repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
unofficial-memsource/memsource-cli-client
|
memsource_cli/models/search_tm_trans_memory_dto_v3.py
|
SearchTMTransMemoryDtoV3.__eq__
|
python
|
def __eq__(self, other):
if not isinstance(other, SearchTMTransMemoryDtoV3):
return False
return self.__dict__ == other.__dict__
|
Returns true if both objects are equal
|
https://github.com/unofficial-memsource/memsource-cli-client/blob/a6639506b74e95476da87f4375953448b76ea90c/memsource_cli/models/search_tm_trans_memory_dto_v3.py#L158-L163
|
import pprint
import re
import six
class SearchTMTransMemoryDtoV3(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'id': 'str',
'name': 'str',
'reverse': 'bool'
}
attribute_map = {
'id': 'id',
'name': 'name',
'reverse': 'reverse'
}
def __init__(self, id=None, name=None, reverse=None):
self._id = None
self._name = None
self._reverse = None
self.discriminator = None
if id is not None:
self.id = id
if name is not None:
self.name = name
if reverse is not None:
self.reverse = reverse
@property
def id(self):
return self._id
@id.setter
def id(self, id):
self._id = id
@property
def name(self):
return self._name
@name.setter
def name(self, name):
self._name = name
@property
def reverse(self):
return self._reverse
@reverse.setter
def reverse(self, reverse):
self._reverse = reverse
def to_dict(self):
result = {}
for attr, _ in six.iteritems(self.swagger_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
if issubclass(SearchTMTransMemoryDtoV3, dict):
for key, value in self.items():
result[key] = value
return result
def to_str(self):
return pprint.pformat(self.to_dict())
def __repr__(self):
return self.to_str()
|
Apache License 2.0
|
siddhi/test_driven_python
|
stock_alerter/stock.py
|
Stock.update
|
python
|
def update(self, timestamp, price):
if price < 0:
raise ValueError("price should not be negative")
self.history.update(timestamp, price)
self.updated.fire(self)
|
Updates the stock with the price at the given timestamp
>>> stock.update(datetime(2014, 10, 2), 10)
>>> stock.price
10
The method raises a ValueError exception if the price is negative
>>> stock.update(datetime(2014, 10, 2), -1)
Traceback (most recent call last):
...
ValueError: price should not be negative
|
https://github.com/siddhi/test_driven_python/blob/751e204b0b32b2780db598297217ff2758a9f39f/stock_alerter/stock.py#L58-L75
|
from datetime import timedelta
from enum import Enum
from .event import Event
from .timeseries import TimeSeries, MovingAverage, NotEnoughDataException
class StockSignal(Enum):
buy = 1
neutral = 0
sell = -1
class Stock:
LONG_TERM_TIMESPAN = 10
SHORT_TERM_TIMESPAN = 5
def __init__(self, symbol):
self.symbol = symbol
self.history = TimeSeries()
self.updated = Event()
@property
def price(self):
try:
return self.history[-1].value
except IndexError:
return None
|
MIT License
|
tencent/pysc2tencentextension
|
pysc2/env/sc2_env.py
|
SC2Env.reset
|
python
|
def reset(self):
self._episode_steps = 0
if self._episode_count:
self._restart()
self._episode_count += 1
logging.info("Starting episode: %s", self._episode_count)
self._metrics.increment_episode()
self._last_score = [0] * self._num_agents
self._state = environment.StepType.FIRST
self._game_info = self._parallel.run(c.game_info for c in self._controllers)
return self._observe(target_game_loop=0)
|
Start a new episode.
|
https://github.com/tencent/pysc2tencentextension/blob/1cb01427f720381125aef067ec14e8602777ee8a/pysc2/env/sc2_env.py#L496-L510
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
from absl import logging
import time
import enum
import numpy as np
import portpicker
from pysc2 import maps
from pysc2 import run_configs
from pysc2.env import environment
from pysc2.lib import actions as actions_lib
from pysc2.lib import features
from pysc2.lib import metrics
from pysc2.lib import named_array
from pysc2.lib import protocol
from pysc2.lib import renderer_human
from pysc2.lib import run_parallel
from pysc2.lib import stopwatch
from s2clientprotocol import common_pb2 as sc_common
from s2clientprotocol import sc2api_pb2 as sc_pb
sw = stopwatch.sw
possible_results = {
sc_pb.Victory: 1,
sc_pb.Defeat: -1,
sc_pb.Tie: 0,
sc_pb.Undecided: 0,
}
class Race(enum.IntEnum):
random = sc_common.Random
protoss = sc_common.Protoss
terran = sc_common.Terran
zerg = sc_common.Zerg
class Difficulty(enum.IntEnum):
very_easy = sc_pb.VeryEasy
easy = sc_pb.Easy
medium = sc_pb.Medium
medium_hard = sc_pb.MediumHard
hard = sc_pb.Hard
harder = sc_pb.Harder
very_hard = sc_pb.VeryHard
cheat_vision = sc_pb.CheatVision
cheat_money = sc_pb.CheatMoney
cheat_insane = sc_pb.CheatInsane
ActionSpace = actions_lib.ActionSpace
Dimensions = features.Dimensions
AgentInterfaceFormat = features.AgentInterfaceFormat
parse_agent_interface_format = features.parse_agent_interface_format
Agent = collections.namedtuple("Agent", ["race"])
Bot = collections.namedtuple("Bot", ["race", "difficulty"])
def ext_score(obs):
score_details = obs.observation.score.score_details
return named_array.NamedNumpyArray([
obs.observation.score.score,
score_details.idle_production_time,
score_details.idle_worker_time,
score_details.total_value_units,
score_details.total_value_structures,
score_details.killed_value_units,
score_details.killed_value_structures,
score_details.collected_minerals,
score_details.collected_vespene,
score_details.collection_rate_minerals,
score_details.collection_rate_vespene,
score_details.spent_minerals,
score_details.spent_vespene,
], names=features.ScoreCumulative, dtype=np.int32)
def _pick_unused_ports(num_ports, retry_interval_secs=3, retry_attempts=5):
ports = set()
for _ in range(retry_attempts):
ports.update(
portpicker.pick_unused_port() for _ in range(num_ports - len(ports)))
ports.discard(None)
if len(ports) == num_ports:
return list(ports)
time.sleep(retry_interval_secs)
for port in ports:
portpicker.return_port(port)
raise RuntimeError("Unable to obtain %d unused ports." % num_ports)
class SC2Env(environment.Base):
def __init__(self,
_only_use_kwargs=None,
map_name=None,
players=None,
agent_names=None,
agent_race=None,
bot_race=None,
difficulty=None,
screen_size_px=None,
minimap_size_px=None,
agent_interface_format=None,
discount=1.,
visualize=False,
step_mul=None,
realtime=False,
save_replay_episodes=0,
replay_dir=None,
game_steps_per_episode=None,
score_index=None,
score_multiplier=None,
random_seed=None,
disable_fog=False,
crop_to_playable_area=False,
show_cloaked=False,
show_burrowed_shadows=False,
show_placeholders=False,
raw_affects_selection=True,
update_game_info=False,
use_pysc2_feature=True,
version=None):
if _only_use_kwargs:
raise ValueError("All arguments must be passed as keyword arguments.")
if screen_size_px or minimap_size_px:
raise DeprecationWarning(
"screen_size_px and minimap_size_px are deprecated. Use the feature "
"or rgb variants instead. Make sure to check your observations too "
"since they also switched from screen/minimap to feature and rgb "
"variants.")
if agent_race or bot_race or difficulty:
raise DeprecationWarning(
"Explicit agent and bot races are deprecated. Pass an array of "
"sc2_env.Bot and sc2_env.Agent instances instead.")
map_inst = maps.get(map_name)
self._map_name = map_name
if not players:
players = list()
players.append(Agent(Race.random))
if not map_inst.players or map_inst.players >= 2:
players.append(Bot(Race.random, Difficulty.very_easy))
for p in players:
if not isinstance(p, (Agent, Bot)):
raise ValueError(
"Expected players to be of type Agent or Bot. Got: %s." % p)
num_players = len(players)
self._num_agents = sum(1 for p in players if isinstance(p, Agent))
self._players = players
if agent_names is None:
self._agent_names = [None] * self._num_agents
else:
assert len(agent_names) == self._num_agents
self._agent_names = agent_names
if not 1 <= num_players <= 2 or not self._num_agents:
raise ValueError(
"Only 1 or 2 players with at least one agent is "
"supported at the moment.")
if save_replay_episodes and not replay_dir:
raise ValueError("Missing replay_dir")
if map_inst.players and num_players > map_inst.players:
raise ValueError(
"Map only supports %s players, but trying to join with %s" % (
map_inst.players, num_players))
self._discount = discount
self._step_mul = step_mul or map_inst.step_mul
self._realtime = realtime
self._save_replay_episodes = save_replay_episodes
self._replay_dir = replay_dir
self._random_seed = random_seed
self._disable_fog = disable_fog
self._version = version
self._update_game_info = update_game_info
if score_index is None:
self._score_index = map_inst.score_index
else:
self._score_index = score_index
if score_multiplier is None:
self._score_multiplier = map_inst.score_multiplier
else:
self._score_multiplier = score_multiplier
self._episode_length = game_steps_per_episode
if self._episode_length is None:
self._episode_length = map_inst.game_steps_per_episode
self._run_config = run_configs.get()
self._parallel = run_parallel.RunParallel()
if agent_interface_format is None:
raise ValueError("Please specify agent_interface_format.")
if isinstance(agent_interface_format, AgentInterfaceFormat):
agent_interface_format = [agent_interface_format] * self._num_agents
if len(agent_interface_format) != self._num_agents:
raise ValueError(
"The number of entries in agent_interface_format should "
"correspond 1-1 with the number of agents.")
self.raw = not use_pysc2_feature
interfaces = []
for i, interface_format in enumerate(agent_interface_format):
interfaces.append(self._get_interface(interface_format, self.raw,
crop_to_playable_area,
show_cloaked,
show_burrowed_shadows,
show_placeholders,
raw_affects_selection))
if self._num_agents == 1:
self._launch_sp(map_inst, interfaces[0])
else:
self._launch_mp(map_inst, interfaces)
self._finalize(agent_interface_format, interfaces, visualize)
def _finalize(self, agent_interface_formats, interfaces, visualize):
game_info = self._parallel.run(c.game_info for c in self._controllers)
self._game_info = game_info
if not self._map_name:
self._map_name = game_info[0].map_name
for g, interface in zip(game_info, interfaces):
if g.options.render != interface.render:
logging.warning(
"Actual interface options don't match requested options:\n"
"Requested:\n%s\n\nActual:\n%s", interface, g.options)
self._features = [None for c in self._controllers]
if not self.raw:
self._features = [
features.features_from_game_info(
game_info=g,
use_feature_units=agent_interface_format.use_feature_units,
action_space=agent_interface_format.action_space,
hide_specific_actions=agent_interface_format.hide_specific_actions)
for g, agent_interface_format in zip(game_info, agent_interface_formats)
]
if visualize:
static_data = self._controllers[0].data()
self._renderer_human = renderer_human.RendererHuman()
self._renderer_human.init(game_info[0], static_data)
else:
self._renderer_human = None
self._metrics = metrics.Metrics(self._map_name)
self._metrics.increment_instance()
self._last_score = None
self._total_steps = 0
self._episode_steps = 0
self._episode_count = 0
self._obs = None
self._state = environment.StepType.LAST
logging.info("Environment is ready on map: %s", self._map_name)
@staticmethod
def _get_interface(agent_interface_format, require_raw,
crop_to_playable_area=False, show_cloaked=False,
show_burrowed_shadows=False, show_placeholders=False,
raw_affects_selection=True):
interface = sc_pb.InterfaceOptions(
raw=(agent_interface_format.use_feature_units or require_raw),
score=True, raw_affects_selection=raw_affects_selection,
raw_crop_to_playable_area=crop_to_playable_area,
show_cloaked=show_cloaked, show_burrowed_shadows=show_burrowed_shadows,
show_placeholders=show_placeholders,
)
if agent_interface_format is not None:
if agent_interface_format.feature_dimensions:
interface.feature_layer.width = (
agent_interface_format.camera_width_world_units)
agent_interface_format.feature_dimensions.screen.assign_to(
interface.feature_layer.resolution)
agent_interface_format.feature_dimensions.minimap.assign_to(
interface.feature_layer.minimap_resolution)
interface.feature_layer.crop_to_playable_area = crop_to_playable_area
if agent_interface_format.rgb_dimensions:
agent_interface_format.rgb_dimensions.screen.assign_to(
interface.render.resolution)
agent_interface_format.rgb_dimensions.minimap.assign_to(
interface.render.minimap_resolution)
interface.render.crop_to_playable_area = crop_to_playable_area
return interface
def _launch_sp(self, map_inst, interface):
self._sc2_procs = [self._run_config.start(version=self._version)]
self._controllers = [p.controller for p in self._sc2_procs]
create = sc_pb.RequestCreateGame(
local_map=sc_pb.LocalMap(
map_path=map_inst.path, map_data=map_inst.data(self._run_config)),
disable_fog=self._disable_fog,
realtime=self._realtime)
agent_race = Race.random
for p in self._players:
if isinstance(p, Agent):
create.player_setup.add(type=sc_pb.Participant)
agent_race = p.race
else:
create.player_setup.add(type=sc_pb.Computer, race=p.race,
difficulty=p.difficulty)
if self._random_seed is not None:
create.random_seed = self._random_seed
self._controllers[0].create_game(create)
join = sc_pb.RequestJoinGame(race=agent_race, options=interface,
player_name=self._agent_names[0])
self._controllers[0].join_game(join)
def _launch_mp(self, map_inst, interfaces):
self._ports = _pick_unused_ports(self._num_agents * 2)
self._sc2_procs = [self._run_config.start(version=self._version, extra_ports=self._ports)
for _ in range(self._num_agents)]
self._controllers = [p.controller for p in self._sc2_procs]
for c in self._controllers:
c.save_map(map_inst.path, map_inst.data(self._run_config))
create = sc_pb.RequestCreateGame(
local_map=sc_pb.LocalMap(
map_path=map_inst.path),
disable_fog=self._disable_fog,
realtime=self._realtime)
if self._random_seed is not None:
create.random_seed = self._random_seed
for p in self._players:
if isinstance(p, Agent):
create.player_setup.add(type=sc_pb.Participant)
else:
create.player_setup.add(type=sc_pb.Computer, race=p.race,
difficulty=p.difficulty)
self._controllers[0].create_game(create)
agent_players = (p for p in self._players if isinstance(p, Agent))
join_reqs = []
for agent_index, p in enumerate(agent_players):
ports = self._ports[:]
join = sc_pb.RequestJoinGame(options=interfaces[agent_index],
player_name=self._agent_names[agent_index])
join.shared_port = 0
join.server_ports.game_port = ports.pop(0)
join.server_ports.base_port = ports.pop(0)
for _ in range(self._num_agents - 1):
join.client_ports.add(game_port=ports.pop(0),
base_port=ports.pop(0))
join.race = p.race
join_reqs.append(join)
self._parallel.run((c.join_game, join)
for c, join in zip(self._controllers, join_reqs))
self._create_req = create
self._join_reqs = join_reqs
def observation_spec(self):
if not self.raw:
return tuple(f.observation_spec() for f in self._features)
else:
return [None] * self._num_agents
def action_spec(self):
if not self.raw:
return tuple(f.action_spec() for f in self._features)
else:
return [None] * self._num_agents
def _restart(self):
if len(self._controllers) == 1:
self._controllers[0].restart()
else:
self._parallel.run(c.leave for c in self._controllers)
self._controllers[0].create_game(self._create_req)
self._parallel.run((c.join_game, j)
for c, j in zip(self._controllers, self._join_reqs))
@sw.decorate
|
Apache License 2.0
|
mfouesneau/tap
|
examples/ipython_notebook.py
|
NBPbar.update
|
python
|
def update(self, n, desc=None, total=None):
if total is None:
total = self._maxval
if desc is not None:
self.desc = desc
cur_t = _time.time()
self.print_status(n, total, cur_t - self._start_t)
|
Kept for backward compatibility and the decorator feature
|
https://github.com/mfouesneau/tap/blob/dc304f2981ecd2333d9b5784a10e556187849203/examples/ipython_notebook.py#L874-L881
|
from IPython.display import display, Markdown
try:
from nbconvert.filters.markdown import markdown2latex, markdown2html
except ImportError:
from IPython.nbconvert.filters.markdown import markdown2latex, markdown2html
from IPython.display import DisplayObject
import time as _time
import sys
class Caption(Markdown):
def __init__(self, s, center=False, **kwargs):
Markdown.__init__(self, s, **kwargs)
self._center = center
def _repr_html_(self):
txt = markdown2html(self.data)
if self._center:
return '<center>{0}</center>'.format(txt)
else:
return '{0}'.format(txt)
def _repr_latex_(self):
txt = markdown2latex(self.data)
if self._center:
return '\\begin{center}\n' + txt + '\n\\end{center}'
else:
return txt
def display(self):
display(self)
def __str__(self):
return self._repr_latex_()
class Matrix(object):
def __init__(self,s, fmt='%0.4g'):
self.s = s
self._fmt = fmt
def _repr_(self):
text = r"""\begin{bmatrix}"""
t = []
for k in self.s:
t.append( ' & '.join([self._fmt % v for v in k] ) + r'\\' )
text += ''.join(t)
text += r"""\end{bmatrix}"""
return Markdown(text)
def _repr_latex_(self):
text = r"""\begin{bmatrix}"""
t = []
for k in self.s:
t.append( ' & '.join([self._fmt % v for v in k] ) + r'\\' )
text += ''.join(t)
text += r"""\end{bmatrix}"""
return text
def __str__(self):
return self._repr_latex_()
def display(self):
display(self)
def disp_markdown(*args):
return display(Markdown(*args))
def load_latex_macros():
return disp_markdown(open('notebook_macros').read())
def add_input_toggle():
from IPython.display import HTML, display
r = HTML('''
<script>
$( document ).ready(function () {
IPython.CodeCell.options_default['cm_config']['lineWrapping'] = true;
IPython.notebook.get_selected_cell()
IPython.toolbar.add_buttons_group([
{
'label' : 'toggle all input cells',
'icon' : 'fa-eye-slash',
'callback': function(){ $('div.input').slideToggle(); }
}
]);
});
</script>
''')
display(r)
return r
def add_citation_button():
from IPython.display import HTML, display
r = HTML("""
<script>
function insert_citn() {
// Build paragraphs of cell type and count
var entry_box = $('<input type="text"/>');
var body = $('<div><p> Enter the Bibtex reference to insert </p><form>').append(entry_box)
.append('</form></div>');
// Show a modal dialog with the stats
IPython.dialog.modal({
notebook: IPython.notebook,
keyboard_manager: IPython.notebook.keyboard_manager,
title: "Bibtex reference insertion",
body: body,
open: function() {
// Submit on pressing enter
var that = $(this);
that.find('form').submit(function () {
that.find('.btn-primary').first().click();
return false;
});
entry_box.focus();
},
buttons : {
"Cancel" : {},
"Insert" : {
"class" : "btn-primary",
"click" : function() {
// Retrieve the selected citation, add to metadata,
var citation = entry_box.val();
// if (!citation) {return;}
var citn_html = '<cite data-cite="' + citation + '">' + citation + '</cite>';
var cell = IPython.notebook.get_selected_cell();
cell.code_mirror.replaceSelection(citn_html);
}
}
}
});
};
$( document ).ready(function () {
IPython.toolbar.add_buttons_group([
{
'label' : 'insert bibtex reference in markdown',
'icon' : 'fa-graduation-cap', // http://fontawesome.io/icons/
'callback': insert_citn,
}
]);
});
</script>
<style>
cite {
font-style: normal;
color: #45749e;
}
</style>
""")
display(r)
return r
class PDF(object):
def __init__(self,url):
self.url = url
def _repr_html_(self):
return '<iframe src=%s></iframe>' % self.url
def _repr_latex_(self):
return r'\begin{center} \adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{%s}\end{center}' % self.url
class Table(DisplayObject):
VDOTS = object()
def __init__(self, data, headings=None, formats=None, caption=None,
label=None, position='h', subtables=1):
if len(data) == 0:
raise ValueError("data is empty")
if label is None != caption is None:
raise ValueError("specify neither or both of label & caption")
self.columns = len(data[0])
if self.columns == 0:
raise ValueError("no columns")
if headings and len(headings) != self.columns:
raise ValueError("bad headings length")
if isinstance(formats, str):
formats = [formats.format] * self.columns
elif callable(formats):
formats = [formats] * self.columns
elif formats:
if len(formats) != self.columns:
raise ValueError("bad formats length")
def maybe_string_format(f):
if isinstance(f, str):
return f.format
else:
assert callable(f)
return f
formats = list(map(maybe_string_format, formats))
else:
formats = [self._default_format] * self.columns
for i, row in enumerate(data):
if row is not self.VDOTS and len(row) != self.columns:
raise ValueError("bad row length", i)
self.headings = headings
self.data = data
self.formats = formats
self.caption = caption
self.label = label
self.position = position
self.subtables = subtables
@staticmethod
def _default_format(what):
if isinstance(what, float):
return "{0:.5f}".format(what)
else:
return str(what)
def _format_rows(self):
for row in self.data:
if row is self.VDOTS:
yield self.VDOTS
else:
yield (f(x) for f, x in zip(self.formats, row))
def _subtables_split(self):
assert self.subtables > 1
rows = list(self._format_rows())
nominal_height = len(rows) // self.subtables
remainder = len(rows) % self.subtables
heights = [nominal_height] * self.subtables
for i in range(remainder):
heights[i] += 1
slices = []
acc = 0
for l in heights:
slices.append((acc, acc + l))
acc += l
assert slices[-1][1] == len(rows)
subtables = [rows[a:b] for a, b in slices]
return subtables
def _repr_latex_(self):
strings = []
strings.append(r"""
\begin{table}[""" + self.position + r"""]
\centering
""")
if self.label:
strings.append(r"\caption{" + self.caption + "}")
strings.append(r"\label{tab:" + self.label + "}")
if self.subtables > 1:
subtables = self._subtables_split()
width = "{:.3f}\linewidth".format(0.95 / self.subtables)
for i, rows in enumerate(subtables):
strings.append(r"\begin{{subtable}}[t]{{{0}}}%".format(width))
strings.append(r"""
\centering
\vspace{0pt}
""")
self._latex_tabular(strings, rows)
strings.append(r"\end{subtable}%")
if i != len(subtables) - 1:
strings.append("\hfill%")
else:
rows = self._format_rows()
self._latex_tabular(strings, rows)
strings.append(r"""
\end{table}
""")
return "\n".join(strings)
def _latex_tabular(self, strings, rows):
x = "|".join(["c"] * self.columns)
strings.append(r"\begin{tabular}{|" + x + "|}")
strings.append(r"\hline")
if self.headings:
latex = " & ".join(str(x) for x in self.headings)
strings.append(latex + r" \\")
strings.append(r"\hline")
for row in rows:
if row is self.VDOTS:
row = [r"\vdots"] * self.columns
latex = " & ".join(row)
strings.append(latex + r" \\")
strings.append(r"""
\hline
\end{tabular}%""")
def _repr_html_(self):
strings = []
strings.append("""
<style type="text/css">
.util_Table td { text-align: center; }
.util_Table tbody tr, .util_Table tbody td {
border-bottom: 0;
border-top: 0;
}
.util_Table_subtable {
float: left;
}
</style>
""")
if self.label:
c = self.caption
l = "<code>[{}]</code>".format(self.label)
strings.append("""
<h3>{1} {2}</h3>
""".format(self.columns, c, l))
if self.subtables > 1:
subtables = self._subtables_split()
strings.append("<div class='clearfix'>")
for rows in subtables:
strings.append("<div class='util_Table_subtable'>")
self._html_table(strings, rows)
strings.append("</div>")
strings.append("</div>")
else:
rows = self._format_rows()
self._html_table(strings, rows)
return "\n".join(strings)
def _html_table(self, strings, rows):
strings.append("<table class='util_Table'>")
if self.headings:
strings.append("<thead>")
strings.append("<tr>")
headings = map("<th>{0}</th>".format, self.headings)
strings.append("\n".join(headings))
strings.append("</tr>")
strings.append("</thead>")
strings.append("<tbody>")
for row in rows:
if row is self.VDOTS:
row = ["\u22ee"] * self.columns
strings.append("<tr>")
row = map("<td>{0}</td>".format, row)
strings.append("\n".join(row))
strings.append("</tr>")
strings.append("</tbody>")
strings.append("</table>")
def __repr__(self):
if self.headings:
widths = [len(x) for x in self.headings]
data = [self.headings]
else:
widths = None
data = []
for row in self._format_rows():
if row is self.VDOTS:
continue
r = list(row)
w = [len(x) for x in r]
if widths is None:
widths = w
else:
widths = [max(a, b) for a, b in zip(widths, w)]
data.append(list(r))
strings = []
if self.label:
c = self.caption.replace("\n", " ")
strings.append('Table: {0} ({1})'.format(self.label, c))
for row in data:
if row is self.VDOTS:
strings.append('...')
else:
r = [x.ljust(b + 4) for x, b in zip(row, widths)]
strings.append(''.join(r))
return '\n'.join(strings)
def __html__(self):
return self._repr_html_()
class LatexFigure(object):
extension = 'pdf'
def __init__(self, label, caption, fig=None, position="", star=False,
options='width=\columnwidth', margin=False):
if fig is None:
from matplotlib.pyplot import gcf
fig = gcf()
self.label = label
self.caption = caption
self.fig = fig
self.position = position
self.options = options
self.star = star
self.margin = margin
self.filename = "figure_{0:s}.{1:s}".format(label, self.__class__.extension)
import pylab as plt
try:
plt.savefig(self.filename, bbox_inches='tight')
except:
plt.savefig(self.filename)
def _repr_html_(self):
return markdown2html('> **Figure (<a name="fig:{label:s}">{label:s}</a>)**: {caption:s}'.format(
label=self.label, caption=self.caption))
def _repr_latex_(self, subfigure=None):
if subfigure:
environment = "subfigure"
args = "[{position}]{{{width}}}".format(**subfigure)
else:
environment = "figure"
args = "[{0}]".format(self.position)
args = args.replace('[]', '')
if self.star:
environment += '*'
elif self.margin & (not subfigure):
environment = "margin" + environment
return r"""\begin{{{env:s}}}{args:s}
\centering
\includegraphics[{options:s}]{{{fname:s}}}
\caption{{{caption:s}}}
\label{{fig:{label:s}}}
\end{{{env:s}}}
""".format(env=environment, args=args, options=self.options,
fname=self.filename, caption=self.caption,
label=self.label)
def __repr__(self):
c = self.caption.replace("\n", " ")
return "Figure: {0} ({1})".format(self.label, c)
def __html__(self):
return ""
class LatexSubfigures(object):
def __init__(self, label, caption, figures, position='h',
subfigure_position='b', star=False):
self.label = label
self.caption = caption
self.figures = figures
self.position = position
self.subfigure_position = subfigure_position
self.star = star
def _repr_html_(self):
return markdown2html('> **Figure (<a name="fig:{label:s}">{label:s}</a>)**: {caption:s}'.format(
label=self.label, caption=self.caption))
def _repr_latex_(self):
strings = []
environment = "figure"
if self.star:
environment += '*'
strings.append(r"""\begin{""" + environment + """}[""" + self.position + r"""]
\centering
""")
opts = {"position": self.subfigure_position,
"width": "{0:0.2f}\linewidth".format((1 - len(self.figures) * 0.01) / len(self.figures))}
for f in self.figures:
latex = f._repr_latex_(subfigure=opts).strip()
strings.append(latex)
strings.append(r"""
\caption{""" + self.caption + r"""}
\label{fig:""" + self.label + r"""}
\end{""" + environment + """}
""")
return "\n".join(strings)
def __repr__(self):
c = self.caption.replace("\n", " ")
strings = ["Figure group: {0} ({1})".format(self.label, c)]
strings += [repr(x) for x in self.figures]
return "\n".join(strings)
def __html__(self):
return ""
class LatexNumberFormatter(object):
def __init__(self, sf=10):
self.sf = sf
self.s_fmt = "{{:.{0}e}}".format(self.sf)
def __call__(self, n):
n = self.s_fmt.format(n)
n, e, exp = n.partition("e")
if e == "e":
exp = int(exp)
if not n.startswith("-"):
n = r"\phantom{-}" + n
return r"${} \times 10^{{{}}}$".format(n, exp)
else:
return "${}$".format(n)
class NBPbar(object):
def __init__(self, desc=None, maxval=None, time=True, eta=True, rate=True, length=None,
file=None, keep=True, mininterval=0.5, miniters=1, units='iters', **kwargs):
self.time = time
self.eta = eta
self.rate = rate
self.desc = desc or ''
self.units = units
self.file = file or sys.stdout
self._last_print_len = 0
self.keep = keep
self.mininterval = mininterval
self.miniters = miniters
self._auto_width = True
self.length = 10
if length is not None:
self.length = length
self._auto_width = False
self._start_t = _time.time()
self._maxval = maxval
if 'txt' in kwargs:
self.desc = kwargs['txt']
self._F = None
@staticmethod
def format_interval(t):
mins, s = divmod(int(t), 60)
h, m = divmod(mins, 60)
d, h = divmod(h, 24)
txt = '{m:02d}:{s:02d}'
if h:
txt = '{h:02d}:' + txt
if d:
txt = '{d:d}d ' + txt
return txt.format(d=d, h=h, m=m, s=s)
def build_str_meter(self, n, total, elapsed):
if n > total:
total = None
vals = {'n': n}
vals['elapsed'] = self.format_interval(elapsed)
vals['rate'] = '{0:5.2f}'.format((n / elapsed)) if elapsed else '?'
vals['units'] = self.units
if not total:
txt = '{desc:s} {n:d}'
else:
txt = '{desc:s} {n:d}/{total:d} {percent:s}'
if self.time or self.eta or self.rate:
txt += ' ['
info = []
if self.time:
info.append('time: {elapsed:s}')
if self.eta and total:
info.append('eta: {left:s}')
if self.rate:
info.append('{rate:s} {units:s}/sec')
txt += ', '.join(info) + ']'
if not total:
return txt.format(**vals)
frac = float(n) / total
vals['desc'] = self.desc
vals['percent'] = '{0:3.0%}'.format(frac)
vals['left'] = self.format_interval(elapsed / n * (total - n)) if n else '?'
vals['total'] = total
return txt.format(**vals)
def print_status(self, n, total, elapsed):
from IPython.html.widgets import FloatProgress
desc = self.build_str_meter(n, total, elapsed)
if self._F is None:
self._F = FloatProgress(min=0, max=total, description=desc)
display(self._F)
self._F.value = n
self._F.description = desc
def iterover(self, iterable, total=None):
if total is None:
try:
total = len(iterable)
except TypeError:
total = self._maxval
self.print_status(0, total, 0)
last_print_n = 0
start_t = last_print_t = _time.time()
for n, obj in enumerate(iterable):
yield obj
if n - last_print_n >= self.miniters:
cur_t = _time.time()
if cur_t - last_print_t >= self.mininterval:
self.print_status(n, total, cur_t - start_t)
last_print_n = n
last_print_t = cur_t
if self.keep:
if last_print_n < n:
cur_t = _time.time()
self.print_status(n, total, cur_t - start_t)
self.file.write('\n')
def __enter__(self):
return self
def __exit__(self, *args, **kwargs):
return False
|
MIT License
|
jahjajaka/afternoon_cleaner
|
object_detection/predictors/heads/keras_box_head.py
|
ConvolutionalBoxHead._predict
|
python
|
def _predict(self, features):
box_encodings = features
for layer in self._box_encoder_layers:
box_encodings = layer(box_encodings)
batch_size = features.get_shape().as_list()[0]
if batch_size is None:
batch_size = tf.shape(features)[0]
if self._box_encodings_clip_range is not None:
box_encodings = tf.clip_by_value(
box_encodings, self._box_encodings_clip_range.min,
self._box_encodings_clip_range.max)
box_encodings = tf.reshape(box_encodings,
[batch_size, -1, 1, self._box_code_size])
return box_encodings
|
Predicts boxes.
Args:
features: A float tensor of shape [batch_size, height, width, channels]
containing image features.
Returns:
box_encodings: A float tensor of shape
[batch_size, num_anchors, q, code_size] representing the location of
the objects, where q is 1 or the number of classes.
|
https://github.com/jahjajaka/afternoon_cleaner/blob/590bdf58a216cbc6cfc47ef8f49d7af3df3703b7/object_detection/predictors/heads/keras_box_head.py#L107-L132
|
import tensorflow as tf
from object_detection.predictors.heads import head
class ConvolutionalBoxHead(head.KerasHead):
def __init__(self,
is_training,
box_code_size,
kernel_size,
num_predictions_per_location,
conv_hyperparams,
freeze_batchnorm,
use_depthwise=False,
box_encodings_clip_range=None,
name=None):
super(ConvolutionalBoxHead, self).__init__(name=name)
self._is_training = is_training
self._box_code_size = box_code_size
self._kernel_size = kernel_size
self._num_predictions_per_location = num_predictions_per_location
self._use_depthwise = use_depthwise
self._box_encodings_clip_range = box_encodings_clip_range
self._box_encoder_layers = []
if self._use_depthwise:
self._box_encoder_layers.append(
tf.keras.layers.DepthwiseConv2D(
[self._kernel_size, self._kernel_size],
padding='SAME',
depth_multiplier=1,
strides=1,
dilation_rate=1,
name='BoxEncodingPredictor_depthwise',
**conv_hyperparams.params()))
self._box_encoder_layers.append(
conv_hyperparams.build_batch_norm(
training=(is_training and not freeze_batchnorm),
name='BoxEncodingPredictor_depthwise_batchnorm'))
self._box_encoder_layers.append(
conv_hyperparams.build_activation_layer(
name='BoxEncodingPredictor_depthwise_activation'))
self._box_encoder_layers.append(
tf.keras.layers.Conv2D(
num_predictions_per_location * self._box_code_size, [1, 1],
name='BoxEncodingPredictor',
**conv_hyperparams.params(use_bias=True)))
else:
self._box_encoder_layers.append(
tf.keras.layers.Conv2D(
num_predictions_per_location * self._box_code_size,
[self._kernel_size, self._kernel_size],
padding='SAME',
name='BoxEncodingPredictor',
**conv_hyperparams.params(use_bias=True)))
|
MIT License
|
frank-qlu/recruit
|
招聘爬虫/zlzpView/static/zlzpView/venv/Lib/site-packages/numpy/lib/histograms.py
|
_unsigned_subtract
|
python
|
def _unsigned_subtract(a, b):
signed_to_unsigned = {
np.byte: np.ubyte,
np.short: np.ushort,
np.intc: np.uintc,
np.int_: np.uint,
np.longlong: np.ulonglong
}
dt = np.result_type(a, b)
try:
dt = signed_to_unsigned[dt.type]
except KeyError:
return np.subtract(a, b, dtype=dt)
else:
return np.subtract(a, b, casting='unsafe', dtype=dt)
|
Subtract two values where a >= b, and produce an unsigned result
This is needed when finding the difference between the upper and lower
bound of an int16 histogram
|
https://github.com/frank-qlu/recruit/blob/0875fb1d2cfb581aaa8abc7a97880c0ce5bf6147/招聘爬虫/zlzpView/static/zlzpView/venv/Lib/site-packages/numpy/lib/histograms.py#L325-L348
|
from __future__ import division, absolute_import, print_function
import functools
import operator
import warnings
import numpy as np
from numpy.compat.py3k import basestring
from numpy.core import overrides
__all__ = ['histogram', 'histogramdd', 'histogram_bin_edges']
array_function_dispatch = functools.partial(
overrides.array_function_dispatch, module='numpy')
_range = range
def _hist_bin_sqrt(x, range):
del range
return x.ptp() / np.sqrt(x.size)
def _hist_bin_sturges(x, range):
del range
return x.ptp() / (np.log2(x.size) + 1.0)
def _hist_bin_rice(x, range):
del range
return x.ptp() / (2.0 * x.size ** (1.0 / 3))
def _hist_bin_scott(x, range):
del range
return (24.0 * np.pi**0.5 / x.size)**(1.0 / 3.0) * np.std(x)
def _hist_bin_stone(x, range):
n = x.size
ptp_x = np.ptp(x)
if n <= 1 or ptp_x == 0:
return 0
def jhat(nbins):
hh = ptp_x / nbins
p_k = np.histogram(x, bins=nbins, range=range)[0] / n
return (2 - (n + 1) * p_k.dot(p_k)) / hh
nbins_upper_bound = max(100, int(np.sqrt(n)))
nbins = min(_range(1, nbins_upper_bound + 1), key=jhat)
if nbins == nbins_upper_bound:
warnings.warn("The number of bins estimated may be suboptimal.", RuntimeWarning, stacklevel=2)
return ptp_x / nbins
def _hist_bin_doane(x, range):
del range
if x.size > 2:
sg1 = np.sqrt(6.0 * (x.size - 2) / ((x.size + 1.0) * (x.size + 3)))
sigma = np.std(x)
if sigma > 0.0:
temp = x - np.mean(x)
np.true_divide(temp, sigma, temp)
np.power(temp, 3, temp)
g1 = np.mean(temp)
return x.ptp() / (1.0 + np.log2(x.size) +
np.log2(1.0 + np.absolute(g1) / sg1))
return 0.0
def _hist_bin_fd(x, range):
del range
iqr = np.subtract(*np.percentile(x, [75, 25]))
return 2.0 * iqr * x.size ** (-1.0 / 3.0)
def _hist_bin_auto(x, range):
fd_bw = _hist_bin_fd(x, range)
sturges_bw = _hist_bin_sturges(x, range)
del range
if fd_bw:
return min(fd_bw, sturges_bw)
else:
return sturges_bw
_hist_bin_selectors = {'stone': _hist_bin_stone,
'auto': _hist_bin_auto,
'doane': _hist_bin_doane,
'fd': _hist_bin_fd,
'rice': _hist_bin_rice,
'scott': _hist_bin_scott,
'sqrt': _hist_bin_sqrt,
'sturges': _hist_bin_sturges}
def _ravel_and_check_weights(a, weights):
a = np.asarray(a)
if a.dtype == np.bool_:
warnings.warn("Converting input from {} to {} for compatibility."
.format(a.dtype, np.uint8),
RuntimeWarning, stacklevel=2)
a = a.astype(np.uint8)
if weights is not None:
weights = np.asarray(weights)
if weights.shape != a.shape:
raise ValueError(
'weights should have the same shape as a.')
weights = weights.ravel()
a = a.ravel()
return a, weights
def _get_outer_edges(a, range):
if range is not None:
first_edge, last_edge = range
if first_edge > last_edge:
raise ValueError(
'max must be larger than min in range parameter.')
if not (np.isfinite(first_edge) and np.isfinite(last_edge)):
raise ValueError(
"supplied range of [{}, {}] is not finite".format(first_edge, last_edge))
elif a.size == 0:
first_edge, last_edge = 0, 1
else:
first_edge, last_edge = a.min(), a.max()
if not (np.isfinite(first_edge) and np.isfinite(last_edge)):
raise ValueError(
"autodetected range of [{}, {}] is not finite".format(first_edge, last_edge))
if first_edge == last_edge:
first_edge = first_edge - 0.5
last_edge = last_edge + 0.5
return first_edge, last_edge
|
Apache License 2.0
|
sarcasm/compdb
|
tests/unit/test_headerdb.py
|
HeaderDB.complement
|
python
|
def complement(self, compile_commands):
database = InMemoryCompilationDatabase(compile_commands)
result = list(Complementer().complement([[database]])[0]
.get_all_compile_commands())
result.sort(key=operator.attrgetter('file', 'directory', 'arguments'))
return result
|
The output is returned sorted in the following order: file, directory,
arguments.
|
https://github.com/sarcasm/compdb/blob/62b4c0f6daa0654256a0ae9036d59cd5026f280f/tests/unit/test_headerdb.py#L47-L56
|
from __future__ import print_function, unicode_literals, absolute_import
import operator
import os
import unittest
from compdb.backend.memory import InMemoryCompilationDatabase
from compdb.complementer.headerdb import (
Complementer,
subword_split,
)
from compdb.models import CompileCommand
class Utils(unittest.TestCase):
def test_subword_split(self):
self.assertEqual(["Camel", "Case"], subword_split("CamelCase"))
self.assertEqual(["camel", "Back"], subword_split("camelBack"))
self.assertEqual(["String", "Ref"], subword_split("StringRef"))
self.assertEqual(["Gst", "Buffer"], subword_split("GstBuffer"))
self.assertEqual(["NS", "String"], subword_split("NSString"))
self.assertEqual(["ALLCAP"], subword_split("ALLCAP"))
self.assertEqual(["nocap"], subword_split("nocap"))
self.assertEqual(["One", "Two", "Three", "Four"],
subword_split("OneTwoThreeFour"))
self.assertEqual(["Foo1", "Bar2"], subword_split("Foo1Bar2"))
self.assertEqual(["123"], subword_split("123"))
self.assertEqual(["lowercase", "underscore"],
subword_split("lowercase_underscore"))
self.assertEqual(["Funny", "Case", "dash"],
subword_split("FunnyCase-dash"))
self.assertEqual(["underscore"], subword_split("_underscore_"))
self.assertEqual(["with", "dot"], subword_split("with.dot"))
self.assertEqual(["with", "space"], subword_split("with space"))
class HeaderDB(unittest.TestCase):
LOCAL_PATH = os.path.abspath(os.path.dirname(__file__))
TEST_DIR = os.path.join(LOCAL_PATH, 'headerdb')
def srcdir(self, dirname):
return os.path.join(self.TEST_DIR, dirname)
|
MIT License
|
jarryshaw/pypcapkit
|
pcapkit/vendor/ftp/return_code.py
|
ReturnCode.count
|
python
|
def count(self, soup):
|
Count field records.
|
https://github.com/jarryshaw/pypcapkit/blob/cfa778f606a111b2dc6eb57d1af054ba2689b578/pcapkit/vendor/ftp/return_code.py#L133-L148
|
import bs4
from pcapkit.vendor.default import Vendor
__all__ = ['ReturnCode']
LINE = lambda NAME, DOCS, FLAG, ENUM: f'''\
# -*- coding: utf-8 -*-
# pylint: disable=line-too-long
"""{DOCS}"""
from aenum import IntEnum, extend_enum
__all__ = ['{NAME}']
#: Response kind; whether the response is good, bad or incomplete.
KIND = {{
'1': 'Positive Preliminary',
'2': 'Positive Completion',
'3': 'Positive Intermediate',
'4': 'Transient Negative Completion',
'5': 'Permanent Negative Completion',
'6': 'Protected',
}}
#: Grouping information.
INFO = {{
'0': 'Syntax',
'1': 'Information',
'2': 'Connections',
'3': 'Authentication and accounting',
'4': 'Unspecified', # [RFC 959]
'5': 'File system',
}}
class {NAME}(IntEnum):
"""[{NAME}] {DOCS}"""
{ENUM}
@staticmethod
def get(key, default=-1):
"""Backport support for original codes."""
if isinstance(key, int):
return {NAME}(key)
if key not in {NAME}._member_map_: # pylint: disable=no-member
extend_enum({NAME}, key, default)
return {NAME}[key]
@classmethod
def _missing_(cls, value):
"""Lookup function used when value is not found."""
if not ({FLAG}):
raise ValueError('%r is not a valid %s' % (value, cls.__name__))
code = str(value)
kind = KIND.get(code[0], 'Reserved')
info = INFO.get(code[1], 'Reserved')
extend_enum(cls, '%s - %s [%s]' % (kind, info, value), value)
return cls(value)
'''
class ReturnCode(Vendor):
FLAG = 'isinstance(value, int) and 100 <= value <= 659'
LINK = 'https://en.wikipedia.org/wiki/List_of_FTP_server_return_codes'
def request(self, text):
return bs4.BeautifulSoup(text, 'html5lib')
def context(self, soup):
enum = self.process(soup)
ENUM = '\n\n '.join(map(lambda s: s.rstrip(), enum))
return LINE(self.NAME, self.DOCS, self.FLAG, ENUM)
def process(self, soup):
table = soup.find_all('table', class_='wikitable')[2]
content = filter(lambda item: isinstance(item, bs4.element.Tag), table.tbody)
next(content)
enum = list()
for item in content:
line = item.find_all('td')
code = ' '.join(line[0].stripped_strings)
if len(code) != 3:
continue
sufs = self.wrap_comment('. '.join(map(lambda s: s.strip(), ' '.join(line[1].stripped_strings).split('.'))))
pref = f"CODE_{code} = {code}"
enum.append(f'#: {sufs}\n {pref}')
return enum
|
BSD 3-Clause New or Revised License
|
mcedit/pymclevel
|
gprof2dot.py
|
Profile.integrate
|
python
|
def integrate(self, outevent, inevent):
assert outevent not in self
for function in self.functions.itervalues():
assert outevent not in function
assert inevent in function
for call in function.calls.itervalues():
assert outevent not in call
if call.callee_id != function.id:
assert call.ratio is not None
for cycle in self.cycles:
total = inevent.null()
for function in self.functions.itervalues():
total = inevent.aggregate(total, function[inevent])
self[inevent] = total
total = inevent.null()
for function in self.functions.itervalues():
total = inevent.aggregate(total, function[inevent])
self._integrate_function(function, outevent, inevent)
self[outevent] = total
|
Propagate function time ratio allong the function calls.
Must be called after finding the cycles.
See also:
- http://citeseer.ist.psu.edu/graham82gprof.html
|
https://github.com/mcedit/pymclevel/blob/8bf7b3d76479e007a51f3055198a8bcddb626c84/gprof2dot.py#L319-L350
|
__author__ = "Jose Fonseca"
__version__ = "1.0"
import sys
import math
import os.path
import re
import textwrap
import optparse
import xml.parsers.expat
def times(x):
return u"%u\xd7" % (x,)
def percentage(p):
return "%.02f%%" % (p * 100.0,)
def add(a, b):
return a + b
def equal(a, b):
if a == b:
return a
else:
return None
def fail(a, b):
assert False
tol = 2 ** -23
def ratio(numerator, denominator):
try:
ratio = float(numerator) / float(denominator)
except ZeroDivisionError:
return 1.0
if ratio < 0.0:
if ratio < -tol:
sys.stderr.write('warning: negative ratio (%s/%s)\n' % (numerator, denominator))
return 0.0
if ratio > 1.0:
if ratio > 1.0 + tol:
sys.stderr.write('warning: ratio greater than one (%s/%s)\n' % (numerator, denominator))
return 1.0
return ratio
class UndefinedEvent(Exception):
def __init__(self, event):
Exception.__init__(self)
self.event = event
def __str__(self):
return 'unspecified event %s' % self.event.name
class Event(object):
def __init__(self, name, null, aggregator, formatter=str):
self.name = name
self._null = null
self._aggregator = aggregator
self._formatter = formatter
def __eq__(self, other):
return self is other
def __hash__(self):
return id(self)
def null(self):
return self._null
def aggregate(self, val1, val2):
assert val1 is not None
assert val2 is not None
return self._aggregator(val1, val2)
def format(self, val):
assert val is not None
return self._formatter(val)
CALLS = Event("Calls", 0, add, times)
SAMPLES = Event("Samples", 0, add)
SAMPLES2 = Event("Samples", 0, add)
TIME = Event("Time", 0.0, add, lambda x: '(' + str(x) + ')')
TIME_RATIO = Event("Time ratio", 0.0, add, lambda x: '(' + percentage(x) + ')')
TOTAL_TIME = Event("Total time", 0.0, fail)
TOTAL_TIME_RATIO = Event("Total time ratio", 0.0, fail, percentage)
class Object(object):
def __init__(self, events=None):
if events is None:
self.events = {}
else:
self.events = events
def __hash__(self):
return id(self)
def __eq__(self, other):
return self is other
def __contains__(self, event):
return event in self.events
def __getitem__(self, event):
try:
return self.events[event]
except KeyError:
raise UndefinedEvent(event)
def __setitem__(self, event, value):
if value is None:
if event in self.events:
del self.events[event]
else:
self.events[event] = value
class Call(Object):
def __init__(self, callee_id):
Object.__init__(self)
self.callee_id = callee_id
self.ratio = None
self.weight = None
class Function(Object):
def __init__(self, id, name):
Object.__init__(self)
self.id = id
self.name = name
self.module = None
self.process = None
self.calls = {}
self.called = None
self.weight = None
self.cycle = None
def add_call(self, call):
if call.callee_id in self.calls:
sys.stderr.write('warning: overwriting call from function %s to %s\n' % (str(self.id), str(call.callee_id)))
self.calls[call.callee_id] = call
def __repr__(self):
return self.name
class Cycle(Object):
def __init__(self):
Object.__init__(self)
self.functions = set()
def add_function(self, function):
assert function not in self.functions
self.functions.add(function)
if function.cycle is not None:
for other in function.cycle.functions:
if function not in self.functions:
self.add_function(other)
function.cycle = self
class Profile(Object):
def __init__(self):
Object.__init__(self)
self.functions = {}
self.cycles = []
def add_function(self, function):
if function.id in self.functions:
sys.stderr.write('warning: overwriting function %s (id %s)\n' % (function.name, str(function.id)))
self.functions[function.id] = function
def add_cycle(self, cycle):
self.cycles.append(cycle)
def validate(self):
for function in self.functions.itervalues():
for callee_id in function.calls.keys():
assert function.calls[callee_id].callee_id == callee_id
if callee_id not in self.functions:
sys.stderr.write('warning: call to undefined function %s from function %s\n' % (str(callee_id), function.name))
del function.calls[callee_id]
def find_cycles(self):
visited = set()
for function in self.functions.itervalues():
if function not in visited:
self._tarjan(function, 0, [], {}, {}, visited)
cycles = []
for function in self.functions.itervalues():
if function.cycle is not None and function.cycle not in cycles:
cycles.append(function.cycle)
self.cycles = cycles
if 0:
for cycle in cycles:
sys.stderr.write("Cycle:\n")
for member in cycle.functions:
sys.stderr.write("\tFunction %s\n" % member.name)
def _tarjan(self, function, order, stack, orders, lowlinks, visited):
visited.add(function)
orders[function] = order
lowlinks[function] = order
order += 1
pos = len(stack)
stack.append(function)
for call in function.calls.itervalues():
callee = self.functions[call.callee_id]
if callee not in orders:
order = self._tarjan(callee, order, stack, orders, lowlinks, visited)
lowlinks[function] = min(lowlinks[function], lowlinks[callee])
elif callee in stack:
lowlinks[function] = min(lowlinks[function], orders[callee])
if lowlinks[function] == orders[function]:
members = stack[pos:]
del stack[pos:]
if len(members) > 1:
cycle = Cycle()
for member in members:
cycle.add_function(member)
return order
def call_ratios(self, event):
cycle_totals = {}
for cycle in self.cycles:
cycle_totals[cycle] = 0.0
function_totals = {}
for function in self.functions.itervalues():
function_totals[function] = 0.0
for function in self.functions.itervalues():
for call in function.calls.itervalues():
if call.callee_id != function.id:
callee = self.functions[call.callee_id]
function_totals[callee] += call[event]
if callee.cycle is not None and callee.cycle is not function.cycle:
cycle_totals[callee.cycle] += call[event]
for function in self.functions.itervalues():
for call in function.calls.itervalues():
assert call.ratio is None
if call.callee_id != function.id:
callee = self.functions[call.callee_id]
if callee.cycle is not None and callee.cycle is not function.cycle:
total = cycle_totals[callee.cycle]
else:
total = function_totals[callee]
call.ratio = ratio(call[event], total)
|
ISC License
|
samschott/maestral
|
src/maestral/daemon.py
|
start_maestral_daemon_process
|
python
|
def start_maestral_daemon_process(
config_name: str = "maestral", timeout: float = 20
) -> Start:
if is_running(config_name):
return Start.AlreadyRunning
cc = quote(config_name).strip("'")
script = f'import maestral.daemon; maestral.daemon.start_maestral_daemon("{cc}")'
env = os.environ.copy()
env.update(ENV)
pid = os.spawnve(os.P_NOWAIT, sys.executable, [sys.executable, "-c", script], env)
try:
wait_for_startup(config_name, timeout)
except Exception as exc:
from .logging import scoped_logger, setup_logging
setup_logging(config_name, log_to_stderr=False)
clogger = scoped_logger(__name__, config_name)
clogger.error("Could not communicate with daemon", exc_info=exc_info_tuple(exc))
try:
os.kill(pid, 0)
clogger.error("Daemon is running but not responsive, killing now")
except OSError:
clogger.error("Daemon quit unexpectedly")
else:
os.kill(pid, signal.SIGTERM)
return Start.Failed
else:
return Start.Ok
|
Starts the Maestral daemon in a new process by calling :func:`start_maestral_daemon`.
Startup is race free: there will never be more than one daemon running for the same
config name. This function will use :obj:`sys.executable` as a Python executable to
start the daemon.
Environment variables from the current process will be preserved and updated with
the environment variables defined in :const:`constants.ENV`.
:param config_name: The name of the Maestral configuration to use.
:param timeout: Time in sec to wait for daemon to start.
:returns: :attr:`Start.Ok` if successful, :attr:`Start.AlreadyRunning` if the daemon
was already running or :attr:`Start.Failed` if startup failed. It is possible
that :attr:`Start.Ok` may be returned instead of :attr:`Start.AlreadyRunning`
in case of a race but the daemon is nevertheless started only once.
|
https://github.com/samschott/maestral/blob/a0cd0ebbfecae65d71337fc35a54d1f3fab7ab5a/src/maestral/daemon.py#L499-L554
|
import sys
import os
import time
import signal
import enum
import threading
import fcntl
import struct
import warnings
import argparse
import re
from pprint import pformat
from shlex import quote
from typing import Optional, Any, Union, Dict, Iterable, Type, TYPE_CHECKING
from types import TracebackType
import Pyro5
from Pyro5.errors import CommunicationError
from Pyro5.api import Daemon, Proxy, expose, register_dict_to_class
import sdnotify
from fasteners import InterProcessLock
from .errors import SYNC_ERRORS, GENERAL_ERRORS, MaestralApiError
from .utils import exc_info_tuple
from .utils.appdirs import get_runtime_path
from .constants import IS_MACOS, ENV
if TYPE_CHECKING:
from .main import Maestral
__all__ = [
"Stop",
"Start",
"Lock",
"maestral_lock",
"get_maestral_pid",
"sockpath_for_config",
"lockpath_for_config",
"wait_for_startup",
"is_running",
"freeze_support",
"start_maestral_daemon",
"start_maestral_daemon_process",
"stop_maestral_daemon_process",
"MaestralProxy",
"CommunicationError",
]
INVOCATION_ID = os.getenv("INVOCATION_ID")
NOTIFY_SOCKET = os.getenv("NOTIFY_SOCKET")
WATCHDOG_PID = os.getenv("WATCHDOG_PID")
WATCHDOG_USEC = os.getenv("WATCHDOG_USEC")
IS_WATCHDOG = WATCHDOG_USEC and (
WATCHDOG_PID is None or int(WATCHDOG_PID) == os.getpid()
)
URI = "PYRO:maestral.{0}@{1}"
Pyro5.config.THREADPOOL_SIZE_MIN = 2
def freeze_support() -> None:
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument("-c")
parsed_args, _ = parser.parse_known_args()
if parsed_args.c:
template = r'.*start_maestral_daemon\("(?P<config_name>\S+)"\).*'
match = re.match(template, parsed_args.c)
if match:
start_maestral_daemon(match["config_name"])
sys.exit()
class Stop(enum.Enum):
Ok = 0
Killed = 1
NotRunning = 2
Failed = 3
class Start(enum.Enum):
Ok = 0
AlreadyRunning = 1
Failed = 2
def serpent_deserialize_api_error(class_name: str, d: dict) -> MaestralApiError:
import maestral.errors
cls = eval(class_name)
err = cls(*d["args"])
for a_name, a_value in d["attributes"].items():
setattr(err, a_name, a_value)
return err
for err_cls in (*SYNC_ERRORS, *GENERAL_ERRORS):
register_dict_to_class(
err_cls.__module__ + "." + err_cls.__name__, serpent_deserialize_api_error
)
class Lock:
_instances: Dict[str, "Lock"] = {}
_singleton_lock = threading.Lock()
@classmethod
def singleton(cls, path: str) -> "Lock":
with cls._singleton_lock:
path = os.path.abspath(path)
if path not in cls._instances:
cls._instances[path] = cls(path)
return cls._instances[path]
def __init__(self, path: str) -> None:
self.path = path
self.pid = os.getpid()
self._external_lock = InterProcessLock(self.path)
self._lock = threading.RLock()
def acquire(self) -> bool:
with self._lock:
if self._external_lock.acquired:
return False
return self._external_lock.acquire(blocking=False)
def release(self) -> None:
with self._lock:
if not self._external_lock.acquired:
raise RuntimeError(
"Cannot release a lock, it was acquired by a different process"
)
self._external_lock.release()
def locked(self) -> bool:
with self._lock:
gotten = self.acquire()
if gotten:
self.release()
return not gotten
def locking_pid(self) -> Optional[int]:
with self._lock:
if self._external_lock.acquired:
return self.pid
try:
fh = open(self._external_lock.path, "a")
except OSError:
return None
if IS_MACOS:
fmt = "qqihh"
pid_index = 2
flock = struct.pack(fmt, 0, 0, 0, fcntl.F_WRLCK, 0)
else:
fmt = "hhqqih"
pid_index = 4
flock = struct.pack(fmt, fcntl.F_WRLCK, 0, 0, 0, 0, 0)
lockdata = fcntl.fcntl(fh.fileno(), fcntl.F_GETLK, flock)
lockdata_list = struct.unpack(fmt, lockdata)
pid = lockdata_list[pid_index]
if pid > 0:
return pid
return None
def _send_signal(pid: int, sig: int) -> None:
try:
os.kill(pid, sig)
except ProcessLookupError:
pass
def maestral_lock(config_name: str) -> Lock:
name = f"{config_name}.lock"
path = get_runtime_path("maestral")
return Lock.singleton(os.path.join(path, name))
def sockpath_for_config(config_name: str) -> str:
return get_runtime_path("maestral", f"{config_name}.sock")
def lockpath_for_config(config_name: str) -> str:
return get_runtime_path("maestral", f"{config_name}.lock")
def get_maestral_pid(config_name: str) -> Optional[int]:
return maestral_lock(config_name).locking_pid()
def is_running(config_name: str) -> bool:
return maestral_lock(config_name).locked()
def wait_for_startup(config_name: str, timeout: float = 20) -> None:
sock_name = sockpath_for_config(config_name)
maestral_daemon = Proxy(URI.format(config_name, "./u:" + sock_name))
t0 = time.time()
while True:
try:
maestral_daemon._pyroBind()
return
except Exception as exc:
if time.time() - t0 > timeout:
raise exc
else:
time.sleep(0.2)
finally:
maestral_daemon._pyroRelease()
def start_maestral_daemon(
config_name: str = "maestral", log_to_stderr: bool = False
) -> None:
import asyncio
from .main import Maestral
from .logging import scoped_logger, setup_logging
setup_logging(config_name, log_to_stderr)
dlogger = scoped_logger(__name__, config_name)
sd_notifier = sdnotify.SystemdNotifier()
dlogger.info("Starting daemon")
lock = maestral_lock(config_name)
try:
if threading.current_thread() is not threading.main_thread():
dlogger.error("Must run daemon in main thread")
raise RuntimeError("Must run daemon in main thread")
dlogger.debug("Environment:\n%s", pformat(os.environ.copy()))
if lock.acquire():
dlogger.debug("Acquired daemon lock: %r", lock.path)
else:
dlogger.error("Could not acquire lock, daemon is already running")
return
os.nice(10)
if IS_MACOS:
dlogger.debug("Integrating with CFEventLoop")
from rubicon.objc.eventloop import EventLoopPolicy
asyncio.set_event_loop_policy(EventLoopPolicy())
loop = asyncio.get_event_loop()
if NOTIFY_SOCKET:
dlogger.debug("Running as systemd notify service")
dlogger.debug("NOTIFY_SOCKET = %s", NOTIFY_SOCKET)
sd_notifier.notify("READY=1")
if IS_WATCHDOG and WATCHDOG_USEC:
async def periodic_watchdog() -> None:
if WATCHDOG_USEC:
sleep = int(WATCHDOG_USEC)
while True:
sd_notifier.notify("WATCHDOG=1")
await asyncio.sleep(sleep / (2 * 10 ** 6))
dlogger.debug("Running as systemd watchdog service")
dlogger.debug("WATCHDOG_USEC = %s", WATCHDOG_USEC)
dlogger.debug("WATCHDOG_PID = %s", WATCHDOG_PID)
loop.create_task(periodic_watchdog())
sockpath = sockpath_for_config(config_name)
dlogger.debug("Socket path: %r", sockpath)
try:
os.remove(sockpath)
except (FileNotFoundError, NotADirectoryError):
pass
dlogger.debug("Creating Pyro daemon")
maestral_daemon = expose(Maestral)(config_name, log_to_stderr=log_to_stderr)
dlogger.debug("Starting event loop")
with Daemon(unixsocket=sockpath) as daemon:
daemon.register(maestral_daemon, f"maestral.{config_name}")
if daemon.transportServer.housekeeper:
daemon.transportServer.housekeeper.waittime = 20
for socket in daemon.sockets:
loop.add_reader(socket.fileno(), daemon.events, daemon.sockets)
signals = (signal.SIGHUP, signal.SIGTERM, signal.SIGINT)
for s in signals:
loop.add_signal_handler(s, maestral_daemon.shutdown_daemon)
loop.run_until_complete(maestral_daemon.shutdown_complete)
for socket in daemon.sockets:
loop.remove_reader(socket.fileno())
daemon.transportServer.housekeeper = None
except Exception as exc:
dlogger.error(exc.args[0], exc_info=True)
finally:
if NOTIFY_SOCKET:
sd_notifier.notify("STOPPING=1")
lock.release()
|
MIT License
|
getnikola/nikola
|
nikola/nikola.py
|
Nikola._filter_duplicate_plugins
|
python
|
def _filter_duplicate_plugins(self, plugin_list):
def plugin_position_in_places(plugin):
for i, place in enumerate(self._plugin_places):
if plugin[0].startswith(place):
return i
utils.LOGGER.warn("Duplicate plugin found in unexpected location: {}".format(plugin[0]))
return len(self._plugin_places)
plugin_dict = defaultdict(list)
for data in plugin_list:
plugin_dict[data[2].name].append(data)
result = []
for _, plugins in plugin_dict.items():
if len(plugins) > 1:
plugins.sort(key=plugin_position_in_places)
utils.LOGGER.debug("Plugin {} exists in multiple places, using {}".format(
plugins[-1][2].name, plugins[-1][0]))
result.append(plugins[-1])
return result
|
Find repeated plugins and discard the less local copy.
