repository_name
stringlengths
7
107
function_path
stringlengths
4
190
function_identifier
stringlengths
1
236
language
stringclasses
1 value
function
stringlengths
9
647k
docstring
stringlengths
5
488k
function_url
stringlengths
71
285
context
stringlengths
0
2.51M
license
stringclasses
5 values
andrenarchy/krypy
krypy/utils.py
Projection.matrix
python
def matrix(self): return self.apply(numpy.eye(self.V.shape[0]))
Builds matrix representation of projection. Builds the matrix representation :math:`P = X \\langle Y,X\\rangle^{-1} \\langle Y, I_N\\rangle`. **Use with care!** This routine may be helpful for testing purposes but should not be used in production codes for high dimensions since the resulting matrix is dense.
https://github.com/andrenarchy/krypy/blob/56f25817194edbe98b30e144986703a2a3137ff9/krypy/utils.py#L667-L677
import time import warnings from collections import defaultdict import numpy import scipy.linalg import scipy.linalg.blas as blas from scipy.sparse import isspmatrix from scipy.sparse.sputils import isintlike __all__ = [ "ArgumentError", "AssumptionError", "ConvergenceError", "LinearOperatorError", "InnerProductError", "RuntimeError", "Arnoldi", "BoundCG", "BoundMinres", "ConvergenceError", "Givens", "House", "IdentityLinearOperator", "LinearOperator", "MatrixLinearOperator", "NormalizedRootsPolynomial", "Projection", "Timer", "angles", "arnoldi", "arnoldi_res", "arnoldi_projected", "bound_perturbed_gmres", "gap", "get_linearoperator", "hegedus", "inner", "ip_euclid", "norm", "norm_MMlr", "norm_squared", "orthonormality", "qr", "ritz", "shape_vec", "shape_vecs", "strakos", ] class ArgumentError(Exception): class AssumptionError(Exception): pass class ConvergenceError(Exception): def __init__(self, msg, solver): super(ConvergenceError, self).__init__(msg) self.solver = solver class LinearOperatorError(Exception): class InnerProductError(Exception): class RuntimeError(Exception): def find_common_dtype(*args): dtypes = [] for arg in args: if ( type(arg) is numpy.ndarray or isspmatrix(arg) or isinstance(arg, LinearOperator) ): if hasattr(arg, "dtype"): dtypes.append(arg.dtype) else: warnings.warn("object %s does not have a dtype." % arg.__repr__) return numpy.find_common_type(dtypes, []) def shape_vec(x): return numpy.reshape(x, (x.shape[0], 1)) def shape_vecs(*args): ret_args = [] flat_vecs = True for arg in args: if type(arg) is numpy.ndarray: if len(arg.shape) == 1: arg = shape_vec(arg) else: flat_vecs = False ret_args.append(arg) return flat_vecs, ret_args def ip_euclid(X, Y): return numpy.dot(X.T.conj(), Y) def inner(X, Y, ip_B=None): if ip_B is None or isinstance(ip_B, IdentityLinearOperator): return numpy.dot(X.T.conj(), Y) (N, m) = X.shape (_, n) = Y.shape try: B = get_linearoperator((N, N), ip_B) except TypeError: return ip_B(X, Y) if m > n: return numpy.dot((B * X).T.conj(), Y) else: return numpy.dot(X.T.conj(), B * Y) def norm_squared(x, Mx=None, inner_product=ip_euclid): assert len(x.shape) == 2 if Mx is None: rho = inner_product(x, x) else: assert len(Mx.shape) == 2 rho = inner_product(x, Mx) if rho.shape == (1, 1): if abs(rho[0, 0].imag) > abs(rho[0, 0]) * 1e-10 or rho[0, 0].real < 0.0: raise InnerProductError( ("<x,Mx> = %g. Is the inner product " "indefinite?") % rho[0, 0] ) return numpy.linalg.norm(rho, 2) def norm(x, y=None, ip_B=None): if y is None and (ip_B is None or isinstance(ip_B, IdentityLinearOperator)): return numpy.linalg.norm(x, 2) if y is None: y = x ip = inner(x, y, ip_B=ip_B) nrm_diag = numpy.linalg.norm(numpy.diag(ip), 2) nrm_diag_imag = numpy.linalg.norm(numpy.imag(numpy.diag(ip)), 2) if nrm_diag_imag > nrm_diag * 1e-10: raise InnerProductError( "inner product defined by ip_B not positive " "definite? ||diag(ip).imag||/||diag(ip)||=" f"{nrm_diag_imag/nrm_diag}" ) return numpy.sqrt(numpy.linalg.norm(ip, 2)) def get_linearoperator(shape, A, timer=None): ret = None import scipy.sparse.linalg as scipylinalg if isinstance(A, LinearOperator): ret = A elif A is None: ret = IdentityLinearOperator(shape) elif isinstance(A, numpy.ndarray) or isspmatrix(A): ret = MatrixLinearOperator(A) elif isinstance(A, numpy.matrix): ret = MatrixLinearOperator(numpy.atleast_2d(numpy.asarray(A))) elif isinstance(A, scipylinalg.LinearOperator): if not hasattr(A, "dtype"): raise ArgumentError("scipy LinearOperator has no dtype.") ret = LinearOperator(A.shape, dot=A.matvec, dot_adj=A.rmatvec, dtype=A.dtype) else: raise TypeError("type not understood") if ( A is not None and not isinstance(A, IdentityLinearOperator) and timer is not None ): ret = TimedLinearOperator(ret, timer) if shape != ret.shape: raise LinearOperatorError("shape mismatch") return ret def norm_MMlr(M, Ml, A, Mr, b, x0, yk, inner_product=ip_euclid): xk = x0 + Mr * yk r = b - A * xk Mlr = Ml * r norm_Mlr = norm(Mlr) if norm_Mlr == 0: MMlr = numpy.zeros(Mlr.shape) norm_MMlr = 0 else: nMlr = Mlr / norm_Mlr nMMlr = M * nMlr MMlr = nMMlr * norm_Mlr norm_MMlr = norm(Mlr, MMlr, inner_product=inner_product) return xk, Mlr, MMlr, norm_MMlr def orthonormality(V, ip_B=None): return norm(numpy.eye(V.shape[1]) - inner(V, V, ip_B=ip_B)) def arnoldi_res(A, V, H, ip_B=None): N = V.shape[0] invariant = H.shape[0] == H.shape[1] A = get_linearoperator((N, N), A) if invariant: res = A * V - numpy.dot(V, H) else: res = A * V[:, :-1] - numpy.dot(V, H) return norm(res, ip_B=ip_B) class House: def __init__(self, x): if len(x.shape) != 2 or x.shape[1] != 1: raise ArgumentError("x is not a vector of dim (N,1)") v = x.copy() gamma = v[0].item() v[0] = 1 if x.shape[0] == 1: sigma = 0 xnorm = numpy.abs(gamma) beta = 0 alpha = 1 if gamma == 0 else gamma / xnorm else: sigma = numpy.linalg.norm(v[1:], 2) xnorm = numpy.sqrt(numpy.abs(gamma) ** 2 + sigma ** 2) if sigma == 0: beta = 0 xnorm = numpy.abs(gamma) alpha = 1 if gamma == 0 else gamma / xnorm else: beta = 2 if gamma == 0: v[0] = -sigma alpha = 1 else: v[0] = gamma + gamma / numpy.abs(gamma) * xnorm alpha = -gamma / numpy.abs(gamma) self.xnorm = xnorm self.v = v / numpy.sqrt(numpy.abs(v[0]) ** 2 + sigma ** 2) self.alpha = alpha self.beta = beta def apply(self, x): if len(x.shape) != 2: raise ArgumentError("x is not a matrix of shape (N,*)") if self.beta == 0: return x return x - self.beta * self.v * numpy.dot(self.v.T.conj(), x) def matrix(self): n = self.v.shape[0] return numpy.eye(n, n) - self.beta * numpy.dot(self.v, self.v.T.conj()) class Givens: def __init__(self, x): if x.shape != (2, 1): raise ArgumentError("x is not a vector of shape (2,1)") a = x[0].item() b = x[1].item() if numpy.isreal(x).all(): a = numpy.real(a) b = numpy.real(b) c, s = blas.drotg(a, b) else: c, s = blas.zrotg(a, b) self.c = c self.s = s self.r = c * a + s * b self.G = numpy.array([[c, s], [-numpy.conj(s), c]]) def apply(self, x): return numpy.dot(self.G, x) class Projection(object): def __init__(self, X, Y=None, ip_B=None, orthogonalize=True, iterations=2): self.ip_B = ip_B if iterations < 1: raise ArgumentError("iterations < 1 not allowed") self.orthogonalize = orthogonalize self.iterations = iterations Y = X if Y is None else Y if len(X.shape) != 2: raise ArgumentError("X does not have shape==(N,k)") if X.shape != Y.shape: raise ArgumentError("X and Y have different shapes") if X.shape[1] == 0: self.V = self.W = numpy.zeros(X.shape) self.VR = self.WR = self.Q = self.R = None return if orthogonalize: self.V, self.VR = qr(X, ip_B=ip_B) else: self.V = X self.VR = None if Y is X and orthogonalize: self.W, self.WR = self.V, self.VR self.Q, self.R = None, None else: if orthogonalize: self.W, self.WR = qr(Y, ip_B=ip_B) else: self.W = Y self.WR = None M = inner(self.W, self.V, ip_B=ip_B) self.Q, self.R = scipy.linalg.qr(M) def _apply(self, a, return_Ya=False): if self.V.shape[1] == 0: Pa = numpy.zeros(a.shape) if return_Ya: return Pa, numpy.zeros((0, a.shape[1])) return Pa c = inner(self.W, a, ip_B=self.ip_B) if return_Ya: Ya = c.copy() if self.WR is not None: Ya = self.WR.T.conj().dot(Ya) if self.Q is not None and self.R is not None: c = scipy.linalg.solve_triangular(self.R, self.Q.T.conj().dot(c)) Pa = self.V.dot(c) if return_Ya: return Pa, Ya return Pa def _apply_adj(self, a): if self.V.shape[1] == 0: return numpy.zeros(a.shape) """Single application of the adjoint projection.""" c = inner(self.V, a, ip_B=self.ip_B) if self.Q is not None and self.R is not None: c = self.Q.dot( scipy.linalg.solve_triangular(self.R.T.conj(), c, lower=True) ) return self.W.dot(c) def apply(self, a, return_Ya=False): if self.V.shape[1] == 0: Pa = numpy.zeros(a.shape) if return_Ya: return Pa, numpy.zeros((0, a.shape[1])) return Pa if return_Ya: x, Ya = self._apply(a, return_Ya=return_Ya) else: x = self._apply(a) for i in range(self.iterations - 1): z = a - x w = self._apply(z) x = x + w if return_Ya: return x, Ya return x def apply_adj(self, a): if self.V.shape[1] == 0: return numpy.zeros(a.shape) x = self._apply_adj(a) for i in range(self.iterations - 1): z = a - x w = self._apply_adj(z) x = x + w return x def apply_complement(self, a, return_Ya=False): if self.V.shape[1] == 0: if return_Ya: return a.copy(), numpy.zeros((0, a.shape[1])) return a.copy() if return_Ya: x, Ya = self._apply(a, return_Ya=True) else: x = self._apply(a) z = a - x for i in range(self.iterations - 1): w = self._apply(z) z = z - w if return_Ya: return z, Ya return z def apply_complement_adj(self, a): if self.V.shape[1] == 0: return a.copy() x = self._apply_adj(a) z = a - x for i in range(self.iterations - 1): w = self._apply_adj(z) z = z - w return z def _get_operator(self, fun, fun_adj): N = self.V.shape[0] t = numpy.find_common_type([self.V.dtype, self.W.dtype], []) return LinearOperator((N, N), t, fun, fun_adj) def operator(self): if self.V.shape[1] == 0: N = self.V.shape[0] return ZeroLinearOperator((N, N)) return self._get_operator(self.apply, self.apply_adj) def operator_complement(self): if self.V.shape[1] == 0: N = self.V.shape[0] return IdentityLinearOperator((N, N)) return self._get_operator(self.apply_complement, self.apply_complement_adj)
MIT License
fluidinfo/tickery
tickery/adder.py
AdderCache._reportCancelled
python
def _reportCancelled(self, fail, screenname): fail.trap(defer.CancelledError) log.msg('Addition of user %r cancelled.' % screenname)
A user addition was cancelled. Log it and absorb the failure.
https://github.com/fluidinfo/tickery/blob/e64673ff1a5286b5ebec3f15f877682ed824f653/tickery/adder.py#L255-L260
from operator import attrgetter from twisted.internet import defer from twisted.python import log from txrdq.rdq import ResizableDispatchQueue from tickery.cacheutils import DumpingCache from tickery import ftwitter class User(object): _states = ('queued', 'underway', 'added', 'canceled', 'failed') _illegalTransitions = { 'queued': ('added', 'failed'), 'underway': ('queued',), 'added': ('queued', 'underway', 'canceled', 'failed'), 'canceled': ('underway', 'added', 'failed'), 'failed': ('underway', 'added'), } def __init__(self, screenname, nFriends, priority): self.screenname = screenname self.nFriends = nFriends self.priority = priority self.reset() def reset(self): self.state = 'queued' def setState(self, newState): currentState = self.state screenname = self.screenname if newState in self._states: if newState in self._illegalTransitions[currentState]: log.msg("Adder logic error? Can't transition %r from state " '%r to %r.' % (screenname, currentState, newState)) else: if newState == currentState: log.msg('Logic error? %r is already in state %r.' % (screenname, newState)) else: log.msg('Adder: %r state change: %r -> %r.' % (screenname, currentState, newState)) self.state = newState else: log.msg('Error: Unknown state %r.' % newState) def canceled(self): return self.state == 'canceled' def __str__(self): return ('%-16s state=%s priority=%d nFriends=%d' % (self.screenname, self.state, self.priority, self.nFriends)) def __repr__(self): return '<%s screenname=%r state=%r priority=%d nFriends=%d>' % ( self.__class__.__name__, self.screenname, self.state, self.priority, self.nFriends) class AdderCache(DumpingCache): def __init__(self, cache, queueWidth, endpoint): super(AdderCache, self).__init__() self.cache = cache self.queueWidth = queueWidth self.endpoint = endpoint def load(self, cacheFile): self.rdq = ResizableDispatchQueue(self._addUser, width=self.queueWidth) self.users = super(AdderCache, self).load(cacheFile) if self.users is None: self.users = {} self.setCache(self.users) else: added = [u for u in self.users.values() if u.state == 'added'] notAdded = [u for u in self.users.values() if u.state != 'added'] log.msg('Loaded adder cache: found %d added, %d unadded users' % (len(added), len(notAdded))) if self.cache.restoreAddQueue: log.msg('Restoring add queue.') for user in sorted(notAdded, key=attrgetter('queuedAt')): log.msg('Restoring %r (previous state %r)' % (user.screenname, user.state)) user.reset() d = self.rdq.put(user, user.priority) d.addErrback(self._reportCancelled, user.screenname) self.clean = False else: log.msg('Not restoring formerly queued names.') for user in notAdded: log.msg('Dropping user %r (in state %r)' % (user.screenname, user.state)) del self.users[user.screenname.lower()] self.clean = False def __str__(self): s = ['%d users in adder cache' % len(self.users)] for key in sorted(self.users.keys()): s.append(str(self.users[key])) return '\n'.join(s) def put(self, screenname, nFriends, priority): screennameLower = screenname.lower() user = self.users.get(screennameLower) if user: user.nFriends = nFriends user.setState('queued') else: user = User(screenname, nFriends, priority) self.users[screennameLower] = user log.msg('Adding screenname %r to request queue.' % screenname) self.clean = False d = self.rdq.put(user, priority) d.addErrback(self._reportCancelled, screenname) def _addUser(self, user): def _added(result): user.setState('added') self.clean = False return result def _failed(fail): self.clean = False if fail.check(ftwitter.Canceled): assert user.canceled() log.msg('Addition of user %r canceled.' % user.screenname) else: user.setState('failed') log.msg('Failed to add %r: %s' % (user.screenname, fail)) if hasattr(fail.value, 'response_headers'): for header in fail.value.response_headers: if header.startswith('x-fluiddb-'): print '\t%s: %s' % ( header, fail.value.response_headers[header][0]) log.msg('User %r received from request queue.' % user.screenname) user.setState('underway') d = ftwitter.addUserByScreenname(self.cache, self.endpoint, user) d.addCallbacks(_added, _failed) d.addErrback(log.err) return d def cancel(self, screenname): log.msg('Attempting cancel of %r addition.' % screenname) try: user = self.users[screenname.lower()] except KeyError: raise Exception('Cannot cancel unknown user %r.' % screenname) else: if user.state == 'underway' or user.state == 'queued': for job in self.rdq.underway() + set(self.rdq.pending()): if job.jobarg.screenname == screenname: log.msg('Cancelling %s %r addition.' % (user.state, screenname)) job.cancel() user.setState('canceled') break else: raise Exception('Could not find %r in underway ' 'or pending lists.' % screenname) else: user.setState('canceled') def added(self, screenname): try: user = self.users[screenname.lower()] except KeyError: return False else: return user.state == 'added' def known(self, screenname): return screenname.lower() in self.users def statusSummary(self, screennames): position = {} for i, user in enumerate( [job.jobarg for job in self.rdq.pending()]): position[user.screenname.lower()] = i queued = [] underway = [] added = [] canceled = [] failed = [] unknown = [] for screenname in screennames: try: user = self.users[screenname.lower()] except KeyError: unknown.append(screenname) else: log.msg('user: %s' % user) state = user.state if state == 'queued': try: pos = position[screenname.lower()] except KeyError: log.msg('ERROR: User %r has no queue position.' % screenname) pos = -1 queued.append([screenname, user.nFriends, pos]) elif state == 'underway': underway.append( [screenname, user.nFriends, float(user.workDone) / float(user.workToDo)]) elif state == 'added': added.append(screenname) elif state == 'canceled': canceled.append(screenname) elif state == 'failed': failed.append(screenname) else: log.msg('ERROR: User %r is in an unknown state: %r' % (screenname, state)) return { 'queued': queued, 'underway': underway, 'added': added, 'failed': failed, 'canceled': canceled, 'unknown': unknown, } @defer.inlineCallbacks def close(self): pending = yield self.rdq.stop() if pending: log.msg('Pending user additions canceled: %r' % [job.jobarg.screenname for job in pending]) super(AdderCache, self).close()
Apache License 2.0
apache/bloodhound
bloodhound_theme/bhtheme/theme.py
BloodhoundTheme.post_process_request
python
def post_process_request(self, req, template, data, content_type): if template is None and data is None and sys.exc_info() == (None, None, None): return template, data, content_type def is_active_theme(): is_active = False active_theme = ThemeEngineSystem(self.env).theme if active_theme is not None: this_theme_name = self.get_theme_names().next() is_active = active_theme['name'] == this_theme_name return is_active req.chrome['labels'] = self._get_whitelabelling() if data is not None: data['product_list'] = ProductModule.get_product_list(self.env, req) links = req.chrome.get('links', {}) if self.env.project_icon == 'common/trac.ico': bh_icon = 'theme/img/bh.ico' new_icon = {'href': req.href.chrome(bh_icon), 'type': get_mimetype(bh_icon)} if links.get('icon'): links.get('icon')[0].update(new_icon) if links.get('shortcut icon'): links.get('shortcut icon')[0].update(new_icon) is_active_theme = is_active_theme() if self.disable_all_trac_css and is_active_theme: for i, entry in enumerate(req.chrome['nav'].get('mainnav', [])): if entry['name'] == 'admin': req.chrome['nav'].setdefault('metanav', []) .append(req.chrome['nav']['mainnav'].pop(i)) if self.disable_all_trac_css: stylesheets = links.get('stylesheet', []) if stylesheets: path = '/chrome/common/css/' _iter = ([ss, ss.get('href', '')] for ss in stylesheets) links['stylesheet'] = [ss for ss, href in _iter if not path in href or href.rsplit('/', 1)[-1] in self.BLOODHOUND_KEEP_CSS] template, modifier = self.BLOODHOUND_TEMPLATE_MAP.get(template, (template, None)) if modifier is not None: modifier = getattr(self, modifier) modifier(req, template, data, content_type, is_active_theme) if is_active_theme and data is not None: data['responsive_layout'] = self.env.config.getbool('bloodhound', 'responsive_layout', 'true') data['bhrelations'] = self.env.config.getbool('components', 'bhrelations.*', 'false') if req.locale is not None: add_script(req, 'theme/bloodhound/%s.js' % req.locale) return template, data, content_type
Post process request filter. Removes all trac provided css if required
https://github.com/apache/bloodhound/blob/c3e31294e68af99d4e040e64fbdf52394344df9e/bloodhound_theme/bhtheme/theme.py#L264-L329
import sys from genshi.builder import tag from genshi.core import TEXT from genshi.filters.transform import Transformer from genshi.output import DocType from trac.config import ListOption, Option from trac.core import Component, TracError, implements from trac.mimeview.api import get_mimetype from trac.resource import get_resource_url, Neighborhood, Resource from trac.ticket.api import TicketSystem from trac.ticket.model import Ticket, Milestone from trac.ticket.notification import TicketNotifyEmail from trac.ticket.web_ui import TicketModule from trac.util.compat import set from trac.util.presentation import to_json from trac.versioncontrol.web_ui.browser import BrowserModule from trac.web.api import IRequestFilter, IRequestHandler, ITemplateStreamFilter from trac.web.chrome import (add_stylesheet, add_warning, INavigationContributor, ITemplateProvider, prevnext_nav, Chrome, add_script) from trac.wiki.admin import WikiAdmin from trac.wiki.formatter import format_to_html from themeengine.api import ThemeBase, ThemeEngineSystem from bhdashboard.util import dummy_request from bhdashboard.web_ui import DashboardModule from bhdashboard import wiki from multiproduct.env import ProductEnvironment from multiproduct.web_ui import PRODUCT_RE, ProductModule from bhtheme.translation import _, add_domain try: from multiproduct.ticket.web_ui import ProductTicketModule except ImportError: ProductTicketModule = None class BloodhoundTheme(ThemeBase): template = htdocs = css = screenshot = disable_trac_css = True disable_all_trac_css = True BLOODHOUND_KEEP_CSS = set( ( 'diff.css', 'code.css' ) ) BLOODHOUND_TEMPLATE_MAP = { 'admin_accountsconfig.html': ('bh_admin_accountsconfig.html', '_modify_admin_breadcrumb'), 'admin_accountsnotification.html': ('bh_admin_accountsnotification.html', '_modify_admin_breadcrumb'), 'admin_basics.html': ('bh_admin_basics.html', '_modify_admin_breadcrumb'), 'admin_components.html': ('bh_admin_components.html', '_modify_admin_breadcrumb'), 'admin_enums.html': ('bh_admin_enums.html', '_modify_admin_breadcrumb'), 'admin_logging.html': ('bh_admin_logging.html', '_modify_admin_breadcrumb'), 'admin_milestones.html': ('bh_admin_milestones.html', '_modify_admin_breadcrumb'), 'admin_perms.html': ('bh_admin_perms.html', '_modify_admin_breadcrumb'), 'admin_plugins.html': ('bh_admin_plugins.html', '_modify_admin_breadcrumb'), 'admin_products.html': ('bh_admin_products.html', '_modify_admin_breadcrumb'), 'admin_repositories.html': ('bh_admin_repositories.html', '_modify_admin_breadcrumb'), 'admin_users.html': ('bh_admin_users.html', '_modify_admin_breadcrumb'), 'admin_versions.html': ('bh_admin_versions.html', '_modify_admin_breadcrumb'), 'repository_links.html': ('repository_links.html', '_modify_admin_breadcrumb'), 'prefs.html': ('bh_prefs.html', None), 'prefs_account.html': ('bh_prefs_account.html', None), 'prefs_advanced.html': ('bh_prefs_advanced.html', None), 'prefs_datetime.html': ('bh_prefs_datetime.html', None), 'prefs_general.html': ('bh_prefs_general.html', None), 'prefs_keybindings.html': ('bh_prefs_keybindings.html', None), 'prefs_language.html': ('bh_prefs_language.html', None), 'prefs_pygments.html': ('bh_prefs_pygments.html', None), 'prefs_userinterface.html': ('bh_prefs_userinterface.html', None), 'search.html': ('bh_search.html', '_modify_search_data'), 'wiki_delete.html': ('bh_wiki_delete.html', None), 'wiki_diff.html': ('bh_wiki_diff.html', None), 'wiki_edit.html': ('bh_wiki_edit.html', None), 'wiki_rename.html': ('bh_wiki_rename.html', None), 'wiki_view.html': ('bh_wiki_view.html', '_modify_wiki_page_path'), 'diff_view.html': ('bh_diff_view.html', None), 'manage.html': ('manage.html', '_modify_resource_breadcrumb'), 'milestone_edit.html': ('bh_milestone_edit.html', '_modify_roadmap_page'), 'milestone_delete.html': ('bh_milestone_delete.html', '_modify_roadmap_page'), 'milestone_view.html': ('bh_milestone_view.html', '_modify_roadmap_page'), 'query.html': ('bh_query.html', '_add_products_general_breadcrumb'), 'report_delete.html': ('bh_report_delete.html', '_add_products_general_breadcrumb'), 'report_edit.html': ('bh_report_edit.html', '_add_products_general_breadcrumb'), 'report_list.html': ('bh_report_list.html', '_add_products_general_breadcrumb'), 'report_view.html': ('bh_report_view.html', '_add_products_general_breadcrumb'), 'roadmap.html': ('bh_roadmap.html', '_modify_roadmap_page'), 'ticket.html': ('bh_ticket.html', '_modify_ticket'), 'ticket_delete.html': ('bh_ticket_delete.html', None), 'ticket_preview.html': ('bh_ticket_preview.html', None), 'attachment.html': ('bh_attachment.html', None), 'preview_file.html': ('bh_preview_file.html', None), 'browser.html': ('bh_browser.html', '_modify_browser'), 'changeset.html': ('bh_changeset.html', None), 'diff_form.html': ('bh_diff_form.html', None), 'dir_entries.html': ('bh_dir_entries.html', None), 'revisionlog.html': ('bh_revisionlog.html', '_modify_browser'), 'product_view.html': ('bh_product_view.html', '_add_products_general_breadcrumb'), 'product_list.html': ('bh_product_list.html', '_modify_product_list'), 'product_edit.html': ('bh_product_edit.html', '_add_products_general_breadcrumb'), 'about.html': ('bh_about.html', None), 'history_view.html': ('bh_history_view.html', None), 'timeline.html': ('bh_timeline.html', None), 'account_details.html': ('bh_account_details.html', None), 'login.html': ('bh_login.html', None), 'register.html': ('bh_register.html', None), 'reset_password.html': ('bh_reset_password.html', None), 'user_table.html': ('bh_user_table.html', None), 'verify_email.html': ('bh_verify_email.html', None), } BOOTSTRAP_CSS_DEFAULTS = ( ("body//table[not(contains(@class, 'table'))]", ['table', 'table-condensed']), ) labels_application_short = Option('labels', 'application_short', 'Bloodhound', """A short version of application name most commonly displayed in text, titles and labels""", doc_domain='bhtheme') labels_application_full = Option('labels', 'application_full', 'Apache Bloodhound', """This is full name with trade mark and everything, it is currently used in footers and about page only""", doc_domain='bhtheme') labels_footer_left_prefix = Option('labels', 'footer_left_prefix', '', """Text to display before full application name in footers""", doc_domain='bhtheme') labels_footer_left_postfix = Option('labels', 'footer_left_postfix', '', """Text to display after full application name in footers""", doc_domain='bhtheme') labels_footer_right = Option('labels', 'footer_right', '', """Text to use as the right aligned footer""", doc_domain='bhtheme') _wiki_pages = None Chrome.default_html_doctype = DocType.HTML5 implements(IRequestFilter, INavigationContributor, ITemplateProvider, ITemplateStreamFilter) from trac.web import main main.default_tracker = 'http://issues.apache.org/bloodhound' def _get_whitelabelling(self): return { 'application_short': self.labels_application_short, 'application_full': self.labels_application_full, 'footer_left_prefix': self.labels_footer_left_prefix, 'footer_left_postfix': self.labels_footer_left_postfix, 'footer_right': self.labels_footer_right, 'application_version': application_version } def filter_stream(self, req, method, filename, stream, data): tx = Transformer('body') def add_classes(classes): def attr_modifier(name, event): attrs = event[1][1] class_list = attrs.get(name, '').split() self.log.debug('BH Theme : Element classes ' + str(class_list)) out_classes = ' '.join(set(class_list + classes)) self.log.debug('BH Theme : Inserting class ' + out_classes) return out_classes return attr_modifier for xpath, classes in self.BOOTSTRAP_CSS_DEFAULTS: tx = tx.end().select(xpath) .attr('class', add_classes(classes)) tx = tx.end() .select("body//a[contains(@href,'/wiki/%s')]" % wiki.GUIDE_NAME) .map(lambda text: wiki.new_name(text), TEXT) app_short = self.labels_application_short tx = tx.end() .select("body//div[@class='error']/h1") .map(lambda text: text.replace("Trac", app_short), TEXT) return stream | tx def pre_process_request(self, req, handler): def hwiki(*args, **kw): def new_name(name): new_name = wiki.new_name(name) if new_name != name: if not self._wiki_pages: wiki_admin = WikiAdmin(self.env) self._wiki_pages = wiki_admin.get_wiki_list() if new_name in self._wiki_pages: return new_name return name a = tuple([new_name(x) for x in args]) return req.href.__call__("wiki", *a, **kw) req.href.wiki = hwiki return handler
Apache License 2.0
luiszeni/boosted-oicr
code/utils/minibatch.py
get_minibatch
python
def get_minibatch(roidb, num_classes): blobs = {k: [] for k in get_minibatch_blob_names()} im_blob, im_scales = _get_image_blob(roidb) assert len(im_scales) == 1, "Single batch only" assert len(roidb) == 1, "Single batch only" blobs['data'] = im_blob rois_blob = np.zeros((0, 5), dtype=np.float32) labels_blob = np.zeros((0, num_classes), dtype=np.float32) num_images = len(roidb) for im_i in range(num_images): labels, im_rois = _sample_rois(roidb[im_i], num_classes) rois = _project_im_rois(im_rois, im_scales[im_i]) batch_ind = im_i * np.ones((rois.shape[0], 1)) rois_blob_this_image = np.hstack((batch_ind, rois)) if cfg.DEDUP_BOXES > 0: v = np.array([1, 1e3, 1e6, 1e9, 1e12]) hashes = np.round(rois_blob_this_image * cfg.DEDUP_BOXES).dot(v) _, index, inv_index = np.unique(hashes, return_index=True, return_inverse=True) rois_blob_this_image = rois_blob_this_image[index, :] rois_blob = np.vstack((rois_blob, rois_blob_this_image)) labels_blob = np.vstack((labels_blob, labels)) blobs['rois'] = rois_blob blobs['labels'] = labels_blob return blobs, True
Given a roidb, construct a minibatch sampled from it.
https://github.com/luiszeni/boosted-oicr/blob/9c787808a3a0e5a2610cde7562eb04bc2ce050b9/code/utils/minibatch.py#L17-L57
import numpy as np import numpy.random as npr import cv2 from tasks.config import cfg import utils.blob as blob_utils def get_minibatch_blob_names(is_training=True): blob_names = ['data', 'rois', 'labels'] return blob_names
MIT License
tmancal74/quantarhei
quantarhei/builders/pdb.py
PDBFile.get_Molecules
python
def get_Molecules(self, model=None): if model is None: return self.molecules else: molecules = [] res_name = model.pdbname mollines = self._match_lines(by_recName="HETATM", by_resName=res_name) for mols in mollines: rseq = int(line_resSeq(mols)) if rseq not in self._resSeqs: self._resSeqs.append(rseq) self._res_lines[rseq] = [] self._res_lines[rseq].append(mols) count = -1 for mols in mollines: rseq = int(line_resSeq(mols)) chainId = line_chainId(mols) comb = chainId+str(rseq) if comb not in self._uniqueIds: count += 1 self._uniqueIds.append(comb) self._unique_lines[comb] = [] self._unique_lines[comb].append(mols) for rseq in self._uniqueIds: m = Molecule(name=str(rseq), elenergies=model.default_energies) r = model.position_of_center(data_type="PDB", data=self._unique_lines[rseq]) m.position = r d = model.transition_dipole(data_type="PDB", data=self._unique_lines[rseq]) m.set_dipole(0,1,d) m.model = self m.data = self._unique_lines[rseq] molecules.append(m) self._reset_helpers() self.molecules = molecules return molecules
Returns all molecules corresponding to a given model
https://github.com/tmancal74/quantarhei/blob/54a40cc55cdedf86bf04a5d705227fe69461d408/quantarhei/builders/pdb.py#L57-L135
import numpy from .molecules import Molecule _resSeq_min = 22 _resSeq_max = 26 _chainId_min = 21 _chainId_max = 22 class PDBFile: def __init__(self, fname=None): self.lines = [] self.linecount = 0 self.molecules = [] self._resSeqs = [] self._uniqueIds = [] self._res_lines = dict() self._unique_lines = dict() if fname is not None: self.linecount = self.load_file(fname) else: return def _reset_helpers(self): self._resSeqs = [] self._uniqueIds = [] self._res_lines = dict() self._unique_lines = dict() def load_file(self, fname): with open(fname) as file: k = 0 for line in file: self.lines.append(line) k += 1 return k
MIT License
guildai/guildai
guild/commands/help.py
help
python
def help(ctx, args): from . import help_impl help_impl.main(args, ctx)
Show help for a path or package. By default shows information about the models defined in the project. To display the description for distributions generated using the package command, specify the `--package-description` option.
https://github.com/guildai/guildai/blob/79d39402201168b7e94007d8e66ecf504e7aa71c/guild/commands/help.py#L50-L62
from __future__ import absolute_import from __future__ import division import click from guild import click_util def _ac_path_or_package(incomplete, **_kw): from . import packages_impl packages = [pkg.project_name for pkg in packages_impl.packages(False)] return sorted([pkg for pkg in packages if pkg.startswith(incomplete)]) + ["!!dir"] @click.command() @click.argument("path-or-package", required=False, autocompletion=_ac_path_or_package) @click.option( "--package-description", help="Show the package description.", is_flag=True ) @click.option("--markdown", help="Show help using Markdown format", is_flag=True) @click.option( "--base-heading-level", type=int, default=1, help="Base heading level for generated markdown (default is 1)", ) @click.option( "--title", default="Guild AI Help", help="Page title used for generating markdown" ) @click.option( "-n", "--no-pager", help="Do not use a pager when showing help.", is_flag=True ) @click.pass_context @click_util.use_args
Apache License 2.0
ansible/galaxy
galaxy/main/celerytasks/user_notifications.py
collection_new_survey
python
def collection_new_survey(collection_pk): collection = models.Collection.objects.get(pk=collection_pk) owners = _get_preferences(collection.namespace.owners.all()) full_name = '{}.{}'.format(collection.namespace.name, collection.name) notification = NotificationManger( email_template=new_survey_template, preferences_name='notify_survey', preferences_list=owners, subject='Ansible Galaxy: new survey for {}'.format(full_name), db_message='New survey for {}'.format(full_name), collection=collection, ) path = '/{}/{}/'.format(collection.namespace.name, collection.name) ctx = { 'content_score': collection.community_score, 'type': 'collection', 'content_name': full_name, 'content_url': '{}{}'.format(notification.url, path), } notification.notify(ctx)
Send new survey notification to collection namespace owners.
https://github.com/ansible/galaxy/blob/e0e4b909171ddc6ca40f0ef2f7d4dce5680777ce/galaxy/main/celerytasks/user_notifications.py#L326-L350
import logging import celery from django.contrib.sites.models import Site from django.conf import settings from django.core import mail from allauth.account.models import EmailAddress from galaxy.main import models LOG = logging.getLogger(__name__) class NotificationManger(object): def __init__(self, email_template, preferences_name, preferences_list, subject, db_message=None, repo=None, collection=None): self.email_template = email_template self.preferences_name = preferences_name self.preferences_list = preferences_list self.subject = subject self.url = settings.GALAXY_URL.format( site=Site.objects.get_current().domain ) self.repo = repo self.collection = collection if db_message is None: self.db_message = subject else: self.db_message = db_message def render_email(self, context): text = self.email_template.format(**context) footer = email_footer_template.format( preferences_link='{}/me/preferences/'.format(self.url) ) return text + footer def send(self, email_message): for user in self.preferences_list: try: if user.preferences['ui_' + self.preferences_name]: models.UserNotification.objects.create( user=user.user, type=self.preferences_name, message=self.db_message, repository=self.repo, collection=self.collection, ) except Exception as e: LOG.error(e) try: if user.preferences[self.preferences_name]: email = EmailAddress.objects.filter( primary=True, user=user.user, ) mail.send_mail( self.subject, email_message, settings.GALAXY_NOTIFICATION_EMAIL, [email[0].email], fail_silently=False ) except Exception as e: LOG.error(e) def notify(self, context): email = self.render_email(context) self.send(email) def email_verification(email, code, username): url = settings.GALAXY_URL.format( site=Site.objects.get_current().domain ) url += '/me/preferences/?verify=' + code message = email_verification_template.format( username=username, url=url ) mail.send_mail( 'Ansible Galaxy Please Confirm Your E-mail Address', message, settings.GALAXY_NOTIFICATION_EMAIL, [email], fail_silently=True ) @celery.task def collection_import(task_id, has_failed=False): task = models.CollectionImport.objects.get(id=task_id) if has_failed: status = 'failed' preference_name = 'notify_import_fail' collection = None else: status = 'completed' preference_name = 'notify_import_success' collection = task.imported_version.collection owners = _get_preferences(task.namespace.owners.all()) subject = f'Ansible Galaxy: import of {task.name} has {status}' webui_title = f'Import {status}: {task.name} {task.version}' notification = NotificationManger( email_template=import_status_template, preferences_name=preference_name, preferences_list=owners, subject=subject, db_message=webui_title, collection=collection, ) ctx = { 'status': status, 'content_name': '{}.{}'.format(task.namespace.name, task.name), 'import_url': '{}/my-imports'.format(notification.url), } notification.notify(ctx) @celery.task def repo_import(task_id, user_initiated, has_failed=False): task = models.ImportTask.objects.get(id=task_id) repo = task.repository owners = repo.provider_namespace.namespace.owners.all() author = repo.provider_namespace.namespace.name owners = _get_preferences(owners) if has_failed: preference = 'notify_import_fail' status = 'failed' else: preference = 'notify_import_success' status = 'succeeded' subject = 'Ansible Galaxy: import of {} has {}'.format(repo.name, status) db_message = 'Import {}: {}'.format(status, repo.name) log_path = '/my-imports' notification = NotificationManger( email_template=import_status_template, preferences_name=preference, preferences_list=owners, subject=subject, db_message=db_message, repo=repo ) ctx = { 'status': status, 'content_name': '{}.{}'.format(author, repo.name), 'import_url': notification.url + log_path } notification.notify(ctx) @celery.task def collection_new_version(version_pk): version = models.CollectionVersion.objects.get(pk=version_pk) collection_followers = models.UserPreferences.objects.filter( collections_followed__pk=version.collection.pk, ) collection = version.collection namespace_name = collection.namespace.name full_name = '{}.{}'.format(namespace_name, collection.name) version_number = version.version notification = NotificationManger( email_template=collection_new_version_template, preferences_name='notify_content_release', preferences_list=collection_followers, subject=f'Ansible Galaxy: New version of {full_name}', db_message=f'New version of {full_name}: {version_number}', collection=collection, ) path = '/{}/{}'.format(namespace_name, collection.name) ctx = { 'namespace_name': namespace_name, 'content_name': full_name, 'version': version_number, 'content_url': '{}{}'.format(notification.url, path), } notification.notify(ctx) @celery.task def repo_update(repo_id): followers = models.UserPreferences.objects.filter( repositories_followed__pk=repo_id ) repo = models.Repository.objects.get(id=repo_id) author = repo.provider_namespace.namespace.name notification = NotificationManger( email_template=repo_update_template, preferences_name='notify_content_release', preferences_list=followers, subject='Ansible Galaxy: New version of ' + repo.name, db_message='New version of: {}'.format(repo.name), repo=repo ) path = '/{}/{}/'.format(repo.provider_namespace.namespace.name, repo.name) ctx = { 'namespace_name': author, 'content_name': repo.name, 'content_url': notification.url + path } notification.notify(ctx) @celery.task def coll_author_release(version_pk): version = models.CollectionVersion.objects.get(pk=version_pk) author_followers = models.UserPreferences.objects.filter( namespaces_followed=version.collection.namespace, ) author = version.collection.namespace.name full_name = '{}.{}'.format(author, version.collection.name) notification = NotificationManger( email_template=author_release_template, preferences_name='notify_author_release', preferences_list=author_followers, subject=f'Ansible Galaxy: {author} has released a new collection', db_message=f'New collection from {author}: {full_name}', collection=version.collection, ) path = '/{}/{}'.format(author, version.collection.name) ctx = { 'author_name': author, 'type': 'collection', 'content_name': full_name, 'content_url': '{}{}'.format(notification.url, path), } notification.notify(ctx) @celery.task def repo_author_release(repo_id): repo = models.Repository.objects.get(id=repo_id) namespace = repo.provider_namespace.namespace followers = models.UserPreferences.objects.filter( namespaces_followed=namespace ) author = repo.provider_namespace.namespace.name notification = NotificationManger( email_template=author_release_template, preferences_name='notify_author_release', preferences_list=followers, subject='Ansible Galaxy: {} has released a new role'.format( author ), db_message='New release from {}: {}'.format( author, repo.name ), repo=repo ) path = '/{}/{}/'.format(author, repo.name) ctx = { 'author_name': author, 'type': 'role', 'content_name': repo.name, 'content_url': notification.url + path, } notification.notify(ctx) @celery.task
Apache License 2.0
rustychris/stompy
stompy/grid/live_dt.py
LiveDtGridBase.refresh_metadata
python
def refresh_metadata(self): super(LiveDtGridBase,self).refresh_metadata() self.populate_dt()
Should be called when all internal state is changed outside the mechanisms of add_X, delete_X, move_X, etc.
https://github.com/rustychris/stompy/blob/ef04d8b3ee9c9af827c87c72c7b50d365e5e567d/stompy/grid/live_dt.py#L139-L145
from __future__ import print_function from collections import defaultdict, Iterable import logging log = logging.getLogger('stompy.live_dt') import pdb import numpy as np from numpy.linalg import norm,solve from matplotlib import collections import matplotlib.pyplot as plt from .. import utils from ..utils import array_append from ..spatial import field,robust_predicates from . import orthomaker,trigrid,exact_delaunay def ray_intersection(p0,vec,pA,pB): d1a = np.array([pA[0]-p0[0],pA[1]-p0[1]]) A = np.array( [[vec[0], pB[0] - pA[0]], [vec[1], pB[1] - pA[1]]] ) alpha_beta = solve(A,d1a) return p0 + alpha_beta[0]*np.asarray(vec) class MissingConstraint(Exception): pass def distance_left_of_line(pnt, qp1, qp2): vec = qp2 - qp1 left_vec = np.array( [-vec[1],vec[0]] ) return (pnt[0] - qp1[0])*left_vec[0] + (pnt[1]-qp1[1])*left_vec[1] class LiveDtGridNull(orthomaker.OrthoMaker): has_dt = 0 pending_conflicts = [] def hold(self): pass def release(self): pass def delaunay_neighbors(self,n): return [] LiveDtGrid=LiveDtGridNull class LiveDtGridBase(orthomaker.OrthoMaker): has_dt = 1 freeze=0 holding = 0 pending_conflicts = [] edges_to_release = None scale_ratio_for_cutoff = 1.0 vh_dtype='object' def __init__(self,*args,**kwargs): super(LiveDtGridBase,self).__init__(*args,**kwargs) self.populate_dt() check_i = 0 def check(self): return print(" --checkplot %05i--"%self.check_i) plt.figure(10) plt.clf() self.plot_dt() if self.default_clip is not None: self.plot_nodes() plt.axis(self.default_clip) plt.title("--checkplot %05i--"%self.check_i) plt.savefig('tmp/dtframe%05i.png'%self.check_i) self.check_i += 1 plt.close(10)
MIT License
storj/storj-python-sdk
storj/__init__.py
get_client
python
def get_client(): return Client(*read_config())
Returns a pre-configured Storj HTTP client. Returns: (:py:class:`storj.http.Client`): Storj HTTP client.
https://github.com/storj/storj-python-sdk/blob/440add68f153a6d5a8e05ea577774559f2ada6ba/storj/__init__.py#L20-L26
import io import logging from abc import ABCMeta from .api import ecdsa_to_hex from .configuration import read_config from .http import Client from .metadata import __version__ from .model import Bucket, File, Token logging.getLogger(__name__).addHandler(logging.NullHandler())
MIT License
pyasi/pybuildkite
pybuildkite/agents.py
Agents.stop_agent
python
def stop_agent(self, organization, agent_id, force=True): body = {"force": force} stop = "/stop" return self.client.put( self.path.format(organization) + agent_id + stop, body=body )
Stop an agent :param organization: Organization slug :param agent_id: Agent id :param force: Whether or not to force the agent to stop if processing a job :return: no content
https://github.com/pyasi/pybuildkite/blob/75e378b6bdfcb0e57a77fb88e802495f2d9d510d/pybuildkite/agents.py#L62-L75
from posixpath import join as urljoin from pybuildkite.client import Client class Agents(Client): def __init__(self, client, base_url): self.client = client self.path = urljoin(base_url, "organizations/{}/agents/") def list_all( self, organization, name=None, hostname=None, version=None, page=0, with_pagination=False, ): query_params = { "name": name, "hostname": hostname, "version": version, "page": page, } return self.client.get( self.path.format(organization), query_params, with_pagination=with_pagination, ) def get_agent(self, organization, agent_id): return self.client.get(self.path.format(organization) + agent_id)
BSD 2-Clause Simplified License
google/gazoo-device
gazoo_device/tests/unit_tests/package_registrar_test.py
BadPrimaryDeviceSignatureOverride.reboot
python
def reboot(self):
This method is missing required "no_wait", "method" arguments.
https://github.com/google/gazoo-device/blob/f333b386f5993c8d4c9e12c89ebb620a0c4f5506/gazoo_device/tests/unit_tests/package_registrar_test.py#L197-L198
import abc import builtins import importlib import json import os.path import re from unittest import mock from gazoo_device import data_types from gazoo_device import decorators from gazoo_device import detect_criteria from gazoo_device import errors from gazoo_device import extensions from gazoo_device import fire_manager from gazoo_device import gdm_logger from gazoo_device import package_registrar from gazoo_device.base_classes import auxiliary_device from gazoo_device.base_classes import gazoo_device_base from gazoo_device.capabilities import event_parser_default from gazoo_device.capabilities.interfaces import capability_base from gazoo_device.switchboard import communication_types from gazoo_device.tests.unit_tests.utils import fake_devices from gazoo_device.tests.unit_tests.utils import unit_test_case import immutabledict logger = gdm_logger.get_logger() _TEST_PACKAGE_NAME = "foo_package" class GoodCapabilityBase(capability_base.CapabilityBase): class AbstractAuxiliaryDevice(auxiliary_device.AuxiliaryDevice): @abc.abstractmethod def some_abstract_method(self): class AbstractPrimaryDevice(gazoo_device_base.GazooDeviceBase): @abc.abstractmethod def some_abstract_method(self): class AbstractVirtualDevice(gazoo_device_base.GazooDeviceBase): @abc.abstractmethod def some_abstract_method(self): class AbstractCommunicationType(communication_types.CommunicationType): @abc.abstractmethod def some_abstract_method(self): class AbstractCapabilityFlavorDefault(GoodCapabilityBase): @abc.abstractmethod def some_abstract_method(self): class ClassNotInheritingFromInterface: class GoodCommunicationType(communication_types.CommunicationType): @classmethod def get_comms_addresses(cls): return [] def get_transport_list(self): del self return [] class GoodQueryKey(detect_criteria.QueryEnum): some_valid_query = "some_valid_query" another_valid_query = "another_valid_query" class GoodPrimaryDevice(fake_devices.FakeGazooDeviceBase): DEVICE_TYPE = "some_primary_device" COMMUNICATION_TYPE = "GoodCommunicationType" DETECT_MATCH_CRITERIA = immutabledict.immutabledict( {GoodQueryKey.some_valid_query: "some_value"}) _OWNER_EMAIL = "gdm-authors@google.com" class GoodVirtualDevice(fake_devices.FakeGazooDeviceBase): DEVICE_TYPE = "some_virtual_device" COMMUNICATION_TYPE = "GoodCommunicationType" DETECT_MATCH_CRITERIA = immutabledict.immutabledict( {GoodQueryKey.some_valid_query: "some_value"}) _OWNER_EMAIL = "gdm-authors@google.com" class GoodAuxiliaryDevice(auxiliary_device.AuxiliaryDevice): DEVICE_TYPE = "some_auxiliary_device" COMMUNICATION_TYPE = "GoodCommunicationType" DETECT_MATCH_CRITERIA = immutabledict.immutabledict( {GoodQueryKey.some_valid_query: "some_value"}) _OWNER_EMAIL = "gdm-authors@google.com" @decorators.LogDecorator(logger) def get_console_configuration(self): del self return None @classmethod def is_connected(cls, device_config): return True @decorators.LogDecorator(logger) def recover(self, error): del self @decorators.LogDecorator(logger) def get_detection_info(self): del self return {}, {} class GoodCapabilityDefault(GoodCapabilityBase): class CapabilityWithSameNameBase(capability_base.CapabilityBase): @classmethod def get_capability_name(cls): return GoodCapabilityBase.get_capability_name() def good_detection_query(address, detect_logger, create_switchboard_func): del address, detect_logger, create_switchboard_func return True def another_good_detection_query(address, detect_logger, create_switchboard_func): del address, detect_logger, create_switchboard_func return "foobar" class BadPrimaryDeviceNoLogDecorator(GoodPrimaryDevice): def factory_reset(self): class BadPrimaryDeviceSignatureOverride(GoodPrimaryDevice): @decorators.LogDecorator(logger)
Apache License 2.0
aryanc403/remind
remind/cogs/meta.py
Meta.ping
python
async def ping(self, ctx): start = time.perf_counter() message = await ctx.send(':ping_pong: Pong!') end = time.perf_counter() duration = (end - start) * 1000 content = f'REST API latency: {int(duration)}ms\n' await message.edit(content=content)
Replies to a ping.
https://github.com/aryanc403/remind/blob/c4be96a237b4d00e4f74519da6aa54a41f5422cb/remind/cogs/meta.py#L80-L88
import os import subprocess import sys import time import textwrap from discord.ext import commands from remind.util.discord_common import pretty_time_format from remind.util import clist_api from remind import constants RESTART = 42 def git_history(): def _minimal_ext_cmd(cmd): env = {} for k in ['SYSTEMROOT', 'PATH']: v = os.environ.get(k) if v is not None: env[k] = v env['LANGUAGE'] = 'C' env['LANG'] = 'C' env['LC_ALL'] = 'C' out = subprocess.Popen( cmd, stdout=subprocess.PIPE, env=env).communicate()[0] return out try: out = _minimal_ext_cmd(['git', 'rev-parse', '--abbrev-ref', 'HEAD']) branch = out.strip().decode('ascii') out = _minimal_ext_cmd(['git', 'log', '--oneline', '-5']) history = out.strip().decode('ascii') return ( 'Branch:\n' + textwrap.indent(branch, ' ') + '\nCommits:\n' + textwrap.indent(history, ' ') ) except OSError: return "Fetching git info failed" def check_if_superuser(ctx): return ctx.author.id in constants.SUPER_USERS class Meta(commands.Cog): def __init__(self, bot): self.bot = bot self.start_time = time.time() @commands.group(brief='Bot control', invoke_without_command=True) async def meta(self, ctx): await ctx.send_help(ctx.command) @meta.command(brief='Restarts Remind') @commands.check(check_if_superuser) async def restart(self, ctx): await ctx.send('Restarting...') os._exit(RESTART) @meta.command(brief='Kill Remind') @commands.check(check_if_superuser) async def kill(self, ctx): await ctx.send('Dying...') os._exit(0) @meta.command(brief='Is Remind up?')
