repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
derfies/panda3d-editor
|
src/pandaEditor/selection.py
|
Selection.StopDragSelect
|
python
|
def StopDragSelect(self):
self.marquee.Stop()
nps = []
for np in self.rootNp.findAllMatches('**'):
pick_np = self.GetPickableNodePath(np)
if (
pick_np is not None and
self.marquee.IsNodePathInside(pick_np) and
pick_np not in nps
):
nps.append(pick_np)
np = self.GetNodePathUnderMouse()
if np is not None and pick_np not in nps:
nps.append(np)
comps = [get_base().node_manager.wrap(np) for np in nps]
if self.append:
old_comps = self.comps
for comp in comps:
if comp in self.comps:
old_comps.remove(comp)
else:
old_comps.append(comp)
comps = old_comps
return comps
|
Stop the marquee and get all the node paths under it with the correct
tag. Also append any node which was under the mouse at the end of the
operation.
|
https://github.com/derfies/panda3d-editor/blob/a50939bd4bfa5c22d27a9ddee090717e8d95f404/src/pandaEditor/selection.py#L142-L180
|
from direct.showbase.PythonUtil import getBase as get_base
import panda3d.core as pm
from p3d.object import Object
from p3d.marquee import Marquee
from p3d.mouse import MOUSE_CTRL
from p3d.mousePicker import MousePicker
from nodes.constants import TAG_IGNORE, TAG_PICKABLE
class Selection(Object):
BBOX_TAG = 'bbox'
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.comps = []
self.marquee = Marquee('marquee', *args, **kwargs)
bitMask = pm.GeomNode.getDefaultCollideMask() | pm.CollisionNode.getDefaultCollideMask()
self.picker = MousePicker(
'picker',
*args,
fromCollideMask=bitMask, **kwargs
)
def get(self):
return self.comps
@property
def node_paths(self):
return [
comp.data
for comp in self.comps
if isinstance(comp.data, pm.NodePath)
]
def clear(self):
for comp in self.comps:
comp.on_deselect()
self.comps = []
def add(self, comps):
for comp in comps:
if comp in self.comps:
continue
comp.on_select()
self.comps.append(comp)
def remove(self, comps):
for comp in self.comps:
comp.on_deselect()
self.comps = [comp for comp in self.comps if comp not in comps]
def select_parent(self):
comps = []
for comp in self.comps:
pcomp = comp.parent
if pcomp.data != get_base().scene:
comps.append(pcomp)
else:
comps.append(comp)
return comps
def select_child(self):
comps = []
for comp in self.comps:
if comp.children:
comps.append(comp.children[0])
else:
comps.append(comp)
return comps
def select_prev(self):
comps = []
for comp in self.comps:
children = comp.parent.children
index = children.index(comp) - 1
if index < 0:
index = len(children) - 1
comps.append(children[index])
return comps
def select_next(self):
comps = []
for comp in self.comps:
children = comp.parent.children
index = children.index(comp) + 1
if index > len(children) - 1:
index = 0
comps.append(children[index])
return comps
def StartDragSelect(self, append=False):
if self.marquee.mouseWatcherNode.hasMouse():
self.append = append
self.marquee.Start()
|
MIT License
|
mypal/ha-dsair
|
custom_components/ds_air/climate.py
|
DsAir.fan_modes
|
python
|
def fan_modes(self) -> Optional[List[str]]:
return FAN_LIST
|
Return the list of available fan modes.
Requires SUPPORT_FAN_MODE.
|
https://github.com/mypal/ha-dsair/blob/73e5a8322dd680b891241274b112987a764a6e3e/custom_components/ds_air/climate.py#L266-L271
|
import logging
from typing import Optional, List
import voluptuous as vol
from homeassistant.components.climate import ClimateEntity
from homeassistant.components.climate import PLATFORM_SCHEMA
from homeassistant.components.climate.const import (
SUPPORT_TARGET_TEMPERATURE, SUPPORT_FAN_MODE,
SUPPORT_SWING_MODE,
SUPPORT_TARGET_HUMIDITY, HVAC_MODE_OFF, HVAC_MODE_HEAT, HVAC_MODE_COOL, HVAC_MODE_HEAT_COOL, HVAC_MODE_AUTO,
HVAC_MODE_DRY,
HVAC_MODE_FAN_ONLY)
from homeassistant.config_entries import ConfigEntry
from homeassistant.const import TEMP_CELSIUS, ATTR_TEMPERATURE, CONF_HOST, CONF_PORT
from homeassistant.core import HomeAssistant, Event
from homeassistant.helpers import config_validation as cv
from homeassistant.helpers.entity import DeviceInfo
from homeassistant.helpers.entity_platform import AddEntitiesCallback
from homeassistant.helpers.event import async_track_state_change_event
from .const import DOMAIN
from .ds_air_service.config import Config
from .ds_air_service.ctrl_enum import EnumControl
from .ds_air_service.dao import AirCon, AirConStatus
from .ds_air_service.display import display
SUPPORT_FLAGS = SUPPORT_TARGET_TEMPERATURE | SUPPORT_FAN_MODE | SUPPORT_SWING_MODE | SUPPORT_SWING_MODE | SUPPORT_TARGET_HUMIDITY
FAN_LIST = ['最弱', '稍弱', '中等', '稍强', '最强', '自动']
SWING_LIST = ['➡️', '↘️', '⬇️', '↙️', '⬅️', '↔️', '🔄']
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
vol.Optional(CONF_HOST): cv.string,
vol.Optional(CONF_PORT): cv.port
})
_LOGGER = logging.getLogger(__name__)
def _log(s: str):
s = str(s)
for i in s.split("\n"):
_LOGGER.debug(i)
async def async_setup_entry(
hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback
) -> None:
from .ds_air_service.service import Service
climates = []
for aircon in Service.get_aircons():
climates.append(DsAir(aircon))
async_add_entities(climates)
link = entry.options.get("link")
sensor_map = {}
if link is not None:
for i in link:
if i.get("sensor") is not None:
climate = None
for j in climates:
if i.get("climate") == j.name:
climate = j
break
if sensor_map.get(i.get("sensor")) is not None:
sensor_map[i.get("sensor")].append(climate)
else:
sensor_map[i.get("sensor")] = [climate]
async def listener(event: Event):
for climate in sensor_map[event.data.get("entity_id")]:
climate.update_cur_temp(event.data.get("new_state").state)
remove_listener = async_track_state_change_event(hass, list(sensor_map.keys()), listener)
hass.data[DOMAIN]["listener"] = remove_listener
for entity_id in sensor_map.keys():
state = hass.states.get(entity_id)
if state is not None:
for climate in sensor_map[entity_id]:
climate.update_cur_temp(state.state)
class DsAir(ClimateEntity):
def __init__(self, aircon: AirCon):
_log('create aircon:')
_log(str(aircon.__dict__))
_log(str(aircon.status.__dict__))
self._name = aircon.alias
self._device_info = aircon
self._unique_id = aircon.unique_id
self._link_cur_temp = False
self._cur_temp = None
from .ds_air_service.service import Service
Service.register_status_hook(aircon, self._status_change_hook)
def _status_change_hook(self, **kwargs):
_log('hook:')
if kwargs.get('aircon') is not None:
aircon: AirCon = kwargs['aircon']
aircon.status = self._device_info.status
self._device_info = aircon
_log(display(self._device_info))
if kwargs.get('status') is not None:
status: AirConStatus = self._device_info.status
new_status: AirConStatus = kwargs['status']
if new_status.mode is not None:
status.mode = new_status.mode
if new_status.switch is not None:
status.switch = new_status.switch
if new_status.humidity is not None:
status.humidity = new_status.humidity
if new_status.air_flow is not None:
status.air_flow = new_status.air_flow
if new_status.fan_direction1 is not None:
status.fan_direction1 = new_status.fan_direction1
if new_status.fan_direction2 is not None:
status.fan_direction2 = new_status.fan_direction2
if new_status.setted_temp is not None:
status.setted_temp = new_status.setted_temp
if new_status.current_temp is not None:
status.current_temp = new_status.current_temp
if new_status.breathe is not None:
status.breathe = new_status.breathe
_log(display(self._device_info.status))
self.schedule_update_ha_state()
def update_cur_temp(self, value):
self._link_cur_temp = value is not None
try:
self._cur_temp = float(value)
except ValueError:
self.schedule_update_ha_state()
@property
def should_poll(self):
return False
@property
def name(self):
return self._name
@property
def temperature_unit(self):
return TEMP_CELSIUS
@property
def target_humidity(self):
return self._device_info.status.humidity.value
@property
def hvac_action(self):
return None
@property
def hvac_mode(self) -> str:
if self._device_info.status.switch == EnumControl.Switch.OFF:
return HVAC_MODE_OFF
else:
return EnumControl.get_mode_name(self._device_info.status.mode.value)
@property
def hvac_modes(self):
li = []
aircon = self._device_info
if aircon.cool_mode:
li.append(HVAC_MODE_COOL)
if aircon.heat_mode or aircon.pre_heat_mode:
li.append(HVAC_MODE_HEAT)
if aircon.auto_dry_mode or aircon.dry_mode or aircon.more_dry_mode:
li.append(HVAC_MODE_DRY)
if aircon.ventilation_mode:
li.append(HVAC_MODE_FAN_ONLY)
if aircon.relax_mode or aircon.auto_mode:
li.append(HVAC_MODE_AUTO)
if aircon.sleep_mode:
li.append(HVAC_MODE_HEAT_COOL)
li.append(HVAC_MODE_OFF)
return li
@property
def current_temperature(self):
if self._link_cur_temp:
return self._cur_temp
else:
if Config.is_c611:
return None
else:
return self._device_info.status.current_temp / 10
@property
def target_temperature(self):
return self._device_info.status.setted_temp / 10
@property
def target_temperature_step(self):
return 1
@property
def target_temperature_high(self):
return None
@property
def target_temperature_low(self):
return None
@property
def current_humidity(self):
return None
@property
def preset_mode(self) -> Optional[str]:
return None
@property
def preset_modes(self) -> Optional[List[str]]:
return None
@property
def is_aux_heat(self):
return None
@property
def fan_mode(self):
return EnumControl.get_air_flow_name(self._device_info.status.air_flow.value)
@property
|
MIT License
|
virtualabs/btlejack
|
btlejack/supervisors.py
|
ConnectionRecovery.on_hopincrement
|
python
|
def on_hopincrement(self, increment):
print('Increment: %d' % increment)
|
Hop increment has been recovered.
|
https://github.com/virtualabs/btlejack/blob/7cd784a5c9ead820bdc1b1745d2d8e0773e6facb/btlejack/supervisors.py#L364-L368
|
from btlejack.jobs import SingleSnifferInterface, MultiSnifferInterface
from btlejack.session import BtlejackSession, BtlejackSessionError
from btlejack.packets import *
from btlejack.link import DeviceError
class Supervisor(object):
def stop(self):
pass
def process_packets(self):
packets = self.interface.read_packet()
if len(packets) > 0:
for pkt in packets:
pkt = PacketRegistry.decode(pkt)
self.on_packet_received(pkt)
def on_packet_received(self, packet):
if isinstance(packet, VerbosePacket):
self.on_verbose(packet)
elif isinstance(packet, DebugPacket):
self.on_debug(packet)
def send_packet(self, packet):
self.interface.send_packet(packet)
def on_ll_packet(self, packet):
pass
def on_verbose(self, packet):
print('V:'+str(packet))
def on_debug(self, packet):
print('D:'+str(packet))
class AccessAddressSniffer(Supervisor):
def __init__(self, devices=None, baudrate=115200):
super().__init__()
if devices is not None:
if len(devices) >= 1:
self.interface = SingleSnifferInterface(devices[0], baudrate)
else:
raise DeviceError('No device provided')
else:
self.interface = SingleSnifferInterface()
self.interface.reset()
self.aad = {}
self.interface.scan_access_addresses()
def on_packet_received(self, packet):
if isinstance(packet, VerbosePacket) or isinstance(packet, DebugPacket):
super().on_packet_received(packet)
else:
if isinstance(packet, AccessAddressNotification):
if packet.access_address not in self.aad:
self.aad[packet.access_address] = 1
else:
self.aad[packet.access_address] += 1
self.on_access_address(
packet.access_address,
packet.rssi,
self.aad[packet.access_address]
)
def on_access_address(self, address, rssi, nb_packets):
print(
'[ -%3d dBm] 0x%08x | pkts: %d' % (
rssi,
address,
nb_packets
)
)
class ConnectionRecovery(Supervisor):
STATE_IDLE = 0
STATE_RECOVER_CRC = 1
STATE_RECOVER_CHM = 2
STATE_RECOVER_HOPINTER = 3
STATE_RECOVER_HOPINC = 4
STATE_FOLLOWING = 5
STATE_HIJACKING = 6
STATE_HIJACKED = 7
STATE_RECOVER_CCHM = 8
STATE_RECOVER_PRNG = 9
def __init__(self, access_address, channel_map=None, hop_interval=None, crc=None, devices=None, baudrate=115200, timeout=0, v5=False):
super().__init__()
try:
self.session = BtlejackSession.get_instance()
except BtlejackSessionError as session_error:
self.session = None
if devices is not None:
self.interface = MultiSnifferInterface(len(devices), baudrate, devices, v5=v5)
else:
self.interface = MultiSnifferInterface(999, v5=v5)
self.state = self.STATE_RECOVER_CRC
self.chm_provided = (channel_map is not None)
self.crc_provide = (crc is not None)
self.hop_provided = (hop_interval is not None)
self.access_address = access_address
self.hop_interval = hop_interval
self.chm = channel_map
self.packet_sent = False
self.crc = crc
self.cchm_notifications = 0
self.cchm = 0
self.timeout = timeout
self.v5 = v5
if self.crc is not None:
if self.session is not None:
self.session.add_connection(
self.access_address,
{'crcinit': self.crc}
)
self.session.save()
if self.chm is not None:
if self.v5 and self.hop_interval is not None:
self.state = self.STATE_RECOVER_PRNG
self.interface.recover_prng(self.access_address, self.crc, self.chm, self.hop_interval)
else:
self.state = self.STATE_RECOVER_HOPINTER
self.interface.recover_hop(access_address, self.crc, self.chm)
else:
self.state = self.STATE_RECOVER_CCHM
self.interface.recover_chm(access_address, self.crc, self.timeout)
else:
self.state = self.STATE_RECOVER_CRC
self.interface.recover_crcinit(access_address)
def jam(self):
if self.state == self.STATE_FOLLOWING:
self.interface.enable_jamming(True)
def hijack(self):
if self.state == self.STATE_FOLLOWING:
self.state = self.STATE_HIJACKING
self.interface.enable_hijacking(True)
def on_packet_received(self, packet):
if isinstance(packet, VerbosePacket) or isinstance(packet, DebugPacket):
super().on_packet_received(packet)
elif isinstance(packet, ConnectionLostNotification):
self.on_connection_lost()
else:
if self.state == self.STATE_RECOVER_CRC:
if isinstance(packet, CrcNotification):
self.on_crc(packet.crc)
self.crc = packet.crc
if self.session is not None:
self.session.add_connection(
self.access_address,
{'crcinit': self.crc}
)
self.session.save()
if self.chm_provided:
if self.v5:
self.state = self.STATE_RECOVER_PRNG
else:
self.state = self.STATE_RECOVER_HOPINTER
else:
if self.interface.get_nb_interfaces() >= 1:
self.state = self.STATE_RECOVER_CCHM
self.interface.reset()
self.cchm_notifications = 0
self.cchm = 0
self.interface.recover_chm(
self.access_address,
self.crc,
self.timeout
)
else:
self.state = self.STATE_RECOVER_CHM
elif self.state == self.STATE_RECOVER_CHM:
if isinstance(packet, ChannelMapNotification):
self.on_chm(packet.channel_map)
if not self.v5:
if self.hop_provided:
self.state = self.STATE_RECOVER_HOPINC
else:
self.state = self.STATE_RECOVER_HOPINTER
else:
self.state = self.STATE_RECOVER_HOPINTER
elif self.state == self.STATE_RECOVER_PRNG:
if isinstance(packet, Csa2PrngNotification):
self.state = self.STATE_FOLLOWING
self.on_prng_state(packet.prng_state)
elif self.state == self.STATE_RECOVER_CCHM:
if isinstance(packet, ChannelMapNotification):
self.cchm |= packet.channel_map
self.cchm_notifications += 1
if self.cchm_notifications == self.interface.get_nb_interfaces():
self.state = self.STATE_RECOVER_HOPINTER
self.on_chm(self.cchm)
elif self.state == self.STATE_RECOVER_HOPINTER:
if isinstance(packet, HopIntervalNotification):
self.on_hopinterval(packet.interval)
if not self.v5:
self.state = self.STATE_RECOVER_HOPINC
else:
self.state = self.STATE_RECOVER_PRNG
elif self.state == self.STATE_RECOVER_HOPINC:
if isinstance(packet, HopIncrementNotification):
self.state = self.STATE_FOLLOWING
self.on_hopincrement(packet.increment)
elif self.state == self.STATE_FOLLOWING:
self.on_ll_packet(packet)
elif self.state == self.STATE_HIJACKING:
if isinstance(packet, HijackStatusNotification):
if packet.status:
self.state = self.STATE_HIJACKED
self.on_hijacking_success()
else:
self.state = self.STATE_IDLE
self.on_hijacking_failed()
elif self.state == self.STATE_HIJACKED:
if isinstance(packet, SendPacketResponse):
self.sent_packet = False
else:
self.on_ll_packet(packet)
def on_crc(self, crc):
print('CRC: %06x' % crc)
def on_chm(self, chm):
self.state = self.STATE_RECOVER_HOPINTER
self.chm = chm
if not self.v5:
self.recover_hop(
self.access_address,
self.crc,
self.chm
)
else:
self.state = self.STATE_RECOVER_PRNG
def on_hopinterval(self, interval):
print('Interval: %d' % interval)
|
MIT License
|
databand-ai/dbnd
|
modules/dbnd-airflow/src/dbnd_airflow/tracking/airflow_patching.py
|
add_tracking_to_policy
|
python
|
def add_tracking_to_policy():
try:
_add_tracking_to_policy()
except Exception as e:
logging.exception("Failed to add tracking in policy")
|
Add tracking to all tasks as part of airflow policy
|
https://github.com/databand-ai/dbnd/blob/ec0076f9a142b20e2f7afd886ed1a18683c553ec/modules/dbnd-airflow/src/dbnd_airflow/tracking/airflow_patching.py#L51-L56
|
import logging
from dbnd_airflow.tracking.dbnd_dag_tracking import track_task
def _wrap_policy_with_dbnd_track_task(policy):
if policy and getattr(policy, "_dbnd_patched", None):
return policy
def dbnd_track_task_policy(task):
policy(task)
track_task(task)
dbnd_track_task_policy._dbnd_patched = True
return dbnd_track_task_policy
def _patch_policy(module):
if hasattr(module, "policy"):
new_policy = _wrap_policy_with_dbnd_track_task(module.policy)
module.policy = new_policy
if hasattr(module, "task_policy"):
new_policy = _wrap_policy_with_dbnd_track_task(module.task_policy)
module.task_policy = new_policy
def _add_tracking_to_policy():
try:
import airflow_local_settings
_patch_policy(airflow_local_settings)
except ImportError:
pass
from airflow.models.dagbag import settings
_patch_policy(settings)
|
Apache License 2.0
|
opsdroid/opsdroid
|
opsdroid/loader.py
|
Loader.pip_install_deps
|
python
|
def pip_install_deps(requirements_path):
process = None
command = [
"pip",
"install",
"--target={}".format(DEFAULT_MODULE_DEPS_PATH),
"--ignore-installed",
"-r",
requirements_path,
]
try:
process = subprocess.Popen(
command, shell=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
except FileNotFoundError:
_LOGGER.debug(
_("Couldn't find the command 'pip', trying again with command 'pip3'.")
)
try:
command[0] = "pip3"
process = subprocess.Popen(
command, shell=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
except FileNotFoundError:
_LOGGER.debug(
_("Couldn't find the command 'pip3', install of %s will be skipped."),
str(requirements_path),
)
if not process:
raise OSError(_("Pip and pip3 not found, exiting..."))
Loader._communicate_process(process)
return True
|
Pip install a requirements.txt file and wait for finish.
Args:
requirements_path: string holding the path to the requirements.txt
file located in the module's local repository
Returns:
bool: True if the requirements.txt installs successfully
|
https://github.com/opsdroid/opsdroid/blob/9a48364869ded7cdd2420b43b0c2c153e846439e/opsdroid/loader.py#L249-L295
|
import contextlib
import importlib
import importlib.util
import json
import logging
import os
import shutil
import subprocess
import sys
import tempfile
import urllib.request
from collections.abc import Mapping
from pkg_resources import iter_entry_points
from opsdroid.helper import (
file_is_ipython_notebook,
convert_ipynb_to_script,
extract_gist_id,
)
from opsdroid.configuration import validate_configuration
from opsdroid.const import (
DEFAULT_GIT_URL,
MODULES_DIRECTORY,
DEFAULT_MODULES_PATH,
DEFAULT_MODULE_BRANCH,
DEFAULT_MODULE_DEPS_PATH,
)
_LOGGER = logging.getLogger(__name__)
class Loader:
def __init__(self, opsdroid):
self.opsdroid = opsdroid
self.modules_directory = None
self.current_import_config = None
_LOGGER.debug(_("Loaded loader."))
@staticmethod
def import_module_from_spec(module_spec):
module = importlib.util.module_from_spec(module_spec)
module_spec.loader.exec_module(module)
return module
@staticmethod
def import_module(config):
if config.get("entrypoint"):
_LOGGER.debug(
_("Loading entry point-defined module for %s."), config["name"]
)
return config["entrypoint"].load()
module_spec = None
namespaces = [
config["module"],
config["module_path"] + "." + config["name"],
config["module_path"],
]
for namespace in namespaces:
try:
module_spec = importlib.util.find_spec(namespace)
if module_spec:
break
except (ImportError, AttributeError):
continue
if module_spec:
try:
module = Loader.import_module_from_spec(module_spec)
except Exception as e:
_LOGGER.error(
_("The following exception was raised while importing %s %s"),
config["type"],
config["module_path"],
)
_LOGGER.error(str(e))
else:
_LOGGER.debug(
_("Loaded %s: %s."), config["type"], config["module_path"]
)
return module
_LOGGER.error(
_("Failed to load %s: %s."), config["type"], config["module_path"]
)
return None
@classmethod
def check_cache(cls, config):
if "no-cache" in config and config["no-cache"]:
_LOGGER.debug(_("'no-cache' set, removing %s."), config["install_path"])
cls.remove_cache(config)
if "no-cache" not in config and cls._is_local_module(config):
_LOGGER.debug(
_(
"Removing cache for local module %s, set 'no-cache: false' to disable this."
),
config["install_path"],
)
cls.remove_cache(config)
@staticmethod
def remove_cache(config):
if os.path.isdir(config["install_path"]):
shutil.rmtree(config["install_path"])
if os.path.isfile(config["install_path"] + ".py"):
os.remove(config["install_path"] + ".py")
@staticmethod
def is_builtin_module(config):
try:
return importlib.util.find_spec(
"opsdroid.{module_type}.{module_name}".format(
module_type=config["type"], module_name=config["name"].lower()
)
)
except ImportError:
return False
@staticmethod
def build_module_import_path(config):
if config["is_builtin"]:
return "opsdroid" + "." + config["type"] + "." + config["name"].lower()
return MODULES_DIRECTORY + "." + config["type"] + "." + config["name"]
def build_module_install_path(self, config):
return os.path.join(self.modules_directory, config["type"], config["name"])
@staticmethod
def git_clone(git_url, install_path, branch, key_path=None):
git_env = os.environ.copy()
if key_path:
git_env[
"GIT_SSH_COMMAND"
] = f"ssh -i {key_path} -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no"
process = subprocess.Popen(
["git", "clone", "-b", branch, git_url, install_path],
shell=False,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
env=git_env,
)
Loader._communicate_process(process)
@staticmethod
def git_pull(repository_path):
process = subprocess.Popen(
["git", "-C", repository_path, "pull", "--ff-only"],
shell=False,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
Loader._communicate_process(process)
@staticmethod
|
Apache License 2.0
|
huailiang/unity_pose3d
|
python/common/camera.py
|
project_to_2d
|
python
|
def project_to_2d(X, camera_params):
assert X.shape[-1] == 3
assert len(camera_params.shape) == 2
assert camera_params.shape[-1] == 9
assert X.shape[0] == camera_params.shape[0]
while len(camera_params.shape) < len(X.shape):
camera_params = camera_params.unsqueeze(1)
f = camera_params[..., :2]
c = camera_params[..., 2:4]
k = camera_params[..., 4:7]
p = camera_params[..., 7:]
XX = torch.clamp(X[..., :2] / X[..., 2:], min=-1, max=1)
r2 = torch.sum(XX[..., :2] ** 2, dim=len(XX.shape) - 1, keepdim=True)
radial = 1 + torch.sum(k * torch.cat((r2, r2 ** 2, r2 ** 3), dim=len(r2.shape) - 1), dim=len(r2.shape) - 1, keepdim=True)
tan = torch.sum(p * XX, dim=len(XX.shape) - 1, keepdim=True)
XXX = XX * (radial + tan) + p * r2
return f * XXX + c
|
Project 3D points to 2D using the Human3.6M camera projection function.
This is a differentiable and batched reimplementation of the original MATLAB script.
Arguments:
X -- 3D points in *camera space* to transform (N, *, 3)
camera_params -- intrinsic parameteres (N, 2+2+3+2=9)
focal length / principal point / radial_distortion / tangential_distortion
|
https://github.com/huailiang/unity_pose3d/blob/f2295d0515f021dfff42a48d6bc7e9ba36f373ce/python/common/camera.py#L51-L82
|
import numpy as np
import torch
from common.quaternion import qrot, qinverse
from common.utils import wrap
def normalize_screen_coordinates(X, w, h):
assert X.shape[-1] == 2
return X / w * 2 - [1, h / w]
def normalize_screen_coordinates_new(X, w, h):
assert X.shape[-1] == 2
return (X - (w / 2, h / 2)) / (w / 2, h / 2)
def image_coordinates_new(X, w, h):
assert X.shape[-1] == 2
return (X * (w / 2, h / 2)) + (w / 2, h / 2)
def image_coordinates(X, w, h):
assert X.shape[-1] == 2
return (X + [1, h / w]) * w / 2
def world_to_camera(X, R, t):
Rt = wrap(qinverse, R)
return wrap(qrot, np.tile(Rt, (*X.shape[:-1], 1)), X - t)
def camera_to_world(X, R, t):
return wrap(qrot, np.tile(R, (*X.shape[:-1], 1)), X) + t
|
MIT License
|
brython-dev/brython
|
www/src/Lib/faulthandler.py
|
dump_traceback_later
|
python
|
def dump_traceback_later(*args,**kw):
pass
|
dump_traceback_later(timeout, repeat=False, file=sys.stderrn, exit=False): dump the traceback of all threads in timeout seconds,
or each timeout seconds if repeat is True. If exit is True, call _exit(1) which is not safe.
|
https://github.com/brython-dev/brython/blob/33aeaab551f1b73209326c5a0aecf98642d4c126/www/src/Lib/faulthandler.py#L149-L152
|
_EXCEPTION_ACCESS_VIOLATION = -1073741819
_EXCEPTION_INT_DIVIDE_BY_ZERO = -1073741676
_EXCEPTION_NONCONTINUABLE = 1
_EXCEPTION_NONCONTINUABLE_EXCEPTION = -1073741787
_EXCEPTION_STACK_OVERFLOW = -1073741571
class __loader__(object):
__delattr__ = "<slot wrapper '__delattr__' of 'object' objects>"
__dict__ = "{'__module__': '_frozen_importlib', '__doc__': 'Meta path import for built-in modules.\n\n All methods are either class or static methods to avoid the need to\n instantiate the class.\n\n ', 'module_repr': <staticmethod object at 0x000001F9B17F15F8>, 'find_spec': <classmethod object at 0x000001F9B17F1630>, 'find_module': <classmethod object at 0x000001F9B17F1668>, 'create_module': <classmethod object at 0x000001F9B17F16A0>, 'exec_module': <classmethod object at 0x000001F9B17F16D8>, 'get_code': <classmethod object at 0x000001F9B17F1748>, 'get_source': <classmethod object at 0x000001F9B17F17B8>, 'is_package': <classmethod object at 0x000001F9B17F1828>, 'load_module': <classmethod object at 0x000001F9B17F1860>, '__dict__': <attribute '__dict__' of 'BuiltinImporter' objects>, '__weakref__': <attribute '__weakref__' of 'BuiltinImporter' objects>}"
__dir__ = "<method '__dir__' of 'object' objects>"
__eq__ = "<slot wrapper '__eq__' of 'object' objects>"
__format__ = "<method '__format__' of 'object' objects>"
__ge__ = "<slot wrapper '__ge__' of 'object' objects>"
__getattribute__ = "<slot wrapper '__getattribute__' of 'object' objects>"
__gt__ = "<slot wrapper '__gt__' of 'object' objects>"
__hash__ = "<slot wrapper '__hash__' of 'object' objects>"
__init__ = "<slot wrapper '__init__' of 'object' objects>"
def __init_subclass__(*args,**kw):
pass
__le__ = "<slot wrapper '__le__' of 'object' objects>"
__lt__ = "<slot wrapper '__lt__' of 'object' objects>"
__module__ = """_frozen_importlib"""
__ne__ = "<slot wrapper '__ne__' of 'object' objects>"
def __new__(*args,**kw):
pass
__reduce__ = "<method '__reduce__' of 'object' objects>"
__reduce_ex__ = "<method '__reduce_ex__' of 'object' objects>"
__repr__ = "<slot wrapper '__repr__' of 'object' objects>"
__setattr__ = "<slot wrapper '__setattr__' of 'object' objects>"
__sizeof__ = "<method '__sizeof__' of 'object' objects>"
__str__ = "<slot wrapper '__str__' of 'object' objects>"
def __subclasshook__(*args,**kw):
pass
__weakref__ = "<attribute '__weakref__' of 'BuiltinImporter' objects>"
create_module = "<bound method BuiltinImporter.create_module of <class '_frozen_importlib.BuiltinImporter'>>"
exec_module = "<bound method BuiltinImporter.exec_module of <class '_frozen_importlib.BuiltinImporter'>>"
find_module = "<bound method BuiltinImporter.find_module of <class '_frozen_importlib.BuiltinImporter'>>"
find_spec = "<bound method BuiltinImporter.find_spec of <class '_frozen_importlib.BuiltinImporter'>>"
get_code = "<bound method BuiltinImporter.get_code of <class '_frozen_importlib.BuiltinImporter'>>"
get_source = "<bound method BuiltinImporter.get_source of <class '_frozen_importlib.BuiltinImporter'>>"
is_package = "<bound method BuiltinImporter.is_package of <class '_frozen_importlib.BuiltinImporter'>>"
load_module = "<bound method _load_module_shim of <class '_frozen_importlib.BuiltinImporter'>>"
def module_repr(*args,**kw):
pass
__spec__ = "ModuleSpec(name='faulthandler', loader=<class '_frozen_importlib.BuiltinImporter'>, origin='built-in')"
def _fatal_error(*args,**kw):
pass
def _fatal_error_c_thread(*args,**kw):
pass
def _raise_exception(*args,**kw):
pass
def _read_null(*args,**kw):
pass
def _sigabrt(*args,**kw):
pass
def _sigfpe(*args,**kw):
pass
def _sigsegv(*args,**kw):
pass
def cancel_dump_traceback_later(*args,**kw):
pass
def disable(*args,**kw):
pass
def dump_traceback(*args,**kw):
pass
|
BSD 3-Clause New or Revised License
|
contentful/contentful-management.py
|
contentful_management/locales_proxy.py
|
LocalesProxy.create
|
python
|
def create(self, attributes=None, **kwargs):
return super(LocalesProxy, self).create(None, attributes)
|
Creates a locale with given attributes.
|
https://github.com/contentful/contentful-management.py/blob/658341bc5af529b00fa317362c0b6cca221d76e4/contentful_management/locales_proxy.py#L27-L32
|
from .client_proxy import ClientProxy
from .locale import Locale
class LocalesProxy(ClientProxy):
@property
def _resource_class(self):
return Locale
|
MIT License
|
lisa-lab/pylearn2
|
pylearn2/models/mlp.py
|
MLP.get_monitoring_data_specs
|
python
|
def get_monitoring_data_specs(self):
if not self.monitor_targets:
return (self.get_input_space(), self.get_input_source())
space = CompositeSpace((self.get_input_space(),
self.get_target_space()))
source = (self.get_input_source(), self.get_target_source())
return (space, source)
|
Returns data specs requiring both inputs and targets.
Returns
-------
data_specs: TODO
The data specifications for both inputs and targets.
|
https://github.com/lisa-lab/pylearn2/blob/af81e5c362f0df4df85c3e54e23b2adeec026055/pylearn2/models/mlp.py#L646-L661
|
__authors__ = "Ian Goodfellow"
__copyright__ = "Copyright 2012-2013, Universite de Montreal"
__credits__ = ["Ian Goodfellow", "David Warde-Farley"]
__license__ = "3-clause BSD"
__maintainer__ = "LISA Lab"
import logging
import math
import operator
import sys
import warnings
import numpy as np
from theano.compat import six
from theano.compat.six.moves import reduce, xrange
from theano import config
from theano.gof.op import get_debug_values
from theano.sandbox.cuda import cuda_enabled
from theano.sandbox.cuda.dnn import dnn_available, dnn_pool
from theano.sandbox.rng_mrg import MRG_RandomStreams
from theano.tensor.signal.pool import pool_2d
import theano.tensor as T
from pylearn2.compat import OrderedDict
from pylearn2.costs.mlp import Default
from pylearn2.expr.probabilistic_max_pooling import max_pool_channels
if cuda_enabled and dnn_available():
try:
from pylearn2.linear import cudnn2d as conv2d
except ImportError:
from pylearn2.linear import conv2d
else:
from pylearn2.linear import conv2d
from pylearn2.linear.matrixmul import MatrixMul
from pylearn2.model_extensions.norm_constraint import MaxL2FilterNorm
from pylearn2.models.model import Model
from pylearn2.monitor import get_monitor_doc
from pylearn2.expr.nnet import arg_of_softmax
from pylearn2.expr.nnet import pseudoinverse_softmax_numpy
from pylearn2.space import CompositeSpace
from pylearn2.space import Conv2DSpace
from pylearn2.space import Space
from pylearn2.space import VectorSpace, IndexSpace
from pylearn2.utils import function
from pylearn2.utils import is_iterable
from pylearn2.utils import py_float_types
from pylearn2.utils import py_integer_types
from pylearn2.utils import safe_union
from pylearn2.utils import safe_zip
from pylearn2.utils import safe_izip
from pylearn2.utils import sharedX
from pylearn2.utils import wraps
from pylearn2.utils import contains_inf
from pylearn2.utils import isfinite
from pylearn2.utils.data_specs import DataSpecsMapping
from pylearn2.expr.nnet import (elemwise_kl, kl, compute_precision,
compute_recall, compute_f1)
from pylearn2.costs.mlp import L1WeightDecay as _L1WD
from pylearn2.costs.mlp import WeightDecay as _WD
logger = logging.getLogger(__name__)
logger.debug("MLP changing the recursion limit.")
sys.setrecursionlimit(40000)
class Layer(Model):
dropout_input_mask_value = 0.
def get_mlp(self):
if hasattr(self, 'mlp'):
return self.mlp
return None
def set_mlp(self, mlp):
assert self.get_mlp() is None
self.mlp = mlp
def get_layer_monitoring_channels(self, state_below=None,
state=None, targets=None):
return OrderedDict()
def fprop(self, state_below):
raise NotImplementedError(
str(type(self)) + " does not implement fprop.")
def cost(self, Y, Y_hat):
raise NotImplementedError(
str(type(self)) + " does not implement mlp.Layer.cost.")
def cost_from_cost_matrix(self, cost_matrix):
raise NotImplementedError(
str(type(self)) + " does not implement "
"mlp.Layer.cost_from_cost_matrix.")
def cost_matrix(self, Y, Y_hat):
raise NotImplementedError(
str(type(self)) + " does not implement mlp.Layer.cost_matrix")
def set_weights(self, weights):
raise NotImplementedError(
str(type(self)) + " does not implement set_weights.")
def get_biases(self):
raise NotImplementedError(
str(type(self)) + " does not implement "
"get_biases (perhaps because the class has no biases).")
def set_biases(self, biases):
raise NotImplementedError(
str(type(self)) + " does not implement "
"set_biases (perhaps because the class has no biases).")
def get_weights_format(self):
raise NotImplementedError
def get_weight_decay(self, coeff):
raise NotImplementedError(
str(type(self)) + " does not implement get_weight_decay.")
def get_l1_weight_decay(self, coeff):
raise NotImplementedError(
str(type(self)) + " does not implement get_l1_weight_decay.")
def set_input_space(self, space):
raise NotImplementedError(
str(type(self)) + " does not implement set_input_space.")
class MLP(Layer):
def __init__(self, layers, batch_size=None, input_space=None,
input_source='features', target_source='targets',
nvis=None, seed=None, layer_name=None, monitor_targets=True,
**kwargs):
super(MLP, self).__init__(**kwargs)
self.seed = seed
assert isinstance(layers, list)
assert all(isinstance(layer, Layer) for layer in layers)
assert len(layers) >= 1
self.layer_name = layer_name
self.layer_names = set()
for layer in layers:
assert layer.get_mlp() is None
if layer.layer_name in self.layer_names:
raise ValueError("MLP.__init__ given two or more layers "
"with same name: " + layer.layer_name)
layer.set_mlp(self)
self.layer_names.add(layer.layer_name)
self.layers = layers
self.batch_size = batch_size
self.force_batch_size = batch_size
self._input_source = input_source
self._target_source = target_source
self.monitor_targets = monitor_targets
if input_space is not None or nvis is not None:
self._nested = False
self.setup_rng()
assert layer_name is None
if nvis is not None:
input_space = VectorSpace(nvis)
try:
DataSpecsMapping((input_space, input_source))
except ValueError:
raise ValueError("The structures of `input_space`, %s, and "
"`input_source`, %s do not match. If you "
"specified a CompositeSpace as an input, "
"be sure to specify the data sources as well."
% (input_space, input_source))
self.input_space = input_space
self._update_layer_input_spaces()
else:
self._nested = True
self.freeze_set = set([])
@property
def input_source(self):
assert not self._nested, "A nested MLP does not have an input source"
return self._input_source
@property
def target_source(self):
assert not self._nested, "A nested MLP does not have a target source"
return self._target_source
def setup_rng(self):
assert not self._nested, "Nested MLPs should use their parent's RNG"
if self.seed is None:
self.seed = [2013, 1, 4]
self.rng = np.random.RandomState(self.seed)
@wraps(Layer.get_default_cost)
def get_default_cost(self):
return Default()
@wraps(Layer.get_output_space)
def get_output_space(self):
return self.layers[-1].get_output_space()
@wraps(Layer.get_target_space)
def get_target_space(self):
return self.layers[-1].get_target_space()
@wraps(Layer.set_input_space)
def set_input_space(self, space):
if hasattr(self, "mlp"):
assert self._nested
self.rng = self.mlp.rng
self.batch_size = self.mlp.batch_size
self.input_space = space
self._update_layer_input_spaces()
def _update_layer_input_spaces(self):
layers = self.layers
try:
layers[0].set_input_space(self.get_input_space())
except BadInputSpaceError as e:
raise TypeError("Layer 0 (" + str(layers[0]) + " of type " +
str(type(layers[0])) +
") does not support the MLP's "
+ "specified input space (" +
str(self.get_input_space()) +
" of type " + str(type(self.get_input_space())) +
"). Original exception: " + str(e))
for i in xrange(1, len(layers)):
layers[i].set_input_space(layers[i - 1].get_output_space())
def add_layers(self, layers):
existing_layers = self.layers
assert len(existing_layers) > 0
for layer in layers:
assert layer.get_mlp() is None
layer.set_mlp(self)
if not self._nested or hasattr(self, 'input_space'):
layer.set_input_space(existing_layers[-1].get_output_space())
existing_layers.append(layer)
assert layer.layer_name not in self.layer_names
self.layer_names.add(layer.layer_name)
def freeze(self, parameter_set):
self.freeze_set = self.freeze_set.union(parameter_set)
@wraps(Layer.get_monitoring_channels)
def get_monitoring_channels(self, data):
if self.monitor_targets:
X, Y = data
else:
X = data
Y = None
rval = self.get_layer_monitoring_channels(state_below=X,
targets=Y)
return rval
@wraps(Layer.get_layer_monitoring_channels)
def get_layer_monitoring_channels(self, state_below=None,
state=None, targets=None):
rval = OrderedDict()
state = state_below
for layer in self.layers:
state_below = state
state = layer.fprop(state)
args = [state_below, state]
if layer is self.layers[-1] and targets is not None:
args.append(targets)
ch = layer.get_layer_monitoring_channels(*args)
if not isinstance(ch, OrderedDict):
raise TypeError(str((type(ch), layer.layer_name)))
for key in ch:
value = ch[key]
doc = get_monitor_doc(value)
if doc is None:
doc = str(type(layer)) + ".get_monitoring_channels_from_state did" + " not provide any further documentation for" + " this channel."
doc = 'This channel came from a layer called "' + layer.layer_name + '" of an MLP.\n' + doc
value.__doc__ = doc
rval[layer.layer_name + '_' + key] = value
return rval
|
BSD 3-Clause New or Revised License
|
jambonsw/django-improved-user
|
setup.py
|
CustomCheckCommand.check_metadata
|
python
|
def check_metadata(self):
metadata = self.distribution.metadata
missing = []
for attr in ('name', 'version', 'url'):
if not (hasattr(metadata, attr) and getattr(metadata, attr)):
missing.append(attr)
if not metadata.author and not metadata.maintainer:
missing.append('author')
if self.enforce_email:
missing.append('author_email')
else:
if (metadata.author and self.enforce_email
and not metadata.author_email):
missing.append('author_email')
if (metadata.maintainer and self.enforce_email
and not metadata.maintainer_email):
missing.append('maintainer_email')
if (metadata.author and metadata.maintainer
and metadata.author == metadata.maintainer):
self.warn(
'Maintainer should be omitted if identical to Author.\n'
'See https://www.python.org/dev/peps/pep-0345/'
'#maintainer-email-optional')
if (metadata.author_email and metadata.maintainer_email
and metadata.author_email == metadata.maintainer_email):
self.warn(
'Maintainer Email should be omitted if'
"identical to Author's.\n"
'See https://www.python.org/dev/peps/pep-0345/'
'#maintainer-email-optional')
if missing:
self.warn('missing required meta-data: %s' % ', '.join(missing))
|
Ensures that all required elements of meta-data are supplied.
Specifically: name, version, URL, author or maintainer
Warns if any are missing.
If enforce-email option is true, author and/or maintainer must
specify an email.
|
https://github.com/jambonsw/django-improved-user/blob/ae91086adf58aeca81d6e0fe1aeb4c7f3f4c2a77/setup.py#L52-L100
|
from distutils.command.check import check as CheckCommand
from operator import attrgetter
from os.path import abspath, dirname, join
from setuptools import find_packages, setup
from setuptools.command.test import test as TestCommand
HERE = abspath(dirname(__file__))
def load_file_contents(file_path, as_list=True):
abs_file_path = join(HERE, file_path)
with open(abs_file_path, encoding='utf-8') as file_pointer:
if as_list:
return file_pointer.read().splitlines()
return file_pointer.read()
LONG_DESCRIPTION = (
load_file_contents('README.rst', as_list=False)
.split('.. end-badges')[1]
.lstrip()
)
class CustomCheckCommand(CheckCommand):
user_options = CheckCommand.user_options + [
('disable-metadata', None, "don't check meta-data"),
('enforce-email', 'e', 'Ensure that all author/maintainer use email'),
]
negative_opt = {'disable-metadata': 'metadata'}
def initialize_options(self):
super().initialize_options()
self.enforce_email = 0
|
BSD 2-Clause Simplified License
|
lisa-lab/pylearn2
|
pylearn2/datasets/hdf5.py
|
alias_dict.__setitem__
|
python
|
def __setitem__(self, keys, value):
assert isinstance(keys, (list, tuple, string_types))
if isinstance(keys, (list, tuple)):
assert all([el is None or isinstance(el, string_types)
for el in keys])
if isinstance(keys, (list, tuple)):
if keys[1] is not None:
if keys[0] in self.__a2k__ or keys[0] in super(alias_dict,
self).keys():
raise Exception('The key is already used in the '
'dictionary either as key or alias')
if keys[1] in self.__a2k__ or keys[1] in super(alias_dict,
self).keys():
raise Exception('The alias is already used in the '
'dictionary either as key or alias')
self.__k2a__[keys[0]] = keys[1]
self.__a2k__[keys[1]] = keys[0]
keys = keys[0]
return super(alias_dict, self).__setitem__(keys, value)
|
Add an element to the dictionary
Parameter
---------
keys: either a tuple `(key, alias)` or any valid key for a dictionary
The key and optionally the alias of the new element.
value: any input accepted as value by a dictionary
The value of the new element.i
Notes
-----
You can add elements to the dictionary as follows:
1) my_dict[key] = value
2) my_dict[key, alias] = value
|
https://github.com/lisa-lab/pylearn2/blob/af81e5c362f0df4df85c3e54e23b2adeec026055/pylearn2/datasets/hdf5.py#L378-L415
|
__author__ = "Francesco Visin"
__license__ = "3-clause BSD"
__credits__ = "Francesco Visin and Steven Kearnes"
__maintainer__ = "Francesco Visin"
try:
import h5py
except ImportError:
h5py = None
try:
import tables
except ImportError:
tables = None
import warnings
from os.path import isfile
from pylearn2.compat import OrderedDict
from pylearn2.datasets import cache
from pylearn2.datasets.dataset import Dataset
from pylearn2.datasets.hdf5_deprecated import HDF5DatasetDeprecated
from pylearn2.utils import safe_zip, wraps, py_integer_types
from pylearn2.utils.iteration import FiniteDatasetIterator
from pylearn2.utils.exc import reraise_as
from pylearn2.space import Space, CompositeSpace
from theano.compat.six import string_types
class HDF5Dataset(Dataset):
def __new__(cls, filename, X=None, topo_view=None, y=None, load_all=False,
cache_size=None, sources=None, spaces=None, aliases=None,
use_h5py='auto', **kwargs):
if X is not None or topo_view is not None:
warnings.warn(
'A dataset is using the old interface that is now deprecated '
'and will become officially unsupported as of July 27, 2015. '
'The dataset should use the new interface that inherits from '
'the dataset class instead of the DenseDesignMatrix class. '
'Please refer to pylearn2.datasets.hdf5.py for more details '
'on arguments and details of the new '
'interface.', DeprecationWarning)
return HDF5DatasetDeprecated(filename, X, topo_view, y, load_all,
cache_size, **kwargs)
else:
return super(HDF5Dataset, cls).__new__(
cls, filename, sources, spaces, aliases, load_all, cache_size,
use_h5py, **kwargs)
def __init__(self, filename, sources, spaces, aliases=None, load_all=False,
cache_size=None, use_h5py='auto', **kwargs):
assert isinstance(filename, string_types)
assert isfile(filename), '%s does not exist.' % filename
assert isinstance(sources, list)
assert all([isinstance(el, string_types) for el in sources])
assert isinstance(spaces, list)
assert all([isinstance(el, Space) for el in spaces])
assert len(sources) == len(spaces)
if aliases is not None:
assert isinstance(aliases, list)
assert all([isinstance(el, string_types) for el in aliases
if el is not None])
assert len(aliases) == len(sources)
assert isinstance(load_all, bool)
assert cache_size is None or isinstance(cache_size, py_integer_types)
assert isinstance(use_h5py, bool) or use_h5py == 'auto'
self.load_all = load_all
self._aliases = aliases if aliases else [None for _ in sources]
self._sources = sources
self.spaces = alias_dict()
for i, (source, alias) in enumerate(safe_zip(self._sources,
self._aliases)):
self.spaces[source, alias] = spaces[i]
del spaces, aliases, sources
if load_all:
warnings.warn('You can load all the data in memory for speed, but '
'DO NOT use modify all the dataset at once (e.g., '
'reshape, transform, etc, ...) because your code '
'will fail if at some point you won\'t have enough '
'memory to store the dataset alltogheter. Use the '
'iterator to reshape the data after you load it '
'from the dataset.')
datasetCache = cache.datasetCache
filename = datasetCache.cache_file(filename)
if use_h5py == 'auto':
use_h5py = True if tables is None else False
if use_h5py:
if h5py is None:
raise RuntimeError("Could not import h5py.")
if cache_size:
propfaid = h5py.h5p.create(h5py.h5p.FILE_ACCESS)
settings = list(propfaid.get_cache())
settings[2] = cache_size
propfaid.set_cache(*settings)
self._fhandler = h5py.File(h5py.h5f.open(filename,
fapl=propfaid), mode='r')
else:
self._fhandler = h5py.File(filename, mode='r')
else:
if tables is None:
raise RuntimeError("Could not import tables.")
self._fhandler = tables.openFile(filename, mode='r')
self.data = self._read_hdf5(self._sources, self._aliases, load_all,
use_h5py)
assert len(self.data) != 0, (
'No dataset was loaded. Please make sure that sources is a list '
'with at least one value and that the provided values are keys of '
'the dataset you are trying to load.')
super(HDF5Dataset, self).__init__(**kwargs)
def _read_hdf5(self, sources, aliases, load_all=False, use_h5py=True):
data = alias_dict()
if use_h5py:
for s, a in safe_zip(sources, aliases):
if load_all:
data[s, a] = self._fhandler[s][:]
else:
data[s, a] = self._fhandler[s]
data[s].ndim = len(data[s].shape)
else:
for s, a in safe_zip(sources, aliases):
if load_all:
data[s, a](self._fhandler.getNode('/', s)[:])
else:
data[s, a] = self._fhandler.getNode('/', s)
return data
@wraps(Dataset.iterator, assigned=(), updated=(), append=True)
def iterator(self, mode=None, data_specs=None, batch_size=None,
num_batches=None, rng=None, return_tuple=False, **kwargs):
if data_specs is None:
data_specs = (self._get_sources, self._get_spaces)
[mode, batch_size, num_batches, rng, data_specs] = self._init_iterator(
mode, batch_size, num_batches, rng, data_specs)
convert = None
return FiniteDatasetIterator(self,
mode(self.get_num_examples(),
batch_size,
num_batches,
rng),
data_specs=data_specs,
return_tuple=return_tuple,
convert=convert)
def _get_sources(self):
return tuple([alias if alias else source for alias, source in
safe_zip(self._aliases, self._sources)])
def _get_spaces(self):
space = [self.spaces[s] for s in self._get_sources]
return space[0] if len(space) == 1 else tuple(space)
def get_data_specs(self, source_or_alias=None):
if source_or_alias is None:
source_or_alias = self._get_sources()
if isinstance(source_or_alias, (list, tuple)):
space = tuple([self.spaces[s] for s in source_or_alias])
space = CompositeSpace(space)
else:
space = self.spaces[source_or_alias]
return (space, source_or_alias)
def get_data(self):
return tuple([self.data[s] for s in self._get_sources()])
def get(self, sources, indexes):
assert isinstance(sources, (tuple, list)) and len(sources) > 0, (
'sources should be an instance of tuple and not empty')
assert all([isinstance(el, string_types) for el in sources]), (
'sources elements should be strings')
assert isinstance(indexes, (tuple, list, slice, py_integer_types)), (
'indexes should be either an int, a slice or a tuple/list of ints')
if isinstance(indexes, (tuple, list)):
assert len(indexes) > 0 and all([isinstance(i, py_integer_types)
for i in indexes]), (
'indexes elements should be ints')
rval = []
for s in sources:
try:
sdata = self.data[s]
except ValueError as e:
reraise_as(ValueError(
'The requested source %s is not part of the dataset' %
sources[s], *e.args))
if (isinstance(indexes, (slice, py_integer_types)) or
len(indexes) == 1):
rval.append(sdata[indexes])
else:
warnings.warn('Accessing non sequential elements of an '
'HDF5 file will be at best VERY slow. Avoid '
'using iteration schemes that access '
'random/shuffled data with hdf5 datasets!!')
val = []
[val.append(sdata[idx]) for idx in indexes]
rval.append(val)
return tuple(rval)
@wraps(Dataset.get_num_examples, assigned=(), updated=())
def get_num_examples(self, source_or_alias=None):
assert source_or_alias is None or isinstance(source_or_alias,
string_types)
if source_or_alias is None:
alias = self._get_sources()
alias = alias[0] if isinstance(alias, (list, tuple)) else alias
data = self.data[alias]
else:
data = self.data[source_or_alias]
return data.shape[0]
class alias_dict(OrderedDict):
def __init__(self, **kwargs):
self.__a2k__ = {}
self.__k2a__ = {}
super(alias_dict, self).__init__(**kwargs)
def __getitem__(self, key_or_alias):
assert isinstance(key_or_alias, string_types)
try:
return super(alias_dict, self).__getitem__(key_or_alias)
except KeyError:
return super(alias_dict, self).__getitem__(
self.__a2k__[key_or_alias])
|
BSD 3-Clause New or Revised License
|
openforcefield/openff-qcsubmit
|
openff/qcsubmit/utils/utils.py
|
condense_molecules
|
python
|
def condense_molecules(molecules: List[off.Molecule]) -> off.Molecule:
molecule = molecules.pop()
for conformer in molecules:
_, atom_map = off.Molecule.are_isomorphic(
conformer, molecule, return_atom_map=True
)
mapped_mol = conformer.remap(atom_map)
for geometry in mapped_mol.conformers:
molecule.add_conformer(geometry)
return molecule
|
Take a list of identical molecules in different conformers and collapse them making sure that they are in the same order.
|
https://github.com/openforcefield/openff-qcsubmit/blob/4a239bfe606b541b4088a0f95da252ed21526197/openff/qcsubmit/utils/utils.py#L77-L89
|
from typing import Dict, Generator, List, Tuple
from openff.toolkit import topology as off
from openff.toolkit.utils.toolkits import (
RDKitToolkitWrapper,
UndefinedStereochemistryError,
)
def get_data(relative_path):
import os
from pkg_resources import resource_filename
fn = resource_filename("openff.qcsubmit", os.path.join("data", relative_path))
if not os.path.exists(fn):
raise ValueError(
f"Sorry! {fn} does not exist. If you just added it, you'll have to re-install"
)
return fn
def check_missing_stereo(molecule: off.Molecule) -> bool:
try:
_ = off.Molecule.from_smiles(
smiles=molecule.to_smiles(isomeric=True, explicit_hydrogens=True),
hydrogens_are_explicit=True,
allow_undefined_stereo=False,
toolkit_registry=RDKitToolkitWrapper(),
)
return False
except UndefinedStereochemistryError:
return True
def clean_strings(string_list: List[str]) -> List[str]:
clean_string = []
for string in string_list:
new_string = string.strip()
clean_string.append(new_string.strip(","))
return clean_string
def remap_list(target_list: List[int], mapping: Dict[int, int]) -> List[int]:
return [mapping[x] for x in target_list]
|
MIT License
|
neurosim-lab/netpyne
|
netpyne/network/modify.py
|
modifySynMechs
|
python
|
def modifySynMechs(self, params, updateMasterAllCells=False):
from .. import sim
sim.timing('start', 'modifySynMechsTime')
if sim.rank==0:
print('Modfying synaptic mech parameters...')
for cell in self.cells:
cell.modifySynMechs(params)
if updateMasterAllCells:
sim._gatherCells()
sim.timing('stop', 'modifySynMechsTime')
if sim.rank == 0 and sim.cfg.timing: print((' Done; syn mechs modification time = %0.2f s.' % sim.timingData['modifySynMechsTime']))
|
Function for/to <short description of `netpyne.network.modify.modifySynMechs`>
Parameters
----------
self : <type>
<Short description of self>
**Default:** *required*
params : <type>
<Short description of params>
**Default:** *required*
updateMasterAllCells : bool
<Short description of updateMasterAllCells>
**Default:** ``False``
**Options:** ``<option>`` <description of option>
|
https://github.com/neurosim-lab/netpyne/blob/78f8310449330c781558271106a529566bbafe07/netpyne/network/modify.py#L61-L98
|
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import division
from __future__ import absolute_import
from future import standard_library
standard_library.install_aliases()
def modifyCells(self, params, updateMasterAllCells=False):
from .. import sim
sim.timing('start', 'modifyCellsTime')
if sim.rank==0:
print('Modfying cell parameters...')
for cell in self.cells:
cell.modify(params)
if updateMasterAllCells:
sim._gatherCells()
sim.timing('stop', 'modifyCellsTime')
if sim.rank == 0 and sim.cfg.timing: print((' Done; cells modification time = %0.2f s.' % sim.timingData['modifyCellsTime']))
|
MIT License
|
forseti-security/forseti-security
|
google/cloud/forseti/services/model/service.py
|
GrpcModeller.DeleteModel
|
python
|
def DeleteModel(self, request, _):
model_name = request.handle
if not model_name:
LOGGER.warning('No model name in request: %s', request)
status = model_pb2.DeleteModelReply.FAIL
return model_pb2.DeleteModelReply(status=status)
try:
self.modeller.delete_model(model_name)
status = model_pb2.DeleteModelReply.SUCCESS
except Exception:
LOGGER.exception('Unable to delete model: %s', model_name)
status = model_pb2.DeleteModelReply.FAIL
return model_pb2.DeleteModelReply(status=status)
|
Deletes a model and all associated data.
Args:
request (object): pb2 object of DeleteModelRequest
_ (object): Not used
Returns:
object: pb2 object of DeleteModelReply
|
https://github.com/forseti-security/forseti-security/blob/de5d0f4d047c293a2a72545a76c3783980865551/google/cloud/forseti/services/model/service.py#L95-L121
|
from builtins import object
from google.cloud.forseti.common.util import string_formats
from google.cloud.forseti.services.model import model_pb2
from google.cloud.forseti.services.model import model_pb2_grpc
from google.cloud.forseti.services.model import modeller
from google.cloud.forseti.common.util import logger
LOGGER = logger.get_logger(__name__)
class GrpcModeller(model_pb2_grpc.ModellerServicer):
HANDLE_KEY = 'handle'
def _get_handle(self, context):
metadata = context.invocation_metadata()
metadata_dict = {}
for key, value in metadata:
metadata_dict[key] = value
return metadata_dict[self.HANDLE_KEY]
def __init__(self, modeller_api):
super(GrpcModeller, self).__init__()
self.modeller = modeller_api
def Ping(self, request, _):
return model_pb2.PingReply(data=request.data)
def CreateModel(self, request, context):
LOGGER.debug('Received request to create model: %s', request)
model = self.modeller.create_model(request.type,
request.name,
request.id,
request.background)
created_at_str = self._get_model_created_at_str(model)
LOGGER.debug('Model %s created at: %s', model, created_at_str)
reply = model_pb2.CreateModelReply(model=model_pb2.ModelSimplified(
name=model.name,
handle=model.handle,
status=model.state,
createdAt=created_at_str,
description=model.description))
return reply
|
Apache License 2.0
|
byceps/byceps
|
byceps/services/shop/order/service.py
|
_build_line_items
|
python
|
def _build_line_items(
cart_items: list[CartItem], order: DbOrder
) -> Iterator[DbLineItem]:
for cart_item in cart_items:
article = cart_item.article
quantity = cart_item.quantity
line_amount = cart_item.line_amount
yield DbLineItem(
order,
article.item_number,
article.type_,
article.description,
article.price,
article.tax_rate,
quantity,
line_amount,
article.processing_required,
)
|
Build line items from the cart's content.
|
https://github.com/byceps/byceps/blob/138f928e98fd1e3d79943e1a8744ea04cef465b5/byceps/services/shop/order/service.py#L128-L147
|
from __future__ import annotations
from datetime import datetime
from typing import Iterator, Mapping, Optional, Sequence
from flask import current_app
from flask_babel import lazy_gettext
from sqlalchemy.exc import IntegrityError
from ....database import db, paginate, Pagination
from ....events.shop import ShopOrderCanceled, ShopOrderPaid, ShopOrderPlaced
from ....typing import UserID
from ...user import service as user_service
from ..article import service as article_service
from ..cart.models import Cart, CartItem
from ..shop.dbmodels import Shop as DbShop
from ..shop import service as shop_service
from ..shop.transfer.models import ShopID
from ..storefront import service as storefront_service
from ..storefront.transfer.models import StorefrontID
from .dbmodels.line_item import LineItem as DbLineItem
from .dbmodels.order import Order as DbOrder
from .dbmodels.order_event import OrderEvent as DbOrderEvent, OrderEventData
from . import action_service, event_service, sequence_service
from .transfer.models import (
Address,
Order,
OrderID,
LineItem,
Orderer,
OrderNumber,
OrderState,
PaymentState,
)
class OrderFailed(Exception):
pass
def place_order(
storefront_id: StorefrontID,
orderer: Orderer,
cart: Cart,
*,
created_at: Optional[datetime] = None,
) -> tuple[Order, ShopOrderPlaced]:
storefront = storefront_service.get_storefront(storefront_id)
shop = shop_service.get_shop(storefront.shop_id)
orderer_user = user_service.get_user(orderer.user_id)
order_number_sequence = sequence_service.get_order_number_sequence(
storefront.order_number_sequence_id
)
order_number = sequence_service.generate_order_number(
order_number_sequence.id
)
cart_items = cart.get_items()
order = _build_order(shop.id, order_number, orderer, created_at)
line_items = list(_build_line_items(cart_items, order))
order.total_amount = cart.calculate_total_amount()
order.processing_required = any(
line_item.processing_required for line_item in line_items
)
db.session.add(order)
db.session.add_all(line_items)
_reduce_article_stock(cart_items)
try:
db.session.commit()
except IntegrityError as e:
current_app.logger.error('Order %s failed: %s', order_number, e)
db.session.rollback()
raise OrderFailed()
order_dto = _order_to_transfer_object(order)
event = ShopOrderPlaced(
occurred_at=order.created_at,
initiator_id=orderer_user.id,
initiator_screen_name=orderer_user.screen_name,
order_id=order.id,
order_number=order.order_number,
orderer_id=orderer_user.id,
orderer_screen_name=orderer_user.screen_name,
)
return order_dto, event
def _build_order(
shop_id: ShopID,
order_number: OrderNumber,
orderer: Orderer,
created_at: Optional[datetime],
) -> DbOrder:
return DbOrder(
shop_id,
order_number,
orderer.user_id,
orderer.first_names,
orderer.last_name,
orderer.country,
orderer.zip_code,
orderer.city,
orderer.street,
created_at=created_at,
)
|
BSD 3-Clause New or Revised License
|
unofficial-memsource/memsource-cli-client
|
memsource_cli/models/segmentation_rule_dto.py
|
SegmentationRuleDto.created_by
|
python
|
def created_by(self, created_by):
self._created_by = created_by
|
Sets the created_by of this SegmentationRuleDto.
created by user # noqa: E501
:param created_by: The created_by of this SegmentationRuleDto. # noqa: E501
:type: UserReference
|
https://github.com/unofficial-memsource/memsource-cli-client/blob/a6639506b74e95476da87f4375953448b76ea90c/memsource_cli/models/segmentation_rule_dto.py#L222-L231
|
import pprint
import re
import six
from memsource_cli.models.user_reference import UserReference
class SegmentationRuleDto(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'id': 'str',
'name': 'str',
'locale': 'str',
'primary': 'bool',
'filename': 'str',
'date_created': 'datetime',
'created_by': 'UserReference'
}
attribute_map = {
'id': 'id',
'name': 'name',
'locale': 'locale',
'primary': 'primary',
'filename': 'filename',
'date_created': 'dateCreated',
'created_by': 'createdBy'
}
def __init__(self, id=None, name=None, locale=None, primary=None, filename=None, date_created=None, created_by=None):
self._id = None
self._name = None
self._locale = None
self._primary = None
self._filename = None
self._date_created = None
self._created_by = None
self.discriminator = None
if id is not None:
self.id = id
if name is not None:
self.name = name
if locale is not None:
self.locale = locale
if primary is not None:
self.primary = primary
if filename is not None:
self.filename = filename
if date_created is not None:
self.date_created = date_created
if created_by is not None:
self.created_by = created_by
@property
def id(self):
return self._id
@id.setter
def id(self, id):
self._id = id
@property
def name(self):
return self._name
@name.setter
def name(self, name):
self._name = name
@property
def locale(self):
return self._locale
@locale.setter
def locale(self, locale):
self._locale = locale
@property
def primary(self):
return self._primary
@primary.setter
def primary(self, primary):
self._primary = primary
@property
def filename(self):
return self._filename
@filename.setter
def filename(self, filename):
self._filename = filename
@property
def date_created(self):
return self._date_created
@date_created.setter
def date_created(self, date_created):
self._date_created = date_created
@property
def created_by(self):
return self._created_by
@created_by.setter
|
Apache License 2.0
|
shiyuechengineer/meraki-dashboard
|
meraki_v0/api/wireless_health.py
|
WirelessHealth.getNetworkClientsConnectionStats
|
python
|
def getNetworkClientsConnectionStats(self, networkId: str, **kwargs):
kwargs.update(locals())
if 'band' in kwargs:
options = ['2.4', '5']
assert kwargs['band'] in options, f'''"band" cannot be "{kwargs['band']}", & must be set to one of: {options}'''
metadata = {
'tags': ['Wireless health'],
'operation': 'getNetworkClientsConnectionStats',
}
resource = f'/networks/{networkId}/clients/connectionStats'
query_params = ['t0', 't1', 'timespan', 'band', 'ssid', 'vlan', 'apTag']
params = {k.strip(): v for (k, v) in kwargs.items() if k.strip() in query_params}
return self._session.get(metadata, resource, params)
|
**Aggregated connectivity info for this network, grouped by clients**
https://developer.cisco.com/meraki/api/#!get-network-clients-connection-stats
- networkId (string)
- t0 (string): The beginning of the timespan for the data. The maximum lookback period is 180 days from today.
- t1 (string): The end of the timespan for the data. t1 can be a maximum of 7 days after t0.
- timespan (number): The timespan for which the information will be fetched. If specifying timespan, do not specify parameters t0 and t1. The value must be in seconds and be less than or equal to 7 days.
- band (string): Filter results by band (either '2.4' or '5'). Note that data prior to February 2020 will not have band information.
- ssid (integer): Filter results by SSID
- vlan (integer): Filter results by VLAN
- apTag (string): Filter results by AP Tag
|
https://github.com/shiyuechengineer/meraki-dashboard/blob/f00442acf762a94e7e446f80a2485d120e7090d5/meraki_v0/api/wireless_health.py#L6-L36
|
class WirelessHealth(object):
def __init__(self, session):
super(WirelessHealth, self).__init__()
self._session = session
|
MIT License
|
pranjaldatta/pyvision
|
pyvision/misc/mtcnn/model.py
|
MTCNN.download_weights
|
python
|
def download_weights(self, wtspath):
if os.path.exists(wtspath) and len(os.listdir(wtspath)) > 0:
return 1
elif os.path.exists(__PREFIX__ + "/weights/") and len(os.listdir(__PREFIX__+"/weights/")) == 0:
os.rmdir(__PREFIX__+"/weights/")
elif not os.path.exists(wtspath):
os.mkdir(__PREFIX__ + "/weights/")
with open(__PREFIX__+"/config/weights_download.json") as fp:
json_file = json.load(fp)
try:
for net in ["pnet", "rnet", "onet"]:
print("downloading {}.npy".format(net))
url = 'https://drive.google.com/uc?id={}'.format(json_file[net])
gdown.download(url, wtspath+"/{}.npy".format(net), quiet=False)
except Exception as exp:
print("Error at weights download. ", exp)
exit()
return 0
|
download_weights
Parameters
----------
wtspath : [str; path]
[the full path to the ./weights/ folder]
Returns
-------
[int]
[1 : weights already exist
2 : weights have been downloaded successfully]
|
https://github.com/pranjaldatta/pyvision/blob/ad57b27cf790c267772402e47bd9e140ba6f549e/pyvision/misc/mtcnn/model.py#L58-L92
|
import numpy as np
from PIL import Image
import os
import json
import gdown
import cv2
import torch
from .nets import PNet, RNet, ONet
from .stage_one import first_stage
from .stage_two import get_image_boxes
from .utils.visualize import show_boxes
from .utils.utils import nms, convert_to_square, calibrate_boxes
__PREFIX__ = os.path.dirname(os.path.realpath(__file__))
class MTCNN:
def __init__(self, device="cpu", min_face_size = 20.0, conf_thresh=[0.7, 0.7, 0.8], nms_thresh=[0.7, .7, .7], pretrained=True):
if device is not "cpu":
raise NotImplementedError("gpu support not implemented. cpu only.")
if len(conf_thresh) != 3 or len(nms_thresh) != 3:
raise AssertionError("conf_thresh or nms_thresh of len :{},{} while expected size: 3".format(len(conf_thresh), len(nms_thresh)))
if min_face_size <= 0.0 or min_face_size is None:
raise ValueError("min_face_size expected > 0.0 . Found {}".format(min_face_size))
if not pretrained:
raise NotImplementedError("Only Inference supported. Found pretrained=", pretrained)
self.min_face_size = min_face_size
self.conf_thresh = conf_thresh
self.nms_thresh = nms_thresh
self.pretrained = pretrained
self.weights_path = __PREFIX__ + "/weights/"
if pretrained:
resp = self.download_weights(self.weights_path)
if resp == 1:
print("Weight files exist.")
elif resp == 0:
print("Weight files downloaded.")
self.pnet = PNet()
self.rnet = RNet()
self.onet = ONet()
|
BSD 3-Clause New or Revised License
|
azure/azure-linux-extensions
|
DSC/azure/servicemanagement/servicebusmanagementservice.py
|
ServiceBusManagementService.list_topics
|
python
|
def list_topics(self, name):
response = self._perform_get(
self._get_list_topics_path(name),
None)
return _convert_response_to_feeds(response, TopicDescription)
|
Retrieves the topics in the service namespace.
name: Name of the service bus namespace.
|
https://github.com/azure/azure-linux-extensions/blob/128c1c5babfe5f74ad3c00be95abce3c54311e91/DSC/azure/servicemanagement/servicebusmanagementservice.py#L133-L143
|
from azure import (
MANAGEMENT_HOST,
_convert_response_to_feeds,
_str,
_validate_not_none,
)
from azure.servicemanagement import (
_ServiceBusManagementXmlSerializer,
QueueDescription,
TopicDescription,
NotificationHubDescription,
RelayDescription,
)
from azure.servicemanagement.servicemanagementclient import (
_ServiceManagementClient,
)
class ServiceBusManagementService(_ServiceManagementClient):
def __init__(self, subscription_id=None, cert_file=None,
host=MANAGEMENT_HOST):
super(ServiceBusManagementService, self).__init__(
subscription_id, cert_file, host)
def get_regions(self):
response = self._perform_get(
self._get_path('services/serviceBus/Regions/', None),
None)
return _convert_response_to_feeds(
response,
_ServiceBusManagementXmlSerializer.xml_to_region)
def list_namespaces(self):
response = self._perform_get(
self._get_path('services/serviceBus/Namespaces/', None),
None)
return _convert_response_to_feeds(
response,
_ServiceBusManagementXmlSerializer.xml_to_namespace)
def get_namespace(self, name):
response = self._perform_get(
self._get_path('services/serviceBus/Namespaces', name),
None)
return _ServiceBusManagementXmlSerializer.xml_to_namespace(
response.body)
def create_namespace(self, name, region):
_validate_not_none('name', name)
return self._perform_put(
self._get_path('services/serviceBus/Namespaces', name),
_ServiceBusManagementXmlSerializer.namespace_to_xml(region))
def delete_namespace(self, name):
_validate_not_none('name', name)
return self._perform_delete(
self._get_path('services/serviceBus/Namespaces', name),
None)
def check_namespace_availability(self, name):
_validate_not_none('name', name)
response = self._perform_get(
self._get_path('services/serviceBus/CheckNamespaceAvailability',
None) + '/?namespace=' + _str(name), None)
return _ServiceBusManagementXmlSerializer.xml_to_namespace_availability(
response.body)
def list_queues(self, name):
_validate_not_none('name', name)
response = self._perform_get(
self._get_list_queues_path(name),
None)
return _convert_response_to_feeds(response, QueueDescription)
|
Apache License 2.0
|
pag-crypto/zkmbs
|
tls_testing/tlslite-ng-0.8.0-alpha40/tlslite/mathtls.py
|
calc_key
|
python
|
def calc_key(version, secret, cipher_suite, label, handshake_hashes=None,
client_random=None, server_random=None, output_length=None):
if version == (3, 0):
if label == b"client finished":
senderStr = b"\x43\x4C\x4E\x54"
return handshake_hashes.digestSSL(secret, senderStr)
elif label == b"server finished":
senderStr = b"\x53\x52\x56\x52"
return handshake_hashes.digestSSL(secret, senderStr)
else:
assert label in [b"key expansion", b"master secret"]
func = PRF_SSL
elif version in ((3, 1), (3, 2)):
func = PRF
if label == b"extended master secret":
seed = handshake_hashes.digest('md5') + handshake_hashes.digest('sha1')
elif label in [b"server finished", b"client finished"]:
seed = handshake_hashes.digest()
else:
assert label in [b"key expansion", b"master secret"]
else:
assert version == (3, 3)
if cipher_suite in CipherSuite.sha384PrfSuites:
func = PRF_1_2_SHA384
if label in [b"extended master secret", b"server finished",
b"client finished"]:
seed = handshake_hashes.digest('sha384')
else:
assert label in [b"key expansion", b"master secret"]
else:
func = PRF_1_2
if label in [b"extended master secret", b"server finished",
b"client finished"]:
seed = handshake_hashes.digest('sha256')
else:
assert label in [b"key expansion", b"master secret"]
if label == b"key expansion":
seed = server_random + client_random
if label == b"master secret":
seed = client_random + server_random
if func == PRF_SSL:
return func(secret, seed, output_length)
return func(secret, label, seed, output_length)
|
Method for calculating different keys depending on input.
It can be used to calculate finished value, master secret,
extended master secret or key expansion.
:param version: TLS protocol version
:type version: tuple(int, int)
:param bytearray secret: master secret or premasterSecret which will be
used in the PRF.
:param int cipher_suite: Negotiated cipher suite of the connection.
:param bytes label: label for the key you want to calculate
(ex. 'master secret', 'extended master secret', etc).
:param handshake_hashes: running hash of the handshake messages
needed for calculating extended master secret or finished value.
:type handshake_hashes: ~tlslite.handshakehashes.HandshakeHashes
:param bytearray client_random: client random needed for calculating
master secret or key expansion.
:param bytearray server_random: server random needed for calculating
master secret or key expansion.
