repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
gluufederation/community-edition-setup
|
pylib/jproperties.py
|
Properties.getmeta
|
python
|
def getmeta(self, key):
return self._metadata.get(key, {})
|
Get the metadata for a key.
:param key: The key to get metadata for.
:return: Metadata for the key (always a dictionary, but empty if there is no metadata).
|
https://github.com/gluufederation/community-edition-setup/blob/85cc2d3f86ff8a10005b02ee4b3b5ad6e2e037b1/pylib/jproperties.py#L334-L341
|
from __future__ import print_function
import codecs
import functools
import itertools
import os
import re
import sys
import time
from collections import MutableMapping, namedtuple
import six
PropertyTuple = namedtuple("PropertyTuple", ["data", "meta"])
def _is_runtime_meta(key):
return (
(isinstance(key, six.text_type) and key.startswith(u"__")) or
(isinstance(key, six.binary_type) and key.startswith(b"__"))
)
def _escape_non_ascii(unicode_obj):
def replace(match):
s = match.group(0)
n = ord(s)
if n < 0x10000:
return u'\\u{0:04x}'.format(n)
else:
n -= 0x10000
s1 = 0xd800 | ((n >> 10) & 0x3ff)
s2 = 0xdc00 | (n & 0x3ff)
return u'\\u{0:04x}\\u{1:04x}'.format(s1, s2)
if isinstance(unicode_obj, six.binary_type):
unicode_obj = unicode_obj.decode('utf-8')
return re.sub(
six.text_type(r'[^ -~]'),
replace,
unicode_obj
)
@functools.partial(codecs.register_error, "jproperties.jbackslashreplace")
def _jbackslashreplace_error_handler(err):
if not isinstance(err, UnicodeEncodeError):
raise err
return _escape_non_ascii(err.object[err.start:err.end]), err.end
def _escape_str(raw_str, only_leading_spaces=False, escape_non_printing=False, line_breaks_only=False):
if isinstance(raw_str, six.binary_type):
raw_str = raw_str.decode("utf-8")
elif not isinstance(raw_str, six.text_type):
raw_str = six.text_type(raw_str)
trans_dict = {
ord(u"\r"): u"\\r",
ord(u"\n"): u"\\n",
ord(u"\f"): u"\\f"
}
if not line_breaks_only:
trans_dict.update(
{
ord(u"#"): u"\\#",
ord(u"!"): u"\\!",
ord(u"="): u"\\=",
ord(u":"): u"\\:",
ord(u"\\"): u"\\\\",
ord(u"\t"): u"\\t",
}
)
escaped_str = raw_str.translate(trans_dict)
if not only_leading_spaces:
escaped_str = escaped_str.replace(u" ", u"\\ ")
else:
escaped_str = re.sub(u"^ ", u"\\\\ ", escaped_str)
if escape_non_printing:
escaped_str = _escape_non_ascii(escaped_str)
return escaped_str
class PropertyError(Exception):
pass
class ParseError(PropertyError):
def __init__(self, message, line_number, file_obj=None):
self.message = message
self.line_number = line_number
self.file_obj = file_obj
def __str__(self):
filename = "<unknown>" if not hasattr(self.file_obj, "filename") else self.file_obj.filename
return "Parse error in %s:%d: %s" % (
filename,
self.line_number,
self.message
)
class Properties(MutableMapping, object):
_EOL = "\r\n"
_WHITESPACE = " \t\f"
_ALLWHITESPACE = _EOL + _WHITESPACE
def __init__(self, process_escapes_in_values=True, *args, **kwargs):
super(Properties, self).__init__(*args, **kwargs)
self._process_escapes_in_values = process_escapes_in_values
self.reset()
self.clear()
def __len__(self):
return len(self._properties)
def __getitem__(self, item):
if not isinstance(item, six.string_types):
raise TypeError("Property keys must be of type str or unicode")
if item not in self._properties:
raise KeyError("Key not found")
return PropertyTuple(
self._properties[item],
self._metadata.get(item, {})
)
def __setitem__(self, key, value):
if not isinstance(key, six.string_types):
raise TypeError("Property keys must be of type str or unicode")
metadata = None
if isinstance(value, tuple):
value, metadata = value
if not isinstance(value, six.string_types):
raise TypeError("Property values must be of type str or unicode")
if metadata is not None and not isinstance(metadata, dict):
raise TypeError("Metadata needs to be a dictionary")
self._properties[key] = value
if metadata is not None:
self._metadata[key] = metadata
def __delitem__(self, key):
if not isinstance(key, six.string_types):
raise TypeError("Property keys must be of type str or unicode")
if key not in self._properties:
raise KeyError("Key not found")
del self._properties[key]
if key in self._metadata:
del self._metadata[key]
try:
self._key_order.remove(key)
except ValueError:
pass
def __iter__(self):
return self._properties.__iter__()
@property
def properties(self):
return self._properties
@properties.setter
def properties(self, value):
self._properties = value
@properties.deleter
def properties(self):
self._properties = {}
|
MIT License
|
openstack/cinder
|
cinder/volume/drivers/nimble.py
|
NimbleBaseVolumeDriver.create_snapshot
|
python
|
def create_snapshot(self, snapshot):
self.APIExecutor.snap_vol(snapshot)
|
Create a snapshot.
|
https://github.com/openstack/cinder/blob/4558e4b53a7e41dc1263417a4824f39bb6fd30e1/cinder/volume/drivers/nimble.py#L325-L327
|
import abc
import functools
import json
import random
import re
import string
import sys
import eventlet
from oslo_config import cfg
from oslo_log import log as logging
from oslo_utils import units
import requests
import six
from cinder import exception
from cinder.i18n import _
from cinder import interface
from cinder.objects import fields
from cinder.objects import volume
from cinder import utils
from cinder.volume import configuration
from cinder.volume import driver
from cinder.volume.drivers.san import san
from cinder.volume import volume_types
from cinder.volume import volume_utils
from cinder.zonemanager import utils as fczm_utils
DRIVER_VERSION = "4.1.0"
AES_256_XTS_CIPHER = 'aes_256_xts'
DEFAULT_CIPHER = 'none'
EXTRA_SPEC_ENCRYPTION = 'nimble:encryption'
EXTRA_SPEC_PERF_POLICY = 'nimble:perfpol-name'
EXTRA_SPEC_DEDUPE = 'nimble:dedupe'
EXTRA_SPEC_IOPS_LIMIT = 'nimble:iops-limit'
EXTRA_SPEC_FOLDER = 'nimble:folder'
DEFAULT_PERF_POLICY_SETTING = 'default'
DEFAULT_ENCRYPTION_SETTING = 'no'
DEFAULT_DEDUPE_SETTING = 'false'
DEFAULT_IOPS_LIMIT_SETTING = None
DEFAULT_FOLDER_SETTING = None
DEFAULT_SNAP_QUOTA = sys.maxsize
BACKUP_VOL_PREFIX = 'backup-vol-'
AGENT_TYPE_OPENSTACK = 'openstack'
AGENT_TYPE_OPENSTACK_GST = 'openstackv2'
AGENT_TYPE_NONE = 'none'
SM_SUBNET_DATA = 'data'
SM_SUBNET_MGMT_PLUS_DATA = 'mgmt-data'
SM_STATE_MSG = "is already in requested state"
SM_OBJ_EXIST_MSG = "Object exists"
SM_OBJ_ENOENT_MSG = "No such object"
SM_OBJ_HAS_CLONE = "has a clone"
IOPS_ERR_MSG = "Please set valid IOPS limit in the range"
LUN_ID = '0'
WARN_LEVEL = 80
DEFAULT_SLEEP = 5
MIN_IOPS = 256
MAX_IOPS = 4294967294
NimbleDefaultVersion = 1
LOG = logging.getLogger(__name__)
nimble_opts = [
cfg.StrOpt('nimble_pool_name',
default='default',
help='Nimble Controller pool name'),
cfg.StrOpt('nimble_subnet_label',
default='*',
help='Nimble Subnet Label'),
cfg.BoolOpt('nimble_verify_certificate',
default=False,
help='Whether to verify Nimble SSL Certificate'),
cfg.StrOpt('nimble_verify_cert_path',
help='Path to Nimble Array SSL certificate'), ]
CONF = cfg.CONF
CONF.register_opts(nimble_opts, group=configuration.SHARED_CONF_GROUP)
class NimbleDriverException(exception.VolumeDriverException):
message = _("Nimble Cinder Driver exception")
class NimbleAPIException(exception.VolumeBackendAPIException):
message = _("Unexpected response from Nimble API")
class NimbleVolumeBusyException(exception.VolumeIsBusy):
message = _("Nimble Cinder Driver: Volume Busy")
class NimbleBaseVolumeDriver(san.SanDriver):
VERSION = DRIVER_VERSION
CI_WIKI_NAME = "Nimble_Storage_CI"
def __init__(self, *args, **kwargs):
super(NimbleBaseVolumeDriver, self).__init__(*args, **kwargs)
self.APIExecutor = None
self.group_stats = {}
self.api_protocol = None
self._storage_protocol = None
self._group_target_enabled = False
self.configuration.append_config_values(nimble_opts)
self.verify = False
if self.configuration.nimble_verify_certificate is True:
self.verify = self.configuration.nimble_verify_cert_path or True
@staticmethod
def get_driver_options():
return nimble_opts
def _check_config(self):
required_config = ['san_ip', 'san_login', 'san_password']
for attr in required_config:
if not getattr(self.configuration, attr, None):
raise exception.InvalidInput(reason=_('%s is not set.') %
attr)
def create_volume(self, volume):
reserve = not self.configuration.san_thin_provision
self.APIExecutor.create_vol(
volume,
self.configuration.nimble_pool_name, reserve,
self._storage_protocol,
self._group_target_enabled)
volume_type = volume.get('volume_type')
consis_group_snap_type = False
if volume_type is not None:
consis_group_snap_type = self.is_volume_group_snap_type(
volume_type)
cg_id = volume.get('group_id', None)
if consis_group_snap_type and cg_id:
volume_id = self.APIExecutor.get_volume_id_by_name(volume['name'])
cg_volcoll_id = self.APIExecutor.get_volcoll_id_by_name(cg_id)
self.APIExecutor.associate_volcoll(volume_id, cg_volcoll_id)
return self._get_model_info(volume['name'])
def is_volume_backup_clone(self, volume):
vol_info = self.APIExecutor.get_vol_info(volume['name'])
LOG.debug("is_clone: %(is_clone)s base_snap_id: %(snap)s, "
"parent_vol_id: %(vol)s",
{'is_clone': vol_info['clone'],
'snap': vol_info['base_snap_id'],
'vol': vol_info['parent_vol_id']})
if vol_info['base_snap_id'] and (
vol_info['parent_vol_id'] is not None):
LOG.debug("Nimble base-snap exists for volume %(vol)s",
{'vol': volume['name']})
volume_name_prefix = volume['name'].replace(volume['id'], "")
LOG.debug("volume_name_prefix : %(prefix)s",
{'prefix': volume_name_prefix})
snap_id = self.APIExecutor.get_snap_info_by_id(
vol_info['base_snap_id'],
vol_info['parent_vol_id'])
snap_info = self.APIExecutor.get_snap_info_detail(snap_id['id'])
LOG.debug("snap_info description %(snap_info)s",
{'snap_info': snap_info['description']})
if snap_info['description'] and BACKUP_VOL_PREFIX in (
snap_info['description']):
parent_vol_name = self.APIExecutor.get_volume_name(
vol_info['parent_vol_id'])
parent_vol_id = parent_vol_name. replace(
volume_name_prefix, "")
if BACKUP_VOL_PREFIX + parent_vol_id in snap_info[
'description']:
LOG.info('Nimble backup-snapshot exists name=%('
'name)s', {'name': snap_info['name']})
snap_vol_name = self.APIExecutor.get_volume_name(
snap_info['vol_id'])
LOG.debug("snap_vol_name %(snap)s",
{'snap': snap_vol_name})
return snap_info['name'], snap_vol_name
return "", ""
def delete_volume(self, volume):
backup_snap_name, backup_vol_name = self.is_volume_backup_clone(volume)
eventlet.sleep(DEFAULT_SLEEP)
self.APIExecutor.online_vol(volume['name'], False)
LOG.debug("Deleting volume %(vol)s", {'vol': volume['name']})
@utils.retry(NimbleAPIException, retries=3)
def _retry_remove_vol(volume):
self.APIExecutor.delete_vol(volume['name'])
try:
_retry_remove_vol(volume)
except NimbleAPIException as ex:
LOG.debug("delete volume exception: %s", ex)
if SM_OBJ_HAS_CLONE in six.text_type(ex):
LOG.warning('Volume %(vol)s : %(state)s',
{'vol': volume['name'],
'state': SM_OBJ_HAS_CLONE})
self.APIExecutor.online_vol(volume['name'], True)
raise exception.VolumeIsBusy(volume_name=volume['name'])
raise
if (backup_snap_name != "" and backup_vol_name != "") and (
backup_snap_name is not None):
LOG.debug("Delete volume backup vol: %(vol)s snap: %(snap)s",
{'vol': backup_vol_name,
'snap': backup_snap_name})
self.APIExecutor.online_snap(backup_vol_name,
False,
backup_snap_name)
self.APIExecutor.delete_snap(backup_vol_name,
backup_snap_name)
def _generate_random_string(self, length):
char_set = string.ascii_lowercase
return ''.join(random.sample(char_set, length))
def _clone_volume_from_snapshot(self, volume, snapshot):
reserve = not self.configuration.san_thin_provision
pool_name = self.configuration.nimble_pool_name
self.APIExecutor.clone_vol(volume, snapshot, reserve,
self._group_target_enabled,
self._storage_protocol,
pool_name)
if(volume['size'] > snapshot['volume_size']):
vol_size = volume['size'] * units.Ki
reserve_size = 100 if reserve else 0
data = {"data": {'size': vol_size,
'reserve': reserve_size,
'warn_level': int(WARN_LEVEL),
'limit': 100,
'snap_limit': DEFAULT_SNAP_QUOTA}}
LOG.debug("Edit Vol request %(data)s", {'data': data})
self.APIExecutor.edit_vol(volume['name'], data)
return self._get_model_info(volume['name'])
def create_cloned_volume(self, volume, src_vref):
snapshot_name = ('openstack-clone-' +
volume['name'] + '-' +
self._generate_random_string(12))
snapshot = {'volume_name': src_vref['name'],
'name': snapshot_name,
'volume_size': src_vref['size'],
'display_name': volume.display_name,
'display_description': ''}
self.APIExecutor.snap_vol(snapshot)
self._clone_volume_from_snapshot(volume, snapshot)
return self._get_model_info(volume['name'])
def create_export(self, context, volume, connector):
return self._get_model_info(volume['name'])
def ensure_export(self, context, volume):
return self._get_model_info(volume['name'])
|
Apache License 2.0
|
extensiveautomation/extensiveautomation-server
|
src/ea/libs/NetLayerLib/Messages.py
|
Messages.decode
|
python
|
def decode(self, msgraw):
msg = msgraw.split(BODY_SEP, 1)
if len(msg) == 1:
head = msg[0].split(HEAD_SEP)
body = b''
elif len(msg) == 2:
head = msg[0].split(HEAD_SEP)
if sys.version_info > (3,):
decoded = base64.b64decode(msg[1])
else:
decoded = base64.decodestring(msg[1])
decompressed_data = zlib.decompress(decoded)
if not self.__useJson:
if sys.version_info > (3,):
body = cPickle.loads(decompressed_data, encoding="bytes")
body = bytes_to_unicode(body)
else:
body = cPickle.loads(decompressed_data)
else:
body = json.loads(decompressed_data, encoding="ISO-8859-1")
else:
raise Exception('invalid message')
ret = {}
ret['tid'] = int(head[1])
ret['body'] = body
if head[0].isdigit():
ret['code'] = head[0]
if ret['code'] not in [RSP_CODE_OK[0], RSP_CODE_FORBIDDEN[0],
RSP_CODE_FAILED[0], RSP_CODE_ERROR[0]]:
raise Exception('unknown response code: %s' % ret['code'])
ret['phrase'] = head[2]
if ret['phrase'] not in [RSP_CODE_OK[1], RSP_CODE_FORBIDDEN[1],
RSP_CODE_FAILED[1], RSP_CODE_ERROR[1]]:
raise Exception('unknown response phrase: %s' % ret['phrase'])
return ('response', ret)
else:
ret['cmd'] = head[0]
if ret['cmd'] not in [RSQ_CMD, RSQ_NOTIFY]:
raise Exception('unknown request: %s' % ret['cmd'])
ret['userid'] = head[2]
return ('request', ret)
|
Decode a message: request or response
@param msgraw:
@type msgraw:
@return: request or response
@rtype: typle
|
https://github.com/extensiveautomation/extensiveautomation-server/blob/e4e7f3b76d8b94bf715c4345d29dd2b05bca92e5/src/ea/libs/NetLayerLib/Messages.py#L204-L275
|
try:
import cPickle
except ImportError:
import pickle as cPickle
import zlib
import base64
import sys
import json
if sys.version_info > (3,):
unicode = str
HEAD_SEP = b" "
BODY_SEP = b"\n"
RSQ_CMD = b"RSQ"
RSQ_NOTIFY = b"NOTIFY"
RSP_CODE_OK = (b"200", b"OK")
RSP_CODE_FORBIDDEN = (b"403", b"FORBIDDEN")
RSP_CODE_FAILED = (b"400", b"FAILED")
RSP_CODE_ERROR = (b"500", b"ERROR")
CMD_ERROR = -1
CMD_HELLO = 0
CMD_GET_PROBE = 1
CMD_START_PROBE = 2
CMD_STOP_PROBE = 3
CMD_NEW_FILE = 4
CMD_INTERACT = 5
CMD_START_AGENT = 6
CMD_STOP_AGENT = 7
def bytes2str(val):
if isinstance(val, bytes):
return str(val, "utf8")
else:
return val
def bytes_to_unicode(ob):
t = type(ob)
if t in (list, tuple):
try:
l_ = [str(i, 'utf-8') if isinstance(i, bytes) else i for i in ob]
except UnicodeDecodeError:
l_ = [i for i in ob]
l_ = [bytes_to_unicode(i) if type(i) in (
list, tuple, dict) else i for i in l_]
ro = tuple(l_) if t is tuple else l_
elif t is dict:
byte_keys = [i for i in ob if isinstance(i, bytes)]
for bk in byte_keys:
v = ob[bk]
del(ob[bk])
try:
ob[str(bk, 'utf-8')] = v
except UnicodeDecodeError:
ob[bk] = v
for k in ob:
if isinstance(ob[k], bytes):
try:
ob[k] = str(ob[k], 'utf-8')
except UnicodeDecodeError:
ob[k] = ob[k]
elif type(ob[k]) in (list, tuple, dict):
ob[k] = bytes_to_unicode(ob[k])
ro = ob
else:
ro = ob
return ro
class Messages(object):
def __init__(self, userId=None, useJson=False, pickleVer=2):
self.__userId = userId
self.__useJson = useJson
self.__pickleProtocol = pickleVer
def setUserId(self, userId):
self.__userId = userId
def encode(self, op, tid, desc, body=None):
if op.isdigit():
if op not in [RSP_CODE_OK[0], RSP_CODE_FORBIDDEN[0],
RSP_CODE_FAILED[0], RSP_CODE_ERROR[0]]:
raise Exception('unknown response code: %s' % op)
if desc not in [RSP_CODE_OK[1], RSP_CODE_FORBIDDEN[1],
RSP_CODE_FAILED[1], RSP_CODE_ERROR[1]]:
raise Exception('unknown response phrase: %s' % desc)
else:
if op not in [RSQ_CMD, RSQ_NOTIFY]:
raise Exception('unknown request: %s' % op)
if sys.version_info > (3,):
if not isinstance(desc, bytes):
desc = bytes(desc, 'utf8')
ret = [HEAD_SEP.join([op, bytes(str(tid), 'utf8'), desc])]
else:
ret = [HEAD_SEP.join([op, str(tid), desc])]
if body:
if not self.__useJson:
pickled = cPickle.dumps(body, protocol=self.__pickleProtocol)
bod = zlib.compress(pickled)
ret.append(base64.encodestring(bod))
else:
json_data = json.dumps(body, ensure_ascii=False)
compressed = zlib.compress(json_data)
ret.append(base64.encodestring(compressed))
else:
rslt = ret
rslt = BODY_SEP.join(ret)
return rslt
|
MIT License
|
xolox/python-coloredlogs
|
coloredlogs/__init__.py
|
find_level_aliases
|
python
|
def find_level_aliases():
mapping = collections.defaultdict(list)
for name, value in find_defined_levels().items():
mapping[value].append(name)
aliases = {}
for value, names in mapping.items():
if len(names) > 1:
names = sorted(names, key=lambda n: len(n))
canonical_name = names.pop()
for alias in names:
aliases[alias] = canonical_name
return aliases
|
Find log level names which are aliases of each other.
:returns: A dictionary that maps aliases to their canonical name.
.. note:: Canonical names are chosen to be the alias with the longest
string length so that e.g. ``WARN`` is an alias for ``WARNING``
instead of the other way around.
Here's what the result looks like by default (when
no custom levels or level names have been defined):
>>> from coloredlogs import find_level_aliases
>>> find_level_aliases()
{'WARN': 'WARNING', 'FATAL': 'CRITICAL'}
|
https://github.com/xolox/python-coloredlogs/blob/65bdfe976ac0bf81e8c0bd9a98242b9d666b2859/coloredlogs/__init__.py#L705-L732
|
import collections
import logging
import os
import re
import socket
import sys
from humanfriendly import coerce_boolean
from humanfriendly.compat import coerce_string, is_string, on_windows
from humanfriendly.terminal import ANSI_COLOR_CODES, ansi_wrap, enable_ansi_support, terminal_supports_colors
from humanfriendly.text import format, split
__version__ = '15.0.1'
DEFAULT_LOG_LEVEL = logging.INFO
DEFAULT_LOG_FORMAT = '%(asctime)s %(hostname)s %(name)s[%(process)d] %(levelname)s %(message)s'
DEFAULT_DATE_FORMAT = '%Y-%m-%d %H:%M:%S'
CHROOT_FILES = ['/etc/debian_chroot']
DEFAULT_FIELD_STYLES = dict(
asctime=dict(color='green'),
hostname=dict(color='magenta'),
levelname=dict(color='black', bold=True),
name=dict(color='blue'),
programname=dict(color='cyan'),
username=dict(color='yellow'),
)
DEFAULT_LEVEL_STYLES = dict(
spam=dict(color='green', faint=True),
debug=dict(color='green'),
verbose=dict(color='blue'),
info=dict(),
notice=dict(color='magenta'),
warning=dict(color='yellow'),
success=dict(color='green', bold=True),
error=dict(color='red'),
critical=dict(color='red', bold=True),
)
DEFAULT_FORMAT_STYLE = '%'
FORMAT_STYLE_PATTERNS = {
'%': r'%\((\w+)\)[#0 +-]*\d*(?:\.\d+)?[hlL]?[diouxXeEfFgGcrs%]',
'{': r'{(\w+)[^}]*}',
'$': r'\$(\w+)|\${(\w+)}',
}
def auto_install():
if coerce_boolean(os.environ.get('COLOREDLOGS_AUTO_INSTALL', 'false')):
install()
def install(level=None, **kw):
logger = kw.get('logger') or logging.getLogger()
reconfigure = kw.get('reconfigure', True)
stream = kw.get('stream') or sys.stderr
style = check_style(kw.get('style') or DEFAULT_FORMAT_STYLE)
if level is None:
level = os.environ.get('COLOREDLOGS_LOG_LEVEL', DEFAULT_LOG_LEVEL)
level = level_to_number(level)
match_streams = ([sys.stdout, sys.stderr]
if stream in [sys.stdout, sys.stderr, None]
else [stream])
match_handler = lambda handler: match_stream_handler(handler, match_streams)
handler, logger = replace_handler(logger, match_handler, reconfigure)
if not (handler and not reconfigure):
syslog_enabled = kw.get('syslog')
if syslog_enabled not in (None, False):
from coloredlogs.syslog import enable_system_logging
if syslog_enabled is True:
enable_system_logging()
else:
enable_system_logging(level=syslog_enabled)
use_colors = kw.get('isatty', None)
if use_colors or (use_colors is None):
if use_colors is None and 'NO_COLOR' in os.environ:
use_colors = False
if (use_colors or use_colors is None) and on_windows():
use_colors = enable_ansi_support()
if use_colors is None:
use_colors = terminal_supports_colors(stream)
filters = handler.filters if handler else None
if stream is sys.stderr:
handler = StandardErrorHandler()
else:
handler = logging.StreamHandler(stream)
handler.setLevel(level)
if filters:
handler.filters = filters
formatter_options = dict(fmt=kw.get('fmt'), datefmt=kw.get('datefmt'))
if style != DEFAULT_FORMAT_STYLE:
formatter_options['style'] = style
if not formatter_options['fmt']:
formatter_options['fmt'] = os.environ.get('COLOREDLOGS_LOG_FORMAT') or DEFAULT_LOG_FORMAT
if not formatter_options['datefmt']:
formatter_options['datefmt'] = os.environ.get('COLOREDLOGS_DATE_FORMAT') or DEFAULT_DATE_FORMAT
if kw.get('milliseconds'):
parser = FormatStringParser(style=style)
if not (parser.contains_field(formatter_options['fmt'], 'msecs')
or '%f' in formatter_options['datefmt']):
pattern = parser.get_pattern('asctime')
replacements = {'%': '%(msecs)03d', '{': '{msecs:03}', '$': '${msecs}'}
formatter_options['fmt'] = pattern.sub(
r'\g<0>,' + replacements[style],
formatter_options['fmt'],
)
HostNameFilter.install(
fmt=formatter_options['fmt'],
handler=handler,
style=style,
use_chroot=kw.get('use_chroot', True),
)
ProgramNameFilter.install(
fmt=formatter_options['fmt'],
handler=handler,
programname=kw.get('programname'),
style=style,
)
UserNameFilter.install(
fmt=formatter_options['fmt'],
handler=handler,
username=kw.get('username'),
style=style,
)
if use_colors:
for name, environment_name in (('field_styles', 'COLOREDLOGS_FIELD_STYLES'),
('level_styles', 'COLOREDLOGS_LEVEL_STYLES')):
value = kw.get(name)
if value is None:
environment_value = os.environ.get(environment_name)
if environment_value is not None:
value = parse_encoded_styles(environment_value)
if value is not None:
formatter_options[name] = value
formatter_type = ColoredFormatter if use_colors else BasicFormatter
handler.setFormatter(formatter_type(**formatter_options))
adjust_level(logger, level)
logger.addHandler(handler)
def check_style(value):
if sys.version_info[:2] >= (3, 2):
if value not in FORMAT_STYLE_PATTERNS:
msg = "Unsupported logging format style! (%r)"
raise ValueError(format(msg, value))
elif value != DEFAULT_FORMAT_STYLE:
msg = "Format string styles other than %r require Python 3.2+!"
raise ValueError(msg, DEFAULT_FORMAT_STYLE)
return value
def increase_verbosity():
defined_levels = sorted(set(find_defined_levels().values()))
current_index = defined_levels.index(get_level())
selected_index = max(0, current_index - 1)
set_level(defined_levels[selected_index])
def decrease_verbosity():
defined_levels = sorted(set(find_defined_levels().values()))
current_index = defined_levels.index(get_level())
selected_index = min(current_index + 1, len(defined_levels) - 1)
set_level(defined_levels[selected_index])
def is_verbose():
return get_level() < DEFAULT_LOG_LEVEL
def get_level():
handler, logger = find_handler(logging.getLogger(), match_stream_handler)
return handler.level if handler else DEFAULT_LOG_LEVEL
def set_level(level):
handler, logger = find_handler(logging.getLogger(), match_stream_handler)
if handler and logger:
handler.setLevel(level_to_number(level))
adjust_level(logger, level)
else:
install(level=level)
def adjust_level(logger, level):
level = level_to_number(level)
if logger.getEffectiveLevel() > level:
logger.setLevel(level)
def find_defined_levels():
defined_levels = {}
for name in dir(logging):
if name.isupper():
value = getattr(logging, name)
if isinstance(value, int):
defined_levels[name] = value
return defined_levels
def level_to_number(value):
if is_string(value):
try:
defined_levels = find_defined_levels()
value = defined_levels[value.upper()]
except KeyError:
value = DEFAULT_LOG_LEVEL
return value
|
MIT License
|
darkharry/yts-cli
|
yts/yts.py
|
YTS.execute_transmission
|
python
|
def execute_transmission(torrent_name):
subprocess.Popen(["transmission-gtk", torrent_name])
|
Execute Transmission-gtk with the downloaded torrent
Parameters
----------
torrent_name: str, required
Name of the torrent to be downloaded
|
https://github.com/darkharry/yts-cli/blob/21d79bb129d1ee1517d486b9bd8b32192c99a75d/yts/yts.py#L174-L182
|
import requests
import argparse
import bs4
import sys
import os
import subprocess
class YTS:
def __init__(self, yts_url):
self.url = yts_url
def get_popular_downloads(self) -> dict:
res = make_request(self.url)
pop_movies_dict = {}
pop_movies = (
bs4.BeautifulSoup(res.text, "lxml")
.select("#popular-downloads")[0]
.select("div[class='browse-movie-wrap col-xs-10 col-sm-5']")
)
for movie in pop_movies:
movie_data = movie.select("a")[0]
pop_movies_dict.update(self.extract_movie_data(movie_data))
return pop_movies_dict
def search_movies(self, query):
url = f"{self.url}browse-movies/{query}"
res = make_request(url)
query_dict = {}
movies_found = (
bs4.BeautifulSoup(res.text, "lxml")
.select("section > div[class='row']")[0]
.select("div[class='browse-movie-wrap col-xs-10 col-sm-4"
" col-md-5 col-lg-4']")
)
for movie in movies_found:
movie_data = movie.select("a")[0]
query_dict.update(self.extract_movie_data(movie_data))
return query_dict
def get_movie_formats(self, movie_title):
movie_page_url = self.url+"movies/"+movie_title
movie_page = make_request(movie_page_url)
formats = self.extract_formats(movie_page)
return formats
def get_torrent(self, torrent_url):
res = make_request(torrent_url)
return res
@staticmethod
def extract_formats(movie_page) -> dict:
movie_formats = (
bs4.BeautifulSoup(movie_page.text, "lxml")
.select("p[class='hidden-xs hidden-sm']")[0]
.find_all("a")
)
torrent_urls = {}
for movie_format in movie_formats:
torrent_urls[movie_format.getText()] = movie_format["href"]
return torrent_urls
@staticmethod
def extract_movie_data(movie_data) -> dict:
movie_title = movie_data["href"].split("/")[-1]
rating = (
movie_data
.select("figcaption > h4[class='rating']")[0]
.getText()
)
return {movie_title: rating}
@staticmethod
|
MIT License
|
azure/autorest.python
|
test/vanilla/low-level/Expected/AcceptanceTests/XmlLowLevel/xmlservicelowlevel/rest/xml/_request_builders_py3.py
|
build_put_service_properties_request
|
python
|
def build_put_service_properties_request(*, content: Any, **kwargs: Any) -> HttpRequest:
content_type = kwargs.pop("content_type", None)
comp = "properties"
restype = "service"
url = kwargs.pop("template_url", "/xml/")
query_parameters = kwargs.pop("params", {})
query_parameters["comp"] = _SERIALIZER.query("comp", comp, "str")
query_parameters["restype"] = _SERIALIZER.query("restype", restype, "str")
header_parameters = kwargs.pop("headers", {})
if content_type is not None:
header_parameters["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
return HttpRequest(
method="PUT", url=url, params=query_parameters, headers=header_parameters, content=content, **kwargs
)
|
Puts storage service properties.
See https://aka.ms/azsdk/python/protocol/quickstart for how to incorporate this request builder
into your code flow.
:keyword content: Pass in binary content you want in the body of the request (typically bytes,
a byte iterator, or stream input).
:paramtype content: any
:return: Returns an :class:`~azure.core.rest.HttpRequest` that you will pass to the client's
`send_request` method. See https://aka.ms/azsdk/python/protocol/quickstart for how to
incorporate this response into your code flow.
:rtype: ~azure.core.rest.HttpRequest
|
https://github.com/azure/autorest.python/blob/90d60a965788e3b4c0809e6686bdc3525acac89c/test/vanilla/low-level/Expected/AcceptanceTests/XmlLowLevel/xmlservicelowlevel/rest/xml/_request_builders_py3.py#L815-L849
|
from typing import Any, List, Optional
from azure.core.rest import HttpRequest
from msrest import Serializer
_SERIALIZER = Serializer()
def build_get_complex_type_ref_no_meta_request(**kwargs: Any) -> HttpRequest:
accept = "application/xml"
url = kwargs.pop("template_url", "/xml/complex-type-ref-no-meta")
header_parameters = kwargs.pop("headers", {})
header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str")
return HttpRequest(method="GET", url=url, headers=header_parameters, **kwargs)
def build_put_complex_type_ref_no_meta_request(*, content: Any, **kwargs: Any) -> HttpRequest:
content_type = kwargs.pop("content_type", None)
url = kwargs.pop("template_url", "/xml/complex-type-ref-no-meta")
header_parameters = kwargs.pop("headers", {})
if content_type is not None:
header_parameters["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
return HttpRequest(method="PUT", url=url, headers=header_parameters, content=content, **kwargs)
def build_get_complex_type_ref_with_meta_request(**kwargs: Any) -> HttpRequest:
accept = "application/xml"
url = kwargs.pop("template_url", "/xml/complex-type-ref-with-meta")
header_parameters = kwargs.pop("headers", {})
header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str")
return HttpRequest(method="GET", url=url, headers=header_parameters, **kwargs)
def build_put_complex_type_ref_with_meta_request(*, content: Any, **kwargs: Any) -> HttpRequest:
content_type = kwargs.pop("content_type", None)
url = kwargs.pop("template_url", "/xml/complex-type-ref-with-meta")
header_parameters = kwargs.pop("headers", {})
if content_type is not None:
header_parameters["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
return HttpRequest(method="PUT", url=url, headers=header_parameters, content=content, **kwargs)
def build_get_simple_request(**kwargs: Any) -> HttpRequest:
accept = "application/xml"
url = kwargs.pop("template_url", "/xml/simple")
header_parameters = kwargs.pop("headers", {})
header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str")
return HttpRequest(method="GET", url=url, headers=header_parameters, **kwargs)
def build_put_simple_request(*, content: Any, **kwargs: Any) -> HttpRequest:
content_type = kwargs.pop("content_type", None)
accept = "application/xml"
url = kwargs.pop("template_url", "/xml/simple")
header_parameters = kwargs.pop("headers", {})
if content_type is not None:
header_parameters["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str")
return HttpRequest(method="PUT", url=url, headers=header_parameters, content=content, **kwargs)
def build_get_wrapped_lists_request(**kwargs: Any) -> HttpRequest:
accept = "application/xml"
url = kwargs.pop("template_url", "/xml/wrapped-lists")
header_parameters = kwargs.pop("headers", {})
header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str")
return HttpRequest(method="GET", url=url, headers=header_parameters, **kwargs)
def build_put_wrapped_lists_request(*, content: Any, **kwargs: Any) -> HttpRequest:
content_type = kwargs.pop("content_type", None)
accept = "application/xml"
url = kwargs.pop("template_url", "/xml/wrapped-lists")
header_parameters = kwargs.pop("headers", {})
if content_type is not None:
header_parameters["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str")
return HttpRequest(method="PUT", url=url, headers=header_parameters, content=content, **kwargs)
def build_get_headers_request(**kwargs: Any) -> HttpRequest:
url = kwargs.pop("template_url", "/xml/headers")
return HttpRequest(method="GET", url=url, **kwargs)
def build_get_empty_list_request(**kwargs: Any) -> HttpRequest:
accept = "application/xml"
url = kwargs.pop("template_url", "/xml/empty-list")
header_parameters = kwargs.pop("headers", {})
header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str")
return HttpRequest(method="GET", url=url, headers=header_parameters, **kwargs)
def build_put_empty_list_request(*, content: Any, **kwargs: Any) -> HttpRequest:
content_type = kwargs.pop("content_type", None)
url = kwargs.pop("template_url", "/xml/empty-list")
header_parameters = kwargs.pop("headers", {})
if content_type is not None:
header_parameters["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
return HttpRequest(method="PUT", url=url, headers=header_parameters, content=content, **kwargs)
def build_get_empty_wrapped_lists_request(**kwargs: Any) -> HttpRequest:
accept = "application/xml"
url = kwargs.pop("template_url", "/xml/empty-wrapped-lists")
header_parameters = kwargs.pop("headers", {})
header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str")
return HttpRequest(method="GET", url=url, headers=header_parameters, **kwargs)
def build_put_empty_wrapped_lists_request(*, content: Any, **kwargs: Any) -> HttpRequest:
content_type = kwargs.pop("content_type", None)
url = kwargs.pop("template_url", "/xml/empty-wrapped-lists")
header_parameters = kwargs.pop("headers", {})
if content_type is not None:
header_parameters["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
return HttpRequest(method="PUT", url=url, headers=header_parameters, content=content, **kwargs)
def build_get_root_list_request(**kwargs: Any) -> HttpRequest:
accept = "application/xml"
url = kwargs.pop("template_url", "/xml/root-list")
header_parameters = kwargs.pop("headers", {})
header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str")
return HttpRequest(method="GET", url=url, headers=header_parameters, **kwargs)
def build_put_root_list_request(*, content: Any, **kwargs: Any) -> HttpRequest:
content_type = kwargs.pop("content_type", None)
url = kwargs.pop("template_url", "/xml/root-list")
header_parameters = kwargs.pop("headers", {})
if content_type is not None:
header_parameters["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
return HttpRequest(method="PUT", url=url, headers=header_parameters, content=content, **kwargs)
def build_get_root_list_single_item_request(**kwargs: Any) -> HttpRequest:
accept = "application/xml"
url = kwargs.pop("template_url", "/xml/root-list-single-item")
header_parameters = kwargs.pop("headers", {})
header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str")
return HttpRequest(method="GET", url=url, headers=header_parameters, **kwargs)
def build_put_root_list_single_item_request(*, content: Any, **kwargs: Any) -> HttpRequest:
content_type = kwargs.pop("content_type", None)
url = kwargs.pop("template_url", "/xml/root-list-single-item")
header_parameters = kwargs.pop("headers", {})
if content_type is not None:
header_parameters["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
return HttpRequest(method="PUT", url=url, headers=header_parameters, content=content, **kwargs)
def build_get_empty_root_list_request(**kwargs: Any) -> HttpRequest:
accept = "application/xml"
url = kwargs.pop("template_url", "/xml/empty-root-list")
header_parameters = kwargs.pop("headers", {})
header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str")
return HttpRequest(method="GET", url=url, headers=header_parameters, **kwargs)
def build_put_empty_root_list_request(*, content: Any, **kwargs: Any) -> HttpRequest:
content_type = kwargs.pop("content_type", None)
url = kwargs.pop("template_url", "/xml/empty-root-list")
header_parameters = kwargs.pop("headers", {})
if content_type is not None:
header_parameters["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
return HttpRequest(method="PUT", url=url, headers=header_parameters, content=content, **kwargs)
def build_get_empty_child_element_request(**kwargs: Any) -> HttpRequest:
accept = "application/xml"
url = kwargs.pop("template_url", "/xml/empty-child-element")
header_parameters = kwargs.pop("headers", {})
header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str")
return HttpRequest(method="GET", url=url, headers=header_parameters, **kwargs)
def build_put_empty_child_element_request(*, content: Any, **kwargs: Any) -> HttpRequest:
content_type = kwargs.pop("content_type", None)
url = kwargs.pop("template_url", "/xml/empty-child-element")
header_parameters = kwargs.pop("headers", {})
if content_type is not None:
header_parameters["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
return HttpRequest(method="PUT", url=url, headers=header_parameters, content=content, **kwargs)
def build_list_containers_request(**kwargs: Any) -> HttpRequest:
comp = "list"
accept = "application/xml"
url = kwargs.pop("template_url", "/xml/")
query_parameters = kwargs.pop("params", {})
query_parameters["comp"] = _SERIALIZER.query("comp", comp, "str")
header_parameters = kwargs.pop("headers", {})
header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str")
return HttpRequest(method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs)
def build_get_service_properties_request(**kwargs: Any) -> HttpRequest:
comp = "properties"
restype = "service"
accept = "application/xml"
url = kwargs.pop("template_url", "/xml/")
query_parameters = kwargs.pop("params", {})
query_parameters["comp"] = _SERIALIZER.query("comp", comp, "str")
query_parameters["restype"] = _SERIALIZER.query("restype", restype, "str")
header_parameters = kwargs.pop("headers", {})
header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str")
return HttpRequest(method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs)
|
MIT License
|
harrystech/arthur-redshift-etl
|
python/etl/config/dw.py
|
DataWarehouseSchema.dsn
|
python
|
def dsn(self):
if self._dsn_env_var:
return etl.db.parse_connection_string(etl.config.env.get(self._dsn_env_var))
|
Return connection string to find this schema upstream or in the data warehouse.
This returns connection string suitable for the schema which is
- the value of the environment variable named in the read_access field for upstream sources
- the value of the environment variable named in the etl_access field of the data warehouse
for schemas that have CTAS or views (transformations)
Evaluation of the DSN (and the environment variable) is deferred so that an environment
variable may be not set if it is actually not used.
|
https://github.com/harrystech/arthur-redshift-etl/blob/126b93e998b5b393597e333e4f6eb11f531809df/python/etl/config/dw.py#L140-L153
|
from typing import Dict
import etl.config.env
import etl.db
import etl.names
import etl.templates
from etl.errors import ETLConfigError, InvalidEnvironmentError
class DataWarehouseUser:
def __init__(self, user_info):
self.name = user_info["name"]
self.group = user_info["group"]
self.schema = user_info.get("schema")
class S3DataFormat:
def __init__(self, s3_data_format) -> None:
self.format = s3_data_format.get("format")
self.format_option = s3_data_format.get("format_option")
self.compression = s3_data_format.get("compression")
class DataWarehouseSchema:
def __init__(self, schema_info, etl_access=None):
self.name = schema_info["name"]
self.description = schema_info.get("description")
self.owner = schema_info["owner"]
self.reader_groups = schema_info.get("readers", schema_info.get("groups", []))
self.writer_groups = schema_info.get("writers", [])
self.is_database_source = "read_access" in schema_info
self.is_static_source = "s3_bucket" in schema_info and "s3_path_template" in schema_info
self.is_external = schema_info.get("external", False)
self.is_upstream_source = self.is_database_source or self.is_static_source or self.is_external
self.has_transformations = not self.is_upstream_source
self.is_an_unload_target = "s3_bucket" in schema_info and "s3_unload_path_template" in schema_info
if self.is_database_source:
self._dsn_env_var = schema_info["read_access"]
elif self.is_static_source or self.is_an_unload_target:
self._dsn_env_var = None
elif self.is_external:
self._dsn_env_var = None
self.database = schema_info.get("database")
self.iam_role = schema_info.get("iam_role")
else:
self._dsn_env_var = etl_access
self.has_dsn = self._dsn_env_var is not None
self._s3_bucket_template = schema_info.get("s3_bucket")
self._s3_path_template = schema_info.get("s3_path_template")
self._s3_unload_path_template = schema_info.get("s3_unload_path_template")
self.s3_data_format = S3DataFormat(schema_info.get("s3_data_format", {}))
self.include_tables = schema_info.get("include_tables", [self.name + ".*"])
self.exclude_tables = schema_info.get("exclude_tables", [])
@property
def source_type(self) -> str:
if self.is_database_source:
return "DATABASE"
if self.is_static_source:
return "S3_STATIC"
if self.is_external:
return "EXTERNAL"
return "TRANSFORMATIONS"
@property
def s3_bucket(self) -> str:
return etl.templates.render_from_config(
self._s3_bucket_template, context=f"s3_bucket of schema '{self.name}'"
)
@property
def s3_path_prefix(self) -> str:
return etl.templates.render_from_config(
self._s3_path_template, context=f"s3_path_template of schema '{self.name}'"
)
@property
def s3_unload_path_prefix(self) -> str:
return etl.templates.render_from_config(
self._s3_unload_path_template, context=f"s3_unload_path_template of schema '{self.name}'"
)
@property
|
MIT License
|
mavlink/mavsdk-python
|
mavsdk/calibration.py
|
CalibrationResult.__init__
|
python
|
def __init__(
self,
result,
result_str):
self.result = result
self.result_str = result_str
|
Initializes the CalibrationResult object
|
https://github.com/mavlink/mavsdk-python/blob/ded17f0c12316f20c93f5e1bac4fede2b8b4e446/mavsdk/calibration.py#L133-L139
|
from ._base import AsyncBase
from . import calibration_pb2, calibration_pb2_grpc
from enum import Enum
class CalibrationResult:
class Result(Enum):
UNKNOWN = 0
SUCCESS = 1
NEXT = 2
FAILED = 3
NO_SYSTEM = 4
CONNECTION_ERROR = 5
BUSY = 6
COMMAND_DENIED = 7
TIMEOUT = 8
CANCELLED = 9
FAILED_ARMED = 10
def translate_to_rpc(self):
if self == CalibrationResult.Result.UNKNOWN:
return calibration_pb2.CalibrationResult.RESULT_UNKNOWN
if self == CalibrationResult.Result.SUCCESS:
return calibration_pb2.CalibrationResult.RESULT_SUCCESS
if self == CalibrationResult.Result.NEXT:
return calibration_pb2.CalibrationResult.RESULT_NEXT
if self == CalibrationResult.Result.FAILED:
return calibration_pb2.CalibrationResult.RESULT_FAILED
if self == CalibrationResult.Result.NO_SYSTEM:
return calibration_pb2.CalibrationResult.RESULT_NO_SYSTEM
if self == CalibrationResult.Result.CONNECTION_ERROR:
return calibration_pb2.CalibrationResult.RESULT_CONNECTION_ERROR
if self == CalibrationResult.Result.BUSY:
return calibration_pb2.CalibrationResult.RESULT_BUSY
if self == CalibrationResult.Result.COMMAND_DENIED:
return calibration_pb2.CalibrationResult.RESULT_COMMAND_DENIED
if self == CalibrationResult.Result.TIMEOUT:
return calibration_pb2.CalibrationResult.RESULT_TIMEOUT
if self == CalibrationResult.Result.CANCELLED:
return calibration_pb2.CalibrationResult.RESULT_CANCELLED
if self == CalibrationResult.Result.FAILED_ARMED:
return calibration_pb2.CalibrationResult.RESULT_FAILED_ARMED
@staticmethod
def translate_from_rpc(rpc_enum_value):
if rpc_enum_value == calibration_pb2.CalibrationResult.RESULT_UNKNOWN:
return CalibrationResult.Result.UNKNOWN
if rpc_enum_value == calibration_pb2.CalibrationResult.RESULT_SUCCESS:
return CalibrationResult.Result.SUCCESS
if rpc_enum_value == calibration_pb2.CalibrationResult.RESULT_NEXT:
return CalibrationResult.Result.NEXT
if rpc_enum_value == calibration_pb2.CalibrationResult.RESULT_FAILED:
return CalibrationResult.Result.FAILED
if rpc_enum_value == calibration_pb2.CalibrationResult.RESULT_NO_SYSTEM:
return CalibrationResult.Result.NO_SYSTEM
if rpc_enum_value == calibration_pb2.CalibrationResult.RESULT_CONNECTION_ERROR:
return CalibrationResult.Result.CONNECTION_ERROR
if rpc_enum_value == calibration_pb2.CalibrationResult.RESULT_BUSY:
return CalibrationResult.Result.BUSY
if rpc_enum_value == calibration_pb2.CalibrationResult.RESULT_COMMAND_DENIED:
return CalibrationResult.Result.COMMAND_DENIED
if rpc_enum_value == calibration_pb2.CalibrationResult.RESULT_TIMEOUT:
return CalibrationResult.Result.TIMEOUT
if rpc_enum_value == calibration_pb2.CalibrationResult.RESULT_CANCELLED:
return CalibrationResult.Result.CANCELLED
if rpc_enum_value == calibration_pb2.CalibrationResult.RESULT_FAILED_ARMED:
return CalibrationResult.Result.FAILED_ARMED
def __str__(self):
return self.name
|
BSD 3-Clause New or Revised License
|
meltano/sdk
|
singer_sdk/streams/rest.py
|
RESTStream.get_url
|
python
|
def get_url(self, context: Optional[dict]) -> str:
url = "".join([self.url_base, self.path or ""])
vals = copy.copy(dict(self.config))
vals.update(context or {})
for k, v in vals.items():
search_text = "".join(["{", k, "}"])
if search_text in url:
url = url.replace(search_text, self._url_encode(v))
return url
|
Get stream entity URL.
Developers override this method to perform dynamic URL generation.
Args:
context: Stream partition or context dictionary.
Returns:
A URL, optionally targeted to a specific partition or context.
|
https://github.com/meltano/sdk/blob/5916ffee84eab15689558abe15757810dad5419e/singer_sdk/streams/rest.py#L85-L103
|
import abc
import copy
import logging
from datetime import datetime
from typing import Any, Dict, Iterable, List, Optional, Union, cast
import backoff
import requests
from singer.schema import Schema
from singer_sdk.authenticators import APIAuthenticatorBase, SimpleAuthenticator
from singer_sdk.helpers.jsonpath import extract_jsonpath
from singer_sdk.plugin_base import PluginBase as TapBaseClass
from singer_sdk.streams.core import Stream
DEFAULT_PAGE_SIZE = 1000
class RESTStream(Stream, metaclass=abc.ABCMeta):
_page_size: int = DEFAULT_PAGE_SIZE
_requests_session: Optional[requests.Session]
rest_method = "GET"
records_jsonpath: str = "$[*]"
next_page_token_jsonpath: Optional[str] = None
_LOG_REQUEST_METRICS: bool = True
_LOG_REQUEST_METRIC_URLS: bool = False
@property
@abc.abstractmethod
def url_base(self) -> str:
pass
def __init__(
self,
tap: TapBaseClass,
name: Optional[str] = None,
schema: Optional[Union[Dict[str, Any], Schema]] = None,
path: Optional[str] = None,
) -> None:
super().__init__(name=name, schema=schema, tap=tap)
if path:
self.path = path
self._http_headers: dict = {}
self._requests_session = requests.Session()
self._compiled_jsonpath = None
self._next_page_token_compiled_jsonpath = None
@staticmethod
def _url_encode(val: Union[str, datetime, bool, int, List[str]]) -> str:
if isinstance(val, str):
result = val.replace("/", "%2F")
else:
result = str(val)
return result
|
Apache License 2.0
|
hewlettpackard/oneview-redfish-toolkit
|
oneview_redfish_toolkit/blueprints/vlan_network_interface.py
|
_get_connection_oneview_resource
|
python
|
def _get_connection_oneview_resource(oneview_resource, connection_id):
conn_settings = oneview_resource["connectionSettings"]
connection = None
for conn in conn_settings["connections"]:
if str(conn["id"]) == connection_id:
connection = conn
break
if not connection:
msg = "Ethernet interface not found"
logging.exception('Unexpected error: {}'.format(msg))
abort(status.HTTP_404_NOT_FOUND, msg)
return connection
|
Get OneView Connection for the given resource and ID.
Return OneView Connection a given OneView resource and connection ID.
Logs exception of any error and Not Found.
Returns:
JSON: OneView Connection
|
https://github.com/hewlettpackard/oneview-redfish-toolkit/blob/258fb8e23973445842bb317230f34ed34fdd7ec2/oneview_redfish_toolkit/blueprints/vlan_network_interface.py#L91-L113
|
import logging
from flask import abort
from flask import Blueprint
from flask import g
from flask import request
from flask_api import status
from oneview_redfish_toolkit.api.computer_system import ComputerSystem
from oneview_redfish_toolkit.api.resource_block import ResourceBlock
from oneview_redfish_toolkit.api.vlan_network_interface import VLanNetworkInterface
from oneview_redfish_toolkit.api.vlan_network_interface_collection import VLanNetworkInterfaceCollection
from oneview_redfish_toolkit.blueprints.util.response_builder import ResponseBuilder
vlan_network_interface = Blueprint("vlan_network_interface", __name__)
@vlan_network_interface.route(
ComputerSystem.BASE_URI +
"/<sp_uuid>/EthernetInterfaces/<connection_id>/VLANs", methods=["GET"])
def get_vlan_network_interface_collection_sp(sp_uuid, connection_id):
server_profile = g.oneview_client.server_profiles.get_by_id(sp_uuid).data
connection = _get_connection_oneview_resource(server_profile,
connection_id)
vlan_collection = _get_vlan_network_interface_collection(connection["networkUri"])
return ResponseBuilder.success(vlan_collection)
@vlan_network_interface.route(
ResourceBlock.BASE_URI +
"/<spt_uuid>/EthernetInterfaces/<connection_id>/VLANs", methods=["GET"])
def get_vlan_network_interface_collection_spt(spt_uuid, connection_id):
server_profile_template = g.oneview_client.server_profile_templates.get_by_id(spt_uuid).data
connection = _get_connection_oneview_resource(server_profile_template,
connection_id)
vlan_collection = _get_vlan_network_interface_collection(connection["networkUri"])
return ResponseBuilder.success(vlan_collection)
|
Apache License 2.0
|
rdagger/pi-st7565
|
st7565.py
|
Glcd.draw_polygon
|
python
|
def draw_polygon(self, sides, x0, y0, r, rotate=0, color=1):
coords = np.empty(shape=[sides + 1, 2], dtype="float64")
n = np.arange(sides, dtype="float64")
theta = math.radians(rotate)
for s in n:
t = 2.0 * math.pi * s / sides + theta
coords[int(s), 0] = r * math.cos(t) + x0
coords[int(s), 1] = r * math.sin(t) + y0
coords[sides] = coords[0]
self.draw_lines(coords.astype("float32").astype("int32"), color=color)
|
Draws an n-sided regular polygon on the back buffer
Args:
sides (int): Number of polygon sides
x0, y0 (int): Center point coordinates
r (int): Radius
rotate (Optional float): Rotation in degrees relative to origin. Default is 0.
color (Optional int): 0 = pixel off, 1 = pixel on (default)
Note:
The center point is the center of the x0,y0 pixel.
Since pixels are not divisible, the radius is integer rounded
up to complete on a full pixel. Therefore diameter = 2 x r + 1.
|
https://github.com/rdagger/pi-st7565/blob/6888a62a0adc8cc694b20ef198ff4dc1f9ba1156/st7565.py#L648-L670
|
from __future__ import print_function
from time import sleep
import math
import numpy as np
class Glcd(object):
CMD_DISPLAY_OFF = 0xAE
CMD_DISPLAY_ON = 0xAF
CMD_SET_DISP_START_LINE = 0x40
CMD_SET_PAGE = 0xB0
CMD_SET_COLUMN_UPPER = 0x10
CMD_SET_COLUMN_LOWER = 0x00
CMD_SET_ADC_NORMAL = 0xA0
CMD_SET_ADC_REVERSE = 0xA1
CMD_SET_DISP_NORMAL = 0xA6
CMD_SET_DISP_REVERSE = 0xA7
CMD_SET_ALLPTS_NORMAL = 0xA4
CMD_SET_ALLPTS_ON = 0xA5
CMD_SET_BIAS_9 = 0xA2
CMD_SET_BIAS_7 = 0xA3
CMD_INTERNAL_RESET = 0xE2
CMD_SET_COM_NORMAL = 0xC0
CMD_SET_COM_REVERSE = 0xC8
CMD_SET_POWER_CONTROL = 0x28
CMD_SET_RESISTOR_RATIO = 0x20
CMD_SET_VOLUME_FIRST = 0x81
CMD_SET_VOLUME_SECOND = 0x00
CMD_SET_STATIC_OFF = 0xAC
CMD_SET_STATIC_ON = 0xAD
CMD_SET_STATIC_REG = 0x00
LCD_WIDTH = 128
LCD_HEIGHT = 64
LCD_PAGE_COUNT = 8
LCD_CONTRAST = 0x19
BACKLIGHT_PWM_FREQUENCY = 100
__pagemap = (3, 2, 1, 0, 7, 6, 5, 4)
def __init__(self, a0=24, cs=8, rst=25, rgb=None):
import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
import spidev
self.__spi = spidev.SpiDev()
self.__spi.open(0, 0)
self.__spi.max_speed_hz = 250000
self.back_buffer = np.zeros((Glcd.LCD_HEIGHT, Glcd.LCD_WIDTH), dtype='uint8')
self.a0 = a0
self.cs = cs
self.rst = rst
GPIO.setup(a0, GPIO.OUT)
GPIO.setup(cs, GPIO.OUT)
GPIO.setup(rst, GPIO.OUT)
if rgb is not None:
GPIO.setup(rgb[0], GPIO.OUT)
GPIO.setup(rgb[1], GPIO.OUT)
GPIO.setup(rgb[2], GPIO.OUT)
self.red = GPIO.PWM(rgb[0], self.BACKLIGHT_PWM_FREQUENCY)
self.green = GPIO.PWM(rgb[1], self.BACKLIGHT_PWM_FREQUENCY)
self.blue = GPIO.PWM(rgb[2], self.BACKLIGHT_PWM_FREQUENCY)
self.red.start(0)
self.green.start(0)
self.blue.start(0)
else:
self.red, self.green, self.blue = None, None, None
def send_command(self, cmd):
import RPi.GPIO as GPIO
GPIO.output(self.a0, GPIO.LOW)
self.__spi.xfer(cmd)
def send_data(self, data):
import RPi.GPIO as GPIO
GPIO.output(self.a0, GPIO.HIGH)
self.__spi.xfer(data)
def move_cursor(self, x, page):
if x >= self.LCD_WIDTH | x < 0:
return
if page > self.LCD_PAGE_COUNT - 1 | page < 0:
return
self.send_command([self.CMD_SET_PAGE | self.__pagemap[page]])
self.send_command([self.CMD_SET_COLUMN_LOWER | (x & 0xf)])
self.send_command([self.CMD_SET_COLUMN_UPPER | ((x >> 4) & 0xf)])
def clear_display(self):
for page in self.__pagemap:
self.move_cursor(1, page)
self.send_data([0] * self.LCD_WIDTH)
def reset(self):
import RPi.GPIO as GPIO
GPIO.output(self.rst, GPIO.LOW)
sleep(.5)
GPIO.output(self.rst, GPIO.HIGH)
def set_backlight_color(self, r, g, b):
if self.red is None:
print("Backlight RGB GPIO pins not initialized.")
return
if 0 <= r <= 100 and 0 <= g <= 100 and 0 <= b <= 100:
self.red.ChangeDutyCycle(100 - r)
self.green.ChangeDutyCycle(100 - g)
self.blue.ChangeDutyCycle(100 - b)
else:
print("Invalid range. Colors must be between 0 and 100.")
def set_contrast(self, level):
self.send_command([self.CMD_SET_VOLUME_FIRST])
self.send_command([self.CMD_SET_VOLUME_SECOND | (level & 0x3f)])
def clear_back_buffer(self):
self.back_buffer = np.zeros((self.LCD_HEIGHT, self.LCD_WIDTH), dtype='uint8')
def init(self):
import RPi.GPIO as GPIO
GPIO.output(self.cs, GPIO.LOW)
self.reset()
self.send_command([self.CMD_SET_BIAS_7])
self.send_command([self.CMD_SET_ADC_NORMAL])
self.send_command([self.CMD_SET_COM_NORMAL])
self.send_command([self.CMD_SET_DISP_START_LINE])
self.send_command([self.CMD_SET_POWER_CONTROL | 0x4])
sleep(.05)
self.send_command([self.CMD_SET_POWER_CONTROL | 0x6])
sleep(.05)
self.send_command([self.CMD_SET_POWER_CONTROL | 0x7])
sleep(.01)
self.send_command([self.CMD_SET_RESISTOR_RATIO | 0x7])
self.send_command([self.CMD_DISPLAY_ON])
self.send_command([self.CMD_SET_ALLPTS_NORMAL])
self.set_contrast(self.LCD_CONTRAST)
self.clear_display()
def reverse_display(self, reverse=True):
if reverse:
self.send_command([self.CMD_SET_DISP_REVERSE])
else:
self.send_command([self.CMD_SET_DISP_NORMAL])
def sleep(self):
self.send_command([self.CMD_SET_STATIC_OFF])
self.send_command([self.CMD_DISPLAY_OFF])
self.send_command([self.CMD_SET_ALLPTS_ON])
def wake(self):
self.send_command([self.CMD_INTERNAL_RESET])
self.send_command([self.CMD_SET_ALLPTS_NORMAL])
self.send_command([self.CMD_DISPLAY_ON])
self.send_command([self.CMD_SET_STATIC_ON])
self.send_command([self.CMD_SET_STATIC_REG | 0x03])
def standby(self, exit=False):
if exit:
self.send_command([self.CMD_SET_ALLPTS_NORMAL])
self.send_command([self.CMD_DISPLAY_ON])
else:
self.send_command([self.CMD_SET_STATIC_ON])
self.send_command([self.CMD_SET_STATIC_REG | 0x03])
self.send_command([self.CMD_DISPLAY_OFF])
self.send_command([self.CMD_SET_ALLPTS_ON])
def flip(self):
for idx in range(0, self.LCD_PAGE_COUNT):
self.move_cursor(1, idx)
row_start = idx << 3
row_stop = (idx + 1) << 3
self.send_data(np.packbits(self.back_buffer[row_start:row_stop], axis=0).flatten().tolist())
def cleanup(self):
self.clear_display()
self.sleep()
self.__spi.close()
import RPi.GPIO as GPIO
GPIO.cleanup()
def is_off_grid(self, xmin, ymin, xmax, ymax):
if xmin < 0:
print('x-coordinate: {0} below minimum of 0.'.format(xmin))
return True
if ymin < 0:
print('y-coordinate: {0} below minimum of 0.'.format(ymin))
return True
if xmax >= self.LCD_WIDTH:
print('x-coordinate: {0} above maximum of {1}.'.format(xmax, self.LCD_WIDTH - 1))
return True
if ymax >= self.LCD_HEIGHT:
print('y-coordinate: {0} above maximum of {1}.'.format(ymax, self.LCD_HEIGHT - 1))
return True
return False
def is_point(self, x, y):
if self.is_off_grid(x, y, x, y):
return False
return self.back_buffer[y, x] == 1
def draw_point(self, x, y, color=1, invert=False):
if not 0 <= x < self.LCD_WIDTH:
print('x-coordinate: {0} outside display range of 0 to {1} .').format(x, self.LCD_WIDTH - 1)
return
if not 0 <= y < self.LCD_HEIGHT:
print('y-coordinate: {0} outside display range of 0 to {1} .').format(x, self.LCD_HEIGHT - 1)
return
if invert:
self.back_buffer[y, x] ^= 1
else:
self.back_buffer[y, x] = color
def draw_line(self, x1, y1, x2, y2, color=1, invert=False):
if self.is_off_grid(min(x1, x2), min(y1, y2), max(x1, x2), max(y1, y2)):
return
if y1 == y2:
if x1 > x2:
x1, x2 = x2, x1
if invert:
self.back_buffer[y1, x1:x2 + 1] ^= 1
else:
self.back_buffer[y1, x1:x2 + 1] = color
return
if x1 == x2:
if y1 > y2:
y1, y2 = y2, y1
if invert:
self.back_buffer[y1:y2 + 1, x1] ^= 1
else:
self.back_buffer[y1:y2 + 1, x1] = color
return
dx = x2 - x1
dy = y2 - y1
is_steep = abs(dy) > abs(dx)
if is_steep:
x1, y1 = y1, x1
x2, y2 = y2, x2
if x1 > x2:
x1, x2 = x2, x1
y1, y2 = y2, y1
dx = x2 - x1
dy = y2 - y1
error = dx >> 1
ystep = 1 if y1 < y2 else -1
y = y1
for x in range(x1, x2 + 1):
if invert:
if is_steep:
self.back_buffer[x, y] ^= 1
else:
self.back_buffer[y, x] ^= 1
else:
if is_steep:
self.back_buffer[x, y] = color
else:
self.back_buffer[y, x] = color
error -= abs(dy)
if error < 0:
y += ystep
error += dx
def draw_lines(self, coords, color=1, invert=False):
if coords.shape[1] != 2:
return
x1, y1 = coords[0]
for row in coords[1:]:
x2, y2 = row
self.draw_line(x1, y1, x2, y2, color, invert)
x1, y1 = x2, y2
def draw_rectangle(self, x1, y1, w, h, color=1, invert=False):
x2 = x1 + w - 1
y2 = y1 + h - 1
if self.is_off_grid(x1, y1, x2, y2):
return
if invert:
self.back_buffer[y1, x1 + 1:x2] ^= 1
self.back_buffer[y2, x1:x2 + 1] ^= 1
self.back_buffer[y1:y2, x1] ^= 1
self.back_buffer[y1:y2, x2] ^= 1
else:
self.back_buffer[y1, x1:x2] = color
self.back_buffer[y2, x1:x2 + 1] = color
self.back_buffer[y1:y2, x1] = color
self.back_buffer[y1:y2, x2] = color
def fill_rectangle(self, x1, y1, w, h, color=1, invert=False):
if self.is_off_grid(x1, y1, x1 + w - 1, y1 + h - 1):
return
if invert:
self.back_buffer[y1:y1 + h, x1:x1 + w] ^= 1
else:
self.back_buffer[y1:y1 + h, x1:x1 + w] = color
def draw_circle(self, x0, y0, r, color=1):
if self.is_off_grid(x0 - r, y0 - r, x0 + r, y0 + r):
return
f = 1 - r
dx = 1
dy = -r - r
x = 0
y = r
self.back_buffer[y0 + r, x0] = color
self.back_buffer[y0 - r, x0] = color
self.back_buffer[y0, x0 + r] = color
self.back_buffer[y0, x0 - r] = color
while x < y:
if f >= 0:
y -= 1
dy += 2
f += dy
x += 1
dx += 2
f += dx
self.back_buffer[y0 + y, x0 + x] = color
self.back_buffer[y0 + y, x0 - x] = color
self.back_buffer[y0 - y, x0 + x] = color
self.back_buffer[y0 - y, x0 - x] = color
self.back_buffer[y0 + x, x0 + y] = color
self.back_buffer[y0 + x, x0 - y] = color
self.back_buffer[y0 - x, x0 + y] = color
self.back_buffer[y0 - x, x0 - y] = color
def fill_circle(self, x0, y0, r, color=1):
if self.is_off_grid(x0 - r, y0 - r, x0 + r, y0 + r):
return
f = 1 - r
dx = 1
dy = -r - r
x = 0
y = r
self.back_buffer[y0 - r: y0 + r + 1, x0] = color
while x < y:
if f >= 0:
y -= 1
dy += 2
f += dy
x += 1
dx += 2
f += dx
self.back_buffer[y0 - y: y0 + y + 1, x0 + x] = color
self.back_buffer[y0 - y: y0 + y + 1, x0 - x] = color
self.back_buffer[y0 - x: y0 + x + 1, x0 - y] = color
self.back_buffer[y0 - x: y0 + x + 1, x0 + y] = color
def draw_ellipse(self, x0, y0, a, b, color=1):
if self.is_off_grid(x0 - a, y0 - b, x0 + a, y0 + b):
return
a2 = a * a
b2 = b * b
twoa2 = a2 + a2
twob2 = b2 + b2
x = 0
y = b
px = 0
py = twoa2 * y
self.back_buffer[y0 + y, x0 + x] = color
self.back_buffer[y0 + y, x0 - x] = color
self.back_buffer[y0 - y, x0 + x] = color
self.back_buffer[y0 - y, x0 - x] = color
p = round(b2 - (a2 * b) + (0.25 * a2))
while px < py:
x += 1
px += twob2
if p < 0:
p += b2 + px
else:
y -= 1
py -= twoa2
p += b2 + px - py
self.back_buffer[y0 + y, x0 + x] = color
self.back_buffer[y0 + y, x0 - x] = color
self.back_buffer[y0 - y, x0 + x] = color
self.back_buffer[y0 - y, x0 - x] = color
p = round(b2 * (x + 0.5) * (x + 0.5) + a2 * (y - 1) * (y - 1) - a2 * b2)
while y > 0:
y -= 1
py -= twoa2
if p > 0:
p += a2 - py
else:
x += 1
px += twob2
p += a2 - py + px
self.back_buffer[y0 + y, x0 + x] = color
self.back_buffer[y0 + y, x0 - x] = color
self.back_buffer[y0 - y, x0 + x] = color
self.back_buffer[y0 - y, x0 - x] = color
def fill_ellipse(self, x0, y0, a, b, color=1):
if self.is_off_grid(x0 - a, y0 - b, x0 + a, y0 + b):
return
a2 = a * a
b2 = b * b
twoa2 = a2 + a2
twob2 = b2 + b2
x = 0
y = b
px = 0
py = twoa2 * y
self.draw_line(x0, y0 - y, x0, y0 + y, color)
p = round(b2 - (a2 * b) + (0.25 * a2))
while px < py:
x += 1
px += twob2
if p < 0:
p += b2 + px
else:
y -= 1
py -= twoa2
p += b2 + px - py
self.draw_line(x0 + x, y0 - y, x0 + x, y0 + y, color)
self.draw_line(x0 - x, y0 - y, x0 - x, y0 + y, color)
p = round(b2 * (x + 0.5) * (x + 0.5) + a2 * (y - 1) * (y - 1) - a2 * b2)
while y > 0:
y -= 1
py -= twoa2
if p > 0:
p += a2 - py
else:
x += 1
px += twob2
p += a2 - py + px
self.draw_line(x0 + x, y0 - y, x0 + x, y0 + y, color)
self.draw_line(x0 - x, y0 - y, x0 - x, y0 + y, color)
|
MIT License
|
nedbat/coveragepy-bbmirror
|
coverage/data.py
|
CoverageData.add_file_tracers
|
python
|
def add_file_tracers(self, file_tracers):
if self._debug and self._debug.should('dataop'):
self._debug.write("Adding file tracers: %d files" % (len(file_tracers),))
existing_files = self._arcs or self._lines or {}
for filename, plugin_name in iitems(file_tracers):
if filename not in existing_files:
raise CoverageException(
"Can't add file tracer data for unmeasured file '%s'" % (filename,)
)
existing_plugin = self._file_tracers.get(filename)
if existing_plugin is not None and plugin_name != existing_plugin:
raise CoverageException(
"Conflicting file tracer name for '%s': %r vs %r" % (
filename, existing_plugin, plugin_name,
)
)
self._file_tracers[filename] = plugin_name
self._validate()
|
Add per-file plugin information.
`file_tracers` is { filename: plugin_name, ... }
|
https://github.com/nedbat/coveragepy-bbmirror/blob/0df8e82c77b677a1cda984aa56e3666948f72e9b/coverage/data.py#L378-L402
|
import glob
import itertools
import json
import optparse
import os
import os.path
import random
import re
import socket
from coverage import env
from coverage.backward import iitems, string_class
from coverage.debug import _TEST_NAME_FILE
from coverage.files import PathAliases
from coverage.misc import CoverageException, file_be_gone, isolate_module
os = isolate_module(os)
class CoverageData(object):
def __init__(self, debug=None):
self._debug = debug
self._lines = None
self._arcs = None
self._file_tracers = {}
self._runs = []
def __repr__(self):
return "<{klass} lines={lines} arcs={arcs} tracers={tracers} runs={runs}>".format(
klass=self.__class__.__name__,
lines="None" if self._lines is None else "{{{0}}}".format(len(self._lines)),
arcs="None" if self._arcs is None else "{{{0}}}".format(len(self._arcs)),
tracers="{{{0}}}".format(len(self._file_tracers)),
runs="[{0}]".format(len(self._runs)),
)
def has_arcs(self):
return self._has_arcs()
def lines(self, filename):
if self._arcs is not None:
arcs = self._arcs.get(filename)
if arcs is not None:
all_lines = itertools.chain.from_iterable(arcs)
return list(set(l for l in all_lines if l > 0))
elif self._lines is not None:
return self._lines.get(filename)
return None
def arcs(self, filename):
if self._arcs is not None:
if filename in self._arcs:
return self._arcs[filename]
return None
def file_tracer(self, filename):
if filename in (self._arcs or self._lines or {}):
return self._file_tracers.get(filename, "")
return None
def run_infos(self):
return self._runs
def measured_files(self):
return list(self._arcs or self._lines or {})
def line_counts(self, fullpath=False):
summ = {}
if fullpath:
filename_fn = lambda f: f
else:
filename_fn = os.path.basename
for filename in self.measured_files():
summ[filename_fn(filename)] = len(self.lines(filename))
return summ
def __nonzero__(self):
return bool(self._lines or self._arcs)
__bool__ = __nonzero__
def read_fileobj(self, file_obj):
data = self._read_raw_data(file_obj)
self._lines = self._arcs = None
if 'lines' in data:
self._lines = data['lines']
if 'arcs' in data:
self._arcs = dict(
(fname, [tuple(pair) for pair in arcs])
for fname, arcs in iitems(data['arcs'])
)
self._file_tracers = data.get('file_tracers', {})
self._runs = data.get('runs', [])
self._validate()
def read_file(self, filename):
if self._debug and self._debug.should('dataio'):
self._debug.write("Reading data from %r" % (filename,))
try:
with self._open_for_reading(filename) as f:
self.read_fileobj(f)
except Exception as exc:
raise CoverageException(
"Couldn't read data from '%s': %s: %s" % (
filename, exc.__class__.__name__, exc,
)
)
_GO_AWAY = "!coverage.py: This is a private format, don't read it directly!"
@classmethod
def _open_for_reading(cls, filename):
return open(filename, "r")
@classmethod
def _read_raw_data(cls, file_obj):
go_away = file_obj.read(len(cls._GO_AWAY))
if go_away != cls._GO_AWAY:
raise CoverageException("Doesn't seem to be a coverage.py data file")
return json.load(file_obj)
@classmethod
def _read_raw_data_file(cls, filename):
with cls._open_for_reading(filename) as f:
return cls._read_raw_data(f)
def add_lines(self, line_data):
if self._debug and self._debug.should('dataop'):
self._debug.write("Adding lines: %d files, %d lines total" % (
len(line_data), sum(len(lines) for lines in line_data.values())
))
if self._has_arcs():
raise CoverageException("Can't add lines to existing arc data")
if self._lines is None:
self._lines = {}
for filename, linenos in iitems(line_data):
if filename in self._lines:
new_linenos = set(self._lines[filename])
new_linenos.update(linenos)
linenos = new_linenos
self._lines[filename] = list(linenos)
self._validate()
def add_arcs(self, arc_data):
if self._debug and self._debug.should('dataop'):
self._debug.write("Adding arcs: %d files, %d arcs total" % (
len(arc_data), sum(len(arcs) for arcs in arc_data.values())
))
if self._has_lines():
raise CoverageException("Can't add arcs to existing line data")
if self._arcs is None:
self._arcs = {}
for filename, arcs in iitems(arc_data):
if filename in self._arcs:
new_arcs = set(self._arcs[filename])
new_arcs.update(arcs)
arcs = new_arcs
self._arcs[filename] = list(arcs)
self._validate()
|
Apache License 2.0
|
itamarst/eliot
|
eliot/tests/test_testing.py
|
LoggedActionTests.fromMessagesIndex
|
python
|
def fromMessagesIndex(self, messages, index):
uuid = messages[index]["task_uuid"]
level = messages[index]["task_level"]
return LoggedAction.fromMessages(uuid, level, messages)
|
Call L{LoggedAction.fromMessages} using action specified by index in
a list of message dictionaries.
@param messages: A C{list} of message dictionaries.
@param index: Index to the logger's messages.
@return: Result of L{LoggedAction.fromMessages}.
|
https://github.com/itamarst/eliot/blob/f08acdb5471349c68bbe72a2ffa89b7018fb5883/eliot/tests/test_testing.py#L81-L94
|
from __future__ import unicode_literals
from unittest import SkipTest, TestResult, TestCase, skipUnless
try:
import numpy as np
except ImportError:
np = None
from ..testing import (
issuperset,
assertContainsFields,
LoggedAction,
LoggedMessage,
validateLogging,
UnflushedTracebacks,
assertHasMessage,
assertHasAction,
validate_logging,
capture_logging,
swap_logger,
check_for_errors,
)
from .._output import MemoryLogger
from .._action import start_action
from .._message import Message
from .._validation import ActionType, MessageType, ValidationError, Field
from .._traceback import write_traceback
from .. import add_destination, remove_destination, _output, log_message
from .common import CustomObject, CustomJSONEncoder
class IsSuperSetTests(TestCase):
def test_equal(self):
a = {"a": 1}
b = a.copy()
self.assertTrue(issuperset(a, b))
def test_additionalIsSuperSet(self):
a = {"a": 1, "b": 2, "c": 3}
b = {"a": 1, "c": 3}
self.assertTrue(issuperset(a, b))
def test_missingIsNotSuperSet(self):
a = {"a": 1, "c": 3}
b = {"a": 1, "b": 2, "c": 3}
self.assertFalse(issuperset(a, b))
class LoggedActionTests(TestCase):
def test_values(self):
d1 = {"x": 1}
d2 = {"y": 2}
root = LoggedAction(d1, d2, [])
self.assertEqual((root.startMessage, root.endMessage), (d1, d2))
|
Apache License 2.0
|
iamdecode/sklearn-pmml-model
|
setup.py
|
declare_cython_extension
|
python
|
def declare_cython_extension(extName, use_math=False, use_openmp=False, include_dirs=None):
extPath = extName.replace(".", os.path.sep)+".pyx"
if use_math and os.name != 'nt':
compile_args = list(my_extra_compile_args_math)
link_args = list(my_extra_link_args_math)
libraries = ["m"]
else:
compile_args = list(my_extra_compile_args_nonmath)
link_args = list(my_extra_link_args_nonmath)
libraries = None
if use_openmp:
compile_args.insert( 0, openmp_compile_args )
link_args.insert( 0, openmp_link_args )
return Extension(
extName,
[extPath],
extra_compile_args=compile_args,
extra_link_args=link_args,
include_dirs=include_dirs,
libraries=libraries
)
|
Declare a Cython extension module for setuptools.