|
https://github.com/getnikola/nikola/blob/334000e049c42fff52170563e94592d0c886acc4/nikola/nikola.py#L997-L1019
|
import datetime
import io
import json
import functools
import logging
import operator
import os
import sys
import mimetypes
from collections import defaultdict
from copy import copy
from urllib.parse import urlparse, urlsplit, urlunsplit, urljoin, unquote, parse_qs
import dateutil.tz
import lxml.etree
import lxml.html
import natsort
import PyRSS2Gen as rss
from pkg_resources import resource_filename
from blinker import signal
from yapsy.PluginManager import PluginManager
from . import DEBUG, SHOW_TRACEBACKS, filters, utils, hierarchy_utils, shortcodes
from . import metadata_extractors
from .metadata_extractors import default_metadata_extractors_by
from .post import Post
from .plugin_categories import (
Command,
LateTask,
PageCompiler,
CompilerExtension,
MarkdownExtension,
RestExtension,
MetadataExtractor,
ShortcodePlugin,
Task,
TaskMultiplier,
TemplateSystem,
SignalHandler,
ConfigPlugin,
CommentSystem,
PostScanner,
Taxonomy,
)
from .state import Persistor
try:
import pyphen
except ImportError:
pyphen = None
if DEBUG:
logging.basicConfig(level=logging.DEBUG)
else:
logging.basicConfig(level=logging.ERROR)
DEFAULT_INDEX_READ_MORE_LINK = '<p class="more"><a href="{link}">{read_more}…</a></p>'
DEFAULT_FEED_READ_MORE_LINK = '<p><a href="{link}">{read_more}…</a> ({min_remaining_read})</p>'
config_changed = utils.config_changed
__all__ = ('Nikola',)
LEGAL_VALUES = {
'DEFAULT_THEME': 'bootblog4',
'COMMENT_SYSTEM': [
'disqus',
'facebook',
'intensedebate',
'isso',
'muut',
'commento',
'utterances',
],
'TRANSLATIONS': {
'af': 'Afrikaans',
'ar': 'Arabic',
'az': 'Azerbaijani',
'bg': 'Bulgarian',
'bs': 'Bosnian',
'ca': 'Catalan',
('cs', 'cz'): 'Czech',
'da': 'Danish',
'de': 'German',
('el', '!gr'): 'Greek',
'en': 'English',
'eo': 'Esperanto',
'es': 'Spanish',
'et': 'Estonian',
'eu': 'Basque',
'fa': 'Persian',
'fi': 'Finnish',
'fr': 'French',
'fur': 'Friulian',
'gl': 'Galician',
'he': 'Hebrew',
'hi': 'Hindi',
'hr': 'Croatian',
'hu': 'Hungarian',
'ia': 'Interlingua',
'id': 'Indonesian',
'it': 'Italian',
('ja', '!jp'): 'Japanese',
'ko': 'Korean',
'lt': 'Lithuanian',
'mi': 'Maori',
'ml': 'Malayalam',
'mr': 'Marathi',
'nb': 'Norwegian (Bokmål)',
'nl': 'Dutch',
'oc': 'Occitan',
'pa': 'Punjabi',
'pl': 'Polish',
'pt': 'Portuguese',
'pt_br': 'Portuguese (Brazil)',
'ru': 'Russian',
'sk': 'Slovak',
'sl': 'Slovene',
'sq': 'Albanian',
'sr': 'Serbian (Cyrillic)',
'sr_latin': 'Serbian (Latin)',
'sv': 'Swedish',
'te': 'Telugu',
'th': 'Thai',
('tr', '!tr_TR'): 'Turkish',
'uk': 'Ukrainian',
'ur': 'Urdu',
'vi': 'Vietnamese',
'zh_cn': 'Chinese (Simplified)',
'zh_tw': 'Chinese (Traditional)'
},
'_TRANSLATIONS_WITH_COUNTRY_SPECIFIERS': {
},
'LOCALES_BASE': {
'sr_latin': 'sr_Latn',
},
'RTL_LANGUAGES': ('ar', 'fa', 'he', 'ur'),
'LUXON_LOCALES': defaultdict(lambda: 'en', **{
'af': 'af',
'ar': 'ar',
'az': 'az',
'bg': 'bg',
'bn': 'bn',
'bs': 'bs',
'ca': 'ca',
'cs': 'cs',
'cz': 'cs',
'da': 'da',
'de': 'de',
'el': 'el',
'en': 'en',
'eo': 'eo',
'es': 'es',
'et': 'et',
'eu': 'eu',
'fa': 'fa',
'fi': 'fi',
'fr': 'fr',
'fur': 'fur',
'gl': 'gl',
'hi': 'hi',
'he': 'he',
'hr': 'hr',
'hu': 'hu',
'ia': 'ia',
'id': 'id',
'it': 'it',
'ja': 'ja',
'ko': 'ko',
'lt': 'lt',
'mi': 'mi',
'ml': 'ml',
'mr': 'mr',
'nb': 'nb',
'nl': 'nl',
'oc': 'oc',
'pa': 'pa',
'pl': 'pl',
'pt': 'pt',
'pt_br': 'pt-BR',
'ru': 'ru',
'sk': 'sk',
'sl': 'sl',
'sq': 'sq',
'sr': 'sr-Cyrl',
'sr_latin': 'sr-Latn',
'sv': 'sv',
'te': 'te',
'tr': 'tr',
'th': 'th',
'uk': 'uk',
'ur': 'ur',
'vi': 'vi',
'zh_cn': 'zh-CN',
'zh_tw': 'zh-TW'
}),
'MOMENTJS_LOCALES': defaultdict(lambda: 'en', **{
'af': 'af',
'ar': 'ar',
'az': 'az',
'bg': 'bg',
'bn': 'bn',
'bs': 'bs',
'ca': 'ca',
'cs': 'cs',
'cz': 'cs',
'da': 'da',
'de': 'de',
'el': 'el',
'en': 'en',
'eo': 'eo',
'es': 'es',
'et': 'et',
'eu': 'eu',
'fa': 'fa',
'fi': 'fi',
'fr': 'fr',
'gl': 'gl',
'hi': 'hi',
'he': 'he',
'hr': 'hr',
'hu': 'hu',
'id': 'id',
'it': 'it',
'ja': 'ja',
'ko': 'ko',
'lt': 'lt',
'ml': 'ml',
'mr': 'mr',
'nb': 'nb',
'nl': 'nl',
'pa': 'pa-in',
'pl': 'pl',
'pt': 'pt',
'pt_br': 'pt-br',
'ru': 'ru',
'sk': 'sk',
'sl': 'sl',
'sq': 'sq',
'sr': 'sr-cyrl',
'sr_latin': 'sr',
'sv': 'sv',
'te': 'te',
'tr': 'tr',
'th': 'th',
'uk': 'uk',
'ur': 'ur',
'vi': 'vi',
'zh_cn': 'zh-cn',
'zh_tw': 'zh-tw'
}),
'PYPHEN_LOCALES': {
'af': 'af',
'bg': 'bg',
'ca': 'ca',
'cs': 'cs',
'cz': 'cs',
'da': 'da',
'de': 'de',
'el': 'el',
'en': 'en_US',
'es': 'es',
'et': 'et',
'fr': 'fr',
'hr': 'hr',
'hu': 'hu',
'it': 'it',
'lt': 'lt',
'nb': 'nb',
'nl': 'nl',
'pl': 'pl',
'pt': 'pt',
'pt_br': 'pt_BR',
'ru': 'ru',
'sk': 'sk',
'sl': 'sl',
'sr': 'sr',
'sv': 'sv',
'te': 'te',
'uk': 'uk',
},
'DOCUTILS_LOCALES': {
'af': 'af',
'ca': 'ca',
'da': 'da',
'de': 'de',
'en': 'en',
'eo': 'eo',
'es': 'es',
'fa': 'fa',
'fi': 'fi',
'fr': 'fr',
'gl': 'gl',
'he': 'he',
'it': 'it',
'ja': 'ja',
'lt': 'lt',
'nl': 'nl',
'pl': 'pl',
'pt': 'pt_br',
'pt_br': 'pt_br',
'ru': 'ru',
'sk': 'sk',
'sv': 'sv',
'zh_cn': 'zh_cn',
'zh_tw': 'zh_tw'
},
"METADATA_MAPPING": ["yaml", "toml", "rest_docinfo", "markdown_metadata"],
}
TAXONOMY_COMPATIBILITY_PLUGIN_NAME_MAP = {
"render_archive": ["classify_archive"],
"render_authors": ["classify_authors"],
"render_indexes": ["classify_page_index", "classify_sections"],
"render_tags": ["classify_categories", "classify_tags"],
}
DEFAULT_TRANSLATIONS_PATTERN = '{path}.{lang}.{ext}'
def _enclosure(post, lang):
enclosure = post.meta('enclosure', lang)
if enclosure:
try:
length = int(post.meta('enclosure_length', lang) or 0)
except KeyError:
length = 0
except ValueError:
utils.LOGGER.warning("Invalid enclosure length for post {0}".format(post.source_path))
length = 0
url = enclosure
mime = mimetypes.guess_type(url)[0]
return url, length, mime
class Nikola(object):
def __init__(self, **config):
self.path_handlers = {
'slug': self.slug_path,
'post_path': self.post_path,
'root': self.root_path,
'filename': self.filename_path,
}
self.strict = False
self.posts = []
self.all_posts = []
self.posts_per_year = defaultdict(list)
self.posts_per_month = defaultdict(list)
self.posts_per_tag = defaultdict(list)
self.posts_per_category = defaultdict(list)
self.tags_per_language = defaultdict(list)
self.post_per_file = {}
self.timeline = []
self.pages = []
self._scanned = False
self._template_system = None
self._THEMES = None
self._MESSAGES = None
self.filters = {}
self.debug = DEBUG
self.show_tracebacks = SHOW_TRACEBACKS
self.colorful = config.pop('__colorful__', False)
self.invariant = config.pop('__invariant__', False)
self.quiet = config.pop('__quiet__', False)
self._doit_config = config.pop('DOIT_CONFIG', {})
self.original_cwd = config.pop('__cwd__', False)
self.configuration_filename = config.pop('__configuration_filename__', False)
self.configured = bool(config)
self.injected_deps = defaultdict(list)
self.shortcode_registry = {}
self.metadata_extractors_by = default_metadata_extractors_by()
self.registered_auto_watched_folders = set()
self.rst_transforms = []
self.template_hooks = {
'extra_head': utils.TemplateHookRegistry('extra_head', self),
'body_end': utils.TemplateHookRegistry('body_end', self),
'page_header': utils.TemplateHookRegistry('page_header', self),
'menu': utils.TemplateHookRegistry('menu', self),
'menu_alt': utils.TemplateHookRegistry('menu_alt', self),
'page_footer': utils.TemplateHookRegistry('page_footer', self),
}
utils.generic_rss_renderer = self.generic_rss_renderer
self.config = {
'ARCHIVE_PATH': "",
'ARCHIVE_FILENAME': "archive.html",
'ARCHIVES_ARE_INDEXES': False,
'AUTHOR_PATH': 'authors',
'AUTHOR_PAGES_ARE_INDEXES': False,
'AUTHOR_PAGES_DESCRIPTIONS': {},
'AUTHORLIST_MINIMUM_POSTS': 1,
'BLOG_AUTHOR': 'Default Author',
'BLOG_TITLE': 'Default Title',
'BLOG_EMAIL': '',
'BLOG_DESCRIPTION': 'Default Description',
'BODY_END': "",
'CACHE_FOLDER': 'cache',
'CATEGORIES_INDEX_PATH': '',
'CATEGORY_PATH': None,
'CATEGORY_PAGES_ARE_INDEXES': None,
'CATEGORY_DESCRIPTIONS': {},
'CATEGORY_TITLES': {},
'CATEGORY_PREFIX': 'cat_',
'CATEGORY_ALLOW_HIERARCHIES': False,
'CATEGORY_OUTPUT_FLAT_HIERARCHY': False,
'CATEGORY_DESTPATH_AS_DEFAULT': False,
'CATEGORY_DESTPATH_TRIM_PREFIX': False,
'CATEGORY_DESTPATH_FIRST_DIRECTORY_ONLY': True,
'CATEGORY_DESTPATH_NAMES': {},
'CATEGORY_PAGES_FOLLOW_DESTPATH': False,
'CATEGORY_TRANSLATIONS': [],
'CATEGORY_TRANSLATIONS_ADD_DEFAULTS': False,
'CODE_COLOR_SCHEME': 'default',
'COMMENT_SYSTEM': 'disqus',
'COMMENTS_IN_GALLERIES': False,
'COMMENTS_IN_PAGES': False,
'COMPILERS': {
"rest": ('.txt', '.rst'),
"markdown": ('.md', '.mdown', '.markdown'),
"textile": ('.textile',),
"txt2tags": ('.t2t',),
"bbcode": ('.bb',),
"wiki": ('.wiki',),
"ipynb": ('.ipynb',),
"html": ('.html', '.htm')
},
'CONTENT_FOOTER': '',
'CONTENT_FOOTER_FORMATS': {},
'RSS_COPYRIGHT': '',
'RSS_COPYRIGHT_PLAIN': '',
'RSS_COPYRIGHT_FORMATS': {},
'COPY_SOURCES': True,
'CREATE_ARCHIVE_NAVIGATION': False,
'CREATE_MONTHLY_ARCHIVE': False,
'CREATE_SINGLE_ARCHIVE': False,
'CREATE_FULL_ARCHIVES': False,
'CREATE_DAILY_ARCHIVE': False,
'DATE_FORMAT': 'yyyy-MM-dd HH:mm',
'DISABLE_INDEXES': False,
'DISABLE_MAIN_ATOM_FEED': False,
'DISABLE_MAIN_RSS_FEED': False,
'MOMENTJS_DATE_FORMAT': 'YYYY-MM-DD HH:mm',
'LUXON_DATE_FORMAT': {},
'DATE_FANCINESS': 0,
'DEFAULT_LANG': "en",
'DEPLOY_COMMANDS': {'default': []},
'DISABLED_PLUGINS': [],
'EXTRA_PLUGINS_DIRS': [],
'EXTRA_THEMES_DIRS': [],
'COMMENT_SYSTEM_ID': 'nikolademo',
'ENABLE_AUTHOR_PAGES': True,
'EXIF_WHITELIST': {},
'EXTRA_HEAD_DATA': '',
'FAVICONS': (),
'FEED_LENGTH': 10,
'FILE_METADATA_REGEXP': None,
'FILE_METADATA_UNSLUGIFY_TITLES': True,
'ADDITIONAL_METADATA': {},
'FILES_FOLDERS': {'files': ''},
'FILTERS': {},
'FORCE_ISO8601': False,
'FRONT_INDEX_HEADER': '',
'GALLERY_FOLDERS': {'galleries': 'galleries'},
'GALLERY_SORT_BY_DATE': True,
'GALLERIES_USE_THUMBNAIL': False,
'GALLERIES_DEFAULT_THUMBNAIL': None,
'GLOBAL_CONTEXT_FILLER': [],
'GZIP_COMMAND': None,
'GZIP_FILES': False,
'GZIP_EXTENSIONS': ('.txt', '.htm', '.html', '.css', '.js', '.json', '.xml'),
'HIDDEN_AUTHORS': [],
'HIDDEN_TAGS': [],
'HIDE_REST_DOCINFO': False,
'HIDDEN_CATEGORIES': [],
'HYPHENATE': False,
'IMAGE_FOLDERS': {'images': ''},
'INDEX_DISPLAY_POST_COUNT': 10,
'INDEX_FILE': 'index.html',
'INDEX_TEASERS': False,
'IMAGE_THUMBNAIL_SIZE': 400,
'IMAGE_THUMBNAIL_FORMAT': '{name}.thumbnail{ext}',
'INDEXES_TITLE': "",
'INDEXES_PAGES': "",
'INDEXES_PAGES_MAIN': False,
'INDEXES_PRETTY_PAGE_URL': False,
'INDEXES_STATIC': True,
'INDEX_PATH': '',
'IPYNB_CONFIG': {},
'KATEX_AUTO_RENDER': '',
'LICENSE': '',
'LINK_CHECK_WHITELIST': [],
'LISTINGS_FOLDERS': {'listings': 'listings'},
'LOGO_URL': '',
'DEFAULT_PREVIEW_IMAGE': None,
'NAVIGATION_LINKS': {},
'NAVIGATION_ALT_LINKS': {},
'MARKDOWN_EXTENSIONS': ['fenced_code', 'codehilite', 'extra'],
'MARKDOWN_EXTENSION_CONFIGS': {},
'MAX_IMAGE_SIZE': 1280,
'MATHJAX_CONFIG': '',
'METADATA_FORMAT': 'nikola',
'METADATA_MAPPING': {},
'MULTIPLE_AUTHORS_PER_POST': False,
'NEW_POST_DATE_PATH': False,
'NEW_POST_DATE_PATH_FORMAT': '%Y/%m/%d',
'OLD_THEME_SUPPORT': True,
'OUTPUT_FOLDER': 'output',
'POSTS': (("posts/*.txt", "posts", "post.tmpl"),),
'PRESERVE_EXIF_DATA': False,
'PRESERVE_ICC_PROFILES': False,
'PAGES': (("pages/*.txt", "pages", "page.tmpl"),),
'PANDOC_OPTIONS': [],
'PRETTY_URLS': True,
'FUTURE_IS_NOW': False,
'INDEX_READ_MORE_LINK': DEFAULT_INDEX_READ_MORE_LINK,
'REDIRECTIONS': [],
'ROBOTS_EXCLUSIONS': [],
'GENERATE_ATOM': False,
'ATOM_EXTENSION': '.atom',
'ATOM_PATH': '',
'ATOM_FILENAME_BASE': 'index',
'FEED_TEASERS': True,
'FEED_PLAIN': False,
'FEED_READ_MORE_LINK': DEFAULT_FEED_READ_MORE_LINK,
'FEED_LINKS_APPEND_QUERY': False,
'GENERATE_RSS': True,
'RSS_EXTENSION': '.xml',
'RSS_LINK': None,
'RSS_PATH': '',
'RSS_FILENAME_BASE': 'rss',
'SEARCH_FORM': '',
'SHOW_BLOG_TITLE': True,
'SHOW_INDEX_PAGE_NAVIGATION': False,
'SHOW_SOURCELINK': True,
'SHOW_UNTRANSLATED_POSTS': True,
'SLUG_AUTHOR_PATH': True,
'SLUG_TAG_PATH': True,
'SOCIAL_BUTTONS_CODE': '',
'SITE_URL': 'https://example.com/',
'PAGE_INDEX': False,
'SECTION_PATH': '',
'STRIP_INDEXES': True,
'TAG_PATH': 'categories',
'TAG_PAGES_ARE_INDEXES': False,
'TAG_DESCRIPTIONS': {},
'TAG_TITLES': {},
'TAG_TRANSLATIONS': [],
'TAG_TRANSLATIONS_ADD_DEFAULTS': False,
'TAGS_INDEX_PATH': '',
'TAGLIST_MINIMUM_POSTS': 1,
'TEMPLATE_FILTERS': {},
'THEME': LEGAL_VALUES['DEFAULT_THEME'],
'THEME_COLOR': '#5670d4',
'THEME_CONFIG': {},
'THUMBNAIL_SIZE': 180,
'TRANSLATIONS_PATTERN': DEFAULT_TRANSLATIONS_PATTERN,
'URL_TYPE': 'rel_path',
'USE_BUNDLES': True,
'USE_CDN': False,
'USE_CDN_WARNING': True,
'USE_REST_DOCINFO_METADATA': False,
'USE_FILENAME_AS_TITLE': True,
'USE_KATEX': False,
'USE_SLUGIFY': True,
'USE_TAG_METADATA': True,
'TIMEZONE': 'UTC',
'WARN_ABOUT_TAG_METADATA': True,
'DEPLOY_DRAFTS': True,
'DEPLOY_FUTURE': False,
'SCHEDULE_ALL': False,
'SCHEDULE_RULE': '',
'DEMOTE_HEADERS': 1,
'GITHUB_SOURCE_BRANCH': 'master',
'GITHUB_DEPLOY_BRANCH': 'gh-pages',
'GITHUB_REMOTE_NAME': 'origin',
'GITHUB_COMMIT_SOURCE': False,
'META_GENERATOR_TAG': True,
'REST_FILE_INSERTION_ENABLED': True,
'TYPES_TO_HIDE_TITLE': [],
}
self._GLOBAL_CONTEXT = {}
self.ALL_PAGE_DEPS = {}
self.config.update(config)
if '__builtins__' in self.config:
try:
del self.config['__builtins__']
except KeyError:
del self.config[b'__builtins__']
self.config['__colorful__'] = self.colorful
self.config['__invariant__'] = self.invariant
self.config['__quiet__'] = self.quiet
self.config['ATOM_PATH'] = self.config['ATOM_PATH'] or self.config['INDEX_PATH']
if not self.config['NAVIGATION_LINKS']:
self.config['NAVIGATION_LINKS'] = {self.config['DEFAULT_LANG']: ()}
if not self.config['NAVIGATION_ALT_LINKS']:
self.config['NAVIGATION_ALT_LINKS'] = {self.config['DEFAULT_LANG']: ()}
self.config['TRANSLATIONS'] = self.config.get('TRANSLATIONS',
{self.config['DEFAULT_LANG']: ''})
for k, v in self.config['TRANSLATIONS'].items():
if os.path.isabs(v):
self.config['TRANSLATIONS'][k] = os.path.relpath(v, '/')
utils.TranslatableSetting.default_lang = self.config['DEFAULT_LANG']
self.TRANSLATABLE_SETTINGS = ('BLOG_AUTHOR',
'BLOG_TITLE',
'BLOG_DESCRIPTION',
'LICENSE',
'CONTENT_FOOTER',
'SOCIAL_BUTTONS_CODE',
'SEARCH_FORM',
'BODY_END',
'EXTRA_HEAD_DATA',
'NAVIGATION_LINKS',
'NAVIGATION_ALT_LINKS',
'FRONT_INDEX_HEADER',
'INDEX_READ_MORE_LINK',
'FEED_READ_MORE_LINK',
'INDEXES_TITLE',
'CATEGORY_DESTPATH_NAMES',
'INDEXES_PAGES',
'INDEXES_PRETTY_PAGE_URL',
'THEME_CONFIG',
'ARCHIVE_PATH',
'ARCHIVE_FILENAME',
'TAG_PATH',
'TAGS_INDEX_PATH',
'CATEGORY_PATH',
'CATEGORIES_INDEX_PATH',
'SECTION_PATH',
'INDEX_PATH',
'ATOM_PATH',
'RSS_PATH',
'RSS_FILENAME_BASE',
'ATOM_FILENAME_BASE',
'AUTHOR_PATH',
'DATE_FORMAT',
'LUXON_DATE_FORMAT',
'MOMENTJS_DATE_FORMAT',
'RSS_COPYRIGHT',
'RSS_COPYRIGHT_PLAIN',
'MARKDOWN_EXTENSION_CONFIGS',
)
self._GLOBAL_CONTEXT_TRANSLATABLE = ('blog_author',
'blog_title',
'blog_description',
'license',
'content_footer',
'social_buttons_code',
'search_form',
'body_end',
'extra_head_data',
'date_format',
'js_date_format',
'luxon_date_format',
'front_index_header',
'theme_config',
)
self._ALL_PAGE_DEPS_TRANSLATABLE = ('atom_path',
'rss_path',
'rss_filename_base',
'atom_filename_base',
)
if not self.config['LUXON_DATE_FORMAT']:
self.config['LUXON_DATE_FORMAT'] = {self.config['DEFAULT_LANG']: {'preset': False, 'format': 'yyyy-MM-dd HH:mm'}}
if 'JS_DATE_FORMAT' in self.config:
utils.LOGGER.warning("Moment.js was replaced by Luxon in the default themes, which uses different date formats.")
utils.LOGGER.warning("If you’re using a built-in theme, set LUXON_DATE_FORMAT. If your theme uses Moment.js, you can silence this warning by renaming JS_DATE_FORMAT to MOMENTJS_DATE_FORMAT.")
utils.LOGGER.warning("Sample Luxon config: LUXON_DATE_FORMAT = " + str(self.config['LUXON_DATE_FORMAT']))
self.config['MOMENTJS_DATE_FORMAT'] = self.config['LUXON_DATE_FORMAT']
if 'MOMENTJS_DATE_FORMAT' in self.config:
if isinstance(self.config['MOMENTJS_DATE_FORMAT'], dict):
for k in self.config['MOMENTJS_DATE_FORMAT']:
self.config['MOMENTJS_DATE_FORMAT'][k] = json.dumps(self.config['MOMENTJS_DATE_FORMAT'][k])
else:
self.config['MOMENTJS_DATE_FORMAT'] = json.dumps(self.config['MOMENTJS_DATE_FORMAT'])
if 'LUXON_DATE_FORMAT' in self.config:
for k in self.config['LUXON_DATE_FORMAT']:
self.config['LUXON_DATE_FORMAT'][k] = json.dumps(self.config['LUXON_DATE_FORMAT'][k])
for i in self.TRANSLATABLE_SETTINGS:
try:
self.config[i] = utils.TranslatableSetting(i, self.config[i], self.config['TRANSLATIONS'])
except KeyError:
pass
if self.config['EXIF_WHITELIST'] and not self.config['PRESERVE_EXIF_DATA']:
utils.LOGGER.warning('Setting EXIF_WHITELIST implies PRESERVE_EXIF_DATA is set to True')
self.config['PRESERVE_EXIF_DATA'] = True
if self.config['PRESERVE_EXIF_DATA'] and not self.config['EXIF_WHITELIST']:
utils.LOGGER.warning('You are setting PRESERVE_EXIF_DATA and not EXIF_WHITELIST so EXIF data is not really kept.')
if 'UNSLUGIFY_TITLES' in self.config:
utils.LOGGER.warning('The UNSLUGIFY_TITLES setting was renamed to FILE_METADATA_UNSLUGIFY_TITLES.')
self.config['FILE_METADATA_UNSLUGIFY_TITLES'] = self.config['UNSLUGIFY_TITLES']
if 'TAG_PAGES_TITLES' in self.config:
utils.LOGGER.warning('The TAG_PAGES_TITLES setting was renamed to TAG_TITLES.')
self.config['TAG_TITLES'] = self.config['TAG_PAGES_TITLES']
if 'TAG_PAGES_DESCRIPTIONS' in self.config:
utils.LOGGER.warning('The TAG_PAGES_DESCRIPTIONS setting was renamed to TAG_DESCRIPTIONS.')
self.config['TAG_DESCRIPTIONS'] = self.config['TAG_PAGES_DESCRIPTIONS']
if 'CATEGORY_PAGES_TITLES' in self.config:
utils.LOGGER.warning('The CATEGORY_PAGES_TITLES setting was renamed to CATEGORY_TITLES.')
self.config['CATEGORY_TITLES'] = self.config['CATEGORY_PAGES_TITLES']
if 'CATEGORY_PAGES_DESCRIPTIONS' in self.config:
utils.LOGGER.warning('The CATEGORY_PAGES_DESCRIPTIONS setting was renamed to CATEGORY_DESCRIPTIONS.')
self.config['CATEGORY_DESCRIPTIONS'] = self.config['CATEGORY_PAGES_DESCRIPTIONS']
if 'DISABLE_INDEXES_PLUGIN_INDEX_AND_ATOM_FEED' in self.config:
utils.LOGGER.warning('The DISABLE_INDEXES_PLUGIN_INDEX_AND_ATOM_FEED setting was renamed and split to DISABLE_INDEXES and DISABLE_MAIN_ATOM_FEED.')
self.config['DISABLE_INDEXES'] = self.config['DISABLE_INDEXES_PLUGIN_INDEX_AND_ATOM_FEED']
self.config['DISABLE_MAIN_ATOM_FEED'] = self.config['DISABLE_INDEXES_PLUGIN_INDEX_AND_ATOM_FEED']
if 'DISABLE_INDEXES_PLUGIN_RSS_FEED' in self.config:
utils.LOGGER.warning('The DISABLE_INDEXES_PLUGIN_RSS_FEED setting was renamed to DISABLE_MAIN_RSS_FEED.')
self.config['DISABLE_MAIN_RSS_FEED'] = self.config['DISABLE_INDEXES_PLUGIN_RSS_FEED']
for val in self.config['DATE_FORMAT'].values.values():
if '%' in val:
utils.LOGGER.error('The DATE_FORMAT setting needs to be upgraded.')
utils.LOGGER.warning("Nikola now uses CLDR-style date strings. http://cldr.unicode.org/translation/date-time-1/date-time")
utils.LOGGER.warning("Example: %Y-%m-%d %H:%M ==> yyyy-MM-dd HH:mm")
utils.LOGGER.warning("(note it’s different to what moment.js uses!)")
sys.exit(1)
locales = LEGAL_VALUES['LOCALES_BASE']
if 'LOCALES' in self.config:
for k, v in self.config['LOCALES'].items():
self.config['LOCALES'][k] = v.split('.')[0]
locales.update(self.config['LOCALES'])
self.config['LOCALES'] = locales
if self.config.get('POSTS_SECTIONS'):
utils.LOGGER.warning("The sections feature has been removed and its functionality has been merged into categories.")
utils.LOGGER.warning("For more information on how to migrate, please read: https://getnikola.com/blog/upgrading-to-nikola-v8.html#sections-were-replaced-by-categories")
for section_config_suffix, cat_config_suffix in (
('DESCRIPTIONS', 'DESCRIPTIONS'),
('TITLE', 'TITLES'),
('TRANSLATIONS', 'TRANSLATIONS')
):
section_config = 'POSTS_SECTION_' + section_config_suffix
cat_config = 'CATEGORY_' + cat_config_suffix
if section_config in self.config:
self.config[section_config].update(self.config[cat_config])
self.config[cat_config] = self.config[section_config]
self.config['CATEGORY_DESTPATH_NAMES'] = self.config.get('POSTS_SECTION_NAME', {})
self.config['CATEGORY_DESTPATH_NAMES'] = utils.TranslatableSetting('CATEGORY_DESTPATH_NAMES', self.config['CATEGORY_DESTPATH_NAMES'], self.config['TRANSLATIONS'])
self.config['CATEGORY_DESTPATH_AS_DEFAULT'] = not self.config.get('POSTS_SECTION_FROM_META')
utils.LOGGER.info("Setting CATEGORY_DESTPATH_AS_DEFAULT = " + str(self.config['CATEGORY_DESTPATH_AS_DEFAULT']))
if self.config.get('CATEGORY_PAGES_FOLLOW_DESTPATH') and (not self.config.get('CATEGORY_ALLOW_HIERARCHIES') or self.config.get('CATEGORY_OUTPUT_FLAT_HIERARCHY')):
utils.LOGGER.error('CATEGORY_PAGES_FOLLOW_DESTPATH requires CATEGORY_ALLOW_HIERARCHIES = True, CATEGORY_OUTPUT_FLAT_HIERARCHY = False.')
sys.exit(1)
if self.config.get('COMMENT_SYSTEM') == 'utterances':
utterances_config = self.config.get('GLOBAL_CONTEXT', {}).get('utterances_config', {})
if not ('issue-term' in utterances_config or 'issue-number' in utterances_config):
utils.LOGGER.error("COMMENT_SYSTEM = 'utterances' must have either GLOBAL_CONTEXT['utterances_config']['issue-term'] or GLOBAL_CONTEXT['utterances_config']['issue-term'] defined.")
self.config['CONTENT_FOOTER'].langformat(self.config['CONTENT_FOOTER_FORMATS'])
self.config['RSS_COPYRIGHT'].langformat(self.config['RSS_COPYRIGHT_FORMATS'])
self.config['RSS_COPYRIGHT_PLAIN'].langformat(self.config['RSS_COPYRIGHT_FORMATS'])
utils.USE_SLUGIFY = self.config['USE_SLUGIFY']
if self.config.get('HYPHENATE') and pyphen is None:
utils.LOGGER.warning('To use the hyphenation, you have to install '
'the "pyphen" package.')
utils.LOGGER.warning('Setting HYPHENATE to False.')
self.config['HYPHENATE'] = False
self.config['post_pages'] = []
for i1, i2, i3 in self.config['POSTS']:
self.config['post_pages'].append([i1, i2, i3, True])
for i1, i2, i3 in self.config['PAGES']:
self.config['post_pages'].append([i1, i2, i3, False])
for old_plugin_name, new_plugin_names in TAXONOMY_COMPATIBILITY_PLUGIN_NAME_MAP.items():
if old_plugin_name in self.config['DISABLED_PLUGINS']:
missing_plugins = []
for plugin_name in new_plugin_names:
if plugin_name not in self.config['DISABLED_PLUGINS']:
missing_plugins.append(plugin_name)
if missing_plugins:
utils.LOGGER.warning('The "{}" plugin was replaced by several taxonomy plugins (see PR #2535): {}'.format(old_plugin_name, ', '.join(new_plugin_names)))
utils.LOGGER.warning('You are currently disabling "{}", but not the following new taxonomy plugins: {}'.format(old_plugin_name, ', '.join(missing_plugins)))
utils.LOGGER.warning('Please also disable these new plugins or remove "{}" from the DISABLED_PLUGINS list.'.format(old_plugin_name))
self.config['DISABLED_PLUGINS'].extend(missing_plugins)
if 'render_indexes' in self.config['DISABLED_PLUGINS']:
if 'generate_rss' in self.config['DISABLED_PLUGINS'] or self.config['GENERATE_RSS'] is False:
if 'classify_indexes' not in self.config['DISABLED_PLUGINS']:
utils.LOGGER.warning('You are disabling the "render_indexes" plugin, as well as disabling the "generate_rss" plugin or setting GENERATE_RSS to False. To achieve the same effect, please disable the "classify_indexes" plugin in the future.')
self.config['DISABLED_PLUGINS'].append('classify_indexes')
else:
if not self.config['DISABLE_INDEXES']:
utils.LOGGER.warning('You are disabling the "render_indexes" plugin, but not the generation of RSS feeds. Please put "DISABLE_INDEXES = True" into your configuration instead.')
self.config['DISABLE_INDEXES'] = True
if 'generate_rss' in self.config['DISABLED_PLUGINS'] and self.config['GENERATE_RSS'] is True:
utils.LOGGER.warning('Please use GENERATE_RSS to disable RSS feed generation, instead of mentioning generate_rss in DISABLED_PLUGINS.')
self.config['GENERATE_RSS'] = False
self.config['DISABLE_MAIN_RSS_FEED'] = True
if self.config.get('PRETTY_URLS') and 'STRIP_INDEXES' not in config:
self.config['STRIP_INDEXES'] = True
if not self.config.get('COPY_SOURCES'):
self.config['SHOW_SOURCELINK'] = False
if self.config['CATEGORY_PATH']._inp is None:
self.config['CATEGORY_PATH'] = self.config['TAG_PATH']
if self.config['CATEGORY_PAGES_ARE_INDEXES'] is None:
self.config['CATEGORY_PAGES_ARE_INDEXES'] = self.config['TAG_PAGES_ARE_INDEXES']
self.default_lang = self.config['DEFAULT_LANG']
self.translations = self.config['TRANSLATIONS']
utils.LocaleBorg.initialize(self.config.get('LOCALES', {}), self.default_lang)
if 'BASE_URL' not in self.config:
self.config['BASE_URL'] = self.config.get('SITE_URL')
if self.config['BASE_URL'] and self.config['BASE_URL'][-1] != '/':
utils.LOGGER.warning("Your BASE_URL doesn't end in / -- adding it, but please fix it in your config file!")
self.config['BASE_URL'] += '/'
try:
_bnl = urlsplit(self.config['BASE_URL']).netloc
_bnl.encode('ascii')
urlsplit(self.config['SITE_URL']).netloc.encode('ascii')
except (UnicodeEncodeError, UnicodeDecodeError):
utils.LOGGER.error("Your BASE_URL or SITE_URL contains an IDN expressed in Unicode. Please convert it to Punycode.")
utils.LOGGER.error("Punycode of {}: {}".format(_bnl, _bnl.encode('idna')))
sys.exit(1)
metadata_extractors.load_defaults(self, self.metadata_extractors_by)
if metadata_extractors.DEFAULT_EXTRACTOR is None:
utils.LOGGER.error("Could not find default meta extractor ({})".format(
metadata_extractors.DEFAULT_EXTRACTOR_NAME))
sys.exit(1)
if config.get('METADATA_FORMAT', 'nikola').lower() == 'pelican':
if 'markdown.extensions.meta' not in config.get('MARKDOWN_EXTENSIONS', []) and 'markdown' in self.config['COMPILERS']:
utils.LOGGER.warning(
'To use the Pelican metadata format, you need to add '
'"markdown.extensions.meta" to your MARKDOWN_EXTENSIONS setting.')
try:
self.tzinfo = dateutil.tz.gettz(self.config['TIMEZONE'])
except Exception as exc:
utils.LOGGER.warning("Error getting TZ: {}", exc)
self.tzinfo = dateutil.tz.gettz()
self.config['__tzinfo__'] = self.tzinfo
self.config['_COMPILERS_RAW'] = {}
for k, v in self.config['COMPILERS'].items():
self.config['_COMPILERS_RAW'][k] = list(v)
self.themes_dirs = ['themes'] + self.config['EXTRA_THEMES_DIRS']
filter_name_format = 'filters.{0}'
for filter_name, filter_definition in filters.__dict__.items():
if filter_name.startswith('_') or not callable(filter_definition):
continue
self.register_filter(filter_name_format.format(filter_name), filter_definition)
self._set_global_context_from_config()
self._set_all_page_deps_from_config()
if self.configured:
self._set_global_context_from_data()
self.state = Persistor('state_data.json')
self.cache = Persistor(os.path.join(self.config['CACHE_FOLDER'], 'cache_data.json'))
if self.configured:
self.state._set_site(self)
self.cache._set_site(self)
|
MIT License
|
tensorflow/tensor2tensor
|
tensor2tensor/models/research/vqa_self_attention.py
|
question_encoder
|
python
|
def question_encoder(question,
question_self_attention_bias,
hparams,
name="question_encoder",
save_weights_to=None,
make_image_summary=True):
x = question
with tf.variable_scope(name):
for layer in range(hparams.num_encoder_layers or hparams.num_hidden_layers):
with tf.variable_scope("layer_%d" % layer):
with tf.variable_scope("self_attention"):
y = vqa_layers.multihead_attention(
common_layers.layer_preprocess(x, hparams),
None,
question_self_attention_bias,
hparams.attention_key_channels or hparams.hidden_size,
hparams.attention_value_channels or hparams.hidden_size,
hparams.hidden_size,
hparams.num_heads,
hparams.attention_dropout,
attention_type=hparams.question_self_attention_type,
block_length=hparams.block_length,
save_weights_to=save_weights_to,
make_image_summary=make_image_summary,
scale_dotproduct=hparams.scale_dotproduct,
)
utils.collect_named_outputs(
"norms", "query_self_attention_%d"%(layer),
tf.norm(y, axis=-1))
x = common_layers.layer_postprocess(x, y, hparams)
utils.collect_named_outputs(
"norms", "query_self_attention_postprocess_%d"%(layer),
tf.norm(x, axis=-1))
with tf.variable_scope("ffn"):
y = common_layers.dense_relu_dense(
common_layers.layer_preprocess(x, hparams),
hparams.filter_size,
hparams.hidden_size,
dropout=hparams.relu_dropout,
)
utils.collect_named_outputs(
"norms", "query_ffn_%d"%(layer), tf.norm(y, axis=-1))
x = common_layers.layer_postprocess(x, y, hparams)
utils.collect_named_outputs(
"norms", "query_ffn_postprocess_%d"%(layer),
tf.norm(x, axis=-1))
return common_layers.layer_preprocess(x, hparams)
|
A stack of self attention layers.
|
https://github.com/tensorflow/tensor2tensor/blob/c22a226704e5887862bf9edd9f269892c9016ad4/tensor2tensor/models/research/vqa_self_attention.py#L342-L392
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import range
from tensor2tensor.layers import common_attention
from tensor2tensor.layers import common_hparams
from tensor2tensor.layers import common_layers
from tensor2tensor.layers import vqa_layers
from tensor2tensor.models.research import vqa_attention
from tensor2tensor.utils import registry
import tensorflow.compat.v1 as tf
from tensorflow.contrib.layers.python.layers import utils
@registry.register_model
class VqaSelfAttention(vqa_attention.VqaAttentionBaseline):
def body(self, features):
hp = self.hparams
if hp.image_input_type == "image":
image_feat = vqa_layers.image_embedding(
features["inputs"],
model_fn=eval(hp.image_model_fn),
trainable=hp.train_resnet,
is_training=hp.mode == tf.estimator.ModeKeys.TRAIN)
else:
image_feat = features["inputs"]
image_feat = common_layers.flatten4d3d(image_feat)
image_hidden_size = hp.image_hidden_size or hp.hidden_size
if hp.image_feat_preprocess_proj:
image_feat = common_layers.dense(image_feat, image_hidden_size)
utils.collect_named_outputs("norms", "image_feat_after_proj",
tf.norm(image_feat, axis=-1))
else:
assert image_hidden_size == 2048
image_feat = tf.nn.dropout(
image_feat, keep_prob=1.-hp.layer_prepostprocess_dropout)
if hp.image_feat_encode:
image_feat = image_encoder(image_feat, hp)
utils.collect_named_outputs("norms", "image_feat_encoded",
tf.norm(image_feat, axis=-1))
else:
image_feat = common_layers.layer_norm(image_feat)
utils.collect_named_outputs("norms", "image_feat_after_layer",
tf.norm(image_feat, axis=-1))
question = common_layers.flatten4d3d(features["question"])
utils.collect_named_outputs("norms", "question_embedding",
tf.norm(question, axis=-1))
question, question_self_attention_bias = prepare_question_encoder(
question, hp)
question = tf.nn.dropout(
question, keep_prob=1.-hp.layer_prepostprocess_dropout)
query = question_encoder(question, question_self_attention_bias, hp)
utils.collect_named_outputs(
"norms", "query_encode", tf.norm(query, axis=-1))
query = (query + tf.expand_dims(
tf.squeeze(question_self_attention_bias, [1, 2]), axis=2))
query = tf.reduce_max(query, axis=1)
utils.collect_named_outputs(
"norms", "query_maxpool", tf.norm(query, axis=-1))
image_ave = attn(image_feat, query, hp)
utils.collect_named_outputs("norms", "image_ave",
tf.norm(image_ave, axis=-1))
if hp.multimodal_combine == "concat":
image_question = tf.concat([image_ave, query], axis=1)
elif hp.multimodal_combine == "sum":
image_question = image_ave + query
elif hp.multimodal_combine == "product":
image_question = image_ave * query
utils.collect_named_outputs("norms", "image_question",
tf.norm(image_question, axis=-1))
image_question = tf.nn.dropout(image_question, 1. - hp.dropout)
output = mlp(image_question, hp)
utils.collect_named_outputs("norms", "output",
tf.norm(output, axis=-1))
norm_tensors = utils.convert_collection_to_dict("norms")
vqa_layers.summarize_tensors(norm_tensors, tag="norms/")
return tf.expand_dims(tf.expand_dims(output, axis=1), axis=2)
@registry.register_model
class VqaCombinedSelfAttention(VqaSelfAttention):
def body(self, features):
hp = self.hparams
if hp.image_input_type == "image":
image_feat = vqa_layers.image_embedding(
features["inputs"],
model_fn=eval(hp.image_model_fn),
trainable=hp.train_resnet,
is_training=hp.mode == tf.estimator.ModeKeys.TRAIN)
else:
image_feat = features["inputs"]
image_feat = common_layers.flatten4d3d(image_feat)
image_hidden_size = hp.hidden_size
image_feat = common_layers.dense(image_feat, image_hidden_size)
utils.collect_named_outputs("norms", "image_feat_after_proj",
tf.norm(image_feat, axis=-1))
question = common_layers.flatten4d3d(features["question"])
utils.collect_named_outputs("norms", "question_embedding",
tf.norm(question, axis=-1))
(encoder_input, encoder_self_attention_bias,
encoder_decoder_attention_bias) = prepare_image_question_encoder(
image_feat, question, hp)
encoder_input = tf.nn.dropout(
encoder_input, keep_prob=1.-hp.layer_prepostprocess_dropout)
encoder_output = image_question_encoder(
encoder_input, encoder_self_attention_bias, hp)
utils.collect_named_outputs(
"norms", "encoder_output", tf.norm(encoder_output, axis=-1))
query = tf.get_variable("query", [hp.hidden_size]) * hp.hidden_size **0.5
query = tf.expand_dims(tf.expand_dims(query, axis=0), axis=0)
batch_size = common_layers.shape_list(encoder_input)[0]
query = tf.tile(query, [batch_size, 1, 1])
query = tf.nn.dropout(
query, keep_prob=1.-hp.layer_prepostprocess_dropout)
decoder_output = decoder(
query, encoder_output, None, encoder_decoder_attention_bias, hp)
utils.collect_named_outputs("norms", "decoder_output",
tf.norm(decoder_output, axis=-1))
norm_tensors = utils.convert_collection_to_dict("norms")
vqa_layers.summarize_tensors(norm_tensors, tag="norms/")
return tf.expand_dims(decoder_output, axis=1)
@registry.register_model
class VqaIterativeCombinedSelfAttention(VqaSelfAttention):
def body(self, features):
hp = self.hparams
if hp.image_input_type == "image":
image_feat = vqa_layers.image_embedding(
features["inputs"],
model_fn=eval(hp.image_model_fn),
trainable=hp.train_resnet,
is_training=hp.mode == tf.estimator.ModeKeys.TRAIN)
else:
image_feat = features["inputs"]
image_feat = common_layers.flatten4d3d(image_feat)
image_hidden_size = hp.hidden_size
image_feat = common_layers.dense(image_feat, image_hidden_size)
utils.collect_named_outputs("norms", "image_feat_after_proj",
tf.norm(image_feat, axis=-1))
question = common_layers.flatten4d3d(features["question"])
utils.collect_named_outputs("norms", "question_embedding",
tf.norm(question, axis=-1))
(encoder_input, encoder_self_attention_bias,
encoder_decoder_attention_bias) = prepare_image_question_encoder(
image_feat, question, hp)
encoder_input = tf.nn.dropout(
encoder_input, keep_prob=1.-hp.layer_prepostprocess_dropout)
query = tf.get_variable("query", [hp.hidden_size]) * hp.hidden_size **0.5
query = tf.expand_dims(tf.expand_dims(query, axis=0), axis=0)
batch_size = common_layers.shape_list(encoder_input)[0]
query = tf.tile(query, [batch_size, 1, 1])
query = tf.nn.dropout(
query, keep_prob=1.-hp.layer_prepostprocess_dropout)
decoder_output = iterative_encoder_decoder(
encoder_input,
encoder_self_attention_bias,
encoder_decoder_attention_bias,
query,
hp)
utils.collect_named_outputs("norms", "decoder_output",
tf.norm(decoder_output, axis=-1))
norm_tensors = utils.convert_collection_to_dict("norms")
vqa_layers.summarize_tensors(norm_tensors, tag="norms/")
return tf.expand_dims(decoder_output, axis=1)
def image_encoder(image_feat,
hparams,
name="image_encoder",
save_weights_to=None,
make_image_summary=True):
x = image_feat
image_hidden_size = hparams.image_hidden_size or hparams.hidden_size
image_filter_size = hparams.image_filter_size or hparams.filter_size
with tf.variable_scope(name):
for layer in range(hparams.num_encoder_layers or hparams.num_hidden_layers):
with tf.variable_scope("layer_%d" % layer):
with tf.variable_scope("self_attention"):
y = vqa_layers.multihead_attention(
common_layers.layer_preprocess(x, hparams),
None,
None,
hparams.attention_key_channels or image_hidden_size,
hparams.attention_value_channels or image_hidden_size,
image_hidden_size,
hparams.num_heads,
hparams.attention_dropout,
attention_type=hparams.image_self_attention_type,
save_weights_to=save_weights_to,
make_image_summary=make_image_summary,
scale_dotproduct=hparams.scale_dotproduct,
)
utils.collect_named_outputs(
"norms", "image_feat_self_attention_%d"%(layer),
tf.norm(y, axis=-1))
x = common_layers.layer_postprocess(x, y, hparams)
utils.collect_named_outputs(
"norms", "image_feat_self_attention_postprocess_%d"%(layer),
tf.norm(x, axis=-1))
with tf.variable_scope("ffn"):
y = common_layers.dense_relu_dense(
common_layers.layer_preprocess(x, hparams),
image_filter_size,
image_hidden_size,
dropout=hparams.relu_dropout,
)
utils.collect_named_outputs(
"norms", "image_feat_ffn_%d"%(layer), tf.norm(y, axis=-1))
x = common_layers.layer_postprocess(x, y, hparams)
utils.collect_named_outputs(
"norms", "image_feat_ffn_postprocess_%d"%(layer),
tf.norm(x, axis=-1))
return common_layers.layer_preprocess(x, hparams)
def prepare_question_encoder(inputs, hparams):
encoder_input = inputs
encoder_padding = common_attention.embedding_to_padding(encoder_input)
ignore_padding = common_attention.attention_bias_ignore_padding(
encoder_padding)
encoder_self_attention_bias = ignore_padding
if hparams.pos == "timing":
encoder_input = common_attention.add_timing_signal_1d(encoder_input)
elif hparams.pos == "emb":
encoder_input = common_attention.add_positional_embedding(
encoder_input, hparams.max_length, "inputs_positional_embedding",
None)
return (encoder_input, encoder_self_attention_bias)
|
Apache License 2.0
|
netrack/tensorcraft
|
tensorcraft/client.py
|
Session.close
|
python
|
async def close(self) -> None:
await self.session.close()
|
Close the session and interrupt communication with remote server.
|
https://github.com/netrack/tensorcraft/blob/15e0c54b795f4ce527cc5e2c46bbb7da434ac036/tensorcraft/client.py#L54-L56
|
import aiohttp
import aiohttp.web
import numpy
import ssl
import tensorcraft
import tensorcraft.asynclib
from tensorcraft import arglib
from tensorcraft import errors
from tensorcraft import tlslib
from types import TracebackType
from typing import Dict, IO, NamedTuple, Optional, Sequence, Union, Type
from urllib.parse import urlparse, urlunparse
class Session:
default_headers = {"Accept-Version":
">={0}".format(tensorcraft.__apiversion__)}
def __init__(self, service_url: str,
ssl_context: Union[ssl.SSLContext, None] = None):
if ssl_context:
url = urlparse(service_url)
_, *parts = url
service_url = urlunparse(["https"]+parts)
self.service_url = service_url
self.session = aiohttp.ClientSession(
connector=aiohttp.TCPConnector(ssl_context=ssl_context),
headers=self.default_headers,
)
@property
def default_headers(self) -> Dict:
return {"Accept-Version": f">={tensorcraft.__apiversion__}"}
async def __aenter__(self) -> aiohttp.ClientSession:
return await self.session.__aenter__()
async def __aexit__(self,
exc_type: Optional[Type[BaseException]],
exc_val: Optional[BaseException],
exc_tb: Optional[TracebackType]) -> None:
await self.session.__aexit__(exc_type, exc_val, exc_tb)
def url(self, path: str) -> str:
return f"{self.service_url}/{path}"
|
Apache License 2.0
|
luckydonald/pytgbot
|
code_generation/output/pytgbot/api_types/sendable/command.py
|
BotCommandScopeAllGroupChats.validate_array
|
python
|
def validate_array(array):
assert_type_or_raise(array, dict, parameter_name="array")
data = BotCommandScope.validate_array(array)
return data
|
Builds a new array with valid values for the BotCommandScopeAllGroupChats constructor.
:return: new array with valid values
:rtype: dict
|
https://github.com/luckydonald/pytgbot/blob/e29a0b5f8f8331bd347c8e2b8e75af19b12d1bc5/code_generation/output/pytgbot/api_types/sendable/command.py#L520-L530
|
from luckydonaldUtils.encoding import unicode_type, to_unicode as u
from luckydonaldUtils.exceptions import assert_type_or_raise
from . import Sendable
__author__ = 'luckydonald'
__all__ = [
'BotCommand',
'BotCommandScope',
'BotCommandScopeDefault',
'BotCommandScopeAllPrivateChats',
'BotCommandScopeAllGroupChats',
'BotCommandScopeAllChatAdministrators',
'BotCommandScopeChat',
'BotCommandScopeChatAdministrators',
'BotCommandScopeChatMember',
]
class BotCommand(Sendable):
def __init__(self, command, description):
super(BotCommand, self).__init__()
assert_type_or_raise(command, unicode_type, parameter_name="command")
self.command = command
assert_type_or_raise(description, unicode_type, parameter_name="description")
self.description = description
def to_array(self, prefer_original=False):
if prefer_original and self._raw:
return self._raw
array = super(BotCommand, self).to_array()
array['command'] = u(self.command)
array['description'] = u(self.description)
return array
@staticmethod
def validate_array(array):
assert_type_or_raise(array, dict, parameter_name="array")
data = Sendable.validate_array(array)
data['command'] = u(array.get('command'))
data['description'] = u(array.get('description'))
return data
@staticmethod
def from_array(array):
if not array:
return None
data = BotCommand.validate_array(array)
instance = BotCommand(**data)
instance._raw = array
return instance
def __str__(self):
return "BotCommand(command={self.command!r}, description={self.description!r})".format(self=self)
def __repr__(self):
if self._raw:
return "BotCommand.from_array({self._raw})".format(self=self)
return "BotCommand(command={self.command!r}, description={self.description!r})".format(self=self)
def __contains__(self, key):
return (
key in ["command", "description"]
and hasattr(self, key)
and bool(getattr(self, key, None))
)
class BotCommandScope(Sendable):
def __init__(self):
super(BotCommandScope, self).__init__()
def to_array(self, prefer_original=False):
if prefer_original and self._raw:
return self._raw
array = super(BotCommandScope, self).to_array()
return array
@staticmethod
def validate_array(array):
assert_type_or_raise(array, dict, parameter_name="array")
data = Sendable.validate_array(array)
return data
@staticmethod
def from_array(array):
if not array:
return None
data = BotCommandScope.validate_array(array)
instance = BotCommandScope(**data)
instance._raw = array
return instance
def __str__(self):
return "BotCommandScope()".format(self=self)
def __repr__(self):
if self._raw:
return "BotCommandScope.from_array({self._raw})".format(self=self)
return "BotCommandScope()".format(self=self)
def __contains__(self, key):
return (
key in []
and hasattr(self, key)
and bool(getattr(self, key, None))
)
class BotCommandScopeDefault(BotCommandScope):
def __init__(self):
super(BotCommandScopeDefault, self).__init__()
self.type = 'default'
def to_array(self, prefer_original=False):
if prefer_original and self._raw:
return self._raw
array = super(BotCommandScopeDefault, self).to_array()
array['type'] = u(self.type)
return array
@staticmethod
def validate_array(array):
assert_type_or_raise(array, dict, parameter_name="array")
data = BotCommandScope.validate_array(array)
return data
@staticmethod
def from_array(array):
if not array:
return None
data = BotCommandScopeDefault.validate_array(array)
instance = BotCommandScopeDefault(**data)
instance._raw = array
return instance
def __str__(self):
return "BotCommandScopeDefault(type={self.type!r})".format(self=self)
def __repr__(self):
if self._raw:
return "BotCommandScopeDefault.from_array({self._raw})".format(self=self)
return "BotCommandScopeDefault(type={self.type!r})".format(self=self)
def __contains__(self, key):
return (
key in ["type"]
and hasattr(self, key)
and bool(getattr(self, key, None))
)
class BotCommandScopeAllPrivateChats(BotCommandScope):
def __init__(self):
super(BotCommandScopeAllPrivateChats, self).__init__()
self.type = 'all_private_chats'
def to_array(self, prefer_original=False):
if prefer_original and self._raw:
return self._raw
array = super(BotCommandScopeAllPrivateChats, self).to_array()
array['type'] = u(self.type)
return array
@staticmethod
def validate_array(array):
assert_type_or_raise(array, dict, parameter_name="array")
data = BotCommandScope.validate_array(array)
return data
@staticmethod
def from_array(array):
if not array:
return None
data = BotCommandScopeAllPrivateChats.validate_array(array)
instance = BotCommandScopeAllPrivateChats(**data)
instance._raw = array
return instance
def __str__(self):
return "BotCommandScopeAllPrivateChats(type={self.type!r})".format(self=self)
def __repr__(self):
if self._raw:
return "BotCommandScopeAllPrivateChats.from_array({self._raw})".format(self=self)
return "BotCommandScopeAllPrivateChats(type={self.type!r})".format(self=self)
def __contains__(self, key):
return (
key in ["type"]
and hasattr(self, key)
and bool(getattr(self, key, None))
)
class BotCommandScopeAllGroupChats(BotCommandScope):
def __init__(self):
super(BotCommandScopeAllGroupChats, self).__init__()
self.type = 'all_group_chats'
def to_array(self, prefer_original=False):
if prefer_original and self._raw:
return self._raw
array = super(BotCommandScopeAllGroupChats, self).to_array()
array['type'] = u(self.type)
return array
@staticmethod
|
MIT License
|
carla-rl-gym/carla-rl
|
client/carla/planner/city_track.py
|
CityTrack.project_node
|
python
|
def project_node(self, position):
node = self._map.convert_to_node(position)
node = tuple([int(x) for x in node])
node = (max(0, node[0]), max(0, node[1]))
node = (min(self._map.get_graph_resolution()[0] - 1, node[0]),
min(self._map.get_graph_resolution()[1] - 1, node[1]))
node = self._map.search_on_grid(node)
return node
|
Projecting the graph node into the city road
|
https://github.com/carla-rl-gym/carla-rl/blob/e3ea0df450fe9716c6f1d2e6fbaec05009fb7da8/client/carla/planner/city_track.py#L31-L50
|
from carla.planner.graph import sldist
from carla.planner.astar import AStar
from carla.planner.map import CarlaMap
class CityTrack(object):
def __init__(self, city_name):
self._node_density = 50.0
self._pixel_density = 0.1643
self._map = CarlaMap(city_name, self._pixel_density, self._node_density)
self._astar = AStar()
self._previous_node = []
self._route = None
|
MIT License
|
zakkg3/clustersecret
|
src/handlers.py
|
create_secret
|
python
|
def create_secret(logger,namespace,body,v1=None):
if v1 is None:
v1 = client.CoreV1Api()
logger.debug('new client - fn create secret')
try:
name = body['metadata']['name']
except KeyError:
logger.debug("No name in body ?")
raise kopf.TemporaryError("can not get the name.")
try:
data = body.get('data')
except KeyError:
data = ''
logger.error("Empty secret?? could not get the data.")
secret_type = 'Opaque'
if 'type' in body:
secret_type = body['type']
metadata = {'name': name, 'namespace': namespace}
api_version = 'v1'
kind = 'Secret'
body = client.V1Secret(api_version, data , kind, metadata, type = secret_type)
logger.info(f"cloning secret in namespace {namespace}")
try:
api_response = v1.create_namespaced_secret(namespace, body)
except client.rest.ApiException as e:
if e.reason == 'Conflict':
logger.warning(f"secret `{name}` already exist in namesace '{namespace}'")
return 0
logger.error(f'Can not create a secret, it is base64 encoded? data: {data}')
logger.error(f'Kube exception {e}')
return 1
return 0
|
Creates a given secret on a given namespace
|
https://github.com/zakkg3/clustersecret/blob/c7fb2054eb419d4e1f18dfea9c773a25b1daf16f/src/handlers.py#L116-L152
|
import kopf
import re
from kubernetes import client, config
@kopf.on.delete('clustersecret.io', 'v1', 'clustersecrets')
def on_delete(spec,uid,body,name,logger=None, **_):
syncedns = body['status']['create_fn']['syncedns']
v1 = client.CoreV1Api()
for ns in syncedns:
logger.info(f'deleting secret {name} from namespace {ns}')
try:
v1.delete_namespaced_secret(name,ns)
except client.rest.ApiException as e:
if e.status == 404:
logger.warning(f"The namespace {ns} may not exist anymore: Not found")
else:
logger.warning(f" Something wierd deleting the secret: {e}")
try:
csecs.pop(uid)
logger.debug(f"csec {uid} deleted from memory ok")
except KeyError as k:
logger.info(f" This csec were not found in memory, maybe it was created in another run: {k}")
@kopf.on.field('clustersecret.io', 'v1', 'clustersecrets', field='data')
def on_field_data(old, new, body,name,logger=None, **_):
logger.debug(f'Data changed: {old} -> {new}')
if old is not None:
syncedns = body['status']['create_fn']['syncedns']
v1 = client.CoreV1Api()
secret_type = 'Opaque'
if 'type' in body:
secret_type = body['type']
for ns in syncedns:
logger.info(f'Re Syncing secret {name} in ns {ns}')
metadata = {'name': name, 'namespace': ns}
api_version = 'v1'
kind = 'Secret'
data = new
body = client.V1Secret(api_version, data , kind, metadata, type = secret_type)
response = v1.replace_namespaced_secret(name,ns,body)
logger.debug(response)
else:
logger.debug('This is a new object')
csecs = {}
@kopf.on.resume('clustersecret.io', 'v1', 'clustersecrets')
@kopf.on.create('clustersecret.io', 'v1', 'clustersecrets')
async def create_fn(spec,uid,logger=None,body=None,**kwargs):
v1 = client.CoreV1Api()
matchedns = get_ns_list(logger,body,v1)
logger.info(f'Syncing on Namespaces: {matchedns}')
for namespace in matchedns:
create_secret(logger,namespace,body,v1)
csecs[uid]={}
csecs[uid]['body']=body
csecs[uid]['syncedns']=matchedns
return {'syncedns': matchedns}
def get_ns_list(logger,body,v1=None):
if v1 is None:
v1 = client.CoreV1Api()
logger.debug('new client - fn get_ns_list')
try:
matchNamespace = body.get('matchNamespace')
except KeyError:
matchNamespace = '*'
logger.debug("matching all namespaces.")
logger.debug(f'Matching namespaces: {matchNamespace}')
try:
avoidNamespaces = body.get('avoidNamespaces')
except KeyError:
avoidNamespaces = ''
logger.debug("not avoiding namespaces")
nss = v1.list_namespace().items
matchedns = []
avoidedns = []
for matchns in matchNamespace:
for ns in nss:
if re.match(matchns, ns.metadata.name):
matchedns.append(ns.metadata.name)
logger.debug(f'Matched namespaces: {ns.metadata.name} matchpathern: {matchns}')
if avoidNamespaces:
for avoidns in avoidNamespaces:
for ns in nss:
if re.match(avoidns, ns.metadata.name):
avoidedns.append(ns.metadata.name)
logger.debug(f'Skipping namespaces: {ns.metadata.name} avoidpatrn: {avoidns}')
for ns in matchedns.copy():
if ns in avoidedns:
matchedns.remove(ns)
return matchedns
|
Apache License 2.0
|
apache/incubator-spot
|
spot-ingest/common/file_watcher.py
|
FileWatcher.is_empty
|
python
|
def is_empty(self):
return self._queue == []
|
Return ``True`` if there is no file in the queue, otherwise ``False``.
|
https://github.com/apache/incubator-spot/blob/2d60a2adae7608b43e90ce1b9ec0adf24f6cc8eb/spot-ingest/common/file_watcher.py#L72-L76
|
import logging
import re
from os.path import basename
from watchdog.events import FileSystemEventHandler
from watchdog.observers import Observer
class FileWatcher(Observer):
def __init__(self, path, supported_files, recursive):
self._logger = logging.getLogger('SPOT.INGEST.COMMON.FILE_WATCHER')
self._queue = []
super(FileWatcher, self).__init__()
self._logger.info('Schedule watching "{0}" directory.'.format(path))
super(FileWatcher, self).schedule(NewFileEventHandler(self), path, recursive)
self._regexs = [re.compile(x) for x in supported_files]
pattern_names = ', '.join(['"%s"' % x for x in supported_files])
self._logger.info('Supported filenames: {0}'.format(pattern_names))
self._logger.info('The search in sub-directories is {0}.'
.format('enabled' if recursive else 'disabled'))
def __str__(self):
return '"{0}({1})"'.format(self.__class__.__name__, self.name)
@property
def dequeue(self):
return None if self._queue == [] else self._queue.pop()
@property
|
Apache License 2.0
|
theislab/batchglm
|
batchglm/data.py
|
constraint_matrix_from_dict
|
python
|
def constraint_matrix_from_dict(
sample_description: pd.DataFrame,
formula: str,
as_categorical: Union[bool, list] = True,
constraints: dict = {},
return_type: str = "patsy"
) -> Tuple:
assert len(constraints) > 0, "supply constraints"
sample_description: pd.DataFrame = sample_description.copy()
if type(as_categorical) is not bool or as_categorical:
if type(as_categorical) is bool and as_categorical:
as_categorical = np.repeat(True, sample_description.columns.size)
for to_cat, col in zip(as_categorical, sample_description):
if to_cat:
sample_description[col] = sample_description[col].astype("category")
formula_unconstrained = formula.split("+")
formula_unconstrained = [x for x in formula_unconstrained if x.strip(" ") not in constraints.keys()]
formula_unconstrained = "+".join(formula_unconstrained)
dmat = patsy.dmatrix(formula_unconstrained, sample_description)
coef_names = dmat.design_info.column_names
term_names = dmat.design_info.term_names
constraints_ls = string_constraints_from_dict(
sample_description=sample_description,
constraints=constraints
)
for i, x in enumerate(constraints.keys()):
assert isinstance(x, str), "constrained should contain strings"
dmat_constrained_temp = patsy.highlevel.dmatrix("0+" + x, sample_description)
dmat = np.hstack([dmat, dmat_constrained_temp])
coef_names.extend(dmat_constrained_temp.design_info.column_names)
term_names.extend(dmat_constrained_temp.design_info.term_names)
constraints_ar = constraint_matrix_from_string(
dmat=dmat,
coef_names=coef_names,
constraints=constraints_ls
)
if return_type == "dataframe":
dmat = pd.DataFrame(dmat, columns=coef_names)
return dmat, coef_names, constraints_ar, term_names
|
Create a design matrix from some sample description and a constraint matrix
based on factor encoding of constrained parameter sets.
Note that we build a dataframe instead of a pasty.DesignMatrix here if constraints are used.
This is done because we were not able to build a patsy.DesignMatrix of the constrained form
required in this context. In those cases in which the return type cannot be patsy, we encourage the
use of the returned term_names to perform term-wise slicing which is not supported by other
design matrix return types.
:param sample_description: pandas.DataFrame of length "num_observations" containing explanatory variables as columns
:param formula: model formula as string, describing the relations of the explanatory variables.
E.g. '~ 1 + batch + confounder'
:param as_categorical: boolean or list of booleans corresponding to the columns in 'sample_description'
If True, all values in 'sample_description' will be treated as categorical values.
If list of booleans, each column will be changed to categorical if the corresponding value in 'as_categorical'
is True.
Set to false, if columns should not be changed.
:param constraints: Grouped factors to enfore equality constraints on. Every element of
the dictionary corresponds to one set of equality constraints. Each set has to be
be an entry of the form {..., x: y, ...} where x is the factor to be constrained and y is
a factor by which levels of x are grouped and then constrained. Set y="1" to constrain
all levels of x to sum to one, a single equality constraint.
E.g.: {"batch": "condition"} Batch levels within each condition are constrained to sum to
zero. This is applicable if repeats of a an experiment within each condition
are independent so that the set-up ~1+condition+batch is perfectly confounded.
Can only group by non-constrained effects right now, use constraint_matrix_from_string
for other cases.
:return:
- model design matrix
- term_names to allow slicing by factor if return type cannot be patsy.DesignMatrix
|
https://github.com/theislab/batchglm/blob/31b905b99b6baa7c94b82550d6a74f00d81966ea/batchglm/data.py#L264-L351
|
import logging
import patsy
import pandas as pd
import numpy as np
from typing import Union, Tuple, List
try:
import anndata
try:
from anndata.base import Raw
except ImportError:
from anndata import Raw
except ImportError:
anndata = None
Raw = None
def design_matrix(
sample_description: Union[pd.DataFrame, None] = None,
formula: Union[str, None] = None,
as_categorical: Union[bool, list] = True,
dmat: Union[pd.DataFrame, None] = None,
return_type: str = "patsy",
) -> Tuple[Union[patsy.design_info.DesignMatrix, pd.DataFrame], List[str]]:
if (dmat is None and sample_description is None) or (dmat is not None and sample_description is not None):
raise ValueError("supply either dmat or sample_description")
if dmat is None:
sample_description: pd.DataFrame = sample_description.copy()
if type(as_categorical) is not bool or as_categorical:
if type(as_categorical) is bool and as_categorical:
as_categorical = np.repeat(True, sample_description.columns.size)
for to_cat, col in zip(as_categorical, sample_description):
if to_cat:
sample_description[col] = sample_description[col].astype("category")
dmat = patsy.dmatrix(formula, sample_description)
coef_names = dmat.design_info.column_names
if return_type == "dataframe":
df = pd.DataFrame(dmat, columns=dmat.design_info.column_names)
df = pd.concat([df, sample_description], axis=1)
df.set_index(list(sample_description.columns), inplace=True)
return df
elif return_type == "patsy":
return dmat, coef_names
else:
raise ValueError("return type %s not recognized" % return_type)
else:
if return_type == "dataframe":
return dmat, dmat.columns
elif return_type == "patsy":
raise ValueError("return type 'patsy' not supported for input (dmat is not None)")
else:
raise ValueError("return type %s not recognized" % return_type)
def view_coef_names(
dmat: Union[patsy.design_info.DesignMatrix, pd.DataFrame]
) -> np.ndarray:
if isinstance(dmat, pd.DataFrame):
return np.asarray(dmat.columns)
elif isinstance(dmat, patsy.design_info.DesignMatrix):
return np.asarray(dmat.design_info.column_names)
else:
raise ValueError("dmat type %s not recognized" % type(dmat))
def preview_coef_names(
sample_description: pd.DataFrame,
formula: str,
as_categorical: Union[bool, list] = True
) -> List[str]:
_, coef_names = design_matrix(
sample_description=sample_description,
formula=formula,
as_categorical=as_categorical,
return_type="patsy"
)
return coef_names
def constraint_system_from_star(
dmat: Union[None, patsy.design_info.DesignMatrix, pd.DataFrame] = None,
sample_description: Union[None, pd.DataFrame] = None,
formula: Union[None, str] = None,
as_categorical: Union[bool, list] = True,
constraints: Union[None, List[str], Tuple[str], dict, np.ndarray] = None,
return_type: str = "patsy"
) -> Tuple:
if sample_description is None and dmat is None:
raise ValueError("supply either sample_description or dmat")
if dmat is None and not isinstance(constraints, dict):
dmat, coef_names = design_matrix(
sample_description=sample_description,
formula=formula,
as_categorical=as_categorical,
dmat=None,
return_type=return_type
)
elif dmat is not None and isinstance(constraints, dict):
raise ValueError("dmat was supplied even though constraints were given as dict")
if isinstance(constraints, dict):
dmat, coef_names, cmat, term_names = constraint_matrix_from_dict(
sample_description=sample_description,
formula=formula,
as_categorical=as_categorical,
constraints=constraints,
return_type="patsy"
)
elif isinstance(constraints, tuple) or isinstance(constraints, list):
cmat, coef_names = constraint_matrix_from_string(
dmat=dmat,
coef_names=dmat.design_info.column_names,
constraints=constraints
)
term_names = None
elif isinstance(constraints, np.ndarray):
cmat = constraints
term_names = None
if isinstance(dmat, pd.DataFrame):
coef_names = dmat.columns
dmat = dmat.values
elif constraints is None:
cmat = None
term_names = None
if isinstance(dmat, pd.DataFrame):
coef_names = dmat.columns
dmat = dmat.values
else:
raise ValueError("constraint format %s not recognized" % type(constraints))
if cmat is None:
if np.linalg.matrix_rank(dmat) != dmat.shape[1]:
raise ValueError(
"constrained design matrix is not full rank: %i %i" %
(np.linalg.matrix_rank(dmat), dmat.shape[1])
)
else:
if np.linalg.matrix_rank(np.matmul(dmat, cmat)) != cmat.shape[1]:
raise ValueError(
"constrained design matrix is not full rank: %i %i" %
(np.linalg.matrix_rank(np.matmul(dmat, cmat)), cmat.shape[1])
)
return dmat, coef_names, cmat, term_names
|
BSD 3-Clause New or Revised License
|
lithops-cloud/lithops
|
lithops/storage/backends/infinispan/infinispan.py
|
InfinispanBackend.head_bucket
|
python
|
def head_bucket(self, bucket_name):
raise NotImplementedError
|
Head bucket from COS with a name. Throws StorageNoSuchKeyError if the given bucket does not exist.
:param bucket_name: name of the bucket
:return: Metadata of the bucket
:rtype: str/bytes
|
https://github.com/lithops-cloud/lithops/blob/a274a0bc423e22b9a68834cac5d63130666a4ee8/lithops/storage/backends/infinispan/infinispan.py#L141-L148
|
import logging
import requests
import json
import base64
from requests.auth import HTTPBasicAuth
from lithops.constants import STORAGE_CLI_MSG
logger = logging.getLogger(__name__)
class InfinispanBackend:
def __init__(self, infinispan_config):
logger.debug("Creating Infinispan storage client")
self.infinispan_config = infinispan_config
self.basicAuth = HTTPBasicAuth(infinispan_config.get('username'),
infinispan_config.get('password'))
self.endpoint = infinispan_config.get('endpoint')
self.cache_name = infinispan_config.get('cache_name', 'default')
self.cache_type = infinispan_config.get('cache_type', 'org.infinispan.DIST_SYNC')
self.infinispan_client = requests.session()
self.__is_server_version_supported()
self.__create_cache(self.cache_name, self.cache_type)
self.headers = {"Content-Type": "application/octet-stream",
"Key-Content-Type": "application/octet-stream;encoding=base64"}
msg = STORAGE_CLI_MSG.format('Infinispan')
logger.info("{} - Endpoint: {}".format(msg, self.endpoint))
def __create_cache(self, cache_name, cache_type):
url = self.endpoint + '/rest/v2/caches/' + cache_name
res = self.infinispan_client.head(url, auth=self.basicAuth)
if res.status_code == 404:
logger.debug('going to create new Infinispan cache {}'.format(cache_name))
url = self.endpoint+'/rest/v2/caches/'+cache_name+'?template='+cache_type
res = self.infinispan_client.post(url)
logger.debug('New Infinispan cache {} created with '
'status {}'.format(cache_name, res.status_code))
def __key_url(self, bucket_name, key):
data_key = '{}_{}'.format(bucket_name, key)
urlSafeEncodedBytes = base64.urlsafe_b64encode(data_key.encode("utf-8"))
urlSafeEncodedStr = str(urlSafeEncodedBytes, "utf-8")
url = self.endpoint + '/rest/v2/caches/' + self.cache_name + '/' + urlSafeEncodedStr
return url
def __is_server_version_supported(self):
url = self.endpoint + '/rest/v2/cache-managers/default'
res = self.infinispan_client.get(url, auth=self.basicAuth)
json_resp = json.loads(res.content.decode('utf-8'))
server_version = json_resp['version'].split('.')
if (int(server_version[0]) < 10 or (int(server_version[0]) == 10 and int(server_version[1]) < 1)):
raise Exception('Infinispan versions 10.1 and up supported')
def get_client(self):
return self.infinispan_client
def put_object(self, bucket_name, key, data):
url = self.__key_url(bucket_name, key)
resp = self.infinispan_client.put(url, data=data,
auth=self.basicAuth,
headers=self.headers)
logger.debug(resp)
def get_object(self, bucket_name, key, stream=False, extra_get_args={}):
url = self.__key_url(bucket_name, key)
res = self.infinispan_client.get(url, headers=self.headers, auth=self.basicAuth)
data = res.content
return data
def head_object(self, bucket_name, key):
url = self.__key_url(bucket_name, key)
res = self.infinispan_client.head(url, headers=self.headers, auth=self.basicAuth)
return res.status_code
def delete_object(self, bucket_name, key):
url = self.__key_url(bucket_name, key)
return self.infinispan_client.delete(url, headers=self.headers, auth=self.basicAuth)
def delete_objects(self, bucket_name, key_list):
result = []
for key in key_list:
self.delete_object(bucket_name, key)
return result
|
Apache License 2.0
|
dhn/osee
|
Kernel_Exploitation/ioctl.py
|
IOCTL.__get_method
|
python
|
def __get_method(self, ioctl_code):
method_names = [
"METHOD_BUFFERED",
"METHOD_IN_DIRECT",
"METHOD_OUT_DIRECT",
"METHOD_NEITHER",
]
method = ioctl_code & 3
return method_names[method], method
|
Returns the correct method type name for a 32 bit IOCTL code
|
https://github.com/dhn/osee/blob/9875d16edc09ac569681e325ef7dbfa0ba69cfbc/Kernel_Exploitation/ioctl.py#L124-L134
|
import os
import re
import sys
import angr
import mmap
import pyvex
import claripy
import logging
import argparse
import collections
class IOCTL:
def __init__(self, driver):
self._ASCII_BYTE = b" !\"#\$%&\'\(\)\*\+,-\./0123456789:;<=>\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ\[\]\^_`abcdefghijklmnopqrstuvwxyz\{\|\}\\\~\t"
self._UNICODE_RE_4 = re.compile(b"((?:[%s]\x00){%d,})" % (self._ASCII_BYTE, 4))
self._REPEATS = ["A", "\x00", "\xfe", "\xff"]
self._String = collections.namedtuple("String", ["s", "offset"])
self._driver = driver
self._p = angr.Project(self._driver, auto_load_libs=False)
def __get_device(self, ioctl_code):
device_name_unknown = "<UNKNOWN>"
device_names = [
device_name_unknown,
"FILE_DEVICE_BEEP",
"FILE_DEVICE_CD_ROM",
"FILE_DEVICE_CD_ROM_FILE_SYSTEM",
"FILE_DEVICE_CONTROLLER",
"FILE_DEVICE_DATALINK",
"FILE_DEVICE_DFS",
"FILE_DEVICE_DISK",
"FILE_DEVICE_DISK_FILE_SYSTEM",
"FILE_DEVICE_FILE_SYSTEM",
"FILE_DEVICE_INPORT_PORT",
"FILE_DEVICE_KEYBOARD",
"FILE_DEVICE_MAILSLOT",
"FILE_DEVICE_MIDI_IN",
"FILE_DEVICE_MIDI_OUT",
"FILE_DEVICE_MOUSE",
"FILE_DEVICE_MULTI_UNC_PROVIDER",
"FILE_DEVICE_NAMED_PIPE",
"FILE_DEVICE_NETWORK",
"FILE_DEVICE_NETWORK_BROWSER",
"FILE_DEVICE_NETWORK_FILE_SYSTEM",
"FILE_DEVICE_NULL",
"FILE_DEVICE_PARALLEL_PORT",
"FILE_DEVICE_PHYSICAL_NETCARD",
"FILE_DEVICE_PRINTER",
"FILE_DEVICE_SCANNER",
"FILE_DEVICE_SERIAL_MOUSE_PORT",
"FILE_DEVICE_SERIAL_PORT",
"FILE_DEVICE_SCREEN",
"FILE_DEVICE_SOUND",
"FILE_DEVICE_STREAMS",
"FILE_DEVICE_TAPE",
"FILE_DEVICE_TAPE_FILE_SYSTEM",
"FILE_DEVICE_TRANSPORT",
"FILE_DEVICE_UNKNOWN",
"FILE_DEVICE_VIDEO",
"FILE_DEVICE_VIRTUAL_DISK",
"FILE_DEVICE_WAVE_IN",
"FILE_DEVICE_WAVE_OUT",
"FILE_DEVICE_8042_PORT",
"FILE_DEVICE_NETWORK_REDIRECTOR",
"FILE_DEVICE_BATTERY",
"FILE_DEVICE_BUS_EXTENDER",
"FILE_DEVICE_MODEM",
"FILE_DEVICE_VDM",
"FILE_DEVICE_MASS_STORAGE",
"FILE_DEVICE_SMB",
"FILE_DEVICE_KS",
"FILE_DEVICE_CHANGER",
"FILE_DEVICE_SMARTCARD",
"FILE_DEVICE_ACPI",
"FILE_DEVICE_DVD",
"FILE_DEVICE_FULLSCREEN_VIDEO",
"FILE_DEVICE_DFS_FILE_SYSTEM",
"FILE_DEVICE_DFS_VOLUME",
"FILE_DEVICE_SERENUM",
"FILE_DEVICE_TERMSRV",
"FILE_DEVICE_KSEC",
"FILE_DEVICE_FIPS",
"FILE_DEVICE_INFINIBAND",
device_name_unknown,
device_name_unknown,
"FILE_DEVICE_VMBUS",
"FILE_DEVICE_CRYPT_PROVIDER",
"FILE_DEVICE_WPD",
"FILE_DEVICE_BLUETOOTH",
"FILE_DEVICE_MT_COMPOSITE",
"FILE_DEVICE_MT_TRANSPORT",
"FILE_DEVICE_BIOMETRIC",
"FILE_DEVICE_PMI",
]
device_names2 = [
{"name": "MOUNTMGRCONTROLTYPE", "code": 0x0000006d},
]
device = (ioctl_code >> 16) & 0xffff
if device >= len(device_names):
device_name = device_name_unknown
for dev in device_names2:
if device == dev["code"]:
device_name = dev["name"]
break
else:
device_name = device_names[device]
return device_name, device
|
BSD 3-Clause New or Revised License
|
wolkabout/wolkconnect-python
|
wolk/wolkabout_protocol_message_deserializer.py
|
WolkAboutProtocolMessageDeserializer.is_firmware_abort
|
python
|
def is_firmware_abort(self, message: Message) -> bool:
firmware_update_abort = message.topic.startswith(
self.FIRMWARE_UPDATE_ABORT
)
self.logger.debug(
f"{message.topic} is firmware abort: {firmware_update_abort}"
)
return firmware_update_abort
|
Check if message is firmware update command.