:param int output_length: Number of bytes to output.
|
https://github.com/pag-crypto/zkmbs/blob/895cf22144df1967b5582b3721d4a6967a5fea9c/tls_testing/tlslite-ng-0.8.0-alpha40/tlslite/mathtls.py#L827-L908
|
from .utils.compat import *
from .utils.cryptomath import *
from .constants import CipherSuite
from .utils import tlshashlib as hashlib
from .utils import tlshmac as hmac
from .utils.deprecations import deprecated_method
FFDHE_PARAMETERS = {}
RFC2409_GROUP1 = (
2,
int(remove_whitespace("""
FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625E7EC6 F44C42E9 A63A3620 FFFFFFFF FFFFFFFF"""), 16))
FFDHE_PARAMETERS["RFC2409 group 1"] = RFC2409_GROUP1
RFC2409_GROUP2 = (
2,
int(remove_whitespace("""
FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE65381
FFFFFFFF FFFFFFFF"""), 16))
FFDHE_PARAMETERS["RFC2409 group 2"] = RFC2409_GROUP2
RFC3526_GROUP5 = (
2,
int(remove_whitespace("""
FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F
83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
670C354E 4ABC9804 F1746C08 CA237327 FFFFFFFF FFFFFFFF"""), 16))
FFDHE_PARAMETERS["RFC3526 group 5"] = RFC3526_GROUP5
RFC3526_GROUP14 = (
2,
int(remove_whitespace("""
FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F
83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B
E39E772C 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9
DE2BCBF6 95581718 3995497C EA956AE5 15D22618 98FA0510
15728E5A 8AACAA68 FFFFFFFF FFFFFFFF"""), 16))
FFDHE_PARAMETERS["RFC3526 group 14"] = RFC3526_GROUP14
RFC3526_GROUP15 = (
2,
int(remove_whitespace("""
FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F
83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B
E39E772C 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9
DE2BCBF6 95581718 3995497C EA956AE5 15D22618 98FA0510
15728E5A 8AAAC42D AD33170D 04507A33 A85521AB DF1CBA64
ECFB8504 58DBEF0A 8AEA7157 5D060C7D B3970F85 A6E1E4C7
ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226 1AD2EE6B
F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31
43DB5BFC E0FD108E 4B82D120 A93AD2CA FFFFFFFF FFFFFFFF"""), 16))
FFDHE_PARAMETERS["RFC3526 group 15"] = RFC3526_GROUP15
RFC3526_GROUP16 = (
2,
int(remove_whitespace("""
FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F
83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B
E39E772C 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9
DE2BCBF6 95581718 3995497C EA956AE5 15D22618 98FA0510
15728E5A 8AAAC42D AD33170D 04507A33 A85521AB DF1CBA64
ECFB8504 58DBEF0A 8AEA7157 5D060C7D B3970F85 A6E1E4C7
ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226 1AD2EE6B
F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31
43DB5BFC E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7
88719A10 BDBA5B26 99C32718 6AF4E23C 1A946834 B6150BDA
2583E9CA 2AD44CE8 DBBBC2DB 04DE8EF9 2E8EFC14 1FBECAA6
287C5947 4E6BC05D 99B2964F A090C3A2 233BA186 515BE7ED
1F612970 CEE2D7AF B81BDD76 2170481C D0069127 D5B05AA9
93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34063199
FFFFFFFF FFFFFFFF"""), 16))
FFDHE_PARAMETERS["RFC3526 group 16"] = RFC3526_GROUP16
RFC3526_GROUP17 = (
2,
int(remove_whitespace("""
FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34028492
36C3FAB4 D27C7026 C1D4DCB2 602646DE C9751E76 3DBA37BD F8FF9406
AD9E530E E5DB382F 413001AE B06A53ED 9027D831 179727B0 865A8918
DA3EDBEB CF9B14ED 44CE6CBA CED4BB1B DB7F1447 E6CC254B 33205151
2BD7AF42 6FB8F401 378CD2BF 5983CA01 C64B92EC F032EA15 D1721D03
F482D7CE 6E74FEF6 D55E702F 46980C82 B5A84031 900B1C9E 59E7C97F
BEC7E8F3 23A97A7E 36CC88BE 0F1D45B7 FF585AC5 4BD407B2 2B4154AA
CC8F6D7E BF48E1D8 14CC5ED2 0F8037E0 A79715EE F29BE328 06A1D58B
B7C5DA76 F550AA3D 8A1FBFF0 EB19CCB1 A313D55C DA56C9EC 2EF29632
387FE8D7 6E3C0468 043E8F66 3F4860EE 12BF2D5B 0B7474D6 E694F91E
6DCC4024 FFFFFFFF FFFFFFFF"""), 16))
FFDHE_PARAMETERS["RFC3526 group 17"] = RFC3526_GROUP17
RFC3526_GROUP18 = (
2,
int(remove_whitespace("""
FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F
83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B
E39E772C 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9
DE2BCBF6 95581718 3995497C EA956AE5 15D22618 98FA0510
15728E5A 8AAAC42D AD33170D 04507A33 A85521AB DF1CBA64
ECFB8504 58DBEF0A 8AEA7157 5D060C7D B3970F85 A6E1E4C7
ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226 1AD2EE6B
F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31
43DB5BFC E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7
88719A10 BDBA5B26 99C32718 6AF4E23C 1A946834 B6150BDA
2583E9CA 2AD44CE8 DBBBC2DB 04DE8EF9 2E8EFC14 1FBECAA6
287C5947 4E6BC05D 99B2964F A090C3A2 233BA186 515BE7ED
1F612970 CEE2D7AF B81BDD76 2170481C D0069127 D5B05AA9
93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34028492
36C3FAB4 D27C7026 C1D4DCB2 602646DE C9751E76 3DBA37BD
F8FF9406 AD9E530E E5DB382F 413001AE B06A53ED 9027D831
179727B0 865A8918 DA3EDBEB CF9B14ED 44CE6CBA CED4BB1B
DB7F1447 E6CC254B 33205151 2BD7AF42 6FB8F401 378CD2BF
5983CA01 C64B92EC F032EA15 D1721D03 F482D7CE 6E74FEF6
D55E702F 46980C82 B5A84031 900B1C9E 59E7C97F BEC7E8F3
23A97A7E 36CC88BE 0F1D45B7 FF585AC5 4BD407B2 2B4154AA
CC8F6D7E BF48E1D8 14CC5ED2 0F8037E0 A79715EE F29BE328
06A1D58B B7C5DA76 F550AA3D 8A1FBFF0 EB19CCB1 A313D55C
DA56C9EC 2EF29632 387FE8D7 6E3C0468 043E8F66 3F4860EE
12BF2D5B 0B7474D6 E694F91E 6DBE1159 74A3926F 12FEE5E4
38777CB6 A932DF8C D8BEC4D0 73B931BA 3BC832B6 8D9DD300
741FA7BF 8AFC47ED 2576F693 6BA42466 3AAB639C 5AE4F568
3423B474 2BF1C978 238F16CB E39D652D E3FDB8BE FC848AD9
22222E04 A4037C07 13EB57A8 1A23F0C7 3473FC64 6CEA306B
4BCBC886 2F8385DD FA9D4B7F A2C087E8 79683303 ED5BDD3A
062B3CF5 B3A278A6 6D2A13F8 3F44F82D DF310EE0 74AB6A36
4597E899 A0255DC1 64F31CC5 0846851D F9AB4819 5DED7EA1
B1D510BD 7EE74D73 FAF36BC3 1ECFA268 359046F4 EB879F92
4009438B 481C6CD7 889A002E D5EE382B C9190DA6 FC026E47
9558E447 5677E9AA 9E3050E2 765694DF C81F56E8 80B96E71
60C980DD 98EDD3DF FFFFFFFF FFFFFFFF"""), 16))
FFDHE_PARAMETERS["RFC3526 group 18"] = RFC3526_GROUP18
goodGroupParameters = [
(2, int(remove_whitespace(
"""
EEAF0AB9 ADB38DD6 9C33F80A FA8FC5E8 60726187 75FF3C0B 9EA2314C
9C256576 D674DF74 96EA81D3 383B4813 D692C6E0 E0D5D8E2 50B98BE4
8E495C1D 6089DAD1 5DC7D7B4 6154D6B6 CE8EF4AD 69B15D49 82559B29
7BCF1885 C529F566 660E57EC 68EDBC3C 05726CC0 2FD4CBF4 976EAA9A
FD5138FE 8376435B 9FC61D2F C0EB06E3"""), 16)),
(2, int(remove_whitespace(
"""
9DEF3CAF B939277A B1F12A86 17A47BBB DBA51DF4 99AC4C80 BEEEA961
4B19CC4D 5F4F5F55 6E27CBDE 51C6A94B E4607A29 1558903B A0D0F843
80B655BB 9A22E8DC DF028A7C EC67F0D0 8134B1C8 B9798914 9B609E0B
E3BAB63D 47548381 DBC5B1FC 764E3F4B 53DD9DA1 158BFD3E 2B9C8CF5
6EDF0195 39349627 DB2FD53D 24B7C486 65772E43 7D6C7F8C E442734A
F7CCB7AE 837C264A E3A9BEB8 7F8A2FE9 B8B5292E 5A021FFF 5E91479E
8CE7A28C 2442C6F3 15180F93 499A234D CF76E3FE D135F9BB"""), 16)),
(2, int(remove_whitespace(
"""
AC6BDB41 324A9A9B F166DE5E 1389582F AF72B665 1987EE07 FC319294
3DB56050 A37329CB B4A099ED 8193E075 7767A13D D52312AB 4B03310D
CD7F48A9 DA04FD50 E8083969 EDB767B0 CF609517 9A163AB3 661A05FB
D5FAAAE8 2918A996 2F0B93B8 55F97993 EC975EEA A80D740A DBF4FF74
7359D041 D5C33EA7 1D281E44 6B14773B CA97B43A 23FB8016 76BD207A
436C6481 F1D2B907 8717461A 5B9D32E6 88F87748 544523B5 24B0D57D
5EA77A27 75D2ECFA 032CFBDB F52FB378 61602790 04E57AE6 AF874E73
03CE5329 9CCC041C 7BC308D8 2A5698F3 A8D0C382 71AE35F8 E9DBFBB6
94B5C803 D89F7AE4 35DE236D 525F5475 9B65E372 FCD68EF2 0FA7111F
9E4AFF73"""), 16)),
(5, int(remove_whitespace(
"""
FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
E0FD108E 4B82D120 A93AD2CA FFFFFFFF FFFFFFFF"""), 16)),
(5, int(remove_whitespace(
"""
FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34063199
FFFFFFFF FFFFFFFF"""), 16)),
(5, int(remove_whitespace(
"""
FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34028492
36C3FAB4 D27C7026 C1D4DCB2 602646DE C9751E76 3DBA37BD F8FF9406
AD9E530E E5DB382F 413001AE B06A53ED 9027D831 179727B0 865A8918
DA3EDBEB CF9B14ED 44CE6CBA CED4BB1B DB7F1447 E6CC254B 33205151
2BD7AF42 6FB8F401 378CD2BF 5983CA01 C64B92EC F032EA15 D1721D03
F482D7CE 6E74FEF6 D55E702F 46980C82 B5A84031 900B1C9E 59E7C97F
BEC7E8F3 23A97A7E 36CC88BE 0F1D45B7 FF585AC5 4BD407B2 2B4154AA
CC8F6D7E BF48E1D8 14CC5ED2 0F8037E0 A79715EE F29BE328 06A1D58B
B7C5DA76 F550AA3D 8A1FBFF0 EB19CCB1 A313D55C DA56C9EC 2EF29632
387FE8D7 6E3C0468 043E8F66 3F4860EE 12BF2D5B 0B7474D6 E694F91E
6DCC4024 FFFFFFFF FFFFFFFF"""), 16)),
(19, int(remove_whitespace(
"""
FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34028492
36C3FAB4 D27C7026 C1D4DCB2 602646DE C9751E76 3DBA37BD F8FF9406
AD9E530E E5DB382F 413001AE B06A53ED 9027D831 179727B0 865A8918
DA3EDBEB CF9B14ED 44CE6CBA CED4BB1B DB7F1447 E6CC254B 33205151
2BD7AF42 6FB8F401 378CD2BF 5983CA01 C64B92EC F032EA15 D1721D03
F482D7CE 6E74FEF6 D55E702F 46980C82 B5A84031 900B1C9E 59E7C97F
BEC7E8F3 23A97A7E 36CC88BE 0F1D45B7 FF585AC5 4BD407B2 2B4154AA
CC8F6D7E BF48E1D8 14CC5ED2 0F8037E0 A79715EE F29BE328 06A1D58B
B7C5DA76 F550AA3D 8A1FBFF0 EB19CCB1 A313D55C DA56C9EC 2EF29632
387FE8D7 6E3C0468 043E8F66 3F4860EE 12BF2D5B 0B7474D6 E694F91E
6DBE1159 74A3926F 12FEE5E4 38777CB6 A932DF8C D8BEC4D0 73B931BA
3BC832B6 8D9DD300 741FA7BF 8AFC47ED 2576F693 6BA42466 3AAB639C
5AE4F568 3423B474 2BF1C978 238F16CB E39D652D E3FDB8BE FC848AD9
22222E04 A4037C07 13EB57A8 1A23F0C7 3473FC64 6CEA306B 4BCBC886
2F8385DD FA9D4B7F A2C087E8 79683303 ED5BDD3A 062B3CF5 B3A278A6
6D2A13F8 3F44F82D DF310EE0 74AB6A36 4597E899 A0255DC1 64F31CC5
0846851D F9AB4819 5DED7EA1 B1D510BD 7EE74D73 FAF36BC3 1ECFA268
359046F4 EB879F92 4009438B 481C6CD7 889A002E D5EE382B C9190DA6
FC026E47 9558E447 5677E9AA 9E3050E2 765694DF C81F56E8 80B96E71
60C980DD 98EDD3DF FFFFFFFF FFFFFFFF"""), 16))]
for num, group in enumerate(goodGroupParameters, 1):
FFDHE_PARAMETERS["RFC5054 group {0}".format(num)] = group
goodGroupParameters.append((2, goodGroupParameters[3][1]))
goodGroupParameters.append((5, goodGroupParameters[6][1]))
RFC5114_GROUP22 = (
int(remove_whitespace("""
A4D1CBD5 C3FD3412 6765A442 EFB99905 F8104DD2 58AC507F
D6406CFF 14266D31 266FEA1E 5C41564B 777E690F 5504F213
160217B4 B01B886A 5E91547F 9E2749F4 D7FBD7D3 B9A92EE1
909D0D22 63F80A76 A6A24C08 7A091F53 1DBF0A01 69B6A28A
D662A4D1 8E73AFA3 2D779D59 18D08BC8 858F4DCE F97C2A24
855E6EEB 22B3B2E5"""), 16),
int(remove_whitespace("""
B10B8F96 A080E01D DE92DE5E AE5D54EC 52C99FBC FB06A3C6
9A6A9DCA 52D23B61 6073E286 75A23D18 9838EF1E 2EE652C0
13ECB4AE A9061123 24975C3C D49B83BF ACCBDD7D 90C4BD70
98488E9C 219A7372 4EFFD6FA E5644738 FAA31A4F F55BCCC0
A151AF5F 0DC8B4BD 45BF37DF 365C1A65 E68CFDA7 6D4DA708
DF1FB2BC 2E4A4371"""), 16))
FFDHE_PARAMETERS["RFC5114 group 22"] = RFC5114_GROUP22
RFC5114_GROUP23 = (
int(remove_whitespace("""
AC4032EF 4F2D9AE3 9DF30B5C 8FFDAC50 6CDEBE7B 89998CAF
74866A08 CFE4FFE3 A6824A4E 10B9A6F0 DD921F01 A70C4AFA
AB739D77 00C29F52 C57DB17C 620A8652 BE5E9001 A8D66AD7
C1766910 1999024A F4D02727 5AC1348B B8A762D0 521BC98A
E2471504 22EA1ED4 09939D54 DA7460CD B5F6C6B2 50717CBE
F180EB34 118E98D1 19529A45 D6F83456 6E3025E3 16A330EF
BB77A86F 0C1AB15B 051AE3D4 28C8F8AC B70A8137 150B8EEB
10E183ED D19963DD D9E263E4 770589EF 6AA21E7F 5F2FF381
B539CCE3 409D13CD 566AFBB4 8D6C0191 81E1BCFE 94B30269
EDFE72FE 9B6AA4BD 7B5A0F1C 71CFFF4C 19C418E1 F6EC0179
81BC087F 2A7065B3 84B890D3 191F2BFA"""), 16),
int(remove_whitespace("""
AD107E1E 9123A9D0 D660FAA7 9559C51F A20D64E5 683B9FD1
B54B1597 B61D0A75 E6FA141D F95A56DB AF9A3C40 7BA1DF15
EB3D688A 309C180E 1DE6B85A 1274A0A6 6D3F8152 AD6AC212
9037C9ED EFDA4DF8 D91E8FEF 55B7394B 7AD5B7D0 B6C12207
C9F98D11 ED34DBF6 C6BA0B2C 8BBC27BE 6A00E0A0 B9C49708
B3BF8A31 70918836 81286130 BC8985DB 1602E714 415D9330
278273C7 DE31EFDC 7310F712 1FD5A074 15987D9A DC0A486D
CDF93ACC 44328387 315D75E1 98C641A4 80CD86A1 B9E587E8
BE60E69C C928B2B9 C52172E4 13042E9B 23F10B0E 16E79763
C9B53DCF 4BA80A29 E3FB73C1 6B8E75B9 7EF363E2 FFA31F71
CF9DE538 4E71B81C 0AC4DFFE 0C10E64F"""), 16))
FFDHE_PARAMETERS["RFC5114 group 23"] = RFC5114_GROUP23
RFC5114_GROUP24 = (
int(remove_whitespace("""
3FB32C9B 73134D0B 2E775066 60EDBD48 4CA7B18F 21EF2054
07F4793A 1A0BA125 10DBC150 77BE463F FF4FED4A AC0BB555
BE3A6C1B 0C6B47B1 BC3773BF 7E8C6F62 901228F8 C28CBB18
A55AE313 41000A65 0196F931 C77A57F2 DDF463E5 E9EC144B
777DE62A AAB8A862 8AC376D2 82D6ED38 64E67982 428EBC83
1D14348F 6F2F9193 B5045AF2 767164E1 DFC967C1 FB3F2E55
A4BD1BFF E83B9C80 D052B985 D182EA0A DB2A3B73 13D3FE14
C8484B1E 052588B9 B7D2BBD2 DF016199 ECD06E15 57CD0915
B3353BBB 64E0EC37 7FD02837 0DF92B52 C7891428 CDC67EB6
184B523D 1DB246C3 2F630784 90F00EF8 D647D148 D4795451
5E2327CF EF98C582 664B4C0F 6CC41659"""), 16),
int(remove_whitespace("""
87A8E61D B4B6663C FFBBD19C 65195999 8CEEF608 660DD0F2
5D2CEED4 435E3B00 E00DF8F1 D61957D4 FAF7DF45 61B2AA30
16C3D911 34096FAA 3BF4296D 830E9A7C 209E0C64 97517ABD
5A8A9D30 6BCF67ED 91F9E672 5B4758C0 22E0B1EF 4275BF7B
6C5BFC11 D45F9088 B941F54E B1E59BB8 BC39A0BF 12307F5C
4FDB70C5 81B23F76 B63ACAE1 CAA6B790 2D525267 35488A0E
F13C6D9A 51BFA4AB 3AD83477 96524D8E F6A167B5 A41825D9
67E144E5 14056425 1CCACB83 E6B486F6 B3CA3F79 71506026
C0B857F6 89962856 DED4010A BD0BE621 C3A3960A 54E710C3
75F26375 D7014103 A4B54330 C198AF12 6116D227 6E11715F
693877FA D7EF09CA DB094AE9 1E1A1597"""), 16))
FFDHE_PARAMETERS["RFC5114 group 24"] = RFC5114_GROUP24
RFC7919_GROUPS = []
FFDHE2048 = (
2,
int(remove_whitespace("""
FFFFFFFF FFFFFFFF ADF85458 A2BB4A9A AFDC5620 273D3CF1
D8B9C583 CE2D3695 A9E13641 146433FB CC939DCE 249B3EF9
7D2FE363 630C75D8 F681B202 AEC4617A D3DF1ED5 D5FD6561
2433F51F 5F066ED0 85636555 3DED1AF3 B557135E 7F57C935
984F0C70 E0E68B77 E2A689DA F3EFE872 1DF158A1 36ADE735
30ACCA4F 483A797A BC0AB182 B324FB61 D108A94B B2C8E3FB
B96ADAB7 60D7F468 1D4F42A3 DE394DF4 AE56EDE7 6372BB19
0B07A7C8 EE0A6D70 9E02FCE1 CDF7E2EC C03404CD 28342F61
9172FE9C E98583FF 8E4F1232 EEF28183 C3FE3B1B 4C6FAD73
3BB5FCBC 2EC22005 C58EF183 7D1683B2 C6F34A26 C1B2EFFA
886B4238 61285C97 FFFFFFFF FFFFFFFF"""), 16))
goodGroupParameters.append(FFDHE2048)
RFC7919_GROUPS.append(FFDHE2048)
FFDHE_PARAMETERS["RFC7919 ffdhe2048"] = FFDHE2048
FFDHE3072 = (
2,
int(remove_whitespace("""
FFFFFFFF FFFFFFFF ADF85458 A2BB4A9A AFDC5620 273D3CF1
D8B9C583 CE2D3695 A9E13641 146433FB CC939DCE 249B3EF9
7D2FE363 630C75D8 F681B202 AEC4617A D3DF1ED5 D5FD6561
2433F51F 5F066ED0 85636555 3DED1AF3 B557135E 7F57C935
984F0C70 E0E68B77 E2A689DA F3EFE872 1DF158A1 36ADE735
30ACCA4F 483A797A BC0AB182 B324FB61 D108A94B B2C8E3FB
B96ADAB7 60D7F468 1D4F42A3 DE394DF4 AE56EDE7 6372BB19
0B07A7C8 EE0A6D70 9E02FCE1 CDF7E2EC C03404CD 28342F61
9172FE9C E98583FF 8E4F1232 EEF28183 C3FE3B1B 4C6FAD73
3BB5FCBC 2EC22005 C58EF183 7D1683B2 C6F34A26 C1B2EFFA
886B4238 611FCFDC DE355B3B 6519035B BC34F4DE F99C0238
61B46FC9 D6E6C907 7AD91D26 91F7F7EE 598CB0FA C186D91C
AEFE1309 85139270 B4130C93 BC437944 F4FD4452 E2D74DD3
64F2E21E 71F54BFF 5CAE82AB 9C9DF69E E86D2BC5 22363A0D
ABC52197 9B0DEADA 1DBF9A42 D5C4484E 0ABCD06B FA53DDEF
3C1B20EE 3FD59D7C 25E41D2B 66C62E37 FFFFFFFF FFFFFFFF"""), 16))
goodGroupParameters.append(FFDHE3072)
RFC7919_GROUPS.append(FFDHE3072)
FFDHE_PARAMETERS["RFC7919 ffdhe3072"] = FFDHE3072
FFDHE4096 = (
2,
int(remove_whitespace("""
FFFFFFFF FFFFFFFF ADF85458 A2BB4A9A AFDC5620 273D3CF1
D8B9C583 CE2D3695 A9E13641 146433FB CC939DCE 249B3EF9
7D2FE363 630C75D8 F681B202 AEC4617A D3DF1ED5 D5FD6561
2433F51F 5F066ED0 85636555 3DED1AF3 B557135E 7F57C935
984F0C70 E0E68B77 E2A689DA F3EFE872 1DF158A1 36ADE735
30ACCA4F 483A797A BC0AB182 B324FB61 D108A94B B2C8E3FB
B96ADAB7 60D7F468 1D4F42A3 DE394DF4 AE56EDE7 6372BB19
0B07A7C8 EE0A6D70 9E02FCE1 CDF7E2EC C03404CD 28342F61
9172FE9C E98583FF 8E4F1232 EEF28183 C3FE3B1B 4C6FAD73
3BB5FCBC 2EC22005 C58EF183 7D1683B2 C6F34A26 C1B2EFFA
886B4238 611FCFDC DE355B3B 6519035B BC34F4DE F99C0238
61B46FC9 D6E6C907 7AD91D26 91F7F7EE 598CB0FA C186D91C
AEFE1309 85139270 B4130C93 BC437944 F4FD4452 E2D74DD3
64F2E21E 71F54BFF 5CAE82AB 9C9DF69E E86D2BC5 22363A0D
ABC52197 9B0DEADA 1DBF9A42 D5C4484E 0ABCD06B FA53DDEF
3C1B20EE 3FD59D7C 25E41D2B 669E1EF1 6E6F52C3 164DF4FB
7930E9E4 E58857B6 AC7D5F42 D69F6D18 7763CF1D 55034004
87F55BA5 7E31CC7A 7135C886 EFB4318A ED6A1E01 2D9E6832
A907600A 918130C4 6DC778F9 71AD0038 092999A3 33CB8B7A
1A1DB93D 7140003C 2A4ECEA9 F98D0ACC 0A8291CD CEC97DCF
8EC9B55A 7F88A46B 4DB5A851 F44182E1 C68A007E 5E655F6A
FFFFFFFF FFFFFFFF"""), 16))
goodGroupParameters.append(FFDHE4096)
RFC7919_GROUPS.append(FFDHE4096)
FFDHE_PARAMETERS["RFC7919 ffdhe4096"] = FFDHE4096
FFDHE6144 = (
2,
int(remove_whitespace("""
FFFFFFFF FFFFFFFF ADF85458 A2BB4A9A AFDC5620 273D3CF1
D8B9C583 CE2D3695 A9E13641 146433FB CC939DCE 249B3EF9
7D2FE363 630C75D8 F681B202 AEC4617A D3DF1ED5 D5FD6561
2433F51F 5F066ED0 85636555 3DED1AF3 B557135E 7F57C935
984F0C70 E0E68B77 E2A689DA F3EFE872 1DF158A1 36ADE735
30ACCA4F 483A797A BC0AB182 B324FB61 D108A94B B2C8E3FB
B96ADAB7 60D7F468 1D4F42A3 DE394DF4 AE56EDE7 6372BB19
0B07A7C8 EE0A6D70 9E02FCE1 CDF7E2EC C03404CD 28342F61
9172FE9C E98583FF 8E4F1232 EEF28183 C3FE3B1B 4C6FAD73
3BB5FCBC 2EC22005 C58EF183 7D1683B2 C6F34A26 C1B2EFFA
886B4238 611FCFDC DE355B3B 6519035B BC34F4DE F99C0238
61B46FC9 D6E6C907 7AD91D26 91F7F7EE 598CB0FA C186D91C
AEFE1309 85139270 B4130C93 BC437944 F4FD4452 E2D74DD3
64F2E21E 71F54BFF 5CAE82AB 9C9DF69E E86D2BC5 22363A0D
ABC52197 9B0DEADA 1DBF9A42 D5C4484E 0ABCD06B FA53DDEF
3C1B20EE 3FD59D7C 25E41D2B 669E1EF1 6E6F52C3 164DF4FB
7930E9E4 E58857B6 AC7D5F42 D69F6D18 7763CF1D 55034004
87F55BA5 7E31CC7A 7135C886 EFB4318A ED6A1E01 2D9E6832
A907600A 918130C4 6DC778F9 71AD0038 092999A3 33CB8B7A
1A1DB93D 7140003C 2A4ECEA9 F98D0ACC 0A8291CD CEC97DCF
8EC9B55A 7F88A46B 4DB5A851 F44182E1 C68A007E 5E0DD902
0BFD64B6 45036C7A 4E677D2C 38532A3A 23BA4442 CAF53EA6
3BB45432 9B7624C8 917BDD64 B1C0FD4C B38E8C33 4C701C3A
CDAD0657 FCCFEC71 9B1F5C3E 4E46041F 388147FB 4CFDB477
A52471F7 A9A96910 B855322E DB6340D8 A00EF092 350511E3
0ABEC1FF F9E3A26E 7FB29F8C 183023C3 587E38DA 0077D9B4
763E4E4B 94B2BBC1 94C6651E 77CAF992 EEAAC023 2A281BF6
B3A739C1 22611682 0AE8DB58 47A67CBE F9C9091B 462D538C
D72B0374 6AE77F5E 62292C31 1562A846 505DC82D B854338A
E49F5235 C95B9117 8CCF2DD5 CACEF403 EC9D1810 C6272B04
5B3B71F9 DC6B80D6 3FDD4A8E 9ADB1E69 62A69526 D43161C1
A41D570D 7938DAD4 A40E329C D0E40E65 FFFFFFFF FFFFFFFF"""), 16))
goodGroupParameters.append(FFDHE6144)
RFC7919_GROUPS.append(FFDHE6144)
FFDHE_PARAMETERS["RFC7919 ffdhe6144"] = FFDHE6144
FFDHE8192 = (
2,
int(remove_whitespace("""
FFFFFFFF FFFFFFFF ADF85458 A2BB4A9A AFDC5620 273D3CF1
D8B9C583 CE2D3695 A9E13641 146433FB CC939DCE 249B3EF9
7D2FE363 630C75D8 F681B202 AEC4617A D3DF1ED5 D5FD6561
2433F51F 5F066ED0 85636555 3DED1AF3 B557135E 7F57C935
984F0C70 E0E68B77 E2A689DA F3EFE872 1DF158A1 36ADE735
30ACCA4F 483A797A BC0AB182 B324FB61 D108A94B B2C8E3FB
B96ADAB7 60D7F468 1D4F42A3 DE394DF4 AE56EDE7 6372BB19
0B07A7C8 EE0A6D70 9E02FCE1 CDF7E2EC C03404CD 28342F61
9172FE9C E98583FF 8E4F1232 EEF28183 C3FE3B1B 4C6FAD73
3BB5FCBC 2EC22005 C58EF183 7D1683B2 C6F34A26 C1B2EFFA
886B4238 611FCFDC DE355B3B 6519035B BC34F4DE F99C0238
61B46FC9 D6E6C907 7AD91D26 91F7F7EE 598CB0FA C186D91C
AEFE1309 85139270 B4130C93 BC437944 F4FD4452 E2D74DD3
64F2E21E 71F54BFF 5CAE82AB 9C9DF69E E86D2BC5 22363A0D
ABC52197 9B0DEADA 1DBF9A42 D5C4484E 0ABCD06B FA53DDEF
3C1B20EE 3FD59D7C 25E41D2B 669E1EF1 6E6F52C3 164DF4FB
7930E9E4 E58857B6 AC7D5F42 D69F6D18 7763CF1D 55034004
87F55BA5 7E31CC7A 7135C886 EFB4318A ED6A1E01 2D9E6832
A907600A 918130C4 6DC778F9 71AD0038 092999A3 33CB8B7A
1A1DB93D 7140003C 2A4ECEA9 F98D0ACC 0A8291CD CEC97DCF
8EC9B55A 7F88A46B 4DB5A851 F44182E1 C68A007E 5E0DD902
0BFD64B6 45036C7A 4E677D2C 38532A3A 23BA4442 CAF53EA6
3BB45432 9B7624C8 917BDD64 B1C0FD4C B38E8C33 4C701C3A
CDAD0657 FCCFEC71 9B1F5C3E 4E46041F 388147FB 4CFDB477
A52471F7 A9A96910 B855322E DB6340D8 A00EF092 350511E3
0ABEC1FF F9E3A26E 7FB29F8C 183023C3 587E38DA 0077D9B4
763E4E4B 94B2BBC1 94C6651E 77CAF992 EEAAC023 2A281BF6
B3A739C1 22611682 0AE8DB58 47A67CBE F9C9091B 462D538C
D72B0374 6AE77F5E 62292C31 1562A846 505DC82D B854338A
E49F5235 C95B9117 8CCF2DD5 CACEF403 EC9D1810 C6272B04
5B3B71F9 DC6B80D6 3FDD4A8E 9ADB1E69 62A69526 D43161C1
A41D570D 7938DAD4 A40E329C CFF46AAA 36AD004C F600C838
1E425A31 D951AE64 FDB23FCE C9509D43 687FEB69 EDD1CC5E
0B8CC3BD F64B10EF 86B63142 A3AB8829 555B2F74 7C932665
CB2C0F1C C01BD702 29388839 D2AF05E4 54504AC7 8B758282
2846C0BA 35C35F5C 59160CC0 46FD8251 541FC68C 9C86B022
BB709987 6A460E74 51A8A931 09703FEE 1C217E6C 3826E52C
51AA691E 0E423CFC 99E9E316 50C1217B 624816CD AD9A95F9
D5B80194 88D9C0A0 A1FE3075 A577E231 83F81D4A 3F2FA457
1EFC8CE0 BA8A4FE8 B6855DFE 72B0A66E DED2FBAB FBE58A30
FAFABE1C 5D71A87E 2F741EF8 C1FE86FE A6BBFDE5 30677F0D
97D11D49 F7A8443D 0822E506 A9F4614E 011E2A94 838FF88C
D68C8BB7 C5C6424C FFFFFFFF FFFFFFFF"""), 16))
goodGroupParameters.append(FFDHE8192)
RFC7919_GROUPS.append(FFDHE8192)
FFDHE_PARAMETERS["RFC7919 ffdhe8192"] = FFDHE8192
def paramStrength(param):
size = numBits(param)
if size < 512:
return 48
elif size < 768:
return 56
elif size < 816:
return 64
elif size < 1023:
return 72
elif size < 1535:
return 80
elif size < 2047:
return 88
elif size < 3071:
return 112
elif size < 4095:
return 128
elif size < 6144:
return 152
elif size < 7679:
return 168
elif size < 15359:
return 192
else:
return 256
def P_hash(mac_name, secret, seed, length):
ret = bytearray(length)
seed = compatHMAC(seed)
A = seed
index = 0
mac = hmac.HMAC(compatHMAC(secret), digestmod=mac_name)
while index < length:
a_fun = mac.copy()
a_fun.update(A)
A = a_fun.digest()
out_fun = mac.copy()
out_fun.update(A)
out_fun.update(seed)
output = out_fun.digest()
how_many = min(length - index, len(output))
ret[index:index+how_many] = output[:how_many]
index += how_many
return ret
def PRF(secret, label, seed, length):
S1 = secret[ : int(math.ceil(len(secret)/2.0))]
S2 = secret[ int(math.floor(len(secret)/2.0)) : ]
p_md5 = P_hash("md5", S1, label + seed, length)
p_sha1 = P_hash("sha1", S2, label + seed, length)
for x in range(length):
p_md5[x] ^= p_sha1[x]
return p_md5
def PRF_1_2(secret, label, seed, length):
return P_hash("sha256", secret, label + seed, length)
def PRF_1_2_SHA384(secret, label, seed, length):
return P_hash("sha384", secret, label + seed, length)
def PRF_SSL(secret, seed, length):
bytes = bytearray(length)
index = 0
for x in range(26):
A = bytearray([ord('A')+x] * (x+1))
input = secret + SHA1(A + secret + seed)
output = MD5(input)
for c in output:
if index >= length:
return bytes
bytes[index] = c
index += 1
return bytes
@deprecated_method("Please use calcKey method instead.")
def calcExtendedMasterSecret(version, cipherSuite, premasterSecret,
handshakeHashes):
assert version in ((3, 1), (3, 2), (3, 3))
if version in ((3, 1), (3, 2)):
masterSecret = PRF(premasterSecret, b"extended master secret",
handshakeHashes.digest('md5') +
handshakeHashes.digest('sha1'),
48)
else:
if cipherSuite in CipherSuite.sha384PrfSuites:
masterSecret = PRF_1_2_SHA384(premasterSecret,
b"extended master secret",
handshakeHashes.digest('sha384'),
48)
else:
masterSecret = PRF_1_2(premasterSecret,
b"extended master secret",
handshakeHashes.digest('sha256'),
48)
return masterSecret
@deprecated_method("Please use calcKey method instead.")
def calcMasterSecret(version, cipherSuite, premasterSecret, clientRandom,
serverRandom):
if version == (3,0):
masterSecret = PRF_SSL(premasterSecret,
clientRandom + serverRandom, 48)
elif version in ((3,1), (3,2)):
masterSecret = PRF(premasterSecret, b"master secret",
clientRandom + serverRandom, 48)
elif version == (3,3):
if cipherSuite in CipherSuite.sha384PrfSuites:
masterSecret = PRF_1_2_SHA384(premasterSecret,
b"master secret",
clientRandom + serverRandom,
48)
else:
masterSecret = PRF_1_2(premasterSecret,
b"master secret",
clientRandom + serverRandom,
48)
else:
raise AssertionError()
return masterSecret
@deprecated_method("Please use calcKey method instead.")
def calcFinished(version, masterSecret, cipherSuite, handshakeHashes,
isClient):
assert version in ((3, 0), (3, 1), (3, 2), (3, 3))
if version == (3,0):
if isClient:
senderStr = b"\x43\x4C\x4E\x54"
else:
senderStr = b"\x53\x52\x56\x52"
verifyData = handshakeHashes.digestSSL(masterSecret, senderStr)
else:
if isClient:
label = b"client finished"
else:
label = b"server finished"
if version in ((3,1), (3,2)):
handshakeHash = handshakeHashes.digest()
verifyData = PRF(masterSecret, label, handshakeHash, 12)
else:
if cipherSuite in CipherSuite.sha384PrfSuites:
handshakeHash = handshakeHashes.digest('sha384')
verifyData = PRF_1_2_SHA384(masterSecret, label,
handshakeHash, 12)
else:
handshakeHash = handshakeHashes.digest('sha256')
verifyData = PRF_1_2(masterSecret, label, handshakeHash, 12)
return verifyData
|
MIT License
|
skoda091/alfred-deepl
|
lib/requests/api.py
|
get
|
python
|
def get(url, params=None, **kwargs):
kwargs.setdefault('allow_redirects', True)
return request('get', url, params=params, **kwargs)
|
r"""Sends a GET request.
:param url: URL for the new :class:`Request` object.
:param params: (optional) Dictionary or bytes to be sent in the query string for the :class:`Request`.
:param \*\*kwargs: Optional arguments that ``request`` takes.
:return: :class:`Response <Response>` object
:rtype: requests.Response
|
https://github.com/skoda091/alfred-deepl/blob/8c7d7a572011bdee3888211a90a161ea50bb81af/lib/requests/api.py#L61-L72
|
from . import sessions
def request(method, url, **kwargs):
with sessions.Session() as session:
return session.request(method=method, url=url, **kwargs)
|
MIT License
|
tensorflow/ranking
|
tensorflow_ranking/python/model.py
|
_rolling_window_indices
|
python
|
def _rolling_window_indices(size, rw_size, num_valid_entries):
with tf.compat.v1.name_scope(name='rolling_window_indices'):
rw_indices = tf.expand_dims(tf.range(rw_size), 0) + tf.expand_dims(
tf.range(size), 1)
batch_size = tf.shape(input=num_valid_entries)[0]
batch_rw_indices = tf.tile(
tf.expand_dims(rw_indices, 0), multiples=[batch_size, 1, 1])
batch_indices_mask = tf.less(
tf.reduce_min(input_tensor=batch_rw_indices, axis=2),
tf.reshape(num_valid_entries, [-1, 1]))
num_valid_entries = tf.compat.v1.where(
tf.less(num_valid_entries, 1), tf.ones_like(num_valid_entries),
num_valid_entries)
batch_rw_indices = tf.math.mod(batch_rw_indices,
tf.reshape(num_valid_entries, [-1, 1, 1]))
return batch_rw_indices, batch_indices_mask
|
Returns the rolling windows indices and mask for valid ones.
When size = 3, rw_size = 2, returns [[0, 1], [1, 2], [2, 0]]. When size = 2,
rw_size = 3, returns [[0, 1, 0], [1, 0, 1]].
When num_valid_entries = 2, the first returns [[0, 1], [1, 0], [0, 1]] and the
first 2 are valid with mask as [True, True, False].
Args:
size: A scalar int `Tensor` for the size.
rw_size: A scalar int `Tensor` for the rw_size.
num_valid_entries: A 1-D `Tensor` with shape [batch_size] representing the
number of valid entries for each instance in a batch.
Returns:
A tuple of Tensors (batch_rw_indices, batch_indices_mask). The first has
shape [batch_size, size, rw_size] and the second has shape [batch_size,
size].
|
https://github.com/tensorflow/ranking/blob/6cf8f70a8533ba15abbfb5f50db17cb01fc56410/tensorflow_ranking/python/model.py#L163-L201
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import six
import tensorflow as tf
from tensorflow.python.util import function_utils
from tensorflow_ranking.python import feature
from tensorflow_ranking.python import utils
_NUM_SHUFFLES_TRAIN = 'num_shuffles_train'
_NUM_SHUFFLES_EVAL = 'num_shuffles_eval'
_NUM_SHUFFLES_PREDICT = 'num_shuffles_predict'
def _get_params(mode, params):
params = params or {}
if mode == tf.estimator.ModeKeys.TRAIN:
num_shuffles = params.get(_NUM_SHUFFLES_TRAIN, None)
elif mode == tf.estimator.ModeKeys.EVAL:
num_shuffles = params.get(_NUM_SHUFFLES_EVAL, None)
elif mode == tf.estimator.ModeKeys.PREDICT:
num_shuffles = params.get(_NUM_SHUFFLES_PREDICT, None)
else:
raise ValueError('Invalid mode: {}.'.format(mode))
return num_shuffles
class _RankingModel(object):
__metaclass__ = abc.ABCMeta
def __init__(self, transform_fn=None):
if transform_fn is None:
self._transform_fn = feature.make_identity_transform_fn({})
else:
self._transform_fn = transform_fn
def _call_transform_fn(self, features, mode, params):
transform_fn_args = function_utils.fn_args(self._transform_fn)
if 'mode' in transform_fn_args and 'params' in transform_fn_args:
return self._transform_fn(features, mode=mode, params=params)
elif 'mode' in transform_fn_args:
return self._transform_fn(features, mode=mode)
elif 'params' in transform_fn_args:
return self._transform_fn(features, params=params)
else:
return self._transform_fn(features)
def compute_logits(self, features, labels, mode, params, config):
with tf.compat.v1.name_scope('transform'):
context_features, example_features = self._call_transform_fn(
features, mode, params)
for name, value in six.iteritems(example_features):
tensor_shape = tf.convert_to_tensor(value=value).shape
if (tensor_shape is not None and tensor_shape.rank is not None and
tensor_shape.rank < 3):
tf.compat.v1.logging.warning(
'Feature \"{}\" has invalid feature tensor shape {}. '
'Expected shape has at least 3 dims: '
'(batch_size, list_size, feature_size).'.format(
name, tensor_shape))
logits = self._compute_logits_impl(context_features, example_features,
labels, mode, params, config)
if mode == tf.estimator.ModeKeys.PREDICT:
return logits
else:
features.update(context_features)
features.update(example_features)
return logits
@abc.abstractmethod
def _compute_logits_impl(self, context_features, example_features, labels,
mode, params, config):
raise NotImplementedError('Calling an abstract method.')
|
Apache License 2.0
|
fawaz-dabbaghieh/bubble_gun
|
BubbleGun/BubbleChain.py
|
BubbleChain.sort
|
python
|
def sort(self):
all_ends = dict()
for b in self.bubbles:
source = str(b.source.id)
sink = str(b.sink.id)
if source > sink:
all_ends[(source, sink)] = b
else:
all_ends[(sink, source)] = b
start = self.ends[0]
all_keys = list(all_ends.keys())
while len(self.sorted) < len(self.bubbles):
for idx, key in enumerate(all_keys):
if start in key:
rm_key = idx
start = key[1 - key.index(start)]
self.sorted.append(all_ends[key])
break
del all_keys[rm_key]
|
sorts the bubbles in the chain
|
https://github.com/fawaz-dabbaghieh/bubble_gun/blob/285c51b43b4a9c6770c7fc7e64fc1ae7fdddc643/BubbleGun/BubbleChain.py#L102-L144
|
from collections import Counter
import pdb
class BubbleChain:
__slots__ = ['bubbles', 'sorted', 'ends', 'key', 'id', 'parent_chain', 'parent_sb']
def __init__(self):
self.bubbles = set()
self.sorted = []
self.ends = []
self.id = 0
self.parent_sb = 0
self.parent_chain = 0
def __key(self):
if self.ends[0] > self.ends[1]:
return (self.ends[0], self.ends[1])
return (self.ends[1], self.ends[0])
def __hash__(self):
return hash(self.__key())
def __eq__(self, other):
return self.__key() == other.__key()
def __ne__(self, other):
return not self.__eq__(other)
def __len__(self):
return len(self.bubbles)
def __contains__(self, item):
return item in self.bubbles
def add_bubble(self, bubble):
self.bubbles.add(bubble)
def list_chain(self, ids=True):
c_list = []
for b in self.bubbles:
c_list += [b.source, b.sink] + b.inside
if ids:
return list(set([x.id for x in c_list]))
return list(set(c_list))
def length_node(self):
return len(self.list_chain())
def length_seq(self):
total_seq = 0
counted_overlaps = set()
for n in self.list_chain(ids=False):
total_seq += n.seq_len
if n.id not in counted_overlaps:
for nn in n.end:
counted_overlaps.add(nn[0])
total_seq -= nn[2]
for nn in n.start:
counted_overlaps.add(nn[0])
total_seq -= nn[2]
return total_seq
def find_ends(self):
self.ends = [k for k, v in Counter([b.source.id for b in self.bubbles] + [b.sink.id for b in self.bubbles]).items() if v == 1]
|
MIT License
|
xrplf/xrpl-py
|
xrpl/core/addresscodec/codec.py
|
encode_node_public_key
|
python
|
def encode_node_public_key(bytestring: bytes) -> str:
return _encode(bytestring, _NODE_PUBLIC_KEY_PREFIX, _NODE_PUBLIC_KEY_LENGTH)
|
Returns the node public key encoding of these bytes as a base58 string.
Args:
bytestring: Bytes to be encoded.
Returns:
The node public key encoding of these bytes as a base58 string.
|
https://github.com/xrplf/xrpl-py/blob/3635339bfb579353e56f126bbcf303d931b26d65/xrpl/core/addresscodec/codec.py#L143-L153
|
from typing import Dict, List, Tuple
import base58
from typing_extensions import Final
from xrpl.constants import CryptoAlgorithm
from xrpl.core.addresscodec.exceptions import XRPLAddressCodecException
from xrpl.core.addresscodec.utils import XRPL_ALPHABET
_CLASSIC_ADDRESS_PREFIX: Final[List[int]] = [0x0]
_ACCOUNT_PUBLIC_KEY_PREFIX: Final[List[int]] = [0x23]
_FAMILY_SEED_PREFIX: Final[List[int]] = [0x21]
_NODE_PUBLIC_KEY_PREFIX: Final[List[int]] = [0x1C]
_ED25519_SEED_PREFIX: Final[List[int]] = [0x01, 0xE1, 0x4B]
SEED_LENGTH: Final[int] = 16
_CLASSIC_ADDRESS_LENGTH: Final[int] = 20
_NODE_PUBLIC_KEY_LENGTH: Final[int] = 33
_ACCOUNT_PUBLIC_KEY_LENGTH: Final[int] = 33
_ALGORITHM_TO_PREFIX_MAP: Final[Dict[CryptoAlgorithm, List[int]]] = {
CryptoAlgorithm.ED25519: _ED25519_SEED_PREFIX,
CryptoAlgorithm.SECP256K1: _FAMILY_SEED_PREFIX,
}
def _encode(bytestring: bytes, prefix: List[int], expected_length: int) -> str:
if expected_length and len(bytestring) != expected_length:
error_message = """unexpected_payload_length: len(bytestring) does not match expected_length.
Ensure that the bytes are a bytestring."""
raise XRPLAddressCodecException(error_message)
encoded_prefix = bytes(prefix)
payload = encoded_prefix + bytestring
return base58.b58encode_check(payload, alphabet=XRPL_ALPHABET).decode("utf-8")
def _decode(b58_string: str, prefix: bytes) -> bytes:
prefix_length = len(prefix)
decoded = base58.b58decode_check(b58_string, alphabet=XRPL_ALPHABET)
if decoded[:prefix_length] != prefix:
raise XRPLAddressCodecException("Provided prefix is incorrect")
return decoded[prefix_length:]
def encode_seed(entropy: bytes, encoding_type: CryptoAlgorithm) -> str:
if len(entropy) != SEED_LENGTH:
raise XRPLAddressCodecException(f"Entropy must have length {SEED_LENGTH}")
if encoding_type not in CryptoAlgorithm:
raise XRPLAddressCodecException(
f"Encoding type must be one of {CryptoAlgorithm}"
)
prefix = _ALGORITHM_TO_PREFIX_MAP[encoding_type]
return _encode(entropy, prefix, SEED_LENGTH)
def decode_seed(seed: str) -> Tuple[bytes, CryptoAlgorithm]:
for algorithm in CryptoAlgorithm:
prefix = _ALGORITHM_TO_PREFIX_MAP[algorithm]
try:
decoded_result = _decode(seed, bytes(prefix))
return decoded_result, algorithm
except XRPLAddressCodecException:
continue
raise XRPLAddressCodecException(
"Invalid seed; could not determine encoding algorithm"
)
def encode_classic_address(bytestring: bytes) -> str:
return _encode(bytestring, _CLASSIC_ADDRESS_PREFIX, _CLASSIC_ADDRESS_LENGTH)
def decode_classic_address(classic_address: str) -> bytes:
return _decode(classic_address, bytes(_CLASSIC_ADDRESS_PREFIX))
|
ISC License
|
adalca/neurite
|
neurite/tf/utils/seg.py
|
next_pred_label
|
python
|
def next_pred_label(model, data_generator, verbose=False):
sample = next(data_generator)
with timer.Timer('prediction', verbose):
pred = model.predict(sample[0])
sample_input = sample[0] if not isinstance(sample[0], (list, tuple)) else sample[0][0]
max_labels = pred_to_label(sample_input, pred)
return (sample, pred) + max_labels
|
predict the next sample batch from the generator, and compute max labels
return sample, prediction, max_labels
|
https://github.com/adalca/neurite/blob/c7bb05d5dae47d2a79e0fe5a8284f30b2304d335/neurite/tf/utils/seg.py#L263-L273
|
import itertools
import numpy as np
from tqdm import tqdm_notebook as tqdm
from pprint import pformat
import tensorflow as tf
from tensorflow import keras
import tensorflow.keras.backend as K
import neurite as ne
import neurite.py.utils
import pystrum.pynd.ndutils as nd
import pystrum.pynd.patchlib as pl
import pystrum.pytools.timer as timer
def predict_volumes(models,
data_generator,
batch_size,
patch_size,
patch_stride,
grid_size,
nan_func=np.nanmedian,
do_extra_vol=False,
do_prob_of_true=False,
verbose=False):
if not isinstance(models, (list, tuple)):
models = (models,)
with timer.Timer('predict_volume_stack', verbose):
vol_stack = predict_volume_stack(models,
data_generator,
batch_size,
grid_size,
verbose)
if len(models) == 1:
do_prior = len(vol_stack) == 4
else:
do_prior = len(vol_stack[0]) == 4
ret = ()
for midx, _ in enumerate(models):
stack = vol_stack if len(models) == 1 else vol_stack[midx]
if do_prior:
all_true, all_pred, all_vol, all_prior = stack
else:
all_true, all_pred, all_vol = stack
all_true_label, all_pred_label = pred_to_label(all_true, all_pred)
args = [patch_size, grid_size, patch_stride]
label_kwargs = {'nan_func_layers': nan_func, 'nan_func_K': nan_func, 'verbose': verbose}
vol_true_label = _quilt(all_true_label, *args, **label_kwargs).astype('int')
vol_pred_label = _quilt(all_pred_label, *args, **label_kwargs).astype('int')
ret_set = (vol_true_label, vol_pred_label)
if do_extra_vol:
vol_input = _quilt(all_vol, *args)
ret_set += (vol_input, )
if do_prior:
all_prior_label, = pred_to_label(all_prior)
vol_prior_label = _quilt(all_prior_label, *args, **label_kwargs).astype('int')
ret_set += (vol_prior_label, )
if do_extra_vol and do_prob_of_true:
all_pp = prob_of_label(all_pred, all_true_label)
pred_prob_of_true = _quilt(all_pp, *args, **label_kwargs)
ret_set += (pred_prob_of_true, )
if do_prior:
all_pp = prob_of_label(all_prior, all_true_label)
prior_prob_of_true = _quilt(all_pp, *args, **label_kwargs)
ret_set += (prior_prob_of_true, )
ret += (ret_set, )
if len(models) == 1:
ret = ret[0]
return ret
def predict_volume_stack(models,
data_generator,
batch_size,
grid_size,
verbose=False):
if not isinstance(models, (list, tuple)):
models = (models,)
nb_patches = np.prod(grid_size)
nb_batches = ((nb_patches - 1) // batch_size) + 1
batch_gen = tqdm(range(nb_batches)) if verbose else range(nb_batches)
for batch_idx in batch_gen:
sample = next(data_generator)
nb_vox = np.prod(sample[1].shape[1:-1])
do_prior = isinstance(sample[0], (list, tuple))
if batch_idx == 0:
nb_labels = sample[1].shape[-1]
all_vol = [np.zeros((nb_patches, nb_vox)) for f in models]
all_true = [np.zeros((nb_patches, nb_vox * nb_labels)) for f in models]
all_pred = [np.zeros((nb_patches, nb_vox * nb_labels)) for f in models]
all_prior = [np.zeros((nb_patches, nb_vox * nb_labels)) for f in models]
for idx, model in enumerate(models):
pred = model.predict(sample[0])
assert pred.shape[0] == batch_size, "batch size mismatch. sample has batch size %d, given batch size is %d" % (
pred.shape[0], batch_size)
input_batch = sample[0] if not do_prior else sample[0][0]
batch_start = batch_idx * batch_size
batch_end = np.minimum(batch_start + batch_size, nb_patches)
batch_range = np.arange(batch_start, batch_end)
batch_vox_idx = batch_end - batch_start
all_vol[idx][batch_range, :] = K.batch_flatten(input_batch)[0:batch_vox_idx, :]
all_true[idx][batch_range, :] = K.batch_flatten(sample[1])[0:batch_vox_idx, :]
all_pred[idx][batch_range, :] = K.batch_flatten(pred)[0:batch_vox_idx, :]
if do_prior:
all_prior[idx][batch_range, :] = K.batch_flatten(sample[0][1])[0:batch_vox_idx, :]
for idx, _ in enumerate(models):
all_true[idx] = np.reshape(all_true[idx], [nb_patches, nb_vox, nb_labels])
all_pred[idx] = np.reshape(all_pred[idx], [nb_patches, nb_vox, nb_labels])
if do_prior:
all_prior[idx] = np.reshape(all_prior[idx], [nb_patches, nb_vox, nb_labels])
ret = ()
for midx, _ in enumerate(models):
if do_prior:
ret += ((all_true[midx], all_pred[midx], all_vol[midx], all_prior[midx]), )
else:
ret += ((all_true[midx], all_pred[midx], all_vol[midx]), )
if len(models) == 1:
ret = ret[0]
return ret
def prob_of_label(vol, labelvol):
nb_dims = np.ndim(labelvol)
assert np.ndim(vol) == nb_dims + 1, "vol dimensions do not match [%d] vs [%d]" % (np.ndim(vol) - 1, nb_dims)
shp = vol.shape
nb_voxels = np.prod(shp[0:nb_dims])
nb_labels = shp[-1]
flat_vol = np.reshape(vol, (nb_voxels, nb_labels))
rows_sums = flat_vol.sum(axis=1)
flat_vol_norm = flat_vol / rows_sums[:, np.newaxis]
idx = list(range(nb_voxels))
v = flat_vol_norm[idx, labelvol.flat]
return np.reshape(v, labelvol.shape)
|
Apache License 2.0
|
lanceliang2018/wenku8toepub-online
|
ebooklib/epub.py
|
EpubBook.get_items
|
python
|
def get_items(self):
return (item for item in self.items)
|
Returns all items attached to this book.
:Returns:
Returns all items as tuple.
|
https://github.com/lanceliang2018/wenku8toepub-online/blob/000230533eb2dab63746677b6682babf2d28f82c/ebooklib/epub.py#L781-L788
|
import zipfile
import six
import logging
import uuid
import posixpath as zip_path
import os.path
from collections import OrderedDict
try:
from urllib.parse import unquote
except ImportError:
from urllib import unquote
from lxml import etree
import ebooklib
from ebooklib.utils import parse_string, parse_html_string, guess_type, get_pages_for_items
VERSION = (0, 17, 1)
NAMESPACES = {'XML': 'http://www.w3.org/XML/1998/namespace',
'EPUB': 'http://www.idpf.org/2007/ops',
'DAISY': 'http://www.daisy.org/z3986/2005/ncx/',
'OPF': 'http://www.idpf.org/2007/opf',
'CONTAINERNS': 'urn:oasis:names:tc:opendocument:xmlns:container',
'DC': 'http://purl.org/dc/elements/1.1/',
'XHTML': 'http://www.w3.org/1999/xhtml'}
CONTAINER_PATH = 'META-INF/container.xml'
CONTAINER_XML = '''<?xml version='1.0' encoding='utf-8'?>
<container xmlns="urn:oasis:names:tc:opendocument:xmlns:container" version="1.0">
<rootfiles>
<rootfile media-type="application/oebps-package+xml" full-path="%(folder_name)s/content.opf"/>
</rootfiles>
</container>
'''
NCX_XML = six.b('''<!DOCTYPE ncx PUBLIC "-//NISO//DTD ncx 2005-1//EN" "http://www.daisy.org/z3986/2005/ncx-2005-1.dtd">
<ncx xmlns="http://www.daisy.org/z3986/2005/ncx/" version="2005-1" />''')
NAV_XML = six.b('''<?xml version="1.0" encoding="utf-8"?><!DOCTYPE html><html xmlns="http://www.w3.org/1999/xhtml" xmlns:epub="http://www.idpf.org/2007/ops"/>''')
CHAPTER_XML = six.b('''<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE html><html xmlns="http://www.w3.org/1999/xhtml" xmlns:epub="http://www.idpf.org/2007/ops" epub:prefix="z3998: http://www.daisy.org/z3998/2012/vocab/structure/#"></html>''')
COVER_XML = six.b('''<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:epub="http://www.idpf.org/2007/ops" lang="en" xml:lang="en">
<head>
<style>
body { margin: 0em; padding: 0em; }
img { max-width: 100%; max-height: 100%; }
</style>
</head>
<body>
<img src="" alt="" />
</body>
</html>''')
IMAGE_MEDIA_TYPES = ['image/jpeg', 'image/jpg', 'image/png', 'image/svg+xml']
class Section(object):
def __init__(self, title, href=''):
self.title = title
self.href = href
class Link(object):
def __init__(self, href, title, uid=None):
self.href = href
self.title = title
self.uid = uid
class EpubException(Exception):
def __init__(self, code, msg):
self.code = code
self.msg = msg
def __str__(self):
return repr(self.msg)
class EpubItem(object):
def __init__(self, uid=None, file_name='', media_type='', content=six.b(''), manifest=True):
self.id = uid
self.file_name = file_name
self.media_type = media_type
self.content = content
self.is_linear = True
self.manifest = manifest
self.book = None
def get_id(self):
return self.id
def get_name(self):
return self.file_name
def get_type(self):
_, ext = zip_path.splitext(self.get_name())
ext = ext.lower()
for uid, ext_list in six.iteritems(ebooklib.EXTENSIONS):
if ext in ext_list:
return uid
return ebooklib.ITEM_UNKNOWN
def get_content(self, default=six.b('')):
return self.content or default
def set_content(self, content):
self.content = content
def __str__(self):
return '<EpubItem:%s>' % self.id
class EpubNcx(EpubItem):
def __init__(self, uid='ncx', file_name='toc.ncx'):
super(EpubNcx, self).__init__(uid=uid, file_name=file_name, media_type='application/x-dtbncx+xml')
def __str__(self):
return '<EpubNcx:%s>' % self.id
class EpubCover(EpubItem):
def __init__(self, uid='cover-img', file_name=''):
super(EpubCover, self).__init__(uid=uid, file_name=file_name)
def get_type(self):
return ebooklib.ITEM_COVER
def __str__(self):
return '<EpubCover:%s:%s>' % (self.id, self.file_name)
class EpubHtml(EpubItem):
_template_name = 'chapter'
def __init__(self, uid=None, file_name='', media_type='', content=None, title='',
lang=None, direction=None, media_overlay=None, media_duration=None):
super(EpubHtml, self).__init__(uid, file_name, media_type, content)
self.title = title
self.lang = lang
self.direction = direction
self.media_overlay = media_overlay
self.media_duration = media_duration
self.links = []
self.properties = []
self.pages = []
def is_chapter(self):
return True
def get_type(self):
return ebooklib.ITEM_DOCUMENT
def set_language(self, lang):
self.lang = lang
def get_language(self):
return self.lang
def add_link(self, **kwgs):
self.links.append(kwgs)
if kwgs.get('type') == 'text/javascript':
if 'scripted' not in self.properties:
self.properties.append('scripted')
def get_links(self):
return (link for link in self.links)
def get_links_of_type(self, link_type):
return (link for link in self.links if link.get('type', '') == link_type)
def add_item(self, item):
if item.get_type() == ebooklib.ITEM_STYLE:
self.add_link(href=item.get_name(), rel='stylesheet', type='text/css')
if item.get_type() == ebooklib.ITEM_SCRIPT:
self.add_link(src=item.get_name(), type='text/javascript')
def get_body_content(self):
try:
html_tree = parse_html_string(self.content)
except:
return ''
html_root = html_tree.getroottree()
if len(html_root.find('body')) != 0:
body = html_tree.find('body')
tree_str = etree.tostring(body, pretty_print=True, encoding='utf-8', xml_declaration=False)
if tree_str.startswith(six.b('<body>')):
n = tree_str.rindex(six.b('</body>'))
return tree_str[6:n]
return tree_str
return ''
def get_content(self, default=None):
tree = parse_string(self.book.get_template(self._template_name))
tree_root = tree.getroot()
tree_root.set('lang', self.lang or self.book.language)
tree_root.attrib['{%s}lang' % NAMESPACES['XML']] = self.lang or self.book.language
try:
html_tree = parse_html_string(self.content)
except:
return ''
html_root = html_tree.getroottree()
_head = etree.SubElement(tree_root, 'head')
if self.title != '':
_title = etree.SubElement(_head, 'title')
_title.text = self.title
for lnk in self.links:
if lnk.get('type') == 'text/javascript':
_lnk = etree.SubElement(_head, 'script', lnk)
_lnk.text = ''
else:
_lnk = etree.SubElement(_head, 'link', lnk)
_body = etree.SubElement(tree_root, 'body')
if self.direction:
_body.set('dir', self.direction)
tree_root.set('dir', self.direction)
body = html_tree.find('body')
if body is not None:
for i in body.getchildren():
_body.append(i)
tree_str = etree.tostring(tree, pretty_print=True, encoding='utf-8', xml_declaration=True)
return tree_str
def __str__(self):
return '<EpubHtml:%s:%s>' % (self.id, self.file_name)
class EpubCoverHtml(EpubHtml):
def __init__(self, uid='cover', file_name='cover.xhtml', image_name='', title='Cover'):
super(EpubCoverHtml, self).__init__(uid=uid, file_name=file_name, title=title)
self.image_name = image_name
self.is_linear = False
def is_chapter(self):
return False
def get_content(self):
self.content = self.book.get_template('cover')
tree = parse_string(super(EpubCoverHtml, self).get_content())
tree_root = tree.getroot()
images = tree_root.xpath('//xhtml:img', namespaces={'xhtml': NAMESPACES['XHTML']})
images[0].set('src', self.image_name)
images[0].set('alt', self.title)
tree_str = etree.tostring(tree, pretty_print=True, encoding='utf-8', xml_declaration=True)
return tree_str
def __str__(self):
return '<EpubCoverHtml:%s:%s>' % (self.id, self.file_name)
class EpubNav(EpubHtml):
def __init__(self, uid='nav', file_name='nav.xhtml', media_type='application/xhtml+xml'):
super(EpubNav, self).__init__(uid=uid, file_name=file_name, media_type=media_type)
def is_chapter(self):
return False
def __str__(self):
return '<EpubNav:%s:%s>' % (self.id, self.file_name)
class EpubImage(EpubItem):
def __init__(self):
super(EpubImage, self).__init__()
def get_type(self):
return ebooklib.ITEM_IMAGE
def __str__(self):
return '<EpubImage:%s:%s>' % (self.id, self.file_name)
class EpubSMIL(EpubItem):
def __init__(self, uid=None, file_name='', content=None):
super(EpubSMIL, self).__init__(uid=uid, file_name=file_name, media_type='application/smil+xml', content=content)
def get_type(self):
return ebooklib.ITEM_SMIL
def __str__(self):
return '<EpubSMIL:%s:%s>' % (self.id, self.file_name)
class EpubBook(object):
def __init__(self):
self.EPUB_VERSION = None
self.reset()
def reset(self):
self.metadata = {}
self.items = []
self.spine = []
self.guide = []
self.pages = []
self.toc = []
self.bindings = []
self.IDENTIFIER_ID = 'id'
self.FOLDER_NAME = 'EPUB'
self._id_html = 0
self._id_image = 0
self._id_static = 0
self.title = ''
self.language = 'en'
self.direction = None
self.templates = {
'ncx': NCX_XML,
'nav': NAV_XML,
'chapter': CHAPTER_XML,
'cover': COVER_XML
}
self.add_metadata('OPF', 'generator', '', {
'name': 'generator', 'content': 'Ebook-lib %s' % '.'.join([str(s) for s in VERSION])
})
self.set_identifier(str(uuid.uuid4()))
self.prefixes = []
self.namespaces = {}
def set_identifier(self, uid):
self.uid = uid
self.set_unique_metadata('DC', 'identifier', self.uid, {'id': self.IDENTIFIER_ID})
def set_title(self, title):
self.title = title
self.add_metadata('DC', 'title', self.title)
def set_language(self, lang):
self.language = lang
self.add_metadata('DC', 'language', lang)
def set_direction(self, direction):
self.direction = direction
def set_cover(self, file_name, content, create_page=True):
c0 = EpubCover(file_name=file_name)
c0.content = content
self.add_item(c0)
if create_page:
c1 = EpubCoverHtml(image_name=file_name)
self.add_item(c1)
self.add_metadata(None, 'meta', '', OrderedDict([('name', 'cover'), ('content', 'cover-img')]))
def add_author(self, author, file_as=None, role=None, uid='creator'):
self.add_metadata('DC', 'creator', author, {'id': uid})
if file_as:
self.add_metadata(None, 'meta', file_as, {'refines': '#' + uid,
'property': 'file-as',
'scheme': 'marc:relators'})
if role:
self.add_metadata(None, 'meta', role, {'refines': '#' + uid,
'property': 'role',
'scheme': 'marc:relators'})
def add_metadata(self, namespace, name, value, others=None):
if namespace in NAMESPACES:
namespace = NAMESPACES[namespace]
if namespace not in self.metadata:
self.metadata[namespace] = {}
if name not in self.metadata[namespace]:
self.metadata[namespace][name] = []
self.metadata[namespace][name].append((value, others))
def get_metadata(self, namespace, name):
if namespace in NAMESPACES:
namespace = NAMESPACES[namespace]
return self.metadata[namespace].get(name, [])
def set_unique_metadata(self, namespace, name, value, others=None):
if namespace in NAMESPACES:
namespace = NAMESPACES[namespace]
if namespace in self.metadata and name in self.metadata[namespace]:
self.metadata[namespace][name] = [(value, others)]
else:
self.add_metadata(namespace, name, value, others)
def add_item(self, item):
if item.media_type == '':
(has_guessed, media_type) = guess_type(item.get_name().lower())
if has_guessed:
if media_type is not None:
item.media_type = media_type
else:
item.media_type = has_guessed
else:
item.media_type = 'application/octet-stream'
if not item.get_id():
if isinstance(item, EpubHtml):
item.id = 'chapter_%d' % self._id_html
self._id_html += 1
self.pages += item.pages
elif isinstance(item, EpubImage):
item.id = 'image_%d' % self._id_image
self._id_image += 1
else:
item.id = 'static_%d' % self._id_image
self._id_image += 1
item.book = self
self.items.append(item)
return item
def get_item_with_id(self, uid):
for item in self.get_items():
if item.id == uid:
return item
return None
def get_item_with_href(self, href):
for item in self.get_items():
if item.get_name() == href:
return item
return None
|
MIT License
|
virtuesecurity/aws-extender
|
BappModules/boto/__init__.py
|
connect_redshift
|
python
|
def connect_redshift(aws_access_key_id=None,
aws_secret_access_key=None,
**kwargs):
from boto.redshift.layer1 import RedshiftConnection
return RedshiftConnection(
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
**kwargs
)
|
:type aws_access_key_id: string
:param aws_access_key_id: Your AWS Access Key ID
:type aws_secret_access_key: string
:param aws_secret_access_key: Your AWS Secret Access Key
:rtype: :class:`boto.redshift.layer1.RedshiftConnection`
:return: A connection to Amazon's Redshift service
|
https://github.com/virtuesecurity/aws-extender/blob/3029dd26bd7bdf7f4148e1e92adf9f8c547cafbe/BappModules/boto/__init__.py#L754-L772
|
from boto.pyami.config import Config, BotoConfigLocations
from boto.storage_uri import BucketStorageUri, FileStorageUri
import boto.plugin
import datetime
import os
import platform
import re
import sys
import logging
import logging.config
from boto.compat import urlparse
from boto.exception import InvalidUriError
__version__ = '2.48.0'
Version = __version__
datetime.datetime.strptime('', '')
UserAgent = 'Boto/%s Python/%s %s/%s' % (
__version__,
platform.python_version(),
platform.system(),
platform.release()
)
config = Config()
BUCKET_NAME_RE = re.compile(r'^[a-zA-Z0-9][a-zA-Z0-9\._-]{1,253}[a-zA-Z0-9]$')
TOO_LONG_DNS_NAME_COMP = re.compile(r'[-_a-z0-9]{64}')
GENERATION_RE = re.compile(r'(?P<versionless_uri_str>.+)'
r'#(?P<generation>[0-9]+)$')
VERSION_RE = re.compile('(?P<versionless_uri_str>.+)#(?P<version_id>.+)$')
ENDPOINTS_PATH = os.path.join(os.path.dirname(__file__), 'endpoints.json')
def init_logging():
for file in BotoConfigLocations:
try:
logging.config.fileConfig(os.path.expanduser(file))
except:
pass
class NullHandler(logging.Handler):
def emit(self, record):
pass
log = logging.getLogger('boto')
perflog = logging.getLogger('boto.perf')
log.addHandler(NullHandler())
perflog.addHandler(NullHandler())
init_logging()
def set_file_logger(name, filepath, level=logging.INFO, format_string=None):
global log
if not format_string:
format_string = "%(asctime)s %(name)s [%(levelname)s]:%(message)s"
logger = logging.getLogger(name)
logger.setLevel(level)
fh = logging.FileHandler(filepath)
fh.setLevel(level)
formatter = logging.Formatter(format_string)
fh.setFormatter(formatter)
logger.addHandler(fh)
log = logger
def set_stream_logger(name, level=logging.DEBUG, format_string=None):
global log
if not format_string:
format_string = "%(asctime)s %(name)s [%(levelname)s]:%(message)s"
logger = logging.getLogger(name)
logger.setLevel(level)
fh = logging.StreamHandler()
fh.setLevel(level)
formatter = logging.Formatter(format_string)
fh.setFormatter(formatter)
logger.addHandler(fh)
log = logger
def connect_sqs(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.sqs.connection import SQSConnection
return SQSConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_s3(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.s3.connection import S3Connection
return S3Connection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_gs(gs_access_key_id=None, gs_secret_access_key=None, **kwargs):
from boto.gs.connection import GSConnection
return GSConnection(gs_access_key_id, gs_secret_access_key, **kwargs)
def connect_ec2(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.ec2.connection import EC2Connection
return EC2Connection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_elb(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.ec2.elb import ELBConnection
return ELBConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_autoscale(aws_access_key_id=None, aws_secret_access_key=None,
**kwargs):
from boto.ec2.autoscale import AutoScaleConnection
return AutoScaleConnection(aws_access_key_id, aws_secret_access_key,
**kwargs)
def connect_cloudwatch(aws_access_key_id=None, aws_secret_access_key=None,
**kwargs):
from boto.ec2.cloudwatch import CloudWatchConnection
return CloudWatchConnection(aws_access_key_id, aws_secret_access_key,
**kwargs)
def connect_sdb(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.sdb.connection import SDBConnection
return SDBConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_fps(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.fps.connection import FPSConnection
return FPSConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_mturk(aws_access_key_id=None, aws_secret_access_key=None,
**kwargs):
from boto.mturk.connection import MTurkConnection
return MTurkConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_cloudfront(aws_access_key_id=None, aws_secret_access_key=None,
**kwargs):
from boto.cloudfront import CloudFrontConnection
return CloudFrontConnection(aws_access_key_id, aws_secret_access_key,
**kwargs)
def connect_vpc(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.vpc import VPCConnection
return VPCConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_rds(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.rds import RDSConnection
return RDSConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_rds2(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.rds2.layer1 import RDSConnection
return RDSConnection(
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
**kwargs
)
def connect_emr(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.emr import EmrConnection
return EmrConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_sns(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.sns import SNSConnection
return SNSConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_iam(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.iam import IAMConnection
return IAMConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_route53(aws_access_key_id=None, aws_secret_access_key=None,
**kwargs):
from boto.route53 import Route53Connection
return Route53Connection(aws_access_key_id, aws_secret_access_key,
**kwargs)
def connect_cloudformation(aws_access_key_id=None, aws_secret_access_key=None,
**kwargs):
from boto.cloudformation import CloudFormationConnection
return CloudFormationConnection(aws_access_key_id, aws_secret_access_key,
**kwargs)
def connect_euca(host=None, aws_access_key_id=None, aws_secret_access_key=None,
port=8773, path='/services/Eucalyptus', is_secure=False,
**kwargs):
from boto.ec2 import EC2Connection
from boto.ec2.regioninfo import RegionInfo
if not aws_access_key_id:
aws_access_key_id = config.get('Credentials',
'euca_access_key_id',
None)
if not aws_secret_access_key:
aws_secret_access_key = config.get('Credentials',
'euca_secret_access_key',
None)
if not host:
host = config.get('Boto', 'eucalyptus_host', None)
reg = RegionInfo(name='eucalyptus', endpoint=host)
return EC2Connection(aws_access_key_id, aws_secret_access_key,
region=reg, port=port, path=path,
is_secure=is_secure, **kwargs)
def connect_glacier(aws_access_key_id=None, aws_secret_access_key=None,
**kwargs):
from boto.glacier.layer2 import Layer2
return Layer2(aws_access_key_id, aws_secret_access_key,
**kwargs)
def connect_ec2_endpoint(url, aws_access_key_id=None,
aws_secret_access_key=None,
**kwargs):
from boto.ec2.regioninfo import RegionInfo
purl = urlparse(url)
kwargs['port'] = purl.port
kwargs['host'] = purl.hostname
kwargs['path'] = purl.path
if not 'is_secure' in kwargs:
kwargs['is_secure'] = (purl.scheme == "https")
kwargs['region'] = RegionInfo(name=purl.hostname,
endpoint=purl.hostname)
kwargs['aws_access_key_id'] = aws_access_key_id
kwargs['aws_secret_access_key'] = aws_secret_access_key
return(connect_ec2(**kwargs))
def connect_walrus(host=None, aws_access_key_id=None,
aws_secret_access_key=None,
port=8773, path='/services/Walrus', is_secure=False,
**kwargs):
from boto.s3.connection import S3Connection
from boto.s3.connection import OrdinaryCallingFormat
if not aws_access_key_id:
aws_access_key_id = config.get('Credentials',
'euca_access_key_id',
None)
if not aws_secret_access_key:
aws_secret_access_key = config.get('Credentials',
'euca_secret_access_key',
None)
if not host:
host = config.get('Boto', 'walrus_host', None)
return S3Connection(aws_access_key_id, aws_secret_access_key,
host=host, port=port, path=path,
calling_format=OrdinaryCallingFormat(),
is_secure=is_secure, **kwargs)
def connect_ses(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.ses import SESConnection
return SESConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_sts(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
from boto.sts import STSConnection
return STSConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_ia(ia_access_key_id=None, ia_secret_access_key=None,
is_secure=False, **kwargs):
from boto.s3.connection import S3Connection
from boto.s3.connection import OrdinaryCallingFormat
access_key = config.get('Credentials', 'ia_access_key_id',
ia_access_key_id)
secret_key = config.get('Credentials', 'ia_secret_access_key',
ia_secret_access_key)
return S3Connection(access_key, secret_key,
host='s3.us.archive.org',
calling_format=OrdinaryCallingFormat(),
is_secure=is_secure, **kwargs)
def connect_dynamodb(aws_access_key_id=None,
aws_secret_access_key=None,
**kwargs):
from boto.dynamodb.layer2 import Layer2
return Layer2(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_swf(aws_access_key_id=None,
aws_secret_access_key=None,
**kwargs):
from boto.swf.layer1 import Layer1
return Layer1(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_cloudsearch(aws_access_key_id=None,
aws_secret_access_key=None,
**kwargs):
from boto.cloudsearch.layer2 import Layer2
return Layer2(aws_access_key_id, aws_secret_access_key,
**kwargs)
def connect_cloudsearch2(aws_access_key_id=None,
aws_secret_access_key=None,
sign_request=False,
**kwargs):
from boto.cloudsearch2.layer2 import Layer2
return Layer2(aws_access_key_id, aws_secret_access_key,
sign_request=sign_request,
**kwargs)
def connect_cloudsearchdomain(aws_access_key_id=None,
aws_secret_access_key=None,
**kwargs):
from boto.cloudsearchdomain.layer1 import CloudSearchDomainConnection
return CloudSearchDomainConnection(aws_access_key_id,
aws_secret_access_key, **kwargs)
def connect_beanstalk(aws_access_key_id=None,
aws_secret_access_key=None,
**kwargs):
from boto.beanstalk.layer1 import Layer1
return Layer1(aws_access_key_id, aws_secret_access_key, **kwargs)
def connect_elastictranscoder(aws_access_key_id=None,
aws_secret_access_key=None,
**kwargs):
from boto.elastictranscoder.layer1 import ElasticTranscoderConnection
return ElasticTranscoderConnection(
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
**kwargs)
def connect_opsworks(aws_access_key_id=None,
aws_secret_access_key=None,
**kwargs):
from boto.opsworks.layer1 import OpsWorksConnection
return OpsWorksConnection(
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
**kwargs)
|
MIT License
|
aerospike/aerospike-client-python
|
aerospike_helpers/operations/map_operations.py
|
map_get_by_key_list
|
python
|
def map_get_by_key_list(bin_name, key_list, return_type, inverted=False, ctx=None):
op_dict = {
OP_KEY: aerospike.OP_MAP_GET_BY_KEY_LIST,
BIN_KEY: bin_name,
VALUE_KEY: key_list,
RETURN_TYPE_KEY: return_type,
INVERTED_KEY: inverted
}
if ctx:
op_dict[CTX_KEY] = ctx
return op_dict
|
Creates a map_get_by_key_list operation to be used with operate or operate_ordered
The operation returns items, specified by the keys in key_list from the map stored in the specified bin.
