -7.76948512e-01 1.07048082e+00 7.19350278e-01 -2.04587318e-02 -3.33500803e-01 -1.28149736e+00 -1.14024103e+00 4.49340373e-01 -1.79077834e-01 9.77164090e-01 1.34380460e+00 -1.52758762e-01 2.71729022e-01 -3.64639759e-01 5.49159825e-01 7.35631466e-01 3.90075564e-01 8.66607487e-01 -1.36730695e+00 3.08925416e-02 -2.39283457e-01 -3.03301603e-01 -1.22411752e+00 3.11222672e-01 -8.66765201e-01 -1.07114054e-01 -1.18746567e+00 -1.54732876e-02 -8.18585813e-01 -6.45484209e-01 6.17918432e-01 -1.25082389e-01 2.46231809e-01 5.61569184e-02 7.20007718e-01 -4.59195942e-01 7.41685092e-01 1.09875691e+00 -2.15541825e-01 -4.54787999e-01 -3.44655663e-02 -8.32804859e-01 4.44157988e-01 9.83509362e-01 -7.05114245e-01 -3.71285647e-01 -3.76893610e-01 -3.41977149e-01 -5.37098110e-01 3.29288721e-01 -9.73878980e-01 3.19031507e-01 -4.01068032e-01 4.15726066e-01 -3.36562455e-01 2.73355752e-01 -1.33963537e+00 2.40305319e-01 6.37539998e-02 -2.00718597e-01 -5.01123428e-01 1.65479407e-01 7.83547282e-01 -4.02354509e-01 -4.75997711e-03 1.11683130e+00 1.87236428e-01 -9.70021546e-01 4.78052229e-01 1.06152065e-01 5.16252443e-02 1.08507991e+00 -4.05070990e-01 -2.32312769e-01 -1.70703217e-01 -6.84058249e-01 3.24479759e-01 9.50931311e-01 5.25728226e-01 5.20105898e-01 -1.72057617e+00 -5.60457289e-01 4.00601059e-01 6.70281947e-01 2.07410172e-01 1.64384291e-01 5.04506886e-01 9.52061564e-02 5.90624996e-02 -2.13721052e-01 -7.72781491e-01 -1.13081610e+00 7.28631318e-01 3.22234750e-01 4.94588204e-02 -6.62435889e-01 7.96634972e-01 5.50778747e-01 -7.39138782e-01 1.81307614e-01 -1.61018118e-01 -4.23978306e-02 -5.76823838e-02 4.44367647e-01 2.19376773e-01 2.99530700e-02 -7.02677131e-01 -6.87065899e-01 7.53780544e-01 -1.99595705e-01 2.98539937e-01 1.21688259e+00 -3.70178223e-01 8.52387547e-02 2.14158505e-01 1.39329529e+00 1.75104275e-01 -1.49579132e+00 -7.39625812e-01 3.38971466e-02 -7.81814992e-01 -1.61909312e-01 -7.29841411e-01 -1.14428413e+00 6.41953290e-01 8.18173230e-01 -1.50845602e-01 1.37114549e+00 2.17080429e-01 8.03094208e-01 2.80188531e-01 3.49647045e-01 -1.27502596e+00 -8.01324397e-02 4.52528000e-01 7.53908634e-01 -1.45861363e+00 -1.11199789e-01 -6.02297187e-01 -7.38686442e-01 8.11456442e-01 7.79603362e-01 -1.28792122e-01 8.55074942e-01 3.83339357e-03 1.89606771e-01 4.33649160e-02 -4.59799856e-01 -6.99007437e-02 2.73180425e-01 1.02686560e+00 -6.51985854e-02 2.76677981e-02 3.18857282e-02 8.31954062e-01 7.70846009e-02 -3.82886976e-02 2.49902546e-01 8.14412773e-01 -3.45352441e-01 -1.39121783e+00 -5.62296271e-01 3.26000184e-01 -1.10163942e-01 1.38171613e-01 -6.42353594e-01 6.77008212e-01 2.82317966e-01 9.01679277e-01 1.12619951e-01 -3.17297548e-01 6.69093788e-01 -2.66152676e-02 -1.63743235e-02 -5.79533160e-01 -2.11334929e-01 1.75591111e-02 -2.71009058e-01 -4.20052588e-01 -2.78865397e-01 -6.58347905e-01 -1.34142005e+00 -3.05963546e-01 -1.94310054e-01 2.16939852e-01 3.19379002e-01 5.72982669e-01 9.56694245e-01 4.85258289e-02 7.54669726e-01 -3.87331635e-01 -4.13449079e-01 -6.13350630e-01 -7.56529868e-01 8.34955335e-01 4.07744646e-01 -9.01233435e-01 -5.03214419e-01 1.11045673e-01]
[10.335724830627441, 3.0685224533081055]
302caf28-1b2d-4916-9330-a68621bdb587
iterative-proposal-refinement-for-weakly
null
null
http://openaccess.thecvf.com//content/CVPR2023/html/Cao_Iterative_Proposal_Refinement_for_Weakly-Supervised_Video_Grounding_CVPR_2023_paper.html
http://openaccess.thecvf.com//content/CVPR2023/papers/Cao_Iterative_Proposal_Refinement_for_Weakly-Supervised_Video_Grounding_CVPR_2023_paper.pdf
Iterative Proposal Refinement for Weakly-Supervised Video Grounding
Weakly-Supervised Video Grounding (WSVG) aims to localize events of interest in untrimmed videos with only video-level annotations. To date, most of the state-of-the-art WSVG methods follow a two-stage pipeline, i.e., firstly generating potential temporal proposals and then grounding with these proposal candidates. Despite the recent progress, existing proposal generation methods suffer from two drawbacks: 1) lack of explicit correspondence modeling; and 2) partial coverage of complex events. To this end, we propose a novel IteRative prOposal refiNement network (dubbed as IRON) to gradually distill the prior knowledge into each proposal and encourage proposals with more complete coverage. Specifically, we set up two lightweight distillation branches to uncover the cross-modal correspondence on both the semantic and conceptual levels. Then, an iterative Label Propagation (LP) strategy is devised to prevent the network from focusing excessively on the most discriminative events instead of the whole sentence content. Precisely, during each iteration, the proposal with the minimal distillation loss and its adjacent ones are regarded as the positive samples, which refines proposal confidence scores in a cascaded manner. Extensive experiments and ablation studies on two challenging WSVG datasets have attested to the effectiveness of our IRON.
['Daxin Jiang', 'Tao Shen', 'Yuexian Zou', 'Can Zhang', 'Long Chen', 'Xiubo Geng', 'Can Xu', 'Fangyun Wei', 'Meng Cao']
2023-01-01
null
null
null
cvpr-2023-1
['video-grounding']
['computer-vision']
[ 3.84436250e-01 1.44044846e-01 -3.20501238e-01 -4.39389467e-01 -6.81937993e-01 -2.39328623e-01 5.87513149e-01 3.61091733e-01 -4.75189984e-01 5.71000934e-01 2.93033242e-01 7.07507282e-02 1.41190290e-01 -5.32340765e-01 -5.92113018e-01 -5.96491873e-01 1.74318731e-01 2.13157862e-01 8.04125071e-01 2.19783410e-02 1.35497540e-01 -6.65985942e-02 -1.37271881e+00 2.47117966e-01 9.39154744e-01 8.53791118e-01 3.13114882e-01 -3.43558937e-02 -1.57677472e-01 7.99332857e-01 -2.70997941e-01 -4.32921410e-01 -8.42900202e-02 -7.33131886e-01 -7.21293092e-01 3.99565756e-01 2.68026829e-01 -2.69478858e-01 -1.93999171e-01 1.12060034e+00 2.75267482e-01 2.96695739e-01 1.90315187e-01 -1.09089744e+00 -2.74339557e-01 7.89121091e-01 -7.30856538e-01 2.25844800e-01 3.21043164e-01 2.49734238e-01 1.28693390e+00 -1.22575951e+00 7.56745458e-01 1.01189518e+00 3.97066623e-01 4.84825075e-01 -1.29449534e+00 -6.59061074e-01 8.71992230e-01 2.51460671e-01 -1.46719718e+00 -2.90600777e-01 1.13408387e+00 -2.25260198e-01 4.03815269e-01 8.04238319e-02 8.34615469e-01 1.23257458e+00 -4.10107136e-01 1.04272997e+00 7.65297234e-01 -1.87672898e-01 2.89713681e-01 8.01289231e-02 3.20951976e-02 9.42365229e-01 3.12501639e-02 -3.85178149e-01 -7.78140426e-01 1.28362747e-02 6.45450354e-01 -8.75431374e-02 -2.88741767e-01 -4.28596318e-01 -1.46703184e+00 7.07821369e-01 3.36612940e-01 3.19577277e-01 -5.53892255e-01 -1.40508143e-02 4.35920626e-01 -2.03954399e-01 6.63887024e-01 2.93071210e-01 -2.45823786e-01 1.37512118e-01 -1.21656024e+00 2.15189427e-01 2.30252206e-01 7.85496354e-01 8.65672231e-01 -3.28168452e-01 -6.88469887e-01 7.35563040e-01 5.02015293e-01 -2.88139313e-01 2.82492846e-01 -6.10051632e-01 6.62042022e-01 8.20164323e-01 9.80721265e-02 -1.08670139e+00 -2.98546791e-01 -6.49541616e-01 -4.42362666e-01 -3.50511789e-01 1.64775372e-01 -2.59348154e-02 -7.35639930e-01 1.78227019e+00 6.50926530e-01 7.82832503e-01 -2.44245991e-01 1.11993265e+00 8.20834756e-01 7.37554193e-01 4.04070824e-01 -3.14402878e-01 1.33607090e+00 -1.13537002e+00 -5.95729530e-01 -2.48378634e-01 4.44868863e-01 -5.87134480e-01 1.14536285e+00 2.67819643e-01 -1.05336499e+00 -5.98914146e-01 -9.68437791e-01 6.33389726e-02 2.11537600e-01 4.04105246e-01 4.61720616e-01 1.15564600e-01 -7.52156079e-01 4.17918026e-01 -1.05586827e+00 -2.73118287e-01 5.94783306e-01 8.24928284e-03 -6.20518923e-02 -2.02718258e-01 -1.11315954e+00 4.49254990e-01 6.35478914e-01 3.26804399e-01 -9.50569868e-01 -5.20629406e-01 -8.86940658e-01 5.82678914e-02 8.82028699e-01 -6.16953313e-01 9.44083929e-01 -1.06745756e+00 -1.36996400e+00 6.79916680e-01 -3.74663830e-01 -4.32958275e-01 6.80052161e-01 -3.29150379e-01 -3.45850527e-01 3.02847058e-01 2.11601049e-01 9.70103979e-01 9.63684380e-01 -1.11993814e+00 -9.03968930e-01 2.48993654e-02 2.49082685e-01 3.27825367e-01 -4.48910654e-01 7.30947256e-02 -1.08946693e+00 -8.67307484e-01 5.20558238e-01 -8.20004225e-01 -2.38090351e-01 1.38789229e-03 -5.39942265e-01 -5.63828588e-01 5.33195496e-01 -4.79192406e-01 1.51687467e+00 -2.19249487e+00 3.98889303e-01 1.93453029e-01 2.46973693e-01 1.56407759e-01 -1.54280365e-01 1.49892539e-01 7.14286566e-02 -3.94003540e-02 -9.86628458e-02 -7.38528848e-01 -1.14411294e-01 1.27153406e-02 -2.40547046e-01 3.79431248e-01 6.26394689e-01 7.28587747e-01 -1.40998006e+00 -7.15872169e-01 2.57920057e-01 2.22688749e-01 -7.31751263e-01 1.08404249e-01 -4.79001582e-01 5.92738748e-01 -5.78197360e-01 5.94826221e-01 4.45898473e-01 -5.30868530e-01 2.05577835e-01 -6.46950424e-01 -1.67810619e-01 4.42732066e-01 -1.21894228e+00 1.94712329e+00 -1.73249468e-03 2.19096318e-01 -1.88055947e-01 -1.05206156e+00 8.57198715e-01 2.87582964e-01 5.29623568e-01 -3.71929497e-01 -1.38347715e-01 9.81277525e-02 -1.33887544e-01 -4.87606287e-01 5.53303123e-01 -1.00580633e-01 3.53224501e-02 2.96361446e-01 1.26578435e-01 4.31571066e-01 2.85686493e-01 4.53147054e-01 8.88589382e-01 6.51822567e-01 1.07316487e-01 5.66821955e-02 6.52499199e-01 -1.08344533e-01 1.03527355e+00 6.44413412e-01 -4.09399092e-01 7.93595254e-01 5.93022108e-01 -2.37781197e-01 -6.91748261e-01 -9.39008832e-01 3.39697689e-01 1.09230161e+00 4.98463154e-01 -8.06502342e-01 -6.84330225e-01 -1.11280870e+00 -4.77380991e-01 6.60596967e-01 -5.98506927e-01 -2.33477965e-01 -6.79857612e-01 -6.47892475e-01 3.22594792e-01 4.49393988e-01 5.74561596e-01 -1.16543365e+00 -5.36512792e-01 3.79340351e-01 -5.46027541e-01 -1.21857846e+00 -6.31421089e-01 -1.90217450e-01 -7.18693614e-01 -9.94074941e-01 -6.31950974e-01 -6.96227968e-01 9.60848033e-01 3.77668679e-01 8.45739365e-01 1.91379949e-01 9.46593806e-02 -6.17677569e-02 -6.29587829e-01 9.21901017e-02 -9.72434729e-02 -2.64596269e-02 -1.68202475e-01 4.94122267e-01 3.10181379e-01 -2.35877752e-01 -8.42204690e-01 4.35062140e-01 -7.24715829e-01 5.23168445e-01 6.42024517e-01 7.59652972e-01 9.54111636e-01 2.58188061e-02 6.55232370e-01 -8.45673323e-01 2.72328675e-01 -5.29069304e-01 -4.75832313e-01 2.78871477e-01 -3.50061625e-01 -2.04528049e-02 3.91811043e-01 -4.81809556e-01 -1.15463698e+00 2.06853211e-01 -7.32333437e-02 -5.78738809e-01 -1.27452016e-01 6.33025885e-01 -7.14736953e-02 4.86274421e-01 2.25375175e-01 3.98542434e-01 -4.17293727e-01 -2.73589969e-01 2.43587315e-01 1.44592300e-02 5.42868376e-01 -5.17631531e-01 7.37020910e-01 5.57450175e-01 -4.62415695e-01 -4.29421067e-01 -1.09789693e+00 -5.47011733e-01 -3.99405718e-01 -5.10292411e-01 1.02518392e+00 -9.02047873e-01 -2.60228574e-01 2.01953173e-01 -1.04540956e+00 -1.35403484e-01 -2.45773211e-01 6.13597512e-01 -2.08002359e-01 4.26076740e-01 -4.80034828e-01 -7.19985008e-01 -1.38105869e-01 -1.15476775e+00 1.07018471e+00 2.24026024e-01 -3.39581192e-01 -4.83202636e-01 -1.07640825e-01 4.25005317e-01 -1.31742293e-02 3.64354774e-02 6.72261953e-01 -5.29787838e-01 -6.34214222e-01 -1.49822488e-01 -3.56477201e-01 8.19570869e-02 7.31461495e-02 -2.44138949e-03 -8.02399397e-01 -1.51365757e-01 -2.15455920e-01 -2.61761844e-01 1.08461845e+00 2.88265765e-01 1.25146270e+00 -2.33235464e-01 -4.21528935e-01 3.04956853e-01 9.87848341e-01 -9.31459516e-02 3.62038046e-01 2.11338937e-01 7.02595592e-01 5.62307358e-01 1.04245758e+00 4.90562081e-01 3.29205513e-01 7.87161231e-01 5.48617363e-01 -9.29397792e-02 1.15048820e-02 -6.67748272e-01 4.73963410e-01 7.58967042e-01 -1.08435027e-01 -3.35735440e-01 -5.33340812e-01 6.38188064e-01 -2.12915277e+00 -9.03995931e-01 1.12270251e-01 2.13995695e+00 8.11739326e-01 6.55571222e-01 1.54139161e-01 1.47662582e-02 9.79772210e-01 4.66571182e-01 -5.35342216e-01 4.85929638e-01 -4.88105603e-03 -2.03377157e-01 -1.20941021e-01 1.89427748e-01 -1.26356256e+00 1.13982332e+00 4.49107552e+00 8.13777924e-01 -9.88996923e-01 2.10689738e-01 6.57969236e-01 -2.71561235e-01 -3.88839424e-01 3.08250457e-01 -8.32135379e-01 6.41827822e-01 2.38246843e-01 2.52378374e-01 1.30079851e-01 4.96664286e-01 5.88504910e-01 -9.59592611e-02 -8.97622347e-01 7.24883676e-01 1.26198083e-01 -1.42248154e+00 1.49167418e-01 -3.77489448e-01 5.81225574e-01 -3.06391474e-02 -3.20220530e-01 3.36715966e-01 1.08102649e-01 -2.85468966e-01 1.25898290e+00 3.67212564e-01 4.31324869e-01 -7.00010002e-01 6.84292138e-01 4.55185592e-01 -1.46473908e+00 8.13235343e-02 -1.29160523e-01 2.90704846e-01 4.96383965e-01 5.63932240e-01 -7.85768747e-01 6.22984588e-01 5.00778317e-01 1.05204821e+00 -4.36554432e-01 1.04205918e+00 -7.22820759e-01 1.00944352e+00 -2.25159988e-01 7.70914257e-02 5.95429182e-01 -1.51016712e-01 7.46099472e-01 1.18416119e+00 2.16412067e-01 2.52670318e-01 5.40397286e-01 1.02965271e+00 -3.54259498e-02 1.35456666e-01 -1.24841742e-03 1.36927783e-01 5.76751351e-01 1.33570743e+00 -1.18311453e+00 -3.44311774e-01 -6.04395390e-01 1.00867438e+00 3.89874697e-01 3.59555900e-01 -1.09983921e+00 4.63414080e-02 1.39595419e-01 1.19262971e-01 4.68474776e-01 -3.93946245e-02 5.30546159e-02 -1.38502741e+00 1.43245608e-01 -4.48731661e-01 6.45231247e-01 -6.41067386e-01 -1.10432887e+00 5.71178019e-01 -1.05380148e-01 -1.42996085e+00 1.14132211e-01 1.89488351e-01 -7.59581685e-01 5.77024341e-01 -1.47563636e+00 -1.23071110e+00 -4.28144455e-01 4.13369417e-01 9.78217959e-01 2.62459904e-01 3.79838943e-01 3.45652938e-01 -1.01319730e+00 4.94359910e-01 -6.10712647e-01 4.86107096e-02 6.95509851e-01 -1.00874472e+00 9.98869613e-02 1.22342062e+00 2.65470982e-01 6.20914996e-01 6.39791250e-01 -9.01406646e-01 -8.48780751e-01 -1.41982257e+00 8.87888908e-01 -9.22427699e-03 5.88772476e-01 -3.87700737e-01 -1.07759440e+00 5.62609792e-01 -1.19983539e-01 1.65256903e-01 4.00806069e-01 1.73383616e-02 -2.40461886e-01 -5.80862015e-02 -7.08086610e-01 7.52232313e-01 1.10972655e+00 -3.21532696e-01 -5.42281985e-01 2.26327851e-01 7.50138521e-01 -1.98323309e-01 -4.46377218e-01 4.23054427e-01 4.55334246e-01 -8.05745959e-01 8.04159343e-01 -3.56141269e-01 5.23665369e-01 -7.39041686e-01 1.20753102e-01 -9.03680623e-01 -3.12752753e-01 -7.46943891e-01 -3.55799079e-01 1.57966733e+00 4.33731496e-01 -4.74039242e-02 8.00090790e-01 2.72971332e-01 -3.44350994e-01 -8.93706083e-01 -7.06713438e-01 -5.28651476e-01 -7.79822350e-01 -5.90312958e-01 2.56362587e-01 9.62289989e-01 2.28664532e-01 3.60539913e-01 -5.37946045e-01 2.63676822e-01 5.45825660e-01 2.10202396e-01 4.99279737e-01 -9.74626362e-01 -3.29589695e-01 -4.11237597e-01 -9.62335095e-02 -1.31509542e+00 6.03824332e-02 -7.49262929e-01 4.51071680e-01 -1.47837853e+00 4.86550003e-01 -4.81785744e-01 -6.65931165e-01 6.29759252e-01 -7.28717327e-01 2.66806751e-01 1.92339737e-02 4.63086993e-01 -1.29448915e+00 7.14160800e-01 1.05679727e+00 -6.15290999e-02 -3.86900783e-01 -2.82133706e-02 -5.18971920e-01 9.59154606e-01 4.56190467e-01 -5.60334086e-01 -6.42797232e-01 -3.40990454e-01 2.94968307e-01 -1.32509232e-01 5.01572251e-01 -7.80800641e-01 2.36025408e-01 -2.89634198e-01 1.58117503e-01 -9.68261659e-01 1.69855461e-01 -4.34462100e-01 -3.57780829e-02 3.99502486e-01 -5.32481432e-01 -2.84638047e-01 -7.49722645e-02 9.01103854e-01 -3.38796884e-01 -1.21187583e-01 6.82869077e-01 1.61323268e-02 -9.37466741e-01 4.45827514e-01 -1.92949355e-01 -4.74699363e-02 1.11209643e+00 -8.94559026e-02 -1.25139117e-01 -9.73392129e-02 -7.51507521e-01 3.70281100e-01 3.36489290e-01 5.00952482e-01 6.98510647e-01 -1.20969915e+00 -7.94736385e-01 6.00119457e-02 3.52054954e-01 2.38573000e-01 2.92040944e-01 1.16056347e+00 -4.34996933e-03 1.86147675e-01 3.58820260e-01 -6.57160819e-01 -1.11686206e+00 4.93025690e-01 -2.60792691e-02 -3.50451350e-01 -9.69775677e-01 1.00646782e+00 3.70997131e-01 1.89908683e-01 3.06085378e-01 -3.26485693e-01 -4.59998518e-01 2.48479322e-01 4.75809366e-01 1.10377401e-01 -1.11085460e-01 -6.29508317e-01 -5.43376386e-01 3.19927573e-01 -3.61235648e-01 -7.79678002e-02 1.21502328e+00 -2.63312936e-01 1.13299906e-01 2.36794159e-01 7.65525579e-01 -6.32986575e-02 -1.66663194e+00 -4.88474578e-01 3.71590778e-02 -2.96792597e-01 8.82900432e-02 -4.44727898e-01 -1.20694113e+00 5.56060553e-01 1.60812467e-01 -2.34778523e-02 1.14068294e+00 2.80210078e-01 7.39898324e-01 1.40041253e-02 1.84557498e-01 -9.42040622e-01 5.03613591e-01 1.70192659e-01 6.19335771e-01 -1.01865327e+00 4.36785407e-02 -7.18302250e-01 -6.98973298e-01 8.59316289e-01 8.61846566e-01 2.87904534e-02 3.14530253e-01 -2.12959990e-01 -4.27220583e-01 -2.60652721e-01 -8.03696454e-01 -1.69680953e-01 4.21823263e-01 -3.37689780e-02 3.15467834e-01 -3.67603779e-01 -5.96645772e-01 8.49724591e-01 5.10125279e-01 1.96040645e-01 2.59754598e-01 9.09096658e-01 -4.57231522e-01 -7.84970939e-01 -7.17776045e-02 2.68759698e-01 -3.00483674e-01 -4.51962799e-02 -2.30227515e-01 4.32790637e-01 4.55459476e-01 8.67746055e-01 -5.05939312e-02 -3.91416609e-01 2.51262844e-01 1.04214931e-02 1.51646316e-01 -7.28797615e-01 -4.36789513e-01 5.09988308e-01 9.42840725e-02 -7.22206593e-01 -7.94101655e-01 -9.79151785e-01 -1.42042732e+00 3.33201140e-01 -6.08837485e-01 2.15048909e-01 1.36200532e-01 1.15997338e+00 2.83248007e-01 6.99885666e-01 4.30242717e-01 -8.64984512e-01 -1.75754532e-01 -9.56870675e-01 -1.59806430e-01 4.48530495e-01 6.94854259e-02 -7.97100186e-01 -1.19795360e-01 2.07505018e-01]
[9.423538208007812, 0.729713499546051]
61564f6c-74ca-4e32-a711-044086bab52e
spatial-separated-curve-rendering-network-for
2109.05750
null
https://arxiv.org/abs/2109.05750v4
https://arxiv.org/pdf/2109.05750v4.pdf
Spatial-Separated Curve Rendering Network for Efficient and High-Resolution Image Harmonization
Image harmonization aims to modify the color of the composited region with respect to the specific background. Previous works model this task as a pixel-wise image-to-image translation using UNet family structures. However, the model size and computational cost limit the ability of their models on edge devices and higher-resolution images. To this end, we propose a novel spatial-separated curve rendering network(S$^2$CRNet) for efficient and high-resolution image harmonization for the first time. In S$^2$CRNet, we firstly extract the spatial-separated embeddings from the thumbnails of the masked foreground and background individually. Then, we design a curve rendering module(CRM), which learns and combines the spatial-specific knowledge using linear layers to generate the parameters of the piece-wise curve mapping in the foreground region. Finally, we directly render the original high-resolution images using the learned color curve. Besides, we also make two extensions of the proposed framework via the Cascaded-CRM and Semantic-CRM for cascaded refinement and semantic guidance, respectively. Experiments show that the proposed method reduces more than 90% parameters compared with previous methods but still achieves the state-of-the-art performance on both synthesized iHarmony4 and real-world DIH test sets. Moreover, our method can work smoothly on higher resolution images(eg., $2048\times2048$) in 0.1 seconds with much lower GPU computational resources than all existing methods. The code will be made available at \url{http://github.com/stefanLeong/S2CRNet}.
['Jue Wang', 'Chi-Man Pun', 'Xiaodong Cun', 'Jingtang Liang']
2021-09-13
null
null
null
null
['image-harmonization', '2048']
['computer-vision', 'playing-games']
[ 3.25159132e-01 -5.09079061e-02 2.07912534e-01 -2.11045191e-01 -8.02155614e-01 -4.42548901e-01 2.55359709e-01 -2.72501200e-01 -2.92988539e-01 4.50420916e-01 -2.55715132e-01 -2.67236292e-01 9.16059613e-02 -1.03256464e+00 -8.32802713e-01 -6.69554651e-01 3.66763830e-01 3.64557430e-02 6.55956566e-01 -3.69335949e-01 1.76437840e-01 5.45351923e-01 -1.46608973e+00 2.11008191e-01 1.04652166e+00 1.04915237e+00 4.07412112e-01 6.38115764e-01 -4.69691679e-02 5.39242268e-01 -2.16996923e-01 -4.14623260e-01 4.12222177e-01 -4.41371232e-01 -3.99220020e-01 1.80180505e-01 4.81039733e-01 -3.62960279e-01 -3.40753019e-01 1.16696525e+00 5.93420684e-01 5.01987934e-02 3.56984675e-01 -1.01228333e+00 -7.89802074e-01 2.40039796e-01 -1.16271734e+00 1.79445609e-01 -8.47419798e-02 1.15355037e-01 5.99469244e-01 -1.09541321e+00 5.53310096e-01 1.01894701e+00 5.21331906e-01 4.97254223e-01 -1.30564153e+00 -1.12089765e+00 1.87875718e-01 2.16678575e-01 -1.65147269e+00 -2.29530379e-01 9.66095805e-01 -1.38710946e-01 5.69265544e-01 2.73717731e-01 6.05702460e-01 6.79787040e-01 -1.04066417e-01 5.15458584e-01 1.21067297e+00 -2.12400526e-01 -4.27075736e-02 1.37433544e-01 -2.54429281e-01 8.54415894e-01 1.84391901e-01 1.06501468e-01 -3.84302050e-01 2.75339812e-01 1.36077750e+00 -2.14256883e-01 -4.44006145e-01 -2.39528045e-01 -1.04187763e+00 5.42482495e-01 6.76510930e-01 1.97741434e-01 -1.22755013e-01 2.50212938e-01 5.23260757e-02 -5.49338832e-02 4.86924708e-01 1.50952131e-01 -2.98962981e-01 2.56290525e-01 -9.66944396e-01 9.27415937e-02 2.29970768e-01 1.12679696e+00 9.26113486e-01 1.72346666e-01 2.35787779e-02 9.14303184e-01 2.02345140e-02 4.20929760e-01 4.12405282e-02 -9.77800846e-01 4.81196344e-01 5.23984611e-01 2.32466966e-01 -1.09237826e+00 -2.74776876e-01 -5.11054516e-01 -1.15019286e+00 3.39316010e-01 2.79705733e-01 -3.71495187e-02 -9.08128858e-01 1.46262300e+00 5.23503900e-01 5.71596146e-01 -7.36759529e-02 1.06860757e+00 7.66790867e-01 9.61940408e-01 -7.74436146e-02 -5.01084998e-02 1.50479913e+00 -1.26519179e+00 -5.52903652e-01 -7.62744248e-02 1.47690490e-01 -9.60188746e-01 1.27513289e+00 3.36085916e-01 -1.39777064e+00 -7.90831864e-01 -1.15175176e+00 -4.68066990e-01 -1.49260297e-01 3.43195409e-01 3.92483383e-01 5.30506015e-01 -1.15480602e+00 3.69103044e-01 -6.39873981e-01 1.20479286e-01 5.51833570e-01 2.57884473e-01 -6.62614852e-02 -1.83546841e-01 -1.05856907e+00 4.97851878e-01 3.78347635e-01 2.52302349e-01 -5.80145597e-01 -9.89249289e-01 -7.43844151e-01 -1.01532958e-01 4.27429885e-01 -5.56348860e-01 8.42507124e-01 -9.68514204e-01 -1.57331121e+00 9.17064309e-01 -8.53578001e-02 -1.46510303e-01 6.53877139e-01 -7.00999722e-02 -4.56460536e-01 2.13510647e-01 -9.28515568e-02 8.27250361e-01 9.80251670e-01 -1.41452456e+00 -9.83707607e-01 -1.23748757e-01 -2.09647678e-02 3.75560045e-01 -1.68491498e-01 6.50707185e-02 -1.19148493e+00 -9.51329887e-01 7.30242878e-02 -7.33000338e-01 -1.58864796e-01 3.21130127e-01 -2.65721798e-01 8.88557285e-02 9.80344653e-01 -9.04346585e-01 1.19831550e+00 -2.35043836e+00 1.12483412e-01 1.48386657e-01 2.03164458e-01 3.43504757e-01 -2.14871004e-01 -2.14471981e-01 -8.74349177e-02 4.42710444e-02 -4.43235219e-01 -2.44320184e-01 -2.62915939e-01 -5.41909076e-02 7.10867695e-04 4.13702190e-01 3.43456030e-01 8.95718515e-01 -6.20454788e-01 -5.13725162e-01 4.03814137e-01 9.84633029e-01 -5.66788614e-01 1.49730563e-01 -9.46326032e-02 5.75446665e-01 -2.30360389e-01 4.54510063e-01 1.04893911e+00 -2.37690270e-01 1.20966822e-01 -5.49097419e-01 -3.66371810e-01 -3.08466852e-01 -1.33668113e+00 1.69662130e+00 -6.04963303e-01 5.31754017e-01 1.44096121e-01 -6.95025384e-01 1.11034489e+00 -6.81951195e-02 3.66797090e-01 -9.88947213e-01 1.72817990e-01 3.16509008e-01 -2.33256310e-01 -7.19964951e-02 4.73073602e-01 1.57510221e-01 -2.77826563e-02 1.90635756e-01 -4.72262144e-01 -2.46023178e-01 -6.95707276e-03 -4.91652265e-02 5.17058074e-01 2.20282108e-01 -8.06418061e-02 -2.21192002e-01 7.31995344e-01 -1.84541449e-01 5.86717725e-01 2.64141887e-01 7.67542869e-02 9.40851569e-01 3.34124178e-01 -4.40563112e-01 -1.37707424e+00 -1.14129114e+00 -1.25655010e-01 9.90581155e-01 7.13097632e-01 -1.64559916e-01 -1.00214565e+00 -2.52184868e-01 -3.97313058e-01 6.49122417e-01 -5.10073602e-01 4.43970971e-02 -9.86817837e-01 -8.04763973e-01 3.82528543e-01 6.31413877e-01 1.08547616e+00 -9.00576830e-01 -5.92465758e-01 1.42865822e-01 -1.91842213e-01 -1.24845088e+00 -8.81616890e-01 -3.07552963e-01 -6.20294750e-01 -9.09995675e-01 -8.53520453e-01 -1.10582149e+00 7.53619492e-01 3.84097248e-01 8.65743339e-01 2.51068532e-01 -5.01837790e-01 -8.37087259e-02 -2.14762181e-01 -4.65013180e-03 -3.08184847e-02 -3.69416401e-02 -3.83914769e-01 2.53208697e-01 -1.21248499e-01 -5.55026650e-01 -1.07842076e+00 5.40810943e-01 -1.07033980e+00 6.81642354e-01 6.12581134e-01 7.07792938e-01 9.86620247e-01 4.82753754e-01 2.01858655e-01 -9.01662350e-01 3.47808689e-01 1.50583070e-02 -9.13552582e-01 1.57093018e-01 -6.36874139e-01 -5.21040261e-02 6.43235981e-01 -4.27503943e-01 -1.31949782e+00 9.79632065e-02 -1.40814587e-01 -5.20652413e-01 7.58086592e-02 -1.77264050e-01 -3.45087290e-01 -1.61400288e-01 3.51023674e-01 4.02894169e-01 -2.95066684e-01 -4.86188531e-01 6.60340190e-01 4.37186927e-01 8.49076927e-01 -6.27623677e-01 1.07003844e+00 7.16832936e-01 -1.72588274e-01 -5.97744167e-01 -5.75076461e-01 -1.30217478e-01 -5.24703383e-01 -2.59235799e-01 1.11537039e+00 -9.65292275e-01 -5.77242374e-01 6.45748556e-01 -1.03316629e+00 -6.09782100e-01 -9.80939046e-02 8.94868374e-02 -5.25100112e-01 1.86350361e-01 -7.22709298e-01 -4.71918792e-01 -4.77342069e-01 -1.26686442e+00 1.15892804e+00 5.81850767e-01 3.75207812e-01 -6.37233317e-01 -3.81764919e-01 4.05342877e-01 4.96754497e-01 3.03514898e-01 9.60745931e-01 2.61408865e-01 -9.57449794e-01 1.98432088e-01 -9.46432233e-01 3.28929961e-01 5.36860153e-02 6.08270802e-03 -7.99553037e-01 -2.92763025e-01 -2.67658174e-01 6.54870123e-02 7.77693093e-01 3.04549217e-01 1.49390924e+00 -1.25495866e-01 -8.97293836e-02 1.09784651e+00 1.68743312e+00 3.80315542e-01 9.95990038e-01 3.45714658e-01 1.02204752e+00 4.85817671e-01 5.84218442e-01 3.31256509e-01 4.10975873e-01 9.47428286e-01 2.09408626e-01 -7.63165414e-01 -6.30057752e-01 -3.06127667e-01 1.55078918e-01 6.27267718e-01 -2.35065207e-01 -3.33644450e-02 -7.19503462e-01 3.23561162e-01 -1.57954729e+00 -6.73113585e-01 -3.11745703e-01 2.08688712e+00 8.83314610e-01 9.78079513e-02 -1.65545642e-02 4.71840091e-02 9.84748483e-01 2.04573989e-01 -7.53891885e-01 -2.01725841e-01 -3.17059189e-01 4.56407279e-01 6.14557445e-01 6.46478772e-01 -9.84190106e-01 1.17447686e+00 4.53059149e+00 1.20067358e+00 -1.16451120e+00 2.88551986e-01 9.98630702e-01 -6.05794489e-02 -3.38597924e-01 -1.12768389e-01 -7.76524842e-01 4.53510016e-01 4.99846965e-01 -3.69256139e-02 6.33825898e-01 4.82706517e-01 2.96678096e-01 9.20168534e-02 -5.69878876e-01 1.25326359e+00 8.49838182e-02 -1.47130752e+00 6.52700067e-02 -2.36774489e-01 8.56724143e-01 -3.05580676e-01 3.41566384e-01 -1.12224974e-01 2.61925887e-02 -9.14263427e-01 8.36372852e-01 3.31228733e-01 1.37883496e+00 -9.44872916e-01 3.34111273e-01 1.01899728e-02 -1.62312496e+00 3.45790088e-02 -3.35691690e-01 4.28500116e-01 1.79957047e-01 3.91053617e-01 -2.68896252e-01 5.31511426e-01 1.05551124e+00 5.87393701e-01 -6.16892338e-01 6.45148695e-01 -3.30672830e-01 2.36679286e-01 -2.19361573e-01 4.40114170e-01 6.05122410e-02 -4.07371700e-01 2.73576796e-01 1.14386714e+00 4.17778552e-01 4.28057581e-01 -1.14415713e-01 9.92137611e-01 -1.85038090e-01 1.84989572e-01 -7.79170170e-02 4.04709399e-01 4.58094180e-01 1.38188303e+00 -9.52627361e-01 -3.19193661e-01 -4.63366926e-01 1.33024085e+00 2.52341121e-01 3.88721645e-01 -1.32943964e+00 -4.64384168e-01 4.55074310e-01 4.09991771e-01 5.26996911e-01 -1.26375437e-01 -3.56395453e-01 -1.05699992e+00 1.44929796e-01 -8.21450472e-01 1.98063284e-01 -9.80012059e-01 -9.93268490e-01 8.38540375e-01 -1.45471409e-01 -1.21122205e+00 3.96050036e-01 -4.47687060e-01 -4.12754565e-01 8.97147059e-01 -1.80450225e+00 -1.26178002e+00 -7.02814817e-01 8.17537010e-01 6.87072754e-01 1.79766536e-01 4.88307148e-01 6.08977258e-01 -7.43125439e-01 6.88671112e-01 4.90569845e-02 2.32199356e-01 7.34677553e-01 -9.16744053e-01 5.27514637e-01 9.79023278e-01 -1.52794197e-01 1.97148874e-01 3.98636490e-01 -5.60250700e-01 -1.09128821e+00 -1.39837635e+00 2.58964032e-01 -6.18274398e-02 2.98020810e-01 -5.16987026e-01 -1.05573404e+00 2.81875759e-01 2.32954770e-01 2.61583745e-01 1.83465853e-01 -6.95060551e-01 -4.15622026e-01 -3.75371993e-01 -1.11147368e+00 7.99869359e-01 1.22686589e+00 -3.26796979e-01 6.61773458e-02 -4.37106565e-02 8.84450257e-01 -7.67962873e-01 -9.42658007e-01 3.91446710e-01 5.23845494e-01 -1.07669640e+00 1.19052136e+00 7.72390664e-02 4.66737479e-01 -8.22445273e-01 -1.19158834e-01 -8.93564701e-01 -4.10702199e-01 -6.20838404e-01 2.12594390e-01 1.14761078e+00 4.28998441e-01 -5.77827692e-01 7.30582595e-01 4.92481053e-01 -1.28324330e-01 -8.25760782e-01 -7.67473102e-01 -3.91365051e-01 9.24887806e-02 -3.16328317e-01 7.31790423e-01 8.97202790e-01 -7.69653857e-01 1.68993086e-01 -3.77783149e-01 4.64494854e-01 8.39542568e-01 3.02038431e-01 7.03903258e-01 -7.75161028e-01 -2.61200190e-01 -4.79117930e-01 -1.82277322e-01 -1.06366205e+00 -1.80699572e-01 -6.44451797e-01 -1.33088797e-01 -1.30862916e+00 1.68319970e-01 -7.17102885e-01 -2.08488151e-01 3.26484352e-01 -2.73927420e-01 7.44705319e-01 3.56459767e-01 1.24658868e-01 -3.07124436e-01 4.40157115e-01 1.62985647e+00 -8.98427963e-02 -3.39075357e-01 -3.50727826e-01 -7.38510132e-01 6.96627378e-01 1.05279469e+00 -2.10494265e-01 -4.33456689e-01 -6.12962902e-01 7.46546453e-03 5.67612872e-02 5.17927468e-01 -9.47842002e-01 1.93267077e-01 -1.56561315e-01 6.63768888e-01 -5.62512100e-01 3.44351828e-01 -8.01024735e-01 4.69807267e-01 2.92630017e-01 -1.70863271e-01 7.55155236e-02 3.66249144e-01 4.63316768e-01 -7.87363425e-02 1.81385770e-01 1.28384769e+00 -3.84937450e-02 -8.08469296e-01 5.33630311e-01 1.40162826e-01 -3.24192792e-02 1.19206667e+00 -3.52321088e-01 -5.02208829e-01 -1.78709254e-01 -4.78967607e-01 5.97348437e-02 7.58774936e-01 4.89156812e-01 8.37305546e-01 -1.25049245e+00 -7.47811913e-01 4.76310819e-01 -2.10752971e-02 4.21380639e-01 6.93384230e-01 8.30372334e-01 -8.50527644e-01 4.73300293e-02 -3.08814436e-01 -4.86392438e-01 -1.10392690e+00 4.82873678e-01 5.38561523e-01 -4.42034639e-02 -9.66111302e-01 8.72927785e-01 5.15677750e-01 -6.67120367e-02 6.38903007e-02 -1.97345182e-01 -7.15744346e-02 -1.99453697e-01 5.47247112e-01 3.43943089e-01 -1.62313253e-01 -6.57831907e-01 -1.87560812e-01 1.10637105e+00 -1.59519643e-01 -1.12807639e-01 1.30175924e+00 -1.96261138e-01 -1.72771424e-01 -4.59484719e-02 1.19664764e+00 4.79772165e-02 -1.57894957e+00 -2.18770474e-01 -4.45730746e-01 -6.93497062e-01 1.83799103e-01 -5.85364580e-01 -1.60018444e+00 8.18413675e-01 9.31555271e-01 -2.47145727e-01 1.55936909e+00 -1.53676197e-01 1.01862156e+00 -3.80077124e-01 1.95816651e-01 -1.04268515e+00 1.31940454e-01 -5.25505356e-02 7.89360583e-01 -9.26852822e-01 -7.82505572e-02 -7.87938178e-01 -6.28088295e-01 9.30441976e-01 9.09051776e-01 -2.64803618e-01 4.83087808e-01 3.94267768e-01 1.45704627e-01 -2.96628382e-02 -4.34665233e-01 -1.24148592e-01 2.92880923e-01 5.86063862e-01 3.14557076e-01 2.75480095e-02 -2.84462422e-01 4.39023525e-01 -1.39298216e-01 -9.48343128e-02 4.75455821e-01 4.69486773e-01 -2.35152557e-01 -1.05479884e+00 -3.38924766e-01 1.36556461e-01 -1.68727607e-01 -2.40977690e-01 2.37040836e-02 7.42851913e-01 4.10727441e-01 7.43034720e-01 1.72468588e-01 -3.81636024e-01 5.71736157e-01 -3.81498009e-01 4.45542008e-01 -2.52203286e-01 -3.56973827e-01 3.27213049e-01 -2.23576516e-01 -7.89234638e-01 -3.41504574e-01 -3.37093771e-01 -1.45495474e+00 -4.30665910e-01 -1.30762458e-01 -2.68744290e-01 5.04691780e-01 2.66501278e-01 4.02378082e-01 6.71806216e-01 6.34818196e-01 -9.04604077e-01 1.23280458e-01 -4.94894296e-01 -5.31685591e-01 3.63353521e-01 5.47030531e-02 -5.13572752e-01 -1.74776733e-01 2.48503864e-01]
[11.072680473327637, -1.5495492219924927]
7537d350-fa95-4ff3-ac12-41fd944eecca
towards-deep-attention-in-graph-neural
2306.02376
null
https://arxiv.org/abs/2306.02376v1
https://arxiv.org/pdf/2306.02376v1.pdf
Towards Deep Attention in Graph Neural Networks: Problems and Remedies
Graph neural networks (GNNs) learn the representation of graph-structured data, and their expressiveness can be further enhanced by inferring node relations for propagation. Attention-based GNNs infer neighbor importance to manipulate the weight of its propagation. Despite their popularity, the discussion on deep graph attention and its unique challenges has been limited. In this work, we investigate some problematic phenomena related to deep graph attention, including vulnerability to over-smoothed features and smooth cumulative attention. Through theoretical and empirical analyses, we show that various attention-based GNNs suffer from these problems. Motivated by our findings, we propose AEROGNN, a novel GNN architecture designed for deep graph attention. AERO-GNN provably mitigates the proposed problems of deep graph attention, which is further empirically demonstrated with (a) its adaptive and less smooth attention functions and (b) higher performance at deep layers (up to 64). On 9 out of 12 node classification benchmarks, AERO-GNN outperforms the baseline GNNs, highlighting the advantages of deep graph attention. Our code is available at https://github.com/syleeheal/AERO-GNN.
['Kijung Shin', 'Jaemin Yoo', 'Fanchen Bu', 'Soo Yong Lee']
2023-06-04
null
null
null
null
['deep-attention', 'graph-attention', 'deep-attention']
['computer-vision', 'graphs', 'natural-language-processing']
[-2.09837437e-01 5.30619204e-01 -2.10862398e-01 2.39265244e-02 -7.22317845e-02 -2.95125246e-01 5.41936696e-01 3.50213021e-01 -1.37837842e-01 5.86873949e-01 2.70889640e-01 -6.78086281e-01 -2.57174999e-01 -1.06673014e+00 -7.25486755e-01 -5.46362460e-01 -5.29335976e-01 3.17408413e-01 1.80678591e-01 -5.02425194e-01 1.32136628e-01 6.32575095e-01 -1.01129258e+00 -2.03885853e-01 7.58986473e-01 7.85455525e-01 -5.61458208e-02 1.08958709e+00 -1.26354486e-01 1.12898421e+00 -6.75935149e-01 -5.70960104e-01 3.89785580e-02 -3.03906173e-01 -9.27075446e-01 -5.10438144e-01 3.74619931e-01 -1.49954662e-01 -9.36056852e-01 1.09579313e+00 5.15509129e-01 3.43586713e-01 4.72719669e-01 -1.66423666e+00 -1.43605137e+00 1.04704988e+00 -4.75724965e-01 5.67453265e-01 -1.96856931e-02 2.72311032e-01 1.62651539e+00 -6.50083959e-01 3.82554770e-01 1.32912755e+00 8.93414438e-01 4.61569160e-01 -9.70525265e-01 -5.30915797e-01 4.79012698e-01 1.14968158e-01 -1.36405337e+00 -3.09903137e-02 7.82466531e-01 -2.13925883e-01 1.09117937e+00 3.57382506e-01 7.46880531e-01 1.08548713e+00 3.60830635e-01 7.53115833e-01 2.95811713e-01 -1.10432036e-01 -1.19782262e-01 -3.20003480e-01 4.90871310e-01 8.34914625e-01 5.77106297e-01 1.83122773e-02 -1.06756710e-01 5.21171279e-02 8.35840881e-01 1.91701129e-01 -3.71730834e-01 -3.28669399e-02 -7.67611742e-01 9.25016284e-01 1.46394300e+00 2.86292732e-01 -4.91653174e-01 9.01087761e-01 4.09190089e-01 3.01794976e-01 6.56103671e-01 7.15353906e-01 -3.78557354e-01 1.56802028e-01 -1.65243715e-01 8.32083076e-02 7.69239128e-01 1.10929203e+00 8.07981551e-01 3.09546590e-01 -4.17070955e-01 5.28721094e-01 2.78630674e-01 2.91456133e-01 7.71503225e-02 -4.53808159e-01 3.55378658e-01 7.28772342e-01 -5.75960457e-01 -1.38767958e+00 -7.14066327e-01 -8.02307010e-01 -1.24008310e+00 -2.74889693e-02 2.38897532e-01 -2.47208878e-01 -8.79236937e-01 1.73060095e+00 7.95407221e-02 1.82875276e-01 -1.07217953e-01 8.90040636e-01 1.23397040e+00 5.86502969e-01 3.05078596e-01 4.79054362e-01 1.06925392e+00 -1.31754541e+00 -6.48983419e-01 -3.18428993e-01 6.36545777e-01 -1.73610970e-01 1.17197812e+00 -1.59997091e-01 -9.76636052e-01 -3.93226922e-01 -8.96338761e-01 -4.95472461e-01 -5.97595751e-01 -4.73661751e-01 1.17703068e+00 4.06154394e-01 -1.53489101e+00 8.64134073e-01 -7.64661610e-01 -5.49620450e-01 6.83484375e-01 5.04812837e-01 -1.80609167e-01 3.02136727e-02 -1.41803849e+00 4.63301331e-01 1.92614079e-01 3.35839301e-01 -7.58717656e-01 -7.36876547e-01 -1.04460180e+00 6.75431430e-01 3.29476357e-01 -8.28716218e-01 9.74467039e-01 -8.29859138e-01 -1.15450299e+00 4.38091308e-01 2.65024006e-01 -6.82464004e-01 1.58263147e-01 -2.78124630e-01 -3.47458929e-01 1.57979522e-02 -1.33547813e-01 5.28493524e-01 5.35912037e-01 -8.49556565e-01 -1.53177634e-01 -1.33525878e-01 6.23909831e-01 1.06982239e-01 -4.90337491e-01 -2.51646876e-01 -5.52042365e-01 -8.12560260e-01 -2.77285129e-01 -7.67841518e-01 -5.46231747e-01 -1.27011791e-01 -6.85590446e-01 -3.88177663e-01 6.62782431e-01 -2.50620067e-01 1.34859335e+00 -1.94435871e+00 1.68402165e-01 9.75396633e-02 1.00897348e+00 3.65169972e-01 -4.44170445e-01 6.99153364e-01 -1.08085744e-01 5.53441048e-01 -8.57747197e-02 -2.25139096e-01 6.89659864e-02 2.31678039e-01 -1.52430013e-01 4.61152911e-01 5.04551589e-01 1.51219463e+00 -1.07147205e+00 -1.64035887e-01 5.30832782e-02 7.69339561e-01 -7.61185467e-01 2.18638644e-01 -3.02992076e-01 2.33600229e-01 -5.20103514e-01 6.49631381e-01 5.09252548e-01 -8.79533410e-01 2.23781019e-01 5.40122762e-03 3.13775718e-01 3.36050838e-01 -4.44272667e-01 1.25138068e+00 -2.50195771e-01 1.02010310e+00 1.30343825e-01 -9.68796909e-01 7.53085971e-01 -4.56561632e-02 3.46186399e-01 -6.42780602e-01 2.89012015e-01 -1.52251974e-01 2.56845683e-01 -2.69502968e-01 7.13195443e-01 3.38915527e-01 3.15156095e-02 4.73116994e-01 9.11166817e-02 2.74468124e-01 -2.29753703e-02 6.96143270e-01 1.48012590e+00 -4.17080849e-01 2.84775227e-01 -6.34626389e-01 2.92699367e-01 -3.18127573e-01 2.40645662e-01 9.95340288e-01 -2.67232865e-01 2.79333502e-01 1.02412426e+00 -6.25021279e-01 -7.96233475e-01 -6.97333217e-01 2.17763022e-01 1.48937297e+00 2.10109025e-01 -7.86236584e-01 -6.37135744e-01 -9.32603896e-01 3.17503691e-01 5.18718898e-01 -9.66308594e-01 -3.48997295e-01 -5.53400695e-01 -6.68401778e-01 6.91076994e-01 7.20812500e-01 1.03751525e-01 -1.26155114e+00 -1.30131105e-02 5.41755334e-02 2.14590088e-01 -9.16935086e-01 -5.75980425e-01 -1.18276095e-02 -6.76358998e-01 -1.23331821e+00 -6.39488935e-01 -6.27850771e-01 6.88515782e-01 3.85619462e-01 1.45754266e+00 8.58906686e-01 -1.21310674e-01 3.99416506e-01 -3.99125606e-01 -3.91103536e-01 -3.31344485e-01 7.80357242e-01 -2.48532727e-01 -2.10311696e-01 2.67742336e-01 -7.84961104e-01 -6.85042799e-01 3.09990402e-02 -7.79723346e-01 -2.94875819e-02 6.01480305e-01 8.14363897e-01 1.43602327e-01 -1.63801640e-01 6.43708825e-01 -1.27379858e+00 9.06416893e-01 -8.77032638e-01 -5.29030144e-01 -1.22523218e-01 -7.89439499e-01 2.66956061e-01 6.95881188e-01 -1.48663402e-01 -3.78673464e-01 -6.39815629e-01 -3.42643887e-01 -5.08908629e-01 3.47718209e-01 8.05085659e-01 1.31218255e-01 -2.97472715e-01 6.46090567e-01 -2.78104216e-01 7.79031292e-02 -3.11274230e-01 3.69049072e-01 1.70036048e-01 3.04318815e-01 -4.71825480e-01 8.33831906e-01 2.13323385e-01 1.19116977e-01 -8.99629235e-01 -8.83688331e-01 -1.20792218e-01 -1.57816350e-01 -1.43906057e-01 7.31079996e-01 -7.37171888e-01 -8.94465983e-01 3.62169355e-01 -1.11585939e+00 -8.36465061e-01 -2.66628563e-01 1.68413222e-01 -6.50314838e-02 3.16026598e-01 -1.07350194e+00 -6.21226072e-01 -7.03503668e-01 -1.01018584e+00 7.66625524e-01 1.39823914e-01 -1.20812349e-01 -1.50451076e+00 -1.45428672e-01 -1.33530229e-01 8.67061794e-01 4.56171006e-01 9.44738626e-01 -7.73583114e-01 -8.92576814e-01 2.97360942e-02 -7.07322896e-01 4.86797802e-02 -2.39633191e-02 1.93058208e-01 -8.96309733e-01 -5.20759940e-01 -6.88899219e-01 -6.31578863e-02 1.03980350e+00 6.11489654e-01 1.49364543e+00 -4.70895320e-01 -2.69418418e-01 9.86420870e-01 1.33035898e+00 -3.37265670e-01 6.21372640e-01 8.92791674e-02 1.27283585e+00 2.51254141e-01 2.37804465e-02 2.19874769e-01 5.40683031e-01 2.89355874e-01 1.05039942e+00 -4.32153434e-01 -4.16238248e-01 -3.09054077e-01 8.50549415e-02 9.42977786e-01 -3.31061453e-01 -9.15968716e-01 -9.46387172e-01 6.07150853e-01 -1.84886348e+00 -6.36770487e-01 -4.99631971e-01 1.56484544e+00 2.12844238e-01 1.91206768e-01 -2.30962969e-02 -1.63460270e-01 7.72364914e-01 6.60538018e-01 -6.55974388e-01 -4.99672443e-01 -2.01645307e-02 2.97394186e-01 7.04904377e-01 6.71715081e-01 -1.01756549e+00 1.15035236e+00 6.24981833e+00 5.55190921e-01 -9.77077246e-01 -1.58446804e-02 6.18054509e-01 1.12998575e-01 -6.63507402e-01 -1.47026509e-01 -5.38711905e-01 2.40859494e-01 1.00967968e+00 -4.30860698e-01 6.48974359e-01 7.69820511e-01 -2.73138225e-01 6.84953153e-01 -1.00086486e+00 5.69110751e-01 -1.69644326e-01 -1.58383465e+00 1.65455878e-01 2.59539425e-01 6.35716558e-01 5.93744040e-01 6.09355979e-02 7.22126961e-01 6.67867720e-01 -1.36023211e+00 4.17135209e-01 2.67443210e-01 8.17132354e-01 -7.81718135e-01 7.86191642e-01 -1.07007124e-01 -1.41286612e+00 -5.32131307e-02 -5.04541874e-01 -3.95836264e-01 -4.40424569e-02 5.59036493e-01 -7.24836528e-01 6.88272297e-01 7.02316940e-01 1.09130478e+00 -6.24211788e-01 6.47364497e-01 -4.68825281e-01 7.38636672e-01 -1.81808919e-01 -3.59512806e-01 5.83663881e-01 -3.67972255e-02 6.64959133e-01 1.20251930e+00 1.83022246e-01 1.65525563e-02 -9.33914483e-02 1.20375574e+00 -6.39147460e-01 -9.16423574e-02 -7.67258763e-01 -4.52815264e-01 3.61073315e-01 1.26924551e+00 -6.44802213e-01 -2.22077996e-01 -3.96993488e-01 8.28860700e-01 9.58081484e-01 7.11786985e-01 -1.07888055e+00 -6.92724943e-01 9.96838629e-01 2.68528521e-01 4.00156498e-01 -1.41618669e-01 -1.00486517e-01 -9.31654572e-01 -3.23133141e-01 -5.70671678e-01 6.67922735e-01 -6.40335321e-01 -1.44992602e+00 9.68656123e-01 -3.50729674e-01 -4.77395952e-01 2.19117656e-01 -6.34281635e-01 -9.24702764e-01 8.27286422e-01 -1.55088508e+00 -1.04954255e+00 -6.36692524e-01 3.93523842e-01 1.55142322e-01 9.79597494e-03 5.35381794e-01 3.97267520e-01 -7.89501011e-01 8.90305221e-01 -2.91616231e-01 3.68682384e-01 2.00283810e-01 -1.47918367e+00 1.34655428e+00 7.52566040e-01 6.81634173e-02 6.17076397e-01 5.74767232e-01 -5.30548275e-01 -1.55485475e+00 -1.47720611e+00 8.20393920e-01 -4.57937449e-01 9.51851130e-01 -4.26971316e-01 -1.11185384e+00 1.13789928e+00 3.04031104e-01 4.28065300e-01 3.42527002e-01 5.01101494e-01 -4.05568302e-01 2.55345609e-02 -7.73097217e-01 7.14151382e-01 1.41036975e+00 -4.48861271e-01 -2.61070542e-02 5.25542676e-01 1.44255280e+00 -4.39356029e-01 -1.03948414e+00 3.07946414e-01 2.58662373e-01 -9.79416668e-01 9.22608554e-01 -9.09878671e-01 5.01173019e-01 7.19614625e-02 1.62113890e-01 -1.42568481e+00 -8.47975373e-01 -8.66509974e-01 -4.01204854e-01 9.01401818e-01 4.38881695e-01 -1.09763801e+00 8.10124993e-01 3.46230835e-01 -3.96046638e-01 -8.43771696e-01 -4.67340678e-01 -5.62330365e-01 1.48971692e-01 -2.74733722e-01 9.59910989e-01 1.07580602e+00 -1.67892545e-01 5.50867558e-01 -2.44261086e-01 4.36594784e-01 3.94668609e-01 -1.12689845e-01 9.37076807e-01 -1.20640087e+00 -3.21174145e-01 -7.21762598e-01 -5.92831314e-01 -1.16863406e+00 2.95082331e-01 -1.22036266e+00 -2.91841626e-01 -1.74797249e+00 -7.23741436e-03 -4.56593990e-01 -6.08715475e-01 5.39673388e-01 -4.55048203e-01 7.43076429e-02 2.10837588e-01 -1.21657774e-01 -6.98141634e-01 6.78502321e-01 1.38670480e+00 -2.00666517e-01 -4.69224676e-02 -1.13835596e-01 -1.12624943e+00 3.87283683e-01 9.44819689e-01 -4.83131409e-01 -4.73751992e-01 -6.89024985e-01 4.07715648e-01 -1.25507265e-01 4.78519529e-01 -8.89916897e-01 3.13189715e-01 1.55781835e-01 -1.67516153e-02 -3.95269692e-01 1.51250931e-02 -6.35379612e-01 4.17888612e-02 5.54393113e-01 -3.85497361e-01 4.01418358e-01 3.00632119e-01 8.27062249e-01 -1.22506609e-02 2.49810934e-01 5.38724482e-01 -3.57050970e-02 -5.97499788e-01 9.33262169e-01 -1.54162556e-01 3.67292613e-01 7.38599479e-01 1.94475546e-01 -7.30273247e-01 -7.21598387e-01 -4.38545376e-01 4.75762516e-01 2.59192020e-01 3.75269026e-01 4.55306232e-01 -1.39188039e+00 -7.75823832e-01 3.81808549e-01 7.74453580e-02 2.59257108e-01 3.44133526e-01 9.34799969e-01 -8.51883888e-01 4.11675900e-01 5.11247925e-02 -4.30224568e-01 -8.23692143e-01 7.67908156e-01 4.06621665e-01 -4.85772073e-01 -9.18792486e-01 1.13834059e+00 5.21117926e-01 -4.56179380e-01 2.91917950e-01 -6.77824795e-01 -1.05037764e-01 -4.38020587e-01 2.74524778e-01 3.62549961e-01 -7.93912541e-03 -2.75445789e-01 -3.21347982e-01 1.61915272e-01 -1.06225394e-01 6.93256438e-01 1.38439357e+00 2.22970825e-02 -2.43533090e-01 -3.11017726e-02 1.16989231e+00 -5.82871400e-02 -1.33485317e+00 -1.27740279e-01 -1.79199100e-01 -1.45131886e-01 1.13092288e-01 -3.95372450e-01 -1.65024376e+00 8.70153666e-01 -1.97200969e-01 8.74541223e-01 9.66831923e-01 9.53362659e-02 9.32681918e-01 2.97235966e-01 -3.55310775e-02 -3.69545430e-01 -4.87470776e-02 7.98134983e-01 1.04848099e+00 -1.16126883e+00 -4.11387049e-02 -3.71480763e-01 -3.60319108e-01 8.82762611e-01 7.88010418e-01 -3.34622383e-01 9.22168136e-01 2.05131561e-01 -2.22263396e-01 -8.33535016e-01 -9.02624249e-01 -2.92722166e-01 3.18122059e-01 5.72746456e-01 3.85106385e-01 1.77330866e-01 1.63388327e-01 5.47775745e-01 -1.85901552e-01 -4.79507804e-01 4.49351907e-01 3.75819564e-01 -2.56907821e-01 -6.01593554e-01 1.70860693e-01 4.39410925e-01 -5.56874752e-01 -5.37527204e-01 -5.31747222e-01 1.08866668e+00 -6.21908247e-01 6.50423169e-01 1.76743999e-01 -4.43249106e-01 2.35334367e-01 -5.87373734e-01 2.18483880e-02 -5.22410035e-01 -8.03910851e-01 -4.55176741e-01 2.19107330e-01 -6.88086629e-01 4.31434400e-02 -2.66311094e-02 -1.18496525e+00 -8.97495806e-01 -2.62049526e-01 1.89033002e-01 2.50868589e-01 3.29860926e-01 8.10843050e-01 1.23555362e+00 2.93385446e-01 -8.51041377e-01 -4.32082593e-01 -1.05137229e+00 -5.57971895e-01 4.60937381e-01 5.72069108e-01 -5.04817307e-01 -6.29067540e-01 -7.01570272e-01]
[6.980536460876465, 6.231955051422119]
82798c3b-8c70-43a5-a2e6-a39a6f57d322
an-integrated-platform-for-live-3d-human
1712.03084
null
http://arxiv.org/abs/1712.03084v1
http://arxiv.org/pdf/1712.03084v1.pdf
An Integrated Platform for Live 3D Human Reconstruction and Motion Capturing
The latest developments in 3D capturing, processing, and rendering provide means to unlock novel 3D application pathways. The main elements of an integrated platform, which target tele-immersion and future 3D applications, are described in this paper, addressing the tasks of real-time capturing, robust 3D human shape/appearance reconstruction, and skeleton-based motion tracking. More specifically, initially, the details of a multiple RGB-depth (RGB-D) capturing system are given, along with a novel sensors' calibration method. A robust, fast reconstruction method from multiple RGB-D streams is then proposed, based on an enhanced variation of the volumetric Fourier transform-based method, parallelized on the Graphics Processing Unit, and accompanied with an appropriate texture-mapping algorithm. On top of that, given the lack of relevant objective evaluation methods, a novel framework is proposed for the quantitative evaluation of real-time 3D reconstruction systems. Finally, a generic, multiple depth stream-based method for accurate real-time human skeleton tracking is proposed. Detailed experimental results with multi-Kinect2 data sets verify the validity of our arguments and the effectiveness of the proposed system and methodologies.