Parameters:
extName : str
Absolute module name, e.g. use `mylibrary.mypackage.mymodule`
for the Cython source file `mylibrary/mypackage/mymodule.pyx`.
use_math : bool
If True, set math flags and link with ``libm``.
use_openmp : bool
If True, compile and link with OpenMP.
Return value:
Extension object
that can be passed to ``setuptools.setup``.
|
https://github.com/iamdecode/sklearn-pmml-model/blob/056fab1ed7076b513a3199af3395447252029800/setup.py#L95-L136
|
from __future__ import division, print_function, absolute_import
from sklearn_pmml_model import __version__ as version
build_type="optimized"
with open("README.md", "r") as fh:
long_description = fh.read()
import sys
if sys.version_info < (2,7):
sys.exit('Sorry, Python < 2.7 is not supported')
import os
from setuptools import setup, find_packages
from setuptools.extension import Extension
try:
from Cython.Build import cythonize
except ImportError:
sys.exit("Cython not found. Cython is needed to build the extension modules.")
extra_compile_args_math_optimized = ['-march=native', '-O2', '-msse', '-msse2', '-mfma', '-mfpmath=sse']
extra_compile_args_math_debug = ['-march=native', '-O0', '-g']
extra_link_args_math_optimized = []
extra_link_args_math_debug = []
extra_compile_args_nonmath_optimized = ['-O2']
extra_compile_args_nonmath_debug = ['-O0', '-g']
extra_link_args_nonmath_optimized = []
extra_link_args_nonmath_debug = []
openmp_compile_args = ['-fopenmp']
openmp_link_args = ['-fopenmp']
import numpy as np
my_include_dirs = [".", np.get_include()]
if build_type == 'optimized':
my_extra_compile_args_math = extra_compile_args_math_optimized
my_extra_compile_args_nonmath = extra_compile_args_nonmath_optimized
my_extra_link_args_math = extra_link_args_math_optimized
my_extra_link_args_nonmath = extra_link_args_nonmath_optimized
my_debug = False
print( "build configuration selected: optimized" )
elif build_type == 'debug':
my_extra_compile_args_math = extra_compile_args_math_debug
my_extra_compile_args_nonmath = extra_compile_args_nonmath_debug
my_extra_link_args_math = extra_link_args_math_debug
my_extra_link_args_nonmath = extra_link_args_nonmath_debug
my_debug = True
print( "build configuration selected: debug" )
else:
raise ValueError("Unknown build configuration '%s'; valid: 'optimized', 'debug'" % (build_type))
|
BSD 2-Clause Simplified License
|
pythonfreecourse/calendar
|
app/internal/import_holidays.py
|
save_holidays_to_db
|
python
|
def save_holidays_to_db(holidays: List[Event], session: Session):
session.add_all(holidays)
session.commit()
session.flush(holidays)
userevents = []
for holiday in holidays:
userevent = UserEvent(
user_id=holiday.owner_id,
event_id=holiday.id
)
userevents.append(userevent)
session.add_all(userevents)
session.commit()
|
this function saves holiday list into database.
:param holidays: list of holidays events
:param session: current connection
|
https://github.com/pythonfreecourse/calendar/blob/23a33703a0038d0eae8ce7299a93ad172c8f68e9/app/internal/import_holidays.py#L47-L64
|
import re
from datetime import datetime, timedelta
from app.database.models import User, Event, UserEvent
from sqlalchemy.orm import Session
from typing import List, Match
REGEX_EXTRACT_HOLIDAYS = re.compile(
r'SUMMARY:(?P<title>.*)(\n.*){1,8}DTSTAMP:(?P<date>\w{8})',
re.MULTILINE)
def get_holidays_from_file(file: List[Event], session: Session) -> List[Event]:
parsed_holidays = REGEX_EXTRACT_HOLIDAYS.finditer(file)
holidays = []
for holiday in parsed_holidays:
holiday_event = create_holiday_event(
holiday, session.query(User).filter_by(id=1).first().id)
holidays.append(holiday_event)
return holidays
def create_holiday_event(holiday: Match[str], owner_id: int) -> Event:
valid_ascii_chars_range = 128
title = holiday.groupdict()['title'].strip()
title_to_save = ''.join(i if ord(i) < valid_ascii_chars_range
else '' for i in title)
date = holiday.groupdict()['date'].strip()
format_string = '%Y%m%d'
holiday = Event(
title=title_to_save,
start=datetime.strptime(date, format_string),
end=datetime.strptime(date, format_string) + timedelta(days=1),
content='holiday',
owner_id=owner_id
)
return holiday
|
Apache License 2.0
|
google-research/federated
|
utils/optimizers/shampoo.py
|
partition_metadata
|
python
|
def partition_metadata(
tensor: TfValue,
partition_info: PartitionConfig,
) -> PartitionMetadata:
shape = tensor.get_shape()
axis_to_shard = [s > partition_info.max_dim_size for s in shape]
split_sizes_per_dim = []
for sharded, dim in zip(axis_to_shard, shape):
dim = int(dim)
if sharded:
num_shards = dim // partition_info.partition_size
last_shard_size = dim % partition_info.partition_size
split_sizes = [partition_info.partition_size] * num_shards
if last_shard_size > 0:
split_sizes.append(last_shard_size)
split_sizes_per_dim.append(split_sizes)
else:
split_sizes_per_dim.append([dim])
num_splits_per_dim = [len(v) for v in split_sizes_per_dim]
return PartitionMetadata(split_sizes_per_dim, num_splits_per_dim)
|
Returns metadata required for partitioning and reforming tensors.
Args:
tensor: Tensor to partition.
partition_info: Partitioning info.
Returns:
split_sizes_per_dim and num_splits_per_dim.
|
https://github.com/google-research/federated/blob/909953fa8945cfac01328e0a6d878e1dc0376c3c/utils/optimizers/shampoo.py#L69-L99
|
import functools
from typing import Sequence, List, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
TfValue = Union[tf.Variable, tf.Tensor]
class PartitionConfig:
def __init__(self, max_dim_size: int, partition_size: int):
if partition_size < 1 or partition_size > max_dim_size:
raise ValueError('Parition size must be no less than 1 and no greater'
'than max_dim_size.')
self.max_dim_size = max_dim_size
self.partition_size = partition_size
class PartitionMetadata:
def __init__(self, split_sizes_per_dim: Sequence[Sequence[int]],
num_splits_per_dim: Sequence[int]):
self.split_sizes_per_dim = split_sizes_per_dim
self.num_splits_per_dim = num_splits_per_dim
|
Apache License 2.0
|
giampaolo/pyftpdlib
|
pyftpdlib/handlers.py
|
DTPHandler.transfer_in_progress
|
python
|
def transfer_in_progress(self):
return self.get_transmitted_bytes() != 0
|
Return True if a transfer is in progress, else False.
|
https://github.com/giampaolo/pyftpdlib/blob/5793ee5f61029d232f940a69a92bf67996be7f00/pyftpdlib/handlers.py#L751-L753
|
import asynchat
import contextlib
import errno
import glob
import logging
import os
import random
import socket
import sys
import time
import traceback
import warnings
from datetime import datetime
try:
import pwd
import grp
except ImportError:
pwd = grp = None
try:
from OpenSSL import SSL
except ImportError:
SSL = None
try:
from collections import OrderedDict
except ImportError:
OrderedDict = dict
from . import __ver__
from ._compat import b
from ._compat import getcwdu
from ._compat import PY3
from ._compat import super
from ._compat import u
from ._compat import unicode
from ._compat import xrange
from .authorizers import AuthenticationFailed
from .authorizers import AuthorizerError
from .authorizers import DummyAuthorizer
from .filesystems import AbstractedFS
from .filesystems import FilesystemError
from .ioloop import _ERRNOS_DISCONNECTED
from .ioloop import _ERRNOS_RETRY
from .ioloop import Acceptor
from .ioloop import AsyncChat
from .ioloop import Connector
from .ioloop import RetryError
from .ioloop import timer
from .log import debug
from .log import logger
CR_BYTE = ord('\r')
def _import_sendfile():
if os.name == 'posix':
try:
return os.sendfile
except AttributeError:
try:
import sendfile as sf
if hasattr(sf, 'has_sf_hdtr'):
raise ImportError
return sf.sendfile
except ImportError:
pass
return None
sendfile = _import_sendfile()
proto_cmds = {
'ABOR': dict(
perm=None, auth=True, arg=False,
help='Syntax: ABOR (abort transfer).'),
'ALLO': dict(
perm=None, auth=True, arg=True,
help='Syntax: ALLO <SP> bytes (noop; allocate storage).'),
'APPE': dict(
perm='a', auth=True, arg=True,
help='Syntax: APPE <SP> file-name (append data to file).'),
'CDUP': dict(
perm='e', auth=True, arg=False,
help='Syntax: CDUP (go to parent directory).'),
'CWD': dict(
perm='e', auth=True, arg=None,
help='Syntax: CWD [<SP> dir-name] (change working directory).'),
'DELE': dict(
perm='d', auth=True, arg=True,
help='Syntax: DELE <SP> file-name (delete file).'),
'EPRT': dict(
perm=None, auth=True, arg=True,
help='Syntax: EPRT <SP> |proto|ip|port| (extended active mode).'),
'EPSV': dict(
perm=None, auth=True, arg=None,
help='Syntax: EPSV [<SP> proto/"ALL"] (extended passive mode).'),
'FEAT': dict(
perm=None, auth=False, arg=False,
help='Syntax: FEAT (list all new features supported).'),
'HELP': dict(
perm=None, auth=False, arg=None,
help='Syntax: HELP [<SP> cmd] (show help).'),
'LIST': dict(
perm='l', auth=True, arg=None,
help='Syntax: LIST [<SP> path] (list files).'),
'MDTM': dict(
perm='l', auth=True, arg=True,
help='Syntax: MDTM [<SP> path] (file last modification time).'),
'MFMT': dict(
perm='T', auth=True, arg=True,
help='Syntax: MFMT <SP> timeval <SP> path (file update last '
'modification time).'),
'MLSD': dict(
perm='l', auth=True, arg=None,
help='Syntax: MLSD [<SP> path] (list directory).'),
'MLST': dict(
perm='l', auth=True, arg=None,
help='Syntax: MLST [<SP> path] (show information about path).'),
'MODE': dict(
perm=None, auth=True, arg=True,
help='Syntax: MODE <SP> mode (noop; set data transfer mode).'),
'MKD': dict(
perm='m', auth=True, arg=True,
help='Syntax: MKD <SP> path (create directory).'),
'NLST': dict(
perm='l', auth=True, arg=None,
help='Syntax: NLST [<SP> path] (list path in a compact form).'),
'NOOP': dict(
perm=None, auth=False, arg=False,
help='Syntax: NOOP (just do nothing).'),
'OPTS': dict(
perm=None, auth=True, arg=True,
help='Syntax: OPTS <SP> cmd [<SP> option] (set option for command).'),
'PASS': dict(
perm=None, auth=False, arg=None,
help='Syntax: PASS [<SP> password] (set user password).'),
'PASV': dict(
perm=None, auth=True, arg=False,
help='Syntax: PASV (open passive data connection).'),
'PORT': dict(
perm=None, auth=True, arg=True,
help='Syntax: PORT <sp> h,h,h,h,p,p (open active data connection).'),
'PWD': dict(
perm=None, auth=True, arg=False,
help='Syntax: PWD (get current working directory).'),
'QUIT': dict(
perm=None, auth=False, arg=False,
help='Syntax: QUIT (quit current session).'),
'REIN': dict(
perm=None, auth=True, arg=False,
help='Syntax: REIN (flush account).'),
'REST': dict(
perm=None, auth=True, arg=True,
help='Syntax: REST <SP> offset (set file offset).'),
'RETR': dict(
perm='r', auth=True, arg=True,
help='Syntax: RETR <SP> file-name (retrieve a file).'),
'RMD': dict(
perm='d', auth=True, arg=True,
help='Syntax: RMD <SP> dir-name (remove directory).'),
'RNFR': dict(
perm='f', auth=True, arg=True,
help='Syntax: RNFR <SP> file-name (rename (source name)).'),
'RNTO': dict(
perm='f', auth=True, arg=True,
help='Syntax: RNTO <SP> file-name (rename (destination name)).'),
'SITE': dict(
perm=None, auth=False, arg=True,
help='Syntax: SITE <SP> site-command (execute SITE command).'),
'SITE HELP': dict(
perm=None, auth=False, arg=None,
help='Syntax: SITE HELP [<SP> cmd] (show SITE command help).'),
'SITE CHMOD': dict(
perm='M', auth=True, arg=True,
help='Syntax: SITE CHMOD <SP> mode path (change file mode).'),
'SIZE': dict(
perm='l', auth=True, arg=True,
help='Syntax: SIZE <SP> file-name (get file size).'),
'STAT': dict(
perm='l', auth=False, arg=None,
help='Syntax: STAT [<SP> path name] (server stats [list files]).'),
'STOR': dict(
perm='w', auth=True, arg=True,
help='Syntax: STOR <SP> file-name (store a file).'),
'STOU': dict(
perm='w', auth=True, arg=None,
help='Syntax: STOU [<SP> name] (store a file with a unique name).'),
'STRU': dict(
perm=None, auth=True, arg=True,
help='Syntax: STRU <SP> type (noop; set file structure).'),
'SYST': dict(
perm=None, auth=False, arg=False,
help='Syntax: SYST (get operating system type).'),
'TYPE': dict(
perm=None, auth=True, arg=True,
help='Syntax: TYPE <SP> [A | I] (set transfer type).'),
'USER': dict(
perm=None, auth=False, arg=True,
help='Syntax: USER <SP> user-name (set username).'),
'XCUP': dict(
perm='e', auth=True, arg=False,
help='Syntax: XCUP (obsolete; go to parent directory).'),
'XCWD': dict(
perm='e', auth=True, arg=None,
help='Syntax: XCWD [<SP> dir-name] (obsolete; change directory).'),
'XMKD': dict(
perm='m', auth=True, arg=True,
help='Syntax: XMKD <SP> dir-name (obsolete; create directory).'),
'XPWD': dict(
perm=None, auth=True, arg=False,
help='Syntax: XPWD (obsolete; get current dir).'),
'XRMD': dict(
perm='d', auth=True, arg=True,
help='Syntax: XRMD <SP> dir-name (obsolete; remove directory).'),
}
if not hasattr(os, 'chmod'):
del proto_cmds['SITE CHMOD']
def _strerror(err):
if isinstance(err, EnvironmentError):
try:
return os.strerror(err.errno)
except AttributeError:
if not hasattr(os, 'strerror'):
return err.strerror
raise
else:
return str(err)
def _is_ssl_sock(sock):
return SSL is not None and isinstance(sock, SSL.Connection)
def _support_hybrid_ipv6():
try:
if not socket.has_ipv6:
return False
with contextlib.closing(socket.socket(socket.AF_INET6)) as sock:
return not sock.getsockopt(socket.IPPROTO_IPV6, socket.IPV6_V6ONLY)
except (socket.error, AttributeError):
return False
SUPPORTS_HYBRID_IPV6 = _support_hybrid_ipv6()
class _FileReadWriteError(OSError):
class _GiveUpOnSendfile(Exception):
class PassiveDTP(Acceptor):
timeout = 30
backlog = None
def __init__(self, cmd_channel, extmode=False):
self.cmd_channel = cmd_channel
self.log = cmd_channel.log
self.log_exception = cmd_channel.log_exception
Acceptor.__init__(self, ioloop=cmd_channel.ioloop)
local_ip = self.cmd_channel.socket.getsockname()[0]
if local_ip in self.cmd_channel.masquerade_address_map:
masqueraded_ip = self.cmd_channel.masquerade_address_map[local_ip]
elif self.cmd_channel.masquerade_address:
masqueraded_ip = self.cmd_channel.masquerade_address
else:
masqueraded_ip = None
if self.cmd_channel.server.socket.family != socket.AF_INET:
af = self.bind_af_unspecified((local_ip, 0))
self.socket.close()
self.del_channel()
else:
af = self.cmd_channel.socket.family
self.create_socket(af, socket.SOCK_STREAM)
if self.cmd_channel.passive_ports is None:
self.bind((local_ip, 0))
else:
ports = list(self.cmd_channel.passive_ports)
while ports:
port = ports.pop(random.randint(0, len(ports) - 1))
self.set_reuse_addr()
try:
self.bind((local_ip, port))
except socket.error as err:
if err.errno == errno.EADDRINUSE:
if ports:
continue
else:
self.bind((local_ip, 0))
self.cmd_channel.log(
"Can't find a valid passive port in the "
"configured range. A random kernel-assigned "
"port will be used.",
logfun=logger.warning
)
else:
raise
else:
break
self.listen(self.backlog or self.cmd_channel.server.backlog)
port = self.socket.getsockname()[1]
if not extmode:
ip = masqueraded_ip or local_ip
if ip.startswith('::ffff:'):
ip = ip[7:]
resp = '227 Entering passive mode (%s,%d,%d).' % (
ip.replace('.', ','), port // 256, port % 256)
self.cmd_channel.respond(resp)
else:
self.cmd_channel.respond('229 Entering extended passive mode '
'(|||%d|).' % port)
if self.timeout:
self.call_later(self.timeout, self.handle_timeout)
def handle_accepted(self, sock, addr):
if not self.cmd_channel.connected:
return self.close()
if self.cmd_channel.remote_ip != addr[0]:
if not self.cmd_channel.permit_foreign_addresses:
try:
sock.close()
except socket.error:
pass
msg = '425 Rejected data connection from foreign address ' '%s:%s.' % (addr[0], addr[1])
self.cmd_channel.respond_w_warning(msg)
return
else:
msg = 'Established data connection with foreign address ' '%s:%s.' % (addr[0], addr[1])
self.cmd_channel.log(msg, logfun=logger.warning)
self.close()
if self.cmd_channel.connected:
handler = self.cmd_channel.dtp_handler(sock, self.cmd_channel)
if handler.connected:
self.cmd_channel.data_channel = handler
self.cmd_channel._on_dtp_connection()
def handle_timeout(self):
if self.cmd_channel.connected:
self.cmd_channel.respond("421 Passive data channel timed out.",
logfun=logger.info)
self.close()
def handle_error(self):
try:
raise
except Exception:
logger.error(traceback.format_exc())
try:
self.close()
except Exception:
logger.critical(traceback.format_exc())
def close(self):
debug("call: close()", inst=self)
Acceptor.close(self)
class ActiveDTP(Connector):
timeout = 30
def __init__(self, ip, port, cmd_channel):
Connector.__init__(self, ioloop=cmd_channel.ioloop)
self.cmd_channel = cmd_channel
self.log = cmd_channel.log
self.log_exception = cmd_channel.log_exception
self._idler = None
if self.timeout:
self._idler = self.ioloop.call_later(self.timeout,
self.handle_timeout,
_errback=self.handle_error)
if ip.count('.') == 4:
self._cmd = "PORT"
self._normalized_addr = "%s:%s" % (ip, port)
else:
self._cmd = "EPRT"
self._normalized_addr = "[%s]:%s" % (ip, port)
source_ip = self.cmd_channel.socket.getsockname()[0]
try:
self.connect_af_unspecified((ip, port), (source_ip, 0))
except (socket.gaierror, socket.error):
self.handle_close()
def readable(self):
return False
def handle_write(self):
pass
def handle_connect(self):
self.del_channel()
if self._idler is not None and not self._idler.cancelled:
self._idler.cancel()
if not self.cmd_channel.connected:
return self.close()
err = self.socket.getsockopt(socket.SOL_SOCKET, socket.SO_ERROR)
if err != 0:
raise socket.error(err)
msg = 'Active data connection established.'
self.cmd_channel.respond('200 ' + msg)
self.cmd_channel.log_cmd(self._cmd, self._normalized_addr, 200, msg)
if not self.cmd_channel.connected:
return self.close()
handler = self.cmd_channel.dtp_handler(self.socket, self.cmd_channel)
self.cmd_channel.data_channel = handler
self.cmd_channel._on_dtp_connection()
def handle_timeout(self):
if self.cmd_channel.connected:
msg = "Active data channel timed out."
self.cmd_channel.respond("421 " + msg, logfun=logger.info)
self.cmd_channel.log_cmd(
self._cmd, self._normalized_addr, 421, msg)
self.close()
def handle_close(self):
if not self._closed:
self.close()
if self.cmd_channel.connected:
msg = "Can't connect to specified address."
self.cmd_channel.respond("425 " + msg)
self.cmd_channel.log_cmd(
self._cmd, self._normalized_addr, 425, msg)
def handle_error(self):
try:
raise
except (socket.gaierror, socket.error):
pass
except Exception:
self.log_exception(self)
try:
self.handle_close()
except Exception:
logger.critical(traceback.format_exc())
def close(self):
debug("call: close()", inst=self)
if not self._closed:
Connector.close(self)
if self._idler is not None and not self._idler.cancelled:
self._idler.cancel()
class DTPHandler(AsyncChat):
timeout = 300
ac_in_buffer_size = 65536
ac_out_buffer_size = 65536
def __init__(self, sock, cmd_channel):
self.cmd_channel = cmd_channel
self.file_obj = None
self.receive = False
self.transfer_finished = False
self.tot_bytes_sent = 0
self.tot_bytes_received = 0
self.cmd = None
self.log = cmd_channel.log
self.log_exception = cmd_channel.log_exception
self._data_wrapper = None
self._lastdata = 0
self._had_cr = False
self._start_time = timer()
self._resp = ()
self._offset = None
self._filefd = None
self._idler = None
self._initialized = False
try:
AsyncChat.__init__(self, sock, ioloop=cmd_channel.ioloop)
except socket.error as err:
AsyncChat.__init__(
self, socket.socket(), ioloop=cmd_channel.ioloop)
self.close()
if err.errno == errno.EINVAL:
return
self.handle_error()
return
if not self.connected:
self.close()
return
if self.timeout:
self._idler = self.ioloop.call_every(self.timeout,
self.handle_timeout,
_errback=self.handle_error)
def __repr__(self):
return '<%s(%s)>' % (self.__class__.__name__,
self.cmd_channel.get_repr_info(as_str=True))
__str__ = __repr__
def use_sendfile(self):
if not self.cmd_channel.use_sendfile:
return False
if self.file_obj is None or not hasattr(self.file_obj, "fileno"):
return False
try:
self.file_obj.fileno()
except OSError:
return False
if self.cmd_channel._current_type != 'i':
return False
return True
def push(self, data):
self._initialized = True
self.modify_ioloop_events(self.ioloop.WRITE)
self._wanted_io_events = self.ioloop.WRITE
AsyncChat.push(self, data)
def push_with_producer(self, producer):
self._initialized = True
self.modify_ioloop_events(self.ioloop.WRITE)
self._wanted_io_events = self.ioloop.WRITE
if self.use_sendfile():
self._offset = producer.file.tell()
self._filefd = self.file_obj.fileno()
try:
self.initiate_sendfile()
except _GiveUpOnSendfile:
pass
else:
self.initiate_send = self.initiate_sendfile
return
debug("starting transfer using send()", self)
AsyncChat.push_with_producer(self, producer)
def close_when_done(self):
asynchat.async_chat.close_when_done(self)
def initiate_send(self):
asynchat.async_chat.initiate_send(self)
def initiate_sendfile(self):
try:
sent = sendfile(self._fileno, self._filefd, self._offset,
self.ac_out_buffer_size)
except OSError as err:
if err.errno in _ERRNOS_RETRY or err.errno == errno.EBUSY:
return
elif err.errno in _ERRNOS_DISCONNECTED:
self.handle_close()
else:
if self.tot_bytes_sent == 0:
logger.warning(
"sendfile() failed; falling back on using plain send")
raise _GiveUpOnSendfile
else:
raise
else:
if sent == 0:
self.discard_buffers()
self.handle_close()
else:
self._offset += sent
self.tot_bytes_sent += sent
def _posix_ascii_data_wrapper(self, chunk):
if self._had_cr:
chunk = b'\r' + chunk
if chunk.endswith(b'\r'):
self._had_cr = True
chunk = chunk[:-1]
else:
self._had_cr = False
return chunk.replace(b'\r\n', b(os.linesep))
def enable_receiving(self, type, cmd):
self._initialized = True
self.modify_ioloop_events(self.ioloop.READ)
self._wanted_io_events = self.ioloop.READ
self.cmd = cmd
if type == 'a':
if os.linesep == '\r\n':
self._data_wrapper = None
else:
self._data_wrapper = self._posix_ascii_data_wrapper
elif type == 'i':
self._data_wrapper = None
else:
raise TypeError("unsupported type")
self.receive = True
def get_transmitted_bytes(self):
return self.tot_bytes_sent + self.tot_bytes_received
def get_elapsed_time(self):
return timer() - self._start_time
|
MIT License
|
cupy/cupy
|
cupyx/scipy/ndimage/morphology.py
|
binary_erosion
|
python
|
def binary_erosion(input, structure=None, iterations=1, mask=None, output=None,
border_value=0, origin=0, brute_force=False):
return _binary_erosion(input, structure, iterations, mask, output,
border_value, origin, 0, brute_force)
|
Multidimensional binary erosion with a given structuring element.
Binary erosion is a mathematical morphology operation used for image
processing.
Args:
input(cupy.ndarray): The input binary array_like to be eroded.
Non-zero (True) elements form the subset to be eroded.
structure(cupy.ndarray, optional): The structuring element used for the
erosion. Non-zero elements are considered True. If no structuring
element is provided an element is generated with a square
connectivity equal to one. (Default value = None).
iterations(int, optional): The erosion is repeated ``iterations`` times
(one, by default). If iterations is less than 1, the erosion is
repeated until the result does not change anymore. Only an integer
of iterations is accepted.
mask(cupy.ndarray or None, optional): If a mask is given, only those
elements with a True value at the corresponding mask element are
modified at each iteration. (Default value = None)
output(cupy.ndarray, optional): Array of the same shape as input, into
which the output is placed. By default, a new array is created.
border_value(int (cast to 0 or 1), optional): Value at the
border in the output array. (Default value = 0)
origin(int or tuple of ints, optional): Placement of the filter, by
default 0.
brute_force(boolean, optional): Memory condition: if False, only the
pixels whose value was changed in the last iteration are tracked as
candidates to be updated (eroded) in the current iteration; if
True all pixels are considered as candidates for erosion,
regardless of what happened in the previous iteration.
Returns:
cupy.ndarray: The result of binary erosion.
.. warning::
This function may synchronize the device.
.. seealso:: :func:`scipy.ndimage.binary_erosion`
|
https://github.com/cupy/cupy/blob/a466b03ef0afd7c1ce1615e3f48da64ae38c1320/cupyx/scipy/ndimage/morphology.py#L265-L308
|
import operator
import warnings
import numpy
import cupy
from cupyx.scipy.ndimage import _filters_core
from cupyx.scipy.ndimage import _util
from cupyx.scipy.ndimage import filters
@cupy.memoize(for_each_device=True)
def _get_binary_erosion_kernel(
w_shape, int_type, offsets, center_is_true, border_value, invert, masked,
all_weights_nonzero
):
if invert:
border_value = int(not border_value)
true_val = 0
false_val = 1
else:
true_val = 1
false_val = 0
if masked:
pre = """
bool mv = (bool)mask[i];
bool _in = (bool)x[i];
if (!mv) {{
y = cast<Y>(_in);
return;
}} else if ({center_is_true} && _in == {false_val}) {{
y = cast<Y>(_in);
return;
}}""".format(center_is_true=int(center_is_true),
false_val=false_val)
else:
pre = """
bool _in = (bool)x[i];
if ({center_is_true} && _in == {false_val}) {{
y = cast<Y>(_in);
return;
}}""".format(center_is_true=int(center_is_true),
false_val=false_val)
pre = pre + """
y = cast<Y>({true_val});""".format(true_val=true_val)
found = """
if ({{cond}}) {{{{
if (!{border_value}) {{{{
y = cast<Y>({false_val});
return;
}}}}
}}}} else {{{{
bool nn = {{value}} ? {true_val} : {false_val};
if (!nn) {{{{
y = cast<Y>({false_val});
return;
}}}}
}}}}""".format(true_val=int(true_val),
false_val=int(false_val),
border_value=int(border_value),)
name = 'binary_erosion'
if false_val:
name += '_invert'
return _filters_core._generate_nd_kernel(
name,
pre,
found,
'',
'constant', w_shape, int_type, offsets, 0, ctype='Y', has_weights=True,
has_structure=False, has_mask=masked, binary_morphology=True,
all_weights_nonzero=all_weights_nonzero)
def _center_is_true(structure, origin):
coor = tuple([oo + ss // 2 for ss, oo in zip(structure.shape, origin)])
return bool(structure[coor])
def iterate_structure(structure, iterations, origin=None):
if iterations < 2:
return structure.copy()
ni = iterations - 1
shape = [ii + ni * (ii - 1) for ii in structure.shape]
pos = [ni * (structure.shape[ii] // 2) for ii in range(len(shape))]
slc = tuple(
slice(pos[ii], pos[ii] + structure.shape[ii], None)
for ii in range(len(shape))
)
out = cupy.zeros(shape, bool)
out[slc] = structure != 0
out = binary_dilation(out, structure, iterations=ni)
if origin is None:
return out
else:
origin = _util._fix_sequence_arg(origin, structure.ndim, 'origin', int)
origin = [iterations * o for o in origin]
return out, origin
def generate_binary_structure(rank, connectivity):
if connectivity < 1:
connectivity = 1
if rank < 1:
return cupy.asarray(True, dtype=bool)
output = numpy.fabs(numpy.indices([3] * rank) - 1)
output = numpy.add.reduce(output, 0)
output = output <= connectivity
return cupy.asarray(output)
def _binary_erosion(input, structure, iterations, mask, output, border_value,
origin, invert, brute_force=True):
try:
iterations = operator.index(iterations)
except TypeError:
raise TypeError('iterations parameter should be an integer')
if input.dtype.kind == 'c':
raise TypeError('Complex type not supported')
if structure is None:
structure = generate_binary_structure(input.ndim, 1)
all_weights_nonzero = input.ndim == 1
center_is_true = True
default_structure = True
else:
structure = structure.astype(dtype=bool, copy=False)
default_structure = False
if structure.ndim != input.ndim:
raise RuntimeError('structure and input must have same dimensionality')
if not structure.flags.c_contiguous:
structure = cupy.ascontiguousarray(structure)
if structure.size < 1:
raise RuntimeError('structure must not be empty')
if mask is not None:
if mask.shape != input.shape:
raise RuntimeError('mask and input must have equal sizes')
if not mask.flags.c_contiguous:
mask = cupy.ascontiguousarray(mask)
masked = True
else:
masked = False
origin = _util._fix_sequence_arg(origin, input.ndim, 'origin', int)
if isinstance(output, cupy.ndarray):
if output.dtype.kind == 'c':
raise TypeError('Complex output type not supported')
else:
output = bool
output = _util._get_output(output, input)
temp_needed = cupy.shares_memory(output, input, 'MAY_SHARE_BOUNDS')
if temp_needed:
temp = output
output = _util._get_output(output.dtype, input)
if structure.ndim == 0:
if float(structure):
output[...] = cupy.asarray(input, dtype=bool)
else:
output[...] = ~cupy.asarray(input, dtype=bool)
return output
origin = tuple(origin)
int_type = _util._get_inttype(input)
offsets = _filters_core._origins_to_offsets(origin, structure.shape)
if not default_structure:
nnz = int(cupy.count_nonzero(structure))
all_weights_nonzero = nnz == structure.size
if all_weights_nonzero:
center_is_true = True
else:
center_is_true = _center_is_true(structure, origin)
erode_kernel = _get_binary_erosion_kernel(
structure.shape, int_type, offsets, center_is_true, border_value,
invert, masked, all_weights_nonzero,
)
if iterations == 1:
if masked:
output = erode_kernel(input, structure, mask, output)
else:
output = erode_kernel(input, structure, output)
elif center_is_true and not brute_force:
raise NotImplementedError(
'only brute_force iteration has been implemented'
)
else:
if cupy.shares_memory(output, input, 'MAY_SHARE_BOUNDS'):
raise ValueError('output and input may not overlap in memory')
tmp_in = cupy.empty_like(input, dtype=output.dtype)
tmp_out = output
if iterations >= 1 and not iterations & 1:
tmp_in, tmp_out = tmp_out, tmp_in
if masked:
tmp_out = erode_kernel(input, structure, mask, tmp_out)
else:
tmp_out = erode_kernel(input, structure, tmp_out)
changed = not (input == tmp_out).all()
ii = 1
while ii < iterations or ((iterations < 1) and changed):
tmp_in, tmp_out = tmp_out, tmp_in
if masked:
tmp_out = erode_kernel(tmp_in, structure, mask, tmp_out)
else:
tmp_out = erode_kernel(tmp_in, structure, tmp_out)
changed = not (tmp_in == tmp_out).all()
ii += 1
if not changed and (not ii & 1):
break
output = tmp_out
if temp_needed:
temp[...] = output
output = temp
return output
|
MIT License
|
initstring/linkedin2username
|
linkedin2username.py
|
login
|
python
|
def login(args):
session = requests.session()
if args.proxy:
print(PC.warn_box + "Using a proxy, ignoring SSL errors."
" Don't get pwned.")
session.verify = False
from requests.packages.urllib3.exceptions import InsecureRequestWarning
requests.packages.urllib3.disable_warnings(InsecureRequestWarning)
session.proxies.update(args.proxy_dict)
mobile_agent = ('Mozilla/5.0 (Linux; U; Android 4.4.2; en-us; SCH-I535 '
'Build/KOT49H) AppleWebKit/534.30 (KHTML, like Gecko) '
'Version/4.0 Mobile Safari/534.30')
session.headers.update({'User-Agent': mobile_agent,
'X-RestLi-Protocol-Version': '2.0.0'})
anon_response = session.get('https://www.linkedin.com/login')
login_csrf = re.findall(r'name="loginCsrfParam" value="(.*?)"',
anon_response.text)
if login_csrf:
login_csrf = login_csrf[0]
else:
print("Having trouble loading login page... try the command again.")
sys.exit()
auth_payload = {
'session_key': args.username,
'session_password': args.password,
'isJsEnabled': 'false',
'loginCsrfParam': login_csrf
}
response = session.post('https://www.linkedin.com/checkpoint/lg/login-submit'
'?loginSubmitSource=GUEST_HOME',
data=auth_payload, allow_redirects=False)
if response.status_code == 302 or response.status_code == 303:
redirect = response.headers['Location']
if 'feed' in redirect:
print(PC.ok_box + "Successfully logged in.\n")
return session
if 'challenge' in redirect:
print(PC.warn_box + "LinkedIn doesn't like something about this"
" login. Maybe you're being sneaky on a VPN or something."
" You may get an email with a verification token. You can"
" ignore the email. Log in from a web browser and try"
" again.\n")
return False
if 'captcha' in redirect:
print(PC.warn_box + "You've triggered a CAPTCHA. Oops. Try logging"
" in with your web browser first and come back later.")
return False
if 'add-phone' in redirect:
print(PC.warn_box + "LinkedIn is prompting to add your phone"
" number to your profile. Please handle that in the web and"
" then try again.")
return False
if 'manage-account' in redirect:
print(PC.warn_box + "LinkedIn has some account notification for you"
" to check. Please log in first via the web and clear that.")
return False
if 'add-email' in redirect:
print(PC.warn_box + "LinkedIn wants you to add an email address to"
" your account. Log in via the web first and do that.")
return False
print(PC.warn_box + "Some unknown redirection occurred. If this"
" persists, please open an issue on github wih the DEBUG"
" message below:\n")
print("DEBUG INFO:")
print("LOCATION: {}".format(redirect))
print("RESPONSE TEXT:\n{}".format(response.text))
return False
if '<title>LinkedIn Login' in response.text:
print(PC.warn_box + "You've been returned to a login page. Check your"
" username and password and try again.\n")
return False
print(PC.warn_box + "Some unknown error logging in. If this persists,"
"please open an issue on github.\n")
print("DEBUG INFO:")
print("RESPONSE CODE: {}".format(response.status_code))
print("RESPONSE TEXT:\n{}".format(response.text))
return False
|
Creates a new authenticated session.
Note that a mobile user agent is used. Parsing using the desktop results
proved extremely difficult, as shared connections would be returned in
a manner that was indistinguishable from the desired targets.
The other header matters as well, otherwise advanced search functions
(region and keyword) will not work.
The function will check for common failure scenarios - the most common is
logging in from a new location. Accounts using multi-factor auth are not
yet supported and will produce an error.
|
https://github.com/initstring/linkedin2username/blob/0ff92f6f7459180d3a54f6553d2e527b5809ea32/linkedin2username.py#L198-L312
|
import os
import sys
import re
import time
import argparse
import getpass
from distutils.version import StrictVersion
import urllib.parse
import requests
CURRENT_REL = '0.21'
BANNER = r"""
.__ .__________
| | |__\_____ \ __ __
| | | |/ ____/| | \
| |_| / \| | /
|____/__\_______ \____/
linkedin2username
Spray away.
github.com/initstring
"""
GEO_REGIONS = {
'r0':'us:0',
'r1':'ca:0',
'r2':'gb:0',
'r3':'au:0|nz:0',
'r4':'cn:0|hk:0',
'r5':'jp:0|kr:0|my:0|np:0|ph:0|sg:0|lk:0|tw:0|th:0|vn:0',
'r6':'in:0',
'r7':'at:0|be:0|bg:0|hr:0|cz:0|dk:0|fi:0',
'r8':'fr:0|de:0',
'r9':'gr:0|hu:0|ie:0|it:0|lt:0|nl:0|no:0|pl:0|pt:0',
'r10':'ro:0|ru:0|rs:0|sk:0|es:0|se:0|ch:0|tr:0|ua:0',
'r11':('ar:0|bo:0|br:0|cl:0|co:0|cr:0|do:0|ec:0|gt:0|mx:0|pa:0|pe:0'
'|pr:0|tt:0|uy:0|ve:0'),
'r12':'af:0|bh:0|il:0|jo:0|kw:0|pk:0|qa:0|sa:0|ae:0'}
if sys.version_info < (3, 0):
print("\nSorry mate, you'll need to use Python 3+ on this one...\n")
sys.exit(1)
class PC:
green = '\033[92m'
blue = '\033[94m'
orange = '\033[93m'
endc = '\033[0m'
ok_box = blue + '[*] ' + endc
note_box = green + '[+] ' + endc
warn_box = orange + '[!] ' + endc
def parse_arguments():
desc = ('OSINT tool to generate lists of probable usernames from a'
' given company\'s LinkedIn page. This tool may break when'
' LinkedIn changes their site. Please open issues on GitHub'
' to report any inconsistencies, and they will be quickly fixed.')
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('-u', '--username', type=str, action='store',
required=True,
help='A valid LinkedIn username.')
parser.add_argument('-c', '--company', type=str, action='store',
required=True,
help='Company name exactly as typed in the company '
'linkedin profile page URL.')
parser.add_argument('-p', '--password', type=str, action='store',
help='Specify your password in clear-text on the '
'command line. If not specified, will prompt and '
'obfuscate as you type.')
parser.add_argument('-n', '--domain', type=str, action='store',
default='',
help='Append a domain name to username output. '
'[example: "-n uber.com" would output jschmoe@uber.com]'
)
parser.add_argument('-d', '--depth', type=int, action='store',
default=False,
help='Search depth (how many loops of 25). If unset, '
'will try to grab them all.')
parser.add_argument('-s', '--sleep', type=int, action='store', default=0,
help='Seconds to sleep between search loops.'
' Defaults to 0.')
parser.add_argument('-x', '--proxy', type=str, action='store',
default=False,
help='Proxy server to use. WARNING: WILL DISABLE SSL '
'VERIFICATION. [example: "-p https://localhost:8080"]')
parser.add_argument('-k', '--keywords', type=str, action='store',
default=False,
help='Filter results by a a list of command separated '
'keywords. Will do a separate loop for each keyword, '
'potentially bypassing the 1,000 record limit. '
'[example: "-k \'sales,human resources,information '
'technology\']')
parser.add_argument('-g', '--geoblast', default=False, action="store_true",
help='Attempts to bypass the 1,000 record search limit'
' by running multiple searches split across geographic'
' regions.')
args = parser.parse_args()
args.proxy_dict = {"https" : args.proxy}
if args.domain:
args.domain = '@' + args.domain
if args.keywords:
args.keywords = args.keywords.split(',')
if args.keywords and args.geoblast:
print("Sorry, keywords and geoblast are currently not compatible. "
"Use one or the other.")
sys.exit()
args.password = args.password or getpass.getpass()
return args
def check_li2u_version():
latest_rel_regex = r'/initstring/linkedin2username/tree/(.*?)"'
session = requests.session()
rel_url = 'https://github.com/initstring/linkedin2username/releases'
rel_chars = re.compile(r'[^0-9\.]')
response = session.get(rel_url)
latest_rel = re.findall(latest_rel_regex, response.text)
if latest_rel[0]:
latest_rel = rel_chars.sub('', latest_rel[0])
else:
return
if CURRENT_REL == latest_rel:
print("")
print(PC.ok_box + "Using version {}, which is the latest on"
" GitHub.\n".format(CURRENT_REL))
return
if StrictVersion(CURRENT_REL) > StrictVersion(latest_rel):
print("")
print(PC.warn_box + "Using version {}, which is NEWER than {}, the"
" latest official release. Good luck!\n"
.format(CURRENT_REL, latest_rel))
return
if StrictVersion(CURRENT_REL) < StrictVersion(latest_rel):
print("")
print(PC.warn_box + "You are using {}, but {} is available.\n"
" LinkedIn changes often - this version may not work.\n"
" https://github.com/initstring/linkedin2username.\n"
.format(CURRENT_REL, latest_rel))
return
|
MIT License
|
lcx366/ggtools
|
ggtools/gg/landmask.py
|
landmask
|
python
|
def landmask(lmax,trunc_lat=None):
home = getenv('HOME')
direc = home + '/src/etopo-data/'
etopo_file = 'etopo5.nc'
url = 'https://raw.githubusercontent.com/dcherian/tools/master/ROMS/arango/bathymetry/etopo5.nc'
if not path.exists(direc):
makedirs(direc)
print('Downloading the ETOPO5 Earth Surface Topography Data Set',end=' ... ')
urlretrieve(url, direc + etopo_file)
print('Finished')
ds = xr.open_dataset(direc + etopo_file)
topo_grids = np.flip(np.array(ds['topo']),0)[:-1,:]
lats = np.flip(np.array(ds['topo_lat']))[:-1]
topo_grids_class = SHGrid.from_array(topo_grids)
topo_coeffs_class = topo_grids_class.expand(lmax_calc=lmax)
topo_grids_class = topo_coeffs_class.expand()
topo_grids = topo_grids_class.data
lats = topo_grids_class.lats()
land_mask = topo_grids > 0
if trunc_lat is not None:
land_mask[lats < trunc_lat] = False
return land_mask
|
Establish a land window function based on the global terrain data ETOPO5. The land area has a value of 1 and the sea area has a value of 0.
To set the value of the Antarctica region to 0, just set trunc_lat to -60.
Usage:
land_win = land_mask(lmax)
land_win = land_mask(lmax,-60)
Inputs:
lmax -> [int] Degree of the spherical harmonic expansion
Parameters:
trunc_lat -> [optional, float, default = None] Truncated latitude.
If None, the global land area will be assigned a value of 1, otherwise, only the land area north of the truncated latitude will be assigned a value of 1, and the remaining regions will be assigned a value of 0.
Outputs:
land_win [bool, 2d array] land window function. The grid satisfies the sampling theorem of Driscoll and Healy (1994).
For more information, please refer to https://shtools.oca.eu/shtools/public/pyshexpanddh.html
|
https://github.com/lcx366/ggtools/blob/7909da988d90de50c82532d97121a3fbcfc0263a/ggtools/gg/landmask.py#L7-L57
|
import numpy as np
import xarray as xr
from os import getenv,path,makedirs
from urllib.request import urlretrieve
from pyshtools.shclasses import SHCoeffs,SHGrid
|
MIT License
|
adafruit/adafruit_python_charlcd
|
examples/char_lcd_rgb_pwm.py
|
hsv_to_rgb
|
python
|
def hsv_to_rgb(hsv):
h, s, v = hsv
if s == 0:
return (v, v, v)
h /= 60.0
i = math.floor(h)
f = h-i
p = v*(1.0-s)
q = v*(1.0-s*f)
t = v*(1.0-s*(1.0-f))
if i == 0:
return (v, t, p)
elif i == 1:
return (q, v, p)
elif i == 2:
return (p, v, t)
elif i == 3:
return (p, q, v)
elif i == 4:
return (t, p, v)
else:
return (v, p, q)
|
Converts a tuple of hue, saturation, value to a tuple of red, green blue.
Hue should be an angle from 0.0 to 359.0. Saturation and value should be a
value from 0.0 to 1.0, where saturation controls the intensity of the hue and
value controls the brightness.
|
https://github.com/adafruit/adafruit_python_charlcd/blob/c126e6b673074c12a03f4bd36afb2fe40272341e/examples/char_lcd_rgb_pwm.py#L9-L36
|
import math
import time
import Adafruit_CharLCD as LCD
|
MIT License
|
hopeit-git/hopeit.engine
|
engine/src/hopeit/server/config.py
|
replace_env_vars
|
python
|
def replace_env_vars(config_json: str) -> str:
result = config_json
env_re = re.compile('\\${([^}{]+)}', re.IGNORECASE)
for match in env_re.finditer(result):
expr = match.group(0)
var_name = match.group(1)
value = os.getenv(var_name.upper())
if value:
result = result.replace(expr, value)
missing_env_vars = env_re.findall(result)
assert len(missing_env_vars) == 0, f"Cannot get value from OS environment vars: {missing_env_vars}"
return result
|
Replaces env variables matching form ${VAR_NAME} with its string value
:param config_json: input configuratio json as string
:return: str, with replaced values
:raise: AssertionError if variables matching ${VAR_NAME} form are not replaced
|
https://github.com/hopeit-git/hopeit.engine/blob/79137e483a9577f336524f7e3b22a26a8d5a7ea3/engine/src/hopeit/server/config.py#L121-L141
|
from enum import Enum
from typing import TypeVar, List, Optional
import re
import os
from dataclasses import dataclass, field
from hopeit.dataobjects import dataobject
from hopeit.server.names import auto_path_prefixed
from hopeit.server.version import ENGINE_VERSION
__all__ = ['StreamsConfig',
'LoggingConfig',
'AuthType',
'AuthConfig',
'ServerConfig',
'parse_server_config_json',
'replace_env_vars',
'replace_config_args']
DEFAULT_STR = "<<DEFAULT>>"
ConfigType = TypeVar("ConfigType")
@dataobject
@dataclass
class StreamsConfig:
stream_manager: str = "hopeit.streams.NoStreamManager"
connection_str: str = '<<NoStreamManager>>'
delay_auto_start_seconds: int = 3
@dataobject
@dataclass
class LoggingConfig:
log_level: str = 'INFO'
log_path: str = 'logs/'
class AuthType(str, Enum):
UNSECURED = 'Unsecured'
BASIC = 'Basic'
BEARER = 'Bearer'
REFRESH = 'Refresh'
@dataobject
@dataclass
class AuthConfig:
secrets_location: str
auth_passphrase: str
enabled: bool = True
create_keys: bool = False
domain: Optional[str] = None
encryption_algorithm: str = 'RS256'
default_auth_methods: List[AuthType] = field(default_factory=list)
def __post_init__(self):
if len(self.default_auth_methods) == 0:
self.default_auth_methods.append(AuthType.UNSECURED)
@staticmethod
def no_auth():
return AuthConfig('.secrets/', '', enabled=False)
@dataobject
@dataclass
class APIConfig:
docs_path: Optional[str] = None
@dataobject
@dataclass
class ServerConfig:
streams: StreamsConfig = field(default_factory=StreamsConfig)
logging: LoggingConfig = field(default_factory=LoggingConfig)
auth: AuthConfig = field(default_factory=AuthConfig.no_auth)
api: APIConfig = field(default_factory=APIConfig)
engine_version: str = field(default=ENGINE_VERSION)
def __post_init__(self):
self.engine_version = ENGINE_VERSION
def parse_server_config_json(config_json: str) -> ServerConfig:
effective_json = replace_env_vars(config_json)
parsed_config = ServerConfig.from_json(effective_json)
replace_config_args(
parsed_config=parsed_config,
config_classes=tuple([StreamsConfig])
)
return parsed_config
|
Apache License 2.0
|
chrisb2/water-system
|
file_logger.py
|
File.close_log
|
python
|
def close_log():
if File.__instance is not None:
File.__instance.__close_file()
File.__instance = None
File.__logger = None
|
Static method to close the file logger.
|
https://github.com/chrisb2/water-system/blob/df70f0ee8c15051bb8ee5fe05fca484d81135a13/file_logger.py#L20-L25
|
import io
import logging
class File:
__logger = None
__instance = None
@staticmethod
def logger():
if File.__logger is None:
File()
return File.__logger
@staticmethod
|
MIT License
|
mikkelschubert/paleomix
|
paleomix/common/makefile.py
|
_safe_coerce_to_lowercase
|
python
|
def _safe_coerce_to_lowercase(value):
if isinstance(value, str):
return value.lower()
return value
|
Returns strings as lowercase, and any other types of value unchanged.
|
https://github.com/mikkelschubert/paleomix/blob/5c6414060088ba178ff1c400bdbd45d2f6b1aded/paleomix/common/makefile.py#L828-L832
|
import copy
import logging
from typing import Any, Dict, Optional, Tuple
import paleomix.common.yaml as yaml
from paleomix.common.fileutils import fspath
from paleomix.common.utilities import group_by_pred
class MakefileError(RuntimeError):
def read_makefile(filename: str, specification: Dict[Any, Any]):
try:
with open(fspath(filename)) as handle:
data = yaml.safe_load(handle)
except (yaml.YAMLError, yaml.DuplicateKeyError) as error:
raise MakefileError(error)
return process_makefile(data, specification)
def process_makefile(
data: Any,
specification: Any,
path: Tuple[str, ...] = (),
apply_defaults: bool = True,
) -> Any:
if isinstance(specification, WithoutDefaults):
specification = specification.specification
data = process_makefile(data, specification, path, apply_defaults=False)
elif isinstance(specification, PreProcessMakefile):
data, specification = specification(path, data)
data = process_makefile(data, specification, path, apply_defaults)
elif _is_spec(specification):
_instantiate_spec(specification)(path, data)
elif isinstance(data, (dict, type(None))) and isinstance(specification, dict):
if data is None:
data = {}
_process_default_values(data, specification, path, apply_defaults)
for cur_key in data:
ref_key = _get_matching_spec_or_value(
cur_key, specification, path + (cur_key,)
)
data[cur_key] = process_makefile(
data[cur_key], specification[ref_key], path + (cur_key,), apply_defaults
)
elif isinstance(data, (list, type(None))) and isinstance(specification, list):
if not all(map(_is_spec, specification)):
raise TypeError(
"Lists contains non-specification objects (%r): %r"
% (_path_to_str(path), specification)
)
elif data is None:
data = []
specification = IsListOf(*specification)
_instantiate_spec(specification)(path, data)
elif not isinstance(specification, (dict, list)):
raise TypeError(
"Unexpected type in makefile specification at %r: %r!"
% (_path_to_str(path), specification)
)
else:
raise MakefileError(
"Inconsistency between makefile specification and "
"current makefile at %s:\n Expected %s, "
"found %s %r!"
% (
_path_to_str(path),
type(specification).__name__,
type(data).__name__,
data,
)
)
return data
DEFAULT_NOT_SET = object()
REQUIRED_VALUE = object()
class WithoutDefaults:
def __init__(self, specification: Any):
self.specification = specification
class PreProcessMakefile:
def __call__(self, path, value):
raise NotImplementedError
class MakefileSpec:
def __init__(
self,
description: str = "N/A",
default: Any = DEFAULT_NOT_SET,
):
self.description = description
self.default = default
if (default not in (DEFAULT_NOT_SET, REQUIRED_VALUE)) and not self.meets_spec(
default
):
raise ValueError(
(
"Default value does not meet requirements:\n"
" Expected value: %s\n"
" Observed value: %r\n"
)
% (description, default)
)
def __call__(self, path, value):
if not self.meets_spec(value):
raise MakefileError(
(
"Makefile requirement not met at %r:\n"
" Expected value: %s\n"
" Observed value: %r\n"
" Observed type: %s"
)
% (_path_to_str(path), self.description, value, type(value).__name__)
)
def meets_spec(self, _value):
raise NotImplementedError
class IsAny(MakefileSpec):
def __init__(self, description: str = "any value", default: Any = DEFAULT_NOT_SET):
MakefileSpec.__init__(self, description, default)
def meets_spec(self, value: Any) -> bool:
return True
class IsInt(MakefileSpec):
def __init__(self, description: str = "an integer", default: Any = DEFAULT_NOT_SET):
MakefileSpec.__init__(self, description, default)
def meets_spec(self, value: Any) -> bool:
return isinstance(value, int) and not isinstance(value, bool)
class IsUnsignedInt(IsInt):
def __init__(
self, description: str = "an unsigned integer", default: Any = DEFAULT_NOT_SET
):
IsInt.__init__(self, description, default)
def meets_spec(self, value: Any) -> bool:
return IsInt.meets_spec(self, value) and value >= 0
class IsFloat(MakefileSpec):
def __init__(self, description: str = "a float", default: Any = DEFAULT_NOT_SET):
MakefileSpec.__init__(self, description, default)
def meets_spec(self, value: Any) -> bool:
return isinstance(value, float)
class IsBoolean(MakefileSpec):
def __init__(self, description: str = "a boolean", default: Any = DEFAULT_NOT_SET):
MakefileSpec.__init__(self, description, default)
def meets_spec(self, value: Any) -> bool:
return isinstance(value, bool)
class IsStr(MakefileSpec):
def __init__(
self,
description: Optional[str] = None,
default: Any = DEFAULT_NOT_SET,
min_len: int = 1,
):
if description is None:
if min_len == 0:
description = "a string"
elif min_len == 1:
description = "a non-empty string"
elif min_len >= 2:
description = "a string at least %s characters long" % (min_len,)
else:
raise ValueError("min_len must be non-negative")
self._min_len = min_len
MakefileSpec.__init__(self, description, default)
def meets_spec(self, value: Any) -> bool:
return isinstance(value, str) and len(value) >= self._min_len
class IsNone(MakefileSpec):
def __init__(
self, description: str = "null or not set", default: Any = DEFAULT_NOT_SET
):
if default is not DEFAULT_NOT_SET:
raise NotImplementedError("IsNone does not support default values")
MakefileSpec.__init__(self, description, default)
def meets_spec(self, value: Any) -> bool:
return value is None
class ValueMissing(MakefileSpec):
def __init__(self, description: str = "no values"):
MakefileSpec.__init__(self, description, DEFAULT_NOT_SET)
def meets_spec(self, _value):
return False
class DeprecatedOption(MakefileSpec):
def __init__(self, spec):
self._spec = spec
if not isinstance(spec, MakefileSpec):
raise ValueError(spec)
MakefileSpec.__init__(self, spec.description, spec.default)
def __call__(self, path, value):
self._spec(path, value)
log = logging.getLogger(__name__)
log.warning(
"option has been deprecated and will be removed in the future: %s",
_path_to_str(path),
)
def meets_spec(self, value: Any) -> bool:
return self._spec.meets_spec(value)
class RemovedOption(MakefileSpec):
def __init__(self, description: str = "removed settings"):
MakefileSpec.__init__(self, description, DEFAULT_NOT_SET)
def __call__(self, path, _value):
log = logging.getLogger(__name__)
log.warning(
"option has been removed and no longer has any effect: %s",
_path_to_str(path),
)
def meets_spec(self, _value):
return True
class _BinaryOperator(MakefileSpec):
def __init__(self, description, default, opfunc, rvalue, key=None, list_kword=None):
self._operator = opfunc
self._keyfunc = key
self._rvalue = rvalue
rvalue_repr = _list_values(rvalue, list_kword) if list_kword else rvalue
description = description.format(rvalue=rvalue_repr)
MakefileSpec.__init__(self, description, default)
def meets_spec(self, value: Any) -> bool:
if self._keyfunc is not None:
value = self._keyfunc(value)
return self._operator(value, self._rvalue)
class ValueIn(_BinaryOperator):
def __init__(
self,
rvalues,
key=None,
description: str = "value in {rvalue}",
default: Any = DEFAULT_NOT_SET,
):
description = description.format(rvalue=_list_values(rvalues, "or"))
_BinaryOperator.__init__(
self,
description=description,
default=default,
opfunc=self._in_operator,
rvalue=rvalues,
key=key,
)
def _in_operator(self, lvalue, rvalues):
return _is_hashable(lvalue) and lvalue in rvalues
class ValuesIntersect(_BinaryOperator):
def __init__(
self, rvalues, key=None, description: str = None, default: Any = DEFAULT_NOT_SET
):
if not description:
description = "one or more of %s" % (_list_values(rvalues, "and"),)
_BinaryOperator.__init__(
self,
description=description,
default=default,
opfunc=self._operator,
rvalue=rvalues,
key=key,
)
def _operator(self, lvalue, rvalues):
try:
return not isinstance(lvalue, dict) and bool(
frozenset(lvalue).intersection(rvalues)
)
except TypeError:
return False
class ValuesSubsetOf(_BinaryOperator):
def __init__(
self, rvalues, key=None, description: str = None, default: Any = DEFAULT_NOT_SET
):
description = description or "subset of %s" % (_list_values(rvalues, "and"),)
_BinaryOperator.__init__(
self,
description=description,
default=default,
opfunc=self._operator,
rvalue=rvalues,
key=key,
)
def _operator(self, lvalue, rvalues):
try:
return not isinstance(lvalue, dict) and bool(
frozenset(lvalue).issubset(rvalues)
)
except TypeError:
return False
class _MultipleSpecs(MakefileSpec):
def __init__(
self, specs, kwargs, name, prefix="", postfix="", join_by=" ", fmt="%s"
):
self._specs = [_instantiate_spec(spec) for spec in specs]
if not self._specs:
raise ValueError("No specification given to %r" % (name.title(),))
elif not all((spc.default is DEFAULT_NOT_SET) for spc in self._specs):
raise ValueError(
"Default values cannot be set in specs given to logical operators"
)
description = [(fmt % (spec.description,)) for spec in self._specs]
description = "%s%s%s" % (prefix, join_by.join(description), postfix)
default_value = kwargs.get("default", DEFAULT_NOT_SET)
MakefileSpec.__init__(self, description, default_value)
class And(_MultipleSpecs):
def __init__(self, *specs, **kwargs):
_MultipleSpecs.__init__(self, specs, kwargs, "And", join_by=" and ", fmt="(%s)")
def meets_spec(self, value: Any) -> bool:
return all(spec.meets_spec(value) for spec in self._specs)
class Or(_MultipleSpecs):
def __init__(self, *specs, **kwargs):
_MultipleSpecs.__init__(self, specs, kwargs, "Or", join_by=" or ", fmt="(%s)")
def meets_spec(self, value: Any) -> bool:
return any(spec.meets_spec(value) for spec in self._specs)
class Not(_MultipleSpecs):
def __init__(self, spec, **kwargs):
_MultipleSpecs.__init__(self, [spec], kwargs, "Not", prefix="not ", fmt="(%s)")
def meets_spec(self, value: Any) -> bool:
return not self._specs[0].meets_spec(value)
class StringIn(_BinaryOperator):
def __init__(
self,
rvalues,
key=None,
description: str = "one of {rvalue}, case-insentive",
default: Any = DEFAULT_NOT_SET,
):
description = description.format(rvalue=_list_values(rvalues, "or"))
rvalues = frozenset(map(_safe_coerce_to_lowercase, rvalues))
_BinaryOperator.__init__(
self, description, default, self._string_in_operator, rvalues
)
@classmethod
def _string_in_operator(cls, lvalue, rvalues):
if not _is_hashable(lvalue):
return False
return _safe_coerce_to_lowercase(lvalue) in rvalues
class StringStartsWith(IsStr):
def __init__(self, prefix, default: Any = DEFAULT_NOT_SET):
assert prefix and isinstance(prefix, str)
self._prefix = prefix
description = "a string with prefix %r" % (prefix,)
IsStr.__init__(self, description, default)
def meets_spec(self, value: Any) -> bool:
return super(StringStartsWith, self).meets_spec(value) and value.startswith(
self._prefix
)
class StringEndsWith(IsStr):
def __init__(self, postfix, default: Any = DEFAULT_NOT_SET):
assert postfix and isinstance(postfix, str)
self._postfix = postfix
description = "a string with postfix %r" % (postfix,)
IsStr.__init__(self, description, default)
def meets_spec(self, value: Any) -> bool:
return super(StringEndsWith, self).meets_spec(value) and value.endswith(
self._postfix
)
class IsListOf(_MultipleSpecs):
def __init__(self, *specs, **kwargs):
_MultipleSpecs.__init__(
self,
specs,
kwargs,
"IsListOf",
prefix="[",
postfix=", ...]",
join_by=" or ",
fmt="(%s)",
)
def meets_spec(self, value: Any) -> bool:
if not isinstance(value, list):
return False
return all(
any(spec.meets_spec(lstvalue) for spec in self._specs) for lstvalue in value
)
class IsDictOf(MakefileSpec):
def __init__(self, key_spec, value_spec, default: Any = DEFAULT_NOT_SET):
self._key_spec = _instantiate_spec(key_spec)
self._value_spec = _instantiate_spec(value_spec)
if self._key_spec.default is not DEFAULT_NOT_SET:
raise ValueError("Default values cannot be set in key-specs")
elif self._value_spec.default is not DEFAULT_NOT_SET:
raise ValueError("Default values cannot be set in value-specs")
description = "{(%s) : (%s)}" % (
self._key_spec.description,
self._value_spec.description,
)
MakefileSpec.__init__(self, description, default)
def meets_spec(self, value: Any) -> bool:
if not isinstance(value, dict):
return False
for (key, value) in value.items():
if not (
self._key_spec.meets_spec(key) and self._value_spec.meets_spec(value)
):
return False
return True
def _is_hashable(value):
try:
hash(value)
return True
except TypeError:
return False
def _is_spec(spec: Any) -> bool:
if isinstance(spec, MakefileSpec):
return True
elif isinstance(spec, type) and issubclass(spec, MakefileSpec):
return True
return False
def _instantiate_spec(spec):
if isinstance(spec, MakefileSpec):
return spec
elif isinstance(spec, type) and issubclass(spec, MakefileSpec):
return spec()
else:
raise TypeError("Specifications must derive from 'MakefileSpec'")
|
MIT License
|
ratijas/dropsql
|
src/dropSQL/fs/table.py
|
Table._write
|
python
|
def _write(self, page: int, offset: int, record: bytes) -> None:
chunk = record[:BLOCK_SIZE - offset]
block = self.get_or_allocate_page(page)
block.override(offset, chunk)
self.storage.write_block(block)
i = 1
while (i + 1) * BLOCK_SIZE - offset <= len(record):
chunk = record[i * BLOCK_SIZE - offset:(i + 1) * BLOCK_SIZE - offset]
block = self.get_or_allocate_page(page + i)
block.override(0, chunk)
self.storage.write_block(block)
i += 1
chunk = record[i * BLOCK_SIZE - offset:]
if chunk:
block = self.get_or_allocate_page(page + i)
block.override(0, chunk)
self.storage.write_block(block)
|
Write down record (bytes) onto the page (virtual index) starting with given offset.
Record may cross page boundary.
|
https://github.com/ratijas/dropsql/blob/936be7403fa409a7da1aa7e9f4afeeddc3f0a041/src/dropSQL/fs/table.py#L404-L433
|
import struct
from typing import *
from dropSQL.ast.column_def import ColumnDef
from dropSQL.ast.ty import *
from dropSQL.engine.types import *
from dropSQL.generic import *
from dropSQL.parser.tokens import Identifier
from .block import *
from .block_storage import BlockStorage
RAW_TYPE = Union[bytes, int, float]
LVL0 = DIRECT_POINTERS
LVL1 = LVL0 + POINTERS_PER_BLOCK
LVL2 = LVL1 + POINTERS_PER_BLOCK ** 2
LVL3 = LVL2 + POINTERS_PER_BLOCK ** 3
POINTERS_PER_LVL1 = POINTERS_PER_BLOCK
POINTERS_PER_LVL2 = POINTERS_PER_BLOCK ** 2
POINTERS_PER_LVL3 = POINTERS_PER_BLOCK ** 3
class Descriptor:
N_POINTERS = DIRECT_POINTERS + 3
__slots__ = ['table', 'block', 'name', 'pointers', 'records', 'columns']
def __init__(self, table: 'Table', block: Block, table_name: Identifier, pointers: List[int], records: int,
columns: List[ColumnDef]) -> None:
super().__init__()
assert len(pointers) == Descriptor.N_POINTERS
self.table = table
self.block = block
self.name = table_name
self.pointers = pointers
self.records = records
self.columns = columns
@classmethod
def empty(cls, table: 'Table') -> 'Descriptor':
return Descriptor(table, Block.empty(1 + table.index), Identifier(''), [0] * Descriptor.N_POINTERS, 0, [])
@classmethod
def decode(cls, table: 'Table') -> 'Descriptor':
try:
block = table.storage.read_block(1 + table.index)
except AssertionError:
return cls.empty(table)
else:
base = BLOCK_SIZE - (Descriptor.N_POINTERS * POINTER_SIZE) - POINTER_SIZE
def get_pointer(b: Block, i: int) -> int:
return int.from_bytes(b[base + i * POINTER_SIZE:base + (i + 1) * POINTER_SIZE], byteorder=BYTEORDER)
table_name = Identifier((block.split(b'\0')[0]).decode("UTF-8"), True)
pointers = [get_pointer(block, i) for i in range(Descriptor.N_POINTERS)]
records = int.from_bytes(block[BLOCK_SIZE - POINTER_SIZE:], byteorder=BYTEORDER)
columns: List[ColumnDef] = []
column_descriptors = block[block.find(b'\0') + 1: base]
i = 0
while column_descriptors[i] != 0:
null = column_descriptors.find(b'\0', i)
name = column_descriptors[i:null].decode("UTF-8")
ty = Ty.decode(column_descriptors[null + 1: null + 3])
columns.append(ColumnDef(Identifier(name), ty, False))
i = null + 3
return Descriptor(table, block, table_name, pointers, records, columns)
def save(self) -> Result[None, str]:
if self.table.descriptor() is not self: return Err('Descriptor is outdated')
block = self.block
i = 0
data = self.name.identifier.encode('UTF-8')
block.override(i, data + b'\0')
i += len(data) + 1
for col in self.columns:
data = col.name.identifier.encode('UTF-8')
block.override(i, data + b'\0')
i += len(data) + 1
block.override(i, col.ty.encode())
i += 2
i = BLOCK_SIZE - POINTER_SIZE * (Descriptor.N_POINTERS + 1)
for pointer in self.pointers:
block.override(i, pointer.to_bytes(POINTER_SIZE, byteorder=BYTEORDER))
i += POINTER_SIZE
block.override(i, self.records.to_bytes(POINTER_SIZE, byteorder=BYTEORDER))
self.table.storage.write_block(block)
return Ok(None)
class Table:
def __init__(self, storage: BlockStorage, index: int) -> None:
self.storage = storage
self.index = index
self._descriptor: Optional[Descriptor] = None
def descriptor(self) -> Descriptor:
if self._descriptor is None:
self._descriptor = Descriptor.decode(self)
return self._descriptor
def get_table_name(self) -> Identifier:
return self.descriptor().name
def set_table_name(self, new_name: Identifier) -> None:
descriptor = self.descriptor()
descriptor.name = new_name
descriptor.save().ok()
def get_columns(self) -> List[ColumnDef]:
return self.descriptor().columns
def count_records(self) -> int:
return self.descriptor().records
def add_column(self, column: ColumnDef):
assert self.count_records() == 0, 'Adding column to non-empty table'
descriptor = self.descriptor()
descriptor.columns.append(column)
descriptor.save().ok()
def get_or_allocate_page(self, index: int) -> Block:
pointer = self._get_page_pointer(index)
if pointer == 0:
self._allocate_page(index)
pointer = self._get_page_pointer(index)
return self.storage.read_block(pointer)
def _get_page_pointer(self, index: int) -> int:
if 0 <= index < LVL0:
pointer = self._get_lvl0(index)
elif LVL0 <= index < LVL1:
pointer = self._get_lvl1(index)
elif LVL1 <= index < LVL2:
pointer = self._get_lvl2(index)
elif LVL2 <= index < LVL3:
pointer = self._get_lvl3(index)
else:
pointer = 0
return pointer
def _allocate_page(self, index: int) -> None:
assert self._get_page_pointer(index) == 0
if 0 <= index < LVL0:
self._allocate_lvl0(index)
elif LVL0 <= index < LVL1:
self._allocate_lvl1(index)
elif LVL1 <= index < LVL2:
self._allocate_lvl2(index)
elif LVL2 <= index < LVL3:
self._allocate_lvl3(index)
def _allocate_lvl0(self, index: int) -> None:
assert 0 <= index < LVL0
assert 0 == self._get_lvl0(index)
lvl0 = self.storage.allocate_block().idx
descriptor = self.descriptor()
descriptor.pointers[index] = lvl0
descriptor.save().ok()
def _allocate_lvl1(self, index: int) -> None:
assert LVL0 <= index < LVL1
assert 0 == self._get_lvl1(index)
index -= LVL0
descriptor = self.descriptor()
lvl1 = descriptor.pointers[DIRECT_POINTERS]
if lvl1 == 0:
lvl1 = self.storage.allocate_block().idx
descriptor.pointers[DIRECT_POINTERS] = lvl1
descriptor.save()
self._allocate_last_mile(lvl1, index)
def _allocate_lvl2(self, index: int) -> None:
assert LVL1 <= index < LVL2
assert 0 == self._get_lvl2(index)
index -= LVL1
descriptor = self.descriptor()
lvl2 = descriptor.pointers[DIRECT_POINTERS + 1]
if lvl2 == 0:
lvl2 = self.storage.allocate_block().idx
descriptor.pointers[DIRECT_POINTERS + 1] = lvl2
descriptor.save()
block = self.storage.read_block(lvl2)
lvl1 = block.get_pointer(index // POINTERS_PER_LVL1)
if lvl1 == 0:
lvl1 = self.storage.allocate_block().idx
block.set_pointer(index // POINTERS_PER_LVL1, lvl1)
self.storage.write_block(block)
self._allocate_last_mile(lvl1, index)
def _allocate_lvl3(self, index: int) -> None:
assert LVL2 <= index < LVL3
assert 0 == self._get_lvl3(index)
index -= LVL2
descriptor = self.descriptor()
lvl3 = descriptor.pointers[DIRECT_POINTERS + 2]
if lvl3 == 0:
lvl3 = self.storage.allocate_block().idx
descriptor.pointers[DIRECT_POINTERS + 2] = lvl3
descriptor.save()
block = self.storage.read_block(lvl3)
lvl2 = block.get_pointer(index // POINTERS_PER_LVL2)
if lvl2 == 0:
lvl2 = self.storage.allocate_block().idx
block.set_pointer(index // POINTERS_PER_LVL2, lvl2)
self.storage.write_block(block)
block = self.storage.read_block(lvl2)
lvl1 = block.get_pointer(index // POINTERS_PER_LVL1)
if lvl1 == 0:
lvl1 = self.storage.allocate_block().idx
block.set_pointer(index // POINTERS_PER_LVL1, lvl1)
self.storage.write_block(block)
self._allocate_last_mile(lvl1, index)
def _allocate_last_mile(self, pointer: int, index: int) -> None:
lvl0 = self.storage.allocate_block().idx
block = self.storage.read_block(pointer)
block.set_pointer(index % POINTERS_PER_LVL1, lvl0)
self.storage.write_block(block)
def _get_lvl0(self, index: int) -> int:
assert 0 <= index < LVL0
lvl0 = self.descriptor().pointers[index]
return lvl0
def _get_lvl1(self, index: int) -> int:
assert LVL0 <= index < LVL1
index -= LVL0
lvl1 = self.descriptor().pointers[DIRECT_POINTERS]
if lvl1 == 0: return 0
block = self.storage.read_block(lvl1)
lvl0 = block.get_pointer(index)
return lvl0
def _get_lvl2(self, index: int) -> int:
assert LVL1 <= index < LVL2
index -= LVL1
lvl2 = self.descriptor().pointers[DIRECT_POINTERS + 1]
if lvl2 == 0: return 0
block = self.storage.read_block(lvl2)
lvl1 = block.get_pointer(index // POINTERS_PER_LVL1)
if lvl1 == 0: return 0
block = self.storage.read_block(lvl1)
lvl0 = block.get_pointer(index % POINTERS_PER_LVL1)
return lvl0
def _get_lvl3(self, index: int) -> int:
assert LVL2 <= index < LVL3
index -= LVL2
lvl3 = self.descriptor().pointers[DIRECT_POINTERS + 2]
if lvl3 == 0: return 0
block = self.storage.read_block(lvl3)
lvl2 = block.get_pointer(index // POINTERS_PER_LVL2)
if lvl2 == 0: return 0
block = self.storage.read_block(lvl2)
lvl1 = block.get_pointer(index // POINTERS_PER_LVL1)
if lvl1 == 0: return 0
block = self.storage.read_block(lvl1)
lvl0 = block.get_pointer(index % POINTERS_PER_LVL1)
return lvl0
def _increment_record_counter(self) -> int:
descriptor = self.descriptor()
rc = descriptor.records
descriptor.records += 1
descriptor.save().ok()
return rc
def page_and_offset(self, record: int) -> (int, int):
record_offset = self.record_size * record
page = record_offset // BLOCK_SIZE
offset = record_offset % BLOCK_SIZE
return page, offset
def _read_record(self, index: int) -> bytes:
page, offset = self.page_and_offset(index)
return self._read(page, offset, self.record_size)
def _read(self, page: int, offset: int, n: int) -> bytes:
record = bytearray()
block = self.get_or_allocate_page(page)
chunk = block[offset:min(offset + n, BLOCK_SIZE)]
record.extend(chunk)
first = len(chunk)
i = 1
while first + (i + 1) * BLOCK_SIZE <= n:
block = self.get_or_allocate_page(page + i)
record.extend(block)
i += 1
if len(record) < n:
block = self.get_or_allocate_page(page + i)
chunk = block[:n - len(record)]
record.extend(chunk)
assert len(record) == n
return bytes(record)
def _write_record(self, record: bytes, index: int) -> None:
page, offset = self.page_and_offset(index)
self._write(page, offset, record)
|
MIT License
|
aroberge/friendly-traceback
|
friendly/token_utils.py
|
dedent
|
python
|
def dedent(tokens, nb):
line = untokenize(tokens)
line = line[nb:]
return tokenize(line)
|
Given a list of tokens, produces an equivalent list corresponding
to a line of code with the first nb characters removed.
|
https://github.com/aroberge/friendly-traceback/blob/ea2164baf71f9595b16e685b3fd207056074d04d/friendly/token_utils.py#L355-L361
|
import ast
import keyword
import tokenize as py_tokenize
import sys
from io import StringIO
from . import debug_helper
_token_format = "type={type} string={string} start={start} end={end} line={line}"
class Token:
def __init__(self, token):
self.type = token[0]
self.string = token[1]
self.start = self.start_row, self.start_col = token[2]
self.end = self.end_row, self.end_col = token[3]
self.line = token[4]
def copy(self):
return Token((self.type, self.string, self.start, self.end, self.line))
def __eq__(self, other):
if hasattr(other, "string"):
return self.string == other.string
if isinstance(other, str):
return self.string == other
raise TypeError(
"A token can only be compared to another token or to a string."