:param message: The message received
:type message: Message
:returns: firmware_update_abort
:rtype: bool
|
https://github.com/wolkabout/wolkconnect-python/blob/11412e3f88911170f587b5e857d07ab41c8f52b5/wolk/wolkabout_protocol_message_deserializer.py#L164-L179
|
import json
from distutils.util import strtobool
from typing import List
from typing import Tuple
from wolk import logger_factory
from wolk.interface.message_deserializer import MessageDeserializer
from wolk.model.actuator_command import ActuatorCommand
from wolk.model.configuration_command import ConfigurationCommand
from wolk.model.device import Device
from wolk.model.file_transfer_package import FileTransferPackage
from wolk.model.message import Message
class WolkAboutProtocolMessageDeserializer(MessageDeserializer):
DEVICE_PATH_DELIMITER = "d/"
REFERENCE_PATH_PREFIX = "r/"
CHANNEL_DELIMITER = "/"
KEEP_ALIVE_RESPONSE = "pong/"
ACTUATOR_SET = "p2d/actuator_set/"
CONFIGURATION_SET = "p2d/configuration_set/"
FILE_BINARY_RESPONSE = "p2d/file_binary_response/"
FILE_DELETE = "p2d/file_delete/"
FILE_PURGE = "p2d/file_purge/"
FILE_LIST_CONFIRM = "p2d/file_list_confirm/"
FILE_LIST_REQUEST = "p2d/file_list_request/"
FILE_UPLOAD_ABORT = "p2d/file_upload_abort/"
FILE_UPLOAD_INITIATE = "p2d/file_upload_initiate/"
FILE_URL_DOWNLOAD_ABORT = "p2d/file_url_download_abort/"
FILE_URL_DOWNLOAD_INITIATE = "p2d/file_url_download_initiate/"
FIRMWARE_UPDATE_ABORT = "p2d/firmware_update_abort/"
FIRMWARE_UPDATE_INSTALL = "p2d/firmware_update_install/"
def __init__(self, device: Device) -> None:
self.logger = logger_factory.logger_factory.get_logger(
str(self.__class__.__name__)
)
self.logger.debug(f"{device}")
self.inbound_topics = [
self.KEEP_ALIVE_RESPONSE + device.key,
self.CONFIGURATION_SET + self.DEVICE_PATH_DELIMITER + device.key,
self.FILE_BINARY_RESPONSE
+ self.DEVICE_PATH_DELIMITER
+ device.key,
self.FILE_DELETE + self.DEVICE_PATH_DELIMITER + device.key,
self.FILE_PURGE + self.DEVICE_PATH_DELIMITER + device.key,
self.FILE_LIST_CONFIRM + self.DEVICE_PATH_DELIMITER + device.key,
self.FILE_LIST_REQUEST + self.DEVICE_PATH_DELIMITER + device.key,
self.FILE_UPLOAD_ABORT + self.DEVICE_PATH_DELIMITER + device.key,
self.FILE_UPLOAD_INITIATE
+ self.DEVICE_PATH_DELIMITER
+ device.key,
self.FILE_URL_DOWNLOAD_ABORT
+ self.DEVICE_PATH_DELIMITER
+ device.key,
self.FILE_URL_DOWNLOAD_INITIATE
+ self.DEVICE_PATH_DELIMITER
+ device.key,
self.FIRMWARE_UPDATE_ABORT
+ self.DEVICE_PATH_DELIMITER
+ device.key,
self.FIRMWARE_UPDATE_INSTALL
+ self.DEVICE_PATH_DELIMITER
+ device.key,
]
for reference in device.actuator_references:
self.inbound_topics.append(
self.ACTUATOR_SET
+ self.DEVICE_PATH_DELIMITER
+ device.key
+ self.CHANNEL_DELIMITER
+ self.REFERENCE_PATH_PREFIX
+ reference
)
self.logger.debug(f"inbound topics: {self.inbound_topics}")
def get_inbound_topics(self) -> List[str]:
return self.inbound_topics
def is_keep_alive_response(self, message: Message) -> bool:
keep_alive_response = message.topic.startswith(
self.KEEP_ALIVE_RESPONSE
)
self.logger.debug(
f"{message.topic} is keep alive response: {keep_alive_response}"
)
return keep_alive_response
def is_actuation_command(self, message: Message) -> bool:
actuation_command = message.topic.startswith(self.ACTUATOR_SET)
self.logger.debug(
f"{message.topic} is actuation command: {actuation_command}"
)
return actuation_command
def is_firmware_install(self, message: Message) -> bool:
firmware_update_install = message.topic.startswith(
self.FIRMWARE_UPDATE_INSTALL
)
self.logger.debug(
f"{message.topic} is firmware install: {firmware_update_install}"
)
return firmware_update_install
|
Apache License 2.0
|
shivansh-007/piston-cli
|
piston/commands/input.py
|
user_input
|
python
|
def user_input(ctx: click.Context, theme: str, language: str) -> Union[tuple, str]:
console = ctx.obj["console"]
args = helpers.get_args(console)
stdin = helpers.get_stdin(console)
console.print("[green]Enter your code, (press esc + enter to run)[/green]")
style = helpers.set_style(console, theme)
console.print()
code = prompt(
"",
lexer=PygmentsLexer(lexers_dict[language]),
include_default_pygments_style=False,
style=style,
multiline=True,
)
payload = PistonQuery(language=language, args=args, stdin=stdin, code=code)
data = services.query_piston(ctx, console, payload)
if len(data["output"]) == 0:
return "Your code ran without output.", language
return data["output"].split("\n"), language
|
Make a multiline prompt for code input and send the code to the api.
The compiled output from the api is returned.
|
https://github.com/shivansh-007/piston-cli/blob/c7e2e418174a98501443ccaa53d582c3e52502b9/piston/commands/input.py#L12-L40
|
from typing import Union
import click
from prompt_toolkit.lexers import PygmentsLexer
from prompt_toolkit.shortcuts import prompt
from piston.utils import helpers, services
from piston.utils.constants import PistonQuery
from piston.utils.lexers import lexers_dict
|
MIT License
|
zfit/zfit
|
zfit/core/coordinates.py
|
Coordinates.with_axes
|
python
|
def with_axes(self,
axes: Optional[ztyping.AxesTypeInput],
allow_superset: bool = True,
allow_subset: bool = True) -> "Coordinates":
axes = convert_to_axes(axes)
if axes is None:
if self.obs is None:
raise CoordinatesUnderdefinedError("Cannot remove axes (using None) for a Space without obs")
new_coords = type(self)(obs=self.obs, axes=axes)
else:
axes = _convert_axes_to_int(axes)
if not self.axes and not len(axes) == len(self.obs):
raise AxesIncompatibleError(f"Trying to set axes {axes} to object with obs {self.obs}")
if self.axes is None:
new_coords = type(self)(obs=self.obs, axes=axes)
else:
if not set(axes).intersection(self.axes):
raise AxesIncompatibleError(f"The requested axes {axes} are not compatible with the current axes "
f"{self.axes}")
if not frozenset(axes) == frozenset(self.axes):
if not allow_superset and set(axes) - set(self.axes):
raise AxesIncompatibleError(
f"Axes {axes} are a superset of {self.axes}, not allowed according to flag.")
if not allow_subset and set(self.axes) - set(axes):
raise AxesIncompatibleError(
f"Axes {axes} are a subset of {self.axes}, not allowed according to flag.")
new_indices = self.get_reorder_indices(axes=axes)
new_obs = self._reorder_obs(indices=new_indices)
new_axes = self._reorder_axes(indices=new_indices)
new_coords = type(self)(obs=new_obs, axes=new_axes)
return new_coords
|
Create a new instance that has `axes`; sorted by or set or dropped.
The behavior is as follows:
* axes are already set:
* input axes are None: the axes will be dropped. If no observables are set, an error
will be raised, as no coordinates will be assigned to this instance anymore.
* input axes are not None: the instance will be sorted by the incoming axes. If obs or other
objects have an associated order (e.g. data, limits,...), they will be reordered as well.
If a strict subset is given (and allow_subset is True), only a subset will be returned. This can
be used to retrieve a subspace of limits, data etc.
If a strict superset is given (and allow_superset is True), the axes will be sorted accordingly as
if the axes not contained in the instances axes were not present in the input axes.
* axes are not set:
* if the input axes are None, the same object is returned.
* if the input axes are not None, they will be set as-is and now correspond to the already
existing obs in the object.
Args:
axes: Axes to sort/associate this instance with
allow_superset: if False and a strict superset of the own axeservables is given, an error
is raised.
allow_subset:if False and a strict subset of the own axeservables is given, an error
is raised.
Returns:
A copy of the object with the new ordering/axes
Raises:
CoordinatesUnderdefinedError: if obs is None and the instance does not have axes
AxesIncompatibleError: if `axes` is a superset and allow_superset is False or a subset and
allow_allow_subset is False
|
https://github.com/zfit/zfit/blob/d293c8d02afcfa681273eed7825b519bdc60b320/zfit/core/coordinates.py#L142-L208
|
from typing import List, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from zfit import z
from ..util import ztyping
from ..util.container import convert_to_container
from ..util.exception import (AxesIncompatibleError,
CoordinatesIncompatibleError,
CoordinatesUnderdefinedError,
IntentionAmbiguousError, ObsIncompatibleError,
OverdefinedError, WorkInProgressError)
from .interfaces import (ZfitData, ZfitDimensional, ZfitOrderableDimensional,
ZfitSpace)
class Coordinates(ZfitOrderableDimensional):
def __init__(self, obs=None, axes=None):
obs, axes, n_obs = self._check_convert_obs_axes(obs, axes)
self._obs = obs
self._axes = axes
self._n_obs = n_obs
@staticmethod
def _check_convert_obs_axes(obs, axes):
if isinstance(obs, ZfitOrderableDimensional):
if axes is not None:
raise OverdefinedError(f"Cannot use {obs}, a"
" ZfitOrderableDimensional as obs with axes not None"
" (currently, please open an issue if desired)")
coord = obs
return coord.obs, coord.axes, coord.n_obs
obs = convert_to_obs_str(obs, container=tuple)
axes = convert_to_axes(axes, container=tuple)
if obs is None:
if axes is None:
raise CoordinatesUnderdefinedError("Neither obs nor axes specified")
else:
if any(not isinstance(ax, int) for ax in axes):
raise ValueError(f"Axes have to be int. Currently: {axes}")
n_obs = len(axes)
else:
if any(not isinstance(ob, str) for ob in obs):
raise ValueError(f"Observables have to be strings. Currently: {obs}")
n_obs = len(obs)
if axes is not None:
if not len(obs) == len(axes):
raise CoordinatesIncompatibleError("obs and axes do not have the same length.")
if not (obs or axes):
raise CoordinatesUnderdefinedError(f"Neither obs {obs} nor axes {axes} are defined.")
return obs, axes, n_obs
@property
def obs(self) -> ztyping.ObsTypeReturn:
return self._obs
@property
def axes(self) -> ztyping.AxesTypeReturn:
return self._axes
@property
def n_obs(self) -> int:
return self._n_obs
def with_obs(self,
obs: Optional[ztyping.ObsTypeInput],
allow_superset: bool = True,
allow_subset: bool = True) -> "Coordinates":
obs = convert_to_obs_str(obs)
if obs is None:
if self.axes is None:
raise AxesIncompatibleError("cannot remove obs (using None) for a Space without axes")
new_coords = type(self)(obs=obs, axes=self.axes)
else:
obs = _convert_obs_to_str(obs)
if self.obs is None:
new_coords = type(self)(obs=obs, axes=self.axes)
else:
if not set(obs).intersection(self.obs):
raise ObsIncompatibleError(f"The requested obs {obs} are not compatible with the current obs "
f"{self.obs}")
if not frozenset(obs) == frozenset(self.obs):
if not allow_superset and frozenset(obs) - frozenset(self.obs):
raise ObsIncompatibleError(
f"Obs {obs} are a superset of {self.obs}, not allowed according to flag.")
if not allow_subset and set(self.obs) - set(obs):
raise ObsIncompatibleError(
f"Obs {obs} are a subset of {self.obs}, not allowed according to flag.")
new_indices = self.get_reorder_indices(obs=obs)
new_obs = self._reorder_obs(indices=new_indices)
new_axes = self._reorder_axes(indices=new_indices)
new_coords = type(self)(obs=new_obs, axes=new_axes)
return new_coords
|
BSD 3-Clause New or Revised License
|
awslabs/aws-ops-automator
|
source/code/boto_retry/__init__.py
|
WaitStrategy.__init__
|
python
|
def __init__(self, waits, random_factor=0):
self.waits = waits
self.random_factor = random_factor
self._index = 0
|
Initializes constant wait strategy
:param waits: list of wait waits
|
https://github.com/awslabs/aws-ops-automator/blob/362abd0717b48ecca7f20d8985ae7d76f045daf3/source/code/boto_retry/__init__.py#L197-L204
|
import os
import random
import types
from datetime import datetime
from time import time
import botocore.config
import services
from .aws_service_retry import AwsApiServiceRetry
from .dynamodb_service_retry import DynamoDbServiceRetry
from .ec2_service_retry import Ec2ServiceRetry
from .logs_service_retry import CloudWatchLogsServiceRetry
DEFAULT_SUFFIX = "_with_retries"
DEFAULT_WAIT_SECONDS = 10
DEFAULT_MAX_WAIT = 60
DEFAULT_RANDOM_FACTOR = 0.25
MAX_WAIT = 24 * 3600
EXPECTED_EXCEPTIONS = "_expected_boto3_exceptions_"
STATS_FORMAT = "{}: , calls: {}, failed: {}, retries: {}, timed-out {}"
LOG_FORMAT = "{:0>4d}-{:0>2d}-{:0>2d} - {:0>2d}:{:0>2d}:{:0>2d}.{:0>3s} {}, retry: {}"
ENV_BOTO_RETRY_STATS = "BOTO_RETRY_STATS"
ENV_BOTO_STATS_OUTPUT = "BOTO_RETRY_OUTPUT"
ENV_USER_AGENT = "USER_AGENT"
stats_enabled = False
boto_retry_stats = str(os.getenv(ENV_BOTO_RETRY_STATS, "false")).lower() == "true" or stats_enabled
boto_stats_output = str(os.getenv(ENV_BOTO_STATS_OUTPUT, "false")).lower() == "true"
statistics = {}
def make_method_with_retries(boto_client_or_resource, name, service_retry_strategy=None, method_suffix=DEFAULT_SUFFIX):
retry_strategy = service_retry_strategy if service_retry_strategy is not None else AwsApiServiceRetry()
method_name = name + method_suffix
def wrapped_api_method(client_or_resource, **args):
return retry_strategy.call(client_or_resource, name, args)
setattr(boto_client_or_resource, method_name, types.MethodType(wrapped_api_method, boto_client_or_resource))
return wrapped_api_method
def get_default_wait_strategy(service):
if service == "logs":
return MultiplyWaitStrategy(start=2, factor=2, max_wait=15, random_factor=DEFAULT_RANDOM_FACTOR)
return MultiplyWaitStrategy(start=DEFAULT_WAIT_SECONDS, max_wait=DEFAULT_MAX_WAIT, random_factor=DEFAULT_RANDOM_FACTOR)
def get_default_retry_strategy(service, wait_strategy=None, context=None, logger=None):
if wait_strategy is None:
wait_strategy = get_default_wait_strategy(service)
service_retry_strategy_class = _get_service_retry_strategy_class(service)
strategy = service_retry_strategy_class(wait_strategy=wait_strategy, context=context, logger=logger)
return strategy
def _get_service_retry_strategy_class(service):
if service == "ec2":
retry_class = Ec2ServiceRetry
elif service == "dynamodb":
retry_class = DynamoDbServiceRetry
elif service == "logs":
retry_class = CloudWatchLogsServiceRetry
else:
retry_class = AwsApiServiceRetry
return retry_class
def get_client_with_retries(service_name, methods, context=None, region=None, session=None, wait_strategy=None,
method_suffix=DEFAULT_SUFFIX, logger=None):
args = {
"service_name": service_name,
}
if region is not None:
args["region_name"] = region
user_agent = os.getenv(ENV_USER_AGENT, None)
if user_agent is not None:
session_config = botocore.config.Config(user_agent=user_agent)
args["config"] = session_config
if session is not None:
aws_session = session
else:
aws_session = services.get_session()
result = aws_session.client(**args)
service_retry_strategy = get_default_retry_strategy(context=context, service=service_name,
wait_strategy=wait_strategy, logger=logger)
for method in methods:
make_method_with_retries(boto_client_or_resource=result,
name=method,
service_retry_strategy=service_retry_strategy,
method_suffix=method_suffix)
return result
def add_retry_methods_to_resource(resource, methods, context=None, method_suffix=DEFAULT_SUFFIX):
service_name = type(resource).__name__.split(".")[0]
service_retry_strategy_class = _get_service_retry_strategy_class(service_name)
retry_wait_strategy = get_default_wait_strategy(service_name)
for method in methods:
make_method_with_retries(boto_client_or_resource=resource,
name=method,
method_suffix=method_suffix,
service_retry_strategy=service_retry_strategy_class(
wait_strategy=retry_wait_strategy,
context=context)
)
return resource
def _apply_randomness(value, random_factor):
if random_factor < 0 or random_factor > 1:
raise ValueError("Random factor must be in range 0 to 1")
return value + (random.uniform(random_factor * -1, random_factor) * value) if random_factor != 0 else value
class WaitStrategy(object):
|
Apache License 2.0
|
weasyl/weasyl
|
weasyl/commishinfo.py
|
_charmap_to_currency_code
|
python
|
def _charmap_to_currency_code(charmap):
for c in charmap:
if c in CURRENCY_CHARMAP:
return CURRENCY_CHARMAP[c].code
return "USD"
|
Convert Weasyl's internal single-character representation of currencies
to standard ISO4217 codes for use in comparing against exchange rate APIs
:param charmap: String containing ideally one or zero characters used as currency indicators by Weasyl
:return: A 3-letter ISO4217 currency code. Returns "USD" if no match found.
|
https://github.com/weasyl/weasyl/blob/80c86942c6f20a815086e2895fdad51d3aa77eed/weasyl/commishinfo.py#L98-L109
|
import re
from collections import namedtuple
from decimal import Decimal
from urllib.parse import quote as urlquote
from sentry_sdk import capture_message
from libweasyl.cache import region
from weasyl import config
from weasyl import define as d
from weasyl import macro as m
from weasyl.error import PostgresError, WeasylError
_MAX_PRICE = 99999999
CURRENCY_PRECISION = 2
Currency = namedtuple('Currency', ('code', 'name', 'symbol'))
CURRENCY_CHARMAP = {
"": Currency(code="USD", name="United States Dollar", symbol="$"),
"e": Currency(code="EUR", name="Euro", symbol="€"),
"p": Currency(code="GBP", name="British Pound Sterling", symbol="£"),
"y": Currency(code="JPY", name="Japanese Yen", symbol="J¥"),
"c": Currency(code="CAD", name="Canadian Dollar", symbol="C$"),
"m": Currency(code="MXN", name="Mexican Peso", symbol="M$"),
"u": Currency(code="AUD", name="Australian Dollar", symbol="A$"),
"z": Currency(code="NZD", name="New Zealand Dollar", symbol="NZ$"),
"n": Currency(code="CNY", name="Chinese Yuan", symbol="C¥"),
"f": Currency(code="CHF", name="Swiss Franc", symbol="Fr"),
}
PRESET_COMMISSION_CLASSES = [
("Visual", ["Sketch", "Badge", "Icon", "Reference", "Fullbody", "Headshot", "Chibi"]),
("Literary", ["Story"]),
("Multimedia", ["Music"]),
]
def parse_currency(target):
if not target:
return 0
digits = re.sub("[^0-9.]", "", target)
if not digits:
return 0
return int(Decimal(digits) * (10 ** CURRENCY_PRECISION))
@region.cache_on_arguments(expiration_time=60 * 60 * 24, should_cache_fn=bool)
def _fetch_rates_no_cache_failure():
if not config.config_read_bool('convert_currency'):
return None
try:
response = d.http_get("https://www.ecb.europa.eu/stats/eurofxref/eurofxref-daily.xml")
except WeasylError:
return None
else:
capture_message("Fetched exchange rates")
rates = {'EUR': 1.0}
for match in re.finditer(r"currency='([A-Z]{3})' rate='([0-9.]+)'", response.text):
code, rate = match.groups()
try:
rate = float(rate)
except ValueError:
pass
else:
if 0.0 < rate < float('inf'):
rates[code] = rate
return rates
@region.cache_on_arguments(expiration_time=60 * 60)
def _fetch_rates():
return _fetch_rates_no_cache_failure()
|
Apache License 2.0
|
jhuapl-boss/boss
|
django/bosscore/error.py
|
BossUserNotFoundError.__init__
|
python
|
def __init__(self, object):
super(BossUserNotFoundError, self).__init__("{} does not exist. Ensure that the user has logged in"
.format(object), ErrorCodes.USER_NOT_FOUND)
|
Custom HTTP Error class for object not found errors
Args:
object (str): Name of resource/object that user is trying to access/manipulate
|
https://github.com/jhuapl-boss/boss/blob/c2e26d272bd7b8d54abdc2948193163537e31291/django/bosscore/error.py#L285-L292
|
from django.http import JsonResponse
from bossutils.logger import bossLogger
from enum import IntEnum
import sys
import json
class ErrorCodes(IntEnum):
INVALID_URL = 1000
INVALID_CUTOUT_ARGS = 1001
TYPE_ERROR = 1002
INVALID_POST_ARGUMENT = 1003
UNABLE_TO_VALIDATE = 1004
INVALID_ARGUMENT = 1005
BAD_REQUEST = 1006
REQUEST_TOO_LARGE = 2000
DATATYPE_DOES_NOT_MATCH = 2001
DATA_DIMENSION_MISMATCH = 2002
DATATYPE_NOT_SUPPORTED = 2003
INVALID_REQUEST = 2004
UNSUPPORTED_4D = 2005
INVALID_STATE = 2006
MISSING_ROLE = 3000
MISSING_PERMISSION = 3001
UNRECOGNIZED_PERMISSION = 3002
INGEST_NOT_CREATOR = 3003
ACCESS_DENIED_UNKNOWN = 3004
RESOURCE_NOT_FOUND = 4000
GROUP_NOT_FOUND = 4001
USER_NOT_FOUND = 4002
INTEGRITY_ERROR = 4003
OBJECT_NOT_FOUND = 4004
RESOURCE_MARKED_FOR_DELETION = 4005
IO_ERROR = 5000
UNSUPPORTED_TRANSPORT_FORMAT = 5001
SERIALIZATION_ERROR = 5002
DESERIALIZATION_ERROR = 5003
GROUP_EXISTS = 6001
RESOURCE_EXISTS = 6002
KEYCLOAK_EXCEPTION = 7001
INVALID_ROLE = 7002
FUTURE = 9000
BOSS_SYSTEM_ERROR = 9001
UNHANDLED_EXCEPTION = 9002
UNSUPPORTED_VERSION = 9003
RESP_CODES = {
ErrorCodes.INVALID_URL: 400,
ErrorCodes.INVALID_CUTOUT_ARGS: 400,
ErrorCodes.TYPE_ERROR: 400,
ErrorCodes.INVALID_POST_ARGUMENT: 400,
ErrorCodes.INVALID_ARGUMENT: 400,
ErrorCodes.BAD_REQUEST: 400,
ErrorCodes.UNABLE_TO_VALIDATE: 400,
ErrorCodes.REQUEST_TOO_LARGE: 413,
ErrorCodes.DATATYPE_DOES_NOT_MATCH: 400,
ErrorCodes.DATA_DIMENSION_MISMATCH: 400,
ErrorCodes.DATATYPE_NOT_SUPPORTED: 400,
ErrorCodes.UNSUPPORTED_4D: 400,
ErrorCodes.INVALID_STATE: 409,
ErrorCodes.INVALID_REQUEST: 404,
ErrorCodes.MISSING_ROLE: 403,
ErrorCodes.MISSING_PERMISSION: 403,
ErrorCodes.UNRECOGNIZED_PERMISSION: 404,
ErrorCodes.INGEST_NOT_CREATOR: 403,
ErrorCodes.RESOURCE_NOT_FOUND: 404,
ErrorCodes.GROUP_NOT_FOUND: 404,
ErrorCodes.USER_NOT_FOUND: 404,
ErrorCodes.INTEGRITY_ERROR: 400,
ErrorCodes.OBJECT_NOT_FOUND: 404,
ErrorCodes.RESOURCE_MARKED_FOR_DELETION: 404,
ErrorCodes.IO_ERROR: 404,
ErrorCodes.UNSUPPORTED_TRANSPORT_FORMAT: 404,
ErrorCodes.SERIALIZATION_ERROR: 404,
ErrorCodes.DESERIALIZATION_ERROR: 404,
ErrorCodes.GROUP_EXISTS: 404,
ErrorCodes.RESOURCE_EXISTS: 404,
ErrorCodes.KEYCLOAK_EXCEPTION: 500,
ErrorCodes.INVALID_ROLE: 403,
ErrorCodes.FUTURE: 404,
ErrorCodes.BOSS_SYSTEM_ERROR: 400,
ErrorCodes.UNHANDLED_EXCEPTION: 500,
ErrorCodes.UNSUPPORTED_VERSION: 400
}
class BossError(Exception):
def __init__(self, *args):
if args[1] in RESP_CODES:
self.status_code = RESP_CODES[args[1]]
else:
self.status_code = 400
self.message = args[0]
self.error_code = args[1]
def to_http(self):
return BossHTTPError(self.message, self.error_code)
class BossParserError(object):
def __init__(self, *args):
if args[1] in RESP_CODES:
self.status_code = RESP_CODES[args[1]]
else:
self.status_code = 400
self.message = args[0]
self.error_code = args[1]
def to_http(self):
return BossHTTPError(self.message, self.error_code)
class BossHTTPError(JsonResponse):
def __init__(self, message, code):
self.status_code = RESP_CODES[code]
blog = bossLogger()
blog.info("BossHTTPError - Status: {0} - Code: {1} - Message: {2}".format(self.status_code, code, message))
data = {'status': self.status_code, 'code': code, 'message': message}
super(BossHTTPError, self).__init__(data)
class BossKeycloakError(JsonResponse):
def __init__(self, message, code=ErrorCodes.KEYCLOAK_EXCEPTION):
ex = sys.exc_info()[1]
self.status_code = ex.status if ex else RESP_CODES[code]
data = {
'status': self.status_code,
'code': ErrorCodes.KEYCLOAK_EXCEPTION,
'message': message
}
if ex:
if isinstance(ex.data, str):
val = json.loads(ex.data)
else:
val = ex.data
data.update(val)
msg = "BossKeycloakError"
for k in data:
msg += " - {}: {}".format(k.capitalize(), data[k])
log = bossLogger()
log.info(msg)
super(BossKeycloakError, self).__init__(data)
class BossResourceNotFoundError(BossHTTPError):
def __init__(self, object):
super(BossResourceNotFoundError, self).__init__("{} does not exist.".format(object),
ErrorCodes.RESOURCE_NOT_FOUND)
class BossUserNotFoundError(BossHTTPError):
|
Apache License 2.0
|
sepandhaghighi/pycm
|
pycm/pycm_compare.py
|
Compare.print_report
|
python
|
def print_report(self):
report = compare_report_print(
self.sorted, self.scores, self.best_name)
print(report)
|
Print Compare report.
:return: None
|
https://github.com/sepandhaghighi/pycm/blob/efca98f6dc92fd1eb5ac05a48aec01680cd344bc/pycm/pycm_compare.py#L73-L81
|
from __future__ import division
from .pycm_error import pycmCompareError
from .pycm_output import *
from .pycm_util import *
from .pycm_param import *
from .pycm_obj import ConfusionMatrix
import os
import numpy
from warnings import warn
class Compare():
def __init__(self, cm_dict, by_class=False, weight=None, digit=5):
self.scores = None
self.sorted = None
self.classes = None
__compare_assign_handler__(self, cm_dict, weight, digit)
__compare_class_handler__(self, cm_dict)
__compare_overall_handler__(self, cm_dict)
__compare_rounder__(self, cm_dict)
scores_list = list(self.scores.values())
(max_overall_name, max_class_name) = __compare_sort_handler__(self)
if scores_list.count(self.scores[max_class_name]) == 1:
if by_class:
self.best = cm_dict[max_class_name]
self.best_name = max_class_name
else:
if max_overall_name == max_class_name:
self.best = cm_dict[max_class_name]
self.best_name = max_overall_name
else:
warn(COMPARE_RESULT_WARNING, RuntimeWarning)
else:
warn(COMPARE_RESULT_WARNING, RuntimeWarning)
|
MIT License
|
hubblestack/hubble-salt
|
hubblestack_nova/win_auditpol.py
|
audit
|
python
|
def audit(data_list, tags, labels, debug=False, **kwargs):
__data__ = {}
__auditdata__ = _auditpol_import()
for profile, data in data_list:
_merge_yaml(__data__, data, profile)
__data__ = apply_labels(__data__, labels)
__tags__ = _get_tags(__data__)
if debug:
log.debug('auditpol audit __data__:')
log.debug(__data__)
log.debug('auditpol audit __tags__:')
log.debug(__tags__)
ret = {'Success': [], 'Failure': [], 'Controlled': []}
for tag in __tags__:
if fnmatch.fnmatch(tag, tags):
for tag_data in __tags__[tag]:
if 'control' in tag_data:
ret['Controlled'].append(tag_data)
continue
name = tag_data['name']
audit_type = tag_data['type']
match_output = tag_data['match_output'].lower()
if 'blacklist' in audit_type:
if name not in __auditdata__:
ret['Success'].append(tag_data)
else:
tag_data['failure_reason'] = "Value of balcklisted attribute '{0}' is " "configured on your system. It should not " "be configured".format(name)
ret['Failure'].append(tag_data)
if 'whitelist' in audit_type:
if name in __auditdata__:
audit_value = __auditdata__[name].lower()
tag_data['found_value'] = audit_value
secret = _translate_value_type(audit_value, tag_data['value_type'], match_output)
if secret:
ret['Success'].append(tag_data)
else:
tag_data['failure_reason'] = "Value of attribute '{0}' is currently" " set as '{1}'. Expected value is '{2}({3})'" .format(name,
audit_value,
match_output,
tag_data['value_type'])
ret['Failure'].append(tag_data)
else:
log.debug('When trying to audit the advanced auditpol section,'
' the yaml contained incorrect data for the key')
return ret
|
Runs auditpol on the local machine and audits the return data
with the CIS yaml processed by __virtual__
|
https://github.com/hubblestack/hubble-salt/blob/fe9da66ac84be972be6966f57fae061736e78e8c/hubblestack_nova/win_auditpol.py#L50-L108
|
from __future__ import absolute_import
import copy
import csv
import fnmatch
import logging
import salt.utils
import salt.utils.platform
log = logging.getLogger(__name__)
__virtualname__ = 'win_auditpol'
def __virtual__():
if not salt.utils.platform.is_windows():
return False, 'This audit module only runs on windows'
return True
def apply_labels(__data__, labels):
labelled_data = {}
if labels:
labelled_data[__virtualname__] = {}
for topkey in ('blacklist', 'whitelist'):
if topkey in __data__.get(__virtualname__, {}):
labelled_test_cases=[]
for test_case in __data__[__virtualname__].get(topkey, []):
if isinstance(test_case, dict) and test_case:
test_case_body = test_case.get(next(iter(test_case)))
if set(labels).issubset(set(test_case_body.get('labels',[]))):
labelled_test_cases.append(test_case)
labelled_data[__virtualname__][topkey]=labelled_test_cases
else:
labelled_data = __data__
return labelled_data
|
Apache License 2.0
|
openstack/manila
|
manila/api/v2/share_replicas.py
|
ShareReplicationController.force_delete
|
python
|
def force_delete(self, req, id, body):
return self._force_delete(req, id, body)
|
Force deletion on the database, attempt on the backend.
|
https://github.com/openstack/manila/blob/34d209484366cd921e052d37c5f9daef5e97af20/manila/api/v2/share_replicas.py#L277-L279
|
import six
from six.moves import http_client
import webob
from webob import exc
from manila.api import common
from manila.api.openstack import wsgi
from manila.api.views import share_replicas as replication_view
from manila.common import constants
from manila import db
from manila import exception
from manila.i18n import _
from manila import share
MIN_SUPPORTED_API_VERSION = '2.11'
PRE_GRADUATION_VERSION = '2.55'
GRADUATION_VERSION = '2.56'
class ShareReplicationController(wsgi.Controller, wsgi.AdminActionsMixin):
resource_name = 'share_replica'
_view_builder_class = replication_view.ReplicationViewBuilder
def __init__(self):
super(ShareReplicationController, self).__init__()
self.share_api = share.API()
def _update(self, *args, **kwargs):
db.share_replica_update(*args, **kwargs)
def _get(self, *args, **kwargs):
return db.share_replica_get(*args, **kwargs)
def _delete(self, context, resource, force=True):
try:
self.share_api.delete_share_replica(context, resource, force=True)
except exception.ReplicationException as e:
raise exc.HTTPBadRequest(explanation=six.text_type(e))
@wsgi.Controller.api_version(
MIN_SUPPORTED_API_VERSION, PRE_GRADUATION_VERSION, experimental=True)
def index(self, req):
return self._get_replicas(req)
@wsgi.Controller.api_version(GRADUATION_VERSION)
def index(self, req):
return self._get_replicas(req)
@wsgi.Controller.api_version(
MIN_SUPPORTED_API_VERSION, PRE_GRADUATION_VERSION, experimental=True)
def detail(self, req):
return self._get_replicas(req, is_detail=True)
@wsgi.Controller.api_version(GRADUATION_VERSION)
def detail(self, req):
return self._get_replicas(req, is_detail=True)
@wsgi.Controller.authorize('get_all')
def _get_replicas(self, req, is_detail=False):
context = req.environ['manila.context']
share_id = req.params.get('share_id')
if share_id:
try:
replicas = db.share_replicas_get_all_by_share(
context, share_id)
except exception.NotFound:
msg = _("Share with share ID %s not found.") % share_id
raise exc.HTTPNotFound(explanation=msg)
else:
replicas = db.share_replicas_get_all(context)
limited_list = common.limited(replicas, req)
if is_detail:
replicas = self._view_builder.detail_list(req, limited_list)
else:
replicas = self._view_builder.summary_list(req, limited_list)
return replicas
@wsgi.Controller.api_version(
MIN_SUPPORTED_API_VERSION, PRE_GRADUATION_VERSION, experimental=True)
def show(self, req, id):
return self._show(req, id)
@wsgi.Controller.api_version(GRADUATION_VERSION)
def show(self, req, id):
return self._show(req, id)
@wsgi.Controller.authorize('show')
def _show(self, req, id):
context = req.environ['manila.context']
try:
replica = db.share_replica_get(context, id)
except exception.ShareReplicaNotFound:
msg = _("Replica %s not found.") % id
raise exc.HTTPNotFound(explanation=msg)
return self._view_builder.detail(req, replica)
@wsgi.Controller.api_version(
MIN_SUPPORTED_API_VERSION, PRE_GRADUATION_VERSION, experimental=True)
@wsgi.response(202)
def create(self, req, body):
return self._create(req, body)
@wsgi.Controller.api_version(GRADUATION_VERSION)
@wsgi.response(202)
def create(self, req, body):
return self._create(req, body)
@wsgi.Controller.authorize('create')
def _create(self, req, body):
context = req.environ['manila.context']
if not self.is_valid_body(body, 'share_replica'):
msg = _("Body does not contain 'share_replica' information.")
raise exc.HTTPUnprocessableEntity(explanation=msg)
share_id = body.get('share_replica').get('share_id')
availability_zone = body.get('share_replica').get('availability_zone')
if not share_id:
msg = _("Must provide Share ID to add replica.")
raise exc.HTTPBadRequest(explanation=msg)
try:
share_ref = db.share_get(context, share_id)
except exception.NotFound:
msg = _("No share exists with ID %s.")
raise exc.HTTPNotFound(explanation=msg % share_id)
share_network_id = share_ref.get('share_network_id', None)
if share_network_id:
share_network = db.share_network_get(context, share_network_id)
common.check_share_network_is_active(share_network)
try:
new_replica = self.share_api.create_share_replica(
context, share_ref, availability_zone=availability_zone,
share_network_id=share_network_id)
except exception.AvailabilityZoneNotFound as e:
raise exc.HTTPBadRequest(explanation=six.text_type(e))
except exception.ReplicationException as e:
raise exc.HTTPBadRequest(explanation=six.text_type(e))
except exception.ShareBusyException as e:
raise exc.HTTPBadRequest(explanation=six.text_type(e))
return self._view_builder.detail(req, new_replica)
@wsgi.Controller.api_version(
MIN_SUPPORTED_API_VERSION, PRE_GRADUATION_VERSION, experimental=True)
def delete(self, req, id):
return self._delete_share_replica(req, id)
@wsgi.Controller.api_version(GRADUATION_VERSION)
def delete(self, req, id):
return self._delete_share_replica(req, id)
@wsgi.Controller.authorize('delete')
def _delete_share_replica(self, req, id):
context = req.environ['manila.context']
try:
replica = db.share_replica_get(context, id)
except exception.ShareReplicaNotFound:
msg = _("No replica exists with ID %s.")
raise exc.HTTPNotFound(explanation=msg % id)
try:
self.share_api.delete_share_replica(context, replica)
except exception.ReplicationException as e:
raise exc.HTTPBadRequest(explanation=six.text_type(e))
return webob.Response(status_int=http_client.ACCEPTED)
@wsgi.Controller.api_version(
MIN_SUPPORTED_API_VERSION, PRE_GRADUATION_VERSION, experimental=True)
@wsgi.response(202)
@wsgi.action('promote')
def promote(self, req, id, body):
return self._promote(req, id, body)
@wsgi.Controller.api_version(GRADUATION_VERSION)
@wsgi.response(202)
@wsgi.action('promote')
def promote(self, req, id, body):
return self._promote(req, id, body)
@wsgi.Controller.authorize('promote')
def _promote(self, req, id, body):
context = req.environ['manila.context']
try:
replica = db.share_replica_get(context, id)
except exception.ShareReplicaNotFound:
msg = _("No replica exists with ID %s.")
raise exc.HTTPNotFound(explanation=msg % id)
share_network_id = replica.get('share_network_id')
if share_network_id:
share_network = db.share_network_get(context, share_network_id)
common.check_share_network_is_active(share_network)
replica_state = replica.get('replica_state')
if replica_state == constants.REPLICA_STATE_ACTIVE:
return webob.Response(status_int=http_client.OK)
try:
replica = self.share_api.promote_share_replica(context, replica)
except exception.ReplicationException as e:
raise exc.HTTPBadRequest(explanation=six.text_type(e))
except exception.AdminRequired as e:
raise exc.HTTPForbidden(explanation=six.text_type(e))
return self._view_builder.detail(req, replica)
@wsgi.Controller.api_version(
MIN_SUPPORTED_API_VERSION, PRE_GRADUATION_VERSION, experimental=True)
@wsgi.action('reset_status')
def reset_status(self, req, id, body):
return self._reset_status(req, id, body)
@wsgi.Controller.api_version(GRADUATION_VERSION)
@wsgi.action('reset_status')
def reset_status(self, req, id, body):
return self._reset_status(req, id, body)
@wsgi.Controller.api_version(
MIN_SUPPORTED_API_VERSION, PRE_GRADUATION_VERSION, experimental=True)
@wsgi.action('force_delete')
def force_delete(self, req, id, body):
return self._force_delete(req, id, body)
@wsgi.Controller.api_version(GRADUATION_VERSION)
@wsgi.action('force_delete')
|
Apache License 2.0
|
storjold/dataserv
|
dataserv/Farmer.py
|
Farmer.register
|
python
|
def register(self, payout_addr=None):
self.payout_addr = payout_addr if payout_addr else self.btc_addr
self.validate(registering=True)
db.session.add(self)
db.session.commit()
|
Add the farmer to the database.
|
https://github.com/storjold/dataserv/blob/65b89f1be7478fd38e7f3d2b608f465dc4b17f93/dataserv/Farmer.py#L81-L86
|
import json
import hashlib
import storjcore
from datetime import datetime
from sqlalchemy import DateTime
from dataserv.run import db, app
from btctxstore import BtcTxStore
from dataserv.config import logging
logger = logging.getLogger(__name__)
is_btc_address = BtcTxStore().validate_address
def sha256(content):
content = content.encode('utf-8')
return hashlib.sha256(content).hexdigest()
class Farmer(db.Model):
id = db.Column(db.Integer, primary_key=True)
btc_addr = db.Column(db.String(35), unique=True)
payout_addr = db.Column(db.String(35))
last_seen = db.Column(DateTime, index=True, default=datetime.utcnow)
height = db.Column(db.Integer, default=0)
def __init__(self, btc_addr, last_seen=None):
if not is_btc_address(btc_addr):
msg = "Invalid BTC Address: {0}".format(btc_addr)
logger.warning(msg)
raise ValueError(msg)
self.btc_addr = btc_addr
self.last_seen = last_seen
def __repr__(self):
return '<Farmer BTC Address: %r>' % self.btc_addr
@staticmethod
def get_server_address():
return app.config["ADDRESS"]
@staticmethod
def get_server_authentication_timeout():
return app.config["AUTHENTICATION_TIMEOUT"]
def authenticate(self, headers):
if app.config["SKIP_AUTHENTICATION"]:
return True
if not headers.get("Authorization"):
raise storjcore.auth.AuthError("Authorization header required!")
if not headers.get("Date"):
raise storjcore.auth.AuthError("Date header required!")
btctxstore = BtcTxStore()
timeout = self.get_server_authentication_timeout()
recipient_address = self.get_server_address()
sender_address = self.btc_addr
return storjcore.auth.verify_headers(btctxstore, headers, timeout,
sender_address, recipient_address)
def validate(self, registering=False):
if not is_btc_address(self.payout_addr):
msg = "Invalid BTC Address: {0}".format(self.payout_addr)
logger.warning(msg)
raise ValueError(msg)
exists = self.exists()
if exists and registering:
msg = "Address already registered: {0}".format(self.payout_addr)
logger.warning(msg)
raise LookupError(msg)
|
MIT License
|
therve/twotp
|
twotp/parser.py
|
Parser.parse_float
|
python
|
def parse_float(self, data):
floatData = data[:31]
try:
nullIndex = floatData.index(chr(0))
floatStr = floatData[0:nullIndex]
except ValueError:
floatStr = floatData
floatValue = float(floatStr)
return Float(floatValue), data[31:]
|
Parse a float number.
|
https://github.com/therve/twotp/blob/67d0c9475c5c211e8f9d6280f8c3e04fff944a73/twotp/parser.py#L233-L244
|
import struct
import zlib
from twotp.term import Integer, List, Tuple, Float, Atom, Reference
from twotp.term import Port, Pid, Binary, Fun, NewFun, Export, BitBinary
from twotp.term import ConstantHolder, Dict, Set
class UnhandledCode(KeyError):
class RemainingDataError(ValueError):
class Parser(ConstantHolder):
def __init__(self):
ConstantHolder.__init__(self)
self.mapping = {}
for name, val in ConstantHolder.__dict__.iteritems():
if name.startswith('MAGIC_'):
name = name.split('MAGIC_')[1].lower()
self.mapping[val] = getattr(self, 'parse_%s' % name)
def parseChar(self, bytes):
return ord(bytes)
def parseShort(self, bytes):
return struct.unpack("!H", bytes)[0]
def parseInt(self, bytes):
return struct.unpack("!I", bytes)[0]
def parse_version(self, data):
raise RuntimeError("Should not ne here!")
def parse_compressed(self, data):
length = self.parseInt(data[:4])
uncompressedData = zlib.decompress(data[4:], 15, length)
if len(uncompressedData) != length:
raise ValueError("Too big uncompressed data")
return self.binaryToTerm(uncompressedData)
def parse_string(self, data):
strLen = self.parseShort(data[:2])
strText = data[2:2 + strLen]
lst = map(ord, strText)
return List(lst), data[2 + strLen:]
def parse_nil(self, data):
return List([]), data
def parse_list(self, data):
arity = self.parseInt(data[:4])
elements, data = self._parse_seq(arity, data[4:])
if len(data) == 0 or ord(data[0]) != self.MAGIC_NIL:
term, data = self.binaryToTerm(data)
elements.append(term)
return List(elements), data
else:
return List(elements), data[1:]
def _parse_seq(self, arity, data):
res = []
for i in xrange(arity):
term, data = self.binaryToTerm(data)
res.append(term)
return res, data
def _identify_dict(self, elements):
if elements:
if isinstance(elements[0], Atom) and elements[0].text == "dict":
if len(elements) == 9:
d = []
for i in elements[8][0]:
if i:
d.append((i[0][0], i[0][1]))
return d
return None
def _identify_set(self, elements):
if elements:
if isinstance(elements[0], Atom) and elements[0].text == "set":
if len(elements) == 9:
d = []
for i in elements[8][0]:
if i:
d.append(i[0])
return d
return None
def parse_small_tuple(self, data):
arity = self.parseChar(data[0])
elements, data = self._parse_seq(arity, data[1:])
d = self._identify_dict(elements)
if d is not None:
return Dict(d), data
s = self._identify_set(elements)
if s is not None:
return Set(s), data
return Tuple(elements), data
def parse_large_tuple(self, data):
arity = self.parseInt(data[:4])
elements, data = self._parse_seq(arity, data[4:])
d = self._identify_dict(elements)
if d is not None:
return Dict(d), data
s = self._identify_set(elements)
if s is not None:
return Set(s), data
return Tuple(elements), data
def parse_large_big(self, data):
n = self.parseInt(data[:4])
sign = self.parseChar(data[4])
bignum = 0
for i in xrange(n - 1, -1, -1):
d = self.parseChar(data[5 + i])
bignum = bignum * 256 + d
if sign:
bignum *= -1
return Integer(bignum), data[5 + n:]
def parse_small_big(self, data):
n = self.parseChar(data[0])
sign = self.parseChar(data[1])
bignum = 0
for i in xrange(n - 1, -1, -1):
d = self.parseChar(data[2 + i])
bignum = bignum * 256 + d
if sign:
bignum *= -1
return Integer(bignum), data[2 + n:]
|
MIT License
|
mozilla/firefox-flicks
|
vendor-local/lib/python/oauthlib/common.py
|
add_params_to_uri
|
python
|
def add_params_to_uri(uri, params, fragment=False):
sch, net, path, par, query, fra = urlparse.urlparse(uri)
if fragment:
fra = add_params_to_qs(query, params)
else:
query = add_params_to_qs(query, params)
return urlparse.urlunparse((sch, net, path, par, query, fra))
|
Add a list of two-tuples to the uri query components.
|
https://github.com/mozilla/firefox-flicks/blob/ad19ed59aac682744badae6d19a149327037f293/vendor-local/lib/python/oauthlib/common.py#L212-L219
|
from __future__ import absolute_import, unicode_literals
import random
import re
import sys
import time
try:
from urllib import quote as _quote
from urllib import unquote as _unquote
from urllib import urlencode as _urlencode
except ImportError:
from urllib.parse import quote as _quote
from urllib.parse import unquote as _unquote
from urllib.parse import urlencode as _urlencode
try:
import urlparse
except ImportError:
import urllib.parse as urlparse
UNICODE_ASCII_CHARACTER_SET = ('abcdefghijklmnopqrstuvwxyz'
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
'0123456789')
always_safe = ('ABCDEFGHIJKLMNOPQRSTUVWXYZ'
'abcdefghijklmnopqrstuvwxyz'
'0123456789' '_.-')
PY3 = sys.version_info[0] == 3
if PY3:
unicode_type = str
bytes_type = bytes
else:
unicode_type = unicode
bytes_type = str
def quote(s, safe=b'/'):
s = _quote(s.encode('utf-8'), safe)
if isinstance(s, bytes_type):
s = s.decode('utf-8')
return s
def unquote(s):
s = _unquote(s)
if isinstance(s, bytes_type):
s = s.decode('utf-8')
return s
def urlencode(params):
utf8_params = encode_params_utf8(params)
urlencoded = _urlencode(utf8_params)
if isinstance(urlencoded, unicode_type):
return urlencoded
else:
return urlencoded.decode("utf-8")
def encode_params_utf8(params):
encoded = []
for k, v in params:
encoded.append((
k.encode('utf-8') if isinstance(k, unicode_type) else k,
v.encode('utf-8') if isinstance(v, unicode_type) else v))
return encoded
def decode_params_utf8(params):
decoded = []
for k, v in params:
decoded.append((
k.decode('utf-8') if isinstance(k, bytes_type) else k,
v.decode('utf-8') if isinstance(v, bytes_type) else v))
return decoded
urlencoded = set(always_safe) | set('=&;%+~')
def urldecode(query):
if query and not set(query) <= urlencoded:
query = quote(query)
invalid_hex = '%[^0-9A-Fa-f]|%[0-9A-Fa-f][^0-9A-Fa-f]'
if len(re.findall(invalid_hex, query)):
raise ValueError('Invalid hex encoding in query string.')
query = query.decode('utf-8') if isinstance(query, bytes_type) else query
params = urlparse.parse_qsl(query, keep_blank_values=True)
return decode_params_utf8(params)
def extract_params(raw):
if isinstance(raw, bytes_type) or isinstance(raw, unicode_type):
try:
params = urldecode(raw)
except ValueError:
params = None
elif hasattr(raw, '__iter__'):
try:
dict(raw)
except ValueError:
params = None
except TypeError:
params = None
else:
params = list(raw.items() if isinstance(raw, dict) else raw)
params = decode_params_utf8(params)
else:
params = None
return params
def generate_nonce():
return unicode_type(unicode_type(random.getrandbits(64)) + generate_timestamp())
def generate_timestamp():
return unicode_type(int(time.time()))
def generate_token(length=30, chars=UNICODE_ASCII_CHARACTER_SET):
rand = random.SystemRandom()
return ''.join(rand.choice(chars) for x in range(length))
def add_params_to_qs(query, params):
if isinstance(query, dict):
queryparams = query.items()
else:
queryparams = urlparse.parse_qsl(query, keep_blank_values=True)
queryparams.extend(params)
return urlencode(queryparams)
|
BSD 3-Clause New or Revised License
|
freifeld/cpabdiffeo
|
cpab/cpa2d/inference/transformation/Register.py
|
Register.set_dense
|
python
|
def set_dense(self,domain_start=-10,domain_end=10):
self.src_dense = self.tw.pts_src_dense
self.transformed_dense = self.tw.transformed_dense
|
Remarks:
1) The range of the domain has already been determined in self.tw
2) For now, the src is always the "uniform cdf"
|
https://github.com/freifeld/cpabdiffeo/blob/22df6cdbd7111b9ae3e7f1c0e31ff85e92d281a6/cpab/cpa2d/inference/transformation/Register.py#L94-L102
|
import numpy as np
import cv2
import pylab
from pylab import plt
from of.gpu import CpuGpuArray
from of.utils import *
from cpab.cpa2d.TransformWrapper import TransformWrapper
from cpab.cpaNd.inference.Metropolis import Metropolis
from cpab.cpaNd.inference.Proposal import Proposal
from cpab.cpaNd.model import LogLikelihood as LL
from cpab.cpaNd.model import LogPrior as LP
from cpab.cpa2d.model.transformations.register import ScaleDependentLogLikelihoodGaussian as SDLL_gaussian
from cpab.cpaNd.model import ScaleDependentLogPrior as SDLP
class Register(object):
def __init__(self,nRows=100,
nCols=100,
base = [2,2],
nLevels=4,
tess='tri',
zero_v_across_bdry=[False]*2,
scale_spatial=1.0 * 10,
scale_value=2.0,
sigma_signal=None,
wlp=1e-4,
ll_type=['gaussian','gaussian_on_distancetransform'][0],
only_local=False,
valid_outside=True):
ll_type = ll_type.lower()
if ll_type == 'gaussian':
self.SDLL=SDLL_gaussian
else:
raise ValueError(ll_type)
self.base = base
self.nLevels=nLevels
if sigma_signal is None:
raise ValueError("sigma_signal cannot be None")
self.sigma_signal = sigma_signal
self.wlp = wlp
self.tw = TransformWrapper(nRows=nRows,nCols=nCols,
nLevels=nLevels,
base=base,
tess=tess,
scale_spatial=scale_spatial,
scale_value=scale_value,
zero_v_across_bdry=zero_v_across_bdry,
only_local=only_local,
valid_outside=valid_outside
)
|
MIT License
|
wright-group/wrighttools
|
WrightTools/kit/_array.py
|
orthogonal
|
python
|
def orthogonal(*args) -> bool:
for i, arg in enumerate(args):
if hasattr(arg, "shape"):
args[i] = arg.shape
for s in zip(*args):
if np.product(s) != max(s):
return False
return True
|
Determine if a set of arrays are orthogonal.
Parameters
----------
args : array-likes or array shapes
Returns
-------
bool
Array orthogonality condition.
|
https://github.com/wright-group/wrighttools/blob/7531965dec9a8f52557fbd3c60e12dcd3b6e000b/WrightTools/kit/_array.py#L182-L200
|
import numpy as np
from .. import exceptions as wt_exceptions
__all__ = [
"closest_pair",
"diff",
"fft",
"joint_shape",
"orthogonal",
"remove_nans_1D",
"share_nans",
"smooth_1D",
"svd",
"unique",
"valid_index",
"mask_reduce",
"enforce_mask_shape",
]
def closest_pair(arr, give="indicies"):
idxs = [idx for idx in np.ndindex(arr.shape)]
outs = []
min_dist = arr.max() - arr.min()
for idxa in idxs:
for idxb in idxs:
if idxa == idxb:
continue
dist = abs(arr[idxa] - arr[idxb])
if dist == min_dist:
if not [idxb, idxa] in outs:
outs.append([idxa, idxb])
elif dist < min_dist:
min_dist = dist
outs = [[idxa, idxb]]
if give == "indicies":
return outs
elif give == "distance":
return min_dist
else:
raise KeyError("give not recognized in closest_pair")
def diff(xi, yi, order=1) -> np.ndarray:
yi = np.array(yi).copy()
flip = False
if xi[-1] < xi[0]:
xi = np.flipud(xi.copy())
yi = np.flipud(yi)
flip = True
midpoints = (xi[1:] + xi[:-1]) / 2
for _ in range(order):
d = np.diff(yi)
d /= np.diff(xi)
yi = np.interp(xi, midpoints, d)
if flip:
yi = np.flipud(yi)
return yi
def fft(xi, yi, axis=0) -> tuple:
if xi.ndim != 1:
raise wt_exceptions.DimensionalityError(1, xi.ndim)
spacing = np.diff(xi)
if not np.allclose(spacing, spacing.mean()):
raise RuntimeError("WrightTools.kit.fft: argument xi must be evenly spaced")
yi = np.fft.fft(yi, axis=axis)
d = (xi.max() - xi.min()) / (xi.size - 1)
xi = np.fft.fftfreq(xi.size, d=d)
xi = np.fft.fftshift(xi)
yi = np.fft.fftshift(yi, axes=axis)
return xi, yi
def joint_shape(*args) -> tuple:
if len(args) == 0:
return ()
shape = []
shapes = [a.shape for a in args]
ndim = args[0].ndim
for i in range(ndim):
shape.append(max([s[i] for s in shapes]))
return tuple(shape)
|
MIT License
|
data-apis/array-api-tests
|
array_api_tests/array_helpers.py
|
true
|
python
|
def true(shape):
return full(shape, True, dtype=bool)
|
Returns a full True array with dtype=bool.
|
https://github.com/data-apis/array-api-tests/blob/18c425e0b161431798991cb4eac442ecaa089157/array_api_tests/array_helpers.py#L92-L96
|
import itertools
from ._array_module import (isnan, all, any, equal, not_equal, logical_and,
logical_or, isfinite, greater, less, less_equal,
zeros, ones, full, bool, int8, int16, int32,
int64, uint8, uint16, uint32, uint64, float32,
float64, nan, inf, pi, remainder, divide, isinf,
negative, asarray)
from ._array_module import logical_not, subtract, floor, ceil, where
from . import dtype_helpers as dh
__all__ = ['all', 'any', 'logical_and', 'logical_or', 'logical_not', 'less',
'less_equal', 'greater', 'subtract', 'negative', 'floor', 'ceil',
'where', 'isfinite', 'equal', 'not_equal', 'zero', 'one', 'NaN',
'infinity', 'π', 'isnegzero', 'non_zero', 'isposzero',
'exactly_equal', 'assert_exactly_equal', 'notequal',
'assert_finite', 'assert_non_zero', 'ispositive',
'assert_positive', 'isnegative', 'assert_negative', 'isintegral',
'assert_integral', 'isodd', 'iseven', "assert_iseven",
'assert_isinf', 'positive_mathematical_sign',
'assert_positive_mathematical_sign', 'negative_mathematical_sign',
'assert_negative_mathematical_sign', 'same_sign',
'assert_same_sign', 'ndindex', 'float64',
'asarray', 'full', 'true', 'false', 'isnan']
def zero(shape, dtype):
return zeros(shape, dtype=dtype)
def one(shape, dtype):
return ones(shape, dtype=dtype)
def NaN(shape, dtype):
if dtype not in [float32, float64]:
raise RuntimeError(f"Unexpected dtype {dtype} in NaN().")
return full(shape, nan, dtype=dtype)
def infinity(shape, dtype):
if dtype not in [float32, float64]:
raise RuntimeError(f"Unexpected dtype {dtype} in infinity().")
return full(shape, inf, dtype=dtype)
def π(shape, dtype):
if dtype not in [float32, float64]:
raise RuntimeError(f"Unexpected dtype {dtype} in π().")
return full(shape, pi, dtype=dtype)
|
MIT License
|
viktorc/pararealml
|
pararealml/core/constrained_problem.py
|
ConstrainedProblem.mesh
|
python
|
def mesh(self) -> Optional[Mesh]:
return self._mesh
|
The mesh over which the differential equation is to be solved.
|
https://github.com/viktorc/pararealml/blob/6d7faf06d33832d8a30a4fd718d9191c01987956/pararealml/core/constrained_problem.py#L105-L109
|
from typing import Tuple, Optional, Sequence, List, Union
import numpy as np
from pararealml.core.boundary_condition import BoundaryCondition, VectorizedBoundaryConditionFunction
from pararealml.core.constraint import Constraint
from pararealml.core.differential_equation import DifferentialEquation
from pararealml.core.mesh import Mesh
BoundaryConditionPair = Tuple[BoundaryCondition, BoundaryCondition]
class ConstrainedProblem:
def __init__(
self,
diff_eq: DifferentialEquation,
mesh: Optional[Mesh] = None,
boundary_conditions:
Optional[Sequence[BoundaryConditionPair]] = None):
self._diff_eq = diff_eq
self._mesh: Optional[Mesh]
self._boundary_conditions: Optional[Tuple[BoundaryConditionPair, ...]]
if diff_eq.x_dimension:
if mesh is None:
raise ValueError('mesh cannot be None for PDEs')
if mesh.dimensions != diff_eq.x_dimension:
raise ValueError(
f'mesh dimensions ({mesh.dimensions}) must match '
'differential equation spatial dimensions '
f'({diff_eq.x_dimension})')
if boundary_conditions is None:
raise ValueError('boundary conditions cannot be None for PDEs')
if len(boundary_conditions) != diff_eq.x_dimension:
raise ValueError(
'number of boundary condition pairs '
f'({len(boundary_conditions)}) must match differential '
f'equation spatial dimensions ({diff_eq.x_dimension})')
self._mesh = mesh
self._boundary_conditions = tuple(boundary_conditions)
self._y_vertices_shape = mesh.vertices_shape + (diff_eq.y_dimension,)
self._y_cells_shape = mesh.cells_shape + (diff_eq.y_dimension,)
self._are_all_bcs_static = np.all([
bc_lower.is_static and bc_upper.is_static
for (bc_lower, bc_upper) in boundary_conditions
])
self._are_there_bcs_on_y = np.any([
bc_lower.has_y_condition or bc_upper.has_y_condition
for (bc_lower, bc_upper) in boundary_conditions
])
self._boundary_vertex_constraints = None
self._boundary_cell_constraints = None
self._boundary_vertex_constraints = self.create_boundary_constraints(True)
self._boundary_vertex_constraints[0].setflags(write=False)
self._boundary_vertex_constraints[1].setflags(write=False)
self._boundary_cell_constraints = self.create_boundary_constraints(False)
self._boundary_cell_constraints[0].setflags(write=False)
self._boundary_cell_constraints[1].setflags(write=False)
self._y_vertex_constraints = self.create_y_vertex_constraints(
self._boundary_vertex_constraints[0])
self._y_vertex_constraints.setflags(write=False)
else:
self._mesh = None
self._boundary_conditions = None
self._y_vertices_shape = self._y_cells_shape = diff_eq.y_dimension,
self._are_all_bcs_static = False
self._are_there_bcs_on_y = False
self._boundary_vertex_constraints = None
self._boundary_cell_constraints = None
self._y_vertex_constraints = None
@property
def differential_equation(self) -> DifferentialEquation:
return self._diff_eq
@property
|
MIT License
|
psf/requests-html
|
requests_html.py
|
BaseParser.text
|
python
|
def text(self) -> _Text:
return self.pq.text()
|
The text content of the
:class:`Element <Element>` or :class:`HTML <HTML>`.
|
https://github.com/psf/requests-html/blob/026c4e5217cfc8347614148aab331d81402f596b/requests_html.py#L168-L172
|
import sys
import asyncio
from urllib.parse import urlparse, urlunparse, urljoin
from concurrent.futures import ThreadPoolExecutor
from concurrent.futures._base import TimeoutError
from functools import partial
from typing import Set, Union, List, MutableMapping, Optional
import pyppeteer
import requests
import http.cookiejar
from pyquery import PyQuery
from fake_useragent import UserAgent
from lxml.html.clean import Cleaner
import lxml
from lxml import etree
from lxml.html import HtmlElement
from lxml.html import tostring as lxml_html_tostring
from lxml.html.soupparser import fromstring as soup_parse
from parse import search as parse_search
from parse import findall, Result
from w3lib.encoding import html_to_unicode
DEFAULT_ENCODING = 'utf-8'
DEFAULT_URL = 'https://example.org/'
DEFAULT_USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/603.3.8 (KHTML, like Gecko) Version/10.1.2 Safari/603.3.8'
DEFAULT_NEXT_SYMBOL = ['next', 'more', 'older']
cleaner = Cleaner()
cleaner.javascript = True
cleaner.style = True
useragent = None
_Find = Union[List['Element'], 'Element']
_XPath = Union[List[str], List['Element'], str, 'Element']
_Result = Union[List['Result'], 'Result']
_HTML = Union[str, bytes]
_BaseHTML = str
_UserAgent = str
_DefaultEncoding = str
_URL = str
_RawHTML = bytes
_Encoding = str
_LXML = HtmlElement
_Text = str
_Search = Result
_Containing = Union[str, List[str]]
_Links = Set[str]
_Attrs = MutableMapping
_Next = Union['HTML', List[str]]
_NextSymbol = List[str]
try:
assert sys.version_info.major == 3
assert sys.version_info.minor > 5
except AssertionError:
raise RuntimeError('Requests-HTML requires Python 3.6+!')
class MaxRetries(Exception):
def __init__(self, message):
self.message = message
class BaseParser:
def __init__(self, *, element, default_encoding: _DefaultEncoding = None, html: _HTML = None, url: _URL) -> None:
self.element = element
self.url = url
self.skip_anchors = True
self.default_encoding = default_encoding
self._encoding = None
self._html = html.encode(DEFAULT_ENCODING) if isinstance(html, str) else html
self._lxml = None
self._pq = None
@property
def raw_html(self) -> _RawHTML:
if self._html:
return self._html
else:
return etree.tostring(self.element, encoding='unicode').strip().encode(self.encoding)
@property
def html(self) -> _BaseHTML:
if self._html:
return self.raw_html.decode(self.encoding, errors='replace')
else:
return etree.tostring(self.element, encoding='unicode').strip()
@html.setter
def html(self, html: str) -> None:
self._html = html.encode(self.encoding)
@raw_html.setter
def raw_html(self, html: bytes) -> None:
self._html = html
@property
def encoding(self) -> _Encoding:
if self._encoding:
return self._encoding
if self._html:
self._encoding = html_to_unicode(self.default_encoding, self._html)[0]
try:
self.raw_html.decode(self.encoding, errors='replace')
except UnicodeDecodeError:
self._encoding = self.default_encoding
return self._encoding if self._encoding else self.default_encoding
@encoding.setter
def encoding(self, enc: str) -> None:
self._encoding = enc
@property
def pq(self) -> PyQuery:
if self._pq is None:
self._pq = PyQuery(self.lxml)
return self._pq
@property
def lxml(self) -> HtmlElement:
if self._lxml is None:
try:
self._lxml = soup_parse(self.html, features='html.parser')
except ValueError:
self._lxml = lxml.html.fromstring(self.raw_html)
return self._lxml
@property
|
MIT License
|
mindprince/pinboardtoevernote
|
lib/thrift/server/TProcessPoolServer.py
|
TProcessPoolServer.serveClient
|
python
|
def serveClient(self, client):
itrans = self.inputTransportFactory.getTransport(client)
otrans = self.outputTransportFactory.getTransport(client)
iprot = self.inputProtocolFactory.getProtocol(itrans)
oprot = self.outputProtocolFactory.getProtocol(otrans)
try:
while True:
self.processor.process(iprot, oprot)
except TTransportException, tx:
pass
except Exception, x:
logging.exception(x)
itrans.close()
otrans.close()
|
Process input/output from a client for as long as possible
|
https://github.com/mindprince/pinboardtoevernote/blob/4dd2b462f4100853c66ab433c0e94533863f2352/lib/thrift/server/TProcessPoolServer.py#L67-L83
|
import logging
from multiprocessing import Process, Value, Condition, reduction
from TServer import TServer
from thrift.transport.TTransport import TTransportException
class TProcessPoolServer(TServer):
def __init__(self, * args):
TServer.__init__(self, *args)
self.numWorkers = 10
self.workers = []
self.isRunning = Value('b', False)
self.stopCondition = Condition()
self.postForkCallback = None
def setPostForkCallback(self, callback):
if not callable(callback):
raise TypeError("This is not a callback!")