MIT License
maxbbraun/accent
server/weather.py
Weather.is_partly_cloudy
python
def is_partly_cloudy(self, user): return self._icon(user) in ['02d', '02n']
Checks if the current weather is partly cloudy.
https://github.com/maxbbraun/accent/blob/9fbb543e5261598a586e427afb68e86b29839f00/server/weather.py#L69-L72
from astral import AstralError from cachetools import cached from cachetools import TTLCache from json.decoder import JSONDecodeError from logging import info from requests import get from requests import RequestException from firestore import DataError from firestore import Firestore OPEN_WEATHER_URL = ('https://api.openweathermap.org/data/2.5/onecall' '?lat=%f&lon=%f&exclude=minutely,hourly,daily&appid=%s') MAX_CACHE_SIZE = 100 CACHE_TTL_S = 60 * 60 class Weather(object): def __init__(self, geocoder): self._open_weather_api_key = Firestore().open_weather_api_key() self._geocoder = geocoder def _icon(self, user): location = self._home_location(user) return self._request_icon(location) def _home_location(self, user): try: home = user.get('home') return self._geocoder[home] except (AstralError, KeyError) as e: raise DataError(e) @cached(cache=TTLCache(maxsize=MAX_CACHE_SIZE, ttl=CACHE_TTL_S)) def _request_icon(self, location): request_url = OPEN_WEATHER_URL % (location.latitude, location.longitude, self._open_weather_api_key) try: response_json = get(request_url).json() icon = response_json['current']['weather'][0]['icon'] except (RequestException, JSONDecodeError, KeyError) as e: raise DataError(e) info('Weather: %s' % icon) return icon def is_clear(self, user): return self._icon(user) in ['01d', '01n']
MIT License
rapid7/vm-console-client-python
rapid7vmconsole/models/alert.py
Alert.maximum_alerts
python
def maximum_alerts(self): return self._maximum_alerts
Gets the maximum_alerts of this Alert. # noqa: E501 The maximum number of alerts that will be issued. To disable maximum alerts, omit the property in the request or specify the property with a value of `null`. # noqa: E501 :return: The maximum_alerts of this Alert. # noqa: E501 :rtype: int
https://github.com/rapid7/vm-console-client-python/blob/55e1f573967bce27cc9a2d10c12a949b1142c2b3/rapid7vmconsole/models/alert.py#L198-L206
import pprint import re import six class Alert(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'enabled': 'bool', 'enabled_scan_events': 'ScanEvents', 'enabled_vulnerability_events': 'VulnerabilityEvents', 'id': 'int', 'links': 'list[Link]', 'maximum_alerts': 'int', 'name': 'str', 'notification': 'str' } attribute_map = { 'enabled': 'enabled', 'enabled_scan_events': 'enabledScanEvents', 'enabled_vulnerability_events': 'enabledVulnerabilityEvents', 'id': 'id', 'links': 'links', 'maximum_alerts': 'maximumAlerts', 'name': 'name', 'notification': 'notification' } def __init__(self, enabled=None, enabled_scan_events=None, enabled_vulnerability_events=None, id=None, links=None, maximum_alerts=None, name=None, notification=None): self._enabled = None self._enabled_scan_events = None self._enabled_vulnerability_events = None self._id = None self._links = None self._maximum_alerts = None self._name = None self._notification = None self.discriminator = None self.enabled = enabled if enabled_scan_events is not None: self.enabled_scan_events = enabled_scan_events if enabled_vulnerability_events is not None: self.enabled_vulnerability_events = enabled_vulnerability_events if id is not None: self.id = id if links is not None: self.links = links if maximum_alerts is not None: self.maximum_alerts = maximum_alerts self.name = name self.notification = notification @property def enabled(self): return self._enabled @enabled.setter def enabled(self, enabled): if enabled is None: raise ValueError("Invalid value for `enabled`, must not be `None`") self._enabled = enabled @property def enabled_scan_events(self): return self._enabled_scan_events @enabled_scan_events.setter def enabled_scan_events(self, enabled_scan_events): self._enabled_scan_events = enabled_scan_events @property def enabled_vulnerability_events(self): return self._enabled_vulnerability_events @enabled_vulnerability_events.setter def enabled_vulnerability_events(self, enabled_vulnerability_events): self._enabled_vulnerability_events = enabled_vulnerability_events @property def id(self): return self._id @id.setter def id(self, id): self._id = id @property def links(self): return self._links @links.setter def links(self, links): self._links = links @property
MIT License
markvdw/gpflow-inter-domain
GPflow/model.py
Model.compute_log_likelihood
python
def compute_log_likelihood(self): return self.build_likelihood()
Compute the log likelihood of the model (uses AutoFlow on ``self.build_likelihood()``)
https://github.com/markvdw/gpflow-inter-domain/blob/0cf621e1896a3e1996f863b586c6cd2f795dd9f0/GPflow/model.py#L198-L200
from __future__ import print_function, absolute_import import sys import numpy as np import tensorflow as tf from scipy.optimize import minimize, OptimizeResult from . import hmc, session from ._settings import settings from .param import Parameterized, AutoFlow, DataHolder float_type = settings.dtypes.float_type class ObjectiveWrapper(object): def __init__(self, objective): self._objective = objective self._previous_x = None def __call__(self, x): f, g = self._objective(x) g_is_fin = np.isfinite(g) if np.all(g_is_fin): self._previous_x = x return f, g else: print("Warning: inf or nan in gradient: replacing with zeros") return f, np.where(g_is_fin, g, 0.) class Model(Parameterized): def __init__(self, name='model'): Parameterized.__init__(self) self.scoped_keys.extend(['build_likelihood', 'build_prior']) self._name = name self._needs_recompile = True self.num_fevals = 0 self._tf_optimizer_var_init = None @property def name(self): return self._name def __getstate__(self): d = Parameterized.__getstate__(self) for key in ['_graph', '_session', '_free_vars', '_objective', '_minusF', '_minusG', '_feed_dict_keys']: d.pop(key, None) return d def __setstate__(self, d): Parameterized.__setstate__(self, d) self._needs_recompile = True def set_optimizer_variables_value(self, val_dict): self._tf_optimizer_var_init = val_dict def _compile(self, optimizer=None): self._optimizer = optimizer self._graph = tf.Graph() self._session = session.get_session(graph=self._graph, output_file_name=settings.profiling.output_file_name + "_objective", output_directory=settings.profiling.output_directory, each_time=settings.profiling.each_time) with self._graph.as_default(): self._free_vars = tf.Variable(self.get_free_state()) self.make_tf_array(self._free_vars) with self.tf_mode(): f = self.build_likelihood() + self.build_prior() g, = tf.gradients(f, self._free_vars) self._minusF = tf.negative(f, name='objective') self._minusG = tf.negative(g, name='grad_objective') if optimizer is None: opt_step = None else: with tf.variable_scope("gpflow-opt"): opt_step = optimizer.minimize(self._minusF, var_list=[self._free_vars]) init = tf.global_variables_initializer() self._session.run(init) if optimizer is not None and self._tf_optimizer_var_init is not None: _, var_dict = self.get_optimizer_variables() for var_name, val in self._tf_optimizer_var_init.items(): self._session.run(var_dict[var_name].assign(val)) if settings.verbosity.tf_compile_verb: print("compiling tensorflow function...") sys.stdout.flush() self._feed_dict_keys = self.get_feed_dict_keys() def obj(x): self.num_fevals += 1 feed_dict = {self._free_vars: x} self.update_feed_dict(self._feed_dict_keys, feed_dict) f, g = self._session.run([self._minusF, self._minusG], feed_dict=feed_dict) return f.astype(np.float64), g.astype(np.float64) self._objective = obj if settings.verbosity.tf_compile_verb: print("done") sys.stdout.flush() self._needs_recompile = False return opt_step def get_optimizer_variables(self): val_dict = {} var_dict = {} opt_vars = self._graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="gpflow-opt") val_dict.update([("model." + v.name, self._session.run(v)) for v in opt_vars]) var_dict.update([("model." + v.name, v) for v in opt_vars]) return val_dict, var_dict @AutoFlow() def compute_log_prior(self): return self.build_prior() @AutoFlow()
Apache License 2.0
grappa-py/grappa
grappa/test.py
Test.__or__
python
def __or__(self, value): return self.__overload__(value)
Overloads ``|`` as from left-to-right operator precedence expression.
https://github.com/grappa-py/grappa/blob/f1861e1572e68f031977e86a5d9eba1957bd164e/grappa/test.py#L198-L202
from .log import log from .empty import empty from .base import BaseTest from .engine import Engine from .context import Context from .resolver import OperatorResolver class Test(BaseTest): _context = 0 _context_subject = empty _global = False def __init__(self, subject=empty): self._engine = Engine() self._ctx = Context() self._ctx.subjects = [] self._ctx.subject = subject self._ctx.chained = False self._ctx.style = 'should' @property def should(self): return self @property def expect(self): return self @property def _root(self): return test def __call__(self, subject, overload=False): self._ctx.subject = subject return self._trigger() if overload else Test(subject) def __getattr__(self, name): if self._global: subject = self._context_subject if self._context else empty return Test(subject).__getattr__(name) return OperatorResolver(self).resolve(name) def _trigger(self): log.debug('[test] trigger with context: {}'.format(self._ctx)) try: err = self._engine.run(self._ctx) except Exception as _err: err = _err finally: self._engine.reset() self._root._engine.reset() if err: raise err return self def _clone(self): test = Test(self._ctx.subject) test._ctx = self._ctx.clone() test._engine = self._engine.clone() return test def _flush(self): self.__init__() def all(self, *tests): def run_tests(subject): for test in tests: try: test(subject, overload=True) except Exception as err: return err return True self._engine.add_assertion(run_tests) return self def any(self, *tests): def run_tests(subject): err = None for test in tests: try: test(subject, overload=True) except Exception as _err: err = _err else: return True return err self._engine.add_assertion(run_tests) return self def __overload__(self, subject): if isinstance(subject, Test): fork = subject._clone() fork._ctx.chained = True fork._ctx.subject = self._ctx.subject return fork._trigger() return self.__call__(subject, overload=True)
MIT License
google/upvote
upvote/gae/lib/bit9/model.py
Model.delete
python
def delete(cls, id_, context): logging.info('DELETE %s object with ID %s', cls.__name__, id_) route = '{}/{}'.format(cls.ROUTE, id_) response = context.ExecuteRequest(constants.METHOD.DELETE, api_route=route) return cls.from_dict(response)
Deletes a model instance by ID.
https://github.com/google/upvote/blob/0b4477d40676a46ad58aaa7e14f9b13770d55c0c/upvote/gae/lib/bit9/model.py#L391-L397
from __future__ import absolute_import from __future__ import division from __future__ import print_function import datetime import six from upvote.gae.lib.bit9 import constants from upvote.gae.lib.bit9 import exceptions as excs from upvote.gae.lib.bit9 import query from upvote.gae.lib.bit9 import query_nodes from absl import logging class Property(object): _PYTHON_TYPE = None def __init__(self, api_name, repeated=False, allow_update=False, expands_to=None): self._name = api_name self._updatable = allow_update self._expands_to = expands_to self._repeated = repeated self.model_cls_name = None @property def repeated(self): return self._repeated @property def updatable(self): return self._updatable @property def expandable(self): return self._expands_to is not None @property def expands_to(self): return self._expands_to @property def name(self): return self._name @classmethod def _is_valid_value(cls, val): return isinstance(val, cls._PYTHON_TYPE) @classmethod def raw_to_value(cls, raw): return raw @classmethod def value_to_raw(cls, val): if val is not None and not cls._is_valid_value(val): raise ValueError('Invalid {} value: {}'.format(cls.__name__, val)) return val @classmethod def _value_to_query(cls, val): if val is None: return '' elif not cls._is_valid_value(val): raise ValueError('Invalid {} value: {}'.format(cls.__name__, val)) else: return str(val) def __eq__(self, other): return query_nodes.FilterNode(self, ':', self._value_to_query(other)) def __ne__(self, other): return query_nodes.FilterNode(self, '!', self._value_to_query(other)) def __gt__(self, other): return query_nodes.FilterNode(self, '>', self._value_to_query(other)) def __lt__(self, other): return query_nodes.FilterNode(self, '<', self._value_to_query(other)) def __neg__(self): return query_nodes.OrderNode(self, ascending=False) def __repr__(self): return '{}.{}'.format(self.model_cls_name, self.name) class StringProperty(Property): _PYTHON_TYPE = six.string_types class _IntegerProperty(Property): _PYTHON_TYPE = int _BIT_LENGTH = None @classmethod def _is_valid_value(cls, val): try: return val.bit_length() <= cls._BIT_LENGTH except: return False class Int16Property(_IntegerProperty): _BIT_LENGTH = 16 class Int32Property(_IntegerProperty): _BIT_LENGTH = 32 class Int64Property(_IntegerProperty): _BIT_LENGTH = 64 class DecimalProperty(Property): _PYTHON_TYPE = float class DoubleProperty(Property): _PYTHON_TYPE = float class BooleanProperty(Property): _PYTHON_TYPE = bool @classmethod def _value_to_query(cls, val): val = super(BooleanProperty, cls)._value_to_query(val) return str(val).lower() def __gt__(self, unused_other): raise excs.QueryError('Unsupported operation for boolean properties') def __lt__(self, unused_other): raise excs.QueryError('Unsupported operation for boolean properties') class DateTimeProperty(Property): _PYTHON_TYPE = datetime.datetime _DATETIME_FORMAT = '%Y-%m-%dT%H:%M:%SZ' _DATETIME_FORMAT_USEC = '%Y-%m-%dT%H:%M:%S.%fZ' @classmethod def raw_to_value(cls, raw): if not raw: return None for format_ in (cls._DATETIME_FORMAT_USEC, cls._DATETIME_FORMAT): try: return datetime.datetime.strptime(raw, format_) except ValueError: pass raise ValueError("Invalid DateTime value: '{}'".format(raw)) @classmethod def value_to_raw(cls, val): val = super(DateTimeProperty, cls).value_to_raw(val) return val.strftime(cls._DATETIME_FORMAT_USEC) @classmethod def _value_to_query(cls, val): if val is None: return '' super(DateTimeProperty, cls)._value_to_query(val) return cls.value_to_raw(val) class _MetaModel(type): def __new__(mcs, name, parents, dct): assert len(parents) == 1 if name != 'Model': if 'ROUTE' in dct: if not dct['ROUTE']: raise excs.Error('Models must define ROUTE property') elif not parents[0].ROUTE: raise excs.Error('Models must define ROUTE property') all_properties = {} for attr_name, attr in six.iteritems(dct): if isinstance(attr, Property): attr.model_cls_name = name all_properties[attr_name] = attr cls = super(_MetaModel, mcs).__new__(mcs, name, parents, dct) cls._KIND_MAP[name] = cls cls._PROPERTIES = all_properties return cls class Model(six.with_metaclass(_MetaModel, object)): ROUTE = None _KIND_MAP = {} _PROPERTIES = None def __init__(self, **kwargs): self._obj_dict = {} self._prefix = None for key, val in six.iteritems(kwargs): prop = self._get_and_validate_property(key) self._obj_dict[prop.name] = val @classmethod def from_dict(cls, obj_dict, prefix=None): inst = cls() if not isinstance(obj_dict, dict): raise ValueError('Invalid object dict: %s' % (obj_dict,)) inst._obj_dict = obj_dict inst._prefix = prefix return inst @classmethod def _get_and_validate_property(cls, prop_or_name, require_updatable=False, require_expandable=False): if isinstance(prop_or_name, Property): prop = prop_or_name else: prop = cls._PROPERTIES.get(prop_or_name) if prop is None: raise excs.PropertyError('Unknown property: {}'.format(prop_or_name)) if not cls.is_valid_property(prop): raise excs.PropertyError( '{} cannot be used with {}'.format(prop, cls.__name__)) elif require_updatable and not prop.updatable: raise excs.PropertyError( 'Property {} may not be updated'.format(prop)) elif require_expandable and not prop.expandable: raise excs.PropertyError( 'Property {} may not be expanded'.format(prop)) return prop @classmethod def is_valid_property(cls, prop): return isinstance(prop, Property) and prop.model_cls_name == cls.__name__ @classmethod def update(cls, id_, updated_properties, context): prop_map = { cls._get_and_validate_property(prop, require_updatable=True): val for prop, val in six.iteritems(updated_properties) } update_str = ', '.join( '{}="{}"'.format(prop, val) for prop, val in six.iteritems(prop_map)) logging.info( 'Updating %s object (id=%s): %s', cls.__name__, id_, update_str) obj = cls.get(id_, context) for prop, val in six.iteritems(prop_map): setattr(obj, prop.name, val) return obj.put(context) def put(self, context, extra_query_args=None): if extra_query_args: args = [ '{}={}'.format(key, val) for key, val in six.iteritems(extra_query_args) ] else: args = None response = context.ExecuteRequest( constants.METHOD.POST, api_route=self.ROUTE, query_args=args, data=self.to_raw_dict()) return self.from_dict(response) @classmethod def get(cls, id_, context): logging.info('GET %s object with ID %s', cls.__name__, id_) route = '{}/{}'.format(cls.ROUTE, id_) response = context.ExecuteRequest(constants.METHOD.GET, api_route=route) return cls.from_dict(response) @classmethod
Apache License 2.0
breakingbytes/simkit
simkit/core/data_sources.py
DataSource.saveas_json
python
def saveas_json(self, save_name): meta = getattr(self, DataSourceBase._meta_attr) param_file = getattr(self, DataSourceBase._param_file) utc_mod_time = list(time.gmtime(os.path.getmtime(save_name))) json_data = {'data': self.data, 'utc_mod_time': utc_mod_time, 'param_file': param_file, 'data_reader': meta.data_reader.__name__, 'data_source': self.__class__.__name__} if not save_name.endswith('.json'): save_name += '.json' with open(save_name, 'w') as fp: json.dump(json_data, fp, cls=SimKitJSONEncoder) self._is_saved = True
Save :attr:`data`, :attr:`param_file`, original :attr:`data_reader` and UTC modification time as keys in JSON file. If data is edited then it should be saved using this method. Non-JSON data files are also saved using this method. :param save_name: Name to save JSON file as, ".json" is appended. :type save_name: str
https://github.com/breakingbytes/simkit/blob/c247b6ecf46d727703c03cb0d987e35fd054eaa6/simkit/core/data_sources.py#L260-L286
from simkit.core import ( UREG, Registry, SimKitJSONEncoder, CommonBase, Parameter ) from simkit.core.data_readers import JSONReader from simkit.core.exceptions import ( UncertaintyPercentUnitsError, UncertaintyVarianceError ) import json import os import time from copy import copy import numpy as np DFLT_UNC = 1.0 * UREG('percent') class DataParameter(Parameter): _attrs = ['units', 'uncertainty', 'isconstant', 'timeseries'] class DataRegistry(Registry): meta_names = ['uncertainty', 'variance', 'isconstant', 'timeseries', 'data_source'] def register(self, newdata, *args, **kwargs): kwargs.update(zip(self.meta_names, args)) uncertainty = kwargs['uncertainty'] variance = kwargs['variance'] isconstant = kwargs['isconstant'] if uncertainty: for k0, d in uncertainty.items(): for k1, v01 in d.items(): units = v01.units if units != UREG('percent'): keys = '%s-%s' % (k0, k1) raise UncertaintyPercentUnitsError(keys, units) if variance and uncertainty: for k0, d in variance.items(): for k1, v01 in d.items(): keys = '%s-%s' % (k0, k1) missing = k1 not in uncertainty[k0] v2 = np.asarray(uncertainty[k0][k1].to('fraction').m) ** 2.0 if missing or not np.allclose(np.asarray(v01), v2): raise UncertaintyVarianceError(keys, v01) if isconstant: for k, v in isconstant.items(): if not isinstance(v, bool): classname = self.__class__.__name__ error_msg = ['%s meta "isconstant" should be' % classname, 'boolean, but it was "%s" for "%s".' % (v, k)] raise TypeError(' '.join(error_msg)) super(DataRegistry, self).register(newdata, **kwargs) class DataSourceBase(CommonBase): _path_attr = 'data_path' _file_attr = 'data_file' _param_cls = DataParameter _reader_attr = 'data_reader' _enable_cache_attr = 'data_cache_enabled' _attr_default = {_reader_attr: JSONReader, _enable_cache_attr: True} def __new__(mcs, name, bases, attr): if not CommonBase.get_parents(bases, DataSourceBase): return super(DataSourceBase, mcs).__new__(mcs, name, bases, attr) attr = mcs.set_meta(bases, attr) meta = attr[mcs._meta_attr] for ma, dflt in mcs._attr_default.items(): a = getattr(meta, ma, None) if a is None: setattr(meta, ma, dflt) attr = mcs.set_param_file_or_parameters(attr) return super(DataSourceBase, mcs).__new__(mcs, name, bases, attr) class DataSource(metaclass=DataSourceBase): __metaclass__ = DataSourceBase def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs meta = getattr(self, DataSourceBase._meta_attr) parameters = getattr(self, DataSourceBase._param_attr) filename = None if meta.data_reader.is_file_reader: if args: filename = args[0] elif kwargs: filename = kwargs.get('filename') self.filename = filename self._is_saved = True if meta.data_cache_enabled and self._is_cached(): data_reader_instance = JSONReader(parameters, meta) else: data_reader_instance = meta.data_reader(parameters, meta) self.data = data_reader_instance.load_data(*args, **kwargs) if meta.data_cache_enabled and not self._is_cached(): self.saveas_json(self.filename) self.uncertainty = {} self.variance = {} self.isconstant = {} self.timeseries = {} self.data_source = dict.fromkeys(self.data, self.__class__.__name__) self._raw_data = copy(self.data) self.__prepare_data__() for k0, d in self.uncertainty.items(): for k1, v01 in d.items(): self.variance[k0] = {k1: v01.to('fraction').m ** 2.0} def __prepare_data__(self): raise NotImplementedError('Data preparation not implemented. ' + 'Use ``pass`` if not required.') def _is_cached(self, ext='.json'): if not ext.startswith('.'): ext = '.%s' % ext cache_file = '%s%s' % (self.filename, ext) return self.filename.endswith(ext) or os.path.exists(cache_file) @property def issaved(self): return self._is_saved
BSD 3-Clause New or Revised License
iglpdc/dmrg101
dmrg101/utils/tridiagonal_solver/tridiagonal_solver.py
tridiagonal_solver
python
def tridiagonal_solver(d, e, eigenvectors = True): if (d.size != e.size + 1): raise TridiagonalException("d, and e have different sizes") num_evals = d.size evals = np.empty(num_evals) evecs = np.empty((num_evals, num_evals)) r = lamRange(d, e, num_evals) assert(len(r) == num_evals +1) evals = eigenvals3(d, e, num_evals) if eigenvectors: for i in range(num_evals): evals[i], evecs[:, i] = inversePower3(d, e, 1.00000001*evals[i]) return evals, evecs
Calculates the eigenvalues and eigenvectors of a tridiagonal and symmetric matrix. Parameters ---------- d : a numpy array with ndim = 1. The elements of the diagonal of the tridiagonal matrix. e : a numpy array with ndim = 1. The off-diagonal elements of the tridiagonal matrix. eigenvectors : a bool (optional). Whether you want to calculate the eigenvectors. Returns ------- evals : a numpy array with ndim = 1. The eigenvalues. evecs : a numpy array with ndim = 2. The eigenvectors. Raises ------ TridiagonalException if `d` and `e` have different sizes.
https://github.com/iglpdc/dmrg101/blob/aaf3913f5a616dc84c4100efbeb819648973c582/dmrg101/utils/tridiagonal_solver/tridiagonal_solver.py#L7-L56
import numpy as np from tridiagonal_exceptions import TridiagonalException from lamRange import * from inversePower3 import * from eigenvals3 import *
MIT License
tensorflow/tensor2tensor
tensor2tensor/models/research/universal_transformer_util.py
universal_transformer_skip
python
def universal_transformer_skip(layer_inputs, step, hparams, ffn_unit, attention_unit, pad_remover=None): state, inputs, memory = layer_inputs new_state = step_preprocess(state, step, hparams) for i in range(hparams.num_inrecurrence_layers): with tf.variable_scope("rec_layer_%d" % i): new_state = ffn_unit(attention_unit(new_state)) transformed_state = new_state inputs.get_shape().assert_is_compatible_with(state.get_shape()) gate_inputs = [] if "s" in hparams.gates_inputs: gate_inputs.append(state) if "t" in hparams.gates_inputs: gate_inputs.append(transformed_state) if "i" in hparams.gates_inputs: gate_inputs.append(inputs) gate_ffn_layer = hparams.gate_ffn_layer transform_gate = _ffn_layer_multi_inputs( gate_inputs, hparams, ffn_layer_type=gate_ffn_layer, name="transform", bias_initializer=tf.constant_initializer(hparams.transform_bias_init), activation=tf.sigmoid, pad_remover=pad_remover, preprocess=True) if hparams.couple_carry_transform_gates: carry_gate = tf.subtract(1.0, transform_gate, name="carry") else: carry_gate = _ffn_layer_multi_inputs( gate_inputs, hparams, ffn_layer_type=gate_ffn_layer, name="carry", bias_initializer=tf.constant_initializer(-hparams.transform_bias_init), activation=tf.sigmoid, pad_remover=pad_remover, preprocess=True) contrib.summary().scalar("skip_transform_gate_layer", tf.reduce_mean(transform_gate)) contrib.summary().scalar("skip_carry_gate_layer", tf.reduce_mean(carry_gate)) new_state = inputs * carry_gate + transformed_state * transform_gate return new_state, inputs, memory
Universal Transformer with highway connection. It transforms the state using attention and ffn and wrap this transformation with a skip-all connection. (the new state is a combination of the state and the inputs (original inputs) based on cary/transform gates.) Observation: Controlling the cary/transform gate with the original inputs works usually better (i.e. hparams.gates_inputs="i") Args: layer_inputs: - state: state - inputs: the original embedded inputs (= inputs to the first step) step: indicates number of steps taken so far hparams: model hyper-parameters. ffn_unit: feed-forward unit attention_unit: multi-head attention unit pad_remover: to mask out padding in convolutional layers (efficiency). Returns: layer_output: new_state: new state inputs: the original embedded inputs (= inputs to the first step)
https://github.com/tensorflow/tensor2tensor/blob/c22a226704e5887862bf9edd9f269892c9016ad4/tensor2tensor/models/research/universal_transformer_util.py#L684-L771
from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import functools from six.moves import range from tensor2tensor.layers import common_attention from tensor2tensor.layers import common_layers from tensor2tensor.models import transformer from tensor2tensor.utils import contrib from tensor2tensor.utils import expert_utils import tensorflow.compat.v1 as tf def universal_transformer_encoder(encoder_input, encoder_self_attention_bias, hparams, name="encoder", nonpadding=None, save_weights_to=None, make_image_summary=True): x = encoder_input attention_dropout_broadcast_dims = ( common_layers.comma_separated_string_to_integer_list( getattr(hparams, "attention_dropout_broadcast_dims", ""))) with tf.variable_scope(name): if nonpadding is not None: padding = 1.0 - nonpadding else: padding = common_attention.attention_bias_to_padding( encoder_self_attention_bias) nonpadding = 1.0 - padding pad_remover = None if hparams.use_pad_remover and not common_layers.is_xla_compiled(): pad_remover = expert_utils.PadRemover(padding) ffn_unit = functools.partial( transformer_encoder_ffn_unit, hparams=hparams, nonpadding_mask=nonpadding, pad_remover=pad_remover) attention_unit = functools.partial( transformer_encoder_attention_unit, hparams=hparams, encoder_self_attention_bias=encoder_self_attention_bias, attention_dropout_broadcast_dims=attention_dropout_broadcast_dims, save_weights_to=save_weights_to, make_image_summary=make_image_summary) x, extra_output = universal_transformer_layer( x, hparams, ffn_unit, attention_unit, pad_remover=pad_remover) return common_layers.layer_preprocess(x, hparams), extra_output def universal_transformer_decoder(decoder_input, encoder_output, decoder_self_attention_bias, encoder_decoder_attention_bias, hparams, name="decoder", nonpadding=None, save_weights_to=None, make_image_summary=True): x = decoder_input attention_dropout_broadcast_dims = ( common_layers.comma_separated_string_to_integer_list( getattr(hparams, "attention_dropout_broadcast_dims", ""))) with tf.variable_scope(name): ffn_unit = functools.partial( transformer_decoder_ffn_unit, hparams=hparams, nonpadding_mask=nonpadding) attention_unit = functools.partial( transformer_decoder_attention_unit, hparams=hparams, encoder_output=encoder_output, decoder_self_attention_bias=decoder_self_attention_bias, encoder_decoder_attention_bias=encoder_decoder_attention_bias, attention_dropout_broadcast_dims=attention_dropout_broadcast_dims, save_weights_to=save_weights_to, make_image_summary=make_image_summary) x, extra_output = universal_transformer_layer( x, hparams, ffn_unit, attention_unit) return common_layers.layer_preprocess(x, hparams), extra_output def universal_transformer_layer(x, hparams, ffn_unit, attention_unit, pad_remover=None): def add_vanilla_transformer_layer(x, num_layers, name): if hparams.add_position_timing_signal: x = common_attention.add_timing_signal_1d(x) for layer in range(num_layers): with tf.variable_scope(name + "layer_%d" % layer): x = ffn_unit(attention_unit(x)) return x with tf.variable_scope("universal_transformer_%s" % hparams.recurrence_type): if (hparams.mix_with_transformer and "before_ut" in hparams.mix_with_transformer): x = add_vanilla_transformer_layer(x, hparams.num_mixedin_layers, "before_ut_") if hparams.recurrence_type == "act": output, extra_output = universal_transformer_act( x, hparams, ffn_unit, attention_unit) else: ut_function, initializer = get_ut_layer(x, hparams, ffn_unit, attention_unit, pad_remover) output, _, extra_output = tf.foldl( ut_function, tf.range(hparams.num_rec_steps), initializer=initializer) if (hparams.recurrence_type == "lstm" and hparams.get("use_memory_as_final_state", False)): output = extra_output if (hparams.mix_with_transformer and "after_ut" in hparams.mix_with_transformer): output = add_vanilla_transformer_layer(output, hparams.num_mixedin_layers, "after_ut_") return output, extra_output def get_ut_layer(x, hparams, ffn_unit, attention_unit, pad_remover=None): if hparams.recurrence_type == "basic": ut_initializer = (x, x, x) ut_function = functools.partial( universal_transformer_basic, hparams=hparams, ffn_unit=ffn_unit, attention_unit=attention_unit) elif hparams.recurrence_type == "highway": ut_initializer = (x, x, x) ut_function = functools.partial( universal_transformer_highway, hparams=hparams, ffn_unit=ffn_unit, attention_unit=attention_unit, pad_remover=pad_remover) elif hparams.recurrence_type == "skip": ut_initializer = (x, x, x) ut_function = functools.partial( universal_transformer_skip, hparams=hparams, ffn_unit=ffn_unit, attention_unit=attention_unit, pad_remover=pad_remover) elif hparams.recurrence_type == "dwa": memory_size = hparams.num_rec_steps + 1 memory_empty = tf.zeros([memory_size] + common_layers.shape_list(x)) memory = fill_memory_slot(memory_empty, x, 0) ut_initializer = (x, x, memory) ut_function = functools.partial( universal_transformer_depthwise_attention, hparams=hparams, ffn_unit=ffn_unit, attention_unit=attention_unit) elif hparams.recurrence_type == "gru": ut_initializer = (x, x, x) ut_function = functools.partial( universal_transformer_with_gru_as_transition_function, hparams=hparams, ffn_unit=ffn_unit, attention_unit=attention_unit, pad_remover=pad_remover) elif hparams.recurrence_type == "lstm": memory = tf.zeros(common_layers.shape_list(x)) ut_initializer = (x, x, memory) ut_function = functools.partial( universal_transformer_with_lstm_as_transition_function, hparams=hparams, ffn_unit=ffn_unit, attention_unit=attention_unit, pad_remover=pad_remover) else: raise ValueError("Unknown recurrence type: %s" % hparams.recurrence_type) return ut_function, ut_initializer def transformer_encoder_ffn_unit(x, hparams, nonpadding_mask=None, pad_remover=None): with tf.variable_scope("ffn"): if hparams.transformer_ffn_type == "fc": y = transformer.transformer_ffn_layer( common_layers.layer_preprocess(x, hparams), hparams, pad_remover, conv_padding="SAME", nonpadding_mask=nonpadding_mask) if hparams.transformer_ffn_type == "sepconv": assert nonpadding_mask is not None, ( "The nonpadding_mask should be provided, otherwise the model uses " "the leaked padding information to estimate the length!") y = common_layers.sepconv_relu_sepconv( common_layers.layer_preprocess(x, hparams), filter_size=hparams.filter_size, output_size=hparams.hidden_size, first_kernel_size=(3, 1), second_kernel_size=(5, 1), padding="SAME", nonpadding_mask=nonpadding_mask, dropout=hparams.relu_dropout) x = common_layers.layer_postprocess(x, y, hparams) return x def transformer_encoder_attention_unit(x, hparams, encoder_self_attention_bias, attention_dropout_broadcast_dims, save_weights_to=None, make_image_summary=True): with tf.variable_scope("self_attention"): y = common_attention.multihead_attention( common_layers.layer_preprocess(x, hparams), None, encoder_self_attention_bias, hparams.attention_key_channels or hparams.hidden_size, hparams.attention_value_channels or hparams.hidden_size, hparams.hidden_size, hparams.num_heads, hparams.attention_dropout, attention_type=hparams.self_attention_type, save_weights_to=save_weights_to, max_relative_position=hparams.max_relative_position, make_image_summary=make_image_summary, dropout_broadcast_dims=attention_dropout_broadcast_dims, hard_attention_k=hparams.hard_attention_k) x = common_layers.layer_postprocess(x, y, hparams) return x def transformer_decoder_ffn_unit(x, hparams, nonpadding_mask=None): with tf.variable_scope("ffn"): if hparams.transformer_ffn_type == "fc": y = transformer.transformer_ffn_layer( common_layers.layer_preprocess(x, hparams), hparams, conv_padding="LEFT", nonpadding_mask=nonpadding_mask) if hparams.transformer_ffn_type == "sepconv": y = common_layers.sepconv_relu_sepconv( common_layers.layer_preprocess(x, hparams), filter_size=hparams.filter_size, output_size=hparams.hidden_size, first_kernel_size=(3, 1), second_kernel_size=(5, 1), padding="LEFT", nonpadding_mask=nonpadding_mask, dropout=hparams.relu_dropout) x = common_layers.layer_postprocess(x, y, hparams) return x def transformer_decoder_attention_unit(x, hparams, encoder_output, decoder_self_attention_bias, encoder_decoder_attention_bias, attention_dropout_broadcast_dims, save_weights_to=None, make_image_summary=True): with tf.variable_scope("self_attention"): y = common_attention.multihead_attention( common_layers.layer_preprocess(x, hparams), None, decoder_self_attention_bias, hparams.attention_key_channels or hparams.hidden_size, hparams.attention_value_channels or hparams.hidden_size, hparams.hidden_size, hparams.num_heads, hparams.attention_dropout, attention_type=hparams.self_attention_type, save_weights_to=save_weights_to, max_relative_position=hparams.max_relative_position, cache=None, make_image_summary=make_image_summary, dropout_broadcast_dims=attention_dropout_broadcast_dims, hard_attention_k=hparams.hard_attention_k) x = common_layers.layer_postprocess(x, y, hparams) if encoder_output is not None: with tf.variable_scope("encdec_attention"): y = common_attention.multihead_attention( common_layers.layer_preprocess(x, hparams), encoder_output, encoder_decoder_attention_bias, hparams.attention_key_channels or hparams.hidden_size, hparams.attention_value_channels or hparams.hidden_size, hparams.hidden_size, hparams.num_heads, hparams.attention_dropout, save_weights_to=save_weights_to, make_image_summary=make_image_summary, dropout_broadcast_dims=attention_dropout_broadcast_dims, hard_attention_k=hparams.hard_attention_k) x = common_layers.layer_postprocess(x, y, hparams) return x def universal_transformer_basic(layer_inputs, step, hparams, ffn_unit, attention_unit): state, inputs, memory = tf.unstack(layer_inputs, num=None, axis=0, name="unstack") new_state = step_preprocess(state, step, hparams) for i in range(hparams.num_inrecurrence_layers): with tf.variable_scope("rec_layer_%d" % i): new_state = ffn_unit(attention_unit(new_state)) return new_state, inputs, memory def universal_transformer_highway(layer_inputs, step, hparams, ffn_unit, attention_unit, pad_remover=None): state, inputs, memory = layer_inputs new_state = step_preprocess(state, step, hparams) for i in range(hparams.num_inrecurrence_layers): with tf.variable_scope("rec_layer_%d" % i): new_state = ffn_unit(attention_unit(new_state)) transformed_state = new_state gate_inputs = [] if "s" in hparams.gates_inputs: gate_inputs.append(state) if "t" in hparams.gates_inputs: gate_inputs.append(transformed_state) if "i" in hparams.gates_inputs: gate_inputs.append(inputs) gate_ffn_layer = hparams.gate_ffn_layer transform_gate = _ffn_layer_multi_inputs( gate_inputs, hparams, ffn_layer_type=gate_ffn_layer, name="transform", bias_initializer=tf.constant_initializer(hparams.transform_bias_init), activation=tf.sigmoid, pad_remover=pad_remover, preprocess=True) if hparams.couple_carry_transform_gates: carry_gate = tf.subtract(1.0, transform_gate, name="carry") else: carry_gate = _ffn_layer_multi_inputs( gate_inputs, hparams, ffn_layer_type=gate_ffn_layer, name="carry", bias_initializer=tf.constant_initializer(-hparams.transform_bias_init), activation=tf.sigmoid, pad_remover=pad_remover, preprocess=True) new_state = state * carry_gate + transformed_state * transform_gate contrib.summary().scalar("highway_transform_gate_layer", tf.reduce_mean(transform_gate)) contrib.summary().scalar("highway_carry_gate_layer", tf.reduce_mean(carry_gate)) return new_state, inputs, memory
Apache License 2.0
altairengineering/pkr
pkr/ext/__init__.py
timeout_handler
python
def timeout_handler(*_): raise TimeoutError()
Simple function for raising a timeout Exception
https://github.com/altairengineering/pkr/blob/64d94dff8c0dd2dd547a75d451c37bd36f170330/pkr/ext/__init__.py#L166-L168
import abc from builtins import object from builtins import str import signal import pkgutil try: from importlib.metadata import entry_points except ModuleNotFoundError: from importlib_metadata import entry_points from pkr.cli.log import write from pkr.utils import PkrException, get_pkr_path class ExtMixin(metaclass=abc.ABCMeta): @staticmethod def setup(args, kard): @staticmethod def get_context_template_data(): @staticmethod def post_up(effective_modules): @staticmethod def populate_kard(): @staticmethod def configure_parser(parser): class Extensions(object): def __init__(self, features=None): super(Extensions, self).__init__() self.features = features self._extensions = None @property def extensions(self): if self._extensions is None: self._extensions = self.list_all() if self.features is not None: return { name: self._extensions[name] for name in self.features if name in self._extensions } return self._extensions def __getattr__(self, attribute): if not hasattr(ExtMixin, attribute): return super(Extensions, self).__getattribute__(attribute) if not self.features: return lambda *args, **kw: () def wrapper(*args, **kwargs): return [ output[1] for output in map( lambda ext: self._wrap_call(ext[0], ext[1], attribute, *args, *kwargs), self.extensions.items(), ) if output is not None ] return wrapper @staticmethod def _wrap_call(name, extension, method_name, *args, **kwargs): method = getattr(extension, method_name, None) base_method = getattr(ExtMixin, method_name, None) if method is None or method is base_method: return try: return (name, method(*args, **kwargs)) except TimeoutError: write( 'Extension "{}" raise timeout error, step "{}"'.format(extension.name, method_name) ) raise except PkrException: raise except Exception as exc: write( 'Extension "{}" raise an unknown exception, step "{}": {}'.format( extension.name, method_name, str(exc) ) ) raise def list(self): return self.extensions.keys() @classmethod def _get_extension_class(cls, module): for attr in dir(module): ext_cls = getattr(module, attr) try: if issubclass(ext_cls, ExtMixin) and ext_cls != ExtMixin: return ext_cls except TypeError: pass @classmethod def list_all(cls): extensions = {} for importer, package_name, _ in pkgutil.iter_modules( [str(get_pkr_path() / "extensions")] ): module = importer.find_module(package_name).load_module(package_name) extensions[package_name] = cls._get_extension_class(module) for entry in entry_points().get("pkr_extensions", ()) + entry_points().get( "extensions", () ): if entry.name not in extensions: extensions[entry.name] = entry.load() return extensions def __contains__(self, ext_name): return ext_name in self.features class TimeoutError(Exception):
Apache License 2.0
googleads/google-ads-python
google/ads/googleads/v7/services/services/customer_label_service/client.py
CustomerLabelServiceClient.__init__
python
def __init__( self, *, credentials: Optional[credentials.Credentials] = None, transport: Union[str, CustomerLabelServiceTransport, None] = None, client_options: Optional[client_options_lib.ClientOptions] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: if isinstance(client_options, dict): client_options = client_options_lib.from_dict(client_options) if client_options is None: client_options = client_options_lib.ClientOptions() use_client_cert = bool( util.strtobool( os.getenv("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false") ) ) ssl_credentials = None is_mtls = False if use_client_cert: if client_options.client_cert_source: import grpc cert, key = client_options.client_cert_source() ssl_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) is_mtls = True else: creds = SslCredentials() is_mtls = creds.is_mtls ssl_credentials = creds.ssl_credentials if is_mtls else None if client_options.api_endpoint is not None: api_endpoint = client_options.api_endpoint else: use_mtls_env = os.getenv("GOOGLE_API_USE_MTLS_ENDPOINT", "auto") if use_mtls_env == "never": api_endpoint = self.DEFAULT_ENDPOINT elif use_mtls_env == "always": api_endpoint = self.DEFAULT_MTLS_ENDPOINT elif use_mtls_env == "auto": api_endpoint = ( self.DEFAULT_MTLS_ENDPOINT if is_mtls else self.DEFAULT_ENDPOINT ) else: raise MutualTLSChannelError( "Unsupported GOOGLE_API_USE_MTLS_ENDPOINT value. Accepted values: never, auto, always" ) if isinstance(transport, CustomerLabelServiceTransport): if credentials: raise ValueError( "When providing a transport instance, " "provide its credentials directly." ) self._transport = transport elif isinstance(transport, str): Transport = type(self).get_transport_class(transport) self._transport = Transport( credentials=credentials, host=self.DEFAULT_ENDPOINT ) else: self._transport = CustomerLabelServiceGrpcTransport( credentials=credentials, host=api_endpoint, ssl_channel_credentials=ssl_credentials, client_info=client_info, )
Instantiate the customer label service client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Union[str, ~.CustomerLabelServiceTransport]): The transport to use. If set to None, a transport is chosen automatically. client_options (google.api_core.client_options.ClientOptions): Custom options for the client. It won't take effect if a ``transport`` instance is provided. (1) The ``api_endpoint`` property can be used to override the default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT environment variable can also be used to override the endpoint: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto switch to the default mTLS endpoint if client certificate is present, this is the default value). However, the ``api_endpoint`` property takes precedence if provided. (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide client certificate for mutual TLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason.
https://github.com/googleads/google-ads-python/blob/6794993e146abcfe21292677144c66cb546446bc/google/ads/googleads/v7/services/services/customer_label_service/client.py#L262-L377
from collections import OrderedDict from distutils import util import os import re from typing import Dict, Optional, Sequence, Tuple, Type, Union from google.api_core import client_options as client_options_lib from google.api_core import exceptions from google.api_core import gapic_v1 from google.api_core import retry as retries from google.auth import credentials from google.auth.transport import mtls from google.auth.transport.grpc import SslCredentials from google.auth.exceptions import MutualTLSChannelError from google.oauth2 import service_account from google.ads.googleads.v7.resources.types import customer_label from google.ads.googleads.v7.services.types import customer_label_service from google.rpc import status_pb2 as status from .transports.base import CustomerLabelServiceTransport, DEFAULT_CLIENT_INFO from .transports.grpc import CustomerLabelServiceGrpcTransport class CustomerLabelServiceClientMeta(type): _transport_registry = ( OrderedDict() ) _transport_registry["grpc"] = CustomerLabelServiceGrpcTransport def get_transport_class( cls, label: str = None, ) -> Type[CustomerLabelServiceTransport]: if label: return cls._transport_registry[label] return next(iter(cls._transport_registry.values())) class CustomerLabelServiceClient(metaclass=CustomerLabelServiceClientMeta): @staticmethod def _get_default_mtls_endpoint(api_endpoint): if not api_endpoint: return api_endpoint mtls_endpoint_re = re.compile( r"(?P<name>[^.]+)(?P<mtls>\.mtls)?(?P<sandbox>\.sandbox)?(?P<googledomain>\.googleapis\.com)?" ) m = mtls_endpoint_re.match(api_endpoint) name, mtls, sandbox, googledomain = m.groups() if mtls or not googledomain: return api_endpoint if sandbox: return api_endpoint.replace( "sandbox.googleapis.com", "mtls.sandbox.googleapis.com" ) return api_endpoint.replace(".googleapis.com", ".mtls.googleapis.com") DEFAULT_ENDPOINT = "googleads.googleapis.com" DEFAULT_MTLS_ENDPOINT = _get_default_mtls_endpoint.__func__( DEFAULT_ENDPOINT ) @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): credentials = service_account.Credentials.from_service_account_info( info ) kwargs["credentials"] = credentials return cls(*args, **kwargs) @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): credentials = service_account.Credentials.from_service_account_file( filename ) kwargs["credentials"] = credentials return cls(*args, **kwargs) from_service_account_json = from_service_account_file @property def transport(self) -> CustomerLabelServiceTransport: return self._transport @staticmethod def customer_path(customer_id: str,) -> str: return "customers/{customer_id}".format(customer_id=customer_id,) @staticmethod def parse_customer_path(path: str) -> Dict[str, str]: m = re.match(r"^customers/(?P<customer_id>.+?)$", path) return m.groupdict() if m else {} @staticmethod def customer_label_path(customer_id: str, label_id: str,) -> str: return "customers/{customer_id}/customerLabels/{label_id}".format( customer_id=customer_id, label_id=label_id, ) @staticmethod def parse_customer_label_path(path: str) -> Dict[str, str]: m = re.match( r"^customers/(?P<customer_id>.+?)/customerLabels/(?P<label_id>.+?)$", path, ) return m.groupdict() if m else {} @staticmethod def label_path(customer_id: str, label_id: str,) -> str: return "customers/{customer_id}/labels/{label_id}".format( customer_id=customer_id, label_id=label_id, ) @staticmethod def parse_label_path(path: str) -> Dict[str, str]: m = re.match( r"^customers/(?P<customer_id>.+?)/labels/(?P<label_id>.+?)$", path ) return m.groupdict() if m else {} @staticmethod def common_billing_account_path(billing_account: str,) -> str: return "billingAccounts/{billing_account}".format( billing_account=billing_account, ) @staticmethod def parse_common_billing_account_path(path: str) -> Dict[str, str]: m = re.match(r"^billingAccounts/(?P<billing_account>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_folder_path(folder: str,) -> str: return "folders/{folder}".format(folder=folder,) @staticmethod def parse_common_folder_path(path: str) -> Dict[str, str]: m = re.match(r"^folders/(?P<folder>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_organization_path(organization: str,) -> str: return "organizations/{organization}".format(organization=organization,) @staticmethod def parse_common_organization_path(path: str) -> Dict[str, str]: m = re.match(r"^organizations/(?P<organization>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_project_path(project: str,) -> str: return "projects/{project}".format(project=project,) @staticmethod def parse_common_project_path(path: str) -> Dict[str, str]: m = re.match(r"^projects/(?P<project>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_location_path(project: str, location: str,) -> str: return "projects/{project}/locations/{location}".format( project=project, location=location, ) @staticmethod def parse_common_location_path(path: str) -> Dict[str, str]: m = re.match( r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)$", path ) return m.groupdict() if m else {}
Apache License 2.0
tuturto/pyherc
src/pyherc/test/builders/effect.py
EffectBuilder.with_tick
python
def with_tick(self, tick): self.tick = tick return self
Set internal clock of the effect :param tick: internal clock in ticks :type tick: int
https://github.com/tuturto/pyherc/blob/4e7c72a4d80d335f7d3c48cecac96cd7105acac4/src/pyherc/test/builders/effect.py#L135-L143
from pyherc.data.effects import Effect, EffectHandle class EffectHandleBuilder(): def __init__(self): super().__init__() self.trigger = 'on drink' self.effect = 'heal' self.parameters = None self.charges = 1 self.icon = 0 self.title = 'title' self.description = 'description' def with_trigger(self, trigger): self.trigger = trigger return self def with_effect(self, effect): self.effect = effect return self def with_parameters(self, parameters): self.parameters = parameters return self def with_charges(self, charges): self.charges = charges return self def build(self): effect = EffectHandle(trigger=self.trigger, effect=self.effect, parameters=self.parameters, charges=self.charges) return effect class EffectBuilder(): def __init__(self): super().__init__() self.duration = 0 self.frequency = 0 self.tick = 0 self.effect_name = 'proto' self.multiple_allowed = False self.icon = 101 self.title = 'effect' self.description = 'description' def with_duration(self, duration): self.duration = duration return self def with_frequency(self, frequency): self.frequency = frequency return self
MIT License
python-bonobo/bonobo
bonobo/util/resolvers.py
_parse_option
python
def _parse_option(option): try: key, val = option.split("=", 1) except ValueError: return option, True try: val = json.loads(val) except json.JSONDecodeError: pass return key, val
Parse a 'key=val' option string into a python (key, val) pair :param option: str :return: tuple
https://github.com/python-bonobo/bonobo/blob/feb7ec850566ca3c2ccc139610201dbd237d6083/bonobo/util/resolvers.py#L32-L49
import json import os import runpy import bonobo from bonobo.util import cast class _RequiredModule: def __init__(self, dct): self.__dict__ = dct class _ModulesRegistry(dict): @property def pathname(self): return os.getcwd() def require(self, name): if name not in self: bits = name.split(".") filename = os.path.join(self.pathname, *bits[:-1], bits[-1] + ".py") self[name] = _RequiredModule(runpy.run_path(filename, run_name=name)) return self[name]
Apache License 2.0
yuxixie/rl-for-question-generation
discriminators/src/answerability/pretraining/fairseq/models/fairseq_model.py
BaseFairseqModel.prepare_for_onnx_export_
python
def prepare_for_onnx_export_(self, **kwargs): def apply_prepare_for_onnx_export_(module): if module != self and hasattr(module, 'prepare_for_onnx_export_'): module.prepare_for_onnx_export_(**kwargs) self.apply(apply_prepare_for_onnx_export_)
Make model exportable via ONNX trace.
https://github.com/yuxixie/rl-for-question-generation/blob/188cd7b04528e4f192023a596a072b3245c62838/discriminators/src/answerability/pretraining/fairseq/models/fairseq_model.py#L116-L122
import torch import torch.nn as nn import torch.nn.functional as F from . import FairseqDecoder, FairseqEncoder class BaseFairseqModel(nn.Module): def __init__(self): super().__init__() self._is_generation_fast = False @staticmethod def add_args(parser): pass @classmethod def build_model(cls, args, task): raise NotImplementedError def get_targets(self, sample, net_output): return sample['target'] def get_normalized_probs(self, net_output, log_probs, sample=None): if hasattr(self, 'decoder'): return self.decoder.get_normalized_probs(net_output, log_probs, sample) elif torch.is_tensor(net_output): logits = net_output.float() if log_probs: return F.log_softmax(logits, dim=-1) else: return F.softmax(logits, dim=-1) raise NotImplementedError def max_positions(self): return None def max_decoder_positions(self): return self.decoder.max_positions() def load_state_dict(self, state_dict, strict=True): self.upgrade_state_dict(state_dict) super().load_state_dict(state_dict, strict) def upgrade_state_dict(self, state_dict): self.upgrade_state_dict_named(state_dict, '') def upgrade_state_dict_named(self, state_dict, name): assert state_dict is not None def do_upgrade(m, prefix): if len(prefix) > 0: prefix += '.' for n, c in m.named_children(): name = prefix + n if hasattr(c, 'upgrade_state_dict_named'): c.upgrade_state_dict_named(state_dict, name) elif hasattr(c, 'upgrade_state_dict'): c.upgrade_state_dict(state_dict) do_upgrade(c, name) do_upgrade(self, name) def make_generation_fast_(self, **kwargs): if self._is_generation_fast: return self._is_generation_fast = True def apply_remove_weight_norm(module): try: nn.utils.remove_weight_norm(module) except ValueError: return self.apply(apply_remove_weight_norm) def apply_make_generation_fast_(module): if module != self and hasattr(module, 'make_generation_fast_'): module.make_generation_fast_(**kwargs) self.apply(apply_make_generation_fast_) def train(mode): if mode: raise RuntimeError('cannot train after make_generation_fast') self.eval() self.train = train
MIT License
borda/birl
birl/utilities/data_io.py
load_landmarks
python
def load_landmarks(path_file): if not os.path.isfile(path_file): logging.warning('missing landmarks "%s"', path_file) return _, ext = os.path.splitext(path_file) if ext == '.csv': return load_landmarks_csv(path_file) if ext == '.pts': return load_landmarks_pts(path_file) logging.error('not supported landmarks file: %s', os.path.basename(path_file))
load landmarks in csv and txt format :param str path_file: path to the input file :return ndarray: np.array<np_points, dim> of landmarks points >>> points = np.array([[1, 2], [3, 4], [5, 6]]) >>> save_landmarks('./sample_landmarks.csv', points) >>> pts1 = load_landmarks('./sample_landmarks.csv') >>> pts2 = load_landmarks('./sample_landmarks.pts') >>> np.array_equal(pts1, pts2) True >>> os.remove('./sample_landmarks.csv') >>> os.remove('./sample_landmarks.pts') >>> # Wrong loading >>> load_landmarks('./sample_landmarks.file') >>> open('./sample_landmarks.file', 'w').close() >>> load_landmarks('./sample_landmarks.file') >>> os.remove('./sample_landmarks.file')
https://github.com/borda/birl/blob/cae694f52434e74386a9f1fd2007a218e3a3d670/birl/utilities/data_io.py#L58-L87
import logging import os import warnings from functools import wraps import cv2 as cv import nibabel import numpy as np import pandas as pd import SimpleITK as sitk import yaml from PIL import Image from skimage.color import gray2rgb, rgb2gray LANDMARK_COORDS = ['X', 'Y'] Image.MAX_IMAGE_PIXELS = None def create_folder(path_folder, ok_existing=True): path_folder = os.path.abspath(path_folder) if not os.path.isdir(path_folder): try: os.makedirs(path_folder, mode=0o775) except Exception: logging.exception( 'Something went wrong (probably parallel access), the status of "%s" is %s', path_folder, os.path.isdir(path_folder), ) path_folder = None elif not ok_existing: logging.warning('Folder already exists: %s', path_folder) path_folder = False return path_folder
BSD 3-Clause New or Revised License
stackstorm/st2contrib
packs/trello/sensors/list_actions_sensor.py
TrelloListSensor.cleanup
python
def cleanup(self): pass
Run the sensor cleanup code (if any).
https://github.com/stackstorm/st2contrib/blob/095b021a31ba134728deb7c707240196d016e729/packs/trello/sensors/list_actions_sensor.py#L86-L90
import dateutil.parser from trello import TrelloClient from st2reactor.sensor.base import PollingSensor class TrelloListSensor(PollingSensor): TRIGGER = 'trello.new_action' def __init__(self, sensor_service, config=None, poll_interval=None): super(TrelloListSensor, self).__init__(sensor_service, config, poll_interval) self._logger = self._sensor_service.get_logger(__name__) list_actions_sensor = self._config.get('list_actions_sensor') if not list_actions_sensor: raise ValueError('[TrelloListSensor]: "list_sensor" config value is required!') self._lists = list_actions_sensor.get('lists', []) if not self._lists: raise ValueError('[TrelloListSensor]' '"lists" config value should have at least one entry!') def setup(self): pass def poll(self): self._logger.debug('[TrelloListSensor]: Entering into listen mode ...') for trello_list_config in self._lists: self._update_credentials_by_precedence(trello_list_config) l = TrelloList(**trello_list_config) self._logger.debug("[TrelloListSensor]: Processing queue for Trello list: '%s'" % l.list_id) actions = l.fetch_actions( filter=trello_list_config.get('filter') or None, since=self._sensor_service.get_value(l.key_name) ) for action in reversed(actions): self._logger.debug("[TrelloListSensor]: Found new action for Trello list: '%r'" % action) self._sensor_service.dispatch(trigger=self.TRIGGER, payload=action) if is_date(action.get('date')): self._sensor_service.set_value(l.key_name, action.get('date')) def _update_credentials_by_precedence(self, trello_list_config): if not trello_list_config.get('api_key'): found_credentials = self._config['list_actions_sensor'] if self._config['list_actions_sensor'].get('api_key') else self._config trello_list_config['api_key'] = found_credentials.get('api_key') trello_list_config['token'] = found_credentials.get('token')
Apache License 2.0
thingsboard/python_tb_rest_client
tb_rest_client/models/models_pe/scheduler_event_info.py
SchedulerEventInfo.__init__
python
def __init__(self, additional_info=None, created_time=None, customer_id=None, id=None, name=None, owner_id=None, schedule=None, tenant_id=None, type=None): self._additional_info = None self._created_time = None self._customer_id = None self._id = None self._name = None self._owner_id = None self._schedule = None self._tenant_id = None self._type = None self.discriminator = None if additional_info is not None: self.additional_info = additional_info if created_time is not None: self.created_time = created_time if customer_id is not None: self.customer_id = customer_id if id is not None: self.id = id if name is not None: self.name = name if owner_id is not None: self.owner_id = owner_id if schedule is not None: self.schedule = schedule if tenant_id is not None: self.tenant_id = tenant_id if type is not None: self.type = type
SchedulerEventInfo - a model defined in Swagger
https://github.com/thingsboard/python_tb_rest_client/blob/87c6a3703974fc8a86e4c72c444168ee2b758ecb/tb_rest_client/models/models_pe/scheduler_event_info.py#L54-L83
import pprint import re import six class SchedulerEventInfo(object): swagger_types = { 'additional_info': 'str', 'created_time': 'int', 'customer_id': 'CustomerId', 'id': 'SchedulerEventId', 'name': 'str', 'owner_id': 'EntityId', 'schedule': 'str', 'tenant_id': 'TenantId', 'type': 'str' } attribute_map = { 'additional_info': 'additionalInfo', 'created_time': 'createdTime', 'customer_id': 'customerId', 'id': 'id', 'name': 'name', 'owner_id': 'ownerId', 'schedule': 'schedule', 'tenant_id': 'tenantId', 'type': 'type' }
Apache License 2.0
ithinksw/philo
philo/contrib/sobol/search.py
get_search_instance
python
def get_search_instance(slug, search_arg): search = registry[slug] search_arg = search_arg.lower() if USE_CACHE: key = _make_cache_key(search, search_arg) cached = cache.get(key) if cached: return cached instance = search(search_arg) instance.slug = slug return instance
Returns a search instance for the given slug, either from the cache or newly-instantiated.
https://github.com/ithinksw/philo/blob/8a772dd4761e3a4b926358d6ebf87c9fc7033ba5/philo/contrib/sobol/search.py#L45-L56
import datetime from hashlib import sha1 from django.conf import settings from django.contrib.sites.models import Site from django.core.cache import cache from django.db.models.options import get_verbose_name as convert_camelcase from django.utils import simplejson as json from django.utils.http import urlquote_plus from django.utils.safestring import mark_safe from django.utils.text import capfirst from django.template import loader, Context, Template, TemplateDoesNotExist from philo.contrib.sobol.utils import make_tracking_querydict from philo.utils.registry import Registry if getattr(settings, 'SOBOL_USE_EVENTLET', False): try: from eventlet.green import urllib2 except: import urllib2 else: import urllib2 __all__ = ( 'Result', 'BaseSearch', 'DatabaseSearch', 'URLSearch', 'JSONSearch', 'GoogleSearch', 'registry', 'get_search_instance' ) SEARCH_CACHE_SEED = 'philo_sobol_search_results' USE_CACHE = getattr(settings, 'SOBOL_USE_CACHE', True) registry = Registry() def _make_cache_key(search, search_arg): return sha1(SEARCH_CACHE_SEED + search.slug + search_arg).hexdigest()
ISC License
indeedsecurity/wes
wes/framework_plugins/common.py
JavaProcessor.filter_on_path
python
def filter_on_path(self, search_node, filter_type, tree=None): if type(search_node) is list: raise AttributeError("search_node shouldn't be a list. It should be a javalang node.") base_path = tuple() if tree: base_path = self.find_path_to_element(tree, search_node) if base_path is None: raise LookupError("Error: Couldn't find node within tree, chances are we were given the incorrect tree.") base_path = tuple(base_path[:-1]) filtered_results = [] for path, node in search_node: if type(node) is filter_type: filtered_results.append((base_path + path, node)) return filtered_results
This method is like the javalang filter method but it allows you to specify a path to search under. To do this we use javalang's walk and then check the type of the nodes it encounters. :param search_node: The path you would like to search under, This is the path that would be return within the tuple from the javalang filter method if you :param filter_type: The javalang type you would like to filter on :param tree: The javalang compilationUnit, this should be provided if you want absolute paths to the node :return: List of tuples (path, node) of the filtered results
https://github.com/indeedsecurity/wes/blob/a5d707b3ba15855d66563ab41ac95eaecd0db444/wes/framework_plugins/common.py#L350-L378
import javalang import glob import os import codecs import re from typed_ast import ast27, ast3, conversions, _ast3 import pickle import logging JAVA_PRIMITIVES = ["boolean", "byte", "char", "double", "int", "float", "long", "short"] JAVA_DOT_LANG_IMPORTS = [ "java.lang.Boolean", "java.lang.Byte", "java.lang.Character", "java.lang.Class", "java.lang.ClassLoader", "java.lang.ClassValue", "java.lang.Compiler", "java.lang.Double", "java.lang.Enum", "java.lang.Float", "java.lang.InheritableThreadLocal", "java.lang.Integer", "java.lang.Long", "java.lang.Math", "java.lang.Number", "java.lang.Object", "java.lang.Package", "java.lang.Process", "java.lang.ProcessBuilder", "java.lang.Runtime", "java.lang.RuntimePermission", "java.lang.SecurityManager", "java.lang.Short", "java.lang.StackTraceElement", "java.lang.StrictMath", "java.lang.String", "java.lang.StringBuffer", "java.lang.StringBuilder", "java.lang.System", "java.lang.Thread", "java.lang.ThreadGroup", "java.lang.ThreadLocal", "java.lang.Throwable", "java.lang.Void" ] logger = logging.getLogger(__name__) class Framework: def __init__(self): pass class JavaProcessor: def __init__(self, working_dir): self.working_dir = working_dir self.web_context_dir = self._find_java_web_context() self.java_compilation_units = {} self.variable_lookup_table = {} self.class_lookup_table = {} self.method_invocation_lookup_table = {} def load_project(self): glob_path = os.path.join(self.working_dir, '**', '*.java') project_files = glob.glob(glob_path, recursive=True) project_files = list(filter(lambda x: os.path.isfile(x), project_files)) project_files = list(filter(lambda x: os.path.join(self.working_dir, 'test') not in x, project_files)) for f in project_files: with codecs.open(f, 'r', 'utf-8', 'ignore') as fh: code = fh.read() try: tree = javalang.parse.parse(code) self.java_compilation_units[self.strip_work_dir(f)] = tree except javalang.parser.JavaSyntaxError as e: logger.warning("There was an error parsing '%s' with javalang: %s", self.strip_work_dir(f), e) for filepath, tree in self.java_compilation_units.items(): self.variable_lookup_table.update(self._preprocess_java_literals(tree)) for filepath, tree in self.java_compilation_units.items(): self.variable_lookup_table.update(self._preprocess_java_variables(tree)) self.class_lookup_table.update(self._preprocess_java_classes(tree, filepath)) mis = self._preprocess_java_method_invocations(tree) for k, v in mis.items(): if k in self.method_invocation_lookup_table: self.method_invocation_lookup_table[k] += v else: self.method_invocation_lookup_table[k] = v def strip_work_dir(self, path): return path.split(self.working_dir, 1)[1][1:] def resolve_node_fqn(self, path, member, qualifier=None): compilation_unit = self.get_compilation_unit(path) for java_import in compilation_unit.imports: import_pkg = java_import.path.rsplit('.', 1) if qualifier == "" or qualifier is None: if import_pkg[1] == member: return java_import.path else: if import_pkg[1] == qualifier: return ".".join([java_import.path, member]) classes = list(filter(lambda x: type(x) is javalang.tree.ClassDeclaration, path)) class_names = list(map(lambda x: x.name, classes)) qualifier = ".".join(class_names) if len(classes) > 0 else None if qualifier is not None: if compilation_unit.package is None: return ".".join([qualifier, member]) else: return ".".join([compilation_unit.package.name, qualifier, member]) else: if compilation_unit.package is None: return member else: return ".".join([compilation_unit.package.name, member]) def _resolve_binary_operation(self, var): element = var[1] if hasattr(element, 'initializer'): operandl = element.initializer.operandl operandr = element.initializer.operandr operator = element.initializer.operator else: operandl = element.operandl operandr = element.operandr operator = element.operator if (type(operandl) in [javalang.tree.MemberReference, javalang.tree.Literal] and type(operandr) in [javalang.tree.MemberReference, javalang.tree.Literal]): left = None right = None if type(operandl) is javalang.tree.Literal: left = operandl.value.strip('"\'') elif type(operandl) is javalang.tree.MemberReference: fqn = self.resolve_node_fqn(var[0], operandl.member, operandl.qualifier) if fqn in self.variable_lookup_table: left = self.variable_lookup_table[fqn] if type(operandr) is javalang.tree.Literal: right = operandr.value.strip('"\'') elif type(operandr) is javalang.tree.MemberReference: fqn = self.resolve_node_fqn(var[0], operandr.member, operandr.qualifier) if fqn in self.variable_lookup_table: right = self.variable_lookup_table[fqn] if left and right: if operator is "+": return left.strip('"\'') + right.strip('"\'') def _preprocess_java_literals(self, tree): results = {} variables = tree.filter(javalang.tree.VariableDeclarator) for var in variables: element = var[1] if type(element.initializer) is javalang.tree.Literal: value = element.initializer.value if value[0] in ['"', "'"] and value[-1] in ['"', "'"] and len(value) > 2: var_fqn = self.resolve_node_fqn(var[0], element.name) results[var_fqn] = element.initializer.value.strip('"\'') return results def _preprocess_java_variables(self, tree): results = {} variables = tree.filter(javalang.tree.VariableDeclarator) for var in variables: element = var[1] if type(element.initializer) is javalang.tree.MemberReference: member_fdn = self.resolve_node_fqn(var[0], var[1].initializer.member, var[1].initializer.qualifier) if member_fdn in self.variable_lookup_table: var_fqn = self.resolve_node_fqn(var[0], element.name) results[var_fqn] = self.variable_lookup_table[member_fdn] elif type(element.initializer) is javalang.tree.BinaryOperation: value = self._resolve_binary_operation(var) if value: var_fqn = self.resolve_node_fqn(var[0], element.name) results[var_fqn] = value return results def _preprocess_java_method_invocations(self, tree): method_invocations = {} for path, mi in tree.filter(javalang.tree.MethodInvocation): fqn = self.resolve_method_fqn(mi, path) if fqn: fqn = "{}({})".format(fqn, len(mi.arguments)) if fqn in method_invocations: method_invocations[fqn] += [(path, mi)] else: method_invocations[fqn] = [(path, mi)] return method_invocations def resolve_method_fqn(self, node, path): if type(node) is not javalang.tree.MethodInvocation: return None compilation_unit = self.get_compilation_unit(path) imports = self.get_imports(path) var_decl = self.get_variable_declaration(node, path) if var_decl: if type(var_decl) is javalang.tree.Import: fqn = ".".join([var_decl.path, node.member]) elif type(var_decl) is javalang.tree.MethodDeclaration: if compilation_unit.package is not None: fqn = ".".join([compilation_unit.package.name, self.get_class_declaration(path).name, var_decl.name]) else: fqn = ".".join([self.get_class_declaration(path).name, var_decl.name]) else: fqn = self.resolve_type(var_decl.type.name, compilation_unit.package, imports) fqn = ".".join([fqn, node.member]) else: return None return fqn def _preprocess_java_classes(self, tree, filepath): classes = {} for path, cd in tree.filter(javalang.tree.ClassDeclaration): classes_in_path = list(filter(lambda x: type(x) is javalang.tree.ClassDeclaration, path)) if classes_in_path: if tree.package is not None: fqn = ".".join([tree.package.name] + list(map(lambda x: x.name, classes_in_path)) + [cd.name]) else: fqn = ".".join(list(map(lambda x: x.name, classes_in_path)) + [cd.name]) else: if tree.package is not None: fqn = ".".join([tree.package.name, cd.name]) else: fqn = cd.name classes[fqn] = (path, cd, filepath) return classes def find_path_to_element(self, tree, node): node_pickle = pickle.dumps(node) paths = [] for path, node in tree.filter(type(node)): if pickle.dumps(node) == node_pickle: paths.append(path) if not paths: return None return paths[0] if len(paths) == 1 else paths
Apache License 2.0
icpc-jag/rime
rime/plugins/plus/basic_patch.py
Testset._TestSolutionWithChallengeCasesOne
python
def _TestSolutionWithChallengeCasesOne(self, solution, testcase, result, ui): case_result = yield self._TestOneCase(solution, testcase, ui) result.results[testcase] = case_result if (solution.expected_verdicts is None and case_result.verdict == test.TestCaseResult.AC): ui.console.PrintAction('TEST', solution, '%s: Unexpectedly accepted' % os.path.basename(testcase.infile), progress=True) yield False elif (solution.expected_verdicts is not None and case_result.verdict not in solution.expected_verdicts): result.Finalize(False, '%s: Unexpected Verdict (%s)' % (os.path.basename(testcase.infile), case_result.verdict), notable_testcase=testcase) ui.errors.Error(solution, result.detail) if ui.options.keep_going: yield False else: raise taskgraph.Bailout([False]) elif case_result.verdict not in (test.TestCaseResult.WA, test.TestCaseResult.TLE, test.TestCaseResult.RE): result.Finalize(False, '%s: Judge Error' % os.path.basename( testcase.infile), notable_testcase=testcase) ui.errors.Error(solution, result.detail) if ui.options.keep_going: yield False else: raise taskgraph.Bailout([False]) ui.console.PrintAction('TEST', solution, '%s: PASSED' % os.path.basename( testcase.infile), progress=True) result.Finalize(True, '%s: %s' % (os.path.basename(testcase.infile), case_result.verdict), notable_testcase=testcase) yield True
Test a wrong solution which has specified challenge cases.