)
def __repr__(self):
return _token_format.format(
type="%s (%s)" % (self.type, py_tokenize.tok_name[self.type]),
string=repr(self.string),
start=str(self.start),
end=str(self.end),
line=repr(self.line),
)
def __str__(self):
return self.string
def is_comment(self):
return self.type == py_tokenize.COMMENT
def is_identifier(self):
return self.string.isidentifier() and not self.is_keyword()
def is_name(self):
return self.type == py_tokenize.NAME
def is_keyword(self):
return keyword.iskeyword(self.string) or self.string in ["__debug__", "..."]
def is_number(self):
return self.type == py_tokenize.NUMBER
def is_operator(self):
return self.type == py_tokenize.OP
def is_float(self):
return self.is_number() and isinstance(ast.literal_eval(self.string), float)
def is_integer(self):
return self.is_number() and isinstance(ast.literal_eval(self.string), int)
def is_complex(self):
return self.is_number() and isinstance(ast.literal_eval(self.string), complex)
def is_space(self):
return self.type in (
py_tokenize.INDENT,
py_tokenize.DEDENT,
py_tokenize.NEWLINE,
py_tokenize.NL,
py_tokenize.ENDMARKER,
)
def is_string(self):
return self.type == py_tokenize.STRING
def immediately_before(self, other):
if not isinstance(other, Token):
return False
return self.end_row == other.start_row and self.end_col == other.start_col
def immediately_after(self, other):
if not isinstance(other, Token):
return False
return other.immediately_before(self)
def is_assignment(op):
ops = [
"=",
"+=",
"-=",
"*=",
"@=",
"/=",
"//=",
"%=",
"**=",
">>=",
"<<=",
"&=",
"^=",
"|=",
]
if sys.version_info >= (3, 8):
ops.append(":=")
return op in ops or (hasattr(op, "string") and op.string in ops)
def is_bitwise(op):
ops = ["^", "&", "|", "<<", ">>", "~"]
return op in ops or (hasattr(op, "string") and op.string in ops)
def is_comparison(op):
ops = ["<", ">", "<=", ">=", "==", "!="]
return op in ops or (hasattr(op, "string") and op.string in ops)
def is_math_op(op):
ops = ["+", "-", "*", "**", "@", "/", "//", "%"]
return op in ops or (hasattr(op, "string") and op.string in ops)
def is_operator(op):
part_ops = ["!", ":"]
return (
is_assignment(op)
or is_bitwise(op)
or is_comparison(op)
or is_math_op(op)
or op in part_ops
or (hasattr(op, "string") and op.string in part_ops)
)
def fix_empty_line(source, tokens):
nb = 0
for char in reversed(source):
if char in (" ", "\t"):
nb += 1
else:
break
tokens[-1].string = source[-nb:]
def tokenize(source):
tokens = []
try:
for tok in py_tokenize.generate_tokens(StringIO(source).readline):
token = Token(tok)
tokens.append(token)
except IndentationError as e:
try:
_, linenumber, col, line = e.args[1]
type_ = py_tokenize.NAME
start = (linenumber, col)
end = (linenumber, len(line))
string = line[col:].strip()
token = Token((type_, string, start, end, line))
tokens.append(token)
return tokens
except Exception as e:
debug_helper.log(
"after IndentationError, error from token_utils.tokenize()"
)
debug_helper.log(repr(e))
return tokens
except (py_tokenize.TokenError, Exception):
return tokens
if source.endswith((" ", "\t")):
fix_empty_line(source, tokens)
return tokens
def get_significant_tokens(source):
try:
tokens = tokenize(source)
except Exception as e:
debug_helper.log("Exception from token_utils.get_significant_tokens()")
debug_helper.log_error(e)
return []
return remove_meaningless_tokens(tokens)
def remove_meaningless_tokens(tokens):
new_tokens = []
for tok in tokens:
if not tok.string.strip() or tok.is_comment():
continue
new_tokens.append(tok)
return new_tokens
def get_lines(source):
lines = []
current_row = -1
new_line = []
try:
for tok in py_tokenize.generate_tokens(StringIO(source).readline):
token = Token(tok)
if token.start_row != current_row:
current_row = token.start_row
if new_line:
lines.append(new_line)
new_line = []
new_line.append(token)
lines.append(new_line)
except (py_tokenize.TokenError, Exception):
debug_helper.log("Exception raise in token_utils.get_lines")
return lines
if source.endswith((" ", "\t")):
fix_empty_line(source, lines[-1])
return lines
def strip_comment(line):
tokens = []
try:
for tok in py_tokenize.generate_tokens(StringIO(line).readline):
token = Token(tok)
if token.is_comment():
continue
tokens.append(token)
except py_tokenize.TokenError:
pass
return untokenize(tokens)
def find_substring_index(main, substring):
main_tokens = [tok.string for tok in get_significant_tokens(main)]
sub_tokens = [tok.string for tok in get_significant_tokens(substring)]
for index, token in enumerate(main_tokens):
if token == sub_tokens[0]:
for i, tok in enumerate(main_tokens[index : index + len(sub_tokens)]):
if tok != sub_tokens[i]:
break
else:
return index
return -1
|
MIT License
|
google-research/scenic
|
scenic/train_lib/pretrain_utils.py
|
restore_pretrained_checkpoint
|
python
|
def restore_pretrained_checkpoint(
checkpoint_path: str,
train_state: Optional[train_utils.TrainState] = None,
assert_exist: bool = False,
step: Optional[int] = None) -> train_utils.TrainState:
if assert_exist:
glob_path = os.path.join(checkpoint_path, 'checkpoint_*')
if not gfile.glob(glob_path):
raise ValueError('No checkpoint for the pretrained model is found in: '
f'{checkpoint_path}')
restored_train_state = checkpoints.restore_checkpoint(checkpoint_path, None,
step)
if restored_train_state is None:
raise ValueError('No checkpoint for the pretrained model is found in: '
f'{checkpoint_path}')
(restored_params,
restored_model_state) = get_params_and_model_state_dict(restored_train_state)
restored_params = flax.core.freeze(restored_params)
restored_model_state = flax.core.freeze(restored_model_state)
if train_state:
new_train_state = train_state
new_optimizer = train_state.optimizer.replace(
target=inspect_params(
expected_params=train_state.optimizer.target,
restored_params=restored_params,
fail_if_extra=False,
fail_if_missing=False,
fail_if_shapes_mismatch=False))
else:
new_train_state = train_utils.TrainState()
new_optimizer = {'target': restored_params}
new_train_state = new_train_state.replace(
optimizer=new_optimizer,
model_state=restored_model_state,
global_step=int(restored_train_state['global_step']),
rng=restored_train_state['rng'],
accum_train_time=restored_train_state.get('accum_train_time', 0))
return new_train_state
|
Restores the last checkpoint.
First restores the checkpoint, which is an instance of TrainState that holds
the state of training. This function also take care converting pre-Linen
checkpoints.
Args:
checkpoint_path: Directory for saving the checkpoint.
train_state: An instance of TrainState that holds the state of training.
assert_exist: Assert that there is at least one checkpoint exists in the
given path.
step: Step number to load or None to load latest. If specified,
checkpoint_path must be a directory.
Returns:
Training state and an int which is the current step.
|
https://github.com/google-research/scenic/blob/185b77ccc82291f59ea4c744cf288bfda09ee1b9/scenic/train_lib/pretrain_utils.py#L169-L226
|
import collections
import os
import re
from typing import Any, Dict, Mapping, List, Optional, Union, Tuple
from absl import logging
import flax
from flax.training import checkpoints
import jax
import numpy as np
from scenic.train_lib import train_utils
from tensorflow.io import gfile
PyTree = Union[Mapping[str, Mapping], Any]
def get_params_and_model_state_dict(
restored_train_state: PyTree) -> Tuple[PyTree, Optional[PyTree]]:
restored_params = restored_train_state['optimizer']['target']
restored_model_state = restored_train_state.get('model_state')
if 'params' in restored_params:
restored_params = restored_params['params']
restored_params = dict(checkpoints.convert_pre_linen(restored_params))
if restored_model_state:
restored_model_state = checkpoints.convert_pre_linen(
flax.traverse_util.unflatten_dict({
tuple(k.split('/')[1:]): v
for k, v in restored_model_state.items()
}))
return restored_params, restored_model_state
def _replace_dict(model: PyTree,
restored: PyTree,
ckpt_prefix_path: Optional[List[str]] = None,
model_prefix_path: Optional[List[str]] = None,
name_mapping: Optional[Mapping[str, str]] = None,
skip_regex: Optional[str] = None) -> PyTree:
model = flax.core.unfreeze(model)
restored = flax.core.unfreeze(restored)
if ckpt_prefix_path:
for p in ckpt_prefix_path:
restored = restored[p]
if model_prefix_path:
for p in reversed(model_prefix_path):
restored = {p: restored}
restored_flat = flax.traverse_util.flatten_dict(
dict(restored), keep_empty_nodes=True)
model_flat = flax.traverse_util.flatten_dict(
dict(model), keep_empty_nodes=True)
for m_key, m_params in restored_flat.items():
for name, to_replace in name_mapping.items():
m_key = tuple(to_replace if k == name else k for k in m_key)
m_key_str = '/'.join(m_key)
if m_key not in model_flat:
logging.warning(
'%s in checkpoint doesn\'t exist in model. Skip.', m_key_str)
continue
if skip_regex and re.findall(skip_regex, m_key_str):
logging.info('Skip loading parameter %s.', m_key_str)
continue
logging.info('Loading %s from checkpoint into model', m_key_str)
model_flat[m_key] = m_params
return flax.core.freeze(flax.traverse_util.unflatten_dict(model_flat))
def init_from_pretrain_state(
train_state: train_utils.TrainState,
pretrain_state: Mapping[str, Any],
ckpt_prefix_path: Optional[List[str]] = None,
model_prefix_path: Optional[List[str]] = None,
name_mapping: Optional[Mapping[str, str]] = None,
skip_regex: Optional[str] = None) -> train_utils.TrainState:
name_mapping = name_mapping or {}
(restored_params,
restored_model_state) = get_params_and_model_state_dict(pretrain_state)
model_params = train_state.optimizer.target
model_params = _replace_dict(model_params,
restored_params,
ckpt_prefix_path,
model_prefix_path,
name_mapping,
skip_regex)
new_optimizer = train_state.optimizer.replace(
target=model_params)
train_state = train_state.replace(
optimizer=new_optimizer)
if (restored_model_state is not None and
train_state.model_state is not None and
train_state.model_state):
if model_prefix_path:
model_prefix_path = ['batch_stats'] + model_prefix_path
if 'batch_stats' in restored_model_state:
ckpt_prefix_path = ckpt_prefix_path or []
ckpt_prefix_path = ['batch_stats'] + ckpt_prefix_path
elif 'batch_stats' not in restored_model_state:
model_prefix_path = ['batch_stats']
if ckpt_prefix_path and ckpt_prefix_path[0] != 'batch_stats':
ckpt_prefix_path = ['batch_stats'] + ckpt_prefix_path
model_state = _replace_dict(train_state.model_state,
restored_model_state,
ckpt_prefix_path,
model_prefix_path,
name_mapping,
skip_regex)
train_state = train_state.replace(
model_state=model_state)
return train_state
|
Apache License 2.0
|
christophercrouzet/revl
|
revl.py
|
Context.__init__
|
python
|
def __init__(self, **kwargs):
self.dg = OpenMaya.MDGModifier()
self.dag = OpenMaya.MDagModifier()
self.transforms = []
self.__dict__.update(kwargs)
|
Constructor.
Parameters
----------
kwargs
Keyword arguments to define additional attributes.
|
https://github.com/christophercrouzet/revl/blob/ed6be7c5ffc454b94a2c984fba3adfc204d2d741/revl.py#L66-L77
|
__all__ = ['NULL_OBJ', 'Context', 'Command', 'Primitive', 'PrimitiveType',
'validate', 'run', 'pickTransform', 'createDagNode', 'createDgNode',
'createPrimitive', 'createTransform', 'unparent']
__title__ = 'revl'
__version__ = '0.2.0'
__summary__ = "Helps to benchmark code for Autodesk Maya"
__url__ = 'https://github.com/christophercrouzet/revl'
__author__ = "Christopher Crouzet"
__contact__ = 'christopher.crouzet@gmail.com'
__license__ = "MIT"
import collections
import numbers
import random
import sys
from maya import OpenMaya
if sys.version_info[0] == 2:
_BUILTIN_MODULE = '__builtin__'
def _iteritems(d, **kwargs):
return d.iteritems(**kwargs)
_range = xrange
else:
_BUILTIN_MODULE = 'builtins'
def _iteritems(d, **kwargs):
return iter(d.items(**kwargs))
_range = range
_SEQUENCE_TYPES = (list, tuple)
NULL_OBJ = OpenMaya.MObject().kNullObj
class Context(object):
|
MIT License
|
uwbmrb/pynmrstar
|
pynmrstar/loop.py
|
Loop.print_tree
|
python
|
def print_tree(self) -> None:
print(repr(self))
|
Prints a summary, tree style, of the loop.
|
https://github.com/uwbmrb/pynmrstar/blob/c6e3cdccb4aa44dfbc3b4e984837a6bcde3cf171/pynmrstar/loop.py#L818-L821
|
import json
import warnings
from copy import deepcopy
from csv import reader as csv_reader, writer as csv_writer
from io import StringIO
from itertools import chain
from typing import TextIO, BinaryIO, Union, List, Optional, Any, Dict, Callable, Tuple
from pynmrstar import definitions, utils, entry as entry_mod
from pynmrstar._internal import _json_serialize, _interpret_file
from pynmrstar.exceptions import InvalidStateError
from pynmrstar.parser import Parser
from pynmrstar.schema import Schema
class Loop(object):
def __contains__(self, item: Any) -> bool:
if isinstance(item, (list, tuple)):
to_process: List[str] = list(item)
elif isinstance(item, str):
to_process = [item]
else:
return False
lc_tags = self._lc_tags
for tag in to_process:
if utils.format_tag(tag).lower() not in lc_tags:
return False
return True
def __eq__(self, other) -> bool:
if not isinstance(other, Loop):
return False
return (self.category, self._tags, self.data) == (other.category, other._tags, other.data)
def __getitem__(self, item: Union[int, str, List[str], Tuple[str]]) -> list:
try:
return self.data[item]
except TypeError:
if isinstance(item, tuple):
item = list(item)
return self.get_tag(tags=item)
def __init__(self, **kwargs) -> None:
self._tags: List[str] = []
self.data: List[List[Any]] = []
self.category: Optional[str] = None
self.source: str = "unknown"
star_buffer: StringIO = StringIO("")
if 'source' in kwargs:
self.source = kwargs['source']
if 'category' in kwargs:
self.category = utils.format_category(kwargs['category'])
return
if len(kwargs) == 0:
raise ValueError("You should not directly instantiate a Loop using this method. Instead use the "
"class methods: Loop.from_scratch(), Loop.from_string(), Loop.from_template(), "
"Loop.from_file(), and Loop.from_json().")
if 'the_string' in kwargs:
star_buffer = StringIO(kwargs['the_string'])
self.source = "from_string()"
elif 'file_name' in kwargs:
star_buffer = _interpret_file(kwargs['file_name'])
self.source = f"from_file('{kwargs['file_name']}')"
elif 'tag_prefix' in kwargs:
tags = Loop._get_tags_from_schema(kwargs['tag_prefix'], all_tags=kwargs['all_tags'],
schema=kwargs['schema'])
for tag in tags:
self.add_tag(tag)
return
if 'csv' in kwargs and kwargs['csv']:
csv_file = csv_reader(star_buffer)
self.add_tag(next(csv_file))
for row in csv_file:
self.add_data(row, convert_data_types=kwargs.get('convert_data_types', False))
self.source = f"from_csv('{kwargs['csv']}')"
return
tmp_entry = entry_mod.Entry.from_scratch(0)
star_buffer = StringIO(f"data_0 save_internaluseyoushouldntseethis_frame _internal.use internal "
f"{star_buffer.read()} save_")
parser = Parser(entry_to_parse_into=tmp_entry)
parser.parse(star_buffer.read(), source=self.source, convert_data_types=kwargs.get('convert_data_types', False))
if len(tmp_entry[0].loops) > 1:
raise ValueError("You attempted to parse one loop but the source you provided had more than one loop. "
"Please either parse all loops as a saveframe or only parse one loop. Loops detected: " +
str(tmp_entry[0].loops))
self._tags = tmp_entry[0][0].tags
self.data = tmp_entry[0][0].data
self.category = tmp_entry[0][0].category
def __iter__(self) -> list:
for row in self.data:
yield row
def __len__(self) -> int:
return len(self.data)
def __lt__(self, other) -> bool:
if not isinstance(other, Loop):
return NotImplemented
return self.category < other.category
def __repr__(self) -> str:
return f"<pynmrstar.Loop '{self.category}'>"
def __setitem__(self, key: str, item: Any) -> None:
tag = utils.format_tag(key)
if tag not in self._tags:
raise ValueError(f"Cannot assign to tag '{key}' as it does not exist in this loop.")
tag_id = self._tags.index(tag)
if len(self[key]) != len(item):
raise ValueError("To assign to a tag you must provide a list (or iterable) of a length equal to the "
f"number of values that currently exist for that tag. The tag '{key}' currently has"
f" {len(self[key])} values and you supplied {len(item)} values.")
for pos, row in enumerate(self.data):
row[tag_id] = item[pos]
def __str__(self, skip_empty_loops: bool = False, skip_empty_tags: bool = False) -> str:
if len(self.data) == 0:
if skip_empty_loops:
return ""
else:
if len(self._tags) == 0:
return "\n loop_\n\n stop_\n"
if len(self._tags) == 0:
raise InvalidStateError("Impossible to print data if there are no associated tags. Error in loop "
f"'{self.category}' which contains data but hasn't had any tags added.")
self._check_tags_match_data()
if skip_empty_tags:
has_data = [not all([_ in definitions.NULL_VALUES for _ in column]) for column in zip(*self.data)]
return self.filter([tag for x, tag in enumerate(self._tags) if has_data[x]]).format()
return_chunks = ["\n loop_\n"]
format_string = " %-s\n"
if self.category is None:
raise InvalidStateError("The category was never set for this loop. Either add a tag with the category "
"intact, specify it when generating the loop, or set it using Loop.set_category().")
if self.category is None:
for tag in self._tags:
return_chunks.append(format_string % tag)
else:
for tag in self._tags:
return_chunks.append(format_string % (self.category + "." + tag))
return_chunks.append("\n")
if len(self.data) != 0:
working_data = []
title_widths = [4]*len(self.data[0])
for row_pos, row in enumerate(self.data):
clean_row = []
for col_pos, x in enumerate(row):
try:
clean_val = utils.quote_value(x)
clean_row.append(clean_val)
length = len(clean_val) + 3
if length > title_widths[col_pos] and "\n" not in clean_val:
title_widths[col_pos] = length
except ValueError:
raise InvalidStateError('Cannot generate NMR-STAR for entry, as empty strings are not valid '
'tag values in NMR-STAR. Please either replace the empty strings with'
' None objects, or set pynmrstar.definitions.STR_CONVERSION_DICT['
'\'\'] = None.\n'
f'Loop: {self.category} Row: {row_pos} Column: {col_pos}')
working_data.append(clean_row)
format_string = " " + "%-*s" * len(self._tags) + " \n"
for datum in working_data:
for pos, item in enumerate(datum):
if "\n" in item:
datum[pos] = "\n;\n%s;\n" % item
tag_width_list = [d for d in zip(title_widths, datum)]
return_chunks.append(format_string % tuple(chain.from_iterable(tag_width_list)))
return "".join(return_chunks) + "\n stop_\n"
@property
def _lc_tags(self) -> Dict[str, int]:
return {_[1].lower(): _[0] for _ in enumerate(self._tags)}
@property
def empty(self) -> bool:
for row in self.data:
for col in row:
if col not in definitions.NULL_VALUES:
return False
return True
@property
def tags(self) -> List[str]:
return self._tags
@classmethod
def from_file(cls, the_file: Union[str, TextIO, BinaryIO], csv: bool = False, convert_data_types: bool = False):
return cls(file_name=the_file, csv=csv, convert_data_types=convert_data_types)
@classmethod
def from_json(cls, json_dict: Union[dict, str]):
if not isinstance(json_dict, dict):
try:
json_dict = json.loads(json_dict)
except (TypeError, ValueError):
raise ValueError("The JSON you provided was neither a Python dictionary nor a JSON string.")
for check in ['tags', 'category', 'data']:
if check not in json_dict:
raise ValueError(f"The JSON you provide must be a dictionary and must contain the key '{check}' - even"
f" if the key points to None.")
ret = Loop.from_scratch()
ret._tags = json_dict['tags']
ret.category = json_dict['category']
ret.data = json_dict['data']
ret.source = "from_json()"
return ret
@classmethod
def from_scratch(cls, category: str = None, source: str = "from_scratch()"):
return cls(category=category, source=source)
@classmethod
def from_string(cls, the_string: str, csv: bool = False, convert_data_types: bool = False):
return cls(the_string=the_string, csv=csv, convert_data_types=convert_data_types)
@classmethod
def from_template(cls, tag_prefix: str, all_tags: bool = False, schema: Schema = None):
schema = utils.get_schema(schema)
return cls(tag_prefix=tag_prefix, all_tags=all_tags,
schema=schema, source=f"from_template({schema.version})")
@staticmethod
def _get_tags_from_schema(category: str, schema: Schema = None, all_tags: bool = False) -> List[str]:
schema = utils.get_schema(schema)
if not category.startswith("_"):
category = "_" + category
if not category.endswith("."):
category = category + "."
tags = []
for item in schema.schema_order:
if item.lower().startswith(category.lower()):
if all_tags:
tags.append(item)
else:
if schema.schema[item.lower()]["public"] != "I":
tags.append(item)
if len(tags) == 0:
raise InvalidStateError(f"The tag prefix '{category}' has no corresponding tags in the dictionary.")
return tags
def _check_tags_match_data(self) -> bool:
if len(self.data) > 0:
for x, row in enumerate(self.data):
if len(self._tags) != len(row):
raise InvalidStateError(f"The number of tags must match the width of the data. Error in loop "
f"'{self.category}'. In this case, there are {len(self._tags)} tags, and "
f"row number {x} has {len(row)} tags.")
return True
def add_data(self, the_list: List[Any], rearrange: bool = False, convert_data_types: bool = False):
if not rearrange:
if len(the_list) != len(self._tags):
raise ValueError("The list must have the same number of elements as the number of tags when adding a "
"single row of values! Insert tag names first by calling Loop.add_tag().")
self.data.append(the_list)
return
processed_data = [the_list[x:x + len(self._tags)] for x in range(0, len(the_list), len(self._tags))]
if len(processed_data[-1]) != len(self._tags):
raise ValueError(f"The number of data elements in the list you provided is not an even multiple of the "
f"number of tags which are set in the loop. Please either add missing tags using "
f"Loop.add_tag() or modify the list of tag values you are adding to be an even multiple "
f"of the number of tags. Error in loop '{self.category}'.")
if convert_data_types:
schema = utils.get_schema()
for row in processed_data:
for tag_id, datum in enumerate(row):
row[tag_id] = schema.convert_tag(self.category + "." + self._tags[tag_id], datum)
self.data.extend(processed_data)
def add_data_by_tag(self, tag_name: str, value) -> None:
warnings.warn("Deprecated: It is recommended to use Loop.add_data() instead for most use cases.",
DeprecationWarning)
if "." in tag_name:
supplied_category = utils.format_category(str(tag_name))
if supplied_category.lower() != self.category.lower():
raise ValueError(f"Category provided in your tag '{supplied_category}' does not match this loop's "
f"category '{self.category}'.")
pos = self.tag_index(tag_name)
if pos is None:
raise ValueError(f"The tag '{tag_name}' to which you are attempting to add data does not yet exist. Create "
f"the tags using Loop.add_tag() before adding data.")
if len(self.data) == 0:
self.data.append([])
if len(self.data[-1]) == len(self._tags):
self.data.append([])
if len(self.data[-1]) != pos:
raise ValueError("You cannot add data out of tag order.")
self.data[-1].append(value)
def add_missing_tags(self, schema: 'Schema' = None, all_tags: bool = False) -> None:
self.add_tag(Loop._get_tags_from_schema(self.category, schema=schema, all_tags=all_tags),
ignore_duplicates=True, update_data=True)
self.sort_tags()
try:
self.sort_rows("Ordinal")
except ValueError:
pass
except TypeError:
ordinal_idx = self.tag_index("Ordinal")
for pos, row in enumerate(self.data):
row[ordinal_idx] = pos + 1
def add_tag(self, name: Union[str, List[str]], ignore_duplicates: bool = False, update_data: bool = False) -> None:
if isinstance(name, (list, tuple)):
for item in name:
self.add_tag(item, ignore_duplicates=ignore_duplicates, update_data=update_data)
return
name = name.strip()
if "." in name:
if name[0] != ".":
category = name[0:name.index(".")]
if category[:1] != "_":
category = "_" + category
if self.category is None:
self.category = category
elif self.category.lower() != category.lower():
raise ValueError("One loop cannot have tags with different categories (or tags that don't "
f"match the loop category)! The loop category is '{self.category}' while "
f"the category in the tag was '{category}'.")
name = name[name.index(".") + 1:]
else:
name = name[1:]
if self.tag_index(name) is not None:
if ignore_duplicates:
return
else:
raise ValueError(f"There is already a tag with the name '{name}' in the loop '{self.category}'.")
if name in definitions.NULL_VALUES:
raise ValueError(f"Cannot use a null-equivalent value as a tag name. Invalid tag name: '{name}'")
if "." in name:
raise ValueError(f"There cannot be more than one '.' in a tag name. Invalid tag name: '{name}'")
for char in str(name):
if char in utils.definitions.WHITESPACE:
raise ValueError(f"Tag names can not contain whitespace characters. Invalid tag name: '{name}")
self._tags.append(name)
if update_data:
for row in self.data:
row.append(None)
def clear_data(self) -> None:
self.data = []
def compare(self, other) -> List[str]:
diffs = []
if self is other:
return []
if isinstance(other, str):
if str(self) == other:
return []
else:
return ['String was not exactly equal to loop.']
elif not isinstance(other, Loop):
return ['Other object is not of class Loop.']
if str(other) == str(self):
return []
try:
if str(self.category).lower() != str(other.category).lower():
diffs.append(f"\t\tCategory of loops does not match: '{self.category}' vs '{other.category}'.")
if ([x.lower() for x in self._tags] !=
[x.lower() for x in other.tags]):
diffs.append(f"\t\tLoop tag names do not match for loop with category '{self.category}'.")
else:
if self.data != other.data:
self_data = sorted(deepcopy(self.data))
other_data = sorted(deepcopy(other.data))
if self_data != other_data:
diffs.append(f"\t\tLoop data does not match for loop with category '{self.category}'.")
except AttributeError as err:
diffs.append(f"\t\tAn exception occurred while comparing: '{err}'.")
return diffs
def delete_tag(self, tag: Union[str, List[str]]) -> None:
warnings.warn('Please use remove_tag() instead.', DeprecationWarning)
return self.remove_tag(tag)
def delete_data_by_tag_value(self, tag: str, value: Any, index_tag: str = None) -> List[List[Any]]:
warnings.warn('Please use remove_data_by_tag_value() instead.', DeprecationWarning)
return self.remove_data_by_tag_value(tag, value, index_tag)
def filter(self, tag_list: Union[str, List[str], Tuple[str]], ignore_missing_tags: bool = False):
result = Loop.from_scratch()
valid_tags = []
if not isinstance(tag_list, (list, tuple)):
tag_list = [tag_list]
for tag in tag_list:
tag_match_index = self.tag_index(tag)
if tag_match_index is None:
if not ignore_missing_tags:
raise KeyError(f"Cannot filter tag '{tag}' as it isn't present in this loop.")
continue
valid_tags.append(tag)
result.add_tag(self._tags[tag_match_index])
results = self.get_tag(valid_tags)
if len(valid_tags) == 1:
for item in results:
result.add_data([item])
else:
for row in results:
assert isinstance(row, list)
result.add_data(row)
if result.category is None:
result.category = self.category
return result
def format(self, skip_empty_loops: bool = True, skip_empty_tags: bool = False) -> str:
return self.__str__(skip_empty_loops=skip_empty_loops, skip_empty_tags=skip_empty_tags)
def get_data_as_csv(self, header: bool = True, show_category: bool = True) -> str:
csv_buffer = StringIO()
csv_writer_object = csv_writer(csv_buffer)
if header:
if show_category:
csv_writer_object.writerow(
[str(self.category) + "." + str(x) for x in self._tags])
else:
csv_writer_object.writerow([str(x) for x in self._tags])
for row in self.data:
data = []
for piece in row:
data.append(piece)
csv_writer_object.writerow(data)
csv_buffer.seek(0)
return csv_buffer.read().replace('\r\n', '\n')
def get_json(self, serialize: bool = True) -> Union[dict, str]:
loop_dict = {
"category": self.category,
"tags": self._tags,
"data": self.data
}
if serialize:
return json.dumps(loop_dict, default=_json_serialize)
else:
return loop_dict
def get_tag_names(self) -> List[str]:
if not self.category:
raise InvalidStateError("You never set the category of this loop. You must set the category before calling "
"this method, either by setting the loop category directly when creating the loop "
"using the Loop.from_scratch() class method, by calling loop.set_category(), or by "
"adding a fully qualified tag which includes the loop category (for example, "
"adding '_Citation_author.Family_name' rather than just 'Family_name').")
return [self.category + "." + x for x in self._tags]
def get_tag(self, tags: Optional[Union[str, List[str]]] = None, whole_tag: bool = False,
dict_result: bool = False) -> Union[List[Any], List[Dict[str, Any]]]:
if tags is None:
if not dict_result:
return self.data
else:
tags = [self._tags]
if not isinstance(tags, list):
tags = [tags]
lower_tags = deepcopy(tags)
for pos, item in enumerate([str(x) for x in lower_tags]):
if "." in item and utils.format_category(item).lower() != self.category.lower():
raise ValueError(f"Cannot fetch data with tag '{item}' because the category does not match the "
f"category of this loop '{self.category}'.")
lower_tags[pos] = utils.format_tag(item).lower()
tags_lower = [x.lower() for x in self._tags]
tag_mapping = dict(zip(reversed(tags_lower), reversed(range(len(tags_lower)))))
tag_ids = []
for pos, query in enumerate(lower_tags):
if str(query) in tag_mapping:
tag_ids.append(tag_mapping[query])
elif isinstance(query, int):
tag_ids.append(query)
else:
raise KeyError(f"Could not locate the tag with name or ID: '{tags[pos]}' in loop '{self.category}'.")
if not dict_result:
if whole_tag:
result = [[[self.category + "." + self._tags[col_id], row[col_id]]
for col_id in tag_ids] for row in self.data]
else:
result = [[row[col_id] for col_id in tag_ids] for row in self.data]
if len(lower_tags) == 1:
return [x[0] for x in result]
else:
return result
else:
if whole_tag:
result = [dict((self.category + "." + self._tags[col_id], row[col_id]) for col_id in tag_ids) for
row in self.data]
else:
result = [dict((self._tags[col_id], row[col_id]) for col_id in tag_ids) for row in self.data]
return result
|
MIT License
|
demisto/demisto-py
|
demisto_client/demisto_api/models/incident_type.py
|
IncidentType.locked
|
python
|
def locked(self, locked):
self._locked = locked
|
Sets the locked of this IncidentType.
:param locked: The locked of this IncidentType. # noqa: E501
:type: bool
|
https://github.com/demisto/demisto-py/blob/95d29e07693d27c133f7fe6ef9da13e4b6dbf542/demisto_client/demisto_api/models/incident_type.py#L429-L437
|
import pprint
import re
import six
from demisto_client.demisto_api.models.reputation_calc_alg import ReputationCalcAlg
class IncidentType(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'autorun': 'bool',
'closure_script': 'str',
'color': 'str',
'commit_message': 'str',
'days': 'int',
'days_r': 'int',
'default': 'bool',
'disabled': 'bool',
'hours': 'int',
'hours_r': 'int',
'id': 'str',
'locked': 'bool',
'modified': 'datetime',
'name': 'str',
'playbook_id': 'str',
'pre_processing_script': 'str',
'prev_name': 'str',
'readonly': 'bool',
'reputation_calc': 'ReputationCalcAlg',
'should_commit': 'bool',
'sla': 'int',
'sla_reminder': 'int',
'sort_values': 'list[str]',
'system': 'bool',
'vc_should_ignore': 'bool',
'version': 'int',
'weeks': 'int',
'weeks_r': 'int'
}
attribute_map = {
'autorun': 'autorun',
'closure_script': 'closureScript',
'color': 'color',
'commit_message': 'commitMessage',
'days': 'days',
'days_r': 'daysR',
'default': 'default',
'disabled': 'disabled',
'hours': 'hours',
'hours_r': 'hoursR',
'id': 'id',
'locked': 'locked',
'modified': 'modified',
'name': 'name',
'playbook_id': 'playbookId',
'pre_processing_script': 'preProcessingScript',
'prev_name': 'prevName',
'readonly': 'readonly',
'reputation_calc': 'reputationCalc',
'should_commit': 'shouldCommit',
'sla': 'sla',
'sla_reminder': 'slaReminder',
'sort_values': 'sortValues',
'system': 'system',
'vc_should_ignore': 'vcShouldIgnore',
'version': 'version',
'weeks': 'weeks',
'weeks_r': 'weeksR'
}
def __init__(self, autorun=None, closure_script=None, color=None, commit_message=None, days=None, days_r=None, default=None, disabled=None, hours=None, hours_r=None, id=None, locked=None, modified=None, name=None, playbook_id=None, pre_processing_script=None, prev_name=None, readonly=None, reputation_calc=None, should_commit=None, sla=None, sla_reminder=None, sort_values=None, system=None, vc_should_ignore=None, version=None, weeks=None, weeks_r=None):
self._autorun = None
self._closure_script = None
self._color = None
self._commit_message = None
self._days = None
self._days_r = None
self._default = None
self._disabled = None
self._hours = None
self._hours_r = None
self._id = None
self._locked = None
self._modified = None
self._name = None
self._playbook_id = None
self._pre_processing_script = None
self._prev_name = None
self._readonly = None
self._reputation_calc = None
self._should_commit = None
self._sla = None
self._sla_reminder = None
self._sort_values = None
self._system = None
self._vc_should_ignore = None
self._version = None
self._weeks = None
self._weeks_r = None
self.discriminator = None
if autorun is not None:
self.autorun = autorun
if closure_script is not None:
self.closure_script = closure_script
if color is not None:
self.color = color
if commit_message is not None:
self.commit_message = commit_message
if days is not None:
self.days = days
if days_r is not None:
self.days_r = days_r
if default is not None:
self.default = default
if disabled is not None:
self.disabled = disabled
if hours is not None:
self.hours = hours
if hours_r is not None:
self.hours_r = hours_r
if id is not None:
self.id = id
if locked is not None:
self.locked = locked
if modified is not None:
self.modified = modified
if name is not None:
self.name = name
if playbook_id is not None:
self.playbook_id = playbook_id
if pre_processing_script is not None:
self.pre_processing_script = pre_processing_script
if prev_name is not None:
self.prev_name = prev_name
if readonly is not None:
self.readonly = readonly
if reputation_calc is not None:
self.reputation_calc = reputation_calc
if should_commit is not None:
self.should_commit = should_commit
if sla is not None:
self.sla = sla
if sla_reminder is not None:
self.sla_reminder = sla_reminder
if sort_values is not None:
self.sort_values = sort_values
if system is not None:
self.system = system
if vc_should_ignore is not None:
self.vc_should_ignore = vc_should_ignore
if version is not None:
self.version = version
if weeks is not None:
self.weeks = weeks
if weeks_r is not None:
self.weeks_r = weeks_r
@property
def autorun(self):
return self._autorun
@autorun.setter
def autorun(self, autorun):
self._autorun = autorun
@property
def closure_script(self):
return self._closure_script
@closure_script.setter
def closure_script(self, closure_script):
self._closure_script = closure_script
@property
def color(self):
return self._color
@color.setter
def color(self, color):
self._color = color
@property
def commit_message(self):
return self._commit_message
@commit_message.setter
def commit_message(self, commit_message):
self._commit_message = commit_message
@property
def days(self):
return self._days
@days.setter
def days(self, days):
self._days = days
@property
def days_r(self):
return self._days_r
@days_r.setter
def days_r(self, days_r):
self._days_r = days_r
@property
def default(self):
return self._default
@default.setter
def default(self, default):
self._default = default
@property
def disabled(self):
return self._disabled
@disabled.setter
def disabled(self, disabled):
self._disabled = disabled
@property
def hours(self):
return self._hours
@hours.setter
def hours(self, hours):
self._hours = hours
@property
def hours_r(self):
return self._hours_r
@hours_r.setter
def hours_r(self, hours_r):
self._hours_r = hours_r
@property
def id(self):
return self._id
@id.setter
def id(self, id):
self._id = id
@property
def locked(self):
return self._locked
@locked.setter
|
Apache License 2.0
|
radio-astro-tools/radio-beam
|
radio_beam/commonbeam.py
|
fits_in_largest
|
python
|
def fits_in_largest(beams, large_beam=None):
if large_beam is None:
large_beam = beams.largest_beam()
large_hdr_keywords = large_beam.to_header_keywords()
majors = beams.major.to(u.deg).value
minors = beams.minor.to(u.deg).value
pas = beams.pa.to(u.deg).value
atol_limit = 1e-12
for major, minor, pa in zip(majors, minors, pas):
equal = abs(large_hdr_keywords['BMAJ'] - major) < atol_limit
equal = equal and (abs(large_hdr_keywords['BMIN'] - minor) < atol_limit)
iscircular = (major - minor) / minor < 1e-6
if not iscircular:
equal = equal and (abs(((large_hdr_keywords['BPA'] % np.pi) - (pa % np.pi))) < atol_limit)
if equal:
continue
out = deconvolve_optimized(large_hdr_keywords,
{'BMAJ': major,
'BMIN': minor,
'BPA': pa},
failure_returns_pointlike=True)
if np.any([ax == 0. for ax in out[:2]]):
return False
return True
|
Test if all beams can be deconvolved by the largest beam
|
https://github.com/radio-astro-tools/radio-beam/blob/39b9a6a77332040dd1fa1e244290bb81280819a7/radio_beam/commonbeam.py#L331-L375
|
import numpy as np
import astropy.units as u
try:
from scipy import optimize as opt
from scipy.spatial import ConvexHull
HAS_SCIPY = True
except ImportError:
HAS_SCIPY = False
from .beam import Beam
from .utils import BeamError, transform_ellipse, deconvolve_optimized
__all__ = ['commonbeam', 'common_2beams', 'getMinVolEllipse',
'common_manybeams_mve']
def commonbeam(beams, method='pts', **method_kwargs):
if beams.size == 1:
return beams[0]
elif fits_in_largest(beams):
return beams.largest_beam()
else:
if beams.size == 2:
try:
return common_2beams(beams)
except (ValueError, BeamError):
pass
if method == 'pts':
return common_manybeams_mve(beams, **method_kwargs)
elif method == 'opt':
return common_manybeams_opt(beams, **method_kwargs)
else:
raise ValueError("method must be 'pts' or 'opt'.")
def common_2beams(beams, check_deconvolution=True):
if beams.size != 2:
raise BeamError("This method is only valid for two beams.")
if (~beams.isfinite).all():
raise BeamError("All beams in the object are invalid.")
large_beam = beams.largest_beam()
large_major = large_beam.major.to(u.arcsec)
large_minor = large_beam.minor.to(u.arcsec)
if beams.argmax() == 0:
small_beam = beams[1]
else:
small_beam = beams[0]
small_major = small_beam.major.to(u.arcsec)
small_minor = small_beam.minor.to(u.arcsec)
if small_beam == large_beam:
return large_beam
deconv_beam = large_beam.deconvolve(small_beam, failure_returns_pointlike=True)
if deconv_beam.isfinite:
return large_beam
if small_beam.iscircular():
common_beam = Beam(large_beam.major, small_beam.major, large_beam.pa)
return common_beam
pa_diff = ((small_beam.pa.to(u.rad).value - large_beam.pa.to(u.rad).value +
np.pi / 2. + np.pi) % np.pi - np.pi / 2.) * u.rad
if np.isclose(np.abs(pa_diff).value, np.pi / 2.):
larger_major = large_beam.major >= small_beam.major
major = large_major if larger_major else small_major
minor = small_major if larger_major else small_major
pa = large_beam.pa if larger_major else small_beam.pa
conv_beam = Beam(major=major, minor=minor, pa=pa)
return conv_beam
else:
major_comb = np.sqrt(large_major * small_major)
p = major_comb / large_major
q = major_comb / large_minor
trans_major_sc, trans_minor_sc, trans_pa_sc = transform_ellipse(small_major, small_minor, pa_diff, p, q)
trans_minor_sc = major_comb
trans_major_unsc, trans_minor_unsc, trans_pa_unsc = transform_ellipse(trans_major_sc, trans_minor_sc,
trans_pa_sc, 1 / p, 1 / q)
trans_major = trans_major_unsc.to(u.arcsec)
trans_minor = trans_minor_unsc.to(u.arcsec)
trans_pa = trans_pa_unsc + large_beam.pa
epsilon = 100 * np.finfo(trans_major.dtype).eps * trans_major.unit
trans_beam = Beam(major=trans_major + epsilon,
minor=trans_minor + epsilon,
pa=trans_pa)
if check_deconvolution:
deconv_large_beam = trans_beam.deconvolve(large_beam,
failure_returns_pointlike=True)
deconv_prob_beam = trans_beam.deconvolve(small_beam,
failure_returns_pointlike=True)
if not deconv_large_beam.isfinite or not deconv_prob_beam.isfinite:
raise BeamError("Failed to find common beam that both beams can "
"be deconvolved by.")
common_beam = trans_beam
return common_beam
def boundingcircle(bmaj, bmin, bpa):
thisone = np.argmax(bmaj)
return bmaj[thisone], bmaj[thisone], bpa[thisone]
def PtoA(bmaj, bmin, bpa):
A = np.zeros((2, 2))
A[0, 0] = np.cos(bpa)**2 / bmaj**2 + np.sin(bpa)**2 / bmin**2
A[1, 0] = np.cos(bpa) * np.sin(bpa) * (1 / bmaj**2 - 1 / bmin**2)
A[0, 1] = A[1, 0]
A[1, 1] = np.sin(bpa)**2 / bmaj**2 + np.cos(bpa)**2 / bmin**2
return A
def BinsideA(B, A):
try:
np.linalg.cholesky(B - A)
return True
except np.linalg.LinAlgError:
return False
def myobjective_regularized(p, bmajvec, bminvec, bpavec):
if p[0] < p[1]:
return 1e30
if (p[0] <= bmajvec).any():
return 1e30
A = PtoA(*p)
test = np.zeros_like(bmajvec)
for idx, (bmx, bmn, bp) in enumerate(zip(bmajvec, bminvec, bpavec)):
test[idx] = BinsideA(PtoA(bmx, bmn, bp), A)
obj = 1 / np.linalg.det(A)
if np.all(test):
return obj
else:
return obj * 1e30
def common_manybeams_opt(beams, p0=None, opt_method='Nelder-Mead',
optdict={'maxiter': 5000, 'ftol': 1e-14,
'maxfev': 5000},
verbose=False,
brute=False, brute_steps=40):
raise NotImplementedError("This method is not fully tested. Remove this "
"line for testing purposes.")
if not HAS_SCIPY:
raise ImportError("common_manybeams_opt requires scipy.optimize.")
bmaj = beams.major.value
bmin = beams.minor.value
bpa = beams.pa.to(u.rad).value
if p0 is None:
p0 = boundingcircle(bmaj, bmin, bpa)
p0 = (1.1 * p0[0], 1.1 * p0[1], p0[2])
if brute:
maj_range = [beams.major.max(), 1.5 * beams.major.max()]
maj_step = (maj_range[1] - maj_range[0]) / brute_steps
min_range = [beams.minor.min(), 1.5 * beams.major.max()]
min_step = (min_range[1] - min_range[0]) / brute_steps
rranges = (slice(maj_range[0], maj_range[1], maj_step),
slice(min_range[0], min_range[1], min_step),
slice(0, 179.9, 180. / brute_steps))
result = opt.brute(myobjective_regularized, rranges,
args=(bmaj, bmin, bpa),
full_output=True,
finish=opt.fmin)
params = result[0]
else:
result = opt.minimize(myobjective_regularized, p0,
method=opt_method,
args=(bmaj, bmin, bpa),
options=optdict,
tol=1e-14)
params = result.x
if verbose:
print(result.viewitems())
if not result.success:
raise Warning("Optimization failed")
com_beam = Beam(params[0] * beams.major.unit,
params[1] * beams.major.unit,
(params[2] % np.pi) * u.rad)
if not fits_in_largest(beams, com_beam):
raise BeamError("Could not find common beam to deconvolve all beams.")
return com_beam
|
BSD 3-Clause New or Revised License
|
tensorflow/graphics
|
tensorflow_graphics/io/exr.py
|
read_exr
|
python
|
def read_exr(filename, channel_names=None):
exr = OpenEXR.InputFile(filename)
if channel_names is None:
remaining_channel_names = list(exr.header()['channels'].keys())
conventional_rgba_names = ['R', 'G', 'B', 'A']
present_rgba_names = []
for name in conventional_rgba_names:
if name in remaining_channel_names:
present_rgba_names.append(name)
remaining_channel_names.remove(name)
channel_names = present_rgba_names + sorted(remaining_channel_names)
return channels_to_ndarray(exr, channel_names), channel_names
|
Opens an EXR file and copies the requested channels into an ndarray.
The Python OpenEXR wrapper uses a dictionary for the channel header, so the
ordering of the channels in the underlying file is lost. If channel_names is
not passed, this function orders the output channels with any present RGBA
channels first, followed by the remaining channels in alphabetical order.
By convention, RGBA channels are named 'R', 'G', 'B', 'A', so this function
looks for those strings.
Args:
filename: The name of the EXR file.
channel_names: A list of strings naming the channels to read. If None, all
channels will be read.
Returns:
A numpy array containing the image data, and a list of the corresponding
channel names.
|
https://github.com/tensorflow/graphics/blob/d0817aec7dee35635814e925a59d83955459d93c/tensorflow_graphics/io/exr.py#L80-L111
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import Imath
import numpy as np
import OpenEXR
from six.moves import range
from six.moves import zip
_np_to_exr = {
np.float16: Imath.PixelType.HALF,
np.float32: Imath.PixelType.FLOAT,
np.uint32: Imath.PixelType.UINT,
}
_exr_to_np = dict(list(zip(list(_np_to_exr.values()), list(_np_to_exr.keys()))))
def channels_to_ndarray(exr, channel_names):
channels_header = exr.header()['channels']
window = exr.header()['dataWindow']
width = window.max.x - window.min.x + 1
height = window.max.y - window.min.y + 1
def read_channel(channel):
channel_type = channels_header[channel].type
try:
numpy_type = _exr_to_np[channel_type.v]
except KeyError:
raise RuntimeError('Unknown EXR channel type: %s' % str(channel_type))
flat_buffer = np.frombuffer(exr.channel(channel), numpy_type)
return np.reshape(flat_buffer, [height, width])
channels = [read_channel(c) for c in channel_names]
if any([channels[0].dtype != c.dtype for c in channels[1:]]):
raise ValueError('Channels have mixed datatypes: %s' %
', '.join([str(c.dtype) for c in channels]))
return np.stack(channels, axis=-1)
|
Apache License 2.0
|
jest-community/jest-pytest
|
src/__tests__/integration/home-assistant/homeassistant/components/climate/wink.py
|
WinkAC.current_operation
|
python
|
def current_operation(self):
if not self.wink.is_on():
current_op = STATE_OFF
else:
wink_mode = self.wink.current_mode()
if wink_mode == "auto_eco":
wink_mode = "eco"
current_op = WINK_STATE_TO_HA.get(wink_mode)
if current_op is None:
current_op = STATE_UNKNOWN
return current_op
|
Return current operation ie. auto_eco, cool_only, fan_only.
|
https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/homeassistant/components/climate/wink.py#L429-L440
|
import asyncio
import logging
from homeassistant.components.climate import (
ATTR_CURRENT_HUMIDITY, ATTR_TARGET_TEMP_HIGH, ATTR_TARGET_TEMP_LOW,
ATTR_TEMPERATURE, STATE_AUTO, STATE_COOL, STATE_ECO, STATE_ELECTRIC,
STATE_FAN_ONLY, STATE_GAS, STATE_HEAT, STATE_HEAT_PUMP, STATE_HIGH_DEMAND,
STATE_PERFORMANCE, SUPPORT_AUX_HEAT, SUPPORT_AWAY_MODE, SUPPORT_FAN_MODE,
SUPPORT_OPERATION_MODE, SUPPORT_TARGET_TEMPERATURE,
SUPPORT_TARGET_TEMPERATURE_HIGH, SUPPORT_TARGET_TEMPERATURE_LOW,
ClimateDevice)
from homeassistant.components.wink import DOMAIN, WinkDevice
from homeassistant.const import (
PRECISION_TENTHS, STATE_OFF, STATE_ON, STATE_UNKNOWN, TEMP_CELSIUS)
from homeassistant.helpers.temperature import display_temp as show_temp
_LOGGER = logging.getLogger(__name__)
ATTR_ECO_TARGET = 'eco_target'
ATTR_EXTERNAL_TEMPERATURE = 'external_temperature'
ATTR_OCCUPIED = 'occupied'
ATTR_RHEEM_TYPE = 'rheem_type'
ATTR_SCHEDULE_ENABLED = 'schedule_enabled'
ATTR_SMART_TEMPERATURE = 'smart_temperature'
ATTR_TOTAL_CONSUMPTION = 'total_consumption'
ATTR_VACATION_MODE = 'vacation_mode'
ATTR_HEAT_ON = 'heat_on'
ATTR_COOL_ON = 'cool_on'
DEPENDENCIES = ['wink']
SPEED_LOW = 'low'
SPEED_MEDIUM = 'medium'
SPEED_HIGH = 'high'
HA_STATE_TO_WINK = {
STATE_AUTO: 'auto',
STATE_COOL: 'cool_only',
STATE_ECO: 'eco',
STATE_ELECTRIC: 'electric_only',
STATE_FAN_ONLY: 'fan_only',
STATE_GAS: 'gas',
STATE_HEAT: 'heat_only',
STATE_HEAT_PUMP: 'heat_pump',
STATE_HIGH_DEMAND: 'high_demand',
STATE_OFF: 'off',
STATE_PERFORMANCE: 'performance',
}
WINK_STATE_TO_HA = {value: key for key, value in HA_STATE_TO_WINK.items()}
SUPPORT_FLAGS_THERMOSTAT = (
SUPPORT_TARGET_TEMPERATURE | SUPPORT_TARGET_TEMPERATURE_HIGH |
SUPPORT_TARGET_TEMPERATURE_LOW | SUPPORT_OPERATION_MODE |
SUPPORT_AWAY_MODE | SUPPORT_FAN_MODE | SUPPORT_AUX_HEAT)
SUPPORT_FLAGS_AC = (SUPPORT_TARGET_TEMPERATURE | SUPPORT_OPERATION_MODE |
SUPPORT_FAN_MODE)
SUPPORT_FLAGS_HEATER = (SUPPORT_TARGET_TEMPERATURE | SUPPORT_OPERATION_MODE |
SUPPORT_AWAY_MODE)
def setup_platform(hass, config, add_devices, discovery_info=None):
import pywink
for climate in pywink.get_thermostats():
_id = climate.object_id() + climate.name()
if _id not in hass.data[DOMAIN]['unique_ids']:
add_devices([WinkThermostat(climate, hass)])
for climate in pywink.get_air_conditioners():
_id = climate.object_id() + climate.name()
if _id not in hass.data[DOMAIN]['unique_ids']:
add_devices([WinkAC(climate, hass)])
for water_heater in pywink.get_water_heaters():
_id = water_heater.object_id() + water_heater.name()
if _id not in hass.data[DOMAIN]['unique_ids']:
add_devices([WinkWaterHeater(water_heater, hass)])
class WinkThermostat(WinkDevice, ClimateDevice):
@property
def supported_features(self):
return SUPPORT_FLAGS_THERMOSTAT
@asyncio.coroutine
def async_added_to_hass(self):
self.hass.data[DOMAIN]['entities']['climate'].append(self)
@property
def temperature_unit(self):
return TEMP_CELSIUS
@property
def device_state_attributes(self):
data = {}
target_temp_high = self.target_temperature_high
target_temp_low = self.target_temperature_low
if target_temp_high is not None:
data[ATTR_TARGET_TEMP_HIGH] = show_temp(
self.hass, self.target_temperature_high, self.temperature_unit,
PRECISION_TENTHS)
if target_temp_low is not None:
data[ATTR_TARGET_TEMP_LOW] = show_temp(
self.hass, self.target_temperature_low, self.temperature_unit,
PRECISION_TENTHS)
if self.external_temperature:
data[ATTR_EXTERNAL_TEMPERATURE] = show_temp(
self.hass, self.external_temperature, self.temperature_unit,
PRECISION_TENTHS)
if self.smart_temperature:
data[ATTR_SMART_TEMPERATURE] = self.smart_temperature
if self.occupied:
data[ATTR_OCCUPIED] = self.occupied
if self.eco_target:
data[ATTR_ECO_TARGET] = self.eco_target
if self.heat_on:
data[ATTR_HEAT_ON] = self.heat_on
if self.cool_on:
data[ATTR_COOL_ON] = self.cool_on
current_humidity = self.current_humidity
if current_humidity is not None:
data[ATTR_CURRENT_HUMIDITY] = current_humidity
return data
@property
def current_temperature(self):
return self.wink.current_temperature()
@property
def current_humidity(self):
if self.wink.current_humidity() is not None:
if self.wink.current_humidity() < 1:
return self.wink.current_humidity() * 100
return self.wink.current_humidity()
return None
@property
def external_temperature(self):
return self.wink.current_external_temperature()
@property
def smart_temperature(self):
return self.wink.current_smart_temperature()
@property
def eco_target(self):
return self.wink.eco_target()
@property
def occupied(self):
return self.wink.occupied()
@property
def heat_on(self):
return self.wink.heat_on()
@property
def cool_on(self):
return self.wink.cool_on()
@property
def current_operation(self):
if not self.wink.is_on():
current_op = STATE_OFF
else:
current_op = WINK_STATE_TO_HA.get(self.wink.current_hvac_mode())
if current_op == 'aux':
return STATE_HEAT
if current_op is None:
current_op = STATE_UNKNOWN
return current_op
@property
def target_humidity(self):
target_hum = None
if self.wink.current_humidifier_mode() == 'on':
if self.wink.current_humidifier_set_point() is not None:
target_hum = self.wink.current_humidifier_set_point() * 100
elif self.wink.current_dehumidifier_mode() == 'on':
if self.wink.current_dehumidifier_set_point() is not None:
target_hum = self.wink.current_dehumidifier_set_point() * 100
else:
target_hum = None
return target_hum
@property
def target_temperature(self):
if self.current_operation != STATE_AUTO and not self.is_away_mode_on:
if self.current_operation == STATE_COOL:
return self.wink.current_max_set_point()
elif self.current_operation == STATE_HEAT:
return self.wink.current_min_set_point()
return None
@property
def target_temperature_low(self):
if self.current_operation == STATE_AUTO:
return self.wink.current_min_set_point()
return None
@property
def target_temperature_high(self):
if self.current_operation == STATE_AUTO:
return self.wink.current_max_set_point()
return None
@property
def is_away_mode_on(self):
return self.wink.away()
@property
def is_aux_heat_on(self):
if 'aux' not in self.wink.hvac_modes():
return None
if self.wink.current_hvac_mode() == 'aux':
return True
return False
def set_temperature(self, **kwargs):
target_temp = kwargs.get(ATTR_TEMPERATURE)
target_temp_low = kwargs.get(ATTR_TARGET_TEMP_LOW)
target_temp_high = kwargs.get(ATTR_TARGET_TEMP_HIGH)
if target_temp is not None:
if self.current_operation == STATE_COOL:
target_temp_high = target_temp
if self.current_operation == STATE_HEAT:
target_temp_low = target_temp
if target_temp_low is not None:
target_temp_low = target_temp_low
if target_temp_high is not None:
target_temp_high = target_temp_high
self.wink.set_temperature(target_temp_low, target_temp_high)
def set_operation_mode(self, operation_mode):
op_mode_to_set = HA_STATE_TO_WINK.get(operation_mode)
if self.is_aux_heat_on and op_mode_to_set == STATE_HEAT:
return
self.wink.set_operation_mode(op_mode_to_set)
@property
def operation_list(self):
op_list = ['off']
modes = self.wink.hvac_modes()
for mode in modes:
if mode == 'aux':
continue
ha_mode = WINK_STATE_TO_HA.get(mode)
if ha_mode is not None:
op_list.append(ha_mode)
else:
error = "Invalid operation mode mapping. " + mode + " doesn't map. Please report this."
_LOGGER.error(error)
return op_list
def turn_away_mode_on(self):
self.wink.set_away_mode()
def turn_away_mode_off(self):
self.wink.set_away_mode(False)
@property
def current_fan_mode(self):
if self.wink.current_fan_mode() == 'on':
return STATE_ON
elif self.wink.current_fan_mode() == 'auto':
return STATE_AUTO
return None
@property
def fan_list(self):
if self.wink.has_fan():
return self.wink.fan_modes()
return None
def set_fan_mode(self, fan_mode):
self.wink.set_fan_mode(fan_mode.lower())
def turn_aux_heat_on(self):
self.wink.set_operation_mode('aux')
def turn_aux_heat_off(self):
self.set_operation_mode(STATE_HEAT)
@property
def min_temp(self):
minimum = 7
min_min = self.wink.min_min_set_point()
min_max = self.wink.min_max_set_point()
if self.current_operation == STATE_HEAT:
if min_min:
return_value = min_min
else:
return_value = minimum
elif self.current_operation == STATE_COOL:
if min_max:
return_value = min_max
else:
return_value = minimum
elif self.current_operation == STATE_AUTO:
if min_min and min_max:
return_value = min(min_min, min_max)
else:
return_value = minimum
else:
return_value = minimum
return return_value
@property
def max_temp(self):
maximum = 35
max_min = self.wink.max_min_set_point()
max_max = self.wink.max_max_set_point()
if self.current_operation == STATE_HEAT:
if max_min:
return_value = max_min
else:
return_value = maximum
elif self.current_operation == STATE_COOL:
if max_max:
return_value = max_max
else:
return_value = maximum
elif self.current_operation == STATE_AUTO:
if max_min and max_max:
return_value = min(max_min, max_max)
else:
return_value = maximum
else:
return_value = maximum
return return_value
class WinkAC(WinkDevice, ClimateDevice):
@property
def supported_features(self):
return SUPPORT_FLAGS_AC
@property
def temperature_unit(self):
return TEMP_CELSIUS
@property
def device_state_attributes(self):
data = {}
target_temp_high = self.target_temperature_high
target_temp_low = self.target_temperature_low
if target_temp_high is not None:
data[ATTR_TARGET_TEMP_HIGH] = show_temp(
self.hass, self.target_temperature_high, self.temperature_unit,
PRECISION_TENTHS)
if target_temp_low is not None:
data[ATTR_TARGET_TEMP_LOW] = show_temp(
self.hass, self.target_temperature_low, self.temperature_unit,
PRECISION_TENTHS)
data[ATTR_TOTAL_CONSUMPTION] = self.wink.total_consumption()
data[ATTR_SCHEDULE_ENABLED] = self.wink.schedule_enabled()
return data
@property
def current_temperature(self):
return self.wink.current_temperature()
@property
|
MIT License
|
tum-pbs/phiflow
|
phi/math/_nd.py
|
upsample2x
|
python
|
def upsample2x(grid: Tensor,
padding: Extrapolation = extrapolation.BOUNDARY,
dims: tuple or None = None) -> Tensor:
for i, dim in enumerate(grid.shape.spatial.only(dims)):
left, center, right = shift(grid, (-1, 0, 1), dim.names, padding, None)
interp_left = 0.25 * left + 0.75 * center
interp_right = 0.75 * center + 0.25 * right
stacked = math.stack([interp_left, interp_right], spatial('_interleave'))
grid = math.pack_dims(stacked, (dim.name, '_interleave'), dim)
return grid
|
Resamples a regular grid to double the number of spatial sample points per dimension.
The grid values at the new points are determined via linear interpolation.
Args:
grid: half-size grid
padding: grid extrapolation
dims: dims along which up-sampling is applied. If None, up-sample along all spatial dims.
grid: Tensor:
padding: Extrapolation: (Default value = extrapolation.BOUNDARY)
dims: tuple or None: (Default value = None)
Returns:
double-size grid
|
https://github.com/tum-pbs/phiflow/blob/4a85f8a5029aa4e30a791daa659f2c8e1536e37e/phi/math/_nd.py#L437-L462
|
from __future__ import division
from typing import Tuple
import numpy as np
from . import _ops as math
from . import extrapolation as extrapolation
from ._config import GLOBAL_AXIS_ORDER
from ._ops import stack
from ._shape import Shape, channel, batch, spatial
from ._tensors import Tensor, TensorLike, variable_values
from ._tensors import wrap
from .extrapolation import Extrapolation
def vec_abs(vec: Tensor, vec_dim: str or tuple or list or Shape = None):
return math.sqrt(math.sum_(vec ** 2, dim=vec.shape.channel if vec_dim is None else vec_dim))
def vec_squared(vec: Tensor, vec_dim: str or tuple or list or Shape = None):
return math.sum_(vec ** 2, dim=vec.shape.channel if vec_dim is None else vec_dim)
def vec_normalize(vec: Tensor, vec_dim: str or tuple or list or Shape = None):
return vec / vec_abs(vec, vec_dim=vec_dim)
def cross_product(vec1: Tensor, vec2: Tensor) -> Tensor:
vec1 = math.tensor(vec1)
vec2 = math.tensor(vec2)
spatial_rank = vec1.vector.size if 'vector' in vec1.shape else vec2.vector.size
if spatial_rank == 2:
assert vec2.vector.exists
if vec1.vector.exists:
v1_x, v1_y = vec1.vector.unstack()
v2_x, v2_y = vec2.vector.unstack()
if GLOBAL_AXIS_ORDER.is_x_first:
return v1_x * v2_y - v1_y * v2_x
else:
return - v1_x * v2_y + v1_y * v2_x
else:
v2_x, v2_y = vec2.vector.unstack()
if GLOBAL_AXIS_ORDER.is_x_first:
return vec1 * math.stack([-v2_y, v2_x], channel('vector'))
else:
return vec1 * math.stack([v2_y, -v2_x], channel('vector'))
elif spatial_rank == 3:
raise NotImplementedError(f'spatial_rank={spatial_rank} not yet implemented')
else:
raise AssertionError(f'dims = {spatial_rank}. Vector product not available in > 3 dimensions')
def normalize_to(target: Tensor, source: float or Tensor, epsilon=1e-5):
target_total = math.sum_(target)
denominator = math.maximum(target_total, epsilon) if epsilon is not None else target_total
source_total = math.sum_(source)
return target * (source_total / denominator)
def l1_loss(x) -> Tensor:
if isinstance(x, Tensor):
return math.sum_(abs(x), x.shape.non_batch)
elif isinstance(x, TensorLike):
return sum([l1_loss(getattr(x, a)) for a in variable_values(x)])
else:
raise ValueError(x)
def l2_loss(x) -> Tensor:
if isinstance(x, Tensor):
if x.dtype.kind == complex:
x = abs(x)
return math.sum_(x ** 2, x.shape.non_batch) * 0.5
elif isinstance(x, TensorLike):
return sum([l2_loss(getattr(x, a)) for a in variable_values(x)])
else:
raise ValueError(x)
def frequency_loss(x,
frequency_falloff: float = 100,
threshold=1e-5,
ignore_mean=False) -> Tensor:
if isinstance(x, Tensor):
if ignore_mean:
x -= math.mean(x, x.shape.non_batch)
k_squared = vec_squared(math.fftfreq(x.shape.spatial))
weights = math.exp(-0.5 * k_squared * frequency_falloff ** 2)
diff_fft = abs_square(math.fft(x) * weights)
diff_fft = math.sqrt(math.maximum(diff_fft, threshold))
return l2_loss(diff_fft)
elif isinstance(x, TensorLike):
return sum([frequency_loss(getattr(x, a), frequency_falloff, threshold, ignore_mean) for a in variable_values(x)])
else:
raise ValueError(x)
def abs_square(complex_values: Tensor) -> Tensor:
return math.imag(complex_values) ** 2 + math.real(complex_values) ** 2
def shift(x: Tensor,
offsets: tuple,
dims: tuple or None = None,
padding: Extrapolation or None = extrapolation.BOUNDARY,
stack_dim: Shape or None = channel('shift')) -> list:
if stack_dim is None:
assert len(dims) == 1
x = wrap(x)
dims = dims if dims is not None else x.shape.spatial.names
pad_lower = max(0, -min(offsets))
pad_upper = max(0, max(offsets))
if padding:
x = math.pad(x, {axis: (pad_lower, pad_upper) for axis in dims}, mode=padding)
offset_tensors = []
for offset in offsets:
components = []
for dimension in dims:
if padding:
slices = {dim: slice(pad_lower + offset, (-pad_upper + offset) or None) if dim == dimension else slice(pad_lower, -pad_upper or None) for dim in dims}
else:
slices = {dim: slice(pad_lower + offset, (-pad_upper + offset) or None) if dim == dimension else slice(None, None) for dim in dims}
components.append(x[slices])
offset_tensors.append(stack(components, stack_dim) if stack_dim is not None else components[0])
return offset_tensors
def extrapolate_valid_values(values: Tensor, valid: Tensor, distance_cells: int = 1) -> Tuple[Tensor, Tensor]:
def binarize(x):
return math.divide_no_nan(x, x)
distance_cells = min(distance_cells, max(values.shape.sizes))
for _ in range(distance_cells):
valid = binarize(valid)
valid_values = valid * values
overlap = valid
for dim in values.shape.spatial.names:
values_l, values_r = shift(valid_values, (-1, 1), dims=dim, padding=extrapolation.ZERO)
valid_values = math.sum_(values_l + values_r + valid_values, dim='shift')
mask_l, mask_r = shift(overlap, (-1, 1), dims=dim, padding=extrapolation.ZERO)
overlap = math.sum_(mask_l + mask_r + overlap, dim='shift')
extp = math.divide_no_nan(valid_values, overlap)
values = math.where(valid, values, math.where(binarize(overlap), extp, values))
valid = overlap
return values, binarize(valid)
def spatial_gradient(grid: Tensor,
dx: float or int = 1,
difference: str = 'central',
padding: Extrapolation or None = extrapolation.BOUNDARY,
dims: tuple or None = None,
stack_dim: Shape = channel('gradient')):
grid = wrap(grid)
if difference.lower() == 'central':
left, right = shift(grid, (-1, 1), dims, padding, stack_dim=stack_dim)
return (right - left) / (dx * 2)
elif difference.lower() == 'forward':
left, right = shift(grid, (0, 1), dims, padding, stack_dim=stack_dim)
return (right - left) / dx
elif difference.lower() == 'backward':
left, right = shift(grid, (-1, 0), dims, padding, stack_dim=stack_dim)
return (right - left) / dx
else:
raise ValueError('Invalid difference type: {}. Can be CENTRAL or FORWARD'.format(difference))
def laplace(x: Tensor,
dx: Tensor or float = 1,
padding: Extrapolation = extrapolation.BOUNDARY,
dims: tuple or None = None):
if isinstance(dx, (tuple, list)):
dx = wrap(dx, batch('_laplace'))
elif isinstance(dx, Tensor) and dx.vector.exists:
dx = math.rename_dims(dx, 'vector', batch('_laplace'))
if isinstance(x, Extrapolation):
return x.spatial_gradient()
left, center, right = shift(wrap(x), (-1, 0, 1), dims, padding, stack_dim=batch('_laplace'))
result = (left + right - 2 * center) / dx
result = math.sum_(result, '_laplace')
return result
def fourier_laplace(grid: Tensor,
dx: Tensor or Shape or float or list or tuple,
times: int = 1):
frequencies = math.fft(math.to_complex(grid))
k_squared = math.sum_(math.fftfreq(grid.shape) ** 2, 'vector')
fft_laplace = -(2 * np.pi) ** 2 * k_squared
result = math.real(math.ifft(frequencies * fft_laplace ** times))
return math.cast(result / wrap(dx) ** 2, grid.dtype)
def fourier_poisson(grid: Tensor,
dx: Tensor or Shape or float or list or tuple,
times: int = 1):
frequencies = math.fft(math.to_complex(grid))
k_squared = math.sum_(math.fftfreq(grid.shape) ** 2, 'vector')
fft_laplace = -(2 * np.pi) ** 2 * k_squared
result = math.real(math.ifft(math.divide_no_nan(frequencies, math.to_complex(fft_laplace ** times))))
return math.cast(result * wrap(dx) ** 2, grid.dtype)
def downsample2x(grid: Tensor,
padding: Extrapolation = extrapolation.BOUNDARY,
dims: tuple or None = None) -> Tensor:
dims = grid.shape.spatial.only(dims).names
odd_dimensions = [dim for dim in dims if grid.shape.get_size(dim) % 2 != 0]
grid = math.pad(grid, {dim: (0, 1) for dim in odd_dimensions}, padding)
for dim in dims:
grid = (grid[{dim: slice(1, None, 2)}] + grid[{dim: slice(0, None, 2)}]) / 2
return grid
|
MIT License
|
polyai-ldn/conversational-datasets
|
baselines/vector_based.py
|
VectorMappingMethod._build_mapping_graph
|
python
|
def _build_mapping_graph(self,
contexts_train, contexts_dev,
responses_train, responses_dev):
self._session = tf.Session(graph=tf.Graph())
with self._session.graph.as_default():
def read_batch(contexts, responses, batch_size):
dataset = tf.data.Dataset.from_tensor_slices(
(contexts, responses))
dataset = dataset.shuffle(batch_size * 8)
dataset = dataset.batch(batch_size)
return dataset.make_initializable_iterator()
self._train_iterator = read_batch(
contexts_train, responses_train,
batch_size=self._TRAIN_BATCH_SIZE)
self._dev_iterator = read_batch(
contexts_dev, responses_dev,
batch_size=100)
(contexts_batch_train,
responses_batch_train) = self._train_iterator.get_next()
(contexts_batch_dev,
responses_batch_dev) = self._dev_iterator.get_next()
self._regularizer = tf.placeholder(dtype=tf.float32, shape=None)
self._create_train_op(
self._compute_similarities(
contexts_batch_train, responses_batch_train,
is_train=True)
)
dev_batch_size = tf.shape(contexts_batch_dev)[0]
similarities = self._compute_similarities(
contexts_batch_dev, responses_batch_dev,
is_train=False)
self._accuracy = tf.metrics.accuracy(
labels=tf.range(dev_batch_size),
predictions=tf.argmax(similarities, 1)
)
encoding_dim = int(contexts_batch_train.shape[1])
self._fed_context_encodings = tf.placeholder(
dtype=tf.float32, shape=[None, encoding_dim]
)
self._fed_response_encodings = tf.placeholder(
dtype=tf.float32, shape=[None, encoding_dim]
)
self._similarities = self._compute_similarities(
self._fed_context_encodings,
self._fed_response_encodings
)
self._local_init_op = tf.local_variables_initializer()
self._reset_op = tf.global_variables_initializer()
self._saver = tf.train.Saver(max_to_keep=1)
|
Build the graph that applies a learned mapping to the vectors.
|
https://github.com/polyai-ldn/conversational-datasets/blob/50f626ad0d0e825835bd054f6a58006afa95a8e5/baselines/vector_based.py#L352-L411
|
import abc
import itertools
import shutil
import tempfile
import glog
import numpy as np
import tensorflow as tf
import tensorflow_hub
import tensorflow_text
import tf_sentencepiece
from sklearn.model_selection import train_test_split
from tqdm import tqdm
import bert.run_classifier
import bert.tokenization
from baselines import method
class Encoder(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def encode_context(self, contexts):
pass
def encode_response(self, responses):
return self.encode_context(responses)
class TfHubEncoder(Encoder):
def __init__(self, uri):
self._session = tf.Session(graph=tf.Graph())
with self._session.graph.as_default():
glog.info("Loading %s model from tensorflow hub", uri)
embed_fn = tensorflow_hub.Module(uri)
self._fed_texts = tf.placeholder(shape=[None], dtype=tf.string)
self._context_embeddings = embed_fn(self._fed_texts)
init_ops = (
tf.global_variables_initializer(), tf.tables_initializer())
glog.info("Initializing graph.")
self._session.run(init_ops)
def encode_context(self, contexts):
return self._session.run(
self._context_embeddings, {self._fed_texts: contexts})
class USEDualEncoder(Encoder):
def __init__(self, uri):
self._session = tf.Session(graph=tf.Graph())
with self._session.graph.as_default():
glog.info("Loading %s model from tensorflow hub", uri)
embed_fn = tensorflow_hub.Module(uri)
self._fed_texts = tf.placeholder(shape=[None], dtype=tf.string)
self._context_embeddings = embed_fn(
dict(input=self._fed_texts),
signature="question_encoder",
as_dict=True,
)['outputs']
empty_strings = tf.fill(
tf.shape(self._fed_texts), ""
)
self._response_embeddings = embed_fn(
dict(input=self._fed_texts, context=empty_strings),
signature="response_encoder",
as_dict=True,
)['outputs']
init_ops = (
tf.global_variables_initializer(), tf.tables_initializer())
glog.info("Initializing graph.")
self._session.run(init_ops)
def encode_context(self, contexts):
return self._session.run(
self._context_embeddings, {self._fed_texts: contexts})
def encode_response(self, responses):
return self._session.run(
self._response_embeddings, {self._fed_texts: responses})
class ConveRTEncoder(Encoder):
def __init__(self, uri):
self._session = tf.Session(graph=tf.Graph())
with self._session.graph.as_default():
glog.info("Loading %s model from tensorflow hub", uri)
embed_fn = tensorflow_hub.Module(uri)
self._fed_texts = tf.placeholder(shape=[None], dtype=tf.string)
self._context_embeddings = embed_fn(
self._fed_texts, signature="encode_context")
self._response_embeddings = embed_fn(
self._fed_texts, signature="encode_response")
init_ops = (
tf.global_variables_initializer(), tf.tables_initializer())
glog.info("Initializing graph.")
self._session.run(init_ops)
def encode_context(self, contexts):
return self._session.run(
self._context_embeddings, {self._fed_texts: contexts})
def encode_response(self, responses):
return self._session.run(
self._response_embeddings, {self._fed_texts: responses})
class BERTEncoder(Encoder):
def __init__(self, uri):
if not tf.test.is_gpu_available():
glog.warning(
"No GPU detected, BERT will run a lot slower than with a GPU.")
self._session = tf.Session(graph=tf.Graph())
with self._session.graph.as_default():
glog.info("Loading %s model from tensorflow hub", uri)
embed_fn = tensorflow_hub.Module(uri, trainable=False)
self._tokenizer = self._create_tokenizer_from_hub_module(uri)
self._input_ids = tf.placeholder(
name="input_ids", shape=[None, None], dtype=tf.int32)
self._input_mask = tf.placeholder(
name="input_mask", shape=[None, None], dtype=tf.int32)
self._segment_ids = tf.zeros_like(self._input_ids)
bert_inputs = dict(
input_ids=self._input_ids,
input_mask=self._input_mask,
segment_ids=self._segment_ids
)
embeddings = embed_fn(
inputs=bert_inputs, signature="tokens", as_dict=True)[
"sequence_output"
]
mask = tf.expand_dims(
tf.cast(self._input_mask, dtype=tf.float32), -1)
self._embeddings = tf.reduce_sum(mask * embeddings, axis=1)
init_ops = (
tf.global_variables_initializer(), tf.tables_initializer())
glog.info("Initializing graph.")
self._session.run(init_ops)
def encode_context(self, contexts):
return self._session.run(self._embeddings, self._feed_dict(contexts))
@staticmethod
def _create_tokenizer_from_hub_module(uri):
with tf.Graph().as_default():
bert_module = tensorflow_hub.Module(uri, trainable=False)
tokenization_info = bert_module(
signature="tokenization_info", as_dict=True)
with tf.Session() as sess:
vocab_file, do_lower_case = sess.run(
[
tokenization_info["vocab_file"],
tokenization_info["do_lower_case"]
])
return bert.tokenization.FullTokenizer(
vocab_file=vocab_file, do_lower_case=do_lower_case)
def _feed_dict(self, texts, max_seq_len=128):
all_ids = []
for text in texts:
tokens = ["[CLS]"] + self._tokenizer.tokenize(text)
tokens = tokens[:(max_seq_len - 1)]
tokens.append("[SEP]")
ids = self._tokenizer.convert_tokens_to_ids(tokens)
all_ids.append(ids)
max_seq_len = max(map(len, all_ids))
input_ids = []
input_mask = []
for ids in all_ids:
mask = [1] * len(ids)
while len(ids) < max_seq_len:
ids.append(0)
mask.append(0)
input_ids.append(ids)
input_mask.append(mask)
return {self._input_ids: input_ids, self._input_mask: input_mask}
class VectorSimilarityMethod(method.BaselineMethod):
def __init__(self, encoder):
self._encoder = encoder
def train(self, contexts, responses):
pass
def rank_responses(self, contexts, responses):
contexts_matrix = self._encoder.encode_context(contexts)
responses_matrix = self._encoder.encode_response(responses)
responses_matrix /= np.linalg.norm(
responses_matrix, axis=1, keepdims=True)
similarities = np.matmul(contexts_matrix, responses_matrix.T)
return np.argmax(similarities, axis=1)
class VectorMappingMethod(method.BaselineMethod):
def __init__(
self,
encoder,
learning_rates=(10.0, 3.0, 1.0, 0.3, 0.01),
regularizers=(0, 0.1, 0.01, 0.001),
):
self._encoder = encoder
self._learning_rates = learning_rates
self._regularizers = regularizers
def train(self, contexts, responses):
glog.info(
"Training on %i contexts and responses.", len(contexts))
(contexts_train, contexts_dev,
responses_train, responses_dev
) = self._create_train_and_dev(contexts, responses)
glog.info(
"Created a training set of size %i, and a dev set of size %i.",
contexts_train.shape[0], contexts_dev.shape[0])
self._build_mapping_graph(
contexts_train, contexts_dev,
responses_train, responses_dev
)
self._grid_search()
_ENCODING_BATCH_SIZE = 100
_TRAIN_BATCH_SIZE = 256
_MAX_EPOCHS = 100
def _create_train_and_dev(self, contexts, responses):
glog.info("Encoding the train set.")
