|
|
|
"""# %% [markdown]
|
|
# # Web Scraping, Processing, and Embedding Project
|
|
#
|
|
# This notebook demonstrates a workflow for web scraping text data from a website, processing it into manageable chunks, and then creating numerical representations (embeddings) of these chunks using a sentence transformer model. Finally, the embedded data is saved to Google Drive.
|
|
#
|
|
# %% [markdown]
|
|
# # Install necessary libraries
|
|
# This cell installs all the required Python packages.
|
|
# %%
|
|
!pip install -q ipywidgets google-colab python-docx pypdf pandas nltk sentence-transformers torch tqdm pyarrow httpx beautifulsoup4 datasets requests
|
|
|
|
# %% [markdown]
|
|
# # Web scraping and data extraction script
|
|
# This script crawls a website and extracts text content from each page.
|
|
#
|
|
# %%
|
|
# prompt: write a script to navigate to the link https://learn.microsoft.com/en-us/ and start web scrapping and data extraction automatically on every page must scrap and extract all data, 100% data
|
|
|
|
import requests
|
|
from bs4 import BeautifulSoup
|
|
from urllib.parse import urljoin, urlparse
|
|
|
|
def is_valid(url):
|
|
'''Checks whether `url` is a valid URL.'''
|
|
try:
|
|
result = urlparse(url)
|
|
return all([result.scheme, result.netloc])
|
|
except:
|
|
return False
|
|
|
|
def get_all_website_links(url):
|
|
'''
|
|
Returns all URLs that is found on `url` in which it belongs to the same website
|
|
'''
|
|
urls = set()
|
|
domain_name = urlparse(url).netloc
|
|
try:
|
|
soup = BeautifulSoup(requests.get(url).content, "html.parser")
|
|
for a_tag in soup.findAll("a"):
|
|
href = a_tag.attrs.get("href")
|
|
if href == "" or href is None:
|
|
continue
|
|
href = urljoin(url, href)
|
|
parsed_href = urlparse(href)
|
|
href = parsed_href.scheme + "://" + parsed_href.netloc + parsed_href.path
|
|
if not is_valid(href):
|
|
continue
|
|
if parsed_href.netloc == domain_name:
|
|
urls.add(href)
|
|
except Exception as e:
|
|
print(f"Error processing {url}: {e}")
|
|
return urls
|
|
|
|
def scrape_page_data(url):
|
|
'''Scrapes all text content from a given URL.'''
|
|
try:
|
|
response = requests.get(url)
|
|
soup = BeautifulSoup(response.content, 'html.parser')
|
|
# Extract all text from the page
|
|
text = soup.get_text(separator='\n', strip=True)
|
|
return text
|
|
except Exception as e:
|
|
print(f"Error scraping {url}: {e}")
|
|
return None
|
|
|
|
def crawl_website(start_url, max_pages=100):
|
|
'''Crawls a website and scrapes data from each page.'''
|
|
visited_urls = set()
|
|
urls_to_visit = {start_url}
|
|
scraped_data = {}
|
|
|
|
while urls_to_visit and len(visited_urls) < max_pages:
|
|
current_url = urls_to_visit.pop()
|
|
if current_url in visited_urls:
|
|
continue
|
|
|
|
print(f"Visiting: {current_url}")
|
|
visited_urls.add(current_url)
|
|
|
|
# Scrape data
|
|
data = scrape_page_data(current_url)
|
|
if data:
|
|
scraped_data[current_url] = data
|
|
|
|
# Find new links
|
|
new_links = get_all_website_links(current_url)
|
|
for link in new_links:
|
|
if link not in visited_urls:
|
|
urls_to_visit.add(link)
|
|
|
|
return scraped_data
|
|
|
|
# Start the crawling process
|
|
start_url = "https://learn.microsoft.com/en-us/"
|
|
all_scraped_data = crawl_website(start_url)
|
|
|
|
# You can now process the `all_scraped_data` dictionary
|
|
# For example, print the number of pages scraped and the data from one page:
|
|
print(f"\nScraped data from {len(all_scraped_data)} pages.")