self.postForkCallback = callback
def setNumWorkers(self, num):
self.numWorkers = num
def workerProcess(self):
if self.postForkCallback:
self.postForkCallback()
while self.isRunning.value == True:
try:
client = self.serverTransport.accept()
self.serveClient(client)
except (KeyboardInterrupt, SystemExit):
return 0
except Exception, x:
logging.exception(x)
|
Apache License 2.0
|
nthuoj/nthuoj_web
|
status/status_info.py
|
get_visible_submission
|
python
|
def get_visible_submission(user):
user = validate_user(user)
submissions = Submission.objects.all()
if user.has_admin_auth():
return submissions
submissions = submissions.exclude(
user__in=User.objects.filter(user_level=User.ADMIN)
)
invisible_problem = Problem.objects.filter(
visible=False
).exclude(
owner=user
)
contests = Contest.objects.filter(
is_homework=False,
end_time__gte=datetime.now()
)
for contest in contests:
if not has_contest_ownership(user, contest):
submissions = submissions.exclude(
Q(user__in=contest.coowner.all()) | Q(user=contest.owner),
problem__in=contest.problem.all(),
submit_time__gte=contest.creation_time
)
submissions = submissions.exclude(
user=get_contestant(contest).exclude(username=user.username),
problem__in=contest.problem.all(),
submit_time__gte=get_freeze_time_datetime(contest)
)
else:
invisible_problem = invisible_problem.exclude(
id__in=contest.problem.filter(visible=False).values_list('id', flat=True)
)
submissions = submissions.exclude(
problem__in=invisible_problem
)
return submissions
|
Get all submissions that can be viewed by the given user.
|
https://github.com/nthuoj/nthuoj_web/blob/cbe9207cd3d5618568dd0c50fefb07dcece639d7/status/status_info.py#L25-L77
|
from datetime import datetime
from django.db.models import Q
from contest.contest_info import get_running_contests, get_freeze_time_datetime, get_contestant
from contest.models import Contest
from problem.models import Problem, Submission, SubmissionDetail
from users.models import User
from utils.user_info import validate_user, has_contest_ownership
def regroup_submission(submissions):
submission_groups = []
for submission in submissions:
submission_groups.append({
'grouper': submission,
'list': SubmissionDetail.objects.filter(
sid=submission.id
).order_by('tid')
})
return submission_groups
|
MIT License
|
zhaochaocs/dualenc
|
plan/example.py
|
dfs
|
python
|
def dfs(G):
def dfs_util(cur_node, visited):
neighbors = list(G.neighbors(cur_node))
random.shuffle(neighbors)
for n in neighbors:
if n not in visited:
visited[n] = 1
dfs_util(n, visited)
graph_size = len(list(G.nodes))
assert graph_size
visited = collections.OrderedDict()
cur_node = random.choice(list(G.nodes))
visited[cur_node] = 1
dfs_util(cur_node, visited)
return list(visited.keys())
|
dfs for an undirected graph
:param G:
:return:
|
https://github.com/zhaochaocs/dualenc/blob/4175a7ed3f2c3232152ecce5ffd6ee4c727e64b9/plan/example.py#L272-L292
|
import collections
import copy
import random
import dgl
import networkx as nx
import numpy as np
import torch
edge_to_id = {e: i for i, e in enumerate(['sp', 'po', 'op', 'ps', 'll', 'ne'])}
class Example:
def __init__(self, lex_id, predicates, nodes, nodes1, nodes2, labels, node_feature_ids, lex=None):
self.entry_id = lex_id
self.predicates = predicates
self.nodes = nodes
self.node_feature_ids = node_feature_ids
self.nodes1 = nodes1
self.nodes2 = nodes2
self.labels = labels
self.node_size = len(nodes)
self.triple_size = labels.count('A1')
self.predicate_size = len(predicates)
assert self.predicate_size == self.triple_size
if self.predicate_size == 0:
print(lex)
self.nx_graph = self.create_nx_graph().to_undirected()
def get_id(self, lex=True):
if lex:
return self.entry_id
else:
return self.entry_id.rsplit("_", 1)[0]
def reset_predicates(self, plan):
self.predicates = [self.predicates[p] for p in plan]
def set_split(self, split_):
self.split_ = split_
def get_predicates(self, mode='local', idlize=True):
if mode == 'global':
if not idlize:
return self.get_predicates(idlize=False)
else:
return [self.node_feature_ids[local_idx]
for local_idx in self.get_predicates()]
elif mode == 'local':
if idlize:
return self.predicates
else:
return [self.nodes[p] for p in self.predicates]
else:
raise TypeError('Invalid mode!')
def get_label(self, encoding='one-hot'):
local_predicates = self.get_predicates(mode='local', idlize=True)
if encoding == 'p-id':
return local_predicates
elif encoding == 'global-id':
return self.get_predicates(mode='global', idlize=True)
elif encoding == 'one-hot':
label = torch.zeros(self.node_size, self.predicate_size)
for t in range(0, self.predicate_size):
label[local_predicates[t], t] = 1
label = torch.index_select(label, dim=0, index=torch.tensor(sorted(local_predicates)).long())
return label.permute(1, 0).tolist()
else:
raise TypeError('Invalid encoding mode!')
def build_rdf_graph(self, accessed_predicates=None):
g_list = []
triple_size_list = []
local_predicate_list = self.get_predicates(mode="local", idlize=True)
self.dgl_graph = self.create_graph()
if accessed_predicates is None:
for t in range(0, self.predicate_size):
g = copy.deepcopy(self.dgl_graph)
for i in range(t):
local_predicate = local_predicate_list[i]
g.nodes[local_predicate].data['access'] += 1
if i == t-1:
g.nodes[local_predicate].data['pre_access'] += 1
g_list.append(g)
triple_size_list.append(self.predicate_size)
return g_list, triple_size_list
else:
g = copy.deepcopy(self.dgl_graph)
assert g.ndata['spo'][:,1].sum().item() == self.predicate_size
for p in accessed_predicates:
g.nodes[p].data['access'] = torch.tensor([[1]])
if len(accessed_predicates):
g.nodes[accessed_predicates[-1]].data['pre_access'] = torch.tensor([[1]])
g_list.append(g)
triple_size_list.append(self.predicate_size)
return g_list, triple_size_list
def create_nx_graph(self):
edge_list = []
g = nx.DiGraph()
for node_1, node_2, edge in zip(self.nodes1, self.nodes2, self.labels):
if edge == "A0":
edge_list.append((node_1, node_2))
elif edge == "A1":
edge_list.append((node_2, node_1))
g.add_edges_from(edge_list)
return g
def create_graph(self):
g = dgl.DGLGraph()
node_size = self.node_size
g.add_nodes(node_size)
g.ndata['global_id'] = torch.tensor(self.node_feature_ids)
g.ndata['spo'] = torch.zeros(self.node_size, 3).float()
edge_list = []
edge_type_list = []
node_mention = [[self.node_feature_ids[i]] for i in range(node_size)]
for node_1, node_2, edge in zip(self.nodes1, self.nodes2, self.labels):
if edge == "A0":
g.nodes[node_1].data['spo'] += torch.tensor([1.0, 0, 0])
g.nodes[node_2].data['spo'] += torch.tensor([0, 0.5, 0])
edge_list.append((node_1, node_2))
edge_list.append((node_2, node_1))
edge_list.append((node_1, node_1))
edge_list.append((node_2, node_2))
edge_type_list += [edge_to_id[e] for e in ['sp', 'ps', 'll', 'll']]
elif edge == "A1":
g.nodes[node_1].data['spo'] += torch.tensor([0, 0, 1.0])
g.nodes[node_2].data['spo'] += torch.tensor([0, 0.5, 0])
edge_list.append((node_1, node_2))
edge_list.append((node_2, node_1))
edge_list.append((node_1, node_1))
edge_list.append((node_2, node_2))
edge_type_list += [edge_to_id[e] for e in ['op', 'po', 'll', 'll']]
elif edge == 'NE':
edge_list.append((node_1, node_2))
edge_type_list += [edge_to_id["ne"]]
node_mention[node_2].append(self.node_feature_ids[node_1])
else:
raise ValueError("Do not support the edge type {}".format(edge))
new_edge_list, new_edge_type_list = [], []
added_edge = set()
for edge, edge_type in zip(edge_list, edge_type_list):
edge_id = "{}-{}-{}".format(edge[0], edge[1], edge_type)
if edge_id not in added_edge:
added_edge.add(edge_id)
new_edge_list.append(edge)
new_edge_type_list.append(edge_type)
src, dst = tuple(zip(*new_edge_list))
g.add_edges(src, dst)
g.ndata['global_id'] = torch.tensor(self.node_feature_ids)
g.ndata['access'] = torch.zeros(self.node_size, 1).long()
g.ndata['pre_access'] = torch.zeros(self.node_size, 1).long()
g.ndata['spo'] = torch.gt(g.ndata['spo'], 0).float()
g.edata['type'] = torch.tensor(new_edge_type_list).reshape(-1, 1)
max_mention_len = 15
node_mention_tensor = torch.zeros((self.node_size, max_mention_len), dtype=torch.long)
for idx, mention in enumerate(node_mention):
if len(mention) > max_mention_len:
mention = mention[:max_mention_len]
node_mention_tensor[idx, :len(mention)] = torch.tensor(mention, dtype=torch.long)
g.ndata['node_mention'] = node_mention_tensor
dst_in_deg = {}
for dst_node in set(dst):
if dst_node not in dst_in_deg:
dst_in_deg[dst_node] = {}
for edge_type in range(len(edge_to_id)):
if edge_type not in dst_in_deg[dst_node]:
dst_in_deg[dst_node][edge_type] = 0
for dst_node, edge_type in zip(dst, new_edge_type_list):
dst_in_deg[dst_node][edge_type] += 1
e_norm = [1.0 / dst_in_deg[dst_node][e_type]
for dst_node, e_type in zip(dst, new_edge_type_list)]
g.edata['norm'] = torch.tensor(e_norm).reshape(-1, 1)
return g
def get_random_plan(self, walk_func=None):
if walk_func is None or walk_func == "None":
plan = copy.deepcopy(self.get_predicates(mode="local", idlize=True))
np.random.shuffle(plan)
return plan
else:
assert walk_func in ['random_walk', "dfs", "bfs"]
if not nx.is_connected(self.nx_graph):
graphs = [self.nx_graph.subgraph(c) for c in nx.connected_components(self.nx_graph)]
else:
graphs = [self.nx_graph]
if walk_func == "random_walk":
random_list = flat_list([random_walk(g) for g in graphs])
elif walk_func == "dfs":
random_list = flat_list([dfs(g) for g in graphs])
else:
random_list = flat_list([bfs(g) for g in graphs])
local_random_plan = [n for n in random_list if n in self.predicates]
return local_random_plan
def random_walk(G):
graph_size = len(list(G.nodes))
assert graph_size
visited = collections.OrderedDict()
cur_node = random.choice(list(G.nodes))
visited[cur_node] = 1
while not len(visited) == graph_size:
next_node = random.choice(list(G.neighbors(cur_node)))
if next_node not in visited:
visited[next_node] = 1
cur_node = next_node
return list(visited.keys())
|
MIT License
|
doist/todoist-python
|
todoist/managers/uploads.py
|
UploadsManager.delete
|
python
|
def delete(self, file_url):
params = {"token": self.token, "file_url": file_url}
return self.api._get("uploads/delete", params=params)
|
Deletes upload.
param file_url: (str) uploaded file URL
|
https://github.com/doist/todoist-python/blob/d564db81932771541c3a718698f8018756c6091d/todoist/managers/uploads.py#L29-L36
|
from .generic import Manager
class UploadsManager(Manager):
def add(self, filename, **kwargs):
data = {"token": self.token}
data.update(kwargs)
files = {"file": open(filename, "rb")}
return self.api._post("uploads/add", data=data, files=files)
def get(self, **kwargs):
params = {"token": self.token}
params.update(kwargs)
return self.api._get("uploads/get", params=params)
|
MIT License
|
schlitzered/pyredis
|
pyredis/commands.py
|
Key.persist
|
python
|
def persist(self, *args):
if self._cluster:
return self.execute(b'PERSIST', *args, shard_key=args[0])
return self.execute(b'PERSIST', *args)
|
Execute PERSIST Command, consult Redis documentation for details.
:return: result, exception
|
https://github.com/schlitzered/pyredis/blob/4f5049aae7ae2702f22ccfb661ca3f13869a3c31/pyredis/commands.py#L254-L261
|
__author__ = 'schlitzer'
__all__ = [
'Connection',
'Hash',
'HyperLogLog',
'Key',
'List',
'Publish',
'Scripting',
'Set',
'SSet',
'String',
'Subscribe',
'Transaction'
]
class BaseCommand(object):
def __init__(self):
self._cluster = False
def execute(self, *args, **kwargs):
raise NotImplemented
class Connection(BaseCommand):
def __init__(self):
super().__init__()
def echo(self, *args, shard_key=None, sock=None):
if self._cluster:
return self.execute(b'ECHO', *args, shard_key=shard_key, sock=sock)
return self.execute(b'ECHO', *args)
def ping(self, shard_key=None, sock=None):
if self._cluster:
return self.execute(b'PING', shard_key=shard_key, sock=sock)
return self.execute(b'PING')
class Geo(BaseCommand):
def __init__(self):
super().__init__()
def geoadd(self, *args):
if self._cluster:
return self.execute(b'GEOADD', *args, shard_key=args[0])
return self.execute(b'GEOADD', *args)
def geodist(self, *args):
if self._cluster:
return self.execute(b'GEODIST', *args, shard_key=args[0])
return self.execute(b'GEODIST', *args)
def geohash(self, *args):
if self._cluster:
return self.execute(b'GEOHASH', *args, shard_key=args[0])
return self.execute(b'GEOHASH', *args)
def georadius(self, *args):
if self._cluster:
return self.execute(b'GEORADIUS', *args, shard_key=args[0])
return self.execute(b'GEORADIUS', *args)
def geopos(self, *args):
if self._cluster:
return self.execute(b'GEOPOS', *args, shard_key=args[0])
return self.execute(b'GEOPOS', *args)
def georadiusbymember(self, *args):
if self._cluster:
return self.execute(b'GEORADIUSBYMEMBER', *args, shard_key=args[0])
return self.execute(b'GEORADIUSBYMEMBER', *args)
class Key(BaseCommand):
def __init__(self):
super().__init__()
def delete(self, *args):
if self._cluster:
return self.execute(b'DEL', *args, shard_key=args[0])
return self.execute(b'DEL', *args)
def dump(self, *args):
if self._cluster:
return self.execute(b'DUMP', *args, shard_key=args[0])
return self.execute(b'DUMP', *args)
def exists(self, *args):
if self._cluster:
return self.execute(b'EXISTS', *args, shard_key=args[0])
return self.execute(b'EXISTS', *args)
def expire(self, *args):
if self._cluster:
return self.execute(b'EXPIRE', *args, shard_key=args[0])
return self.execute(b'EXPIRE', *args)
def expireat(self, *args):
if self._cluster:
return self.execute(b'EXPIREAT')
return self.execute(b'EXPIREAT', *args)
def keys(self, *args, shard_key=None, sock=None):
if self._cluster:
return self.execute(b'KEYS', *args, shard_key=shard_key, sock=sock)
return self.execute(b'KEYS', *args)
def migrate(self, *args):
if self._cluster:
raise NotImplemented
return self.execute(b'MIGRATE', *args)
def move(self, *args):
if self._cluster:
return self.execute(b'MOVE', *args, shard_key=args[0])
return self.execute(b'MOVE', *args)
def object(self, *args, shard_key=None, sock=None):
if self._cluster:
return self.execute(b'DEL', *args, shard_key=shard_key, sock=sock)
return self.execute(b'OBJECT', *args)
|
MIT License
|
bvbohnen/x4_customizer
|
Plugins/Utilities/Catalog.py
|
Cat_Unpack
|
python
|
def Cat_Unpack(
source_cat_path,
dest_dir_path,
include_pattern = None,
exclude_pattern = None,
allow_md5_errors = False
):
try:
source_cat_path = Path(source_cat_path).resolve()
assert source_cat_path.exists()
except Exception:
raise AssertionError('Error in the source path ({})'.format(source_cat_path))
try:
dest_dir_path = Path(dest_dir_path).resolve()
except Exception:
raise AssertionError('Error in the dest path ({})'.format(dest_dir_path))
if isinstance(include_pattern, str):
include_pattern = [include_pattern]
if isinstance(exclude_pattern, str):
exclude_pattern = [exclude_pattern]
if source_cat_path.is_dir():
extension_summary = None
content_xml_path = source_cat_path / 'content.xml'
if content_xml_path.exists():
extension_summary = File_Manager.Extension_Finder.Extension_Summary(content_xml_path)
source_reader = File_Manager.Source_Reader.Location_Source_Reader(
location = source_cat_path,
extension_summary = extension_summary)
Print(('{} catalog files found using standard naming convention.'
).format(len(source_reader.catalog_file_dict)))
else:
source_reader = File_Manager.Source_Reader.Location_Source_Reader(
location = None)
source_reader.Add_Catalog(source_cat_path)
num_writes = 0
num_pattern_skips = 0
num_hash_skips = 0
num_md5_skips = 0
for virtual_path, cat_entry in source_reader.Get_Cat_Entries().items():
if not _Pattern_Match(virtual_path, include_pattern, exclude_pattern):
num_pattern_skips += 1
continue
dest_path = dest_dir_path / cat_entry.cat_path
if dest_path.exists():
existing_binary = dest_path.read_bytes()
dest_hash = File_Manager.Cat_Reader.Get_Hash_String(existing_binary)
if (dest_hash == cat_entry.hash_str
or (not existing_binary and cat_entry.hash_str == '00000000000000000000000000000000')):
num_hash_skips += 1
continue
dest_path.parent.mkdir(parents = True, exist_ok = True)
try:
cat_path, file_binary = source_reader.Read_Catalog_File(
virtual_path,
allow_md5_error = allow_md5_errors)
except Cat_Hash_Exception:
num_md5_skips += 1
continue
with open(dest_path, 'wb') as file:
file.write(file_binary)
num_writes += 1
Print('Extracted {}'.format(virtual_path))
Print('Files written : {}'.format(num_writes))
Print('Files skipped (pattern mismatch) : {}'.format(num_pattern_skips))
Print('Files skipped (hash match) : {}'.format(num_hash_skips))
Print('Files skipped (md5 hash failure) : {}'.format(num_md5_skips))
return
|
Unpack a single catalog file, or a group if a folder given.
When a file is in multiple catalogs, the latest one in the list
will be used. If a file is already present at the destination,
it is compared to the catalog version and skipped if the same.
* source_cat_path
- Path to the catalog file, or to a folder.
- When a folder given, catalogs are read in X4 priority order
according to its expected names.
* dest_dir_path
- Path to the folder where unpacked files are written.
* include_pattern
- String or list of strings, optional, wildcard patterns for file
names to include in the unpacked output.
- Eg. "*.xml" to unpack only xml files
- Case is ignored.
* exclude_pattern
- String or list of strings, optional, wildcard patterns for file
names to include in the unpacked output.
- Eg. "['*.lua']" to skip lua files.
* allow_md5_errors
- Bool, if True then files with md5 errors will be unpacked, otherwise
they are skipped.
- Such errors may arise from poorly constructed catalog files.
|
https://github.com/bvbohnen/x4_customizer/blob/6f865008690916a66a44c97331d9a2692baedb35/Plugins/Utilities/Catalog.py#L12-L168
|
from pathlib import Path
from fnmatch import fnmatch
from Framework import Utility_Wrapper, File_Manager, Cat_Hash_Exception, Print
@Utility_Wrapper(uses_paths_from_settings = False)
|
MIT License
|
open2c/cooltools
|
cooltools/lib/peaks.py
|
find_peak_prominence_iterative
|
python
|
def find_peak_prominence_iterative(
arr,
min_prom=None,
max_prom=None,
steps_prom=1000,
log_space_proms=True,
min_n_peak_pairs=5,
):
if ((min_prom is None) and (max_prom is not None)) or (
(min_prom is not None) and (max_prom is None)
):
raise Exception(
"Please, provide either both min_prom and max_prom or "
"none to infer these values from the data."
)
if (min_prom is None) and (max_prom is None):
arr_sorted = np.sort(arr)
arr_sorted = arr_sorted[np.isfinite(arr_sorted)]
max_prom = arr_sorted[-1] - arr_sorted[0]
diffs = np.diff(arr_sorted)
min_prom = diffs[diffs != 0].min()
if log_space_proms:
proms = 10 ** np.linspace(np.log10(min_prom), np.log10(max_prom), steps_prom)
else:
proms = np.linspace(min_prom, max_prom, steps_prom)
minproms = np.nan * np.ones_like(arr)
maxproms = np.nan * np.ones_like(arr)
for p in proms:
minidxs, maxidxs = peakdet(arr, p)
if (len(minidxs) >= min_n_peak_pairs) and (len(minidxs) >= min_n_peak_pairs):
valid_mins = minidxs[np.isfinite(arr[minidxs])]
minproms[valid_mins] = p
valid_maxs = maxidxs[np.isfinite(arr[maxidxs])]
maxproms[valid_maxs] = p
return minproms, maxproms
|
Finds the minima/maxima of an array using the peakdet algorithm at
different values of the threshold prominence. For each location, returns
the maximal threshold prominence at which it is called as a minimum/maximum.
Note that this function is inferior in every aspect to find_peak_prominence.
We keep it for testing purposes and will remove in the future.
Parameters
----------
arr : array_like
min_prom, max_prom : float
The minimal and the maximal values of prominence to probe.
If None, these values are inferred as the minimal and the maximal
non-zero difference between any two elements of `v`.
steps_prom : int
The number of threshold prominence values to probe in the range
between `min_prom` and `max_prom`.
log_space_proms : bool
If True, probe logarithmically spaced values of the threshold prominence
in the range between `min_prom` and `max_prom`.
min_n_peak_pairs : int
If the number of detected minima/maxima at a certain threshold
prominence is < `min_n_peak_pairs`, the detected peaks are ignored.
Returns
-------
minproms, maxproms : numpy.array
The prominence of detected minima and maxima.
|
https://github.com/open2c/cooltools/blob/a8ace1e8b38a04e6863ed56526fc6febfacfd2fc/cooltools/lib/peaks.py#L200-L270
|
import warnings
import numpy as np
def find_peak_prominence(arr, max_dist=None):
arr = np.asarray(arr)
n = len(arr)
max_dist = len(arr) if max_dist is None else int(max_dist)
arr_nonans = arr[~np.isnan(arr)]
idxs_nonans2idx = np.arange(arr.size)[~np.isnan(arr)]
with warnings.catch_warnings():
warnings.simplefilter("ignore", RuntimeWarning)
is_min_left = np.r_[False, arr_nonans[:-1] > arr_nonans[1:]]
is_min_right = np.r_[arr_nonans[:-1] < arr_nonans[1:], False]
is_loc_min = is_min_left & is_min_right
loc_min_poss = np.where(is_loc_min)[0]
loc_min_poss = idxs_nonans2idx[loc_min_poss]
is_max_left = np.r_[False, arr_nonans[:-1] < arr_nonans[1:]]
is_max_right = np.r_[arr_nonans[:-1] > arr_nonans[1:], False]
is_loc_max = is_max_left & is_max_right
loc_max_poss = np.where(is_loc_max)[0]
loc_max_poss = idxs_nonans2idx[loc_max_poss]
left_maxs = -1 * np.ones(len(loc_max_poss), dtype=np.int)
right_maxs = -1 * np.ones(len(loc_max_poss), dtype=np.int)
for i, pos in enumerate(loc_max_poss):
for j in range(pos - 1, -1, -1):
if (arr[j] > arr[pos]) or (pos - j > max_dist):
left_maxs[i] = j
break
for j in range(pos + 1, n):
if (arr[j] > arr[pos]) or (j - pos > max_dist):
right_maxs[i] = j
break
left_max_proms = np.array(
[
(
arr[pos] - np.nanmin(arr[left_maxs[i] : pos])
if (left_maxs[i] >= 0)
else np.nan
)
for i, pos in enumerate(loc_max_poss)
]
)
right_max_proms = np.array(
[
(
arr[pos] - np.nanmin(arr[pos : right_maxs[i]])
if (right_maxs[i] >= 0)
else np.nan
)
for i, pos in enumerate(loc_max_poss)
]
)
with warnings.catch_warnings():
warnings.simplefilter("ignore", RuntimeWarning)
max_proms = np.nanmin(np.vstack([left_max_proms, right_max_proms]), axis=0)
global_max_mask = (left_maxs == -1) & (right_maxs == -1)
if (global_max_mask).sum() > 0:
global_max_idx = np.where(global_max_mask)[0][0]
global_max_pos = loc_max_poss[global_max_idx]
neighbor_loc_mins = (loc_min_poss >= global_max_pos - max_dist) & (
loc_min_poss < global_max_pos + max_dist
)
if np.any(neighbor_loc_mins):
max_proms[global_max_idx] = arr[global_max_pos] - np.nanmin(
arr[loc_min_poss[neighbor_loc_mins]]
)
else:
max_proms[global_max_idx] = arr[global_max_pos] - np.nanmin(
arr[max(global_max_pos - max_dist, 0) : global_max_pos + max_dist]
)
return loc_max_poss, max_proms
def peakdet(arr, min_prominence):
maxidxs = []
minidxs = []
x = np.arange(len(arr))
arr = np.asarray(arr)
if not np.isscalar(min_prominence):
raise Exception("Input argument delta must be a scalar")
if min_prominence <= 0:
raise Exception("Input argument delta must be positive")
mn, mx = np.inf, -np.inf
mnpos, mxpos = np.nan, np.nan
lookformax = True
for i in np.arange(len(arr)):
this = arr[i]
if this > mx:
mx = this
mxpos = x[i]
if this < mn:
mn = this
mnpos = x[i]
if lookformax:
if this < mx - min_prominence:
maxidxs.append(mxpos)
mn = this
mnpos = x[i]
lookformax = False
else:
if this > mn + min_prominence:
minidxs.append(mnpos)
mx = this
mxpos = x[i]
lookformax = True
return np.array(minidxs), np.array(maxidxs)
|
MIT License
|
nestauk/old_nesta_daps
|
nesta/packages/worldbank/collect_worldbank.py
|
unpack_quantity
|
python
|
def unpack_quantity(row, concept, value):
for quantity in row['variable']:
if quantity['concept'] == concept:
return quantity[value]
raise NameError(f"No item found in {row['variable']} with "
f"concept = {concept}")
|
Unpack row like {"variable": [{"concept":<concept>, <value>:_i_want_this_}]}
Args:
row (dict): Row of Worldbank API data.
concept (str): The name of the dataset containing the variable.
value (str): The name of the variable to unpack.
Returns:
A value.
|
https://github.com/nestauk/old_nesta_daps/blob/4b3ae79922cebde0ad33e08ac4c40b9a10e8e7c3/nesta/packages/worldbank/collect_worldbank.py#L205-L219
|
import requests
from retrying import retry
import json
from collections import defaultdict
import re
import math
import pandas as pd
WORLDBANK_ENDPOINT = "http://api.worldbank.org/v2/{}"
DEAD_RESPONSE = (None, None)
def worldbank_request(suffix, page, per_page=10000, data_key_path=None):
response = _worldbank_request(suffix=suffix, page=page, per_page=per_page)
metadata, data = data_from_response(response=response,
data_key_path=data_key_path)
return metadata, data
@retry(stop_max_attempt_number=3, wait_fixed=2000)
def _worldbank_request(suffix, page, per_page):
r = requests.get(WORLDBANK_ENDPOINT.format(suffix),
params=dict(per_page=per_page, format="json", page=page))
if r.status_code == 400:
return DEAD_RESPONSE
r.raise_for_status()
response = DEAD_RESPONSE
try:
response = r.json()
except json.JSONDecodeError:
pass
finally:
return response
def data_from_response(response, data_key_path=None):
if data_key_path is None or response == DEAD_RESPONSE:
metadata, datarows = response
else:
metadata = response
datarows = response.copy()
for key in data_key_path:
datarows = datarows[key]
if key != data_key_path[-1] and type(datarows) is list:
datarows = datarows[0]
return metadata, datarows
def calculate_number_of_api_pages(suffix, per_page=10000, data_key_path=None):
metadata, _ = worldbank_request(suffix=suffix, page=1,
per_page=1,
data_key_path=data_key_path)
if metadata is None:
return 0
total = int(metadata["total"])
n_pages = math.floor(total / per_page) + int(total % per_page > 0)
return n_pages
def worldbank_data_interval(suffix, first_page, last_page,
per_page=10000, data_key_path=None):
for page in range(first_page, last_page+1):
_, datarows = worldbank_request(suffix=suffix, page=page,
per_page=per_page,
data_key_path=data_key_path)
if datarows is None:
continue
for row in datarows:
yield row
def worldbank_data(suffix, per_page=10000, data_key_path=None):
n_pages = calculate_number_of_api_pages(suffix=suffix,
per_page=per_page,
data_key_path=data_key_path)
return worldbank_data_interval(suffix, first_page=1,
last_page=n_pages,
per_page=per_page,
data_key_path=data_key_path)
def get_worldbank_resource(resource):
collection = []
for row in worldbank_data(resource):
data = {}
for k, v in row.items():
if type(v) is dict:
v = v["value"]
data[k] = v
collection.append(data)
return collection
def get_variables_by_code(codes):
key_path = ["source", "concept", "variable"]
variables = defaultdict(list)
sources = get_worldbank_resource("source")
for source in sources:
suffix = f"sources/{source['id']}/series/data"
data = worldbank_data(suffix, data_key_path=key_path)
filtered_data = filter(lambda row: (row['id'] in codes), data)
for row in filtered_data:
variables[row['id']].append(source['id'])
return variables
|
MIT License
|
stevengrove/dynamichead
|
cvpods/modeling/backbone/shufflenet.py
|
build_shufflenetv2_backbone
|
python
|
def build_shufflenetv2_backbone(cfg, input_shape):
channel_mapper = {
"0.5x": [24, 48, 96, 192, 1024],
"1.0x": [24, 116, 232, 464, 1024],
"1.5x": [24, 176, 352, 704, 1024],
"2.0x": [24, 244, 488, 976, 2048],
}
model_size = cfg.MODEL.SHUFFLENET.MODEL_SIZE
output_feautres = cfg.MODEL.SHUFFLENET.OUT_FEATURES
num_classes = cfg.MODEL.SHUFFLENET.NUM_CLASSES
norm = cfg.MODEL.SHUFFLENET.NORM
init_model = cfg.MODEL.SHUFFLENET.INIT_MODEL
assert model_size in channel_mapper, "Model size {} not supported.".format(model_size)
channels = channel_mapper[model_size]
model = ShuffleNetV2(
input_shape.channels,
channels,
num_classes=num_classes,
dropout=model_size == "2.0",
out_features=output_feautres,
norm=norm,
init_model=init_model,
)
model.freeze(cfg.MODEL.BACKBONE.FREEZE_AT)
return model
|
Create a ShuffleNetV2 instance from config.
Returns:
ShuffleNetV2: a :class:`ShuffleNetV2` instance.
|
https://github.com/stevengrove/dynamichead/blob/5097e2bd21e36fbdcab90f0b23b67162157e46bb/cvpods/modeling/backbone/shufflenet.py#L295-L327
|
import numpy as np
import torch
import torch.nn as nn
from cvpods.layers import Conv2d, FrozenBatchNorm2d, ShapeSpec, get_norm
from cvpods.modeling.backbone import Backbone
class ShuffleV2Block(nn.Module):
def __init__(
self, input_channels, output_channels, mid_channels,
kernel_size, stride, bias=False, norm="BN"
):
super(ShuffleV2Block, self).__init__()
assert stride in [1, 2]
self.stride = stride
padding = kernel_size // 2
delta_channels = output_channels - input_channels
branch_main = [
Conv2d(
input_channels, mid_channels, kernel_size=1, bias=bias,
norm=get_norm(norm, mid_channels),
activation=nn.ReLU(inplace=True),
),
Conv2d(
mid_channels, mid_channels, kernel_size, stride,
padding, groups=mid_channels, bias=bias,
norm=get_norm(norm, mid_channels),
),
Conv2d(
mid_channels, delta_channels, kernel_size=1, bias=bias,
norm=get_norm(norm, delta_channels),
activation=nn.ReLU(inplace=True),
)
]
self.branch_main = nn.Sequential(*branch_main)
self.branch_proj = None
if stride == 2:
branch_proj = [
Conv2d(
input_channels, input_channels, kernel_size, stride,
padding, groups=input_channels, bias=bias,
norm=get_norm(norm, input_channels)
),
Conv2d(
input_channels, input_channels, kernel_size=1, bias=bias,
norm=get_norm(norm, input_channels),
activation=nn.ReLU(inplace=True)
)
]
self.branch_proj = nn.Sequential(*branch_proj)
def forward(self, x):
if self.branch_proj is None:
x_proj, x = self.channel_shuffle(x)
else:
x_proj = self.branch_proj(x)
x = self.branch_main(x)
return torch.cat([x_proj, x], dim=1)
def channel_shuffle(self, x):
N, C, H, W = x.shape
assert C % 2 == 0, "number of channels must be divided by 2, got {}".format(C)
x = x.view(N, C // 2, 2, H, W).permute(2, 0, 1, 3, 4).contiguous()
return x[0], x[1]
def freeze(self):
for p in self.parameters():
p.requires_grad = False
FrozenBatchNorm2d.convert_frozen_batchnorm(self)
return self
class ShuffleNetV2(Backbone):
def __init__(
self, in_channels, channels, num_classes=None, dropout=False, out_features=None,
norm="BN", init_model=False
):
super(ShuffleNetV2, self).__init__()
self.stage_out_channels = channels
self.num_classes = num_classes
input_channels = self.stage_out_channels[0]
self.stem = nn.Sequential(*[
Conv2d(
in_channels, input_channels, kernel_size=3,
stride=2, padding=1, bias=False,
norm=get_norm(norm, input_channels),
activation=nn.ReLU(inplace=True),
),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
])
current_stride = 4
self._out_feature_strides = {"stem": current_stride}
self._out_feature_channels = {"stem": input_channels}
self.stage_num_blocks = [4, 8, 4]
self.stages_and_names = []
for i in range(len(self.stage_num_blocks)):
num_blocks = self.stage_num_blocks[i]
output_channels = self.stage_out_channels[i + 1]
name = "shuffle" + str(i + 3)
block_list = make_stage(num_blocks, input_channels, output_channels, norm)
current_stride = current_stride * np.prod([block.stride for block in block_list])
stages = nn.Sequential(*block_list)
self._out_feature_strides[name] = current_stride
self._out_feature_channels[name] = output_channels
self.add_module(name, stages)
self.stages_and_names.append((stages, name))
input_channels = output_channels
name = "shuffle" + str(len(self.stage_num_blocks) + 2) + "-last"
last_output_channels = self.stage_out_channels[-1]
last_conv = Conv2d(
output_channels, last_output_channels,
kernel_size=1, bias=False,
norm=get_norm(norm, last_output_channels),
activation=nn.ReLU(inplace=True)
)
self._out_feature_strides[name] = current_stride
self._out_feature_channels[name] = last_output_channels
self.add_module(name, last_conv)
self.stages_and_names.append((last_conv, name))
if num_classes is not None:
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.dropout = dropout
if dropout:
self.dropout = nn.Dropout(0.2)
self.classifier = nn.Linear(self.stage_out_channels[-1], num_classes, bias=False)
name = "linear"
self._out_features = [name] if out_features is None else out_features
if init_model:
self._initialize_weights()
def forward(self, x):
outputs = {}
x = self.stem(x)
if "stem" in self._out_features:
outputs["stem"] = x
for stages, name in self.stages_and_names:
x = stages(x)
if name in self._out_features:
outputs[name] = x
if self.num_classes is not None:
x = self.avgpool(x)
if self.dropout:
x = self.dropout(x)
x = x.reshape(-1, self.stage_out_channels[-1])
x = self.classifier(x)
if "linear" in self._out_features:
outputs["linear"] = x
return outputs
def output_shape(self):
return {
name: ShapeSpec(
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
)
for name in self._out_features
}
def freeze(self, freeze_at):
if freeze_at >= 1:
for p in self.stem.parameters():
p.requires_grad = False
FrozenBatchNorm2d.convert_frozen_batchnorm(self.stem)
for i in range(freeze_at - 1):
FrozenBatchNorm2d.convert_frozen_batchnorm(self.stages_and_names[i][0])
def _initialize_weights(self):
for name, m in self.named_modules():
if isinstance(m, nn.Conv2d):
if 'first' in name:
nn.init.normal_(m.weight, 0, 0.01)
else:
nn.init.normal_(m.weight, 0, 1.0 / m.weight.shape[1])
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
if m.bias is not None:
nn.init.constant_(m.bias, 0.0001)
nn.init.constant_(m.running_mean, 0)
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
if m.bias is not None:
nn.init.constant_(m.bias, 0.0001)
nn.init.constant_(m.running_mean, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def make_stage(num_blocks, input_channels, output_channels, norm):
blocks = []
blocks.append(ShuffleV2Block(
input_channels, output_channels, mid_channels=output_channels // 2,
kernel_size=3, stride=2, norm=norm)
)
input_channels = output_channels
for i in range(num_blocks - 1):
blocks.append(ShuffleV2Block(
input_channels // 2, output_channels, mid_channels=output_channels // 2,
kernel_size=3, stride=1, norm=norm)
)
return blocks
|
Apache License 2.0
|
sumanyu/stacked-denoising-autoencoders
|
dA.py
|
dA.get_cost_updates
|
python
|
def get_cost_updates(self, corruption_level, learning_rate):
tilde_x = self.get_corrupted_input(self.x, corruption_level)
y = self.get_hidden_values(tilde_x)
z = self.get_reconstructed_input(y)
L = - T.sum(self.x * T.log(z) + (1 - self.x) * T.log(1 - z), axis=1)
cost = T.mean(L)
gparams = T.grad(cost, self.params)
updates = [
(param, param - learning_rate * gparam)
for param, gparam in zip(self.params, gparams)
]
return (cost, updates)
|
This function computes the cost and the updates for one trainng
step of the dA
|
https://github.com/sumanyu/stacked-denoising-autoencoders/blob/678012cb3acadbbc2f7e9635db8fbced46471bf0/dA.py#L220-L247
|
import numpy
import theano
import theano.tensor as T
from theano.tensor.shared_randomstreams import RandomStreams
class dA(object):
def __init__(
self,
numpy_rng,
theano_rng=None,
input=None,
n_visible=784,
n_hidden=500,
W=None,
bhid=None,
bvis=None
):
self.n_visible = n_visible
self.n_hidden = n_hidden
if not theano_rng:
theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))
if not W:
initial_W = numpy.asarray(
numpy_rng.uniform(
low=-4 * numpy.sqrt(6. / (n_hidden + n_visible)),
high=4 * numpy.sqrt(6. / (n_hidden + n_visible)),
size=(n_visible, n_hidden)
),
dtype=theano.config.floatX
)
W = theano.shared(value=initial_W, name='W', borrow=True)
if not bvis:
bvis = theano.shared(
value=numpy.zeros(
n_visible,
dtype=theano.config.floatX
),
borrow=True
)
if not bhid:
bhid = theano.shared(
value=numpy.zeros(
n_hidden,
dtype=theano.config.floatX
),
name='b',
borrow=True
)
self.W = W
self.b = bhid
self.b_prime = bvis
self.W_prime = self.W.T
self.theano_rng = theano_rng
if input is None:
self.x = T.dmatrix(name='input')
else:
self.x = input
self.params = [self.W, self.b, self.b_prime]
def get_corrupted_input(self, input, corruption_level):
return self.theano_rng.binomial(size=input.shape, n=1,
p=1 - corruption_level,
dtype=theano.config.floatX) * input
def get_hidden_values(self, input):
return T.nnet.sigmoid(T.dot(input, self.W) + self.b)
def get_reconstructed_input(self, hidden):
return T.nnet.sigmoid(T.dot(hidden, self.W_prime) + self.b_prime)
|
Apache License 2.0
|
luckydonald/pytgbot
|
code_generation/output/pytgbot/api_types/sendable/passport.py
|
PassportElementErrorDataField.__init__
|
python
|
def __init__(self, type, field_name, data_hash, message):
super(PassportElementErrorDataField, self).__init__()
self.source = 'data'
assert_type_or_raise(type, unicode_type, parameter_name="type")
self.type = type
assert_type_or_raise(field_name, unicode_type, parameter_name="field_name")
self.field_name = field_name
assert_type_or_raise(data_hash, unicode_type, parameter_name="data_hash")
self.data_hash = data_hash
assert_type_or_raise(message, unicode_type, parameter_name="message")
self.message = message
|
Represents an issue in one of the data fields that was provided by the user. The error is considered resolved when the field's value changes.
https://core.telegram.org/bots/api#passportelementerrordatafield
Parameters:
:param type: The section of the user's Telegram Passport which has the error, one of "personal_details", "passport", "driver_license", "identity_card", "internal_passport", "address"
:type type: str|unicode
:param field_name: Name of the data field which has the error
:type field_name: str|unicode
:param data_hash: Base64-encoded data hash
:type data_hash: str|unicode
:param message: Error message
:type message: str|unicode
Optional keyword parameters:
|
https://github.com/luckydonald/pytgbot/blob/e29a0b5f8f8331bd347c8e2b8e75af19b12d1bc5/code_generation/output/pytgbot/api_types/sendable/passport.py#L59-L92
|
from luckydonaldUtils.encoding import unicode_type, to_unicode as u
from luckydonaldUtils.exceptions import assert_type_or_raise
from . import Sendable
__author__ = 'luckydonald'
__all__ = [
'PassportElementError',
'PassportElementErrorDataField',
'PassportElementErrorFrontSide',
'PassportElementErrorReverseSide',
'PassportElementErrorSelfie',
'PassportElementErrorFile',
'PassportElementErrorFiles',
'PassportElementErrorTranslationFile',
'PassportElementErrorTranslationFiles',
'PassportElementErrorUnspecified',
]
class PassportElementError(Sendable):
pass
class PassportElementErrorDataField(PassportElementError):
|
MIT License
|
eelcohoogendoorn/numpy_arraysetops_ep
|
numpy_indexed/funcs.py
|
Table.unique
|
python
|
def unique(self, values):
_, count = self.count()
if not np.array_equiv(count, 1):
raise ValueError("Not every entry in the table is assigned a unique value")
return self.sum(values)
|
Place each entry in a table, while asserting that each entry occurs once
|
https://github.com/eelcohoogendoorn/numpy_arraysetops_ep/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/funcs.py#L175-L180
|
from __future__ import absolute_import, division, print_function, unicode_literals
from builtins import *
import numpy as np
from numpy_indexed.grouping import GroupBy, group_by
from numpy_indexed.index import LexIndex, as_index
from numpy_indexed import semantics
__author__ = "Eelco Hoogendoorn"
__license__ = "LGPL"
__email__ = "hoogendoorn.eelco@gmail.com"
def count(keys, axis=semantics.axis_default):
index = as_index(keys, axis, base=True)
return index.unique, index.count
def count_table(*keys):
indices = [as_index(k, axis=0) for k in keys]
uniques = [i.unique for i in indices]
inverses = [i.inverse for i in indices]
shape = [i.groups for i in indices]
table = np.zeros(shape, np.int)
np.add.at(table, inverses, 1)
return tuple(uniques), table
def binning(keys, start, end, count, axes=None):
if isinstance(keys, tuple):
n_keys = len(keys)
else:
n_keys = 1
bins = np.linspace(start, end, count+1, endpoint=True)
idx = np.searchsorted(bins, keys)
if axes is None:
axes = [-1]
class Table(object):
def __init__(self, *keys):
self.keys = tuple(keys)
self.indices = [as_index(k, axis=0) for k in keys]
self.uniques = [i.unique for i in self.indices]
self.shape = [i.groups for i in self.indices]
def get_inverses(self, keys):
return tuple([as_index(k, axis=0).inverse for k in keys])
def allocate(self, dtype, fill=0):
arr = np.empty(self.shape, dtype=dtype)
arr.fill(fill)
return arr
def count(self):
table = self.allocate(np.int)
np.add.at(table, self.get_inverses(self.indices), 1)
return tuple(self.uniques), table
def sum(self, values):
table = self.allocate(values.dtype)
keys, values = group_by(self.keys).sum(values)
table[self.get_inverses(keys)] = values
return tuple(self.uniques), table
def mean(self, values):
table = self.allocate(np.float, np.nan)
keys, values = group_by(self.keys).mean(values)
table[self.get_inverses(keys)] = values
return tuple(self.uniques), table
def first(self, values):
table = self.allocate(np.float, np.nan)
keys, values = group_by(self.keys).first(values)
table[self.get_inverses(keys)] = values
return tuple(self.uniques), table
def last(self, values):
table = self.allocate(np.float, np.nan)
keys, values = group_by(self.keys).last(values)
table[self.get_inverses(keys)] = values
return tuple(self.uniques), table
def min(self, values, default=None):
if default is None:
try:
info = np.iinfo(values.dtype)
default = info.max
except:
default = +np.inf
table = self.allocate(values.dtype, default)
keys, values = group_by(self.keys).min(values)
table[self.get_inverses(keys)] = values
return tuple(self.uniques), table
def max(self, values, default=None):
if default is None:
try:
info = np.iinfo(values.dtype)
default = info.min
except:
default = -np.inf
table = self.allocate(values.dtype, default)
keys, values = group_by(self.keys).max(values)
table[self.get_inverses(keys)] = values
return tuple(self.uniques), table
|
MIT License
|
google/clusterfuzz
|
src/clusterfuzz/_internal/system/minijail.py
|
MinijailChroot.add_binding
|
python
|
def add_binding(self, binding):
if binding in self._bindings:
return
self._makedirs(binding.dest_path)
self._bindings.append(binding)
|
Adds a directory to be bound to the chroot.
Args:
binding: A ChrootBinding.
|
https://github.com/google/clusterfuzz/blob/e9e105d66f009356c4f3fe9ae7873ffff126b234/src/clusterfuzz/_internal/system/minijail.py#L179-L189
|
from collections import namedtuple
import os
import shutil
import signal
import subprocess
import tempfile
from clusterfuzz._internal.metrics import logs
from clusterfuzz._internal.system import environment
from clusterfuzz._internal.system import new_process
from clusterfuzz._internal.system import shell
def _get_minijail_path():
return os.path.join(environment.get_platform_resources_directory(),
'minijail0')
def _get_minijail_user_namespace_args():
arguments = ['-U']
uid_map = [
'0 {0} 1'.format(os.getuid()),
]
arguments.extend(['-m', ','.join(uid_map)])
return arguments
def _create_chroot_dir(base_dir):
return tempfile.mkdtemp(dir=base_dir)
def _create_tmp_mount(base_dir):
return tempfile.mkdtemp(dir=base_dir)
ChrootBinding = namedtuple('ChrootBinding',
['src_path', 'dest_path', 'writeable'])
class MinijailChroot(object):
DEFAULT_BINDINGS = [
'/lib',
'/lib32',
'/lib64',
'/usr/lib',
'/usr/lib32',
]
def __init__(self, base_dir=None, bindings=None, use_existing_base=False):
if not use_existing_base:
self._chroot_dir = _create_chroot_dir(base_dir=base_dir)
else:
self._chroot_dir = base_dir
os.mkdir(os.path.join(self._chroot_dir, 'tmp'))
os.mkdir(os.path.join(self._chroot_dir, 'proc'))
self._tmp_mount = _create_tmp_mount(base_dir=base_dir)
self._bindings = [
ChrootBinding(self._tmp_mount, '/tmp', True),
]
self._create_devices()
for directory in self.DEFAULT_BINDINGS:
if not os.path.exists(directory):
continue
self.add_binding(ChrootBinding(directory, directory, False))
if not bindings:
return
for binding in bindings:
self.add_binding(binding)
def _mknod(self, path, file_type, major, minor):
try:
with open(os.devnull) as devnull:
subprocess.check_output(
[
'sudo', '-S', 'mknod', '-m', '666', path, file_type,
str(major),
str(minor)
],
stdin=devnull,
stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as e:
logs.log_error('Failed to call mknod.', output=e.output)
def _create_devices(self):
dev_dir = os.path.join(self._chroot_dir, 'dev')
os.mkdir(dev_dir)
self._mknod(os.path.join(dev_dir, 'null'), 'c', 1, 3)
self._mknod(os.path.join(dev_dir, 'random'), 'c', 1, 8)
self._mknod(os.path.join(dev_dir, 'urandom'), 'c', 1, 9)
os.mkdir(os.path.join(dev_dir, 'shm'))
def _makedirs(self, directory):
if directory[0] == '/':
directory = directory[1:]
shell.create_directory(
os.path.join(self._chroot_dir, directory), create_intermediates=True)
@property
def bindings(self):
return self._bindings
@property
def directory(self):
return self._chroot_dir
@property
def tmp_directory(self):
return self._tmp_mount
|
Apache License 2.0
|
discord-py-ui/discord-ui
|
discord_ui/receive.py
|
Message.disable_action_row
|
python
|
async def disable_action_row(self, row, disable = True):
comps = []
if isinstance(row, range):
for i, _ in enumerate(self.action_rows):
if i >= len(self.action_rows) - 1 or i < 0:
raise OutOfValidRange("row[" + str(i) + "]", 0, len(self.action_rows) - 1)
for comp in self.action_rows[i]:
if i in row:
comp.disabled = disable
comps.append(comp)
else:
for i, _ in enumerate(self.action_rows):
if i >= len(self.action_rows) - 1 or i < 0:
raise OutOfValidRange("row", 0, len(self.action_rows) - 1)
for comp in self.action_rows[i]:
if i == row:
comp.disabled = disable
comps.append(comp)
await self.edit(components=comps)
|
Disables an action row of components in the message
Parameters
----------
row: :class:`int` | :class:`range`
Which rows to disable, first row is ``0``; If row parameter is of type :class:`int`, the nth row will be disabled, if type is :class:`range`, the range is going to be iterated and all rows in the range will be disabled
disable: :class:`bool`, optional
Whether to disable (``True``) or enable (``False``) the components; default True
Raises
------
:raises: :class:`discord_ui.errors.OutOfValidRange` : The specified range was out of the possible range of the component rows
:raises: :class:`discord_ui.errors.OutOfValidRange` : The specified row was out of the possible range of the component rows
|
https://github.com/discord-py-ui/discord-ui/blob/b888081628b0679183284626cac5ce898cebd13a/discord_ui/receive.py#L501-L535
|
from .slash.http import ModifiedSlashState
from .errors import InvalidEvent, OutOfValidRange, WrongType
from .slash.errors import AlreadyDeferred, EphemeralDeletion
from .tools import MISSING, setup_logger, _none, get, _default
from .slash.types import ContextCommand, SlashCommand, SlashOption, SlashPermission, SlashSubcommand
from .http import BetterRoute, jsonifyMessage, send_files
from .components import ActionRow, Button, LinkButton, SelectMenu, SelectOption, UseableComponent, make_component
import discord
from discord.ext.commands import Bot
from discord.errors import HTTPException
from discord.state import ConnectionState
from typing import Any, List, Union, Dict
try:
from typing import Literal
except ImportError:
from typing_extensions import Literal
logging = setup_logger("discord-ui")
class InteractionType:
PING = Ping = 1
APPLICATION_COMMAND = Command = 2
MESSAGE_COMPONENT = Component = 3
APPLICATION_COMMAND_AUTOCOMPLETE = Autocomplete = 4
class Interaction():
def __init__(self, state, data, user=None, message=None) -> None:
self._state: ModifiedSlashState = state
self.deferred: bool = False
self.responded: bool = False
self._deferred_hidden: bool = False
self._original_payload: dict = data
self.author: Union[discord.Member, discord.User] = user
self.application_id: int = data["application_id"]
self.token: str = data["token"]
self.id: int = data["id"]
self.type: int = data["type"]
self.version: int = data["version"]
self.data: dict = data["data"]
self.channel_id: int = int(data.get("channel_id")) if data.get("channel_id") is not None else None
self.guild_id: int = int(data["guild_id"]) if data.get("guild_id") is not None else None
self.message: Message = message
@property
def guild(self) -> discord.Guild:
return self._state._get_guild(self.guild_id)
@property
def channel(self) -> Union[discord.TextChannel, discord.DMChannel]:
return self._state.get_channel(self.channel_id) or self._state.get_channel(self.author.id)
async def defer(self, hidden=False):
if self.deferred:
logging.error(AlreadyDeferred())
return
payload = None
if hidden is True:
payload = {"flags": 64}
self._deferred_hidden = True
await self._state.slash_http.respond_to(self.id, self.token, 5, payload)
self.deferred = True
async def respond(self, content=MISSING, *, tts=False, embed=MISSING, embeds=MISSING, file=MISSING, files=MISSING, nonce=MISSING,
allowed_mentions=MISSING, mention_author=MISSING, components=MISSING, delete_after=MISSING, listener=MISSING,
hidden=False, ninja_mode=False) -> Union['Message', 'EphemeralMessage']:
if ninja_mode is True or all(y in [MISSING, False] for x, y in locals().items() if x not in ["self"]):
try:
await self._state.slash_http.respond_to(self.id, self.token, 6)
return
except HTTPException as x:
if "value must be one of (4, 5)" in str(x).lower():
logging.warning(str(x) + "\n" + "The 'ninja_mode' parameter is not supported for slash commands!")
ninja_mode = False
else:
raise x
if self.responded is True:
return await self.send(content=content, tts=tts, embed=embed, embeds=embeds, nonce=nonce, allowed_mentions=allowed_mentions, mention_author=mention_author, components=components, listener=listener, hidden=hidden)
if components is MISSING and listener is not MISSING:
components = listener.to_components()
payload = jsonifyMessage(content=content, tts=tts, embed=embed, embeds=embeds, nonce=nonce, allowed_mentions=allowed_mentions, mention_author=mention_author, components=components)
if self._deferred_hidden is hidden:
if self._deferred_hidden is False and hidden is True:
logging.warning("Your response should be hidden, but the interaction was deferred public. This results in a public response.")
if self._deferred_hidden is True and hidden is False:
logging.warning("Your response should be public, but the interaction was deferred hidden. This results in a hidden response.")
hide_message = self._deferred_hidden or not self.deferred and hidden is True
r = None
if delete_after is not MISSING and hide_message is True:
raise EphemeralDeletion()
if hide_message:
payload["flags"] = 64
if self.deferred:
route = BetterRoute("PATCH", f'/webhooks/{self.application_id}/{self.token}/messages/@original')
if file is not MISSING or files is not MISSING:
await send_files(route=route, files=[file] if files is MISSING else files, payload=payload, http=self._state.http)
else:
await self._state.http.request(route, json=payload)
else:
await self._state.slash_http.respond_to(self.id, self.token, 4, payload, files=[file] if file is not MISSING else _default(None, files))
self.responded = True
r = await self._state.http.request(BetterRoute("GET", f"/webhooks/{self.application_id}/{self.token}/messages/@original"))
if hide_message is True:
msg = EphemeralMessage(state=self._state, channel=self.channel, data=r, application_id=self.application_id, token=self.token)
else:
msg = await getMessage(self._state, data=r, response=False)
if listener is not MISSING:
listener._start(msg)
if not _none(delete_after):
await msg.delete(delete_after)
return msg
async def send(self, content=None, *, tts=False, embed=MISSING, embeds=MISSING, file=MISSING, files=MISSING, nonce=MISSING,
allowed_mentions=MISSING, mention_author=MISSING, components=MISSING, delete_after=MISSING, listener=MISSING, hidden=False) -> Union['Message', 'EphemeralMessage']:
if self.responded is False:
return await self.respond(content=content, tts=tts, embed=embed, embeds=embeds, file=file, files=files, nonce=nonce, allowed_mentions=allowed_mentions, mention_author=mention_author, components=components, delete_after=delete_after, listener=listener, hidden=hidden)
if components is MISSING and listener is not MISSING:
components = listener.to_components()
payload = jsonifyMessage(content=content, tts=tts, embed=embed, embeds=embeds, nonce=nonce, allowed_mentions=allowed_mentions, mention_author=mention_author, components=components)
if hidden:
payload["flags"] = 64
route = BetterRoute("POST", f'/webhooks/{self.application_id}/{self.token}')
if file is not MISSING or files is not MISSING:
r = await send_files(route=route, files=[file] if files is MISSING else files, payload=payload, http=self._state.http)
else:
r = await self._state.http.request(route, json=payload)
if hidden is True:
msg = EphemeralMessage(state=self._state, channel=self._state.get_channel(int(r["channel_id"])), data=r, application_id=self.application_id, token=self.token)
else:
msg = await getMessage(self._state, r, response=False)
if delete_after is not MISSING:
await msg.delete(delete_after)
if listener is not MISSING:
listener._start(msg)
return msg
def _handle_auto_defer(self, auto_defer):
self.deferred = auto_defer[0]
self._deferred_hidden = auto_defer[1]
class ChoiceGeneratorContext(Interaction):
def __init__(self, command, state, data, options, user=None) -> None:
Interaction.__init__(self, state, data, user=user)
self.focused_option: dict = options[get(options, check=lambda x: options[x].get("focused", False))]
self.value_query: Union[str, int] = self.focused_option["value"]
self.selected_options: Dict[str, Any] = {options[x]["name"]: options[x]["value"] for x in options}
self.command: Union[SlashedCommand, SlashedCommand, SlashedContext] = command
async def defer(self, *args, **kwargs):
raise NotImplementedError()
async def respond(self, *args, **kwargs):
raise NotImplementedError()
async def send(self, *args, **kwargs):
raise NotImplementedError()
class ComponentContext(Interaction, UseableComponent):
def __init__(self, state, data, user, message) -> None:
Interaction.__init__(self, state, data, user=user, message=message)
UseableComponent.__init__(self, data["data"]["component_type"])
class SelectedMenu(Interaction, SelectMenu):
def __init__(self, data, user, s, msg, client) -> None:
Interaction.__init__(self, client._connection, data, user, msg)
default = [i for i, o in enumerate(s.options) if o.default is True]
SelectMenu.__init__(self, s.custom_id, s.options, s.min_values, s.max_values, s.placeholder, default[0] if len(default) == 1 else None, s.disabled)
self.bot: Bot = client
self.selected_options: List[SelectOption] = []
self.selected_values: List[str] = []
for val in data["data"]["values"]:
for x in self.options:
if x.value == val:
self.selected_options.append(x)
self.selected_values.append(x.value)
self.author: discord.Member = user
class PressedButton(Interaction, Button):
def __init__(self, data, user, b, message, client) -> None:
Interaction.__init__(self, client._connection, data, user, message)
Button.__init__(self, b.custom_id, b.label, b.color, b.emoji, b.new_line, b.disabled)
self._json = b.to_dict()
self.bot: Bot = client
self.author: discord.Member = user
class SlashedCommand(Interaction, SlashCommand):
def __init__(self, client, command: SlashCommand, data, user, args = None) -> None:
Interaction.__init__(self, client._connection, data, user)
SlashCommand.__init__(self, command.callback, command.name, command.description, command.options, guild_ids=command.guild_ids, guild_permissions=command.guild_permissions)
for x in self.__slots__:
setattr(self, x, getattr(command, x))
self.bot: Bot = client
self._json = command.to_dict()
self.author: discord.Member = user
self.args: Dict[str, Union[str, int, bool, discord.Member, discord.TextChannel, discord.Role, float]] = args
self.permissions: SlashPermission = command.guild_permissions.get(self.guild_id) if command.guild_permissions is not None else None
class SlashedSubCommand(SlashedCommand, SlashSubcommand):
def __init__(self, client, command, data, user, args = None) -> None:
SlashedCommand.__init__(self, client, command, data, user, args)
SlashSubcommand.__init__(self, command.callback, command.base_names, command.name, command.description, command.options, command.guild_ids, command.default_permission, command.guild_permissions)
class SlashedContext(Interaction, ContextCommand):
def __init__(self, client, command: ContextCommand, data, user, param) -> None:
Interaction.__init__(self, client._connection, data, user)
ContextCommand.__init__(self, command.command_type, command.callback, command.name, guild_ids=command.guild_ids, guild_permissions=command.guild_permissions)
for x in self.__slots__:
setattr(self, x, getattr(command, x))
self._json = command.to_dict()
self.bot: Bot = client
self.param: Union[Message, discord.Member, discord.User] = param
self.permissions: SlashPermission = command.guild_permissions.get(self.guild_id) if command.guild_permissions is not None else None
async def getMessage(state: ConnectionState, data, response=True):
msg_base = data.get("message", data)
channel = state.get_channel(int(data["channel_id"])) or state.get_channel(int(msg_base["author"]["id"]))
if response:
if msg_base["flags"] == 64:
return EphemeralResponseMessage(state=state, channel=channel, data=data.get("message", data))
return Message(state=state, channel=channel, data=msg_base)
if msg_base["flags"] == 64:
return EphemeralMessage(state=state, channel=channel, data=msg_base)
return Message(state=state, channel=channel, data=msg_base)
class Message(discord.Message):
def __init__(self, *, state, channel, data):
self.__slots__ = discord.Message.__slots__ + ("components", "supressed")
self._payload = data
self._state: ConnectionState = None
discord.Message.__init__(self, state=state, channel=channel, data=data)
self.components: List[Union[Button, LinkButton, SelectMenu]] = []
self.suppressed = False
self._update_components(data)
@property
def buttons(self) -> List[Union[Button, LinkButton]]:
if hasattr(self, "components") and self.components is not None:
return [x for x in self.components if isinstance(x, (Button, LinkButton))]
return []
@property
def select_menus(self) -> List[SelectMenu]:
if hasattr(self, "components") and self.components is not None:
return [x for x in self.components if isinstance(x, SelectMenu)]
return []
@property
def action_row(self) -> ActionRow:
return ActionRow(self.components)
def _update_components(self, data):
if data.get("components") is None:
self.components = []
return
self.components = []
if len(data["components"]) == 0:
pass
elif len(data["components"]) > 1:
for componentWrapper in data["components"]:
for index, com in enumerate(componentWrapper["components"]):
self.components.append(make_component(com, index==0))
elif len(data["components"][0]["components"]) > 1:
for index, com in enumerate(data["components"][0]["components"]):
self.components.append(make_component(com, index==0))
else:
component = data["components"][0]["components"][0]
self.components.append(make_component(component))
def _update(self, data):
super()._update(data)
self._update_components(data)
async def edit(self, content=MISSING, *, embed=MISSING, embeds=MISSING, attachments=MISSING, suppress=MISSING,
delete_after=MISSING, allowed_mentions=MISSING, components=MISSING):
payload = jsonifyMessage(content, embed=embed, embeds=embeds, allowed_mentions=allowed_mentions, attachments=attachments, suppress=suppress, flags=self.flags.value, components=components)
data = await self._state.http.edit_message(self.channel.id, self.id, **payload)
self._update(data)
if delete_after is not MISSING:
await self.delete(delay=delete_after)
|
MIT License
|
halit/isip
|
isip/scapy/contrib/gsm_um.py
|
partialRelease
|
python
|
def partialRelease():
a = TpPd(pd=0x6)
b = MessageType(mesType=0xa)
c = ChannelDescription()
packet = a / b / c
return packet
|
PARTIAL RELEASE Section 9.1.26
|
https://github.com/halit/isip/blob/fad1f10b02f9e075451588cc6a18a46cc5fbd66b/isip/scapy/contrib/gsm_um.py#L914-L920
|
import logging
from types import IntType
from types import NoneType
from types import StringType
import socket
logging.getLogger("scapy").setLevel(1)
from scapy.all import *
def sendum(x, typeSock=0):
try:
if type(x) is not str:
x = str(x)
if typeSock is 0:
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
host = '127.0.0.1'
port = 28670
s.connect((host, port))
elif typeSock is 1:
s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
s.connect("/tmp/osmoL")
elif typeSock is 2:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
host = '127.0.0.1'
port = 43797
s.connect((host, port))
s.send(x)
s.close()
except:
print "[Error]: There was a problem when trying to transmit data.\
Please make sure you started the socket server."
class ErrorLength(Exception):
def __str__(self):
error = "ERROR: Please make sure you build entire, 8 bit fields."
return repr(error)
def adapt(min_length, max_length, fields, fields2, location=2):
location = min_length - location
i = len(fields) - 1
rm = mysum = 0
while i >= 0:
if fields[i] is None:
rm += 1
try:
mysum += fields2[i].size
except AttributeError:
mysum += 8
else:
break
i -= 1
if mysum % 8 is 0:
length = mysum / 8
dyn_length = (max_length - min_length - length)
if dyn_length < 0:
dyn_length = 0
if length is max_length:
length -= min_length
return [length, dyn_length + location]
else:
raise ErrorLength()
def examples(example=None):
if example == None:
print """This command presents some example to introduce scapy
gsm-um to new users.
The following parameters can be used:
examples("imsiDetach")
examples("call")
examples("dissect")"""
elif example == "imsiDetach":
print """
>>> a=imsiDetachIndication()
... a.typeOfId=1; a.odd=1; a.idDigit1=0xF;
... a.idDigit2_1=2; a.idDigit2=7; a.idDigit3_1=0;
... a.idDigit3=7; a.idDigit4_1=7; a.idDigit4=2;
... a.idDigit5_1=0; a.idDigit5=0; a.idDigit6_1=0;
... a.idDigit6=1; a.idDigit7_1=2; a.idDigit7=7;
... a.idDigit8_1=7; a.idDigit8=5; a.idDigit9_1=1; a.idDigit9=4;
>>> hexdump(a)
0000 05 01 00 08 F0 27 07 72 00 01 27 75 14 .....'.r..'u.
