Enhance dataset card: update metadata and add sample usage
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
@@ -1,18 +1,28 @@
|
|
1 |
---
|
2 |
-
license: cc-by-nc-sa-4.0
|
3 |
-
task_categories:
|
4 |
-
- question-answering
|
5 |
language:
|
6 |
- zh
|
7 |
- en
|
8 |
-
|
9 |
-
- agent
|
10 |
size_categories:
|
11 |
- n<1K
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
---
|
13 |
|
14 |
# Dataset Card for **GitTaskBench**
|
15 |
|
|
|
|
|
16 |
## Dataset Details
|
17 |
|
18 |
### Dataset Description
|
@@ -23,7 +33,7 @@ It contains **54 representative tasks** across **7 domains**, carefully curated
|
|
23 |
- **Funded by [optional]:** Not specified
|
24 |
- **Shared by [optional]:** GitTaskBench Team
|
25 |
- **Language(s):** Primarily English (task descriptions, documentation)
|
26 |
-
- **License:**
|
27 |
|
28 |
### Dataset Sources
|
29 |
- **Repository:** [GitTaskBench GitHub](https://github.com/QuantaAlpha/GitTaskBench)
|
@@ -67,8 +77,63 @@ Each task specifies:
|
|
67 |
|
68 |
## Usage Example
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
Each task entry contains:
|
74 |
- **task_id**: Unique task identifier (e.g., `Trafilatura_01`)
|
@@ -145,4 +210,4 @@ If you use GitTaskBench, please cite the paper:
|
|
145 |
- Multi-modal tasks (vision, speech, text, signals).
|
146 |
- Repository-level evaluation.
|
147 |
- Real-world relevance (PDF extraction, video coloring, speech analysis, etc.).
|
148 |
-
- Extensible design for new tasks.
|
|
|
1 |
---
|
|
|
|
|
|
|
2 |
language:
|
3 |
- zh
|
4 |
- en
|
5 |
+
license: cc-by-nc-sa-4.0
|
|
|
6 |
size_categories:
|
7 |
- n<1K
|
8 |
+
task_categories:
|
9 |
+
- text-generation
|
10 |
+
- image-to-image
|
11 |
+
- image-to-video
|
12 |
+
- automatic-speech-recognition
|
13 |
+
- text-retrieval
|
14 |
+
tags:
|
15 |
+
- agent
|
16 |
+
- benchmark
|
17 |
+
- code-agent
|
18 |
+
- software-engineering
|
19 |
+
- multimodal
|
20 |
---
|
21 |
|
22 |
# Dataset Card for **GitTaskBench**
|
23 |
|
24 |
+
The dataset was presented in the paper [GitTaskBench: A Benchmark for Code Agents Solving Real-World Tasks Through Code Repository Leveraging](https://huggingface.co/papers/2508.18993).
|
25 |
+
|
26 |
## Dataset Details
|
27 |
|
28 |
### Dataset Description
|
|
|
33 |
- **Funded by [optional]:** Not specified
|
34 |
- **Shared by [optional]:** GitTaskBench Team
|
35 |
- **Language(s):** Primarily English (task descriptions, documentation)
|
36 |
+
- **License:** `cc-by-nc-sa-4.0`
|
37 |
|
38 |
### Dataset Sources
|
39 |
- **Repository:** [GitTaskBench GitHub](https://github.com/QuantaAlpha/GitTaskBench)
|
|
|
77 |
|
78 |
## Usage Example
|
79 |
|
80 |
+
To get started with GitTaskBench, follow these steps for environment setup and evaluation.
|
81 |
+
|
82 |
+
### 1. Set Up ⚙️
|
83 |
+
First, create a new conda environment:
|
84 |
+
```console
|
85 |
+
conda create -n gittaskbench python=3.10 -y
|
86 |
+
conda activate gittaskbench
|
87 |
+
|
88 |
+
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 \
|
89 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
90 |
+
```
|
91 |
+
|
92 |
+
Then, you can install `gittaskbench` with pip:
|
93 |
+
```console
|
94 |
+
git clone https://github.com/QuantaAlpha/GitTaskBench.git
|
95 |
+
cd GitTaskBench
|
96 |
+
# config
|
97 |
+
pip install -e .
|
98 |
+
```
|
99 |
+
Alternatively:
|
100 |
+
```console
|
101 |
+
# config
|
102 |
+
pip install -r requirements.txt
|
103 |
+
```
|
104 |
+
|
105 |
+
### 2. Quick Start 💡
|
106 |
+
|
107 |
+
* #### **Single Task Evaluation:**
|
108 |
+
|
109 |
+
If you need to evaluate a single, specific task, you can use the following command. The example below shows how to evaluate the `Trafilatura_01` task:
|
110 |
+
|
111 |
+
```console
|
112 |
+
cd GitTaskBench
|
113 |
+
# The outputs are saved in the DEFAULT "./output" directory, for example: "./output/Trafilatura_01/output.txt"
|
114 |
+
```
|
115 |
+
|
116 |
+
```console
|
117 |
+
gittaskbench grade --taskid Trafilatura_01
|
118 |
+
```
|
119 |
+
|
120 |
+
Running the command will produce an analysis report (.jsonl) at the DEFAULT path (./test_results/Trafilatura_01). See ```test_results_for_show/``` for a sample.
|
121 |
|
122 |
+
The complete commands can be found in the [🤖 Automation Evaluation](#automation-evaluation) section.
|
123 |
+
|
124 |
+
* #### **All Tasks Evaluation**
|
125 |
+
When you need to evaluate all tasks, you can use the --all parameter. This command will automatically iterate through and execute the evaluation of all tasks:
|
126 |
+
```console
|
127 |
+
gittaskbench grade --all
|
128 |
+
```
|
129 |
+
|
130 |
+
* #### **Test Results Analysis**
|
131 |
+
After completing the evaluation, if you want to analyze & summary the test results, you can use the statistics command. This command will analyze & summary the evaluation results in the specified directory and output an analysis report (.txt):
|
132 |
+
|
133 |
+
```console
|
134 |
+
gittaskbench eval
|
135 |
+
```
|
136 |
+
See ```test_reports/``` for a sample.
|
137 |
|
138 |
Each task entry contains:
|
139 |
- **task_id**: Unique task identifier (e.g., `Trafilatura_01`)
|
|
|
210 |
- Multi-modal tasks (vision, speech, text, signals).
|
211 |
- Repository-level evaluation.
|
212 |
- Real-world relevance (PDF extraction, video coloring, speech analysis, etc.).
|
213 |
+
- Extensible design for new tasks.
|