context_encodings = []
response_encodings = []
for i in tqdm(range(0, len(contexts), self._ENCODING_BATCH_SIZE)):
contexts_batch = contexts[i:i + self._ENCODING_BATCH_SIZE]
responses_batch = responses[i:i + self._ENCODING_BATCH_SIZE]
context_encodings.append(
self._encoder.encode_context(contexts_batch))
response_encodings.append(
self._encoder.encode_response(responses_batch))
context_encodings = np.concatenate(
context_encodings).astype(np.float32)
response_encodings = np.concatenate(
response_encodings).astype(np.float32)
return train_test_split(
context_encodings, response_encodings,
test_size=0.2)
|
Apache License 2.0
|
pmelchior/scarlet
|
scarlet/operator.py
|
find_relevant_dim
|
python
|
def find_relevant_dim(Y, Q, Vs):
max_t = 0
index = -1
for i in range(len(Vs)):
Y_p = proj_dist(Y, Vs[i])
Q_p = proj_dist(Q, Vs[i])
if Y_p < 0:
t = -Y_p / (Q_p - Y_p)
else:
t = -2
if t > max_t:
max_t = t
index = i
return index
|
Finds a dimension relevant to the problem by 'raycasting' from Y to Q
|
https://github.com/pmelchior/scarlet/blob/134fac69465c2eea46b6909c6f401e1b17cdd85b/scarlet/operator.py#L425-L439
|
from functools import partial
import numpy as np
from proxmin.operators import prox_unity_plus
from . import fft
from . import interpolation
def sort_by_radius(shape, center=None):
if center is None:
cx = (shape[1] - 1) >> 1
cy = (shape[0] - 1) >> 1
else:
cy, cx = int(center[0]), int(center[1])
x = np.arange(shape[1])
y = np.arange(shape[0])
X, Y = np.meshgrid(x, y)
X = X - cx
Y = Y - cy
distance = np.sqrt(X ** 2 + Y ** 2)
didx = np.argsort(distance.flatten())
return didx
def _prox_weighted_monotonic(X, step, weights, didx, offsets, min_gradient=0.1):
from . import operators_pybind11
operators_pybind11.prox_weighted_monotonic(
X.reshape(-1), weights, offsets, didx, min_gradient
)
return X
def prox_weighted_monotonic(shape, neighbor_weight="flat", min_gradient=0.1, center=None):
height, width = shape
didx = sort_by_radius(shape, center)
coords = [(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1)]
offsets = np.array([width * y + x for y, x in coords])
weights = getRadialMonotonicWeights(
shape, neighbor_weight=neighbor_weight, center=center
)
result = partial(
_prox_weighted_monotonic,
weights=weights,
didx=didx[1:],
offsets=offsets,
min_gradient=min_gradient,
)
return result
def get_center(image, center, radius=1):
cy, cx = int(center[0]), int(center[1])
y0 = np.max([cy - radius, 0])
x0 = np.max([cx - radius, 0])
ySlice = slice(y0, cy + radius+1)
xSlice = slice(x0, cx + radius+1)
subset = image[ySlice, xSlice]
center = np.unravel_index(np.argmax(subset), subset.shape)
return center[0]+y0, center[1]+x0
def prox_monotonic_mask(X, step, center, center_radius=1, variance=0.0, max_iter=3):
from scarlet.operators_pybind11 import get_valid_monotonic_pixels, linear_interpolate_invalid_pixels
if center_radius > 0:
i, j = get_center(X, center, center_radius)
else:
i,j = int(np.round(center[0])), int(np.round(center[1]))
unchecked = np.ones(X.shape, dtype=bool)
unchecked[i, j] = False
orphans = np.zeros(X.shape, dtype=bool)
bounds = np.array([i, i, j, j], dtype=np.int32)
get_valid_monotonic_pixels(i, j, X, unchecked, orphans, variance, bounds, 0)
model = X.copy()
it = 0
while np.sum(orphans & unchecked) > 0 and it < max_iter:
it += 1
all_i, all_j = np.where(orphans)
linear_interpolate_invalid_pixels(all_i, all_j, unchecked, model, orphans, variance, True, bounds)
valid = ~unchecked & ~orphans
model = model * valid
return valid, model, bounds
def prox_cone(X, step, G=None):
k, n = X.shape
for i in range(k):
Y = X[i]
Vs = []
for j in range(0, n):
add = G[j]
Vs.append(add)
Q = find_Q(Vs, n)
for j in range(n):
index = find_relevant_dim(Y, Q, Vs)
if index != -1:
Y, Q, Vs = use_relevant_dim(Y, Q, Vs, index)
else:
break
X[i] = Y
return X
def uncentered_operator(X, func, center=None, fill=None, **kwargs):
if center is None:
py, px = np.unravel_index(np.argmax(X), X.shape)
else:
py, px = center
cy, cx = np.array(X.shape) // 2
if py == cy and px == cx:
return func(X, **kwargs)
dy = int(2 * (py - cy))
dx = int(2 * (px - cx))
if not X.shape[0] % 2:
dy += 1
if not X.shape[1] % 2:
dx += 1
if dx < 0:
xslice = slice(None, dx)
else:
xslice = slice(dx, None)
if dy < 0:
yslice = slice(None, dy)
else:
yslice = slice(dy, None)
if fill is not None:
_X = np.ones(X.shape, X.dtype) * fill
_X[yslice, xslice] = func(X[yslice, xslice], **kwargs)
X[:] = _X
else:
X[yslice, xslice] = func(X[yslice, xslice], **kwargs)
return X
def prox_sdss_symmetry(X, step):
Xs = np.fliplr(np.flipud(X))
X[:] = np.min([X, Xs], axis=0)
return X
def prox_soft_symmetry(X, step, strength=1):
pads = [[0, 0], [0, 0]]
slices = [slice(None), slice(None)]
if X.shape[0] % 2 == 0:
pads[0][1] = 1
slices[0] = slice(0, X.shape[0])
if X.shape[1] % 2 == 0:
pads[1][1] = 1
slices[1] = slice(0, X.shape[1])
X = fft.fast_zero_pad(X, pads)
Xs = np.fliplr(np.flipud(X))
X = 0.5 * strength * (X + Xs) + (1 - strength) * X
return X[tuple(slices)]
def prox_kspace_symmetry(X, step, shift=None, padding=10):
fft_shape = fft._get_fft_shape(X, X, padding=padding)
dy, dx = shift
X = fft.Fourier(X)
X_fft = X.fft(fft_shape, (0, 1))
zeroMask = X.image <= 0
shifter_y, shifter_x = interpolation.mk_shifter(fft_shape)
result_fft = X_fft * np.exp(shifter_y[:, np.newaxis] * (-dy))
result_fft *= np.exp(shifter_x[np.newaxis, :] * (-dx))
result_fft = result_fft.real
result_fft = result_fft * np.exp(shifter_y[:, np.newaxis] * dy)
result_fft = result_fft * np.exp(shifter_x[np.newaxis, :] * dx)
result = fft.Fourier.from_fft(result_fft, fft_shape, X.image.shape, [0, 1])
result.image[zeroMask] = 0
return np.real(result.image)
def prox_uncentered_symmetry(
X, step, center=None, algorithm="kspace", fill=None, shift=None, strength=0.5
):
if algorithm == "kspace" and (shift is None or np.all(shift == 0)):
algorithm = "soft"
strength = 1
if algorithm == "kspace":
return uncentered_operator(
X, prox_kspace_symmetry, center, shift=shift, step=step, fill=fill
)
if algorithm == "sdss":
return uncentered_operator(X, prox_sdss_symmetry, center, step=step, fill=fill)
if algorithm == "soft" or algorithm == "kspace" and shift is None:
return uncentered_operator(
X, prox_soft_symmetry, center, step=step, strength=strength, fill=fill
)
msg = "algorithm must be one of 'soft', 'sdss', 'kspace', recieved '{0}''"
raise ValueError(msg.format(algorithm))
def proj(A, B):
return A - (A * B).sum() * B / (B ** 2).sum()
def proj_dist(A, B):
return (A * B).sum() / (B ** 2).sum() ** 0.5
def use_relevant_dim(Y, Q, Vs, index):
projector = Vs[index]
del Vs[index]
Y = proj(Y, projector)
Q = proj(Y, projector)
for i in range(len(Vs)):
Vs[i] = proj(Vs[i], projector)
return Y, Q, Vs
|
MIT License
|
demille/emailhooks
|
django_nonrel/django/contrib/admin/options.py
|
ModelAdmin.get_form
|
python
|
def get_form(self, request, obj=None, **kwargs):
if self.declared_fieldsets:
fields = flatten_fieldsets(self.declared_fieldsets)
else:
fields = None
if self.exclude is None:
exclude = []
else:
exclude = list(self.exclude)
exclude.extend(self.get_readonly_fields(request, obj))
if self.exclude is None and hasattr(self.form, '_meta') and self.form._meta.exclude:
exclude.extend(self.form._meta.exclude)
exclude = exclude or None
defaults = {
"form": self.form,
"fields": fields,
"exclude": exclude,
"formfield_callback": partial(self.formfield_for_dbfield, request=request),
}
defaults.update(kwargs)
return modelform_factory(self.model, **defaults)
|
Returns a Form class for use in the admin add view. This is used by
add_view and change_view.
|
https://github.com/demille/emailhooks/blob/16dc3b295ac9d35a20e8d0db52760db2b7e8a822/django_nonrel/django/contrib/admin/options.py#L471-L499
|
import copy
from functools import update_wrapper, partial
import warnings
from django import forms
from django.conf import settings
from django.forms.formsets import all_valid
from django.forms.models import (modelform_factory, modelformset_factory,
inlineformset_factory, BaseInlineFormSet)
from django.contrib.contenttypes.models import ContentType
from django.contrib.admin import widgets, helpers
from django.contrib.admin.util import unquote, flatten_fieldsets, get_deleted_objects, model_format_dict
from django.contrib.admin.templatetags.admin_static import static
from django.contrib import messages
from django.views.decorators.csrf import csrf_protect
from django.core.exceptions import PermissionDenied, ValidationError
from django.core.paginator import Paginator
from django.core.urlresolvers import reverse
from django.db import models, transaction, router
from django.db.models.constants import LOOKUP_SEP
from django.db.models.related import RelatedObject
from django.db.models.fields import BLANK_CHOICE_DASH, FieldDoesNotExist
from django.db.models.sql.constants import QUERY_TERMS
from django.http import Http404, HttpResponse, HttpResponseRedirect
from django.shortcuts import get_object_or_404
from django.template.response import SimpleTemplateResponse, TemplateResponse
from django.utils.decorators import method_decorator
from django.utils.datastructures import SortedDict
from django.utils.html import escape, escapejs
from django.utils.safestring import mark_safe
from django.utils import six
from django.utils.text import capfirst, get_text_list
from django.utils.translation import ugettext as _
from django.utils.translation import ungettext
from django.utils.encoding import force_text
HORIZONTAL, VERTICAL = 1, 2
get_ul_class = lambda x: 'radiolist%s' % ((x == HORIZONTAL) and ' inline' or '')
class IncorrectLookupParameters(Exception):
pass
FORMFIELD_FOR_DBFIELD_DEFAULTS = {
models.DateTimeField: {
'form_class': forms.SplitDateTimeField,
'widget': widgets.AdminSplitDateTime
},
models.DateField: {'widget': widgets.AdminDateWidget},
models.TimeField: {'widget': widgets.AdminTimeWidget},
models.TextField: {'widget': widgets.AdminTextareaWidget},
models.URLField: {'widget': widgets.AdminURLFieldWidget},
models.IntegerField: {'widget': widgets.AdminIntegerFieldWidget},
models.BigIntegerField: {'widget': widgets.AdminBigIntegerFieldWidget},
models.CharField: {'widget': widgets.AdminTextInputWidget},
models.ImageField: {'widget': widgets.AdminFileWidget},
models.FileField: {'widget': widgets.AdminFileWidget},
}
csrf_protect_m = method_decorator(csrf_protect)
class BaseModelAdmin(six.with_metaclass(forms.MediaDefiningClass)):
raw_id_fields = ()
fields = None
exclude = None
fieldsets = None
form = forms.ModelForm
filter_vertical = ()
filter_horizontal = ()
radio_fields = {}
prepopulated_fields = {}
formfield_overrides = {}
readonly_fields = ()
ordering = None
def __init__(self):
overrides = FORMFIELD_FOR_DBFIELD_DEFAULTS.copy()
overrides.update(self.formfield_overrides)
self.formfield_overrides = overrides
def formfield_for_dbfield(self, db_field, **kwargs):
request = kwargs.pop("request", None)
if db_field.choices:
return self.formfield_for_choice_field(db_field, request, **kwargs)
if isinstance(db_field, (models.ForeignKey, models.ManyToManyField)):
if db_field.__class__ in self.formfield_overrides:
kwargs = dict(self.formfield_overrides[db_field.__class__], **kwargs)
if isinstance(db_field, models.ForeignKey):
formfield = self.formfield_for_foreignkey(db_field, request, **kwargs)
elif isinstance(db_field, models.ManyToManyField):
formfield = self.formfield_for_manytomany(db_field, request, **kwargs)
if formfield and db_field.name not in self.raw_id_fields:
related_modeladmin = self.admin_site._registry.get(
db_field.rel.to)
can_add_related = bool(related_modeladmin and
related_modeladmin.has_add_permission(request))
formfield.widget = widgets.RelatedFieldWidgetWrapper(
formfield.widget, db_field.rel, self.admin_site,
can_add_related=can_add_related)
return formfield
for klass in db_field.__class__.mro():
if klass in self.formfield_overrides:
kwargs = dict(copy.deepcopy(self.formfield_overrides[klass]), **kwargs)
return db_field.formfield(**kwargs)
return db_field.formfield(**kwargs)
def formfield_for_choice_field(self, db_field, request=None, **kwargs):
if db_field.name in self.radio_fields:
if 'widget' not in kwargs:
kwargs['widget'] = widgets.AdminRadioSelect(attrs={
'class': get_ul_class(self.radio_fields[db_field.name]),
})
if 'choices' not in kwargs:
kwargs['choices'] = db_field.get_choices(
include_blank=db_field.blank,
blank_choice=[('', _('None'))]
)
return db_field.formfield(**kwargs)
def formfield_for_foreignkey(self, db_field, request=None, **kwargs):
db = kwargs.get('using')
if db_field.name in self.raw_id_fields:
kwargs['widget'] = widgets.ForeignKeyRawIdWidget(db_field.rel,
self.admin_site, using=db)
elif db_field.name in self.radio_fields:
kwargs['widget'] = widgets.AdminRadioSelect(attrs={
'class': get_ul_class(self.radio_fields[db_field.name]),
})
kwargs['empty_label'] = db_field.blank and _('None') or None
return db_field.formfield(**kwargs)
def formfield_for_manytomany(self, db_field, request=None, **kwargs):
if not db_field.rel.through._meta.auto_created:
return None
db = kwargs.get('using')
if db_field.name in self.raw_id_fields:
kwargs['widget'] = widgets.ManyToManyRawIdWidget(db_field.rel,
self.admin_site, using=db)
kwargs['help_text'] = ''
elif db_field.name in (list(self.filter_vertical) + list(self.filter_horizontal)):
kwargs['widget'] = widgets.FilteredSelectMultiple(db_field.verbose_name, (db_field.name in self.filter_vertical))
return db_field.formfield(**kwargs)
def _declared_fieldsets(self):
if self.fieldsets:
return self.fieldsets
elif self.fields:
return [(None, {'fields': self.fields})]
return None
declared_fieldsets = property(_declared_fieldsets)
def get_ordering(self, request):
return self.ordering or ()
def get_readonly_fields(self, request, obj=None):
return self.readonly_fields
def get_prepopulated_fields(self, request, obj=None):
return self.prepopulated_fields
def queryset(self, request):
qs = self.model._default_manager.get_query_set()
ordering = self.get_ordering(request)
if ordering:
qs = qs.order_by(*ordering)
return qs
def lookup_allowed(self, lookup, value):
model = self.model
for l in model._meta.related_fkey_lookups:
for k, v in widgets.url_params_from_lookup_dict(l).items():
if k == lookup and v == value:
return True
parts = lookup.split(LOOKUP_SEP)
if len(parts) > 1 and parts[-1] in QUERY_TERMS:
parts.pop()
rel_name = None
for part in parts[:-1]:
try:
field, _, _, _ = model._meta.get_field_by_name(part)
except FieldDoesNotExist:
return True
if hasattr(field, 'rel'):
model = field.rel.to
rel_name = field.rel.get_related_field().name
elif isinstance(field, RelatedObject):
model = field.model
rel_name = model._meta.pk.name
else:
rel_name = None
if rel_name and len(parts) > 1 and parts[-1] == rel_name:
parts.pop()
if len(parts) == 1:
return True
clean_lookup = LOOKUP_SEP.join(parts)
return clean_lookup in self.list_filter or clean_lookup == self.date_hierarchy
def to_field_allowed(self, request, to_field):
opts = self.model._meta
try:
field = opts.get_field(to_field)
except FieldDoesNotExist:
return False
if opts.many_to_many and field.primary_key:
return True
registered_models = set()
for model, admin in self.admin_site._registry.items():
registered_models.add(model)
for inline in admin.inlines:
registered_models.add(inline.model)
for related_object in (opts.get_all_related_objects(include_hidden=True) +
opts.get_all_related_many_to_many_objects()):
related_model = related_object.model
if (any(issubclass(model, related_model) for model in registered_models) and
related_object.field.rel.get_related_field() == field):
return True
return False
def has_add_permission(self, request):
opts = self.opts
return request.user.has_perm(opts.app_label + '.' + opts.get_add_permission())
def has_change_permission(self, request, obj=None):
opts = self.opts
return request.user.has_perm(opts.app_label + '.' + opts.get_change_permission())
def has_delete_permission(self, request, obj=None):
opts = self.opts
return request.user.has_perm(opts.app_label + '.' + opts.get_delete_permission())
class ModelAdmin(BaseModelAdmin):
list_display = ('__str__',)
list_display_links = ()
list_filter = ()
list_select_related = False
list_per_page = 100
list_max_show_all = 200
list_editable = ()
search_fields = ()
date_hierarchy = None
save_as = False
save_on_top = False
paginator = Paginator
inlines = []
add_form_template = None
change_form_template = None
change_list_template = None
delete_confirmation_template = None
delete_selected_confirmation_template = None
object_history_template = None
actions = []
action_form = helpers.ActionForm
actions_on_top = True
actions_on_bottom = False
actions_selection_counter = True
def __init__(self, model, admin_site):
self.model = model
self.opts = model._meta
self.admin_site = admin_site
super(ModelAdmin, self).__init__()
def get_inline_instances(self, request, obj=None):
inline_instances = []
for inline_class in self.inlines:
inline = inline_class(self.model, self.admin_site)
if request:
if not (inline.has_add_permission(request) or
inline.has_change_permission(request, obj) or
inline.has_delete_permission(request, obj)):
continue
if not inline.has_add_permission(request):
inline.max_num = 0
inline_instances.append(inline)
return inline_instances
def get_urls(self):
from django.conf.urls import patterns, url
def wrap(view):
def wrapper(*args, **kwargs):
return self.admin_site.admin_view(view)(*args, **kwargs)
return update_wrapper(wrapper, view)
info = self.model._meta.app_label, self.model._meta.module_name
urlpatterns = patterns('',
url(r'^$',
wrap(self.changelist_view),
name='%s_%s_changelist' % info),
url(r'^add/$',
wrap(self.add_view),
name='%s_%s_add' % info),
url(r'^(.+)/history/$',
wrap(self.history_view),
name='%s_%s_history' % info),
url(r'^(.+)/delete/$',
wrap(self.delete_view),
name='%s_%s_delete' % info),
url(r'^(.+)/$',
wrap(self.change_view),
name='%s_%s_change' % info),
)
return urlpatterns
def urls(self):
return self.get_urls()
urls = property(urls)
@property
def media(self):
extra = '' if settings.DEBUG else '.min'
js = [
'core.js',
'admin/RelatedObjectLookups.js',
'jquery%s.js' % extra,
'jquery.init.js'
]
if self.actions is not None:
js.append('actions%s.js' % extra)
if self.prepopulated_fields:
js.extend(['urlify.js', 'prepopulate%s.js' % extra])
if self.opts.get_ordered_objects():
js.extend(['getElementsBySelector.js', 'dom-drag.js' , 'admin/ordering.js'])
return forms.Media(js=[static('admin/js/%s' % url) for url in js])
def get_model_perms(self, request):
return {
'add': self.has_add_permission(request),
'change': self.has_change_permission(request),
'delete': self.has_delete_permission(request),
}
def get_fieldsets(self, request, obj=None):
if self.declared_fieldsets:
return self.declared_fieldsets
form = self.get_form(request, obj)
fields = list(form.base_fields) + list(self.get_readonly_fields(request, obj))
return [(None, {'fields': fields})]
|
MIT License
|
jest-community/jest-pytest
|
src/__tests__/integration/home-assistant/tests/util/test_async.py
|
RunThreadsafeTests.add_coroutine
|
python
|
def add_coroutine(self, a, b, fail, invalid, cancel):
yield from asyncio.sleep(0.05, loop=self.loop)
if cancel:
asyncio.tasks.Task.current_task(self.loop).cancel()
yield
return self.add_callback(a, b, fail, invalid)
|
Wait 0.05 second and return a + b.
|
https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/tests/util/test_async.py#L143-L149
|
import asyncio
from unittest.mock import MagicMock, patch
from unittest import TestCase
import pytest
from homeassistant.util import async_ as hasync
@patch('asyncio.coroutines.iscoroutine')
@patch('concurrent.futures.Future')
@patch('threading.get_ident')
def test_run_coroutine_threadsafe_from_inside_event_loop(
mock_ident, _, mock_iscoroutine):
coro = MagicMock()
loop = MagicMock()
loop._thread_ident = None
mock_ident.return_value = 5
mock_iscoroutine.return_value = True
hasync.run_coroutine_threadsafe(coro, loop)
assert len(loop.call_soon_threadsafe.mock_calls) == 1
loop._thread_ident = 5
mock_ident.return_value = 5
mock_iscoroutine.return_value = True
with pytest.raises(RuntimeError):
hasync.run_coroutine_threadsafe(coro, loop)
assert len(loop.call_soon_threadsafe.mock_calls) == 1
loop._thread_ident = 1
mock_ident.return_value = 5
mock_iscoroutine.return_value = False
with pytest.raises(TypeError):
hasync.run_coroutine_threadsafe(coro, loop)
assert len(loop.call_soon_threadsafe.mock_calls) == 1
loop._thread_ident = 1
mock_ident.return_value = 5
mock_iscoroutine.return_value = True
hasync.run_coroutine_threadsafe(coro, loop)
assert len(loop.call_soon_threadsafe.mock_calls) == 2
@patch('asyncio.coroutines.iscoroutine')
@patch('concurrent.futures.Future')
@patch('threading.get_ident')
def test_fire_coroutine_threadsafe_from_inside_event_loop(
mock_ident, _, mock_iscoroutine):
coro = MagicMock()
loop = MagicMock()
loop._thread_ident = None
mock_ident.return_value = 5
mock_iscoroutine.return_value = True
hasync.fire_coroutine_threadsafe(coro, loop)
assert len(loop.call_soon_threadsafe.mock_calls) == 1
loop._thread_ident = 5
mock_ident.return_value = 5
mock_iscoroutine.return_value = True
with pytest.raises(RuntimeError):
hasync.fire_coroutine_threadsafe(coro, loop)
assert len(loop.call_soon_threadsafe.mock_calls) == 1
loop._thread_ident = 1
mock_ident.return_value = 5
mock_iscoroutine.return_value = False
with pytest.raises(TypeError):
hasync.fire_coroutine_threadsafe(coro, loop)
assert len(loop.call_soon_threadsafe.mock_calls) == 1
loop._thread_ident = 1
mock_ident.return_value = 5
mock_iscoroutine.return_value = True
hasync.fire_coroutine_threadsafe(coro, loop)
assert len(loop.call_soon_threadsafe.mock_calls) == 2
@patch('concurrent.futures.Future')
@patch('threading.get_ident')
def test_run_callback_threadsafe_from_inside_event_loop(mock_ident, _):
callback = MagicMock()
loop = MagicMock()
loop._thread_ident = None
mock_ident.return_value = 5
hasync.run_callback_threadsafe(loop, callback)
assert len(loop.call_soon_threadsafe.mock_calls) == 1
loop._thread_ident = 5
mock_ident.return_value = 5
with pytest.raises(RuntimeError):
hasync.run_callback_threadsafe(loop, callback)
assert len(loop.call_soon_threadsafe.mock_calls) == 1
loop._thread_ident = 1
mock_ident.return_value = 5
hasync.run_callback_threadsafe(loop, callback)
assert len(loop.call_soon_threadsafe.mock_calls) == 2
class RunThreadsafeTests(TestCase):
def setUp(self):
self.loop = asyncio.new_event_loop()
def tearDown(self):
executor = self.loop._default_executor
if executor is not None:
executor.shutdown(wait=True)
self.loop.close()
@staticmethod
def run_briefly(loop):
@asyncio.coroutine
def once():
pass
gen = once()
t = loop.create_task(gen)
try:
loop.run_until_complete(t)
finally:
gen.close()
def add_callback(self, a, b, fail, invalid):
if fail:
raise RuntimeError("Fail!")
if invalid:
raise ValueError("Invalid!")
return a + b
@asyncio.coroutine
|
MIT License
|
windelbouwman/ppci
|
ppci/graph/cfg.py
|
ControlFlowGraph._calculate_post_dominator_info
|
python
|
def _calculate_post_dominator_info(self):
self.validate()
self._pdom = calculate_post_dominators(self.nodes, self.exit_node)
self._spdom = {}
for node in self.nodes:
self._spdom[node] = self._pdom[node] - {node}
self._ipdom = calculate_immediate_post_dominators(
self.nodes, self._pdom, self._spdom
)
|
Calculate the post dominator sets iteratively.
Post domination is the same as domination, but then starting at
the exit node.
|
https://github.com/windelbouwman/ppci/blob/915c069e0667042c085ec42c78e9e3c9a5295324/ppci/graph/cfg.py#L264-L281
|
import logging
from .digraph import DiGraph, DiNode
from . import lt
from .algorithm.fixed_point_dominator import calculate_post_dominators
from .algorithm.fixed_point_dominator import (
calculate_immediate_post_dominators,
)
from collections import namedtuple
class DomTreeNode:
__slots__ = ("node", "children", "interval")
def __init__(self, node, children, interval):
self.node = node
self.children = children
self.interval = interval
def below_or_same(self, other):
return (
other.interval[0] <= self.interval[0]
and self.interval[1] <= other.interval[1]
)
def below(self, other):
return (
other.interval[0] < self.interval[0]
and self.interval[1] < other.interval[1]
)
Loop = namedtuple("Loop", ["header", "rest"])
logger = logging.getLogger("cfg")
def ir_function_to_graph(ir_function):
block_map = {}
cfg = ControlFlowGraph()
cfg.exit_node = ControlFlowNode(cfg, name=None)
block_list = []
worklist = [ir_function.entry]
while worklist:
block = worklist.pop(0)
block_list.append(block)
node = ControlFlowNode(cfg, name=block.name)
assert block not in block_map
block_map[block] = node
for successor_block in block.successors:
if successor_block not in block_map:
if successor_block not in worklist:
worklist.append(successor_block)
cfg.entry_node = block_map[ir_function.entry]
for block in block_list:
node = block_map[block]
if len(block.successors) == 0:
node.add_edge(cfg.exit_node)
else:
for successor_block in block.successors:
successor_node = block_map[successor_block]
node.add_edge(successor_node)
if len(block.successors) == 2:
node.yes = block_map[block.last_instruction.lab_yes]
node.no = block_map[block.last_instruction.lab_no]
logger.debug(
"created cfg for %s with %s nodes", ir_function.name, len(cfg)
)
return cfg, block_map
class ControlFlowGraph(DiGraph):
def __init__(self):
super().__init__()
self.entry_node = None
self.exit_node = None
self._idom = None
self._pdom = None
self._spdom = None
self._ipdom = None
self._reach = None
self.root_tree = None
def validate(self):
assert self.entry_node
assert self.exit_node
def dominates(self, one, other):
if self._idom is None:
self._calculate_dominator_info()
return self.tree_map[other].below_or_same(self.tree_map[one])
def strictly_dominates(self, one, other):
if self._idom is None:
self._calculate_dominator_info()
return self.tree_map[other].below(self.tree_map[one])
def post_dominates(self, one, other):
if self._pdom is None:
self._calculate_post_dominator_info()
return one in self._pdom[other]
def get_immediate_dominator(self, node):
if self._idom is None:
self._calculate_dominator_info()
return self._idom.get(node, None)
def get_immediate_post_dominator(self, node):
if self._ipdom is None:
self._calculate_post_dominator_info()
return self._ipdom[node]
def can_reach(self, one, other):
if self._reach is None:
self.calculate_reach()
return other in self._reach[one]
def _calculate_dominator_info(self):
self.validate()
self._idom = lt.calculate_idom(self, self.entry_node)
self._calculate_dominator_tree()
def _legacy_dom_sets(self):
self._dom = {}
for parent, t in pre_order(self.root_tree):
if parent:
self._dom[t.node] = {t.node} | self._dom[parent.node]
else:
self._dom[t.node] = {t.node}
logger.debug("Ugh %s, %s", t.node, len(self._dom[t.node]))
logger.debug("calculate sdom")
self._sdom = {}
for node in self.nodes:
if node not in self._dom:
self._dom[node] = {node}
self._sdom[node] = set()
else:
self._sdom[node] = self._dom[node] - {node}
logger.debug("calculate sdom --> DONE")
def _calculate_dominator_tree(self):
self.tree_map = {}
for node in self.nodes:
self.tree_map[node] = DomTreeNode(node, list(), None)
for node in self.nodes:
idom_node = self.get_immediate_dominator(node)
if idom_node:
parent = self.tree_map[idom_node]
node = self.tree_map[node]
parent.children.append(node)
self.root_tree = self.tree_map[self.entry_node]
self._number_dominator_tree()
def _number_dominator_tree(self):
t = 0
worklist = [self.root_tree]
discovered = {}
while worklist:
node = worklist[-1]
if node.node in discovered:
node.interval = (discovered[node.node], t)
worklist.pop()
else:
discovered[node.node] = t
for child in node.children:
worklist.append(child)
t += 1
|
BSD 2-Clause Simplified License
|
mraardvark/pyupdi
|
updi/physical.py
|
UpdiPhysical.receive
|
python
|
def receive(self, size):
response = bytearray()
timeout = 1
while size and timeout:
character = self.ser.read()
if character:
response.append(ord(character))
size -= 1
else:
timeout -= 1
self._loginfo("receive", response)
return response
|
Receives a frame of a known number of chars from UPDI
|
https://github.com/mraardvark/pyupdi/blob/46cbed546a87947d7bf42f4b182db573175b031e/updi/physical.py#L83-L104
|
import logging
import time
import serial
import updi.constants as constants
class UpdiPhysical(object):
def __init__(self, port, baud=115200):
self.logger = logging.getLogger("phy")
self.port = port
self.baud = baud
self.ser = None
self.initialise_serial(self.port, self.baud)
self.send([constants.UPDI_BREAK])
def initialise_serial(self, port, baud):
self.logger.info("Opening {} at {} baud".format(port, baud))
self.ser = serial.Serial(port, baud, parity=serial.PARITY_EVEN, timeout=1, stopbits=serial.STOPBITS_TWO)
def _loginfo(self, msg, data):
if data and isinstance(data[0], str):
i_data = [ord(x) for x in data]
else:
i_data = data
data_str = "[" + ", ".join([hex(x) for x in i_data]) + "]"
self.logger.info(msg + ' : ' + data_str)
def send_double_break(self):
self.logger.info("Sending double break")
self.ser.close()
temporary_serial = serial.Serial(self.port, 300, stopbits=serial.STOPBITS_ONE, timeout=1)
temporary_serial.write([constants.UPDI_BREAK, constants.UPDI_BREAK])
temporary_serial.read(2)
temporary_serial.close()
self.initialise_serial(self.port, self.baud)
def send(self, command):
self.logger.info("send %d bytes", len(command))
self._loginfo("data: ", command)
self.ser.write(command)
echo = self.ser.read(len(command))
|
MIT License
|
sondren1288/simple-maths
|
Python/norms.py
|
l1_norm
|
python
|
def l1_norm(lst):
return sum([abs(x) for x in lst])
|
Calculates the l1 norm of a list of numbers
|
https://github.com/sondren1288/simple-maths/blob/2f4efdb909195341fb6a1dc233d4a12137542b65/Python/norms.py#L1-L5
|
MIT License
|
|
opensourcesec/cirtkit
|
integrations/carbonblack/cbcmd.py
|
CblrCli._file_path_fixup
|
python
|
def _file_path_fixup(self, path):
if (self._is_path_absolute(path)):
return path
elif (self._is_path_drive_relative(path)):
return self.cwd[:2] + path
else:
return ntpath.join(self.cwd + '\\', path)
|
We have a pseudo-cwd that we use to
base off all commands. This means we
need to figure out if a given path is relative,
absolute, or file relative and calculate against
the pseudo cwd.
This function takes in a given file path arguemnt
and performs the fixups.
|
https://github.com/opensourcesec/cirtkit/blob/58b8793ada69320ffdbdd4ecdc04a3bb2fa83c37/integrations/carbonblack/cbcmd.py#L322-L340
|
from lib.common.out import *
from lib.core.storage import store_sample, get_sample_path
from lib.core.session import __sessions__
from lib.core.investigation import __project__
from lib.core.database import Database
import os
import cmd
import requests
import threading
import simplejson
import ntpath
import time
import subprocess
import traceback
from re import match
from optparse import OptionParser
class HttpException(Exception):
pass
class QuitException(Exception):
pass
class CmdSensorError(Exception):
pass
class CmdSensorWindowsError(Exception):
def __init__(self, hr):
self.hr = hr
def __str__(self):
return "HRESULT: 0x%x\n" % self.hr
class CliArgsException(Exception):
pass
class CliHelpException(Exception):
pass
class CliAttachError(Exception):
pass
class CliCommandCanceled(Exception):
pass
def split_cli(line):
parts = line.split(' ')
final = []
inQuotes = False
while len(parts) > 0:
tok = parts.pop(0)
if (tok[:1] == '"'):
tok = tok[1:]
next = parts.pop(0)
while(next[-1:] != '"' and len(parts) > 0):
tok += ' ' + next
next = parts.pop(0)
if (next[-1:] == '"'):
tok += ' ' + next[:-1]
final.append(tok)
return final
API_CMD_TO_CLI_CMD = { 'create process' : 'exec',
'create directory' : 'mkdir',
'delete file': 'del',
'put file': 'put',
'directory list' : 'dir',
'get file' : 'get',
'kill' : 'kill',
'process list' : 'ps',
'reg create key' : 'reg',
'reg enum key' : 'reg',
'reg query key' : 'reg',
'reg query value' : 'reg',
'reg delete value' : 'reg',
'reg delete key' : 'reg',
'reg set value' : 'reg',
'memdump' : 'memdump'}
class CliArgs (OptionParser):
def __init__(self, usage=''):
OptionParser.__init__(self, add_help_option=False, usage=usage)
self.add_option('-h', '--help', action='store_true', help='Display this help message.')
def parse_line(self, line):
args = split_cli(line)
return self.parse_args(args)
def parse_args(self, args, values=None):
(opts, args) = OptionParser.parse_args(self, args=args, values=values)
if (opts.help):
self.print_help()
raise CliHelpException()
return (opts, args)
def error(self, msg):
raise CliArgsException(msg)
class CblrCli(cmd.Cmd):
def __init__(self, url, token, httpLog=None, verbose=False):
cmd.Cmd.__init__(self)
self.token = token
self.url = url
self.verbose = verbose
if httpLog is None:
self.logfile = open('integrations/carbonblack/http_cblr.log', "a+")
else:
self.logfile = None
self.session = None
self.cwd = None
self.keepaliveThread = None
self.keepaliveEvent = None
self.keepaliveSec = 0
self.stale_sessions = []
sess = self._session_list(hideStale=False)
for s in sess:
if s['status'] == 'close' or s['status'] == 'timeout':
self.stale_sessions.append(s['id'])
def emptyline(self):
pass
def precmd(self, line):
print ""
return line
def cmdloop(self, intro=None):
while True:
try:
cmd.Cmd.cmdloop(self, intro)
except CliHelpException:
pass
except CliCommandCanceled:
pass
except CliAttachError as e:
print "You must attach to a session"
continue
except CliArgsException as e:
print "Error parsing arguments!\n %s" % e
continue
except HttpException as e:
print "Got an HTTP exception: %s" % e
continue
except CmdSensorWindowsError as e:
print "Command Failed: %s" % e
continue
except Exception as e:
print "Error: %s" % e
import traceback
traceback.print_exc()
return
def _keepaliveThread(self):
self.keepaliveSec = 0
while(not self.keepaliveEvent.is_set()):
self.keepaliveEvent.wait(1)
self.keepaliveSec += 1
if (self.keepaliveSec >= 60):
self.keepaliveSec = 0
try:
url = '%s/api/v1/cblr/session/%d/keepalive' % (self.url, self.session)
self._doGet(url)
except HttpException as e:
pass
def _needs_attached(self):
if (self.session is None):
raise CliAttachError()
def _loghttp(self, msg):
if self.logfile:
self.logfile.write(msg + '\n')
self.logfile.flush()
if self.verbose:
print msg
def _quit(self):
raise KeyboardInterrupt
def _doGet(self, url, params=None, retJSON=True):
self._loghttp("-------------------------")
self._loghttp("GET (url: %s)\n" % url)
headers = {'X-Auth-Token': self.token}
result = requests.get(url, headers=headers, params=params, verify=False, timeout=120)
if result.status_code != 200:
raise HttpException("Error processing HTTP get (%s) - %s" % (url, (result.content)))
if (retJSON):
ret = simplejson.loads(result.content)
else:
ret = result.content
self._loghttp("%r" % ret)
self._loghttp("^^^^^^^^^^^^^^^^^^^^^^^^^")
return ret
def _doPut(self, url, data_dict):
self._loghttp("-------------------------")
self._loghttp("PUT (url: %s) " % url)
self._loghttp("Data: %r\n" % data_dict)
headers = {'X-Auth-Token': self.token}
result = requests.put(url, data=simplejson.dumps(data_dict), headers=headers, verify=False, timeout=120)
if result.status_code != 200:
raise HttpException("Error processing HTTP post (%s) - %s" % (url, (result.content)))
ret = simplejson.loads(result.content)
self._loghttp("%r" % ret)
self._loghttp("^^^^^^^^^^^^^^^^^^^^^^^^^")
return ret
def _doPost(self, url, json_data=None, files=None):
data = None
headers = {'X-Auth-Token': self.token}
self._loghttp("-------------------------")
self._loghttp("POST (url: %s) " % url)
if (json_data):
self._loghttp("Data: %r\n" % json_data)
data = simplejson.dumps(json_data)
if (files):
self._loghttp("Files: %r" % files)
result = requests.post(url,
data=data,
headers=headers,
files=files,
verify=False,
timeout=120)
if result.status_code != 200:
raise HttpException("Error processing HTTP post (%s) - %s" % (url, (result.content)))
ret = simplejson.loads(result.content)
self._loghttp("%r" % ret)
self._loghttp("^^^^^^^^^^^^^^^^^^^^^^^^^")
return ret
def _is_path_absolute(self, path):
if path.startswith('\\\\'):
return True
if (path[0].isalpha() and path[1:3] == ':\\'):
return True
return False
def _is_path_drive_relative(self, path):
if path == '\\':
return True
if path[0] == '\\' and path[1] != '\\':
return True
return False
|
MIT License
|
awemulya/kobo-predict
|
onadata/libs/serializers/password_reset_serializer.py
|
PasswordReset.save
|
python
|
def save(self,
subject_template_name='registration/password_reset_subject.txt',
email_template_name='api_password_reset_email.html',
token_generator=default_token_generator,
from_email=None):
email = self.email
reset_url = self.reset_url
active_users = User.objects.filter(email__iexact=email, is_active=True)
for user in active_users:
if not user.has_usable_password():
continue
subject, email = get_password_reset_email(
user, reset_url, subject_template_name, email_template_name)
send_mail(subject, email, from_email, [user.email])
|
Generates a one-use only link for resetting password and sends to the
user.
|
https://github.com/awemulya/kobo-predict/blob/f302d084e30fb637d43ec638c701e01a3dddc721/onadata/libs/serializers/password_reset_serializer.py#L71-L91
|
from django.contrib.auth.models import User
from django.contrib.auth.tokens import default_token_generator
from django.core.mail import send_mail
from django.core.validators import ValidationError
from django.template import loader
from django.utils.encoding import force_bytes
from django.utils.http import urlsafe_base64_decode
from django.utils.http import urlsafe_base64_encode
from django.utils.translation import ugettext_lazy as _
from rest_framework import serializers
from urlparse import urlparse
def get_password_reset_email(user, reset_url,
subject_template_name='registration/password_reset_subject.txt',
email_template_name='api_password_reset_email.html',
token_generator=default_token_generator):
result = urlparse(reset_url)
site_name = domain = result.hostname
c = {
'email': user.email,
'domain': domain,
'path': result.path,
'site_name': site_name,
'uid': urlsafe_base64_encode(force_bytes(user.pk)),
'username': user.username,
'encoded_username': urlsafe_base64_encode(user.username),
'token': token_generator.make_token(user),
'protocol': result.scheme if result.scheme != '' else 'http',
}
subject = loader.render_to_string(subject_template_name, c)
subject = ''.join(subject.splitlines())
email = loader.render_to_string(email_template_name, c)
return subject, email
def get_user_from_uid(uid):
if uid is None:
raise ValidationError(_("uid is required!"))
try:
uid = urlsafe_base64_decode(uid)
user = User.objects.get(pk=uid)
except (TypeError, ValueError, OverflowError, User.DoesNotExist):
raise ValidationError(_(u"Invalid uid %s") % uid)
return user
class PasswordResetChange(object):
def __init__(self, uid, new_password, token):
self.uid = uid
self.new_password = new_password
self.token = token
def save(self):
user = get_user_from_uid(self.uid)
if user:
user.set_password(self.new_password)
user.save()
class PasswordReset(object):
def __init__(self, email, reset_url):
self.email = email
self.reset_url = reset_url
|
BSD 2-Clause Simplified License
|
awslabs/dgl-ke
|
python/dglke/dataloader/sampler.py
|
WikiEvalSampler.reset
|
python
|
def reset(self):
self.cnt = 0
return self
|
Reset the sampler
|
https://github.com/awslabs/dgl-ke/blob/30558e069c42038cded08bddd26ac75f153aae75/python/dglke/dataloader/sampler.py#L644-L648
|
import math
import numpy as np
import scipy as sp
import dgl.backend as F
import dgl
import os
import sys
import pickle
import time
from dgl.base import NID, EID
def SoftRelationPartition(edges, n, has_importance=False, threshold=0.05):
if has_importance:
heads, rels, tails, e_impts = edges
else:
heads, rels, tails = edges
print('relation partition {} edges into {} parts'.format(len(heads), n))
uniq, cnts = np.unique(rels, return_counts=True)
idx = np.flip(np.argsort(cnts))
cnts = cnts[idx]
uniq = uniq[idx]
assert cnts[0] > cnts[-1]
edge_cnts = np.zeros(shape=(n,), dtype=np.int64)
rel_cnts = np.zeros(shape=(n,), dtype=np.int64)
rel_dict = {}
rel_parts = []
cross_rel_part = []
for _ in range(n):
rel_parts.append([])
large_threshold = int(len(rels) * threshold)
capacity_per_partition = int(len(rels) / n)
large_threshold = capacity_per_partition if capacity_per_partition < large_threshold else large_threshold
num_cross_part = 0
for i in range(len(cnts)):
cnt = cnts[i]
r = uniq[i]
r_parts = []
if cnt > large_threshold:
avg_part_cnt = (cnt // n) + 1
num_cross_part += 1
for j in range(n):
part_cnt = avg_part_cnt if cnt > avg_part_cnt else cnt
r_parts.append([j, part_cnt])
rel_parts[j].append(r)
edge_cnts[j] += part_cnt
rel_cnts[j] += 1
cnt -= part_cnt
cross_rel_part.append(r)
else:
idx = np.argmin(edge_cnts)
r_parts.append([idx, cnt])
rel_parts[idx].append(r)
edge_cnts[idx] += cnt
rel_cnts[idx] += 1
rel_dict[r] = r_parts
for i, edge_cnt in enumerate(edge_cnts):
print('part {} has {} edges and {} relations'.format(i, edge_cnt, rel_cnts[i]))
print('{}/{} duplicated relation across partitions'.format(num_cross_part, len(cnts)))
parts = []
for i in range(n):
parts.append([])
rel_parts[i] = np.array(rel_parts[i])
for i, r in enumerate(rels):
r_part = rel_dict[r][0]
part_idx = r_part[0]
cnt = r_part[1]
parts[part_idx].append(i)
cnt -= 1
if cnt == 0:
rel_dict[r].pop(0)
else:
rel_dict[r][0][1] = cnt
for i, part in enumerate(parts):
parts[i] = np.array(part, dtype=np.int64)
shuffle_idx = np.concatenate(parts)
heads[:] = heads[shuffle_idx]
rels[:] = rels[shuffle_idx]
tails[:] = tails[shuffle_idx]
if has_importance:
e_impts[:] = e_impts[shuffle_idx]
off = 0
for i, part in enumerate(parts):
parts[i] = np.arange(off, off + len(part))
off += len(part)
cross_rel_part = np.array(cross_rel_part)
return parts, rel_parts, num_cross_part > 0, cross_rel_part
def BalancedRelationPartition(edges, n, has_importance=False):
if has_importance:
heads, rels, tails, e_impts = edges
else:
heads, rels, tails = edges
print('relation partition {} edges into {} parts'.format(len(heads), n))
uniq, cnts = np.unique(rels, return_counts=True)
idx = np.flip(np.argsort(cnts))
cnts = cnts[idx]
uniq = uniq[idx]
assert cnts[0] > cnts[-1]
edge_cnts = np.zeros(shape=(n,), dtype=np.int64)
rel_cnts = np.zeros(shape=(n,), dtype=np.int64)
rel_dict = {}
rel_parts = []
for _ in range(n):
rel_parts.append([])
max_edges = (len(rels) // n) + 1
num_cross_part = 0
for i in range(len(cnts)):
cnt = cnts[i]
r = uniq[i]
r_parts = []
while cnt > 0:
idx = np.argmin(edge_cnts)
if edge_cnts[idx] + cnt <= max_edges:
r_parts.append([idx, cnt])
rel_parts[idx].append(r)
edge_cnts[idx] += cnt
rel_cnts[idx] += 1
cnt = 0
else:
cur_cnt = max_edges - edge_cnts[idx]
r_parts.append([idx, cur_cnt])
rel_parts[idx].append(r)
edge_cnts[idx] += cur_cnt
rel_cnts[idx] += 1
num_cross_part += 1
cnt -= cur_cnt
rel_dict[r] = r_parts
for i, edge_cnt in enumerate(edge_cnts):
print('part {} has {} edges and {} relations'.format(i, edge_cnt, rel_cnts[i]))
print('{}/{} duplicated relation across partitions'.format(num_cross_part, len(cnts)))
parts = []
for i in range(n):
parts.append([])
rel_parts[i] = np.array(rel_parts[i])
for i, r in enumerate(rels):
r_part = rel_dict[r][0]
part_idx = r_part[0]
cnt = r_part[1]
parts[part_idx].append(i)
cnt -= 1
if cnt == 0:
rel_dict[r].pop(0)
else:
rel_dict[r][0][1] = cnt
for i, part in enumerate(parts):
parts[i] = np.array(part, dtype=np.int64)
shuffle_idx = np.concatenate(parts)
heads[:] = heads[shuffle_idx]
rels[:] = rels[shuffle_idx]
tails[:] = tails[shuffle_idx]
if has_importance:
e_impts[:] = e_impts[shuffle_idx]
off = 0
for i, part in enumerate(parts):
parts[i] = np.arange(off, off + len(part))
off += len(part)
return parts, rel_parts, num_cross_part > 0
def RandomPartition(edges, n, has_importance=False):
if has_importance:
heads, rels, tails, e_impts = edges
else:
heads, rels, tails = edges
print('random partition {} edges into {} parts'.format(len(heads), n))
idx = np.random.permutation(len(heads))
heads[:] = heads[idx]
rels[:] = rels[idx]
tails[:] = tails[idx]
if has_importance:
e_impts[:] = e_impts[idx]
part_size = int(math.ceil(len(idx) / n))
parts = []
for i in range(n):
start = part_size * i
end = min(part_size * (i + 1), len(idx))
parts.append(idx[start:end])
print('part {} has {} edges'.format(i, len(parts[-1])))
return parts
def ConstructGraph(dataset, args):
src = [dataset.train[0]]
etype_id = [dataset.train[1]]
dst = [dataset.train[2]]
num_train = len(dataset.train[0])
if args.dataset == "wikikg90M":
valid_dict = dataset.valid
num_valid = len(valid_dict['h,r->t']['hr'])
elif hasattr(dataset, 'valid') and dataset.valid is not None:
src.append(dataset.valid[0])
etype_id.append(dataset.valid[1])
dst.append(dataset.valid[2])
num_valid = len(dataset.valid[0])
else:
num_valid = 0
if args.dataset == "wikikg90M":
test_dict = dataset.test
num_test = len(test_dict['h,r->t']['hr'])
elif hasattr(dataset, 'test') and dataset.test is not None:
src.append(dataset.test[0])
etype_id.append(dataset.test[1])
dst.append(dataset.test[2])
num_test = len(dataset.test[0])
else:
num_test = 0
if args.dataset == "wikikg90M":
print('|valid|:', num_valid)
print('|test|:', num_test)
return
src = np.concatenate(src)
etype_id = np.concatenate(etype_id)
dst = np.concatenate(dst)
n_entities = dataset.n_entities
coo = sp.sparse.coo_matrix((np.ones(len(src)), (src, dst)), shape=[n_entities, n_entities])
g = dgl.DGLGraph(coo, readonly=True, multigraph=True, sort_csr=True)
g.edata['tid'] = F.tensor(etype_id, F.int64)
if args.has_edge_importance:
e_impts = F.tensor(dataset.train[3], F.float32)
e_impts_vt = F.zeros((num_valid + num_test,), dtype=F.float32, ctx=F.cpu())
g.edata['impts'] = F.cat([e_impts, e_impts_vt], dim=0)
return g
class TrainDataset(object):
def __init__(self, g, dataset, args, ranks=64, has_importance=False):
triples = dataset.train
num_train = len(triples[0])
print('|Train|:', num_train)
if ranks > 1 and args.rel_part:
self.edge_parts, self.rel_parts, self.cross_part, self.cross_rels = SoftRelationPartition(triples, ranks, has_importance=has_importance)
elif ranks > 1:
self.edge_parts = RandomPartition(triples, ranks, has_importance=has_importance)
self.cross_part = True
else:
self.edge_parts = [np.arange(num_train)]
self.rel_parts = [np.arange(dataset.n_relations)]
self.cross_part = False
self.g = g
def create_sampler(self, batch_size, neg_sample_size=2, neg_chunk_size=None, mode='head', num_workers=32,
shuffle=True, exclude_positive=False, rank=0):
EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler')
assert batch_size % neg_sample_size == 0, 'batch_size should be divisible by B'
return EdgeSampler(self.g,
seed_edges=F.tensor(self.edge_parts[rank]),
batch_size=batch_size,
neg_sample_size=int(neg_sample_size/neg_chunk_size),
chunk_size=neg_chunk_size,
negative_mode=mode,
num_workers=num_workers,
shuffle=shuffle,
exclude_positive=exclude_positive,
return_false_neg=False)
class ChunkNegEdgeSubgraph(dgl.DGLGraph):
def __init__(self, subg, num_chunks, chunk_size,
neg_sample_size, neg_head):
super(ChunkNegEdgeSubgraph, self).__init__(graph_data=subg.sgi.graph,
readonly=True,
parent=subg._parent)
self.ndata[NID] = subg.sgi.induced_nodes.tousertensor()
self.edata[EID] = subg.sgi.induced_edges.tousertensor()
self.subg = subg
self.num_chunks = num_chunks
self.chunk_size = chunk_size
self.neg_sample_size = neg_sample_size
self.neg_head = neg_head
@property
def head_nid(self):
return self.subg.head_nid
@property
def tail_nid(self):
return self.subg.tail_nid
def create_neg_subgraph(pos_g, neg_g, chunk_size, neg_sample_size, is_chunked,
neg_head, num_nodes):
assert neg_g.number_of_edges() % pos_g.number_of_edges() == 0
if (neg_head and len(neg_g.head_nid) == num_nodes) or (not neg_head and len(neg_g.tail_nid) == num_nodes):
num_chunks = 1
chunk_size = pos_g.number_of_edges()
elif is_chunked:
if pos_g.number_of_edges() < chunk_size and neg_g.number_of_edges() % neg_sample_size == 0:
num_chunks = 1
chunk_size = pos_g.number_of_edges()
elif pos_g.number_of_edges() % chunk_size > 0:
return None
else:
num_chunks = int(pos_g.number_of_edges() / chunk_size)
assert num_chunks * chunk_size == pos_g.number_of_edges()
else:
num_chunks = pos_g.number_of_edges()
chunk_size = 1
return ChunkNegEdgeSubgraph(neg_g, num_chunks, chunk_size,
neg_sample_size, neg_head)
class EvalSampler(object):
def __init__(self, g, edges, batch_size, neg_sample_size, neg_chunk_size, mode, num_workers=32,
filter_false_neg=True):
EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler')
self.sampler = EdgeSampler(g,
batch_size=batch_size,
seed_edges=edges,
neg_sample_size=neg_sample_size,
chunk_size=neg_chunk_size,
negative_mode=mode,
num_workers=num_workers,
shuffle=False,
exclude_positive=False,
relations=g.edata['tid'],
return_false_neg=filter_false_neg)
self.sampler_iter = iter(self.sampler)
self.mode = mode
self.neg_head = 'head' in mode
self.g = g
self.filter_false_neg = filter_false_neg
self.neg_chunk_size = neg_chunk_size
self.neg_sample_size = neg_sample_size
def __iter__(self):
return self
def __next__(self):
while True:
pos_g, neg_g = next(self.sampler_iter)
if self.filter_false_neg:
neg_positive = neg_g.edata['false_neg']
neg_g = create_neg_subgraph(pos_g, neg_g,
self.neg_chunk_size,
self.neg_sample_size,
'chunk' in self.mode,
self.neg_head,
self.g.number_of_nodes())
if neg_g is not None:
break
pos_g.ndata['id'] = pos_g.parent_nid
neg_g.ndata['id'] = neg_g.parent_nid
pos_g.edata['id'] = pos_g._parent.edata['tid'][pos_g.parent_eid]
if self.filter_false_neg:
neg_g.edata['bias'] = F.astype(-neg_positive, F.float32)
return pos_g, neg_g
def reset(self):
self.sampler_iter = iter(self.sampler)
return self
class WikiEvalSampler(object):
def __init__(self, edges, batch_size, mode):
self.edges = edges
self.batch_size = batch_size
self.mode = mode
self.neg_head = 'head' in mode
self.cnt = 0
self.mode = 'h,r->t'
self.num_edges = len(self.edges['h,r->t']['hr'])
def __iter__(self):
return self
def __next__(self):
if self.cnt == self.num_edges:
raise StopIteration
beg = self.cnt
if self.cnt + self.batch_size > self.num_edges:
self.cnt = self.num_edges
else:
self.cnt += self.batch_size
return F.tensor(self.edges['h,r->t']['hr'][beg:self.cnt], F.int64), F.tensor(self.edges['h,r->t']['t_correct_index'][beg:self.cnt], F.int64), F.tensor(self.edges['h,r->t']['t_candidate'][beg:self.cnt], F.int64)
|
Apache License 2.0
|
plaid/plaid-python
|
plaid/model/signal_evaluate_response.py
|
SignalEvaluateResponse.openapi_types
|
python
|
def openapi_types():
lazy_import()
return {
'request_id': (str,),
'scores': (SignalScores,),
'core_attributes': (SignalEvaluateCoreAttributes,),
}
|
This must be a method because a model may have properties that are
of type self, this must run after the class is loaded
Returns
openapi_types (dict): The key is attribute name
and the value is attribute type.
|
https://github.com/plaid/plaid-python/blob/950d04d621a5f5b92a7705cc30d14d4004db8543/plaid/model/signal_evaluate_response.py#L76-L90
|
import re
import sys
from plaid.model_utils import (
ApiTypeError,
ModelComposed,
ModelNormal,
ModelSimple,
cached_property,
change_keys_js_to_python,
convert_js_args_to_python_args,
date,
datetime,
file_type,
none_type,
validate_get_composed_info,
)
def lazy_import():
from plaid.model.signal_evaluate_core_attributes import SignalEvaluateCoreAttributes
from plaid.model.signal_scores import SignalScores
globals()['SignalEvaluateCoreAttributes'] = SignalEvaluateCoreAttributes
globals()['SignalScores'] = SignalScores
class SignalEvaluateResponse(ModelNormal):
allowed_values = {
}
validations = {
}
@cached_property
def additional_properties_type():
lazy_import()
return (bool, date, datetime, dict, float, int, list, str, none_type,)
_nullable = False
@cached_property
|
MIT License
|
dragonfly/dragonfly
|
dragonfly/exd/cp_domain_utils.py
|
_unpack_vectorised_domain
|
python
|
def _unpack_vectorised_domain(x, dim_ordering):
ret = [None] * len(dim_ordering)
counter = 0
for idx, num_dims in enumerate(dim_ordering):
if num_dims == '':
ret[idx] = x[counter]
counter += 1
else:
ret[idx] = x[counter:counter+num_dims]
counter += num_dims
assert counter == len(x)
return ret
|
Unpacks a vectorised domain.
|
https://github.com/dragonfly/dragonfly/blob/a579b5eadf452e23b07d4caf27b402703b0012b7/dragonfly/exd/cp_domain_utils.py#L306-L318
|
from __future__ import print_function
from argparse import Namespace
from copy import deepcopy
import numpy as np
from warnings import warn
from . import domains
from ..parse.config_parser import config_parser
from ..utils.general_utils import flatten_list_of_objects_and_iterables, get_original_order_from_reordered_list, transpose_list_of_lists
from ..utils.oper_utils import random_sample_from_euclidean_domain, random_sample_from_discrete_euclidean_domain, random_sample_from_integral_domain, random_sample_from_prod_discrete_domain
def _process_fidel_to_opt(raw_fidel_to_opt, fidel_space, fidel_space_orderings,
config_file):
if raw_fidel_to_opt is None:
fidel_to_opt = None
warn('fidel_to_opt is None for %s.'%(config_file))
else:
try:
fidel_to_opt = get_processed_point_from_raw_point(raw_fidel_to_opt,
fidel_space, fidel_space_orderings.index_ordering,
fidel_space_orderings.dim_ordering)
assert fidel_space.is_a_member(fidel_to_opt)
except:
raise ValueError('fidel_to_opt: %s (raw: %s) is not a member of fidel_space %s.'%(
fidel_to_opt, raw_fidel_to_opt, fidel_space))
return raw_fidel_to_opt, fidel_to_opt
def _preprocess_domain_parameters(domain_parameters, var_prefix='var_'):
if domain_parameters is None:
return domain_parameters
for idx, var_dict in enumerate(domain_parameters):
if not 'name' in var_dict.keys():
var_dict['name'] = '%s%02d'%(var_prefix, idx)
if not 'dim' in var_dict.keys():
var_dict['dim'] = ''
if not 'kernel' in var_dict.keys():
var_dict['kernel'] = ''
if var_dict['type'] in ['float', 'int']:
if not ('min' in var_dict.keys() and 'max' in var_dict.keys()):
if not 'bounds' in var_dict.keys():
raise ValueError('Specify bounds or min and max for Euclidean and Integral ' +
'variables: %s.'%(var_dict))
else:
var_dict['min'] = var_dict['bounds'][0]
var_dict['max'] = var_dict['bounds'][1]
if var_dict['type'] == 'discrete_numeric':
if 'items' not in var_dict.keys():
raise ValueError('Specify items for discrete_numeric variables.')
if isinstance(var_dict['items'], str):
if ':' not in var_dict['items']:
_items = [float(x) for x in var_dict['items'].split('-')]
else:
_range = [float(x) for x in var_dict['items'].split(':')]
_items = list(np.arange(_range[0], _range[2], _range[1]))
var_dict['items'] = _items
if var_dict['type'] == 'discrete_euclidean' and var_dict['dim'] != '':
raise ValueError('dim parameter for Discrete Euclidean vectors should be an empty' +
' string or not specified. Given %s.'%(var_dict['dim']))
return domain_parameters
def _preprocess_domain_constraints(domain_constraints, constraint_prefix):
if domain_constraints is None:
return domain_constraints
for idx, var_dict in enumerate(domain_constraints):
if not 'name' in var_dict.keys():
var_dict['name'] = '%s%02d'%(constraint_prefix, idx)
return domain_constraints
def _preprocess_config_params(config_params):
config_params = deepcopy(config_params)
if not 'name' in config_params:
if 'exp_info' in config_params and 'name' in config_params['exp_info']:
config_params['name'] = config_params['exp_info']['name']
else:
config_params['name'] = 'no_name'
config_params['domain'] = _preprocess_domain_parameters(config_params['domain'],
var_prefix='domvar_')
if 'domain_constraints' in config_params:
config_params['domain_constraints'] = _preprocess_domain_constraints(
config_params['domain_constraints'], 'domconstraint_')
if 'fidel_space' in config_params:
config_params['fidel_space'] = _preprocess_domain_parameters(
config_params['fidel_space'], var_prefix='fidelvar_')
if 'fidel_space_constraints' in config_params:
config_params['fidel_space_constraints'] = _preprocess_domain_constraints(
config_params['fidel_space_constraints'], 'fidelconstraint_')
return config_params
def load_config_file(config_file, *args, **kwargs):
parsed_result = config_parser(config_file)
return load_config(parsed_result, config_file, *args, **kwargs)
def load_config(config_params, config_file=None, *args, **kwargs):
config_params = _preprocess_config_params(config_params)
domain_params = config_params['domain']
domain_constraints = None if not ('domain_constraints' in config_params.keys()) else config_params['domain_constraints']
domain_info = Namespace(config_file=config_file)
domain, domain_orderings = load_domain_from_params(domain_params,
domain_constraints=domain_constraints, domain_info=domain_info, *args, **kwargs)
config = Namespace(name=config_params['name'],
domain=domain, domain_orderings=domain_orderings)
if 'fidel_space' in config_params.keys():
fidel_space_params = config_params['fidel_space']
fidel_space_constraints = None if not ('fidel_space_constraints' in
config_params.keys()) else config_params['fidel_space_constraints']
fidel_space_info = Namespace(config_file=config_file)
fidel_space, fidel_space_orderings = load_domain_from_params(
fidel_space_params, domain_constraints=fidel_space_constraints,
domain_info=fidel_space_info, *args, **kwargs)
if len(fidel_space.list_of_domains) > 0:
config.fidel_space = fidel_space
config.fidel_space_orderings = fidel_space_orderings
config.raw_fidel_to_opt, config.fidel_to_opt = _process_fidel_to_opt(
config_params['fidel_to_opt'], fidel_space, fidel_space_orderings,
config_file)
return config
def load_cp_domain_from_config_file(config_file, *args, **kwargs):
parsed_result = config_parser(config_file)
domain_params = parsed_result['domain']
domain_constraints = None if not ('domain_constraints' in parsed_result.keys()) else parsed_result['domain_constraints']
domain_info = Namespace(config_file=config_file)
return load_domain_from_params(domain_params, domain_constraints=domain_constraints,
domain_info=domain_info, *args, **kwargs)
def load_domain_from_params(domain_params,
general_euclidean_kernel='', general_integral_kernel='',
general_discrete_kernel='', general_discrete_numeric_kernel='',
domain_constraints=None, domain_info=None):
list_of_domains = []
general_euclidean_bounds = []
general_euclidean_idxs = []
general_integral_bounds = []
general_integral_idxs = []
general_discrete_items_list = []
general_discrete_idxs = []
general_discrete_numeric_items_list = []
general_discrete_numeric_idxs = []
raw_name_ordering = []
index_ordering = []
for idx, param in enumerate(domain_params):
raw_name_ordering.append(param['name'])
if param['type'] in ['float', 'int']:
bound_dim = 1 if param['dim'] == '' else param['dim']
curr_bounds = [[param['min'], param['max']]] * bound_dim
elif param['type'] in ['discrete', 'discrete_numeric', 'boolean',
'discrete_euclidean']:
items_dim = 1 if param['dim'] == '' else param['dim']
if param['type'] == 'boolean':
param_items = [0, 1]
else:
param_items = param['items']
curr_items = [param_items[:] for _ in range(items_dim)]
if param['type'] == 'float':
if param['kernel'] == '':
general_euclidean_bounds.extend(curr_bounds)
general_euclidean_idxs.append(idx)
else:
list_of_domains.append(domains.EuclideanDomain(curr_bounds))
index_ordering.append(idx)
elif param['type'] == 'int':
if param['kernel'] == '':
general_integral_bounds.extend(curr_bounds)
general_integral_idxs.append(idx)
else:
list_of_domains.append(domains.IntegralDomain(curr_bounds))
index_ordering.append(idx)
elif param['type'] in ['boolean', 'discrete']:
if param['kernel'] == '':
general_discrete_items_list.extend(curr_items)
general_discrete_idxs.append(idx)
else:
list_of_domains.append(domains.ProdDiscreteDomain(curr_items))
index_ordering.append(idx)
elif param['type'] == 'discrete_numeric':
if param['kernel'] == '':
general_discrete_numeric_items_list.extend(curr_items)
general_discrete_numeric_idxs.append(idx)
else:
list_of_domains.append(domains.ProdDiscreteNumericDomain(curr_items))
index_ordering.append(idx)
elif param['type'] == 'discrete_euclidean':
list_of_domains.append(domains.DiscreteEuclideanDomain(param_items))
index_ordering.append(idx)
elif param['type'].startswith(('nn', 'cnn', 'mlp')):
from ..nn.nn_domains import get_nn_domain_from_constraints
list_of_domains.append(get_nn_domain_from_constraints(param['type'], param))
index_ordering.append(idx)
else:
raise ValueError('Unknown domain type: %s.'%(param['type']))
kernel_ordering = [domain_params[idx]['kernel'] for idx in index_ordering]
name_ordering = [domain_params[idx]['name'] for idx in index_ordering]
dim_ordering = [domain_params[idx]['dim'] for idx in index_ordering]
if len(general_euclidean_bounds) > 0:
list_of_domains.append(domains.EuclideanDomain(general_euclidean_bounds))
general_euclidean_names = [domain_params[idx]['name'] for idx in
general_euclidean_idxs]
general_euclidean_dims = [domain_params[idx]['dim'] for idx in general_euclidean_idxs]
name_ordering.append(general_euclidean_names)
dim_ordering.append(general_euclidean_dims)
index_ordering.append(general_euclidean_idxs)
kernel_ordering.append(general_euclidean_kernel)
if len(general_integral_bounds) > 0:
list_of_domains.append(domains.IntegralDomain(general_integral_bounds))
general_integral_names = [domain_params[idx]['name'] for idx in general_integral_idxs]
general_integral_dims = [domain_params[idx]['dim'] for idx in general_integral_idxs]
name_ordering.append(general_integral_names)
dim_ordering.append(general_integral_dims)
index_ordering.append(general_integral_idxs)
kernel_ordering.append(general_integral_kernel)
if len(general_discrete_items_list) > 0:
list_of_domains.append(domains.ProdDiscreteDomain(general_discrete_items_list))
general_discrete_names = [domain_params[idx]['name'] for idx in general_discrete_idxs]
general_discrete_dims = [domain_params[idx]['dim'] for idx in general_discrete_idxs]
name_ordering.append(general_discrete_names)
dim_ordering.append(general_discrete_dims)
index_ordering.append(general_discrete_idxs)
kernel_ordering.append(general_discrete_kernel)
if len(general_discrete_numeric_items_list) > 0:
list_of_domains.append(
domains.ProdDiscreteNumericDomain(general_discrete_numeric_items_list))
general_discrete_numeric_names = [domain_params[idx]['name'] for idx in general_discrete_numeric_idxs]
general_discrete_numeric_dims = [domain_params[idx]['dim'] for idx in general_discrete_numeric_idxs]
name_ordering.append(general_discrete_numeric_names)
dim_ordering.append(general_discrete_numeric_dims)
index_ordering.append(general_discrete_numeric_idxs)
kernel_ordering.append(general_discrete_numeric_kernel)
orderings = Namespace(index_ordering=index_ordering,
kernel_ordering=kernel_ordering,
dim_ordering=dim_ordering,
name_ordering=name_ordering,
raw_name_ordering=raw_name_ordering)
if domain_info is None:
domain_info = Namespace()
domain_info.config_orderings = orderings
if domain_constraints is not None:
domain_info.constraints = domain_constraints
cp_domain = domains.CartesianProductDomain(list_of_domains, domain_info)
return cp_domain, orderings
def get_num_raw_domains(ordering):
num_raw_domains = len(ordering)
for elem in ordering:
if hasattr(elem, '__iter__'):
num_raw_domains += len(elem) - 1
return num_raw_domains
|
MIT License
|
exiahuang/salesforcexytools
|
xlsxwriter/sharedstrings.py
|
SharedStringTable._get_strings
|
python
|
def _get_strings(self):
return self.string_array
|
Return the sorted string list.
|
https://github.com/exiahuang/salesforcexytools/blob/dde689292bc991c1357ec7479a8e291cb537e8ff/xlsxwriter/sharedstrings.py#L151-L153
|
import re
from . import xmlwriter
class SharedStrings(xmlwriter.XMLwriter):
def __init__(self):
super(SharedStrings, self).__init__()
self.string_table = None
def _assemble_xml_file(self):
self._xml_declaration()
self._write_sst()
self._write_sst_strings()
self._xml_end_tag('sst')
self._xml_close()
def _write_sst(self):
xmlns = 'http://schemas.openxmlformats.org/spreadsheetml/2006/main'
attributes = [
('xmlns', xmlns),
('count', self.string_table.count),
('uniqueCount', self.string_table.unique_count),
]
self._xml_start_tag('sst', attributes)
def _write_sst_strings(self):
for string in (self.string_table._get_strings()):
self._write_si(string)
def _write_si(self, string):
attributes = []
string = re.sub('(_x[0-9a-fA-F]{4}_)', r'_x005F\1', string)
string = re.sub(r'([\x00-\x08\x0B-\x1F])',
lambda match: "_x%04X_" %
ord(match.group(1)), string)
if re.search('^\s', string) or re.search('\s$', string):
attributes.append(('xml:space', 'preserve'))
if re.search('^<r>', string) and re.search('</r>$', string):
self._xml_rich_si_element(string)
else:
self._xml_si_element(string, attributes)
class SharedStringTable(object):
def __init__(self):
self.count = 0
self.unique_count = 0
self.string_table = {}
self.string_array = []
def _get_shared_string_index(self, string):
if string not in self.string_table:
index = self.unique_count
self.string_table[string] = index
self.count += 1
self.unique_count += 1
return index
else:
index = self.string_table[string]
self.count += 1
return index
def _get_shared_string(self, index):
return self.string_array[index]
def _sort_string_data(self):
self.string_array = sorted(self.string_table,
key=self.string_table.__getitem__)
self.string_table = {}
|
Apache License 2.0
|
jeeftor/alfredtoday
|
src/lib/oauth2client/contrib/appengine.py
|
OAuth2Decorator._create_flow
|
python
|
def _create_flow(self, request_handler):
if self.flow is None:
redirect_uri = request_handler.request.relative_url(
self._callback_path)
self.flow = OAuth2WebServerFlow(
self._client_id, self._client_secret, self._scope,
redirect_uri=redirect_uri, user_agent=self._user_agent,
auth_uri=self._auth_uri, token_uri=self._token_uri,
revoke_uri=self._revoke_uri, **self._kwargs)
|
Create the Flow object.
The Flow is calculated lazily since we don't know where this app is
running until it receives a request, at which point redirect_uri can be
calculated and then the Flow object can be constructed.
Args:
request_handler: webapp.RequestHandler, the request handler.
|
https://github.com/jeeftor/alfredtoday/blob/f6e2c2228caa71015e654e1fdbf552e2ca4f90ad/src/lib/oauth2client/contrib/appengine.py#L676-L693
|
import cgi
import json
import logging
import os
import pickle
import threading
import httplib2
import webapp2 as webapp
from google.appengine.api import app_identity
from google.appengine.api import memcache
from google.appengine.api import users
from google.appengine.ext import db
from google.appengine.ext.webapp.util import login_required
from oauth2client import GOOGLE_AUTH_URI
from oauth2client import GOOGLE_REVOKE_URI
from oauth2client import GOOGLE_TOKEN_URI
from oauth2client import clientsecrets
from oauth2client import util
from oauth2client.client import AccessTokenRefreshError
from oauth2client.client import AssertionCredentials
from oauth2client.client import Credentials
from oauth2client.client import Flow
from oauth2client.client import OAuth2WebServerFlow
from oauth2client.client import Storage
from oauth2client.contrib import xsrfutil
try:
from oauth2client.contrib import _appengine_ndb
except ImportError:
_appengine_ndb = None
__author__ = 'jcgregorio@google.com (Joe Gregorio)'
logger = logging.getLogger(__name__)
OAUTH2CLIENT_NAMESPACE = 'oauth2client#ns'
XSRF_MEMCACHE_ID = 'xsrf_secret_key'
if _appengine_ndb is None:
CredentialsNDBModel = None
CredentialsNDBProperty = None
FlowNDBProperty = None
_NDB_KEY = None
_NDB_MODEL = None
SiteXsrfSecretKeyNDB = None
else:
CredentialsNDBModel = _appengine_ndb.CredentialsNDBModel
CredentialsNDBProperty = _appengine_ndb.CredentialsNDBProperty
FlowNDBProperty = _appengine_ndb.FlowNDBProperty
_NDB_KEY = _appengine_ndb.NDB_KEY
_NDB_MODEL = _appengine_ndb.NDB_MODEL
SiteXsrfSecretKeyNDB = _appengine_ndb.SiteXsrfSecretKeyNDB
def _safe_html(s):
return cgi.escape(s, quote=1).replace("'", ''')
class InvalidClientSecretsError(Exception):
class InvalidXsrfTokenError(Exception):
class SiteXsrfSecretKey(db.Model):
secret = db.StringProperty()
def _generate_new_xsrf_secret_key():
return os.urandom(16).encode("hex")
def xsrf_secret_key():
secret = memcache.get(XSRF_MEMCACHE_ID, namespace=OAUTH2CLIENT_NAMESPACE)
if not secret:
model = SiteXsrfSecretKey.get_or_insert(key_name='site')
if not model.secret:
model.secret = _generate_new_xsrf_secret_key()
model.put()
secret = model.secret
memcache.add(XSRF_MEMCACHE_ID, secret,
namespace=OAUTH2CLIENT_NAMESPACE)
return str(secret)
class AppAssertionCredentials(AssertionCredentials):
@util.positional(2)
def __init__(self, scope, **kwargs):
self.scope = util.scopes_to_string(scope)
self._kwargs = kwargs
self.service_account_id = kwargs.get('service_account_id', None)
self._service_account_email = None
super(AppAssertionCredentials, self).__init__(None)
@classmethod
def from_json(cls, json_data):
data = json.loads(json_data)
return AppAssertionCredentials(data['scope'])
def _refresh(self, http_request):
try:
scopes = self.scope.split()
(token, _) = app_identity.get_access_token(
scopes, service_account_id=self.service_account_id)
except app_identity.Error as e:
raise AccessTokenRefreshError(str(e))
self.access_token = token
@property
def serialization_data(self):
raise NotImplementedError('Cannot serialize credentials '
'for Google App Engine.')
def create_scoped_required(self):
return not self.scope
def create_scoped(self, scopes):
return AppAssertionCredentials(scopes, **self._kwargs)
def sign_blob(self, blob):
return app_identity.sign_blob(blob)
@property
def service_account_email(self):
if self._service_account_email is None:
self._service_account_email = (
app_identity.get_service_account_name())
return self._service_account_email
class FlowProperty(db.Property):
data_type = Flow
def get_value_for_datastore(self, model_instance):
flow = super(FlowProperty, self).get_value_for_datastore(
model_instance)
return db.Blob(pickle.dumps(flow))
def make_value_from_datastore(self, value):
if value is None:
return None
return pickle.loads(value)
def validate(self, value):
if value is not None and not isinstance(value, Flow):
raise db.BadValueError('Property %s must be convertible '
'to a FlowThreeLegged instance (%s)' %
(self.name, value))
return super(FlowProperty, self).validate(value)
def empty(self, value):
return not value
class CredentialsProperty(db.Property):
data_type = Credentials
def get_value_for_datastore(self, model_instance):
logger.info("get: Got type " + str(type(model_instance)))
cred = super(CredentialsProperty, self).get_value_for_datastore(
model_instance)
if cred is None:
cred = ''
else:
cred = cred.to_json()
return db.Blob(cred)
def make_value_from_datastore(self, value):
logger.info("make: Got type " + str(type(value)))
if value is None:
return None
if len(value) == 0:
return None
try:
credentials = Credentials.new_from_json(value)
except ValueError:
credentials = None
return credentials
def validate(self, value):
value = super(CredentialsProperty, self).validate(value)
logger.info("validate: Got type " + str(type(value)))
if value is not None and not isinstance(value, Credentials):
raise db.BadValueError('Property %s must be convertible '
'to a Credentials instance (%s)' %
(self.name, value))
return value
class StorageByKeyName(Storage):
@util.positional(4)
def __init__(self, model, key_name, property_name, cache=None, user=None):
super(StorageByKeyName, self).__init__()
if key_name is None:
if user is None:
raise ValueError('StorageByKeyName called with no '
'key name or user.')
key_name = user.user_id()
self._model = model
self._key_name = key_name
self._property_name = property_name
self._cache = cache
def _is_ndb(self):
if isinstance(self._model, type):
if _NDB_MODEL is not None and issubclass(self._model, _NDB_MODEL):
return True
elif issubclass(self._model, db.Model):
return False
raise TypeError('Model class not an NDB or DB model: %s.' %
(self._model,))
def _get_entity(self):
if self._is_ndb():
return self._model.get_by_id(self._key_name)
else:
return self._model.get_by_key_name(self._key_name)
def _delete_entity(self):
if self._is_ndb():
_NDB_KEY(self._model, self._key_name).delete()
else:
entity_key = db.Key.from_path(self._model.kind(), self._key_name)
db.delete(entity_key)
@db.non_transactional(allow_existing=True)
def locked_get(self):
credentials = None
if self._cache:
json = self._cache.get(self._key_name)
if json:
credentials = Credentials.new_from_json(json)
if credentials is None:
entity = self._get_entity()
if entity is not None:
credentials = getattr(entity, self._property_name)
if self._cache:
self._cache.set(self._key_name, credentials.to_json())
if credentials and hasattr(credentials, 'set_store'):
credentials.set_store(self)
return credentials
@db.non_transactional(allow_existing=True)
def locked_put(self, credentials):
entity = self._model.get_or_insert(self._key_name)
setattr(entity, self._property_name, credentials)
entity.put()
if self._cache:
self._cache.set(self._key_name, credentials.to_json())
@db.non_transactional(allow_existing=True)
def locked_delete(self):
if self._cache:
self._cache.delete(self._key_name)
self._delete_entity()
class CredentialsModel(db.Model):
credentials = CredentialsProperty()
def _build_state_value(request_handler, user):
uri = request_handler.request.url
token = xsrfutil.generate_token(xsrf_secret_key(), user.user_id(),
action_id=str(uri))
return uri + ':' + token
def _parse_state_value(state, user):
uri, token = state.rsplit(':', 1)
if not xsrfutil.validate_token(xsrf_secret_key(), token, user.user_id(),
action_id=uri):
raise InvalidXsrfTokenError()
return uri
class OAuth2Decorator(object):
def set_credentials(self, credentials):
self._tls.credentials = credentials
def get_credentials(self):
return getattr(self._tls, 'credentials', None)
credentials = property(get_credentials, set_credentials)
def set_flow(self, flow):
self._tls.flow = flow
def get_flow(self):
return getattr(self._tls, 'flow', None)
flow = property(get_flow, set_flow)
@util.positional(4)
def __init__(self, client_id, client_secret, scope,
auth_uri=GOOGLE_AUTH_URI,
token_uri=GOOGLE_TOKEN_URI,
revoke_uri=GOOGLE_REVOKE_URI,
user_agent=None,
message=None,
callback_path='/oauth2callback',
token_response_param=None,
_storage_class=StorageByKeyName,
_credentials_class=CredentialsModel,
_credentials_property_name='credentials',
**kwargs):
self._tls = threading.local()
self.flow = None
self.credentials = None
self._client_id = client_id
self._client_secret = client_secret
self._scope = util.scopes_to_string(scope)
self._auth_uri = auth_uri
self._token_uri = token_uri
self._revoke_uri = revoke_uri
self._user_agent = user_agent
self._kwargs = kwargs
self._message = message
self._in_error = False
self._callback_path = callback_path
self._token_response_param = token_response_param
self._storage_class = _storage_class
self._credentials_class = _credentials_class
self._credentials_property_name = _credentials_property_name
def _display_error_message(self, request_handler):
request_handler.response.out.write('<html><body>')
request_handler.response.out.write(_safe_html(self._message))
request_handler.response.out.write('</body></html>')
def oauth_required(self, method):
def check_oauth(request_handler, *args, **kwargs):
if self._in_error:
self._display_error_message(request_handler)
return
user = users.get_current_user()
if not user:
request_handler.redirect(users.create_login_url(
request_handler.request.uri))
return
self._create_flow(request_handler)
self.flow.params['state'] = _build_state_value(
request_handler, user)
self.credentials = self._storage_class(
self._credentials_class, None,
self._credentials_property_name, user=user).get()
if not self.has_credentials():
return request_handler.redirect(self.authorize_url())
try:
resp = method(request_handler, *args, **kwargs)
except AccessTokenRefreshError:
return request_handler.redirect(self.authorize_url())
finally:
self.credentials = None
return resp
return check_oauth
|
MIT License
|
flatironinstitute/inferelator
|
inferelator/workflow.py
|
WorkflowBaseLoader.set_expression_file
|
python
|
def set_expression_file(self, tsv=None, hdf5=None, h5ad=None, tenx_path=None, mtx=None, mtx_barcode=None,
mtx_feature=None, h5_layer=None):
nones = [tsv is None, hdf5 is None, h5ad is None, tenx_path is None, mtx is None]
if all(nones):
Debug.vprint("No file provided", level=0)
elif sum(nones) != (len(nones) - 1):
raise ValueError("Only one type of input expression file can be set")
if tsv is not None:
self._set_file_name("expression_matrix_file", tsv)
self._expression_loader = _TSV
elif hdf5 is not None:
self._set_file_name("expression_matrix_file", hdf5)
self._expression_loader = _HDF5
self._h5_layer = h5_layer
elif h5ad is not None:
self._set_file_name("expression_matrix_file", h5ad)
self._expression_loader = _H5AD
self._h5_layer = h5_layer
elif mtx is not None:
self._check_file_exists(mtx)
self._check_file_exists(mtx_barcode)
self._check_file_exists(mtx_feature)
self.expression_matrix_file = (mtx, mtx_barcode, mtx_feature)
self._expression_loader = _MTX
elif tenx_path is not None:
self.expression_matrix_file = tenx_path
self._expression_loader = _TENX
|
Set the type of expression data file. Current loaders include TSV, hdf5, h5ad (AnnData), and MTX sparse files.