['IEEE', 'Senior Member', 'Georgios Louizis', 'Dimitrios Zarpalas', 'Petros Daras', 'Olga Zoidi', 'Dimitrios S. Alexiadis', 'Nikolaos Zioulis', 'Anargyros Chatzitofis']
2017-12-08
null
null
null
null
['3d-human-reconstruction']
['computer-vision']
[ 3.34071279e-01 -2.01055676e-01 2.23549664e-01 -1.92394704e-01 -5.17172039e-01 -1.01414233e-01 2.11796433e-01 8.57990459e-02 -5.44433832e-01 3.33758831e-01 -2.13634241e-02 1.92678332e-01 -1.77375555e-01 -6.48015320e-01 -2.75313526e-01 -4.69802886e-01 1.86280627e-02 6.58674598e-01 5.13722360e-01 -3.58713120e-01 1.07095070e-01 9.41366434e-01 -1.91900146e+00 -6.08625896e-02 3.24394494e-01 1.28054786e+00 -1.80867344e-01 7.32209623e-01 -4.20077629e-02 -3.06539927e-02 -2.90742129e-01 -2.07667947e-01 3.95951360e-01 -3.84240955e-01 -3.14194441e-01 4.21722203e-01 3.16862851e-01 -6.69594586e-01 -8.91807526e-02 4.20513809e-01 1.04677618e+00 1.42242208e-01 5.33798277e-01 -9.18479204e-01 4.51910555e-01 -4.37003344e-01 -3.54775250e-01 -2.64590800e-01 1.10644448e+00 6.54267296e-02 6.97736666e-02 -8.89078438e-01 6.21200979e-01 1.13133872e+00 7.83612370e-01 8.11966181e-01 -8.21861923e-01 -2.17632100e-01 -2.85510570e-01 -1.58824325e-01 -1.22231138e+00 -2.83010513e-01 9.70241070e-01 -4.31958228e-01 7.83300757e-01 6.23999774e-01 1.44508934e+00 9.16287422e-01 2.15204790e-01 4.28400785e-01 1.11852264e+00 -6.31052196e-01 2.73144513e-01 1.38634101e-01 1.26760621e-02 7.65988290e-01 2.30575264e-01 1.71803266e-01 -6.90165699e-01 -4.42569852e-02 1.32708681e+00 1.55739456e-01 -2.73271292e-01 -9.60880160e-01 -8.98400426e-01 1.54721618e-01 -6.57019466e-02 2.00464115e-01 -5.33598840e-01 8.03961679e-02 4.97642010e-01 -1.88990712e-01 6.32929504e-01 -5.19530952e-01 -1.63536757e-01 -5.06974757e-01 -8.01511884e-01 3.38491946e-01 5.88331163e-01 8.81855607e-01 3.91602933e-01 -1.47968441e-01 2.77716458e-01 3.18039924e-01 7.23277748e-01 7.14646697e-01 4.18983489e-01 -8.94620240e-01 3.41988623e-01 8.15060914e-01 2.41053347e-02 -9.94404256e-01 -5.58498383e-01 1.29578814e-01 -5.85933089e-01 6.94416106e-01 2.56075382e-01 2.27748290e-01 -4.45787936e-01 8.96494746e-01 1.07132113e+00 -7.49827698e-02 -2.27995247e-01 1.10510814e+00 7.43490160e-01 1.11240901e-01 -3.25931638e-01 -2.19587848e-01 1.25970674e+00 -2.76500344e-01 -7.30729401e-01 3.34648281e-01 1.48942143e-01 -4.90789205e-01 1.14988983e+00 5.49750626e-01 -1.37435889e+00 -6.52361095e-01 -8.81496012e-01 -9.97225717e-02 -6.65726811e-02 -2.10405648e-01 2.45685026e-01 1.20405209e+00 -8.46247137e-01 4.87679124e-01 -1.05484748e+00 -6.61035299e-01 5.23952208e-02 4.81944323e-01 -4.33361113e-01 -2.58212574e-02 -6.13209784e-01 8.94997060e-01 -1.88157416e-03 4.19453114e-01 -3.99381548e-01 -4.53727514e-01 -7.33073235e-01 -5.52090764e-01 -1.21899016e-01 -1.07682288e+00 9.45078075e-01 -5.29319882e-01 -2.11619592e+00 1.33545673e+00 -1.29547924e-01 1.25446077e-02 1.02281559e+00 -4.71355796e-01 -2.01602742e-01 6.09752476e-01 -1.69431165e-01 4.59057689e-02 8.34047198e-01 -1.16755569e+00 -3.21682513e-01 -1.01958156e+00 -2.30743274e-01 4.16488945e-01 -2.19468087e-01 1.40609052e-02 -6.91485524e-01 -2.54875064e-01 5.45033932e-01 -6.19327426e-01 -2.63438761e-01 6.20724440e-01 1.22082181e-01 3.08004141e-01 6.18338645e-01 -6.56755865e-01 9.49234545e-01 -2.22320819e+00 2.74991840e-01 4.49964881e-01 2.15193629e-01 1.13610461e-01 5.94640791e-01 2.40382269e-01 4.43549231e-02 -5.06635070e-01 -3.62547785e-01 -7.65119672e-01 -1.57419834e-02 2.28867516e-01 1.75934196e-01 9.05969262e-01 -3.11979145e-01 4.07176316e-01 -5.90541661e-01 -6.21573985e-01 9.11292732e-01 8.74591172e-01 -1.05308749e-01 2.57551044e-01 2.73723811e-01 7.05323875e-01 -3.92637193e-01 1.02504134e+00 6.69317722e-01 3.07616979e-01 2.48272554e-04 -1.81320608e-01 -4.12719011e-01 -1.10951260e-01 -1.65150118e+00 2.12338924e+00 -3.30958635e-01 6.91678971e-02 3.72108668e-01 -6.10264063e-01 1.08460617e+00 5.51626027e-01 9.45896387e-01 -8.61116290e-01 3.02057028e-01 5.66011071e-01 -9.49186563e-01 -8.63334417e-01 5.10543644e-01 -3.28222007e-01 1.72378883e-01 4.12744671e-01 -3.58609676e-01 -2.33936474e-01 -3.19614470e-01 -1.59251362e-01 6.49716437e-01 8.63508165e-01 2.80056417e-01 -9.22844745e-03 5.99803984e-01 6.06501997e-02 1.21205397e-01 1.10559992e-01 -3.42701226e-01 9.08799767e-01 -1.22398280e-01 -4.92886573e-01 -9.53872681e-01 -1.05613840e+00 -1.22926228e-01 4.29839343e-01 3.44895124e-01 -3.33995044e-01 -7.54186392e-01 -1.38872787e-01 1.96124151e-01 -6.13285489e-02 -4.85417038e-01 2.92159975e-01 -7.23181725e-01 -6.12654984e-01 3.76953512e-01 3.40072870e-01 3.47268641e-01 -5.57134449e-01 -1.66481793e+00 3.51726562e-01 6.04842678e-02 -9.93402541e-01 7.32713342e-02 -1.20783225e-01 -1.60469019e+00 -1.14914334e+00 -9.33818102e-01 -2.64502794e-01 5.05577683e-01 2.34455854e-01 8.49997938e-01 8.68534818e-02 -5.72499990e-01 1.24171579e+00 -3.87565583e-01 -1.85879722e-01 -2.07682271e-02 -5.71061373e-01 2.96047717e-01 1.39034158e-02 -6.14990033e-02 -6.18773520e-01 -7.23031282e-01 3.66068542e-01 -8.18423927e-01 -8.67222995e-03 2.07934454e-01 1.67942926e-01 8.32922101e-01 -3.29332441e-01 -2.24972501e-01 -2.94954509e-01 3.28799427e-01 1.01160258e-01 -5.54245532e-01 3.81705947e-02 -5.38064241e-01 -4.41038489e-01 -2.51164604e-02 -3.26687515e-01 -8.98798108e-01 4.41227823e-01 -4.33107734e-01 -4.56036896e-01 -2.69260108e-01 -1.53257465e-02 -3.79710376e-01 -2.53142834e-01 5.98415971e-01 3.72576892e-01 5.56588888e-01 -7.45457649e-01 2.32598096e-01 6.51903391e-01 7.20225275e-01 -6.70309424e-01 5.64011574e-01 1.14575279e+00 1.82541028e-01 -1.04859066e+00 2.65216585e-02 -7.45304942e-01 -1.21044719e+00 -8.83621991e-01 7.48540342e-01 -7.45596945e-01 -7.24143207e-01 7.47682214e-01 -1.25465381e+00 -2.00305611e-01 -6.78617716e-01 6.76170468e-01 -8.84089053e-01 5.90622365e-01 -3.62040102e-01 -1.26901448e+00 -3.32711041e-01 -1.04210651e+00 1.38713157e+00 6.76799193e-03 -2.17862770e-01 -1.01243401e+00 4.03777361e-01 5.96886873e-01 1.64120317e-01 9.77131009e-01 3.08359772e-01 2.19678164e-01 -3.12245160e-01 -5.36183476e-01 2.73703873e-01 1.36503667e-01 8.49753469e-02 1.48883834e-01 -1.04487503e+00 -9.23216417e-02 3.91862124e-01 3.34645212e-02 1.82821434e-02 3.74169081e-01 5.38322210e-01 2.80137300e-01 -3.98551464e-01 7.28411436e-01 1.50816035e+00 -3.16852331e-03 6.66185439e-01 6.04678392e-01 6.19963825e-01 7.28351891e-01 7.95180500e-01 8.76062214e-01 3.72213691e-01 9.65162635e-01 6.47142172e-01 -1.84312880e-01 -2.31347039e-01 1.03465788e-01 4.37650532e-01 1.10064697e+00 -7.29888022e-01 4.49025363e-01 -7.08410442e-01 -1.68408621e-02 -1.47178853e+00 -6.29465282e-01 -6.95500374e-01 2.57806015e+00 3.67365956e-01 1.41386196e-01 6.00051463e-01 8.20277572e-01 4.57134217e-01 -3.70606750e-01 -2.78107464e-01 -2.54290491e-01 1.35519877e-01 5.76165855e-01 3.39839011e-01 5.58861315e-01 -6.66802227e-01 2.62297958e-01 6.27365828e+00 2.68414408e-01 -1.04376817e+00 2.79076010e-01 -1.20208368e-01 -1.83411643e-01 -1.89109802e-01 -3.40304554e-01 -7.43660092e-01 2.77818710e-01 6.96915984e-01 1.09597869e-01 -1.05632804e-01 6.82946861e-01 6.55302703e-01 -4.31409150e-01 -7.84712851e-01 1.22359562e+00 3.35243851e-01 -8.08129787e-01 -2.52108276e-02 1.91692784e-01 2.83888020e-02 -3.77570331e-01 -2.46600226e-01 -2.64080793e-01 -7.26516306e-01 -3.89111221e-01 1.15336156e+00 8.26606333e-01 9.10569668e-01 -6.83504164e-01 3.93461525e-01 3.92063498e-01 -1.30207801e+00 4.37747121e-01 -1.48874059e-01 -2.15230301e-01 5.05056560e-01 7.09722459e-01 -5.27651370e-01 9.29240704e-01 8.54833663e-01 5.79130411e-01 -3.01258981e-01 1.05569232e+00 -9.87328365e-02 -1.71246737e-01 -5.82003057e-01 -1.19532831e-02 -3.56926292e-01 -2.62490988e-01 5.23816884e-01 1.14825153e+00 3.62621367e-01 4.43904996e-01 -1.69232905e-01 5.22486925e-01 7.66725004e-01 2.91626424e-01 -5.64211965e-01 5.45115352e-01 -1.10386364e-01 1.08761716e+00 -8.28771293e-01 -1.57828823e-01 -3.09488088e-01 1.20819223e+00 -3.31716150e-01 -3.66592743e-02 -8.63064528e-01 -1.98627919e-01 3.43577862e-01 7.95068145e-01 -2.22415954e-01 -7.14669645e-01 -4.99348432e-01 -1.08332789e+00 2.88230568e-01 -4.13079023e-01 3.17012817e-01 -8.71295094e-01 -8.14173698e-01 3.70972157e-01 2.37301752e-01 -1.69039118e+00 -1.17136851e-01 -8.11577260e-01 -1.03672564e-01 7.70220637e-01 -1.37846529e+00 -1.11657667e+00 -6.82123363e-01 1.07669473e+00 3.83982599e-01 1.91785842e-01 1.01968300e+00 5.18098116e-01 -4.40219492e-01 1.73717365e-01 4.18873243e-02 -3.82572919e-01 3.99597824e-01 -9.40169096e-01 1.17014483e-01 6.74233675e-01 -3.59864414e-01 3.86557668e-01 5.12824535e-01 -7.73057044e-01 -1.91956830e+00 -4.24381047e-01 5.15574694e-01 -6.43823326e-01 1.10748127e-01 -3.25673252e-01 -5.58318317e-01 2.92884141e-01 -5.24348259e-01 4.87033501e-02 6.32821023e-01 -4.64907616e-01 1.69774473e-01 -1.61234125e-01 -1.56481218e+00 2.22638756e-01 1.12487972e+00 -3.71497989e-01 -6.49547637e-01 1.29880935e-01 2.38223761e-01 -1.02521992e+00 -1.09820068e+00 2.39027470e-01 1.17049503e+00 -1.54082835e+00 1.20736885e+00 1.57383412e-01 -3.96622233e-02 -2.93691546e-01 -2.94770300e-01 -4.09293234e-01 2.07257673e-01 -5.58844745e-01 -3.65501016e-01 7.20326304e-01 -4.23243403e-01 -4.68028635e-01 9.77960885e-01 7.79868960e-01 -1.74148455e-01 -5.51600158e-01 -1.42014277e+00 -6.59615576e-01 -6.75514042e-01 -8.01615596e-01 2.13830560e-01 4.41699922e-01 5.57270795e-02 -2.02624157e-01 -7.04326034e-02 1.66858345e-01 1.06688726e+00 -8.36512223e-02 1.12974060e+00 -1.35203040e+00 -1.20076194e-01 -2.30459362e-01 -7.82668114e-01 -1.00011230e+00 -5.86291790e-01 -3.17992240e-01 -1.77281708e-01 -1.55582571e+00 -3.11566979e-01 -2.61371553e-01 1.77368805e-01 -8.43112916e-02 2.64632314e-01 4.30198580e-01 -3.63531485e-02 4.24118400e-01 -2.76798338e-01 5.29152095e-01 1.21527648e+00 4.56800818e-01 -2.20001474e-01 3.18617344e-01 2.02551320e-01 6.80873156e-01 2.39388362e-01 -3.81042808e-01 -2.33034909e-01 -3.31329465e-01 7.14371502e-02 2.41604671e-01 6.36613786e-01 -1.28562331e+00 1.73803359e-01 2.44874239e-01 4.44501579e-01 -8.79519820e-01 8.90774846e-01 -1.31881690e+00 4.81279582e-01 8.99499536e-01 3.65196228e-01 2.54530042e-01 1.02684885e-01 3.94203305e-01 8.85170251e-02 -3.95124443e-02 7.78690040e-01 -3.12900215e-01 -5.50573528e-01 1.93776339e-01 -2.08571211e-01 -3.61608207e-01 1.20726717e+00 -1.23950458e+00 5.31836808e-01 -2.82888394e-02 -1.03143895e+00 -3.87083948e-01 6.95199311e-01 -6.66032508e-02 1.11298895e+00 -1.41388178e+00 -4.53251392e-01 5.55025697e-01 2.32072435e-02 2.36080974e-01 3.38051736e-01 8.30324233e-01 -1.04491198e+00 1.85553446e-01 -5.69644272e-01 -9.39210474e-01 -1.44922435e+00 1.41279772e-01 4.83728886e-01 1.02500081e-01 -9.26556230e-01 4.11043912e-01 -4.39538211e-01 -3.11360985e-01 2.39680439e-01 -4.51938927e-01 -2.77379882e-02 -8.93224031e-02 3.83730322e-01 8.81127059e-01 4.14681226e-01 -8.20917785e-01 -5.00913858e-01 1.25045872e+00 8.89922261e-01 -6.59452617e-01 1.25640833e+00 -5.46790957e-01 -7.06491321e-02 7.86418736e-01 7.91510880e-01 -6.75923051e-03 -1.23418725e+00 1.16276428e-01 -1.88213795e-01 -7.46367514e-01 -2.23741278e-01 -4.07283664e-01 -8.50861251e-01 1.02985740e+00 1.02775168e+00 -4.93941046e-02 1.25672662e+00 -3.67613137e-01 7.40254819e-01 -3.69207412e-01 8.79972398e-01 -8.54323685e-01 -3.66345909e-03 2.70406064e-02 6.88404322e-01 -8.96298230e-01 3.73293161e-01 -6.17924631e-01 -8.59763399e-02 1.39758563e+00 3.16613227e-01 8.48837867e-02 5.51991105e-01 3.36448789e-01 8.53001997e-02 -4.72590655e-01 8.34835395e-02 -7.18458146e-02 8.68562087e-02 8.82420659e-01 3.59065592e-01 -9.02894437e-02 -4.10825819e-01 3.47020388e-01 7.46911243e-02 2.83859909e-01 2.51236409e-01 1.32651699e+00 -4.35907990e-01 -1.05772972e+00 -1.00819516e+00 -2.69794941e-01 -1.80171862e-01 5.53437948e-01 -1.71485931e-01 1.06634963e+00 1.79264203e-01 4.54784036e-01 -1.30237848e-01 -2.93921739e-01 1.07080305e+00 -5.46121178e-03 1.09226692e+00 -3.94511133e-01 -6.79859996e-01 2.96147436e-01 -2.62128383e-01 -8.77307713e-01 -8.14052284e-01 -8.52394938e-01 -1.19714177e+00 -2.33931229e-01 -8.43976587e-02 -2.05544233e-01 1.28395855e+00 6.50022209e-01 6.88342899e-02 1.07149512e-01 4.35352117e-01 -1.42607796e+00 -2.33710915e-01 -4.54048216e-01 -7.70081341e-01 4.01640415e-01 1.64145067e-01 -7.82417893e-01 -2.65541583e-01 1.60656661e-01]
[7.2633490562438965, -1.042111873626709]
b06c38bd-b4a0-49c9-b5b8-97a39e19b6db
dialoguernn-an-attentive-rnn-for-emotion
1811.00405
null
https://arxiv.org/abs/1811.00405v4
https://arxiv.org/pdf/1811.00405v4.pdf
DialogueRNN: An Attentive RNN for Emotion Detection in Conversations
Emotion detection in conversations is a necessary step for a number of applications, including opinion mining over chat history, social media threads, debates, argumentation mining, understanding consumer feedback in live conversations, etc. Currently, systems do not treat the parties in the conversation individually by adapting to the speaker of each utterance. In this paper, we describe a new method based on recurrent neural networks that keeps track of the individual party states throughout the conversation and uses this information for emotion classification. Our model outperforms the state of the art by a significant margin on two different datasets.
['Soujanya Poria', 'Navonil Majumder', 'Erik Cambria', 'Devamanyu Hazarika', 'Rada Mihalcea', 'Alexander Gelbukh']
2018-11-01
null
null
null
null
['multimodal-emotion-recognition', 'emotion-recognition-in-conversation', 'multimodal-emotion-recognition']
['computer-vision', 'natural-language-processing', 'speech']
[ 4.71084751e-02 1.48062631e-01 -3.00459713e-01 -6.49563670e-01 -4.53309745e-01 -5.51209092e-01 7.39044785e-01 4.45477426e-01 -2.06547156e-01 6.44340098e-01 6.44051611e-01 -3.14495414e-01 5.49897730e-01 -5.83882511e-01 -1.59573015e-02 -6.30403936e-01 2.83219386e-02 3.75080317e-01 8.47032145e-02 -7.34058499e-01 3.30425262e-01 1.64494753e-01 -1.60912192e+00 8.78148198e-01 4.56063807e-01 1.27824080e+00 -2.23574638e-01 8.95597994e-01 -6.93850815e-01 1.24968636e+00 -9.39252317e-01 -6.56058788e-01 -4.82888937e-01 -8.55892181e-01 -1.10173857e+00 2.73160845e-01 -5.18088460e-01 1.25216976e-01 2.16275215e-01 9.06630874e-01 3.48664820e-01 2.39075735e-01 3.80617559e-01 -1.12723756e+00 1.28922343e-01 1.09304893e+00 -3.67205292e-01 2.97793239e-01 6.25706017e-01 -6.75752938e-01 1.08531940e+00 -4.34389830e-01 6.71300769e-01 1.21552491e+00 4.65914249e-01 5.54050565e-01 -6.77796900e-01 -5.82382321e-01 5.58356643e-01 3.65588933e-01 -5.48147380e-01 -5.19076347e-01 1.07009268e+00 -1.96118146e-01 9.92442966e-01 4.54191178e-01 9.12895560e-01 1.19387984e+00 2.72966176e-01 1.11090028e+00 1.08683467e+00 -4.69091207e-01 3.86687070e-01 5.45437455e-01 6.34078681e-01 4.51476961e-01 -7.65925705e-01 -6.14864945e-01 -7.82766700e-01 -6.18425667e-01 -1.23948917e-01 -1.41344994e-01 5.21790981e-02 2.25737885e-01 -6.47558868e-01 1.25430024e+00 -1.24188893e-01 4.70998347e-01 -7.30506063e-01 -3.51781785e-01 9.33433890e-01 8.37385654e-01 1.14100552e+00 1.98243886e-01 -7.13879704e-01 -7.98611999e-01 -4.99038994e-01 8.92525390e-02 1.67666447e+00 2.33867154e-01 5.53108990e-01 -3.26894850e-01 6.50762464e-04 9.73012805e-01 1.44885764e-01 -1.38999596e-01 8.94285083e-01 -8.45271230e-01 1.06185958e-01 8.97828043e-01 1.09387703e-01 -9.04301643e-01 -5.70648253e-01 -8.23505744e-02 -7.91909277e-01 -2.31509045e-01 1.11637652e-01 -8.89543355e-01 -4.70250636e-01 1.47562623e+00 6.56401575e-01 -2.15073511e-01 1.60187855e-01 4.79378134e-01 9.03816223e-01 9.73916709e-01 -1.62652358e-01 -7.66992927e-01 1.43962646e+00 -1.07233155e+00 -1.18689573e+00 -2.20919639e-01 5.19197464e-01 -7.77716041e-01 3.58290017e-01 7.89295495e-01 -1.00211108e+00 -7.84170628e-02 -7.68833160e-01 2.69520044e-01 -4.17362183e-01 -1.27621323e-01 9.53561485e-01 6.41862869e-01 -7.39686847e-01 3.72216851e-01 -5.88721693e-01 -4.01592672e-01 -1.80910118e-02 3.69894654e-01 -4.35567684e-02 7.09027410e-01 -1.39021873e+00 8.83944213e-01 -8.40362757e-02 2.58285135e-01 -1.89765677e-01 2.49550685e-01 -7.89681435e-01 1.13188820e-02 2.51790226e-01 -2.87570301e-02 1.74393082e+00 -1.51909554e+00 -2.38470459e+00 7.34747350e-01 -7.12674975e-01 -4.96588171e-01 2.76859730e-01 -2.46894613e-01 -6.28873050e-01 -2.50084251e-01 -4.01016772e-01 1.18690655e-01 7.97445714e-01 -7.53460586e-01 -8.01227450e-01 -3.74116033e-01 2.10154846e-01 3.66983712e-01 -2.14174405e-01 5.04604399e-01 -3.23510379e-01 1.19530717e-02 -2.32492648e-02 -9.97933388e-01 -3.16648692e-01 -6.73247755e-01 -2.70597786e-01 -8.70866179e-01 1.02482820e+00 -4.01787192e-01 1.09626412e+00 -2.00360870e+00 2.11067691e-01 2.59506673e-01 2.72451602e-02 1.22504286e-01 2.03563318e-01 5.34994304e-01 2.43354272e-02 -3.95434089e-02 3.28638554e-01 -4.81243074e-01 -9.53881163e-03 1.59520075e-01 -3.56064320e-01 3.20493460e-01 -6.12004735e-02 6.54140472e-01 -7.28886068e-01 -3.31006855e-01 -5.96821532e-02 3.94468993e-01 -2.27392465e-01 4.15932029e-01 -3.16157669e-01 4.08865988e-01 -4.91264135e-01 1.03817426e-01 8.71788859e-02 -3.68242413e-01 6.55246735e-01 1.47375733e-01 -2.36344188e-01 7.70912707e-01 -9.54455256e-01 1.37230897e+00 -6.73525870e-01 8.98756027e-01 3.69701385e-01 -1.07641113e+00 1.02318323e+00 8.11192632e-01 4.82146680e-01 -3.20821434e-01 6.53332710e-01 -2.67851762e-02 1.78363115e-01 -5.23093581e-01 7.27110684e-01 -1.62155598e-01 -3.77167910e-01 1.00719321e+00 -1.53109565e-01 2.54370719e-01 2.14830264e-01 5.32316975e-02 8.47117245e-01 -5.97975612e-01 5.13913274e-01 2.33286723e-01 7.33357012e-01 -3.01908076e-01 5.09750247e-01 4.19496298e-01 -4.04620916e-01 1.82799965e-01 9.96316791e-01 -6.44211471e-01 -4.44451481e-01 -2.50779569e-01 2.59177297e-01 1.53830504e+00 4.36562225e-02 -4.37495917e-01 -5.79545557e-01 -7.64782310e-01 -4.67917204e-01 4.65148300e-01 -9.14077699e-01 7.30218962e-02 -3.76760483e-01 -7.27508664e-01 1.56077251e-01 2.86144197e-01 4.15714651e-01 -1.54652238e+00 -5.65473258e-01 4.73432809e-01 -5.86868167e-01 -9.23307538e-01 -3.28236789e-01 5.31219184e-01 -5.86014867e-01 -7.28289247e-01 -2.65900403e-01 -7.33423114e-01 8.76462981e-02 -7.28488192e-02 1.13109159e+00 5.42259030e-02 2.39600942e-01 3.40582803e-02 -6.42879605e-01 -7.91719496e-01 -8.15205574e-01 5.99802315e-01 -1.71696499e-01 4.22935158e-01 4.57384586e-01 -4.36078787e-01 -2.93870658e-01 3.20586473e-01 -5.62071741e-01 -1.48775801e-01 1.64070398e-01 7.66857445e-01 -5.48406653e-02 -1.17262729e-01 8.58129203e-01 -1.34678781e+00 1.30182755e+00 -7.39110112e-01 -9.21814814e-02 2.55098879e-01 -2.07351848e-01 -4.40964438e-02 4.04378951e-01 -6.55901432e-01 -1.40031922e+00 -2.88745183e-02 -4.63500679e-01 3.12865347e-01 -2.81509966e-01 7.09280610e-01 7.43141696e-02 4.68498021e-01 3.85267258e-01 -1.60319015e-01 7.59770796e-02 -3.65628034e-01 1.78573400e-01 1.18701708e+00 4.93056839e-03 -1.52043715e-01 -2.97141552e-01 4.13674980e-01 -7.20945776e-01 -8.93497825e-01 -1.03427780e+00 -8.44873011e-01 -2.80278295e-01 -4.69374120e-01 7.81776428e-01 -5.00332713e-01 -1.20899415e+00 5.97362399e-01 -1.39644706e+00 -9.14657339e-02 -4.80940975e-02 3.50846142e-01 -2.80638844e-01 1.51862875e-01 -1.03826833e+00 -1.33844185e+00 -6.58694863e-01 -9.55947876e-01 6.53357208e-01 5.49687326e-01 -8.79624486e-01 -1.05195177e+00 4.02814627e-01 3.34175646e-01 4.47594017e-01 5.89718148e-02 4.01624054e-01 -1.12293470e+00 3.90256256e-01 -5.14777839e-01 3.69323432e-01 3.09425622e-01 3.26994568e-01 1.38771027e-01 -1.10266531e+00 3.10438663e-01 2.48148307e-01 -6.52278244e-01 7.65512168e-01 2.83666551e-01 8.13903511e-01 -3.41224939e-01 -1.41249403e-01 -1.49103984e-01 4.76932228e-01 4.50677812e-01 5.34839809e-01 9.83570740e-02 8.29196125e-02 1.03587854e+00 2.96343595e-01 6.69365704e-01 4.03743684e-01 3.43426436e-01 3.61285716e-01 -6.42255996e-04 7.50281036e-01 3.57074231e-01 6.81813776e-01 1.13274407e+00 -7.47290477e-02 -6.02201402e-01 -4.56990808e-01 5.90007722e-01 -2.23066449e+00 -1.15881431e+00 -1.28028721e-01 1.48399675e+00 8.49353254e-01 2.77361810e-01 3.03081989e-01 1.73569307e-01 8.38392317e-01 5.10992587e-01 -5.79009056e-01 -1.44645798e+00 5.75338230e-02 2.09239274e-01 -1.05978355e-01 5.05509913e-01 -1.08825719e+00 6.57589078e-01 6.48295593e+00 2.63474792e-01 -1.33088672e+00 1.72979131e-01 9.34401631e-01 4.71325591e-02 1.67726781e-02 -1.54993221e-01 -5.34898818e-01 1.24300621e-01 1.34055626e+00 -1.91803128e-01 3.12439442e-01 7.92677522e-01 1.94383249e-01 -3.37797612e-01 -8.52207780e-01 7.40204215e-01 3.65572929e-01 -1.31245148e+00 -5.48890412e-01 -4.68020625e-02 7.93436527e-01 2.14746937e-01 -2.24944800e-01 3.23341101e-01 4.71814007e-01 -6.95388675e-01 3.91691417e-01 1.98224649e-01 -1.48969322e-01 -1.03460419e+00 1.15044427e+00 5.20114720e-01 -8.94877553e-01 9.49675068e-02 1.42477602e-01 -5.30838966e-01 6.05948150e-01 6.30329669e-01 -6.42092168e-01 3.15343440e-01 7.20367730e-01 7.06152499e-01 9.83383507e-02 3.17971975e-01 -1.75416455e-01 9.25165474e-01 -3.35886925e-01 -6.01262212e-01 2.76907831e-01 -1.70778275e-01 3.64108980e-01 1.17040265e+00 -7.14331493e-02 2.19987661e-01 1.71946555e-01 1.34330496e-01 -3.70315552e-01 4.41944659e-01 -3.03230017e-01 -1.00784063e-01 1.17734987e-02 1.44245303e+00 -8.18620026e-01 -5.61797082e-01 -3.49649012e-01 1.08871484e+00 2.70952135e-01 6.06750622e-02 -5.24134338e-01 -3.00279468e-01 7.79759049e-01 -5.00869811e-01 3.94999653e-01 1.86439469e-01 9.86727625e-02 -1.17374694e+00 -6.37922212e-02 -1.01853538e+00 4.39076602e-01 -3.71041059e-01 -1.30884826e+00 9.23631608e-01 -5.02092004e-01 -8.36199462e-01 -8.66243005e-01 -3.58923227e-01 -1.23257470e+00 6.53250694e-01 -1.33134460e+00 -5.00754476e-01 3.86889279e-03 4.35618192e-01 7.43532300e-01 4.31574658e-02 1.15156579e+00 -4.12335657e-02 -6.78724408e-01 1.71597496e-01 -6.05005361e-02 4.14285392e-01 6.74988806e-01 -1.12481296e+00 3.32685947e-01 1.37392536e-01 2.02717438e-01 4.01247233e-01 9.57813859e-01 -2.45197847e-01 -1.03623354e+00 -3.28349084e-01 1.30178654e+00 -1.06657363e-01 9.16017175e-01 -3.77569735e-01 -8.60033631e-01 5.48641443e-01 9.21695650e-01 -4.13500875e-01 1.14368165e+00 7.78159261e-01 3.44004110e-02 -2.78034620e-02 -9.06231761e-01 4.22724038e-01 2.55826682e-01 -5.94266772e-01 -5.17217755e-01 2.92913616e-01 4.64014620e-01 -5.78641534e-01 -7.67111838e-01 -1.18467160e-01 9.74326134e-01 -1.05507076e+00 2.12670118e-01 -7.50134468e-01 4.33997929e-01 2.85196543e-01 2.14501828e-01 -1.63269389e+00 3.48209202e-01 -9.05169129e-01 -3.28563839e-01 1.21519315e+00 7.63469517e-01 -6.50412977e-01 9.50547993e-01 7.15774834e-01 1.15413293e-01 -6.50635839e-01 -8.43317568e-01 1.69264421e-01 -2.54533976e-01 -4.98135746e-01 4.88875240e-01 9.73046422e-01 8.90278816e-01 9.46105838e-01 -6.31805599e-01 -3.05119604e-01 -1.17160305e-01 4.08395290e-01 6.39901578e-01 -1.42149293e+00 -2.50449628e-01 -5.17865896e-01 -1.50257140e-01 -1.03433526e+00 3.84695053e-01 -2.44396955e-01 2.96428233e-01 -1.38152623e+00 -2.44799946e-02 6.92792386e-02 -2.14816019e-01 1.29574463e-01 -4.08560038e-02 3.03520299e-02 -8.47390071e-02 -5.35420962e-02 -8.91656995e-01 5.10315001e-01 6.59628928e-01 -2.30684653e-01 -5.56623280e-01 4.88876343e-01 -7.80593097e-01 1.09920084e+00 1.24390960e+00 -3.40162277e-01 -1.67011768e-01 1.25482529e-01 6.72594190e-01 2.84783393e-01 -4.76324856e-01 -3.16603184e-01 2.91634709e-01 -1.35715142e-01 -5.52294366e-02 -6.57459915e-01 4.67628330e-01 -6.16737783e-01 -1.36637628e-01 1.96571320e-01 -8.19278300e-01 2.84661025e-01 -1.21629285e-02 4.88465697e-01 -5.37450194e-01 -2.12917730e-01 4.22843277e-01 -1.33071542e-01 -4.09298688e-01 -2.29957715e-01 -1.09445286e+00 -1.20610833e-01 8.22949529e-01 2.65847445e-01 -1.65905818e-01 -1.23020089e+00 -8.65212560e-01 3.55550230e-01 -5.57888560e-02 6.04884207e-01 2.52805889e-01 -8.28164518e-01 -6.31263554e-01 -9.62824300e-02 -9.10792202e-02 -2.39636853e-01 1.44600287e-01 8.25181425e-01 1.16725452e-01 1.07806074e-02 1.04831390e-01 -4.48607028e-01 -1.86005604e+00 -1.99188292e-02 3.79635751e-01 -8.38945210e-01 -1.59249574e-01 7.51913369e-01 -1.65614203e-01 -4.21284884e-01 3.82060677e-01 -2.70264089e-01 -8.69502604e-01 6.72047079e-01 7.79640734e-01 1.03781343e-01 2.85495192e-01 -6.87785327e-01 -1.48390964e-01 -2.84759086e-02 -4.48061317e-01 -4.04212981e-01 1.40402389e+00 -3.04982930e-01 -3.23268801e-01 1.25686300e+00 1.18464732e+00 -7.75071746e-03 -7.78374791e-01 -2.71663398e-01 1.13861568e-01 2.27456301e-01 -4.81035113e-02 -7.33293414e-01 -1.02341759e+00 6.38989866e-01 1.44646853e-01 1.00828969e+00 8.73804212e-01 3.29936564e-01 9.31337059e-01 7.16015160e-01 1.24149667e-02 -1.51169479e+00 -2.91339424e-03 8.57663274e-01 6.50178730e-01 -1.37886536e+00 -1.71301112e-01 -1.04398862e-01 -1.13914764e+00 1.10706663e+00 1.47008732e-01 9.76674408e-02 1.01920092e+00 2.40252122e-01 6.17587984e-01 -3.40382904e-01 -1.48384011e+00 -1.18563175e-01 5.16875200e-02 6.73754290e-02 9.10543263e-01 4.99793375e-03 -4.91173416e-01 4.78193223e-01 -2.39882082e-01 -1.41701356e-01 5.88295817e-01 1.11096060e+00 -5.22835791e-01 -1.37835801e+00 -1.85738117e-01 6.53339028e-01 -7.99949706e-01 2.13382229e-01 -1.05800796e+00 2.34822199e-01 -1.48640290e-01 1.54738200e+00 2.46172085e-01 -4.53714103e-01 2.31860682e-01 6.07375324e-01 -1.36144549e-01 -4.58733529e-01 -1.23324263e+00 1.13909617e-01 7.37900734e-01 -3.88820708e-01 -1.22179329e+00 -9.18397546e-01 -1.07595468e+00 -3.80744129e-01 -6.53873563e-01 7.94991195e-01 9.40100670e-01 1.27856529e+00 2.02722281e-01 4.29251641e-01 1.12941933e+00 -7.73539960e-01 -1.68610618e-01 -1.34690642e+00 -4.45614338e-01 5.25066197e-01 4.03593093e-01 -3.09831560e-01 -4.95708138e-01 1.05858594e-02]
[12.982868194580078, 6.226597309112549]
ddf3e7c2-e020-4dcb-8223-94c1247dac13
fast-vid2vid-spatial-temporal-compression-for
2207.05049
null
https://arxiv.org/abs/2207.05049v1
https://arxiv.org/pdf/2207.05049v1.pdf
Fast-Vid2Vid: Spatial-Temporal Compression for Video-to-Video Synthesis
Video-to-Video synthesis (Vid2Vid) has achieved remarkable results in generating a photo-realistic video from a sequence of semantic maps. However, this pipeline suffers from high computational cost and long inference latency, which largely depends on two essential factors: 1) network architecture parameters, 2) sequential data stream. Recently, the parameters of image-based generative models have been significantly compressed via more efficient network architectures. Nevertheless, existing methods mainly focus on slimming network architectures and ignore the size of the sequential data stream. Moreover, due to the lack of temporal coherence, image-based compression is not sufficient for the compression of the video task. In this paper, we present a spatial-temporal compression framework, \textbf{Fast-Vid2Vid}, which focuses on data aspects of generative models. It makes the first attempt at time dimension to reduce computational resources and accelerate inference. Specifically, we compress the input data stream spatially and reduce the temporal redundancy. After the proposed spatial-temporal knowledge distillation, our model can synthesize key-frames using the low-resolution data stream. Finally, Fast-Vid2Vid interpolates intermediate frames by motion compensation with slight latency. On standard benchmarks, Fast-Vid2Vid achieves around real-time performance as 20 FPS and saves around 8x computational cost on a single V100 GPU.
['Ziwei Liu', 'Wayne Wu', 'Shikai Li', 'Guangcong Wang', 'Long Zhuo']
2022-07-11
null
null
null
null
['video-to-video-synthesis', 'motion-compensation']
['computer-vision', 'computer-vision']
[ 2.39041865e-01 -1.02955863e-01 -9.10629928e-02 -2.08447918e-01 -5.37001371e-01 -1.44202322e-01 6.97253704e-01 -4.03315604e-01 -3.78200799e-01 7.27961838e-01 1.76381052e-01 -3.19961727e-01 7.34462216e-02 -1.04490995e+00 -9.07239199e-01 -5.76206863e-01 1.98978364e-01 2.95964450e-01 4.84852105e-01 1.52623415e-01 6.16545044e-02 2.71709234e-01 -1.88763273e+00 3.94335747e-01 5.28328300e-01 1.20377409e+00 6.37264609e-01 9.65258598e-01 -2.53370970e-01 1.09922409e+00 -5.40353656e-01 -3.82683396e-01 2.84445852e-01 -6.49682462e-01 -6.10917449e-01 -7.95978904e-02 4.62073833e-01 -9.39308941e-01 -9.14711416e-01 9.81953740e-01 5.56571186e-01 7.27574378e-02 1.98648289e-01 -1.41575933e+00 -3.05544913e-01 5.64573407e-01 -3.29912484e-01 1.13348596e-01 8.12121928e-02 4.01521623e-01 5.41879952e-01 -8.43085110e-01 8.94955635e-01 1.24013066e+00 3.48101974e-01 5.24881601e-01 -1.01288819e+00 -6.50779009e-01 -2.07643863e-02 5.95522225e-01 -1.59403205e+00 -6.41040385e-01 4.38756734e-01 -1.60035715e-01 1.04301012e+00 2.65569687e-01 9.23540890e-01 1.07647800e+00 -2.15116981e-02 7.07737446e-01 7.54332662e-01 6.10832274e-02 4.30674583e-01 -4.01937425e-01 -5.01090586e-01 5.77362180e-01 -8.11259001e-02 1.88393027e-01 -9.19683814e-01 1.66968137e-01 1.16278720e+00 -7.04020038e-02 -2.48166487e-01 2.51720399e-01 -1.18883741e+00 4.85951304e-01 3.64002436e-01 -8.45356565e-03 -5.68999767e-01 7.05406070e-01 4.79186237e-01 1.20343693e-01 3.00891340e-01 -2.09205598e-01 2.12821644e-02 -4.80958372e-01 -1.44898570e+00 4.51742411e-01 5.62644482e-01 1.28651917e+00 7.10536957e-01 3.54089648e-01 -2.64563620e-01 4.23041850e-01 1.43195629e-01 6.98044181e-01 3.16164345e-01 -1.45020497e+00 5.84593594e-01 5.16469292e-02 -8.65258798e-02 -1.18531132e+00 -5.48234358e-02 -1.09365709e-01 -1.17568266e+00 9.53563228e-02 1.53908297e-01 -1.40022859e-01 -8.48446250e-01 1.49970698e+00 2.52258450e-01 5.96195400e-01 5.90831228e-02 1.11935961e+00 9.23213601e-01 1.02247810e+00 -8.02154616e-02 -3.45128566e-01 1.14134109e+00 -1.19989681e+00 -7.46159375e-01 -1.41463533e-01 2.80951828e-01 -7.53975511e-01 8.12899172e-01 2.28985131e-01 -1.62887251e+00 -8.39616776e-01 -1.06762981e+00 -3.76409948e-01 9.15858597e-02 -1.87442731e-02 5.31435907e-01 6.88477978e-02 -1.31728685e+00 5.72861493e-01 -9.94839549e-01 1.74417009e-03 3.42490643e-01 1.36747047e-01 -7.77269453e-02 -3.05531204e-01 -1.01252103e+00 2.60732830e-01 5.96816480e-01 1.53567657e-01 -1.00951517e+00 -8.00307810e-01 -7.46604860e-01 2.19385624e-01 4.51726168e-01 -1.03003430e+00 1.11733627e+00 -7.77759612e-01 -1.63847232e+00 2.02223152e-01 -4.73688155e-01 -7.72479594e-01 8.48563254e-01 -1.37076005e-01 -2.39279270e-01 4.74482536e-01 -1.64072528e-01 1.03739870e+00 9.48728919e-01 -8.60505044e-01 -6.94077313e-01 7.88974576e-04 -1.23443328e-01 2.30767533e-01 -1.95148483e-01 -1.94377482e-01 -1.14313293e+00 -6.48867905e-01 -5.19383177e-02 -9.12623048e-01 -1.48346260e-01 1.30611122e-01 -2.49273852e-01 2.47715749e-02 9.66579080e-01 -6.25515342e-01 1.28728151e+00 -2.27524877e+00 8.47817957e-02 -1.05223604e-01 2.73584515e-01 5.79980195e-01 -8.38882774e-02 2.50214875e-01 3.14743429e-01 -7.00404048e-02 -2.11475752e-02 -5.93935788e-01 -1.36172608e-01 3.56110781e-01 -5.45373678e-01 1.33534009e-02 6.01647906e-02 1.10125816e+00 -8.00701380e-01 -7.77492464e-01 3.25942636e-01 8.09869766e-01 -8.27329040e-01 3.01916003e-01 -4.51176941e-01 2.22758338e-01 -2.33542517e-01 3.79042745e-01 7.75573969e-01 -3.80744934e-01 2.24762633e-01 -5.89965463e-01 -2.54248679e-01 2.77037591e-01 -9.79181945e-01 1.99226844e+00 -3.95499736e-01 8.37730169e-01 -1.10752322e-01 -6.05628014e-01 7.36492872e-01 2.97165751e-01 4.39157516e-01 -8.92032266e-01 1.14674181e-01 1.59093276e-01 -3.74312073e-01 -4.40917879e-01 8.68436038e-01 4.17679399e-01 2.91082799e-01 3.15567613e-01 -5.21981828e-02 -1.45932540e-01 4.63720113e-01 2.54045248e-01 1.09058332e+00 6.07852638e-01 -1.69911861e-01 2.42139727e-01 2.26954505e-01 4.88396436e-02 5.43012977e-01 6.01955771e-01 5.96190728e-02 7.41163373e-01 4.69170719e-01 -4.90285724e-01 -1.41323483e+00 -1.03454018e+00 2.58259416e-01 6.73918903e-01 2.38195136e-01 -7.90109396e-01 -8.96709085e-01 -7.51620159e-02 -2.83601820e-01 6.40722215e-01 -1.61654443e-01 -4.64741290e-02 -8.76559734e-01 -6.37266159e-01 6.69345617e-01 5.70142865e-01 9.01532233e-01 -9.36726689e-01 -8.97819757e-01 3.72798920e-01 -4.25314814e-01 -1.54156733e+00 -3.57224464e-01 -3.65927100e-01 -9.26034927e-01 -7.76746094e-01 -5.86731553e-01 -5.87962925e-01 4.47919488e-01 5.30931234e-01 1.13021803e+00 5.09286523e-02 -1.09815694e-01 -2.41694361e-01 -1.16333216e-01 1.10562388e-02 -3.76519322e-01 -7.13667125e-02 -2.67949998e-01 -1.72807679e-01 1.30949035e-01 -8.46078932e-01 -8.79846275e-01 2.21817598e-01 -1.04315317e+00 9.62382436e-01 5.14042735e-01 5.90117157e-01 1.01807153e+00 8.16603005e-02 3.23356688e-01 -4.54485297e-01 2.21634045e-01 -3.86585951e-01 -7.47092903e-01 6.19401671e-02 -4.40918237e-01 -6.12092344e-03 7.82821000e-01 -2.60238439e-01 -1.16562796e+00 1.21878851e-02 -2.91407794e-01 -9.24389005e-01 1.07070729e-01 3.48721445e-01 2.45699659e-02 2.52164871e-01 3.45104188e-01 5.96195519e-01 5.44777773e-02 -2.01275766e-01 3.72655392e-01 4.91790265e-01 9.66608584e-01 -3.66539687e-01 4.95260924e-01 6.28148615e-01 1.72375306e-01 -8.24835181e-01 -4.49159324e-01 1.23946428e-01 -1.65290341e-01 -3.41701239e-01 9.26076055e-01 -1.29501498e+00 -9.16742563e-01 5.75989962e-01 -1.29917276e+00 -6.41829550e-01 -1.69455200e-01 5.72831511e-01 -7.64046133e-01 2.87377954e-01 -8.77550662e-01 -4.62234557e-01 -5.63035429e-01 -1.23657477e+00 1.06581557e+00 1.48410261e-01 1.38687804e-01 -5.38500428e-01 -3.38100702e-01 2.66002268e-01 6.18714690e-01 1.44330546e-01 6.33366764e-01 2.29768097e-01 -1.26401627e+00 1.90191075e-01 -6.24592841e-01 2.25927830e-01 -2.91837275e-01 1.24200657e-01 -7.95858741e-01 -7.96855316e-02 -1.43019050e-01 -1.80634513e-01 8.05941045e-01 4.16354299e-01 1.55620599e+00 -4.07822251e-01 -2.24940367e-02 1.21512663e+00 1.54344463e+00 2.36106455e-01 9.40692186e-01 4.69901115e-02 8.88079762e-01 1.13734111e-01 5.19696116e-01 6.15748286e-01 6.12938404e-01 6.78195417e-01 6.35720372e-01 1.00400865e-01 -5.82220376e-01 -5.54778695e-01 3.62581283e-01 1.17840326e+00 -4.17358875e-01 -5.18728435e-01 -5.37128747e-01 4.53959942e-01 -2.01969481e+00 -1.05345380e+00 -1.43199116e-01 2.06663322e+00 7.15901494e-01 1.78694233e-01 -3.49337794e-02 -1.76474284e-02 5.88252306e-01 3.67160112e-01 -6.21470273e-01 -1.63252503e-01 -2.52980620e-01 1.49633080e-01 5.99571705e-01 4.33118194e-01 -7.02232897e-01 1.12644649e+00 5.77132702e+00 1.04654038e+00 -1.24378610e+00 9.54241231e-02 5.77798009e-01 -5.97755194e-01 -2.27220446e-01 -9.58463326e-02 -8.99610221e-01 7.72132218e-01 1.22517622e+00 -2.15512708e-01 6.44594610e-01 8.27337861e-01 4.11081165e-01 -1.75610468e-01 -9.66121316e-01 1.33771002e+00 2.02440079e-02 -1.89077055e+00 2.79485822e-01 6.20176606e-02 7.58152366e-01 1.79008827e-01 -1.13155946e-01 5.86697683e-02 8.79243761e-02 -8.83697629e-01 9.04174268e-01 5.90632081e-01 1.15110648e+00 -8.53494525e-01 5.43451071e-01 2.98550248e-01 -1.30536306e+00 2.85528749e-01 -6.09900475e-01 -7.72738010e-02 7.03786850e-01 6.77429736e-01 -6.71773970e-01 4.14824337e-01 7.61339068e-01 7.03216910e-01 -2.20739052e-01 7.18470395e-01 -1.81116655e-01 5.54542482e-01 -3.91033500e-01 2.07412213e-01 3.55350435e-01 -9.68712196e-02 2.42279083e-01 1.13777733e+00 7.43135631e-01 2.02586770e-01 -3.72201651e-02 8.38829279e-01 -6.53507710e-02 -3.63405108e-01 -3.87965053e-01 -3.61464685e-03 6.34070277e-01 9.83949661e-01 -5.66324532e-01 -7.07528472e-01 -3.88994396e-01 1.15863979e+00 6.45103976e-02 3.42371017e-01 -1.17702830e+00 -1.73612595e-01 7.83384800e-01 1.17680229e-01 4.27029043e-01 -4.91880894e-01 -1.50937110e-01 -1.10137784e+00 7.97838792e-02 -6.84308350e-01 -1.17793813e-01 -1.03491497e+00 -5.02805829e-01 7.50720918e-01 -3.42754573e-02 -1.03404784e+00 -5.98039031e-01 -9.13429186e-02 -1.43418744e-01 7.06196129e-01 -1.56227291e+00 -1.01059222e+00 -8.71986747e-01 8.31597388e-01 7.76637554e-01 -2.99911220e-02 5.80736160e-01 6.36235416e-01 -4.20829117e-01 4.41160440e-01 -3.33860405e-02 -7.80633315e-02 5.22625268e-01 -6.81635320e-01 9.68043029e-01 1.00939894e+00 -1.20550640e-01 2.39456311e-01 5.21396577e-01 -6.74867630e-01 -1.64876533e+00 -1.32772434e+00 8.68990779e-01 2.27656037e-01 3.50271434e-01 -2.07154483e-01 -8.05671692e-01 4.94392276e-01 2.82987475e-01 2.39687100e-01 1.88628942e-01 -8.65261614e-01 -1.64372727e-01 -1.86191276e-01 -8.12699854e-01 7.90481448e-01 1.41842651e+00 -5.43902934e-01 9.48929340e-02 2.71421105e-01 1.01173055e+00 -6.60891771e-01 -8.06462348e-01 1.47944376e-01 4.81926411e-01 -1.26187468e+00 1.05605245e+00 -1.46079734e-01 9.37825620e-01 -5.19718230e-01 -1.94666550e-01 -8.77524972e-01 -3.01114470e-01 -7.43938804e-01 -5.21371841e-01 9.82250035e-01 -1.68101177e-01 -1.57117501e-01 8.64122570e-01 3.73270482e-01 -1.83519006e-01 -7.29094684e-01 -6.77250683e-01 -5.96994817e-01 -6.35900617e-01 -7.40473986e-01 7.65656769e-01 4.20838624e-01 -5.57634056e-01 8.53389278e-02 -7.39667654e-01 -3.16533819e-02 6.57471478e-01 2.38246307e-01 1.00650573e+00 -5.84222078e-01 -4.32213098e-01 -3.01010311e-01 -4.64096963e-01 -1.53058243e+00 -1.48982018e-01 -6.16092205e-01 4.91945520e-02 -1.44510221e+00 -2.36925092e-02 -3.83679599e-01 1.90298244e-01 2.83075958e-01 -3.52804847e-02 4.85696167e-01 5.22583902e-01 3.44277710e-01 -5.07233441e-01 5.74361622e-01 1.37554753e+00 1.16637245e-01 1.05898855e-02 -4.60794419e-01 -1.10366546e-01 6.09614253e-01 6.13237023e-01 -1.97874486e-01 -8.23343575e-01 -9.37419713e-01 3.37883085e-01 5.51527977e-01 6.46050811e-01 -1.19538128e+00 4.58486468e-01 -3.04975808e-01 2.75804937e-01 -8.80052984e-01 6.85190916e-01 -5.27166128e-01 7.55350947e-01 4.45515454e-01 -1.10884637e-01 2.19169021e-01 -2.91576423e-02 4.38500226e-01 -4.24192995e-01 8.51466432e-02 5.74680030e-01 -1.47396222e-01 -9.80885684e-01 5.19686162e-01 -2.23799750e-01 -4.41340171e-03 8.32789242e-01 -1.43178910e-01 -5.02980828e-01 -3.96309018e-01 -4.96738940e-01 -7.10646138e-02 5.31593621e-01 4.18709248e-01 8.25784326e-01 -1.47524107e+00 -6.64942205e-01 2.71521181e-01 -3.59762818e-01 4.58078951e-01 6.77275836e-01 7.54137456e-01 -1.08685637e+00 4.02358234e-01 -2.76171297e-01 -7.56673038e-01 -1.09673309e+00 5.71008623e-01 -6.96454644e-02 -2.62767542e-02 -9.16212976e-01 7.60598242e-01 2.91268349e-01 4.86361295e-01 1.34768009e-01 -2.44603887e-01 3.33718389e-01 -1.03104413e-01 8.24927866e-01 5.95247805e-01 -4.76487875e-02 -5.08074403e-01 -6.15588464e-02 3.20672423e-01 1.87041223e-01 -1.59279555e-01 1.26109183e+00 -2.12114468e-01 1.95383299e-02 2.89471820e-02 1.25021911e+00 -4.57280099e-01 -1.74274075e+00 -2.57113129e-01 -5.28813004e-01 -6.24890447e-01 2.41487920e-01 -2.27513731e-01 -1.49429286e+00 8.17559421e-01 2.82289594e-01 -2.12642357e-01 1.26505578e+00 -3.72070462e-01 1.39559853e+00 1.69939429e-01 5.81890404e-01 -1.16036940e+00 -8.63498915e-03 3.98843348e-01 6.65604830e-01 -7.46420622e-01 1.53461676e-02 -5.10372758e-01 -4.36098278e-01 1.05631447e+00 5.31948388e-01 -7.76516274e-02 4.11845773e-01 5.47405839e-01 -2.58952707e-01 1.87003151e-01 -1.02294433e+00 1.47482799e-03 -2.16735322e-02 4.26468730e-01 2.05696635e-02 -2.30401903e-02 -2.47327387e-01 1.53082535e-01 -3.87523144e-01 5.62947631e-01 4.15113986e-01 6.86077535e-01 -2.12329388e-01 -7.43069768e-01 -1.14373043e-01 1.62019506e-01 -2.48499557e-01 -2.06748977e-01 2.83827752e-01 5.33518374e-01 1.81323647e-01 7.71961570e-01 4.39296216e-01 -4.67412025e-01 2.54681651e-02 -2.72941917e-01 3.89796048e-01 4.54057269e-02 -2.22477630e-01 2.63527036e-01 -1.19828373e-01 -1.02465379e+00 -4.42644268e-01 -3.62941384e-01 -1.30530536e+00 -8.66347909e-01 2.89233834e-01 -1.37711450e-01 9.13900137e-01 7.41180599e-01 8.18464577e-01 7.22780108e-01 2.85390437e-01 -1.06813729e+00 -7.59350434e-02 -6.39225602e-01 -8.48016292e-02 1.49071097e-01 6.61589131e-02 -2.19048887e-01 -1.32250460e-02 4.05055344e-01]
[10.768903732299805, -0.9170828461647034]
772f851a-9ef5-4931-84e2-0e073b465f07
190600050
1906.00050
null
https://arxiv.org/abs/1906.00050v1
https://arxiv.org/pdf/1906.00050v1.pdf
DISCO: Depth Inference from Stereo using Context
Recent deep learning based approaches have outperformed classical stereo matching methods. However, current deep learning based end-to-end stereo matching methods adopt a generic encoder-decoder style network with skip connections. To limit computational requirement, many networks perform excessive down sampling, which results in significant loss of useful low-level information. Additionally, many network designs do not exploit the rich multi-scale contextual information. In this work, we address these aforementioned problems by carefully designing the network architecture to preserve required spatial information throughout the network, while at the same time achieve large effective receptive field to extract multiscale contextual information. For the first time, we create a synthetic disparity dataset reflecting real life images captured using a smartphone; this enables us to obtain state-of-the-art results on common real life images. The proposed model DISCO is pre-trained on the synthetic Scene Flow dataset and evaluated on popular benchmarks and our in-house dataset of challenging real life images. The proposed model outperforms existing state-of-the-art methods in terms of quality as well as quantitative metrics.
['Kaushik Raghavan', 'Kunal Swami', 'Rituparna Sarkar', 'Pankaj Bajpai', 'Nikhilanj Pelluri']
2019-05-31
null
null
null
null
['stereo-matching']
['computer-vision']
[ 3.33727211e-01 -3.28330547e-01 -8.60619992e-02 -4.40505624e-01 -4.89675820e-01 -8.13881606e-02 5.38904250e-01 -1.67732254e-01 -5.69646001e-01 6.91767633e-01 4.67372209e-01 -4.88079600e-02 1.77718937e-01 -9.49555457e-01 -6.71947658e-01 -3.73869866e-01 1.80956602e-01 -6.52593225e-02 4.98819381e-01 -3.46810132e-01 4.72821057e-01 3.48927081e-01 -1.74757254e+00 3.56675982e-01 8.85793567e-01 1.09162068e+00 3.59067380e-01 2.75099427e-01 7.41035715e-02 1.09084332e+00 -1.73666805e-01 -4.19054538e-01 6.06478930e-01 -2.72080570e-01 -5.70348442e-01 -2.32873216e-01 1.14907587e+00 -7.55456686e-01 -9.44584191e-01 1.14455044e+00 8.02083194e-01 1.96679756e-01 2.46793211e-01 -8.51974249e-01 -4.25798178e-01 9.96515676e-02 -6.54295862e-01 3.48209828e-01 2.62032986e-01 4.07419324e-01 9.67258036e-01 -9.33808088e-01 7.10942388e-01 1.22541726e+00 7.08535552e-01 4.70737845e-01 -1.14954317e+00 -9.16290641e-01 -8.57817009e-02 3.80251437e-01 -1.26781952e+00 -7.82823563e-01 1.17688882e+00 -4.06622380e-01 9.35967684e-01 -2.22093835e-01 7.22036242e-01 1.05235207e+00 3.58552009e-01 6.92211092e-01 1.05205333e+00 -8.91205817e-02 6.98340535e-02 -4.72477555e-01 -2.40548074e-01 8.01857054e-01 8.70176256e-02 5.28252721e-01 -8.39847803e-01 2.84572363e-01 1.00486422e+00 2.49290094e-01 -4.40471202e-01 -5.77761173e-01 -1.25972497e+00 5.95388710e-01 7.43401527e-01 7.84997195e-02 -2.80229151e-01 2.93128073e-01 6.03832424e-01 2.17284903e-01 2.73649007e-01 -1.12159383e-02 -1.03343002e-01 -1.72766685e-01 -1.08492029e+00 2.48558775e-01 3.36871475e-01 8.37087631e-01 1.03411913e+00 3.27802867e-01 -8.36239234e-02 9.94584262e-01 1.85454011e-01 2.01343253e-01 5.05795419e-01 -1.15776944e+00 8.70527685e-01 4.10509497e-01 -2.42335852e-02 -1.23892128e+00 -2.46604294e-01 -6.46345139e-01 -1.25541341e+00 4.73498493e-01 4.11819816e-01 7.71893337e-02 -8.17461014e-01 1.80269265e+00 -6.62502795e-02 4.51554984e-01 3.48849371e-02 1.22008991e+00 1.00643480e+00 5.76225817e-01 -1.85710922e-01 2.15100273e-01 8.95322800e-01 -1.28594148e+00 -5.60634792e-01 -5.48745215e-01 3.04593354e-01 -8.38000059e-01 1.08659530e+00 3.12099129e-01 -1.15230286e+00 -1.04596150e+00 -1.27511346e+00 -3.13518494e-01 -6.48976117e-02 -3.23780961e-02 7.68635571e-01 3.47850561e-01 -1.15325725e+00 7.09026873e-01 -5.80384731e-01 -1.62735254e-01 6.47243083e-01 3.40641975e-01 -4.38547969e-01 -4.16825473e-01 -1.20517349e+00 5.33618569e-01 2.03519404e-01 1.91322237e-01 -9.03232753e-01 -8.21972013e-01 -1.18101108e+00 1.11697372e-02 1.17673978e-01 -9.81958389e-01 1.08187640e+00 -9.47719753e-01 -1.51118934e+00 9.32463884e-01 -1.83824405e-01 -5.08952677e-01 6.92748129e-01 -2.76088566e-01 -2.36700624e-01 1.27257705e-01 1.87187225e-01 1.11413324e+00 6.57046318e-01 -1.07267046e+00 -7.94409752e-01 -2.65131235e-01 2.35721439e-01 2.35453516e-01 -3.03146929e-01 -4.98762012e-01 -3.71364385e-01 -8.81214023e-01 1.36937231e-01 -6.35660946e-01 -2.16358811e-01 4.07504767e-01 -1.03587203e-01 2.81875640e-01 7.65378654e-01 -4.43260223e-01 9.30224538e-01 -2.10068178e+00 -1.38157114e-01 -2.81108707e-01 3.09679061e-01 4.01632905e-01 -1.12147026e-01 2.16084704e-01 -5.82874333e-03 -4.88403082e-01 -2.15234160e-01 -5.35861850e-01 -2.45347351e-01 3.35650556e-02 -3.26676607e-01 6.20419502e-01 -4.89984453e-02 7.27121592e-01 -9.82840061e-01 -6.79152071e-01 7.95382559e-01 5.12016177e-01 -9.26702142e-01 2.73931056e-01 1.82584882e-01 6.04127169e-01 -2.07292333e-01 4.49804485e-01 9.58548844e-01 -6.28385022e-02 -2.08699226e-01 -4.58068490e-01 -9.70812589e-02 3.56020838e-01 -1.04219043e+00 2.44383907e+00 -8.11364889e-01 1.10019493e+00 -3.28332596e-02 -1.08366334e+00 9.48280811e-01 1.84026659e-02 5.19914627e-01 -1.15219569e+00 -3.73343080e-02 4.27475959e-01 -3.63502912e-02 -2.42612392e-01 5.21848023e-01 5.84087893e-02 1.96159557e-01 1.32110938e-02 6.92715496e-02 5.16863838e-02 8.34541395e-02 -7.32708797e-02 9.71964121e-01 2.08483383e-01 7.20624551e-02 -3.59372944e-01 8.72079253e-01 -1.84246048e-01 9.18499470e-01 5.46940386e-01 -4.18597192e-01 1.03287876e+00 2.89969053e-02 -8.09975266e-01 -1.15488493e+00 -1.06431317e+00 -1.49320453e-01 6.82918370e-01 6.38390124e-01 -2.16880158e-01 -5.27377486e-01 -2.89489448e-01 -2.41411194e-01 2.25177646e-01 -5.10413587e-01 -3.23527828e-02 -8.55488420e-01 -1.77987710e-01 5.56860983e-01 5.10800302e-01 1.36906815e+00 -1.13430893e+00 -9.15166080e-01 4.79264021e-01 -3.66229236e-01 -1.45876038e+00 -6.35363638e-01 -3.42524469e-01 -9.27235782e-01 -1.14617562e+00 -8.85097682e-01 -1.02857804e+00 4.24805731e-01 5.24749160e-01 1.33115566e+00 -4.09936048e-02 -4.03110832e-01 -3.36423665e-01 -1.25061283e-02 1.80360273e-01 -4.86806557e-02 1.11456096e-01 -3.75795901e-01 1.04573429e-01 2.37355247e-01 -1.01633334e+00 -1.28223479e+00 3.45089823e-01 -1.02058971e+00 5.27345359e-01 4.82726097e-01 1.14111400e+00 4.21649158e-01 -1.69945657e-01 3.80190045e-01 -4.50993925e-01 2.69284993e-01 5.66854961e-02 -8.47116292e-01 -1.22098684e-01 -4.62230206e-01 1.39444292e-01 9.07834053e-01 -4.36463431e-02 -1.22343552e+00 1.59767177e-02 -4.03376460e-01 -4.83385533e-01 -1.99623369e-02 1.79587305e-01 3.07843182e-02 -3.13104600e-01 5.56943834e-01 3.79359901e-01 -2.18522489e-01 -3.77895772e-01 9.36297467e-04 5.50589323e-01 8.46165419e-01 -3.60883206e-01 5.56636333e-01 8.96770477e-01 3.10426503e-01 -5.65557539e-01 -7.33554006e-01 -4.57467169e-01 -5.84749639e-01 -2.77587861e-01 6.31617010e-01 -1.26109028e+00 -6.71000361e-01 7.01880455e-01 -1.17167377e+00 -2.66924083e-01 1.45046990e-02 6.40797436e-01 -7.54505396e-01 3.81245255e-01 -6.79616690e-01 -2.36589223e-01 -4.67280477e-01 -1.37407506e+00 1.13682878e+00 2.60380805e-01 1.09677762e-01 -9.12861228e-01 1.78735346e-01 4.38130796e-01 6.54834390e-01 3.25181931e-01 5.86178482e-01 2.46992409e-01 -7.23118603e-01 1.20989256e-01 -5.71821928e-01 2.90229231e-01 1.69921026e-01 -3.92509699e-01 -1.05898213e+00 -4.13009435e-01 -1.83058649e-01 -3.80650431e-01 1.25015426e+00 4.48133469e-01 1.27399445e+00 1.20839961e-01 2.20860690e-02 1.15704882e+00 1.76794255e+00 3.83305401e-02 8.76826823e-01 4.90170866e-01 9.42151189e-01 5.58930993e-01 4.40380156e-01 3.08393836e-01 4.48459715e-01 7.82931566e-01 5.66684306e-01 -3.08329135e-01 -5.40300012e-01 -5.17757773e-01 1.38863280e-01 5.49871147e-01 4.25640121e-02 -9.40147671e-04 -9.75229800e-01 7.54893303e-01 -1.92788601e+00 -1.10346270e+00 1.34863466e-01 2.14751887e+00 6.77964151e-01 3.31580311e-01 -2.28623614e-01 1.03243023e-01 6.64513111e-01 7.58373857e-01 -5.39925277e-01 -1.75295696e-01 -2.51231074e-01 2.39755854e-01 6.82166934e-01 5.63280225e-01 -1.09877551e+00 1.02102959e+00 5.48773623e+00 9.09164131e-01 -1.47197807e+00 2.58995760e-02 7.26737320e-01 -1.18564993e-01 -2.03247964e-01 -8.78010225e-03 -4.88417715e-01 3.55816334e-01 3.72606993e-01 -5.56017868e-02 3.40972275e-01 7.75312245e-01 4.29681957e-01 -1.36099651e-01 -1.12161624e+00 1.47635722e+00 -2.73712743e-02 -1.73414719e+00 -1.55186672e-02 6.28526062e-02 9.93258297e-01 3.78031254e-01 -2.46658791e-02 7.29435831e-02 -6.90798536e-02 -9.82970119e-01 6.32486463e-01 4.23785746e-01 9.39571321e-01 -7.54580200e-01 7.90067196e-01 1.00640036e-01 -1.35475135e+00 2.56996267e-02 -4.79849160e-01 -2.71870285e-01 2.62992978e-01 6.62225068e-01 -5.74096404e-02 4.76485789e-01 6.96099222e-01 1.28149176e+00 -5.00647843e-01 1.27133763e+00 7.78304413e-02 2.50159919e-01 -1.21495903e-01 4.50278908e-01 5.62952220e-01 -1.52292579e-01 3.76104891e-01 1.21235979e+00 2.47192934e-01 -2.68588901e-01 -4.16235253e-02 7.67634928e-01 -2.73906440e-01 -4.70729917e-02 -9.18547034e-01 5.93833685e-01 2.81439215e-01 8.54130685e-01 -4.21012312e-01 -3.82850409e-01 -6.26772106e-01 9.92463589e-01 2.87691504e-01 3.49828094e-01 -6.16730630e-01 -4.89333302e-01 9.51085150e-01 1.43280670e-01 2.20463052e-01 -1.90128222e-01 -3.35314542e-01 -1.39736879e+00 1.83260739e-01 -9.07810926e-01 6.93591386e-02 -6.59467757e-01 -1.04852569e+00 5.72804570e-01 -2.29762450e-01 -1.66043150e+00 -4.19552863e-01 -3.80005866e-01 -6.45427644e-01 8.53596687e-01 -1.90339947e+00 -8.78141046e-01 -7.92429805e-01 8.21792603e-01 8.68216693e-01 -2.96800613e-01 4.10333604e-01 8.06120396e-01 -4.10931230e-01 5.43404818e-01 6.32148087e-02 3.32747698e-01 8.55142415e-01 -7.89778829e-01 7.34327674e-01 1.01551282e+00 -3.44018219e-03 3.43628645e-01 5.16849697e-01 -2.53983080e-01 -1.17539442e+00 -1.15323138e+00 6.49057925e-01 2.34487042e-01 2.24321887e-01 -3.37499619e-01 -7.13710785e-01 2.12146655e-01 3.77276242e-01 4.81674403e-01 7.17919096e-02 -3.13008785e-01 -3.92432749e-01 -5.59559762e-01 -1.11939204e+00 8.26044619e-01 1.52647555e+00 -6.49166822e-01 -3.92122388e-01 -8.60087201e-02 4.39694226e-01 -5.33296824e-01 -5.59713602e-01 7.35373855e-01 7.70947099e-01 -1.78342056e+00 1.07856858e+00 -9.13638100e-02 9.35498595e-01 -3.90135080e-01 -3.14632326e-01 -1.15964782e+00 -1.41459391e-01 -7.21782625e-01 3.86207364e-02 9.52110827e-01 5.56402421e-03 -5.71454048e-01 1.08993816e+00 1.76296219e-01 -2.58457959e-01 -8.78094077e-01 -9.91449833e-01 -6.21828794e-01 -8.94666016e-02 -3.72698128e-01 5.99780977e-01 8.33544433e-01 -3.39255124e-01 1.94930166e-01 -5.93210042e-01 -1.70831323e-01 1.02987838e+00 3.15969348e-01 8.29848528e-01 -8.27684999e-01 -1.76229432e-01 -5.14574289e-01 -8.88881266e-01 -1.49018705e+00 2.72003531e-01 -4.52757925e-01 -2.84277722e-02 -1.34647453e+00 8.37114006e-02 -3.14710319e-01 -1.49176657e-01 -4.75251675e-03 4.82016578e-02 6.32997096e-01 1.42076150e-01 2.36885995e-01 -3.64501953e-01 8.06359172e-01 1.43958855e+00 -2.23059118e-01 -5.46928532e-02 -3.19845974e-01 -3.03797036e-01 8.33396733e-01 8.74276519e-01 -2.12712139e-01 -6.93123043e-01 -9.33748484e-01 2.27793101e-02 1.41407296e-01 6.06619477e-01 -1.43638396e+00 3.83652031e-01 -7.66594857e-02 4.15515214e-01 -7.74838030e-01 4.25798297e-01 -7.65847147e-01 -5.65436482e-02 5.52618384e-01 -3.48923832e-01 1.72378823e-01 1.77943349e-01 4.33098286e-01 -8.24959278e-01 1.65180296e-01 1.06426990e+00 -7.41836615e-03 -1.16820240e+00 5.07570922e-01 9.17580277e-02 3.03406268e-01 7.24668562e-01 -5.12604177e-01 -3.35301280e-01 -5.90145350e-01 -8.01707655e-02 7.22693801e-02 6.57619715e-01 5.77475011e-01 8.30350935e-01 -1.47424603e+00 -6.49612904e-01 5.15495956e-01 2.06129029e-01 1.80092245e-01 4.71648604e-01 5.22593796e-01 -1.06136060e+00 5.64022839e-01 -7.67593861e-01 -6.97344005e-01 -9.25581694e-01 3.09076786e-01 5.01589417e-01 -1.43483385e-01 -8.81615102e-01 6.00058258e-01 4.87205863e-01 -2.13275507e-01 3.49147677e-01 -2.46221215e-01 -8.10792670e-02 -3.49078298e-01 3.03613037e-01 2.45661467e-01 1.91043746e-02 -7.59074152e-01 -3.15237910e-01 9.58598316e-01 6.27293661e-02 -1.37739092e-01 1.21262443e+00 -1.95524022e-01 2.78042674e-01 -2.19450742e-02 1.61481106e+00 -2.57292658e-01 -1.73975086e+00 -4.77758259e-01 -4.86314505e-01 -1.05621517e+00 3.47148240e-01 -1.71345770e-01 -1.55785167e+00 1.28519201e+00 9.03743029e-01 -5.08707523e-01 1.32258594e+00 -6.21495843e-01 1.23379302e+00 4.14067268e-01 5.63503265e-01 -1.07946503e+00 8.00653473e-02 3.69157881e-01 7.04597354e-01 -1.59820902e+00 -4.97011654e-02 -3.96798909e-01 -3.50175679e-01 1.13082635e+00 8.42563033e-01 -4.25679624e-01 6.03881955e-01 1.41521364e-01 1.02719046e-01 -8.98401998e-03 -5.83237767e-01 -2.54515886e-01 1.76001742e-01 5.48711538e-01 5.06603360e-01 -3.84989977e-01 -1.97426200e-01 -2.26059601e-01 -2.23718196e-01 3.12383264e-01 2.86508650e-01 8.21352780e-01 -2.03469157e-01 -9.93576109e-01 -1.25565305e-01 2.17268899e-01 -5.27507484e-01 -2.43382543e-01 1.33962855e-01 6.78866804e-01 1.00746557e-01 8.30812454e-01 1.88816532e-01 -4.09248799e-01 4.65775788e-01 -6.10329568e-01 4.76314783e-01 -9.25287083e-02 -3.38193119e-01 -2.01569870e-01 4.36077751e-02 -9.69355106e-01 -6.52982414e-01 -3.44403923e-01 -8.70921791e-01 -5.61461329e-01 2.03496516e-01 -4.09239948e-01 3.27943355e-01 7.62962639e-01 3.20457667e-01 4.56352562e-01 7.21056163e-01 -1.18198025e+00 -2.14863867e-01 -7.66539156e-01 -2.41766185e-01 6.23315454e-01 5.86766183e-01 -7.07925081e-01 -1.69555143e-01 6.28469437e-02]
[8.856545448303223, -2.309432029724121]
8e5ad6da-8ff4-4577-8222-8311113d90d4
graph-learning-with-1d-convolutions-on-random
2102.08786
null
https://arxiv.org/abs/2102.08786v2
https://arxiv.org/pdf/2102.08786v2.pdf
Graph Learning with 1D Convolutions on Random Walks
We propose CRaWl (CNNs for Random Walks), a novel neural network architecture for graph learning. It is based on processing sequences of small subgraphs induced by random walks with standard 1D CNNs. Thus, CRaWl is fundamentally different from typical message passing graph neural network architectures. It is inspired by techniques counting small subgraphs, such as the graphlet kernel and motif counting, and combines them with random walk based techniques in a highly efficient and scalable neural architecture. We demonstrate empirically that CRaWl matches or outperforms state-of-the-art GNN architectures across a multitude of benchmark datasets for classification and regression on graphs.