|
|
if all_scraped_data:
|
|
first_url = list(all_scraped_data.keys())[0]
|
|
print(f"\nData from the first scraped page ({first_url}):")
|
|
# print(all_scraped_data[first_url][:500]) # Print first 500 characters
|
|
|
|
# %% [markdown]
|
|
# # Data processing and embedding script
|
|
# This script takes the scraped data, chunks it, and creates embeddings using a sentence transformer model.
|
|
# %%
|
|
# prompt: write a script to convert, format, embed the full scrapped and extracted data to structured, embedded data chunks
|
|
|
|
import torch
|
|
from sentence_transformers import SentenceTransformer
|
|
from datasets import Dataset
|
|
from tqdm.auto import tqdm
|
|
|
|
# Check for GPU availability
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
print(f"Using device: {device}")
|
|
|
|
# Load a pre-trained sentence transformer model
|
|
model = SentenceTransformer('all-MiniLM-L6-v2').to(device)
|
|
|
|
def chunk_text(text, chunk_size=500, chunk_overlap=50):
|
|
'''Splits text into chunks with overlap.'''
|
|
words = text.split()
|
|
chunks = []
|
|
i = 0
|
|
while i < len(words):
|
|
chunk = words[i:i + chunk_size]
|
|
chunks.append(" ".join(chunk))
|
|
i += chunk_size - chunk_overlap
|
|
if i >= len(words) - chunk_overlap and i < len(words): # Handle the last chunk
|
|
chunks.append(" ".join(words[i:]))
|
|
break
|
|
|
|
return chunks
|
|
|
|
def process_scraped_data(scraped_data, chunk_size=500, chunk_overlap=50):
|
|
'''
|
|
Converts scraped data into formatted chunks and embeds them.
|
|
Returns a list of dictionaries, each containing chunk text, source URL, and embedding.
|
|
'''
|
|
processed_chunks = []
|
|
for url, text in tqdm(scraped_data.items(), desc="Processing scraped data"):
|
|
if text:
|
|
chunks = chunk_text(text, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
|
for chunk in chunks:
|
|
processed_chunks.append({
|
|
'text': chunk,
|
|
'source': url,
|
|
})
|
|
return processed_chunks
|
|
|
|
def embed_chunks(processed_chunks, model, batch_size=32):
|
|
'''Embeds the text chunks using the sentence transformer model.'''
|
|
# Extract texts for embedding
|
|
texts_to_embed = [chunk['text'] for chunk in processed_chunks]
|
|
|
|
# Create a Hugging Face Dataset
|
|
dataset = Dataset.from_dict({'text': texts_to_embed})
|
|
|
|
# Define a function to apply embeddings
|
|
def get_embeddings(batch):
|
|
return {'embedding': model.encode(batch['text'], convert_to_tensor=True).tolist()}
|
|
|
|
# Apply the embedding function in batches
|
|
dataset = dataset.map(get_embeddings, batched=True, batch_size=batch_size)
|
|
|
|
# Update the original processed_chunks list with embeddings
|
|
for i, item in enumerate(processed_chunks):
|
|
item['embedding'] = dataset[i]['embedding']
|
|
|
|
return processed_chunks
|
|
|
|
# --- Main script for processing and embedding ---
|
|
|
|
# Process the scraped data into chunks
|
|
formatted_chunks = process_scraped_data(all_scraped_data)
|
|
|
|
# Embed the chunks
|
|
embedded_data = embed_chunks(formatted_chunks, model)
|
|
|
|
# `embedded_data` is now a list of dictionaries, where each dictionary
|
|
# represents a chunk with its text, source URL, and embedding.
|
|
# You can now use this data for similarity search, indexing, etc.
|
|
|
|
print(f"\nCreated {len(embedded_data)} embedded chunks.")
|
|
if embedded_data:
|
|
print("\nExample of an embedded chunk:")
|
|
embedded_data[0]
|
|
|
|
# %% [markdown]
|
|
# # Save the embedded dataset to Google Drive
|
|
# This script saves the processed and embedded data to a JSON file in your Google Drive.
|
|
#
|
|
# %%
|
|
# prompt: write a script to save all converted, formatted, embedded dataset to the "Output" file on My Drive
|
|
|
|
import json
|
|
from google.colab import drive
|
|
|
|
# Mount Google Drive
|
|
drive.mount('/content/drive')
|
|
|
|
# Define the output file path
|
|
output_file_path = '/content/drive/My Drive/Output/embedded_dataset.json'
|
|
|
|
# Ensure the output directory exists
|
|
import os
|
|
output_dir = os.path.dirname(output_file_path)
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
|
|
# Save the embedded data to a JSON file
|
|
with open(output_file_path, 'w') as f:
|
|
json.dump(embedded_data, f, indent=2)
|
|
|
|
print(f"\nSaved embedded dataset to: {output_file_path}")
|
|
""" |