Only one of these loaders can be used; passing arguments for multiple loaders will raise a ValueError.
:param tsv: A path to a TSV (or tsv.gz) file which can be loaded by pandas.read_csv()
:type tsv: str, optional
:param hdf5: A path to a hdf5 file which can be loaded by pandas.HDFStore
:type hdf5: str, optional
:param h5ad: A path to an AnnData hd5 file
:type h5ad: str, optional
:param tenx_path: A path to the folder containing the 10x mtx, barcode, and feature files
:type tenx_path: Path, optional
:param mtx: A path to an mtx file
:type mtx: str, optional
:param mtx_barcode: A path to a list of observation names (i.e. barcodes, etc) for the mtx file
:type mtx_barcode: str, optional
:param mtx_feature: A path to a list of gene names for the mtx file
:type mtx_feature: str, optional
:param h5_layer: The layer (in an AnnData h5) or the store key (in an hdf5) file to use.
Defaults to using the first key.
:type h5_layer: str, optional
|
https://github.com/flatironinstitute/inferelator/blob/dd532f428132cfac98c9c7c161632dab2a4e9ea9/inferelator/workflow.py#L182-L233
|
from __future__ import unicode_literals, print_function
import datetime
import inspect
import os
import warnings
import copy
import numpy as np
import pandas as pd
from inferelator.utils import (Debug, InferelatorDataLoader, DEFAULT_PANDAS_TSV_SETTINGS, slurm_envs, is_string,
DotProduct)
from inferelator.distributed.inferelator_mp import MPControl
from inferelator.preprocessing import ManagePriors, make_data_noisy
from inferelator.regression.base_regression import _RegressionWorkflowMixin
from inferelator.postprocessing import ResultsProcessor, InferelatorResults
SBATCH_VARS_FOR_WORKFLOW = ["output_dir", "input_dir"]
_TENX = "tenx"
_TSV = "tsv"
_H5AD = "h5ad"
_HDF5 = "hdf5"
_MTX = "mtx"
class WorkflowBaseLoader(object):
input_dir = None
output_dir = None
expression_matrix_file = None
tf_names_file = None
meta_data_file = None
priors_file = None
gold_standard_file = None
_expression_loader = _TSV
_h5_layer = None
metadata_handler = "branching"
gene_names_file = None
gene_metadata_file = None
gene_list_index = None
tf_names = None
gene_names = None
priors_data = None
gold_standard = None
data = None
design = None
response = None
expression_matrix_columns_are_genes = True
extract_metadata_from_expression_matrix = False
expression_matrix_metadata = None
use_no_prior = False
use_no_gold_standard = False
_file_format_settings = None
@property
def _num_obs(self):
if self.response is not None:
return self.response.num_obs
elif self.data is not None:
return self.data.num_obs
else:
return None
@property
def _num_tfs(self):
if self.design is not None:
return self.design.num_genes
elif self.tf_names is not None:
return len(self.tf_names)
else:
return None
@property
def _num_genes(self):
if self.response is not None:
return self.response.num_genes
elif self.data is not None:
return self.data.num_genes
else:
return None
@property
def _gene_names(self):
if self.data is not None:
return self.data.gene_names
else:
return None
def __init__(self):
if self._file_format_settings is None:
self._file_format_settings = dict()
def set_file_paths(self, input_dir=None, output_dir=None, expression_matrix_file=None, tf_names_file=None,
meta_data_file=None, priors_file=None, gold_standard_file=None, gene_metadata_file=None,
gene_names_file=None):
self._set_with_warning("input_dir", input_dir)
self._set_with_warning("output_dir", output_dir)
self._set_file_name("expression_matrix_file", expression_matrix_file)
self._set_file_name("tf_names_file", tf_names_file)
self._set_file_name("meta_data_file", meta_data_file)
self._set_file_name("priors_file", priors_file)
self._set_file_name("gold_standard_file", gold_standard_file)
self._set_file_name("gene_metadata_file", gene_metadata_file)
self._set_file_name("gene_names_file", gene_names_file)
if expression_matrix_file is not None:
self._expression_loader = _TSV
if ".tsv" not in expression_matrix_file:
msg = "`set_file_paths` assumes data is in a TSV. Use `set_expression_file` for other formats"
warnings.warn(msg)
|
BSD 2-Clause Simplified License
|
databand-ai/dbnd
|
modules/dbnd/src/dbnd/_vendor/dulwich/pack.py
|
UnpackedObject._obj
|
python
|
def _obj(self):
if self.pack_type_num in DELTA_TYPES:
return (self.delta_base, self.decomp_chunks)
else:
return self.decomp_chunks
|
Return the decompressed chunks, or (delta base, delta chunks).
|
https://github.com/databand-ai/dbnd/blob/ec0076f9a142b20e2f7afd886ed1a18683c553ec/modules/dbnd/src/dbnd/_vendor/dulwich/pack.py#L167-L172
|
from collections import defaultdict
import binascii
from io import BytesIO, UnsupportedOperation
from collections import deque
import difflib
import struct
from itertools import chain
try:
from itertools import imap, izip
except ImportError:
imap = map
izip = zip
import os
import sys
from hashlib import sha1
from os import (
SEEK_CUR,
SEEK_END,
)
from struct import unpack_from
import zlib
try:
import mmap
except ImportError:
has_mmap = False
else:
has_mmap = True
if sys.platform == "Plan9":
has_mmap = False
from dbnd._vendor.dulwich.errors import (
ApplyDeltaError,
ChecksumMismatch,
)
from dbnd._vendor.dulwich.file import GitFile
from dbnd._vendor.dulwich.lru_cache import LRUSizeCache
from dbnd._vendor.dulwich.objects import (
ShaFile,
hex_to_sha,
sha_to_hex,
object_header,
)
OFS_DELTA = 6
REF_DELTA = 7
DELTA_TYPES = (OFS_DELTA, REF_DELTA)
DEFAULT_PACK_DELTA_WINDOW_SIZE = 10
def take_msb_bytes(read, crc32=None):
ret = []
while len(ret) == 0 or ret[-1] & 0x80:
b = read(1)
if crc32 is not None:
crc32 = binascii.crc32(b, crc32)
ret.append(ord(b[:1]))
return ret, crc32
class UnpackedObject(object):
__slots__ = [
"offset",
"_sha",
"obj_type_num",
"obj_chunks",
"pack_type_num",
"delta_base",
"comp_chunks",
"decomp_chunks",
"decomp_len",
"crc32",
]
def __init__(self, pack_type_num, delta_base, decomp_len, crc32):
self.offset = None
self._sha = None
self.pack_type_num = pack_type_num
self.delta_base = delta_base
self.comp_chunks = None
self.decomp_chunks = []
self.decomp_len = decomp_len
self.crc32 = crc32
if pack_type_num in DELTA_TYPES:
self.obj_type_num = None
self.obj_chunks = None
else:
self.obj_type_num = pack_type_num
self.obj_chunks = self.decomp_chunks
self.delta_base = delta_base
def sha(self):
if self._sha is None:
self._sha = obj_sha(self.obj_type_num, self.obj_chunks)
return self._sha
def sha_file(self):
return ShaFile.from_raw_chunks(self.obj_type_num, self.obj_chunks)
|
Apache License 2.0
|
dmlc/dgl
|
python/dgl/nn/tensorflow/conv/densechebconv.py
|
DenseChebConv.call
|
python
|
def call(self, adj, feat, lambda_max=None):
A = adj
num_nodes = A.shape[0]
in_degree = 1 / tf.sqrt(tf.clip_by_value(tf.reduce_sum(A, 1),
clip_value_min=1,
clip_value_max=np.inf))
D_invsqrt = tf.linalg.diag(in_degree)
I = tf.eye(num_nodes)
L = I - D_invsqrt @ A @ D_invsqrt
if lambda_max is None:
lambda_ = tf.linalg.eig(L)[0][:, 0]
lambda_max = tf.reduce_max(lambda_)
L_hat = 2 * L / lambda_max - I
Z = [tf.eye(num_nodes)]
for i in range(1, self._k):
if i == 1:
Z.append(L_hat)
else:
Z.append(2 * L_hat @ Z[-1] - Z[-2])
Zs = tf.stack(Z, 0)
Zh = (Zs @ tf.expand_dims(feat, axis=0) @ self.W)
Zh = tf.reduce_sum(Zh, 0)
if self.bias is not None:
Zh = Zh + self.bias
return Zh
|
r"""
Description
-----------
Compute (Dense) Chebyshev Spectral Graph Convolution layer.
Parameters
----------
adj : tf.Tensor
The adjacency matrix of the graph to apply Graph Convolution on,
should be of shape :math:`(N, N)`, where a row represents the destination
and a column represents the source.
feat : tf.Tensor
The input feature of shape :math:`(N, D_{in})` where :math:`D_{in}`
is size of input feature, :math:`N` is the number of nodes.
lambda_max : float or None, optional
A float value indicates the largest eigenvalue of given graph.
Default: None.
Returns
-------
tf.Tensor
The output feature of shape :math:`(N, D_{out})` where :math:`D_{out}`
is size of output feature.
|
https://github.com/dmlc/dgl/blob/8341244a2dac850bd0c1153c7641c3b8a2bbfc30/python/dgl/nn/tensorflow/conv/densechebconv.py#L59-L113
|
import tensorflow as tf
from tensorflow.keras import layers
import numpy as np
class DenseChebConv(layers.Layer):
def __init__(self,
in_feats,
out_feats,
k,
bias=True):
super(DenseChebConv, self).__init__()
self._in_feats = in_feats
self._out_feats = out_feats
self._k = k
xinit = tf.keras.initializers.glorot_normal()
self.W = tf.Variable(initial_value=xinit(
shape=(k, in_feats, out_feats), dtype='float32'), trainable=True)
if bias:
zeroinit = tf.keras.initializers.zeros()
self.bias = tf.Variable(initial_value=zeroinit(
shape=(out_feats), dtype='float32'), trainable=True)
else:
self.bias = None
|
Apache License 2.0
|
seungback/open3d-ros-helper
|
open3d_ros_helper/open3d_ros_helper.py
|
crop_with_2dmask
|
python
|
def crop_with_2dmask(o3dpc, mask, K=None):
o3dpc = copy.deepcopy(o3dpc)
cloud_npy = np.asarray(o3dpc.points)
if K is None:
mask = np.resize(mask, cloud_npy.shape[0])
cloud_npy = cloud_npy[mask!=0]
o3dpc = open3d.geometry.PointCloud()
o3dpc.points = open3d.utility.Vector3dVector(cloud_npy)
else:
cloud_npy = np.asarray(o3dpc.points)
x = cloud_npy[:, 0]
y = cloud_npy[:, 1]
z = cloud_npy[:, 2]
px = np.uint16(x * K[0, 0]/z + K[0, 2])
py = np.uint16(y * K[1, 1]/z + K[1, 2])
H, W = mask.shape
row_indices = np.logical_and(0 <= px, px < W-1)
col_indices = np.logical_and(0 <= py, py < H-1)
image_indices = np.logical_and(row_indices, col_indices)
cloud_npy = cloud_npy[image_indices]
mask_indices = mask[(py[image_indices], px[image_indices])]
mask_indices = np.where(mask_indices != 0)[0]
o3dpc.points = open3d.utility.Vector3dVector(cloud_npy[mask_indices])
return o3dpc
|
crop open3d point cloud with given 2d binary mask
Args:
o3dpc (open3d.geometry.PointCloud): open3d point cloud
mask (np.array): binary mask aligned with the point cloud frame shape of [H, W]
K (np.array): intrinsic matrix of camera shape of (4x4)
if K is not given, point cloud should be ordered
Returns:
o3dpc (open3d.geometry.PointCloud): filtered open3d point cloud
|
https://github.com/seungback/open3d-ros-helper/blob/02f19861f77bb6cf51584306cf64eb2d5e3c97b6/open3d_ros_helper/open3d_ros_helper.py#L409-L444
|
import ros_numpy
import open3d
import numpy as np
import tf.transformations as t
import rospy
import copy
import image_geometry
import cv2
from std_msgs.msg import Header
from sensor_msgs.msg import PointCloud2, PointField
from geometry_msgs.msg import Point, Pose, PoseStamped, Quaternion, Transform, TransformStamped, Vector3
import numpy as np
import numpy.matlib as npm
def pose_to_pq(pose):
p = np.array([pose.position.x, pose.position.y, pose.position.z])
q = np.array([pose.orientation.x, pose.orientation.y,
pose.orientation.z, pose.orientation.w])
return p, q
def pose_stamped_to_pq(pose_stamped):
return pose_to_pq(pose_stamped.pose)
def transform_to_pq(transform):
p = np.array([transform.translation.x, transform.translation.y, transform.translation.z])
q = np.array([transform.rotation.x, transform.rotation.y,
transform.rotation.z, transform.rotation.w])
return p, q
def transform_stamped_to_pq(transform_stamped):
return transform_to_pq(transform_stamped.transform)
def msg_to_se3(msg):
if isinstance(msg, Pose):
p, q = pose_to_pq(msg)
elif isinstance(msg, PoseStamped):
p, q = pose_stamped_to_pq(msg)
elif isinstance(msg, Transform):
p, q = transform_to_pq(msg)
elif isinstance(msg, TransformStamped):
p, q = transform_stamped_to_pq(msg)
else:
raise TypeError("Invalid type for conversion to SE(3)")
norm = np.linalg.norm(q)
if np.abs(norm - 1.0) > 1e-3:
raise ValueError(
"Received un-normalized quaternion (q = {0:s} ||q|| = {1:3.6f})".format(
str(q), np.linalg.norm(q)))
elif np.abs(norm - 1.0) > 1e-6:
q = q / norm
se3 = t.quaternion_matrix(q)
se3[0:3, -1] = p
return se3
def pq_to_pose_stamped(p, q, source_frame, target_frame, stamp=None):
pose_stamped = PoseStamped()
pose_stamped.header.frame_id = source_frame
if stamp is None: stamp = rospy.Time.now()
pose_stamped.header.stamp = stamp
pose_stamped.child_frame_id = target_frame
pose_stamped.pose = pq_to_pose(p, q)
return pose_stamped
def pq_to_pose(p, q):
pose = Pose()
pose.position.x = p[0]
pose.position.y = p[1]
pose.position.z = p[2]
pose.orientation.x = q[0]
pose.orientation.y = q[1]
pose.orientation.z = q[2]
pose.orientation.w = q[3]
return pose
def pq_to_transform(p, q):
transform = Transform()
transform.translation.x = p[0]
transform.translation.y = p[1]
transform.translation.z = p[2]
transform.rotation.x = q[0]
transform.rotation.y = q[1]
transform.rotation.z = q[2]
transform.rotation.w = q[3]
return transform
def pq_to_transform_stamped(p, q, source_frame, target_frame, stamp=None):
transform_stamped = TransformStamped()
transform_stamped.header.frame_id = source_frame
if stamp is None: stamp = rospy.Time.now()
transform_stamped.header.stamp = stamp
transform_stamped.child_frame_id = target_frame
transform_stamped.transform = pq_to_transform(p, q)
return transform_stamped
def se3_to_transform(transform_nparray):
pos = transform_nparray[:3, 3]
quat = t.quaternion_from_matrix(transform_nparray)
transform = pq_to_transform(pos, quat)
return transform
def se3_to_transform_stamped(transform_nparray, source_frame, target_frame, stamp=None):
pos = transform_nparray[:3, 3]
quat = t.quaternion_from_matrix(transform_nparray)
if stamp is None: stamp = rospy.Time.now()
transform_stamped = pq_to_transform_stamped(pos, quat, source_frame, target_frame, stamp)
return transform_stamped
def average_q(qs):
M = qs.shape[0]
A = npm.zeros(shape=(4,4))
for i in range(0,M):
q = qs[i,:]
A = np.outer(q, q) + A
A = (1.0/M)*A
eigenValues, eigenVectors = np.linalg.eig(A)
eigenVectors = eigenVectors[:,eigenValues.argsort()[::-1]]
q_average = np.real(eigenVectors[:,0].A1)
return q_average
def average_pq(ps, qs):
p_average = np.mean(np.asarray(ps), axis=0)
q_average = average_q(np.asarray(qs))
return p_average, q_average
convert_rgbUint32_to_tuple = lambda rgb_uint32: (
(rgb_uint32 & 0x00ff0000)>>16, (rgb_uint32 & 0x0000ff00)>>8, (rgb_uint32 & 0x000000ff)
)
def rospc_to_o3dpc(rospc, remove_nans=False):
field_names = [field.name for field in rospc.fields]
is_rgb = 'rgb' in field_names
cloud_array = ros_numpy.point_cloud2.pointcloud2_to_array(rospc).ravel()
if remove_nans:
mask = np.isfinite(cloud_array['x']) & np.isfinite(cloud_array['y']) & np.isfinite(cloud_array['z'])
cloud_array = cloud_array[mask]
if is_rgb:
cloud_npy = np.zeros(cloud_array.shape + (4,), dtype=np.float)
else:
cloud_npy = np.zeros(cloud_array.shape + (3,), dtype=np.float)
cloud_npy[...,0] = cloud_array['x']
cloud_npy[...,1] = cloud_array['y']
cloud_npy[...,2] = cloud_array['z']
o3dpc = open3d.geometry.PointCloud()
if len(np.shape(cloud_npy)) == 3:
cloud_npy = np.reshape(cloud_npy[:, :, :3], [-1, 3], 'F')
o3dpc.points = open3d.utility.Vector3dVector(cloud_npy[:, :3])
if is_rgb:
rgb_npy = cloud_array['rgb']
rgb_npy.dtype = np.uint32
r = np.asarray((rgb_npy >> 16) & 255, dtype=np.uint8)
g = np.asarray((rgb_npy >> 8) & 255, dtype=np.uint8)
b = np.asarray(rgb_npy & 255, dtype=np.uint8)
rgb_npy = np.asarray([r, g, b])
rgb_npy = rgb_npy.astype(np.float)/255
rgb_npy = np.swapaxes(rgb_npy, 0, 1)
o3dpc.colors = open3d.utility.Vector3dVector(rgb_npy)
return o3dpc
BIT_MOVE_16 = 2**16
BIT_MOVE_8 = 2**8
def o3dpc_to_rospc(o3dpc, frame_id=None, stamp=None):
cloud_npy = np.asarray(copy.deepcopy(o3dpc.points))
is_color = o3dpc.colors
n_points = len(cloud_npy[:, 0])
if is_color:
data = np.zeros(n_points, dtype=[
('x', np.float32),
('y', np.float32),
('z', np.float32),
('rgb', np.uint32)
])
else:
data = np.zeros(n_points, dtype=[
('x', np.float32),
('y', np.float32),
('z', np.float32)
])
data['x'] = cloud_npy[:, 0]
data['y'] = cloud_npy[:, 1]
data['z'] = cloud_npy[:, 2]
if is_color:
rgb_npy = np.asarray(copy.deepcopy(o3dpc.colors))
rgb_npy = np.floor(rgb_npy*255)
rgb_npy = rgb_npy[:, 0] * BIT_MOVE_16 + rgb_npy[:, 1] * BIT_MOVE_8 + rgb_npy[:, 2]
rgb_npy = rgb_npy.astype(np.uint32)
data['rgb'] = rgb_npy
rospc = ros_numpy.msgify(PointCloud2, data)
if frame_id is not None:
rospc.header.frame_id = frame_id
if stamp is None:
rospc.header.stamp = rospy.Time.now()
else:
rospc.header.stamp = stamp
rospc.height = 1
rospc.width = n_points
rospc.fields = []
rospc.fields.append(PointField(
name="x",
offset=0,
datatype=PointField.FLOAT32, count=1))
rospc.fields.append(PointField(
name="y",
offset=4,
datatype=PointField.FLOAT32, count=1))
rospc.fields.append(PointField(
name="z",
offset=8,
datatype=PointField.FLOAT32, count=1))
if is_color:
rospc.fields.append(PointField(
name="rgb",
offset=12,
datatype=PointField.UINT32, count=1))
rospc.point_step = 16
else:
rospc.point_step = 12
rospc.is_bigendian = False
rospc.row_step = rospc.point_step * n_points
rospc.is_dense = True
return rospc
def do_transform_point(o3dpc, transform_stamped):
H = msg_to_se3(transform_stamped)
o3dpc = copy.deepcopy(o3dpc)
o3dpc.transform(H)
return o3dpc
def apply_pass_through_filter(o3dpc, x_range, y_range, z_range):
o3dpc = copy.deepcopy(o3dpc)
cloud_npy = np.asarray(o3dpc.points)
x_range = np.logical_and(cloud_npy[:, 0] >= x_range[0], cloud_npy[:, 0] <= x_range[1])
y_range = np.logical_and(cloud_npy[:, 1] >= y_range[0], cloud_npy[:, 1] <= y_range[1])
z_range = np.logical_and(cloud_npy[:, 2] >= z_range[0], cloud_npy[:, 2] <= z_range[1])
pass_through_filter = np.logical_and(x_range, np.logical_and(y_range, z_range))
o3dpc.points = open3d.utility.Vector3dVector(cloud_npy[pass_through_filter])
colors = np.asarray(o3dpc.colors)
if len(colors) > 0:
o3dpc.colors = open3d.utility.Vector3dVector(colors[pass_through_filter])
return o3dpc
|
MIT License
|
demisto/demisto-py
|
demisto_client/demisto_api/models/investigation.py
|
Investigation.child_investigations
|
python
|
def child_investigations(self):
return self._child_investigations
|
Gets the child_investigations of this Investigation. # noqa: E501
ChildInvestigations id's # noqa: E501
:return: The child_investigations of this Investigation. # noqa: E501
:rtype: list[str]
|
https://github.com/demisto/demisto-py/blob/95d29e07693d27c133f7fe6ef9da13e4b6dbf542/demisto_client/demisto_api/models/investigation.py#L270-L278
|
import pprint
import re
import six
from demisto_client.demisto_api.models.investigation_status import InvestigationStatus
from demisto_client.demisto_api.models.investigation_type import InvestigationType
from demisto_client.demisto_api.models.run_status import RunStatus
from demisto_client.demisto_api.models.system import System
class Investigation(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'shard_id': 'int',
'category': 'str',
'child_investigations': 'list[str]',
'closed': 'datetime',
'closing_user_id': 'str',
'created': 'datetime',
'creating_user_id': 'str',
'details': 'str',
'entitlements': 'list[str]',
'entry_users': 'list[str]',
'has_role': 'bool',
'id': 'str',
'is_child_investigation': 'bool',
'last_open': 'datetime',
'mirror_auto_close': 'dict(str, bool)',
'mirror_types': 'dict(str, str)',
'modified': 'datetime',
'name': 'str',
'open_duration': 'int',
'parent_investigation': 'str',
'persistent_entitlements': 'dict(str, str)',
'previous_roles': 'list[str]',
'raw_category': 'str',
'reason': 'dict(str, str)',
'roles': 'list[str]',
'run_status': 'RunStatus',
'slack_mirror_auto_close': 'bool',
'slack_mirror_type': 'str',
'sort_values': 'list[str]',
'status': 'InvestigationStatus',
'systems': 'list[System]',
'tags': 'list[str]',
'type': 'InvestigationType',
'users': 'list[str]',
'version': 'int'
}
attribute_map = {
'shard_id': 'ShardID',
'category': 'category',
'child_investigations': 'childInvestigations',
'closed': 'closed',
'closing_user_id': 'closingUserId',
'created': 'created',
'creating_user_id': 'creatingUserId',
'details': 'details',
'entitlements': 'entitlements',
'entry_users': 'entryUsers',
'has_role': 'hasRole',
'id': 'id',
'is_child_investigation': 'isChildInvestigation',
'last_open': 'lastOpen',
'mirror_auto_close': 'mirrorAutoClose',
'mirror_types': 'mirrorTypes',
'modified': 'modified',
'name': 'name',
'open_duration': 'openDuration',
'parent_investigation': 'parentInvestigation',
'persistent_entitlements': 'persistentEntitlements',
'previous_roles': 'previousRoles',
'raw_category': 'rawCategory',
'reason': 'reason',
'roles': 'roles',
'run_status': 'runStatus',
'slack_mirror_auto_close': 'slackMirrorAutoClose',
'slack_mirror_type': 'slackMirrorType',
'sort_values': 'sortValues',
'status': 'status',
'systems': 'systems',
'tags': 'tags',
'type': 'type',
'users': 'users',
'version': 'version'
}
def __init__(self, shard_id=None, category=None, child_investigations=None, closed=None, closing_user_id=None, created=None, creating_user_id=None, details=None, entitlements=None, entry_users=None, has_role=None, id=None, is_child_investigation=None, last_open=None, mirror_auto_close=None, mirror_types=None, modified=None, name=None, open_duration=None, parent_investigation=None, persistent_entitlements=None, previous_roles=None, raw_category=None, reason=None, roles=None, run_status=None, slack_mirror_auto_close=None, slack_mirror_type=None, sort_values=None, status=None, systems=None, tags=None, type=None, users=None, version=None):
self._shard_id = None
self._category = None
self._child_investigations = None
self._closed = None
self._closing_user_id = None
self._created = None
self._creating_user_id = None
self._details = None
self._entitlements = None
self._entry_users = None
self._has_role = None
self._id = None
self._is_child_investigation = None
self._last_open = None
self._mirror_auto_close = None
self._mirror_types = None
self._modified = None
self._name = None
self._open_duration = None
self._parent_investigation = None
self._persistent_entitlements = None
self._previous_roles = None
self._raw_category = None
self._reason = None
self._roles = None
self._run_status = None
self._slack_mirror_auto_close = None
self._slack_mirror_type = None
self._sort_values = None
self._status = None
self._systems = None
self._tags = None
self._type = None
self._users = None
self._version = None
self.discriminator = None
if shard_id is not None:
self.shard_id = shard_id
if category is not None:
self.category = category
if child_investigations is not None:
self.child_investigations = child_investigations
if closed is not None:
self.closed = closed
if closing_user_id is not None:
self.closing_user_id = closing_user_id
if created is not None:
self.created = created
if creating_user_id is not None:
self.creating_user_id = creating_user_id
if details is not None:
self.details = details
if entitlements is not None:
self.entitlements = entitlements
if entry_users is not None:
self.entry_users = entry_users
if has_role is not None:
self.has_role = has_role
if id is not None:
self.id = id
if is_child_investigation is not None:
self.is_child_investigation = is_child_investigation
if last_open is not None:
self.last_open = last_open
if mirror_auto_close is not None:
self.mirror_auto_close = mirror_auto_close
if mirror_types is not None:
self.mirror_types = mirror_types
if modified is not None:
self.modified = modified
if name is not None:
self.name = name
if open_duration is not None:
self.open_duration = open_duration
if parent_investigation is not None:
self.parent_investigation = parent_investigation
if persistent_entitlements is not None:
self.persistent_entitlements = persistent_entitlements
if previous_roles is not None:
self.previous_roles = previous_roles
if raw_category is not None:
self.raw_category = raw_category
if reason is not None:
self.reason = reason
if roles is not None:
self.roles = roles
if run_status is not None:
self.run_status = run_status
if slack_mirror_auto_close is not None:
self.slack_mirror_auto_close = slack_mirror_auto_close
if slack_mirror_type is not None:
self.slack_mirror_type = slack_mirror_type
if sort_values is not None:
self.sort_values = sort_values
if status is not None:
self.status = status
if systems is not None:
self.systems = systems
if tags is not None:
self.tags = tags
if type is not None:
self.type = type
if users is not None:
self.users = users
if version is not None:
self.version = version
@property
def shard_id(self):
return self._shard_id
@shard_id.setter
def shard_id(self, shard_id):
self._shard_id = shard_id
@property
def category(self):
return self._category
@category.setter
def category(self, category):
self._category = category
@property
|
Apache License 2.0
|
d-li14/psconv
|
mmdet/models/backbones/resnext.py
|
Bottleneck.__init__
|
python
|
def __init__(self, inplanes, planes, groups=1, base_width=4, **kwargs):
super(Bottleneck, self).__init__(inplanes, planes, **kwargs)
if groups == 1:
width = self.planes
else:
width = math.floor(self.planes * (base_width / 64)) * groups
self.norm1_name, norm1 = build_norm_layer(
self.norm_cfg, width, postfix=1)
self.norm2_name, norm2 = build_norm_layer(
self.norm_cfg, width, postfix=2)
self.norm3_name, norm3 = build_norm_layer(
self.norm_cfg, self.planes * self.expansion, postfix=3)
self.conv1 = build_conv_layer(
self.conv_cfg,
self.inplanes,
width,
kernel_size=1,
stride=self.conv1_stride,
bias=False)
self.add_module(self.norm1_name, norm1)
fallback_on_stride = False
self.with_modulated_dcn = False
if self.with_dcn:
fallback_on_stride = self.dcn.get('fallback_on_stride', False)
self.with_modulated_dcn = self.dcn.get('modulated', False)
if not self.with_dcn or fallback_on_stride:
self.conv2 = build_conv_layer(
dict(type='PSGConv'),
width,
width,
kernel_size=3,
stride=self.conv2_stride,
padding=1,
dilation=2,
groups=groups,
parts=4,
bias=False)
else:
assert self.conv_cfg is None, 'conv_cfg must be None for DCN'
groups = self.dcn.get('groups', 1)
deformable_groups = self.dcn.get('deformable_groups', 1)
if not self.with_modulated_dcn:
conv_op = DeformConv
offset_channels = 18
else:
conv_op = ModulatedDeformConv
offset_channels = 27
self.conv2_offset = nn.Conv2d(
width,
deformable_groups * offset_channels,
kernel_size=3,
stride=self.conv2_stride,
padding=self.dilation,
dilation=self.dilation)
self.conv2 = conv_op(
width,
width,
kernel_size=3,
stride=self.conv2_stride,
padding=self.dilation,
dilation=self.dilation,
groups=groups,
deformable_groups=deformable_groups,
bias=False)
self.add_module(self.norm2_name, norm2)
self.conv3 = build_conv_layer(
self.conv_cfg,
width,
self.planes * self.expansion,
kernel_size=1,
bias=False)
self.add_module(self.norm3_name, norm3)
|
Bottleneck block for ResNeXt.
If style is "pytorch", the stride-two layer is the 3x3 conv layer,
if it is "caffe", the stride-two layer is the first 1x1 conv layer.
|
https://github.com/d-li14/psconv/blob/9afde67f43025bd5ae59e1ff1cc5a04c0744a5bd/mmdet/models/backbones/resnext.py#L14-L92
|
import math
import torch.nn as nn
from mmdet.ops import DeformConv, ModulatedDeformConv
from .resnet import Bottleneck as _Bottleneck
from .resnet import ResNet
from ..registry import BACKBONES
from ..utils import build_conv_layer, build_norm_layer
class Bottleneck(_Bottleneck):
|
MIT License
|
pytransitions/transitions
|
transitions/extensions/states.py
|
Error.__init__
|
python
|
def __init__(self, *args, **kwargs):
tags = kwargs.get('tags', [])
accepted = kwargs.pop('accepted', False)
if accepted:
tags.append('accepted')
kwargs['tags'] = tags
super(Error, self).__init__(*args, **kwargs)
|
Args:
**kwargs: If kwargs contains the keywork `accepted` add the 'accepted' tag to a tag list
which will be forwarded to the Tags constructor.
|
https://github.com/pytransitions/transitions/blob/1893a822763f9266a9691f0b285e1d77ff755082/transitions/extensions/states.py#L43-L54
|
from threading import Timer
import logging
import inspect
from ..core import MachineError, listify, State
_LOGGER = logging.getLogger(__name__)
_LOGGER.addHandler(logging.NullHandler())
class Tags(State):
def __init__(self, *args, **kwargs):
self.tags = kwargs.pop('tags', [])
super(Tags, self).__init__(*args, **kwargs)
def __getattr__(self, item):
if item.startswith('is_'):
return item[3:] in self.tags
return super(Tags, self).__getattribute__(item)
class Error(Tags):
|
MIT License
|
flennerhag/warpgrad
|
src/maze_navigation/run.py
|
get_suffix
|
python
|
def get_suffix(config):
return "run_" + "".join(
[str(x) + "_" if pair[0] is not 'nbsteps' and
pair[0] is not 'rngseed' and
pair[0] is not 'save_every' and
pair[0] is not 'test_every' and
pair[0] is not 'pe' else ''
for pair in sorted(zip(
config.keys(), config.values()),
key=lambda x:x[0]) for x in pair])[:-1] + "_rngseed_" + str(config['rngseed'])
|
Get experiment name.
Args:
config (dict): dict with experiment configs.
Returns:
suffix (str): experiment name.
|
https://github.com/flennerhag/warpgrad/blob/d9ef72af10eec62ae92bc24595cb1a4a0207e319/src/maze_navigation/run.py#L36-L54
|
from alstm import aRNN
from maze import Maze, ObsSpec
import argparse
import torch
import torch.nn as nn
from numpy import random
import random
import pickle
import time
import numpy as np
np.set_printoptions(precision=4)
ADDITIONAL_INPUTS = 4
NUM_ACTIONS = 4
REF_SIZE = 3
TOTAL_INPUTS = REF_SIZE * REF_SIZE + ADDITIONAL_INPUTS + NUM_ACTIONS
|
Apache License 2.0
|
microsoft/qdk-python
|
azure-quantum/azure/quantum/storage.py
|
create_container
|
python
|
def create_container(
connection_string: str, container_name: str
) -> ContainerClient:
blob_service_client = BlobServiceClient.from_connection_string(
connection_string
)
logger.info(
f'{"Initializing storage client for account:"}'
+ f"{blob_service_client.account_name}"
)
container_client = blob_service_client.get_container_client(container_name)
create_container_using_client(container_client)
return container_client
|
Creates and initialize a container; returns the client needed to access it.
|
https://github.com/microsoft/qdk-python/blob/d0a87fda57dc360c96d9ce9772b71406d9b29ebe/azure-quantum/azure/quantum/storage.py#L24-L40
|
import logging
from typing import Any, Dict
from azure.core import exceptions
from azure.storage.blob import (
BlobServiceClient,
ContainerClient,
BlobClient,
BlobSasPermissions,
ContentSettings,
generate_blob_sas,
generate_container_sas,
BlobType,
)
from datetime import datetime, timedelta
from enum import Enum
logger = logging.getLogger(__name__)
|
MIT License
|
kakao/khaiii
|
train/transform_corpus.py
|
Sentence.load_train
|
python
|
def load_train(cls, rsc_src: str) -> List['Sentence']:
restore_dic = Resource.load_restore_dic(f'{rsc_src}/restore.dic')
sentences = []
for sent in PosDataset(None, restore_dic, sys.stdin):
sentence = Sentence()
for word in sent.pos_tagged_words:
sentence.words.append(word.raw)
sentence.morphs.append(' + '.join([str(m) for m in word.pos_tagged_morphs]))
sentences.append(sentence)
return sentences
|
load from khaiii training set
Returns:
list of sentences
|
https://github.com/kakao/khaiii/blob/328d5a8af456a5941130383354c07d1cd0e47cf5/train/transform_corpus.py#L86-L100
|
from argparse import ArgumentParser, Namespace
import logging
import random
import sys
from typing import List
from khaiii.munjong.sejong_corpus import sents
from khaiii.resource.resource import Resource
from khaiii.train.dataset import PosDataset
class Sentence:
def __init__(self):
self.words = []
self.morphs = []
def merge_words(self, rate: float = 0.0):
if rate <= 0.0:
return
idx = 0
while idx < len(self.words)-1:
if random.random() >= rate:
idx += 1
continue
self.words[idx] += self.words[idx+1]
self.morphs[idx] += ' + ' + self.morphs[idx+1]
del self.words[idx+1]
del self.morphs[idx+1]
def __str__(self):
words_str = [f'{w}\t{m}' for w, m in zip(self.words, self.morphs)]
return '\n'.join(words_str) + '\n'
def raw(self):
return ' '.join(self.words)
@classmethod
def load_sejong(cls) -> List['Sentence']:
sentences = []
for sent in sents(sys.stdin):
sentence = Sentence()
for word in sent.words:
sentence.words.append(word.raw)
sentence.morphs.append(' + '.join([str(m) for m in word.morphs]))
sentences.append(sentence)
return sentences
@classmethod
|
Apache License 2.0
|
waliens/sldc
|
sldc/logging.py
|
FileLogger.close
|
python
|
def close(self):
self._file.close()
|
Close the logging file
|
https://github.com/waliens/sldc/blob/b16d28ca223ac686b711ca988f5e76f7cdedbaca/sldc/logging.py#L195-L198
|
import os
import threading
from abc import abstractmethod, ABCMeta
__author__ = "Romain Mormont <romainmormont@hotmail.com>"
__version__ = "0.1"
class Logger(object):
SILENT = 0
ERROR = 1
WARNING = 2
INFO = 3
DEBUG = 4
def __init__(self, level, prefix=True, pid=True):
self._level = level
self._prefix = prefix
self._pid = pid
@property
def level(self):
return self._level
@level.setter
def level(self, level):
self._level = level
def d(self, msg):
self.debug(msg)
def debug(self, msg):
self._log(Logger.DEBUG, msg)
def i(self, msg):
self.info(msg)
def info(self, msg):
self._log(Logger.INFO, msg)
def w(self, msg):
self.warning(msg)
def warning(self, msg):
self._log(Logger.WARNING, msg)
def e(self, msg):
self.error(msg)
def error(self, msg):
self._log(Logger.ERROR, msg)
def _log(self, level, msg):
if self._level >= level:
formatted = self._format_msg(level, msg)
self._print(formatted)
@abstractmethod
def _print(self, formatted_msg):
pass
def prefix(self, level):
from datetime import datetime
now = datetime.now().isoformat()
if self._pid:
pid = "{}".format(os.getpid()).zfill(6)
fid = "pid:{}".format(pid)
else:
tid = "{}".format(threading.current_thread().ident).zfill(6)
fid = "tid:{}".format(tid)
return "[{}][{}][{}]".format(fid, now, self.level2str(level))
@classmethod
def level2str(cls, level):
if level == cls.DEBUG:
return "DEBUG"
elif level == cls.WARNING:
return "WARN "
elif level == cls.ERROR:
return "ERROR"
else:
return "INFO "
def _format_msg(self, level, msg):
if self._prefix:
rows = ["{} {}".format(self.prefix(level), row) for row in msg.splitlines()]
return os.linesep.join(rows)
else:
return msg
class StandardOutputLogger(Logger):
def _print(self, formatted_msg):
print (formatted_msg)
class FileLogger(Logger):
def __init__(self, filepath, level, prefix=True):
Logger.__init__(self, level, prefix=prefix)
self._file = open(filepath, "w+")
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.close()
def _print(self, formatted_msg):
self._file.write(formatted_msg)
|
MIT License
|
zphang/bert_on_stilts
|
examples/run_classifier.py
|
RteProcessor._create_examples
|
python
|
def _create_examples(self, lines, set_type):
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, i)
text_a = line[1]
text_b = line[2]
label = line[-1]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
|
Creates examples for the training and dev sets.
|
https://github.com/zphang/bert_on_stilts/blob/2d9c8c6ba47e06c0f171a7452a916dd3b7a09a6a/examples/run_classifier.py#L315-L327
|
from __future__ import absolute_import, division, print_function
import argparse
import csv
import logging
import os
import random
import sys
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
from pytorch_pretrained_bert.modeling import BertForSequenceClassification, BertConfig, WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
class InputExample(object):
def __init__(self, guid, text_a, text_b=None, label=None):
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
class InputFeatures(object):
def __init__(self, input_ids, input_mask, segment_ids, label_id):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
class DataProcessor(object):
def get_train_examples(self, data_dir):
raise NotImplementedError()
def get_dev_examples(self, data_dir):
raise NotImplementedError()
def get_labels(self):
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
with open(input_file, "r") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
if sys.version_info[0] == 2:
line = list(unicode(cell, 'utf-8') for cell in line)
lines.append(line)
return lines
class MrpcProcessor(DataProcessor):
def get_train_examples(self, data_dir):
logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
return ["0", "1"]
def _create_examples(self, lines, set_type):
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, i)
text_a = line[3]
text_b = line[4]
label = line[0]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class MnliProcessor(DataProcessor):
def get_train_examples(self, data_dir):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
"dev_matched")
def get_labels(self):
return ["contradiction", "entailment", "neutral"]
def _create_examples(self, lines, set_type):
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
text_a = line[8]
text_b = line[9]
label = line[-1]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class ColaProcessor(DataProcessor):
def get_train_examples(self, data_dir):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
return ["0", "1"]
def _create_examples(self, lines, set_type):
examples = []
for (i, line) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
text_a = line[3]
label = line[1]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
return examples
class SstProcessor(DataProcessor):
def get_train_examples(self, data_dir):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
return ["0", "1"]
def _create_examples(self, lines, set_type):
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, i)
text_a = line[0]
label = line[1]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
return examples
class QqpProcessor(DataProcessor):
def get_train_examples(self, data_dir):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
return ["0", "1"]
def _create_examples(self, lines, set_type):
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, i)
try:
text_a = line[3]
text_b = line[4]
label = line[5]
except IndexError:
continue
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class QnliProcessor(DataProcessor):
def get_train_examples(self, data_dir):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")),
"dev_matched")
def get_labels(self):
return ["entailment", "not_entailment"]
def _create_examples(self, lines, set_type):
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, 1)
text_a = line[1]
text_b = line[2]
label = line[-1]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class RteProcessor(DataProcessor):
def get_train_examples(self, data_dir):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
return ["entailment", "not_entailment"]
|
Apache License 2.0
|
tqsd/qunetsim
|
qunetsim/backends/eqsn_backend.py
|
EQSNBackend.rx
|
python
|
def rx(self, qubit, phi):
self.eqsn.RX_gate(qubit.qubit, phi)
|
Perform a rotation pauli x gate with an angle of phi.
Args:
qubit (Qubit): Qubit on which gate should be applied to.
phi (float): Amount of roation in Rad.
|
https://github.com/tqsd/qunetsim/blob/dbf1531aac56822f83557e992fcc175e47b223ce/qunetsim/backends/eqsn_backend.py#L308-L316
|
from eqsn import EQSN
import uuid
from qunetsim.objects.qubit import Qubit
import threading
import numpy as np
from queue import Queue
class RWLock:
def __init__(self):
self._read_ready = threading.Condition(threading.RLock())
self._num_reader = 0
self._num_writer = 0
self._readerList = []
self._writerList = []
def acquire_read(self):
self._read_ready.acquire()
try:
while self._num_writer > 0:
self._read_ready.wait()
self._num_reader += 1
finally:
self._readerList.append(threading.get_ident())
self._read_ready.release()
def release_read(self):
self._read_ready.acquire()
try:
self._num_reader -= 1
if not self._num_reader:
self._read_ready.notifyAll()
finally:
self._readerList.remove(threading.get_ident())
self._read_ready.release()
def acquire_write(self):
self._read_ready.acquire()
self._num_writer += 1
self._writerList.append(threading.get_ident())
while self._num_reader > 0:
self._read_ready.wait()
def release_write(self):
self._num_writer -= 1
self._writerList.remove(threading.get_ident())
self._read_ready.notifyAll()
self._read_ready.release()
class SafeDict(object):
def __init__(self):
self.lock = RWLock()
self.dict = {}
def __str__(self):
self.lock.acquire_read()
ret = str(self.dict)
self.lock.release_read()
return ret
def add_to_dict(self, key, value):
self.lock.acquire_write()
self.dict[key] = value
self.lock.release_write()
def get_from_dict(self, key):
ret = None
self.lock.acquire_read()
if key in self.dict:
ret = self.dict[key]
self.lock.release_read()
return ret
class EQSNBackend(object):
class Hosts(SafeDict):
__instance = None
@staticmethod
def get_instance():
if EQSNBackend.Hosts.__instance is not None:
return EQSNBackend.Hosts.__instance
else:
return EQSNBackend.Hosts()
def __init__(self):
if EQSNBackend.Hosts.__instance is not None:
raise Exception("Call get instance to get this class!")
EQSNBackend.Hosts.__instance = self
SafeDict.__init__(self)
class EntanglementIDs(SafeDict):
__instance = None
@staticmethod
def get_instance():
if EQSNBackend.EntanglementIDs.__instance is not None:
return EQSNBackend.EntanglementIDs.__instance
else:
return EQSNBackend.EntanglementIDs()
def __init__(self):
if EQSNBackend.EntanglementIDs.__instance is not None:
raise Exception("Call get instance to get this class!")
EQSNBackend.EntanglementIDs.__instance = self
SafeDict.__init__(self)
def __init__(self):
self._hosts = EQSNBackend.Hosts.get_instance()
self._entaglement_qubits = EQSNBackend.EntanglementIDs.get_instance()
self.eqsn = EQSN.get_instance()
def start(self, **kwargs):
pass
def stop(self):
self.eqsn.stop_all()
def add_host(self, host):
self._hosts.add_to_dict(host.host_id, host)
def create_qubit(self, host_id):
id = str(uuid.uuid4())
self.eqsn.new_qubit(id)
return id
def send_qubit_to(self, qubit, from_host_id, to_host_id):
new_host = self._hosts.get_from_dict(to_host_id)
qubit.host = new_host
def create_EPR(self, host_a_id, host_b_id, q_id=None, block=False):
uid1 = uuid.uuid4()
uid2 = uuid.uuid4()
host_a = self._hosts.get_from_dict(host_a_id)
host_b = self._hosts.get_from_dict(host_b_id)
self.eqsn.new_qubit(uid1)
self.eqsn.new_qubit(uid2)
self.eqsn.H_gate(uid1)
self.eqsn.cnot_gate(uid2, uid1)
q1 = Qubit(host_a, qubit=uid1, q_id=q_id, blocked=block)
q2 = Qubit(host_b, qubit=uid2, q_id=q1.id, blocked=block)
self.store_ent_pair(host_a.host_id, host_b.host_id, q2)
return q1
def store_ent_pair(self, host_a, host_b, qubit):
key = host_a + ':' + host_b
ent_queue = self._entaglement_qubits.get_from_dict(key)
if ent_queue is not None:
ent_queue.put(qubit)
else:
ent_queue = Queue()
ent_queue.put(qubit)
self._entaglement_qubits.add_to_dict(key, ent_queue)
def receive_epr(self, host_id, sender_id, q_id=None, block=False):
key = sender_id + ':' + host_id
ent_queue = self._entaglement_qubits.get_from_dict(key)
if ent_queue is None:
raise Exception("Internal Error!")
q = ent_queue.get()
self._entaglement_qubits.add_to_dict(key, ent_queue)
if q_id is not None and q_id != q.id:
raise ValueError("Qid doesent match id!")
return q
def I(self, qubit):
pass
def X(self, qubit):
self.eqsn.X_gate(qubit.qubit)
def Y(self, qubit):
self.eqsn.Y_gate(qubit.qubit)
def Z(self, qubit):
self.eqsn.Z_gate(qubit.qubit)
def H(self, qubit):
self.eqsn.H_gate(qubit.qubit)
def K(self, qubit):
self.eqsn.K_gate(qubit.qubit)
def S(self, qubit):
self.eqsn.S_gate(qubit.qubit)
def T(self, qubit):
self.eqsn.T_gate(qubit.qubit)
|
MIT License
|
voxel51/eta
|
eta/core/events.py
|
DetectedEvent.has_attributes
|
python
|
def has_attributes(self):
return bool(self.attrs)
|
Whether the event has attributes.
|
https://github.com/voxel51/eta/blob/e51510fda0722ac7cadb17b109bad413a6602ed3/eta/core/events.py#L155-L157
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from builtins import *
from future.utils import iteritems, itervalues
from collections import defaultdict
from copy import deepcopy
import logging
import eta.core.data as etad
import eta.core.frameutils as etaf
import eta.core.geometry as etag
import eta.core.labels as etal
import eta.core.objects as etao
import eta.core.serial as etas
import eta.core.utils as etau
logger = logging.getLogger(__name__)
class DetectedEvent(etal.Labels, etag.HasBoundingBox):
def __init__(
self,
label=None,
bounding_box=None,
mask=None,
confidence=None,
name=None,
top_k_probs=None,
index=None,
frame_number=None,
attrs=None,
objects=None,
):
self.type = etau.get_class_name(self)
self.label = label
self.bounding_box = bounding_box
self.mask = mask
self.confidence = confidence
self.name = name
self.top_k_probs = top_k_probs
self.index = index
self.frame_number = frame_number
self.attrs = attrs or etad.AttributeContainer()
self.objects = objects or etao.DetectedObjectContainer()
@property
def is_empty(self):
return not (
self.has_label
or self.has_bounding_box
or self.has_mask
or self.has_attributes
or self.has_objects
)
@property
def has_label(self):
return self.label is not None
@property
def has_bounding_box(self):
return self.bounding_box is not None
@property
def has_mask(self):
return self.mask is not None
@property
def has_confidence(self):
return self.confidence is not None
@property
def has_name(self):
return self.name is not None
@property
def has_top_k_probs(self):
return self.top_k_probs is not None
@property
def has_index(self):
return self.index is not None
@property
def has_frame_number(self):
return self.frame_number is not None
@property
|
Apache License 2.0
|
open-research/sumatra
|
sumatra/projects.py
|
Project.launch
|
python
|
def launch(self, parameters={}, input_data=[], script_args="",
executable='default', repository='default', main_file='default',
version='current', launch_mode='default', diff='', label=None, reason=None,
timestamp_format='default', repeats=None):
record = self.new_record(parameters, input_data, script_args,
executable, repository, main_file, version,
launch_mode, diff, label, reason, timestamp_format)
record.run(with_label=self.data_label, project=self)
if 'matlab' in record.executable.name.lower():
record.register(record.repository.get_working_copy())
if repeats:
record.repeats = repeats
self.save_record(record)
logger.debug("Record saved @ completion.")
self.save()
return record.label
|
Launch a new simulation or analysis.
|
https://github.com/open-research/sumatra/blob/2ff2a359e11712a7d17cf9346a0b676ab33e2074/sumatra/projects.py#L213-L229
|
from __future__ import print_function
from __future__ import unicode_literals
from future import standard_library
standard_library.install_aliases()
from builtins import str
from builtins import object
import os
import re
import importlib
import pickle
from copy import deepcopy
import uuid
import sumatra
import django
import sqlite3
import time
import shutil
import textwrap
from datetime import datetime
from importlib import import_module
from sumatra.records import Record
from sumatra import programs, datastore
from sumatra.formatting import get_formatter, get_diff_formatter
from sumatra.recordstore import DefaultRecordStore
from sumatra.versioncontrol import UncommittedModificationsError, get_working_copy, VersionControlError
from sumatra.core import TIMESTAMP_FORMAT
import mimetypes
import json
import logging
logger = logging.getLogger("Sumatra")
DEFAULT_PROJECT_FILE = "project"
LABEL_GENERATORS = {
'timestamp': lambda: None,
'uuid': lambda: str(uuid.uuid4()).split('-')[-1]
}
def _remove_left_margin(s):
lines = s.strip().split('\n')
return "\n".join(line.strip() for line in lines)
def _get_project_file(path):
return os.path.join(path, ".smt", DEFAULT_PROJECT_FILE)
class Project(object):
valid_name_pattern = r'(?P<project>\w+[\w\- ]*)'
def __init__(self, name, default_executable=None, default_repository=None,
default_main_file=None, default_launch_mode=None,
data_store='default', record_store='default',
on_changed='error', description='', data_label=None,
input_datastore=None, label_generator='timestamp',
timestamp_format=TIMESTAMP_FORMAT,
allow_command_line_parameters=True, plugins=[]):
self.path = os.getcwd()
if not os.path.exists(".smt"):
os.mkdir(".smt")
if os.path.exists(_get_project_file(self.path)):
raise Exception("Sumatra project already exists in this directory.")
if re.match(Project.valid_name_pattern, name):
self.name = name
else:
raise ValueError("Invalid project name. Names may only contain letters, numbers, spaces and hyphens")
self.default_executable = default_executable
self.default_repository = default_repository
self.default_main_file = default_main_file
self.default_launch_mode = default_launch_mode
if data_store == 'default':
data_store = datastore.FileSystemDataStore(None)
self.data_store = data_store
self.input_datastore = input_datastore or self.data_store
if record_store == 'default':
record_store = DefaultRecordStore(os.path.abspath(".smt/records"))
self.record_store = record_store
self.on_changed = on_changed
self.description = description
self.data_label = data_label
self.label_generator = label_generator
self.timestamp_format = timestamp_format
self.sumatra_version = sumatra.__version__
self.allow_command_line_parameters = allow_command_line_parameters
self._most_recent = None
self.plugins = []
self.load_plugins(*plugins)
self.save()
print("Sumatra project successfully set up")
def __set_data_label(self, value):
assert value in (None, 'parameters', 'cmdline')
self._data_label = value
def __get_data_label(self):
return self._data_label
data_label = property(fset=__set_data_label, fget=__get_data_label)
def save(self):
state = {}
for name in ('name', 'default_executable', 'default_repository',
'default_launch_mode', 'data_store', 'record_store',
'default_main_file', 'on_changed', 'description',
'data_label', '_most_recent', 'input_datastore',
'label_generator', 'timestamp_format', 'sumatra_version',
'allow_command_line_parameters', 'plugins'):
try:
attr = getattr(self, name)
except:
if name == 'allow_command_line_parameters':
print(textwrap.dedent("""\
Upgrading from a Sumatra version which did not have the --plain configuration
option. After this upgrade, arguments to 'smt run' of the form 'name=value'
will continue to overwrite default parameter values, but this is now
configurable. If it is desired that they should be passed straight through
to the program, run the command 'smt configure --plain' after this upgrade.
"""))
attr = True
else:
attr = None
if hasattr(attr, "__getstate__"):
state[name] = {'type': attr.__class__.__module__ + "." + attr.__class__.__name__}
for key, value in attr.__getstate__().items():
state[name][key] = value
else:
state[name] = attr
f = open(_get_project_file(self.path), 'w')
json.dump(state, f, indent=2)
f.close()
def info(self):
template = """
Project name : %(name)s
Default executable : %(default_executable)s
Default repository : %(default_repository)s
Default main file : %(default_main_file)s
Default launch mode : %(default_launch_mode)s
Data store (output) : %(data_store)s
. (input) : %(input_datastore)s
Record store : %(record_store)s
Code change policy : %(on_changed)s
Append label to : %(_data_label)s
Label generator : %(label_generator)s
Timestamp format : %(timestamp_format)s
Plug-ins : %(plugins)s
Sumatra version : %(sumatra_version)s
"""
return _remove_left_margin(template % self.__dict__)
def new_record(self, parameters={}, input_data=[], script_args="",
executable='default', repository='default',
main_file='default', version='current', launch_mode='default',
diff='', label=None, reason=None, timestamp_format='default'):
logger.debug("Creating new record")
if executable == 'default':
executable = deepcopy(self.default_executable)
if repository == 'default':
repository = deepcopy(self.default_repository)
if main_file == 'default':
main_file = self.default_main_file
if launch_mode == 'default':
launch_mode = deepcopy(self.default_launch_mode)
if timestamp_format == 'default':
timestamp_format = self.timestamp_format
working_copy = repository.get_working_copy()
version, diff = self.update_code(working_copy, version, diff)
if label is None:
label = LABEL_GENERATORS[self.label_generator]()
record = Record(executable, repository, main_file, version, launch_mode,
self.data_store, parameters, input_data, script_args,
label=label, reason=reason, diff=diff,
on_changed=self.on_changed,
input_datastore=self.input_datastore,
timestamp_format=timestamp_format)
self.add_record(record)
if not isinstance(executable, programs.MatlabExecutable):
record.register(working_copy)
return record
|
BSD 2-Clause Simplified License
|
erdc/proteus
|
proteus/tests/sandbox/testTimeIntegration.py
|
dUdtEqMinusLambda.setUnknowns
|
python
|
def setUnknowns(self,u):
self.q['u'].flat[:] = u.flat[:]
|
copy over solution values u into dictionary holding unknowns
|
https://github.com/erdc/proteus/blob/fe4872257aae10b5a686394e78259582e93a39cb/proteus/tests/sandbox/testTimeIntegration.py#L84-L88
|
from __future__ import print_function
from __future__ import division
from builtins import range
from past.utils import old_div
from builtins import object
from LinearAlgebra import *
from TimeIntegrationTools import *
from NonlinearSolvers import *
from ScalarTransport import *
import numpy
class PhiDummy(object):
def __init__(self,dim):
self.dim=dim
self.dof=dim
class dUdtEqMinusLambda(object):
def __init__(self,u0,TimeIntegrationClass=BackwardEuler,
cfl=Numeric.ones(1,Numeric.Float),
lam=Numeric.ones(1,Numeric.Float),
nstages=1,order=1):
self.dim = Numeric.size(lam,0)
self.lam= lam
self.q = {}
self.ebq_global = {}
for term in ['u','m','mt','dm','dmt','f','div(f)',
'a','grad(u)','r','dr','cfl']:
self.q[term] = Numeric.zeros(self.dim,Numeric.Float)
self.q['cfl'].flat[:] = cfl.flat[:]
self.phi = PhiDummy(self.dim)
self.nFreeDOF_global=self.dim
self.q['u'].flat[:] = u0.flat[:]
self.q['m'].flat[:] = self.q['u'].flat[:]
self.q['r']= lam*self.q['m']
if TimeIntegrationClass == SSPRKintegration:
self.timeIntegrator = TimeIntegrationClass(self,order)
else:
self.timeIntegrator = TimeIntegrationClass(self)
|
MIT License
|
leonhard-s/auraxium
|
auraxium/_rest.py
|
get_components
|
python
|
def get_components(url: yarl.URL) -> Tuple[str, Optional[str]]:
components = url.path.split('/')[1:]
if components[0].startswith('s:'):
_ = components.pop(0)
if components[0] in ('xml', 'json'):
_ = components.pop(0)
_ = components.pop(0)
if not components[-1]:
_ = components.pop(-1)
if len(components) == 1:
return components[0], None
assert len(components) == 2, 'Unable to parse URL'
return components[0], components[1]
|
Return the namespace and collection of a given query.
:param yarl.URL url: The :class:`yarl.URL` to process. Only REST
API query URLs in the DBG census API format are allowed.
:return: The namespace/game and collection that was accessed.
Collection may be :obj:`None` for some queries.
|
https://github.com/leonhard-s/auraxium/blob/8a1b7fb6e6e1b11334d69875df032ccc6da330bf/auraxium/_rest.py#L131-L151
|
import asyncio
import copy
import json
import logging
import sys
import warnings
from typing import Any, Dict, Iterator, Literal, List, Optional, Tuple, Type, TypeVar, cast
from types import TracebackType
import aiohttp
import backoff
import yarl
from .census import Query
from .errors import (PayloadError, BadRequestSyntaxError, CensusError,
InvalidSearchTermError, InvalidServiceIDError,
MaintenanceError, MissingServiceIDError, NotFoundError,
ResponseError, ServerError, ServiceUnavailableError,
UnknownCollectionError)
from .types import CensusData
__all__ = [
'RequestClient',
'extract_payload',
'extract_single',
'run_query'
]
_T = TypeVar('_T')
_log = logging.getLogger('auraxium.http')
class RequestClient:
def __init__(self, loop: Optional[asyncio.AbstractEventLoop] = None,
service_id: str = 's:example', profiling: bool = False
) -> None:
self.loop = loop or asyncio.get_event_loop()
self.profiling = profiling
self.service_id = service_id
self.session = aiohttp.ClientSession()
self._timing_cache: List[float] = []
async def __aenter__(self: _T) -> _T:
return self
async def __aexit__(self, exc_type: Optional[Type[BaseException]],
exc_value: Optional[BaseException],
traceback: Optional[TracebackType]) -> Literal[False]:
await self.close()
return False
@property
def latency(self) -> float:
if not self._timing_cache:
return -1.0
return sum(self._timing_cache) / len(self._timing_cache)
async def close(self) -> None:
_log.info('Shutting down client')
await self.session.close()
async def request(self, query: Query, verb: str = 'get') -> CensusData:
if self.profiling:
query = copy.copy(query)
query.timing(True)
data = await run_query(query, verb=verb, session=self.session)
if self.profiling and verb == 'get':
timing = cast(CensusData, data.pop('timing'))
if _log.level <= logging.DEBUG:
url = query.url()
_log.debug('Query times for "%s?%s": %s',
'/'.join(url.parts[-2:]), url.query_string,
', '.join([f'{k}: {v}' for k, v in timing.items()]))
self._timing_cache.append(float(str(timing['total-ms'])))
return data
|
MIT License
|
google-research/language
|
language/templama/templama.py
|
_build_example
|
python
|
def _build_example(query):
inp = query["query"].encode("utf-8")
trg = query["answer"]["name"].encode("utf-8")
id_ = query["id"].encode("utf-8")
recent = query["most_recent_answer"]["name"].encode("utf-8")
frequent = query["most_frequent_answer"]["name"].encode("utf-8")
rel = query["relation"].encode("utf-8")
feature = {
"id":
tf.train.Feature(bytes_list=tf.train.BytesList(value=[id_])),
"date":
tf.train.Feature(
int64_list=tf.train.Int64List(value=[int(query["date"])])),
"relation":
tf.train.Feature(bytes_list=tf.train.BytesList(value=[rel])),
"query":
tf.train.Feature(bytes_list=tf.train.BytesList(value=[inp])),
"answer":
tf.train.Feature(bytes_list=tf.train.BytesList(value=[trg])),
"most_frequent_answer":
tf.train.Feature(bytes_list=tf.train.BytesList(value=[frequent])),
"most_recent_answer":
tf.train.Feature(bytes_list=tf.train.BytesList(value=[recent])),
}
return tf.train.Example(features=tf.train.Features(feature=feature))
|
Creates a tf.Example for prediction with T5 from the input query.
Args:
query: a dict mapping query features to their values.
Returns:
a tf.train.Example consisting of the query features.
|
https://github.com/google-research/language/blob/240cd2a1fd0307c6822b6f1f6c2abf1349a5a4da/language/templama/templama.py#L326-L361
|
import collections
import csv
import datetime
import json
import os
import random
from absl import app
from absl import flags
from absl import logging
import sling
import tensorflow as tf
from tqdm import tqdm
FLAGS = flags.FLAGS
flags.DEFINE_string("out_dir", None, "Path to store constructed queries.")
flags.DEFINE_string(
"facts_file", None,
"File containing facts with qualifiers extracted from `sling2facts.py`.")
flags.DEFINE_string("sling_kb_file", None, "SLING file containing wikidata KB.")
flags.DEFINE_string(
"sling_wiki_mapping_file", None,
"SLING file containing mapping from QID to english wikipedia pages.")
flags.DEFINE_integer(
"min_year", 2010,
"Starting year to construct queries from. Only facts which have a start / "
"end date after this will be considered.")
flags.DEFINE_integer("max_year", 2020,
"Ending year to construct queries up till.")
flags.DEFINE_integer(
"max_subject_per_relation", 1000,
"Maximum number of subjects to retain per relation. Subjects are sorted "
"based on popularity before filtering.")
flags.DEFINE_float("train_frac", 0.2,
"Fraction of queries to hold out for training set.")
flags.DEFINE_float("val_frac", 0.1,
"Fraction of queries to hold out for validation set.")
random.seed(42)
Y_TOK = "_X_"
WIKI_PRE = "/wp/en/"
def _datetup2int(date):
dint = date[0] * 1e4
dint += date[1] * 1e2 if date[1] else 0
dint += date[2] if date[2] else 0
return dint
def date_in_interval(date, start, end):
date_int = _datetup2int(date)
start_int = _datetup2int(start) if start else 0
end_int = _datetup2int(end) if end else 21000000
return date_int >= start_int and date_int <= end_int
def parse_date(date_str):
date = None
try:
if len(date_str) == 4:
date_obj = datetime.datetime.strptime(date_str, "%Y")
date = (date_obj.year, None, None)
elif len(date_str) == 6:
date_obj = datetime.datetime.strptime(date_str, "%Y%m")
date = (date_obj.year, date_obj.month, None)
elif len(date_str) == 8:
date_obj = datetime.datetime.strptime(date_str, "%Y%m%d")
date = (date_obj.year, date_obj.month, date_obj.day)
except ValueError:
pass
if date is not None and date[0] > 2100:
date = None
return date
def load_sling_mappings(sling_kb_file, sling_wiki_mapping_file):
logging.info("Extracting entity names and num-facts from SLING KB.")
commons = sling.Store()
commons.load(sling_kb_file)
commons.freeze()
qid_names = {}
qid_numfacts = {}
total = 0
for f in commons:
total += 1
if "name" in f:
if isinstance(f.name, sling.String):
qid_names[f.id] = f.name.text()
elif isinstance(f.name, bytes):
qid_names[f.id] = f.name.decode("utf-8", errors="ignore")
elif isinstance(f.name, str):
qid_names[f.id] = f.name
else:
logging.warn("Could not read name of type %r", type(f.name))
ln = len(f)
qid_numfacts[f.id] = ln
logging.info("Processed %d QIDs out of %d", len(qid_names), total)
logging.info("Extracting entity mapping to Wikipedia from SLING.")
commons = sling.Store()
commons.load(sling_wiki_mapping_file)
commons.freeze()
qid_mapping = {}
for f in commons:
try:
if "/w/item/qid" in f:
pg = f.id[len(WIKI_PRE):] if f.id.startswith(WIKI_PRE) else f.id
qid_mapping[f["/w/item/qid"].id] = pg
except UnicodeDecodeError:
continue
logging.info("Extracted %d mappings", len(qid_mapping))
return qid_names, qid_mapping, qid_numfacts
def read_facts(facts_file, qid_mapping, min_year):
logging.info("Reading facts from %s", facts_file)
all_facts = []
with tf.io.gfile.GFile(facts_file) as f:
for line in tqdm(f):
fact = line.strip().split("\t")
if not fact[0].startswith("P"):
continue
if fact[0] == "P31":
continue
if not fact[2].startswith("Q"):
continue
if fact[1] not in qid_mapping or fact[2] not in qid_mapping:
continue
start, end = None, None
for qual in fact[3:]:
if not qual:
continue
elems = qual.split("=")
if elems[0].endswith("*"):
continue
if len(elems) != 2:
continue
if elems[0].startswith("P580"):
start = parse_date(elems[1])
elif elems[0].startswith("P582"):
end = parse_date(elems[1])
if start is None and end is None:
continue
if ((start is None or start[0] < min_year) and
(end is None or end[0] < min_year)):
continue
all_facts.append(fact[:3] + [start, end])
logging.info("Loaded total %d facts", len(all_facts))
return all_facts
def read_templates():
my_path = os.path.dirname(os.path.realpath(__file__))
template_file = os.path.join(my_path, "templates.csv")
logging.info("Reading templates from %s", template_file)
reader = csv.reader(tf.io.gfile.GFile(template_file))
headers = next(reader, None)
data = collections.defaultdict(list)
for row in reader:
for h, v in zip(headers, row):
data[h].append(v)
templates = dict(zip(data["Wikidata ID"], data["Template"]))
logging.info("\n".join("%s: %s" % (k, v) for k, v in templates.items()))
return templates
def resolve_objects(facts):
def _datekey(fact):
start = _datetup2int(fact[3]) if fact[3] else 0
end = _datetup2int(fact[4]) if fact[4] else 21000000
return (start, end)
sorted_facts = sorted(facts, key=_datekey)
out_facts = [sorted_facts[0]]
for fact in sorted_facts[1:]:
if (fact[2] == out_facts[-1][2] and fact[3] != fact[4] and
out_facts[-1][3] != out_facts[-1][4]):
out_facts[-1][4] = fact[4]
else:
out_facts.append(fact)
return out_facts
def _map_years_to_objects(facts, qid_numfacts, min_year, max_year):
year2obj = {}
numfacts = lambda x: qid_numfacts.get(x, 0)
for f in facts:
min_ = f[3][0] if f[3] is not None else min_year
max_ = f[4][0] if f[4] is not None else max_year
min_ = max(min_, min_year)
max_ = min(max_, max_year)
for yr in range(min_, max_ + 1):
if yr in year2obj:
if numfacts(year2obj[yr]) < numfacts(f[2]):
year2obj[yr] = f[2]
else:
year2obj[yr] = f[2]
return year2obj
|
Apache License 2.0
|
alievk/npbg
|
npbg/gl/render.py
|
cpy_texture_to_tensor
|
python
|
def cpy_texture_to_tensor(texture, tensor):
with cuda_activate_array(texture) as src:
cpy = pycuda.driver.Memcpy2D()
cpy.set_src_array(src)
cpy.set_dst_device(tensor.data_ptr())
cpy.width_in_bytes = cpy.src_pitch = cpy.dst_pitch = tensor.shape[1] * 4 * 4
cpy.height = tensor.shape[0]
cpy(aligned=False)
torch.cuda.synchronize()
return tensor
|
Copy GL texture (cuda view) to pytorch tensor
|
https://github.com/alievk/npbg/blob/c0931a462d1a71d711420603c7447d283a0e8135/npbg/gl/render.py#L128-L141
|
from glumpy import app, gloo, gl
from contextlib import contextmanager
import numpy as np
try:
import pycuda.driver
from pycuda.gl import graphics_map_flags, BufferObject
_PYCUDA = True
except ImportError as err:
print('pycuda import error:', err)
_PYCUDA = False
import torch
class OffscreenRender:
def __init__(self, viewport_size, out_buffer_location='opengl', clear_color=None):
self._init_buffers(viewport_size, out_buffer_location)
self.clear_color = clear_color if clear_color is not None else (0., 0., 0., 1.)
def _init_buffers(self, viewport_size, out_buffer_location):
assert out_buffer_location in ['torch', 'opengl', 'numpy']
if out_buffer_location == 'torch':
assert _PYCUDA, 'pycuda is not available'
try:
import pycuda.gl.autoinit
except:
raise RuntimeError('PyCUDA init failed, cannot use torch buffer')
_ = torch.cuda.FloatTensor(1, 3, 512,512)
color_np = np.zeros((viewport_size[1], viewport_size[0], 4), np.float32)
self.color_buf, self.color_buf_cuda = create_shared_texture(color_np)
self.out_buf = torch.zeros((viewport_size[1], viewport_size[0], 4), dtype=torch.float32).cuda()
elif out_buffer_location == 'opengl':
self.color_buf = np.zeros((viewport_size[1], viewport_size[0], 4), dtype=np.float32).view(gloo.TextureFloat2D)
self.out_buf = self.color_buf
elif out_buffer_location == 'numpy':
self.color_buf = np.zeros((viewport_size[1], viewport_size[0], 4), dtype=np.float32).view(gloo.TextureFloat2D)
self.out_buf = np.zeros((viewport_size[1], viewport_size[0], 3), dtype=np.float32)
self.viewport_size = viewport_size
self.out_buffer_location = out_buffer_location
self.depth_buf = gloo.DepthBuffer(viewport_size[0], viewport_size[1], gl.GL_DEPTH_COMPONENT32)
self.fbo = gloo.FrameBuffer(color=self.color_buf, depth=self.depth_buf)
def render(self, scene, cull_face=True):
self.fbo.activate()
gl.glEnable(gl.GL_PROGRAM_POINT_SIZE)
gl.glEnable(gl.GL_DEPTH_TEST)
gl.glShadeModel(gl.GL_FLAT)
if cull_face:
gl.glEnable(gl.GL_CULL_FACE)
gl.glCullFace(gl.GL_BACK)
else:
gl.glDisable(gl.GL_CULL_FACE)
gl.glClearColor(*self.clear_color)
gl.glClear(gl.GL_COLOR_BUFFER_BIT | gl.GL_DEPTH_BUFFER_BIT)
gl.glViewport(0, 0, self.viewport_size[0], self.viewport_size[1])
if scene.draw_points:
scene.program.draw(gl.GL_POINTS)
else:
assert scene.index_buffer is not None
scene.program.draw(gl.GL_TRIANGLES, scene.index_buffer)
if self.out_buffer_location == 'torch':
frame = cpy_texture_to_tensor(self.color_buf_cuda, self.out_buf).clone()
elif self.out_buffer_location == 'opengl':
frame = self.out_buf
else:
gl.glReadPixels(0, 0, self.viewport_size[0], self.viewport_size[1], gl.GL_RGB, gl.GL_FLOAT, self.out_buf)
frame = self.out_buf.copy()
self.fbo.deactivate()
return frame
@contextmanager
def cuda_activate_array(img):
mapping = img.map()
yield mapping.array(0,0)
mapping.unmap()
@contextmanager
def cuda_activate_buffer(buf):
mapping = buf.map()
yield mapping.device_ptr()
mapping.unmap()
def create_shared_texture(arr, map_flags=None):
if map_flags is None:
map_flags = graphics_map_flags.WRITE_DISCARD
gl_view = arr.view(gloo.TextureFloat2D)
gl_view.activate()
gl_view.deactivate()
cuda_view = pycuda.gl.RegisteredImage(
int(gl_view.handle), gl_view.target, map_flags)
return gl_view, cuda_view
def create_shared_buffer(arr):
gl_view = arr.view(gloo.VertexBuffer)
gl_view.activate()
gl_view.deactivate()
cuda_view = BufferObject(np.long(gl_view.handle))
return gl_view, cuda_view
|
MIT License
|
babybuddy/babybuddy
|
reports/graphs/feeding_duration.py
|
feeding_duration
|
python
|
def feeding_duration(instances):
totals = instances.annotate(date=TruncDate('start')) .values('date') .annotate(count=Count('id')) .annotate(sum=Sum('duration')) .order_by('-date')
averages = []
for total in totals:
averages.append(total['sum']/total['count'])
trace_avg = go.Scatter(
name=_('Average duration'),
line=dict(shape='spline'),
x=list(totals.values_list('date', flat=True)),
y=[td.seconds/60 for td in averages],
hoverinfo='text',
text=[_duration_string_ms(td) for td in averages]
)
trace_count = go.Scatter(
name=_('Total feedings'),
mode='markers',
x=list(totals.values_list('date', flat=True)),
y=list(totals.values_list('count', flat=True)),
yaxis='y2',
hoverinfo='y'
)
layout_args = utils.default_graph_layout_options()
layout_args['title'] = _('<b>Average Feeding Durations</b>')
layout_args['xaxis']['title'] = _('Date')
layout_args['xaxis']['rangeselector'] = utils.rangeselector_date()
layout_args['yaxis']['title'] = _('Average duration (minutes)')
layout_args['yaxis2'] = dict(layout_args['yaxis'])
layout_args['yaxis2']['title'] = _('Number of feedings')
layout_args['yaxis2']['overlaying'] = 'y'
layout_args['yaxis2']['side'] = 'right'
fig = go.Figure({
'data': [trace_avg, trace_count],
'layout': go.Layout(**layout_args)
})
output = plotly.plot(fig, output_type='div', include_plotlyjs=False)
return utils.split_graph_output(output)
|
Create a graph showing average duration of feeding instances over time.