['Martin Grohe', 'Hinrikus Wolf', 'Martin Ritzert', 'Jan Toenshoff']
2021-02-17
null
null
null
null
['graph-regression']
['graphs']
[ 2.41915341e-02 1.95757732e-01 -3.27194124e-01 -1.75221592e-01 -1.28952498e-02 -5.66236496e-01 8.40547621e-01 4.26886767e-01 -3.68002623e-01 4.63628232e-01 6.70662522e-02 -9.56394374e-01 -1.20550610e-01 -1.46280169e+00 -1.08119774e+00 -3.38195741e-01 -9.38525438e-01 7.01043069e-01 5.83627999e-01 -1.16848223e-01 -3.14163305e-02 4.31936920e-01 -8.30977738e-01 2.71826506e-01 7.30208084e-02 7.42983222e-01 -2.81797558e-01 1.14085627e+00 -3.61164838e-01 1.36787283e+00 -2.97981620e-01 -3.95548373e-01 1.99787706e-01 -3.05594325e-01 -8.98097217e-01 -3.65055859e-01 8.80812109e-01 -3.12094927e-01 -1.20754457e+00 1.00162148e+00 2.97656626e-01 1.02348357e-01 4.52422440e-01 -1.14747941e+00 -1.04869640e+00 1.18337119e+00 -3.66874367e-01 6.96837485e-01 5.18393576e-01 4.24645901e-01 1.13874733e+00 -5.91369271e-01 8.43507648e-01 1.49478793e+00 1.38136661e+00 1.60661012e-01 -1.46892858e+00 -3.42821628e-01 1.17782608e-01 -3.92647721e-02 -1.02227545e+00 -3.90355894e-03 4.95271176e-01 -1.78495735e-01 1.66284788e+00 1.33167068e-02 1.08341193e+00 1.27630293e+00 4.93103385e-01 5.43595254e-01 4.56092417e-01 -1.53636277e-01 -1.10585606e-02 -1.03409469e+00 6.23648942e-01 1.63462245e+00 7.35944510e-01 2.07585990e-01 -2.58764237e-01 -1.40014708e-01 8.79063427e-01 1.35077432e-01 1.83022022e-02 -3.32265735e-01 -1.14449275e+00 1.10256481e+00 1.10320950e+00 1.23625264e-01 2.12181397e-02 1.28098035e+00 6.28057063e-01 7.68349767e-01 6.01387084e-01 3.39266449e-01 -2.65916586e-01 2.37061575e-01 -5.81133187e-01 2.38125339e-01 1.29915905e+00 1.00574648e+00 1.13116670e+00 1.75257578e-01 -1.00304924e-01 2.61679888e-01 2.92097777e-01 2.55125344e-01 1.01251818e-01 -4.46488023e-01 3.14425856e-01 9.50068295e-01 -8.20392013e-01 -1.36630034e+00 -8.19853961e-01 -3.70139301e-01 -1.15910065e+00 -1.99346021e-01 3.41440231e-01 -8.75056069e-03 -1.33554149e+00 1.33668745e+00 7.79700000e-03 6.71414614e-01 -5.07337749e-01 5.25148392e-01 1.41683364e+00 4.30285037e-01 -1.03219980e-02 5.92939258e-01 7.88717926e-01 -1.16449642e+00 -4.23028842e-02 -4.38495070e-01 8.94916117e-01 -2.46876344e-01 9.19344425e-01 -7.05114380e-02 -8.85429859e-01 -3.58609527e-01 -1.18238699e+00 -2.76709288e-01 -8.98561656e-01 -5.55949867e-01 1.33505547e+00 6.27162755e-01 -1.69136274e+00 1.17580342e+00 -1.14849353e+00 -6.71843112e-01 6.30415082e-01 4.73872095e-01 -2.84635216e-01 -2.29979992e-01 -9.09491122e-01 4.97298181e-01 4.52095896e-01 3.84417586e-02 -1.13593674e+00 -4.29989785e-01 -1.34832978e+00 2.08409533e-01 2.45041266e-01 -8.51287901e-01 1.16002834e+00 -5.13514578e-01 -9.97101903e-01 9.57561374e-01 3.58016253e-01 -1.15051162e+00 1.06191516e-01 4.60648127e-02 -2.25115150e-01 2.31069922e-02 2.75342073e-02 3.80242348e-01 6.07032120e-01 -4.09735620e-01 -1.15524018e-02 1.19453475e-01 1.62164375e-01 -5.28528988e-01 -1.14788987e-01 -1.52896181e-01 -4.31380272e-01 -4.95624751e-01 -1.73196599e-01 -7.89706171e-01 -5.95566869e-01 -9.05620158e-02 -8.30906689e-01 -4.23614860e-01 7.62072802e-01 3.88210602e-02 9.43627596e-01 -1.43685615e+00 -3.11262071e-01 5.22443295e-01 1.31271005e+00 2.10491911e-01 -6.41244948e-01 7.09458947e-01 -2.12466806e-01 2.81238377e-01 -6.25419989e-03 -3.48515995e-02 -1.79868040e-03 2.13206097e-01 1.57210715e-02 7.18556821e-01 4.36382324e-01 1.68119359e+00 -1.30232942e+00 -3.82371545e-01 1.50083810e-01 2.82063693e-01 -6.21586382e-01 9.72792432e-02 -6.79622352e-01 -2.50624627e-01 -2.39547551e-01 5.27810752e-01 6.37812436e-01 -1.04302669e+00 4.26620781e-01 2.06429034e-01 2.67811805e-01 6.33245766e-01 -6.89843178e-01 1.57265830e+00 -7.81649202e-02 8.52221489e-01 -4.41668481e-01 -1.10241461e+00 7.84651577e-01 -1.63823098e-01 1.31567329e-01 -6.38734937e-01 3.62630993e-01 -1.02345571e-01 -5.78892529e-02 -1.09957621e-01 3.91774587e-02 4.88847554e-01 -5.68777360e-02 7.27897406e-01 7.68791497e-01 1.22859970e-01 6.84587181e-01 5.11207283e-01 2.26972079e+00 -1.83318034e-01 3.81704122e-01 -4.81455714e-01 -3.05769295e-02 -3.92325269e-03 -8.99660140e-02 1.35373378e+00 -5.01959622e-02 2.50188142e-01 1.02131236e+00 -1.21880209e+00 -7.72727311e-01 -1.42777061e+00 6.32425010e-01 1.31890094e+00 -1.18918262e-01 -9.05690372e-01 -5.57907104e-01 -8.74389470e-01 1.58335552e-01 -2.13103966e-04 -6.97252333e-01 -1.75157383e-01 -7.77951479e-01 -7.40662217e-01 7.83443570e-01 4.95200574e-01 4.39269572e-01 -1.35323358e+00 1.75693661e-01 5.93847215e-01 4.60132867e-01 -1.29061580e+00 -6.75305903e-01 4.95910585e-01 -8.99110913e-01 -1.86798680e+00 -1.66355237e-01 -1.35445547e+00 5.41092396e-01 4.46699172e-01 2.14617395e+00 7.71424949e-01 -4.27411228e-01 3.32972676e-01 -1.86546713e-01 -1.13253027e-01 -5.32593429e-01 8.29263985e-01 -4.05795276e-01 -4.15336221e-01 5.44781506e-01 -1.04701388e+00 -5.07716298e-01 -1.25195608e-01 -6.31958723e-01 -1.57141984e-01 5.44433653e-01 6.81467593e-01 3.57382447e-01 -5.15905395e-02 5.99286593e-02 -1.48822761e+00 1.12838185e+00 -6.48351967e-01 -7.45994747e-01 -4.34217639e-02 -4.33800459e-01 3.23286921e-01 9.31518734e-01 -5.53546786e-01 1.78285643e-01 -2.54398078e-01 -3.27225864e-01 -3.36823076e-01 3.15640755e-02 6.45581484e-01 5.73255837e-01 -8.71873498e-01 8.78738880e-01 1.28275990e-01 -2.56552752e-02 -5.19790426e-02 6.24788523e-01 -2.97722101e-01 4.45588410e-01 -2.58239567e-01 1.01491380e+00 4.42391276e-01 4.38203722e-01 -7.37068832e-01 -8.28726709e-01 -3.41144651e-01 -5.07052779e-01 -2.06035316e-01 7.49183834e-01 -6.14205778e-01 -1.13402808e+00 6.68351650e-01 -1.12915874e+00 -9.36109900e-01 -2.28407338e-01 1.59646884e-01 -4.47012782e-01 3.45697910e-01 -1.32394505e+00 -1.71464011e-01 -6.06487453e-01 -5.63838303e-01 8.44487190e-01 4.59189498e-04 -1.44777894e-01 -1.39248967e+00 4.80015278e-01 -7.99369037e-01 7.61831701e-01 7.33005881e-01 1.18923020e+00 -9.32473123e-01 -9.82944369e-01 -3.58556926e-01 -5.71840942e-01 -5.82777821e-02 -1.86352998e-01 -9.46566537e-02 -3.92313272e-01 -4.52157140e-01 -6.59725428e-01 -4.69800055e-01 1.40437341e+00 5.19136250e-01 1.14072037e+00 -4.86930400e-01 -5.68710804e-01 1.09992492e+00 1.65673709e+00 -5.28100193e-01 5.55508018e-01 1.05698511e-01 1.09939885e+00 -3.92803133e-01 -5.69294035e-01 -1.63948148e-01 4.88614619e-01 -2.97174722e-01 8.55335116e-01 -3.52828592e-01 -3.98543000e-01 -5.61616898e-01 1.75352663e-01 1.05547571e+00 -7.52475187e-02 -5.02603292e-01 -1.02942884e+00 3.59573781e-01 -1.86473989e+00 -9.26150799e-01 -5.72418272e-01 1.49477351e+00 1.28591314e-01 7.40550458e-01 3.45964789e-01 -2.55153775e-01 7.90216863e-01 8.25865448e-01 -4.94946361e-01 -5.61160922e-01 -1.32213801e-01 9.50788558e-01 1.02782845e+00 3.61423671e-01 -1.32062972e+00 1.12319374e+00 7.83113241e+00 5.26083946e-01 -7.01440990e-01 -1.89314857e-02 5.46536922e-01 2.77551562e-01 -1.51968643e-01 -3.20057534e-02 -4.99390960e-01 1.23860292e-01 1.25951552e+00 -5.44184297e-02 9.61089134e-01 9.06434596e-01 -4.04549807e-01 3.95909041e-01 -1.29722345e+00 6.66819513e-01 -1.52845215e-02 -2.16954470e+00 3.62150371e-01 1.41903926e-02 6.32170439e-01 1.02324426e+00 -2.34304026e-01 6.08841062e-01 1.44503522e+00 -1.42780995e+00 1.96628720e-01 3.26360375e-01 8.03043723e-01 -5.48186660e-01 6.74571931e-01 -1.48231499e-02 -1.82788813e+00 1.18841454e-01 -5.83383083e-01 -3.78680438e-01 -1.85743615e-01 6.14767969e-01 -9.62635219e-01 2.02009186e-01 5.84622622e-01 1.10599506e+00 -8.73507380e-01 1.01525164e+00 -4.88989085e-01 9.59599912e-01 -3.36141199e-01 -6.64964259e-01 8.15139472e-01 -1.16137847e-01 3.65454793e-01 1.59980810e+00 -4.82995100e-02 -4.33005631e-01 4.35249776e-01 1.05766606e+00 -7.76425600e-01 -1.81908488e-01 -1.39102411e+00 -5.07140338e-01 7.94743970e-02 1.06154895e+00 -1.15325058e+00 -3.05052161e-01 -7.07177937e-01 6.97037995e-01 1.06852961e+00 4.15817887e-01 -8.11928451e-01 -7.39646256e-01 4.64936197e-01 3.08102936e-01 6.25029862e-01 -7.56367862e-01 2.36267298e-01 -9.53298926e-01 -3.45861644e-01 -6.63392544e-01 8.01457226e-01 -3.95210236e-01 -1.63686383e+00 7.45452106e-01 -6.01034105e-01 -5.56104302e-01 4.26366776e-02 -1.11782205e+00 -1.24069786e+00 3.42910528e-01 -1.39739931e+00 -1.25234389e+00 -5.15800416e-01 8.66565168e-01 3.80301140e-02 -8.81526172e-02 9.18016791e-01 5.43649048e-02 -3.28647047e-01 5.20482481e-01 -1.60132915e-01 9.03540909e-01 5.12614958e-02 -1.51497233e+00 2.10269380e+00 8.53249848e-01 5.85691750e-01 5.80249608e-01 1.78799301e-01 -7.75998473e-01 -1.87925327e+00 -1.66050994e+00 6.41898096e-01 -2.28727415e-01 1.27312624e+00 -7.54524946e-01 -6.30410135e-01 1.23293042e+00 2.12437391e-01 4.52404767e-01 2.35734642e-01 4.07785505e-01 -5.82766891e-01 1.92685515e-01 -8.13335657e-01 7.63804853e-01 1.83399785e+00 -6.63963974e-01 -1.67816013e-01 6.55891359e-01 1.04244077e+00 -3.23646992e-01 -5.82703114e-01 6.78716525e-02 2.17864603e-01 -8.64571393e-01 1.05502701e+00 -1.06532896e+00 1.81745782e-01 1.59864813e-01 1.77138388e-01 -1.24212480e+00 -7.48152554e-01 -1.11044836e+00 -6.81011796e-01 3.40247452e-01 4.03946549e-01 -8.52459252e-01 1.35784543e+00 -3.16837102e-01 -6.22302964e-02 -8.28237295e-01 -7.78462946e-01 -9.12006676e-01 -6.64362535e-02 -4.17329013e-01 7.17820346e-01 7.44150221e-01 -3.19265425e-01 6.47379518e-01 8.96648839e-02 9.25967023e-02 8.81517053e-01 1.51588559e-01 1.03723311e+00 -1.29209602e+00 -2.65852660e-01 -6.34400249e-01 -9.01621401e-01 -1.31217825e+00 3.23053241e-01 -1.71481693e+00 -3.22746396e-01 -1.87624693e+00 7.43524283e-02 5.70417941e-02 -2.35495165e-01 5.43057382e-01 1.83359712e-01 5.47588706e-01 -2.74779737e-01 -3.44645798e-01 -1.15786338e+00 1.70014575e-01 1.04525995e+00 -5.26674628e-01 -2.02287268e-02 -3.06794699e-02 -5.19175231e-01 7.53486454e-01 6.36240482e-01 -7.97910035e-01 -1.77361190e-01 -4.98585492e-01 6.31482363e-01 -2.58092821e-01 5.87585986e-01 -1.25013542e+00 3.54403108e-01 2.78150350e-01 3.89666647e-01 -7.19065726e-01 -2.14270279e-01 -1.05048172e-01 -2.63465732e-01 8.68630707e-01 2.69931508e-03 5.01872838e-01 2.63086036e-02 1.02915001e+00 1.03996739e-01 3.95818770e-01 5.55732489e-01 -6.95128858e-01 -6.31120265e-01 9.16648686e-01 -6.22685969e-01 4.88327205e-01 5.70923686e-01 -1.33647025e-01 -7.78347373e-01 -4.85574633e-01 -6.93006158e-01 3.44039619e-01 1.58876255e-01 1.77656770e-01 7.04901278e-01 -1.42833209e+00 -6.27071917e-01 2.72431731e-01 2.58129071e-02 -1.42784743e-02 -3.46265286e-01 4.44379061e-01 -1.23444986e+00 3.77541184e-01 -2.48942319e-02 -5.55746853e-01 -7.99671471e-01 8.17005336e-01 5.61132371e-01 -9.28650916e-01 -9.46236372e-01 1.05077064e+00 -2.05771863e-01 -8.37786794e-01 2.74249822e-01 -8.29470992e-01 3.07322741e-01 -5.74506879e-01 2.06314921e-01 3.26869935e-01 1.03431880e-01 1.33849278e-01 -3.14833403e-01 2.46981367e-01 -9.29941013e-02 7.53097415e-01 1.53096521e+00 4.50316310e-01 -4.46930707e-01 2.93251395e-01 1.48906481e+00 -5.58778346e-01 -8.53569388e-01 -3.41249704e-01 3.56184125e-01 6.74979910e-02 -3.06676596e-01 -2.38671720e-01 -1.09574270e+00 5.59718847e-01 4.98551764e-02 7.78697133e-01 6.71377003e-01 2.76376158e-01 1.17328918e+00 1.10725987e+00 4.38049614e-01 -5.41256309e-01 3.11924160e-01 1.18425333e+00 4.35379922e-01 -1.08981729e+00 9.83790532e-02 -4.32986826e-01 5.14836848e-01 1.38591588e+00 5.40439546e-01 -1.09601390e+00 1.24230361e+00 5.16283631e-01 -3.92803758e-01 -1.05125010e+00 -8.42184901e-01 -5.54131448e-01 1.35215268e-01 7.38570094e-01 3.16082209e-01 9.80330855e-02 9.73089337e-02 3.65119949e-02 -2.65556037e-01 -1.66109070e-01 5.82737029e-01 7.86281824e-01 -3.89050990e-01 -6.44354224e-01 4.43382740e-01 1.11352539e+00 -3.21974307e-01 -6.48864627e-01 -5.64671457e-01 1.01562715e+00 -3.45270514e-01 6.21321440e-01 2.64606386e-01 -7.09860861e-01 9.83178914e-02 -2.14612797e-01 5.02110124e-01 -8.79118025e-01 -7.39655554e-01 -7.25508451e-01 3.98953646e-01 -1.04428351e+00 -1.57135814e-01 2.41794109e-01 -9.29047048e-01 -9.46690917e-01 -3.39495599e-01 -1.09126598e-01 2.79778183e-01 5.27984381e-01 2.77869999e-01 6.77504778e-01 3.63013119e-01 -9.51575458e-01 -1.86527610e-01 -8.83778870e-01 -6.98042333e-01 2.17029393e-01 4.66587275e-01 -2.30689615e-01 -5.48403740e-01 -5.68780959e-01]
[6.895805358886719, 6.264211654663086]
867c018a-300e-44a6-a326-af31a2a2a444
fine-grained-software-vulnerability-detection
null
null
https://openreview.net/forum?id=sKiAuHhc3w
https://openreview.net/pdf?id=sKiAuHhc3w
Fine-grained Software Vulnerability Detection via Information Theory and Contrastive Learning
Software vulnerabilities existing in a program or function of computer systems have been becoming a serious and crucial concern. In a program or function consisting of hundreds or thousands of source code statements, there are only few statements causing the corresponding vulnerabilities. Vulnerability labeling on a function or program level is usually done by experts with the assistance of machine learning tools; however, it will be much more costly and time-consuming to do that on a statement level. In this paper, to tackle this challenging problem, we propose a novel end-to-end deep learning-based approach to obtain the vulnerability-relevant code statements of a specific function. Inspired from previous approaches, we first leverage the mutual information theory for learning a set of latent variables that can represent the relevance of the source code statements to the corresponding function's vulnerability. We then propose a novel clustered spatial contrastive learning in order to further improve the representation learning and robust the selection process of vulnerability-relevant code statements. The experimental results on real-world datasets show the superiority of our proposed method over other state-of-the-art baselines.
['Dinh Phung', 'John C. Grundy', 'Trung Le', 'Van Nguyen']
2021-09-29
null
null
null
null
['vulnerability-detection']
['miscellaneous']
[-3.89578901e-02 -4.01286930e-01 -3.00500039e-02 -4.85515773e-01 -1.01842749e+00 -7.91369855e-01 7.01647922e-02 6.48966730e-01 8.98473933e-02 1.60274774e-01 9.91708040e-02 -7.45673060e-01 -1.14370540e-01 -9.58719492e-01 -6.00046515e-01 -5.06600142e-01 -1.65037826e-01 -2.30155423e-01 5.00378072e-01 1.75479834e-03 6.32887185e-01 4.15371656e-02 -1.30535913e+00 2.95108974e-01 1.06965935e+00 7.13959992e-01 3.67936224e-01 2.56844610e-01 -4.71098453e-01 9.89511549e-01 -5.84135294e-01 -3.23488057e-01 6.12231232e-02 -2.66015887e-01 -8.25653315e-01 -4.06233013e-01 1.33629084e-01 -4.93749343e-02 8.33123997e-02 1.69608462e+00 2.55036354e-01 1.11896805e-02 3.62857282e-01 -1.07051098e+00 -6.49519384e-01 7.41883576e-01 -9.61924434e-01 2.85504669e-01 2.49990836e-01 -7.41840377e-02 1.20373106e+00 -6.82500303e-01 1.88077241e-01 1.13424134e+00 4.87878323e-01 2.22501665e-01 -9.03127432e-01 -7.15719998e-01 4.21407819e-01 3.03987056e-01 -1.19143891e+00 -8.71977285e-02 1.20190263e+00 -7.88099289e-01 9.10423517e-01 1.73862219e-01 -5.63030876e-03 6.73774958e-01 3.75535637e-01 3.46634567e-01 6.48856938e-01 -3.49119157e-01 3.73875231e-01 9.64291021e-02 4.80076641e-01 7.91724861e-01 1.29980102e-01 -2.61233121e-01 2.80771498e-02 -6.51362181e-01 2.53474802e-01 4.06149358e-01 -2.39342958e-01 -3.62413943e-01 -9.45908248e-01 9.66196477e-01 7.14052677e-01 4.53002542e-01 -2.56861895e-01 1.39797762e-01 7.31441617e-01 2.03250885e-01 4.84328181e-01 2.53311992e-01 -4.61480409e-01 -1.45072654e-01 -9.58499908e-01 5.09282015e-02 5.32825112e-01 5.72178364e-01 1.04760993e+00 -2.04639927e-01 9.50518101e-02 4.75879967e-01 5.20178616e-01 -1.43292040e-01 3.05550694e-01 -2.58315206e-01 8.80760908e-01 1.30822647e+00 -1.16223790e-01 -1.39608383e+00 -6.39722273e-02 -3.77293825e-01 -5.48385739e-01 4.20357347e-01 -6.74580932e-02 -6.61680996e-02 -4.99974042e-01 1.45603740e+00 2.88528293e-01 1.87165484e-01 3.48843560e-02 6.03017747e-01 4.98310626e-01 7.83133030e-01 9.54139903e-02 4.25338047e-03 1.13897014e+00 -9.12708163e-01 -3.14621806e-01 -2.73502707e-01 7.38178194e-01 -7.66834319e-01 1.15935111e+00 9.28746089e-02 -4.83867913e-01 -3.51127744e-01 -9.35453653e-01 2.00962916e-01 -3.18549901e-01 1.06189452e-01 6.84087038e-01 6.75021172e-01 -7.36395657e-01 3.87012362e-01 -9.61535215e-01 3.91370431e-02 3.14288497e-01 5.03951423e-02 -3.14599603e-01 8.73655677e-02 -1.01536489e+00 4.46899414e-01 4.29267019e-01 7.12164417e-02 -1.09688485e+00 -5.02932727e-01 -9.18571293e-01 3.78710806e-01 5.55051029e-01 2.77516861e-02 8.33405852e-01 -9.88941789e-01 -7.91395366e-01 4.17184502e-01 -2.30632141e-01 -8.77204444e-03 5.13548404e-02 -3.73457670e-01 -4.01001334e-01 -1.71143621e-01 2.67831981e-01 -2.37372130e-01 6.56047940e-01 -1.07641280e+00 -4.96550232e-01 -3.71438265e-01 4.72075939e-01 -1.87254280e-01 -9.30788159e-01 5.44268787e-01 -4.04081643e-01 -4.78731990e-01 -6.20951727e-02 -5.02994716e-01 -2.84967214e-01 -2.61077225e-01 -6.26632631e-01 -3.17120999e-01 7.60851979e-01 -1.00563419e+00 1.71325934e+00 -2.34547520e+00 1.91877604e-01 2.19085813e-01 3.20932746e-01 2.51112223e-01 -9.13728625e-02 5.02298057e-01 -5.04717290e-01 2.46315315e-01 -6.55243039e-01 5.56331091e-02 -7.76718333e-02 -4.93151039e-01 -5.47833323e-01 4.36435044e-01 1.82252213e-01 3.97715569e-01 -9.53753114e-01 -3.32227528e-01 -7.42760226e-02 3.97018790e-01 -5.09197891e-01 3.55526716e-01 -2.13786691e-01 2.18423471e-01 -7.61993825e-01 7.75197208e-01 6.39827967e-01 -3.21819335e-01 2.28473358e-03 8.71741399e-02 -1.37190267e-01 3.43125492e-01 -9.46218967e-01 1.46647191e+00 -6.77252173e-01 4.69294846e-01 -2.07250416e-01 -1.08234203e+00 1.21016204e+00 1.86603487e-01 1.01276621e-01 -3.36716652e-01 -2.68425673e-01 1.12401865e-01 8.03924203e-02 -7.06540585e-01 9.65093225e-02 2.21244752e-01 -4.71039057e-01 4.91300285e-01 -3.79516214e-01 3.60131830e-01 -5.87727316e-02 2.01912969e-01 1.51124918e+00 -1.49975410e-02 3.78821552e-01 -3.41651142e-01 9.92548883e-01 -1.36141866e-01 9.72823679e-01 1.74057499e-01 -2.78814316e-01 2.67001390e-01 1.07896376e+00 -5.06793916e-01 -7.23248899e-01 -7.42186427e-01 2.00493172e-01 9.97210383e-01 7.89330378e-02 -5.28867304e-01 -9.32592392e-01 -1.19814742e+00 -2.57697672e-01 6.52188957e-01 -7.17525482e-01 -3.28538448e-01 -5.78781128e-01 -6.01236224e-01 3.21242303e-01 6.78952515e-01 4.62136745e-01 -9.78566349e-01 -6.44864738e-01 6.48555085e-02 -1.40434235e-01 -5.18076003e-01 -6.17030740e-01 3.92107405e-02 -5.41149914e-01 -1.12361681e+00 -4.88125175e-01 -8.43103290e-01 8.75493169e-01 1.44257382e-01 1.02551019e+00 3.59306306e-01 -2.11958334e-01 -2.85658747e-01 -5.47741294e-01 4.93891127e-02 -2.34807506e-01 1.35942698e-01 -4.55566466e-01 6.02067783e-02 4.27474409e-01 -5.51514506e-01 -4.90371019e-01 1.17353037e-01 -9.49799657e-01 -4.46417481e-01 5.52723229e-01 4.88396347e-01 3.81934106e-01 7.68426895e-01 4.46667582e-01 -9.06671584e-01 7.34045386e-01 -9.42626953e-01 -9.96708274e-01 4.56359923e-01 -3.15584093e-01 1.78804874e-01 8.63735199e-01 -1.99645072e-01 -1.06280577e+00 2.87661970e-01 -2.35861652e-02 -3.51794213e-01 -1.17402812e-02 1.02921748e+00 -5.53815484e-01 -3.73081975e-02 5.88439882e-01 2.35824794e-01 -6.07827783e-01 -6.26268685e-01 1.57541782e-01 5.43655872e-01 2.56702840e-01 -5.62123060e-01 1.01418185e+00 8.93565640e-02 -2.31376350e-01 -1.60859734e-01 -4.73480105e-01 -4.19601500e-01 -4.64287907e-01 -2.29075900e-03 8.12561452e-01 -6.03838086e-01 -3.08742553e-01 2.84998953e-01 -1.28359497e+00 6.25922605e-02 4.96075690e-01 -3.99800986e-02 1.23764440e-01 7.35400200e-01 -1.59983441e-01 -7.55134463e-01 -3.69973183e-01 -1.73390067e+00 9.14477348e-01 1.07886247e-01 -8.30179304e-02 -1.05021405e+00 3.76801372e-01 9.67430547e-02 3.56096148e-01 4.51554567e-01 1.33840299e+00 -5.91843128e-01 -6.54304683e-01 -3.32984269e-01 -3.68637919e-01 2.33923927e-01 4.28689063e-01 2.11471930e-01 -6.72547102e-01 -3.45745832e-01 1.96272388e-01 -2.04760842e-02 8.33441198e-01 -8.62085670e-02 1.34290636e+00 -3.90213907e-01 -5.64625263e-01 5.87899745e-01 1.65017796e+00 3.10804158e-01 4.62590963e-01 5.14646590e-01 8.69694650e-01 9.70989227e-01 7.75822580e-01 3.17764848e-01 2.87660688e-01 5.85599005e-01 7.43642867e-01 1.79938152e-01 4.47698802e-01 -8.60168934e-02 5.48714161e-01 6.59705579e-01 4.19226736e-01 4.03642170e-02 -1.46471131e+00 8.88583958e-01 -1.75541294e+00 -7.50717640e-01 -1.55382901e-01 2.21285200e+00 6.88930511e-01 8.67618471e-02 -9.39892083e-02 6.66161403e-02 9.85529780e-01 2.68749803e-01 -6.03915811e-01 -1.37185320e-01 4.55296218e-01 -2.38381073e-01 1.59804240e-01 2.88894296e-01 -1.27406549e+00 7.15469122e-01 5.21435928e+00 7.90075004e-01 -1.25672328e+00 1.26533806e-01 6.27393544e-01 1.84367910e-01 -7.11143851e-01 4.29145426e-01 -6.14526868e-01 7.33749807e-01 8.82291913e-01 -2.65344858e-01 2.26800755e-01 1.19225597e+00 -1.39909923e-01 3.65372486e-02 -1.01515472e+00 6.45437956e-01 5.75949885e-02 -9.79729772e-01 -3.19422513e-01 -1.44200280e-01 6.80794656e-01 -2.61664033e-01 2.04444155e-01 2.52759814e-01 2.65261263e-01 -8.55730534e-01 6.16026282e-01 3.64753574e-01 4.30097669e-01 -1.05314434e+00 8.14472795e-01 2.65224069e-01 -1.64072788e+00 -3.75736475e-01 -4.08786923e-01 1.66852146e-01 -2.70975947e-01 9.07533467e-01 -5.38708925e-01 5.20322144e-01 9.77167010e-01 5.08940697e-01 -9.20395315e-01 9.61679280e-01 -4.83578116e-01 6.09885633e-01 2.63797402e-01 -1.05090015e-01 2.11226583e-01 2.10594773e-01 3.16478431e-01 1.05758905e+00 4.17018771e-01 -3.21313262e-01 1.77717268e-01 1.27372789e+00 -1.47841247e-02 2.35966623e-01 -5.65524220e-01 -1.99367851e-01 4.93418753e-01 1.41146421e+00 -8.55903804e-01 -9.37564000e-02 -7.68753111e-01 7.69083261e-01 5.21481037e-01 2.69638628e-01 -9.09380376e-01 -9.58566666e-01 5.88842034e-01 -2.09276080e-01 3.99192125e-01 -8.18824768e-02 -2.53262430e-01 -1.12294447e+00 6.46153212e-01 -8.54821444e-01 2.95743704e-01 -1.93186030e-01 -1.22864330e+00 9.80912447e-01 -1.17827915e-01 -1.34745312e+00 -1.58162072e-01 -1.90268770e-01 -1.18718314e+00 1.21225810e+00 -1.48495042e+00 -9.83624578e-01 -2.94220775e-01 4.43077326e-01 3.29794824e-01 -4.95168120e-01 6.93029046e-01 3.28446805e-01 -8.73463690e-01 5.89828551e-01 1.82717592e-01 3.58117640e-01 5.17949820e-01 -1.23530722e+00 9.36007142e-01 1.40632081e+00 -1.36471838e-01 1.21590698e+00 4.15083110e-01 -9.58072484e-01 -1.10211849e+00 -1.21430588e+00 7.36117125e-01 -3.80692542e-01 8.50237012e-01 -3.93116027e-01 -1.27562642e+00 6.74143255e-01 1.05598100e-01 1.35376200e-01 7.01623917e-01 1.11717008e-01 -6.80552840e-01 -1.19760431e-01 -9.90471900e-01 3.45474660e-01 4.61502284e-01 -9.14017916e-01 -4.99126554e-01 2.60559589e-01 7.08849370e-01 1.93763673e-02 -5.24390101e-01 2.60867625e-01 5.24169058e-02 -1.10326684e+00 8.27273011e-01 -2.44865030e-01 6.58578813e-01 -5.79093814e-01 -1.48345083e-01 -1.12588274e+00 -2.90223956e-01 -3.30784291e-01 1.47513047e-01 1.61176002e+00 2.56464809e-01 -6.21488869e-01 6.40911579e-01 5.69629669e-01 -5.10818213e-02 -6.25528276e-01 -7.84767449e-01 -5.63005149e-01 1.53055891e-01 -2.35239536e-01 9.04890060e-01 1.09373260e+00 2.29192272e-01 -2.21141130e-02 6.21810881e-03 5.32970250e-01 6.46581411e-01 4.91451025e-01 4.80319440e-01 -1.17543566e+00 -5.34559071e-01 -5.56540787e-01 -5.66891789e-01 -4.34428602e-01 5.73954642e-01 -7.87168324e-01 2.12583154e-01 -1.30392408e+00 4.25285310e-01 -2.77467906e-01 -5.78979015e-01 5.76344311e-01 -6.76743627e-01 -4.23098624e-01 -1.57452002e-01 2.60045648e-01 -5.61148942e-01 2.63410956e-01 4.35361475e-01 -3.99011821e-01 -3.12780738e-02 6.18635416e-02 -8.34046662e-01 8.47869039e-01 7.06434548e-01 -6.96986377e-01 -5.00259697e-01 -5.53274155e-01 4.60962445e-01 2.24265859e-01 2.95345992e-01 -9.13982570e-01 3.28229904e-01 -1.54148743e-01 -1.27779394e-01 -4.47810143e-01 -2.95110345e-01 -8.06044161e-01 -1.87654030e-02 4.59501386e-01 -3.90091836e-01 1.94453895e-01 2.89344817e-01 5.30607402e-01 -4.47824895e-01 -6.96347713e-01 6.25939488e-01 -1.49050564e-01 -9.29918945e-01 1.84242904e-01 -9.94930565e-02 -2.20042855e-01 1.30241013e+00 3.74048173e-01 -3.47650051e-01 2.75666099e-02 -1.61136687e-01 4.69980715e-03 6.23471379e-01 5.96759140e-01 7.63167262e-01 -1.17068994e+00 -5.34708142e-01 9.49604809e-02 3.94215554e-01 -2.05875903e-01 3.45602155e-01 3.93180400e-01 -4.71384555e-01 3.26512307e-01 -1.01225004e-01 -1.48098841e-01 -1.36350906e+00 8.34047377e-01 2.36893848e-01 -3.82964343e-01 -4.12454009e-01 1.05842292e+00 5.26717186e-01 -5.38225889e-01 1.74326792e-01 -5.92801794e-02 -5.20406604e-01 -2.30152264e-01 7.38787711e-01 2.71314353e-01 8.01848471e-02 -5.84832251e-01 -7.53775835e-01 6.33660972e-01 -3.23382527e-01 1.44937426e-01 1.34936631e+00 2.65684754e-01 -6.58251226e-01 2.92274028e-01 1.39059699e+00 7.68273026e-02 -1.12083244e+00 -1.51751310e-01 3.50676656e-01 -7.34802663e-01 2.50770181e-01 -6.18619680e-01 -1.37581766e+00 1.28137052e+00 6.27762556e-01 2.90534854e-01 1.22954154e+00 -8.13994706e-02 7.64616191e-01 2.97176629e-01 4.86251980e-01 -3.76979321e-01 3.22733596e-02 2.51474291e-01 6.59819722e-01 -1.30136585e+00 -2.82302290e-01 -3.87062937e-01 -2.76242495e-01 1.21135736e+00 7.85066009e-01 -1.44451529e-01 6.04283273e-01 3.78187627e-01 -2.04715468e-02 -2.88939416e-01 -5.73181927e-01 2.52785087e-01 3.83760065e-01 5.06112337e-01 8.50521326e-01 -1.18333893e-03 -7.55055994e-02 6.03268683e-01 3.11524481e-01 -5.16702116e-01 3.29184204e-01 1.12408388e+00 -4.96201873e-01 -1.41191030e+00 -4.70006108e-01 3.04784030e-01 -6.74012363e-01 -3.51546824e-01 -3.58579099e-01 8.82548615e-02 -2.90992558e-02 9.45245326e-01 -3.77051920e-01 -5.83362341e-01 1.34513736e-01 -1.12516358e-01 -1.75155014e-01 -8.93997550e-01 -7.61005640e-01 -9.59574208e-02 -5.24211049e-01 -5.28723180e-01 3.60945426e-02 -7.92173743e-01 -1.33256221e+00 2.25640112e-03 -3.60888958e-01 2.67042816e-01 4.75430071e-01 8.04903746e-01 3.75413805e-01 8.43582273e-01 8.08805704e-01 -4.58583295e-01 -5.69710314e-01 -6.90094650e-01 -2.10668311e-01 3.59286666e-01 4.27194536e-01 -5.64737141e-01 -3.05693597e-01 6.22462705e-02]
[7.117496967315674, 7.763134956359863]
85f684ce-102e-4add-a1b1-c021a6717839
a-new-expert-questioning-approach-to-more
1904.00317
null
https://arxiv.org/abs/1904.00317v2
https://arxiv.org/pdf/1904.00317v2.pdf
A New Expert Questioning Approach to More Efficient Fault Localization in Ontologies
When ontologies reach a certain size and complexity, faults such as inconsistencies, unsatisfiable classes or wrong entailments are hardly avoidable. Locating the incorrect axioms that cause these faults is a hard and time-consuming task. Addressing this issue, several techniques for semi-automatic fault localization in ontologies have been proposed. Often, these approaches involve a human expert who provides answers to system-generated questions about the intended (correct) ontology in order to reduce the possible fault locations. To suggest as informative questions as possible, existing methods draw on various algorithmic optimizations as well as heuristics. However, these computations are often based on certain assumptions about the interacting user. In this work, we characterize and discuss different user types and show that existing approaches do not achieve optimal efficiency for all of them. As a remedy, we suggest a new type of expert question which aims at fitting the answering behavior of all analyzed experts. Moreover, we present an algorithm to optimize this new query type which is fully compatible with the (tried and tested) heuristics used in the field. Experiments on faulty real-world ontologies show the potential of the new querying method for minimizing the expert consultation time, independent of the expert type. Besides, the gained insights can inform the design of interactive debugging tools towards better meeting their users' needs.
['Patrick Rodler', 'Michael Eichholzer']
2019-03-31
null
null
null
null
['fault-localization']
['computer-code']
[ 8.32901802e-03 5.59200108e-01 1.12937354e-01 -4.60215300e-01 -4.60213929e-01 -5.82704842e-01 1.76928908e-01 5.91880083e-01 2.49912962e-02 6.36863291e-01 -4.62826878e-01 -3.65058601e-01 -7.88511515e-01 -9.27418172e-01 -4.53202605e-01 -8.06294233e-02 2.73990870e-01 7.97586620e-01 7.80288100e-01 -3.70539874e-01 4.33848858e-01 3.43140185e-01 -2.21227384e+00 3.66977125e-01 1.53469300e+00 9.49683070e-01 2.02725217e-01 2.43932471e-01 -3.60700727e-01 1.06253481e+00 -8.13155413e-01 -4.70748574e-01 -4.84415330e-03 -4.63361055e-01 -1.19357395e+00 2.56222010e-01 1.19802266e-01 -1.70998976e-01 4.11027282e-01 1.49945366e+00 1.22935839e-01 -1.84202373e-01 1.91699997e-01 -1.53908241e+00 -1.82416022e-01 7.50919163e-01 2.14115262e-01 -9.69155356e-02 7.90157378e-01 -1.53219536e-01 9.90267158e-01 -5.70105314e-01 4.61430162e-01 1.06734920e+00 5.21306276e-01 4.24968928e-01 -8.15799475e-01 -1.74907133e-01 2.95416359e-02 7.03258514e-01 -1.66415310e+00 -4.31954145e-01 7.14671910e-01 -4.18608576e-01 8.27920258e-01 8.05510402e-01 4.31654036e-01 6.66416228e-01 -2.10188124e-02 2.25938335e-01 8.80873561e-01 -8.06659102e-01 5.61850131e-01 7.99817502e-01 2.77378559e-01 8.34207058e-01 5.90102613e-01 -7.16220200e-01 -2.73729324e-01 -5.02017796e-01 2.44302273e-01 -2.38506496e-01 -4.90555048e-01 -4.12269503e-01 -4.79996026e-01 4.62335944e-01 -2.69352823e-01 7.29041457e-01 -3.30842584e-01 -3.19234431e-01 1.03371128e-01 4.74835545e-01 1.16756849e-01 8.69297028e-01 -6.53615952e-01 -6.02385812e-02 -6.17227972e-01 3.37142706e-01 1.32317257e+00 1.07717907e+00 8.52403045e-01 -3.52488250e-01 1.84523344e-01 6.50838971e-01 4.02811557e-01 -8.78055394e-03 3.21483284e-01 -9.07390594e-01 1.44149184e-01 1.42793739e+00 5.57416737e-01 -1.27554262e+00 -3.22726250e-01 -3.59241724e-01 -8.62498060e-02 2.26100221e-01 5.80888271e-01 1.87172443e-01 -1.76952794e-01 1.36255598e+00 5.39492786e-01 -1.80086330e-01 -8.44924226e-02 8.28403533e-01 2.29641512e-01 5.80499507e-02 -1.87532082e-01 -2.79718578e-01 1.66992116e+00 -6.52456045e-01 -9.00769770e-01 -1.67109028e-01 7.72167921e-01 -6.45013392e-01 1.00237584e+00 7.77348697e-01 -1.13845909e+00 -2.24406704e-01 -9.13233817e-01 2.03734636e-01 -4.37895924e-01 2.66435921e-01 3.21701676e-01 8.44988108e-01 -9.32612717e-01 6.40248477e-01 -5.02797365e-01 -6.58989131e-01 -1.49309650e-01 3.77189547e-01 -6.02023900e-02 -1.38840839e-01 -1.27736712e+00 1.14738262e+00 4.16078776e-01 2.48525873e-01 -4.30983990e-01 -2.52995640e-01 -5.34628272e-01 2.72754818e-01 1.14069641e+00 -6.00437999e-01 1.32371628e+00 -1.16421103e+00 -1.33289385e+00 5.97886086e-01 -9.99707952e-02 -3.04718971e-01 6.41732275e-01 -1.41913489e-01 -5.34651577e-01 2.62478918e-01 1.75259799e-01 -7.14688823e-02 4.50200766e-01 -1.28931987e+00 -7.69361138e-01 -3.87916446e-01 7.34467626e-01 -8.75653327e-02 -5.16027033e-01 6.81969374e-02 -3.50719750e-01 -3.39742862e-02 3.31569284e-01 -6.02807462e-01 -1.59066543e-01 3.47783379e-02 -4.04557079e-01 -5.43033183e-01 3.86578947e-01 -6.33319020e-01 1.55738354e+00 -1.84269106e+00 1.36432052e-02 5.27438343e-01 1.69961154e-01 2.09943205e-01 3.00652802e-01 7.39642143e-01 -1.15968427e-02 2.35172912e-01 -1.91899881e-01 3.74450274e-02 2.85679281e-01 3.95310849e-01 -1.19643427e-01 2.47725770e-01 2.02307418e-01 1.58266127e-01 -7.50896096e-01 -6.69747114e-01 1.47142708e-01 -2.78508179e-02 -7.55239189e-01 3.11890483e-01 -6.27840996e-01 2.42884517e-01 -6.68521404e-01 7.70039380e-01 5.80122828e-01 -2.61897802e-01 6.74783766e-01 -2.18788892e-01 -3.01182438e-02 3.64009142e-01 -1.59286165e+00 1.03951454e+00 -3.69392484e-01 -1.25116602e-01 8.65106359e-02 -1.19968522e+00 8.71150374e-01 4.93255138e-01 5.09065509e-01 -5.34332395e-01 4.26809192e-02 6.84277296e-01 -3.43992971e-02 -1.25442958e+00 2.77765244e-01 1.20581873e-01 1.75806388e-01 1.64781332e-01 -1.38697952e-01 1.65404320e-01 4.76136237e-01 -1.15858011e-01 1.26445806e+00 5.10244742e-02 6.62884355e-01 -4.67233211e-01 9.89144266e-01 2.52162039e-01 6.74504340e-01 8.05844724e-01 -1.95280761e-02 1.64838359e-01 9.77089107e-01 -4.96017069e-01 -6.78916335e-01 -2.89005011e-01 -2.01854855e-02 6.32019162e-01 2.71468312e-01 -8.63381147e-01 -1.03654301e+00 -7.86267698e-01 -2.87037402e-01 8.47725809e-01 -2.40324229e-01 -8.56843311e-03 -3.60854864e-01 -1.45270795e-01 4.99829322e-01 -7.54837394e-02 8.97374228e-02 -8.68747413e-01 -1.05824006e+00 4.14946139e-01 -4.94259268e-01 -1.22549272e+00 3.25530440e-01 5.85134327e-02 -7.88050830e-01 -1.78101480e+00 3.32213640e-02 -4.16214973e-01 1.00056589e+00 -3.76621890e-03 1.09615803e+00 9.81708229e-01 -6.83252662e-02 4.30740058e-01 -8.07714403e-01 -1.76592499e-01 -6.23354733e-01 -7.11857975e-02 -1.54323712e-01 5.98315820e-02 3.59992325e-01 -5.01288235e-01 -1.42350972e-01 5.87592125e-01 -1.14959168e+00 -2.69127816e-01 3.23643178e-01 4.73170608e-01 2.44195148e-01 7.78488815e-01 4.89609390e-01 -1.13695443e+00 7.49538839e-01 -5.52235067e-01 -8.74011159e-01 7.92927325e-01 -1.04486883e+00 3.59030247e-01 9.51567531e-01 -1.98540121e-01 -9.30762708e-01 -1.03139922e-01 -3.05926204e-01 -7.86195770e-02 -5.09825587e-01 6.56049848e-01 -4.57748652e-01 -1.04596712e-01 7.66102850e-01 -6.65168241e-02 -2.90324569e-01 -4.88929272e-01 -1.45955220e-01 6.71171069e-01 1.45055577e-01 -8.74088049e-01 6.32395208e-01 1.99430272e-01 -2.03299075e-01 -6.98992968e-01 -6.25802338e-01 -2.90478200e-01 -1.73149258e-01 -2.82488674e-01 4.50536579e-01 -2.80493140e-01 -9.38889027e-01 7.90131744e-03 -1.34469783e+00 3.78744155e-02 -2.15820447e-01 6.66512991e-04 -4.09459442e-01 6.90010726e-01 -1.26934588e-01 -1.29974270e+00 1.14354379e-01 -1.43418276e+00 8.71846795e-01 4.19637822e-02 -4.81688321e-01 -7.02649057e-01 -2.04704136e-01 3.88603210e-01 3.43874723e-01 -2.85932403e-02 1.16159976e+00 -9.11786914e-01 -5.93977630e-01 -2.71527886e-01 1.05668381e-01 1.66751891e-01 2.13736564e-01 1.15798883e-01 -6.99891627e-01 9.35458764e-02 2.65738398e-01 1.23478070e-01 -7.59912804e-02 -2.72763908e-01 1.10407293e+00 -6.88877642e-01 -2.70080805e-01 -1.04930240e-03 1.51379645e+00 2.26668850e-01 7.15111434e-01 5.44996858e-01 2.50196010e-01 1.01508558e+00 7.33452559e-01 6.30291343e-01 5.06096125e-01 8.09048474e-01 7.08281040e-01 4.09746915e-01 4.98287827e-01 3.67692895e-02 2.94094030e-02 3.51954013e-01 -1.52982190e-01 -4.63362724e-01 -1.03974009e+00 4.73017305e-01 -1.99294353e+00 -7.90727973e-01 -3.69191557e-01 2.20515323e+00 7.61802793e-01 2.49756336e-01 -6.82730675e-02 7.24727571e-01 6.26100838e-01 -4.90927964e-01 -9.81933102e-02 -1.71795949e-01 1.34281397e-01 9.26583558e-02 1.17700556e-02 5.63790321e-01 -6.40474916e-01 5.43474257e-01 5.00045061e+00 4.02454406e-01 -6.98289633e-01 7.37147108e-02 -8.31372589e-02 4.24815059e-01 -5.55859089e-01 5.15928030e-01 -6.03727341e-01 3.65469426e-01 8.39639723e-01 -6.12873696e-02 5.80014765e-01 1.04883051e+00 1.16307944e-01 -4.56777304e-01 -1.19761097e+00 6.55177176e-01 5.10857105e-02 -9.32061315e-01 -2.46661752e-01 -4.73197736e-02 1.51533082e-01 -7.50534773e-01 -6.83735788e-01 7.32828975e-02 -1.39627859e-01 -5.52424252e-01 9.82790291e-01 8.66402447e-01 1.51447564e-01 -7.70557582e-01 1.06522012e+00 7.77874053e-01 -9.06471670e-01 -4.58139658e-01 -2.23212063e-01 -2.45214909e-01 -8.49554613e-02 7.98991978e-01 -8.57975185e-01 8.73395324e-01 8.10674846e-01 1.19841537e-02 -8.99776042e-01 1.14071810e+00 -3.84593040e-01 2.00331926e-01 -4.66015846e-01 -1.12195231e-01 -3.35509479e-01 -9.51015390e-03 4.87508804e-01 8.14267457e-01 5.78338921e-01 1.38303146e-01 9.91144255e-02 9.16824341e-01 3.91656131e-01 2.79720962e-01 -4.55795318e-01 2.49676257e-02 6.31648123e-01 1.04973137e+00 -8.24659228e-01 -3.56928140e-01 -2.65768528e-01 8.36685777e-01 4.26080585e-01 2.14532763e-01 -7.52280295e-01 -4.03892756e-01 4.50824022e-01 5.06205559e-01 -6.39293119e-02 1.12487331e-01 -1.63984224e-01 -1.03140235e+00 6.24070525e-01 -1.36203623e+00 4.56052750e-01 -7.50641406e-01 -9.87381101e-01 6.97997212e-01 7.79422373e-02 -1.17207122e+00 -3.42943758e-01 -4.68281657e-01 -1.73537910e-01 5.01071632e-01 -1.38359058e+00 -5.15294075e-01 -3.92906427e-01 4.82218295e-01 2.51374602e-01 3.74194562e-01 9.55017149e-01 6.22667432e-01 -5.19841015e-01 2.86762476e-01 -7.06410348e-01 -4.75146979e-01 6.30015314e-01 -1.18152988e+00 -3.87261897e-01 1.00339890e+00 -9.60877985e-02 7.47551858e-01 1.18458331e+00 -5.90743959e-01 -1.42061579e+00 -6.23759210e-01 1.40829539e+00 -2.03754991e-01 5.90842545e-01 4.13889671e-03 -1.24676490e+00 5.74962735e-01 1.18981503e-01 -2.32676432e-01 3.14772695e-01 -7.96418637e-02 2.55710278e-02 -1.91839412e-01 -1.34778678e+00 5.46654165e-01 9.12725270e-01 -4.72801119e-01 -6.33921444e-01 6.43688977e-01 4.62948173e-01 -3.29659790e-01 -8.36419880e-01 4.26179320e-01 1.93533525e-01 -1.44475353e+00 4.45375890e-01 -4.13949966e-01 2.64056958e-02 -6.44430697e-01 1.27534289e-02 -7.87767172e-01 3.00363395e-02 -5.28514981e-01 2.84935031e-02 1.25621426e+00 3.98384690e-01 -8.86362135e-01 3.69128078e-01 1.04658234e+00 -3.30510020e-01 -7.37950981e-01 -7.50559270e-01 -5.31906307e-01 -8.36103082e-01 -5.71432889e-01 7.32211709e-01 1.13116908e+00 3.61820996e-01 -1.58239320e-01 -1.05659261e-01 8.72954071e-01 3.19000065e-01 -8.02663714e-02 6.07055366e-01 -1.71955788e+00 -3.67077380e-01 -2.92485625e-01 -3.50857705e-01 -5.45557916e-01 7.26326508e-03 -4.42058057e-01 1.43564001e-01 -1.63296664e+00 -2.86015689e-01 -5.86053967e-01 5.39798513e-02 6.53000593e-01 -7.84335136e-02 -4.21597689e-01 -2.49134630e-01 9.65819135e-02 -7.16174066e-01 -5.93644232e-02 7.31922150e-01 1.70622945e-01 -2.89960764e-02 8.76580253e-02 -6.60968840e-01 9.34091032e-01 6.75222337e-01 -7.64879704e-01 -4.77029741e-01 -2.97264248e-01 9.76943135e-01 2.69110709e-01 4.23166782e-01 -1.17368305e+00 6.72234118e-01 -3.66527200e-01 -4.66036171e-01 -2.23192036e-01 -1.47378892e-02 -1.49683702e+00 5.11512697e-01 4.07408655e-01 -9.75644737e-02 1.66847110e-01 -2.43082240e-01 2.41540119e-01 -2.92103857e-01 -1.09301829e+00 5.43249846e-01 -2.12758854e-01 -5.11703253e-01 -3.49720389e-01 -5.19527018e-01 -2.28561088e-01 1.19483316e+00 -1.23520136e-01 -1.77721664e-01 -2.04955727e-01 -7.15797126e-01 3.25320035e-01 5.89919448e-01 8.57421160e-02 4.75190789e-01 -6.91376686e-01 -1.75295308e-01 4.91914712e-02 3.17333102e-01 -1.43665612e-01 8.55611339e-02 9.73296046e-01 -5.99565387e-01 3.50766152e-01 -1.52062075e-02 -3.87885094e-01 -1.13055754e+00 5.46878994e-01 6.15482807e-01 -2.40192413e-01 -3.14050585e-01 3.66445541e-01 -5.10260522e-01 -4.75359470e-01 2.97933310e-01 -5.42501986e-01 -4.19114977e-01 -5.57101965e-02 3.84703934e-01 4.23173219e-01 4.83612120e-01 -1.80527583e-01 -5.89842618e-01 3.82146567e-01 3.74585658e-01 1.74197480e-01 1.17530119e+00 -2.62215316e-01 -4.93993640e-01 2.69990116e-01 2.30028167e-01 3.49515408e-01 -5.24657190e-01 -7.13075250e-02 6.43686354e-01 -2.90799379e-01 -4.78201956e-01 -6.55974209e-01 -6.96444988e-01 5.39287388e-01 2.61692196e-01 1.15437901e+00 1.27718449e+00 3.40153091e-02 3.12964290e-01 6.60378873e-01 7.28879750e-01 -1.15774632e+00 -2.41804287e-01 1.73534513e-01 7.88548887e-01 -9.85006332e-01 -1.12927452e-01 -8.44372392e-01 -3.00350636e-01 1.44974399e+00 8.18815708e-01 2.02215046e-01 2.81899512e-01 2.97478974e-01 -7.22356960e-02 -3.85322988e-01 -8.02546561e-01 -3.24391305e-01 5.66780344e-02 2.68520147e-01 3.22802395e-01 -2.16815263e-01 -8.26076210e-01 8.38447452e-01 -9.41395164e-02 2.15828776e-01 6.82179272e-01 1.18630779e+00 -7.37235665e-01 -1.42174768e+00 -6.46862984e-01 1.75768808e-01 -3.92818719e-01 2.45074004e-01 -4.65789616e-01 8.03164363e-01 5.65034091e-01 1.40831172e+00 -4.66736794e-01 -3.27094138e-01 9.10376728e-01 3.50128323e-01 4.25366610e-01 -7.00107515e-01 -5.88649154e-01 -1.37388334e-01 5.28808475e-01 -7.20446050e-01 -3.71670842e-01 -3.86334866e-01 -1.19962776e+00 2.53959298e-02 -6.27093434e-01 4.94890213e-01 4.90599513e-01 1.40073323e+00 2.76752859e-01 6.09972835e-01 3.52448881e-01 -9.22885090e-02 -7.79080391e-01 -6.76937938e-01 -3.75520706e-01 4.00435209e-01 -5.53055294e-02 -7.60223687e-01 -4.06516492e-01 -8.64088256e-03]
[5.496842861175537, 2.83546781539917]
6f1b7762-a586-494b-9ed5-642d3ad22a93
pedestrian-trajectory-forecasting-using-deep
2305.16620
null
https://arxiv.org/abs/2305.16620v1
https://arxiv.org/pdf/2305.16620v1.pdf
Pedestrian Trajectory Forecasting Using Deep Ensembles Under Sensing Uncertainty
One of the fundamental challenges in the prediction of dynamic agents is robustness. Usually, most predictions are deterministic estimates of future states which are over-confident and prone to error. Recently, few works have addressed capturing uncertainty during forecasting of future states. However, these probabilistic estimation methods fail to account for the upstream noise in perception data during tracking. Sensors always have noise and state estimation becomes even more difficult under adverse weather conditions and occlusion. Traditionally, Bayes filters have been used to fuse information from noisy sensors to update states with associated belief. But, they fail to address non-linearities and long-term predictions. Therefore, we propose an end-to-end estimator that can take noisy sensor measurements and make robust future state predictions with uncertainty bounds while simultaneously taking into consideration the upstream perceptual uncertainty. For the current research, we consider an encoder-decoder based deep ensemble network for capturing both perception and predictive uncertainty simultaneously. We compared the current model to other approximate Bayesian inference methods. Overall, deep ensembles provided more robust predictions and the consideration of upstream uncertainty further increased the estimation accuracy for the model.
['Prasenjit Ghorai', 'Zachary Doerzaph', 'Azim Eskandarian', 'Anshul Nayak']
2023-05-26
null
null
null
null
['trajectory-forecasting', 'bayesian-inference']
['computer-vision', 'methodology']
[-9.20189247e-02 -6.78239986e-02 -5.20522930e-02 -6.94289029e-01 -6.42478585e-01 -3.57151806e-01 6.77952766e-01 1.52281135e-01 -3.00538301e-01 1.06606507e+00 3.73626083e-01 1.31020367e-01 -2.86386311e-01 -8.05546463e-01 -7.92790949e-01 -5.87919116e-01 -1.72609240e-01 2.49952823e-01 3.32340986e-01 1.48098215e-01 -2.21712925e-02 7.21627623e-02 -1.74900234e+00 -1.48567826e-01 9.54129577e-01 1.39495504e+00 4.56116915e-01 8.12823355e-01 2.50318348e-01 7.86651969e-01 -6.84676409e-01 -3.04819614e-01 1.84067897e-02 6.28750073e-03 9.61159691e-02 -2.34141842e-01 1.90388635e-01 -7.02488303e-01 -4.47625488e-01 1.26438117e+00 5.31344473e-01 1.73586100e-01 5.41058660e-01 -1.33938015e+00 -4.41502005e-01 9.49713886e-01 -8.20330679e-02 1.35615826e-01 2.05373242e-01 2.96227545e-01 5.75804830e-01 -3.03850502e-01 1.38856787e-02 1.45777559e+00 7.89216340e-01 6.10590637e-01 -9.85016584e-01 -9.32351053e-01 8.13163519e-01 3.44734192e-01 -1.19931984e+00 -6.43473327e-01 5.72681963e-01 -3.68506461e-01 7.80834019e-01 2.65882164e-02 6.16849780e-01 1.53099215e+00 6.13784671e-01 5.84466100e-01 1.13111293e+00 3.11111331e-01 5.63345313e-01 1.27479494e-01 -1.02208508e-03 1.53277129e-01 4.07146692e-01 8.57409120e-01 -5.48882306e-01 -3.52815241e-02 3.78335267e-01 1.66888505e-01 -1.41916394e-01 1.61658958e-01 -1.18015170e+00 4.37605649e-01 4.57002133e-01 -2.58590013e-01 -5.88374794e-01 5.83112061e-01 9.47428867e-02 6.67730719e-03 4.12114471e-01 7.92144984e-02 -4.96668696e-01 -4.56950277e-01 -8.41276228e-01 2.99008816e-01 7.99836576e-01 7.85436094e-01 5.39529443e-01 3.07923704e-01 -2.59406269e-01 2.15707511e-01 9.06509459e-01 1.19560933e+00 1.38189405e-01 -1.20137846e+00 3.36112559e-01 9.74227488e-02 5.99028468e-01 -1.16488957e+00 -6.06875777e-01 -8.15233350e-01 -1.11535501e+00 2.03305766e-01 2.01721996e-01 -6.08856559e-01 -1.01891065e+00 2.23228073e+00 2.18096480e-01 6.55737936e-01 4.10720348e-01 9.89116430e-01 3.93353045e-01 8.19964826e-01 2.36853123e-01 -4.05550689e-01 1.17993164e+00 -5.42030096e-01 -1.31889522e+00 -6.14032388e-01 -1.93033338e-01 -5.94225705e-01 1.49264470e-01 5.18332303e-01 -7.06985533e-01 -6.99019074e-01 -1.19851696e+00 5.08936763e-01 -1.61312968e-01 7.76751339e-02 4.78723615e-01 6.30358398e-01 -8.20543885e-01 5.87235451e-01 -1.40619004e+00 -9.88848135e-02 5.30184433e-02 2.09212273e-01 1.92221910e-01 6.97430819e-02 -1.48032546e+00 1.19385433e+00 5.91650665e-01 4.85384762e-01 -1.33157122e+00 -3.24465841e-01 -8.79281998e-01 6.19670376e-02 5.70746720e-01 -8.20020437e-01 1.42395878e+00 -5.61840951e-01 -2.04592705e+00 -5.62018573e-01 -2.76713252e-01 -7.71084905e-01 3.47606003e-01 -4.23046499e-01 -7.02735245e-01 -4.99508440e-01 -2.80359298e-01 5.90496778e-01 7.21108139e-01 -1.20608282e+00 -7.44565547e-01 -4.42608505e-01 1.87714115e-01 2.61411697e-01 1.39202744e-01 -5.68887353e-01 -1.04030155e-01 -4.60728168e-01 2.71366894e-01 -1.03127158e+00 -4.80886579e-01 -6.73778877e-02 -4.69025463e-01 3.31746861e-02 6.56402290e-01 -5.94163120e-01 1.22540653e+00 -1.85062575e+00 -1.77912302e-02 6.03281520e-02 4.92729731e-02 2.93796603e-02 1.30065009e-01 3.59591216e-01 5.28729975e-01 -2.10961059e-01 -8.46357495e-02 -7.52802789e-01 4.05541837e-01 4.12762433e-01 -6.82341695e-01 4.19498056e-01 -8.69143084e-02 5.79614878e-01 -8.86681020e-01 -2.19478428e-01 4.35061753e-01 6.65665507e-01 -3.96390676e-01 3.45207423e-01 -7.28749990e-01 6.24163151e-01 -5.55352271e-01 3.89264315e-01 7.72218704e-01 1.93735007e-02 2.74649318e-02 -3.52959603e-01 -2.23856509e-01 2.78758466e-01 -1.48619628e+00 1.69418585e+00 -3.56189281e-01 4.40795273e-01 1.80829942e-01 -5.59129298e-01 8.71028781e-01 2.92101115e-01 2.93259859e-01 -2.75315225e-01 2.31801093e-01 3.17505710e-02 -5.85549809e-02 -3.21407557e-01 7.09746420e-01 -6.65677041e-02 -2.54407555e-01 1.41092733e-01 -2.32008517e-01 -1.55955985e-01 -1.69424251e-01 -4.66538686e-03 7.66178191e-01 3.63359690e-01 1.48492068e-01 2.24771127e-01 1.18993796e-01 -3.58031154e-01 1.15625989e+00 9.09953713e-01 -4.67755049e-01 2.28090405e-01 2.83062132e-03 -2.36402571e-01 -5.93260050e-01 -1.26808715e+00 -9.61544961e-02 7.12972581e-01 5.37236810e-01 -4.76582736e-01 -3.48480582e-01 -2.21574754e-01 1.32105544e-01 1.01948690e+00 -3.22584033e-01 -3.98812681e-01 6.92617968e-02 -8.27765286e-01 4.44664955e-01 5.71896911e-01 5.45243859e-01 -3.47104728e-01 -7.20067978e-01 5.43895602e-01 -1.92809924e-01 -1.14276922e+00 -9.45731774e-02 5.46889491e-02 -7.12514222e-01 -6.14709079e-01 -3.46066535e-01 1.89216375e-01 2.59170204e-01 -1.97655350e-01 7.62852967e-01 -5.64144850e-01 4.45352465e-01 4.13838863e-01 -1.93366081e-01 -8.77285302e-01 -3.71305168e-01 -3.69149297e-01 7.42486000e-01 -1.36082590e-01 1.66224450e-01 -5.90121925e-01 -5.34231782e-01 4.12097484e-01 -6.88448727e-01 3.81829264e-03 5.43016493e-01 5.84807813e-01 4.86142933e-01 2.54275858e-01 6.60702050e-01 -7.77841955e-02 5.75212300e-01 -5.55364549e-01 -9.86426234e-01 2.74094373e-01 -6.59867048e-01 4.21880454e-01 4.51552868e-01 -5.54845870e-01 -1.42843878e+00 7.64720365e-02 -1.72759667e-01 -3.66419286e-01 -1.62386760e-01 5.96254408e-01 -5.57979867e-02 4.03081954e-01 3.34809572e-01 1.80105537e-01 2.69443262e-02 -3.54974985e-01 2.50538707e-01 7.05171943e-01 4.51796442e-01 -6.04718387e-01 4.11573917e-01 2.83195823e-01 9.45576504e-02 -2.95642316e-01 -1.05995464e+00 1.90285712e-01 4.38455604e-02 -4.36457038e-01 6.73067331e-01 -1.31003082e+00 -1.03423142e+00 6.96777463e-01 -1.30089748e+00 -3.35474834e-02 -1.03538044e-01 1.01614571e+00 -5.48719883e-01 3.70120049e-01 -3.76498938e-01 -1.64548481e+00 -2.19841808e-01 -1.38578081e+00 8.14628541e-01 4.67626035e-01 5.34502529e-02 -7.84713745e-01 3.04903090e-01 -3.73432934e-02 8.02664220e-01 2.22739965e-01 7.96041787e-02 -2.95196950e-01 -7.91772544e-01 -3.47193927e-01 9.31610465e-02 1.45631358e-01 -6.84454963e-02 7.66485482e-02 -1.08178818e+00 -2.91380465e-01 3.60012264e-03 -1.54694170e-01 1.06551182e+00 7.04071581e-01 8.08992326e-01 -3.88701230e-01 -4.92873311e-01 2.78293163e-01 1.15899682e+00 2.25814193e-01 2.96773046e-01 -6.36492744e-02 2.60903090e-01 3.37900072e-01 6.44661903e-01 8.77382934e-01 9.72274780e-01 6.61531389e-01 9.22491133e-01 7.92154551e-01 1.86188906e-01 -3.87065500e-01 8.72012079e-01 7.95822978e-01 2.29691584e-02 -8.10084164e-01 -5.68037748e-01 3.23257089e-01 -2.11034322e+00 -1.08143449e+00 2.68705130e-01 2.31168365e+00 7.48902142e-01 2.95118064e-01 -3.10086429e-01 -2.24235117e-01 6.86325073e-01 1.70980573e-01 -9.76432145e-01 8.26087743e-02 1.31002560e-01 -6.98241889e-01 6.27793610e-01 5.96681952e-01 -1.12046802e+00 5.88663638e-01 6.36609936e+00 6.35595262e-01 -9.67472553e-01 6.82079718e-02 4.17143703e-01 -2.66989827e-01 -2.56197393e-01 5.42024523e-02 -1.18906736e+00 8.68761063e-01 1.33590448e+00 2.71034271e-01 3.45448196e-01 7.29628682e-01 3.16272408e-01 -5.35326123e-01 -9.80116665e-01 7.32562304e-01 -2.23641142e-01 -9.83163416e-01 -3.82307321e-01 -7.27967769e-02 9.28942144e-01 3.25524747e-01 2.00832292e-01 5.01286685e-01 9.38074529e-01 -8.55429530e-01 9.92026150e-01 1.48398781e+00 2.57530570e-01 -6.39347970e-01 9.71779227e-01 7.82377601e-01 -1.04596102e+00 -3.80325377e-01 -5.53316176e-01 -4.90714103e-01 7.00581431e-01 1.13669121e+00 -5.06783307e-01 3.51581961e-01 6.87727690e-01 8.38196456e-01 -1.10002987e-01 1.06823647e+00 -3.19562465e-01 4.66778815e-01 -8.91529441e-01 -3.08557868e-01 7.61866793e-02 2.89718304e-02 8.66459846e-01 6.87708557e-01 8.21033716e-01 4.50699404e-02 5.09425938e-01 9.12024379e-01 3.71095359e-01 -8.54827881e-01 -3.64599168e-01 6.75805733e-02 8.68549466e-01 7.30736315e-01 -1.66074619e-01 -4.16602552e-01 -5.12775071e-02 3.71200830e-01 1.74793661e-01 4.06818271e-01 -1.06246829e+00 1.00828834e-01 1.13632369e+00 -4.67013836e-01 2.79718786e-01 -5.17055631e-01 -1.54620886e-01 -1.28666782e+00 -9.89583731e-02 -4.40262109e-01 1.75275207e-01 -6.63355291e-01 -1.44420254e+00 5.97339034e-01 1.60792768e-01 -1.27819204e+00 -5.57922244e-01 -3.71910453e-01 -4.20290053e-01 7.60806561e-01 -1.50678861e+00 -1.01298511e+00 -1.20083608e-01 1.98029593e-01 3.59009355e-01 1.00208089e-01 7.24723041e-01 7.05584437e-02 -8.45429599e-01 1.95683002e-01 3.29518735e-01 -4.07118917e-01 7.58183122e-01 -1.03252780e+00 7.21466169e-02 1.10022807e+00 -2.51807809e-01 5.36981463e-01 1.23692870e+00 -9.52584982e-01 -1.34034061e+00 -1.15933514e+00 4.81206328e-01 -5.19033253e-01 5.38864851e-01 -5.33024035e-02 -6.06338739e-01 6.64579690e-01 1.34340286e-01 -1.03459559e-01 3.23881298e-01 2.45830920e-02 -2.45357499e-01 -3.82216781e-01 -1.08587301e+00 3.76398832e-01 6.61089301e-01 -2.98328459e-01 -4.96735543e-01 -6.04697131e-02 8.11217606e-01 -5.45459092e-01 -9.69449639e-01 5.83890021e-01 8.45891058e-01 -9.44809020e-01 8.24803412e-01 -1.56858325e-01 5.99427382e-03 -7.27491796e-01 -5.33609390e-01 -1.69161117e+00 -2.55358428e-01 -4.39575404e-01 -6.37961507e-01 1.24903357e+00 4.82275903e-01 -7.81873167e-01 3.50873679e-01 9.49093580e-01 -2.00021565e-01 -4.17459786e-01 -1.15232503e+00 -6.87083662e-01 -3.98797214e-01 -1.09006345e+00 8.43313813e-01 1.89055532e-01 -7.33022615e-02 -8.23729783e-02 -9.27383721e-01 8.79287601e-01 9.38523054e-01 1.08085647e-01 6.07649207e-01 -1.15083694e+00 -3.29663724e-01 -2.61283219e-01 -4.49128330e-01 -1.44363344e+00 -1.62340887e-02 -1.08806238e-01 6.90543294e-01 -1.53989446e+00 -8.88274461e-02 -3.06276172e-01 -3.78811002e-01 -6.35605364e-04 -3.07976991e-01 -1.89994678e-01 1.68542117e-01 -1.60017852e-02 -8.84802878e-01 1.08720946e+00 9.95801747e-01 -1.40735209e-01 4.56756614e-02 5.48287749e-01 -4.56588060e-01 6.61495507e-01 8.92084301e-01 -4.70399737e-01 -5.61545789e-01 -5.89174747e-01 5.00415325e-01 2.82113314e-01 3.63098264e-01 -1.38162172e+00 6.60636127e-01 -3.55089664e-01 5.18716156e-01 -9.21381414e-01 8.74668360e-01 -1.13432062e+00 6.01220369e-01 3.94622177e-01 -3.29475254e-01 -4.98818932e-03 2.33181387e-01 1.38741696e+00 -9.66478065e-02 2.77581736e-02 4.34006780e-01 2.81872973e-02 -8.44205260e-01 2.96131372e-01 -7.37838864e-01 -4.44563001e-01 9.86251950e-01 6.97366744e-02 -2.94361353e-01 -8.82857621e-01 -7.46479213e-01 6.01145029e-01 1.54679433e-01 2.83464789e-01 6.08218014e-01 -1.19038808e+00 -5.81959426e-01 3.38070355e-02 -1.15364738e-01 1.12902611e-01 5.51477611e-01 7.89353609e-01 2.09041938e-01 3.97086442e-01 9.37368125e-02 -7.14801490e-01 -5.16738594e-01 4.98519540e-01 5.08793950e-01 -1.51403859e-01 2.30413284e-02 8.48215640e-01 -2.03425273e-01 -4.14292008e-01 5.75873375e-01 -8.96445990e-01 -2.91369051e-01 -5.18568084e-02 6.61170602e-01 4.73016441e-01 -5.11155486e-01 -5.34615219e-01 -3.35178196e-01 5.07126987e-01 3.37093532e-01 -2.62342811e-01 1.02070415e+00 -8.11668456e-01 2.48283297e-01 7.38017917e-01 4.37016606e-01 -3.45531583e-01 -2.08973885e+00 -4.91710067e-01 -2.20461905e-01 -2.34043509e-01 4.70878869e-01 -1.07805860e+00 -1.00206614e+00 8.67134750e-01 8.69493961e-01 1.60306290e-01 9.78111625e-01 -3.97055954e-01 7.28321016e-01 5.20469844e-01 7.06898570e-01 -1.09080374e+00 -4.14562553e-01 8.04684222e-01 6.11823082e-01 -1.54991984e+00 1.58069849e-01 -3.63334604e-02 -6.63748622e-01 1.01912630e+00 7.38979101e-01 1.07822523e-01 9.49872732e-01 5.04041731e-01 -2.14505494e-02 2.79718667e-01 -1.27488863e+00 -2.68961042e-01 3.83960605e-01 7.01629877e-01 -9.55376700e-02 3.62802476e-01 2.94050515e-01 9.26718354e-01 -1.66623205e-01 5.21942973e-02 2.77646571e-01 6.53698564e-01 -6.64242923e-01 -5.94410777e-01 -5.86903334e-01 4.09201950e-01 -2.58670807e-01 7.95734972e-02 3.67756516e-01 1.15025695e-02 2.17782050e-01 1.51497519e+00 2.13715687e-01 -7.16729820e-01 2.08245724e-01 -2.16701925e-01 1.86563328e-01 -6.49885759e-02 -4.65194657e-02 -4.08148840e-02 1.95198432e-01 -6.47004783e-01 -5.92086792e-01 -5.94747722e-01 -9.21021879e-01 -4.17095631e-01 -5.13493121e-01 8.72008502e-02 1.05617619e+00 1.03514087e+00 6.75559461e-01 8.15425992e-01 3.28528225e-01 -1.12774694e+00 -1.14329982e+00 -1.31030345e+00 -3.43525410e-01 -2.19803378e-01 6.14746511e-01 -1.06276095e+00 -3.70796144e-01 -1.82503968e-01]
[6.859510898590088, 3.447544813156128]
c110b62a-7954-4bf8-97a4-41975e3a4aed
representing-and-reasoning-with-qualitative
1401.3899
null
http://arxiv.org/abs/1401.3899v1
http://arxiv.org/pdf/1401.3899v1.pdf
Representing and Reasoning with Qualitative Preferences for Compositional Systems
Many applications, e.g., Web service composition, complex system design, team formation, etc., rely on methods for identifying collections of objects or entities satisfying some functional requirement. Among the collections that satisfy the functional requirement, it is often necessary to identify one or more collections that are optimal with respect to user preferences over a set of attributes that describe the non-functional properties of the collection. We develop a formalism that lets users express the relative importance among attributes and qualitative preferences over the valuations of each attribute. We define a dominance relation that allows us to compare collections of objects in terms of preferences over attributes of the objects that make up the collection. We establish some key properties of the dominance relation. In particular, we show that the dominance relation is a strict partial order when the intra-attribute preference relations are strict partial orders and the relative importance preference relation is an interval order. We provide algorithms that use this dominance relation to identify the set of most preferred collections. We show that under certain conditions, the algorithms are guaranteed to return only (sound), all (complete), or at least one (weakly complete) of the most preferred collections. We present results of simulation experiments comparing the proposed algorithms with respect to (a) the quality of solutions (number of most preferred solutions) produced by the algorithms, and (b) their performance and efficiency. We also explore some interesting conjectures suggested by the results of our experiments that relate the properties of the user preferences, the dominance relation, and the algorithms.