Args:
bin_name (str): The name of the bin containing the map.
key_list (list): A list of keys to be returned from the map.
return_type (int): Value specifying what should be returned from the operation.
This should be one of the :ref:`map_return_types` values.
inverted (bool): If true, keys with values not specified in the key_list will be returned,
and those keys specified in the key_list will be ignored. Default: False
ctx (list): An optional list of nested CDT context operations (:mod:`cdt_cdx <aerospike_helpers.cdt_ctx>` object) for use on nested CDTs.
Returns:
A dictionary usable in operate or operate_ordered. The format of the dictionary
should be considered an internal detail, and subject to change.
|
https://github.com/aerospike/aerospike-client-python/blob/59fa0d36aa899a164282643fe49b27d12aaf323f/aerospike_helpers/operations/map_operations.py#L612-L640
|
import aerospike
OP_KEY = "op"
BIN_KEY = "bin"
POLICY_KEY = "map_policy"
VALUE_KEY = "val"
KEY_KEY = "key"
INDEX_KEY = "index"
RETURN_TYPE_KEY = "return_type"
INVERTED_KEY = "inverted"
RANGE_KEY = "range"
COUNT_KEY = "count"
RANK_KEY = "rank"
CTX_KEY = "ctx"
def map_set_policy(bin_name, policy, ctx=None):
op_dict = {
OP_KEY: aerospike.OP_MAP_SET_POLICY,
BIN_KEY: bin_name,
POLICY_KEY: policy
}
if ctx is not None:
op_dict[CTX_KEY] = ctx
return op_dict
def map_put(bin_name, key, value, map_policy=None, ctx=None):
op_dict = {
OP_KEY: aerospike.OP_MAP_PUT,
BIN_KEY: bin_name,
KEY_KEY: key,
VALUE_KEY: value
}
if map_policy is not None:
op_dict[POLICY_KEY] = map_policy
if ctx is not None:
op_dict[CTX_KEY] = ctx
return op_dict
def map_put_items(bin_name, item_dict, map_policy=None, ctx=None):
op_dict = {
OP_KEY: aerospike.OP_MAP_PUT_ITEMS,
BIN_KEY: bin_name,
VALUE_KEY: item_dict
}
if map_policy is not None:
op_dict[POLICY_KEY] = map_policy
if ctx is not None:
op_dict[CTX_KEY] = ctx
return op_dict
def map_increment(bin_name, key, amount, map_policy=None, ctx=None):
op_dict = {
OP_KEY: aerospike.OP_MAP_INCREMENT,
BIN_KEY: bin_name,
KEY_KEY: key,
VALUE_KEY: amount
}
if map_policy is not None:
op_dict[POLICY_KEY] = map_policy
if ctx is not None:
op_dict[CTX_KEY] = ctx
return op_dict
def map_decrement(bin_name, key, amount, map_policy=None, ctx=None):
op_dict = {
OP_KEY: aerospike.OP_MAP_DECREMENT,
BIN_KEY: bin_name,
KEY_KEY: key,
VALUE_KEY: amount
}
if map_policy is not None:
op_dict[POLICY_KEY] = map_policy
if ctx is not None:
op_dict[CTX_KEY] = ctx
return op_dict
def map_size(bin_name, ctx=None):
op_dict = {
OP_KEY: aerospike.OP_MAP_SIZE,
BIN_KEY: bin_name
}
if ctx is not None:
op_dict[CTX_KEY] = ctx
return op_dict
def map_clear(bin_name, ctx=None):
op_dict = {
OP_KEY: aerospike.OP_MAP_CLEAR,
BIN_KEY: bin_name
}
if ctx is not None:
op_dict[CTX_KEY] = ctx
return op_dict
def map_remove_by_key(bin_name, key, return_type, ctx=None):
op_dict = {
OP_KEY: aerospike.OP_MAP_REMOVE_BY_KEY,
BIN_KEY: bin_name,
KEY_KEY: key,
RETURN_TYPE_KEY: return_type
}
if ctx is not None:
op_dict[CTX_KEY] = ctx
return op_dict
def map_remove_by_key_list(bin_name, key_list, return_type, inverted=False, ctx=None):
op_dict = {
OP_KEY: aerospike.OP_MAP_REMOVE_BY_KEY_LIST,
BIN_KEY: bin_name,
VALUE_KEY: key_list,
RETURN_TYPE_KEY: return_type,
INVERTED_KEY: inverted
}
if ctx is not None:
op_dict[CTX_KEY] = ctx
return op_dict
def map_remove_by_key_range(bin_name, key_range_start,
key_range_end, return_type, inverted=False, ctx=None):
op_dict = {
OP_KEY: aerospike.OP_MAP_REMOVE_BY_KEY_RANGE,
BIN_KEY: bin_name,
KEY_KEY: key_range_start,
VALUE_KEY: key_range_end,
RETURN_TYPE_KEY: return_type,
INVERTED_KEY: inverted
}
if ctx is not None:
op_dict[CTX_KEY] = ctx
return op_dict
def map_remove_by_value(bin_name, value, return_type, inverted=False, ctx=None):
op_dict = {
OP_KEY: aerospike.OP_MAP_REMOVE_BY_VALUE,
BIN_KEY: bin_name,
VALUE_KEY: value,
RETURN_TYPE_KEY: return_type,
INVERTED_KEY: inverted
}
if ctx is not None:
op_dict[CTX_KEY] = ctx
return op_dict
def map_remove_by_value_list(bin_name, value_list, return_type, inverted=False, ctx=None):
op_dict = {
OP_KEY: aerospike.OP_MAP_REMOVE_BY_VALUE_LIST,
BIN_KEY: bin_name,
VALUE_KEY: value_list,
RETURN_TYPE_KEY: return_type,
INVERTED_KEY: inverted
}
if ctx is not None:
op_dict[CTX_KEY] = ctx
return op_dict
def map_remove_by_value_range(bin_name, value_start, value_end, return_type, inverted=False, ctx=None):
op_dict = {
OP_KEY: aerospike.OP_MAP_REMOVE_BY_VALUE_RANGE,
BIN_KEY: bin_name,
VALUE_KEY: value_start,
RANGE_KEY: value_end,
RETURN_TYPE_KEY: return_type,
INVERTED_KEY: inverted
}
if ctx is not None:
op_dict[CTX_KEY] = ctx
return op_dict
def map_remove_by_index(bin_name, index, return_type, ctx=None):
op_dict = {
OP_KEY: aerospike.OP_MAP_REMOVE_BY_INDEX,
BIN_KEY: bin_name,
INDEX_KEY: index,
RETURN_TYPE_KEY: return_type
}
if ctx is not None:
op_dict[CTX_KEY] = ctx
return op_dict
def map_remove_by_index_range(bin_name, index_start, remove_amt, return_type, inverted=False, ctx=None):
op_dict = {
OP_KEY: aerospike.OP_MAP_REMOVE_BY_INDEX_RANGE,
BIN_KEY: bin_name,
INDEX_KEY: index_start,
VALUE_KEY: remove_amt,
RETURN_TYPE_KEY: return_type,
INVERTED_KEY: inverted
}
if ctx is not None:
op_dict[CTX_KEY] = ctx
return op_dict
def map_remove_by_rank(bin_name, rank, return_type, ctx=None):
op_dict = {
OP_KEY: aerospike.OP_MAP_REMOVE_BY_RANK,
BIN_KEY: bin_name,
INDEX_KEY: rank,
RETURN_TYPE_KEY: return_type
}
if ctx is not None:
op_dict[CTX_KEY] = ctx
return op_dict
def map_remove_by_rank_range(bin_name, rank_start, remove_amt, return_type, inverted=False, ctx=None):
op_dict = {
OP_KEY: aerospike.OP_MAP_REMOVE_BY_RANK_RANGE,
BIN_KEY: bin_name,
INDEX_KEY: rank_start,
VALUE_KEY: remove_amt,
RETURN_TYPE_KEY: return_type,
INVERTED_KEY: inverted
}
if ctx is not None:
op_dict[CTX_KEY] = ctx
return op_dict
def map_get_by_key(bin_name, key, return_type, ctx=None):
op_dict = {
OP_KEY: aerospike.OP_MAP_GET_BY_KEY,
BIN_KEY: bin_name,
KEY_KEY: key,
RETURN_TYPE_KEY: return_type
}
if ctx:
op_dict[CTX_KEY] = ctx
return op_dict
def map_get_by_key_range(bin_name, key_range_start,
key_range_end, return_type, inverted=False, ctx=None):
op_dict = {
OP_KEY: aerospike.OP_MAP_GET_BY_KEY_RANGE,
BIN_KEY: bin_name,
KEY_KEY: key_range_start,
RANGE_KEY: key_range_end,
RETURN_TYPE_KEY: return_type,
INVERTED_KEY: inverted
}
if ctx:
op_dict[CTX_KEY] = ctx
return op_dict
|
Apache License 2.0
|
derwenai/pytextrank
|
pytextrank/base.py
|
BaseTextRank.segment_paragraphs
|
python
|
def segment_paragraphs (
self,
sent_dist: typing.List[Sentence],
) -> typing.List[Paragraph]:
para_elem: typing.List[int] = []
para_bounds: typing.List[typing.List[int]] = []
for sent_id, s in enumerate(self.doc.sents):
toke_0 = str(s.__getitem__(0))
ret_count = sum(map(lambda c: 1 if c == "\n" else 0, toke_0))
if ret_count > 1:
if len(para_elem) > 0:
para_bounds.append(para_elem)
para_elem = []
para_elem.append(sent_id)
if len(para_elem) > 0:
para_bounds.append(para_elem)
para_list: typing.List[Paragraph] = []
for para_id, para_elem in enumerate(para_bounds):
sum_dist = [
sent_dist[sent_id].distance
for sent_id in para_elem
]
para_list.append(Paragraph(
para_id = para_id,
start = para_elem[0],
end = para_elem[-1],
distance = sum(sum_dist) / float(len(sum_dist)),
))
return para_list
|
Segment a ranked document into paragraphs.
sent_dist:
a list of ranked Sentence data objects
returns:
a list of Paragraph data objects
|
https://github.com/derwenai/pytextrank/blob/bda595d8a504e8d4ec9b47c1d909b7c1d10e5300/pytextrank/base.py#L731-L783
|
from collections import Counter, defaultdict, OrderedDict
from dataclasses import dataclass
import json
import math
import pathlib
import time
import typing
from icecream import ic
from spacy.tokens import Doc, Span, Token
import graphviz
import networkx as nx
from .util import groupby_apply, default_scrubber
try:
import altair as alt
import pandas as pd
except ImportError:
_has_altair_and_pandas = False
else:
_has_altair_and_pandas = True
StopWordsLike = typing.Union[ str, pathlib.Path, typing.Dict[str, typing.List[str]] ]
@dataclass(order=True, frozen=True)
class Lemma:
lemma: str
pos: str
def label (
self
) -> str:
return str((self.lemma, self.pos,))
@dataclass
class Phrase:
text: str
chunks: typing.List[Span]
count: int
rank: float
@dataclass
class Sentence:
start: int
end: int
sent_id: int
phrases: typing.Set[int]
distance: float
def empty (
self
) -> bool:
return len(self.phrases) == 0
def text (
self,
doc: Doc,
) -> str:
return doc[self.start:self.end]
@dataclass
class VectorElem:
phrase: Phrase
phrase_id: int
coord: float
@dataclass
class Paragraph:
start: int
end: int
para_id: int
distance: float
class BaseTextRankFactory:
_EDGE_WEIGHT: float = 1.0
_POS_KEPT: typing.List[str] = ["ADJ", "NOUN", "PROPN", "VERB"]
_TOKEN_LOOKBACK: int = 3
def __init__ (
self,
*,
edge_weight: float = _EDGE_WEIGHT,
pos_kept: typing.List[str] = None,
token_lookback: int = _TOKEN_LOOKBACK,
scrubber: typing.Optional[typing.Callable] = None,
stopwords: typing.Optional[StopWordsLike] = None,
) -> None:
self.edge_weight: float = edge_weight
self.token_lookback: int = token_lookback
if pos_kept:
self.pos_kept: typing.List[str] = pos_kept
else:
self.pos_kept = self._POS_KEPT
if scrubber:
self.scrubber: typing.Callable = scrubber
else:
self.scrubber = default_scrubber
if stopwords:
self.stopwords: typing.Dict[str, typing.List[str]] = self._load_stopwords(stopwords)
else:
self.stopwords = defaultdict(list)
@classmethod
def _load_stopwords (
cls,
stopwords: typing.Optional[StopWordsLike] = None,
) -> typing.Dict[str, typing.List[str]]:
if isinstance(stopwords, dict):
return stopwords
if isinstance(stopwords, pathlib.Path):
path: pathlib.Path = stopwords
else:
path = pathlib.Path(str)
if path.exists():
with open(path, "r") as f:
data = json.load(f)
if data:
return data.items()
raise TypeError("cannot parse the stopwords source as a dictionary")
def __call__ (
self,
doc: Doc,
) -> Doc:
Doc.set_extension("textrank", force=True, default=None)
Doc.set_extension("phrases", force=True, default=[])
doc._.textrank = BaseTextRank(
doc,
edge_weight = self.edge_weight,
pos_kept = self.pos_kept,
token_lookback = self.token_lookback,
scrubber = self.scrubber,
stopwords = self.stopwords,
)
doc._.phrases = doc._.textrank.calc_textrank()
return doc
class BaseTextRank:
def __init__ (
self,
doc: Doc,
edge_weight: float,
pos_kept: typing.List[str],
token_lookback: int,
scrubber: typing.Callable,
stopwords: typing.Dict[str, typing.List[str]],
) -> None:
self.doc: Doc = doc
self.edge_weight: float = edge_weight
self.token_lookback: int = token_lookback
self.pos_kept: typing.List[str] = pos_kept
self.scrubber: typing.Callable = scrubber
self.stopwords: typing.Dict[str, typing.List[str]] = stopwords
self.focus_tokens: typing.Set[str] = set()
self.node_bias = 1.0
self.default_bias = 1.0
self.elapsed_time: float = 0.0
self.lemma_graph: nx.DiGraph = nx.DiGraph()
self.phrases: typing.List[Phrase] = []
self.ranks: typing.Dict[Lemma, float] = {}
self.seen_lemma: typing.Dict[Lemma, typing.Set[int]] = OrderedDict()
def reset (
self
) -> None:
self.elapsed_time = 0.0
self.lemma_graph = nx.DiGraph()
self.phrases = []
self.ranks = {}
self.seen_lemma = OrderedDict()
def calc_textrank (
self
) -> typing.List[Phrase]:
t0 = time.time()
self.reset()
self.lemma_graph = self._construct_graph()
self.ranks = nx.pagerank_scipy(
self.lemma_graph,
personalization = self.get_personalization(),
)
nc_phrases: typing.Dict[Span, float] = self._collect_phrases(self.doc.noun_chunks, self.ranks)
ent_phrases: typing.Dict[Span, float] = self._collect_phrases(self.doc.ents, self.ranks)
all_phrases: typing.Dict[Span, float] = { **nc_phrases, **ent_phrases }
raw_phrase_list: typing.List[Phrase] = self._get_min_phrases(all_phrases)
phrase_list: typing.List[Phrase] = sorted(raw_phrase_list, key=lambda p: p.rank, reverse=True)
t1 = time.time()
self.elapsed_time = (t1 - t0) * 1000.0
return phrase_list
def get_personalization (
self
) -> typing.Optional[typing.Dict[Lemma, float]]:
return None
def _construct_graph (
self
) -> nx.DiGraph:
g = nx.DiGraph()
g.add_nodes_from(self.node_list)
g.add_edges_from(self.edge_list)
return g
def _keep_token (
self,
token: Token,
) -> bool:
lemma = token.lemma_.lower().strip()
if self._is_stopword(lemma, token):
return False
if token.pos_ not in self.pos_kept:
return False
key = Lemma(lemma, token.pos_,)
if key not in self.seen_lemma:
self.seen_lemma[key] = set([token.i])
else:
self.seen_lemma[key].add(token.i)
return True
def _is_stopword (
self,
lemma: str,
token: Token,
) -> bool:
return lemma in self.stopwords and token.pos_ in self.stopwords[lemma]
@property
def node_list (
self
) -> typing.List[Lemma]:
nodes: typing.List[Lemma] = [
Lemma(token.lemma_, token.pos_)
for token in self.doc
if self._keep_token(token)
]
return nodes
@property
def edge_list (
self
) -> typing.List[typing.Tuple[Lemma, Lemma, typing.Dict[str, float]]]:
edges: typing.List[typing.Tuple[Lemma, Lemma]] = []
for sent in self.doc.sents:
h = [
Lemma(token.lemma_, token.pos_)
for token in sent
if self._keep_token(token)
]
for hop in range(self.token_lookback):
for idx, node in enumerate(h[: -1 - hop]):
nbor = h[hop + idx + 1]
edges.append((node, nbor))
weighted_edges: typing.List[typing.Tuple[Lemma, Lemma, typing.Dict[str, float]]] = [
(*n, {"weight": w * self.edge_weight}) for n, w in Counter(edges).items()
]
return weighted_edges
def _collect_phrases (
self,
spans: typing.Iterable[Span],
ranks: typing.Dict[Lemma, float]
) -> typing.Dict[Span, float]:
phrases: typing.Dict[Span, float] = {
span: sum(
ranks[Lemma(token.lemma_, token.pos_)]
for token in span
if self._keep_token(token)
)
for span in spans
}
return {
span: self._calc_discounted_normalised_rank(span, sum_rank)
for span, sum_rank in phrases.items()
}
def _calc_discounted_normalised_rank (
self,
span: Span,
sum_rank: float
) -> float:
non_lemma = len([tok for tok in span if tok.pos_ not in self.pos_kept])
non_lemma_discount = len(span) / (len(span) + (2.0 * non_lemma) + 1.0)
phrase_rank = math.sqrt(sum_rank / (len(span) + non_lemma))
return phrase_rank * non_lemma_discount
def _get_min_phrases (
self,
all_phrases: typing.Dict[Span, float]
) -> typing.List[Phrase]:
try:
data: typing.List[typing.Tuple[Span, float, Span]] = [
(self.scrubber(span), rank, span) for span, rank in all_phrases.items()
]
except AttributeError:
raise FutureWarning("Text-based scrubbers are deprecated. Use a `Span` instead.")
keyfunc = lambda x: x[0]
applyfunc = lambda g: list((rank, spans) for text, rank, spans in g)
phrases: typing.List[typing.Tuple[str, typing.List[typing.Tuple[float, Span]]]] = groupby_apply(
data,
keyfunc,
applyfunc,
)
phrase_list: typing.List[Phrase] = [
Phrase(
text = p[0],
rank = max(rank for rank, span in p[1]),
count = len(p[1]),
chunks = list(span for rank, span in p[1]),
)
for p in phrases
]
return phrase_list
def get_unit_vector (
self,
limit_phrases: int,
) -> typing.List[VectorElem]:
unit_vector: typing.List[VectorElem] = [
VectorElem(
phrase = p,
phrase_id = phrase_id,
coord = p.rank,
)
for phrase_id, p in enumerate(self.doc._.phrases)
]
limit = min(limit_phrases, len(unit_vector))
unit_vector = unit_vector[:limit]
sum_length = sum([ elem.coord for elem in unit_vector ])
for elem in unit_vector:
if sum_length > 0.0:
elem.coord = elem.coord / sum_length
else:
elem.coord = 0.0
return unit_vector
def calc_sent_dist (
self,
limit_phrases: int,
) -> typing.List[Sentence]:
unit_vector = self.get_unit_vector(limit_phrases)
sent_dist: typing.List[Sentence] = [
Sentence(
start = s.start,
end = s.end,
sent_id = sent_id,
phrases = set(),
distance = 0.0,
)
for sent_id, s in enumerate(self.doc.sents)
]
for elem in unit_vector:
for chunk in elem.phrase.chunks:
for sent in sent_dist:
if chunk.start >= sent.start and chunk.end <= sent.end:
sent.phrases.add(elem.phrase_id)
break
for sent in sent_dist:
sum_sq = 0.0
for elem in unit_vector:
if elem.phrase_id not in sent.phrases:
sum_sq += elem.coord**2.0
sent.distance = math.sqrt(sum_sq)
return sent_dist
|
MIT License
|
drug2ways/drug2ways
|
src/drug2ways/bel_helper.py
|
remove_contradictory_edges
|
python
|
def remove_contradictory_edges(
increases: List[Any],
decreases: List[Any],
debug: bool = False,
) -> Tuple[List[Any], List[Any], List[Any]]:
removed = []
for node in increases:
if debug:
logger.warning(f'Node: {node}')
if node in decreases:
if debug:
logger.warning(f'{node} is contradictory')
removed.append(node)
else:
if debug:
logger.warning(f'{node} not contradictory')
increases = [
i
for i in increases
if i not in removed
]
decreases = [
i
for i in decreases
if i not in removed
]
return increases, decreases, removed
|
Remove contradictory edges.
|
https://github.com/drug2ways/drug2ways/blob/c27f4d94ae8cf32b52186395f90d399889b84214/src/drug2ways/bel_helper.py#L101-L130
|
import logging
from typing import Dict, Tuple, List, Any
from networkx import DiGraph
from pybel import BELGraph
from pybel.constants import (
RELATION, INCREASES, DIRECTLY_DECREASES, DIRECTLY_INCREASES, DECREASES, REGULATES
)
from pybel.struct.filters import is_causal_relation
from pybel.struct.mutation import get_subgraph_by_edge_filter
logger = logging.getLogger(__name__)
RELATION_MAPPING_BEL = {
INCREASES: 1,
DIRECTLY_INCREASES: 1,
DECREASES: -1,
DIRECTLY_DECREASES: -1,
REGULATES: 1,
}
def _change_relationships(edge: Dict) -> Tuple[bool, bool]:
if 'increases' in edge[1]['relation'] or edge[1]['relation'] == 'positive_correlation':
return True, True
elif 'decreases' in edge[1]['relation'] or edge[1]['relation'] == 'negative_correlation':
return True, False
return False, False
def process_bel_graph(bel_graph: BELGraph) -> DiGraph:
bel_graph = get_subgraph_by_edge_filter(bel_graph, is_causal_relation)
directed_graph = DiGraph()
for source, target, data in bel_graph.edges(data=True):
if data[RELATION] not in RELATION_MAPPING_BEL:
logger.warning(f"Unknown relation {data[RELATION]}")
continue
directed_graph.add_edge(source.as_bel(), target.as_bel(), relation=RELATION_MAPPING_BEL[data[RELATION]])
return directed_graph
def _is_target_node(node: str) -> bool:
if node.startswith('bp') or node.startswith('path'):
return True
return False
def _valid_source_node(node: str) -> bool:
if not node.startswith('a'):
return False
if 'CHEBI' in node or 'PUBCHEM' in node:
return True
return False
def get_candidate_drugs(graph):
return [
node
for node in graph.nodes()
if _valid_source_node(node)
]
def get_candidate_targets(graph):
return [
node
for node in graph.nodes()
if _is_target_node(node)
]
|
Apache License 2.0
|
clericpy/ichrome
|
ichrome/sync_utils.py
|
Tab.set_url
|
python
|
def set_url(self, url=None, referrer=None, timeout=5):
self.enable('Page')
start_load_ts = self.now
if url:
self._url = url
if referrer is None:
data = self.send("Page.navigate", url=url, timeout=timeout)
else:
data = self.send("Page.navigate",
url=url,
referrer=referrer,
timeout=timeout)
else:
data = self.send("Page.reload", timeout=timeout)
time_passed = self.now - start_load_ts
real_timeout = max((timeout - time_passed, 0))
if self.wait_loading(timeout=real_timeout) is None:
self.send("Page.stopLoading", timeout=0)
return data
|
Navigate the tab to the URL
|
https://github.com/clericpy/ichrome/blob/052519822bea48de0c7c574d042d75f0e457a8b7/ichrome/sync_utils.py#L388-L409
|
import json
import threading
import time
import traceback
from concurrent.futures._base import Error
from weakref import WeakValueDictionary
import websocket
from torequests import NewFuture, tPool
from torequests.utils import quote_plus
from .daemon import ChromeDaemon
from .exceptions import ChromeRuntimeError, ChromeTypeError
from .logs import logger
class Chrome(object):
def __init__(self, host="127.0.0.1", port=9222, timeout=2, retry=1):
self.req = tPool()
self.host = host
self.port = port
self.timeout = timeout
self.retry = retry
if not self.ok:
raise ChromeRuntimeError(f"Can not connect to {self.server}")
@property
def ok(self):
r = self.req.get(self.server, timeout=self.timeout, retry=self.retry)
if r.ok:
return True
return False
def _get_tabs(self):
try:
r = self.req.get(self.server + "/json",
timeout=self.timeout,
retry=self.retry)
return [
Tab(
tab["id"],
tab["title"],
tab["url"],
tab["webSocketDebuggerUrl"],
self,
) for tab in r.json() if tab["type"] == "page"
]
except Exception as error:
logger.error(f'_get_tabs crashed for: {error!r}')
raise error
@property
def server(self):
return f"http://{self.host}:{self.port}"
@property
def tabs(self):
return self._get_tabs()
def new_tab(self, url=""):
r = self.req.get(
f"{self.server}/json/new?{quote_plus(url)}",
retry=self.retry,
timeout=self.timeout,
)
if r.x and r.ok:
rjson = r.json()
tab_id, title, _url, webSocketDebuggerUrl = (
rjson["id"],
rjson["title"],
rjson["url"],
rjson["webSocketDebuggerUrl"],
)
tab = Tab(tab_id, title, _url, webSocketDebuggerUrl, self)
tab._create_time = tab.now
logger.info(f"new tab {tab}")
return tab
def activate_tab(self, tab_id):
ok = False
if isinstance(tab_id, Tab):
tab_id = tab_id.tab_id
r = self.req.get(
f"{self.server}/json/activate/{tab_id}",
retry=self.retry,
timeout=self.timeout,
)
if r.x and r.ok:
if r.text == "Target activated":
ok = True
logger.info(f"activate_tab {tab_id}: {ok}")
def close_tab(self, tab_id=None):
ok = False
tab_id = tab_id or self.tabs
if isinstance(tab_id, Tab):
tab_id = tab_id.tab_id
r = self.req.get(
f"{self.server}/json/close/{tab_id}",
retry=self.retry,
timeout=self.timeout,
)
if r.x and r.ok:
if r.text == "Target is closing":
ok = True
logger.info(f"close tab {tab_id}: {ok}")
def close_tabs(self, tab_ids):
return [self.close_tab(tab_id) for tab_id in tab_ids]
def kill(self, timeout=None, max_deaths=1):
ChromeDaemon.clear_chrome_process(self.port,
timeout=timeout,
max_deaths=max_deaths)
@property
def meta(self):
r = self.req.get(f"{self.server}/json/version",
retry=self.retry,
timeout=self.timeout)
if r.x and r.ok:
return r.json()
def __str__(self):
return "[Chromote(tabs=%d)]" % len(self.tabs)
def __repr__(self):
return f"Chromote({self.server})"
def __getitem__(self, index):
tabs = self.tabs
if isinstance(index, int):
if len(tabs) > index:
return tabs[index]
elif isinstance(index, slice):
return tabs.__getitem__(index)
class Tab(object):
def __init__(self,
tab_id,
title,
url,
webSocketDebuggerUrl,
chrome,
timeout=5):
self.tab_id = tab_id
self._title = title
self._url = url
self.webSocketDebuggerUrl = webSocketDebuggerUrl
self.chrome = chrome
self.timeout = timeout
self.req = tPool()
self._create_time = time.time()
self._message_id = 0
self._listener = Listener()
self.lock = threading.Lock()
self.ws = websocket.WebSocket()
self._connect()
for target in [self._recv_daemon]:
t = threading.Thread(target=target, daemon=True)
t.start()
def close_browser(self):
return self.send('Browser.close')
@property
def url(self):
return self.current_url
def _connect(self):
self.ws.connect(self.webSocketDebuggerUrl, timeout=self.timeout)
def activate_tab(self):
return self.chrome.activate_tab(self.tab_id)
def close_tab(self):
return self.chrome.close_tab(self.tab_id)
def activate(self):
return self.send("Page.bringToFront")
def close(self):
return self.send("Page.close")
def crash(self):
return self.send("Page.crash")
def _recv_daemon(self):
while self.ws.connected:
try:
data_str = self.ws.recv()
logger.debug(data_str)
if not data_str:
continue
try:
data_dict = json.loads(data_str)
if not isinstance(data_dict, dict):
continue
except (TypeError, json.decoder.JSONDecodeError):
continue
f = self._listener.find_future(data_dict)
if f:
f.set_result(data_str)
except (
websocket._exceptions.WebSocketConnectionClosedException,
websocket._exceptions.WebSocketTimeoutException,
ConnectionResetError,
):
break
def send(self,
method,
timeout=None,
callback_function=None,
mute_log=False,
**kwargs):
try:
timeout = self.timeout if timeout is None else timeout
request = {"method": method, "params": kwargs}
self._message_id += 1
request["id"] = self._message_id
if not mute_log:
logger.info(f"<{self}> send: {request}")
with self.lock:
self.ws.send(json.dumps(request))
request = {"id": request["id"]}
res = self.recv(request,
timeout=timeout,
callback_function=callback_function)
return res
except (
websocket._exceptions.WebSocketTimeoutException,
websocket._exceptions.WebSocketConnectionClosedException,
):
self.refresh_ws()
def recv(self, arg, timeout=None, callback_function=None):
result = None
timeout = self.timeout if timeout is None else timeout
if timeout == 0:
return result
f = self._listener.register(arg, timeout=timeout)
try:
result = f.x
except Error:
result = None
finally:
self._listener.find_future(arg)
return callback_function(result) if callable(
callback_function) else result
def refresh_ws(self):
self.ws.close()
self._connect()
@property
def now(self):
return int(time.time())
def clear_cookies(self, timeout=0):
return self.send("Network.clearBrowserCookies", timeout=timeout)
def delete_cookies(self, name, url=None, domain=None, path=None, timeout=0):
return self.send(
"Network.deleteCookies",
name=name,
url=url,
domain=domain,
path=path,
timeout=timeout,
)
def get_cookies(self, urls=None, timeout=None):
if urls:
if isinstance(urls, str):
urls = [urls]
urls = list(urls)
result = self.send("Network.getCookies", urls=urls, timeout=timeout)
else:
result = self.send("Network.getCookies", timeout=timeout)
try:
return json.loads(result)["result"]["cookies"]
except Exception as error:
logger.error(f'get_cookies crashed for: {error!r}')
raise error
@property
def current_url(self):
return json.loads(
self.js("window.location.href"))["result"]["result"]["value"]
@property
def title(self):
return json.loads(
self.js("document.title"))["result"]["result"]["value"]
@property
def html(self):
response = None
try:
response = self.js("document.documentElement.outerHTML")
if not response:
return ""
result = json.loads(response)
value = result["result"]["result"]["value"]
return value
except (KeyError, json.decoder.JSONDecodeError):
logger.error(
f"tab.content error {response}:\n{traceback.format_exc()}")
return ""
def enable(self, name: str):
return self.send(f'{name}.enable', timeout=0)
def disable(self, name: str):
return self.send(f'{name}.disable', timeout=0)
def wait_loading(self,
wait_seconds=None,
timeout=1,
callback_function=None):
self.enable('Page')
data = self.wait_event("Page.loadEventFired",
timeout=timeout,
wait_seconds=wait_seconds,
callback_function=callback_function)
return data
def wait_event(
self,
event="",
timeout=None,
callback_function=None,
filter_function=None,
wait_seconds=None,
):
timeout = self.timeout if timeout is None else timeout
start_time = time.time()
while 1:
request = {"method": event}
result = self.recv(request, timeout=timeout)
timeout_break = wait_seconds and time.time(
) - start_time > wait_seconds
if timeout_break:
break
if result or timeout == 0:
if callable(filter_function):
if filter_function(result):
break
else:
break
return callback_function(result) if callable(
callback_function) else result
def reload(self, timeout=5):
return self.set_url(timeout=timeout)
|
MIT License
|
demisto/demisto-sdk
|
demisto_sdk/commands/common/hook_validations/mapper.py
|
MapperValidator.is_id_equals_name
|
python
|
def is_id_equals_name(self):
return super()._is_id_equals_name('mapper')
|
Check whether the mapper ID is equal to its name.
Returns:
bool. Whether the file id equals to its name
|
https://github.com/demisto/demisto-sdk/blob/8d8767c2dfec77b67c35f4e1022e30ed2893e864/demisto_sdk/commands/common/hook_validations/mapper.py#L201-L207
|
from distutils.version import LooseVersion
import click
from demisto_sdk.commands.common.constants import LAYOUT_AND_MAPPER_BUILT_IN_FIELDS
from demisto_sdk.commands.common.errors import Errors
from demisto_sdk.commands.common.hook_validations.content_entity_validator import ContentEntityValidator
from demisto_sdk.commands.common.tools import get_all_incident_and_indicator_fields_from_id_set
from demisto_sdk.commands.common.update_id_set import BUILT_IN_FIELDS
FROM_VERSION = '6.0.0'
VALID_TYPE_INCOMING = 'mapping-incoming'
VALID_TYPE_OUTGOING = 'mapping-outgoing'
class MapperValidator(ContentEntityValidator):
def __init__(self, structure_validator, ignored_errors=None, print_as_warnings=False, suppress_print=False,
json_file_path=None):
super().__init__(structure_validator, ignored_errors=ignored_errors, print_as_warnings=print_as_warnings,
suppress_print=suppress_print, json_file_path=json_file_path)
self.from_version = ''
self.to_version = ''
def is_valid_mapper(self, validate_rn=True, id_set_file=None, is_circle=False):
return all([
super().is_valid_file(validate_rn),
self.is_valid_version(),
self.is_valid_from_version(),
self.is_valid_to_version(),
self.is_to_version_higher_from_version(),
self.is_valid_type(),
self.is_incident_field_exist(id_set_file, is_circle),
self.is_id_equals_name(),
])
def is_valid_version(self):
return self._is_valid_version()
def is_backward_compatible(self):
answers = [
self.is_field_mapping_removed(),
]
return not any(answers)
def is_field_mapping_removed(self):
old_mapper = self.old_file.get('mapping', {})
current_mapper = self.current_file.get('mapping', {})
old_incidents_types = {inc for inc in old_mapper}
current_incidents_types = {inc for inc in current_mapper}
if not old_incidents_types.issubset(current_incidents_types):
removed_incident_types = old_incidents_types - current_incidents_types
removed_dict = {}
for removed in removed_incident_types:
removed_dict[removed] = old_mapper[removed]
error_message, error_code = Errors.removed_incident_types(removed_dict)
if self.handle_error(error_message, error_code, file_path=self.file_path,
warning=self.structure_validator.quite_bc):
self.is_valid = False
return True
else:
removed_incident_fields = {}
for inc in old_incidents_types:
old_incident_fields = old_mapper[inc].get('internalMapping', {})
current_incident_fields = current_mapper[inc].get('internalMapping', {})
old_fields = {inc for inc in old_incident_fields}
current_fields = {inc for inc in current_incident_fields}
if not old_fields.issubset(current_fields):
removed_fields = old_fields - current_fields
removed_incident_fields[inc] = removed_fields
if removed_incident_fields:
error_message, error_code = Errors.changed_incident_field_in_mapper(removed_incident_fields)
if self.handle_error(error_message, error_code, file_path=self.file_path,
warning=self.structure_validator.quite_bc):
self.is_valid = False
return True
return False
def is_valid_from_version(self):
from_version = self.current_file.get('fromVersion', '') or self.current_file.get('fromversion')
if from_version:
self.from_version = from_version
if LooseVersion(from_version) < LooseVersion(FROM_VERSION):
error_message, error_code = Errors.invalid_from_version_in_mapper()
if self.handle_error(error_message, error_code, file_path=self.file_path,
suggested_fix=Errors.suggest_fix(self.file_path)):
return False
else:
error_message, error_code = Errors.missing_from_version_in_mapper()
if self.handle_error(error_message, error_code, file_path=self.file_path,
suggested_fix=Errors.suggest_fix(self.file_path)):
return False
return True
def is_valid_to_version(self):
to_version = self.current_file.get('toVersion', '') or self.current_file.get('toversion', '')
if to_version:
self.to_version = to_version
if LooseVersion(to_version) < LooseVersion(FROM_VERSION):
error_message, error_code = Errors.invalid_to_version_in_mapper()
if self.handle_error(error_message, error_code, file_path=self.file_path):
return False
return True
def is_to_version_higher_from_version(self):
if self.to_version and self.from_version:
if LooseVersion(self.to_version) <= LooseVersion(self.from_version):
error_message, error_code = Errors.from_version_higher_to_version()
if self.handle_error(error_message, error_code, file_path=self.file_path):
return False
return True
def is_valid_type(self):
if self.current_file.get('type') not in [VALID_TYPE_INCOMING, VALID_TYPE_OUTGOING]:
error_message, error_code = Errors.invalid_type_in_mapper()
if self.handle_error(error_message, error_code, file_path=self.file_path):
return False
return True
def is_incident_field_exist(self, id_set_file, is_circle) -> bool:
if not is_circle:
return True
if not id_set_file:
click.secho("Skipping mapper incident field validation. Could not read id_set.json.", fg="yellow")
return True
built_in_fields = [field.lower() for field in BUILT_IN_FIELDS] + LAYOUT_AND_MAPPER_BUILT_IN_FIELDS
content_incident_fields = get_all_incident_and_indicator_fields_from_id_set(id_set_file, 'mapper')
invalid_inc_fields_list = []
mapper = self.current_file.get('mapping', {})
for key, value in mapper.items():
incident_fields = value.get('internalMapping', {})
for inc_name, inc_info in incident_fields.items():
if self.current_file.get('type', {}) == "mapping-incoming":
if inc_name not in content_incident_fields and inc_name.lower() not in built_in_fields:
invalid_inc_fields_list.append(inc_name)
if self.current_file.get('type', {}) == "mapping-outgoing":
if inc_info['simple'] not in content_incident_fields and inc_info['simple'] not in built_in_fields and inc_info['simple'].split('.')[0] not in content_incident_fields and inc_info['simple']:
invalid_inc_fields_list.append(inc_name) if inc_info['simple'] else None
if invalid_inc_fields_list:
error_message, error_code = Errors.invalid_incident_field_in_mapper(invalid_inc_fields_list)
if self.handle_error(error_message, error_code, file_path=self.file_path):
return False
return True
|
MIT License
|
digitalglobe/gbdxtools
|
gbdxtools/workflow.py
|
Workflow.launch
|
python
|
def launch(self, workflow):
try:
r = self.gbdx_connection.post(self.workflows_url, json=workflow)
try:
r.raise_for_status()
except:
print("GBDX API Status Code: %s" % r.status_code)
print("GBDX API Response: %s" % r.text)
r.raise_for_status()
workflow_id = r.json()['id']
return workflow_id
except TypeError:
self.logger.debug('Workflow not launched!')
|
Launches GBDX workflow.
Args:
workflow (dict): Dictionary specifying workflow tasks.
Returns:
Workflow id (str).
|
https://github.com/digitalglobe/gbdxtools/blob/8ddef9f8822a49126e059b56e465da7447e33244/gbdxtools/workflow.py#L33-L55
|
import json
from gbdxtools.auth import Auth
from gbdxtools.s3 import S3
class Workflow(object):
def __init__(self, **kwargs):
interface = Auth(**kwargs)
self.base_url = '%s/workflows/v1' % interface.root_url
self.workflows_url = '%s/workflows' % self.base_url
self.gbdx_connection = interface.gbdx_connection
self.s3 = S3()
self.logger = interface.logger
|
MIT License
|
datastax/python-driver
|
cassandra/cqlengine/query.py
|
AbstractQuerySet.allow_filtering
|
python
|
def allow_filtering(self):
clone = copy.deepcopy(self)
clone._allow_filtering = True
return clone
|
Enables the (usually) unwise practive of querying on a clustering key without also defining a partition key
|
https://github.com/datastax/python-driver/blob/12a8adce943fe37a05ad6580e8bd302b65c2d93a/cassandra/cqlengine/query.py#L940-L946
|
import copy
from datetime import datetime, timedelta
from functools import partial
import time
import six
from warnings import warn
from cassandra.query import SimpleStatement, BatchType as CBatchType, BatchStatement
from cassandra.cqlengine import columns, CQLEngineException, ValidationError, UnicodeMixin
from cassandra.cqlengine import connection as conn
from cassandra.cqlengine.functions import Token, BaseQueryFunction, QueryValue
from cassandra.cqlengine.operators import (InOperator, EqualsOperator, GreaterThanOperator,
GreaterThanOrEqualOperator, LessThanOperator,
LessThanOrEqualOperator, ContainsOperator, BaseWhereOperator)
from cassandra.cqlengine.statements import (WhereClause, SelectStatement, DeleteStatement,
UpdateStatement, InsertStatement,
BaseCQLStatement, MapDeleteClause, ConditionalClause)
class QueryException(CQLEngineException):
pass
class IfNotExistsWithCounterColumn(CQLEngineException):
pass
class IfExistsWithCounterColumn(CQLEngineException):
pass
class LWTException(CQLEngineException):
def __init__(self, existing):
super(LWTException, self).__init__("LWT Query was not applied")
self.existing = existing
class DoesNotExist(QueryException):
pass
class MultipleObjectsReturned(QueryException):
pass
def check_applied(result):
try:
applied = result.was_applied
except Exception:
applied = True
if not applied:
raise LWTException(result.one())
class AbstractQueryableColumn(UnicodeMixin):
def _get_column(self):
raise NotImplementedError
def __unicode__(self):
raise NotImplementedError
def _to_database(self, val):
if isinstance(val, QueryValue):
return val
else:
return self._get_column().to_database(val)
def in_(self, item):
return WhereClause(six.text_type(self), InOperator(), item)
def contains_(self, item):
return WhereClause(six.text_type(self), ContainsOperator(), item)
def __eq__(self, other):
return WhereClause(six.text_type(self), EqualsOperator(), self._to_database(other))
def __gt__(self, other):
return WhereClause(six.text_type(self), GreaterThanOperator(), self._to_database(other))
def __ge__(self, other):
return WhereClause(six.text_type(self), GreaterThanOrEqualOperator(), self._to_database(other))
def __lt__(self, other):
return WhereClause(six.text_type(self), LessThanOperator(), self._to_database(other))
def __le__(self, other):
return WhereClause(six.text_type(self), LessThanOrEqualOperator(), self._to_database(other))
class BatchType(object):
Unlogged = 'UNLOGGED'
Counter = 'COUNTER'
class BatchQuery(object):
warn_multiple_exec = True
_consistency = None
_connection = None
_connection_explicit = False
def __init__(self, batch_type=None, timestamp=None, consistency=None, execute_on_exception=False,
timeout=conn.NOT_SET, connection=None):
self.queries = []
self.batch_type = batch_type
if timestamp is not None and not isinstance(timestamp, (datetime, timedelta)):
raise CQLEngineException('timestamp object must be an instance of datetime')
self.timestamp = timestamp
self._consistency = consistency
self._execute_on_exception = execute_on_exception
self._timeout = timeout
self._callbacks = []
self._executed = False
self._context_entered = False
self._connection = connection
if connection:
self._connection_explicit = True
def add_query(self, query):
if not isinstance(query, BaseCQLStatement):
raise CQLEngineException('only BaseCQLStatements can be added to a batch query')
self.queries.append(query)
def consistency(self, consistency):
self._consistency = consistency
def _execute_callbacks(self):
for callback, args, kwargs in self._callbacks:
callback(*args, **kwargs)
def add_callback(self, fn, *args, **kwargs):
if not callable(fn):
raise ValueError("Value for argument 'fn' is {0} and is not a callable object.".format(type(fn)))
self._callbacks.append((fn, args, kwargs))
def execute(self):
if self._executed and self.warn_multiple_exec:
msg = "Batch executed multiple times."
if self._context_entered:
msg += " If using the batch as a context manager, there is no need to call execute directly."
warn(msg)
self._executed = True
if len(self.queries) == 0:
self._execute_callbacks()
return
batch_type = None if self.batch_type is CBatchType.LOGGED else self.batch_type
opener = 'BEGIN ' + (str(batch_type) + ' ' if batch_type else '') + ' BATCH'
if self.timestamp:
if isinstance(self.timestamp, six.integer_types):
ts = self.timestamp
elif isinstance(self.timestamp, (datetime, timedelta)):
ts = self.timestamp
if isinstance(self.timestamp, timedelta):
ts += datetime.now()
ts = int(time.mktime(ts.timetuple()) * 1e+6 + ts.microsecond)
else:
raise ValueError("Batch expects a long, a timedelta, or a datetime")
opener += ' USING TIMESTAMP {0}'.format(ts)
query_list = [opener]
parameters = {}
ctx_counter = 0
for query in self.queries:
query.update_context_id(ctx_counter)
ctx = query.get_context()
ctx_counter += len(ctx)
query_list.append(' ' + str(query))
parameters.update(ctx)
query_list.append('APPLY BATCH;')
tmp = conn.execute('\n'.join(query_list), parameters, self._consistency, self._timeout, connection=self._connection)
check_applied(tmp)
self.queries = []
self._execute_callbacks()
def __enter__(self):
self._context_entered = True
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if exc_type is not None and not self._execute_on_exception:
return
self.execute()
class ContextQuery(object):
def __init__(self, *args, **kwargs):
from cassandra.cqlengine import models
self.models = []
if len(args) < 1:
raise ValueError("No model provided.")
keyspace = kwargs.pop('keyspace', None)
connection = kwargs.pop('connection', None)
if kwargs:
raise ValueError("Unknown keyword argument(s): {0}".format(
','.join(kwargs.keys())))
for model in args:
try:
issubclass(model, models.Model)
except TypeError:
raise ValueError("Models must be derived from base Model.")
m = models._clone_model_class(model, {})
if keyspace:
m.__keyspace__ = keyspace
if connection:
m.__connection__ = connection
self.models.append(m)
def __enter__(self):
if len(self.models) > 1:
return tuple(self.models)
return self.models[0]
def __exit__(self, exc_type, exc_val, exc_tb):
return
class AbstractQuerySet(object):
def __init__(self, model):
super(AbstractQuerySet, self).__init__()
self.model = model
self._where = []
self._conditional = []
self._order = []
self._allow_filtering = False
self._limit = 10000
self._defer_fields = set()
self._deferred_values = {}
self._only_fields = []
self._values_list = False
self._flat_values_list = False
self._result_cache = None
self._result_idx = None
self._result_generator = None
self._materialize_results = True
self._distinct_fields = None
self._count = None
self._batch = None
self._ttl = None
self._consistency = None
self._timestamp = None
self._if_not_exists = False
self._timeout = conn.NOT_SET
self._if_exists = False
self._fetch_size = None
self._connection = None
@property
def column_family_name(self):
return self.model.column_family_name()
def _execute(self, statement):
if self._batch:
return self._batch.add_query(statement)
else:
connection = self._connection or self.model._get_connection()
result = _execute_statement(self.model, statement, self._consistency, self._timeout, connection=connection)
if self._if_not_exists or self._if_exists or self._conditional:
check_applied(result)
return result
def __unicode__(self):
return six.text_type(self._select_query())
def __str__(self):
return str(self.__unicode__())
def __call__(self, *args, **kwargs):
return self.filter(*args, **kwargs)
def __deepcopy__(self, memo):
clone = self.__class__(self.model)
for k, v in self.__dict__.items():
if k in ['_con', '_cur', '_result_cache', '_result_idx', '_result_generator', '_construct_result']:
clone.__dict__[k] = None
elif k == '_batch':
clone.__dict__[k] = self._batch
elif k == '_timeout':
clone.__dict__[k] = self._timeout
else:
clone.__dict__[k] = copy.deepcopy(v, memo)
return clone
def __len__(self):
self._execute_query()
return self.count()
def _select_fields(self):
return []
def _validate_select_where(self):
def _select_query(self):
if self._where:
self._validate_select_where()
return SelectStatement(
self.column_family_name,
fields=self._select_fields(),
where=self._where,
order_by=self._order,
limit=self._limit,
allow_filtering=self._allow_filtering,
distinct_fields=self._distinct_fields,
fetch_size=self._fetch_size
)
def _execute_query(self):
if self._batch:
raise CQLEngineException("Only inserts, updates, and deletes are available in batch mode")
if self._result_cache is None:
self._result_generator = (i for i in self._execute(self._select_query()))
self._result_cache = []
self._construct_result = self._maybe_inject_deferred(self._get_result_constructor())
if self._materialize_results or self._distinct_fields:
self._fill_result_cache()
def _fill_result_cache(self):
idx = 0
try:
while True:
idx += 1000
self._fill_result_cache_to_idx(idx)
except StopIteration:
pass
self._count = len(self._result_cache)
def _fill_result_cache_to_idx(self, idx):
self._execute_query()
if self._result_idx is None:
self._result_idx = -1
qty = idx - self._result_idx
if qty < 1:
return
else:
for idx in range(qty):
self._result_idx += 1
while True:
try:
self._result_cache[self._result_idx] = self._construct_result(self._result_cache[self._result_idx])
break
except IndexError:
self._result_cache.append(next(self._result_generator))
def __iter__(self):
self._execute_query()
idx = 0
while True:
if len(self._result_cache) <= idx:
try:
self._result_cache.append(next(self._result_generator))
except StopIteration:
break
instance = self._result_cache[idx]
if isinstance(instance, dict):
self._fill_result_cache_to_idx(idx)
yield self._result_cache[idx]
idx += 1
def __getitem__(self, s):
self._execute_query()
if isinstance(s, slice):
start = s.start if s.start else 0
if start < 0 or (s.stop is not None and s.stop < 0):
warn("ModelQuerySet slicing with negative indices support will be removed in 4.0.",
DeprecationWarning)
end = s.stop
if start < 0 or s.stop is None or s.stop < 0:
end = self.count()
try:
self._fill_result_cache_to_idx(end)
except StopIteration:
pass
return self._result_cache[start:s.stop:s.step]
else:
try:
s = int(s)
except (ValueError, TypeError):
raise TypeError('QuerySet indices must be integers')
if s < 0:
warn("ModelQuerySet indexing with negative indices support will be removed in 4.0.",
DeprecationWarning)
if s < 0:
num_results = self.count()
s += num_results
try:
self._fill_result_cache_to_idx(s)
except StopIteration:
raise IndexError
return self._result_cache[s]
def _get_result_constructor(self):
raise NotImplementedError
@staticmethod
def _construct_with_deferred(f, deferred, row):
row.update(deferred)
return f(row)
def _maybe_inject_deferred(self, constructor):
return partial(self._construct_with_deferred, constructor, self._deferred_values) if self._deferred_values else constructor
def batch(self, batch_obj):
if self._connection:
raise CQLEngineException("Cannot specify the connection on model in batch mode.")
if batch_obj is not None and not isinstance(batch_obj, BatchQuery):
raise CQLEngineException('batch_obj must be a BatchQuery instance or None')
clone = copy.deepcopy(self)
clone._batch = batch_obj
return clone
def first(self):
try:
return six.next(iter(self))
except StopIteration:
return None
def all(self):
return copy.deepcopy(self)
def consistency(self, consistency):
clone = copy.deepcopy(self)
clone._consistency = consistency
return clone
def _parse_filter_arg(self, arg):
statement = arg.rsplit('__', 1)
if len(statement) == 1:
return arg, None
elif len(statement) == 2:
return (statement[0], statement[1]) if arg != 'pk__token' else (arg, None)
else:
raise QueryException("Can't parse '{0}'".format(arg))
def iff(self, *args, **kwargs):
if len([x for x in kwargs.values() if x is None]):
raise CQLEngineException("None values on iff are not allowed")
clone = copy.deepcopy(self)
for operator in args:
if not isinstance(operator, ConditionalClause):
raise QueryException('{0} is not a valid query operator'.format(operator))
clone._conditional.append(operator)
for arg, val in kwargs.items():
if isinstance(val, Token):
raise QueryException("Token() values are not valid in conditionals")
col_name, col_op = self._parse_filter_arg(arg)
try:
column = self.model._get_column(col_name)
except KeyError:
raise QueryException("Can't resolve column name: '{0}'".format(col_name))
if isinstance(val, BaseQueryFunction):
query_val = val
else:
query_val = column.to_database(val)
operator_class = BaseWhereOperator.get_operator(col_op or 'EQ')
operator = operator_class()
clone._conditional.append(WhereClause(column.db_field_name, operator, query_val))
return clone
def filter(self, *args, **kwargs):
if len([x for x in kwargs.values() if x is None]):
raise CQLEngineException("None values on filter are not allowed")
clone = copy.deepcopy(self)
for operator in args:
if not isinstance(operator, WhereClause):
raise QueryException('{0} is not a valid query operator'.format(operator))
clone._where.append(operator)
for arg, val in kwargs.items():
col_name, col_op = self._parse_filter_arg(arg)
quote_field = True
if not isinstance(val, Token):
try:
column = self.model._get_column(col_name)
except KeyError:
raise QueryException("Can't resolve column name: '{0}'".format(col_name))
else:
if col_name != 'pk__token':
raise QueryException("Token() values may only be compared to the 'pk__token' virtual column")
column = columns._PartitionKeysToken(self.model)
quote_field = False
partition_columns = column.partition_columns
if len(partition_columns) != len(val.value):
raise QueryException(
'Token() received {0} arguments but model has {1} partition keys'.format(
len(val.value), len(partition_columns)))
val.set_columns(partition_columns)
operator_class = BaseWhereOperator.get_operator(col_op or 'EQ')
operator = operator_class()
if isinstance(operator, InOperator):
if not isinstance(val, (list, tuple)):
raise QueryException('IN queries must use a list/tuple value')
query_val = [column.to_database(v) for v in val]
elif isinstance(val, BaseQueryFunction):
query_val = val
elif (isinstance(operator, ContainsOperator) and
isinstance(column, (columns.List, columns.Set, columns.Map))):
query_val = val
else:
query_val = column.to_database(val)
if not col_op:
clone._defer_fields.add(column.db_field_name)
clone._deferred_values[column.db_field_name] = val
clone._where.append(WhereClause(column.db_field_name, operator, query_val, quote_field=quote_field))
return clone
def get(self, *args, **kwargs):
if args or kwargs:
return self.filter(*args, **kwargs).get()
self._execute_query()
try:
self[1]
raise self.model.MultipleObjectsReturned('Multiple objects found')
except IndexError:
pass
try:
obj = self[0]
except IndexError:
raise self.model.DoesNotExist
return obj
def _get_ordering_condition(self, colname):
order_type = 'DESC' if colname.startswith('-') else 'ASC'
colname = colname.replace('-', '')
return colname, order_type
def order_by(self, *colnames):
if len(colnames) == 0:
clone = copy.deepcopy(self)
clone._order = []
return clone
conditions = []
for colname in colnames:
conditions.append('"{0}" {1}'.format(*self._get_ordering_condition(colname)))
clone = copy.deepcopy(self)
clone._order.extend(conditions)
return clone
def count(self):
if self._batch:
raise CQLEngineException("Only inserts, updates, and deletes are available in batch mode")
if self._count is None:
query = self._select_query()
query.count = True
result = self._execute(query)
count_row = result.one().popitem()
self._count = count_row[1]
return self._count
def distinct(self, distinct_fields=None):
clone = copy.deepcopy(self)
if distinct_fields:
clone._distinct_fields = distinct_fields
else:
clone._distinct_fields = [x.column_name for x in self.model._partition_keys.values()]
return clone
def limit(self, v):
if v is None:
v = 0
if not isinstance(v, six.integer_types):
raise TypeError
if v == self._limit:
return self
if v < 0:
raise QueryException("Negative limit is not allowed")
clone = copy.deepcopy(self)
clone._limit = v
return clone
def fetch_size(self, v):
if not isinstance(v, six.integer_types):
raise TypeError
if v == self._fetch_size:
return self
if v < 1:
raise QueryException("fetch size less than 1 is not allowed")
clone = copy.deepcopy(self)
clone._fetch_size = v
return clone
|
Apache License 2.0
|
optapy/optapy
|
optapy-core/src/main/python/annotations.py
|
constraint_provider
|
python
|
def constraint_provider(constraint_provider_function):
ensure_init()
constraint_provider_function.__javaClass = _generate_constraint_provider_class(constraint_provider_function)
return constraint_provider_function
|
Marks a function as a ConstraintProvider.
The function takes a single parameter, the ConstraintFactory, and
must return a list of Constraints.
To create a Constraint, start with ConstraintFactory.from(get_class(PythonClass)).
|
https://github.com/optapy/optapy/blob/f8721a57806c1527509716c63ab7c1baec4185af/optapy-core/src/main/python/annotations.py#L233-L242
|
from .optaplanner_java_interop import ensure_init, _add_deep_copy_to_class, _generate_planning_entity_class, _generate_problem_fact_class, _generate_planning_solution_class, _generate_constraint_provider_class
from jpype import JImplements
def planning_id(getter_function):
ensure_init()
from org.optaplanner.core.api.domain.lookup import PlanningId as JavaPlanningId
getter_function.__optaplannerPlanningId = {
'annotationType': JavaPlanningId
}
return getter_function
def planning_variable(variable_type, value_range_provider_refs, nullable=False, graph_type=None,
strength_comparator_class=None, strength_weight_factory_class=None):
def planning_variable_function_wrapper(variable_getter_function):
ensure_init()
from org.optaplanner.core.api.domain.variable import PlanningVariable as JavaPlanningVariable
variable_getter_function.__optaplannerPlanningVariable = {
'annotationType': JavaPlanningVariable,
'valueRangeProviderRefs': value_range_provider_refs,
'nullable': nullable,
'graphType': graph_type,
'strengthComparatorClass': strength_comparator_class,
'strengthWeightFactoryClass': strength_weight_factory_class
}
variable_getter_function.__return = variable_type.__javaClass
return variable_getter_function
return planning_variable_function_wrapper
def problem_fact_collection_property(fact_type):
def problem_fact_collection_property_function_mapper(getter_function):
ensure_init()
from org.optaplanner.optapy import PythonWrapperGenerator
from org.optaplanner.core.api.domain.solution import ProblemFactCollectionProperty as JavaProblemFactCollectionProperty
getter_function.__return = PythonWrapperGenerator.getArrayClass(fact_type.__javaClass)
getter_function.__optaplannerPlanningEntityCollectionProperty = {
'annotationType': JavaProblemFactCollectionProperty
}
return getter_function
return problem_fact_collection_property_function_mapper
def planning_entity_collection_property(entity_type):
def planning_entity_collection_property_function_mapper(getter_function):
ensure_init()
from org.optaplanner.optapy import PythonWrapperGenerator
from org.optaplanner.core.api.domain.solution import PlanningEntityCollectionProperty as JavaPlanningEntityCollectionProperty
getter_function.__optaplannerPlanningEntityCollectionProperty = {
'annotationType': JavaPlanningEntityCollectionProperty
}
getter_function.__return = PythonWrapperGenerator.getArrayClass(entity_type.__javaClass)
return getter_function
return planning_entity_collection_property_function_mapper
def value_range_provider(range_id):
def value_range_provider_function_wrapper(getter_function):
ensure_init()
from org.optaplanner.core.api.domain.valuerange import ValueRangeProvider as JavaValueRangeProvider
getter_function.__optaplannerValueRangeProvider = {
'annotationType': JavaValueRangeProvider,
'id': range_id
}
return getter_function
return value_range_provider_function_wrapper
def planning_score(score_type,
bendable_hard_levels_size=None,
bendable_soft_levels_size=None,
score_definition_class=None):
def planning_score_function_wrapper(getter_function):
ensure_init()
from org.optaplanner.core.api.domain.solution import PlanningScore as JavaPlanningScore
getter_function.__optaplannerPlanningScore = {
'annotationType': JavaPlanningScore,
'bendableHardLevelsSize': bendable_hard_levels_size,
'bendableSoftLevelsSize': bendable_soft_levels_size,
'scoreDefinitionClass': score_definition_class
}
getter_function.__return = score_type
return getter_function
return planning_score_function_wrapper
def planning_entity(entity_class):
ensure_init()
out = JImplements('org.optaplanner.optapy.OpaquePythonReference')(entity_class)
out.__javaClass = _generate_planning_entity_class(entity_class)
_add_deep_copy_to_class(out)
return out
def problem_fact(fact_class):
ensure_init()
out = JImplements('org.optaplanner.optapy.OpaquePythonReference')(fact_class)
out.__javaClass = _generate_problem_fact_class(fact_class)
_add_deep_copy_to_class(out)
return out
def planning_solution(planning_solution_class):
ensure_init()
out = JImplements('org.optaplanner.optapy.OpaquePythonReference')(planning_solution_class)
out.__javaClass = _generate_planning_solution_class(planning_solution_class)
_add_deep_copy_to_class(out)
return out
|
Apache License 2.0
|
hazyresearch/ukb-cardiac-mri
|
ukb/metrics/base.py
|
dcg_score
|
python
|
def dcg_score(y_true, y_score, k=None):
k = len(y_true) if k is None else k
order = np.argsort(y_score)[::-1]
y_true = np.take(y_true, order[:k])
gain = 2 ** y_true - 1
discounts = np.log2(np.arange(len(y_true)) + 2)
return np.sum(gain / discounts)
|
Function for Discounted Cumulative Gain
|
https://github.com/hazyresearch/ukb-cardiac-mri/blob/3177dde898a65b1d7f385b78e4f134de3852bea5/ukb/metrics/base.py#L126-L137
|
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
from sklearn.preprocessing import OneHotEncoder
from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score, confusion_matrix, classification_report, log_loss, roc_auc_score, roc_curve, precision_recall_curve, auc
__all__ = ["binary_scores_from_counts",
"print_metricatk",
"print_scores",
"classification_summary",
"prc_auc_score",
"dcg_score",
"ndcg_score",
"ndcg_score2",
"f1_score",
"precision_score",
"recall_score",
"accuracy_score",
"confusion_matrix",
"classification_report",
"log_loss",
"roc_auc_score",
"roc_curve",
"precision_recall_curve",
"auc"]
def binary_scores_from_counts(ntp, nfp, ntn, nfn):
prec = ntp / float(ntp + nfp) if ntp + nfp > 0 else 0.0
rec = ntp / float(ntp + nfn) if ntp + nfn > 0 else 0.0
f1 = (2 * prec * rec) / (prec + rec) if prec + rec > 0 else 0.0
return prec, rec, f1
def print_metricatk(y_true, y_pred, y_proba):
sorted_indexes = np.argsort(y_proba)
print("========================================")
print("Metric at K (5, 10, ...)")
print("========================================")
for k in range(5, y_true.shape[0], 5):
target = sorted_indexes[-k:]
prec = y_true[target].sum()/float(k)
rec = y_true[target].sum()/float(y_true.sum())
f1 = (2 * prec * rec) / (prec + rec) if prec + rec > 0 else 0.0
print("At {:>4}: | Precision: {:5.1f} | Recall: {:5.1f} | F1: {:5.1f}".format(k, prec*100.0, rec*100.0, f1*100.0))
if rec == 1:
break
def print_scores(ntp, nfp, ntn, nfn,
pos_acc, neg_acc,
prec, rec, f1, roc, prc,
ndcg, title='Scores'):
print("========================================")
print(title)
print("========================================")
print("Pos. class accuracy: {:2.1f}".format(pos_acc * 100))
print("Neg. class accuracy: {:2.1f}".format(neg_acc * 100))
print("----------------------------------------")
print("AUC: {:2.1f}".format(roc * 100))
print("PRC: {:2.1f}".format(prc * 100))
print("NDCG: {:2.1f}".format(ndcg * 100))
print("----------------------------------------")
print("Precision: {:2.1f}".format(prec * 100))
print("Recall: {:2.1f}".format(rec * 100))
print("F1: {:2.1f}".format(f1 * 100))
print("----------------------------------------")
print("TP: {} | FP: {} | TN: {} | FN: {}".format(ntp, nfp, ntn, nfn))
print("========================================\n")
def classification_summary(y_true, y_pred, classes, y_proba, verbose=True):
roc = roc_auc_score(y_true, y_proba)
prc = prc_auc_score(y_true, y_proba)
if len(classes) <= 2:
tn, fp, fn, tp = confusion_matrix(y_true, y_pred, labels=[0,1]).ravel()
prec, rec, f1 = binary_scores_from_counts(tp, fp, tn, fn)
pos_acc = tp / float(tp + fn) if tp + fn > 0 else 0.0
neg_acc = tn / float(tn + fp) if tn + fp > 0 else 0.0
ndcg = ndcg_score(y_true, y_proba)
if verbose:
print_scores(tp, fp, tn, fn, pos_acc, neg_acc, prec, rec, f1, roc, prc, ndcg)
header = ["ndcg", "roc", "prc", "precision", "recall", "f1", "pos_acc", "neg_acc", "tp", "fp", "tn", "fn"]
return dict(zip(header,(ndcg, roc, prc, prec, rec, f1, pos_acc, neg_acc, tp, fp, tn, fn)))
else:
print(classification_report(y_true, y_pred, target_names=classes, digits=3))
return {}
def prc_auc_score(y_true, y_prob):
precision, recall, _ = precision_recall_curve(y_true, y_prob)
prc_auc = auc(recall, precision)
return prc_auc
|
Apache License 2.0
|
python-acoustics/python-acoustics
|
acoustics/standards/iso_1996_2_2007.py
|
Tonality.results_as_dataframe
|
python
|
def results_as_dataframe(self):
data = ((tone.center, tone.tone_level, tone.bandwidth_3db, tone.critical_band.start, tone.critical_band.end,
tone.critical_band.bandwidth, tone.critical_band.regression_slope,
tone.critical_band.regression_intercept, tone.critical_band.masking_noise_level,
tone.critical_band.total_tone_level, tone.critical_band.tonal_audibility,
tone.critical_band.adjustment) for tone in self.tones)
columns = [
'center', 'tone_level', 'bandwidth_3db', 'critical_band_start', 'critical_band_end',
'critical_band_bandwidth', 'regression_slope', 'regression_intercept', 'masking_noise_level',
'total_tone_level', 'tonal_audibility', 'adjustment'
]
return pd.DataFrame(list(data), columns=columns)
|
Return results in dataframe.
|
https://github.com/python-acoustics/python-acoustics/blob/fbc87454422c41e1a39e282d7680126a6d8014dd/acoustics/standards/iso_1996_2_2007.py#L417-L429
|
import numpy as np
import pandas as pd
from scipy.signal import welch
from scipy.stats import linregress
import matplotlib.pyplot as plt
from acoustics.decibel import dbsum
from acoustics.standards.iso_tr_25417_2007 import REFERENCE_PRESSURE
import weakref
from tabulate import tabulate
TONE_WITHIN_PAUSE_CRITERION_DB = 6.0
TONE_BANDWIDTH_CRITERION_DB = 3.0
TONE_LINES_CRITERION_DB = 6.0
TONE_SEEK_CRITERION = 1.0
REGRESSION_RANGE_FACTOR = 0.75
_WINDOW_CORRECTION = {
'hanning': -1.8,
}
def window_correction(window):
try:
return _WINDOW_CORRECTION[window]
except KeyError:
raise ValueError("Window correction is not available for specified window.")
def critical_band(frequency):
if isinstance(frequency, np.ndarray):
center = frequency.copy()
center[frequency < 50.0] = 50.0
else:
center = 50.0 if frequency < 50 else frequency
bandwidth = (center > 500.0) * (center * 0.20) + (center <= 500.0) * 100.0
upper = center + bandwidth / 2.0
lower = center - bandwidth / 2.0
return center, lower, upper, bandwidth
def tones_level(tone_levels):
return dbsum(tone_levels)
def masking_noise_level(noise_lines, frequency_resolution, effective_analysis_bandwidth):
return dbsum(noise_lines) + 10.0 * np.log10(frequency_resolution / effective_analysis_bandwidth)
def masking_noise_lines(levels, line_classifier, center, bandwidth, regression_range_factor):
slicer = slice(center - bandwidth * regression_range_factor, center + bandwidth * regression_range_factor)
levels = levels[slicer]
frequencies = levels.index
regression_levels = levels[line_classifier == 'noise']
slope, intercept = linregress(x=regression_levels.index, y=regression_levels)[0:2]
levels_from_regression = slope * frequencies + intercept
return levels_from_regression, slope, intercept
def tonal_audibility(tones_level, masking_noise_level, center):
return tones_level - masking_noise_level + 2.0 + np.log10(1.0 + (center / 502.0)**(2.5))
def tonal_adjustment(tonal_audibility):
if tonal_audibility > 10.0:
return 6.0
elif tonal_audibility < 4.0:
return 0.0
else:
return tonal_audibility - 4.0
class Tonality:
def __init__(
self,
signal,
sample_frequency,
window='hanning',
reference_pressure=REFERENCE_PRESSURE,
tsc=TONE_SEEK_CRITERION,
regression_range_factor=REGRESSION_RANGE_FACTOR,
nbins=None,
force_tone_without_pause=False,
force_bandwidth_criterion=False,
):
self.signal = signal
self.sample_frequency = sample_frequency
self.window = window
self.reference_pressure = reference_pressure
self.tsc = tsc
self.regression_range_factor = regression_range_factor
self.nbins = nbins
self._noise_pauses = list()
self._spectrum = None
self.force_tone_without_pause = force_tone_without_pause
self.force_bandwidth_criterion = force_bandwidth_criterion
@property
def noise_pauses(self):
for noise_pause in self._noise_pauses:
yield noise_pause
@property
def tones(self):
for noise_pause in self.noise_pauses:
if noise_pause.tone is not None:
yield noise_pause.tone
@property
def critical_bands(self):
for tone in self.tones:
yield tone.critical_band
@property
def spectrum(self):
if self._spectrum is None:
nbins = self.nbins
if nbins is None:
nbins = self.sample_frequency
nbins //= 1
f, p = welch(self.signal, fs=self.sample_frequency, nperseg=nbins, window=self.window, detrend=False,
scaling='spectrum')
self._spectrum = pd.Series(10.0 * np.log10(p / self.reference_pressure**2.0), index=f)
return self._spectrum
@property
def frequency_resolution(self):
df = np.diff(np.array(self.spectrum.index)).mean()
return df
@property
def effective_analysis_bandwidth(self):
if self.window == 'hanning':
return 1.5 * self.frequency_resolution
else:
raise ValueError()
def _set_noise_pauses(self, noise_pauses):
self._noise_pauses = [NoisePause(start, end) for start, end in noise_pauses]
return self
def determine_noise_pauses(self, end=None):
self._set_noise_pauses(noise_pause_seeker(np.array(self.spectrum[:end]), self.tsc))
return self
def _construct_line_classifier(self):
levels = self.spectrum
categories = ['noise', 'start', 'end', 'neither', 'tone']
self.line_classifier = pd.Series(
pd.Categorical(['noise'] * len(levels), categories=categories), index=levels.index)
for noise_pause in self.noise_pauses:
self.line_classifier.iloc[noise_pause.start] = 'start'
self.line_classifier.iloc[noise_pause.end] = 'end'
self.line_classifier.iloc[noise_pause.start + 1:noise_pause.end] = 'neither'
for tone in self.tones:
self.line_classifier.iloc[tone._tone_lines] = 'tone'
return self
def _determine_tones(self):
levels = self.spectrum
for noise_pause in self.noise_pauses:
tone_indices, bandwidth_for_tone_criterion = determine_tone_lines(
levels,
self.frequency_resolution,
noise_pause.start,
noise_pause.end,
self.force_tone_without_pause,
self.force_bandwidth_criterion,
)
if np.any(tone_indices):
noise_pause.tone = create_tone(levels, tone_indices, bandwidth_for_tone_criterion,
weakref.proxy(noise_pause))
return self
def _determine_critical_bands(self):
for tone in self.tones:
critical_band = self.critical_band_at(tone.center)
tone.critical_band = critical_band
critical_band.tone = weakref.proxy(tone)
return self
def analyse(self):
self._determine_tones()
self._construct_line_classifier()
self._determine_critical_bands()
return self
def critical_band_at(self, frequency):
return create_critical_band(self.spectrum, self.line_classifier, frequency, self.frequency_resolution,
self.effective_analysis_bandwidth, self.regression_range_factor, self.window)
def plot_spectrum(self):
spectrum = self.spectrum
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(spectrum.index, spectrum)
ax.set_xlabel('f in Hz')
ax.set_ylabel('L in dB')
return fig
@property
def dominant_tone(self):
try:
return sorted(self.tones, key=lambda x: x.critical_band.tonal_audibility, reverse=True)[0]
except IndexError:
return None
def plot_results(self, noise_pauses=False, tones=True, critical_bands=True):
df = self.frequency_resolution
levels = self.spectrum
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(levels.index, levels)
ax.set_xlabel("$f$ in Hz")
ax.set_ylabel("$L$ in dB")
if noise_pauses:
for pause in self.noise_pauses:
ax.axvspan(pause.start * df, pause.end * df, color='green', alpha=0.05)
if tones:
for tone in self.tones:
ax.axvline(tone.center, color='black', alpha=0.05)
if critical_bands:
for band in self.critical_bands:
ax.axvspan(band.start, band.end, color='yellow', alpha=0.05)
band = self.dominant_tone.critical_band
ax.axvline(band.start, color='red', linewidth=0.1)
ax.axvline(band.end, color='red', linewidth=0.1)
if noise_pauses:
_items = list(self.noise_pauses)
elif critical_bands:
_items = list(self.critical_bands)
ax.set_xlim(min(item.start for item in _items), max(item.end for item in _items))
return fig
def overview(self):
try:
cb = self.dominant_tone.critical_band
except AttributeError:
raise ValueError("Cannot show overview (yet). No tones have been determined.")
tones = [("Tone", "{:4.1f} Hz: {:4.1f} dB".format(tone.center, tone.tone_level)) for tone in self.tones]
table = [
("Critical band", "{:4.1f} to {:4.1f} Hz".format(cb.start, cb.end)),
("Masking noise level $L_{pn}$", "{:4.1f} dB".format(cb.masking_noise_level)),
("Tonal level $L_{pt}$", "{:4.1f} dB".format(cb.total_tone_level)),
("Dominant tone", "{:4.1f} Hz".format(cb.tone.center)),
("3 dB bandwidth of tone", "{:2.1f}% of {:4.1f}".format(cb.tone.bandwidth_3db / cb.bandwidth * 100.0,
cb.bandwidth)),
("Tonal audibility $L_{ta}$", "{:4.1f} dB".format(cb.tonal_audibility)),
("Adjustment $K_{t}$", "{:4.1f} dB".format(cb.adjustment)),
("Frequency resolution", "{:4.1f} Hz".format(self.frequency_resolution)),
("Effective analysis bandwidth", "{:4.1f} Hz".format(self.effective_analysis_bandwidth)),
]
table += tones
return tabulate(table)
|
BSD 3-Clause New or Revised License
|
ericmjl/nxviz
|
nxviz/utils.py
|
is_data_diverging
|
python
|
def is_data_diverging(data_container: Iterable):
assert infer_data_type(data_container) in [
"ordinal",
"continuous",
], "Data type should be ordinal or continuous"
has_negative = False
has_positive = False
for i in data_container:
if i < 0:
has_negative = True
elif i > 0:
has_positive = True
if has_negative and has_positive:
return True
else:
return False
|
We want to use this to check whether the data are diverging or not.