https://github.com/icpc-jag/rime/blob/bfad761387e22a308ead372ae49b624e6bfecbb3/rime/plugins/plus/basic_patch.py#L133-L177
import fnmatch import hashlib import json import os.path import signal import subprocess from rime.basic import codes as basic_codes from rime.basic import consts import rime.basic.targets.problem import rime.basic.targets.project import rime.basic.targets.solution import rime.basic.targets.testset from rime.basic import test from rime.basic.util import test_summary from rime.core import codes from rime.core import targets from rime.core import taskgraph from rime.plugins.plus import rime_plus_version from rime.util import files libdir = None def parseVersion(v): return [int(d) for d in v.split('.')] class Project(targets.registry.Project): def __init__(self, *args, **kwargs): super(Project, self).__init__(*args, **kwargs) def PreLoad(self, ui): super(Project, self).PreLoad(ui) self.library_dir = None self.project_defined = False def _project(library_dir=None, required_rime_plus_version=rime_plus_version): if self.project_defined: raise RuntimeError('project() is already defined.') if (parseVersion(rime_plus_version) < parseVersion(required_rime_plus_version)): raise RuntimeError('installed rime-plus is too old.') global libdir libdir = os.path.join( self.base_dir, library_dir) self.library_dir = libdir self.project_defined = True self.exports['project'] = _project class Testset(targets.registry.Testset): def __init__(self, *args, **kwargs): super(Testset, self).__init__(*args, **kwargs) def PreLoad(self, ui): super(Testset, self).PreLoad(ui) self.reactives = [] self.exports.update( codes.CreateDictionary('%s_generator', self.generators, src_dir=self.src_dir, out_dir=self.out_dir, wrapper=self._WrapDependency)) self.exports.update( codes.CreateDictionary('%s_validator', self.validators, src_dir=self.src_dir, out_dir=self.out_dir, wrapper=self._WrapDependency)) self.exports.update( codes.CreateDictionary('%s_judge', self.judges, src_dir=self.src_dir, out_dir=self.out_dir, wrapper=self._WrapDependency)) self.exports.update( codes.CreateDictionary('%s_reactive', self.reactives, src_dir=self.src_dir, out_dir=self.out_dir, wrapper=self._WrapDependency)) def _WrapDependency(self, code_class): def Wrapped(src_name, src_dir, out_dir, dependency=[], variant=None, *args, **kwargs): code = code_class(src_name, src_dir, out_dir, *args, **kwargs) code.dependency = dependency code.variant = variant return code return Wrapped @taskgraph.task_method def _TestSolutionWithChallengeCases(self, solution, ui): all_testcases = self.ListTestCases() challenge_infiles = solution.challenge_cases testcases = [] for infile in challenge_infiles: matched_testcases = [ testcase for testcase in all_testcases if fnmatch.fnmatch(os.path.basename(testcase.infile), infile)] if not matched_testcases: ui.errors.Error(solution, 'Challenge case not found: %s' % infile) result = test.TestsetResult(self, solution, []) result.Finalize(False, 'Challenge case not found: %s' % infile) yield result testcases.extend( [t for t in matched_testcases if t.infile not in testcases]) result = test.TestsetResult(self, solution, testcases) yield taskgraph.TaskBranch([ self._TestSolutionWithChallengeCasesOne( solution, testcase, result, ui) for testcase in testcases], unsafe_interrupt=True) if not result.IsFinalized(): result.Finalize(False, 'Unexpectedly accepted all challenge cases') ui.errors.Error(solution, result.detail) yield result @taskgraph.task_method
MIT License
w1ll1am23/pyeconet
src/pyeconet/equipment/water_heater.py
WaterHeater.leak_installed
python
def leak_installed(self) -> bool: leak = self._equipment_info.get("@LEAKINSTALLED") if leak is not None: return leak["value"] == 1 else: return False
Return if heater has leak detection or not
https://github.com/w1ll1am23/pyeconet/blob/4727a5d219f8557a0b63768b8f727c7e270bdb63/src/pyeconet/equipment/water_heater.py#L74-L80
from datetime import datetime import logging from enum import Enum from typing import List, Union from pyeconet.errors import InvalidResponseFormat from pyeconet.equipment import Equipment _LOGGER = logging.getLogger(__name__) class WaterHeaterOperationMode(Enum): OFF = 1 ELECTRIC_MODE = 2 ENERGY_SAVING = 3 HEAT_PUMP_ONLY = 4 HIGH_DEMAND = 5 GAS = 6 ENERGY_SAVER = 7 PERFORMANCE = 8 VACATION = 9 ELECTRIC = 10 HEAT_PUMP = 11 UNKNOWN = 99 @staticmethod def by_string(str_value: str): _cleaned_string = str_value.rstrip().replace(" ", "_").upper() if _cleaned_string == WaterHeaterOperationMode.OFF.name.upper(): return WaterHeaterOperationMode.OFF elif _cleaned_string == WaterHeaterOperationMode.ELECTRIC_MODE.name.upper(): return WaterHeaterOperationMode.ELECTRIC_MODE elif _cleaned_string == WaterHeaterOperationMode.ENERGY_SAVING.name.upper(): return WaterHeaterOperationMode.ENERGY_SAVING elif _cleaned_string == WaterHeaterOperationMode.HEAT_PUMP_ONLY.name.upper(): return WaterHeaterOperationMode.HEAT_PUMP_ONLY elif _cleaned_string == WaterHeaterOperationMode.HIGH_DEMAND.name.upper(): return WaterHeaterOperationMode.HIGH_DEMAND elif _cleaned_string == WaterHeaterOperationMode.GAS.name.upper(): return WaterHeaterOperationMode.GAS elif _cleaned_string == WaterHeaterOperationMode.ENERGY_SAVER.name.upper(): return WaterHeaterOperationMode.ENERGY_SAVING elif _cleaned_string == WaterHeaterOperationMode.PERFORMANCE.name.upper(): return WaterHeaterOperationMode.PERFORMANCE elif _cleaned_string == WaterHeaterOperationMode.VACATION.name.upper(): return WaterHeaterOperationMode.VACATION elif _cleaned_string == WaterHeaterOperationMode.ELECTRIC.name.upper(): return WaterHeaterOperationMode.ELECTRIC_MODE elif _cleaned_string == WaterHeaterOperationMode.HEAT_PUMP.name.upper(): return WaterHeaterOperationMode.HEAT_PUMP_ONLY else: _LOGGER.error("Unknown mode: [%s]", str_value) return WaterHeaterOperationMode.UNKNOWN class WaterHeater(Equipment): def __init__(self, equipment_info: dict, api_interface) -> None: super().__init__(equipment_info, api_interface) self.energy_usage = None self._energy_type = None self.water_usage = None @property
MIT License
gumyr/cq_warehouse
src/cq_warehouse/fastener.py
evaluate_parameter_dict
python
def evaluate_parameter_dict( parameters: dict, is_metric: Optional[bool] = True, ) -> dict: measurements = {} for params, value in parameters.items(): if is_metric: measurements[params] = metric_str_to_float(value) else: measurements[params] = imperial_str_to_float(value) return measurements
Convert the strings in a parameter dictionary into dimensions
https://github.com/gumyr/cq_warehouse/blob/e27bdc32f2f8b8b33b6d6f736d03d15984795673/src/cq_warehouse/fastener.py#L144-L154
from abc import ABC, abstractmethod from typing import Literal, Tuple, Optional, List, TypeVar, Union from math import sin, cos, tan, radians, pi, degrees, sqrt from functools import cache import csv import importlib.resources as pkg_resources import cadquery as cq import cq_warehouse MM = 1 IN = 25.4 * MM def polygon_diagonal(width: float, num_sides: Optional[int] = 6) -> float: return width / cos(pi / num_sides) def read_fastener_parameters_from_csv(filename: str) -> dict: parameters = {} with pkg_resources.open_text(cq_warehouse, filename) as csvfile: reader = csv.DictReader(csvfile) fieldnames = reader.fieldnames for row in reader: key = row[fieldnames[0]] row.pop(fieldnames[0]) parameters[key] = row return parameters def is_safe(value: str) -> bool: return len(value) <= 10 and all(c in "0123456789./ " for c in set(value)) def imperial_str_to_float(measure: str) -> float: if is_safe(measure): result = eval(measure.strip().replace(" ", "+")) * IN else: result = measure return result def decode_imperial_size(size: str) -> Tuple[float, float]: imperial_numbered_sizes = { "#0000": 0.0210 * IN, "#000": 0.0340 * IN, "#00": 0.0470 * IN, "#0": 0.0600 * IN, "#1": 0.0730 * IN, "#2": 0.0860 * IN, "#3": 0.0990 * IN, "#4": 0.1120 * IN, "#5": 0.1250 * IN, "#6": 0.1380 * IN, "#8": 0.1640 * IN, "#10": 0.1900 * IN, "#12": 0.2160 * IN, } sizes = size.split("-") if size[0] == "#": major_diameter = imperial_numbered_sizes[sizes[0]] else: major_diameter = imperial_str_to_float(sizes[0]) pitch = IN / (imperial_str_to_float(sizes[1]) / IN) return (major_diameter, pitch) def metric_str_to_float(measure: str) -> float: if is_safe(measure): result = eval(measure) else: result = measure return result def evaluate_parameter_dict_of_dict( parameters: dict, is_metric: Optional[bool] = True, ) -> dict: measurements = {} for key, value in parameters.items(): measurements[key] = evaluate_parameter_dict( parameters=value, is_metric=is_metric ) return measurements
Apache License 2.0
joeyhendricks/quickpotato
QuickPotato/statistical/data.py
RawData.percentile_65th
python
def percentile_65th(self): return np.percentile(np.array(self._response_times), 65)
Returns -------
https://github.com/joeyhendricks/quickpotato/blob/5e33e64d77997b00a43f5573353138436b1f1a34/QuickPotato/statistical/data.py#L168-L175
from QuickPotato.database.queries import Crud import numpy as np class RawData(Crud): def __init__(self, test_id, database_name): super(RawData, self).__init__() self.test_id = test_id self.database_name = database_name self._response_times = self.select_response_times(self.database_name, self.test_id) def response_times(self): return self._response_times def normalized_response_times(self): measurements = np.array(self._response_times) return measurements[abs(measurements - np.mean(measurements)) < 2 * np.std(measurements)] def average_response_time(self): return sum(self._response_times) / len(self._response_times) def maximum_outlier_in_response_times(self): return max(self._response_times) def minimum_outlier_in_response_times(self): return min(self._response_times) def percentile_5th(self): return np.percentile(np.array(self._response_times), 5) def percentile_10th(self): return np.percentile(np.array(self._response_times), 10) def percentile_15th(self): return np.percentile(np.array(self._response_times), 15) def percentile_20th(self): return np.percentile(np.array(self._response_times), 20) def percentile_25th(self): return np.percentile(np.array(self._response_times), 25) def percentile_30th(self): return np.percentile(np.array(self._response_times), 30) def percentile_35th(self): return np.percentile(np.array(self._response_times), 35) def percentile_40th(self): return np.percentile(np.array(self._response_times), 40) def percentile_45th(self): return np.percentile(np.array(self._response_times), 45) def percentile_50th(self): return np.percentile(np.array(self._response_times), 50) def percentile_55th(self): return np.percentile(np.array(self._response_times), 55) def percentile_60th(self): return np.percentile(np.array(self._response_times), 60)
MIT License
charanpald/apgl
apgl/util/Util.py
Util.matrixPower
python
def matrixPower(A, n): Parameter.checkClass(A, numpy.ndarray) tol = 10**-10 lmbda, V = scipy.linalg.eig(A) lmbda[numpy.abs(lmbda) <= tol] = 0 lmbda[numpy.abs(lmbda) > tol] = lmbda[numpy.abs(lmbda) > tol]**n if n >= 0: return (V*lmbda).dot(numpy.linalg.inv(V)) else: A = scipy.linalg.pinv(A) n = numpy.abs(n) lmbda, V = scipy.linalg.eig(A) lmbda[numpy.abs(lmbda) > tol] = lmbda[numpy.abs(lmbda) > tol]**n return (V*lmbda).dot(numpy.linalg.inv(V))
Compute the matrix power of A using the exponent n. The computation simply evaluated the eigendecomposition of A and then powers the eigenvalue matrix accordingly. Warning: if at least one eigen-value is negative, n should be an integer.
https://github.com/charanpald/apgl/blob/f8b71be2c49c62ace7ce5691216d2ff041ff978b/apgl/util/Util.py#L576-L598
from __future__ import print_function import sys import os import numpy from contextlib import contextmanager import numpy.random as rand import logging import scipy.linalg import scipy.sparse as sparse import scipy.special import pickle from apgl.util.Parameter import Parameter class Util(object): def __init__(self): pass @staticmethod def histogram(v): if v.ndim != 1: raise ValueError("Input must be a dimension 1 vector") uniqElements = numpy.unique(v) numElements = uniqElements.shape[0] hist = numpy.zeros(numElements) for i in range(0, numElements): hist[i] = sum(v == uniqElements[i]) return (hist, uniqElements) @staticmethod def mode(v): if v.ndim != 1: raise ValueError("Input must be a dimension 1 vector") uniqElements = numpy.unique(v) freqs = numpy.zeros(uniqElements.shape[0]) for i in range(uniqElements.shape[0]): freqs[i] = numpy.sum(v == uniqElements[i]) return uniqElements[numpy.argmax(freqs)] @staticmethod def sampleWithoutReplacement(sampleSize, totalSize): perm = rand.permutation(totalSize) perm = perm[0:sampleSize] perm = numpy.sort(perm) return perm @staticmethod def randNormalInt(mean, sd, min, max): i = round(rand.normal(mean, sd)); while i<min or i>max: i = round(random.normal(mean, sd)); return i @staticmethod def computeMeanVar(X): mu = numpy.mean(X, 0) X2 = X - mu sigma = numpy.dot(X2.T, X2)/X.shape[0] return (mu, sigma) @staticmethod def iterationStr(i, step, maxIter, preStr="Iteration: "): outputStr = "" if maxIter == 1: outputStr = preStr + str(i) + " (1.0)" elif i % step == 0: outputStr = preStr + str(i) + " (" + str("%.3f" % (float(i)/(maxIter-1))) + ")" elif i == maxIter-1: outputStr = preStr + str(i) + " (" + str("%.3f" % (float(i)/(maxIter-1))) + ")" else: raise ValueError("Got invalid input: " + str((i, step, maxIter))) return outputStr @staticmethod def printIteration(i, step, maxIter, preStr="Iteration: "): if i % step == 0 or i==maxIter-1: logging.debug(Util.iterationStr(i, step, maxIter, preStr)) @staticmethod def printConciseIteration(i, step, maxIter, preStr="Iteration: "): if i==0: print(Util.iterationStr(i, step, maxIter, preStr), end=""), elif i!=maxIter-1: print(Util.iterationStr(i, step, maxIter, " "), end="") else: print(Util.iterationStr(i, step, maxIter, " ")) @staticmethod def abstract(): import inspect caller = inspect.getouterframes(inspect.currentframe())[1][3] raise NotImplementedError("Method " + caller + ' must be implemented in subclass') @staticmethod def rank(A, tol=1e-8): s = numpy.linalg.svd(A, compute_uv=False) return numpy.sum(numpy.where(s>tol, 1, 0)) @staticmethod def randomChoice(V, n=1): Parameter.checkClass(V, numpy.ndarray) if V.shape[0]==0: return -1 if V.ndim == 1: cumV = numpy.cumsum(V) p = numpy.random.rand(n)*cumV[-1] return numpy.searchsorted(cumV, p) elif V.ndim == 2: cumV = numpy.cumsum(V, 1) P = numpy.random.rand(V.shape[0], n)*numpy.array([cumV[:, -1]]).T inds = numpy.zeros(P.shape, numpy.int) for i in range(P.shape[0]): inds[i, :] = numpy.searchsorted(cumV[i, :], P[i, :]) return inds else: raise ValueError("Invalid number of dimensions") @staticmethod def fitPowerLaw(x, xmin): x = x[x >= xmin] n = x.shape[0] lnSum = n / numpy.sum(numpy.log(x/xmin)) gamma = lnSum return gamma @staticmethod def fitDiscretePowerLaw(x, xmins = None): xmax = numpy.max(x) if xmins == None: xmin = numpy.max(numpy.array([numpy.min(x), 1])) xmins = numpy.arange(xmin, xmax) if xmins.shape[0] == 0: return -1, -1, numpy.min(x) alphas = numpy.arange(1.5, 3.5, 0.01) ksAlpha = numpy.zeros((xmins.shape[0], 2)) for j in range(xmins.shape[0]): xmin = xmins[j] z = x[x >= xmin] n = z.shape[0] sumLogx = numpy.sum(numpy.log(z)) likelyhoods = numpy.zeros(alphas.shape[0]) for i in range(alphas.shape[0]): likelyhoods[i] = -n*numpy.log(scipy.special.zeta(alphas[i], xmin)) -alphas[i]*sumLogx k = numpy.argmax(likelyhoods) cdf = numpy.cumsum(numpy.bincount(z)[xmin:xmax]/float(n)) fit = numpy.arange(xmin, xmax)**-alphas[k] /scipy.special.zeta(alphas[k], xmin) fit = numpy.cumsum(fit) ksAlpha[j, 0] = numpy.max(numpy.abs(cdf - fit)) ksAlpha[j, 1] = alphas[k] i = numpy.argmin(ksAlpha[:, 0]) return ksAlpha[i, 0], ksAlpha[i, 1], xmins[i] @staticmethod def entropy(v): items = numpy.unique(v) infEnt = 0 for i in items: prob = numpy.sum(v==i)/float(v.shape[0]) infEnt -= prob * numpy.log2(prob) return infEnt @staticmethod def expandIntArray(v): Parameter.checkClass(v, numpy.ndarray) Parameter.checkList(v, Parameter.checkInt, [0, float('inf')]) w = numpy.zeros(numpy.sum(v), numpy.int) currentInd = 0 for i in range(v.shape[0]): w[currentInd:currentInd+v[i]] = i currentInd += v[i] return w @staticmethod def random2Choice(V, n=1): Parameter.checkClass(V, numpy.ndarray) if V.ndim == 1 and V.shape[0] != 2: raise ValueError("Function only works on binary probabilities") if V.ndim == 2 and V.shape[1] != 2: raise ValueError("Function only works on binary probabilities") if V.ndim == 1: cumV = numpy.cumsum(V) p = numpy.random.rand(n)*cumV[-1] cumV2 = numpy.ones(n)*cumV[0] - p return numpy.array(cumV2 <= 0, numpy.int) elif V.ndim == 2: cumV = numpy.cumsum(V, 1) P = numpy.random.rand(V.shape[0], n)*numpy.array([cumV[:, -1]]).T cumV2 = numpy.outer(cumV[:, 0], numpy.ones(n)) - P return numpy.array(cumV2 <= 0, numpy.int) else: raise ValueError("Invalid number of dimensions") @staticmethod def loadPickle(filename): file = open(filename, 'rb') obj = pickle.load(file) file.close() return obj @staticmethod def savePickle(obj, filename, overwrite=True, debug=False): if os.path.isfile(filename) and not overwrite: raise IOError("File exists: " + filename) file = open(filename, 'wb') pickle.dump(obj, file) file.close() if debug: logging.debug("Saved " + filename + " object type " + str(type(obj))) @staticmethod def incompleteCholesky(X, k): if X.shape[0] != X.shape[1]: raise ValueError("X must be a square matrix") ell = X.shape[0] R = numpy.zeros((k, ell)) d = numpy.diag(X) aInd = numpy.argmax(d) a = d[aInd] nu = numpy.zeros(k) for j in range(k): nu[j] = numpy.sqrt(a) for i in range(ell): R[j, i] = (X[aInd, i] - R[:, i].T.dot(R[:, aInd]))/nu[j] d[i] = d[i] - R[j, i]**2 aInd = numpy.argmax(d) a = d[aInd] return R @staticmethod def incompleteCholesky2(X, k): ell = X.shape[0] A = numpy.zeros((ell, k)) Xj = X Xaj = numpy.zeros((ell, k)) for j in range(k): d = numpy.diag(Xj) ind = numpy.argmax(d) A[ind, j] = 1/numpy.sqrt(Xj[ind, ind]) Xaj[:, j] = Xj.dot(A[:, j]) Xj = Xj - numpy.outer(Xaj[:, j], Xaj[:, j])/numpy.dot(A[:, j].T, Xaj[:, j]) return Xaj.T @staticmethod def indEig(s, U, inds): U = U[:, inds] s = s[inds] return s, U @staticmethod def indSvd(P, s, Q, inds): if inds.shape[0] != 0: P = P[:, inds] s = s[inds] Q = Q.conj().T Q = Q[:, inds] else: P = numpy.zeros((P.shape[0], 0)) s = numpy.zeros(0) Q = Q.conj().T Q = numpy.zeros((Q.shape[0], 0)) return P, s, Q @staticmethod def svd(A, eps=10**-8, tol=10**-8): if A.shape[0] > A.shape[1]: return Util.svd_from_eigh(A, eps) else: P, s, Qh = Util.svd_from_eigh(A.conj().T, eps, tol) return Qh.conj().T, s.conj(), P.conj().T @staticmethod def svd_from_eigh(A, eps=10**-8, tol=10**-8): AA = A.conj().T.dot(A) lmbda, Q = scipy.linalg.eigh(AA + eps*numpy.eye(A.shape[1])) lmbda = lmbda-eps inds = numpy.arange(lmbda.shape[0])[lmbda>tol] lmbda, Q = Util.indEig(lmbda, Q, inds) sigma = lmbda**0.5 P = A.dot(Q) / sigma Qh = Q.conj().T if __debug__: if not scipy.allclose(A, (P*sigma).dot(Qh), atol=tol): logging.warn(" SVD obtained from EVD is too poor") Parameter.checkArray(P, softCheck=True, arrayInfo="P in svd_from_eigh()") if not Parameter.checkOrthogonal(P, tol=tol, softCheck=True, arrayInfo="P in svd_from_eigh()", investigate=True): print("corresponding sigma: ", sigma) Parameter.checkArray(sigma, softCheck=True, arrayInfo="sigma in svd_from_eigh()") Parameter.checkArray(Qh, softCheck=True, arrayInfo="Qh in svd_from_eigh()") if not Parameter.checkOrthogonal(Qh.conj().T, tol=tol, softCheck=True, arrayInfo="Qh.H in svd_from_eigh()"): print("corresponding sigma: ", sigma) return P, sigma, Qh @staticmethod def safeSvd(A, eps=10**-8, tol=10**-8): if __debug__: if not Parameter.checkArray(A, softCheck = True): logging.info("... in Util.safeSvd") try: try: P, sigma, Qh = scipy.linalg.svd(A, full_matrices=False) except scipy.linalg.LinAlgError as e: logging.warn(str(e)) raise Exception('SVD decomposition has to be computed from EVD decomposition') inds = numpy.arange(sigma.shape[0])[sigma > tol] if inds.shape[0] < sigma.shape[0]: P, sigma, Q = Util.indSvd(P, sigma, Qh, inds) Qh = Q.conj().T if not scipy.allclose(A, (P*sigma).dot(Qh)): logging.warn(" After cleaning singular values from scipy.linalg.svd, the SVD decomposition is too far from the original matrix") raise Exception('SVD decomposition has to be computed from EVD decomposition') if __debug__: badAnswerFromScipySvd = False if not Parameter.checkArray(P, softCheck=True, arrayInfo="P in Util.safeSvd()"): badAnswerFromScipySvd = True if not Parameter.checkArray(sigma, softCheck = True, arrayInfo="sigma in Util.safeSvd()"): badAnswerFromScipySvd = True if not Parameter.checkArray(Qh, softCheck = True, arrayInfo="Qh in Util.safeSvd()"): badAnswerFromScipySvd = True if badAnswerFromScipySvd: logging.warn(" After cleaning singular values from scipy.linalg.svd, the SVD decomposition still contains 'NaN', 'inf' or complex values") raise Exception('SVD decomposition has to be computed from EVD decomposition') except Exception as inst: if inst.args != ('SVD decomposition has to be computed from EVD decomposition',): raise logging.warn(" Using EVD method to compute the SVD.") P, sigma, Qh = Util.svd(A, eps, tol) if __debug__: badAnswerFromUtilSvd = False if not Parameter.checkArray(P, softCheck = True): logging.info("... in P in Util.safeSvd") badAnswerFromUtilSvd = True if not Parameter.checkArray(sigma, softCheck = True): logging.info("... in sigma in Util.safeSvd") badAnswerFromUtilSvd = True if not Parameter.checkArray(Qh, softCheck = True): logging.info("... in Q in Util.safeSvd") badAnswerFromUtilSvd = True if badAnswerFromUtilSvd: logging.warn(" SVD decomposition obtained from EVD decomposition contains 'NaN', 'inf' or real values") from sandbox.util.ProfileUtils import ProfileUtils if ProfileUtils.memory() > 10**9: ProfileUtils.memDisplay(locals()) return P, sigma, Qh @staticmethod def safeEigh(a, b=None, lower=True, eigvals_only=False, overwrite_a=False, overwrite_b=False, turbo=True, eigvals=None, type=1): try: return scipy.linalg.eigh(a, b=b, lower=lower, eigvals_only=eigvals_only, overwrite_a=overwrite_a, overwrite_b=overwrite_b, turbo=turbo, eigvals=eigvals) except: if __debug__: logging.warning(" scipy.linalg.eigh raised an error, scipy.linalg.eig() is used instead") lmbda, q = scipy.linalg.eig(a, b=b, overwrite_a=overwrite_a, overwrite_b=overwrite_b) if eigvals == None: eigvals = (0, len(lmbda)) if eigvals_only: return lmbda[eigvals[0]:eigvals[1]] else : return lmbda[eigvals[0]:eigvals[1]], q[eigvals[0]:eigvals[1]] @staticmethod def powerLawProbs(alpha, zeroVal=0.5, maxInt=100): p = numpy.arange(0, maxInt, dtype=numpy.float) p[0] = zeroVal p = p ** -alpha p /= p.sum() return p @staticmethod
BSD 3-Clause New or Revised License
gratipay/gratipay.com
gratipay/models/team/membership.py
Membership.get_memberships
python
def get_memberships(self, current_participant=None): takes = self.compute_actual_takes() members = [] for take in takes.values(): member = {} member['participant_id'] = take['participant'].id member['username'] = take['participant'].username member['take'] = take['nominal_amount'] member['balance'] = take['balance'] member['percentage'] = take['percentage'] member['editing_allowed'] = False member['is_current_user'] = False if current_participant: member['removal_allowed'] = current_participant.username == self.owner if member['username'] == current_participant.username: member['editing_allowed']= True member['last_week'] = self.get_take_last_week_for(take['participant']) members.append(member) return members
Return a list of member dicts.
https://github.com/gratipay/gratipay.com/blob/dc4e953a8a5b96908e2f3ea7f8fef779217ba2b6/gratipay/models/team/membership.py#L38-L60
from __future__ import absolute_import, division, print_function, unicode_literals from .takes import ZERO, PENNY class Membership(object): def add_member(self, participant, recorder): self.set_take_for(participant, PENNY, recorder) def remove_member(self, participant, recorder): self.set_take_for(participant, ZERO, recorder) @property def nmembers(self): return self.ndistributing_to
MIT License
i8enn/pydantic-odm
pydantic_odm/mixins.py
DBPydanticMixin.bulk_create
python
async def bulk_create( cls, documents: Union[List[BaseModel], List["DictAny"]], ) -> List[DBPydanticMixin]: collection = await cls.get_collection() if not documents: return [] if isinstance(documents[0], BaseModel): documents = [ cls._encode_dict_to_mongo(d.dict()) for d in cast(List[BaseModel], documents) ] documents = cast(List["DictAny"], documents) await cls.pre_save_validation(documents, many=True) result = await collection.insert_many(documents) inserted_ids = result.inserted_ids inserted_documents = [] for i, document_id in enumerate(inserted_ids): document = cls.parse_obj(documents[i]) document.id = document_id document._doc = cls._decode_mongo_documents(documents[i]) inserted_documents.append(document) return inserted_documents
Create many documents
https://github.com/i8enn/pydantic-odm/blob/36868717995207301a5f7565a7dfd1893cf8c58a/pydantic_odm/mixins.py#L242-L268
from __future__ import annotations import abc from bson import ObjectId from motor import motor_asyncio from pydantic import BaseModel from pymongo.collection import Collection, ReturnDocument from typing import TYPE_CHECKING, Any, List, Optional, Union, cast from .db import get_db_manager from .decoders.mongodb import AbstractMongoDBDecoder, BaseMongoDBDecoder from .encoders.mongodb import AbstractMongoDBEncoder, BaseMongoDBEncoder from .types import ObjectIdStr if TYPE_CHECKING: from pydantic.typing import MappingIntStrAny from pydantic.typing import AbstractSetIntStr, DictAny, DictIntStrAny, DictStrAny class BaseDBMixin(BaseModel, abc.ABC): id: Optional[ObjectIdStr] = None _doc: "DictAny" = {} _mongodb_encoder: AbstractMongoDBEncoder = BaseMongoDBEncoder() _mongo_decoder: AbstractMongoDBDecoder = BaseMongoDBDecoder() class Config: allow_population_by_field_name = True json_encoders: "DictAny" = {ObjectId: lambda v: ObjectIdStr(v)} def __setattr__(self, key: Any, value: Any) -> Any: if key not in ["_doc"]: return super(BaseDBMixin, self).__setattr__(key, value) self.__dict__[key] = value return value @classmethod def _decode_mongo_documents(cls, document: "DictStrAny") -> "DictStrAny": return cls._mongo_decoder(document) @classmethod def _encode_dict_to_mongo(cls, data: "DictStrAny") -> "DictStrAny": return cls._mongodb_encoder(data) def _encode_model_to_mongo( self, include: Union["AbstractSetIntStr", "DictIntStrAny"] = None, exclude: Union["AbstractSetIntStr", "DictIntStrAny"] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, ) -> DictStrAny: model_as_dict = self.dict( include=include, exclude=exclude, exclude_unset=exclude_unset, exclude_defaults=exclude_defaults, exclude_none=exclude_none, ) return self._mongodb_encoder(model_as_dict) def dict( self, *, include: Union["AbstractSetIntStr", "MappingIntStrAny"] = None, exclude: Union["AbstractSetIntStr", "MappingIntStrAny"] = None, by_alias: bool = False, skip_defaults: bool = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, ) -> DictStrAny: if not exclude: exclude = {"_doc"} else: exclude = {"_doc", *exclude} return super(BaseDBMixin, self).dict( include=include, exclude=exclude, by_alias=by_alias, exclude_unset=exclude_unset, exclude_defaults=exclude_defaults, exclude_none=exclude_none, ) def _update_model_from__doc(self) -> BaseDBMixin: new_obj = self.parse_obj(self._doc) new_obj.id = self._doc.get("id") for k, field in new_obj.__fields__.items(): field_default = getattr(field, "default", None) self.__dict__[k] = getattr(new_obj, k, field_default) return new_obj class DBPydanticMixin(BaseDBMixin): class Config: collection: Optional[str] = None database: Optional[str] = None @classmethod async def get_collection(cls) -> Collection: db_name = getattr(cls.Config, "database", None) collection_name = getattr(cls.Config, "collection", None) if not db_name or not collection_name: raise ValueError("Collection or db_name is not configured in Config class") db_manager = get_db_manager() if not db_manager: raise RuntimeError("MongoDBManager not initialized") db = db_manager[db_name] if not db: raise ValueError('"%s" is not found in MongoDBManager.databases' % db_name) collection = db[collection_name] if not collection: collection = await db.create_collection(collection_name) return collection @staticmethod async def pre_save_validation( data: Union["DictAny", List["DictAny"]], many: bool = False ) -> Union["DictAny", List["DictAny"]]: return data @classmethod async def create(cls, fields: Union["DictAny", BaseModel]) -> DBPydanticMixin: if isinstance(fields, BaseModel): fields = fields.dict(exclude_unset=True) document = cls.parse_obj(fields) await document.save() return document @classmethod async def count(cls, query: DictStrAny = None) -> int: if not query: query = {} query = cls._encode_dict_to_mongo(query) collection = await cls.get_collection() return await collection.count_documents(query) @classmethod async def find_one(cls, query: DictStrAny) -> DBPydanticMixin: collection = await cls.get_collection() query = cls._encode_dict_to_mongo(query) result = await collection.find_one(query) if result: result = cls._decode_mongo_documents(result) model = cls.parse_obj(result) document_id = result.get("id") model._doc = result model.id = document_id return model return result @classmethod async def find_many( cls, query: "DictStrAny", return_cursor: bool = False ) -> Union[List[DBPydanticMixin], motor_asyncio.AsyncIOMotorCursor]: collection = await cls.get_collection() query = cls._encode_dict_to_mongo(query) cursor = collection.find(query) if return_cursor: return cursor documents = [] async for _doc in cursor: _doc = cls._decode_mongo_documents(_doc) document = cls.parse_obj(_doc) document._doc = _doc documents.append(document) return documents @classmethod async def update_many( cls, query: "DictStrAny", fields: "DictAny", return_cursor: bool = False, ) -> Union[List[DBPydanticMixin], motor_asyncio.AsyncIOMotorCursor]: await cls.pre_save_validation(fields, many=True) collection = await cls.get_collection() query = cls._encode_dict_to_mongo(query) await collection.update_many(query, fields) return await cls.find_many(query, return_cursor) @classmethod
MIT License
vinteo/hass-opensprinkler
custom_components/opensprinkler/binary_sensor.py
ControllerSensorActive.unique_id
python
def unique_id(self) -> str: return slugify(f"{self._entry.unique_id}_{self._entity_type}_{self._attr}")
Return a unique, Home Assistant friendly identifier for this entity.
https://github.com/vinteo/hass-opensprinkler/blob/92f8cb82daf77cde6cfeb3f9b55c6d91270ef83c/custom_components/opensprinkler/binary_sensor.py#L77-L79
import logging from typing import Callable from homeassistant.components.binary_sensor import BinarySensorEntity from homeassistant.const import CONF_NAME from homeassistant.core import HomeAssistant from homeassistant.util import slugify from . import ( OpenSprinklerBinarySensor, OpenSprinklerControllerEntity, OpenSprinklerProgramEntity, OpenSprinklerStationEntity, ) from .const import DOMAIN _LOGGER = logging.getLogger(__name__) async def async_setup_entry( hass: HomeAssistant, entry: dict, async_add_entities: Callable, ): entities = _create_entities(hass, entry) async_add_entities(entities) def _create_entities(hass: HomeAssistant, entry: dict): entities = [] controller = hass.data[DOMAIN][entry.entry_id]["controller"] coordinator = hass.data[DOMAIN][entry.entry_id]["coordinator"] name = entry.data[CONF_NAME] entities.append( ControllerSensorActive(entry, name, "sensor_1", controller, coordinator) ) entities.append( ControllerSensorActive(entry, name, "sensor_2", controller, coordinator) ) entities.append( ControllerSensorActive(entry, name, "rain_delay", controller, coordinator) ) for _, program in controller.programs.items(): entities.append(ProgramIsRunningBinarySensor(entry, name, program, coordinator)) for _, station in controller.stations.items(): entities.append(StationIsRunningBinarySensor(entry, name, station, coordinator)) return entities class ControllerSensorActive( OpenSprinklerControllerEntity, OpenSprinklerBinarySensor, BinarySensorEntity ): def __init__(self, entry, name, sensor, controller, coordinator): self._name = name self._controller = controller self._entity_type = "binary_sensor" self._sensor = sensor self._attr = sensor + "_active" super().__init__(entry, name, coordinator) @property def name(self) -> str: return f"{self._name} {self._attr.replace('_', ' ').title()}" @property
MIT License
pybrain2/pybrain2
pybrain/utilities.py
subDict
python
def subDict(d, allowedkeys, flip=False): res = {} for k, v in list(d.items()): if (k in allowedkeys) ^ flip: res[k] = v return res
Returns a new dictionary with a subset of the entries of d that have on of the (dis-)allowed keys.
https://github.com/pybrain2/pybrain2/blob/33ead60704d126e58c10d458ddd1e5e5fd17b65d/pybrain/utilities.py#L660-L667
from __future__ import print_function __author__ = 'Tom Schaul, tom@idsia.ch; Justin Bayer, bayerj@in.tum.de' import gc import pickle import logging import threading import os import operator from itertools import count from math import sqrt from random import random, choice from scipy import where, array, exp, zeros, size, mat, median from functools import reduce known_extensions = { 'mat': 'matlab', 'txt': 'ascii', 'svm': 'libsvm', 'pkl': 'pickle', 'nc' : 'netcdf' } def abstractMethod(): raise NotImplementedError('Method not implemented!') def drawIndex(probs, tolerant=False): if not sum(probs) < 1.00001 or not sum(probs) > 0.99999: if tolerant: probs /= sum(probs) else: print((probs, 1 - sum(probs))) raise ValueError() r = random() s = 0 for i, p in enumerate(probs): s += p if s > r: return i return choice(list(range(len(probs)))) def drawGibbs(vals, temperature=1.): if temperature == 0: m = max(vals) best = [] for i, v in enumerate(vals): if v == m: best.append(i) return choice(best) else: temp = vals / temperature temp += 20 - max(temp) if min(temp) < -20: for i, v in enumerate(temp): if v < -20: temp[i] = -20 temp = exp(temp) temp /= sum(temp) return drawIndex(temp) def iterCombinations(tup): if len(tup) == 1: for i in range(tup[0]): yield (i,) elif len(tup) > 1: for prefix in iterCombinations(tup[:-1]): for i in range(tup[-1]): yield tuple(list(prefix) + [i]) def setAllArgs(obj, argdict): xmlstore = isinstance(obj, XMLBuildable) for n in list(argdict.keys()): if hasattr(obj, n): setattr(obj, n, argdict[n]) if xmlstore: obj.argdict[n] = argdict[n] else: print(('Warning: parameter name', n, 'not found!')) if xmlstore: if not hasattr(obj, '_unknown_argdict'): obj._unknown_argdict = {} obj._unknown_argdict[n] = argdict[n] def linscale(d, lim): return (d - d.min())*(lim[1] - lim[0]) + lim[0] def percentError(out, true): arrout = array(out).flatten() wrong = where(arrout != array(true).flatten())[0].size return 100. * float(wrong) / float(arrout.size) def formatFromExtension(fname): _base, ext = os.path.splitext(fname) if not ext: return None try: format = known_extensions[ext.replace('.', '')] except KeyError: format = None return format class XMLBuildable(object): argdict = None def setArgs(self, **argdict): if not self.argdict: self.argdict = {} setAllArgs(self, argdict) class Serializable(object): def saveToFileLike(self, flo, format=None, **kwargs): format = 'pickle' if format is None else format save = getattr(self, "save_%s" % format, None) if save is None: raise ValueError("Unknown format '%s'." % format) save(flo, **kwargs) @classmethod def loadFromFileLike(cls, flo, format=None): format = 'pickle' if format is None else format load = getattr(cls, "load_%s" % format, None) if load is None: raise ValueError("Unknown format '%s'." % format) return load(flo) def saveToFile(self, filename, format=None, **kwargs): if format is None: format = formatFromExtension(filename) with file(filename, 'wb') as fp: self.saveToFileLike(fp, format, **kwargs) @classmethod def loadFromFile(cls, filename, format=None): if format is None: format = formatFromExtension(filename) with file(filename, 'rbU') as fp: obj = cls.loadFromFileLike(fp, format) obj.filename = filename return obj def save_pickle(self, flo, protocol=0): pickle.dump(self, flo, protocol) @classmethod def load_pickle(cls, flo): return pickle.load(flo) class Named(XMLBuildable): _nameIds = count(0) def getName(self): logging.warning("Deprecated, use .name property instead.") return self.name def setName(self, newname): logging.warning("Deprecated, use .name property instead.") self.name = newname def _getName(self): if self._name is None: self._name = self._generateName() return self._name def _setName(self, newname): self._name = newname _name = None name = property(_getName, _setName) def _generateName(self): return "%s-%i" % (self.__class__.__name__, next(self._nameIds)) def __repr__(self): return "<%s '%s'>" % (self.__class__.__name__, self.name) def fListToString(a_list, a_precision=3): from numpy import around s_list = ", ".join(("%g" % around(x, a_precision)).ljust(a_precision+3) for x in a_list) return "[%s]" % s_list def tupleRemoveItem(tup, index): l = list(tup) return tuple(l[:index] + l[index + 1:]) def confidenceIntervalSize(stdev, nbsamples): return 2 * 1.98 * stdev / sqrt(nbsamples) def trace(func): def inner(*args, **kwargs): print(("%s: %s, %s" % (func.__name__, args, kwargs))) return func(*args, **kwargs) return inner def threaded(callback=lambda * args, **kwargs: None, daemonic=False): def innerDecorator(func): def inner(*args, **kwargs): target = lambda: callback(func(*args, **kwargs)) t = threading.Thread(target=target) t.setDaemon(daemonic) t.start() return inner return innerDecorator def garbagecollect(func): def inner(*args, **kwargs): result = func(*args, **kwargs) gc.collect() return result return inner def memoize(func): cache = {} def inner(*args, **kwargs): args = tuple(args) kwargs_set = frozenset(iter(kwargs.items())) if (args, kwargs_set) in cache: result = cache[args, kwargs_set] else: result = func(*args, **kwargs) cache[args, kwargs_set] = result return result return inner def storeCallResults(obj, verbose=False): results = [] oldcall = obj.__class__.__call__ def newcall(*args, **kwargs): result = oldcall(*args, **kwargs) results.append(result) if verbose: print(result) return result obj.__class__.__call__ = newcall return results def multiEvaluate(repeat): def decorator(func): def inner(*args, **kwargs): result = 0. for dummy in range(repeat): result += func(*args, **kwargs) return result / repeat return inner return decorator def _import(name): mod = __import__(name) components = name.split('.') for comp in components[1:]: try: mod = getattr(mod, comp) except AttributeError: raise ImportError("No module named %s" % mod) return mod def int2gray(i): return i ^ (i >> 1) def gray2int(g, size): res = 0 for i in reversed(list(range(size))): gi = (g >> i) % 2 if i == size - 1: bi = gi else: bi = bi ^ gi res += bi * 2 ** i return res def asBinary(i): if i > 1: if i % 2 == 1: return asBinary(i >> 1) + '1' else: return asBinary(i >> 1) + '0' else: return str(i) def one_to_n(val, maxval): a = zeros(maxval, float) a[val] = 1. return a def n_to_one(arr): return where(arr == 1)[0][0] def canonicClassString(x): if isinstance(x, object): return repr(x.__class__).split("'")[1] else: return repr(x.__class__) def decrementAny(tup): res = [] for i, x in enumerate(tup): if x > 0: res.append(tuple(list(tup[:i]) + [x - 1] + list(tup[i + 1:]))) return res def reachable(stepFunction, start, destinations, _alreadyseen=None): if len(start) == 0 or len(destinations) == 0: return {} if _alreadyseen is None: _alreadyseen = [] _alreadyseen.extend(start) res = {} for s in start: if s in destinations: res[s] = 0 start.remove(s) new = set() for s in start: new.update(stepFunction(s)) new.difference_update(_alreadyseen) ndestinations = list(destinations) for s in list(new): if s in destinations: res[s] = 1 new.remove(s) ndestinations.remove(s) _alreadyseen.append(s) deeper = reachable(stepFunction, new, ndestinations, _alreadyseen) for k, val in list(deeper.items()): res[k] = val + 1 return res def flood(stepFunction, fullSet, initSet, relevant=None): if fullSet is None: flooded = set(initSet) else: full = set(fullSet) flooded = full.intersection(set(initSet)) if relevant is None: relevant = full.copy() if relevant: relevant = set(relevant) change = flooded.copy() while len(change)>0: new = set() for m in change: if fullSet is None: new.update(stepFunction(m)) else: new.update(full.intersection(stepFunction(m))) change = new.difference(flooded) flooded.update(change) if relevant is not None and relevant.issubset(flooded): break return list(flooded) def crossproduct(ss, row=None, level=0): if row is None: row = [] if len(ss) > 1: return reduce(operator.add, [crossproduct(ss[1:], row + [i], level + 1) for i in ss[0]]) else: return [row + [i] for i in ss[0]] def permute(arr, permutation): return array([arr[i] for i in permutation]) def permuteToBlocks(arr, blockshape): if len(blockshape) < 2: raise ValueError("Need more than one dimension.") elif len(blockshape) == 2: blockheight, blockwidth = blockshape return permuteToBlocks2d(arr, blockheight, blockwidth) elif len(blockshape) == 3: blockdepth, blockheight, blockwidth = blockshape return permuteToBlocks3d(arr, blockdepth, blockheight, blockwidth) else: raise NotImplementedError("Only for dimensions 2 and 3.") def permuteToBlocks3d(arr, blockdepth, blockheight, blockwidth): depth, height, width = arr.shape arr_ = arr.reshape(height * depth, width) arr_ = permuteToBlocks2d(arr_, blockheight, blockwidth) arr_.shape = depth, height * width return permuteToBlocks2d(arr_, blockdepth, blockwidth * blockheight) def permuteToBlocks2d(arr, blockheight, blockwidth): _height, width = arr.shape arr = arr.flatten() new = zeros(size(arr)) for i in range(size(arr)): blockx = (i % width) / blockwidth blocky = i / width / blockheight blockoffset = blocky * width / blockwidth + blockx blockoffset *= blockwidth * blockheight inblockx = i % blockwidth inblocky = (i / width) % blockheight j = blockoffset + inblocky * blockwidth + inblockx new[j] = arr[i] return new def triu2flat(m): dim = m.shape[0] res = zeros(dim * (dim + 1) / 2) index = 0 for row in range(dim): res[index:index + dim - row] = m[row, row:] index += dim - row return res def flat2triu(a, dim): res = zeros((dim, dim)) index = 0 for row in range(dim): res[row, row:] = a[index:index + dim - row] index += dim - row return res def blockList2Matrix(l): dims = [m.shape[0] for m in l] s = sum(dims) res = zeros((s, s)) index = 0 for i in range(len(l)): d = dims[i] m = l[i] res[index:index + d, index:index + d] = m index += d return res def blockCombine(l): l = [list(map(mat, row)) for row in l] hdims = [m.shape[1] for m in l[0]] hs = sum(hdims) vdims = [row[0].shape[0] for row in l] vs = sum(vdims) res = zeros((hs, vs)) vindex = 0 for i, row in enumerate(l): hindex = 0 for j, m in enumerate(row): res[vindex:vindex + vdims[i], hindex:hindex + hdims[j]] = m hindex += hdims[j] vindex += vdims[i] return res def avgFoundAfter(decreasingTargetValues, listsOfActualValues, batchSize=1, useMedian=False): from scipy import sum numLists = len(listsOfActualValues) longest = max(list(map(len, listsOfActualValues))) res = [[0] for _ in range(numLists)] for tval in decreasingTargetValues: for li, l in enumerate(listsOfActualValues): lres = res[li] found = False for i in range(lres[-1], len(l)): if l[i] <= tval: lres.append(i) found = True break if not found: lres.append(longest) tmp = array(res) if useMedian: resx = median(tmp, axis=0)[1:] else: resx = sum(tmp, axis=0)[1:] / float(numLists) return resx * batchSize class DivergenceError(Exception): def matchingDict(d, selection, require_existence=False): for k, v in list(selection.items()): if k in d: if isinstance(v, list): if d[k] not in v: return False else: if d[k] != v: return False elif require_existence: return False return True
BSD 3-Clause New or Revised License
gradientinstitute/aboleth
aboleth/layers.py
EmbedVariational._build
python
def _build(self, X): n_samples, (input_dim,) = self._get_X_dims(X) W_shape, _ = self._weight_shapes(self.n_categories) n_batch = tf.shape(X)[1] self.pstd, self.qstd = initialise_stds(input_dim, self.output_dim, self.prior_std0, self.learn_prior, "embed") self.pW = _make_prior(self.pstd, W_shape) self.qW = _make_posterior(self.qstd, W_shape, self.full, "embed") Wsamples = _sample_W(self.qW, n_samples) features = tf.map_fn(lambda wx: tf.gather(*wx, axis=0), (Wsamples, X), dtype=Wsamples.dtype) f_dims = int(np.prod(features.shape[2:])) Net = tf.reshape(features, [n_samples, n_batch, f_dims]) KL = kl_sum(self.qW, self.pW) return Net, KL
Build the graph of this layer.
https://github.com/gradientinstitute/aboleth/blob/53a3de23dce4d607ffec92be936e83d2dd7ebb3c/aboleth/layers.py#L691-L717
import numpy as np import tensorflow as tf from aboleth.kernels import RBF, RBFVariational from aboleth.random import seedgen from aboleth.distributions import (norm_prior, norm_posterior, gaus_posterior, kl_sum) from aboleth.baselayers import Layer, MultiLayer from aboleth.util import summary_histogram from aboleth.initialisers import initialise_weights, initialise_stds class InputLayer(MultiLayer): def __init__(self, name, n_samples=1): self.name = name self.n_samples = n_samples def _build(self, **kwargs): X = kwargs[self.name] Xs = _tile2samples(self.n_samples, X) return Xs, 0.0 class SampleLayer(Layer): def __call__(self, X): rank = len(X.shape) assert rank > 2, "SampleLayers require rank > 2 input Tensors, with" " the first axis being the random samples of the net.""" Net, KL = self._build(X) return Net, KL @staticmethod def _get_X_dims(X): n_samples = tf.to_int32(tf.shape(X)[0]) input_shape = X.shape[2:].as_list() return n_samples, input_shape class SampleLayer3(SampleLayer): def __call__(self, X): rank = len(X.shape) assert rank == 3 Net, KL = super(SampleLayer3, self).__call__(X) return Net, KL class Activation(Layer): def __init__(self, h=lambda X: X): self.h = h def _build(self, X): Net = self.h(X) KL = 0. return Net, KL class DropOut(Layer): def __init__(self, keep_prob, independent=True, observation_axis=1, alpha=False): self.keep_prob = keep_prob self.obsax = observation_axis self.independent = independent self.dropout = tf.contrib.nn.alpha_dropout if alpha else tf.nn.dropout def _build(self, X): noise_shape = None if not self.independent: noise_shape = tf.concat([tf.shape(X)[:self.obsax], [1], tf.shape(X)[(self.obsax + 1):]], axis=0) Net = self.dropout(X, self.keep_prob, noise_shape, seed=next(seedgen)) KL = 0. return Net, KL class MaxPool2D(Layer): def __init__(self, pool_size, strides, padding='SAME'): self.ksize = [1] + list(pool_size) + [1] self.strides = [1] + list(strides) + [1] self.padding = padding def _build(self, X): Net = tf.map_fn(lambda inputs: tf.nn.max_pool(inputs, ksize=self.ksize, strides=self.strides, padding=self.padding), X) KL = 0. return Net, KL class Flatten(Layer): def _build(self, X): flat_dim = np.product(X.shape[2:]) new_shape = tf.concat([tf.shape(X)[0:2], [flat_dim]], 0) Net = tf.reshape(X, new_shape) KL = 0. return Net, KL class RandomFourier(SampleLayer3): def __init__(self, n_features, kernel): self.n_features = n_features self.kernel = kernel def _build(self, X): n_samples, (input_dim,) = self._get_X_dims(X) dtype = X.dtype.as_numpy_dtype P, KL = self.kernel.weights(input_dim, self.n_features, dtype) Ps = tf.tile(tf.expand_dims(P, 0), [n_samples, 1, 1]) XP = tf.matmul(X, Ps) Net = self._transformation(XP) return Net, KL def _transformation(self, XP): real = tf.cos(XP) imag = tf.sin(XP) Net = tf.concat([real, imag], axis=-1) / np.sqrt(self.n_features) return Net class RandomArcCosine(RandomFourier): def __init__(self, n_features, lenscale=None, p=1, variational=False, learn_lenscale=False): if variational: kern = RBFVariational(lenscale=lenscale, learn_lenscale=learn_lenscale) else: kern = RBF(lenscale=lenscale, learn_lenscale=learn_lenscale) super().__init__(n_features=n_features, kernel=kern) assert isinstance(p, int) and p >= 0 if p == 0: self.pfunc = tf.sign elif p == 1: self.pfunc = lambda x: x else: self.pfunc = lambda x: tf.pow(x, p) def _transformation(self, XP): Net = np.sqrt(2. / self.n_features) * tf.nn.relu(self.pfunc(XP)) return Net class Conv2DVariational(SampleLayer): def __init__(self, filters, kernel_size, strides=(1, 1), padding='SAME', prior_std='glorot', learn_prior=False, use_bias=True): self.filters = filters self.kernel_size = kernel_size self.strides = [1] + list(strides) + [1] self.padding = padding self.use_bias = use_bias self.prior_std0 = prior_std self.learn_prior = learn_prior def _build(self, X): n_samples, (height, width, channels) = self._get_X_dims(X) W_shp, b_shp = self._weight_shapes(channels) receptive_field = np.product(W_shp[:-2]) n_inputs = receptive_field * channels n_outputs = receptive_field * self.filters self.pstd, self.qstd = initialise_stds(n_inputs, n_outputs, self.prior_std0, self.learn_prior, "conv2d") self.pW = _make_prior(self.pstd, W_shp) self.qW = _make_posterior(self.qstd, W_shp, False, "conv") KL = kl_sum(self.qW, self.pW) Wsamples = _sample_W(self.qW, n_samples, False) Net = tf.map_fn( lambda args: tf.nn.conv2d(*args, padding=self.padding, strides=self.strides), elems=(X, Wsamples), dtype=tf.float32) if self.use_bias: self.pb = _make_prior(self.pstd, b_shp) self.qb = _make_posterior(self.qstd, b_shp, False, "conv_bias") KL += kl_sum(self.qb, self.pb) bsamples = tf.reshape(_sample_W(self.qb, n_samples, False), [n_samples, 1, 1, 1, self.filters]) Net += bsamples return Net, KL def _weight_shapes(self, channels): weight_shape = self.kernel_size + (channels, self.filters) bias_shape = (self.filters,) return weight_shape, bias_shape class DenseVariational(SampleLayer3): def __init__(self, output_dim, prior_std=1., learn_prior=False, full=False, use_bias=True): self.output_dim = output_dim self.full = full self.use_bias = use_bias self.prior_std0 = prior_std self.learn_prior = learn_prior def _build(self, X): n_samples, (input_dim,) = self._get_X_dims(X) W_shp, b_shp = self._weight_shapes(input_dim) self.pstd, self.qstd = initialise_stds(input_dim, self.output_dim, self.prior_std0, self.learn_prior, "dense") self.pW = _make_prior(self.pstd, W_shp) self.qW = _make_posterior(self.qstd, W_shp, self.full, "dense") KL = kl_sum(self.qW, self.pW) Wsamples = _sample_W(self.qW, n_samples) Net = tf.matmul(X, Wsamples) if self.use_bias: self.pb = _make_prior(self.pstd, b_shp) self.qb = _make_posterior(self.qstd, b_shp, False, "dense_bias") KL += kl_sum(self.qb, self.pb) bsamples = tf.expand_dims(_sample_W(self.qb, n_samples), 1) Net += bsamples return Net, KL def _weight_shapes(self, input_dim): weight_shape = (self.output_dim, input_dim) bias_shape = (self.output_dim,) return weight_shape, bias_shape class EmbedVariational(DenseVariational): def __init__(self, output_dim, n_categories, prior_std=1., learn_prior=False, full=False): assert n_categories >= 2, "Need 2 or more categories for embedding!" self.output_dim = output_dim self.n_categories = n_categories self.full = full self.prior_std0 = prior_std self.learn_prior = learn_prior
Apache License 2.0
geoopt/geoopt
geoopt/manifolds/siegel/bounded_domain.py
BoundedDomain.origin
python
def origin( self, *size: Union[int, Tuple[int]], dtype=None, device=None, seed: Optional[int] = 42 ) -> torch.Tensor: if dtype and dtype not in {torch.complex32, torch.complex64, torch.complex128}: raise ValueError( "dtype must be one of {torch.complex32, torch.complex64, torch.complex128}" ) if dtype is None: dtype = torch.complex128 return torch.zeros(*size, dtype=dtype, device=device)
Create points at the origin of the manifold in a deterministic way. For the Bounded domain model, the origin is the zero matrix. This is, a matrix whose real and imaginary parts are all zeros. Parameters ---------- size : Union[int, Tuple[int]] the desired shape device : torch.device the desired device dtype : torch.dtype the desired dtype seed : Optional[int] A parameter controlling deterministic randomness for manifolds that do not provide ``.origin``, but provide ``.random``. (default: 42) Returns ------- torch.Tensor
https://github.com/geoopt/geoopt/blob/c0163cde17aa215aa0f34e833364ac918ec5e974/geoopt/manifolds/siegel/bounded_domain.py#L183-L218
from typing import Optional, Tuple, Union import torch from geoopt import linalg as lalg from .siegel import SiegelManifold from .upper_half import UpperHalf from .vvd_metrics import SiegelMetricType from ..siegel import csym_math as sm __all__ = ["BoundedDomain"] class BoundedDomain(SiegelManifold): name = "Bounded Domain" def __init__( self, metric: SiegelMetricType = SiegelMetricType.RIEMANNIAN, rank: int = None ): super().__init__(metric=metric, rank=rank) def dist( self, z1: torch.Tensor, z2: torch.Tensor, *, keepdim=False ) -> torch.Tensor: uhsm_z1 = sm.cayley_transform(z1) uhsm_z2 = sm.cayley_transform(z2) return super().dist(uhsm_z1, uhsm_z2) def egrad2rgrad(self, z: torch.Tensor, u: torch.Tensor) -> torch.Tensor: a = get_id_minus_conjugate_z_times_z(z) return lalg.sym(a @ u @ a) def projx(self, z: torch.Tensor) -> torch.Tensor: z = super().projx(z) evalues, s = sm.takagi_eig(z) eps = sm.EPS[evalues.dtype] evalues_tilde = torch.clamp(evalues, max=1 - eps) diag_tilde = torch.diag_embed(evalues_tilde).type_as(z) z_tilde = s.conj() @ diag_tilde @ s.conj().transpose(-1, -2) batch_wise_mask = torch.all(evalues < 1 - eps, dim=-1, keepdim=True) already_in_space_mask = batch_wise_mask.unsqueeze(-1).expand_as(z) return torch.where(already_in_space_mask, z, z_tilde) def inner( self, z: torch.Tensor, u: torch.Tensor, v=None, *, keepdim=False ) -> torch.Tensor: if v is None: v = u identity = sm.identity_like(z) conj_z = z.conj() inv_id_minus_conjz_z = sm.inverse(identity - (conj_z @ z)) inv_id_minus_z_conjz = sm.inverse(identity - (z @ conj_z)) res = inv_id_minus_conjz_z @ u @ inv_id_minus_z_conjz @ v.conj() return lalg.trace(res, keepdim=keepdim) def _check_point_on_manifold(self, x: torch.Tensor, *, atol=1e-5, rtol=1e-5): if not self._check_matrices_are_symmetric(x, atol=atol, rtol=rtol): return False, "Matrices are not symmetric" id_minus_zz = get_id_minus_conjugate_z_times_z(x) ok = torch.all(sm.eigvalsh(id_minus_zz) > 0) reason = None if ok else "'Id - overline{Z}Z' is not definite positive" return ok, reason def random(self, *size, dtype=None, device=None, **kwargs) -> torch.Tensor: points = UpperHalf().random(*size, dtype=dtype, device=device, **kwargs) return sm.inverse_cayley_transform(points)
Apache License 2.0
olitheolix/aiokubernetes
aiokubernetes/models/v1beta2_scale.py
V1beta2Scale.status
python
def status(self, status): self._status = status
Sets the status of this V1beta2Scale. current status of the scale. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status. Read-only. # noqa: E501 :param status: The status of this V1beta2Scale. # noqa: E501 :type: V1beta2ScaleStatus
https://github.com/olitheolix/aiokubernetes/blob/266718b210dff2a9b2212183261ea89adf89115e/aiokubernetes/models/v1beta2_scale.py#L177-L186
import pprint import re from aiokubernetes.models.v1_object_meta import V1ObjectMeta from aiokubernetes.models.v1beta2_scale_spec import V1beta2ScaleSpec from aiokubernetes.models.v1beta2_scale_status import V1beta2ScaleStatus class V1beta2Scale(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'api_version': 'str', 'kind': 'str', 'metadata': 'V1ObjectMeta', 'spec': 'V1beta2ScaleSpec', 'status': 'V1beta2ScaleStatus' } attribute_map = { 'api_version': 'apiVersion', 'kind': 'kind', 'metadata': 'metadata', 'spec': 'spec', 'status': 'status' } def __init__(self, api_version=None, kind=None, metadata=None, spec=None, status=None): self._api_version = None self._kind = None self._metadata = None self._spec = None self._status = None self.discriminator = None if api_version is not None: self.api_version = api_version if kind is not None: self.kind = kind if metadata is not None: self.metadata = metadata if spec is not None: self.spec = spec if status is not None: self.status = status @property def api_version(self): return self._api_version @api_version.setter def api_version(self, api_version): self._api_version = api_version @property def kind(self): return self._kind @kind.setter def kind(self, kind): self._kind = kind @property def metadata(self): return self._metadata @metadata.setter def metadata(self, metadata): self._metadata = metadata @property def spec(self): return self._spec @spec.setter def spec(self, spec): self._spec = spec @property def status(self): return self._status @status.setter
Apache License 2.0
jest-community/jest-pytest
src/__tests__/integration/home-assistant/homeassistant/components/binary_sensor/hikvision.py
HikvisionData.cam_id
python
def cam_id(self): return self.camdata.get_id
Return device id.