['Vasant Honavar', 'Samik Basu', 'Ganesh Ram Santhanam']
2014-01-16
null
null
null
null
['service-composition']
['miscellaneous']
[ 4.73752571e-03 -1.78771988e-01 -2.33974651e-01 -4.13507760e-01 -2.00868964e-01 -9.16479647e-01 2.87441283e-01 5.75668395e-01 -3.30874711e-01 6.93391383e-01 2.85640866e-01 -5.52201457e-02 -9.37959254e-01 -9.85024989e-01 -4.19070870e-01 -7.62388170e-01 -3.63794327e-01 8.49046350e-01 3.27509463e-01 -3.70963186e-01 3.71666402e-01 5.01099408e-01 -2.14825869e+00 2.48385370e-01 9.87491369e-01 1.17721343e+00 2.42514893e-01 3.35068882e-01 -1.93894073e-01 8.07784796e-02 -2.84026355e-01 -6.34216741e-02 3.39132696e-01 -2.80203551e-01 -1.05775583e+00 3.97480458e-01 -2.70920455e-01 1.91245630e-01 7.58986056e-01 1.27400851e+00 7.52519667e-02 1.92485005e-01 7.76616275e-01 -1.69760942e+00 -4.34471250e-01 6.01637542e-01 -2.82954395e-01 -1.45339310e-01 6.48590088e-01 -3.47396195e-01 1.26663578e+00 -6.19294465e-01 5.51716447e-01 8.99241209e-01 7.34992847e-02 4.38128889e-01 -1.33888543e+00 -3.02946299e-01 2.87968725e-01 2.07116473e-02 -1.56791699e+00 -3.41672182e-01 4.33335483e-01 -4.41787511e-01 4.37156439e-01 9.14150178e-01 5.02850592e-01 1.71460405e-01 -4.25493643e-02 3.90169233e-01 1.00984907e+00 -5.95969081e-01 6.02773368e-01 5.89978456e-01 5.12354732e-01 3.93914849e-01 6.92137182e-01 -3.23993683e-01 -3.32370758e-01 -6.08586431e-01 2.51945883e-01 -1.75580546e-01 -3.85961115e-01 -8.32077503e-01 -9.40206647e-01 7.03013659e-01 -1.86933335e-02 5.03563821e-01 -5.54014444e-01 -3.31808269e-01 4.45561782e-02 3.43741834e-01 5.13978638e-02 5.86072385e-01 -4.35097516e-01 3.13013345e-01 -2.09382102e-01 3.54357928e-01 1.22085047e+00 1.17458999e+00 8.96417558e-01 -5.18806279e-01 1.03769265e-01 6.14976645e-01 2.18712479e-01 1.99326560e-01 1.09040648e-01 -9.78229225e-01 1.25785604e-01 8.68344188e-01 6.64199591e-01 -8.58810782e-01 -3.25335383e-01 -1.80465966e-01 -5.23084581e-01 -3.84400189e-02 3.40181649e-01 1.97310627e-01 -1.30057618e-01 2.12126350e+00 3.30960244e-01 -3.84833008e-01 2.24216253e-01 8.17879379e-01 3.35894197e-01 5.21524727e-01 -4.39763069e-02 -9.70182359e-01 1.14517665e+00 -7.91190490e-02 -5.69593966e-01 4.46469486e-01 4.85702515e-01 -6.09810650e-01 1.22259486e+00 2.37115741e-01 -1.19519901e+00 6.81131892e-03 -7.90440559e-01 5.86688459e-01 -1.87328473e-01 -2.50451922e-01 5.50169289e-01 7.04336941e-01 -1.03036165e+00 4.14807260e-01 -2.32666716e-01 -6.34507239e-01 -5.56355834e-01 7.77062535e-01 -2.70553946e-01 2.77734876e-01 -9.05974150e-01 5.33564568e-01 4.25051570e-01 -3.57352309e-02 -4.37068194e-01 -3.43860447e-01 -4.77376223e-01 2.63614863e-01 5.78077257e-01 -4.59622949e-01 1.04458153e+00 -1.26312113e+00 -9.68880236e-01 6.63469017e-01 1.77248698e-02 -7.03173503e-03 2.82275110e-01 2.76172101e-01 -5.18305779e-01 -4.35267165e-02 2.50763625e-01 4.64680977e-02 -1.40918404e-01 -1.43791151e+00 -1.13849986e+00 -3.24297011e-01 4.00692433e-01 4.09508675e-01 -5.60048342e-01 2.42909119e-01 -3.45619619e-01 4.42988016e-02 3.58841091e-01 -8.23247075e-01 -3.76286596e-01 -2.82808691e-01 -3.01432222e-01 -5.66011310e-01 2.83794254e-01 9.68428254e-02 1.20369697e+00 -2.12981677e+00 2.35322565e-01 9.33450580e-01 -1.50450379e-01 -4.67256814e-01 3.49979685e-03 7.14555085e-01 1.13093898e-01 3.50787640e-01 -1.96584836e-01 2.55666018e-01 2.62479156e-01 3.02215368e-01 -7.41548538e-02 5.87153256e-01 -2.95030534e-01 -1.29761785e-01 -6.64331615e-01 -4.27378416e-01 -1.33632913e-01 -2.27125790e-02 -6.24487638e-01 2.01962575e-01 -2.83377588e-01 -6.57408834e-02 -8.23548853e-01 3.22306335e-01 4.71745491e-01 -6.53049722e-02 7.13518500e-01 -2.80107826e-01 -3.91866684e-01 2.37897202e-01 -1.85019433e+00 7.74883151e-01 -2.17470989e-01 -3.07180554e-01 1.37032047e-01 -7.62268484e-01 8.80073071e-01 4.28990066e-01 9.42553997e-01 -3.90914470e-01 2.63124585e-01 5.38097203e-01 1.85806111e-01 -4.05977845e-01 5.06536603e-01 -1.67440489e-01 -2.31537580e-01 9.31602478e-01 -3.41204971e-01 3.45625252e-01 6.58511281e-01 6.64949045e-02 6.26521766e-01 -3.62442911e-01 5.74925780e-01 -9.99207020e-01 7.82755494e-01 -2.33544692e-01 8.75002682e-01 5.53458214e-01 1.48997501e-01 2.60994405e-01 8.57511938e-01 -4.71977621e-01 -9.47793663e-01 -9.43548441e-01 -1.45742996e-02 1.06242442e+00 5.93705177e-01 -2.80611396e-01 -4.35185134e-01 -3.89419436e-01 -2.82922611e-02 5.78107119e-01 -4.72921312e-01 -1.00598596e-02 -2.04844937e-01 -6.79988325e-01 -1.25127733e-01 2.75053591e-01 2.35404924e-01 -8.11658800e-01 -8.65594625e-01 1.16856679e-01 -2.63696879e-01 -8.14950585e-01 -4.33056563e-01 6.83541223e-02 -6.92160785e-01 -1.13396764e+00 -2.04335392e-01 -7.61399090e-01 9.56385493e-01 1.65746137e-01 9.25890923e-01 2.55538434e-01 4.96457070e-01 3.97921145e-01 -4.31813627e-01 -1.42235577e-01 -1.97021887e-01 -1.26216412e-01 5.44132054e-01 3.89399439e-01 -2.37616268e-03 -6.36657119e-01 -2.32300133e-01 6.85684800e-01 -1.05798578e+00 -1.08627543e-01 2.53587842e-01 2.88387567e-01 7.17920482e-01 5.57609916e-01 4.12949353e-01 -8.11751127e-01 7.89542317e-01 -4.96181041e-01 -8.25825155e-01 7.43326485e-01 -9.13400471e-01 4.53021318e-01 4.70827073e-01 -3.10382247e-01 -9.72608209e-01 1.09933712e-01 2.95515776e-01 3.05203736e-01 -7.52567453e-03 6.14533901e-01 -8.35833907e-01 1.30578920e-01 3.73091251e-01 5.90202138e-02 -3.61449212e-01 -4.32781518e-01 8.66991580e-02 6.76611066e-01 4.00598675e-01 -1.12052798e+00 4.29645449e-01 4.30048943e-01 1.99136958e-01 -7.24300742e-01 -4.03178155e-01 -4.81155843e-01 -4.13856387e-01 -2.10678473e-01 4.83493626e-01 -9.44049135e-02 -1.22439444e+00 -1.48781732e-01 -7.79193461e-01 3.57830882e-01 -1.67013615e-01 3.97516310e-01 -6.93101645e-01 3.11281413e-01 -1.29141077e-01 -1.31957948e+00 -1.88679725e-01 -1.11868238e+00 3.33279788e-01 1.24079525e-01 -3.66847992e-01 -5.93530297e-01 -1.65429384e-01 -2.41889775e-01 1.48364425e-01 2.04341322e-01 1.33230960e+00 -9.69656408e-01 -5.01771271e-01 -6.52996823e-03 1.16431460e-01 -3.99739780e-02 3.07075262e-01 2.25623161e-01 -2.37289324e-01 -1.77089706e-01 -8.68401453e-02 2.51385957e-01 2.46675849e-01 2.83839762e-01 7.25028574e-01 -8.78229082e-01 -3.85734707e-01 2.64352709e-01 1.57574391e+00 7.27041721e-01 2.66646385e-01 3.82281035e-01 9.24996138e-02 1.15102863e+00 6.92703485e-01 6.36094511e-01 3.42939883e-01 7.99678564e-01 4.33101505e-01 3.75431001e-01 8.65499377e-01 1.76008761e-01 1.81469232e-01 6.94202006e-01 -2.57200271e-01 -3.97260040e-01 -7.65069902e-01 7.60805011e-01 -2.04370904e+00 -7.72004664e-01 -2.41368428e-01 2.79762387e+00 7.75687873e-01 2.75849774e-02 5.74159384e-01 3.92636627e-01 9.20120299e-01 -4.34948653e-01 -1.09735921e-01 -7.65140176e-01 -1.41025305e-01 -2.22828373e-01 4.55164015e-01 7.33734369e-01 -6.71108902e-01 1.60523057e-01 6.14815998e+00 2.57102847e-01 -6.87485456e-01 -1.57715142e-01 3.17176700e-01 1.28568783e-01 -8.91753256e-01 1.51056871e-01 -5.62667131e-01 3.65686834e-01 5.20920873e-01 -6.93713784e-01 3.68886381e-01 7.14889407e-01 -2.01920141e-02 -2.40356192e-01 -1.35253656e+00 3.77600521e-01 -2.58945882e-01 -1.06994593e+00 -2.93690320e-02 3.86818945e-01 7.50516474e-01 -6.84835434e-01 -2.90928539e-02 -4.59059536e-01 4.53088313e-01 -5.79592228e-01 8.82343888e-01 3.57719839e-01 4.38027352e-01 -1.15580761e+00 7.28429496e-01 6.08966351e-01 -1.25444794e+00 -2.40788966e-01 -2.09070608e-01 -1.78270340e-01 -2.21155286e-02 4.90827680e-01 -5.28787494e-01 6.79831922e-01 7.65897572e-01 -9.41351429e-02 9.72568616e-02 1.24145472e+00 8.69046971e-02 3.56104895e-02 -5.44443667e-01 -3.03806186e-01 -1.35800578e-02 -5.43346226e-01 4.15872782e-01 7.51399815e-01 4.50836778e-01 4.98478055e-01 2.62897193e-01 7.25700855e-01 1.13856278e-01 4.25701618e-01 -3.69298071e-01 1.29622638e-01 6.62587106e-01 9.72488880e-01 -9.10226524e-01 -2.11113542e-01 -2.61944801e-01 3.44715416e-01 -7.81587884e-02 4.36978608e-01 -4.22898382e-01 -2.54598558e-01 8.62892687e-01 2.08565384e-01 -1.56291381e-01 1.01841167e-01 -2.77500063e-01 -7.41710842e-01 2.54799604e-01 -6.52433634e-01 8.89250398e-01 -3.62833291e-01 -1.13815093e+00 6.56631649e-01 2.49547899e-01 -1.14451635e+00 -2.41435245e-01 -2.79236853e-01 -3.44224542e-01 8.46903324e-01 -1.01550245e+00 -4.82037485e-01 3.99897322e-02 6.11383379e-01 2.07791803e-03 1.43252630e-02 9.31062579e-01 7.68708363e-02 -2.10895732e-01 1.20776586e-01 9.90228914e-03 -3.30346942e-01 1.46011099e-01 -1.17503715e+00 -5.33350587e-01 7.45058835e-01 -1.33509576e-01 7.82369912e-01 1.11897397e+00 -4.43212450e-01 -1.12477434e+00 -5.91033101e-01 1.44531882e+00 -9.48120467e-03 2.42486119e-01 -1.50584534e-01 -6.62779570e-01 6.24404967e-01 7.92161748e-02 -2.90873528e-01 7.83855021e-01 3.41996372e-01 -1.97088510e-01 -5.91314197e-01 -1.35460937e+00 5.13127327e-01 8.23195338e-01 -1.35013714e-01 -3.14762503e-01 2.39091605e-01 5.22932291e-01 1.74958766e-01 -7.12781668e-01 5.29779971e-01 9.31340814e-01 -1.09423101e+00 6.31021798e-01 -6.93203628e-01 -3.13489698e-02 -5.49406648e-01 -6.80744886e-01 -9.62684929e-01 -5.62678516e-01 -4.41230744e-01 5.18065333e-01 1.34887719e+00 5.48453271e-01 -7.22315073e-01 5.15429378e-01 1.07243776e+00 5.92331029e-02 -5.82956195e-01 -7.68619776e-01 -1.03587151e+00 -3.87119651e-01 -8.50070938e-02 1.15456104e+00 8.70349228e-01 3.25364172e-01 2.43893102e-01 -1.74953654e-01 2.96205521e-01 5.36530852e-01 6.27779067e-01 1.66633829e-01 -1.67050779e+00 -3.15268159e-01 -4.91128892e-01 -1.48579210e-01 -3.32889616e-01 -1.70226358e-02 -6.82309568e-01 5.93862869e-02 -1.72977567e+00 3.41081053e-01 -9.65019286e-01 -6.22901142e-01 2.90965766e-01 3.91753793e-01 -2.66179979e-01 1.34407297e-01 3.39922637e-01 -6.80986941e-01 5.09846210e-02 7.18945026e-01 3.33686590e-01 -5.49850762e-01 3.84083092e-01 -9.64886606e-01 7.52220452e-01 7.77506173e-01 -4.19907570e-01 -4.53878999e-01 -2.06611291e-01 6.92156136e-01 3.17395180e-01 -2.32143089e-01 -6.45594001e-01 1.67505786e-01 -8.79097700e-01 -1.75917044e-01 -2.81566471e-01 1.14463083e-01 -1.23836267e+00 7.43837118e-01 5.13749838e-01 -6.19548500e-01 2.14004025e-01 -3.70662212e-01 -2.70963483e-03 4.68228012e-02 -4.42743421e-01 5.25720596e-01 5.56578860e-02 -6.06031001e-01 8.68265703e-02 -2.98912823e-01 -3.16868812e-01 1.21171081e+00 -2.58803129e-01 -6.45910874e-02 -5.28358161e-01 -5.50728023e-01 4.04197067e-01 6.45189047e-01 1.42835587e-01 2.11429030e-01 -1.38396180e+00 -5.38206339e-01 6.10214891e-03 2.94250876e-01 -4.27226871e-01 -2.47858703e-01 8.07973683e-01 -1.45477623e-01 4.05995309e-01 -5.00658154e-01 -2.88124233e-01 -1.44975495e+00 7.16297746e-01 1.49018049e-01 3.45117934e-02 5.76556241e-03 4.92554814e-01 4.22972351e-01 -1.96603864e-01 2.16877490e-01 -1.68460578e-01 -3.77150327e-01 7.41792396e-02 2.81340450e-01 5.46434522e-01 -4.83584329e-02 -7.26868689e-01 -7.40813196e-01 4.80134100e-01 3.82448196e-01 -4.64431465e-01 1.32291615e+00 -1.71787083e-01 -5.67488968e-01 2.28572309e-01 7.24395573e-01 2.19072819e-01 -6.23151064e-01 -2.38235474e-01 2.70417243e-01 -3.97213161e-01 -4.70610887e-01 -6.73587024e-01 -8.87046576e-01 2.04022706e-01 2.21065715e-01 7.88266361e-01 1.68317521e+00 1.57024503e-01 6.42111674e-02 3.80573392e-01 6.84687018e-01 -1.03114259e+00 -4.62848186e-01 1.95154011e-01 7.81182826e-01 -4.18282390e-01 -8.91204104e-02 -7.21558928e-01 -6.34662926e-01 9.92186308e-01 4.30640489e-01 8.16754065e-03 5.72112978e-01 3.71641576e-01 -3.53736848e-01 1.28444090e-01 -1.02043390e+00 -6.00978315e-01 2.67437905e-01 4.79719222e-01 3.81672204e-01 4.43130583e-01 -1.24240601e+00 8.84152114e-01 -1.49331689e-01 -2.31174901e-01 6.38139904e-01 7.48708606e-01 -8.81111562e-01 -1.29673409e+00 -4.90546644e-01 2.91470706e-01 -2.49043167e-01 3.21032137e-01 -6.03866398e-01 6.45023584e-01 3.05598408e-01 1.24251807e+00 9.71535295e-02 -3.08918506e-01 5.29851794e-01 -1.42967969e-01 4.14781392e-01 -4.04632956e-01 -3.89356494e-01 2.61877388e-01 3.73461366e-01 -3.14355105e-01 -4.83251959e-01 -7.15053916e-01 -1.39662504e+00 -3.52384537e-01 -4.14414078e-01 8.78404081e-01 3.85616839e-01 8.93186688e-01 7.66332820e-02 -2.42588110e-02 8.51250291e-01 7.77240377e-03 -5.29437363e-01 -4.78375822e-01 -1.04941523e+00 3.70311320e-01 7.05271028e-03 -5.49999714e-01 -1.72373638e-01 -8.24192762e-02]
[7.962146282196045, 5.124330997467041]
f8d7fa68-0c12-4326-b149-d68fb1a27efe
neural-representations-of-cryo-em-maps-and-a
2104.01468
null
https://arxiv.org/abs/2104.01468v1
https://arxiv.org/pdf/2104.01468v1.pdf
Neural Representations of Cryo-EM Maps and a Graph-Based Interpretation
Advances in imagery at atomic and near-atomic resolution, such as cryogenic electron microscopy (cryo-EM), have led to an influx of high resolution images of proteins and other macromolecular structures to data banks worldwide. Producing a protein structure from the discrete voxel grid data of cryo-EM maps involves interpolation into the continuous spatial domain. We present a novel data format called the neural cryo-EM map, which is formed from a set of neural networks that accurately parameterize cryo-EM maps and provide native, spatially continuous data for density and gradient. As a case study of this data format, we create graph-based interpretations of high resolution experimental cryo-EM maps. Normalized cryo-EM map values interpolated using the non-linear neural cryo-EM format are more accurate, consistently scoring less than 0.01 mean absolute error, than a conventional tri-linear interpolation, which scores up to 0.12 mean absolute error. Our graph-based interpretations of 115 experimental cryo-EM maps from 1.15 to 4.0 Angstrom resolution provide high coverage of the underlying amino acid residue locations, while accuracy of nodes is correlated with resolution. The nodes of graphs created from atomic resolution maps (higher than 1.6 Angstroms) provide greater than 99% residue coverage as well as 85% full atomic coverage with a mean of than 0.19 Angstrom root mean squared deviation (RMSD). Other graphs have a mean 84% residue coverage with less specificity of the nodes due to experimental noise and differences of density context at lower resolutions. This work may be generalized for transforming any 3D grid-based data format into non-linear, continuous, and differentiable format for the downstream geometric deep learning applications.
['Dong Si', 'Nathan Ranno']
2021-04-03
null
null
null
null
['cryogenic-electron-microscopy-cryo-em']
['computer-vision']
[ 2.36412540e-01 3.48057359e-01 2.40867466e-01 -5.31708658e-01 -8.80725920e-01 -2.52235681e-01 1.78146109e-01 4.62009817e-01 -6.79915428e-01 1.38258970e+00 -1.64683059e-01 -5.90524614e-01 7.22376630e-02 -7.69123137e-01 -1.12855649e+00 -9.66063857e-01 -4.51532006e-01 1.01536882e+00 1.91743094e-02 -9.41745192e-02 1.19307272e-01 6.90089047e-01 -9.22605217e-01 4.26090270e-01 8.96276891e-01 8.72493505e-01 6.69268191e-01 5.07834554e-01 -1.31591991e-01 2.79884458e-01 -5.02975881e-01 2.83983082e-01 -1.66952740e-02 -2.25573167e-01 -7.75758505e-01 -3.74761939e-01 8.24126482e-01 -1.64872408e-01 2.68291473e-01 1.02559221e+00 3.28381866e-01 -7.66181247e-03 8.65935028e-01 -4.84762758e-01 -1.06127679e+00 -6.99425163e-03 -6.62023127e-01 1.17928460e-01 3.20403039e-01 3.24763894e-01 7.20291734e-01 -8.96445811e-01 1.12193632e+00 1.02353513e+00 1.00249481e+00 3.53988886e-01 -1.90752423e+00 -3.47414941e-01 -8.19283500e-02 9.87358987e-02 -1.37557673e+00 1.30352914e-01 4.24826950e-01 -5.37801504e-01 1.68467212e+00 -3.68451290e-02 6.43731773e-01 7.05845773e-01 1.09644437e+00 -4.58546132e-01 1.25646901e+00 -2.20985323e-01 4.06541020e-01 -4.83387619e-01 3.92066874e-02 6.58957839e-01 1.91392437e-01 -2.60599524e-01 -1.44167230e-01 -4.63739097e-01 1.14659762e+00 -1.48435794e-02 -2.76043743e-01 -4.60657090e-01 -1.08258021e+00 8.50908875e-01 8.73312414e-01 -4.88745607e-02 -7.88545012e-01 5.40898647e-03 1.61557332e-01 5.25028147e-02 4.88781452e-01 8.45753491e-01 -4.98073190e-01 1.32462338e-01 -9.45097089e-01 4.79837328e-01 4.05449569e-01 7.38207638e-01 9.96954799e-01 -3.43782641e-02 6.81919694e-01 6.33275032e-01 1.18909635e-01 1.13595493e-01 2.38993019e-01 -1.01085150e+00 1.66146234e-01 3.88363957e-01 2.23366335e-01 -6.68395698e-01 -9.50679719e-01 1.56762168e-01 -1.15919614e+00 7.31567740e-01 5.95107257e-01 -1.74256340e-02 -1.20779192e+00 1.67004311e+00 3.69988084e-01 -3.21416467e-01 -2.53416538e-01 1.15133727e+00 7.17070997e-01 7.74971545e-01 2.82425463e-01 -4.22228128e-01 1.20577896e+00 -2.41142407e-01 -4.46303517e-01 2.77708083e-01 6.55529261e-01 -5.35508871e-01 1.12295818e+00 4.08255011e-01 -1.10976517e+00 -4.64725673e-01 -1.32131755e+00 -4.19946194e-01 -4.93808210e-01 -4.11761701e-01 4.11238283e-01 6.39759749e-02 -1.27025867e+00 1.08198738e+00 -1.05294168e+00 -1.17044978e-01 4.22685325e-01 6.07264698e-01 -7.46279001e-01 4.01155442e-01 -1.04439521e+00 1.15735078e+00 5.16864419e-01 -2.67548144e-01 -3.81921321e-01 -1.08547676e+00 -7.24144578e-01 -8.49352702e-02 -3.08695912e-01 -5.72038710e-01 6.27869248e-01 -6.50419235e-01 -8.98514330e-01 9.35213387e-01 -3.47980350e-01 -7.27475882e-01 1.37801066e-01 1.90037310e-01 -1.02004163e-01 2.81296164e-01 -6.65808022e-02 8.59175861e-01 8.56410265e-02 -1.19637370e+00 -4.38530892e-02 -6.41074240e-01 -1.95269734e-01 2.00733855e-01 4.35217112e-01 -2.23648161e-01 4.92502242e-01 6.83643520e-02 4.95468050e-01 -4.25146580e-01 -5.13325989e-01 7.46879727e-03 -2.76290122e-02 2.09078640e-01 8.23919415e-01 -9.48272705e-01 5.78012407e-01 -1.33213162e+00 2.59470969e-01 2.36984387e-01 7.67949820e-01 -6.19420633e-02 2.00244591e-01 3.36921573e-01 -3.97697926e-01 9.74007100e-02 -4.49677229e-01 4.39307988e-02 -4.94143426e-01 5.08955307e-02 8.48245174e-02 8.26291203e-01 3.65916222e-01 9.36942875e-01 -6.45282805e-01 -3.98328692e-01 3.10519785e-01 9.20349658e-01 -4.89022136e-01 2.68066544e-02 -3.84734571e-01 6.86759770e-01 -5.19823050e-03 4.74467307e-01 1.06685293e+00 -6.07632935e-01 5.26788294e-01 -4.05510217e-01 -4.00985539e-01 4.81405139e-01 -5.73262870e-01 1.66248548e+00 2.03381851e-03 3.90501410e-01 3.83827776e-01 -6.64047003e-01 1.22163320e+00 -3.26537155e-02 6.63983166e-01 -9.09711957e-01 -3.45108598e-01 -3.38243097e-02 2.77442068e-01 1.35075316e-01 6.88720584e-01 -6.46334350e-01 3.64489436e-01 2.92286396e-01 1.85905516e-01 -5.60926944e-02 -1.17405780e-01 1.53194621e-01 7.73727775e-01 4.63012785e-01 2.85340786e-01 -6.48552895e-01 1.17764585e-01 5.08592904e-01 3.80659819e-01 3.12679380e-01 -4.72595319e-02 9.13578451e-01 5.11506379e-01 -9.69946861e-01 -2.19200492e+00 -1.19531178e+00 -7.54130900e-01 6.03073657e-01 -1.43814432e-02 -4.08740193e-01 -9.21275496e-01 1.17315259e-02 7.68321604e-02 1.16606936e-01 -5.80031514e-01 1.47234306e-01 -6.77515626e-01 -1.11705172e+00 3.05622309e-01 3.93598199e-01 7.33628348e-02 -1.22160304e+00 -5.98776102e-01 3.84746015e-01 1.28161088e-01 -8.78632665e-01 -1.45879760e-01 8.06892157e-01 -1.10107613e+00 -9.37927783e-01 -7.13241994e-01 -5.67716181e-01 8.21435094e-01 -1.35299176e-01 1.27614427e+00 3.20290811e-02 -4.88715142e-01 -4.07075524e-01 7.50395879e-02 -3.91651802e-02 -3.86011869e-01 5.61520681e-02 4.85867172e-01 -7.55706251e-01 6.51982963e-01 -8.22029114e-01 -6.21916533e-01 1.48162603e-01 -6.28059268e-01 3.47748697e-01 1.77928567e-01 1.08801270e+00 1.41441500e+00 -5.50945163e-01 5.66798389e-01 -1.00163555e+00 6.99739516e-01 -3.79272014e-01 -6.76349282e-01 -6.50154054e-02 -8.01432967e-01 2.17961162e-01 1.09288836e+00 -2.31128380e-01 -8.10201347e-01 1.68520257e-01 -3.48612905e-01 -3.65121365e-01 -6.02200508e-01 4.29058373e-01 1.12718336e-01 -2.43167937e-01 9.80368674e-01 8.97720680e-02 3.01180452e-01 -3.50493371e-01 1.39534131e-01 3.25448304e-01 7.14134514e-01 -9.06786621e-01 2.03628764e-01 4.59606260e-01 3.77974302e-01 -9.84599531e-01 -1.60213202e-01 -7.02653006e-02 -1.22846723e+00 5.54245114e-02 1.16463840e+00 -5.83945930e-01 -9.43837345e-01 1.45356372e-01 -1.14954531e+00 -4.50020909e-01 6.23358637e-02 3.54907691e-01 -8.85668218e-01 7.15421081e-01 -9.01795864e-01 -5.67237616e-01 -6.18926942e-01 -1.26689327e+00 9.20687020e-01 3.86539213e-02 -5.31662226e-01 -1.01453483e+00 1.18564203e-01 3.96975726e-02 3.49427521e-01 6.45450652e-01 1.34069371e+00 -2.46881947e-01 -4.46066111e-01 1.93603963e-01 -2.93203235e-01 -8.69351998e-02 1.49231538e-01 -6.62431642e-02 -7.61019588e-01 -3.20566446e-01 -1.20388806e-01 -4.22849387e-01 7.03136027e-01 8.84482086e-01 1.08855689e+00 -1.13263294e-01 -2.28970245e-01 1.04517138e+00 1.55138731e+00 4.36058342e-01 8.78501356e-01 5.83160162e-01 8.10510516e-01 4.78408515e-01 4.89867806e-01 2.03327000e-01 -1.18666235e-02 6.46889091e-01 6.16042137e-01 -4.91921365e-01 3.36592436e-01 -1.80595636e-01 -1.60878852e-01 2.12485537e-01 -6.94816351e-01 4.20809716e-01 -1.00482941e+00 -9.42382030e-03 -1.51924121e+00 -1.11520231e+00 -4.41267043e-01 2.20973229e+00 1.08402693e+00 7.67395496e-02 1.89220190e-01 -4.00765538e-01 6.38933241e-01 1.61683299e-02 -9.86895382e-01 -6.42293632e-01 -3.00206929e-01 3.94254684e-01 8.09007883e-01 7.47341335e-01 -8.40240657e-01 8.13409925e-01 7.05561161e+00 3.32001001e-01 -1.16943157e+00 -2.33824179e-01 9.21481013e-01 -1.15911260e-01 -2.34468639e-01 -1.80433050e-01 -7.59029627e-01 5.60972154e-01 1.34678912e+00 -5.39028086e-02 5.16402125e-01 8.16111565e-01 3.71684968e-01 -1.21911734e-01 -9.32422459e-01 9.51367855e-01 -4.95175689e-01 -1.96477735e+00 5.77710941e-02 5.62697411e-01 5.04678249e-01 3.70655388e-01 -4.27357815e-02 -3.44476134e-01 3.90509576e-01 -1.62182140e+00 3.09032708e-01 5.22906125e-01 1.45756567e+00 -1.14355373e+00 5.87270796e-01 3.06958050e-01 -1.04136693e+00 7.15649724e-01 -1.11862206e+00 -1.68943465e-01 4.44420397e-01 5.12024105e-01 -1.08802867e+00 1.95079044e-01 8.46746743e-01 3.29812139e-01 6.07713312e-02 3.17374408e-01 4.42745298e-01 3.59002613e-02 -5.06324112e-01 7.94226602e-02 3.70602220e-01 -9.50962842e-01 -4.68799472e-02 1.18697584e+00 -8.44767392e-02 2.13453293e-01 -7.62005802e-03 1.48523283e+00 3.58746648e-02 -9.23518687e-02 -6.00362778e-01 1.93578213e-01 3.98854822e-01 1.21212816e+00 -5.59245348e-01 -1.92436486e-01 -2.54270524e-01 7.33013868e-01 8.09329569e-01 5.46199858e-01 -8.47300172e-01 -3.16950738e-01 1.13810575e+00 5.49257278e-01 1.08770438e-01 -6.52363062e-01 -4.10292059e-01 -6.78587377e-01 -1.58655807e-01 -6.52380049e-01 -6.86395243e-02 -1.08751500e+00 -1.27561808e+00 7.31283128e-01 -1.33708436e-02 -4.37857836e-01 -2.47112319e-01 -1.07244778e+00 -3.92668217e-01 1.68365264e+00 -1.09631550e+00 -6.85750127e-01 -1.02714248e-01 4.67226654e-02 4.84310873e-02 5.45534082e-02 1.24788785e+00 -6.48571402e-02 -4.02199998e-02 2.65636325e-01 4.62735593e-01 -2.52953142e-01 5.31457782e-01 -1.42161071e+00 9.53318059e-01 1.80453748e-01 -3.97745430e-01 1.01975298e+00 8.87957275e-01 -9.86542165e-01 -1.26758552e+00 -1.07347465e+00 5.38069069e-01 -3.90642375e-01 4.83449399e-01 -3.43885899e-01 -1.58658409e+00 7.50818729e-01 -3.05343587e-02 -6.76178038e-02 5.75907767e-01 3.65774371e-02 -2.49641374e-01 5.11015475e-01 -1.77042794e+00 3.48741502e-01 8.66672277e-01 -6.87414229e-01 -3.79213542e-01 3.84145826e-01 6.46914482e-01 -6.50102377e-01 -1.52591205e+00 3.09209973e-01 5.78690052e-01 -1.08556938e+00 1.23198771e+00 -1.01108110e+00 4.85836476e-01 -3.47791433e-01 -9.00135115e-02 -1.21843266e+00 -7.42573202e-01 -6.81355596e-02 1.17045335e-01 2.28926599e-01 5.60581267e-01 -8.31893921e-01 1.09508371e+00 7.40533352e-01 -3.22625786e-01 -1.18839037e+00 -1.24029458e+00 -3.96441072e-01 6.06105387e-01 9.56714228e-02 5.27570903e-01 1.02720487e+00 2.60036170e-01 2.52633482e-01 -5.23033272e-03 1.79342031e-02 8.65140676e-01 -9.33679789e-02 4.44390863e-01 -1.28130579e+00 -7.79947564e-02 3.95658426e-02 -5.79455793e-01 -1.09481764e+00 9.81602669e-02 -8.39553297e-01 -2.12453514e-01 -1.67016792e+00 2.94497728e-01 -2.50455648e-01 -6.90159723e-02 2.76525587e-01 3.50506186e-01 3.14909011e-01 -2.42269203e-01 3.41615587e-01 -1.59661517e-01 3.03489387e-01 1.33174777e+00 8.44631717e-02 -1.21011376e-01 -9.61833417e-01 -2.61916459e-01 7.09661067e-01 9.27438855e-01 -2.45872051e-01 -9.06185620e-03 -9.22921374e-02 1.28445476e-01 4.09950837e-02 2.67131358e-01 -8.97871673e-01 -6.05984777e-02 -3.38513583e-01 1.01128709e+00 -9.07395005e-01 5.89435339e-01 -6.88464105e-01 5.42363763e-01 2.50856429e-01 -1.27623454e-01 4.89141911e-01 2.17525393e-01 1.50111839e-01 1.91627100e-01 1.85383379e-01 1.27915573e+00 -6.02298975e-01 -3.83166820e-01 3.50372523e-01 -3.74728352e-01 -2.75562197e-01 7.03682899e-01 -6.63735032e-01 -6.66235149e-01 -2.45560274e-01 -1.03452873e+00 -1.28908366e-01 1.18835950e+00 -4.15874600e-01 8.45460236e-01 -1.06084764e+00 -3.50277692e-01 3.84247899e-01 -1.86445102e-01 3.28029364e-01 2.46220320e-01 7.27498889e-01 -1.21273446e+00 5.74285448e-01 -8.27696502e-01 -9.27562654e-01 -1.21358240e+00 4.21580970e-01 7.60260284e-01 -3.49523984e-02 -9.84779179e-01 3.68202269e-01 3.46162409e-01 -5.45224011e-01 -3.11597139e-01 -4.97366160e-01 1.34402722e-01 -6.30891740e-01 5.97398162e-01 1.56173125e-01 1.67767629e-01 -8.79586518e-01 -2.52854586e-01 5.48975468e-01 -3.08386922e-01 2.67459512e-01 1.68294740e+00 1.19864985e-01 -2.77007759e-01 2.67634451e-01 1.04733205e+00 -6.27377927e-01 -1.67458785e+00 2.95139015e-01 -3.58803689e-01 -9.24205221e-03 -1.64293692e-01 -6.67207062e-01 -4.73136276e-01 7.33014822e-01 5.95466018e-01 -6.51956629e-03 5.96677363e-01 1.37063742e-01 5.41198909e-01 5.60124755e-01 7.26942003e-01 -8.76808882e-01 -6.18824780e-01 7.38662779e-01 8.23736966e-01 -9.86376762e-01 2.82502115e-01 -1.67588085e-01 -2.51071185e-01 1.28342116e+00 6.98240399e-01 -2.68714845e-01 4.25596945e-02 6.67246103e-01 8.38323385e-02 -4.73525375e-01 -6.79088056e-01 4.39895838e-01 -1.29514113e-01 1.12376952e+00 9.87594962e-01 8.19844231e-02 -1.53199703e-01 3.15063238e-01 -4.45199847e-01 -2.41767213e-01 3.40839565e-01 6.94944859e-01 -8.71668994e-01 -8.73596549e-01 -5.92294872e-01 5.23865283e-01 -2.94863939e-01 -2.89295077e-01 -5.15349746e-01 7.27287889e-01 -2.38519266e-01 3.24290663e-01 5.57121336e-01 -2.26401180e-01 8.21333006e-02 3.44015837e-01 7.35707223e-01 -4.08087343e-01 -2.98608989e-01 -8.94129872e-02 -1.80155039e-02 -5.54614067e-01 -3.29280972e-01 -1.59329146e-01 -2.24159384e+00 -9.08341885e-01 -1.39880955e-01 3.04813534e-01 8.36666167e-01 4.71784383e-01 5.73729575e-01 3.69590461e-01 -1.34412497e-01 -1.33544481e+00 -2.05365598e-01 -1.18578982e+00 -8.28294277e-01 4.58579481e-01 3.09436917e-01 -4.74463075e-01 -3.13529164e-01 1.30084753e-01]
[13.325600624084473, -3.086984157562256]
802d391e-8a9a-4d21-8218-5ac11c3b5d9a
discrete-contrastive-diffusion-for-cross
2206.07771
null
https://arxiv.org/abs/2206.07771v2
https://arxiv.org/pdf/2206.07771v2.pdf
Discrete Contrastive Diffusion for Cross-Modal Music and Image Generation
Diffusion probabilistic models (DPMs) have become a popular approach to conditional generation, due to their promising results and support for cross-modal synthesis. A key desideratum in conditional synthesis is to achieve high correspondence between the conditioning input and generated output. Most existing methods learn such relationships implicitly, by incorporating the prior into the variational lower bound. In this work, we take a different route -- we explicitly enhance input-output connections by maximizing their mutual information. To this end, we introduce a Conditional Discrete Contrastive Diffusion (CDCD) loss and design two contrastive diffusion mechanisms to effectively incorporate it into the denoising process, combining the diffusion training and contrastive learning for the first time by connecting it with the conventional variational objectives. We demonstrate the efficacy of our approach in evaluations with diverse multimodal conditional synthesis tasks: dance-to-music generation, text-to-image synthesis, as well as class-conditioned image synthesis. On each, we enhance the input-output correspondence and achieve higher or competitive general synthesis quality. Furthermore, the proposed approach improves the convergence of diffusion models, reducing the number of required diffusion steps by more than 35% on two benchmarks, significantly increasing the inference speed.
['Yan Yan', 'Sergey Tulyakov', 'Jian Ren', 'Kyle Olszewski', 'Yu Wu', 'Ye Zhu']
2022-06-15
null
null
null
null
['music-generation', 'music-generation']
['audio', 'music']
[ 3.07171792e-01 -1.07796639e-01 -4.99342605e-02 -2.74644256e-01 -1.09289730e+00 -4.69501406e-01 9.24915135e-01 -1.36446252e-01 -3.08254510e-01 6.46363318e-01 3.46337646e-01 3.09940688e-02 -9.68218148e-02 -8.42790365e-01 -7.61055350e-01 -9.64538276e-01 4.22827214e-01 3.31172556e-01 2.27429777e-01 -4.62022908e-02 2.33445510e-01 3.28038901e-01 -1.21062279e+00 3.49488080e-01 1.18702948e+00 8.78079593e-01 3.27594101e-01 6.58958972e-01 -7.56068435e-03 8.05977225e-01 -5.42318225e-01 -7.00207651e-01 -2.70620827e-02 -9.04328048e-01 -3.95638406e-01 1.51332840e-01 3.39360774e-01 -2.37005264e-01 -1.85100645e-01 1.14469564e+00 6.51608109e-01 1.90790489e-01 1.08724344e+00 -1.09620082e+00 -8.02366138e-01 8.12099457e-01 -8.35574746e-01 -1.47813290e-01 1.34601086e-01 2.92260051e-01 1.27001786e+00 -9.73279893e-01 6.37619913e-01 1.44674075e+00 4.49800342e-01 5.66010058e-01 -1.60517621e+00 -5.84084690e-01 1.47945091e-01 -1.00089656e-02 -1.39202249e+00 -4.87258792e-01 8.50464225e-01 -4.34293389e-01 5.24876654e-01 1.42449319e-01 3.92261952e-01 1.23690438e+00 -1.04485219e-02 1.05413651e+00 1.09104276e+00 -4.10173088e-01 2.22635239e-01 5.41806966e-02 -3.59489083e-01 6.52661204e-01 -1.70061812e-01 3.09124496e-03 -7.18457937e-01 1.18702225e-01 8.14307511e-01 -3.30503196e-01 -3.89532447e-01 -2.62476690e-02 -1.23598695e+00 8.74194324e-01 4.51474696e-01 3.87051910e-01 -3.61202657e-01 4.47367996e-01 7.33985156e-02 6.05137907e-02 7.03944623e-01 2.62112439e-01 4.75451685e-02 -6.77792504e-02 -1.30104470e+00 3.41929615e-01 6.92737877e-01 7.51674116e-01 5.25907934e-01 1.19199134e-01 -7.23019898e-01 9.18491364e-01 5.38886607e-01 7.71352649e-01 1.86036408e-01 -1.17935061e+00 5.52531183e-01 1.13143042e-01 -3.34261134e-02 -1.06149459e+00 8.45482200e-02 -5.20933807e-01 -1.14679229e+00 2.42420390e-01 3.99857372e-01 -1.60297319e-01 -8.85114014e-01 2.02724290e+00 1.96585268e-01 2.72573858e-01 -5.83708808e-02 8.30245972e-01 4.16361541e-01 1.02790415e+00 8.78050029e-02 -2.51345485e-01 1.00797069e+00 -1.02935588e+00 -9.82577920e-01 1.43005282e-01 2.50095487e-01 -1.04589927e+00 1.14405882e+00 5.91410220e-01 -1.38669670e+00 -5.77426255e-01 -1.05628574e+00 -5.76158985e-02 1.45014063e-01 3.27895731e-01 3.50813240e-01 6.22086704e-01 -9.00346518e-01 9.35024977e-01 -1.04539657e+00 1.85348466e-01 3.97004932e-01 1.81169167e-01 2.16843095e-02 -1.99688286e-01 -9.97468650e-01 6.12804055e-01 6.05248846e-02 1.19889244e-01 -9.66923773e-01 -7.86902785e-01 -6.15839124e-01 1.03450775e-01 1.34502277e-01 -9.46100235e-01 9.33463335e-01 -8.50538969e-01 -1.95085454e+00 4.82947290e-01 -7.65964985e-02 -2.82326818e-01 8.62724841e-01 -3.39554995e-01 -4.91565131e-02 1.04264893e-01 -1.41602391e-02 9.54336047e-01 1.18992996e+00 -1.44218624e+00 -3.28695387e-01 -1.43686935e-01 -3.30525786e-02 2.85074502e-01 -4.35544848e-01 -3.51002067e-01 -7.16854692e-01 -1.13345230e+00 7.48961493e-02 -8.93216312e-01 -1.31415918e-01 1.74729139e-01 -4.87638921e-01 -6.44455552e-02 6.05648696e-01 -7.43676901e-01 1.15899158e+00 -2.30963182e+00 9.17676568e-01 2.18357816e-01 1.02159970e-01 -5.65466397e-02 -1.52779758e-01 2.83375233e-01 3.09349507e-01 -2.99697798e-02 -6.82434738e-01 -8.96867812e-01 2.83879220e-01 2.92764336e-01 -4.18197483e-01 3.22910100e-01 4.36650008e-01 8.96011055e-01 -7.51378775e-01 -5.43465316e-01 1.41561836e-01 8.36135626e-01 -9.41216409e-01 2.04961464e-01 -5.06373882e-01 6.70093536e-01 -1.72625586e-01 2.41591588e-01 6.23857677e-01 -2.08994135e-01 2.22155854e-01 -3.31575066e-01 9.93443429e-02 2.85056513e-02 -1.37243247e+00 2.01435399e+00 -6.60031378e-01 6.46096826e-01 1.82759300e-01 -7.39640892e-01 7.13468850e-01 2.92461455e-01 2.68565178e-01 -5.15748680e-01 -7.81534123e-04 3.31953466e-01 -2.42280453e-01 -1.67235225e-01 4.42715764e-01 -3.61903518e-01 2.37078533e-01 4.26592857e-01 2.19672069e-01 -5.34344077e-01 3.20016831e-01 2.60122061e-01 5.61691344e-01 3.96478742e-01 -2.99420714e-01 -2.26966470e-01 5.23535728e-01 -4.43100482e-01 2.97783703e-01 5.66205084e-01 3.68297100e-01 9.03781712e-01 6.14654899e-01 4.78287131e-01 -9.32290494e-01 -1.36729634e+00 9.06873196e-02 9.73267138e-01 6.24456927e-02 -3.00622255e-01 -1.04035699e+00 -5.43815374e-01 -2.51344860e-01 8.33267570e-01 -5.31912088e-01 -9.20633525e-02 -4.99294460e-01 -8.38180661e-01 6.37736261e-01 4.83600020e-01 4.34966892e-01 -7.89721310e-01 1.09680872e-02 9.75545123e-02 -4.57787842e-01 -9.40711200e-01 -6.82901084e-01 2.94611938e-02 -8.97037864e-01 -4.74787980e-01 -1.29783320e+00 -6.34699523e-01 6.08699143e-01 -2.26398885e-01 9.54040587e-01 -1.26547009e-01 -9.87190679e-02 2.55789936e-01 -1.17510214e-01 1.01353504e-01 -5.94971836e-01 1.00319020e-01 -1.61521867e-01 3.16021144e-01 -4.57193941e-01 -7.17652261e-01 -7.12009549e-01 1.85657471e-01 -1.18595302e+00 1.93431541e-01 7.28988111e-01 9.44790125e-01 6.17291272e-01 7.69341737e-02 4.33564365e-01 -7.31705308e-01 8.45030010e-01 -1.92412719e-01 -5.00439763e-01 1.71152309e-01 -5.59175074e-01 3.42991203e-01 3.80383998e-01 -6.48465335e-01 -1.34174848e+00 -7.65705928e-02 -4.37212855e-01 -5.88539541e-01 3.19392115e-01 4.88588661e-01 -2.43740618e-01 1.90850496e-01 6.70060337e-01 2.75285602e-01 -1.31034404e-01 -4.27796841e-01 8.61501038e-01 2.79994398e-01 5.16089559e-01 -8.88737559e-01 7.97971904e-01 5.29324949e-01 8.08678195e-02 -7.86585748e-01 -7.33578622e-01 1.03748618e-02 -4.34490949e-01 -2.21651167e-01 1.03710330e+00 -8.43909144e-01 -5.87718010e-01 5.44257224e-01 -1.20880234e+00 -5.90715289e-01 -3.40487659e-01 5.49728513e-01 -4.93096739e-01 4.53598887e-01 -9.65451062e-01 -7.13806510e-01 -2.02118978e-01 -1.37982047e+00 1.14013338e+00 -2.57494836e-03 -1.18249908e-01 -1.09871948e+00 2.72779688e-02 1.81983888e-01 5.52279413e-01 1.87771723e-01 9.60642695e-01 7.08282962e-02 -6.39380395e-01 1.26398951e-01 -2.59523839e-01 6.42327070e-01 2.88218656e-03 2.38678426e-01 -9.80800390e-01 -1.87458813e-01 1.51610968e-03 -1.88224450e-01 1.29956079e+00 6.06767654e-01 9.06593084e-01 -1.96063407e-02 -7.24593177e-02 5.51044524e-01 1.22971928e+00 -2.88272351e-01 6.38167977e-01 -3.03196400e-01 7.16374457e-01 6.26913846e-01 3.07215631e-01 5.73919535e-01 1.21231593e-01 6.96260571e-01 2.94498384e-01 -7.24997297e-02 -7.16486514e-01 -3.75720471e-01 5.31382978e-01 1.15529680e+00 -1.47781864e-01 -5.04028320e-01 -5.10933638e-01 4.33604181e-01 -1.77176178e+00 -8.30746889e-01 -3.26860487e-01 2.02912259e+00 1.18395853e+00 2.30087653e-01 -1.33764476e-01 1.11558847e-01 6.18787766e-01 3.04905981e-01 -2.84305751e-01 1.29451737e-01 -2.28898451e-01 4.07249123e-01 3.38974670e-02 8.93059969e-01 -8.78807604e-01 9.33521390e-01 5.78846836e+00 1.28739703e+00 -1.10638475e+00 2.34935090e-01 7.54586279e-01 -1.69125050e-01 -6.31770432e-01 -1.46142691e-01 -6.54260278e-01 3.07055414e-01 5.75070202e-01 2.83510417e-01 5.13393462e-01 4.42845941e-01 2.49241188e-01 1.00651188e-02 -1.06756163e+00 8.08589995e-01 -5.10653183e-02 -1.38090444e+00 2.71347195e-01 -5.75105511e-02 1.13769591e+00 -4.30107385e-01 4.92331773e-01 8.82596821e-02 2.42578119e-01 -9.11861420e-01 9.75988030e-01 7.91855812e-01 7.52561629e-01 -7.83228695e-01 3.62736702e-01 2.05629915e-01 -1.05724382e+00 2.34406665e-01 -9.66147035e-02 2.68580288e-01 4.40629095e-01 8.49788010e-01 -1.08934395e-01 5.31534314e-01 3.60917091e-01 6.58952713e-01 -2.25724936e-01 7.12992728e-01 -5.83539248e-01 7.29936838e-01 -2.78560013e-01 8.65034387e-02 2.24107206e-01 -5.32293439e-01 6.05836868e-01 1.30014729e+00 4.17390227e-01 -1.38046950e-01 -5.56902848e-02 1.33702695e+00 -3.76940697e-01 2.11430304e-02 -1.51268795e-01 -1.29387036e-01 1.44490331e-01 1.08140397e+00 -7.63648748e-01 -3.49820048e-01 -1.11702964e-01 1.50640988e+00 1.00571111e-01 5.64377248e-01 -1.20583868e+00 -2.88480490e-01 4.07492310e-01 -1.05317764e-01 4.58391190e-01 -3.21528077e-01 -4.92762506e-01 -1.02254856e+00 1.78208953e-04 -8.61096382e-01 2.97462977e-02 -6.85129583e-01 -1.38000369e+00 4.82029587e-01 -1.46165714e-01 -9.82823670e-01 -1.43541873e-01 -3.11340243e-01 -4.49549735e-01 1.03937423e+00 -1.46807694e+00 -1.30188930e+00 -2.43664712e-01 6.02638602e-01 5.95401227e-01 1.36692718e-01 5.29076159e-01 7.75547266e-01 -4.42446589e-01 5.63488662e-01 1.35825351e-01 -1.78102404e-01 9.14350510e-01 -1.32758820e+00 1.19925976e-01 8.33468080e-01 3.41694951e-01 5.23503542e-01 7.29186237e-01 -5.57857513e-01 -1.20546675e+00 -9.48375821e-01 5.84777713e-01 -2.37550706e-01 6.73149765e-01 -3.65527719e-01 -7.51020789e-01 3.29446405e-01 5.02113938e-01 -2.81858116e-01 3.32144558e-01 -1.27697021e-01 -2.92213231e-01 -9.18800756e-02 -8.35239172e-01 8.40758920e-01 8.76579523e-01 -4.92819637e-01 -1.66403860e-01 3.53039354e-01 8.37434173e-01 -4.43081588e-01 -9.03127670e-01 2.63337344e-01 3.94987851e-01 -9.01373148e-01 9.28890407e-01 -6.69923276e-02 1.02417481e+00 -3.66660684e-01 -2.63402164e-01 -1.32585955e+00 -1.27487272e-01 -8.01037192e-01 -2.03152984e-01 1.53752112e+00 7.04954565e-01 -1.52178228e-01 6.43495917e-01 2.07369089e-01 -5.85021563e-02 -7.37524807e-01 -6.66371584e-01 -4.51851040e-01 2.53214836e-01 -5.55735528e-01 1.38611302e-01 7.45169520e-01 -4.56540883e-01 5.36819875e-01 -7.37993360e-01 9.59381238e-02 7.19884276e-01 -1.81911029e-02 6.65142059e-01 -7.70856619e-01 -8.48258436e-01 -8.23652387e-01 1.58577308e-01 -1.68520737e+00 -1.60577483e-02 -9.09061074e-01 1.83139980e-01 -1.55297196e+00 9.19065028e-02 -3.65038931e-01 -5.93718290e-02 4.25417833e-02 -3.84772331e-01 4.48602736e-01 3.63445431e-01 1.91925943e-01 -2.71985084e-01 9.43161070e-01 1.55645680e+00 -3.33537430e-01 -2.79382706e-01 3.65196876e-02 -3.90277088e-01 5.24644971e-01 4.40241247e-01 -6.03906870e-01 -4.43071544e-01 -6.65665805e-01 3.00258756e-01 1.17229387e-01 1.94006845e-01 -1.01170170e+00 2.85984159e-01 3.27067375e-02 2.63420939e-01 -3.62818509e-01 6.82093561e-01 -5.70672691e-01 1.07477114e-01 4.03109282e-01 -5.35396695e-01 -2.31381640e-01 7.38172531e-02 7.89788663e-01 -4.22221243e-01 -2.58232772e-01 1.03380275e+00 2.06908092e-01 -2.06713647e-01 1.70162648e-01 -1.68423593e-01 3.12944576e-02 7.38092661e-01 2.00775489e-01 2.51166113e-02 -5.62534332e-01 -9.23737466e-01 -7.93650523e-02 1.92780435e-01 1.88235015e-01 6.81015968e-01 -1.36016488e+00 -9.19412971e-01 7.07920417e-02 -2.14263022e-01 -1.76556915e-01 2.25716993e-01 1.15214026e+00 -5.47239602e-01 -4.04577702e-02 1.46839932e-01 -7.56761789e-01 -1.00699353e+00 2.60790586e-01 2.69062519e-01 -4.21381950e-01 -5.53244650e-01 1.07300639e+00 3.66832912e-01 -2.75197715e-01 4.47214186e-01 -3.55549663e-01 1.00400344e-01 1.20185457e-01 3.15595239e-01 3.72334361e-01 -2.66308933e-01 -3.95483345e-01 7.74021223e-02 6.05223238e-01 1.69554800e-01 -8.12785208e-01 1.20242047e+00 -7.26906136e-02 -1.61911577e-01 4.35245425e-01 1.04515231e+00 3.44239503e-01 -1.59008050e+00 -2.45670885e-01 -1.26038045e-01 -3.77000690e-01 2.15087190e-01 -6.93114996e-01 -1.36926901e+00 1.14374328e+00 5.28338075e-01 9.37842205e-02 1.13749850e+00 -1.01978399e-01 8.07183564e-01 8.14527348e-02 -7.19913244e-02 -9.40691113e-01 5.43075681e-01 2.40223512e-01 9.61156726e-01 -1.03838134e+00 1.92376450e-02 -4.89367425e-01 -7.40511179e-01 9.72966015e-01 1.35160059e-01 -1.94940984e-01 5.63047171e-01 2.86567479e-01 -1.75504878e-01 5.13460562e-02 -6.17480159e-01 3.33599262e-02 5.37233233e-01 3.22694749e-01 6.27543986e-01 7.20838725e-04 -3.91770482e-01 3.95680934e-01 1.60935372e-01 -2.07405463e-01 5.41263111e-02 5.49410641e-01 -1.65903866e-01 -1.20452178e+00 -2.20021635e-01 4.61395308e-02 -4.82893974e-01 -3.98781836e-01 -2.28861824e-01 5.44673920e-01 -9.13015828e-02 9.66515124e-01 -5.77133745e-02 -1.54964834e-01 2.36985296e-01 -1.02429755e-01 7.19702661e-01 -2.79152751e-01 -5.04740655e-01 5.84707797e-01 -9.97564346e-02 -3.62959355e-01 -4.83776271e-01 -5.48642337e-01 -1.12471843e+00 -3.90669376e-01 -4.72253680e-01 1.93426833e-02 6.62652850e-01 8.82086098e-01 1.75007209e-01 9.11318779e-01 4.40649569e-01 -9.74912465e-01 -6.09418094e-01 -1.04154170e+00 -4.97830033e-01 4.77607846e-01 4.46433462e-02 -5.08501112e-01 -3.66820604e-01 3.24242532e-01]
[11.44488525390625, -0.3229948580265045]
115ee166-5ac6-4bce-b83a-ac6f97e091b0
layer-wise-regularized-adversarial-training
2202.02626
null
https://arxiv.org/abs/2202.02626v3
https://arxiv.org/pdf/2202.02626v3.pdf
Layer-wise Regularized Adversarial Training using Layers Sustainability Analysis (LSA) framework
Deep neural network models are used today in various applications of artificial intelligence, the strengthening of which, in the face of adversarial attacks is of particular importance. An appropriate solution to adversarial attacks is adversarial training, which reaches a trade-off between robustness and generalization. This paper introduces a novel framework (Layer Sustainability Analysis (LSA)) for the analysis of layer vulnerability in an arbitrary neural network in the scenario of adversarial attacks. LSA can be a helpful toolkit to assess deep neural networks and to extend the adversarial training approaches towards improving the sustainability of model layers via layer monitoring and analysis. The LSA framework identifies a list of Most Vulnerable Layers (MVL list) of the given network. The relative error, as a comparison measure, is used to evaluate representation sustainability of each layer against adversarial inputs. The proposed approach for obtaining robust neural networks to fend off adversarial attacks is based on a layer-wise regularization (LR) over LSA proposal(s) for adversarial training (AT); i.e. the AT-LR procedure. AT-LR could be used with any benchmark adversarial attack to reduce the vulnerability of network layers and to improve conventional adversarial training approaches. The proposed idea performs well theoretically and experimentally for state-of-the-art multilayer perceptron and convolutional neural network architectures. Compared with the AT-LR and its corresponding base adversarial training, the classification accuracy of more significant perturbations increased by 16.35%, 21.79%, and 10.730% on Moon, MNIST, and CIFAR-10 benchmark datasets, respectively. The LSA framework is available and published at https://github.com/khalooei/LSA.