This is a simple check, can be made much more sophisticated.
:param data_container: A generic container of data points.
:type data_container: `iterable`
|
https://github.com/ericmjl/nxviz/blob/d4cad2cf961ceaa97bb5770ec21925f141d532a4/nxviz/utils.py#L105-L130
|
from collections import Counter
import pandas as pd
import warnings
from typing import Iterable
def is_data_homogenous(data_container: Iterable):
data_types = set([type(i) for i in data_container])
return len(data_types) == 1
def infer_data_type(data_container: Iterable):
warnings.warn(
"`infer_data_type` is deprecated! " "Please use `infer_data_family` instead!"
)
assert isinstance(data_container, list) or isinstance(
data_container, tuple
), "data_container should be a list or tuple."
assert (
len(set(data_container)) > 1
), "There should be more than one value in the data container."
assert is_data_homogenous(data_container), "Data are not of a homogenous type!"
datum = data_container[0]
if len(set(data_container)) == 2:
return "categorical"
elif isinstance(datum, str):
return "categorical"
elif isinstance(datum, int):
return "ordinal"
elif isinstance(datum, float):
return "continuous"
else:
raise ValueError("Not possible to tell what the data type is.")
def infer_data_family(data: pd.Series):
if data.dtype == float:
if data.min() < 0 and data.max() > 0:
return "divergent"
return "continuous"
if data.dtype == int:
if len(set(data)) > 9:
return "continuous"
return "ordinal"
return "categorical"
|
MIT License
|
praveen-palanisamy/macad-gym
|
src/macad_gym/carla/PythonAPI/agents/navigation/agent.py
|
Agent._is_light_red_us_style
|
python
|
def _is_light_red_us_style(self, lights_list, debug=False):
ego_vehicle_location = self._vehicle.get_location()
ego_vehicle_waypoint = self._map.get_waypoint(ego_vehicle_location)
if ego_vehicle_waypoint.is_intersection:
return (False, None)
if self._local_planner.target_waypoint is not None:
if self._local_planner.target_waypoint.is_intersection:
min_angle = 180.0
sel_magnitude = 0.0
sel_traffic_light = None
for traffic_light in lights_list:
loc = traffic_light.get_location()
magnitude, angle = compute_magnitude_angle(loc,
ego_vehicle_location,
self._vehicle.get_transform().rotation.yaw)
if magnitude < 80.0 and angle < min(25.0, min_angle):
sel_magnitude = magnitude
sel_traffic_light = traffic_light
min_angle = angle
if sel_traffic_light is not None:
if debug:
print('=== Magnitude = {} | Angle = {} | ID = {}'.format(
sel_magnitude, min_angle, sel_traffic_light.id))
if self._last_traffic_light is None:
self._last_traffic_light = sel_traffic_light
if self._last_traffic_light.state == carla.TrafficLightState.Red:
return (True, self._last_traffic_light)
else:
self._last_traffic_light = None
return (False, None)
|
This method is specialized to check US style traffic lights.
:param lights_list: list containing TrafficLight objects
:return: a tuple given by (bool_flag, traffic_light), where
- bool_flag is True if there is a traffic light in RED
affecting us and False otherwise
- traffic_light is the object itself or None if there is no
red traffic light affecting us
|
https://github.com/praveen-palanisamy/macad-gym/blob/38884ac4bc7fb2e91a865950cff4eeadeed02f60/src/macad_gym/carla/PythonAPI/agents/navigation/agent.py#L107-L153
|
from enum import Enum
import carla
from agents.tools.misc import is_within_distance_ahead, compute_magnitude_angle
class AgentState(Enum):
NAVIGATING = 1
BLOCKED_BY_VEHICLE = 2
BLOCKED_RED_LIGHT = 3
class Agent(object):
def __init__(self, vehicle):
self._vehicle = vehicle
self._proximity_threshold = 10.0
self._local_planner = None
self._world = self._vehicle.get_world()
self._map = self._vehicle.get_world().get_map()
self._last_traffic_light = None
def run_step(self, debug=False):
control = carla.VehicleControl()
if debug:
control.steer = 0.0
control.throttle = 0.0
control.brake = 0.0
control.hand_brake = False
control.manual_gear_shift = False
return control
def _is_light_red(self, lights_list):
if self._map.name == 'Town01' or self._map.name == 'Town02':
return self._is_light_red_europe_style(lights_list)
else:
return self._is_light_red_us_style(lights_list)
def _is_light_red_europe_style(self, lights_list):
ego_vehicle_location = self._vehicle.get_location()
ego_vehicle_waypoint = self._map.get_waypoint(ego_vehicle_location)
for traffic_light in lights_list:
object_waypoint = self._map.get_waypoint(traffic_light.get_location())
if object_waypoint.road_id != ego_vehicle_waypoint.road_id or object_waypoint.lane_id != ego_vehicle_waypoint.lane_id:
continue
loc = traffic_light.get_location()
if is_within_distance_ahead(loc, ego_vehicle_location,
self._vehicle.get_transform().rotation.yaw,
self._proximity_threshold):
if traffic_light.state == carla.TrafficLightState.Red:
return (True, traffic_light)
return (False, None)
|
MIT License
|
humancompatibleai/imitation
|
src/imitation/envs/examples/model_envs.py
|
make_random_state_dist
|
python
|
def make_random_state_dist(
n_avail: int,
n_states: int,
rand_state: np.random.RandomState = np.random,
) -> np.ndarray:
assert 0 < n_avail <= n_states
init_dist = np.zeros((n_states,))
next_states = rand_state.choice(n_states, size=(n_avail,), replace=False)
avail_state_dist = rand_state.dirichlet(np.ones((n_avail,)))
init_dist[next_states] = avail_state_dist
assert np.sum(init_dist > 0) == n_avail
init_dist = init_dist / np.sum(init_dist)
return init_dist
|
Make a random initial state distribution over n_states.
Args:
n_avail: Number of states available to transition into.
n_states: Total number of states.
rand_state: NumPy random state.
Returns:
An initial state distribution that is zero at all but a uniformly random
chosen subset of `n_avail` states. This subset of chosen states are set to a
sample from the uniform distribution over the (n_avail-1) simplex, aka the
flat Dirichlet distribution.
Raises:
ValueError: If `n_avail` is not in the range `(0, n_states]`.
|
https://github.com/humancompatibleai/imitation/blob/4ccc96f9e4920dd4a2c4dd01d90978c76f75ea3c/src/imitation/envs/examples/model_envs.py#L51-L79
|
from typing import Optional
import gym
import numpy as np
from imitation.envs.resettable_env import TabularModelEnv
def make_random_trans_mat(
n_states,
n_actions,
max_branch_factor,
rand_state=np.random,
) -> np.ndarray:
out_mat = np.zeros((n_states, n_actions, n_states), dtype="float32")
for start_state in range(n_states):
for action in range(n_actions):
succs = rand_state.randint(1, max_branch_factor + 1)
next_states = rand_state.choice(n_states, size=(succs,), replace=False)
next_vec = rand_state.dirichlet(np.ones((succs,)))
next_vec = next_vec / np.sum(next_vec)
out_mat[start_state, action, next_states] = next_vec
return out_mat
|
MIT License
|
algorand/pyteal
|
pyteal/ast/binaryexpr.py
|
ExtractUint16
|
python
|
def ExtractUint16(string: Expr, offset: Expr) -> BinaryExpr:
return BinaryExpr(
Op.extract_uint16,
(TealType.bytes, TealType.uint64),
TealType.uint64,
string,
offset,
)
|
Extract 2 bytes (16 bits) and convert them to an integer.
The bytes starting at :code:`offset` up to but not including :code:`offset + 2` will be
interpreted as a big-endian unsigned integer.
If :code:`offset + 2` exceeds :code:`Len(string)`, the program fails.
Requires TEAL version 5 or higher.
Args:
string: The bytestring to extract from. Must evaluate to bytes.
offset: The offset in the bytestring to start extracing. Must evaluate to uint64.
|
https://github.com/algorand/pyteal/blob/5636ccd000df8f612d86b588b103186641ee192d/pyteal/ast/binaryexpr.py#L529-L549
|
from typing import Union, Tuple, cast, TYPE_CHECKING
from ..types import TealType, require_type
from ..errors import verifyTealVersion
from ..ir import TealOp, Op, TealBlock
from .expr import Expr
if TYPE_CHECKING:
from ..compiler import CompileOptions
class BinaryExpr(Expr):
def __init__(
self,
op: Op,
inputType: Union[TealType, Tuple[TealType, TealType]],
outputType: TealType,
argLeft: Expr,
argRight: Expr,
) -> None:
super().__init__()
if type(inputType) is tuple:
leftType, rightType = inputType
else:
leftType = cast(TealType, inputType)
rightType = leftType
require_type(argLeft.type_of(), leftType)
require_type(argRight.type_of(), rightType)
self.op = op
self.outputType = outputType
self.argLeft = argLeft
self.argRight = argRight
def __teal__(self, options: "CompileOptions"):
verifyTealVersion(
self.op.min_version,
options.version,
"TEAL version too low to use op {}".format(self.op),
)
return TealBlock.FromOp(
options, TealOp(self, self.op), self.argLeft, self.argRight
)
def __str__(self):
return "({} {} {})".format(self.op, self.argLeft, self.argRight)
def type_of(self):
return self.outputType
def has_return(self):
return False
BinaryExpr.__module__ = "pyteal"
def Add(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.add, TealType.uint64, TealType.uint64, left, right)
def Minus(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.minus, TealType.uint64, TealType.uint64, left, right)
def Mul(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.mul, TealType.uint64, TealType.uint64, left, right)
def Div(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.div, TealType.uint64, TealType.uint64, left, right)
def Mod(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.mod, TealType.uint64, TealType.uint64, left, right)
def Exp(a: Expr, b: Expr) -> BinaryExpr:
return BinaryExpr(Op.exp, TealType.uint64, TealType.uint64, a, b)
def BitwiseAnd(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.bitwise_and, TealType.uint64, TealType.uint64, left, right)
def BitwiseOr(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.bitwise_or, TealType.uint64, TealType.uint64, left, right)
def BitwiseXor(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.bitwise_xor, TealType.uint64, TealType.uint64, left, right)
def ShiftLeft(a: Expr, b: Expr) -> BinaryExpr:
return BinaryExpr(Op.shl, TealType.uint64, TealType.uint64, a, b)
def ShiftRight(a: Expr, b: Expr) -> BinaryExpr:
return BinaryExpr(Op.shr, TealType.uint64, TealType.uint64, a, b)
def Eq(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.eq, right.type_of(), TealType.uint64, left, right)
def Neq(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.neq, right.type_of(), TealType.uint64, left, right)
def Lt(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.lt, TealType.uint64, TealType.uint64, left, right)
def Le(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.le, TealType.uint64, TealType.uint64, left, right)
def Gt(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.gt, TealType.uint64, TealType.uint64, left, right)
def Ge(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.ge, TealType.uint64, TealType.uint64, left, right)
def GetBit(value: Expr, index: Expr) -> BinaryExpr:
return BinaryExpr(
Op.getbit, (TealType.anytype, TealType.uint64), TealType.uint64, value, index
)
def GetByte(value: Expr, index: Expr) -> BinaryExpr:
return BinaryExpr(
Op.getbyte, (TealType.bytes, TealType.uint64), TealType.uint64, value, index
)
def BytesAdd(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.b_add, TealType.bytes, TealType.bytes, left, right)
def BytesMinus(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.b_minus, TealType.bytes, TealType.bytes, left, right)
def BytesDiv(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.b_div, TealType.bytes, TealType.bytes, left, right)
def BytesMul(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.b_mul, TealType.bytes, TealType.bytes, left, right)
def BytesMod(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.b_mod, TealType.bytes, TealType.bytes, left, right)
def BytesAnd(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.b_and, TealType.bytes, TealType.bytes, left, right)
def BytesOr(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.b_or, TealType.bytes, TealType.bytes, left, right)
def BytesXor(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.b_xor, TealType.bytes, TealType.bytes, left, right)
def BytesEq(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.b_eq, TealType.bytes, TealType.uint64, left, right)
def BytesNeq(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.b_neq, TealType.bytes, TealType.uint64, left, right)
def BytesLt(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.b_lt, TealType.bytes, TealType.uint64, left, right)
def BytesLe(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.b_le, TealType.bytes, TealType.uint64, left, right)
def BytesGt(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.b_gt, TealType.bytes, TealType.uint64, left, right)
def BytesGe(left: Expr, right: Expr) -> BinaryExpr:
return BinaryExpr(Op.b_ge, TealType.bytes, TealType.uint64, left, right)
|
MIT License
|
openstack/sahara
|
sahara/db/api.py
|
cluster_verification_delete
|
python
|
def cluster_verification_delete(context, verification_id):
return IMPL.cluster_verification_delete(context, verification_id)
|
Delete verification with the specified id.
|
https://github.com/openstack/sahara/blob/2ce24b6f933eef8860947d8632d607867dfbf841/sahara/db/api.py#L584-L586
|
from oslo_config import cfg
from oslo_db import api as db_api
from oslo_db import options
from sahara.utils import types
CONF = cfg.CONF
options.set_defaults(CONF)
_BACKEND_MAPPING = {
'sqlalchemy': 'sahara.db.sqlalchemy.api',
}
IMPL = db_api.DBAPI.from_config(CONF, backend_mapping=_BACKEND_MAPPING)
def setup_db():
return IMPL.setup_db()
def drop_db():
return IMPL.drop_db()
def constraint(**conditions):
return IMPL.constraint(**conditions)
def equal_any(*values):
return IMPL.equal_any(*values)
def not_equal(*values):
return IMPL.not_equal(*values)
def to_dict(func):
def decorator(*args, **kwargs):
res = func(*args, **kwargs)
if isinstance(res, types.Page):
return types.Page([item.to_dict() for item in res],
res.prev, res.next)
if isinstance(res, list):
return [item.to_dict() for item in res]
if res:
return res.to_dict()
else:
return None
return decorator
def cluster_get(context, cluster, show_progress=False):
if show_progress:
cluster = IMPL.cluster_provision_progress_update(context, cluster)
else:
cluster = IMPL.cluster_get(context, cluster)
if cluster:
return cluster.to_dict(show_progress)
return None
@to_dict
def cluster_get_all(context, regex_search=False, **kwargs):
return IMPL.cluster_get_all(context, regex_search, **kwargs)
@to_dict
def cluster_create(context, values):
return IMPL.cluster_create(context, values)
@to_dict
def cluster_update(context, cluster, values):
return IMPL.cluster_update(context, cluster, values)
def cluster_destroy(context, cluster):
IMPL.cluster_destroy(context, cluster)
def node_group_add(context, cluster, values):
return IMPL.node_group_add(context, cluster, values)
def node_group_update(context, node_group, values):
IMPL.node_group_update(context, node_group, values)
def node_group_remove(context, node_group):
IMPL.node_group_remove(context, node_group)
def instance_add(context, node_group, values):
return IMPL.instance_add(context, node_group, values)
def instance_update(context, instance, values):
IMPL.instance_update(context, instance, values)
def instance_remove(context, instance):
IMPL.instance_remove(context, instance)
def append_volume(context, instance, volume_id):
IMPL.append_volume(context, instance, volume_id)
def remove_volume(context, instance, volume_id):
IMPL.remove_volume(context, instance, volume_id)
@to_dict
def cluster_template_get(context, cluster_template):
return IMPL.cluster_template_get(context, cluster_template)
@to_dict
def cluster_template_get_all(context, regex_search=False, **kwargs):
return IMPL.cluster_template_get_all(context, regex_search, **kwargs)
@to_dict
def cluster_template_create(context, values):
return IMPL.cluster_template_create(context, values)
def cluster_template_destroy(context,
cluster_template,
ignore_prot_on_def=False):
IMPL.cluster_template_destroy(context, cluster_template,
ignore_prot_on_def)
@to_dict
def cluster_template_update(context, values, ignore_prot_on_def=False):
return IMPL.cluster_template_update(context, values, ignore_prot_on_def)
@to_dict
def node_group_template_get(context, node_group_template):
return IMPL.node_group_template_get(context, node_group_template)
@to_dict
def node_group_template_get_all(context, regex_search=False, **kwargs):
return IMPL.node_group_template_get_all(context, regex_search, **kwargs)
@to_dict
def node_group_template_create(context, values):
return IMPL.node_group_template_create(context, values)
def node_group_template_destroy(context,
node_group_template,
ignore_prot_on_def=False):
IMPL.node_group_template_destroy(context, node_group_template,
ignore_prot_on_def)
@to_dict
def node_group_template_update(context, node_group_template,
ignore_prot_on_def=False):
return IMPL.node_group_template_update(context, node_group_template,
ignore_prot_on_def)
@to_dict
def data_source_get(context, data_source):
return IMPL.data_source_get(context, data_source)
@to_dict
def data_source_get_all(context, regex_search=False, **kwargs):
return IMPL.data_source_get_all(context, regex_search, **kwargs)
def data_source_count(context, **kwargs):
return IMPL.data_source_count(context, **kwargs)
@to_dict
def data_source_create(context, values):
return IMPL.data_source_create(context, values)
def data_source_destroy(context, data_source):
IMPL.data_source_destroy(context, data_source)
@to_dict
def data_source_update(context, data_source):
return IMPL.data_source_update(context, data_source)
@to_dict
def job_execution_get(context, job_execution):
return IMPL.job_execution_get(context, job_execution)
@to_dict
def job_execution_get_all(context, regex_search=False, **kwargs):
return IMPL.job_execution_get_all(context, regex_search, **kwargs)
def job_execution_count(context, **kwargs):
return IMPL.job_execution_count(context, **kwargs)
@to_dict
def job_execution_create(context, values):
return IMPL.job_execution_create(context, values)
@to_dict
def job_execution_update(context, job_execution, values):
return IMPL.job_execution_update(context, job_execution, values)
def job_execution_destroy(context, job_execution):
IMPL.job_execution_destroy(context, job_execution)
@to_dict
def job_get(context, job):
return IMPL.job_get(context, job)
@to_dict
def job_get_all(context, regex_search=False, **kwargs):
return IMPL.job_get_all(context, regex_search, **kwargs)
@to_dict
def job_create(context, values):
return IMPL.job_create(context, values)
@to_dict
def job_update(context, job, values):
return IMPL.job_update(context, job, values)
def job_destroy(context, job):
IMPL.job_destroy(context, job)
@to_dict
def job_binary_get_all(context, regex_search=False, **kwargs):
return IMPL.job_binary_get_all(context, regex_search, **kwargs)
@to_dict
def job_binary_get(context, job_binary):
return IMPL.job_binary_get(context, job_binary)
@to_dict
def job_binary_create(context, values):
return IMPL.job_binary_create(context, values)
def job_binary_destroy(context, job_binary):
IMPL.job_binary_destroy(context, job_binary)
@to_dict
def job_binary_update(context, values):
return IMPL.job_binary_update(context, values)
@to_dict
def job_binary_internal_get_all(context, regex_search=False, **kwargs):
return IMPL.job_binary_internal_get_all(context, regex_search, **kwargs)
@to_dict
def job_binary_internal_get(context, job_binary_internal):
return IMPL.job_binary_internal_get(context, job_binary_internal)
@to_dict
def job_binary_internal_create(context, values):
return IMPL.job_binary_internal_create(context, values)
def job_binary_internal_destroy(context, job_binary_internal):
IMPL.job_binary_internal_destroy(context, job_binary_internal)
def job_binary_internal_get_raw_data(context, job_binary_internal_id):
return IMPL.job_binary_internal_get_raw_data(context,
job_binary_internal_id)
@to_dict
def job_binary_internal_update(context, job_binary_internal, values):
return IMPL.job_binary_internal_update(
context, job_binary_internal, values)
def cluster_provision_step_add(context, cluster_id, values):
return IMPL.cluster_provision_step_add(context, cluster_id, values)
def cluster_provision_step_update(context, step_id):
return IMPL.cluster_provision_step_update(context, step_id)
def cluster_provision_progress_update(context, cluster_id):
return IMPL.cluster_provision_progress_update(context, cluster_id)
def cluster_event_add(context, provision_step, values):
return IMPL.cluster_event_add(context, provision_step, values)
@to_dict
def cluster_verification_add(context, cluster_id, values):
return IMPL.cluster_verification_add(context, cluster_id, values)
@to_dict
def cluster_verification_get(context, verification_id):
return IMPL.cluster_verification_get(context, verification_id)
@to_dict
def cluster_verification_update(context, verification_id, values):
return IMPL.cluster_verification_update(context, verification_id, values)
|
Apache License 2.0
|
h2r/pomdp-py
|
pomdp_problems/multi_object_search/models/transition_model.py
|
RobotTransitionModel.if_move_by
|
python
|
def if_move_by(cls, robot_id, state, action, dim,
check_collision=True):
if not isinstance(action, MotionAction):
raise ValueError("Cannot move robot with %s action" % str(type(action)))
robot_pose = state.pose(robot_id)
rx, ry, rth = robot_pose
if action.scheme == MotionAction.SCHEME_XYTH:
dx, dy, th = action.motion
rx += dx
ry += dy
rth = th
elif action.scheme == MotionAction.SCHEME_VW:
forward, angle = action.motion
rth += angle
rx = int(round(rx + forward*math.cos(rth)))
ry = int(round(ry + forward*math.sin(rth)))
rth = rth % (2*math.pi)
if valid_pose((rx, ry, rth),
dim[0], dim[1],
state=state,
check_collision=check_collision,
pose_objid=robot_id):
return (rx, ry, rth)
else:
return robot_pose
|
Defines the dynamics of robot motion;
dim (tuple): the width, length of the search world.
|
https://github.com/h2r/pomdp-py/blob/5c1837c38676eb53442af238cbec4115f3b17f28/pomdp_problems/multi_object_search/models/transition_model.py#L84-L113
|
import pomdp_py
import copy
from pomdp_problems.multi_object_search.domain.state import *
from pomdp_problems.multi_object_search.domain.observation import *
from pomdp_problems.multi_object_search.domain.action import *
class MosTransitionModel(pomdp_py.OOTransitionModel):
def __init__(self,
dim, sensors, object_ids,
epsilon=1e-9):
self._sensors = sensors
transition_models = {objid: StaticObjectTransitionModel(objid, epsilon=epsilon)
for objid in object_ids
if objid not in sensors}
for robot_id in sensors:
transition_models[robot_id] = RobotTransitionModel(sensors[robot_id],
dim,
epsilon=epsilon)
super().__init__(transition_models)
def sample(self, state, action, **kwargs):
oostate = pomdp_py.OOTransitionModel.sample(self, state, action, **kwargs)
return MosOOState(oostate.object_states)
def argmax(self, state, action, normalized=False, **kwargs):
oostate = pomdp_py.OOTransitionModel.argmax(self, state, action, **kwargs)
return MosOOState(oostate.object_states)
class StaticObjectTransitionModel(pomdp_py.TransitionModel):
def __init__(self, objid, epsilon=1e-9):
self._objid = objid
self._epsilon = epsilon
def probability(self, next_object_state, state, action):
if next_object_state != state.object_states[next_object_state['id']]:
return self._epsilon
else:
return 1.0 - self._epsilon
def sample(self, state, action):
return self.argmax(state, action)
def argmax(self, state, action):
return copy.deepcopy(state.object_states[self._objid])
class RobotTransitionModel(pomdp_py.TransitionModel):
def __init__(self, sensor, dim, epsilon=1e-9):
self._sensor = sensor
self._robot_id = sensor.robot_id
self._dim = dim
self._epsilon = epsilon
@classmethod
|
MIT License
|
lepinkainen/pyfibot
|
pyfibot/botcore.py
|
CoreCommands.command_leave
|
python
|
def command_leave(self, user, channel, args):
self.command_part(user, channel, args)
|
Usage: leave <channel>[@network] - Leave the specified channel
|
https://github.com/lepinkainen/pyfibot/blob/64ce4d7a69d37be8c1c03379dd8e65b9f77f886b/pyfibot/botcore.py#L116-L118
|
from __future__ import print_function, division
from twisted.words.protocols import irc
from twisted.internet import reactor, threads
from twisted.python import rebuild
from types import FunctionType
import inspect
import string
import logging
from util import pyfiurl
import textwrap
__pychecker__ = "unusednames=i, classattr"
log = logging.getLogger("bot")
class CoreCommands(object):
def command_echo(self, user, channel, args):
self.say(channel, "%s: %s" % (user, args))
def command_ping(self, user, channel, args):
self.say(
channel,
"%s: My current ping is %.0fms"
% (self.get_nick(user), self.pingAve * 100.0),
)
def command_rehash(self, user, channel, args):
if self.factory.isAdmin(user):
try:
log.info("rebuilding %r" % self)
rebuild.updateInstance(self)
if args == "conf":
self.factory.reload_config()
self.say(channel, "Configuration reloaded.")
self.factory._unload_removed_modules()
self.factory._loadmodules()
except Exception as e:
self.say(channel, "Rehash error: %s" % e)
log.error("Rehash error: %s" % e)
else:
self.say(channel, "Rehash OK")
log.info("Rehash OK")
def say(self, channel, message, length=None):
raise NotImplementedError
def command_join(self, user, channel, args):
if not self.factory.isAdmin(user):
return
password = None
try:
args, password = args.split(" ", 1)
except ValueError:
pass
try:
newchannel, network = args.split("@", 1)
except ValueError:
newchannel, network = args, self.network.alias
try:
bot = self.factory.allBots[network]
except KeyError:
self.say(channel, "I am not on that network.")
else:
log.debug("Attempting to join channel %s on ",
(newchannel, network))
if newchannel in bot.network.channels:
self.say(channel, "I am already in %s on %s." %
(newchannel, network))
log.debug("Already on channel %s" % channel)
log.debug("Channels I'm on this network: %s" %
bot.network.channels)
else:
if password:
bot.join(newchannel, key=password)
log.debug("Joined with password")
else:
bot.join(newchannel)
log.debug("Joined")
|
BSD 3-Clause New or Revised License
|
jindaxiang/akshare
|
akshare/wdbank/api.py
|
uses_pandas
|
python
|
def uses_pandas(f, *args, **kwargs):
if not pd:
raise ValueError("Pandas must be installed to be used")
return f(*args, **kwargs)
|
Raise ValueError if pandas is not loaded
|
https://github.com/jindaxiang/akshare/blob/e2b0bd62d2b7cb6056ade710d82e5e1c250902be/akshare/wdbank/api.py#L79-L83
|
import collections
import datetime
import re
import warnings
import pandas as pd
import tabulate
from decorator import decorator
from . import fetcher
BASE_URL = "https://api.worldbank.org/v2"
COUNTRIES_URL = f"{BASE_URL}/countries"
ILEVEL_URL = f"{BASE_URL}/incomeLevels"
INDICATOR_URL = f"{BASE_URL}/indicators"
LTYPE_URL = f"{BASE_URL}/lendingTypes"
SOURCES_URL = f"{BASE_URL}/sources"
TOPIC_URL = f"{BASE_URL}/topics"
INDIC_ERROR = "Cannot specify more than one of indicator, source, and topic"
class WBSearchResult(list):
def __repr__(self):
try:
return tabulate.tabulate(
[[o["id"], o["name"]] for o in self],
headers=["id", "name"],
tablefmt="simple",
)
except KeyError:
return tabulate.tabulate(
[[o["id"], o["value"]] for o in self],
headers=["id", "value"],
tablefmt="simple",
)
if pd:
class WBSeries(pd.Series):
_metadata = ["last_updated"]
@property
def _constructor(self):
return WBSeries
class WBDataFrame(pd.DataFrame):
_metadata = ["last_updated"]
@property
def _constructor(self):
return WBDataFrame
@decorator
|
MIT License
|
marrink-lab/polyply_1.0
|
polyply/src/meta_molecule.py
|
MetaMolecule.from_monomer_seq_linear
|
python
|
def from_monomer_seq_linear(cls, force_field, monomers, mol_name):
meta_mol_graph = cls(force_field=force_field, mol_name=mol_name)
res_count = 0
for monomer in monomers:
trans = 0
while trans < monomer.n_blocks:
if res_count != 0:
connect = [(res_count-1, res_count)]
else:
connect = []
trans += 1
meta_mol_graph.add_monomer(res_count, monomer.resname, connect)
res_count += 1
return meta_mol_graph
|
Constructs a meta graph for a linear molecule
which is the default assumption from
|
https://github.com/marrink-lab/polyply_1.0/blob/4e48f86fb309b38391c73d8f9bcc1f7c6090d2cf/polyply/src/meta_molecule.py#L218-L239
|
from collections import (namedtuple, OrderedDict)
import json
import networkx as nx
from networkx.readwrite import json_graph
from vermouth.graph_utils import make_residue_graph
from vermouth.log_helpers import StyleAdapter, get_logger
from .polyply_parser import read_polyply
from .graph_utils import find_nodes_with_attributes
Monomer = namedtuple('Monomer', 'resname, n_blocks')
LOGGER = StyleAdapter(get_logger(__name__))
def _make_edges(force_field):
for block in force_field.blocks.values():
inter_types = list(block.interactions.keys())
for inter_type in inter_types:
if inter_type in ["bonds", "constraints" "angles"]:
block.make_edges_from_interaction_type(type_=inter_type)
for link in force_field.links:
inter_types = list(link.interactions.keys())
for inter_type in inter_types:
if inter_type in ["bonds", "constraints", "angles"]:
link.make_edges_from_interaction_type(type_=inter_type)
def _interpret_residue_mapping(graph, resname, new_residues):
atom_name_to_resname = {}
had_atoms = []
for new_res in new_residues:
new_name, atoms = new_res.split("-")
names = atoms.split(",")
for name in names:
if name in had_atoms:
msg = ("You are trying to split residue {} into {} residues. "
"However, atom {} is mentioned more than once. This is not "
"allowed. ")
raise IOError(msg.format(resname, len(new_residues), name))
nodes = find_nodes_with_attributes(graph, resname=resname, atomname=name)
had_atoms.append(name)
for node in nodes:
atom_name_to_resname[node] = new_name
return atom_name_to_resname
def _find_starting_node(meta_molecule):
for node in meta_molecule.nodes:
if "build" not in meta_molecule.nodes[node]:
return node
return next(iter(meta_molecule.nodes()))
class MetaMolecule(nx.Graph):
node_dict_factory = OrderedDict
def __init__(self, *args, **kwargs):
self.force_field = kwargs.pop('force_field', None)
self.mol_name = kwargs.pop('mol_name', None)
super().__init__(*args, **kwargs)
self.molecule = None
nx.set_node_attributes(self, True, "build")
self.__search_tree = None
self.root = None
self.dfs = False
def add_monomer(self, current, resname, connections):
resids = nx.get_node_attributes(self, "resid")
if resids:
resid = max(resids.values()) + 1
else:
resid = 1
self.add_node(current, resname=resname, resid=resid, build=True)
for edge in connections:
if self.has_node(edge[0]) and self.has_node(edge[1]):
self.add_edge(edge[0], edge[1])
else:
msg = ("Edge {} referes to nodes that currently do"
"not exist. Cannot add edge to unkown nodes.")
raise IOError(msg.format(edge))
def get_edge_resname(self, edge):
return [self.nodes[edge[0]]["resname"], self.nodes[edge[1]]["resname"]]
def relabel_and_redo_res_graph(self, mapping):
max_resid = max(nx.get_node_attributes(self.molecule, "resid").values())
for node, resname in mapping.items():
self.molecule.nodes[node]["resname"] = resname
old_resid = self.molecule.nodes[node]["resid"]
self.molecule.nodes[node]["resid"] = old_resid + max_resid
self.molecule.nodes[node]["build"] = True
new_meta_graph = make_residue_graph(self.molecule, attrs=('resid', 'resname'))
for idx, node in enumerate(new_meta_graph.nodes):
new_meta_graph.nodes[node]["resid"] = idx
for atom in new_meta_graph.nodes[node]["graph"]:
self.molecule.nodes[atom]["resid"] = idx
self.clear()
self.add_nodes_from(new_meta_graph.nodes(data=True))
self.add_edges_from(new_meta_graph.edges)
def split_residue(self, split_strings):
mapping = {}
for split_string in split_strings:
resname, *new_residues = split_string.split(":")
mapping.update(_interpret_residue_mapping(self.molecule, resname, new_residues))
self.relabel_and_redo_res_graph(mapping)
return mapping
@property
def search_tree(self):
if self.__search_tree is None:
if self.root is None:
self.root =_find_starting_node(self)
if self.dfs:
self.__search_tree = nx.bfs_tree(self, source=self.root)
else:
self.__search_tree = nx.dfs_tree(self, source=self.root)
return self.__search_tree
@staticmethod
def _block_graph_to_res_graph(block):
res_graph = make_residue_graph(block, attrs=('resid', 'resname'))
return res_graph
@classmethod
|
Apache License 2.0
|
siviltaram/persona-dialogue-generation
|
parlai/core/torch_generator_agent.py
|
Beam.advance
|
python
|
def advance(self, softmax_probs):
voc_size = softmax_probs.size(-1)
current_length = len(self.all_scores) - 1
if current_length < self.min_length:
for hyp_id in range(softmax_probs.size(0)):
softmax_probs[hyp_id][self.eos] = -NEAR_INF
if len(self.bookkeep) == 0:
beam_scores = softmax_probs[0]
else:
beam_scores = (softmax_probs +
self.scores.unsqueeze(1).expand_as(softmax_probs))
for i in range(self.outputs[-1].size(0)):
if self.block_ngram > 0:
current_hypo = self.partial_hyps[i][1:]
current_ngrams = []
for ng in range(self.block_ngram):
ngrams = Beam.find_ngrams(current_hypo, ng)
if len(ngrams) > 0:
current_ngrams.extend(ngrams)
counted_ngrams = Counter(current_ngrams)
if any(v > 1 for k, v in counted_ngrams.items()):
beam_scores[i] = -NEAR_INF
if self.outputs[-1][i] == self.eos:
beam_scores[i] = -NEAR_INF
flatten_beam_scores = beam_scores.view(-1)
with torch.no_grad():
best_scores, best_idxs = torch.topk(
flatten_beam_scores, self.beam_size, dim=-1)
self.scores = best_scores
self.all_scores.append(self.scores)
hyp_ids = best_idxs / voc_size
tok_ids = best_idxs % voc_size
self.outputs.append(tok_ids)
self.bookkeep.append(hyp_ids)
self.partial_hyps = [self.partial_hyps[hyp_ids[i]] +
[tok_ids[i].item()] for i in range(self.beam_size)]
for hypid in range(self.beam_size):
if self.outputs[-1][hypid] == self.eos:
eostail = self.HypothesisTail(timestep=len(self.outputs) - 1,
hypid=hypid,
score=self.scores[hypid],
tokenid=self.eos)
self.finished.append(eostail)
self.n_best_counter += 1
if self.outputs[-1][0] == self.eos:
self.eos_top = True
if self.eos_top_ts is None:
self.eos_top_ts = len(self.outputs) - 1
|
Advance the beam one step.
|
https://github.com/siviltaram/persona-dialogue-generation/blob/3cc800ffe3c5a8d16ed26522cda839acfab8d417/parlai/core/torch_generator_agent.py#L896-L963
|
import os
import math
import tempfile
from collections import defaultdict, Counter, namedtuple
from operator import attrgetter
import torch
import torch.nn as nn
import torch.nn.functional as F
from parlai.core.torch_agent import TorchAgent, Batch, Output
from parlai.core.utils import NEAR_INF, padded_tensor, round_sigfigs, warn_once
from parlai.core.thread_utils import SharedTable
from parlai.core.distributed_utils import is_distributed
class TorchGeneratorModel(nn.Module):
def __init__(
self,
padding_idx=0,
start_idx=1,
end_idx=2,
unknown_idx=3,
input_dropout=0,
longest_label=1,
):
super().__init__()
self.NULL_IDX = padding_idx
self.END_IDX = end_idx
self.register_buffer('START', torch.LongTensor([start_idx]))
self.longest_label = longest_label
def _starts(self, bsz):
return self.START.detach().expand(bsz, 1)
def decode_greedy(self, encoder_states, bsz, maxlen):
xs = self._starts(bsz)
incr_state = None
logits = []
for i in range(maxlen):
scores, incr_state = self.decoder(xs, encoder_states, incr_state)
scores = scores[:, -1:, :]
scores = self.output(scores)
_, preds = scores.max(dim=-1)
logits.append(scores)
xs = torch.cat([xs, preds], dim=1)
all_finished = ((xs == self.END_IDX).sum(dim=1) > 0).sum().item() == bsz
if all_finished:
break
logits = torch.cat(logits, 1)
return logits, xs
def decode_forced(self, encoder_states, ys):
bsz = ys.size(0)
seqlen = ys.size(1)
inputs = ys.narrow(1, 0, seqlen - 1)
inputs = torch.cat([self._starts(bsz), inputs], 1)
latent, _ = self.decoder(inputs, encoder_states)
logits = self.output(latent)
_, preds = logits.max(dim=2)
return logits, preds
def reorder_encoder_states(self, encoder_states, indices):
raise NotImplementedError(
"reorder_encoder_states must be implemented by the model"
)
def reorder_decoder_incremental_state(self, incremental_state, inds):
raise NotImplementedError(
"reorder_decoder_incremental_state must be implemented by model"
)
def forward(self, *xs, ys=None, cand_params=None, prev_enc=None, maxlen=None,
bsz=None):
if ys is not None:
self.longest_label = max(self.longest_label, ys.size(1))
encoder_states = prev_enc if prev_enc is not None else self.encoder(*xs)
if ys is not None:
scores, preds = self.decode_forced(encoder_states, ys)
else:
scores, preds = self.decode_greedy(
encoder_states,
bsz,
maxlen or self.longest_label
)
return scores, preds, encoder_states
class TorchGeneratorAgent(TorchAgent):
@classmethod
def add_cmdline_args(cls, argparser):
agent = argparser.add_argument_group('Torch Generator Agent')
agent.add_argument('--beam-size', type=int, default=1,
help='Beam size, if 1 then greedy search')
agent.add_argument('--beam-dot-log', type='bool', default=False, hidden=True,
help='Dump beam trees as png dot images into /tmp folder')
agent.add_argument('--beam-min-n-best', type=int, default=3,
help='Minimum number of nbest candidates to achieve '
'during the beam search')
agent.add_argument('--beam-min-length', type=int, default=1,
help='Minimum length of prediction to be generated by '
'the beam search')
agent.add_argument('--beam-block-ngram', type=int, default=0, hidden=True,
help='Block all repeating ngrams up to history length n-1')
agent.add_argument('--skip-generation', type='bool', default=False, hidden=True,
help='Skip beam search. Useful for speeding up training, '
'if perplexity is the validation metric.')
super(TorchGeneratorAgent, cls).add_cmdline_args(argparser)
return agent
def __init__(self, opt, shared=None):
init_model, is_finetune = self._get_init_model(opt, shared)
super().__init__(opt, shared)
self.beam_dot_log = opt.get('beam_dot_log', False)
self.beam_size = opt.get('beam_size', 1)
self.beam_min_n_best = opt.get('beam_min_n_best', 3)
self.beam_min_length = opt.get('beam_min_length', 3)
self.beam_block_ngram = opt.get('beam_block_ngram', 0)
self.skip_generation = opt.get('skip_generation', False)
if shared:
self.model = shared['model']
self.criterion = shared['criterion']
self.metrics = shared['metrics']
states = shared.get('states', {})
else:
self.metrics = {
'nll_loss': 0.0,
'loss': 0.0,
'num_tokens': 0,
'correct_tokens': 0,
'total_skipped_batches': 0
}
if self.beam_dot_log:
self.beam_dot_dir = tempfile.mkdtemp(
prefix='{}-beamdot-beamsize-{}-'.format(
os.path.basename(
opt.get('model_file')),
self.beam_size))
print(
'[ Saving dot beam logs in {} ]'.format(
self.beam_dot_dir))
self.build_criterion()
self.build_model()
if init_model is not None:
print('[ Loading existing model params from {} ]'
''.format(init_model))
states = self.load(init_model)
else:
states = {}
if shared is None and is_distributed():
self.model = torch.nn.parallel.DistributedDataParallel(
self.model,
device_ids=[self.opt['gpu']],
broadcast_buffers=False,
)
if 'train' in opt.get('datatype', ''):
self.init_optim(
[p for p in self.model.parameters() if p.requires_grad],
optim_states=states.get('optimizer'),
saved_optim_type=states.get('optimizer_type')
)
self.build_lr_scheduler(states, hard_reset=is_finetune)
self.reset()
def _v2t(self, vec):
new_vec = []
if hasattr(vec, 'cpu'):
vec = vec.cpu()
for i in vec:
if i == self.END_IDX:
break
elif i != self.START_IDX:
new_vec.append(i)
return self.dict.vec2txt(new_vec)
def build_model(self):
raise NotImplementedError(
"AbstractClass: build_model must be implemented by the user."
)
def build_criterion(self):
self.criterion = nn.CrossEntropyLoss(
ignore_index=self.NULL_IDX, reduction='sum'
)
if self.use_cuda:
self.criterion.cuda()
def _dummy_batch(self, batchsize, maxlen):
return Batch(
text_vec=torch.ones(batchsize, maxlen).long().cuda(),
label_vec=torch.ones(batchsize, 2).long().cuda(),
)
def _init_cuda_buffer(self, batchsize, maxlen, force=False):
if self.use_cuda and (force or not hasattr(self, 'buffer_initialized')):
try:
loss = self.compute_loss(self._dummy_batch(batchsize, maxlen))
loss.backward()
self.buffer_initialized = True
except RuntimeError as e:
if 'out of memory' in str(e):
m = ('CUDA OOM: Lower batch size (-bs) from {} or lower '
' max sequence length (-tr) from {}'
''.format(batchsize, maxlen))
raise RuntimeError(m)
else:
raise e
def reset_metrics(self):
super().reset_metrics()
self.metrics['loss'] = 0.0
self.metrics['nll_loss'] = 0.0
self.metrics['num_tokens'] = 0
self.metrics['correct_tokens'] = 0
def share(self):
shared = super().share()
shared['model'] = self.model
shared['criterion'] = self.criterion
if self.opt.get('numthreads', 1) > 1:
if isinstance(self.metrics, dict):
self.metrics = SharedTable(self.metrics)
self.model.share_memory()
shared['states'] = {
'optimizer_type': self.opt['optimizer'],
}
shared['metrics'] = self.metrics
if self.beam_dot_log is True:
shared['beam_dot_dir'] = self.beam_dot_dir
return shared
def report(self):
base = super().report()
m = {}
num_tok = self.metrics['num_tokens']
if num_tok > 0:
m['loss'] = self.metrics['loss']
if self.metrics['correct_tokens'] > 0:
m['token_acc'] = self.metrics['correct_tokens'] / num_tok
m['nll_loss'] = self.metrics['nll_loss'] / num_tok
try:
m['ppl'] = math.exp(m['nll_loss'])
except OverflowError:
m['ppl'] = float('inf')
if self.metrics['total_skipped_batches'] > 0:
m['total_skipped_batches'] = self.metrics['total_skipped_batches']
for k, v in m.items():
base[k] = round_sigfigs(v, 4)
return base
def vectorize(self, *args, **kwargs):
kwargs['add_start'] = False
kwargs['add_end'] = True
return super().vectorize(*args, **kwargs)
def _model_input(self, batch):
return (batch.text_vec, )
def compute_loss(self, batch, return_output=False):
if batch.label_vec is None:
raise ValueError('Cannot compute loss without a label.')
model_output = self.model(*self._model_input(batch), ys=batch.label_vec)
scores, preds, *_ = model_output
score_view = scores.view(-1, scores.size(-1))
loss = self.criterion(score_view, batch.label_vec.view(-1))
notnull = batch.label_vec.ne(self.NULL_IDX)
target_tokens = notnull.long().sum().item()
correct = ((batch.label_vec == preds) * notnull).sum().item()
self.metrics['correct_tokens'] += correct
self.metrics['nll_loss'] += loss.item()
self.metrics['num_tokens'] += target_tokens
loss /= target_tokens
if return_output:
return (loss, model_output)
else:
return loss
def train_step(self, batch):
batchsize = batch.text_vec.size(0)
self._init_cuda_buffer(batchsize, self.truncate or 256)
self.model.train()
self.zero_grad()
try:
loss = self.compute_loss(batch)
self.metrics['loss'] += loss.item()
loss.backward()
self.update_params()
except RuntimeError as e:
if 'out of memory' in str(e):
print('| WARNING: ran out of memory, skipping batch. '
'if this happens frequently, decrease batchsize or '
'truncate the inputs to the model.')
self.metrics['total_skipped_batches'] += 1
self._init_cuda_buffer(8, 8, True)
else:
raise e
def _write_beam_dots(self, text_vecs, beams):
for i, b in enumerate(beams):
dot_graph = b.get_beam_dot(dictionary=self.dict, n_best=3)
image_name = self._v2t(text_vecs[i, -20:])
image_name = image_name.replace(' ', '-').replace('__null__', '')
dot_graph.write_png(
os.path.join(self.beam_dot_dir, "{}.png".format(image_name))
)
def eval_step(self, batch):
if batch.text_vec is None:
return
bsz = batch.text_vec.size(0)
self.model.eval()
cand_scores = None
if batch.label_vec is not None:
loss = self.compute_loss(batch)
self.metrics['loss'] += loss.item()
preds = None
if self.skip_generation:
warn_once(
"--skip-generation does not produce accurate metrics beyond ppl",
RuntimeWarning
)
elif self.beam_size == 1:
_, preds, *_ = self.model(*self._model_input(batch), bsz=bsz)
elif self.beam_size > 1:
out = self.beam_search(
self.model,
batch,
self.beam_size,
start=self.START_IDX,
end=self.END_IDX,
pad=self.NULL_IDX,
min_length=self.beam_min_length,
min_n_best=self.beam_min_n_best,
block_ngram=self.beam_block_ngram
)
beam_preds_scores, _, beams = out
preds, scores = zip(*beam_preds_scores)
if self.beam_dot_log is True:
self._write_beam_dots(batch.text_vec, beams)
cand_choices = None
if self.rank_candidates:
cand_choices = []
encoder_states = self.model.encoder(*self._model_input(batch))
for i in range(bsz):
num_cands = len(batch.candidate_vecs[i])
enc = self.model.reorder_encoder_states(encoder_states, [i] * num_cands)
cands, _ = padded_tensor(
batch.candidate_vecs[i], self.NULL_IDX, self.use_cuda
)
scores, _ = self.model.decode_forced(enc, cands)
cand_losses = F.cross_entropy(
scores.view(num_cands * cands.size(1), -1),
cands.view(-1),
reduction='none',
).view(num_cands, cands.size(1))
mask = (cands != self.NULL_IDX).float()
cand_scores = (cand_losses * mask).sum(dim=1) / (mask.sum(dim=1) + 1e-9)
_, ordering = cand_scores.sort()
cand_choices.append([batch.candidates[i][o] for o in ordering])
text = [self._v2t(p) for p in preds] if preds is not None else None
return Output(text, cand_choices)
def beam_search(self, model, batch, beam_size, start=1, end=2,
pad=0, min_length=3, min_n_best=5, max_ts=40, block_ngram=0):
encoder_states = model.encoder(*self._model_input(batch))
dev = batch.text_vec.device
bsz = len(batch.text_lengths)
beams = [
Beam(beam_size, min_length=min_length, padding_token=pad,
bos_token=start, eos_token=end, min_n_best=min_n_best,
cuda=dev, block_ngram=block_ngram)
for i in range(bsz)
]
decoder_input = torch.LongTensor([start]).expand(bsz * beam_size, 1).to(dev)
inds = torch.arange(bsz).to(dev).unsqueeze(1).repeat(1, beam_size).view(-1)
encoder_states = model.reorder_encoder_states(encoder_states, inds)
incr_state = None
for ts in range(max_ts):
if all((b.done() for b in beams)):
break
score, incr_state = model.decoder(decoder_input, encoder_states, incr_state)
score = score[:, -1:, :]
score = model.output(score)
score = score.view(bsz, beam_size, -1)
score = F.log_softmax(score, dim=-1)
for i, b in enumerate(beams):
if not b.done():
b.advance(score[i])
incr_state_inds = torch.cat(
[beam_size * i +
b.get_backtrack_from_current_step() for i, b in enumerate(beams)])
incr_state = model.reorder_decoder_incremental_state(
incr_state, incr_state_inds
)
decoder_input = torch.index_select(decoder_input, 0, incr_state_inds)
selection = torch.cat(
[b.get_output_from_current_step() for b in beams]).unsqueeze(-1)
decoder_input = torch.cat([decoder_input, selection], dim=-1)
for b in beams:
b.check_finished()
beam_preds_scores = [list(b.get_top_hyp()) for b in beams]
for pair in beam_preds_scores:
pair[0] = Beam.get_pretty_hypothesis(pair[0])
n_best_beams = [b.get_rescored_finished(n_best=min_n_best) for b in beams]
n_best_beam_preds_scores = []
for i, beamhyp in enumerate(n_best_beams):
this_beam = []
for hyp in beamhyp:
pred = beams[i].get_pretty_hypothesis(
beams[i].get_hyp_from_finished(hyp))
score = hyp.score
this_beam.append((pred, score))
n_best_beam_preds_scores.append(this_beam)
return beam_preds_scores, n_best_beam_preds_scores, beams
class _mydefaultdict(defaultdict):
def get(self, key, default=None):
return super().get(key, default or self.default_factory())
class PerplexityEvaluatorAgent(TorchGeneratorAgent):
def __init__(self, opt, shared=None):
if opt.get('multigpu'):
print('| WARNING: Multi-GPU is not supported for the Perplexity ' +
'Evaluator Agent. Setting this option to False.')
opt['multigpu'] = False
super().__init__(opt, shared)
self.prev_enc = None
self.last_xs = None
def next_word_probability(self, partial_out):
obs = self.observation
xs = obs['text_vec'].unsqueeze(0)
ys = self._vectorize_text(
' '.join(partial_out), False, True, self.truncate
).unsqueeze(0)
if self.prev_enc is not None and self.last_xs is not None and (
xs.shape[1] != self.last_xs.shape[1] or
(xs == self.last_xs).sum().item() != xs.shape[1]):
self.prev_enc = None
self.last_xs = xs
self.model.eval()
out = self.model(
xs,
ys=(ys if len(partial_out) > 0 else None),
prev_enc=self.prev_enc,
maxlen=1)
scores, self.prev_enc = out
probs = F.softmax(scores.select(1, -1), dim=1).squeeze()
dist = _mydefaultdict(lambda: 1e-7)
for i in range(len(probs)):
dist[self.dict[i]] = probs[i].item()
return dist
class Beam(object):
def __init__(self, beam_size, min_length=3, padding_token=0, bos_token=1,
eos_token=2, min_n_best=3, cuda='cpu', block_ngram=0):
self.beam_size = beam_size
self.min_length = min_length
self.eos = eos_token
self.bos = bos_token
self.pad = padding_token
self.device = cuda
self.scores = torch.Tensor(self.beam_size).float().zero_().to(
self.device)
self.all_scores = [torch.Tensor([0.0] * beam_size).to(self.device)]
self.bookkeep = []
self.outputs = [torch.Tensor(self.beam_size).long()
.fill_(self.bos).to(self.device)]
self.finished = []
self.HypothesisTail = namedtuple(
'HypothesisTail', ['timestep', 'hypid', 'score', 'tokenid'])
self.eos_top = False
self.eos_top_ts = None
self.n_best_counter = 0
self.min_n_best = min_n_best
self.block_ngram = block_ngram
self.partial_hyps = [[self.bos] for i in range(beam_size)]
@staticmethod
def find_ngrams(input_list, n):
return list(zip(*[input_list[i:] for i in range(n)]))
def get_output_from_current_step(self):
return self.outputs[-1]
def get_backtrack_from_current_step(self):
return self.bookkeep[-1]
|
MIT License
|
apple/ccs-twistedextensions
|
twext/enterprise/queue.py
|
TableSyntaxByName.toString
|
python
|
def toString(self, inObject):
return inObject.model.name.encode("UTF-8")
|
Convert a L{TableSyntax} object into just its name for wire transport.
@param inObject: a table.
@type inObject: L{TableSyntax}
@return: the name of that table
@rtype: L{bytes}
|
https://github.com/apple/ccs-twistedextensions/blob/2c4046df88873dcf33fba7840ed90e4238dcbec7/twext/enterprise/queue.py#L220-L230
|
from functools import wraps
from datetime import datetime
from zope.interface import implements
from twisted.application.service import MultiService
from twisted.internet.protocol import Factory
from twisted.internet.defer import (
inlineCallbacks, returnValue, Deferred, passthru, succeed
)
from twisted.internet.endpoints import TCP4ClientEndpoint
from twisted.protocols.amp import AMP, Command, Integer, Argument, String
from twisted.python.reflect import qual
from twisted.python import log
from twext.enterprise.dal.syntax import SchemaSyntax, Lock, NamedValue
from twext.enterprise.dal.model import ProcedureCall
from twext.enterprise.dal.record import Record, fromTable, NoSuchRecord
from twisted.python.failure import Failure
from twext.enterprise.dal.model import Table, Schema, SQLType, Constraint
from twisted.internet.endpoints import TCP4ServerEndpoint
from twext.enterprise.ienterprise import IQueuer
from zope.interface.interface import Interface
from twext.enterprise.locking import NamedLock
class _IWorkPerformer(Interface):
def performWork(table, workID):
def makeNodeSchema(inSchema):
NodeTable = Table(inSchema, "NODE_INFO")
NodeTable.addColumn("HOSTNAME", SQLType("varchar", 255))
NodeTable.addColumn("PID", SQLType("integer", None))
NodeTable.addColumn("PORT", SQLType("integer", None))
NodeTable.addColumn("TIME", SQLType("timestamp", None)).setDefaultValue(
ProcedureCall("timezone", ["UTC", NamedValue("CURRENT_TIMESTAMP")])
)
for column in NodeTable.columns:
NodeTable.tableConstraint(Constraint.NOT_NULL, [column.name])
NodeTable.primaryKey = [
NodeTable.columnNamed("HOSTNAME"),
NodeTable.columnNamed("PORT"),
]
return inSchema
NodeInfoSchema = SchemaSyntax(makeNodeSchema(Schema(__file__)))
@inlineCallbacks
def inTransaction(transactionCreator, operation):
txn = transactionCreator()
try:
result = yield operation(txn)
except:
f = Failure()
yield txn.abort()
returnValue(f)
else:
yield txn.commit()
returnValue(result)
def astimestamp(v):
return (v - datetime.utcfromtimestamp(0)).total_seconds()
class TableSyntaxByName(Argument):
def fromStringProto(self, inString, proto):
return getattr(proto.schema, inString.decode("UTF-8"))
|
Apache License 2.0
|
differentiableuniverseinitiative/jax_cosmo
|
jax_cosmo/sparse.py
|
det
|
python
|
def det(sparse):
sign, logdet = slogdet(sparse)
return sign * np.exp(logdet)
|
Calculate the determinant of a sparse matrix.
Uses :func:`slogdet`.
For a zero sparse matrix, the result of this computation is
currently undefined and will return nan.
Parameters
----------
sparse : array
3D array of shape (ny, nx, ndiag) of block diagonal elements.
Returns
-------
float
Determinant result.
|
https://github.com/differentiableuniverseinitiative/jax_cosmo/blob/c2f8b59214df70d820bbad53f6a7b1ab2280638a/jax_cosmo/sparse.py#L370-L389
|
import functools
import jax.numpy as np
from jax import jit
from jax import vmap
def is_sparse(sparse):
return np.asarray(sparse).ndim == 3
def check_sparse(sparse, square=False):
sparse = np.asarray(sparse)
if sparse.ndim != 3:
raise ValueError("Expected 3D array of sparse diagonals.")
if square and (sparse.shape[0] != sparse.shape[1]):
raise ValueError("Expected a square matrix.")
return sparse
@jit
def to_dense(sparse):
sparse = check_sparse(sparse)
return np.vstack(vmap(lambda row: np.hstack(vmap(np.diag)(row)))(sparse))
@jit
def dot(*args):
if len(args) == 2:
A, B = args
A = np.asarray(A)
B = np.asarray(B)
if is_sparse(A):
Acols = A.shape[1] * A.shape[2]
else:
if A.ndim < 1 or A.ndim > 2:
raise ValueError(f"A has invalid dimension {A.ndim} (expected 1 or 2).")
Acols = A.shape[-1]
if is_sparse(B):
Brows = B.shape[0] * B.shape[2]
else:
if B.ndim < 1 or B.ndim > 2:
raise ValueError(f"B has invalid dimension {B.ndim} (expected 1 or 2).")
Brows = B.shape[0]
if Acols != Brows:
raise ValueError(
f"Shapes of A {A.shape} and B {B.shape} not compatible for dot product."
)
if is_sparse(A):
if is_sparse(B):
return sparse_dot_sparse(A, B)
else:
return sparse_dot_vec(A, B) if B.ndim == 1 else sparse_dot_dense(A, B)
else:
return vec_dot_sparse(A, B) if A.ndim == 1 else dense_dot_sparse(A, B)
elif len(args) == 3:
A, B, C = args
if A.ndim != 2 or B.ndim != 3 or C.ndim != 2:
raise ValueError("Can only handle dense @ sparse @ dense bilinear form.")
if (
A.shape[1] != B.shape[0] * B.shape[2]
or B.shape[1] * B.shape[2] != C.shape[0]
):
raise ValueError(
"Shapes of A {A.shape}, B {B.shape}, C {C.shape} not compatible for dot product."
)
return dense_dot_sparse_dot_dense(A, B, C)
else:
raise ValueError(f"Expected 2 or 3 input arrays but got {len(args)}.")
@jit
def sparse_dot_vec(sparse, vec):
return vmap(
lambda row, vec: np.sum(vmap(np.multiply)(row, vec.reshape(row.shape)), axis=0),
in_axes=(0, None),
)(sparse, vec).reshape(-1)
@jit
def sparse_dot_dense(sparse, dense):
return vmap(sparse_dot_vec, (None, 1), 1)(sparse, dense)
@jit
def vec_dot_sparse(vec, sparse):
return vmap(
lambda vec, col: np.sum(vmap(np.multiply)(vec.reshape(col.shape), col), axis=0),
in_axes=(None, 1),
)(vec, sparse).reshape(-1)
@jit
def dense_dot_sparse(dense, sparse):
return vmap(vec_dot_sparse, (0, None), 0)(dense, sparse)
@jit
def sparse_dot_sparse(sparse1, sparse2):
return vmap(
vmap(
lambda B1, B2: np.sum(np.multiply(B1, B2), axis=0),
(0, None),
0,
),
(None, 1),
1,
)(sparse1, sparse2)
@jit
def dense_dot_sparse_dot_dense(X, Y, Z):
return vmap(
vmap(
lambda row, sparse, col: np.dot(row, sparse_dot_vec(sparse, col)),
(None, None, 1),
),
(0, None, None),
)(X, Y, Z)
@jit
def inv(sparse):
sparse = check_sparse(sparse, square=True)
return np.transpose(np.linalg.inv(np.transpose(sparse, (2, 0, 1))), (1, 2, 0))
@functools.partial(jit, static_argnums=(1, 2, 3))
def _block_det(sparse, k, N, P):
u = sparse[k : k + 1, k + 1 : N, 0:P]
S = sparse[k + 1 : N, k + 1 : N, 0:P]
v = sparse[k + 1 : N, k : k + 1, 0:P]
Sinv_v = sparse_dot_sparse(inv(S), v)
M = sparse[k, k] - sparse_dot_sparse(u, Sinv_v)
sign = np.product(np.sign(M))
logdet = np.sum(np.log(np.abs(M)))
return sign, logdet
@jit
def slogdet(sparse):
sparse = check_sparse(sparse, square=True)
N, _, P = sparse.shape
sign = np.product(np.sign(sparse[-1, -1]))
logdet = np.sum(np.log(np.abs(sparse[-1, -1])))
for i in range(N - 1):
s, ld = _block_det(sparse, i, N, P)
sign *= s
logdet += ld
return sign, logdet
@jit
|
MIT License
|
darkenergysurvey/ugali
|
ugali/utils/projector.py
|
hms2dec
|
python
|
def hms2dec(hms):
DEGREE = 360.
HOUR = 24.
MINUTE = 60.
SECOND = 3600.
if isstring(hms):
hour,minute,second = np.array(re.split('[hms]',hms))[:3].astype(float)
else:
hour,minute,second = hms.T
decimal = (hour + minute * 1./MINUTE + second * 1./SECOND)*(DEGREE/HOUR)
return decimal
|
Convert longitude from hours,minutes,seconds in string or 3-array
format to decimal degrees.
ADW: This really should be replaced by astropy
|
https://github.com/darkenergysurvey/ugali/blob/82abffcc92bddf830d89f85cb3966870f7d9f720/ugali/utils/projector.py#L432-L450
|
import re
import numpy as np
from ugali.utils.logger import logger
from ugali.utils.mlab import isstring
class SphericalRotator:
def __init__(self, lon_ref, lat_ref, zenithal=False):
self.setReference(lon_ref, lat_ref, zenithal)
def setReference(self, lon_ref, lat_ref, zenithal=False):
if zenithal:
phi = (np.pi / 2.) + np.radians(lon_ref)
theta = (np.pi / 2.) - np.radians(lat_ref)
psi = 0.
if not zenithal:
phi = (-np.pi / 2.) + np.radians(lon_ref)
theta = np.radians(lat_ref)
psi = np.radians(90.)
cos_psi,sin_psi = np.cos(psi),np.sin(psi)
cos_phi,sin_phi = np.cos(phi),np.sin(phi)
cos_theta,sin_theta = np.cos(theta),np.sin(theta)
self.rotation_matrix = np.array([
[cos_psi * cos_phi - cos_theta * sin_phi * sin_psi,
cos_psi * sin_phi + cos_theta * cos_phi * sin_psi,
sin_psi * sin_theta],
[-sin_psi * cos_phi - cos_theta * sin_phi * cos_psi,
-sin_psi * sin_phi + cos_theta * cos_phi * cos_psi,
cos_psi * sin_theta],
[sin_theta * sin_phi,
-sin_theta * cos_phi,
cos_theta]
])
self.inverted_rotation_matrix = np.linalg.inv(self.rotation_matrix)
def cartesian(self,lon,lat):
lon = np.radians(lon)
lat = np.radians(lat)
x = np.cos(lat) * np.cos(lon)
y = np.cos(lat) * np.sin(lon)
z = np.sin(lat)
return np.array([x,y,z])
def rotate(self, lon, lat, invert=False):
vec = self.cartesian(lon,lat)
if invert:
vec_prime = np.dot(np.array(self.inverted_rotation_matrix), vec)
else:
vec_prime = np.dot(np.array(self.rotation_matrix), vec)
lon_prime = np.arctan2(vec_prime[1], vec_prime[0])
lat_prime = np.arcsin(vec_prime[2])
return (np.degrees(lon_prime) % 360.), np.degrees(lat_prime)
class Projector:
def __init__(self, lon_ref, lat_ref, proj_type = 'ait'):
self.lon_ref = lon_ref
self.lat_ref = lat_ref
self.proj_type = proj_type
if proj_type.lower() == 'ait':
self.rotator = SphericalRotator(lon_ref, lat_ref, zenithal=False)
self.sphere_to_image_func = aitoffSphereToImage
self.image_to_sphere_func = aitoffImageToSphere
elif proj_type.lower() == 'tan':
self.rotator = SphericalRotator(lon_ref, lat_ref, zenithal=True)
self.sphere_to_image_func = gnomonicSphereToImage
self.image_to_sphere_func = gnomonicImageToSphere
elif proj_type.lower() == 'car':
def rotate(lon,lat,invert=False):
if invert:
return lon + np.array([lon_ref]), lat + np.array([lat_ref])
else:
return lon - np.array([lon_ref]), lat - np.array([lat_ref])
self.rotator = SphericalRotator(lon_ref, lat_ref, zenithal=False)
self.rotator.rotate = rotate
self.sphere_to_image_func = cartesianSphereToImage
self.image_to_sphere_func = cartesianImageToSphere
else:
logger.warn('%s not recognized'%(proj_type))
def sphereToImage(self, lon, lat):
scalar = np.isscalar(lon)
lon, lat = np.asarray(lon), np.asarray(lat)
lon_rotated, lat_rotated = self.rotator.rotate(lon.flat, lat.flat)
x, y = self.sphere_to_image_func(lon_rotated, lat_rotated)
if scalar: return np.asscalar(x), np.asscalar(y)
else: return x.reshape(lon.shape), y.reshape(lat.shape)
sphere2image = sphereToImage
def imageToSphere(self, x, y):
scalar = np.isscalar(x)
x, y = np.asarray(x), np.asarray(y)
lon_rotated, lat_rotated = self.image_to_sphere_func(x.flat, y.flat)
lon, lat = self.rotator.rotate(lon_rotated, lat_rotated, invert = True)
if scalar: return np.asscalar(lon), np.asscalar(lat)
else: return lon.reshape(x.shape), lat.reshape(y.shape)
image2sphere = imageToSphere
def sphere2image(lon_ref,lat_ref,lon,lat):
proj = Projector(lon_ref,lat_ref)
return proj.sphere2image(lon,lat)
def image2sphere(lon_ref,lat_ref,x,y):
proj = Projector(lon_ref,lat_ref)
return proj.image2sphere(x,y)
def cartesianSphereToImage(lon, lat):
lon = lon - 360.*(lon>180)
x,y = lon,lat
return x,y
def cartesianImageToSphere(x,y):
x = x - 360.*(x>180)
lon,lat = x,y
return lon,lat
def aitoffSphereToImage(lon, lat):
lon = lon - 360.*(lon>180)
lon = np.radians(lon)
lat = np.radians(lat)
half_lon = lon/2.
cos_lat = np.cos(lat)
gamma = (180. / np.pi) * np.sqrt(2. / (1. + (cos_lat * np.cos(half_lon))))
x = 2. * gamma * cos_lat * np.sin(half_lon)
y = gamma * np.sin(lat)
return x, y
def aitoffImageToSphere(x, y):
x = x - 360.*(x>180)
x = np.asarray(np.radians(x))
y = np.asarray(np.radians(y))
z = np.sqrt(1. - (x / 4.)**2 - (y / 2.)**2)
lon = 2. * np.arctan2((2. * z**2) - 1, (z / 2.) * x)
lat = np.arcsin( y * z)
return ((180. - np.degrees(lon)) % 360.), np.degrees(lat)
def gnomonicSphereToImage(lon, lat):
lon = lon - 360.*(lon>180)
lon = np.radians(lon)
lat = np.radians(lat)
r_theta = (180. / np.pi) / np.tan(lat)
x = r_theta * np.cos(lon)
y = r_theta * np.sin(lon)
return x, y
def gnomonicImageToSphere(x, y):
x = x - 360.*(x>180)
x = np.asarray(x)
y = np.asarray(y)
lon = np.degrees(np.arctan2(y, x))
r_theta = np.sqrt(x**2 + y**2)
lat = np.degrees(np.arctan(180. / (np.pi * r_theta)))
return lon, lat
def angsep2(lon_1, lat_1, lon_2, lat_2):
import healpy
v10, v11, v12 = healpy.ang2vec(np.radians(90. - lat_1), np.radians(lon_1)).transpose()
v20, v21, v22 = healpy.ang2vec(np.radians(90. - lat_2), np.radians(lon_2)).transpose()
val = (v10 * v20) + (v11 * v21) + (v12 * v22)
val = np.clip(val, -1., 1.)
return np.degrees(np.arccos(val))
def angsep(lon1,lat1,lon2,lat2):
lon1,lat1 = np.radians([lon1,lat1])
lon2,lat2 = np.radians([lon2,lat2])
sdlon = np.sin(lon2 - lon1)
cdlon = np.cos(lon2 - lon1)
slat1 = np.sin(lat1)
slat2 = np.sin(lat2)
clat1 = np.cos(lat1)
clat2 = np.cos(lat2)
num1 = clat2 * sdlon
num2 = clat1 * slat2 - slat1 * clat2 * cdlon
denominator = slat1 * slat2 + clat1 * clat2 * cdlon
return np.degrees(np.arctan2(np.hypot(num1,num2), denominator))
def galToCel(ll, bb):
bb = np.radians(bb)
sin_bb = np.sin(bb)
cos_bb = np.cos(bb)
ll = np.radians(ll)
ra_gp = np.radians(192.85948)
de_gp = np.radians(27.12825)
lcp = np.radians(122.932)
sin_lcp_ll = np.sin(lcp - ll)
cos_lcp_ll = np.cos(lcp - ll)
sin_d = (np.sin(de_gp) * sin_bb) + (np.cos(de_gp) * cos_bb * cos_lcp_ll)
ramragp = np.arctan2(cos_bb * sin_lcp_ll,
(np.cos(de_gp) * sin_bb) - (np.sin(de_gp) * cos_bb * cos_lcp_ll))
dec = np.arcsin(sin_d)
ra = (ramragp + ra_gp + (2. * np.pi)) % (2. * np.pi)
return np.degrees(ra), np.degrees(dec)
gal2cel = galToCel
def celToGal(ra, dec):
dec = np.radians(dec)
sin_dec = np.sin(dec)
cos_dec = np.cos(dec)
ra = np.radians(ra)
ra_gp = np.radians(192.85948)
de_gp = np.radians(27.12825)
sin_ra_gp = np.sin(ra - ra_gp)
cos_ra_gp = np.cos(ra - ra_gp)
lcp = np.radians(122.932)
sin_b = (np.sin(de_gp) * sin_dec) + (np.cos(de_gp) * cos_dec * cos_ra_gp)
lcpml = np.arctan2(cos_dec * sin_ra_gp,
(np.cos(de_gp) * sin_dec) - (np.sin(de_gp) * cos_dec * cos_ra_gp))
bb = np.arcsin(sin_b)
ll = (lcp - lcpml + (2. * np.pi)) % (2. * np.pi)
return np.degrees(ll), np.degrees(bb)
cel2gal = celToGal
def estimate_angle(angle, origin, new_frame, offset=1e-7):
from astropy.coordinates import SkyCoord
import astropy.units as u
angle_deg = angle*np.pi/180
newlat = offset * np.cos(angle_deg) + origin.data.lat.degree
newlon = (offset * np.sin(angle_deg) / np.cos(newlat * np.pi/180) + origin.data.lon.degree)
sc = SkyCoord(newlon, newlat, unit='degree', frame=origin.frame.name)
new_origin = origin.transform_to(new_frame)
new_sc = sc.transform_to(new_frame)
return new_origin.position_angle(new_sc).deg
def gal2cel_angle(glon,glat,angle,offset=1e-7):
from astropy.coordinates import SkyCoord
import astropy.units as u
origin = SkyCoord(glon,glat,unit=u.deg,frame='galactic')
return estimate_angle(angle,origin,'fk5',offset)
def cel2gal_angle(ra,dec,angle,offset=1e-7):
from astropy.coordinates import SkyCoord
import astropy.units as u
origin = SkyCoord(ra,dec,unit=u.deg,frame='fk5')
return estimate_angle(angle,origin,'galactic',offset)
def dec2hms(dec):
DEGREE = 360.
HOUR = 24.
MINUTE = 60.
SECOND = 3600.
dec = float(dec)
fhour = dec*(HOUR/DEGREE)
hour = int(fhour)
fminute = (fhour - hour)*MINUTE
minute = int(fminute)
second = (fminute - minute)*MINUTE
return (hour, minute, second)
def dec2dms(dec):
DEGREE = 360.
HOUR = 24.
MINUTE = 60.