>>> sendum(a)
"""
elif example == "call":
print """
If you use an USRP and the testcall function this sets up a phonecall:
>>> sendum(setupMobileOriginated())
>>> sendum(connectAcknowledge())
"""
class TpPd(Packet):
name = "Skip Indicator And Transaction Identifier and Protocol \
Discriminator"
fields_desc = [
BitField("ti", 0x0, 4),
BitField("pd", 0x3, 4)
]
class MessageType(Packet):
name = "Message Type"
fields_desc = [
XByteField("mesType", 0x3C)
]
def additionalAssignment(MobileAllocation_presence=0,
StartingTime_presence=0):
a = TpPd(pd=0x6)
b = MessageType(mesType=0x3B)
c = ChannelDescription()
packet = a / b / c
if MobileAllocation_presence is 1:
d = MobileAllocationHdr(ieiMA=0x72, eightBitMA=0x0)
packet = packet / d
if StartingTime_presence is 1:
e = StartingTimeHdr(ieiST=0x7C, eightBitST=0x0)
packet = packet / e
return packet
def assignmentCommand(FrequencyList_presence=0,
CellChannelDescription_presence=0,
CellChannelDescription_presence1=0,
MultislotAllocation_presence=0,
ChannelMode_presence=0, ChannelMode_presence1=0,
ChannelMode_presence2=0, ChannelMode_presence3=0,
ChannelMode_presence4=0, ChannelMode_presence5=0,
ChannelMode_presence6=0, ChannelMode_presence7=0,
ChannelDescription=0, ChannelMode2_presence=0,
MobileAllocation_presence=0, StartingTime_presence=0,
FrequencyList_presence1=0,
ChannelDescription2_presence=0,
ChannelDescription_presence=0,
FrequencyChannelSequence_presence=0,
MobileAllocation_presence1=0,
CipherModeSetting_presence=0,
VgcsTargetModeIdentication_presence=0,
MultiRateConfiguration_presence=0):
a = TpPd(pd=0x6)
b = MessageType(mesType=0x2e)
c = ChannelDescription2()
d = PowerCommand()
packet = a / b / c / d
if FrequencyList_presence is 1:
e = FrequencyListHdr(ieiFL=0x05, eightBitFL=0x0)
packet = packet / e
if CellChannelDescription_presence is 1:
f = CellChannelDescriptionHdr(ieiCCD=0x62, eightBitCCD=0x0)
packet = packet / f
if MultislotAllocation_presence is 1:
g = MultislotAllocationHdr(ieiMSA=0x10, eightBitMSA=0x0)
packet = packet / g
if ChannelMode_presence is 1:
h = ChannelModeHdr(ieiCM=0x63, eightBitCM=0x0)
packet = packet / h
if ChannelMode_presence1 is 1:
i = ChannelModeHdr(ieiCM=0x11, eightBitCM=0x0)
packet = packet / i
if ChannelMode_presence2 is 1:
j = ChannelModeHdr(ieiCM=0x13, eightBitCM=0x0)
packet = packet / j
if ChannelMode_presence3 is 1:
k = ChannelModeHdr(ieiCM=0x14, eightBitCM=0x0)
packet = packet / k
if ChannelMode_presence4 is 1:
l = ChannelModeHdr(ieiCM=0x15, eightBitCM=0x0)
packet = packet / l
if ChannelMode_presence5 is 1:
m = ChannelModeHdr(ieiCM=0x16, eightBitCM=0x0)
packet = packet / m
if ChannelMode_presence6 is 1:
n = ChannelModeHdr(ieiCM=0x17, eightBitCM=0x0)
packet = packet / n
if ChannelMode_presence7 is 1:
o = ChannelModeHdr(ieiCM=0x18, eightBitCM=0x0)
packet = packet / o
if ChannelDescription_presence is 1:
p = ChannelDescriptionHdr(ieiCD=0x64, eightBitCD=0x0)
packet = packet / p
if ChannelMode2_presence is 1:
q = ChannelMode2Hdr(ieiCM2=0x66, eightBitCM2=0x0)
packet = packet / q
if MobileAllocation_presence is 1:
r = MobileAllocationHdr(ieiMA=0x72, eightBitMA=0x0)
packet = packet / r
if StartingTime_presence is 1:
s = StartingTimeHdr(ieiST=0x7C, eightBitST=0x0)
packet = packet / s
if FrequencyList_presence1 is 1:
t = FrequencyListHdr(ieiFL=0x19, eightBitFL=0x0)
packet = packet / t
if ChannelDescription2_presence is 1:
u = ChannelDescription2Hdr(ieiCD2=0x1C, eightBitCD2=0x0)
packet = packet / u
if ChannelDescription_presence is 1:
v = ChannelDescriptionHdr(ieiCD=0x1D, eightBitCD=0x0)
packet = packet / v
if FrequencyChannelSequence_presence is 1:
w = FrequencyChannelSequenceHdr(ieiFCS=0x1E, eightBitFCS=0x0)
packet = packet / w
if MobileAllocation_presence1 is 1:
x = MobileAllocationHdr(ieiMA=0x21, eightBitMA=0x0)
packet = packet / x
if CipherModeSetting_presence is 1:
y = CipherModeSettingHdr(ieiCMS=0x9, eightBitCMS=0x0)
packet = packet / y
if VgcsTargetModeIdentication_presence is 1:
z = VgcsTargetModeIdenticationHdr(ieiVTMI=0x01, eightBitVTMI=0x0)
packet = packet / z
if MultiRateConfiguration_presence is 1:
aa = MultiRateConfigurationHdr(ieiMRC=0x03, eightBitMRC=0x0)
packet = packet / aa
return packet
def assignmentComplete():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x29)
c = RrCause()
packet = a / b / c
return packet
def assignmentFailure():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x2F)
c = RrCause()
packet = a / b / c
return packet
def channelModeModify(VgcsTargetModeIdentication_presence=0,
MultiRateConfiguration_presence=0):
a = TpPd(pd=0x6)
b = MessageType(mesType=0x8)
c = ChannelDescription2()
d = ChannelMode()
packet = a / b / c / d
if VgcsTargetModeIdentication is 1:
e = VgcsTargetModeIdenticationHdr(ieiVTMI=0x01, eightBitVTMI=0x0)
packet = packet / e
if MultiRateConfiguration is 1:
f = MultiRateConfigurationHdr(ieiMRC=0x03, eightBitMRC=0x0)
packet = packet / f
return packet
def channelModeModifyAcknowledge():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x17)
c = ChannelDescription2()
d = ChannelMode()
packet = a / b / c / d
return packet
def channelRelease(BaRange_presence=0, GroupChannelDescription_presence=0,
GroupCipherKeyNumber_presence=0, GprsResumption_presence=0,
BaListPref_presence=0):
a = TpPd(pd=0x6)
b = MessageType(mesType=0xD)
c = RrCause()
packet = a / b / c
if BaRange_presence is 1:
d = BaRangeHdr(ieiBR=0x73, eightBitBR=0x0)
packet = packet / d
if GroupChannelDescription_presence is 1:
e = GroupChannelDescriptionHdr(ieiGCD=0x74, eightBitGCD=0x0)
packet = packet / e
if GroupCipherKeyNumber_presence is 1:
f = GroupCipherKeyNumber(ieiGCKN=0x8)
packet = packet / f
if GprsResumption_presence is 1:
g = GprsResumptionHdr(ieiGR=0xC, eightBitGR=0x0)
packet = packet / g
if BaListPref_presence is 1:
h = BaListPrefHdr(ieiBLP=0x75, eightBitBLP=0x0)
packet = packet / h
return packet
class ChannelRequest(Packet):
name = "Channel Request"
fields_desc = [
ByteField("estCause", 0x0)
]
def channelRequest():
return ChannelRequest()
def cipheringModeCommand():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x35)
c = RrCause()
d = CipherModeSettingAndcipherResponse()
packet = a / b / c / d
return packet
def cipheringModeComplete(MobileId_presence=0):
a = TpPd(pd=0x6)
b = MessageType(mesType=0x32)
packet = a / b
if MobileId_presence is 1:
c = MobileIdHdr(ieiMI=0x17, eightBitMI=0x0)
packet = packet / c
return packet
def classmarkChange(MobileStationClassmark3_presence=0):
a = TpPd(pd=0x6)
b = MessageType(mesType=0x16)
c = MobileStationClassmark2()
packet = a / b / c
if MobileStationClassmark3_presence is 1:
e = MobileStationClassmark3(ieiMSC3=0x20)
packet = packet / e
return packet
def classmarkEnquiry():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x13)
packet = a / b
return packet
def configurationChangeCommand(ChannelMode_presence=0,
ChannelMode_presence1=0,
ChannelMode_presence2=0,
ChannelMode_presence3=0,
ChannelMode_presence4=0,
ChannelMode_presence5=0,
ChannelMode_presence6=0,
ChannelMode_presence7=0):
a = TpPd(pd=0x6)
b = MessageType(mesType=0x30)
c = MultislotAllocation()
packet = a / b / c
if ChannelMode_presence is 1:
d = ChannelModeHdr(ieiCM=0x63, eightBitCM=0x0)
packet = packet / d
if ChannelMode_presence1 is 1:
e = ChannelModeHdr(ieiCM=0x11, eightBitCM=0x0)
packet = packet / e
if ChannelMode_presence2 is 1:
f = ChannelModeHdr(ieiCM=0x13, eightBitCM=0x0)
packet = packet / f
if ChannelMode_presence3 is 1:
g = ChannelModeHdr(ieiCM=0x14, eightBitCM=0x0)
packet = packet / g
if ChannelMode_presence4 is 1:
h = ChannelModeHdr(ieiCM=0x15, eightBitCM=0x0)
packet = packet / h
if ChannelMode_presence5 is 1:
i = ChannelModeHdr(ieiCM=0x16, eightBitCM=0x0)
packet = packet / i
if ChannelMode_presence6 is 1:
j = ChannelModeHdr(ieiCM=0x17, eightBitCM=0x0)
packet = packet / j
if ChannelMode_presence7 is 1:
k = ChannelModeHdr(ieiCM=0x18, eightBitCM=0x0)
packet = packet / k
return packet
def configurationChangeAcknowledge():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x31)
c = MobileId()
packet = a / b / c
return packet
def configurationChangeReject():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x33)
c = RrCause()
packet = a / b / c
return packet
def frequencyRedefinition(CellChannelDescription_presence=0):
a = TpPd(pd=0x6)
b = MessageType(mesType=0x14)
c = ChannelDescription()
d = MobileAllocation()
e = StartingTime()
packet = a / b / c / d / e
if CellChannelDescription_presence is 1:
f = CellChannelDescriptionHdr(ieiCCD=0x62, eightBitCCD=0x0)
packet = packet / f
return packet
def pdchAssignmentCommand(ChannelDescription_presence=0,
CellChannelDescription_presence=0,
MobileAllocation_presence=0,
StartingTime_presence=0, FrequencyList_presence=0,
ChannelDescription_presence1=0,
FrequencyChannelSequence_presence=0,
MobileAllocation_presence1=0,
PacketChannelDescription_presence=0,
DedicatedModeOrTBF_presence=0):
a = TpPd(pd=0x6)
b = MessageType(mesType=0x23)
c = ChannelDescription()
packet = a / b / c
if ChannelDescription_presence is 1:
d = ChannelDescriptionHdr(ieiCD=0x62, eightBitCD=0x0)
packet = packet / d
if CellChannelDescription_presence is 1:
e = CellChannelDescriptionHdr(ieiCCD=0x05, eightBitCCD=0x0)
packet = packet / e
if MobileAllocation_presence is 1:
f = MobileAllocationHdr(ieiMA=0x72, eightBitMA=0x0)
packet = packet / f
if StartingTime_presence is 1:
g = StartingTimeHdr(ieiST=0x7C, eightBitST=0x0)
packet = packet / g
if FrequencyList_presence is 1:
h = FrequencyListHdr(ieiFL=0x19, eightBitFL=0x0)
packet = packet / h
if ChannelDescription_presence1 is 1:
i = ChannelDescriptionHdr(ieiCD=0x1C, eightBitCD=0x0)
packet = packet / i
if FrequencyChannelSequence_presence is 1:
j = FrequencyChannelSequenceHdr(ieiFCS=0x1E, eightBitFCS=0x0)
packet = packet / j
if MobileAllocation_presence1 is 1:
k = MobileAllocationHdr(ieiMA=0x21, eightBitMA=0x0)
packet = packet / k
if PacketChannelDescription_presence is 1:
l = PacketChannelDescription(ieiPCD=0x22)
packet = packet / l
if DedicatedModeOrTBF_presence is 1:
m = DedicatedModeOrTBFHdr(ieiDMOT=0x23, eightBitDMOT=0x0)
packet = packet / m
return packet
def gprsSuspensionRequest():
a = TpPd(pd=0x6)
b = MessageType()
c = Tlli()
d = RoutingAreaIdentification()
e = SuspensionCause()
packet = a / b / c / d / e
return packet
class HandoverAccess(Packet):
name = "Handover Access"
fields_desc = [
ByteField("handover", None),
]
def handoverCommand(SynchronizationIndication_presence=0,
FrequencyShortList_presence=0, FrequencyList_presence=0,
CellChannelDescription_presence=0,
MultislotAllocation_presence=0,
ChannelMode_presence=0, ChannelMode_presence1=0,
ChannelMode_presence2=0,
ChannelMode_presence3=0, ChannelMode_presence4=0,
ChannelMode_presence5=0,
ChannelMode_presence6=0, ChannelMode_presence7=0,
ChannelDescription_presence1=0, ChannelMode2_presence=0,
FrequencyChannelSequence_presence=0,
MobileAllocation_presence=0,
StartingTime_presence=0, TimeDifference_presence=0,
TimingAdvance_presence=0,
FrequencyShortList_presence1=0,
FrequencyList_presence1=0,
ChannelDescription2_presence=0,
ChannelDescription_presence2=0,
FrequencyChannelSequence_presence1=0,
MobileAllocation_presence1=0,
CipherModeSetting_presence=0,
VgcsTargetModeIdentication_presence=0,
MultiRateConfiguration_presence=0):
name = "Handover Command"
a = TpPd(pd=0x6)
b = MessageType(mesType=0x2b)
c = CellDescription()
d = ChannelDescription2()
e = HandoverReference()
f = PowerCommandAndAccessType()
packet = a / b / c / d / e / f
if SynchronizationIndication_presence is 1:
g = SynchronizationIndicationHdr(ieiSI=0xD, eightBitSI=0x0)
packet = packet / g
if FrequencyShortList_presence is 1:
h = FrequencyShortListHdr(ieiFSL=0x02)
packet = packet / h
if FrequencyList_presence is 1:
i = FrequencyListHdr(ieiFL=0x05, eightBitFL=0x0)
packet = packet / i
if CellChannelDescription_presence is 1:
j = CellChannelDescriptionHdr(ieiCCD=0x62, eightBitCCD=0x0)
packet = packet / j
if MultislotAllocation_presence is 1:
k = MultislotAllocationHdr(ieiMSA=0x10, eightBitMSA=0x0)
packet = packet / k
if ChannelMode_presence is 1:
l = ChannelModeHdr(ieiCM=0x63, eightBitCM=0x0)
packet = packet / l
if ChannelMode_presence1 is 1:
m = ChannelModeHdr(ieiCM=0x11, eightBitCM=0x0)
packet = packet / m
if ChannelMode_presence2 is 1:
n = ChannelModeHdr(ieiCM=0x13, eightBitCM=0x0)
packet = packet / n
if ChannelMode_presence3 is 1:
o = ChannelModeHdr(ieiCM=0x14, eightBitCM=0x0)
packet = packet / o
if ChannelMode_presence4 is 1:
p = ChannelModeHdr(ieiCM=0x15, eightBitCM=0x0)
packet = packet / p
if ChannelMode_presence5 is 1:
q = ChannelModeHdr(ieiCM=0x16, eightBitCM=0x0)
packet = packet / q
if ChannelMode_presence6 is 1:
r = ChannelModeHdr(ieiCM=0x17, eightBitCM=0x0)
packet = packet / r
if ChannelMode_presence7 is 1:
s = ChannelModeHdr(ieiCM=0x18, eightBitCM=0x0)
packet = packet / s
if ChannelDescription_presence1 is 1:
s1 = ChannelDescriptionHdr(ieiCD=0x64, eightBitCD=0x0)
packet = packet / s1
if ChannelMode2_presence is 1:
t = ChannelMode2Hdr(ieiCM2=0x66, eightBitCM2=0x0)
packet = packet / t
if FrequencyChannelSequence_presence is 1:
u = FrequencyChannelSequenceHdr(ieiFCS=0x69, eightBitFCS=0x0)
packet = packet / u
if MobileAllocation_presence is 1:
v = MobileAllocationHdr(ieiMA=0x72, eightBitMA=0x0)
packet = packet / v
if StartingTime_presence is 1:
w = StartingTimeHdr(ieiST=0x7C, eightBitST=0x0)
packet = packet / w
if TimeDifference_presence is 1:
x = TimeDifferenceHdr(ieiTD=0x7B, eightBitTD=0x0)
packet = packet / x
if TimingAdvance_presence is 1:
y = TimingAdvanceHdr(ieiTA=0x7D, eightBitTA=0x0)
packet = packet / y
if FrequencyShortList_presence1 is 1:
z = FrequencyShortListHdr(ieiFSL=0x12)
packet = packet / z
if FrequencyList_presence1 is 1:
aa = FrequencyListHdr(ieiFL=0x19, eightBitFL=0x0)
packet = packet / aa
if ChannelDescription2_presence is 1:
ab = ChannelDescription2Hdr(ieiCD2=0x1C, eightBitCD2=0x0)
packet = packet / ab
if ChannelDescription_presence2 is 1:
ac = ChannelDescriptionHdr(ieiCD=0x1D, eightBitCD=0x0)
packet = packet / ac
if FrequencyChannelSequence_presence1 is 1:
ad = FrequencyChannelSequenceHdr(ieiFCS=0x1E, eightBitFCS=0x0)
packet = packet / ad
if MobileAllocation_presence1 is 1:
ae = MobileAllocationHdr(ieiMA=0x21, eightBitMA=0x0)
packet = packet / ae
if CipherModeSetting_presence is 1:
af = CipherModeSettingHdr(ieiCMS=0x9, eightBitCMS=0x0)
packet = packet / af
if VgcsTargetModeIdentication_presence is 1:
ag = VgcsTargetModeIdenticationHdr(ieiVTMI=0x01, eightBitVTMI=0x0)
packet = packet / ag
if MultiRateConfiguration_presence is 1:
ah = MultiRateConfigurationHdr(ieiMRC=0x03, eightBitMRC=0x0)
packet = packet / ah
return packet
def handoverComplete(MobileTimeDifference_presence=0):
a = TpPd(pd=0x6)
b = MessageType(mesType=0x2c)
c = RrCause()
packet = a / b / c
if MobileTimeDifference_presence is 1:
d = MobileTimeDifferenceHdr(ieiMTD=0x77, eightBitMTD=0x0)
packet = packet / d
return packet
def handoverFailure():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x28)
c = RrCause()
packet = a / b / c
return packet
def immediateAssignment(ChannelDescription_presence=0,
PacketChannelDescription_presence=0,
StartingTime_presence=0):
a = L2PseudoLength()
b = TpPd(pd=0x6)
c = MessageType(mesType=0x3F)
d = PageModeAndDedicatedModeOrTBF()
packet = a / b / c / d
if ChannelDescription_presence is 1:
f = ChannelDescription()
packet = packet / f
if PacketChannelDescription_presence is 1:
g = PacketChannelDescription()
packet = packet / g
h = RequestReference()
i = TimingAdvance()
j = MobileAllocation()
packet = packet / h / i / j
if StartingTime_presence is 1:
k = StartingTimeHdr(ieiST=0x7C, eightBitST=0x0)
packet = packet / k
l = IaRestOctets()
packet = packet / l
return packet
def immediateAssignmentExtended(StartingTime_presence=0):
a = L2PseudoLength()
b = TpPd(pd=0x6)
c = MessageType(mesType=0x39)
d = PageModeAndSpareHalfOctets()
f = ChannelDescription()
g = RequestReference()
h = TimingAdvance()
i = MobileAllocation()
packet = a / b / c / d / f / g / h / i
if StartingTime_presence is 1:
j = StartingTimeHdr(ieiST=0x7C, eightBitST=0x0)
packet = packet / j
k = IaxRestOctets()
packet = packet / k
return packet
def immediateAssignmentReject():
a = L2PseudoLength(l2pLength=0x13)
b = TpPd(pd=0x6)
c = MessageType(mesType=0x3a)
d = PageModeAndSpareHalfOctets()
f = RequestReference()
g = WaitIndication()
h = RequestReference()
i = WaitIndication()
j = RequestReference()
k = WaitIndication()
l = RequestReference()
m = WaitIndication()
n = IraRestOctets()
packet = a / b / c / d / f / g / h / i / j / k / l / m / n
return packet
def measurementReport():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x15)
c = MeasurementResults()
packet = a / b / c
return packet
class NotificationFacch():
name = "Notification/facch"
fields_desc = [
BitField("rr", 0x0, 1),
BitField("msgTyoe", 0x0, 5),
BitField("layer2Header", 0x0, 2),
BitField("frChanDes", 0x0, 24)
]
def notificationNch():
a = L2PseudoLength(l2pLength=0x01)
b = TpPd(pd=0x6)
c = MessageType(mesType=0x20)
d = NtNRestOctets()
packet = a / b / c / d
return packet
def notificationResponse():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x26)
c = MobileStationClassmark2()
d = MobileId()
e = DescriptiveGroupOrBroadcastCallReference()
packet = a / b / c / d / e
return packet
def rrCellChangeOrder():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x8)
c = CellDescription()
d = NcModeAndSpareHalfOctets()
packet = a / b / c / d
return packet
def pagingRequestType1(MobileId_presence=0):
a = L2PseudoLength()
b = TpPd(pd=0x6)
c = MessageType(mesType=0x21)
d = PageModeAndChannelNeeded()
f = MobileId()
packet = a / b / c / d / f
if MobileId_presence is 1:
g = MobileIdHdr(ieiMI=0x17, eightBitMI=0x0)
packet = packet / g
h = P1RestOctets()
packet = packet / h
return packet
def pagingRequestType2(MobileId_presence=0):
a = L2PseudoLength()
b = TpPd(pd=0x6)
c = MessageType(mesType=0x22)
d = PageModeAndChannelNeeded()
f = MobileId()
g = MobileId()
packet = a / b / c / d / f / g
if MobileId_presence is 1:
h = MobileIdHdr(ieiMI=0x17, eightBitMI=0x0)
packet = packet / h
i = P2RestOctets()
packet = packet / i
return packet
def pagingRequestType3():
a = L2PseudoLength(l2pLength=0x13)
b = TpPd(pd=0x6)
c = MessageType(mesType=0x24)
d = PageModeAndChannelNeeded()
e = TmsiPTmsi()
f = TmsiPTmsi()
g = TmsiPTmsi()
h = TmsiPTmsi()
i = P3RestOctets()
packet = a / b / c / d / e / f / g / h / i
return packet
def pagingResponse():
a = TpPd(pd=0x6)
b = MessageType(mesType=0x27)
c = CiphKeySeqNrAndSpareHalfOctets()
d = MobileStationClassmark2()
e = MobileId()
packet = a / b / c / d / e
return packet
|
MIT License
|
slimmer-ai/mpire
|
mpire/comms.py
|
WorkerComms.set_worker_alive
|
python
|
def set_worker_alive(self, worker_id: int) -> None:
self._workers_dead[worker_id].clear()
|
Indicate that a worker is alive
:param worker_id: Worker ID
|
https://github.com/slimmer-ai/mpire/blob/ddcfbf113fa53c9b9de92d203d684e684f100344/mpire/comms.py#L492-L498
|
import logging
import multiprocessing as mp
import queue
import threading
from datetime import datetime
from typing import Any, Generator, List, Optional, Tuple, Union
from mpire.context import DEFAULT_START_METHOD, MP_CONTEXTS
from mpire.params import WorkerMapParams
from mpire.signal import DelayedKeyboardInterrupt
logger = logging.getLogger(__name__)
POISON_PILL = '\0'
NON_LETHAL_POISON_PILL = '\1'
NEW_MAP_PARAMS_PILL = '\2'
class WorkerComms:
def __init__(self, ctx: mp.context.BaseContext, n_jobs: int, use_dill: bool, using_threading: bool) -> None:
self.ctx = ctx
self.ctx_for_threading = MP_CONTEXTS['mp_dill' if use_dill else 'mp'][DEFAULT_START_METHOD]
self.n_jobs = n_jobs
self.using_threading = using_threading
self._keep_order = self.ctx.Event()
self._task_queues = None
self._task_idx = None
self._last_completed_task_worker_id = None
self._results_queue = None
self._exit_results_queues = []
self._all_exit_results_obtained = None
self._worker_done_array = None
self._workers_dead = None
self._exception_queue = None
self.exception_lock = self.ctx.Lock()
self._exception_thrown = self.ctx_for_threading.Event() if using_threading else self.ctx.Event()
self._kill_signal_received = self.ctx_for_threading.Event() if using_threading else self.ctx.Event()
self._task_completed_queue = None
self._progress_bar_complete = None
def init_comms(self, has_worker_exit: bool, has_progress_bar: bool) -> None:
self._task_queues = [self.ctx.JoinableQueue() for _ in range(self.n_jobs)]
self.reset_last_completed_task_info()
self._results_queue = self.ctx.JoinableQueue()
if has_worker_exit:
self._exit_results_queues = [self.ctx.JoinableQueue() for _ in range(self.n_jobs)]
self._all_exit_results_obtained = self.ctx.Event()
else:
self._exit_results_queues = []
self._all_exit_results_obtained = None
self._worker_done_array = self.ctx.Array('b', self.n_jobs, lock=False)
self._workers_dead = [self.ctx.Event() for _ in range(self.n_jobs)]
[worker_dead.set() for worker_dead in self._workers_dead]
self._exception_queue = (self.ctx_for_threading.JoinableQueue() if self.using_threading else
self.ctx.JoinableQueue())
self._exception_thrown.clear()
self._kill_signal_received.clear()
if has_progress_bar:
self._task_completed_queue = (self.ctx_for_threading.JoinableQueue() if self.using_threading else
self.ctx.JoinableQueue())
self._progress_bar_complete = self.ctx_for_threading.Event() if self.using_threading else self.ctx.Event()
else:
self._task_completed_queue = None
self._progress_bar_complete = None
def reset_last_completed_task_info(self) -> None:
self._task_idx = 0
self._last_completed_task_worker_id = None
def has_progress_bar(self) -> bool:
return self._task_completed_queue is not None
def task_completed_progress_bar(self, progress_bar_last_updated: Optional[datetime] = None,
progress_bar_n_tasks_completed: Optional[int] = None,
force_update: bool = False) -> Tuple[datetime, int]:
if not force_update:
progress_bar_n_tasks_completed += 1
now = datetime.now()
if force_update or (now - progress_bar_last_updated).total_seconds() > 0.1:
self._task_completed_queue.put(progress_bar_n_tasks_completed)
progress_bar_last_updated = now
progress_bar_n_tasks_completed = 0
return progress_bar_last_updated, progress_bar_n_tasks_completed
def add_progress_bar_poison_pill(self) -> None:
self._task_completed_queue.put(POISON_PILL)
def get_tasks_completed_progress_bar(self) -> Tuple[Union[int, str], bool]:
while not self.exception_thrown() and not self.kill_signal_received():
try:
return self._task_completed_queue.get(block=True, timeout=0.01), True
except queue.Empty:
pass
return POISON_PILL, False
def task_done_progress_bar(self) -> None:
self._task_completed_queue.task_done()
def set_progress_bar_complete(self) -> None:
self._progress_bar_complete.set()
def wait_until_progress_bar_is_complete(self) -> None:
while not self.exception_thrown():
if self._progress_bar_complete.wait(timeout=0.01):
return
def set_keep_order(self) -> None:
return self._keep_order.set()
def clear_keep_order(self) -> None:
return self._keep_order.clear()
def keep_order(self) -> bool:
return self._keep_order.is_set()
def add_task(self, task: Any, worker_id: Optional[int] = None) -> None:
if worker_id is None:
if self._last_completed_task_worker_id is not None:
worker_id = self._last_completed_task_worker_id
self._last_completed_task_worker_id = None
else:
worker_id = self._task_idx % self.n_jobs
self._task_idx += 1
with DelayedKeyboardInterrupt():
self._task_queues[worker_id].put(task, block=True)
def get_task(self, worker_id: int) -> Any:
while not self.exception_thrown():
try:
return self._task_queues[worker_id].get(block=True, timeout=0.01)
except queue.Empty:
pass
return None
def task_done(self, worker_id: int) -> None:
self._task_queues[worker_id].task_done()
def add_results(self, worker_id: int, results: Any) -> None:
self._results_queue.put((worker_id, results))
def get_results(self, block: bool = True, timeout: Optional[float] = None, in_thread: bool = False) -> Any:
queue_empty_error = None
with DelayedKeyboardInterrupt(in_thread=in_thread):
try:
self._last_completed_task_worker_id, results = self._results_queue.get(block=block, timeout=timeout)
self._results_queue.task_done()
except queue.Empty as e:
queue_empty_error = e
if queue_empty_error is not None:
raise queue_empty_error
return results
def add_exit_results(self, worker_id: int, results: Any) -> None:
self._exit_results_queues[worker_id].put(results)
def get_exit_results(self, worker_id: int, block: bool = True, in_thread: bool = False) -> Any:
while not self.exception_thrown() or not block:
queue_empty_error = None
with DelayedKeyboardInterrupt(in_thread=in_thread):
try:
results = self._exit_results_queues[worker_id].get(block=block, timeout=0.01)
self._exit_results_queues[worker_id].task_done()
return results
except queue.Empty as e:
if not block:
queue_empty_error = e
if queue_empty_error is not None:
raise queue_empty_error
def get_exit_results_all_workers(self) -> List[Any]:
exit_results = []
for worker_id in range(self.n_jobs):
results = self.get_exit_results(worker_id)
if self.exception_thrown():
return exit_results
exit_results.append(results)
return exit_results
def set_all_exit_results_obtained(self) -> None:
self._all_exit_results_obtained.set()
def wait_until_all_exit_results_obtained(self) -> None:
while not self.exception_thrown():
if self._all_exit_results_obtained.wait(timeout=0.01):
return
def add_new_map_params(self, map_params: WorkerMapParams) -> None:
for worker_id in range(self.n_jobs):
self.add_task(NEW_MAP_PARAMS_PILL, worker_id)
self.add_task(map_params, worker_id)
def add_exception(self, err_type: type, traceback_str: str) -> None:
self._exception_queue.put((err_type, traceback_str))
def add_exception_poison_pill(self) -> None:
with DelayedKeyboardInterrupt():
self._exception_queue.put((POISON_PILL, POISON_PILL))
def get_exception(self) -> Tuple[type, str]:
with DelayedKeyboardInterrupt():
return self._exception_queue.get(block=True)
def task_done_exception(self) -> None:
self._exception_queue.task_done()
def set_exception_thrown(self) -> None:
self._exception_thrown.set()
def exception_thrown(self) -> bool:
return self._exception_thrown.is_set()
def wait_for_exception_thrown(self, timeout: Optional[float]) -> bool:
return self._exception_thrown.wait(timeout=timeout)
def set_kill_signal_received(self) -> None:
self._kill_signal_received.set()
def kill_signal_received(self) -> bool:
return self._kill_signal_received.is_set()
def insert_poison_pill(self) -> None:
for worker_id in range(self.n_jobs):
self.add_task(POISON_PILL, worker_id)
def insert_non_lethal_poison_pill(self) -> None:
for worker_id in range(self.n_jobs):
self.add_task(NON_LETHAL_POISON_PILL, worker_id)
def signal_worker_restart(self, worker_id: int) -> None:
self._worker_done_array[worker_id] = True
def get_worker_restarts(self) -> Generator[int, None, None]:
return (worker_id for worker_id, restart_worker in enumerate(self._worker_done_array) if restart_worker)
def reset_worker_restart(self, worker_id) -> None:
self._worker_done_array[worker_id] = False
|
MIT License
|
0b01001001/spectree
|
tests/test_utils.py
|
demo_func
|
python
|
def demo_func():
|
summary
description
|
https://github.com/0b01001001/spectree/blob/952a606579d050e52b2a149adebf7dbaded450e9/tests/test_utils.py#L27-L31
|
import pytest
from spectree.response import Response
from spectree.spec import SpecTree
from spectree.utils import (
get_model_path_key,
has_model,
parse_code,
parse_comments,
parse_name,
parse_params,
parse_request,
parse_resp,
)
from .common import DemoModel, DemoQuery
api = SpecTree()
def undecorated_func():
@api.validate(json=DemoModel, resp=Response(HTTP_200=DemoModel))
|
Apache License 2.0
|
toastdriven/restless
|
restless/dj.py
|
DjangoResource.urls
|
python
|
def urls(cls, name_prefix=None):
return [
url(r'^$', cls.as_list(), name=cls.build_url_name('list', name_prefix)),
url(r'^(?P<pk>[\w-]+)/$', cls.as_detail(), name=cls.build_url_name('detail', name_prefix)),
]
|
A convenience method for hooking up the URLs.
This automatically adds a list & a detail endpoint to your URLconf.
:param name_prefix: (Optional) A prefix for the URL's name (for
resolving). The default is ``None``, which will autocreate a prefix
based on the class name. Ex: ``BlogPostResource`` ->
``api_blogpost_list``
:type name_prefix: string
:returns: A list of ``url`` objects for ``include(...)``
|
https://github.com/toastdriven/restless/blob/49b579da4ee1e410c4323ecc629bf63c0b74dccb/restless/dj.py#L116-L133
|
import six
from django.conf import settings
from django.conf.urls import url
from django.core.exceptions import ObjectDoesNotExist
from django.core.paginator import Paginator
from django.http import HttpResponse, Http404
from django.views.decorators.csrf import csrf_exempt
from .constants import OK, NO_CONTENT
from .exceptions import NotFound, BadRequest
from .resources import Resource
class DjangoResource(Resource):
def serialize_list(self, data):
if data is None:
return super(DjangoResource, self).serialize_list(data)
if getattr(self, 'paginate', False):
page_size = getattr(self, 'page_size', getattr(settings, 'RESTLESS_PAGE_SIZE', 10))
paginator = Paginator(data, page_size)
page_number = self.request.GET.get('p', 1)
if page_number not in paginator.page_range:
raise BadRequest('Invalid page number')
self.page = paginator.page(page_number)
data = self.page.object_list
return super(DjangoResource, self).serialize_list(data)
def wrap_list_response(self, data):
response_dict = super(DjangoResource, self).wrap_list_response(data)
if hasattr(self, 'page'):
next_page = self.page.has_next() and self.page.next_page_number() or None
previous_page = self.page.has_previous() and self.page.previous_page_number() or None
response_dict['pagination'] = {
'num_pages': self.page.paginator.num_pages,
'count': self.page.paginator.count,
'page': self.page.number,
'start_index': self.page.start_index(),
'end_index': self.page.end_index(),
'next_page': next_page,
'previous_page': previous_page,
'per_page': self.page.paginator.per_page,
}
return response_dict
@classmethod
def as_list(self, *args, **kwargs):
return csrf_exempt(super(DjangoResource, self).as_list(*args, **kwargs))
@classmethod
def as_detail(self, *args, **kwargs):
return csrf_exempt(super(DjangoResource, self).as_detail(*args, **kwargs))
def is_debug(self):
return settings.DEBUG
def build_response(self, data, status=OK):
if status == NO_CONTENT:
content_type = 'text/plain'
else:
content_type = 'application/json'
resp = HttpResponse(data, content_type=content_type, status=status)
return resp
def build_error(self, err):
if isinstance(err, (ObjectDoesNotExist, Http404)):
err = NotFound(msg=six.text_type(err))
return super(DjangoResource, self).build_error(err)
@classmethod
def build_url_name(cls, name, name_prefix=None):
if name_prefix is None:
name_prefix = 'api_{}'.format(
cls.__name__.replace('Resource', '').lower()
)
name_prefix = name_prefix.rstrip('_')
return '_'.join([name_prefix, name])
@classmethod
|
BSD 3-Clause New or Revised License
|
pypa/pip
|
src/pip/_vendor/distro.py
|
linux_distribution
|
python
|
def linux_distribution(full_distribution_name=True):
warnings.warn(
"distro.linux_distribution() is deprecated. It should only be used as a "
"compatibility shim with Python's platform.linux_distribution(). Please use "
"distro.id(), distro.version() and distro.name() instead.",
DeprecationWarning,
stacklevel=2,
)
return _distro.linux_distribution(full_distribution_name)
|
.. deprecated:: 1.6.0
:func:`distro.linux_distribution()` is deprecated. It should only be
used as a compatibility shim with Python's
:py:func:`platform.linux_distribution()`. Please use :func:`distro.id`,
:func:`distro.version` and :func:`distro.name` instead.
Return information about the current OS distribution as a tuple
``(id_name, version, codename)`` with items as follows:
* ``id_name``: If *full_distribution_name* is false, the result of
:func:`distro.id`. Otherwise, the result of :func:`distro.name`.
* ``version``: The result of :func:`distro.version`.
* ``codename``: The result of :func:`distro.codename`.
The interface of this function is compatible with the original
:py:func:`platform.linux_distribution` function, supporting a subset of
its parameters.
The data it returns may not exactly be the same, because it uses more data
sources than the original function, and that may lead to different data if
the OS distribution is not consistent across multiple data sources it
provides (there are indeed such distributions ...).
Another reason for differences is the fact that the :func:`distro.id`
method normalizes the distro ID string to a reliable machine-readable value
for a number of popular OS distributions.
|
https://github.com/pypa/pip/blob/0442875a68f19b0118b0b88c747bdaf6b24853ba/src/pip/_vendor/distro.py#L136-L176
|
import argparse
import json
import logging
import os
import re
import shlex
import subprocess
import sys
import warnings
__version__ = "1.6.0"
if False:
from typing import (
Any,
Callable,
Dict,
Iterable,
Optional,
Sequence,
TextIO,
Tuple,
Type,
TypedDict,
Union,
)
VersionDict = TypedDict(
"VersionDict", {"major": str, "minor": str, "build_number": str}
)
InfoDict = TypedDict(
"InfoDict",
{
"id": str,
"version": str,
"version_parts": VersionDict,
"like": str,
"codename": str,
},
)
_UNIXCONFDIR = os.environ.get("UNIXCONFDIR", "/etc")
_UNIXUSRLIBDIR = os.environ.get("UNIXUSRLIBDIR", "/usr/lib")
_OS_RELEASE_BASENAME = "os-release"
NORMALIZED_OS_ID = {
"ol": "oracle",
}
NORMALIZED_LSB_ID = {
"enterpriseenterpriseas": "oracle",
"enterpriseenterpriseserver": "oracle",
"redhatenterpriseworkstation": "rhel",
"redhatenterpriseserver": "rhel",
"redhatenterprisecomputenode": "rhel",
}
NORMALIZED_DISTRO_ID = {
"redhat": "rhel",
}
_DISTRO_RELEASE_CONTENT_REVERSED_PATTERN = re.compile(
r"(?:[^)]*\)(.*)\()? *(?:STL )?([\d.+\-a-z]*\d) *(?:esaeler *)?(.+)"
)
_DISTRO_RELEASE_BASENAME_PATTERN = re.compile(r"(\w+)[-_](release|version)$")
_DISTRO_RELEASE_IGNORE_BASENAMES = (
"debian_version",
"lsb-release",
"oem-release",
_OS_RELEASE_BASENAME,
"system-release",
"plesk-release",
"iredmail-release",
)
|
MIT License
|
covid-19-impact-lab/sid
|
src/sid/msm.py
|
get_msm_func
|
python
|
def get_msm_func(
simulate,
calc_moments,
empirical_moments,
replace_nans,
weighting_matrix=None,
additional_outputs=None,
):
if weighting_matrix is None:
weighting_matrix = get_diag_weighting_matrix(empirical_moments)
if not _is_diagonal(weighting_matrix):
raise ValueError("weighting_matrix must be diagonal.")
empirical_moments = _harmonize_input(empirical_moments)
calc_moments = _harmonize_input(calc_moments)
if callable(replace_nans):
replace_nans = {k: replace_nans for k in empirical_moments}
replace_nans = _harmonize_input(replace_nans)
if 1 < len(replace_nans) < len(empirical_moments):
raise ValueError(
"Replacement functions can only be matched 1:1 or 1:n with sets of "
"empirical moments."
)
elif len(replace_nans) > len(empirical_moments):
raise ValueError(
"There are more replacement functions than sets of empirical moments."
)
else:
pass
if len(calc_moments) != len(empirical_moments):
raise ValueError(
"Number of functions to calculate simulated moments must be equal to "
"the number of sets of empirical moments."
)
if additional_outputs is not None:
if not _is_dict_of_callables(additional_outputs):
raise ValueError("additional_outputs must be a dict of callables.")
else:
additional_outputs = {}
invalid_keys = {
"value",
"root_contributions",
"root_contributions",
"empirical_moments",
"simulated_moments",
}
invalid_present = invalid_keys.intersection(additional_outputs)
if invalid_present:
raise ValueError("Invalid keys in additional_outputs: {invalid}")
msm_func = functools.partial(
_msm,
simulate=simulate,
calc_moments=calc_moments,
empirical_moments=empirical_moments,
replace_nans=replace_nans,
weighting_matrix=weighting_matrix,
additional_outputs=additional_outputs,
)
return msm_func
|
Get the msm function.
Args:
simulate (callable): Function which accepts parameters and returns simulated
data.
calc_moments (callable or dict): Function(s) used to calculate simulated
moments. If it is a dictionary, it must have the same keys as
empirical_moments
empirical_moments (pandas.DataFrame or pandas.Series or dict): One pandas
object or a dictionary of pandas objects with empirical moments.
replace_nans (callable or list): Functions(s) specifying how to handle NaNs in
simulated_moments. Must match structure of empirical_moments. Exception: If
only one replacement function is specified, it will be used on all sets of
simulated moments.
weighting_matrix (numpy.ndarray): Square matrix of dimension (NxN) with N
denoting the number of empirical_moments. Used to weight squared moment
errors.
additional_outputs (dict or None): Dictionary of functions. Each function is
evaluated on the output of the simulate function and the result is
saved in the output dictionary of the msm function.
Returns:
msm_func (callable): MSM function where all arguments except the parameter
vector are set.
|
https://github.com/covid-19-impact-lab/sid/blob/ac01bd49ff51cd5b1aebcc0c058c6ca0baaeb973/src/sid/msm.py#L24-L122
|
import functools
import numpy as np
import pandas as pd
|
MIT License
|
cortex-lab/phy
|
phy/plot/gloo/array.py
|
VertexArray._delete
|
python
|
def _delete(self):
if self._handle > -1:
self._buffer._delete()
gl.glDeleteVertexArrays(1, np.array([self._handle]))
|
Delete vertex array from GPU
|
https://github.com/cortex-lab/phy/blob/9a330b9437a3d0b40a37a201d147224e6e7fb462/phy/plot/gloo/array.py#L66-L71
|
import logging
import numpy as np
from . import gl
from .gpudata import GPUData
from .globject import GLObject
from .buffer import VertexBuffer
log = logging.getLogger(__name__)
class VertexArray(GPUData, GLObject):
def __init__(self, usage=gl.GL_DYNAMIC_DRAW):
GLObject.__init__(self)
self._target = gl.GL_ARRAY_BUFFER
self._buffer = self.view(VertexBuffer)
self._buffer.__init__(usage)
@property
def need_update(self):
return self._buffer.need_update
def _update(self):
self._buffer._update()
def _create(self):
self._handle = gl.glGenVertexArrays(1)
log.debug("GPU: Creating vertex array (id=%d)" % self._id)
self._deactivate()
self._buffer._create()
|
BSD 3-Clause New or Revised License
|
theno/fabsetup
|
fabsetup/fabfile/setup/powerline.py
|
install_special_glyphs
|
python
|
def install_special_glyphs():
from_dir = '~/repos/powerline/font'
run('mkdir -p ~/.local/share/fonts')
run(flo('cp {from_dir}/PowerlineSymbols.otf ~/.local/share/fonts'))
to_dir = '~/.config/fontconfig/conf.d/'
run(flo('mkdir -p {to_dir}'))
run(flo('cp {from_dir}/10-powerline-symbols.conf {to_dir}'))
|
More infos:
https://powerline.readthedocs.io/en/latest/installation/linux.html#fonts-installation
https://wiki.archlinux.org/index.php/Font_configuration
$XDG_CONFIG_HOME: http://superuser.com/a/365918
|
https://github.com/theno/fabsetup/blob/a2e03b3e438fc2b0fc39d564c4c174270d027f09/fabsetup/fabfile/setup/powerline.py#L40-L54
|
import os.path
from fabric.api import env
from fabsetup.fabutils import checkup_git_repo_legacy, needs_packages
from fabsetup.fabutils import needs_repo_fabsetup_custom, suggest_localhost
from fabsetup.fabutils import install_file_legacy, run, subtask, subsubtask, task
from fabsetup.utils import flo, update_or_append_line, comment_out_line
from fabsetup.utils import uncomment_or_update_or_append_line, query_yes_no
@task
@needs_repo_fabsetup_custom
@suggest_localhost
@needs_packages('python-pip')
def powerline():
bindings_dir, scripts_dir = install_upgrade_powerline()
set_up_powerline_fonts()
set_up_powerline_daemon(scripts_dir)
powerline_for_vim(bindings_dir)
powerline_for_bash_or_powerline_shell(bindings_dir)
powerline_for_tmux(bindings_dir)
powerline_for_i3(bindings_dir)
print('\nYou may have to reboot for make changes take effect')
@subsubtask
|
MIT License
|
daveoncode/django-easy-currencies
|
django_easy_currencies/management/commands/currencies.py
|
Command.update_currency_rates
|
python
|
def update_currency_rates(self):
self.stdout.write('Updating currency rates...')
currency_types = self.get_currency_list()
info = self.get_rates_info(self.get_service_url(), currency_types)
try:
usd_currency, _ = Currency.objects.update_or_create(code='USD', defaults={'code': 'USD'})
currencies = self.create_or_update_currency_objects(currency_types)
usd_rates = self.create_or_update_usd_currency_rates(info, usd_currency)
self.create_or_update_inverted_usd_currency_rates(currencies, usd_rates)
self.create_or_update_inverted_currency_rates_permutations(currencies, currency_types, usd_rates)
self.stdout.write('Currency rates have been updated, run command with "--list" to see current status.')
except Exception as e:
self.stderr.write('An error occurred while updating currency rates: {0}'.format(e))
|
Updates currencies/rates by following these steps:
1. Calls the remote service and retrieve the json response converted into a python dictionary
2. Retrieve base USD Currency (creates it if does not exist)
3. Retrieve extra USD currencies supported by configuration (creates them if not defined)
4. Creates/updates USD rates
5. Creates/updates all other supported currency rates recursively
|
https://github.com/daveoncode/django-easy-currencies/blob/1da1d8e3f411c0c2aa10aee29069988ac40f7bae/django_easy_currencies/management/commands/currencies.py#L145-L166
|
from __future__ import unicode_literals
from optparse import make_option
from urllib2 import URLError
import urllib2
import json
from itertools import product
from decimal import Decimal
from django.core.exceptions import ImproperlyConfigured
from django.core.management.base import BaseCommand
from django.conf import settings
from django_easy_currencies.models.Currency import Currency
from django_easy_currencies.models.CurrencyRate import CurrencyRate
class Command(BaseCommand):
help = 'Updates or list rates of supported currencies.'
base_service_url = 'http://openexchangerates.org/api/latest.json?app_id={0}'
option_list = BaseCommand.option_list + (
make_option('--update',
action='store_true',
dest='update',
default=False,
help='Update currency rates'),
make_option('--list',
action='store_true',
dest='list',
default=False,
help='List current currency rates'),
)
@staticmethod
def is_valid_config():
c = getattr(settings, 'EASY_CURRENCIES', None)
return isinstance(c, dict) and isinstance(c.get('currencies'), (list, tuple)) and bool(c.get('app_id'))
def get_rates_info(self, url, currencies):
try:
self.stdout.write('Calling service: {0}'.format(url))
response = urllib2.urlopen(url)
if not response:
raise Exception('Invalid response')
info = json.loads(response.read(), parse_float=Decimal, parse_int=Decimal)
info['rates'] = [(k, v) for k, v in info['rates'].items() if k in currencies]
return info
except URLError as url_error:
self.stderr.write('Unable to connect to service {0}: {1}'.format(url, url_error))
raise url_error
except Exception as exception:
self.stderr.write('Unable to retrieve ratings info: {0}'.format(exception))
raise exception
def create_or_update_currency_objects(self, currency_types):
self.stdout.write('Updating currency objects...')
currencies = {}
for c in currency_types:
self.stdout.write('Updating currency: {0}'.format(c))
currency, created = Currency.objects.update_or_create(code=c, defaults={'code': c})
currencies[c] = currency
return currencies
def create_or_update_usd_currency_rates(self, info, usd_currency):
rates = {}
for rate_code, rate_value in info['rates']:
self.stdout.write('Updating rates for currency: {0}'.format(rate_code))
rate_obj, _ = CurrencyRate.objects.update_or_create(original_currency=usd_currency,
target_currency=rate_code,
defaults={'rate': rate_value})
rates[rate_code] = rate_obj.rate
return rates
def create_or_update_inverted_usd_currency_rates(self, currencies, usd_rates):
self.stdout.write('Updating reversed rates for USD currency...')
for code, currency_obj in currencies.items():
self.stdout.write('Updating rate {0}/USD'.format(code))
rate_value = Decimal('1') if code == 'USD' else usd_rates[code]
CurrencyRate.objects.update_or_create(original_currency=currency_obj,
target_currency='USD',
defaults={'rate': rate_value})
def create_or_update_inverted_currency_rates_permutations(self, currencies, currency_types, usd_rates):
self.stdout.write('Updating reversed rates permutations...')
for p in [x for x in product(currency_types, repeat=2)]:
from_currency, to_currency = p
self.stdout.write('Updating rate {0}/{1}'.format(from_currency, to_currency))
if from_currency == to_currency:
rate_value = Decimal('1')
else:
rate_value = usd_rates[to_currency] / usd_rates[from_currency]
CurrencyRate.objects.update_or_create(original_currency=currencies[from_currency],
target_currency=to_currency,
defaults={'rate': rate_value})
@staticmethod
def get_currency_list():
return [c[0] for c in settings.EASY_CURRENCIES['currencies']]
def get_service_url(self):
return self.base_service_url.format(settings.EASY_CURRENCIES['app_id'])
|
MIT License
|
angr/claripy
|
claripy/vsa/discrete_strided_interval_set.py
|
DiscreteStridedIntervalSet.normalize
|
python
|
def normalize(self):
if self.should_collapse(): return self.collapse()
elif self.number_of_values == 1: return list(self._si_set)[0]
else:
for si in self._si_set:
self._update_bits(si)
return self
|
Return the collapsed object if ``should_collapse()`` is True, otherwise return self.
:return: A DiscreteStridedIntervalSet object.
|
https://github.com/angr/claripy/blob/a18a0e9bba80470cbd139d7d876f504da634076a/claripy/vsa/discrete_strided_interval_set.py#L153-L164
|
import functools
import numbers
import itertools
from .strided_interval import StridedInterval
DEFAULT_MAX_CARDINALITY_WITHOUT_COLLAPSING = 256
def apply_on_each_si(f):
@functools.wraps(f)
def operator(self, o=None):
if o is None:
new_si_set = set()
for a in self._si_set:
new_si_set.add(getattr(a, f.__name__)())
ret = DiscreteStridedIntervalSet(bits=self.bits, si_set=new_si_set)
return ret.normalize()
if isinstance(o, DiscreteStridedIntervalSet):
new_si_set = set()
for a in self._si_set:
for b in o._si_set:
new_si_set.add(getattr(a, f.__name__)(b))
ret = DiscreteStridedIntervalSet(bits=self.bits, si_set=new_si_set)
return ret.normalize()
elif isinstance(o, (StridedInterval, numbers.Number, BVV)):
new_si_set = set()
for si in self._si_set:
new_si_set.add(getattr(si, f.__name__)(o))
ret = DiscreteStridedIntervalSet(bits=self.bits, si_set=new_si_set)
return ret.normalize()
else:
raise ClaripyVSAOperationError('Unsupported operand type %s' % (type(o)))
return operator
def convert_operand_to_si(f):
@functools.wraps(f)
def converter(self, o):
if isinstance(o, BVV):
o = o.value
if isinstance(o, numbers.Number):
o = StridedInterval(bits=self.bits, stride=0, lower_bound=o, upper_bound=o)
return f(self, o)
return converter
def collapse_operand(f):
@functools.wraps(f)
def collapser(self, o):
if isinstance(o, DiscreteStridedIntervalSet):
return f(self, o.collapse())
else:
return f(self, o)
return collapser
dsis_id_ctr = itertools.count()
class DiscreteStridedIntervalSet(StridedInterval):
def __init__(self, name=None, bits=0, si_set=None, max_cardinality=None):
if name is None:
name = "DSIS_%d" % next(dsis_id_ctr)
if si_set is not None and len(si_set):
self._si_set = si_set
else:
self._si_set = set()
self._max_cardinality = DEFAULT_MAX_CARDINALITY_WITHOUT_COLLAPSING if max_cardinality is None else max_cardinality
StridedInterval.__init__(self, name=name, bits=bits)
for si in self._si_set:
self._update_bounds(si)
self._update_bits(si)
def __repr__(self):
representatives = ", ".join([ i.__repr__() for i in list(self._si_set)[ : 5] ])
if self.number_of_values > 5:
representatives += ", ..."
return "%s<%d>(%d){%s}" % (self._name, self._bits, self.number_of_values, representatives)
@property
def cardinality(self):
cardinality = 0
for si in self._si_set:
cardinality += si.cardinality
return cardinality
@property
def number_of_values(self):
return len(self._si_set)
@property
def stride(self):
return self.collapse().stride
def should_collapse(self):
return self.cardinality > self._max_cardinality
def collapse(self):
if self.cardinality:
r = None
for si in self._si_set:
r = r._union(si) if r is not None else si
return r
else:
return StridedInterval.empty(self._bits)
|
BSD 2-Clause Simplified License
|
elfi-dev/elfi
|
tests/conftest.py
|
client
|
python
|
def client(request):
client_module = request.param
client_name = client_module.__name__.split('.')[-1]
use_client = request.config.getoption('--client')
if use_client != 'all' and use_client != client_name:
pytest.skip("Skipping client {}".format(client_name))
try:
client = client_module.Client()
except BaseException:
pytest.skip("Client {} not available".format(client_name))
yield client
|
Provides a fixture for all the different supported clients
|
https://github.com/elfi-dev/elfi/blob/07ac0ed5e81d5d5fb42de63db3cf9ccc9135b88c/tests/conftest.py#L36-L54
|
import logging
import os
import time
import numpy as np
import pytest
import scipy.stats as ss
import elfi
import elfi.clients.dask as dask
import elfi.clients.ipyparallel as eipp
import elfi.clients.multiprocessing as mp
import elfi.clients.native as native
import elfi.examples.gauss
import elfi.examples.ma2
from elfi.methods.bo.gpy_regression import GPyRegression
from elfi.methods.bo.acquisition import ExpIntVar, MaxVar, RandMaxVar
from elfi.model.extensions import ModelPrior
elfi.clients.native.set_as_default()
def pytest_addoption(parser):
parser.addoption(
"--client",
action="store",
default="all",
help="perform the tests for the specified client (default all)")
@pytest.fixture(scope="session", params=[eipp, dask, mp, native])
|
BSD 3-Clause New or Revised License
|
gimelstudio/gimel-studio
|
src/GimelStudio/interface/dark_menu_renderer.py
|
DarkMenuRenderer.DrawMenuBar
|
python
|
def DrawMenuBar(self, menubar, dc):
fnt = wx.SystemSettings.GetFont(wx.SYS_DEFAULT_GUI_FONT)
textColour = wx.Colour("#fff")
highlightTextColour = wx.Colour("#fff")
dc.SetFont(fnt)
dc.SetTextForeground(textColour)
clientRect = menubar.GetClientRect()
self.DrawMenuBarBackground(dc, clientRect)
padding, dummy = dc.GetTextExtent("W")
posx = 0
posy = menubar._margin
menuBarRect = menubar.GetClientRect()
for item in menubar._items:
item.SetRect(wx.Rect())
for item in menubar._items:
title = item.GetTitle()
fixedText = title
location, labelOnly = flatmenu.GetAccelIndex(fixedText)
textWidth, textHeight = dc.GetTextExtent(fixedText)
rect = wx.Rect(posx + padding / 2, posy, textWidth, textHeight)
if posx + rect.width + flatmenu.DROP_DOWN_ARROW_WIDTH >= menuBarRect.width:
break
button_rect = wx.Rect(*rect)
button_rect.height = menubar._menuBarHeight
button_rect.width = rect.width + padding
button_rect.x = posx
button_rect.y = 0
copy = wx.Rect(*button_rect)
item.SetRect(copy)
selected = False
if item.GetState() == ControlFocus:
self.DrawMenuBarButton(dc, button_rect, ControlFocus)
dc.SetTextForeground(highlightTextColour)
selected = True
else:
dc.SetTextForeground(textColour)
ww, hh = dc.GetTextExtent(labelOnly)
textOffset = (rect.width - ww) / 2
if not menubar._isLCD and item.GetTextBitmap().IsOk() and not selected:
dc.DrawBitmap(item.GetTextBitmap(), rect.x, rect.y, True)
elif not menubar._isLCD and item.GetSelectedTextBitmap().IsOk() and selected:
dc.DrawBitmap(item.GetSelectedTextBitmap(), rect.x, rect.y, True)
else:
if not menubar._isLCD:
bmp = wx.Bitmap(rect.width, rect.height)
memDc = wx.MemoryDC()
memDc.SelectObject(bmp)
if selected:
memDc.SetTextForeground(highlightTextColour)
else:
memDc.SetTextForeground(textColour)
memDc.SetPen(wx.Pen(wx.Colour(255, 0, 0)))
memDc.SetBrush(wx.Brush(wx.Colour(255, 0, 0)))
memDc.DrawRectangle(0, 0, rect.width, rect.height)
memDc.SetFont(fnt)
if location == wx.NOT_FOUND or location >= len(fixedText):
if not menubar._isLCD:
memDc.DrawText(title, textOffset, 0)
dc.DrawText(title, rect.x + textOffset, rect.y)
else:
before = labelOnly[0:location]
underlineLetter = labelOnly[location]
after = labelOnly[location + 1:]
if not menubar._isLCD:
memDc.DrawText(before, textOffset, 0)
dc.DrawText(before, rect.x + textOffset, rect.y)
if "__WXGTK__" not in wx.Platform:
w1, h = dc.GetTextExtent(before)
fnt.SetUnderlined(True)
dc.SetFont(fnt)
dc.DrawText(underlineLetter, rect.x + w1 + textOffset, rect.y)
if not menubar._isLCD:
memDc.SetFont(fnt)
memDc.DrawText(underlineLetter, textOffset + w1, 0)
else:
w1, h = dc.GetTextExtent(before)
dc.DrawText(underlineLetter, rect.x + w1 + textOffset, rect.y)
if not menubar._isLCD:
memDc.DrawText(underlineLetter, textOffset + w1, 0)
uderlineLetterW, uderlineLetterH = dc.GetTextExtent(underlineLetter)
dc.DrawLine(rect.x + w1 + textOffset, rect.y + uderlineLetterH - 2,
rect.x + w1 + textOffset + uderlineLetterW, rect.y + uderlineLetterH - 2)
w2, h = dc.GetTextExtent(underlineLetter)
fnt.SetUnderlined(False)
dc.SetFont(fnt)
dc.DrawText(after, rect.x + w1 + w2 + textOffset, rect.y)
if not menubar._isLCD:
memDc.SetFont(fnt)
memDc.DrawText(after, w1 + w2 + textOffset, 0)
if not menubar._isLCD:
memDc.SelectObject(wx.NullBitmap)
bmp.SetMask(wx.Mask(bmp, wx.Colour(255, 0, 0)))
if selected:
item.SetSelectedTextBitmap(bmp)
else:
item.SetTextBitmap(bmp)
posx += rect.width + padding
moreMenubtnBgBmpRect = wx.Rect(*menubar.GetMoreMenuButtonRect())
if not menubar._moreMenuBgBmp:
menubar._moreMenuBgBmp = wx.Bitmap(moreMenubtnBgBmpRect.width, moreMenubtnBgBmpRect.height)
if menubar._showToolbar and len(menubar._tbButtons) > 0:
rectX = 0
rectWidth = clientRect.width - moreMenubtnBgBmpRect.width
if len(menubar._items) == 0:
rectHeight = clientRect.height
rectY = 0
else:
rectHeight = clientRect.height - menubar._menuBarHeight
rectY = menubar._menuBarHeight
rr = wx.Rect(rectX, rectY, rectWidth, rectHeight)
self.DrawToolBarBg(dc, rr)
menubar.DrawToolbar(dc, rr)
if menubar._showCustomize or menubar.GetInvisibleMenuItemCount() > 0 or menubar.GetInvisibleToolbarItemCount() > 0:
memDc = wx.MemoryDC()
memDc.SelectObject(menubar._moreMenuBgBmp)
try:
memDc.Blit(0, 0, menubar._moreMenuBgBmp.GetWidth(), menubar._moreMenuBgBmp.GetHeight(), dc,
moreMenubtnBgBmpRect.x, moreMenubtnBgBmpRect.y)
except:
pass
memDc.SelectObject(wx.NullBitmap)
menubar.DrawMoreButton(dc, menubar._dropDownButtonState)
menubar._dropDownButtonArea = moreMenubtnBgBmpRect
|
Draws everything for :class:`FlatMenuBar`.
:param `menubar`: an instance of :class:`FlatMenuBar`.
:param `dc`: an instance of :class:`wx.DC`.
|
https://github.com/gimelstudio/gimel-studio/blob/e2750576e72edee6f2f4c268045b81459df82d89/src/GimelStudio/interface/dark_menu_renderer.py#L244-L439
|
import wx
import wx.lib.agw.flatmenu as flatmenu
from wx.lib.agw.artmanager import ArtManager, RendererBase, DCSaver
from wx.lib.agw.fmresources import ControlFocus, ControlPressed
def switchRGBtoBGR(colour):
return wx.Colour(colour.Blue(), colour.Green(), colour.Red())
class DarkMenuRenderer(flatmenu.FMRenderer):
def __init__(self):
flatmenu.FMRenderer.__init__(self)
self.highlightCheckAndRadio = True
self.menuFaceColour = wx.Colour("#333")
self.menuBarFaceColour = wx.Colour("#333")
self.menuBarFocusFaceColour = wx.Colour("#5874C5")
self.menuBarFocusBorderColour = wx.Colour("#5874C5")
self.menuBarPressedFaceColour = wx.Colour("#5874C5")
self.menuBarPressedBorderColour = wx.Colour("#5874C5")
self.menuFocusFaceColour = wx.Colour("#5874C5")
self.menuFocusBorderColour = wx.Colour("#5874C5")
self.menuPressedFaceColour = wx.Colour("#5874C5")
self.menuPressedBorderColour = wx.Colour("#5874C5")
self.buttonFaceColour = wx.Colour("#5874C5")
self.buttonBorderColour = wx.Colour("#5874C5")
self.buttonFocusFaceColour = wx.Colour("#5874C5")
self.buttonFocusBorderColour = wx.Colour("#5874C5")
self.buttonPressedFaceColour = wx.Colour("#5874C5")
self.buttonPressedBorderColour = wx.Colour("#5874C5")
def DrawMenuItem(self, item, dc, xCoord, yCoord, imageMarginX, markerMarginX, textX, rightMarginX, selected=False, backgroundImage=None):
borderXSize = item._parentMenu.GetBorderXWidth()
itemHeight = item._parentMenu.GetItemHeight()
menuWidth = item._parentMenu.GetMenuWidth()
itemRect = wx.Rect(xCoord, yCoord, menuWidth, itemHeight)
rect = wx.Rect(xCoord + 2, yCoord, menuWidth - 4, itemHeight)
backColour = self.menuFaceColour
penColour = backColour
backBrush = wx.Brush(backColour)
leftMarginWidth = item._parentMenu.GetLeftMarginWidth()
if backgroundImage is None:
pen = wx.Pen(penColour)
dc.SetPen(pen)
dc.SetBrush(backBrush)
dc.DrawRectangle(rect)
if self.drawLeftMargin:
self.DrawLeftMargin(item, dc, itemRect)
if item.IsSeparator():
sepWidth = xCoord + menuWidth - textX - 1
self.DrawSeparator(dc, xCoord, yCoord, textX, sepWidth)
return
item._rect = itemRect
bmp = item.GetSuitableBitmap(selected)
if selected:
self.DrawMenuButton(dc, rect.Deflate(1, 0), ControlFocus)
if bmp.IsOk():
imgHeight = bmp.GetHeight()
imgWidth = bmp.GetWidth()
if imageMarginX == 0:
xx = rect.x + (leftMarginWidth - imgWidth) / 2
else:
xx = rect.x + ((leftMarginWidth - rect.height) - imgWidth) / 2 + rect.height
yy = rect.y + (rect.height - imgHeight) / 2
dc.DrawBitmap(bmp, xx, yy, True)
if item.GetKind() == wx.ITEM_CHECK:
if item.IsChecked():
xx = rect.x + 1
yy = rect.y + 1
rr = wx.Rect(xx, yy, rect.height - 2, rect.height - 2)
if not selected and self.highlightCheckAndRadio:
self.DrawButton(dc, rr, ControlFocus)
dc.DrawBitmap(item._checkMarkBmp, rr.x + (rr.width - 16) / 2, rr.y + (rr.height - 16) / 2, True)
if item.GetKind() == wx.ITEM_RADIO:
if item.IsChecked():
xx = rect.x + 1
yy = rect.y + 1
rr = wx.Rect(xx, yy, rect.height - 2, rect.height - 2)
if not selected and self.highlightCheckAndRadio:
self.DrawButton(dc, rr, ControlFocus)
dc.DrawBitmap(item._radioMarkBmp, rr.x + (rr.width - 16) / 2, rr.y + (rr.height - 16) / 2, True)
text = item.GetLabel()
if text:
font = item.GetFont()
if font is None:
font = wx.SystemSettings.GetFont(wx.SYS_DEFAULT_GUI_FONT)
enabledTxtColour = wx.Colour("#fff")
disabledTxtColour = self.itemTextColourDisabled
textColour = (item.IsEnabled() and [enabledTxtColour] or [disabledTxtColour])[0]
if item.IsEnabled() and item.GetTextColour():
textColour = item.GetTextColour()
dc.SetFont(font)
w, h = dc.GetTextExtent(text)
dc.SetTextForeground(textColour)
if item._mnemonicIdx != wx.NOT_FOUND:
text1 = text[0:item._mnemonicIdx]
text2 = text[item._mnemonicIdx]
text3 = text[item._mnemonicIdx + 1:]
w1, dummy = dc.GetTextExtent(text1)
w2, dummy = dc.GetTextExtent(text2)
w3, dummy = dc.GetTextExtent(text3)
posx = xCoord + textX + borderXSize
posy = (itemHeight - h) / 2 + yCoord
dc.DrawText(text1, posx, posy)
if "__WXGTK__" not in wx.Platform:
font.SetUnderlined(True)
dc.SetFont(font)
posx += w1
dc.DrawText(text2, posx, posy)
font.SetUnderlined(False)
dc.SetFont(font)
posx += w2
dc.DrawText(text3, posx, posy)
else:
w, h = dc.GetTextExtent(text)
dc.DrawText(text, xCoord + textX + borderXSize, (itemHeight - h) / 2 + yCoord)
if item.GetAccelString():
accelWidth, accelHeight = dc.GetTextExtent(item.GetAccelString())
dc.DrawText(item.GetAccelString(), xCoord + rightMarginX -
accelWidth, (itemHeight - accelHeight) / 2 + yCoord)
if item.GetSubMenu():
rightArrowBmp = wx.Bitmap(menu_right_arrow_xpm)
rightArrowBmp.SetMask(wx.Mask(rightArrowBmp, wx.WHITE))
xx = xCoord + rightMarginX + borderXSize
rr = wx.Rect(xx, rect.y + 1, rect.height - 2, rect.height - 2)
dc.DrawBitmap(rightArrowBmp, rr.x + 4, rr.y + (rr.height - 16) / 2, True)
|
Apache License 2.0
|
nuagenetworks/vspk-python
|
vspk/v6/nuunderlaytest.py
|
NUUnderlayTest.associated_data_path_id
|
python
|
def associated_data_path_id(self, value):
self._associated_data_path_id = value
|
Set associated_data_path_id value.
Notes:
The associated data path ID
This attribute is named `associatedDataPathID` in VSD API.
|
https://github.com/nuagenetworks/vspk-python/blob/375cce10ae144ad6017104e57fcd3630898cc2a6/vspk/v6/nuunderlaytest.py#L267-L277
|
from bambou import NURESTObject
class NUUnderlayTest(NURESTObject):
__rest_name__ = "underlaytest"
__resource_name__ = "underlaytests"
CONST_UNDERLAY_TEST_TYPE_PRE_BOOTSTRAP = "PRE_BOOTSTRAP"
CONST_UNDERLAY_TEST_TYPE_ON_DEMAND = "ON_DEMAND"
CONST_TEST_RESULT_NOT_APPLICABLE = "NOT_APPLICABLE"
CONST_TEST_RESULT_FAIL = "FAIL"
CONST_TEST_RESULT_PASS = "PASS"
CONST_TEST_RESULT_DEGRADED = "DEGRADED"
CONST_UNDERLAY_TEST_TYPE_BIRTH_CERTIFICATE = "BIRTH_CERTIFICATE"
def __init__(self, **kwargs):
super(NUUnderlayTest, self).__init__()
self._name = None
self._test_result = None
self._underlay_test_server = None
self._underlay_test_type = None
self._create_only = None
self._associated_data_path_id = None
self._associated_ns_gateway_id = None
self._associated_ns_gateway_name = None
self._associated_system_id = None
self._associated_test_suite_run_id = None
self._associated_uplink_connection_id = None
self._associated_uplink_interface = None
self._start_date_time = None
self._stop_date_time = None
self._run_bandwidth_test = None
self._run_connectivity_test = None
self._run_mtu_discovery_test = None
self._duration = None
self.expose_attribute(local_name="name", remote_name="name", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="test_result", remote_name="testResult", attribute_type=str, is_required=False, is_unique=False, choices=[u'DEGRADED', u'FAIL', u'NOT_APPLICABLE', u'PASS'])
self.expose_attribute(local_name="underlay_test_server", remote_name="underlayTestServer", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="underlay_test_type", remote_name="underlayTestType", attribute_type=str, is_required=False, is_unique=False, choices=[u'BIRTH_CERTIFICATE', u'ON_DEMAND', u'PRE_BOOTSTRAP'])
self.expose_attribute(local_name="create_only", remote_name="createOnly", attribute_type=bool, is_required=False, is_unique=False)
self.expose_attribute(local_name="associated_data_path_id", remote_name="associatedDataPathID", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="associated_ns_gateway_id", remote_name="associatedNSGatewayID", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="associated_ns_gateway_name", remote_name="associatedNSGatewayName", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="associated_system_id", remote_name="associatedSystemID", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="associated_test_suite_run_id", remote_name="associatedTestSuiteRunID", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="associated_uplink_connection_id", remote_name="associatedUplinkConnectionID", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="associated_uplink_interface", remote_name="associatedUplinkInterface", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="start_date_time", remote_name="startDateTime", attribute_type=int, is_required=False, is_unique=False)
self.expose_attribute(local_name="stop_date_time", remote_name="stopDateTime", attribute_type=int, is_required=False, is_unique=False)
self.expose_attribute(local_name="run_bandwidth_test", remote_name="runBandwidthTest", attribute_type=bool, is_required=False, is_unique=False)
self.expose_attribute(local_name="run_connectivity_test", remote_name="runConnectivityTest", attribute_type=bool, is_required=False, is_unique=False)
self.expose_attribute(local_name="run_mtu_discovery_test", remote_name="runMTUDiscoveryTest", attribute_type=bool, is_required=False, is_unique=False)
self.expose_attribute(local_name="duration", remote_name="duration", attribute_type=int, is_required=False, is_unique=False)
self._compute_args(**kwargs)
@property
def name(self):
return self._name
@name.setter
def name(self, value):
self._name = value
@property
def test_result(self):
return self._test_result
@test_result.setter
def test_result(self, value):
self._test_result = value
@property
def underlay_test_server(self):
return self._underlay_test_server
@underlay_test_server.setter
def underlay_test_server(self, value):
self._underlay_test_server = value
@property
def underlay_test_type(self):
return self._underlay_test_type
@underlay_test_type.setter
def underlay_test_type(self, value):
self._underlay_test_type = value
@property
def create_only(self):
return self._create_only
@create_only.setter
def create_only(self, value):
self._create_only = value
@property
def associated_data_path_id(self):
return self._associated_data_path_id
@associated_data_path_id.setter
|
BSD 3-Clause New or Revised License
|
olitheolix/aiokubernetes
|
aiokubernetes/models/apps_v1beta1_deployment_list.py
|
AppsV1beta1DeploymentList.kind
|
python
|
def kind(self):
return self._kind
|
Gets the kind of this AppsV1beta1DeploymentList. # noqa: E501
Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds # noqa: E501
:return: The kind of this AppsV1beta1DeploymentList. # noqa: E501
:rtype: str
|
https://github.com/olitheolix/aiokubernetes/blob/266718b210dff2a9b2212183261ea89adf89115e/aiokubernetes/models/apps_v1beta1_deployment_list.py#L115-L123
|
import pprint
import re
from aiokubernetes.models.apps_v1beta1_deployment import AppsV1beta1Deployment
from aiokubernetes.models.v1_list_meta import V1ListMeta
class AppsV1beta1DeploymentList(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'api_version': 'str',
'items': 'list[AppsV1beta1Deployment]',
'kind': 'str',
'metadata': 'V1ListMeta'
}
attribute_map = {
'api_version': 'apiVersion',
'items': 'items',
'kind': 'kind',
'metadata': 'metadata'
}
def __init__(self, api_version=None, items=None, kind=None, metadata=None):
self._api_version = None
self._items = None
self._kind = None
self._metadata = None
self.discriminator = None
if api_version is not None:
self.api_version = api_version
self.items = items
if kind is not None:
self.kind = kind
if metadata is not None:
self.metadata = metadata
@property
def api_version(self):
return self._api_version
@api_version.setter
def api_version(self, api_version):
self._api_version = api_version
@property
def items(self):
return self._items
@items.setter
def items(self, items):
if items is None:
raise ValueError("Invalid value for `items`, must not be `None`")
self._items = items
@property
|
Apache License 2.0
|
lord63/pyhipku
|
pyhipku/encode.py
|
get_key
|
python
|
def get_key(is_ipv6):
if is_ipv6:
key = [adjectives, nouns, adjectives, nouns, verbs, adjectives,
adjectives, adjectives, adjectives, adjectives, nouns,
adjectives, nouns, verbs, adjectives, nouns]
else:
key = [animal_adjectives, animal_colors, animal_nouns, animal_verbs,
nature_adjectives, nature_nouns, plant_nouns, plant_verbs]
return key
|
Return an array of dictionaries representing the correct word
order for the haiku
|
https://github.com/lord63/pyhipku/blob/699c7c4e855ee70f1e73c605809177c5c4dee651/pyhipku/encode.py#L105-L115
|
from __future__ import absolute_import, division
import socket
from .dictionary import (adjectives, nouns, verbs, animal_adjectives,
animal_colors, animal_nouns, animal_verbs,
nature_adjectives, nature_nouns, plant_nouns,
plant_verbs)
def encode(ip):
is_ipv6 = ip_is_ipv6(ip)
decimal_octect_array = split_ip(ip, is_ipv6)
factord_octet_array = factor_octets(decimal_octect_array, is_ipv6)
encoded_word_array = encode_words(factord_octet_array, is_ipv6)
haiku_text = write_haiku(encoded_word_array, is_ipv6)
return haiku_text
def ip_is_ipv6(ip):
if ip.find(':') != -1:
return True
elif ip.find('.') != -1:
return False
else:
raise ValueError("Formatting error in IP address input. "
"Contains neither ':' or '.'")
def split_ip(ip, is_ipv6):
if is_ipv6:
separator = ':'
else:
separator = '.'
ip = ''.join(ip.split())
try:
if is_ipv6:
socket.inet_pton(socket.AF_INET6, ip)
else:
socket.inet_pton(socket.AF_INET, ip)
except (OSError, socket.error):
raise ValueError("Illegal IP address.")
octet_array = ip.split(separator)
if len(octet_array) < 8 and is_ipv6:
octet_missing_num = 8 - len(octet_array)
octet_array = pad_octets(octet_array, octet_missing_num)
decimal_octect_array = []
if is_ipv6:
for i in range(len(octet_array)):
decimal_octect_array.append(int(octet_array[i], 16))
else:
decimal_octect_array = [int(num) for num in octet_array]
return decimal_octect_array
def pad_octets(octet_array, octet_missing_num):
padded_octect = '0'
length = len(octet_array)
if octet_array[0] == '':
octet_array[0] = padded_octect
if octet_array[length - 1] == '':
octet_array[length - 1] = padded_octect
for i in range(length):
if octet_array[i] == '':
octet_array[i] = padded_octect
for j in range(octet_missing_num):
octet_array.insert(i, padded_octect)
return octet_array
def factor_octets(octet_array, is_ipv6):
if is_ipv6:
divisor = 256
else:
divisor = 16
factord_octet_array = []
for i in range(len(octet_array)):
factord_octet_array.extend([octet_array[i] // divisor,
octet_array[i] % divisor])
return factord_octet_array
def encode_words(factor_array, is_ipv6):
key = get_key(is_ipv6)
encoded_word_array = []
for i in range(len(factor_array)):
encoded_word_array.append(key[i][factor_array[i]])
return encoded_word_array
|
MIT License
|
lunixbochs/actualvim
|
lib/neovim/api/nvim.py
|
Nvim.from_session
|
python
|
def from_session(cls, session):
session.error_wrapper = lambda e: NvimError(e[1])
channel_id, metadata = session.request(b'vim_get_api_info')
if IS_PYTHON3:
metadata = walk(decode_if_bytes, metadata)
types = {
metadata['types']['Buffer']['id']: Buffer,
metadata['types']['Window']['id']: Window,
metadata['types']['Tabpage']['id']: Tabpage,
}
return cls(session, channel_id, metadata, types)
|
Create a new Nvim instance for a Session instance.
