query
stringlengths
9
60
language
stringclasses
1 value
code
stringlengths
105
25.7k
url
stringlengths
91
217
filter array
python
def filter(array, predicates, ty=None): """ Returns a new array, with each element in the original array satisfying the passed-in predicate set to `new_value` Args: array (WeldObject / Numpy.ndarray): Input array predicates (WeldObject / Numpy.ndarray<bool>): Predicate set ty (WeldType): Type of each element in the input array Returns: A WeldObject representing this computation """ weld_obj = WeldObject(encoder_, decoder_) array_var = weld_obj.update(array) if isinstance(array, WeldObject): array_var = array.obj_id weld_obj.dependencies[array_var] = array predicates_var = weld_obj.update(predicates) if isinstance(predicates, WeldObject): predicates_var = predicates.obj_id weld_obj.dependencies[predicates_var] = predicates weld_template = """ result( for( zip(%(array)s, %(predicates)s), appender, |b, i, e| if (e.$1, merge(b, e.$0), b) ) ) """ weld_obj.weld_code = weld_template % { "array": array_var, "predicates": predicates_var} return weld_obj
https://github.com/weld-project/weld/blob/8ddd6db6b28878bef0892da44b1d2002b564389c/python/grizzly/grizzly/grizzly_impl.py#L155-L193
filter array
python
def weld_filter(array, weld_type, bool_array): """Returns a new array only with the elements with a corresponding True in bool_array. Parameters ---------- array : numpy.ndarray or WeldObject Input data. weld_type : WeldType Type of the elements in the input array. bool_array : numpy.ndarray or WeldObject Array of bool with True for elements in array desired in the result array. Returns ------- WeldObject Representation of this computation. """ obj_id, weld_obj = create_weld_object(array) bool_obj_id = get_weld_obj_id(weld_obj, bool_array) weld_template = """result( for( zip({array}, {bool_array}), appender[{type}], |b: appender[{type}], i: i64, e: {{{type}, bool}}| if (e.$1, merge(b, e.$0), b) ) )""" weld_obj.weld_code = weld_template.format(array=obj_id, bool_array=bool_obj_id, type=weld_type) return weld_obj
https://github.com/radujica/baloo/blob/f6e05e35b73a75e8a300754c6bdc575e5f2d53b9/baloo/weld/weld_ops.py#L97-L133
filter array
python
def filter(self, func, axis=(0,)): """ Filter array along an axis. Applies a function which should evaluate to boolean, along a single axis or multiple axes. Array will be aligned so that the desired set of axes are in the keys, which may require a transpose/reshape. Parameters ---------- func : function Function to apply, should return boolean axis : tuple or int, optional, default=(0,) Axis or multiple axes to filter along. Returns ------- BoltArrayLocal """ axes = sorted(tupleize(axis)) reshaped = self._align(axes) filtered = asarray(list(filter(func, reshaped))) return self._constructor(filtered)
https://github.com/bolt-project/bolt/blob/9cd7104aa085498da3097b72696184b9d3651c51/bolt/local/array.py#L66-L92
filter array
python
def filter(self, func, axis=(0,), sort=False): """ Filter array along an axis. Applies a function which should evaluate to boolean, along a single axis or multiple axes. Array will be aligned so that the desired set of axes are in the keys, which may incur a swap. Parameters ---------- func : function Function to apply, should return boolean axis : tuple or int, optional, default=(0,) Axis or multiple axes to filter along. sort: bool, optional, default=False Whether or not to sort by key before reindexing Returns ------- BoltArraySpark """ axis = tupleize(axis) swapped = self._align(axis) def f(record): return func(record[1]) rdd = swapped._rdd.filter(f) if sort: rdd = rdd.sortByKey().values() else: rdd = rdd.values() # count the resulting array in order to reindex (linearize) the keys count, zipped = zip_with_index(rdd) if not count: count = zipped.count() reindexed = zipped.map(lambda kv: (tupleize(kv[1]), kv[0])) # since we can only filter over one axis, the remaining shape is always the following remaining = list(swapped.shape[len(axis):]) if count != 0: shape = tuple([count] + remaining) else: shape = (0,) return self._constructor(reindexed, shape=shape, split=1).__finalize__(swapped)
https://github.com/bolt-project/bolt/blob/9cd7104aa085498da3097b72696184b9d3651c51/bolt/spark/array.py#L193-L241
filter array
python
def filter(self, func): """ Filter array along an axis. Applies a function which should evaluate to boolean, along a single axis or multiple axes. Array will be aligned so that the desired set of axes are in the keys, which may require a transpose/reshape. Parameters ---------- func : function Function to apply, should return boolean """ if self.mode == 'local': reshaped = self._align(self.baseaxes) filtered = asarray(list(filter(func, reshaped))) if self.labels is not None: mask = asarray(list(map(func, reshaped))) if self.mode == 'spark': sort = False if self.labels is None else True filtered = self.values.filter(func, axis=self.baseaxes, sort=sort) if self.labels is not None: keys, vals = zip(*self.values.map(func, axis=self.baseaxes, value_shape=(1,)).tordd().collect()) perm = sorted(range(len(keys)), key=keys.__getitem__) mask = asarray(vals)[perm] if self.labels is not None: s1 = prod(self.baseshape) newlabels = self.labels.reshape(s1, 1)[mask].squeeze() else: newlabels = None return self._constructor(filtered, labels=newlabels).__finalize__(self, noprop=('labels',))
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/base.py#L372-L410
filter array
python
def std_filter(array, n_std=2.0, return_index=False): """Standard deviation outlier detector. :param array: array of data. :param n_std: default 2.0, exclude data out of ``n_std`` standard deviation. :param return_index: boolean, default False, if True, only returns index. """ if not isinstance(array, np.ndarray): array = np.array(array) mean, std = array.mean(), array.std() good_index = np.where(abs(array - mean) <= n_std * std) bad_index = np.where(abs(array - mean) > n_std * std) if return_index: return good_index[0], bad_index[0] else: return array[good_index], array[bad_index]
https://github.com/MacHu-GWU/angora-project/blob/689a60da51cd88680ddbe26e28dbe81e6b01d275/angora/math/outlier.py#L47-L64
filter array
python
def bandpass_filter(data, low, high, fs, order=5): """ Does a bandpass filter over the given data. :param data: The data (numpy array) to be filtered. :param low: The low cutoff in Hz. :param high: The high cutoff in Hz. :param fs: The sample rate (in Hz) of the data. :param order: The order of the filter. The higher the order, the tighter the roll-off. :returns: Filtered data (numpy array). """ nyq = 0.5 * fs low = low / nyq high = high / nyq b, a = signal.butter(order, [low, high], btype='band') y = signal.lfilter(b, a, data) return y
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/filters.py#L7-L23
filter array
python
def pivot_filter(pivot_array, predicates, ty=None): """ Returns a new array, with each element in the original array satisfying the passed-in predicate set to `new_value` Args: array (WeldObject / Numpy.ndarray): Input array predicates (WeldObject / Numpy.ndarray<bool>): Predicate set ty (WeldType): Type of each element in the input array Returns: A WeldObject representing this computation """ weld_obj = WeldObject(encoder_, decoder_) pivot_array_var = weld_obj.update(pivot_array) if isinstance(pivot_array, WeldObject): pivot_array_var = pivot_array.obj_id weld_obj.dependencies[pivot_array_var] = pivot_array predicates_var = weld_obj.update(predicates) if isinstance(predicates, WeldObject): predicates_var = predicates.obj_id weld_obj.dependencies[predicates_var] = predicates weld_template = """ let index_filtered = result( for( zip(%(array)s.$0, %(predicates)s), appender, |b, i, e| if (e.$1, merge(b, e.$0), b) ) ); let pivot_filtered = map( %(array)s.$1, |x| result( for( zip(x, %(predicates)s), appender, |b, i, e| if (e.$1, merge(b, e.$0), b) ) ) ); {index_filtered, pivot_filtered, %(array)s.$2} """ weld_obj.weld_code = weld_template % { "array": pivot_array_var, "predicates": predicates_var} return weld_obj
https://github.com/weld-project/weld/blob/8ddd6db6b28878bef0892da44b1d2002b564389c/python/grizzly/grizzly/grizzly_impl.py#L195-L247
filter array
python
def overlaps(self, *args): """Construct an array overlaps (``&&``) filter. :param args: Filter values :return: :class:`filters.Field <filters.Field>` object :rtype: filters.Field """ self.op = '&&' self.negate_op = None self.value = self._array_value(args) return self
https://github.com/qacafe/cdrouter.py/blob/aacf2c6ab0b987250f7b1892f4bba14bb2b7dbe5/cdrouter/filters.py#L214-L224
filter array
python
def contains(self, *args): """Construct an array contains (``@>``) filter. :param args: Filter values :return: :class:`filters.Field <filters.Field>` object :rtype: filters.Field """ self.op = '@>' self.negate_op = None self.value = self._array_value(args) return self
https://github.com/qacafe/cdrouter.py/blob/aacf2c6ab0b987250f7b1892f4bba14bb2b7dbe5/cdrouter/filters.py#L190-L200