SECOND = 3600.
dec = float(dec)
sign = np.copysign(1.0,dec)
fdeg = np.abs(dec)
deg = int(fdeg)
fminute = (fdeg - deg)*MINUTE
minute = int(fminute)
second = (fminute - minute)*MINUTE
deg = sign*int(deg)
return (deg, minute, second)
|
MIT License
|
neteasegame/atx
|
atx/record/base.py
|
BaseRecorder.start
|
python
|
def start(self):
self.update_device_info()
self.get_device_status(0)
self.hook()
self.thread = threading.Thread(target=self._run)
self.thread.start()
self.running = True
|
start running in background.
|
https://github.com/neteasegame/atx/blob/f4415c57b45cb0730e08899cbc92a2af1c047ffb/atx/record/base.py#L66-L73
|
import bisect
import cv2
import os
import pickle
import Queue
import sys
import threading
import time
import traceback
import json
from collections import namedtuple
class BaseRecorder(object):
monitor_period = 3
def __init__(self, device=None, workdir=".", realtime_analyze=False):
self.device = None
self.device_info = {}
self.running = False
self.setup_workdir(workdir)
if device is not None:
self.attach(device)
self.realtime_analyze = realtime_analyze
self.thread = None
self.frames = []
self.last_frame_time = None
self.case_draft = []
self.input_queue = Queue.Queue()
self.input_index = 0
self.addons = {}
for cls in self.__class__.__bases__:
name = getattr(cls, '_%s__addon_name' % (cls.__name__,), None)
if name is not None:
gfun = getattr(self, 'get_%s' % (name,))
sfun = getattr(self, 'save_%s' % (name,))
lfun = getattr(self, 'load_%s' % (name,))
self.addons[name] = (gfun, sfun, lfun)
def setup_workdir(self, workdir):
self.workdir = workdir
self.casedir = os.path.join(workdir, 'case')
if not os.path.exists(self.casedir):
os.makedirs(self.casedir)
self.framedir = os.path.join(workdir, 'frames')
if not os.path.exists(self.framedir):
os.makedirs(self.framedir)
def update_device_info(self):
if self.device is None:
return
w, h = self.device.display
self.device_info = {"width":w, "height":h}
|
Apache License 2.0
|
jameschapman19/cca_zoo
|
cca_zoo/data/toy.py
|
Tangled_MNIST_Dataset.__init__
|
python
|
def __init__(self, mnist_type="MNIST", train=True, flatten=True):
if mnist_type == "MNIST":
self.dataset = datasets.MNIST("../../data", train=train, download=True)
elif mnist_type == "FashionMNIST":
self.dataset = datasets.FashionMNIST(
"../../data", train=train, download=True
)
elif mnist_type == "KMNIST":
self.dataset = datasets.KMNIST("../../data", train=train, download=True)
self.data = self.dataset.data
self.transform = transforms.Compose([transforms.ToTensor()])
self.targets = self.dataset.targets
self.OHs = _OH_digits(self.targets.numpy().astype(int))
self.filtered_classes = []
self.filtered_nums = []
for i in range(10):
self.filtered_classes.append(self.data[self.targets == i])
self.filtered_nums.append(self.filtered_classes[i].shape[0])
self.flatten = flatten
|
:param mnist_type: "MNIST", "FashionMNIST" or "KMNIST"
:param train: whether this is train or test
:param flatten: whether to flatten the data into array or use 2d images
|
https://github.com/jameschapman19/cca_zoo/blob/ee9d4957409c1c0c03acacd1fc2fdb61cedb98a8/cca_zoo/data/toy.py#L170-L195
|
import numpy as np
import torch
import torch.utils.data
from PIL import Image
from torch.utils.data import Dataset
from torchvision import datasets, transforms
from torchvision.transforms.functional import InterpolationMode
class Split_MNIST_Dataset(Dataset):
def __init__(
self, mnist_type: str = "MNIST", train: bool = True, flatten: bool = True
):
if mnist_type == "MNIST":
self.dataset = datasets.MNIST("../../data", train=train, download=True)
elif mnist_type == "FashionMNIST":
self.dataset = datasets.FashionMNIST(
"../../data", train=train, download=True
)
elif mnist_type == "KMNIST":
self.dataset = datasets.KMNIST("../../data", train=train, download=True)
self.data = self.dataset.data
self.base_transform = transforms.ToTensor()
self.targets = self.dataset.targets
self.flatten = flatten
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
x = self.data[idx].flatten()
x_a = x[:392] / 255
x_b = x[392:] / 255
label = self.targets[idx]
return (x_a, x_b), label
def to_numpy(self, indices=None):
if indices is None:
indices = np.arange(self.__len__())
view_1 = np.zeros((len(indices), 392))
view_2 = np.zeros((len(indices), 392))
labels = np.zeros(len(indices)).astype(int)
for i, n in enumerate(indices):
sample = self[n]
view_1[i] = sample[0][0].numpy()
view_2[i] = sample[0][1].numpy()
labels[i] = sample[1].numpy().astype(int)
return (view_1, view_2), labels
class Noisy_MNIST_Dataset(Dataset):
def __init__(
self, mnist_type: str = "MNIST", train: bool = True, flatten: bool = True
):
if mnist_type == "MNIST":
self.dataset = datasets.MNIST("../../data", train=train, download=True)
elif mnist_type == "FashionMNIST":
self.dataset = datasets.FashionMNIST(
"../../data", train=train, download=True
)
elif mnist_type == "KMNIST":
self.dataset = datasets.KMNIST("../../data", train=train, download=True)
self.data = self.dataset.data
self.base_transform = transforms.ToTensor()
self.a_transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.ToPILImage(),
]
)
self.b_transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Lambda(_add_mnist_noise),
transforms.Lambda(self.__threshold_func__),
]
)
self.targets = self.dataset.targets
self.filtered_classes = []
self.filtered_nums = []
for i in range(10):
self.filtered_classes.append(self.data[self.targets == i])
self.filtered_nums.append(self.filtered_classes[i].shape[0])
self.flatten = flatten
def __threshold_func__(self, x):
x[x > 1] = 1
return x
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
x_a = self.a_transform(self.data[idx].numpy() / 255)
rot_a = torch.rand(1) * 90 - 45
x_a = transforms.functional.rotate(
x_a, rot_a.item(), interpolation=InterpolationMode.BILINEAR
)
x_a = self.base_transform(x_a)
label = self.targets[idx]
random_index = np.random.randint(self.filtered_nums[label])
x_b = Image.fromarray(
self.filtered_classes[label][random_index, :, :].numpy() / 255, mode="L"
)
x_b = self.b_transform(x_b)
if self.flatten:
x_a = torch.flatten(x_a)
x_b = torch.flatten(x_b)
return (x_b, x_a), (rot_a, label)
def to_numpy(self, indices=None):
if indices is None:
indices = np.arange(self.__len__())
view_1 = np.zeros((len(indices), 784))
view_2 = np.zeros((len(indices), 784))
labels = np.zeros(len(indices)).astype(int)
rotations = np.zeros(len(indices))
for i, n in enumerate(indices):
sample = self[n]
view_1[i] = sample[0][0].numpy().reshape((-1, 28 * 28))
view_2[i] = sample[0][1].numpy().reshape((-1, 28 * 28))
rotations[i] = sample[1][0].numpy()
labels[i] = sample[1][1].numpy().astype(int)
return (view_1, view_2), (rotations, labels)
class Tangled_MNIST_Dataset(Dataset):
|
MIT License
|
dmsul/econtools
|
econtools/metrics/regutil.py
|
flag_nonsingletons
|
python
|
def flag_nonsingletons(df, avar, sample):
counts = df[sample].groupby(avar).size()
big_counts = df[[avar]].join(counts.to_frame('_T'), on=avar).fillna(0)
non_single = big_counts['_T'] > 1
return non_single
|
Boolean flag for 'not from a singleton `avar` group.
|
https://github.com/dmsul/econtools/blob/496de15abde59a8397aff35e70107c7d59848321/econtools/metrics/regutil.py#L77-L82
|
from typing import Optional, List
import pandas as pd
import numpy as np
import numpy.linalg as la
from econtools.util.gentools import force_list, force_df
def add_cons(df):
df = df.copy()
if df.ndim == 1:
df = pd.DataFrame(df)
df['_cons'] = np.ones(df.shape[0])
return df
def flag_sample(df, *args):
varlist = []
for var in args:
if var is not None:
varlist += force_list(var)
sample = df[varlist].notnull().all(axis=1)
return sample
def set_sample(df, sample, names):
return tuple(_set_samp_core(df, sample, names))
def _set_samp_core(df, sample, names):
for name in names:
if name is None:
yield None
else:
yield df.loc[sample, name].copy().reset_index(drop=True)
def demeaner(A, *args):
return tuple(_demean_guts(A.squeeze(), args))
def _demean_guts(A, args):
for df in args:
if df is None or df.empty:
yield df
else:
group_name = A.name
mean = df.groupby(A).mean()
large_mean = force_df(A).join(mean, on=group_name).drop(group_name,
axis=1)
if df.ndim == 1:
large_mean = large_mean.squeeze()
demeaned = df - large_mean
yield demeaned
def unpack_shac_args(argdict):
if argdict is None:
return None, None, None, None
extra_args = set(argdict.keys()).difference(set(('x', 'y', 'band', 'kern')))
if extra_args:
err_str = 'Extra `shac` args: {}'
raise ValueError(err_str.format(tuple(extra_args)))
shac_x = argdict['x']
shac_y = argdict['y']
shac_band = argdict['band']
shac_kern = argdict['kern']
return shac_x, shac_y, shac_band, shac_kern
|
BSD 3-Clause New or Revised License
|
aurzenligl/prophy
|
prophyc/parsers/prophy.py
|
Parser.p_enum_def
|
python
|
def p_enum_def(self, t):
node = model.Enum(t[2], t[3])
self.typedecls[t[2]] = node
self.nodes.append(node)
|
enum_def : ENUM unique_id enum_body SEMI
|
https://github.com/aurzenligl/prophy/blob/4e60162b3871aa7c43a38f273c2840ce4cf758f7/prophyc/parsers/prophy.py#L212-L216
|
import os
from contextlib import contextmanager
import ply.lex as lex
import ply.yacc as yacc
from prophyc import file_processor, model, six
def get_column(input_, pos):
return pos - input_.rfind('\n', 0, pos)
class Parser(object):
literals = ['+', '-', '*', '/', '(', ')', '#']
keywords = (
"const", "enum", "typedef", "struct", "union",
"u8", "u16", "u32", "u64", "i8", "i16", "i32", "i64",
"float", "double", "bytes"
)
tokens = tuple([t.upper() for t in keywords]) + (
"ID", "PATH", "CONST8", "CONST10", "CONST16",
"LBRACKET", "RBRACKET", "LBRACE", "RBRACE", "LT", "GT",
"SEMI", "COLON", "EQUALS", "COMMA", "DOTS",
"LSHIFT", "RSHIFT", "AT"
)
def t_ID(self, t):
if t.value in self.keywords:
t.type = t.value.upper()
return t
def t_PATH(self, t):
return t
def t_CONST16(self, t):
t.value = int(t.value, 16)
return t
def t_CONST8(self, t):
t.value = int(t.value, 8)
return t
def t_CONST10(self, t):
t.value = int(t.value)
return t
t_LBRACKET = r'\['
t_RBRACKET = r'\]'
t_LBRACE = r'\{'
t_RBRACE = r'\}'
t_SEMI = r';'
t_COLON = r':'
t_LT = r'<'
t_GT = r'>'
t_EQUALS = r'='
t_COMMA = r','
t_DOTS = r'\.\.\.'
t_LSHIFT = r'<<'
t_RSHIFT = r'>>'
t_AT = r'@'
t_ignore = ' \t\r'
def t_newline(self, t):
t.lexer.lineno += len(t.value)
def t_comment(self, t):
t.lexer.lineno += t.value.count('\n')
def t_linecomment(self, t):
t.lexer.lineno += 1
def t_error(self, t):
t.lexer.skip(1)
self._parser_error("illegal character '{}'".format(t.value[0]), t.lexer.lineno, t.lexpos)
precedence = (
('left', '+', '-'),
('left', '*', '/'),
('left', 'LSHIFT', 'RSHIFT'),
('right', 'UMINUS')
)
def __init__(self):
self._init_parse_data()
self.lexer = lex.lex(module=self, debug=0)
self.yacc = yacc.yacc(module=self, tabmodule='parsetab_prophy', write_tables=0, debug=0)
def parse(self, input_, parse_error_prefix, parse_file):
self._init_parse_data(parse_error_prefix)
self.parse_file = parse_file
self.lexer.lineno = 1
self.yacc.parse(input_, lexer=self.lexer)
return self.nodes
def _init_parse_data(self, parse_error_prefix=""):
self.nodes = []
self.typedecls = {}
self.constdecls = {}
self.errors = []
self.parse_error_prefix = parse_error_prefix
def _parser_error(self, message, line, pos):
self.errors.append(("{}:{}:{}".format(
self.parse_error_prefix,
line,
get_column(self.lexer.lexdata, pos)
), message))
def _parser_check(self, condition, message, line, pos):
if not condition:
self._parser_error(message, line, pos)
def _validate_struct_members(self, members):
fieldnames = set()
for i, (member, line, pos) in enumerate(members):
name = member.name
self._parser_check(
name not in fieldnames,
"field '{}' redefined".format(name),
line, pos
)
fieldnames.add(name)
if member.bound:
bound, _, __ = next(six.ifilter(lambda m: m[0].name == member.bound, members[:i]), (None, None, None))
if bound:
self._parser_check(self._is_type_sizer_compatible(bound.type_name),
"Sizer of '{}' has to be of (unsigned) integer type".format(name),
line, pos)
else:
self._parser_error("Sizer of '{}' has to be defined before the array".format(name),
line, pos)
for member, line, pos in members[:-1]:
self._parser_check(
not member.greedy and member.kind != model.Kind.UNLIMITED,
"greedy array field '{}' not last".format(member.name),
line, pos
)
def _is_type_sizer_compatible(self, typename):
if typename in {type_ + width for type_ in 'ui' for width in ['8', '16', '32', '64']}:
return True
elif typename in self.typedecls and isinstance(self.typedecls[typename], model.Typedef):
return self._is_type_sizer_compatible(self.typedecls[typename].type_name)
else:
return False
def p_specification(self, t):
def p_definition_list(self, t):
def p_definition(self, t):
def p_include_def(self, t):
self._parser_check(
t[2] == 'include',
"unknown directive '{}'".format(t[2]),
t.lineno(2), t.lexpos(2)
)
path = t[3][1:-1]
stem = os.path.splitext(os.path.basename(path))[0]
try:
nodes = self.parse_file(path)
except (file_processor.CyclicIncludeError, file_processor.FileNotFoundError) as e:
self._parser_error(str(e), t.lineno(3), t.lexpos(3))
nodes = []
for node in nodes:
if isinstance(node, model.Constant):
self.constdecls[node.name] = node
if isinstance(node, model.Enum):
for mem in node.members:
self.constdecls[mem.name] = mem
if isinstance(node, (model.Typedef, model.Enum, model.Struct, model.Union)):
self.typedecls[node.name] = node
node = model.Include(stem, nodes)
self.nodes.append(node)
def p_constant_def(self, t):
node = model.Constant(t[2], str(t[4]))
self.constdecls[t[2]] = node
self.nodes.append(node)
|
MIT License
|
tyberiusprime/i3-instant-layout
|
src/i3_instant_layout/main.py
|
list_layouts_in_smart_order
|
python
|
def list_layouts_in_smart_order():
usage = load_usage()
sort_me = []
for layout in layouts.layouts:
if " " in layout.name:
raise ValueError(
f"No spaces in layout names please. Offender: '{layout.name}'"
)
for alias in [layout.name] + layout.aliases:
usage_count, last_used = usage.get(
alias, (0, datetime.datetime.now().timestamp())
)
if alias == layout.name:
desc = alias
else:
desc = f"{alias} ({layout.name})"
sort_me.append(
(-1 * math.ceil(math.log10(usage_count + 1)), -1 * last_used, desc)
)
sort_me.sort()
for _, _, name in sort_me:
print(name)
|
List the layouts in a 'smart' order,
that means most common ones on top (by log10 usage),
within one log10 unit, sorted by most-recently-used
|
https://github.com/tyberiusprime/i3-instant-layout/blob/920f88356763fe8b5816d2e1f3873cfebe6265e7/src/i3_instant_layout/main.py#L145-L169
|
import asyncio
import i3ipc
import datetime
import json
import math
import subprocess
import sys
import tempfile
from pathlib import Path
from . import layouts, __version__
counter_file = Path("~/.local/share/i3-instant-layout/counter.json").expanduser()
counter_file.parent.mkdir(exist_ok=True, parents=True)
def append_layout(layout_dict, window_count):
tf = tempfile.NamedTemporaryFile(suffix=".json")
tf.write(json.dumps(layout_dict, indent=4).encode("utf-8"))
tf.flush()
cmd = ["i3-msg", "append_layout", str(Path(tf.name).absolute())]
subprocess.check_call(cmd, stdout=subprocess.PIPE)
tf.close()
def nuke_swallow_windows():
to_nuke = set()
def walk_tree(con):
if con.ipc_data.get("swallows", False):
to_nuke.add(con.ipc_data["window"])
for d in con.descendants():
walk_tree(d)
i3 = i3ipc.Connection()
tree = i3.get_tree().find_focused().workspace()
walk_tree(tree)
for window_id in to_nuke:
subprocess.check_call(["xdotool", "windowclose", str(window_id)])
def get_window_ids():
desktop = subprocess.check_output(
["xprop", "-notype", "-root", "_NET_CURRENT_DESKTOP"]
).decode("utf-8", errors="replace")
desktop = desktop[desktop.rfind("=") + 2 :].strip()
res = subprocess.check_output(
[
"xdotool",
"search",
"--all",
"--onlyvisible",
"--desktop",
desktop,
"--class",
"^.*",
]
).decode("utf-8", errors="replace")
return res.strip().split("\n")
def get_active_window():
return (
subprocess.check_output(["xdotool", "getactivewindow"]).decode("utf-8").strip()
)
def focus_window(id):
return subprocess.check_call(
["i3-msg", f'[id="{id}"]', "focus"], stdout=subprocess.PIPE
)
def apply_layout(layout, dry_run=False):
active = get_active_window()
windows = get_window_ids()
windows = [active] + [x for x in windows if x != active]
window_count = len(windows)
unmap_cmd = [
"xdotool",
]
map_cmd = [
"xdotool",
]
t = layout.get_json(window_count)
if isinstance(t, tuple):
layout_dict, remap_order = t
if set(range(window_count)) != set(remap_order):
raise ValueError("Layout returned invalid remap order")
windows = [windows[ii] for ii in remap_order]
else:
layout_dict = t
if dry_run:
print(json.dumps(layout_dict, indent=4))
else:
if layout_dict is not False:
append_layout(layout_dict, window_count)
for window_id in windows:
unmap_cmd.append("windowunmap")
map_cmd.append("windowmap")
unmap_cmd.append(str(window_id))
map_cmd.append(str(window_id))
subprocess.check_call(unmap_cmd)
subprocess.check_call(map_cmd)
focus_window(active)
def load_usage():
try:
with open(counter_file, "r") as op:
return json.load(op)
except (OSError, ValueError):
return {}
def count_usage(layout_name):
usage = load_usage()
if layout_name not in usage:
usage[layout_name] = (0, datetime.datetime.now().timestamp())
usage[layout_name] = (
usage[layout_name][0] + 1,
datetime.datetime.now().timestamp(),
)
with open(counter_file, "w") as op:
json.dump(usage, op)
|
MIT License
|
pytorch/fairseq
|
examples/speech_synthesis/evaluation/get_eval_manifest.py
|
main
|
python
|
def main(args):
in_root = Path(args.generation_root).resolve()
ext = args.audio_format
with open(args.audio_manifest) as f, open(args.output_path, "w") as f_out:
reader = csv.DictReader(
f, delimiter="\t", quotechar=None, doublequote=False,
lineterminator="\n", quoting=csv.QUOTE_NONE
)
header = ["id", "syn", "ref", "text", "speaker"]
f_out.write("\t".join(header) + "\n")
for row in reader:
dir_name = f"{ext}_{args.sample_rate}hz_{args.vocoder}"
id_ = row["id"]
syn = (in_root / dir_name / f"{id_}.{ext}").as_posix()
ref = row["audio"]
if args.use_resynthesized_target:
ref = (in_root / f"{dir_name}_tgt" / f"{id_}.{ext}").as_posix()
sample = [id_, syn, ref, row["tgt_text"], row["speaker"]]
f_out.write("\t".join(sample) + "\n")
print(f"wrote evaluation file to {args.output_path}")
|
`uid syn ref text`
|
https://github.com/pytorch/fairseq/blob/fcca32258c8e8bcc9f9890bf4714fa2f96b6b3e1/examples/speech_synthesis/evaluation/get_eval_manifest.py#L11-L33
|
import csv
from pathlib import Path
|
MIT License
|
ricsinaruto/dialog-eval
|
code/metrics/divergence_metrics.py
|
DivergenceMetrics.__init__
|
python
|
def __init__(self, vocab, gt_path):
self.vocab = vocab
self.gt_path = gt_path
self.metrics = {'unigram-kl-div': [],
'bigram-kl-div': []}
|
Params:
:vocab: Vocabulary dictionary.
:gt_path: Path to ground truth file.
|
https://github.com/ricsinaruto/dialog-eval/blob/af95efcdcea8499b1c48a909aae1d8643efabe21/code/metrics/divergence_metrics.py#L8-L18
|
import math
from utils import utils
class DivergenceMetrics():
|
MIT License
|
openstack/horizon
|
openstack_dashboard/api/neutron.py
|
FloatingIpManager.list_pools
|
python
|
def list_pools(self):
search_opts = {'router:external': True}
return [FloatingIpPool(pool) for pool
in self.client.list_networks(**search_opts).get('networks')]
|
Fetches a list of all floating IP pools.
:returns: List of FloatingIpPool objects
|
https://github.com/openstack/horizon/blob/5e405d71926764b8aa60c75794b62f668f4e8122/openstack_dashboard/api/neutron.py#L553-L560
|
import collections
from collections.abc import Sequence
import copy
import logging
import netaddr
from django.conf import settings
from django.utils.translation import ugettext_lazy as _
from neutronclient.common import exceptions as neutron_exc
from neutronclient.v2_0 import client as neutron_client
from novaclient import exceptions as nova_exc
from horizon import exceptions
from horizon import messages
from horizon.utils.memoized import memoized
from openstack_dashboard.api import base
from openstack_dashboard.api import nova
from openstack_dashboard.contrib.developer.profiler import api as profiler
from openstack_dashboard import policy
from openstack_dashboard.utils import settings as setting_utils
LOG = logging.getLogger(__name__)
IP_VERSION_DICT = {4: 'IPv4', 6: 'IPv6'}
OFF_STATE = 'OFF'
ON_STATE = 'ON'
ROUTER_INTERFACE_OWNERS = (
'network:router_interface',
'network:router_interface_distributed',
'network:ha_router_replicated_interface'
)
VNIC_TYPES = [
('normal', _('Normal')),
('direct', _('Direct')),
('direct-physical', _('Direct Physical')),
('macvtap', _('MacVTap')),
('baremetal', _('Bare Metal')),
('virtio-forwarder', _('Virtio Forwarder')),
]
class NeutronAPIDictWrapper(base.APIDictWrapper):
def __init__(self, apidict):
if 'admin_state_up' in apidict:
if apidict['admin_state_up']:
apidict['admin_state'] = 'UP'
else:
apidict['admin_state'] = 'DOWN'
apidict.update({
key.replace(':', '__'): value
for key, value in apidict.items()
if ':' in key
})
super().__init__(apidict)
def set_id_as_name_if_empty(self, length=8):
try:
if not self._apidict['name'].strip():
id = self._apidict['id']
if length:
id = id[:length]
self._apidict['name'] = '(%s)' % id
except KeyError:
pass
def items(self):
return self._apidict.items()
@property
def name_or_id(self):
return (self._apidict.get('name').strip() or
'(%s)' % self._apidict['id'][:13])
class Agent(NeutronAPIDictWrapper):
class Network(NeutronAPIDictWrapper):
class Subnet(NeutronAPIDictWrapper):
def __init__(self, apidict):
apidict['ipver_str'] = get_ipver_str(apidict['ip_version'])
super().__init__(apidict)
AUTO_ALLOCATE_ID = '__auto_allocate__'
class PreAutoAllocateNetwork(Network):
def __init__(self, request):
tenant_id = request.user.tenant_id
auto_allocated_subnet = Subnet({
'name': 'auto_allocated_subnet',
'id': AUTO_ALLOCATE_ID,
'network_id': 'auto',
'tenant_id': tenant_id,
'ip_version': 4,
'cidr': '0.0.0.0/0',
})
auto_allocated_network = {
'name': 'auto_allocated_network',
'description': 'Network to be allocated automatically',
'id': AUTO_ALLOCATE_ID,
'status': 'ACTIVE',
'admin_state_up': True,
'shared': False,
'router:external': False,
'subnets': [auto_allocated_subnet],
'tenant_id': tenant_id,
}
super().__init__(auto_allocated_network)
class Trunk(NeutronAPIDictWrapper):
@property
def subport_count(self):
return len(self._apidict.get('sub_ports', []))
def to_dict(self):
trunk_dict = super().to_dict()
trunk_dict['name_or_id'] = self.name_or_id
trunk_dict['subport_count'] = self.subport_count
return trunk_dict
class SubnetPool(NeutronAPIDictWrapper):
class Port(NeutronAPIDictWrapper):
def __init__(self, apidict):
if 'mac_learning_enabled' in apidict:
apidict['mac_state'] = ON_STATE if apidict['mac_learning_enabled'] else OFF_STATE
pairs = apidict.get('allowed_address_pairs')
if pairs:
apidict = copy.deepcopy(apidict)
wrapped_pairs = [PortAllowedAddressPair(pair) for pair in pairs]
apidict['allowed_address_pairs'] = wrapped_pairs
super().__init__(apidict)
class PortTrunkParent(Port):
class PortTrunkSubport(Port):
def __init__(self, apidict, trunk_subport_info):
for field in ['trunk_id', 'segmentation_type', 'segmentation_id']:
apidict[field] = trunk_subport_info[field]
super().__init__(apidict)
class PortAllowedAddressPair(NeutronAPIDictWrapper):
def __init__(self, addr_pair):
super().__init__(addr_pair)
self.id = addr_pair['ip_address']
class Router(NeutronAPIDictWrapper):
class RouterStaticRoute(NeutronAPIDictWrapper):
def __init__(self, route):
super().__init__(route)
self.id = route['nexthop'] + ":" + route['destination']
class SecurityGroup(NeutronAPIDictWrapper):
def __init__(self, sg, sg_dict=None):
if sg_dict is None:
sg_dict = {sg['id']: sg['name']}
if 'security_group_rules' not in sg:
sg['security_group_rules'] = []
sg['rules'] = [SecurityGroupRule(rule, sg_dict)
for rule in sg['security_group_rules']]
super().__init__(sg)
def to_dict(self):
return {k: self._apidict[k] for k in self._apidict if k != 'rules'}
class SecurityGroupRule(NeutronAPIDictWrapper):
def _get_secgroup_name(self, sg_id, sg_dict):
if not sg_id:
return ''
if sg_dict is None:
sg_dict = {}
return sg_dict.get(sg_id, sg_id[:13])
def __init__(self, sgr, sg_dict=None):
if not sgr['remote_ip_prefix'] and not sgr['remote_group_id']:
if sgr['ethertype'] == 'IPv6':
sgr['remote_ip_prefix'] = '::/0'
else:
sgr['remote_ip_prefix'] = '0.0.0.0/0'
rule = {
'id': sgr['id'],
'parent_group_id': sgr['security_group_id'],
'direction': sgr['direction'],
'ethertype': sgr['ethertype'],
'ip_protocol': sgr['protocol'],
'from_port': sgr['port_range_min'],
'to_port': sgr['port_range_max'],
'description': sgr.get('description', '')
}
cidr = sgr['remote_ip_prefix']
rule['ip_range'] = {'cidr': cidr} if cidr else {}
group = self._get_secgroup_name(sgr['remote_group_id'], sg_dict)
rule['group'] = {'name': group} if group else {}
super().__init__(rule)
def __str__(self):
if 'name' in self.group:
remote = self.group['name']
elif 'cidr' in self.ip_range:
remote = self.ip_range['cidr']
else:
remote = 'ANY'
direction = 'to' if self.direction == 'egress' else 'from'
if self.from_port:
if self.from_port == self.to_port:
proto_port = ("%s/%s" %
(self.from_port, self.ip_protocol.lower()))
else:
proto_port = ("%s-%s/%s" %
(self.from_port, self.to_port,
self.ip_protocol.lower()))
elif self.ip_protocol:
try:
ip_proto = int(self.ip_protocol)
proto_port = "ip_proto=%d" % ip_proto
except Exception:
proto_port = self.ip_protocol
else:
proto_port = ''
return (_('ALLOW %(ethertype)s %(proto_port)s '
'%(direction)s %(remote)s') %
{'ethertype': self.ethertype,
'proto_port': proto_port,
'remote': remote,
'direction': direction})
class SecurityGroupManager(object):
backend = 'neutron'
def __init__(self, request):
self.request = request
self.client = neutronclient(request)
def _list(self, **filters):
secgroups = self.client.list_security_groups(**filters)
return [SecurityGroup(sg) for sg in secgroups.get('security_groups')]
@profiler.trace
def list(self, **params):
tenant_id = params.pop('tenant_id', self.request.user.tenant_id)
if tenant_id:
params['tenant_id'] = tenant_id
return self._list(**params)
def _sg_name_dict(self, sg_id, rules):
related_ids = set([sg_id])
related_ids |= set(filter(None, [r['remote_group_id'] for r in rules]))
related_sgs = self.client.list_security_groups(id=related_ids,
fields=['id', 'name'])
related_sgs = related_sgs.get('security_groups')
return dict((sg['id'], sg['name']) for sg in related_sgs)
@profiler.trace
def get(self, sg_id):
secgroup = self.client.show_security_group(sg_id).get('security_group')
sg_dict = self._sg_name_dict(sg_id, secgroup['security_group_rules'])
return SecurityGroup(secgroup, sg_dict)
@profiler.trace
def create(self, name, desc):
body = {'security_group': {'name': name,
'description': desc,
'tenant_id': self.request.user.project_id}}
secgroup = self.client.create_security_group(body)
return SecurityGroup(secgroup.get('security_group'))
@profiler.trace
def update(self, sg_id, name, desc):
body = {'security_group': {'name': name,
'description': desc}}
secgroup = self.client.update_security_group(sg_id, body)
return SecurityGroup(secgroup.get('security_group'))
@profiler.trace
def delete(self, sg_id):
self.client.delete_security_group(sg_id)
@profiler.trace
def rule_create(self, parent_group_id,
direction=None, ethertype=None,
ip_protocol=None, from_port=None, to_port=None,
cidr=None, group_id=None, description=None):
if not cidr:
cidr = None
if isinstance(from_port, int) and from_port < 0:
from_port = None
if isinstance(to_port, int) and to_port < 0:
to_port = None
if isinstance(ip_protocol, int) and ip_protocol < 0:
ip_protocol = None
params = {'security_group_id': parent_group_id,
'direction': direction,
'ethertype': ethertype,
'protocol': ip_protocol,
'port_range_min': from_port,
'port_range_max': to_port,
'remote_ip_prefix': cidr,
'remote_group_id': group_id}
if description is not None:
params['description'] = description
body = {'security_group_rule': params}
try:
rule = self.client.create_security_group_rule(body)
except neutron_exc.OverQuotaClient:
raise exceptions.Conflict(
_('Security group rule quota exceeded.'))
except neutron_exc.Conflict:
raise exceptions.Conflict(
_('Security group rule already exists.'))
rule = rule.get('security_group_rule')
sg_dict = self._sg_name_dict(parent_group_id, [rule])
return SecurityGroupRule(rule, sg_dict)
@profiler.trace
def rule_delete(self, sgr_id):
self.client.delete_security_group_rule(sgr_id)
@profiler.trace
def list_by_instance(self, instance_id):
ports = port_list(self.request, device_id=instance_id)
sg_ids = []
for p in ports:
sg_ids += p.security_groups
return self._list(id=set(sg_ids)) if sg_ids else []
@profiler.trace
def update_instance_security_group(self, instance_id,
new_security_group_ids):
ports = port_list(self.request, device_id=instance_id)
for p in ports:
params = {'security_groups': new_security_group_ids}
port_update(self.request, p.id, **params)
class FloatingIp(base.APIDictWrapper):
_attrs = ['id', 'ip', 'fixed_ip', 'port_id', 'instance_id',
'instance_type', 'pool', 'dns_domain', 'dns_name']
def __init__(self, fip):
fip['ip'] = fip['floating_ip_address']
fip['fixed_ip'] = fip['fixed_ip_address']
fip['pool'] = fip['floating_network_id']
super().__init__(fip)
class FloatingIpPool(base.APIDictWrapper):
pass
class FloatingIpTarget(base.APIDictWrapper):
def __init__(self, port, ip_address, label):
name = '%s: %s' % (label, ip_address) if label else ip_address
target = {'name': name,
'id': '%s_%s' % (port.id, ip_address),
'port_id': port.id,
'instance_id': port.device_id}
super().__init__(target)
class FloatingIpManager(object):
device_owner_map = {
'compute:': 'compute',
'neutron:LOADBALANCER': 'loadbalancer',
}
def __init__(self, request):
self.request = request
self.client = neutronclient(request)
@profiler.trace
|
Apache License 2.0
|
quantumlib/openfermion-projectq
|
openfermionprojectq/_ffft.py
|
fourier_transform_0
|
python
|
def fourier_transform_0(register, mode_a, mode_b):
operator = fourier_transform_0_generator(mode_a, mode_b)
jw_operator = jordan_wigner(operator)
Z | register[mode_b]
TimeEvolution(numpy.pi / 8., jw_operator) | register
|
Apply the fermionic Fourier transform to two modes.
The fermionic Fourier transform is applied to the qubits
corresponding to mode_a and mode_b, , after the Jordan-Wigner
Args:
register (projectq.Qureg): The register of qubits to act on.
mode_a, mode_b (int): The two modes to Fourier transform.
|
https://github.com/quantumlib/openfermion-projectq/blob/f7ffa1df9b8b6f96b956e2e53f8eb7735c5eab12/openfermionprojectq/_ffft.py#L113-L126
|
import itertools
import numpy
from openfermionprojectq import TimeEvolution
from openfermionprojectq._parallel_bubble_sort import (
index_of_position_in_1d_array, parallel_bubble_sort)
from openfermion.ops import FermionOperator, QubitOperator
from openfermion.transforms import jordan_wigner
from openfermion.utils import fourier_transform, Grid, normal_ordered
from projectq import MainEngine
from projectq.ops import (H, X, Y, Z, C, Rx, Ry, Rz, Ph, Swap,
Measure, All)
def fswap_generator(mode_a, mode_b):
return (FermionOperator('') +
FermionOperator(((mode_a, 1), (mode_b, 0))) +
FermionOperator(((mode_b, 1), (mode_a, 0))) -
FermionOperator(((mode_a, 1), (mode_a, 0))) -
FermionOperator(((mode_b, 1), (mode_b, 0))))
def fswap(register, mode_a, mode_b, fermion_to_spin_mapping=jordan_wigner):
operator = fswap_generator(mode_a, mode_b)
TimeEvolution(numpy.pi / 2., fermion_to_spin_mapping(operator)) | register
def fswap_adjacent(register, mode):
operator = (QubitOperator(((mode, 'Z'),)) +
QubitOperator(((mode + 1, 'Z'),)) +
QubitOperator(((mode, 'X'), (mode + 1, 'X'))) +
QubitOperator(((mode, 'Y'), (mode + 1, 'Y'))))
TimeEvolution(numpy.pi / 4., operator) | register
def apply_phase(register, mode, phase):
Rz(2 * phase) | register[mode]
def fourier_transform_0_generator(mode_a, mode_b):
xy = ((FermionOperator(((mode_a, 1),)) -
1j * FermionOperator(((mode_a, 0),))) *
(FermionOperator(((mode_b, 1),)) -
1j * FermionOperator(((mode_b, 0),))))
yx = ((FermionOperator(((mode_a, 1),)) +
1j * FermionOperator(((mode_a, 0),))) *
(FermionOperator(((mode_b, 1),)) +
1j * FermionOperator(((mode_b, 0),))))
return xy - yx
|
Apache License 2.0
|
sailthru/relay.mesos
|
relay_mesos/for_demo.py
|
target_value
|
python
|
def target_value():
while True:
yield 40
|
An example target used by the relay.mesos demo to set the target number of
currently running tasks at a given point in time
|
https://github.com/sailthru/relay.mesos/blob/7728dcecb8f31cfe6eae1162e92f359750771487/relay_mesos/for_demo.py#L19-L25
|
import json
import os
import urllib2
def num_active_mesos_tasks():
while True:
data = json.load(urllib2.urlopen(
os.environ['RELAY_MESOS_MASTER_STATE_FOR_DEMO']))
yield data['started_tasks'] + data['staged_tasks'] - (
data['failed_tasks'] + data['killed_tasks'] +
data['lost_tasks'] + data['finished_tasks'])
|
Apache License 2.0
|
skoda091/alfred-deepl
|
lib/urllib3/connection.py
|
HTTPConnection.request_chunked
|
python
|
def request_chunked(self, method, url, body=None, headers=None):
headers = HTTPHeaderDict(headers if headers is not None else {})
skip_accept_encoding = 'accept-encoding' in headers
skip_host = 'host' in headers
self.putrequest(
method,
url,
skip_accept_encoding=skip_accept_encoding,
skip_host=skip_host
)
for header, value in headers.items():
self.putheader(header, value)
if 'transfer-encoding' not in headers:
self.putheader('Transfer-Encoding', 'chunked')
self.endheaders()
if body is not None:
stringish_types = six.string_types + (six.binary_type,)
if isinstance(body, stringish_types):
body = (body,)
for chunk in body:
if not chunk:
continue
if not isinstance(chunk, six.binary_type):
chunk = chunk.encode('utf8')
len_str = hex(len(chunk))[2:]
self.send(len_str.encode('utf-8'))
self.send(b'\r\n')
self.send(chunk)
self.send(b'\r\n')
self.send(b'0\r\n\r\n')
|
Alternative to the common request method, which sends the
body with chunked encoding and not as one block
|
https://github.com/skoda091/alfred-deepl/blob/8c7d7a572011bdee3888211a90a161ea50bb81af/lib/urllib3/connection.py#L169-L205
|
from __future__ import absolute_import
import datetime
import logging
import os
import sys
import socket
from socket import error as SocketError, timeout as SocketTimeout
import warnings
from .packages import six
from .packages.six.moves.http_client import HTTPConnection as _HTTPConnection
from .packages.six.moves.http_client import HTTPException
try:
import ssl
BaseSSLError = ssl.SSLError
except (ImportError, AttributeError):
ssl = None
class BaseSSLError(BaseException):
pass
try:
ConnectionError = ConnectionError
except NameError:
class ConnectionError(Exception):
pass
from .exceptions import (
NewConnectionError,
ConnectTimeoutError,
SubjectAltNameWarning,
SystemTimeWarning,
)
from .packages.ssl_match_hostname import match_hostname, CertificateError
from .util.ssl_ import (
resolve_cert_reqs,
resolve_ssl_version,
assert_fingerprint,
create_urllib3_context,
ssl_wrap_socket
)
from .util import connection
from ._collections import HTTPHeaderDict
log = logging.getLogger(__name__)
port_by_scheme = {
'http': 80,
'https': 443,
}
RECENT_DATE = datetime.date(2016, 1, 1)
class DummyConnection(object):
pass
class HTTPConnection(_HTTPConnection, object):
default_port = port_by_scheme['http']
default_socket_options = [(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1)]
is_verified = False
def __init__(self, *args, **kw):
if six.PY3:
kw.pop('strict', None)
self.source_address = kw.get('source_address')
if sys.version_info < (2, 7):
kw.pop('source_address', None)
self.socket_options = kw.pop('socket_options', self.default_socket_options)
_HTTPConnection.__init__(self, *args, **kw)
def _new_conn(self):
extra_kw = {}
if self.source_address:
extra_kw['source_address'] = self.source_address
if self.socket_options:
extra_kw['socket_options'] = self.socket_options
try:
conn = connection.create_connection(
(self.host, self.port), self.timeout, **extra_kw)
except SocketTimeout as e:
raise ConnectTimeoutError(
self, "Connection to %s timed out. (connect timeout=%s)" %
(self.host, self.timeout))
except SocketError as e:
raise NewConnectionError(
self, "Failed to establish a new connection: %s" % e)
return conn
def _prepare_conn(self, conn):
self.sock = conn
if getattr(self, '_tunnel_host', None):
self._tunnel()
self.auto_open = 0
def connect(self):
conn = self._new_conn()
self._prepare_conn(conn)
|
MIT License
|
hkust-knowcomp/mlma_hate_speech
|
run_sluice_net.py
|
check_activation_function
|
python
|
def check_activation_function(arg):
try:
functions = [dynet.rectify, dynet.tanh]
functions = {function.__name__: function for function in functions}
functions['None'] = None
return functions[str(arg)]
except:
raise argparse.ArgumentTypeError(
'String {} does not match required format'.format(arg, ))
|
Checks allowed argument for --ac option.
|
https://github.com/hkust-knowcomp/mlma_hate_speech/blob/8c4c2268ed5f93a801ecd0aef31a12dd9d07d332/run_sluice_net.py#L18-L27
|
import argparse
import os
import random
import sys
import numpy as np
import dynet
from constants import TASK_NAMES, LANGUAGES, EMBEDS, BALANCED, IMBALANCED, SGD, ADAM
from sluice_net import SluiceNetwork, load
import utils
|
MIT License
|
kazhala/fzf.aws
|
fzfaws/utils/fileloader.py
|
FileLoader._set_ec2_env
|
python
|
def _set_ec2_env(self, ec2_settings: Dict[str, Any]) -> None:
if not ec2_settings:
return
if ec2_settings.get("keypair"):
os.environ["FZFAWS_EC2_KEYPAIRS"] = ec2_settings.get("keypair", "")
if ec2_settings.get("waiter"):
os.environ["FZFAWS_EC2_WAITER"] = json.dumps(ec2_settings.get("waiter", {}))
if ec2_settings.get("default_args"):
for key, value in ec2_settings.get("default_args").items():
os.environ["FZFAWS_EC2_%s" % key.upper()] = value
if ec2_settings.get("profile"):
os.environ["FZFAWS_EC2_PROFILE"] = ec2_settings["profile"]
if ec2_settings.get("region"):
os.environ["FZFAWS_EC2_REGION"] = ec2_settings["region"]
|
Set ec2 service settings.
:param ec2_settings: ec2 settings from config file
:type ec2_settings: Dict[str, Any]
|
https://github.com/kazhala/fzf.aws/blob/4abefb2301f7b489b11ed3f0b303faafa5941d5b/fzfaws/utils/fileloader.py#L172-L190
|
import json
import os
from typing import Any, Dict
import yaml
from yaml.error import YAMLError
yaml.SafeLoader.add_multi_constructor("!", lambda loader, suffix, node: None)
class FileLoader:
def __init__(self, path: str = None, body: str = None) -> None:
if path == None:
path = ""
if body == None:
body = ""
self.path: str = path
self.body: str = body
def process_yaml_file(self) -> Dict[str, Any]:
with open(self.path, "r") as file:
body = file.read()
formated_body = yaml.safe_load(body)
return {"body": body, "dictBody": formated_body}
def process_json_file(self) -> Dict[str, Any]:
with open(self.path, "r") as file:
body = file.read()
formated_body = json.loads(body)
return {"body": body, "dictBody": formated_body}
def process_yaml_body(self) -> dict:
return yaml.safe_load(self.body)
def process_json_body(self) -> dict:
return json.loads(self.body)
def load_config_file(self, config_path: str = None) -> None:
if not config_path:
home = os.path.expanduser("~")
base_directory = os.getenv("XDG_CONFIG_HOME", "%s/.config" % home)
config_path = "%s/fzfaws/fzfaws.yml" % base_directory
if not os.path.isfile(config_path):
return
with open(config_path, "r") as file:
try:
body = file.read()
formated_body = yaml.safe_load(body)
if not formated_body:
return
self._set_fzf_env(formated_body.get("fzf", {}))
self._set_spinner_env(formated_body.get("spinner", {}))
self._set_gloable_env(formated_body.get("global", {}))
if not formated_body.get("services"):
return
else:
self._set_ec2_env(formated_body["services"].get("ec2", {}))
self._set_s3_env(formated_body["services"].get("s3", {}))
self._set_cloudformation_env(
formated_body["services"].get("cloudformation", {})
)
except YAMLError as e:
print("Config file is malformed, please double check your config file")
print(e)
def _set_spinner_env(self, spinner_settings: Dict[str, Any]) -> None:
if not spinner_settings:
return
if spinner_settings.get("message"):
os.environ["FZFAWS_SPINNER_MESSAGE"] = spinner_settings["message"]
if spinner_settings.get("speed"):
os.environ["FZFAWS_SPINNER_SPEED"] = str(spinner_settings["speed"])
if spinner_settings.get("pattern"):
os.environ["FZFAWS_SPINNER_PATTERN"] = spinner_settings["pattern"]
def _set_cloudformation_env(self, cloudformation_settings: Dict[str, Any]) -> None:
if not cloudformation_settings:
return
if cloudformation_settings.get("profile"):
os.environ["FZFAWS_CLOUDFORMATION_PROFILE"] = cloudformation_settings[
"profile"
]
if cloudformation_settings.get("region"):
os.environ["FZFAWS_CLOUDFORMATION_REGION"] = cloudformation_settings[
"region"
]
if cloudformation_settings.get("default_args"):
for key, value in cloudformation_settings["default_args"].items():
os.environ["FZFAWS_CLOUDFORMATION_%s" % key.upper()] = value
if cloudformation_settings.get("waiter"):
os.environ["FZFAWS_CLOUDFORMATION_WAITER"] = json.dumps(
cloudformation_settings.get("waiter", {})
)
def _set_s3_env(self, s3_settings: Dict[str, Any]) -> None:
if not s3_settings:
return
if s3_settings.get("transfer_config"):
os.environ["FZFAWS_S3_TRANSFER"] = json.dumps(
s3_settings["transfer_config"]
)
if s3_settings.get("profile"):
os.environ["FZFAWS_S3_PROFILE"] = s3_settings["profile"]
if s3_settings.get("default_args"):
for key, value in s3_settings.get("default_args").items():
os.environ["FZFAWS_S3_%s" % key.upper()] = value
|
MIT License
|
perchlive/django-broadcast
|
django_broadcast/api.py
|
start_stream
|
python
|
def start_stream(request: HttpRequest) -> dict:
stream_type = request.POST.get('type')
if stream_type is 'hls':
return start_hls_stream(request)
raise NotImplementedError
|
Prepare for a new stream on behalf of the request's author. This involves
provisioning remote storage for the stream media and returning any necessary
data for the streaming client.
:param request:
:return:
|
https://github.com/perchlive/django-broadcast/blob/20ddd5a2c42dcb98a7dd88ba001c69524a1fa733/django_broadcast/api.py#L24-L35
|
import datetime
from django.core import serializers
from django.core.exceptions import PermissionDenied
from django.http import HttpRequest
from storage_provisioner.provisioner import S3StorageProvisioner
from storage_provisioner.storage import S3Storage
from django_broadcast import settings
from django_broadcast.models import HlsStream, Thumbnail
__author__ = 'dbro'
AWS_ACCESS_KEY_ID = settings.aws_access_key_id
AWS_SECRET_ACCESS_KEY = settings.aws_secret_access_key
S3_BUCKET_NAME = settings.s3_bucket
stream_model = settings.STREAM_MODEL
PROVISIONER = S3StorageProvisioner(aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY)
|
Apache License 2.0
|
yuta-hi/pytorch_bayesian_unet
|
pytorch_bcnn/extensions/validator.py
|
Validator.evaluate
|
python
|
def evaluate(self, trainer):
iterator = self._iterators['main']
eval_func = self.eval_func or self._targets['main']
for target in self._targets.values():
target.eval()
if self.eval_hook:
self.eval_hook(self)
if hasattr(iterator, 'reset'):
iterator.reset()
it = iterator
else:
it = copy.copy(iterator)
summary = reporter_module.DictSummary()
self.visualizer.reset()
desc = 'valid (iter=%08d)' % trainer.updater.iteration
total = len(it.dataset) // it.batch_size
for batch in tqdm.tqdm(it, total=total, desc=desc, ncols=80, leave=False):
observation = {}
with reporter_module.report_scope(observation):
in_arrays = self.converter(batch, self.device)
with torch.no_grad():
if isinstance(in_arrays, tuple):
eval_func(*in_arrays)
elif isinstance(in_arrays, dict):
eval_func(**in_arrays)
else:
eval_func(in_arrays)
if self.visualizer.n_examples < self.n_vis:
if hasattr(eval_func, 'x') and hasattr(eval_func, 'y') and hasattr(eval_func, 't'):
self.visualizer.add_batch(eval_func.x,
eval_func.y,
eval_func.t)
else:
warnings.warn('`eval_func` should have attributes'
'`x`, `y` and `t` for visualization..')
summary.add(observation)
filename = self.filename
if callable(filename):
filename = filename(trainer)
else:
filename = filename.format(trainer)
out = os.path.join(trainer.out, filename)
self.visualizer.save(out)
return summary.compute_mean()
|
Evaluates the model and returns a result dictionary.
This method runs the evaluation loop over the validation dataset. It
accumulates the reported values to :class:`~chainer.DictSummary` and
returns a dictionary whose values are means computed by the summary.
Note that this function assumes that the main iterator raises
``StopIteration`` or code in the evaluation loop raises an exception.
So, if this assumption is not held, the function could be caught in
an infinite loop.
Users can override this method to customize the evaluation routine.
.. note::
This method encloses :attr:`eval_func` calls with
:func:`function.no_backprop_mode` context, so all calculations
using :class:`~chainer.FunctionNode`\\s inside
:attr:`eval_func` do not make computational graphs. It is for
reducing the memory consumption.
Returns:
dict: Result dictionary. This dictionary is further reported via
:func:`~chainer.report` without specifying any observer.
|
https://github.com/yuta-hi/pytorch_bayesian_unet/blob/bb22b44c64f5d83d78aa93880da97e0e6168dc1c/pytorch_bcnn/extensions/validator.py#L106-L192
|
from __future__ import absolute_import
import os
import six
import copy
import tqdm
import warnings
import numpy as np
import torch
from pytorch_trainer.dataset import convert
from pytorch_trainer import reporter as reporter_module
from pytorch_trainer.training.extensions import Evaluator
from ..visualizer import Visualizer
from ..visualizer import ImageVisualizer
_default_visualizer = ImageVisualizer()
class Validator(Evaluator):
def __init__(self, iterator, target,
filename='validation_iter_{.updater.iteration}',
visualizer=_default_visualizer, n_vis=None,
converter=convert.concat_examples,
device=None,
eval_hook=None, eval_func=None):
super(Validator, self).__init__(iterator, target,
converter,
device, eval_hook, eval_func)
assert isinstance(visualizer, Visualizer)
if n_vis is None:
n_vis = np.inf
self.filename = filename
self.visualizer = visualizer
self.n_vis = n_vis
def initialize(self, trainer):
reporter = reporter_module.Reporter()
with reporter.scope(trainer.observation):
self.report(trainer)
|
MIT License
|
graphsense/graphsense-rest
|
openapi_server/models/search_result.py
|
SearchResult.from_dict
|
python
|
def from_dict(cls, dikt) -> 'SearchResult':
return util.deserialize_model(dikt, cls)
|
Returns the dict as a model
:param dikt: A dict.
:type: dict
:return: The search_result of this SearchResult. # noqa: E501
:rtype: SearchResult
|
https://github.com/graphsense/graphsense-rest/blob/2e4a9c20835e54d971e3fc3aae5780bc87d48647/openapi_server/models/search_result.py#L42-L50
|
from __future__ import absolute_import
from datetime import date, datetime
from typing import List, Dict
from openapi_server.models.base_model_ import Model
from openapi_server.models.search_result_by_currency import SearchResultByCurrency
from openapi_server import util
from openapi_server.models.search_result_by_currency import SearchResultByCurrency
class SearchResult(Model):
def __init__(self, currencies=None, labels=None):
self.openapi_types = {
'currencies': List[SearchResultByCurrency],
'labels': List[str]
}
self.attribute_map = {
'currencies': 'currencies',
'labels': 'labels'
}
self._currencies = currencies
self._labels = labels
@classmethod
|
MIT License
|
udst/urbansim_templates
|
tests/test_segmented_large_multinomial_logit.py
|
orca_session
|
python
|
def orca_session():
d1 = {'oid': np.arange(100),
'group': np.random.choice(['A','B','C'], size=100),
'int_group': np.random.choice([3,4], size=100),
'obsval': np.random.random(100),
'choice': np.random.choice(np.arange(20), size=100)}
d2 = {'aid': np.arange(20),
'altval': np.random.random(20)}
obs = pd.DataFrame(d1).set_index('oid')
orca.add_table('obs', obs)
alts = pd.DataFrame(d2).set_index('aid')
orca.add_table('alts', alts)
|
Set up a clean Orca session with a couple of data tables.
|
https://github.com/udst/urbansim_templates/blob/723b83b4187da53a50ee03fdba4842a464f68240/tests/test_segmented_large_multinomial_logit.py#L14-L32
|
import numpy as np
import pandas as pd
import pytest
import orca
from urbansim.models.util import apply_filter_query
from urbansim_templates import modelmanager
from urbansim_templates.models import SegmentedLargeMultinomialLogitStep
from urbansim_templates.utils import get_data, validate_template
@pytest.fixture
|
BSD 3-Clause New or Revised License
|
efficiosoft/hass-apps
|
hass_apps/schedy/actor/base.py
|
ActorBase.check_config_plausibility
|
python
|
def check_config_plausibility(self, state: dict) -> None:
|
Is called during initialization to warn the user about some
possible common configuration mistakes. The entity's current
state attributes dictionary is provided.
|
https://github.com/efficiosoft/hass-apps/blob/2d095d6fffc12bde76a7b8f356fa266de6059b37/hass_apps/schedy/actor/base.py#L145-L148
|
import typing as T
if T.TYPE_CHECKING:
import uuid
from ..expression.helpers import HelperBase as ExpressionHelperBase
from ..room import Room
from ..stats import StatisticalParameter
import copy
import json
import observable
import voluptuous as vol
from ... import common
from ..room import sync_proxy
class ActorBase:
name = "actor"
config_defaults = {}
config_schema_dict = {
"friendly_name": str,
vol.Optional("send_retries", default=10): vol.All(int, vol.Range(min=0)),
vol.Optional("send_retry_interval", default=30): vol.All(int, vol.Range(min=1)),
}
expression_helpers = []
stats_param_types = []
def __init__(self, entity_id: str, cfg: dict, room: "Room") -> None:
self.entity_id = entity_id
self.cfg = cfg
self.room = room
self.app = room.app
self.events = observable.Observable()
self.is_initialized = False
self._current_value = None
self._wanted_value = None
self._gave_up_sending = False
self._resending_timer = None
def __repr__(self) -> str:
return "<Actor {}>".format(str(self))
def __str__(self) -> str:
return "A:{}".format(self.cfg.get("friendly_name", self.entity_id))
@staticmethod
def _preprocess_state(state: T.Optional[dict]) -> dict:
attrs = copy.deepcopy(state or {})
attrs.update((attrs or {}).get("attributes", {}))
return attrs
@sync_proxy
def _resending_cb(self, kwargs: dict) -> None:
self._resending_timer = None
retries = self.cfg["send_retries"]
interval = self.cfg["send_retry_interval"]
left_tries = kwargs["left_tries"]
if not left_tries:
self.log(
"Gave up sending value after {} retries.".format(retries),
level="WARNING" if retries else "DEBUG",
)
self._gave_up_sending = True
return
if left_tries <= retries:
self.log("Re-sending value due to missing confirmation.", level="WARNING")
self.log(
"Setting value {!r} (left tries = {}, interval = {}).".format(
self._wanted_value, left_tries, interval
),
level="DEBUG",
prefix=common.LOG_PREFIX_OUTGOING,
)
self.do_send()
self._gave_up_sending = False
self._resending_timer = self.app.run_in(
self._resending_cb, interval, left_tries=left_tries - 1
)
@sync_proxy
def _state_cb(
self,
entity: str,
attr: str,
old: T.Optional[dict],
new: T.Optional[dict],
kwargs: dict,
) -> None:
attrs = self._preprocess_state(new)
previous_value = self._current_value
new_value = self.notify_state_changed(
attrs
)
if new_value is None:
return
if new_value == self._wanted_value:
self.cancel_resending_timer()
self._gave_up_sending = False
if new_value != previous_value:
self._current_value = new_value
self.log(
"Received value of {}.".format(repr(new_value)),
prefix=common.LOG_PREFIX_INCOMING,
)
self.events.trigger("value_changed", self, new_value)
def after_initialization(self) -> None:
def cancel_resending_timer(self) -> None:
timer = self._resending_timer
if timer is None:
return
self._resending_timer = None
self.app.cancel_timer(timer)
self.log("Cancelled re-sending timer.", level="DEBUG")
|
Apache License 2.0
|
conlin-huang/aio-scrapy
|
aioscrapy/extensions/httpcache.py
|
parse_cachecontrol
|
python
|
def parse_cachecontrol(header):
directives = {}
for directive in header.split(b','):
key, sep, val = directive.strip().partition(b'=')
if key:
directives[key.lower()] = val if sep else None
return directives
|
Parse Cache-Control header
https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
>>> parse_cachecontrol(b'public, max-age=3600') == {b'public': None,
... b'max-age': b'3600'}
True
>>> parse_cachecontrol(b'') == {}
True
|
https://github.com/conlin-huang/aio-scrapy/blob/ba2fbd2a46094e66b2dc8c17fb5adae073356486/aioscrapy/extensions/httpcache.py#L347-L364
|
import gzip
import logging
import os
import pickle
from email.utils import mktime_tz, parsedate_tz
from importlib import import_module
from time import time
from weakref import WeakKeyDictionary
from w3lib.http import headers_raw_to_dict, headers_dict_to_raw
from scrapy.http import Headers, Response
from scrapy.responsetypes import responsetypes
from scrapy.utils.httpobj import urlparse_cached
from scrapy.utils.project import data_path
from scrapy.utils.python import to_bytes, to_unicode
from scrapy.utils.request import request_fingerprint
logger = logging.getLogger(__name__)
class DummyPolicy:
def __init__(self, settings):
self.ignore_schemes = settings.getlist('HTTPCACHE_IGNORE_SCHEMES')
self.ignore_http_codes = [int(x) for x in settings.getlist('HTTPCACHE_IGNORE_HTTP_CODES')]
def should_cache_request(self, request):
return urlparse_cached(request).scheme not in self.ignore_schemes
def should_cache_response(self, response, request):
return response.status not in self.ignore_http_codes
def is_cached_response_fresh(self, cachedresponse, request):
return True
def is_cached_response_valid(self, cachedresponse, response, request):
return True
class RFC2616Policy:
MAXAGE = 3600 * 24 * 365
def __init__(self, settings):
self.always_store = settings.getbool('HTTPCACHE_ALWAYS_STORE')
self.ignore_schemes = settings.getlist('HTTPCACHE_IGNORE_SCHEMES')
self._cc_parsed = WeakKeyDictionary()
self.ignore_response_cache_controls = [
to_bytes(cc) for cc in settings.getlist('HTTPCACHE_IGNORE_RESPONSE_CACHE_CONTROLS')
]
def _parse_cachecontrol(self, r):
if r not in self._cc_parsed:
cch = r.headers.get(b'Cache-Control', b'')
parsed = parse_cachecontrol(cch)
if isinstance(r, Response):
for key in self.ignore_response_cache_controls:
parsed.pop(key, None)
self._cc_parsed[r] = parsed
return self._cc_parsed[r]
def should_cache_request(self, request):
if urlparse_cached(request).scheme in self.ignore_schemes:
return False
cc = self._parse_cachecontrol(request)
if b'no-store' in cc:
return False
return True
def should_cache_response(self, response, request):
cc = self._parse_cachecontrol(response)
if b'no-store' in cc:
return False
elif response.status == 304:
return False
elif self.always_store:
return True
elif b'max-age' in cc or b'Expires' in response.headers:
return True
elif response.status in (300, 301, 308):
return True
elif response.status in (200, 203, 401):
return b'Last-Modified' in response.headers or b'ETag' in response.headers
else:
return False
def is_cached_response_fresh(self, cachedresponse, request):
cc = self._parse_cachecontrol(cachedresponse)
ccreq = self._parse_cachecontrol(request)
if b'no-cache' in cc or b'no-cache' in ccreq:
return False
now = time()
freshnesslifetime = self._compute_freshness_lifetime(cachedresponse, request, now)
currentage = self._compute_current_age(cachedresponse, request, now)
reqmaxage = self._get_max_age(ccreq)
if reqmaxage is not None:
freshnesslifetime = min(freshnesslifetime, reqmaxage)
if currentage < freshnesslifetime:
return True
if b'max-stale' in ccreq and b'must-revalidate' not in cc:
staleage = ccreq[b'max-stale']
if staleage is None:
return True
try:
if currentage < freshnesslifetime + max(0, int(staleage)):
return True
except ValueError:
pass
self._set_conditional_validators(request, cachedresponse)
return False
def is_cached_response_valid(self, cachedresponse, response, request):
if response.status >= 500:
cc = self._parse_cachecontrol(cachedresponse)
if b'must-revalidate' not in cc:
return True
return response.status == 304
def _set_conditional_validators(self, request, cachedresponse):
if b'Last-Modified' in cachedresponse.headers:
request.headers[b'If-Modified-Since'] = cachedresponse.headers[b'Last-Modified']
if b'ETag' in cachedresponse.headers:
request.headers[b'If-None-Match'] = cachedresponse.headers[b'ETag']
def _get_max_age(self, cc):
try:
return max(0, int(cc[b'max-age']))
except (KeyError, ValueError):
return None
def _compute_freshness_lifetime(self, response, request, now):
cc = self._parse_cachecontrol(response)
maxage = self._get_max_age(cc)
if maxage is not None:
return maxage
date = rfc1123_to_epoch(response.headers.get(b'Date')) or now
if b'Expires' in response.headers:
expires = rfc1123_to_epoch(response.headers[b'Expires'])
return max(0, expires - date) if expires else 0
lastmodified = rfc1123_to_epoch(response.headers.get(b'Last-Modified'))
if lastmodified and lastmodified <= date:
return (date - lastmodified) / 10
if response.status in (300, 301, 308):
return self.MAXAGE
return 0
def _compute_current_age(self, response, request, now):
currentage = 0
date = rfc1123_to_epoch(response.headers.get(b'Date')) or now
if now > date:
currentage = now - date
if b'Age' in response.headers:
try:
age = int(response.headers[b'Age'])
currentage = max(currentage, age)
except ValueError:
pass
return currentage
class DbmCacheStorage:
def __init__(self, settings):
self.cachedir = data_path(settings['HTTPCACHE_DIR'], createdir=True)
self.expiration_secs = settings.getint('HTTPCACHE_EXPIRATION_SECS')
self.dbmodule = import_module(settings['HTTPCACHE_DBM_MODULE'])
self.db = None
def open_spider(self, spider):
dbpath = os.path.join(self.cachedir, f'{spider.name}.db')
self.db = self.dbmodule.open(dbpath, 'c')
logger.debug("Using DBM cache storage in %(cachepath)s" % {'cachepath': dbpath}, extra={'spider': spider})
def close_spider(self, spider):
self.db.close()
def retrieve_response(self, spider, request):
data = self._read_data(spider, request)
if data is None:
return
url = data['url']
status = data['status']
headers = Headers(data['headers'])
body = data['body']
respcls = responsetypes.from_args(headers=headers, url=url)
response = respcls(url=url, headers=headers, status=status, body=body)
return response
def store_response(self, spider, request, response):
key = self._request_key(request)
data = {
'status': response.status,
'url': response.url,
'headers': dict(response.headers),
'body': response.body,
}
self.db[f'{key}_data'] = pickle.dumps(data, protocol=4)
self.db[f'{key}_time'] = str(time())
def _read_data(self, spider, request):
key = self._request_key(request)
db = self.db
tkey = f'{key}_time'
if tkey not in db:
return
ts = db[tkey]
if 0 < self.expiration_secs < time() - float(ts):
return
return pickle.loads(db[f'{key}_data'])
def _request_key(self, request):
return request_fingerprint(request)
class FilesystemCacheStorage:
def __init__(self, settings):
self.cachedir = data_path(settings['HTTPCACHE_DIR'])
self.expiration_secs = settings.getint('HTTPCACHE_EXPIRATION_SECS')
self.use_gzip = settings.getbool('HTTPCACHE_GZIP')
self._open = gzip.open if self.use_gzip else open
def open_spider(self, spider):
logger.debug("Using filesystem cache storage in %(cachedir)s" % {'cachedir': self.cachedir},
extra={'spider': spider})
def close_spider(self, spider):
pass
def retrieve_response(self, spider, request):
metadata = self._read_meta(spider, request)
if metadata is None:
return
rpath = self._get_request_path(spider, request)
with self._open(os.path.join(rpath, 'response_body'), 'rb') as f:
body = f.read()
with self._open(os.path.join(rpath, 'response_headers'), 'rb') as f:
rawheaders = f.read()
url = metadata.get('response_url')
status = metadata['status']
headers = Headers(headers_raw_to_dict(rawheaders))
respcls = responsetypes.from_args(headers=headers, url=url)
response = respcls(url=url, headers=headers, status=status, body=body)
return response
def store_response(self, spider, request, response):
rpath = self._get_request_path(spider, request)
if not os.path.exists(rpath):
os.makedirs(rpath)
metadata = {
'url': request.url,
'method': request.method,
'status': response.status,
'response_url': response.url,
'timestamp': time(),
}
with self._open(os.path.join(rpath, 'meta'), 'wb') as f:
f.write(to_bytes(repr(metadata)))
with self._open(os.path.join(rpath, 'pickled_meta'), 'wb') as f:
pickle.dump(metadata, f, protocol=4)
with self._open(os.path.join(rpath, 'response_headers'), 'wb') as f:
f.write(headers_dict_to_raw(response.headers))
with self._open(os.path.join(rpath, 'response_body'), 'wb') as f:
f.write(response.body)
with self._open(os.path.join(rpath, 'request_headers'), 'wb') as f:
f.write(headers_dict_to_raw(request.headers))
with self._open(os.path.join(rpath, 'request_body'), 'wb') as f:
f.write(request.body)
def _get_request_path(self, spider, request):
key = request_fingerprint(request)
return os.path.join(self.cachedir, spider.name, key[0:2], key)
def _read_meta(self, spider, request):
rpath = self._get_request_path(spider, request)
metapath = os.path.join(rpath, 'pickled_meta')
if not os.path.exists(metapath):
return
mtime = os.stat(metapath).st_mtime
if 0 < self.expiration_secs < time() - mtime:
return
with self._open(metapath, 'rb') as f:
return pickle.load(f)
|
MIT License
|
alvarobartt/investpy
|
investpy/indices.py
|
get_index_information
|
python
|
def get_index_information(index, country, as_json=False):
if not index:
raise ValueError("ERR#0047: index param is mandatory and should be a str.")
if not isinstance(index, str):
raise ValueError("ERR#0047: index param is mandatory and should be a str.")
if country is None:
raise ValueError("ERR#0039: country can not be None, it should be a str.")
if country is not None and not isinstance(country, str):
raise ValueError("ERR#0025: specified country value not valid.")
if not isinstance(as_json, bool):
raise ValueError("ERR#0002: as_json argument can just be True or False, bool type.")
resource_package = 'investpy'
resource_path = '/'.join(('resources', 'indices.csv'))
if pkg_resources.resource_exists(resource_package, resource_path):
indices = pd.read_csv(pkg_resources.resource_filename(resource_package, resource_path), keep_default_na=False)
else:
raise FileNotFoundError("ERR#0059: indices file not found or errored.")
if indices is None:
raise IOError("ERR#0037: indices not found or unable to retrieve.")
country = unidecode(country.strip().lower())
if country not in get_index_countries():
raise RuntimeError("ERR#0034: country " + country + " not found, check if it is correct.")
indices = indices[indices['country'] == country]
index = unidecode(index.strip().lower())
if index not in list(indices['name'].apply(unidecode).str.lower()):
raise RuntimeError("ERR#0045: index " + index + " not found, check if it is correct.")
name = indices.loc[(indices['name'].apply(unidecode).str.lower() == index).idxmax(), 'name']
tag = indices.loc[(indices['name'].apply(unidecode).str.lower() == index).idxmax(), 'tag']
url = "https://www.investing.com/indices/" + tag
head = {
"User-Agent": random_user_agent(),
"X-Requested-With": "XMLHttpRequest",
"Accept": "text/html",
"Accept-Encoding": "gzip, deflate",
"Connection": "keep-alive",
}
req = requests.get(url, headers=head)
if req.status_code != 200:
raise ConnectionError("ERR#0015: error " + str(req.status_code) + ", try again later.")
root_ = fromstring(req.text)
path_ = root_.xpath("//dl[@data-test='key-info']/div")
result = pd.DataFrame(columns=["Index Name", "Prev. Close", "Volume", "Day's Range", "Open",
"Average Vol. (3m)", "52 wk Range", "1-Year Change"])
result.at[0, 'Index Name'] = name
if not path_:
raise RuntimeError("ERR#0004: data retrieval error while scraping.")
for elements_ in path_:
title_ = elements_.xpath(".//dt")[0].text_content()
element = elements_.xpath(".//dd")[0]
if title_ in result.columns.tolist():
try:
result.at[0, title_] = float(element.text_content().replace(',', ''))
continue
except:
pass
try:
text = element.text_content().strip()
result.at[0, title_] = datetime.strptime(text, "%b %d, %Y").strftime("%d/%m/%Y")
continue
except:
pass
try:
value = element.text_content().strip()
if value.__contains__('K'):
value = float(value.replace('K', '').replace(',', '')) * 1e3
elif value.__contains__('M'):
value = float(value.replace('M', '').replace(',', '')) * 1e6
elif value.__contains__('B'):
value = float(value.replace('B', '').replace(',', '')) * 1e9
elif value.__contains__('T'):
value = float(value.replace('T', '').replace(',', '')) * 1e12
result.at[0, title_] = value
continue
except:
pass
result.replace({'N/A': None}, inplace=True)
if as_json is True:
json_ = result.iloc[0].to_dict()
return json_
elif as_json is False:
return result
|
This function retrieves fundamental financial information from the specified index. The retrieved
information from the index can be valuable as it is additional information that can be used combined
with OHLC values, so to determine financial insights from the company which holds the specified index.
Args:
index (:obj:`str`): name of the index to retrieve recent historical data from.
country (:obj:`str`): name of the country from where the index is.
as_json (:obj:`bool`, optional):
optional argument to determine the format of the output data (:obj:`dict` or :obj:`json`).
Returns:
:obj:`pandas.DataFrame` or :obj:`dict`- index_information:
The resulting :obj:`pandas.DataFrame` contains the information fields retrieved from Investing.com
from the specified index; it can also be returned as a :obj:`dict`, if argument `as_json=True`.
If any of the information fields could not be retrieved, that field/s will be filled with
None values. If the retrieval process succeeded, the resulting :obj:`dict` will look like::
index_information = {
"Index Name": "S&P Merval",
"Prev. Close": 36769.59,
"Volume": None,
"Todays Range": "36,769.59 - 37,894.32",
"Open": 36769.59,
"Average Vol. (3m)": None,
"52 wk Range": "22,484.4 - 44,470.76",
"1-Year Change": "18.19%"
}
Raises:
ValueError: raised if any of the introduced arguments is not valid or errored.
FileNotFoundError: raised if `indices.csv` file was not found or errored.
IOError: raised if `indices.csv` file is empty or errored.
RuntimeError: raised if scraping process failed while running.