This method must be called to create the first Nvim instance, since it
queries Nvim metadata for type information and sets a SessionHook for
creating specialized objects from Nvim remote handles.
|
https://github.com/lunixbochs/actualvim/blob/1f555ce719e49d6584f0e35e9f0db2f216b98fa5/lib/neovim/api/nvim.py#L43-L63
|
import functools
import os
import sys
from traceback import format_stack
from ActualVim.lib import msgpack
from .buffer import Buffer
from .common import (Remote, RemoteApi, RemoteMap, RemoteSequence,
decode_if_bytes, walk)
from .tabpage import Tabpage
from .window import Window
from ..compat import IS_PYTHON3
from ..util import Version, format_exc_skip
__all__ = ('Nvim')
os_chdir = os.chdir
class Nvim(object):
@classmethod
|
MIT License
|
readthedocs/readthedocs.org
|
readthedocs/organizations/models.py
|
TeamMember.send_add_notification
|
python
|
def send_add_notification(self, request):
if self.invite is None and self.member is not None:
send_team_add_email(team_member=self, request=request)
elif self.member is None and self.invite is not None:
send_team_invite_email(invite=self.invite, request=request)
|
Notify member or invite of being added to a team.
|
https://github.com/readthedocs/readthedocs.org/blob/2cff8376f0ef8f25ae6d8763bdbec86f47e33ab9/readthedocs/organizations/models.py#L357-L362
|
from autoslug import AutoSlugField
from django.contrib.auth.models import User
from django.db import models
from django.urls import reverse
from django.utils.crypto import salted_hmac
from django.utils.translation import ugettext_lazy as _
from readthedocs.core.history import ExtraHistoricalRecords
from readthedocs.core.permissions import AdminPermission
from readthedocs.core.utils import slugify
from . import constants
from .managers import TeamManager, TeamMemberManager
from .querysets import OrganizationQuerySet
from .utils import send_team_add_email, send_team_invite_email
class Organization(models.Model):
pub_date = models.DateTimeField(_('Publication date'), auto_now_add=True)
modified_date = models.DateTimeField(_('Modified date'), auto_now=True)
projects = models.ManyToManyField(
'projects.Project',
verbose_name=_('Projects'),
related_name='organizations',
)
owners = models.ManyToManyField(
User,
verbose_name=_('Owners'),
related_name='owner_organizations',
through='OrganizationOwner',
)
name = models.CharField(_('Name'), max_length=100)
slug = models.SlugField(
_('Slug'),
max_length=255,
unique=True,
null=False,
blank=False,
)
email = models.EmailField(
_('E-mail'),
help_text='How can we get in touch with you?',
max_length=255,
blank=True,
null=True,
)
description = models.TextField(
_('Description'),
help_text='Tell us a little about yourself.',
blank=True,
null=True,
)
url = models.URLField(
_('Home Page'),
help_text='The main website for your Organization',
max_length=255,
blank=True,
null=True,
)
disabled = models.BooleanField(
_('Disabled'),
help_text='Docs and builds are disabled for this organization',
default=False,
)
artifacts_cleaned = models.BooleanField(
_('Artifacts Cleaned'),
help_text='Artifacts are cleaned out from storage',
default=False,
)
max_concurrent_builds = models.IntegerField(
_('Maximum concurrent builds allowed for this organization'),
null=True,
blank=True,
)
stripe_id = models.CharField(
_('Stripe customer ID'),
max_length=100,
blank=True,
null=True,
)
objects = OrganizationQuerySet.as_manager()
history = ExtraHistoricalRecords()
class Meta:
base_manager_name = 'objects'
ordering = ['name']
get_latest_by = ['-pub_date']
def __str__(self):
return self.name
def get_absolute_url(self):
return reverse('organization_detail', args=(self.slug,))
@property
def users(self):
return AdminPermission.members(self)
@property
def members(self):
return AdminPermission.members(self)
def save(self, *args, **kwargs):
if not self.slug:
self.slug = slugify(self.name)
super().save(*args, **kwargs)
def add_member(self, user, team):
if not team.members.filter(pk=user.pk).exists():
TeamMember.objects.create(team=team, member=user)
class OrganizationOwner(models.Model):
owner = models.ForeignKey(
User,
on_delete=models.CASCADE,
)
organization = models.ForeignKey(
Organization,
on_delete=models.CASCADE,
)
def __str__(self):
return _('{org} owner {owner}').format(
org=self.organization.name,
owner=self.owner.username,
)
class Team(models.Model):
pub_date = models.DateTimeField(_('Publication date'), auto_now_add=True)
modified_date = models.DateTimeField(_('Modified date'), auto_now=True)
organization = models.ForeignKey(
Organization,
related_name='teams',
on_delete=models.CASCADE,
)
projects = models.ManyToManyField(
'projects.Project',
verbose_name=_('Projects'),
related_name='teams',
blank=True,
)
members = models.ManyToManyField(
User,
verbose_name=_('Users'),
related_name='teams',
blank=True,
through='TeamMember',
)
name = models.CharField(_('Name'), max_length=100)
slug = AutoSlugField(
populate_from='name',
always_update=True,
unique_with=['organization'],
)
access = models.CharField(
_('Access'),
max_length=100,
choices=constants.ACCESS_LEVELS,
default='readonly',
)
auto_join_email_users = models.BooleanField(
default=False,
help_text="Auto join users with an organization's email address to this team.",
)
objects = TeamManager()
history = ExtraHistoricalRecords()
class Meta:
base_manager_name = 'objects'
unique_together = (
('slug', 'organization'),
('name', 'organization'),
)
def get_absolute_url(self):
return reverse(
'organization_team_detail',
args=(self.organization.slug, self.slug),
)
def __str__(self):
return self.name
def save(self, *args, **kwargs):
if not self.slug:
self.slug = slugify(self.name)
super().save(*args, **kwargs)
class TeamInvite(models.Model):
pub_date = models.DateTimeField(_('Publication date'), auto_now_add=True)
modified_date = models.DateTimeField(_('Modified date'), auto_now=True)
organization = models.ForeignKey(
Organization,
related_name='invites',
on_delete=models.CASCADE,
)
team = models.ForeignKey(
Team,
verbose_name=_('Team'),
related_name='invites',
on_delete=models.CASCADE,
)
email = models.EmailField(_('E-mail'))
hash = models.CharField(_('Hash'), max_length=250)
count = models.IntegerField(_('Count'), default=0)
total = models.IntegerField(_('Total'), default=10)
class Meta:
unique_together = ('team', 'email')
def __str__(self):
return '{email} to {team}'.format(
email=self.email,
team=self.team,
)
def save(self, *args, **kwargs):
hash_ = salted_hmac(
'.'.join([self.__module__, self.__class__.__name__]),
''.join([str(self.team), str(self.email)]),
)
self.hash = hash_.hexdigest()[::2]
super().save(*args, **kwargs)
class TeamMember(models.Model):
class Meta:
unique_together = (
('team', 'member', 'invite'),
('team', 'member'),
('team', 'invite'),
)
team = models.ForeignKey(
Team,
on_delete=models.CASCADE,
)
member = models.ForeignKey(
User,
blank=True,
null=True,
default=None,
on_delete=models.CASCADE,
)
invite = models.ForeignKey(
TeamInvite,
blank=True,
null=True,
default=None,
on_delete=models.SET_NULL,
)
objects = TeamMemberManager()
def __str__(self):
state = ''
if self.is_invite:
state = ' (pending)'
return '{username} to {team}{state}'.format(
username=self.username,
team=self.team,
state=state,
)
@property
def username(self):
if self.is_member:
return self.member.username
if self.invite is not None:
return self.invite.email
return 'Unknown'
@property
def full_name(self):
if self.is_member:
return self.member.get_full_name()
return ''
@property
def email(self):
if self.is_member:
return self.member.email
return self.invite.email
@property
def is_member(self):
return self.member is not None
@property
def is_invite(self):
return self.member is None and self.invite is not None
|
MIT License
|
abelfunctions/abelfunctions
|
abelfunctions/riemann_constant_vector.py
|
sum_partitions
|
python
|
def sum_partitions(n):
cartesian = product(range(n+1), repeat=n)
for p in cartesian:
if sum(p) == n:
yield p
return
|
r"""A generator of all length n tuples :math:`(m_1,...,m_n)` such that
.. math::
m_1 + \cdots + m_n = n,
where each :math:`m_i \geq 0`. Used by :func:`half_lattice_vector` to
generate a collection of effective degree g-1 divisors.
Parameters
----------
n : int
Returns
-------
p : generator
|
https://github.com/abelfunctions/abelfunctions/blob/67757a0b3744191c179ca4757e0db4a312bfd86a/abelfunctions/riemann_constant_vector.py#L205-L229
|
from abelfunctions.abelmap import AbelMap, Jacobian
from abelfunctions.divisor import Place
from abelfunctions.riemann_theta import RiemannTheta
import numpy
from numpy import dot
from itertools import product
from sage.all import cached_function
def initialize_half_lattice_vectors(X):
g = X.genus()
Omega = X.riemann_matrix()
half = list(product((0,0.5),repeat=g))
half_lattice_vectors = numpy.array(
[h1 + dot(Omega,h2) for h1 in half for h2 in half],
dtype=numpy.complex
)
return half_lattice_vectors
def half_lattice_filter(half_lattice_vectors, J, C, D, epsilon=1e-8):
Z = AbelMap(D) - 0.5*AbelMap(C)
shifted_half_lattice_vectors = [J(elt) for elt in half_lattice_vectors + Z]
theta_values = RiemannTheta.oscillatory_part(
shifted_half_lattice_vectors, J.Omega, epsilon=epsilon
)
theta_values = abs(theta_values)
half_lattice_vectors = half_lattice_vectors[theta_values < epsilon]
return half_lattice_vectors
def find_regular_places(X, n):
XPF = X.PF.XPF
places = []
a = 0
while len(places) < n:
b = X.closest_discriminant_point(a, exact=False)
R = XPF.radius(b)
if abs(a-b) > R:
places.extend(X(a))
if a > 0:
a = -a
else:
a += 1
places = places[:n]
return places
|
MIT License
|
python-control/python-control
|
control/matlab/timeresp.py
|
lsim
|
python
|
def lsim(sys, U=0., T=None, X0=0.):
from ..timeresp import forced_response
out = forced_response(sys, T, U, X0, return_x=True, transpose=True)
return out[1], out[0], out[2]
|
Simulate the output of a linear system.
As a convenience for parameters `U`, `X0`:
Numbers (scalars) are converted to constant arrays with the correct shape.
The correct shape is inferred from arguments `sys` and `T`.
Parameters
----------
sys: LTI (StateSpace, or TransferFunction)
LTI system to simulate
U: array-like or number, optional
Input array giving input at each time `T` (default = 0).
If `U` is ``None`` or ``0``, a special algorithm is used. This special
algorithm is faster than the general algorithm, which is used otherwise.
T: array-like, optional for discrete LTI `sys`
Time steps at which the input is defined; values must be evenly spaced.
X0: array-like or number, optional
Initial condition (default = 0).
Returns
-------
yout: array
Response of the system.
T: array
Time values of the output.
xout: array
Time evolution of the state vector.
See Also
--------
step, initial, impulse
Examples
--------
>>> yout, T, xout = lsim(sys, U, T, X0)
|
https://github.com/python-control/python-control/blob/5ab0a1c41a5ec906f825c30cbfbc6352a17a3a5d/control/matlab/timeresp.py#L252-L298
|
__all__ = ['step', 'stepinfo', 'impulse', 'initial', 'lsim']
def step(sys, T=None, X0=0., input=0, output=None, return_x=False):
from ..timeresp import step_response
out = step_response(sys, T, X0, input, output,
transpose=True, return_x=return_x)
return (out[1], out[0], out[2]) if return_x else (out[1], out[0])
def stepinfo(sysdata, T=None, yfinal=None, SettlingTimeThreshold=0.02,
RiseTimeLimits=(0.1, 0.9)):
from ..timeresp import step_info
S = step_info(sysdata, T=T, T_num=None, yfinal=yfinal,
SettlingTimeThreshold=SettlingTimeThreshold,
RiseTimeLimits=RiseTimeLimits)
return S
def impulse(sys, T=None, X0=0., input=0, output=None, return_x=False):
from ..timeresp import impulse_response
out = impulse_response(sys, T, X0, input, output,
transpose = True, return_x=return_x)
return (out[1], out[0], out[2]) if return_x else (out[1], out[0])
def initial(sys, T=None, X0=0., input=None, output=None, return_x=False):
from ..timeresp import initial_response
T, yout, xout = initial_response(sys, T, X0, output=output,
transpose=True, return_x=True)
return (yout, T, xout) if return_x else (yout, T)
|
BSD 3-Clause New or Revised License
|
europython/djep
|
pyconde/schedule/migrations/0015_fix_tags.py
|
Migration.forwards
|
python
|
def forwards(self, orm):
return
ContentType = orm['contenttypes.ContentType']
TaggedItem = orm['taggit.TaggedItem']
Session = orm['schedule.Session']
ct_sess = ContentType.objects.get(app_label='schedule',
model='session')
ct_prop = ContentType.objects.get(app_label='proposals',
model='proposal')
TaggedItem.objects.filter(content_type=ct_sess).delete()
for sess in Session.objects.all():
tags = []
for tag in TaggedItem.objects.filter(content_type=ct_prop,
object_id=sess.proposal_id):
tags.append(TaggedItem(content_type=ct_sess, object_id=sess.pk,
tag_id=tag.tag_id))
TaggedItem.objects.bulk_create(tags)
|
Write your forwards methods here.
|
https://github.com/europython/djep/blob/afcccbdda483e5f6962ac97f0dc4c4c5ea67fd21/pyconde/schedule/migrations/0015_fix_tags.py#L13-L39
|
import datetime
from south.db import db
from south.v2 import DataMigration
from django.db import models
class Migration(DataMigration):
depends_on = (
("schedule", "0015_auto__add_field_session_accept_recording__chg_field_session_duration__"),
)
|
BSD 3-Clause New or Revised License
|
quantmind/pulsar
|
examples/chat/manage.py
|
WebChat.setup
|
python
|
def setup(self, environ):
request = wsgi_request(environ)
cfg = request.cache.cfg
loop = request.cache._loop
self.store = create_store(cfg.data_store, loop=loop)
pubsub = self.store.pubsub(protocol=Protocol())
channel = '%s_webchat' % self.name
ensure_future(pubsub.subscribe(channel), loop=loop)
return WsgiHandler([Router('/', get=self.home_page),
WebSocket('/message', Chat(pubsub, channel)),
Router('/rpc', post=Rpc(pubsub, channel),
response_content_types=JSON_CONTENT_TYPES)],
[AsyncResponseMiddleware,
GZipMiddleware(min_length=20)])
|
Called once only to setup the WSGI application handler.
Check :ref:`lazy wsgi handler <wsgi-lazy-handler>`
section for further information.
|
https://github.com/quantmind/pulsar/blob/fee44e871954aa6ca36d00bb5a3739abfdb89b26/examples/chat/manage.py#L134-L152
|
import os
import time
from pulsar.api import create_future, ensure_future
from pulsar.apps.wsgi import (Router, WsgiHandler, LazyWsgi, WSGIServer,
GZipMiddleware, wsgi_request)
from pulsar.apps.ws import WS, WebSocket
from pulsar.apps.rpc import PulsarServerCommands
from pulsar.apps.data import create_store, PubSubClient
from pulsar.utils.httpurl import JSON_CONTENT_TYPES
from pulsar.apps.ds import pulsards_url
from pulsar.utils.system import json
from pulsar.utils.string import to_string
CHAT_DIR = os.path.dirname(__file__)
class ChatClient(PubSubClient):
__slots__ = ('connection', 'channel')
def __init__(self, connection, channel):
self.connection = connection
self.channel = channel
def __call__(self, channel, message):
self.connection.write(message)
class Protocol:
def encode(self, message):
if not isinstance(message, dict):
message = {'message': message}
message['time'] = time.time()
return json.dumps(message)
def decode(self, message):
return to_string(message)
class Chat(WS):
def __init__(self, pubsub, channel):
self.pubsub = pubsub
self.channel = channel
def on_open(self, websocket):
self.pubsub.add_client(ChatClient(websocket, self.channel))
def on_message(self, websocket, msg):
if msg:
lines = []
for li in msg.split('\n'):
li = li.strip()
if li:
lines.append(li)
msg = ' '.join(lines)
if msg:
return self.pubsub.publish(self.channel, msg)
class Rpc(PulsarServerCommands):
def __init__(self, pubsub, channel, **kwargs):
self.pubsub = pubsub
self.channel = channel
super().__init__(**kwargs)
async def rpc_message(self, request, message):
await self.pubsub.publish(self.channel, message)
return 'OK'
class WebChat(LazyWsgi):
def __init__(self, server_name):
self.name = server_name
|
BSD 3-Clause New or Revised License
|
sisl/adaptivestresstestingtoolbox
|
src/ast_toolbox/simulators/example_av_simulator/example_av_simulator.py
|
ExampleAVSimulator.get_reward_info
|
python
|
def get_reward_info(self):
sim_state = self.simulator.get_ground_truth()
return {"peds": sim_state['peds'],
"car": sim_state['car'],
"is_goal": self.is_goal(),
"is_terminal": self.is_terminal()}
|
Returns any info needed by the reward function to calculate the current reward.
|
https://github.com/sisl/adaptivestresstestingtoolbox/blob/184d7d7f1b4acb65eecb749e3c3a78cbcfc3c4ed/src/ast_toolbox/simulators/example_av_simulator/example_av_simulator.py#L119-L129
|
import numpy as np
from ast_toolbox.simulators import ASTSimulator
from ast_toolbox.simulators.example_av_simulator import ToyAVSimulator
class ExampleAVSimulator(ASTSimulator):
def __init__(self,
num_peds=1,
simulator_args=None,
**kwargs):
self.c_num_peds = num_peds
if simulator_args is None:
simulator_args = {}
self._action = np.array([0] * (6 * self.c_num_peds))
self.simulator = ToyAVSimulator(num_peds=num_peds, **simulator_args)
super().__init__(**kwargs)
def get_first_action(self):
return np.array([0] * (6 * self.c_num_peds))
def simulate(self, actions, s_0):
return self.simulator.run_simulation(actions=actions, s_0=s_0, simulation_horizon=self.c_max_path_length)
def closed_loop_step(self, action):
self.observation = np.ndarray.flatten(self.simulator.step_simulation(action))
return self.observation_return()
def reset(self, s_0):
super(ExampleAVSimulator, self).reset(s_0=s_0)
self.observation = np.ndarray.flatten(self.simulator.reset(s_0))
return self.observation_return()
|
MIT License
|
xiaohangzhan/mix-and-match
|
caffe/python/caffe/test/test_net.py
|
simple_net_file
|
python
|
def simple_net_file(num_output):
f = tempfile.NamedTemporaryFile(delete=False)
f.write("""name: 'testnet' force_backward: true
layer { type: 'DummyData' name: 'data' top: 'data' top: 'label'
dummy_data_param { num: 5 channels: 2 height: 3 width: 4
num: 5 channels: 1 height: 1 width: 1
data_filler { type: 'gaussian' std: 1 }
data_filler { type: 'constant' } } }
layer { type: 'Convolution' name: 'conv' bottom: 'data' top: 'conv'
convolution_param { num_output: 11 kernel_size: 2 pad: 3
weight_filler { type: 'gaussian' std: 1 }
bias_filler { type: 'constant' value: 2 } }
param { decay_mult: 1 } param { decay_mult: 0 }
}
layer { type: 'InnerProduct' name: 'ip' bottom: 'conv' top: 'ip'
inner_product_param { num_output: """ + str(num_output) + """
weight_filler { type: 'gaussian' std: 2.5 }
bias_filler { type: 'constant' value: -3 } } }
layer { type: 'SoftmaxWithLoss' name: 'loss' bottom: 'ip' bottom: 'label'
top: 'loss' }""")
f.close()
return f.name
|
Make a simple net prototxt, based on test_net.cpp, returning the name
of the (temporary) file.
|
https://github.com/xiaohangzhan/mix-and-match/blob/8d4c9df80ef281b4112bf27d8901700dcedc798f/caffe/python/caffe/test/test_net.py#L9-L33
|
import unittest
import tempfile
import os
import numpy as np
import caffe
|
MIT License
|
tomplus/kubernetes_asyncio
|
kubernetes_asyncio/client/models/v1_session_affinity_config.py
|
V1SessionAffinityConfig.__init__
|
python
|
def __init__(self, client_ip=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._client_ip = None
self.discriminator = None
if client_ip is not None:
self.client_ip = client_ip
|
V1SessionAffinityConfig - a model defined in OpenAPI
|
https://github.com/tomplus/kubernetes_asyncio/blob/22bf0f4ec775b920abc9cee86bb38abcfc57506d/kubernetes_asyncio/client/models/v1_session_affinity_config.py#L43-L53
|
import pprint
import re
import six
from kubernetes_asyncio.client.configuration import Configuration
class V1SessionAffinityConfig(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'client_ip': 'V1ClientIPConfig'
}
attribute_map = {
'client_ip': 'clientIP'
}
|
Apache License 2.0
|
zendesk/basecrm-python
|
basecrm/services.py
|
LeadsService.create
|
python
|
def create(self, *args, **kwargs):
if not args and not kwargs:
raise Exception('attributes for Lead are missing')
attributes = args[0] if args else kwargs
attributes = dict((k, v) for k, v in attributes.iteritems() if k in self.OPTS_KEYS_TO_PERSIST)
_, _, lead = self.http_client.post("/leads", body=attributes)
return lead
|
Create a lead
Creates a new lead
A lead may represent a single individual or an organization
:calls: ``post /leads``
:param tuple *args: (optional) Single object representing Lead resource.
:param dict **kwargs: (optional) Lead attributes.
:return: Dictionary that support attriubte-style access and represents newely created Lead resource.
:rtype: dict
|
https://github.com/zendesk/basecrm-python/blob/d6c26aca8850ba3fa0b9dff48d816b721d181ef7/basecrm/services.py#L668-L689
|
from decimal import *
from coercion import Coercion
class AccountsService(object):
def __init__(self, http_client):
self.__http_client = http_client
@property
def http_client(self):
return self.__http_client
def self(self):
_, _, resource = self.http_client.get("/accounts/self")
return resource
class AssociatedContactsService(object):
"""
Allowed attributes for AssociatedContact to send to Base CRM backend servers.
"""
OPTS_KEYS_TO_PERSIST = ['contact_id', 'role']
def __init__(self, http_client):
self.__http_client = http_client
@property
def http_client(self):
return self.__http_client
def list(self, deal_id, **params):
_, _, associated_contacts = self.http_client.get("/deals/{deal_id}/associated_contacts".format(deal_id=deal_id), params=params)
return associated_contacts
def create(self, deal_id, *args, **kwargs):
if not args and not kwargs:
raise Exception('attributes for AssociatedContact are missing')
attributes = args[0] if args else kwargs
attributes = dict((k, v) for k, v in attributes.iteritems() if k in self.OPTS_KEYS_TO_PERSIST)
_, _, associated_contact = self.http_client.post("/deals/{deal_id}/associated_contacts".format(deal_id=deal_id), body=attributes)
return associated_contact
def destroy(self, deal_id, contact_id) :
status_code, _, _ = self.http_client.delete("/deals/{deal_id}/associated_contacts/{contact_id}".format(deal_id=deal_id, contact_id=contact_id))
return status_code == 204
class ContactsService(object):
"""
Allowed attributes for Contact to send to Base CRM backend servers.
"""
OPTS_KEYS_TO_PERSIST = ['address', 'contact_id', 'custom_fields', 'customer_status', 'description', 'email', 'facebook', 'fax', 'first_name', 'industry', 'is_organization', 'last_name', 'linkedin', 'mobile', 'name', 'owner_id', 'phone', 'prospect_status', 'skype', 'tags', 'title', 'twitter', 'website']
def __init__(self, http_client):
self.__http_client = http_client
@property
def http_client(self):
return self.__http_client
def list(self, **params):
_, _, contacts = self.http_client.get("/contacts", params=params)
return contacts
def create(self, *args, **kwargs):
if not args and not kwargs:
raise Exception('attributes for Contact are missing')
attributes = args[0] if args else kwargs
attributes = dict((k, v) for k, v in attributes.iteritems() if k in self.OPTS_KEYS_TO_PERSIST)
_, _, contact = self.http_client.post("/contacts", body=attributes)
return contact
def retrieve(self, id) :
_, _, contact = self.http_client.get("/contacts/{id}".format(id=id))
return contact
def update(self, id, *args, **kwargs):
if not args and not kwargs:
raise Exception('attributes for Contact are missing')
attributes = args[0] if args else kwargs
attributes = dict((k, v) for k, v in attributes.iteritems() if k in self.OPTS_KEYS_TO_PERSIST)
_, _, contact = self.http_client.put("/contacts/{id}".format(id=id), body=attributes)
return contact
def destroy(self, id) :
status_code, _, _ = self.http_client.delete("/contacts/{id}".format(id=id))
return status_code == 204
class DealsService(object):
"""
Allowed attributes for Deal to send to Base CRM backend servers.
"""
OPTS_KEYS_TO_PERSIST = ['contact_id', 'currency', 'custom_fields', 'hot', 'loss_reason_id', 'name', 'owner_id', 'source_id', 'stage_id', 'last_stage_change_at', 'tags', 'value', 'estimated_close_date', 'customized_win_likelihood', 'added_on']
def __init__(self, http_client):
self.__http_client = http_client
@property
def http_client(self):
return self.__http_client
def list(self, **params):
_, _, deals = self.http_client.get("/deals", params=params)
for deal in deals:
deal['value'] = Coercion.to_decimal(deal['value'])
return deals
def create(self, *args, **kwargs):
if not args and not kwargs:
raise Exception('attributes for Deal are missing')
attributes = args[0] if args else kwargs
attributes = dict((k, v) for k, v in attributes.iteritems() if k in self.OPTS_KEYS_TO_PERSIST)
if "value" in attributes:
attributes["value"] = Coercion.to_string(attributes["value"])
_, _, deal = self.http_client.post("/deals", body=attributes)
deal["value"] = Coercion.to_decimal(deal["value"])
return deal
def retrieve(self, id) :
_, _, deal = self.http_client.get("/deals/{id}".format(id=id))
deal["value"] = Coercion.to_decimal(deal["value"])
return deal
def update(self, id, *args, **kwargs):
if not args and not kwargs:
raise Exception('attributes for Deal are missing')
attributes = args[0] if args else kwargs
attributes = dict((k, v) for k, v in attributes.iteritems() if k in self.OPTS_KEYS_TO_PERSIST)
if "value" in attributes:
attributes["value"] = Coercion.to_string(attributes["value"])
_, _, deal = self.http_client.put("/deals/{id}".format(id=id), body=attributes)
deal["value"] = Coercion.to_decimal(deal["value"])
return deal
def destroy(self, id) :
status_code, _, _ = self.http_client.delete("/deals/{id}".format(id=id))
return status_code == 204
class DealSourcesService(object):
"""
Allowed attributes for DealSource to send to Base CRM backend servers.
"""
OPTS_KEYS_TO_PERSIST = ['name', 'resource_type']
def __init__(self, http_client):
self.__http_client = http_client
@property
def http_client(self):
return self.__http_client
def list(self, **params):
_, _, deal_sources = self.http_client.get("/deal_sources", params=params)
return deal_sources
def create(self, *args, **kwargs):
if not args and not kwargs:
raise Exception('attributes for DealSource are missing')
attributes = args[0] if args else kwargs
attributes = dict((k, v) for k, v in attributes.iteritems() if k in self.OPTS_KEYS_TO_PERSIST)
_, _, deal_source = self.http_client.post("/deal_sources", body=attributes)
return deal_source
def retrieve(self, id) :
_, _, deal_source = self.http_client.get("/deal_sources/{id}".format(id=id))
return deal_source
def update(self, id, *args, **kwargs):
if not args and not kwargs:
raise Exception('attributes for DealSource are missing')
attributes = args[0] if args else kwargs
attributes = dict((k, v) for k, v in attributes.iteritems() if k in self.OPTS_KEYS_TO_PERSIST)
_, _, deal_source = self.http_client.put("/deal_sources/{id}".format(id=id), body=attributes)
return deal_source
def destroy(self, id) :
status_code, _, _ = self.http_client.delete("/deal_sources/{id}".format(id=id))
return status_code == 204
class DealUnqualifiedReasonsService(object):
"""
Allowed attributes for DealUnqualifiedReason to send to Base CRM backend servers.
"""
OPTS_KEYS_TO_PERSIST = ['name']
def __init__(self, http_client):
self.__http_client = http_client
@property
def http_client(self):
return self.__http_client
def list(self, **params):
_, _, deal_unqualified_reasons = self.http_client.get("/deal_unqualified_reasons", params=params)
return deal_unqualified_reasons
def create(self, *args, **kwargs):
if not args and not kwargs:
raise Exception('attributes for DealUnqualifiedReason are missing')
attributes = args[0] if args else kwargs
attributes = dict((k, v) for k, v in attributes.iteritems() if k in self.OPTS_KEYS_TO_PERSIST)
_, _, deal_unqualified_reason = self.http_client.post("/deal_unqualified_reasons", body=attributes)
return deal_unqualified_reason
def retrieve(self, id) :
_, _, deal_unqualified_reason = self.http_client.get("/deal_unqualified_reasons/{id}".format(id=id))
return deal_unqualified_reason
def update(self, id, *args, **kwargs):
if not args and not kwargs:
raise Exception('attributes for DealUnqualifiedReason are missing')
attributes = args[0] if args else kwargs
attributes = dict((k, v) for k, v in attributes.iteritems() if k in self.OPTS_KEYS_TO_PERSIST)
_, _, deal_unqualified_reason = self.http_client.put("/deal_unqualified_reasons/{id}".format(id=id), body=attributes)
return deal_unqualified_reason
def destroy(self, id) :
status_code, _, _ = self.http_client.delete("/deal_unqualified_reasons/{id}".format(id=id))
return status_code == 204
class LeadsService(object):
"""
Allowed attributes for Lead to send to Base CRM backend servers.
"""
OPTS_KEYS_TO_PERSIST = ['address', 'custom_fields', 'description', 'email', 'facebook', 'fax', 'first_name', 'industry', 'last_name', 'linkedin', 'mobile', 'organization_name', 'owner_id', 'phone', 'skype', 'source_id', 'status', 'tags', 'title', 'twitter', 'website']
def __init__(self, http_client):
self.__http_client = http_client
@property
def http_client(self):
return self.__http_client
def list(self, **params):
_, _, leads = self.http_client.get("/leads", params=params)
return leads
|
Apache License 2.0
|
tomplus/kubernetes_asyncio
|
kubernetes_asyncio/client/models/v1alpha1_priority_level_configuration_status.py
|
V1alpha1PriorityLevelConfigurationStatus.__ne__
|
python
|
def __ne__(self, other):
if not isinstance(other, V1alpha1PriorityLevelConfigurationStatus):
return True
return self.to_dict() != other.to_dict()
|
Returns true if both objects are not equal
|
https://github.com/tomplus/kubernetes_asyncio/blob/22bf0f4ec775b920abc9cee86bb38abcfc57506d/kubernetes_asyncio/client/models/v1alpha1_priority_level_configuration_status.py#L117-L122
|
import pprint
import re
import six
from kubernetes_asyncio.client.configuration import Configuration
class V1alpha1PriorityLevelConfigurationStatus(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'conditions': 'list[V1alpha1PriorityLevelConfigurationCondition]'
}
attribute_map = {
'conditions': 'conditions'
}
def __init__(self, conditions=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._conditions = None
self.discriminator = None
if conditions is not None:
self.conditions = conditions
@property
def conditions(self):
return self._conditions
@conditions.setter
def conditions(self, conditions):
self._conditions = conditions
def to_dict(self):
result = {}
for attr, _ in six.iteritems(self.openapi_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
return result
def to_str(self):
return pprint.pformat(self.to_dict())
def __repr__(self):
return self.to_str()
def __eq__(self, other):
if not isinstance(other, V1alpha1PriorityLevelConfigurationStatus):
return False
return self.to_dict() == other.to_dict()
|
Apache License 2.0
|
spyder-ide/spyder-unittest
|
spyder_unittest/widgets/datatree.py
|
TestDataView.rowsInserted
|
python
|
def rowsInserted(self, parent, firstRow, lastRow):
QTreeView.rowsInserted(self, parent, firstRow, lastRow)
self.resizeColumns()
self.spanFirstColumn(firstRow, lastRow)
|
Called when rows are inserted.
|
https://github.com/spyder-ide/spyder-unittest/blob/fc29baa9edd8614a341bbcfde93aa6fea5c4afb5/spyder_unittest/widgets/datatree.py#L89-L93
|
from collections import Counter
from operator import attrgetter
from qtpy import PYQT4
from qtpy.QtCore import QAbstractItemModel, QModelIndex, Qt, Signal
from qtpy.QtGui import QBrush, QColor, QFont
from qtpy.QtWidgets import QMenu, QTreeView
from spyder.config.base import get_translation
from spyder.utils.qthelpers import create_action
from spyder_unittest.backend.abbreviator import Abbreviator
from spyder_unittest.backend.runnerbase import Category
try:
_ = get_translation("unittest", dirname="spyder_unittest")
except KeyError:
import gettext
_ = gettext.gettext
COLORS = {
Category.OK: QBrush(QColor("#C1FFBA")),
Category.FAIL: QBrush(QColor("#FF5050")),
Category.SKIP: QBrush(QColor("#C5C5C5")),
Category.PENDING: QBrush(QColor("#C5C5C5"))
}
COLORS_DARK = {
Category.OK: QBrush(QColor("#008000")),
Category.FAIL: QBrush(QColor("#C6001E")),
Category.SKIP: QBrush(QColor("#505050")),
Category.PENDING: QBrush(QColor("#505050"))
}
STATUS_COLUMN = 0
NAME_COLUMN = 1
MESSAGE_COLUMN = 2
TIME_COLUMN = 3
HEADERS = [_('Status'), _('Name'), _('Message'), _('Time (ms)')]
TOPLEVEL_ID = 2 ** 32 - 1
class TestDataView(QTreeView):
sig_edit_goto = Signal(str, int)
def __init__(self, parent=None):
QTreeView.__init__(self, parent)
self.header().setDefaultAlignment(Qt.AlignCenter)
self.setItemsExpandable(True)
self.setSortingEnabled(True)
self.header().setSortIndicatorShown(False)
self.header().sortIndicatorChanged.connect(self.sortByColumn)
self.header().sortIndicatorChanged.connect(
lambda col, order: self.header().setSortIndicatorShown(True))
self.setExpandsOnDoubleClick(False)
self.doubleClicked.connect(self.go_to_test_definition)
def reset(self):
QTreeView.reset(self)
self.resizeColumns()
self.spanFirstColumn(0, self.model().rowCount() - 1)
|
MIT License
|
virtuesecurity/aws-extender
|
BappModules/boto/__init__.py
|
connect_sts
|
python
|
def connect_sts(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.sts import STSConnection
return STSConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
|
:type aws_access_key_id: string
:param aws_access_key_id: Your AWS Access Key ID
:type aws_secret_access_key: string
:param aws_secret_access_key: Your AWS Secret Access Key
:rtype: :class:`boto.sts.STSConnection`
:return: A connection to Amazon's STS
|
https://github.com/virtuesecurity/aws-extender/blob/3029dd26bd7bdf7f4148e1e92adf9f8c547cafbe/BappModules/boto/__init__.py#L566-L578
|
from boto.pyami.config import Config, BotoConfigLocations
from boto.storage_uri import BucketStorageUri, FileStorageUri
import boto.plugin
import datetime
import os
import platform
import re
import sys
import logging
import logging.config
from boto.compat import urlparse
from boto.exception import InvalidUriError
__version__ = '2.48.0'
Version = __version__
datetime.datetime.strptime('', '')
UserAgent = 'Boto/%s Python/%s %s/%s' % (
__version__,
platform.python_version(),
platform.system(),
platform.release()
)
config = Config()
BUCKET_NAME_RE = re.compile(r'^[a-zA-Z0-9][a-zA-Z0-9\._-]{1,253}[a-zA-Z0-9]$')
TOO_LONG_DNS_NAME_COMP = re.compile(r'[-_a-z0-9]{64}')
GENERATION_RE = re.compile(r'(?P<versionless_uri_str>.+)'
r'#(?P<generation>[0-9]+)$')
VERSION_RE = re.compile('(?P<versionless_uri_str>.+)#(?P<version_id>.+)$')
ENDPOINTS_PATH = os.path.join(os.path.dirname(__file__), 'endpoints.json')
def init_logging():
for file in BotoConfigLocations:
try:
logging.config.fileConfig(os.path.expanduser(file))
except:
pass
class NullHandler(logging.Handler):
def emit(self, record):
pass
log = logging.getLogger('boto')
perflog = logging.getLogger('boto.perf')
log.addHandler(NullHandler())
perflog.addHandler(NullHandler())
init_logging()
def set_file_logger(name, filepath, level=logging.INFO, format_string=None):
global log
if not format_string:
format_string = "%(asctime)s %(name)s [%(levelname)s]:%(message)s"
logger = logging.getLogger(name)
logger.setLevel(level)
fh = logging.FileHandler(filepath)
fh.setLevel(level)
formatter = logging.Formatter(format_string)
fh.setFormatter(formatter)
logger.addHandler(fh)
log = logger
def set_stream_logger(name, level=logging.DEBUG, format_string=None):
global log
if not format_string:
format_string = "%(asctime)s %(name)s [%(levelname)s]:%(message)s"
logger = logging.getLogger(name)
logger.setLevel(level)
fh = logging.StreamHandler()
fh.setLevel(level)
formatter = logging.Formatter(format_string)
fh.setFormatter(formatter)
logger.addHandler(fh)
log = logger
def connect_sqs(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.sqs.connection import SQSConnection
return SQSConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_s3(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.s3.connection import S3Connection
return S3Connection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_gs(gs_access_key_id=None, gs_secret_access_key=None, **kwargs):
from boto.gs.connection import GSConnection
return GSConnection(gs_access_key_id, gs_secret_access_key, **kwargs)
def connect_ec2(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.ec2.connection import EC2Connection
return EC2Connection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_elb(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.ec2.elb import ELBConnection
return ELBConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_autoscale(aws_access_key_id=None, aws_secret_access_key=None,
**kwargs):
from boto.ec2.autoscale import AutoScaleConnection
return AutoScaleConnection(aws_access_key_id, aws_secret_access_key,
**kwargs)
def connect_cloudwatch(aws_access_key_id=None, aws_secret_access_key=None,
**kwargs):
from boto.ec2.cloudwatch import CloudWatchConnection
return CloudWatchConnection(aws_access_key_id, aws_secret_access_key,
**kwargs)
def connect_sdb(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.sdb.connection import SDBConnection
return SDBConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_fps(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.fps.connection import FPSConnection
return FPSConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_mturk(aws_access_key_id=None, aws_secret_access_key=None,
**kwargs):
from boto.mturk.connection import MTurkConnection
return MTurkConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_cloudfront(aws_access_key_id=None, aws_secret_access_key=None,
**kwargs):
from boto.cloudfront import CloudFrontConnection
return CloudFrontConnection(aws_access_key_id, aws_secret_access_key,
**kwargs)
def connect_vpc(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.vpc import VPCConnection
return VPCConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_rds(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.rds import RDSConnection
return RDSConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_rds2(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.rds2.layer1 import RDSConnection
return RDSConnection(
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
**kwargs
)
def connect_emr(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.emr import EmrConnection
return EmrConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_sns(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.sns import SNSConnection
return SNSConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_iam(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.iam import IAMConnection
return IAMConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_route53(aws_access_key_id=None, aws_secret_access_key=None,
**kwargs):
from boto.route53 import Route53Connection
return Route53Connection(aws_access_key_id, aws_secret_access_key,
**kwargs)
def connect_cloudformation(aws_access_key_id=None, aws_secret_access_key=None,
**kwargs):
from boto.cloudformation import CloudFormationConnection
return CloudFormationConnection(aws_access_key_id, aws_secret_access_key,
**kwargs)
def connect_euca(host=None, aws_access_key_id=None, aws_secret_access_key=None,
port=8773, path='/services/Eucalyptus', is_secure=False,
**kwargs):
from boto.ec2 import EC2Connection
from boto.ec2.regioninfo import RegionInfo
if not aws_access_key_id:
aws_access_key_id = config.get('Credentials',
'euca_access_key_id',
None)
if not aws_secret_access_key:
aws_secret_access_key = config.get('Credentials',
'euca_secret_access_key',
None)
if not host:
host = config.get('Boto', 'eucalyptus_host', None)
reg = RegionInfo(name='eucalyptus', endpoint=host)
return EC2Connection(aws_access_key_id, aws_secret_access_key,
region=reg, port=port, path=path,
is_secure=is_secure, **kwargs)
def connect_glacier(aws_access_key_id=None, aws_secret_access_key=None,
**kwargs):
from boto.glacier.layer2 import Layer2
return Layer2(aws_access_key_id, aws_secret_access_key,
**kwargs)
def connect_ec2_endpoint(url, aws_access_key_id=None,
aws_secret_access_key=None,
**kwargs):
from boto.ec2.regioninfo import RegionInfo
purl = urlparse(url)
kwargs['port'] = purl.port
kwargs['host'] = purl.hostname
kwargs['path'] = purl.path
if not 'is_secure' in kwargs:
kwargs['is_secure'] = (purl.scheme == "https")
kwargs['region'] = RegionInfo(name=purl.hostname,
endpoint=purl.hostname)
kwargs['aws_access_key_id'] = aws_access_key_id
kwargs['aws_secret_access_key'] = aws_secret_access_key
return(connect_ec2(**kwargs))
def connect_walrus(host=None, aws_access_key_id=None,
aws_secret_access_key=None,
port=8773, path='/services/Walrus', is_secure=False,
**kwargs):
from boto.s3.connection import S3Connection
from boto.s3.connection import OrdinaryCallingFormat
if not aws_access_key_id:
aws_access_key_id = config.get('Credentials',
'euca_access_key_id',
None)
if not aws_secret_access_key:
aws_secret_access_key = config.get('Credentials',
'euca_secret_access_key',
None)
if not host:
host = config.get('Boto', 'walrus_host', None)
return S3Connection(aws_access_key_id, aws_secret_access_key,
host=host, port=port, path=path,
calling_format=OrdinaryCallingFormat(),
is_secure=is_secure, **kwargs)
def connect_ses(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.ses import SESConnection
return SESConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
|
MIT License
|
media-smart/volkscv
|
volkscv/metrics/classification/libs/utils/_label.py
|
LabelEncoder.fit
|
python
|
def fit(self, y):
y = column_or_1d(y, warn=True)
self.classes_ = _encode(y)
return self
|
Fit label encoder
Parameters
----------
y : array-like of shape (n_samples,)
Target values.
Returns
-------
self : returns an instance of self.
|
https://github.com/media-smart/volkscv/blob/62b991e3810f6dfc5ae073ec7fd196529efc1543/volkscv/metrics/classification/libs/utils/_label.py#L358-L372
|
import numpy as np
import scipy.sparse as sp
from ._base import check_array
from .multiclass import type_of_target, unique_labels
from .validation import column_or_1d, _num_samples, check_is_fitted
from .base import BaseEstimator, TransformerMixin
def label_binarize(y, classes, neg_label=0, pos_label=1, sparse_output=False):
if not isinstance(y, list):
y = check_array(y, accept_sparse='csr', ensure_2d=False, dtype=None)
else:
if _num_samples(y) == 0:
raise ValueError('y has 0 samples: %r' % y)
if neg_label >= pos_label:
raise ValueError("neg_label={0} must be strictly less than "
"pos_label={1}.".format(neg_label, pos_label))
if (sparse_output and (pos_label == 0 or neg_label != 0)):
raise ValueError("Sparse binarization is only supported with non "
"zero pos_label and zero neg_label, got "
"pos_label={0} and neg_label={1}"
"".format(pos_label, neg_label))
pos_switch = pos_label == 0
if pos_switch:
pos_label = -neg_label
y_type = type_of_target(y)
if 'multioutput' in y_type:
raise ValueError("Multioutput target data is not supported with label "
"binarization")
if y_type == 'unknown':
raise ValueError("The type of target data is not known")
n_samples = y.shape[0] if sp.issparse(y) else len(y)
n_classes = len(classes)
classes = np.asarray(classes)
if y_type == "binary":
if n_classes == 1:
if sparse_output:
return sp.csr_matrix((n_samples, 1), dtype=int)
else:
Y = np.zeros((len(y), 1), dtype=np.int)
Y += neg_label
return Y
elif len(classes) >= 3:
y_type = "multiclass"
sorted_class = np.sort(classes)
if y_type == "multilabel-indicator":
y_n_classes = y.shape[1] if hasattr(y, 'shape') else len(y[0])
if classes.size != y_n_classes:
raise ValueError("classes {0} mismatch with the labels {1}"
" found in the data"
.format(classes, unique_labels(y)))
if y_type in ("binary", "multiclass"):
y = column_or_1d(y)
y_in_classes = np.in1d(y, classes)
y_seen = y[y_in_classes]
indices = np.searchsorted(sorted_class, y_seen)
indptr = np.hstack((0, np.cumsum(y_in_classes)))
data = np.empty_like(indices)
data.fill(pos_label)
Y = sp.csr_matrix((data, indices, indptr),
shape=(n_samples, n_classes))
elif y_type == "multilabel-indicator":
Y = sp.csr_matrix(y)
if pos_label != 1:
data = np.empty_like(Y.data)
data.fill(pos_label)
Y.data = data
else:
raise ValueError("%s target data is not supported with label "
"binarization" % y_type)
if not sparse_output:
Y = Y.toarray()
Y = Y.astype(int, copy=False)
if neg_label != 0:
Y[Y == 0] = neg_label
if pos_switch:
Y[Y == pos_label] = 0
else:
Y.data = Y.data.astype(int, copy=False)
if np.any(classes != sorted_class):
indices = np.searchsorted(sorted_class, classes)
Y = Y[:, indices]
if y_type == "binary":
if sparse_output:
Y = Y.getcol(-1)
else:
Y = Y[:, -1].reshape((-1, 1))
return Y
def _encode_python(values, uniques=None, encode=False):
if uniques is None:
uniques = sorted(set(values))
uniques = np.array(uniques, dtype=values.dtype)
if encode:
table = {val: i for i, val in enumerate(uniques)}
try:
encoded = np.array([table[v] for v in values])
except KeyError as e:
raise ValueError("y contains previously unseen labels: %s"
% str(e))
return uniques, encoded
else:
return uniques
def _encode_numpy(values, uniques=None, encode=False, check_unknown=True):
if uniques is None:
if encode:
uniques, encoded = np.unique(values, return_inverse=True)
return uniques, encoded
else:
return np.unique(values)
if encode:
if check_unknown:
diff = _encode_check_unknown(values, uniques)
if diff:
raise ValueError("y contains previously unseen labels: %s"
% str(diff))
encoded = np.searchsorted(uniques, values)
return uniques, encoded
else:
return uniques
def _encode(values, uniques=None, encode=False, check_unknown=True):
if values.dtype == object:
try:
res = _encode_python(values, uniques, encode)
except TypeError:
raise TypeError("argument must be a string or number")
return res
else:
return _encode_numpy(values, uniques, encode,
check_unknown=check_unknown)
def _encode_check_unknown(values, uniques, return_mask=False):
if values.dtype == object:
uniques_set = set(uniques)
diff = list(set(values) - uniques_set)
if return_mask:
if diff:
valid_mask = np.array([val in uniques_set for val in values])
else:
valid_mask = np.ones(len(values), dtype=bool)
return diff, valid_mask
else:
return diff
else:
unique_values = np.unique(values)
diff = list(np.setdiff1d(unique_values, uniques, assume_unique=True))
if return_mask:
if diff:
valid_mask = np.in1d(values, uniques)
else:
valid_mask = np.ones(len(values), dtype=bool)
return diff, valid_mask
else:
return diff
class LabelEncoder(TransformerMixin, BaseEstimator):
|
Apache License 2.0
|
indigo-dc/udocker
|
udocker/container/localrepo.py
|
LocalRepository._verify_layer_file
|
python
|
def _verify_layer_file(self, structure, layer_id):
(layer_algorithm, layer_hash) = self._split_layer_id(layer_id)
layer_f = structure["repolayers"][layer_id]["layer_f"]
if not (os.path.exists(layer_f) and
os.path.islink(layer_f)):
Msg().err("Error: layer data file symbolic link not found",
layer_id)
return False
if not os.path.exists(self.cur_tagdir + '/' +
os.readlink(layer_f)):
Msg().err("Error: layer data file not found")
return False
if "gzip" in OSInfo('/').get_filetype(layer_f):
if not FileUtil(layer_f).verify_tar():
Msg().err("Error: layer tar verify failed:", layer_f)
return False
if layer_algorithm:
layer_f_chksum = ChkSUM().hash(layer_f, layer_algorithm)
if layer_f_chksum and layer_f_chksum != layer_hash:
Msg().err("Error: layer file chksum failed:", layer_f)
return False
return True
|
Verify layer file in repository
|
https://github.com/indigo-dc/udocker/blob/87fb41cb5bcdb211d70f2b7f067c8e33d8959a1f/udocker/container/localrepo.py#L708-L730
|
import os
import re
import sys
import stat
import json
from udocker import is_genstr
from udocker.config import Config
from udocker.msg import Msg
from udocker.utils.fileutil import FileUtil
from udocker.utils.chksum import ChkSUM
from udocker.utils.uprocess import Uprocess
from udocker.helper.osinfo import OSInfo
class LocalRepository(object):
def __init__(self, topdir=None):
self.topdir = topdir if topdir else Config.conf['topdir']
self.bindir = Config.conf['bindir']
self.libdir = Config.conf['libdir']
self.docdir = Config.conf['docdir']
self.reposdir = Config.conf['reposdir']
self.layersdir = Config.conf['layersdir']
self.containersdir = Config.conf['containersdir']
self.homedir = Config.conf['homedir']
if not self.bindir:
self.bindir = self.topdir + "/bin"
if not self.libdir:
self.libdir = self.topdir + "/lib"
if not self.docdir:
self.docdir = self.topdir + "/doc"
if not self.reposdir:
self.reposdir = self.topdir + "/repos"
if not self.layersdir:
self.layersdir = self.topdir + "/layers"
if not self.containersdir:
self.containersdir = self.topdir + "/containers"
self.cur_repodir = ""
self.cur_tagdir = ""
self.cur_containerdir = ""
FileUtil(self.reposdir).register_prefix()
FileUtil(self.layersdir).register_prefix()
FileUtil(self.containersdir).register_prefix()
def setup(self, topdir=None):
self.__init__(topdir)
def create_repo(self):
try:
if not os.path.exists(self.topdir):
os.makedirs(self.topdir)
if not os.path.exists(self.reposdir):
os.makedirs(self.reposdir)
if not os.path.exists(self.layersdir):
os.makedirs(self.layersdir)
if not os.path.exists(self.containersdir):
os.makedirs(self.containersdir)
if not os.path.exists(self.bindir):
os.makedirs(self.bindir)
if not os.path.exists(self.libdir):
os.makedirs(self.libdir)
if not os.path.exists(self.docdir):
os.makedirs(self.docdir)
if not (Config.conf['keystore'].startswith("/") or os.path.exists(self.homedir)):
os.makedirs(self.homedir)
except(IOError, OSError):
return False
return True
def is_repo(self):
dirs_exist = [os.path.exists(self.reposdir),
os.path.exists(self.layersdir),
os.path.exists(self.containersdir),
os.path.exists(self.bindir),
os.path.exists(self.libdir)]
return all(dirs_exist)
def is_container_id(self, obj):
if not is_genstr(obj):
return False
match = re.match(
"^[a-z0-9]+-[a-z0-9]+-[a-z0-9]+-[a-z0-9]+-[a-z0-9]+$", obj)
if match:
return True
return False
def protect_container(self, container_id):
return self._protect(self.cd_container(container_id))
def unprotect_container(self, container_id):
return self._unprotect(self.cd_container(container_id))
def isprotected_container(self, container_id):
return self._isprotected(self.cd_container(container_id))
def _protect(self, directory):
try:
open(directory + "/PROTECT", 'w').close()
return True
except (IOError, OSError):
return False
def _unprotect(self, directory):
return FileUtil(directory + "/PROTECT").remove()
def _isprotected(self, directory):
return os.path.exists(directory + "/PROTECT")
def iswriteable_container(self, container_id):
container_root = self.cd_container(container_id) + "/ROOT"
if not os.path.exists(container_root):
return 2
if not os.path.isdir(container_root):
return 3
if os.access(container_root, os.W_OK):
return 1
return 0
def get_size(self, container_id):
container_root = self.cd_container(container_id) + "/ROOT"
try:
size, dummy = Uprocess().get_output(["du", "-s", "-m", "-x",
container_root]).split()
return int(size)
except (ValueError, NameError, AttributeError):
return -1
def get_containers_list(self, dir_only=True):
containers_list = []
if not os.path.isdir(self.containersdir):
return []
for fname in os.listdir(self.containersdir):
container_dir = self.containersdir + '/' + fname
if os.path.isdir(container_dir):
try:
filep = open(container_dir + "/imagerepo.name", 'r')
except (IOError, OSError):
reponame = ""
else:
reponame = filep.read()
filep.close()
if dir_only:
containers_list.append(container_dir)
elif not os.path.islink(container_dir):
names = self.get_container_name(fname)
if not names:
names = ""
containers_list.append((fname, reponame, str(names)))
return containers_list
def del_container(self, container_id, force=False):
container_dir = self.cd_container(container_id)
if not container_dir:
return False
if container_dir in self.get_containers_list(True):
for name in self.get_container_name(container_id):
self.del_container_name(name)
if force:
FileUtil(container_dir).rchmod(stat.S_IWUSR | stat.S_IRUSR,
stat.S_IWUSR | stat.S_IRUSR |
stat.S_IXUSR)
if FileUtil(container_dir).remove(recursive=True):
self.cur_containerdir = ""
return True
return False
def cd_container(self, container_id):
container_dir = self.containersdir + '/' + str(container_id)
if os.path.exists(container_dir):
if container_dir in self.get_containers_list(True):
return container_dir
return ""
def _symlink(self, existing_file, link_file):
if os.path.exists(link_file):
return False
rel_path_to_existing = os.path.relpath(
existing_file, os.path.dirname(link_file))
try:
os.symlink(rel_path_to_existing, link_file)
except (IOError, OSError):
return False
return True
def _name_is_valid(self, name):
invalid_chars = ("/", ".", " ", "[", "]")
if name and any(x in name for x in invalid_chars):
return False
return not len(name) > 2048
def set_container_name(self, container_id, name):
if self._name_is_valid(name):
container_dir = self.cd_container(container_id)
if container_dir:
linkname = os.path.realpath(self.containersdir + '/' + name)
if os.path.exists(linkname):
return False
real_container_dir = os.path.realpath(container_dir)
return self._symlink(real_container_dir, linkname)
return False
def del_container_name(self, name):
if self._name_is_valid(name):
linkname = self.containersdir + '/' + name
if os.path.islink(linkname):
return FileUtil(linkname).remove()
return False
def get_container_id(self, container_name):
if container_name:
pathname = self.containersdir + "/" + container_name
if os.path.islink(pathname):
return os.path.basename(os.readlink(pathname))
if os.path.isdir(pathname):
return container_name
return ""
def get_container_name(self, container_id):
if not os.path.isdir(self.containersdir):
return []
link_list = []
for fname in os.listdir(self.containersdir):
container = self.containersdir + "/" + fname
if os.path.islink(container):
real_container = os.readlink(container)
if os.path.basename(real_container) == container_id:
link_list.append(fname)
return link_list
def setup_container(self, imagerepo, tag, container_id):
container_dir = self.containersdir + "/" + str(container_id)
if os.path.exists(container_dir):
return ""
try:
os.makedirs(container_dir + "/ROOT")
out_imagerepo = open(container_dir + "/imagerepo.name", 'w')
except (IOError, OSError):
return None
else:
out_imagerepo.write(imagerepo + ":" + tag)
out_imagerepo.close()
self.cur_containerdir = container_dir
return container_dir
def _is_tag(self, tag_dir):
try:
if os.path.isfile(tag_dir + "/TAG"):
return True
except (IOError, OSError):
pass
return False
def protect_imagerepo(self, imagerepo, tag):
return self._protect(self.reposdir + "/" + imagerepo + "/" + tag)
def unprotect_imagerepo(self, imagerepo, tag):
return self._unprotect(self.reposdir + "/" + imagerepo + "/" + tag)
def isprotected_imagerepo(self, imagerepo, tag):
return self._isprotected(self.reposdir + "/" + imagerepo + "/" + tag)
def cd_imagerepo(self, imagerepo, tag):
if imagerepo and tag:
tag_dir = self.reposdir + "/" + imagerepo + "/" + tag
if os.path.exists(tag_dir):
if self._is_tag(tag_dir):
self.cur_repodir = self.reposdir + "/" + imagerepo
self.cur_tagdir = self.cur_repodir + "/" + tag
return self.cur_tagdir
return ""
def _find(self, filename, in_dir):
found_list = []
if FileUtil(in_dir).isdir():
for fullname in os.listdir(in_dir):
f_path = in_dir + '/' + fullname
if os.path.islink(f_path):
if filename in fullname:
found_list.append(f_path)
elif os.path.isdir(f_path):
found_list.extend(self._find(filename, f_path))
return found_list
def _inrepository(self, filename):
return self._find(filename, self.reposdir)
def _remove_layers(self, tag_dir, force):
for fname in os.listdir(tag_dir):
f_path = tag_dir + '/' + fname
if os.path.islink(f_path):
linkname = os.readlink(f_path)
layer_file = tag_dir + '/' + linkname
if not FileUtil(f_path).remove() and not force:
return False
if not self._inrepository(os.path.basename(linkname)):
if not FileUtil(layer_file).remove() and not force:
return False
return True
def del_imagerepo(self, imagerepo, tag, force=False):
tag_dir = self.cd_imagerepo(imagerepo, tag)
if (tag_dir and
self._remove_layers(tag_dir, force) and
FileUtil(tag_dir).remove(recursive=True)):
self.cur_repodir = ""
self.cur_tagdir = ""
while imagerepo:
FileUtil(self.reposdir + '/' + imagerepo).rmdir()
imagerepo = "/".join(imagerepo.split("/")[:-1])
return True
return False
def _get_tags(self, tag_dir):
tag_list = []
if FileUtil(tag_dir).isdir():
for fname in os.listdir(tag_dir):
f_path = tag_dir + '/' + fname
if self._is_tag(f_path):
tag_list.append(
(tag_dir.replace(self.reposdir + '/', ""), fname))
elif os.path.isdir(f_path):
tag_list.extend(self._get_tags(f_path))
return tag_list
def get_imagerepos(self):
return self._get_tags(self.reposdir)
def get_layers(self, imagerepo, tag):
layers_list = []
tag_dir = self.cd_imagerepo(imagerepo, tag)
if tag_dir:
for fname in os.listdir(tag_dir):
filename = tag_dir + "/" + fname
if os.path.islink(filename):
size = FileUtil(filename).size()
layers_list.append((filename, size))
return layers_list
def add_image_layer(self, filename, linkname=None):
if not self.cur_tagdir:
return False
if not os.path.exists(filename):
return False
if not os.path.exists(self.cur_tagdir):
return False
if linkname:
linkname = self.cur_tagdir + '/' + os.path.basename(linkname)
else:
linkname = self.cur_tagdir + '/' + os.path.basename(filename)
if os.path.islink(linkname):
FileUtil(linkname).remove()
self._symlink(filename, linkname)
return True
def setup_imagerepo(self, imagerepo):
if not imagerepo:
return None
directory = self.reposdir + "/" + imagerepo
try:
if not os.path.exists(directory):
os.makedirs(directory)
self.cur_repodir = directory
return True
self.cur_repodir = directory
return False
except (IOError, OSError):
return None
def setup_tag(self, tag):
directory = self.cur_repodir + "/" + tag
try:
if not os.path.exists(directory):
os.makedirs(directory)
self.cur_tagdir = directory
out_tag = open(directory + "/TAG", 'w')
except (IOError, OSError):
return False
else:
out_tag.write(self.cur_repodir + ":" + tag)
out_tag.close()
return True
def set_version(self, version):
if not (self.cur_repodir and self.cur_tagdir):
return False
if not os.path.exists(self.cur_repodir):
return False
if not os.path.exists(self.cur_tagdir):
return False
directory = self.cur_tagdir
if (os.path.exists(directory + "/v1") and version != "v1" or
os.path.exists(directory + "/v2") and version != "v2"):
if len(os.listdir(directory)) == 1:
try:
FileUtil(directory + "/v1").remove()
FileUtil(directory + "/v2").remove()
except (IOError, OSError):
pass
if os.listdir(directory):
return False
try:
open(directory + "/" + version, 'a').close()
except (IOError, OSError):
return False
return True
def _get_image_attributes_v1(self, directory):
files = []
layer_list = self.load_json("ancestry")
if layer_list:
for layer_id in reversed(layer_list):
layer_file = directory + '/' + layer_id + ".layer"
if not os.path.exists(layer_file):
return (None, None)
files.append(layer_file)
json_file_list = [directory + "/container.json",
directory + '/' + layer_list[0] + ".json", ]
for json_file in json_file_list:
if os.path.exists(json_file):
container_json = self.load_json(json_file)
return (container_json, files)
return (None, None)
def _get_image_attributes_v2_s1(self, directory, manifest):
files = []
for layer in reversed(manifest["fsLayers"]):
layer_file = directory + '/' + layer["blobSum"]
if not os.path.exists(layer_file):
return (None, None)
files.append(layer_file)
try:
json_string = manifest["history"][0]["v1Compatibility"].strip()
container_json = json.loads(json_string)
except (IOError, OSError, AttributeError, ValueError, TypeError,
IndexError, KeyError):
return (None, files)
return (container_json, files)
def _get_image_attributes_v2_s2(self, directory, manifest):
files = []
for layer in manifest["layers"]:
layer_file = directory + '/' + layer["digest"]
if not os.path.exists(layer_file):
return (None, None)
files.append(layer_file)
try:
json_file = directory + '/' + manifest["config"]["digest"]
container_json = json.loads(FileUtil(json_file).getdata('r'))
except (IOError, OSError, AttributeError, ValueError, TypeError,
IndexError, KeyError):
return (None, files)
return (container_json, files)
def get_image_attributes(self):
directory = self.cur_tagdir
if os.path.exists(directory + "/v1"):
return self._get_image_attributes_v1(directory)
if os.path.exists(directory + "/v2"):
manifest = self.load_json("manifest")
if manifest and "fsLayers" in manifest:
return self._get_image_attributes_v2_s1(directory, manifest)
if manifest and "layers" in manifest:
return self._get_image_attributes_v2_s2(directory, manifest)
return (None, None)
def save_json(self, filename, data):
if filename.startswith("/"):
out_filename = filename
else:
if not (self.cur_repodir and self.cur_tagdir):
return False
if not os.path.exists(self.cur_repodir):
return False
if not os.path.exists(self.cur_tagdir):
return False
out_filename = self.cur_tagdir + "/" + filename
outfile = None
try:
outfile = open(out_filename, 'w')
json.dump(data, outfile)
except (IOError, OSError, AttributeError, ValueError, TypeError):
if outfile:
outfile.close()
return False
outfile.close()
return True
def load_json(self, filename):
if filename.startswith('/'):
in_filename = filename
else:
if not (self.cur_repodir and self.cur_tagdir):
return False
if not os.path.exists(self.cur_repodir):
return False
if not os.path.exists(self.cur_tagdir):
return False
in_filename = self.cur_tagdir + '/' + filename
json_obj = None
infile = None
try:
infile = open(in_filename, 'r')
json_obj = json.load(infile)
except (IOError, OSError, AttributeError, ValueError, TypeError):
pass
if infile:
infile.close()
return json_obj
def _load_structure(self, imagetagdir):
structure = {}
structure["repolayers"] = dict()
if FileUtil(imagetagdir).isdir():
for fname in os.listdir(imagetagdir):
f_path = imagetagdir + '/' + fname
if fname == "ancestry":
structure["ancestry"] = self.load_json(f_path)
if fname == "manifest":
structure["manifest"] = self.load_json(f_path)
if len(fname) >= 64:
layer_id = fname.replace(".json", "").replace(".layer", "")
if layer_id not in structure["repolayers"]:
structure["repolayers"][layer_id] = dict()
if fname.endswith("json"):
structure["repolayers"][layer_id]["json"] = self.load_json(f_path)
structure["repolayers"][layer_id]["json_f"] = f_path
structure["has_json_f"] = True
elif fname.endswith("layer"):
structure["repolayers"][layer_id]["layer_f"] = f_path
elif ':' in fname:
structure["repolayers"][layer_id]["layer_f"] = f_path
else:
Msg().out("Warning: unkwnon file in layer:", f_path,
l=Msg.WAR)
elif fname in ("TAG", "v1", "v2", "PROTECT", "container.json"):
pass
Msg().out("Warning: unkwnon file in image:", f_path, l=Msg.WAR)
return structure
def _find_top_layer_id(self, structure, my_layer_id=""):
if "repolayers" not in structure:
return ""
if not my_layer_id:
if sys.version_info[0] >= 3:
my_layer_id = list(structure["repolayers"].keys())[0]
else:
my_layer_id = structure["repolayers"].keys()[0]
found = ""
for layer_id in structure["repolayers"]:
if "json" not in structure["repolayers"][layer_id]:
continue
if "parent" not in structure["repolayers"][layer_id]["json"]:
continue
if (my_layer_id ==
structure["repolayers"][layer_id]["json"]["parent"]):
found = self._find_top_layer_id(structure, layer_id)
break
if not found:
return my_layer_id
return found
def _sorted_layers(self, structure, top_layer_id):
sorted_layers = []
next_layer = top_layer_id
while next_layer:
sorted_layers.append(next_layer)
if "json" not in structure["repolayers"][next_layer]:
break
if "parent" not in structure["repolayers"][next_layer]["json"]:
break
next_layer = structure["repolayers"][next_layer]["json"]["parent"]
if not next_layer:
break
return sorted_layers
def _split_layer_id(self, layer_id):
if ':' in layer_id:
return layer_id.split(":", 1)
return ("", layer_id)
|
Apache License 2.0
|
siviltaram/persona-dialogue-generation
|
parlai/agents/legacy_agents/seq2seq/modules_v1.py
|
Seq2seq._decode_forced
|
python
|
def _decode_forced(self, ys, encoder_states):
bsz = ys.size(0)
seqlen = ys.size(1)
hidden = encoder_states[1]
attn_params = (encoder_states[0], encoder_states[2])
y_in = ys.narrow(1, 0, seqlen - 1)
xs = torch.cat([self._starts(bsz), y_in], 1)
scores = []
if self.attn_type == 'none':
output, hidden = self.decoder(xs, hidden, attn_params)
score = self.output(output)
scores.append(score)
else:
for i in range(seqlen):
xi = xs.select(1, i).unsqueeze(1)
output, hidden = self.decoder(xi, hidden, attn_params)
score = self.output(output)
scores.append(score)
scores = torch.cat(scores, 1)
return scores
|
Decode with teacher forcing.
|
https://github.com/siviltaram/persona-dialogue-generation/blob/3cc800ffe3c5a8d16ed26522cda839acfab8d417/parlai/agents/legacy_agents/seq2seq/modules_v1.py#L112-L141
|
import math
import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence
import torch.nn.functional as F
from parlai.core.utils import NEAR_INF
def opt_to_kwargs(opt):
kwargs = {}
for k in ['numlayers', 'dropout', 'bidirectional', 'rnn_class',
'lookuptable', 'decoder', 'numsoftmax',
'attention', 'attention_length', 'attention_time',
'input_dropout']:
if k in opt:
kwargs[k] = opt[k]
return kwargs
def pad(tensor, length, dim=0, pad=0):
if tensor.size(dim) < length:
return torch.cat(
[tensor, tensor.new(*tensor.size()[:dim],
length - tensor.size(dim),
*tensor.size()[dim + 1:]).fill_(pad)],
dim=dim)
else:
return tensor
class Seq2seq(nn.Module):
RNN_OPTS = {'rnn': nn.RNN, 'gru': nn.GRU, 'lstm': nn.LSTM}
def __init__(
self, num_features, embeddingsize, hiddensize, numlayers=2, dropout=0,
bidirectional=False, rnn_class='lstm', lookuptable='unique',
decoder='same', numsoftmax=1,
attention='none', attention_length=48, attention_time='post',
padding_idx=0, start_idx=1, unknown_idx=3, input_dropout=0,
longest_label=1,
):
super().__init__()
self.attn_type = attention
self.NULL_IDX = padding_idx
self.register_buffer('START', torch.LongTensor([start_idx]))
self.longest_label = longest_label
rnn_class = Seq2seq.RNN_OPTS[rnn_class]
self.decoder = RNNDecoder(
num_features, embeddingsize, hiddensize,
padding_idx=padding_idx, rnn_class=rnn_class,
numlayers=numlayers, dropout=dropout,
attn_type=attention, attn_length=attention_length,
attn_time=attention_time,
bidir_input=bidirectional)
shared_lt = (self.decoder.lt
if lookuptable in ('enc_dec', 'all') else None)
shared_rnn = self.decoder.rnn if decoder == 'shared' else None
self.encoder = RNNEncoder(
num_features, embeddingsize, hiddensize,
padding_idx=padding_idx, rnn_class=rnn_class,
numlayers=numlayers, dropout=dropout,
bidirectional=bidirectional,
shared_lt=shared_lt, shared_rnn=shared_rnn,
unknown_idx=unknown_idx, input_dropout=input_dropout)
shared_weight = (self.decoder.lt.weight
if lookuptable in ('dec_out', 'all') else None)
self.output = OutputLayer(
num_features, embeddingsize, hiddensize, dropout=dropout,
numsoftmax=numsoftmax, shared_weight=shared_weight,
padding_idx=padding_idx)
def _encode(self, xs, prev_enc=None):
if prev_enc is not None:
return prev_enc
else:
return self.encoder(xs)
def _starts(self, bsz):
return self.START.detach().expand(bsz, 1)
|
MIT License
|
mme/vergeml
|
vergeml/command.py
|
Command.parse
|
python
|
def parse(self, argv):
res = {}
at_names, rest = parse_trained_models(argv)
sub_res = self._parse_subcommand(argv, rest)
if sub_res is not None:
return sub_res
at_opt = self._parse_at_option(at_names, res)
assert self.name == rest.pop(0)
if self.free_form:
return (res.get(at_opt.name) if at_opt else None, rest)
args, extra = self._parse_opts(rest)
self._parse_arguments(extra, res)
self._parse_validate(args, res)
return res
|
Parse command line options.
|
https://github.com/mme/vergeml/blob/3dc30ba4e0f3d038743b6d468860cbcf3681acc6/vergeml/command.py#L375-L404
|
import inspect
import getopt
from copy import deepcopy
from vergeml.plugins import PLUGINS
from vergeml.utils import did_you_mean, VergeMLError, parse_trained_models
from vergeml.option import Option
from vergeml.config import parse_command
_CMD_META_KEY = '__vergeml_command__'
class _CommandCallProxy:
def __init__(self, cmd, obj):
self.__cmd__ = cmd
self.__wrapped_obj__ = obj
@staticmethod
def _wrap_call(cmd, fun, args, env):
fn_args = deepcopy(args)
config_name = cmd.name
if env.current_command:
sub_option = next(filter(lambda c: c.subcommand, env.current_command[0].options), None)
if sub_option and args.get(sub_option.name) == cmd.name:
config_name = env.current_command[0].name + '.' + cmd.name
if not cmd.free_form:
config = parse_command(cmd, env.get(config_name))
for k, arg in config.items():
fn_args.setdefault(k, arg)
for opt in cmd.options:
if opt.name not in fn_args and (opt.default is not None or not opt.is_required()):
fn_args[opt.name] = opt.default
for opt in cmd.options:
if opt.is_required() and opt.name not in fn_args:
raise VergeMLError(f'Missing argument --{opt.name}.', help_topic=cmd.name)
env.current_command = (cmd, fn_args)
env.set_defaults(cmd.name, fn_args)
return fun(fn_args, env)
@staticmethod
def class_wrapper(klass, name):
def _wrapper(*args, **kwargs):
return _CommandCallProxy(name, klass(*args, **kwargs))
return _wrapper
def __call__(self, args, env):
return _CommandCallProxy._wrap_call(
self.__cmd__, self.__wrapped_obj__, args, env)
def __getattr__(self, name):
if name in ('__wrapped_obj__', '__cmd__'):
raise AttributeError()
return getattr(self.__wrapped_obj__, name)
def __setattr__(self, name, value):
if name in ('__wrapped_obj__', '__cmd__'):
self.__dict__[name] = value
else:
setattr(self.__wrapped_obj__, name, value)
@staticmethod
def function_wrapper(fun, name):
def _wrapper(*fn_args):
*self_, args, env = fn_args
_fun = fun.__get__(self_[0]) if self_ else fun
return _CommandCallProxy._wrap_call(name, _fun, args, env)
return _wrapper
def command(name=None,
descr=None,
long_descr=None,
examples=None,
free_form=False,
type='command'):
def decorator(obj):
assert getattr(obj, _CMD_META_KEY, None) is None
_name = name or getattr(obj, '__name__', None)
options = list(reversed(Option.discover(obj)))
cmd = Command(_name,
descr=descr,
long_descr=long_descr,
examples=examples,
options=options,
free_form=free_form,
type=type)
if inspect.isclass(obj):
setattr(obj, _CMD_META_KEY, cmd)
_wrapper = _CommandCallProxy.class_wrapper(obj, cmd)
else:
_wrapper = _CommandCallProxy.function_wrapper(obj, cmd)
setattr(_wrapper, _CMD_META_KEY, cmd)
return _wrapper
return decorator
def train(name=None, descr=None, long_descr=None, examples=None, free_form=False):
return command(name=name, descr=descr, long_descr=long_descr, examples=examples,
free_form=free_form, type='train')
def predict(name=None, descr=None, long_descr=None, examples=None, free_form=False):
return command(name=name, descr=descr, long_descr=long_descr, examples=examples,
free_form=free_form, type='predict')
class Command:
def __init__(self,
name, descr=None, long_descr=None, examples=None, free_form=False,
type='command', options=None, plugins=PLUGINS):
self.name = name
self.descr = (descr or long_descr or "")
self.long_descr = (long_descr or descr or "")
self.examples = examples
self.options = options or []
self.plugins = plugins
self.type = type
self.free_form = free_form
at_option = list(filter(lambda o: o.is_at_option(), options))
assert len(at_option) <= 1, "Can only have one @option."
if at_option:
at_option = at_option[0]
assert at_option.has_type(None, list, '@', 'Optional[@]', 'List[@]')
arg_param = list(filter(lambda o: o.is_argument_option(), options))
assert len(arg_param) <= 1, "Can only have one argument parameter."
