query
stringlengths
9
60
language
stringclasses
1 value
code
stringlengths
105
25.7k
url
stringlengths
91
217
linear regression
python
def fit_linear(X, y): """ Uses OLS to fit the regression. """ model = linear_model.LinearRegression() model.fit(X, y) return model
https://github.com/DistrictDataLabs/yellowbrick/blob/59b67236a3862c73363e8edad7cd86da5b69e3b2/yellowbrick/bestfit.py#L175-L181
linear regression
python
def linregress(x, y, return_stats=False): """linear regression calculation Parameters ---- x : independent variable (series) y : dependent variable (series) return_stats : returns statistical values as well if required (bool) Returns ---- list of parameters (and statistics) """ a1, a0, r_value, p_value, stderr = scipy.stats.linregress(x, y) retval = a1, a0 if return_stats: retval += r_value, p_value, stderr return retval
https://github.com/kristianfoerster/melodist/blob/ddc155c77b65f791be0021dbbaf68c6bac42ecbd/melodist/util/util.py#L122-L142
linear regression
python
def linear_regression(X, y, add_intercept=True, coef_only=False, alpha=0.05, as_dataframe=True, remove_na=False): """(Multiple) Linear regression. Parameters ---------- X : np.array or list Predictor(s). Shape = (n_samples, n_features) or (n_samples,). y : np.array or list Dependent variable. Shape = (n_samples). add_intercept : bool If False, assume that the data are already centered. If True, add a constant term to the model. In this case, the first value in the output dict is the intercept of the model. coef_only : bool If True, return only the regression coefficients. alpha : float Alpha value used for the confidence intervals. CI = [alpha / 2 ; 1 - alpha / 2] as_dataframe : bool If True, returns a pandas DataFrame. If False, returns a dictionnary. remove_na : bool If True, apply a listwise deletion of missing values (i.e. the entire row is removed). Returns ------- stats : dataframe or dict Linear regression summary:: 'names' : name of variable(s) in the model (e.g. x1, x2...) 'coef' : regression coefficients 'se' : standard error of the estimate 'T' : T-values 'pval' : p-values 'r2' : coefficient of determination (R2) 'adj_r2' : adjusted R2 'CI[2.5%]' : lower confidence interval 'CI[97.5%]' : upper confidence interval Notes ----- The beta coefficients of the regression are estimated using the :py:func:`numpy.linalg.lstsq` function. It is generally recommanded to include a constant term (intercept) to the model to limit the bias and force the residual mean to equal zero. Note that intercept coefficient and p-values are however rarely meaningful. The standard error of the estimates is a measure of the accuracy of the prediction defined as: .. math:: se = \\sqrt{MSE \\cdot (X^TX)^{-1}} where :math:`MSE` is the mean squared error, .. math:: MSE = \\frac{\\sum{(true - pred)^2}}{n - p - 1} :math:`p` is the total number of explanatory variables in the model (excluding the intercept) and :math:`n` is the sample size. Using the coefficients and the standard errors, the T-values can be obtained: .. math:: T = \\frac{coef}{se} and the p-values can then be approximated using a T-distribution with :math:`n - p - 1` degrees of freedom. The coefficient of determination (:math:`R^2`) is defined as: .. math:: R^2 = 1 - (\\frac{SS_{resid}}{SS_{total}}) The adjusted :math:`R^2` is defined as: .. math:: \\overline{R}^2 = 1 - (1 - R^2) \\frac{n - 1}{n - p - 1} Results have been compared against sklearn, statsmodels and JASP. This function will not run if NaN values are either present in the target or predictors variables. Please remove them before runing the function. Examples -------- 1. Simple linear regression >>> import numpy as np >>> from pingouin import linear_regression >>> np.random.seed(123) >>> mean, cov, n = [4, 6], [[1, 0.5], [0.5, 1]], 30 >>> x, y = np.random.multivariate_normal(mean, cov, n).T >>> lm = linear_regression(x, y) >>> lm.round(2) names coef se T pval r2 adj_r2 CI[2.5%] CI[97.5%] 0 Intercept 4.40 0.54 8.16 0.00 0.24 0.21 3.29 5.50 1 x1 0.39 0.13 2.99 0.01 0.24 0.21 0.12 0.67 2. Multiple linear regression >>> np.random.seed(42) >>> z = np.random.normal(size=n) >>> X = np.column_stack((x, z)) >>> lm = linear_regression(X, y) >>> print(lm['coef'].values) [4.54123324 0.36628301 0.17709451] 3. Using a Pandas DataFrame >>> import pandas as pd >>> df = pd.DataFrame({'x': x, 'y': y, 'z': z}) >>> lm = linear_regression(df[['x', 'z']], df['y']) >>> print(lm['coef'].values) [4.54123324 0.36628301 0.17709451] 4. No intercept and return coef only >>> linear_regression(X, y, add_intercept=False, coef_only=True) array([ 1.40935593, -0.2916508 ]) 5. Return a dictionnary instead of a DataFrame >>> lm_dict = linear_regression(X, y, as_dataframe=False) 6. Remove missing values >>> X[4, 1] = np.nan >>> y[7] = np.nan >>> linear_regression(X, y, remove_na=True, coef_only=True) array([4.64069731, 0.35455398, 0.1888135 ]) """ # Extract names if X is a Dataframe or Series if isinstance(X, pd.DataFrame): names = X.keys().tolist() elif isinstance(X, pd.Series): names = [X.name] else: names = [] assert 0 < alpha < 1 assert y.ndim == 1, 'y must be one-dimensional.' # Convert input to numpy array X = np.asarray(X) y = np.asarray(y) if X.ndim == 1: # Convert to (n_samples, n_features) shape X = X[..., np.newaxis] # Check for NaN / Inf if remove_na: X, y = rm_na(X, y[..., np.newaxis], paired=True, axis='rows') y = np.squeeze(y) y_gd = np.isfinite(y).all() X_gd = np.isfinite(X).all() assert y_gd, 'Target (y) contains NaN or Inf. Please remove them.' assert X_gd, 'Predictors (X) contain NaN or Inf. Please remove them.' # Check that X and y have same length assert y.shape[0] == X.shape[0], 'X and y must have same number of samples' if not names: names = ['x' + str(i + 1) for i in range(X.shape[1])] if add_intercept: # Add intercept X = np.column_stack((np.ones(X.shape[0]), X)) names.insert(0, "Intercept") # Compute beta coefficient and predictions coef = np.linalg.lstsq(X, y, rcond=None)[0] if coef_only: return coef pred = np.dot(X, coef) resid = np.square(y - pred) ss_res = resid.sum() n, p = X.shape[0], X.shape[1] # Degrees of freedom should not include the intercept dof = n - p if add_intercept else n - p - 1 # Compute mean squared error, variance and SE MSE = ss_res / dof beta_var = MSE * (np.linalg.pinv(np.dot(X.T, X)).diagonal()) beta_se = np.sqrt(beta_var) # Compute R2, adjusted R2 and RMSE ss_tot = np.square(y - y.mean()).sum() # ss_exp = np.square(pred - y.mean()).sum() r2 = 1 - (ss_res / ss_tot) adj_r2 = 1 - (1 - r2) * (n - 1) / dof # Compute T and p-values T = coef / beta_se pval = np.array([2 * t.sf(np.abs(i), dof) for i in T]) # Compute confidence intervals crit = t.ppf(1 - alpha / 2, dof) marg_error = crit * beta_se ll = coef - marg_error ul = coef + marg_error # Rename CI ll_name = 'CI[%.1f%%]' % (100 * alpha / 2) ul_name = 'CI[%.1f%%]' % (100 * (1 - alpha / 2)) # Create dict stats = {'names': names, 'coef': coef, 'se': beta_se, 'T': T, 'pval': pval, 'r2': r2, 'adj_r2': adj_r2, ll_name: ll, ul_name: ul} if as_dataframe: return pd.DataFrame.from_dict(stats) else: return stats
https://github.com/raphaelvallat/pingouin/blob/58b19fa4fffbfe09d58b456e3926a148249e4d9b/pingouin/regression.py#L10-L223
linear regression
python
def linear_regression(self): """ Linear Regression. This function runs linear regression and stores the, 1. Model 2. Model name 3. Mean score of cross validation 4. Metrics """ model = LinearRegression() scores = [] kfold = KFold(n_splits=self.cv, shuffle=True, random_state=42) for i, (train, test) in enumerate(kfold.split(self.baseline_in, self.baseline_out)): model.fit(self.baseline_in.iloc[train], self.baseline_out.iloc[train]) scores.append(model.score(self.baseline_in.iloc[test], self.baseline_out.iloc[test])) mean_score = sum(scores) / len(scores) self.models.append(model) self.model_names.append('Linear Regression') self.max_scores.append(mean_score) self.metrics['Linear Regression'] = {} self.metrics['Linear Regression']['R2'] = mean_score self.metrics['Linear Regression']['Adj R2'] = self.adj_r2(mean_score, self.baseline_in.shape[0], self.baseline_in.shape[1])
https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Model_Data.py#L176-L203
linear regression
python
def linreg(x, y): """ does a linear regression """ if len(x) != len(y): print('x and y must be same length') return xx, yy, xsum, ysum, xy, n, sum = 0, 0, 0, 0, 0, len(x), 0 linpars = {} for i in range(n): xx += x[i] * x[i] yy += y[i] * y[i] xy += x[i] * y[i] xsum += x[i] ysum += y[i] xsig = np.sqrt(old_div((xx - old_div(xsum**2, n)), (n - 1.))) ysig = np.sqrt(old_div((yy - old_div(ysum**2, n)), (n - 1.))) linpars['slope'] = old_div( (xy - (xsum * ysum / n)), (xx - old_div((xsum**2), n))) linpars['b'] = old_div((ysum - linpars['slope'] * xsum), n) linpars['r'] = old_div((linpars['slope'] * xsig), ysig) for i in range(n): a = y[i] - linpars['b'] - linpars['slope'] * x[i] sum += a linpars['sigma'] = old_div(sum, (n - 2.)) linpars['n'] = n return linpars
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L9589-L9615
linear regression
python
def _linear_seaborn_(self, label=None, style=None, opts=None): """ Returns a Seaborn linear regression plot """ xticks, yticks = self._get_ticks(opts) try: fig = sns.lmplot(self.x, self.y, data=self.df) fig = self._set_with_height(fig, opts) return fig except Exception as e: self.err(e, self.linear_, "Can not draw linear regression chart")
https://github.com/synw/dataswim/blob/4a4a53f80daa7cd8e8409d76a19ce07296269da2/dataswim/charts/seaborn.py#L57-L68
linear regression
python
def logx_linear(x, a, b): """logx linear Parameters ---------- x: int a: float b: float Returns ------- float a * np.log(x) + b """ x = np.log(x) return a*x + b
https://github.com/Microsoft/nni/blob/c7cc8db32da8d2ec77a382a55089f4e17247ce41/src/sdk/pynni/nni/curvefitting_assessor/curvefunctions.py#L89-L104
linear regression
python
def lasso_regression(self): """ Lasso Regression. This function runs lasso regression and stores the, 1. Model 2. Model name 3. Max score 4. Metrics """ score_list = [] max_score = float('-inf') best_alpha = None for alpha in self.alphas: # model = Lasso(normalize=True, alpha=alpha, max_iter=5000) model = Lasso(alpha=alpha, max_iter=5000) model.fit(self.baseline_in, self.baseline_out.values.ravel()) scores = [] kfold = KFold(n_splits=self.cv, shuffle=True, random_state=42) for i, (train, test) in enumerate(kfold.split(self.baseline_in, self.baseline_out)): model.fit(self.baseline_in.iloc[train], self.baseline_out.iloc[train]) scores.append(model.score(self.baseline_in.iloc[test], self.baseline_out.iloc[test])) mean_score = np.mean(scores) score_list.append(mean_score) if mean_score > max_score: max_score = mean_score best_alpha = alpha # self.models.append(Lasso(normalize=True, alpha=best_alpha, max_iter=5000)) self.models.append(Lasso(alpha=best_alpha, max_iter=5000)) self.model_names.append('Lasso Regression') self.max_scores.append(max_score) self.metrics['Lasso Regression'] = {} self.metrics['Lasso Regression']['R2'] = max_score self.metrics['Lasso Regression']['Adj R2'] = self.adj_r2(max_score, self.baseline_in.shape[0], self.baseline_in.shape[1])
https://github.com/SoftwareDefinedBuildings/XBOS/blob/c12d4fb14518ea3ae98c471c28e0710fdf74dd25/apps/Data_quality_analysis/Model_Data.py#L206-L246
linear regression
python
def regressionplot(x, y, poly=None): """ Plot a 2-D linear regression (y = slope * x + offset) overlayed over the raw data samples """ if not isinstance(x[0], (float, int, np.float64, np.float32)): x = [row[0] for row in x] y_regression = poly[0] * np.array(x) + poly[-1] try: plt.ion() fig = plt.figure() ax = fig.add_subplot(111) plt.plot(x, y_regression, 'r-', x, y, 'o', markersize=5) plt.legend(['%+.2g * x + %.2g' % poly, 'Samples']) ax.grid(True) plt.draw() except: logger.warn('No display available') return y_regression
https://github.com/totalgood/pugnlp/blob/c43445b14afddfdeadc5f3076675c9e8fc1ee67c/src/pugnlp/plots.py#L228-L245
linear regression
python
def linearRegression(requestContext, seriesList, startSourceAt=None, endSourceAt=None): """ Graphs the liner regression function by least squares method. Takes one metric or a wildcard seriesList, followed by a quoted string with the time to start the line and another quoted string with the time to end the line. The start and end times are inclusive (default range is from to until). See ``from / until`` in the render\_api_ for examples of time formats. Datapoints in the range is used to regression. Example:: &target=linearRegression(Server.instance01.threads.busy,'-1d') &target=linearRegression(Server.instance*.threads.busy, "00:00 20140101","11:59 20140630") """ from .app import evaluateTarget results = [] sourceContext = requestContext.copy() if startSourceAt is not None: sourceContext['startTime'] = parseATTime(startSourceAt) if endSourceAt is not None: sourceContext['endTime'] = parseATTime(endSourceAt) sourceList = [] for series in seriesList: source = evaluateTarget(sourceContext, series.pathExpression) sourceList.extend(source) for source, series in zip(sourceList, seriesList): newName = 'linearRegression(%s, %s, %s)' % ( series.name, int(epoch(sourceContext['startTime'])), int(epoch(sourceContext['endTime']))) forecast = linearRegressionAnalysis(source) if forecast is None: continue factor, offset = forecast values = [offset + (series.start + i * series.step) * factor for i in range(len(series))] newSeries = TimeSeries(newName, series.start, series.end, series.step, values) newSeries.pathExpression = newSeries.name results.append(newSeries) return results
https://github.com/brutasse/graphite-api/blob/0886b7adcf985a1e8bcb084f6dd1dc166a3f3dff/graphite_api/functions.py#L2998-L3044
linear regression
python
def regression(fname="regression.png"): """ Create figures for regression models """ _, axes = plt.subplots(ncols=2, figsize=(18, 6)) alphas = np.logspace(-10, 1, 300) data = load_concrete(split=True) # Plot prediction error in the middle oz = PredictionError(LassoCV(alphas=alphas), ax=axes[0]) oz.fit(data.X.train, data.y.train) oz.score(data.X.test, data.y.test) oz.finalize() # Plot residuals on the right oz = ResidualsPlot(RidgeCV(alphas=alphas), ax=axes[1]) oz.fit(data.X.train, data.y.train) oz.score(data.X.test, data.y.test) oz.finalize() # Save figure path = os.path.join(FIGURES, fname) plt.tight_layout() plt.savefig(path)
https://github.com/DistrictDataLabs/yellowbrick/blob/59b67236a3862c73363e8edad7cd86da5b69e3b2/paper/figures/figures.py#L104-L127
linear regression
python
def interpolate_linear(self, lons, lats, data): """ Interpolate using linear approximation Returns the same as interpolate(lons,lats,data,order=1) """ return self.interpolate(lons, lats, data, order=1)