https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/homeassistant/components/binary_sensor/hikvision.py#L156-L158
import logging from datetime import timedelta import voluptuous as vol from homeassistant.helpers.event import track_point_in_utc_time from homeassistant.util.dt import utcnow from homeassistant.components.binary_sensor import ( BinarySensorDevice, PLATFORM_SCHEMA) import homeassistant.helpers.config_validation as cv from homeassistant.const import ( CONF_HOST, CONF_PORT, CONF_NAME, CONF_USERNAME, CONF_PASSWORD, CONF_SSL, EVENT_HOMEASSISTANT_STOP, EVENT_HOMEASSISTANT_START, ATTR_LAST_TRIP_TIME, CONF_CUSTOMIZE) REQUIREMENTS = ['pyhik==0.1.8'] _LOGGER = logging.getLogger(__name__) CONF_IGNORED = 'ignored' CONF_DELAY = 'delay' DEFAULT_PORT = 80 DEFAULT_IGNORED = False DEFAULT_DELAY = 0 ATTR_DELAY = 'delay' DEVICE_CLASS_MAP = { 'Motion': 'motion', 'Line Crossing': 'motion', 'Field Detection': 'motion', 'Video Loss': None, 'Tamper Detection': 'motion', 'Shelter Alarm': None, 'Disk Full': None, 'Disk Error': None, 'Net Interface Broken': 'connectivity', 'IP Conflict': 'connectivity', 'Illegal Access': None, 'Video Mismatch': None, 'Bad Video': None, 'PIR Alarm': 'motion', 'Face Detection': 'motion', 'Scene Change Detection': 'motion', 'I/O': None, 'Unattended Baggage': 'motion', 'Attended Baggage': 'motion', 'Recording Failure': None, } CUSTOMIZE_SCHEMA = vol.Schema({ vol.Optional(CONF_IGNORED, default=DEFAULT_IGNORED): cv.boolean, vol.Optional(CONF_DELAY, default=DEFAULT_DELAY): cv.positive_int }) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Optional(CONF_NAME): cv.string, vol.Required(CONF_HOST): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, vol.Optional(CONF_SSL, default=False): cv.boolean, vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Optional(CONF_CUSTOMIZE, default={}): vol.Schema({cv.string: CUSTOMIZE_SCHEMA}), }) def setup_platform(hass, config, add_entities, discovery_info=None): name = config.get(CONF_NAME) host = config.get(CONF_HOST) port = config.get(CONF_PORT) username = config.get(CONF_USERNAME) password = config.get(CONF_PASSWORD) customize = config.get(CONF_CUSTOMIZE) if config.get(CONF_SSL): protocol = 'https' else: protocol = 'http' url = '{}://{}'.format(protocol, host) data = HikvisionData(hass, url, port, name, username, password) if data.sensors is None: _LOGGER.error("Hikvision event stream has no data, unable to setup") return False entities = [] for sensor, channel_list in data.sensors.items(): for channel in channel_list: if data.type == 'NVR': sensor_name = '{}_{}'.format( sensor.replace(' ', '_'), channel[1]) else: sensor_name = sensor.replace(' ', '_') custom = customize.get(sensor_name.lower(), {}) ignore = custom.get(CONF_IGNORED) delay = custom.get(CONF_DELAY) _LOGGER.debug("Entity: %s - %s, Options - Ignore: %s, Delay: %s", data.name, sensor_name, ignore, delay) if not ignore: entities.append(HikvisionBinarySensor( hass, sensor, channel[1], data, delay)) add_entities(entities) class HikvisionData(object): def __init__(self, hass, url, port, name, username, password): from pyhik.hikvision import HikCamera self._url = url self._port = port self._name = name self._username = username self._password = password self.camdata = HikCamera( self._url, self._port, self._username, self._password) if self._name is None: self._name = self.camdata.get_name hass.bus.listen_once(EVENT_HOMEASSISTANT_STOP, self.stop_hik) hass.bus.listen_once(EVENT_HOMEASSISTANT_START, self.start_hik) def stop_hik(self, event): self.camdata.disconnect() def start_hik(self, event): self.camdata.start_stream() @property def sensors(self): return self.camdata.current_event_states @property
MIT License
hetida/hetida-designer
runtime/hetdesrun/component/load.py
import_func_from_code
python
def import_func_from_code( code: str, uuid: UUID, func_name: str, register_module: bool = True ) -> Union[Callable, Coroutine]: module_path = module_path_from_uuid_and_code(uuid, code) mod = ModuleType(module_path) if register_module: sys.modules[ module_path ] = mod try: exec(code, mod.__dict__) except SyntaxError as e: logger.info( "Syntax Error during importing function %s with code module id %s", func_name, str(uuid), ) raise ComponentCodeImportError( "Could not import code due to Syntax Errors" ) from e except Exception as e: logger.info( "Exception during importing function %s with code module id %s: %s", func_name, str(uuid), str(e), ) raise ComponentCodeImportError("Could not import code due to Exception") from e func: Union[Coroutine, Callable] = getattr(mod, func_name) return func
Imports function from provided code Allows to register code as a new module at a module path whic is generated from uuid and code.
https://github.com/hetida/hetida-designer/blob/4a306ea855fb6f009f5180cf8befe09365c71fd8/runtime/hetdesrun/component/load.py#L44-L84
from types import ModuleType from typing import Callable, Coroutine, Union, Tuple, Optional from uuid import UUID import sys import logging import importlib class ComponentCodeImportError(Exception): logger = logging.getLogger(__name__) base_module_path = "hetdesrun_loaded_components" sys.modules[base_module_path] = ModuleType(base_module_path, "base module") def module_path_from_uuid_and_code(uuid: UUID, code: str) -> str: return ( base_module_path + ".by_uuid_" + str(uuid).replace("-", "_") + "_hash_" + hash_code(code) ) def hash_code(code: str) -> str: return hex(hash(code)).replace("-", "_m_")
MIT License
jjongbloets/julestk
julesTk/utils/modals.py
Dialog.footer
python
def footer(self, parent): return True
Build the buttons of the dialog, parent refers to parent frame
https://github.com/jjongbloets/julestk/blob/3b9da87633edcfc4a9dd9a91e3382ef105fbfdf4/julesTk/utils/modals.py#L97-L99
from julesTk import view, controller from julesTk.view.window import Window __author__ = "Joeri Jongbloets <joeri@jongbloets.net>" class ModalWindow(Window): STATE_BLOCKED = 4 def __init__(self, parent, ctrl): super(ModalWindow, self).__init__(parent, ctrl) self.application.register_hook("APP_CLOSE", self.hide) def _prepare(self): raise NotImplementedError def _show(self): super(ModalWindow, self)._show() self.transient(self.parent) self.grab_set() self._block() def block(self): self._view_state = self.STATE_BLOCKED return self._block() def _block(self): self.update() self.root.wait_window(self) def _hide(self): return False def _close(self): self.application.remove_hook("APP_CLOSE", self.hide) super(ModalWindow, self)._close() def is_blocked(self): return self._view_state == self.STATE_BLOCKED class Dialog(ModalWindow): def __init__(self, parent, ctrl): super(Dialog, self).__init__(parent, ctrl) self._response = None @property def response(self): return self._response def _prepare(self): self.grid() self.configure_column(self, 0) self.configure_row(self, [0, 1, 2]) fmh = self.add_widget( "header", view.ttk.Frame(self) ) self.header(fmh) self.configure_grid(fmh, row=0, column=0) fmb = self.add_widget( "body", view.ttk.Frame(self) ) self.body(fmb) self.configure_grid(fmb, row=1, column=0) fmf = self.add_widget( "footer", view.ttk.Frame(self) ) self.footer(fmf) self.configure_grid(fmf, row=2, column=0) def header(self, parent): return True def body(self, parent): return True
MIT License
trevor/calendarserver
txdav/base/datastore/file.py
FileMetaDataMixin.md5
python
def md5(self): try: return str(self.properties()[PropertyName.fromElement(TwistedGETContentMD5)]) except KeyError: try: data = self._path.open().read() except IOError: return None md5 = hashlib.md5(data).hexdigest() return md5
The MD5 hex digest of this object's content. @rtype: C{str}
https://github.com/trevor/calendarserver/blob/c9970b06a70445ca75b62e3d170c26bc897a035e/txdav/base/datastore/file.py#L239-L256
from __future__ import print_function from zope.interface.declarations import implements from twisted.python import hashlib from twext.python.log import Logger from twext.enterprise.ienterprise import AlreadyFinishedError from txweb2.dav.resource import TwistedGETContentMD5 from txdav.idav import IDataStoreObject from txdav.base.propertystore.base import PropertyName from txdav.xml.element import GETContentType def isValidName(name): return not name.startswith(".") def hidden(path): return path.sibling('.' + path.basename()) def writeOperation(thunk): def inner(self, *a, **kw): if self._transaction._termination is not None: raise RuntimeError( "%s.%s is a write operation, but transaction already %s" % (self, thunk.__name__, self._transaction._termination)) return thunk(self, *a, **kw) return inner class DataStore(object): log = Logger() _transactionClass = None def __init__(self, path): self._path = path def __repr__(self): return "<%s: %s>" % (self.__class__.__name__, self._path.path) def newTransaction(self, name='no name'): return self._transactionClass(self) class _CommitTracker(object): def __init__(self, name): self.name = name self.done = False self.info = [] def __del__(self): if not self.done and self.info: print("**** UNCOMMITTED TRANSACTION (%s) BEING GARBAGE COLLECTED ****") % ( self.name, ) for info in self.info: print(" "), info print("---- END OF OPERATIONS") class DataStoreTransaction(object): log = Logger() def __init__(self, dataStore, name): self._dataStore = dataStore self._termination = None self._operations = [] self._postCommitOperations = [] self._postAbortOperations = [] self._tracker = _CommitTracker(name) def store(self): return self._dataStore def addOperation(self, operation, name): self._operations.append(operation) self._tracker.info.append(name) def _terminate(self, mode): if self._termination is not None: raise AlreadyFinishedError("already %s" % (self._termination,)) self._termination = mode self._tracker.done = True def abort(self): self._terminate("aborted") for operation in self._postAbortOperations: operation() def commit(self): self._terminate("committed") self.committed = True undos = [] for operation in self._operations: try: undo = operation() if undo is not None: undos.append(undo) except: self.log.debug("Undoing DataStoreTransaction") for undo in undos: try: undo() except: self.log.error("Cannot undo DataStoreTransaction") raise for operation in self._postCommitOperations: operation() def postCommit(self, operation): self._postCommitOperations.append(operation) def postAbort(self, operation): self._postAbortOperations.append(operation) class FileMetaDataMixin(object): implements(IDataStoreObject) def name(self): return self._path.basename() def contentType(self): try: return self.properties()[PropertyName.fromElement(GETContentType)].mimeType() except KeyError: return None
Apache License 2.0
numba/numba
numba/np/npyimpl.py
_Kernel.cast
python
def cast(self, val, fromty, toty): if (isinstance(fromty, types.Complex) and not isinstance(toty, types.Complex)): newty = fromty.underlying_float attr = self.context.get_getattr(fromty, 'real') val = attr(self.context, self.builder, fromty, val, 'real') fromty = newty return self.context.cast(self.builder, val, fromty, toty)
Numpy uses cast semantics that are different from standard Python (for example, it does allow casting from complex to float). This method acts as a patch to context.cast so that it allows complex to real/int casts.
https://github.com/numba/numba/blob/8d4559a83b7b12da9121c030b8e3780874204a34/numba/np/npyimpl.py#L407-L425
import math import sys import itertools from collections import namedtuple from llvmlite.llvmpy import core as lc import numpy as np import operator from numba.np import arrayobj, ufunc_db, numpy_support from numba.core.imputils import Registry, impl_ret_new_ref, force_error_model from numba.core import typing, types, utils, cgutils, callconv from numba.np.numpy_support import ( ufunc_find_matching_loop, select_array_wrapper, from_dtype, _ufunc_loop_sig ) from numba.core.typing import npydecl from numba.core.extending import overload, intrinsic from numba.core import errors from numba.cpython import builtins registry = Registry('npyimpl') lower = registry.lower class _ScalarIndexingHelper(object): def update_indices(self, loop_indices, name): pass def as_values(self): pass class _ScalarHelper(object): def __init__(self, ctxt, bld, val, ty): self.context = ctxt self.builder = bld self.val = val self.base_type = ty intpty = ctxt.get_value_type(types.intp) self.shape = [lc.Constant.int(intpty, 1)] lty = ctxt.get_data_type(ty) if ty != types.boolean else lc.Type.int(1) self._ptr = cgutils.alloca_once(bld, lty) def create_iter_indices(self): return _ScalarIndexingHelper() def load_data(self, indices): return self.val def store_data(self, indices, val): self.builder.store(val, self._ptr) @property def return_val(self): return self.builder.load(self._ptr) class _ArrayIndexingHelper(namedtuple('_ArrayIndexingHelper', ('array', 'indices'))): def update_indices(self, loop_indices, name): bld = self.array.builder intpty = self.array.context.get_value_type(types.intp) ONE = lc.Constant.int(lc.Type.int(intpty.width), 1) indices = loop_indices[len(loop_indices) - len(self.indices):] for src, dst, dim in zip(indices, self.indices, self.array.shape): cond = bld.icmp(lc.ICMP_UGT, dim, ONE) with bld.if_then(cond): bld.store(src, dst) def as_values(self): bld = self.array.builder return [bld.load(index) for index in self.indices] class _ArrayHelper(namedtuple('_ArrayHelper', ('context', 'builder', 'shape', 'strides', 'data', 'layout', 'base_type', 'ndim', 'return_val'))): def create_iter_indices(self): intpty = self.context.get_value_type(types.intp) ZERO = lc.Constant.int(lc.Type.int(intpty.width), 0) indices = [] for i in range(self.ndim): x = cgutils.alloca_once(self.builder, lc.Type.int(intpty.width)) self.builder.store(ZERO, x) indices.append(x) return _ArrayIndexingHelper(self, indices) def _load_effective_address(self, indices): return cgutils.get_item_pointer2(self.context, self.builder, data=self.data, shape=self.shape, strides=self.strides, layout=self.layout, inds=indices) def load_data(self, indices): model = self.context.data_model_manager[self.base_type] ptr = self._load_effective_address(indices) return model.load_from_data_pointer(self.builder, ptr) def store_data(self, indices, value): ctx = self.context bld = self.builder store_value = ctx.get_value_as_data(bld, self.base_type, value) assert ctx.get_data_type(self.base_type) == store_value.type bld.store(store_value, self._load_effective_address(indices)) def _prepare_argument(ctxt, bld, inp, tyinp, where='input operand'): if isinstance(tyinp, types.Optional): oty = tyinp tyinp = tyinp.type inp = ctxt.cast(bld, inp, oty, tyinp) if isinstance(tyinp, types.ArrayCompatible): ary = ctxt.make_array(tyinp)(ctxt, bld, inp) shape = cgutils.unpack_tuple(bld, ary.shape, tyinp.ndim) strides = cgutils.unpack_tuple(bld, ary.strides, tyinp.ndim) return _ArrayHelper(ctxt, bld, shape, strides, ary.data, tyinp.layout, tyinp.dtype, tyinp.ndim, inp) elif (types.unliteral(tyinp) in types.number_domain | {types.boolean} or isinstance(tyinp, types.scalars._NPDatetimeBase)): return _ScalarHelper(ctxt, bld, inp, tyinp) else: raise NotImplementedError('unsupported type for {0}: {1}'.format(where, str(tyinp))) _broadcast_onto_sig = types.intp(types.intp, types.CPointer(types.intp), types.intp, types.CPointer(types.intp)) def _broadcast_onto(src_ndim, src_shape, dest_ndim, dest_shape): if src_ndim > dest_ndim: return 0 else: src_index = 0 dest_index = dest_ndim - src_ndim while src_index < src_ndim: src_dim_size = src_shape[src_index] dest_dim_size = dest_shape[dest_index] if dest_dim_size != 1: if src_dim_size != dest_dim_size and src_dim_size != 1: return -(dest_index + 1) elif src_dim_size != 1: dest_shape[dest_index] = src_dim_size src_index += 1 dest_index += 1 return dest_index def _build_array(context, builder, array_ty, input_types, inputs): input_types = [x.type if isinstance(x, types.Optional) else x for x in input_types] intp_ty = context.get_value_type(types.intp) def make_intp_const(val): return context.get_constant(types.intp, val) ZERO = make_intp_const(0) ONE = make_intp_const(1) src_shape = cgutils.alloca_once(builder, intp_ty, array_ty.ndim, "src_shape") dest_ndim = make_intp_const(array_ty.ndim) dest_shape = cgutils.alloca_once(builder, intp_ty, array_ty.ndim, "dest_shape") dest_shape_addrs = tuple(cgutils.gep_inbounds(builder, dest_shape, index) for index in range(array_ty.ndim)) for dest_shape_addr in dest_shape_addrs: builder.store(ONE, dest_shape_addr) for arg_number, arg in enumerate(inputs): if not hasattr(arg, "ndim"): continue arg_ndim = make_intp_const(arg.ndim) for index in range(arg.ndim): builder.store(arg.shape[index], cgutils.gep_inbounds(builder, src_shape, index)) arg_result = context.compile_internal( builder, _broadcast_onto, _broadcast_onto_sig, [arg_ndim, src_shape, dest_ndim, dest_shape]) with cgutils.if_unlikely(builder, builder.icmp(lc.ICMP_SLT, arg_result, ONE)): msg = "unable to broadcast argument %d to output array" % ( arg_number,) loc = errors.loc_info.get('loc', None) if loc is not None: msg += '\nFile "%s", line %d, ' % (loc.filename, loc.line) context.call_conv.return_user_exc(builder, ValueError, (msg,)) real_array_ty = array_ty.as_array dest_shape_tup = tuple(builder.load(dest_shape_addr) for dest_shape_addr in dest_shape_addrs) array_val = arrayobj._empty_nd_impl(context, builder, real_array_ty, dest_shape_tup) array_wrapper_index = select_array_wrapper(input_types) array_wrapper_ty = input_types[array_wrapper_index] try: array_wrap = context.get_function('__array_wrap__', array_ty(array_wrapper_ty, real_array_ty)) except NotImplementedError: if array_wrapper_ty.array_priority != types.Array.array_priority: raise out_val = array_val._getvalue() else: wrap_args = (inputs[array_wrapper_index].return_val, array_val._getvalue()) out_val = array_wrap(builder, wrap_args) ndim = array_ty.ndim shape = cgutils.unpack_tuple(builder, array_val.shape, ndim) strides = cgutils.unpack_tuple(builder, array_val.strides, ndim) return _ArrayHelper(context, builder, shape, strides, array_val.data, array_ty.layout, array_ty.dtype, ndim, out_val) def _unpack_output_types(ufunc, sig): if ufunc.nout == 1: return [sig.return_type] else: return list(sig.return_type) def _unpack_output_values(ufunc, builder, values): if ufunc.nout == 1: return [values] else: return cgutils.unpack_tuple(builder, values) def _pack_output_values(ufunc, context, builder, typ, values): if ufunc.nout == 1: return values[0] else: return context.make_tuple(builder, typ, values) def numpy_ufunc_kernel(context, builder, sig, args, ufunc, kernel_class): arguments = [_prepare_argument(context, builder, arg, tyarg) for arg, tyarg in zip(args, sig.args)] if len(arguments) < ufunc.nin: raise RuntimeError( "Not enough inputs to {}, expected {} got {}" .format(ufunc.__name__, ufunc.nin, len(arguments))) for out_i, ret_ty in enumerate(_unpack_output_types(ufunc, sig)): if ufunc.nin + out_i >= len(arguments): if isinstance(ret_ty, types.ArrayCompatible): output = _build_array(context, builder, ret_ty, sig.args, arguments) else: output = _prepare_argument( context, builder, lc.Constant.null(context.get_value_type(ret_ty)), ret_ty) arguments.append(output) elif context.enable_nrt: context.nrt.incref(builder, ret_ty, args[ufunc.nin + out_i]) inputs = arguments[:ufunc.nin] outputs = arguments[ufunc.nin:] assert len(outputs) == ufunc.nout outer_sig = _ufunc_loop_sig( [a.base_type for a in outputs], [a.base_type for a in inputs] ) kernel = kernel_class(context, builder, outer_sig) intpty = context.get_value_type(types.intp) indices = [inp.create_iter_indices() for inp in inputs] loopshape = outputs[0].shape with cgutils.loop_nest(builder, loopshape, intp=intpty) as loop_indices: vals_in = [] for i, (index, arg) in enumerate(zip(indices, inputs)): index.update_indices(loop_indices, i) vals_in.append(arg.load_data(index.as_values())) vals_out = _unpack_output_values(ufunc, builder, kernel.generate(*vals_in)) for val_out, output in zip(vals_out, outputs): output.store_data(loop_indices, val_out) out = _pack_output_values(ufunc, context, builder, sig.return_type, [o.return_val for o in outputs]) return impl_ret_new_ref(context, builder, sig.return_type, out) class _Kernel(object): def __init__(self, context, builder, outer_sig): self.context = context self.builder = builder self.outer_sig = outer_sig
BSD 2-Clause Simplified License
fos/fos
applications/bundle_picker.py
TrackLabeler.unset_state
python
def unset_state(self): glDisable(GL_DEPTH_TEST) glDisable(GL_BLEND) glDisable(GL_LINE_SMOOTH)
Close communication with hardware. Disable what was enabled during set_state().
https://github.com/fos/fos/blob/8d33bf0cd60292ad5164973b5285122acbc03b86/applications/bundle_picker.py#L447-L455
import numpy as np import nibabel as nib from fos import Actor from fos import Window, Scene from fos.actor import Axes, Text3D from fos.modelmat import screen_to_model import fos.interact.collision as cll from pyglet.gl import * from pyglet.lib import load_library from dipy.segment.quickbundles import QuickBundles from dipy.io.dpy import Dpy from dipy.io.pickles import load_pickle from dipy.viz.colormap import orient2rgb from dipy.tracking.metrics import downsample import copy import cPickle as pickle glib=load_library('GL') from dipy.tracking.vox2track import track_counts import Tkinter, tkFileDialog from PySide.QtCore import Qt question_message=""" >>>>Track Labeler P : select/unselect the representative track. E : expand/collapse the selected tracks F : keep selected tracks rerun QuickBundles and hide everything else. A : select all representative tracks which are currently visible. I : invert selected tracks to unselected H : hide/show all representative tracks. >>>Mouse Left Button: keep pressed with dragging - rotation Scrolling : zoom Shift + Scrolling : fast zoom Right Button : panning - translation Shift + Right Button : fast panning - translation >>>General F1 : Fullscreen. F2 : Next time frame. F3 : Previous time frame. F4 : Automatic rotation. F12 : Reset camera. ESC: Exit. ? : Print this help information. """ def track2rgb(track): return orient2rgb(track[0] - track[-1]) class TrackLabeler(Actor): def __init__(self, name,qb, tracks, reps='exemplars',colors=None, vol_shape=None, virtuals_line_width=5.0, tracks_line_width=2.0, virtuals_alpha=1.0, tracks_alpha=0.6, affine=None, verbose=False): super(TrackLabeler, self).__init__(name) if affine is None: self.affine = np.eye(4, dtype = np.float32) else: self.affine = affine self.mouse_x=None self.mouse_y=None self.cache = {} self.qb = qb self.reps = reps if self.reps=='virtuals': self.virtuals=qb.virtuals() if self.reps=='exemplars': self.virtuals,self.ex_ids = qb.exemplars() self.virtuals_alpha = virtuals_alpha self.virtuals_buffer, self.virtuals_colors, self.virtuals_first, self.virtuals_count = self.compute_buffers(self.virtuals, self.virtuals_alpha) self.tracks = tracks self.tracks_alpha = tracks_alpha self.tracks_ids = np.arange(len(self.tracks), dtype=np.int) self.tracks_buffer, self.tracks_colors, self.tracks_first, self.tracks_count = self.compute_buffers(self.tracks, self.tracks_alpha) self.min = np.min(self.tracks_buffer,axis=0) self.max = np.max(self.tracks_buffer,axis=0) self.vertices=self.tracks_buffer print('MBytes %f' % (self.tracks_buffer.nbytes/2.**20,)) self.position = (0,0,0) self.selected = [] self.virtuals_line_width = virtuals_line_width self.tracks_line_width = tracks_line_width self.old_color = {} self.hide_virtuals = False self.expand = False self.verbose = verbose self.tracks_visualized_first = np.array([], dtype='i4') self.tracks_visualized_count = np.array([], dtype='i4') self.history = [[self.qb, self.tracks, self.tracks_ids, self.virtuals_buffer, self.virtuals_colors, self.virtuals_first, self.virtuals_count, self.tracks_buffer, self.tracks_colors, self.tracks_first, self.tracks_count]] self.vol_shape = vol_shape if self.vol_shape !=None: self.virtuals_shifted =[downsample(t+np.array(self.vol_shape)/2.,30) for t in self.virtuals] else: self.virtuals_shifted=None def compute_buffers(self, tracks, alpha): tracks_buffer = np.ascontiguousarray(np.concatenate(tracks).astype('f4')) tracks_colors = np.ascontiguousarray(self.compute_colors(tracks, alpha)) tracks_count = np.ascontiguousarray(np.array([len(v) for v in tracks],dtype='i4')) tracks_first = np.ascontiguousarray(np.r_[0,np.cumsum(tracks_count)[:-1]].astype('i4')) if isinstance(tracks_count,tuple): print '== count' if isinstance(tracks_first,tuple): print '== first' return tracks_buffer, tracks_colors, tracks_first, tracks_count def compute_colors(self, tracks, alpha): assert(type(tracks)==type([])) tot_vertices = np.sum([len(curve) for curve in tracks]) color = np.empty((tot_vertices,4), dtype='f4') counter = 0 for curve in tracks: color[counter:counter+len(curve),:3] = track2rgb(curve).astype('f4') counter += len(curve) color[:,3] = alpha return color def draw(self): glEnable(GL_DEPTH_TEST) glEnable(GL_BLEND) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) glEnable(GL_LINE_SMOOTH) glHint(GL_LINE_SMOOTH_HINT, GL_NICEST) glEnableClientState(GL_VERTEX_ARRAY) glEnableClientState(GL_COLOR_ARRAY) if not self.hide_virtuals: glVertexPointer(3,GL_FLOAT,0,self.virtuals_buffer.ctypes.data) glColorPointer(4,GL_FLOAT,0,self.virtuals_colors.ctypes.data) glLineWidth(self.virtuals_line_width) glPushMatrix() if isinstance(self.virtuals_first, tuple): print '>> first Tuple' if isinstance(self.virtuals_count, tuple): print '>> count Tuple' glib.glMultiDrawArrays(GL_LINE_STRIP, self.virtuals_first.ctypes.data, self.virtuals_count.ctypes.data, len(self.virtuals)) glPopMatrix() if self.expand and self.tracks_visualized_first.size > 0: glVertexPointer(3,GL_FLOAT,0,self.tracks_buffer.ctypes.data) glColorPointer(4,GL_FLOAT,0,self.tracks_colors.ctypes.data) glLineWidth(self.tracks_line_width) glPushMatrix() glib.glMultiDrawArrays(GL_LINE_STRIP, self.tracks_visualized_first.ctypes.data, self.tracks_visualized_count.ctypes.data, len(self.tracks_visualized_count)) glPopMatrix() glDisableClientState(GL_COLOR_ARRAY) glDisableClientState(GL_VERTEX_ARRAY) glLineWidth(1.) glDisable(GL_DEPTH_TEST) glDisable(GL_BLEND) glDisable(GL_LINE_SMOOTH) def process_mouse_position(self,x,y): self.mouse_x=x self.mouse_y=y def process_pickray(self,near,far): pass def update(self,dt): pass def select_track(self, ids): color_selected = np.array([1.0, 1.0, 1.0, 1.0], dtype='f4') if ids == 'all': ids = range(len(self.virtuals)) elif np.isscalar(ids): ids = [ids] for id in ids: if not id in self.old_color: self.old_color[id] = self.virtuals_colors[self.virtuals_first[id]:self.virtuals_first[id]+self.virtuals_count[id],:].copy() new_color = np.ones(self.old_color[id].shape, dtype='f4') * color_selected if self.verbose: print("Storing old color: %s" % self.old_color[id][0]) self.virtuals_colors[self.virtuals_first[id]:self.virtuals_first[id]+self.virtuals_count[id],:] = new_color self.selected.append(id) def unselect_track(self, ids): if ids == 'all': ids = range(len(self.virtuals)) elif np.isscalar(ids): ids = [ids] for id in ids: if id in self.old_color: self.virtuals_colors[self.virtuals_first[id]:self.virtuals_first[id]+self.virtuals_count[id],:] = self.old_color[id] if self.verbose: print("Setting old color: %s" % self.old_color[id][0]) self.old_color.pop(id) if id in self.selected: self.selected.remove(id) else: print('WARNING: unselecting id %s but not in %s' % (id, self.selected)) def invert_tracks(self): tmp_selected=list(set(range(len(self.virtuals))).difference(set(self.selected))) self.unselect_track('all') self.selected=[] self.select_track(tmp_selected) def process_messages(self,messages): msg=messages['key_pressed'] if msg!=None: self.process_keys(msg,None) msg=messages['mouse_position'] if msg!=None: self.process_mouse_position(*msg) def process_keys(self,symbol,modifiers): prev_selected = copy.copy(self.selected) if symbol == Qt.Key_P: print 'P' id = self.picking_virtuals(symbol, modifiers) print('Track id %d' % id) if prev_selected.count(id) == 0: self.select_track(id) else: self.unselect_track(id) if self.verbose: print 'Selected:' print self.selected if symbol==Qt.Key_E: print 'E' if self.verbose: print("Expand/collapse selected clusters.") if not self.expand and len(self.selected)>0: tracks_selected = [] for tid in self.selected: tracks_selected += self.qb.label2tracksids(tid) self.tracks_visualized_first = np.ascontiguousarray(self.tracks_first[tracks_selected, :]) self.tracks_visualized_count = np.ascontiguousarray(self.tracks_count[tracks_selected, :]) self.expand = True else: self.expand = False elif symbol == Qt.Key_F and len(self.selected) > 0: print 'F' self.freeze() elif symbol == Qt.Key_A: print 'A' print('Select/unselect all virtuals') if len(self.selected) < len(self.virtuals): self.select_track('all') else: self.unselect_track('all') elif symbol == Qt.Key_I: print 'I' print('Invert selection') print self.selected self.invert_tracks() elif symbol == Qt.Key_H: print 'H' print('Hide/show virtuals.') self.hide_virtuals = not self.hide_virtuals elif symbol == Qt.Key_S: print 'S' print('Save selected tracks_ids as pickle file.') self.tracks_ids_to_be_saved = self.tracks_ids if len(self.selected)>0: self.tracks_ids_to_be_saved = self.tracks_ids[np.concatenate([self.qb.label2tracksids(tid) for tid in self.selected])] print("Saving %s tracks." % len(self.tracks_ids_to_be_saved)) root = Tkinter.Tk() root.withdraw() pickle.dump(self.tracks_ids_to_be_saved, tkFileDialog.asksaveasfile(), protocol=pickle.HIGHEST_PROTOCOL) elif symbol == Qt.Key_Question: print question_message elif symbol == Qt.Key_B: print 'B' print('Go back in the freezing history.') if len(self.history) > 1: self.history.pop() self.qb, self.tracks, self.tracks_ids, self.virtuals_buffer, self.virtuals_colors, self.virtuals_first, self.virtuals_count, self.tracks_buffer, self.tracks_colors, self.tracks_first, self.tracks_count = self.history[-1] if self.reps=='virtuals': self.virtuals=qb.virtuals() if self.reps=='exemplars': self.virtuals, self.ex_ids = self.qb.exemplars() print len(self.virtuals), 'virtuals' self.selected = [] self.old_color = {} self.expand = False self.hide_virtuals = False elif symbol == Qt.Key_G: print 'G' print('Get tracks from mask.') ids = self.maskout_tracks() self.select_track(ids) def freeze(self): print("Freezing current expanded real tracks, then doing QB on them, then restarting.") print("Selected virtuals: %s" % self.selected) tracks_frozen = [] tracks_frozen_ids = [] for tid in self.selected: print tid part_tracks = self.qb.label2tracks(self.tracks, tid) part_tracks_ids = self.qb.label2tracksids(tid) print("virtual %s represents %s tracks." % (tid, len(part_tracks))) tracks_frozen += part_tracks tracks_frozen_ids += part_tracks_ids print "frozen tracks size:", len(tracks_frozen) print "Computing quick bundles...", self.unselect_track('all') self.tracks = tracks_frozen self.tracks_ids = self.tracks_ids[tracks_frozen_ids] root = Tkinter.Tk() root.wm_title('QuickBundles threshold') ts = ThresholdSelector(root, default_value=self.qb.dist_thr/2.0) root.wait_window() self.qb = QuickBundles(self.tracks, dist_thr=ts.value, pts=self.qb.pts) self.qb.dist_thr = ts.value if self.reps=='virtuals': self.virtuals=qb.virtuals() if self.reps=='exemplars': self.virtuals,self.ex_ids = self.qb.exemplars() print len(self.virtuals), 'virtuals' self.virtuals_buffer, self.virtuals_colors, self.virtuals_first, self.virtuals_count = self.compute_buffers(self.virtuals, self.virtuals_alpha) self.tracks_buffer, self.tracks_colors, self.tracks_first, self.tracks_count = self.compute_buffers(self.tracks, self.tracks_alpha) self.selected = [] self.old_color = {} self.expand = False self.history.append([self.qb, self.tracks, self.tracks_ids, self.virtuals_buffer, self.virtuals_colors, self.virtuals_first, self.virtuals_count, self.tracks_buffer, self.tracks_colors, self.tracks_first, self.tracks_count]) if self.vol_shape is not None: print("Shifting!") self.virtuals_shifted = [downsample(t + np.array(self.vol_shape) / 2., 30) for t in self.virtuals] else: self.virtuals_shifted = None def picking_virtuals(self, symbol,modifiers, min_dist=1e-3): x, y = self.mouse_x, self.mouse_y near = screen_to_model(x, y, 0) far = screen_to_model(x, y, 1) tmp = np.array([cll.mindistance_segment2track_info(near, far, xyz) for xyz in self.virtuals]) line_distance, screen_distance = tmp[:,0], tmp[:,1] if False: closest_to_line_idx = np.argsort(line_distance) closest_to_line_thresholded_bool = line_distance[closest_to_line_idx] < min_dist if (closest_to_line_thresholded_bool).any(): return closest_to_line_idx[np.argmin(screen_distance[closest_to_line_thresholded_bool])] else: return closest_to_line_idx[0] else: return np.argmin(line_distance + screen_distance) def set_state(self): glEnable(GL_DEPTH_TEST) glEnable(GL_BLEND) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) glEnable(GL_LINE_SMOOTH) glHint(GL_LINE_SMOOTH_HINT, GL_NICEST)
BSD 3-Clause New or Revised License
udacity/carnd-semantic-segmentation
project_tests.py
_assert_tensor_shape
python
def _assert_tensor_shape(tensor, shape, display_name): assert tf.assert_rank(tensor, len(shape), message='{} has wrong rank'.format(display_name)) tensor_shape = tensor.get_shape().as_list() if len(shape) else [] wrong_dimension = [ten_dim for ten_dim, cor_dim in zip(tensor_shape, shape) if cor_dim is not None and ten_dim != cor_dim] assert not wrong_dimension, '{} has wrong shape. Found {}'.format(display_name, tensor_shape)
Check whether the tensor and another shape match in shape :param tensor: TF Tensor :param shape: Some array :param display_name: Name of tensor to print if assertions fail
https://github.com/udacity/carnd-semantic-segmentation/blob/78240ad8cfe45b9e4a4336ee1ad923614ba1f17f/project_tests.py#L41-L55
import sys import os from copy import deepcopy from glob import glob from unittest import mock import numpy as np import tensorflow as tf def test_safe(func): def func_wrapper(*args): with tf.Graph().as_default(): result = func(*args) print('Tests Passed') return result return func_wrapper def _prevent_print(function, params): sys.stdout = open(os.devnull, "w") function(**params) sys.stdout = sys.__stdout__
MIT License
swissdatasciencecenter/renku-python
renku/core/management/config.py
_get_global_config_dir
python
def _get_global_config_dir(): return click.get_app_dir(APP_NAME, force_posix=True)
Return user's config directory.
https://github.com/swissdatasciencecenter/renku-python/blob/5e43e2eff67cdf20fc2805799fe2822e23bc503d/renku/core/management/config.py#L37-L39
import configparser import os from io import StringIO from pathlib import Path import attr import click import portalocker from renku.core.models.enums import ConfigFilter APP_NAME = "Renku" RENKU_HOME = ".renku"
Apache License 2.0
stephenmcd/mezzanine
mezzanine/utils/admin.py
SingletonAdmin.changelist_view
python
def changelist_view(self, *args, **kwargs): try: singleton = self.model.objects.get() except self.model.MultipleObjectsReturned: return super().changelist_view(*args, **kwargs) except self.model.DoesNotExist: return redirect(admin_url(self.model, "add")) return redirect(admin_url(self.model, "change", singleton.id))
Redirect to the add view if no records exist or the change view if the singleton instance exists.
https://github.com/stephenmcd/mezzanine/blob/c0c3d7694bf261a394c0ec7cf69e3d16de097690/mezzanine/utils/admin.py#L39-L50
from django.contrib import admin from django.http import HttpResponseRedirect from django.shortcuts import redirect from mezzanine.utils.urls import admin_url class SingletonAdmin(admin.ModelAdmin): def handle_save(self, request, response): form_valid = isinstance(response, HttpResponseRedirect) if request.POST.get("_save") and form_valid: return redirect("admin:index") return response def add_view(self, *args, **kwargs): try: singleton = self.model.objects.get() except (self.model.DoesNotExist, self.model.MultipleObjectsReturned): kwargs.setdefault("extra_context", {}) kwargs["extra_context"]["singleton"] = True response = super().add_view(*args, **kwargs) return self.handle_save(args[0], response) return redirect(admin_url(self.model, "change", singleton.id))
BSD 2-Clause Simplified License
microsoft/qlib
qlib/utils/__init__.py
get_pre_trading_date
python
def get_pre_trading_date(trading_date, future=False): return get_date_by_shift(trading_date, -1, future=future)
get previous trading date ---------- date : pandas.Timestamp current date
https://github.com/microsoft/qlib/blob/7c31012b507a3823117bddcc693fc64899460b2a/qlib/utils/__init__.py#L610-L616
from __future__ import division from __future__ import print_function import os import pickle import re import sys import copy import json import yaml import redis import bisect import shutil import difflib import hashlib import warnings import datetime import requests import tempfile import importlib import contextlib import collections import numpy as np import pandas as pd from pathlib import Path from typing import Dict, Union, Tuple, Any, Text, Optional from types import ModuleType from urllib.parse import urlparse from ..config import C from ..log import get_module_logger, set_log_with_config log = get_module_logger("utils") def get_redis_connection(): return redis.StrictRedis(host=C.redis_host, port=C.redis_port, db=C.redis_task_db) def read_bin(file_path: Union[str, Path], start_index, end_index): file_path = Path(file_path.expanduser().resolve()) with file_path.open("rb") as f: ref_start_index = int(np.frombuffer(f.read(4), dtype="<f")[0]) si = max(ref_start_index, start_index) if si > end_index: return pd.Series(dtype=np.float32) f.seek(4 * (si - ref_start_index) + 4) count = end_index - si + 1 data = np.frombuffer(f.read(4 * count), dtype="<f") series = pd.Series(data, index=pd.RangeIndex(si, si + len(data))) return series def np_ffill(arr: np.array): mask = np.isnan(arr.astype(float)) idx = np.where(~mask, np.arange(mask.shape[0]), 0) np.maximum.accumulate(idx, out=idx) return arr[idx] def lower_bound(data, val, level=0): left = 0 right = len(data) while left < right: mid = (left + right) // 2 if val <= data[mid][level]: right = mid else: left = mid + 1 return left def upper_bound(data, val, level=0): left = 0 right = len(data) while left < right: mid = (left + right) // 2 if val >= data[mid][level]: left = mid + 1 else: right = mid return left def requests_with_retry(url, retry=5, **kwargs): while retry > 0: retry -= 1 try: res = requests.get(url, timeout=1, **kwargs) assert res.status_code in {200, 206} return res except AssertionError: continue except Exception as e: log.warning("exception encountered {}".format(e)) continue raise Exception("ERROR: requests failed!") def parse_config(config): if not isinstance(config, str): return config if os.path.exists(config): with open(config, "r") as f: return yaml.safe_load(f) try: return yaml.safe_load(config) except BaseException: raise ValueError("cannot parse config!") def drop_nan_by_y_index(x, y, weight=None): mask = ~y.isna().any(axis=1) x = x[mask] y = y[mask] if weight is not None: weight = weight[mask] return x, y, weight def hash_args(*args): string = json.dumps(args, sort_keys=True, default=str) return hashlib.md5(string.encode()).hexdigest() def parse_field(field): if not isinstance(field, str): field = str(field) return re.sub(r"\$(\w+)", r'Feature("\1")', re.sub(r"(\w+\s*)\(", r"Operators.\1(", field)) def get_module_by_module_path(module_path: Union[str, ModuleType]): if isinstance(module_path, ModuleType): module = module_path else: if module_path.endswith(".py"): module_name = re.sub("^[^a-zA-Z_]+", "", re.sub("[^0-9a-zA-Z_]", "", module_path[:-3].replace("/", "_"))) module_spec = importlib.util.spec_from_file_location(module_name, module_path) module = importlib.util.module_from_spec(module_spec) sys.modules[module_name] = module module_spec.loader.exec_module(module) else: module = importlib.import_module(module_path) return module def get_callable_kwargs(config: Union[dict, str], default_module: Union[str, ModuleType] = None) -> (type, dict): if isinstance(config, dict): if isinstance(config["class"], str): module = get_module_by_module_path(config.get("module_path", default_module)) _callable = getattr(module, config["class" if "class" in config else "func"]) else: _callable = config["class"] kwargs = config.get("kwargs", {}) elif isinstance(config, str): module = get_module_by_module_path(default_module) _callable = getattr(module, config) kwargs = {} else: raise NotImplementedError(f"This type of input is not supported") return _callable, kwargs get_cls_kwargs = get_callable_kwargs def init_instance_by_config( config: Union[str, dict, object], default_module=None, accept_types: Union[type, Tuple[type]] = (), try_kwargs: Dict = {}, **kwargs, ) -> Any: if isinstance(config, accept_types): return config if isinstance(config, str): pr = urlparse(config) if pr.scheme == "file": with open(os.path.join(pr.netloc, pr.path), "rb") as f: return pickle.load(f) klass, cls_kwargs = get_callable_kwargs(config, default_module=default_module) try: return klass(**cls_kwargs, **try_kwargs, **kwargs) except (TypeError,): return klass(**cls_kwargs, **kwargs) @contextlib.contextmanager def class_casting(obj: object, cls: type): orig_cls = obj.__class__ obj.__class__ = cls yield obj.__class__ = orig_cls def compare_dict_value(src_data: dict, dst_data: dict): class DateEncoder(json.JSONEncoder): def default(self, o): if isinstance(o, (datetime.datetime, datetime.date)): return o.strftime("%Y-%m-%d %H:%M:%S") return json.JSONEncoder.default(self, o) src_data = json.dumps(src_data, indent=4, sort_keys=True, cls=DateEncoder) dst_data = json.dumps(dst_data, indent=4, sort_keys=True, cls=DateEncoder) diff = difflib.ndiff(src_data, dst_data) changes = [line for line in diff if line.startswith("+ ") or line.startswith("- ")] return changes def get_or_create_path(path: Optional[Text] = None, return_dir: bool = False): if path: if return_dir and not os.path.exists(path): os.makedirs(path) elif not return_dir: xpath = os.path.abspath(os.path.join(path, "..")) if not os.path.exists(xpath): os.makedirs(xpath) else: temp_dir = os.path.expanduser("~/tmp") if not os.path.exists(temp_dir): os.makedirs(temp_dir) if return_dir: _, path = tempfile.mkdtemp(dir=temp_dir) else: _, path = tempfile.mkstemp(dir=temp_dir) return path @contextlib.contextmanager def save_multiple_parts_file(filename, format="gztar"): if filename.startswith("~"): filename = os.path.expanduser(filename) file_path = os.path.abspath(filename) if os.path.exists(file_path): raise FileExistsError("ERROR: file exists: {}, cannot be create the directory.".format(file_path)) os.makedirs(file_path) yield file_path tar_file = shutil.make_archive(file_path, format=format, root_dir=file_path) if os.path.exists(file_path): shutil.rmtree(file_path) os.rename(tar_file, file_path) @contextlib.contextmanager def unpack_archive_with_buffer(buffer, format="gztar"): temp_dir = os.path.expanduser("~/tmp") if not os.path.exists(temp_dir): os.makedirs(temp_dir) with tempfile.NamedTemporaryFile("wb", delete=False, dir=temp_dir) as fp: fp.write(buffer) file_path = fp.name try: tar_file = file_path + ".tar.gz" os.rename(file_path, tar_file) os.makedirs(file_path) shutil.unpack_archive(tar_file, format=format, extract_dir=file_path) yield file_path except Exception as e: log.error(str(e)) finally: if os.path.exists(tar_file): os.unlink(tar_file) if os.path.exists(file_path): shutil.rmtree(file_path) @contextlib.contextmanager def get_tmp_file_with_buffer(buffer): temp_dir = os.path.expanduser("~/tmp") if not os.path.exists(temp_dir): os.makedirs(temp_dir) with tempfile.NamedTemporaryFile("wb", delete=True, dir=temp_dir) as fp: fp.write(buffer) file_path = fp.name yield file_path def remove_repeat_field(fields): fields = copy.deepcopy(fields) _fields = set(fields) return sorted(_fields, key=fields.index) def remove_fields_space(fields: [list, str, tuple]): if isinstance(fields, str): return fields.replace(" ", "") return [i.replace(" ", "") for i in fields if isinstance(i, str)] def normalize_cache_fields(fields: [list, tuple]): return sorted(remove_repeat_field(remove_fields_space(fields))) def normalize_cache_instruments(instruments): if isinstance(instruments, (list, tuple, pd.Index, np.ndarray)): instruments = sorted(list(instruments)) else: if "market" in instruments: pass else: instruments = {k: sorted(v) for k, v in instruments.items()} return instruments def is_tradable_date(cur_date): from ..data import D return str(cur_date.date()) == str(D.calendar(start_time=cur_date, future=True)[0].date()) def get_date_range(trading_date, left_shift=0, right_shift=0, future=False): from ..data import D start = get_date_by_shift(trading_date, left_shift, future=future) end = get_date_by_shift(trading_date, right_shift, future=future) calendar = D.calendar(start, end, future=future) return calendar def get_date_by_shift(trading_date, shift, future=False, clip_shift=True, freq="day"): from qlib.data import D cal = D.calendar(future=future, freq=freq) if pd.to_datetime(trading_date) not in list(cal): raise ValueError("{} is not trading day!".format(str(trading_date))) _index = bisect.bisect_left(cal, trading_date) shift_index = _index + shift if shift_index < 0 or shift_index >= len(cal): if clip_shift: shift_index = np.clip(shift_index, 0, len(cal) - 1) else: raise IndexError(f"The shift_index({shift_index}) of the trading day ({trading_date}) is out of range") return cal[shift_index] def get_next_trading_date(trading_date, future=False): return get_date_by_shift(trading_date, 1, future=future)
MIT License
llnl/maestrowf
maestrowf/interfaces/script/lsfscriptadapter.py
LSFScriptAdapter.submit
python
def submit(self, step, path, cwd, job_map=None, env=None): args = ["bsub"] args += ["-cwd", cwd, "<", path] cmd = " ".join(args) LOGGER.debug("cwd = %s", cwd) LOGGER.debug("Command to execute: %s", cmd) p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE, cwd=cwd, env=env) output, err = p.communicate() retcode = p.wait() output = output.decode("utf-8") if retcode == 0: LOGGER.info("Submission returned status OK.") return SubmissionRecord( SubmissionCode.OK, retcode, re.search('[0-9]+', output).group(0)) else: LOGGER.warning("Submission returned an error.") return SubmissionRecord(SubmissionCode.ERROR, retcode, -1)
Submit a script to the LSF scheduler. :param step: The StudyStep instance this submission is based on. :param path: Local path to the script to be executed. :param cwd: Path to the current working directory. :param job_map: A dictionary mapping step names to their job identifiers. :param env: A dict containing a modified environment for execution. :returns: The return status of the submission command and job identiifer.
https://github.com/llnl/maestrowf/blob/b172457b6d20c01cbfa29dfc691ff20ddaadfe09/maestrowf/interfaces/script/lsfscriptadapter.py#L187-L221
import getpass import logging from math import ceil import os import re from subprocess import PIPE, Popen from maestrowf.abstracts.interfaces import SchedulerScriptAdapter from maestrowf.abstracts.enums import CancelCode, JobStatusCode, State, SubmissionCode from maestrowf.interfaces.script import CancellationRecord, SubmissionRecord LOGGER = logging.getLogger(__name__) class LSFScriptAdapter(SchedulerScriptAdapter): NOJOB_REGEX = re.compile(r"^No\s") key = "lsf" def __init__(self, **kwargs): super(LSFScriptAdapter, self).__init__() self.add_batch_parameter("host", kwargs.pop("host")) self.add_batch_parameter("bank", kwargs.pop("bank")) self.add_batch_parameter("queue", kwargs.pop("queue")) self.add_batch_parameter("nodes", kwargs.pop("nodes", "1")) reservation = kwargs.get("reservation", None) if reservation: self.add_batch_parameter("reservation", reservation) self._header = { "nodes": "#BSUB -nnodes {nodes}", "queue": "#BSUB -q {queue}", "bank": "#BSUB -G {bank}", "walltime": "#BSUB -W {walltime}", "job-name": "#BSUB -J {job-name}", "output": "#BSUB -o {output}", "reservation": "#BSUB -U {reservation}", "error": "#BSUB -e {error}", } self._cmd_flags = { "cmd": "jsrun --bind rs", "ntasks": "--tasks_per_rs {procs} --cpu_per_rs {procs}", "nodes": "--nrs", "gpus": "-g", "reservation": "-J", } self._extension = "lsf.sh" def get_header(self, step): batch_header = dict(self._batch) batch_header["nodes"] = step.run.get("nodes", self._batch["nodes"]) batch_header["job-name"] = step.name.replace(" ", "_") batch_header["output"] = "{}.%J.out".format(batch_header["job-name"]) batch_header["error"] = "{}.%J.err".format(batch_header["job-name"]) batch_header.update( { resource: value for (resource, value) in step.run.items() if value } ) walltime = step.run.get("walltime") wt_split = walltime.split(":") if len(wt_split) == 3: seconds_minutes = ceil(float(wt_split[2])/60) total_minutes = int(wt_split[1]) + seconds_minutes hours = int(wt_split[0]) + int(total_minutes/60) total_minutes %= 60 walltime = "{:02d}:{:02d}".format(hours, int(total_minutes)) batch_header["walltime"] = walltime modified_header = ["#!{}".format(self._exec)] for key, value in self._header.items(): if key in batch_header: modified_header.append(value.format(**batch_header)) return "\n".join(modified_header) def get_parallelize_command(self, procs, nodes=None, **kwargs): args = [self._cmd_flags["cmd"]] if nodes: _nodes = nodes args += [ self._cmd_flags["nodes"], str(nodes) ] else: _nodes = 1 _procs = int(procs)/int(_nodes) args += [ self._cmd_flags["ntasks"].format(procs=_procs) ] gpus = kwargs.get("gpus", 0) if gpus: args += [ self._cmd_flags["gpus"], str(gpus) ] return " ".join(args)
MIT License
openstack/senlin
senlin/tests/drivers/os_test/keystone_v3.py
KeystoneClient.get_senlin_endpoint
python
def get_senlin_endpoint(self): region = cfg.CONF.default_region_name base = self.conn.session.get_endpoint(service_type='clustering', interface='public', region=region) return base
Get Senlin service endpoint.
