|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from typing import Dict, List, Tuple |
|
import datasets |
|
import pandas |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
_CITATION = """ |
|
@InProceedings{10.1007/978-3-030-79457-6_35, |
|
author="Luu, Son T. |
|
and Nguyen, Kiet Van |
|
and Nguyen, Ngan Luu-Thuy", |
|
editor="Fujita, Hamido |
|
and Selamat, Ali |
|
and Lin, Jerry Chun-Wei |
|
and Ali, Moonis", |
|
title="A Large-Scale Dataset for Hate Speech Detection on Vietnamese Social Media Texts", |
|
booktitle="Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices", |
|
year="2021", |
|
publisher="Springer International Publishing", |
|
address="Cham", |
|
pages="415--426", |
|
abstract="In recent years, Vietnam witnesses the mass development of social network users on different social |
|
platforms such as Facebook, Youtube, Instagram, and Tiktok. On social media, hate speech has become a critical |
|
problem for social network users. To solve this problem, we introduce the ViHSD - a human-annotated dataset for |
|
automatically detecting hate speech on the social network. This dataset contains over 30,000 comments, each comment |
|
in the dataset has one of three labels: CLEAN, OFFENSIVE, or HATE. Besides, we introduce the data creation process |
|
for annotating and evaluating the quality of the dataset. Finally, we evaluate the dataset by deep learning and transformer models.", |
|
isbn="978-3-030-79457-6" |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["vie"] |
|
_DATASETNAME = "uit_vihsd" |
|
_DESCRIPTION = """ |
|
The ViHSD dataset consists of comments collected from Facebook pages and YouTube channels that have a |
|
high-interactive rate, and do not restrict comments. This dataset is used for hate speech detection on |
|
Vietnamese language. Data is anonymized, and labeled as either HATE, OFFENSIVE, or CLEAN. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/sonlam1102/vihsd/" |
|
_LICENSE = Licenses.UNKNOWN.value |
|
_URL = "https://raw.githubusercontent.com/sonlam1102/vihsd/main/data/vihsd.zip" |
|
|
|
_Split_Path = { |
|
"train": "vihsd/train.csv", |
|
"validation": "vihsd/dev.csv", |
|
"test": "vihsd/test.csv", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class UiTVihsdDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
The SeaCrowd dataloader for the dataset Vietnamese Hate Speech Detection (UIT-ViHSD). |
|
""" |
|
|
|
CLASS_LABELS = ["CLEAN", "OFFENSIVE", "HATE"] |
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_text", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} SEACrowd schema ", |
|
schema="seacrowd_text", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("int64"), |
|
"text": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_text": |
|
features = schemas.text_features(label_names=self.CLASS_LABELS) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
file_paths = dl_manager.download_and_extract(_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": os.path.join(file_paths, _Split_Path["train"])}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": os.path.join(file_paths, _Split_Path["validation"])}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": os.path.join(file_paths, _Split_Path["test"])}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
data_lines = pandas.read_csv(filepath) |
|
for row in data_lines.itertuples(): |
|
if self.config.schema == "source": |
|
example = {"id": str(row.Index), "text": row.free_text, "label": row.label_id} |
|
if self.config.schema == "seacrowd_text": |
|
example = {"id": str(row.Index), "text": row.free_text, "label": self.CLASS_LABELS[int(row.label_id)]} |
|
yield row.Index, example |
|
|
|
|