Enhance dataset card: update metadata and add sample usage

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +73 -8
README.md CHANGED
@@ -1,18 +1,28 @@
1
  ---
2
- license: cc-by-nc-sa-4.0
3
- task_categories:
4
- - question-answering
5
  language:
6
  - zh
7
  - en
8
- tags:
9
- - agent
10
  size_categories:
11
  - n<1K
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
  # Dataset Card for **GitTaskBench**
15
 
 
 
16
  ## Dataset Details
17
 
18
  ### Dataset Description
@@ -23,7 +33,7 @@ It contains **54 representative tasks** across **7 domains**, carefully curated
23
  - **Funded by [optional]:** Not specified
24
  - **Shared by [optional]:** GitTaskBench Team
25
  - **Language(s):** Primarily English (task descriptions, documentation)
26
- - **License:** [Specify license chosen, e.g., `cc-by-nc-sa-4.0`]
27
 
28
  ### Dataset Sources
29
  - **Repository:** [GitTaskBench GitHub](https://github.com/QuantaAlpha/GitTaskBench)
@@ -67,8 +77,63 @@ Each task specifies:
67
 
68
  ## Usage Example
69
 
70
- See GitHub Repository:** [GitTaskBench GitHub](https://github.com/QuantaAlpha/GitTaskBench)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
  Each task entry contains:
74
  - **task_id**: Unique task identifier (e.g., `Trafilatura_01`)
@@ -145,4 +210,4 @@ If you use GitTaskBench, please cite the paper:
145
  - Multi-modal tasks (vision, speech, text, signals).
146
  - Repository-level evaluation.
147
  - Real-world relevance (PDF extraction, video coloring, speech analysis, etc.).
148
- - Extensible design for new tasks.
 
1
  ---
 
 
 
2
  language:
3
  - zh
4
  - en
5
+ license: cc-by-nc-sa-4.0
 
6
  size_categories:
7
  - n<1K
8
+ task_categories:
9
+ - text-generation
10
+ - image-to-image
11
+ - image-to-video
12
+ - automatic-speech-recognition
13
+ - text-retrieval
14
+ tags:
15
+ - agent
16
+ - benchmark
17
+ - code-agent
18
+ - software-engineering
19
+ - multimodal
20
  ---
21
 
22
  # Dataset Card for **GitTaskBench**
23
 
24
+ The dataset was presented in the paper [GitTaskBench: A Benchmark for Code Agents Solving Real-World Tasks Through Code Repository Leveraging](https://huggingface.co/papers/2508.18993).
25
+
26
  ## Dataset Details
27
 
28
  ### Dataset Description
 
33
  - **Funded by [optional]:** Not specified
34
  - **Shared by [optional]:** GitTaskBench Team
35
  - **Language(s):** Primarily English (task descriptions, documentation)
36
+ - **License:** `cc-by-nc-sa-4.0`
37
 
38
  ### Dataset Sources
39
  - **Repository:** [GitTaskBench GitHub](https://github.com/QuantaAlpha/GitTaskBench)
 
77
 
78
  ## Usage Example
79
 
80
+ To get started with GitTaskBench, follow these steps for environment setup and evaluation.
81
+
82
+ ### 1. Set Up ⚙️
83
+ First, create a new conda environment:
84
+ ```console
85
+ conda create -n gittaskbench python=3.10 -y
86
+ conda activate gittaskbench
87
+
88
+ pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 \
89
+ --extra-index-url https://download.pytorch.org/whl/cu113
90
+ ```
91
+
92
+ Then, you can install `gittaskbench` with pip:
93
+ ```console
94
+ git clone https://github.com/QuantaAlpha/GitTaskBench.git
95
+ cd GitTaskBench
96
+ # config
97
+ pip install -e .
98
+ ```
99
+ Alternatively:
100
+ ```console
101
+ # config
102
+ pip install -r requirements.txt
103
+ ```
104
+
105
+ ### 2. Quick Start 💡
106
+
107
+ * #### **Single Task Evaluation:**
108
+
109
+ If you need to evaluate a single, specific task, you can use the following command. The example below shows how to evaluate the `Trafilatura_01` task:
110
+
111
+ ```console
112
+ cd GitTaskBench
113
+ # The outputs are saved in the DEFAULT "./output" directory, for example: "./output/Trafilatura_01/output.txt"
114
+ ```
115
+
116
+ ```console
117
+ gittaskbench grade --taskid Trafilatura_01
118
+ ```
119
+
120
+ Running the command will produce an analysis report (.jsonl) at the DEFAULT path (./test_results/Trafilatura_01). See ```test_results_for_show/``` for a sample.
121
 
122
+ The complete commands can be found in the [🤖 Automation Evaluation](#automation-evaluation) section.
123
+
124
+ * #### **All Tasks Evaluation**
125
+ When you need to evaluate all tasks, you can use the --all parameter. This command will automatically iterate through and execute the evaluation of all tasks:
126
+ ```console
127
+ gittaskbench grade --all
128
+ ```
129
+
130
+ * #### **Test Results Analysis**
131
+ After completing the evaluation, if you want to analyze & summary the test results, you can use the statistics command. This command will analyze & summary the evaluation results in the specified directory and output an analysis report (.txt):
132
+
133
+ ```console
134
+ gittaskbench eval
135
+ ```
136
+ See ```test_reports/``` for a sample.
137
 
138
  Each task entry contains:
139
  - **task_id**: Unique task identifier (e.g., `Trafilatura_01`)
 
210
  - Multi-modal tasks (vision, speech, text, signals).
211
  - Repository-level evaluation.
212
  - Real-world relevance (PDF extraction, video coloring, speech analysis, etc.).
213
+ - Extensible design for new tasks.