ConnectionError: raised if the connection to Investing.com errored (did not return HTTP 200)
|
https://github.com/alvarobartt/investpy/blob/2e37300902f6df122931bb373fb17609477664e8/investpy/indices.py#L621-L762
|
from datetime import datetime, date, timedelta
import pytz
import json
from random import randint
import pandas as pd
import pkg_resources
import requests
from unidecode import unidecode
from lxml.html import fromstring
from .utils.extra import random_user_agent
from .utils.data import Data
from .data.indices_data import indices_as_df, indices_as_list, indices_as_dict
from .data.indices_data import index_countries_as_list
def get_indices(country=None):
return indices_as_df(country=country)
def get_indices_list(country=None):
return indices_as_list(country=country)
def get_indices_dict(country=None, columns=None, as_json=False):
return indices_as_dict(country=country, columns=columns, as_json=as_json)
def get_index_countries():
return index_countries_as_list()
def get_index_recent_data(index, country, as_json=False, order='ascending', interval='Daily'):
if not index:
raise ValueError("ERR#0047: index param is mandatory and should be a str.")
if not isinstance(index, str):
raise ValueError("ERR#0047: index param is mandatory and should be a str.")
if country is None:
raise ValueError("ERR#0039: country can not be None, it should be a str.")
if country is not None and not isinstance(country, str):
raise ValueError("ERR#0025: specified country value not valid.")
if not isinstance(as_json, bool):
raise ValueError("ERR#0002: as_json argument can just be True or False, bool type.")
if order not in ['ascending', 'asc', 'descending', 'desc']:
raise ValueError("ERR#0003: order argument can just be ascending (asc) or descending (desc), str type.")
if not interval:
raise ValueError("ERR#0073: interval value should be a str type and it can just be either 'Daily', 'Weekly' or 'Monthly'.")
if not isinstance(interval, str):
raise ValueError("ERR#0073: interval value should be a str type and it can just be either 'Daily', 'Weekly' or 'Monthly'.")
interval = interval.lower()
if interval not in ['daily', 'weekly', 'monthly']:
raise ValueError("ERR#0073: interval value should be a str type and it can just be either 'Daily', 'Weekly' or 'Monthly'.")
resource_package = 'investpy'
resource_path = '/'.join(('resources', 'indices.csv'))
if pkg_resources.resource_exists(resource_package, resource_path):
indices = pd.read_csv(pkg_resources.resource_filename(resource_package, resource_path), keep_default_na=False)
else:
raise FileNotFoundError("ERR#0059: indices file not found or errored.")
if indices is None:
raise IOError("ERR#0037: indices not found or unable to retrieve.")
country = unidecode(country.strip().lower())
if country not in get_index_countries():
raise RuntimeError("ERR#0034: country " + country + " not found, check if it is correct.")
indices = indices[indices['country'] == country]
index = unidecode(index.strip().lower())
if index not in list(indices['name'].apply(unidecode).str.lower()):
raise RuntimeError("ERR#0045: index " + index + " not found, check if it is correct.")
full_name = indices.loc[(indices['name'].apply(unidecode).str.lower() == index).idxmax(), 'full_name']
id_ = indices.loc[(indices['name'].apply(unidecode).str.lower() == index).idxmax(), 'id']
name = indices.loc[(indices['name'].apply(unidecode).str.lower() == index).idxmax(), 'name']
index_currency = indices.loc[(indices['name'].apply(unidecode).str.lower() == index).idxmax(), 'currency']
header = full_name + ' Historical Data'
params = {
"curr_id": id_,
"smlID": str(randint(1000000, 99999999)),
"header": header,
"interval_sec": interval.capitalize(),
"sort_col": "date",
"sort_ord": "DESC",
"action": "historical_data"
}
head = {
"User-Agent": random_user_agent(),
"X-Requested-With": "XMLHttpRequest",
"Accept": "text/html",
"Accept-Encoding": "gzip, deflate",
"Connection": "keep-alive",
}
url = "https://www.investing.com/instruments/HistoricalDataAjax"
req = requests.post(url, headers=head, data=params)
if req.status_code != 200:
raise ConnectionError("ERR#0015: error " + str(req.status_code) + ", try again later.")
root_ = fromstring(req.text)
path_ = root_.xpath(".//table[@id='curr_table']/tbody/tr")
result = list()
if path_:
for elements_ in path_:
if elements_.xpath(".//td")[0].text_content() == 'No results found':
raise IndexError("ERR#0046: index information unavailable or not found.")
info = []
for nested_ in elements_.xpath(".//td"):
info.append(nested_.get('data-real-value'))
index_date = datetime.strptime(str(datetime.fromtimestamp(int(info[0]), tz=pytz.timezone('GMT')).date()), '%Y-%m-%d')
index_close = float(info[1].replace(',', ''))
index_open = float(info[2].replace(',', ''))
index_high = float(info[3].replace(',', ''))
index_low = float(info[4].replace(',', ''))
index_volume = int(info[5])
result.insert(len(result), Data(index_date, index_open, index_high, index_low,
index_close, index_volume, index_currency, None))
if order in ['ascending', 'asc']:
result = result[::-1]
elif order in ['descending', 'desc']:
result = result
if as_json is True:
json_ = {
'name': name,
'recent':
[value.index_as_json() for value in result]
}
return json.dumps(json_, sort_keys=False)
elif as_json is False:
df = pd.DataFrame.from_records([value.index_to_dict() for value in result])
df.set_index('Date', inplace=True)
return df
else:
raise RuntimeError("ERR#0004: data retrieval error while scraping.")
def get_index_historical_data(index, country, from_date, to_date, as_json=False, order='ascending', interval='Daily'):
if not index:
raise ValueError("ERR#0047: index param is mandatory and should be a str.")
if not isinstance(index, str):
raise ValueError("ERR#0047: index param is mandatory and should be a str.")
if country is None:
raise ValueError("ERR#0039: country can not be None, it should be a str.")
if country is not None and not isinstance(country, str):
raise ValueError("ERR#0025: specified country value not valid.")
try:
datetime.strptime(from_date, '%d/%m/%Y')
except ValueError:
raise ValueError("ERR#0011: incorrect data format, it should be 'dd/mm/yyyy'.")
try:
datetime.strptime(to_date, '%d/%m/%Y')
except ValueError:
raise ValueError("ERR#0011: incorrect data format, it should be 'dd/mm/yyyy'.")
start_date = datetime.strptime(from_date, '%d/%m/%Y')
end_date = datetime.strptime(to_date, '%d/%m/%Y')
if start_date >= end_date:
raise ValueError("ERR#0032: to_date should be greater than from_date, both formatted as 'dd/mm/yyyy'.")
if not isinstance(as_json, bool):
raise ValueError("ERR#0002: as_json argument can just be True or False, bool type.")
if order not in ['ascending', 'asc', 'descending', 'desc']:
raise ValueError("ERR#0003: order argument can just be ascending (asc) or descending (desc), str type.")
if not interval:
raise ValueError("ERR#0073: interval value should be a str type and it can just be either 'Daily', 'Weekly' or 'Monthly'.")
if not isinstance(interval, str):
raise ValueError("ERR#0073: interval value should be a str type and it can just be either 'Daily', 'Weekly' or 'Monthly'.")
interval = interval.lower()
if interval not in ['daily', 'weekly', 'monthly']:
raise ValueError("ERR#0073: interval value should be a str type and it can just be either 'Daily', 'Weekly' or 'Monthly'.")
date_interval = {
'intervals': [],
}
flag = True
while flag is True:
diff = end_date.year - start_date.year
if diff > 19:
obj = {
'start': start_date.strftime('%m/%d/%Y'),
'end': start_date.replace(year=start_date.year + 19).strftime('%m/%d/%Y'),
}
date_interval['intervals'].append(obj)
start_date = start_date.replace(year=start_date.year + 19) + timedelta(days=1)
else:
obj = {
'start': start_date.strftime('%m/%d/%Y'),
'end': end_date.strftime('%m/%d/%Y'),
}
date_interval['intervals'].append(obj)
flag = False
interval_limit = len(date_interval['intervals'])
interval_counter = 0
data_flag = False
resource_package = 'investpy'
resource_path = '/'.join(('resources', 'indices.csv'))
if pkg_resources.resource_exists(resource_package, resource_path):
indices = pd.read_csv(pkg_resources.resource_filename(resource_package, resource_path), keep_default_na=False)
else:
raise FileNotFoundError("ERR#0059: indices file not found or errored.")
if indices is None:
raise IOError("ERR#0037: indices not found or unable to retrieve.")
country = unidecode(country.strip().lower())
if country not in get_index_countries():
raise RuntimeError("ERR#0034: country " + country + " not found, check if it is correct.")
indices = indices[indices['country'] == country]
index = unidecode(index.strip().lower())
if index not in list(indices['name'].apply(unidecode).str.lower()):
raise RuntimeError("ERR#0045: index " + index + " not found, check if it is correct.")
full_name = indices.loc[(indices['name'].apply(unidecode).str.lower() == index).idxmax(), 'full_name']
id_ = indices.loc[(indices['name'].apply(unidecode).str.lower() == index).idxmax(), 'id']
name = indices.loc[(indices['name'].apply(unidecode).str.lower() == index).idxmax(), 'name']
index_currency = indices.loc[(indices['name'].apply(unidecode).str.lower() == index).idxmax(), 'currency']
final = list()
header = full_name + ' Historical Data'
for index in range(len(date_interval['intervals'])):
interval_counter += 1
params = {
"curr_id": id_,
"smlID": str(randint(1000000, 99999999)),
"header": header,
"st_date": date_interval['intervals'][index]['start'],
"end_date": date_interval['intervals'][index]['end'],
"interval_sec": interval.capitalize(),
"sort_col": "date",
"sort_ord": "DESC",
"action": "historical_data"
}
head = {
"User-Agent": random_user_agent(),
"X-Requested-With": "XMLHttpRequest",
"Accept": "text/html",
"Accept-Encoding": "gzip, deflate",
"Connection": "keep-alive",
}
url = "https://www.investing.com/instruments/HistoricalDataAjax"
req = requests.post(url, headers=head, data=params)
if req.status_code != 200:
raise ConnectionError("ERR#0015: error " + str(req.status_code) + ", try again later.")
if not req.text:
continue
root_ = fromstring(req.text)
path_ = root_.xpath(".//table[@id='curr_table']/tbody/tr")
result = list()
if path_:
for elements_ in path_:
if elements_.xpath(".//td")[0].text_content() == 'No results found':
if interval_counter < interval_limit:
data_flag = False
else:
raise IndexError("ERR#0046: index information unavailable or not found.")
else:
data_flag = True
info = []
for nested_ in elements_.xpath(".//td"):
info.append(nested_.get('data-real-value'))
if data_flag is True:
index_date = datetime.strptime(str(datetime.fromtimestamp(int(info[0]), tz=pytz.timezone('GMT')).date()), '%Y-%m-%d')
index_close = float(info[1].replace(',', ''))
index_open = float(info[2].replace(',', ''))
index_high = float(info[3].replace(',', ''))
index_low = float(info[4].replace(',', ''))
index_volume = int(info[5])
result.insert(len(result), Data(index_date, index_open, index_high, index_low,
index_close, index_volume, index_currency, None))
if data_flag is True:
if order in ['ascending', 'asc']:
result = result[::-1]
elif order in ['descending', 'desc']:
result = result
if as_json is True:
json_list = [value.index_as_json() for value in result]
final.append(json_list)
elif as_json is False:
df = pd.DataFrame.from_records([value.index_to_dict() for value in result])
df.set_index('Date', inplace=True)
final.append(df)
else:
raise RuntimeError("ERR#0004: data retrieval error while scraping.")
if order in ['descending', 'desc']:
final.reverse()
if as_json is True:
json_ = {
'name': name,
'historical': [value for json_list in final for value in json_list]
}
return json.dumps(json_, sort_keys=False)
elif as_json is False:
return pd.concat(final)
|
MIT License
|
rmarkello/abagen
|
abagen/reporting.py
|
_add_references
|
python
|
def _add_references(report):
refreport = ''
for ref, cite in REFERENCES.items():
if ref in report:
refreport += f'[{ref}]: {cite}<p>'
if len(refreport) > 0:
refreport = '<br> REFERENCES<p>----------<p>' + refreport
if refreport.endswith('<p> '):
refreport = refreport[:-4]
return refreport
|
Detects references in `report` and generates list
Parameters
----------
report : str
Report body
Returns
-------
references : str
List of references to be appended to `report`
|
https://github.com/rmarkello/abagen/blob/2aeab5bd0f147fa76b488645e148a1c18095378d/abagen/reporting.py#L599-L625
|
import logging
import numpy as np
from . import __version__
from .datasets import check_donors, fetch_donor_info
from .images import coerce_atlas_to_dict
from .utils import first_entry
LGR = logging.getLogger('abagen')
METRICS = {
np.mean: 'mean',
np.median: 'median'
}
REFERENCES = dict(
A2019N=('Arnatkevic̆iūtė, A., Fulcher, B. D., & Fornito, A. (2019). '
'A practical guide to linking brain-wide gene expression and '
'neuroimaging data. Neuroimage, 189, 353-367.'),
F2016P=('Fulcher, B. D., & Fornito, A. (2016). A transcriptional '
'signature of hub connectivity in the mouse connectome. '
'Proceedings of the National Academy of Sciences, 113(5), '
'1435-1440.'),
F2013J=('Fulcher, B. D., Little, M. A., & Jones, N. S. (2013). '
'Highly comparative time-series analysis: the empirical '
'structure of time series and their methods. Journal of '
'the Royal Society Interface, 10(83), 20130048.'),
H2012N=('Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., '
'Shen, E. H., Ng, L., Miller, J. A., ... & Jones, A. R. '
'(2012). An anatomically comprehensive atlas of the adult '
'human brain transcriptome. Nature, 489(7416), 391-399.'),
H2015N=('Hawrylycz, M., Miller, J. A., Menon, V., Feng, D., '
'Dolbeare, T., Guillozet-Bongaarts, A. L., ... & Lein, E. '
'(2015). Canonical genetic signatures of the adult human '
'brain. Nature Neuroscience, 18(12), 1832.'),
M2021B=('Markello, R.D., Arnatkevic̆iūtė, A., Poline, J-B., Fulcher, B. '
'D., Fornito, A., & Misic, B. (2021). Standardizing workflows in '
'imaging transcriptomics with the abagen toolbox. Biorxiv.'),
P2017G=('Parkes, L., Fulcher, B. D., Yücel, M., & Fornito, A. '
'(2017). Transcriptional signatures of connectomic '
'subregions of the human striatum. Genes, Brain and '
'Behavior, 16(7), 647-663.'),
Q2002N=('Quackenbush, J. (2002). Microarray data normalization and '
'transformation. Nature Genetics, 32(4), 496-501.'),
R2018N=('Romero-Garcia, R., Whitaker, K. J., Váša, F., Seidlitz, '
'J., Shinn, M., Fonagy, P., ... & NSPN Consortium. (2018). '
'Structural covariance networks are coupled to expression '
'of genes enriched in supragranular layers of the human '
'cortex. NeuroImage, 171, 256-267.')
)
class Report:
def __init__(self, atlas, atlas_info=None, *, ibf_threshold=0.5,
probe_selection='diff_stability', donor_probes='aggregate',
lr_mirror=None, missing=None, tolerance=2, sample_norm='srs',
gene_norm='srs', norm_matched=True, norm_structures=False,
region_agg='donors', agg_metric='mean', corrected_mni=True,
reannotated=True, donors='all', return_donors=False,
data_dir=None, counts=None, n_probes=None, n_genes=None):
efflevel = LGR.getEffectiveLevel()
LGR.setLevel(100)
atlas, self.group_atlas = coerce_atlas_to_dict(atlas, donors, atlas_info=atlas_info,
data_dir=data_dir)
self.atlas = first_entry(atlas)
self.atlas_info = self.atlas.atlas_info
self.ibf_threshold = ibf_threshold
self.probe_selection = probe_selection
self.donor_probes = donor_probes
self.lr_mirror = lr_mirror
self.missing = missing
self.tolerance = tolerance
self.sample_norm = sample_norm
self.gene_norm = gene_norm
self.norm_matched = norm_matched
self.norm_structures = norm_structures
self.region_agg = region_agg
self.agg_metric = METRICS.get(agg_metric, agg_metric)
self.corrected_mni = corrected_mni
self.reannotated = reannotated
self.donors = donors
self.return_donors = return_donors
self.counts = counts
self.n_probes = n_probes
self.n_genes = n_genes
self.body = self.gen_report()
LGR.setLevel(efflevel)
def gen_report(self):
report = ''
report += """
Regional microarry expression data were obtained from {n_donors}
post-mortem brains ({n_female} female, ages {min}--{max}, {mean:.2f}
+/- {std:.2f}) provided by the Allen Human Brain Atlas (AHBA,
https://human.brain-map.org; [H2012N]). Data were processed with the
abagen toolbox (version {vers}; https://github.com/rmarkello/abagen;
[M2021B])
""".format(**_get_donor_demographics(self.donors), vers=__version__)
if self.atlas.volumetric and self.group_atlas:
report += """
using a {n_region}-region volumetric atlas in MNI space.<br>
""".format(n_region=len(self.atlas.labels))
elif not self.atlas.volumetric and self.group_atlas:
report += """
using a {n_region}-region surface-based atlas in MNI space.<br>
""".format(n_region=len(self.atlas.labels))
elif self.atlas.volumetric and not self.group_atlas:
report += """
using a {n_region}-region volumetric atlas, independently aligned
to each donor's native MRI space.<br>
""".format(n_region=len(self.atlas.labels))
else:
report += ".<br>"
if self.reannotated:
report += """
First, microarray probes were reannotated using data provided by
[A2019N]; probes not matched to a valid Entrez ID were discarded.
"""
else:
report += """
First, microarray probes not matched to a valid Entrez ID were
discarded.
"""
if self.ibf_threshold > 0:
report += """
Next, probes were filtered based on their expression intensity
relative to background noise [Q2002N], such that probes with
intensity less than the background in >={threshold:.2f}% of samples
across donors were discarded
""".format(threshold=self.ibf_threshold * 100)
if self.n_probes is not None:
report += """
, yielding {n_probes:,} probes
""".format(n_probes=self.n_probes)
report += "."
if self.probe_selection == 'average':
report += """
When multiple probes indexed the expression of the same gene we
calculated the mean expression across probes.
"""
elif self.probe_selection == 'diff_stability':
report += r"""
When multiple probes indexed the expression of the same gene, we
selected and used the probe with the most consistent pattern of
regional variation across donors (i.e., differential stability;
[H2015N]), calculated with:<br>
$$ \Delta_{{S}}(p) = \frac{{1}}{{\binom{{N}}{{2}}}} \,
\sum_{{i=1}}^{{N-1}} \sum_{{j=i+1}}^{{N}}
\rho[B_{{i}}(p), B_{{j}}(p)] $$<br>
where $ \rho $ is Spearman's rank correlation of the expression of
a single probe, p, across regions in two donors $B_{{i}}$ and
$B_{{j}}$, and N is the total number of donors. Here, regions
correspond to the structural designations provided in the ontology
from the AHBA.
"""
elif self.probe_selection == "pc_loading":
report += """
When multiple probes indexed the expression of the same gene we
selected and used the probe with the highest loading on the first
principal component taken from a decomposition of probe expression
across samples from all donors [P2017G].
"""
elif self.probe_selection == "max_intensity":
report += """
When multiple probes indexed the expression of the same gene we
selected and used the probe with the highest mean intensity across
samples.
"""
elif self.probe_selection == "max_variance":
report += """
When multiple probes indexed the expression of the same gene we
selected and used the probe with the highest variance across
samples.
"""
elif self.probe_selection == "corr_intensity":
report += """
When multiple probes indexed the expression of the same gene we
selected and used the expression profile of a single representative
probe. For genes where only two probes were available we selected
the probe with the highest mean intensity across samples; where
three or more probes were available, we calculated the correlation
of probe expression across samples and selected the probe with the
highest average correlation.
"""
elif self.probe_selection == "corr_variance":
report += """
When multiple probes indexed the expression of the same gene we
selected and used the expression profile of a single representative
probe. For genes where only two probes were available we selected
the probe with the highest variance across samples; where three or
more probes were available, we calculated the correlation of probe
expression across samples and selected the probe with the highest
average correlation.
"""
elif self.probe_selection == "rnaseq":
report += """
When multiple probes indexed the expression of the same gene we
selected and used the probe with the most consistent pattern of
regional expression to RNA-seq data (available for two donors in
the AHBA). That is, we calculated the Spearman’s rank correlation
between each probes' microarray expression and RNA-seq expression
data of the corresponding gene, and selected the probe with the
highest correspondence. Here, regions correspond to the structural
designations provided in the ontology from the AHBA.
"""
if (self.donor_probes == "aggregate" and self.probe_selection not in
['average', 'diff_stability', 'rnaseq']):
report += """
The selection of probes was performed using sample expression data
aggregated across all donors.<br>
"""
elif (self.donor_probes == "aggregate" and self.probe_selection in
['average', 'diff_stability', 'rnaseq']):
report += "<br>"
elif self.donor_probes == "independent":
report += """
The selection of probes was performed independently for each donor,
such that the probes chosen to represent each gene could differ
across donors.<br>
"""
elif self.donor_probes == "common":
report += """
The selection of probes was performed independently for each donor,
and the probe most commonly selected across all donors was chosen
to represent the expression of each gene for all donors.<br>
"""
if self.corrected_mni and self.group_atlas:
report += """
The MNI coordinates of tissue samples were updated to those
generated via non-linear registration using the Advanced
Normalization Tools (ANTs; https://github.com/chrisfilo/alleninf).
"""
if self.lr_mirror == 'bidirectional':
report += """
To increase spatial coverage, tissue samples were mirrored
bilaterally across the left and right hemispheres [R2018N].
"""
elif self.lr_mirror == 'leftright':
report += """
To increase spatial coverage, tissue samples in the left hemisphere
were mirrored into the right hemisphere [R2018N].
"""
elif self.lr_mirror == 'rightleft':
report += """
To increase spatial coverage, tissue samples in the right
hemisphere were mirrored into the left hemisphere [R2018N].
"""
if self.tolerance == 0 and not self.atlas.volumetric:
report += """
Samples were assigned to brain regions by minimizing the Euclidean
distance between the {space} coordinates of each sample and the
nearest surface vertex. Samples where the Euclidean distance to the
nearest vertex was greater than the mean distance for all samples
belonging to that donor were excluded.
""".format(space='MNI' if self.group_atlas else 'native voxel')
elif self.tolerance == 0 and self.atlas.volumetric:
report += """
Samples were assigned to brain regions in the provided atlas only
if their {space} coordinates were directly within a voxel belonging
to a parcel.
""".format(space='MNI' if self.group_atlas else 'native voxel')
elif self.tolerance > 0 and not self.atlas.volumetric:
report += """
Samples were assigned to brain regions by minimizing the Euclidean
distance between the {space} coordinates of each sample and the
nearest surface vertex. Samples where the Euclidean distance to the
nearest vertex was more than {tolerance} standard deviations above
the mean distance for all samples belonging to that donor were
excluded.
""".format(space='MNI' if self.group_atlas else 'native voxel',
tolerance=self.tolerance)
elif self.tolerance > 0 and self.atlas.volumetric:
report += """
Samples were assigned to brain regions in the provided atlas if
their {space} coordinates were within {tolerance} mm of a given
parcel.
""".format(space='MNI' if self.group_atlas else 'native voxel',
tolerance=self.tolerance)
elif self.tolerance < 0 and not self.atlas.volumetric:
report += """
Samples were assigned to brain regions by minimizing the Euclidean
distance between the {space} coordinates of each sample and the
nearest surface vertex. Samples where the Euclidean distance to the
nearest vertex was more than {tolerance}mm were excluded.
""".format(space='MNI' if self.group_atlas else 'native voxel',
tolerance=abs(self.tolerance))
if self.atlas_info is not None:
report += """
To reduce the potential for misassignment, sample-to-region
matching was constrained by hemisphere and gross structural
divisions (i.e., cortex, subcortex/brainstem, and cerebellum, such
that e.g., a sample in the left cortex could only be assigned to an
atlas parcel in the left cortex; [A2019N]).
"""
if self.missing == 'centroids':
report += """
If a brain region was not assigned a sample from any donor based on
the above procedure, the tissue sample closest to the centroid of
that parcel was identified independently for each donor. The
average of these samples was taken across donors, weighted by the
distance between the parcel centroid and the sample, to obtain an
estimate of the parcellated expression values for the missing
region.
"""
if self.counts is not None:
n_missing = np.sum(self.counts.sum(axis=1) == 0)
if n_missing > 0:
report += """
This procedure was performed for {n_missing} regions that
were not assigned tissue samples.
""".format(n_missing=n_missing)
elif self.missing == 'interpolate':
report += """
If a brain region was not assigned a tissue sample based on the
above procedure, every {node} in the region was mapped to the
nearest tissue sample from the donor in order to generate a dense,
interpolated expression map. The average of these expression values
was taken across all {nodes} in the region, weighted by the
distance between each {node} and the sample mapped to it, in order
to obtain an estimate of the parcellated expression values for the
missing region.
""".format(node='voxel' if self.atlas.volumetric else 'vertex',
nodes='voxels' if self.atlas.volumetric else 'vertices')
if self.norm_matched:
report += """
All tissue samples not assigned to a brain region in the provided
atlas were discarded.
"""
report += "<br>"
if self.sample_norm is not None:
report += """
Inter-subject variation was addressed {}
""".format(_get_norm_procedure(self.sample_norm, 'sample_norm'))
if self.gene_norm is None:
pass
elif self.gene_norm == self.sample_norm:
report += """
Gene expression values were then normalized across tissue samples
using an identical procedure.
"""
elif (self.gene_norm != self.sample_norm
and self.sample_norm is not None):
report += """
Inter-subject variation in gene expression was then addressed {}
""".format(_get_norm_procedure(self.gene_norm, 'gene_norm'))
elif self.gene_norm != self.sample_norm and self.sample_norm is None:
report += """
Inter-subject variation was addressed {}
""".format(_get_norm_procedure(self.gene_norm, 'gene_norm'))
if not self.norm_matched and not self.norm_structures:
report += """
All available tissue samples were used in the normalization process
regardless of whether they were assigned to a brain region.
"""
elif not self.norm_matched and self.norm_structures:
report += """
All available tissue samples were used in the normalization process
regardless of whether they were matched to a brain region; however,
normalization was performed separately for samples in distinct
structural classes (i.e., cortex, subcortex/brainstem, cerebellum).
"""
elif self.norm_matched and self.norm_structures:
report += """
Normalization was performed separately for samples in distinct
structural classes (i.e., cortex, subcortex/brainstem, cerebellum).
"""
if not self.norm_matched and self.gene_norm is not None:
report += """
Tissue samples not matched to a brain region were discarded after
normalization.
"""
if self.region_agg == 'donors' and self.agg_metric == 'mean':
report += """
Samples assigned to the same brain region were averaged separately
for each donor{donors}, yielding a regional expression matrix
{n_donors}
""".format(donors=' and then across donors' if
not self.return_donors else '',
n_donors=' for each donor ' if
self.return_donors else '')
elif self.region_agg == 'samples' and self.agg_metric == 'mean':
report += """
Samples assigned to the same brain region were averaged across all
donors, yielding a regional expression matrix
"""
elif self.region_agg == 'donors' and self.agg_metric == 'median':
report += """
The median value of samples assigned to the same brain region was
computed separately for each donor{donors}, yielding a regional
expression matrix{n_donors}
""".format(donors=' and then across donors' if
not self.return_donors else '',
n_donors=' for each donor' if
self.return_donors else '')
elif self.region_agg == 'samples' and self.agg_metric == 'median':
report += """
The median value of samples assigned to the same brain region was
computed across donors, yielding a single regional expression
matrix
"""
if self.n_genes is not None:
report += """
with {n_region} rows, corresponding to brain regions, and
{n_genes:,} columns, corresponding to the retained genes
""".format(n_region=len(self.atlas.labels),
n_genes=self.n_genes)
report += "\b."
report += str(_add_references(report))
return _sanitize_text(report)
def _sanitize_text(text):
text = ' '.join(text.replace('\n', ' ').split())
return text.replace('<br> ', '\n\n') .replace('<p>', '\n')
def _get_donor_demographics(donors):
donors = [int(i) for i in check_donors(donors)]
info = fetch_donor_info().set_index('uid').loc[donors]
age_info = info['age'].describe()
dinfo = dict(n_donors=len(info), n_female=sum(info['sex'] == 'F'))
dinfo.update(age_info.loc[['min', 'max', 'mean', 'std']].to_dict())
return dinfo
def _get_norm_procedure(norm, parameter):
if parameter not in ('sample_norm', 'gene_norm'):
raise ValueError(f'Invalid norm parameter {parameter}')
if parameter == 'sample_norm':
mod = ('tissue sample expression values across genes')
suff = ('tissue sample across genes')
else:
mod = ('gene expression values across tissue samples')
suff = ('gene across tissue samples')
sigmoid = r"""
independently for each donor using a sigmoid function [F2016P]:<br>
$$ x_{{norm}} = \frac{{1}}{{1 + \exp(-\frac{{(x - \overline{{x}})}}
{{\sigma_{{x}}}})}} $$<br>
where $\bar{{x}}$ is the arithmetic mean and $\sigma_{{x}}$ is the
sample standard deviation of the expression of a single
"""
robust_sigmoid = r"""
using a robust sigmoid function [F2013J]:<br>
$$ x_{{norm}} = \frac{{1}}{{1 + \exp(-\frac{{(x-\langle x \rangle)}}
{{\text{{IQR}}_{{x}}}})}} $$<br>
where $\langle x \rangle$ is the median and $\text{{IQR}}_{{x}}$
is the normalized interquartile range of the expression of a single
"""
rescale = r"""
Normalized expression values were then rescaled to the unit interval: <br>
$$ x_{{scaled}} = \frac{{x_{{norm}} - \min(x_{{norm}})}}
{{\max(x_{{norm}}) - \min(x_{{norm}})}} $$<br>
"""
procedure = ''
if norm in ['center', 'demean']:
procedure += """
by demeaning {mod} independently for each donor.
""".format(mod=mod)
elif norm == 'zscore':
procedure += """
by mean- and variance-normalizing (i.e., z-scoring) {mod} independently
for each donor.
""".format(mod=mod)
elif norm == 'minmax':
procedure += r"""
by rescaling {mod} to the unit interval independently for each donor:
<br>
$$ x_{{{{scaled}}}} = \frac{{{{x - \min(x)}}}}{{{{\max(x) - \min(x)}}}}
$$<br>
""".format(mod=mod)
elif norm in ['sigmoid', 'sig']:
procedure += r"""
by normalizing {mod} {sigmoid} {suff}.
""".format(mod=mod, sigmoid=sigmoid, suff=suff)
elif norm in ['scaled_sigmoid', 'scaled_sig']:
procedure += r"""
by normalizing {mod} {sigmoid} {suff}. {rescale}
""".format(mod=mod, sigmoid=sigmoid, suff=suff, rescale=rescale)
elif norm in ['scaled_sigmoid_quantiles', 'scaled_sig_qnt']:
procedure += r"""
by normalizing {mod} {sigmoid} {suff}, calculated using only data in
the 5–95th percentile range to downweight the impact of outliers.
{rescale}
""".format(mod=mod, sigmoid=sigmoid, suff=suff, rescale=rescale)
elif norm in ['robust_sigmoid', 'rsig', 'rs']:
procedure += r"""
by normalizing {mod} {robust_sigmoid} {suff}.
""".format(mod=mod, robust_sigmoid=robust_sigmoid, suff=suff)
elif norm in ['scaled_robust_sigmoid', 'scaled_rsig', 'srs']:
procedure += r"""
by normalizing {mod} {robust_sigmoid} {suff}. {rescale}
""".format(mod=mod, robust_sigmoid=robust_sigmoid, suff=suff,
rescale=rescale)
elif norm in ['mixed_sigmoid', 'mixed_sig']:
procedure += r"""
by normalizing {mod} using a mixed sigmoid function [F2013J]:<br>
$$ x_{{{{norm}}}} = \left\{{{{\begin{{{{array}}}}{{{{r r}}}}
\frac{{{{1}}}}{{{{1 + \exp(-\frac{{{{(x-\overline{{{{x}}}})}}}}
{{{{\sigma_{{{{x}}}}}}}})}}}} ,& \text{{{{IQR}}}}_{{{{x}}}} = 0
\frac{{{{1}}}}{{{{1 + \exp(-\frac{{{{(x-\langle x \rangle)}}}}
{{{{\text{{{{IQR}}}}_{{{{x}}}}}}}})}}}} ,& \text{{{{IQR}}}}_{{{{x}}}}
\neq 0 \end{{{{array}}}}\right. $$<br>
where $\bar{{{{x}}}}$ is the arithmetic mean, $\sigma_{{{{x}}}}$ is the
sample standard deviation, $\langle x \rangle$ is the median, and
$\text{{{{IQR}}}}_{{{{x}}}}$ is the normalized interquartile range of
the expression value of a single {suff}. {rescale}
""".format(mod=mod, suff=suff, rescale=rescale)
return procedure
|
BSD 3-Clause New or Revised License
|
xiongma/dgcnn
|
bert/util.py
|
label_smoothing
|
python
|
def label_smoothing(inputs, epsilon=0.1):
V = tf.cast(tf.shape(inputs)[-1], tf.float32)
return ((1 - epsilon) * inputs) + (epsilon / V)
|
Applies label smoothing. See 5.4 and https://arxiv.org/abs/1512.00567.
inputs: 3d tensor. [N, T, V], where V is the number of vocabulary.
epsilon: Smoothing rate.
For example,
```
import tensorflow as tf
inputs = tf.convert_to_tensor([[[0, 0, 1],
[0, 1, 0],
[1, 0, 0]],
[[1, 0, 0],
[1, 0, 0],
[0, 1, 0]]], tf.float32)
outputs = label_smoothing(inputs)
with tf.Session() as sess:
print(sess.run([outputs]))
>>
[array([[[ 0.03333334, 0.03333334, 0.93333334],
[ 0.03333334, 0.93333334, 0.03333334],
[ 0.93333334, 0.03333334, 0.03333334]],
[[ 0.93333334, 0.03333334, 0.03333334],
[ 0.93333334, 0.03333334, 0.03333334],
[ 0.03333334, 0.93333334, 0.03333334]]], dtype=float32)]
```
|
https://github.com/xiongma/dgcnn/blob/8886878caa5872fed2fe3b4a86cca8b4938c2629/bert/util.py#L11-L44
|
import tensorflow as tf
|
MIT License
|
nicta/dora
|
dora/active_sampling/pltutils.py
|
plot_sampler_progress
|
python
|
def plot_sampler_progress(sampler, ax):
assert sampler.dims == 2
assert sampler.n_tasks == 1
X = sampler.X()
y = sampler.y().flatten()
if sampler.name == 'GaussianProcess':
n_grids = 400
xi = np.linspace(sampler.lower[0], sampler.upper[0], num=n_grids)
yi = np.linspace(sampler.lower[1], sampler.upper[1], num=n_grids)
xg, yg = np.meshgrid(xi, yi)
X_test = np.array([xg.flatten(), yg.flatten()]).T
zg = np.reshape(sampler.predict(X_test)[0], xg.shape)
extent = [sampler.lower[0], sampler.upper[0],
sampler.upper[1], sampler.lower[1]]
ax.imshow(zg, extent=extent)
elif sampler.name == 'Delaunay':
import matplotlib.pyplot as pl
import matplotlib as mpl
cols = pl.cm.jet(np.linspace(0, 1, 64))
custom = mpl.colors.ListedColormap(cols * 0.5 + 0.5)
w = 4. / np.log(1 + len(y))
ax.tripcolor(X[:, 0], X[:, 1], y, shading='gouraud',
edgecolors='k', linewidth=w, cmap=custom)
ax.triplot(X[:, 0], X[:, 1], color='k', linewidth=w)
else:
raise ValueError('Sampler "%s" not implemented yet'
% sampler.name)
ax.scatter(X[:, 0], X[:, 1], c=y)
ax.set_title('%d Samples' % len(y))
ax.axis('image')
|
Plot the progress of a particular sampler.
.. note :: Only works if n_dims = 2 and n_tasks = 1
Parameters
----------
sampler : Sampler
An instance of the sampler class or its subclasses
ax : matplotlib.axes._subplots.AxesSubplot
The axes or subplot the plotting is to be performed on
|
https://github.com/nicta/dora/blob/1929daa9f957a4ff42e688b116faa7699b3b1168/dora/active_sampling/pltutils.py#L33-L85
|
import numpy as np
def split_subplots(n):
n_sqrt = np.sqrt(n)
c = np.ceil(n_sqrt).astype(int)
r = np.floor(n_sqrt).astype(int)
while c * r < n:
r += 1
return r, c
|
Apache License 2.0
|
zijianzhang/carla_invs
|
PCDet/pcdet/datasets/dataset.py
|
DatasetTemplate.get_infos
|
python
|
def get_infos(self, **kwargs):
raise NotImplementedError
|
generate data infos from raw data for the dataset
|
https://github.com/zijianzhang/carla_invs/blob/826a5a39e70d0a94c03db6a93c4c3ecdc181465b/PCDet/pcdet/datasets/dataset.py#L13-L15
|
import numpy as np
from collections import defaultdict
import torch.utils.data as torch_data
from ..utils import box_utils, common_utils
from ..config import cfg
from .data_augmentation import augmentation_utils
import pdb
class DatasetTemplate(torch_data.Dataset):
def __init__(self):
super().__init__()
|
MIT License
|
arch4ngel/bruteloops
|
BruteLoops/brute.py
|
BruteForcer.launch
|
python
|
def launch(self):
if self.config.max_auth_tries:
limit = self.config.max_auth_tries
else:
limit = 1
sleeping = False
recovered = False
'''Logic iterates through each prioritized username
and password value and determines if it resides in
the database. A ValueError is raised if it doesn't
exist in the database.
Note that the password value is checked for both normal
passwords and credentials. No error is raised so long
as the value resides in one of the two tables.
'''
while True:
try:
usernames = self.main_db_sess.query(sql.Username) .join(sql.Credential) .filter(
sql.Username.recovered == False,
sql.Username.future_time <= time(),
sql.Credential.guessed == False) .order_by(sql.Username.priority.desc()) .order_by(sql.Credential.strict.desc()) .all()
if not usernames and not sleeping:
u = self.main_db_sess.query(sql.Username) .filter(sql.Username.recovered == 0) .order_by(sql.Username.future_time.desc()) .first()
sleeping = True
if u and u.future_time > 60+time():
self.logger.log(
GENERAL_EVENTS,
f'Sleeping until {BruteTime.float_to_str(u.future_time)}'
)
elif usernames and sleeping:
sleeping = False
for username in usernames:
credentials = self.main_db_sess.query(sql.Credential) .join(sql.Password) .filter(
sql.Credential.guessed == False,
sql.Credential.username == username) .order_by(sql.Credential.strict.desc()) .order_by(sql.Password.priority.desc()) .limit(limit) .all()
if username.recovered: continue
for credential in credentials:
ctime = BruteTime.current_time()
if self.config.max_auth_jitter:
ftime = self.config.max_auth_jitter.get_jitter_future()
else:
ftime = -1.0
if username.recovered: break
credential.guess_time=ctime
credential.username.last_time=ctime
credential.username.future_time=ftime
self.main_db_sess.commit()
recovered = self.do_authentication_callback(
credential.username.value,
credential.password.value
)
if recovered and self.config.stop_on_valid:
break
if recovered and self.config.stop_on_valid:
break
if recovered and self.config.stop_on_valid:
self.logger.log(
GENERAL_EVENTS,
'Valid credentials recovered. Exiting per ' 'stop_on_valid configuration.',
)
self.shutdown()
break
sample_remaining = self.main_db_sess .query(sql.Username) .join(sql.Credential) .filter(sql.Username.recovered == False,
sql.Credential.guessed == False) .first()
if sample_remaining:
if len(self.presults):
outputs = self.monitor_processes()
self.handle_outputs(outputs)
sleep(.2)
continue
outputs = self.monitor_processes(ready_all=True)
self.handle_outputs(outputs)
self.logger.log(GENERAL_EVENTS,'Attack finished')
self.shutdown()
break
except Exception as e:
if e in self.config.exception_handlers:
self.config.exception_handlers[e](self)
else:
self.logger.log(
GENERAL_EVENTS,
'Unhandled exception occurred. Shutting down attack ' 'and returning control to the caller.'
)
self.shutdown()
raise e
|
Launch a horitontal brute force attack.
The argument to `usernames` and `passwords` are expected to
be either a string, tuple, or list object. Should a string be
provided, it should represent a path to a file containing
newline delimited values of the corresponding input. Should
a tuple or list be provided, each element should be a value
corrsponding to the appropriate input.
|
https://github.com/arch4ngel/bruteloops/blob/efc2990475094894bada9427247cd766cf69a145/BruteLoops/brute.py#L395-L628
|
from BruteLoops.logging import *
from . import logging
from .brute_time import BruteTime
from . import sql
from .config import Config
from .db_manager import *
from sqlalchemy.orm.session import close_all_sessions
from pathlib import Path
from uuid import uuid4
from collections import namedtuple
from copy import deepcopy
from time import sleep,time
from types import FunctionType, MethodType
import traceback
import re
import signal
import logging
from time import time
UNKNOWN_PRIORITIZED_USERNAME_MSG = 'Prioritized username value supplied ' 'during configuration that does not a' 'ppear in the database. Insert this v' 'alue or remove it from the configura' 'tion: {username}'
UNKNOWN_PRIORITIZED_PASSWORD_MSG = 'Prioritized password value supplied ' 'during configuration that does not a' 'ppear in the database. Insert this v' 'alue or remove it from the configura' 'tion: {password}'
logger = None
class BruteForcer:
def __init__(self, config, use_billiard=False):
if not config.validated: config.validate()
self.main_db_sess = config.session_maker.new()
self.handler_db_sess = config.session_maker.new()
self.config = config
self.presults = []
self.pool = None
self.attack = None
self.logger = getLogger('BruteLoops.BruteForcer',
config.log_level, config.log_valid, config.log_invalid,
config.log_general, config.log_file, config.log_stdout,
config.log_stderr)
self.logger.log(
GENERAL_EVENTS,
f'Initializing {config.process_count} process(es)'
)
self.logger.log(GENERAL_EVENTS,
'Logging attack configuration parameters')
config_attrs = [
'authentication_jitter',
'max_auth_jitter',
'max_auth_tries',
'stop_on_valid',
'db_file',
'log_file',
'log_valid',
'log_invalid',
'log_general',
'log_stdout',
'log_stderr'
]
for attr in config_attrs:
self.logger.log(GENERAL_EVENTS,
f'Config Parameter -- {attr}: '+str(getattr(self.config,attr)))
if hasattr(self.config.authentication_callback, 'callback_name'):
self.logger.log(GENERAL_EVENTS,
f'Config Parameter -- callback_name: '+ getattr(self.config.authentication_callback,
'callback_name'))
original_sigint_handler = signal.signal(signal.SIGINT,signal.SIG_IGN)
if use_billiard:
import billiard
self.pool = billiard.Pool(processes=config.process_count)
else:
from multiprocessing.pool import Pool
self.pool = Pool(processes=config.process_count)
if not KeyboardInterrupt in self.config.exception_handlers:
def handler(sig,exception):
print('SIGINT Captured -- Shutting down ' 'attack\n')
self.shutdown()
print('Exiting')
exit(sig)
self.config.exception_handlers[KeyboardInterrupt] = handler
if KeyboardInterrupt in self.config.exception_handlers:
sigint_handler = config.exception_handlers[KeyboardInterrupt]
sigint_class = sigint_handler.__class__
if sigint_class != MethodType and sigint_class != FunctionType:
assert '__call__' in sigint_handler.__dict__, (
'Exception handler must implement __call__'
)
call_class = sigint_handler.__getattribute__('__call__').__class__
assert call_class == FunctionType or call_class == MethodType, (
'__call__ must be of type FunctionType or MethodType'
)
signal.signal(signal.SIGINT, sigint_handler)
else: signal.signal(signal.SIGINT, original_sigint_handler)
current_time = BruteTime.current_time(format=str)
self.logger.log(GENERAL_EVENTS,
f'Beginning attack: {current_time}')
self.attack = sql.Attack(start_time=BruteTime.current_time())
self.main_db_sess.add(self.attack)
self.main_db_sess.commit()
self.config = config
self.realign_future_time()
def handle_outputs(self, outputs):
recovered = False
for output in outputs:
credential = self.handler_db_sess .query(sql.Credential) .join(sql.Username) .join(sql.Password) .filter(
sql.Username.value == output[1],
sql.Password.value == output[2],
sql.Username.recovered == False) .first()
if not credential: continue
credential.guessed=True
cred = f'{output[1]}:{output[2]}'
if output[0]:
recovered = True
self.logger.log(VALID_CREDENTIALS,cred)
credential.username.recovered=True
credential.valid=True
else:
credential.valid=False
self.logger.log(CREDENTIAL_EVENTS,cred)
self.handler_db_sess.commit()
return recovered
def realign_future_time(self):
usernames = self.main_db_sess.query(sql.Username) .filter(
sql.Username.recovered == False,
sql.Username.last_time > -1.0,
)
for username in usernames:
if self.config.max_auth_jitter:
username.future_time = self.config.max_auth_jitter.get_jitter_future(
current_time=username.last_time
)
else: username.future_time = -1.0
self.main_db_sess.commit()
def monitor_processes(self,ready_all=False):
outputs = []
while True:
for result in self.presults:
if result.ready():
outputs.append(
result.get()
)
del(
self.presults[
self.presults.index(result)
]
)
if (ready_all and self.presults) or (
len(self.presults) == self.config.process_count):
sleep(.1)
continue
else:
return outputs
def do_authentication_callback(self, username, password, stop_on_valid=False,
*args, **kwargs):
'''
When the maximum number of processes have been engaged
to make authentication requests, call monitor_processes
to watch each process until authentication finishes.
Once completeds, the outputs are passed to handle_outputs,
which is responsible for logging the outcome of the authentication
request and updating the proper SQL record with the outcome.
'''
recovered = False
if len(self.presults) == self.config.process_count:
outputs = self.monitor_processes()
recovered = self.handle_outputs(outputs)
if recovered and stop_on_valid:
return recovered
self.presults.append(
self.pool.apply_async(
self.config.authentication_callback,
(
(username,password,)
)
)
)
return recovered
def shutdown(self):
self.logger.log(GENERAL_EVENTS,'Shutting attack down')
self.attack.complete = True
self.attack.end_time = BruteTime.current_time()
self.main_db_sess.commit()
self.logger.log(GENERAL_EVENTS,'Closing/joining Processes')
if self.pool:
self.pool.close()
self.pool.join()
close_all_sessions()
|
MIT License
|
pyansys/pymapdl
|
ansys/mapdl/core/solution.py
|
Solution.vector_cnv
|
python
|
def vector_cnv(self):
return self._mapdl.get_value("ACTIVE", 0, "SOLU", "VMCV")
|
Vector magnetic potential convergence value.
Examples
--------
>>> mapdl.solution.vector_cnv
0.0
|
https://github.com/pyansys/pymapdl/blob/e5cc21471c3a8fcef1f7b88359e38aa89cd63f73/ansys/mapdl/core/solution.py#L263-L271
|
import weakref
from ansys.mapdl.core.mapdl import _MapdlCore
class Solution:
def __init__(self, mapdl):
if not isinstance(mapdl, _MapdlCore):
raise TypeError("Must be implemented from MAPDL class")
self._mapdl_weakref = weakref.ref(mapdl)
@property
def _mapdl(self):
return self._mapdl_weakref()
def _set_log_level(self, level):
self._mapdl.set_log_level(level)
@property
def _log(self):
return self._mapdl._log
@property
def time_step_size(self):
return self._mapdl.get_value("ACTIVE", 0, "SOLU", "DTIME")
@property
def n_cmls(self):
return self._mapdl.get_value("ACTIVE", 0, "SOLU", "NCMLS")
@property
def n_cmss(self):
return self._mapdl.get_value("ACTIVE", 0, "SOLU", "NCMSS")
@property
def n_eqit(self):
return self._mapdl.get_value("ACTIVE", 0, "SOLU", "EQIT")
@property
def n_cmit(self):
return self._mapdl.get_value("ACTIVE", 0, "SOLU", "NCMIT")
@property
def converged(self):
return bool(self._mapdl.get_value("ACTIVE", 0, "SOLU", "CNVG"))
@property
def mx_dof(self):
return self._mapdl.get_value("ACTIVE", 0, "SOLU", "MXDVL")
@property
def res_frq(self):
return self._mapdl.get_value("ACTIVE", 0, "SOLU", "RESFRQ")
@property
def res_eig(self):
return self._mapdl.get_value("ACTIVE", 0, "SOLU", "RESEIG")
@property
def decent_parm(self):
return self._mapdl.get_value("ACTIVE", 0, "SOLU", "DSPRM")
@property
def force_cnv(self):
return self._mapdl.get_value("ACTIVE", 0, "SOLU", "FOCV")
@property
def moment_cnv(self):
return self._mapdl.get_value("ACTIVE", 0, "SOLU", "MOCV")
@property
def heat_flow_cnv(self):
return self._mapdl.get_value("ACTIVE", 0, "SOLU", "HFCV")
@property
def magnetic_flux_cnv(self):
return self._mapdl.get_value("ACTIVE", 0, "SOLU", "MFCV")
@property
def current_segment_cnv(self):
return self._mapdl.get_value("ACTIVE", 0, "SOLU", "CSCV")
@property
def current_cnv(self):
return self._mapdl.get_value("ACTIVE", 0, "SOLU", "CUCV")
@property
def fluid_flow_cnv(self):
return self._mapdl.get_value("ACTIVE", 0, "SOLU", "FFCV")
@property
def displacement_cnv(self):
return self._mapdl.get_value("ACTIVE", 0, "SOLU", "DICV")
@property
def rotation_cnv(self):
return self._mapdl.get_value("ACTIVE", 0, "SOLU", "ROCV")
@property
def temperature_cnv(self):
return self._mapdl.get_value("ACTIVE", 0, "SOLU", "TECV")
@property
|
MIT License
|
facebookresearch/mtenv
|
local_dm_control_suite/humanoid.py
|
Humanoid.get_reward
|
python
|
def get_reward(self, physics):
standing = rewards.tolerance(
physics.head_height(),
bounds=(_STAND_HEIGHT, float("inf")),
margin=_STAND_HEIGHT / 4,
)
upright = rewards.tolerance(
physics.torso_upright(),
bounds=(0.9, float("inf")),
sigmoid="linear",
margin=1.9,
value_at_margin=0,
)
stand_reward = standing * upright
small_control = rewards.tolerance(
physics.control(), margin=1, value_at_margin=0, sigmoid="quadratic"
).mean()
small_control = (4 + small_control) / 5
if self._move_speed == 0:
horizontal_velocity = physics.center_of_mass_velocity()[[0, 1]]
dont_move = rewards.tolerance(horizontal_velocity, margin=2).mean()
return small_control * stand_reward * dont_move
else:
com_velocity = np.linalg.norm(physics.center_of_mass_velocity()[[0, 1]])
move = rewards.tolerance(
com_velocity,
bounds=(self._move_speed, float("inf")),
margin=self._move_speed,
value_at_margin=0,
sigmoid="linear",
)
move = (5 * move + 1) / 6
return small_control * stand_reward * move
|
Returns a reward to the agent.
|
https://github.com/facebookresearch/mtenv/blob/4a6d9d6fdfb321f1b51f890ef36b5161359e972d/local_dm_control_suite/humanoid.py#L204-L237
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
from dm_control import mujoco
from dm_control.rl import control
from . import base
from . import common
from dm_control.suite.utils import randomizers
from dm_control.utils import containers
from dm_control.utils import rewards
import numpy as np
_DEFAULT_TIME_LIMIT = 25
_CONTROL_TIMESTEP = 0.025
_STAND_HEIGHT = 1.4
_WALK_SPEED = 1
_RUN_SPEED = 10
SUITE = containers.TaggedTasks()
def get_model_and_assets():
return common.read_model("humanoid.xml"), common.ASSETS
@SUITE.add("benchmarking")
def stand(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
physics = Physics.from_xml_string(*get_model_and_assets())
task = Humanoid(move_speed=0, pure_state=False, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics,
task,
time_limit=time_limit,
control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs
)
@SUITE.add("benchmarking")
def walk(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
physics = Physics.from_xml_string(*get_model_and_assets())
task = Humanoid(move_speed=_WALK_SPEED, pure_state=False, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics,
task,
time_limit=time_limit,
control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs
)
@SUITE.add("benchmarking")
def run(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
physics = Physics.from_xml_string(*get_model_and_assets())
task = Humanoid(move_speed=_RUN_SPEED, pure_state=False, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics,
task,
time_limit=time_limit,
control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs
)
@SUITE.add()
def run_pure_state(
time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None
):
physics = Physics.from_xml_string(*get_model_and_assets())
task = Humanoid(move_speed=_RUN_SPEED, pure_state=True, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics,
task,
time_limit=time_limit,
control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs
)
class Physics(mujoco.Physics):
def torso_upright(self):
return self.named.data.xmat["torso", "zz"]
def head_height(self):
return self.named.data.xpos["head", "z"]
def center_of_mass_position(self):
return self.named.data.subtree_com["torso"].copy()
def center_of_mass_velocity(self):
return self.named.data.sensordata["torso_subtreelinvel"].copy()
def torso_vertical_orientation(self):
return self.named.data.xmat["torso", ["zx", "zy", "zz"]]
def joint_angles(self):
return self.data.qpos[7:].copy()
def extremities(self):
torso_frame = self.named.data.xmat["torso"].reshape(3, 3)
torso_pos = self.named.data.xpos["torso"]
positions = []
for side in ("left_", "right_"):
for limb in ("hand", "foot"):
torso_to_limb = self.named.data.xpos[side + limb] - torso_pos
positions.append(torso_to_limb.dot(torso_frame))
return np.hstack(positions)
class Humanoid(base.Task):
def __init__(self, move_speed, pure_state, random=None):
self._move_speed = move_speed
self._pure_state = pure_state
super(Humanoid, self).__init__(random=random)
def initialize_episode(self, physics):
penetrating = True
while penetrating:
randomizers.randomize_limited_and_rotational_joints(physics, self.random)
physics.after_reset()
penetrating = physics.data.ncon > 0
super(Humanoid, self).initialize_episode(physics)
def get_observation(self, physics):
obs = collections.OrderedDict()
if self._pure_state:
obs["position"] = physics.position()
obs["velocity"] = physics.velocity()
else:
obs["joint_angles"] = physics.joint_angles()
obs["head_height"] = physics.head_height()
obs["extremities"] = physics.extremities()
obs["torso_vertical"] = physics.torso_vertical_orientation()
obs["com_velocity"] = physics.center_of_mass_velocity()
obs["velocity"] = physics.velocity()
return obs
|
MIT License
|
lukaabra/subcrawl
|
ui/bindings.py
|
SubCrawl.on_click_remove_entry
|
python
|
def on_click_remove_entry(self):
selected_rows = self.ScannedItems.selectionModel().selectedRows()
rows_to_delete = dict()
for row in selected_rows:
rows_to_delete[row.row()] = (row, row.data())
rows_to_delete = collections.OrderedDict(sorted(rows_to_delete.items(), reverse=True))
for row in rows_to_delete:
_, row_id = rows_to_delete[row]
condition = ("id", row_id)
self.interactor.delete_entry(condition)
self.ScannedItems.removeRow(row)
self.interactor.commit_and_renew_cursor()
|
Deletes rows from the highest index to the lowest as to avoid bugs while iterating through the rows and
deleting them at the same time.
|
https://github.com/lukaabra/subcrawl/blob/85da48f513dceed2ed9f9c60f09914996357e7f9/ui/bindings.py#L241-L259
|
from ui.gui import Ui_SubCrawl
from PyQt5 import QtWidgets
from PyQt5.QtCore import pyqtSlot
import os
import requests
import winsound
import json
import collections
from scanner import Scanner
from db_interactor import _DBInteractor
from subtitles import SubtitlePreference, SubtitleDownloader
class SubCrawl(Ui_SubCrawl, QtWidgets.QMainWindow):
def __init__(self):
Ui_SubCrawl.__init__(self)
QtWidgets.QMainWindow.__init__(self)
self.setupUi(self)
self.selection_confirmed = False
self.program_dir = os.getcwd()
self.total_files = 0
self.subtitle_preference = SubtitlePreference()
self.interactor = _DBInteractor(self.program_dir)
self.interactor.check_if_entries_exist()
self._populate_table()
self.subtitle_downloader = SubtitleDownloader(self.subtitle_preference, self.PromptLabel,
self.ProgressBar, self.interactor)
@pyqtSlot()
def _populate_table(self, db_table="all_movies", condition=None):
self.ScannedItems.setRowCount(0)
table_row = self.ScannedItems.rowCount()
for entry in self.interactor.retrieve(db_table, condition):
self.ScannedItems.insertRow(table_row)
self._set_items_in_table(table_row, entry)
table_row = self.ScannedItems.rowCount()
if self.SelectAllRadio.isChecked():
self.select_all_movies(True)
def _set_items_in_table(self, table_row: int, entry: tuple):
entry_id, _, entry_location, __, entry_title, entry_year, entry_rating, entry_subs, __ = entry
self.ScannedItems.setItem(table_row, 0, QtWidgets.QTableWidgetItem(str(entry_id)))
self.ScannedItems.setItem(table_row, 1, QtWidgets.QTableWidgetItem(entry_title))
self.ScannedItems.setItem(table_row, 2, QtWidgets.QTableWidgetItem(entry_rating))
self.ScannedItems.setItem(table_row, 3, QtWidgets.QTableWidgetItem(entry_year))
self.ScannedItems.setItem(table_row, 4, QtWidgets.QTableWidgetItem(entry_location))
self.ScannedItems.setItem(table_row, 5, QtWidgets.QTableWidgetItem(entry_subs))
def bind_browse_button(self):
self.BrowseButton.clicked.connect(self.on_click_browse)
@pyqtSlot()
def on_click_browse(self):
self.PromptLabel.setText("Browsing...")
directory = os.path.join(os.environ["HOMEPATH"], "Desktop")
selected_dir = QtWidgets.QFileDialog.getExistingDirectory(self, "Open a folder",
directory, QtWidgets.QFileDialog.ShowDirsOnly)
if selected_dir == "":
selected_dir = directory
self.SelectedFolderDisplay.setText(selected_dir)
self.PromptLabel.setText("Folder selected")
def bind_clear_button(self):
self.ClearDBButton.clicked.connect(self.on_click_clear_db)
@pyqtSlot()
def on_click_clear_db(self):
self.interactor.clear_db()
self.interactor.clear_db("selected_movies")
self.interactor.clear_db("search_subs")
self.interactor.clear_db("download_subs")
self.ScannedItems.setRowCount(0)
self.interactor.commit_and_renew_cursor()
self.PromptLabel.setText("Database cleared!")
def bind_confirm_selection(self):
self.ConfirmSelectionButton.clicked.connect(self.on_click_confirm_selection)
def on_click_confirm_selection(self):
self.ScannedItems.setSelectionMode(QtWidgets.QAbstractItemView.NoSelection)
self.CancelSelectionButton.setEnabled(True)
self.ConfirmSelectionButton.setEnabled(False)
self.DownloadButton.setEnabled(True)
self.RemoveEntryButton.setEnabled(False)
selected_rows = self.ScannedItems.selectionModel().selectedRows()
for row in selected_rows:
condition = ("id", str(row.data()))
self.interactor.copy_to_table("all_movies", "selected_movies", condition)
self.interactor.commit_and_renew_cursor()
self.ScannedItems.setLineWidth(2)
self.PromptLabel.setText("Selection confirmed!")
def bind_cancel_selection(self):
self.CancelSelectionButton.clicked.connect(self.on_click_cancel_selection)
def on_click_cancel_selection(self):
self.ScannedItems.setSelectionMode(QtWidgets.QAbstractItemView.MultiSelection)
self.CancelSelectionButton.setEnabled(False)
self.ConfirmSelectionButton.setEnabled(True)
self.RemoveEntryButton.setEnabled(False)
self.DownloadButton.setEnabled(False)
self.ScannedItems.setLineWidth(1)
self.interactor.clear_db("selected_movies")
self.PromptLabel.setText("Canceled selection")
def bind_combo_box(self):
self.LanguageComboBox.activated.connect(self.on_click_language_combo_box)
def on_click_language_combo_box(self):
selected_language = self.LanguageComboBox.currentText()
self.LanguageLabel.setText("Language: {}".format(selected_language))
self.subtitle_preference.add_language(selected_language)
self.PromptLabel.setText("Subtitle language changed to {}".format(selected_language))
def bind_download_button(self):
self.DownloadButton.clicked.connect(self.on_click_download)
def on_click_download(self):
self.PromptLabel.setText("Commencing download ...")
self.subtitle_downloader.download_from_opensubtitles()
self.on_click_scan()
if self.SelectAllRadio.isChecked():
self.SelectAllRadio.setChecked(False)
def bind_radio_buttons(self):
self.ShowAllRadio.toggled.connect(self.view_radio_buttons)
self.ShowNoSubsRadio.toggled.connect(self.view_radio_buttons)
self.ShowSubsRadio.toggled.connect(self.view_radio_buttons)
self.SelectAllRadio.toggled.connect(self.select_all_movies)
@pyqtSlot()
def view_radio_buttons(self):
if self.ShowAllRadio.isChecked():
self.ScannedItems.setRowCount(0)
self._populate_table("all_movies")
elif self.ShowNoSubsRadio.isChecked():
self.ScannedItems.setRowCount(0)
self._populate_table("all_movies", ("subtitles", str(False)))
elif self.ShowSubsRadio.isChecked():
self.ScannedItems.setRowCount(0)
self._populate_table("all_movies", ("subtitles", str(True)))
def select_all_movies(self, checked: bool):
table_range = QtWidgets.QTableWidgetSelectionRange(0, 0, self.ScannedItems.rowCount() - 1,
self.ScannedItems.columnCount() - 1)
if checked:
self.ScannedItems.setRangeSelected(table_range, True)
else:
self.ScannedItems.setRangeSelected(table_range, False)
def bind_remove_entry(self):
self.RemoveEntryButton.clicked.connect(self.on_click_remove_entry)
|
MIT License
|
jagter/python-netbox
|
netbox/virtualization.py
|
Virtualization.delete_cluster_type_by_id
|
python
|
def delete_cluster_type_by_id(self, cluster_type_id):
return self.netbox_con.delete('/virtualization/cluster-types/', cluster_type_id)
|
Delete a cluster type
:param cluster_type_id: cluster type to delete
:return: bool True if succesful otherwase delete exception
|
https://github.com/jagter/python-netbox/blob/fc68c2f40938d7686984151dfef690fd4e6aea5e/netbox/virtualization.py#L126-L132
|
import netbox.exceptions as exceptions
class Virtualization(object):
def __init__(self, netbox_con):
self.netbox_con = netbox_con
def get_choices(self, choice_id=None):
return self.netbox_con.get('/virtualization/_choices/', choice_id)
def get_clusters(self, **kwargs):
return self.netbox_con.get('/virtualization/clusters/', **kwargs)
def create_cluster(self, name, type, **kwargs):
try:
cluster_type_id = self.get_cluster_types(name=type)[0]['id']
except IndexError:
raise exceptions.NotFoundException({"detail": "cluster-type: {}".format(name)}) from None
required_fields = {"name": name, "type": cluster_type_id}
return self.netbox_con.post('/virtualization/clusters/', required_fields, **kwargs)
def delete_cluster(self, name):
try:
cluster_id = self.get_clusters(name=name)[0]['id']
except IndexError:
raise exceptions.NotFoundException({"detail": "cluster {}".format(name)}) from None
return self.netbox_con.delete('/virtualization/clusters/', cluster_id)
def delete_cluster_by_id(self, cluster_id):
return self.netbox_con.delete('/virtualization/clusters/', cluster_id)
def update_cluster(self, name, **kwargs):
try:
cluster_id = self.get_clusters(name=name)[0]['id']
except IndexError:
raise exceptions.NotFoundException({"detail": "cluster: {}".format(name)}) from None
return self.netbox_con.patch('/virtualization/clusters/', cluster_id, **kwargs)
def update_cluster_by_id(self, cluster_id, **kwargs):
return self.netbox_con.patch('/virtualization/clusters/', cluster_id, **kwargs)
def get_cluster_types(self, **kwargs):
return self.netbox_con.get('/virtualization/cluster-types/', **kwargs)
def create_cluster_type(self, name, slug):
required_fields = {"name": name, "slug": slug}
return self.netbox_con.post('/virtualization/cluster-types/', required_fields)
def update_cluster_type(self, name, **kwargs):
try:
type_id = self.get_cluster_types(name=name)[0]['id']
except IndexError:
raise exceptions.NotFoundException({"detail": "cluster-type: {}".format(name)}) from None
return self.netbox_con.patch('/virtualization/cluster-types/', type_id, **kwargs)
def update_cluster_type_by_id(self, cluster_type_id, **kwargs):
return self.netbox_con.patch('/virtualization/cluster-types/', cluster_type_id, **kwargs)
def delete_cluster_type(self, name):
try:
cluster_type_id = self.get_cluster_types(name=name)[0]['id']
except IndexError:
raise exceptions.NotFoundException({"detail": "cluster-type: {}".format(name)}) from None
return self.netbox_con.delete('/virtualization/cluster-types/', cluster_type_id)
|
Apache License 2.0
|
kaituoxu/conv-tasnet
|
src/utils.py
|
remove_pad
|
python
|
def remove_pad(inputs, inputs_lengths):
results = []
dim = inputs.dim()
if dim == 3:
C = inputs.size(1)
for input, length in zip(inputs, inputs_lengths):
if dim == 3:
results.append(input[:,:length].view(C, -1).cpu().numpy())
elif dim == 2:
results.append(input[:length].view(-1).cpu().numpy())
return results
|
Args:
inputs: torch.Tensor, [B, C, T] or [B, T], B is batch size
inputs_lengths: torch.Tensor, [B]
Returns:
results: a list containing B items, each item is [C, T], T varies
|
https://github.com/kaituoxu/conv-tasnet/blob/94eac1023eaaf11ca1bf3c8845374f7e4cd0ef4c/src/utils.py#L49-L66
|
import math
import torch
def overlap_and_add(signal, frame_step):
outer_dimensions = signal.size()[:-2]
frames, frame_length = signal.size()[-2:]
subframe_length = math.gcd(frame_length, frame_step)
subframe_step = frame_step // subframe_length
subframes_per_frame = frame_length // subframe_length
output_size = frame_step * (frames - 1) + frame_length
output_subframes = output_size // subframe_length
subframe_signal = signal.view(*outer_dimensions, -1, subframe_length)
frame = torch.arange(0, output_subframes).unfold(0, subframes_per_frame, subframe_step)
frame = signal.new_tensor(frame).long()
frame = frame.contiguous().view(-1)
result = signal.new_zeros(*outer_dimensions, output_subframes, subframe_length)
result.index_add_(-2, frame, subframe_signal)
result = result.view(*outer_dimensions, -1)
return result
|
MIT License
|
academysoftwarefoundation/opencue
|
pycue/opencue/wrappers/host.py
|
Host.lock
|
python
|
def lock(self):
self.stub.Lock(host_pb2.HostLockRequest(host=self.data), timeout=Cuebot.Timeout)
|
Locks the host so that it no longer accepts new frames
|
https://github.com/academysoftwarefoundation/opencue/blob/da28ae905b81e7d1125db2073a369fdc0ae9acd4/pycue/opencue/wrappers/host.py#L64-L66
|
import enum
import os
import time
from opencue import Cuebot
from opencue.compiled_proto import comment_pb2
from opencue.compiled_proto import host_pb2
import opencue.wrappers.comment
import opencue.wrappers.proc
class Host(object):
class HardwareState(enum.IntEnum):
UP = host_pb2.UP
DOWN = host_pb2.DOWN
REBOOTING = host_pb2.REBOOTING
REBOOT_WHEN_IDLE = host_pb2.REBOOT_WHEN_IDLE
REPAIR = host_pb2.REPAIR
class HostTagType(enum.IntEnum):
MANUAL = host_pb2.MANUAL
HARDWARE = host_pb2.HARDWARE
ALLOC = host_pb2.ALLOC
HOSTNAME = host_pb2.HOSTNAME
class LockState(enum.IntEnum):
OPEN = host_pb2.OPEN
LOCKED = host_pb2.LOCKED
NIMBY_LOCKED = host_pb2.NIMBY_LOCKED
class ThreadMode(enum.IntEnum):
AUTO = host_pb2.AUTO
ALL = host_pb2.ALL
VARIABLE = host_pb2.VARIABLE
def __init__(self, host=None):
self.data = host
self.__id = host.id
self.stub = Cuebot.getStub('host')
|
Apache License 2.0
|
ali5h/rules_pip
|
third_party/py/pip/_vendor/requests/api.py
|
request
|
python
|
def request(method, url, **kwargs):
with sessions.Session() as session:
return session.request(method=method, url=url, **kwargs)
|
Constructs and sends a :class:`Request <Request>`.
:param method: method for the new :class:`Request` object: ``GET``, ``OPTIONS``, ``HEAD``, ``POST``, ``PUT``, ``PATCH``, or ``DELETE``.
:param url: URL for the new :class:`Request` object.
:param params: (optional) Dictionary, list of tuples or bytes to send
in the query string for the :class:`Request`.
:param data: (optional) Dictionary, list of tuples, bytes, or file-like
object to send in the body of the :class:`Request`.
:param json: (optional) A JSON serializable Python object to send in the body of the :class:`Request`.
:param headers: (optional) Dictionary of HTTP Headers to send with the :class:`Request`.
:param cookies: (optional) Dict or CookieJar object to send with the :class:`Request`.
:param files: (optional) Dictionary of ``'name': file-like-objects`` (or ``{'name': file-tuple}``) for multipart encoding upload.
``file-tuple`` can be a 2-tuple ``('filename', fileobj)``, 3-tuple ``('filename', fileobj, 'content_type')``
or a 4-tuple ``('filename', fileobj, 'content_type', custom_headers)``, where ``'content-type'`` is a string
defining the content type of the given file and ``custom_headers`` a dict-like object containing additional headers
to add for the file.
:param auth: (optional) Auth tuple to enable Basic/Digest/Custom HTTP Auth.
:param timeout: (optional) How many seconds to wait for the server to send data
before giving up, as a float, or a :ref:`(connect timeout, read
timeout) <timeouts>` tuple.
:type timeout: float or tuple
:param allow_redirects: (optional) Boolean. Enable/disable GET/OPTIONS/POST/PUT/PATCH/DELETE/HEAD redirection. Defaults to ``True``.
:type allow_redirects: bool
:param proxies: (optional) Dictionary mapping protocol to the URL of the proxy.
:param verify: (optional) Either a boolean, in which case it controls whether we verify
the server's TLS certificate, or a string, in which case it must be a path
to a CA bundle to use. Defaults to ``True``.
:param stream: (optional) if ``False``, the response content will be immediately downloaded.
:param cert: (optional) if String, path to ssl client cert file (.pem). If Tuple, ('cert', 'key') pair.
:return: :class:`Response <Response>` object
:rtype: requests.Response
Usage::
>>> import requests
>>> req = requests.request('GET', 'https://httpbin.org/get')
>>> req
<Response [200]>
|
https://github.com/ali5h/rules_pip/blob/fb02cb7bf5c03bc8cd4269679e4aea2e1839b501/third_party/py/pip/_vendor/requests/api.py#L16-L61
|
from . import sessions
|
MIT License
|
dbrattli/oslash
|
oslash/state.py
|
State.get
|
python
|
def get(cls) -> "State[TState, TState]":
return State(lambda state: (state, state))
|
r"""get = state $ \s -> (s, s)
|
https://github.com/dbrattli/oslash/blob/c271c7633daf9d72393b419cfc9229e427e6a42a/oslash/state.py#L58-L60
|
from typing import Callable, Tuple, Any, TypeVar, Generic
from .util import Unit
from .typing import Functor
from .typing import Monad
TState = TypeVar("TState")
TSource = TypeVar("TSource")
TResult = TypeVar("TResult")
class State(Generic[TSource, TState]):
def __init__(self, fn: Callable[[TState], Tuple[TSource, TState]]) -> None:
self._fn = fn
@classmethod
def unit(cls, value: TSource) -> "State[TSource, TState]":
return cls(lambda state: (value, state))
def map(self, mapper: Callable[[TSource], TResult]) -> "State[TResult, TState]":
def _(a: Any, state: Any) -> Tuple[Any, Any]:
return mapper(a), state
return State(lambda state: _(*self.run(state)))
def bind(self, fn: Callable[[TSource], "State[TState, TResult]"]) -> "State[TResult, TState]":
def _(result: Any, state: Any) -> Tuple[Any, Any]:
return fn(result).run(state)
return State(lambda state: _(*self.run(state)))
@classmethod
|
MIT License
|
balena-io/balena-sdk-python
|
balena/models/device.py
|
Device.get_display_name
|
python
|
def get_display_name(self, device_type_slug):
device_types = self.config.get_device_types()
display_name = [device['name'] for device in device_types
if device['slug'] == device_type_slug]
if display_name:
return display_name[0]
else:
raise exceptions.InvalidDeviceType(device_type_slug)
|
Get display name for a device.
Args:
device_type_slug (str): device type slug.
Returns:
str: device display name.
Raises:
InvalidDeviceType: if device type slug is not supported.