This function originally used the Avg() function from django.db.models but
for some reason it was returning None any time the exact count of entries
was equal to seven.
:param instances: a QuerySet of Feeding instances.
:returns: a tuple of the the graph's html and javascript.
|
https://github.com/babybuddy/babybuddy/blob/a361f96e4db1d77ce3e787af15e17eb04698116e/reports/graphs/feeding_duration.py#L14-L67
|
from django.db.models import Count, Sum
from django.db.models.functions import TruncDate
from django.utils.translation import gettext as _
import plotly.offline as plotly
import plotly.graph_objs as go
from core.utils import duration_parts
from reports import utils
|
BSD 2-Clause Simplified License
|
python-provy/provy
|
provy/more/debian/web/apache.py
|
ApacheRole.cleanup
|
python
|
def cleanup(self):
super(ApacheRole, self).cleanup()
if self.must_restart:
self.restart()
|
Restarts Apache if any changes have been made.
There's no need to call this method manually.
|
https://github.com/python-provy/provy/blob/ca3d5e96a2210daf3c1fd4b96e047efff152db14/provy/more/debian/web/apache.py#L64-L72
|
from fabric.api import settings
from provy.core.roles import Role
from provy.more.debian import AptitudeRole
class ApacheRole(Role):
def __available_site_for(self, name):
return '/etc/apache2/sites-available/%s' % name
def __enabled_site_for(self, name):
return '/etc/apache2/sites-enabled/%s' % name
def __init__(self, prov, context):
super(ApacheRole, self).__init__(prov, context)
self.must_restart = False
def provision(self):
with self.using(AptitudeRole) as aptitude:
aptitude.ensure_package_installed('apache2')
|
MIT License
|
popsim-consortium/demes-python
|
demes/__main__.py
|
ParseCommand.load_and_count_documents
|
python
|
def load_and_count_documents(
self, filename: Union[str, io.TextIOBase]
) -> Tuple[int, Iterator[demes.Graph]]:
graph_generator = demes.load_all(filename)
graph_list = []
for graph in graph_generator:
graph_list.append(graph)
if len(graph_list) > 1:
break
num_documents = len(graph_list)
graph_iter = itertools.chain(graph_list, graph_generator)
return num_documents, graph_iter
|
Count the documents in the file, returning the count and an iterator
over the graphs. The returned document count is:
0 for zero documents,
1 for one document, and
2 for two or more documents.
|
https://github.com/popsim-consortium/demes-python/blob/29d7ae04a0ffb9de7bd99ff05d73d9897ee11daa/demes/__main__.py#L116-L136
|
import io
import sys
import itertools
import argparse
from typing import Iterator, Tuple, Union
import textwrap
import demes
from . import ms
class ParseCommand:
def __init__(self, subparsers):
parser = subparsers.add_parser(
"parse",
help="Parse models and write them to stdout in canonical form.",
description=textwrap.dedent(self.__doc__),
)
parser.set_defaults(func=self)
format_group = parser.add_mutually_exclusive_group()
format_group.add_argument(
"-j",
"--json",
action="store_true",
default=False,
help="Output a JSON-formatted model.",
)
format_group.add_argument(
"--ms",
metavar="REFERENCE_SIZE",
type=float,
default=None,
help=(
"Output ms command line arguments, using the given reference "
"population size (N0) to translate into coalescent units "
"(see the 'ms' subcommand for interpretation of this value)."
"The sampling configuration in the output will need editing "
"prior to simulation. The order of deme IDs matches the "
"order of demes in the input model. "
),
)
parser.add_argument(
"-s",
"--simplified",
action="store_true",
default=False,
help=(
"Output a simplified model. This is a compact representation "
"in which many default values are omitted. As only the "
"essential details are retained, this is usually easier for "
"humans to read. The simplified output is guaranteed to be a "
"valid Demes model that can be resolved identically to the "
"input model. But exactly which fields are simplified, "
"and how simplification is performed, may change over time. "
"Thus users should not rely on details of the output such as "
"presence or absence of specific fields, or other details "
"that do not alter how the model is resolved into a "
"fully-qualified model. "
"A fully-qualified model is output by default."
),
)
parser.add_argument(
"filename",
type=argparse.FileType(),
help=(
"Filename of the model. The special value '-' may be used to "
"read from stdin. The file may be in YAML or JSON format, "
"but will be parsed as YAML. Multi-document YAML is supported."
),
)
def __call__(self, args: argparse.Namespace) -> None:
if args.json:
output_format = "json"
elif args.ms:
output_format = "ms"
else:
output_format = "yaml"
if args.ms and args.simplified:
pass
num_documents, graphs = self.load_and_count_documents(args.filename)
if num_documents == 0:
pass
elif num_documents == 1:
graph = next(graphs)
if args.ms is not None:
print(demes.to_ms(graph, N0=args.ms))
else:
demes.dump(
graph,
sys.stdout,
simplified=args.simplified,
format=output_format,
)
else:
if output_format != "yaml":
raise RuntimeError(
"The input file contains multiple models, which is only "
"supported with YAML output. If multi-model output "
"would be useful to you with other formats, "
"please open an issue on github.",
)
demes.dump_all(graphs, sys.stdout, simplified=args.simplified)
|
ISC License
|
michaelgale/cq-kit
|
cqkit/cq_discrete.py
|
discretize_edge
|
python
|
def discretize_edge(edge, resolution=16):
if isinstance(edge, Edge):
curve = BRepAdaptor_Curve(edge.wrapped)
else:
curve = BRepAdaptor_Curve(edge)
try:
gt = GCPnts_QuasiUniformAbscissa(curve, resolution + 1)
except:
return []
pts = []
for p in range(resolution + 1):
pt = gt.Parameter(p + 1)
curve_props = BRepLProp_CLProps(curve, 1, 1e-6)
curve_props.SetParameter(pt)
vpt = curve_props.Value()
pts.append((vpt.X(), vpt.Y(), vpt.Z()))
return pts
|
Uniformly samples an edge with specified resolution (number of segments)
and returns an array (segments + 1) of discrete (approximated) 3D points.
|
https://github.com/michaelgale/cq-kit/blob/e44b54d75e2687fa29cf1ee0f181008521befc3c/cqkit/cq_discrete.py#L57-L75
|
try:
from OCC.Core.BRep import BRep_Tool
from OCC.Core.BRepMesh import BRepMesh_IncrementalMesh
from OCC.Core.TopAbs import TopAbs_FACE, TopAbs_VERTEX
from OCC.Core.TopExp import TopExp_Explorer
from OCC.Core.TopLoc import TopLoc_Location
from OCC.Core.TopoDS import TopoDS_Face, TopoDS_Vertex, TopoDS_Iterator
from OCC.Core.BRepAdaptor import BRepAdaptor_Curve
from OCC.Core.BRepLProp import BRepLProp_CLProps
from OCC.Core.GCPnts import GCPnts_AbscissaPoint, GCPnts_QuasiUniformAbscissa
from OCC.Core.gp import gp_Dir
except:
from OCP.BRep import BRep_Tool
from OCP.BRepMesh import BRepMesh_IncrementalMesh
from OCP.TopAbs import TopAbs_FACE, TopAbs_VERTEX, TopAbs_Orientation
from OCP.TopExp import TopExp_Explorer
from OCP.TopLoc import TopLoc_Location
from OCP.TopoDS import TopoDS_Face, TopoDS_Vertex, TopoDS_Iterator
from OCP.BRepAdaptor import BRepAdaptor_Curve
from OCP.BRepLProp import BRepLProp_CLProps
from OCP.GCPnts import GCPnts_AbscissaPoint, GCPnts_QuasiUniformAbscissa
from OCP.gp import gp_Dir
BRep_Tool.Triangulation = BRep_Tool.Triangulation_s
GCPnts_AbscissaPoint.Length = GCPnts_AbscissaPoint.Length_s
import cadquery as cq
from cadquery import *
|
MIT License
|
roberodin/ha-samsungtv-custom
|
custom_components/samsungtv_custom/samsungctl_qled/upnp.py
|
Upnp.set_current_media
|
python
|
def set_current_media(self, url):
self.SOAPrequest('SetAVTransportURI', "<CurrentURI>{url}</CurrentURI><CurrentURIMetaData></CurrentURIMetaData>".format(url=url), 'AVTransport')
|
Set media to playback.
|
https://github.com/roberodin/ha-samsungtv-custom/blob/da6bf9349d1e33bf143a115b4f2a3754d6754472/custom_components/samsungtv_custom/samsungctl_qled/upnp.py#L56-L58
|
import xml.etree.ElementTree as ET
import requests
class Upnp:
def __init__(self, config):
self._host = config['host']
self.mute = False
self.volume = 0
def SOAPrequest(self, action, arguments, protocole):
headers = {'SOAPAction': '"urn:schemas-upnp-org:service:{protocole}:1#{action}"'.format(action=action, protocole=protocole), 'content-type': 'text/xml'}
body = """<?xml version="1.0" encoding="utf-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:{action} xmlns:u="urn:schemas-upnp-org:service:{protocole}:1">
<InstanceID>0</InstanceID>
{arguments}
</u:{action}>
</s:Body>
</s:Envelope>""".format(action=action, arguments=arguments, protocole=protocole)
response = None
try:
response = requests.post("http://{host}:9197/upnp/control/{protocole}1".format(host=self._host, protocole=protocole), data=body, headers=headers, timeout=0.2)
response = response.content
except:
pass
return response
def get_volume(self):
self.volume = 0
response = self.SOAPrequest('GetVolume', "<Channel>Master</Channel>", 'RenderingControl')
if (response is not None):
volume_xml = response.decode('utf8')
tree = ET.fromstring(volume_xml)
for elem in tree.iter(tag='CurrentVolume'):
self.volume = elem.text
return self.volume
def set_volume(self, volume):
self.SOAPrequest('SetVolume', "<Channel>Master</Channel><DesiredVolume>{}</DesiredVolume>".format(volume), 'RenderingControl')
def get_mute(self):
self.mute = False
response = self.SOAPrequest('GetMute', "<Channel>Master</Channel>", 'RenderingControl')
if (response is not None):
mute_xml = response.decode('utf8')
tree = ET.fromstring(mute_xml)
for elem in tree.iter(tag='CurrentMute'):
mute = elem.text
if (int(mute) == 0):
self.mute = False
else:
self.mute = True
return self.mute
|
Apache License 2.0
|
xuru/pyvisdk
|
pyvisdk/do/exit_maintenance_mode_event.py
|
ExitMaintenanceModeEvent
|
python
|
def ExitMaintenanceModeEvent(vim, *args, **kwargs):
obj = vim.client.factory.create('ns0:ExitMaintenanceModeEvent')
if (len(args) + len(kwargs)) < 4:
raise IndexError('Expected at least 5 arguments got: %d' % len(args))
required = [ 'chainId', 'createdTime', 'key', 'userName' ]
optional = [ 'changeTag', 'computeResource', 'datacenter', 'ds', 'dvs',
'fullFormattedMessage', 'host', 'net', 'vm', 'dynamicProperty', 'dynamicType' ]
for name, arg in zip(required+optional, args):
setattr(obj, name, arg)
for name, value in kwargs.items():
if name in required + optional:
setattr(obj, name, value)
else:
raise InvalidArgumentError("Invalid argument: %s. Expected one of %s" % (name, ", ".join(required + optional)))
return obj
|
This event records that the host is no longer in maintenance mode.
|
https://github.com/xuru/pyvisdk/blob/de24eb4426eb76233dc2e57640d3274ffd304eb3/pyvisdk/do/exit_maintenance_mode_event.py#L11-L33
|
import logging
from pyvisdk.exceptions import InvalidArgumentError
log = logging.getLogger(__name__)
|
MIT License
|
pyobo/pyobo
|
src/pyobo/sources/dictybase_gene.py
|
get_obo
|
python
|
def get_obo(force: bool = False) -> Obo:
return Obo(
iter_terms=get_terms,
iter_terms_kwargs=dict(force=force),
name=NAME,
ontology=PREFIX,
typedefs=[from_species, has_gene_product],
auto_generated_by=f"bio2obo:{PREFIX}",
)
|
Get dictyBase Gene as OBO.
|
https://github.com/pyobo/pyobo/blob/678b4eeb5ba40205ab5ed8315ae0cc1d4ff3199f/src/pyobo/sources/dictybase_gene.py#L34-L43
|
import logging
from typing import Iterable
import click
import pandas as pd
from more_click import verbose_option
from tqdm import tqdm
from pyobo.struct import Obo, Reference, Synonym, Term, from_species, has_gene_product
from pyobo.utils.io import multisetdict
from pyobo.utils.path import ensure_df
logger = logging.getLogger(__name__)
PREFIX = "dictybase.gene"
NAME = "dictyBase Gene"
URL = (
"http://dictybase.org/db/cgi-bin/dictyBase/download/"
"download.pl?area=general&ID=gene_information.txt"
)
UNIPROT_MAPPING = (
"http://dictybase.org/db/cgi-bin/dictyBase/download/"
"download.pl?area=general&ID=DDB-GeneID-UniProt.txt"
)
|
MIT License
|
amccaugh/phidl
|
phidl/geometry.py
|
C
|
python
|
def C(width = 1, size = (10, 20), layer = 0):
D = Device(name = 'C')
w = width/2
s1, s2 = size
points = [(-w, -w), (s1, -w), (s1, w), (w, w), (w, s2-w),
(s1, s2-w), (s1, s2+w), (-w, s2+w), (-w, -w)]
D.add_polygon(points, layer = layer)
D.add_port(name = 1, midpoint = (s1, s2), width = width, orientation = 0)
D.add_port(name = 2, midpoint = (s1, 0), width = width, orientation = 0)
return D
|
Generates a 'C' geometry with ports on both ends.
Parameters
----------
width : int or float
Thickness of the line forming the C.
size : tuple of int or float
Lengths of the base + top edges and the height of the C, respectively.
layer : int, array-like[2], or set
Specific layer(s) to put polygon geometry on.
Returns
-------
D : Device
A Device containing a [-bracket-shaped polygon and two ports (`1` and
`2`) on either end of the [ shape.
|
https://github.com/amccaugh/phidl/blob/eae1cea6de172db72207e926c8a6500bc9dfcddf/phidl/geometry.py#L375-L401
|
from __future__ import division, print_function, absolute_import
import os.path
import numpy as np
import itertools
from numpy import sqrt, pi, cos, sin, log, exp, sinh
import gdspy
from gdspy import clipper
from phidl.device_layout import Device, Port, Polygon, CellArray, Group
from phidl.device_layout import _parse_layer, DeviceReference, make_device
import copy as python_copy
from collections import OrderedDict
import pickle
import json
import warnings
from functools import update_wrapper
from phidl.constants import _glyph,_width,_indent
def rectangle(size = (4,2), layer = 0):
D = Device(name = 'rectangle')
points = [[size[0], size[1]], [size[0], 0], [0, 0], [0, size[1]]]
D.add_polygon(points, layer = layer)
return D
def bbox(bbox = [(-1, -1), (3, 4)], layer = 0):
D = Device(name = 'bbox')
(a,b), (c,d) = bbox
points = ((a,b), (c,b), (c,d), (a,d))
D.add_polygon(points, layer = layer)
return D
def cross(length = 10, width = 3, layer = 0):
D = Device(name = 'cross')
R = rectangle(size = (width, length), layer = layer)
r1 = D.add_ref(R).rotate(90)
r2 = D.add_ref(R)
r1.center = (0,0)
r2.center = (0,0)
return D
def ellipse(radii = (10,5), angle_resolution = 2.5, layer = 0):
D = Device(name = 'ellipse')
a = radii[0]
b = radii[1]
t = np.linspace(0, 360, int(np.ceil(360/angle_resolution) + 1)) * pi/180
r = a*b / (sqrt((b*cos(t))**2 + (a*sin(t))**2))
xpts = r*cos(t)
ypts = r*sin(t)
D.add_polygon(points = (xpts, ypts), layer = layer)
return D
def circle(radius = 10, angle_resolution = 2.5, layer = 0):
D = Device(name = 'circle')
t = np.linspace(0, 360, int(np.ceil(360/angle_resolution) + 1)) * pi/180
xpts = (radius*cos(t)).tolist()
ypts = (radius*sin(t)).tolist()
D.add_polygon(points = (xpts, ypts), layer = layer)
return D
def ring(radius = 10, width = 0.5, angle_resolution = 2.5, layer = 0):
D = Device(name = 'ring')
inner_radius = radius - width/2
outer_radius = radius + width/2
n = int(np.round(360/angle_resolution))
t = np.linspace(0, 360, n+1) * pi/180
inner_points_x = (inner_radius*cos(t)).tolist()
inner_points_y = (inner_radius*sin(t)).tolist()
outer_points_x = (outer_radius*cos(t)).tolist()
outer_points_y = (outer_radius*sin(t)).tolist()
xpts = inner_points_x + outer_points_x[::-1]
ypts = inner_points_y + outer_points_y[::-1]
D.add_polygon(points = (xpts, ypts), layer = layer)
return D
def arc(radius = 10, width = 0.5, theta = 45, start_angle = 0,
angle_resolution = 2.5, layer = 0):
inner_radius = radius - width/2
outer_radius = radius + width/2
angle1 = (start_angle) * pi/180
angle2 = (start_angle + theta) * pi/180
t = np.linspace(angle1, angle2, int(np.ceil(abs(theta)/angle_resolution)))
inner_points_x = (inner_radius*cos(t)).tolist()
inner_points_y = (inner_radius*sin(t)).tolist()
outer_points_x = (outer_radius*cos(t)).tolist()
outer_points_y = (outer_radius*sin(t)).tolist()
xpts = inner_points_x + outer_points_x[::-1]
ypts = inner_points_y + outer_points_y[::-1]
D = Device('arc')
D.add_polygon(points = (xpts,ypts), layer = layer)
D.add_port(name = 1,
midpoint = (radius*cos(angle1), radius*sin(angle1)),
width = width,
orientation = start_angle - 90 + 180*(theta<0))
D.add_port(name = 2,
midpoint = (radius*cos(angle2), radius*sin(angle2)),
width = width,
orientation = start_angle + theta + 90 - 180*(theta<0))
D.info['length'] = (abs(theta) * pi/180) * radius
return D
def turn(port, radius = 10, angle = 270, angle_resolution = 2.5, layer = 0):
D = arc(radius = radius, width = port.width, theta = angle,
start_angle = 0, angle_resolution = angle_resolution,
layer = layer)
D.rotate(angle = 180 + port.orientation - D.ports[1].orientation,
center = D.ports[1].midpoint)
D.move(origin = D.ports[1], destination = port)
return D
def straight(size = (4, 2), layer = 0):
D = Device(name = 'wire')
points = [[size[0], size[1]], [size[0], 0], [0, 0], [0, size[1]]]
D.add_polygon(points, layer = layer)
D.add_port(name = 1, midpoint = (size[0]/2, size[1]),
width = size[0], orientation = 90)
D.add_port(name = 2, midpoint = (size[0]/2, 0),
width = size[0], orientation = -90)
return D
def L(width = 1, size = (10, 20), layer = 0):
D = Device(name = 'L')
w = width/2
s1, s2 = size
points = [(-w, -w), (s1, -w), (s1, w), (w, w), (w, s2), (-w, s2), (-w, -w)]
D.add_polygon(points, layer = layer)
D.add_port(name = 1, midpoint = (0, s2), width = width, orientation = 90)
D.add_port(name = 2, midpoint = (s1, 0), width = width, orientation = 0)
return D
|
MIT License
|
googlearchive/simian
|
src/simian/auth/x509.py
|
X509Certificate.CheckIssuer
|
python
|
def CheckIssuer(self, issuer=None):
if issuer is None:
issuer = self._required_issuer
if issuer is None:
return
if self._cert['issuer'] is None or self._cert['issuer'] != issuer:
raise CertificateValueError(
'Issuer does not match required issuer: "%s" != required "%s"' % (
self._cert['issuer'], issuer))
|
Check that the certificate has a specific issuer.
Args:
issuer: str, optional, issuer that is required
Raises:
CertificateValueError: if issuer does not match
|
https://github.com/googlearchive/simian/blob/fb9c43946ff7ba29be417068d6447cfc0adfe9ef/src/simian/auth/x509.py#L688-L705
|
import base64
import datetime
import hashlib
import re
import time
from pyasn1.codec.der import decoder as der_decoder
from pyasn1.codec.der import encoder as der_encoder
import pyasn1.error
from pyasn1.type import univ
from pyasn1_modules import rfc2459
from simian.auth import tlslite_bridge
OID_NAME = {
(2, 5, 4, 3): 'CN',
(2, 5, 4, 6): 'C',
(2, 5, 4, 7): 'L',
(2, 5, 4, 8): 'ST',
(2, 5, 4, 10): 'O',
(2, 5, 4, 11): 'OU',
(1, 2, 840, 113549, 1, 9, 1): 'emailAddress',
(0, 9, 2342, 19200300, 100, 1, 25): 'DC',
}
OID_ID = {}
for k, v in OID_NAME.iteritems():
OID_ID[v] = k
OID_ID['domainComponent'] = OID_ID['DC']
OID_SHA1_WITH_RSA_ENC = (1, 2, 840, 113549, 1, 1, 5)
OID_SHA256_WITH_RSA_ENC = (1, 2, 840, 113549, 1, 1, 11)
OID_MS_NT_PRINCIPAL_NAME = (1, 3, 6, 1, 4, 1, 311, 20, 2, 3)
OID_X509V3_BASIC_CONSTRAINTS = (2, 5, 29, 19)
OID_X509V3_KEY_USAGE = (2, 5, 29, 15)
X509V3_KEY_USAGE_BIT_FIELDS = (
'digitalSignature',
'nonRepudiation',
'keyEncipherment',
'dataEncipherment',
'keyAgreement',
'keyCertSign',
'CRLSign',
'encipherOnly',
'decipherOnly',
)
OID_X509V3_SUBJECT_ALT_NAME = (2, 5, 29, 17)
X509_CERT_VERSION_3 = 0x2
BASE64_RE = re.compile(r'^[0-9A-Za-z/+=]+$')
SPACE = str(u'\u0020')
NULL = '\x00'
RFC4514_ESCAPED_CHARS = frozenset(('"', '+', ',', ';', '<', '>', '\\', NULL))
class Error(Exception):
class CertificateError(Error):
class FormatError(Error):
class CertificateValueError(CertificateError):
class CertificateParseError(CertificateError):
class CertificateFormatError(CertificateError, FormatError):
class PEMFormatError(FormatError):
class HeaderMissingPEMFormatError(PEMFormatError):
class FooterMissingPEMFormatError(PEMFormatError):
class CertificateASN1FormatError(CertificateFormatError):
class CertificatePEMFormatError(CertificateFormatError, PEMFormatError):
class RSAKeyPEMFormatError(PEMFormatError):
class RSAPrivateKeyPEMFormatError(RSAKeyPEMFormatError):
class BaseDataObject(object):
def _GetDataDict(self):
raise NotImplementedError
@classmethod
def CreateGetMethod(cls, name, key, setattr_=None):
if setattr_ is None:
setattr_ = setattr
setattr_(cls, 'Get%s' % name, lambda self: self._GetDataDict()[key])
class X509Certificate(BaseDataObject):
SIGNATURE_ALGORITHMS = [OID_SHA1_WITH_RSA_ENC, OID_SHA256_WITH_RSA_ENC]
TIMESTAMP_FMT = '%y%m%d%H%M%SZ'
def __init__(self):
self.Reset()
self._required_issuer = None
def Reset(self):
self._cert = {
'serial_num': None,
'issuer': None,
'subject': None,
'valid_notbefore': None,
'valid_notafter': None,
'fields_data': None,
'sig_data': None,
'sig_algorithm': None,
'entire_cert_data': None,
'public_key': None,
'may_act_as_ca': None,
'key_usage': None,
'subject_alt_name': None,
}
def _GetDataDict(self):
return self._cert
BaseDataObject.CreateGetMethod('Issuer', 'issuer')
BaseDataObject.CreateGetMethod('Subject', 'subject')
BaseDataObject.CreateGetMethod('DatetimeNotValidBefore', 'valid_notbefore')
BaseDataObject.CreateGetMethod('DatetimeNotValidAfter', 'valid_notafter')
BaseDataObject.CreateGetMethod('FieldsData', 'fields_data')
BaseDataObject.CreateGetMethod('SignatureData', 'sig_data')
BaseDataObject.CreateGetMethod('SignatureAlgorithm', 'sig_algorithm')
BaseDataObject.CreateGetMethod('SerialNumber', 'serial_num')
BaseDataObject.CreateGetMethod('EntireCertData', 'entire_cert_data')
BaseDataObject.CreateGetMethod('PublicKey', 'public_key')
BaseDataObject.CreateGetMethod('MayActAsCA', 'may_act_as_ca')
BaseDataObject.CreateGetMethod('KeyUsage', 'key_usage')
BaseDataObject.CreateGetMethod('SubjectAltName', 'subject_alt_name')
def _CertTimestampToDatetime(self, ts):
try:
t = time.strptime(str(ts[0]), self.TIMESTAMP_FMT)
except ValueError, e:
raise CertificateValueError('Timestamp %s: %s' % (ts, str(e)))
t = list(t[:6])
t.append(0)
d = datetime.datetime(*t)
return d
def _FindOctetStrings(self, values):
return [x for x in values if isinstance(x, univ.OctetString)]
def _GetV3ExtensionFieldsFromSequence(self, seq):
seq = der_decoder.decode(der_encoder.encode(seq))[0]
output = {}
cert_key_usage = []
for i in xrange(len(seq)):
oid, values = seq[i][0], seq[i][1:]
if oid == OID_X509V3_BASIC_CONSTRAINTS:
octet_strings = self._FindOctetStrings(values)
if 1 < len(values) > 2:
raise CertificateParseError('X509V3 Multiple CA/Paths')
encaps_seq = der_decoder.decode(octet_strings[0])
if len(encaps_seq):
if len(encaps_seq[1]):
raise CertificateParseError(
'X509V3 pathLenConstraint unsupported')
if len(encaps_seq[0]) and encaps_seq[0][0]:
output['may_act_as_ca'] = True
elif oid == OID_X509V3_KEY_USAGE:
octet_strings = self._FindOctetStrings(values)
if octet_strings[0][0] != '\x03':
raise CertificateParseError('X509V3 Key Usage encoding')
encaps_bitstr = der_decoder.decode(octet_strings[0])[0]
n = 0
while n < len(encaps_bitstr):
if encaps_bitstr[n]:
cert_key_usage.append(X509V3_KEY_USAGE_BIT_FIELDS[n])
n += 1
elif oid == OID_X509V3_SUBJECT_ALT_NAME:
octet_strings = self._FindOctetStrings(values)
if octet_strings[0][0] != '\x30':
raise CertificateParseError('X509V3 Subject Alt Name encoding')
encaps_seq = der_decoder.decode(octet_strings[0])[0]
if not encaps_seq:
continue
if encaps_seq[0] == OID_MS_NT_PRINCIPAL_NAME:
output['subject_alt_name'] = (
'X_MS_NT_Principal_Name=%s' % encaps_seq[1])
else:
raise CertificateParseError(
'X509V3 SubjectAltName Unknown OID %s' % str(encaps_seq[0]))
cert_key_usage = tuple(cert_key_usage)
if cert_key_usage:
output['key_usage'] = cert_key_usage
return output
def _AttributeValueToString(self, value):
if isinstance(value, rfc2459.AttributeValue):
value = der_decoder.decode(value.asOctets())[0]
else:
value = str(value)
tmp = []
i = 0
while i < len(value):
if value[i] in RFC4514_ESCAPED_CHARS:
if i == 0 or value[i - 1] != '\\':
if value[i] == NULL:
tmp.append('\\00')
else:
tmp.append('\\%s' % value[i])
else:
tmp.append(value[i])
i += 1
value = ''.join(tmp)
if value.startswith(SPACE):
value = '\\' + value
elif value.startswith('#'):
value = '\\' + value
if value.endswith(SPACE):
value = value[0:-1] + '\\' + SPACE
return value
def _AssembleDNSequence(self, seq):
output = []
delimiter = ','
try:
for i in seq[0]:
oid, value = i[0]['type'], i[0]['value']
if oid in OID_NAME:
new_value = self._AttributeValueToString(value)
output.append('%s=%s' % (OID_NAME[oid], new_value))
else:
raise CertificateParseError('Unknown OID %s' % str(oid))
except (IndexError, ValueError, TypeError):
raise CertificateParseError('Unknown DN sequence structure', seq)
return delimiter.join(output)
def _GetFieldsFromSequence(self, seq):
try:
if seq['version'] != X509_CERT_VERSION_3:
raise CertificateParseError(
'X509 version %s not supported' % seq['version'])
serial_num = int(seq['serialNumber'])
cert_sig_algorithm = self._GetSignatureAlgorithmFromSequence(
seq['signature'])
cert_issuer = self._AssembleDNSequence(seq['issuer'])
if (seq['validity']['notBefore'].isSameTypeWith(rfc2459.Time()) and
seq['validity']['notAfter'].isSameTypeWith(rfc2459.Time())):
cert_valid_notbefore = self._CertTimestampToDatetime(
seq['validity']['notBefore'])
cert_valid_notafter = self._CertTimestampToDatetime(
seq['validity']['notAfter'])
else:
raise CertificateParseError('Validity time structure')
cert_subject = self._AssembleDNSequence(seq['subject'])
if len(seq) > 7:
v3_output = self._GetV3ExtensionFieldsFromSequence(seq['extensions'])
else:
v3_output = {}
fields_data = der_encoder.encode(seq)
output = {
'serial_num': serial_num,
'issuer': unicode(cert_issuer),
'subject': unicode(cert_subject),
'valid_notbefore': cert_valid_notbefore,
'valid_notafter': cert_valid_notafter,
'fields_data': fields_data,
'sig_algorithm': cert_sig_algorithm,
}
output.update(v3_output)
except (IndexError, TypeError, AttributeError, ValueError), e:
raise CertificateParseError(str(e))
return output
def _GetSignatureAlgorithmFromSequence(self, seq):
try:
if seq['algorithm'] not in self.SIGNATURE_ALGORITHMS:
raise CertificateValueError(
'Unsupported signature algorithm %s' % str(seq['algorithm']))
output = {'sig_algorithm': seq['algorithm']}
except (IndexError, TypeError, AttributeError), e:
raise CertificateParseError(str(e))
return output
def _GetSignatureFromSequence(self, seq):
try:
if len(seq) >= 1024:
total = 0
for b in seq:
total |= seq[b]
if total not in [0, 1]:
raise CertificateParseError('Invalid signature format')
else:
raise CertificateParseError('Signature length must be >=1024')
sig_data = der_encoder.encode(seq)
sig_data = sig_data[-1 * (len(seq)/8):]
output = {'sig_data': sig_data}
except (IndexError, TypeError, AttributeError), e:
raise CertificateParseError(str(e))
return output
def _GetCertSequencesFromTopSequence(self, seq):
if type(seq) is not tuple or len(seq) < 1:
raise CertificateParseError(
'Top of certificate should consist of 1+ sequences')
certificate = seq[0]
fields = self._GetFieldsFromSequence(certificate['tbsCertificate'])
sigalg = self._GetSignatureAlgorithmFromSequence(
certificate['signatureAlgorithm'])
sig = self._GetSignatureFromSequence(certificate['signatureValue'])
cert = {}
cert.update(fields)
cert.update(sigalg)
cert.update(sig)
return cert
def _GetPublicKeyFromByteString(self, bytes_str):
cert = tlslite_bridge.X509()
cert.parseBinary(bytearray(bytes_str))
return {
'public_key': cert.publicKey,
}
def LoadFromByteString(self, bytes_str):
try:
c = der_decoder.decode(bytes_str, asn1Spec=rfc2459.Certificate())
except pyasn1.error.PyAsn1Error, e:
raise CertificateASN1FormatError('DER decode: %s' % str(e))
cert = {
'entire_byte_string': bytes_str,
}
cert.update(self._GetCertSequencesFromTopSequence(c))
cert.update(self._GetPublicKeyFromByteString(bytes_str))
self.Reset()
self._cert.update(cert)
def CheckValidity(self, utcnow=None):
if utcnow is None:
utcnow = datetime.datetime.utcnow()
if utcnow > self._cert['valid_notafter']:
raise CertificateValueError(
'Certificate expired on %s' % self._cert['valid_notafter'])
if utcnow < self._cert['valid_notbefore']:
raise CertificateValueError(
'Certificate not valid until %s' % self._cert['valid_notbefore'])
|
Apache License 2.0
|
sonibla/pytorch_keras_converter
|
pytorch_keras_converter/utility/LayerRepresentation.py
|
LayerRepresentation.progression
|
python
|
def progression(self, framework=None):
equivalents = self.numberOfEquivalents(framework=framework)
if framework in self.equivalent.keys():
equivalents += 1
total = self.numberOfChildren() + 1
return (equivalents / total) * 100
|
Returns the fraction of the model (in %) which have an equivalent
available in keras or pyTorch (argument framework)
|
https://github.com/sonibla/pytorch_keras_converter/blob/21925b67b6eb3cbbfa8eb6d33f682d57dafd357d/pytorch_keras_converter/utility/LayerRepresentation.py#L923-L933
|
try:
import tensorflow.keras as keras
except ImportError:
try:
import keras
except ImportError:
keras = None
try:
import torch
except ImportError:
torch = None
try:
import graphviz
except ImportError:
graphviz = None
from . import torch2keras as t2k
def UsedFramework(module):
moduleClass = str(module.__class__)[8:-2]
IsKeras = 'keras' in moduleClass
IsTorch = 'torch' in moduleClass
if '_backend' in dir(module):
IsTorch = IsTorch or 'torch' in str(module._backend)
if IsKeras:
return 'keras'
if IsTorch:
return 'torch'
return None
def normalizeShape(shape):
if isinstance(shape, tuple):
normalizedShape = shape
elif isinstance(shape, int):
normalizedShape = (shape,)
else:
try:
normalizedShape = tuple(shape)
except TypeError:
raise TypeError("Could not convert provided shape to tulpe")
return normalizedShape
class LayerRepresentation:
def __init__(self, module=None):
self.parent = None
self.children = list()
self.originalFramework = None
self.name = str(module.__class__.__name__)
self.type = str(module.__class__.__name__)
self.detailedType = str(module.__class__)[8:-2]
self.detailedTypeList = self.detailedType.split('.')
self.equivalent = dict()
self.equivalentTxt = dict()
self.input_shape = None
self.output_shape = None
self.InputConnectedTo = set()
self.OutputConnectedTo = set()
framework = UsedFramework(module)
if framework == 'torch':
self.originalFramework = 'torch'
self.equivalent['torch'] = module.eval()
children = dict(module.named_children()).items()
for name, child in children:
self.addChild(child, name=name)
elif framework == 'keras':
self.originalFramework = 'keras'
if keras is None:
self.equivalent['keras'] = module
else:
self.equivalent['keras'] = keras.models.clone_model(module)
if 'layers' in dir(module):
for child in module.layers:
self.addChild(child, name=child.name)
self.kerasOutput = None
self.kerasInput = None
def __setattr__(self, attr, val):
object.__setattr__(self, attr, val)
if 'kerasInput' in dir(self):
if attr == 'input_shape':
if not isinstance(self.input_shape, tuple):
self.input_shape = normalizeShape(self.input_shape)
elif attr == 'output_shape':
if not isinstance(self.output_shape, tuple):
self.output_shape = normalizeShape(self.output_shape)
elif attr == 'kerasInput':
inputExist = self.kerasInput is not None
outputExist = self.kerasOutput is not None
equivExist = 'keras' in self.equivalent.keys()
if inputExist and equivExist:
output = self.equivalent['keras'](self.kerasInput)
self.kerasOutput = output
if inputExist and outputExist and not(equivExist):
if keras is None:
err = "Could not import keras. Conversion failed !"
raise ImportError(err)
kerasEq = keras.models.Model(inputs=self.kerasInput,
outputs=self.kerasOutput,
name=self.name)
self.equivalent['keras'] = kerasEq
if self.kerasInput is not None and self.input_shape is not None:
shape = self.kerasInputShape()
if shape is not None and shape != self.input_shape:
err = "Conversion failed! Details: at layer {}, input \
shape should be {}, but is {}\
".format(self.name, self.input_shape, shape)
raise RuntimeError(err)
if self.kerasOutput is not None and self.output_shape is not None:
shape = self.kerasOutputShape()
if shape is not None and shape != self.output_shape:
err = "Conversion failed! Details: at layer {}, output \
shape should be {}, but is {}\
".format(self.name, self.output_shape, shape)
raise RuntimeError(err)
def __getitem__(self, index):
if isinstance(index, str):
return self.getChild(name=index)
if isinstance(index, int):
return self.getChildId(identifier=index)
return None
def getChildId(self, identifier=None, framework=None):
if framework is None:
for child in self.children:
if id(child) == identifier:
return child
if id(self) == identifier:
return self
mainParent = self.firstParent()
if id(mainParent) == identifier:
return mainParent
for child in mainParent.allChildren():
if id(child) == identifier:
return child
return None
else:
for child in self.children:
if framework in child.equivalent.keys():
equiv = child.equivalent[framework]
if id(equiv) == identifier:
return child
if framework in self.equivalent.keys():
if id(self.equivalent[framework]) == identifier:
return self
mainParent = self.firstParent()
if framework in mainParent.equivalent.keys():
if id(mainParent.equivalent[framework]) == identifier:
return mainParent
for child in mainParent.allChildren():
if framework in child.equivalent.keys():
equiv = child.equivalent[framework]
if id(equiv) == identifier:
return child
return None
def getChild(self, name=None):
for child in self.children:
if child.name == name:
return child
return None
def addChild(self, childEq, name=None):
child = LayerRepresentation(childEq)
child.name = str(name)
child.parent = self
self.children.append(child)
return child
def delChildren(self):
self.children = list()
def delChild(self, name=None):
if self.getChild(name=name) is not None:
del self.children[self.getChild(name=name)]
def allChildren(self):
if not self.children:
return list()
else:
List = self.children
for child in self.children:
List = List + child.allChildren()
return List
def numberOfChildren(self):
number = len(self.children)
for child in self.children:
number += child.numberOfChildren()
return number
def completeName(self):
if self.parent is None:
return self.name
return self.parent.completeName() + '_' + self.name
def firstParent(self):
if self.parent is None:
return self
return self.parent.firstParent()
def connectionsAmongChildren(self, attr, reverse=False):
connected = set()
if isinstance(attr, str):
if (attr != 'IN' or reverse) and not(attr == 'OUT' and reverse):
return set()
else:
for child in self.children:
if attr == 'IN' and 0 in child.InputConnectedTo:
connected.add(child)
elif attr == 'OUT' and 0 in child.OutputConnectedTo:
connected.add(child)
return connected
else:
child = attr
if child not in self.children:
return set()
if not reverse:
for bro in self.children:
if child is not bro and child in bro.InputConnectedTo:
connected.add(bro)
for Output in child.OutputConnectedTo:
if not Output == 0:
connected.add(Output)
else:
connected.add('OUT')
elif reverse:
for bro in self.children:
if child is not bro and child in bro.OutputConnectedTo:
connected.add(bro)
for Input in child.OutputConnectedTo:
if not Input == 0:
connected.add(Input)
else:
connected.add('IN')
return connected
def connectedChildren(self, attr, reverse=False):
connected = self.connectionsAmongChildren(attr, reverse=reverse)
connectedSimple = set()
for layer in connected:
if isinstance(layer, str):
if self.parent is None:
connectedSimple.add(layer)
else:
parent = self.parent
cnctdRecursive = parent.connectedChildren(self,
reverse=reverse)
for simpleLayer in cnctdRecursive:
connectedSimple.add(simpleLayer)
elif not layer.children:
connectedSimple.add(layer)
elif layer.children:
if reverse:
cnctdRecursive = layer.connectedChildren('OUT',
reverse=reverse)
else:
cnctdRecursive = layer.connectedChildren('IN',
reverse=reverse)
for simpleLayer in cnctdRecursive:
connectedSimple.add(simpleLayer)
return connectedSimple
def numberOfEquivalents(self, framework=None, file=False):
number = 0
for child in self.children:
if not file:
if framework in child.equivalent.keys():
number += 1
elif file and framework in child.equivalentTxt.keys():
if framework in child.equivalent.keys():
number += 1
number += child.numberOfEquivalents(framework=framework)
return number
def childrenEquivalentsCompleted(self, framework=None, file=False):
for child in self.children:
if framework not in child.equivalent.keys():
return False
if file and framework not in child.equivalentTxt.keys():
return False
if (framework is None) and (child.equivalent == {}):
return False
if (framework is None) and file and (child.equivalentTxt == {}):
return False
return True
def Connect2Layers(self, name0, name1, connectKeras=True):
child0 = self.getChild(name=name0)
child1 = self.getChild(name=name1)
if child0 is None or child1 is None:
return None
child0.OutputConnectedTo.add(child1)
child1.InputConnectedTo.add(child0)
if connectKeras:
child1.kerasInput = child0.kerasOutput
def ConnectLayers(self, *names, **kwargs):
if 'connectKeras' in kwargs.keys():
connectKeras = kwargs['connectKeras']
else:
connectKeras = True
for i in range(len(names)-1):
self.Connect2Layers(names[i],
names[i+1],
connectKeras=connectKeras)
def ConnectModelInputToChildren(self, *names, **kwargs):
if 'connectKeras' in kwargs.keys():
connectKeras = kwargs['connectKeras']
else:
connectKeras = True
for name in names:
child = self.getChild(name=name)
if child is not None:
child.InputConnectedTo.add(0)
if connectKeras:
if self.kerasInput is None:
if keras is None:
err = "Could not import keras. Conversion failed !"
raise ImportError(err)
Input = keras.layers.Input(shape=self.input_shape)
self.kerasInput = Input
child.kerasInput = self.kerasInput
def ConnectChildrenOutputToModel(self, *names, **kwargs):
if 'connectKeras' in kwargs.keys():
connectKeras = kwargs['connectKeras']
else:
connectKeras = True
if connectKeras:
kerasOutputs = list()
for name in names:
child = self.getChild(name=name)
if child is not None:
child.OutputConnectedTo.add(0)
if connectKeras:
kerasOutputs.append(child.kerasOutput)
if connectKeras:
if None in kerasOutputs:
return None
elif len(kerasOutputs) == 0:
return None
elif len(kerasOutputs) == 1:
self.kerasOutput = kerasOutputs[0]
else:
cat = keras.layers.concatenate(kerasOutputs, axis=1)
self.kerasOutput = cat
def ConnectChildrenOutputToChild(self, *names, **kwargs):
if 'connectKeras' in kwargs.keys():
connectKeras = kwargs['connectKeras']
else:
connectKeras = True
childName = kwargs['childName']
if connectKeras:
kerasOutputs = list()
child = self.getChild(name=childName)
for i in range(len(names)):
if isinstance(names[i], str):
child_i = self.getChild(name=names[i])
else:
child_i = child_i
if child_i is not None:
child_i.OutputConnectedTo.add(child)
child.InputConnectedTo.add(child_i)
if connectKeras:
kerasOutputs.append(child_i.kerasOutput)
if connectKeras:
if None in kerasOutputs:
return None
elif len(kerasOutputs) == 0:
return None
elif len(kerasOutputs) == 1:
self.kerasOutput = kerasOutputs[0]
else:
cat = keras.layers.concatenate(kerasOutputs, axis=1)
self.getChild(name=childName).kerasInput = cat
def ConnectChildrenOutputToChildren(self, *names, **kwargs):
if 'connectKeras' in kwargs.keys():
connectKeras = kwargs['connectKeras']
else:
connectKeras = True
childrenNames = kwargs['childrenNames']
if isinstance(childrenNames, str):
self.ConnectChildrenOutputToChild(*names,
childName=childrenNames,
connectKeras=connectKeras)
elif isinstance(childrenNames, list):
for child in childrenNames:
self.ConnectChildrenOutputToChild(*names,
childName=child,
connectKeras=connectKeras)
def isTorchBuiltIn(self):
dT = self.detailedType
return 'torch' in dT and 'torchvision' not in dT
def isContainer(self):
return ('container' in self.detailedType)
def isTorchLayer(self):
return self.isTorchBuiltIn() and not self.isContainer()
def isTorchContainer(self):
return self.isTorchBuiltIn() and self.isContainer()
def kerasInputShape(self):
return t2k.kerasShape(self.kerasInput)
def kerasOutputShape(self):
return t2k.kerasShape(self.kerasOutput)
def DOT(self, shapes=True, debug=False):
if graphviz is None:
return None
if debug:
shapes = True
dot = graphviz.Digraph(name='cluster_{}'.format(str(id(self))),
format='svg')
label = DOTlabel(model=self,
shapes=shapes,
debug=debug,
name=str(self))
color = DOTcolor(model=self,
debug=debug)
dot.attr(label=label, fontsize='12', color=color)
for child in self.children:
if not child.children:
label = DOTlabel(model=child,
shapes=shapes,
debug=debug,
name=child.name)
color = DOTcolor(model=child,
debug=debug)
dot.node(str(id(child)),
label=label,
color=color,
shape='box',
fontsize='11')
else:
dot.subgraph(child.DOT(shapes=shapes, debug=debug))
if self.parent is None:
Dot = graphviz.Digraph(name='all', format='svg')
Dot.subgraph(dot)
connectedIN = self.connectedChildren('IN')
connectedOUT = self.connectedChildren('OUT', reverse=True)
if shapes:
if connectedIN:
Dot.node('IN', label='IN\n'+str(self.input_shape))
if connectedOUT:
Dot.node('OUT', label='OUT\n'+str(self.output_shape))
else:
if connectedIN:
Dot.node('IN')
if connectedOUT:
Dot.node('OUT')
Dot = createDOTedges(self, Dot, debug=debug)
return Dot
return dot
|
MIT License
|
dashcare/irrexplorer
|
irrexplorer/storage/migrations/env.py
|
run_migrations_offline
|
python
|
def run_migrations_offline():
url = config.get_main_option("sqlalchemy.url")
context.configure(
url=url,
target_metadata=target_metadata,
literal_binds=True,
dialect_opts={"paramstyle": "named"},
)
with context.begin_transaction():
context.run_migrations()
|
Run migrations in 'offline' mode.
This configures the context with just a URL
and not an Engine, though an Engine is acceptable
here as well. By skipping the Engine creation
we don't even need a DBAPI to be available.
Calls to context.execute() here emit the given string to the
script output.
|
https://github.com/dashcare/irrexplorer/blob/0c007a82ae0dec685453d1e765bc3e5c46ca1271/irrexplorer/storage/migrations/env.py#L27-L48
|
from logging.config import fileConfig
from alembic import context
from sqlalchemy import engine_from_config, pool
from irrexplorer.settings import DATABASE_URL
from irrexplorer.storage.tables import metadata
config = context.config
fileConfig(config.config_file_name)
config.set_main_option("sqlalchemy.url", str(DATABASE_URL))
target_metadata = metadata
|
BSD 2-Clause Simplified License
|
rpi-distro/thonny
|
thonny/shared/thonny/backend.py
|
FancyTracer._try_interpret_as_again_event
|
python
|
def _try_interpret_as_again_event(self, frame, original_event, original_args):
if original_event == "after_expression":
node_tags = original_args.get("node_tags")
value = original_args.get("value")
if (node_tags is not None
and ("last_child" in node_tags
or "or_arg" in node_tags and value
or "and_arg" in node_tags and not value)):
again_args = {"text_range" : original_args.get("parent_range"),
"node_tags" : ""}
again_event = ("before_expression_again"
if "child_of_expression" in node_tags
else "before_statement_again")
self._handle_progress_event(frame, again_event, again_args)
|
Some after_* events can be interpreted also as
"before_*_again" events (eg. when last argument of a call was
evaluated, then we are just before executing the final stage of the call)
|
https://github.com/rpi-distro/thonny/blob/78a289c5948310377aacfe5349cb1a43d75ed7d8/thonny/shared/thonny/backend.py#L903-L927
|
import sys
import io
import os.path
import inspect
import ast
import _ast
import _io
import traceback
import types
import logging
import pydoc
import builtins
import site
import __main__
from thonny import ast_utils
from thonny.common import TextRange, parse_message, serialize_message, DebuggerCommand, ToplevelCommand, FrameInfo, InlineCommand, InputSubmission
import signal
import warnings
BEFORE_STATEMENT_MARKER = "_thonny_hidden_before_stmt"
BEFORE_EXPRESSION_MARKER = "_thonny_hidden_before_expr"
AFTER_STATEMENT_MARKER = "_thonny_hidden_after_stmt"
AFTER_EXPRESSION_MARKER = "_thonny_hidden_after_expr"
EXCEPTION_TRACEBACK_LIMIT = 100
DEBUG = True
logger = logging.getLogger()
info = logger.info
class VM:
def __init__(self):
self._main_dir = os.path.dirname(sys.modules["thonny"].__file__)
self._heap = {}
site.sethelper()
pydoc.pager = pydoc.plainpager
self._install_fake_streams()
self._current_executor = None
self._io_level = 0
original_argv = sys.argv.copy()
original_path = sys.path.copy()
sys.path = [d for d in sys.path if d != ""]
if len(sys.argv) > 1:
special_names_to_remove = set()
sys.argv[:] = sys.argv[1:]
sys.path.insert(0, os.path.abspath(os.path.dirname(sys.argv[0])))
__main__.__dict__["__file__"] = sys.argv[0]
else:
special_names_to_remove = {"__file__", "__cached__"}
sys.argv[:] = [""]
sys.path.insert(0, "")
if "JEDI_LOCATION" in os.environ:
sys.path.append(os.environ["JEDI_LOCATION"])
for key in list(__main__.__dict__.keys()):
if not key.startswith("__") or key in special_names_to_remove:
del __main__.__dict__[key]
__main__.__doc__ = None
self.send_message(self.create_message("ToplevelResult",
main_dir=self._main_dir,
original_argv=original_argv,
original_path=original_path,
argv=sys.argv,
path=sys.path,
welcome_text="Python " + _get_python_version_string(),
executable=sys.executable,
in_venv=hasattr(sys, 'base_prefix') and sys.base_prefix != sys.prefix,
python_version=_get_python_version_string(),
cwd=os.getcwd()))
self._install_signal_handler()
def mainloop(self):
try:
while True:
try:
cmd = self._fetch_command()
self.handle_command(cmd, "waiting_toplevel_command")
except KeyboardInterrupt:
logger.exception("Interrupt in mainloop")
self.send_message(self.create_message("ToplevelResult"))
except:
logger.exception("Crash in mainloop")
def handle_command(self, cmd, command_context):
assert isinstance(cmd, ToplevelCommand) or isinstance(cmd, InlineCommand)
error_response_type = "ToplevelResult" if isinstance(cmd, ToplevelCommand) else "InlineError"
try:
handler = getattr(self, "_cmd_" + cmd.command)
except AttributeError:
response = self.create_message(error_response_type, error="Unknown command: " + cmd.command)
else:
try:
response = handler(cmd)
except:
response = self.create_message(error_response_type,
error="Thonny internal error: {0}".format(traceback.format_exc(EXCEPTION_TRACEBACK_LIMIT)))
if response is not None:
response["command_context"] = command_context
response["command"] = cmd.command
if response["message_type"] == "ToplevelResult":
response["gui_is_active"] = (
self._get_tkinter_default_root() is not None
or self._get_qt_app() is not None
)
self.send_message(response)
def _install_signal_handler(self):
def signal_handler(signal, frame):
raise KeyboardInterrupt("Execution interrupted")
if os.name == 'nt':
signal.signal(signal.SIGBREAK, signal_handler)
else:
signal.signal(signal.SIGINT, signal_handler)
def _cmd_cd(self, cmd):
try:
os.chdir(cmd.path)
return self.create_message("ToplevelResult")
except Exception as e:
return self.create_message("ToplevelResult", error=str(e))
def _cmd_Reset(self, cmd):
return self.create_message("ToplevelResult",
welcome_text="Python " + _get_python_version_string(),
executable=sys.executable)
def _cmd_Run(self, cmd):
return self._execute_file(cmd, False)
def _cmd_run(self, cmd):
return self._execute_file(cmd, False)
def _cmd_Debug(self, cmd):
return self._execute_file(cmd, True)
def _cmd_debug(self, cmd):
return self._execute_file(cmd, True)
def _cmd_execute_source(self, cmd):
return self._execute_source(cmd, "ToplevelResult")
def _cmd_execute_source_inline(self, cmd):
return self._execute_source(cmd, "InlineResult")
def _cmd_process_gui_events(self, cmd):
try:
root = self._get_tkinter_default_root()
if root is not None:
import tkinter
while root.dooneevent(tkinter._tkinter.DONT_WAIT):
pass
else:
app = self._get_qt_app()
if app is not None:
app.processEvents()
except:
pass
return None
def _cmd_get_globals(self, cmd):
if not cmd.module_name in sys.modules:
raise ThonnyClientError("Module '{0}' is not loaded".format(cmd.module_name))
return self.create_message("Globals", module_name=cmd.module_name,
globals=self.export_variables(sys.modules[cmd.module_name].__dict__))
def _cmd_get_locals(self, cmd):
for frame in inspect.stack():
if id(frame) == cmd.frame_id:
return self.create_message("Locals", locals=self.export_variables(frame.f_locals))
else:
raise ThonnyClientError("Frame '{0}' not found".format(cmd.frame_id))
def _cmd_get_heap(self, cmd):
result = {}
for key in self._heap:
result[key] = self.export_value(self._heap[key])
return self.create_message("Heap", heap=result)
def _cmd_shell_autocomplete(self, cmd):
error = None
try:
import jedi
except ImportError:
completions = []
error = "Could not import jedi"
else:
try:
interpreter = jedi.Interpreter(cmd.source, [__main__.__dict__])
completions = self._export_completions(interpreter.completions())
except Exception as e:
completions = []
error = "Autocomplete error: " + str(e)
except:
completions = []
error = "Autocomplete error"
return self.create_message("ShellCompletions",
source=cmd.source,
completions=completions,
error=error
)
def _cmd_editor_autocomplete(self, cmd):
error = None
try:
import jedi
with warnings.catch_warnings():
script = jedi.Script(cmd.source, cmd.row, cmd.column, cmd.filename)
completions = self._export_completions(script.completions())
except ImportError:
completions = []
error = "Could not import jedi"
except Exception as e:
completions = []
error = "Autocomplete error: " + str(e)
except:
completions = []
error = "Autocomplete error"
return self.create_message("EditorCompletions",
source=cmd.source,
row=cmd.row,
column=cmd.column,
filename=cmd.filename,
completions=completions,
error=error)
def _export_completions(self, jedi_completions):
result = []
for c in jedi_completions:
if not c.name.startswith("__"):
record = {"name":c.name, "complete":c.complete,
"type":c.type, "description":c.description}
try:
except:
pass
result.append(record)
return result
def _cmd_get_object_info(self, cmd):
if cmd.object_id in self._heap:
value = self._heap[cmd.object_id]
attributes = {}
if cmd.include_attributes:
for name in dir(value):
if not name.startswith("__") or cmd.all_attributes:
try:
attributes[name] = getattr(value, name)
except:
pass
self._heap[id(type(value))] = type(value)
info = {'id' : cmd.object_id,
'repr' : repr(value),
'type' : str(type(value)),
'type_id' : id(type(value)),
'attributes': self.export_variables(attributes)}
if isinstance(value, _io.TextIOWrapper):
self._add_file_handler_info(value, info)
elif (type(value) in (types.BuiltinFunctionType, types.BuiltinMethodType,
types.FunctionType, types.LambdaType, types.MethodType)):
self._add_function_info(value, info)
elif (isinstance(value, list)
or isinstance(value, tuple)
or isinstance(value, set)):
self._add_elements_info(value, info)
elif (isinstance(value, dict)):
self._add_entries_info(value, info)
else:
self._try_add_dataframe_info(value, info)
self._try_add_matplotlib_info(value, info, cmd)
else:
info = {'id' : cmd.object_id,
"repr": "<object info not found>",
"type" : "object",
"type_id" : id(object),
"attributes" : {}}
return self.create_message("ObjectInfo", id=cmd.object_id, info=info)
def _get_tkinter_default_root(self):
tkinter = sys.modules.get("tkinter")
if tkinter is not None:
return getattr(tkinter, "_default_root", None)
else:
return None
def _get_qt_app(self):
mod = sys.modules.get("PyQt5.QtCore")
if mod is None:
mod = sys.modules.get("PyQt4.QtCore")
if mod is None:
mod = sys.modules.get("PySide.QtCore")
if mod is None:
return None
app_class = getattr(mod, "QCoreApplication", None)
if app_class is not None:
try:
return app_class.instance()
except:
return None
else:
return None
def _add_file_handler_info(self, value, info):
try:
assert isinstance(value.name, str)
assert value.mode in ("r", "rt", "tr", "br", "rb")
assert value.errors in ("strict", None)
assert value.newlines is None or value.tell() > 0
with open(value.name, encoding=value.encoding) as f:
info["file_encoding"] = f.encoding
info["file_content"] = f.read()
info["file_tell"] = value.tell()
except Exception as e:
info["file_error"] = "Could not get file content, error:" + str(e)
pass
def _add_function_info(self, value, info):
try:
info["source"] = inspect.getsource(value)
except:
pass
def _add_elements_info(self, value, info):
info["elements"] = []
for element in value:
info["elements"].append(self.export_value(element))
def _add_entries_info(self, value, info):
info["entries"] = []
for key in value:
info["entries"].append((self.export_value(key),
self.export_value(value[key])))
def _try_add_dataframe_info(self, value, info):
try:
if (type(value).__name__ == "DataFrame"
and type(value).__module__ == "pandas.core.frame"):
info["columns"] = value.columns.tolist()
info["index"] = value.index.tolist()
info["values"] = value.values.tolist()
info["row_count"] = len(value)
info["is_DataFrame"] = True
import pandas as pd
info["float_format"] = pd.options.display.float_format
except:
logger.exception("Couldn't add DataFrame info")
def _try_add_matplotlib_info(self, value, info, cmd):
try:
if (type(value).__name__ == "Figure"
and type(value).__module__ == "matplotlib.figure"):
frame_width = getattr(cmd, "frame_width", None)
frame_height = getattr(cmd, "frame_height", None)
if frame_width is not None and frame_height is not None:
frame_ratio = frame_width / frame_height
fig_ratio = value.get_figwidth() / value.get_figheight()
if frame_ratio > fig_ratio:
dpi = frame_height / value.get_figheight()
else:
dpi = frame_width / value.get_figwidth()
else:
dpi = None
fp = io.BytesIO()
value.savefig(fp, format="png", dpi=dpi)
import base64
info["image_data"] = base64.b64encode(fp.getvalue())
fp.close()
except:
logger.exception("Couldn't add Figure info")
def _execute_file(self, cmd, debug_mode):
result_attributes = self._execute_source_ex(cmd.source, cmd.full_filename, "exec", debug_mode)
return self.create_message("ToplevelResult", **result_attributes)
def _execute_source(self, cmd, result_type):
filename = "<pyshell>"
if hasattr(cmd, "global_vars"):
global_vars = cmd.global_vars
elif hasattr(cmd, "extra_vars"):
global_vars = __main__.__dict__.copy()
global_vars.update(cmd.extra_vars)
else:
global_vars = __main__.__dict__
try:
root = ast.parse(cmd.source, filename=filename, mode="exec")
except SyntaxError as e:
return self.create_message(result_type,
error="".join(traceback.format_exception_only(SyntaxError, e)))
assert isinstance(root, ast.Module)
if len(root.body) == 1 and isinstance(root.body[0], ast.Expr):
mode = "eval"
else:
mode = "exec"
result_attributes = self._execute_source_ex(cmd.source, filename, mode,
hasattr(cmd, "debug_mode") and cmd.debug_mode,
global_vars)
if "__result__" in global_vars:
result_attributes["__result__"] = global_vars["__result__"]
if hasattr(cmd, "request_id"):
result_attributes["request_id"] = cmd.request_id
else:
result_attributes["request_id"] = None
return self.create_message(result_type, **result_attributes)
def _execute_source_ex(self, source, filename, execution_mode, debug_mode,
global_vars=None):
if debug_mode:
self._current_executor = FancyTracer(self)
else:
self._current_executor = Executor(self)
try:
return self._current_executor.execute_source(source,
filename,
execution_mode,
global_vars)
finally:
self._current_executor = None
def _install_fake_streams(self):
self._original_stdin = sys.stdin
self._original_stdout = sys.stdout
self._original_stderr = sys.stderr
sys.stdin = VM.FakeInputStream(self, sys.stdin)
sys.stdout = VM.FakeOutputStream(self, sys.stdout, "stdout")
sys.stderr = VM.FakeOutputStream(self, sys.stdout, "stderr")
sys.__stdin__ = sys.stdin
sys.__stdout__ = sys.stdout
sys.__stderr__ = sys.stderr
def _fetch_command(self):
line = self._original_stdin.readline()
if line == "":
logger.info("Read stdin EOF")
sys.exit()
cmd = parse_message(line)
return cmd
def create_message(self, message_type, **kwargs):
kwargs["message_type"] = message_type
if "cwd" not in kwargs:
kwargs["cwd"] = os.getcwd()
return kwargs
def send_message(self, msg):
self._original_stdout.write(serialize_message(msg) + "\n")
self._original_stdout.flush()
def export_value(self, value, skip_None=False):
if value is None and skip_None:
return None
self._heap[id(value)] = value
try:
type_name = value.__class__.__name__
except:
type_name = type(value).__name__
result = {'id' : id(value),
'repr' : repr(value),
'type_name' : type_name}
return result
def export_variables(self, variables):
result = {}
for name in variables:
if not name.startswith("_thonny_hidden_"):
result[name] = self.export_value(variables[name])
return result
def _debug(self, *args):
print("VM:", *args, file=self._original_stderr)
def _enter_io_function(self):
self._io_level += 1
def _exit_io_function(self):
self._io_level -= 1
def is_doing_io(self):
return self._io_level > 0
class FakeStream:
def __init__(self, vm, target_stream):
self._vm = vm
self._target_stream = target_stream
def isatty(self):
return True
def __getattr__(self, name):
return getattr(self._target_stream, name)
class FakeOutputStream(FakeStream):
def __init__(self, vm, target_stream, stream_name):
VM.FakeStream.__init__(self, vm, target_stream)
self._stream_name = stream_name
def write(self, data):
try:
self._vm._enter_io_function()
if data != "":
self._vm.send_message(self._vm.create_message("ProgramOutput", stream_name=self._stream_name, data=data))
finally:
self._vm._exit_io_function()
def writelines(self, lines):
try:
self._vm._enter_io_function()
self.write(''.join(lines))
finally:
self._vm._exit_io_function()
class FakeInputStream(FakeStream):
def _generic_read(self, method, limit=-1):
try:
self._vm._enter_io_function()
self._vm.send_message(self._vm.create_message("InputRequest", method=method, limit=limit))
while True:
cmd = self._vm._fetch_command()
if isinstance(cmd, InputSubmission):
return cmd.data
elif isinstance(cmd, InlineCommand):
self._vm.handle_command(cmd, "waiting_input")
else:
raise ThonnyClientError("Wrong type of command when waiting for input")
finally:
self._vm._exit_io_function()
def read(self, limit=-1):
return self._generic_read("read", limit)
def readline(self, limit=-1):
return self._generic_read("readline", limit)
def readlines(self, limit=-1):
return self._generic_read("readlines", limit)
class Executor:
def __init__(self, vm):
self._vm = vm
def execute_source(self, source, filename, mode, global_vars=None):
if global_vars is None:
global_vars = __main__.__dict__
try:
bytecode = self._compile_source(source, filename, mode)
if hasattr(self, "_trace"):
sys.settrace(self._trace)
if mode == "eval":
value = eval(bytecode, global_vars)
if value is not None:
builtins._ = value
return {"value_info" : self._vm.export_value(value)}
else:
assert mode == "exec"
exec(bytecode, global_vars)
return {"context_info" : "after normal execution", "source" : source, "filename" : filename, "mode" : mode}
except SyntaxError as e:
return {"error" : "".join(traceback.format_exception_only(SyntaxError, e))}
except ThonnyClientError as e:
return {"error" : str(e)}
except SystemExit:
e_type, e_value, e_traceback = sys.exc_info()
self._print_user_exception(e_type, e_value, e_traceback)
return {"SystemExit" : True}
except:
e_type, e_value, e_traceback = sys.exc_info()
self._print_user_exception(e_type, e_value, e_traceback)
return {"context_info" : "other unhandled exception"}
finally:
sys.settrace(None)
def _print_user_exception(self, e_type, e_value, e_traceback):
lines = traceback.format_exception(e_type, e_value, e_traceback)
for line in lines:
if ("thonny/backend" in line
or "thonny\\backend" in line
or "remove this line from stacktrace" in line):
continue
else:
sys.stderr.write(line)
def _compile_source(self, source, filename, mode):
return compile(source, filename, mode)
class FancyTracer(Executor):
def __init__(self, vm):
self._vm = vm
self._normcase_thonny_src_dir = os.path.normcase(os.path.dirname(sys.modules["thonny"].__file__))
self._instrumented_files = _PathSet()
self._interesting_files = _PathSet()
self._current_command = None
self._unhandled_exception = None
self._install_marker_functions()
self._custom_stack = []
def execute_source(self, source, filename, mode, global_vars=None):
self._current_command = DebuggerCommand(command="step", state=None, focus=None, frame_id=None, exception=None)
return Executor.execute_source(self, source, filename, mode, global_vars)
def _install_marker_functions(self):
self.marker_function_names = {
BEFORE_STATEMENT_MARKER,
AFTER_STATEMENT_MARKER,
BEFORE_EXPRESSION_MARKER,
AFTER_EXPRESSION_MARKER,
}
for name in self.marker_function_names:
if not hasattr(builtins, name):
setattr(builtins, name, getattr(self, name))
def _is_interesting_exception(self, frame):
cmd = self._current_command
return (id(frame) == cmd.frame_id
or not self._frame_is_alive(cmd.frame_id))
def _compile_source(self, source, filename, mode):
root = ast.parse(source, filename, mode)
ast_utils.mark_text_ranges(root, source)
self._tag_nodes(root)
self._insert_expression_markers(root)
self._insert_statement_markers(root)
self._instrumented_files.add(filename)
return compile(root, filename, mode)
def _may_step_in(self, code):
return not (
code is None
or code.co_filename is None
or code.co_flags & inspect.CO_GENERATOR
or sys.version_info >= (3,5) and code.co_flags & inspect.CO_COROUTINE
or sys.version_info >= (3,5) and code.co_flags & inspect.CO_ITERABLE_COROUTINE
or sys.version_info >= (3,6) and code.co_flags & inspect.CO_ASYNC_GENERATOR
or "importlib._bootstrap" in code.co_filename
or os.path.normcase(code.co_filename) not in self._instrumented_files
and code.co_name not in self.marker_function_names
or os.path.normcase(code.co_filename).startswith(self._normcase_thonny_src_dir)
and code.co_name not in self.marker_function_names
or self._vm.is_doing_io()
)
def _trace(self, frame, event, arg):
if not self._may_step_in(frame.f_code):
return
code_name = frame.f_code.co_name
if event == "call":
self._unhandled_exception = None
if code_name in self.marker_function_names:
if code_name == BEFORE_STATEMENT_MARKER:
event = "before_statement"
elif code_name == AFTER_STATEMENT_MARKER:
event = "after_statement"
elif code_name == BEFORE_EXPRESSION_MARKER:
event = "before_expression"
elif code_name == AFTER_EXPRESSION_MARKER:
event = "after_expression"
else:
raise AssertionError("Unknown marker function")
marker_function_args = frame.f_locals.copy()
del marker_function_args["self"]
self._handle_progress_event(frame.f_back, event, marker_function_args)
self._try_interpret_as_again_event(frame.f_back, event, marker_function_args)
else:
self._custom_stack.append(CustomStackFrame(frame, "call"))
elif event == "return":
if code_name not in self.marker_function_names:
self._custom_stack.pop()
if len(self._custom_stack) == 0:
sys.settrace(None)
else:
pass
elif event == "exception":
exc = arg[1]
if self._unhandled_exception is None:
exc.causing_frame = frame
else:
exc.causing_frame = self._unhandled_exception.causing_frame
self._unhandled_exception = exc
if self._is_interesting_exception(frame):
self._report_state_and_fetch_next_message(frame)
elif event == "line":
self._unhandled_exception = None
return self._trace
def _handle_progress_event(self, frame, event, args):
self._debug("Progress event:", event, self._current_command)
focus = TextRange(*args["text_range"])
self._custom_stack[-1].last_event = event
self._custom_stack[-1].last_event_focus = focus
self._custom_stack[-1].last_event_args = args
tester = getattr(self, "_cmd_" + self._current_command.command + "_completed")
if tester(frame, event, args, focus, self._current_command):
if event == "after_expression":
value = self._vm.export_value(args["value"])
else:
value = None
self._report_state_and_fetch_next_message(frame, value)
def _report_state_and_fetch_next_message(self, frame, value=None):
if self._unhandled_exception is not None:
frame_infos = traceback.format_stack(self._unhandled_exception.causing_frame)
if frame == self._unhandled_exception.causing_frame:
interesting_frame_infos = []
else:
_distance = 0
_f = self._unhandled_exception.causing_frame
while _f != frame:
_distance += 1
_f = _f.f_back
if _f == None:
break
interesting_frame_infos = frame_infos[-_distance:]
exception_lower_stack_description = "".join(interesting_frame_infos)
exception_msg = str(self._unhandled_exception)
else:
exception_lower_stack_description = None
exception_msg = None
self._vm.send_message(self._vm.create_message("DebuggerProgress",
command=self._current_command.command,
stack=self._export_stack(),
exception=self._vm.export_value(self._unhandled_exception, True),
exception_msg=exception_msg,
exception_lower_stack_description=exception_lower_stack_description,
value=value,
command_context="waiting_debugger_command"
))
self._current_command = self._vm._fetch_command()
self._debug("got command:", self._current_command)
self._respond_to_inline_commands()
assert isinstance(self._current_command, DebuggerCommand)
|
MIT License
|
angr/cle
|
cle/address_translator.py
|
AddressTranslator.to_mva
|
python
|
def to_mva(self):
return self._rva + self._owner.mapped_base
|
RVA -> MVA
:rtype: int
|
https://github.com/angr/cle/blob/7996cb1789eccc461cb31ab3c6234a74015489fd/cle/address_translator.py#L71-L76
|
class AddressTranslator(object):
__slots__ = ('_rva', '_owner', )
"""
Mediates address translations between typed addresses such as RAW, RVA, LVA, MVA and VA
including address owner and its state (linked or mapped)
Semantics::
owner - object associated with the address
(any object class based on `cle.Backend`)
owner mapping state - sparse object can be either mapped or not
(actual object's image base VA to be considered valid)
RAW - offset (index) inside a file stream
VA - address inside process flat virtual memory space
RVA - address relative to the object's segment base
(segment base normalized virtual address)
LVA - linked VA (linker)
MVA - mapped VA (loader)
"""
def __init__(self, rva, owner):
self._rva, self._owner = rva, owner
@classmethod
def from_lva(cls, lva, owner):
return cls(lva - owner.linked_base, owner)
@classmethod
def from_mva(cls, mva, owner):
return cls(mva - owner.mapped_base, owner)
@classmethod
def from_rva(cls, rva, owner):
return cls(rva, owner)
@classmethod
def from_raw(cls, raw, owner):
return cls(owner.offset_to_addr(raw) - (owner.mapped_base if owner._is_mapped else owner.linked_base), owner)
from_linked_va = from_lva
from_va = from_mapped_va = from_mva
from_relative_va = from_rva
def to_lva(self):
return self._rva + self._owner.linked_base
|
BSD 2-Clause Simplified License
|
pallets/itsdangerous
|
src/itsdangerous/serializer.py
|
Serializer.dump_payload
|
python
|
def dump_payload(self, obj: _t.Any) -> bytes:
return want_bytes(self.serializer.dumps(obj, **self.serializer_kwargs))
|
Dumps the encoded object. The return value is always bytes.
If the internal serializer returns text, the value will be
encoded as UTF-8.
|
https://github.com/pallets/itsdangerous/blob/0e13d6613acebe99be211d27d55f56819cba9147/src/itsdangerous/serializer.py#L164-L169
|
import json
import typing as _t
from .encoding import want_bytes
from .exc import BadPayload
from .exc import BadSignature
from .signer import _make_keys_list
from .signer import Signer
_t_str_bytes = _t.Union[str, bytes]
_t_opt_str_bytes = _t.Optional[_t_str_bytes]
_t_kwargs = _t.Dict[str, _t.Any]
_t_opt_kwargs = _t.Optional[_t_kwargs]
_t_signer = _t.Type[Signer]
_t_fallbacks = _t.List[_t.Union[_t_kwargs, _t.Tuple[_t_signer, _t_kwargs], _t_signer]]
_t_load_unsafe = _t.Tuple[bool, _t.Any]
_t_secret_key = _t.Union[_t.Iterable[_t_str_bytes], _t_str_bytes]
def is_text_serializer(serializer: _t.Any) -> bool:
return isinstance(serializer.dumps({}), str)
class Serializer:
default_serializer: _t.Any = json
default_signer: _t_signer = Signer
default_fallback_signers: _t_fallbacks = []
def __init__(
self,
secret_key: _t_secret_key,
salt: _t_opt_str_bytes = b"itsdangerous",
serializer: _t.Any = None,
serializer_kwargs: _t_opt_kwargs = None,
signer: _t.Optional[_t_signer] = None,
signer_kwargs: _t_opt_kwargs = None,
fallback_signers: _t.Optional[_t_fallbacks] = None,
):
self.secret_keys: _t.List[bytes] = _make_keys_list(secret_key)
if salt is not None:
salt = want_bytes(salt)
self.salt = salt
if serializer is None:
serializer = self.default_serializer
self.serializer: _t.Any = serializer
self.is_text_serializer: bool = is_text_serializer(serializer)
if signer is None:
signer = self.default_signer
self.signer: _t_signer = signer
self.signer_kwargs: _t_kwargs = signer_kwargs or {}
if fallback_signers is None:
fallback_signers = list(self.default_fallback_signers or ())
self.fallback_signers: _t_fallbacks = fallback_signers
self.serializer_kwargs: _t_kwargs = serializer_kwargs or {}
@property
def secret_key(self) -> bytes:
return self.secret_keys[-1]
def load_payload(
self, payload: bytes, serializer: _t.Optional[_t.Any] = None
) -> _t.Any:
if serializer is None:
serializer = self.serializer
is_text = self.is_text_serializer
else:
is_text = is_text_serializer(serializer)
try:
if is_text:
return serializer.loads(payload.decode("utf-8"))
return serializer.loads(payload)
except Exception as e:
raise BadPayload(
"Could not load the payload because an exception"
" occurred on unserializing the data.",
original_error=e,
) from e
|
BSD 3-Clause New or Revised License
|
angr/angr
|
angr/sim_type.py
|
SimTypeLength.__init__
|
python
|
def __init__(self, signed=False, addr=None, length=None, label=None):
super().__init__(signed=signed, label=label)
self.addr = addr
self.length = length
|
:param signed: Whether the value is signed or not
:param label: The type label.
:param addr: The memory address (expression).