https://github.com/underworldcode/stripy/blob/d4c3480c3e58c88489ded695eadbe7cd5bf94b48/stripy-src/stripy/spherical.py#L559-L564
linear regression
python
def regress(self, method = 'lstsq'): """regress performs linear least squares regression of the designmatrix on the data. :param method: method, or backend to be used for the regression analysis. :type method: string, one of ['lstsq', 'sm_ols'] :returns: instance variables 'betas' (nr_betas x nr_signals) and 'residuals' (nr_signals x nr_samples) are created. """ if method is 'lstsq': self.betas, residuals_sum, rank, s = LA.lstsq(self.design_matrix.T, self.resampled_signal.T) self.residuals = self.resampled_signal - self.predict_from_design_matrix(self.design_matrix) elif method is 'sm_ols': import statsmodels.api as sm assert self.resampled_signal.shape[0] == 1, \ 'signal input into statsmodels OLS cannot contain multiple signals at once, present shape %s' % str(self.resampled_signal.shape) model = sm.OLS(np.squeeze(self.resampled_signal),self.design_matrix.T) results = model.fit() # make betas and residuals that are compatible with the LA.lstsq type. self.betas = np.array(results.params).reshape((self.design_matrix.shape[0], self.resampled_signal.shape[0])) self.residuals = np.array(results.resid).reshape(self.resampled_signal.shape) self.logger.debug('performed %s regression on %s design_matrix and %s signal' % (method, str(self.design_matrix.shape), str(self.resampled_signal.shape)))
https://github.com/tknapen/FIRDeconvolution/blob/6263496a356c449062fe4c216fef56541f6dc151/src/FIRDeconvolution.py#L217-L239
linear regression
python
def linreg_ols_svd(y, X, rcond=1e-15): """Linear Regression, OLS, inv by SVD Properties ---------- * Numpy's lstsq is based on LAPACK's _gelsd what applies SVD * SVD inverse might be slow (complex Landau O) * speed might decline during forward selection * no overhead or other computations Example: -------- beta = lin_ols_svd(y,X) """ import numpy as np try: # solve OLS formula beta, _, _, singu = np.linalg.lstsq(b=y, a=X, rcond=rcond) except np.linalg.LinAlgError: print("LinAlgError: computation does not converge.") return None # check singu if np.any(singu < 0.0): print("Error: A singular value of X is numerically not well-behaved.") return None # return estimated model parameters return beta
https://github.com/ulf1/oxyba/blob/b3043116050de275124365cb11e7df91fb40169d/oxyba/linreg_ols_svd.py#L2-L29
linear regression
python
def _linear_predictor(self, X=None, modelmat=None, b=None, term=-1): """linear predictor compute the linear predictor portion of the model ie multiply the model matrix by the spline basis coefficients Parameters --------- at least 1 of (X, modelmat) and at least 1 of (b, feature) X : array-like of shape (n_samples, m_features) or None, optional containing the input dataset if None, will attempt to use modelmat modelmat : array-like or None, optional contains the spline basis for each feature evaluated at the input values for each feature, ie model matrix if None, will attempt to construct the model matrix from X b : array-like or None, optional contains the spline coefficients if None, will use current model coefficients feature : int, optional feature for which to compute the linear prediction if -1, will compute for all features Returns ------- lp : np.array of shape (n_samples,) """ if modelmat is None: modelmat = self._modelmat(X, term=term) if b is None: b = self.coef_[self.terms.get_coef_indices(term)] return modelmat.dot(b).flatten()
https://github.com/dswah/pyGAM/blob/b3e5c3cd580f0a3ad69f9372861624f67760c325/pygam/pygam.py#L357-L393
linear regression
python
def progression_linear(week, start_weight, final_weight, start_week, end_week): """A linear progression function going through the points ('start_week', 'start_weight') and ('end_week', 'final_weight'), evaluated in 'week'. Parameters ---------- week The week to evaluate the linear function at. start_weight The weight at 'start_week'. final_weight The weight at 'end_week'. start_week The number of the first week, typically 1. end_week The number of the final week, e.g. 8. Returns ------- weight The weight at 'week'. Examples ------- >>> progression_linear(week = 2, start_weight = 100, final_weight = 120, ... start_week = 1, end_week = 3) 110.0 >>> progression_linear(3, 100, 140, 1, 5) 120.0 """ # Calculate the slope of the linear function slope = (start_weight - final_weight) / (start_week - end_week) # Return the answer y = slope (x - x_0) + y_0 return slope * (week - start_week) + start_weight
https://github.com/tommyod/streprogen/blob/21b903618e8b2d398bceb394d18d7c74ca984def/streprogen/modeling.py#L156-L194
linear regression
python
def linearRegressionAnalysis(series): """ Returns factor and offset of linear regression function by least squares method. """ n = safeLen(series) sumI = sum([i for i, v in enumerate(series) if v is not None]) sumV = sum([v for i, v in enumerate(series) if v is not None]) sumII = sum([i * i for i, v in enumerate(series) if v is not None]) sumIV = sum([i * v for i, v in enumerate(series) if v is not None]) denominator = float(n * sumII - sumI * sumI) if denominator == 0: return None else: factor = (n * sumIV - sumI * sumV) / denominator / series.step offset = sumII * sumV - sumIV * sumI offset = offset / denominator - factor * series.start return factor, offset
https://github.com/brutasse/graphite-api/blob/0886b7adcf985a1e8bcb084f6dd1dc166a3f3dff/graphite_api/functions.py#L2977-L2995
linear regression
python
def _lmder1_linear_r1zcr(n, m, factor, target_fnorm1, target_fnorm2, target_params): """A rank-1 linear function with zero columns and rows (lmder test #3)""" def func(params, vec): s = 0 for j in range(1, n - 1): s += (j + 1) * params[j] for i in range(m): vec[i] = i * s - 1 vec[m-1] = -1 def jac(params, jac): jac.fill(0) for i in range(1, n - 1): for j in range(1, m - 1): jac[i,j] = j * (i + 1) guess = np.ones(n) * factor #_lmder1_test(m, func, jac, guess) _lmder1_driver(m, func, jac, guess, target_fnorm1, target_fnorm2, None)
https://github.com/pkgw/pwkit/blob/d40957a1c3d2ea34e7ceac2267ee9635135f2793/pwkit/lmmin.py#L2472-L2494
linear regression
python
def fit_linear(xdata, ydata): """ Returns slope and intercept of line of best fit: y = a*x + b through the supplied data. Parameters ---------- xdata, ydata: Arrays of x data and y data (having matching lengths). """ x = _n.array(xdata) y = _n.array(ydata) ax = _n.average(x) ay = _n.average(y) axx = _n.average(x*x) ayx = _n.average(y*x) slope = (ayx - ay*ax) / (axx - ax*ax) intercept = ay - slope*ax return slope, intercept
https://github.com/Spinmob/spinmob/blob/f037f5df07f194bcd4a01f4d9916e57b9e8fb45a/_functions.py#L738-L763
linear regression
python
def linear(target, X, A1='', A2=''): r""" Calculates the rate, as well as slope and intercept of the following function at the given value of `X`: .. math:: r = A_{1} X + A_{2} Parameters ---------- A1 -> A2 : string The dictionary keys on the target object containing the coefficients values to be used in the source term model X : string The dictionary key on the target objecxt containing the the quantity of interest Returns ------- A dictionary containing the following three items: **'rate'** - The value of the source term function at the given X. **'S1'** - The slope of the source term function at the given X. **'S2'** - The intercept of the source term function at the given X. The slope and intercept provide a linearized source term equation about the current value of X as follow: .. math:: rate = S_{1} X + S_{2} """ A = _parse_args(target=target, key=A1, default=1.0) B = _parse_args(target=target, key=A2, default=0.0) X = target[X] r = A * X + B S1 = A S2 = B values = {'S1': S1, 'S2': S2, 'rate': r} return values
https://github.com/PMEAL/OpenPNM/blob/0547b5724ffedc0a593aae48639d36fe10e0baed/openpnm/models/physics/generic_source_term.py#L28-L71
linear regression
python
def linear_model(x, y): """ Returns a linear model transformation function fitted on the two supplied points. y = m*x + b Note: Assumes that slope > 0, otherwise division through zero might occur. """ x1, x2 = x y1, y2 = y m = (y2 - y1) / (x2 - x1) b = y1 - (m * x1) return lambda x: m * x + b
https://github.com/loli/medpy/blob/95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5/medpy/filter/IntensityRangeStandardization.py#L524-L534
linear regression
python
def linear_regression(self, target, regression_length, mask=NotSpecified): """ Construct a new Factor that performs an ordinary least-squares regression predicting the columns of `self` from `target`. This method can only be called on factors which are deemed safe for use as inputs to other factors. This includes `Returns` and any factors created from `Factor.rank` or `Factor.zscore`. Parameters ---------- target : zipline.pipeline.Term with a numeric dtype The term to use as the predictor/independent variable in each regression. This may be a Factor, a BoundColumn or a Slice. If `target` is two-dimensional, regressions are computed asset-wise. regression_length : int Length of the lookback window over which to compute each regression. mask : zipline.pipeline.Filter, optional A Filter describing which assets should be regressed with the target slice each day. Returns ------- regressions : zipline.pipeline.factors.RollingLinearRegression A new Factor that will compute linear regressions of `target` against the columns of `self`. Examples -------- Suppose we want to create a factor that regresses AAPL's 10-day returns against the 10-day returns of all other assets, computing each regression over 30 days. This can be achieved by doing the following:: returns = Returns(window_length=10) returns_slice = returns[sid(24)] aapl_regressions = returns.linear_regression( target=returns_slice, regression_length=30, ) This is equivalent to doing:: aapl_regressions = RollingLinearRegressionOfReturns( target=sid(24), returns_length=10, regression_length=30, ) See Also -------- :func:`scipy.stats.linregress` :class:`zipline.pipeline.factors.RollingLinearRegressionOfReturns` """ from .statistical import RollingLinearRegression return RollingLinearRegression( dependent=self, independent=target, regression_length=regression_length, mask=mask, )
https://github.com/quantopian/zipline/blob/77ad15e6dc4c1cbcdc133653bac8a63fc704f7fe/zipline/pipeline/factors/factor.py#L786-L843
linear regression
python
def linreg_mle(y, X, algorithm='Nelder-Mead', debug=False): """MLE for Linear Regression Model Parameters: ----------- y : ndarray target variable with N observations X : ndarray The <N x C> design matrix with C independent variables, features, factors, etc. algorithm : str Optional. Default 'Nelder-Mead' (Simplex). The algorithm used in scipy.optimize.minimize debug : bool Optional. Returns: -------- beta : ndarray Estimated regression coefficients. results : scipy.optimize.optimize.OptimizeResult Optional. If debug=True then only scipy's optimization result variable is returned. """ import numpy as np import scipy.stats as sstat import scipy.optimize as sopt def objective_nll_linreg(theta, y, X): yhat = np.dot(X, theta[:-1]) # =X*beta return -1.0 * sstat.norm.logpdf(y, loc=yhat, scale=theta[-1]).sum() # check eligible algorithm if algorithm not in ('Nelder-Mead', 'CG', 'BFGS'): raise Exception('Optimization Algorithm not supported.') # set start values theta0 = np.ones((X.shape[1] + 1, )) # run solver results = sopt.minimize( objective_nll_linreg, theta0, args=(y, X), method=algorithm, options={'disp': False}) # debug? if debug: return results # done return results.x[:-1]
https://github.com/ulf1/oxyba/blob/b3043116050de275124365cb11e7df91fb40169d/oxyba/linreg_mle.py#L2-L59
linear regression
python
def ols_matrix(A, norm_func=None): """ Generate the matrix used to solve OLS regression. Parameters ---------- A: float array The design matrix norm: callable, optional A normalization function to apply to the matrix, before extracting the OLS matrix. Notes ----- The matrix needed for OLS regression for the equation: ..math :: y = A \beta is given by: ..math :: \hat{\beta} = (A' x A)^{-1} A' y See also -------- http://en.wikipedia.org/wiki/Ordinary_least_squares#Estimation """ A = np.asarray(A) if norm_func is not None: X = np.matrix(unit_vector(A.copy(), norm_func=norm_func)) else: X = np.matrix(A.copy()) return la.pinv(X.T * X) * X.T
https://github.com/cni/MRS/blob/16098b3cf4830780efd787fee9efa46513850283/MRS/utils.py#L235-L276
linear regression
python
def interpolation_linear(x, x1, x2, y1, y2): """ Linear interpolation returns (y2 - y1) / (x2 - x1) * (x - x1) + y1 """ m = (y2 - y1) / (x2 - x1) t = (x - x1) return m * t + y1
https://github.com/pbrisk/mathtoolspy/blob/d0d35b45d20f346ba8a755e53ed0aa182fab43dd/mathtoolspy/utils/math_fcts.py#L51-L58
linear regression
python
def run(features, labels, regularization=0., constfeat=True): """ Run linear regression on the given data. .. versionadded:: 0.5.0 If a regularization parameter is provided, this function is a simplification and specialization of ridge regression, as implemented in `scikit-learn <http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge>`_. Setting `solver` to `'svd'` in :class:`sklearn.linear_model.Ridge` and equating our `regularization` with their `alpha` will yield the same results. Parameters ---------- features : ndarray Features on which to run linear regression. labels : ndarray Labels for the given features. Multiple columns of labels are allowed. regularization : float, optional Regularization parameter. Defaults to 0. constfeat : bool, optional Whether or not the first column of features is the constant feature 1. If True, the first column will be excluded from regularization. Defaults to True. Returns ------- model : ndarray Regression model for the given data. """ n_col = (features.shape[1] if len(features.shape) > 1 else 1) reg_matrix = regularization * np.identity(n_col, dtype='float64') if constfeat: reg_matrix[0, 0] = 0. # http://stackoverflow.com/questions/27476933/numpy-linear-regression-with-regularization return np.linalg.lstsq(features.T.dot(features) + reg_matrix, features.T.dot(labels))[0]
https://github.com/aisthesis/pynance/blob/9eb0d78b60fe2a324ed328d026fedb6dbe8f7f41/pynance/learn/linreg.py#L13-L53
linear regression
python
def lreg(self, xcol, ycol, name="Regression"): """ Add a column to the main dataframe populted with the model's linear regression for a column """ try: x = self.df[xcol].values.reshape(-1, 1) y = self.df[ycol] lm = linear_model.LinearRegression() lm.fit(x, y) predictions = lm.predict(x) self.df[name] = predictions except Exception as e: self.err(e, "Can not calculate linear regression")
https://github.com/synw/dataswim/blob/4a4a53f80daa7cd8e8409d76a19ce07296269da2/dataswim/data/stats.py#L8-L21
linear regression
python