https://github.com/openstack/senlin/blob/390779ca1e08f819683e79993696f945f1c0393e/senlin/tests/drivers/os_test/keystone_v3.py#L147-L156
from oslo_config import cfg from oslo_log import log from senlin.drivers import base from senlin.drivers import sdk LOG = log.getLogger(__name__) CONF = cfg.CONF class KeystoneClient(base.DriverBase): def __init__(self, params): super(KeystoneClient, self).__init__(params) self.conn = sdk.create_connection(params) self.session = self.conn.session @sdk.translate_exception def trust_get_by_trustor(self, trustor, trustee=None, project=None): filters = {'trustor_user_id': trustor} trusts = [t for t in self.conn.identity.trusts(**filters)] for trust in trusts: if (trustee and trust.trustee_user_id != trustee): continue if (project and trust.project_id != project): continue return trust return None @sdk.translate_exception def trust_create(self, trustor, trustee, project, roles=None, impersonation=True): if roles: role_list = [{'name': role} for role in roles] else: role_list = [] params = { 'trustor_user_id': trustor, 'trustee_user_id': trustee, 'project_id': project, 'impersonation': impersonation, 'allow_redelegation': True, 'roles': role_list } result = self.conn.identity.create_trust(**params) return result @classmethod @sdk.translate_exception def get_token(cls, **creds): access_info = sdk.authenticate(**creds) return access_info['token'] @classmethod @sdk.translate_exception def get_user_id(cls, **creds): access_info = sdk.authenticate(**creds) return access_info['user_id'] @classmethod def get_service_credentials(cls, **kwargs): creds = { 'auth_url': CONF.authentication.auth_url, 'username': CONF.authentication.service_username, 'password': CONF.authentication.service_password, 'project_name': CONF.authentication.service_project_name, 'user_domain_name': cfg.CONF.authentication.service_user_domain, 'project_domain_name': cfg.CONF.authentication.service_project_domain, 'verify': cfg.CONF.authentication.verify_ssl, 'interface': cfg.CONF.authentication.interface, } creds.update(**kwargs) return creds @sdk.translate_exception def validate_regions(self, regions): region_list = self.conn.identity.regions() known = [r['id'] for r in region_list] validated = [] for r in regions: if r in known: validated.append(r) else: LOG.warning('Region %s is not found.', r) return validated @sdk.translate_exception
Apache License 2.0
openstack/ceilometer
ceilometer/event/trait_plugins.py
SplitterTraitPlugin.__init__
python
def __init__(self, separator=".", segment=0, max_split=None, **kw): LOG.warning('split plugin is deprecated, ' 'add ".`split(%(sep)s, %(segment)d, ' '%(max_split)d)`" to your jsonpath instead' % dict(sep=separator, segment=segment, max_split=(-1 if max_split is None else max_split))) self.separator = separator self.segment = segment self.max_split = max_split super(SplitterTraitPlugin, self).__init__(**kw)
Setup how do split the field. :param separator: String to split on. default "." :param segment: Which segment to return. (int) default 0 :param max_split: Limit number of splits. Default: None (no limit)
https://github.com/openstack/ceilometer/blob/4d2ad5bc7aa8f632b3aad3f612ddb95abb2cb77b/ceilometer/event/trait_plugins.py#L108-L126
import abc from oslo_log import log from oslo_utils import timeutils LOG = log.getLogger(__name__) class TraitPluginBase(object, metaclass=abc.ABCMeta): support_return_all_values = False def __init__(self, **kw): super(TraitPluginBase, self).__init__() @abc.abstractmethod def trait_values(self, match_list): class SplitterTraitPlugin(TraitPluginBase): support_return_all_values = True
Apache License 2.0
johntruckenbrodt/pyrosar
pyroSAR/gamma/util.py
calibrate
python
def calibrate(id, directory, replace=False, logpath=None, outdir=None, shellscript=None): cname = type(id).__name__ if cname == 'CEOS_PSR': for image in id.getGammaImages(directory): if image.endswith('_slc'): isp.radcal_SLC(SLC=image, SLC_par=image + '.par', CSLC=image + '_cal', CSLC_par=image + '_cal.par', K_dB=id.meta['k_dB'], logpath=logpath, outdir=outdir, shellscript=shellscript) par2hdr(image + '_cal.par', image + '_cal.hdr') elif cname == 'EORC_PSR': for image in id.getGammaImages(directory): pol = re.search('[HV]{2}', os.path.basename(image)).group(0) if image.endswith('_mli'): isp.radcal_MLI(MLI=image, MLI_par=image + '.par', OFF_par='-', CMLI=image + '_cal', antenna='-', rloss_flag=0, ant_flag=0, refarea_flag=1, sc_dB=0, K_dB=id.meta['k_dB'], pix_area=image + '_cal_pix_ell', logpath=logpath, outdir=outdir, shellscript=shellscript) par2hdr(image + '.par', image + '_cal.hdr') par2hdr(image + '.par', image + '_cal_pix_ell' + '.hdr') os.rename(image + '.par', image + '_cal.par') elif cname == 'ESA': k_db = {'ASAR': 55., 'ERS1': 58.24, 'ERS2': 59.75}[id.sensor] inc_ref = 90. if id.sensor == 'ASAR' else 23. candidates = [x for x in id.getGammaImages(directory) if re.search('_pri$', x)] for image in candidates: out = image.replace('pri', 'grd') isp.radcal_PRI(PRI=image, PRI_par=image + '.par', GRD=out, GRD_par=out + '.par', K_dB=k_db, inc_ref=inc_ref, logpath=logpath, outdir=outdir, shellscript=shellscript) par2hdr(out + '.par', out + '.hdr') if replace: for item in [image, image + '.par', image + '.hdr']: if os.path.isfile(item): os.remove(item) elif cname == 'SAFE': log.info('calibration already performed during import') else: raise NotImplementedError('calibration for class {} is not implemented yet'.format(cname))
radiometric calibration of SAR scenes Parameters ---------- id: ~pyroSAR.drivers.ID an SAR scene object of type pyroSAR.ID or any subclass directory: str the directory to search for GAMMA calibration candidates replace: bool replace the input images by the new files? If True, the input images will be deleted. logpath: str or None a directory to write command logfiles to outdir: str or None the directory to execute the command in shellscript: str or None a file to write the GAMMA commands to in shell format Returns -------
https://github.com/johntruckenbrodt/pyrosar/blob/abfaa1fc3e12ee6457ae643ffc3cbf878fe80c7f/pyroSAR/gamma/util.py#L50-L135
import os import re import shutil import zipfile as zf from datetime import datetime from urllib.error import URLError from spatialist import haversine from spatialist.ancillary import union, finder from ..S1 import OSV from ..drivers import ID, identify, identify_many from . import ISPPar, Namespace, par2hdr from ..ancillary import multilook_factors, hasarg, groupby from pyroSAR.examine import ExamineSnap from .auxil import do_execute import logging log = logging.getLogger(__name__) try: from .api import diff, disp, isp, lat except ImportError: pass
MIT License
jborean93/pyspnego
src/spnego/_credssp.py
CredSSPProxy._step_accept
python
def _step_accept( self, in_token: typing.Optional[bytes], ) -> typing.Generator[bytes, bytes, None]: in_token = yield from self._step_tls(in_token) auth_request = TSRequest.unpack(in_token) version = min(auth_request.version, _CREDSSP_VERSION) log.debug("Negotiated CredSSP version: %d" % version) try: log.debug("Starting CredSSP authentication phase") if not self._auth_context: self._auth_context = spnego.server(hostname=self._hostname, service=self._service, protocol='negotiate', options=self._options) round = 0 while True: round += 1 nego_out_token = None if auth_request.nego_tokens: nego_out_token = self._auth_context.step(auth_request.nego_tokens[0].nego_token) if auth_request.pub_key_auth: break auth_response = TSRequest(_CREDSSP_VERSION, nego_tokens=NegoData(nego_out_token)) auth_request = yield from self._yield_ts_request(auth_response, "Authentication %d" % round) except SpnegoError as e: log.warning("Received CredSSP error when accepting credentials: %s", e) if version in [3, 4] or version >= 6: error_token = TSRequest(_CREDSSP_VERSION, error_code=e.nt_status) yield from self._yield_ts_request(error_token, "Authentication failure") return actual_key = self._auth_context.unwrap(auth_request.pub_key_auth).data public_key = self._tls_context.public_key expected_key = _get_pub_key_auth(public_key, 'initiate', nonce=auth_request.client_nonce) if actual_key != expected_key: raise BadBindingsError(context_msg="Public key verification failed, potential man in the middle attack") nego_token = NegoData(nego_out_token) if nego_out_token else None server_key = self._auth_context.wrap(_get_pub_key_auth(public_key, 'accept', nonce=auth_request.client_nonce)).data pub_key_response = TSRequest(_CREDSSP_VERSION, nego_tokens=nego_token, pub_key_auth=server_key) auth_request = yield from self._yield_ts_request(pub_key_response, "Public key exchange") if not auth_request.auth_info: raise InvalidTokenError(context_msg="No credential received on CredSSP TSRequest from initiator") credential = TSCredentials.unpack(self._auth_context.unwrap(auth_request.auth_info).data) self._client_credential = credential.credentials self._complete = True
The acceptor authentication steps of CredSSP.
https://github.com/jborean93/pyspnego/blob/6a9eea4ab1a039bf57dc2761564ef995251a142e/src/spnego/_credssp.py#L371-L430
import base64 import hashlib import logging import os import re import shutil import ssl import struct import tempfile import typing import spnego from spnego._context import ( ContextProxy, ContextReq, UnwrapResult, WinRMWrapResult, WrapResult, split_username, ) from spnego._credssp_structures import ( NegoData, TSCredentials, TSPasswordCreds, TSRequest, ) from spnego._text import to_text from spnego.channel_bindings import GssChannelBindings from spnego.exceptions import ( BadBindingsError, ErrorCode, FeatureMissingError, InvalidTokenError, NativeError, NegotiateOptions, OperationNotAvailableError, SpnegoError, ) from spnego.tls import ( CredSSPTLSContext, default_tls_context, generate_tls_certificate, get_certificate_public_key, ) log = logging.getLogger(__name__) _CREDSSP_VERSION = 6 _X509_CERTIFICATE: typing.Optional[typing.Tuple[bytes, bytes, bytes]] = None def _create_tls_context( usage: str, ) -> CredSSPTLSContext: log.debug("Creating TLS context") ctx = default_tls_context() if usage == "accept": global _X509_CERTIFICATE if not _X509_CERTIFICATE: _X509_CERTIFICATE = generate_tls_certificate() cert_pem, key_pem, public_key = _X509_CERTIFICATE temp_dir = tempfile.mkdtemp() try: cert_path = os.path.join(temp_dir, 'ca.pem') with open(cert_path, mode='wb') as fd: fd.write(cert_pem) fd.write(key_pem) ctx.context.load_cert_chain(cert_path) ctx.public_key = public_key finally: shutil.rmtree(temp_dir) return ctx def _get_pub_key_auth( pub_key: bytes, usage: str, nonce: typing.Optional[bytes] = None, ) -> bytes: if nonce: direction = b'Client-To-Server' if usage == 'initiate' else b'Server-To-Client' hash_input = (b'CredSSP %s Binding Hash\x00' % direction) + nonce + pub_key key_auth = hashlib.sha256(hash_input).digest() elif usage == 'accept': first_byte = struct.unpack("B", pub_key[0:1])[0] key_auth = struct.pack("B", first_byte + 1) + pub_key[1:] else: key_auth = pub_key return key_auth def _tls_trailer_length( data_length: int, protocol: str, cipher_suite: str, ) -> int: if protocol == 'TLSv1.3': trailer_length = 17 elif re.match(r'^.*[-_]GCM[-_][\w\d]*$', cipher_suite): trailer_length = 16 else: hash_algorithm = cipher_suite.split('-')[-1] hash_length = { 'MD5': 16, 'SHA': 20, 'SHA256': 32, 'SHA384': 48 }.get(hash_algorithm, 0) pre_pad_length = data_length + hash_length if "RC4" in cipher_suite: padding_length = 0 elif "DES" in cipher_suite or "3DES" in cipher_suite: padding_length = 8 - (pre_pad_length % 8) else: padding_length = 16 - (pre_pad_length % 16) trailer_length = (pre_pad_length + padding_length) - data_length return trailer_length def _wrap_ssl_error(context): def decorator(func): def wrapped(*args, **kwargs): try: return func(*args, **kwargs) except ssl.SSLError as e: raise SpnegoError(error_code=ErrorCode.failure, context_msg="%s: %s" % (context, e)) from e return wrapped return decorator class CredSSPProxy(ContextProxy): def __init__( self, username: str, password: str, hostname: typing.Optional[str] = None, service: typing.Optional[str] = None, channel_bindings: typing.Optional[GssChannelBindings] = None, context_req: ContextReq = ContextReq.default, usage: str = 'initiate', protocol: str = 'credssp', options: NegotiateOptions = NegotiateOptions.none, **kwargs: typing.Any, ) -> None: super(CredSSPProxy, self).__init__(username, password, hostname, service, channel_bindings, context_req, usage, protocol, options, False) if options & NegotiateOptions.session_key: raise FeatureMissingError(NegotiateOptions.session_key) self._hostname = hostname self._service = service self._options = options & ~NegotiateOptions.wrapping_winrm self._auth_context: typing.Optional[ContextProxy] = kwargs.get("credssp_negotiate_context", None) self._client_credential = None self._complete = False self._step_gen = None self._tls_context: CredSSPTLSContext if "credssp_tls_context" in kwargs: self._tls_context = kwargs["credssp_tls_context"] if usage == "accept" and not self._tls_context.public_key: raise OperationNotAvailableError(context_msg="Provided tls context does not have a public key set") else: self._tls_context = _create_tls_context(usage) self._in_buff = ssl.MemoryBIO() self._out_buff = ssl.MemoryBIO() self._tls_object = self._tls_context.context.wrap_bio(self._in_buff, self._out_buff, server_side=(usage == "accept")) @classmethod def available_protocols(cls, options=None): return ['credssp'] @classmethod def iov_available(cls): return False @property def client_principal(self): return self._auth_context.client_principal if self._auth_context else None @property def client_credential(self): return self._client_credential @property def complete(self): return self._complete @property def negotiated_protocol(self): return self._auth_context.negotiated_protocol if self._auth_context else None @property def session_key(self): raise OperationNotAvailableError(context_msg='CredSSP does not have a session key to share') def step(self, in_token=None): log.debug("CredSSP step input: %s", to_text(base64.b64encode(in_token or b""))) if not self._step_gen: self._step_gen = getattr(self, '_step_%s' % self.usage)(in_token) in_token = None out_token = None try: out_token = self._step_gen.send(in_token) except StopIteration: pass log.debug("CredSSP step output: %s", to_text(base64.b64encode(out_token or b""))) return out_token def _step_initiate( self, in_token: typing.Optional[bytes], ) -> typing.Generator[bytes, bytes, None]: yield from self._step_tls(in_token) server_certificate = self._tls_object.getpeercert(True) public_key = get_certificate_public_key(server_certificate) log.debug("Starting CredSSP authentication phase") if not self._auth_context: self._auth_context = spnego.client(self.username, self.password, hostname=self._hostname, service=self._service, protocol='negotiate', options=self._options) round = 0 out_token = self._auth_context.step() while True: round += 1 auth_request = TSRequest(_CREDSSP_VERSION, nego_tokens=NegoData(out_token)) auth_response = yield from self._yield_ts_request(auth_request, "Authentication %d" % round) out_token = self._auth_context.step(auth_response.nego_tokens[0].nego_token) if self._auth_context.complete or b"NTLMSSP\x00\x03\x00\x00\x00" in out_token: break version = min(auth_response.version, _CREDSSP_VERSION) log.debug("Negotiated CredSSP version: %d" % version) pub_key_nego_token = NegoData(out_token) if out_token else None nonce = os.urandom(32) if version > 4 else None pub_value = _get_pub_key_auth(public_key, 'initiate', nonce=nonce) pub_key_request = TSRequest(version=_CREDSSP_VERSION, nego_tokens=pub_key_nego_token, client_nonce=nonce, pub_key_auth=self._auth_context.wrap(pub_value).data) pub_key_response = yield from self._yield_ts_request(pub_key_request, "Public key exchange") if not pub_key_response.pub_key_auth: raise InvalidTokenError(context_msg="Acceptor did not response with pubKeyAuth info.") if pub_key_response.nego_tokens: self._auth_context.step(pub_key_response.nego_tokens[0].nego_token) response_key = self._auth_context.unwrap(pub_key_response.pub_key_auth).data expected_key = _get_pub_key_auth(public_key, 'accept', nonce=nonce) if expected_key != response_key: raise BadBindingsError(context_msg="Public key verification failed, potential man in the middle attack") domain, username = split_username(self.username) ts_password = TSPasswordCreds(domain or u'', username, self.password) enc_credentials = self._auth_context.wrap(TSCredentials(ts_password).pack()).data credential_request = TSRequest(_CREDSSP_VERSION, auth_info=enc_credentials) self._complete = True yield from self._yield_ts_request(credential_request, "Credential exchange")
MIT License
spatialaudio/jackclient-python
src/jack.py
Client.transport_reposition_struct
python
def transport_reposition_struct(self, position): _check(_lib.jack_transport_reposition(self._ptr, position), 'Error re-positioning transport')
Request a new transport position. May be called at any time by any client. The new position takes effect in two process cycles. If there are slow-sync clients and the transport is already rolling, it will enter the `STARTING` state and begin invoking their sync callbacks (see `set_sync_callback()`) until ready. This function is realtime-safe. Parameters ---------- position : jack_position_t Requested new transport position. This is the same structure as returned by `transport_query_struct()`. See Also -------- transport_query_struct, transport_locate
https://github.com/spatialaudio/jackclient-python/blob/769afb577fcd8ac052288496156ba4820a82a7eb/src/jack.py#L618-L640
__version__ = '0.5.3' from ctypes.util import find_library as _find_library import errno as _errno import platform as _platform import warnings as _warnings from _jack import ffi as _ffi if _platform.system() == 'Windows': if _platform.architecture()[0] == '64bit': _libname = _find_library('libjack64') else: _libname = _find_library('libjack') else: _libname = _find_library('jack') if _libname is None: raise OSError('JACK library not found') _lib = _ffi.dlopen(_libname) _AUDIO = b'32 bit float mono audio' _MIDI = b'8 bit raw midi' STOPPED = _lib.JackTransportStopped ROLLING = _lib.JackTransportRolling STARTING = _lib.JackTransportStarting NETSTARTING = _lib.JackTransportNetStarting PROPERTY_CREATED = _lib.PropertyCreated PROPERTY_CHANGED = _lib.PropertyChanged PROPERTY_DELETED = _lib.PropertyDeleted POSITION_BBT = _lib.JackPositionBBT POSITION_TIMECODE = _lib.JackPositionTimecode POSITION_BBT_FRAME_OFFSET = _lib.JackBBTFrameOffset POSITION_AUDIO_VIDEO_RATIO = _lib.JackAudioVideoRatio POSITION_VIDEO_FRAME_OFFSET = _lib.JackVideoFrameOffset _SUCCESS = 0 _FAILURE = 1 def _decode(cdata): return _ffi.string(cdata).decode() for name in dir(_lib): if name.startswith('JACK_METADATA_'): try: globals()[name[5:]] = _decode(getattr(_lib, name)) except _ffi.error: pass else: del name class JackError(Exception): class JackErrorCode(JackError): def __init__(self, message, code): self.message = message self.code = code def __str__(self): return '{} ({})'.format(self.message, self.code) class JackOpenError(JackError): def __init__(self, name, status): self.name = name self.status = status def __str__(self): return 'Error initializing "{}": {}'.format(self.name, self.status) class Client(object): def __init__(self, name, use_exact_name=False, no_start_server=False, servername=None, session_id=None): status = _ffi.new('jack_status_t*') options = _lib.JackNullOption optargs = [] if use_exact_name: options |= _lib.JackUseExactName if no_start_server: options |= _lib.JackNoStartServer if servername: options |= _lib.JackServerName optargs.append(_ffi.new('char[]', servername.encode())) if session_id: options |= _lib.JackSessionID optargs.append(_ffi.new('char[]', session_id.encode())) self._ptr = _lib.jack_client_open(name.encode(), options, status, *optargs) self._status = Status(status[0]) if not self._ptr: raise JackOpenError(name, self._status) self._inports = Ports(self, _AUDIO, _lib.JackPortIsInput) self._outports = Ports(self, _AUDIO, _lib.JackPortIsOutput) self._midi_inports = Ports(self, _MIDI, _lib.JackPortIsInput) self._midi_outports = Ports(self, _MIDI, _lib.JackPortIsOutput) self._keepalive = [] self._position = _ffi.new('jack_position_t*') _ptr = _ffi.NULL def __enter__(self): self.activate() return self def __exit__(self, *args): self.deactivate() self.close() def __del__(self): self.close() @property def name(self): return _decode(_lib.jack_get_client_name(self._ptr)) @property def uuid(self): uuid = _ffi.gc(_lib.jack_client_get_uuid(self._ptr), _lib.jack_free) if not uuid: raise JackError('Unable to get UUID') return _decode(uuid) @property def samplerate(self): return _lib.jack_get_sample_rate(self._ptr) @property def blocksize(self): return _lib.jack_get_buffer_size(self._ptr) @blocksize.setter def blocksize(self, blocksize): _check(_lib.jack_set_buffer_size(self._ptr, blocksize), 'Error setting JACK blocksize') @property def status(self): return self._status @property def realtime(self): return bool(_lib.jack_is_realtime(self._ptr)) @property def frames_since_cycle_start(self): return _lib.jack_frames_since_cycle_start(self._ptr) @property def frame_time(self): return _lib.jack_frame_time(self._ptr) @property def last_frame_time(self): return _lib.jack_last_frame_time(self._ptr) @property def inports(self): return self._inports @property def outports(self): return self._outports @property def midi_inports(self): return self._midi_inports @property def midi_outports(self): return self._midi_outports def owns(self, port): port = self._get_port_ptr(port) return bool(_lib.jack_port_is_mine(self._ptr, port)) def activate(self): _check(_lib.jack_activate(self._ptr), 'Error activating JACK client') def deactivate(self, ignore_errors=True): err = _lib.jack_deactivate(self._ptr) if not ignore_errors: _check(err, 'Error deactivating JACK client') def cpu_load(self): return _lib.jack_cpu_load(self._ptr) def close(self, ignore_errors=True): if self._ptr: err = _lib.jack_client_close(self._ptr) self._ptr = _ffi.NULL if not ignore_errors: _check(err, 'Error closing JACK client') def connect(self, source, destination): if isinstance(source, Port): source = source.name if isinstance(destination, Port): destination = destination.name err = _lib.jack_connect(self._ptr, source.encode(), destination.encode()) if err == _errno.EEXIST: raise JackErrorCode('Connection {0!r} -> {1!r} ' 'already exists'.format(source, destination), err) _check(err, 'Error connecting {0!r} -> {1!r}'.format(source, destination)) def disconnect(self, source, destination): if isinstance(source, Port): source = source.name if isinstance(destination, Port): destination = destination.name _check(_lib.jack_disconnect( self._ptr, source.encode(), destination.encode()), "Couldn't disconnect {0!r} -> {1!r}".format(source, destination)) def transport_start(self): _lib.jack_transport_start(self._ptr) def transport_stop(self): _lib.jack_transport_stop(self._ptr) @property def transport_state(self): return TransportState(_lib.jack_transport_query(self._ptr, _ffi.NULL)) @property def transport_frame(self): return _lib.jack_get_current_transport_frame(self._ptr) @transport_frame.setter def transport_frame(self, frame): _check(_lib.jack_transport_locate(self._ptr, frame), 'Error locating JACK transport') def transport_locate(self, frame): _warnings.warn( 'transport_locate() is deprecated, use transport_frame', DeprecationWarning) self.transport_frame = frame def transport_query(self): state, pos = self.transport_query_struct() return TransportState(state), position2dict(pos) def transport_query_struct(self): state = _lib.jack_transport_query(self._ptr, self._position) return state, self._position
MIT License
enviraldesign/geopix
GP/Assets/code/modules/hashUtils.py
generate_hash_from_dict
python
def generate_hash_from_dict(d, blacklist=None, whitelist=None, raw=False): if not isinstance(d, dict): raise TypeError('Please provide a dictionary.') if blacklist is not None: validate_blackwhitelist(d, blacklist) if whitelist is not None: validate_blackwhitelist(d, whitelist) raw_string = _generate_string_from_dict(d, blacklist, whitelist, prefix='d') if raw: return raw_string else: return hashlib.md5(raw_string.encode('utf-8')).hexdigest()
Generate an md5 hash from a (nested) dictionary. Takes care of extracting nested dictionaries, iterables and avoids rounding errors of floats. Makes sure keys are read in a unique order. A blacklist of keys can be passed, that can contain keys which should be excluded from the hash. If a whitelist is given, only keys appearing in the whitelist are used to generate the hash. All strings are converted to unicode, i.e., the hash does not distinguish between strings provided in ascii or unicode format. Lists, np.ndarrays and tuples are treated equally, i.e., an array-like item [1,2,3], np.array([1,2,3]) or (1,2,3) will lead to the same hash if they are of the same type. Parameters ---------- d : dict Dictionary to compute the hash from. blacklist : list, optional List of keys which *are not* used for generating the hash. Keys of subdirectories can be provided by specifying the full path of keys in a tuple. If None, no keys will be ignored. whitelist : list, optional List of keys which *are* used for generating the hash. Keys of subdirectories can be provided by specifying the full path of keys in a tuple. If None, all keys will be used. Blacklist overrules whitelist, i.e., keys appearing in the blacklist will definitely not be used. raw : bool, optional if True, return the unhashed string. Returns ------- : string The hash generated from the dictionary, or the unhashed string if raw is True. Example ------- >>> from_ _dicthash import generate_hash_from_dict >>> d = {'a': 'asd', 'b': 0.12, 3: {'c': [3, 4, 5]}} >>> generate_hash_from_dict(d) 'd748bbf148db514911ed0bf215729d01'
https://github.com/enviraldesign/geopix/blob/9d20fb111cf774051f5ab5785cc3eb23f2232bcd/GP/Assets/code/modules/hashUtils.py#L135-L195
import hashlib import warnings FLOAT_FACTOR = 1e15 FLOOR_SMALL_FLOATS = False warnings.simplefilter('default', category=UserWarning) try: basestring except NameError: basestring = str def _save_convert_float_to_int(x): if abs(x) > 0. and abs(x) < 1. / FLOAT_FACTOR: if not FLOOR_SMALL_FLOATS: raise ValueError('Float too small for safe conversion to ' 'integer.') else: x = 0. warnings.warn('Float too small for safe conversion to' 'integer. Rounding down to zero.', UserWarning) return int(x * FLOAT_FACTOR) def _unpack_value(value, prefix='', whitelist=None, blacklist=None): try: return _generate_string_from_dict(value, blacklist=blacklist, whitelist=whitelist, prefix=prefix + 'd') except AttributeError: try: return prefix + _generate_string_from_iterable(value, prefix='i') except TypeError: if isinstance(value, float): return prefix + str(_save_convert_float_to_int(value)) else: return prefix + str(value) def _generate_string_from_iterable(l, prefix=''): if isinstance(l, basestring): return ''.join((prefix, str(l))) else: return ''.join(_unpack_value(value, prefix='') for value in l) def _generate_string_from_dict(d, blacklist, whitelist, prefix=''): if whitelist is None: whitelist = list(d.keys()) if blacklist is not None: whitelist = set(whitelist).difference(blacklist) if len(whitelist) > 0: return ''.join(_unpack_value(d[key], whitelist=filter_blackwhitelist(whitelist, key), blacklist=filter_blackwhitelist(blacklist, key), prefix=prefix + str(key)) for key in sorted(filter_blackwhitelist(whitelist, None), key=str)) else: return ''
MIT License
crespo-otero-group/fromage
fromage/utils/mol/_cell_operations.py
trans_from_rad
python
def trans_from_rad(self, clust_rad): a_perp = np.cross(self.vectors[1], self.vectors[2]) b_perp = np.cross(self.vectors[2], self.vectors[0]) c_perp = np.cross(self.vectors[0], self.vectors[1]) perp = np.array([a_perp / np.linalg.norm(a_perp), b_perp / np.linalg.norm(b_perp), c_perp / np.linalg.norm(c_perp)]) trans_count = np.array([0, 0, 0]) supercell_vectors = np.zeros((3,3)) distances = np.array([0.0, 0.0, 0.0]) for comp in range(3): while distances[comp] <= clust_rad: trans_count[comp] += 1 supercell_vectors[comp] = trans_count[comp] * self.vectors[comp] distances[comp] = np.dot(supercell_vectors[comp], perp[comp]) return trans_count
Generate the translations necessary to encapsulate a sphere of given rad Parameters ---------- clust_rad : float Radius defining a sphere Returns ------- trans_count : 3 x 1 numpy array The translations required for the unit cell to contain the sphere
https://github.com/crespo-otero-group/fromage/blob/9b4a80698ed1672268dde292d5512c72a23cb00a/fromage/utils/mol/_cell_operations.py#L153-L193
from copy import deepcopy import numpy as np def complete_mol(self, labels): new_mol, scattered_mol = self.per_select(labels, old_pos=True) new_cell_atoms = deepcopy( [a for a in self.atoms if a not in scattered_mol]) new_cell = self.copy() new_cell.atoms = new_cell_atoms for atom in new_mol: new_cell.append(atom.copy()) return new_mol, new_cell def complete_cell(self): full_mol_l = [] remaining = self.copy() while len(remaining) != 0: full_mol, cell = remaining.complete_mol(0) full_mol_l.append(full_mol) remaining = cell for atom in full_mol: if atom in remaining: remaining.remove(atom) out_cell = remaining for mol in full_mol_l: out_cell.extend(mol) return out_cell, full_mol_l def supercell(self, trans): import fromage.utils.mol as mol_init trans = np.array(trans) new_cell = self.empty_mol() for a_mult in range(trans[0]): for b_mult in range(trans[1]): for c_mult in range(trans[2]): vector = a_mult * self.vectors[0] + b_mult * self.vectors[1] + c_mult * self.vectors[2] new_atoms = mol_init.Mol([i.v_translated(vector) for i in self.atoms]) new_cell += new_atoms out_vec = (self.vectors.T * trans.transpose()).T new_cell.vectors = out_vec return new_cell def centered_supercell(self, trans, from_origin=False): import fromage.utils.mol as mol_init trans_series = [0, 0, 0] for i, tra in enumerate(trans): if from_origin: trans_series[i] = list(range(-tra, tra)) else: trans_series[i] = list(range(-tra, tra + 1)) trans_series = np.array(trans_series) new_cell = self.empty_mol() for a_mult in trans_series[0]: for b_mult in trans_series[1]: for c_mult in trans_series[2]: vector = a_mult * self.vectors[0] + b_mult * self.vectors[1] + c_mult * self.vectors[2] new_atoms = mol_init.Mol([i.v_translated(vector) for i in self.atoms]) new_cell += new_atoms out_vec = (self.vectors.T * trans.transpose()).T new_cell.vectors = out_vec return new_cell
MIT License
square/connect-python-sdk
squareconnect/models/order_fulfillment_pickup_details.py
OrderFulfillmentPickupDetails.picked_up_at
python
def picked_up_at(self, picked_up_at): self._picked_up_at = picked_up_at
Sets the picked_up_at of this OrderFulfillmentPickupDetails. The [timestamp](#workingwithdates) in RFC3339 timestamp format, e.g., \"2016-09-04T23:59:33.123Z\", indicating when the fulfillment was picked up by the recipient. :param picked_up_at: The picked_up_at of this OrderFulfillmentPickupDetails. :type: str
https://github.com/square/connect-python-sdk/blob/e00e2889b2dd2c55048219cbe64db79962a68633/squareconnect/models/order_fulfillment_pickup_details.py#L410-L419
from pprint import pformat from six import iteritems import re class OrderFulfillmentPickupDetails(object): def __init__(self, recipient=None, expires_at=None, auto_complete_duration=None, schedule_type=None, pickup_at=None, pickup_window_duration=None, prep_time_duration=None, note=None, placed_at=None, accepted_at=None, rejected_at=None, ready_at=None, expired_at=None, picked_up_at=None, canceled_at=None, cancel_reason=None): self.swagger_types = { 'recipient': 'OrderFulfillmentRecipient', 'expires_at': 'str', 'auto_complete_duration': 'str', 'schedule_type': 'str', 'pickup_at': 'str', 'pickup_window_duration': 'str', 'prep_time_duration': 'str', 'note': 'str', 'placed_at': 'str', 'accepted_at': 'str', 'rejected_at': 'str', 'ready_at': 'str', 'expired_at': 'str', 'picked_up_at': 'str', 'canceled_at': 'str', 'cancel_reason': 'str' } self.attribute_map = { 'recipient': 'recipient', 'expires_at': 'expires_at', 'auto_complete_duration': 'auto_complete_duration', 'schedule_type': 'schedule_type', 'pickup_at': 'pickup_at', 'pickup_window_duration': 'pickup_window_duration', 'prep_time_duration': 'prep_time_duration', 'note': 'note', 'placed_at': 'placed_at', 'accepted_at': 'accepted_at', 'rejected_at': 'rejected_at', 'ready_at': 'ready_at', 'expired_at': 'expired_at', 'picked_up_at': 'picked_up_at', 'canceled_at': 'canceled_at', 'cancel_reason': 'cancel_reason' } self._recipient = recipient self._expires_at = expires_at self._auto_complete_duration = auto_complete_duration self._schedule_type = schedule_type self._pickup_at = pickup_at self._pickup_window_duration = pickup_window_duration self._prep_time_duration = prep_time_duration self._note = note self._placed_at = placed_at self._accepted_at = accepted_at self._rejected_at = rejected_at self._ready_at = ready_at self._expired_at = expired_at self._picked_up_at = picked_up_at self._canceled_at = canceled_at self._cancel_reason = cancel_reason @property def recipient(self): return self._recipient @recipient.setter def recipient(self, recipient): self._recipient = recipient @property def expires_at(self): return self._expires_at @expires_at.setter def expires_at(self, expires_at): self._expires_at = expires_at @property def auto_complete_duration(self): return self._auto_complete_duration @auto_complete_duration.setter def auto_complete_duration(self, auto_complete_duration): self._auto_complete_duration = auto_complete_duration @property def schedule_type(self): return self._schedule_type @schedule_type.setter def schedule_type(self, schedule_type): self._schedule_type = schedule_type @property def pickup_at(self): return self._pickup_at @pickup_at.setter def pickup_at(self, pickup_at): self._pickup_at = pickup_at @property def pickup_window_duration(self): return self._pickup_window_duration @pickup_window_duration.setter def pickup_window_duration(self, pickup_window_duration): self._pickup_window_duration = pickup_window_duration @property def prep_time_duration(self): return self._prep_time_duration @prep_time_duration.setter def prep_time_duration(self, prep_time_duration): self._prep_time_duration = prep_time_duration @property def note(self): return self._note @note.setter def note(self, note): if note is None: raise ValueError("Invalid value for `note`, must not be `None`") if len(note) > 500: raise ValueError("Invalid value for `note`, length must be less than `500`") self._note = note @property def placed_at(self): return self._placed_at @placed_at.setter def placed_at(self, placed_at): self._placed_at = placed_at @property def accepted_at(self): return self._accepted_at @accepted_at.setter def accepted_at(self, accepted_at): self._accepted_at = accepted_at @property def rejected_at(self): return self._rejected_at @rejected_at.setter def rejected_at(self, rejected_at): self._rejected_at = rejected_at @property def ready_at(self): return self._ready_at @ready_at.setter def ready_at(self, ready_at): self._ready_at = ready_at @property def expired_at(self): return self._expired_at @expired_at.setter def expired_at(self, expired_at): self._expired_at = expired_at @property def picked_up_at(self): return self._picked_up_at @picked_up_at.setter
Apache License 2.0
flexget/flexget
flexget/plugins/input/gazelle.py
InputGazelle.request
python
def request(self, no_login=False, **params): if 'action' not in params: raise ValueError("An 'action' is required when making a request") ajaxpage = "{}/ajax.php".format(self.base_url) r = self._session.get(ajaxpage, params=params, allow_redirects=False, raise_status=True) if not no_login and r.is_redirect and r.next.url == "{}/login.php".format(self.base_url): logger.warning("Redirected to login page, reauthenticating and trying again") self.authenticate(force=True) return self.request(no_login=True, **params) if r.status_code != 200: raise PluginError("{} returned a non-200 status code".format(self.base_url)) try: json_response = r.json() if json_response['status'] != "success": error = json_response.get('error', json_response.get('status')) if not error or error == "failure": error = json_response.get('response', str(json_response)) raise PluginError( "{} gave a failure response of '{}'".format(self.base_url, error) ) return json_response['response'] except (ValueError, TypeError, KeyError): raise PluginError("{} returned an invalid response".format(self.base_url))
Make an AJAX request to the API If `no_login` is True, logging in will not be attempted if the request is redirected to the login page. Adapted from https://github.com/isaaczafuta/whatapi
https://github.com/flexget/flexget/blob/e625eb09324a9d6be4cfb42601c6af4628b2226a/flexget/plugins/input/gazelle.py#L217-L252
from datetime import datetime from loguru import logger from sqlalchemy import Column, DateTime, String, Unicode from flexget import db_schema, plugin from flexget.components.sites.utils import normalize_unicode from flexget.config_schema import one_or_more from flexget.entry import Entry from flexget.event import event from flexget.manager import Session from flexget.plugin import PluginError from flexget.utils.database import json_synonym from flexget.utils.requests import TokenBucketLimiter from flexget.utils.tools import parse_filesize DETECT_2FA = "Authenticator Code", "TOTP code" logger = logger.bind(name='gazelle') Base = db_schema.versioned_base('gazelle_session', 0) class GazelleSession(Base): __tablename__ = 'gazelle_session' username = Column(Unicode, primary_key=True) base_url = Column(String, primary_key=True) authkey = Column(String) passkey = Column(String) _cookies = Column('cookie', Unicode) cookies = json_synonym('_cookies') expires = Column(DateTime) class InputGazelle: def __init__(self): self.base_url = None self.aliases = {"search": "searchstr"} self.params = {"searchstr": None} @property def schema(self): schema = { 'type': 'object', 'properties': { 'base_url': {'type': 'string'}, 'username': {'type': 'string'}, 'password': {'type': 'string'}, 'max_pages': {'type': 'integer'}, 'search': {'type': 'string'}, }, 'required': ['username', 'password'], 'additionalProperties': False, } if not self.base_url: schema['required'].append('base_url') return schema def _key(self, key): if key in self.aliases: return self.aliases[key] return key def _opts(self, key): return self.params[self._key(key)] def _getval(self, key, val): opts = self._opts(key) if isinstance(opts, dict): return opts[str(val)] elif isinstance(val, list): return ",".join(val) return val def params_from_config(self, config): ret = {} for k, v in config.items(): key = self._key(k) if key in self.params: ret[key] = self._getval(k, v) return ret def setup(self, task, config): self._session = task.requests base_url = config.get('base_url', "").rstrip("/") if base_url: if self.base_url and self.base_url != base_url: logger.warning( 'Using plugin designed for {} on {} - things may break', self.base_url, base_url, ) self.base_url = base_url if not self.base_url: raise PluginError("No 'base_url' configured") self.max_pages = config.get('max_pages', 5) self._session.add_domain_limiter(TokenBucketLimiter(self.base_url, 2, '2 seconds')) self.username = config['username'] self.password = config['password'] self.authenticate() task.no_entries_ok = True def resume_session(self): logger.debug("Attempting to find an existing session in the DB") with Session() as session: db_session = ( session.query(GazelleSession) .filter( GazelleSession.base_url == self.base_url, GazelleSession.username == self.username, ) .one_or_none() ) if db_session and db_session.expires and db_session.expires >= datetime.utcnow(): self._session.cookies.update(db_session.cookies) self.authkey = db_session.authkey self.passkey = db_session.passkey return True return False def save_current_session(self): logger.debug("Storing session info in the DB") with Session() as session: expires = None for c in self._session.cookies: if c.name == "session": expires = datetime.utcfromtimestamp(c.expires) db_session = GazelleSession( username=self.username, base_url=self.base_url, cookies=dict(self._session.cookies), expires=expires, authkey=self.authkey, passkey=self.passkey, ) session.merge(db_session) def authenticate(self, force=False): self._session.cookies.clear() if not force and self.resume_session(): logger.info('Logged into {} using cached session', self.base_url) return url = "{}/login.php".format(self.base_url) data = {'username': self.username, 'password': self.password, 'keeplogged': 1} r = self._session.post(url, data=data, allow_redirects=False, raise_status=True) if not r.is_redirect or r.next.url != "{}/index.php".format(self.base_url): msg = "Failed to log into {}".format(self.base_url) for otp_text in DETECT_2FA: if otp_text in r.text: msg += " - Accounts using 2FA are currently not supported" break raise PluginError(msg) account_info = self.request(no_login=True, action='index') self.authkey = account_info['authkey'] self.passkey = account_info['passkey'] logger.info('Logged in to {}', self.base_url) self.save_current_session()
MIT License
ebranca/owasp-pysec
pysec/clock.py
timeout
python
def timeout(timeout, default=RAISE_TIMEOUT): timeout = int(timeout) def raise_timeout(signalnum, frame): raise Timeout() def _timeout(func): def __timeout(*args, **kwds): old_handler = signal.signal(signal.SIGALRM, raise_timeout) signal.alarm(timeout) try: result = func(*args, **kwds) except Timeout: if default is RAISE_TIMEOUT: raise return default finally: signal.signal(signal.SIGALRM, old_handler) signal.alarm(0) return result return __timeout return _timeout
Decorator for functions, if the returned function doesn't terminate after *timeout* seconds and *default* isn't defined a Timeout exception will be raised, otherwise return *default* value. If it terminate before *timeout* seconds its result will be returned.
https://github.com/ebranca/owasp-pysec/blob/163e10a146db04f40648979e8d7c0c10e7737781/pysec/clock.py#L33-L56
import signal from pysec.core import Object, Error class Timeout(Error): pass RAISE_TIMEOUT = Object()
Apache License 2.0
aws/sagemaker-inference-toolkit
src/sagemaker_inference/errors.py
GenericInferenceToolkitError.__init__
python
def __init__(self, status_code, message=None, phrase=None): message = message or "Invalid Request" phrase = phrase or message super(GenericInferenceToolkitError, self).__init__(status_code, message, phrase)
Initializes an instance of GenericInferenceToolkitError. Args: status_code (int): HTTP Error Status Code to send to client message (str): Response message to send to client phrase (str): Response body to send to client
https://github.com/aws/sagemaker-inference-toolkit/blob/7fcb80561c0d87cf035e194a86f9fa5c6c9d9b33/src/sagemaker_inference/errors.py#L61-L71
from __future__ import absolute_import import textwrap class UnsupportedFormatError(Exception): def __init__(self, content_type, **kwargs): self._message = textwrap.dedent( """Content type %s is not supported by this framework. Please implement input_fn to to deserialize the request data or an output_fn to serialize the response. For more information, see the SageMaker Python SDK README.""" % content_type ) super(UnsupportedFormatError, self).__init__(self._message, **kwargs) class BaseInferenceToolkitError(Exception): def __init__(self, status_code, message, phrase): self.status_code = status_code self.message = message self.phrase = phrase super(BaseInferenceToolkitError, self).__init__(status_code, message, phrase) class GenericInferenceToolkitError(BaseInferenceToolkitError):
Apache License 2.0
jlezama/disentangling-jacobian
conditional_image_manipulation/src/evaluation.py
Evaluator.step
python
def step(self, n_iter): if 1: mean_loss = [ ('Attr', 'attr_pred_costs', float(self.params.lambda_ttributes)), ('Rec', 'rec_costs', float(self.params.lambda_ae)), ('Xcov', 'xcov_costs', float(self.params.lambda_xcov)), ('flip', 'flipped_labels_prediction_costs', float(self.params.lambda_flipped)), ('lat', 'latent_code_match_costs', float(self.params.lambda_latent_match)), ('jac', 'jacobian_costs', float(self.params.lambda_jacobian)), ('y', 'y_costs', float(self.params.lambda_y)) ] logger.info(('EVAL>> %06i - ' % n_iter) + '/ '.join(['%s : %2.3e (x%1.1e)' % (a, np.mean(self.stats[b]), c) for a, b,c in mean_loss if len(self.stats[b]) > 0])) self.params.n_total_iter += 1
End training iteration / print training statistics.
https://github.com/jlezama/disentangling-jacobian/blob/c570945055c735a15b9adba093b7c688c7310aad/conditional_image_manipulation/src/evaluation.py#L333-L354
import os import numpy as np import torch from torch.autograd import Variable from torch.nn import functional as F from logging import getLogger from .utils import get_optimizer, clip_grad_norm, get_lambda, reload_model, reload_model2 from .model import get_attr_loss, flip_attributes from print_images import print_grid logger = getLogger() def compute_xcov(z,y,bs): z = z.view(bs,-1) y = y.view(bs,-1) z = z - torch.mean(z, dim=0) y = y - torch.mean(y, dim=0) cov_matrix = torch.matmul(torch.t(z),y) cov_loss = torch.norm(cov_matrix.view(1,-1))/bs return cov_loss class Evaluator(object): def __init__(self, ae, ae_teacher, data, params): self.data = data self.params = params self.ae = ae self.ae_teacher = ae_teacher self.ae_optimizer_enc = get_optimizer(ae.enc_layers, params.ae_optimizer) self.ae_optimizer_dec = get_optimizer(ae.dec_layers, params.ae_optimizer) logger.info(ae) logger.info('%i parameters in the autoencoder. ' % sum([p.nelement() for p in ae.parameters()])) if params.ae_reload: print '<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<', params.max_fm if int(params.max_fm) >=1064: print '>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>' print 'using reload_model2' reload_model2(ae, params.ae_reload, ['img_sz', 'img_fm', 'init_fm', 'n_layers', 'n_skip', 'attr', 'n_attr']) else: reload_model(ae, params.ae_reload, ['img_sz', 'img_fm', 'init_fm', 'n_layers', 'n_skip', 'attr', 'n_attr']) reload_model(ae_teacher, params.ae_teacher_reload, ['img_sz', 'img_fm', 'init_fm', 'n_layers', 'n_skip', 'attr', 'n_attr']) self.stats = {} self.stats['rec_costs'] = [] self.stats['xcov_costs'] = [] self.stats['attr_pred_costs'] = [] self.stats['flipped_labels_prediction_costs'] = [] self.stats['latent_code_match_costs'] = [] self.stats['jacobian_costs'] = [] self.stats['y_costs'] = [] self.best_loss = 1e12 self.params.n_total_iter = 0 def autoencoder_step(self, iterno=-1, epoch=-1): data = self.data params = self.params self.ae.eval() bs = params.batch_size batch_x, batch_y = data.train_batch(bs) enc_outputs, dec_outputs, y_pred = self.ae(batch_x, batch_y) z_latent_1 = enc_outputs[-1] penalties = torch.clamp(1-y_pred*batch_y, min=0) attr_cost = torch.sum(penalties)/bs attr_loss = attr_cost * params.lambda_ttributes if params.lambda_xcov >0: xcov_cost = compute_xcov(z_latent_1, y_pred, bs) else: xcov_cost = Variable(torch.FloatTensor([0])) xcov_loss = xcov_cost * params.lambda_xcov ae_cost = ((batch_x - dec_outputs[-1]) ** 2).mean() loss = params.lambda_ae * ae_cost self.stats['rec_costs'].append(ae_cost.data[0]) self.stats['attr_pred_costs'].append(attr_cost.data[0]) self.stats['xcov_costs'].append(xcov_cost.data[0]) loss += attr_loss if params.lambda_xcov > 0: loss += xcov_loss if params.lambda_flipped > 0 or params.lambda_latent_match >0 or params.lambda_jacobian > 0: flipped = y_pred.clone() flip_idx = torch.randperm(bs).cuda() flipped = flipped[flip_idx,:] dec_outputs_2 = self.ae.decode(enc_outputs, flipped) else: flipped_labels_prediction_cost = Variable(torch.FloatTensor([0])) latent_code_match_cost = Variable(torch.FloatTensor([0])) jacobian_cost = Variable(torch.FloatTensor([0])) if params.lambda_jacobian >0: self.ae_teacher.eval() for param in self.ae_teacher.parameters(): param.requires_grad = False enc_teacher_outputs, dec_teacher_outputs, y_teacher_pred = self.ae_teacher(batch_x, batch_y) teacher_flipped = y_teacher_pred.clone() teacher_flipped = teacher_flipped[flip_idx, :] y_cost = ((y_pred - y_teacher_pred.detach()) **2).mean() dec_teacher_outputs_2 = self.ae_teacher.decode(enc_teacher_outputs, teacher_flipped) diff_ae = dec_outputs[-1] - dec_outputs_2[-1] diff_ae_teacher = dec_teacher_outputs[-1].detach() - dec_teacher_outputs_2[-1].detach() jacobian_cost = ((diff_ae - diff_ae_teacher)**2).mean() if 0 and iterno==0 and ((epoch %10) ==0): DATAROOT = '/data/tmp' OUTDIR = '%s/%s' % (DATAROOT, params.outdir) os.system('mkdir -p %s' % OUTDIR) print_grid(dec_teacher_outputs[-1], os.path.join(OUTDIR, '%04i_dec_teacher_outputs.png' % epoch)) print_grid(dec_teacher_outputs_2[-1], os.path.join(OUTDIR, '%04i_dec_teacher_outputs_2.png' % epoch)) print_grid(dec_outputs[-1], os.path.join(OUTDIR, '%04i_dec_outputs.png' % epoch)) print_grid(dec_outputs_2[-1], os.path.join(OUTDIR, '%04i_dec_outputs_2.png' % epoch)) print_grid(diff_ae, os.path.join(OUTDIR, '%04i_diff_ae.png' % epoch)) print_grid(diff_ae_teacher, os.path.join(OUTDIR, '%04i_diff_ae_teacher.png' % epoch)) print 'saved images to ', OUTDIR else: jacobian_cost = Variable(torch.FloatTensor([0])) y_cost = Variable(torch.FloatTensor([0])) if params.lambda_flipped > 0 or params.lambda_latent_match >0: enc_outputs_3 = self.ae.encode(dec_outputs_2[-1]) z_all_3 = enc_outputs_3[-1] z_latent_3 = z_all_3[:,:-params.n_attr,:,:].contiguous() y_pred_3 = z_all_3[:,-params.n_attr:,:,:] y_pred_3 = torch.mean(y_pred_3.contiguous().view(bs, params.n_attr, -1), dim=2) flipped_labels = torch.sign(flipped) if 1: penalties_3 = torch.clamp(1-y_pred_3*flipped_labels, min=0) flipped_labels_prediction_cost = torch.sum(penalties_3)/bs else: flipped_labels_prediction_cost = torch.sqrt(((y_pred_3 - flipped_labels) ** 2).sum())/bs latent_code_match_cost = torch.sqrt(((z_latent_1 - z_latent_3) ** 2).sum())/bs else: flipped_labels_prediction_cost = Variable(torch.FloatTensor([0])) latent_code_match_cost = Variable(torch.FloatTensor([0])) flipped_labels_prediction_loss = flipped_labels_prediction_cost * params.lambda_flipped latent_code_match_loss = latent_code_match_cost * params.lambda_latent_match jacobian_loss = jacobian_cost * params.lambda_jacobian y_loss = y_cost * params.lambda_y self.stats['flipped_labels_prediction_costs'].append(flipped_labels_prediction_cost.data[0]) self.stats['latent_code_match_costs'].append(latent_code_match_cost.data[0]) self.stats['jacobian_costs'].append(jacobian_cost.data[0]) self.stats['y_costs'].append(y_cost.data[0]) if (loss != loss).data.any(): logger.error("NaN detected") exit() if params.lambda_flipped > 0 or params.lambda_latent_match > 0: loss = 0 loss += flipped_labels_prediction_loss loss += latent_code_match_loss loss += jacobian_loss loss += y_loss
MIT License
demisto/demisto-sdk
demisto_sdk/commands/update_release_notes/update_rn_manager.py
UpdateReleaseNotesManager.get_existing_rn
python
def get_existing_rn(self, pack) -> Optional[str]: if pack not in self.packs_existing_rn: return '' if self.update_type is None: return self.packs_existing_rn[pack] else: return None
Gets the existing rn of the pack is exists. :param pack: The pack to check :return The existing rn version if exists, otherwise an empty string None on error when pack has rn already and update type was given
https://github.com/demisto/demisto-sdk/blob/8d8767c2dfec77b67c35f4e1022e30ed2893e864/demisto_sdk/commands/update_release_notes/update_rn_manager.py#L233-L248
import os from typing import Optional, Tuple import git from demisto_sdk.commands.common.constants import ( API_MODULES_PACK, SKIP_RELEASE_NOTES_FOR_TYPES) from demisto_sdk.commands.common.tools import (LOG_COLORS, filter_files_by_type, filter_files_on_pack, get_pack_name, get_pack_names_from_files, pack_name_to_path, print_color, print_warning, suppress_stdout) from demisto_sdk.commands.update_release_notes.update_rn import ( UpdateRN, update_api_modules_dependents_rn) from demisto_sdk.commands.validate.validate_manager import ValidateManager class UpdateReleaseNotesManager: def __init__(self, user_input: Optional[str] = None, update_type: Optional[str] = None, pre_release: bool = False, is_all: Optional[bool] = False, text: Optional[str] = None, specific_version: Optional[str] = None, id_set_path: Optional[str] = None, prev_ver: Optional[str] = None, is_force: bool = False, is_bc: bool = False): self.given_pack = user_input self.changed_packs_from_git: set = set() self.update_type = update_type self.pre_release: bool = False if pre_release is None else pre_release self.is_all = True if not self.given_pack else is_all self.text: str = '' if text is None else text self.is_force = is_force self.specific_version = specific_version self.id_set_path = id_set_path self.prev_ver = prev_ver self.packs_existing_rn: dict = {} self.total_updated_packs: set = set() if self.given_pack and self.is_all: raise ValueError('Please remove the -g flag when specifying only one pack.') self.rn_path: list = list() self.is_bc = is_bc def manage_rn_update(self): print_color('Starting to update release notes.', LOG_COLORS.NATIVE) if self.given_pack and '/' in self.given_pack: self.given_pack = get_pack_name(self.given_pack) modified_files, added_files, old_format_files = self.get_git_changed_files() self.changed_packs_from_git = get_pack_names_from_files(modified_files).union( get_pack_names_from_files(added_files)).union(get_pack_names_from_files(old_format_files)) self.check_existing_rn(added_files) self.handle_api_module_change(modified_files, added_files) self.create_release_notes(modified_files, added_files, old_format_files) if len(self.total_updated_packs) > 1: print_color('\nSuccessfully updated the following packs:\n' + '\n'.join(self.total_updated_packs), LOG_COLORS.GREEN) def filter_to_relevant_files(self, file_set: set, validate_manager: ValidateManager) -> Tuple[set, set]: filtered_set = set() if self.given_pack: for file in file_set: if isinstance(file, tuple): file_path = str(file[1]) else: file_path = str(file) file_pack_name = get_pack_name(file_path) if not file_pack_name or file_pack_name not in self.given_pack: continue filtered_set.add(file) return validate_manager.filter_to_relevant_files(filtered_set) def filter_files_from_git(self, modified_files: set, added_files: set, renamed_files: set, validate_manager: ValidateManager): filtered_modified, old_format_files = self.filter_to_relevant_files(modified_files, validate_manager) filtered_renamed, _ = self.filter_to_relevant_files(renamed_files, validate_manager) filtered_modified = filtered_modified.union(filtered_renamed) filtered_added, new_files_in_old_format = self.filter_to_relevant_files(added_files, validate_manager) old_format_files = old_format_files.union(new_files_in_old_format) return filtered_modified, filtered_added, old_format_files def setup_validate_manager(self): return ValidateManager(skip_pack_rn_validation=True, prev_ver=self.prev_ver, silence_init_prints=True, skip_conf_json=True, check_is_unskipped=False, file_path=self.given_pack) def get_git_changed_files(self) -> Tuple[set, set, set]: try: validate_manager = self.setup_validate_manager() if not validate_manager.git_util: raise git.InvalidGitRepositoryError('unable to connect to git.') validate_manager.setup_git_params() if self.given_pack: with suppress_stdout(): modified_files, added_files, renamed_files = validate_manager.get_unfiltered_changed_files_from_git() return self.filter_files_from_git(modified_files, added_files, renamed_files, validate_manager) modified_files, added_files, renamed_files = validate_manager.get_unfiltered_changed_files_from_git() return self.filter_files_from_git(modified_files, added_files, renamed_files, validate_manager) except (git.InvalidGitRepositoryError, git.NoSuchPathError, FileNotFoundError) as e: raise FileNotFoundError( "You are not running `demisto-sdk update-release-notes` command in the content repository.\n" "Please run `cd content` from your terminal and run the command again") from e def check_existing_rn(self, added_files: set): for file_path in added_files: if 'ReleaseNotes' in file_path: self.packs_existing_rn[get_pack_name(file_path)] = file_path def handle_api_module_change(self, modified_files: set, added_files: set): api_module_was_given = self.given_pack and API_MODULES_PACK in self.given_pack api_module_changed_in_git = self.changed_packs_from_git and API_MODULES_PACK in self.changed_packs_from_git if api_module_was_given or (api_module_changed_in_git and self.is_all): updated_packs = update_api_modules_dependents_rn(self.pre_release, self.update_type, added_files, modified_files, self.id_set_path, self.text) self.total_updated_packs = self.total_updated_packs.union(updated_packs) def create_release_notes(self, modified_files: set, added_files: set, old_format_files: set): filtered_modified_files = filter_files_by_type(modified_files, skip_file_types=SKIP_RELEASE_NOTES_FOR_TYPES) filtered_added_files = filter_files_by_type(added_files, skip_file_types=SKIP_RELEASE_NOTES_FOR_TYPES) if self.given_pack: self.create_pack_release_notes(self.given_pack, filtered_modified_files, filtered_added_files, old_format_files) elif self.changed_packs_from_git: for pack in self.changed_packs_from_git: if 'APIModules' in pack: continue self.create_pack_release_notes(pack, filtered_modified_files, filtered_added_files, old_format_files) else: print_warning('No changes that require release notes were detected. If such changes were made, ' 'please commit the changes and rerun the command.') def create_pack_release_notes(self, pack: str, filtered_modified_files: set, filtered_added_files: set, old_format_files: set): existing_rn_version = self.get_existing_rn(pack) if existing_rn_version is None: raise RuntimeError(f"New release notes file already found for {pack}. " f"Please update manually or run `demisto-sdk update-release-notes " f"-i {pack}` without specifying the update_type.") pack_modified = filter_files_on_pack(pack, filtered_modified_files) pack_added = filter_files_on_pack(pack, filtered_added_files) pack_old = filter_files_on_pack(pack, old_format_files) if pack_modified or pack_added or pack_old or self.is_force: pack_path = pack_name_to_path(pack) update_pack_rn = UpdateRN(pack_path=pack_path, update_type=self.update_type, modified_files_in_pack=pack_modified.union(pack_old), pre_release=self.pre_release, added_files=pack_added, specific_version=self.specific_version, text=self.text, is_force=self.is_force, existing_rn_version_path=existing_rn_version, is_bc=self.is_bc) updated = update_pack_rn.execute_update() self.rn_path.append(update_pack_rn.rn_path) if updated: self.total_updated_packs.add(pack) if update_pack_rn.should_delete_existing_rn: os.unlink(self.packs_existing_rn[pack]) else: print_warning(f'Either no changes were found in {pack} pack ' f'or the changes found should not be documented in the release notes file.\n' f'If relevant changes were made, please commit the changes and rerun the command.')