filter array
python
def filter(self, index): #@ReservedAssignment """ Filters a datamat by different aspects. This function is a device to filter the datamat by certain logical conditions. It takes as input a logical array (contains only True or False for every datapoint) and kicks out all datapoints for which the array says False. The logical array can conveniently be created with numpy:: >>> print np.unique(fm.category) np.array([2,9]) >>> fm_filtered = fm[ fm.category == 9 ] >>> print np.unique(fm_filtered) np.array([9]) Parameters: index : array Array-like that contains True for every element that passes the filter; else contains False Returns: datamat : Datamat Instance """ return Datamat(categories=self._categories, datamat=self, index=index)
https://github.com/nwilming/ocupy/blob/a0bd64f822576feaa502939d6bafd1183b237d16/ocupy/datamat.py#L140-L163
filter array
python
def filter_by_func(self, func:Callable)->'ItemList': "Only keep elements for which `func` returns `True`." self.items = array([o for o in self.items if func(o)]) return self
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/data_block.py#L149-L152
filter array
python
def contained_by(self, *args): """Construct an array contained by (``<@``) filter. :param args: Filter values :return: :class:`filters.Field <filters.Field>` object :rtype: filters.Field """ self.op = '<@' self.negate_op = None self.value = self._array_value(args) return self
https://github.com/qacafe/cdrouter.py/blob/aacf2c6ab0b987250f7b1892f4bba14bb2b7dbe5/cdrouter/filters.py#L202-L212
filter array
python
def average_filter(input, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): r""" Calculates a multi-dimensional average filter. Parameters ---------- input : array-like input array to filter size : scalar or tuple, optional See footprint, below footprint : array, optional Either `size` or `footprint` must be defined. `size` gives the shape that is taken from the input array, at every element position, to define the input to the filter function. `footprint` is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus ``size=(n,m)`` is equivalent to ``footprint=np.ones((n,m))``. We adjust `size` to the number of dimensions of the input array, so that, if the input array is shape (10,10,10), and `size` is 2, then the actual size used is (2,2,2). output : array, optional The ``output`` parameter passes an array in which to store the filter output. mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional The ``mode`` parameter determines how the array borders are handled, where ``cval`` is the value when mode is equal to 'constant'. Default is 'reflect' cval : scalar, optional Value to fill past edges of input if ``mode`` is 'constant'. Default is 0.0 origin : scalar, optional The ``origin`` parameter controls the placement of the filter. Default 0 Returns ------- average_filter : ndarray Returned array of same shape as `input`. Notes ----- Convenience implementation employing convolve. See Also -------- scipy.ndimage.filters.convolve : Convolve an image with a kernel. """ footprint = __make_footprint(input, size, footprint) filter_size = footprint.sum() output = _get_output(output, input) sum_filter(input, footprint=footprint, output=output, mode=mode, cval=cval, origin=origin) output /= filter_size return output
https://github.com/loli/medpy/blob/95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5/medpy/filter/image.py#L230-L284
filter array
python
def iter_filter(self, filters, databases=None, fields=None, filter_behavior="and"): """General purpose filter iterator. This general filter iterator allows the filtering of entries based on one or more custom filters. These filters must contain an entry of the `storage` attribute, a comparison operator, and the test value. For example, to filter out entries with coverage below 80:: my_filter = ["coverage", ">=", 80] Filters should always be provide as a list of lists:: iter_filter([["coverage", ">=", 80]]) # or my_filters = [["coverage", ">=", 80], ["identity", ">=", 50]] iter_filter(my_filters) As a convenience, a list of the desired databases can be directly specified using the `database` argument, which will only report entries for the specified databases:: iter_filter(my_filters, databases=["plasmidfinder"]) By default, this method will yield the complete entry record. However, the returned filters can be specified using the `fields` option:: iter_filter(my_filters, fields=["reference", "coverage"]) Parameters ---------- filters : list List of lists with the custom filter. Each list should have three elements. (1) the key from the entry to be compared; (2) the comparison operator; (3) the test value. Example: ``[["identity", ">", 80]]``. databases : list List of databases that should be reported. fields : list List of fields from each individual entry that are yielded. filter_behavior : str options: ``'and'`` ``'or'`` Sets the behaviour of the filters, if multiple filters have been provided. By default it is set to ``'and'``, which means that an entry has to pass all filters. It can be set to ``'or'``, in which case one one of the filters has to pass. yields ------ dic : dict Dictionary object containing a :py:attr:`Abricate.storage` entry that passed the filters. """ if filter_behavior not in ["and", "or"]: raise ValueError("Filter behavior must be either 'and' or 'or'") for dic in self.storage.values(): # This attribute will determine whether an entry will be yielded # or not _pass = False # Stores the flags with the test results for each filter # The results will be either True or False flag = [] # Filter for databases if databases: # Skip entry if not in specified database if dic["database"] not in databases: continue # Apply filters for f in filters: # Get value of current filter val = dic[f[0]] if not self._test_truth(val, f[1], f[2]): flag.append(False) else: flag.append(True) # Test whether the entry will pass based on the test results # and the filter behaviour if filter_behavior == "and": if all(flag): _pass = True elif filter_behavior == "or": if any(flag): _pass = True if _pass: if fields: yield dict((x, y) for x, y in dic.items() if x in fields) else: yield dic
https://github.com/assemblerflow/flowcraft/blob/fc3f4bddded1efc76006600016dc71a06dd908c0/flowcraft/templates/process_abricate.py#L242-L340
filter array
python
def _filter_attrs(attrs, ignored_attrs): """ Return attrs that are not in ignored_attrs """ return dict((k, v) for k, v in attrs.items() if k not in ignored_attrs)
https://github.com/pydata/xarray/blob/6d93a95d05bdbfc33fff24064f67d29dd891ab58/xarray/convert.py#L30-L33
filter array
python
def filter(self, collection, data, **kwargs): """Filter given collection.""" ops = self.parse(data) collection = self.apply(collection, ops, **kwargs) return ops, collection
https://github.com/klen/muffin-rest/blob/1d85bdd3b72a89eaeab8c4086926260a960408aa/muffin_rest/filters.py#L41-L45
filter array
python
def list_current_filter_set(self,raw=False): """User to list a currently selected filter set""" buf = [] self.open_umanager() self.ser.write(''.join((self.cmd_current_filter_list,self.cr))) if self.read_loop(lambda x: x.endswith(self.umanager_prompt),self.timeout,lambda x,y,z: buf.append(y.rstrip()[:-1])): if raw: rv = buf = buf[0] else: rv, buf = self.filter_organizer(buf[0]) else: raise Dam1021Error(16,"Failed to list currently selected filter set") self.close_umanager() log.info(buf) return rv
https://github.com/fortaa/dam1021/blob/1bc5b75ebf2cc7bc8dc2a451793a9e769e16ce5f/src/dam1021.py#L374-L392
filter array
python
def filtered(self, *, type_=None, lang=None, attrs={}): """ This method is a convencience wrapper around :meth:`filter` which evaluates the result into a list and returns that list. """ return list(self.filter(type_=type_, lang=lang, attrs=attrs))
https://github.com/horazont/aioxmpp/blob/22a68e5e1d23f2a4dee470092adbd4672f9ef061/aioxmpp/xso/model.py#L262-L267
filter array
python
def in_array(self, event_property, value): """An in-array filter chain. >>> request_time = EventExpression('request', 'elapsed_ms') >>> filtered = request_time.in_array('path', '/event') >>> print(filtered) request(elapsed_ms).in(path, ["/", "e", "v", "e", "n", "t"]) >>> filtered = request_time.in_array('path', ['/event', '/']) >>> print(filtered) request(elapsed_ms).in(path, ["/event", "/"]) """ c = self.copy() c.filters.append(filters.IN(event_property, value)) return c
https://github.com/sbuss/pypercube/blob/e9d2cca9c004b8bad6d1e0b68b080f887a186a22/pypercube/expression.py#L361-L374
filter array
python
def apply_filter_list(func, obj): """Apply `func` to list or tuple `obj` element-wise and directly otherwise.""" if isinstance(obj, (list, tuple)): return [func(item) for item in obj] return func(obj)
https://github.com/genialis/resolwe/blob/f7bb54932c81ec0cfc5b5e80d238fceaeaa48d86/resolwe/flow/expression_engines/jinja/filters.py#L13-L17
filter array
python