def def_linear(fun): """Flags that a function is linear wrt all args""" defjvp_argnum(fun, lambda argnum, g, ans, args, kwargs: fun(*subval(args, argnum, g), **kwargs))
https://github.com/HIPS/autograd/blob/e3b525302529d7490769d5c0bcfc7457e24e3b3e/autograd/core.py#L151-L154
linear regression
python
def linreg_ols_pinv(y, X, rcond=1e-15): """Linear Regression, OLS, by multiplying with Pseudoinverse""" import numpy as np try: # multiply with inverse to compute coefficients return np.dot(np.linalg.pinv( np.dot(X.T, X), rcond=rcond), np.dot(X.T, y)) except np.linalg.LinAlgError: print("LinAlgError: SVD does not converge") return None
https://github.com/ulf1/oxyba/blob/b3043116050de275124365cb11e7df91fb40169d/oxyba/linreg_ols_pinv.py#L2-L10
linear regression
python
def linreg_ols_lu(y, X): """Linear Regression, OLS, by solving linear equations and LU decomposition Properties ---------- * based on LAPACK's _gesv what applies LU decomposition * avoids using python's inverse functions * should be stable * no overhead or other computations Example: -------- beta = linreg_ols_lu(y,X) Links: ------ * http://oxyba.de/docs/linreg_ols_lu """ import numpy as np try: # solve OLS formula return np.linalg.solve(np.dot(X.T, X), np.dot(X.T, y)) except np.linalg.LinAlgError: print("LinAlgError: X*X' is singular or not square.") return None
https://github.com/ulf1/oxyba/blob/b3043116050de275124365cb11e7df91fb40169d/oxyba/linreg_ols_lu.py#L2-L26
linear regression
python
def _dlinear_seaborn_(self, label=None, style=None, opts=None): """ Returns a Seaborn linear regression plot with marginal distribution """ color, size = self._get_color_size(style) try: fig = sns.jointplot(self.x, self.y, color=color, size=size, data=self.df, kind="reg") fig = self._set_with_height(fig, opts) return fig except Exception as e: self.err(e, self.dlinear_, "Can not draw linear regression chart with distribution")
https://github.com/synw/dataswim/blob/4a4a53f80daa7cd8e8409d76a19ce07296269da2/dataswim/charts/seaborn.py#L70-L82
linear regression
python
def linear_trend(x, param): """ Calculate a linear least-squares regression for the values of the time series versus the sequence from 0 to length of the time series minus one. This feature assumes the signal to be uniformly sampled. It will not use the time stamps to fit the model. The parameters control which of the characteristics are returned. Possible extracted attributes are "pvalue", "rvalue", "intercept", "slope", "stderr", see the documentation of linregress for more information. :param x: the time series to calculate the feature of :type x: numpy.ndarray :param param: contains dictionaries {"attr": x} with x an string, the attribute name of the regression model :type param: list :return: the different feature values :return type: pandas.Series """ # todo: we could use the index of the DataFrame here linReg = linregress(range(len(x)), x) return [("attr_\"{}\"".format(config["attr"]), getattr(linReg, config["attr"])) for config in param]
https://github.com/blue-yonder/tsfresh/blob/c72c9c574371cf7dd7d54e00a466792792e5d202/tsfresh/feature_extraction/feature_calculators.py#L1152-L1173
linear regression
python
def agg_linear_trend(self, x, param=None): """ As in tsfresh `agg_inear_trend <https://github.com/blue-yonder/tsfresh/blob/master/tsfresh/\ feature_extraction/feature_calculators.py#L1727>`_ Calculates a linear least-squares regression for values of the time series that were aggregated over chunks\ versus the sequence from 0 up to the number of chunks minus one. This feature assumes the signal to be uniformly sampled. It will not use the time stamps to fit the model. The parameters attr controls which of the characteristics are returned. Possible extracted attributes are\ "pvalue", "rvalue", "intercept", "slope", "stderr", see the documentation of linregress for more \ information. The chunksize is regulated by "chunk_len". It specifies how many time series values are in each chunk. Further, the aggregation function is controlled by "f_agg", which can use "max", "min" or , "mean", "median" :param x: the time series to calculate the feature of :type x: pandas.Series :param param: contains dictionaries {"attr": x, "chunk_len": l, "f_agg": f} with x, f a str and l an int :type param: list :return: the different feature values :rtype: pandas.Series """ if param is None: param = [{'attr': 'intercept', 'chunk_len': 5, 'f_agg': 'min'}, {'attr': 'rvalue', 'chunk_len': 10, 'f_agg': 'var'}, {'attr': 'intercept', 'chunk_len': 10, 'f_agg': 'min'}] agg = feature_calculators.agg_linear_trend(x, param) logging.debug("agg linear trend by tsfresh calculated") return list(agg)
https://github.com/pdkit/pdkit/blob/c7120263da2071bb139815fbdb56ca77b544f340/pdkit/tremor_processor.py#L396-L427
linear regression
python
def fit(self, X, y): """ Compute average slope and intercept for all X, y pairs Arguments: X (np.array): model input (independent variable) y (np.array): model output (dependent variable) Returns: Linear Regression instance with `slope` and `intercept` attributes References: Based on: https://github.com/justmarkham/DAT4/blob/master/notebooks/08_linear_regression.ipynb >>> n_samples = 100 >>> X = np.arange(100).reshape((n_samples, 1)) >>> slope, intercept = 3.14159, -4.242 >>> y = 3.14 * X + np.random.randn(*X.shape) + intercept >>> line = LinearRegressor() >>> line.fit(X, y) <nlpia.models.LinearRegressor object ... >>> abs(line.slope - slope) < abs(0.02 * (slope + 1)) True >>> abs(line.intercept - intercept) < 0.2 * (abs(intercept) + 1) True """ # initial sums n = float(len(X)) sum_x = X.sum() sum_y = y.sum() sum_xy = (X * y).sum() sum_xx = (X**2).sum() # formula for w0 self.slope = (sum_xy - (sum_x * sum_y) / n) / (sum_xx - (sum_x * sum_x) / n) # formula for w1 self.intercept = sum_y / n - self.slope * (sum_x / n) return self
https://github.com/totalgood/nlpia/blob/efa01126275e9cd3c3a5151a644f1c798a9ec53f/src/nlpia/models.py#L15-L54
linear regression
python
def simulate_linear_model(A, x0, v, ts_length): r""" This is a separate function for simulating a vector linear system of the form .. math:: x_{t+1} = A x_t + v_t given :math:`x_0` = x0 Here :math:`x_t` and :math:`v_t` are both n x 1 and :math:`A` is n x n. The purpose of separating this functionality out is to target it for optimization by Numba. For the same reason, matrix multiplication is broken down into for loops. Parameters ---------- A : array_like or scalar(float) Should be n x n x0 : array_like Should be n x 1. Initial condition v : np.ndarray Should be n x ts_length-1. Its t-th column is used as the time t shock :math:`v_t` ts_length : int The length of the time series Returns -------- x : np.ndarray Time series with ts_length columns, the t-th column being :math:`x_t` """ A = np.asarray(A) n = A.shape[0] x = np.empty((n, ts_length)) x[:, 0] = x0 for t in range(ts_length-1): # x[:, t+1] = A.dot(x[:, t]) + v[:, t] for i in range(n): x[i, t+1] = v[i, t] # Shock for j in range(n): x[i, t+1] += A[i, j] * x[j, t] # Dot Product return x
https://github.com/QuantEcon/QuantEcon.py/blob/26a66c552f2a73967d7efb6e1f4b4c4985a12643/quantecon/lss.py#L20-L64
linear regression
python
def linear_constraints(self): """ Returns the linear constraints. """ if self.lin_N == 0: return None, array([]), array([]) A = lil_matrix((self.lin_N, self.var_N), dtype=float64) l = -Inf * ones(self.lin_N) u = -l for lin in self.lin_constraints: if lin.N: # non-zero number of rows to add Ak = lin.A # A for kth linear constrain set i1 = lin.i1 # starting row index iN = lin.iN # ending row index vsl = lin.vs # var set list kN = -1 # initialize last col of Ak used Ai = lil_matrix((lin.N, self.var_N), dtype=float64) for v in vsl: var = self.get_var(v) j1 = var.i1 # starting column in A jN = var.iN # ending column in A k1 = kN + 1 # starting column in Ak kN = kN + var.N # ending column in Ak if j1 == jN: # FIXME: Single column slicing broken in lil. for i in range(Ai.shape[0]): Ai[i, j1] = Ak[i, k1] else: Ai[:, j1:jN + 1] = Ak[:, k1:kN + 1] A[i1:iN + 1, :] = Ai l[i1:iN + 1] = lin.l u[i1:iN + 1] = lin.u return A.tocsr(), l, u
https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/opf.py#L782-L818
linear regression
python
def calculate_linear_predictor(model_matrix, model_coefficients, offset=None, name=None): """Computes `model_matrix @ model_coefficients + offset`.""" with tf.compat.v1.name_scope(name, 'calculate_linear_predictor', [model_matrix, model_coefficients, offset]): predicted_linear_response = tf.linalg.matvec(model_matrix, model_coefficients) if offset is not None: predicted_linear_response += offset return predicted_linear_response
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/glm/fisher_scoring.py#L623-L632
linear regression
python
def linear_trend_timewise(x, param): """ Calculate a linear least-squares regression for the values of the time series versus the sequence from 0 to length of the time series minus one. This feature uses the index of the time series to fit the model, which must be of a datetime dtype. The parameters control which of the characteristics are returned. Possible extracted attributes are "pvalue", "rvalue", "intercept", "slope", "stderr", see the documentation of linregress for more information. :param x: the time series to calculate the feature of. The index must be datetime. :type x: pandas.Series :param param: contains dictionaries {"attr": x} with x an string, the attribute name of the regression model :type param: list :return: the different feature values :return type: list """ ix = x.index # Get differences between each timestamp and the first timestamp in seconds. # Then convert to hours and reshape for linear regression times_seconds = (ix - ix[0]).total_seconds() times_hours = np.asarray(times_seconds / float(3600)) linReg = linregress(times_hours, x.values) return [("attr_\"{}\"".format(config["attr"]), getattr(linReg, config["attr"])) for config in param]
https://github.com/blue-yonder/tsfresh/blob/c72c9c574371cf7dd7d54e00a466792792e5d202/tsfresh/feature_extraction/feature_calculators.py#L1899-L1927
linear regression
python
def _fit_regression(self, y): """ fit regression using pseudo-inverse or supplied regressor """ if self.regressor is None: self.coefs_ = safe_sparse_dot(pinv2(self.hidden_activations_), y) else: self.regressor.fit(self.hidden_activations_, y) self.fitted_ = True
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/extreme_learning_machines/elm.py#L149-L160
linear regression
python
def regression_tikhonov(G, y, M, tau=0): r"""Solve a regression problem on graph via Tikhonov minimization. The function solves .. math:: \operatorname*{arg min}_x \| M x - y \|_2^2 + \tau \ x^T L x if :math:`\tau > 0`, and .. math:: \operatorname*{arg min}_x x^T L x \ \text{ s. t. } \ y = M x otherwise. Parameters ---------- G : :class:`pygsp.graphs.Graph` y : array, length G.n_vertices Measurements. M : array of boolean, length G.n_vertices Masking vector. tau : float Regularization parameter. Returns ------- x : array, length G.n_vertices Recovered values :math:`x`. Examples -------- >>> from pygsp import graphs, filters, learning >>> import matplotlib.pyplot as plt >>> >>> G = graphs.Sensor(N=100, seed=42) >>> G.estimate_lmax() Create a smooth ground truth signal: >>> filt = lambda x: 1 / (1 + 10*x) >>> filt = filters.Filter(G, filt) >>> rs = np.random.RandomState(42) >>> signal = filt.analyze(rs.normal(size=G.n_vertices)) Construct a measurement signal from a binary mask: >>> mask = rs.uniform(0, 1, G.n_vertices) > 0.5 >>> measures = signal.copy() >>> measures[~mask] = np.nan Solve the regression problem by reconstructing the signal: >>> recovery = learning.regression_tikhonov(G, measures, mask, tau=0) Plot the results: >>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=True, figsize=(10, 3)) >>> limits = [signal.min(), signal.max()] >>> _ = G.plot_signal(signal, ax=ax1, limits=limits, title='Ground truth') >>> _ = G.plot_signal(measures, ax=ax2, limits=limits, title='Measures') >>> _ = G.plot_signal(recovery, ax=ax3, limits=limits, title='Recovery') >>> _ = fig.tight_layout() """ if tau > 0: y[M == False] = 0 if sparse.issparse(G.L): def Op(x): return (M * x.T).T + tau * (G.L.dot(x)) LinearOp = sparse.linalg.LinearOperator([G.N, G.N], Op) if y.ndim > 1: sol = np.empty(shape=y.shape) res = np.empty(shape=y.shape[1]) for i in range(y.shape[1]): sol[:, i], res[i] = sparse.linalg.cg( LinearOp, y[:, i]) else: sol, res = sparse.linalg.cg(LinearOp, y) # TODO: do something with the residual... return sol else: # Creating this matrix may be problematic in term of memory. # Consider using an operator instead... if type(G.L).__module__ == np.__name__: LinearOp = np.diag(M*1) + tau * G.L return np.linalg.solve(LinearOp, M * y) else: if np.prod(M.shape) != G.n_vertices: raise ValueError("M should be of size [G.n_vertices,]") indl = M indu = (M == False) Luu = G.L[indu, :][:, indu] Wul = - G.L[indu, :][:, indl] if sparse.issparse(G.L): sol_part = sparse.linalg.spsolve(Luu, Wul.dot(y[indl])) else: sol_part = np.linalg.solve(Luu, np.matmul(Wul, y[indl])) sol = y.copy() sol[indu] = sol_part return sol
https://github.com/epfl-lts2/pygsp/blob/8ce5bde39206129287375af24fdbcd7edddca8c5/pygsp/learning.py#L254-L368
linear regression
python
def linear_variogram_model(m, d): """Linear model, m is [slope, nugget]""" slope = float(m[0]) nugget = float(m[1]) return slope * d + nugget
https://github.com/bsmurphy/PyKrige/blob/a4db3003b0b5688658c12faeb95a5a8b2b14b433/pykrige/variogram_models.py#L30-L34
linear regression
python
