The dataset viewer is not available for this split.
Error code: StreamingRowsError
Exception: CastError
Message: Couldn't cast
P1: double
P2: double
P3: double
Fx: double
Fy: double
Fz: double
thetaX: double
thetaY: double
d: double
X: double
Y: double
Z: double
TCP_X: null
TCP_Y: null
TCP_Z: null
-- schema metadata --
pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1531
to
{'P1': Value('float64'), 'P2': Value('float64'), 'P3': Value('float64'), 'thetaX': Value('float64'), 'thetaY': Value('float64'), 'd': Value('float64'), 'TCP_X': Value('float64'), 'TCP_Y': Value('float64'), 'TCP_Z': Value('float64')}
because column names don't match
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise
return get_rows(
^^^^^^^^^
File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/src/worker/utils.py", line 77, in get_rows
rows_plus_one = list(itertools.islice(ds, rows_max_number + 1))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2431, in __iter__
for key, example in ex_iterable:
^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
for key, pa_table in self._iter_arrow():
^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1984, in _iter_arrow
pa_table = cast_table_to_features(pa_table, self.features)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2192, in cast_table_to_features
raise CastError(
datasets.table.CastError: Couldn't cast
P1: double
P2: double
P3: double
Fx: double
Fy: double
Fz: double
thetaX: double
thetaY: double
d: double
X: double
Y: double
Z: double
TCP_X: null
TCP_Y: null
TCP_Z: null
-- schema metadata --
pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1531
to
{'P1': Value('float64'), 'P2': Value('float64'), 'P3': Value('float64'), 'thetaX': Value('float64'), 'thetaY': Value('float64'), 'd': Value('float64'), 'TCP_X': Value('float64'), 'TCP_Y': Value('float64'), 'TCP_Z': Value('float64')}
because column names don't matchNeed help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
SoftManipulator Sim2Real Dataset
This dataset accompanies the research paper "Bridging High-Fidelity Simulations and Physics-Based Learning Using A Surrogate Model for Soft Robot Control" published in Advanced Intelligent Systems, 2025.
π Dataset Overview
This dataset contains experimental and simulation data for a 3-actuator pneumatic soft manipulator, designed to enable sim-to-real transfer learning and surrogate model development. The data includes motion capture recordings, pressure mappings, SOFA FEM simulation outputs, and surrogate model training datasets.
π― Dataset Purpose
- Sim2Real Research: Bridge the gap between SOFA simulations and real hardware
- Surrogate Model Training: Train neural networks for fast dynamics prediction
- Model Calibration: Calibrate FEM parameters using real-world data
- Workspace Analysis: Understand the robot's range of motion and capabilities
- Validation: Compare simulation outputs with experimental ground truth
π Dataset Files
| File | Size | Samples | Description | Usage |
|---|---|---|---|---|
ForwardDynamics_Pybullet_joint_to_pos.csv |
~66MB | 100,000+ | PyBullet forward dynamics: joint commands β TCP positions | Surrogate model training |
MotionCaptureData_ROM.csv |
~15MB | 10,000+ | Real robot motion capture trajectories | Ground truth validation |
PressureThetaMappingData.csv |
~2MB | 5,000+ | Pressure inputs β joint angle outputs | Actuation mapping |
Pressure_vs_TCP.csv |
~8MB | 8,000+ | Pressure commands β tool center point positions | Control modeling |
RealPressure_vs_SOFAPressure.csv |
~3MB | 3,000+ | Hardware vs simulation pressure comparison | Model calibration |
SOFA_snapshot_data.csv |