Examples:
>>> balena.models.device.get_display_name('intel-edison')
u'Intel Edison'
>>> balena.models.device.get_display_name('raspberry-pi')
u'Raspberry Pi'
|
https://github.com/balena-io/balena-sdk-python/blob/29772fa523b15d597b0ddcd8178f9395cdda4450/balena/models/device.py#L575-L602
|
import sys
import binascii
import os
from datetime import datetime
import json
from collections import defaultdict
import semver
try:
from urllib.parse import urljoin
except ImportError:
from urlparse import urljoin
from ..base_request import BaseRequest
from .config import Config
from .device_os import DeviceOs
from ..settings import Settings
from ..auth import Auth
from .. import exceptions
from ..resources import Message
from .application import Application
from .release import Release
from .hup import Hup
LOCAL_MODE_MIN_OS_VERSION = '2.0.0'
LOCAL_MODE_MIN_SUPERVISOR_VERSION = '4.0.0'
LOCAL_MODE_ENV_VAR = 'RESIN_SUPERVISOR_LOCAL_MODE'
OVERRIDE_LOCK_ENV_VAR = 'RESIN_OVERRIDE_LOCK'
class DeviceStatus(object):
IDLE = "Idle"
CONFIGURING = "Configuring"
UPDATING = "Updating"
OFFLINE = "Offline"
POST_PROVISIONING = "Post Provisioning"
INACTIVE = "Inactive"
class Device(object):
def __init__(self):
self.base_request = BaseRequest()
self.config = Config()
self.settings = Settings()
self.application = Application()
self.auth = Auth()
self.release = Release()
self.device_os = DeviceOs()
self.hup = Hup()
def __upsert_device_config_variable(self, device, name, value):
try:
data = {
'device': device['id'],
'name': name,
'value': value
}
return self.base_request.request(
'device_config_variable', 'POST', data=data,
endpoint=self.settings.get('pine_endpoint')
)
except exceptions.RequestError as e:
if 'Unique key constraint violated' in e.message or 'must be unique' in e.message:
params = {
'filters': {
'device': device['id'],
'name': name
}
}
data = {
'value': value
}
return self.base_request.request(
'device_config_variable', 'PATCH', params=params, data=data,
endpoint=self.settings.get('pine_endpoint')
)
raise e
def __get_applied_device_config_variable_value(self, uuid, name):
raw_query = "$filter=uuid%20eq%20'{uuid}'&$expand=device_config_variable($select=value&$filter=name%20eq%20'{name}'),belongs_to__application($select=id&$expand=application_config_variable($select=value&$filter=name%20eq%20'{name}'))".format(name=name, uuid=uuid)
raw_data = self.base_request.request(
'device', 'GET', raw_query=raw_query,
endpoint=self.settings.get('pine_endpoint')
)['d']
if len(raw_data) > 0:
device_config = raw_data[0]['device_config_variable']
app_config = raw_data[0]['belongs_to__application'][0]['application_config_variable']
if device_config:
return device_config[0]['value']
elif app_config:
return app_config[0]['value']
return None
else:
raise exceptions.DeviceNotFound(uuid)
def get(self, uuid):
params = {
'filter': 'uuid',
'eq': uuid
}
try:
devices = self.base_request.request(
'device', 'GET', params=params,
endpoint=self.settings.get('pine_endpoint')
)['d']
if len(devices) > 1:
raise exceptions.AmbiguousDevice(uuid)
return devices[0]
except IndexError:
raise exceptions.DeviceNotFound(uuid)
def get_all(self):
return self.base_request.request(
'device', 'GET', endpoint=self.settings.get('pine_endpoint'))['d']
def get_all_by_application(self, name):
params = {
'filter': 'app_name',
'eq': name
}
app = self.base_request.request(
'application', 'GET', params=params,
endpoint=self.settings.get('pine_endpoint')
)['d']
if app:
params = {
'filter': 'belongs_to__application',
'eq': app[0]['id']
}
return self.base_request.request(
'device', 'GET', params=params,
endpoint=self.settings.get('pine_endpoint')
)['d']
def get_all_by_application_id(self, appid):
params = {
'filter': 'belongs_to__application',
'eq': appid
}
return self.base_request.request(
'device', 'GET', params=params,
endpoint=self.settings.get('pine_endpoint')
)['d']
def get_by_name(self, name):
params = {
'filter': 'device_name',
'eq': name
}
return self.base_request.request(
'device', 'GET', params=params,
endpoint=self.settings.get('pine_endpoint')
)['d']
def __get_single_install_summary(self, raw_data):
image = raw_data['image'][0]
service = image['is_a_build_of__service'][0]
release = None
if 'is_provided_by__release' in raw_data:
release = raw_data['is_provided_by__release'][0]
install = {
'service_name': service['service_name'],
'image_id': image['id'],
'service_id': service['id'],
}
if release:
install['commit'] = release['commit']
raw_data.pop('is_provided_by__release', None)
raw_data.pop('image', None)
install.update(raw_data)
return install
def get_with_service_details(self, uuid, expand_release=True):
release = ''
if expand_release:
release = ",is_provided_by__release($select=id,commit)"
raw_query = "$filter=uuid%20eq%20'{uuid}'&$expand=image_install($select=id,download_progress,status,install_date&$filter=status%20ne%20'deleted'&$expand=image($select=id&$expand=is_a_build_of__service($select=id,service_name)){release}),gateway_download($select=id,download_progress,status&$filter=status%20ne%20'deleted'&$expand=image($select=id&$expand=is_a_build_of__service($select=id,service_name)))".format(uuid=uuid, release=release)
raw_data = self.base_request.request(
'device', 'GET', raw_query=raw_query,
endpoint=self.settings.get('pine_endpoint')
)['d']
if len(raw_data) == 0:
raise exceptions.DeviceNotFound(uuid)
else:
raw_data = raw_data[0]
groupedServices = defaultdict(list)
for obj in [self.__get_single_install_summary(i) for i in raw_data['image_install']]:
groupedServices[obj.pop('service_name', None)].append(obj)
raw_data['current_services'] = dict(groupedServices)
raw_data['current_gateway_downloads'] = [self.__get_single_install_summary(i) for i in raw_data['gateway_download']]
raw_data.pop('image_install', None)
raw_data.pop('gateway_download', None)
return raw_data
def get_name(self, uuid):
return self.get(uuid)['device_name']
def get_application_name(self, uuid):
app_id = self.get(uuid)['belongs_to__application']['__id']
params = {
'filter': 'id',
'eq': app_id
}
return self.base_request.request(
'application', 'GET', params=params,
endpoint=self.settings.get('pine_endpoint')
)['d'][0]['app_name']
def has(self, uuid):
params = {
'filter': 'uuid',
'eq': uuid
}
return len(
self.base_request.request(
'device', 'GET', params=params,
endpoint=self.settings.get('pine_endpoint')
)['d']
) > 0
def is_online(self, uuid):
return self.get(uuid)['is_online']
def get_local_ip_address(self, uuid):
if self.is_online(uuid):
device = self.get(uuid)
return list(set(device['ip_address'].split()) -
set(device['vpn_address'].split()))
else:
raise exceptions.DeviceOffline(uuid)
def deactivate(self, uuid):
if self.has(uuid):
params = {
'filter': 'uuid',
'eq': uuid
}
data = {
'is_active': False
}
return self.base_request.request(
'device', 'PATCH', params=params, data=data,
endpoint=self.settings.get('pine_endpoint')
)
else:
raise exceptions.DeviceNotFound(uuid)
def remove(self, uuid):
params = {
'filter': 'uuid',
'eq': uuid
}
return self.base_request.request(
'device', 'DELETE', params=params,
endpoint=self.settings.get('pine_endpoint'), login=True
)
def identify(self, uuid):
data = {
'uuid': uuid
}
return self.base_request.request(
'blink', 'POST', data=data,
endpoint=self.settings.get('api_endpoint'), login=True
)
def rename(self, uuid, new_name):
if self.has(uuid):
params = {
'filter': 'uuid',
'eq': uuid
}
data = {
'device_name': new_name
}
return self.base_request.request(
'device', 'PATCH', params=params, data=data,
endpoint=self.settings.get('pine_endpoint')
)
else:
raise exceptions.DeviceNotFound(uuid)
def note(self, uuid, note):
if self.has(uuid):
params = {
'filter': 'uuid',
'eq': uuid
}
data = {
'note': note
}
return self.base_request.request(
'device', 'PATCH', params=params, data=data,
endpoint=self.settings.get('pine_endpoint')
)
else:
raise exceptions.DeviceNotFound(uuid)
|
Apache License 2.0
|
airbnb/streamalert
|
streamalert/shared/firehose.py
|
FirehoseClient.generate_firehose_name
|
python
|
def generate_firehose_name(cls, prefix, log_stream_name):
if prefix:
prefix += '_'
stream_name = cls.sanitized_value(cls.DEFAULT_FIREHOSE_FMT.format(prefix, log_stream_name))
if len(stream_name) <= cls.AWS_FIREHOSE_NAME_MAX_LEN:
return stream_name
base_name = stream_name[:cls.AWS_FIREHOSE_NAME_MAX_LEN - cls.FIREHOSE_NAME_MIN_HASH_LEN]
if not base_name.endswith('_'):
base_name = '{}_'.format(
base_name[:-1]
) if base_name[-2] != '_' else '{}_'.format(base_name[:-2])
return '{}{}'.format(
base_name, hashlib.md5(stream_name.encode()).hexdigest()
)[:cls.AWS_FIREHOSE_NAME_MAX_LEN]
|
Generate suffix of stream name complaint to firehose naming restriction, no
longer than 64 characters
Args:
prefix (str): The prefix defined in conf/global.json to firehose stream name
log_stream_name (str): The name of the log from conf/logs.json or conf/schemas/*.json
Returns:
str: suffix of stream name
|
https://github.com/airbnb/streamalert/blob/ceb680b7b821ebf6b6800adf164977e57c886fef/streamalert/shared/firehose.py#L305-L335
|
from collections import defaultdict
import json
import hashlib
import re
import backoff
import boto3
from botocore.exceptions import ClientError, HTTPClientError
from botocore.exceptions import ConnectionError as BotocoreConnectionError
from streamalert.shared import CLASSIFIER_FUNCTION_NAME
import streamalert.shared.helpers.boto as boto_helpers
from streamalert.shared.logger import get_logger
from streamalert.shared.metrics import MetricLogger
from streamalert.shared.backoff_handlers import (
backoff_handler,
giveup_handler,
success_handler
)
LOGGER = get_logger(__name__)
class FirehoseClient:
SPECIAL_CHAR_REGEX = re.compile(r'\W')
SPECIAL_CHAR_SUB = '_'
MAX_BACKOFF_ATTEMPTS = 10
MAX_BACKOFF_FIBO_VALUE = 8
MAX_BATCH_COUNT = 500
MAX_BATCH_SIZE = 4000 * 1000
MAX_RECORD_SIZE = 1000 * 1000 - 2
DEFAULT_FIREHOSE_FMT = '{}streamalert_{}'
EXCEPTIONS_TO_BACKOFF = (ClientError, BotocoreConnectionError, HTTPClientError)
_ENABLED_LOGS = dict()
AWS_FIREHOSE_NAME_MAX_LEN = 64
FIREHOSE_NAME_MIN_HASH_LEN = 8
def __init__(self, prefix, firehose_config=None, log_sources=None):
self._prefix = prefix if firehose_config and firehose_config.get('use_prefix', True) else ''
self._client = boto3.client('firehose', config=boto_helpers.default_config())
self.load_enabled_log_sources(firehose_config, log_sources, force_load=True)
@classmethod
def _records_to_json_list(cls, records):
return [
json.dumps(record, separators=(',', ':')) + '\n' for record in records
]
@classmethod
def _record_batches(cls, records, function_name):
records_json = cls._records_to_json_list(records)
current_batch_size = 0
current_batch = []
for record in records_json:
line_len = len(record)
if ((len(current_batch) == cls.MAX_BATCH_COUNT) or
(current_batch_size + line_len > cls.MAX_BATCH_SIZE)) and current_batch:
yield current_batch[:]
current_batch_size = 0
del current_batch[:]
if line_len > cls.MAX_RECORD_SIZE:
LOGGER.error('Record too large (%d) to send to Firehose:\n%s', line_len, record)
cls._log_failed(1, function_name)
continue
current_batch_size += line_len
current_batch.append(record)
if current_batch:
yield current_batch
@classmethod
def sanitized_value(cls, key):
return re.sub(cls.SPECIAL_CHAR_REGEX, cls.SPECIAL_CHAR_SUB, key)
@classmethod
def sanitize_keys(cls, record):
new_record = {}
for key, value in record.items():
sanitized_key = cls.sanitized_value(key)
if isinstance(value, dict):
new_record[sanitized_key] = cls.sanitize_keys(record[key])
else:
new_record[sanitized_key] = record[key]
return new_record
@staticmethod
def _strip_successful_records(batch, response):
success_indices = [idx for idx, rec in enumerate(response['RequestResponses'])
if rec.get('RecordId')]
for idx in sorted(success_indices, reverse=True):
del batch[idx]
def _categorize_records(self, payloads):
categorized_records = defaultdict(list)
for payload in payloads:
if not self.enabled_log_source(payload.log_schema_type):
continue
categorized_records[payload.log_schema_type].extend(payload.parsed_records)
return categorized_records
@classmethod
def _finalize(cls, response, stream_name, size, function_name):
if not response:
return
if response.get('FailedPutCount'):
failed_records = [
failed for failed in response['RequestResponses']
if failed.get('ErrorCode')
]
cls._log_failed(response['FailedPutCount'], function_name)
LOGGER.error(
'Failed to put the following records to firehose %s: %s',
stream_name,
json.dumps(failed_records[:1024], indent=2)
)
return
MetricLogger.log_metric(function_name, MetricLogger.FIREHOSE_RECORDS_SENT, size)
LOGGER.info(
'Successfully sent %d message(s) to firehose %s with RequestId \'%s\'',
size,
stream_name,
response.get('ResponseMetadata', {}).get('RequestId', '')
)
@classmethod
def _log_failed(cls, count, function_name):
MetricLogger.log_metric(function_name, MetricLogger.FIREHOSE_FAILED_RECORDS, count)
def _send_batch(self, stream_name, record_batch, function_name):
@backoff.on_predicate(backoff.fibo,
lambda resp: resp['FailedPutCount'] > 0,
max_tries=self.MAX_BACKOFF_ATTEMPTS,
max_value=self.MAX_BACKOFF_FIBO_VALUE,
on_backoff=backoff_handler(debug_only=False),
on_success=success_handler(),
on_giveup=giveup_handler())
@backoff.on_exception(backoff.fibo,
self.EXCEPTIONS_TO_BACKOFF,
max_tries=self.MAX_BACKOFF_ATTEMPTS,
on_backoff=backoff_handler(debug_only=False),
on_success=success_handler(),
on_giveup=giveup_handler())
def _firehose_request_helper(data):
LOGGER.debug('Sending %d records to firehose %s', len(data), stream_name)
response = self._client.put_record_batch(DeliveryStreamName=stream_name, Records=data)
if response['FailedPutCount'] > 0:
LOGGER.warning('Received non-zero FailedPutCount: %d', response['FailedPutCount'])
self._strip_successful_records(data, response)
return response
records_data = [
{'Data': record}
for record in record_batch
]
try:
return _firehose_request_helper(records_data)
except self.EXCEPTIONS_TO_BACKOFF:
LOGGER.exception('Firehose request failed')
self._log_failed(len(records_data), function_name)
@classmethod
|
Apache License 2.0
|
linrongc/solution_youtube8m_v3
|
parallel_eval.py
|
evaluation_loop
|
python
|
def evaluation_loop(fetches, saver, summary_writer, evl_metrics,
last_global_step_val):
global_step_val = -1
with tf.Session(
config=tf.ConfigProto(gpu_options=tf.GPUOptions(
allow_growth=True),allow_soft_placement=True)) as sess:
latest_checkpoint = tf.train.latest_checkpoint(FLAGS.train_dir)
if latest_checkpoint:
logging.info("Loading checkpoint for eval: %s", latest_checkpoint)
saver.restore(sess, latest_checkpoint)
global_step_val = os.path.basename(latest_checkpoint).split("-")[-1]
saver.save(
sess,
os.path.join(FLAGS.train_dir, "inference_model", "inference_model"))
else:
logging.info("No checkpoint file found.")
return global_step_val
if global_step_val == last_global_step_val:
logging.info(
"skip this checkpoint global_step_val=%s "
"(same as the previous one).", global_step_val)
return global_step_val
sess.run([tf.local_variables_initializer()])
coord = tf.train.Coordinator()
try:
threads = []
for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS):
threads.extend(
qr.create_threads(sess, coord=coord, daemon=True, start=True))
logging.info("enter eval_once loop global_step_val = %s. ",
global_step_val)
evl_metrics.clear()
examples_processed = 0
while not coord.should_stop():
batch_start_time = time.time()
output_data_dict = sess.run(fetches)
seconds_per_batch = time.time() - batch_start_time
labels_val = output_data_dict["labels"]
summary_val = output_data_dict["summary"]
example_per_second = labels_val.shape[0] / seconds_per_batch
examples_processed += labels_val.shape[0]
predictions = output_data_dict["predictions"]
if FLAGS.segment_labels:
predictions *= output_data_dict["label_weights"]
iteration_info_dict = evl_metrics.accumulate(predictions, labels_val,
output_data_dict["loss"])
iteration_info_dict["examples_per_second"] = example_per_second
iterinfo = utils.AddGlobalStepSummary(
summary_writer,
global_step_val,
iteration_info_dict,
summary_scope="Eval")
logging.info("examples_processed: %d | %s", examples_processed,
iterinfo)
except tf.errors.OutOfRangeError as e:
logging.info(
"Done with batched inference. Now calculating global performance "
"metrics.")
epoch_info_dict = evl_metrics.get()
epoch_info_dict["epoch_id"] = global_step_val
summary_writer.add_summary(summary_val, global_step_val)
epochinfo = utils.AddEpochSummary(
summary_writer,
global_step_val,
epoch_info_dict,
summary_scope="Eval")
logging.info(epochinfo)
evl_metrics.clear()
except Exception as e:
logging.info("Unexpected exception: %s", str(e))
coord.request_stop(e)
coord.request_stop()
coord.join(threads, stop_grace_period_secs=10)
logging.info("Total: examples_processed: %d", examples_processed)
return global_step_val
|
Run the evaluation loop once.
Args:
fetches: a dict of tensors to be run within Session.
saver: a tensorflow saver to restore the model.
summary_writer: a tensorflow summary_writer
evl_metrics: an EvaluationMetrics object.
last_global_step_val: the global step used in the previous evaluation.
Returns:
The global_step used in the latest model.
|
https://github.com/linrongc/solution_youtube8m_v3/blob/7d71bde4386e698cbba83931e2e3424238a2363a/parallel_eval.py#L228-L334
|
import json
import os
import time
from absl import logging
import eval_util
import frame_level_models
import nextvlad
import losses
import readers
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tensorflow import app
from tensorflow import flags
from tensorflow import gfile
from tensorflow.python.lib.io import file_io
from tensorflow.python.client import device_lib
import utils
import video_level_models
import numpy as np
FLAGS = flags.FLAGS
if __name__ == "__main__":
flags.DEFINE_string(
"train_dir", "/tmp/yt8m_model/",
"The directory to load the model files from. "
"The tensorboard metrics files are also saved to this "
"directory.")
flags.DEFINE_string(
"eval_data_pattern", "",
"File glob defining the evaluation dataset in tensorflow.SequenceExample "
"format. The SequenceExamples are expected to have an 'rgb' byte array "
"sequence feature as well as a 'labels' int64 context feature.")
flags.DEFINE_bool(
"segment_labels", False,
"If set, then --eval_data_pattern must be frame-level features (but with"
" segment_labels). Otherwise, --eval_data_pattern must be aggregated "
"video-level features. The model must also be set appropriately (i.e. to "
"read 3D batches VS 4D batches.")
flags.DEFINE_integer(
"num_gpu", 1, "The maximum number of GPU devices to use for training. "
)
flags.DEFINE_float("final_temperature", 1.0, "the temperature of final online learning")
flags.DEFINE_float("final_lambda", 1.0, "the lambda of final online learning")
flags.DEFINE_integer("batch_size", 1024,
"How many examples to process per batch.")
flags.DEFINE_integer("num_readers", 8,
"How many threads to use for reading input files.")
flags.DEFINE_boolean("run_once", False, "Whether to run eval only once.")
flags.DEFINE_integer("top_k", 20, "How many predictions to output per video.")
def find_class_by_name(name, modules):
modules = [getattr(module, name, None) for module in modules]
return next(a for a in modules if a)
def get_input_evaluation_tensors(reader,
data_pattern,
batch_size=1024,
num_readers=1):
logging.info("Using batch size of %d for evaluation.", batch_size)
with tf.name_scope("eval_input"):
files = gfile.Glob(data_pattern)
if not files:
raise IOError("Unable to find the evaluation files.")
logging.info("number of evaluation files: %d", len(files))
filename_queue = tf.train.string_input_producer(
files, shuffle=False, num_epochs=1)
eval_data = [
reader.prepare_reader(filename_queue) for _ in range(num_readers)
]
return tf.train.batch_join(
eval_data,
batch_size=batch_size,
capacity=3 * batch_size,
allow_smaller_final_batch=True,
enqueue_many=True)
def build_graph(reader,
model,
eval_data_pattern,
label_loss_fn,
batch_size=1024,
num_readers=1):
global_step = tf.Variable(0, trainable=False, name="global_step")
input_data_dict = get_input_evaluation_tensors(
reader, eval_data_pattern, batch_size=batch_size, num_readers=num_readers)
video_id_batch = input_data_dict["video_ids"]
model_input_raw = input_data_dict["video_matrix"]
labels_batch = input_data_dict["labels"]
num_frames = input_data_dict["num_frames"]
tf.summary.histogram("model_input_raw", model_input_raw)
local_device_protos = device_lib.list_local_devices()
gpus = [x.name for x in local_device_protos if x.device_type == "GPU"]
gpus = gpus[:FLAGS.num_gpu]
num_gpus = len(gpus)
if num_gpus > 0:
logging.info("Using the following GPUs to train: " + str(gpus))
num_towers = num_gpus
device_string = "/gpu:%d"
else:
logging.info("No GPUs found. Training on CPU.")
num_towers = 1
device_string = "/cpu:%d"
print("flags!!!", device_string)
if FLAGS.segment_labels:
label_weights = input_data_dict["label_weights"]
else:
label_weights = None
offset = np.array([4. / 512] * 1024 + [0] * 128)
offset = tf.constant(offset, dtype=tf.float32)
eigen_val = tf.constant(np.sqrt(np.load("yt8m_pca/eigenvals.npy")[:1024, 0]), dtype=tf.float32)
model_input = tf.multiply(model_input_raw - offset, tf.pad(eigen_val + 1e-4, [[0, 128]], constant_values=1.))
tower_logits = []
for i in range(num_towers):
with tf.device(device_string % i):
with tf.variable_scope("tower_%d" % i, reuse=False):
result = model.create_model(
model_input,
num_frames=num_frames,
vocab_size=reader.num_classes,
labels=labels_batch,
is_training=False)
logits = result["logits"]
tower_logits.append(logits)
with tf.device(device_string % 0):
with tf.variable_scope("ensemble"):
ftr_mean = tf.reduce_mean(model_input, axis=1)
print("ftr mean shape: ", ftr_mean.get_shape().as_list())
ftr_mean = slim.batch_norm(ftr_mean,
center=True,
scale=True,
fused=False,
is_training=False,
scope="mix_weights_bn")
mix_weights = slim.fully_connected(ftr_mean, num_towers, activation_fn=None,
weights_initializer=slim.variance_scaling_initializer(),
scope="mix_weights")
mix_weights = tf.nn.softmax(mix_weights, axis=-1)
tf.summary.histogram("mix_weights", mix_weights)
logits = tf.stack(tower_logits, axis=1)
final_logit = tf.reduce_sum(tf.multiply(logits, tf.expand_dims(mix_weights, axis=-1)), axis=1,
keepdims=False)
final_predictions = tf.nn.sigmoid(final_logit)
final_label_loss = label_loss_fn.calculate_loss(final_predictions, labels_batch, label_weights=label_weights)
tf.summary.scalar("label_loss", final_label_loss)
tf.add_to_collection("global_step", global_step)
tf.add_to_collection("loss", final_label_loss)
tf.add_to_collection("predictions", final_predictions)
tf.add_to_collection("input_batch", model_input)
tf.add_to_collection("input_batch_raw", model_input_raw)
tf.add_to_collection("video_id_batch", video_id_batch)
tf.add_to_collection("num_frames", num_frames)
tf.add_to_collection("labels", tf.cast(labels_batch, tf.float32))
if FLAGS.segment_labels:
tf.add_to_collection("label_weights", input_data_dict["label_weights"])
tf.add_to_collection("summary_op", tf.summary.merge_all())
|
Apache License 2.0
|
googleapis/artman
|
artman/pipelines/gapic_generation.py
|
GapicTaskFactory._get_grpc_codegen_tasks
|
python
|
def _get_grpc_codegen_tasks(self, language, **kw):
grpc_factory = grpc_gen.ProtoGenTaskFactory(gen_grpc=True,
language=language, **kw)
return grpc_factory.get_grpc_codegen_tasks(**kw)
|
Return the code generation tasks for making a GRPC package.
Args:
language (str): The language code is being generated in.
kw (dict): Additional keyword arguments passed through to the
grpc codegen task factory.
Returns:
list: A list of Task subclasses defined by the GRPC task factory.
|
https://github.com/googleapis/artman/blob/ded22a6640a0e59d02fbe7716dcafd530b754e6d/artman/pipelines/gapic_generation.py#L182-L196
|
from __future__ import absolute_import
from artman.pipelines import code_generation as code_gen
from artman.pipelines import grpc_generation as grpc_gen
from artman.tasks import emit_success
from artman import tasks
from artman.utils import task_utils
_GAPIC_REQUIRED = ['service_yaml', 'gapic_yaml', 'language', 'aspect']
_DISCOGAPIC_REQUIRED = ['gapic_yaml', 'language']
class GapicConfigPipeline(code_gen.CodeGenerationPipelineBase):
def __init__(self, **kwargs):
super(GapicConfigPipeline, self).__init__(
GapicConfigTaskFactory(), **kwargs)
class DiscoGapicConfigPipeline(code_gen.CodeGenerationPipelineBase):
def __init__(self, **kwargs):
super(DiscoGapicConfigPipeline, self).__init__(
DiscoGapicConfigTaskFactory(), **kwargs)
class GapicConfigTaskFactory(code_gen.TaskFactoryBase):
def get_tasks(self, **kwargs):
return task_utils.instantiate_tasks([
tasks.protoc.ProtoDescGenTask,
tasks.gapic.GapicConfigGenTask,
tasks.gapic.GapicConfigMoveTask
], kwargs)
def get_validate_kwargs(self):
return code_gen.COMMON_REQUIRED
def get_invalid_kwargs(self):
return ['language']
class DiscoGapicConfigTaskFactory(code_gen.TaskFactoryBase):
def get_tasks(self, **kwargs):
return task_utils.instantiate_tasks([
tasks.gapic.DiscoGapicConfigGenTask,
tasks.gapic.GapicConfigMoveTask
], kwargs)
def get_validate_kwargs(self):
return code_gen.COMMON_DISCO_REQUIRED
def get_invalid_kwargs(self):
return ['language']
class GapicOnlyClientPipeline(code_gen.CodeGenerationPipelineBase):
def __init__(self, language, **kwargs):
super(GapicOnlyClientPipeline, self).__init__(
GapicOnlyTaskFactory(),
language=language,
**kwargs
)
class GapicClientPipeline(code_gen.CodeGenerationPipelineBase):
def __init__(self, language, **kwargs):
super(GapicClientPipeline, self).__init__(
GapicTaskFactory(),
language=language,
**kwargs
)
class DiscoGapicClientPipeline(code_gen.CodeGenerationPipelineBase):
def __init__(self, language, **kwargs):
super(DiscoGapicClientPipeline, self).__init__(
DiscoGapicTaskFactory(),
language=language,
**kwargs
)
class CSharpPackagingTaskFactory(code_gen.TaskFactoryBase):
def get_tasks(self, **kwargs):
return [
tasks.gapic.CSharpGapicPackagingTask
]
def get_validate_kwargs(self):
return ['gapic_code_dir', 'grpc_code_dir', 'proto_code_dir', 'gapic_yaml']
def get_invalid_kwargs(self):
return []
PACKAGING_TASK_FACTORY_DICT = {
'csharp': CSharpPackagingTaskFactory
}
class GapicTaskFactory(code_gen.TaskFactoryBase):
def get_tasks(self, **kwargs):
answer = []
if 'gapic_code_dir' in kwargs:
answer = self._get_gapic_codegen_tasks(**kwargs)
for grpc_task in self._get_grpc_codegen_tasks(**kwargs):
if grpc_task not in answer:
answer.append(grpc_task)
for packaging_task in self._get_packaging_tasks(**kwargs):
if packaging_task not in answer:
answer.append(packaging_task)
answer += emit_success.TASKS
return task_utils.instantiate_tasks(answer, kwargs)
def _get_gapic_codegen_tasks(self, language, **kwargs):
return [
tasks.protoc.ProtoDescGenTask,
tasks.descriptor.get_descriptor_set_task(language),
tasks.package_metadata.PackageMetadataConfigGenTask,
tasks.gapic.GapicCodeGenTask,
tasks.format.get_format_task(language),
]
|
Apache License 2.0
|
googleapis/python-talent
|
google/cloud/talent_v4beta1/services/company_service/client.py
|
CompanyServiceClient.get_company
|
python
|
def get_company(
self,
request: Union[company_service.GetCompanyRequest, dict] = None,
*,
name: str = None,
retry: retries.Retry = gapic_v1.method.DEFAULT,
timeout: float = None,
metadata: Sequence[Tuple[str, str]] = (),
) -> company.Company:
has_flattened_params = any([name])
if request is not None and has_flattened_params:
raise ValueError(
"If the `request` argument is set, then none of "
"the individual field arguments should be set."
)
if not isinstance(request, company_service.GetCompanyRequest):
request = company_service.GetCompanyRequest(request)
if name is not None:
request.name = name
rpc = self._transport._wrapped_methods[self._transport.get_company]
metadata = tuple(metadata) + (
gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)),
)
response = rpc(request, retry=retry, timeout=timeout, metadata=metadata,)
return response
|
r"""Retrieves specified company.
Args:
request (Union[google.cloud.talent_v4beta1.types.GetCompanyRequest, dict]):
The request object. Request for getting a company by
name.
name (str):
Required. The resource name of the company to be
retrieved.
The format is
"projects/{project_id}/tenants/{tenant_id}/companies/{company_id}",
for example,
"projects/api-test-project/tenants/foo/companies/bar".
If tenant id is unspecified, the default tenant is used,
for example, "projects/api-test-project/companies/bar".
This corresponds to the ``name`` field
on the ``request`` instance; if ``request`` is provided, this
should not be set.
retry (google.api_core.retry.Retry): Designation of what errors, if any,
should be retried.
timeout (float): The timeout for this request.
metadata (Sequence[Tuple[str, str]]): Strings which should be
sent along with the request as metadata.
Returns:
google.cloud.talent_v4beta1.types.Company:
A Company resource represents a
company in the service. A company is the
entity that owns job postings, that is,
the hiring entity responsible for
employing applicants for the job
position.
|
https://github.com/googleapis/python-talent/blob/a9324567ba2757dfc0c3b688c968210862f2c8d1/google/cloud/talent_v4beta1/services/company_service/client.py#L444-L525
|
from collections import OrderedDict
from distutils import util
import os
import re
from typing import Dict, Optional, Sequence, Tuple, Type, Union
import pkg_resources
from google.api_core import client_options as client_options_lib
from google.api_core import exceptions as core_exceptions
from google.api_core import gapic_v1
from google.api_core import retry as retries
from google.auth import credentials as ga_credentials
from google.auth.transport import mtls
from google.auth.transport.grpc import SslCredentials
from google.auth.exceptions import MutualTLSChannelError
from google.oauth2 import service_account
from google.cloud.talent_v4beta1.services.company_service import pagers
from google.cloud.talent_v4beta1.types import common
from google.cloud.talent_v4beta1.types import company
from google.cloud.talent_v4beta1.types import company as gct_company
from google.cloud.talent_v4beta1.types import company_service
from .transports.base import CompanyServiceTransport, DEFAULT_CLIENT_INFO
from .transports.grpc import CompanyServiceGrpcTransport
from .transports.grpc_asyncio import CompanyServiceGrpcAsyncIOTransport
class CompanyServiceClientMeta(type):
_transport_registry = (
OrderedDict()
)
_transport_registry["grpc"] = CompanyServiceGrpcTransport
_transport_registry["grpc_asyncio"] = CompanyServiceGrpcAsyncIOTransport
def get_transport_class(cls, label: str = None,) -> Type[CompanyServiceTransport]:
if label:
return cls._transport_registry[label]
return next(iter(cls._transport_registry.values()))
class CompanyServiceClient(metaclass=CompanyServiceClientMeta):
@staticmethod
def _get_default_mtls_endpoint(api_endpoint):
if not api_endpoint:
return api_endpoint
mtls_endpoint_re = re.compile(
r"(?P<name>[^.]+)(?P<mtls>\.mtls)?(?P<sandbox>\.sandbox)?(?P<googledomain>\.googleapis\.com)?"
)
m = mtls_endpoint_re.match(api_endpoint)
name, mtls, sandbox, googledomain = m.groups()
if mtls or not googledomain:
return api_endpoint
if sandbox:
return api_endpoint.replace(
"sandbox.googleapis.com", "mtls.sandbox.googleapis.com"
)
return api_endpoint.replace(".googleapis.com", ".mtls.googleapis.com")
DEFAULT_ENDPOINT = "jobs.googleapis.com"
DEFAULT_MTLS_ENDPOINT = _get_default_mtls_endpoint.__func__(
DEFAULT_ENDPOINT
)
@classmethod
def from_service_account_info(cls, info: dict, *args, **kwargs):
credentials = service_account.Credentials.from_service_account_info(info)
kwargs["credentials"] = credentials
return cls(*args, **kwargs)
@classmethod
def from_service_account_file(cls, filename: str, *args, **kwargs):
credentials = service_account.Credentials.from_service_account_file(filename)
kwargs["credentials"] = credentials
return cls(*args, **kwargs)
from_service_account_json = from_service_account_file
@property
def transport(self) -> CompanyServiceTransport:
return self._transport
@staticmethod
def company_path(project: str, tenant: str, company: str,) -> str:
return "projects/{project}/tenants/{tenant}/companies/{company}".format(
project=project, tenant=tenant, company=company,
)
@staticmethod
def parse_company_path(path: str) -> Dict[str, str]:
m = re.match(
r"^projects/(?P<project>.+?)/tenants/(?P<tenant>.+?)/companies/(?P<company>.+?)$",
path,
)
return m.groupdict() if m else {}
@staticmethod
def common_billing_account_path(billing_account: str,) -> str:
return "billingAccounts/{billing_account}".format(
billing_account=billing_account,
)
@staticmethod
def parse_common_billing_account_path(path: str) -> Dict[str, str]:
m = re.match(r"^billingAccounts/(?P<billing_account>.+?)$", path)
return m.groupdict() if m else {}
@staticmethod
def common_folder_path(folder: str,) -> str:
return "folders/{folder}".format(folder=folder,)
@staticmethod
def parse_common_folder_path(path: str) -> Dict[str, str]:
m = re.match(r"^folders/(?P<folder>.+?)$", path)
return m.groupdict() if m else {}
@staticmethod
def common_organization_path(organization: str,) -> str:
return "organizations/{organization}".format(organization=organization,)
@staticmethod
def parse_common_organization_path(path: str) -> Dict[str, str]:
m = re.match(r"^organizations/(?P<organization>.+?)$", path)
return m.groupdict() if m else {}
@staticmethod
def common_project_path(project: str,) -> str:
return "projects/{project}".format(project=project,)
@staticmethod
def parse_common_project_path(path: str) -> Dict[str, str]:
m = re.match(r"^projects/(?P<project>.+?)$", path)
return m.groupdict() if m else {}
@staticmethod
def common_location_path(project: str, location: str,) -> str:
return "projects/{project}/locations/{location}".format(
project=project, location=location,
)
@staticmethod
def parse_common_location_path(path: str) -> Dict[str, str]:
m = re.match(r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)$", path)
return m.groupdict() if m else {}
def __init__(
self,
*,
credentials: Optional[ga_credentials.Credentials] = None,
transport: Union[str, CompanyServiceTransport, None] = None,
client_options: Optional[client_options_lib.ClientOptions] = None,
client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO,
) -> None:
if isinstance(client_options, dict):
client_options = client_options_lib.from_dict(client_options)
if client_options is None:
client_options = client_options_lib.ClientOptions()
use_client_cert = bool(
util.strtobool(os.getenv("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false"))
)
client_cert_source_func = None
is_mtls = False
if use_client_cert:
if client_options.client_cert_source:
is_mtls = True
client_cert_source_func = client_options.client_cert_source
else:
is_mtls = mtls.has_default_client_cert_source()
if is_mtls:
client_cert_source_func = mtls.default_client_cert_source()
else:
client_cert_source_func = None
if client_options.api_endpoint is not None:
api_endpoint = client_options.api_endpoint
else:
use_mtls_env = os.getenv("GOOGLE_API_USE_MTLS_ENDPOINT", "auto")
if use_mtls_env == "never":
api_endpoint = self.DEFAULT_ENDPOINT
elif use_mtls_env == "always":
api_endpoint = self.DEFAULT_MTLS_ENDPOINT
elif use_mtls_env == "auto":
if is_mtls:
api_endpoint = self.DEFAULT_MTLS_ENDPOINT
else:
api_endpoint = self.DEFAULT_ENDPOINT
else:
raise MutualTLSChannelError(
"Unsupported GOOGLE_API_USE_MTLS_ENDPOINT value. Accepted "
"values: never, auto, always"
)
if isinstance(transport, CompanyServiceTransport):
if credentials or client_options.credentials_file:
raise ValueError(
"When providing a transport instance, "
"provide its credentials directly."
)
if client_options.scopes:
raise ValueError(
"When providing a transport instance, provide its scopes "
"directly."
)
self._transport = transport
else:
Transport = type(self).get_transport_class(transport)
self._transport = Transport(
credentials=credentials,
credentials_file=client_options.credentials_file,
host=api_endpoint,
scopes=client_options.scopes,
client_cert_source_for_mtls=client_cert_source_func,
quota_project_id=client_options.quota_project_id,
client_info=client_info,
always_use_jwt_access=True,
)
def create_company(
self,
request: Union[company_service.CreateCompanyRequest, dict] = None,
*,
parent: str = None,
company: gct_company.Company = None,
retry: retries.Retry = gapic_v1.method.DEFAULT,
timeout: float = None,
metadata: Sequence[Tuple[str, str]] = (),
) -> gct_company.Company:
has_flattened_params = any([parent, company])
if request is not None and has_flattened_params:
raise ValueError(
"If the `request` argument is set, then none of "
"the individual field arguments should be set."
)
if not isinstance(request, company_service.CreateCompanyRequest):
request = company_service.CreateCompanyRequest(request)
if parent is not None:
request.parent = parent
if company is not None:
request.company = company
rpc = self._transport._wrapped_methods[self._transport.create_company]
metadata = tuple(metadata) + (
gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)),
)
response = rpc(request, retry=retry, timeout=timeout, metadata=metadata,)
return response
|
Apache License 2.0
|
ouranosinc/xclim
|
xclim/indices/fwi.py
|
initial_spread_index
|
python
|
def initial_spread_index(ws, ffmc):
mo = 147.2 * (101.0 - ffmc) / (59.5 + ffmc)
ff = 19.1152 * np.exp(mo * -0.1386) * (1.0 + (mo ** 5.31) / 49300000.0)
isi = ff * np.exp(0.05039 * ws)
return isi
|
Initialize spread index.
Parameters
----------
ws : array
Noon wind speed [km/h].
ffmc : array
Fine fuel moisture code.
Returns
-------
array
Initial spread index.
|
https://github.com/ouranosinc/xclim/blob/7d5a2ea03af433bd088ea72d9402e1e090531c39/xclim/indices/fwi.py#L430-L448
|
from collections import OrderedDict
from typing import Mapping, Optional, Sequence, Union
import numpy as np
import xarray as xr
from numba import jit, vectorize
from xclim.core.units import convert_units_to, declare_units
from . import run_length as rl
default_params = dict(
temp_start_thresh=(12, "degC"),
temp_end_thresh=(5, "degC"),
snow_thresh=(0.01, "m"),
temp_condition_days=3,
snow_condition_days=3,
carry_over_fraction=0.75,
wetting_efficiency_fraction=0.75,
dc_start=15,
dmc_start=6,
ffmc_start=85,
prec_thresh=(1.0, "mm/d"),
dc_dry_factor=5,
dmc_dry_factor=2,
snow_cover_days=60,
snow_min_cover_frac=0.75,
snow_min_mean_depth=(0.1, "m"),
)
DAY_LENGTHS = np.array(
[
[11.5, 10.5, 9.2, 7.9, 6.8, 6.2, 6.5, 7.4, 8.7, 10, 11.2, 11.8],
[10.1, 9.6, 9.1, 8.5, 8.1, 7.8, 7.9, 8.3, 8.9, 9.4, 9.9, 10.2],
12 * [9],
[7.9, 8.4, 8.9, 9.5, 9.9, 10.2, 10.1, 9.7, 9.1, 8.6, 8.1, 7.8],
[6.5, 7.5, 9, 12.8, 13.9, 13.9, 12.4, 10.9, 9.4, 8, 7, 6],
]
)
DAY_LENGTH_FACTORS = np.array(
[
[6.4, 5.0, 2.4, 0.4, -1.6, -1.6, -1.6, -1.6, -1.6, 0.9, 3.8, 5.8],
12 * [1.39],
[-1.6, -1.6, -1.6, 0.9, 3.8, 5.8, 6.4, 5.0, 2.4, 0.4, -1.6, -1.6],
]
)
@jit
def _day_length(lat: Union[int, float], mth: int):
if -30 > lat >= -90:
dl = DAY_LENGTHS[0, :]
elif -15 > lat >= -30:
dl = DAY_LENGTHS[1, :]
elif 15 > lat >= -15:
return 9
elif 30 > lat >= 15:
dl = DAY_LENGTHS[3, :]
elif 90 >= lat >= 30:
dl = DAY_LENGTHS[4, :]
elif lat > 90 or lat < -90:
raise ValueError("Invalid lat specified.")
else:
raise ValueError
return dl[mth - 1]
@jit
def _day_length_factor(lat: float, mth: int):
if -15 > lat >= -90:
dlf = DAY_LENGTH_FACTORS[0, :]
elif 15 > lat >= -15:
return 1.39
elif 90 >= lat >= 15:
dlf = DAY_LENGTH_FACTORS[2, :]
elif lat > 90 or lat < -90:
raise ValueError("Invalid lat specified.")
else:
raise ValueError
return dlf[mth - 1]
@vectorize
def _fine_fuel_moisture_code(t, p, w, h, ffmc0):
mo = (147.2 * (101.0 - ffmc0)) / (59.5 + ffmc0)
if p > 0.5:
rf = p - 0.5
if mo > 150.0:
mo = (
mo
+ 42.5 * rf * np.exp(-100.0 / (251.0 - mo)) * (1.0 - np.exp(-6.93 / rf))
) + (0.0015 * (mo - 150.0) ** 2) * np.sqrt(rf)
elif mo <= 150.0:
mo = mo + 42.5 * rf * np.exp(-100.0 / (251.0 - mo)) * (
1.0 - np.exp(-6.93 / rf)
)
if mo > 250.0:
mo = 250.0
ed = (
0.942 * (h ** 0.679)
+ (11.0 * np.exp((h - 100.0) / 10.0))
+ 0.18 * (21.1 - t) * (1.0 - 1.0 / np.exp(0.1150 * h))
)
if mo < ed:
ew = (
0.618 * (h ** 0.753)
+ (10.0 * np.exp((h - 100.0) / 10.0))
+ 0.18 * (21.1 - t) * (1.0 - 1.0 / np.exp(0.115 * h))
)
if mo < ew:
kl = 0.424 * (1.0 - ((100.0 - h) / 100.0) ** 1.7) + (
0.0694 * np.sqrt(w)
) * (1.0 - ((100.0 - h) / 100.0) ** 8)
kw = kl * (0.581 * np.exp(0.0365 * t))
m = ew - (ew - mo) / 10.0 ** kw
elif mo > ew:
m = mo
elif mo == ed:
m = mo
else:
kl = 0.424 * (1.0 - (h / 100.0) ** 1.7) + (0.0694 * np.sqrt(w)) * (
1.0 - (h / 100.0) ** 8
)
kw = kl * (0.581 * np.exp(0.0365 * t))
m = ed + (mo - ed) / 10.0 ** kw
ffmc = (59.5 * (250.0 - m)) / (147.2 + m)
if ffmc > 101.0:
ffmc = 101.0
elif ffmc <= 0.0:
ffmc = 0.0
return ffmc
@vectorize
def _duff_moisture_code(t, p, h, mth: int, lat: float, dmc0: float):
if np.isnan(dmc0):
return np.nan
dl = _day_length(lat, mth)
if t < -1.1:
rk = 0
else:
rk = 1.894 * (t + 1.1) * (100.0 - h) * dl * 0.0001
if p > 1.5:
ra = p
rw = 0.92 * ra - 1.27
wmi = 20.0 + 280.0 / np.exp(
0.023 * dmc0
)
if dmc0 <= 33.0:
b = 100.0 / (0.5 + 0.3 * dmc0)
else:
if dmc0 <= 65.0:
b = 14.0 - 1.3 * np.log(dmc0)
else:
b = 6.2 * np.log(dmc0) - 17.2
wmr = wmi + (1000 * rw) / (48.77 + b * rw)
pr = 43.43 * (5.6348 - np.log(wmr - 20.0))
else:
pr = dmc0
if pr < 0.0:
pr = 0.0
dmc = pr + rk
if dmc < 0:
dmc = 0.0
return dmc
@vectorize
def _drought_code(t, p, mth, lat, dc0):
fl = _day_length_factor(lat, mth)
if t < -2.8:
t = -2.8
pe = (0.36 * (t + 2.8) + fl) / 2
if pe < 0.0:
pe = 0.0
if p > 2.8:
ra = p
rw = 0.83 * ra - 1.27
smi = 800.0 * np.exp(-dc0 / 400.0)
dr = dc0 - 400.0 * np.log(1.0 + ((3.937 * rw) / smi))
if dr > 0.0:
dc = dr + pe
elif np.isnan(dc0):
dc = np.NaN
else:
dc = pe
else:
dc = dc0 + pe
return dc
|
Apache License 2.0
|
timsusa/aptly_api_cli
|
aptly_cli/api/api.py
|
AptlyApiRequests.file_list_directories
|
python
|
def file_list_directories(self):
r = requests.get(self.cfg['route_file'], headers=self.headers)
resp_data = json.loads(r.content)
return resp_data
|
LIST DIRECTORIES
GET /api/files
List all directories.
Response: list of directory names.
Example:
$ curl http://localhost:8080/api/files
|
https://github.com/timsusa/aptly_api_cli/blob/011ba8e7f464726b336b53f6b2cbdc4490b5180c/aptly_cli/api/api.py#L396-L410
|
import json
import requests
import os
from ConfigParser import ConfigParser
class AptlyApiRequests(object):
def __init__(self):
self.configfile = None
cfg_file = self.get_config_from_file()
if cfg_file is not None:
basic_url = cfg_file['basic_url']
port = cfg_file['port']
else:
basic_url = 'http://localhost'
port = ':9003'
print "No Config file found, take default values"
self.headers = {'content-type': 'application/json'}
url = basic_url + port
self.cfg = {
'route_snap': url + '/api/snapshots/',
'route_repo': url + '/api/repos/',
'route_file': url + '/api/files/',
'route_pack': url + '/api/packages/',
'route_pub': url + '/api/publish/',
'route_graph': url + '/api/graph/',
'route_vers': url + '/api/version/',
}
@staticmethod
def _out(arg_list):
for y in arg_list:
print json.dumps(y, indent=2)
@staticmethod
def get_config_from_file():
home = os.path.expanduser("~")
name = home + '/aptly-cli.conf'
config_file = ConfigParser()
if not config_file.read(name):
cfg_file = None
else:
cfg_file = {
'basic_url': config_file.get('general', 'basic_url'),
'port': config_file.get('general', 'port'),
'prefixes_mirrors': config_file.get('general', 'prefixes_mirrors'),
'save_last_snap': config_file.get('general', 'save_last_snap'),
'save_last_pkg': config_file.get('general', 'save_last_pkg'),
'repos_to_clean': config_file.get('general', 'repos_to_clean'),
'package_prefixes': config_file.get('general', 'package_prefixes'),
'repos': config_file.get('3rd_party', 'repos'),
'staging_snap_pre_post': config_file.get('3rd_party', 'staging_snap_pre_post')
}
return cfg_file
def repo_create(self, repo_name, data=None):
if data is None:
post_data = {
'Name': repo_name
}
else:
post_data = {
'Name': repo_name,
'Comment': data.comment,
'DefaultDistribution': data.default_distribution,
'DefaultComponent': data.default_component
}
r = requests.post(self.cfg['route_repo'][:-1],
data=json.dumps(post_data),
headers=self.headers)
resp_data = json.loads(r.content)
return resp_data
def repo_show(self, repo_name):
r = requests.get(self.cfg['route_repo'] + repo_name, headers=self.headers)
resp_data = json.loads(r.content)
return resp_data
def repo_show_packages(self, repo_name, pkg_to_search=None, with_deps=0, detail='compact'):
if pkg_to_search is None:
param = {
'withDeps': with_deps,
'format': detail
}
else:
param = {
'q': pkg_to_search,
'withDeps': with_deps,
'format': detail
}
url = str(self.cfg['route_repo']) + str(repo_name) + '/packages'
r = requests.get(url, params=param, headers=self.headers)
resp_data = json.loads(r.content)
return resp_data
def repo_edit(self, repo_name, data=None):
if data is None:
data = {}
else:
data = {
'Comment': data.comment,
'DefaultDistribution': data.default_distribution,
'DefaultComponent': data.default_component
}
r = requests.put(self.cfg['route_repo'] + repo_name,
data=json.dumps(data),
headers=self.headers)
resp_data = json.loads(r.content)
return resp_data
def repo_list(self):
r = requests.get(self.cfg['route_repo'], headers=self.headers)
resp_data = json.loads(r.content)
return resp_data
def repo_delete(self, repo_name):
r = requests.delete(self.cfg['route_repo'] + repo_name,
headers=self.headers)
resp_data = json.loads(r.content)
return resp_data
def repo_add_package_from_upload(self, repo_name, dir_name, file_name=None, params=None):
if file_name is None:
url = self.cfg['route_repo'] + repo_name + '/file/' + dir_name
else:
url = self.cfg['route_repo'] + repo_name + '/file/' + dir_name + '/' + file_name
if params is not None:
query_param = {
'noRemove': params.no_remove,
'forceReplace': params.force_replace
}
else:
query_param = {
'noRemove': 0,
'forceReplace': 0
}
r = requests.post(url,
params=query_param,
headers=self.headers)
resp_data = json.loads(r.content)
return resp_data
def repo_add_packages_by_key(self, repo_name, package_key_list):
if len(package_key_list) <= 0:
print 'No packages were given... aborting'
return
url = self.cfg['route_repo'] + repo_name + '/packages'
param = {
'PackageRefs': package_key_list
}
r = requests.post(url, data=json.dumps(param), headers=self.headers)
resp_data = json.loads(r.content)
return resp_data
def repo_delete_packages_by_key(self, repo_name, package_key_list):
url = self.cfg['route_repo'] + repo_name + '/packages'
data = {
'PackageRefs': package_key_list
}
r = requests.delete(url, data=json.dumps(data), headers=self.headers)
resp_data = json.loads(r.content)
return resp_data
|
MIT License
|
google/uncertainty-baselines
|
uncertainty_baselines/datasets/base.py
|
BaseDataset.__init__
|
python
|
def __init__(
self,
name: str,
dataset_builder: tfds.core.DatasetBuilder,
split: Union[float, str, tfds.Split],
seed: Optional[Union[int, tf.Tensor]] = None,
is_training: Optional[bool] = None,
shuffle_buffer_size: Optional[int] = None,
num_parallel_parser_calls: int = tf.data.experimental.AUTOTUNE,
drop_remainder: bool = False,
fingerprint_key: Optional[str] = None,
download_data: bool = False,
decoders: Optional[Dict[str, tfds.decode.Decoder]] = None,
cache: bool = False):
self.name = name
self._split = split
if seed is None:
self._seed = tf.random.uniform((2,), maxval=int(1e10), dtype=tf.int32)
elif isinstance(seed, int):
self._seed = (seed, seed + 1)
elif isinstance(seed, tf.Tensor) and tf.shape(seed).shape == 0:
self._seed = tf.stack([seed, seed+1])
else:
self._seed = seed
self._num_parallel_parser_calls = num_parallel_parser_calls
self._drop_remainder = drop_remainder
self._download_data = download_data
self._decoders = decoders
self._cache = cache
known_splits = [
'train', 'validation', 'test', tfds.Split.TRAIN, tfds.Split.VALIDATION,
tfds.Split.TEST
]
if is_training is None:
if split in known_splits:
is_training = split in ['train', tfds.Split.TRAIN]
else:
raise ValueError(
'Received ambiguous split {}, must set is_training for splits other '
'than "train", "validation", "test".'.format(split))
self._is_training = is_training
if 'train' in dataset_builder.info.splits and shuffle_buffer_size is None:
num_train_examples = dataset_builder.info.splits['train'].num_examples
self._shuffle_buffer_size = num_train_examples
else:
self._shuffle_buffer_size = shuffle_buffer_size
super().__init__(
dataset_builder=dataset_builder,
fingerprint_key=fingerprint_key,
split=self._split,
label_key='label')
self._enumerate_id_key = '_enumerate_added_per_step_id'
self._add_fingerprint_key = False
if self._fingerprint_key is None:
self._fingerprint_key = '_enumerate_added_example_id'
self._add_fingerprint_key = True
|
Create a tf.data.Dataset builder.
Args:
name: the name of this dataset.
dataset_builder: the TFDS dataset builder used to read examples given a
split.
split: a dataset split, either a custom tfds.Split or one of the
tfds.Split enums [TRAIN, VALIDAITON, TEST] or their lowercase string
names. For Criteo it can also be a float to represent the level of data
augmentation. For speech commands it can be a tuple of a string and
float for shifted data splits.
seed: the seed used as a source of randomness.
is_training: whether or not `split` is the training split. This is
necessary because tf.data subsplits can sometimes be derived from the
training split, such as when using part of the training split as a
validation set, and this complicates calculating `is_training`
in these cases. Only required when the passed split is not one of
['train', 'validation', 'test', tfds.Split.TRAIN, tfds.Split.VALIDATION,
tfds.Split.TEST], otherwise it is set automatically.
shuffle_buffer_size: the number of example to use in the shuffle buffer
for tf.data.Dataset.shuffle().
num_parallel_parser_calls: the number of parallel threads to use while
preprocessing in tf.data.Dataset.map().
drop_remainder: whether or not to drop the last batch of data if the
number of points is not exactly equal to the batch size.
fingerprint_key: The name of the feature holding a string that will be
used to create an element id using a fingerprinting function. If None,
then `ds.enumerate()` is added before the `ds.map(preprocessing_fn)` is
called and an `id` field is added to the example Dict.
download_data: Whether or not to download data before loading.
decoders: Optional TFDS decoders to provide to
`dataset_builder.as_dataset`, the same as passed to `tfds.load`.
cache: Whether or not to cache the dataset after it is returned from
dataset_builder.as_dataset(...) (before preprocessing is applied).
|
https://github.com/google/uncertainty-baselines/blob/d37c17c4b08a88d6546bbf299b59127a03398404/uncertainty_baselines/datasets/base.py#L87-L187
|
import logging
from typing import Callable, Dict, Optional, Sequence, Type, TypeVar, Union
from robustness_metrics.common import ops
from robustness_metrics.common import types
from robustness_metrics.datasets import tfds as robustness_metrics_base
import tensorflow.compat.v2 as tf
import tensorflow_datasets as tfds
PreProcessFn = Callable[
[Union[int, tf.Tensor, Sequence[tf.Tensor], types.Features]],
types.Features]
_EnumeratedPreProcessFn = Callable[
[int, Union[int, tf.Tensor, Sequence[tf.Tensor], types.Features]],
types.Features]
def get_validation_percent_split(
dataset_builder,
validation_percent,
split,
test_split=tfds.Split.TEST):
if validation_percent < 0.0 or validation_percent >= 1.0:
raise ValueError(
'validation_percent must be in [0, 1), received {}.'.format(
validation_percent))
if validation_percent == 0.:
train_split = tfds.Split.TRAIN
validation_split = tfds.Split.VALIDATION
else:
num_train_examples = dataset_builder.info.splits['train'].num_examples
num_validation_examples = int(num_train_examples * validation_percent)
train_split = tfds.core.ReadInstruction(
'train', to=-num_validation_examples, unit='abs')
validation_split = tfds.core.ReadInstruction(
'train', from_=-num_validation_examples, unit='abs')
if split in ['train', tfds.Split.TRAIN]:
new_split = train_split
elif split in ['validation', tfds.Split.VALIDATION]:
new_split = validation_split
elif split in ['test', tfds.Split.TEST]:
new_split = test_split
elif isinstance(split, str):
raise ValueError(
'Invalid string name for split, must be one of ["train", "validation"'
', "test"], received {}.'.format(split))
else:
new_split = split
return new_split
class BaseDataset(robustness_metrics_base.TFDSDataset):
|
Apache License 2.0
|
izgzhen/nightly
|
src/launcher.py
|
Launcher.process_job_to_launch
|
python
|
def process_job_to_launch(self, job):
job_name = job["name"]
assert "enabled" in job, job
if not job["enabled"]:
logger.info(f"Job {job_name} is not enabled, thus skipped")
return
if "cwd" not in job:
job["cwd"] = None
if "env" not in job:
job["env"] = {}
if job["schedule"] in ["nightly"]:
last_run = self.db.get_last_run_started(job)
if last_run is not None:
now = datetime.datetime.now()
interval = schedule_to_interval(job["schedule"])
if last_run + interval > now:
return None
elif job["schedule"] == "daemon":
jobs = self.db.fetch_running_jobs_of(job)
if len(jobs) > 0:
assert len(jobs) == 1
return None
elif job["schedule"] == "once":
pass
else:
raise Exception("Unknown schedule: " + job["schedule"])
storage = self.get_storage(job["storage_type"])
if storage is None:
return None
if "host" in job:
compute = self.get_compute_by_host(job["host"])
else:
compute = self.get_compute(job["compute_type"])
if compute is None:
logger.warn("Can't find compute resource for " + str(job))
return None
self.launch_job(job, compute, storage)
self.db.commit()
|
Process job for further scheduling needs
|
https://github.com/izgzhen/nightly/blob/83c4aec63b450f4479b7813a61e5807e169a2e58/src/launcher.py#L104-L149
|
import yaml
import json
import datetime
import tempfile
import time
import sys
import os
from msbase.utils import getenv, datetime_str
from msbase.logging import logger
from common import get_jobs_config
from model import DB
from resource import Resource
from notif import send_text
def schedule_to_interval(sched):
if sched == "nightly":
return datetime.timedelta(days=1)
raise Exception("Unknown schedule: " + sched)
class Launcher(object):
def __init__(self):
super().__init__()
self.resources_config = yaml.safe_load(open(getenv("CONFIG_RESOURCES"), "r"))
self.db = DB()
def get_storage(self, type_: str):
for s in self.resources_config["storage"]:
if s["type"] == type_:
return s
def get_master_as_compute(self):
return self.get_compute_by_host(self.resources_config["master"]["host"])
def get_master_as_storage(self):
return self.get_storage_by_host(self.resources_config["master"]["host"])
def get_compute(self, type_: str):
for s in self.resources_config["compute"]:
if s["type"] == type_:
return s
def get_compute_by_host(self, host: str):
for s in self.resources_config["compute"]:
if s["host"] == host:
return s
def get_storage_by_host(self, host: str):
for s in self.resources_config["storage"]:
if s["host"] == host:
return s
def create_new_job_row(self, job, compute, storage):
job_started = datetime.datetime.now()
return self.db.insert_row_get_id({
"job_name": job["name"],
"cwd": job["cwd"],
"env": json.dumps(job["env"]),
"job_steps": json.dumps(job["steps"]),
"job_persisted": json.dumps(job["persisted"]),
"job_started": job_started,
"job_status": "running",
"compute": json.dumps(compute),
"storage": json.dumps(storage)
}, "log")
def launch_job(self, job, compute, storage):
job_id = self.create_new_job_row(job, compute, storage)
task_file = tempfile.NamedTemporaryFile(mode="w", delete=False)
task_file.write(json.dumps({
"cwd": job["cwd"],
"env": job["env"],
"steps": job["steps"]
}))
task_file.close()
resource = Resource(compute, storage)
runner_dir = resource.compute["nightly_tmp"]
resource.scp_to(task_file.name, runner_dir + "/%s-input.json" % job_id, resource.compute)
resource.scp_to("src/runner.py", runner_dir + "/runner.py", resource.compute)
resource.ssh_exec_on_node("cd " + runner_dir + "; nohup python3 runner.py %s > /dev/null 2>&1 &" % job_id, resource.compute)
try:
pid = int(resource.ssh_exec_on_node("sleep 3; cat " + runner_dir + "/" + str(job_id) + "-pid.txt", resource.compute).strip())
except Exception:
import pdb, traceback
extype, value, tb = sys.exc_info()
traceback.print_exc()
send_text("Exception -- in PDB now")
pdb.post_mortem(tb)
self.db.update_pid(job_id, pid)
logger.info("Launched job (job_id: %s, PID: %s): %s" % (job_id, pid, job["name"]))
time.sleep(1)
|
Apache License 2.0
|
luci/recipes-py
|
recipe_modules/swarming/api.py
|
TaskResult.url
|
python
|
def url(self):
return 'https://cas-viewer.appspot.com/{0}/blobs/{1}/tree'.format(
self.instance,
self.digest,
)
|
The URL of the associated CAS UI page.
|
https://github.com/luci/recipes-py/blob/32f0255a6910af47c6cb35546032ae4d60fe9a92/recipe_modules/swarming/api.py#L962-L967
|
from __future__ import absolute_import
import base64
import collections
import contextlib
import copy
from future.utils import iteritems
from past.types import basestring
import six
from .state import TaskState
from recipe_engine import recipe_api
DEFAULT_CIPD_VERSION = 'git_revision:25296136e6cb014ce9ae1ff61d43728246ae43b8'
class TaskRequest(object):
ResultDBCfg = collections.namedtuple('ResultDBCfg', ['enable'])
def __init__(self, api):
self._api = api
self._name = ''
self._priority = 200
self._service_account = ''
self._slices = [self.TaskSlice(api)]
self._user = None
self._tags = None
self._realm = api.context.realm
self._resultdb = self.ResultDBCfg(enable=False)
def _copy(self):
api = self._api
self._api = None
slices = self._slices
self._slices = []
ret = copy.deepcopy(self)
ret._api = api
ret._slices.extend([s._copy() for s in slices])
self._api = api
self._slices = slices
return ret
def __getitem__(self, idx):
return self._slices[idx]
def __len__(self):
return len(self._slices)
def add_slice(self, slice_obj):
ret = self._copy()
ret._slices.append(slice_obj)
return ret
def with_slice(self, idx, slice_obj):
assert isinstance(slice_obj, self.TaskSlice)
assert 0 <= idx < len(self._slices)
ret = self._copy()
ret._slices[idx] = slice_obj
return ret
@property
def name(self):
return self._name
def with_name(self, name):
assert isinstance(name, basestring)
ret = self._copy()
ret._name = name
return ret
@property
def priority(self):
return self._priority
def with_priority(self, priority):
assert isinstance(priority, int)
ret = self._copy()
ret._priority = priority
return ret
@property
def realm(self):
return self._realm
def with_realm(self, realm):
assert isinstance(realm, basestring)
ret = self._copy()
ret._realm = realm
return ret
@property
def resultdb(self):
return self._resultdb
def with_resultdb(self):
ret = self._copy()
ret._resultdb = self.ResultDBCfg(enable=True)
return ret
@property
def service_account(self):
return self._service_account
def with_service_account(self, account):
assert isinstance(account, basestring)
ret = self._copy()
ret._service_account = account
return ret
@property
def user(self):
return self._user
def with_user(self, user):
assert isinstance(user, basestring)
ret = self._copy()
ret._user = user
return ret
@property
def tags(self):
return self._tags
def with_tags(self, tags):
assert isinstance(tags, dict)
tags_list = []
for tag, values in iteritems(tags):
assert isinstance(tag, basestring)
assert isinstance(values, list)
for value in values:
assert isinstance(value, basestring)
tags_list.append('%s:%s' % (tag, value))
ret = self._copy()
ret._tags = sorted(tags_list)
return ret
def _from_jsonish(self, d):
tags = collections.defaultdict(list)
for tag in d.get('tags', ()):
k, v = tag.split(':', 1)
tags[k].append(v)
ret = (self.
with_name(d['name']).
with_priority(int(d['priority'])).
with_service_account(d['service_account']).
with_tags(tags))
if 'user' in d:
ret = ret.with_user(d['user'])
if 'resultdb' in d:
ret = ret.with_resultdb()
if 'realm' in d:
ret = ret.with_realm(d['realm'])
ret._slices = [
self.TaskSlice(self._api)._from_jsonish(ts) for ts in d['task_slices']
]
return ret
def to_jsonish(self):
realm = self.realm
if self.resultdb.enable and not realm:
realm = self._api.buildbucket.builder_realm
ret = {
'name': self.name,
'priority': str(self.priority),
'service_account': self.service_account,
'task_slices': [task_slice.to_jsonish() for task_slice in self._slices],
}
if self.resultdb.enable:
ret['resultdb'] = self.resultdb._asdict()
if self.user:
ret['user'] = self.user
if self.tags:
ret['tags'] = self.tags
if realm:
ret['realm'] = realm
return ret
class TaskSlice(object):
def __init__(self, api):
self._cipd_ensure_file = api.cipd.EnsureFile()
self._command = []
self._relative_cwd = ""
self._dimensions = {}
self._env_prefixes = {}
self._env_vars = {}
self._execution_timeout_secs = 1200
self._expiration_secs = 300
self._wait_for_capacity = False
self._grace_period_secs = 30
self._idempotent = False
self._io_timeout_secs = 60
self._named_caches = {}
self._outputs = []
self._secret_bytes = b''
self._cas_input_root = ''
self._lower_priority = False
self._containment_type = 'NONE'
self._limit_processes = 0
self._limit_total_committed_memory = 0
self._api = api
def _copy(self):
api = self._api
self._api = None
ret = copy.deepcopy(self)
ret._api = api
self._api = api
return ret
@property
def command(self):
return self._command[:]
def with_command(self, cmd):
assert isinstance(cmd, list)
assert all(isinstance(s, basestring) for s in cmd)
ret = self._copy()
ret._command = cmd
return ret
@property
def relative_cwd(self):
return self._relative_cwd
def with_relative_cwd(self, relative_cwd):
assert isinstance(relative_cwd, basestring)
ret = self._copy()
ret._relative_cwd = relative_cwd
return ret
@property
def cas_input_root(self):
return self._cas_input_root
def with_cas_input_root(self, digest):
assert isinstance(digest, basestring)
assert digest.count('/') == 1
ret = self._copy()
ret._cas_input_root = digest
return ret
@property
def dimensions(self):
return copy.deepcopy(self._dimensions)
def with_dimensions(self, **kwargs):
ret = self._copy()
ret._dimensions = self.dimensions
for k, v in iteritems(kwargs):
assert isinstance(k, basestring) and (isinstance(v, basestring) or
v is None)
if v is None:
ret._dimensions.pop(k, None)
else:
ret._dimensions[k] = v
return ret
@property
def cipd_ensure_file(self):
return copy.deepcopy(self._cipd_ensure_file)
def with_cipd_ensure_file(self, ensure_file):
assert isinstance(ensure_file, self._api.cipd.EnsureFile)
ret = self._copy()
ret._cipd_ensure_file = ensure_file
return ret
@property
def outputs(self):
return copy.copy(self._outputs)
def with_outputs(self, outputs):
assert isinstance(outputs, list)
assert all(isinstance(output, basestring) for output in outputs)
ret = self._copy()
ret._outputs = outputs
return ret
@property
def env_vars(self):
return copy.deepcopy(self._env_vars)
def with_env_vars(self, **kwargs):
ret = self._copy()
ret._env_vars = self.env_vars
for k, v in iteritems(kwargs):
assert (isinstance(k, basestring) and
(isinstance(v, basestring) or v is None))
if v is None:
ret._env_vars.pop(k, None)
else:
ret._env_vars[k] = v
return ret
@property
def env_prefixes(self):
return copy.deepcopy(self._env_prefixes)
def with_env_prefixes(self, **kwargs):
ret = self._copy()
ret._env_prefixes = self.env_prefixes
for k, v in iteritems(kwargs):
assert (isinstance(k, basestring) and
(isinstance(v, list) or v is None)), (
'%r must be a string and %r None or a list of strings' %
(k, v))
if v is None:
ret._env_prefixes.pop(k, None)
else:
assert all(isinstance(prefix, basestring) for prefix in v)
ret._env_prefixes.setdefault(k, []).extend(v)
return ret
@property
def expiration_secs(self):
return self._expiration_secs
def with_expiration_secs(self, secs):
assert isinstance(secs, int) and secs >= 0
ret = self._copy()
ret._expiration_secs = secs
return ret
@property
def wait_for_capacity(self):
return self._wait_for_capacity
def with_wait_for_capacity(self, b):
assert isinstance(b, bool)
ret = self._copy()
ret._wait_for_capacity = b
return ret
@property
def io_timeout_secs(self):
return self._io_timeout_secs
def with_io_timeout_secs(self, secs):
assert isinstance(secs, int) and secs >= 0
ret = self._copy()
ret._io_timeout_secs = secs
return ret
@property
def execution_timeout_secs(self):
return self._execution_timeout_secs
def with_execution_timeout_secs(self, secs):
assert isinstance(secs, int) and secs >= 0
ret = self._copy()
ret._execution_timeout_secs = secs
return ret
@property
def grace_period_secs(self):
return self._grace_period_secs
def with_grace_period_secs(self, secs):
assert isinstance(secs, int) and secs >= 0
ret = self._copy()
ret._grace_period_secs = secs
return ret
@property
def idempotent(self):
return self._idempotent
def with_idempotent(self, idempotent):
assert isinstance(idempotent, bool)
ret = self._copy()
ret._idempotent = idempotent
return ret
@property
def secret_bytes(self):
return self._secret_bytes
def with_secret_bytes(self, data):
assert isinstance(data, six.binary_type)
ret = self._copy()
ret._secret_bytes = data
return ret
@property
def lower_priority(self):
return self._lower_priority
def with_lower_priority(self, lower_priority):
assert isinstance(lower_priority, bool)
ret = self._copy()
ret._lower_priority = lower_priority
return ret
@property
def containment_type(self):
return self._containment_type
def with_containment_type(self, containment_type):
assert containment_type in ('NONE', 'AUTO', 'JOB_OBJECT')
ret = self._copy()
ret._containment_type = containment_type
return ret
@property
def limit_processes(self):
return self._limit_processes
def with_limit_processes(self, limit_processes):
assert isinstance(limit_processes, int)
ret = self._copy()
ret._limit_processes = limit_processes
return ret
@property
def limit_total_committed_memory(self):
return self._limit_total_committed_memory
def with_limit_total_committed_memory(self, limit_total_committed_memory):
assert isinstance(limit_total_committed_memory, int)
ret = self._copy()
ret._limit_total_committed_memory = limit_total_committed_memory
return ret
@property
def named_caches(self):
return self._named_caches
def with_named_caches(self, named_caches):
assert isinstance(named_caches, dict)
ret = self._copy()
ret._named_caches.update(named_caches)
return ret
def _from_jsonish(self, d):
p = d['properties']
containment = p['containment']
def kv_list_to_dict(kv_list):
ret = {}
for kv in kv_list:
ret[kv['key']] = kv['value']
return ret
ret = (self.
with_command(p['command']).
with_relative_cwd(p['relative_cwd']).
with_dimensions(**kv_list_to_dict(p['dimensions'])).
with_outputs(p['outputs']).
with_env_vars(**kv_list_to_dict(p['env'])).
with_env_prefixes(**kv_list_to_dict(p['env_prefixes'])).
with_execution_timeout_secs(int(p['execution_timeout_secs'])).
with_grace_period_secs(int(p['grace_period_secs'])).
with_idempotent(p['idempotent']).
with_io_timeout_secs(int(p['io_timeout_secs'])).
with_lower_priority(containment['lower_priority']).
with_containment_type(containment['containment_type']).
with_limit_processes(int(containment['limit_processes'])).
with_limit_total_committed_memory(
int(containment['limit_total_committed_memory'])))
if 'cas_input_root' in p:
digest = p['cas_input_root']['digest']
ret = ret.with_cas_input_root(digest['hash'] + '/' +
digest['size_bytes'])
if 'secret_bytes' in p:
ret = ret.with_secret_bytes(base64.b64decode(p['secret_bytes']))
if 'cipd_input' in p:
ensure_file = self._api.cipd.EnsureFile()
for pkg in p['cipd_input']['packages']:
ensure_file.add_package(
pkg['package_name'], pkg['version'], subdir=pkg['path'])
ret = ret.with_cipd_ensure_file(ensure_file)
if 'caches' in p:
ret = ret.with_named_caches({c['name']: c['path'] for c in p['caches']})
if 'wait_for_capacity' in d:
ret = ret.with_wait_for_capacity(d['wait_for_capacity'])
return ret.with_expiration_secs(int(d['expiration_secs']))
def to_jsonish(self):
dims = self.dimensions
assert len(dims) >= 1 and dims['pool']
properties = {
'command': self.command,
'relative_cwd': self.relative_cwd,
'dimensions': [{
'key': k,
'value': v
} for k, v in sorted(iteritems(dims))],
'outputs': self.outputs,
'env': [{
'key': k,
'value': v
} for k, v in sorted(iteritems(self.env_vars))],
'env_prefixes': [{
'key': k,
'value': v
} for k, v in sorted(iteritems(self.env_prefixes))],
'execution_timeout_secs': str(self.execution_timeout_secs),
'grace_period_secs': str(self.grace_period_secs),
'idempotent': self.idempotent,
'io_timeout_secs': str(self.io_timeout_secs),
'containment': {
'lower_priority':
self.lower_priority,
'containment_type':
self.containment_type,
'limit_processes':
str(self.limit_processes),
'limit_total_committed_memory':
str(self.limit_total_committed_memory),
},
}
if self.cas_input_root:
h, b = self.cas_input_root.split('/')
properties['cas_input_root'] = {
'cas_instance': self._api.cas.instance,
'digest': {
'hash': h,
'size_bytes': b,
},
}
if self.secret_bytes:
properties['secret_bytes'] = base64.b64encode(
self.secret_bytes).decode()
if self.cipd_ensure_file.packages:
properties['cipd_input'] = {
'packages': [{
'package_name': pkg.name,
'path': path or '.',
'version': pkg.version,
}
for path in sorted(self.cipd_ensure_file.packages)
for pkg in self.cipd_ensure_file.packages[path]]
}
if self._named_caches:
properties['caches'] = [{
'name': name,
'path': path
} for name, path in sorted(iteritems(self.named_caches))]
return {
'expiration_secs': str(self.expiration_secs),
'wait_for_capacity': self.wait_for_capacity,
'properties': properties,
}
class TaskRequestMetadata(object):
def __init__(self, swarming_server, task_json):
self._task_json = task_json
self._swarming_server = swarming_server
@property
def name(self):
return self._task_json['request']['name']
@property
def id(self):
return self._task_json['task_id']
@property
def task_ui_link(self):
return '%s/task?id=%s' % (self._swarming_server, self.id)
@property
def invocation(self):
return self._task_json.get('task_result', {}).get('resultdb_info',
{}).get('invocation')
class TaskResult(object):
class CasOutputs(object):
def __init__(self, digest, instance):
self._digest = digest
self._instance = instance
@property
def digest(self):
return self._digest
@property
def instance(self):
return self._instance
@property
|
Apache License 2.0
|
ndf-zz/asfv1
|
asfv1.py
|
fv1parse.parsewarn
|
python
|
def parsewarn(self, msg, line=None):
if line is None:
line = self.prevline
self.dowarn('warning: {} on line {}'.format(msg, line))
|
Emit parse warning.