MIT License
magenta/magenta
magenta/models/score2perf/score2perf_hparams.py
t_rel_len2048_h384_att512_fs1024_n8_dropout10
python
def t_rel_len2048_h384_att512_fs1024_n8_dropout10(): hparams = transformer.transformer_base() update_transformer_hparams_for_music(hparams) update_truncate_length(hparams, 2048) update_small(hparams) hparams.self_attention_type = "dot_product_relative_v2" hparams.num_hidden_layers = 8 return hparams
Hparams for LM with relative attention.
https://github.com/magenta/magenta/blob/be6558f1a06984faff6d6949234f5fe9ad0ffdb5/magenta/models/score2perf/score2perf_hparams.py#L161-L169
from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensor2tensor.models import transformer from tensor2tensor.utils import registry def update_transformer_hparams_for_music(hparams): hparams.shared_embedding_and_softmax_weights = False hparams.symbol_modality_num_shards = 1 hparams.label_smoothing = 0.0 hparams.layer_prepostprocess_dropout = 0.1 hparams.attention_dropout = 0.1 hparams.relu_dropout = 0.1 hparams.max_length = 0 hparams.batch_size = 2048 hparams.sampling_method = "random" hparams.summarize_vars = True hparams.add_hparam("block_length", 512) hparams.add_hparam("decode_output_dir", "/tmp/") hparams.add_hparam("aggregation", "sum") def update_truncate_length(hparams, length): hparams.max_target_seq_length = length hparams.min_length = length hparams.max_relative_position = int(length / 2.0) def update_dropout(hparams, dropout): hparams.layer_prepostprocess_dropout = dropout hparams.attention_dropout = dropout hparams.relu_dropout = dropout def update_tiny(hparams): hparams.hidden_size = 256 hparams.attention_key_channels = 512 hparams.filter_size = 2048 hparams.batch_size = 9000 hparams.learning_rate = 0.1 return hparams def update_small(hparams): hparams.hidden_size = 384 hparams.attention_key_channels = 512 hparams.filter_size = 1024 def update_small_lr(hparams): hparams.learning_rate = 0.1 hparams.hidden_size = 384 hparams.attention_key_channels = 512 hparams.filter_size = 1024 def update_medium(hparams): hparams.learning_rate = 0.1 hparams.hidden_size = 512 hparams.attention_key_channels = 512 hparams.filter_size = 1024 @registry.register_hparams def t_rel_len2048_h384_att512_fs1024_n8_dropout20(): hparams = transformer.transformer_base() update_transformer_hparams_for_music(hparams) update_truncate_length(hparams, 2048) update_small(hparams) update_dropout(hparams, 0.20) hparams.self_attention_type = "dot_product_relative_v2" hparams.num_hidden_layers = 8 return hparams @registry.register_hparams def t_len2048_h384_att512_fs1024_n8_dropout20(): hparams = transformer.transformer_base() update_transformer_hparams_for_music(hparams) update_truncate_length(hparams, 2048) update_small(hparams) update_dropout(hparams, 0.20) hparams.num_hidden_layers = 8 return hparams @registry.register_hparams def t_rel_len2048_h512_att512_fs1024_n6_dropout10(): hparams = transformer.transformer_base() update_transformer_hparams_for_music(hparams) update_truncate_length(hparams, 2048) update_medium(hparams) hparams.self_attention_type = "dot_product_relative_v2" hparams.num_hidden_layers = 6 return hparams @registry.register_hparams def t_rel_len2048_h384_att512_fs1024_n6_dropout10(): hparams = transformer.transformer_base() update_transformer_hparams_for_music(hparams) update_truncate_length(hparams, 2048) update_small_lr(hparams) hparams.self_attention_type = "dot_product_relative_v2" hparams.num_hidden_layers = 6 return hparams @registry.register_hparams def t_rel_len2048_h512_att512_fs1024_n8_dropout10(): hparams = transformer.transformer_base() update_transformer_hparams_for_music(hparams) update_truncate_length(hparams, 2048) update_medium(hparams) hparams.self_attention_type = "dot_product_relative_v2" hparams.num_hidden_layers = 8 return hparams @registry.register_hparams
Apache License 2.0
slavaganzin/ramda.py
ramda/reduced.py
reduced
python
def reduced(value): return Reduced(value)
Returns a value wrapped to indicate that it is the final value of the reduce and transduce functions. The returned value should be considered a black box: the internal structure is not guaranteed to be stable. Note: this optimization is unavailable to functions not explicitly listed above. For instance, it is not currently supported by reduceRight
https://github.com/slavaganzin/ramda.py/blob/7d4cc8a3253d7f14a6d53b75550863ee11e306e0/ramda/reduced.py#L12-L19
import collections class Reduced: def __init__(self, value): self.value = value def unwrap(self): return self.value
MIT License
soad241/django-generic-images
generic_images/models.py
AbstractAttachedImage.get_order_in_album
python
def get_order_in_album(self, reversed_ordering=True): lookup = 'order__gt' if reversed_ordering else 'order__lt' return self.__class__.objects. for_model(self.content_object, self.content_type). filter(**{lookup: self.order}).count() + 1
Returns image order number. It is calculated as (number+1) of images attached to the same content_object whose order is greater (if 'reverse_ordering' is True) or lesser (if 'reverse_ordering' is False) than image's order.
https://github.com/soad241/django-generic-images/blob/3e44a4f5e11d57931d455f10f1d5523061ea08c6/generic_images/models.py#L141-L150
import os, time import random from django.db import models from django.contrib.auth.models import User from django.core.files.storage import default_storage from django.db.models import Max from django.utils.translation import ugettext_lazy as _ from generic_images.signals import image_saved, image_deleted from generic_images.managers import AttachedImageManager from generic_utils.models import GenericModelBase from django.conf import settings from athumb.fields import ImageWithThumbsField from athumb.backends.s3boto import S3BotoStorage_AllPublic PUBLIC_MEDIA_BUCKET = S3BotoStorage_AllPublic(settings.AWS_STORAGE_BUCKET_NAME) class BaseImageModel(models.Model): def get_upload_path(self, filename): raise NotImplementedError def _upload_path_wrapper(self, filename): return self.get_upload_path(filename) image = ImageWithThumbsField( _('Image'), thumbnail_format='jpeg', upload_to=_upload_path_wrapper, storage=PUBLIC_MEDIA_BUCKET, thumbs=( ('100x100', {'size': (100, 100), 'crop':False, 'upscale': False }), ('300x300', {'size': (300, 300), 'crop':False, 'upscale': False }), ('480x1500', {'size': (480, 1500), 'crop':False, 'upscale': False }), ('300x100', {'size': (300, 100), 'crop':False, 'upscale': False}), ('130x100', {'size': (130, 100), 'crop': False, 'upscale': False}), ('130x100_crop', {'size': (130, 100), 'crop': 'center', 'upscale': False}), )) class Meta: abstract = True class ReplaceOldImageModel(BaseImageModel): def _replace_old_image(self): try: old_obj = self.__class__.objects.get(pk=self.pk) if old_obj.image.name != self.image.name: path = old_obj.image.name default_storage.delete(path) except self.__class__.DoesNotExist: pass def save(self, *args, **kwargs): if self.pk: self._replace_old_image() super(ReplaceOldImageModel, self).save(*args, **kwargs) class Meta: abstract = True class AbstractAttachedImage(ReplaceOldImageModel, GenericModelBase): user = models.ForeignKey(User, blank=True, null=True, verbose_name=_('User')) caption = models.TextField(_('Caption'), null=True, blank=True) is_main = models.BooleanField(_('Main image'), default=False) order = models.IntegerField(_('Order'), default=0) objects = AttachedImageManager() def next(self): try: return self.__class__.objects.for_model(self.content_object, self.content_type). filter(order__lt=self.order).order_by('-order')[0] except IndexError: return None def previous(self): try: return self.__class__.objects.for_model(self.content_object, self.content_type). filter(order__gt=self.order).order_by('order')[0] except IndexError: return None
MIT License
watson-developer-cloud/python-sdk
ibm_watson/assistant_v2.py
BulkClassifyResponse.__str__
python
def __str__(self) -> str: return json.dumps(self.to_dict(), indent=2)
Return a `str` version of this BulkClassifyResponse object.
https://github.com/watson-developer-cloud/python-sdk/blob/f9a32d46d5ae31d1e43c9530e829248a3b9e0219/ibm_watson/assistant_v2.py#L716-L718
from enum import Enum from typing import Dict, List import json import sys from ibm_cloud_sdk_core import BaseService, DetailedResponse from ibm_cloud_sdk_core.authenticators.authenticator import Authenticator from ibm_cloud_sdk_core.get_authenticator import get_authenticator_from_environment from ibm_cloud_sdk_core.utils import convert_model from .common import get_sdk_headers class AssistantV2(BaseService): DEFAULT_SERVICE_URL = 'https://api.us-south.assistant.watson.cloud.ibm.com' DEFAULT_SERVICE_NAME = 'assistant' def __init__( self, version: str, authenticator: Authenticator = None, service_name: str = DEFAULT_SERVICE_NAME, ) -> None: if version is None: raise ValueError('version must be provided') if not authenticator: authenticator = get_authenticator_from_environment(service_name) BaseService.__init__(self, service_url=self.DEFAULT_SERVICE_URL, authenticator=authenticator) self.version = version self.configure_service(service_name) def create_session(self, assistant_id: str, **kwargs) -> DetailedResponse: if assistant_id is None: raise ValueError('assistant_id must be provided') headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V2', operation_id='create_session') headers.update(sdk_headers) params = {'version': self.version} if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' path_param_keys = ['assistant_id'] path_param_values = self.encode_path_vars(assistant_id) path_param_dict = dict(zip(path_param_keys, path_param_values)) url = '/v2/assistants/{assistant_id}/sessions'.format(**path_param_dict) request = self.prepare_request(method='POST', url=url, headers=headers, params=params) response = self.send(request, **kwargs) return response def delete_session(self, assistant_id: str, session_id: str, **kwargs) -> DetailedResponse: if assistant_id is None: raise ValueError('assistant_id must be provided') if session_id is None: raise ValueError('session_id must be provided') headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V2', operation_id='delete_session') headers.update(sdk_headers) params = {'version': self.version} if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' path_param_keys = ['assistant_id', 'session_id'] path_param_values = self.encode_path_vars(assistant_id, session_id) path_param_dict = dict(zip(path_param_keys, path_param_values)) url = '/v2/assistants/{assistant_id}/sessions/{session_id}'.format( **path_param_dict) request = self.prepare_request(method='DELETE', url=url, headers=headers, params=params) response = self.send(request, **kwargs) return response def message(self, assistant_id: str, session_id: str, *, input: 'MessageInput' = None, context: 'MessageContext' = None, user_id: str = None, **kwargs) -> DetailedResponse: if assistant_id is None: raise ValueError('assistant_id must be provided') if session_id is None: raise ValueError('session_id must be provided') if input is not None: input = convert_model(input) if context is not None: context = convert_model(context) headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V2', operation_id='message') headers.update(sdk_headers) params = {'version': self.version} data = {'input': input, 'context': context, 'user_id': user_id} data = {k: v for (k, v) in data.items() if v is not None} data = json.dumps(data) headers['content-type'] = 'application/json' if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' path_param_keys = ['assistant_id', 'session_id'] path_param_values = self.encode_path_vars(assistant_id, session_id) path_param_dict = dict(zip(path_param_keys, path_param_values)) url = '/v2/assistants/{assistant_id}/sessions/{session_id}/message'.format( **path_param_dict) request = self.prepare_request(method='POST', url=url, headers=headers, params=params, data=data) response = self.send(request, **kwargs) return response def message_stateless(self, assistant_id: str, *, input: 'MessageInputStateless' = None, context: 'MessageContextStateless' = None, user_id: str = None, **kwargs) -> DetailedResponse: if assistant_id is None: raise ValueError('assistant_id must be provided') if input is not None: input = convert_model(input) if context is not None: context = convert_model(context) headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V2', operation_id='message_stateless') headers.update(sdk_headers) params = {'version': self.version} data = {'input': input, 'context': context, 'user_id': user_id} data = {k: v for (k, v) in data.items() if v is not None} data = json.dumps(data) headers['content-type'] = 'application/json' if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' path_param_keys = ['assistant_id'] path_param_values = self.encode_path_vars(assistant_id) path_param_dict = dict(zip(path_param_keys, path_param_values)) url = '/v2/assistants/{assistant_id}/message'.format(**path_param_dict) request = self.prepare_request(method='POST', url=url, headers=headers, params=params, data=data) response = self.send(request, **kwargs) return response def bulk_classify(self, skill_id: str, *, input: List['BulkClassifyUtterance'] = None, **kwargs) -> DetailedResponse: if skill_id is None: raise ValueError('skill_id must be provided') if input is not None: input = [convert_model(x) for x in input] headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V2', operation_id='bulk_classify') headers.update(sdk_headers) params = {'version': self.version} data = {'input': input} data = {k: v for (k, v) in data.items() if v is not None} data = json.dumps(data) headers['content-type'] = 'application/json' if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' path_param_keys = ['skill_id'] path_param_values = self.encode_path_vars(skill_id) path_param_dict = dict(zip(path_param_keys, path_param_values)) url = '/v2/skills/{skill_id}/workspace/bulk_classify'.format( **path_param_dict) request = self.prepare_request(method='POST', url=url, headers=headers, params=params, data=data) response = self.send(request, **kwargs) return response def list_logs(self, assistant_id: str, *, sort: str = None, filter: str = None, page_limit: int = None, cursor: str = None, **kwargs) -> DetailedResponse: if assistant_id is None: raise ValueError('assistant_id must be provided') headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V2', operation_id='list_logs') headers.update(sdk_headers) params = { 'version': self.version, 'sort': sort, 'filter': filter, 'page_limit': page_limit, 'cursor': cursor } if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' path_param_keys = ['assistant_id'] path_param_values = self.encode_path_vars(assistant_id) path_param_dict = dict(zip(path_param_keys, path_param_values)) url = '/v2/assistants/{assistant_id}/logs'.format(**path_param_dict) request = self.prepare_request(method='GET', url=url, headers=headers, params=params) response = self.send(request, **kwargs) return response def delete_user_data(self, customer_id: str, **kwargs) -> DetailedResponse: if customer_id is None: raise ValueError('customer_id must be provided') headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V2', operation_id='delete_user_data') headers.update(sdk_headers) params = {'version': self.version, 'customer_id': customer_id} if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' url = '/v2/user_data' request = self.prepare_request(method='DELETE', url=url, headers=headers, params=params) response = self.send(request, **kwargs) return response class AgentAvailabilityMessage(): def __init__(self, *, message: str = None) -> None: self.message = message @classmethod def from_dict(cls, _dict: Dict) -> 'AgentAvailabilityMessage': args = {} if 'message' in _dict: args['message'] = _dict.get('message') return cls(**args) @classmethod def _from_dict(cls, _dict): return cls.from_dict(_dict) def to_dict(self) -> Dict: _dict = {} if hasattr(self, 'message') and self.message is not None: _dict['message'] = self.message return _dict def _to_dict(self): return self.to_dict() def __str__(self) -> str: return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'AgentAvailabilityMessage') -> bool: if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'AgentAvailabilityMessage') -> bool: return not self == other class BulkClassifyOutput(): def __init__(self, *, input: 'BulkClassifyUtterance' = None, entities: List['RuntimeEntity'] = None, intents: List['RuntimeIntent'] = None) -> None: self.input = input self.entities = entities self.intents = intents @classmethod def from_dict(cls, _dict: Dict) -> 'BulkClassifyOutput': args = {} if 'input' in _dict: args['input'] = BulkClassifyUtterance.from_dict(_dict.get('input')) if 'entities' in _dict: args['entities'] = [ RuntimeEntity.from_dict(x) for x in _dict.get('entities') ] if 'intents' in _dict: args['intents'] = [ RuntimeIntent.from_dict(x) for x in _dict.get('intents') ] return cls(**args) @classmethod def _from_dict(cls, _dict): return cls.from_dict(_dict) def to_dict(self) -> Dict: _dict = {} if hasattr(self, 'input') and self.input is not None: _dict['input'] = self.input.to_dict() if hasattr(self, 'entities') and self.entities is not None: _dict['entities'] = [x.to_dict() for x in self.entities] if hasattr(self, 'intents') and self.intents is not None: _dict['intents'] = [x.to_dict() for x in self.intents] return _dict def _to_dict(self): return self.to_dict() def __str__(self) -> str: return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'BulkClassifyOutput') -> bool: if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'BulkClassifyOutput') -> bool: return not self == other class BulkClassifyResponse(): def __init__(self, *, output: List['BulkClassifyOutput'] = None) -> None: self.output = output @classmethod def from_dict(cls, _dict: Dict) -> 'BulkClassifyResponse': args = {} if 'output' in _dict: args['output'] = [ BulkClassifyOutput.from_dict(x) for x in _dict.get('output') ] return cls(**args) @classmethod def _from_dict(cls, _dict): return cls.from_dict(_dict) def to_dict(self) -> Dict: _dict = {} if hasattr(self, 'output') and self.output is not None: _dict['output'] = [x.to_dict() for x in self.output] return _dict def _to_dict(self): return self.to_dict()
Apache License 2.0
hyperledger/education-sawtooth-simple-supply
subscriber/simple_supply_subscriber/subscriber.py
Subscriber.clear_handlers
python
def clear_handlers(self): self._event_handlers = []
Clears any delta handlers.
https://github.com/hyperledger/education-sawtooth-simple-supply/blob/335d4c8a5b6b35cac1189caabd022475943e830f/subscriber/simple_supply_subscriber/subscriber.py#L55-L58
import logging from sawtooth_sdk.protobuf.client_event_pb2 import ClientEventsSubscribeRequest from sawtooth_sdk.protobuf.client_event_pb2 import ClientEventsSubscribeResponse from sawtooth_sdk.protobuf.client_event_pb2 import ClientEventsUnsubscribeRequest from sawtooth_sdk.protobuf.client_event_pb2 import ClientEventsUnsubscribeResponse from sawtooth_sdk.protobuf.events_pb2 import EventList from sawtooth_sdk.protobuf.events_pb2 import EventSubscription from sawtooth_sdk.protobuf.events_pb2 import EventFilter from sawtooth_sdk.protobuf.validator_pb2 import Message from sawtooth_sdk.messaging.stream import Stream from simple_supply_addressing.addresser import NAMESPACE LOGGER = logging.getLogger(__name__) NULL_BLOCK_ID = '0000000000000000' class Subscriber(object): def __init__(self, validator_url): LOGGER.info('Connecting to validator: %s', validator_url) self._stream = Stream(validator_url) self._event_handlers = [] self._is_active = False def add_handler(self, handler): self._event_handlers.append(handler)
Apache License 2.0
napalm-automation/napalm-yang
napalm_yang/models/openconfig/interfaces/interface/subinterfaces/subinterface/ipv4/neighbors/neighbor/state/__init__.py
state._set_ip
python
def _set_ip(self, v, load=False): if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedClassType( base_type=RestrictedClassType( base_type=six.text_type, restriction_dict={ "pattern": "(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?" }, ), restriction_dict={"pattern": "[0-9\\.]*"}, ), is_leaf=True, yang_name="ip", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/interfaces/ip", defining_module="openconfig-if-ip", yang_type="inet:ipv4-address-no-zone", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """ip must be of a type compatible with inet:ipv4-address-no-zone""", "defined-type": "inet:ipv4-address-no-zone", "generated-type": """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=six.text_type, restriction_dict={'pattern': '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?'}), restriction_dict={'pattern': '[0-9\\.]*'}), is_leaf=True, yang_name="ip", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='inet:ipv4-address-no-zone', is_config=False)""", } ) self.__ip = t if hasattr(self, "_set"): self._set()
Setter method for ip, mapped from YANG variable /interfaces/interface/subinterfaces/subinterface/ipv4/neighbors/neighbor/state/ip (inet:ipv4-address-no-zone) If this variable is read-only (config: false) in the source YANG file, then _set_ip is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_ip() directly. YANG Description: The IPv4 address of the neighbor node.
https://github.com/napalm-automation/napalm-yang/blob/9148e015b086ebe311c07deb92e168ea36fd7771/napalm_yang/models/openconfig/interfaces/interface/subinterfaces/subinterface/ipv4/neighbors/neighbor/state/__init__.py#L147-L193
from operator import attrgetter from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType from pyangbind.lib.yangtypes import RestrictedClassType from pyangbind.lib.yangtypes import TypedListType from pyangbind.lib.yangtypes import YANGBool from pyangbind.lib.yangtypes import YANGListType from pyangbind.lib.yangtypes import YANGDynClass from pyangbind.lib.yangtypes import ReferenceType from pyangbind.lib.base import PybindBase from collections import OrderedDict from decimal import Decimal from bitarray import bitarray import six if six.PY3: import builtins as __builtin__ long = int elif six.PY2: import __builtin__ class state(PybindBase): __slots__ = ( "_path_helper", "_extmethods", "__ip", "__link_layer_address", "__origin" ) _yang_name = "state" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__ip = YANGDynClass( base=RestrictedClassType( base_type=RestrictedClassType( base_type=six.text_type, restriction_dict={ "pattern": "(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?" }, ), restriction_dict={"pattern": "[0-9\\.]*"}, ), is_leaf=True, yang_name="ip", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/interfaces/ip", defining_module="openconfig-if-ip", yang_type="inet:ipv4-address-no-zone", is_config=False, ) self.__link_layer_address = YANGDynClass( base=RestrictedClassType( base_type=six.text_type, restriction_dict={"pattern": "([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?"}, ), is_leaf=True, yang_name="link-layer-address", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/interfaces/ip", defining_module="openconfig-if-ip", yang_type="yang:phys-address", is_config=False, ) self.__origin = YANGDynClass( base=RestrictedClassType( base_type=six.text_type, restriction_type="dict_key", restriction_arg={"OTHER": {}, "STATIC": {}, "DYNAMIC": {}}, ), is_leaf=True, yang_name="origin", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/interfaces/ip", defining_module="openconfig-if-ip", yang_type="neighbor-origin", is_config=False, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return [ "interfaces", "interface", "subinterfaces", "subinterface", "ipv4", "neighbors", "neighbor", "state", ] def _get_ip(self): return self.__ip
Apache License 2.0
stanford-mast/nn_dataflow
nn_dataflow/core/loop_blocking_scheme.py
LoopBlockingScheme._bl_tp
python
def _bl_tp(self, bl_lvls): assert isinstance(bl_lvls, slice) return [util.prod(ts[bl_lvls]) for ts in zip(*self.bl_ts)]
Get the products of the loop blocking factors for the given levels `bl_lvls`.
https://github.com/stanford-mast/nn_dataflow/blob/198a5274b9529125c6aa2b8b72b365d60cf83778/nn_dataflow/core/loop_blocking_scheme.py#L530-L536
import itertools import math from . import data_category_enum as de from . import loop_enum as le from . import mem_hier_enum as me from .node_region import NodeRegion from .. import util class LoopBlockingScheme(): class BL(): GBUF = 0 REGF = 1 NUM = 2 def __init__(self, nested_loop_desc, bl_ts, bl_ords, resource, bufshr, options): BL = self.BL self.nld = nested_loop_desc self.total_access_gbuf = [self.nld.total_access_at_of(me.GBUF, dce) for dce in range(de.NUM)] assert len(bl_ts) == BL.NUM + 1, 'LoopBlockingScheme: bl_ts has invalid length.' assert all(len(bl_t) == le.NUM for bl_t in bl_ts), 'LoopBlockingScheme: bl_ts elements have invalid length.' assert len(bl_ords) == BL.NUM, 'LoopBlockingScheme: bl_ords has invalid length.' assert all(tuple(sorted(bl_ord)) == tuple(range(le.NUM)) for bl_ord in bl_ords), 'LoopBlockingScheme: bl_ords elements are invalid.' self.bl_ts = [tuple(bl_t) for bl_t in bl_ts] self.bl_ords = [tuple(bl_ord) for bl_ord in bl_ords] bl_tp = self._bl_tp(slice(None)) for lpe in range(le.NUM): assert bl_tp[lpe] >= self.nld.loopcnt[lpe], 'LoopBlockingScheme: invalid blocking LP {}: {} for {}.' .format(lpe, self.bl_ts, self.nld.loopcnt) self.lcnt = util.prod(bl_tp) self.time = float('inf') self._init_bufshr(bufshr, options) self.unit_size = [tuple() for _ in range(BL.NUM)] self.unit_size[BL.GBUF] = self.nld.usize_gbuf self.unit_size[BL.REGF] = self.nld.usize_regf self._set_unit_cnt() self.stored_in_gbuf = [not options.sw_gbuf_bypass[dce] for dce in range(de.NUM)] if self.data_size(BL.REGF) > resource.size_regf or self.data_size(BL.GBUF) > resource.size_gbuf: self.valid = False return self.valid = True self._set_fetch() self.src_is_dram = (resource.src_data_region.type == NodeRegion.DRAM) self.dst_is_dram = (resource.dst_data_region.type == NodeRegion.DRAM) self.filter_pinned = False if not self.src_is_dram: if self.fetch[BL.GBUF][de.IFM] > 1: self.valid = False return if resource.src_data_region == resource.proc_region: self.stored_in_gbuf[de.IFM] = True if not self.dst_is_dram: if self.fetch[BL.GBUF][de.OFM] > 1: self.valid = False return if resource.dst_data_region == resource.proc_region: self.stored_in_gbuf[de.OFM] = True for dce in range(de.NUM): if self.stored_in_gbuf[dce]: continue assert options.sw_gbuf_bypass[dce] if self.fetch[BL.GBUF][dce] < self.fetch[BL.REGF][dce]: self.stored_in_gbuf[dce] = True if self.data_size(BL.REGF) > resource.size_regf or self.data_size(BL.GBUF) > resource.size_gbuf: self.valid = False return self.array_bus_width = resource.array_bus_width self.dram_bandwidth = resource.dram_bandwidth self.num_nodes = resource.proc_region.dim.size() self.finalized_stats = False self.ops = float('nan') self.time = float('nan') self.proc_time = float('nan') self.bus_time = float('nan') self.dram_time = float('nan') self.access = [[float('nan')] * de.NUM for _ in range(me.NUM)] self.noc_access = [0.] * de.NUM self.bufshr_rotation_access = [0.] * de.NUM self.bufshr_wide_fetch_access = [0.] * de.NUM self._set_bufshr(resource, bufshr, options) self._set_accfwd(bufshr, options) self.remote_gbuf_access = [0.] * de.NUM if resource.no_time_mux: if all(self.bl_ts[0][lpe] == 1 for lpe in self.nld.data_loops[de.FIL].loops()): self.filter_pinned = True self.fetch[0][de.FIL] = 0 def is_valid(self): return self.valid def data_size(self, blvl, dce=None): if dce is None: return sum(self.data_size(blvl, dce) for dce in range(de.NUM)) size = self.unit_cnt[blvl][dce] * self.unit_size[blvl][dce] if blvl == self.BL.GBUF: size *= 1 if self.stored_in_gbuf[dce] else 0 size = util.idivc(size, self.bufshr_subgrp_size[dce]) return size def get_access(self): if not self.is_valid(): return [[float('inf')] * de.NUM for _ in range(me.NUM)] if not self.finalized_stats: self._calc_stats() return self.access def get_top_level_fetch(self): if not self.is_valid(): return None if not self.finalized_stats: self._calc_stats() return self.fetch[self.BL.GBUF] def get_noc_access(self): if not self.is_valid(): return None if not self.finalized_stats: self._calc_stats() return self.noc_access def get_access_cost(self, cost): if not self.is_valid(): return float('inf') if not self.finalized_stats: self._calc_stats() acc_cost = sum(c * sum(a) for c, a in zip(cost.mem_hier, self.access)) acc_cost += cost.mem_hier_at(me.GBUF) * sum(self.remote_gbuf_access) return acc_cost def gen_index(self): bl_idxgen_list = [] bl_cnt_list = [] assert self.BL.NUM == 2 bl_gbuf = self.BL.GBUF bl_regf = self.BL.REGF t_x = self.bl_ts[bl_gbuf] order_x = self.bl_ords[bl_gbuf] cnt_x = self._bl_tp(slice(bl_gbuf + 1, None)) bl_idxgen_list.append(self._gen_index_single_level(t_x, order_x)) bl_cnt_list.append(cnt_x) t_x = self.bufshr_bs_t order_x = self.bufshr_bs_ord cnt_x = [x // b for x, b in zip(self._bl_tp(slice(bl_gbuf + 1, None)), self.bufshr_bs_t)] bl_idxgen_list.append(self._gen_index_single_level(t_x, order_x)) bl_cnt_list.append(cnt_x) t_x = [x // b for x, b in zip(self.bl_ts[bl_regf], self.bufshr_bs_t)] order_x = self.bl_ords[bl_regf] cnt_x = self._bl_tp(slice(bl_regf + 1, None)) bl_idxgen_list.append(self._gen_index_single_level(t_x, order_x)) bl_cnt_list.append(cnt_x) t_x = self.bl_ts[2] order_x = (0, 1, 2) cnt_x = (1,) * le.NUM bl_idxgen_list.append(self._gen_index_single_level(t_x, order_x)) bl_cnt_list.append(cnt_x) num = 0 for bl_idx_list in itertools.product(*bl_idxgen_list): idx = (0,) * le.NUM for bl_idx, bl_cnt in zip(bl_idx_list, bl_cnt_list): idx = tuple(i + bi * bc for i, bi, bc in zip(idx, bl_idx, bl_cnt)) num += 1 yield idx assert num == self.lcnt @classmethod def ordered_loops(cls, bl_t, bl_ord, lpe_only=False, reverse=False): ord_lpes = list(sorted([lpe for lpe in range(le.NUM) if bl_t[lpe] > 1], key=(lambda lpe: bl_ord[lpe]), reverse=not reverse)) if not lpe_only: return [(lpe, bl_t[lpe]) for lpe in ord_lpes] return ord_lpes def _set_unit_cnt(self): self.unit_cnt = [] for bl in range(self.BL.NUM): uc = self._t_data_cnt(self._bl_tp(slice(bl + 1, None))) self.unit_cnt.append(uc) def _set_fetch(self): self.fetch = [] assert self.BL.GBUF < self.BL.REGF for bl in range(self.BL.NUM): fe = [0] * de.NUM bl_t = self.bl_ts[bl] bl_ord = self.bl_ords[bl] for dce in range(de.NUM): inntdim_lp = self._innt_dim_loop(dce, bl_t, bl_ord) if inntdim_lp is None: fe[dce] = self.fetch[bl-1][dce] if bl > 0 else 1 continue f = 1 for lpe in self.nld.data_loops[dce].drop(range(le.NUM)): bl_start = bl + (bl_ord[lpe] > bl_ord[inntdim_lp]) f *= self._bl_tp(slice(bl_start))[lpe] fe[dce] = 2 * f - 1 if dce == de.OFM else f self.fetch.append(fe) def _calc_stats(self): self.ops = self.nld.unit_ops * self.lcnt * self.num_nodes self.proc_time = self.nld.unit_time * self.lcnt self.access[me.REGF] = [v * self.lcnt * t * self.num_nodes for v, t in zip(self.nld.unit_access[me.REGF], [1, 1, 2])] self.access[me.ITCN] = [self.nld.total_access_at_of(me.ITCN, dce) * self.fetch[self.BL.REGF][dce] * self.num_nodes for dce in range(de.NUM)] self.access[me.GBUF] = [self.nld.total_access_at_of(me.GBUF, dce) * self.fetch[self.BL.REGF][dce] * self.stored_in_gbuf[dce] * self.num_nodes for dce in range(de.NUM)] self.access[me.DRAM] = [(self.nld.total_access_at_of(me.DRAM, dce) if self.stored_in_gbuf[dce] else self.nld.total_access_at_of(me.GBUF, dce)) * self.fetch[self.BL.GBUF][dce] * self.num_nodes / self.accfwd_reduction[dce] for dce in range(de.NUM)] self.bufshr_rotation_access = self._calc_bufshr_rotation_access( self.bufshr_rot_fetch) self.bufshr_wide_fetch_access = self._calc_bufshr_widefetch_access( self.bufshr_wide_fetch) self.noc_access = [a1 + a2 for a1, a2 in zip(self.bufshr_rotation_access, self.bufshr_wide_fetch_access)] if not self.src_is_dram: self.remote_gbuf_access[de.IFM] += self.access[me.DRAM][de.IFM] self.access[me.DRAM][de.IFM] = 0 if not self.dst_is_dram: self.remote_gbuf_access[de.OFM] += self.access[me.DRAM][de.OFM] self.access[me.DRAM][de.OFM] = 0 if self.filter_pinned: assert self.access[me.DRAM][de.FIL] == 0 self.dram_time = int(math.ceil(sum(self.access[me.DRAM]) / self.dram_bandwidth)) self.bus_time = util.idivc(int(math.ceil(1. * max(self.access[me.GBUF]) / self.num_nodes)), self.array_bus_width) self.time = max(self.proc_time, self.bus_time, self.dram_time) self.finalized_stats = True
BSD 3-Clause New or Revised License
google-research/language
language/question_answering/b2t2/compute_vcr_features.py
create_tf_examples
python
def create_tf_examples(tokenizer, example, image_string, metadata, is_test=False): tokenize_fn = functools.partial(tokenize, tokenizer, example) q = tokenize_fn(example["question"]) if FLAGS.include_rationales: if is_test: answers = [tokenize_fn(a) for a in example["answer_choices"]] else: a = example["answer_choices"][example["answer_label"]] answers = [tokenize_fn(a)] rationales = [tokenize_fn(r) for r in example["rationale_choices"]] else: answers = [tokenize_fn(a) for a in example["answer_choices"]] rationales = [[]] y = collections.OrderedDict() y["image"] = make_bytes_feature([image_string]) annot_id = int(re.match(".*-([0-9]*)", example["annot_id"]).group(1)) img_id = int(re.match(".*-([0-9]*)", example["img_id"]).group(1)) y["annot_id"] = make_int64_feature([annot_id]) y["img_id"] = make_int64_feature([img_id]) for i, a in enumerate(answers): for j, r in enumerate(rationales): extra_tokens = [] if FLAGS.append_all_bboxes: num_appended_bboxes = min(len(metadata["boxes"]), FLAGS.max_num_bboxes) for idx in range(num_appended_bboxes): extra_tokens.extend(tokenizer.tokenize(example["objects"][idx])) extra_tokens.append("[OBJ-%d]" % idx) max_len = FLAGS.max_seq_length - 4 - len(extra_tokens) q, a, r = cap_length(q, a, r, max_len) tokens = ["[CLS]", "[IMAGE]"] + q + ["[SEP]"] + a + r + ["[SEP]"] tokens.extend(extra_tokens) tf.logging.info("Final tokens: %s", " ".join(tokens)) bbox_positions_matrix, bbox_indices_vector = get_bboxes(tokens, metadata) input_ids = tokenizer.convert_tokens_to_ids(tokens) segment_ids = [0] * (len(q) + 3) + [1] * ( len(a) + len(r) + 1 + len(extra_tokens)) input_mask = [1] * len(input_ids) padding_len = FLAGS.max_seq_length - len(input_ids) input_ids.extend([0] * padding_len) segment_ids.extend([0] * padding_len) input_mask.extend([0] * padding_len) bbox_indices_vector.extend([-1] * padding_len) if (len(input_ids) != FLAGS.max_seq_length or len(segment_ids) != FLAGS.max_seq_length or len(input_mask) != FLAGS.max_seq_length or len(bbox_indices_vector) != FLAGS.max_seq_length): tf.logging.fatal("Bad feature lengths: %d, %d, %d, %d", len(input_ids), len(segment_ids), len(input_mask), len(bbox_indices_vector)) if "answer_label" in example and "rationale_label" in example: if FLAGS.include_rationales: positive = j == example["rationale_label"] else: positive = i == example["answer_label"] else: positive = False y["choice_id"] = make_int64_feature([i * 4 + j]) y["input_ids"] = make_int64_feature(input_ids) y["segment_ids"] = make_int64_feature(segment_ids) y["input_mask"] = make_int64_feature(input_mask) y["label"] = make_int64_feature([int(positive)]) y["bbox_pos"] = make_int64_feature(bbox_positions_matrix) y["bbox_idx"] = make_int64_feature(bbox_indices_vector) yield tf.train.Example(features=tf.train.Features(feature=y))
Creates TF examples for the given VCR example and image feature vector.
https://github.com/google-research/language/blob/240cd2a1fd0307c6822b6f1f6c2abf1349a5a4da/language/question_answering/b2t2/compute_vcr_features.py#L190-L274
from __future__ import absolute_import from __future__ import division from __future__ import print_function import base64 import collections import functools import json import os import re import zipfile import absl from bert import tokenization import tensorflow.compat.v1 as tf flags = absl.flags FLAGS = flags.FLAGS flags.DEFINE_string( "data_dir", os.path.expanduser("~/data/vcr"), "Directory containing downloaded VCR data.") flags.DEFINE_string("vocab_path", None, "BERT vocab.") flags.DEFINE_string( "output_tfrecord", None, "Tf record file to write extracted features to.") flags.DEFINE_integer( "shard", 0, "Shard number for parallel processing.") flags.DEFINE_integer( "num_shards", 20, "Total number of shards for parallel processing.") flags.DEFINE_integer("max_seq_length", 64, "Maximum sequence length for BERT.") flags.DEFINE_integer("max_num_bboxes", 4, "Maximum number of bounding boxes to consider.") flags.DEFINE_bool( "append_all_bboxes", False, "Append all bboxes to end of token sequence, up to max_num_bboxes. We add " "the bboxes in order, including ones already mentioned in the text.") flags.DEFINE_bool( "include_rationales", False, "Whether to include rationales as choices. VCR requires to predict the " "answer first without the rationale, so we train a separate model for " "this case.") BLANK_JPEG = base64.b64decode( "/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh" "0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIy" "MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAABAA" "EDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIE" "AwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJi" "coKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWW" "l5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09f" "b3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQA" "AQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKj" "U2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJma" "oqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9" "oADAMBAAIRAxEAPwD3+iiigD//2Q==") def make_int64_feature(v): return tf.train.Feature(int64_list=tf.train.Int64List(value=v)) def make_float_feature(v): return tf.train.Feature(float_list=tf.train.FloatList(value=v)) def make_bytes_feature(v): return tf.train.Feature(bytes_list=tf.train.BytesList(value=v)) def parse_image(height, width, image_string): image_decoded = tf.image.decode_image(image_string, channels=3) image_decoded.set_shape([None, None, 3]) image_float = tf.image.convert_image_dtype(image_decoded, tf.float32) image_resized = tf.image.resize_image_with_pad(image_float, height, width) image = tf.reshape(image_resized, [1, height, width, 3]) return image def tokenize(tokenizer, example, text): tokens = [] for word_token in text: if isinstance(word_token, list): for i, object_id in enumerate(word_token): if i: tokens.append("and") tokens.extend(tokenizer.tokenize(example["objects"][object_id])) tokens.append("[OBJ-%d]" % object_id) else: tokens.extend(tokenizer.tokenize(word_token)) tf.logging.info("Tokenization: %s", tokens) return tokens def cap_length(q, a, r, length): assert length > 0, "length to cap too short: %d" % length while len(q) + len(a) + len(r) >= length: max_len = max(len(q), len(a), len(r)) if len(r) == max_len: r = r[:-1] elif len(a) == max_len: a = a[:-1] else: q = q[:-1] return q, a, r def get_bboxes(tokens, metadata): bbox_positions = {} bbox_indices = collections.defaultdict(list) for idx, t in enumerate(tokens): if len(bbox_positions) >= FLAGS.max_num_bboxes: break m = re.match(r"\[OBJ-(\d+)\]", t) if m: object_id = int(m.group(1)) bbox_positions[object_id] = metadata["boxes"][object_id] bbox_indices[object_id].append(idx) for idx in range(FLAGS.max_num_bboxes): if len(bbox_positions) == FLAGS.max_num_bboxes: break bbox_positions[-idx - 1] = [0, 0, 1, 1] bbox_positions_matrix = [] bbox_indices_vector = [-1] * len(tokens) for idx, (object_id, bbox) in enumerate(bbox_positions.iteritems()): offset_height = int(bbox[1]) offset_width = int(bbox[0]) target_height = int(bbox[3] - bbox[1]) target_width = int(bbox[2] - bbox[0]) bbox_positions_matrix.extend( [offset_height, offset_width, target_height, target_width]) for token_idx in bbox_indices[object_id]: bbox_indices_vector[token_idx] = idx tf.logging.info("Box positions: %s", bbox_positions_matrix) tf.logging.info("Box token indices: %s", bbox_indices_vector) return bbox_positions_matrix, bbox_indices_vector
Apache License 2.0
openstack/os-brick
os_brick/initiator/connectors/remotefs.py
RemoteFsConnector.connect_volume
python
def connect_volume(self, connection_properties): path = self._get_volume_path(connection_properties) return {'path': path}
Ensure that the filesystem containing the volume is mounted. :param connection_properties: The dictionary that describes all of the target volume attributes. connection_properties must include: export - remote filesystem device (e.g. '172.18.194.100:/var/nfs') name - file name within the filesystem :type connection_properties: dict :returns: dict connection_properties may optionally include: options - options to pass to mount
https://github.com/openstack/os-brick/blob/d0e762299143e0a2dbc4688f763e801df349472e/os_brick/initiator/connectors/remotefs.py#L89-L105
from oslo_log import log as logging from os_brick import initiator from os_brick.initiator.connectors import base from os_brick.remotefs import remotefs from os_brick import utils LOG = logging.getLogger(__name__) class RemoteFsConnector(base.BaseLinuxConnector): def __init__(self, mount_type, root_helper, driver=None, execute=None, device_scan_attempts=initiator.DEVICE_SCAN_ATTEMPTS_DEFAULT, *args, **kwargs): kwargs = kwargs or {} conn = kwargs.get('conn') mount_type_lower = mount_type.lower() if conn: mount_point_base = conn.get('mount_point_base') if mount_type_lower in ('nfs', 'glusterfs', 'scality', 'quobyte', 'vzstorage'): kwargs[mount_type_lower + '_mount_point_base'] = ( kwargs.get(mount_type_lower + '_mount_point_base') or mount_point_base) else: LOG.warning("Connection details not present." " RemoteFsClient may not initialize properly.") if mount_type_lower == 'scality': cls = remotefs.ScalityRemoteFsClient elif mount_type_lower == 'vzstorage': cls = remotefs.VZStorageRemoteFSClient else: cls = remotefs.RemoteFsClient self._remotefsclient = cls(mount_type, root_helper, execute=execute, *args, **kwargs) super(RemoteFsConnector, self).__init__( root_helper, driver=driver, execute=execute, device_scan_attempts=device_scan_attempts, *args, **kwargs) @staticmethod def get_connector_properties(root_helper, *args, **kwargs): return {} def set_execute(self, execute): super(RemoteFsConnector, self).set_execute(execute) self._remotefsclient.set_execute(execute) def get_search_path(self): return self._remotefsclient.get_mount_base() def _get_volume_path(self, connection_properties): mnt_flags = [] if connection_properties.get('options'): mnt_flags = connection_properties['options'].split() nfs_share = connection_properties['export'] self._remotefsclient.mount(nfs_share, mnt_flags) mount_point = self._remotefsclient.get_mount_point(nfs_share) path = mount_point + '/' + connection_properties['name'] return path def get_volume_paths(self, connection_properties): path = self._get_volume_path(connection_properties) return [path] @utils.trace
Apache License 2.0
spoclab-ca/covfefe
utils/lexicosyntactic/functions.py
get_anew_norms
python
def get_anew_norms(path_to_norms=None): if path_to_norms is not None: source_norms = path_to_norms else: source_norms = os.path.abspath('TODOme') with open(source_norms, "r") as fin: f = fin.readlines() f = f[1:] anew = {} for line in f: l = line.strip().split() anew[l[0]] = l[2:8] return anew return None
Parameters: path_to_norms : optional, string. Full path, including filename, of the ANEW norms. Return dictionary of ANEW norms, order: [ValMn ValSD AroMn AroSD DomMn DomSD]
https://github.com/spoclab-ca/covfefe/blob/905e8e5eb0905791de869db18c6f755838657203/utils/lexicosyntactic/functions.py#L81-L102
import nltk import os import re def get_filename(full_path): if full_path.find(os.sep) != -1 and full_path.rfind(os.sep) < len(full_path)-1: return full_path[full_path.rfind(os.sep)+1:] else: return full_path def get_fileid(filename): return filename[:filename.rfind('.')] def get_subject_sample(file_id): regex_fileformat = re.compile(r'^(?P<subjectID>[0-9a-zA-Z]+)[_-](?P<sessionID>[0-9a-zA-Z]+)[.](?:[0-9a-zA-Z]+)$') regex_extendedformat = re.compile(r'^(?P<subjectID>[0-9a-zA-Z]+)[_-](?P<sessionID>[0-9a-zA-Z]+)[-_](?P<speakerID>[0-9a-zA-Z]+)[.](?:[0-9a-zA-Z]+)$') if regex_fileformat.findall(file_id): return regex_fileformat.findall(file_id)[0] elif regex_extendedformat.findall(file_id): return regex_extendedformat.findall(file_id)[0] return None def get_frequency_norms(path_to_norms=None): if path_to_norms is not None: source_norms = path_to_norms else: source_norms = os.path.abspath('../feature_extraction/text/frequencies.txt') with open(source_norms, "r") as fin: f = fin.readlines() f = f[1:] freq = {} for line in f: l = line.strip().split() if len(l) == 0: continue freq[l[0].lower()] = l[1:] return freq return None def get_warringer_norms(path_to_norms=None): if path_to_norms is not None: source_norms = path_to_norms else: source_norms = os.path.abspath('TODOme') with open(source_norms, "r") as fin: f = fin.readlines() f = f[1:] warr = {} for line in f: l = line.strip().split(',') warr[l[1]] = l[2:11] return warr return None
Apache License 2.0
dgilland/zulu
src/zulu/zulu.py
Zulu.copy
python
def copy(self): return self.__class__(*self.datetimetuple())
Return a new :class`Zulu` instance with the same datetime value. Returns: :class:`.Zulu`
https://github.com/dgilland/zulu/blob/f911dd34d3ad2487edf4bb8b5c751eaef25e4f9f/src/zulu/zulu.py#L455-L462
import calendar from collections import namedtuple from datetime import datetime, timedelta import time from babel.dates import LC_TIME from dateutil.relativedelta import relativedelta from . import parser from .delta import Delta from .helpers import FOLD_AVAILABLE, NUMBER_TYPES from .parser import UTC LOCAL = "local" DATETIME_ATTRS = ( "year", "month", "day", "hour", "minute", "second", "microsecond", "tzinfo", "fold", ) TIME_FRAMES = ( "century", "decade", "year", "month", "week", "day", "hour", "minute", "second", ) DateTime = namedtuple( "DateTime", ["year", "month", "day", "hour", "second", "minute", "microsecond", "tzinfo"], ) Date = namedtuple("Date", ["year", "month", "day"]) def validate_frame(frame): if frame not in TIME_FRAMES: raise ValueError(f"Time frame must be one of {'|'.join(TIME_FRAMES)}, not '{frame}'") class Zulu(datetime): def __new__( cls, year=1970, month=1, day=1, hour=0, minute=0, second=0, microsecond=0, tzinfo=None, *, fold=0, ): if isinstance(year, bytes) and len(year) == 10 and 1 <= year[2] & 0x7F <= 12: return cls.fromdatetime(datetime(year, month)) elif isinstance(year, dict): obj = {key: value for key, value in year.items() if key in DATETIME_ATTRS} return cls(**obj) extra = {"fold": fold} if FOLD_AVAILABLE else {} if tzinfo: tzinfo = parser.get_timezone(tzinfo) if hasattr(tzinfo, "localize"): dt = tzinfo.localize( datetime(year, month, day, hour, minute, second, microsecond, **extra), is_dst=None, ) else: dt = datetime(year, month, day, hour, minute, second, microsecond, tzinfo, **extra) if dt.utcoffset() != timedelta(0): dt = dt.astimezone(UTC) year = dt.year month = dt.month day = dt.day hour = dt.hour minute = dt.minute second = dt.second microsecond = dt.microsecond tzinfo = dt.tzinfo if FOLD_AVAILABLE: extra["fold"] = dt.fold else: tzinfo = UTC return datetime.__new__( cls, year, month, day, hour, minute, second, microsecond, tzinfo, **extra ) @classmethod def now(cls): return cls.fromtimestamp(time.time()) @classmethod def utcnow(cls): return cls.now() @classmethod def parse(cls, obj, formats=None, default_tz=None): if isinstance(obj, dict): dt = cls(obj) else: dt = parser.parse_datetime(obj, formats, default_tz=default_tz) dt = cls.fromdatetime(dt) return dt @classmethod def fromdatetime(cls, dt): return cls( dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second, dt.microsecond, dt.tzinfo, fold=getattr(dt, "fold", 0), ) @classmethod def fromtimestamp(cls, timestamp, tz=UTC): return cls.utcfromtimestamp(timestamp) @classmethod def utcfromtimestamp(cls, timestamp): return cls.fromdatetime(datetime.utcfromtimestamp(timestamp)) @classmethod def fromordinal(cls, ordinal): return cls.fromdatetime(datetime.fromordinal(ordinal)) @classmethod def fromgmtime(cls, struct): return cls.fromtimestamp(calendar.timegm(struct)) @classmethod def fromlocaltime(cls, struct): return cls.fromtimestamp(time.mktime(struct)) @classmethod def combine(cls, date, time): if callable(getattr(date, "date", None)): date = date.date() if callable(getattr(time, "time", None)): time = time.time() return cls.fromdatetime(datetime.combine(date, time)) @classmethod def span_range(cls, frame, start, end): if not isinstance(start, Zulu): start = cls.parse(start) if not isinstance(end, Zulu): end = cls.parse(end) if start > end: return next_start = start while True: span = next_start.span(frame) if span[1] <= end: yield span next_start = span[1].shift(microseconds=1) else: break @classmethod def range(cls, frame, start, end): if not isinstance(start, Zulu): start = cls.parse(start) if not isinstance(end, Zulu): end = cls.parse(end) validate_frame(frame) if start > end: return if frame == "century": step_value = 100 frame = "year" elif frame == "decade": step_value = 10 frame = "year" else: step_value = 1 step = {f"{frame}s": step_value} next_start = start while True: next_end = next_start.shift(**step) if next_end <= end: yield next_start next_start = next_end else: break @property def naive(self): return self.datetime.replace(tzinfo=None) @property def datetime(self): return datetime(*self.datetimetuple()) def timestamp(self): return parser.get_timestamp(self) def datetimetuple(self): return DateTime( self.year, self.month, self.day, self.hour, self.minute, self.second, self.microsecond, self.tzinfo, ) def datetuple(self): return Date(self.year, self.month, self.day)
MIT License
ensime/ensime-vim
ensime_shared/client.py
EnsimeClient.type_check_cmd
python
def type_check_cmd(self, args, range=None): self.log.debug('type_check_cmd: in') self.start_typechecking() self.type_check("") self.editor.message('typechecking')
Sets the flag to begin buffering typecheck notes & clears any stale notes before requesting a typecheck from the server
https://github.com/ensime/ensime-vim/blob/caa734e84f002b25446c615706283a74edd4ecfe/ensime_shared/client.py#L336-L342
import inspect import json import logging import os import shutil import sys import tempfile import time from subprocess import PIPE, Popen from threading import Thread import websocket from .config import feedback, gconfig, LOG_FORMAT from .debugger import DebuggerClient from .errors import InvalidJavaPathError from .protocol import ProtocolHandler, ProtocolHandlerV1, ProtocolHandlerV2 from .typecheck import TypecheckHandler from .util import catch, Pretty, Util if sys.version_info > (3, 0): from queue import Queue else: from Queue import Queue class EnsimeClient(TypecheckHandler, DebuggerClient, ProtocolHandler): def __init__(self, editor, launcher): def setup_logger(): path = os.path config = self.launcher.config projectdir = path.abspath(config['root-dir']) project = config.get('name', path.basename(projectdir)) logger = logging.getLogger(__name__).getChild(project) if os.environ.get('ENSIME_VIM_DEBUG'): logger.setLevel(logging.DEBUG) else: logger.setLevel(logging.INFO) logdir = config['cache-dir'] if not path.isdir(logdir): try: os.mkdir(logdir) except OSError: logger.addHandler(logging.NullHandler()) return logger logfile = path.join(logdir, 'ensime-vim.log') handler = logging.FileHandler(logfile, mode='w') handler.setFormatter(logging.Formatter(LOG_FORMAT)) logger.addHandler(handler) logger.info('Initializing project - %s', projectdir) return logger super(EnsimeClient, self).__init__() self.editor = editor self.launcher = launcher self.log = setup_logger() self.log.debug('__init__: in') self.editor.initialize() self.ws = None self.ensime = None self.ensime_server = None self.call_id = 0 self.call_options = {} self.refactor_id = 1 self.refactorings = {} self.queue = Queue() self.suggestions = None self.completion_timeout = 10 self.completion_started = False self.full_types_enabled = False self.toggle_teardown = True self.connection_attempts = 0 self.tmp_diff_folder = tempfile.mkdtemp(prefix='ensime-vim-diffs') self.number_try_connection = 1 self.debug_thread_id = None self.running = True thread = Thread(name='queue-poller', target=self.queue_poll) thread.daemon = True thread.start() def queue_poll(self, sleep_t=0.5): connection_alive = True while self.running: if self.ws: def logger_and_close(msg): self.log.error('Websocket exception', exc_info=True) if not self.running: connection_alive = False else: if not self.number_try_connection: self.teardown() self._display_ws_warning() with catch(websocket.WebSocketException, logger_and_close): result = self.ws.recv() self.queue.put(result) if connection_alive: time.sleep(sleep_t) def setup(self, quiet=False, bootstrap_server=False): def lazy_initialize_ensime(): if not self.ensime: called_by = inspect.stack()[4][3] self.log.debug(str(inspect.stack())) self.log.debug('setup(quiet=%s, bootstrap_server=%s) called by %s()', quiet, bootstrap_server, called_by) installed = self.launcher.strategy.isinstalled() if not installed and not bootstrap_server: if not quiet: scala = self.launcher.config.get('scala-version') msg = feedback["prompt_server_install"].format(scala_version=scala) self.editor.raw_message(msg) return False try: self.ensime = self.launcher.launch() except InvalidJavaPathError: self.editor.message('invalid_java') return bool(self.ensime) def ready_to_connect(): if not self.ws and self.ensime.is_ready(): self.connect_ensime_server() return True return self.running and lazy_initialize_ensime() and ready_to_connect() def _display_ws_warning(self): warning = "A WS exception happened, 'ensime-vim' has been disabled. " + "For more information, have a look at the logs in `.ensime_cache`" self.editor.raw_message(warning) def send(self, msg): def reconnect(e): self.log.error('send error, reconnecting...', exc_info=True) self.connect_ensime_server() if self.ws: self.ws.send(msg + "\n") self.log.debug('send: in') if self.running and self.ws: with catch(websocket.WebSocketException, reconnect): self.log.debug('send: sending JSON on WebSocket') self.ws.send(msg + "\n") def connect_ensime_server(self): self.log.debug('connect_ensime_server: in') server_v2 = isinstance(self, EnsimeClientV2) def disable_completely(e): if e: self.log.error('connection error: %s', e, exc_info=True) self.shutdown_server() self._display_ws_warning() if self.running and self.number_try_connection: self.number_try_connection -= 1 if not self.ensime_server: port = self.ensime.http_port() uri = "websocket" if server_v2 else "jerky" self.ensime_server = gconfig["ensime_server"].format(port, uri) with catch(websocket.WebSocketException, disable_completely): options = {"subprotocols": ["jerky"]} if server_v2 else {} options['enable_multithread'] = True self.log.debug("About to connect to %s with options %s", self.ensime_server, options) self.ws = websocket.create_connection(self.ensime_server, **options) if self.ws: self.send_request({"typehint": "ConnectionInfoReq"}) else: disable_completely(None) def shutdown_server(self): self.log.debug('shutdown_server: in') if self.ensime and self.toggle_teardown: self.ensime.stop() def teardown(self): self.log.debug('teardown: in') self.running = False self.shutdown_server() shutil.rmtree(self.tmp_diff_folder, ignore_errors=True) def send_at_position(self, what, useSelection, where="range"): self.log.debug('send_at_position: in') b, e = self.editor.selection_pos() if useSelection else self.editor.word_under_cursor_pos() self.log.debug('useSelection: {}, beg: {}, end: {}'.format(useSelection, b, e)) beg = self.get_position(b[0], b[1]) end = self.get_position(e[0], e[1]) self.send_request( {"typehint": what + "AtPointReq", "file": self.editor.path(), where: {"from": beg, "to": end}}) def set_position(self, decl_pos): if decl_pos["typehint"] == "LineSourcePosition": self.editor.set_cursor(decl_pos['line'], 0) else: point = decl_pos["offset"] row, col = self.editor.point2pos(point + 1) self.editor.set_cursor(row, col) def get_position(self, row, col): result = col self.log.debug('%s %s', row, col) lines = self.editor.getlines()[:row - 1] result += sum([len(l) + 1 for l in lines]) self.log.debug(result) return result def open_decl_for_inspector_symbol(self): self.log.debug('open_decl_for_inspector_symbol: in') lineno = self.editor.cursor()[0] symbol = self.editor.symbol_for_inspector_line(lineno) self.symbol_by_name([symbol]) self.unqueue(should_wait=True) def symbol_by_name(self, args, range=None): self.log.debug('symbol_by_name: in') if not args: self.editor.raw_message('Must provide a fully-qualifed symbol name') return self.call_options[self.call_id] = {"split": True, "vert": True, "open_definition": True} fqn = args[0] req = { "typehint": "SymbolByNameReq", "typeFullName": fqn } if len(args) == 2: req["memberName"] = args[1] self.send_request(req) def complete(self, row, col): self.log.debug('complete: in') pos = self.get_position(row, col) self.send_request({"point": pos, "maxResults": 100, "typehint": "CompletionsReq", "caseSens": True, "fileInfo": self._file_info(), "reload": False}) def send_at_point(self, what, row, col): pos = self.get_position(row, col) self.send_request( {"typehint": what + "AtPointReq", "file": self._file_info(), "point": pos}) def do_toggle_teardown(self, args, range=None): self.log.debug('do_toggle_teardown: in') self.toggle_teardown = not self.toggle_teardown
MIT License
cics-nd/gptorch
test/test_models/test_base.py
TestGPModel._predict_fy_cuda
python
def _predict_fy_cuda(self, attr): gp = self._get_model() f = getattr(gp, attr) x_test = np.random.randn(5, gp.input_dimension) x_test_torch = TensorType(x_test) gp.cuda() cuda_np = f(x_test) for result in cuda_np: assert isinstance(result, np.ndarray) cuda_torch = f(x_test_torch) for result in cuda_torch: assert result.device == x_test_torch.device cuda_gpu = f(x_test_torch.to("cuda")) for result in cuda_gpu: assert result.is_cuda
attr='predict_f' or 'predict_y'
https://github.com/cics-nd/gptorch/blob/a80296c44d5738d2b9ffb8dfbd5b98d0febde069/test/test_models/test_base.py#L109-L132
import os import sys import pytest import torch import numpy as np from gptorch.models.base import GPModel from gptorch.mean_functions import Zero from gptorch.util import TensorType from gptorch.kernels import Rbf from gptorch.models import GPR base_path = os.path.join(os.path.dirname(__file__), "..", "..") if not base_path in sys.path: sys.path.append(base_path) from test.util import needs_cuda class TestGPModel(object): @needs_cuda def test_cuda(self): gp = self._get_model() gp.cuda() assert gp.X.is_cuda assert gp.Y.is_cuda @needs_cuda def test_cpu(self): gp = self._get_model() gp.cuda() gp.cpu() assert not gp.X.is_cuda assert not gp.Y.is_cuda def test_optimize(self): gp = self._get_model() gp.optimize(max_iter=2) gp.optimize(method="L-BFGS-B", max_iter=2) def test_predict_f(self): self._predict_fy("predict_f") @needs_cuda def test_predict_f_cuda(self): self._predict_fy_cuda("predict_f") def test_predict_y(self): self._predict_fy("predict_y") @needs_cuda def test_predict_y_cuda(self): self._predict_fy_cuda("predict_y") def test_predict_f_samples(self): self._predict_fy_samples("predict_f_samples") @needs_cuda def test_predict_f_samples_cuda(self): self._predict_fy_samples_cuda("predict_f_samples") def test_predict_y_samples(self): self._predict_fy_samples("predict_y_samples") @needs_cuda def test_predict_y_samples_cuda(self): self._predict_fy_samples_cuda("predict_y_samples") def _predict_fy(self, attr): n, dx, dy = 5, 3, 2 x, y = np.random.randn(n, dx), np.random.randn(n, dy) kern = Rbf(dx, ARD=True) gp = GPR(x, y, kern) n_test = 5 x_test = np.random.randn(n_test, dx) f = getattr(gp, attr) mu, v = f(x_test) for result in [mu, v]: assert isinstance(result, np.ndarray) assert result.ndim == 2 assert result.shape == (n_test, dy) x_test_torch = TensorType(x_test) mu_torch, v_torch = f(x_test_torch) for result in [mu_torch, v_torch]: assert isinstance(result, TensorType) assert result.ndimension() == 2 assert result.shape == (n_test, dy)
MIT License
societe-generale/aikit
aikit/tools/db_informations.py
get_var_type_columns_dico
python
def get_var_type_columns_dico(columns_informations): var_type_columns_dico = OrderedDict() for col, info in columns_informations.items(): if info["ToKeep"]: vt = info["TypeOfVariable"] if vt not in var_type_columns_dico: var_type_columns_dico[vt] = [] var_type_columns_dico[vt].append(col) return var_type_columns_dico
get a dictionnary with the list of columns for each type
https://github.com/societe-generale/aikit/blob/17f6cbc97e7f91e57a1e8d7db39ad29990dfbb47/aikit/tools/db_informations.py#L138-L150
from collections import OrderedDict import pandas as pd import numpy as np from sklearn.utils.multiclass import type_of_target import aikit.enums as en from aikit.enums import TypeOfVariables def guess_type_of_problem(dfX, y=None): if y is None: return en.TypeOfProblem.CLUSTERING if len(np.unique(y)) == 1: raise ValueError("y seems to be unique") if type_of_target(y) in ["binary", "multiclass"]: if "float" in str(y.dtype) or "int" in str(y.dtype): nb_u = len(np.unique(y)) nb = len(y) if nb_u >= 0.25 * nb: return en.TypeOfProblem.REGRESSION else: return en.TypeOfProblem.CLASSIFICATION return en.TypeOfProblem.CLASSIFICATION else: return en.TypeOfProblem.REGRESSION def guess_type_of_variable(s): if not isinstance(s, pd.Series): raise TypeError("s should be a Serie, not a '%s'" % type(s)) st = str(s.dtype) if "int" in st: return TypeOfVariables.NUM elif "float" in st: return TypeOfVariables.NUM elif "object" in st: nb_u = s.nunique() nb = len(s) if hasattr(s, "str"): avg_l = s.str.len().mean() else: avg_l = 0 if avg_l >= 50 or nb_u >= 0.5 * nb: return TypeOfVariables.TEXT return TypeOfVariables.CAT elif "bool" in st: return TypeOfVariables.CAT elif "category" in st: return TypeOfVariables.CAT elif "category" in st: return TypeOfVariables.CAT else: raise NotImplementedError("I don't know that type of Series : %s, please check" % st) def has_missing_values(s): if not isinstance(s, pd.Series): raise TypeError("s should be a Serie, not a '%s'" % type(s)) return bool(np.asarray(s.isnull()).sum().sum() > 0) def get_columns_informations(dfX): df_columns_info = OrderedDict() for c in dfX.columns: df_columns_info[c] = { "TypeOfVariable": guess_type_of_variable(dfX[c]), "HasMissing": has_missing_values(dfX[c]), "ToKeep": True, } return df_columns_info
BSD 2-Clause Simplified License
unofficial-memsource/memsource-cli-client
memsource_cli/models/quality_assurance_batch_run_dto_v3.py
QualityAssuranceBatchRunDtoV3.settings
python
def settings(self): return self._settings
Gets the settings of this QualityAssuranceBatchRunDtoV3. # noqa: E501 :return: The settings of this QualityAssuranceBatchRunDtoV3. # noqa: E501 :rtype: QualityAssuranceRunDtoV3
https://github.com/unofficial-memsource/memsource-cli-client/blob/a6639506b74e95476da87f4375953448b76ea90c/memsource_cli/models/quality_assurance_batch_run_dto_v3.py#L86-L93
import pprint import re import six from memsource_cli.models.quality_assurance_run_dto_v3 import QualityAssuranceRunDtoV3 from memsource_cli.models.uid_reference import UidReference class QualityAssuranceBatchRunDtoV3(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'jobs': 'list[UidReference]', 'settings': 'QualityAssuranceRunDtoV3', 'max_qa_warnings_count': 'int' } attribute_map = { 'jobs': 'jobs', 'settings': 'settings', 'max_qa_warnings_count': 'maxQaWarningsCount' } def __init__(self, jobs=None, settings=None, max_qa_warnings_count=None): self._jobs = None self._settings = None self._max_qa_warnings_count = None self.discriminator = None self.jobs = jobs if settings is not None: self.settings = settings if max_qa_warnings_count is not None: self.max_qa_warnings_count = max_qa_warnings_count @property def jobs(self): return self._jobs @jobs.setter def jobs(self, jobs): if jobs is None: raise ValueError("Invalid value for `jobs`, must not be `None`") self._jobs = jobs @property
Apache License 2.0
davidinouye/destructive-deep-learning
ddl/independent.py
IndependentDestructor.inverse_transform
python
def inverse_transform(self, X, y=None): self._check_is_fitted() X = check_array(X, ensure_min_samples=0) if X.shape[0] == 0: return X self._check_dim(X) X = check_X_in_interval(X, np.array([0, 1])) Z = np.array([ u_dens.inverse_cdf(np.reshape(x_col, (-1, 1))).ravel() for u_dens, x_col in zip(self.density_.univariate_densities_, X.transpose()) ]).transpose() return Z
Apply inverse destructive transformation to X. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where `n_samples` is the number of samples and `n_features` is the number of features. y : None, default=None Not used in the transformation but kept for compatibility. Returns ------- X_new : array-like, shape (n_samples, n_features) Transformed data.