def _get_filter_field(field_name, field_value): """ Return field to apply into filter, if an array then use a range, otherwise look for a term match """ filter_field = None if isinstance(field_value, ValueRange): range_values = {} if field_value.lower: range_values.update({"gte": field_value.lower_string}) if field_value.upper: range_values.update({"lte": field_value.upper_string}) filter_field = { "range": { field_name: range_values } } elif _is_iterable(field_value): filter_field = { "terms": { field_name: field_value } } else: filter_field = { "term": { field_name: field_value } } return filter_field
https://github.com/edx/edx-search/blob/476cf02b71ceba34ae7d8b798f36d60692317c55/search/elastic.py#L64-L90
filter array
python
def filter(self, fn, skip_na=True, seed=None): """ Filter this SArray by a function. Returns a new SArray filtered by this SArray. If `fn` evaluates an element to true, this element is copied to the new SArray. If not, it isn't. Throws an exception if the return type of `fn` is not castable to a boolean value. Parameters ---------- fn : function Function that filters the SArray. Must evaluate to bool or int. skip_na : bool, optional If True, will not apply fn to any undefined values. seed : int, optional Used as the seed if a random number generator is included in fn. Returns ------- out : SArray The SArray filtered by fn. Each element of the SArray is of type int. Examples -------- >>> sa = turicreate.SArray([1,2,3]) >>> sa.filter(lambda x: x < 3) dtype: int Rows: 2 [1, 2] """ assert callable(fn), "Input must be callable" if seed is None: seed = abs(hash("%0.20f" % time.time())) % (2 ** 31) with cython_context(): return SArray(_proxy=self.__proxy__.filter(fn, skip_na, seed))
https://github.com/apple/turicreate/blob/74514c3f99e25b46f22c6e02977fe3da69221c2e/src/unity/python/turicreate/data_structures/sarray.py#L1923-L1963
filter array
python
def filter(self, callback=None): """ Run a filter over each of the items. :param callback: The filter callback :type callback: callable or None :rtype: Collection """ if callback: return self.__class__(list(filter(callback, self.items))) return self.__class__(list(filter(None, self.items)))
https://github.com/sdispater/backpack/blob/764e7f79fd2b1c1ac4883d8e5c9da5c65dfc875e/backpack/collections/base_collection.py#L240-L252
filter array
python
def filter_by_rand(self, p:float, seed:int=None): "Keep random sample of `items` with probability `p` and an optional `seed`." if seed is not None: np.random.seed(seed) return self.filter_by_func(lambda o: rand_bool(p))
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/data_block.py#L165-L168
filter array
python
def bandpass_filter(data, k, w1, w2): """ This function will apply a bandpass filter to data. It will be kth order and will select the band between w1 and w2. Parameters ---------- data: array, dtype=float The data you wish to filter k: number, int The order of approximation for the filter. A max value for this isdata.size/2 w1: number, float This is the lower bound for which frequencies will pass through. w2: number, float This is the upper bound for which frequencies will pass through. Returns ------- y: array, dtype=float The filtered data. """ data = np.asarray(data) low_w = np.pi * 2 / w2 high_w = np.pi * 2 / w1 bweights = np.zeros(2 * k + 1) bweights[k] = (high_w - low_w) / np.pi j = np.arange(1, int(k) + 1) weights = 1 / (np.pi * j) * (sin(high_w * j) - sin(low_w * j)) bweights[k + j] = weights bweights[:k] = weights[::-1] bweights -= bweights.mean() return fftconvolve(bweights, data, mode='valid')
https://github.com/EconForge/dolo/blob/d91ddf148b009bf79852d9aec70f3a1877e0f79a/dolo/numeric/filters.py#L83-L119
filter array
python
def make_filter_list(filters): """Transform filters into list of table rows.""" filter_list = [] filter_ids = [] for f in filters: filter_ids.append(f.index) fullname = URL_P.sub(r'`<\1>`_', f.fullname) filter_list.append((str(f.index + 1), f.name, "{0:.2f}".format(f.msun_vega), "{0:.2f}".format(f.msun_ab), "{0:.1f}".format(f.lambda_eff), fullname)) sortf = lambda item: int(item[0]) filter_list.sort(key=sortf) return filter_list
https://github.com/dfm/python-fsps/blob/29b81d0ff317532919451ca60b9d36aa1743bd21/scripts/fsps_filter_table.py#L28-L43
filter array
python
def filter_by(self, values, exclude=False): """ Filter an SArray by values inside an iterable object. The result is an SArray that only includes (or excludes) the values in the given ``values`` :class:`~turicreate.SArray`. If ``values`` is not an SArray, we attempt to convert it to one before filtering. Parameters ---------- values : SArray | list | numpy.ndarray | pandas.Series | str The values to use to filter the SArray. The resulting SArray will only include rows that have one of these values in the given column. exclude : bool If True, the result SArray will contain all rows EXCEPT those that have one of the ``values``. Returns ------- out : SArray The filtered SArray. Examples -------- >>> sa = SArray(['dog', 'cat', 'cow', 'horse']) >>> sa.filter_by(['cat', 'hamster', 'dog', 'fish', 'bird', 'snake']) dtype: str Rows: 2 ['dog', 'cat'] >>> sa.filter_by(['cat', 'hamster', 'dog', 'fish', 'bird', 'snake'], exclude=True) dtype: str Rows: 2 ['horse', 'cow'] """ from .sframe import SFrame as _SFrame column_name = 'sarray' # Convert values to SArray if not isinstance(values, SArray): #type(values) is not SArray: # If we were given a single element, try to put in list and convert # to SArray if not _is_non_string_iterable(values): values = [values] values = SArray(values) # Convert values to SFrame value_sf = _SFrame() value_sf.add_column(values, column_name, inplace=True) given_type = value_sf.column_types()[0] #value column type existing_type = self.dtype sarray_sf = _SFrame() sarray_sf.add_column(self, column_name, inplace=True) if given_type != existing_type: raise TypeError("Type of given values does not match type of the SArray") # Make sure the values list has unique values, or else join will not # filter. value_sf = value_sf.groupby(column_name, {}) with cython_context(): if exclude: id_name = "id" value_sf = value_sf.add_row_number(id_name) tmp = _SFrame(_proxy=sarray_sf.__proxy__.join(value_sf.__proxy__, 'left', {column_name:column_name})) ret_sf = tmp[tmp[id_name] == None] return ret_sf[column_name] else: ret_sf = _SFrame(_proxy=sarray_sf.__proxy__.join(value_sf.__proxy__, 'inner', {column_name:column_name})) return ret_sf[column_name]
https://github.com/apple/turicreate/blob/74514c3f99e25b46f22c6e02977fe3da69221c2e/src/unity/python/turicreate/data_structures/sarray.py#L4402-L4480
filter array
python
def _parse_filter_arg(self, arg): """ Parses a filter arg in the format: <colname>__<op> :returns: colname, op tuple """ statement = arg.rsplit('__', 1) if len(statement) == 1: return arg, None elif len(statement) == 2: return statement[0], statement[1] else: raise QueryException("Can't parse '{}'".format(arg))
https://github.com/cqlengine/cqlengine/blob/7079eaf7071cbf5a045e1d1ab57f6d1b5ba3f9dc/cqlengine/query.py#L406-L418
filter array
python
def assembla_filter(func): """ Filters :data for the objects in it which possess attributes equal in name/value to a key/value in kwargs. Each key/value combination in kwargs is compared against the object, so multiple keyword arguments can be passed in to constrain the filtering. """ @wraps(func) def wrapper(class_instance, **kwargs): # Get the result extra_params = kwargs.get('extra_params', None) if extra_params: del kwargs['extra_params'] results = func(class_instance, extra_params) # Filter the result if kwargs: results = filter( # Find the objects who have an equal number of matching attr/value # combinations as `len(kwargs)` lambda obj: len(kwargs) == len( filter( lambda boolean: boolean, [obj.get(attr_name) == value for attr_name, value in kwargs.iteritems()] ) ), results ) return results return wrapper
https://github.com/markfinger/assembla/blob/967a77a5ba718df94f60e832b6e0cf14c72426aa/assembla/lib.py#L43-L76
filter array
python
def check_filter(self, args, kwargs): """ Calls all filters in the :attr:`_filters` list and if all of them return :const:`True` will return :const:`True`. If any of the filters return :const:`False` will return :const:`True` instead. This method is equal to the following snippet: `all(f(*args, **kwargs) for f in self.filters)` """ for f in self._filters: if not f(*args, **kwargs): return False return True
https://github.com/Wessie/hurler/blob/5719000237e24df9f24fb8229f1153ebfa684972/hurler/filters.py#L48-L61
filter array
python