def regression_and_plot(x, y=None): """ Fit a line to the x, y data supplied and plot it along with teh raw samples >>> age = [25, 26, 33, 29, 27, 21, 26, 35, 21, 37, 21, 38, 18, 19, 36, 30, 29, 24, 24, 36, 36, 27, ... 33, 23, 21, 26, 27, 27, 24, 26, 25, 24, 22, 25, 40, 39, 19, 31, 33, 30, 33, 27, 40, 32, ... 31, 35, 26, 34, 27, 34, 33, 20, 19, 40, 39, 39, 37, 18, 35, 20, 28, 31, 30, 29, 31, 18, ... 40, 20, 32, 20, 34, 34, 25, 29, 40, 40, 39, 36, 39, 34, 34, 35, 39, 38, 33, 32, 21, 29, ... 36, 33, 30, 39, 21, 19, 38, 30, 40, 36, 34, 28, 37, 29, 39, 25, 36, 33, 37, 19, 28, 26, 18, 22, ... 40, 20, 40, 20, 39, 29, 26, 26, 22, 37, 34, 29, 24, 23, 21, 19, 29, 30, 23, 40, 30, 30, 19, 39, ... 39, 25, 36, 38, 24, 32, 34, 33, 36, 30, 35, 26, 28, 23, 25, 23, 40, 20, 26, 26, 22, 23, 18, 36, ... 34, 36, 35, 40, 39, 39, 33, 22, 37, 20, 37, 35, 20, 23, 37, 32, 25, 35, 35, 22, 21, 31, 40, 26, ... 24, 29, 37, 19, 33, 31, 29, 27, 21, 19, 39, 34, 34, 40, 26, 39, 35, 31, 35, 24, 19, 27, 27, 20, ... 28, 30, 23, 21, 20, 26, 31, 24, 25, 25, 22, 32, 28, 36, 21, 38, 18, 25, 21, 33, 40, 19, 38, 33, ... 37, 32, 31, 31, 38, 19, 37, 37, 32, 36, 34, 35, 35, 35, 37, 35, 39, 34, 24, 25, 18, 40, 33, 32, ... 23, 25, 19, 39, 38, 36, 32, 27, 22, 40, 28, 29, 25, 36, 26, 28, 32, 34, 34, 21, 21, 32, 19, 35, ... 30, 35, 26, 31, 38, 34, 33, 35, 37, 38, 36, 40, 22, 30, 28, 28, 29, 36, 24, 28, 28, 28, 26, 21, ... 35, 22, 32, 28, 19, 33, 18, 22, 36, 26, 19, 26, 30, 27, 28, 24, 36, 37, 20, 32, 38, 39, 38, 30, ... 32, 30, 26, 23, 19, 29, 33, 34, 23, 30, 32, 40, 36, 29, 39, 34, 34, 22, 22, 22, 36, 38, 38, 30, ... 26, 40, 34, 21, 34, 38, 32, 35, 35, 26, 28, 20, 40, 23, 24, 26, 24, 39, 21, 33, 31, 39, 39, 20, ... 22, 18, 23, 36, 32, 37, 36, 26, 30, 30, 30, 21, 22, 40, 38, 22, 27, 23, 21, 22, 20, 30, 31, 40, ... 19, 32, 24, 21, 27, 32, 30, 34, 18, 25, 22, 40, 23, 19, 24, 24, 25, 40, 27, 29, 22, 39, 38, 34, ... 39, 30, 31, 33, 34, 25, 20, 20, 20, 20, 24, 19, 21, 31, 31, 29, 38, 39, 33, 40, 24, 38, 37, 18, ... 24, 38, 38, 22, 40, 21, 36, 30, 21, 30, 35, 20, 25, 25, 29, 30, 20, 29, 29, 31, 20, 26, 26, 38, ... 37, 39, 31, 35, 36, 30, 38, 36, 23, 39, 39, 20, 30, 34, 21, 23, 21, 33, 30, 33, 32, 36, 18, 31, ... 32, 25, 23, 23, 21, 34, 18, 40, 21, 29, 29, 21, 38, 35, 38, 32, 38, 27, 23, 33, 29, 19, 20, 35, ... 29, 27, 28, 20, 40, 35, 40, 40, 20, 36, 38, 28, 30, 30, 36, 29, 27, 25, 33, 19, 27, 28, 34, 36, ... 27, 40, 38, 37, 31, 33, 38, 36, 25, 23, 22, 23, 34, 26, 24, 28, 32, 22, 18, 29, 19, 21, 27, 28, ... 35, 30, 40, 28, 37, 34, 24, 40, 33, 29, 30, 36, 25, 26, 26, 28, 34, 39, 34, 26, 24, 33, 38, 37, ... 36, 34, 37, 33, 25, 27, 30, 26, 21, 40, 26, 25, 25, 40, 28, 35, 36, 39, 33, 36, 40, 32, 36, 26, ... 24, 36, 27, 28, 26, 37, 36, 37, 36, 20, 34, 30, 32, 40, 20, 31, 23, 27, 19, 24, 23, 24, 25, 36, ... 26, 33, 30, 27, 26, 28, 28, 21, 31, 24, 27, 24, 29, 29, 28, 22, 20, 23, 35, 30, 37, 31, 31, 21, ... 32, 29, 27, 27, 30, 39, 34, 23, 35, 39, 27, 40, 28, 36, 35, 38, 21, 18, 21, 38, 37, 24, 21, 25, ... 35, 27, 35, 24, 36, 32, 20] >>> wage = [17000, 13000, 28000, 45000, 28000, 1200, 15500, 26400, 14000, 35000, 16400, 50000, 2600, 9000, ... 27000, 150000, 32000, 22000, 65000, 56000, 6500, 30000, 70000, 9000, 6000, 34000, 40000, 30000, ... 6400, 87000, 20000, 45000, 4800, 34000, 75000, 26000, 4000, 50000, 63000, 14700, 45000, 42000, ... 10000, 40000, 70000, 14000, 54000, 14000, 23000, 24400, 27900, 4700, 8000, 19000, 17300, 45000, ... 3900, 2900, 138000, 2100, 60000, 55000, 45000, 40000, 45700, 90000, 40000, 13000, 30000, 2000, ... 75000, 60000, 70000, 41000, 42000, 31000, 39000, 104000, 52000, 20000, 59000, 66000, 63000, 32000, ... 11000, 16000, 6400, 17000, 47700, 5000, 25000, 35000, 20000, 14000, 29000, 267000, 31000, 27000, ... 64000, 39600, 267000, 7100, 33000, 31500, 40000, 23000, 3000, 14000, 44000, 15100, 2600, 6200, ... 50000, 3000, 25000, 2000, 38000, 22000, 20000, 2500, 1500, 42000, 30000, 27000, 7000, 11900, 27000, ... 24000, 4300, 30200, 2500, 30000, 70000, 38700, 8000, 36000, 66000, 24000, 95000, 39000, 20000, 23000, ... 56000, 25200, 62000, 12000, 13000, 35000, 35000, 14000, 24000, 12000, 14000, 31000, 40000, 22900, 12000, ... 14000, 1600, 12000, 80000, 90000, 126000, 1600, 100000, 8000, 71000, 40000, 42000, 40000, 120000, 35000, ... 1200, 4000, 32000, 8000, 14500, 65000, 15000, 3000, 2000, 23900, 1000, 22000, 18200, 8000, 30000, 23000, ... 30000, 27000, 70000, 40000, 18000, 3100, 57000, 25000, 32000, 10000, 4000, 49000, 93000, 35000, 49000, ... 40000, 5500, 30000, 25000, 5700, 6000, 30000, 42900, 8000, 5300, 90000, 85000, 15000, 17000, 5600, ... 11500, 52000, 1000, 42000, 2100, 50000, 1500, 40000, 28000, 5300, 149000, 3200, 12000, 83000, 45000, ... 31200, 25000, 72000, 70000, 7000, 23000, 40000, 40000, 28000, 10000, 48000, 20000, 60000, 19000, 25000, ... 39000, 68000, 2300, 23900, 5000, 16300, 80000, 45000, 12000, 9000, 1300, 35000, 35000, 47000, 32000, ... 18000, 20000, 20000, 23400, 48000, 8000, 5200, 33500, 22000, 22000, 52000, 104000, 28000, 13000, 12000, ... 15000, 53000, 27000, 50000, 13900, 23000, 28100, 23000, 12000, 55000, 83000, 31000, 33200, 45000, 3000, ... 18000, 11000, 41000, 36000, 33600, 38000, 45000, 53000, 24000, 3000, 37500, 7700, 4800, 29000, 6600, ... 12400, 20000, 2000, 1100, 55000, 13400, 10000, 6000, 6000, 16000, 19000, 8300, 52000, 58000, 27000, ... 25000, 80000, 10000, 22000, 18000, 21000, 8000, 15200, 15000, 5000, 50000, 89000, 7000, 65000, 58000, ... 42000, 55000, 40000, 14000, 36000, 30000, 7900, 6000, 1200, 10000, 54000, 12800, 35000, 34000, 40000, ... 45000, 9600, 3300, 39000, 22000, 40000, 68000, 24400, 1000, 10800, 8400, 50000, 22000, 20000, 20000, ... 1300, 9000, 14200, 32000, 65000, 18000, 18000, 3000, 16700, 1500, 1400, 15000, 55000, 42000, 70000, ... 35000, 21600, 5800, 35000, 5700, 1700, 40000, 40000, 45000, 25000, 13000, 6400, 11000, 4200, 30000, ... 32000, 120000, 10000, 19000, 12000, 13000, 37000, 40000, 38000, 60000, 3100, 16000, 18000, 130000, ... 5000, 5000, 35000, 1000, 14300, 100000, 20000, 33000, 8000, 9400, 87000, 2500, 12000, 12000, 33000, ... 16500, 25500, 7200, 2300, 3100, 2100, 3200, 45000, 40000, 3800, 30000, 12000, 62000, 45000, 46000, ... 50000, 40000, 13000, 50000, 23000, 4000, 40000, 25000, 16000, 3000, 80000, 27000, 68000, 3500, ... 1300, 10000, 46000, 5800, 24000, 12500, 50000, 48000, 29000, 19000, 26000, 30000, 10000, 10000, ... 20000, 43000, 105000, 55000, 5000, 65000, 68000, 38000, 47000, 48700, 6100, 55000, 30000, 5000, 3500, ... 23400, 11400, 7000, 1300, 80000, 65000, 45000, 19000, 3000, 17100, 22900, 31200, 35000, 3000, 5000, ... 1000, 36000, 4800, 60000, 9800, 30000, 85000, 18000, 24000, 60000, 30000, 2000, 39000, 12000, 10500, ... 60000, 36000, 10500, 3600, 1200, 28600, 48000, 20800, 5400, 9600, 30000, 30000, 20000, 6700, 30000, ... 3200, 42000, 37000, 5000, 18000, 20000, 14000, 12000, 18000, 3000, 13500, 35000, 38000, 30000, 36000, ... 66000, 45000, 32000, 46000, 80000, 27000, 4000, 21000, 7600, 16000, 10300, 27000, 19000, 14000, 19000, ... 3100, 20000, 2700, 27000, 7000, 13600, 75000, 35000, 36000, 25000, 6000, 36000, 50000, 46000, 3000, ... 37000, 40000, 30000, 48800, 19700, 16000, 14000, 12000, 25000, 25000, 28600, 17000, 31200, 57000, ... 23000, 23500, 46000, 18700, 26700, 9900, 16000, 3000, 52000, 51000, 14000, 14400, 27000, 26000, 60000, ... 25000, 6000, 20000, 3000, 69000, 24800, 12000, 3100, 18000, 20000, 267000, 28000, 9800, 18200, 80000, ... 6800, 21100, 20000, 68000, 20000, 45000, 8000, 40000, 31900, 28000, 24000, 2000, 32000, 11000, 20000, ... 5900, 16100, 23900, 40000, 37500, 11000, 55000, 37500, 60000, 23000, 9500, 34500, 4000, 9000, 11200, ... 35200, 30000, 18000, 21800, 19700, 16700, 12500, 11300, 4000, 39000, 32000, 14000, 65000, 50000, ... 2000, 30400, 22000, 1600, 56000, 40000, 85000, 9000, 10000, 19000, 5300, 5200, 43000, 60000, 50000, ... 38000, 267000, 15600, 1800, 17000, 45000, 31000, 5000, 8000, 43000, 103000, 45000, 8800, 26000, 47000, ... 40000, 8000] >>> # Udacity data shows that people earn $1.8K more for each year of age and start with a $21K deficit >>> regress(age, wage) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE array([22214.93338944, ...) >> # Gainseville, FL census data shows 14 more new homes are built each year, starting with 517 completed in 1991 >> poly = regress([483, 576, 529, 551, 529, 551, 663, 639, 704, 675, 601, 621, 630, 778, 831, 610]) """ if y is None: y = x x = range(len(x)) if not isinstance(x[0], (float, int, np.float64, np.float32)): x = [row[0] for row in x] A = np.vstack([np.array(x), np.ones(len(x))]).T fit = np.linalg.lstsq(A, y, rcond=None) # if fit is None: # fit = [(1, 0), None, None, None] poly = fit[0][0], fit[0][-1] poly = regressionplot(x, y, poly) return poly
https://github.com/totalgood/pugnlp/blob/c43445b14afddfdeadc5f3076675c9e8fc1ee67c/src/pugnlp/plots.py#L125-L225
linear regression
python
def linear_sym(target, X, A1='', A2=''): r""" Calculates the rate, as well as slope and intercept of the following function at the given value of *x*: .. math:: r = A_{1} x + A_{2} Parameters ---------- A1 -> A2 : string The dictionary keys on the target object containing the coefficients values to be used in the source term model X : string The dictionary key on the target object containing the the quantity of interest Returns ------- A dictionary containing the following three items: **'rate'** - The value of the source term function at the given X. **'S1'** - The slope of the source term function at the given X. **'S2'** - The intercept of the source term function at the given X. The slope and intercept provide a linearized source term equation about the current value of X as follow: .. math:: rate = S_{1} X + S_{2} """ A = _parse_args(target=target, key=A1, default=1.0) B = _parse_args(target=target, key=A2, default=0.0) X = target[X] # Symbols used in symbolic function a, b, x = _syp.symbols('a,b,x') # Equation y = a*x + b # Callable functions r, s1, s2 = _build_func(eq=y, a=a, b=b, x=x) # Values r_val = r(A, B, X) s1_val = s1(A, B, X) s2_val = s2(A, B, X) values = {'S1': s1_val, 'S2': s2_val, 'rate': r_val} return values
https://github.com/PMEAL/OpenPNM/blob/0547b5724ffedc0a593aae48639d36fe10e0baed/openpnm/models/physics/generic_source_term.py#L334-L383
linear regression
python
def linregressIgnoringOutliers(x, y, n_iter=3, nstd=2): """ do linear regression [n_iter] times successive removing [outliers] return result of normal linregress """ for _ in range(n_iter): m, n = linregress(x, y)[:2] y_fit = x * m + n dy = y - y_fit std = (dy**2).mean()**0.5 inliers = abs(dy) < nstd * std if inliers.sum() > 2: x = x[inliers] y = y[inliers] else: break return linregress(x, y)
https://github.com/radjkarl/fancyTools/blob/4c4d961003dc4ed6e46429a0c24f7e2bb52caa8b/fancytools/fit/linregressIgnoringOutliers.py#L5-L22
linear regression
python
def lpc_ref(signal, order): """Compute the Linear Prediction Coefficients. Return the order + 1 LPC coefficients for the signal. c = lpc(x, k) will find the k+1 coefficients of a k order linear filter: xp[n] = -c[1] * x[n-2] - ... - c[k-1] * x[n-k-1] Such as the sum of the squared-error e[i] = xp[i] - x[i] is minimized. Parameters ---------- signal: array_like input signal order : int LPC order (the output will have order + 1 items) Notes ---- This is just for reference, as it is using the direct inversion of the toeplitz matrix, which is really slow""" if signal.ndim > 1: raise ValueError("Array of rank > 1 not supported yet") if order > signal.size: raise ValueError("Input signal must have a lenght >= lpc order") if order > 0: p = order + 1 r = np.zeros(p, 'float32') # Number of non zero values in autocorrelation one needs for p LPC # coefficients nx = np.min([p, signal.size]) x = np.correlate(signal, signal, 'full') r[:nx] = x[signal.size - 1:signal.size + order] phi = np.dot(sp.linalg.inv(sp.linalg.toeplitz(r[:-1])), -r[1:]) return np.concatenate(([1.], phi)) else: return np.ones(1, dtype='float32')
https://github.com/mmcauliffe/Conch-sounds/blob/e05535fd08e4b0e47e37a77ef521d05eff1d6bc5/conch/analysis/formants/lpc.py#L13-L50
linear regression
python
def train(cls, data, iterations=100, step=1.0, miniBatchFraction=1.0, initialWeights=None, regParam=0.0, regType=None, intercept=False, validateData=True, convergenceTol=0.001): """ Train a linear regression model using Stochastic Gradient Descent (SGD). This solves the least squares regression formulation f(weights) = 1/(2n) ||A weights - y||^2 which is the mean squared error. Here the data matrix has n rows, and the input RDD holds the set of rows of A, each with its corresponding right hand side label y. See also the documentation for the precise formulation. :param data: The training data, an RDD of LabeledPoint. :param iterations: The number of iterations. (default: 100) :param step: The step parameter used in SGD. (default: 1.0) :param miniBatchFraction: Fraction of data to be used for each SGD iteration. (default: 1.0) :param initialWeights: The initial weights. (default: None) :param regParam: The regularizer parameter. (default: 0.0) :param regType: The type of regularizer used for training our model. Supported values: - "l1" for using L1 regularization - "l2" for using L2 regularization - None for no regularization (default) :param intercept: Boolean parameter which indicates the use or not of the augmented representation for training data (i.e., whether bias features are activated or not). (default: False) :param validateData: Boolean parameter which indicates if the algorithm should validate data before training. (default: True) :param convergenceTol: A condition which decides iteration termination. (default: 0.001) """ warnings.warn( "Deprecated in 2.0.0. Use ml.regression.LinearRegression.", DeprecationWarning) def train(rdd, i): return callMLlibFunc("trainLinearRegressionModelWithSGD", rdd, int(iterations), float(step), float(miniBatchFraction), i, float(regParam), regType, bool(intercept), bool(validateData), float(convergenceTol)) return _regression_train_wrapper(train, LinearRegressionModel, data, initialWeights)
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/regression.py#L230-L291
linear regression
python
def linear(self, fnct, x, y, sd=None, wt=1.0, fid=0): """Make a linear least squares solution. Makes a linear least squares solution for the points through the ordinates at the x values, using the specified fnct. The x can be of any dimension, depending on the number of arguments needed in the functional evaluation. The values should be given in the order: x0[1], x0[2], ..., x1[1], ..., xn[m] if there are n observations, and m arguments. x should be a vector of m*n length; y (the observations) a vector of length n. :param fnct: the functional to fit :param x: the abscissa values :param y: the ordinate values :param sd: standard deviation of equations (one or more values used cyclically) :param wt: an optional alternate for `sd` :param fid: the id of the sub-fitter (numerical) """ self._fit(fitfunc="linear", fnct=fnct, x=x, y=y, sd=sd, wt=wt, fid=fid)
https://github.com/casacore/python-casacore/blob/975510861ea005f7919dd9e438b5f98a1682eebe/casacore/fitting/fitting.py#L355-L375
linear regression
python
def fit(self, n_iter, eta=0.01): """Linear regression for n_iter""" for _ in range(n_iter): gradient = self.compute_gradient() self.gradient_step(gradient, eta)
https://github.com/n1analytics/python-paillier/blob/955f8c0bfa9623be15b75462b121d28acf70f04b/examples/federated_learning_with_encryption.py#L160-L164
linear regression
python
def _parse_linear_expression(expression, expanded=False, **kwargs): """ Parse the coefficients of a linear expression (linearity is assumed). Returns a dictionary of variable: coefficient pairs. """ offset = 0 constant = None if expression.is_Add: coefficients = expression.as_coefficients_dict() elif expression.is_Mul: coefficients = {expression.args[1]: expression.args[0]} elif expression.is_Symbol: coefficients = {expression: 1} elif expression.is_Number: coefficients = {} else: raise ValueError("Expression {} seems to be invalid".format(expression)) for var in coefficients: if not (var.is_Symbol): if var == one: constant = var offset = float(coefficients[var]) elif expanded: raise ValueError("Expression {} seems to be invalid".format(expression)) else: coefficients = _parse_linear_expression(expression, expanded=True, **kwargs) if constant is not None: del coefficients[constant] return offset, coefficients