https://github.com/davidinouye/destructive-deep-learning/blob/632add7a9731347e050d271ceebb24251e1d8e01/ddl/independent.py#L129-L160
from __future__ import division, print_function import itertools import logging import warnings import numpy as np from sklearn.base import BaseEstimator, TransformerMixin, clone from sklearn.exceptions import NotFittedError from sklearn.utils.validation import check_array, check_is_fitted, check_random_state from .base import BaseDensityDestructor, ScoreMixin from .univariate import STANDARD_NORMAL_DENSITY, ScipyUnivariateDensity from .utils import (_UNIT_SPACE, check_X_in_interval, get_domain_or_default, get_support_or_default, make_interior_probability) logger = logging.getLogger(__name__) class IndependentDestructor(BaseDensityDestructor): def __init__(self, independent_density=None): self.independent_density = independent_density def _get_density_estimator(self): if self.independent_density is None: return IndependentDensity() else: return clone(self.independent_density) @classmethod def create_fitted(cls, fitted_density, **kwargs): destructor = cls(**kwargs) destructor.density_ = fitted_density return destructor def transform(self, X, y=None): self._check_is_fitted() X = check_array(X) if X.shape[0] == 0: return X self._check_dim(X) X = check_X_in_interval(X, get_domain_or_default(self)) Z = np.array([ u_dens.cdf(np.reshape(x_col, (-1, 1))).ravel() for u_dens, x_col in zip(self.density_.univariate_densities_, X.transpose()) ]).transpose() return Z
BSD 3-Clause New or Revised License
maestrograph/sparse-hyper
experiments/gconvolution.py
MatrixHyperlayer.generate_integer_tuples
python
def generate_integer_tuples(self, means,rng=None, use_cuda=False): dv = 'cuda' if use_cuda else 'cpu' c, k, rank = means.size() assert rank == 1 """ Sample the 2 nearest points """ floor_mask = torch.tensor([1, 0], device=dv, dtype=torch.uint8) fm = floor_mask.unsqueeze(0).unsqueeze(2).expand(c, k, 2, 1) neighbor_ints = means.data.unsqueeze(2).expand(c, k, 2, 1).contiguous() neighbor_ints[fm] = neighbor_ints[fm].floor() neighbor_ints[~fm] = neighbor_ints[~fm].ceil() neighbor_ints = neighbor_ints.long() """ Sample uniformly from a small range around the given index tuple """ rr_ints = torch.cuda.FloatTensor(c, k, self.radditional, 1) if use_cuda else torch.FloatTensor(c, k, self.radditional, 1) rr_ints.uniform_() rr_ints *= (1.0 - gaussian.EPSILON) rng = torch.cuda.FloatTensor(rng) if use_cuda else torch.FloatTensor(rng) rngxp = rng.unsqueeze(0).unsqueeze(0).unsqueeze(0).expand_as(rr_ints) rrng = torch.cuda.FloatTensor(self.region) if use_cuda else torch.FloatTensor(self.region) rrng = rrng.unsqueeze(0).unsqueeze(0).unsqueeze(0).expand_as(rr_ints) mns_expand = means.round().unsqueeze(2).expand_as(rr_ints) lower = mns_expand - rrng * 0.5 upper = mns_expand + rrng * 0.5 idxs = lower < 0.0 lower[idxs] = 0.0 idxs = upper > rngxp lower[idxs] = rngxp[idxs] - rrng[idxs] rr_ints = (rr_ints * rrng + lower).long() """ Sample uniformly from all index tuples """ g_ints = torch.cuda.FloatTensor(c, k, self.gadditional, 1) if use_cuda else torch.FloatTensor(c, k, self.gadditional, 1) rngxp = rng.unsqueeze(0).unsqueeze(0).unsqueeze(0).expand_as(g_ints) g_ints.uniform_() g_ints *= (1.0 - gaussian.EPSILON) * rngxp g_ints = g_ints.long() ints = torch.cat([neighbor_ints, rr_ints, g_ints], dim=2) return ints.view(c, -1, rank)
Sample the 2 nearest points
https://github.com/maestrograph/sparse-hyper/blob/a1b2186e2d0c9047085ef4273909d207facbeeb3/experiments/gconvolution.py#L153-L219
import sys import matplotlib as mpl import torch.nn.functional as F import torch.optim as optim import torchvision import torchvision.transforms as transforms from tensorboardX import SummaryWriter from torch import nn from torch.autograd import Variable from tqdm import trange import gaussian import util from util import sparsemm mpl.use('Agg') import matplotlib.pyplot as plt import numpy as np from argparse import ArgumentParser import networkx as nx import math import torch from torch.nn.parameter import Parameter from torch.nn.modules.module import Module def clean(axes=None): if axes is None: axes = plt.gca() [s.set_visible(False) for s in axes.spines.values()] axes.tick_params(top=False, bottom=False, left=False, right=False, labelbottom=False, labelleft=False) def densities(points, means, sigmas): batchsize, n, rank = points.size() batchsize, k, rank = means.size() points = points.unsqueeze(2).expand(batchsize, n, k, rank) means = means.unsqueeze(1).expand_as(points) sigmas = sigmas.unsqueeze(1).expand_as(points) sigmas_squared = torch.sqrt(1.0/(gaussian.EPSILON + sigmas)) points = points - means points = points * sigmas_squared points = points.view(-1, 1, rank) products = torch.bmm(points, points.transpose(1,2)) products = products.view(batchsize, n, k) num = torch.exp(- 0.5 * products) return num class MatrixHyperlayer(nn.Module): def duplicates(self, tuples): b, k, r = tuples.size() primes = self.primes[:r] primes = primes.unsqueeze(0).unsqueeze(0).expand(b, k, r) unique = ((tuples+1) ** primes).prod(dim=2) sorted, sort_idx = torch.sort(unique, dim=1) _, unsort_idx = torch.sort(sort_idx, dim=1) mask = sorted[:, 1:] == sorted[:, :-1] zs = torch.zeros(b, 1, dtype=torch.uint8, device='cuda' if self.use_cuda else 'cpu') mask = torch.cat([zs, mask], dim=1) return torch.gather(mask, 1, unsort_idx) def cuda(self, device_id=None): self.use_cuda = True super().cuda(device_id) def __init__(self, in_num, out_num, k, radditional=0, gadditional=0, region=(128,), sigma_scale=0.2, min_sigma=0.0, fix_value=False): super().__init__() self.min_sigma = min_sigma self.use_cuda = False self.in_num = in_num self.out_num = out_num self.k = k self.radditional = radditional self.region = region self.gadditional = gadditional self.sigma_scale = sigma_scale self.fix_value = fix_value self.weights_rank = 2 self.params = Parameter(torch.randn(k * out_num, 3)) outs = torch.arange(out_num).unsqueeze(1).expand(out_num, k * (2 + radditional + gadditional)).contiguous().view(-1, 1) self.register_buffer('outs', outs.long()) outs_inf = torch.arange(out_num).unsqueeze(1).expand(out_num, k).contiguous().view(-1, 1) self.register_buffer('outs_inf', outs_inf.long()) self.register_buffer('primes', torch.tensor(util.PRIMES)) def size(self): return (self.out_num, self.in_num)
MIT License
tlc-pack/tenset
python/tvm/contrib/debugger/debug_runtime.py
GraphModuleDebug._create_debug_env
python
def _create_debug_env(self, graph_json, ctx): if not self._dump_root: self._dump_root = tempfile.mkdtemp(prefix=_DUMP_ROOT_PREFIX) ctx = self._format_context(ctx) self._dump_path = self._get_dump_path(ctx) self.debug_datum = debug_result.DebugResult(graph_json, self._dump_path)
Create UI wrapper framework to handle multiple UI frontends for tvmdbg Parameters ---------- graph_json : json format json formatted NNVM graph contain list of each node's name, shape and type. nodes_list : list List of all the nodes presented in the graph ctx : TVMContext The context this module is under.
https://github.com/tlc-pack/tenset/blob/3f7ed0291df47331d43f43a064fffacdc2914b47/python/tvm/contrib/debugger/debug_runtime.py#L145-L170
import os import tempfile import shutil import tvm._ffi from tvm._ffi.base import string_types from tvm.contrib import graph_runtime from tvm.runtime.ndarray import array from . import debug_result _DUMP_ROOT_PREFIX = "tvmdbg_" _DUMP_PATH_PREFIX = "_tvmdbg_" def create(graph_json_str, libmod, ctx, dump_root=None): assert isinstance(graph_json_str, string_types) try: ctx, num_rpc_ctx, device_type_id = graph_runtime.get_device_ctx(libmod, ctx) if num_rpc_ctx == len(ctx): fcreate = ctx[0]._rpc_sess.get_function("tvm.graph_runtime_debug.create") else: fcreate = tvm._ffi.get_global_func("tvm.graph_runtime_debug.create") except ValueError: raise ValueError( "Please set '(USE_GRAPH_RUNTIME_DEBUG ON)' in " "config.cmake and rebuild TVM to enable debug mode" ) func_obj = fcreate(graph_json_str, libmod, *device_type_id) return GraphModuleDebug(func_obj, ctx, graph_json_str, dump_root) class GraphModuleDebug(graph_runtime.GraphModule): def __init__(self, module, ctx, graph_json_str, dump_root): self._dump_root = dump_root self._dump_path = None self._get_output_by_layer = module["get_output_by_layer"] self._run_individual = module["run_individual"] graph_runtime.GraphModule.__init__(self, module) self._create_debug_env(graph_json_str, ctx) def _format_context(self, ctx): return str(ctx[0]).upper().replace("(", ":").replace(")", "") def _ensure_dir(self, directory): if not os.path.exists(directory): os.makedirs(directory, 0o700) def _get_dump_path(self, ctx): folder_name = _DUMP_PATH_PREFIX + "ctx_" folder_name = folder_name + ctx.replace(":", "_") path = os.path.join(self._dump_root, folder_name) self._ensure_dir(path) return path def _remove_dump_root(self): if os.path.isdir(self._dump_root): shutil.rmtree(self._dump_root)
Apache License 2.0
xhochy/fletcher
fletcher/base.py
FletcherBaseArray.ndim
python
def ndim(self) -> int: return len(self.shape)
Return the number of dimensions of the underlying data.
https://github.com/xhochy/fletcher/blob/39ce11d71e4ac1e95725d46be21bb38f3ea04349/fletcher/base.py#L433-L435
import datetime import operator from collections import OrderedDict from collections.abc import Iterable from copy import copy as copycopy from distutils.version import LooseVersion from functools import partialmethod from typing import Any, Callable, List, Optional, Sequence, Tuple, Type, Union import numpy as np import pandas as pd import pyarrow as pa from pandas.api.types import ( is_array_like, is_bool_dtype, is_int64_dtype, is_integer, is_integer_dtype, ) from pandas.core.arrays import ExtensionArray from pandas.core.dtypes.dtypes import ExtensionDtype, register_extension_dtype from pandas.util._decorators import doc from fletcher._algorithms import ( extract_isnull_bytemap, kurt_op, max_op, median_op, min_op, np_ufunc_op, prod_op, skew_op, std_op, sum_op, take_on_pyarrow_list, var_op, ) from fletcher.algorithms.bool import all_op, all_true, any_op, or_na, or_vectorised from fletcher.algorithms.utils.chunking import _calculate_chunk_offsets from fletcher.string_mixin import StringSupportingExtensionArray PANDAS_GE_0_26_0 = LooseVersion(pd.__version__) >= "0.26.0" if PANDAS_GE_0_26_0: from pandas.core.indexers import check_array_indexer ARROW_GE_0_18_0 = LooseVersion(pa.__version__) >= "0.18.0" _python_type_map = { pa.null().id: str, pa.bool_().id: bool, pa.int8().id: int, pa.uint8().id: int, pa.int16().id: int, pa.uint16().id: int, pa.int32().id: int, pa.uint32().id: int, pa.int64().id: int, pa.uint64().id: int, pa.float16().id: float, pa.float32().id: float, pa.float64().id: float, pa.date32().id: datetime.date, pa.date64().id: datetime.date, pa.timestamp("ms").id: datetime.datetime, pa.binary().id: bytes, pa.string().id: str, pa.list_(pa.string()).id: list, pa.large_list(pa.string()).id: list, pa.dictionary(pa.int32(), pa.int32()).id: dict, pa.duration("ns").id: datetime.timedelta, } _string_type_map = {"date64[ms]": pa.date64(), "string": pa.string()} _examples = { pa.null(): pa.array([None, None], type=pa.null()), pa.bool_(): pa.array([None, True], type=pa.bool_()), pa.int8(): pa.array([None, -1], type=pa.int8()), pa.uint8(): pa.array([None, 1], type=pa.uint8()), pa.int16(): pa.array([None, -1], type=pa.int16()), pa.uint16(): pa.array([None, 1], type=pa.uint16()), pa.int32(): pa.array([None, -1], type=pa.int32()), pa.uint32(): pa.array([None, 1], type=pa.uint32()), pa.int64(): pa.array([None, -1], type=pa.int64()), pa.uint64(): pa.array([None, 1], type=pa.uint64()), pa.float16(): pa.array([None, np.float16(-0.1)], type=pa.float16()), pa.float32(): pa.array([None, -0.1], type=pa.float32()), pa.float64(): pa.array([None, -0.1], type=pa.float64()), pa.date32(): pa.array([None, datetime.date(2010, 9, 8)], type=pa.date32()), pa.date64(): pa.array([None, datetime.date(2010, 9, 8)], type=pa.date64()), pa.timestamp("s"): pa.array( [None, datetime.datetime(2013, 12, 11, 10, 9, 8)], type=pa.timestamp("s") ), pa.timestamp("ms"): pa.array( [None, datetime.datetime(2013, 12, 11, 10, 9, 8, 1000)], type=pa.timestamp("ms") ), pa.timestamp("us"): pa.array( [None, datetime.datetime(2013, 12, 11, 10, 9, 8, 7)], type=pa.timestamp("us") ), pa.timestamp("ns"): pa.array( [None, datetime.datetime(2013, 12, 11, 10, 9, 8, 7)], type=pa.timestamp("ns") ), pa.binary(): pa.array([None, b"122"], type=pa.binary()), pa.string(): pa.array([None, "🤔"], type=pa.string()), pa.duration("s"): pa.array( [None, datetime.timedelta(seconds=9)], type=pa.duration("s") ), pa.duration("ms"): pa.array( [None, datetime.timedelta(milliseconds=8)], type=pa.duration("ms") ), pa.duration("us"): pa.array( [None, datetime.timedelta(microseconds=7)], type=pa.duration("us") ), pa.duration("ns"): pa.array( [None, datetime.timedelta(microseconds=7)], type=pa.duration("ns") ), } def _get_example(arrow_dtype: pa.DataType) -> pa.Array: if isinstance(arrow_dtype, pa.ListType): return pa.array( [None, _get_example(arrow_dtype.value_type).to_pylist()], type=arrow_dtype ) return _examples[arrow_dtype] def _is_numeric(arrow_dtype: pa.DataType) -> bool: return ( pa.types.is_integer(arrow_dtype) or pa.types.is_floating(arrow_dtype) or pa.types.is_decimal(arrow_dtype) ) class FletcherBaseDtype(ExtensionDtype): na_value = pd.NA def __init__(self, arrow_dtype: pa.DataType): self.arrow_dtype = arrow_dtype def __hash__(self) -> int: return hash(self.arrow_dtype) def __eq__(self, other) -> bool: if isinstance(other, str): return other == self.name elif isinstance(other, type(self)): return self.arrow_dtype == other.arrow_dtype else: return False @property def type(self): return _python_type_map[self.arrow_dtype.id] @property def kind(self) -> str: if pa.types.is_date(self.arrow_dtype): return "O" elif self._is_list: return "O" elif pa.types.is_string(self.arrow_dtype): return "U" else: return np.dtype(self.arrow_dtype.to_pandas_dtype()).kind @property def name(self) -> str: return str(self) @property def itemsize(self) -> int: return self.arrow_dtype.bit_width @property def _is_boolean(self): return pa.types.is_boolean(self.arrow_dtype) @property def _is_numeric(self): return _is_numeric(self.arrow_dtype) @property def _is_list(self): return pa.types.is_list(self.arrow_dtype) or pa.types.is_large_list( self.arrow_dtype ) def __from_arrow__(self, data): return self.construct_array_type()(data) def example(self): return self.construct_array_type()(_get_example(self.arrow_dtype)) @register_extension_dtype class FletcherContinuousDtype(FletcherBaseDtype): def __str__(self) -> str: return f"fletcher_continuous[{self.arrow_dtype}]" def __repr__(self) -> str: return "FletcherContinuousDtype({})".format(str(self.arrow_dtype)) @classmethod def construct_from_string(cls, string: str): if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got <class 'int'>" ) if string.startswith("fletcher_continuous["): string = string[len("fletcher_continuous[") : -1] else: raise TypeError( f"Cannot construct a 'FletcherContinuousDtype' from '{string}'" ) if string == "list<item: string>": return cls(pa.list_(pa.string())) try: type_for_alias = pa.type_for_alias(string) except (ValueError, KeyError): raise TypeError(string) return cls(type_for_alias) @classmethod def construct_array_type(cls, *args): if len(args) > 0: raise NotImplementedError("construct_array_type does not support arguments") return FletcherContinuousArray @register_extension_dtype class FletcherChunkedDtype(FletcherBaseDtype): def __str__(self) -> str: return f"fletcher_chunked[{self.arrow_dtype}]" def __repr__(self) -> str: return "FletcherChunkedDtype({})".format(str(self.arrow_dtype)) @classmethod def construct_from_string(cls, string: str) -> "FletcherChunkedDtype": if not isinstance(string, str): raise TypeError( "'construct_from_string' expects a string, got <class 'int'>" ) if string.startswith("fletcher_chunked["): string = string[len("fletcher_chunked[") : -1] else: raise TypeError( f"Cannot construct a 'FletcherChunkedDtype' from '{string}'" ) if string == "list<item: string>": return cls(pa.list_(pa.string())) try: type_for_alias = pa.type_for_alias(string) except (ValueError, KeyError): raise TypeError(string) return cls(type_for_alias) @classmethod def construct_array_type(cls, *args) -> "Type[FletcherChunkedArray]": if len(args) > 0: raise NotImplementedError("construct_array_type does not support arguments") return FletcherChunkedArray class FletcherBaseArray(StringSupportingExtensionArray): _can_hold_na = True @property def dtype(self) -> ExtensionDtype: return self._dtype def __array__(self, *args, **kwargs) -> np.ndarray: return self.data.__array__(*args, **kwargs) def __arrow_array__(self, type=None): return self.data @property def size(self) -> int: return len(self.data) @property def shape(self) -> Tuple[int]: return (self.size,) @property
MIT License
victorca25/basicsr
codes/models/modules/architectures/block.py
depth_to_space_tf
python
def depth_to_space_tf(x, bs:int=2): assert bs >= 1 and isinstance(bs, int) if bs == 1: return x b, c, h, w = x.size() if c % (bs ** 2) != 0: raise ValueError("The tensor channels must be divisible by " "(bs ** 2).") new_d = -1 new_h = h * bs new_w = w * bs x = x.view(b, bs, bs, new_d, h, w) x = x.permute(0, 3, 4, 1, 5, 2).contiguous() return x.view(b, new_d, new_h, new_w)
Pixel shuffle (TensorFlow). Equivalent to: https://www.tensorflow.org/api_docs/python/tf/nn/depth_to_space Args: x (Tensor): Input tensor (b, c, h, w). bs: block_size, scale factor. Returns: Tensor: tensor after pixel shuffle.
https://github.com/victorca25/basicsr/blob/62cf668ebe35b1b0c9d573b500e129f94430ab5a/codes/models/modules/architectures/block.py#L463-L490
from collections import OrderedDict import torch import torch.nn as nn from models.modules.architectures.convolutions.partialconv2d import PartialConv2d from models.modules.architectures.convolutions.deformconv2d import DeformConv2d from models.networks import weights_init_normal, weights_init_xavier, weights_init_kaiming, weights_init_orthogonal def swish_func(x, beta=1.0, inplace=False): if inplace: result = x.clone() torch.sigmoid_(beta*x) x *= result return x return x * torch.sigmoid(beta * x) class Swish(nn.Module): __constants__ = ['beta', 'slope', 'inplace'] def __init__(self, beta=1.0, slope=1.67653251702, inplace=False): super(Swish, self).__init__() self.inplace = inplace self.beta = torch.nn.Parameter(torch.tensor(beta)) self.beta.requiresGrad = True self.slope = slope / 2 def forward(self, x): return 2 * self.slope * swish_func(x, self.beta, self.inplace) def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1, beta=1.0): act_type = act_type.lower() if act_type == 'relu': layer = nn.ReLU(inplace) elif act_type in ('leakyrelu', 'lrelu'): layer = nn.LeakyReLU(neg_slope, inplace) elif act_type == 'prelu': layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope) elif act_type == 'tanh': layer = nn.Tanh() elif act_type == 'sigmoid': layer = nn.Sigmoid() elif act_type == 'swish': layer = Swish(beta=beta, inplace=inplace) else: raise NotImplementedError('activation layer [{:s}] is not found'.format(act_type)) return layer class Identity(nn.Module): def __init__(self, *kwargs): super(Identity, self).__init__() def forward(self, x, *kwargs): return x def norm(norm_type, nc): norm_type = norm_type.lower() if norm_type == 'batch': layer = nn.BatchNorm2d(nc, affine=True) elif norm_type == 'instance': layer = nn.InstanceNorm2d(nc, affine=False) elif norm_type == 'none': def norm_layer(x): return Identity() else: raise NotImplementedError('normalization layer [{:s}] is not found'.format(norm_type)) return layer def add_spectral_norm(module, use_spectral_norm=False): if use_spectral_norm: return nn.utils.spectral_norm(module) return module def pad(pad_type, padding): pad_type = pad_type.lower() if padding == 0: return None if pad_type == 'reflect': layer = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': layer = nn.ReplicationPad2d(padding) elif pad_type == 'zero': layer = nn.ZeroPad2d(padding) else: raise NotImplementedError('padding layer [{:s}] is not implemented'.format(pad_type)) return layer def get_valid_padding(kernel_size, dilation): kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1) padding = (kernel_size - 1) // 2 return padding class ConcatBlock(nn.Module): def __init__(self, submodule): super(ConcatBlock, self).__init__() self.sub = submodule def forward(self, x): output = torch.cat((x, self.sub(x)), dim=1) return output def __repr__(self): return 'Identity .. \n|' + self.sub.__repr__().replace('\n', '\n|') class ShortcutBlock(nn.Module): def __init__(self, submodule): super(ShortcutBlock, self).__init__() self.sub = submodule def forward(self, x): output = x + self.sub(x) return output def __repr__(self): return 'Identity + \n|' + self.sub.__repr__().replace('\n', '\n|') def sequential(*args): if len(args) == 1: if isinstance(args[0], OrderedDict): raise NotImplementedError('sequential does not support OrderedDict input.') return args[0] modules = [] for module in args: if isinstance(module, nn.Sequential): for submodule in module.children(): modules.append(submodule) elif isinstance(module, nn.Module): modules.append(module) return nn.Sequential(*modules) def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias=True, pad_type='zero', norm_type=None, act_type='relu', mode='CNA', convtype='Conv2D', spectral_norm=False): assert mode in ['CNA', 'NAC', 'CNAC'], 'Wrong conv mode [{:s}]'.format(mode) padding = get_valid_padding(kernel_size, dilation) p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None padding = padding if pad_type == 'zero' else 0 if convtype=='PartialConv2D': c = PartialConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, groups=groups) elif convtype=='DeformConv2D': c = DeformConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, groups=groups) elif convtype=='Conv3D': c = nn.Conv3d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, groups=groups) else: c = nn.Conv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, groups=groups) if spectral_norm: c = nn.utils.spectral_norm(c) a = act(act_type) if act_type else None if 'CNA' in mode: n = norm(norm_type, out_nc) if norm_type else None return sequential(p, c, n, a) elif mode == 'NAC': if norm_type is None and act_type is not None: a = act(act_type, inplace=False) n = norm(norm_type, in_nc) if norm_type else None return sequential(n, a, p, c) def make_layer(basic_block, num_basic_block, **kwarg): layers = [] for _ in range(num_basic_block): layers.append(basic_block(**kwarg)) return nn.Sequential(*layers) class Mean(nn.Module): def __init__(self, dim: list, keepdim=False): super().__init__() self.dim = dim self.keepdim = keepdim def forward(self, x): return torch.mean(x, self.dim, self.keepdim) @torch.no_grad() def default_init_weights(module_list, init_type='kaiming', scale=1, bias_fill=0, **kwargs): if not isinstance(module_list, list): module_list = [module_list] for module in module_list: for m in module.modules(): if init_type == 'normal': weights_init_normal(m, bias_fill=bias_fill, **kwargs) if init_type == 'xavier': weights_init_xavier(m, scale=scale, bias_fill=bias_fill, **kwargs) elif init_type == 'kaiming': weights_init_kaiming(m, scale=scale, bias_fill=bias_fill, **kwargs) elif init_type == 'orthogonal': weights_init_orthogonal(m, bias_fill=bias_fill) else: raise NotImplementedError('initialization method [{:s}] not implemented'.format(init_type)) class Upsample(nn.Module): def __init__(self, size=None, scale_factor=None, mode="nearest", align_corners=None): super(Upsample, self).__init__() if isinstance(scale_factor, tuple): self.scale_factor = tuple(float(factor) for factor in scale_factor) else: self.scale_factor = float(scale_factor) if scale_factor else None self.mode = mode self.size = size self.align_corners = align_corners def forward(self, x): return nn.functional.interpolate( x, size=self.size, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners) def extra_repr(self): if self.scale_factor is not None: info = 'scale_factor=' + str(self.scale_factor) else: info = 'size=' + str(self.size) info += ', mode=' + self.mode return info def pixelshuffle_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True, pad_type='zero', norm_type=None, act_type='relu', convtype='Conv2D'): conv = conv_block(in_nc, out_nc * (upscale_factor ** 2), kernel_size, stride, bias=bias, pad_type=pad_type, norm_type=None, act_type=None, convtype=convtype) pixel_shuffle = nn.PixelShuffle(upscale_factor) n = norm(norm_type, out_nc) if norm_type else None a = act(act_type) if act_type else None return sequential(conv, pixel_shuffle, n, a) def upconv_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True, pad_type='zero', norm_type=None, act_type='relu', mode='nearest', convtype='Conv2D'): upscale_factor = (1, upscale_factor, upscale_factor) if convtype == 'Conv3D' else upscale_factor upsample = Upsample(scale_factor=upscale_factor, mode=mode) conv = conv_block(in_nc, out_nc, kernel_size, stride, bias=bias, pad_type=pad_type, norm_type=norm_type, act_type=act_type, convtype=convtype) return sequential(upsample, conv) class DepthToSpace(nn.Module): def __init__(self, block_size:int=2, form:str='pt'): super().__init__() self.bs = block_size self.form = form def forward(self, x): if self.form == 'tf': return depth_to_space_tf(x, self.bs) return depth_to_space(x, self.bs) def extra_repr(self): return f"block_size={self.bs}" def depth_to_space(x, bs:int=2): assert bs >= 1 and isinstance(bs, int) if bs == 1: return x b, c, h, w = x.size() if c % (bs ** 2) != 0: raise ValueError("The tensor channels must be divisible by " "(bs ** 2).") new_d = -1 new_h = h * bs new_w = w * bs x = x.view(b, new_d, bs, bs, h, w) x = x.permute(0, 1, 4, 2, 5, 3).contiguous() return x.view(b, new_d, new_h, new_w)
Apache License 2.0
pycontribs/pyrax
pyrax/cloudmonitoring.py
CloudMonitorAlarm.update
python
def update(self, criteria=None, disabled=False, label=None, name=None, metadata=None): return self.entity.update_alarm(self, criteria=criteria, disabled=disabled, label=label, name=name, metadata=metadata)
Updates this alarm.
https://github.com/pycontribs/pyrax/blob/a0c022981f76a4cba96a22ecc19bb52843ac4fbe/pyrax/cloudmonitoring.py#L969-L975
from __future__ import absolute_import, unicode_literals from functools import wraps import re from pyrax.client import BaseClient import pyrax.exceptions as exc from pyrax.manager import BaseManager from pyrax.resource import BaseResource import pyrax.utils as utils _invalid_key_pat = re.compile(r"Validation error for key '([^']+)'") def _params_to_dict(params, dct, local_dict): for param in params: val = local_dict.get(param) if val is None: continue dct[param] = val return dct def assure_check(fnc): @wraps(fnc) def _wrapped(self, check, *args, **kwargs): if not isinstance(check, CloudMonitorCheck): check = self._check_manager.get(check) return fnc(self, check, *args, **kwargs) return _wrapped def assure_entity(fnc): @wraps(fnc) def _wrapped(self, entity, *args, **kwargs): if not isinstance(entity, CloudMonitorEntity): entity = self._entity_manager.get(entity) return fnc(self, entity, *args, **kwargs) return _wrapped class CloudMonitorEntity(BaseResource): def __init__(self, *args, **kwargs): super(CloudMonitorEntity, self).__init__(*args, **kwargs) self._check_manager = CloudMonitorCheckManager(self.manager.api, uri_base="entities/%s/checks" % self.id, resource_class=CloudMonitorCheck, response_key=None, plural_response_key=None) self._alarm_manager = CloudMonitorAlarmManager(self.manager, self.manager.api, uri_base="entities/%s/alarms" % self.id, resource_class=CloudMonitorAlarm, response_key=None, plural_response_key=None) def update(self, agent=None, metadata=None): self.manager.update_entity(self, agent=agent, metadata=metadata) def get_check(self, check): chk = self._check_manager.get(check) chk.set_entity(self) return chk def list_checks(self, limit=None, marker=None, return_next=False): checks = self._check_manager.list(limit=limit, marker=marker, return_next=return_next) for check in checks: check.set_entity(self) return checks def find_all_checks(self, **kwargs): checks = self._check_manager.find_all_checks(**kwargs) for check in checks: check.set_entity(self) return checks def create_check(self, label=None, name=None, check_type=None, disabled=False, metadata=None, details=None, monitoring_zones_poll=None, timeout=None, period=None, target_alias=None, target_hostname=None, target_receiver=None, test_only=False, include_debug=False): return self._check_manager.create_check(label=label, name=name, check_type=check_type, disabled=disabled, metadata=metadata, details=details, monitoring_zones_poll=monitoring_zones_poll, timeout=timeout, period=period, target_alias=target_alias, target_hostname=target_hostname, target_receiver=target_receiver, test_only=test_only, include_debug=include_debug) def update_check(self, check, label=None, name=None, disabled=None, metadata=None, monitoring_zones_poll=None, timeout=None, period=None, target_alias=None, target_hostname=None, target_receiver=None): return self._check_manager.update(check, label=label, name=name, disabled=disabled, metadata=metadata, monitoring_zones_poll=monitoring_zones_poll, timeout=timeout, period=period, target_alias=target_alias, target_hostname=target_hostname, target_receiver=target_receiver) def delete_check(self, check): return self._check_manager.delete(check) @assure_check def list_metrics(self, check, limit=None, marker=None, return_next=False): return check.list_metrics(limit=limit, marker=marker, return_next=return_next) @assure_check def get_metric_data_points(self, check, metric, start, end, points=None, resolution=None, stats=None): return check.get_metric_data_points(metric, start, end, points=points, resolution=resolution, stats=stats) def create_alarm(self, check, notification_plan, criteria=None, disabled=False, label=None, name=None, metadata=None): return self._alarm_manager.create(check, notification_plan, criteria=criteria, disabled=disabled, label=label, name=name, metadata=metadata) def update_alarm(self, alarm, criteria=None, disabled=False, label=None, name=None, metadata=None): return self._alarm_manager.update(alarm, criteria=criteria, disabled=disabled, label=label, name=name, metadata=metadata) def list_alarms(self, limit=None, marker=None, return_next=False): return self._alarm_manager.list(limit=limit, marker=marker, return_next=return_next) def get_alarm(self, alarm): return self._alarm_manager.get(alarm) def delete_alarm(self, alarm): return self._alarm_manager.delete(alarm) @property def name(self): return self.label class _PaginationManager(BaseManager): def list(self, limit=None, marker=None, return_next=False): kwargs = {} if return_next: kwargs["other_keys"] = "metadata" ret = super(_PaginationManager, self).list(limit=limit, marker=marker, **kwargs) if return_next: ents, meta = ret return (ents, meta[0].get("next_marker")) else: return ret class CloudMonitorNotificationManager(_PaginationManager): def create(self, notification_type, label=None, name=None, details=None): uri = "/%s" % self.uri_base body = {"label": label or name, "type": utils.get_id(notification_type), "details": details, } resp, resp_body = self.api.method_post(uri, body=body) return self.get(resp.headers["x-object-id"]) def test_notification(self, notification=None, notification_type=None, details=None): if notification: uri = "/%s/%s/test" % (self.uri_base, utils.get_id(notification)) body = None else: uri = "/test-notification" body = {"type": utils.get_id(notification_type), "details": details} resp, resp_body = self.api.method_post(uri, body=body) def update_notification(self, notification, details): if isinstance(notification, CloudMonitorNotification): nid = notification.id ntyp = notification.type else: nfcn = self.get(notification) nid = notification ntyp = nfcn.type uri = "/%s/%s" % (self.uri_base, nid) body = {"type": ntyp, "details": details} resp, resp_body = self.api.method_put(uri, body=body) def list_types(self): uri = "/notification_types" resp, resp_body = self.api.method_get(uri) return [CloudMonitorNotificationType(self, info) for info in resp_body["values"]] def get_type(self, notification_type_id): uri = "/notification_types/%s" % utils.get_id(notification_type_id) resp, resp_body = self.api.method_get(uri) return CloudMonitorNotificationType(self, resp_body) class CloudMonitorNotificationPlanManager(_PaginationManager): def create(self, label=None, name=None, critical_state=None, ok_state=None, warning_state=None): uri = "/%s" % self.uri_base body = {"label": label or name} def make_list_of_ids(parameter): params = utils.coerce_to_list(parameter) return [utils.get_id(param) for param in params] if critical_state: critical_state = utils.coerce_to_list(critical_state) body["critical_state"] = make_list_of_ids(critical_state) if warning_state: warning_state = utils.coerce_to_list(warning_state) body["warning_state"] = make_list_of_ids(warning_state) if ok_state: ok_state = utils.coerce_to_list(ok_state) body["ok_state"] = make_list_of_ids(ok_state) resp, resp_body = self.api.method_post(uri, body=body) return self.get(resp.headers["x-object-id"]) class CloudMonitorMetricsManager(_PaginationManager): def get_metric_data_points(self, metric, start, end, points=None, resolution=None, stats=None): allowed_resolutions = ("FULL", "MIN5", "MIN20", "MIN60", "MIN240", "MIN1440") if not (points or resolution): raise exc.MissingMonitoringCheckGranularity("You must specify " "either the 'points' or 'resolution' parameter when " "fetching metrics.") if resolution: if resolution.upper() not in allowed_resolutions: raise exc.InvalidMonitoringMetricsResolution("The specified " "resolution '%s' is not valid. The valid values are: " "%s." % (resolution, str(allowed_resolutions))) start_tm = utils.to_timestamp(start) end_tm = utils.to_timestamp(end) start_tm *= 1000 end_tm *= 1000 qparms = [] qparms.append("from=%s" % int(start_tm)) qparms.append("to=%s" % int(end_tm)) if points: qparms.append("points=%s" % points) if resolution: qparms.append("resolution=%s" % resolution.upper()) if stats: stats = utils.coerce_to_list(stats) for stat in stats: qparms.append("select=%s" % stat) qparm = "&".join(qparms) uri = "/%s/%s/plot?%s" % (self.uri_base, metric, qparm) try: resp, resp_body = self.api.method_get(uri) except exc.BadRequest as e: msg = e.message dtls = e.details if msg.startswith("Validation error"): raise exc.InvalidMonitoringMetricsRequest("Your request was " "invalid: '%s'" % dtls) else: raise return resp_body["values"] class CloudMonitorAlarmManager(_PaginationManager): def __init__(self, entity_manager, api, resource_class=None, response_key=None, plural_response_key=None, uri_base=None): self.entity_manager = entity_manager _PaginationManager.__init__(self, api, resource_class=resource_class, response_key=response_key, plural_response_key=plural_response_key, uri_base=uri_base) def create(self, check, notification_plan, criteria=None, disabled=False, label=None, name=None, metadata=None): uri = "/%s" % self.uri_base body = {"check_id": utils.get_id(check), "notification_plan_id": utils.get_id(notification_plan), } if criteria: body["criteria"] = criteria if disabled is not None: body["disabled"] = disabled label_name = label or name if label_name: body["label"] = label_name if metadata: body["metadata"] = metadata resp, resp_body = self.api.method_post(uri, body=body) if resp.status_code == 201: alarm_id = resp.headers["x-object-id"] return self.get(alarm_id) def update(self, alarm, criteria=None, disabled=False, label=None, name=None, metadata=None): uri = "/%s/%s" % (self.uri_base, utils.get_id(alarm)) body = {} if criteria: body["criteria"] = criteria if disabled is not None: body["disabled"] = disabled label_name = label or name if label_name: body["label"] = label_name if metadata: body["metadata"] = metadata resp, resp_body = self.api.method_put(uri, body=body) class CloudMonitorCheckManager(_PaginationManager): def create_check(self, label=None, name=None, check_type=None, details=None, disabled=False, metadata=None, monitoring_zones_poll=None, timeout=None, period=None, target_alias=None, target_hostname=None, target_receiver=None, test_only=False, include_debug=False): if details is None: raise exc.MissingMonitoringCheckDetails("The required 'details' " "parameter was not passed to the create_check() method.") ctype = utils.get_id(check_type) is_remote = ctype.startswith("remote") monitoring_zones_poll = utils.coerce_to_list(monitoring_zones_poll) monitoring_zones_poll = [utils.get_id(mzp) for mzp in monitoring_zones_poll] if is_remote: if not monitoring_zones_poll: raise exc.MonitoringZonesPollMissing("You must specify the " "'monitoring_zones_poll' parameter for remote checks.") if not (target_alias or target_hostname): raise exc.MonitoringCheckTargetNotSpecified("You must " "specify either the 'target_alias' or 'target_hostname' " "when creating a remote check.") body = {"label": label or name, "details": details, "disabled": disabled, "type": utils.get_id(check_type), } params = ("monitoring_zones_poll", "timeout", "period", "target_alias", "target_hostname", "target_receiver") body = _params_to_dict(params, body, locals()) if test_only: uri = "/%s/test-check" % self.uri_base if include_debug: uri = "%s?debug=true" % uri else: uri = "/%s" % self.uri_base try: resp = self.api.method_post(uri, body=body)[0] except exc.BadRequest as e: msg = e.message dtls = e.details match = _invalid_key_pat.match(msg) if match: missing = match.groups()[0].replace("details.", "") if missing in details: errmsg = "".join(["The value passed for '%s' in the ", "details parameter is not valid."]) % missing else: errmsg = "".join(["The required value for the '%s' ", "setting is missing from the 'details' ", "parameter."]) % missing utils.update_exc(e, errmsg) raise e else: if msg == "Validation error": raise exc.InvalidMonitoringCheckDetails("Validation " "failed. Error: '%s'." % dtls) raise e else: if resp.status_code == 201: check_id = resp.headers["x-object-id"] return self.get(check_id) raise exc.ClientException("Unknown response code creating check;" " expected 201, got %s" % resp.status_code) def update(self, check, label=None, name=None, disabled=None, metadata=None, monitoring_zones_poll=None, timeout=None, period=None, target_alias=None, target_hostname=None, target_receiver=None): if monitoring_zones_poll: monitoring_zones_poll = utils.coerce_to_list(monitoring_zones_poll) monitoring_zones_poll = [utils.get_id(mzp) for mzp in monitoring_zones_poll] body = {} local_dict = locals() label = label or name params = ("label", "disabled", "metadata", "monitoring_zones_poll", "timeout", "period", "target_alias", "target_hostname", "target_receiver") body = _params_to_dict(params, body, locals()) entity = check.entity uri = "/%s/%s" % (self.uri_base, utils.get_id(check)) try: resp, resp_body = self.api.method_put(uri, body=body) except exc.BadRequest as e: msg = e.message dtls = e.details if msg.startswith("Validation error"): raise exc.InvalidMonitoringCheckUpdate("The update failed " "validation: %s: %s" % (msg, dtls)) else: raise return resp_body def find_all_checks(self, **kwargs): found = [] searches = kwargs.items() for obj in self.list(): try: if all(getattr(obj, attr) == value for (attr, value) in searches): found.append(obj) except AttributeError: continue return found class _EntityFilteringManger(BaseManager): def list(self, entity=None): uri = "/%s" % self.uri_base if entity: uri = "%s?entityId=%s" % (uri, utils.get_id(entity)) resp, resp_body = self._list(uri, return_raw=True) return resp_body class CloudMonitorEntityManager(_PaginationManager): def _create_body(self, name, label=None, agent=None, ip_addresses=None, metadata=None): label = label or name if ip_addresses is not None: body = {"label": label} if ip_addresses: body["ip_addresses"] = ip_addresses if agent: body["agent_id"] = utils.get_id(agent) if metadata: body["metadata"] = metadata return body def update_entity(self, entity, agent=None, metadata=None): body = {} if agent: body["agent_id"] = utils.get_id(agent) if metadata: body["metadata"] = metadata if body: uri = "/%s/%s" % (self.uri_base, utils.get_id(entity)) resp, body = self.api.method_put(uri, body=body) class CloudMonitorTokenManager(BaseManager): def __init__(self, api): super(CloudMonitorTokenManager, self).__init__(api, resource_class=CloudMonitorAgentToken, uri_base="agent_tokens") def create(self, name): resp = super(CloudMonitorTokenManager, self).create(name, return_response=True) loc = resp.headers.get("location") if loc: return self.get(loc.rsplit("/")[-1]) def update(self, token, label): uri = "/%s/%s" % (self.uri_base, utils.get_id(token)) self._update(uri, self._create_body(label)) return self.get(token) def _create_body(self, name, *args, **kwargs): return { "label": name } class CloudMonitorCheck(BaseResource): def __init__(self, manager, info, entity=None, key=None, loaded=False): super(CloudMonitorCheck, self).__init__(manager, info, key=key, loaded=loaded) self.set_entity(entity) def set_entity(self, entity): if entity is None: return if not isinstance(entity, CloudMonitorEntity): entity = self.manager.get(entity) self.entity = entity self._metrics_manager = CloudMonitorMetricsManager(self.manager.api, uri_base="entities/%s/checks/%s/metrics" % (self.entity.id, self.id), resource_class=CloudMonitorMetric, response_key=None, plural_response_key=None) @property def name(self): return self.label def get(self): new = self.manager.get(self) if new: self._add_details(new._info) reload = get def update(self, label=None, name=None, disabled=None, metadata=None, monitoring_zones_poll=None, timeout=None, period=None, target_alias=None, target_hostname=None, target_receiver=None): self.manager.update(self, label=label, name=name, disabled=disabled, metadata=metadata, monitoring_zones_poll=monitoring_zones_poll, timeout=timeout, period=period, target_alias=target_alias, target_hostname=target_hostname, target_receiver=target_receiver) def delete(self): self.manager.delete(self) def list_metrics(self, limit=None, marker=None, return_next=False): return self._metrics_manager.list(limit=limit, marker=marker, return_next=return_next) def get_metric_data_points(self, metric, start, end, points=None, resolution=None, stats=None): return self._metrics_manager.get_metric_data_points(metric, start, end, points=points, resolution=resolution, stats=stats) def create_alarm(self, notification_plan, criteria=None, disabled=False, label=None, name=None, metadata=None): return self.manager.create_alarm(self.entity, self, notification_plan, criteria=criteria, disabled=disabled, label=label, name=name, metadata=metadata) class CloudMonitorCheckType(BaseResource): @property def field_names(self): return [field["name"] for field in self.fields] @property def required_field_names(self): return [field["name"] for field in self.fields if not field["optional"]] @property def optional_field_names(self): return [field["name"] for field in self.fields if field["optional"]] class CloudMonitorZone(BaseResource): @property def name(self): return self.label class CloudMonitorNotification(BaseResource): @property def name(self): return self.label def update(self, details): return self.manager.update_notification(self, details) class CloudMonitorNotificationType(BaseResource): @property def name(self): return self.label class CloudMonitorNotificationPlan(BaseResource): @property def name(self): return self.label class CloudMonitorMetric(BaseResource): pass class CloudMonitorAlarm(BaseResource): def __init__(self, manager, info, entity=None, key=None, loaded=False): super(CloudMonitorAlarm, self).__init__(manager, info, key=key, loaded=loaded) if entity is None: entity = info['entity_id'] if not isinstance(entity, CloudMonitorEntity): entity = manager.entity_manager.get(entity) self.entity = entity
Apache License 2.0
aiworx-labs/chocolate
chocolate/mo/pyhv.py
hypervolume
python
def hypervolume(pointset, ref): hv = _HyperVolume(ref) return hv.compute(pointset)
Python version of hypervolume computation. .. note:: Use the wrapper from :mod:`chocolate.mo` module instead.
https://github.com/aiworx-labs/chocolate/blob/0ba4f6f0130eab851d32d5534241c8cac3f6666e/chocolate/mo/pyhv.py#L18-L26
from math import log, floor import random import warnings import numpy __all__ = ["hypervolume"] warnings.simplefilter("once", ImportWarning) warnings.warn("Using Python version of hypervolume module. Expect this to be slower.", ImportWarning)
BSD 3-Clause New or Revised License
nic30/hwt
hwt/interfaces/signalOps.py
SignalOps.__call__
python
def __call__(self, source, exclude=None, fit=False): assert self._isAccessible, self return self._sig(source, exclude=None, fit=fit)
connect this signal to driver :attention: it is not call of function it is operator of assignment :return: list of assignments
https://github.com/nic30/hwt/blob/db57819a4234d818d9bc00b927e5bc208195a530/hwt/interfaces/signalOps.py#L161-L169
from hwt.doc_markers import internal class SignalOps(object): def _auto_cast(self, toT): return self._sig._auto_cast(toT) @internal def _convSign(self, signed): return self._sig._convSign(signed) def _signed(self): return self._convSign(True) def _unsigned(self): return self._convSign(False) def _vec(self): return self._convSign(None) def _reinterpret_cast(self, toT): return self._sig._reinterpret_cast(toT) def _onRisingEdge(self): return self._sig._onRisingEdge() def _onFallingEdge(self): return self._sig._onFallingEdge() def _isOn(self): return self._sig._isOn() def _eq(self, other): return self._sig._eq(other) def __ne__(self, other): return self._sig.__ne__(other) def __gt__(self, other): return self._sig.__gt__(other) def __lt__(self, other): return self._sig.__lt__(other) def __ge__(self, other): return self._sig.__ge__(other) def __le__(self, other): return self._sig.__le__(other) def __invert__(self): return self._sig.__invert__() def __and__(self, other): return self._sig.__and__(other) def __xor__(self, other): return self._sig.__xor__(other) def __or__(self, other): return self._sig.__or__(other) def __neg__(self): return self._sig.__neg__() def __add__(self, other): return self._sig.__add__(other) def __sub__(self, other): return self._sig.__sub__(other) def __mul__(self, other): return self._sig.__mul__(other) def __pow__(self, other): return self._sig.__pow__(other) def __mod__(self, other): return self._sig.__mod__(other) def __truediv__(self, other): return self._sig.__truediv__(other) def __floordiv__(self, other): return self._sig.__floordiv__(other) def __lshift__(self, other): return self._sig.__lshift__(other) def __rshift__(self, other): return self._sig.__lshift__(other) def _reversed(self): return self._sig._reversed() def _concat(self, *others): return self._sig._concat(*others) def __getitem__(self, key): return self._sig.__getitem__(key) def _ternary(self, ifTrue, ifFalse): return self._sig._ternary(ifTrue, ifFalse)
MIT License
python-discord/sir-lancebot
bot/exts/fun/trivia_quiz.py
DynamicQuestionGen.taxonomic_rank
python
def taxonomic_rank(cls, q_format: str, a_format: str) -> QuizEntry: level = random.randint(0, len(cls.TAXONOMIC_HIERARCHY) - 2) question = q_format.format(cls.TAXONOMIC_HIERARCHY[level]) answer = a_format.format(cls.TAXONOMIC_HIERARCHY[level + 1]) return QuizEntry(question, [answer], DYNAMICALLY_GEN_VARIATION_TOLERANCE)
Generate a question on taxonomic classification.
https://github.com/python-discord/sir-lancebot/blob/559e76ffbef7af85132d86f2e3ab8acf7e7f5eef/bot/exts/fun/trivia_quiz.py#L178-L185
import asyncio import json import logging import operator import random import re import string from collections import defaultdict from dataclasses import dataclass from datetime import datetime, timedelta from pathlib import Path from typing import Callable, Optional import discord from discord.ext import commands, tasks from rapidfuzz import fuzz from bot.bot import Bot from bot.constants import Client, Colours, NEGATIVE_REPLIES, Roles logger = logging.getLogger(__name__) DEFAULT_QUESTION_LIMIT = 7 STANDARD_VARIATION_TOLERANCE = 88 DYNAMICALLY_GEN_VARIATION_TOLERANCE = 97 MAX_ERROR_FETCH_TRIES = 3 WRONG_ANS_RESPONSE = [ "No one answered correctly!", "Better luck next time...", ] RULES = ( "No cheating and have fun!", "Points for each question reduces by 25 after 10s or after a hint. Total time is 30s per question" ) WIKI_FEED_API_URL = "https://en.wikipedia.org/api/rest_v1/feed/featured/{date}" TRIVIA_QUIZ_ICON = ( "https://raw.githubusercontent.com/python-discord/branding/main/icons/trivia_quiz/trivia-quiz-dist.png" ) @dataclass(frozen=True) class QuizEntry: question: str answers: list[str] var_tol: int class DynamicQuestionGen: N_PREFIX_STARTS_AT = 5 N_PREFIXES = [ "penta", "hexa", "hepta", "octa", "nona", "deca", "hendeca", "dodeca", "trideca", "tetradeca", ] PLANETS = [ ("1st", "Mercury"), ("2nd", "Venus"), ("3rd", "Earth"), ("4th", "Mars"), ("5th", "Jupiter"), ("6th", "Saturn"), ("7th", "Uranus"), ("8th", "Neptune"), ] TAXONOMIC_HIERARCHY = [ "species", "genus", "family", "order", "class", "phylum", "kingdom", "domain", ] UNITS_TO_BASE_UNITS = { "hertz": ("(unit of frequency)", "s^-1"), "newton": ("(unit of force)", "m*kg*s^-2"), "pascal": ("(unit of pressure & stress)", "m^-1*kg*s^-2"), "joule": ("(unit of energy & quantity of heat)", "m^2*kg*s^-2"), "watt": ("(unit of power)", "m^2*kg*s^-3"), "coulomb": ("(unit of electric charge & quantity of electricity)", "s*A"), "volt": ("(unit of voltage & electromotive force)", "m^2*kg*s^-3*A^-1"), "farad": ("(unit of capacitance)", "m^-2*kg^-1*s^4*A^2"), "ohm": ("(unit of electric resistance)", "m^2*kg*s^-3*A^-2"), "weber": ("(unit of magnetic flux)", "m^2*kg*s^-2*A^-1"), "tesla": ("(unit of magnetic flux density)", "kg*s^-2*A^-1"), } @classmethod def linear_system(cls, q_format: str, a_format: str) -> QuizEntry: x, y = random.randint(2, 5), random.randint(2, 5) answer = a_format.format(x, y) coeffs = random.sample(range(1, 6), 4) question = q_format.format( coeffs[0], coeffs[1], coeffs[0] * x + coeffs[1] * y, coeffs[2], coeffs[3], coeffs[2] * x + coeffs[3] * y, ) return QuizEntry(question, [answer], DYNAMICALLY_GEN_VARIATION_TOLERANCE) @classmethod def mod_arith(cls, q_format: str, a_format: str) -> QuizEntry: quotient, m, b = random.randint(30, 40), random.randint(10, 20), random.randint(200, 350) ans = random.randint(0, 9) a = quotient * m + ans - b question = q_format.format(a, b, m) answer = a_format.format(ans) return QuizEntry(question, [answer], DYNAMICALLY_GEN_VARIATION_TOLERANCE) @classmethod def ngonal_prism(cls, q_format: str, a_format: str) -> QuizEntry: n = random.randint(0, len(cls.N_PREFIXES) - 1) question = q_format.format(cls.N_PREFIXES[n]) answer = a_format.format((n + cls.N_PREFIX_STARTS_AT) * 2) return QuizEntry(question, [answer], DYNAMICALLY_GEN_VARIATION_TOLERANCE) @classmethod def imag_sqrt(cls, q_format: str, a_format: str) -> QuizEntry: ans_coeff = random.randint(3, 10) question = q_format.format(ans_coeff ** 2) answer = a_format.format(ans_coeff) return QuizEntry(question, [answer], DYNAMICALLY_GEN_VARIATION_TOLERANCE) @classmethod def binary_calc(cls, q_format: str, a_format: str) -> QuizEntry: a = random.randint(15, 20) b = random.randint(10, a) oper = random.choice( ( ("+", operator.add), ("-", operator.sub), ("*", operator.mul), ) ) if oper[0] == "*": a -= 5 b -= 5 question = q_format.format(a, oper[0], b) answer = a_format.format(oper[1](a, b)) return QuizEntry(question, [answer], DYNAMICALLY_GEN_VARIATION_TOLERANCE) @classmethod def solar_system(cls, q_format: str, a_format: str) -> QuizEntry: planet = random.choice(cls.PLANETS) question = q_format.format(planet[0]) answer = a_format.format(planet[1]) return QuizEntry(question, [answer], DYNAMICALLY_GEN_VARIATION_TOLERANCE) @classmethod
MIT License
google/deluca
deluca/lung/envs/_balloon_lung.py
BalloonLung.dynamics
python
def dynamics(self, state, action): volume, pressure = state["volume"], state["pressure"] u_in, u_out = action flow = jnp.clip(PropValve(u_in) * self.R, 0.0, 2.0) flow -= jax.lax.cond( pressure > self.peep_valve, lambda x: jnp.clip(Solenoid(u_out), 0.0, 2.0) * 0.05 * pressure, lambda x: 0.0, flow, ) volume += flow * self.dt volume += jax.lax.cond( self.leak, lambda x: (self.dt / (5.0 + self.dt) * (self.min_volume - volume)), lambda x: 0.0, 0.0, ) r = (3.0 * volume / (4.0 * jnp.pi))**(1.0 / 3.0) pressure = self.P0 + self.PC * (1.0 - (self.r0 / r)**6.0) / ( self.r0**2.0 * r) return {"volume": volume, "pressure": pressure}
state: (volume, pressure) action: (u_in, u_out)
https://github.com/google/deluca/blob/9fdcb9b382cae2ff9d8c7600469d2c6f1a128d1c/deluca/lung/envs/_balloon_lung.py#L95-L124
import jax import jax.numpy as jnp from deluca.lung.core import BreathWaveform from deluca.lung.core import LungEnv def PropValve(x): y = 3.0 * x flow_new = 1.0 * (jnp.tanh(0.03 * (y - 130)) + 1.0) flow_new = jnp.clip(flow_new, 0.0, 1.72) return flow_new def Solenoid(x): return x > 0 class BalloonLung(LungEnv): def __init__( self, leak=False, peep_valve=5.0, PC=40.0, P0=0.0, C=10.0, R=15.0, dt=0.03, waveform=None, reward_fn=None, ): self.viewer = None self.min_volume = 1.5 self.C = C self.R = R self.PC = PC self.P0 = 0.0 self.leak = leak self.peep_valve = peep_valve self.time = 0.0 self.dt = dt self.waveform = waveform or BreathWaveform() self.r0 = (3.0 * self.min_volume / (4.0 * jnp.pi))**(1.0 / 3.0) self.reset() def reset(self): self.time = 0.0 self.target = self.waveform.at(self.time) self.state = self.dynamics({ "volume": self.min_volume, "pressure": -1.0 }, (0.0, 0.0)) return self.observation @property def observation(self): return { "measured": self.state["pressure"], "target": self.target, "dt": self.dt, "phase": self.waveform.phase(self.time), }
Apache License 2.0
thu-ml/zhusuan
zhusuan/utils.py
convert_to_int
python
def convert_to_int(x): if isinstance(x, int): return x return None
Try to convert input to type int in python. :param x: The input instance. :return: A int if succeed, else None.