['Maryam Amirmazlaghani', 'Mohammad Mehdi Homayounpour', 'Mohammad Khalooei']
2022-02-05
null
null
null
null
['adversarial-defense']
['adversarial']
[ 2.71041363e-01 2.31858119e-01 4.03001875e-01 -3.19103152e-02 -3.14759225e-01 -9.23055589e-01 5.62760115e-01 6.17601499e-02 -4.63577867e-01 5.87628424e-01 -8.95872712e-02 -7.05368876e-01 -2.46521562e-01 -9.88615394e-01 -1.08464825e+00 -9.04201090e-01 -1.61708698e-01 -1.38606839e-02 2.78724551e-01 -4.58749712e-01 6.64083660e-02 1.08044326e+00 -1.29714382e+00 5.11121929e-01 6.21364832e-01 1.07688332e+00 -3.87854457e-01 6.02590680e-01 4.47561741e-02 7.77705133e-01 -7.51298666e-01 -5.92932403e-01 4.22903687e-01 -1.12065688e-01 -8.71897221e-01 -5.53420901e-01 3.84619534e-01 2.68512941e-03 -2.28617817e-01 1.41678333e+00 5.46986461e-01 -1.76100843e-02 6.92735434e-01 -1.25368786e+00 -3.06586564e-01 9.12300766e-01 -1.39747128e-01 3.00459445e-01 -1.56085074e-01 1.97854057e-01 3.75979602e-01 -6.31132543e-01 2.06510052e-01 1.26834178e+00 7.00487733e-01 7.71447897e-01 -1.00445127e+00 -1.01653516e+00 2.00226977e-01 5.32823801e-02 -1.11413968e+00 -2.72579104e-01 1.01605904e+00 -5.35084188e-01 7.28863358e-01 4.86814499e-01 1.76277667e-01 1.23493266e+00 4.01949793e-01 2.79529095e-01 1.05079329e+00 -4.62192833e-01 3.40729147e-01 4.07576680e-01 1.53293625e-01 5.04623950e-01 3.69386494e-01 3.81239682e-01 -3.89802344e-02 -1.52590619e-02 4.26632106e-01 -2.05366403e-01 -6.87554255e-02 2.54630316e-02 -4.63018149e-01 6.81832910e-01 9.33243036e-01 4.60304916e-01 -3.78701329e-01 1.50074363e-01 7.38680482e-01 4.77899224e-01 3.73097003e-01 7.18825638e-01 -4.19071913e-01 5.20969212e-01 -4.52179044e-01 1.73147216e-01 6.68593824e-01 3.14726025e-01 4.64335591e-01 5.86176991e-01 -6.09554835e-02 6.10147595e-01 2.92022049e-01 2.82182157e-01 4.14295673e-01 -5.12515604e-01 5.58418274e-01 8.38646889e-01 -2.67234087e-01 -9.79296803e-01 -4.45620000e-01 -6.79064393e-01 -1.07219315e+00 8.56845260e-01 4.01317775e-01 -4.51642603e-01 -8.98831904e-01 1.67525697e+00 2.31200889e-01 3.89173388e-01 5.03412247e-01 4.95367348e-01 7.27385581e-01 6.28632307e-01 1.88672081e-01 7.13287368e-02 9.14541423e-01 -5.27962565e-01 -3.09180528e-01 -1.73244461e-01 4.63494837e-01 -6.26568675e-01 9.14596319e-01 3.90028566e-01 -9.60476637e-01 -5.32740355e-01 -1.20004082e+00 6.46651328e-01 -9.49615657e-01 -2.49094725e-01 2.50394642e-01 1.01569974e+00 -8.12164903e-01 8.19494724e-01 -6.30884469e-01 5.86944558e-02 4.68798727e-01 5.63767672e-01 -4.19299066e-01 2.01820388e-01 -1.64901590e+00 1.03823340e+00 8.33440244e-01 2.69270360e-01 -1.19810700e+00 -9.32715237e-01 -6.63209200e-01 5.44849746e-02 -1.26316443e-01 -9.44947377e-02 6.96337581e-01 -1.31326032e+00 -1.26965213e+00 7.12274253e-01 5.48429132e-01 -8.80754948e-01 6.74111843e-01 -3.58596623e-01 -5.47918737e-01 -6.18805401e-02 -6.38136089e-01 2.41192907e-01 8.74440908e-01 -1.49845803e+00 -1.23528898e-01 -2.35573053e-01 4.09226894e-01 -9.43311974e-02 -8.79818261e-01 2.75517821e-01 1.10471666e-01 -8.84779692e-01 -1.49372861e-01 -8.50797474e-01 -2.25447506e-01 -2.45558441e-01 -5.90717852e-01 1.37396023e-01 9.56878304e-01 -6.17849708e-01 1.20380068e+00 -2.09480166e+00 5.51947691e-02 5.47389448e-01 -6.99469596e-02 1.06651068e+00 -7.55704418e-02 2.37858802e-01 -7.10837364e-01 3.07603210e-01 -4.29843277e-01 -9.36224833e-02 -1.47166893e-01 3.85138541e-02 -4.84125942e-01 4.81001467e-01 4.05376673e-01 6.18636370e-01 -5.45748889e-01 -5.02995402e-02 3.31225514e-01 6.29640758e-01 -4.51518208e-01 2.65223950e-01 1.89716965e-02 4.03997660e-01 -2.31967807e-01 6.20502532e-01 7.20775902e-01 5.91839790e-01 -9.12594423e-02 -2.84532398e-01 1.01367407e-01 -2.88276076e-01 -1.27447271e+00 7.88947344e-01 -3.92987818e-01 5.34113586e-01 -9.01051983e-02 -1.11441123e+00 1.19251454e+00 4.98512626e-01 1.29945830e-01 -3.63074630e-01 4.91224378e-01 2.78527975e-01 2.14433923e-01 -3.98948073e-01 -3.78214270e-02 -1.02534287e-01 -2.28661343e-01 1.44288346e-01 1.80651218e-01 3.60759526e-01 -1.66242555e-01 5.66044450e-02 1.11918294e+00 -1.71878427e-01 8.92537832e-02 -4.50038314e-01 1.06065404e+00 -4.31404740e-01 4.06697750e-01 5.03839612e-01 -2.22218454e-01 1.60694450e-01 5.99231899e-01 -5.95613241e-01 -1.05125320e+00 -1.02111590e+00 -2.58855671e-01 8.46873701e-01 -1.44615561e-01 2.45634317e-01 -1.07953060e+00 -8.51518393e-01 1.80734247e-02 7.88197637e-01 -7.44373977e-01 -8.49457204e-01 -7.25003362e-01 -7.89695442e-01 1.19707942e+00 4.60187495e-01 7.25973666e-01 -1.45410991e+00 -2.14165151e-01 -2.63166837e-02 3.59221548e-01 -8.85449708e-01 2.29197472e-01 4.54935223e-01 -7.43261933e-01 -1.06782818e+00 -4.70025122e-01 -6.78798974e-01 7.60887444e-01 -4.30797189e-01 8.52609932e-01 2.01579541e-01 -4.69083488e-02 -1.32046208e-01 -3.33394557e-01 -7.02014804e-01 -1.04262567e+00 -6.65590540e-02 4.79563773e-01 2.16207638e-01 -2.76948325e-02 -7.60020316e-01 -2.88926929e-01 3.74619603e-01 -1.17175281e+00 -6.02471888e-01 5.52746296e-01 6.27544105e-01 3.25964987e-01 3.66215289e-01 7.91696966e-01 -1.08018279e+00 6.74591243e-01 -7.25377262e-01 -7.25149930e-01 2.33163640e-01 -6.55532539e-01 -2.06486974e-02 1.17809105e+00 -5.75592279e-01 -8.52321386e-01 -1.40868217e-01 -5.17047584e-01 -7.87051797e-01 -4.30380195e-01 4.61543530e-01 -5.92110991e-01 -6.40435457e-01 1.10511875e+00 -1.99858531e-01 -1.84941188e-01 -4.98413980e-01 6.52612448e-02 2.93390989e-01 5.39004624e-01 -3.36455405e-01 1.21811056e+00 -1.65447555e-02 2.81756252e-01 -4.61956412e-01 -4.86129731e-01 -3.02974926e-03 -6.84849381e-01 -5.55377841e-01 5.38528860e-01 -4.87189919e-01 -5.90781868e-01 9.34371293e-01 -9.94665205e-01 -3.85352194e-01 -1.24340661e-01 1.66853413e-01 -7.33678862e-02 1.38259038e-01 -3.96977454e-01 -8.75076830e-01 -5.16553581e-01 -1.18128490e+00 8.57961699e-02 2.31326595e-01 1.94531992e-01 -1.25250566e+00 -1.07144699e-01 1.50267258e-01 4.73572671e-01 1.01660860e+00 9.35725629e-01 -1.04068506e+00 -1.21189550e-01 -6.53390527e-01 7.40414336e-02 1.02777064e+00 -1.40439719e-01 1.13473594e-01 -1.29820466e+00 -4.68452394e-01 -4.02757637e-02 -3.80656570e-01 7.86841691e-01 1.07072942e-01 1.12711585e+00 -7.23262608e-01 6.87606782e-02 8.62559795e-01 1.73169017e+00 3.15325499e-01 8.89694095e-01 6.40042901e-01 7.98659265e-01 4.92121100e-01 3.00892413e-01 1.50773019e-01 -5.22564173e-01 5.31056404e-01 1.11931872e+00 -2.11185664e-01 1.44554805e-02 5.48535213e-02 6.46481872e-01 3.89500529e-01 -3.36390696e-02 -3.00654292e-01 -1.13408005e+00 2.71694273e-01 -1.42544758e+00 -9.16299343e-01 -5.98839223e-02 2.14067435e+00 6.20444119e-01 6.98391557e-01 -8.92364681e-02 8.55110765e-01 6.88623726e-01 1.21978350e-01 -5.72630525e-01 -9.96048629e-01 -1.67631954e-01 3.07755351e-01 7.36908555e-01 6.38475120e-01 -1.38195598e+00 8.59093010e-01 5.35615683e+00 6.77438438e-01 -1.22421002e+00 2.17736568e-02 5.85133910e-01 3.85982618e-02 -3.80953308e-03 -4.51738447e-01 -7.20502436e-01 3.92609715e-01 1.19278824e+00 2.55072210e-03 4.24983382e-01 8.72927427e-01 7.01134577e-02 5.57225347e-01 -7.48482943e-01 3.29941869e-01 -5.80527969e-02 -1.28913009e+00 2.40045384e-01 -9.54061821e-02 7.92778492e-01 -4.24281061e-02 3.10065180e-01 3.41263801e-01 3.24880660e-01 -1.07031858e+00 6.39164805e-01 6.40717328e-01 5.95776975e-01 -1.24198270e+00 1.15091038e+00 3.35538447e-01 -1.02936387e+00 -4.09112334e-01 -3.02450806e-01 1.77804083e-01 -2.32589945e-01 2.89392799e-01 -6.42140150e-01 5.65326810e-01 8.54606211e-01 2.49390468e-01 -7.95945287e-01 6.78516924e-01 -2.11366132e-01 8.71733129e-01 -1.64421409e-01 2.51821905e-01 3.89342904e-01 1.52450800e-01 8.30830574e-01 1.15180862e+00 -6.18388057e-02 -2.43200332e-01 -3.07902753e-01 5.39360046e-01 -3.30919951e-01 2.70955414e-02 -7.65298903e-01 1.91595972e-01 6.31415844e-01 1.10881770e+00 -5.04843712e-01 7.45939985e-02 1.53971121e-01 6.43262208e-01 3.11069697e-01 3.56100142e-01 -9.26990449e-01 -4.61555272e-01 7.02393174e-01 -1.93976499e-02 -9.93153527e-02 2.92786241e-01 -4.45714384e-01 -5.41319907e-01 1.23022109e-01 -1.05008388e+00 3.99025202e-01 -3.72548968e-01 -1.16571629e+00 1.06233048e+00 1.97891574e-02 -1.37689590e+00 -4.49544527e-02 -9.73551750e-01 -1.13279188e+00 1.07354212e+00 -1.31017303e+00 -1.26068747e+00 -2.76732355e-01 8.86157513e-01 2.22820550e-01 -7.75287688e-01 9.51441944e-01 3.98452282e-01 -9.49480534e-01 1.23591208e+00 9.13731530e-02 4.08107728e-01 3.26478690e-01 -1.12275815e+00 3.76241922e-01 1.44198322e+00 -2.00812876e-01 4.64687109e-01 8.25640202e-01 -4.37453657e-01 -9.44567084e-01 -1.65267575e+00 5.17781615e-01 -3.97285521e-01 7.09358513e-01 -2.67589331e-01 -1.17080963e+00 5.05169332e-01 1.33481445e-02 1.31187573e-01 5.69776654e-01 -2.93278277e-01 -4.88373846e-01 -4.30929571e-01 -1.53449261e+00 6.30797446e-01 4.75338429e-01 -4.25060928e-01 -3.70528489e-01 1.85229555e-01 8.50376546e-01 -2.81132609e-01 -1.05975568e+00 6.32738411e-01 3.98778737e-01 -1.01779950e+00 1.22631788e+00 -7.95560062e-01 3.99737298e-01 -2.78196126e-01 -2.62954682e-01 -1.21569216e+00 -2.72286385e-01 -4.48435485e-01 -1.92773014e-01 1.47751248e+00 5.91114223e-01 -8.33443880e-01 6.78232968e-01 4.86027181e-01 -2.96572387e-01 -9.62767005e-01 -9.71002936e-01 -7.71941245e-01 4.95201141e-01 -5.06640136e-01 5.92537880e-01 9.94179726e-01 -5.26271045e-01 -3.37522388e-01 -2.07050696e-01 6.93402231e-01 6.15637302e-01 -8.01975489e-01 5.33857465e-01 -1.08011329e+00 -1.28943279e-01 -6.20022774e-01 -7.18114555e-01 3.23808283e-01 3.05561155e-01 -9.65097249e-01 -3.16071898e-01 -9.93853629e-01 -5.68306923e-01 -5.51875293e-01 -9.85051215e-01 6.17125094e-01 -1.91747308e-01 4.72355038e-01 3.56157482e-01 1.25175387e-01 1.03554420e-01 1.13116972e-01 7.58783102e-01 -1.62049815e-01 -7.13337511e-02 3.81353617e-01 -5.76083660e-01 9.13085520e-01 1.27869606e+00 -6.77952468e-01 -3.38865072e-01 -1.50030673e-01 1.41313478e-01 -4.58768845e-01 5.83946764e-01 -1.40465426e+00 3.00467703e-02 -4.88814479e-03 3.96507233e-01 -2.06612542e-01 7.68930987e-02 -1.10966206e+00 3.97490203e-01 9.04238164e-01 -4.81920809e-01 7.12047145e-02 6.41621530e-01 2.93472499e-01 -1.80961281e-01 -4.84499454e-01 1.24007952e+00 2.70700734e-02 -6.12426221e-01 2.02686250e-01 -1.53123260e-01 -2.16883972e-01 1.32249892e+00 -1.10870361e-01 -4.11709607e-01 2.33801305e-01 -7.73459971e-01 -6.84913769e-02 1.27263606e-01 3.92176598e-01 6.89559519e-01 -1.32599735e+00 -6.76462352e-01 3.38848650e-01 -1.46313012e-01 -2.02268049e-01 2.67481029e-01 3.80601496e-01 -7.30739892e-01 7.55028576e-02 -6.29695833e-01 -5.76828569e-02 -1.43448782e+00 7.97728479e-01 8.60715687e-01 -4.41696852e-01 -3.01748097e-01 1.11046219e+00 -4.22045626e-02 -4.03521240e-01 6.42560422e-01 2.26637386e-02 -7.04307795e-01 -1.44652454e-02 4.90717173e-01 4.37726587e-01 3.48222524e-01 -6.07040524e-01 -4.15543944e-01 2.89524704e-01 2.75376141e-02 2.51032919e-01 1.17508650e+00 3.95751506e-01 -1.51543662e-01 2.81299710e-01 1.19127738e+00 -2.08675489e-01 -1.04285371e+00 -9.34981108e-02 -1.55791119e-01 4.99382764e-02 9.88843385e-04 -9.28246617e-01 -1.29838693e+00 9.24296975e-01 8.97775769e-01 3.80441993e-01 1.48469830e+00 -4.17255789e-01 3.12474161e-01 3.59068096e-01 1.36850942e-02 -6.34211481e-01 -5.95024833e-03 4.59932894e-01 1.25335240e+00 -9.00690079e-01 -1.85585111e-01 -3.87995839e-02 -5.21797657e-01 1.13145161e+00 7.19836891e-01 -4.72743034e-01 9.93706822e-01 4.10423726e-01 2.10399121e-01 1.00484230e-01 -5.01280069e-01 3.17676008e-01 4.79512691e-01 5.77084005e-01 5.73154315e-02 4.65793833e-02 6.45762868e-03 6.51766598e-01 -2.34456137e-01 -4.73902017e-01 2.27450252e-01 6.91103041e-01 -3.58707070e-01 -9.46484089e-01 -6.50583565e-01 2.75251180e-01 -7.46264637e-01 -6.64976165e-02 -4.53321338e-01 6.94376647e-01 5.32409787e-01 8.07252169e-01 -3.12752426e-01 -9.34712172e-01 5.71042478e-01 1.54412195e-01 -2.96679372e-03 -1.98142245e-01 -1.30931711e+00 -4.71973360e-01 2.88837310e-02 -4.56035703e-01 -2.29349151e-01 -4.37726259e-01 -9.05481279e-01 -4.48827296e-01 -1.95390582e-01 -1.59501974e-02 7.32797921e-01 8.27153802e-01 -8.78731906e-02 9.89055097e-01 1.04612255e+00 -8.35554063e-01 -5.85433960e-01 -9.78547454e-01 -3.23451579e-01 4.74374473e-01 3.24208856e-01 -5.57808757e-01 -7.29423821e-01 7.92409386e-03]
[5.519748687744141, 7.931460857391357]
5aba3512-e0cd-4e92-b6c0-c6bf9a1afa6b
valor-vision-audio-language-omni-perception
2304.08345
null
https://arxiv.org/abs/2304.08345v1
https://arxiv.org/pdf/2304.08345v1.pdf
VALOR: Vision-Audio-Language Omni-Perception Pretraining Model and Dataset
In this paper, we propose a Vision-Audio-Language Omni-peRception pretraining model (VALOR) for multi-modal understanding and generation. Different from widely-studied vision-language pretraining models, VALOR jointly models relationships of vision, audio and language in an end-to-end manner. It contains three separate encoders for single modality representations, and a decoder for multimodal conditional text generation. We design two pretext tasks to pretrain VALOR model, including Multimodal Grouping Alignment (MGA) and Multimodal Grouping Captioning (MGC). MGA projects vision, language and audio to the same common space, building vision-language, audio-language and audiovisual-language alignment simultaneously. MGC learns how to generate text tokens in conditions of vision, audio or their both. To promote vision-audio-language pretraining research, we construct a large-scale high-quality tri-modality dataset named VALOR-1M, which contains 1M audiable videos with human annotated audiovisual captions. Extensive experiments show that VALOR can learn strong multimodal correlations and be generalized to various downstream tasks (e.g., retrieval, captioning and question answering), with different input modalities (e.g., vision-language, audio-language and audiovisual-language). VALOR achieves new state-of-the-art performances on series of public cross-modality benchmarks. Code and data are available at project page https://casia-iva-group.github.io/projects/VALOR.
['Jing Liu', 'Jinhui Tang', 'Weining Wang', 'Xinxin Zhu', 'Longteng Guo', 'Xingjian He', 'Sihan Chen']
2023-04-17
null
null
null
null
['audio-captioning', 'video-captioning', 'video-question-answering', 'video-retrieval', 'conditional-text-generation']
['audio', 'computer-vision', 'computer-vision', 'computer-vision', 'natural-language-processing']
[ 2.22480491e-01 -2.46950760e-02 -1.17968880e-01 -3.12063247e-01 -1.48901784e+00 -5.87002754e-01 7.38671303e-01 -1.81453675e-01 -3.47648978e-01 2.96057910e-01 8.40602100e-01 -3.45667183e-01 4.44567591e-01 -3.27091366e-01 -1.25974882e+00 -4.39419091e-01 3.75227660e-01 4.11931455e-01 -2.17453718e-01 -8.02145526e-02 -2.54682034e-01 -2.58264571e-01 -1.79459822e+00 1.10501611e+00 4.18636620e-01 9.18316543e-01 4.92804229e-01 1.37697995e+00 2.46141758e-02 1.01220787e+00 -2.50204086e-01 -4.36301291e-01 -1.04689993e-01 -4.25872505e-01 -8.65364134e-01 1.71158671e-01 7.85359204e-01 -4.37723041e-01 -6.55255973e-01 7.04741955e-01 7.70660400e-01 6.26693889e-02 7.81322896e-01 -1.69329762e+00 -1.11079288e+00 8.49292040e-01 -4.15351748e-01 -3.16044331e-01 7.25228786e-01 5.92539668e-01 1.36740398e+00 -1.26267743e+00 3.83838594e-01 1.75148237e+00 2.20519066e-01 8.48129034e-01 -1.12701046e+00 -6.79486334e-01 1.17107950e-01 3.17602187e-01 -1.21763098e+00 -6.64344370e-01 3.92985821e-01 -6.27787769e-01 9.76390064e-01 2.67134905e-01 2.20969304e-01 1.70208645e+00 -2.16731966e-01 1.24920964e+00 6.53194845e-01 -3.14826280e-01 -1.93262428e-01 -1.07214751e-03 -8.14857427e-03 4.42161113e-01 -4.13030803e-01 1.21252850e-01 -8.71126831e-01 5.42605706e-02 5.99611640e-01 -3.44098121e-01 -3.53369474e-01 5.76436780e-02 -1.67731297e+00 7.77628303e-01 2.50955850e-01 -6.22433349e-02 -1.46517873e-01 6.23456180e-01 5.38821876e-01 3.05633456e-01 -2.01462701e-01 3.46891619e-02 -1.92675024e-01 -2.65885387e-02 -4.59219962e-01 1.24685913e-01 3.53128463e-01 1.18224788e+00 5.34538031e-01 1.83930293e-01 -7.77657509e-01 1.04644608e+00 7.90328622e-01 9.51607704e-01 5.22018075e-01 -9.53441978e-01 8.93821955e-01 3.31457071e-02 -1.17446519e-01 -4.13152874e-01 -2.61439800e-01 6.05280288e-02 -9.50537920e-01 -2.62294978e-01 7.02689365e-02 -3.10332119e-01 -1.32561195e+00 2.03632021e+00 -4.61896248e-02 3.36614817e-01 6.32713616e-01 1.14498937e+00 1.80958474e+00 1.13434780e+00 2.76044220e-01 9.05629545e-02 1.60792422e+00 -1.37345910e+00 -5.34942746e-01 -2.24306196e-01 3.03418279e-01 -1.19899774e+00 1.31023943e+00 2.47328803e-01 -1.20209324e+00 -1.03699279e+00 -4.53840584e-01 -5.17883122e-01 -8.13758671e-02 3.36578429e-01 4.76792485e-01 -6.12186529e-02 -1.35030150e+00 -3.89701217e-01 -5.39257050e-01 -3.73786718e-01 8.41218159e-02 -1.45090837e-02 -4.46850687e-01 -2.50122160e-01 -1.25549769e+00 4.20309186e-01 4.88317281e-01 1.06720909e-01 -1.80382288e+00 -5.64599514e-01 -1.29483163e+00 -7.01007769e-02 2.09941164e-01 -1.27139711e+00 1.57706821e+00 -9.20339406e-01 -1.27833474e+00 9.62198317e-01 -3.46476108e-01 -4.61410940e-01 2.40601435e-01 -2.85750568e-01 -5.19466341e-01 3.38657886e-01 1.22262239e-01 1.52595007e+00 1.08615196e+00 -1.54897833e+00 -6.06213391e-01 1.16038412e-01 1.50395334e-01 5.35357475e-01 -2.41593435e-01 7.94468224e-02 -9.82420743e-01 -5.85618556e-01 -3.04217070e-01 -8.15334618e-01 1.17115103e-01 -2.04181880e-01 -6.97106123e-01 -3.64903569e-01 4.43283021e-01 -7.79800415e-01 7.11938798e-01 -2.23830938e+00 4.49860036e-01 -2.45373666e-01 1.02945320e-01 5.11272904e-03 -9.72344518e-01 5.76779664e-01 -2.70432293e-01 -1.20357908e-01 -3.66329704e-03 -7.32979774e-01 2.97753215e-01 2.43291005e-01 -6.91820443e-01 -3.97500731e-02 3.81808549e-01 1.14181209e+00 -8.20497572e-01 -6.18904293e-01 1.98323369e-01 6.83679044e-01 -6.90931141e-01 6.13330841e-01 -5.73573053e-01 4.60224003e-01 -1.03701465e-01 9.52337623e-01 3.22955966e-01 -4.16583896e-01 -2.22990021e-01 -4.75804836e-01 1.94985166e-01 2.64755059e-02 -8.32622707e-01 2.08679533e+00 -6.42860651e-01 8.65961254e-01 1.20735951e-01 -7.76867032e-01 5.72417915e-01 7.77023196e-01 3.21518242e-01 -8.22848618e-01 1.02000952e-01 -4.01969552e-02 -3.78073603e-01 -9.15110946e-01 7.46581852e-01 1.20304830e-01 -3.22894514e-01 4.13006917e-02 7.57779598e-01 -1.67779833e-01 1.83455974e-01 5.34524858e-01 6.57550991e-01 -5.27016679e-03 -2.63485789e-01 6.28919363e-01 5.42508066e-01 -1.99535862e-01 1.74597334e-02 6.78932965e-01 -4.02436480e-02 9.62075770e-01 2.41656587e-01 4.58995789e-01 -8.04115772e-01 -1.56048954e+00 1.79479897e-01 1.71248448e+00 1.38307393e-01 -5.97303629e-01 -4.01696593e-01 -1.44344002e-01 -1.39637170e-02 8.47757995e-01 -3.48084480e-01 -2.52023190e-01 -1.52555406e-01 -1.78644165e-01 8.64786148e-01 6.06941640e-01 1.89795628e-01 -1.25113940e+00 -1.26593253e-02 -1.39641091e-01 -8.80439997e-01 -1.53639829e+00 -7.12498724e-01 -2.53057510e-01 -3.05171043e-01 -6.85019612e-01 -1.01578629e+00 -1.07294250e+00 3.14704388e-01 4.29695487e-01 1.29843533e+00 -4.08511072e-01 -2.76602298e-01 1.36714172e+00 -4.39872086e-01 -3.67701530e-01 -4.99035984e-01 -3.72434974e-01 -6.06100485e-02 2.44561449e-01 1.94116235e-01 -2.98538536e-01 -4.24979329e-01 2.60493189e-01 -1.05676949e+00 4.72849190e-01 7.73366094e-01 9.61608887e-01 8.29223990e-01 -6.13227367e-01 5.52812517e-01 -3.55271958e-02 5.81600666e-01 -6.95588470e-01 -3.98770899e-01 3.15886915e-01 1.35942444e-01 -2.54758596e-01 3.53269577e-01 -7.18747556e-01 -8.13652039e-01 1.60015851e-01 -1.60256982e-01 -1.07026553e+00 -5.45115888e-01 6.68755054e-01 -4.08286035e-01 4.85182822e-01 4.46199417e-01 4.47369486e-01 -1.06404088e-01 -2.78283805e-01 1.05747569e+00 8.70939374e-01 1.39219725e+00 -6.67243540e-01 7.51331627e-01 2.62807101e-01 -3.96594673e-01 -8.96565557e-01 -6.75756037e-01 -7.49941409e-01 -1.10602953e-01 -4.25522834e-01 1.42503989e+00 -1.65257156e+00 -8.83615196e-01 4.18200046e-01 -1.49306619e+00 -5.47396541e-01 -1.01907276e-01 6.55819356e-01 -8.31613719e-01 3.27714890e-01 -4.78353530e-01 -7.04804599e-01 -2.86047429e-01 -1.24777555e+00 1.54104245e+00 2.84550071e-01 1.13340646e-01 -7.50186980e-01 2.22724434e-02 1.03773963e+00 2.12069955e-02 -9.19947699e-02 5.80412090e-01 -3.47744465e-01 -6.63855910e-01 2.91756570e-01 -4.04674023e-01 4.79016542e-01 -4.04924810e-01 -2.45290622e-02 -1.26796162e+00 -3.17046463e-01 -7.15770602e-01 -1.07526457e+00 1.27810395e+00 4.16790247e-01 1.26552165e+00 -2.72218764e-01 7.83838779e-02 5.53996801e-01 1.08353174e+00 -1.54439524e-01 7.12716937e-01 -7.75308535e-02 9.82527196e-01 5.60517907e-01 6.65201128e-01 4.27603275e-01 9.76157784e-01 6.93461001e-01 8.33390594e-01 -2.81274229e-01 -5.29622078e-01 -5.08151829e-01 1.01620245e+00 1.02974319e+00 2.17440233e-01 -5.63628674e-01 -8.53982031e-01 9.17519093e-01 -1.97601390e+00 -9.86219347e-01 -1.59940705e-01 1.88717818e+00 9.59608912e-01 -4.38104749e-01 2.67653167e-01 -2.82919317e-01 6.08579338e-01 -6.73733011e-04 -4.40135837e-01 -1.50383607e-01 -3.32127422e-01 -1.85805395e-01 7.18371868e-02 6.52807236e-01 -1.21591127e+00 1.02637541e+00 5.11062670e+00 7.87658393e-01 -9.89451289e-01 1.95852309e-01 2.59399116e-01 -3.48471135e-01 -7.11595595e-01 -2.15661824e-01 -7.74912417e-01 2.12294728e-01 1.06912303e+00 1.34791225e-01 5.21415293e-01 5.12613654e-01 2.25854352e-01 1.41555622e-01 -1.37898660e+00 1.60539913e+00 4.42067951e-01 -1.20697415e+00 5.74745417e-01 -3.44861358e-01 4.96449918e-01 3.71234208e-01 3.51901650e-01 6.58218980e-01 2.87809908e-01 -1.41237211e+00 1.02813911e+00 6.33008599e-01 1.10073507e+00 -4.49841797e-01 4.64405179e-01 6.61648856e-03 -1.26980484e+00 1.01360725e-03 -1.58356786e-01 4.84550685e-01 5.10259271e-01 6.20820299e-02 -7.82803357e-01 6.51497364e-01 8.49733174e-01 7.31380403e-01 -5.56139231e-01 8.64723086e-01 -1.29552603e-01 7.34309673e-01 -5.67987263e-02 2.59998590e-01 2.94574171e-01 2.00939953e-01 6.79128289e-01 1.49479628e+00 2.39036351e-01 -2.34373838e-01 2.96083897e-01 7.88826227e-01 -1.85200378e-01 6.84643835e-02 -5.43407619e-01 -4.67341334e-01 3.84679288e-01 1.15974820e+00 1.15731165e-01 -3.79342645e-01 -7.82698095e-01 9.58241284e-01 -5.29186800e-02 7.19094932e-01 -1.12438428e+00 -8.94003212e-02 5.96362591e-01 -3.29390198e-01 2.28002131e-01 -1.90968663e-01 2.09451601e-01 -1.22038126e+00 -4.07739282e-02 -1.16554010e+00 6.82592392e-01 -1.47510493e+00 -1.49511373e+00 5.47608852e-01 6.79173097e-02 -1.34126484e+00 -4.77237642e-01 -7.01381505e-01 -3.90726000e-01 8.29419494e-01 -1.58100522e+00 -1.68700790e+00 -5.52566767e-01 1.27352035e+00 7.79204667e-01 -5.57982862e-01 7.83451080e-01 3.69810402e-01 -3.04046452e-01 7.89973676e-01 -3.13672692e-01 3.02893817e-01 1.16942430e+00 -1.02598119e+00 5.08315302e-02 7.11443543e-01 4.98665869e-01 2.08275676e-01 5.91817439e-01 -2.59596556e-01 -1.71123660e+00 -1.38192058e+00 7.30826855e-01 -5.03532648e-01 8.77506077e-01 -5.12237430e-01 -6.50302589e-01 7.95974612e-01 6.64857030e-01 -2.23868236e-01 8.05025458e-01 -1.47635445e-01 -7.51403630e-01 7.07120895e-02 -4.01784271e-01 7.25906968e-01 7.97241509e-01 -1.14151168e+00 -5.93914092e-01 6.30770028e-01 1.40797079e+00 -5.36339521e-01 -8.62475693e-01 3.18789363e-01 4.35411453e-01 -5.77591956e-01 1.27532697e+00 -7.97716260e-01 9.20407295e-01 -4.10507858e-01 -7.53597975e-01 -1.09177053e+00 -6.06151763e-03 -7.48114288e-01 -1.53237000e-01 1.52714670e+00 5.72337210e-01 -2.52448618e-01 3.65364663e-02 -1.00081615e-01 -4.52015251e-01 -3.42680722e-01 -8.09529364e-01 -5.71254432e-01 -9.63709727e-02 -8.74051273e-01 1.32330701e-01 8.19299459e-01 -1.98645994e-01 9.04756606e-01 -6.72031581e-01 4.73914117e-01 5.25803924e-01 5.67522421e-02 1.07525980e+00 -7.06827998e-01 -7.78087974e-01 -3.87074679e-01 -2.24882364e-01 -1.23806262e+00 2.88679510e-01 -1.16277182e+00 2.76801765e-01 -1.81862521e+00 2.93319374e-01 2.50971556e-01 -2.34000325e-01 7.86102772e-01 -8.23487490e-02 2.89017677e-01 4.81138080e-01 9.21785310e-02 -9.79621291e-01 8.01239848e-01 1.23975348e+00 -5.28630137e-01 -1.61409274e-01 -2.33783811e-01 -8.07859600e-01 4.64818269e-01 5.02155840e-01 6.35493621e-02 -6.16036892e-01 -9.74604428e-01 1.48016214e-01 5.17894208e-01 8.84811759e-01 -8.09919059e-01 2.00615481e-01 -1.17611729e-01 1.25116497e-01 -9.98260021e-01 8.42434883e-01 -5.09480536e-01 -1.62240937e-01 -3.94807309e-02 -7.71540046e-01 1.04095042e-02 4.05451685e-01 6.66771412e-01 -6.58667326e-01 1.14206746e-01 4.99503911e-01 1.50332049e-01 -9.33543265e-01 3.77455324e-01 -3.31657320e-01 2.26503074e-01 6.09694839e-01 3.59941572e-01 -7.36525357e-01 -9.87591028e-01 -9.13991749e-01 7.92045593e-01 -8.03361014e-02 1.00422740e+00 9.88186657e-01 -1.59132755e+00 -1.25464785e+00 -2.62789994e-01 6.55538678e-01 7.18048736e-02 5.45069337e-01 8.59416842e-01 -4.65064915e-03 5.60743988e-01 4.00585309e-02 -1.15928185e+00 -1.49793398e+00 5.92919111e-01 8.29309300e-02 1.54456183e-01 -3.65275204e-01 1.11153674e+00 6.59435213e-01 -3.55734080e-01 8.05109441e-01 -2.76272684e-01 -1.93872750e-01 1.39871575e-02 6.59514904e-01 -6.57452941e-02 -4.64552075e-01 -9.65110600e-01 -1.33941218e-01 5.23900568e-01 1.91966847e-01 -5.12846589e-01 9.17773962e-01 -2.69200176e-01 -9.23752487e-02 6.72655880e-01 1.25993490e+00 -2.66755909e-01 -1.04345345e+00 -2.96599478e-01 -5.51063716e-01 2.73203533e-02 -9.15396586e-02 -8.45430732e-01 -9.03355896e-01 1.22588313e+00 6.08598053e-01 -2.24750787e-01 1.25422490e+00 5.39084852e-01 7.67062664e-01 3.78161043e-01 -1.69542715e-01 -8.53524268e-01 7.43280172e-01 7.25784540e-01 1.50490582e+00 -1.45449686e+00 -6.36200428e-01 -1.08417213e-01 -1.20211720e+00 8.54370415e-01 8.59337151e-01 5.08154154e-01 2.24510163e-01 -7.05184191e-02 3.65742743e-01 9.76995155e-02 -1.17167544e+00 -6.24005497e-01 7.00872004e-01 9.69024837e-01 4.72357810e-01 1.95838630e-01 4.74895358e-01 7.26364732e-01 -3.54810327e-01 -2.29766816e-01 4.36414868e-01 3.72926086e-01 -2.10341379e-01 -6.83643103e-01 -7.16298640e-01 -1.20180864e-02 5.99653553e-03 -3.64079863e-01 -4.40114111e-01 4.80015934e-01 1.70529597e-02 1.36212206e+00 2.64371961e-01 -6.09768867e-01 1.66985750e-01 3.57896797e-02 3.80769163e-01 -5.05062580e-01 -1.86178893e-01 4.99549568e-01 2.84147680e-01 -5.76364160e-01 -4.66085166e-01 -4.09572750e-01 -1.34042656e+00 1.42851755e-01 1.07024722e-01 -1.36349097e-01 6.31546736e-01 7.17967927e-01 3.44105124e-01 7.57243097e-01 4.28034335e-01 -9.80633140e-01 -2.85808325e-01 -1.05979395e+00 -1.10817820e-01 5.13810456e-01 6.35854125e-01 -4.00262713e-01 -1.63372010e-01 4.73380506e-01]
[10.836864471435547, 1.245600938796997]
fedd5913-f39f-4e6b-9390-392c16a53666
mol-instructions-a-large-scale-biomolecular
2306.08018
null
https://arxiv.org/abs/2306.08018v1
https://arxiv.org/pdf/2306.08018v1.pdf
Mol-Instructions: A Large-Scale Biomolecular Instruction Dataset for Large Language Models
Large Language Models (LLMs), with their remarkable task-handling capabilities and innovative outputs, have catalyzed significant advancements across a spectrum of fields. However, their proficiency within specialized domains such as biomolecular studies remains limited. To address this challenge, we introduce Mol-Instructions, a meticulously curated, comprehensive instruction dataset expressly designed for the biomolecular realm. Mol-Instructions is composed of three pivotal components: molecule-oriented instructions, protein-oriented instructions, and biomolecular text instructions, each curated to enhance the understanding and prediction capabilities of LLMs concerning biomolecular features and behaviors. Through extensive instruction tuning experiments on the representative LLM, we underscore the potency of Mol-Instructions to enhance the adaptability and cognitive acuity of large models within the complex sphere of biomolecular studies, thereby promoting advancements in the biomolecular research community. Mol-Instructions is made publicly accessible for future research endeavors and will be subjected to continual updates for enhanced applicability.
['Huajun Chen', 'Xiaohui Fan', 'Zhuo Chen', 'Rui Huang', 'Kangwei Liu', 'Ningyu Zhang', 'Xiaozhuan Liang', 'Yin Fang']
2023-06-13
null
null
null
null
['domain-motif-prediction', 'protein-design', 'chemical-entity-recognition', 'forward-reaction-prediction', 'chemical-protein-interaction-extraction', 'catalytic-activity-prediction', 'retrosynthesis', 'functional-description-generation', 'property-prediction', 'reagent-prediction', 'protein-function-prediction', 'chemical-disease-interaction-extraction', 'true-or-false-question', 'molecular-description-generation', 'open-question', 'description-guided-molecule-generation']
['medical', 'medical', 'medical', 'medical', 'medical', 'medical', 'medical', 'medical', 'medical', 'medical', 'medical', 'medical', 'natural-language-processing', 'natural-language-processing', 'natural-language-processing', 'natural-language-processing']
[ 3.06632757e-01 -1.81545988e-01 -3.38774413e-01 -4.82307434e-01 -6.31213844e-01 -4.93448853e-01 4.31118190e-01 5.98782957e-01 -3.66309613e-01 9.80245590e-01 9.06550884e-02 -7.95909584e-01 -6.27101064e-02 -4.29853022e-01 -9.94460762e-01 -4.60411757e-01 -2.75346518e-01 2.86886781e-01 -3.92965786e-02 -1.82092220e-01 4.46279466e-01 5.81716120e-01 -1.49708235e+00 4.07834828e-01 1.24400735e+00 5.74146688e-01 4.98218030e-01 5.00758946e-01 -6.55462816e-02 6.03534281e-01 -3.68832111e-01 -3.11956912e-01 -3.35213184e-01 -1.62882879e-01 -4.98739958e-01 -3.00228626e-01 5.07804692e-01 2.29379639e-01 -1.98796377e-01 6.44598544e-01 4.59487528e-01 2.72875518e-01 5.93217373e-01 -6.24619007e-01 -7.17378795e-01 2.49632433e-01 7.63759539e-02 3.48961949e-01 3.44195634e-01 3.75278085e-01 1.00365174e+00 -9.60860848e-01 6.95732474e-01 1.15756083e+00 4.35834646e-01 5.63503087e-01 -1.39749336e+00 -7.91655242e-01 3.06923062e-01 -1.22188739e-01 -1.14673936e+00 -6.60342753e-01 1.35040209e-01 -7.02990770e-01 1.50994718e+00 2.36695603e-01 3.49839360e-01 1.25698471e+00 9.83691812e-01 5.00145078e-01 1.12430286e+00 -1.64143980e-01 3.31814706e-01 -1.64783038e-02 5.56087971e-01 8.63942146e-01 4.19050425e-01 1.70062497e-01 -9.44580853e-01 -1.23175249e-01 5.61200321e-01 6.27937866e-03 -1.54776528e-01 -3.55111867e-01 -1.45034516e+00 5.62105954e-01 1.61178306e-01 2.32552245e-01 -3.22943568e-01 -6.65515959e-02 1.54082224e-01 2.07803175e-01 3.21898729e-01 7.36562729e-01 -6.26567721e-01 -3.12724501e-01 -4.01848674e-01 4.08681005e-01 9.17242110e-01 8.35691035e-01 5.46917140e-01 -1.19251408e-01 2.23339256e-02 7.79686809e-01 1.54878378e-01 3.14989328e-01 4.83014315e-01 -5.31410515e-01 4.22369152e-01 5.99471509e-01 1.26439497e-01 -7.77748048e-01 -8.30047309e-01 -6.78335726e-01 -4.57278401e-01 -1.60024166e-01 3.32561642e-01 1.21533133e-01 -5.02741933e-01 1.89602256e+00 2.24408790e-01 -1.87645465e-01 3.13591324e-02 6.32767916e-01 1.02814233e+00 5.14627814e-01 8.09189200e-01 2.05312110e-03 1.38117731e+00 -7.42463112e-01 -3.74545246e-01 -2.20107421e-01 1.13062358e+00 -7.45153248e-01 1.27254152e+00 5.57616651e-01 -1.03122425e+00 -5.45529068e-01 -1.26245534e+00 -1.88914865e-01 -7.56505311e-01 -6.35654405e-02 1.14140952e+00 7.36196935e-01 -8.12000453e-01 5.01238942e-01 -7.96269298e-01 -3.46799821e-01 3.88586998e-01 7.48802245e-01 -4.84021336e-01 -2.50549614e-01 -1.11530209e+00 9.07362223e-01 3.54748040e-01 -3.56438905e-01 -1.00657558e+00 -9.49098825e-01 -9.88025308e-01 9.42411423e-02 1.52324125e-01 -5.64196825e-01 1.06543660e+00 -1.42983735e-01 -1.19173777e+00 8.08766246e-01 -4.71437275e-01 -2.53979623e-01 -8.27357545e-02 -1.27908681e-02 -4.25039649e-01 -2.98737347e-01 -1.33939683e-01 6.25893354e-01 2.73005933e-01 -8.31944644e-01 -2.46055350e-01 -3.69109541e-01 -1.69733420e-01 1.12837128e-01 -3.45715046e-01 -3.75475436e-02 -2.72942156e-01 -7.45588899e-01 -9.94346663e-02 -8.09053183e-01 -2.03240603e-01 -5.48445463e-01 -9.61095914e-02 -2.93903381e-01 7.06766248e-02 -3.72608870e-01 1.23992252e+00 -2.04746628e+00 2.12205842e-01 -3.55401710e-02 5.79685211e-01 2.99578726e-01 -4.04617846e-01 6.50627434e-01 -3.30219150e-01 1.22427866e-01 4.09219787e-02 -1.52341992e-01 -3.54147479e-02 -2.14737937e-01 -1.89321533e-01 3.60369861e-01 2.99760997e-01 1.22427309e+00 -1.01346493e+00 -1.15135029e-01 3.06101399e-03 3.08596075e-01 -6.40423000e-01 1.03186518e-01 -6.53530538e-01 5.92588961e-01 -6.65077448e-01 9.26460028e-01 3.54368538e-01 -5.33969700e-01 2.00911433e-01 -5.33886626e-02 -2.27689072e-01 5.29763520e-01 -4.41111565e-01 1.60981643e+00 -1.73553929e-01 3.62772286e-01 -1.01977438e-01 -6.69136226e-01 9.72874939e-01 8.44700189e-05 5.45622170e-01 -9.44397271e-01 -8.22678804e-02 1.80526748e-01 3.58796895e-01 -5.45244634e-01 5.38372695e-01 -1.43359691e-01 9.89236087e-02 5.05520761e-01 -1.79562084e-02 1.68443426e-01 4.71437931e-01 3.77447635e-01 1.07105231e+00 2.94695050e-01 2.83290207e-01 -4.33797419e-01 5.60615540e-01 9.04454738e-02 2.16682360e-01 6.75045311e-01 -3.20623428e-01 -3.24628502e-01 1.67858049e-01 -3.33467335e-01 -8.82268131e-01 -1.02832103e+00 -5.96783876e-01 1.70908022e+00 -1.27203465e-01 -8.10569823e-01 -5.78657925e-01 -3.32769066e-01 2.67590344e-01 4.44894344e-01 -4.40977901e-01 -2.73702532e-01 -4.25688207e-01 -1.00474215e+00 2.52700567e-01 3.49683046e-01 5.39793968e-02 -1.12171686e+00 -9.25812274e-02 4.31757540e-01 1.50042577e-02 -9.90121543e-01 -4.65077102e-01 4.20774043e-01 -8.96747470e-01 -1.14820027e+00 -4.87632006e-01 -7.34929860e-01 5.43899059e-01 3.94524395e-01 1.00117755e+00 4.67532203e-02 -4.18538034e-01 2.50962406e-01 -6.15277968e-05 -4.85486954e-01 -6.75955236e-01 3.24201286e-01 3.40125114e-01 -3.99671078e-01 6.57760143e-01 -3.70133609e-01 -5.19901216e-01 4.51967984e-01 -8.49088490e-01 5.87813966e-02 8.39056611e-01 6.74853981e-01 6.55444086e-01 -5.33021808e-01 1.00139654e+00 -1.13185000e+00 8.78537238e-01 -5.58740258e-01 -4.27076250e-01 2.81472683e-01 -6.82338536e-01 2.91104257e-01 5.80941617e-01 -5.20970225e-01 -7.44218767e-01 -2.40464613e-01 -2.62025386e-01 5.95661879e-01 -2.83712029e-01 8.29676151e-01 -2.87385106e-01 -4.88666892e-01 7.33992577e-01 4.92901653e-01 -1.18097670e-01 -4.90616381e-01 6.80845901e-02 5.59605896e-01 5.30441523e-01 -1.18431580e+00 2.30109051e-01 -2.48944074e-01 1.37528300e-01 -9.77798939e-01 -5.26769876e-01 -2.52252579e-01 -3.40616167e-01 -1.08588479e-01 6.86141133e-01 -9.46846485e-01 -1.21370566e+00 3.38311344e-01 -6.82162881e-01 -4.93472368e-01 5.16270280e-01 5.85665286e-01 -4.49964374e-01 5.34278393e-01 -7.88911283e-01 -3.56377602e-01 -1.31842703e-01 -1.57632852e+00 8.73165071e-01 1.61522940e-01 -6.48221791e-01 -1.00817668e+00 1.31838734e-03 6.70729756e-01 3.65951031e-01 -2.31427252e-02 1.56370902e+00 -8.70427191e-01 -6.85295463e-01 -1.78107575e-01 -6.26078248e-02 -2.51506031e-01 1.48551673e-01 -2.40002409e-01 -8.54799688e-01 -3.91836315e-01 -4.09142077e-01 -7.12784886e-01 7.31971979e-01 9.05341879e-02 1.22615540e+00 1.63369879e-01 -4.72136974e-01 5.58263898e-01 7.56585300e-01 4.12008077e-01 2.74459988e-01 4.12856162e-01 3.32312465e-01 5.38520455e-01 4.66248333e-01 2.14771926e-01 4.72970903e-01 5.53918183e-01 2.33776674e-01 1.13585591e-01 1.01505719e-01 -2.50708610e-01 4.56874669e-01 8.72084320e-01 1.05772458e-01 -2.65863925e-01 -1.01223338e+00 -2.35521533e-02 -1.43447673e+00 -6.44849539e-01 -3.88036147e-02 2.39369392e+00 1.20302558e+00 2.95014113e-01 -4.75071706e-02 -4.67456013e-01 1.17070727e-01 6.01762235e-02 -1.03591228e+00 -4.69164252e-01 -1.50142357e-01 1.34149939e-01 1.17551267e-01 5.26562154e-01 -8.59094024e-01 1.16831696e+00 7.14745474e+00 8.95503938e-01 -9.79942322e-01 -1.31500557e-01 7.66599715e-01 2.61826161e-02 -4.32186097e-01 -3.45133811e-01 -1.28614330e+00 5.24236917e-01 1.44174075e+00 -2.84322739e-01 4.64533955e-01 5.96083999e-01 3.26981068e-01 -7.10553825e-02 -1.47515082e+00 6.80822134e-01 -1.95271254e-01 -1.60849643e+00 1.82379678e-01 1.73381105e-01 4.33881998e-01 1.90767661e-01 3.98220628e-01 6.55859768e-01 1.91320628e-01 -1.34630513e+00 2.55488038e-01 5.50284803e-01 8.06794047e-01 -4.96668726e-01 2.54678100e-01 4.82407838e-01 -8.91304791e-01 1.94937229e-01 -3.41713756e-01 -2.49839440e-01 -2.85470366e-01 3.19284230e-01 -5.47215760e-01 1.87119111e-01 3.17210138e-01 6.74900115e-01 -6.88000977e-01 7.50341773e-01 3.47952366e-01 5.51429152e-01 1.57962054e-01 -3.11886668e-01 1.39081016e-01 -2.77983427e-01 6.07801862e-02 1.41476226e+00 -1.68727964e-01 2.44188026e-01 3.11614722e-01 8.25836897e-01 -1.74007803e-01 4.10920888e-01 -3.22412282e-01 -7.80943751e-01 4.35673863e-01 1.03713667e+00 -5.38187921e-01 -3.10404927e-01 -5.40476501e-01 4.71069574e-01 7.03794897e-01 4.55964208e-01 -5.92225611e-01 -2.97670513e-01 8.80244374e-01 -9.95315891e-03 -2.51740158e-01 -6.77631855e-01 -3.52628142e-01 -1.15370381e+00 -3.25550199e-01 -1.20580888e+00 1.36178449e-01 -6.33814156e-01 -1.04390430e+00 3.56592983e-01 -1.77184135e-01 -6.22053206e-01 1.00895844e-01 -1.12097704e+00 -1.99027315e-01 1.03298306e+00 -1.28974926e+00 -7.79655755e-01 -2.31378227e-01 2.03270629e-01 6.14512682e-01 -2.72046536e-01 1.05030501e+00 2.69063711e-01 -9.93130863e-01 6.73938632e-01 5.00028312e-01 -5.50712645e-01 1.06618381e+00 -7.80978680e-01 4.64461982e-01 3.49409521e-01 -1.52115420e-01 1.45913005e+00 6.97212517e-01 -7.84656584e-01 -1.85395145e+00 -1.10101128e+00 9.57905173e-01 -8.36849093e-01 8.42285633e-01 -6.84930444e-01 -1.00393271e+00 7.84550548e-01 -3.56811821e-01 -5.19344211e-01 1.39781296e+00 2.16590866e-01 -4.17277128e-01 1.90366983e-01 -7.63333261e-01 7.60642469e-01 1.09273458e+00 -5.87922812e-01 -2.79116303e-01 7.59878278e-01 8.65198076e-01 -4.56724852e-01 -1.32662582e+00 2.72034913e-01 6.86822772e-01 -6.94626927e-01 1.18800271e+00 -1.20863414e+00 4.86404508e-01 1.69517592e-01 -2.03039035e-01 -9.22594368e-01 -5.96855462e-01 -6.00107908e-01 -3.90810728e-01 7.50363588e-01 4.87405598e-01 -9.46826220e-01 6.60480082e-01 7.76369810e-01 -4.52473730e-01 -1.14147592e+00 -4.33123797e-01 -6.16404474e-01 4.52660829e-01 -3.82218301e-01 5.75846016e-01 5.86462319e-01 5.11145353e-01 4.23728943e-01 -1.40233606e-01 -5.54575287e-02 5.19555390e-01 7.77037367e-02 8.56536090e-01 -1.19573593e+00 -4.68585819e-01 -6.73574328e-01 -1.38028026e-01 -1.45438957e+00 2.45589226e-01 -1.19626248e+00 -2.75932103e-01 -8.60217452e-01 5.33505321e-01 -5.00726819e-01 -4.80906606e-01 3.93669605e-01 -4.65536028e-01 1.14570946e-01 -9.44334343e-02 2.57913440e-01 -8.61043394e-01 4.45596606e-01 1.33427286e+00 -1.98425829e-01 -1.45851970e-01 -2.34573901e-01 -1.03108990e+00 2.77588695e-01 7.79058754e-01 -1.94629624e-01 -2.31724128e-01 -3.00263446e-02 2.58149266e-01 1.50635848e-02 -2.30607718e-01 -9.52344179e-01 5.81196211e-02 -5.54692507e-01 6.10708296e-01 -3.93514931e-01 4.46246982e-01 -2.09885418e-01 -5.89165539e-02 6.45275593e-01 -6.64721549e-01 3.76143344e-02 5.20522356e-01 6.05158210e-01 9.64528322e-02 1.55603498e-01 5.11201739e-01 -1.07600369e-01 -6.81109250e-01 5.60295641e-01 -7.68957555e-01 -1.29093185e-01 1.00242674e+00 -1.47875696e-01 -7.41647303e-01 -1.11840583e-01 -7.89484441e-01 2.73509324e-01 5.80917001e-01 4.55095649e-01 4.77984905e-01 -7.71935880e-01 -3.37250382e-01 6.42359078e-01 5.55383265e-01 -5.38935244e-01 2.94991165e-01 8.29022706e-01 -4.23021108e-01 1.28852522e+00 -1.53738543e-01 -2.93162763e-01 -1.26959538e+00 7.75058448e-01 9.10938755e-02 -1.69583440e-01 -2.34553352e-01 6.58904314e-01 6.04004264e-01 -5.34405768e-01 4.07709211e-01 -3.82059187e-01 -5.89776710e-02 -4.34776485e-01 7.37969518e-01 1.57290399e-01 1.22681342e-01 -5.10308027e-01 -1.72121927e-01 2.39409402e-01 -4.97678071e-01 5.29312551e-01 1.32324147e+00 2.52261385e-02 -1.04863487e-01 5.00770926e-01 9.40521419e-01 2.89362948e-02 -1.05817175e+00 -1.49177134e-01 1.53813839e-01 1.32461503e-01 -2.90081263e-01 -1.02259326e+00 -1.38145983e-01 8.31942558e-01 3.16976756e-01 -2.44657442e-01 4.49459910e-01 -2.61463448e-02 7.33279467e-01 7.68772602e-01 5.49315393e-01 -5.08042693e-01 1.67693228e-01 7.97078013e-01 6.01444721e-01 -1.29682338e+00 -6.67379424e-02 -3.21433395e-01 -1.46043003e-01 1.03781080e+00 8.56517851e-01 5.62870383e-01 3.32622558e-01 2.99982876e-01 -1.61871433e-01 -2.53808230e-01 -1.10365999e+00 1.85382009e-01 3.03570300e-01 6.00319982e-01 1.25361621e+00 5.46716787e-02 -5.01428902e-01 8.30085814e-01 -1.15045719e-01 1.93484519e-02 1.23521149e-01 9.43748951e-01 -7.91776240e-01 -1.41424251e+00 -3.38919282e-01 5.82159877e-01 -3.59295160e-01 -4.47188407e-01 -5.14657915e-01 4.87491250e-01 -1.94884986e-01 9.21420455e-01 -3.24125588e-01 -3.76571178e-01 8.24845731e-02 3.86023372e-01 5.79082787e-01 -7.45074213e-01 -5.22555351e-01 -2.63703793e-01 1.79202989e-01 -6.46437764e-01 7.98800811e-02 -3.85708511e-01 -1.45871377e+00 -6.65907681e-01 1.48035930e-02 2.81975091e-01 7.80962110e-01 8.74845386e-01 8.50977480e-01 5.92344820e-01 -1.03613876e-01 -8.45014930e-01 -5.31591117e-01 -8.19122016e-01 -3.46173137e-01 2.85061985e-01 1.03823900e-01 -7.60187328e-01 5.67210428e-02 -3.25545743e-02]
[4.757711887359619, 5.735409736633301]
cf9e2dd5-eaf6-4e09-a322-6d6c90fe0729
residue-based-natural-language-adversarial
null
null
https://openreview.net/forum?id=eFGgjI4Wk-V
https://openreview.net/pdf?id=eFGgjI4Wk-V
Residue-Based Natural Language Adversarial Attack Detection
Deep learning based systems are susceptible to adversarial attacks, where a small, imperceptible change at the input alters the model prediction. However, to date the majority of the approaches to detect these attacks have been designed for image processing systems. Many popular image adversarial detection approaches are able to identify adversarial examples from embedding feature spaces, whilst in the NLP domain existing state of the art detection approaches solely focus on input text features, without consideration of model embedding spaces. This work examines what differences result when porting these image designed strategies to Natural Language Processing (NLP) tasks - these detectors are found to not port over well. This is expected as NLP systems have a very different form of input: discrete and sequential in nature, rather than the continuous and fixed size inputs for images. As an equivalent model-focused NLP detection approach, this work proposes a simple sentence-embedding "residue" based detector to identify adversarial examples. On many tasks, it out-performs ported image domain detectors and recent state of the art NLP specific detectors.
['Anonymous']
2022-01-16
null
null
null
acl-arr-january-2022-1
['adversarial-attack-detection', 'adversarial-attack-detection']
['computer-vision', 'knowledge-base']
[ 6.75067484e-01 1.26455277e-01 2.28491679e-01 -4.30107936e-02 -6.06089890e-01 -1.09874845e+00 1.17434466e+00 1.02922134e-01 -4.05682445e-01 1.89230144e-01 -3.92568037e-02 -5.14867067e-01 4.04846132e-01 -8.13461304e-01 -8.22892964e-01 -4.86767650e-01 4.95560430e-02 1.06608838e-01 4.49853212e-01 -4.82138008e-01 4.43607450e-01 9.18479860e-01 -1.03218853e+00 7.26188660e-01 1.23164527e-01 6.97400689e-01 -4.51037824e-01 1.25613630e+00 5.60060609e-03 9.27271485e-01 -9.21185553e-01 -8.17460537e-01 9.18022454e-01 -2.78706640e-01 -6.59248710e-01 -3.96618433e-02 9.34326470e-01 -4.31287259e-01 -1.03342474e+00 1.58180225e+00 4.99040633e-01 -4.02914852e-01 8.43380034e-01 -1.45919871e+00 -1.12074184e+00 3.06662858e-01 -3.65617186e-01 4.65072781e-01 5.97573757e-01 7.96795011e-01 5.31403065e-01 -7.08866179e-01 6.50762796e-01 1.66386294e+00 5.36942601e-01 7.82293856e-01 -1.34480667e+00 -7.36609578e-01 -1.31355748e-01 1.44919410e-01 -1.08641815e+00 -3.13797414e-01 7.92556345e-01 -6.14383280e-01 1.20070350e+00 3.95746320e-01 1.38674840e-01 1.60272479e+00 6.89008653e-01 8.17786813e-01 1.33247709e+00 -6.68911517e-01 5.56199700e-02 5.86373866e-01 -1.73394248e-01 5.34816206e-01 -1.83634628e-02 5.34389913e-01 -1.03814252e-01 -3.55403304e-01 5.68833947e-01 -1.73368812e-01 -1.69042394e-01 -1.53990343e-01 -9.28077042e-01 1.02528882e+00 3.86707842e-01 4.11434919e-01 -9.16077122e-02 1.95059031e-01 8.46038818e-01 8.77004445e-01 1.33252084e-01 7.71207273e-01 -2.55677938e-01 2.83880472e-01 -8.16756189e-01 2.30720058e-01 8.43752444e-01 9.96327043e-01 3.66121590e-01 2.17520460e-01 -3.39138776e-01 2.01009929e-01 2.17342570e-01 4.51954991e-01 5.29565215e-01 -2.78572530e-01 5.03891826e-01 4.02871460e-01 -2.80876964e-01 -1.45262992e+00 -3.79462466e-02 9.18807164e-02 -7.29149222e-01 8.87573957e-01 5.21031618e-01 -2.42985748e-02 -1.16372311e+00 1.28818357e+00 -3.40638980e-02 -2.32862309e-01 3.05468529e-01 6.90052927e-01 5.24488568e-01 8.66679370e-01 2.98307747e-01 2.17256740e-01 1.56034029e+00 -7.37272441e-01 -2.88054943e-01 -4.43736464e-01 3.81620973e-01 -1.08797395e+00 9.99007463e-01 3.46930236e-01 -8.14020813e-01 -5.57600498e-01 -1.25729883e+00 2.22189531e-01 -1.03084755e+00 -3.79620194e-01 -1.33992229e-02 1.13900805e+00 -1.00103629e+00 5.62321484e-01 -3.70302141e-01 -4.42341596e-01 5.42805254e-01 2.97862530e-01 -4.92190421e-01 -1.30553275e-01 -1.46889818e+00 1.17747533e+00 5.05650699e-01 -3.58716697e-01 -1.09431410e+00 -5.36817253e-01 -7.98739254e-01 -2.03213751e-01 3.11277155e-02 -4.40536916e-01 1.05057442e+00 -1.60658765e+00 -1.19532073e+00 1.36234999e+00 4.22425300e-01 -9.32383716e-01 9.94229734e-01 1.20513737e-01 -7.47167706e-01 4.65368122e-01 -3.29246372e-01 7.10419416e-01 1.83944988e+00 -1.14496708e+00 -1.55124962e-01 -1.98069915e-01 1.26485974e-01 -2.13493347e-01 -5.38789749e-01 6.66037738e-01 1.33835211e-01 -9.74345565e-01 -4.64886487e-01 -7.96153843e-01 -3.88359845e-01 4.30247217e-01 -6.23915195e-01 1.86883762e-01 1.25785041e+00 -4.69913304e-01 9.27214742e-01 -2.30246568e+00 -3.55026364e-01 1.33369312e-01 2.45316297e-01 8.96530092e-01 -3.30958009e-01 8.29142869e-01 -5.09675205e-01 5.27372301e-01 -2.38980725e-01 8.35494399e-02 3.34591806e-01 9.31500196e-02 -8.14578831e-01 8.01798165e-01 6.88086450e-01 1.01686478e+00 -6.80139840e-01 -5.39371371e-01 4.29772168e-01 3.08053672e-01 -2.53469437e-01 1.02284670e-01 -9.69292298e-02 -3.13133411e-02 -3.21069688e-01 5.83685577e-01 8.57946217e-01 3.23386222e-01 -3.91084403e-01 -1.09668970e-01 1.81990966e-01 -2.04519600e-01 -9.13371921e-01 1.06223488e+00 -9.22192931e-02 1.14427125e+00 -1.31903207e-02 -1.10802329e+00 7.97682583e-01 4.15276349e-01 -8.87216777e-02 -5.90229809e-01 9.71625969e-02 1.17422931e-01 1.63550183e-01 -5.81210077e-01 3.17492157e-01 -7.04043880e-02 -1.45586044e-01 6.57927766e-02 9.73262787e-02 -2.12690696e-01 -8.90239999e-02 3.50824952e-01 1.68958890e+00 -2.68505067e-01 6.37162626e-01 -9.32621881e-02 8.96438718e-01 2.31080115e-01 -9.70458090e-02 1.33759141e+00 -7.00044274e-01 7.41146207e-01 5.61286688e-01 -6.18413210e-01 -1.38048160e+00 -1.23898900e+00 -2.47151300e-01 7.53630400e-01 -6.39436990e-02 -1.77545354e-01 -8.75087202e-01 -9.51125503e-01 4.45335507e-02 5.71224630e-01 -6.07572794e-01 -4.80769426e-01 -5.65644979e-01 -4.02673692e-01 1.21760750e+00 2.52269328e-01 3.59068215e-01 -1.47253156e+00 -5.13709009e-01 1.61756396e-01 6.22142911e-01 -1.24323547e+00 -4.44613665e-01 1.05614193e-01 -5.20046115e-01 -9.72573817e-01 -6.10502422e-01 -1.01983976e+00 7.36974537e-01 -2.22373575e-01 1.21648669e+00 -1.21511683e-01 -8.89372587e-01 6.84515476e-01 -3.47128183e-01 -8.76772165e-01 -1.38681257e+00 -4.05697346e-01 -2.19588690e-02 2.33900221e-03 7.44335413e-01 -2.78215647e-01 -4.63999301e-01 -4.20672335e-02 -1.45426989e+00 -5.61974227e-01 8.14060330e-01 6.67369425e-01 1.00089118e-01 2.03625992e-01 2.58131623e-01 -8.77532899e-01 1.01299226e+00 -2.12259769e-01 -4.22614992e-01 1.77553803e-01 -4.56091344e-01 -6.93699941e-02 1.19406736e+00 -1.03648913e+00 -4.69702244e-01 3.49439889e-01 -2.59720117e-01 -8.43047678e-01 -8.43851268e-01 -2.47996636e-02 -2.24888936e-01 -4.43585962e-01 1.19867671e+00 5.66190898e-01 7.10966066e-02 3.61043885e-02 3.99210125e-01 6.00910366e-01 5.15754044e-01 -2.05869690e-01 1.52233016e+00 3.33558649e-01 -6.49133027e-02 -1.05061257e+00 -8.67902786e-02 -3.34470689e-01 -6.27145231e-01 -1.23667076e-01 8.25261474e-01 -6.26372159e-01 -3.47350955e-01 7.62619734e-01 -1.34998894e+00 8.54377225e-02 -4.82453316e-01 1.00413142e-02 -4.97961730e-01 8.13968480e-01 -8.25170338e-01 -8.22725654e-01 -3.20671231e-01 -1.24896443e+00 9.00280654e-01 -2.54817665e-01 -2.34873876e-01 -1.00029624e+00 4.70803194e-02 2.71305814e-02 3.89721096e-01 6.21411502e-01 1.00987220e+00 -1.04578781e+00 -3.46691906e-01 -9.27278578e-01 -2.10801974e-01 7.76428282e-01 -1.49442062e-01 2.05952123e-01 -1.18838441e+00 -3.80781740e-01 3.22467417e-01 -3.19582790e-01 7.40353048e-01 -2.17246413e-02 7.22637296e-01 -8.62821162e-01 -1.38694122e-01 2.41601318e-01 1.76903427e+00 1.07554972e-01 1.04843116e+00 5.53168952e-01 4.94196028e-01 5.06640077e-01 2.94702232e-01 1.34543970e-01 -6.20780945e-01 4.63105887e-01 7.38273323e-01 -2.97500253e-01 -1.68767769e-03 -2.12732658e-01 9.42365587e-01 1.60998814e-02 7.72302210e-01 -6.13386333e-01 -1.08655512e+00 4.81445163e-01 -1.55589664e+00 -1.23367643e+00 -1.68478042e-01 1.66207969e+00 8.31553102e-01 5.59806943e-01 -1.54874856e-02 1.47376806e-01 8.47886264e-01 3.36045027e-01 -5.04101098e-01 -1.11460066e+00 -1.81325570e-01 3.87896031e-01 9.40435410e-01 9.12272707e-02 -1.65886497e+00 1.00129795e+00 6.76670551e+00 9.73525763e-01 -1.05616856e+00 -2.63493508e-02 4.95594561e-01 2.58537263e-01 1.53709829e-01 -2.05839276e-01 -4.10332680e-01 5.23496270e-01 9.50020790e-01 -8.19965526e-02 1.27847850e-01 1.14038944e+00 1.90165155e-02 4.04335320e-01 -1.37087548e+00 8.62675548e-01 1.92973971e-01 -1.23099494e+00 4.68597054e-01 1.29710898e-01 4.40339118e-01 -2.08957382e-02 5.19288480e-01 1.55733496e-01 3.09163719e-01 -1.37661541e+00 7.38624990e-01 4.04388815e-01 5.18704116e-01 -6.60740376e-01 6.73153460e-01 4.37513411e-01 -7.32867181e-01 -1.62062779e-01 -6.04655564e-01 -1.66864600e-02 -1.84510276e-01 1.26616955e-01 -9.31751370e-01 -3.45749371e-02 5.53992629e-01 2.88616270e-01 -8.13556790e-01 5.93338668e-01 -1.74552172e-01 6.29558384e-01 -2.34439746e-01 -1.15748094e-02 5.90965807e-01 2.58305341e-01 9.35703158e-01 1.71774673e+00 -1.88811228e-01 -2.59481013e-01 2.51881540e-01 9.60857451e-01 -8.09355974e-02 1.04215994e-01 -1.29958284e+00 -3.43786865e-01 1.52558446e-01 1.08096576e+00 -6.04500234e-01 -1.96011215e-01 -4.89020735e-01 1.37459683e+00 -1.81694299e-01 1.05674796e-01 -9.16590869e-01 -4.74473268e-01 8.63918424e-01 2.12987423e-01 2.50096321e-01 -1.33696347e-01 -2.09706780e-02 -8.95992935e-01 1.42492473e-01 -1.31274903e+00 2.31273651e-01 -4.92479622e-01 -1.85575151e+00 5.70687890e-01 -1.85281411e-01 -1.33472681e+00 -2.65647054e-01 -1.24543488e+00 -9.32807267e-01 8.59640837e-01 -1.15112627e+00 -1.34050703e+00 2.58128434e-01 8.63973439e-01 6.75094306e-01 -6.53706193e-01 9.50473249e-01 -6.49410114e-03 -2.21433148e-01 9.49164629e-01 1.48875028e-01 7.87982464e-01 6.92792654e-01 -1.23966742e+00 9.04170096e-01 1.34898329e+00 3.63403559e-01 3.99317414e-01 9.82959449e-01 -3.39957058e-01 -1.47096014e+00 -1.24364090e+00 4.82431561e-01 -8.38860571e-01 1.00360334e+00 -5.39304435e-01 -8.80857408e-01 4.74659801e-01 4.86923993e-01 2.76996285e-01 3.13157350e-01 -8.18851590e-01 -7.65981078e-01 2.77491689e-01 -1.58876276e+00 7.97950625e-01 5.23712516e-01 -1.01163316e+00 -7.35524118e-01 6.90158188e-01 6.21278703e-01 -2.14933574e-01 -6.82479978e-01 1.03242010e-01 3.10535729e-01 -7.78972030e-01 1.43777633e+00 -8.79731536e-01 6.40355170e-01 -3.16259444e-01 -5.03574982e-02 -9.35546279e-01 -3.73542577e-01 -7.92788327e-01 -1.45142376e-01 1.20122731e+00 3.50662827e-01 -7.08473325e-01 7.09859252e-01 5.23878098e-01 2.42396846e-01 -2.89346606e-01 -8.95549834e-01 -9.39499736e-01 3.75461608e-01 -4.06436086e-01 9.25808102e-02 9.13258076e-01 -2.85292268e-01 3.59647423e-02 -3.55348319e-01 4.52939153e-01 5.55476665e-01 -4.46864873e-01 7.42758751e-01 -6.77270651e-01 -3.41575861e-01 -6.00146413e-01 -1.36815560e+00 -4.48818415e-01 1.64975181e-01 -7.27945626e-01 -1.05621666e-01 -8.03541541e-01 -1.62881330e-01 7.03884885e-02 -2.03648686e-01 3.86691570e-01 5.85225038e-02 5.77215016e-01 5.32244503e-01 2.66096413e-01 -1.08840548e-01 -1.58485502e-01 7.92862535e-01 -7.87247419e-01 2.89877146e-01 -4.95470278e-02 -3.80464792e-01 8.30890179e-01 9.23211455e-01 -8.48875403e-01 -2.85639405e-01 -1.57384932e-01 -2.27218438e-02 -5.34465075e-01 7.29936540e-01 -1.21045721e+00 2.23273158e-01 -9.96326581e-02 6.36831760e-01 -1.60650492e-01 3.70280445e-02 -1.06203401e+00 -1.55839950e-01 8.28648925e-01 -4.68257964e-01 1.26094073e-01 3.77435982e-01 7.50171423e-01 -2.53127486e-01 -5.99248290e-01 1.30657041e+00 -6.86661601e-01 -9.30222929e-01 2.49089926e-01 -9.23276126e-01 9.73139107e-02 1.46128142e+00 -5.56476116e-01 -3.30703557e-01 -2.64863878e-01 -6.32905066e-01 -3.38606149e-01 6.30982280e-01 7.22701907e-01 7.93160677e-01 -9.32010233e-01 -8.87247801e-01 2.21131921e-01 2.50562608e-01 -5.54259777e-01 -9.20861959e-02 2.27453768e-01 -1.01096082e+00 3.41601551e-01 -4.82938737e-01 -4.71197248e-01 -1.49785292e+00 1.35549128e+00 4.78854537e-01 -3.24387580e-01 -6.57604635e-01 7.93604493e-01 4.13488477e-01 -3.05915862e-01 1.00352690e-01 8.39611515e-02 6.32891282e-02 -1.46165848e-01 6.71371937e-01 -1.19970679e-01 -4.47543450e-02 -6.73587263e-01 -3.64901781e-01 5.34683131e-02 -4.62361455e-01 1.54353291e-01 8.41410220e-01 3.67840856e-01 9.12053064e-02 5.06823249e-02 1.48733234e+00 -5.26231416e-02 -9.41379964e-01 -1.46149009e-01 -1.58423092e-02 -5.11768520e-01 -2.38670275e-01 -7.08830059e-01 -7.10738659e-01 1.09292912e+00 9.60657001e-01 6.50400519e-01 1.05803311e+00 -7.17485249e-02 6.30936265e-01 4.19178575e-01 2.54103038e-02 -9.53362584e-01 2.35458434e-01 3.86142910e-01 1.09869397e+00 -1.25624669e+00 -3.61817144e-02 -2.96116561e-01 -4.77223188e-01 1.44678080e+00 5.90292573e-01 -5.51489830e-01 5.29488266e-01 5.50735652e-01 1.33684367e-01 -1.53258204e-01 -3.25415432e-01 2.08767548e-01 9.47811827e-02 1.09506679e+00 1.99830458e-02 -1.59438729e-01 3.80749702e-02 -6.49817735e-02 -1.29812524e-01 -5.47512472e-01 6.72060251e-01 1.01663506e+00 -1.64720878e-01 -1.22702610e+00 -7.49147475e-01 2.69722164e-01 -7.66203344e-01 -4.69069779e-01 -9.67469215e-01 9.97752130e-01 -1.95667036e-02 8.11877549e-01 -6.91197962e-02 -4.51082826e-01 3.74831676e-01 9.36711580e-02 4.03144896e-01 -5.73077917e-01 -1.20105839e+00 -6.56835258e-01 -3.67598265e-01 -4.88951921e-01 -1.31744102e-01 -5.10769546e-01 -6.48285985e-01 -3.68464589e-01 -1.64386496e-01 -3.58986259e-01 5.42800665e-01 7.55211949e-01 1.39769405e-01 2.11069196e-01 7.87665546e-01 -7.93755651e-01 -1.04801571e+00 -7.12830067e-01 -3.48254591e-01 7.71732509e-01 5.12655318e-01 5.83605170e-02 -6.09125376e-01 2.75299460e-01]
[5.880184650421143, 8.002958297729492]
b2968aa3-65ad-4cda-86b0-024be437044e
time-to-embrace-natural-language-processing
2302.10406
null
https://arxiv.org/abs/2302.10406v1
https://arxiv.org/pdf/2302.10406v1.pdf
Time to Embrace Natural Language Processing (NLP)-based Digital Pathology: Benchmarking NLP- and Convolutional Neural Network-based Deep Learning Pipelines
NLP-based computer vision models, particularly vision transformers, have been shown to outperform CNN models in many imaging tasks. However, most digital pathology artificial-intelligence models are based on CNN architectures, probably owing to a lack of data regarding NLP models for pathology images. In this study, we developed digital pathology pipelines to benchmark the five most recently proposed NLP models (vision transformer (ViT), Swin Transformer, MobileViT, CMT, and Sequencer2D) and four popular CNN models (ResNet18, ResNet50, MobileNetV2, and EfficientNet) to predict biomarkers in colorectal cancer (microsatellite instability, CpG island methylator phenotype, and BRAF mutation). Hematoxylin and eosin-stained whole-slide images from Molecular and Cellular Oncology and The Cancer Genome Atlas were used as training and external validation datasets, respectively. Cross-study external validations revealed that the NLP-based models significantly outperformed the CNN-based models in biomarker prediction tasks, improving the overall prediction and precision up to approximately 10% and 26%, respectively. Notably, compared with existing models in the current literature using large training datasets, our NLP models achieved state-of-the-art predictions for all three biomarkers using a relatively small training dataset, suggesting that large training datasets are not a prerequisite for NLP models or transformers, and NLP may be more suitable for clinical studies in which small training datasets are commonly collected. The superior performance of Sequencer2D suggests that further research and innovation on both transformer and bidirectional long short-term memory architectures are warranted in the field of digital pathology. NLP models can replace classic CNN architectures and become the new workhorse backbone in the field of digital pathology.