@staticmethod
def discover(obj, plugins=PLUGINS):
res = None
if hasattr(obj, _CMD_META_KEY):
res = getattr(obj, _CMD_META_KEY)
res.plugins = plugins
for option in res.options:
option.plugins = plugins
return res
@staticmethod
def find_functions(obj):
fns = [m[1] for m in inspect.getmembers(obj) if not m[0].startswith("_") and callable(m[1])]
fns = list(sorted(fns, key=lambda f: f.__code__.co_firstlineno))
fns = filter(lambda f: hasattr(f, _CMD_META_KEY), fns)
return list(fns)
def usage(self, short=False, parent_command=None):
opt = self._usage_partition_options()
if self.long_descr and not short:
result = self.long_descr.strip() + "\n\n"
else:
result = ""
result += "Usage:\n ml"
result += self._usage_command(opt, parent_command)
result += self._usage_options(opt)
if self.examples and not short:
result += "\n\nExamples:\n"
result += "\n".join(map(lambda l: " " + l, self.examples.splitlines()))
return result
def _usage_partition_options(self):
res = dict(
at=None,
arg=None,
sub=None,
mandatory=[],
optional=[]
)
for option in self.options:
if option.is_at_option():
res['at'] = option
elif option.is_argument_option():
res['arg'] = option
elif bool(option.subcommand):
res['sub'] = option
elif option.is_optional():
res['optional'].append(option)
else:
res['mandatory'].append(option)
return res
def _usage_command(self, opt, parent_command):
result = ""
if opt['at']:
if opt['at'].has_type(list, 'List[@]'):
result += f" [{opt['at'].name} ...]"
elif opt['at'].is_optional():
result += f" [{opt['at'].name}]"
else:
result += f" {opt['at'].name}"
result += f" {parent_command}:{self.name}" if parent_command else " " + self.name
if opt['sub']:
result += f":{opt['sub'].name}"
if opt['mandatory']:
val = " ".join(map(lambda o: f"--{o.name}=<{o.name}>", opt['mandatory']))
result += f" {val}"
if opt['optional']:
result += " [options]"
if opt['arg']:
if opt['arg'].has_type(str, list):
result += f" [{opt['arg'].name} ...]"
elif opt['arg'].is_optional():
result += f" [{opt['arg'].name}]"
else:
result += f" {opt['arg'].name}"
return result
def _usage_options(self, opt):
result = ""
indent = 2
n_spaces = 4
opt_descr = []
opt_descr = self._usage_opt_descr(opt)
if opt_descr:
max_name = max(map(lambda o: len(o[0]), opt_descr))
result += "\n\nOptions:"
for k, val in opt_descr:
result += "\n" + str(indent * ' ')
space = (max_name + n_spaces) - len(k)
if val:
result += k + str(space * ' ') + val
else:
result += k
if opt['sub']:
plugins = self.plugins.all(opt['sub'].subcommand)
max_name = max(map(len, plugins.keys())) if plugins.keys() else 0
name = opt['sub'].name.capitalize() + "s"
if plugins.keys():
result += f"\n\n{name}:"
for k, val in plugins.items():
result += "\n" + str(indent * ' ')
space = (max_name + n_spaces) - len(k)
cmd = Command.discover(val)
if cmd.descr:
result += k + str(space * ' ') + cmd.descr
else:
result += k
return result
def _usage_opt_descr(self, opt):
opt_descr = []
if opt['at']:
if opt['at'].has_type(list, 'List[@]'):
opt_descr.append((opt['at'].name, "A list of trained models."))
else:
opt_descr.append((opt['at'].name, "The name of a trained model."))
for option in self.options:
if option.is_at_option() or option.is_argument_option() or bool(option.subcommand):
continue
opt_name = "--" + option.name
if option.short:
opt_name = "-" + option.short + ", " + opt_name
descr = (option.descr or "")
if option.default is not None:
if isinstance(option.default, bool):
default_str = 'true' if option.default else 'false'
else:
default_str = str(option.default)
if descr:
descr += " "
descr += f"[default: {default_str}]"
opt_descr.append((opt_name, descr))
if opt['arg'] and opt['arg'].descr:
opt_descr.append((opt['arg'].name, opt['arg'].descr or ""))
return opt_descr
|
MIT License
|
mjocean/pyprocgamehd-skeletongame
|
procgame/dmd/particle.py
|
ParticleLayer.reset
|
python
|
def reset(self):
self.start_time = None
self.stalls = self.num_hold_frames
self.buffer.clear()
self.ps.reset()
|
Resets the animation back to the first frame.
|
https://github.com/mjocean/pyprocgamehd-skeletongame/blob/782b2cb994f9a76cb34aedb4ae6a3a00bc0b6553/procgame/dmd/particle.py#L328-L333
|
import sys, random, os
from dmd import Layer, Frame
import sdl2
from sdl2_displaymanager import sdl2_DisplayManager
import time
class Particle(object):
def __init__(self, x, y, emitter):
self.x = x
self.y = y
self.parent = emitter
self.life = random.randint(int(self.parent.max_life*0.80),self.parent.max_life)
self.dx = random.randint(-5,5)
self.dy = random.randint(-5,5)
self._r = 255
self._g = 255
self._b = 255
self._a = 255
self.tx_num = 0
self.color_changed = True
self.alpha_changed = True
@property
def r(self):
return self._r
@r.setter
def r(self, value):
self._r = value
self.color_changed = True
@property
def g(self):
return self._g
@g.setter
def g(self, value):
self._g = value
self.color_changed = True
@property
def b(self):
return self._b
@b.setter
def b(self, value):
self._b = value
self.color_changed = True
@property
def a(self):
return self._a
@a.setter
def a(self, value):
self._a = value
self.alpha_changed = True
def update(self):
self.life = self.life - 1
self.update_location()
self.update_appearance()
def update_location(self):
self.x = int(self.x + self.dx)
self.y = int(self.y + self.dy)
def update_appearance(self):
if(self.life < .8 * self.parent.max_life):
self.b = 0
self.g = int(self.life/float(self.parent.max_life) * 220) + 35
self.a = ((self.life/float(self.parent.max_life)) * 255)
class SnowParticle(Particle):
def __init__(self, x, y, emitter):
self.x = x + random.randint(-450,450)
super(SnowParticle, self).__init__(self.x,y,emitter)
self.r = 225
self.g = 225
self.b = 255
def update_location(self):
self.dx = random.randint(-20,20)
self.dy = random.randint(0,20)
super(SnowParticle, self).update_location()
def update_appearance(self):
pass
class FireParticle(Particle):
def __init__(self, x, y, emitter):
super(FireParticle, self).__init__(x,y,emitter)
self.dx = random.randint(-5,5)
self.dy = random.randint(-4,4)
def update_location(self):
self.dx = random.randint(-3,3)
self.dy = random.randint(-5,1)
super(FireParticle, self).update_location()
class FireworkParticle(Particle):
def __init__(self, x, y, emitter):
super(FireworkParticle, self).__init__(x,y,emitter)
self.dy = random.randint(-5,3)
self.dx = random.randint(-10,10)
self.a = 192
def update_location(self):
if(self.life < .75 * self.parent.max_life):
self.dy = 3
self.dx = 0
super(FireworkParticle, self).update_location()
def update_appearance(self):
if(self.life < .8 * self.parent.max_life):
self.g = 0
self.b = int(self.life/float(self.parent.max_life) * 220) + 35
self.r = self.b
class ParticleEmitter(object):
def __init__(self, x, y, max_life=60, max_particles=200, particles_per_update=5, total_creations=None, particle_class=Particle, random_next=False, dx=0, dy=0):
self.x = x
self.y = y
self.orig_x = x
self.orig_y = y
self.dx = dx
self.dy = dy
self.particle_class = particle_class
self.random_next = random_next
self.particles = list()
self.particles_per_update = particles_per_update
self.max_particles = max_particles
self.max_life = max_life
self.total_creations = total_creations
self.creations_remaining = total_creations
self.stopped = False
for i in range(0,particles_per_update):
p = self.particle_class(x,y, emitter=self)
p.update()
self.particles.append(p)
if(self.total_creations is not None):
self.creations_remaining = self.creations_remaining - particles_per_update
else:
self.creations_remaining = self.max_particles
cwd = os.path.dirname(__file__)
sprImg8 = sdl2_DisplayManager.inst().load_surface(os.path.join(cwd,"exp8.png"))
sprImg16 = sdl2_DisplayManager.inst().load_surface(os.path.join(cwd,"exp16.png"))
self.txImg8 = sdl2_DisplayManager.inst().texture_from_surface(sprImg8)
self.txImg16 = sdl2_DisplayManager.inst().texture_from_surface(sprImg16)
(self.p8_w,self.p8_h) = self.txImg8.size
(self.p16_w,self.p16_h) = self.txImg16.size
sdl2.SDL_SetTextureBlendMode(self.txImg8.texture, sdl2.SDL_BLENDMODE_BLEND)
sdl2.SDL_SetTextureBlendMode(self.txImg16.texture, sdl2.SDL_BLENDMODE_BLEND)
del sprImg8
del sprImg16
def reset(self, new_x=None, new_y=None):
self.stopped = False
if(new_x is not None):
self.x = new_x
else:
self.x = self.orig_x
if(new_y is not None):
self.y = new_y
else:
self.y = self.orig_y
for x in xrange(len(self.particles)-1,0,-1):
p = self.particles[x]
self.particles.remove(p)
del p
self.creations_remaining = self.total_creations
def update(self):
if(self.total_creations is None) and (not self.stopped):
self.creations_remaining = self.max_particles
for p in self.particles:
p.update()
for x in xrange(len(self.particles)-1,-1,-1):
p = self.particles[x]
if(p.life <= 0):
self.particles.remove(p)
del p
if(self.stopped):
return
if(self.creations_remaining <= 0):
if(self.random_next):
if(len(self.particles)==0):
self.reset(new_x = random.randint(0,200), new_y = random.randint(0,200))
return
for r in range(0,min(self.particles_per_update, self.max_particles-len(self.particles), self.creations_remaining)):
p = self.particle_class(self.x, self.y, emitter=self)
p.update()
self.particles.append(p)
self.creations_remaining = self.creations_remaining - 1
self.x = self.x + self.dx
self.y = self.y + self.dy
def stop(self, immediate_stop = False):
self.creations_remaining = 0
self.stopped = True
if(immediate_stop):
for x in xrange(len(self.particles)-1,-1,-1):
p = self.particles[x]
self.particles.remove(p)
del p
def draw(self, destination_texture = None):
for x in xrange(0,len(self.particles)):
p = self.particles[x]
tx = None
if(p.life > self.max_life * 0.55):
tx = self.txImg16
(self.p_w, self.p_h) = (self.p16_w,self.p16_h)
else:
tx = self.txImg8
(self.p_w, self.p_h) = (self.p8_w,self.p8_h)
if(p.color_changed):
sdl2.SDL_SetTextureColorMod(tx.texture, p.r,p.g,p.b)
p.color_changed = False
if(p.alpha_changed):
sdl2.SDL_SetTextureAlphaMod(tx.texture, int(p.a))
p.alpha_changed = False
if(destination_texture is None):
sdl2_DisplayManager.inst().screen_blit(tx, x=p.x, y=p.y, expand_to_fill=False)
else:
sdl2_DisplayManager.inst().blit(source_tx = tx, dest_tx=destination_texture, dest=(p.x,p.y,self.p_w, self.p_h))
class ParticleSystem(object):
def __init__(self, emitters=None, destination_texture=None):
self.emitters = emitters
self.dest_tx = destination_texture
def update(self):
for e in self.emitters:
e.update()
def draw(self):
for e in self.emitters:
e.draw(self.dest_tx)
def reset(self):
for e in self.emitters:
e.reset()
class ParticleLayer(Layer):
def __init__(self, width, height, emitters, duration=None, num_hold_frames=1):
super(ParticleLayer, self).__init__()
self.buffer = Frame(width, height)
self.start_time = None
self.duration = duration
self.width = width
self.height = height
self.num_hold_frames = num_hold_frames
self.stalls = self.num_hold_frames
self.ps = ParticleSystem(emitters=emitters, destination_texture=self.buffer.pySurface)
def next_frame(self):
if(self.start_time is None):
self.start_time = time.time()
elif(self.duration is not None and (self.start_time + self.duration > time.time())):
return None
self.stalls = self.stalls - 1
if(self.stalls <= 0):
self.stalls = self.num_hold_frames
else:
return self.buffer
self.buffer.clear()
self.ps.update()
self.ps.draw()
return self.buffer
|
MIT License
|
medipixel/rl_algorithms
|
rl_algorithms/common/abstract/distributed_logger.py
|
DistributedLogger.recv_log_info
|
python
|
def recv_log_info(self):
received = False
try:
log_info_id = self.pull_socket.recv(zmq.DONTWAIT)
received = True
except zmq.Again:
pass
if received:
self.log_info_queue.append(log_info_id)
|
Receive info from learner.
|
https://github.com/medipixel/rl_algorithms/blob/96bceb9d65c6d66fca59c4115cd7947f87b87ebc/rl_algorithms/common/abstract/distributed_logger.py#L134-L144
|
from abc import ABC, abstractmethod
from collections import deque
import os
import shutil
from typing import Dict, List
import gym
import numpy as np
import plotly.graph_objects as go
import pyarrow as pa
import torch
import wandb
import zmq
from rl_algorithms.common.env.atari_wrappers import atari_env_generator
import rl_algorithms.common.env.utils as env_utils
from rl_algorithms.common.helper_functions import numpy2floattensor, smoothen_graph
from rl_algorithms.common.networks.brain import Brain
from rl_algorithms.utils.config import ConfigDict
class DistributedLogger(ABC):
def __init__(
self,
log_cfg: ConfigDict,
comm_cfg: ConfigDict,
backbone: ConfigDict,
head: ConfigDict,
env_name: str,
is_atari: bool,
state_size: int,
output_size: int,
max_update_step: int,
episode_num: int,
max_episode_steps: int,
interim_test_num: int,
is_log: bool,
is_render: bool,
):
self.log_cfg = log_cfg
self.comm_cfg = comm_cfg
self.device = torch.device("cpu")
head.configs.state_size = state_size
head.configs.output_size = output_size
self.brain = Brain(backbone, head).to(self.device)
self.env_name = env_name
self.is_atari = is_atari
self.max_update_step = max_update_step
self.episode_num = episode_num
self.max_episode_steps = max_episode_steps
self.interim_test_num = interim_test_num
self.is_log = is_log
self.is_render = is_render
self.update_step = 0
self.log_info_queue = deque(maxlen=100)
self._init_env()
def _init_env(self):
if self.is_atari:
self.env = atari_env_generator(self.env_name, self.max_episode_steps)
else:
self.env = gym.make(self.env_name)
self.env, self.max_episode_steps = env_utils.set_env(
self.env, self.max_episode_steps
)
@abstractmethod
def load_params(self, path: str):
if not os.path.exists(path):
raise Exception(
f"[ERROR] the input path does not exist. Wrong path: {path}"
)
def init_communication(self):
ctx = zmq.Context()
self.pull_socket = ctx.socket(zmq.PULL)
self.pull_socket.bind(f"tcp://127.0.0.1:{self.comm_cfg.learner_logger_port}")
@abstractmethod
def select_action(self, state: np.ndarray):
pass
@abstractmethod
def write_log(self, log_value: dict):
pass
@staticmethod
def _preprocess_state(state: np.ndarray, device: torch.device) -> torch.Tensor:
state = numpy2floattensor(state, device)
return state
def set_wandb(self):
wandb.init(
project=self.env_name,
name=f"{self.log_cfg.agent}/{self.log_cfg.curr_time}",
)
additional_log = dict(
episode_num=self.episode_num,
max_episode_steps=self.max_episode_steps,
)
wandb.config.update(additional_log)
shutil.copy(self.log_cfg.cfg_path, os.path.join(wandb.run.dir, "config.py"))
|
MIT License
|
pyhdi/pyverilog
|
pyverilog/vparser/parser.py
|
VerilogParser.p_expression_power
|
python
|
def p_expression_power(self, p):
p[0] = Power(p[1], p[3], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
|
expression : expression POWER expression
|
https://github.com/pyhdi/pyverilog/blob/2a42539bebd1b4587ee577d491ff002d0cc7295d/pyverilog/vparser/parser.py#L999-L1002
|
from __future__ import absolute_import
from __future__ import print_function
import sys
import os
import pathlib
from ply.yacc import yacc
from pyverilog.vparser.preprocessor import VerilogPreprocessor
from pyverilog.vparser.lexer import VerilogLexer
from pyverilog.vparser.ast import *
class VerilogParser(object):
precedence = (
('left', 'LOR'),
('left', 'LAND'),
('left', 'OR'),
('left', 'XOR', 'XNOR'),
('left', 'AND'),
('left', 'EQ', 'NE', 'EQL', 'NEL'),
('left', 'LT', 'GT', 'LE', 'GE'),
('left', 'LSHIFT', 'RSHIFT', 'LSHIFTA', 'RSHIFTA'),
('left', 'PLUS', 'MINUS'),
('left', 'TIMES', 'DIVIDE', 'MOD'),
('left', 'POWER'),
('right', 'UMINUS', 'UPLUS', 'ULNOT', 'UNOT',
'UAND', 'UNAND', 'UOR', 'UNOR', 'UXOR', 'UXNOR'),
)
def __init__(self, outputdir=".", debug=True):
self.lexer = VerilogLexer(error_func=self._lexer_error_func)
self.lexer.build()
self.tokens = self.lexer.tokens
pathlib.Path(outputdir).mkdir(parents=True, exist_ok=True)
self.parser = yacc(
module=self,
method="LALR",
outputdir=outputdir,
debug=debug
)
def _lexer_error_func(self, msg, line, column):
coord = self._coord(line, column)
raise ParseError('%s: %s' % (coord, msg))
def get_directives(self):
return self.lexer.get_directives()
def get_default_nettype(self):
return self.lexer.get_default_nettype()
def parse(self, text, debug=0):
return self.parser.parse(text, lexer=self.lexer, debug=debug)
def p_source_text(self, p):
p[0] = Source(name='', description=p[1], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_description(self, p):
p[0] = Description(definitions=p[1], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_definitions(self, p):
p[0] = p[1] + (p[2],)
p.set_lineno(0, p.lineno(1))
def p_definitions_one(self, p):
p[0] = (p[1],)
p.set_lineno(0, p.lineno(1))
def p_definition(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_definition_pragma(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_pragma_assign(self, p):
p[0] = Pragma(PragmaEntry(p[3], p[5], lineno=p.lineno(1)),
lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_pragma(self, p):
p[0] = Pragma(PragmaEntry(p[3], lineno=p.lineno(1)),
lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_moduledef(self, p):
p[0] = ModuleDef(name=p[2], paramlist=p[3], portlist=p[4], items=p[5],
default_nettype=self.get_default_nettype(), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
p[0].end_lineno = p.lineno(6)
def p_modulename(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_modulename_or(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_paramlist(self, p):
p[0] = Paramlist(params=p[3], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_paramlist_empty(self, p):
p[0] = Paramlist(params=())
def p_params(self, p):
p[0] = p[1] + (p[2],)
p.set_lineno(0, p.lineno(1))
def p_params_begin(self, p):
p[0] = p[1] + (p[2],)
p.set_lineno(0, p.lineno(1))
def p_params_begin_one(self, p):
p[0] = (p[1],)
p.set_lineno(0, p.lineno(1))
def p_params_one(self, p):
p[0] = (p[1],)
p.set_lineno(0, p.lineno(1))
def p_param(self, p):
paramlist = [Parameter(rname, rvalue, lineno=p.lineno(2))
for rname, rvalue in p[2]]
p[0] = Decl(tuple(paramlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_param_signed(self, p):
paramlist = [Parameter(rname, rvalue, signed=True, lineno=p.lineno(2))
for rname, rvalue in p[3]]
p[0] = Decl(tuple(paramlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_param_width(self, p):
paramlist = [Parameter(rname, rvalue, p[2], lineno=p.lineno(3))
for rname, rvalue in p[3]]
p[0] = Decl(tuple(paramlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_param_signed_width(self, p):
paramlist = [Parameter(rname, rvalue, p[3], signed=True, lineno=p.lineno(3))
for rname, rvalue in p[4]]
p[0] = Decl(tuple(paramlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_param_integer(self, p):
paramlist = [Parameter(rname, rvalue, lineno=p.lineno(3))
for rname, rvalue in p[3]]
p[0] = Decl(tuple(paramlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_param_end(self, p):
paramlist = [Parameter(rname, rvalue, lineno=p.lineno(2))
for rname, rvalue in p[2]]
p[0] = Decl(tuple(paramlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_param_end_signed(self, p):
paramlist = [Parameter(rname, rvalue, signed=True, lineno=p.lineno(2))
for rname, rvalue in p[3]]
p[0] = Decl(tuple(paramlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_param_end_width(self, p):
paramlist = [Parameter(rname, rvalue, p[2], lineno=p.lineno(3))
for rname, rvalue in p[3]]
p[0] = Decl(tuple(paramlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_param_end_signed_width(self, p):
paramlist = [Parameter(rname, rvalue, p[3], signed=True, lineno=p.lineno(3))
for rname, rvalue in p[4]]
p[0] = Decl(tuple(paramlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_param_end_integer(self, p):
paramlist = [Parameter(rname, rvalue, lineno=p.lineno(3))
for rname, rvalue in p[3]]
p[0] = Decl(tuple(paramlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_portlist(self, p):
p[0] = Portlist(ports=p[2], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_portlist_io(self, p):
p[0] = Portlist(ports=p[2], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_portlist_paren_empty(self, p):
p[0] = Portlist(ports=(), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_portlist_empty(self, p):
p[0] = Portlist(ports=(), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_ports(self, p):
port = Port(name=p[3], width=None, dimensions=None, type=None, lineno=p.lineno(1))
p[0] = p[1] + (port,)
p.set_lineno(0, p.lineno(1))
def p_ports_one(self, p):
port = Port(name=p[1], width=None, dimensions=None, type=None, lineno=p.lineno(1))
p[0] = (port,)
p.set_lineno(0, p.lineno(1))
def p_portname(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_sigtypes(self, p):
p[0] = p[1] + (p[2],)
p.set_lineno(0, p.lineno(1))
def p_sigtypes_one(self, p):
p[0] = (p[1],)
p.set_lineno(0, p.lineno(1))
def p_sigtype_input(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_sigtype_output(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_sigtype_inout(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_sigtype_tri(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_sigtype_reg(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_sigtype_logic(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_sigtype_wire(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_sigtype_signed(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_sigtype_supply0(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_sigtype_supply1(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_ioports(self, p):
if isinstance(p[3], str):
t = None
for r in reversed(p[1]):
if isinstance(r.first, Input):
t = Ioport(Input(name=p[3], width=r.first.width, lineno=p.lineno(3)),
lineno=p.lineno(3))
break
if isinstance(r.first, Output) and r.second is None:
t = Ioport(Output(name=p[3], width=r.first.width, lineno=p.lineno(3)),
lineno=p.lineno(3))
break
if isinstance(r.first, Output) and isinstance(r.second, Reg):
t = Ioport(Output(name=p[3], width=r.first.width, lineno=p.lineno(3)),
Reg(name=p[3], width=r.first.width,
lineno=p.lineno(3)),
lineno=p.lineno(3))
break
if isinstance(r.first, Inout):
t = Ioport(Inout(name=p[3], width=r.first.width, lineno=p.lineno(3)),
lineno=p.lineno(3))
break
p[0] = p[1] + (t,)
else:
p[0] = p[1] + (p[3],)
p.set_lineno(0, p.lineno(1))
def p_ioports_one(self, p):
p[0] = (p[1],)
p.set_lineno(0, p.lineno(1))
def create_ioport(self, sigtypes, name, width=None, dimensions=None, lineno=0):
self.typecheck_ioport(sigtypes)
first = None
second = None
signed = False
if 'signed' in sigtypes:
signed = True
if 'input' in sigtypes:
first = Input(name=name, width=width, signed=signed,
dimensions=dimensions, lineno=lineno)
if 'output' in sigtypes:
first = Output(name=name, width=width, signed=signed,
dimensions=dimensions, lineno=lineno)
if 'inout' in sigtypes:
first = Inout(name=name, width=width, signed=signed,
dimensions=dimensions, lineno=lineno)
if 'wire' in sigtypes:
second = Wire(name=name, width=width, signed=signed,
dimensions=dimensions, lineno=lineno)
if 'reg' in sigtypes:
second = Reg(name=name, width=width, signed=signed,
dimensions=dimensions, lineno=lineno)
if 'tri' in sigtypes:
second = Tri(name=name, width=width, signed=signed,
dimensions=dimensions, lineno=lineno)
return Ioport(first, second, lineno=lineno)
def typecheck_ioport(self, sigtypes):
if 'input' not in sigtypes and 'output' not in sigtypes and 'inout' not in sigtypes:
raise ParseError("Syntax Error")
if 'input' in sigtypes and 'output' in sigtypes:
raise ParseError("Syntax Error")
if 'inout' in sigtypes and 'output' in sigtypes:
raise ParseError("Syntax Error")
if 'inout' in sigtypes and 'input' in sigtypes:
raise ParseError("Syntax Error")
if 'input' in sigtypes and 'reg' in sigtypes:
raise ParseError("Syntax Error")
if 'inout' in sigtypes and 'reg' in sigtypes:
raise ParseError("Syntax Error")
if 'input' in sigtypes and 'tri' in sigtypes:
raise ParseError("Syntax Error")
if 'output' in sigtypes and 'tri' in sigtypes:
raise ParseError("Syntax Error")
def p_ioport(self, p):
p[0] = self.create_ioport(p[1], p[2], lineno=p.lineno(2))
p.set_lineno(0, p.lineno(1))
def p_ioport_width(self, p):
p[0] = self.create_ioport(p[1], p[3], width=p[2], lineno=p.lineno(3))
p.set_lineno(0, p.lineno(1))
def p_ioport_dimensions(self, p):
p[0] = self.create_ioport(p[1], p[3], width=p[2], dimensions=p[4], lineno=p.lineno(3))
p.set_lineno(0, p.lineno(1))
def p_ioport_head(self, p):
p[0] = self.create_ioport(p[1], p[2], lineno=p.lineno(2))
p.set_lineno(0, p.lineno(1))
def p_ioport_head_width(self, p):
p[0] = self.create_ioport(p[1], p[3], width=p[2], lineno=p.lineno(3))
p.set_lineno(0, p.lineno(1))
def p_ioport_head_dimensions(self, p):
p[0] = self.create_ioport(p[1], p[3], width=p[2], dimensions=p[4], lineno=p.lineno(3))
p.set_lineno(0, p.lineno(1))
def p_ioport_portname(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_width(self, p):
p[0] = Width(p[2], p[4], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_length(self, p):
p[0] = Length(p[2], p[4], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_dimensions(self, p):
dims = p[1].lengths + [p[2]]
p[0] = Dimensions(dims, lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_dimensions_one(self, p):
dims = [p[1]]
p[0] = Dimensions(dims, lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_items(self, p):
p[0] = p[1] + (p[2],)
p.set_lineno(0, p.lineno(1))
def p_items_one(self, p):
p[0] = (p[1],)
p.set_lineno(0, p.lineno(1))
def p_items_empty(self, p):
p[0] = ()
def p_item(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_standard_item(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def create_decl(self, sigtypes, name, width=None, dimensions=None, lineno=0):
self.typecheck_decl(sigtypes, dimensions)
decls = []
signed = False
if 'signed' in sigtypes:
signed = True
if 'input' in sigtypes:
decls.append(Input(name=name, width=width,
signed=signed, lineno=lineno, dimensions=dimensions))
if 'output' in sigtypes:
decls.append(Output(name=name, width=width,
signed=signed, lineno=lineno, dimensions=dimensions))
if 'inout' in sigtypes:
decls.append(Inout(name=name, width=width,
signed=signed, lineno=lineno, dimensions=dimensions))
if 'wire' in sigtypes:
decls.append(Wire(name=name, width=width,
signed=signed, lineno=lineno, dimensions=dimensions))
if 'reg' in sigtypes:
decls.append(Reg(name=name, width=width,
signed=signed, lineno=lineno, dimensions=dimensions))
if 'tri' in sigtypes:
decls.append(Tri(name=name, width=width,
signed=signed, lineno=lineno, dimensions=dimensions))
if 'supply0' in sigtypes:
decls.append(Supply(name=name, value=IntConst('0', lineno=lineno),
width=width, signed=signed, lineno=lineno))
if 'supply1' in sigtypes:
decls.append(Supply(name=name, value=IntConst('1', lineno=lineno),
width=width, signed=signed, lineno=lineno))
return decls
def typecheck_decl(self, sigtypes, dimensions=None):
if ('supply0' in sigtypes or 'supply1' in sigtypes) and dimensions is not None:
raise ParseError("SyntaxError")
if len(sigtypes) == 1 and 'signed' in sigtypes:
raise ParseError("Syntax Error")
if 'input' in sigtypes and 'output' in sigtypes:
raise ParseError("Syntax Error")
if 'inout' in sigtypes and 'output' in sigtypes:
raise ParseError("Syntax Error")
if 'inout' in sigtypes and 'input' in sigtypes:
raise ParseError("Syntax Error")
if 'input' in sigtypes and 'reg' in sigtypes:
raise ParseError("Syntax Error")
if 'inout' in sigtypes and 'reg' in sigtypes:
raise ParseError("Syntax Error")
if 'input' in sigtypes and 'tri' in sigtypes:
raise ParseError("Syntax Error")
if 'output' in sigtypes and 'tri' in sigtypes:
raise ParseError("Syntax Error")
def p_decl(self, p):
decllist = []
for rname, rdimensions in p[2]:
decllist.extend(self.create_decl(p[1], rname, dimensions=rdimensions,
lineno=p.lineno(2)))
p[0] = Decl(tuple(decllist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_decl_width(self, p):
decllist = []
for rname, rdimensions in p[3]:
decllist.extend(self.create_decl(p[1], rname, width=p[2], dimensions=rdimensions,
lineno=p.lineno(3)))
p[0] = Decl(tuple(decllist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_declnamelist(self, p):
p[0] = p[1] + (p[3],)
p.set_lineno(0, p.lineno(1))
def p_declnamelist_one(self, p):
p[0] = (p[1],)
p.set_lineno(0, p.lineno(1))
def p_declname(self, p):
p[0] = (p[1], None)
p.set_lineno(0, p.lineno(1))
def p_declarray(self, p):
p[0] = (p[1], p[2])
p.set_lineno(0, p.lineno(1))
def create_declassign(self, sigtypes, name, assign, width=None, lineno=0):
self.typecheck_declassign(sigtypes)
decls = []
signed = False
if 'signed' in sigtypes:
signed = True
if 'input' in sigtypes:
decls.append(Input(name=name, width=width,
signed=signed, lineno=lineno))
if 'output' in sigtypes:
decls.append(Output(name=name, width=width,
signed=signed, lineno=lineno))
if 'inout' in sigtypes:
decls.append(Inout(name=name, width=width,
signed=signed, lineno=lineno))
if 'wire' in sigtypes:
decls.append(Wire(name=name, width=width,
signed=signed, lineno=lineno))
if 'reg' in sigtypes:
decls.append(Reg(name=name, width=width,
signed=signed, lineno=lineno))
decls.append(assign)
return decls
def typecheck_declassign(self, sigtypes):
if len(sigtypes) == 1 and 'signed' in sigtypes:
raise ParseError("Syntax Error")
if 'reg' not in sigtypes and 'wire' not in sigtypes:
raise ParseError("Syntax Error")
if 'input' in sigtypes and 'output' in sigtypes:
raise ParseError("Syntax Error")
if 'inout' in sigtypes and 'output' in sigtypes:
raise ParseError("Syntax Error")
if 'inout' in sigtypes and 'input' in sigtypes:
raise ParseError("Syntax Error")
if 'input' in sigtypes and 'reg' in sigtypes:
raise ParseError("Syntax Error")
if 'inout' in sigtypes and 'reg' in sigtypes:
raise ParseError("Syntax Error")
if 'supply0' in sigtypes and len(sigtypes) != 1:
raise ParseError("Syntax Error")
if 'supply1' in sigtypes and len(sigtypes) != 1:
raise ParseError("Syntax Error")
def p_declassign(self, p):
decllist = self.create_declassign(
p[1], p[2][0], p[2][1], lineno=p.lineno(2))
p[0] = Decl(decllist, lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_declassign_width(self, p):
decllist = self.create_declassign(
p[1], p[3][0], p[3][1], width=p[2], lineno=p.lineno(3))
p[0] = Decl(tuple(decllist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_declassign_element(self, p):
assign = Assign(Lvalue(Identifier(p[1], lineno=p.lineno(1)), lineno=p.lineno(1)),
p[3], lineno=p.lineno(1))
p[0] = (p[1], assign)
p.set_lineno(0, p.lineno(1))
def p_declassign_element_delay(self, p):
assign = Assign(Lvalue(Identifier(p[2], lineno=p.lineno(1)), lineno=p.lineno(2)),
p[5], p[1], p[4], lineno=p.lineno(2))
p[0] = (p[1], assign)
p.set_lineno(0, p.lineno(2))
def p_integerdecl(self, p):
intlist = [Integer(rname,
Width(msb=IntConst('31', lineno=p.lineno(2)),
lsb=IntConst('0', lineno=p.lineno(2)),
lineno=p.lineno(2)),
signed=True,
value=rvalue,
lineno=p.lineno(2)) for rname, rvalue in p[2]]
p[0] = Decl(tuple(intlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_integerdecl_signed(self, p):
intlist = [Integer(rname,
Width(msb=IntConst('31', lineno=p.lineno(3)),
lsb=IntConst('0', lineno=p.lineno(3)),
lineno=p.lineno(3)),
signed=True,
value=rvalue,
lineno=p.lineno(3)) for rname, rvalue in p[2]]
p[0] = Decl(tuple(intlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_integernamelist(self, p):
p[0] = p[1] + (p[3],)
p.set_lineno(0, p.lineno(1))
def p_integernamelist_one(self, p):
p[0] = (p[1],)
p.set_lineno(0, p.lineno(1))
def p_integername_init(self, p):
p[0] = (p[1], p[3])
p.set_lineno(0, p.lineno(1))
def p_integername(self, p):
p[0] = (p[1], None)
p.set_lineno(0, p.lineno(1))
def p_realdecl(self, p):
reallist = [Real(p[1],
Width(msb=IntConst('31', lineno=p.lineno(2)),
lsb=IntConst('0', lineno=p.lineno(2)),
lineno=p.lineno(2)),
lineno=p.lineno(2)) for r in p[2]]
p[0] = Decl(tuple(reallist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_realnamelist(self, p):
p[0] = p[1] + (p[3],)
p.set_lineno(0, p.lineno(1))
def p_realnamelist_one(self, p):
p[0] = (p[1],)
p.set_lineno(0, p.lineno(1))
def p_realname(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_parameterdecl(self, p):
paramlist = [Parameter(rname, rvalue, lineno=p.lineno(2))
for rname, rvalue in p[2]]
p[0] = Decl(tuple(paramlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_parameterdecl_signed(self, p):
paramlist = [Parameter(rname, rvalue, signed=True, lineno=p.lineno(2))
for rname, rvalue in p[3]]
p[0] = Decl(tuple(paramlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_parameterdecl_width(self, p):
paramlist = [Parameter(rname, rvalue, p[2], lineno=p.lineno(3))
for rname, rvalue in p[3]]
p[0] = Decl(tuple(paramlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_parameterdecl_signed_width(self, p):
paramlist = [Parameter(rname, rvalue, p[3], signed=True, lineno=p.lineno(3))
for rname, rvalue in p[4]]
p[0] = Decl(tuple(paramlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_parameterdecl_integer(self, p):
paramlist = [Parameter(rname, rvalue, lineno=p.lineno(3))
for rname, rvalue in p[3]]
p[0] = Decl(tuple(paramlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_localparamdecl(self, p):
paramlist = [Localparam(rname, rvalue, lineno=p.lineno(2))
for rname, rvalue in p[2]]
p[0] = Decl(tuple(paramlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_localparamdecl_signed(self, p):
paramlist = [Localparam(rname, rvalue, signed=True, lineno=p.lineno(2))
for rname, rvalue in p[3]]
p[0] = Decl(tuple(paramlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_localparamdecl_width(self, p):
paramlist = [Localparam(rname, rvalue, p[2], lineno=p.lineno(3))
for rname, rvalue in p[3]]
p[0] = Decl(tuple(paramlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_localparamdecl_signed_width(self, p):
paramlist = [Localparam(rname, rvalue, p[3], signed=True, lineno=p.lineno(3))
for rname, rvalue in p[4]]
p[0] = Decl(tuple(paramlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_localparamdecl_integer(self, p):
paramlist = [Localparam(rname, rvalue, lineno=p.lineno(3))
for rname, rvalue in p[3]]
p[0] = Decl(tuple(paramlist), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_param_substitution_list(self, p):
p[0] = p[1] + (p[3],)
p.set_lineno(0, p.lineno(1))
def p_param_substitution_list_one(self, p):
p[0] = (p[1],)
p.set_lineno(0, p.lineno(1))
def p_param_substitution(self, p):
p[0] = (p[1], p[3])
p.set_lineno(0, p.lineno(1))
def p_assignment(self, p):
p[0] = Assign(p[2], p[4], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_assignment_delay(self, p):
p[0] = Assign(p[3], p[6], p[2], p[5], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_lpartselect_lpointer(self, p):
p[0] = Partselect(p[1], p[3], p[5], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_lpartselect_lpointer_plus(self, p):
p[0] = Partselect(p[1], p[3], Plus(p[3], p[5]), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_lpartselect_lpointer_minus(self, p):
p[0] = Partselect(p[1], p[3], Minus(p[3], p[5]), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_lpartselect(self, p):
p[0] = Partselect(p[1], p[3], p[5], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_lpartselect_plus(self, p):
p[0] = Partselect(p[1], p[3], Plus(p[3], p[5]), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_lpartselect_minus(self, p):
p[0] = Partselect(p[1], p[3], Minus(p[3], p[5]), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_lpointer(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_lconcat(self, p):
p[0] = LConcat(p[2], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_lconcatlist(self, p):
p[0] = p[1] + (p[3],)
p.set_lineno(0, p.lineno(1))
def p_lconcatlist_one(self, p):
p[0] = (p[1],)
p.set_lineno(0, p.lineno(1))
def p_lconcat_one_identifier(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_lconcat_one_lpartselect(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_lconcat_one_lpointer(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_lconcat_one_lconcat(self, p):
p[0] = p[1]
p.set_lineno(0, p.lineno(1))
def p_lvalue_partselect(self, p):
p[0] = Lvalue(p[1], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_lvalue_pointer(self, p):
p[0] = Lvalue(p[1], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_lvalue_concat(self, p):
p[0] = Lvalue(p[1], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_lvalue_one(self, p):
p[0] = Lvalue(p[1], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_rvalue(self, p):
p[0] = Rvalue(p[1], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_expression_uminus(self, p):
p[0] = Uminus(p[2], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_expression_uplus(self, p):
p[0] = p[2]
p.set_lineno(0, p.lineno(1))
def p_expression_ulnot(self, p):
p[0] = Ulnot(p[2], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_expression_unot(self, p):
p[0] = Unot(p[2], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_expression_uand(self, p):
p[0] = Uand(p[2], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_expression_unand(self, p):
p[0] = Unand(p[2], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_expression_unor(self, p):
p[0] = Unor(p[2], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_expression_uor(self, p):
p[0] = Uor(p[2], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_expression_uxor(self, p):
p[0] = Uxor(p[2], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
def p_expression_uxnor(self, p):
p[0] = Uxnor(p[2], lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1))
|
Apache License 2.0
|
criteo/criteo-python-marketing-sdk
|
criteo_marketing/api/advertisers_api.py
|
AdvertisersApi.get_category_with_http_info
|
python
|
def get_category_with_http_info(self, advertiser_id, category_hash_code, authorization, **kwargs):
local_var_params = locals()
all_params = ['advertiser_id', 'category_hash_code', 'authorization']
all_params.append('async_req')
all_params.append('_return_http_data_only')
all_params.append('_preload_content')
all_params.append('_request_timeout')
for key, val in six.iteritems(local_var_params['kwargs']):
if key not in all_params:
raise ApiTypeError(
"Got an unexpected keyword argument '%s'"
" to method get_category" % key
)
local_var_params[key] = val
del local_var_params['kwargs']
if ('advertiser_id' not in local_var_params or
local_var_params['advertiser_id'] is None):
raise ApiValueError("Missing the required parameter `advertiser_id` when calling `get_category`")
if ('category_hash_code' not in local_var_params or
local_var_params['category_hash_code'] is None):
raise ApiValueError("Missing the required parameter `category_hash_code` when calling `get_category`")
if ('authorization' not in local_var_params or
local_var_params['authorization'] is None):
raise ApiValueError("Missing the required parameter `authorization` when calling `get_category`")
collection_formats = {}
path_params = {}
if 'advertiser_id' in local_var_params:
path_params['advertiserId'] = local_var_params['advertiser_id']
if 'category_hash_code' in local_var_params:
path_params['categoryHashCode'] = local_var_params['category_hash_code']
query_params = []
header_params = {}
if 'authorization' in local_var_params:
header_params['Authorization'] = local_var_params['authorization']
form_params = []
local_var_files = {}
body_params = None
header_params['Accept'] = self.api_client.select_header_accept(
['application/json', 'text/json', 'application/xml', 'text/xml', 'text/html'])
auth_settings = ['Authorization']
return self.api_client.call_api(
'/v1/advertisers/{advertiserId}/categories/{categoryHashCode}', 'GET',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='list[CategoryMessage]',
auth_settings=auth_settings,
async_req=local_var_params.get('async_req'),
_return_http_data_only=local_var_params.get('_return_http_data_only'),
_preload_content=local_var_params.get('_preload_content', True),
_request_timeout=local_var_params.get('_request_timeout'),
collection_formats=collection_formats)
|
Gets a specific advertiser's category # noqa: E501
Get a specific category linked to the requested advertiser. # noqa: E501
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.get_category_with_http_info(advertiser_id, category_hash_code, authorization, async_req=True)
>>> result = thread.get()
:param async_req bool: execute request asynchronously
:param int advertiser_id: Mandatory. The id of the advertiser to return. (required)
:param int category_hash_code: Mandatory. The id of the category to return. (required)
:param str authorization: JWT Bearer Token (required)
:param _return_http_data_only: response data without head status code
and headers
:param _preload_content: if False, the urllib3.HTTPResponse object will
be returned without reading/decoding response
data. Default is True.
:param _request_timeout: timeout setting for this request. If one
number provided, it will be total request
timeout. It can also be a pair (tuple) of
(connection, read) timeouts.
:return: tuple(list[CategoryMessage], status_code(int), headers(HTTPHeaderDict))
If the method is called asynchronously,
returns the request thread.
|
https://github.com/criteo/criteo-python-marketing-sdk/blob/1093f86cf035cb6ce657b47f0f5e768c1fc2271c/criteo_marketing/api/advertisers_api.py#L302-L397
|
from __future__ import absolute_import
import re
import six
from criteo_marketing.api_client import ApiClient
from criteo_marketing.exceptions import (
ApiTypeError,
ApiValueError
)
class AdvertisersApi(object):
def __init__(self, api_client=None):
if api_client is None:
api_client = ApiClient()
self.api_client = api_client
def get_campaigns(self, advertiser_id, authorization, **kwargs):
kwargs['_return_http_data_only'] = True
return self.get_campaigns_with_http_info(advertiser_id, authorization, **kwargs)
def get_campaigns_with_http_info(self, advertiser_id, authorization, **kwargs):
local_var_params = locals()
all_params = ['advertiser_id', 'authorization']
all_params.append('async_req')
all_params.append('_return_http_data_only')
all_params.append('_preload_content')
all_params.append('_request_timeout')
for key, val in six.iteritems(local_var_params['kwargs']):
if key not in all_params:
raise ApiTypeError(
"Got an unexpected keyword argument '%s'"
" to method get_campaigns" % key
)
local_var_params[key] = val
del local_var_params['kwargs']
if ('advertiser_id' not in local_var_params or
local_var_params['advertiser_id'] is None):
raise ApiValueError("Missing the required parameter `advertiser_id` when calling `get_campaigns`")
if ('authorization' not in local_var_params or
local_var_params['authorization'] is None):
raise ApiValueError("Missing the required parameter `authorization` when calling `get_campaigns`")
collection_formats = {}
path_params = {}
if 'advertiser_id' in local_var_params:
path_params['advertiserId'] = local_var_params['advertiser_id']
query_params = []
header_params = {}
if 'authorization' in local_var_params:
header_params['Authorization'] = local_var_params['authorization']
form_params = []
local_var_files = {}
body_params = None
header_params['Accept'] = self.api_client.select_header_accept(
['application/json', 'text/json', 'application/xml', 'text/xml', 'text/html'])
auth_settings = ['Authorization']
return self.api_client.call_api(
'/v1/advertisers/{advertiserId}/campaigns', 'GET',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='list[CampaignMessage]',
auth_settings=auth_settings,
async_req=local_var_params.get('async_req'),
_return_http_data_only=local_var_params.get('_return_http_data_only'),
_preload_content=local_var_params.get('_preload_content', True),
_request_timeout=local_var_params.get('_request_timeout'),
collection_formats=collection_formats)
def get_categories(self, advertiser_id, authorization, **kwargs):
kwargs['_return_http_data_only'] = True
return self.get_categories_with_http_info(advertiser_id, authorization, **kwargs)
def get_categories_with_http_info(self, advertiser_id, authorization, **kwargs):
local_var_params = locals()
all_params = ['advertiser_id', 'authorization', 'enabled_only']
all_params.append('async_req')
all_params.append('_return_http_data_only')
all_params.append('_preload_content')
all_params.append('_request_timeout')
for key, val in six.iteritems(local_var_params['kwargs']):
if key not in all_params:
raise ApiTypeError(
"Got an unexpected keyword argument '%s'"
" to method get_categories" % key
)
local_var_params[key] = val
del local_var_params['kwargs']
if ('advertiser_id' not in local_var_params or
local_var_params['advertiser_id'] is None):
raise ApiValueError("Missing the required parameter `advertiser_id` when calling `get_categories`")
if ('authorization' not in local_var_params or
local_var_params['authorization'] is None):
raise ApiValueError("Missing the required parameter `authorization` when calling `get_categories`")
collection_formats = {}
path_params = {}
if 'advertiser_id' in local_var_params:
path_params['advertiserId'] = local_var_params['advertiser_id']
query_params = []
if 'enabled_only' in local_var_params:
query_params.append(('enabledOnly', local_var_params['enabled_only']))
header_params = {}
if 'authorization' in local_var_params:
header_params['Authorization'] = local_var_params['authorization']
form_params = []
local_var_files = {}
body_params = None
header_params['Accept'] = self.api_client.select_header_accept(
['application/json', 'text/json', 'application/xml', 'text/xml', 'text/html'])
auth_settings = ['Authorization']
return self.api_client.call_api(
'/v1/advertisers/{advertiserId}/categories', 'GET',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='list[CategoryMessage]',
auth_settings=auth_settings,
async_req=local_var_params.get('async_req'),
_return_http_data_only=local_var_params.get('_return_http_data_only'),
_preload_content=local_var_params.get('_preload_content', True),
_request_timeout=local_var_params.get('_request_timeout'),
collection_formats=collection_formats)
def get_category(self, advertiser_id, category_hash_code, authorization, **kwargs):
kwargs['_return_http_data_only'] = True
return self.get_category_with_http_info(advertiser_id, category_hash_code, authorization, **kwargs)
|
Apache License 2.0
|
facebookresearch/shadow_gnn
|
shaDow/layers.py
|
GAT._adj_norm
|
python
|
def _adj_norm(self, adj, is_normed, device, dropedge=0):
if type(adj) == sp.csr_matrix:
assert not is_normed
adj_norm = coo_scipy2torch(adj.tocoo()).to(device)
if dropedge > 0:
masked_indices = torch.floor(torch.rand(int(adj_norm._values().size()[0] * dropedge)) * adj_norm._values().size()[0]).long()
adj_norm._values()[masked_indices] = 0
else:
assert type(adj) == torch.Tensor and is_normed
adj_norm = adj
return adj_norm
|
Will perform edge dropout only when is_normed == False
|
https://github.com/facebookresearch/shadow_gnn/blob/a7d22eac62af4999828a2c939fabaeff27920d08/shaDow/layers.py#L503-L517
|
import torch
from torch import nn
import scipy.sparse as sp
import torch.nn.functional as F
from shaDow.utils import adj_norm_sym, adj_norm_rw, coo_scipy2torch, get_deg_torch_sparse
from torch_scatter import scatter
from torch_geometric.nn import global_sort_pool
import numpy as np
import torch.nn.functional as F
from collections import namedtuple
Dims_X = namedtuple('Dims_X', ['num_nodes', 'num_feats'])
Dims_adj = namedtuple('Dims_adj', ['num_nodes', 'num_edges'])
F_ACT = {"relu" : (nn.ReLU, {}),
"I" : (nn.LeakyReLU, {"negative_slope": (lambda kwargs: 1)}),
"elu" : (nn.ELU, {}),
"tanh" : (nn.Tanh, {}),
"leakyrelu": (nn.LeakyReLU, {"negative_slope": (lambda kwargs: 0.2)}),
"prelu" : (nn.PReLU, {}),
"prelu+" : (nn.PReLU, {"num_parameters": (lambda kwargs: kwargs['dim_out'])})}
def get_torch_act(act, args):
_torch_args = {k: v(args) for k, v in F_ACT[act][1].items()}
return F_ACT[act][0](**_torch_args)
class EnsembleDummy(nn.Module):
def __init__(self, dim_in=0, dim_out=0, **kwargs):
super().__init__()
def forward(self, Xi):
assert len(Xi) == 1, "ONLY USE DUMMY ENSEMBLER WITH ONE BRANCH!"
return Xi[0]
def complexity(self, dims):
assert len(dims) == 1, "ONLY USE DUMMY ENSEMBLER WITH ONE BRANCH!"
return dims[0], 0
class ResPool(nn.Module):
def __init__(self, dim_in : int, dim_out : int, num_layers : int, type_res : str, type_pool : str,
dropout : float, act : str, args_pool : dict=None):
super().__init__()
self.dim_out = dim_out
self.type_pool = type_pool
self.type_res = type_res
if type_pool == 'center':
if type_res == 'none':
self.dim_in = self.dim_out = 0
elif type_res in ['cat', 'concat']:
self.dim_in = num_layers * dim_in
else:
self.dim_in = dim_in
else:
if type_res in ['cat', 'concat']:
self.dim_in = 2 * dim_in * num_layers
else:
self.dim_in = 2 * dim_in
if type_pool == 'sort':
assert 'k' in args_pool, "Sort pooling needs the budget k as input!"
self.k = args_pool['k']
_f_lin_pool = nn.Linear(self.k * int(self.dim_in / 2), int(self.dim_in / 2))
_f_dropout_pool = nn.Dropout(p=dropout)
_act_pool = get_torch_act(act, locals())
self.nn_pool = nn.Sequential(_f_dropout_pool, _f_lin_pool, _act_pool)
if self.dim_in > 0 and self.dim_out > 0:
_act = get_torch_act(act, locals())
_f_lin = nn.Linear(self.dim_in, self.dim_out, bias=True)
_f_dropout = nn.Dropout(p=dropout)
self.nn = nn.Sequential(_f_dropout, _f_lin, _act)
self.offset = nn.Parameter(torch.zeros(self.dim_out))
self.scale = nn.Parameter(torch.ones(self.dim_out))
def f_norm(self, _feat):
mean = _feat.mean(dim=1).view(_feat.shape[0], 1)
var = _feat.var(dim=1, unbiased=False).view(_feat.shape[0], 1) + 1e-9
feat_out = (_feat - mean) * self.scale * torch.rsqrt(var) + self.offset
return feat_out
def f_residue(self, feat_l):
if self.type_res in ['cat', 'concat']:
feat_ret = torch.cat(feat_l, dim=1)
elif self.type_res == 'sum':
feat_ret = torch.stack(feat_l, dim=0).sum(dim=0)
elif self.type_res == 'max':
feat_ret = torch.max(torch.stack(feat_l, dim=0), dim=0).values
else:
raise NotImplementedError
return feat_ret
def f_res_complexity(self, dim_x_l):
if self.type_res in ['cat', 'concat']:
return sum([d.num_feats for d in dim_x_l]), 0
elif self.type_res == 'sum':
return dim_x_l[-1].num_feats, (len(dim_x_l) - 1) * (dim_x_l[-1].num_nodes * dim_x_l[-1].num_feats)
elif self.type_res == 'max':
return dim_x_l[-1].num_feats, (len(dim_x_l) - 1) * (dim_x_l[-1].num_nodes * dim_x_l[-1].num_feats)
else:
raise NotImplementedError
def forward(self, feats_in_l, idx_targets, sizes_subg):
if self.type_pool == 'center':
if self.type_res == 'none':
return feats_in_l[-1][idx_targets]
else:
feats_root_l = [f[idx_targets] for f in feats_in_l]
feat_in = self.f_residue(feats_root_l)
elif self.type_pool in ['max', 'mean', 'sum']:
offsets = torch.cumsum(sizes_subg, dim=0)
offsets = torch.roll(offsets, 1)
offsets[0] = 0
idx = torch.arange(feats_in_l[-1].shape[0]).to(feats_in_l[-1].device)
if self.type_res == 'none':
feat_pool = F.embedding_bag(idx, feats_in_l[-1], offsets, mode=self.type_pool)
feat_root = feats_in_l[-1][idx_targets]
else:
feat_pool_l = []
for feat in feats_in_l:
feat_pool = F.embedding_bag(idx, feat, offsets, mode=self.type_pool)
feat_pool_l.append(feat_pool)
feat_pool = self.f_residue(feat_pool_l)
feat_root = self.f_residue([f[idx_targets] for f in feats_in_l])
feat_in = torch.cat([feat_root, feat_pool], dim=1)
elif self.type_pool == 'sort':
if self.type_res == 'none':
feat_pool_in = feats_in_l[-1]
feat_root = feats_in_l[-1][idx_targets]
else:
feat_pool_in = self.f_residue(feats_in_l)
feat_root = self.f_residue([f[idx_targets] for f in feats_in_l])
arange = torch.arange(sizes_subg.size(0)).to(sizes_subg.device)
idx_batch = torch.repeat_interleave(arange, sizes_subg)
feat_pool_k = global_sort_pool(feat_pool_in, idx_batch, self.k)
feat_pool = self.nn_pool(feat_pool_k)
feat_in = torch.cat([feat_root, feat_pool], dim=1)
else:
raise NotImplementedError
return self.f_norm(self.nn(feat_in))
def complexity(self, dims_x_l, sizes_subg):
num_nodes = len(sizes_subg)
num_neigh = dims_x_l[-1].num_nodes
assert num_neigh == sizes_subg.sum()
if self.type_pool == 'center':
if self.type_res == 'none':
return Dims_X(num_nodes, dims_x_l[-1].num_feats), 0
else:
dims_root_l = [Dims_X(num_nodes, d.num_feats) for d in dims_x_l]
dim_f, ops = self.f_res_complexity(dims_root_l)
return Dims_X(num_nodes, dim_f), ops
elif self.type_pool in ['max', 'mean', 'sum']:
ops = dims_x_l[-1].num_nodes * dims_x_l[-1].num_feats
mult = 1 if self.type_res == 'none' else len(dims_x_l)
ops *= mult
dims_root_l = [Dims_X(num_nodes, d.num_feats) for d in dims_x_l]
_dim_f, ops_res = self.f_res_complexity(dims_root_l)
ops += 2 * ops_res
elif self.type_pool == 'sort':
if self.type_res == 'none':
ops = 0
else:
_dim, ops = self.f_res_complexity(dims_x_l)
for n in self.nn_pool:
if type(n) == nn.Linear:
ops += np.pool(list(n.weight.shape)) * num_nodes
ops += np.prod(list(self.nn_pool.weight.shape)) * self.k * num_nodes
for n in self.nn:
if type(n) == nn.Linear:
ops += np.prod(list(n.weight.shape)) * num_nodes
dim_f = n.weight.shape[0]
return Dims_X(num_nodes, dim_f), ops
class EnsembleAggregator(nn.Module):
def __init__(self, dim_in, dim_out, num_ensemble, dropout=0.0, act="leakyrelu", type_dropout="none"):
super().__init__()
self.dim_in = dim_in
self.dim_out = dim_out
self.dropout = dropout
self.act = nn.ModuleList(get_torch_act(act, locals()) for _ in range(num_ensemble))
self.f_lin = nn.Linear(dim_in, dim_out, bias=True)
self.f_dropout = nn.Dropout(p=self.dropout)
self.q = nn.Parameter(torch.ones(dim_out))
assert type_dropout in ["none", "feat", "coef"]
self.type_dropout = type_dropout
def forward(self, Xi):
omega_ensemble = []
for i, X in enumerate(Xi):
if self.type_dropout == "none":
X_ = X
elif self.type_dropout == "coef":
X_ = self.f_dropout(X)
else:
Xi[i] = self.f_dropout(X)
X_ = Xi[i]
omega_ensemble.append(self.act[i](self.f_lin(X_)).mm(self.q.view(-1, 1)))
omega_ensemble = torch.cat(omega_ensemble, 1)
omega_norm = F.softmax(omega_ensemble, dim=1)
Y = 0
for i, X in enumerate(Xi):
Y += omega_norm[:, i].view(-1, 1) * X
return Y
def complexity(self, dims_x_l):
ops = 0
for dx in dims_x_l:
assert dx.num_feats == self.f_lin.weight.shape[1]
ops += dx.num_nodes * dx.num_feats * self.f_lin.weight.shape[0]
ops += dx.num_nodes * dx.num_feats
ops += dx.num_nodes * dx.num_feats
return Dims_X(dx.num_nodes, self.f_lin.weight.shape[0]), ops
class MLP(nn.Module):
def __init__(self, dim_in, dim_out, dropout=0.0, act="relu", **kwargs):
super().__init__()
self.act = get_torch_act(act, locals())
self.dropout = dropout
self.dim_in, self.dim_out = dim_in, dim_out
self.f_lin = nn.Linear(dim_in, dim_out)
self.offset = nn.Parameter(torch.zeros(dim_out))
self.scale = nn.Parameter(torch.ones(dim_out))
self.f_dropout = nn.Dropout(p=self.dropout)
def _f_norm(self, _feat):
mean = _feat.mean(dim=1).view(_feat.shape[0], 1)
var = _feat.var(dim=1, unbiased=False).view(_feat.shape[0], 1) + 1e-9
feat_out = (_feat - mean) * self.scale * torch.rsqrt(var) + self.offset
return feat_out
def forward(self, feat_in):
feat_in = self.f_dropout(feat_in)
feat_out = self.act(self.f_lin(feat_in))
feat_out = self._f_norm(feat_out)
return feat_out
def complexity(self, dims_x):
assert dims_x.num_feats == self.f_lin.weight.shape[1]
ops = dims_x.num_nodes * np.product(self.f_lin.weight.shape)
return Dims_X(dims_x.num_nodes, self.f_lin.weight.shape[0]), ops
class MLPSGC(MLP):
def __init__(self, dim_in, dim_out, dropout=0.0, act="relu", **kwargs):
super().__init__(dim_in, dim_out, dropout=dropout, act=act)
def forward(self, inputs):
assert type(inputs) in [list, tuple] and len(inputs) == 4
feat_in = inputs[0]
feat_out = super().forward(feat_in)
return feat_out, None, None, None
class GCN(nn.Module):
def __init__(self, dim_in, dim_out, dropout=0.0, act="relu", **kwargs):
super().__init__()
if "aggr" in kwargs:
assert kwargs["aggr"] == "gcn"
self.dim_in, self.dim_out = dim_in, dim_out
self.dropout = dropout
self.act = get_torch_act(act, locals())
self.f_lin = nn.Linear(dim_in, dim_out, bias=True)
self.f_dropout = nn.Dropout(p=self.dropout)
self.offset = nn.Parameter(torch.zeros(dim_out))
self.scale = nn.Parameter(torch.ones(dim_out))
def f_norm(self, feat_in):
mean = feat_in.mean(dim=1).view(feat_in.shape[0], 1)
var = feat_in.var(dim=1, unbiased=False).view(feat_in.shape[0], 1) + 1e-10
feat_norm = (feat_in - mean) * self.scale * torch.rsqrt(var) + self.offset
return feat_norm
def forward(self, inputs):
feat_in, adj, is_normed, dropedge = inputs
feat_in = self.f_dropout(feat_in)
if not is_normed and adj is not None:
assert type(adj) == sp.csr_matrix
adj_norm = adj_norm_sym(adj, dropedge=dropedge)
adj_norm = coo_scipy2torch(adj_norm.tocoo()).to(feat_in.device)
else:
assert adj is None or type(adj) == torch.Tensor
adj_norm = adj
feat_aggr = torch.sparse.mm(adj_norm, feat_in)
feat_trans = self.f_lin(feat_aggr)
feat_out = self.f_norm(self.act(feat_trans))
return feat_out, adj_norm, True, 0.
def complexity(self, dims_x, dims_adj):
ops = dims_adj.num_edges * dims_x.num_feats + dims_x.num_nodes * np.product(self.f_lin.weight.shape)
return (Dims_X(dims_x.num_nodes, self.f_lin.weight.shape[0]),
Dims_adj(dims_adj.num_nodes, dims_adj.num_edges)), ops
class GraphSAGE(nn.Module):
def __init__(
self, dim_in, dim_out, dropout=0.0, act="relu", **kwargs
):
super().__init__()
self.act = get_torch_act(act, locals())
self.dropout = dropout
self.f_lin = []
self.offset, self.scale = [], []
self.f_lin_self = nn.Linear(dim_in, dim_out)
self.f_lin_neigh = nn.Linear(dim_in, dim_out)
self.offset = nn.Parameter(torch.zeros(dim_out * 2))
self.scale = nn.Parameter(torch.ones(dim_out * 2))
self.f_dropout = nn.Dropout(p=self.dropout)
self.dim_out = dim_out
def _spmm(self, adj_norm, _feat):
return torch.sparse.mm(adj_norm, _feat)
def _f_norm(self, _feat, _id):
mean = _feat.mean(dim=1).view(_feat.shape[0], 1)
var = _feat.var(dim=1, unbiased=False).view(_feat.shape[0], 1) + 1e-9
_scale = self.scale[_id * self.dim_out : (_id + 1) * self.dim_out]
_offset = self.offset[_id * self.dim_out : (_id + 1) * self.dim_out]
feat_out = (_feat - mean) * _scale * torch.rsqrt(var) + _offset
return feat_out
def forward(self, inputs):
feat_in, adj, is_normed, dropedge = inputs
if not is_normed and adj is not None:
assert type(adj) == sp.csr_matrix
adj = coo_scipy2torch(adj.tocoo()).to(feat_in.device)
adj_norm = adj_norm_rw(adj, dropedge=dropedge)
else:
assert adj is None or type(adj) == torch.Tensor or type(adj) == tuple
adj_norm = adj
feat_in = self.f_dropout(feat_in)
feat_self = feat_in
feat_neigh = self._spmm(adj_norm, feat_in)
feat_self_trans = self._f_norm(self.act(self.f_lin_self(feat_self)), 0)
feat_neigh_trans = self._f_norm(self.act(self.f_lin_neigh(feat_neigh)), 1)
feat_out = feat_self_trans + feat_neigh_trans
return feat_out, adj_norm, True, 0.
def complexity(self, dims_x, dims_adj):
assert dims_x.num_nodes == dims_adj.num_nodes
ops = dims_x.num_nodes * np.product(self.f_lin_self.weight.shape) + dims_adj.num_edges * dims_x.num_feats + dims_x.num_nodes * np.product(self.f_lin_neigh.weight.shape)
return (Dims_X(dims_x.num_nodes, self.f_lin_self.weight.shape[0]),
Dims_adj(dims_adj.num_nodes, dims_adj.num_edges)), ops
class GIN(nn.Module):
def __init__(self, dim_in, dim_out, dropout=0.0, act="relu", eps=0, **kwargs):
super().__init__()
self.dropout = dropout
self.act = get_torch_act(act, locals())
self.mlp = nn.Sequential(
nn.Linear(dim_in, dim_out, bias=True),
nn.ReLU(),
nn.Linear(dim_out, dim_out, bias=True))
self.f_dropout = nn.Dropout(p=self.dropout)
self.eps = torch.nn.Parameter(torch.Tensor([eps]))
self.offset = nn.Parameter(torch.zeros(dim_out))
self.scale = nn.Parameter(torch.ones(dim_out))
def f_norm(self, feat_in):
mean = feat_in.mean(dim=1).view(feat_in.shape[0], 1)
var = feat_in.var(dim=1, unbiased=False).view(feat_in.shape[0], 1) + 1e-10
feat_norm = (feat_in - mean) * self.scale * torch.rsqrt(var) + self.offset
return feat_norm
def forward(self, inputs):
feat_in, adj, is_normed, dropedge = inputs
assert not is_normed
feat_in = self.f_dropout(feat_in)
if type(adj) == sp.csr_matrix:
adj = coo_scipy2torch(adj.tocoo()).to(feat_in.device)
deg_orig = get_deg_torch_sparse(adj)
masked_indices = torch.floor(torch.rand(int(adj._values().size()[0] * dropedge)) * adj._values().size()[0]).long()
adj._values()[masked_indices] = 0
deg_dropped = torch.clamp(get_deg_torch_sparse(adj), min=1)
rescale = torch.repeat_interleave(deg_orig / deg_dropped, deg_orig.long())
adj._values()[:] = adj._values() * rescale
feat_aggr = torch.sparse.mm(adj, feat_in)
feat_aggr += (1 + self.eps) * feat_in
feat_out = self.mlp(feat_aggr)
feat_out = self.f_norm(self.act(feat_out))
return feat_out, adj, False, 0.
def complexity(self, dims_x, dims_adj):
assert dims_x.num_nodes == dims_adj.num_nodes
ops = dims_adj.num_edges * dims_x.num_feats
ops += dims_x.num_nodes * dims_x.num_feats
for m in self.mlp:
breakpoint()
return
class GAT(nn.Module):
def __init__(
self, dim_in, dim_out, dropout=0.0, act="relu", mulhead=1, **kwargs
):
super().__init__()
self.mulhead = mulhead
self.act = get_torch_act(act, locals())
self.att_act = nn.LeakyReLU(negative_slope=0.2)
self.dropout = dropout
assert dim_out % self.mulhead == 0, "invalid output dimension: need to be divisible by mulhead"
self.dim_slice = int(dim_out / self.mulhead)
self.f_lin = nn.ModuleList(nn.Linear(dim_in, dim_out, bias=True) for i in range(2))
self.offset = nn.Parameter(torch.zeros(2, self.mulhead, self.dim_slice))
self.scale = nn.Parameter(torch.ones(2, self.mulhead, self.dim_slice))
self.attention = nn.Parameter(torch.ones(2, self.mulhead, self.dim_slice))
nn.init.xavier_uniform_(self.attention)
self.f_dropout = nn.Dropout(p=self.dropout)
def _spmm(self, adj_norm, _feat):
return torch.sparse.mm(adj_norm, _feat)
def _aggregate_attention(self, adj, feat_neigh, feat_self, attention_self, attention_neigh):
attention_self = self.att_act(attention_self.mm(feat_self.t())).squeeze()
attention_neigh = self.att_act(attention_neigh.mm(feat_neigh.t())).squeeze()
val_adj = (attention_self[adj._indices()[0]] + attention_neigh[adj._indices()[1]])
max_per_row = scatter(val_adj, adj._indices()[0], reduce="max")
deg = scatter(torch.ones(val_adj.size()).to(feat_neigh.device), adj._indices()[0], reduce="sum")
val_adj_norm = val_adj - torch.repeat_interleave(max_per_row, deg.long())
val_adj_exp = torch.exp(val_adj_norm) * adj._values()
att_adj = torch.sparse.FloatTensor(adj._indices(), val_adj_exp, torch.Size(adj.shape))
denom = torch.clamp(scatter(val_adj_exp, adj._indices()[0], reduce="sum"), min=1e-10)
ret = self._spmm(att_adj, feat_neigh)
ret *= 1 / denom.view(-1, 1)
return ret
|
MIT License
|
sofia-netsurv/python-netsurv
|
env/lib/python3.5/site-packages/_pytest/reports.py
|
BaseReport.longreprtext
|
python
|
def longreprtext(self):
tw = py.io.TerminalWriter(stringio=True)
tw.hasmarkup = False
self.toterminal(tw)
exc = tw.stringio.getvalue()
return exc.strip()
|
Read-only property that returns the full string representation
of ``longrepr``.