def _filter(request, object_, tags=None, more=False, orderby='created'): """Filters Piece objects from self based on filters, search, and range :param tags: List of tag IDs to filter :type tags: list :param more -- bool, Returns more of the same filtered set of images based on session range return list, Objects filtered """ res = Result() models = QUERY_MODELS idDict = {} objDict = {} data = {} modelmap = {} length = 75 # -- Get all IDs for each model for m in models: modelmap[m.model_class()] = m.model if object_: idDict[m.model] = m.model_class().objects.filter(gallery=object_) else: idDict[m.model] = m.model_class().objects.all() if idDict[m.model] is None: continue if tags: for bucket in tags: searchQuery = "" o = None for item in bucket: if item == 0: # -- filter by tagless idDict[m.model].annotate(num_tags=Count('tags')) if not o: o = Q() o |= Q(num_tags__lte=1) break elif isinstance(item, six.integer_types): # -- filter by tag if not o: o = Q() o |= Q(tags__id=item) else: # -- add to search string searchQuery += item + ' ' if not HAYSTACK: if not o: o = Q() # -- use a basic search o |= Q(title__icontains=item) if HAYSTACK and searchQuery != "": # -- once all tags have been filtered, filter by search searchIDs = search(searchQuery, m.model_class()) if searchIDs: if not o: o = Q() o |= Q(id__in=searchIDs) if o: # -- apply the filters idDict[m.model] = idDict[m.model].annotate(num_tags=Count('tags')).filter(o) else: idDict[m.model] = idDict[m.model].none() # -- Get all ids of filtered objects, this will be a very fast query idDict[m.model] = list(idDict[m.model].order_by('-{}'.format(orderby)).values_list('id', flat=True)) lastid = request.session.get('last_{}'.format(m.model), 0) if not idDict[m.model]: continue if not more: lastid = idDict[m.model][0] index = idDict[m.model].index(lastid) if more and lastid != 0: index += 1 idDict[m.model] = idDict[m.model][index:index + length] # -- perform the main query to retrieve the objects we want objDict[m.model] = m.model_class().objects.filter(id__in=idDict[m.model]) objDict[m.model] = objDict[m.model].select_related('author').prefetch_related('tags').order_by('-{}'.format(orderby)) objDict[m.model] = list(objDict[m.model]) # -- combine and sort all objects by date objects = _sortObjects(orderby, **objDict) if len(models) > 1 else objDict.values()[0] objects = objects[:length] # -- Find out last ids lastids = {} for obj in objects: lastids['last_{}'.format(modelmap[obj.__class__])] = obj.id for key, value in lastids.items(): request.session[key] = value # -- serialize objects for i in objects: res.append(i.json()) data['count'] = len(objects) if settings.DEBUG: data['queries'] = connection.queries res.value = data return JsonResponse(res.asDict())
https://github.com/theiviaxx/Frog/blob/a9475463a8eed1323fe3ef5d51f9751fb1dc9edd/frog/views/gallery.py#L219-L331
filter array
python
def parse_column_filter(definition): """Parse a `str` of the form 'column>50' Parameters ---------- definition : `str` a column filter definition of the form ``<name><operator><threshold>`` or ``<threshold><operator><name><operator><threshold>``, e.g. ``frequency >= 10``, or ``50 < snr < 100`` Returns ------- filters : `list` of `tuple` a `list` of filter 3-`tuple`s, where each `tuple` contains the following elements: - ``column`` (`str`) - the name of the column on which to operate - ``operator`` (`callable`) - the operator to call when evaluating the filter - ``operand`` (`anything`) - the argument to the operator function Raises ------ ValueError if the filter definition cannot be parsed KeyError if any parsed operator string cannnot be mapped to a function from the `operator` module Notes ----- Strings that contain non-alphanumeric characters (e.g. hyphen `-`) should be quoted inside the filter definition, to prevent such characters being interpreted as operators, e.g. ``channel = X1:TEST`` should always be passed as ``channel = "X1:TEST"``. Examples -------- >>> parse_column_filter("frequency>10") [('frequency', <function operator.gt>, 10.)] >>> parse_column_filter("50 < snr < 100") [('snr', <function operator.gt>, 50.), ('snr', <function operator.lt>, 100.)] >>> parse_column_filter("channel = "H1:TEST") [('channel', <function operator.eq>, 'H1:TEST')] """ # noqa # parse definition into parts (skipping null tokens) parts = list(generate_tokens(StringIO(definition.strip()).readline)) while parts[-1][0] in (token.ENDMARKER, token.NEWLINE): parts = parts[:-1] # parse simple definition: e.g: snr > 5 if len(parts) == 3: a, b, c = parts # pylint: disable=invalid-name if a[0] in [token.NAME, token.STRING]: # string comparison name = QUOTE_REGEX.sub('', a[1]) oprtr = OPERATORS[b[1]] value = _float_or_str(c[1]) return [(name, oprtr, value)] elif b[0] in [token.NAME, token.STRING]: name = QUOTE_REGEX.sub('', b[1]) oprtr = OPERATORS_INV[b[1]] value = _float_or_str(a[1]) return [(name, oprtr, value)] # parse between definition: e.g: 5 < snr < 10 elif len(parts) == 5: a, b, c, d, e = list(zip(*parts))[1] # pylint: disable=invalid-name name = QUOTE_REGEX.sub('', c) return [(name, OPERATORS_INV[b], _float_or_str(a)), (name, OPERATORS[d], _float_or_str(e))] raise ValueError("Cannot parse filter definition from %r" % definition)
https://github.com/gwpy/gwpy/blob/7a92b917e7dd2d99b15895293a1fa1d66cdb210a/gwpy/table/filter.py#L99-L171
filter array
python
def min_filter(data, size=7, res_g=None, sub_blocks=(1, 1, 1)): """ minimum filter of given size Parameters ---------- data: 2 or 3 dimensional ndarray or OCLArray of type float32 input data size: scalar, tuple the size of the patch to consider res_g: OCLArray store result in buffer if given sub_blocks: perform over subblock tiling (only if data is ndarray) Returns ------- filtered image or None (if OCLArray) """ if data.ndim == 2: _filt = make_filter(_generic_filter_gpu_2d(FUNC="(val<res?val:res)", DEFAULT="INFINITY")) elif data.ndim == 3: _filt = make_filter(_generic_filter_gpu_3d(FUNC="(val<res?val:res)", DEFAULT="INFINITY")) else: raise ValueError("currently only 2 or 3 dimensional data is supported") return _filt(data=data, size=size, res_g=res_g, sub_blocks=sub_blocks)
https://github.com/maweigert/gputools/blob/6ab26efeb05dceef74cf13aadeeeb9b009b529dd/gputools/convolve/generic_separable_filters.py#L142-L167
filter array
python
def filter(self, *args): """ 为文本 ``(text)`` 消息添加 handler 的简便方法。 使用 ``@filter("xxx")``, ``@filter(re.compile("xxx"))`` 或 ``@filter("xxx", "xxx2")`` 的形式为特定内容添加 handler。 """ def wraps(f): self.add_filter(func=f, rules=list(args)) return f return wraps
https://github.com/offu/WeRoBot/blob/fd42109105b03f9acf45ebd9dcabb9d5cff98f3c/werobot/robot.py#L486-L498
filter array
python
async def filter(self, request): """Filter collection.""" collection = self.collection self.filter_form.process(request.query) data = self.filter_form.data self.filter_form.active = any(o and o is not DEFAULT for o in data.values()) for flt in self.columns_filters: try: collection = flt.apply(collection, data) # Invalid filter value except ValueError: continue return collection
https://github.com/klen/muffin-admin/blob/404dc8e5107e943b7c42fa21c679c34ddb4de1d5/muffin_admin/handler.py#L138-L150
filter array
python
def filter(self, table, column_slice=None): """ Use the current Query object to create a mask (a boolean array) for `table`. Parameters ---------- table : NumPy structured array, astropy Table, etc. column_slice : Column to return. Default is None (return all columns). Returns ------- table : filtered table """ if self._operator is None and self._operands is None: return table if column_slice is None else self._get_table_column(table, column_slice) if self._operator == 'AND' and column_slice is None: for op in self._operands: table = op.filter(table) return table return self._mask_table( table if column_slice is None else self._get_table_column(table, column_slice), self.mask(table) )
https://github.com/yymao/easyquery/blob/cd94c100e26f59042cd9ffb26d0a7b61cdcd457d/easyquery.py#L237-L262
filter array
python
def filters(self): """ Returns the list of base filters. :return: the filter list :rtype: list """ objects = javabridge.get_env().get_object_array_elements( javabridge.call(self.jobject, "getFilters", "()[Lweka/filters/Filter;")) result = [] for obj in objects: result.append(Filter(jobject=obj)) return result
https://github.com/fracpete/python-weka-wrapper3/blob/d850ab1bdb25fbd5a8d86e99f34a397975425838/python/weka/filters.py#L201-L213
filter array
python
def filter(self, *filters, **kw): """ Return a new S instance with filter args combined with existing set with AND. :arg filters: this will be instances of F :arg kw: this will be in the form of ``field__action=value`` Examples: >>> s = S().filter(foo='bar') >>> s = S().filter(F(foo='bar')) >>> s = S().filter(foo='bar', bat='baz') >>> s = S().filter(foo='bar').filter(bat='baz') By default, everything is combined using AND. If you provide multiple filters in a single filter call, those are ANDed together. If you provide multiple filters in multiple filter calls, those are ANDed together. If you want something different, use the F class which supports ``&`` (and), ``|`` (or) and ``~`` (not) operators. Then call filter once with the resulting F instance. See the documentation on :py:class:`elasticutils.F` for more details on composing filters with F. See the documentation on :py:class:`elasticutils.S` for more details on adding support for new filter types. """ items = kw.items() if six.PY3: items = list(items) return self._clone( next_step=('filter', list(filters) + items))