:param length: The length (expression).
|
https://github.com/angr/angr/blob/94de0f468df0c0d27428301dae93d94f935ade9b/angr/sim_type.py#L960-L969
|
from collections import OrderedDict, defaultdict, ChainMap
from archinfo import Endness
from .misc.ux import deprecated
import copy
import re
import logging
from typing import Optional, Dict, Any, Tuple, List, Union
import claripy
l = logging.getLogger(name=__name__)
errorlog = logging.getLogger(name=__name__ + ".yacc")
errorlog.setLevel(logging.ERROR)
try:
import pycparser
except ImportError:
pycparser = None
try:
import CppHeaderParser
except ImportError:
CppHeaderParser = None
class SimType:
_fields = ()
_arch = None
_size = None
_can_refine_int = False
_base_name = None
base = True
def __init__(self, label=None):
self.label = label
def __eq__(self, other):
if type(self) != type(other):
return False
for attr in self._fields:
if attr == 'size' and self._arch is None and other._arch is None:
continue
if getattr(self, attr) != getattr(other, attr):
return False
return True
def __ne__(self, other):
return not self == other
def __hash__(self):
out = hash(type(self))
for attr in self._fields:
out ^= hash(getattr(self, attr))
return out
def _refine_dir(self):
return []
def _refine(self, view, k):
raise KeyError(f"{k} is not a valid refinement")
@property
def size(self):
if self._size is not None:
return self._size
return NotImplemented
@property
def alignment(self):
if self._arch is None:
return NotImplemented
if self.size is NotImplemented:
return NotImplemented
return self.size // self._arch.byte_width
def with_arch(self, arch):
if arch is None:
return self
if self._arch is not None and self._arch == arch:
return self
else:
return self._with_arch(arch)
def _with_arch(self, arch):
cp = copy.copy(self)
cp._arch = arch
return cp
def _init_str(self):
return f"NotImplemented({self.__class__.__name__})"
def c_repr(self, name=None, full=0, memo=None, indent=0):
if name is None:
return repr(self)
else:
return f'{str(self) if self.label is None else self.label} {name}'
def copy(self):
raise NotImplementedError()
class TypeRef(SimType):
def __init__(self, name, ty):
super().__init__()
self.type = ty
self._name = name
@property
def name(self):
return self._name
def __eq__(self, other):
return type(other) is TypeRef and self.type == other.type
def __hash__(self):
return hash(self.type)
def __repr__(self):
return self.name
@property
def _arch(self):
return self.type._arch
@property
def size(self):
return self.type.size
@property
def alignment(self):
return self.type.alignment
def with_arch(self, arch):
self.type = self.type.with_arch(arch)
return self
def c_repr(self, name=None, full=0, memo=None, indent=0):
if not full:
if name is not None:
return f'{self.name} {name}'
else:
return self.name
else:
return self.type.c_repr(name=name, full=full, memo=memo, indent=indent)
def copy(self):
raise NotImplementedError("copy() for TypeRef is ill-defined. What do you want this to do?")
class NamedTypeMixin:
def __init__(self, *args, name: Optional[str]=None, **kwargs):
super().__init__(*args, **kwargs)
self._name = name
@property
def name(self) -> str:
if self._name is None:
self._name = repr(self)
return self._name
@name.setter
def name(self, v):
self._name = v
def unqualified_name(self, lang: str = "c++") -> str:
if lang == "c++":
splitter = "::"
n = self.name.split(splitter)
return n[-1]
raise NotImplementedError(f"Unsupported language {lang}.")
class SimTypeBottom(SimType):
_base_name = 'bot'
def __repr__(self, label=None):
return 'BOT'
def _init_str(self):
return "%s(%s)" % (
self.__class__.__name__,
("label=\"%s\"" % self.label) if self.label else ""
)
def copy(self):
return SimTypeBottom(self.label)
class SimTypeTop(SimType):
_fields = ('size',)
def __init__(self, size=None, label=None):
SimType.__init__(self, label)
self._size = size
def __repr__(self):
return 'TOP'
def copy(self):
return SimTypeTop(size=self.size, label=self.label)
class SimTypeReg(SimType):
_fields = ('size',)
def __init__(self, size, label=None):
SimType.__init__(self, label=label)
self._size = size
def __repr__(self):
return "reg{}_t".format(self.size)
def extract(self, state, addr, concrete=False):
assert self.size % state.arch.byte_width == 0
out = state.memory.load(addr, self.size // state.arch.byte_width, endness=state.arch.memory_endness)
if not concrete:
return out
return state.solver.eval(out)
def store(self, state, addr, value):
store_endness = state.arch.memory_endness
try:
value = value.ast
except AttributeError:
pass
if isinstance(value, claripy.ast.Bits):
if value.size() != self.size:
raise ValueError("size of expression is wrong size for type")
elif isinstance(value, int):
value = state.solver.BVV(value, self.size)
elif isinstance(value, bytes):
store_endness = 'Iend_BE'
else:
raise TypeError("unrecognized expression type for SimType {}".format(type(self).__name__))
state.memory.store(addr, value, endness=store_endness)
def copy(self):
return self.__class__(self.size, label=self.label)
class SimTypeNum(SimType):
_fields = SimType._fields + ('signed', 'size')
def __init__(self, size, signed=True, label=None):
super().__init__(label)
self._size = size
self.signed = signed
def __repr__(self):
return "{}int{}_t".format('' if self.signed else 'u', self.size)
def extract(self, state, addr, concrete=False):
out = state.memory.load(addr, self.size // state.arch.byte_width, endness=state.arch.memory_endness)
if not concrete:
return out
n = state.solver.eval(out)
if self.signed and n >= 1 << (self.size-1):
n -= 1 << (self.size)
return n
def store(self, state, addr, value):
store_endness = state.arch.memory_endness
if isinstance(value, claripy.ast.Bits):
if value.size() != self.size:
raise ValueError("size of expression is wrong size for type")
elif isinstance(value, int):
value = state.solver.BVV(value, self.size)
elif isinstance(value, bytes):
store_endness = 'Iend_BE'
else:
raise TypeError("unrecognized expression type for SimType {}".format(type(self).__name__))
state.memory.store(addr, value, endness=store_endness)
def copy(self):
return SimTypeNum(self.size, signed=self.signed, label=self.label)
class SimTypeInt(SimTypeReg):
_fields = tuple(x for x in SimTypeReg._fields if x != 'size') + ('signed',)
_base_name = 'int'
def __init__(self, signed=True, label=None):
super().__init__(None, label=label)
self.signed = signed
def c_repr(self, name=None, full=0, memo=None, indent=0):
out = self._base_name
if not self.signed:
out = 'unsigned ' + out
if name is None:
return out
return '%s %s' % (out, name)
def __repr__(self):
name = self._base_name
if not self.signed:
name = 'unsigned ' + name
try:
return name + ' (%d bits)' % self.size
except ValueError:
return name
@property
def size(self):
if self._arch is None:
raise ValueError("Can't tell my size without an arch!")
try:
return self._arch.sizeof[self._base_name]
except KeyError:
raise ValueError("Arch %s doesn't have its %s type defined!" % (self._arch.name, self._base_name))
def extract(self, state, addr, concrete=False):
out = state.memory.load(addr, self.size // state.arch.byte_width, endness=state.arch.memory_endness)
if not concrete:
return out
n = state.solver.eval(out)
if self.signed and n >= 1 << (self.size-1):
n -= 1 << self.size
return n
def _init_str(self):
return "%s(signed=%s%s)" % (
self.__class__.__name__,
self.signed,
(', label="%s"' % self.label) if self.label is not None else "",
)
def _refine_dir(self):
return ['signed', 'unsigned']
def _refine(self, view, k):
if k == 'signed':
ty = copy.copy(self)
ty.signed = True
elif k == 'unsigned':
ty = copy.copy(self)
ty.signed = False
else:
raise KeyError(k)
return view._deeper(ty=ty)
def copy(self):
return self.__class__(signed=self.signed, label=self.label)
class SimTypeShort(SimTypeInt):
_base_name = 'short'
class SimTypeLong(SimTypeInt):
_base_name = 'long'
class SimTypeLongLong(SimTypeInt):
_base_name = 'long long'
class SimTypeChar(SimTypeReg):
_base_name = 'char'
def __init__(self, signed=True, label=None):
SimTypeReg.__init__(self, 8, label=label)
self.signed = signed
def __repr__(self):
return 'char'
def store(self, state, addr, value):
self._size = state.arch.byte_width
try:
super().store(state, addr, value)
except TypeError:
if isinstance(value, bytes) and len(value) == 1:
value = state.solver.BVV(value[0], state.arch.byte_width)
super().store(state, addr, value)
else:
raise
def extract(self, state, addr, concrete=False):
self._size = state.arch.byte_width
out = super().extract(state, addr, concrete)
if concrete:
return bytes([out])
return out
def _init_str(self):
return "%s(%s)" % (
self.__class__.__name__,
('label="%s"' % self.label) if self.label is not None else "",
)
def copy(self):
return self.__class__(signed=self.signed, label=self.label)
class SimTypeBool(SimTypeChar):
_base_name = "bool"
def __repr__(self):
return 'bool'
def store(self, state, addr, value):
return super().store(state, addr, int(value))
def extract(self, state, addr, concrete=False):
ver = super().extract(state, addr, concrete)
if concrete:
return ver != b'\0'
return ver != 0
def _init_str(self):
return f"{self.__class__.__name__}()"
class SimTypeFd(SimTypeReg):
_fields = SimTypeReg._fields
def __init__(self, label=None):
super().__init__(32, label=label)
def __repr__(self):
return 'fd_t'
def copy(self):
return SimTypeFd(label=self.label)
def _init_str(self):
return "%s(%s)" % (
self.__class__.__name__,
('label="%s"' % self.label) if self.label is not None else "",
)
class SimTypePointer(SimTypeReg):
_fields = SimTypeReg._fields + ('pts_to',)
def __init__(self, pts_to, label=None, offset=0):
super().__init__(None, label=label)
self.pts_to = pts_to
self.signed = False
self.offset = offset
def __repr__(self):
return '{}*'.format(self.pts_to)
def c_repr(self, name=None, full=0, memo=None, indent=0):
deref_chr = '*' if not isinstance(self.pts_to, SimTypeArray) else ''
name_with_deref = deref_chr if name is None else '%s%s' % (deref_chr, name)
return self.pts_to.c_repr(name_with_deref, full, memo, indent)
def make(self, pts_to):
new = type(self)(pts_to)
new._arch = self._arch
return new
@property
def size(self):
if self._arch is None:
raise ValueError("Can't tell my size without an arch!")
return self._arch.bits
def _with_arch(self, arch):
out = SimTypePointer(self.pts_to.with_arch(arch), self.label)
out._arch = arch
return out
def _init_str(self):
return "%s(%s%s, offset=%d)" % (
self.__class__.__name__,
self.pts_to._init_str(),
(', label="%s"' % self.label) if self.label is not None else "",
self.offset
)
def copy(self):
return SimTypePointer(self.pts_to, label=self.label, offset=self.offset)
class SimTypeReference(SimTypeReg):
def __init__(self, refs, label=None):
super().__init__(None, label=label)
self.refs: SimType = refs
def __repr__(self):
return f"{self.refs}&"
def c_repr(self, name=None, full=0, memo=None, indent=0):
name = '&' if name is None else '&%s' % name
return self.refs.c_repr(name, full, memo, indent)
def make(self, refs):
new = type(self)(refs)
new._arch = self._arch
return new
@property
def size(self):
if self._arch is None:
raise ValueError("Can't tell my size without an arch!")
return self._arch.bits
def _with_arch(self, arch):
out = SimTypeReference(self.refs.with_arch(arch), label=self.label)
out._arch = arch
return out
def _init_str(self):
return "%s(%s%s)" % (
self.__class__.__name__,
self.refs._init_str(),
(', label="%s"' % self.label) if self.label is not None else "",
)
def copy(self):
return SimTypeReference(self.refs, label=self.label)
class SimTypeFixedSizeArray(SimType):
def __init__(self, elem_type, length):
super().__init__()
self.elem_type = elem_type
self.length = length
def __repr__(self):
return '{}[{}]'.format(self.elem_type, self.length)
def c_repr(self, name=None, full=0, memo=None, indent=0):
if name is None:
return repr(self)
name = '%s[%s]' % (name, self.length)
return self.elem_type.c_repr(name, full, memo, indent)
_can_refine_int = True
def _refine(self, view, k):
return view._deeper(addr=view._addr + k * (self.elem_type.size//view.state.arch.byte_width), ty=self.elem_type)
def extract(self, state, addr, concrete=False):
return [self.elem_type.extract(state, addr + i*(self.elem_type.size//state.arch.byte_width), concrete) for i in range(self.length)]
def store(self, state, addr, values):
for i, val in enumerate(values):
self.elem_type.store(state, addr + i * (self.elem_type.size // state.arch.byte_width), val)
@property
def size(self):
return self.elem_type.size * self.length
@property
def alignment(self):
return self.elem_type.alignment
def _with_arch(self, arch):
out = SimTypeFixedSizeArray(self.elem_type.with_arch(arch), self.length)
out._arch = arch
return out
def _init_str(self):
return "%s(%s, %d)" % (
self.__class__.__name__,
self.elem_type._init_str(),
self.length,
)
def copy(self):
return SimTypeFixedSizeArray(self.elem_type, self.length)
class SimTypeArray(SimType):
_fields = ('elem_type', 'length')
def __init__(self, elem_type, length=None, label=None):
super().__init__(label=label)
self.elem_type: SimType = elem_type
self.length: Optional[int] = length
def __repr__(self):
return '{}[{}]'.format(self.elem_type, '' if self.length is None else self.length)
def c_repr(self, name=None, full=0, memo=None, indent=0):
if name is None:
return repr(self)
name = '%s[%s]' % (name, self.length if self.length is not None else '')
return self.elem_type.c_repr(name, full, memo, indent)
@property
def size(self):
if self._arch is None:
raise ValueError("I can't tell my size without an arch!")
return self._arch.bits
@property
def alignment(self):
return self.elem_type.alignment
def _with_arch(self, arch):
out = SimTypeArray(self.elem_type.with_arch(arch), self.length, self.label)
out._arch = arch
return out
def copy(self):
return SimTypeArray(self.elem_type, length=self.length, label=self.label)
class SimTypeString(NamedTypeMixin, SimTypeArray):
_fields = SimTypeArray._fields + ('length',)
def __init__(self, length=None, label=None, name: Optional[str]=None):
super().__init__(SimTypeChar(), label=label, length=length, name=name)
def __repr__(self):
return 'string_t'
def extract(self, state, addr, concrete=False):
if self.length is None:
out = None
last_byte = state.memory.load(addr, 1)
if state.solver.symbolic(last_byte):
raise ValueError("Trying to extract a symbolic string at %#x" % state.solver.eval(addr))
addr += 1
while not (claripy.is_true(last_byte == 0) or state.solver.symbolic(last_byte)):
out = last_byte if out is None else out.concat(last_byte)
last_byte = state.memory.load(addr, 1)
addr += 1
else:
out = state.memory.load(addr, self.length)
if not concrete:
return out if out is not None else claripy.BVV(0, 0)
else:
return state.solver.eval(out, cast_to=bytes) if out is not None else ''
_can_refine_int = True
def _refine(self, view, k):
return view._deeper(addr=view._addr + k, ty=SimTypeChar())
@property
def size(self):
if self.length is None:
return 4096
return (self.length + 1) * 8
@property
def alignment(self):
return 1
def _with_arch(self, arch):
return self
def copy(self):
return SimTypeString(length=self.length, label=self.label, name=self.name)
class SimTypeWString(NamedTypeMixin, SimTypeArray):
_fields = SimTypeArray._fields + ('length',)
def __init__(self, length=None, label=None, name: Optional[str]=None):
super().__init__(SimTypeNum(16, False), label=label, length=length, name=name)
def __repr__(self):
return 'wstring_t'
def extract(self, state, addr, concrete=False):
if self.length is None:
out = None
last_byte = state.memory.load(addr, 2)
if state.solver.symbolic(last_byte):
raise ValueError("Trying to extract a symbolic string at %#x" % state.solver.eval(addr))
addr += 2
while not (claripy.is_true(last_byte == 0) or state.solver.symbolic(last_byte)):
out = last_byte if out is None else out.concat(last_byte)
last_byte = state.memory.load(addr, 2)
addr += 2
else:
out = state.memory.load(addr, self.length*2)
if out is None: out = claripy.BVV(0, 0)
if not concrete:
return out
else:
return u''.join(chr(state.solver.eval(x.reversed if state.arch.memory_endness == 'Iend_LE' else x)) for x in out.chop(16))
_can_refine_int = True
def _refine(self, view, k):
return view._deeper(addr=view._addr + k * 2, ty=SimTypeNum(16, False))
@property
def size(self):
if self.length is None:
return 4096
return (self.length * 2 + 2) * 8
@property
def alignment(self):
return 2
def _with_arch(self, arch):
return self
def copy(self):
return SimTypeWString(length=self.length, label=self.label, name=self.name)
class SimTypeFunction(SimType):
_fields = ('args', 'returnty')
base = False
def __init__(self, args, returnty, label=None, arg_names=None, variadic=False):
super().__init__(label=label)
self.args = args
self.returnty: Optional[SimType] = returnty
self.arg_names = arg_names if arg_names else ()
self.variadic = variadic
def __repr__(self):
argstrs = [str(a) for a in self.args]
if self.variadic:
argstrs.append('...')
return '({}) -> {}'.format(', '.join(argstrs), self.returnty)
def c_repr(self, name=None, full=0, memo=None, indent=0):
name2 = name or ''
name3 = '(%s)(%s)' % (name2, ', '.join(a.c_repr(n, full-1, memo, indent) for a, n in zip(self.args, self.arg_names if self.arg_names is not None and full else (None,)*len(self.args))))
name4 = self.returnty.c_repr(name3, full, memo, indent) if self.returnty is not None else 'void %s' % name3
return name4
@property
def size(self):
return 4096
def _with_arch(self, arch):
out = SimTypeFunction([a.with_arch(arch) for a in self.args],
self.returnty.with_arch(arch) if self.returnty is not None else None,
label=self.label,
arg_names=self.arg_names,
variadic=self.variadic
)
out._arch = arch
return out
def _arg_names_str(self, show_variadic=True):
argnames = list(self.arg_names)
if self.variadic and show_variadic:
argnames.append('...')
return ", ".join('"%s"' % arg_name for arg_name in argnames)
def _init_str(self):
return "%s([%s], %s%s%s%s)" % (
self.__class__.__name__,
", ".join([arg._init_str() for arg in self.args]),
self.returnty._init_str(),
(", label=%s" % self.label) if self.label else "",
(", arg_names=[%s]" % self._arg_names_str(show_variadic=False)) if self.arg_names else "",
", variadic=True" if self.variadic else "",
)
def copy(self):
return SimTypeFunction(self.args, self.returnty, label=self.label, arg_names=self.arg_names,
variadic=self.variadic)
class SimTypeCppFunction(SimTypeFunction):
def __init__(self, args, returnty, label=None, arg_names: Tuple[str]=None, ctor: bool=False, dtor: bool=False):
super().__init__(args, returnty, label=label, arg_names=arg_names, variadic=False)
self.ctor = ctor
self.dtor = dtor
def __repr__(self):
argstrs = [str(a) for a in self.args]
if self.variadic:
argstrs.append('...')
return str(self.label)+'({}) -> {}'.format(', '.join(argstrs), self.returnty)
def _init_str(self):
return "%s([%s], %s%s%s%s)" % (
self.__class__.__name__,
", ".join([arg._init_str() for arg in self.args]),
self.returnty,
(", label=%s" % self.label) if self.label else "",
(", arg_names=[%s]" % self._arg_names_str(show_variadic=False)) if self.arg_names else "",
", variadic=True" if self.variadic else "",
)
def copy(self):
return SimTypeCppFunction(
self.args,
self.returnty,
label=self.label,
arg_names=self.arg_names,
ctor=self.ctor,
dtor=self.dtor,
)
class SimTypeLength(SimTypeLong):
_fields = SimTypeNum._fields + ('addr', 'length')
|
BSD 2-Clause Simplified License
|
ucsbarchlab/pyrtl
|
pyrtl/wire.py
|
WireVector.__ge__
|
python
|
def __ge__(self, other):
return ~ self._two_var_op(other, '<')
|
Creates LogicNets that calculates whether a wire is greater than or equal to another.
:return Wirevector: a one bit result wire of the operation
|
https://github.com/ucsbarchlab/pyrtl/blob/8b42f566a3c2c23de21f1b534900232219a3b313/pyrtl/wire.py#L380-L385
|
from __future__ import print_function, unicode_literals
import numbers
import six
import re
import sys
from . import core
from .pyrtlexceptions import PyrtlError, PyrtlInternalError
from .core import working_block, LogicNet, _NameIndexer
_wvIndexer = _NameIndexer("tmp")
_constIndexer = _NameIndexer("const_")
def _reset_wire_indexers():
global _wvIndexer, _constIndexer
_wvIndexer = _NameIndexer("tmp")
_constIndexer = _NameIndexer("const_")
def next_tempvar_name(name=""):
if name == '':
wire_name = _wvIndexer.make_valid_string()
callpoint = core._get_useful_callpoint_name()
if callpoint:
filename, lineno = callpoint
safename = re.sub(r'[\W]+', '', filename)
wire_name += '_%s_line%d' % (safename, lineno)
return wire_name
else:
if name.lower() in ['clk', 'clock']:
raise PyrtlError('Clock signals should never be explicit')
return name
class WireVector(object):
_code = 'W'
def __init__(self, bitwidth=None, name='', block=None):
self._name = None
self._block = working_block(block)
self.name = next_tempvar_name(name)
self._validate_bitwidth(bitwidth)
if core._setting_keep_wirevector_call_stack:
import traceback
self.init_call_stack = traceback.format_stack()
@property
def name(self):
return self._name
@name.setter
def name(self, value):
if not isinstance(value, six.string_types):
raise PyrtlError('WireVector names must be strings')
self._block.wirevector_by_name.pop(self._name, None)
self._name = value
self._block.add_wirevector(self)
def __hash__(self):
return id(self)
def __str__(self):
return ''.join([self.name, '/', str(self.bitwidth), self._code])
def _validate_bitwidth(self, bitwidth):
if bitwidth is not None:
if not isinstance(bitwidth, numbers.Integral):
raise PyrtlError('bitwidth must be from type int or unspecified, instead "%s"'
' was passed of type %s' % (str(bitwidth), type(bitwidth)))
elif bitwidth == 0:
raise PyrtlError('bitwidth must be greater than or equal to 1')
elif bitwidth < 0:
raise PyrtlError('you are trying a negative bitwidth? awesome but wrong')
self.bitwidth = bitwidth
def _build(self, other):
net = LogicNet(
op='w',
op_param=None,
args=(other,),
dests=(self,))
working_block().add_net(net)
def _prepare_for_assignment(self, rhs):
from .corecircuits import as_wires
rhs = as_wires(rhs, bitwidth=self.bitwidth)
if self.bitwidth is None:
self.bitwidth = rhs.bitwidth
return rhs
def __ilshift__(self, other):
other = self._prepare_for_assignment(other)
self._build(other)
return self
def __ior__(self, other):
from .conditional import _build, currently_under_condition
if not self.bitwidth:
raise PyrtlError('Conditional assignment only defined on '
'WireVectors with pre-defined bitwidths')
other = self._prepare_for_assignment(other)
if currently_under_condition():
_build(self, other)
else:
self._build(other)
return self
def _two_var_op(self, other, op):
from .corecircuits import as_wires, match_bitwidth
a, b = self, as_wires(other)
a, b = match_bitwidth(a, b)
resultlen = len(a)
if op in '+-':
resultlen += 1
elif op == '*':
resultlen = resultlen * 2
elif op in '<>=':
resultlen = 1
s = WireVector(bitwidth=resultlen)
net = LogicNet(
op=op,
op_param=None,
args=(a, b),
dests=(s,))
working_block().add_net(net)
return s
def __bool__(self):
raise PyrtlError('cannot convert wirevector to compile-time boolean. This error '
'often happens when you attempt to use WireVectors with "==" or '
'something that calls "__eq__", such as when you test if a '
'wirevector is "in" something')
__nonzero__ = __bool__
def __and__(self, other):
return self._two_var_op(other, '&')
def __rand__(self, other):
return self._two_var_op(other, '&')
def __iand__(self, other):
raise PyrtlError('error, operation not allowed on WireVectors')
def __or__(self, other):
return self._two_var_op(other, '|')
def __ror__(self, other):
return self._two_var_op(other, '|')
def __xor__(self, other):
return self._two_var_op(other, '^')
def __rxor__(self, other):
return self._two_var_op(other, '^')
def __ixor__(self, other):
raise PyrtlError('error, operation not allowed on WireVectors')
def __add__(self, other):
return self._two_var_op(other, '+')
def __radd__(self, other):
return self._two_var_op(other, '+')
def __iadd__(self, other):
raise PyrtlError('error, operation not allowed on WireVectors')
def __sub__(self, other):
return self._two_var_op(other, '-')
def __rsub__(self, other):
from .corecircuits import as_wires
other = as_wires(other)
return other._two_var_op(self, '-')
def __isub__(self, other):
raise PyrtlError('error, operation not allowed on WireVectors')
def __mul__(self, other):
return self._two_var_op(other, '*')
def __rmul__(self, other):
return self._two_var_op(other, '*')
def __imul__(self, other):
raise PyrtlError('error, operation not allowed on WireVectors')
def __lt__(self, other):
return self._two_var_op(other, '<')
def __le__(self, other):
return ~ self._two_var_op(other, '>')
def __eq__(self, other):
return self._two_var_op(other, '=')
def __ne__(self, other):
return ~ self._two_var_op(other, '=')
def __gt__(self, other):
return self._two_var_op(other, '>')
|
BSD 3-Clause New or Revised License
|
austinoboyle/scrape-linkedin-selenium
|
scrape_linkedin/utils.py
|
get_info
|
python
|
def get_info(element, mapping, default=None):
return {key: text_or_default(element, mapping[key], default=default) for key in mapping}
|
Turn beautifulsoup element and key->selector dict into a key->value dict
Args:
- element: A beautifulsoup element
- mapping: a dictionary mapping key(str)->css selector(str)
- default: The defauly value to be given for any key that has a css
selector that matches no elements
Returns:
A dict mapping key to the text content of the first element that matched
the css selector in the element. If no matching element is found, the
key's value will be the default param.
|
https://github.com/austinoboyle/scrape-linkedin-selenium/blob/120900a6973b60d7e1d641f38faf921213bc76bd/scrape_linkedin/utils.py#L104-L118
|
import logging
import re
from datetime import datetime
from typing import List, Optional
import bs4
from selenium.webdriver.chrome.options import Options
options = Options()
options.add_argument('--headless')
HEADLESS_OPTIONS = {'chrome_options': options}
logger = logging.getLogger(__name__)
def _find_element(driver, by):
return driver.find_element(*by)
def flatten_list(l):
return [item for sublist in l for item in sublist]
def split_lists(lst, num):
k, m = divmod(len(lst), num)
return [lst[i * k + min(i, m): (i+1) * k + min(i + 1, m)] for i in range(num)]
class TextChanged(object):
def __init__(self, locator, text):
self.locator = locator
self.text = text
def __call__(self, driver):
actual_text = _find_element(driver, self.locator).text
return actual_text != self.text
class AnyEC(object):
def __init__(self, *args):
self.ecs = args
def __call__(self, driver):
for fn in self.ecs:
try:
if fn(driver):
return True
except:
pass
return False
def one_or_default(element: Optional[bs4.Tag], selector: str, default=None) -> Optional[bs4.Tag]:
try:
el = element.select_one(selector)
if not el:
return default
return element.select_one(selector)
except Exception as e:
return default
def text_or_default(element, selector, default=None):
try:
return element.select_one(selector).get_text().strip()
except Exception as e:
return default
def all_or_default(element, selector, default=[]):
try:
elements = element.select(selector)
if len(elements) == 0:
return default
return element.select(selector)
except Exception as e:
return default
|
MIT License
|
theqrl/qrl
|
src/qrl/cli.py
|
tx_transfer
|
python
|
def tx_transfer(ctx, src, master, dsts, amounts, message_data, fee, ots_key_index):
address_src_pk = None
master_addr = None
addresses_dst = []
shor_amounts = []
fee_shor = []
signing_object = None
message_data = message_data.encode()
try:
selected_wallet = _select_wallet(ctx, src)
if selected_wallet is None or len(selected_wallet) != 2:
click.echo("A wallet was not found")
quit(1)
_, src_xmss = selected_wallet
if not src_xmss:
click.echo("A local wallet is required to sign the transaction")
quit(1)
address_src_pk = src_xmss.pk
ots_key_index = validate_ots_index(ots_key_index, src_xmss)
src_xmss.set_ots_index(ots_key_index)
signing_object = src_xmss
if master:
master_addr = parse_qaddress(master)
addresses_dst, shor_amounts = _parse_dsts_amounts(dsts, amounts, check_multi_sig_address=True)
fee_shor = _quanta_to_shor(fee)
except Exception as e:
click.echo("Error validating arguments: {}".format(e))
quit(1)
try:
tx = TransferTransaction.create(addrs_to=addresses_dst,
amounts=shor_amounts,
message_data=message_data,
fee=fee_shor,
xmss_pk=address_src_pk,
master_addr=master_addr)
tx.sign(signing_object)
txjson = tx_unbase64(tx.to_json())
print(txjson)
if not tx.validate():
print("It was not possible to validate the signature")
quit(1)
print("\nTransaction Blob (signed): \n")
txblob = tx.pbdata.SerializeToString()
txblobhex = hexlify(txblob).decode()
print(txblobhex)
print("Sending to a QRL Node...")
stub = ctx.obj.get_stub_public_api()
push_transaction_req = qrl_pb2.PushTransactionReq(transaction_signed=tx.pbdata)
push_transaction_resp = stub.PushTransaction(push_transaction_req, timeout=CONNECTION_TIMEOUT)
print(push_transaction_resp)
except Exception as e:
print("Error {}".format(str(e)))
|
Transfer coins from src to dsts
|
https://github.com/theqrl/qrl/blob/5803997005afceaeffbd17145c2ffb14c937bce6/src/qrl/cli.py#L700-L777
|
import os
from binascii import hexlify, a2b_base64
from collections import namedtuple
from decimal import Decimal
from typing import List
import click
import grpc
import simplejson as json
from google.protobuf.json_format import MessageToJson
from pyqrllib.pyqrllib import mnemonic2bin, hstr2bin, bin2hstr
from qrl.core import config
from qrl.core.Wallet import Wallet, WalletDecryptionError
from qrl.core.misc.helper import parse_hexblob, parse_qaddress
from qrl.core.MultiSigAddressState import MultiSigAddressState
from qrl.core.txs.MessageTransaction import MessageTransaction
from qrl.core.txs.SlaveTransaction import SlaveTransaction
from qrl.core.txs.TokenTransaction import TokenTransaction
from qrl.core.txs.Transaction import Transaction
from qrl.core.txs.TransferTokenTransaction import TransferTokenTransaction
from qrl.core.txs.TransferTransaction import TransferTransaction
from qrl.core.txs.multisig.MultiSigCreate import MultiSigCreate
from qrl.core.txs.multisig.MultiSigSpend import MultiSigSpend
from qrl.crypto.xmss import XMSS, hash_functions
from qrl.generated import qrl_pb2_grpc, qrl_pb2
ENV_QRL_WALLET_DIR = 'ENV_QRL_WALLET_DIR'
OutputMessage = namedtuple('OutputMessage', 'error address_items balance_items')
BalanceItem = namedtuple('BalanceItem', 'address balance')
CONNECTION_TIMEOUT = 5
class CLIContext(object):
def __init__(self, verbose, host, port_public, wallet_dir, output_json):
self.verbose = verbose
self.host = host
self.port_public = port_public
self.wallet_dir = os.path.abspath(wallet_dir)
self.wallet_path = os.path.join(self.wallet_dir, 'wallet.json')
self.output_json = output_json
def get_stub_public_api(self):
node_public_address = '{}:{}'.format(self.host, self.port_public)
channel = grpc.insecure_channel(node_public_address)
return qrl_pb2_grpc.PublicAPIStub(channel)
def _print_error(ctx, error_descr, wallets=None):
if ctx.obj.output_json:
if wallets is None:
wallets = []
msg = {'error': error_descr, 'wallets': wallets}
click.echo(json.dumps(msg))
else:
print("ERROR: {}".format(error_descr))
def _serialize_output(ctx, addresses: List[OutputMessage], source_description) -> dict:
if len(addresses) == 0:
msg = {'error': 'No wallet found at {}'.format(source_description), 'wallets': []}
return msg
msg = {'error': None, 'wallets': []}
for pos, item in enumerate(addresses):
try:
balance_unshored = Decimal(_public_get_address_balance(ctx, item.qaddress)) / config.dev.shor_per_quanta
balance = '{:5.8f}'.format(balance_unshored)
except Exception as e:
msg['error'] = str(e)
balance = '?'
msg['wallets'].append({
'number': pos,
'address': item.qaddress,
'balance': balance,
'hash_function': item.hashFunction
})
return msg
def validate_ots_index(ots_key_index, src_xmss, prompt=True):
while not (0 <= ots_key_index < src_xmss.number_signatures):
if prompt:
ots_key_index = click.prompt('OTS key Index [{}..{}]'.format(0, src_xmss.number_signatures - 1), type=int)
prompt = False
else:
click.echo("OTS key index must be between {} and {} (inclusive)".format(0, src_xmss.number_signatures - 1))
quit(1)
return ots_key_index
def get_item_from_wallet(wallet, wallet_idx):
if 0 <= wallet_idx < len(wallet.address_items):
return wallet.address_items[wallet_idx]
click.echo('Wallet index not found {}'.format(wallet_idx), color='yellow')
return None
def _print_addresses(ctx, addresses: List[OutputMessage], source_description):
def _normal(wallet):
return "{:<8}{:<83}{:<13}".format(wallet['number'], wallet['address'], wallet['balance'])
def _verbose(wallet):
return "{:<8}{:<83}{:<13}{}".format(
wallet['number'], wallet['address'], wallet['balance'], wallet['hash_function']
)
output = _serialize_output(ctx, addresses, source_description)
if ctx.obj.output_json:
output["location"] = source_description
click.echo(json.dumps(output))
else:
if output['error'] and output['wallets'] == []:
click.echo(output['error'])
else:
click.echo("Wallet at : {}".format(source_description))
if ctx.obj.verbose:
header = "{:<8}{:<83}{:<13}{:<8}".format('Number', 'Address', 'Balance', 'Hash')
divider = ('-' * 112)
else:
header = "{:<8}{:<83}{:<13}".format('Number', 'Address', 'Balance')
divider = ('-' * 101)
click.echo(header)
click.echo(divider)
for wallet in output['wallets']:
if ctx.obj.verbose:
click.echo(_verbose(wallet))
else:
click.echo(_normal(wallet))
def _public_get_address_balance(ctx, address):
stub = ctx.obj.get_stub_public_api()
get_address_state_req = qrl_pb2.GetAddressStateReq(address=parse_qaddress(address))
get_optimized_address_state_resp = stub.GetOptimizedAddressState(get_address_state_req, timeout=CONNECTION_TIMEOUT)
return get_optimized_address_state_resp.state.balance
def _select_wallet(ctx, address_or_index):
try:
wallet = Wallet(wallet_path=ctx.obj.wallet_path)
if not wallet.addresses:
click.echo('This command requires a local wallet')
return
if wallet.encrypted:
secret = click.prompt('The wallet is encrypted. Enter password', hide_input=True)
wallet.decrypt(secret)
if address_or_index.isdigit():
address_or_index = int(address_or_index)
addr_item = get_item_from_wallet(wallet, address_or_index)
if addr_item:
xmss = wallet.get_xmss_by_index(address_or_index)
return wallet.addresses[address_or_index], xmss
elif address_or_index.startswith('Q'):
for i, addr_item in enumerate(wallet.address_items):
if address_or_index == addr_item.qaddress:
xmss = wallet.get_xmss_by_address(wallet.addresses[i])
return wallet.addresses[i], xmss
click.echo('Source address not found in your wallet', color='yellow')
quit(1)
return parse_qaddress(address_or_index), None
except Exception as e:
click.echo("Error selecting wallet")
click.echo(str(e))
quit(1)
def _quanta_to_shor(x: Decimal, base=Decimal(config.dev.shor_per_quanta)) -> int:
return int(Decimal(x * base).to_integral_value())
def _parse_dsts_amounts(addresses: str, amounts: str, token_decimals: int = 0, check_multi_sig_address=False):
addresses_split = [parse_qaddress(addr, check_multi_sig_address) for addr in addresses.split(' ')]
if token_decimals != 0:
multiplier = Decimal(10 ** int(token_decimals))
shor_amounts = [_quanta_to_shor(Decimal(amount), base=multiplier) for amount in amounts.split(' ')]
else:
shor_amounts = [_quanta_to_shor(Decimal(amount)) for amount in amounts.split(' ')]
if len(addresses_split) != len(shor_amounts):
raise Exception("dsts and amounts should be the same length")
return addresses_split, shor_amounts
@click.version_option(version=config.dev.version, prog_name='QRL Command Line Interface')
@click.group()
@click.option('--verbose', '-v', default=False, is_flag=True, help='verbose output whenever possible')
@click.option('--host', default='127.0.0.1', help='remote host address [127.0.0.1]')
@click.option('--port_pub', default=19009, help='remote port number (public api) [19009]')
@click.option('--wallet_dir', default='.', help='local wallet dir', envvar=ENV_QRL_WALLET_DIR)
@click.option('--json', default=False, is_flag=True, help='output in json')
@click.pass_context
def qrl(ctx, verbose, host, port_pub, wallet_dir, json):
ctx.obj = CLIContext(verbose=verbose,
host=host,
port_public=port_pub,
wallet_dir=wallet_dir,
output_json=json)
@qrl.command(name='wallet_ls')
@click.pass_context
def wallet_ls(ctx):
wallet = Wallet(wallet_path=ctx.obj.wallet_path)
_print_addresses(ctx, wallet.address_items, ctx.obj.wallet_dir)
@qrl.command(name='wallet_gen')
@click.pass_context
@click.option('--height', default=config.dev.xmss_tree_height,
help='XMSS tree height. The resulting tree will be good for 2^height signatures')
@click.option('--hash_function', type=click.Choice(list(hash_functions.keys())), default='shake128',
help='Hash function used to build the XMSS tree [default=shake128]')
@click.option('--encrypt', default=False, is_flag=True, help='Encrypts important fields with AES')
def wallet_gen(ctx, height, hash_function, encrypt):
wallet = Wallet(wallet_path=ctx.obj.wallet_path)
if len(wallet.address_items) > 0:
click.echo("Wallet already exists")
return
wallet.add_new_address(height, hash_function)
_print_addresses(ctx, wallet.address_items, ctx.obj.wallet_path)
if encrypt:
secret = click.prompt('Enter password to encrypt wallet with', hide_input=True, confirmation_prompt=True)
wallet.encrypt(secret)
wallet.save()
@qrl.command(name='wallet_add')
@click.option('--height', type=int, default=config.dev.xmss_tree_height, prompt=False)
@click.option('--hash_function', type=click.Choice(list(hash_functions.keys())), default='shake128',
help='Hash function used to build the XMSS tree [default=shake128]')
@click.pass_context
def wallet_add(ctx, height, hash_function):
secret = None
wallet = Wallet(wallet_path=ctx.obj.wallet_path)
wallet_was_encrypted = wallet.encrypted
if wallet.encrypted:
secret = click.prompt('The wallet is encrypted. Enter password', hide_input=True)
wallet.decrypt(secret)
wallet.add_new_address(height, hash_function)
_print_addresses(ctx, wallet.address_items, config.user.wallet_dir)
if wallet_was_encrypted:
wallet.encrypt(secret)
wallet.save()
@qrl.command(name='wallet_recover')
@click.option('--seed-type', type=click.Choice(['hexseed', 'mnemonic']), default='hexseed')
@click.pass_context
def wallet_recover(ctx, seed_type):
seed = click.prompt('Please enter your %s' % (seed_type,))
seed = seed.lower().strip()
if seed_type == 'mnemonic':
words = seed.split()
if len(words) != 34:
print('You have entered %s words' % (len(words),))
print('Mnemonic seed must contain only 34 words')
return
bin_seed = mnemonic2bin(seed)
else:
if len(seed) != 102:
print('You have entered hexseed of %s characters' % (len(seed),))
print('Hexseed must be of only 102 characters.')
return
bin_seed = hstr2bin(seed)
wallet = Wallet(wallet_path=ctx.obj.wallet_path)
recovered_xmss = XMSS.from_extended_seed(bin_seed)
print('Recovered Wallet Address : %s' % (Wallet._get_Qaddress(recovered_xmss.address),))
for addr in wallet.address_items:
if recovered_xmss.qaddress == addr.qaddress:
print('Wallet Address is already in the wallet list')
return
if click.confirm('Do you want to save the recovered wallet?'):
click.echo('Saving...')
wallet.append_xmss(recovered_xmss)
wallet.save()
click.echo('Done')
_print_addresses(ctx, wallet.address_items, config.user.wallet_dir)
@qrl.command(name='wallet_secret')
@click.option('--wallet-idx', default=1, prompt=True)
@click.pass_context
def wallet_secret(ctx, wallet_idx):
wallet = Wallet(wallet_path=ctx.obj.wallet_path)
if wallet.encrypted:
secret = click.prompt('The wallet is encrypted. Enter password', hide_input=True)
wallet.decrypt(secret)
address_item = get_item_from_wallet(wallet, wallet_idx)
if address_item:
click.echo('Wallet Address : {}'.format(address_item.qaddress))
click.echo('Mnemonic : {}'.format(address_item.mnemonic))
click.echo('Hexseed : {}'.format(address_item.hexseed))
@qrl.command(name='wallet_rm')
@click.option('--wallet-idx', type=int, prompt=True, help='index of address in wallet')
@click.option('--skip-confirmation', default=False, is_flag=True, prompt=False, help='skip the confirmation prompt')
@click.pass_context
def wallet_rm(ctx, wallet_idx, skip_confirmation):
wallet = Wallet(wallet_path=ctx.obj.wallet_path)
address_item = get_item_from_wallet(wallet, wallet_idx)
if address_item:
if not skip_confirmation:
click.echo(
'You are about to remove address [{0}]: {1} from the wallet.'.format(wallet_idx, address_item.qaddress))
click.echo(
'Warning! By continuing, you risk complete loss of access to this address if you do not have a '
'recovery Mnemonic/Hexseed.')
click.confirm('Do you want to continue?', abort=True)
wallet.remove(address_item.qaddress)
_print_addresses(ctx, wallet.address_items, config.user.wallet_dir)
@qrl.command(name='wallet_encrypt')
@click.pass_context
def wallet_encrypt(ctx):
wallet = Wallet(wallet_path=ctx.obj.wallet_path)
click.echo('Encrypting wallet at {}'.format(wallet.wallet_path))
secret = click.prompt('Enter password', hide_input=True, confirmation_prompt=True)
wallet.encrypt(secret)
wallet.save()
@qrl.command(name='wallet_decrypt')
@click.pass_context
def wallet_decrypt(ctx):
wallet = Wallet(wallet_path=ctx.obj.wallet_path)
click.echo('Decrypting wallet at {}'.format(wallet.wallet_path))
secret = click.prompt('Enter password', hide_input=True)
try:
wallet.decrypt(secret)
except WalletDecryptionError as e:
click.echo(str(e))
quit(1)
except Exception as e:
click.echo(str(e))
quit(1)
try:
wallet.save()
except Exception as e:
click.echo(str(e))
quit(1)
@qrl.command(name='tx_inspect')
@click.option('--txblob', type=str, default='', prompt=True, help='transaction blob')
@click.pass_context
def tx_inspect(ctx, txblob):
tx = None
try:
txbin = parse_hexblob(txblob)
pbdata = qrl_pb2.Transaction()
pbdata.ParseFromString(txbin)
tx = Transaction.from_pbdata(pbdata)
except Exception as e:
click.echo("tx blob is not valid")
quit(1)
tmp_json = tx.to_json()
print(tmp_json)
@qrl.command(name='tx_push')
@click.option('--txblob', type=str, default='', help='transaction blob (unsigned)')
@click.pass_context
def tx_push(ctx, txblob):
tx = None
try:
txbin = parse_hexblob(txblob)
pbdata = qrl_pb2.Transaction()
pbdata.ParseFromString(txbin)
tx = Transaction.from_pbdata(pbdata)
except Exception as e:
click.echo("tx blob is not valid")
quit(1)
tmp_json = tx.to_json()
print(tmp_json)
if len(tx.signature) == 0:
click.echo('Signature missing')
quit(1)
stub = ctx.obj.get_stub_public_api()
pushTransactionReq = qrl_pb2.PushTransactionReq(transaction_signed=tx.pbdata)
pushTransactionResp = stub.PushTransaction(pushTransactionReq, timeout=CONNECTION_TIMEOUT)
print(pushTransactionResp.error_code)
@qrl.command(name='tx_message')
@click.option('--src', type=str, default='', prompt=True, help='signer QRL address')
@click.option('--master', type=str, default='', prompt=True, help='master QRL address')
@click.option('--addr_to', type=str, default='', prompt=True, help='QRL Address receiving this message (optional)')
@click.option('--message', type=str, prompt=True, help='Message (max 80 bytes)')
@click.option('--fee', type=Decimal, default=0.0, prompt=True, help='fee in Quanta')
@click.option('--ots_key_index', default=1, prompt=True, help='OTS key Index (1..XMSS num signatures)')
@click.pass_context
def tx_message(ctx, src, master, addr_to, message, fee, ots_key_index):
try:
_, src_xmss = _select_wallet(ctx, src)
if not src_xmss:
click.echo("A local wallet is required to sign the transaction")
quit(1)
address_src_pk = src_xmss.pk
ots_key_index = validate_ots_index(ots_key_index, src_xmss)
src_xmss.set_ots_index(ots_key_index)
message = message.encode()
addr_to = parse_qaddress(addr_to, False)
master_addr = None
if master:
master_addr = parse_qaddress(master)
fee_shor = _quanta_to_shor(fee)
except Exception as e:
click.echo("Error validating arguments: {}".format(e))
quit(1)
try:
stub = ctx.obj.get_stub_public_api()
tx = MessageTransaction.create(message_hash=message,
addr_to=addr_to,
fee=fee_shor,
xmss_pk=address_src_pk,
master_addr=master_addr)
tx.sign(src_xmss)
push_transaction_req = qrl_pb2.PushTransactionReq(transaction_signed=tx.pbdata)
push_transaction_resp = stub.PushTransaction(push_transaction_req, timeout=CONNECTION_TIMEOUT)
print(push_transaction_resp)
except Exception as e:
print("Error {}".format(str(e)))
@qrl.command(name='tx_multi_sig_create')
@click.option('--src', type=str, default='', prompt=True, help='source QRL address')
@click.option('--master', type=str, default='', prompt=True, help='master QRL address')
@click.option('--threshold', default=0, prompt=True, help='Threshold')
@click.option('--fee', type=Decimal, default=0.0, prompt=True, help='fee in Quanta')
@click.option('--ots_key_index', default=1, prompt=True, help='OTS key Index (1..XMSS num signatures)')
@click.pass_context
def tx_multi_sig_create(ctx, src, master, threshold, fee, ots_key_index):
signatories = []
weights = []
while True:
address = click.prompt('Address of Signatory ', default='')
if address == '':
break
weight = int(click.prompt('Weight '))
signatories.append(parse_qaddress(address))
weights.append(weight)
try:
_, src_xmss = _select_wallet(ctx, src)
if not src_xmss:
click.echo("A local wallet is required to sign the transaction")
quit(1)
address_src_pk = src_xmss.pk
ots_key_index = validate_ots_index(ots_key_index, src_xmss)
src_xmss.set_ots_index(ots_key_index)
master_addr = None
if master:
master_addr = parse_qaddress(master)
fee_shor = _quanta_to_shor(fee)
except KeyboardInterrupt:
click.echo("Terminated by user")
quit(1)
except Exception as e:
click.echo("Error validating arguments: {}".format(e))
quit(1)
try:
stub = ctx.obj.get_stub_public_api()
tx = MultiSigCreate.create(signatories=signatories,
weights=weights,
threshold=threshold,
fee=fee_shor,
xmss_pk=address_src_pk,
master_addr=master_addr)
tx.sign(src_xmss)
push_transaction_req = qrl_pb2.PushTransactionReq(transaction_signed=tx.pbdata)
push_transaction_resp = stub.PushTransaction(push_transaction_req, timeout=CONNECTION_TIMEOUT)
print(push_transaction_resp.error_code)
print('Multi sig Address Q{}'.format(bin2hstr(MultiSigAddressState.generate_multi_sig_address(tx.txhash))))
except Exception as e:
print("Error {}".format(str(e)))
@qrl.command(name='tx_multi_sig_spend')
@click.option('--src', type=str, default='', prompt=True, help='signer QRL address')
@click.option('--master', type=str, default='', help='master QRL address')
@click.option('--multi_sig_address', type=str, default='', prompt=True, help='signer Multi Sig Address')
@click.option('--dsts', type=str, prompt=True, help='List of destination addresses')
@click.option('--amounts', type=str, prompt=True, help='List of amounts to transfer (Quanta)')
@click.option('--expiry_block_number', type=int, prompt=True, help='Expiry Blocknumber')
@click.option('--fee', type=Decimal, default=0.0, prompt=True, help='fee in Quanta')
@click.option('--ots_key_index', default=1, help='OTS key Index (1..XMSS num signatures)')
@click.pass_context
def tx_multi_sig_spend(ctx, src, master, multi_sig_address, dsts, amounts, expiry_block_number, fee, ots_key_index):
address_src_pk = None
master_addr = None
addresses_dst = []
shor_amounts = []
fee_shor = []
signing_object = None
try:
selected_wallet = _select_wallet(ctx, src)
if selected_wallet is None or len(selected_wallet) != 2:
click.echo("A wallet was not found")
quit(1)
_, src_xmss = selected_wallet
if not src_xmss:
click.echo("A local wallet is required to sign the transaction")
quit(1)
address_src_pk = src_xmss.pk
ots_key_index = validate_ots_index(ots_key_index, src_xmss)
src_xmss.set_ots_index(ots_key_index)
signing_object = src_xmss
if master:
master_addr = parse_qaddress(master)
addresses_dst, shor_amounts = _parse_dsts_amounts(dsts, amounts, check_multi_sig_address=True)
fee_shor = _quanta_to_shor(fee)
except Exception as e:
click.echo("Error validating arguments: {}".format(e))
quit(1)
multi_sig_address = bytes(hstr2bin(multi_sig_address[1:]))
try:
tx = MultiSigSpend.create(multi_sig_address=multi_sig_address,
addrs_to=addresses_dst,
amounts=shor_amounts,
expiry_block_number=expiry_block_number,
fee=fee_shor,
xmss_pk=address_src_pk,
master_addr=master_addr)
tx.sign(signing_object)
if not tx.validate():
print("It was not possible to validate the signature")
quit(1)
print("\nTransaction Blob (signed): \n")
txblob = tx.pbdata.SerializeToString()
txblobhex = hexlify(txblob).decode()
print(txblobhex)
print()
print("Sending to a QRL Node...")
stub = ctx.obj.get_stub_public_api()
push_transaction_req = qrl_pb2.PushTransactionReq(transaction_signed=tx.pbdata)
push_transaction_resp = stub.PushTransaction(push_transaction_req, timeout=CONNECTION_TIMEOUT)
print(push_transaction_resp)
except Exception as e:
print("Error {}".format(str(e)))
def base64tohex(data):
return hexlify(a2b_base64(data))
def tx_unbase64(tx_json_str):
tx_json = json.loads(tx_json_str)
tx_json["publicKey"] = base64tohex(tx_json["publicKey"])
tx_json["signature"] = base64tohex(tx_json["signature"])
tx_json["transactionHash"] = base64tohex(tx_json["transactionHash"])
tx_json["transfer"]["addrsTo"] = [base64tohex(v) for v in tx_json["transfer"]["addrsTo"]]
return json.dumps(tx_json, indent=True, sort_keys=True)
@qrl.command(name='tx_transfer')
@click.option('--src', type=str, default='', prompt=True, help='signer QRL address')
@click.option('--master', type=str, default='', help='master QRL address')
@click.option('--dsts', type=str, prompt=True, help='List of destination addresses')
@click.option('--amounts', type=str, prompt=True, help='List of amounts to transfer (Quanta)')
@click.option('--message_data', type=str, prompt=True, help='Message (Optional)')
@click.option('--fee', type=Decimal, default=0.0, prompt=True, help='fee in Quanta')
@click.option('--ots_key_index', default=1, help='OTS key Index (1..XMSS num signatures)')
@click.pass_context
|
MIT License
|
drexly/openhgsenti
|
lib/django/contrib/admin/checks.py
|
ModelAdminChecks._check_search_fields
|
python
|
def _check_search_fields(self, obj):
if not isinstance(obj.search_fields, (list, tuple)):
return must_be('a list or tuple', option='search_fields', obj=obj, id='admin.E126')
else:
return []
|
Check search_fields is a sequence.
|
https://github.com/drexly/openhgsenti/blob/d7806f58c81127d32091d9875a99ac13aef94a8a/lib/django/contrib/admin/checks.py#L824-L830
|
from __future__ import unicode_literals
from itertools import chain
from django.contrib.admin.utils import (
NotRelationField, flatten, get_fields_from_path,
)
from django.core import checks
from django.core.exceptions import FieldDoesNotExist
from django.db import models
from django.forms.models import (
BaseModelForm, BaseModelFormSet, _get_foreign_key,
)
def check_admin_app(**kwargs):
from django.contrib.admin.sites import system_check_errors
return system_check_errors
class BaseModelAdminChecks(object):
def check(self, admin_obj, **kwargs):
errors = []
errors.extend(self._check_raw_id_fields(admin_obj))
errors.extend(self._check_fields(admin_obj))
errors.extend(self._check_fieldsets(admin_obj))
errors.extend(self._check_exclude(admin_obj))
errors.extend(self._check_form(admin_obj))
errors.extend(self._check_filter_vertical(admin_obj))
errors.extend(self._check_filter_horizontal(admin_obj))
errors.extend(self._check_radio_fields(admin_obj))
errors.extend(self._check_prepopulated_fields(admin_obj))
errors.extend(self._check_view_on_site_url(admin_obj))
errors.extend(self._check_ordering(admin_obj))
errors.extend(self._check_readonly_fields(admin_obj))
return errors
def _check_raw_id_fields(self, obj):
if not isinstance(obj.raw_id_fields, (list, tuple)):
return must_be('a list or tuple', option='raw_id_fields', obj=obj, id='admin.E001')
else:
return list(chain(*[
self._check_raw_id_fields_item(obj, obj.model, field_name, 'raw_id_fields[%d]' % index)
for index, field_name in enumerate(obj.raw_id_fields)
]))
def _check_raw_id_fields_item(self, obj, model, field_name, label):
try:
field = model._meta.get_field(field_name)
except FieldDoesNotExist:
return refer_to_missing_field(field=field_name, option=label,
model=model, obj=obj, id='admin.E002')
else:
if not isinstance(field, (models.ForeignKey, models.ManyToManyField)):
return must_be('a ForeignKey or ManyToManyField',
option=label, obj=obj, id='admin.E003')
else:
return []
def _check_fields(self, obj):
if obj.fields is None:
return []
elif not isinstance(obj.fields, (list, tuple)):
return must_be('a list or tuple', option='fields', obj=obj, id='admin.E004')
elif obj.fieldsets:
return [
checks.Error(
"Both 'fieldsets' and 'fields' are specified.",
hint=None,
obj=obj.__class__,
id='admin.E005',
)
]
fields = flatten(obj.fields)
if len(fields) != len(set(fields)):
return [
checks.Error(
"The value of 'fields' contains duplicate field(s).",
hint=None,
obj=obj.__class__,
id='admin.E006',
)
]
return list(chain(*[
self._check_field_spec(obj, obj.model, field_name, 'fields')
for field_name in obj.fields
]))
def _check_fieldsets(self, obj):
if obj.fieldsets is None:
return []
elif not isinstance(obj.fieldsets, (list, tuple)):
return must_be('a list or tuple', option='fieldsets', obj=obj, id='admin.E007')
else:
return list(chain(*[
self._check_fieldsets_item(obj, obj.model, fieldset, 'fieldsets[%d]' % index)
for index, fieldset in enumerate(obj.fieldsets)
]))
def _check_fieldsets_item(self, obj, model, fieldset, label):
if not isinstance(fieldset, (list, tuple)):
return must_be('a list or tuple', option=label, obj=obj, id='admin.E008')
elif len(fieldset) != 2:
return must_be('of length 2', option=label, obj=obj, id='admin.E009')
elif not isinstance(fieldset[1], dict):
return must_be('a dictionary', option='%s[1]' % label, obj=obj, id='admin.E010')
elif 'fields' not in fieldset[1]:
return [
checks.Error(
"The value of '%s[1]' must contain the key 'fields'." % label,
hint=None,
obj=obj.__class__,
id='admin.E011',
)
]
elif not isinstance(fieldset[1]['fields'], (list, tuple)):
return must_be('a list or tuple', option="%s[1]['fields']" % label, obj=obj, id='admin.E008')
fields = flatten(fieldset[1]['fields'])
if len(fields) != len(set(fields)):
return [
checks.Error(
"There are duplicate field(s) in '%s[1]'." % label,
hint=None,
obj=obj.__class__,
id='admin.E012',
)
]
return list(chain(*[
self._check_field_spec(obj, model, fieldset_fields, '%s[1]["fields"]' % label)
for fieldset_fields in fieldset[1]['fields']
]))
def _check_field_spec(self, obj, model, fields, label):
if isinstance(fields, tuple):
return list(chain(*[
self._check_field_spec_item(obj, model, field_name, "%s[%d]" % (label, index))
for index, field_name in enumerate(fields)
]))
else:
return self._check_field_spec_item(obj, model, fields, label)
def _check_field_spec_item(self, obj, model, field_name, label):
if field_name in obj.readonly_fields:
return []
else:
try:
field = model._meta.get_field(field_name)
except FieldDoesNotExist:
return []
else:
if (isinstance(field, models.ManyToManyField) and
not field.remote_field.through._meta.auto_created):
return [
checks.Error(
("The value of '%s' cannot include the ManyToManyField '%s', "
"because that field manually specifies a relationship model.")
% (label, field_name),
hint=None,
obj=obj.__class__,
id='admin.E013',
)
]
else:
return []
def _check_exclude(self, obj):
if obj.exclude is None:
return []
elif not isinstance(obj.exclude, (list, tuple)):
return must_be('a list or tuple', option='exclude', obj=obj, id='admin.E014')
elif len(obj.exclude) > len(set(obj.exclude)):
return [
checks.Error(
"The value of 'exclude' contains duplicate field(s).",
hint=None,
obj=obj.__class__,
id='admin.E015',
)
]
else:
return []
def _check_form(self, obj):
if hasattr(obj, 'form') and not issubclass(obj.form, BaseModelForm):
return must_inherit_from(parent='BaseModelForm', option='form',
obj=obj, id='admin.E016')
else:
return []
def _check_filter_vertical(self, obj):
if not hasattr(obj, 'filter_vertical'):
return []
elif not isinstance(obj.filter_vertical, (list, tuple)):
return must_be('a list or tuple', option='filter_vertical', obj=obj, id='admin.E017')
else:
return list(chain(*[
self._check_filter_item(obj, obj.model, field_name, "filter_vertical[%d]" % index)
for index, field_name in enumerate(obj.filter_vertical)
]))
def _check_filter_horizontal(self, obj):
if not hasattr(obj, 'filter_horizontal'):
return []
elif not isinstance(obj.filter_horizontal, (list, tuple)):
return must_be('a list or tuple', option='filter_horizontal', obj=obj, id='admin.E018')
else:
return list(chain(*[
self._check_filter_item(obj, obj.model, field_name, "filter_horizontal[%d]" % index)
for index, field_name in enumerate(obj.filter_horizontal)
]))
def _check_filter_item(self, obj, model, field_name, label):
try:
field = model._meta.get_field(field_name)
except FieldDoesNotExist:
return refer_to_missing_field(field=field_name, option=label,
model=model, obj=obj, id='admin.E019')
else:
if not isinstance(field, models.ManyToManyField):
return must_be('a ManyToManyField', option=label, obj=obj, id='admin.E020')
else:
return []
def _check_radio_fields(self, obj):
if not hasattr(obj, 'radio_fields'):
return []
elif not isinstance(obj.radio_fields, dict):
return must_be('a dictionary', option='radio_fields', obj=obj, id='admin.E021')
else:
return list(chain(*[
self._check_radio_fields_key(obj, obj.model, field_name, 'radio_fields') +
self._check_radio_fields_value(obj, val, 'radio_fields["%s"]' % field_name)
for field_name, val in obj.radio_fields.items()
]))
def _check_radio_fields_key(self, obj, model, field_name, label):
try:
field = model._meta.get_field(field_name)
except FieldDoesNotExist:
return refer_to_missing_field(field=field_name, option=label,
model=model, obj=obj, id='admin.E022')
else:
if not (isinstance(field, models.ForeignKey) or field.choices):
return [
checks.Error(
"The value of '%s' refers to '%s', which is not an "
"instance of ForeignKey, and does not have a 'choices' definition." % (
label, field_name
),
hint=None,
obj=obj.__class__,
id='admin.E023',
)
]
else:
return []
def _check_radio_fields_value(self, obj, val, label):
from django.contrib.admin.options import HORIZONTAL, VERTICAL
if val not in (HORIZONTAL, VERTICAL):
return [
checks.Error(
"The value of '%s' must be either admin.HORIZONTAL or admin.VERTICAL." % label,
hint=None,
obj=obj.__class__,
id='admin.E024',
)
]
else:
return []
def _check_view_on_site_url(self, obj):
if hasattr(obj, 'view_on_site'):
if not callable(obj.view_on_site) and not isinstance(obj.view_on_site, bool):
return [
checks.Error(
"The value of 'view_on_site' must be a callable or a boolean value.",
hint=None,
obj=obj.__class__,
id='admin.E025',
)
]
else:
return []
else:
return []
def _check_prepopulated_fields(self, obj):
if not hasattr(obj, 'prepopulated_fields'):
return []
elif not isinstance(obj.prepopulated_fields, dict):
return must_be('a dictionary', option='prepopulated_fields', obj=obj, id='admin.E026')
else:
return list(chain(*[
self._check_prepopulated_fields_key(obj, obj.model, field_name, 'prepopulated_fields') +
self._check_prepopulated_fields_value(obj, obj.model, val, 'prepopulated_fields["%s"]' % field_name)
for field_name, val in obj.prepopulated_fields.items()
]))
def _check_prepopulated_fields_key(self, obj, model, field_name, label):
forbidden_field_types = (
models.DateTimeField,
models.ForeignKey,
models.ManyToManyField
)
try:
field = model._meta.get_field(field_name)
except FieldDoesNotExist:
return refer_to_missing_field(field=field_name, option=label,
model=model, obj=obj, id='admin.E027')
else:
if isinstance(field, forbidden_field_types):
return [
checks.Error(
"The value of '%s' refers to '%s', which must not be a DateTimeField, "
"ForeignKey or ManyToManyField." % (
label, field_name
),
hint=None,
obj=obj.__class__,
id='admin.E028',
)
]
else:
return []
def _check_prepopulated_fields_value(self, obj, model, val, label):
if not isinstance(val, (list, tuple)):
return must_be('a list or tuple', option=label, obj=obj, id='admin.E029')
else:
return list(chain(*[
self._check_prepopulated_fields_value_item(obj, model, subfield_name, "%s[%r]" % (label, index))
for index, subfield_name in enumerate(val)
]))
def _check_prepopulated_fields_value_item(self, obj, model, field_name, label):
try:
model._meta.get_field(field_name)
except FieldDoesNotExist:
return refer_to_missing_field(field=field_name, option=label,
model=model, obj=obj, id='admin.E030')
else:
return []
def _check_ordering(self, obj):
if obj.ordering is None:
return []
elif not isinstance(obj.ordering, (list, tuple)):
return must_be('a list or tuple', option='ordering', obj=obj, id='admin.E031')
else:
return list(chain(*[
self._check_ordering_item(obj, obj.model, field_name, 'ordering[%d]' % index)
for index, field_name in enumerate(obj.ordering)
]))
def _check_ordering_item(self, obj, model, field_name, label):
if field_name == '?' and len(obj.ordering) != 1:
return [
checks.Error(
("The value of 'ordering' has the random ordering marker '?', "
"but contains other fields as well."),
hint='Either remove the "?", or remove the other fields.',
obj=obj.__class__,
id='admin.E032',
)
]
elif field_name == '?':
return []
elif '__' in field_name:
return []
else:
if field_name.startswith('-'):
field_name = field_name[1:]
try:
model._meta.get_field(field_name)
except FieldDoesNotExist:
return refer_to_missing_field(field=field_name, option=label,
model=model, obj=obj, id='admin.E033')
else:
return []
def _check_readonly_fields(self, obj):
if obj.readonly_fields == ():
return []
elif not isinstance(obj.readonly_fields, (list, tuple)):
return must_be('a list or tuple', option='readonly_fields', obj=obj, id='admin.E034')
else:
return list(chain(*[
self._check_readonly_fields_item(obj, obj.model, field_name, "readonly_fields[%d]" % index)
for index, field_name in enumerate(obj.readonly_fields)
]))
def _check_readonly_fields_item(self, obj, model, field_name, label):
if callable(field_name):
return []
elif hasattr(obj, field_name):
return []
elif hasattr(model, field_name):
return []
else:
try:
model._meta.get_field(field_name)
except FieldDoesNotExist:
return [
checks.Error(
"The value of '%s' is not a callable, an attribute of '%s', or an attribute of '%s.%s'." % (
label, obj.__class__.__name__, model._meta.app_label, model._meta.object_name
),
hint=None,
obj=obj.__class__,
id='admin.E035',
)
]
else:
return []
class ModelAdminChecks(BaseModelAdminChecks):
def check(self, admin_obj, **kwargs):
errors = super(ModelAdminChecks, self).check(admin_obj)
errors.extend(self._check_save_as(admin_obj))
errors.extend(self._check_save_on_top(admin_obj))
errors.extend(self._check_inlines(admin_obj))
errors.extend(self._check_list_display(admin_obj))
errors.extend(self._check_list_display_links(admin_obj))
errors.extend(self._check_list_filter(admin_obj))
errors.extend(self._check_list_select_related(admin_obj))
errors.extend(self._check_list_per_page(admin_obj))
errors.extend(self._check_list_max_show_all(admin_obj))
errors.extend(self._check_list_editable(admin_obj))
errors.extend(self._check_search_fields(admin_obj))
errors.extend(self._check_date_hierarchy(admin_obj))
return errors
def _check_save_as(self, obj):
if not isinstance(obj.save_as, bool):
return must_be('a boolean', option='save_as',
obj=obj, id='admin.E101')
else:
return []
def _check_save_on_top(self, obj):
if not isinstance(obj.save_on_top, bool):
return must_be('a boolean', option='save_on_top',
obj=obj, id='admin.E102')
else:
return []
def _check_inlines(self, obj):
if not isinstance(obj.inlines, (list, tuple)):
return must_be('a list or tuple', option='inlines', obj=obj, id='admin.E103')
else:
return list(chain(*[
self._check_inlines_item(obj, obj.model, item, "inlines[%d]" % index)
for index, item in enumerate(obj.inlines)
]))
def _check_inlines_item(self, obj, model, inline, label):
inline_label = '.'.join([inline.__module__, inline.__name__])
from django.contrib.admin.options import BaseModelAdmin
if not issubclass(inline, BaseModelAdmin):
return [
checks.Error(
"'%s' must inherit from 'BaseModelAdmin'." % inline_label,
hint=None,
obj=obj.__class__,
id='admin.E104',
)
]
elif not inline.model:
return [
checks.Error(
"'%s' must have a 'model' attribute." % inline_label,
hint=None,
obj=obj.__class__,
id='admin.E105',
)
]
elif not issubclass(inline.model, models.Model):
return must_be('a Model', option='%s.model' % inline_label,
obj=obj, id='admin.E106')
else:
return inline(model, obj.admin_site).check()
def _check_list_display(self, obj):
if not isinstance(obj.list_display, (list, tuple)):
return must_be('a list or tuple', option='list_display', obj=obj, id='admin.E107')
else:
return list(chain(*[
self._check_list_display_item(obj, obj.model, item, "list_display[%d]" % index)
for index, item in enumerate(obj.list_display)
]))
def _check_list_display_item(self, obj, model, item, label):
if callable(item):
return []
elif hasattr(obj, item):
return []
elif hasattr(model, item):
try:
field = model._meta.get_field(item)
except FieldDoesNotExist:
try:
field = getattr(model, item)
except AttributeError:
field = None
if field is None:
return [
checks.Error(
"The value of '%s' refers to '%s', which is not a "
"callable, an attribute of '%s', or an attribute or method on '%s.%s'." % (
label, item, obj.__class__.__name__, model._meta.app_label, model._meta.object_name
),
hint=None,
obj=obj.__class__,
id='admin.E108',
)
]
elif isinstance(field, models.ManyToManyField):
return [
checks.Error(
"The value of '%s' must not be a ManyToManyField." % label,
hint=None,
obj=obj.__class__,
id='admin.E109',
)
]
else:
return []
else:
try:
model._meta.get_field(item)
except FieldDoesNotExist:
return [
checks.Error(
"The value of '%s' refers to '%s', which is not a callable, "
"an attribute of '%s', or an attribute or method on '%s.%s'." % (
label, item, obj.__class__.__name__, model._meta.app_label, model._meta.object_name
),
hint=None,
obj=obj.__class__,
id='admin.E108',
)
]
else:
return []
def _check_list_display_links(self, obj):
if obj.list_display_links is None:
return []
elif not isinstance(obj.list_display_links, (list, tuple)):
return must_be('a list, a tuple, or None', option='list_display_links', obj=obj, id='admin.E110')
else:
return list(chain(*[
self._check_list_display_links_item(obj, field_name, "list_display_links[%d]" % index)
for index, field_name in enumerate(obj.list_display_links)
]))
def _check_list_display_links_item(self, obj, field_name, label):
if field_name not in obj.list_display:
return [
checks.Error(
"The value of '%s' refers to '%s', which is not defined in 'list_display'." % (
label, field_name
),
hint=None,
obj=obj.__class__,
id='admin.E111',
)
]
else:
return []
def _check_list_filter(self, obj):
if not isinstance(obj.list_filter, (list, tuple)):
return must_be('a list or tuple', option='list_filter', obj=obj, id='admin.E112')
else:
return list(chain(*[
self._check_list_filter_item(obj, obj.model, item, "list_filter[%d]" % index)
for index, item in enumerate(obj.list_filter)
]))
def _check_list_filter_item(self, obj, model, item, label):
from django.contrib.admin import ListFilter, FieldListFilter
if callable(item) and not isinstance(item, models.Field):
if not issubclass(item, ListFilter):
return must_inherit_from(parent='ListFilter', option=label,
obj=obj, id='admin.E113')
elif issubclass(item, FieldListFilter):
return [
checks.Error(
"The value of '%s' must not inherit from 'FieldListFilter'." % label,
hint=None,
obj=obj.__class__,
id='admin.E114',
)
]
else:
return []
elif isinstance(item, (tuple, list)):
field, list_filter_class = item
if not issubclass(list_filter_class, FieldListFilter):
return must_inherit_from(parent='FieldListFilter', option='%s[1]' % label,
obj=obj, id='admin.E115')
else:
return []
else:
field = item
try:
get_fields_from_path(model, field)
except (NotRelationField, FieldDoesNotExist):
return [
checks.Error(
"The value of '%s' refers to '%s', which does not refer to a Field." % (label, field),
hint=None,
obj=obj.__class__,
id='admin.E116',
)
]
else:
return []
def _check_list_select_related(self, obj):
if not isinstance(obj.list_select_related, (bool, list, tuple)):
return must_be('a boolean, tuple or list', option='list_select_related',
obj=obj, id='admin.E117')
else:
return []
def _check_list_per_page(self, obj):
if not isinstance(obj.list_per_page, int):
return must_be('an integer', option='list_per_page', obj=obj, id='admin.E118')
else:
return []
def _check_list_max_show_all(self, obj):
if not isinstance(obj.list_max_show_all, int):
return must_be('an integer', option='list_max_show_all', obj=obj, id='admin.E119')
else:
return []
def _check_list_editable(self, obj):
if not isinstance(obj.list_editable, (list, tuple)):
return must_be('a list or tuple', option='list_editable', obj=obj, id='admin.E120')
else:
return list(chain(*[
self._check_list_editable_item(obj, obj.model, item, "list_editable[%d]" % index)
for index, item in enumerate(obj.list_editable)
]))
def _check_list_editable_item(self, obj, model, field_name, label):
try:
field = model._meta.get_field(field_name)
except FieldDoesNotExist:
return refer_to_missing_field(field=field_name, option=label,
model=model, obj=obj, id='admin.E121')
else:
if field_name not in obj.list_display:
return [
checks.Error(
"The value of '%s' refers to '%s', which is not "
"contained in 'list_display'." % (label, field_name),
hint=None,
obj=obj.__class__,
id='admin.E122',
)
]
elif obj.list_display_links and field_name in obj.list_display_links:
return [
checks.Error(
"The value of '%s' cannot be in both 'list_editable' and 'list_display_links'." % field_name,
hint=None,
obj=obj.__class__,
id='admin.E123',
)
]
elif (obj.list_display[0] in obj.list_editable and obj.list_display[0] != obj.list_editable[0] and
obj.list_display_links is not None):
return [
checks.Error(
"The value of '%s' refers to the first field in 'list_display' ('%s'), "
"which cannot be used unless 'list_display_links' is set." % (
label, obj.list_display[0]
),
hint=None,
obj=obj.__class__,
id='admin.E124',
)
]
elif not field.editable:
return [
checks.Error(
"The value of '%s' refers to '%s', which is not editable through the admin." % (
label, field_name
),
hint=None,
obj=obj.__class__,
id='admin.E125',
)
]
else:
return []
|
Apache License 2.0
|
dragonfly/dragonfly
|
dragonfly/gp/cartesian_product_gp.py
|
CPGP._get_training_kernel_matrix
|
python
|
def _get_training_kernel_matrix(self):
n = len(self.X)
ret = self.kernel.hyperparams['scale'] * np.ones((n, n))
for idx, kern in enumerate(self.kernel.kernel_list):
if self.domain_lists_of_dists[idx] is not None:
ret *= kern.evaluate_from_dists(self.domain_lists_of_dists[idx])
else:
curr_X = get_idxs_from_list_of_lists(self.X, idx)
ret *= kern(curr_X, curr_X)
return ret
|
Returns the training kernel matrix.