https://github.com/biosustain/optlang/blob/13673ac26f6b3ba37a2ef392489722c52e3c5ff1/optlang/expression_parsing.py#L67-L98
linear regression
python
def linear(m=1, b=0): ''' Return a driver function that can advance a sequence of linear values. .. code-block:: none value = m * i + b Args: m (float) : a slope for the linear driver x (float) : an offset for the linear driver ''' def f(i): return m * i + b return partial(force, sequence=_advance(f))
https://github.com/bokeh/bokeh/blob/dc8cf49e4e4302fd38537ad089ece81fbcca4737/bokeh/driving.py#L137-L151
linear regression
python
def regress_fit(fqdn, result, *argl, **argd): """Analyzes the result of a regression algorithm's fitting. See also :func:`fit` for explanation of arguments. """ if len(argl) > 2: yP = argl[2] out = _generic_fit(fqdn, result, regress_predict, yP, *argl, **argd) return out
https://github.com/rosenbrockc/acorn/blob/9a44d1a1ad8bfc2c54a6b56d9efe54433a797820/acorn/analyze/sklearn.py#L223-L230
linear regression
python
def _compute_non_linear_slope(self, vs30, C): """ Compute non-linear slope factor, equations (13a) to (13d), pag 108-109. """ V1 = 180.0 V2 = 300.0 Vref = 760.0 # equation (13d), values are zero for vs30 >= Vref = 760.0 bnl = np.zeros(vs30.shape) # equation (13a) idx = vs30 <= V1 bnl[idx] = C['b1'] # equation (13b) idx = np.where((vs30 > V1) & (vs30 <= V2)) bnl[idx] = (C['b1'] - C['b2']) * \ np.log(vs30[idx] / V2) / np.log(V1 / V2) + C['b2'] # equation (13c) idx = np.where((vs30 > V2) & (vs30 < Vref)) bnl[idx] = C['b2'] * np.log(vs30[idx] / Vref) / np.log(V2 / Vref) return bnl
https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/hazardlib/gsim/boore_atkinson_2008.py#L218-L242
linear regression
python
def linear_response_matrix(self, kwargs_lens=None, kwargs_source=None, kwargs_lens_light=None, kwargs_ps=None): """ computes the linear response matrix (m x n), with n beeing the data size and m being the coefficients :param kwargs_lens: :param kwargs_source: :param kwargs_lens_light: :param kwargs_ps: :return: """ A = [] for i in range(self._num_bands): if self._compute_bool[i] is True: A_i = self._imageModel_list[i].linear_response_matrix(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps) if A == []: A = A_i else: A = np.append(A, A_i, axis=1) return A
https://github.com/sibirrer/lenstronomy/blob/4edb100a4f3f4fdc4fac9b0032d2b0283d0aa1d6/lenstronomy/ImSim/MultiBand/multi_exposures.py#L38-L56
linear regression
python
def linear(self, x): """Computes logits by running x through a linear layer. Args: x: A float32 tensor with shape [batch_size, length, hidden_size] Returns: float32 tensor with shape [batch_size, length, vocab_size]. """ with tf.name_scope("presoftmax_linear"): batch_size = tf.shape(x)[0] length = tf.shape(x)[1] x = tf.reshape(x, [-1, self.hidden_size]) logits = tf.matmul(x, self.shared_weights, transpose_b=True) return tf.reshape(logits, [batch_size, length, self.vocab_size])
https://github.com/mlperf/training/blob/1c6ae725a81d15437a2b2df05cac0673fde5c3a4/translation/tensorflow/transformer/model/embedding_layer.py#L77-L92
linear regression
python
def make_regression(func, n_samples=100, n_features=1, bias=0.0, noise=0.0, random_state=None): """ Make dataset for a regression problem. Examples -------- >>> f = lambda x: 0.5*x + np.sin(2*x) >>> X, y = make_regression(f, bias=.5, noise=1., random_state=1) >>> X.shape (100, 1) >>> y.shape (100,) >>> X[:5].round(2) array([[ 1.62], [-0.61], [-0.53], [-1.07], [ 0.87]]) >>> y[:5].round(2) array([ 0.76, 0.48, -0.23, -0.28, 0.83]) """ generator = check_random_state(random_state) X = generator.randn(n_samples, n_features) # unpack the columns of X y = func(*X.T) + bias if noise > 0.0: y += generator.normal(scale=noise, size=y.shape) return X, y
https://github.com/NICTA/revrand/blob/4c1881b6c1772d2b988518e49dde954f165acfb6/revrand/utils/datasets.py#L23-L54
linear regression
python
def lpc(signal, order, axis=-1): """Compute the Linear Prediction Coefficients. Return the order + 1 LPC coefficients for the signal. c = lpc(x, k) will find the k+1 coefficients of a k order linear filter: xp[n] = -c[1] * x[n-2] - ... - c[k-1] * x[n-k-1] Such as the sum of the squared-error e[i] = xp[i] - x[i] is minimized. Parameters ---------- signal: array_like input signal order : int LPC order (the output will have order + 1 items) Returns ------- a : array-like the solution of the inversion. e : array-like the prediction error. k : array-like reflection coefficients. Notes ----- This uses Levinson-Durbin recursion for the autocorrelation matrix inversion, and fft for the autocorrelation computation. For small order, particularly if order << signal size, direct computation of the autocorrelation is faster: use levinson and correlate in this case.""" n = signal.shape[axis] if order > n: raise ValueError("Input signal must have length >= order") r = acorr_lpc(signal, axis) return levinson_1d(r, order)
https://github.com/mmcauliffe/Conch-sounds/blob/e05535fd08e4b0e47e37a77ef521d05eff1d6bc5/conch/analysis/formants/lpc.py#L157-L195
linear regression
python
def agg_linear_trend(x, param): """ Calculates a linear least-squares regression for values of the time series that were aggregated over chunks versus the sequence from 0 up to the number of chunks minus one. This feature assumes the signal to be uniformly sampled. It will not use the time stamps to fit the model. The parameters attr controls which of the characteristics are returned. Possible extracted attributes are "pvalue", "rvalue", "intercept", "slope", "stderr", see the documentation of linregress for more information. The chunksize is regulated by "chunk_len". It specifies how many time series values are in each chunk. Further, the aggregation function is controlled by "f_agg", which can use "max", "min" or , "mean", "median" :param x: the time series to calculate the feature of :type x: numpy.ndarray :param param: contains dictionaries {"attr": x, "chunk_len": l, "f_agg": f} with x, f an string and l an int :type param: list :return: the different feature values :return type: pandas.Series """ # todo: we could use the index of the DataFrame here calculated_agg = {} res_data = [] res_index = [] for parameter_combination in param: chunk_len = parameter_combination["chunk_len"] f_agg = parameter_combination["f_agg"] aggregate_result = _aggregate_on_chunks(x, f_agg, chunk_len) if f_agg not in calculated_agg or chunk_len not in calculated_agg[f_agg]: if chunk_len >= len(x): calculated_agg[f_agg] = {chunk_len: np.NaN} else: lin_reg_result = linregress(range(len(aggregate_result)), aggregate_result) calculated_agg[f_agg] = {chunk_len: lin_reg_result} attr = parameter_combination["attr"] if chunk_len >= len(x): res_data.append(np.NaN) else: res_data.append(getattr(calculated_agg[f_agg][chunk_len], attr)) res_index.append("f_agg_\"{}\"__chunk_len_{}__attr_\"{}\"".format(f_agg, chunk_len, attr)) return zip(res_index, res_data)
https://github.com/blue-yonder/tsfresh/blob/c72c9c574371cf7dd7d54e00a466792792e5d202/tsfresh/feature_extraction/feature_calculators.py#L1805-L1854
linear regression
python
def is_linear(self): """ Tests whether all filters in the list are linear. CascadeFilter and ParallelFilter instances are also linear if all filters they group are linear. """ return all(isinstance(filt, LinearFilter) or (hasattr(filt, "is_linear") and filt.is_linear()) for filt in self.callables)
https://github.com/danilobellini/audiolazy/blob/dba0a278937909980ed40b976d866b8e97c35dee/audiolazy/lazy_filters.py#L916-L925
linear regression
python
def regression(self, slope=None): """regress tip values against branch values Parameters ---------- slope : None, optional if given, the slope isn't optimized Returns ------- dict regression parameters """ self._calculate_averages() clock_model = base_regression(self.tree.root.Q, slope) clock_model['r_val'] = self.explained_variance() return clock_model
https://github.com/neherlab/treetime/blob/f6cdb58d19243a18ffdaa2b2ec71872fa00e65c0/treetime/treeregression.py#L292-L310
linear regression
python
def admm_linearized_simple(x, f, g, L, tau, sigma, niter, **kwargs): """Non-optimized version of ``admm_linearized``. This function is intended for debugging. It makes a lot of copies and performs no error checking. """ callback = kwargs.pop('callback', None) z = L.range.zero() u = L.range.zero() for _ in range(niter): x[:] = f.proximal(tau)(x - tau / sigma * L.adjoint(L(x) + u - z)) z = g.proximal(sigma)(L(x) + u) u = L(x) + u - z if callback is not None: callback(x)
https://github.com/odlgroup/odl/blob/b8443f6aca90e191ba36c91d32253c5a36249a6c/odl/solvers/nonsmooth/admm.py#L157-L171
linear regression
python
def lpc(x, N=None): """Linear Predictor Coefficients. :param x: :param int N: default is length(X) - 1 :Details: Finds the coefficients :math:`A=(1, a(2), \dots a(N+1))`, of an Nth order forward linear predictor that predicts the current value value of the real-valued time series x based on past samples: .. math:: \hat{x}(n) = -a(2)*x(n-1) - a(3)*x(n-2) - ... - a(N+1)*x(n-N) such that the sum of the squares of the errors .. math:: err(n) = X(n) - Xp(n) is minimized. This function uses the Levinson-Durbin recursion to solve the normal equations that arise from the least-squares formulation. .. seealso:: :func:`levinson`, :func:`aryule`, :func:`prony`, :func:`stmcb` .. todo:: matrix case, references :Example: :: from scipy.signal import lfilter noise = randn(50000,1); % Normalized white Gaussian noise x = filter([1], [1 1/2 1/3 1/4], noise) x = x[45904:50000] x.reshape(4096, 1) x = x[0] Compute the predictor coefficients, estimated signal, prediction error, and autocorrelation sequence of the prediction error: 1.00000 + 0.00000i 0.51711 - 0.00000i 0.33908 - 0.00000i 0.24410 - 0.00000i :: a = lpc(x, 3) est_x = lfilter([0 -a(2:end)],1,x); % Estimated signal e = x - est_x; % Prediction error [acs,lags] = xcorr(e,'coeff'); % ACS of prediction error """ m = len(x) if N is None: N = m - 1 #default value if N is not provided elif N > m-1: #disp('Warning: zero-padding short input sequence') x.resize(N+1) #todo: check this zero-padding. X = fft(x, 2**nextpow2(2.*len(x)-1)) R = real(ifft(abs(X)**2)) R = R/(m-1.) #Biased autocorrelation estimate a, e, ref = LEVINSON(R, N) return a, e
https://github.com/cokelaer/spectrum/blob/bad6c32e3f10e185098748f67bb421b378b06afe/src/spectrum/lpc.py#L10-L72
linear regression
python
def plsr(df, v, n_components=2, mean_center=False, scale=True, **kwargs): """ Partial Least Squares Regression Analysis, based on `sklearn.cross_decomposition.PLSRegression` Performs a partial least squares regression (PLS-R) on the supplied dataframe ``df`` against the provided continuous variable ``v``, selecting the first ``n_components``. For more information on PLS regression and the algorithm used, see the `scikit-learn documentation <http://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html>`_. :param df: Pandas ``DataFrame`` to perform the analysis on :param v: Continuous variable to perform regression against :param n_components: ``int`` number of components to select :param mean_center: ``bool`` mean center the data before performing PLS regression :param kwargs: additional keyword arguments to `sklearn.cross_decomposition.PLSRegression` :return: scores ``DataFrame`` of PLS-R scores n_components x n_samples weights ``DataFrame`` of PLS-R weights n_variables x n_components """ if not sklearn: assert('This library depends on scikit-learn (sklearn) to perform PLS-DA') from sklearn.cross_decomposition import PLSRegression df = df.copy() # We have to zero fill, nan errors in PLSRegression df[ np.isnan(df) ] = 0 if mean_center: mean = np.mean(df.values, axis=0) df = df - mean #TODO: Extract values if v is DataFrame? plsr = PLSRegression(n_components=n_components, scale=scale, **kwargs) plsr.fit(df.values.T, v) scores = pd.DataFrame(plsr.x_scores_.T) scores.index = ['Latent Variable %d' % (n+1) for n in range(0, scores.shape[0])] scores.columns = df.columns weights = pd.DataFrame(plsr.x_weights_) weights.index = df.index weights.columns = ['Weights on Latent Variable %d' % (n+1) for n in range(0, weights.shape[1])] loadings = pd.DataFrame(plsr.x_loadings_) loadings.index = df.index loadings.columns = ['Loadings on Latent Variable %d' % (n+1) for n in range(0, loadings.shape[1])] #r = plsr.score(df.values.T, v) predicted = plsr.predict(df.values.T) return scores, weights, loadings, predicted
https://github.com/mfitzp/padua/blob/8b14bf4d2f895da6aea5d7885d409315bd303ec6/padua/analysis.py#L164-L216
linear regression
python
def piecewise_linear_scalar(params, xval): '''Piecewise linear function for a scalar variable xval (float). :param params: Piecewise linear parameters (numpy.ndarray) in the following form: [slope_i,... slope_n, turning_point_i, ..., turning_point_n, intercept] Length params === 2 * number_segments, e.g. [slope_1, slope_2, slope_3, turning_point1, turning_point_2, intercept] :param xval: Value for evaluation of function (float) :returns: Piecewise linear function evaluated at point xval (float) ''' n_params = len(params) n_seg, remainder = divmod(n_params, 2) if remainder: raise ValueError( 'Piecewise Function requires 2 * nsegments parameters') if n_seg == 1: return params[1] + params[0] * xval gradients = params[0:n_seg] turning_points = params[n_seg: -1] c_val = np.array([params[-1]]) for iloc in range(1, n_seg): c_val = np.hstack( [c_val, (c_val[iloc - 1] + gradients[iloc - 1] * turning_points[iloc - 1]) - (gradients[iloc] * turning_points[iloc - 1])]) if xval <= turning_points[0]: return gradients[0] * xval + c_val[0] elif xval > turning_points[-1]: return gradients[-1] * xval + c_val[-1] else: select = np.nonzero(turning_points <= xval)[0][-1] + 1 return gradients[select] * xval + c_val[select]
https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/hmtk/seismicity/utils.py#L292-L330
linear regression
python
def linreg_ols_qr(y, X): """Linear Regression, OLS, inverse by QR Factoring""" import numpy as np try: # multiply with inverse to compute coefficients q, r = np.linalg.qr(np.dot(X.T, X)) return np.dot(np.dot(np.linalg.inv(r), q.T), np.dot(X.T, y)) except np.linalg.LinAlgError: print("LinAlgError: Factoring failed") return None
https://github.com/ulf1/oxyba/blob/b3043116050de275124365cb11e7df91fb40169d/oxyba/linreg_ols_qr.py#L2-L10
linear regression
python