https://github.com/mozilla/elasticutils/blob/b880cc5d51fb1079b0581255ec664c1ec934656e/elasticutils/__init__.py#L782-L817
filter array
python
def _filter_attrs(cls, attrs): """ attrs: { attr_name: attr_value } if __attr_whitelist__ is True: only attr in __attr_accessible__ AND not in __attr_protected__ will pass else: only attr not in __attr_protected__ OR in __attr_accessible__ will pass """ if cls.__attr_whitelist__: whitelist = cls.__attr_accessible__ - cls.__attr_protected__ return {k: v for k, v in attrs.items() if k in whitelist} else: blacklist = cls.__attr_protected__ - cls.__attr_accessible__ return {k: v for k, v in attrs.items() if k not in blacklist}
https://github.com/shanbay/peeweext/blob/ff62a3d01e4584d50fde1944b9616c3b4236ecf0/peeweext/model.py#L62-L77
filter array
python
def filter(self, func): """ A lazy way to skip elements in the stream that gives False for the given function. """ self._data = xfilter(func, self._data) return self
https://github.com/danilobellini/audiolazy/blob/dba0a278937909980ed40b976d866b8e97c35dee/audiolazy/lazy_stream.py#L388-L394
filter array
python
def filter(self, func): """ Return all the elements that pass a truth test. """ return self._wrap(list(filter(func, self.obj)))
https://github.com/serkanyersen/underscore.py/blob/07c25c3f0f789536e4ad47aa315faccc0da9602f/src/underscore.py#L245-L248
filter array
python
def filter(table, predicates): """ Select rows from table based on boolean expressions Parameters ---------- predicates : boolean array expressions, or list thereof Returns ------- filtered_expr : TableExpr """ resolved_predicates = _resolve_predicates(table, predicates) return _L.apply_filter(table, resolved_predicates)
https://github.com/ibis-project/ibis/blob/1e39a5fd9ef088b45c155e8a5f541767ee8ef2e7/ibis/expr/api.py#L3130-L3143
filter array
python
def parse_filter(self, filters): """ This method process the filters """ for filter_type in filters: if filter_type == 'or' or filter_type == 'and': conditions = [] for field in filters[filter_type]: if self.is_field_allowed(field): conditions.append(self.create_query(self.parse_field(field, filters[filter_type][field]))) if filter_type == 'or': self.model_query = self.model_query.filter(or_(*conditions)) elif filter_type == 'and': self.model_query = self.model_query.filter(and_(*conditions)) else: if self.is_field_allowed(filter_type): conditions = self.create_query(self.parse_field(filter_type, filters[filter_type])) self.model_query = self.model_query.filter(conditions) return self.model_query
https://github.com/loverajoel/sqlalchemy-elasticquery/blob/4c99b81f59e7bb20eaeedb3adbf5126e62bbc25c/sqlalchemy_elasticquery/elastic_query.py#L95-L111
filter array
python
def _filter(self, value): """ Predicate used to exclude, False, or include, True, a computed value. """ if self.ignores and value in self.ignores: return False return True
https://github.com/bninja/pilo/blob/32b7298a47e33fb7383103017b4f3b59ad76ea6f/pilo/fields.py#L473-L479
filter array
python
def filter(self, given_filter, apply_zerovalue=False): """Apply filter into all values Params <lambda> | <function> given_filter <bool> only_nonzero """ get_ = self.get___method set_ = self.set___method max_value = self.max_value for table_id in range(self.depth): for cell_id in range(self.width): val = get_(self, table_id, cell_id) if val or apply_zerovalue: val = given_filter(val) val = max_value if val > max_value else val set_(self, table_id, cell_id, val)
https://github.com/ikegami-yukino/madoka-python/blob/a9a1efecbc85ac4a24a78cbb19f9aed77b7162d3/madoka/madoka.py#L469-L484
filter array
python
def filter(self, func): """ :param func: :type func: (K, T) -> bool :rtype: TList[T] Usage: >>> TDict(k1=1, k2=2, k3=3).filter(lambda k, v: v < 2) [1] """ return TList([v for k, v in self.items() if func(k, v)])
https://github.com/tadashi-aikawa/owlmixin/blob/7c4a042c3008abddc56a8e8e55ae930d276071f5/owlmixin/owlcollections.py#L464-L475
filter array
python
def filter(self, f: Callable[[A], B]) -> 'List[T]': """doufo.List.filter: filter this `List` obj with input `f` function Args: `self`: f (`Callable[[A],B]`): function that tells `True` or `False` Returns: return (`List[T]`): Filtered List Raises: """ return List([x for x in self.unbox() if f(x) is True])
https://github.com/tech-pi/doufo/blob/3d375fef30670597768a6eef809b75b4b1b5a3fd/src/python/doufo/list.py#L111-L120
filter array
python
def make_filter(self, fieldname, query_func, expct_value): ''' makes a filter that will be appliead to an object's property based on query_func ''' def actual_filter(item): value = getattr(item, fieldname) if query_func in NULL_AFFECTED_FILTERS and value is None: return False if query_func == 'eq': return value == expct_value elif query_func == 'ne': return value != expct_value elif query_func == 'lt': return value < expct_value elif query_func == 'lte': return value <= expct_value elif query_func == 'gt': return value > expct_value elif query_func == 'gte': return value >= expct_value elif query_func == 'startswith': return value.startswith(expct_value) elif query_func == 'endswith': return value.endswith(expct_value) actual_filter.__doc__ = '{} {} {}'.format('val', query_func, expct_value) return actual_filter
https://github.com/getfleety/coralillo/blob/9cac101738a0fa7c1106f129604c00ef703370e1/coralillo/queryset.py#L35-L64
filter array
python
def set_filter(self, names=None): """ Set the names of columns to be used when iterating through the list, retrieving names, etc. :param list names: A list of names to be used, or :code:`None` for all """ _names = [] if names: for name in names: _safe_name = safe_name(name) if _safe_name not in self._column_map: raise GiraffeTypeError("Column '{}' does not exist".format(name)) if _safe_name in _names: continue _names.append(_safe_name) self._filtered_columns = _names
https://github.com/capitalone/giraffez/blob/6b4d27eb1a1eaf188c6885c7364ef27e92b1b957/giraffez/types.py#L233-L249
filter array
python
def filter(self, data, collection, **kwargs): """Filter given collection.""" if not data or self.filters is None: return None, collection filters = {} for f in self.filters: if f.name not in data: continue ops, collection = f.filter(collection, data, **kwargs) filters[f.name] = ops return filters, collection
https://github.com/klen/muffin-rest/blob/1d85bdd3b72a89eaeab8c4086926260a960408aa/muffin_rest/filters.py#L96-L108
filter array
python
def _gauss_filter(data, sigma=4, res_g=None, sub_blocks=(1, 1, 1)): """ gaussian filter of given size Parameters ---------- data: 2 or 3 dimensional ndarray or OCLArray of type float32 input data size: scalar, tuple the size of the patch to consider res_g: OCLArray store result in buffer if given sub_blocks: perform over subblock tiling (only if data is ndarray) Returns ------- filtered image or None (if OCLArray) """ truncate = 4. radius = tuple(int(truncate*s +0.5) for s in sigma) size = tuple(2*r+1 for r in radius) s = sigma[0] if data.ndim == 2: _filt = make_filter(_generic_filter_gpu_2d(FUNC="res+(val*native_exp((float)(-(ht-%s)*(ht-%s)/2/%s/%s)))"%(size[0]//2,size[0]//2,s,s), DEFAULT="0.f")) elif data.ndim == 3: _filt = make_filter(_generic_filter_gpu_3d(FUNC="res+(val*native_exp((float)(-(ht-%s)*(ht-%s)/2/%s/%s)))"%(size[0]//2,size[0]//2,s,s), DEFAULT="0.f")) else: raise ValueError("currently only 2 or 3 dimensional data is supported") return _filt(data=data, size=size, res_g=res_g, sub_blocks=sub_blocks)
https://github.com/maweigert/gputools/blob/6ab26efeb05dceef74cf13aadeeeb9b009b529dd/gputools/convolve/generic_separable_filters.py#L216-L248
filter array
python
def get_array(array, **kw): """ Extract a subarray by filtering on the given keyword arguments """ for name, value in kw.items(): array = array[array[name] == value] return array
https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/baselib/general.py#L890-L896
filter array
python
def _filter_matrix_rows(cls, matrix): '''matrix = output from _to_matrix''' indexes_to_keep = [] for i in range(len(matrix)): keep_row = False for element in matrix[i]: if element not in {'NA', 'no'}: keep_row = True break if keep_row: indexes_to_keep.append(i) return [matrix[i] for i in indexes_to_keep]
https://github.com/sanger-pathogens/ariba/blob/16a0b1916ce0e886bd22550ba2d648542977001b/ariba/summary.py#L223-L236
filter array
python
def random_filter(objects, reduction_factor, seed=42): """ Given a list of objects, returns a sublist by extracting randomly some elements. The reduction factor (< 1) tells how small is the extracted list compared to the original list. """ assert 0 < reduction_factor <= 1, reduction_factor rnd = random.Random(seed) out = [] for obj in objects: if rnd.random() <= reduction_factor: out.append(obj) return out