https://github.com/thu-ml/zhusuan/blob/4386b2a12ae4f4ed8e694e504e51d7dcdfd6f22a/zhusuan/utils.py#L199-L208
from __future__ import absolute_import from __future__ import division from functools import wraps import tensorflow as tf __all__ = [ 'TensorArithmeticMixin', 'log_mean_exp', 'merge_dicts', ] class TensorArithmeticMixin(object): def __abs__(self): return tf.abs(self) def __neg__(self): return tf.negative(self) def __add__(self, other): return tf.add(self, other) def __radd__(self, other): return tf.add(other, self) def __sub__(self, other): return tf.subtract(self, other) def __rsub__(self, other): return tf.subtract(other, self) def __mul__(self, other): return tf.multiply(self, other) def __rmul__(self, other): return tf.multiply(other, self) def __div__(self, other): return tf.divide(self, other) def __rdiv__(self, other): return tf.divide(other, self) def __truediv__(self, other): return tf.truediv(self, other) def __rtruediv__(self, other): return tf.truediv(other, self) def __floordiv__(self, other): return tf.floordiv(self, other) def __rfloordiv__(self, other): return tf.floordiv(other, self) def __mod__(self, other): return tf.mod(self, other) def __rmod__(self, other): return tf.mod(other, self) def __pow__(self, other): return tf.pow(self, other) def __rpow__(self, other): return tf.pow(other, self) def __invert__(self): return tf.logical_not(self) def __and__(self, other): return tf.logical_and(self, other) def __rand__(self, other): return tf.logical_and(other, self) def __or__(self, other): return tf.logical_or(self, other) def __ror__(self, other): return tf.logical_or(other, self) def __xor__(self, other): return tf.logical_xor(self, other) def __rxor__(self, other): return tf.logical_xor(other, self) def __lt__(self, other): return tf.less(self, other) def __le__(self, other): return tf.less_equal(self, other) def __gt__(self, other): return tf.greater(self, other) def __ge__(self, other): return tf.greater_equal(self, other) def __getitem__(self, item): return (tf.convert_to_tensor(self))[item] def __hash__(self): return id(self) def __eq__(self, other): return id(self) == id(other) def __iter__(self): raise TypeError( "{} object is not iterable.".format(self.__class__.__name__)) def __bool__(self): raise TypeError( "Using a `{}` object as a Python `bool` is not allowed. " "Use `if t is not None:` instead of `if t:` to test if a " "tensor is defined, and use TensorFlow ops such as " "tf.cond to execute subgraphs conditioned on the value of " "a tensor.".format(self.__class__.__name__) ) def __nonzero__(self): raise TypeError( "Using a `{}` object as a Python `bool` is not allowed. " "Use `if t is not None:` instead of `if t:` to test if a " "tensor is defined, and use TensorFlow ops such as " "tf.cond to execute subgraphs conditioned on the value of " "a tensor.".format(self.__class__.__name__) ) def log_sum_exp(x, axis=None, keepdims=False): x = tf.convert_to_tensor(x) x_max = tf.reduce_max(x, axis=axis, keepdims=True) ret = tf.log(tf.reduce_sum(tf.exp(x - x_max), axis=axis, keepdims=True)) + x_max if not keepdims: ret = tf.reduce_sum(ret, axis=axis) return ret def log_mean_exp(x, axis=None, keepdims=False): x = tf.convert_to_tensor(x) x_max = tf.reduce_max(x, axis=axis, keepdims=True) ret = tf.log(tf.reduce_mean(tf.exp(x - x_max), axis=axis, keepdims=True)) + x_max if not keepdims: ret = tf.reduce_mean(ret, axis=axis) return ret
MIT License
google-research/language
language/labs/consistent_zero_shot_nmt/models/agreement.py
base_agreement
python
def base_agreement(hparams): hparams.add_hparam("enc_agreement_coeff", 0.0001) hparams.add_hparam("enc_agreement_loss", "cosine") hparams.add_hparam("enc_agreement_pool", True) hparams.add_hparam("enc_agreement_enable_step", 100000) hparams.add_hparam("aux_decode_length", 40) hparams.add_hparam("dec_agreement_coeff", 0.001) hparams.add_hparam("dec_agreement_loss_sparse", False) hparams.add_hparam("dec_agreement_enable_step", 100000) return hparams
Adds base hparams for AgreementMultilingualNmt.
https://github.com/google-research/language/blob/240cd2a1fd0307c6822b6f1f6c2abf1349a5a4da/language/labs/consistent_zero_shot_nmt/models/agreement.py#L534-L548
from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools from language.labs.consistent_zero_shot_nmt.data_generators import translate_multilingual from language.labs.consistent_zero_shot_nmt.models import basic from language.labs.consistent_zero_shot_nmt.models import losses from language.labs.consistent_zero_shot_nmt.modules import decoders from language.labs.consistent_zero_shot_nmt.modules import encoders from language.labs.consistent_zero_shot_nmt.modules import language_models from language.labs.consistent_zero_shot_nmt.utils import model_utils from tensor2tensor.layers import common_layers from tensor2tensor.utils import registry import tensorflow.compat.v1 as tf from tensorflow.contrib import seq2seq as contrib_seq2seq from tensorflow.contrib import training as contrib_training __all__ = [ "AgreementMultilingualNmt", "AgreementMultilingualNmtLm", ] @registry.register_model class AgreementMultilingualNmt(basic.BasicMultilingualNmt): def _build_inputs_and_targets( self, from_seqs=None, from_tags=None, to_seqs=None, to_tags=None): del from_tags if from_seqs is not None: inputs = from_seqs inputs_length = common_layers.length_from_embedding(inputs) if to_tags is not None: inputs = tf.concat([to_tags, inputs], axis=1) inputs_length = inputs_length + 1 inputs = common_layers.flatten4d3d(inputs) else: inputs = None inputs_length = None if to_seqs is not None: targets = common_layers.shift_right(to_seqs) targets_length = common_layers.length_from_embedding(targets) + 1 targets = common_layers.flatten4d3d(targets) else: targets = None targets_length = None return (inputs, inputs_length), (targets, targets_length) def _preprocess(self, features): seqs, tags = {}, {} if self._hparams.mode == tf.estimator.ModeKeys.TRAIN: seqs["src"] = features["inputs"] seqs["tgt"] = features["targets"] seqs["aux"] = None tags["src"] = features["input_tags"] tags["tgt"] = features["target_tags"] tags["aux"] = None batch_size = common_layers.shape_list(features["all_tags"])[0] num_all_tags = common_layers.shape_list(features["all_tags"])[1] all_tags = features["all_tags"][0] aux_tag_index = tf.multinomial( tf.ones([1, num_all_tags]), batch_size, output_dtype=tf.int32)[0] tags["aux"] = tf.expand_dims(tf.gather(all_tags, aux_tag_index), 1) from_domains = ["src", "src", "tgt"] to_domains = ["tgt", "aux", "aux"] else: seqs["src"] = features["inputs"] seqs["tgt"] = features["targets"] tags["src"] = None tags["tgt"] = features["target_tags"] if self._hparams.mode == tf.estimator.ModeKeys.PREDICT: tags["tgt"] = tf.tile(tags["tgt"], [self._hparams.beam_width, 1, 1, 1]) from_domains = ["src"] to_domains = ["tgt"] inputs, targets = {}, {} for fd, td in zip(from_domains, to_domains): key = "%s>%s" % (fd, td) inputs[key], targets[key] = self._build_inputs_and_targets( seqs[fd], tags[fd], seqs[td], tags[td]) return inputs, targets def _build_encoder_agreement_loss(self): aux_keys = ["src>aux", "tgt>aux"] for key in aux_keys: if key not in self.enc_outputs: encode_func = self.get_encode_func(*self.inputs[key]) self.enc_outputs[key] = encode_func() with tf.name_scope("enc_agreement_loss"): if self._hparams.enc_agreement_loss in {"cosine", "l2"}: if self._hparams.enc_agreement_pool: preproc_op_type = "max_pool" else: preproc_op_type = "truncate" enc_src, enc_tgt = model_utils.make_sequences_compatible( self.enc_outputs["src>aux"].outputs, self.enc_outputs["tgt>aux"].outputs, op_type=preproc_op_type) if self._hparams.enc_agreement_loss == "cosine": dist_fn = functools.partial(losses.cosine_distance, normalize=True) else: dist_fn = functools.partial(losses.l2_distance, normalize=True) aux_loss_fn = losses.DistanceLoss(dist_fn) aux_loss = aux_loss_fn(enc_src, enc_tgt) elif self._hparams.enc_agreement_loss in {"xatt_cosine", "xatt_l2"}: if self._hparams.enc_agreement_loss.endswith("cosine"): dist_fn = functools.partial(losses.cosine_distance, normalize=True) else: dist_fn = functools.partial(losses.l2_distance, normalize=True) aux_loss_fn = losses.CrossAttentionDistanceLoss(dist_fn=dist_fn) aux_loss = aux_loss_fn(self.enc_outputs["src>aux"].outputs, self.enc_outputs["tgt>aux"].outputs) else: raise ValueError("Unknown auxiliary loss: %s." % self._hparams.enc_agreement_loss) aux_loss = self._hparams.enc_agreement_coeff * aux_loss return aux_loss def _build_aux_sequences(self, target_embeddings, target_vocab_size, central_lang_tag="<en>"): aux_keys = ["src>aux", "tgt>aux"] central_lang_id = translate_multilingual.get_tag_id(central_lang_tag) self._is_central = { "src>aux": tf.squeeze( self._body_features["input_tags_raw"] == central_lang_id), "tgt>aux": tf.squeeze( self._body_features["target_tags_raw"] == central_lang_id)} for key in aux_keys: if key not in self.enc_outputs: encode_func = self.get_encode_func(*self.inputs[key]) self.enc_outputs[key] = encode_func() if key not in self.dec_outputs: target_seqs, target_lens = self.targets[key] hiddens = self.enc_outputs[key].outputs hiddens_length = self.inputs[key][1] enc_state = self.enc_outputs[key].final_state decoder_hparams = contrib_training.HParams(auxiliary=True) decode_func = self.get_decode_func( target_embeddings, target_seqs, target_lens, hiddens, hiddens_length, enc_state, mode=self._hparams.mode, decoder_hparams=decoder_hparams, decoder_iterations=self._hparams.aux_decode_length) self.dec_outputs[key] = decode_func() self.dec_outputs[key]["logits"] = model_utils.build_logits( sequences=tf.expand_dims( self.dec_outputs[key]["rnn_output"], axis=2), embeddings=target_embeddings, vocab_size=target_vocab_size) for element in self.dec_outputs[key]: self.dec_outputs[key][element] = tf.where( self._is_central[key], tf.stop_gradient(self.dec_outputs[key][element]), self.dec_outputs[key][element]) return aux_keys def _build_decoder_agreement_loss(self, central_lang_tag="<en>"): target_modality = self._problem_hparams.modality["targets"] target_modality_scope = self._variable_scopes[target_modality.name] target_embeddings = model_utils.get_embeddings( modality=target_modality, outer_scope=target_modality_scope, inner_scope="shared") target_vocab_size = target_modality._vocab_size aux_keys = self._build_aux_sequences( target_embeddings, target_vocab_size, central_lang_tag=central_lang_tag) aux_loss = 0. with tf.name_scope("dec_agreement_loss"): for key1, key2 in zip(aux_keys, aux_keys[::-1]): targets = self.dec_outputs[key2]["rnn_output"] targets_length = self.dec_outputs[key2]["length"] shifted_targets = common_layers.shift_right_3d(targets) hiddens = self.enc_outputs[key1].outputs hiddens_length = self.inputs[key1][1] enc_state = self.enc_outputs[key1].final_state decode_func = self.get_decode_func( target_embeddings, shifted_targets, targets_length, hiddens, hiddens_length, enc_state, mode=tf.estimator.ModeKeys.PREDICT, decoder_iterations=self._hparams.aux_decode_length) aux_dec_outputs = decode_func() aux_logits_1 = model_utils.build_logits( sequences=tf.expand_dims( aux_dec_outputs["rnn_output"], axis=2), embeddings=target_embeddings, vocab_size=target_vocab_size) aux_logits_1 = tf.where( self._is_central[key1], tf.stop_gradient(aux_logits_1), aux_logits_1) logits = tf.squeeze(aux_logits_1, axis=2) if self._hparams.dec_agreement_loss_sparse: target_ids = self.dec_outputs[key2]["sample_id"] aux_loss = aux_loss + losses.CrossEntropyLoss(sparse=True)( logits, target_ids, targets_length) else: aux_logits_2 = tf.squeeze(self.dec_outputs[key2]["logits"], axis=2) target_probs = tf.nn.softmax(aux_logits_2, axis=-1) aux_loss = aux_loss + losses.CrossEntropyLoss(sparse=False)( logits, target_probs, targets_length) aux_loss = self._hparams.dec_agreement_coeff * aux_loss return aux_loss def get_encode_func(self, inputs, inputs_length): def encode_func(): return self.encoder( inputs=inputs, inputs_length=inputs_length, mode=self._hparams.mode, hparams=self._hparams, reuse=tf.AUTO_REUSE) return encode_func def get_decode_func(self, embeddings, inputs, inputs_length, hiddens, hiddens_length, enc_state, mode=None, decoder_hparams=None, impute_finished=False, decoder_iterations=None): def decode_func(): dec_outputs, _, dec_lengths = contrib_seq2seq.dynamic_decode( decoder=self.decoder( embeddings=embeddings, inputs=inputs, inputs_length=inputs_length, hiddens=hiddens, hiddens_length=hiddens_length, enc_state=enc_state, mode=mode, hparams=self._hparams, decoder_hparams=decoder_hparams, reuse=tf.AUTO_REUSE), impute_finished=impute_finished, maximum_iterations=decoder_iterations) return { "rnn_output": dec_outputs.rnn_output, "sample_id": dec_outputs.sample_id, "length": dec_lengths} return decode_func def body(self, features): self._body_features = features self.inputs, self.targets = self._preprocess(features) batch_size = common_layers.shape_list(features["inputs"])[0] global_step = model_utils.get_global_step(self._hparams) key = "src>tgt" self.enc_outputs = {} self.encoder = encoders.get(self._hparams.encoder_type) encode_func = self.get_encode_func(*self.inputs[key]) self.enc_outputs[key] = encode_func() target_modality = self._problem_hparams.modality["targets"] target_modality_scope = self._variable_scopes[target_modality.name] target_embeddings = model_utils.get_embeddings( modality=target_modality, outer_scope=target_modality_scope, inner_scope="shared") key = "src>tgt" self.decoders = {} self.dec_outputs = {} self.decoder = decoders.get(self._hparams.decoder_type) target_seqs, target_lens = self.targets[key] hiddens = self.enc_outputs[key].outputs hiddens_length = self.inputs[key][1] enc_state = self.enc_outputs[key].final_state decode_func = self.get_decode_func( target_embeddings, target_seqs, target_lens, hiddens, hiddens_length, enc_state, mode=self._hparams.mode) self.dec_outputs[key] = decode_func() outputs = tf.expand_dims(self.dec_outputs[key]["rnn_output"], axis=2) aux_losses = {} if self._hparams.mode == tf.estimator.ModeKeys.TRAIN: if self._hparams.enc_agreement_coeff > 0: aux_losses["agreement_enc"] = tf.cond( global_step > self._hparams.enc_agreement_enable_step, self._build_encoder_agreement_loss, lambda: tf.zeros([batch_size])) if self._hparams.dec_agreement_coeff > 0: aux_losses["agreement_dec"] = tf.cond( global_step > self._hparams.dec_agreement_enable_step, self._build_decoder_agreement_loss, lambda: tf.zeros([batch_size])) return outputs, aux_losses @registry.register_model class AgreementMultilingualNmtLm(AgreementMultilingualNmt): def _build_lm_inputs(self, features): targets = features["targets"] target_tags = features["target_tags"] if self._hparams.mode == tf.estimator.ModeKeys.PREDICT: target_tags = tf.tile(target_tags, [self._hparams.beam_width, 1, 1, 1]) inputs = common_layers.shift_right(targets, pad_value=target_tags) inputs_length = common_layers.length_from_embedding(targets) + 1 inputs = common_layers.flatten4d3d(inputs) return inputs, inputs_length def _build_decoder_lm_loss(self, central_lang_tag="<en>"): target_modality = self._problem_hparams.modality["targets"] target_modality_scope = self._variable_scopes[target_modality.name] target_embeddings = model_utils.get_embeddings( modality=target_modality, outer_scope=target_modality_scope, inner_scope="shared") target_vocab_size = target_modality._vocab_size aux_keys = self._build_aux_sequences( target_embeddings, target_vocab_size, central_lang_tag=central_lang_tag) target_embeddings = tf.stop_gradient(target_embeddings) aux_loss = 0. with tf.name_scope("aux_lm_loss"): for key in aux_keys: dec_outputs = tf.expand_dims( self.dec_outputs[key]["rnn_output"], axis=2) dec_output_tags = tf.expand_dims( self.inputs[key][0][:, :1], axis=2) dec_lengths = self.dec_outputs[key]["length"] lm_features = { "targets": dec_outputs, "target_tags": dec_output_tags} inputs, inputs_length = self._build_lm_inputs(lm_features) lm_outputs = self.language_model( inputs=inputs, inputs_length=inputs_length, mode=tf.estimator.ModeKeys.PREDICT, hparams=self._hparams, trainable=False, reuse=tf.AUTO_REUSE) lm_logits = model_utils.build_logits( sequences=tf.expand_dims(lm_outputs, axis=2), embeddings=target_embeddings, vocab_size=target_vocab_size) dec_logits = model_utils.build_logits( sequences=dec_outputs, embeddings=target_embeddings, vocab_size=target_vocab_size) dec_probs = tf.nn.softmax(dec_logits, axis=-1) aux_loss = aux_loss + losses.CrossEntropyLoss(sparse=False)( lm_logits, dec_probs, dec_lengths) aux_loss = self._hparams.lm_loss_coeff * aux_loss return aux_loss def body(self, features): if self._hparams.lm_do_train: inputs, inputs_length = self._build_lm_inputs(features) self.language_model = language_models.get(self._hparams.lm_type) lm_outputs = self.language_model( inputs=inputs, inputs_length=inputs_length, mode=self._hparams.mode, hparams=self._hparams) outputs = tf.expand_dims(lm_outputs, axis=2) aux_losses = {} else: nmt_body = super(AgreementMultilingualNmtLm, self).body outputs, aux_losses = nmt_body(features) if self._hparams.mode == tf.estimator.ModeKeys.TRAIN: if self._hparams.lm_loss_coeff > 0: self.language_model = language_models.get(self._hparams.lm_type) batch_size = common_layers.shape_list(features["inputs"])[0] global_step = model_utils.get_global_step(self._hparams) aux_losses["language_model"] = tf.cond( global_step > self._hparams.lm_loss_enable_step, self._build_decoder_lm_loss, lambda: tf.zeros([batch_size])) return outputs, aux_losses
Apache License 2.0
neuralmagic/sparsezoo
src/sparsezoo/utils/numpy.py
tensor_export
python
def tensor_export( tensor: Union[numpy.ndarray, Dict[str, numpy.ndarray], Iterable[numpy.ndarray]], export_dir: str, name: str, npz: bool = True, ) -> str: create_dirs(export_dir) export_path = os.path.join(export_dir, f"{name}.{'npz' if npz else 'npy'}") if isinstance(tensor, numpy.ndarray) and npz: numpy.savez_compressed(export_path, tensor) elif isinstance(tensor, numpy.ndarray): numpy.save(export_path, tensor) elif isinstance(tensor, Dict) and npz: numpy.savez_compressed(export_path, **tensor) elif isinstance(tensor, Dict): raise ValueError("tensor dictionaries can only be saved as npz") elif isinstance(tensor, Iterable) and npz: numpy.savez_compressed(export_path, *tensor) elif isinstance(tensor, Iterable): raise ValueError("tensor iterables can only be saved as npz") else: raise ValueError(f"unknown type give for tensor {tensor}") return export_path
:param tensor: tensor to export to a saved numpy array file :param export_dir: the directory to export the file in :param name: the name of the file, .npy will be appended to it :param npz: True to export as an npz file, False otherwise :return: the path of the numpy file the tensor was exported to
https://github.com/neuralmagic/sparsezoo/blob/ff43990c3c492e6bbc876158a6a33907d2b4b667/src/sparsezoo/utils/numpy.py#L268-L299
import glob import logging import os import tarfile from collections import OrderedDict from io import BytesIO from typing import Dict, Iterable, List, Union import numpy from sparsezoo.utils.helpers import clean_path, create_dirs __all__ = [ "NDARRAY_KEY", "load_numpy", "save_numpy", "load_numpy_list", "NumpyArrayBatcher", "tensor_export", "tensors_export", ] NDARRAY_KEY = "ndarray" _LOGGER = logging.getLogger(__name__) def _fix_loaded_numpy(array) -> Union[numpy.ndarray, Dict[str, numpy.ndarray]]: if not isinstance(array, numpy.ndarray): tmp_arrray = array array = OrderedDict() for key, val in tmp_arrray.items(): array[key] = val return array def load_numpy(file_path: str) -> Union[numpy.ndarray, Dict[str, numpy.ndarray]]: file_path = clean_path(file_path) array = numpy.load(file_path) return _fix_loaded_numpy(array) def save_numpy( array: Union[numpy.ndarray, Dict[str, numpy.ndarray], Iterable[numpy.ndarray]], export_dir: str, name: str, npz: bool = True, ): create_dirs(export_dir) export_path = os.path.join(export_dir, f"{name}.{'npz' if npz else 'npy'}") if isinstance(array, numpy.ndarray) and npz: numpy.savez_compressed(export_path, array) elif isinstance(array, numpy.ndarray): numpy.save(export_path, array) elif isinstance(array, Dict) and npz: numpy.savez_compressed(export_path, **array) elif isinstance(array, Dict): raise ValueError("Dict can only be exported to an npz file") elif isinstance(array, Iterable) and npz: numpy.savez_compressed(export_path, *[val for val in array]) elif isinstance(array, Iterable): raise ValueError("Iterable can only be exported to an npz file") else: raise ValueError(f"Unrecognized type given for array {array}") return export_path def load_numpy_from_tar( path: str, ) -> List[Union[numpy.ndarray, Dict[str, numpy.ndarray]]]: tar = tarfile.open(path, "r") files = tar.getmembers() files = sorted([file.name for file in files]) data = [] for file in files: extracted = BytesIO() extracted.write(tar.extractfile(file).read()) extracted.seek(0) array = numpy.load(extracted) data.append(_fix_loaded_numpy(array)) return data def load_numpy_list( data: Union[str, Iterable[Union[str, numpy.ndarray, Dict[str, numpy.ndarray]]]], ) -> List[Union[numpy.ndarray, Dict[str, numpy.ndarray]]]: loaded = [] if isinstance(data, str): if os.path.isfile(data) and tarfile.is_tarfile(data): data = load_numpy_from_tar(data) elif os.path.isfile(data) and ".np" in data: data = [load_numpy(data)] else: glob_path = os.path.join(data, "*") if os.path.isdir(data) else data data = sorted(glob.glob(glob_path)) for dat in data: if isinstance(dat, str): dat = load_numpy(dat) loaded.append(dat) return loaded class NumpyArrayBatcher(object): def __init__(self): self._items = OrderedDict() self._batch_index = None def __len__(self): if len(self._items) == 0: return 0 return len(self._items[list(self._items.keys())[0]]) def append(self, item: Union[numpy.ndarray, Dict[str, numpy.ndarray]]): if len(self) < 1 and isinstance(item, numpy.ndarray): self._items[NDARRAY_KEY] = [item] elif len(self) < 1: for key, val in item.items(): self._items[key] = [val] elif isinstance(item, numpy.ndarray): if self._batch_index is None: self._batch_index = {NDARRAY_KEY: 0} if NDARRAY_KEY not in self._items: raise ValueError( "numpy ndarray passed for item, but prev_batch does not contain one" ) if item.shape != self._items[NDARRAY_KEY][0].shape: self._batch_index[NDARRAY_KEY] = 1 if item.shape != self._items[NDARRAY_KEY][0].shape and ( item.shape[0] != self._items[NDARRAY_KEY][0].shape[0] or item.shape[2:] != self._items[NDARRAY_KEY][0].shape[2:] ): raise ValueError( ( f"item of numpy ndarray of shape {item.shape} does not " f"match the current batch shape of " f"{self._items[NDARRAY_KEY][0].shape}" ) ) self._items[NDARRAY_KEY].append(item) else: diff_keys = list(set(item.keys()) - set(self._items.keys())) if len(diff_keys) > 0: raise ValueError( ( f"numpy dict passed for item, not all keys match " f"with the prev_batch. difference: {diff_keys}" ) ) if self._batch_index is None: self._batch_index = {key: 0 for key in item} for key, val in item.items(): if val.shape != self._items[key][0].shape: self._batch_index[key] = 1 if val.shape != self._items[key][0].shape and ( val.shape[0] != self._items[key][0].shape[0] or val.shape[2:] != self._items[key][0].shape[2:] ): raise ValueError( ( f"item with key {key} of shape {val.shape} does not " f"match the current batch shape of " f"{self._items[key][0].shape}" ) ) self._items[key].append(val) def stack( self, as_list: bool = False ) -> Union[List[numpy.ndarray], Dict[str, numpy.ndarray]]: batch_dict = OrderedDict() for key, val in self._items.items(): if self._batch_index is None or self._batch_index[key] == 0: batch_dict[key] = numpy.stack(val) else: batch_dict[key] = numpy.concatenate(val, axis=self._batch_index[key]) return batch_dict if not as_list else list(batch_dict.values())
Apache License 2.0
bfontaine/clj
clj/seqs.py
rest
python
def rest(coll): return drop(1, coll)
Returns a possibly empty generator of the items after the first.
https://github.com/bfontaine/clj/blob/6f691f2367d69c7fd5908821e3dc630ef2034997/clj/seqs.py#L185-L189
import random import collections import itertools _nil = object() try: _range = xrange _filterfalse = itertools.ifilterfalse except NameError: _range = range _filterfalse = itertools.filterfalse try: import collections.abc as collections_abc except ImportError: import collections as collections_abc def _is_collection_abc(x): return isinstance(x, collections_abc.Sized) and isinstance(x, collections_abc.Iterable) def _make_gen(g): for e in g: yield e def distinct(coll): seen = set() for e in coll: if e not in seen: seen.add(e) yield e if isinstance(filter(lambda e: e, []), list): def filter(f, coll): for e in coll: if f(e): yield e else: filter = filter def remove(pred, coll): return _filterfalse(pred, coll) def keep(f, coll): return keep_indexed(lambda _, e: f(e), coll) def keep_indexed(f, coll): for i, e in enumerate(coll): res = f(i, e) if res is not None: yield res def cons(x, seq): yield x for e in seq: yield e def concat(*xs): return itertools.chain(*xs) if isinstance(map(lambda e: e, []), list): def map(f, *colls): for xs in zip(*colls): yield f(*xs) else: map = map def mapcat(f, *colls): for coll in map(f, *colls): for e in coll: yield e def cycle(coll): els = [] for e in coll: yield e els.append(e) while True: for e in els: yield e def interleave(*colls): iterators = [iter(coll) for coll in colls] try: while True: values = [next(it) for it in iterators] for v in values: yield v except StopIteration: pass def interpose(sep, coll): first_ = True for e in coll: if first_: first_ = False else: yield sep yield e
MIT License
ducksboard/libsaas
libsaas/services/twilio/usage.py
Records.daily
python
def daily(self): return RecordsDaily(self)
Return multiple usage records for each usage category, each representing usage over a daily time-interval.
https://github.com/ducksboard/libsaas/blob/615981a3336f65be9d51ae95a48aed9ad3bd1c3c/libsaas/services/twilio/usage.py#L105-L110
from libsaas import http, parsers from libsaas.services import base from libsaas.services.twilio import resource class RecordsBase(resource.TwilioResource): path = 'Records' @base.apimethod def get(self, Category=None, StartDate=None, EndDate=None, Page=None, PageSize=None, AfterSid=None): params = resource.get_params(None, locals()) request = http.Request('GET', self.get_url(), params) return request, parsers.parse_json def create(self, *args, **kwargs): raise base.MethodNotSupported() def update(self, *args, **kwargs): raise base.MethodNotSupported() def delete(self, *args, **kwargs): raise base.MethodNotSupported() class RecordsDaily(RecordsBase): path = 'Daily' class RecordsMonthly(RecordsBase): path = 'Monthly' class RecordsYearly(RecordsBase): path = 'Yearly' class RecordsAllTime(RecordsBase): path = 'AllTime' class RecordsToday(RecordsBase): path = 'Today' class RecordsYesterday(RecordsBase): path = 'Yesterday' class RecordsThisMonth(RecordsBase): path = 'ThisMonth' class RecordsLastMonth(RecordsBase): path = 'LastMonth' class Records(RecordsBase): @base.resource(RecordsDaily)
MIT License
globocom/gcloud-utils
gcloud_utils/storage.py
Storage.upload_path
python
def upload_path(self, storage_path_base, local_path_base): for root, _, files in os.walk(local_path_base): for file_to_upload in files: full_path_upload = os.path.join(root, file_to_upload) storage_path = os.path.join(storage_path_base, file_to_upload) self.upload_file(storage_path, full_path_upload)
Upload all filer from local path to Storage
https://github.com/globocom/gcloud-utils/blob/9b01b2ae6ce42243e590ebe03d0ec36cb86716ce/gcloud_utils/storage.py#L79-L85
import os import logging from google.cloud import storage from gcloud_utils.base_client import BaseClient def _filter_suffix_files(blobs, suffix): return [x for x in blobs if x.name.endswith(suffix)] def _prepare_path(path): if not os.path.exists(path): os.makedirs(path) return path class Storage(BaseClient): _MODEL_CLIENT = storage def __init__(self, bucket, client=None, log_level=logging.ERROR): super(Storage, self).__init__(client, log_level) self._bucket = self._client.get_bucket(bucket) def download_file(self, storage_path, local_path): obj = self._bucket.get_blob(storage_path) local_file_full_path = os.path.join(local_path, obj.name) _prepare_path(os.path.dirname(local_file_full_path)) with open(local_file_full_path, 'wb') as local_file: obj.download_to_file(local_file) return local_file_full_path def download_files(self, path, local_path, filter_suffix=None): list_paths = self.list_files(path, filter_suffix=filter_suffix) for path_to_download in list_paths: self.download_file(path_to_download.name, local_path) def get_abs_path(self, storage_path): bucket_path = "gs://{}/".format(self._bucket.name) return os.path.join(bucket_path, storage_path) def get_file(self, file_path, local_path): self.logger.debug("Download file...") full_path = self.download_file(file_path, local_path) return open(full_path) def get_files_in_path(self, path, local_path): files = self.list_files(path) result = [] for file_blob in files: result.append(self.get_file(file_blob.name, "{}/{}".format(local_path, file_blob.name))) return result def list_files(self, path, filter_suffix=None): blobs = self._bucket.list_blobs(prefix=path) blobs_files = [x for x in blobs if not x.name.endswith("/")] if filter_suffix is not None: return _filter_suffix_files(blobs_files, filter_suffix) return blobs_files def path_exists_storage(self, path): return self._bucket.blob(path).exists() def upload_file(self, storage_path, local_path): with open(local_path) as loc: self.logger.debug("Upload file %s to %s", local_path, storage_path) self._bucket.blob(storage_path).upload_from_file(loc)
Apache License 2.0
rhming/unicomdailytask
jsonpickle/unpickler.py
loadrepr
python
def loadrepr(reprstr): module, evalstr = reprstr.split('/') mylocals = locals() localname = module if '.' in localname: localname = module.split('.', 1)[0] mylocals[localname] = __import__(module) return eval(evalstr)
Returns an instance of the object from the object's repr() string. It involves the dynamic specification of code. >>> obj = loadrepr('datetime/datetime.datetime.now()') >>> obj.__class__.__name__ 'datetime'
https://github.com/rhming/unicomdailytask/blob/542cfe86fe010748fc15b0eff45f16673c0f2b62/jsonpickle/unpickler.py#L750-L765
from __future__ import absolute_import, division, unicode_literals import quopri import sys from . import compat from . import util from . import tags from . import handlers from .compat import numeric_types from .backend import json def decode( string, backend=None, context=None, keys=False, reset=True, safe=False, classes=None ): backend = backend or json context = context or Unpickler(keys=keys, backend=backend, safe=safe) data = backend.decode(string) return context.restore(data, reset=reset, classes=classes) def _safe_hasattr(obj, attr): try: object.__getattribute__(obj, attr) return True except AttributeError: return False def _is_json_key(key): return isinstance(key, compat.string_types) and key.startswith(tags.JSON_KEY) class _Proxy(object): def __init__(self): self.instance = None def get(self): return self.instance def reset(self, instance): self.instance = instance class _IDProxy(_Proxy): def __init__(self, objs, index): self._index = index self._objs = objs def get(self): return self._objs[self._index] def _obj_setattr(obj, attr, proxy): setattr(obj, attr, proxy.get()) def _obj_setvalue(obj, idx, proxy): obj[idx] = proxy.get() class Unpickler(object): def __init__(self, backend=None, keys=False, safe=False): self.backend = backend or json self.keys = keys self.safe = safe self.reset() def reset(self): self._namedict = {} self._namestack = [] self._obj_to_idx = {} self._objs = [] self._proxies = [] self._classes = {} def restore(self, obj, reset=True, classes=None): if reset: self.reset() if classes: self.register_classes(classes) value = self._restore(obj) if reset: self._swap_proxies() return value def register_classes(self, classes): if isinstance(classes, (list, tuple, set)): for cls in classes: self.register_classes(cls) else: self._classes[util.importable_name(classes)] = classes def _swap_proxies(self): for (obj, attr, proxy, method) in self._proxies: method(obj, attr, proxy) self._proxies = [] def _restore(self, obj): if not isinstance(obj, (str, list, dict, set, tuple)): def restore(x): return x else: restore = self._restore_tags(obj) return restore(obj) def _restore_tags(self, obj): try: if not tags.RESERVED <= set(obj) and not type(obj) in (list, dict): def restore(x): return x return restore except TypeError: pass if has_tag(obj, tags.B64): restore = self._restore_base64 elif has_tag(obj, tags.B85): restore = self._restore_base85 elif has_tag(obj, tags.ID): restore = self._restore_id elif has_tag(obj, tags.ITERATOR): restore = self._restore_iterator elif has_tag(obj, tags.TYPE): restore = self._restore_type elif has_tag(obj, tags.REDUCE): restore = self._restore_reduce elif has_tag(obj, tags.OBJECT): restore = self._restore_object elif has_tag(obj, tags.FUNCTION): restore = self._restore_function elif has_tag(obj, tags.BYTES): restore = self._restore_quopri elif has_tag(obj, tags.REF): restore = self._restore_ref elif has_tag(obj, tags.REPR): restore = self._restore_repr elif util.is_list(obj): restore = self._restore_list elif has_tag(obj, tags.TUPLE): restore = self._restore_tuple elif has_tag(obj, tags.SET): restore = self._restore_set elif util.is_dictionary(obj): restore = self._restore_dict else: def restore(x): return x return restore def _restore_base64(self, obj): return util.b64decode(obj[tags.B64].encode('utf-8')) def _restore_base85(self, obj): return util.b85decode(obj[tags.B85].encode('utf-8')) def _restore_quopri(self, obj): return quopri.decodestring(obj[tags.BYTES].encode('utf-8')) def _restore_iterator(self, obj): return iter(self._restore_list(obj[tags.ITERATOR])) def _restore_reduce(self, obj): proxy = _Proxy() self._mkref(proxy) reduce_val = list(map(self._restore, obj[tags.REDUCE])) if len(reduce_val) < 5: reduce_val.extend([None] * (5 - len(reduce_val))) f, args, state, listitems, dictitems = reduce_val if f == tags.NEWOBJ or getattr(f, '__name__', '') == '__newobj__': cls = args[0] if not isinstance(cls, type): cls = self._restore(cls) stage1 = cls.__new__(cls, *args[1:]) else: stage1 = f(*args) if state: try: stage1.__setstate__(state) except AttributeError: try: for k, v in stage1.__dict__.items(): state.setdefault(k, v) stage1.__dict__ = state except AttributeError: try: for k, v in state.items(): setattr(stage1, k, v) except Exception: dict_state, slots_state = state if dict_state: stage1.__dict__.update(dict_state) if slots_state: for k, v in slots_state.items(): setattr(stage1, k, v) if listitems: try: stage1.extend(listitems) except AttributeError: for x in listitems: stage1.append(x) if dictitems: for k, v in dictitems: stage1.__setitem__(k, v) proxy.reset(stage1) self._swapref(proxy, stage1) return stage1 def _restore_id(self, obj): try: idx = obj[tags.ID] return self._objs[idx] except IndexError: return _IDProxy(self._objs, idx) def _restore_ref(self, obj): return self._namedict.get(obj[tags.REF]) def _restore_type(self, obj): typeref = loadclass(obj[tags.TYPE], classes=self._classes) if typeref is None: return obj return typeref def _restore_repr(self, obj): if self.safe: return None obj = loadrepr(obj[tags.REPR]) return self._mkref(obj) def _restore_object(self, obj): class_name = obj[tags.OBJECT] cls = loadclass(class_name, classes=self._classes) handler = handlers.get(cls, handlers.get(class_name)) if handler is not None: proxy = _Proxy() self._mkref(proxy) instance = handler(self).restore(obj) proxy.reset(instance) self._swapref(proxy, instance) return instance if cls is None: return self._mkref(obj) return self._restore_object_instance(obj, cls) def _restore_function(self, obj): return loadclass(obj[tags.FUNCTION], classes=self._classes) def _loadfactory(self, obj): try: default_factory = obj['default_factory'] except KeyError: return None del obj['default_factory'] return self._restore(default_factory) def _restore_object_instance(self, obj, cls): proxy = _Proxy() self._mkref(proxy) factory = self._loadfactory(obj) if has_tag(obj, tags.NEWARGSEX): args, kwargs = obj[tags.NEWARGSEX] else: args = getargs(obj, classes=self._classes) kwargs = {} if args: args = self._restore(args) if kwargs: kwargs = self._restore(kwargs) is_oldstyle = not (isinstance(cls, type) or getattr(cls, '__meta__', None)) try: if (not is_oldstyle) and hasattr(cls, '__new__'): if factory: instance = cls.__new__(cls, factory, *args, **kwargs) instance.default_factory = factory else: instance = cls.__new__(cls, *args, **kwargs) else: instance = object.__new__(cls) except TypeError: is_oldstyle = True if is_oldstyle: try: instance = cls(*args) except TypeError: try: instance = make_blank_classic(cls) except Exception: return self._mkref(obj) proxy.reset(instance) self._swapref(proxy, instance) if isinstance(instance, tuple): return instance instance = self._restore_object_instance_variables(obj, instance) if _safe_hasattr(instance, 'default_factory') and isinstance( instance.default_factory, _Proxy ): instance.default_factory = instance.default_factory.get() return instance def _restore_from_dict(self, obj, instance, ignorereserved=True): restore_key = self._restore_key_fn() method = _obj_setattr deferred = {} for k, v in util.items(obj): if ignorereserved and k in tags.RESERVED: continue if isinstance(k, numeric_types): str_k = k.__str__() else: str_k = k self._namestack.append(str_k) k = restore_key(k) value = self._restore(v) if util.is_noncomplex(instance) or util.is_dictionary_subclass(instance): try: if k == '__dict__': setattr(instance, k, value) else: instance[k] = value except TypeError: if k != '__dict__': deferred[k] = value self._namestack.pop() continue else: setattr(instance, k, value) if isinstance(value, _Proxy): self._proxies.append((instance, k, value, method)) self._namestack.pop() if deferred: instance = instance.__class__(deferred) return instance def _restore_object_instance_variables(self, obj, instance): instance = self._restore_from_dict(obj, instance) if has_tag(obj, tags.SEQ): if hasattr(instance, 'append'): for v in obj[tags.SEQ]: instance.append(self._restore(v)) elif hasattr(instance, 'add'): for v in obj[tags.SEQ]: instance.add(self._restore(v)) if has_tag(obj, tags.STATE): instance = self._restore_state(obj, instance) return instance def _restore_state(self, obj, instance): state = self._restore(obj[tags.STATE]) has_slots = ( isinstance(state, tuple) and len(state) == 2 and isinstance(state[1], dict) ) has_slots_and_dict = has_slots and isinstance(state[0], dict) if hasattr(instance, '__setstate__'): instance.__setstate__(state) elif isinstance(state, dict): instance = self._restore_from_dict(state, instance, ignorereserved=False) elif has_slots: instance = self._restore_from_dict(state[1], instance, ignorereserved=False) if has_slots_and_dict: instance = self._restore_from_dict( state[0], instance, ignorereserved=False ) elif not hasattr(instance, '__getnewargs__') and not hasattr( instance, '__getnewargs_ex__' ): instance = state return instance def _restore_list(self, obj): parent = [] self._mkref(parent) children = [self._restore(v) for v in obj] parent.extend(children) method = _obj_setvalue proxies = [ (parent, idx, value, method) for idx, value in enumerate(parent) if isinstance(value, _Proxy) ] self._proxies.extend(proxies) return parent def _restore_tuple(self, obj): return tuple([self._restore(v) for v in obj[tags.TUPLE]]) def _restore_set(self, obj): return {self._restore(v) for v in obj[tags.SET]} def _restore_dict(self, obj): data = {} self._mkref(data) if self.keys: for k, v in util.items(obj): if _is_json_key(k): continue if isinstance(k, numeric_types): str_k = k.__str__() else: str_k = k self._namestack.append(str_k) data[k] = self._restore(v) self._namestack.pop() for k, v in util.items(obj): if not _is_json_key(k): continue self._namestack.append(k) k = self._restore_pickled_key(k) data[k] = result = self._restore(v) if isinstance(result, _Proxy): self._proxies.append((data, k, result, _obj_setvalue)) self._namestack.pop() else: for k, v in util.items(obj): if isinstance(k, numeric_types): str_k = k.__str__() else: str_k = k self._namestack.append(str_k) data[k] = self._restore(v) self._namestack.pop() return data def _restore_key_fn(self): if self.keys: restore_key = self._restore_pickled_key else: def restore_key(key): return key return restore_key def _restore_pickled_key(self, key): if _is_json_key(key): key = decode( key[len(tags.JSON_KEY) :], backend=self.backend, context=self, keys=True, reset=False, ) return key def _refname(self): return '/' + '/'.join(self._namestack) def _mkref(self, obj): obj_id = id(obj) try: self._obj_to_idx[obj_id] except KeyError: self._obj_to_idx[obj_id] = len(self._objs) self._objs.append(obj) self._namedict[self._refname()] = obj return obj def _swapref(self, proxy, instance): proxy_id = id(proxy) instance_id = id(instance) instance_index = self._obj_to_idx[proxy_id] self._obj_to_idx[instance_id] = instance_index del self._obj_to_idx[proxy_id] self._objs[instance_index] = instance self._namedict[self._refname()] = instance def loadclass(module_and_name, classes=None): if classes: try: return classes[module_and_name] except KeyError: pass names = module_and_name.split('.') for up_to in range(len(names) - 1, 0, -1): module = util.untranslate_module_name('.'.join(names[:up_to])) try: __import__(module) obj = sys.modules[module] for class_name in names[up_to:]: obj = getattr(obj, class_name) return obj except (AttributeError, ImportError, ValueError): continue return None def getargs(obj, classes=None): if has_tag(obj, tags.NEWARGSEX): raise ValueError("__newargs_ex__ returns both args and kwargs") if has_tag(obj, tags.NEWARGS): return obj[tags.NEWARGS] if has_tag(obj, tags.INITARGS): return obj[tags.INITARGS] try: seq_list = obj[tags.SEQ] obj_dict = obj[tags.OBJECT] except KeyError: return [] typeref = loadclass(obj_dict, classes=classes) if not typeref: return [] if hasattr(typeref, '_fields'): if len(typeref._fields) == len(seq_list): return seq_list return [] class _trivialclassic: def make_blank_classic(cls): instance = _trivialclassic() instance.__class__ = cls return instance
MIT License
geyingli/unif
uf/application/dilated.py
DilatedLM.export
python
def export(self, export_dir, loop=1): if loop != self._loop: self._loop = loop self._session_mode = None return super(LMModule, self).export(export_dir)
Export model into SavedModel files. Args: export_dir: str. Directory to which the model is saved. loop: int. Number of inference loop to rewrite the input. Returns: None
https://github.com/geyingli/unif/blob/a6c9c94f60a7b906d9bd410bb446c4e3f2540ffc/uf/application/dilated.py#L99-L112
import random import numpy as np from ..tools import tf from .base import LMModule from .bert import get_bert_config, get_word_piece_tokenizer, get_key_to_depths from ..modeling.dilated import DLM from .. import utils class DilatedLM(LMModule): _INFER_ATTRIBUTES = { 'max_seq_length': ( 'An integer that defines max sequence length of input tokens, ' 'which typically equals `len(tokenize(segments)) + 1'), 'init_checkpoint': ( 'A string that directs to the checkpoint file used for ' 'initialization')} def __init__(self, config_file, vocab_file, max_seq_length=128, init_checkpoint=None, output_dir=None, gpu_ids=None, replace_prob=0.05, add_prob=0.05, subtract_prob=0.05, do_lower_case=True, truncate_method='LIFO'): super(LMModule, self).__init__( init_checkpoint, output_dir, gpu_ids) self.batch_size = 0 self.max_seq_length = max_seq_length self.truncate_method = truncate_method self._replace_prob = replace_prob self._add_prob = add_prob self._subtract_prob = subtract_prob self._loop = 1 self.__init_args__ = locals() self.bert_config = get_bert_config(config_file) self.tokenizer = get_word_piece_tokenizer(vocab_file, do_lower_case) self._key_to_depths = get_key_to_depths( self.bert_config.num_hidden_layers) if '[CLS]' not in self.tokenizer.vocab: self.tokenizer.add('[CLS]') self.bert_config.vocab_size += 1 tf.logging.info('Add necessary token `[CLS]` into vocabulary.') if '[SEP]' not in self.tokenizer.vocab: self.tokenizer.add('[SEP]') self.bert_config.vocab_size += 1 tf.logging.info('Add necessary token `[SEP]` into vocabulary.') if '[SPAD]' not in self.tokenizer.vocab: self.tokenizer.add('[SPAD]') self.bert_config.vocab_size += 1 tf.logging.info('Add necessary token `[SPAD]` into vocabulary.') def predict(self, X=None, X_tokenized=None, batch_size=8, loop=1): if loop != self._loop: self._loop = loop self._session_mode = None return super(LMModule, self).predict( X, X_tokenized, batch_size)
Apache License 2.0
willcl-ark/lnd_grpc
lnd_grpc/protos/rpc_pb2_grpc.py
LightningServicer.SendCoins
python
def SendCoins(self, request, context): context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!')
* lncli: `sendcoins` SendCoins executes a request to send coins to a particular address. Unlike SendMany, this RPC call only allows creating a single output at a time. If neither target_conf, or sat_per_byte are set, then the internal wallet will consult its fee model to determine a fee for the default confirmation target.
https://github.com/willcl-ark/lnd_grpc/blob/cf938c51c201f078e8bbe9e19ffc2d038f3abf7f/lnd_grpc/protos/rpc_pb2_grpc.py#L471-L481
import grpc from lnd_grpc.protos import rpc_pb2 as lnd__grpc_dot_protos_dot_rpc__pb2 class WalletUnlockerStub(object): def __init__(self, channel): self.GenSeed = channel.unary_unary( '/lnrpc.WalletUnlocker/GenSeed', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.GenSeedRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.GenSeedResponse.FromString, ) self.InitWallet = channel.unary_unary( '/lnrpc.WalletUnlocker/InitWallet', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.InitWalletRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.InitWalletResponse.FromString, ) self.UnlockWallet = channel.unary_unary( '/lnrpc.WalletUnlocker/UnlockWallet', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.UnlockWalletRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.UnlockWalletResponse.FromString, ) self.ChangePassword = channel.unary_unary( '/lnrpc.WalletUnlocker/ChangePassword', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.ChangePasswordRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.ChangePasswordResponse.FromString, ) class WalletUnlockerServicer(object): def GenSeed(self, request, context): context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def InitWallet(self, request, context): context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UnlockWallet(self, request, context): context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ChangePassword(self, request, context): context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_WalletUnlockerServicer_to_server(servicer, server): rpc_method_handlers = { 'GenSeed': grpc.unary_unary_rpc_method_handler( servicer.GenSeed, request_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.GenSeedRequest.FromString, response_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.GenSeedResponse.SerializeToString, ), 'InitWallet': grpc.unary_unary_rpc_method_handler( servicer.InitWallet, request_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.InitWalletRequest.FromString, response_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.InitWalletResponse.SerializeToString, ), 'UnlockWallet': grpc.unary_unary_rpc_method_handler( servicer.UnlockWallet, request_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.UnlockWalletRequest.FromString, response_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.UnlockWalletResponse.SerializeToString, ), 'ChangePassword': grpc.unary_unary_rpc_method_handler( servicer.ChangePassword, request_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.ChangePasswordRequest.FromString, response_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.ChangePasswordResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'lnrpc.WalletUnlocker', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) class LightningStub(object): pass def __init__(self, channel): self.WalletBalance = channel.unary_unary( '/lnrpc.Lightning/WalletBalance', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.WalletBalanceRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.WalletBalanceResponse.FromString, ) self.ChannelBalance = channel.unary_unary( '/lnrpc.Lightning/ChannelBalance', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.ChannelBalanceRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.ChannelBalanceResponse.FromString, ) self.GetTransactions = channel.unary_unary( '/lnrpc.Lightning/GetTransactions', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.GetTransactionsRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.TransactionDetails.FromString, ) self.EstimateFee = channel.unary_unary( '/lnrpc.Lightning/EstimateFee', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.EstimateFeeRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.EstimateFeeResponse.FromString, ) self.SendCoins = channel.unary_unary( '/lnrpc.Lightning/SendCoins', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.SendCoinsRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.SendCoinsResponse.FromString, ) self.ListUnspent = channel.unary_unary( '/lnrpc.Lightning/ListUnspent', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.ListUnspentRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.ListUnspentResponse.FromString, ) self.SubscribeTransactions = channel.unary_stream( '/lnrpc.Lightning/SubscribeTransactions', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.GetTransactionsRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.Transaction.FromString, ) self.SendMany = channel.unary_unary( '/lnrpc.Lightning/SendMany', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.SendManyRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.SendManyResponse.FromString, ) self.NewAddress = channel.unary_unary( '/lnrpc.Lightning/NewAddress', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.NewAddressRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.NewAddressResponse.FromString, ) self.SignMessage = channel.unary_unary( '/lnrpc.Lightning/SignMessage', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.SignMessageRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.SignMessageResponse.FromString, ) self.VerifyMessage = channel.unary_unary( '/lnrpc.Lightning/VerifyMessage', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.VerifyMessageRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.VerifyMessageResponse.FromString, ) self.ConnectPeer = channel.unary_unary( '/lnrpc.Lightning/ConnectPeer', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.ConnectPeerRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.ConnectPeerResponse.FromString, ) self.DisconnectPeer = channel.unary_unary( '/lnrpc.Lightning/DisconnectPeer', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.DisconnectPeerRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.DisconnectPeerResponse.FromString, ) self.ListPeers = channel.unary_unary( '/lnrpc.Lightning/ListPeers', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.ListPeersRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.ListPeersResponse.FromString, ) self.GetInfo = channel.unary_unary( '/lnrpc.Lightning/GetInfo', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.GetInfoRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.GetInfoResponse.FromString, ) self.PendingChannels = channel.unary_unary( '/lnrpc.Lightning/PendingChannels', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.PendingChannelsRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.PendingChannelsResponse.FromString, ) self.ListChannels = channel.unary_unary( '/lnrpc.Lightning/ListChannels', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.ListChannelsRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.ListChannelsResponse.FromString, ) self.SubscribeChannelEvents = channel.unary_stream( '/lnrpc.Lightning/SubscribeChannelEvents', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.ChannelEventSubscription.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.ChannelEventUpdate.FromString, ) self.ClosedChannels = channel.unary_unary( '/lnrpc.Lightning/ClosedChannels', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.ClosedChannelsRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.ClosedChannelsResponse.FromString, ) self.OpenChannelSync = channel.unary_unary( '/lnrpc.Lightning/OpenChannelSync', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.OpenChannelRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.ChannelPoint.FromString, ) self.OpenChannel = channel.unary_stream( '/lnrpc.Lightning/OpenChannel', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.OpenChannelRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.OpenStatusUpdate.FromString, ) self.CloseChannel = channel.unary_stream( '/lnrpc.Lightning/CloseChannel', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.CloseChannelRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.CloseStatusUpdate.FromString, ) self.AbandonChannel = channel.unary_unary( '/lnrpc.Lightning/AbandonChannel', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.AbandonChannelRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.AbandonChannelResponse.FromString, ) self.SendPayment = channel.stream_stream( '/lnrpc.Lightning/SendPayment', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.SendRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.SendResponse.FromString, ) self.SendPaymentSync = channel.unary_unary( '/lnrpc.Lightning/SendPaymentSync', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.SendRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.SendResponse.FromString, ) self.SendToRoute = channel.stream_stream( '/lnrpc.Lightning/SendToRoute', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.SendToRouteRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.SendResponse.FromString, ) self.SendToRouteSync = channel.unary_unary( '/lnrpc.Lightning/SendToRouteSync', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.SendToRouteRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.SendResponse.FromString, ) self.AddInvoice = channel.unary_unary( '/lnrpc.Lightning/AddInvoice', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.Invoice.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.AddInvoiceResponse.FromString, ) self.ListInvoices = channel.unary_unary( '/lnrpc.Lightning/ListInvoices', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.ListInvoiceRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.ListInvoiceResponse.FromString, ) self.LookupInvoice = channel.unary_unary( '/lnrpc.Lightning/LookupInvoice', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.PaymentHash.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.Invoice.FromString, ) self.SubscribeInvoices = channel.unary_stream( '/lnrpc.Lightning/SubscribeInvoices', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.InvoiceSubscription.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.Invoice.FromString, ) self.DecodePayReq = channel.unary_unary( '/lnrpc.Lightning/DecodePayReq', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.PayReqString.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.PayReq.FromString, ) self.ListPayments = channel.unary_unary( '/lnrpc.Lightning/ListPayments', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.ListPaymentsRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.ListPaymentsResponse.FromString, ) self.DeleteAllPayments = channel.unary_unary( '/lnrpc.Lightning/DeleteAllPayments', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.DeleteAllPaymentsRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.DeleteAllPaymentsResponse.FromString, ) self.DescribeGraph = channel.unary_unary( '/lnrpc.Lightning/DescribeGraph', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.ChannelGraphRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.ChannelGraph.FromString, ) self.GetChanInfo = channel.unary_unary( '/lnrpc.Lightning/GetChanInfo', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.ChanInfoRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.ChannelEdge.FromString, ) self.GetNodeInfo = channel.unary_unary( '/lnrpc.Lightning/GetNodeInfo', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.NodeInfoRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.NodeInfo.FromString, ) self.QueryRoutes = channel.unary_unary( '/lnrpc.Lightning/QueryRoutes', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.QueryRoutesRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.QueryRoutesResponse.FromString, ) self.GetNetworkInfo = channel.unary_unary( '/lnrpc.Lightning/GetNetworkInfo', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.NetworkInfoRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.NetworkInfo.FromString, ) self.StopDaemon = channel.unary_unary( '/lnrpc.Lightning/StopDaemon', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.StopRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.StopResponse.FromString, ) self.SubscribeChannelGraph = channel.unary_stream( '/lnrpc.Lightning/SubscribeChannelGraph', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.GraphTopologySubscription.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.GraphTopologyUpdate.FromString, ) self.DebugLevel = channel.unary_unary( '/lnrpc.Lightning/DebugLevel', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.DebugLevelRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.DebugLevelResponse.FromString, ) self.FeeReport = channel.unary_unary( '/lnrpc.Lightning/FeeReport', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.FeeReportRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.FeeReportResponse.FromString, ) self.UpdateChannelPolicy = channel.unary_unary( '/lnrpc.Lightning/UpdateChannelPolicy', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.PolicyUpdateRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.PolicyUpdateResponse.FromString, ) self.ForwardingHistory = channel.unary_unary( '/lnrpc.Lightning/ForwardingHistory', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.ForwardingHistoryRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.ForwardingHistoryResponse.FromString, ) self.ExportChannelBackup = channel.unary_unary( '/lnrpc.Lightning/ExportChannelBackup', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.ExportChannelBackupRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.ChannelBackup.FromString, ) self.ExportAllChannelBackups = channel.unary_unary( '/lnrpc.Lightning/ExportAllChannelBackups', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.ChanBackupExportRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.ChanBackupSnapshot.FromString, ) self.VerifyChanBackup = channel.unary_unary( '/lnrpc.Lightning/VerifyChanBackup', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.ChanBackupSnapshot.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.VerifyChanBackupResponse.FromString, ) self.RestoreChannelBackups = channel.unary_unary( '/lnrpc.Lightning/RestoreChannelBackups', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.RestoreChanBackupRequest.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.RestoreBackupResponse.FromString, ) self.SubscribeChannelBackups = channel.unary_stream( '/lnrpc.Lightning/SubscribeChannelBackups', request_serializer=lnd__grpc_dot_protos_dot_rpc__pb2.ChannelBackupSubscription.SerializeToString, response_deserializer=lnd__grpc_dot_protos_dot_rpc__pb2.ChanBackupSnapshot.FromString, ) class LightningServicer(object): pass def WalletBalance(self, request, context): context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ChannelBalance(self, request, context): context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetTransactions(self, request, context): context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def EstimateFee(self, request, context): context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!')
MIT License