.. versionadded:: 3.0
|
https://github.com/sofia-netsurv/python-netsurv/blob/429fb07a2b06cc505fdd9350148266a6b4e23e64/env/lib/python3.5/site-packages/_pytest/reports.py#L59-L70
|
from pprint import pprint
import py
from _pytest._code.code import ExceptionInfo
from _pytest._code.code import ReprEntry
from _pytest._code.code import ReprEntryNative
from _pytest._code.code import ReprExceptionInfo
from _pytest._code.code import ReprFileLocation
from _pytest._code.code import ReprFuncArgs
from _pytest._code.code import ReprLocals
from _pytest._code.code import ReprTraceback
from _pytest._code.code import TerminalRepr
from _pytest.outcomes import skip
from _pytest.pathlib import Path
def getslaveinfoline(node):
try:
return node._slaveinfocache
except AttributeError:
d = node.slaveinfo
ver = "%s.%s.%s" % d["version_info"][:3]
node._slaveinfocache = s = "[{}] {} -- Python {} {}".format(
d["id"], d["sysplatform"], ver, d["executable"]
)
return s
class BaseReport:
when = None
location = None
def __init__(self, **kw):
self.__dict__.update(kw)
def toterminal(self, out):
if hasattr(self, "node"):
out.line(getslaveinfoline(self.node))
longrepr = self.longrepr
if longrepr is None:
return
if hasattr(longrepr, "toterminal"):
longrepr.toterminal(out)
else:
try:
out.line(longrepr)
except UnicodeEncodeError:
out.line("<unprintable longrepr>")
def get_sections(self, prefix):
for name, content in self.sections:
if name.startswith(prefix):
yield prefix, content
@property
|
MIT License
|
ceteri/exelixi
|
src/util.py
|
get_telemetry
|
python
|
def get_telemetry ():
telemetry = OrderedDict()
telemetry["ip_addr"] = socket.gethostbyname(socket.gethostname())
telemetry["mem_free"] = psutil.virtual_memory().free
telemetry["cpu_num"] = psutil.NUM_CPUS
x = psutil.cpu_times()
telemetry["cpu_times"] = OrderedDict([ ("user", x.user), ("system", x.system), ("idle", x.idle) ])
x = psutil.disk_usage("/tmp")
telemetry["disk_usage"] = OrderedDict([ ("free", x.free), ("percent", x.percent) ])
x = psutil.disk_io_counters()
telemetry["disk_io"] = OrderedDict([ ("read_count", x.read_count), ("write_count", x.write_count), ("read_bytes", x.read_bytes), ("write_bytes", x.write_bytes), ("read_time", x.read_time), ("write_time", x.write_time) ])
x = psutil.network_io_counters()
telemetry["network_io"] = OrderedDict([ ("bytes_sent", x.bytes_sent), ("bytes_recv", x.bytes_recv), ("packets_sent", x.packets_sent), ("packets_recv", x.packets_recv), ("errin", x.errin), ("errout", x.errout), ("dropin", x.dropin), ("dropout", x.dropout) ])
return telemetry
|
get system resource telemetry on a Mesos slave via psutil
|
https://github.com/ceteri/exelixi/blob/81bb97d3e99fe055e3816a5692b4dc29cdce6c94/src/util.py#L68-L90
|
from collections import OrderedDict
from httplib import BadStatusLine
from importlib import import_module
from json import dumps, loads
from os.path import abspath
from random import random
from urllib2 import urlopen, Request, URLError
import logging
import psutil
import socket
def instantiate_class (class_path):
module_name, class_name = class_path.split(".")
return getattr(import_module(module_name), class_name)()
def post_distrib_rest (prefix, shard_id, shard_uri, path, base_msg):
msg = base_msg.copy()
msg["prefix"] = prefix
msg["shard_id"] = shard_id
uri = "http://" + shard_uri + "/" + path
req = Request(uri)
req.add_header('Content-Type', 'application/json')
logging.debug("send %s %s", shard_uri, path)
logging.debug(dumps(msg))
try:
f = urlopen(req, dumps(msg))
return f.readlines()
except URLError as e:
logging.critical("could not reach REST endpoint %s error: %s", uri, str(e.reason), exc_info=True)
raise
except BadStatusLine as e:
logging.critical("REST endpoint died %s error: %s", uri, str(e.line), exc_info=True)
|
Apache License 2.0
|
nuitka/nuitka
|
nuitka/build/inline_copy/lib/scons-2.3.2/SCons/Tool/GettextCommon.py
|
_POTargetFactory.__init__
|
python
|
def __init__( self, env, nodefault = True, alias = None, precious = True
, noclean = True ):
self.env = env
self.alias = alias
self.precious = precious
self.noclean = noclean
self.nodefault = nodefault
|
Object constructor.
**Arguments**
- *env* (`SCons.Environment.Environment`)
- *nodefault* (`boolean`) - if `True`, produced nodes will be ignored
from default target `'.'`
- *alias* (`string`) - if provided, produced nodes will be automatically
added to this alias, and alias will be set as `AlwaysBuild`
- *precious* (`boolean`) - if `True`, the produced nodes will be set as
`Precious`.
- *noclen* (`boolean`) - if `True`, the produced nodes will be excluded
from `Clean`.
|
https://github.com/nuitka/nuitka/blob/4c5161620ea8f0f1c93a1d6be79e7e6eda7161d4/nuitka/build/inline_copy/lib/scons-2.3.2/SCons/Tool/GettextCommon.py#L60-L80
|
__revision__ = "src/engine/SCons/Tool/GettextCommon.py 2014/07/05 09:42:21 garyo"
import SCons.Warnings
import re
class XgettextToolWarning(SCons.Warnings.Warning): pass
class XgettextNotFound(XgettextToolWarning): pass
class MsginitToolWarning(SCons.Warnings.Warning): pass
class MsginitNotFound(MsginitToolWarning): pass
class MsgmergeToolWarning(SCons.Warnings.Warning): pass
class MsgmergeNotFound(MsgmergeToolWarning): pass
class MsgfmtToolWarning(SCons.Warnings.Warning): pass
class MsgfmtNotFound(MsgfmtToolWarning): pass
SCons.Warnings.enableWarningClass(XgettextToolWarning)
SCons.Warnings.enableWarningClass(XgettextNotFound)
SCons.Warnings.enableWarningClass(MsginitToolWarning)
SCons.Warnings.enableWarningClass(MsginitNotFound)
SCons.Warnings.enableWarningClass(MsgmergeToolWarning)
SCons.Warnings.enableWarningClass(MsgmergeNotFound)
SCons.Warnings.enableWarningClass(MsgfmtToolWarning)
SCons.Warnings.enableWarningClass(MsgfmtNotFound)
class _POTargetFactory(object):
|
Apache License 2.0
|
cgatoxford/cgatpipelines
|
obsolete/pipeline_transcriptome.py
|
buildRepeatTrack
|
python
|
def buildRepeatTrack(infile, outfile):
nrepeats = 0
for gff in GTF.iterator(gzip.open(infile, "r")):
nrepeats += 1
sample = set(
random.sample(range(nrepeats), PARAMS["ancestral_repeats_samplesize"]))
outf = gzip.open(outfile, "w")
gtf = GTF.Entry()
for x, gff in enumerate(GTF.iterator(gzip.open(infile, "r"))):
if x not in sample:
continue
gtf.fromGTF(gff, "%08i" % x, "%08i" % x)
outf.write("%s\n" % str(gtf))
outf.close()
E.debug("created sample of %i repeats out of %i in %s" %
(len(sample), nrepeats, outfile))
|
build a repeat track as negative control.
|
https://github.com/cgatoxford/cgatpipelines/blob/a34d460b5fc64984f6da0acb18aee43c5e02d5fc/obsolete/pipeline_transcriptome.py#L231-L250
|
import sys
import shutil
import itertools
import random
import re
import glob
import os
import gzip
from ruffus import *
import sqlite3
import CGAT.Experiment as E
import CGATPipelines.Pipeline as P
import CGAT.IOTools as IOTools
import CGAT.Database as Database
import CGAT.GTF as GTF
import CGATPipelines.PipelineTracks as PipelineTracks
P.getParameters(
["%s/pipeline.ini" % os.path.splitext(__file__)[0],
"../pipeline.ini",
"pipeline.ini"])
PARAMS = P.PARAMS
USECLUSTER = True
PARAMS_ANNOTATIONS = P.peekParameters(
PARAMS["annotations_dir"],
"pipeline_annotations.py")
PARAMS_ANCESTRAL_REPEATS = P.peekParameters(
PARAMS["ancestral_repeats_dir"],
"pipeline_ancestral_repeats.py")
TRACKS = PipelineTracks.Tracks(PipelineTracks.Sample).loadFromDirectory(
glob.glob("*.gtf.gz"), "(\S+).gtf.gz", exclude=("repeats.gtf.gz", "introns.gtf.gz", "merged.gtf.gz"))
TRACKS_CONTROL = PipelineTracks.Tracks(PipelineTracks.Sample).loadFromDirectory(
("repeats.gtf.gz", "introns.gtf.gz"), "(\S+).gtf.gz")
TRACKS_META = PipelineTracks.Tracks(PipelineTracks.Sample).loadFromDirectory(
("merged.gtf.gz",), "(\S+).gtf.gz")
TRACKS_GENESETS = PipelineTracks.Tracks(PipelineTracks.Sample).loadFromDirectory(
("genes.gtf.gz",), "(\S+).gtf.gz")
TRACKS_WITH_CONTROLS = TRACKS + TRACKS_CONTROL
TRACKS_OVERLAP = TRACKS_META + TRACKS_GENESETS
if os.path.exists("pipeline_conf.py"):
L.info("reading additional configuration from pipeline_conf.py")
exec(compile(open("pipeline_conf.py").read(), "pipeline_conf.py", 'exec'))
def getSourceTrack(track, all_tracks):
if len(all_tracks) == 0:
return None
all_tracks = [re.sub("\..*$", "", x) for x in all_tracks]
track = re.sub("\..*$", "", track)
if len(all_tracks) == 1:
if len(os.path.commonprefix((track, all_tracks[0]))) > 0:
return all_tracks[0]
else:
return None
prefixes = [t for t in all_tracks if len(
os.path.commonprefix((track, t))) > 3]
prefixes.sort(key=lambda x: len(x))
return prefixes[0]
def getRelatedTracks(track, all_tracks):
source = getSourceTrack(track, all_tracks)
if not source:
source = track
related = set([x for x in all_tracks if x.startswith(source)])
if track not in related:
related.add(track)
for x in related:
if x in EXPERIMENTAL_TRACKS:
related.add(PARAMS["merged"])
break
return list(related)
@files(((os.path.join(PARAMS["ancestral_repeats_dir"],
PARAMS_ANCESTRAL_REPEATS["interface_rates_query_gff"]),
"repeats.gtf.gz"),))
|
MIT License
|
cyang-cityu/metacorrection
|
tools/train_meta.py
|
main
|
python
|
def main():
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
if not os.path.exists(args.log_dir + '/result'):
os.makedirs(args.log_dir + '/result')
best_mIoU = 0
mIoU = 0
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
w, h = map(int, args.input_size.split(','))
input_size = (w, h)
w, h = map(int, args.input_size_target.split(','))
input_size_target = (w, h)
cudnn.enabled = True
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
metaloader = data.DataLoader(GTA5DataSet(args.data_dir, args.data_list, max_iters=args.num_steps * args.iter_size * args.batch_size,
crop_size=input_size_target, scale=False, mirror=args.random_mirror, mean=IMG_MEAN), batch_size=args.update_f * args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True)
targetloader = data.DataLoader(cityscapesPseudo(args.data_dir_target, args.data_list_target,
max_iters=args.num_steps * args.iter_size * args.batch_size,
crop_size=input_size_target,
scale=False, mirror=args.random_mirror, mean=IMG_MEAN),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers,
pin_memory=True)
targetloader_iter = enumerate(targetloader)
main_model = build_model(args)
saved_state_dict = torch.load(args.restore_from)
pretrained_dict = {k:v for k,v in saved_state_dict.items() if k in main_model.state_dict()}
main_model.load_state_dict(pretrained_dict)
optimizer = optim.SGD(main_model.optim_parameters(args),
lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay)
optimizer.zero_grad()
interp = nn.Upsample(size=(h, w), mode='bilinear', align_corners=True)
interp_target = nn.Upsample(size=(h, w), mode='bilinear', align_corners=True)
if args.tensorboard:
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
writer = SummaryWriter(args.log_dir)
for i_iter in range(args.num_steps):
if args.is_meta:
main_model.train()
l_f_meta = 0
l_g_meta = 0
l_f = 0
optimizer.zero_grad()
adjust_learning_rate(optimizer, i_iter)
meta_net = Res_Deeplab(num_classes=args.num_classes)
meta_net.load_state_dict(main_model.state_dict())
meta_net.cuda()
_, batch = targetloader_iter.__next__()
image, label, _, _ = batch
image = to_var(image, requires_grad=False)
label = to_var(label, requires_grad=False)
T1 = to_var(torch.eye(19, 19))
T2 = to_var(torch.eye(19, 19))
y_f_hat1, y_f_hat2 = meta_net(image)
y_f_hat1 = torch.softmax(interp_target(y_f_hat1), dim=1).permute(0, 2, 3, 1).contiguous().view(-1, args.num_classes)
y_f_hat2 = torch.softmax(interp_target(y_f_hat2), dim=1).permute(0, 2, 3, 1).contiguous().view(-1, args.num_classes)
pre1 = torch.mm(y_f_hat1, T1).view(args.batch_size, h, w, args.num_classes).permute(0, 3, 1, 2)
pre2 = torch.mm(y_f_hat2, T2).view(args.batch_size, h, w, args.num_classes).permute(0, 3, 1, 2)
l_f_meta = loss_calc(pre2, label) + 0.1 * loss_calc(pre1, label)
meta_net.zero_grad()
grads = torch.autograd.grad(l_f_meta, (meta_net.params()), create_graph=True)
meta_net.update_params(1e-3, source_params=grads)
x_val, y_val, _, _ = next(iter(metaloader))
x_val = to_var(x_val, requires_grad=False)
y_val = to_var(y_val, requires_grad=False)
meta_source = obtain_meta(x_val)
y_val[meta_source] = 255
y_g_hat1, y_g_hat2 = meta_net(x_val)
y_g_hat1 = torch.softmax(interp(y_g_hat1), dim=1)
y_g_hat2 = torch.softmax(interp(y_g_hat2), dim=1)
l_g_meta = loss_calc(y_g_hat2, y_val) + 0.1 * loss_calc(y_g_hat1, y_val)
grad_eps1 = torch.autograd.grad(l_g_meta, T1, only_inputs=True, retain_graph=True)[0]
grad_eps2 = torch.autograd.grad(l_g_meta, T2, only_inputs=True)[0]
grad_eps1 = grad_eps1 / torch.max(grad_eps1)
T1 = torch.clamp(T1-0.11*grad_eps1,min=0)
norm_c = torch.sum(T1, 1)
for j in range(args.num_classes):
if norm_c[j] != 0:
T1[j, :] /= norm_c[j]
grad_eps2 = grad_eps2 / torch.max(grad_eps2)
T2 = torch.clamp(T2-0.11*grad_eps2,min=0)
norm_c = torch.sum(T2, 1)
for j in range(args.num_classes):
if norm_c[j] != 0:
T2[j, :] /= norm_c[j]
y_f_hat1, y_f_hat2 = main_model(image)
y_f_hat1 = torch.softmax(interp_target(y_f_hat1), dim=1).permute(0, 2, 3, 1).contiguous().view(-1, args.num_classes)
y_f_hat2 = torch.softmax(interp_target(y_f_hat2), dim=1).permute(0, 2, 3, 1).contiguous().view(-1, args.num_classes)
pre1 = torch.mm(y_f_hat1, T1).view(args.batch_size, h, w, args.num_classes).permute(0, 3, 1, 2)
pre2 = torch.mm(y_f_hat2, T2).view(args.batch_size, h, w, args.num_classes).permute(0, 3, 1, 2)
l_f = loss_calc(pre2, label) + 0.1 * loss_calc(pre1, label)
optimizer.zero_grad()
l_f.backward()
optimizer.step()
if args.tensorboard:
scalar_info = {
'loss_g_meta': l_g_meta.item(),
'loss_f_meta': l_f_meta.item(),
'loss_f': l_f.item(),
}
if i_iter % 10 == 0:
for key, val in scalar_info.items():
writer.add_scalar(key, val, i_iter)
print('exp = {}'.format(args.log_dir))
print(
'iter = {0:8d}/{1:8d}, loss_g_meta = {2:.3f} loss_f_meta = {3:.3f} loss_f = {4:.3f}'.format(
i_iter, args.num_steps, l_g_meta.item(), l_f_meta.item(), l_f.item()))
if i_iter >= args.num_steps_stop - 1:
print('save model ...')
torch.save(main_model.state_dict(), osp.join(args.log_dir, 'GTA5_' + str(args.num_steps_stop) + '.pth'))
break
if i_iter % args.save_pred_every == 0 and i_iter > 0:
now = datetime.datetime.now()
print (now.strftime("%Y-%m-%d %H:%M:%S"), ' Begin evaluation on iter {0:8d}/{1:8d} '.format(i_iter, args.num_steps))
mIoU = evaluate(main_model, pred_dir=args.log_dir + '/result')
writer.add_scalar('mIoU', mIoU, i_iter)
print('Finish Evaluation: '+time.asctime(time.localtime(time.time())))
if mIoU > best_mIoU:
best_mIoU = mIoU
torch.save(main_model.state_dict(), osp.join(args.log_dir, 'MetaCorrection_best.pth'))
if args.tensorboard:
writer.close()
|
Create the model and start the training.
|
https://github.com/cyang-cityu/metacorrection/blob/5a0e91b6bdfaaceb61e87690a891bf03d45e3211/tools/train_meta.py#L196-L363
|
import argparse
import torch
import torch.nn as nn
from torch.utils import data, model_zoo
import numpy as np
import pickle
from torch.autograd import Variable
import torch.optim as optim
import scipy.misc
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import sys
import os
import os.path as osp
import random
from tensorboardX import SummaryWriter
import _init_paths
from evaluate_cityscapes import evaluate
from nets.deeplab_multi import DeeplabMulti
from nets.meta_deeplab_multi import Res_Deeplab
from nets.discriminator import FCDiscriminator
from utils.loss import CrossEntropy2d
from datasets.gta5_dataset import GTA5DataSet
from datasets.cityscapes_dataset import cityscapesPseudo
import datetime
import time
IMG_MEAN = np.array((104.00698793, 116.66876762, 122.67891434), dtype=np.float32)
MODEL = 'LTIR'
BATCH_SIZE = 1
ITER_SIZE = 1
NUM_WORKERS = 4
DATA_DIRECTORY = '/home/cyang53/CED/Data/UDA_Natural/GTA5'
DATA_LIST_PATH = '/home/cyang53/CED/Ours/MetaCorrection-CVPR/datasets/gta5_list/train.lst'
IGNORE_LABEL = 255
INPUT_SIZE = '1024, 512'
DATA_DIRECTORY_TARGET = '/home/cyang53/CED/Data/UDA_Natural/Cityscapes'
DATA_LIST_PATH_TARGET = '/home/cyang53/CED/Ours/MetaCorrection-CVPR/datasets/cityscapes_list/pseudo_ltir_new.lst'
INPUT_SIZE_TARGET = '1024, 512'
LEARNING_RATE = 2.5e-4
MOMENTUM = 0.9
NUM_CLASSES = 19
NUM_STEPS = 250000
NUM_STEPS_STOP = 150000
POWER = 0.9
RANDOM_SEED = 1234
RESTORE_FROM = '/home/cyang53/CED/Ours/MetaCorrection-CVPR/snapshots/Pseudo_LTIR_best.pth'
SAVE_PRED_EVERY = 1000
WEIGHT_DECAY = 0.0005
LOG_DIR = '/home/cyang53/CED/Ours/MetaCorrection-CVPR/log/ltir_meta_debug'
LAMBDA_SEG = 0.1
GPU = '1'
TARGET = 'cityscapes'
SET = 'train'
T_WEIGHT = 0.11
IS_META = True
UPDATA_F = 1
def get_arguments():
parser = argparse.ArgumentParser(description="DeepLab-ResNet Network")
parser.add_argument("--model", type=str, default=MODEL,
help="available options : DeepLab")
parser.add_argument("--target", type=str, default=TARGET,
help="available options : cityscapes")
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Number of images sent to the network in one step.")
parser.add_argument("--iter-size", type=int, default=ITER_SIZE,
help="Accumulate gradients for ITER_SIZE iterations.")
parser.add_argument("--num-workers", type=int, default=NUM_WORKERS,
help="number of workers for multithread dataloading.")
parser.add_argument("--data-dir", type=str, default=DATA_DIRECTORY,
help="Path to the directory containing the source dataset.")
parser.add_argument("--data-list", type=str, default=DATA_LIST_PATH,
help="Path to the file listing the images in the source dataset.")
parser.add_argument("--ignore-label", type=int, default=IGNORE_LABEL,
help="The index of the label to ignore during the training.")
parser.add_argument("--input-size", type=str, default=INPUT_SIZE,
help="Comma-separated string with height and width of source images.")
parser.add_argument("--data-dir-target", type=str, default=DATA_DIRECTORY_TARGET,
help="Path to the directory containing the target dataset.")
parser.add_argument("--data-list-target", type=str, default=DATA_LIST_PATH_TARGET,
help="Path to the file listing the images in the target dataset.")
parser.add_argument("--input-size-target", type=str, default=INPUT_SIZE_TARGET,
help="Comma-separated string with height and width of target images.")
parser.add_argument("--is-training", action="store_true",
help="Whether to updates the running means and variances during the training.")
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
help="Base learning rate for training with polynomial decay.")
parser.add_argument("--lambda-seg", type=float, default=LAMBDA_SEG,
help="lambda_seg.")
parser.add_argument("--momentum", type=float, default=MOMENTUM,
help="Momentum component of the optimiser.")
parser.add_argument("--is-meta", type=bool, default=IS_META,
help="Whether to update T")
parser.add_argument("--num-classes", type=int, default=NUM_CLASSES,
help="Number of classes to predict (including background).")
parser.add_argument("--num-steps", type=int, default=NUM_STEPS,
help="Number of training steps.")
parser.add_argument("--num-steps-stop", type=int, default=NUM_STEPS_STOP,
help="Number of training steps for early stopping.")
parser.add_argument("--power", type=float, default=POWER,
help="Decay parameter to compute the learning rate.")
parser.add_argument("--random-mirror", action="store_true",
help="Whether to randomly mirror the inputs during the training.")
parser.add_argument("--random-scale", action="store_true",
help="Whether to randomly scale the inputs during the training.")
parser.add_argument("--random-seed", type=int, default=RANDOM_SEED,
help="Random seed to have reproducible results.")
parser.add_argument("--restore-from", type=str, default=RESTORE_FROM,
help="Where restore model parameters from.")
parser.add_argument("--t-weight", type=float, default=T_WEIGHT,
help="grad weight to correct T.")
parser.add_argument("--save-pred-every", type=int, default=SAVE_PRED_EVERY,
help="Save summaries and checkpoint every often.")
parser.add_argument("--weight-decay", type=float, default=WEIGHT_DECAY,
help="Regularisation parameter for L2-loss.")
parser.add_argument("--tensorboard", action='store_true', default=True, help="choose whether to use tensorboard.")
parser.add_argument("--log-dir", type=str, default=LOG_DIR,
help="Path to the directory of log.")
parser.add_argument("--gpu", type=str, default=GPU,
help="gpu id to run.")
parser.add_argument("--set", type=str, default=SET,
help="choose adaptation set.")
parser.add_argument("--update-f", type=int, default=UPDATA_F,
help="update frequency for T.")
parser.add_argument("--uncertainty", type=bool, default=True,
help="choose adaptation set.")
return parser.parse_args()
args = get_arguments()
def lr_poly(base_lr, iter, max_iter, power):
return base_lr * ((1 - float(iter) / max_iter) ** (power))
def adjust_learning_rate(optimizer, i_iter):
lr = lr_poly(args.learning_rate, i_iter, args.num_steps, args.power)
optimizer.param_groups[0]['lr'] = lr
if len(optimizer.param_groups) > 1:
optimizer.param_groups[1]['lr'] = lr * 10
def adjust_learning_rate_D(optimizer, i_iter):
lr = lr_poly(args.learning_rate_D, i_iter, args.num_steps, args.power)
optimizer.param_groups[0]['lr'] = lr
if len(optimizer.param_groups) > 1:
optimizer.param_groups[1]['lr'] = lr * 10
def build_model(args):
net = Res_Deeplab(num_classes=args.num_classes)
if torch.cuda.is_available():
net.cuda()
torch.backends.cudnn.benchmark=True
return net
def to_var(x, requires_grad=True):
x = x.cuda()
return Variable(x, requires_grad=requires_grad)
def loss_calc(pred, label):
label = Variable(label.long()).cuda()
criterion = CrossEntropy2d(is_softmax=False).cuda()
return criterion(pred, label)
def obtain_meta(source_img):
seg_model = DeeplabMulti(num_classes=19).cuda()
seg_model.load_state_dict(torch.load('/home/cyang53/CED/Baseline/AdaptSegNet-CVPR2018/snapshots/GTA5_best.pth'))
dis_model = FCDiscriminator(num_classes=19).cuda()
dis_model.load_state_dict(torch.load('/home/cyang53/CED/Ours/AdaptSegNet-CVPR2018/snapshots/GTA5_best_D2.pth'))
seg_model.eval()
dis_model.eval()
output1, output2 = seg_model(source_img)
meta_map = dis_model(F.softmax(output2, dim=1)).cpu().data[0]
source_like = torch.where(meta_map < 0.5)
return source_like
|
MIT License
|
brython-dev/brython
|
www/src/Lib/tarfile.py
|
TarInfo.linkpath
|
python
|
def linkpath(self):
return self.linkname
|
In pax headers, "linkname" is called "linkpath".
|
https://github.com/brython-dev/brython/blob/33aeaab551f1b73209326c5a0aecf98642d4c126/www/src/Lib/tarfile.py#L784-L786
|
version = "0.9.0"
__author__ = "Lars Gust\u00e4bel (lars@gustaebel.de)"
__credits__ = "Gustavo Niemeyer, Niels Gust\u00e4bel, Richard Townsend."
from builtins import open as bltn_open
import sys
import os
import io
import shutil
import stat
import time
import struct
import copy
import re
try:
import pwd
except ImportError:
pwd = None
try:
import grp
except ImportError:
grp = None
symlink_exception = (AttributeError, NotImplementedError)
try:
symlink_exception += (OSError,)
except NameError:
pass
__all__ = ["TarFile", "TarInfo", "is_tarfile", "TarError", "ReadError",
"CompressionError", "StreamError", "ExtractError", "HeaderError",
"ENCODING", "USTAR_FORMAT", "GNU_FORMAT", "PAX_FORMAT",
"DEFAULT_FORMAT", "open"]
NUL = b"\0"
BLOCKSIZE = 512
RECORDSIZE = BLOCKSIZE * 20
GNU_MAGIC = b"ustar \0"
POSIX_MAGIC = b"ustar\x0000"
LENGTH_NAME = 100
LENGTH_LINK = 100
LENGTH_PREFIX = 155
REGTYPE = b"0"
AREGTYPE = b"\0"
LNKTYPE = b"1"
SYMTYPE = b"2"
CHRTYPE = b"3"
BLKTYPE = b"4"
DIRTYPE = b"5"
FIFOTYPE = b"6"
CONTTYPE = b"7"
GNUTYPE_LONGNAME = b"L"
GNUTYPE_LONGLINK = b"K"
GNUTYPE_SPARSE = b"S"
XHDTYPE = b"x"
XGLTYPE = b"g"
SOLARIS_XHDTYPE = b"X"
USTAR_FORMAT = 0
GNU_FORMAT = 1
PAX_FORMAT = 2
DEFAULT_FORMAT = PAX_FORMAT
SUPPORTED_TYPES = (REGTYPE, AREGTYPE, LNKTYPE,
SYMTYPE, DIRTYPE, FIFOTYPE,
CONTTYPE, CHRTYPE, BLKTYPE,
GNUTYPE_LONGNAME, GNUTYPE_LONGLINK,
GNUTYPE_SPARSE)
REGULAR_TYPES = (REGTYPE, AREGTYPE,
CONTTYPE, GNUTYPE_SPARSE)
GNU_TYPES = (GNUTYPE_LONGNAME, GNUTYPE_LONGLINK,
GNUTYPE_SPARSE)
PAX_FIELDS = ("path", "linkpath", "size", "mtime",
"uid", "gid", "uname", "gname")
PAX_NAME_FIELDS = {"path", "linkpath", "uname", "gname"}
PAX_NUMBER_FIELDS = {
"atime": float,
"ctime": float,
"mtime": float,
"uid": int,
"gid": int,
"size": int
}
if os.name == "nt":
ENCODING = "utf-8"
else:
ENCODING = sys.getfilesystemencoding()
def stn(s, length, encoding, errors):
s = s.encode(encoding, errors)
return s[:length] + (length - len(s)) * NUL
def nts(s, encoding, errors):
p = s.find(b"\0")
if p != -1:
s = s[:p]
return s.decode(encoding, errors)
def nti(s):
if s[0] in (0o200, 0o377):
n = 0
for i in range(len(s) - 1):
n <<= 8
n += s[i + 1]
if s[0] == 0o377:
n = -(256 ** (len(s) - 1) - n)
else:
try:
s = nts(s, "ascii", "strict")
n = int(s.strip() or "0", 8)
except ValueError:
raise InvalidHeaderError("invalid header")
return n
def itn(n, digits=8, format=DEFAULT_FORMAT):
original_n = n
n = int(n)
if 0 <= n < 8 ** (digits - 1):
s = bytes("%0*o" % (digits - 1, n), "ascii") + NUL
elif format == GNU_FORMAT and -256 ** (digits - 1) <= n < 256 ** (digits - 1):
if n >= 0:
s = bytearray([0o200])
else:
s = bytearray([0o377])
n = 256 ** digits + n
for i in range(digits - 1):
s.insert(1, n & 0o377)
n >>= 8
else:
raise ValueError("overflow in number field")
return s
def calc_chksums(buf):
unsigned_chksum = 256 + sum(struct.unpack_from("148B8x356B", buf))
signed_chksum = 256 + sum(struct.unpack_from("148b8x356b", buf))
return unsigned_chksum, signed_chksum
def copyfileobj(src, dst, length=None, exception=OSError, bufsize=None):
bufsize = bufsize or 16 * 1024
if length == 0:
return
if length is None:
shutil.copyfileobj(src, dst, bufsize)
return
blocks, remainder = divmod(length, bufsize)
for b in range(blocks):
buf = src.read(bufsize)
if len(buf) < bufsize:
raise exception("unexpected end of data")
dst.write(buf)
if remainder != 0:
buf = src.read(remainder)
if len(buf) < remainder:
raise exception("unexpected end of data")
dst.write(buf)
return
def _safe_print(s):
encoding = getattr(sys.stdout, 'encoding', None)
if encoding is not None:
s = s.encode(encoding, 'backslashreplace').decode(encoding)
print(s, end=' ')
class TarError(Exception):
pass
class ExtractError(TarError):
pass
class ReadError(TarError):
pass
class CompressionError(TarError):
pass
class StreamError(TarError):
pass
class HeaderError(TarError):
pass
class EmptyHeaderError(HeaderError):
pass
class TruncatedHeaderError(HeaderError):
pass
class EOFHeaderError(HeaderError):
pass
class InvalidHeaderError(HeaderError):
pass
class SubsequentHeaderError(HeaderError):
pass
class _LowLevelFile:
def __init__(self, name, mode):
mode = {
"r": os.O_RDONLY,
"w": os.O_WRONLY | os.O_CREAT | os.O_TRUNC,
}[mode]
if hasattr(os, "O_BINARY"):
mode |= os.O_BINARY
self.fd = os.open(name, mode, 0o666)
def close(self):
os.close(self.fd)
def read(self, size):
return os.read(self.fd, size)
def write(self, s):
os.write(self.fd, s)
class _Stream:
def __init__(self, name, mode, comptype, fileobj, bufsize):
self._extfileobj = True
if fileobj is None:
fileobj = _LowLevelFile(name, mode)
self._extfileobj = False
if comptype == '*':
fileobj = _StreamProxy(fileobj)
comptype = fileobj.getcomptype()
self.name = name or ""
self.mode = mode
self.comptype = comptype
self.fileobj = fileobj
self.bufsize = bufsize
self.buf = b""
self.pos = 0
self.closed = False
try:
if comptype == "gz":
try:
import zlib
except ImportError:
raise CompressionError("zlib module is not available") from None
self.zlib = zlib
self.crc = zlib.crc32(b"")
if mode == "r":
self._init_read_gz()
self.exception = zlib.error
else:
self._init_write_gz()
elif comptype == "bz2":
try:
import bz2
except ImportError:
raise CompressionError("bz2 module is not available") from None
if mode == "r":
self.dbuf = b""
self.cmp = bz2.BZ2Decompressor()
self.exception = OSError
else:
self.cmp = bz2.BZ2Compressor()
elif comptype == "xz":
try:
import lzma
except ImportError:
raise CompressionError("lzma module is not available") from None
if mode == "r":
self.dbuf = b""
self.cmp = lzma.LZMADecompressor()
self.exception = lzma.LZMAError
else:
self.cmp = lzma.LZMACompressor()
elif comptype != "tar":
raise CompressionError("unknown compression type %r" % comptype)
except:
if not self._extfileobj:
self.fileobj.close()
self.closed = True
raise
def __del__(self):
if hasattr(self, "closed") and not self.closed:
self.close()
def _init_write_gz(self):
self.cmp = self.zlib.compressobj(9, self.zlib.DEFLATED,
-self.zlib.MAX_WBITS,
self.zlib.DEF_MEM_LEVEL,
0)
timestamp = struct.pack("<L", int(time.time()))
self.__write(b"\037\213\010\010" + timestamp + b"\002\377")
if self.name.endswith(".gz"):
self.name = self.name[:-3]
self.name = os.path.basename(self.name)
self.__write(self.name.encode("iso-8859-1", "replace") + NUL)
def write(self, s):
if self.comptype == "gz":
self.crc = self.zlib.crc32(s, self.crc)
self.pos += len(s)
if self.comptype != "tar":
s = self.cmp.compress(s)
self.__write(s)
def __write(self, s):
self.buf += s
while len(self.buf) > self.bufsize:
self.fileobj.write(self.buf[:self.bufsize])
self.buf = self.buf[self.bufsize:]
def close(self):
if self.closed:
return
self.closed = True
try:
if self.mode == "w" and self.comptype != "tar":
self.buf += self.cmp.flush()
if self.mode == "w" and self.buf:
self.fileobj.write(self.buf)
self.buf = b""
if self.comptype == "gz":
self.fileobj.write(struct.pack("<L", self.crc))
self.fileobj.write(struct.pack("<L", self.pos & 0xffffFFFF))
finally:
if not self._extfileobj:
self.fileobj.close()
def _init_read_gz(self):
self.cmp = self.zlib.decompressobj(-self.zlib.MAX_WBITS)
self.dbuf = b""
if self.__read(2) != b"\037\213":
raise ReadError("not a gzip file")
if self.__read(1) != b"\010":
raise CompressionError("unsupported compression method")
flag = ord(self.__read(1))
self.__read(6)
if flag & 4:
xlen = ord(self.__read(1)) + 256 * ord(self.__read(1))
self.read(xlen)
if flag & 8:
while True:
s = self.__read(1)
if not s or s == NUL:
break
if flag & 16:
while True:
s = self.__read(1)
if not s or s == NUL:
break
if flag & 2:
self.__read(2)
def tell(self):
return self.pos
def seek(self, pos=0):
if pos - self.pos >= 0:
blocks, remainder = divmod(pos - self.pos, self.bufsize)
for i in range(blocks):
self.read(self.bufsize)
self.read(remainder)
else:
raise StreamError("seeking backwards is not allowed")
return self.pos
def read(self, size):
assert size is not None
buf = self._read(size)
self.pos += len(buf)
return buf
def _read(self, size):
if self.comptype == "tar":
return self.__read(size)
c = len(self.dbuf)
t = [self.dbuf]
while c < size:
if self.buf:
buf = self.buf
self.buf = b""
else:
buf = self.fileobj.read(self.bufsize)
if not buf:
break
try:
buf = self.cmp.decompress(buf)
except self.exception as e:
raise ReadError("invalid compressed data") from e
t.append(buf)
c += len(buf)
t = b"".join(t)
self.dbuf = t[size:]
return t[:size]
def __read(self, size):
c = len(self.buf)
t = [self.buf]
while c < size:
buf = self.fileobj.read(self.bufsize)
if not buf:
break
t.append(buf)
c += len(buf)
t = b"".join(t)
self.buf = t[size:]
return t[:size]
class _StreamProxy(object):
def __init__(self, fileobj):
self.fileobj = fileobj
self.buf = self.fileobj.read(BLOCKSIZE)
def read(self, size):
self.read = self.fileobj.read
return self.buf
def getcomptype(self):
if self.buf.startswith(b"\x1f\x8b\x08"):
return "gz"
elif self.buf[0:3] == b"BZh" and self.buf[4:10] == b"1AY&SY":
return "bz2"
elif self.buf.startswith((b"\x5d\x00\x00\x80", b"\xfd7zXZ")):
return "xz"
else:
return "tar"
def close(self):
self.fileobj.close()
class _FileInFile(object):
def __init__(self, fileobj, offset, size, blockinfo=None):
self.fileobj = fileobj
self.offset = offset
self.size = size
self.position = 0
self.name = getattr(fileobj, "name", None)
self.closed = False
if blockinfo is None:
blockinfo = [(0, size)]
self.map_index = 0
self.map = []
lastpos = 0
realpos = self.offset
for offset, size in blockinfo:
if offset > lastpos:
self.map.append((False, lastpos, offset, None))
self.map.append((True, offset, offset + size, realpos))
realpos += size
lastpos = offset + size
if lastpos < self.size:
self.map.append((False, lastpos, self.size, None))
def flush(self):
pass
def readable(self):
return True
def writable(self):
return False
def seekable(self):
return self.fileobj.seekable()
def tell(self):
return self.position
def seek(self, position, whence=io.SEEK_SET):
if whence == io.SEEK_SET:
self.position = min(max(position, 0), self.size)
elif whence == io.SEEK_CUR:
if position < 0:
self.position = max(self.position + position, 0)
else:
self.position = min(self.position + position, self.size)
elif whence == io.SEEK_END:
self.position = max(min(self.size + position, self.size), 0)
else:
raise ValueError("Invalid argument")
return self.position
def read(self, size=None):
if size is None:
size = self.size - self.position
else:
size = min(size, self.size - self.position)
buf = b""
while size > 0:
while True:
data, start, stop, offset = self.map[self.map_index]
if start <= self.position < stop:
break
else:
self.map_index += 1
if self.map_index == len(self.map):
self.map_index = 0
length = min(size, stop - self.position)
if data:
self.fileobj.seek(offset + (self.position - start))
b = self.fileobj.read(length)
if len(b) != length:
raise ReadError("unexpected end of data")
buf += b
else:
buf += NUL * length
size -= length
self.position += length
return buf
def readinto(self, b):
buf = self.read(len(b))
b[:len(buf)] = buf
return len(buf)
def close(self):
self.closed = True
class ExFileObject(io.BufferedReader):
def __init__(self, tarfile, tarinfo):
fileobj = _FileInFile(tarfile.fileobj, tarinfo.offset_data,
tarinfo.size, tarinfo.sparse)
super().__init__(fileobj)
class TarInfo(object):
__slots__ = dict(
name = 'Name of the archive member.',
mode = 'Permission bits.',
uid = 'User ID of the user who originally stored this member.',
gid = 'Group ID of the user who originally stored this member.',
size = 'Size in bytes.',
mtime = 'Time of last modification.',
chksum = 'Header checksum.',
type = ('File type. type is usually one of these constants: '
'REGTYPE, AREGTYPE, LNKTYPE, SYMTYPE, DIRTYPE, FIFOTYPE, '
'CONTTYPE, CHRTYPE, BLKTYPE, GNUTYPE_SPARSE.'),
linkname = ('Name of the target file name, which is only present '
'in TarInfo objects of type LNKTYPE and SYMTYPE.'),
uname = 'User name.',
gname = 'Group name.',
devmajor = 'Device major number.',
devminor = 'Device minor number.',
offset = 'The tar header starts here.',
offset_data = "The file's data starts here.",
pax_headers = ('A dictionary containing key-value pairs of an '
'associated pax extended header.'),
sparse = 'Sparse member information.',
tarfile = None,
_sparse_structs = None,
_link_target = None,
)
def __init__(self, name=""):
self.name = name
self.mode = 0o644
self.uid = 0
self.gid = 0
self.size = 0
self.mtime = 0
self.chksum = 0
self.type = REGTYPE
self.linkname = ""
self.uname = ""
self.gname = ""
self.devmajor = 0
self.devminor = 0
self.offset = 0
self.offset_data = 0
self.sparse = None
self.pax_headers = {}
@property
def path(self):
return self.name
@path.setter
def path(self, name):
self.name = name
@property
|
BSD 3-Clause New or Revised License
|
danielfrg/jupyterhub-kubernetes_spawner
|
kubernetes_spawner/swagger_client/models/v1_namespace.py
|
V1Namespace.api_version
|
python
|
def api_version(self):
return self._api_version
|
Gets the api_version of this V1Namespace.
APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: http://releases.k8s.io/HEAD/docs/devel/api-conventions.md#resources
:return: The api_version of this V1Namespace.
:rtype: str
|
https://github.com/danielfrg/jupyterhub-kubernetes_spawner/blob/15a2b63ef719f8c3ff83221333f7de69c1495512/kubernetes_spawner/swagger_client/models/v1_namespace.py#L84-L92
|
from pprint import pformat
from six import iteritems
class V1Namespace(object):
def __init__(self):
self.swagger_types = {
'kind': 'str',
'api_version': 'str',
'metadata': 'V1ObjectMeta',
'spec': 'V1NamespaceSpec',
'status': 'V1NamespaceStatus'
}
self.attribute_map = {
'kind': 'kind',
'api_version': 'apiVersion',
'metadata': 'metadata',
'spec': 'spec',
'status': 'status'
}
self._kind = None
self._api_version = None
self._metadata = None
self._spec = None
self._status = None
@property
def kind(self):
return self._kind
@kind.setter
def kind(self, kind):
self._kind = kind
@property
|
Apache License 2.0
|
dit/dit
|
dit/rate_distortion/plotting.py
|
BasePlotter.__init__
|
python
|
def __init__(self, *curves):
self.curves = curves
|
Initialize the plotter.
Parameters
----------
curves : *{RDCurve, IBCurve}
The curves to plot.
|
https://github.com/dit/dit/blob/2853cb13110c5a5b2fa7ad792e238e2177013da2/dit/rate_distortion/plotting.py#L64-L73
|
from abc import ABCMeta, abstractmethod
from collections import namedtuple
from operator import attrgetter
import matplotlib.pyplot as plt
import numpy as np
from .curves import IBCurve, RDCurve
__all__ = (
'IBPlotter',
'RDPlotter',
)
Axis = namedtuple('Axis', ['data', 'limit', 'label'])
def _rescale_axes(ax, xmin=None, xmax=None, ymin=None, ymax=None):
x_min, x_max = ax.get_xlim()
y_min, y_max = ax.get_ylim()
if xmin is not None:
x_min = xmin
if xmax is not None and not np.isnan(xmax):
x_max = 1.05 * xmax
if ymin is not None:
y_min = ymin
if ymax is not None and not np.isnan(ymax):
y_max = 1.05 * ymax
ax.set_xlim(x_min, x_max)
ax.set_ylim(y_min, y_max)
class BasePlotter(metaclass=ABCMeta):
_beta_axis = Axis(attrgetter('betas'), lambda _: None, r"$\beta$")
_rank_axis = Axis(attrgetter('ranks'), attrgetter('_max_rank'), r"rank")
_alphabet_axis = Axis(attrgetter('alphabets'), attrgetter('_max_rank'), r"$|\mathcal{A}|$")
_distortion_axis = Axis(attrgetter('distortions'), attrgetter('_max_distortion'), r"$\langle d(x, \hat{x}) \rangle$")
|
BSD 3-Clause New or Revised License
|
researchmm/lighttrack
|
lib/models/backbone/models/builder.py
|
ChildNetBuilder.__call__
|
python
|
def __call__(self, in_chs, model_block_args):
if self.verbose:
logging.info('Building model trunk with %d stages...' % len(model_block_args))
self.in_chs = in_chs
total_block_count = sum([len(x) for x in model_block_args])
total_block_idx = 0
current_stride = 2
current_dilation = 1
feature_idx = 0
stages = []
for stage_idx, stage_block_args in enumerate(model_block_args):
last_stack = stage_idx == (len(model_block_args) - 1)
if self.verbose:
logging.info('Stack: {}'.format(stage_idx))
assert isinstance(stage_block_args, list)
blocks = []
for block_idx, block_args in enumerate(stage_block_args):
last_block = block_idx == (len(stage_block_args) - 1)
extract_features = ''
if self.verbose:
logging.info(' Block: {}'.format(block_idx))
assert block_args['stride'] in (1, 2)
if block_idx >= 1:
block_args['stride'] = 1
do_extract = False
if self.feature_location == 'pre_pwl':
if last_block:
next_stage_idx = stage_idx + 1
if next_stage_idx >= len(model_block_args):
do_extract = True
else:
do_extract = model_block_args[next_stage_idx][0]['stride'] > 1
elif self.feature_location == 'post_exp':
if block_args['stride'] > 1 or (last_stack and last_block):
do_extract = True
if do_extract:
extract_features = self.feature_location
next_dilation = current_dilation
if block_args['stride'] > 1:
next_output_stride = current_stride * block_args['stride']
if next_output_stride > self.output_stride:
next_dilation = current_dilation * block_args['stride']
block_args['stride'] = 1
if self.verbose:
logging.info(' Converting stride to dilation to maintain output_stride=={}'.format(
self.output_stride))
else:
current_stride = next_output_stride
block_args['dilation'] = current_dilation
if next_dilation != current_dilation:
current_dilation = next_dilation
block = self._make_block(block_args, total_block_idx, total_block_count)
blocks.append(block)
if extract_features:
feature_module = block.feature_module(extract_features)
if feature_module:
feature_module = 'blocks.{}.{}.'.format(stage_idx, block_idx) + feature_module
feature_channels = block.feature_channels(extract_features)
self.features[feature_idx] = dict(
name=feature_module,
num_chs=feature_channels
)
feature_idx += 1
total_block_idx += 1
stages.append(nn.Sequential(*blocks))
return stages
|
Build the blocks
Args:
in_chs: Number of input-channels passed to first block
model_block_args: A list of lists, outer list defines stages, inner
list contains strings defining block configuration(s)
Return:
List of block stacks (each stack wrapped in nn.Sequential)
|
https://github.com/researchmm/lighttrack/blob/e94368aa80e924f8720887aa8f4fc23db074d3e7/lib/models/backbone/models/builder.py#L248-L334
|
import logging
import re
from collections.__init__ import OrderedDict
from copy import deepcopy
import torch.nn as nn
from .utils import _parse_ksize
from .units import *
def _decode_block_str(block_str):
assert isinstance(block_str, str)
ops = block_str.split('_')
block_type = ops[0]
ops = ops[1:]
options = {}
noskip = False
for op in ops:
if op == 'noskip':
noskip = True
elif op.startswith('n'):
key = op[0]
v = op[1:]
if v == 're':
value = nn.ReLU
elif v == 'r6':
value = nn.ReLU6
elif v == 'sw':
value = Swish
else:
continue
options[key] = value
else:
splits = re.split(r'(\d.*)', op)
if len(splits) >= 2:
key, value = splits[:2]
options[key] = value
act_layer = options['n'] if 'n' in options else None
exp_kernel_size = _parse_ksize(options['a']) if 'a' in options else 1
pw_kernel_size = _parse_ksize(options['p']) if 'p' in options else 1
fake_in_chs = int(options['fc']) if 'fc' in options else 0
num_repeat = int(options['r'])
if block_type == 'ir':
block_args = dict(
block_type=block_type,
dw_kernel_size=_parse_ksize(options['k']),
exp_kernel_size=exp_kernel_size,
pw_kernel_size=pw_kernel_size,
out_chs=int(options['c']),
exp_ratio=float(options['e']),
se_ratio=float(options['se']) if 'se' in options else None,
stride=int(options['s']),
act_layer=act_layer,
noskip=noskip,
)
if 'cc' in options:
block_args['num_experts'] = int(options['cc'])
elif block_type == 'ds' or block_type == 'dsa':
block_args = dict(
block_type=block_type,
dw_kernel_size=_parse_ksize(options['k']),
pw_kernel_size=pw_kernel_size,
out_chs=int(options['c']),
se_ratio=float(options['se']) if 'se' in options else None,
stride=int(options['s']),
act_layer=act_layer,
pw_act=block_type == 'dsa',
noskip=block_type == 'dsa' or noskip,
)
elif block_type == 'cn':
block_args = dict(
block_type=block_type,
kernel_size=int(options['k']),
out_chs=int(options['c']),
stride=int(options['s']),
act_layer=act_layer,
)
else:
assert False, 'Unknown block type (%s)' % block_type
return block_args, num_repeat
def modify_block_args(block_args, kernel_size, exp_ratio):
block_type = block_args['block_type']
if block_type == 'cn':
block_args['kernel_size'] = kernel_size
elif block_type == 'er':
block_args['exp_kernel_size'] = kernel_size
else:
block_args['dw_kernel_size'] = kernel_size
if block_type == 'ir' or block_type == 'er':
block_args['exp_ratio'] = exp_ratio
return block_args
def _scale_stage_depth(stack_args, repeats, depth_multiplier=1.0, depth_trunc='ceil'):
num_repeat = sum(repeats)
if depth_trunc == 'round':
num_repeat_scaled = max(1, round(num_repeat * depth_multiplier))
else:
num_repeat_scaled = int(math.ceil(num_repeat * depth_multiplier))
repeats_scaled = []
for r in repeats[::-1]:
rs = max(1, round((r / num_repeat * num_repeat_scaled)))
repeats_scaled.append(rs)
num_repeat -= r
num_repeat_scaled -= rs
repeats_scaled = repeats_scaled[::-1]
sa_scaled = []
for ba, rep in zip(stack_args, repeats_scaled):
sa_scaled.extend([deepcopy(ba) for _ in range(rep)])
return sa_scaled
def decode_arch_def(arch_def, depth_multiplier=1.0, depth_trunc='ceil', experts_multiplier=1):
arch_args = []
for stack_idx, block_strings in enumerate(arch_def):
assert isinstance(block_strings, list)
stack_args = []
repeats = []
for block_str in block_strings:
assert isinstance(block_str, str)
ba, rep = _decode_block_str(block_str)
if ba.get('num_experts', 0) > 0 and experts_multiplier > 1:
ba['num_experts'] *= experts_multiplier
stack_args.append(ba)
repeats.append(rep)
arch_args.append(_scale_stage_depth(stack_args, repeats, depth_multiplier, depth_trunc))
return arch_args
class ChildNetBuilder:
def __init__(self, channel_multiplier=1.0, channel_divisor=8, channel_min=None,
output_stride=32, pad_type='', act_layer=None, se_kwargs=None,
norm_layer=nn.BatchNorm2d, norm_kwargs=None, drop_path_rate=0., feature_location='',
verbose=False):
self.channel_multiplier = channel_multiplier
self.channel_divisor = channel_divisor
self.channel_min = channel_min
self.output_stride = output_stride
self.pad_type = pad_type
self.act_layer = act_layer
self.se_kwargs = se_kwargs
self.norm_layer = norm_layer
self.norm_kwargs = norm_kwargs
self.drop_path_rate = drop_path_rate
self.feature_location = feature_location
assert feature_location in ('pre_pwl', 'post_exp', '')
self.verbose = verbose
self.in_chs = None
self.features = OrderedDict()
def _round_channels(self, chs):
return round_channels(chs, self.channel_multiplier, self.channel_divisor, self.channel_min)
def _make_block(self, ba, block_idx, block_count):
drop_path_rate = self.drop_path_rate * block_idx / block_count
bt = ba.pop('block_type')
ba['in_chs'] = self.in_chs
ba['out_chs'] = self._round_channels(ba['out_chs'])
if 'fake_in_chs' in ba and ba['fake_in_chs']:
ba['fake_in_chs'] = self._round_channels(ba['fake_in_chs'])
ba['norm_layer'] = self.norm_layer
ba['norm_kwargs'] = self.norm_kwargs
ba['pad_type'] = self.pad_type
ba['act_layer'] = ba['act_layer'] if ba['act_layer'] is not None else self.act_layer
assert ba['act_layer'] is not None
if bt == 'ir':
ba['drop_path_rate'] = drop_path_rate
ba['se_kwargs'] = self.se_kwargs
if self.verbose:
logging.info(' InvertedResidual {}, Args: {}'.format(block_idx, str(ba)))
block = InvertedResidual(**ba)
elif bt == 'ds' or bt == 'dsa':
ba['drop_path_rate'] = drop_path_rate
ba['se_kwargs'] = self.se_kwargs
if self.verbose:
logging.info(' DepthwiseSeparable {}, Args: {}'.format(block_idx, str(ba)))
block = DepthwiseSeparableConv(**ba)
elif bt == 'cn':
if self.verbose:
logging.info(' ConvBnAct {}, Args: {}'.format(block_idx, str(ba)))
block = ConvBnAct(**ba)
else:
assert False, 'Uknkown block type (%s) while building model.' % bt
self.in_chs = ba['out_chs']
return block
|
MIT License
|
hyperledger/aries-cloudagent-python
|
aries_cloudagent/core/conductor.py
|
Conductor.setup
|
python
|
async def setup(self):
context = await self.context_builder.build_context()
await get_genesis_transactions(context.settings)
self.root_profile, self.setup_public_did = await wallet_config(context)
context = self.root_profile.context
if not await ledger_config(
self.root_profile, self.setup_public_did and self.setup_public_did.did
):
LOGGER.warning("No ledger configured")
self.inbound_transport_manager = InboundTransportManager(
self.root_profile, self.inbound_message_router, self.handle_not_returned
)
await self.inbound_transport_manager.setup()
context.injector.bind_instance(
InboundTransportManager, self.inbound_transport_manager
)
self.outbound_transport_manager = OutboundTransportManager(
self.root_profile, self.handle_not_delivered
)
await self.outbound_transport_manager.setup()
self.dispatcher = Dispatcher(self.root_profile)
await self.dispatcher.setup()
wire_format = context.inject_or(BaseWireFormat)
if wire_format and hasattr(wire_format, "task_queue"):
wire_format.task_queue = self.dispatcher.task_queue
if context.settings.get("multitenant.enabled"):
context.injector.bind_provider(
BaseMultitenantManager, MultitenantManagerProvider(self.root_profile)
)
context.injector.bind_instance(
DocumentLoader, DocumentLoader(self.root_profile)
)
self.outbound_queue = get_outbound_queue(context.settings)
if context.settings.get("admin.enabled"):
try:
admin_host = context.settings.get("admin.host", "0.0.0.0")
admin_port = context.settings.get("admin.port", "80")
self.admin_server = AdminServer(
admin_host,
admin_port,
context,
self.root_profile,
self.outbound_message_router,
self.webhook_router,
self.stop,
self.dispatcher.task_queue,
self.get_stats,
)
context.injector.bind_instance(BaseAdminServer, self.admin_server)
except Exception:
LOGGER.exception("Unable to register admin server")
raise
collector = context.inject_or(Collector)
if collector:
collector.wrap(
self,
(
"outbound_message_router",
),
)
collector.wrap(
ConnectionManager,
(
"fetch_did_document",
"find_inbound_connection",
),
)
|
Initialize the global request context.
|
https://github.com/hyperledger/aries-cloudagent-python/blob/fec69f1a2301e4745fc9d40cea190050e3f595fa/aries_cloudagent/core/conductor.py#L89-L184
|
import hashlib
import json
import logging
from ..admin.base_server import BaseAdminServer
from ..admin.server import AdminResponder, AdminServer
from ..config.default_context import ContextBuilder
from ..config.injection_context import InjectionContext
from ..config.ledger import get_genesis_transactions, ledger_config
from ..config.logging import LoggingConfigurator
from ..config.wallet import wallet_config
from ..core.profile import Profile
from ..ledger.error import LedgerConfigError, LedgerTransactionError
from ..messaging.responder import BaseResponder
from ..multitenant.base import BaseMultitenantManager
from ..multitenant.manager_provider import MultitenantManagerProvider
from ..protocols.connections.v1_0.manager import (
ConnectionManager,
ConnectionManagerError,
)
from ..protocols.connections.v1_0.messages.connection_invitation import (
ConnectionInvitation,
)
from ..protocols.coordinate_mediation.v1_0.manager import MediationManager
from ..protocols.coordinate_mediation.mediation_invite_store import MediationInviteStore
from ..protocols.out_of_band.v1_0.manager import OutOfBandManager
from ..protocols.out_of_band.v1_0.messages.invitation import HSProto, InvitationMessage
from ..storage.base import BaseStorage
from ..transport.inbound.manager import InboundTransportManager
from ..transport.inbound.message import InboundMessage
from ..transport.outbound.base import OutboundDeliveryError
from ..transport.outbound.manager import OutboundTransportManager, QueuedOutboundMessage
from ..transport.outbound.message import OutboundMessage
from ..transport.outbound.queue.base import BaseOutboundQueue
from ..transport.outbound.queue.loader import get_outbound_queue
from ..transport.outbound.status import OutboundSendStatus
from ..transport.wire_format import BaseWireFormat
from ..utils.stats import Collector
from ..utils.task_queue import CompletedTask, TaskQueue
from ..vc.ld_proofs.document_loader import DocumentLoader
from ..wallet.did_info import DIDInfo
from .dispatcher import Dispatcher
LOGGER = logging.getLogger(__name__)
class Conductor:
def __init__(self, context_builder: ContextBuilder) -> None:
self.admin_server = None
self.context_builder = context_builder
self.dispatcher: Dispatcher = None
self.inbound_transport_manager: InboundTransportManager = None
self.outbound_transport_manager: OutboundTransportManager = None
self.root_profile: Profile = None
self.setup_public_did: DIDInfo = None
self.outbound_queue: BaseOutboundQueue = None
@property
def context(self) -> InjectionContext:
return self.root_profile.context
|
Apache License 2.0
|
mhaack/home-assistant-config
|
config/custom_components/aarlo/pyaarlo/doorbell.py
|
ArloDoorBell.update_silent_mode
|
python
|
def update_silent_mode(self):
self._arlo.be.notify(
base=self.base_station,
body={
"action": "get",
"resource": self.resource_id,
"publishResponse": False,
},
)
|
Requests the latest silent mode settings.
Queues a job that requests the info from Arlo.
|
https://github.com/mhaack/home-assistant-config/blob/0958a01d8ed1d004be3e8c92ab3a3a260e850d20/config/custom_components/aarlo/pyaarlo/doorbell.py#L112-L124
|
from .constant import (
BATTERY_KEY,
BUTTON_PRESSED_KEY,
CHIMES_KEY,
CONNECTION_KEY,
MODEL_WIRED_VIDEO_DOORBELL,
MODEL_WIREFREE_VIDEO_DOORBELL,
MOTION_DETECTED_KEY,
SIGNAL_STR_KEY,
SILENT_MODE_ACTIVE_KEY,
SILENT_MODE_CALL_KEY,
SILENT_MODE_KEY,
SIREN_STATE_KEY,
)
from .device import ArloChildDevice
class ArloDoorBell(ArloChildDevice):
def __init__(self, name, arlo, attrs):
super().__init__(name, arlo, attrs)
self._motion_time_job = None
self._ding_time_job = None
self._has_motion_detect = False
self._chimes = {}
def _motion_stopped(self):
self._save_and_do_callbacks(MOTION_DETECTED_KEY, False)
with self._lock:
self._motion_time_job = None
def _button_unpressed(self):
self._save_and_do_callbacks(BUTTON_PRESSED_KEY, False)
with self._lock:
self._ding_time_job = None
def _event_handler(self, resource, event):
self._arlo.debug(self.name + " DOORBELL got one " + resource)
if resource == self.resource_id:
props = event.get("properties", {})
if MOTION_DETECTED_KEY in props:
self._arlo.debug(self.name + " has motion detection support")
self._has_motion_detect = True
if len(props) == 1 and not self._has_motion_detect:
if props.get(CONNECTION_KEY, "") == "available":
self._save_and_do_callbacks(MOTION_DETECTED_KEY, True)
with self._lock:
self._arlo.bg.cancel(self._motion_time_job)
self._motion_time_job = self._arlo.bg.run_in(
self._motion_stopped, self._arlo.cfg.db_motion_time
)
if BUTTON_PRESSED_KEY in props:
self._save_and_do_callbacks(BUTTON_PRESSED_KEY, True)
with self._lock:
self._arlo.bg.cancel(self._ding_time_job)
self._ding_time_job = self._arlo.bg.run_in(
self._button_unpressed, self._arlo.cfg.db_ding_time
)
if CHIMES_KEY in props:
self._chimes = props[CHIMES_KEY]
silent_mode = props.get(SILENT_MODE_KEY, {})
if silent_mode:
self._save_and_do_callbacks(SILENT_MODE_KEY, silent_mode)
super()._event_handler(resource, event)
@property
def resource_type(self):
return "doorbells"
@property
def is_video_doorbell(self):
return self.model_id.startswith(
MODEL_WIRED_VIDEO_DOORBELL
) or self.model_id.startswith(MODEL_WIREFREE_VIDEO_DOORBELL)
def has_capability(self, cap):
if cap in (BUTTON_PRESSED_KEY, SILENT_MODE_KEY):
return True
if cap in (MOTION_DETECTED_KEY, BATTERY_KEY, SIGNAL_STR_KEY):
if not self.is_video_doorbell:
return True
if cap in (CONNECTION_KEY,):
if self.is_video_doorbell and self.parent_id == self.device_id:
return False
if cap in (SIREN_STATE_KEY,):
if self.is_video_doorbell:
return True
return super().has_capability(cap)
|
MIT License
|
rwl/muntjac
|
muntjac/ui/slider.py
|
Slider.setValue
|
python
|
def setValue(self, value, repaintIsNotNeeded=False):
v = value
if self._resolution > 0:
newValue = v * 10**self._resolution
newValue = newValue / 10**self._resolution
if (self._min > newValue) or (self._max < newValue):
raise ValueOutOfBoundsException(value)
else:
newValue = v
if (self._min > newValue) or (self._max < newValue):
raise ValueOutOfBoundsException(value)
super(Slider, self).setValue(float(newValue), repaintIsNotNeeded)
|
Set the value of this Slider.
@param value:
New value of Slider. Must be within Sliders range
(min - max), otherwise throws an exception.
@param repaintIsNotNeeded:
If true, client-side is not requested to repaint itself.
@raise ValueOutOfBoundsException:
|
https://github.com/rwl/muntjac/blob/8db97712edd81b4d25deaaa48587d2a08010f2c8/muntjac/ui/slider.py#L192-L215
|
from muntjac.ui.abstract_field import AbstractField
class Slider(AbstractField):
CLIENT_WIDGET = None
ORIENTATION_HORIZONTAL = 0
ORIENTATION_VERTICAL = 1
STYLE_SCROLLBAR = 'scrollbar'
def __init__(self, *args):
self._min = 0
self._max = 100
self._resolution = 0
self._orientation = self.ORIENTATION_HORIZONTAL
self._size = -1
self._handleSize = -1
self._arrows = False
args = args
nargs = len(args)
if nargs == 0:
super(Slider, self).__init__()
super(Slider, self).setValue(float(self._min))
elif nargs == 1:
caption, = args
Slider.__init__(self)
self.setCaption(caption)
elif nargs == 2:
minn, maxx = args
Slider.__init__(self)
self.setMin(minn)
self.setMax(maxx)
self.setResolution(0)
elif nargs == 3:
if isinstance(args[0], float):
minn, maxx, resolution = args
Slider.__init__(self)
self.setMin(minn)
self.setMax(maxx)
self.setResolution(resolution)
else:
caption, minn, maxx = args
Slider.__init__(self, minn, maxx)
self.setCaption(caption)
else:
raise ValueError, 'too many arguments'
def getMax(self):
return self._max
def setMax(self, maximum):
self._max = maximum
try:
if float(str( self.getValue() )) > maximum:
super(Slider, self).setValue( float(maximum) )
except ValueError:
super(Slider, self).setValue( float(maximum) )
self.requestRepaint()
def getMin(self):
return self._min
def setMin(self, minimum):
self._min = minimum
try:
if float( str(self.getValue()) ) < minimum:
super(Slider, self).setValue(float(minimum))
except ValueError:
super(Slider, self).setValue(float(minimum))
self.requestRepaint()
def getOrientation(self):
return self._orientation
def setOrientation(self, orientation):
self._orientation = orientation
self.requestRepaint()
def getResolution(self):
return self._resolution
def setResolution(self, resolution):
if resolution < 0:
return
self._resolution = resolution
self.requestRepaint()
|
Apache License 2.0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.