https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/baselib/general.py#L973-L985
filter array
python
def filter_by_rows(self, rows, ID=None): """ Keep only Measurements in corresponding rows. """ rows = to_list(rows) fil = lambda x: x in rows applyto = {k: self._positions[k][0] for k in self.keys()} if ID is None: ID = self.ID return self.filter(fil, applyto=applyto, ID=ID)
https://github.com/eyurtsev/FlowCytometryTools/blob/4355632508b875273d68c7e2972c17668bcf7b40/FlowCytometryTools/core/bases.py#L668-L677
filter array
python
def lowpass_filter(data, cutoff, fs, order=5): """ Does a lowpass filter over the given data. :param data: The data (numpy array) to be filtered. :param cutoff: The high cutoff in Hz. :param fs: The sample rate in Hz of the data. :param order: The order of the filter. The higher the order, the tighter the roll-off. :returns: Filtered data (numpy array). """ nyq = 0.5 * fs normal_cutoff = cutoff / nyq b, a = signal.butter(order, normal_cutoff, btype='low', analog=False) y = signal.lfilter(b, a, data) return y
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/filters.py#L25-L39
filter array
python
def filter_by(self, **kwargs): """ :param kwargs: dict of column == value :return: SeabornTable """ ret = self.__class__( columns=self.columns, row_columns=self.row_columns, tab=self.tab, key_on=self.key_on) for row in self: if False not in [row[k] == v for k, v in kwargs.items()]: ret.append(row) return ret
https://github.com/SeabornGames/Table/blob/0c474ef2fb00db0e7cf47e8af91e3556c2e7485a/seaborn_table/table.py#L997-L1008
filter array
python
def filter_formatter(kwargs, attr_map): """Builds a filter according to the cross-api specification :param kwargs: expected to contain {'filter': {filter dict}} :returns: {validated filter dict} """ params = _depluralise_filters_key(copy.copy(kwargs)) params.update(_get_filter(sdk_filter=params.pop('filter', {}), attr_map=attr_map)) return params
https://github.com/ARMmbed/mbed-cloud-sdk-python/blob/c0af86fb2cdd4dc7ed26f236139241067d293509/src/mbed_cloud/filters.py#L128-L136
filter array
python
def check_filters(filters): """ Execute range_check for every element of an iterable. Parameters ---------- filters : iterable The collection of filters to check. Each element must be a two-element tuple of floats or ints. Returns ------- The input as-is, or None if it evaluates to False. Raises ------ ValueError Low is greater than or equal to high for any element. """ if not filters: return None try: return [range_check(f[0], f[1]) for f in filters] except ValueError as err: raise ValueError("Error in --filter: " + py23_str(err))
https://github.com/SethMMorton/natsort/blob/ea0d37ef790b42c424a096e079edd9ea0d5717e3/natsort/__main__.py#L169-L194
filter array
python
def from_filter(cls, filtername, **kwargs): """Load :ref:`pre-defined filter bandpass <synphot-predefined-filter>`. Parameters ---------- filtername : str Filter name. Choose from 'bessel_j', 'bessel_h', 'bessel_k', 'cousins_r', 'cousins_i', 'johnson_u', 'johnson_b', 'johnson_v', 'johnson_r', 'johnson_i', 'johnson_j', or 'johnson_k'. kwargs : dict Keywords acceptable by :func:`~synphot.specio.read_remote_spec`. Returns ------- bp : `SpectralElement` Empirical bandpass. Raises ------ synphot.exceptions.SynphotError Invalid filter name. """ filtername = filtername.lower() # Select filename based on filter name if filtername == 'bessel_j': cfgitem = Conf.bessel_j_file elif filtername == 'bessel_h': cfgitem = Conf.bessel_h_file elif filtername == 'bessel_k': cfgitem = Conf.bessel_k_file elif filtername == 'cousins_r': cfgitem = Conf.cousins_r_file elif filtername == 'cousins_i': cfgitem = Conf.cousins_i_file elif filtername == 'johnson_u': cfgitem = Conf.johnson_u_file elif filtername == 'johnson_b': cfgitem = Conf.johnson_b_file elif filtername == 'johnson_v': cfgitem = Conf.johnson_v_file elif filtername == 'johnson_r': cfgitem = Conf.johnson_r_file elif filtername == 'johnson_i': cfgitem = Conf.johnson_i_file elif filtername == 'johnson_j': cfgitem = Conf.johnson_j_file elif filtername == 'johnson_k': cfgitem = Conf.johnson_k_file else: raise exceptions.SynphotError( 'Filter name {0} is invalid.'.format(filtername)) filename = cfgitem() if 'flux_unit' not in kwargs: kwargs['flux_unit'] = cls._internal_flux_unit if ((filename.endswith('fits') or filename.endswith('fit')) and 'flux_col' not in kwargs): kwargs['flux_col'] = 'THROUGHPUT' header, wavelengths, throughput = specio.read_remote_spec( filename, **kwargs) header['filename'] = filename header['descrip'] = cfgitem.description meta = {'header': header, 'expr': filtername} return cls(Empirical1D, points=wavelengths, lookup_table=throughput, meta=meta)
https://github.com/spacetelescope/synphot_refactor/blob/9c064f3cff0c41dd8acadc0f67c6350931275b9f/synphot/spectrum.py#L1839-L1909
filter array
python
def bandpass_filter(data: FLOATS_TYPE, sampling_freq_hz: float, lower_freq_hz: float, upper_freq_hz: float, numtaps: int) -> FLOATS_TYPE: """ Apply a band-pass filter to the data. Args: data: time series of the data sampling_freq_hz: sampling frequency :math:`f_s`, in Hz (or other consistent units) lower_freq_hz: filter cutoff lower frequency in Hz (or other consistent units) upper_freq_hz: filter cutoff upper frequency in Hz (or other consistent units) numtaps: number of filter taps Returns: filtered data Note: number of filter taps = filter order + 1 """ f1 = normalized_frequency(lower_freq_hz, sampling_freq_hz) f2 = normalized_frequency(upper_freq_hz, sampling_freq_hz) coeffs = firwin( numtaps=numtaps, cutoff=[f1, f2], pass_zero=False ) filtered_data = lfilter(b=coeffs, a=1.0, x=data) return filtered_data
https://github.com/RudolfCardinal/pythonlib/blob/0b84cb35f38bd7d8723958dae51b480a829b7227/cardinal_pythonlib/dsp.py#L129-L160
filter array
python
def bandpass_filter(rate=None, low=None, high=None, order=None): """Butterworth bandpass filter.""" assert low < high assert order >= 1 return signal.butter(order, (low / (rate / 2.), high / (rate / 2.)), 'pass')
https://github.com/kwikteam/phy/blob/7e9313dc364304b7d2bd03b92938347343703003/phy/traces/filter.py#L19-L25
filter array
python
def _filter(self, query, **kwargs): """ Filter a query with user-supplied arguments. """ query = self._auto_filter(query, **kwargs) return query
https://github.com/globality-corp/microcosm-postgres/blob/43dd793b1fc9b84e4056700f350e79e0df5ff501/microcosm_postgres/store.py#L211-L217
filter array
python
def _build_filter_list(self, filters): """ :returns: Iterator building a list of filter """ i = 0 for (filter_type, values) in filters.items(): if isinstance(values[0], str): for line in values[0].split('\n'): line = line.strip() yield "{filter_name} {filter_type} {filter_value}".format( filter_name="filter" + str(i), filter_type=filter_type, filter_value='"{}" {}'.format(line, " ".join([str(v) for v in values[1:]]))).strip() i += 1 else: yield "{filter_name} {filter_type} {filter_value}".format( filter_name="filter" + str(i), filter_type=filter_type, filter_value=" ".join([str(v) for v in values])) i += 1
https://github.com/GNS3/gns3-server/blob/a221678448fb5d24e977ef562f81d56aacc89ab1/gns3server/compute/base_node.py#L621-L640
filter array
python
def filter_off(self, filt=None, analyte=None, samples=None, subset=None, show_status=False): """ Turns data filters off for particular analytes and samples. Parameters ---------- filt : optional, str or array_like Name, partial name or list of names of filters. Supports partial matching. i.e. if 'cluster' is specified, all filters with 'cluster' in the name are activated. Defaults to all filters. analyte : optional, str or array_like Name or list of names of analytes. Defaults to all analytes. samples : optional, array_like or None Which samples to apply this filter to. If None, applies to all samples. Returns ------- None """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) for s in samples: try: self.data[s].filt.off(analyte, filt) except: warnings.warn("filt.off failure in sample " + s) if show_status: self.filter_status(subset=subset) return
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2389-L2423
filter array
python
def filter_by_cols(self, cols, ID=None): """ Keep only Measurements in corresponding columns. """ rows = to_list(cols) fil = lambda x: x in rows applyto = {k: self._positions[k][1] for k in self.keys()} if ID is None: ID = self.ID + '.filtered_by_cols' return self.filter(fil, applyto=applyto, ID=ID)
https://github.com/eyurtsev/FlowCytometryTools/blob/4355632508b875273d68c7e2972c17668bcf7b40/FlowCytometryTools/core/bases.py#L679-L688
filter array
python
def filter(func, data): """Parameter <func> must be a single-argument function that takes a sequence (i.e., a sample point) and returns a boolean. This procedure calls <func> on each element in <data> and returns a list comprising elements for which <func> returns True. >>> data = [[1,5], [2,10], [3,13], [4,16]] ... chart_data.filter(lambda x: x[1] % 2 == 0, data) [[2,10], [4,16]]. """ out = [] for r in data: if func(r): out.append(r) return out
