Datasets:
metadata
license: apache-2.0
dataset_info:
features:
- name: image
dtype: image
- name: objects
struct:
- name: bbox
list:
list: int32
- name: category
list: string
splits:
- name: train
num_bytes: 99969538
num_examples: 555
- name: valid
num_bytes: 19950524
num_examples: 114
- name: test
num_bytes: 25245828
num_examples: 139
download_size: 99748336
dataset_size: 145165890
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: valid
path: data/valid-*
- split: test
path: data/test-*
task_categories:
- object-detection
pretty_name: Screen2AX-Group
size_categories:
- n<1K
π¦ Screen2AX-Group
Screen2AX-Group is part of the Screen2AX dataset suite, a research-driven collection for advancing accessibility in macOS applications using computer vision and deep learning.
This dataset focuses on UI group detection from macOS application screenshots and is designed for training and evaluating object detection models.
π§ Dataset Summary
Each sample in the dataset consists of:
- An application screenshot (
image
) - A dictionary of UI elements (
objects
) with 2 keys:bbox
(List[List[int]]
): List of bounding box coordinates in[x_min, y_min, x_max, y_max]
formatcategory
(List[str]
): List of labels indicating the UI group type (AXGroup
,AXTabGroup
,AXToolbar
, etc.)
The dataset supports training deep learning models for object detection tasks specifically tuned for graphical user interfaces (GUIs) on macOS.
Splits:
train
valid
test
Task Category:
object-detection
π Usage
Load with datasets
library
from datasets import load_dataset
dataset = load_dataset("MacPaw/Screen2AX-Group")
Example structure
sample = dataset["train"][0]
print(sample.keys())
# dict_keys(['image', 'objects'])
print(sample["objects"])
# {'bbox': [[x_min, y_min, x_max, y_max], ...], 'category': ['AXGroup', ...]}
π License
This dataset is licensed under the Apache 2.0 License.
π Related Projects
βοΈ Citation
If you use this dataset, please cite the Screen2AX paper:
@misc{muryn2025screen2axvisionbasedapproachautomatic,
title={Screen2AX: Vision-Based Approach for Automatic macOS Accessibility Generation},
author={Viktor Muryn and Marta Sumyk and Mariya Hirna and Sofiya Garkot and Maksym Shamrai},
year={2025},
eprint={2507.16704},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2507.16704},
}
π MacPaw Research
Learn more at https://research.macpaw.com