|
import os |
|
import datasets |
|
import pandas as pd |
|
|
|
class TWEETS(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"ID": datasets.Value("string"), |
|
"tweet": datasets.Value("string"), |
|
"unnecessary": datasets.Value("bool"), |
|
"mandatory": datasets.Value("bool"), |
|
"pharma": datasets.Value("bool"), |
|
"conspiracy": datasets.Value("bool"), |
|
"political": datasets.Value("bool"), |
|
"country": datasets.Value("bool"), |
|
"rushed": datasets.Value("bool"), |
|
"ingredients": datasets.Value("bool"), |
|
"side-effect": datasets.Value("bool"), |
|
"ineffective": datasets.Value("bool"), |
|
"religious": datasets.Value("bool"), |
|
"none": datasets.Value("bool"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
features=features, |
|
supervised_keys=None, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = os.path.join(dl_manager.download_and_extract("https://drive.google.com/u/0/uc?id=1e_QaxcG0zSv4UWqncXjDA0ZqBjzg3oVP&export=download")) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join( data_dir, "data/train_data.csv"), "split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join( data_dir, "data/val_data.csv"), "split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join( data_dir, "data/val_data.csv"), "split": "validation", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
next(f) |
|
for id_, row in enumerate(f): |
|
data = row.split(",") |
|
yield id_, { |
|
"ID": data[0], |
|
"tweet": data[1], |
|
"unnecessary": int(data[2]), |
|
"mandatory": int(data[3]), |
|
"pharma": int(data[4]), |
|
"conspiracy": int(data[5]), |
|
"political": int(data[6]), |
|
"country": int(data[7]), |
|
"rushed": int(data[8]), |
|
"ingredients": int(data[9]), |
|
"side-effect": int(data[10]), |
|
"ineffective": int(data[11]), |
|
"religious": int(data[12]), |
|
"none": int(data[13]), |
|
} |