|
https://github.com/dragonfly/dragonfly/blob/a579b5eadf452e23b07d4caf27b402703b0012b7/dragonfly/gp/cartesian_product_gp.py#L238-L248
|
from __future__ import print_function
from argparse import Namespace
import numpy as np
from ..exd import domains
from ..exd.cp_domain_utils import load_cp_domain_from_config_file
from . import gp_core, mf_gp
from .euclidean_gp import get_euclidean_integral_gp_kernel_with_scale, prep_euclidean_integral_kernel_hyperparams
from .kernel import CartesianProductKernel, HammingKernel
from ..utils.general_utils import get_idxs_from_list_of_lists
from ..utils.option_handler import get_option_specs, load_options
from ..utils.reporters import get_reporter
_DFLT_DOMAIN_EUC_KERNEL_TYPE = 'matern'
_DFLT_DOMAIN_INT_KERNEL_TYPE = 'matern'
_DFLT_DOMAIN_DISCRETE_NUMERIC_KERNEL_TYPE = 'matern'
_DFLT_DOMAIN_DISCRETE_KERNEL_TYPE = 'hamming'
_DFLT_DOMAIN_NN_KERNEL_TYPE = 'otmann'
_DFLT_DOMAIN_MATERN_NU = 2.5
_DFLT_FIDEL_EUC_KERNEL_TYPE = 'se'
_DFLT_FIDEL_INT_KERNEL_TYPE = 'se'
_DFLT_FIDEL_DISCRETE_NUMERIC_KERNEL_TYPE = 'se'
_DFLT_FIDEL_DISCRETE_KERNEL_TYPE = 'hamming'
_DFLT_FIDEL_MATERN_NU = 2.5
basic_cart_product_gp_args = [
get_option_specs('dom_euc_kernel_type', False, 'default',
'Kernel type for euclidean domains. '),
get_option_specs('dom_euc_use_same_bandwidth', False, False,
('If true, will use same bandwidth on all dimensions. Applies only '
'when kernel_type is se or matern. Default=False.')),
get_option_specs('dom_euc_matern_nu', False, 'default', 'Specify nu value for matern kernel. If negative, will fit.'),
get_option_specs('dom_euc_poly_order', False, 1,
'Order of the polynomial kernle to be used for Euclidean domains. ' + 'Default is 1 (linear kernel).'),
get_option_specs('dom_euc_use_additive_gp', False, False,
'Whether or not to use an additive GP. '),
get_option_specs('dom_euc_add_max_group_size', False, 6,
'The maximum number of groups in the additive grouping. '),
get_option_specs('dom_euc_add_grouping_criterion', False, 'randomised_ml',
'Specify the grouping algorithm, should be one of {randomised_ml}'),
get_option_specs('dom_euc_num_groups_per_group_size', False, -1,
'The number of groups to try per group size.'),
get_option_specs('dom_euc_add_group_size_criterion', False, 'sampled',
'Specify how to pick the group size, should be one of {max,sampled}.'),
get_option_specs('dom_euc_esp_order', False, -1,
'Order of the esp kernel. '),
get_option_specs('dom_euc_esp_kernel_type', False, 'se',
'Specify type of kernel. This depends on the application.'),
get_option_specs('dom_euc_esp_matern_nu', False, 'default', ('Specify the nu value for matern kernel. If negative, will fit.')),
get_option_specs('dom_int_kernel_type', False, 'default',
'Kernel type for integral domains. '),
get_option_specs('dom_int_use_same_bandwidth', False, False,
('If true, will use same bandwidth on all dimensions. Applies only '
'when kernel_type is se or matern. Default=False.')),
get_option_specs('dom_int_matern_nu', False, 'default', 'Specify nu value for matern kernel. If negative, will fit.'),
get_option_specs('dom_int_poly_order', False, 1,
'Order of the polynomial kernle to be used for Integral domains. ' + 'Default is 1 (linear kernel).'),
get_option_specs('dom_int_use_additive_gp', False, False,
'Whether or not to use an additive GP. '),
get_option_specs('dom_int_add_max_group_size', False, 6,
'The maximum number of groups in the additive grouping. '),
get_option_specs('dom_int_add_grouping_criterion', False, 'randomised_ml',
'Specify the grouping algorithm, should be one of {randomised_ml}'),
get_option_specs('dom_int_num_groups_per_group_size', False, -1,
'The number of groups to try per group size.'),
get_option_specs('dom_int_add_group_size_criterion', False, 'sampled',
'Specify how to pick the group size, should be one of {max,sampled}.'),
get_option_specs('dom_int_esp_order', False, -1,
'Order of the esp kernel. '),
get_option_specs('dom_int_esp_kernel_type', False, 'se',
'Specify type of kernel. This depends on the application.'),
get_option_specs('dom_int_esp_matern_nu', False, 'default', ('Specify the nu value for matern kernel. If negative, will fit.')),
get_option_specs('dom_disc_num_kernel_type', False, 'default',
'Kernel type for discrete numeric domains. '),
get_option_specs('dom_disc_num_use_same_bandwidth', False, False,
('If true, will use same bandwidth on all dimensions. Applies only '
'when kernel_type is se or matern. Default=False.')),
get_option_specs('dom_disc_num_matern_nu', False, 'default', 'Specify nu value for matern kernel. If negative, will fit.'),
get_option_specs('dom_disc_num_poly_order', False, 1,
'Order of the polynomial kernle to be used for Integral domains. ' + 'Default is 1 (linear kernel).'),
get_option_specs('dom_disc_num_esp_order', False, -1,
'Order of the esp kernel. '),
get_option_specs('dom_disc_num_esp_kernel_type', False, 'se',
'Specify type of kernel. This depends on the application.'),
get_option_specs('dom_disc_num_esp_matern_nu', False, 'default', ('Specify the nu value for matern kernel. If negative, will fit.')),
get_option_specs('dom_disc_kernel_type', False, 'default',
'Kernel type for discrete domains.'),
get_option_specs('dom_disc_hamming_use_same_weight', False, False,
'If true, use same weight for all dimensions of the hamming kernel.'),
get_option_specs('dom_nn_kernel_type', False, 'default',
'Kernel type for NN Domains.'),
get_option_specs('otmann_dist_type', False, 'lp-emd',
'The type of distance. Should be lp, emd or lp-emd.'),
get_option_specs('otmann_kernel_type', False, 'lpemd_sum',
'The Otmann kernel type. Should be one of lp, emd, lpemd_sum, or lpemd_prod.'),
get_option_specs('otmann_choose_mislabel_struct_coeffs', False, 'use_given',
('How to choose the mislabel and struct coefficients. Should be one of ' +
'tune_coeffs or use_given. In the latter case, otmann_mislabel_coeffs and ' +
'otmann_struct_coeffs should be non-empty.')),
get_option_specs('otmann_mislabel_coeffs', False, '1.0-1.0-1.0-1.0',
'The mislabel coefficients specified as a string. If -1, it means we will tune.'),
get_option_specs('otmann_struct_coeffs', False, '0.1-0.25-0.61-1.5',
'The struct coefficients specified as a string. If -1, it means we will tune.'),
get_option_specs('otmann_lp_power', False, 1,
'The powers to use in the LP distance for the kernel.'),
get_option_specs('otmann_emd_power', False, 2,
'The powers to use in the EMD distance for the kernel.'),
get_option_specs('otmann_non_assignment_penalty', False, 1.0,
'The non-assignment penalty for the OTMANN distance.'),
]
cartesian_product_gp_args = gp_core.mandatory_gp_args + basic_cart_product_gp_args
basic_mf_cart_product_gp_args = [
get_option_specs('fidel_euc_kernel_type', False, 'se', ('Type of kernel for the Euclidean part of the fidelity space. Should be se, ' +
'matern, poly or expdecay')),
get_option_specs('fidel_euc_matern_nu', False, 2.5, ('Specify the nu value for the matern kernel. If negative, will fit.')),
get_option_specs('fidel_euc_use_same_bandwidth', False, False, ('If true, will use same bandwidth on all Euclidean fidelity dimensions. Applies ' +
'only when fidel_kernel_type is se or matern. Default=False.')),
get_option_specs('fidel_int_kernel_type', False, 'se', 'Type of kernel for the fidelity space. Should be se, matern, poly or expdecay'),
get_option_specs('fidel_int_matern_nu', False, 2.5, ('Specify the nu value for the matern kernel. If negative, will fit.')),
get_option_specs('fidel_int_use_same_bandwidth', False, False, ('If true, will use same bandwidth on all integral fidelity dimensions. Applies ' +
'only when fidel_kernel_type is se or matern. Default=False.')),
get_option_specs('fidel_disc_num_kernel_type', False, 'se', 'Type of kernel for the fidelity space. Should be se, matern, poly or expdecay'),
get_option_specs('fidel_disc_num_matern_nu', False, 2.5, ('Specify the nu value for the matern kernel. If negative, will fit.')),
get_option_specs('fidel_disc_num_use_same_bandwidth', False, False, ('If true, will use same bandwidth on all integral fidelity dimensions. Applies ' +
'only when fidel_kernel_type is se or matern. Default=False.')),
get_option_specs('fidel_disc_kernel_type', False, 'default',
'Kernel type for discrete domains.'),
get_option_specs('fidel_disc_hamming_use_same_weight', False, False,
'If true, use same weight for all dimensions of the hamming kernel.'),
]
cartesian_product_mf_gp_args = cartesian_product_gp_args + basic_mf_cart_product_gp_args
def get_default_kernel_type(domain_type):
if domain_type == 'euclidean':
return _DFLT_DOMAIN_EUC_KERNEL_TYPE
elif domain_type == 'discrete_euclidean':
return _DFLT_DOMAIN_EUC_KERNEL_TYPE
elif domain_type == 'integral':
return _DFLT_DOMAIN_INT_KERNEL_TYPE
elif domain_type == 'prod_discrete':
return _DFLT_DOMAIN_DISCRETE_KERNEL_TYPE
elif domain_type == 'prod_discrete_numeric':
return _DFLT_DOMAIN_DISCRETE_NUMERIC_KERNEL_TYPE
elif domain_type == 'neural_network':
return _DFLT_DOMAIN_NN_KERNEL_TYPE
else:
raise ValueError('Unknown domain_type: %s.'%(domain_type))
class CPGP(gp_core.GP):
def __init__(self, X, Y, kernel, mean_func, noise_var, domain_lists_of_dists=None,
build_posterior=True, reporter=None,
handle_non_psd_kernels='project_first'):
if domain_lists_of_dists is None:
domain_lists_of_dists = [None] * kernel.num_kernels
self.domain_lists_of_dists = domain_lists_of_dists
super(CPGP, self).__init__(X, Y, kernel, mean_func, noise_var, build_posterior,
reporter, handle_non_psd_kernels)
def set_domain_lists_of_dists(self, domain_lists_of_dists):
self.domain_lists_of_dists = domain_lists_of_dists
def _child_str(self):
if len(self.X) > 0:
mean_str = 'mu[#0]=%0.4f, '%(self.mean_func([self.X[0]])[0])
else:
mean_str = ''
return mean_str + str(self.kernel)
|
MIT License
|
henriquemiranda/yambopy
|
qepy/projwfcxml.py
|
ProjwfcXML.write_proj
|
python
|
def write_proj(self,filename='proj'):
np.savez(filename,proj=self.proj,weights=self.weights)
|
Write the projection array in a numpy file
|
https://github.com/henriquemiranda/yambopy/blob/41b860c47e95a0d65be2a138b0043278508caee9/qepy/projwfcxml.py#L185-L189
|
from __future__ import print_function, division
import re
import xml.etree.ElementTree as ET
from numpy import array, zeros
from .lattice import Path, calculate_distances
from .auxiliary import *
RytoeV = 13.605698066
class ProjwfcXML(object):
_proj_file = 'atomic_proj.xml'
def __init__(self,prefix,output_filename='projwfc.log',path='.'):
self.prefix = prefix
self.path = path
self.datafile_xml = ET.parse( "%s/%s.save/%s"%(path, prefix, self._proj_file)).getroot()
self.nkpoints = int(self.datafile_xml.findall("HEADER/NUMBER_OF_K-POINTS")[0].text.strip())
self.nbands = int(self.datafile_xml.find("HEADER/NUMBER_OF_BANDS").text)
self.fermi = float(self.datafile_xml.find("HEADER/FERMI_ENERGY").text)*RytoeV
self.nproj = int(self.datafile_xml.find("HEADER/NUMBER_OF_ATOMIC_WFC").text)
self.weights = list(map(float,self.datafile_xml.find("WEIGHT_OF_K-POINTS").text.split()))
kpoints_lines = self.datafile_xml.find("K-POINTS").text.strip().split('\n')
kpoints_float = [ list(map(float, kline.split())) for kline in kpoints_lines ]
self.kpoints = np.array(kpoints_float)
self.eigen = self.get_eigen()
self.proj = self.get_proj()
try:
f = open("%s/%s"%(path,output_filename),'r')
except:
print("The output file of projwfc.x: %s was not found"%output_filename)
exit(1)
states = []
for line in re.findall('state\s+\#\s+([0-9]+):\s+atom\s+([0-9]+)\s+\(([a-zA-Z]+)\s+\),\s+wfc\s+([0-9])\s+\((?:j=([0-9.]+))? ?(?:l=([0-9.]+))? ?(?:m=\s+([0-9.]+))? ?(?:m_j=([ \-0-9.]+))?',f.read()):
_, iatom, atype, wfc, j, l, m, m_j = line
state = {'iatom':int(iatom), 'atype':atype, 'wfc':int(wfc)}
if j: j = float(j)
if l: l = int(l)
if m: m = int(m)
if m_j: m_j = float(m_j)
states.append({'iatom':int(iatom), 'atype':atype, 'wfc':int(wfc), 'j':j, 'l':l, 'm':m, 'm_j':m_j})
self.states = states
f.close()
def __str__(self):
s = ""
s += "nkpoints: %d\n"%self.nkpoints
s += "nbands: %d\n"%self.nbands
return s
def get_indexes(self):
proj = zeros([self.nkpoints,self.nproj],dtype=int)
for ik in range(self.nkpoints):
for ip in range(self.nproj):
proj[ik,ip] = np.argmax(np.absolute(self.proj[ik,ip,:])**2)
return proj
def plot_eigen(self, ax, size=20, cmap=None, color='r', path=[], label_1=None,
selected_orbitals=[], selected_orbitals_2=[],bandmin=0,bandmax=None,alpha=1,size_projection=False):
import matplotlib.pyplot as plt
import matplotlib as mpl
if path:
if isinstance(path,Path):
path = path.get_indexes()
if bandmax is None or bandmax > self.nbands:
bandmax = self.nbands
if cmap:
color_map = plt.get_cmap(cmap)
kpoints_dists = calculate_distances(self.kpoints)
ticks, labels = list(zip(*path))
ax.set_xticks([kpoints_dists[t] for t in ticks])
ax.set_xticklabels(labels)
ax.set_ylabel('E (eV)')
for t in ticks:
ax.axvline(kpoints_dists[t],c='k',lw=2)
ax.axhline(0,c='k')
if selected_orbitals_2:
w_rel = self.get_relative_weight(selected_orbitals=selected_orbitals, selected_orbitals_2=selected_orbitals_2)
for ib in range(bandmin,bandmax):
eig = self.eigen[:,ib] - self.fermi
if size_projection==True:
cax = ax.scatter(kpoints_dists,eig,s=size[:,ib],c=w_rel[:,ib],cmap=color_map,vmin=0,vmax=1,edgecolors='none',label=label_1)
else:
cax = ax.scatter(kpoints_dists,eig,s=size,c=w_rel[:,ib],cmap=color_map,vmin=0,vmax=1,edgecolors='none',label=label_1)
else:
w_proj = self.get_weights(selected_orbitals=selected_orbitals)
for ib in range(bandmin,bandmax):
eig = self.eigen[:,ib] - self.fermi
cax = ax.scatter(kpoints_dists,eig,s=w_proj[:,ib]*size,c=color,edgecolors='none',alpha=alpha,label=label_1)
ax.set_xlim(0, max(kpoints_dists))
return cax
def get_weights(self,selected_orbitals=[],bandmin=0,bandmax=None):
if bandmax is None:
bandmax = self.nbands
w_proj = zeros([self.nkpoints,self.nbands])
for ik in range(self.nkpoints):
for ib in range(bandmin,bandmax):
w_proj[ik,ib] = sum(abs(self.proj[ik,selected_orbitals,ib])**2)
return w_proj
def get_relative_weight(self,selected_orbitals=[],selected_orbitals_2=[],bandmin=0,bandmax=None):
if bandmax is None:
bandmax = self.nbands
w_rel = zeros([self.nkpoints,self.nbands])
for ik in range(self.nkpoints):
for ib in range(bandmin,bandmax):
a = sum(abs(self.proj[ik,selected_orbitals,ib])**2)
b = sum(abs(self.proj[ik,selected_orbitals_2,ib])**2)
w_rel[ik,ib] = a/(a+b)
return w_rel
def get_eigen(self):
datafile_xml = self.datafile_xml
eigen = []
for ik in range(self.nkpoints):
eigen.append( list(map(float, self.datafile_xml.find("EIGENVALUES/K-POINT.%d/EIG"%(ik+1)).text.split() )))
self.eigen = np.array(eigen)*RytoeV
return self.eigen
|
BSD 3-Clause New or Revised License
|
adalca/neurite
|
neurite/tf/utils/seg.py
|
next_label
|
python
|
def next_label(model, data_generator):
batch_proc = next_pred_label(model, data_generator)
return (batch_proc[2], batch_proc[3])
|
predict the next sample batch from the generator, and compute max labels
return max_labels
|
https://github.com/adalca/neurite/blob/c7bb05d5dae47d2a79e0fe5a8284f30b2304d335/neurite/tf/utils/seg.py#L276-L282
|
import itertools
import numpy as np
from tqdm import tqdm_notebook as tqdm
from pprint import pformat
import tensorflow as tf
from tensorflow import keras
import tensorflow.keras.backend as K
import neurite as ne
import neurite.py.utils
import pystrum.pynd.ndutils as nd
import pystrum.pynd.patchlib as pl
import pystrum.pytools.timer as timer
def predict_volumes(models,
data_generator,
batch_size,
patch_size,
patch_stride,
grid_size,
nan_func=np.nanmedian,
do_extra_vol=False,
do_prob_of_true=False,
verbose=False):
if not isinstance(models, (list, tuple)):
models = (models,)
with timer.Timer('predict_volume_stack', verbose):
vol_stack = predict_volume_stack(models,
data_generator,
batch_size,
grid_size,
verbose)
if len(models) == 1:
do_prior = len(vol_stack) == 4
else:
do_prior = len(vol_stack[0]) == 4
ret = ()
for midx, _ in enumerate(models):
stack = vol_stack if len(models) == 1 else vol_stack[midx]
if do_prior:
all_true, all_pred, all_vol, all_prior = stack
else:
all_true, all_pred, all_vol = stack
all_true_label, all_pred_label = pred_to_label(all_true, all_pred)
args = [patch_size, grid_size, patch_stride]
label_kwargs = {'nan_func_layers': nan_func, 'nan_func_K': nan_func, 'verbose': verbose}
vol_true_label = _quilt(all_true_label, *args, **label_kwargs).astype('int')
vol_pred_label = _quilt(all_pred_label, *args, **label_kwargs).astype('int')
ret_set = (vol_true_label, vol_pred_label)
if do_extra_vol:
vol_input = _quilt(all_vol, *args)
ret_set += (vol_input, )
if do_prior:
all_prior_label, = pred_to_label(all_prior)
vol_prior_label = _quilt(all_prior_label, *args, **label_kwargs).astype('int')
ret_set += (vol_prior_label, )
if do_extra_vol and do_prob_of_true:
all_pp = prob_of_label(all_pred, all_true_label)
pred_prob_of_true = _quilt(all_pp, *args, **label_kwargs)
ret_set += (pred_prob_of_true, )
if do_prior:
all_pp = prob_of_label(all_prior, all_true_label)
prior_prob_of_true = _quilt(all_pp, *args, **label_kwargs)
ret_set += (prior_prob_of_true, )
ret += (ret_set, )
if len(models) == 1:
ret = ret[0]
return ret
def predict_volume_stack(models,
data_generator,
batch_size,
grid_size,
verbose=False):
if not isinstance(models, (list, tuple)):
models = (models,)
nb_patches = np.prod(grid_size)
nb_batches = ((nb_patches - 1) // batch_size) + 1
batch_gen = tqdm(range(nb_batches)) if verbose else range(nb_batches)
for batch_idx in batch_gen:
sample = next(data_generator)
nb_vox = np.prod(sample[1].shape[1:-1])
do_prior = isinstance(sample[0], (list, tuple))
if batch_idx == 0:
nb_labels = sample[1].shape[-1]
all_vol = [np.zeros((nb_patches, nb_vox)) for f in models]
all_true = [np.zeros((nb_patches, nb_vox * nb_labels)) for f in models]
all_pred = [np.zeros((nb_patches, nb_vox * nb_labels)) for f in models]
all_prior = [np.zeros((nb_patches, nb_vox * nb_labels)) for f in models]
for idx, model in enumerate(models):
pred = model.predict(sample[0])
assert pred.shape[0] == batch_size, "batch size mismatch. sample has batch size %d, given batch size is %d" % (
pred.shape[0], batch_size)
input_batch = sample[0] if not do_prior else sample[0][0]
batch_start = batch_idx * batch_size
batch_end = np.minimum(batch_start + batch_size, nb_patches)
batch_range = np.arange(batch_start, batch_end)
batch_vox_idx = batch_end - batch_start
all_vol[idx][batch_range, :] = K.batch_flatten(input_batch)[0:batch_vox_idx, :]
all_true[idx][batch_range, :] = K.batch_flatten(sample[1])[0:batch_vox_idx, :]
all_pred[idx][batch_range, :] = K.batch_flatten(pred)[0:batch_vox_idx, :]
if do_prior:
all_prior[idx][batch_range, :] = K.batch_flatten(sample[0][1])[0:batch_vox_idx, :]
for idx, _ in enumerate(models):
all_true[idx] = np.reshape(all_true[idx], [nb_patches, nb_vox, nb_labels])
all_pred[idx] = np.reshape(all_pred[idx], [nb_patches, nb_vox, nb_labels])
if do_prior:
all_prior[idx] = np.reshape(all_prior[idx], [nb_patches, nb_vox, nb_labels])
ret = ()
for midx, _ in enumerate(models):
if do_prior:
ret += ((all_true[midx], all_pred[midx], all_vol[midx], all_prior[midx]), )
else:
ret += ((all_true[midx], all_pred[midx], all_vol[midx]), )
if len(models) == 1:
ret = ret[0]
return ret
def prob_of_label(vol, labelvol):
nb_dims = np.ndim(labelvol)
assert np.ndim(vol) == nb_dims + 1, "vol dimensions do not match [%d] vs [%d]" % (np.ndim(vol) - 1, nb_dims)
shp = vol.shape
nb_voxels = np.prod(shp[0:nb_dims])
nb_labels = shp[-1]
flat_vol = np.reshape(vol, (nb_voxels, nb_labels))
rows_sums = flat_vol.sum(axis=1)
flat_vol_norm = flat_vol / rows_sums[:, np.newaxis]
idx = list(range(nb_voxels))
v = flat_vol_norm[idx, labelvol.flat]
return np.reshape(v, labelvol.shape)
def next_pred_label(model, data_generator, verbose=False):
sample = next(data_generator)
with timer.Timer('prediction', verbose):
pred = model.predict(sample[0])
sample_input = sample[0] if not isinstance(sample[0], (list, tuple)) else sample[0][0]
max_labels = pred_to_label(sample_input, pred)
return (sample, pred) + max_labels
|
Apache License 2.0
|
mikevoets/jama16-retina-replication
|
lib/preprocess.py
|
resize
|
python
|
def resize(images_paths, size=299):
for image_path in images_paths:
image = cv2.imread(image_path)
image = cv2.resize(image, (size, size))
cv2.imwrite(image_path, image, [int(cv2.IMWRITE_JPEG_QUALITY), 100])
|
Function for resizing images.
:param images_paths:
Required. Paths to images.
:param size:
Optional. Size to which resize to. Defaults to 299.
:return:
Nothing.
|
https://github.com/mikevoets/jama16-retina-replication/blob/15f2af375c5a581a2002f346efc9a72f4b47f667/lib/preprocess.py#L239-L259
|
import tensorflow as tf
import os
import sys
import cv2
import matplotlib
matplotlib.use('agg')
from pylab import array, arange, uint8
def _increase_contrast(image):
copy = image.copy()
maxIntensity = 255.0
x = arange(maxIntensity)
phi = 1.3
theta = 1.5
y = (maxIntensity/phi)*(x/(maxIntensity/theta))**0.5
copy = (maxIntensity/phi)*(copy/(maxIntensity/theta))**2
copy = array(copy, dtype=uint8)
return copy
def _find_contours(image):
processed = _increase_contrast(image)
gray = cv2.cvtColor(processed, cv2.COLOR_BGR2GRAY)
cnts = cv2.findContours(
gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
center = None
if len(cnts) > 0:
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
if radius > 100:
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
return (center, radius)
def _get_filename(file_path):
return file_path.split("/")[-1]
def _resize_and_center_fundus(image, diameter):
copy = image.copy()
contours = _find_contours(image)
if contours is None:
return None
center, radius = contours
x_min = max(0, int(center[0] - radius))
y_min = max(0, int(center[1] - radius))
z = int(radius*2)
x_max = x_min + z
y_max = y_min + z
copy = copy[y_min:y_max, x_min:x_max]
fx = fy = (diameter / 2) / radius
copy = cv2.resize(copy, (0, 0), fx=fx, fy=fy)
shape = copy.shape
top = bottom = int((diameter - shape[0])/2)
left = right = int((diameter - shape[1])/2)
if shape[0] + top + bottom == diameter - 1:
top += 1
if shape[1] + left + right == diameter - 1:
left += 1
border = [top, bottom, left, right]
copy = cv2.copyMakeBorder(copy, *border,
borderType=cv2.BORDER_CONSTANT,
value=[0, 0, 0])
return copy
def _get_image_paths(images_path):
return [os.path.join(images_path, fn) for fn in os.listdir(images_path)]
def _resize_and_center_fundus_all(image_paths, save_path, diameter, verbosity):
num_images = len(image_paths)
success = 0
for i, image_path in enumerate(image_paths):
if verbosity > 0:
msg = "\r- Preprocessing image: {0:>6} / {1}".format(
i+1, num_images)
sys.stdout.write(msg)
sys.stdout.flush()
try:
image = cv2.imread(os.path.abspath(image_path), -1)
processed = _resize_and_center_fundus(image, diameter=diameter)
if processed is None:
print("Could not preprocess {}...".format(image_path))
else:
image_filename = _get_filename(image_path)
image_jpeg_filename = "{0}.jpg".format(os.path.splitext(
os.path.basename(image_filename))[0])
output_path = os.path.join(save_path, image_jpeg_filename)
cv2.imwrite(output_path, processed,
[int(cv2.IMWRITE_JPEG_QUALITY), 100])
success += 1
except AttributeError as e:
print(e)
print("Could not preprocess {}...".format(image_path))
return success
def resize_and_center_fundus(save_path=None, images_path=None, image_paths=None,
image_path=None, diameter=299, verbosity=1):
if save_path is None:
raise ValueError("Save path not specified!")
save_path = os.path.abspath(save_path)
if image_paths is not None:
return _resize_and_center_fundus_all(image_paths=image_paths,
save_path=save_path,
diameter=diameter,
verbosity=verbosity)
elif images_path is not None:
image_paths = _get_image_paths(images_path)
return _resize_and_center_fundus_all(image_paths=image_paths,
save_path=save_path,
diameter=diameter,
verbosity=verbosity)
elif image_path is not None:
return _resize_and_center_fundus_all(image_paths=[image_path],
save_path=save_path,
diameter=diameter,
verbosity=verbosity)
|
MIT License
|
fxtd-odyssey/qbinder
|
research/pyqtConfig/config.py
|
_set_QPushButton
|
python
|
def _set_QPushButton(self, v):
self.setChecked(v)
|
Set checked state of QPushButton
|
https://github.com/fxtd-odyssey/qbinder/blob/734fc2aaf80a495c1216b2c27530ab752279d103/research/pyqtConfig/config.py#L289-L293
|
from __future__ import unicode_literals
from __future__ import print_function
__author__ = 'timmyliang'
__email__ = '820472580@qq.com'
__date__ = '2020-03-09 16:19:41'
from Qt.QtGui import *
from Qt.QtCore import *
from Qt.QtWidgets import *
import os
import sys
import types
from collections import defaultdict, OrderedDict
import logging
try:
import xml.etree.cElementTree as et
except ImportError:
import xml.etree.ElementTree as et
try:
QVariant
except NameError:
QVariant = None
RECALCULATE_ALL = 1
RECALCULATE_VIEW = 2
def types_MethodType(fn, handler):
try:
return types.MethodType(fn, handler, type(handler))
except TypeError:
return types.MethodType(fn, handler)
def _convert_list_type_from_XML(vs):
vlist = vs.findall('ListItem') + vs.findall('ConfigListItem')
l = []
for xconfig in vlist:
v = xconfig.text
if xconfig.get('type') in CONVERT_TYPE_FROM_XML:
v = CONVERT_TYPE_FROM_XML[xconfig.get('type')](xconfig)
l.append(v)
return l
def _convert_list_type_to_XML(co, vs):
for cv in vs:
c = et.SubElement(co, "ListItem")
t = type(cv).__name__
c.set("type", t)
c = CONVERT_TYPE_TO_XML[t](c, cv)
return co
def _convert_dict_type_from_XML(vs):
vlist = vs.findall('DictItem')
d = {}
for xconfig in vlist:
v = xconfig.text
if xconfig.get('type') in CONVERT_TYPE_FROM_XML:
v = CONVERT_TYPE_FROM_XML[xconfig.get('type')](xconfig)
d[xconfig.get('key')] = v
return d
def _convert_dict_type_to_XML(co, vs):
for k, v in vs.items():
c = et.SubElement(co, "DictItem")
t = type(v).__name__
c.set("type", t)
c.set("key", k)
c = CONVERT_TYPE_TO_XML[t](c, v)
return co
def _apply_text_str(co, s):
co.text = str(s)
return co
CONVERT_TYPE_TO_XML = {
'str': _apply_text_str,
'unicode': _apply_text_str,
'int': _apply_text_str,
'float': _apply_text_str,
'bool': _apply_text_str,
'list': _convert_list_type_to_XML,
'tuple': _convert_list_type_to_XML,
'dict': _convert_dict_type_to_XML,
'NoneType': _apply_text_str,
}
CONVERT_TYPE_FROM_XML = {
'str': lambda x: str(x.text),
'unicode': lambda x: str(x.text),
'int': lambda x: int(x.text),
'float': lambda x: float(x.text),
'bool': lambda x: bool(x.text.lower() == 'true'),
'list': _convert_list_type_from_XML,
'tuple': _convert_list_type_from_XML,
'dict': _convert_dict_type_from_XML,
'NoneType': lambda x: None,
}
def build_dict_mapper(mdict):
rdict = {v: k for k, v in mdict.items()}
return (
lambda x: mdict[x] if x in mdict else x,
lambda x: rdict[x] if x in rdict else x,
)
try:
unicode
except:
def unicode(s):
if isinstance(s, bytes):
return s.decode('utf-8')
else:
return s
try:
basestring
except:
basestring = str
def build_tuple_mapper(mlist):
mdict = {k: v for k, v in mlist}
rdict = {v: k for k, v in mlist}
return (
lambda x: mdict[x] if x in mdict else x,
lambda x: rdict[x] if x in rdict else x,
)
def _get_QComboBox(self):
return self._get_map(self.currentText())
def _set_QComboBox(self, v):
self.setCurrentIndex(self.findText(unicode(self._set_map(v))))
def _event_QComboBox(self):
return self.currentIndexChanged
def _get_QCheckBox(self):
return self.isChecked()
def _set_QCheckBox(self, v):
self.setChecked(v)
def _event_QCheckBox(self):
return self.stateChanged
def _get_QAction(self):
return self.isChecked()
def _set_QAction(self, v):
self.setChecked(v)
def _event_QAction(self):
return self.toggled
def _get_QActionGroup(self):
if self.checkedAction():
return self.actions().index(self.checkedAction())
else:
return None
def _set_QActionGroup(self, v):
self.actions()[v].setChecked(True)
def _event_QActionGroup(self):
return self.triggered
def _get_QPushButton(self):
return self.isChecked()
|
MIT License
|
beanbaginc/django-evolution
|
django_evolution/utils/migrations.py
|
create_pre_migrate_state
|
python
|
def create_pre_migrate_state(executor):
assert supports_migrations, 'This cannot be called on Django 1.6 or earlier.'
if django_version >= (1, 10):
return executor._create_project_state(with_applied_migrations=True)
return None
|
Create state needed before migrations are applied.
The return value is dependent on the version of Django.
Args:
executor (django.db.migrations.executor.MigrationExecutor):
The migration executor that will handle the migrations.
Returns:
django.db.migrations.state.ProjectState:
The state needed for applying migrations.
|
https://github.com/beanbaginc/django-evolution/blob/fb76e44a2361a69a440dca086c0cc67ac6a4300d/django_evolution/utils/migrations.py#L788-L809
|
from __future__ import unicode_literals
from importlib import import_module
import django
try:
from django.core.management.sql import (emit_post_migrate_signal,
emit_pre_migrate_signal)
from django.db.migrations import Migration
from django.db.migrations.executor import (MigrationExecutor as
DjangoMigrationExecutor)
from django.db.migrations.loader import (MigrationLoader as
DjangoMigrationLoader)
from django.db.migrations.recorder import MigrationRecorder
from django.db.migrations.state import ModelState
emit_post_sync_signal = None
emit_pre_sync_signal = None
except ImportError:
from django.core.management.sql import (emit_post_sync_signal,
emit_pre_sync_signal)
DjangoMigrationExecutor = object
DjangoMigrationLoader = object
Migration = None
MigrationRecorder = None
ModelState = None
emit_post_migrate_signal = None
emit_pre_migrate_signal = None
from django_evolution.compat import six
from django_evolution.compat.models import get_model
from django_evolution.errors import (DjangoEvolutionSupportError,
MigrationConflictsError,
MigrationHistoryError)
from django_evolution.signals import applied_migration, applying_migration
from django_evolution.support import supports_migrations
from django_evolution.utils.apps import get_app_name
django_version = django.VERSION[:2]
class MigrationList(object):
@classmethod
def from_app_sig(cls, app_sig):
return cls.from_names(app_label=app_sig.app_id,
migration_names=app_sig.applied_migrations)
@classmethod
def from_names(cls, app_label, migration_names):
migration_list = cls()
if migration_names:
for name in migration_names:
migration_list.add_migration_info(app_label=app_label,
name=name)
return migration_list
@classmethod
def from_database(cls, connection, app_label=None):
recorder = MigrationRecorder(connection)
recorder.ensure_schema()
migration_list = cls()
queryset = recorder.migration_qs
if app_label:
queryset = queryset.filter(app=app_label)
for recorded_migration in queryset.all():
migration_list.add_recorded_migration(recorded_migration)
return migration_list
def __init__(self):
self._by_app_label = {}
self._by_id = {}
def has_migration_info(self, app_label, name):
return (app_label, name) in self._by_id
def add_migration_targets(self, targets):
for app_label, name in targets:
self.add_migration_info(app_label=app_label,
name=name)
def add_migration(self, migration):
assert Migration is not None
assert isinstance(migration, Migration)
self.add_migration_info(app_label=migration.app_label,
name=migration.name,
migration=migration)
def add_recorded_migration(self, recorded_migration):
assert MigrationRecorder is not None
assert isinstance(recorded_migration, MigrationRecorder.Migration)
self.add_migration_info(app_label=recorded_migration.app,
name=recorded_migration.name,
recorded_migration=recorded_migration)
def add_migration_info(self, app_label, name, migration=None,
recorded_migration=None):
info = {
'app_label': app_label,
'migration': migration,
'name': name,
'recorded_migration': recorded_migration,
}
self._by_app_label.setdefault(app_label, []).append(info)
self._by_id[(app_label, name)] = info
def update(self, other):
for other_info in other:
app_label = other_info['app_label']
name = other_info['name']
info = self._by_id.get((app_label, name))
if info is None:
self.add_migration_info(app_label=app_label,
name=name)
else:
for key in ('migration', 'recorded_migration'):
if info[key] is None:
info[key] = other_info[key]
def to_targets(self):
return set(
(info['app_label'], info['name'])
for info in self
)
def get_app_labels(self):
return list(sorted(six.iterkeys(self._by_app_label)))
def clone(self):
new_migration_list = MigrationList()
for info in self:
new_migration_list.add_migration_info(**info)
return new_migration_list
def __bool__(self):
return bool(self._by_id)
def __len__(self):
return len(self._by_id)
def __eq__(self, other):
if other is None or not isinstance(other, MigrationList):
return False
return self._by_id == other._by_id
def __iter__(self):
for app_label, info_list in sorted(six.iteritems(self._by_app_label),
key=lambda pair: pair[0]):
for info in info_list:
yield info
def __add__(self, other):
new_migration_list = self.clone()
new_migration_list.update(other)
return new_migration_list
def __sub__(self, other):
new_migration_list = MigrationList()
for info in self:
if not other.has_migration_info(app_label=info['app_label'],
name=info['name']):
new_migration_list.add_migration_info(**info)
return new_migration_list
def __repr__(self):
return '<MigrationList%s>' % list(self)
class MigrationLoader(DjangoMigrationLoader):
def __init__(self, connection, custom_migrations=None, *args, **kwargs):
self._custom_migrations = custom_migrations or MigrationList()
self._applied_migrations = None
self._lock_migrations = False
self.extra_applied_migrations = MigrationList()
super(MigrationLoader, self).__init__(connection, *args, **kwargs)
@property
def applied_migrations(self):
extra_migrations = self.extra_applied_migrations
if isinstance(self._applied_migrations, dict):
applied_migrations = self._applied_migrations.copy()
for info in extra_migrations:
app_label = info['app_label']
name = info['name']
recorded_migration = info['recorded_migration']
if recorded_migration is None:
recorded_migration = MigrationRecorder.Migration(
app=app_label,
name=name,
applied=True)
applied_migrations[(app_label, name)] = recorded_migration
elif isinstance(self._applied_migrations, set):
applied_migrations = self._applied_migrations | set(
(info['app_label'], info['name'])
for info in extra_migrations
)
else:
raise DjangoEvolutionSupportError(
'Migration.applied_migrations is an unexpected type (%s)'
% type(self._applied_migrations))
return applied_migrations
@applied_migrations.setter
def applied_migrations(self, value):
if value is not None and not isinstance(value, (dict, set)):
raise DjangoEvolutionSupportError(
'Migration.applied_migrations was set to an unexpected type '
'(%s)'
% type(value))
if value is None:
self._applied_migrations = None
else:
if django_version >= (3, 0):
self._applied_migrations = dict(value)
else:
self._applied_migrations = value
def build_graph(self, reload_migrations=True):
if not reload_migrations:
self._lock_migrations = True
try:
super(MigrationLoader, self).build_graph()
finally:
self._lock_migrations = False
def load_disk(self):
if self._lock_migrations:
return
super(MigrationLoader, self).load_disk()
for info in self._custom_migrations:
migration = info['migration']
assert migration is not None
app_label = info['app_label']
name = info['name']
self.migrated_apps.add(app_label)
self.unmigrated_apps.discard(app_label)
self.disk_migrations[(app_label, name)] = migration
class MigrationExecutor(DjangoMigrationExecutor):
def __init__(self, connection, custom_migrations=None, signal_sender=None):
self._signal_sender = signal_sender or self
super(MigrationExecutor, self).__init__(
connection=connection,
progress_callback=self._on_progress)
self.loader = MigrationLoader(connection=connection,
custom_migrations=custom_migrations)
def run_checks(self):
if hasattr(self.loader, 'check_consistent_history'):
from django.db.migrations.exceptions import InconsistentMigrationHistory
try:
self.loader.check_consistent_history(self.connection)
except InconsistentMigrationHistory as e:
raise MigrationHistoryError(six.text_type(e))
conflicts = self.loader.detect_conflicts()
if conflicts:
raise MigrationConflictsError(conflicts)
def _on_progress(self, action, migration=None, *args, **kwargs):
if action == 'apply_start':
applying_migration.send(sender=self._signal_sender,
migration=migration)
elif action == 'apply_success':
applied_migration.send(sender=self._signal_sender,
migration=migration)
def has_migrations_module(app):
app_name = get_app_name(app)
try:
import_module('%s.migrations' % app_name)
return True
except ImportError:
return False
def record_applied_migrations(connection, migrations):
assert supports_migrations, 'This cannot be called on Django 1.6 or earlier.'
recorder = MigrationRecorder(connection)
recorder.ensure_schema()
recorder.migration_qs.bulk_create(
recorder.Migration(app=info['app_label'],
name=info['name'])
for info in migrations
)
def unrecord_applied_migrations(connection, app_label, migration_names=None):
assert supports_migrations, 'This cannot be called on Django 1.6 or earlier.'
recorder = MigrationRecorder(connection)
recorder.ensure_schema()
queryset = recorder.migration_qs.filter(app=app_label)
if migration_names:
queryset = queryset.filter(name__in=migration_names)
queryset.delete()
def filter_migration_targets(targets, app_labels=None, exclude=None):
if app_labels is not None:
if not isinstance(app_labels, set):
app_labels = set(app_labels)
targets = (
target
for target in targets
if target[0] in app_labels
)
if exclude:
if not isinstance(exclude, set):
exclude = set(exclude)
targets = (
target
for target in targets
if target not in exclude
)
return list(targets)
def is_migration_initial(migration):
initial = getattr(migration, 'initial', None)
if initial is False:
return False
elif initial is None:
for dep_app_label, dep_app_name in migration.dependencies:
if dep_app_label == migration.app_label:
return False
return True
|
BSD 3-Clause New or Revised License
|
jeffersonheard/sondra
|
sondra/document/__init__.py
|
Document.suite
|
python
|
def suite(self):
return self.application.suite
|
The suite instance this document's application is attached to.
|
https://github.com/jeffersonheard/sondra/blob/da9159924824aeb2dd3db7b72cefa40c197bc7cb/sondra/document/__init__.py#L214-L216
|
import json
import logging
from abc import ABCMeta
from collections import OrderedDict
from collections.abc import MutableMapping
from copy import deepcopy
import jsonschema
from sondra.api.expose import method_schema, expose_method_explicit
from sondra.document.schema_parser import ListHandler, ForeignKey
try:
from shapely.geometry import mapping, shape
from shapely.geometry.base import BaseGeometry
except:
logging.warning("Shapely not imported. Geometry objects will not be supported directly.")
from sondra import help
from sondra.utils import mapjson, split_camelcase, deprecated
from sondra.schema import S, merge
from sondra.api.ref import Reference
__all__ = (
"Document",
"DocumentMetaclass"
)
def _reference(v):
if isinstance(v, Document):
if not v.id:
v.save()
return v.url
else:
return v
class DocumentMetaclass(ABCMeta):
def __new__(mcs, name, bases, attrs):
definitions = {}
schema = attrs.get('schema', S.object())
for base in bases:
if hasattr(base, "definitions") and base.definitions is not None:
definitions = merge(deepcopy(base.definitions), definitions)
if hasattr(base, "schema") and base.schema is not None:
schema = merge(deepcopy(base.schema), schema)
if hasattr(base, "__doc__"):
docstring = base.__doc__
if "definitions" in attrs:
merge(attrs['definitions'], definitions)
else:
attrs['definitions'] = definitions
if 'title' not in attrs or (attrs['title'] is None):
if 'title' in schema:
attrs['title'] = schema['title']
else:
attrs['title'] = split_camelcase(name)
attrs['schema'] = schema
return super().__new__(mcs, name, bases, attrs)
def __init__(cls, name, bases, nmspc):
cls.exposed_methods = {}
for base in bases:
if hasattr(base, 'exposed_methods'):
cls.exposed_methods.update(base.exposed_methods)
for name, method in (n for n in nmspc.items() if hasattr(n[1], 'exposed')):
cls.exposed_methods[name] = method
cls.schema['methods'] = [m.slug for m in cls.exposed_methods.values()]
cls.schema['definitions'] = nmspc.get('definitions', {})
cls.schema['template'] = nmspc.get('template','{id}')
cls.defaults = {k: cls.schema['properties'][k]['default']
for k in cls.schema['properties']
if 'default' in cls.schema['properties'][k]}
super(DocumentMetaclass, cls).__init__(name, bases, nmspc)
class Document(MutableMapping, metaclass=DocumentMetaclass):
title = None
defaults = {}
template = "${id}"
display_name_template = "{id}"
processors = []
specials = {}
store_nulls = set()
debug_validate_on_retrieval = False
def constructor(self, obj):
if self.collection.primary_key in obj:
self._url = '/'.join((self.collection.url, _reference(obj[self.collection.primary_key])))
if '_url' in obj:
del obj['_url']
if '_display_name' in obj:
del obj['_display_name']
if obj:
for k, v in obj.items():
try:
self[k] = v
except Exception as e:
raise KeyError(k, str(e))
for k in self.defaults:
if k not in self:
if callable(self.defaults[k]):
try:
self[k] = self.defaults[k]()
except:
self[k] = self.defaults[k](self.suite)
else:
self[k] = self.defaults[k]
for k, vh in self.specials.items():
if k not in self:
if vh.has_default:
self[k] = vh.default_value()
for p in self.processors:
p.run_on_constructor(self)
if self.debug_validate_on_retrieval and self.saved and self.suite.debug:
self.validate()
def __init__(self, obj, collection=None, from_db=False, metadata=None):
self.collection = collection
self.saved = from_db
self.metadata = metadata or {}
self.obj = OrderedDict()
if self.collection is not None:
self.schema = self.collection.schema
else:
self.schema = mapjson(lambda x: x(context=self) if callable(x) else x, self.schema)
self._url = None
self.constructor(obj)
def __str__(self):
return self.template.format(**self.obj)
def refresh(self):
new = self.collection[self.id]
self.obj = new.obj
return self
@property
def application(self):
return self.collection.application
@property
|
Apache License 2.0
|
ucam-smt/sgnmt
|
cam/sgnmt/predictors/tokenization.py
|
CombinedState._get_token_score
|
python
|
def _get_token_score(self, token, predictor):
return utils.common_get(self.posterior,
token,
predictor.get_unk_probability(self.posterior))
|
Look up ``token`` in ``self.posterior``.
|
https://github.com/ucam-smt/sgnmt/blob/c663ec7b251552e36b6b4f992f0ac21aad87cb7b/cam/sgnmt/predictors/tokenization.py#L148-L152
|
import copy
import logging
from cam.sgnmt import utils
from cam.sgnmt.misc.trie import SimpleTrie
from cam.sgnmt.predictors.core import UnboundedVocabularyPredictor, Predictor
from cam.sgnmt.utils import NEG_INF, common_get
EPS_ID = 0
class CombinedState(object):
def __init__(self,
fst_node,
pred_state,
posterior,
unconsumed = [],
pending_score = 0.0):
self.fst_node = fst_node
self.pred_state = pred_state
self.posterior = posterior
self.unconsumed = list(unconsumed)
self.pending_score = pending_score
def traverse_fst(self, trans_fst, char):
ret = []
self._dfs(trans_fst, ret, self.fst_node, char, self.unconsumed)
return ret
def _dfs(self, trans_fst, acc, root_node, char, cur_unconsumed):
for arc in trans_fst.arcs(root_node):
next_unconsumed = list(cur_unconsumed)
if arc.olabel != EPS_ID:
next_unconsumed.append(arc.olabel)
if arc.ilabel == EPS_ID:
self._dfs(trans_fst, acc, arc.nextstate, char, next_unconsumed)
elif arc.ilabel == char:
acc.append(CombinedState(arc.nextstate,
self.pred_state,
self.posterior,
next_unconsumed,
self.pending_score))
def score(self, token, predictor):
if token and self.unconsumed:
self.consume_all(predictor)
s = self.pending_score
if token:
s += self._get_token_score(token, predictor)
return s
def consume_all(self, predictor):
if not self.unconsumed:
return
if self.posterior is None:
self.update_posterior(predictor)
predictor.set_state(copy.deepcopy(self.pred_state))
for token in self.unconsumed:
self.pending_score += self._get_token_score(token, predictor)
predictor.consume(token)
self.posterior = predictor.predict_next()
self.pred_state = copy.deepcopy(predictor.get_state())
self.unconsumed = []
def consume_single(self, predictor):
if not self.unconsumed:
return
if not self.posterior is None:
self.pending_score += self._get_token_score(self.unconsumed[0],
predictor)
self.posterior = None
|
Apache License 2.0
|
sarugaku/vistir
|
tasks/__init__.py
|
full_release
|
python
|
def full_release(ctx, type_, repo, prebump=PREBUMP, yes=False):
if prebump not in REL_TYPES:
raise ValueError(f"{type_} not in {REL_TYPES}")
prebump = REL_TYPES.index(prebump)
version = bump_version(ctx, type_, log=True)
tag_release(version, yes=yes)
ctx.run(f"python setup.py sdist bdist_wheel")
dist_pattern = f'{PACKAGE_NAME.replace("-", "[-_]")}-*'
artifacts = list(ROOT.joinpath("dist").glob(dist_pattern))
filename_display = "\n".join(f" {a}" for a in artifacts)
print(f"[release] Will upload:\n{filename_display}")
if not yes:
try:
input("[release] Release ready. ENTER to upload, CTRL-C to abort: ")
except KeyboardInterrupt:
print("\nAborted!")
return
arg_display = " ".join(f'"{n}"' for n in artifacts)
ctx.run(f'twine upload --repository="{repo}" {arg_display}')
version = _prebump(version, prebump)
_write_version(version)
ctx.run(f'git commit -am "Prebump to {version}"')
|
Make a new release.
|
https://github.com/sarugaku/vistir/blob/834be8ea29d032e07763ff3fce020de0ed49997e/tasks/__init__.py#L222-L254
|
import datetime
import pathlib
import re
import shutil
import subprocess
import time
import invoke
import parver
from towncrier._builder import find_fragments, render_fragments, split_fragments
from towncrier._settings import load_config
def _get_git_root(ctx):
return pathlib.Path(
ctx.run("git rev-parse --show-toplevel", hide=True).stdout.strip()
)
def _get_branch(ctx):
return ctx.run("git rev-parse --abbrev-ref HEAD", hide=True).stdout.strip()
ROOT = pathlib.Path(__file__).resolve().parent.parent
PACKAGE_NAME = "vistir"
INIT_PY = ROOT.joinpath("src", PACKAGE_NAME, "__init__.py")
@invoke.task()
def clean(ctx):
dist = ROOT.joinpath("dist")
build = ROOT.joinpath("build")
print("[clean] Removing dist and build dirs")
if dist.exists():
shutil.rmtree(dist.as_posix())
if build.exists():
shutil.rmtree(build.as_posix())
def _read_version():
out = subprocess.check_output(["git", "tag"], encoding="ascii")
try:
version = max(
parver.Version.parse(v).normalize()
for v in (line.strip() for line in out.split("\n"))
if v
)
except ValueError:
version = parver.Version.parse("0.0.0")
return version
def _read_text_version():
lines = INIT_PY.read_text().splitlines()
match = next(iter(line for line in lines if line.startswith("__version__")), None)
if match is not None:
_, _, version_text = match.partition("=")
version_text = version_text.strip().strip('"').strip("'")
version = parver.Version.parse(version_text).normalize()
return version
else:
return _read_version()
def _write_version(v):
lines = []
with INIT_PY.open() as f:
for line in f:
if line.startswith("__version__ = "):
line = f"__version__ = {repr(str(v))}\n".replace("'", '"')
lines.append(line)
with INIT_PY.open("w", newline="\n") as f:
f.write("".join(lines))
def _render_log():
config = load_config(ROOT)
definitions = config["types"]
fragments, fragment_filenames = find_fragments(
pathlib.Path(config["directory"]).absolute(),
config["sections"],
None,
definitions,
)
rendered = render_fragments(
pathlib.Path(config["template"]).read_text(encoding="utf-8"),
config["issue_format"],
split_fragments(fragments, definitions),
definitions,
config["underlines"][1:],
False,
)
return rendered
REL_TYPES = ("major", "minor", "patch")
def _bump_release(version, type_, log=False):
if type_ not in REL_TYPES:
raise ValueError(f"{type_} not in {REL_TYPES}")
index = REL_TYPES.index(type_)
current_version = version.base_version()
if version.is_prerelease and type_ == "patch":
next_version = current_version
else:
next_version = current_version.bump_release(index=index)
if log:
print(f"[bump] {version} -> {next_version}")
print(f"{next_version}")
return next_version
def _prebump(version, prebump, log=False):
next_version = version.bump_release(index=prebump).bump_dev()
if log:
print(f"[bump] {version} -> {next_version}")
print(f"{next_version}")
return next_version
PREBUMP = "patch"
@invoke.task(pre=[clean])
def build(ctx):
ctx.run("python setup.py sdist bdist_wheel")
@invoke.task()
def get_next_version(ctx, type_="patch", log=False):
version = _read_version()
if type_ in ("dev", "pre"):
idx = REL_TYPES.index("patch")
new_version = _prebump(version, idx, log=log)
else:
new_version = _bump_release(version, type_, log=log)
return new_version
@invoke.task()
def bump_version(ctx, type_="patch", log=False, dry_run=False):
new_version = get_next_version(ctx, type_, log=log)
if not dry_run:
_write_version(new_version)
return new_version
@invoke.task()
def generate_news(ctx, yes=False, dry_run=False):
command = "towncrier"
if dry_run:
command = f"{command} --draft"
elif yes:
command = f"{command} --yes"
ctx.run(command)
@invoke.task()
def get_changelog(ctx):
changelog = _render_log()
print(changelog)
return changelog
@invoke.task(optional=["version", "type_"])
def tag_release(ctx, version=None, type_="patch", yes=False, dry_run=False):
if version is None:
version = bump_version(ctx, type_, log=not dry_run, dry_run=dry_run)
else:
_write_version(version)
tag_content = get_changelog(ctx)
generate_news(ctx, yes=yes, dry_run=dry_run)
git_commit_cmd = f'git commit -am "Release {version}"'
tag_content = tag_content.replace('"', '\\"')
git_tag_cmd = f'git tag -a {version} -m "Version {version}\n\n{tag_content}"'
if dry_run:
print("Would run commands:")
print(f" {git_commit_cmd}")
print(f" {git_tag_cmd}")
else:
ctx.run(git_commit_cmd)
ctx.run(git_tag_cmd)
@invoke.task(optional=["version", "type_"])
def release(ctx, version=None, type_="patch", yes=False, dry_run=False):
if version is None:
version = bump_version(ctx, type_, log=not dry_run, dry_run=dry_run)
else:
_write_version(version)
tag_content = get_changelog(ctx)
current_branch = _get_branch(ctx)
generate_news(ctx, yes=yes, dry_run=dry_run)
git_commit_cmd = f'git commit -am "Release {version}"'
git_tag_cmd = f'git tag -a {version} -m "Version {version}\n\n{tag_content}"'
git_push_cmd = f"git push origin {current_branch}"
git_push_tags_cmd = "git push --tags"
if dry_run:
print("Would run commands:")
print(f" {git_commit_cmd}")
print(f" {git_tag_cmd}")
print(f" {git_push_cmd}")
print(f" {git_push_tags_cmd}")
else:
ctx.run(git_commit_cmd)
ctx.run(git_tag_cmd)
ctx.run(git_push_cmd)
print("Waiting 5 seconds before pushing tags...")
time.sleep(5)
ctx.run(git_push_tags_cmd)
@invoke.task(pre=[clean])
|
ISC License
|
futureag/mvp
|
MVP/python/__pycache__/LogSensorsExtra.py
|
LogSensorExtra.getNDIRCO2Obsv
|
python
|
def getNDIRCO2Obsv(self, test=False):
status_qualifier = 'Success'
co2 = 0
temp = 0
rh = 0
try:
from NDIR import Sensor
sensor = Sensor()
sensor.begin(test)
co2 = sensor.getCO2(test)
if test:
status_qualifier = 'Test'
saveList([self._activity_type, '', 'Canopy', 'Air', 'CO2', "{:3.1f}".format(co2), 'ppm', 'NDIR', status_qualifier,''])
self._logger.debug("{}, {}, {:10.1f}".format("NDIR Canopy CO2", status_qualifier, co2))
except Exception as e:
status_qualifier = 'Failure'
if test:
status_qualifier = 'Test'
saveList([self._activity_type, '', 'Canopy', 'Air', 'CO2', '', 'ppm', 'NDIR', status_qualifier,str(e)])
self._logger.error("{}, {}".format("NDIR Canopy CO2", e))
|
CO2 from the canopy (NDIR sensor)
Args:
self:
test:
Returns:
None:
Raises:
None
|
https://github.com/futureag/mvp/blob/e190927abb22eb9ad4e8d0ef9a2a35e71ebab7f5/MVP/python/__pycache__/LogSensorsExtra.py#L268-L300
|
from oneWireTemp import *
from TSL2561 import TSL2561
from EC import EC
from CCS811 import CCS811, SLAVE
from CouchUtil import saveList
from LogUtil import get_logger
from scd30 import SCD30
class LogSensorExtra(object):
def __init__(self):
self._logger = get_logger('LogSensorExtra')
self._activity_type = "Environment_Observation"
def getAirAmbientTempObsv(self, test=False):
try:
temp = getTempC(ambientTemp)
status_qualifier = 'Success'
if test:
status_qualifier = 'Test'
saveList([self._activity_type, '', 'Ambient', 'Air', 'Temperature', "{:10.1f}".format(temp), 'Centigrade', 'DS18B20_1', status_qualifier,''])
self._logger.debug("{}, {}, {:10.1f}".format("Ambient Temp", status_qualifier, temp))
except Exception as e:
status_qualifier = 'Failure'
if test:
status_qualifier = 'Test'
saveList([self._activity_type, '', 'Ambient', 'Air', 'Temperature', '', 'Centigrade', 'DS18B20_1', status_qualifier, str(e)])
self._logger.error("{}, {}".format("Ambient Temp", e))
def getAirBoxTempObsv(self, test=False):
try:
temp = getTempC(boxTemp)
status_qualifier = 'Success'
if test:
status_qualifier = 'Test'
saveList([self._activity_type, '', 'Ambient', 'Air', 'Temperature', "{:10.1f}".format(temp), 'Centigrade', 'DS18B20_2', status_qualifier,''])
self._logger.debug("{}, {}, {:10.1f}".format("Box Air Temp", status_qualifier, temp))
except Exception as e:
status_qualifier = 'Failure'
if test:
status_qualifier = 'Test'
saveList([self._activity_type, '', 'Ambient', 'Air', 'Temperature', '', 'Centigrade', 'DS18B20_2', status_qualifier, str(e)])
self._logger.error("{}, {}".format("Box Air Temp", e))
def getAirTopTempObsv(self, test=False):
try:
temp = getTempC(topTemp)
status_qualifier = 'Success'
if test:
status_qualifier = 'Test'
saveList([self._activity_type, '', 'Top', 'Air', 'Temperature', "{:10.1f}".format(temp), 'Centigrade', 'DS18B20_3', status_qualifier,''])
self._logger.debug("{}, {}, {:10.1f}".format("Top Air Temp", status_qualifier, temp))
except Exception as e:
status_qualifier = 'Failure'
if test:
status_qualifier = 'Test'
saveList([self._activity_type, '', 'Top', 'Air', 'Temperature', '', 'Centigrade', 'DS18B20_3', status_qualifier, str(e)])
self._logger.error("{}, {}".format("Top Air Temp", e))
def getNutrientReservoirTempObsv(self, test=False):
try:
temp = getTempC(reservoirTemp)
status_qualifier = 'Success'
if test:
status_qualifier = 'Test'
saveList([self._activity_type, '', 'Reservoir', 'Air', 'Temperature', "{:10.1f}".format(temp), 'Centigrade', 'DS18B20_4', status_qualifier,''])
self._logger.debug("{}, {}, {:10.1f}".format("Reservoir Temp", status_qualifier, temp))
except Exception as e:
status_qualifier = 'Failure'
if test:
status_qualifier = 'Test'
saveList([self._activity_type, '', 'Reservoir', 'Air', 'Temperature', '', 'Centigrade', 'DS18B20_4', status_qualifier, str(e)])
self._logger.error("{}, {}".format("Reservoir Temp", e))
def getLightCanopyLUXObsv(self, test=False):
lx = TSL2561()
try:
lux = lx.getLux()
status_qualifier = 'Success'
if test:
status_qualifier = 'Test'
saveList([self._activity_type, '', 'Canopy', 'Light', 'LUX', "{:3.1f}".format(lux), 'lux', 'TSL2561', status_qualifier,''])
self._logger.debug("{}, {}, {:10.1f}".format("Canopy LUX", status_qualifier, lux))
except Exception as e:
status_qualifier = 'Failure'
if test:
status_qualifier = 'Test'
saveList([self._activity_type, '', 'Canopy', 'Light', 'LUX', '', 'lux', 'TSL2561', status_qualifier,str(e)])
self._logger.error("{}, {}".format("Canopy LUX", e))
def getNutrientReservoirECObsv(self, test=False):
try:
s = EC()
ec = s.getEC()
status_qualifier = 'Success'
if test:
status_qualifier = 'Test'
saveList([self._activity_type, '', 'Reservoir', 'Nutrient', 'EC', "{:3.1f}".format(ec), 'EC', 'EC', status_qualifier,''])
self._logger.debug("{}, {}, {:10.1f}".format("Reservoir EC", status_qualifier, ec))
except Exception as e:
status_qualifier = 'Failure'
if test:
status_qualifier = 'Test'
saveList([self._activity_type, '', 'Reservoir', 'Nutrient', 'EC', '', 'EC', 'EC', status_qualifier,str(e)])
self._logger.error("{}, {}".format("Reservoir Depth", e))
def getAirCanopyCO2Obsv(self, test=False):
status_qualifier = 'Success'
co2 = 0
temp = 0
rh = 0
try:
sensor = SCD30()
sensor.start_periodic_measurement(test)
co2, temp, rh = sensor.get_data(test)
if test:
status_qualifier = 'Test'
saveList([self._activity_type, '', 'Canopy', 'Air', 'CO2', "{:3.1f}".format(co2), 'ppm', 'SCD30', status_qualifier,''])
self._logger.debug("{}, {}, {:10.1f}".format("Canopy CO2", status_qualifier, co2))
saveList([self._activity_type, '', 'Canopy', 'Air', 'Temperature', "{:3.1f}".format(temp), 'ppm', 'SCD30', status_qualifier,''])
self._logger.debug("{}, {}, {:10.1f}".format("Canopy Temperature", status_qualifier, temp))
saveList([self._activity_type, '', 'Canopy', 'Air', 'Humidity', "{:3.1f}".format(rh), 'ppm', 'SCD30', status_qualifier,''])
self._logger.debug("{}, {}, {:10.1f}".format("Canopy Humidity", status_qualifier, rh))
except Exception as e:
status_qualifier = 'Failure'
if test:
status_qualifier = 'Test'
saveList([self._activity_type, '', 'Canopy', 'Air', 'CO2', '', 'ppm', 'SCD30', status_qualifier,str(e)])
self._logger.error("{}, {}".format("Canopy CO2", e))
saveList([self._activity_type, '', 'Canopy', 'Air', 'Temperature', '', 'c', 'SCD30', status_qualifier,str(e)])
self._logger.error("{}, {}".format("Canopy CO2", e))
saveList([self._activity_type, '', 'Canopy', 'Air', 'Humidity', '', 'percent', 'SCD30', status_qualifier,str(e)])
self._logger.error("{}, {}".format("Canopy Humidity", e))
def getSecondCO2(self, test=False):
try:
sensor = CCS811(SLAVE)
co2 = sensor.get_co2()
status_qualifier = 'Success'
if test:
status_qualifier = 'Test'
saveList([self._activity_type, '', 'Canopy', 'Air', 'CO2', "{:3.1f}".format(co2), 'ppm', 'CCS811', status_qualifier,''])
self._logger.debug("{}, {}, {:10.1f}".format("Alt CO2", status_qualifier, co2))
except Exception as e:
status_qualifier = 'Failure'
if test:
status_qualifier = 'Test'
saveList([self._activity_type, '', 'Canopy', 'Air', 'CO2','', 'ppm', 'CCS811', status_qualifier,str(e)])
self._logger.error("{}, {}".format("Alt CO2", e) )
|
MIT License
|
reactivex/rxpy
|
rx/disposable/multipleassignmentdisposable.py
|
MultipleAssignmentDisposable.dispose
|
python
|
def dispose(self):
old = None
with self.lock:
if not self.is_disposed:
self.is_disposed = True
old = self.current
self.current = None
if old is not None:
old.dispose()
|
Disposes the underlying disposable as well as all future
replacements.
|
https://github.com/reactivex/rxpy/blob/e920d4cb33a8c4ba046ec01c1dd753c23944b213/rx/disposable/multipleassignmentdisposable.py#L34-L47
|
from threading import RLock
from rx.core.typing import Disposable
class MultipleAssignmentDisposable(Disposable):
def __init__(self):
self.current = None
self.is_disposed = False
self.lock = RLock()
super().__init__()
def get_disposable(self):
return self.current
def set_disposable(self, value):
with self.lock:
should_dispose = self.is_disposed
if not should_dispose:
self.current = value
if should_dispose and value is not None:
value.dispose()
disposable = property(get_disposable, set_disposable)
|
MIT License
|
frank-zyw/chinese-text-classification
|
bert/transformers/tokenization_utils.py
|
PreTrainedTokenizer._prepare_for_model
|
python
|
def _prepare_for_model(
self,
ids: List[int],
pair_ids: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
return_tensors: Optional[str] = None,
prepend_batch_axis: bool = False,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_lengths: bool = False,
verbose: bool = True,
) -> BatchEncoding:
pair = bool(pair_ids is not None)
len_ids = len(ids)
len_pair_ids = len(pair_ids) if pair else 0
if return_token_type_ids is None:
return_token_type_ids = "token_type_ids" in self.model_input_names
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
encoded_inputs = {}
total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
ids, pair_ids, overflowing_tokens = self.truncate_sequences(
ids,
pair_ids=pair_ids,
num_tokens_to_remove=total_len - max_length,
truncation_strategy=truncation_strategy,
stride=stride,
)
if return_overflowing_tokens:
encoded_inputs["overflowing_tokens"] = overflowing_tokens
encoded_inputs["num_truncated_tokens"] = total_len - max_length
if add_special_tokens:
sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
else:
sequence = ids + pair_ids if pair else ids
token_type_ids = [0] * len(ids) + ([1] * len(pair_ids) if pair else [])
encoded_inputs["input_ids"] = sequence
if return_token_type_ids:
encoded_inputs["token_type_ids"] = token_type_ids
if return_special_tokens_mask:
if add_special_tokens:
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
else:
encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
if max_length is None and len(encoded_inputs["input_ids"]) > self.model_max_length and verbose:
logger.warning(
"Token indices sequence length is longer than the specified maximum sequence length "
"for this model ({} > {}). Running this sequence through the model will result in "
"indexing errors".format(len(ids), self.model_max_length)
)
encoded_inputs = self.pad(
encoded_inputs,
max_length=max_length,
padding=padding_strategy.value,
return_attention_mask=return_attention_mask,
)
if return_lengths:
encoded_inputs["length"] = len(encoded_inputs["input_ids"])
batch_outputs = BatchEncoding(
encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
)
return batch_outputs
|
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model.
It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
manages a moving window (with user defined stride) for overflowing tokens
Args:
ids: list of tokenized input ids. Can be obtained from a string by chaining the
`tokenize` and `convert_tokens_to_ids` methods.
pair_ids: Optional second list of input ids. Can be obtained from a string by chaining the
`tokenize` and `convert_tokens_to_ids` methods.
|
https://github.com/frank-zyw/chinese-text-classification/blob/546addea8d96d93b182cffcdcb7dda8ff9d53d55/bert/transformers/tokenization_utils.py#L530-L625
|
import itertools
import logging
import re
from typing import List, Optional, Tuple, Union
from .file_utils import add_end_docstrings
from .tokenization_utils_base import (
ENCODE_KWARGS_DOCSTRING,
ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING,
BatchEncoding,
EncodedInput,
EncodedInputPair,
PaddingStrategy,
PreTokenizedInput,
PreTokenizedInputPair,
PreTrainedTokenizerBase,
TensorType,
TextInput,
TextInputPair,
TruncationStrategy,
)
logger = logging.getLogger(__name__)
class PreTrainedTokenizer(PreTrainedTokenizerBase):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.added_tokens_encoder = {}
self.unique_added_tokens_encoder = set()
self.added_tokens_decoder = {}
@property
def is_fast(self) -> bool:
return False
@property
def vocab_size(self) -> int:
raise NotImplementedError
def get_vocab(self):
raise NotImplementedError()
def __len__(self):
return self.vocab_size + len(self.added_tokens_encoder)
def add_tokens(self, new_tokens: Union[str, List[str]]) -> int:
if not new_tokens:
return 0
if not isinstance(new_tokens, list):
new_tokens = [new_tokens]
tokens_to_add = []
for token in new_tokens:
assert isinstance(token, str)
if self.init_kwargs.get("do_lower_case", False) and token not in self.all_special_tokens:
token = token.lower()
if (
token != self.unk_token
and self.convert_tokens_to_ids(token) == self.convert_tokens_to_ids(self.unk_token)
and token not in tokens_to_add
):
tokens_to_add.append(token)
if self.verbose:
logger.info("Adding %s to the vocabulary", token)
added_tok_encoder = dict((tok, len(self) + i) for i, tok in enumerate(tokens_to_add))
added_tok_decoder = {v: k for k, v in added_tok_encoder.items()}
self.added_tokens_encoder.update(added_tok_encoder)
self.unique_added_tokens_encoder = set(self.added_tokens_encoder.keys()).union(set(self.all_special_tokens))
self.added_tokens_decoder.update(added_tok_decoder)
return len(tokens_to_add)
def num_special_tokens_to_add(self, pair=False):
token_ids_0 = []
token_ids_1 = []
return len(self.build_inputs_with_special_tokens(token_ids_0, token_ids_1 if pair else None))
def tokenize(self, text: TextInput, **kwargs):
all_special_tokens = self.all_special_tokens
text = self.prepare_for_tokenization(text, **kwargs)
def lowercase_text(t):
escaped_special_toks = [re.escape(s_tok) for s_tok in all_special_tokens]
pattern = r"(" + r"|".join(escaped_special_toks) + r")|" + r"(.+?)"
return re.sub(pattern, lambda m: m.groups()[0] or m.groups()[1].lower(), t)
if self.init_kwargs.get("do_lower_case", False):
text = lowercase_text(text)
def split_on_token(tok, text):
result = []
split_text = text.split(tok)
for i, sub_text in enumerate(split_text):
sub_text = sub_text.rstrip()
if i == 0 and not sub_text:
result += [tok]
elif i == len(split_text) - 1:
if sub_text:
result += [sub_text]
else:
pass
else:
if sub_text:
result += [sub_text]
result += [tok]
return result
def split_on_tokens(tok_list, text):
if not text.strip():
return []
if not tok_list:
return self._tokenize(text)
tokenized_text = []
text_list = [text]
for tok in tok_list:
tokenized_text = []
for sub_text in text_list:
if sub_text not in self.unique_added_tokens_encoder:
tokenized_text += split_on_token(tok, sub_text)
else:
tokenized_text += [sub_text]
text_list = tokenized_text
return list(
itertools.chain.from_iterable(
(
self._tokenize(token) if token not in self.unique_added_tokens_encoder else [token]
for token in tokenized_text
)
)
)
added_tokens = self.unique_added_tokens_encoder
tokenized_text = split_on_tokens(added_tokens, text)
return tokenized_text
def _tokenize(self, text, **kwargs):
raise NotImplementedError
def convert_tokens_to_ids(self, tokens):
if tokens is None:
return None
if isinstance(tokens, str):
return self._convert_token_to_id_with_added_voc(tokens)
ids = []
for token in tokens:
ids.append(self._convert_token_to_id_with_added_voc(token))
return ids
def _convert_token_to_id_with_added_voc(self, token):
if token is None:
return None
if token in self.added_tokens_encoder:
return self.added_tokens_encoder[token]
return self._convert_token_to_id(token)
def _convert_token_to_id(self, token):
raise NotImplementedError
def _encode_plus(
self,
text: Union[TextInput, PreTokenizedInput, EncodedInput],
text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
is_pretokenized: bool = False,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
verbose: bool = True,
**kwargs
) -> BatchEncoding:
def get_input_ids(text):
if isinstance(text, str):
tokens = self.tokenize(text, add_special_tokens=add_special_tokens, **kwargs)
return self.convert_tokens_to_ids(tokens)
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str):
if is_pretokenized:
tokens = list(
itertools.chain(
*(
self.tokenize(t, add_special_tokens=False, add_prefix_space=True, **kwargs)
for t in text
)
)
)
return self.convert_tokens_to_ids(tokens)
else:
return self.convert_tokens_to_ids(text)
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
return text
else:
raise ValueError(
f"Input {text} is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
)
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers."
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
"More information on available tokenizers at "
"https://github.com/huggingface/transformers/pull/2674"
)
first_ids = get_input_ids(text)
second_ids = get_input_ids(text_pair) if text_pair is not None else None
return self._prepare_for_model(
first_ids,
pair_ids=second_ids,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
return_tensors=return_tensors,
prepend_batch_axis=True,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
verbose=verbose,
)
def _batch_encode_plus(
self,
batch_text_or_text_pairs: Union[
List[TextInput],
List[TextInputPair],
List[PreTokenizedInput],
List[PreTokenizedInputPair],
List[EncodedInput],
List[EncodedInputPair],
],
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
is_pretokenized: bool = False,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_masks: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_masks: bool = False,
return_offsets_mapping: bool = False,
return_lengths: bool = False,
verbose: bool = True,
**kwargs
) -> BatchEncoding:
def get_input_ids(text):
if isinstance(text, str):
tokens = self.tokenize(text, add_special_tokens=add_special_tokens, **kwargs)
return self.convert_tokens_to_ids(tokens)
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str):
if is_pretokenized:
tokens = list(
itertools.chain(
*(
self.tokenize(t, add_special_tokens=False, add_prefix_space=True, **kwargs)
for t in text
)
)
)
return self.convert_tokens_to_ids(tokens)
else:
return self.convert_tokens_to_ids(text)
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
return text
else:
raise ValueError(
"Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
)
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers."
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
)
input_ids = []
for ids_or_pair_ids in batch_text_or_text_pairs:
if not isinstance(ids_or_pair_ids, (list, tuple)):
ids, pair_ids = ids_or_pair_ids, None
elif is_pretokenized and not isinstance(ids_or_pair_ids[0], (list, tuple)):
ids, pair_ids = ids_or_pair_ids, None
else:
ids, pair_ids = ids_or_pair_ids
first_ids = get_input_ids(ids)
second_ids = get_input_ids(pair_ids) if pair_ids is not None else None
input_ids.append((first_ids, second_ids))
batch_outputs = self._batch_prepare_for_model(
input_ids,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
return_attention_masks=return_attention_masks,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_masks=return_special_tokens_masks,
return_lengths=return_lengths,
return_tensors=return_tensors,
verbose=verbose,
)
return BatchEncoding(batch_outputs)
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def _batch_prepare_for_model(
self,
batch_ids_pairs: List[Union[PreTokenizedInputPair, Tuple[List[int], None]]],
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
return_tensors: Optional[str] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_masks: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_masks: bool = False,
return_lengths: bool = False,
verbose: bool = True,
) -> BatchEncoding:
if padding_strategy == PaddingStrategy.LONGEST:
def total_sequence_length(input_pairs):
first_ids, second_ids = input_pairs
return len(first_ids) + (
self.num_special_tokens_to_add()
if second_ids is None
else (len(second_ids) + self.num_special_tokens_to_add(pair=True))
)
max_length = max([total_sequence_length(input_pairs) for input_pairs in batch_ids_pairs])
padding_strategy = PaddingStrategy.MAX_LENGTH
batch_outputs = {}
for first_ids, second_ids in batch_ids_pairs:
outputs = self._prepare_for_model(
first_ids,
second_ids,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
return_attention_mask=return_attention_masks,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_masks,
return_lengths=return_lengths,
return_tensors=None,
prepend_batch_axis=False,
verbose=verbose,
)
for key, value in outputs.items():
if key not in batch_outputs:
batch_outputs[key] = []
batch_outputs[key].append(value)
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
return batch_outputs
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
|
MIT License
|
boto/botoflow
|
botoflow/context/decision_context.py
|
DecisionContext._replaying
|
python
|
def _replaying(self):
return self.__replaying
|
Do not use directly, instead please use
``botoflow.workflow_time.is_replaying``
|
https://github.com/boto/botoflow/blob/49d8ed3bc9c57294504be82e933a051e1901b76e/botoflow/context/decision_context.py#L35-L39
|
from .context_base import ContextBase
from ..workflow_execution import WorkflowExecution
class DecisionContext(ContextBase):
def __init__(self, decider):
self.decider = decider
self._workflow_time = 0
self._replaying = True
self._activity_options_overrides = dict()
self._workflow_options_overrides = dict()
self._workflow_instance = None
self._workflow_execution = WorkflowExecution(None, None)
@property
|
Apache License 2.0
|
kmayerb/tcrdist3
|
tcrdist/vdjtools_funcs.py
|
import_vdjtools
|
python
|
def import_vdjtools( vdj_tools_file,
chain = 'beta',
organism = 'human',
db_file = 'alphabeta_gammadelta_db.tsv',
validate = True):
assert chain in ['alpha','beta','gamma','delta']
assert organism in ['human','mouse']
_chain = { 'alpha' : {'cdr3aa':'cdr3_a_aa','v':'v_a_gene', 'j':'j_a_gene', 'cdr3nt':'cdr3_a_nucseq', 'AB' : 'A'},
'beta' : {'cdr3aa':'cdr3_b_aa','v':'v_b_gene', 'j':'j_b_gene', 'cdr3nt':'cdr3_b_nucseq', 'AB' : 'B'},
'gamma' : {'cdr3aa':'cdr3_g_aa','v':'v_g_gene', 'j':'j_g_gene', 'cdr3nt':'cdr3_g_nucseq', 'AB' : 'A'},
'delta' : {'cdr3aa':'cdr3_d_aa','v':'v_d_gene', 'j':'j_d_gene', 'cdr3nt':'cdr3_d_nucseq', 'AB' : 'B'} }. get(chain)
df = pd.read_csv(vdj_tools_file, sep = "\t")
df = df[['count', 'freq', 'cdr3aa', 'v', 'j','cdr3nt']]. rename(columns = {
'cdr3aa': _chain['cdr3aa'],
'v' : _chain['v'],
'j' : _chain['j'],
'cdr3nt': _chain['cdr3nt']
})
df[_chain['v']] = df[_chain['v']].apply(lambda x: f"{x}*01")
df[_chain['j']] = df[_chain['j']].apply(lambda x: f"{x}*01")
all_genes = RefGeneSet(db_file = db_file).all_genes[organism]
all_valid_genes = [x for x in all_genes.keys() if all_genes[x].chain == _chain['AB']]
warnings.warn(f"ADDING *01 allele to each V- and J-gene")
df['valid_v'] = df[_chain['v']].apply(lambda x : all_genes.get(x) is not None )
df['valid_j'] = df[_chain['j']].apply(lambda x : all_genes.get(x) is not None )
df['valid_cdr3'] = df[_chain['cdr3aa']].apply(lambda x : _valid_cdr3(x) and len(x) >=5 )
x1 = df.shape[0]
invalid_df = df[~(df['valid_v'] & df['valid_j'] & df['valid_cdr3'])].copy()
valid_df = df[(df['valid_v'] & df['valid_j'] & df['valid_cdr3'])].reset_index(drop = True).copy()
xiv = invalid_df.shape[0]
warnings.warn(f"{xiv} of {x1} had invalid {_chain['v']}, {_chain['j']}, or {_chain['cdr3aa']}")
if validate:
warnings.warn(f"REMOVED {xiv} of {x1} with invalid {_chain['v']}, {_chain['j']}, or {_chain['cdr3aa']}")
return valid_df
else:
warnings.warn(f"Invalid clones were not removed, do so manually before proceeding")
return df
|
Import VDJtools formated input .tsv or .tsv.gz file.
Input file must have columns ['count', 'freq', 'cdr3aa', 'v', 'j','cdr3nt'],
see (https://vdjtools-doc.readthedocs.io/en/master/input.html#vdjtools-format)
for examples of how you can use VDJtool to directly import
and convert from the following:
MiTCR, MiGEC, IgBlast (MIGMAP), ImmunoSEQ, VDJdb, Vidjil, MiXCR
Parameters
-----------
vdj_tools_file : str
e.g., os.path.join(path_to_base, 'tcrdist','data','formats','vdj.M_15_CD8_beta.clonotypes.TRB.txt.gz')
chain : str
'alpha','beta','gamma', or 'delta'
organism : str
'human', 'mouse'
db_file : str
'alphabeta_gammadelta_db.tsv',
validate : bool
If True, only clones with valid CDR3AA, V-Gene and J-Gene are returned)
CDR3 length must be >= 5 for tcrdist3
include_nucseq : True
If True, retain nucletoide sequence
Returns
-------
df or valid_df : DataFrame
with columns : ['count', 'freq', 'cdr3_b_aa', 'v_b_gene', 'j_b_gene', 'cdr3_b_nucseq','valid_v', 'valid_j', 'valid_cdr3']
|
https://github.com/kmayerb/tcrdist3/blob/04b0b8c2573d04a9d2cb77f7a3aeeed3a0eab167/tcrdist/vdjtools_funcs.py#L8-L86
|
import pandas as pd
from tcrdist.adpt_funcs import _valid_cdr3
from tcrdist.paths import path_to_base
from tcrdist.repertoire_db import RefGeneSet
import warnings
import os
|
MIT License
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.