['Xu Steven Xu', 'Hong Zhang', 'Jitendra Jonnagaddala', 'Bangwei Guo', 'Xingyu Li', 'Min Cen']
2023-02-21
null
null
null
null
['whole-slide-images']
['computer-vision']
[ 1.22582115e-01 1.85470609e-03 -4.86001998e-01 1.36523366e-01 -7.72758126e-01 -3.78859520e-01 3.72906029e-01 4.97989178e-01 -6.42748356e-01 6.11831069e-01 2.48665288e-01 -6.26672566e-01 -1.26421958e-01 -6.98533475e-01 -4.19770569e-01 -6.97570324e-01 1.83278173e-02 4.81085539e-01 2.92472273e-01 7.84259960e-02 -1.46268323e-01 5.71782112e-01 -9.01969314e-01 3.93221349e-01 8.94748986e-01 9.28799510e-01 3.71103823e-01 8.61220777e-01 -2.45592922e-01 8.50593984e-01 -1.06300011e-01 -5.31418204e-01 -9.93089601e-02 4.90400754e-02 -7.27492154e-01 -5.14974773e-01 3.30383122e-01 -1.54598549e-01 -5.89170098e-01 9.89082098e-01 8.72538090e-01 -5.60491443e-01 3.64770681e-01 -9.09610987e-01 -9.20234084e-01 1.40310064e-01 -3.99917334e-01 5.17690480e-01 5.55472001e-02 8.83789241e-01 8.27802837e-01 -7.22648382e-01 9.19065475e-01 6.93962157e-01 1.28904712e+00 6.34168029e-01 -1.01058209e+00 -5.29497683e-01 -4.57537860e-01 4.14269686e-01 -1.17798483e+00 -4.87115309e-02 1.08721867e-01 -5.42824686e-01 1.40627658e+00 2.66843259e-01 1.09119344e+00 1.20010602e+00 8.50308537e-01 7.90771127e-01 1.07217813e+00 -1.21669091e-01 -3.30501683e-02 -1.68730438e-01 3.95748526e-01 1.17816937e+00 2.79175073e-01 2.39096612e-01 -5.13261318e-01 -3.71310532e-01 7.08021939e-01 1.31032720e-01 -5.63616097e-01 2.49801204e-01 -1.59762061e+00 6.51533604e-01 7.85096347e-01 3.76420081e-01 -3.23662549e-01 2.46417075e-01 7.00212717e-01 1.41186193e-01 4.00525749e-01 4.47634995e-01 -5.03579676e-01 -4.85566333e-02 -9.20675337e-01 -2.15334117e-01 6.91611469e-01 3.21542859e-01 3.33673805e-01 -2.59948373e-01 -4.82786953e-01 7.82830417e-01 3.10895383e-01 4.10805464e-01 1.06666386e+00 -5.24368107e-01 4.31595929e-02 9.46793914e-01 -3.19997996e-01 -9.44943905e-01 -1.12623179e+00 -6.15401685e-01 -1.07274687e+00 -1.70169964e-01 5.59417009e-01 3.34347710e-02 -1.26669788e+00 1.27929235e+00 -1.43201813e-01 4.81399089e-01 5.75010590e-02 8.74288261e-01 1.33422887e+00 2.49000117e-01 4.02290136e-01 9.38299298e-02 1.62220728e+00 -9.17148292e-01 -4.12775248e-01 -1.85178906e-01 9.76494789e-01 -5.39111733e-01 9.18907702e-01 7.38393292e-02 -7.05280185e-01 -2.63237178e-01 -8.64828110e-01 -2.74869889e-01 -6.61994696e-01 4.03758794e-01 9.37815845e-01 5.80543101e-01 -1.42713737e+00 3.23233038e-01 -9.76365864e-01 -8.83553982e-01 7.28207469e-01 4.35058117e-01 -5.52082419e-01 -2.89803684e-01 -1.17975712e+00 1.08981800e+00 3.74713689e-01 3.44597369e-01 -1.21133494e+00 -1.35622227e+00 -6.63372457e-01 -4.46164943e-02 -3.27026516e-01 -1.23255694e+00 1.14547050e+00 -6.15336955e-01 -1.17662454e+00 1.25801063e+00 -1.79397296e-02 -7.53475308e-01 3.75474960e-01 3.11096430e-01 -3.01147848e-01 4.31040794e-01 -1.26736984e-01 1.04917324e+00 1.10666625e-01 -4.62359548e-01 -4.14568901e-01 -3.43427986e-01 -1.35648876e-01 -2.69210320e-02 -5.09728432e-01 -2.57826626e-01 -5.95944285e-01 -2.69938916e-01 -3.50242138e-01 -8.12887788e-01 -5.30834973e-01 5.28460681e-01 -4.59469199e-01 -1.96210691e-03 4.89230990e-01 -8.07986379e-01 6.82627261e-01 -1.97242558e+00 -2.26175323e-01 2.65469775e-02 6.58352792e-01 6.97206736e-01 -3.90363663e-01 -4.31600697e-02 -1.06496550e-01 4.15078253e-01 3.16226423e-01 2.51079407e-02 -3.15972149e-01 -6.83686091e-03 3.03086936e-01 6.58836961e-01 2.02513680e-01 1.56882417e+00 -1.03320396e+00 -6.07209563e-01 2.49869868e-01 5.20082057e-01 -1.87818721e-01 -2.01117218e-01 -2.57001013e-01 1.16632134e-01 -2.71717548e-01 1.05686140e+00 4.32038307e-01 -6.84870601e-01 1.49126932e-01 -1.74835637e-01 2.03453019e-01 -2.15967968e-01 6.13049511e-03 1.61155820e+00 -2.78303444e-01 8.34946096e-01 -6.91352263e-02 -6.38247609e-01 5.94677091e-01 4.33995217e-01 4.33391690e-01 -8.36583614e-01 1.19008198e-01 1.93724796e-01 2.40081698e-01 -8.33044469e-01 -1.03011735e-01 -2.72815436e-01 3.63003701e-01 -1.86831921e-01 2.08956495e-01 1.99539497e-01 2.25286379e-01 -7.59268552e-02 1.71020365e+00 -3.44935536e-01 3.10651839e-01 2.94266343e-02 6.00872517e-01 3.93229336e-01 6.09527946e-01 8.20333540e-01 -7.32428968e-01 6.73343182e-01 8.02520335e-01 -5.94227970e-01 -7.42298186e-01 -1.03825784e+00 -1.98546603e-01 5.74702144e-01 -3.57315391e-01 -1.68584302e-01 -2.84186870e-01 -7.87066936e-01 2.84026843e-02 1.19812153e-01 -8.40556204e-01 -1.93434566e-01 -2.26269796e-01 -1.39723098e+00 1.29346776e+00 6.06325269e-01 6.43309712e-01 -9.96985257e-01 -2.87564546e-01 2.03717709e-01 -8.12802389e-02 -1.02356899e+00 -1.18434608e-01 2.30043098e-01 -9.01634276e-01 -1.60541511e+00 -1.14375341e+00 -9.99707878e-01 7.93865979e-01 -1.68215428e-02 8.72959912e-01 2.28124097e-01 -6.46214604e-01 3.03120047e-01 -1.04312517e-01 -6.40167952e-01 -4.05459583e-01 1.30089656e-01 -2.85462260e-01 -4.28047717e-01 6.43235385e-01 -2.16744915e-01 -8.21419895e-01 -2.16096073e-01 -6.50436759e-01 3.47236663e-01 1.26889968e+00 1.21839309e+00 8.10958683e-01 -2.61459738e-01 5.06258011e-01 -6.93126202e-01 5.63000500e-01 -5.75811565e-01 -2.52948374e-01 2.50239372e-01 -5.33942997e-01 -5.75791955e-01 7.06057668e-01 -2.41679832e-01 -8.23055923e-01 -1.48095429e-01 -4.88259941e-01 -4.67629969e-01 -1.57939970e-01 1.11355102e+00 3.69838983e-01 -4.10538673e-01 6.66113138e-01 4.21632797e-01 5.05908489e-01 -5.70177473e-02 -1.80628896e-01 3.36430639e-01 3.41048449e-01 8.68912488e-02 4.41235304e-01 6.17605388e-01 2.78753340e-01 -8.34318817e-01 -7.44504571e-01 -5.96922576e-01 -2.74267882e-01 -1.83036104e-01 9.21719015e-01 -9.10900056e-01 -9.05796945e-01 7.34949768e-01 -9.09167051e-01 -5.35745621e-01 -8.81841630e-02 4.49233919e-01 -2.02052593e-01 3.67953897e-01 -1.09635174e+00 -2.22825538e-02 -9.44454610e-01 -1.20226300e+00 9.98279810e-01 3.53131622e-01 -1.23516925e-01 -1.36747038e+00 3.54494691e-01 4.69569594e-01 5.75555444e-01 2.72944003e-01 1.37685776e+00 -7.57282317e-01 -3.74132276e-01 -5.62837780e-01 -6.75013125e-01 1.21946864e-01 -1.05089441e-01 4.46508192e-02 -7.42476165e-01 -4.06150371e-02 -5.00572145e-01 -3.66690159e-01 1.12354517e+00 6.08592212e-01 1.29369199e+00 8.97581950e-02 -8.88499618e-01 7.67978072e-01 1.55152142e+00 -6.36310433e-04 8.73649180e-01 4.80204344e-01 5.04018486e-01 1.28755793e-01 1.63832307e-01 -1.26294523e-01 4.49030727e-01 1.66364074e-01 5.52757800e-01 -5.42234778e-01 -4.69336599e-01 -1.55395031e-01 1.60264507e-01 5.74140191e-01 2.45751530e-01 -2.55716860e-01 -1.58819401e+00 8.24817598e-01 -1.60408688e+00 -6.21759534e-01 -3.56584668e-01 1.56164098e+00 8.28607321e-01 1.07356653e-01 -3.74871790e-01 -2.61658669e-01 4.75899369e-01 -4.23949137e-02 -6.82766378e-01 -1.04181617e-01 -2.23586753e-01 1.67824209e-01 4.77322072e-01 -1.37886941e-01 -9.46384132e-01 7.29002953e-01 6.90933418e+00 8.52660418e-01 -1.48975873e+00 3.11480463e-01 9.92420971e-01 -3.89391370e-02 1.83791965e-02 -3.49453032e-01 -6.18556380e-01 4.34220076e-01 1.26001620e+00 5.85772432e-02 -1.55326709e-01 4.94487494e-01 4.72044021e-01 -2.00208381e-01 -9.37283397e-01 8.01442385e-01 -1.00881733e-01 -2.03716779e+00 7.66870156e-02 1.82880387e-01 4.06459272e-01 7.34502316e-01 2.85712332e-01 3.94558132e-01 1.55658528e-01 -1.32434106e+00 -2.13569373e-01 7.37662017e-01 1.01769865e+00 -2.46048123e-01 1.48631203e+00 1.89402327e-01 -6.01095378e-01 1.94375459e-02 -4.38619226e-01 2.91937083e-01 -2.34508380e-01 8.09566259e-01 -1.34441626e+00 4.56054717e-01 7.37131476e-01 8.99206758e-01 -9.32745159e-01 1.42411494e+00 -1.43897831e-02 9.57135499e-01 -1.05275020e-01 -3.14771503e-01 4.81637806e-01 4.45511043e-01 2.79220045e-01 1.48919499e+00 2.17022032e-01 -2.33378246e-01 3.18683758e-02 6.63030863e-01 -1.73303381e-01 5.38638607e-02 -2.64361054e-01 -2.83856541e-01 7.87957534e-02 1.66089380e+00 -8.14971387e-01 -1.23468705e-01 -7.57813096e-01 4.82657909e-01 2.89842844e-01 3.18418086e-01 -8.08425367e-01 -1.23312652e-01 5.81464291e-01 -2.35400908e-02 -2.82126796e-02 1.53001472e-01 -3.77766937e-01 -8.82561684e-01 -4.68820781e-01 -8.04955840e-01 5.98697603e-01 -8.29496384e-01 -1.59014118e+00 1.36741832e-01 -7.34685540e-01 -1.03890622e+00 4.03269619e-01 -1.07865155e+00 -8.11041117e-01 8.27799022e-01 -2.04768419e+00 -1.49115276e+00 -4.55095321e-01 4.39293772e-01 2.61917174e-01 -2.65484452e-01 1.10892832e+00 -9.25438665e-03 -7.68501103e-01 5.07048011e-01 2.91833460e-01 4.15882587e-01 6.64137900e-01 -1.20546663e+00 4.13810648e-03 4.83504295e-01 -5.39783537e-01 5.73277950e-01 2.28397802e-01 -6.77163899e-01 -1.53483140e+00 -1.50773501e+00 7.82473862e-01 -2.95101106e-01 1.02806532e+00 1.33250132e-01 -6.08313799e-01 6.90180361e-01 1.28694773e-01 3.66972119e-01 1.33079994e+00 -1.62219226e-01 -1.72030851e-01 4.89270538e-02 -1.38748360e+00 6.29616559e-01 6.48673952e-01 -4.77874726e-01 -3.79822224e-01 6.33718610e-01 6.14256382e-01 -4.72662657e-01 -1.19133627e+00 4.48160976e-01 6.48265958e-01 -6.62548482e-01 9.82283831e-01 -3.99889201e-01 5.26637256e-01 -2.27570847e-01 2.75225222e-01 -1.24324977e+00 -5.97885311e-01 4.45637703e-02 -5.32488599e-02 7.86033273e-01 5.82210720e-01 -7.75616705e-01 1.01938236e+00 1.62157252e-01 -2.69305408e-01 -1.28375661e+00 -1.14724314e+00 -4.42259073e-01 2.01399356e-01 -4.22548831e-01 1.84810027e-01 7.04590917e-01 2.10678384e-01 -2.19578277e-02 2.08560556e-01 9.97808427e-02 2.82712489e-01 -4.00951087e-01 2.38539800e-01 -1.06219900e+00 -7.98530057e-02 -6.90906107e-01 -8.31065476e-01 -2.85236359e-01 3.29869449e-01 -1.50709152e+00 -3.94022524e-01 -1.81068909e+00 5.98405421e-01 -2.13749781e-01 -5.66112220e-01 8.41553450e-01 -1.42986313e-01 6.36503041e-01 -1.16027221e-01 1.99857622e-01 -4.59564656e-01 2.19435290e-01 1.32580411e+00 -6.51285231e-01 7.88963139e-02 -2.50900716e-01 -8.42379689e-01 8.38803768e-01 8.39614272e-01 -1.73964333e-02 -8.32494423e-02 -2.24023953e-01 2.32451379e-01 4.77798842e-02 7.20922410e-01 -1.12996233e+00 5.48751175e-01 4.93092164e-02 1.01404333e+00 -6.50336206e-01 2.58731395e-01 -5.46919525e-01 7.65261706e-03 1.04509950e+00 -2.19641984e-01 -2.47009501e-01 4.67186093e-01 5.88127136e-01 -1.35976061e-01 5.55844568e-02 6.41848505e-01 -4.35746759e-01 -7.97106147e-01 5.98519087e-01 -8.80772531e-01 -3.54453743e-01 9.81330812e-01 -4.96865541e-01 -1.02429581e+00 6.67764097e-02 -7.43421972e-01 5.35221338e-01 2.21732304e-01 1.98269159e-01 9.20492947e-01 -1.03543341e+00 -7.30424345e-01 -2.02228323e-01 3.53568971e-01 -2.12508053e-01 7.26869702e-01 1.52984691e+00 -1.01465034e+00 1.02817333e+00 -3.22576106e-01 -7.69048393e-01 -1.11716747e+00 4.27270293e-01 7.50985265e-01 -9.03191566e-01 -5.05067825e-01 8.75478208e-01 1.01674728e-01 -6.31972194e-01 9.00671929e-02 -4.52897638e-01 -3.42689812e-01 -5.71225323e-02 5.44747114e-01 2.63308108e-01 2.39414215e-01 -1.13444276e-01 -5.37110031e-01 1.90820366e-01 -4.29544210e-01 4.76338387e-01 1.38678074e+00 2.98707962e-01 -3.51838678e-01 1.17083155e-01 1.07199872e+00 -6.55972123e-01 -6.94119334e-01 -6.04748391e-02 -6.85950667e-02 9.98165384e-02 2.78024495e-01 -1.35253334e+00 -1.10264444e+00 7.43292272e-01 8.72282267e-01 -3.24013382e-01 1.15103114e+00 -1.31614596e-01 9.46655989e-01 2.45111525e-01 2.40160629e-01 -6.97276115e-01 1.98887903e-02 5.57445824e-01 5.78524351e-01 -1.03815699e+00 -2.04960525e-01 -2.17586711e-01 -1.92609429e-01 1.27944684e+00 8.34035158e-01 6.01246208e-02 6.74435258e-01 2.63423055e-01 1.27060995e-01 -4.92740512e-01 -1.00220549e+00 -1.44093826e-01 1.75227806e-01 9.19587076e-01 6.25907302e-01 5.39571568e-02 -3.42898875e-01 7.65784979e-01 -9.39687341e-02 5.29268920e-01 5.56266725e-01 5.49463689e-01 -1.91608533e-01 -7.34776735e-01 -1.04930758e-01 1.01709390e+00 -7.01680303e-01 -3.57675970e-01 -4.70250636e-01 9.14194763e-01 2.72445560e-01 5.00744104e-01 -8.21827203e-02 -2.50744730e-01 1.17656305e-01 1.51062384e-01 2.10897595e-01 -5.46539307e-01 -9.92920101e-01 -1.69406652e-01 1.22243695e-01 -4.55531359e-01 -2.04557478e-01 -4.93973970e-01 -1.21646595e+00 -2.87701041e-01 -2.42928982e-01 -4.25974280e-01 3.93957108e-01 8.96306992e-01 4.90700811e-01 7.75974333e-01 -2.09849700e-01 -4.73833621e-01 -1.10942028e-01 -1.03112066e+00 -4.21338975e-01 -2.90638596e-01 2.25303233e-01 -1.96986362e-01 -2.19180179e-03 -1.68626159e-01]
[15.139322280883789, -2.9261550903320312]
20982686-39ee-46df-bd93-e5dccc522c4e
attention-aware-deep-reinforcement-learning
null
null
http://openaccess.thecvf.com/content_iccv_2017/html/Rao_Attention-Aware_Deep_Reinforcement_ICCV_2017_paper.html
http://openaccess.thecvf.com/content_ICCV_2017/papers/Rao_Attention-Aware_Deep_Reinforcement_ICCV_2017_paper.pdf
Attention-Aware Deep Reinforcement Learning for Video Face Recognition
In this paper, we propose an attention-aware deep reinforcement learning (ADRL) method for video face recognition, which aims to discard the misleading and confounding frames and find the focuses of attention in face videos for person recognition. We formulate the process of finding the attentions of videos as a Markov decision process and train the attention model through a deep reinforcement learning framework without using extra labels. Unlike existing attention models, our method takes information from both the image space and the feature space as the input to make better use of face information that is discarded in the feature learning process. Besides, our approach is attention-aware, which seeks different attentions of videos for the verification of different pairs of videos. Our approach achieves very competitive video face recognition performance on three widely used video face datasets.
['Jie zhou', 'Jiwen Lu', 'Yongming Rao']
2017-10-01
null
null
null
iccv-2017-10
['person-recognition']
['computer-vision']
[ 4.85219061e-02 -2.53236949e-01 -1.38840646e-01 -4.12649810e-01 -5.89292288e-01 -1.35304317e-01 3.24436843e-01 -7.21118391e-01 -3.25080395e-01 4.80525523e-01 9.63590145e-02 -1.31870145e-02 -1.02260962e-01 -5.05193174e-01 -6.85193241e-01 -7.30723023e-01 1.41751051e-01 1.81808442e-01 -3.48669112e-01 2.83036768e-01 3.78570944e-01 5.98711252e-01 -1.51186073e+00 2.87916064e-01 2.79147416e-01 1.20671570e+00 3.95110697e-02 6.85435116e-01 5.39132506e-02 1.27301502e+00 -5.75904489e-01 -4.82501447e-01 1.84559613e-01 -6.05434954e-01 -9.36235368e-01 5.96167624e-01 6.50053978e-01 -8.20587754e-01 -7.25046873e-01 1.16614461e+00 4.48269755e-01 2.76973426e-01 5.67902982e-01 -1.55198598e+00 -1.08836389e+00 6.38323426e-02 -7.33180642e-01 7.22797215e-01 5.81833780e-01 4.17470485e-01 6.74294114e-01 -1.23863804e+00 3.08604509e-01 1.54707491e+00 3.76614451e-01 8.89055252e-01 -7.89213181e-01 -7.46212721e-01 4.01682585e-01 9.64661539e-01 -1.45818651e+00 -8.55474710e-01 8.88108969e-01 -5.28958440e-01 7.00128675e-01 -1.09853819e-02 6.44100428e-01 1.36504340e+00 1.27024623e-02 9.78571236e-01 6.22767627e-01 -3.90403271e-01 9.69513133e-02 -2.64901847e-01 -7.51989186e-02 7.36061096e-01 -1.78638518e-01 1.67885303e-01 -6.61011755e-01 -5.43870069e-02 8.56413722e-01 3.94568563e-01 -3.43645662e-01 5.30987466e-03 -8.08248103e-01 7.68017709e-01 2.09833801e-01 2.48977855e-01 -7.16444254e-01 1.92027032e-01 9.60846916e-02 2.65844136e-01 3.04208815e-01 -2.04653554e-02 -2.16907352e-01 5.82691506e-02 -8.66243362e-01 -8.16352218e-02 2.89877146e-01 7.73220003e-01 7.03720450e-01 2.72078186e-01 -7.68272340e-01 6.02917850e-01 7.87347734e-01 4.97821957e-01 3.41446400e-01 -1.09763634e+00 1.13047853e-01 4.45931882e-01 4.77777459e-02 -9.92005825e-01 2.03990012e-01 1.59276891e-02 -4.84150857e-01 8.20819736e-02 2.07412720e-01 -2.53556997e-01 -9.75138783e-01 1.55306709e+00 2.80155897e-01 7.23337352e-01 2.58620083e-02 9.96621907e-01 9.49963927e-01 4.67400134e-01 3.59128982e-01 -4.04266596e-01 1.27779472e+00 -1.06892967e+00 -8.51753354e-01 -1.24092706e-01 -1.77541934e-02 -5.06515861e-01 5.26777804e-01 2.94869542e-01 -1.16704810e+00 -8.30243945e-01 -7.35370040e-01 -6.21152706e-02 3.31384912e-02 3.09306145e-01 3.54601413e-01 3.97791147e-01 -1.22606075e+00 4.89239842e-01 -5.07190943e-01 -1.43580630e-01 9.93356824e-01 5.92009366e-01 -4.10280824e-01 -3.66259038e-01 -9.49172795e-01 6.01044118e-01 -1.13847502e-01 3.71635586e-01 -1.58257878e+00 -4.07536268e-01 -8.66516888e-01 3.39528620e-01 6.00370049e-01 -3.20777893e-01 1.11439717e+00 -1.76692414e+00 -1.48169649e+00 6.89718902e-01 -4.00893599e-01 -3.41624841e-02 1.92755252e-01 -3.00995201e-01 -4.26102459e-01 4.88694400e-01 2.19500307e-02 7.59010136e-01 1.63181436e+00 -9.19065237e-01 -4.69920039e-01 -3.84019524e-01 9.65144485e-02 -7.21943080e-02 -2.24464893e-01 4.45629954e-01 -7.30819225e-01 -5.57369769e-01 -3.75221431e-01 -6.31331086e-01 1.39964774e-01 7.36127198e-02 -4.10704501e-03 -6.55260623e-01 1.16996634e+00 -9.36122358e-01 8.59140635e-01 -2.32380033e+00 3.12139124e-01 -3.67802717e-02 1.45478740e-01 4.37577218e-01 -5.60832739e-01 -4.47217263e-02 -1.95556000e-01 6.30636513e-03 9.41698998e-02 -3.59384656e-01 -2.25376830e-01 1.30620077e-01 -2.66488999e-01 5.54040372e-01 7.10894167e-01 9.84399915e-01 -9.61080015e-01 -6.51068807e-01 1.55263588e-01 7.95957446e-01 -6.84358537e-01 6.24565721e-01 4.87543978e-02 5.81252813e-01 -5.14561713e-01 9.14722860e-01 6.87318623e-01 -1.17598325e-01 1.13830820e-01 -2.41684884e-01 2.48733714e-01 -1.63273051e-01 -8.92460287e-01 1.28103876e+00 9.29104984e-02 7.39031732e-01 -7.00322762e-02 -9.54884768e-01 7.32904673e-01 5.15236318e-01 6.22425735e-01 -6.71884954e-01 3.63883018e-01 -3.18642348e-01 6.27069697e-02 -1.00005066e+00 1.47805586e-01 3.39132436e-02 5.94711781e-01 5.27805209e-01 6.01419866e-01 6.34881914e-01 4.01482917e-02 -1.60451382e-01 8.36225271e-01 3.00978541e-01 3.63082476e-02 -1.11725010e-01 1.05517220e+00 -7.22859740e-01 9.06707942e-01 6.35652065e-01 -7.77601242e-01 3.69818002e-01 6.40235364e-01 -7.06811368e-01 -6.49103105e-01 -4.49294090e-01 2.42034480e-01 1.25114965e+00 -4.35918793e-02 -2.46373475e-01 -8.55592549e-01 -1.27836430e+00 1.43340072e-02 2.42046446e-01 -1.03532505e+00 -2.58011580e-01 -4.02101338e-01 -1.68943405e-01 2.53459662e-01 5.80075502e-01 5.42499602e-01 -1.65525568e+00 -3.84574145e-01 -2.57220387e-01 -1.37427419e-01 -8.70915830e-01 -7.37360299e-01 -2.52528489e-01 -4.00890797e-01 -1.47998106e+00 -7.33657360e-01 -9.69594419e-01 8.01605880e-01 3.90250325e-01 8.40328753e-01 5.19870043e-01 -2.14649677e-01 6.84725165e-01 -2.90589213e-01 -1.62392959e-01 2.18482409e-02 -4.24887747e-01 1.07150264e-02 7.87716568e-01 8.08457673e-01 -2.81386524e-02 -6.46357000e-01 2.85302222e-01 -5.47447503e-01 -5.84128976e-01 3.36267918e-01 9.62624371e-01 4.47119713e-01 -1.59066439e-01 7.11725771e-01 -3.15928698e-01 3.80187035e-01 -5.40355563e-01 -5.67514539e-01 4.97592300e-01 -5.39992005e-02 -1.05052032e-02 3.69325072e-01 -3.74236405e-01 -8.91573727e-01 3.67924981e-02 -6.87530860e-02 -1.17629170e+00 -2.12931290e-01 -3.24752368e-02 -3.74466032e-01 -3.21734697e-01 -5.15839048e-02 2.60796666e-01 1.43122375e-01 -2.65638411e-01 -9.25597996e-02 6.21301889e-01 2.85964906e-01 -1.99960828e-01 3.45297933e-01 2.88055658e-01 -3.02657902e-01 -7.06198037e-01 -7.24376678e-01 -2.64400125e-01 -6.61399841e-01 -5.91844797e-01 1.03909862e+00 -7.89077163e-01 -1.13568389e+00 4.77683693e-01 -1.15202177e+00 -5.92238158e-02 -9.14076641e-02 4.62504417e-01 -4.81219321e-01 4.38777000e-01 -4.91765767e-01 -1.18156636e+00 -2.29297400e-01 -1.53972805e+00 1.15267825e+00 4.18694794e-01 8.65792409e-02 -7.39418805e-01 -1.57484084e-01 3.19456279e-01 1.51989341e-01 -3.03474635e-01 4.61110711e-01 -5.58354318e-01 -8.12641382e-01 1.06802277e-01 -3.46800178e-01 3.78068477e-01 2.35577479e-01 2.77959585e-01 -1.32488477e+00 -5.20299137e-01 1.95961177e-01 -5.53150535e-01 1.01383793e+00 5.06045282e-01 1.53743494e+00 -3.56166214e-01 -1.53343439e-01 6.53474748e-01 1.03723454e+00 6.80197239e-01 9.94643033e-01 -3.21350656e-02 5.87130666e-01 6.23623550e-01 3.80804479e-01 3.67606431e-01 1.16265960e-01 5.33300996e-01 6.19186342e-01 -2.75476314e-02 -5.95144928e-02 -1.21192694e-01 5.75943887e-01 2.27186620e-01 -1.41313747e-01 -2.73310333e-01 -4.98318553e-01 5.49618006e-01 -1.73627925e+00 -1.33259928e+00 5.74464440e-01 2.05801940e+00 2.20168561e-01 -4.35408056e-01 1.26551047e-01 -4.42762673e-03 9.23859239e-01 1.33268565e-01 -7.14091897e-01 -2.88873494e-01 1.28565446e-01 1.42748863e-01 -7.18151033e-02 4.13273543e-01 -1.20785272e+00 8.80827487e-01 6.97374487e+00 3.62078965e-01 -1.14034677e+00 2.62361057e-02 8.94751608e-01 -2.06478193e-01 2.21751198e-01 -2.22977340e-01 -7.79784799e-01 6.25314951e-01 7.78422177e-01 1.50327012e-01 5.30575454e-01 8.11437011e-01 2.28770897e-02 5.75663634e-02 -1.31206536e+00 1.43126190e+00 5.51530480e-01 -1.03492665e+00 3.85621458e-01 2.93819550e-02 4.27634269e-01 -2.75858998e-01 2.06943750e-01 3.35207462e-01 1.46486372e-01 -1.25717902e+00 6.01214528e-01 9.32439089e-01 5.64211667e-01 -8.11165452e-01 7.85576046e-01 -1.29810363e-01 -8.34757388e-01 -4.34896439e-01 -4.46361929e-01 3.57680162e-03 -2.42491379e-01 -1.10368170e-01 -5.82726896e-01 2.78011233e-01 8.27668965e-01 1.13132906e+00 -5.64330697e-01 9.05085802e-01 -3.04646641e-01 5.87724447e-01 3.69434029e-01 2.00562224e-01 9.67727825e-02 -7.21870959e-02 2.81364322e-01 8.40861142e-01 2.17436448e-01 2.16359198e-01 2.66447634e-01 8.10052454e-01 -4.40461278e-01 -1.73029646e-01 -5.34177065e-01 -8.32758322e-02 2.07791492e-01 1.17311585e+00 -5.02020121e-01 -3.78044814e-01 -6.04375482e-01 1.00900757e+00 4.68142301e-01 5.00267982e-01 -8.47849429e-01 -1.05766609e-01 8.02588999e-01 -2.17898652e-01 8.50338876e-01 2.01130807e-01 5.29781759e-01 -1.09721005e+00 -1.44576520e-01 -9.87477541e-01 5.88941872e-01 -8.58011246e-01 -1.24161959e+00 7.97092497e-01 -3.29115808e-01 -1.02152550e+00 -4.76772189e-02 -6.65966868e-01 -7.11700439e-01 8.30102265e-01 -1.76361895e+00 -7.92194784e-01 -2.84006238e-01 9.46073711e-01 8.92894208e-01 -5.65569997e-01 3.96226555e-01 4.18513149e-01 -9.20235932e-01 6.89789951e-01 -3.57168764e-01 5.92182577e-01 6.51243627e-01 -6.84990823e-01 1.45827696e-01 9.10401762e-01 1.54772848e-01 3.54981124e-01 1.11908875e-01 -5.55930555e-01 -1.46871674e+00 -1.05973482e+00 8.74094248e-01 -3.57958764e-01 1.90156460e-01 3.65170501e-02 -9.48504686e-01 7.78795838e-01 5.84318221e-01 2.67230958e-01 7.79104769e-01 -9.31014940e-02 -2.11186424e-01 -1.80879876e-01 -1.13604903e+00 2.59553403e-01 8.84386003e-01 -7.29651451e-01 -5.83072960e-01 2.60849357e-01 2.73447216e-01 4.68007587e-02 -5.39308727e-01 2.39515066e-01 5.77615976e-01 -7.50539958e-01 9.73678768e-01 -1.08150959e+00 4.45601463e-01 -2.35504776e-01 -1.72021717e-01 -9.89512742e-01 -6.89544022e-01 -5.48849046e-01 -2.69587010e-01 1.23284483e+00 -8.77556652e-02 -2.11485177e-01 5.88378489e-01 4.54186320e-01 1.47361532e-01 -5.28400242e-01 -9.65665996e-01 -3.27679068e-01 -4.15260702e-01 -1.32582754e-01 7.00977862e-01 8.12095165e-01 -2.47671634e-01 2.35355034e-01 -7.24130034e-01 1.91996723e-01 5.99213362e-01 8.36964771e-02 4.26144898e-01 -1.04650307e+00 -1.66744232e-01 -3.43426198e-01 -5.70562720e-01 -8.09880197e-01 5.21427631e-01 -6.61024272e-01 1.18856467e-01 -1.11570680e+00 5.30979931e-01 2.24703580e-01 -6.68439567e-01 7.51397789e-01 -2.18648911e-01 4.33125645e-01 3.27793449e-01 1.61044955e-01 -1.06557333e+00 8.17696869e-01 1.17809212e+00 -4.30399537e-01 1.36545643e-01 -1.47822797e-01 -7.06560969e-01 6.75564647e-01 4.70012337e-01 -3.77896816e-01 -1.41236842e-01 -6.89114153e-01 -3.84369999e-01 2.45566145e-01 6.42363906e-01 -8.67543101e-01 3.20015550e-01 -1.70377240e-01 1.12221253e+00 -4.77192551e-01 2.99208552e-01 -8.50273609e-01 -1.84206307e-01 4.42892104e-01 -4.17723149e-01 1.64671361e-01 1.75641045e-01 5.18258929e-01 -2.12691173e-01 -2.35162735e-01 7.22491324e-01 -1.09962270e-01 -8.47736716e-01 7.67781198e-01 -4.99691963e-01 -1.51463807e-01 1.15160811e+00 -1.25199661e-01 -1.00643031e-01 -3.61515015e-01 -9.78952348e-01 3.60937059e-01 1.94365643e-02 6.45974100e-01 9.95987713e-01 -1.54739976e+00 -7.99070060e-01 7.65082955e-01 -1.73317850e-01 -5.40273190e-01 5.36863089e-01 6.37259960e-01 -5.61623983e-02 4.37604010e-01 -5.78869164e-01 -5.75761795e-01 -1.50063670e+00 1.02925038e+00 5.87368548e-01 2.03154966e-01 -2.52704680e-01 9.15755630e-01 3.07369590e-01 2.44352177e-01 4.95314091e-01 5.41076548e-02 -6.35289252e-01 1.14820421e-01 1.09903133e+00 2.74249256e-01 -1.51734337e-01 -9.84749138e-01 -6.43993139e-01 5.26531756e-01 -3.08012038e-01 3.13877940e-01 1.22972107e+00 -1.06666423e-01 -5.59461378e-02 -8.03437382e-02 1.18674982e+00 -3.45733762e-01 -1.89698887e+00 -1.26482308e-01 -1.55114964e-01 -8.11006784e-01 2.23974839e-01 -5.61581552e-01 -1.70496476e+00 8.99094760e-01 6.61686063e-01 -1.54661149e-01 1.20992661e+00 8.48941430e-02 3.35236818e-01 1.42745972e-01 1.81725360e-02 -9.66960251e-01 4.14715886e-01 3.70808631e-01 1.08539128e+00 -1.47015631e+00 -6.76218346e-02 -1.72530692e-02 -5.62563181e-01 1.16925848e+00 9.69412804e-01 -1.81249484e-01 6.56376243e-01 -9.83841121e-02 -1.45973429e-01 -2.35539258e-01 -8.34586799e-01 -3.10002714e-01 3.68778795e-01 7.82852471e-01 1.41755834e-01 -3.58719856e-01 1.55207038e-01 5.79539895e-01 5.75715721e-01 3.09560359e-01 1.76571742e-01 8.06896031e-01 -3.60062212e-01 -8.90556633e-01 -3.92006129e-01 2.38754779e-01 -5.67517757e-01 2.73892246e-02 -5.49070656e-01 3.77335042e-01 2.72649020e-01 9.96999025e-01 2.99579084e-01 -3.82552713e-01 4.75313589e-02 3.26911032e-01 6.17792547e-01 -3.09847534e-01 -4.53382164e-01 -7.29562491e-02 -5.24487615e-01 -6.95655346e-01 -7.21473336e-01 -8.08502913e-01 -6.57931209e-01 -2.07572475e-01 -2.20275760e-01 1.68434381e-01 1.42734110e-01 1.12844181e+00 6.11644328e-01 5.77005982e-01 9.01059210e-01 -9.11434710e-01 -2.80763984e-01 -8.13818038e-01 -3.72023046e-01 3.90078545e-01 7.13753343e-01 -1.02420568e+00 -1.48258775e-01 2.44179830e-01]
[13.395435333251953, 1.2484471797943115]
5adf713f-71a5-4fe4-a9ac-c51d1a7cb1f1
improving-extreme-weather-events-detection
2304.00176
null
https://arxiv.org/abs/2304.00176v1
https://arxiv.org/pdf/2304.00176v1.pdf
Improving extreme weather events detection with light-weight neural networks
To advance automated detection of extreme weather events, which are increasing in frequency and intensity with climate change, we explore modifications to a novel light-weight Context Guided convolutional neural network architecture trained for semantic segmentation of tropical cyclones and atmospheric rivers in climate data. Our primary focus is on tropical cyclones, the most destructive weather events, for which current models show limited performance. We investigate feature engineering, data augmentation, learning rate modifications, alternative loss functions, and architectural changes. In contrast to previous approaches optimizing for intersection over union, we specifically seek to improve recall to penalize under-counting and prioritize identification of tropical cyclones. We report success through the use of weighted loss functions to counter class imbalance for these rare events. We conclude with directions for future research on extreme weather events detection, a crucial task for prediction, mitigation, and equitable adaptation to the impacts of climate change.
['David Lüdeke', 'Lucas Hendren', 'Hannah Grossman', 'Romain Lacombe']
2023-03-31
null
null
null
null
['feature-engineering']
['methodology']
[ 2.21266076e-01 -3.50389302e-01 -3.16938758e-02 -8.42774808e-01 -3.72095525e-01 -7.45530784e-01 6.57960236e-01 5.55698931e-01 -7.71530151e-01 6.78890467e-01 4.64534551e-01 -8.72550189e-01 -2.57057697e-02 -1.04473162e+00 -3.58334273e-01 -3.13341886e-01 -3.73481482e-01 3.01023155e-01 -2.40920931e-01 -2.92768002e-01 4.12665904e-01 9.24996734e-01 -1.29211032e+00 1.90694444e-02 9.67129111e-01 3.82300228e-01 -2.12379366e-01 9.41195130e-01 -1.80741817e-01 2.89592266e-01 -5.43904483e-01 -3.51962857e-02 5.02353668e-01 -2.51942307e-01 -5.85974455e-01 -3.53101403e-01 8.58729839e-01 -3.88689995e-01 -1.07616015e-01 7.44263232e-01 7.20732629e-01 4.69395757e-01 6.06622100e-01 -1.02316058e+00 -2.25354448e-01 3.86580557e-01 -4.90154386e-01 1.19264209e+00 -2.99362868e-01 3.77865791e-01 9.76564467e-01 -7.54625499e-01 2.56489754e-01 1.15995705e+00 9.22229111e-01 2.37043023e-01 -9.51257169e-01 -8.73289287e-01 5.79638302e-01 -1.24627121e-01 -1.00592542e+00 -4.63534415e-01 1.67843953e-01 -5.04359186e-01 1.39865792e+00 4.60754991e-01 5.31164050e-01 6.23883784e-01 -2.92753577e-02 1.68844357e-01 8.42108548e-01 -1.19002908e-01 9.98287499e-02 -1.87441275e-01 2.74019212e-01 4.11589712e-01 4.92010474e-01 3.59149814e-01 -2.22303033e-01 -1.54175133e-01 2.71451682e-01 1.68404117e-01 -3.32453288e-02 3.25744271e-01 -8.20128560e-01 9.54413176e-01 6.36711061e-01 -2.91827042e-02 -2.69690454e-01 2.18263030e-01 3.74791592e-01 1.37381226e-01 1.24194908e+00 9.96495783e-01 -9.16570067e-01 -4.76427414e-02 -1.28437984e+00 5.92229784e-01 6.09816611e-01 3.04826528e-01 6.26876235e-01 2.78432190e-01 -1.65297449e-01 6.89664721e-01 7.37727880e-02 8.73165190e-01 -3.00207227e-01 -7.90255189e-01 6.06927276e-01 4.78843331e-01 1.72446534e-01 -9.89226341e-01 -1.06434441e+00 -7.66648531e-01 -4.58806336e-01 2.23950177e-01 4.19014364e-01 -8.51983547e-01 -1.20886827e+00 1.56749129e+00 3.73457581e-01 3.86464745e-01 -1.50869548e-01 1.02257359e+00 3.77243042e-01 7.90399432e-01 7.32365727e-01 4.10879180e-02 1.28161275e+00 -3.18758965e-01 -3.82169664e-01 -5.54028988e-01 5.66737890e-01 -7.11143911e-01 9.04784977e-01 -1.27791807e-01 -4.40318882e-01 -1.40176788e-01 -6.36853874e-01 1.22330785e-01 -9.55927789e-01 -3.64540666e-02 8.31469059e-01 6.25622928e-01 -6.54018819e-01 5.87898552e-01 -7.91953683e-01 -4.49780017e-01 5.13467848e-01 7.24874213e-02 1.53205320e-01 2.84807473e-01 -1.43571150e+00 1.19617486e+00 1.43957555e-01 3.55195165e-01 -6.29289925e-01 -1.22452438e+00 -9.69606876e-01 3.63532811e-01 1.56656206e-01 -3.08453500e-01 8.69631410e-01 -7.46355236e-01 -6.68596745e-01 7.50845492e-01 3.68689597e-02 -7.04365492e-01 2.10646719e-01 -6.03342533e-01 -6.12020850e-01 -1.84549958e-01 5.06509654e-02 7.40967333e-01 3.44080985e-01 -7.98145056e-01 -1.19350576e+00 -1.38791949e-01 -4.97641414e-02 3.34189802e-01 -4.54635531e-01 3.95971954e-01 1.96522966e-01 -7.65037715e-01 -2.51640141e-01 -7.30993211e-01 -8.12360287e-01 -7.35857934e-02 -1.47898883e-01 -1.76975891e-01 7.12468803e-01 -7.79740214e-01 1.24200642e+00 -1.89134574e+00 -5.07690966e-01 4.00173992e-01 5.45834526e-02 4.47066665e-01 -1.20779373e-01 9.70476791e-02 -5.79254963e-02 5.17418444e-01 -6.18416905e-01 -8.14996213e-02 -1.29008204e-01 1.97205707e-01 -9.45714056e-01 5.92628658e-01 7.10729182e-01 4.08081084e-01 -1.06974626e+00 -2.28020743e-01 4.72191900e-01 3.67518306e-01 -5.15724897e-01 1.50518447e-01 -3.21108907e-01 3.43395621e-01 -2.64070630e-01 6.78771377e-01 7.47859597e-01 1.94326341e-01 -1.27577811e-01 3.09634376e-02 -6.68947399e-01 6.51649535e-01 -8.85527849e-01 8.49688590e-01 -5.87324202e-01 8.18904757e-01 -5.54170497e-02 -7.96542883e-01 8.54023278e-01 -5.44758067e-02 2.73085117e-01 -7.30481088e-01 -1.64212137e-02 4.57291380e-02 -8.29390213e-02 -5.49563229e-01 8.88781846e-01 -2.40391605e-02 -2.30161920e-01 4.93475139e-01 -4.70612615e-01 -2.25670204e-01 2.69009143e-01 1.04061201e-01 5.38638532e-01 4.34749052e-02 1.78912565e-01 -6.16495192e-01 -2.13921964e-01 2.73814976e-01 8.66959572e-01 8.11787784e-01 -4.07071322e-01 6.87908590e-01 4.68501270e-01 -1.01619852e+00 -1.14302659e+00 -8.93407226e-01 -3.92777264e-01 1.49157870e+00 -2.13646799e-01 2.01878306e-02 -3.34542185e-01 -7.04460859e-01 2.26623237e-01 1.10561717e+00 -5.74748158e-01 1.21397143e-02 -9.38061893e-01 -1.87288058e+00 7.26694286e-01 5.42154849e-01 3.83981586e-01 -8.62536371e-01 -1.01251233e+00 2.91904867e-01 -7.96766356e-02 -8.71065319e-01 -3.61341834e-01 5.88870704e-01 -7.89603829e-01 -1.20511615e+00 -6.65738225e-01 -2.37200946e-01 5.18403113e-01 -4.11698744e-02 1.39225054e+00 -1.85432926e-01 -4.55787390e-01 2.97098368e-01 -9.60490182e-02 -8.07606399e-01 4.97970581e-02 4.04980958e-01 -4.99523580e-02 -4.13824618e-01 5.41809320e-01 -3.60719562e-01 -1.04175222e+00 -2.76775248e-02 -6.93677723e-01 -2.97666281e-01 1.40041515e-01 3.84557486e-01 2.64207125e-01 -2.14048177e-01 5.11738122e-01 -9.33563411e-01 4.72966284e-01 -9.69227850e-01 -6.82485342e-01 6.42451793e-02 -7.06297219e-01 -9.64607894e-02 4.18440491e-01 -5.08891456e-02 -1.18495989e+00 7.43275955e-02 -1.59321368e-01 -8.80974531e-02 -5.35359442e-01 4.65667158e-01 6.23426557e-01 2.36687481e-01 8.30764949e-01 -2.74052054e-01 -4.49602962e-01 -4.42482769e-01 3.63991678e-01 4.90893602e-01 4.38245267e-01 -4.26520884e-01 5.86483300e-01 5.31685472e-01 -1.31057560e-01 -9.14665639e-01 -1.10058475e+00 -5.37938058e-01 -2.41940275e-01 3.67364846e-03 8.87336671e-01 -1.16851854e+00 -1.64655149e-01 4.28496212e-01 -8.62047672e-01 -4.98030335e-01 -7.31140599e-02 5.96151054e-01 2.98329890e-01 -5.02258465e-02 -3.63620967e-01 -8.77034128e-01 -6.44650519e-01 -5.90203285e-01 7.49993145e-01 6.18040979e-01 -2.43398339e-01 -1.09141433e+00 5.09573698e-01 -5.52112050e-02 8.67575288e-01 6.41712487e-01 8.72983932e-01 -8.08058977e-01 -1.56015381e-01 1.12520196e-01 -3.87845665e-01 1.78744927e-01 2.39277095e-01 4.49759662e-01 -9.33552086e-01 -1.11577347e-01 -6.28580391e-01 -6.32538050e-02 1.38062692e+00 4.67083663e-01 1.01755118e+00 -1.16676986e-01 -2.80957848e-01 1.00941658e+00 1.13296890e+00 1.31333604e-01 2.22721145e-01 4.67488527e-01 5.30889273e-01 6.88322842e-01 4.34228271e-01 5.10763884e-01 4.77998972e-01 1.72581226e-01 5.16557574e-01 -6.68844163e-01 3.00526004e-02 3.61232251e-01 1.46663962e-02 3.67398374e-02 1.26429468e-01 -3.14477056e-01 -1.47048318e+00 1.15080917e+00 -1.23106647e+00 -8.04718256e-01 -1.73720196e-01 2.08607697e+00 6.72053576e-01 2.95748800e-01 1.81363672e-02 -4.43984717e-01 7.12455928e-01 7.35321760e-01 -5.94997168e-01 -8.09871018e-01 -2.45191380e-01 4.80509341e-01 1.09546053e+00 5.38762450e-01 -1.66596901e+00 1.15055907e+00 7.02797937e+00 1.95585772e-01 -1.46196818e+00 -2.31584951e-01 1.24109161e+00 -3.10984164e-01 -3.86986136e-01 -1.56505555e-02 -1.19073927e+00 2.97222495e-01 1.17885721e+00 1.19740553e-01 1.97132751e-01 5.49548388e-01 6.39232159e-01 -2.07835753e-02 -4.42679763e-01 9.34602767e-02 -2.42668748e-01 -1.36262369e+00 9.42009240e-02 -4.02885348e-01 7.62610197e-01 6.97903812e-01 1.74859643e-01 2.84235567e-01 7.69750357e-01 -1.01967418e+00 2.39735425e-01 4.53043222e-01 6.42438054e-01 -1.08031440e+00 5.62274396e-01 -3.88550073e-01 -1.14608586e+00 -2.17734903e-01 -2.19780564e-01 -2.21789286e-01 1.40896484e-01 1.03890336e+00 -7.96198726e-01 -5.76246865e-02 8.64291787e-01 5.25084615e-01 -3.37439835e-01 1.04053700e+00 -1.74476534e-01 1.19982314e+00 -8.76346529e-01 1.67446807e-01 7.02962577e-01 8.90833512e-02 6.75371766e-01 1.74485850e+00 2.53608108e-01 2.14415729e-01 2.69985080e-01 6.79224491e-01 -8.68738629e-03 6.22917116e-02 -6.36666119e-01 -3.26778367e-02 5.47111511e-01 1.24629974e+00 -1.07731771e+00 -3.21244389e-01 -2.04856962e-01 3.69251817e-01 1.02270178e-01 5.04162848e-01 -8.51437330e-01 -6.24406099e-01 1.21345758e+00 1.41836016e-03 2.13524215e-02 -2.15788633e-01 -6.97084844e-01 -1.04136860e+00 -3.17119658e-01 -5.89262009e-01 7.20000207e-01 -2.57722229e-01 -1.01998198e+00 3.39801520e-01 2.07496760e-03 -8.43169928e-01 -8.38283449e-02 -3.27218741e-01 -1.31582296e+00 1.07426453e+00 -2.21612167e+00 -8.61001670e-01 -1.07621752e-01 7.30016455e-02 5.75456619e-01 1.44539565e-01 6.77561879e-01 3.42336774e-01 -6.17659688e-01 3.75261933e-01 1.57393396e-01 1.77631930e-01 7.68252254e-01 -1.41587555e+00 1.08841097e+00 1.09459031e+00 -2.86570847e-01 5.67219675e-01 7.82514572e-01 -8.04828286e-01 -6.61970019e-01 -1.82736039e+00 1.08586049e+00 -1.26299068e-01 4.39762920e-01 -3.46295059e-01 -8.72192204e-01 6.08026564e-01 -2.12536007e-01 -6.49092421e-02 7.74464488e-01 3.06656986e-01 -4.38825488e-01 -1.93850398e-01 -1.29979205e+00 6.16565228e-01 6.17958903e-01 -3.65259588e-01 -4.18377727e-01 5.15614390e-01 7.01313734e-01 -3.58355761e-01 -6.40258312e-01 6.33084357e-01 3.76295120e-01 -5.30167699e-01 8.56794059e-01 -9.24290836e-01 4.92866397e-01 -2.39241868e-01 -3.09540667e-02 -1.62582254e+00 -2.02706888e-01 -2.75786102e-01 3.74370009e-01 1.01527417e+00 6.45330429e-01 -6.46082699e-01 7.79251099e-01 6.15858257e-01 -3.70452106e-01 -3.86213332e-01 -9.06033278e-01 -3.39831769e-01 4.79692191e-01 -3.27871978e-01 6.66967690e-01 1.34934247e+00 -5.81966639e-01 -2.41271719e-01 -4.45295006e-01 6.16251767e-01 5.25388896e-01 3.96907508e-01 3.30375552e-01 -1.16414404e+00 1.99304253e-01 -5.50100505e-01 2.98116773e-01 -3.34102511e-01 -1.09076962e-01 -6.49666667e-01 1.85662702e-01 -1.38039005e+00 -1.95111707e-01 -5.41227818e-01 -4.80458289e-01 7.51978695e-01 -6.87265217e-01 4.32163209e-01 -2.87403259e-02 -2.79347628e-01 -1.79312602e-01 4.05197054e-01 5.67980886e-01 -8.10798034e-02 -4.89034086e-01 6.35745898e-02 -7.27964878e-01 7.77732909e-01 1.11020792e+00 -7.46316969e-01 -6.72710910e-02 -7.07845688e-01 5.39514959e-01 -3.50842237e-01 2.23333210e-01 -9.46955502e-01 -6.72590956e-02 -7.94989765e-01 6.39500499e-01 -6.58922911e-01 -2.69866258e-01 -4.70229596e-01 -2.94652373e-01 5.94795406e-01 -4.75307673e-01 3.42628568e-01 6.73297822e-01 3.73294145e-01 9.05548707e-02 3.04726988e-01 8.83305311e-01 -2.63662159e-01 -8.62014532e-01 3.48614901e-01 -9.29163277e-01 3.11115384e-01 8.10959637e-01 3.14190716e-01 -5.74320436e-01 -3.86994444e-02 -6.22678339e-01 9.19151068e-01 1.44890510e-02 5.56914747e-01 3.32433581e-01 -5.74419320e-01 -1.24775434e+00 6.20679110e-02 -3.91849391e-02 -5.55027910e-02 1.82164252e-01 3.74601543e-01 -9.60479200e-01 1.98087975e-01 -1.08827785e-01 -1.42726079e-01 -9.23750460e-01 2.01362018e-02 6.92121983e-01 -2.95066178e-01 -4.88992423e-01 7.94578016e-01 4.85316180e-02 -8.67334068e-01 1.84895590e-01 -4.96472359e-01 -4.90881681e-01 3.90078843e-01 5.49556613e-01 6.13262415e-01 5.72772250e-02 -2.78601259e-01 -5.39002001e-01 1.52544841e-01 -6.38678670e-02 2.27072164e-01 1.60778117e+00 -2.18404755e-01 1.58213019e-01 1.36779964e-01 8.20996642e-01 -1.88546509e-01 -1.44593120e+00 2.58018803e-02 1.63090438e-01 -1.41025946e-01 3.76163960e-01 -1.08670306e+00 -1.33436382e+00 9.42880034e-01 1.03145421e+00 -4.60934006e-02 1.00197458e+00 -5.13768494e-01 8.63156676e-01 5.09429336e-01 -5.16933084e-01 -1.12492144e+00 -6.19132936e-01 8.66926551e-01 4.93963391e-01 -1.24696100e+00 3.28667939e-01 2.95816392e-01 -2.44923964e-01 1.14567614e+00 7.03327239e-01 -3.03296804e-01 8.72455716e-01 4.65431184e-01 2.95693308e-01 -3.50497335e-01 -5.77732027e-01 -4.20922786e-01 5.78095391e-03 4.20012712e-01 4.52278733e-01 2.76913553e-01 -1.84693694e-01 -1.00293450e-01 -4.54917215e-02 -3.27588409e-01 4.16813105e-01 7.97304332e-01 -7.63289690e-01 -3.39950293e-01 -4.13358510e-01 9.27278757e-01 -9.12459493e-01 -8.07770908e-01 -2.25310653e-01 5.03658473e-01 3.74503314e-01 8.32584143e-01 8.61851752e-01 4.26877086e-04 3.50606769e-01 1.92670882e-01 -4.62616146e-01 -5.31545877e-01 -1.11532307e+00 -3.40498239e-01 3.66284996e-01 -3.06202084e-01 -2.12748438e-01 -6.83084667e-01 -1.13227069e+00 -3.70599180e-01 -8.47777128e-02 1.65853351e-01 9.20274913e-01 9.56556141e-01 4.55447346e-01 6.18717432e-01 6.73419297e-01 -7.09198356e-01 -3.67292941e-01 -8.52670074e-01 -3.06205988e-01 2.78577447e-01 7.08427191e-01 -3.47348899e-01 -6.71755612e-01 -2.41928831e-01]
[6.719411373138428, 2.9784047603607178]
10f7d8ae-4b47-40cc-8327-669e2c1369d0
can-a-frozen-pretrained-language-model-be
2303.05153
null
https://arxiv.org/abs/2303.05153v1
https://arxiv.org/pdf/2303.05153v1.pdf
Can a Frozen Pretrained Language Model be used for Zero-shot Neural Retrieval on Entity-centric Questions?
Neural document retrievers, including dense passage retrieval (DPR), have outperformed classical lexical-matching retrievers, such as BM25, when fine-tuned and tested on specific question-answering datasets. However, it has been shown that the existing dense retrievers do not generalize well not only out of domain but even in domain such as Wikipedia, especially when a named entity in a question is a dominant clue for retrieval. In this paper, we propose an approach toward in-domain generalization using the embeddings generated by the frozen language model trained with the entities in the domain. By not fine-tuning, we explore the possibility that the rich knowledge contained in a pretrained language model can be used for retrieval tasks. The proposed method outperforms conventional DPRs on entity-centric questions in Wikipedia domain and achieves almost comparable performance to BM25 and state-of-the-art SPAR model. We also show that the contextualized keys lead to strong improvements compared to BM25 when the entity names consist of common words. Our results demonstrate the feasibility of the zero-shot retrieval method for entity-centric questions of Wikipedia domain, where DPR has struggled to perform.
['Jun Deguchi', 'Osamu Torii', 'Youyang Ng', 'Yasuhiro Morioka', 'Daisuke Miyashita', 'Yasuto Hoshi']
2023-03-09
null
null
null
null
['passage-retrieval']
['natural-language-processing']
[-4.59112793e-01 -6.82379827e-02 -2.23156229e-01 1.96804553e-01 -1.29506886e+00 -6.54537320e-01 7.93225586e-01 6.24632061e-01 -9.85559821e-01 8.64044547e-01 6.23374104e-01 -6.58220872e-02 -6.30169034e-01 -1.17431366e+00 -8.33664894e-01 -1.00133494e-01 1.17059136e-02 8.34350288e-01 7.18481362e-01 -9.23219204e-01 3.23719263e-01 2.22809508e-01 -1.43685174e+00 3.89467537e-01 1.09157491e+00 7.11167037e-01 3.90317529e-01 3.28597665e-01 -5.54422081e-01 6.25968933e-01 -6.86315000e-01 -4.68098879e-01 2.99657937e-02 1.34990225e-02 -1.20796478e+00 -7.91270792e-01 6.71571732e-01 -4.62651700e-01 -9.12257671e-01 7.34730244e-01 7.21077561e-01 8.39182794e-01 9.36856449e-01 -4.38320965e-01 -1.47484946e+00 5.45327902e-01 -7.14929327e-02 4.12066311e-01 6.69827521e-01 -5.76999724e-01 1.43043971e+00 -1.15932786e+00 1.14892006e+00 1.21911955e+00 4.90287751e-01 7.10141718e-01 -9.37587142e-01 -3.39448571e-01 -1.51768416e-01 5.05600274e-01 -1.76315105e+00 -4.27764580e-02 3.25250119e-01 -1.35624692e-01 1.55826271e+00 3.31452638e-02 -3.32300626e-02 1.03717017e+00 -1.14514180e-01 9.35663223e-01 4.10781711e-01 -7.12893426e-01 1.91998452e-01 2.96067238e-01 6.03118360e-01 2.18625620e-01 4.74807173e-01 -3.14401686e-01 -3.78992647e-01 -4.47961748e-01 2.26110667e-01 1.00539111e-01 -5.52795410e-01 -2.15455517e-01 -9.42042410e-01 9.50163007e-01 5.69265187e-01 6.88408017e-01 -5.70375860e-01 -1.33428201e-01 4.61573511e-01 5.75017214e-01 4.46660787e-01 1.16080403e+00 -5.01555681e-01 2.62392730e-01 -1.17517674e+00 6.30848229e-01 1.07805705e+00 1.19278193e+00 9.93240893e-01 -6.29626334e-01 -6.95759475e-01 1.28884375e+00 7.42967874e-02 4.36271101e-01 8.87891114e-01 -6.29291594e-01 5.57473361e-01 6.26724780e-01 4.00521159e-01 -8.11444879e-01 -1.82845905e-01 -4.20195222e-01 -4.08642590e-01 -7.22019136e-01 1.07050285e-01 2.11599972e-02 -9.41738904e-01 1.65764022e+00 1.48901520e-02 -3.73876765e-02 4.32725996e-01 7.69312501e-01 1.34050632e+00 9.24437940e-01 2.14657307e-01 4.37177978e-02 1.31986547e+00 -1.09814525e+00 -7.05057502e-01 -8.20369273e-02 7.77108312e-01 -6.37516379e-01 1.02176452e+00 -2.48030752e-01 -8.70237470e-01 -4.51878339e-01 -8.76942873e-01 -5.96803963e-01 -1.01699638e+00 -6.59302101e-02 2.28063941e-01 3.30897599e-01 -1.14591920e+00 6.92774296e-01 -1.55338988e-01 -1.06335104e+00 2.35268450e-03 5.08989021e-03 -4.88044381e-01 -6.92467928e-01 -1.99245584e+00 1.28793228e+00 6.37270808e-01 -3.77644181e-01 -9.75320995e-01 -8.70953202e-01 -5.71965814e-01 4.55914080e-01 3.50010008e-01 -9.44155395e-01 1.07420492e+00 -1.29497916e-01 -9.64581847e-01 8.91197681e-01 -1.17461242e-01 -6.79342866e-01 -1.17806889e-01 -5.43343723e-01 -5.69468021e-01 5.26081979e-01 2.37557769e-01 6.76031411e-01 4.37664777e-01 -9.09645915e-01 -3.95898193e-01 -1.50054991e-01 6.20884418e-01 3.23851585e-01 -6.28671825e-01 -1.08507298e-01 -6.02592945e-01 -4.64040309e-01 -3.72876406e-01 -6.10745609e-01 -6.13006167e-02 -4.06885743e-01 -1.93631705e-02 -9.13582563e-01 4.12454367e-01 -7.26662278e-01 1.70567954e+00 -1.83798873e+00 1.41250283e-01 -1.33403286e-01 -2.26829965e-02 7.42403805e-01 -5.00782788e-01 1.22845054e+00 3.85628104e-01 2.04500824e-01 1.76400900e-01 3.89828123e-02 2.66527444e-01 1.99058101e-01 -7.70026267e-01 -2.02169339e-03 1.14946654e-02 1.10797107e+00 -1.10053051e+00 -6.30418420e-01 -2.81271994e-01 2.71588117e-01 -6.04200244e-01 3.04799557e-01 -4.26364213e-01 -3.55407596e-01 -8.01230073e-01 5.33545136e-01 5.00606239e-01 -2.87381172e-01 -2.19828337e-01 4.80577573e-02 3.15440208e-01 6.13435507e-01 -7.01691329e-01 2.09787130e+00 -6.12593710e-01 4.80419725e-01 -3.46823931e-01 -7.75088251e-01 8.52259099e-01 4.72982079e-01 4.68215868e-02 -1.02229321e+00 -4.02403831e-01 4.85735804e-01 -4.34274763e-01 -6.58372700e-01 1.27552354e+00 -1.35799035e-01 -2.20605835e-01 4.67742264e-01 6.97018981e-01 -3.63068432e-02 6.42290533e-01 7.58008957e-01 1.49404228e+00 3.25204842e-02 2.40242869e-01 -3.36978167e-01 5.82969546e-01 2.43181229e-01 -3.43796760e-02 1.30201674e+00 5.05951867e-02 6.62685156e-01 -1.56095132e-01 5.26819453e-02 -1.00470054e+00 -1.22825384e+00 -4.30886894e-01 1.53482008e+00 2.72633463e-01 -6.00493252e-01 -5.09520471e-01 -5.27513981e-01 3.42153251e-01 9.39625144e-01 -5.70427477e-01 -3.94064039e-01 -5.88795960e-01 -3.88671160e-01 5.91863930e-01 3.83701682e-01 2.70082355e-01 -1.16202438e+00 1.72024239e-02 5.04935265e-01 -2.80638367e-01 -1.04755771e+00 -2.62049705e-01 -1.62137095e-02 -8.28984857e-01 -7.54843712e-01 -1.48399830e+00 -9.16472077e-01 2.52094716e-01 4.46307421e-01 1.61911190e+00 4.82978746e-02 -2.18333542e-01 1.10878468e+00 -9.30723310e-01 -1.30268246e-01 -5.40890545e-02 6.94617748e-01 2.76675564e-03 -6.36199176e-01 1.04359639e+00 -3.80087852e-01 -8.81818473e-01 1.87717095e-01 -1.28234887e+00 -9.66749191e-01 3.85435909e-01 9.44118559e-01 3.99928123e-01 -3.74551684e-01 1.28957641e+00 -8.52820039e-01 1.35424304e+00 -9.71144617e-01 -1.17834158e-01 9.61977422e-01 -5.85369170e-01 3.49174559e-01 4.98020709e-01 -4.25389588e-01 -1.08813739e+00 -7.79997349e-01 -1.81488410e-01 -2.37909108e-01 1.79627299e-01 7.27542579e-01 3.90425086e-01 1.00788683e-01 1.29423738e+00 2.42109254e-01 -6.08165085e-01 -8.73912513e-01 7.70859003e-01 8.49905431e-01 -1.90889686e-02 -8.78279626e-01 6.31642103e-01 1.23025298e-01 -4.65128332e-01 -8.77346516e-01 -9.19687629e-01 -1.43291080e+00 -3.73973161e-01 1.89506054e-01 7.28262007e-01 -1.14512753e+00 -5.25719523e-02 -1.45915762e-01 -1.27722967e+00 1.89903289e-01 -5.90719402e-01 4.74664062e-01 -3.21631074e-01 4.66939479e-01 -7.61472285e-01 -4.09787595e-01 -6.85764968e-01 -3.82030129e-01 1.11367941e+00 4.20147538e-01 -1.05156220e-01 -1.12112355e+00 6.55261576e-01 1.87058538e-01 8.95025432e-01 -5.07726669e-01 1.14026618e+00 -1.31748724e+00 -6.36667132e-01 -5.08600295e-01 -1.99116603e-01 3.29461515e-01 -7.06208199e-02 -6.67507768e-01 -8.12244952e-01 -4.42160904e-01 -3.56162429e-01 -7.89623499e-01 1.34046614e+00 -5.66029996e-02 5.41550159e-01 -6.59329891e-02 -4.77151483e-01 -9.19224229e-03 1.61923099e+00 -3.01038802e-01 7.76476800e-01 6.65039301e-01 1.81125030e-01 6.39547408e-01 5.84239542e-01 1.44167796e-01 3.21647048e-01 4.64862972e-01 -3.60083878e-02 4.16588098e-01 -3.28007042e-01 -6.20059252e-01 2.15852894e-02 1.03473103e+00 5.66625409e-02 -4.99804199e-01 -8.05582881e-01 1.08111560e+00 -1.65094185e+00 -8.50199580e-01 3.13564181e-01 2.15626574e+00 1.06465566e+00 -4.50789958e-01 -3.69250208e-01 -5.58749259e-01 5.85355997e-01 2.64990896e-01 -3.16365272e-01 -2.41417766e-01 -2.71507800e-01 8.16061735e-01 3.92509550e-01 4.35942411e-01 -7.71254063e-01 1.20783293e+00 6.05289459e+00 1.21525896e+00 -3.70940477e-01 2.89276481e-01 -3.49106163e-01 -7.93093070e-03 -5.16542256e-01 2.13192031e-02 -1.17804837e+00 2.95493603e-02 9.39480782e-01 -7.32541203e-01 2.34140307e-01 8.50833356e-01 -5.26789069e-01 1.23254359e-02 -1.09280062e+00 5.88695765e-01 4.50858504e-01 -1.29779577e+00 5.77605486e-01 -3.86711776e-01 8.91876876e-01 2.79179990e-01 -1.37814015e-01 1.23237371e+00 3.08032215e-01 -8.26573372e-01 -2.01566680e-03 6.49252474e-01 4.32749927e-01 -2.44109780e-01 7.28127718e-01 4.84527022e-01 -7.89300323e-01 -2.23828317e-03 -1.25764942e+00 4.17404592e-01 4.64378297e-02 2.21370786e-01 -8.86326969e-01 8.04925740e-01 7.19360828e-01 3.81495088e-01 -6.44059837e-01 1.21091759e+00 -2.66365737e-01 3.68107766e-01 -2.63204247e-01 -4.20436442e-01 5.23766577e-01 1.61556825e-01 6.03187263e-01 1.39052272e+00 4.97751266e-01 1.79552808e-01 -2.90446967e-01 6.52601242e-01 -6.37304723e-01 6.63681805e-01 -7.25964963e-01 -2.05797344e-01 4.92320657e-01 9.69419897e-01 6.38638362e-02 -4.66980368e-01 -4.92406577e-01 9.35955465e-01 6.65956080e-01 8.65305364e-01 -2.29365662e-01 -9.25605536e-01 2.90770769e-01 2.30220094e-01 6.12488031e-01 4.11349386e-02 7.48575091e-01 -1.49519897e+00 2.71201670e-01 -6.37874842e-01 7.93337405e-01 -8.60147119e-01 -1.69390380e+00 5.98110020e-01 1.24201074e-01 -1.03866887e+00 -4.63658690e-01 -5.56948900e-01 -2.50240445e-01 1.06340337e+00 -2.09821820e+00 -9.05195534e-01 3.20331985e-03 6.71063364e-01 4.06461000e-01 -2.99810648e-01 1.19502652e+00 6.29967809e-01 1.07143987e-02 5.54199755e-01 8.82939816e-01 1.60379365e-01 1.19589674e+00 -1.21848822e+00 4.50907238e-02 4.76971984e-01 3.46934378e-01 1.34439135e+00 5.23622572e-01 -4.83179122e-01 -1.41386199e+00 -9.74147201e-01 1.24755859e+00 -5.35336375e-01 8.89255762e-01 -1.52213916e-01 -1.40692317e+00 5.29097438e-01 6.37708306e-01 -6.43262193e-02 7.78642535e-01 5.38507640e-01 -7.73449898e-01 -1.26646027e-01 -1.00368857e+00 4.36251134e-01 8.10247838e-01 -1.02856433e+00 -1.65209782e+00 6.47065580e-01 1.12307763e+00 1.58537440e-02 -1.03315794e+00 2.96731859e-01 2.77305424e-01 -3.66610616e-01 1.24999738e+00 -1.22457111e+00 3.72095972e-01 -8.04732516e-02 -3.68789613e-01 -1.46373177e+00 -3.54719669e-01 -1.96901530e-01 -3.39093506e-01 1.30391002e+00 6.34024501e-01 -5.34869909e-01 4.03826386e-01 4.74579304e-01 -9.00274217e-02 -4.26879048e-01 -1.01951444e+00 -1.03666842e+00 8.49392891e-01 1.00588441e-01 3.89797688e-01 7.35361934e-01 2.71035463e-01 6.14906132e-01 2.68627871e-02 -3.76196057e-02 1.96919739e-01 1.87850118e-01 4.89964664e-01 -1.20175886e+00 -1.58968195e-01 -1.64703697e-01 -3.00990134e-01 -1.53632951e+00 4.95611042e-01 -1.21695018e+00 -1.58370927e-01 -1.99854875e+00 3.26385140e-01 -3.44010144e-01 -7.15734422e-01 -2.51925178e-02 -4.07318383e-01 -2.05875691e-02 -2.14637276e-02 3.06588262e-01 -1.24080729e+00 7.24247634e-01 1.24115062e+00 -3.87830585e-01 4.67492547e-03 -3.86490524e-01 -6.95946217e-01 1.23071857e-01 3.63627076e-01 -6.69450819e-01 -3.59963119e-01 -6.27223551e-01 5.92923105e-01 5.13527878e-02 -1.63586214e-02 -7.51390636e-01 7.49346316e-01 4.26054895e-01 -8.52714479e-02 -4.55868334e-01 3.48316193e-01 -6.74563706e-01 -5.10813892e-01 -3.69183309e-02 -6.34530008e-01 -1.86319709e-01 1.17448084e-01 8.47935975e-01 -7.74431109e-01 -9.35917914e-01 2.14614421e-01 -4.38340336e-01 -1.06286943e+00 2.96102613e-01 -2.41182208e-01 8.84524286e-01 5.35391510e-01 2.93893993e-01 -6.96441412e-01 -4.13921863e-01 -5.47068357e-01 4.98780191e-01 2.36523405e-01 7.41263747e-01 5.55095792e-01 -1.38326228e+00 -9.15415406e-01 -6.03240609e-01 7.45181680e-01 -2.97934473e-01 5.72404146e-01 2.72105575e-01 -4.47575599e-01 1.17019463e+00 1.03710897e-01 -1.38238981e-01 -6.30214393e-01 9.28705275e-01 1.16229504e-01 -7.30319083e-01 -5.20352423e-01 8.02712679e-01 1.76283091e-01 -4.92905378e-01 2.61266321e-01 -1.15732722e-01 -6.02821887e-01 5.35478473e-01 8.00207138e-01 3.84014159e-01 4.17006105e-01 -2.85832196e-01 -2.12017149e-01 6.43303633e-01 -6.11034095e-01 9.03618243e-03 1.39213049e+00 -2.98819721e-01 -2.52651483e-01 2.28205904e-01 1.57394946e+00 -5.75743429e-02 -1.88762113e-01 -8.63765657e-01 3.56210500e-01 -1.67516500e-01 -7.61975870e-02 -7.35297799e-01 -3.10035855e-01 1.01023734e+00 3.90593588e-01 2.68553257e-01 8.67953777e-01 2.69378573e-01 1.16729009e+00 1.27273929e+00 6.62685096e-01 -1.27204084e+00 2.94550527e-02 9.03575361e-01 9.33480263e-01 -1.10399771e+00 -1.02935538e-01 2.80381083e-01 -3.16786468e-01 1.01289773e+00 3.87270898e-01 -4.32055175e-01 7.04388916e-01 -5.65972567e-01 -1.09775372e-01 -2.28876710e-01 -7.90893495e-01 -6.49550676e-01 6.87628925e-01 4.95874166e-01 4.36394960e-01 -2.73259521e-01 -6.85759008e-01 5.28077126e-01 1.55942068e-01 9.92417559e-02 3.27478439e-01 9.43938315e-01 -8.70036006e-01 -1.08914161e+00 6.19389024e-03 4.38070953e-01 -7.32059538e-01 -6.47157788e-01 -2.59346783e-01 8.18007469e-01 -4.12114918e-01 8.37499022e-01 -1.82111919e-01 1.45981554e-02 6.00666583e-01 5.80876946e-01 4.49307144e-01 -9.96020734e-01 -7.26288736e-01 -6.32700682e-01 2.85001934e-01 -2.73401052e-01 -3.58177364e-01 -4.71172621e-03 -6.38853550e-01 6.55817166e-02 -6.97741747e-01 7.53014505e-01 3.19530249e-01 7.60928869e-01 5.36067784e-01 1.62006825e-01 2.59680718e-01 -1.47016659e-01 -9.59492505e-01 -1.36539614e+00 -7.35209286e-01 6.43733025e-01 2.14373499e-01 -6.31659985e-01 -5.59173524e-01 -4.47160095e-01]
[11.459321975708008, 7.76085090637207]
301258fe-3f7f-4f30-a8fe-5f7446159686
low-rank-tensor-function-representation-for
2212.00262
null
https://arxiv.org/abs/2212.00262v1
https://arxiv.org/pdf/2212.00262v1.pdf
Low-Rank Tensor Function Representation for Multi-Dimensional Data Recovery
Since higher-order tensors are naturally suitable for representing multi-dimensional data in real-world, e.g., color images and videos, low-rank tensor representation has become one of the emerging areas in machine learning and computer vision. However, classical low-rank tensor representations can only represent data on finite meshgrid due to their intrinsical discrete nature, which hinders their potential applicability in many scenarios beyond meshgrid. To break this barrier, we propose a low-rank tensor function representation (LRTFR), which can continuously represent data beyond meshgrid with infinite resolution. Specifically, the suggested tensor function, which maps an arbitrary coordinate to the corresponding value, can continuously represent data in an infinite real space. Parallel to discrete tensors, we develop two fundamental concepts for tensor functions, i.e., the tensor function rank and low-rank tensor function factorization. We theoretically justify that both low-rank and smooth regularizations are harmoniously unified in the LRTFR, which leads to high effectiveness and efficiency for data continuous representation. Extensive multi-dimensional data recovery applications arising from image processing (image inpainting and denoising), machine learning (hyperparameter optimization), and computer graphics (point cloud upsampling) substantiate the superiority and versatility of our method as compared with state-of-the-art methods. Especially, the experiments beyond the original meshgrid resolution (hyperparameter optimization) or even beyond meshgrid (point cloud upsampling) validate the favorable performances of our method for continuous representation.