def _lmder1_linear_full_rank(n, m, factor, target_fnorm1, target_fnorm2): """A full-rank linear function (lmder test #1)""" def func(params, vec): s = params.sum() temp = 2. * s / m + 1 vec[:] = -temp vec[:params.size] += params def jac(params, jac): # jac.shape = (n, m) by LMDER standards jac.fill(-2. / m) for i in range(n): jac[i,i] += 1 guess = np.ones(n) * factor #_lmder1_test(m, func, jac, guess) _lmder1_driver(m, func, jac, guess, target_fnorm1, target_fnorm2, [-1] * n)
https://github.com/pkgw/pwkit/blob/d40957a1c3d2ea34e7ceac2267ee9635135f2793/pwkit/lmmin.py#L2395-L2415
linear regression
python
def lerp(self, a, t): """ Lerp. Linear interpolation from self to a""" return self.plus(a.minus(self).times(t));
https://github.com/timknip/pycsg/blob/b8f9710fd15c38dcc275d56a2108f604af38dcc8/csg/geom.py#L85-L87
linear regression
python
def regression(): """ Run regression testing - lint and then run all tests. """ lint() doctests() storybook = _storybook({}).only_uninherited() storybook.with_params(**{"python version": "2.7.14"}).filter( lambda story: not story.info.get("fails_on_python_2") ).ordered_by_name().play() storybook.with_params(**{"python version": "3.7.0"}).ordered_by_name().play()
https://github.com/crdoconnor/strictyaml/blob/efdac7f89e81679fc95686288cd32b9563fde609/hitch/key.py#L101-L111
linear regression
python
def linOriginRegression(points): """ computes a linear regression starting at zero """ j = sum([ i[0] for i in points ]) k = sum([ i[1] for i in points ]) if j != 0: return k/j, j, k return 1, j, k
https://github.com/benedictpaten/sonLib/blob/1decb75bb439b70721ec776f685ce98e25217d26/misc.py#L28-L36
linear regression
python
def linear(X, n, *args, **kwargs): """Linear mean function of arbitrary dimension, suitable for use with :py:class:`MeanFunction`. The form is :math:`m_0 * X[:, 0] + m_1 * X[:, 1] + \dots + b`. Parameters ---------- X : array, (`M`, `D`) The points to evaluate the model at. n : array of non-negative int, (`D`) The derivative order to take, specified as an integer order for each dimension in `X`. *args : num_dim+1 floats The slopes for each dimension, plus the constant term. Must be of the form `m0, m1, ..., b`. """ hyper_deriv = kwargs.pop('hyper_deriv', None) m = scipy.asarray(args[:-1]) b = args[-1] if sum(n) > 1: return scipy.zeros(X.shape[0]) elif sum(n) == 0: if hyper_deriv is not None: if hyper_deriv < len(m): return X[:, hyper_deriv] elif hyper_deriv == len(m): return scipy.ones(X.shape[0]) else: raise ValueError("Invalid value for hyper_deriv, " + str(hyper_deriv)) else: return (m * X).sum(axis=1) + b else: # sum(n) == 1: if hyper_deriv is not None: if n[hyper_deriv] == 1: return scipy.ones(X.shape[0]) else: return scipy.zeros(X.shape[0]) return m[n == 1] * scipy.ones(X.shape[0])
https://github.com/markchil/gptools/blob/225db52bfe6baef1516529ad22177aa2cf7b71e4/gptools/mean.py#L446-L484
linear regression
python
def logistic_regression(X, y, coef_only=False, alpha=0.05, as_dataframe=True, remove_na=False, **kwargs): """(Multiple) Binary logistic regression. Parameters ---------- X : np.array or list Predictor(s). Shape = (n_samples, n_features) or (n_samples,). y : np.array or list Dependent variable. Shape = (n_samples). Must be binary. coef_only : bool If True, return only the regression coefficients. alpha : float Alpha value used for the confidence intervals. CI = [alpha / 2 ; 1 - alpha / 2] as_dataframe : bool If True, returns a pandas DataFrame. If False, returns a dictionnary. remove_na : bool If True, apply a listwise deletion of missing values (i.e. the entire row is removed). **kwargs : optional Optional arguments passed to sklearn.linear_model.LogisticRegression. Returns ------- stats : dataframe or dict Logistic regression summary:: 'names' : name of variable(s) in the model (e.g. x1, x2...) 'coef' : regression coefficients 'se' : standard error 'z' : z-scores 'pval' : two-tailed p-values 'CI[2.5%]' : lower confidence interval 'CI[97.5%]' : upper confidence interval Notes ----- This is a wrapper around the :py:class:`sklearn.linear_model.LogisticRegression` class. Results have been compared against statsmodels and JASP. Note that the first coefficient is always the constant term (intercept) of the model. This function will not run if NaN values are either present in the target or predictors variables. Please remove them before runing the function. Adapted from a code found at https://gist.github.com/rspeare/77061e6e317896be29c6de9a85db301d Examples -------- 1. Simple binary logistic regression >>> import numpy as np >>> from pingouin import logistic_regression >>> np.random.seed(123) >>> x = np.random.normal(size=30) >>> y = np.random.randint(0, 2, size=30) >>> lom = logistic_regression(x, y) >>> lom.round(2) names coef se z pval CI[2.5%] CI[97.5%] 0 Intercept -0.27 0.37 -0.73 0.46 -0.99 0.45 1 x1 0.06 0.32 0.19 0.85 -0.56 0.68 2. Multiple binary logistic regression >>> np.random.seed(42) >>> z = np.random.normal(size=30) >>> X = np.column_stack((x, z)) >>> lom = logistic_regression(X, y) >>> print(lom['coef'].values) [-0.34933805 -0.0226106 -0.39453532] 3. Using a Pandas DataFrame >>> import pandas as pd >>> df = pd.DataFrame({'x': x, 'y': y, 'z': z}) >>> lom = logistic_regression(df[['x', 'z']], df['y']) >>> print(lom['coef'].values) [-0.34933805 -0.0226106 -0.39453532] 4. Return only the coefficients >>> logistic_regression(X, y, coef_only=True) array([-0.34933805, -0.0226106 , -0.39453532]) 4. Passing custom parameters to sklearn >>> lom = logistic_regression(X, y, solver='sag', max_iter=10000) >>> print(lom['coef'].values) [-0.34941889 -0.02261911 -0.39451064] """ # Check that sklearn is installed from pingouin.utils import _is_sklearn_installed _is_sklearn_installed(raise_error=True) from sklearn.linear_model import LogisticRegression # Extract names if X is a Dataframe or Series if isinstance(X, pd.DataFrame): names = X.keys().tolist() elif isinstance(X, pd.Series): names = [X.name] else: names = [] assert 0 < alpha < 1 assert y.ndim == 1, 'y must be one-dimensional.' # Convert to numpy array X = np.asarray(X) y = np.asarray(y) # Add axis if only one-dimensional array if X.ndim == 1: X = X[..., np.newaxis] # Check for NaN / Inf if remove_na: X, y = rm_na(X, y[..., np.newaxis], paired=True, axis='rows') y = np.squeeze(y) y_gd = np.isfinite(y).all() X_gd = np.isfinite(X).all() assert y_gd, 'Target variable contains NaN or Inf. Please remove them.' assert X_gd, 'Predictors contains NaN or Inf. Please remove them.' # Check that X and y have same length assert y.shape[0] == X.shape[0], 'X and y must have same number of samples' # Check that y is binary if np.unique(y).size != 2: raise ValueError('Dependent variable must be binary.') if not names: names = ['x' + str(i + 1) for i in range(X.shape[1])] # Add intercept in names names.insert(0, "Intercept") # Initialize and fit if 'solver' not in kwargs: kwargs['solver'] = 'lbfgs' if 'multi_class' not in kwargs: kwargs['multi_class'] = 'auto' lom = LogisticRegression(**kwargs) lom.fit(X, y) coef = np.append(lom.intercept_, lom.coef_) if coef_only: return coef # Design matrix -- add intercept X_design = np.column_stack((np.ones(X.shape[0]), X)) n, p = X_design.shape # Fisher Information Matrix denom = (2 * (1 + np.cosh(lom.decision_function(X)))) denom = np.tile(denom, (p, 1)).T fim = np.dot((X_design / denom).T, X_design) crao = np.linalg.inv(fim) # Standard error and Z-scores se = np.sqrt(np.diag(crao)) z_scores = coef / se # Two-tailed p-values pval = np.array([2 * norm.sf(abs(z)) for z in z_scores]) # Confidence intervals crit = norm.ppf(1 - alpha / 2) ll = coef - crit * se ul = coef + crit * se # Rename CI ll_name = 'CI[%.1f%%]' % (100 * alpha / 2) ul_name = 'CI[%.1f%%]' % (100 * (1 - alpha / 2)) # Create dict stats = {'names': names, 'coef': coef, 'se': se, 'z': z_scores, 'pval': pval, ll_name: ll, ul_name: ul} if as_dataframe: return pd.DataFrame.from_dict(stats) else: return stats
https://github.com/raphaelvallat/pingouin/blob/58b19fa4fffbfe09d58b456e3926a148249e4d9b/pingouin/regression.py#L226-L411
linear regression
python
def llinregress(x,y): """ Calculates a regression line on x,y pairs. Usage: llinregress(x,y) x,y are equal-length lists of x-y coordinates Returns: slope, intercept, r, two-tailed prob, sterr-of-estimate """ TINY = 1.0e-20 if len(x) != len(y): raise ValueError('Input values not paired in linregress. Aborting.') n = len(x) x = [float(_) for _ in x] y = [float(_) for _ in y] xmean = mean(x) ymean = mean(y) r_num = float(n*(summult(x,y)) - sum(x)*sum(y)) r_den = math.sqrt((n*ss(x) - square_of_sums(x))*(n*ss(y)-square_of_sums(y))) r = r_num / r_den z = 0.5*math.log((1.0+r+TINY)/(1.0-r+TINY)) df = n-2 t = r*math.sqrt(df/((1.0-r+TINY)*(1.0+r+TINY))) prob = betai(0.5*df,0.5,df/(df+t*t)) slope = r_num / float(n*ss(x) - square_of_sums(x)) intercept = ymean - slope*xmean sterrest = math.sqrt(1-r*r)*samplestdev(y) return slope, intercept, r, prob, sterrest
https://github.com/bxlab/bx-python/blob/09cb725284803df90a468d910f2274628d8647de/lib/bx_extras/stats.py#L928-L953
linear regression
python
def get_logistic_regression_coefs_l1(self, category, clf=LassoCV(alphas=[0.1, 0.001], max_iter=10000, n_jobs=-1)): ''' Computes l1-penalized logistic regression score. Parameters ---------- category : str category name to score Returns ------- (coefficient array, accuracy, majority class baseline accuracy) ''' try: from sklearn.cross_validation import cross_val_predict except: from sklearn.model_selection import cross_val_predict y = self._get_mask_from_category(category) y_continuous = self._get_continuous_version_boolean_y(y) # X = TfidfTransformer().fit_transform(self._X) X = self._X clf.fit(X, y_continuous) y_hat = (cross_val_predict(clf, X, y_continuous) > 0) acc, baseline = self._get_accuracy_and_baseline_accuracy(y, y_hat) clf.fit(X, y_continuous) return clf.coef_, acc, baseline
https://github.com/JasonKessler/scattertext/blob/cacf1f687d218ee8cae3fc05cc901db824bb1b81/scattertext/TermDocMatrix.py#L421-L448
linear regression
python
def linear_response_matrix(self, kwargs_lens=None, kwargs_source=None, kwargs_lens_light=None, kwargs_ps=None): """ computes the linear response matrix (m x n), with n beeing the data size and m being the coefficients :param kwargs_lens: :param kwargs_source: :param kwargs_lens_light: :param kwargs_ps: :return: """ A = self._response_matrix(self.ImageNumerics.ra_grid_ray_shooting, self.ImageNumerics.dec_grid_ray_shooting, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, self.ImageNumerics.mask) return A
https://github.com/sibirrer/lenstronomy/blob/4edb100a4f3f4fdc4fac9b0032d2b0283d0aa1d6/lenstronomy/ImSim/image_model.py#L163-L175
linear regression
python
def regression(self, y, y_mask, smoothness_penalty=0, kernel='rbf'): '''Perform vertex-valued regression, given partial labels. y : (n,d) array of known labels y_mask : index object such that all_labels[y_mask] == y From "Regularization and Semi-supervised Learning on Large Graphs" by Belkin, Matveeva, and Niyogi in 2004. Doesn't support multiple labels per vertex, unlike the paper's algorithm. To allow provided y values to change, use a (small) smoothness_penalty. ''' n = self.num_vertices() # input validation for y y = np.array(y, copy=True) ravel_f = False if y.ndim == 1: y = y[:,None] ravel_f = True if y.ndim != 2 or y.size == 0: raise ValueError('Invalid shape of y array: %s' % (y.shape,)) k, d = y.shape # input validation for y_mask if not hasattr(y_mask, 'dtype') or y_mask.dtype != 'bool': tmp = np.zeros(n, dtype=bool) tmp[y_mask] = True y_mask = tmp # mean-center known y for stability y_mean = y.mean(axis=0) y -= y_mean # use the normalized Laplacian for the smoothness matrix S = self.kernelize(kernel).laplacian(normed=True) if ss.issparse(S): S = S.tocsr() if smoothness_penalty == 0: # see Algorithm 2: Interpolated Regularization unlabeled_mask = ~y_mask S_23 = S[unlabeled_mask, :] S_3 = S_23[:, unlabeled_mask] rhs = S_23[:, y_mask].dot(y) if ss.issparse(S): f_unlabeled = ss.linalg.spsolve(S_3, rhs) if f_unlabeled.ndim == 1: f_unlabeled = f_unlabeled[:,None] else: f_unlabeled = sl.solve(S_3, rhs, sym_pos=True, overwrite_a=True, overwrite_b=True) f = np.zeros((n, d)) f[y_mask] = y f[unlabeled_mask] = -f_unlabeled else: # see Algorithm 1: Tikhonov Regularization in the paper y_hat = np.zeros((n, d)) y_hat[y_mask] = y I = y_mask.astype(float) # only one label per vertex lhs = k * smoothness_penalty * S if ss.issparse(lhs): lhs.setdiag(lhs.diagonal() + I) f = ss.linalg.lsqr(lhs, y_hat)[0] else: lhs.flat[::n+1] += I f = sl.solve(lhs, y_hat, sym_pos=True, overwrite_a=True, overwrite_b=True) # re-add the mean f += y_mean if ravel_f: return f.ravel() return f
https://github.com/all-umass/graphs/blob/4fbeb025dfe33340335f34300f58dd3809228822/graphs/mixins/label.py#L153-L224
linear regression
python
def l2_regression( input_, target, name=PROVIDED, loss_weight=None, per_example_weights=None): """Applies an L2 Regression (Sum of Squared Error) to the target.""" target = _convert_and_assert_tensors_compatible(input_, target) return apply_regression(input_, functions.l2_regression_sq_loss, target, [], name='%s_loss' % name, loss_weight=loss_weight, per_example_weights=per_example_weights)
https://github.com/google/prettytensor/blob/75daa0b11252590f548da5647addc0ea610c4c45/prettytensor/pretty_tensor_loss_methods.py#L134-L145
linear regression
python
def _lreg_bokeh(self, **kwargs): """ Returns a Bokeh linear regression line """ try: ds2 = self._duplicate_() ds2.timestamps(ds2.x) ds2.lreg("Timestamps", ds2.y) ds2.drop(ds2.y) ds2.df = ds2.df.rename(columns={'Regression': ds2.y}) if "date_format" in self.chart_style: ds2.date("Date", format=self.chart_style["date_format"]) c = ds2.line_() return c except Exception as e: self.err(e, "Can not draw linear regression chart")
https://github.com/synw/dataswim/blob/4a4a53f80daa7cd8e8409d76a19ce07296269da2/dataswim/charts/bokeh.py#L90-L105
linear regression
python