~45MB | 50,000+ | FEM nodal displacements from SOFA simulations | Physics validation |
SurrogateModel_ROM.csv |
~12MB | 15,000+ | Reduced-order model training data | Fast inference |
SurrogateModel_withTooltip_ROM.csv |
~18MB | 20,000+ | ROM data with tooltip contact forces | Contact modeling |
π§ Data Collection Setup
Hardware Configuration
- Robot: 3-cavity pneumatic soft manipulator (silicone, ~150mm length)
- Actuation: Pneumatic pressure control (-20 kPa to +35 kPa per cavity)
- Sensing: 6-DOF motion capture system (OptiTrack), pressure sensors
- Materials: Ecoflex 00-30 silicone with embedded pneumatic chambers
Simulation Environment
- SOFA Framework: v22.12 with SoftRobots plugin
- FEM Model: TetrahedronFEMForceField with NeoHookean material
- Material Properties: Young's modulus 3-6 kPa, Poisson ratio 0.41
- PyBullet: v3.2.5 for surrogate model validation
π Data Schema
Joint Space Data
thetaX,thetaY: Joint angles (radians, -Ο/4 to Ο/4)d: Linear displacement (mm, 0 to 50)
Pressure Commands
P1,P2,P3: Cavity pressures (Pa, -20000 to 35000)
Cartesian Space
TCP_X,TCP_Y,TCP_Z: Tool center point position (mm)Normal_X,Normal_Y,Normal_Z: End-effector orientation
Forces
Fx,Fy,Fz: External forces (N, contact/manipulation tasks)
Temporal Information
Time: Timestamp (seconds)Episode: Experiment episode number
π Usage Examples
Loading Data in Python
import pandas as pd
from datasets import load_dataset
# Load from HuggingFace
dataset = load_dataset("Ndolphin/SoftManipulator_sim2real")
# Or load locally
df = pd.read_csv("ForwardDynamics_Pybullet_joint_to_pos.csv")
print(f"Dataset shape: {df.shape}")
print(f"Columns: {df.columns.tolist()}")
Training a Surrogate Model
# Pressure to joint angle mapping
X = df[['P1', 'P2', 'P3']].values # Pressure inputs
y = df[['thetaX', 'thetaY', 'd']].values # Joint outputs
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Train your neural network model
Motion Analysis
# Analyze workspace coverage
import matplotlib.pyplot as plt
tcp_data = df[['TCP_X', 'TCP_Y', 'TCP_Z']]
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(tcp_data['TCP_X'], tcp_data['TCP_Y'], tcp_data['TCP_Z'])
ax.set_title('Robot Workspace')
π Data Quality & Preprocessing
Quality Assurance
- Filtering: Outliers removed using 3-sigma rule
- Smoothing: Savitzky-Golay filter applied to motion capture data
- Synchronization: All sensors synchronized to 100Hz sampling rate
- Validation: Cross-validated against multiple experimental runs
Recommended Preprocessing
from sklearn.preprocessing import StandardScaler
# Normalize features for neural network training
scaler = StandardScaler()
X_normalized = scaler.fit_transform(X)
# Save scaler for inference
import joblib
joblib.dump(scaler, 'scaler.pkl')
π Citation
If you use this dataset in your research, please cite:
@article{hong2025bridging,
title={Bridging High-Fidelity Simulations and Physics-Based Learning Using A Surrogate Model for Soft Robot Control},
author={Hong, T. and Lee, J. and Song, B.-H. and Park, Y.-L.},
journal={Advanced Intelligent Systems},
year={2025},
publisher={Wiley}
}
π License
This dataset is released under the MIT License. See LICENSE file for details.
π€ Contact
For questions about the dataset or research:
- Authors: T. Hong, J. Lee, B.-H. Song, Y.-L. Park
- Institution: [Your Institution]
- Email: [Contact Email]
- Paper: [ArXiv/DOI Link when available]
π Related Resources
- Code Repository: https://github.com/ndolphin-github/Sim2Real_framework_SoftRobot
- SOFA Simulations: Included in the repository
- Pre-trained Models: Available in the code repository
- Demo Videos: SOFA simulation demos included
Dataset Version: 1.0 | Last Updated: October 2025
- Downloads last month
- 17