|
https://github.com/ndf-zz/asfv1/blob/0a1c7badf9d970d785c267c8bf2d1e5c5df3aac1/asfv1.py#L872-L876
|
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
import argparse
import sys
import shlex
import struct
VERSION = '1.2.7'
PROGLEN = 128
DELAYSIZE = 32767
MAXERR = 10
REF_S1_14 = 2.0**14
MIN_S1_14 = -2.0**1
MAX_S1_14 = (2.0**(1+14)-1.0)/REF_S1_14
REF_S1_9 = 2.0**9
MIN_S1_9 = -2.0**1
MAX_S1_9 = (2.0**(1+9)-1.0)/REF_S1_9
REF_S_10 = 2.0**10
MIN_S_10 = -2.0**0
MAX_S_10 = (2.0**(0+10)-1.0)/REF_S_10
REF_S_15 = 2.0**15
MIN_S_15 = -2.0**0
MAX_S_15 = (2.0**(0+15)-1.0)/REF_S_15
REF_S4_6 = 2.0**6
MIN_S4_6 = -2.0**4
MAX_S4_6 = (2.0**(4+6)-1.0)/REF_S4_6
REF_S_23 = 2.0**23
MIN_S_23 = -2.0**0
MAX_S_23 = (2.0**(0+23)-1.0)/REF_S_23
M1 = 0x01
M2 = 0x03
M5 = 0x1f
M6 = 0x3f
M8 = 0xff
M9 = 0x1ff
M11 = 0x7ff
M14 = 0x3fff
M15 = 0x7fff
M16 = 0xffff
M24 = 0xffffff
M27 = 0x7ffffff
M32 = 0xffffffff
def quiet(msg):
pass
def warning(msg):
print(msg, file=sys.stderr)
def error(msg):
print(msg, file=sys.stderr)
def bintoihex(buf, spos=0x0000, width=4):
c = 0
olen = len(buf)
ret = ""
while(c < olen):
rem = olen-c
if rem > width:
rem = width
sum = rem
adr = c + spos
l = ':{0:02X}{1:04X}00'.format(rem,adr)
sum += ((adr>>8)&M8)+(adr&M8)
for j in range(0,rem):
nb = buf[c+j]
l += '{0:02X}'.format(nb)
sum = (sum + nb)&M8
l += '{0:02X}'.format((~sum+1)&M8)
ret += l + '\n'
c += rem
ret += ':00000001FF\n'
return ret
op_tbl = {
'RDA': [0b00000, (M15,5),(M11,21)],
'RMPA': [0b00001, (M11,21)],
'WRA': [0b00010, (M15,5),(M11,21)],
'WRAP': [0b00011, (M15,5),(M11,21)],
'RDAX': [0b00100, (M6,5),(M16,16)],
'RDFX': [0b00101, (M6,5),(M16,16)],
'LDAX': [0b00101, (M6,5)],
'WRAX': [0b00110, (M6,5),(M16,16)],
'WRHX': [0b00111, (M6,5),(M16,16)],
'WRLX': [0b01000, (M6,5),(M16,16)],
'MAXX': [0b01001, (M6,5),(M16,16)],
'ABSA': [0b01001, ],
'MULX': [0b01010, (M6,5)],
'LOG': [0b01011, (M16,16),(M11,5)],
'EXP': [0b01100, (M16,16),(M11,5)],
'SOF': [0b01101, (M16,16),(M11,5)],
'AND': [0b01110, (M24,8)],
'CLR': [0b01110, ],
'OR' : [0b01111, (M24,8)],
'XOR': [0b10000, (M24,8)],
'NOT': [0b10000, (M24,8)],
'SKP': [0b10001, (M5,27),(M6,21)],
'JMP': [0b10001, (M5,27),(M6,21)],
'NOP': [0b10001, ],
'WLDS': [0b10010, (M1,29),(M9,20),(M15,5)],
'WLDR': [0b10010, (M2,29),(M16,13),(M2,5)],
'JAM': [0b10011, (M2,6)],
'CHO': [0b10100, (M2,30),(M2,21),(M6,24),(M16,5)],
'RAW': [0b00000, (M32,0)],
}
def op_gen(mcode):
gen = op_tbl[mcode[0]]
ret = gen[0]
nargs = len(gen)
i = 1
while i < nargs:
if i < len(mcode):
ret |= (mcode[i]&gen[i][0]) << gen[i][1]
i += 1
return ret
class fv1parse(object):
def __init__(self, source=None, clamp=True,
spinreals=False, wfunc=None, efunc=None):
self.program = bytearray(512)
self.doclamp = clamp
self.spinreals = spinreals
self.dowarn = wfunc
self.doerror = efunc
self.delaymem = 0
self.prevline = 0
self.sline = 0
self.icnt = 0
self.sym = None
self.ecount = 0
self.source = source.split('\n')
self.linebuf = []
self.pl = []
self.mem = {}
self.jmptbl = {
}
self.symtbl = {
'SIN0_RATE': 0x00,
'SIN0_RANGE': 0x01,
'SIN1_RATE': 0x02,
'SIN1_RANGE': 0x03,
'RMP0_RATE': 0x04,
'RMP0_RANGE': 0x05,
'RMP1_RATE': 0x06,
'RMP1_RANGE': 0x07,
'POT0': 0x10,
'POT1': 0x11,
'POT2': 0x12,
'ADCL': 0x14,
'ADCR': 0x15,
'DACL': 0x16,
'DACR': 0x17,
'ADDR_PTR': 0x18,
'REG0': 0x20,
'REG1': 0x21,
'REG2': 0x22,
'REG3': 0x23,
'REG4': 0x24,
'REG5': 0x25,
'REG6': 0x26,
'REG7': 0x27,
'REG8': 0x28,
'REG9': 0x29,
'REG10': 0x2a,
'REG11': 0x2b,
'REG12': 0x2c,
'REG13': 0x2d,
'REG14': 0x2e,
'REG15': 0x2f,
'REG16': 0x30,
'REG17': 0x31,
'REG18': 0x32,
'REG19': 0x33,
'REG20': 0x34,
'REG21': 0x35,
'REG22': 0x36,
'REG23': 0x37,
'REG24': 0x38,
'REG25': 0x39,
'REG26': 0x3a,
'REG27': 0x3b,
'REG28': 0x3c,
'REG29': 0x3d,
'REG30': 0x3e,
'REG31': 0x3f,
'SIN0': 0x00,
'SIN1': 0x01,
'RMP0': 0x02,
'RMP1': 0x03,
'RDA': 0x00,
'SOF': 0x02,
'RDAL': 0x03,
'SIN': 0x00,
'COS': 0x01,
'REG': 0x02,
'COMPC': 0x04,
'COMPA': 0x08,
'RPTR2': 0x10,
'NA': 0x20,
'RUN': 0x10,
'ZRC': 0x08,
'ZRO': 0x04,
'GEZ': 0x02,
'NEG': 0x01,
}
def __mkopcodes__(self):
proglen = len(self.pl)
self.dowarn('info: Read {} instructions from input'.format(
proglen))
icnt = proglen
while icnt < PROGLEN:
self.pl.append({'cmd':['SKP',0x00,0x00],
'addr':icnt,
'target':None})
icnt += 1
oft = 0
for i in self.pl:
struct.pack_into('>I', self.program, oft, op_gen(i['cmd']))
oft += 4
def __register__(self, mnemonic=''):
xtra = ''
if mnemonic:
xtra = ' for ' + mnemonic
reg = self.__expression__()
if int(reg) == reg:
reg = int(reg)
if reg < 0 or reg > 63:
self.parseerror('Register {0:#x} out of range'.format(reg)
+ xtra)
reg = 0
else:
self.parseerror('Invalid register {}'.format(reg)
+ xtra)
reg = 0
return reg
def __d_15__(self,mnemonic=''):
xtra = ''
if mnemonic:
xtra = ' for ' + mnemonic
oft = self.__expression__()
if oft < MIN_S_15 or oft > MAX_S_15:
oft = int(round(oft))
if oft < -0x8000 or oft > M15:
if self.doclamp:
if oft < -0x8000:
oft = -0x8000
elif oft > M15:
oft = M15
self.parsewarn('Address clamped to {0:#x}'.format(oft)
+ xtra)
else:
self.parseerror('Invalid address {0:#x}'.format(oft)
+ xtra)
oft = 0
else:
oft = int(round(oft * REF_S_15))
return oft
def __offset__(self, mnemonic=''):
xtra = ''
if mnemonic:
xtra = ' for ' + mnemonic
oft = self.__expression__()
if int(oft) == oft:
oft = int(oft)
if oft < 0 or oft > M6:
self.parseerror('Offset {} out of range'.format(oft)
+ xtra)
oft = 0
else:
self.parseerror('Invalid offset {}'.format(oft)
+ xtra)
oft = 0
return oft
def __condition__(self, mnemonic=''):
xtra = ''
if mnemonic:
xtra = ' for ' + mnemonic
cond = self.__expression__()
if int(cond) == cond:
cond = int(cond)
if cond < 0 or cond > M5:
self.parseerror('Condition {0:#x} out of range'.format(
cond) + xtra)
cond = 0
else:
self.parseerror('Invalid condition {}'.format(cond) + xtra)
cond = 0
return cond
def __chotype__(self):
chotype = self.sym['stxt']
self.__next__()
if chotype in ['RDA','SOF','RDAL']:
chotype = self.symtbl[chotype]
else:
self.parseerror('Invalid CHO type {}'.format(chotype))
chotype = 0
return chotype
def __choflags__(self, lfo=None):
flags = self.__expression__()
if int(flags) == flags:
flags = int(flags)
if flags < 0 or flags > M6:
self.parseerror('Invalid flags {0:#x} for CHO'.format(flags))
flags = 0
else:
self.parseerror('Invalid flags {} for CHO'.format(flags))
flags = 0
oflags = flags
if lfo&0x02:
flags = oflags & 0x3e
if oflags != flags:
self.parsewarn('RMP flags set to {0:#x} for CHO'.format(
flags))
else:
flags = oflags & 0x0f
if oflags != flags:
self.parsewarn('SIN flags set to {0:#x} for CHO'.format(
flags))
return flags
def __s1_14__(self, mnemonic=''):
xtra = ''
if mnemonic:
xtra = ' for ' + mnemonic
arg = self.__expression__()
if isinstance(arg, int):
if arg < 0 or arg > M16:
if self.doclamp:
if arg < 0:
arg = 0
elif arg > M16:
arg = M16
self.parsewarn('S1_14 arg clamped to {0:#x}'.format(arg)
+ xtra)
else:
self.parseerror('S1_14 arg {0:#x} out of range'.format(
arg) + xtra)
arg = 0
else:
if arg < MIN_S1_14 or arg > MAX_S1_14:
if self.doclamp:
if arg < MIN_S1_14:
arg = MIN_S1_14
elif arg > MAX_S1_14:
arg = MAX_S1_14
self.parsewarn('S1_14 arg clamped to {}'.format(arg)
+ xtra)
else:
self.parseerror('S1_14 arg {} out of range'.format(arg)
+ xtra)
arg = 0
arg = int(round(arg * REF_S1_14))
return arg
def __s_10__(self, mnemonic=''):
xtra = ''
if mnemonic:
xtra = ' for ' + mnemonic
arg = self.__expression__()
if isinstance(arg, int):
if arg < 0 or arg > M11:
if self.doclamp:
if arg < 0:
arg = 0
elif arg > M11:
arg = M11
self.parsewarn('S_10 arg clamped to {0:#x}'.format(
arg) + xtra)
else:
self.parseerror('S_10 arg {0:#x} out of range'.format(
arg) + xtra)
arg = 0
else:
if arg < MIN_S_10 or arg > MAX_S_10:
if self.doclamp:
if arg < MIN_S_10:
arg = MIN_S_10
elif arg > MAX_S_10:
arg = MAX_S_10
self.parsewarn('S_10 arg clamped to {}'.format(arg)
+ xtra)
else:
self.parseerror('S_10 arg {} out of range'.format(arg)
+ xtra)
arg = 0
arg = int(round(arg * REF_S_10))
return arg
def __s_15a__(self, mnemonic=''):
xtra = ''
if mnemonic:
xtra = ' for ' + mnemonic
arg = self.__expression__()
if self.spinreals and arg == int(arg):
arg = int(arg)
if isinstance(arg, int):
if arg < 0 or arg > M16:
if self.doclamp:
if arg < 0:
arg = 0
elif arg > M16:
arg = M16
self.parsewarn('S_15 arg clamped to {0:#x}'.format(
arg) + xtra)
else:
self.parseerror('S_15 arg {0:#x} out of range'.format(
arg) + xtra)
arg = 0
else:
if arg < MIN_S_15 or arg > MAX_S_15:
if self.doclamp:
if arg < MIN_S_15:
arg = MIN_S_15
elif arg > MAX_S_15:
arg = MAX_S_15
self.parsewarn('S_15 arg clamped to {}'.format(arg)
+ xtra)
else:
self.parseerror('S_15 arg {} out of range'.format(arg)
+ xtra)
arg = 0
arg = int(round(arg * REF_S_15))
return arg
def __u_32__(self, mnemonic=''):
xtra = ''
if mnemonic:
xtra = ' for ' + mnemonic
arg = self.__expression__()
if isinstance(arg, int):
if arg < 0 or arg > M32:
if self.doclamp:
if arg < 0:
arg = 0
elif arg > M32:
arg = M32
self.parsewarn('U_32 arg clamped to {0:#x}'.format(arg)
+ xtra)
else:
self.parseerror('U_32 arg {0:#x} out of range'.format(
arg) + xtra)
arg = 0
else:
self.parseerror('Invalid U_32 arg {}'.format(arg) + xtra)
arg = 0
return arg
def __s_23__(self, mnemonic=''):
xtra = ''
if mnemonic:
xtra = ' for ' + mnemonic
arg = self.__expression__()
if isinstance(arg, int):
if arg < 0 or arg > M24:
if self.doclamp:
if arg < 0:
arg = 0
elif arg > M24:
arg = M24
self.parsewarn('S_23 arg clamped to {0:#x}'.format(
arg) + xtra)
else:
self.parseerror('S_23 arg {0:#x} out of range'.format(
arg) + xtra)
arg = 0
else:
if arg < MIN_S_23 or arg > MAX_S_23:
if self.doclamp:
if arg < MIN_S_23:
arg = MIN_S_23
elif arg > MAX_S_23:
arg = MAX_S_23
self.parsewarn('S_23 arg clamped to {}'.format(arg)
+ xtra)
else:
self.parseerror('S_23 arg {} out of range'.format(arg)
+ xtra)
arg = 0
arg = int(round(arg * REF_S_23))
return arg
def __s1_9__(self, mnemonic=''):
xtra = ''
if mnemonic:
xtra = ' for ' + mnemonic
arg = self.__expression__()
if isinstance(arg, int):
if arg < 0 or arg > M11:
if self.doclamp:
if arg < 0:
arg = 0
elif arg > M11:
arg = M11
self.parsewarn('S1_9 arg clamped to {0:#x}'.format(
arg) + xtra)
else:
self.parseerror('S1_9 arg {0:#x} out of range'.format(
arg) + xtra)
arg = 0
else:
if arg < MIN_S1_9 or arg > MAX_S1_9:
if self.doclamp:
if arg < MIN_S1_9:
arg = MIN_S1_9
elif arg > MAX_S1_9:
arg = MAX_S1_9
self.parsewarn('S1_9 arg clamped to {}'.format(arg)
+ xtra)
else:
self.parseerror('S1_9 arg {} out of range'.format(arg)
+ xtra)
arg = 0
arg = int(round(arg * REF_S1_9))
return arg
def __s4_6__(self, mnemonic=''):
xtra = ''
if mnemonic:
xtra = ' for ' + mnemonic
arg = self.__expression__()
if isinstance(arg, int):
if arg < 0 or arg > M11:
if self.doclamp:
if arg < 0:
arg = 0
elif arg > M11:
arg = M11
self.parsewarn('S4_6 arg clamped to {0:#x}'.format(
arg) + xtra)
else:
self.parseerror('S4_6 arg {0:#x} out of range'.format(
arg) + xtra)
arg = 0
else:
if arg < MIN_S4_6 or arg > MAX_S4_6:
if self.doclamp:
if arg < MIN_S4_6:
arg = MIN_S4_6
elif arg > MAX_S4_6:
arg = MAX_S4_6
self.parsewarn('S4_6 arg clamped to {}'.format(arg)
+ xtra)
else:
self.parseerror('S4_6 arg {} out of range'.format(arg)
+ xtra)
arg = 0
arg = int(round(arg * REF_S4_6))
return arg
def __lfo__(self, mnemonic=''):
xtra = ''
if mnemonic:
xtra = ' for ' + mnemonic
lfo = self.__expression__()
if int(lfo) == lfo:
lfo = int(lfo)
if lfo < 0 or lfo > 3:
self.parseerror('Invalid LFO {0:#x}'.format(lfo) + xtra)
lfo = 0
else:
self.parseerror('Invalid LFO {}'.format(lfo) + xtra)
lfo = 0
return lfo
def __lfo_sinfreq__(self, mnemonic=''):
xtra = ''
if mnemonic:
xtra = ' for ' + mnemonic
freq = self.__expression__()
if int(freq) == freq:
freq = int(freq)
if freq < 0 or freq > M9:
if self.doclamp:
if freq < 0:
freq = 0
elif freq > M9:
freq = M9
self.parsewarn('Frequency clamped to {0:#x}'.format(freq)
+ xtra)
else:
self.parseerror('Invalid frequency {0:#x}'.format(freq)
+ xtra)
freq = 0
else:
self.parseerror('Invalid frequency {}'.format(freq)
+ xtra)
freq = 0
return freq
def __lfo_rampfreq__(self, mnemonic=''):
xtra = ''
if mnemonic:
xtra = ' for ' + mnemonic
freq = self.__expression__()
if freq < -0.5 or freq > MAX_S_15:
freq = int(round(freq))
if freq < -0x8000 or freq > M15:
if self.doclamp:
if freq < -0x8000:
freq = -0x8000
elif freq > M15:
freq = M15
self.parsewarn('Frequency clamped to {0:#x}'.format(freq)
+ xtra)
else:
self.parseerror('Invalid frequency {0:#x}'.format(freq)
+ xtra)
freq = 0
else:
freq = int(round(freq * REF_S_15))
return freq
def __lfo_rampamp__(self, mnemonic=''):
xtra = ''
if mnemonic:
xtra = ' for ' + mnemonic
amp = self.__expression__()
rampamps = {4096:0, 2048:1, 1024:2, 512:3, 0:0, 1:1, 2:2, 3:3}
if int(amp) == amp:
amp = int(amp)
if amp in rampamps:
amp = rampamps[amp]
else:
self.parseerror('Invalid amplitude {}'.format(amp)
+ xtra)
amp = 0
else:
self.parseerror('Invalid amplitude {}'.format(amp)
+ xtra)
amp = 0
return amp
def __next__(self):
self.sym = None
self.prevline = self.sline
while self.sym is None:
if len(self.linebuf) == 0:
if len(self.source) > 0:
self.sline += 1
llex = shlex.shlex(self.source.pop(0))
llex.commenters = ';'
self.linebuf = [t for t in llex]
else:
self.sym = {'type': 'EOF', 'txt':None,
'stxt':None, 'val':None}
if len(self.linebuf) > 0:
stxt = self.linebuf[0].upper()
if stxt in op_tbl:
self.sym = {'type': 'MNEMONIC',
'txt': self.linebuf.pop(0),
'stxt': stxt,
'val': None}
elif stxt in ['EQU', 'MEM']:
self.sym = {'type': 'ASSEMBLER',
'txt': self.linebuf.pop(0),
'stxt': stxt,
'val': None}
elif stxt in ['<','>','*','/']:
optxt = self.linebuf.pop(0)
if len(self.linebuf) > 0:
if self.linebuf[0] == optxt:
optxt += self.linebuf.pop(0)
if optxt in ['<','>']:
self.scanerror('Invalid operator {}'.format(optxt))
optxt += optxt
self.sym = {'type': 'OPERATOR',
'txt': optxt,
'stxt': optxt,
'val': None}
elif stxt in ['|','^','&','+','-','~','!','(',')','INT']:
self.sym = {'type': 'OPERATOR',
'txt': self.linebuf.pop(0),
'stxt': stxt,
'val': None}
elif stxt[0] in ['%', '$']:
pref = self.linebuf.pop(0)
base = 2
if pref == '$':
base = 16
if len(self.linebuf) > 0:
ht = self.linebuf.pop(0)
ival = 0
try:
ival = int(ht.replace('_',''),base)
except:
self.scanerror('Invalid integer literal {}'.format(
pref+ht))
self.sym = {'type': 'INTEGER',
'txt': pref+ht,
'stxt': pref+ht,
'val': ival}
else:
self.scanerror('End of line scanning for integer')
self.sym = {'type': 'INTEGER',
'txt': pref,
'stxt': pref,
'val': 0}
elif stxt[0].isdigit():
intpart = self.linebuf.pop(0).lower()
ival = 0.0
if len(self.linebuf) > 0 and self.linebuf[0] == '.':
self.linebuf.pop(0)
if len(self.linebuf) > 0:
frac = self.linebuf.pop(0)
if frac.endswith('e') and len(self.linebuf) > 0:
epart = self.linebuf.pop(0)
if epart in ['+','-'] and len(self.linebuf) > 0:
epart += self.linebuf.pop(0)
frac = frac+epart
try:
ival = float(intpart+'.'+frac)
except:
self.scanerror(
'Invalid numeric literal {}'.format(
intpart+'.'+frac))
self.sym = {'type': 'FLOAT',
'txt': intpart+'.'+frac,
'stxt': intpart+'.'+frac,
'val': ival}
else:
self.scanerror('Invalid numeric literal')
self.sym = {'type': 'FLOAT',
'txt': intpart+'.0',
'stxt': intpart+'.0',
'val': ival}
elif self.spinreals and intpart in ['2', '1']:
ival = float(intpart)
self.sym = {'type': 'FLOAT',
'stxt': intpart+'.0',
'txt': intpart,
'val': ival}
else:
ival = 0
base = 10
if intpart.startswith('0x'):
base = 16
elif intpart.startswith('0b'):
base = 2
try:
ival = int(intpart, base)
except:
self.scanerror('Invalid integer literal {}'.format(
intpart))
self.sym = {'type': 'INTEGER',
'txt': intpart,
'stxt': intpart,
'val': ival}
elif stxt[0].isalpha():
lbl = self.linebuf.pop(0)
if len(self.linebuf) > 0 and self.linebuf[0] == ':':
self.sym = {'type': 'TARGET',
'txt': lbl,
'stxt': stxt,
'val': None}
self.linebuf.pop(0)
else:
mod = ''
if len(self.linebuf) > 0 and self.linebuf[0] in [
'^','#']:
if stxt+self.linebuf[0] in self.symtbl:
mod = self.linebuf.pop(0)
self.sym = {'type': 'LABEL',
'txt': lbl+mod,
'stxt': stxt+mod,
'val': None}
elif stxt == ',':
self.sym = {'type': 'ARGSEP',
'txt': self.linebuf.pop(0),
'stxt': stxt,
'val': None}
elif self.linebuf[0] == '\ufeff':
self.linebuf.pop(0)
else:
self.scanerror('Unrecognised input {}'.format(
self.linebuf.pop(0)))
def scanerror(self, msg):
self.doerror('scan error: ' + msg + ' on line {}'.format(self.sline))
self.ecount += 1
if self.ecount > MAXERR:
self.doerror('too many errors, aborting.')
sys.exit(-1)
|
MIT License
|
markvdw/gpflow-inter-domain
|
GPflow/param.py
|
Parameterized.make_tf_array
|
python
|
def make_tf_array(self, X):
count = 0
for dh in self.data_holders:
dh.make_tf_array()
for p in self.sorted_params:
count += p.make_tf_array(X[count:])
return count
|
Distribute a flat tensorflow array amongst all the child parameter of this instance.
X is a tensorflow placeholder. It gets passed to all the children of
this class (that are Parameterized or Param objects), which then
construct their tf_array variables from consecutive sections.
|
https://github.com/markvdw/gpflow-inter-domain/blob/0cf621e1896a3e1996f863b586c6cd2f795dd9f0/GPflow/param.py#L756-L769
|
from __future__ import absolute_import
from contextlib import contextmanager
from functools import wraps
import numpy as np
import pandas as pd
import tensorflow as tf
from . import transforms, session
from ._settings import settings
from .scoping import NameScoped
float_type = settings.dtypes.float_type
np_float_type = np.float32 if float_type is tf.float32 else np.float64
recompile_keys = ['prior', 'transform', 'fixed']
class Parentable(object):
def __init__(self):
self._parent = None
@property
def highest_parent(self):
if self._parent is None:
return self
else:
return self._parent.highest_parent
@property
def name(self):
if self._parent is None:
return 'unnamed'
if isinstance(self._parent, ParamList):
return 'item%i' % self._parent._list.index(self)
matches = [key for key, value in self._parent.__dict__.items()
if value is self]
if len(matches) == 0:
raise ValueError("mis-specified parent. This Param's\
_parent does not contain a reference to it.")
if len(matches) > 1:
raise ValueError("This Param appears to be doubly\
referenced by a parent")
return matches[0]
@property
def long_name(self):
if self._parent is None:
return self.name
return self._parent.long_name + '.' + self.name
def __getstate__(self):
d = self.__dict__.copy()
d.pop('_parent')
return d
def __setstate__(self, d):
self.__dict__.update(d)
self._parent = None
class Param(Parentable):
def __init__(self, array, transform=transforms.Identity()):
Parentable.__init__(self)
self._array = np.asarray(np.atleast_1d(array), dtype=np_float_type)
self.transform = transform
self._tf_array = None
self._log_jacobian = None
self.prior = None
self.fixed = False
@property
def value(self):
return self._array.copy()
def get_parameter_dict(self, d):
d[self.long_name] = self.value
def set_parameter_dict(self, d):
self._array[...] = d[self.long_name]
def get_samples_df(self, samples):
if self.fixed:
return pd.Series([self.value for _ in range(samples.shape[0])], name=self.long_name)
start, _ = self.highest_parent.get_param_index(self)
end = start + self.size
samples = samples[:, start:end]
samples = samples.reshape((samples.shape[0],) + (self.transform.free_state_size(self.shape),))
samples = np.atleast_1d(np.concatenate(
[self.transform.forward(s).reshape((1,) + self.shape) for s in samples], 0))
return pd.Series([v for v in samples], name=self.long_name)
def make_tf_array(self, free_array):
if self.fixed:
self._tf_array = tf.placeholder(dtype=float_type,
shape=self._array.shape,
name=self.name)
self._log_jacobian = 0.0
return 0
free_size = self.transform.free_state_size(self.shape)
x_free = free_array[:free_size]
mapped_array = self.transform.tf_forward(x_free)
self._tf_array = tf.reshape(mapped_array, self.shape)
self._log_jacobian = self.transform.tf_log_jacobian(x_free)
return free_size
def get_free_state(self):
if self.fixed:
return np.empty((0,), np_float_type)
return self.transform.backward(self.value.flatten())
def get_feed_dict_keys(self):
d = {}
if self.fixed:
d[self] = self._tf_array
return d
def update_feed_dict(self, key_dict, feed_dict):
if self.fixed:
feed_dict[key_dict[self]] = self.value
def set_state(self, x):
if self.fixed:
return 0
free_size = self.transform.free_state_size(self.shape)
new_array = self.transform.forward(x[:free_size]).reshape(self.shape)
assert new_array.shape == self.shape
self._array[...] = new_array
return free_size
def randomize(self, distributions={}, skipfixed=True):
if not (skipfixed and self.fixed):
if self in distributions.keys():
self._array = distributions[self].sample(self.shape)
else:
try:
self._array = self.prior.sample(self.shape)
except AttributeError:
randn = np.random.randn(
self.transform.free_state_size(self.shape))
self._array = self.transform.forward(randn).reshape(self.shape)
def build_prior(self):
if self.prior is None:
return tf.constant(0.0, float_type)
elif self._tf_array is None:
raise ValueError("tensorflow array has not been initialized")
else:
return self.prior.logp(self._tf_array) + self._log_jacobian
def __setattr__(self, key, value):
object.__setattr__(self, key, value)
if key in recompile_keys:
self.highest_parent._needs_recompile = True
def __str__(self, prepend=''):
return prepend + '\033[1m' + self.name + '\033[0m' + ' transform:' + str(self.transform) + ' prior:' + str(self.prior) + (' [FIXED]' if self.fixed else '') + '\n' + str(self.value)
@property
def size(self):
return self._array.size
@property
def shape(self):
return self._array.shape
def _html_table_rows(self, name_prefix=''):
html = "<tr>"
html += "<td>{0}</td>".format(name_prefix + self.name)
html += "<td>{0}</td>".format(str(self._array).replace('\n', '</br>'))
html += "<td>{0}</td>".format(str(self.prior))
html += "<td>{0}</td>".format('[FIXED]' if self.fixed
else str(self.transform))
html += "</tr>"
return html
def __getstate__(self):
d = Parentable.__getstate__(self)
for key in ['_tf_array', '_log_jacobian']:
d.pop(key, None)
return d
def __setstate__(self, d):
Parentable.__setstate__(self, d)
self._log_jacobian = None
self.fixed = self.fixed
class DataHolder(Parentable):
def __init__(self, array, on_shape_change='raise'):
Parentable.__init__(self)
dt = self._get_type(array)
self._array = np.asarray(array, dtype=dt)
assert on_shape_change in ['raise', 'pass', 'recompile']
self.on_shape_change = on_shape_change
def _get_type(self, array):
if any([array.dtype == np.dtype(t) for t in [np.float32, np.float64]]):
return np_float_type
elif any([array.dtype == np.dtype(t) for t in [np.int16, np.int32, np.int64]]):
return np.int32
else:
raise NotImplementedError("unknown dtype")
def get_feed_dict_keys(self):
return {self: self._tf_array}
def update_feed_dict(self, key_dict, feed_dict):
feed_dict[key_dict[self]] = self._array
def __getstate__(self):
d = Parentable.__getstate__(self)
try:
d.pop('_tf_array')
except KeyError:
pass
return d
def make_tf_array(self):
self._tf_array = tf.placeholder(dtype=self._get_type(self._array),
shape=[None] * self._array.ndim,
name=self.name)
def set_data(self, array):
if self.shape == array.shape:
self._array[...] = array
else:
if self.on_shape_change == 'raise':
raise ValueError("The shape of this data must not change. \
(perhaps make the model again from scratch?)")
elif self.on_shape_change == 'recompile':
self._array = array.copy()
self.highest_parent._needs_recompile = True
elif self.on_shape_change == 'pass':
self._array = array.copy()
else:
raise ValueError('invalid option')
@property
def value(self):
return self._array.copy()
@property
def size(self):
return self._array.size
@property
def shape(self):
return self._array.shape
def __str__(self, prepend='Data:'):
return prepend + '\033[1m' + self.name + '\033[0m' + '\n' + str(self.value)
class AutoFlow:
def __init__(self, *tf_arg_tuples):
self.tf_arg_tuples = tf_arg_tuples
def __call__(self, tf_method):
@wraps(tf_method)
def runnable(instance, *np_args):
storage_name = '_' + tf_method.__name__ + '_AF_storage'
if hasattr(instance, storage_name):
storage = getattr(instance, storage_name)
else:
storage = {}
setattr(instance, storage_name, storage)
storage['graph'] = tf.Graph()
storage['session'] = session.get_session(
graph=storage['graph'],
output_file_name=settings.profiling.output_file_name + "_" + tf_method.__name__,
output_directory=settings.profiling.output_directory,
each_time=settings.profiling.each_time
)
with storage['graph'].as_default():
storage['tf_args'] = [tf.placeholder(*a) for a in self.tf_arg_tuples]
storage['free_vars'] = tf.placeholder(float_type, [None])
instance.make_tf_array(storage['free_vars'])
with instance.tf_mode():
storage['tf_result'] = tf_method(instance, *storage['tf_args'])
storage['feed_dict_keys'] = instance.get_feed_dict_keys()
feed_dict = {}
instance.update_feed_dict(storage['feed_dict_keys'], feed_dict)
storage['session'].run(tf.global_variables_initializer(), feed_dict=feed_dict)
feed_dict = dict(zip(storage['tf_args'], np_args))
feed_dict[storage['free_vars']] = instance.get_free_state()
instance.update_feed_dict(storage['feed_dict_keys'], feed_dict)
return storage['session'].run(storage['tf_result'], feed_dict=feed_dict)
return runnable
class Parameterized(Parentable):
def __init__(self):
Parentable.__init__(self)
self.scoped_keys = []
self._tf_mode = False
def get_parameter_dict(self, d=None):
if d is None:
d = {}
for p in self.sorted_params:
p.get_parameter_dict(d)
return d
def set_parameter_dict(self, d):
for p in self.sorted_params:
p.set_parameter_dict(d)
def get_samples_df(self, samples):
d = pd.DataFrame()
for p in self.sorted_params:
d = pd.concat([d, p.get_samples_df(samples)], axis=1)
return d
def __getattribute__(self, key):
o = object.__getattribute__(self, key)
try:
if not object.__getattribute__(self, '_tf_mode'):
return o
except AttributeError:
return o
if isinstance(o, (Param, DataHolder)):
return o._tf_array
elif key in object.__getattribute__(self, 'scoped_keys'):
return NameScoped(self.long_name + '.' + key)(o)
return o
def __setattr__(self, key, value):
if key in self.__dict__.keys():
p = getattr(self, key)
if isinstance(p, Param) and isinstance(value, (np.ndarray, float, int)):
p._array[...] = value
return
if isinstance(p, (Param, Parameterized)) and isinstance(value, (Param, Parameterized)):
p._parent = None
if hasattr(self.highest_parent, '_needs_recompile'):
self.highest_parent._needs_recompile = True
if isinstance(p, DataHolder) and isinstance(value, np.ndarray):
p.set_data(value)
return
if key is not '_parent' and isinstance(value, (Param, Parameterized)):
if not hasattr(self, key) or not self.__getattribute__(key) is value:
def _raise_for_existing_param(node):
if node is value:
raise ValueError('The Param(eterized) object {0} is already present in the tree'.format(value))
if isinstance(node, Parameterized):
for child in node.sorted_params:
_raise_for_existing_param(child)
root = self.highest_parent
_raise_for_existing_param(root)
object.__setattr__(self, key, value)
if isinstance(value, Parentable) and key is not '_parent':
value._parent = self
if key == '_needs_recompile':
self._kill_autoflow()
def _kill_autoflow(self):
for key in list(self.__dict__.keys()):
if key[0] == '_' and key[-11:] == '_AF_storage':
if 'session' in getattr(self, key):
getattr(self, key)['session'].close()
delattr(self, key)
[p._kill_autoflow() for p in self.sorted_params if isinstance(p, Parameterized)]
def __getstate__(self):
d = Parentable.__getstate__(self)
for key in list(d.keys()):
if key[0] == '_' and key[-11:] == '_AF_storage':
d.pop(key)
return d
|
Apache License 2.0
|
aoikuiyuyou/aoikrocketchaterrbot
|
src/aoikrocketchaterrbot/backends/aoikrocketchaterrbot.py
|
RocketChatUser.person
|
python
|
def person(self):
return self._person
|
Get user name.
:return: User name.
|
https://github.com/aoikuiyuyou/aoikrocketchaterrbot/blob/dc225e984f40e9c0b6ce98158387a0174b923e36/src/aoikrocketchaterrbot/backends/aoikrocketchaterrbot.py#L216-L223
|
from __future__ import absolute_import
import logging
import os
from pprint import pformat
from threading import Event
import time
from traceback import format_exc
from MeteorClient import CollectionData
from MeteorClient import MeteorClient
from errbot.backends.base import OFFLINE
from errbot.backends.base import ONLINE
from errbot.backends.base import Identifier
from errbot.backends.base import Message
from errbot.backends.base import Person
from errbot.backends.base import Presence
from errbot.backends.base import Room
from errbot.core import ErrBot
def metaclass(meta):
def class_decorator(cls):
attrs_dict = cls.__dict__.copy()
attrs_dict.pop('__dict__', None)
attrs_dict.pop('__weakref__', None)
return meta(cls.__name__, cls.__bases__, attrs_dict)
return class_decorator
class KeyAsValueMeta(type):
def __init__(cls, name, bases, attrs):
super(KeyAsValueMeta, cls).__init__(name, bases, attrs)
for key, _ in attrs.items():
setattr(cls, key, key)
key_as_value = metaclass(KeyAsValueMeta)
@key_as_value
class CONFIG_KEYS(object):
SERVER_URI = ''
LOGIN_USERNAME = ''
LOGIN_PASSWORD = ''
PATCH_METEOR_CLIENT = ''
RECONNECT_ENABLED = ''
HEARTBEAT_ENABLED = ''
HEARTBEAT_INTERVAL = ''
HEARTBEAT_FUNC = ''
BOT_LOG_LEVEL = ''
_CONFIG_OBJ_KEY = 'AOIKROCKETCHATERRBOT_CONFIG'
_ENV_VAR_NAME_PREFIX = 'AOIKROCKETCHATERRBOT_'
class RocketChatUser(Person):
def __init__(self, person, client=None, nick=None, fullname=None):
self._person = person
self._client = client
self._nick = nick or self._person
self._fullname = fullname or self._person
@property
|
MIT License
|
argoproj-labs/argo-client-python
|
argo/workflows/client/models/v1alpha1_http_artifact.py
|
V1alpha1HTTPArtifact.__init__
|
python
|
def __init__(self, headers=None, url=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._headers = None
self._url = None
self.discriminator = None
if headers is not None:
self.headers = headers
self.url = url
|
V1alpha1HTTPArtifact - a model defined in OpenAPI
|
https://github.com/argoproj-labs/argo-client-python/blob/993d684cab39a834770b296e028519cec035c7b5/argo/workflows/client/models/v1alpha1_http_artifact.py#L45-L57
|
import pprint
import re
import six
from argo.workflows.client.configuration import Configuration
class V1alpha1HTTPArtifact(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'headers': 'list[V1alpha1Header]',
'url': 'str'
}
attribute_map = {
'headers': 'headers',
'url': 'url'
}
|
Apache License 2.0
|
google/cloud-forensics-utils
|
libcloudforensics/providers/gcp/internal/compute.py
|
GoogleCloudCompute.CreateInstanceFromRequest
|
python
|
def CreateInstanceFromRequest(
self, request_body: Dict[str, str],
zone: Optional[str] = None) -> 'GoogleComputeInstance':
instance_name = request_body['name']
if not common.COMPUTE_RFC1035_REGEX.match(instance_name):
raise errors.InvalidNameError(
'Instance name {0:s} does not comply with {1:s}.'.format(
instance_name, common.COMPUTE_RFC1035_REGEX.pattern),
__name__)
gce_instance_client = self.GceApi().instances()
compute_zone = zone if zone else self.default_zone
params = {
'project': self.project_id, 'zone': compute_zone, 'body': request_body
}
try:
response = common.ExecuteRequest(gce_instance_client, 'insert', params)[0]
self.BlockOperation(response, zone=compute_zone)
except HttpError as e:
if e.resp.status == 409:
msg = (
'An instance with the name {0:s} already exists '
'in project {1:s}').format(instance_name, self.project_id)
raise errors.ResourceAlreadyExistsError(msg, __name__) from e
msg = 'Error while creating instance {0:s}'.format(instance_name)
raise errors.ResourceCreationError(msg, __name__) from e
return GoogleComputeInstance(
project_id=self.project_id, zone=compute_zone, name=instance_name)
|
Creates an instance from an instance.insert request body.
Args:
request_body: Insert instance request body at
https://cloud.google.com/compute/docs/reference/rest/v1/instances/insert#request-body # pylint: disable=line-too-long
zone: Compute zone to start the instance in, default is self.default_zone.
Returns:
Compute instance object.
Raises:
ResourceAlreadyExistsError: If an instance with the same name already exists.
InvalidNameError: If istance name is invalid.
|
https://github.com/google/cloud-forensics-utils/blob/38142cf3e00f70d976aa42aa2f9a1981c0240b19/libcloudforensics/providers/gcp/internal/compute.py#L510-L551
|
import os
import subprocess
import time
from collections import defaultdict
from typing import Dict, Tuple, List, TYPE_CHECKING, Union, Optional, Any
from googleapiclient.errors import HttpError
from libcloudforensics.providers.gcp.internal import build
from libcloudforensics.providers.gcp.internal import common
from libcloudforensics.providers.gcp.internal import compute_base_resource
from libcloudforensics.scripts import utils
from libcloudforensics import logging_utils
from libcloudforensics import errors
if TYPE_CHECKING:
import googleapiclient
logging_utils.SetUpLogger(__name__)
logger = logging_utils.GetLogger(__name__)
DEFAULT_MACHINE_TYPE = 'e2-standard'
E2_STANDARD_CPU_CORES = [2, 4, 8, 16, 32]
NON_HIERARCHICAL_FW_POLICY_LEVEL = 999
class GoogleCloudCompute(common.GoogleCloudComputeClient):
def __init__(
self, project_id: str, default_zone: Optional[str] = None) -> None:
self.project_id = project_id
self.default_zone = default_zone or 'us-central1-f'
self.default_region = self.default_zone.rsplit('-', 1)[0]
self._instances = {}
self._disks = {}
self._region_disks = {}
super().__init__(self.project_id)
def Instances(self,
refresh: bool = True) -> Dict[str, 'GoogleComputeInstance']:
if not refresh and self._instances:
return self._instances
self._instances = self.ListInstances()
return self._instances
def Disks(self, refresh: bool = True) -> Dict[str, 'GoogleComputeDisk']:
if not refresh and self._disks:
return self._disks
self._disks = self.ListDisks()
return self._disks
def RegionDisks(
self,
refresh: Optional[bool] = True) -> Dict[str, 'GoogleRegionComputeDisk']:
if not refresh and self._region_disks:
return self._region_disks
self._region_disks = self.ListRegionDisks()
return self._region_disks
def ListInstances(self) -> Dict[str, 'GoogleComputeInstance']:
instances = {}
gce_instance_client = self.GceApi().instances()
responses = common.ExecuteRequest(
gce_instance_client, 'aggregatedList', {'project': self.project_id})
for response in responses:
for zone in response['items']:
try:
for instance in response['items'][zone]['instances']:
_, zone = instance['zone'].rsplit('/', 1)
name = instance['name']
deletion_protection = instance.get('deletionProtection', False)
instances[name] = GoogleComputeInstance(
self.project_id,
zone,
name,
labels=instance.get('labels'),
deletion_protection=deletion_protection)
except KeyError:
pass
return instances
def ListMIGSByInstanceName(self, zone: str) -> Dict[str, str]:
groups = self.ListMIGS(zone)
groups_by_instance = {}
for group_id, instances in groups.items():
for instance in instances:
if instance.name in groups_by_instance:
raise RuntimeError('Multiple managed instance groups for instance')
groups_by_instance[instance.name] = group_id
return groups_by_instance
def ListMIGS(self, zone: str) -> Dict[str, List['GoogleComputeInstance']]:
groups_client = self.GceApi().instanceGroupManagers()
responses = common.ExecuteRequest(
groups_client, 'list', {
'project': self.project_id,
'zone': zone,
})
groups = defaultdict(list)
for response in responses:
for group in response.get('items', []):
instances = self._ListInstancesForMIG(zone, group['name'])
groups[group['name']].extend(instances)
return groups
def _ListInstancesForMIG(self, zone: str,
group_id: str) -> List['GoogleComputeInstance']:
groups_client = self.GceApi().instanceGroupManagers()
responses = common.ExecuteRequest(
groups_client,
'listManagedInstances',
{
'project': self.project_id,
'zone': zone,
'instanceGroupManager': group_id,
})
managed_instances = []
for response in responses:
for instance in response.get('managedInstances', []):
name = instance['instance'].split('/')[-1]
instance = GoogleComputeInstance(self.project_id, zone, name)
managed_instances.append(instance)
return managed_instances
def ListDisks(self) -> Dict[str, 'GoogleComputeDisk']:
disks = {}
gce_disk_client = self.GceApi().disks()
responses = common.ExecuteRequest(
gce_disk_client, 'aggregatedList', {'project': self.project_id})
for response in responses:
for zone in response['items']:
try:
for disk in response['items'][zone]['disks']:
_, zone = disk['zone'].rsplit('/', 1)
name = disk['name']
disks[name] = GoogleComputeDisk(
self.project_id, zone, name, labels=disk.get('labels'))
except KeyError:
pass
return disks
def ListComputeRegions(self) -> List[str]:
gce_regions_client = self.GceApi().regions()
responses = common.ExecuteRequest(
gce_regions_client, 'list', {'project': self.project_id})
regions = []
for response in responses:
regions.extend(response.get('items', []))
return [region['name'] for region in regions]
def ListRegionDisks(self) -> Dict[str, 'GoogleRegionComputeDisk']:
region_disks = {}
gce_region_disk_client = self.GceApi().regionDisks()
for region in self.ListComputeRegions():
responses = common.ExecuteRequest(
gce_region_disk_client,
'list', {
'project': self.project_id, 'region': region
})
for response in responses:
disks = response.get('items', [])
for disk in disks:
name = disk['name']
region_disks[name] = GoogleRegionComputeDisk(
self.project_id, region, name, labels=disk.get('labels'))
return region_disks
def GetRegionDisk(self, disk_name: str) -> 'GoogleRegionComputeDisk':
region_disks = self.RegionDisks()
try:
return region_disks[disk_name]
except KeyError as e:
raise errors.ResourceNotFoundError(
'Regional disk {0:s} was not found in project {1:s}'.format(
disk_name, self.project_id),
__name__) from e
def GetInstance(self, instance_name: str) -> 'GoogleComputeInstance':
instances = self.Instances()
instance = instances.get(instance_name)
if not instance:
raise errors.ResourceNotFoundError(
'Instance {0:s} was not found in project {1:s}'.format(
instance_name, self.project_id),
__name__)
return instance
def GetDisk(self, disk_name: str) -> 'GoogleComputeDisk':
disks = self.Disks()
try:
return disks[disk_name]
except KeyError as e:
raise errors.ResourceNotFoundError(
'Disk {0:s} was not found in project {1:s}'.format(
disk_name, self.project_id),
__name__) from e
def CreateDiskFromSnapshot(
self,
snapshot: 'GoogleComputeSnapshot',
disk_name: Optional[str] = None,
disk_name_prefix: Optional[str] = None,
disk_type: str = 'pd-standard') -> 'GoogleComputeDisk':
if not disk_name:
disk_name = common.GenerateDiskName(snapshot, disk_name_prefix)
body = {
'name':
disk_name,
'sourceSnapshot':
snapshot.GetSourceString(),
'type':
'projects/{0:s}/zones/{1:s}/diskTypes/{2:s}'.format(
self.project_id, self.default_zone, disk_type)
}
try:
gce_disks_client = self.GceApi().disks()
request = gce_disks_client.insert(
project=self.project_id, zone=self.default_zone, body=body)
response = request.execute()
except HttpError as exception:
if exception.resp.status == 409:
raise errors.ResourceAlreadyExistsError(
'Disk {0:s} already exists: {1!s}'.format(disk_name, exception),
__name__) from exception
raise errors.ResourceCreationError(
'Unknown error occurred when creating disk from Snapshot:'
' {0!s}'.format(exception),
__name__) from exception
self.BlockOperation(response, zone=self.default_zone)
return GoogleComputeDisk(
project_id=self.project_id, zone=self.default_zone, name=disk_name)
def GetMachineTypes(self, machine_type: str,
zone: Optional[str] = None) -> Dict[str, Any]:
compute_zone = zone if zone else self.default_zone
machine_types_client = self.GceApi().machineTypes()
params = {
'project': self.project_id,
'zone': compute_zone,
'machineType': machine_type
}
return common.ExecuteRequest(machine_types_client, 'get', params)[0]
def GetDiskTypes(self, disk_type: str,
zone: Optional[str] = None) -> Dict[str, Any]:
compute_zone = zone if zone else self.default_zone
disk_types_client = self.GceApi().diskTypes()
params = {
'project': self.project_id, 'zone': compute_zone, 'diskType': disk_type
}
return common.ExecuteRequest(disk_types_client, 'get', params)[0]
def GetImageFamily(self, image_family: str,
project: Optional[str] = None) -> Dict[str, Any]:
images_client = self.GceApi().images()
params = {'project': project, 'family': image_family}
return common.ExecuteRequest(images_client, 'getFromFamily', params)[0]
def GetNetwork(self, network_name: str) -> Dict[str, Any]:
networks_client = self.GceApi().networks()
params = {
'project': self.project_id,
'network': network_name,
}
return common.ExecuteRequest(networks_client, 'get', params)[0]
|
Apache License 2.0
|
conducto/conducto
|
image/internal_image.py
|
Image._build
|
python
|
async def _build(self, st: "HistoryEntry"):
assert self.dockerfile is not None or self.dockerfile_text is not None
if self.needs_cloning():
gitroot = self._get_clone_dest()
context = (
self.context.to_docker_mount(gitroot=gitroot) if self.context else None
)
dockerfile = (
self.dockerfile.to_docker_mount(gitroot=gitroot)
if self.dockerfile
else "-"
)
elif self._is_s3_url():
s3root = self._get_s3_dest()
context = (
self.context.to_docker_mount(s3root=s3root) if self.context else None
)
dockerfile = (
self.dockerfile.to_docker_mount(s3root=s3root)
if self.dockerfile
else "-"
)
else:
context = (
self.context.to_docker_mount(pipeline_id=self._pipeline_id)
if self.context
else None
)
dockerfile = (
self.dockerfile.to_docker_mount(pipeline_id=self._pipeline_id)
if self.dockerfile
else "-"
)
dockerfile_args = ["-f", dockerfile]
if context is not None:
dockerfile_args.append(context)
input = None if self.dockerfile_text is None else self.dockerfile_text.encode()
pipeline_id = os.getenv("CONDUCTO_PIPELINE_ID", self._pipeline_id)
build_args = []
if self.docker_build_args is not None:
for k, v in self.docker_build_args.items():
build_args += ["--build-arg", f"{k}={v}"]
await st.run(
"docker",
"build",
"-t",
self.name_built,
"--label",
"com.conducto.user",
"--label",
f"com.conducto.pipeline={pipeline_id}",
*build_args,
*dockerfile_args,
env={**os.environ, "DOCKER_BUILDKIT": "1"},
input=input,
)
|
Build this Image's `dockerfile` or `dockerfile_text`. If `copy_*` or
`install_*` are passed, then additional code or packages will be added in a
later step.
|
https://github.com/conducto/conducto/blob/b480780905f5a25e8c803b60ca7cdf6976ce5ef6/image/internal_image.py#L853-L918
|
import asyncio
import contextlib
import concurrent.futures
import functools
import hashlib
import json
import os
import subprocess
import sys
import time
import traceback
import typing
from conducto.shared import (
async_utils,
client_utils,
constants,
imagepath,
types as t,
log,
)
import conducto
from . import dockerfile as dockerfile_mod
CONST_EE = constants.ExecutionEnv
if sys.version_info >= (3, 7):
asynccontextmanager = contextlib.asynccontextmanager
else:
from conducto.shared import async_backport
asynccontextmanager = async_backport.asynccontextmanager
class Status:
PENDING = "pending"
QUEUED = "queued"
CLONING = "cloning"
SYNCING_S3 = "syncing_s3"
PULLING = "pulling"
BUILDING = "building"
INSTALLING = "installing"
COPYING = "copying"
EXTENDING = "extending"
PUSHING = "pushing"
DONE = "done"
ERROR = "error"
CANCELLED = "cancelled"
order = [
PENDING,
QUEUED,
CLONING,
PULLING,
BUILDING,
INSTALLING,
COPYING,
EXTENDING,
PUSHING,
DONE,
ERROR,
CANCELLED,
]
class Image:
_PULLED_IMAGES = set()
_CONTEXT = None
_CLONE_LOCKS = {}
_COMPLETED_CLONES = set()
_DOCKERHUB_LOGIN_ATTEMPTED = False
AUTO = "__auto__"
def __init__(
self,
image=None,
*,
instantiation_directory=None,
dockerfile=None,
dockerfile_text=None,
docker_build_args=None,
context=None,
copy_repo=None,
copy_dir=None,
copy_url=None,
copy_branch=None,
docker_auto_workdir=True,
install_pip=None,
install_npm=None,
install_packages=None,
install_docker=False,
path_map=None,
shell=AUTO,
name=None,
git_urls=None,
reqs_py=None,
reqs_npm=None,
reqs_packages=None,
reqs_docker=False,
**kwargs,
):
kwargs.pop("pre_built", None)
kwargs.pop("git_sha", None)
if len(kwargs):
EE = constants.ExecutionEnv
if EE.value() not in (EE.manager_all | EE.agent):
raise ValueError(f"unknown args: {','.join(kwargs)}")
if name is None:
raise Exception("Image has no name")
self.name = name
if bool(image) + bool(dockerfile) + bool(dockerfile_text) > 1:
raise ValueError(
f"Must specify at most 1: image={image} dockerfile={dockerfile} "
f"dockerfile_text=({len(dockerfile_text or '')} chars)"
)
if not image and not dockerfile and not dockerfile_text:
image = f"python:{sys.version_info[0]}.{sys.version_info[1]}-slim"
if not install_pip:
install_pip = ["conducto"]
if copy_dir and copy_url:
raise ValueError(
f"Must not specify copy_dir ({copy_dir}) and copy_url ({copy_url})."
)
if copy_url:
self.copy_url = copy_url
is_s3_url = self._is_s3_url()
if is_s3_url and copy_branch:
raise ValueError(
f"If specifying an s3 copy_url ({copy_url}) must "
f"not specify copy_branch ({copy_branch})"
)
elif not is_s3_url and not copy_branch:
raise ValueError(
f"If specifying copy_url ({copy_url}) must "
f"also specify copy_branch ({copy_branch})"
)
self.image = image
self.instantiation_directory = instantiation_directory
self.dockerfile = dockerfile
self.dockerfile_text = dockerfile_text
self.docker_build_args = docker_build_args
self.context = context
self.copy_repo = copy_repo
self.copy_dir = copy_dir
self.copy_dir_original = copy_dir
self.copy_url = copy_url
self.copy_branch = copy_branch
self.docker_auto_workdir = docker_auto_workdir
self.install_pip = install_pip or reqs_py
self.install_npm = install_npm or reqs_npm
self.install_packages = install_packages or reqs_packages
self.install_docker = install_docker or reqs_docker
self.path_map = path_map or {}
self.shell = shell
if self.path_map:
def auto_detect_deserialize(e):
if e.find("pathsep") >= 0:
return imagepath.Path.from_dockerhost_encoded(e)
return e
self.path_map = {
auto_detect_deserialize(external): internal
for external, internal in self.path_map.items()
}
if self.copy_repo:
repo_root: typing.Optional[imagepath.Path] = None
if CONST_EE.value() in CONST_EE.manager_all:
pm = self.path_map
elif CONST_EE.value() in CONST_EE.worker_all:
pm = _get_path_map()
elif CONST_EE.value() == CONST_EE.EXTERNAL:
pm = {}
else:
raise EnvironmentError(
f"Don't know what path_map to use for ExecutionEnvironment={CONST_EE.value()}"
)
for k, v in pm.items():
if v == constants.ConductoPaths.COPY_LOCATION:
repo_root = k
if not repo_root:
repo_root = self._detect_repo_root()
mark = repo_root.get_git_marks()[-1]
repo_url = mark.get("url")
repo_branch = mark.get("branch")
if git_urls:
for url in git_urls:
sanitized = imagepath.Path._sanitize_git_url(url)
repo_root = repo_root.mark_named_share(sanitized, "")
if self.copy_branch and repo_branch and self.copy_branch != repo_branch:
raise ValueError(
f"copy_branch ({self.copy_branch}) does not match branch inherited "
f"from path_map ({repo_branch}"
)
self.copy_branch = self.copy_branch or repo_branch
if self.copy_branch:
self.copy_url = repo_url
else:
self.copy_dir = repo_root
repo_root = self._get_contextual_path_helper(repo_root)
self.path_map[repo_root] = constants.ConductoPaths.COPY_LOCATION
if not self.context:
self.context = repo_root
if (
repo_url
and CONST_EE.value() == CONST_EE.EXTERNAL
and not CONST_EE.headless()
):
sharename = imagepath.Path._sanitize_git_url(repo_url)
self.share_directory(sharename, repo_root)
if self.dockerfile:
self.dockerfile = self._get_contextual_path_helper(self.dockerfile)
if not self.context:
one_level_up = os.path.dirname(self.dockerfile.to_docker_host())
self.context = self._get_contextual_path_helper(one_level_up)
if self.context:
self.context = self._get_contextual_path_helper(self.context)
if self.copy_dir:
self.copy_dir = self._get_contextual_path_helper(self.copy_dir)
self.path_map[self.copy_dir] = constants.ConductoPaths.COPY_LOCATION
if self.path_map:
self.path_map = {
self._get_contextual_path_helper(external): internal
for external, internal in self.path_map.items()
}
self.history = [HistoryEntry(Status.PENDING)]
self._make_fut: typing.Optional[asyncio.Future] = None
self._cloud_tag_convert = None
self._pipeline_id = os.getenv("CONDUCTO_PIPELINE_ID")
if CONST_EE.headless() and not self.is_cloud_building():
raise ValueError(
"If in headless mode (like from a Git webhook), image must be cloud-"
"buildable. Cannot use copy_dir. If using dockerfile or copy_repo, "
"then copy_branch must be set so that the contents come from Git "
"instead of the local file system."
)
def __eq__(self, other):
if isinstance(other, Image):
return self.to_dict() == other.to_dict()
else:
try:
return Image(**other.to_dict()) == self
except:
return False
def _detect_repo_root(self):
if CONST_EE.headless():
git_root = {
"type": "git",
"url": self.copy_url,
"branch": self.copy_branch,
}
return imagepath.Path.from_marked_root(git_root, "")
else:
outside_dir = self.instantiation_directory
git_root = imagepath.Path._get_git_root(outside_dir)
if not git_root:
raise ValueError(
f"copy_repo=True was specified, but could not find Git "
f"root for {outside_dir}."
)
git_url = imagepath.Path._get_git_origin(git_root)
return self.get_contextual_path(
git_root, branch=self.copy_branch, url=self.copy_url or git_url
).to_docker_host_path()
@staticmethod
def _serialize_path(p):
return p._id() if isinstance(p, imagepath.Path) else p
@staticmethod
def _serialize_pathmap(pathmap):
if pathmap:
return {p.linear(): v for p, v in pathmap.items()}
return None
@property
def id(self):
try:
return self.to_dict()
except:
print(traceback.format_exc())
raise
def to_dict(self):
return {
"name": self.name,
"image": self.image,
"dockerfile": self._serialize_path(self.dockerfile),
"dockerfile_text": self.dockerfile_text,
"docker_build_args": self.docker_build_args,
"docker_auto_workdir": self.docker_auto_workdir,
"context": self._serialize_path(self.context),
"copy_repo": self.copy_repo,
"copy_dir": self._serialize_path(self.copy_dir),
"copy_url": self.copy_url,
"copy_branch": self.copy_branch,
"install_pip": self.install_pip,
"install_npm": self.install_npm,
"install_packages": self.install_packages,
"install_docker": self.install_docker,
"path_map": self._serialize_pathmap(self.path_map),
"shell": self.shell,
}
def to_update_dict(self):
return {"shell": self.shell}
def _get_image_tag(self):
d = self.to_dict()
del d["name"]
del d["shell"]
key = json.dumps(d).encode()
return hashlib.md5(key).hexdigest()
def _get_contextual_path_helper(
self, p: typing.Union[imagepath.Path, dict, str], **kwargs
) -> imagepath.Path:
return self.get_contextual_path(
p, branch=self.copy_branch, url=self.copy_url, **kwargs
)
def get_contextual_path(
self,
p: typing.Union[imagepath.Path, dict, str],
*,
named_shares=True,
branch=None,
url=None,
) -> imagepath.Path:
if isinstance(p, imagepath.Path):
return p
if isinstance(p, dict) and "pathsep" in p:
return imagepath.Path.from_dockerhost_encoded(p)
if constants.ExecutionEnv.value() in constants.ExecutionEnv.manager_all:
return imagepath.Path.from_localhost(p)
op = os.path
if not op.isabs(p):
p = op.join(self.instantiation_directory, p)
p = op.realpath(p)
for external, internal in _get_path_map().items():
if p.startswith(internal):
tail = p[len(internal) :].lstrip("/")
return external.append(tail, sep="/")
if op.exists(p):
result = imagepath.Path.from_localhost(p)
result = result.mark_git_root(branch=branch, url=url)
else:
result = imagepath.Path.from_localhost(p)
result = result.to_docker_host_path()
if named_shares:
conf = conducto.api.Config()
shares = conf.get_named_share_mapping(conf.default_profile)
for name, paths in shares.items():
for path in paths:
path = imagepath.Path.from_dockerhost(path)
if result.is_subdir_of(path):
result = result.mark_named_share(name, path.to_docker_host())
return result
def share_directory(self, name, relative):
path = self.get_contextual_path(relative, named_shares=False)
config = conducto.api.Config()
config.register_named_share(config.default_profile, name, path)
register_directory = share_directory
async def _sha1(self):
if self.needs_cloning():
root = self._get_clone_dest()
else:
root = self.copy_dir.to_docker_mount(pipeline_id=self._pipeline_id)
out, err = await async_utils.run_and_check(
"git", "-C", root, "rev-parse", "HEAD"
)
return out.decode().strip()
@property
def name_built(self):
if self.needs_building():
return f"conducto_built:{self._pipeline_id}_{self._get_image_tag()}"
else:
return self.image
@property
def name_installed(self):
if self.needs_installing():
return f"conducto_installed:{self._pipeline_id}_{self._get_image_tag()}"
else:
return self.name_built
@property
def name_copied(self):
if self.needs_copying() or os.getenv("CONDUCTO_TEMPLATE_SOURCE"):
return f"conducto_copied:{self._pipeline_id}_{self._get_image_tag()}"
else:
return self.name_installed
@property
def name_local_extended(self):
return f"conducto_extended:{self._pipeline_id}_{self._get_image_tag()}"
@property
def name_cloud_extended(self):
if self._pipeline_id is None:
raise ValueError("Must specify pipeline_id before pushing to cloud")
registry, repo_name = _get_repo_info()
return f"{registry}/{repo_name}:{self._get_image_tag()}_{self._pipeline_id}"
@property
def status(self):
return self.history[-1].status
@property
def build_error(self):
if self.history[-1].status == Status.ERROR:
h = self.history[-1]
if h.stderr:
return h.stderr
else:
return h.stdout
return None
async def make(self, push_to_cloud, callback=lambda: None):
if self._make_fut is None:
self._make_fut = asyncio.ensure_future(self._make(push_to_cloud, callback))
is_already_done = self._make_fut.done()
try:
await self._make_fut
finally:
if not is_already_done:
callback()
async def _make(self, push_to_cloud, callback):
async for _ in self._make_generator(push_to_cloud, callback):
pass
async def _make_generator(self, push_to_cloud, callback, force_rebuild=False):
if self.history and self.history[-1].end is None:
await self.history[-1].finish()
if callback:
await callback(Status.PENDING, Status.DONE, self.history[-1])
if self.needs_cloning():
async with self._new_status(Status.CLONING, callback) as st:
if force_rebuild or not self._clone_complete():
await callback()
await self._clone(st)
await st.finish()
else:
await st.finish("Using cached clone")
yield
if self._is_s3_url():
async with self._new_status(Status.SYNCING_S3, callback) as st:
if force_rebuild or not self._sync_s3_complete():
await callback()
await self._sync_s3(st)
await st.finish()
else:
await st.finish("Using cached s3 copy")
if await self.needs_pulling():
async with self._new_status(Status.PULLING, callback) as st:
if (
force_rebuild
or os.getenv("CONDUCTO_TEMPLATE_SOURCE")
or not await self._image_exists(self.image)
):
await callback()
await self._pull(st)
await st.finish()
else:
await st.finish("Image already pulled")
yield
if self.needs_building():
async with self._new_status(Status.BUILDING, callback) as st:
if force_rebuild or not await self._image_exists(self.name_built):
await callback()
await self._build(st)
await st.finish()
else:
await st.finish("Dockerfile already built")
yield
if self.needs_installing():
async with self._new_status(Status.INSTALLING, callback) as st:
if force_rebuild or not await self._image_exists(self.name_installed):
await callback()
await self._install(st)
await st.finish()
else:
await st.finish("Python libraries already installed.")
yield
if self.needs_copying():
async with self._new_status(Status.COPYING, callback) as st:
if force_rebuild or not await self._image_exists(self.name_copied):
await callback()
await self._copy(st)
await st.finish()
else:
await st.finish("Code already copied.")
yield
async with self._new_status(Status.EXTENDING, callback) as st:
if force_rebuild or not await self._image_exists(self.name_local_extended):
await callback()
await self._extend(st)
await st.finish()
else:
await st.finish("Conducto toolchain already added")
yield
if push_to_cloud:
async with self._new_status(Status.PUSHING, callback) as st:
await callback()
await self._push(st)
await st.finish()
await self._mark_done()
if callback:
await callback(Status.DONE, Status.DONE, self.history[-1])
async def _mark_done(self):
if self.history and self.history[-1].end is None:
await self.history[-1].finish()
if not self.history or self.history[-1].status != Status.DONE:
self.history.append(HistoryEntry(Status.DONE, finish=True))
async def _image_exists(self, image):
try:
await async_utils.run_and_check("docker", "image", "inspect", image)
except subprocess.CalledProcessError:
return False
else:
return True
@asynccontextmanager
async def _new_status(self, status, callback):
entry = HistoryEntry(status)
self.history.append(entry)
try:
yield entry
except subprocess.CalledProcessError:
await entry.finish()
if callback:
await callback(status, Status.ERROR, entry)
self.history.append(HistoryEntry(Status.ERROR, finish=True))
if callback:
await callback(Status.ERROR, Status.ERROR, self.history[-1])
raise
except (asyncio.CancelledError, concurrent.futures.CancelledError):
await entry.finish(None, None)
if callback:
await callback(status, Status.CANCELLED, entry)
self.history.append(HistoryEntry(Status.CANCELLED, finish=True))
if callback:
await callback(Status.ERROR, Status.ERROR, self.history[-1])
raise
except Exception:
await entry.finish(None, "\r\n".join(traceback.format_exc().splitlines()))
if callback:
await callback(status, Status.ERROR, entry)
self.history.append(HistoryEntry(Status.ERROR, finish=True))
if callback:
await callback(Status.ERROR, Status.ERROR, self.history[-1])
raise
else:
if not entry.end:
await entry.finish()
if callback:
await callback(status, None, entry)
def needs_cloning(self):
if os.getenv("CONDUCTO_TEMPLATE_SOURCE"):
return False
return bool(self.copy_branch)
def _get_clone_dest(self):
return constants.ConductoPaths.git_clone_dest(
pipeline_id=self._pipeline_id, url=self.copy_url, branch=self.copy_branch
)
def _get_s3_dest(self):
return constants.ConductoPaths.s3_copy_dest(
pipeline_id=self._pipeline_id, url=self.copy_url
)
def _get_clone_lock(self, dest):
if dest in Image._CLONE_LOCKS:
lock = Image._CLONE_LOCKS[dest]
else:
lock = Image._CLONE_LOCKS[dest] = asyncio.Lock()
return lock
def _clone_complete(self):
dest = self._get_clone_dest()
return dest in Image._COMPLETED_CLONES
def _sync_s3_complete(self):
dest = self._get_s3_dest()
return dest in Image._COMPLETED_CLONES
async def _clone(self, st: "HistoryEntry"):
from conducto.integrations import git
dest = self._get_clone_dest()
if constants.ExecutionEnv.images_only():
real_url = self.copy_url
fake_url = self.copy_url
else:
real_url = git.clone_url(self.copy_url)
fake_url = git.clone_url(
self.copy_url, token=t.Token("{__conducto_token__}")
)
async with self._get_clone_lock(dest):
if os.path.exists(dest):
await async_utils.run_and_check(
"git", "-C", dest, "config", "remote.origin.url", real_url
)
await st.run("git", "-C", dest, "fetch")
await st.run(
"git",
"-C",
dest,
"reset",
"--hard",
f"origin/{self.copy_branch}",
)
else:
await st.run(
"git",
"clone",
"--single-branch",
"--branch",
self.copy_branch,
real_url,
dest,
)
await st.run("git", "-C", dest, "config", "remote.origin.url", fake_url)
Image._COMPLETED_CLONES.add(dest)
async def _sync_s3(self, st: "HistoryEntry"):
dest = self._get_s3_dest()
async with self._get_clone_lock(dest):
creds = conducto.api.Auth().get_credentials()
env_with_creds = {
**os.environ,
"AWS_ACCESS_KEY_ID": creds["AccessKeyId"],
"AWS_SECRET_ACCESS_KEY": creds["SecretKey"],
"AWS_SESSION_TOKEN": creds["SessionToken"],
}
await st.run(
"aws",
"s3",
"sync",
"--exclude",
".git*",
"--exclude",
"*/.git*",
self.copy_url,
dest,
env=env_with_creds,
)
Image._COMPLETED_CLONES.add(dest)
async def _pull(self, st: "HistoryEntry"):
if os.getenv("CONDUCTO_TEMPLATE_SOURCE"):
t_id = os.getenv("CONDUCTO_TEMPLATE_SOURCE")
registry, repo_name = _get_repo_info()
tempsrc = f"{registry}/{repo_name}:template-{t_id}-{self._get_image_tag()}"
log.log(f"building {self.name} based on template {tempsrc}")
await st.run("docker", "pull", tempsrc)
await st.run("docker", "tag", tempsrc, self.name_copied)
return
is_dockerhub_image = True
if "/" in self.image:
possible_domain = self.image.split("/", 1)[0]
if "." in possible_domain or ":" in possible_domain:
is_dockerhub_image = False
if is_dockerhub_image and not Image._DOCKERHUB_LOGIN_ATTEMPTED:
if (
not constants.ExecutionEnv.images_only()
and not conducto.api.Auth().is_anonymous()
):
secrets = await conducto.api.AsyncSecrets().get_user_secrets(
include_org_secrets=True
)
if "DOCKERHUB_USER" in secrets and "DOCKERHUB_PASSWORD" in secrets:
await async_utils.run_and_check(
"docker",
"login",
"-u",
secrets["DOCKERHUB_USER"],
"--password-stdin",
input=secrets["DOCKERHUB_PASSWORD"].encode("utf8"),
)
Image._DOCKERHUB_LOGIN_ATTEMPTED = True
await st.run("docker", "pull", self.image)
|
Apache License 2.0
|
scikit-hep/uproot4
|
src/uproot/interpretation/numerical.py
|
AsFloat16.to_dtype
|
python
|
def to_dtype(self):
return numpy.dtype((numpy.float32, self.to_dims))
|
The ``numpy.dtype`` of the output array.
A shape (``dtype.shape``) can be used to construct a fixed-size array
for each entry. (Not applicable to variable-length lists! See
:doc:`uproot.interpretation.jagged.AsJagged`.) The finalized array's
``array.shape[1:] == dtype.shape``.
|
https://github.com/scikit-hep/uproot4/blob/e0db77a2a10d701cb48f72e9f0d7867e1589572d/src/uproot/interpretation/numerical.py#L648-L657
|
from __future__ import absolute_import
import numpy
import uproot
def _dtype_shape(dtype):
shape = ()
while dtype.subdtype is not None:
dtype, s = dtype.subdtype
shape = shape + s
return dtype, shape
class Numerical(uproot.interpretation.Interpretation):
def _wrap_almost_finalized(self, array):
return array
def final_array(
self, basket_arrays, entry_start, entry_stop, entry_offsets, library, branch
):
self.hook_before_final_array(
basket_arrays=basket_arrays,
entry_start=entry_start,
entry_stop=entry_stop,
entry_offsets=entry_offsets,
library=library,
branch=branch,
)
if entry_start >= entry_stop:
output = library.empty((0,), self.to_dtype)
else:
length = 0
start = entry_offsets[0]
for _, stop in enumerate(entry_offsets[1:]):
if start <= entry_start and entry_stop <= stop:
length += entry_stop - entry_start
elif start <= entry_start < stop:
length += stop - entry_start
elif start <= entry_stop <= stop:
length += entry_stop - start
elif entry_start < stop and start <= entry_stop:
length += stop - start
start = stop
output = library.empty((length,), self.to_dtype)
start = entry_offsets[0]
for basket_num, stop in enumerate(entry_offsets[1:]):
if start <= entry_start and entry_stop <= stop:
local_start = entry_start - start
local_stop = entry_stop - start
basket_array = basket_arrays[basket_num]
output[:] = basket_array[local_start:local_stop]
elif start <= entry_start < stop:
local_start = entry_start - start
local_stop = stop - start
basket_array = basket_arrays[basket_num]
output[: stop - entry_start] = basket_array[local_start:local_stop]
elif start <= entry_stop <= stop:
local_start = 0
local_stop = entry_stop - start
basket_array = basket_arrays[basket_num]
output[start - entry_start :] = basket_array[local_start:local_stop]
elif entry_start < stop and start <= entry_stop:
basket_array = basket_arrays[basket_num]
output[start - entry_start : stop - entry_start] = basket_array
start = stop
self.hook_before_library_finalize(
basket_arrays=basket_arrays,
entry_start=entry_start,
entry_stop=entry_stop,
entry_offsets=entry_offsets,
library=library,
branch=branch,
output=output,
)
output = self._wrap_almost_finalized(output)
output = library.finalize(output, branch, self, entry_start, entry_stop)
self.hook_after_final_array(
basket_arrays=basket_arrays,
entry_start=entry_start,
entry_stop=entry_stop,
entry_offsets=entry_offsets,
library=library,
branch=branch,
output=output,
)
return output
_numpy_byteorder_to_cache_key = {
"!": "B",
">": "B",
"<": "L",
"|": "L",
"=": "B" if numpy.dtype(">f8").isnative else "L",
}
_dtype_kind_itemsize_to_typename = {
("b", 1): "bool",
("i", 1): "int8_t",
("u", 1): "uint8_t",
("i", 2): "int16_t",
("u", 2): "uint16_t",
("i", 4): "int32_t",
("u", 4): "uint32_t",
("i", 8): "int64_t",
("u", 8): "uint64_t",
("f", 4): "float",
("f", 8): "double",
}
class AsDtype(Numerical):
def __init__(self, from_dtype, to_dtype=None):
self._from_dtype = numpy.dtype(from_dtype)
if to_dtype is None:
self._to_dtype = self._from_dtype.newbyteorder("=")
else:
self._to_dtype = numpy.dtype(to_dtype)
def __repr__(self):
if self._to_dtype == self._from_dtype.newbyteorder("="):
return "AsDtype({0})".format(repr(str(self._from_dtype)))
else:
return "AsDtype({0}, {1})".format(
repr(str(self._from_dtype)), repr(str(self._to_dtype))
)
def __eq__(self, other):
return (
type(other) is AsDtype
and self._from_dtype == other._from_dtype
and self._to_dtype == other._to_dtype
)
@property
def from_dtype(self):
return self._from_dtype
@property
def to_dtype(self):
return self._to_dtype
@property
def itemsize(self):
return self._from_dtype.itemsize
@property
def inner_shape(self):
_, s = _dtype_shape(self._from_dtype)
return s
@property
def numpy_dtype(self):
return self._to_dtype
def awkward_form(
self,
file,
index_format="i64",
header=False,
tobject_header=True,
breadcrumbs=(),
):
awkward = uproot.extras.awkward()
d, s = _dtype_shape(self._to_dtype)
out = uproot._util.awkward_form(
d, file, index_format, header, tobject_header, breadcrumbs
)
for size in s[::-1]:
out = awkward.forms.RegularForm(out, size)
return out
@property
def cache_key(self):
def form(dtype, name):
d, s = _dtype_shape(dtype)
return "{0}{1}{2}({3}{4})".format(
_numpy_byteorder_to_cache_key[d.byteorder],
d.kind,
d.itemsize,
",".join(repr(x) for x in s),
name,
)
if self.from_dtype.names is None:
from_dtype = form(self.from_dtype, "")
else:
from_dtype = (
"["
+ ",".join(
form(self.from_dtype[n], "," + repr(n))
for n in self.from_dtype.names
)
+ "]"
)
if self.to_dtype.names is None:
to_dtype = form(self.to_dtype, "")
else:
to_dtype = (
"["
+ ",".join(
form(self.to_dtype[n], "," + repr(n)) for n in self.to_dtype.names
)
+ "]"
)
return "{0}({1},{2})".format(type(self).__name__, from_dtype, to_dtype)
@property
def typename(self):
def form(dtype):
d, s = _dtype_shape(dtype)
return _dtype_kind_itemsize_to_typename[d.kind, d.itemsize] + "".join(
"[" + str(dim) + "]" for dim in s
)
if self.from_dtype.names is None:
return form(self.from_dtype)
else:
return (
"struct {"
+ " ".join(
"{0} {1};".format(form(self.from_dtype[n]), n)
for n in self.from_dtype.names
)
+ "}"
)
def basket_array(
self, data, byte_offsets, basket, branch, context, cursor_offset, library
):
self.hook_before_basket_array(
data=data,
byte_offsets=byte_offsets,
basket=basket,
branch=branch,
context=context,
cursor_offset=cursor_offset,
library=library,
)
dtype, shape = _dtype_shape(self._from_dtype)
try:
output = data.view(dtype).reshape((-1,) + shape)
except ValueError:
raise ValueError(
"""basket {0} in tree/branch {1} has the wrong number of bytes ({2}) """
"""for interpretation {3}
in file {4}""".format(
basket.basket_num,
branch.object_path,
len(data),
self,
branch.file.file_path,
)
)
self.hook_after_basket_array(
data=data,
byte_offsets=byte_offsets,
basket=basket,
branch=branch,
context=context,
output=output,
cursor_offset=cursor_offset,
library=library,
)
return output
def reshape(self, shape):
d, s = _dtype_shape(self._from_dtype)
self._from_dtype = numpy.dtype((d, shape))
d, s = _dtype_shape(self._to_dtype)
self._to_dtype = numpy.dtype((d, shape))
class AsDtypeInPlace(AsDtype):
def __init__(self):
raise NotImplementedError
class AsSTLBits(Numerical):
def __init__(self):
raise NotImplementedError
@property
def itemsize(self):
return self._num_bytes + 4
class TruncatedNumerical(Numerical):
@property
def low(self):
return self._low
@property
def high(self):
return self._high
@property
def num_bits(self):
return self._num_bits
@property
def from_dtype(self):
if self.is_truncated:
return numpy.dtype(({"exponent": (">u1", 0), "mantissa": (">u2", 1)}, ()))
else:
return numpy.dtype(">u4")
@property
def itemsize(self):
return self.from_dtype.itemsize
@property
def to_dims(self):
return self._to_dims
@property
def is_truncated(self):
return self._low == 0.0 and self._high == 0.0
def __repr__(self):
args = [repr(self._low), repr(self._high), repr(self._num_bits)]
if self._to_dims != ():
args.append("to_dims={0}".format(repr(self._to_dims)))
return "{0}({1})".format(type(self).__name__, ", ".join(args))
def __eq__(self, other):
return (
type(self) == type(other)
and self._low == other._low
and self._high == other._high
and self._num_bits == other._num_bits
and self._to_dims == other._to_dims
)
@property
def numpy_dtype(self):
return self.to_dtype
@property
def cache_key(self):
return "{0}({1},{2},{3},{4})".format(
type(self).__name__, self._low, self._high, self._num_bits, self._to_dims
)
def basket_array(
self, data, byte_offsets, basket, branch, context, cursor_offset, library
):
self.hook_before_basket_array(
data=data,
byte_offsets=byte_offsets,
basket=basket,
branch=branch,
context=context,
cursor_offset=cursor_offset,
library=library,
)
try:
raw = data.view(self.from_dtype)
except ValueError:
raise ValueError(
"""basket {0} in tree/branch {1} has the wrong number of bytes ({2}) """
"""for interpretation {3} (expecting raw array of {4})
in file {5}""".format(
basket.basket_num,
branch.object_path,
len(data),
self,
repr(self._from_dtype),
branch.file.file_path,
)
)
if self.is_truncated:
exponent = raw["exponent"].astype(numpy.int32)
mantissa = raw["mantissa"].astype(numpy.int32)
exponent <<= 23
exponent |= (mantissa & ((1 << (self.num_bits + 1)) - 1)) << (
23 - self.num_bits
)
sign = ((1 << (self.num_bits + 1)) & mantissa != 0) * -2 + 1
output = exponent.view(numpy.float32) * sign
d, s = _dtype_shape(self.to_dtype)
output = output.astype(d).reshape((-1,) + s)
else:
d, s = _dtype_shape(self.to_dtype)
output = raw.astype(d).reshape((-1,) + s)
numpy.multiply(
output,
float(self._high - self._low) / (1 << self._num_bits),
out=output,
)
numpy.add(output, self.low, out=output)
self.hook_after_basket_array(
data=data,
byte_offsets=byte_offsets,
basket=basket,
branch=branch,
context=context,
cursor_offset=cursor_offset,
library=library,
raw=raw,
output=output,
)
return output
class AsDouble32(TruncatedNumerical):
def __init__(self, low, high, num_bits, to_dims=()):
self._low = low
self._high = high
self._num_bits = num_bits
self._to_dims = to_dims
if not uproot._util.isint(num_bits) or not 2 <= num_bits <= 32:
raise TypeError("num_bits must be an integer between 2 and 32 (inclusive)")
if high <= low and not self.is_truncated:
raise ValueError(
"high ({0}) must be strictly greater than low ({1})".format(high, low)
)
@property
def to_dtype(self):
return numpy.dtype((numpy.float64, self.to_dims))
@property
def typename(self):
return "Double32_t" + "".join("[" + str(dim) + "]" for dim in self._to_dims)
def awkward_form(
self,
file,
index_format="i64",
header=False,
tobject_header=True,
breadcrumbs=(),
):
awkward = uproot.extras.awkward()
out = awkward.forms.NumpyForm(
(),
8,
"d",
parameters={
"uproot": {
"as": "Double32",
"low": self._low,
"high": self._high,
"num_bits": self._num_bits,
}
},
)
for size in self._to_dims[::-1]:
out = awkward.forms.RegularForm(out, size)
return out
class AsFloat16(TruncatedNumerical):
def __init__(self, low, high, num_bits, to_dims=()):
self._low = low
self._high = high
self._num_bits = num_bits
self._to_dims = to_dims
if not uproot._util.isint(num_bits) or not 2 <= num_bits <= 32:
raise TypeError("num_bits must be an integer between 2 and 32 (inclusive)")
if high <= low and not self.is_truncated:
raise ValueError(
"high ({0}) must be strictly greater than low ({1})".format(high, low)
)
@property
|
BSD 3-Clause New or Revised License
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.