['Deyu Meng', 'Michael K. Ng', 'Zhemin Li', 'XiLe Zhao', 'YiSi Luo']
2022-12-01
null
null
null
null
['image-inpainting']
['computer-vision']
[-1.18173234e-01 -4.12226945e-01 -8.29285011e-02 2.20733538e-01 -4.37778294e-01 -3.53128433e-01 3.88136029e-01 -8.68531242e-02 -3.77242006e-02 5.47757745e-01 1.07442565e-01 -6.23689033e-04 -5.22297740e-01 -7.14338899e-01 -5.72018623e-01 -9.39270437e-01 -8.75409842e-02 2.29776934e-01 -4.34506796e-02 -4.65837002e-01 1.70629889e-01 6.92707300e-01 -1.58759511e+00 2.35857978e-01 1.14020669e+00 1.06870961e+00 4.37566638e-02 3.30289125e-01 -2.43204996e-01 3.93650770e-01 -1.67187348e-01 -1.79540947e-01 2.47236490e-01 4.95420843e-02 -8.29736471e-01 5.43277919e-01 4.47571248e-01 -3.97742391e-01 -4.88213450e-01 1.17306173e+00 -3.74603160e-02 2.13662460e-01 4.39133435e-01 -1.05103648e+00 -9.10945535e-01 -1.25854611e-01 -8.65383267e-01 -1.15100428e-01 3.37338239e-01 -9.23180878e-02 8.59329700e-01 -1.25782597e+00 4.64607149e-01 1.31138611e+00 6.07628286e-01 1.08004816e-01 -1.49657416e+00 -1.72213748e-01 1.52538329e-01 3.58918160e-02 -1.44549334e+00 1.90774556e-02 1.16370487e+00 -7.16128588e-01 2.12137029e-01 7.13973880e-01 6.06131613e-01 5.15918434e-01 1.64989978e-01 5.60257852e-01 1.13966656e+00 -1.56049401e-01 1.14724524e-02 -3.11999947e-01 4.54456136e-02 5.61680496e-01 2.73202956e-01 2.39646044e-02 -4.59731966e-01 -4.52523708e-01 1.47190177e+00 4.24230218e-01 -5.68750918e-01 -2.37502426e-01 -1.84927416e+00 7.43406177e-01 3.18092525e-01 4.91169631e-01 -5.85724652e-01 1.45973280e-01 5.38029492e-01 2.21638292e-01 6.86192632e-01 2.49143273e-01 -6.25839308e-02 -2.34978516e-02 -7.06350148e-01 2.68824339e-01 1.56552687e-01 7.62174606e-01 9.52105522e-01 3.28604102e-01 -9.38368291e-02 1.06201625e+00 2.33225465e-01 4.54486698e-01 4.21070516e-01 -1.17058802e+00 3.04433703e-01 6.57222986e-01 3.40360224e-01 -1.58283031e+00 -2.03262359e-01 -3.51064920e-01 -1.59056747e+00 1.19473904e-01 1.72391325e-01 5.08962810e-01 -4.51913744e-01 1.26040697e+00 5.95236242e-01 5.42546809e-01 -6.27164468e-02 1.20285189e+00 5.79142690e-01 7.05220282e-01 -4.22553450e-01 -5.37693441e-01 1.49881351e+00 -5.20449340e-01 -7.80564904e-01 4.64567900e-01 6.02982998e-01 -1.04363561e+00 1.15145779e+00 7.58710444e-01 -8.97024155e-01 -5.74589312e-01 -8.81779373e-01 -2.26446122e-01 1.48457587e-01 2.49895528e-01 1.01458359e+00 1.04925908e-01 -7.79193819e-01 8.37009609e-01 -7.80025780e-01 5.56475371e-02 -2.99678110e-02 -2.00967910e-03 -6.81721926e-01 -3.23271722e-01 -9.49714482e-01 2.38090813e-01 -1.12136096e-01 6.03406370e-01 -3.13430727e-01 -8.56297374e-01 -4.56914753e-01 -2.17999414e-01 8.76910314e-02 -5.88187754e-01 6.47361934e-01 -4.53901350e-01 -1.38098049e+00 6.16532505e-01 -8.15008804e-02 1.26012236e-01 4.93000388e-01 -1.98136568e-01 -3.10102880e-01 4.26200747e-01 1.78295121e-01 -3.50688025e-02 1.24560714e+00 -1.38296342e+00 -9.12378430e-02 -3.35477322e-01 1.26840353e-01 7.52300546e-02 -5.41428804e-01 -3.86952043e-01 -3.14792335e-01 -1.07118988e+00 8.89541268e-01 -8.24683189e-01 -4.39610481e-01 3.38336825e-01 -2.65088499e-01 -1.74890101e-01 9.28243160e-01 -6.84979200e-01 1.21001911e+00 -2.38856173e+00 5.78489304e-01 1.14509270e-01 4.96729195e-01 -3.94786485e-02 -4.96170223e-02 3.82853091e-01 -3.42903912e-01 2.37526763e-02 -1.85835958e-01 -1.67498782e-01 -2.87991881e-01 4.77157950e-01 -4.46837395e-01 8.37488949e-01 2.14047015e-01 3.68113160e-01 -9.22548354e-01 -3.83752733e-01 2.89406657e-01 7.16735780e-01 -6.57734156e-01 5.01342937e-02 2.85478029e-02 9.31773901e-01 -9.36388373e-01 4.61780161e-01 1.13693225e+00 -2.68880367e-01 -2.71391600e-01 -1.05825663e+00 -5.09162128e-01 -2.94429302e-01 -1.51398754e+00 1.81662738e+00 -4.82762188e-01 7.40742683e-02 5.37060142e-01 -1.02378285e+00 9.67487752e-01 3.98037761e-01 9.17876422e-01 -4.32392031e-01 -1.93182364e-01 4.71896887e-01 -3.49107563e-01 -5.09058237e-01 7.20023632e-01 -1.62183434e-01 1.95326865e-01 1.62646636e-01 -5.06122231e-01 -1.64049253e-01 1.82455286e-01 1.27160728e-01 7.23437071e-01 -2.85856705e-02 -2.47988865e-01 -4.89567846e-01 9.61920142e-01 -1.87036514e-01 6.41107500e-01 6.88098967e-02 2.52143592e-01 7.36242592e-01 5.01192212e-01 -5.80643535e-01 -1.12120235e+00 -6.14297986e-01 -5.51882446e-01 7.10943639e-01 3.05192083e-01 -4.43662375e-01 -4.42791462e-01 -1.09044962e-01 7.29396492e-02 6.13586158e-02 -5.16900957e-01 2.70236880e-02 -8.35013926e-01 -6.73485696e-01 2.17880353e-01 2.79809862e-01 5.76163054e-01 -3.53364378e-01 -8.41626432e-03 2.34542653e-01 -3.18314850e-01 -1.15599179e+00 -5.20619512e-01 -5.59405923e-01 -1.37426794e+00 -1.01173162e+00 -9.15606260e-01 -4.82191563e-01 8.40216517e-01 7.95706213e-01 7.99791157e-01 4.82815117e-01 -1.38863385e-01 4.94696707e-01 -3.02257776e-01 6.98609769e-01 -1.40333429e-01 -4.75287467e-01 2.84475505e-01 6.49975002e-01 -4.64976817e-01 -8.14356327e-01 -7.43385017e-01 5.60193181e-01 -1.47274816e+00 2.96680987e-01 3.57248962e-01 9.65511978e-01 1.02794075e+00 2.01030388e-01 2.13002652e-01 -6.95193112e-01 5.59023857e-01 -3.33344042e-01 -6.52128935e-01 1.20756455e-01 -1.92758262e-01 1.10108614e-01 8.12877655e-01 -5.45504570e-01 -7.20191121e-01 -2.19655246e-01 -5.97850867e-02 -1.09446549e+00 3.62803489e-01 6.92080438e-01 3.65649015e-02 -4.48948354e-01 4.24634397e-01 3.77656221e-01 1.45605311e-01 -9.11739886e-01 3.93084586e-01 1.85724407e-01 4.23920572e-01 -1.18836045e+00 1.07256424e+00 8.52171361e-01 5.66856384e-01 -1.25936937e+00 -5.07110775e-01 -4.42823380e-01 -5.64032614e-01 -1.22284666e-01 5.91395557e-01 -7.68721402e-01 -1.04846704e+00 5.29065907e-01 -1.30181086e+00 2.70867825e-01 -2.89919317e-01 7.15574563e-01 -5.30827940e-01 8.33131969e-01 -7.59938419e-01 -6.58690810e-01 -1.76210538e-01 -1.18459773e+00 1.23470223e+00 -2.78168380e-01 3.83663207e-01 -9.84994411e-01 -2.11395606e-01 4.06457961e-01 4.12749141e-01 6.39660895e-01 1.12324750e+00 4.07996237e-01 -7.94492602e-01 -7.81370252e-02 -4.08029169e-01 4.13409352e-01 1.48999467e-01 9.57604796e-02 -5.70297897e-01 -3.85192484e-01 2.94133514e-01 -1.20812543e-01 4.86105144e-01 8.27196687e-02 1.50272381e+00 -4.51274961e-01 -6.76601604e-02 8.25881422e-01 1.49153137e+00 -4.34323937e-01 6.35418534e-01 7.98478127e-02 1.14312291e+00 6.19735360e-01 7.29036510e-01 5.65369248e-01 1.29796565e-01 9.06364202e-01 5.77040970e-01 -2.48376623e-01 -3.88439745e-02 -2.82601193e-02 5.18811271e-02 1.39327633e+00 -5.82538247e-01 4.22154188e-01 -5.45998514e-01 3.58448178e-01 -1.93032646e+00 -5.69034457e-01 -7.29236424e-01 2.45620418e+00 6.11319721e-01 -2.89471805e-01 -3.06788944e-02 4.57902282e-01 7.15446115e-01 3.34191889e-01 -4.92232740e-01 -1.31498307e-01 -1.81870878e-01 -1.53817832e-01 3.45269680e-01 5.22737741e-01 -8.15196753e-01 5.29144824e-01 5.29132128e+00 1.00762343e+00 -1.28927946e+00 1.28128380e-01 3.76043588e-01 3.42372358e-01 -7.11543679e-01 -3.57327312e-02 -2.52284706e-01 2.99490571e-01 3.27865601e-01 -1.14546709e-01 7.25327611e-01 6.70775473e-01 4.21158195e-01 3.11042398e-01 -8.38888168e-01 1.36193371e+00 -2.65010864e-01 -1.54405999e+00 3.87366176e-01 2.79635787e-01 6.72772825e-01 -3.13139975e-01 1.39538646e-01 -2.43156264e-03 -2.57327855e-01 -8.56052160e-01 4.68457043e-01 6.26564801e-01 1.13605726e+00 -6.17476583e-01 3.23211104e-01 1.91833898e-01 -1.48496437e+00 3.32373440e-01 -6.36683166e-01 5.38492166e-02 1.25113666e-01 1.08003235e+00 -2.62920670e-02 1.06806707e+00 5.37782073e-01 1.07102859e+00 -2.32946932e-01 8.15236330e-01 2.64539301e-01 2.75835574e-01 -3.50672930e-01 5.56241512e-01 2.69915044e-01 -1.01647913e+00 7.71463752e-01 5.52776098e-01 4.68302071e-01 3.96039099e-01 5.01728415e-01 6.77268088e-01 8.25884044e-02 3.34959060e-01 -4.39907759e-01 -1.54600795e-02 5.41029386e-02 1.29271340e+00 -5.44015408e-01 -7.67492950e-02 -4.89457756e-01 8.75310659e-01 7.10468180e-03 7.32186258e-01 -4.68940556e-01 -1.20776363e-01 1.02310586e+00 3.52085441e-01 5.93298078e-02 -6.91390336e-01 -3.48855704e-01 -1.62809956e+00 4.67972338e-01 -7.77301133e-01 8.86049792e-02 -5.55490315e-01 -1.44083583e+00 6.52758598e-01 3.57412659e-02 -1.82416189e+00 1.64428607e-01 -7.39374518e-01 -3.53768200e-01 8.16677809e-01 -1.49478424e+00 -1.15738356e+00 -4.16775495e-01 8.86648178e-01 1.94825709e-01 2.98129350e-01 7.60195374e-01 6.37064755e-01 -4.05919939e-01 2.00043812e-01 4.67585862e-01 -2.70793657e-03 2.22615317e-01 -9.48327184e-01 -3.90804745e-02 6.26301885e-01 -3.08210820e-01 8.30311835e-01 5.48573315e-01 -5.09575188e-01 -2.16904640e+00 -1.01688337e+00 1.60835773e-01 1.72684282e-01 8.99555027e-01 -1.75554454e-01 -1.43827534e+00 3.36146742e-01 -3.31391066e-01 5.38459778e-01 3.24640930e-01 -5.61058037e-02 -4.75297868e-01 -4.32988912e-01 -1.12249577e+00 5.93699098e-01 7.32968926e-01 -5.03202140e-01 -1.48521841e-01 8.17987621e-01 7.18783319e-01 -3.65480602e-01 -1.44839191e+00 5.07271111e-01 2.70786077e-01 -8.88146996e-01 1.17391562e+00 -4.42601115e-01 4.12191510e-01 -7.17752516e-01 -3.69054079e-01 -1.05149627e+00 -4.69349772e-01 -1.01136172e+00 -2.71682352e-01 1.13423085e+00 -3.65873665e-01 -8.19204211e-01 5.78691423e-01 4.40107018e-01 -3.46549273e-01 -9.45080876e-01 -1.19669175e+00 -8.16648304e-01 1.21326834e-01 -3.83847415e-01 5.96355319e-01 1.20706940e+00 -3.34284097e-01 -1.11011557e-01 -5.46854496e-01 3.34798425e-01 8.60618174e-01 3.03521693e-01 5.88211834e-01 -1.37812436e+00 -2.97149688e-01 -3.28430325e-01 -6.38777494e-01 -1.40665555e+00 3.10182236e-02 -7.16007471e-01 -2.60897130e-01 -1.43667936e+00 -1.75914973e-01 -9.49149191e-01 -6.97339624e-02 1.21491127e-01 1.38679639e-01 4.29255694e-01 -2.29993034e-02 7.35235035e-01 -5.42756990e-02 9.41937685e-01 2.00853896e+00 -3.95194702e-02 -3.09713539e-02 -2.24790499e-01 -3.80527645e-01 7.29894102e-01 1.79868057e-01 -4.49795462e-02 -3.36693525e-01 -6.75447524e-01 4.00846303e-01 4.46040660e-01 3.59988242e-01 -7.44310915e-01 -1.51922693e-02 -5.14837503e-01 -1.75576080e-02 -4.77976441e-01 5.90468824e-01 -8.54917824e-01 3.29105496e-01 1.65211707e-01 8.68961886e-02 1.37269557e-01 1.80172194e-02 5.87244332e-01 -4.89638746e-01 -7.44473487e-02 6.69450164e-01 2.90717203e-02 -3.17933798e-01 7.01591134e-01 -1.56600531e-02 -7.91707262e-02 7.70337224e-01 -2.17932984e-01 -2.51249582e-01 -1.42382905e-01 -7.00872838e-01 -1.40333936e-01 6.01484835e-01 2.35534638e-01 9.11422193e-01 -1.84377706e+00 -8.69956672e-01 5.26147425e-01 3.73867862e-02 3.52075338e-01 5.94314754e-01 1.19192493e+00 -7.32063413e-01 1.11382440e-01 3.56549360e-02 -9.41835105e-01 -8.00343156e-01 5.02457738e-01 1.23275645e-01 -2.32929736e-01 -8.94279838e-01 4.61319208e-01 4.62006420e-01 -1.62313953e-01 -1.40391558e-01 -5.88905036e-01 -7.40924552e-02 -1.79095164e-01 6.31212592e-01 5.70376337e-01 2.52676934e-01 -9.90230680e-01 -8.54395628e-02 1.09838367e+00 3.12677249e-02 1.89638764e-01 1.33629394e+00 6.89796060e-02 -7.72362530e-01 4.54315394e-01 1.37149537e+00 1.39552101e-01 -1.20089090e+00 -2.15105087e-01 -3.48286510e-01 -9.56712484e-01 3.10199469e-01 2.80326724e-01 -1.18246531e+00 7.88881183e-01 2.03010604e-01 5.38952172e-01 1.12980449e+00 -2.62510270e-01 9.68906879e-01 3.18072140e-01 5.42569160e-01 -5.30307353e-01 1.98478848e-01 3.62041056e-01 1.37243378e+00 -8.77024293e-01 3.56942475e-01 -8.87529135e-01 -2.87585974e-01 1.34856546e+00 2.19474077e-01 -4.35021132e-01 6.50344074e-01 -2.38765597e-01 -2.47691393e-01 -1.36301100e-01 -4.31495547e-01 2.68240720e-01 5.45953691e-01 2.81561345e-01 5.67014635e-01 6.92893565e-02 -4.24535245e-01 4.65050014e-03 4.13244143e-02 -1.98472947e-01 4.94917274e-01 5.83999991e-01 -7.16456547e-02 -1.17138636e+00 -9.45485890e-01 4.55270529e-01 -2.34454304e-01 1.14042588e-01 3.40557784e-01 4.00067300e-01 1.36270851e-03 7.63693571e-01 -1.55924425e-01 -2.82750785e-01 3.40305984e-01 -4.58255440e-01 4.06058699e-01 -3.40231270e-01 -3.06771904e-01 3.58709067e-01 -2.71798223e-01 -7.44903088e-01 -4.56815302e-01 -5.93774676e-01 -1.18768692e+00 -5.03503442e-01 -1.73158869e-01 4.17031050e-01 6.73855007e-01 6.70188844e-01 4.05562967e-01 2.78943151e-01 9.69084799e-01 -1.04382706e+00 -4.36792433e-01 -6.80729389e-01 -8.83985996e-01 7.19438195e-01 5.57679296e-01 -1.04112279e+00 -4.92332876e-01 -5.11545874e-02]
[7.426629066467285, 4.456050872802734]
2ef9ce88-67ca-4c2e-9211-4dc9651da3d9
unbiased-teacher-for-semi-supervised-object-1
2102.09480
null
https://arxiv.org/abs/2102.09480v1
https://arxiv.org/pdf/2102.09480v1.pdf
Unbiased Teacher for Semi-Supervised Object Detection
Semi-supervised learning, i.e., training networks with both labeled and unlabeled data, has made significant progress recently. However, existing works have primarily focused on image classification tasks and neglected object detection which requires more annotation effort. In this work, we revisit the Semi-Supervised Object Detection (SS-OD) and identify the pseudo-labeling bias issue in SS-OD. To address this, we introduce Unbiased Teacher, a simple yet effective approach that jointly trains a student and a gradually progressing teacher in a mutually-beneficial manner. Together with a class-balance loss to downweight overly confident pseudo-labels, Unbiased Teacher consistently improved state-of-the-art methods by significant margins on COCO-standard, COCO-additional, and VOC datasets. Specifically, Unbiased Teacher achieves 6.8 absolute mAP improvements against state-of-the-art method when using 1% of labeled data on MS-COCO, achieves around 10 mAP improvements against the supervised baseline when using only 0.5, 1, 2% of labeled data on MS-COCO.
['Peter Vajda', 'Zsolt Kira', 'Bichen Wu', 'Peizhao Zhang', 'Kan Chen', 'Chia-Wen Kuo', 'Zijian He', 'Chih-Yao Ma', 'Yen-Cheng Liu']
2021-02-18
unbiased-teacher-for-semi-supervised-object
https://openreview.net/forum?id=MJIve1zgR_
https://openreview.net/pdf?id=MJIve1zgR_
iclr-2021-1
['semi-supervised-object-detection', 'semi-supervised-person-bounding-box-detection']
['computer-vision', 'computer-vision']
[ 2.98492134e-01 3.58439595e-01 -4.22252387e-01 -6.03089154e-01 -1.06077766e+00 -5.74075758e-01 6.38267636e-01 5.98442741e-02 -7.52162576e-01 7.90976763e-01 -3.44228476e-01 -1.92819893e-01 4.30287808e-01 -3.62230599e-01 -9.48176742e-01 -6.98826551e-01 1.89146951e-01 3.94648671e-01 5.77955782e-01 3.51780862e-01 -1.48180678e-01 1.13518089e-01 -1.51399970e+00 2.93150753e-01 9.18451786e-01 1.11412406e+00 2.31262863e-01 4.68808740e-01 1.57631584e-03 1.07797587e+00 -5.75496614e-01 -3.34355712e-01 2.20994189e-01 -2.40858778e-01 -8.69672537e-01 3.16418529e-01 1.15733910e+00 -3.17298204e-01 -2.50474244e-01 1.25323236e+00 4.22245711e-01 -2.69329101e-01 8.47679734e-01 -1.33096433e+00 -5.52617788e-01 7.07303226e-01 -8.82251918e-01 2.03363717e-01 -4.61981207e-01 1.02160141e-01 8.66878510e-01 -1.25610793e+00 4.63519067e-01 1.02565610e+00 8.68179739e-01 6.19992316e-01 -1.43268466e+00 -1.02988338e+00 1.95905715e-01 -2.23093592e-02 -1.42382216e+00 -2.43449256e-01 2.89571315e-01 -5.14530897e-01 5.06436169e-01 4.18005064e-02 1.23492226e-01 9.52924967e-01 -2.87478358e-01 1.28176224e+00 1.32500660e+00 -5.57093859e-01 6.91928715e-02 5.33581257e-01 5.13609886e-01 6.70140505e-01 4.10029471e-01 1.80589169e-01 -3.38006049e-01 2.23246381e-01 3.51345748e-01 -1.69799894e-01 4.28313613e-02 -4.95115250e-01 -1.05074823e+00 6.35730267e-01 6.85515881e-01 -1.73294276e-01 -1.04977958e-01 1.55263394e-01 3.63281727e-01 1.08333607e-03 8.97244215e-01 4.28955078e-01 -6.71344638e-01 2.04840451e-01 -1.20095456e+00 -1.86225995e-01 4.32654679e-01 1.18022346e+00 8.23816061e-01 2.36619875e-01 -3.66967440e-01 9.14323330e-01 2.87942946e-01 6.25347853e-01 1.41302884e-01 -7.48573303e-01 3.14501435e-01 6.05226159e-01 9.72699448e-02 -3.24878424e-01 -2.95995951e-01 -9.23771620e-01 -5.94230056e-01 3.25997472e-01 5.74767232e-01 -2.78163314e-01 -1.46509874e+00 1.69973087e+00 3.87304008e-01 3.86887997e-01 1.04514316e-01 7.74675012e-01 1.10760140e+00 4.48407322e-01 3.60303432e-01 2.87541505e-02 1.17076623e+00 -1.59258497e+00 -4.97026056e-01 -4.39123660e-01 6.98514462e-01 -6.39295220e-01 1.12771368e+00 3.58494639e-01 -8.98232341e-01 -7.33426869e-01 -1.25818515e+00 8.21963772e-02 -4.19902176e-01 8.14094663e-01 3.57166320e-01 6.26137257e-01 -8.85067165e-01 3.93183887e-01 -8.42576742e-01 -2.62216657e-01 1.02179956e+00 2.61147887e-01 -2.71531463e-01 -2.93904245e-01 -8.01715255e-01 7.50329852e-01 4.75450456e-01 -1.38597995e-01 -1.53631055e+00 -9.08808291e-01 -7.88879395e-01 -4.14112248e-02 7.78595269e-01 5.16931573e-03 1.52229953e+00 -9.51506019e-01 -8.95968139e-01 1.08742273e+00 6.26477450e-02 -6.70457900e-01 7.24976957e-01 -5.69435060e-01 -2.38443330e-01 8.24551955e-02 4.91854787e-01 1.35280859e+00 6.72761023e-01 -1.47369754e+00 -1.00566781e+00 -2.62370616e-01 -1.62669301e-01 1.14535540e-01 -4.05744791e-01 2.69520413e-02 -6.18733644e-01 -5.71890533e-01 5.98244276e-03 -1.13618875e+00 -1.79528326e-01 1.38383299e-01 -6.61784768e-01 -4.89351571e-01 1.09198117e+00 -1.71136439e-01 8.42061043e-01 -2.15203786e+00 -4.24450994e-01 -3.20291251e-01 3.55242878e-01 7.73958981e-01 -2.19219074e-01 -1.98984444e-01 -9.38564315e-02 9.78180394e-02 -2.45545164e-01 -7.10596740e-01 -2.68663496e-01 3.97434793e-02 -2.51329720e-01 5.70663869e-01 5.11766076e-01 8.44758093e-01 -1.17635500e+00 -5.85657477e-01 7.61925802e-02 3.90373409e-01 -1.40012488e-01 2.41760150e-01 -2.91262686e-01 3.51259947e-01 -1.24882802e-01 8.09411347e-01 6.96260273e-01 -6.42564118e-01 -9.84709114e-02 -1.80663615e-01 -2.01846614e-01 1.74319759e-01 -9.43158805e-01 1.41937983e+00 -1.11378685e-01 1.06452191e+00 -1.75152756e-02 -9.00598288e-01 7.50976145e-01 1.97669744e-01 1.06839992e-01 -5.52025974e-01 5.84361665e-02 2.33260199e-01 -1.66935608e-01 -1.30203471e-01 2.60247260e-01 2.25057647e-01 3.34590048e-01 3.79260600e-01 3.86279702e-01 2.50494272e-01 1.85584947e-01 3.60570252e-01 8.74994159e-01 2.92403191e-01 8.37549940e-02 -3.76168787e-01 2.81324983e-01 3.15909624e-01 5.60231864e-01 9.40047324e-01 -4.87596422e-01 7.75550306e-01 2.37221435e-01 -2.62245357e-01 -8.75415027e-01 -9.49629962e-01 -4.30740923e-01 1.47085667e+00 2.18839407e-01 -1.23658232e-01 -9.47720408e-01 -1.26431084e+00 1.14704341e-01 6.25901818e-01 -8.09251130e-01 -6.03979453e-02 -3.10947776e-01 -1.02265084e+00 8.19999397e-01 8.89080048e-01 8.36231172e-01 -8.81493509e-01 -2.96119273e-01 -1.02853239e-01 1.85940012e-01 -1.31826723e+00 -3.80996913e-01 5.90107977e-01 -7.30502367e-01 -1.04337037e+00 -9.22042012e-01 -9.51889038e-01 1.06219757e+00 6.57114208e-01 1.21642983e+00 -1.29635245e-01 -3.34242374e-01 8.01320598e-02 -2.93191671e-01 -7.31622159e-01 -2.00841472e-01 2.67237812e-01 6.30738959e-03 4.95912470e-02 4.42269474e-01 -5.46615012e-02 -4.98158485e-01 6.89704001e-01 -6.20643318e-01 1.56305864e-01 7.57427037e-01 1.00586176e+00 7.75057375e-01 -3.21326166e-01 8.22799802e-01 -1.41090560e+00 -1.72568277e-01 -4.64904279e-01 -7.24548638e-01 3.51483017e-01 -1.16960633e+00 -3.33193764e-02 2.97669053e-01 -6.93302453e-01 -1.20532155e+00 4.56276357e-01 1.31492198e-01 -5.57336211e-01 -2.62731105e-01 6.68617561e-02 -5.38378917e-02 -1.74167231e-01 9.92233694e-01 1.38133690e-01 -2.81701058e-01 -5.00499666e-01 4.72622842e-01 9.22376335e-01 8.09637010e-01 -3.68231833e-01 7.91632056e-01 6.22021556e-01 -3.02293867e-01 -5.19836009e-01 -1.60414481e+00 -8.15010548e-01 -7.34917104e-01 -1.30572364e-01 8.59228492e-01 -1.35905218e+00 -1.19011827e-01 6.74013734e-01 -8.68479490e-01 -5.90690315e-01 -2.60269403e-01 4.80283231e-01 -4.36162390e-02 5.60140163e-02 -5.00813782e-01 -7.69800127e-01 -4.42297697e-01 -1.10261118e+00 1.02292287e+00 3.36932480e-01 1.52891934e-01 -6.02602601e-01 -1.85312822e-01 5.52460670e-01 3.23504508e-01 5.64741977e-02 2.95434564e-01 -9.71048057e-01 -4.08152401e-01 -2.89165735e-01 -8.64793718e-01 7.94824004e-01 2.26533022e-02 -1.67524934e-01 -1.31721330e+00 -5.45953512e-01 -5.08662164e-01 -1.03640592e+00 1.14482057e+00 1.54416546e-01 1.26235127e+00 4.72242273e-02 -5.89849412e-01 5.97049177e-01 1.21314979e+00 -6.27722666e-02 2.79858232e-01 2.62768507e-01 9.20299172e-01 6.39851511e-01 9.24866676e-01 -1.06048500e-02 3.71759325e-01 4.25374717e-01 6.47909105e-01 -4.81849194e-01 -6.19554818e-01 -3.06200415e-01 9.78001356e-02 3.69056553e-01 2.42208481e-01 -1.11800902e-01 -1.02626455e+00 7.13171661e-01 -1.62824059e+00 -4.53429192e-01 -4.26297277e-01 2.08583069e+00 1.03389573e+00 4.76883411e-01 1.67670816e-01 -7.06802495e-03 9.51292694e-01 -2.75381911e-03 -7.95884550e-01 5.16652882e-01 -9.23592821e-02 -2.02596411e-02 1.05580831e+00 1.19854562e-01 -1.61895525e+00 1.07544720e+00 6.48372984e+00 1.09144318e+00 -1.21511114e+00 4.21886086e-01 9.25143480e-01 -1.54089391e-01 3.70258898e-01 -2.42851183e-01 -1.25635207e+00 4.13559794e-01 7.65676320e-01 3.79482061e-01 -7.09072649e-02 1.37588727e+00 -1.53863728e-01 -9.52969566e-02 -1.10357010e+00 8.29455733e-01 1.32151425e-01 -1.16226053e+00 -2.57535160e-01 -1.02304578e-01 1.31140614e+00 6.29756510e-01 1.74811542e-01 6.39045000e-01 4.47311461e-01 -9.72959459e-01 8.57075989e-01 -1.14831597e-01 1.18423307e+00 -5.27596354e-01 9.69855249e-01 5.10933220e-01 -1.02089810e+00 1.18632376e-01 -3.29619527e-01 1.15952969e-01 -1.75330624e-01 5.22860169e-01 -8.98625791e-01 2.26508468e-01 9.09953117e-01 7.39531755e-01 -1.04926121e+00 1.20137250e+00 -5.84789693e-01 1.41505182e+00 -2.86129266e-01 1.58956423e-01 5.28249264e-01 3.63742560e-01 1.27645403e-01 1.49399829e+00 -1.97768539e-01 -2.23319277e-01 3.92691463e-01 7.79614091e-01 -4.25339729e-01 -1.98391616e-01 -1.34048954e-01 8.61487240e-02 6.13562584e-01 1.42242706e+00 -9.05463219e-01 -7.44680762e-01 -4.63725418e-01 7.48092055e-01 5.96024930e-01 3.23539734e-01 -8.60559762e-01 -3.80829304e-01 2.23056786e-02 1.38107896e-01 3.85094523e-01 2.13953018e-01 -3.22174907e-01 -9.14380729e-01 -2.33899862e-01 -6.00332379e-01 3.02312136e-01 -6.18392944e-01 -1.21698081e+00 6.32577240e-01 4.30649221e-02 -1.24921405e+00 1.56973496e-01 -6.45435929e-01 -6.03893638e-01 6.71028852e-01 -1.79032338e+00 -1.32590973e+00 -5.71697295e-01 1.40318617e-01 6.62477374e-01 -1.48234442e-01 5.04246771e-01 5.91978967e-01 -8.82710278e-01 9.08837080e-01 2.50662148e-01 4.12189960e-01 1.04421306e+00 -1.55825305e+00 4.79667962e-01 8.60560894e-01 3.16136926e-01 2.51839340e-01 4.87347364e-01 -4.44985211e-01 -7.28981316e-01 -1.59258723e+00 6.27746224e-01 -5.17088950e-01 4.18728769e-01 -3.67556602e-01 -9.66228127e-01 8.07914734e-01 1.37235761e-01 7.77444780e-01 5.31642497e-01 -3.37414294e-02 -6.56855345e-01 -1.32527351e-01 -1.17735445e+00 2.51892239e-01 9.77555871e-01 -3.68005514e-01 -4.42103416e-01 4.69861716e-01 9.11547720e-01 -5.59537113e-01 -4.36147720e-01 7.82579184e-01 4.42494571e-01 -6.29692018e-01 8.60164225e-01 -6.45313978e-01 2.02543125e-01 -5.81385553e-01 -1.75079536e-02 -1.12702155e+00 -5.78830279e-02 -1.97871700e-01 -1.55076489e-01 1.34102976e+00 5.78583956e-01 -3.32852691e-01 1.20852852e+00 1.43311322e-01 -2.88316816e-01 -8.86691272e-01 -5.58852792e-01 -1.00873923e+00 -1.87328253e-02 -3.87137115e-01 5.93829453e-02 1.07492745e+00 -4.69872504e-01 4.94534105e-01 -4.76024538e-01 2.08774149e-01 9.70714271e-01 -2.61019737e-01 8.29325438e-01 -1.16149545e+00 -1.19816557e-01 -1.41728863e-01 -1.39118016e-01 -1.39160037e+00 -1.27407964e-02 -8.53758454e-01 5.17645538e-01 -1.31419015e+00 4.48856324e-01 -7.24493384e-01 -4.78932887e-01 7.43700922e-01 -5.88537872e-01 8.85268748e-01 1.04482152e-01 3.93034220e-01 -1.13377738e+00 3.92131895e-01 1.02355695e+00 -3.09854031e-01 2.33837552e-02 -6.86650649e-02 -5.67170382e-01 8.25497448e-01 7.41392314e-01 -8.29332829e-01 -4.44809616e-01 -5.16256034e-01 -2.45866269e-01 -6.33238077e-01 2.82734305e-01 -1.09757125e+00 2.47875065e-01 1.36239663e-01 4.77902979e-01 -8.59215319e-01 4.07132469e-02 -5.59576392e-01 -3.78366560e-01 5.10283709e-01 -6.30085886e-01 -3.77181500e-01 2.95640439e-01 7.36428976e-01 -2.20398098e-01 -4.03171152e-01 1.08245850e+00 1.24763712e-01 -9.18413639e-01 2.03557581e-01 -4.87950481e-02 2.60484189e-01 1.12493587e+00 -1.64099392e-02 -5.10872781e-01 1.21281832e-01 -6.06396079e-01 5.90958118e-01 1.01202533e-01 2.89130896e-01 2.21230224e-01 -1.26232076e+00 -8.68490040e-01 -9.40325484e-02 4.90189254e-01 5.01701832e-01 -8.42068046e-02 7.30512142e-01 -3.87928218e-01 4.17573482e-01 7.56477714e-02 -1.03347242e+00 -1.40485346e+00 3.73846442e-01 2.10310265e-01 -1.96871534e-01 -3.06713909e-01 1.18105626e+00 3.35646957e-01 -7.34146833e-01 7.86730111e-01 -9.84878615e-02 -1.86547786e-01 1.11500412e-01 5.84434092e-01 5.29020965e-01 -2.92408448e-02 -4.58925545e-01 -3.27032685e-01 2.83410043e-01 -3.74847978e-01 1.60224840e-01 9.93099630e-01 1.00475624e-01 2.76820570e-01 3.48321915e-01 1.15329802e+00 -2.74838090e-01 -1.77543795e+00 -6.21265471e-01 1.36439994e-01 -2.27431640e-01 2.32950300e-01 -1.10396016e+00 -1.10996366e+00 9.19255197e-01 9.01248038e-01 -4.61675860e-02 7.36940563e-01 2.45332867e-01 3.87328416e-01 4.16826308e-01 2.38080636e-01 -9.62296128e-01 4.41426456e-01 3.56803000e-01 3.66609365e-01 -1.82811534e+00 5.22949062e-02 -5.64209342e-01 -5.96192300e-01 6.15426779e-01 1.13349855e+00 3.20070758e-02 5.00459850e-01 1.59959689e-01 2.64822811e-01 -6.42859489e-02 -5.71356058e-01 -3.81092846e-01 5.17863870e-01 4.95864719e-01 4.08823669e-01 4.83139306e-02 2.36754306e-02 3.99175614e-01 3.11989188e-01 -7.94075280e-02 1.89894080e-01 9.64181662e-01 -6.81014001e-01 -6.91746116e-01 -3.25355262e-01 5.99285901e-01 -6.67087376e-01 -2.17701957e-01 -3.45125705e-01 8.88603985e-01 4.13883120e-01 9.14111376e-01 1.22015215e-01 -2.79339612e-01 2.31066793e-01 -7.15922117e-02 9.56523493e-02 -1.00148034e+00 -3.83909255e-01 5.94081134e-02 1.98279340e-02 -2.93759882e-01 -6.18148625e-01 -4.71166015e-01 -1.25581837e+00 1.81883618e-01 -8.87619138e-01 1.20897122e-01 6.83974385e-01 8.08085918e-01 2.80032843e-01 5.86977899e-01 4.31066334e-01 -7.99414575e-01 -8.49758983e-01 -1.34984076e+00 -3.11131597e-01 1.65337548e-01 2.98022717e-01 -8.14771771e-01 -5.39356649e-01 6.68146014e-02]
[9.169909477233887, 1.2545608282089233]
5dd94511-fa36-42e2-81eb-7c89e654cf6f
spectral-variability-augmented-sparse
2110.09744
null
https://arxiv.org/abs/2110.09744v2
https://arxiv.org/pdf/2110.09744v2.pdf
Spectral Variability Augmented Sparse Unmixing of Hyperspectral Images
Spectral unmixing (SU) expresses the mixed pixels existed in hyperspectral images as the product of endmember and abundance, which has been widely used in hyperspectral imagery analysis. However, the influence of light, acquisition conditions and the inherent properties of materials, results in that the identified endmembers can vary spectrally within a given image (construed as spectral variability). To address this issue, recent methods usually use a priori obtained spectral library to represent multiple characteristic spectra of the same object, but few of them extracted the spectral variability explicitly. In this paper, a spectral variability augmented sparse unmixing model (SVASU) is proposed, in which the spectral variability is extracted for the first time. The variable spectra are divided into two parts of intrinsic spectrum and spectral variability for spectral reconstruction, and modeled synchronously in the SU model adding the regular terms restricting the sparsity of abundance and the generalization of the variability coefficient. It is noted that the spectral variability library and the intrinsic spectral library are all constructed from the In-situ observed image. Experimental results over both synthetic and real-world data sets demonstrate that the augmented decomposition by spectral variability significantly improves the unmixing performance than the decomposition only by spectral library, as well as compared to state-of-the-art algorithms.
['Qian Du', 'Yan Feng', 'Mingyang Ma', 'Shaohui Mei', 'Ge Zhang']
2021-10-19
null
null
null
null
['spectral-reconstruction']
['computer-vision']
[ 7.60542512e-01 -8.04897547e-01 -1.39620751e-01 1.56020239e-01 -1.88644648e-01 -6.74547315e-01 5.10887742e-01 -4.08310920e-01 9.84293222e-02 9.82198775e-01 1.32019460e-01 8.85593891e-02 -1.88396186e-01 -8.06243718e-01 -4.26872164e-01 -1.47853494e+00 2.43763775e-01 -2.69882791e-02 -3.05322170e-01 -1.12359367e-01 -3.11199188e-01 3.20492327e-01 -1.88323915e+00 1.83485091e-01 1.38246620e+00 9.94273424e-01 4.89484042e-01 -1.17908129e-02 -4.76333857e-01 4.82743621e-01 -2.86497563e-01 6.12329364e-01 6.36659265e-01 -6.24240160e-01 -1.69302270e-01 8.15070391e-01 3.30420941e-01 3.04652620e-02 -2.50822246e-01 1.70019901e+00 1.03967905e-01 2.20637828e-01 6.50006771e-01 -8.90031040e-01 -5.29511154e-01 5.93197405e-01 -1.15327811e+00 -1.19930506e-01 -2.42894143e-01 2.72215120e-02 5.68288147e-01 -7.84734011e-01 3.40350866e-01 1.02106941e+00 5.39150298e-01 -9.51740816e-02 -1.46395624e+00 -8.20624650e-01 6.80869306e-03 -1.24551319e-02 -1.63174617e+00 -2.72336185e-01 1.09882379e+00 -7.70948410e-01 3.60522181e-01 6.25599384e-01 9.59847152e-01 6.14625752e-01 -1.48887992e-01 3.69289488e-01 1.64970529e+00 -4.51124519e-01 -1.62167065e-02 1.79011766e-02 4.46339548e-01 3.40209901e-01 6.41184270e-01 5.38404584e-01 -3.93116623e-01 -3.30796927e-01 5.40003359e-01 3.00740480e-01 -9.73451734e-01 -5.50973833e-01 -1.21055675e+00 5.06872833e-01 3.57388914e-01 1.47455677e-01 -6.72017395e-01 -5.98524034e-01 6.86749890e-02 1.22777916e-01 6.02185607e-01 3.84497829e-03 -2.51885653e-01 5.87218523e-01 -1.18243778e+00 -4.98082601e-02 4.86636341e-01 6.69480324e-01 1.46231186e+00 5.60835540e-01 1.84826657e-01 1.12542403e+00 4.94800895e-01 1.25561786e+00 7.71465123e-01 -5.81297934e-01 1.08715557e-01 7.20990300e-01 1.89123616e-01 -8.38613093e-01 -2.50359088e-01 -7.84272492e-01 -1.28478265e+00 1.12885892e-01 -2.30956264e-03 -1.11544274e-01 -1.13844311e+00 1.59755373e+00 2.95964032e-01 4.51538682e-01 3.06606174e-01 9.42462206e-01 7.79574871e-01 1.10085833e+00 3.19036506e-02 -1.05822062e+00 1.02572644e+00 -8.29090416e-01 -1.10158062e+00 -3.56683552e-01 6.07905127e-02 -7.75232196e-01 5.96026957e-01 3.32645923e-01 -4.10545379e-01 -5.06357014e-01 -1.30161595e+00 5.75892448e-01 -3.14265221e-01 2.33854532e-01 6.13663375e-01 6.51671588e-01 -4.16471839e-01 3.47901791e-01 -7.16268241e-01 -1.81825504e-01 1.26882270e-01 -3.38518433e-02 -3.30028534e-01 1.46930700e-03 -1.08922505e+00 6.61582649e-01 8.23505640e-01 3.94394487e-01 -7.19663143e-01 -5.34708202e-01 -7.57103980e-01 -7.25009516e-02 3.67719740e-01 -4.62104052e-01 4.89595771e-01 -1.68777192e+00 -1.30508065e+00 5.64036787e-01 -3.11000496e-01 7.26488084e-02 -8.13781247e-02 1.66123152e-01 -9.07158315e-01 8.18146020e-02 2.36534998e-02 -2.92545855e-01 1.08985615e+00 -1.69442546e+00 -3.20698291e-01 -5.18872678e-01 -5.66450417e-01 2.40242630e-01 -2.99234360e-01 -3.60783488e-01 9.58133787e-02 -6.60694242e-01 8.69187057e-01 -9.44974184e-01 -8.16101730e-02 -2.62800127e-01 -1.08190209e-01 7.17420697e-01 1.06785107e+00 -8.39466572e-01 1.18907213e+00 -2.43389297e+00 2.46802166e-01 5.20025611e-01 -1.39357269e-01 4.00278449e-01 -2.26145729e-01 3.37231338e-01 -5.36040604e-01 -2.09574461e-01 -1.06692708e+00 2.79358566e-01 -5.52895606e-01 4.11411554e-01 -3.74315947e-01 8.39231312e-01 -2.15552628e-01 3.17195952e-01 -1.01239014e+00 -2.23939225e-01 3.48934293e-01 4.52425122e-01 1.97598279e-01 1.48699820e-01 -2.09068939e-01 5.15649974e-01 -2.75849789e-01 8.23887408e-01 1.25367868e+00 -1.44714594e-01 3.69084865e-01 -6.65583909e-01 -4.47217405e-01 -3.88646394e-01 -1.61123884e+00 1.53759861e+00 -9.79900658e-02 1.41248301e-01 5.69178462e-01 -9.73580599e-01 8.01601410e-01 3.72283071e-01 6.34825289e-01 -1.01613335e-01 -1.18360013e-01 5.24504364e-01 7.24096000e-02 -5.02611518e-01 3.29675227e-01 -4.93759215e-01 8.96547377e-01 1.51649401e-01 3.18824849e-03 -1.18681870e-01 2.12512568e-01 -2.82365113e-01 1.10496186e-01 2.72856504e-01 6.86721504e-01 -7.17063487e-01 9.82307315e-01 2.80212104e-01 6.91214204e-01 2.60816574e-01 7.25963563e-02 3.53038043e-01 -2.31061175e-01 -1.10278934e-01 -8.24282348e-01 -9.91490185e-01 -4.98581111e-01 5.57116687e-01 3.29812050e-01 1.88826516e-01 -4.02980715e-01 -2.64819618e-02 2.62398360e-04 4.60202903e-01 -3.91719878e-01 3.48475762e-02 2.97390874e-02 -1.59735739e+00 1.41314268e-01 -2.62274761e-02 8.95865798e-01 -5.81986964e-01 -3.28068063e-02 1.86861038e-01 -3.13003898e-01 -6.73472762e-01 -1.79509044e-01 7.81637207e-02 -1.03556573e+00 -1.18094158e+00 -4.55064088e-01 -4.70037073e-01 6.95666432e-01 8.85509610e-01 5.77619433e-01 -2.39689827e-01 -1.94549203e-01 1.51726723e-01 -4.83127534e-01 -3.32804590e-01 -4.72848654e-01 -4.75077599e-01 1.27957538e-01 8.35584760e-01 1.55920431e-01 -8.62628102e-01 -1.68377295e-01 1.38839126e-01 -1.30625403e+00 2.25710779e-01 6.40679717e-01 1.12303424e+00 8.98457944e-01 4.08568978e-01 1.54545963e-01 -8.57896626e-01 1.32563680e-01 -6.14123225e-01 -6.57352328e-01 4.07535493e-01 -7.49468803e-01 -4.00296226e-02 3.23595464e-01 -4.41536903e-01 -1.45661795e+00 3.70358467e-01 5.50294042e-01 -4.28511798e-01 -9.28921252e-02 1.16240478e+00 -5.76923013e-01 -3.27940255e-01 8.48733604e-01 9.76816952e-01 4.82324094e-01 -5.27947664e-01 2.18806475e-01 8.80362272e-01 5.71391523e-01 -6.10335648e-01 1.04817033e+00 8.68641794e-01 2.76893407e-01 -1.49095356e+00 -9.16927397e-01 -8.67508471e-01 -4.83004332e-01 -1.05363734e-01 5.09677827e-01 -1.37691057e+00 7.16321692e-02 7.38553464e-01 -7.95505881e-01 7.33263791e-02 -1.68886408e-01 7.00542510e-01 -1.66905567e-01 8.96643043e-01 -1.52834311e-01 -9.86627102e-01 -3.42054993e-01 -9.45324957e-01 4.56559241e-01 1.02985822e-01 4.17627960e-01 -7.57587790e-01 4.96051982e-02 1.98315620e-01 3.26247394e-01 4.57673639e-01 8.11117470e-01 -7.86576327e-03 -4.94391710e-01 1.02373160e-01 -3.84766340e-01 7.70573854e-01 7.37391055e-01 2.23921031e-01 -1.06886363e+00 -3.04977417e-01 5.00312865e-01 1.19222797e-01 1.06949794e+00 6.07144058e-01 8.71820927e-01 -1.71069309e-01 -1.85538381e-01 9.49576497e-01 1.92977941e+00 2.92926997e-01 5.39644659e-01 2.77397335e-01 8.28341007e-01 6.22161269e-01 3.41497183e-01 3.97079617e-01 -4.15095866e-01 7.84761161e-02 5.89999974e-01 -1.09316446e-01 9.91321504e-02 9.62658599e-02 3.35031897e-01 8.59586298e-01 -4.24876183e-01 -4.74134125e-02 -7.63099194e-01 3.78927171e-01 -2.05345798e+00 -1.40672195e+00 -6.87746465e-01 2.40961242e+00 7.55008876e-01 -7.20294118e-01 -2.86019385e-01 2.61106104e-01 1.02773452e+00 6.43755436e-01 -4.69065130e-01 5.48253179e-01 -9.03358042e-01 -1.24174682e-02 9.56562281e-01 5.82996011e-01 -1.09084749e+00 5.19047618e-01 5.93251848e+00 7.63705075e-01 -1.27891386e+00 2.02665657e-01 1.16986729e-01 1.91578254e-01 -4.88686055e-01 1.66006148e-01 -2.35700816e-01 4.41669971e-01 5.48324406e-01 -2.65224934e-01 9.45223451e-01 3.87747049e-01 3.74479324e-01 -1.32126123e-01 -3.53209555e-01 1.23092401e+00 1.06296554e-01 -8.90068948e-01 3.46614361e-01 3.23064998e-02 1.12932420e+00 1.29479617e-01 -1.07550785e-01 -1.67391166e-01 -1.06456034e-01 -6.45674706e-01 6.66910648e-01 6.56520545e-01 7.40216851e-01 -3.50421757e-01 5.26574969e-01 5.32644689e-01 -1.32151866e+00 -8.51962194e-02 -4.72882271e-01 -1.40707076e-01 -4.88827080e-02 1.11224711e+00 -7.04804584e-02 1.14535737e+00 3.54159743e-01 1.08653522e+00 -1.54886872e-01 8.84399712e-01 -1.45182788e-01 8.06272447e-01 -4.21454996e-01 5.27679503e-01 1.72802418e-01 -1.13289070e+00 7.79684007e-01 9.28851068e-01 5.77237546e-01 4.56245750e-01 3.30432624e-01 1.14273524e+00 4.05068666e-01 2.92121202e-01 -3.91384542e-01 -5.77073276e-01 3.59269530e-01 1.31175864e+00 -2.26012975e-01 -3.79208863e-01 -5.08452177e-01 6.90342486e-01 -4.69465524e-01 8.50658834e-01 -4.01367337e-01 2.36732185e-01 6.99657500e-01 6.95425719e-02 -5.28904283e-03 -2.87295789e-01 -3.38689208e-01 -1.52662790e+00 -1.02299511e-01 -9.96269584e-01 2.51464427e-01 -8.57197583e-01 -1.40129399e+00 4.34320331e-01 3.12554240e-02 -1.62975812e+00 2.89331734e-01 -7.06470668e-01 -2.08623841e-01 1.47126317e+00 -1.70907676e+00 -1.32417428e+00 -7.04929769e-01 6.50572002e-01 1.70712888e-01 -3.18828911e-01 9.09985721e-01 7.84494579e-02 -7.19261408e-01 -4.95582789e-01 9.46450174e-01 -2.90925056e-01 5.07141113e-01 -7.83692956e-01 -6.51903749e-01 1.09453380e+00 -3.14090215e-02 7.10211635e-01 7.47692466e-01 -7.99450755e-01 -1.31548846e+00 -1.19817734e+00 1.76003262e-01 3.75062257e-01 9.17354107e-01 3.48650366e-01 -1.06649733e+00 4.79905874e-01 1.18555516e-01 1.99451819e-01 1.08855140e+00 -1.30554840e-01 -4.20845985e-01 -3.74120474e-01 -1.05244863e+00 2.68129259e-01 6.02709293e-01 -5.50471604e-01 -3.79778981e-01 4.39167738e-01 4.24285948e-01 -1.41891390e-01 -7.51240492e-01 5.42023540e-01 5.17920971e-01 -8.15088391e-01 9.68995273e-01 -1.82981640e-01 2.93900907e-01 -9.45959270e-01 -5.39008498e-01 -1.39481068e+00 -7.21593916e-01 -1.59099892e-01 -9.52040404e-02 1.09744573e+00 2.32021824e-01 -8.58776927e-01 2.98970491e-01 1.15861505e-01 -1.23812795e-01 1.35833696e-01 -5.97930193e-01 -1.00083590e+00 -3.09666604e-01 7.54294693e-02 7.68831968e-01 1.43428648e+00 -2.14894935e-01 1.69463247e-01 -5.45420229e-01 8.11918914e-01 1.01966524e+00 4.84316677e-01 3.08211416e-01 -1.68215406e+00 -2.25023657e-01 -3.66980731e-01 9.21039376e-03 -5.14629900e-01 4.28012669e-01 -8.42152357e-01 -2.99205482e-02 -1.28022861e+00 5.09930015e-01 -8.77414346e-02 -4.62321252e-01 2.99585313e-01 -4.44115639e-01 1.36556877e-02 -1.06426932e-01 7.78451383e-01 5.55772126e-01 6.43942416e-01 1.22806430e+00 -6.73694372e-01 -4.04009640e-01 -1.71005607e-01 -5.25078177e-01 5.82592130e-01 6.25859261e-01 -1.97287843e-01 -5.02106011e-01 -2.52920270e-01 -7.29239685e-03 5.81767075e-02 3.21257293e-01 -1.05188704e+00 -1.34856790e-01 -7.12105334e-01 7.35439882e-02 -5.78738391e-01 3.09857190e-01 -1.31029320e+00 9.97682750e-01 3.36841404e-01 2.22239375e-01 -8.23905051e-01 3.02464336e-01 6.59118116e-01 -5.39316475e-01 -3.59835327e-01 8.54723454e-01 -3.41447532e-01 -9.33367372e-01 4.91468281e-01 -2.33899027e-01 -5.84651530e-01 6.71587288e-01 -3.83419663e-01 -3.73796940e-01 -1.20729450e-02 -6.17925525e-01 -1.74594596e-01 4.80518878e-01 -2.23396868e-01 2.70456254e-01 -1.25719655e+00 -8.81582558e-01 4.91332710e-01 2.68553883e-01 -9.57033597e-03 6.01271331e-01 7.23882556e-01 -5.80584466e-01 -3.19803469e-02 -3.15352589e-01 -5.55420637e-01 -1.06927168e+00 7.82552779e-01 6.44637287e-01 1.13635316e-01 -3.04282755e-02 3.98384959e-01 3.07770073e-01 -3.59767884e-01 -4.89231318e-01 4.94581461e-02 -2.71415085e-01 3.32774192e-01 5.54083645e-01 5.11408210e-01 -1.37401953e-01 -1.15747440e+00 -1.13121830e-02 6.18562281e-01 6.48989379e-01 2.91650668e-02 1.27365649e+00 -2.70496964e-01 -1.09501755e+00 7.23111331e-01 1.03998697e+00 1.18908703e-01 -9.98121023e-01 -5.72894335e-01 -5.52733183e-01 -5.77328324e-01 4.54346836e-01 -8.36193919e-01 -1.10037422e+00 5.58022380e-01 8.12598526e-01 2.18509898e-01 1.46214724e+00 -8.05990934e-01 1.41123682e-01 2.01817930e-01 3.97802860e-01 -8.49093854e-01 -7.71240234e-01 2.84040958e-01 7.80262232e-01 -1.21509326e+00 4.23947513e-01 -1.00061393e+00 -3.20880592e-01 1.07222986e+00 4.03906822e-01 1.53044283e-01 8.17892611e-01 -1.96972843e-02 2.21427351e-01 2.92665251e-02 6.73557147e-02 -4.27384973e-01 3.95028055e-01 5.56114256e-01 3.98878008e-01 4.10360754e-01 -5.04235685e-01 4.09624070e-01 1.91450492e-01 -1.88912675e-01 4.17566359e-01 6.40991986e-01 -7.39581466e-01 -9.29819345e-01 -1.10138142e+00 5.07884085e-01 -2.24108398e-02 -3.35000455e-01 -9.81682613e-02 2.97888726e-01 3.96334738e-01 9.64673698e-01 -2.68091887e-01 -2.94387281e-01 1.01843305e-01 3.10689747e-01 2.22890824e-01 -6.58102810e-01 -5.28952815e-02 5.13077915e-01 -2.70525932e-01 -1.69373408e-01 -1.24090207e+00 -7.20163405e-01 -9.13691878e-01 -1.42040837e-04 -7.17069745e-01 2.60843128e-01 5.30923903e-01 7.97379017e-01 -1.68148607e-01 3.45351964e-01 6.73478723e-01 -1.01914680e+00 -6.75795019e-01 -1.17046702e+00 -1.62008631e+00 3.83176893e-01 4.56245691e-01 -7.07898021e-01 -7.56352067e-01 4.26614612e-01]
[10.077312469482422, -2.045492172241211]
d09ec51c-e417-4bd3-9e23-359c4b732ee6
the-dirha-english-corpus-and-related-tasks
1710.02560
null
http://arxiv.org/abs/1710.02560v1
http://arxiv.org/pdf/1710.02560v1.pdf
The DIRHA-English corpus and related tasks for distant-speech recognition in domestic environments
This paper introduces the contents and the possible usage of the DIRHA-ENGLISH multi-microphone corpus, recently realized under the EC DIRHA project. The reference scenario is a domestic environment equipped with a large number of microphones and microphone arrays distributed in space. The corpus is composed of both real and simulated material, and it includes 12 US and 12 UK English native speakers. Each speaker uttered different sets of phonetically-rich sentences, newspaper articles, conversational speech, keywords, and commands. From this material, a large set of 1-minute sequences was generated, which also includes typical domestic background noise as well as inter/intra-room reverberation effects. Dev and test sets were derived, which represent a very precious material for different studies on multi-microphone speech processing and distant-speech recognition. Various tasks and corresponding Kaldi recipes have already been developed. The paper reports a first set of baseline results obtained using different techniques, including Deep Neural Networks (DNN), aligned with the state-of-the-art at international level.