https://github.com/ska-sa/purr/blob/4c848768d0485d0f88b30850d0d5372221b21b66/Purr/Plugins/local_pychart/chart_data.py#L159-L175
filter array
python
def get_filter_list(p_expression): """ Returns a list of GrepFilters, OrdinalTagFilters or NegationFilters based on the given filter expression. The filter expression is a list of strings. """ result = [] for arg in p_expression: # when a word starts with -, it should be negated is_negated = len(arg) > 1 and arg[0] == '-' arg = arg[1:] if is_negated else arg argfilter = None for match, _filter in MATCHES: if re.match(match, arg): argfilter = _filter(arg) break if not argfilter: argfilter = GrepFilter(arg) if is_negated: argfilter = NegationFilter(argfilter) result.append(argfilter) return result
https://github.com/bram85/topydo/blob/b59fcfca5361869a6b78d4c9808c7c6cd0a18b58/topydo/lib/Filter.py#L377-L404
filter array
python
def list_filter(lst, startswith=None, notstartswith=None, contain=None, notcontain=None): """ Keep in list items according to filter parameters. :param lst: item list :param startswith: keep items starting with :param notstartswith: remove items starting with :return: """ keeped = [] for item in lst: keep = False if startswith is not None: if item.startswith(startswith): keep = True if notstartswith is not None: if not item.startswith(notstartswith): keep = True if contain is not None: if contain in item: keep = True if notcontain is not None: if not notcontain in item: keep = True if keep: keeped.append(item) return keeped
https://github.com/mjirik/io3d/blob/ccaf3e378dcc967f2565d477fc27583fd0f61fcc/io3d/dili.py#L41-L68
filter array
python
def make_filter(**tests): """Create a filter from keyword arguments.""" tests = [AttrTest(k, v) for k, v in tests.items()] return Filter(tests)
https://github.com/rhgrant10/Groupy/blob/ffd8cac57586fa1c218e3b4bfaa531142c3be766/groupy/utils.py#L116-L119
filter array
python
async def check_filters(filters: typing.Iterable[FilterObj], args): """ Check list of filters :param filters: :param args: :return: """ data = {} if filters is not None: for filter_ in filters: f = await execute_filter(filter_, args) if not f: raise FilterNotPassed() elif isinstance(f, dict): data.update(f) return data
https://github.com/aiogram/aiogram/blob/2af930149ce2482547721e2c8755c10307295e48/aiogram/dispatcher/filters/filters.py#L61-L77
filter array
python
def max_filter(data, size=7, res_g=None, sub_blocks=(1, 1, 1)): """ maximum filter of given size Parameters ---------- data: 2 or 3 dimensional ndarray or OCLArray of type float32 input data size: scalar, tuple the size of the patch to consider res_g: OCLArray store result in buffer if given sub_blocks: perform over subblock tiling (only if data is ndarray) Returns ------- filtered image or None (if OCLArray) """ if data.ndim == 2: _filt = make_filter(_generic_filter_gpu_2d(FUNC = "(val>res?val:res)", DEFAULT = "-INFINITY")) elif data.ndim == 3: _filt = make_filter(_generic_filter_gpu_3d(FUNC = "(val>res?val:res)", DEFAULT = "-INFINITY")) return _filt(data = data, size = size, res_g = res_g, sub_blocks=sub_blocks)
https://github.com/maweigert/gputools/blob/6ab26efeb05dceef74cf13aadeeeb9b009b529dd/gputools/convolve/generic_separable_filters.py#L115-L139
filter array
python
def filter(self, *args): '''Adds a Filter to this query. Args: see :py:class:`Filter <datastore.query.Filter>` constructor Returns self for JS-like method chaining:: query.filter('age', '>', 18).filter('sex', '=', 'Female') ''' if len(args) == 1 and isinstance(args[0], Filter): filter = args[0] else: filter = Filter(*args) # ensure filter gets attr values the same way the rest of the query does. filter.object_getattr = self.object_getattr self.filters.append(filter) return self
https://github.com/datastore/datastore/blob/7ccf0cd4748001d3dbf5e6dda369b0f63e0269d3/datastore/core/query.py#L384-L403
filter array
python
def _filter_fields(self, filter_function): """ Utility to iterate through all fields (super types first) of a type. :param filter: A function that takes in a Field object. If it returns True, the field is part of the generated output. If False, it is omitted. """ fields = [] if self.parent_type: fields.extend(self.parent_type._filter_fields(filter_function)) fields.extend(filter(filter_function, self.fields)) return fields
https://github.com/dropbox/stone/blob/2e95cbcd1c48e05cca68c919fd8d24adec6b0f58/stone/ir/data_types.py#L956-L968
filter array
python
def where(self, attrs=None, first=False): """ Convenience version of a common use case of `filter`: selecting only objects containing specific `key:value` pairs. """ if attrs is None: return None if first is True else [] method = _.find if first else _.filter def by(val, *args): for key, value in attrs.items(): try: if attrs[key] != val[key]: return False except KeyError: return False return True return self._wrap(method(self.obj, by))
https://github.com/serkanyersen/underscore.py/blob/07c25c3f0f789536e4ad47aa315faccc0da9602f/src/underscore.py#L321-L341
filter array
python
def __undo_filter_paeth(self, scanline): """Undo Paeth filter.""" ai = -self.fu previous = self.prev for i in range(len(scanline)): x = scanline[i] if ai < 0: pr = previous[i] # a = c = 0 else: a = scanline[ai] # result c = previous[ai] b = previous[i] pa = abs(b - c) # b pb = abs(a - c) # 0 pc = abs(a + b - c - c) # b if pa <= pb and pa <= pc: # False pr = a elif pb <= pc: # True pr = b else: pr = c scanline[i] = (x + pr) & 0xff # result ai += 1
https://github.com/brechtm/rinohtype/blob/40a63c4e5ad7550f62b6860f1812cb67cafb9dc7/src/rinoh/backend/pdf/xobject/purepng.py#L582-L604
filter array
python
def filter_table(table, *column_filters): """Apply one or more column slice filters to a `Table` Multiple column filters can be given, and will be applied concurrently Parameters ---------- table : `~astropy.table.Table` the table to filter column_filter : `str`, `tuple` a column slice filter definition, in one of two formats: - `str` - e.g. ``'snr > 10`` - `tuple` - ``(<column>, <operator>, <operand>)``, e.g. ``('snr', operator.gt, 10)`` multiple filters can be given and will be applied in order Returns ------- table : `~astropy.table.Table` a view of the input table with only those rows matching the filters Examples -------- >>> filter(my_table, 'snr>10', 'frequency<1000') custom operations can be defined using filter tuple definitions: >>> from gwpy.table.filters import in_segmentlist >>> filter(my_table, ('time', in_segmentlist, segs)) """ keep = numpy.ones(len(table), dtype=bool) for name, op_func, operand in parse_column_filters(*column_filters): col = table[name].view(numpy.ndarray) keep &= op_func(col, operand) return table[keep]
https://github.com/gwpy/gwpy/blob/7a92b917e7dd2d99b15895293a1fa1d66cdb210a/gwpy/table/filter.py#L218-L256
filter array
python
def filter_matrix_rows(A, theta): """Filter each row of A with tol. i.e., drop all entries in row k where abs(A[i,k]) < tol max( abs(A[:,k]) ) Parameters ---------- A : sparse_matrix theta : float In range [0,1) and defines drop-tolerance used to filter the row of A Returns ------- A_filter : sparse_matrix Each row has been filtered by dropping all entries where abs(A[i,k]) < tol max( abs(A[:,k]) ) Examples -------- >>> from pyamg.gallery import poisson >>> from pyamg.util.utils import filter_matrix_rows >>> from scipy import array >>> from scipy.sparse import csr_matrix >>> A = csr_matrix( array([[ 0.24, -0.5 , 0. , 0. ], ... [ 1. , 1. , 0.49, 0. ], ... [ 0. , -0.5 , 1. , -0.5 ]]) ) >>> filter_matrix_rows(A, 0.5).todense() matrix([[ 0. , -0.5, 0. , 0. ], [ 1. , 1. , 0. , 0. ], [ 0. , -0.5, 1. , -0.5]]) """ if not isspmatrix(A): raise ValueError("Sparse matrix input needed") if isspmatrix_bsr(A): blocksize = A.blocksize Aformat = A.format A = A.tocsr() if (theta < 0) or (theta >= 1.0): raise ValueError("theta must be in [0,1)") # Apply drop-tolerance to each row of A. We apply the drop-tolerance with # amg_core.classical_strength_of_connection(), which ignores diagonal # entries, thus necessitating the trick where we add A.shape[0] to each of # the row indices A_filter = A.copy() A.indices += A.shape[0] A_filter.indices += A.shape[0] # classical_strength_of_connection takes an absolute value internally pyamg.amg_core.classical_strength_of_connection_abs( A.shape[0], theta, A.indptr, A.indices, A.data, A_filter.indptr, A_filter.indices, A_filter.data) A_filter.indices[:A_filter.indptr[-1]] -= A_filter.shape[0] A_filter = csr_matrix((A_filter.data[:A_filter.indptr[-1]], A_filter.indices[:A_filter.indptr[-1]], A_filter.indptr), shape=A_filter.shape) if Aformat == 'bsr': A_filter = A_filter.tobsr(blocksize) else: A_filter = A_filter.asformat(Aformat) A.indices -= A.shape[0] return A_filter
https://github.com/pyamg/pyamg/blob/89dc54aa27e278f65d2f54bdaf16ab97d7768fa6/pyamg/util/utils.py#L2070-L2142
filter array
python