def explain_prediction_linear_regressor(reg, doc, vec=None, top=None, top_targets=None, target_names=None, targets=None, feature_names=None, feature_re=None, feature_filter=None, vectorized=False): """ Explain prediction of a linear regressor. See :func:`eli5.explain_prediction` for description of ``top``, ``top_targets``, ``target_names``, ``targets``, ``feature_names``, ``feature_re`` and ``feature_filter`` parameters. ``vec`` is a vectorizer instance used to transform raw features to the input of the classifier ``clf``; you can pass it instead of ``feature_names``. ``vectorized`` is a flag which tells eli5 if ``doc`` should be passed through ``vec`` or not. By default it is False, meaning that if ``vec`` is not None, ``vec.transform([doc])`` is passed to the regressor ``reg``. Set it to True if you're passing ``vec``, but ``doc`` is already vectorized. """ if isinstance(reg, (SVR, NuSVR)) and reg.kernel != 'linear': return explain_prediction_sklearn_not_supported(reg, doc) vec, feature_names = handle_vec(reg, doc, vec, vectorized, feature_names) X = get_X(doc, vec=vec, vectorized=vectorized, to_dense=True) score, = reg.predict(X) if has_intercept(reg): X = add_intercept(X) x = get_X0(X) feature_names, flt_indices = feature_names.handle_filter( feature_filter, feature_re, x) res = Explanation( estimator=repr(reg), method='linear model', targets=[], is_regression=True, ) assert res.targets is not None _weights = _linear_weights(reg, x, top, feature_names, flt_indices) names = get_default_target_names(reg) display_names = get_target_display_names(names, target_names, targets, top_targets, score) if is_multitarget_regressor(reg): for label_id, label in display_names: target_expl = TargetExplanation( target=label, feature_weights=_weights(label_id), score=score[label_id], ) add_weighted_spans(doc, vec, vectorized, target_expl) res.targets.append(target_expl) else: target_expl = TargetExplanation( target=display_names[0][1], feature_weights=_weights(0), score=score, ) add_weighted_spans(doc, vec, vectorized, target_expl) res.targets.append(target_expl) return res
https://github.com/TeamHG-Memex/eli5/blob/371b402a0676295c05e582a2dd591f7af476b86b/eli5/sklearn/explain_prediction.py#L258-L331
linear regression
python
def LR_train(w, b, X, Y, num_iterations, learning_rate, print_cost=True): """ This function optimizes w and b by running a gradient descent algorithm Arguments: w weights, a numpy array of size (dim, 1) b bias, a scalar X data of shape (dim, number of examples) Y true "label" vector, of shape (1, number of examples) num_iterations number of iterations of the optimization loop learning_rate learning rate of the gradient descent update rule print_cost True to print the loss every 100 steps Returns: params dictionary containing the weights w and bias b grads dictionary containing the gradients of the weights and bias with respect to the cost function costs list of all the costs computed during the optimization, this will be used to plot the learning curve. """ costs = [] for i in range(num_iterations): # Cost and gradient calculation grads, cost = propagate(w, b, X, Y) # Retrieve derivatives from grads dw = grads["dw"] db = grads["db"] # update rule w = w - learning_rate * dw b = b - learning_rate * db # Record the costs if i % 100 == 0: costs.append(cost) # Print the cost every 100 training examples if print_cost and i % 100 == 0: print("Cost after iteration %i: %f" % (i, cost)) params = {"w": w, "b": b} grads = {"dw": dw, "db": db} return params, grads, costs
https://github.com/zengbin93/zb/blob/ccdb384a0b5801b459933220efcb71972c2b89a7/zb/algorithms/logistic_regression.py#L71-L119
linear regression
python
def to_linear(self, index=None): """ Transforms the StepColormap into a LinearColormap. Parameters ---------- index : list of floats, default None The values corresponding to each color in the output colormap. It has to be sorted. If None, a regular grid between `vmin` and `vmax` is created. """ if index is None: n = len(self.index)-1 index = [self.index[i]*(1.-i/(n-1.))+self.index[i+1]*i/(n-1.) for i in range(n)] colors = [self.rgba_floats_tuple(x) for x in index] return LinearColormap(colors, index=index, vmin=self.vmin, vmax=self.vmax)
https://github.com/python-visualization/branca/blob/4e89e88a5a7ff3586f0852249c2c125f72316da8/branca/colormap.py#L390-L409
linear regression
python
def as_nonlinear(self, params=None): """Return a `Model` equivalent to this object. The nonlinear solver is less efficient, but lets you freeze parameters, compute uncertainties, etc. If the `params` argument is provided, solve() will be called on the returned object with those parameters. If it is `None` and this object has parameters in `self.params`, those will be use. Otherwise, solve() will not be called on the returned object. """ if params is None: params = self.params nlm = Model(None, self.data, self.invsigma) nlm.set_func(lambda p, x: npoly.polyval(x, p), self.pnames, args=(self.x,)) if params is not None: nlm.solve(params) return nlm
https://github.com/pkgw/pwkit/blob/d40957a1c3d2ea34e7ceac2267ee9635135f2793/pwkit/lsqmdl.py#L444-L464
linear regression
python
def linear(Ks, dim, num_q, rhos, nus): r''' Estimates the linear inner product \int p q between two distributions, based on kNN distances. ''' return _get_linear(Ks, dim)(num_q, rhos, nus)
https://github.com/dougalsutherland/skl-groups/blob/2584c10a413626c6d5f9078cdbf3dcc84e4e9a5b/skl_groups/divergences/knn.py#L560-L565
linear regression
python
def eval_linear_approx(self, Dxy, gradY): r"""Compute term :math:`\langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle` (in frequency domain) that is part of the quadratic function :math:`Q_L` used for backtracking. Since this class computes the backtracking in the DFT, it is important to preserve the DFT scaling. """ return np.sum(np.real(np.conj(Dxy) * gradY))
https://github.com/bwohlberg/sporco/blob/8946a04331106f4e39904fbdf2dc7351900baa04/sporco/fista/fista.py#L930-L938
linear regression
python
def _linear_interp(curve, test_x, round_result=False): """ Take a series of points and interpolate between them at ``test_x``. Args: curve (list[tuple]): A list of ``(x, y)`` points sorted in nondecreasing ``x`` value. If multiple points have the same ``x`` value, all but the last will be ignored. test_x (float): The ``x`` value to find the ``y`` value of Returns: float: The ``y`` value of the curve at ``test_x`` if ``round_result is False`` int: if ``round_result is True`` or the result is a whole number, the ``y`` value of the curve at ``test_x`` rounded to the nearest whole number. Raises: ProbabilityUndefinedError: if ``test_x`` is out of the domain of ``curve`` Example: >>> curve = [(0, 0), (2, 1)] >>> _linear_interp(curve, 0.5) 0.25 >>> _linear_interp(curve, 0.5, round_result=True) 0 """ index = 0 for index in range(len(curve) - 1): # Ignore points which share an x value with the following point if curve[index][0] == curve[index + 1][0]: continue if curve[index][0] <= test_x <= curve[index + 1][0]: slope = ((curve[index + 1][1] - curve[index][1]) / (curve[index + 1][0] - curve[index][0])) y_intercept = curve[index][1] - (slope * curve[index][0]) result = (slope * test_x) + y_intercept if round_result: return int(round(result)) else: if result.is_integer(): return int(result) else: return result else: raise ProbabilityUndefinedError
https://github.com/ajyoon/blur/blob/25fcf083af112bb003956a7a7e1c6ff7d8fef279/blur/rand.py#L27-L74
linear regression
python
def optimize_linear(grad, eps, ord=np.inf): """ Solves for the optimal input to a linear function under a norm constraint. Optimal_perturbation = argmax_{eta, ||eta||_{ord} < eps} dot(eta, grad) :param grad: Tensor, shape (N, d_1, ...). Batch of gradients :param eps: float. Scalar specifying size of constraint region :param ord: np.inf, 1, or 2. Order of norm constraint. :returns: Tensor, shape (N, d_1, ...). Optimal perturbation """ red_ind = list(range(1, len(grad.size()))) avoid_zero_div = torch.tensor(1e-12, dtype=grad.dtype, device=grad.device) if ord == np.inf: # Take sign of gradient optimal_perturbation = torch.sign(grad) elif ord == 1: abs_grad = torch.abs(grad) sign = torch.sign(grad) red_ind = list(range(1, len(grad.size()))) abs_grad = torch.abs(grad) ori_shape = [1]*len(grad.size()) ori_shape[0] = grad.size(0) max_abs_grad, _ = torch.max(abs_grad.view(grad.size(0), -1), 1) max_mask = abs_grad.eq(max_abs_grad.view(ori_shape)).to(torch.float) num_ties = max_mask for red_scalar in red_ind: num_ties = torch.sum(num_ties, red_scalar, keepdim=True) optimal_perturbation = sign * max_mask / num_ties # TODO integrate below to a test file # check that the optimal perturbations have been correctly computed opt_pert_norm = optimal_perturbation.abs().sum(dim=red_ind) assert torch.all(opt_pert_norm == torch.ones_like(opt_pert_norm)) elif ord == 2: square = torch.max( avoid_zero_div, torch.sum(grad ** 2, red_ind, keepdim=True) ) optimal_perturbation = grad / torch.sqrt(square) # TODO integrate below to a test file # check that the optimal perturbations have been correctly computed opt_pert_norm = optimal_perturbation.pow(2).sum(dim=red_ind, keepdim=True).sqrt() one_mask = (square <= avoid_zero_div).to(torch.float) * opt_pert_norm + \ (square > avoid_zero_div).to(torch.float) assert torch.allclose(opt_pert_norm, one_mask, rtol=1e-05, atol=1e-08) else: raise NotImplementedError("Only L-inf, L1 and L2 norms are " "currently implemented.") # Scale perturbation to be the solution for the norm=eps rather than # norm=1 problem scaled_perturbation = eps * optimal_perturbation return scaled_perturbation
https://github.com/tensorflow/cleverhans/blob/97488e215760547b81afc53f5e5de8ba7da5bd98/cleverhans/utils_pytorch.py#L159-L213
linear regression
python
def plsr(df, v, n_components=2, mean_center=False, scale=True, fcol=None, ecol=None, marker='o', markersize=40, threshold=None, label_threshold=None, label_weights=None, label_scores=None, return_df=False, show_covariance_ellipse=False, *args, **kwargs): """ Partial Least Squares Regression Analysis, based on `sklearn.cross_decomposition.PLSRegression` Performs a partial least squares regression (PLS-R) on the supplied dataframe ``df`` against the provided continuous variable ``v``, selecting the first ``n_components``. For more information on PLS regression and the algorithm used, see the `scikit-learn documentation <http://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html>`_. Resulting scores, weights and regression plots are generated showing the distribution of samples within the resulting PCA space. Sample color and marker size can be controlled by label, lookup and calculation (lambda) to generate complex plots highlighting sample separation. For further information see the examples included in the documentation. :param df: Pandas `DataFrame` :param v: Continuous variable to perform regression against :param n_components: `int` number of Principal components to return :param mean_center: `bool` mean center the data before performing PCA :param fcol: `dict` of indexers:colors, where colors are hex colors or matplotlib color names :param ecol: `dict` of indexers:colors, where colors are hex colors or matplotlib color names :param marker: `str` matplotlib marker name (default "o") :param markersize: `int` or `callable` which returns an `int` for a given indexer :param threshold: `float` weight threshold for plot (horizontal line) :param label_threshold: `float` weight threshold over which to draw labels :param label_weights: `list` of `str` :param label_scores: `list` of `str` :param return_df: `bool` return the resulting scores, weights as pandas DataFrames :param show_covariance_ellipse: `bool` show the covariance ellipse around each group :param args: additional arguments passed to analysis.pca :param kwargs: additional arguments passed to analysis.pca :return: """ scores, weights, loadings, predicted = analysis.plsr(df, v, n_components=n_components, scale=scale, *args, **kwargs) scores_ax = _pca_scores(scores, fcol=fcol, ecol=ecol, marker=marker, markersize=markersize, label_scores=label_scores, show_covariance_ellipse=show_covariance_ellipse) weights_ax = [] for pc in range(0, weights.shape[1]): weights_ax.append( _pca_weights(weights, pc, threshold=threshold, label_threshold=label_threshold, label_weights=label_weights) ) fig = plt.figure(figsize=(8, 8)) ax = fig.add_subplot(1,1,1) slope, intercept, r, p, se = sp.stats.linregress(v, predicted.flatten()) # Add regression line xmin, xmax = np.min(v), np.max(v) ax.plot([xmin, xmax],[xmin*slope+intercept, xmax*slope+intercept], lw=1, c='k') ax.scatter(v, predicted, s=50, alpha=0.5) ax.set_xlabel("Actual values") ax.set_ylabel("Predicted values") ax.set_aspect(1./ax.get_data_ratio()) ax.text(0.05, 0.95, '$y = %.2f+%.2fx$' % (intercept, slope), horizontalalignment='left', transform=ax.transAxes, color='black', fontsize=14) ax.text(0.95, 0.15, '$r^2$ = %.2f' % (r**2), horizontalalignment='right', transform=ax.transAxes, color='black', fontsize=14) ax.text(0.95, 0.10, '$p$ = %.2f' % p, horizontalalignment='right', transform=ax.transAxes, color='black', fontsize=14) ax.text(0.95, 0.05, '$SE$ = %.2f' % se, horizontalalignment='right', transform=ax.transAxes, color='black', fontsize=14) if return_df: return scores, weights, loadings, predicted else: return scores_ax, weights_ax, ax
https://github.com/mfitzp/padua/blob/8b14bf4d2f895da6aea5d7885d409315bd303ec6/padua/visualize.py#L362-L429
linear regression
python
def nonlinear_odr(x, y, dx, dy, func, params_init, **kwargs): """Perform a non-linear orthogonal distance regression, return the results as ErrorValue() instances. Inputs: x: one-dimensional numpy array of the independent variable y: one-dimensional numpy array of the dependent variable dx: absolute error (square root of the variance) of the independent variable. Either a one-dimensional numpy array or None. If None, weighting is disabled. Non-finite (NaN or inf) elements signify that the corresponding element in x is to be treated as fixed by ODRPACK. dy: absolute error (square root of the variance) of the dependent variable. Either a one-dimensional numpy array or None. If None, weighting is disabled. func: a callable with the signature func(x,par1,par2,par3,...) params_init: list or tuple of the first estimates of the parameters par1, par2, par3 etc. to be fitted other optional keyword arguments will be passed to leastsq(). Outputs: par1, par2, par3, ... , statdict par1, par2, par3, ...: fitted values of par1, par2, par3 etc as instances of ErrorValue. statdict: dictionary of various statistical parameters: 'DoF': Degrees of freedom 'Chi2': Chi-squared 'Chi2_reduced': Reduced Chi-squared 'num_func_eval': number of function evaluations during fit. 'func_value': the function evaluated in the best fitting parameters 'message': status message from leastsq() 'error_flag': integer status flag from leastsq() ('ier') 'Covariance': covariance matrix (variances in the diagonal) 'Correlation_coeffs': Pearson's correlation coefficients (usually denoted by 'r') in a matrix. The diagonal is unity. Notes: for the actual fitting, the module scipy.odr is used. """ odrmodel=odr.Model(lambda pars, x: func(x,*pars)) if dx is not None: # treat non-finite values as fixed xfixed=np.isfinite(dx) else: xfixed=None odrdata=odr.RealData(x, y, sx=dx,sy=dy, fix=xfixed) odrodr=odr.ODR(odrdata,odrmodel,params_init,ifixb=[not(isinstance(p,FixedParameter)) for p in params_init], **kwargs) odroutput=odrodr.run() statdict=odroutput.__dict__.copy() statdict['Covariance']=odroutput.cov_beta statdict['Correlation_coeffs']=odroutput.cov_beta/np.outer(odroutput.sd_beta,odroutput.sd_beta) statdict['DoF']=len(x)-len(odroutput.beta) statdict['Chi2_reduced']=statdict['res_var'] statdict['func_value']=statdict['y'] statdict['Chi2']=statdict['sum_square'] def convert(p_, dp_, pi): if isinstance(pi, FixedParameter): return FixedParameter(p_) else: return ErrorValue(p_, dp_) return tuple([convert(p_, dp_, pi) for (p_, dp_, pi) in zip(odroutput.beta, odroutput.sd_beta, params_init)] + [statdict])