['Mirco Ravanelli', 'Maurizio Omologo']
2017-10-06
null
null
null
null
['distant-speech-recognition']
['speech']
[ 1.90394018e-02 -3.71126145e-01 6.13011181e-01 -6.43283606e-01 -1.10016823e+00 -5.70180655e-01 6.39085114e-01 -2.87778050e-01 -6.69963181e-01 6.65206432e-01 5.08743465e-01 -3.85730922e-01 1.34032533e-01 -3.51014078e-01 -5.36748707e-01 -8.11115563e-01 -1.05209455e-01 4.28290486e-01 -1.25565737e-01 -2.19577238e-01 -1.12058163e-01 4.74632978e-01 -1.76584685e+00 5.48219383e-01 3.10443729e-01 7.25784600e-01 7.16153622e-01 1.27782500e+00 1.62283912e-01 7.39453912e-01 -1.12369609e+00 -3.36925715e-01 7.92944729e-02 -3.28152478e-01 -3.71910274e-01 -2.24467754e-01 5.90294302e-01 -2.34524131e-01 -2.06280351e-01 9.97038543e-01 1.44783926e+00 4.24360007e-01 3.11640710e-01 -6.57403886e-01 -3.94504815e-01 9.67346728e-01 8.12453926e-02 7.20702708e-01 3.27691972e-01 -1.24900937e-02 8.12527955e-01 -1.08071053e+00 3.08152586e-01 1.24459469e+00 6.06908023e-01 6.56327188e-01 -7.58477807e-01 -5.86809993e-01 -2.04770193e-01 3.25603694e-01 -1.34918725e+00 -1.13135147e+00 8.03275943e-01 -2.86312312e-01 1.41085899e+00 8.60113144e-01 3.87581617e-01 1.84089124e+00 -2.13528275e-01 7.30683148e-01 1.00570512e+00 -7.95065641e-01 2.89497733e-01 4.94439334e-01 7.26150349e-02 -2.56393105e-01 -5.72233498e-01 2.47333810e-01 -5.14559984e-01 -1.26683414e-01 2.94868737e-01 -5.78886151e-01 -5.94808638e-01 2.19481647e-01 -1.22165966e+00 4.81181711e-01 -2.46691599e-01 9.75401700e-01 -5.88025689e-01 -4.09521163e-01 6.44863904e-01 3.99753451e-01 6.00627542e-01 -1.11176580e-01 -7.23256588e-01 -6.18183076e-01 -8.12071621e-01 2.30918065e-01 1.06637323e+00 8.81067216e-01 1.80577487e-01 4.38536465e-01 2.33417422e-01 1.74796367e+00 2.97512829e-01 7.37048686e-01 7.75253594e-01 -8.95078003e-01 9.03869510e-01 -6.35348558e-01 -3.43356691e-02 -7.73304224e-01 -2.64721751e-01 -4.15580392e-01 -1.01594484e+00 -8.59256610e-02 2.29102999e-01 -5.90432584e-01 -6.90107703e-01 1.63959372e+00 2.26139188e-01 3.51116695e-02 2.86863506e-01 6.82871163e-01 9.87572849e-01 1.17805076e+00 -4.91703033e-01 -5.35277247e-01 1.03950667e+00 -1.26387131e+00 -1.15730608e+00 -2.21882507e-01 1.45030126e-01 -1.10897934e+00 1.09853888e+00 7.62561023e-01 -1.34868956e+00 -1.00350654e+00 -8.10460150e-01 2.21589640e-01 -5.00435412e-01 7.06282780e-02 -1.62055284e-01 1.18273664e+00 -1.49438369e+00 2.28954017e-01 -5.66577673e-01 -1.78450882e-01 -2.42432907e-01 -2.26363074e-02 -3.67799252e-01 2.23650951e-02 -1.48165464e+00 8.25411558e-01 1.94555208e-01 6.01355791e-01 -9.13365901e-01 -4.66111898e-01 -8.07764709e-01 -2.09594667e-01 -2.91562919e-02 -1.60091579e-01 1.89472306e+00 -8.79219472e-01 -2.00393319e+00 8.54370952e-01 -2.62681335e-01 -4.81520891e-01 4.26599890e-01 -4.51103717e-01 -1.18371522e+00 -1.36057764e-01 -2.11569980e-01 1.75600305e-01 7.19762266e-01 -1.04389465e+00 -5.77205658e-01 -3.13472420e-01 -3.90931517e-01 4.28155541e-01 -1.51072562e-01 8.07191014e-01 -2.54215509e-01 -8.89407456e-01 -4.31206733e-01 -6.35162890e-01 -1.82371259e-01 -9.45107222e-01 -6.27994835e-01 5.39122112e-02 4.59112376e-01 -1.18416560e+00 1.24383485e+00 -2.50535870e+00 1.22558765e-01 4.19537863e-03 -3.49254787e-01 5.10495961e-01 -2.26593718e-01 5.32763779e-01 -3.62840593e-01 -9.15895179e-02 -9.69198868e-02 -8.21652293e-01 2.06308842e-01 1.97549060e-01 -3.24156493e-01 4.04869229e-01 -4.81650740e-01 2.82285571e-01 -5.00419974e-01 -1.23422807e-02 6.58321798e-01 6.86111152e-01 -2.00836241e-01 3.28950852e-01 2.37363309e-01 4.99041587e-01 2.45853454e-01 3.91719580e-01 7.74281979e-01 7.24618077e-01 -2.19894692e-01 1.69661343e-01 -4.52814698e-01 8.64258945e-01 -1.44482636e+00 1.66564190e+00 -8.94967794e-01 1.01426446e+00 8.64797056e-01 -9.37906742e-01 8.02060187e-01 8.55721414e-01 -8.58824626e-02 -6.23197913e-01 1.61460310e-01 6.06922448e-01 7.46757388e-02 -6.16718709e-01 6.66643500e-01 -8.30039456e-02 2.35716283e-01 2.85002161e-02 1.05788335e-01 -2.05945581e-01 1.46578297e-01 -4.30965275e-01 9.94429350e-01 -5.24138153e-01 1.33375570e-01 -2.44500443e-01 7.96480477e-01 -5.15951693e-01 4.49649245e-01 7.79576421e-01 -3.55038673e-01 9.04806077e-01 -2.49823079e-01 -1.01966538e-01 -1.05773711e+00 -1.20901060e+00 -2.81448513e-01 1.19770360e+00 -6.19841635e-01 -2.22801521e-01 -1.05944586e+00 1.30933940e-01 -7.15690494e-01 1.02439964e+00 -5.97714446e-02 5.17776847e-01 -9.27605689e-01 -6.02421641e-01 7.43964314e-01 3.29746455e-01 3.93797874e-01 -1.54705656e+00 -4.00160328e-02 4.60584044e-01 -4.61811125e-01 -1.32777154e+00 -4.32987779e-01 3.65949005e-01 -2.81892061e-01 -4.66648549e-01 -9.72263277e-01 -9.87932324e-01 -1.81861669e-01 8.52806196e-02 1.35697615e+00 -7.85550416e-01 -5.67480549e-02 2.23100215e-01 -4.59829479e-01 -5.33142745e-01 -1.17045331e+00 -2.55676419e-01 4.44019169e-01 3.57366726e-02 4.58966225e-01 -7.90958822e-01 -1.74977973e-01 2.49760032e-01 -5.12704611e-01 -2.60493606e-01 3.09488446e-01 6.84278071e-01 4.22900409e-01 3.37659836e-01 4.78138238e-01 -5.56665003e-01 8.00577641e-01 -3.08006346e-01 -4.62248832e-01 -1.79223761e-01 2.60732293e-01 -8.15753996e-01 8.64531040e-01 -4.61126119e-01 -1.26080382e+00 -3.36793125e-01 -1.08747029e+00 -2.71059752e-01 -1.00945115e+00 2.77900487e-01 -8.22239637e-01 6.23702705e-01 7.12693334e-01 3.42162520e-01 -4.42890316e-01 -1.05436814e+00 4.00431305e-01 1.78727865e+00 8.79819930e-01 -3.19228441e-01 2.57970124e-01 -5.36876395e-02 -9.93191779e-01 -1.54682398e+00 -1.81365743e-01 -7.46989191e-01 -5.23966730e-01 -1.50123969e-01 7.87778199e-01 -1.25278270e+00 -1.29084602e-01 1.30915725e+00 -1.56365681e+00 -5.47573984e-01 -3.13762397e-01 7.22156525e-01 -4.47410434e-01 1.30212709e-01 -1.01322281e+00 -1.00730419e+00 -3.32176149e-01 -1.26386487e+00 9.42965627e-01 -1.62364706e-01 -1.98794618e-01 -1.00310564e+00 4.29174453e-01 5.62099040e-01 6.46221519e-01 -2.75126666e-01 3.29965591e-01 -8.94683063e-01 3.78901698e-02 -5.87149188e-02 5.35113156e-01 1.36793423e+00 2.46858522e-01 1.18090138e-02 -1.72495949e+00 -2.06188619e-01 6.25951290e-01 -8.14240053e-02 3.54295224e-01 6.67401254e-01 9.81663227e-01 -2.43238464e-01 2.21785888e-01 2.21816510e-01 9.49355662e-01 6.65732801e-01 6.64402723e-01 6.46028221e-02 6.37330532e-01 8.08592260e-01 2.62946576e-01 2.63089627e-01 2.39674851e-01 7.54282713e-01 1.17674261e-01 2.53611840e-02 -1.70947567e-01 3.68404537e-01 8.56695712e-01 1.95001173e+00 1.63973883e-01 -6.57671332e-01 -1.02358568e+00 8.38708103e-01 -1.09363544e+00 -1.17106843e+00 -2.80585706e-01 2.07737398e+00 8.47937107e-01 1.55175729e-02 2.15891704e-01 5.53375304e-01 1.09058726e+00 4.64690775e-01 -8.91192034e-02 -8.99496436e-01 -5.20642579e-01 4.13544774e-01 -6.52679577e-02 6.89617395e-01 -1.17693615e+00 4.81350154e-01 6.65118694e+00 1.24159527e+00 -1.06753099e+00 4.33057994e-01 5.69133461e-01 -2.26992145e-01 -2.23865733e-02 -8.24962735e-01 -8.16333771e-01 6.11009181e-01 2.06449008e+00 1.58673346e-01 6.78180397e-01 8.55947435e-01 6.72012031e-01 5.40638603e-02 -1.08246171e+00 1.18354011e+00 2.27410346e-01 -1.14631665e+00 -4.23271447e-01 -1.67054236e-02 6.04337037e-01 8.42395902e-01 -2.83661149e-02 2.81280279e-01 6.62558898e-02 -8.36896598e-01 9.94718790e-01 1.58699870e-01 7.08697200e-01 -6.68030620e-01 8.13987970e-01 6.58788741e-01 -9.82229590e-01 -1.85928084e-02 -2.38455355e-01 -1.89733788e-01 3.93235415e-01 9.24572289e-01 -5.69963038e-01 5.86466908e-01 9.44806337e-01 5.54798543e-01 -3.22298035e-02 8.30239594e-01 -4.07596678e-02 9.50100362e-01 -5.06363988e-01 -1.25806391e-01 1.27880394e-01 -1.94434240e-01 8.71493638e-01 1.83114910e+00 4.99270976e-01 -3.22262794e-01 -3.55529904e-01 4.25421953e-01 6.75266087e-02 3.40019584e-01 -7.55133748e-01 1.04770713e-01 6.99627936e-01 1.11742294e+00 -2.01688945e-01 -4.22039032e-01 -5.72201848e-01 9.59105790e-01 -1.84690475e-01 5.58827221e-01 -6.88079953e-01 -5.22091568e-01 9.21973407e-01 -3.48251849e-01 3.46377939e-01 -1.95789650e-01 -1.73000582e-02 -9.03888166e-01 4.11317974e-01 -1.29012895e+00 -1.72693044e-01 -9.30931926e-01 -1.36775601e+00 1.07238746e+00 -1.25800341e-01 -1.05345309e+00 -6.46072268e-01 -7.58003950e-01 -5.66350520e-01 1.41116309e+00 -1.09696925e+00 -5.17287672e-01 6.90716207e-02 4.09580171e-01 1.16180634e+00 -5.73987663e-01 1.14655733e+00 1.02165699e+00 -6.05930090e-01 4.49363530e-01 7.01463044e-01 1.60198286e-01 5.05203307e-01 -1.30121291e+00 8.82243812e-01 8.63908827e-01 4.74833429e-01 4.95743126e-01 8.78390551e-01 1.76236078e-01 -8.51828158e-01 -9.86301541e-01 1.22269952e+00 -5.06118000e-01 7.15395868e-01 -7.96016276e-01 -7.98640788e-01 5.90363979e-01 6.79732025e-01 -1.77325606e-01 8.14710259e-01 -6.67437911e-02 1.13105841e-01 -2.73428470e-01 -8.14639211e-01 4.68896061e-01 8.35000098e-01 -8.71786773e-01 -8.35144281e-01 3.38304937e-01 8.53697598e-01 -7.18270183e-01 -5.02471745e-01 1.74376369e-01 2.51148969e-01 -1.42447495e+00 9.29265738e-01 -8.27835407e-03 8.71049911e-02 -1.67329982e-02 -7.86164105e-01 -1.78237736e+00 4.38232161e-02 -8.07305932e-01 4.00406905e-02 1.62453377e+00 4.87199783e-01 -5.39728940e-01 2.20039964e-01 1.32045612e-01 -7.09401369e-01 -2.68665195e-01 -1.45906091e+00 -8.71882200e-01 2.49861628e-01 -1.12674761e+00 5.16114354e-01 7.85051286e-01 -5.21315694e-01 5.30132532e-01 -4.53124404e-01 2.47457713e-01 2.31334403e-01 -5.81120431e-01 7.71931827e-01 -8.08942437e-01 -5.56837201e-01 -5.13412178e-01 -1.70399919e-01 -1.21805859e+00 1.89100474e-01 -4.10901308e-01 3.54081362e-01 -1.21821702e+00 -5.33326089e-01 -1.93765983e-01 -1.88685134e-01 -7.04082102e-02 1.81425691e-01 -3.65584567e-02 -1.00335004e-02 -3.03874075e-01 -5.66188321e-02 4.18730170e-01 7.25918353e-01 -1.17575206e-01 -1.92555621e-01 4.52051729e-01 -1.44589260e-01 7.73537576e-01 8.83784711e-01 -2.45093688e-01 -3.95610422e-01 -6.08743787e-01 -1.63766459e-01 1.83717132e-01 1.39515504e-01 -1.21142519e+00 7.91463330e-02 3.49653751e-01 -2.04356328e-01 -9.02144551e-01 8.65234017e-01 -7.98298419e-01 5.72039723e-01 -3.11569460e-02 -2.55768061e-01 1.94429323e-01 3.92409861e-01 3.20461810e-01 -7.42878854e-01 -2.09464177e-01 7.10151255e-01 -1.96414188e-01 -6.71365499e-01 -2.87499189e-01 -7.06919789e-01 9.81361195e-02 5.37261546e-01 -7.82367587e-02 -7.70232975e-02 -4.51930374e-01 -9.49660897e-01 -3.48824054e-01 -1.07724190e-01 7.16984034e-01 4.20303494e-01 -1.26882172e+00 -9.71529663e-01 5.65176070e-01 -3.48942548e-01 -3.11208405e-02 5.96814573e-01 6.29763186e-01 -4.78776872e-01 5.51430941e-01 9.11606029e-02 -5.45588374e-01 -1.48176205e+00 1.88788414e-01 6.09427392e-01 1.21852838e-01 -5.05754948e-01 1.14898407e+00 -3.04221436e-02 -9.59712327e-01 6.36923313e-01 -4.48163599e-01 -2.73429751e-01 5.67732304e-02 8.09867561e-01 4.61715072e-01 5.12603700e-01 -1.00097561e+00 -4.22228813e-01 2.09600851e-01 2.53799021e-01 -6.75559282e-01 1.18323517e+00 -3.79029483e-01 -2.44039327e-01 1.24605191e+00 1.42763269e+00 5.90762019e-01 -5.40707350e-01 -9.70046073e-02 -2.04282060e-01 -2.96359748e-01 7.41005596e-03 -8.79655957e-01 -8.17172587e-01 1.24621916e+00 6.57350898e-01 5.63084483e-01 1.16180933e+00 -2.81687200e-01 8.42511892e-01 3.67292404e-01 3.97261173e-01 -1.25084376e+00 -4.21531290e-01 7.89740980e-01 1.10582304e+00 -1.06326497e+00 -9.45947409e-01 -1.05546042e-01 -4.42946017e-01 8.67781341e-01 2.56891906e-01 3.82461280e-01 8.83759797e-01 5.90951204e-01 8.04506361e-01 3.66218597e-01 -6.20865166e-01 1.50719732e-01 -1.32150471e-01 8.30141425e-01 6.16996884e-01 2.63528585e-01 1.27994299e-01 6.44791484e-01 -7.89017737e-01 -4.69654322e-01 4.58267272e-01 5.90718687e-01 -2.49276057e-01 -1.09989655e+00 -7.44977295e-01 2.47606784e-02 -8.87932122e-01 -4.25080746e-01 -1.57056272e-01 4.96932000e-01 1.81126386e-01 1.40516579e+00 9.97571275e-02 -4.51575816e-01 5.97469985e-01 1.08399212e-01 8.46945040e-04 -5.58640540e-01 -7.55253196e-01 3.35936219e-01 6.69006050e-01 -2.02276528e-01 -5.01328945e-01 -7.96749949e-01 -6.96728885e-01 -3.37343723e-01 -2.72642136e-01 4.14204627e-01 1.09265471e+00 7.56301582e-01 8.16430002e-02 8.81735921e-01 7.00413644e-01 -1.29486907e+00 -5.14439285e-01 -1.59877682e+00 -9.13534939e-01 2.13870868e-01 6.79166138e-01 -2.56446134e-02 -8.01273406e-01 5.95609099e-02]
[14.879437446594238, 6.086802959442139]
24e352d9-7d64-45ee-83fb-8ded43833acb
eranns-efficient-residual-audio-neural
2106.01621
null
https://arxiv.org/abs/2106.01621v7
https://arxiv.org/pdf/2106.01621v7.pdf
ERANNs: Efficient Residual Audio Neural Networks for Audio Pattern Recognition
Audio pattern recognition (APR) is an important research topic and can be applied to several fields related to our lives. Therefore, accurate and efficient APR systems need to be developed as they are useful in real applications. In this paper, we propose a new convolutional neural network (CNN) architecture and a method for improving the inference speed of CNN-based systems for APR tasks. Moreover, using the proposed method, we can improve the performance of our systems, as confirmed in experiments conducted on four audio datasets. In addition, we investigate the impact of data augmentation techniques and transfer learning on the performance of our systems. Our best system achieves a mean average precision (mAP) of 0.450 on the AudioSet dataset. Although this value is less than that of the state-of-the-art system, the proposed system is 7.1x faster and 9.7x smaller. On the ESC-50, UrbanSound8K, and RAVDESS datasets, we obtain state-of-the-art results with accuracies of 0.961, 0.908, and 0.748, respectively. Our system for the ESC-50 dataset is 1.7x faster and 2.3x smaller than the previous best system. For the RAVDESS dataset, our system is 3.3x smaller than the previous best system. We name our systems "Efficient Residual Audio Neural Networks".
[]
2021-06-03
eranns-efficient-residual-audio-neural-1
https://arxiv.org/abs/2106.01621
https://arxiv.org/abs/2106.01621
null
['audio-tagging']
['audio']
[-9.43420753e-02 -3.97245288e-01 1.05681933e-01 -2.69170761e-01 -8.55606437e-01 -1.34125218e-01 -1.38847485e-01 2.13713013e-02 -8.04867744e-01 5.68187475e-01 -2.06094146e-01 -2.74873465e-01 1.04814358e-01 -7.68125534e-01 -8.05081964e-01 -3.65657836e-01 -1.62281901e-01 -9.02793035e-02 4.43322808e-01 -1.68466151e-01 6.20541349e-02 3.77435088e-01 -1.66988480e+00 5.95162034e-01 5.34731150e-01 1.56529033e+00 -1.47847906e-01 8.19298148e-01 2.86229104e-01 6.23615086e-01 -8.44557941e-01 -3.28325778e-01 9.97329205e-02 -4.40083556e-02 -6.05591595e-01 -4.69978601e-01 3.80217016e-01 -2.67215878e-01 -4.90988135e-01 8.35251093e-01 8.23916852e-01 3.41758654e-02 2.83167779e-01 -1.32068896e+00 -4.28582668e-01 7.95072794e-01 -7.10978448e-01 3.22757810e-01 9.93378088e-03 -1.02677181e-01 8.34761739e-01 -8.18742633e-01 -1.67251661e-01 9.99361932e-01 8.96502852e-01 3.63639891e-01 -7.98310399e-01 -1.31776500e+00 -1.42004460e-01 5.07029414e-01 -1.97627652e+00 -6.35946393e-01 6.65994942e-01 -1.74320653e-01 8.33920121e-01 1.39149353e-01 5.35411716e-01 8.85540724e-01 1.33878678e-01 7.38840580e-01 6.29968643e-01 -4.36344385e-01 2.88657248e-01 -4.31114100e-02 1.20936893e-01 6.75525367e-01 1.69297144e-01 -1.32816985e-01 -7.86182880e-01 -1.57381982e-01 5.22854984e-01 -1.73164994e-01 -2.66462207e-01 5.15867829e-01 -9.96019900e-01 6.24248087e-01 4.61694777e-01 3.03045005e-01 -4.36034143e-01 4.58713174e-01 6.81281030e-01 2.76070297e-01 4.05537903e-01 3.34525853e-01 -5.35435200e-01 -4.74583060e-01 -9.89961207e-01 3.43006819e-01 5.80665290e-01 8.84348273e-01 2.50174075e-01 3.18051219e-01 1.05669480e-02 1.25924504e+00 4.41912301e-02 5.21207094e-01 4.94723886e-01 -9.75548267e-01 6.41273856e-01 3.94919008e-01 -7.84188882e-02 -1.00766003e+00 -3.90938222e-01 -4.39256549e-01 -1.30294764e+00 -2.64611214e-01 3.50719154e-01 -2.54125088e-01 -7.50923097e-01 1.50920463e+00 1.77588798e-02 2.62524009e-01 -4.06049704e-03 7.21284032e-01 9.86163378e-01 8.97310138e-01 -1.20967582e-01 8.59737545e-02 1.36660552e+00 -8.77528131e-01 -6.63436115e-01 -5.20706326e-02 5.37928343e-01 -9.32180107e-01 1.14773333e+00 9.26747441e-01 -1.00714087e+00 -9.33922529e-01 -1.23231184e+00 1.94165453e-01 -2.35384345e-01 7.28006124e-01 3.83783281e-01 5.92589378e-01 -9.87645090e-01 5.15492916e-01 -8.03716719e-01 -2.53066212e-01 4.96120572e-01 5.75725615e-01 -1.38719335e-01 2.42558986e-01 -1.28248751e+00 2.63921887e-01 4.61358249e-01 1.55454829e-01 -6.53400183e-01 -7.84504056e-01 -3.84012282e-01 1.99169442e-01 3.04878712e-01 -2.51584232e-01 1.63068080e+00 -4.11101311e-01 -1.52727211e+00 2.93366849e-01 7.91551638e-03 -8.46424460e-01 2.67923683e-01 -4.93878812e-01 -8.56202126e-01 1.70886680e-01 -2.17380330e-01 8.75670969e-01 4.99533802e-01 -5.23887515e-01 -8.99017096e-01 -2.10262701e-01 2.54735164e-02 -2.45911226e-01 -6.87430084e-01 1.13968216e-01 -6.93076551e-01 -7.38603413e-01 -5.20850644e-02 -1.21349072e+00 -3.40590402e-02 1.11723527e-01 -3.12596679e-01 -1.82807222e-01 6.81642711e-01 -6.49939954e-01 1.46792889e+00 -2.57427406e+00 -5.05899131e-01 4.96884137e-02 4.84420285e-02 6.81187451e-01 -1.75078005e-01 -1.06755821e-02 1.12907821e-02 9.21240151e-02 4.97914292e-02 -1.82413355e-01 -2.37812489e-01 -3.02154906e-02 -1.01425134e-01 2.06690714e-01 2.21711457e-01 4.60346609e-01 -3.85561317e-01 -3.33924711e-01 2.26719640e-02 5.87015510e-01 -7.00976133e-01 2.13229299e-01 8.78497288e-02 1.80102699e-02 -2.57135570e-01 6.49086416e-01 5.53082526e-01 -3.52265090e-02 -1.87177569e-01 -2.89210021e-01 -9.61506739e-03 2.08592564e-01 -1.39317000e+00 1.47423589e+00 -5.95535576e-01 8.81398797e-01 -2.89666116e-01 -9.20980513e-01 1.28213561e+00 4.79668677e-01 4.03250486e-01 -6.86966777e-01 2.76852638e-01 2.75376737e-01 2.41114855e-01 -3.58616710e-01 7.59425998e-01 3.47506613e-01 6.97723031e-02 2.72406161e-01 -1.90583523e-02 3.93639028e-01 1.43785983e-01 1.49090327e-02 1.10161281e+00 -5.98976851e-01 1.01795554e-01 -2.01024175e-01 5.65810561e-01 -5.15504837e-01 5.00706315e-01 6.36498630e-01 -1.29346162e-01 6.42711937e-01 3.04732203e-01 -6.20287299e-01 -8.56960356e-01 -7.59860039e-01 -2.22999260e-01 9.05962884e-01 -2.69242525e-01 -7.10748971e-01 -7.04661131e-01 -2.50740677e-01 -1.55500457e-01 2.86770642e-01 -3.51150781e-01 -2.06018269e-01 -5.46242535e-01 -8.42713296e-01 1.50330806e+00 1.04178011e+00 1.06926250e+00 -1.07572508e+00 -4.77166981e-01 3.73915553e-01 -4.69576746e-01 -1.49168277e+00 -1.86894044e-01 -1.12853922e-01 -7.52038479e-01 -9.02259350e-01 -6.59895122e-01 -5.48259199e-01 5.99033386e-02 7.74087310e-02 8.29867065e-01 8.42198059e-02 8.70544929e-03 -1.85604155e-01 -4.22064364e-01 -8.23028564e-01 -1.28320187e-01 4.45443243e-01 3.75067562e-01 6.64099306e-02 3.31917971e-01 -5.87962866e-01 -5.35908937e-01 2.67393112e-01 -6.90988123e-01 -2.17493415e-01 5.63616693e-01 6.80426300e-01 6.24395311e-01 1.92885265e-01 8.88373435e-01 -5.56165993e-01 6.13388658e-01 -1.85022280e-01 -6.70722246e-01 -1.06612751e-02 -6.57888114e-01 -6.17576949e-02 8.78139496e-01 -7.54294097e-01 -6.99972749e-01 1.48881733e-01 -6.10143602e-01 -5.15259624e-01 -2.47945771e-01 3.98220688e-01 8.43271166e-02 -1.23911900e-02 7.72261798e-01 -5.92030995e-02 -2.54392415e-01 -6.86585188e-01 -1.65901780e-02 1.18703139e+00 7.00348675e-01 -5.48570633e-01 1.97730690e-01 1.63544461e-01 -3.65759507e-02 -1.17803407e+00 -7.54239142e-01 -3.59370291e-01 -2.34195948e-01 -1.72394767e-01 5.91612816e-01 -1.14418435e+00 -1.00963163e+00 8.16059113e-01 -1.21361899e+00 -1.09665073e-01 -2.39908118e-02 6.83004558e-01 -2.58530289e-01 1.36117786e-01 -9.13439572e-01 -8.90614212e-01 -8.29575360e-01 -1.15515482e+00 9.74241912e-01 1.45963669e-01 -2.48019129e-01 -3.42138797e-01 -1.05736628e-01 1.09888852e-01 4.14654911e-01 -4.48858971e-03 5.45224249e-01 -6.33731246e-01 -1.74492329e-01 -2.11385339e-01 -4.60230142e-01 7.40094781e-01 -1.56927854e-01 1.95599377e-01 -1.34963930e+00 -9.84880850e-02 -3.40638220e-01 -2.22744063e-01 9.20868754e-01 2.78165519e-01 1.84857690e+00 -2.58793712e-01 -4.60268892e-02 5.13187110e-01 1.17212057e+00 6.43595636e-01 8.95588994e-01 3.32960874e-01 4.35228944e-01 1.65010154e-01 7.30687976e-01 5.93652427e-01 1.85715303e-01 7.57850289e-01 1.65631220e-01 -2.40830574e-02 -1.17579877e-01 -6.59760535e-02 3.47339600e-01 1.01173973e+00 -2.70334244e-01 -2.44643494e-01 -1.04295743e+00 5.36814749e-01 -1.71914136e+00 -7.11170375e-01 -3.24685872e-01 2.06719279e+00 7.41100311e-01 2.55847722e-01 2.05056384e-01 9.28875506e-01 6.70096219e-01 1.66526008e-02 -1.80997699e-01 -4.85136539e-01 2.82783836e-01 7.35906541e-01 2.46266484e-01 2.75256753e-04 -1.17545843e+00 6.87925816e-01 6.07627535e+00 7.94132471e-01 -1.29184163e+00 -8.12044647e-03 6.64883912e-01 -1.97871044e-01 6.89068019e-01 -6.37518048e-01 -9.95857418e-01 6.42300069e-01 1.45896733e+00 2.53620185e-02 3.18812430e-01 9.31724727e-01 -3.39229666e-02 6.51058629e-02 -1.06403327e+00 1.45343447e+00 2.21927185e-03 -1.18864894e+00 -1.48588419e-01 5.01865968e-02 5.18308938e-01 5.23308143e-02 5.73350079e-02 4.14257765e-01 -2.07721278e-01 -8.09098601e-01 5.86391211e-01 3.52208644e-01 9.82621431e-01 -1.27462280e+00 1.27457392e+00 6.13195039e-02 -1.43955469e+00 -1.26148254e-01 -4.89067614e-01 -8.67784992e-02 -1.43162340e-01 8.51679981e-01 -8.08060884e-01 3.81015390e-01 1.28134727e+00 4.26134646e-01 -5.93328595e-01 1.18266284e+00 5.12856664e-03 8.97701025e-01 -5.07315457e-01 -3.33848715e-01 7.06323236e-02 4.70954031e-01 9.27679315e-02 1.36933827e+00 5.77989280e-01 2.01015443e-01 -2.06283003e-01 3.32531214e-01 -4.96645421e-01 1.14293948e-01 -3.70415956e-01 2.85350084e-02 6.37421846e-01 1.07645929e+00 -2.81322002e-01 -4.34203774e-01 -1.67154834e-01 4.85323936e-01 1.44811720e-01 8.35182071e-02 -1.08133364e+00 -9.45177436e-01 6.82443261e-01 -5.56122651e-03 3.36100638e-01 -6.10315539e-02 -2.83476621e-01 -9.18759882e-01 3.00721616e-01 -9.95376050e-01 3.66340846e-01 -6.80725634e-01 -9.19760644e-01 8.35470259e-01 -1.70374840e-01 -1.32144523e+00 -2.16597363e-01 -5.56567609e-01 -3.87216091e-01 5.42905271e-01 -1.24299777e+00 -6.34950578e-01 -4.73506808e-01 5.91879904e-01 3.88689488e-01 -3.95708054e-01 9.15729880e-01 9.67828155e-01 -5.71878731e-01 1.15383101e+00 -9.26919878e-02 4.06524271e-01 7.23386943e-01 -6.33051515e-01 4.89269018e-01 7.80552447e-01 2.94224530e-01 3.19825202e-01 2.73954391e-01 -6.72791749e-02 -1.11762917e+00 -1.41521513e+00 8.95573974e-01 1.16593741e-01 6.44619763e-01 -1.55698210e-01 -1.06933033e+00 3.85663480e-01 -2.56969854e-02 2.82824561e-02 7.48841822e-01 4.66357142e-01 -4.72101390e-01 -7.46461570e-01 -1.03055942e+00 4.30293441e-01 8.53513360e-01 -4.62378114e-01 -2.58099020e-01 -2.05846940e-04 8.12062323e-01 -5.47815502e-01 -1.01411450e+00 6.55848265e-01 9.22322750e-01 -6.11578166e-01 8.60341012e-01 -2.87234128e-01 4.58748251e-01 -3.47259402e-01 -4.81471568e-01 -1.10507691e+00 -1.87185600e-01 -2.03351036e-01 -3.02218974e-01 1.17254651e+00 4.35791075e-01 -6.01112723e-01 6.89145684e-01 8.18254575e-02 -2.15835720e-01 -8.65665436e-01 -9.78724778e-01 -9.10828710e-01 -1.92587256e-01 -1.09874976e+00 8.02132487e-01 6.94153488e-01 -2.67510414e-01 4.30314392e-01 -5.07599533e-01 2.94873536e-01 2.35302642e-01 -2.31413111e-01 8.63784552e-01 -1.29650986e+00 -2.05737293e-01 -2.63483196e-01 -6.88993752e-01 -8.72120976e-01 -9.69048068e-02 -4.32928771e-01 -7.61232078e-02 -1.04254448e+00 -9.51518193e-02 -4.97283131e-01 -7.15193927e-01 7.98039675e-01 1.82211787e-01 6.76220179e-01 2.10191265e-01 -2.08422676e-01 -4.47212726e-01 4.47919726e-01 6.76659405e-01 -2.49098659e-01 -3.84003401e-01 4.97964509e-02 -6.67572260e-01 7.58643985e-01 1.48392510e+00 -4.76087987e-01 -1.84440926e-01 -5.00860691e-01 8.70211348e-02 -8.49648267e-02 2.27105632e-01 -1.59183931e+00 3.45312148e-01 3.49667549e-01 5.26098907e-01 -8.47043097e-01 6.42676950e-01 -5.98427474e-01 9.75780785e-02 4.53463674e-01 -3.42167825e-01 1.94448188e-01 6.43396258e-01 2.45896935e-01 -3.86542469e-01 -5.24646044e-02 8.26100290e-01 3.60503316e-01 -5.10441899e-01 3.17522854e-01 -4.33515042e-01 -8.89251605e-02 6.76211298e-01 2.04620495e-01 -2.33036146e-01 -3.45990479e-01 -4.99578953e-01 -9.14809573e-03 -3.17683548e-01 5.55004597e-01 9.01891351e-01 -1.54868340e+00 -7.66397119e-01 3.29411477e-01 2.11106077e-01 5.86499050e-02 2.54060715e-01 6.14371538e-01 -5.55797100e-01 5.99576712e-01 -1.91352397e-01 -7.28804290e-01 -1.55563140e+00 1.61456242e-01 1.64258346e-01 -8.68443865e-04 -4.09651428e-01 6.80656195e-01 -1.81438506e-01 -3.17298502e-01 6.93717599e-01 -7.21624196e-01 -1.80244759e-01 -1.53588831e-01 9.61502373e-01 7.72979736e-01 5.08875608e-01 -2.26996332e-01 -2.99643338e-01 3.76286656e-01 -1.13600738e-01 5.67997433e-03 1.34267080e+00 5.46500206e-01 7.81960264e-02 4.43062305e-01 1.20899773e+00 -1.69920459e-01 -4.68749195e-01 -1.38360798e-01 -3.89555484e-01 -3.96311581e-01 1.01735495e-01 -5.64926922e-01 -1.42933297e+00 1.14850605e+00 9.73460913e-01 1.32085383e-01 1.47169507e+00 -1.72420666e-01 9.91818190e-01 7.73899436e-01 3.06572378e-01 -1.07974815e+00 3.77182253e-02 5.63112319e-01 9.09804463e-01 -1.00927162e+00 -5.61811924e-02 -2.50570208e-01 -4.15719688e-01 1.07314491e+00 7.69144237e-01 -6.75545260e-02 7.34666705e-01 4.59351212e-01 -8.99709389e-02 1.22616813e-01 -9.44642365e-01 1.11843869e-01 4.15858030e-01 3.53636265e-01 5.52877665e-01 2.37497643e-01 -2.23923296e-01 8.83684337e-01 -5.60939550e-01 3.07167172e-01 5.29530346e-01 7.09426343e-01 -2.64646411e-01 -8.79809976e-01 -3.52439791e-01 5.60341537e-01 -8.58568311e-01 -1.29444376e-01 -2.47334912e-01 8.63622069e-01 1.53241172e-01 1.08159053e+00 2.48560980e-01 -1.01487339e+00 6.76084816e-01 -7.30530918e-02 1.64714098e-01 -1.71156496e-01 -5.84676445e-01 6.15356304e-02 2.12374926e-01 -5.17380297e-01 -3.72993350e-01 -2.88182676e-01 -1.14523673e+00 -6.31906271e-01 -4.51432228e-01 1.70566723e-01 6.79926038e-01 5.45514762e-01 5.58704317e-01 7.72121966e-01 5.39901257e-01 -3.02162349e-01 -2.63374209e-01 -1.09477091e+00 -6.35077178e-01 -2.15103045e-01 1.06396526e-01 -4.42852020e-01 -1.42797485e-01 -5.33431806e-02]
[15.021461486816406, 5.2648396492004395]
867f86e9-1cdd-4c54-b13b-31bcebef40e1
self-supervised-multi-modal-sequential
2304.13277
null
https://arxiv.org/abs/2304.13277v1
https://arxiv.org/pdf/2304.13277v1.pdf
Self-Supervised Multi-Modal Sequential Recommendation
With the increasing development of e-commerce and online services, personalized recommendation systems have become crucial for enhancing user satisfaction and driving business revenue. Traditional sequential recommendation methods that rely on explicit item IDs encounter challenges in handling item cold start and domain transfer problems. Recent approaches have attempted to use modal features associated with items as a replacement for item IDs, enabling the transfer of learned knowledge across different datasets. However, these methods typically calculate the correlation between the model's output and item embeddings, which may suffer from inconsistencies between high-level feature vectors and low-level feature embeddings, thereby hindering further model learning. To address this issue, we propose a dual-tower retrieval architecture for sequence recommendation. In this architecture, the predicted embedding from the user encoder is used to retrieve the generated embedding from the item encoder, thereby alleviating the issue of inconsistent feature levels. Moreover, in order to further improve the retrieval performance of the model, we also propose a self-supervised multi-modal pretraining method inspired by the consistency property of contrastive learning. This pretraining method enables the model to align various feature combinations of items, thereby effectively generalizing to diverse datasets with different item features. We evaluate the proposed method on five publicly available datasets and conduct extensive experiments. The results demonstrate significant performance improvement of our method.
['Yaming Yang', 'Kai Zheng', 'Can Xu', 'Qingfeng Sun', 'Kunzhe Song']
2023-04-26
null
null
null
null
['sequential-recommendation']
['miscellaneous']
[-9.79622640e-03 -5.68148017e-01 -4.22797203e-01 -4.91750896e-01 -5.48251808e-01 -5.70393980e-01 4.04285491e-01 3.06183100e-02 -6.11867964e-01 3.81173909e-01 4.17241752e-01 -1.92781910e-02 -2.80747235e-01 -6.73854709e-01 -5.05202353e-01 -5.75018942e-01 2.68437952e-01 2.49027327e-01 1.76339615e-02 -2.64631301e-01 3.11349511e-01 4.60066795e-02 -1.44120848e+00 5.05742013e-01 9.97875214e-01 1.17307520e+00 3.35915387e-01 1.12566873e-02 -3.62437218e-01 3.46997231e-01 -2.60705948e-01 -5.96676648e-01 3.82589400e-01 -3.39078665e-01 -5.10323822e-01 -1.25449374e-01 2.88287163e-01 -5.60737014e-01 -2.67646164e-01 9.73812640e-01 4.82119143e-01 4.31656152e-01 7.29093790e-01 -9.33729827e-01 -1.33910632e+00 4.89110231e-01 -3.76657128e-01 2.14755476e-01 2.41956428e-01 -4.87526804e-02 1.39994991e+00 -1.14516890e+00 3.34339797e-01 8.41966212e-01 4.40707803e-01 5.68701029e-01 -1.13610697e+00 -7.49330342e-01 4.12770927e-01 5.13221800e-01 -1.43443763e+00 -2.46346608e-01 7.29328632e-01 -2.34915867e-01 9.41906095e-01 3.09470706e-02 6.07380509e-01 1.08871150e+00 -1.06742784e-01 8.64044666e-01 6.02120459e-01 -1.90583318e-01 9.06522349e-02 5.74346960e-01 1.47013947e-01 2.80383289e-01 2.16470912e-01 4.89617139e-02 -5.61044753e-01 -8.92238691e-02 7.27062762e-01 6.36034846e-01 -2.79230863e-01 -5.63398480e-01 -1.09923017e+00 8.81215274e-01 6.26039922e-01 4.08544838e-01 -4.96860206e-01 -2.39601016e-01 3.43244225e-01 4.86504763e-01 3.21244955e-01 5.50290644e-01 -5.29954255e-01 1.87582552e-01 -5.47397792e-01 1.60349458e-01 5.25885165e-01 8.92792583e-01 7.46606946e-01 -2.69831747e-01 -1.59210429e-01 1.08285356e+00 4.88272458e-01 3.45973700e-01 9.73315597e-01 -2.09364295e-01 6.30089641e-01 6.12659872e-01 2.49641061e-01 -1.16079330e+00 -2.69706756e-01 -7.00114727e-01 -7.52791584e-01 -6.57344162e-01 1.08758591e-01 1.04284756e-01 -5.82187116e-01 1.74923623e+00 2.35582069e-01 2.45509535e-01 1.46654502e-01 1.17839646e+00 5.04768252e-01 7.74503052e-01 1.58034608e-01 -2.09243774e-01 1.25453401e+00 -1.09352779e+00 -5.91750205e-01 -1.10871591e-01 8.47445905e-01 -6.40745938e-01 1.22498262e+00 3.05544436e-01 -6.91579163e-01 -8.39806914e-01 -1.01012039e+00 1.81144960e-02 -3.96217167e-01 1.65760607e-01 5.51443875e-01 3.50759089e-01 -5.04854023e-01 4.95261133e-01 -4.26184982e-01 -1.97583571e-01 1.86438635e-01 4.41032946e-01 -2.64869064e-01 -2.70092070e-01 -1.47647440e+00 8.24055672e-01 5.59018672e-01 1.35475859e-01 -2.39612207e-01 -6.81238174e-01 -5.42811036e-01 4.20119166e-01 2.42390260e-01 -6.77189589e-01 9.85749602e-01 -1.19969201e+00 -1.55028498e+00 1.59436420e-01 7.13908002e-02 -1.47169247e-01 -1.11710370e-01 -6.32104754e-01 -8.51610184e-01 -1.58809617e-01 -1.58217698e-01 4.06136692e-01 9.01300669e-01 -1.01353395e+00 -7.88918555e-01 -4.21790302e-01 -7.54448771e-02 5.25775075e-01 -1.14529383e+00 -2.63422519e-01 -5.48174739e-01 -6.91510141e-01 -1.14877010e-03 -8.35736334e-01 -1.00317299e-01 -3.91927779e-01 1.27990842e-01 -3.30353528e-01 4.56740797e-01 -4.90571588e-01 1.43663299e+00 -2.32365370e+00 2.67932624e-01 3.96723598e-01 -1.36554897e-01 3.97899419e-01 -5.66023350e-01 4.53743309e-01 5.26733398e-02 -2.26449788e-01 1.74391717e-01 -6.24799840e-02 9.06321332e-02 7.45073631e-02 -5.25956929e-01 1.17724821e-01 1.61934868e-01 9.39705074e-01 -9.55637634e-01 -1.38618052e-01 3.75004075e-02 3.88927460e-01 -8.86142373e-01 4.58161265e-01 -8.98650568e-03 3.62259507e-01 -5.65176547e-01 2.93924928e-01 5.78339815e-01 -4.63570833e-01 3.26657355e-01 -4.37006176e-01 3.22923303e-01 5.18218040e-01 -1.25277126e+00 1.81569910e+00 -7.57291019e-01 -1.89885929e-01 -5.24069011e-01 -1.07473671e+00 9.57281113e-01 2.32314661e-01 4.59556252e-01 -1.30110180e+00 -1.24818370e-01 2.45335370e-01 1.22268647e-01 -4.55436796e-01 7.17360914e-01 -2.77048826e-01 -8.59282017e-02 4.73955721e-01 2.15059683e-01 4.79353696e-01 -1.82367265e-01 1.45972267e-01 8.24767172e-01 9.29191411e-02 1.33565828e-01 7.29200020e-02 6.31947279e-01 -4.15061474e-01 5.28006136e-01 5.12183547e-01 1.51745781e-01 2.51705676e-01 -1.49313822e-01 -4.35728371e-01 -9.12367642e-01 -1.05356467e+00 -1.18091390e-01 1.32385612e+00 4.31987882e-01 -5.95475912e-01 -2.53676534e-01 -9.95225489e-01 1.81752264e-01 6.44065201e-01 -3.40483040e-01 -6.23986602e-01 -5.17348945e-01 -5.20851910e-01 2.12232377e-02 7.27180898e-01 2.27421582e-01 -8.90271246e-01 -1.07568964e-01 4.64434445e-01 -2.92082012e-01 -7.84169257e-01 -7.21855164e-01 1.08045503e-01 -9.90967512e-01 -6.41284525e-01 -6.65186763e-01 -8.05438876e-01 7.40491748e-01 5.93697190e-01 9.18560743e-01 1.75526440e-01 1.95168972e-01 1.06639996e-01 -6.91915810e-01 1.35239780e-01 4.66597266e-02 3.97815198e-01 4.01853949e-01 1.88580409e-01 7.46318758e-01 -4.29791361e-01 -9.42243934e-01 5.08246303e-01 -1.25783694e+00 -1.33908167e-01 8.27660978e-01 1.18653369e+00 4.81586158e-01 -1.59669787e-01 1.17677367e+00 -8.51256609e-01 7.00502515e-01 -8.10948133e-01 -4.14667577e-01 4.07005936e-01 -8.44974518e-01 1.88372418e-01 1.12370408e+00 -6.25219584e-01 -1.02969074e+00 -2.72576600e-01 -2.93614626e-01 -3.52222800e-01 1.45476356e-01 7.32313514e-01 -1.97181284e-01 2.99985021e-01 3.82102251e-01 2.51110554e-01 -2.20403880e-01 -7.19887316e-01 6.03681564e-01 8.97909999e-01 1.14379063e-01 -3.23104829e-01 7.64018953e-01 3.28366761e-03 -5.21058321e-01 -3.75289112e-01 -1.03427267e+00 -8.04430723e-01 -4.72991824e-01 1.84790671e-01 3.81628007e-01 -8.91655505e-01 -3.79501283e-01 4.84999754e-02 -8.07729661e-01 2.18033046e-01 -1.40642062e-01 8.18125904e-01 -2.54744202e-01 3.10807884e-01 -5.73181629e-01 -4.51663941e-01 -3.84618372e-01 -9.23329651e-01 7.37498105e-01 2.38898531e-01 -1.41671315e-01 -9.51681316e-01 2.68373013e-01 2.22095564e-01 6.89450324e-01 -7.65269220e-01 1.14034295e+00 -1.07242668e+00 -4.00623083e-01 -2.55019665e-01 -2.44806975e-01 5.56511760e-01 4.32703882e-01 -6.38377249e-01 -7.54100204e-01 -5.11590362e-01 1.93856526e-02 -3.45502257e-01 7.57457793e-01 -2.15858400e-01 1.15672886e+00 -4.83886421e-01 -2.65515476e-01 4.52702135e-01 1.54880643e+00 1.40334964e-01 5.16447902e-01 3.66809487e-01 7.90302455e-01 4.80687916e-01 8.74472201e-01 3.95466834e-01 3.63200426e-01 9.14564133e-01 1.11973792e-01 2.11799875e-01 2.11271167e-01 -5.28358638e-01 3.46089244e-01 1.28629327e+00 2.91817486e-01 -1.70242682e-01 -3.87517214e-01 5.20636797e-01 -1.90814209e+00 -8.62994432e-01 3.86814117e-01 2.45244241e+00 8.65253150e-01 -5.89262284e-02 5.61766922e-02 -2.53493726e-01 4.04040515e-01 -9.21887606e-02 -6.00490153e-01 -3.23467195e-01 2.65449852e-01 2.20383570e-01 1.86520711e-01 6.88845739e-02 -9.35817659e-01 8.71556163e-01 5.08198929e+00 8.05795491e-01 -1.23224044e+00 3.11815981e-02 1.31158963e-01 -2.83155799e-01 -6.42934501e-01 -1.52736500e-01 -8.89087200e-01 6.92471683e-01 9.21382666e-01 -1.46740243e-01 4.62927222e-01 8.06618214e-01 -1.41556785e-01 3.42425346e-01 -1.23144925e+00 8.75696301e-01 2.20588386e-01 -9.94414687e-01 3.78235161e-01 6.01334721e-02 7.76983917e-01 -1.70563892e-01 3.68191510e-01 8.03663671e-01 -1.54708475e-01 -6.88562810e-01 2.90516376e-01 5.67558527e-01 4.43188250e-01 -8.99783552e-01 7.68259704e-01 3.24228227e-01 -9.85763371e-01 -4.02965188e-01 -7.11440504e-01 1.57291666e-01 5.53939007e-02 3.71554732e-01 -7.67785668e-01 7.32261121e-01 5.79984188e-01 8.81427944e-01 -5.03180861e-01 1.07971847e+00 7.61661455e-02 4.49008584e-01 -9.51860249e-02 -1.11477219e-01 1.03905693e-01 -3.74500275e-01 1.41591012e-01 1.01588738e+00 4.70709980e-01 -6.74133524e-02 7.50120729e-02 5.04220009e-01 -2.92362779e-01 6.15204871e-01 -5.83451807e-01 -8.60849991e-02 4.80075210e-01 1.23574162e+00 -1.92819163e-01 -3.25158447e-01 -7.03240633e-01 1.14027631e+00 6.91189945e-01 3.95038247e-01 -8.19093466e-01 -3.59850466e-01 8.07688773e-01 -5.84741794e-02 6.96697950e-01 -5.13282754e-02 2.10547820e-02 -1.40924168e+00 1.86592683e-01 -9.97499764e-01 4.46226269e-01 -2.72347838e-01 -1.73867345e+00 4.07411754e-01 -2.82535791e-01 -1.67538583e+00 -3.67216319e-01 -4.11264777e-01 -2.22374558e-01 8.07232141e-01 -1.65683293e+00 -9.80751336e-01 6.74088970e-02 5.45354486e-01 3.58412296e-01 -1.90055445e-01 9.29439366e-01 7.37430513e-01 -5.23828626e-01 1.03517544e+00 5.85054219e-01 -1.27191797e-01 1.14915848e+00 -8.81663501e-01 9.04649943e-02 5.00815451e-01 3.92047405e-01 1.17497647e+00 1.91960230e-01 -4.09044534e-01 -1.66053319e+00 -1.24309635e+00 7.16067851e-01 -3.49656910e-01 5.63702106e-01 -2.52893567e-01 -1.21338224e+00 5.40303886e-01 1.47087825e-03 -1.20679386e-01 1.25249398e+00 5.49683988e-01 -7.15301394e-01 -5.71598768e-01 -8.02563071e-01 5.34403503e-01 9.31290567e-01 -5.98679125e-01 -7.20460951e-01 8.13262984e-02 6.07613742e-01 9.68732834e-02 -1.03607249e+00 3.43124747e-01 8.37528408e-01 -6.81565940e-01 8.51518154e-01 -8.94166470e-01 3.92542869e-01 -3.11145604e-01 -2.31056944e-01 -1.49139988e+00 -7.43863404e-01 8.36661458e-02 -3.64904433e-01 1.26240420e+00 4.51988220e-01 -6.01667941e-01 5.06173253e-01 6.01374686e-01 -2.82660704e-02 -7.78192401e-01 -6.37445927e-01 -8.52387488e-01 2.80623157e-02 -1.05506159e-01 7.55560637e-01 9.18800533e-01 2.91866452e-01 6.54729486e-01 -5.24498940e-01 2.41303556e-02 1.75162867e-01 3.93682569e-01 7.15267718e-01 -1.04283357e+00 -6.81684196e-01 -1.94674060e-01 -1.82684034e-01 -1.55956602e+00 1.10530265e-01 -1.12739992e+00 8.38205870e-03 -1.23971200e+00 4.40439165e-01 -6.97035074e-01 -1.06748509e+00 3.08261752e-01 -4.72301722e-01 3.09202343e-01 1.66053340e-01 4.11721021e-01 -8.63388538e-01 7.07382977e-01 1.15961635e+00 3.43491100e-02 -2.26119116e-01 -8.50401670e-02 -8.52842033e-01 3.11209679e-01 7.64676929e-01 -4.41555381e-01 -6.72046900e-01 -7.31273592e-01 5.43233335e-01 -2.33242109e-01 7.82662630e-02 -7.17136145e-01 1.77237332e-01 -7.22596655e-03 5.59009314e-01 -3.63375455e-01 2.38651797e-01 -1.19246984e+00 -7.99305961e-02 2.17895865e-01 -4.84920710e-01 7.54553452e-02 -3.80861526e-03 7.82063901e-01 -3.60706896e-01 -3.02732319e-01 4.43073422e-01 7.45754316e-02 -8.17853689e-01 3.58919293e-01 8.88623483e-03 -2.11583897e-01 7.14436531e-01 1.51802041e-02 -2.12145582e-01 -1.47587091e-01 -3.80612940e-01 3.30600619e-01 5.40204108e-01 9.19228494e-01 7.54986227e-01 -1.65364993e+00 -4.19635981e-01 4.30658668e-01 5.64160109e-01 -3.43038499e-01 5.16578794e-01 7.48050153e-01 2.58894533e-01 6.01231813e-01 -2.15123728e-01 -3.02271247e-01 -7.23254383e-01 9.08033550e-01 -2.23147124e-02 -4.26888108e-01 -4.03365225e-01 6.79261148e-01 3.60781044e-01 -4.21315342e-01 1.26687065e-01 -3.80266681e-02 -3.27291042e-01 1.37005508e-01 7.03942060e-01 -3.84623511e-03 2.29204074e-01 -3.77765119e-01 -2.37028703e-01 3.75313252e-01 -8.00411820e-01 2.72470303e-02 1.29893243e+00 -3.64006788e-01 1.87002555e-01 4.58372682e-01 1.49767172e+00 -5.08322120e-02 -8.37962866e-01 -7.48040557e-01 1.37554616e-01 -6.27769411e-01 -3.94271538e-02 -7.14501619e-01 -9.68391061e-01 7.33805120e-01 7.28146136e-01 3.07669155e-02 1.17515337e+00 -1.76765800e-01 1.19038963e+00 5.73736191e-01 4.63304490e-01 -1.17041051e+00 2.94703543e-01 4.66571808e-01 5.67341268e-01 -1.26711619e+00 -2.40439877e-01 6.13875985e-02 -7.99147844e-01 9.88669693e-01 7.40462899e-01 -1.05832003e-01 4.99939770e-01 -3.39607835e-01 1.20022213e-02 1.01951681e-01 -7.69875288e-01 -5.93443140e-02 6.36312842e-01 3.11179638e-01 5.46124458e-01 -8.52976814e-02 -5.12241483e-01 1.05805445e+00 1.95506155e-01 1.14726886e-01 -9.38365161e-02 7.69941211e-01 -3.32258999e-01 -1.45441675e+00 1.78708509e-01 7.13628650e-01 -2.60767728e-01 -3.20903957e-01 -2.64458936e-02 3.08353186e-01 -1.97335519e-02 6.88758492e-01 8.25060531e-02 -5.98492146e-01 3.93387645e-01 2.60310948e-01 4.23854232e-01 -7.01111078e-01 -6.10144734e-01 -2.54009687e-03 -1.52829871e-01 -3.43287855e-01 -2.23527789e-01 -4.02793795e-01 -9.70283568e-01 1.90744400e-01 -7.72207379e-01 4.34789181e-01 5.98436713e-01 9.09072697e-01 6.65648103e-01 2.33687013e-01 1.11034572e+00 -5.09764314e-01 -1.13072944e+00 -9.87055540e-01 -5.68434656e-01 8.11406732e-01 9.51342806e-02 -7.05282509e-01 -8.74557719e-02 -2.57597923e-01]
[10.168173789978027, 5.531567096710205]
fe17f9da-ae85-4b00-a9e1-5931c66143b1
react-temporal-action-detection-with
2207.07097
null
https://arxiv.org/abs/2207.07097v1
https://arxiv.org/pdf/2207.07097v1.pdf
ReAct: Temporal Action Detection with Relational Queries
This work aims at advancing temporal action detection (TAD) using an encoder-decoder framework with action queries, similar to DETR, which has shown great success in object detection. However, the framework suffers from several problems if directly applied to TAD: the insufficient exploration of inter-query relation in the decoder, the inadequate classification training due to a limited number of training samples, and the unreliable classification scores at inference. To this end, we first propose a relational attention mechanism in the decoder, which guides the attention among queries based on their relations. Moreover, we propose two losses to facilitate and stabilize the training of action classification. Lastly, we propose to predict the localization quality of each action query at inference in order to distinguish high-quality queries. The proposed method, named ReAct, achieves the state-of-the-art performance on THUMOS14, with much lower computational costs than previous methods. Besides, extensive ablation studies are conducted to verify the effectiveness of each proposed component. The code is available at https://github.com/sssste/React.
['DaCheng Tao', 'Jia Li', 'Lin Ma', 'Jing Zhang', 'Qiong Cao', 'Yujie Zhong', 'Dingfeng Shi']
2022-07-14
null
null
null
null
['action-classification']
['computer-vision']
[ 2.37521589e-01 -4.44369055e-02 -5.83487093e-01 -1.71295315e-01 -1.13877988e+00 -7.73194656e-02 5.22845089e-01 -1.78852484e-01 -4.70761031e-01 4.13234740e-01 2.31426120e-01 -2.25195717e-02 2.61649974e-02 -5.75931251e-01 -5.53784847e-01 -4.54312205e-01 1.01671167e-01 2.69243747e-01 6.69586599e-01 1.12074785e-01 8.71915966e-02 1.27345160e-01 -1.56739771e+00 3.65687072e-01 8.83472383e-01 1.37875223e+00 2.70814657e-01 4.86611873e-01 2.52548397e-01 1.33270156e+00 -5.33533871e-01 -5.06936729e-01 -4.17441987e-02 -6.61651075e-01 -7.10108697e-01 3.70757617e-02 2.62408197e-01 -8.57111990e-01 -7.94543862e-01 1.00996804e+00 6.13157094e-01 8.99756029e-02 4.32126552e-01 -1.25854063e+00 -6.12597942e-01 5.31134784e-01 -5.31693935e-01 3.72893035e-01 3.09743285e-01 1.15475431e-01 1.34312916e+00 -1.10437226e+00 3.80146474e-01 1.30843091e+00 3.03651631e-01 6.65268481e-01 -9.25691903e-01 -5.63503802e-01 3.07710052e-01 7.82306254e-01 -1.46631515e+00 -6.42363667e-01 5.86712658e-01 -2.26061940e-01 1.00677013e+00 4.66524065e-02 6.57057047e-01 1.30880678e+00 -8.34922716e-02 1.50076485e+00 5.13760805e-01 -2.10419968e-01 1.60521016e-01 -3.18922192e-01 -2.02545207e-02 7.09262848e-01 -1.82959855e-01 -3.20518129e-02 -9.00810242e-01 2.10779533e-01 6.00418389e-01 -8.86132419e-02 -8.27554688e-02 -1.05302915e-01 -1.10857201e+00 4.83229697e-01 4.63646024e-01 1.90677837e-01 -4.12469089e-01 3.62212628e-01 4.80653673e-01 3.02773360e-02 4.65309948e-01 2.77748276e-02 -1.86682194e-01 -5.80324352e-01 -7.49463737e-01 1.15209311e-01 1.71602532e-01 1.00411224e+00 2.09345847e-01 -1.14507236e-01 -7.20200121e-01 7.42619395e-01 4.08598930e-01 3.03646296e-01 3.22696447e-01 -1.11454034e+00 8.40779185e-01 7.01567233e-01 1.50121972e-01 -7.23682106e-01 -1.34567395e-01 -3.67921114e-01 -5.97674549e-01 -1.08676888e-02 2.98049867e-01 1.18827544e-01 -7.62411892e-01 1.78835309e+00 2.74943382e-01 3.81432354e-01 -2.37561837e-02 9.68456984e-01 5.36982834e-01 3.68825883e-01 5.25381304e-02 -9.58125219e-02 1.27881610e+00 -1.16191304e+00 -9.04466927e-01 -3.28246385e-01 8.02180350e-01 -6.04940653e-01 1.13581049e+00 3.77121538e-01 -1.18011236e+00 -6.97530687e-01 -1.02117383e+00 -4.09174681e-01 -7.45161250e-03 8.20243001e-01 5.49439847e-01 2.77668595e-01 -7.70531058e-01 3.17734599e-01 -1.29276705e+00 -2.99606413e-01 7.80849814e-01 2.68249989e-01 3.44773866e-02 -9.98978410e-03 -1.35157943e+00 7.47999132e-01 3.11640441e-01 2.92154223e-01 -1.11338782e+00 -2.28733793e-01 -7.18680084e-01 1.13068193e-01 8.35092306e-01 -4.37227160e-01 1.58269298e+00 -6.17229462e-01 -1.48110712e+00 6.56461537e-01 -4.20052886e-01 -6.32299364e-01 7.49136508e-01 -7.05012918e-01 -2.86164671e-01 2.67172009e-01 3.31281900e-01 7.57117927e-01 6.17452860e-01 -5.75532913e-01 -8.35785747e-01 -3.57195318e-01 3.45617384e-01 3.21698785e-01 -3.24596971e-01 -4.15074266e-02 -1.12525260e+00 -6.58397198e-01 2.36274645e-01 -8.22187245e-01 1.55092543e-02 1.62864909e-01 -4.99602437e-01 -5.11128068e-01 5.76981485e-01 -4.77194279e-01 1.55209243e+00 -2.43770623e+00 1.66994691e-01 -2.42097676e-01 1.25397786e-01 2.91581750e-01 -1.09122984e-01 2.52702534e-01 1.88641563e-01 -3.25010903e-02 -1.00977845e-01 -5.14634371e-01 6.60020933e-02 1.48226649e-01 -2.84508139e-01 4.38511372e-01 3.61105949e-01 8.72004151e-01 -8.92386258e-01 -6.72861397e-01 2.25965783e-01 3.17549765e-01 -5.93903124e-01 2.04969838e-01 -3.62613082e-01 4.06461269e-01 -9.00274158e-01 8.31330657e-01 3.30403626e-01 -3.94251108e-01 1.28056973e-01 -1.72155365e-01 -3.68322879e-02 7.00528979e-01 -1.01638818e+00 1.77050781e+00 -9.08422694e-02 5.35702050e-01 -3.08803409e-01 -9.86695290e-01 4.98766601e-01 3.48264903e-01 6.38959587e-01 -1.06840467e+00 1.65180698e-01 7.34085590e-02 -6.31234571e-02 -6.34072602e-01 3.93612415e-01 4.08734411e-01 3.19314599e-02 3.03905010e-01 3.89364995e-02 4.52416658e-01 4.50967491e-01 2.87928879e-01 1.22152948e+00 4.34962213e-01 1.63469940e-01 3.79948556e-01 6.14006758e-01 -2.79516846e-01 7.77208805e-01 8.53108227e-01 -4.17762101e-01 5.11453092e-01 7.39654422e-01 4.53572273e-02 -6.75675154e-01 -8.95156980e-01 -1.12313546e-01 1.08320582e+00 4.15049285e-01 -5.94487131e-01 -5.74536622e-01 -8.63684058e-01 -2.52181917e-01 7.50865877e-01 -5.83398461e-01 -4.07701194e-01 -4.83077317e-01 -5.64513206e-01 8.25438559e-01 8.14553976e-01 7.45315969e-01 -1.04692614e+00 -6.07398450e-01 9.99352261e-02 -5.10491967e-01 -1.28972936e+00 -5.20186007e-01 -4.55976576e-02 -7.44597852e-01 -1.22014499e+00 -5.62998772e-01 -5.00058830e-01 5.02035618e-01 2.63436675e-01 8.22060764e-01 1.43804708e-02 3.28114815e-02 1.96822241e-01 -5.64176679e-01 -2.14846209e-01 -1.02339037e-01 1.67212918e-01 -1.21322282e-01 1.13015138e-01 5.34027457e-01 -2.59504676e-01 -6.79205894e-01 6.02975190e-01 -7.24637866e-01 7.45053887e-02 8.30260277e-01 7.82681525e-01 7.48324335e-01 -4.39408720e-02 4.28518295e-01 -6.23819649e-01 3.37742120e-01 -3.70088875e-01 -5.32511353e-01 2.47576416e-01 -5.16931891e-01 -7.38614723e-02 2.52151191e-01 -2.31047124e-01 -1.14525580e+00 1.00344932e-02 -4.04521137e-01 -4.37609017e-01 3.35615836e-02 3.82883787e-01 -2.73143530e-01 3.90965909e-01 4.01642919e-01 3.58413190e-01 -2.41353944e-01 -6.12999916e-01 3.05597126e-01 5.56937039e-01 3.80694360e-01 -2.72140890e-01 3.84907126e-01 4.82411951e-01 -2.18562260e-01 -3.49074662e-01 -1.18400991e+00 -3.60192984e-01 -6.10409498e-01 -2.86494285e-01 9.76297498e-01 -1.10797715e+00 -8.33822966e-01 6.70520961e-01 -1.07253766e+00 -4.15829331e-01 -1.13948487e-01 6.62705421e-01 -6.57359719e-01 3.62699956e-01 -7.48744786e-01 -9.57237244e-01 -6.92133829e-02 -1.21210980e+00 1.28228414e+00 9.13490281e-02 -2.96643935e-02 -3.41050178e-01 -2.84451276e-01 5.97066581e-01 -4.37133908e-02 -2.32069060e-01 5.70957541e-01 -4.80531782e-01 -8.82535636e-01 -2.05668166e-01 -3.04408550e-01 2.79471457e-01 3.54377031e-02 -1.48195565e-01 -9.65440452e-01 -1.37917504e-01 -6.82993084e-02 -6.46915913e-01 1.09662962e+00 3.15151781e-01 1.38896930e+00 -1.06381793e-02 -4.03521925e-01 2.83473700e-01 9.05283034e-01 3.91600907e-01 7.96637356e-01 3.08523804e-01 4.49669480e-01 2.15957403e-01 1.21025479e+00 6.31040812e-01 3.87432516e-01 1.04742277e+00 4.90102321e-01 1.88417092e-01 -2.64121979e-01 -4.26972270e-01 6.39292359e-01 6.07068539e-01 -3.07689141e-02 -5.97894430e-01 -7.18403459e-01 3.70412409e-01 -2.15984964e+00 -9.86406147e-01 -6.87431395e-02 2.17324591e+00 6.54885471e-01 6.09322071e-01 1.49504483e-01 2.97458142e-01 5.12596071e-01 3.49381804e-01 -6.78466499e-01 2.89278388e-01 1.88413856e-03 -1.86635345e-01 2.64507264e-01 3.83143961e-01 -1.24817038e+00 1.08886564e+00 5.62891054e+00 9.91376340e-01 -8.19182456e-01 2.80739665e-01 4.65565294e-01 -2.62585074e-01 2.29585364e-01 -1.08476013e-01 -9.50620413e-01 5.80693185e-01 6.13106906e-01 4.28141467e-02 2.62752354e-01 8.49654019e-01 4.26382452e-01 -3.34534794e-01 -1.13261151e+00 8.51549387e-01 9.92889032e-02 -1.07179999e+00 -6.85031116e-02 -2.69923955e-01 2.33777806e-01 1.20724797e-01 1.04923926e-01 4.30767864e-01 -3.21066678e-02 -4.64903265e-01 9.06804919e-01 5.71186662e-01 6.77782238e-01 -4.98549312e-01 5.59813082e-01 3.31763208e-01 -1.28621995e+00 -2.38553360e-01 -2.51238734e-01 -4.84235724e-03 1.38818532e-01 3.61742795e-01 -6.15710020e-01 5.62570274e-01 7.00569689e-01 1.09109795e+00 -6.96285307e-01 1.03841555e+00 -6.21635020e-01 7.40384459e-01 -1.19252838e-01 5.39579913e-02 2.12446883e-01 1.49698863e-02 5.34675479e-01 7.52050519e-01 3.08823705e-01 6.79578111e-02 1.57405019e-01 7.19663560e-01 -9.47042257e-02 -1.40051514e-01 -2.78413206e-01 -1.43987909e-01 4.77802843e-01 6.56062365e-01 -4.12599474e-01 -3.35822016e-01 -6.08306587e-01 1.08648181e+00 3.77236009e-01 4.45577174e-01 -1.20502615e+00 -1.39329866e-01 4.87777352e-01 2.11262610e-02 4.25636441e-01 -1.31663442e-01 -7.96344429e-02 -1.15939128e+00 4.05437052e-01 -7.27054954e-01 6.12222552e-01 -7.67700672e-01 -8.83692503e-01 3.62951308e-01 -1.79292783e-01 -1.67313147e+00 -1.35950655e-01 -3.06518346e-01 -3.31959754e-01 4.38530594e-01 -1.33796299e+00 -9.38879550e-01 -1.87602237e-01 4.17385489e-01 7.73201942e-01 -3.47854383e-02 4.64309067e-01 7.89925575e-01 -9.67095017e-01 7.92248964e-01 -1.31457850e-01 3.35055739e-01 6.91098869e-01 -9.88180101e-01 3.22617471e-01 1.00550079e+00 1.20303258e-01 2.67012894e-01 3.24705362e-01 -6.16318226e-01 -1.17799795e+00 -1.14467013e+00 9.70940948e-01 -3.78694713e-01 5.88995278e-01 -3.74202818e-01 -8.78339052e-01 7.62002170e-01 -1.35752589e-01 -3.85159142e-02 4.38214123e-01 1.50636986e-01 -1.02014266e-01 -2.04517603e-01 -6.04618967e-01 7.67540753e-01 1.35804188e+00 -6.69287801e-01 -4.15917426e-01 3.17544997e-01 6.14760101e-01 -5.00380576e-01 -6.56134725e-01 3.61396164e-01 5.31993330e-01 -1.16070008e+00 8.77476156e-01 -3.92620564e-01 4.85542923e-01 -5.07881582e-01 -1.22187115e-01 -6.30588055e-01 -3.57805490e-01 -3.71014327e-01 -4.95781362e-01 1.22978985e+00 4.90022480e-01 -3.39374483e-01 8.55657816e-01 3.14823210e-01 -2.24650636e-01 -1.03027797e+00 -1.22936285e+00 -8.00743282e-01 -5.20195127e-01 -7.42352128e-01 2.25358233e-01 4.05058116e-01 -1.56034365e-01 5.80713153e-01 -7.12592185e-01 3.30666423e-01 4.05384481e-01 1.77109279e-02 6.40254080e-01 -6.83517277e-01 -5.06389141e-01 -3.96931261e-01 -4.19712782e-01 -1.75792539e+00 -2.02810634e-02 -6.51727438e-01 1.51060551e-01 -1.43983543e+00 2.62470186e-01 -2.88373679e-01 -5.41192710e-01 6.94175601e-01 -3.31323653e-01 1.29462063e-01 2.22058803e-01 4.02308106e-01 -1.30420613e+00 1.07935333e+00 1.32264209e+00 -1.71009034e-01 -1.64377004e-01 2.45559677e-01 -4.82815832e-01 5.65393746e-01 6.15535736e-01 -6.11253858e-01 -4.76057559e-01 -6.07978523e-01 1.61318034e-01 1.84488520e-01 4.53964859e-01 -1.19756770e+00 2.51503050e-01 9.64700207e-02 2.55062938e-01 -9.75720763e-01 6.10033154e-01 -5.98219573e-01 -2.85010517e-01 5.22388339e-01 -6.13899529e-01 -2.69565821e-01 -1.06530309e-01 7.11269319e-01 -4.29203659e-01 -7.53764212e-02 7.38794446e-01 2.28750542e-01 -8.05091441e-01 3.38194698e-01 -3.38158578e-01 1.27419978e-01 8.85562539e-01 -8.31362978e-02 -2.84753501e-01 -3.94368947e-01 -7.19427645e-01 6.63081527e-01 6.78111464e-02 5.53011835e-01 6.13827527e-01 -1.58122325e+00 -4.90295559e-01 2.56071482e-02 2.87096888e-01 -5.51954098e-02 3.91822994e-01 1.37519979e+00 -2.52025947e-02 5.17445505e-01 9.54986662e-02 -5.55508375e-01 -1.25321817e+00 5.04203975e-01 3.20534050e-01 -2.25670591e-01 -6.72549784e-01 8.67064595e-01 2.36203864e-01 9.64564234e-02 6.54363990e-01 -4.14166778e-01 -2.29186386e-01 2.05320984e-01 5.40889025e-01 4.43695128e-01 -1.33610874e-01 -5.06852746e-01 -5.66921115e-01 2.98130959e-01 -1.66537672e-01 -4.07420509e-02 9.67251301e-01 -2.17073664e-01 2.62178838e-01 4.65936571e-01 9.26765382e-01 -3.10102075e-01 -1.49862027e+00 -3.76460224e-01 6.22004718e-02 -6.85309529e-01 8.89127553e-02 -5.93172133e-01 -9.53771412e-01 8.76813829e-01 6.44656360e-01 4.40134555e-02 1.21258318e+00 1.89773649e-01 8.54752123e-01 4.72454011e-01 8.61911103e-02 -1.24789786e+00 4.44553167e-01 4.60076421e-01 8.45333874e-01 -1.31858897e+00 -4.11598086e-02 -4.53012884e-01 -6.98994398e-01 7.81817615e-01 9.02858377e-01 2.39308462e-01 3.52467507e-01 -2.56790984e-02 -1.23667523e-01 -7.94940963e-02 -9.22001898e-01 -5.59955478e-01 2.91863739e-01 1.13259405e-01 3.75526696e-01 -2.08078533e-01 -3.48244488e-01 5.37446856e-01 2.62706995e-01 2.42861569e-01 1.68415070e-01 9.03645575e-01 -3.69164139e-01 -1.09668112e+00 7.80423582e-02 6.19504869e-01 -5.71730673e-01 -7.74437115e-02 -3.76449436e-01 5.97637713e-01 1.67442814e-01 1.03163135e+00 1.31584387e-02 -5.00832140e-01 5.67741334e-01 -6.75018802e-02 3.66553962e-01 -4.82530385e-01 -4.10387479e-02 3.19548428e-01 2.13050187e-01 -9.50810909e-01 -5.33399820e-01 -7.81349242e-01 -1.28389585e+00 1.48781419e-01 -3.48435730e-01 -8.93312171e-02 -1.32684251e-02 9.76455331e-01 5.41528821e-01 6.68290138e-01 5.75626969e-01 -4.03202534e-01 -5.78185976e-01 -9.91980076e-01 -4.20871913e-01 2.77678400e-01 2.32448429e-01 -1.00214350e+00 -8.33292603e-02 -1.39942750e-01]
[8.44940185546875, 0.5115834474563599]