https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/misc/easylsq.py#L116-L179
linear regression
python
def linear_smooth(t, y, dy, span=None, cv=True, t_out=None, span_out=None, period=None): """Perform a linear smooth of the data Parameters ---------- t, y, dy : array_like time, value, and error in value of the input data span : array_like the integer spans of the data cv : boolean (default=True) if True, treat the problem as a cross-validation, i.e. don't use each point in the evaluation of its own smoothing. t_out : array_like (optional) the output times for the moving averages span_out : array_like (optional) the spans associated with the output times t_out period : float if provided, then consider the inputs periodic with the given period Returns ------- y_smooth : array_like smoothed y values at each time t or t_out """ t_input = t prep = _prep_smooth(t, y, dy, span, t_out, span_out, period) t, y, dy, span, t_out, span_out, indices = prep if period: t_input = np.asarray(t_input) % period w = 1. / (dy ** 2) w, yw, tw, tyw, ttw = windowed_sum([w, y * w, w, y * w, w], t=t, tpowers=[0, 0, 1, 1, 2], span=span, indices=indices, subtract_mid=cv, period=period) denominator = (w * ttw - tw * tw) slope = (tyw * w - tw * yw) intercept = (ttw * yw - tyw * tw) if np.any(denominator == 0): raise ValueError("Zero denominator in linear smooth. This usually " "indicates that the input contains duplicate points.") if t_out is None: return (slope * t_input + intercept) / denominator elif span_out is not None: return (slope * t_out + intercept) / denominator else: i = np.minimum(len(t) - 1, np.searchsorted(t, t_out)) return (slope[i] * t_out + intercept[i]) / denominator[i]
https://github.com/jakevdp/supersmoother/blob/0c96cf13dcd6f9006d3c0421f9cd6e18abe27a2f/supersmoother/utils.py#L141-L192
linear regression
python
def _compute_non_linear_term(self, pga4nl, bnl): """ Compute non-linear term, equation (8a) to (8c), pag 108. """ fnl = np.zeros(pga4nl.shape) a1 = 0.03 a2 = 0.09 pga_low = 0.06 # equation (8a) idx = pga4nl <= a1 fnl[idx] = bnl[idx] * np.log(pga_low / 0.1) # equation (8b) idx = np.where((pga4nl > a1) & (pga4nl <= a2)) delta_x = np.log(a2 / a1) delta_y = bnl[idx] * np.log(a2 / pga_low) c = (3 * delta_y - bnl[idx] * delta_x) / delta_x ** 2 d = -(2 * delta_y - bnl[idx] * delta_x) / delta_x ** 3 fnl[idx] = bnl[idx] * np.log(pga_low / 0.1) +\ c * (np.log(pga4nl[idx] / a1) ** 2) + \ d * (np.log(pga4nl[idx] / a1) ** 3) # equation (8c) idx = pga4nl > a2 fnl[idx] = np.squeeze(bnl[idx]) * np.log(pga4nl[idx] / 0.1) return fnl
https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/hazardlib/gsim/boore_atkinson_2008.py#L244-L273
linear regression
python
def c3(x, lag): """ This function calculates the value of .. math:: \\frac{1}{n-2lag} \sum_{i=0}^{n-2lag} x_{i + 2 \cdot lag}^2 \cdot x_{i + lag} \cdot x_{i} which is .. math:: \\mathbb{E}[L^2(X)^2 \cdot L(X) \cdot X] where :math:`\\mathbb{E}` is the mean and :math:`L` is the lag operator. It was proposed in [1] as a measure of non linearity in the time series. .. rubric:: References | [1] Schreiber, T. and Schmitz, A. (1997). | Discrimination power of measures for nonlinearity in a time series | PHYSICAL REVIEW E, VOLUME 55, NUMBER 5 :param x: the time series to calculate the feature of :type x: numpy.ndarray :param lag: the lag that should be used in the calculation of the feature :type lag: int :return: the value of this feature :return type: float """ if not isinstance(x, (np.ndarray, pd.Series)): x = np.asarray(x) n = x.size if 2 * lag >= n: return 0 else: return np.mean((_roll(x, 2 * -lag) * _roll(x, -lag) * x)[0:(n - 2 * lag)])
https://github.com/blue-yonder/tsfresh/blob/c72c9c574371cf7dd7d54e00a466792792e5d202/tsfresh/feature_extraction/feature_calculators.py#L1399-L1435
linear regression
python
def linearize(wcsim, wcsima, wcsref, imcrpix, f, shift, hx=1.0, hy=1.0): """ linearization using 5-point formula for first order derivative """ x0 = imcrpix[0] y0 = imcrpix[1] p = np.asarray([[x0, y0], [x0 - hx, y0], [x0 - hx * 0.5, y0], [x0 + hx * 0.5, y0], [x0 + hx, y0], [x0, y0 - hy], [x0, y0 - hy * 0.5], [x0, y0 + hy * 0.5], [x0, y0 + hy]], dtype=np.float64) # convert image coordinates to reference image coordinates: p = wcsref.wcs_world2pix(wcsim.wcs_pix2world(p, 1), 1).astype(ndfloat128) # apply linear fit transformation: p = np.dot(f, (p - shift).T).T # convert back to image coordinate system: p = wcsima.wcs_world2pix( wcsref.wcs_pix2world(p.astype(np.float64), 1), 1).astype(ndfloat128) # derivative with regard to x: u1 = ((p[1] - p[4]) + 8 * (p[3] - p[2])) / (6*hx) # derivative with regard to y: u2 = ((p[5] - p[8]) + 8 * (p[7] - p[6])) / (6*hy) return (np.asarray([u1, u2]).T, p[0])
https://github.com/spacetelescope/drizzlepac/blob/15bec3c929a6a869d9e71b9398ced43ede0620f1/drizzlepac/updatehdr.py#L283-L312
linear regression
python
def apply_regression(input_, regression_fn, target, regression_args=(), regression_kwargs=None, name=PROVIDED, loss_weight=None, per_example_weights=None): """Applies the given regression and adds the loss to the bookkeeper. This does not change tensor. Args: input_: A Tensor or a Pretty Tensor holding the input. regression_fn: A function that takes (in order) tensor, labels. target: The targe of the regression. regression_args: Other arguments for the regression. regression_kwargs: Keyword args for the regression. name: The name, also added to regression_kwargs. loss_weight: A scalar multiplier for the loss. per_example_weights: A Tensor with a weight per example. Returns: The loss tensor's name. Raises: ValueError: If the target is not a compatible shape with input_. """ if regression_kwargs is None: regression_kwargs = {} if name is not None and 'name' not in regression_kwargs: regression_kwargs['name'] = name elif name is None: name = input_.tensor.op.name tensor = input_.tensor loss = regression_fn(tensor, target, *regression_args, **regression_kwargs) if loss_weight is not None: loss *= loss_weight if per_example_weights is not None: per_example_weights = _convert_and_assert_per_example_weights_compatible( input_, per_example_weights, dtype=loss.dtype) loss *= per_example_weights # Use mean so that the learning rate is independent of the batch size. if name is None: name = loss.op.name if tensor.get_shape()[0].value is not None: # Try to use division instead of reduce_mean because reduce_mean doesn't # work on GPU. avg_loss = tf.reduce_sum(loss) / tensor.get_shape()[0].value else: avg_loss = tf.reduce_mean(loss) return input_.add_loss(avg_loss, name=name)
https://github.com/google/prettytensor/blob/75daa0b11252590f548da5647addc0ea610c4c45/prettytensor/pretty_tensor_loss_methods.py#L79-L130
linear regression
python
def l1_regression( input_, target, name=PROVIDED, loss_weight=None, per_example_weights=None): """Applies an L1 Regression (Sum of Absolute Error) to the target.""" target = _convert_and_assert_tensors_compatible(input_, target) return apply_regression(input_, functions.l1_regression_loss, target, [], name='%s_loss' % name, loss_weight=loss_weight, per_example_weights=per_example_weights)
https://github.com/google/prettytensor/blob/75daa0b11252590f548da5647addc0ea610c4c45/prettytensor/pretty_tensor_loss_methods.py#L149-L160
linear regression
python
def get_linearoperator(shape, A, timer=None): """Enhances aslinearoperator if A is None.""" ret = None import scipy.sparse.linalg as scipylinalg if isinstance(A, LinearOperator): ret = A elif A is None: ret = IdentityLinearOperator(shape) elif isinstance(A, numpy.ndarray) or isspmatrix(A): ret = MatrixLinearOperator(A) elif isinstance(A, numpy.matrix): ret = MatrixLinearOperator(numpy.atleast_2d(numpy.asarray(A))) elif isinstance(A, scipylinalg.LinearOperator): if not hasattr(A, 'dtype'): raise ArgumentError('scipy LinearOperator has no dtype.') ret = LinearOperator(A.shape, dot=A.matvec, dot_adj=A.rmatvec, dtype=A.dtype) else: raise TypeError('type not understood') # set up timer if requested if A is not None and not isinstance(A, IdentityLinearOperator) \ and timer is not None: ret = TimedLinearOperator(ret, timer) # check shape if shape != ret.shape: raise LinearOperatorError('shape mismatch') return ret
https://github.com/andrenarchy/krypy/blob/4883ec9a61d64ea56489e15c35cc40f0633ab2f1/krypy/utils.py#L207-L236
linear regression
python
def cric__lasso(): """ Lasso Regression """ model = sklearn.linear_model.LogisticRegression(penalty="l1", C=0.002) # we want to explain the raw probability outputs of the trees model.predict = lambda X: model.predict_proba(X)[:,1] return model
https://github.com/slundberg/shap/blob/b280cb81d498b9d98565cad8dd16fc88ae52649f/shap/benchmark/models.py#L133-L141
linear regression
python
def var_regression_matrix(H, x, model, sigma=1): """ Compute the variance of the 'regression error'. Parameters ---------- H : 2d-array The regression matrix x : 2d-array The coordinates to calculate the regression error variance at. model : str A string of tokens that define the regression model (e.g. '1 x1 x2 x1*x2') sigma : scalar An estimate of the variance (default: 1). Returns ------- var : scalar The variance of the regression error, evaluated at ``x``. """ x = np.atleast_2d(x) H = np.atleast_2d(H) if x.shape[0]==1: x = x.T if np.rank(H)<(np.dot(H.T, H)).shape[0]: raise ValueError("model and DOE don't suit together") x_mod = build_regression_matrix(x, model) var = sigma**2*np.dot(np.dot(x_mod.T, np.linalg.inv(np.dot(H.T, H))), x_mod) return var
https://github.com/tisimst/pyDOE/blob/436143702507a5c8ff87b361223eee8171d6a1d7/pyDOE/var_regression_matrix.py#L18-L51
linear regression
python
def analog_linear2_ramp(ramp_data, start_time, end_time, value_final, time_subarray): """Use this when you want a discontinuous jump at the end of the linear ramp.""" value_initial = ramp_data["value"] value_final2 = ramp_data["value_final"] interp = (time_subarray - start_time)/(end_time - start_time) return value_initial*(1.0 - interp) + value_final2*interp
https://github.com/shreyaspotnis/rampage/blob/e2565aef7ee16ee06523de975e8aa41aca14e3b2/rampage/ramps.py#L477-L483
linear regression
python
def _log_linear_interpolation(predictions): """ Returns averaged and re-normalized log probabilities """ log_probs = utils.average_arrays([p.log() for p in predictions]) # pylint: disable=invalid-unary-operand-type return -log_probs.log_softmax()
https://github.com/awslabs/sockeye/blob/5d64a1ee1ef3cbba17c6d1d94bc061020c43f6ab/sockeye/inference.py#L1489-L1495
linear regression
python
def plsda(df, a, b, n_components=2, mean_center=False, scale=True, fcol=None, ecol=None, marker='o', markersize=40, threshold=None, label_threshold=None, label_weights=None, label_scores=None, return_df=False, show_covariance_ellipse=False, *args, **kwargs): """ Partial Least Squares Regression Analysis, based on `sklearn.cross_decomposition.PLSRegression` Performs a partial least squares regression (PLS-R) on the supplied dataframe ``df`` against the provided continuous variable ``v``, selecting the first ``n_components``. For more information on PLS regression and the algorithm used, see the `scikit-learn documentation <http://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html>`_. Resulting scores and weights plots are generated showing the distribution of samples within the resulting PCA space. Sample color and marker size can be controlled by label, lookup and calculation (lambda) to generate complex plots highlighting sample separation. For further information see the examples included in the documentation. :param df: Pandas `DataFrame` :param a: Column selector for group a :param b: Column selector for group b :param n_components: `int` number of Principal components to return :param mean_center: `bool` mean center the data before performing PCA :param fcol: `dict` of indexers:colors, where colors are hex colors or matplotlib color names :param ecol: `dict` of indexers:colors, where colors are hex colors or matplotlib color names :param marker: `str` matplotlib marker name (default "o") :param markersize: `int` or `callable` which returns an `int` for a given indexer :param threshold: `float` weight threshold for plot (horizontal line) :param label_threshold: `float` weight threshold over which to draw labels :param label_weights: `list` of `str` :param label_scores: `list` of `str` :param return_df: `bool` return the resulting scores, weights as pandas DataFrames :param show_covariance_ellipse: `bool` show the covariance ellipse around each group :param args: additional arguments passed to analysis.pca :param kwargs: additional arguments passed to analysis.pca :return: """ scores, weights, loadings = analysis.plsda(df, a, b, n_components=n_components, scale=scale, *args, **kwargs) scores_ax = _pca_scores(scores, fcol=fcol, ecol=ecol, marker=marker, markersize=markersize, label_scores=label_scores, show_covariance_ellipse=show_covariance_ellipse) weights_ax = [] for pc in range(0, weights.shape[1]): weights_ax.append( _pca_weights(weights, pc, threshold=threshold, label_threshold=label_threshold, label_weights=label_weights) ) if return_df: return scores, weights else: return scores_ax, weights_ax
https://github.com/mfitzp/padua/blob/8b14bf4d2f895da6aea5d7885d409315bd303ec6/padua/visualize.py#L312-L358
linear regression
python
def add_linear_obj(model): """Add a linear version of a minimal medium to the model solver. Changes the optimization objective to finding the growth medium requiring the smallest total import flux:: minimize sum |r_i| for r_i in import_reactions Arguments --------- model : cobra.Model The model to modify. """ coefs = {} for rxn in find_boundary_types(model, "exchange"): export = len(rxn.reactants) == 1 if export: coefs[rxn.reverse_variable] = 1 else: coefs[rxn.forward_variable] = 1 model.objective.set_linear_coefficients(coefs) model.objective.direction = "min"
https://github.com/opencobra/cobrapy/blob/9d1987cdb3a395cf4125a3439c3b002ff2be2009/cobra/medium/minimal_medium.py#L17-L38
linear regression
python
def linear(self, limits=None, k=5): """Returns an ndarray of linear breaks.""" start, stop = limits or (self.minval, self.maxval) return np.linspace(start, stop, k)
https://github.com/bkg/django-spillway/blob/c488a62642430b005f1e0d4a19e160d8d5964b67/spillway/models.py#L81-L84