def _build_filter_part(self, cls, filters, order_by=None, select=None): """ Build the filter part """ import types query_parts = [] order_by_filtered = False if order_by: if order_by[0] == "-": order_by_method = "DESC"; order_by = order_by[1:] else: order_by_method = "ASC"; if select: if order_by and order_by in select: order_by_filtered = True query_parts.append("(%s)" % select) if isinstance(filters, str) or isinstance(filters, unicode): query = "WHERE %s AND `__type__` = '%s'" % (filters, cls.__name__) if order_by in ["__id__", "itemName()"]: query += " ORDER BY itemName() %s" % order_by_method elif order_by != None: query += " ORDER BY `%s` %s" % (order_by, order_by_method) return query for filter in filters: filter_parts = [] filter_props = filter[0] if type(filter_props) != list: filter_props = [filter_props] for filter_prop in filter_props: (name, op) = filter_prop.strip().split(" ", 1) value = filter[1] property = cls.find_property(name) if name == order_by: order_by_filtered = True if types.TypeType(value) == types.ListType: filter_parts_sub = [] for val in value: val = self.encode_value(property, val) if isinstance(val, list): for v in val: filter_parts_sub.append(self._build_filter(property, name, op, v)) else: filter_parts_sub.append(self._build_filter(property, name, op, val)) filter_parts.append("(%s)" % (" OR ".join(filter_parts_sub))) else: val = self.encode_value(property, value) if isinstance(val, list): for v in val: filter_parts.append(self._build_filter(property, name, op, v)) else: filter_parts.append(self._build_filter(property, name, op, val)) query_parts.append("(%s)" % (" or ".join(filter_parts))) type_query = "(`__type__` = '%s'" % cls.__name__ for subclass in self._get_all_decendents(cls).keys(): type_query += " or `__type__` = '%s'" % subclass type_query +=")" query_parts.append(type_query) order_by_query = "" if order_by: if not order_by_filtered: query_parts.append("`%s` LIKE '%%'" % order_by) if order_by in ["__id__", "itemName()"]: order_by_query = " ORDER BY itemName() %s" % order_by_method else: order_by_query = " ORDER BY `%s` %s" % (order_by, order_by_method) if len(query_parts) > 0: return "WHERE %s %s" % (" AND ".join(query_parts), order_by_query) else: return ""
https://github.com/yyuu/botornado/blob/fffb056f5ff2324d1d5c1304014cfb1d899f602e/boto/sdb/db/manager/sdbmanager.py#L538-L617
filter array
python
def sfilter(self, source): """Filter.""" return self._filter(source.text, source.context, source.encoding)
https://github.com/facelessuser/pyspelling/blob/c25d5292cc2687ad65891a12ead43f7182ca8bb3/pyspelling/filters/xml.py#L250-L253
filter array
python
def class_filter(classes, class_name): """ Filter classes by comparing two lists. :param classes: matrix classes :type classes: list :param class_name: sub set of classes :type class_name : list :return: filtered classes as list """ result_classes = classes if isinstance(class_name, list): if set(class_name) <= set(classes): result_classes = class_name return result_classes
https://github.com/sepandhaghighi/pycm/blob/cb03258afd6a821d10acba73c965aaac174bedcd/pycm/pycm_util.py#L59-L73
filter array
python
def parse_filters(self, vt_filter): """ Parse a string containing one or more filters and return a list of filters Arguments: vt_filter (string): String containing filters separated with semicolon. Return: List with filters. Each filters is a list with 3 elements e.g. [arg, operator, value] """ filter_list = vt_filter.split(';') filters = list() for single_filter in filter_list: filter_aux = re.split('(\W)', single_filter, 1) if len(filter_aux) < 3: raise OSPDError("Invalid number of argument in the filter", "get_vts") _element, _oper, _val = filter_aux if _element not in self.allowed_filter: raise OSPDError("Invalid filter element", "get_vts") if _oper not in self.filter_operator: raise OSPDError("Invalid filter operator", "get_vts") filters.append(filter_aux) return filters
https://github.com/greenbone/ospd/blob/cef773166b15a19c17764721d3fe404fa0e107bf/ospd/vtfilter.py#L41-L67
filter array
python
def filter(self, criteria: Q, offset: int = 0, limit: int = 10, order_by: list = ()): """Read the repository and return results as per the filer""" if criteria.children: items = list(self._filter(criteria, self.conn['data'][self.schema_name]).values()) else: items = list(self.conn['data'][self.schema_name].values()) # Sort the filtered results based on the order_by clause for o_key in order_by: reverse = False if o_key.startswith('-'): reverse = True o_key = o_key[1:] items = sorted(items, key=itemgetter(o_key), reverse=reverse) result = ResultSet( offset=offset, limit=limit, total=len(items), items=items[offset: offset + limit]) return result
https://github.com/proteanhq/protean/blob/0e29873f4aa634aa93cc08ed675dd749c7ed4b0f/src/protean/impl/repository/dict_repo.py#L190-L211
filter array
python
def check_array(array, *args, **kwargs): """Validate inputs Parameters ---------- accept_dask_array : bool, default True accept_dask_dataframe : bool, default False accept_unknown_chunks : bool, default False For dask Arrays, whether to allow the `.chunks` attribute to contain any unknown values accept_multiple_blocks : bool, default False For dask Arrays, whether to allow multiple blocks along the second axis. *args, **kwargs : tuple, dict Passed through to scikit-learn Returns ------- array : obj Same type as the input Notes ----- For dask.array, a small numpy array emulating ``array`` is created and passed to scikit-learn's ``check_array`` with all the additional arguments. """ accept_dask_array = kwargs.pop("accept_dask_array", True) preserve_pandas_dataframe = kwargs.pop("preserve_pandas_dataframe", False) accept_dask_dataframe = kwargs.pop("accept_dask_dataframe", False) accept_unknown_chunks = kwargs.pop("accept_unknown_chunks", False) accept_multiple_blocks = kwargs.pop("accept_multiple_blocks", False) if isinstance(array, da.Array): if not accept_dask_array: raise TypeError if not accept_unknown_chunks: if np.isnan(array.shape[0]): raise TypeError( "Cannot operate on Dask array with unknown chunk sizes." ) if not accept_multiple_blocks and array.ndim > 1: if len(array.chunks[1]) > 1: msg = ( "Chunking is only allowed on the first axis. " "Use 'array.rechunk({1: array.shape[1]})' to " "rechunk to a single block along the second axis." ) raise TypeError(msg) # hmmm, we want to catch things like shape errors. # I'd like to make a small sample somehow shape = array.shape if len(shape) == 2: shape = (min(10, shape[0]), shape[1]) elif shape == 1: shape = min(10, shape[0]) sample = np.ones(shape=shape, dtype=array.dtype) sk_validation.check_array(sample, *args, **kwargs) return array elif isinstance(array, dd.DataFrame): if not accept_dask_dataframe: raise TypeError("This estimator does not support dask dataframes.") # TODO: sample? return array elif isinstance(array, pd.DataFrame) and preserve_pandas_dataframe: # TODO: validation? return array else: return sk_validation.check_array(array, *args, **kwargs)
https://github.com/dask/dask-ml/blob/cc4837c2c2101f9302cac38354b55754263cd1f3/dask_ml/utils.py#L87-L158
filter array
python
def filter_rows(self, filters, rows): '''returns rows as filtered by filters''' ret = [] for row in rows: if not self.row_is_filtered(row, filters): ret.append(row) return ret
https://github.com/ArduPilot/MAVProxy/blob/f50bdeff33064876f7dc8dc4683d278ff47f75d5/MAVProxy/modules/mavproxy_firmware.py#L165-L171
filter array
python
def _filter(filterObj, **kwargs): ''' Internal for handling filters; the guts of .filter and .filterInline ''' for key, value in kwargs.items(): if key.endswith('__ne'): notFilter = True key = key[:-4] else: notFilter = False if key not in filterObj.indexedFields: raise ValueError('Field "' + key + '" is not in INDEXED_FIELDS array. Filtering is only supported on indexed fields.') if notFilter is False: filterObj.filters.append( (key, value) ) else: filterObj.notFilters.append( (key, value) ) return filterObj
https://github.com/kata198/indexedredis/blob/f9c85adcf5218dac25acb06eedc63fc2950816fa/IndexedRedis/__init__.py#L1443-L1461
filter array
python
def sfilter(self, source): """Filter.""" sources = [] if source.text[:4].encode(source.encoding) != b'PK\x03\x04': sources.extend(self._filter(source.text, source.context, source.encoding)) else: for content, filename, enc in self.get_content(io.BytesIO(source.text.encode(source.encoding))): sources.extend(self._filter(content, source.context, enc)) return sources
https://github.com/facelessuser/pyspelling/blob/c25d5292cc2687ad65891a12ead43f7182ca8bb3/pyspelling/filters/odf.py#L179-L188
filter array
python
def trace_filter(self, from_block: int = 1, to_block: Optional[int] = None, from_address: Optional[List[str]] = None, to_address: Optional[List[str]] = None, after: Optional[int] = None, count: Optional[int] = None) -> List[Dict[str, any]]: """ :param from_block: Quantity or Tag - (optional) From this block. `0` is not working, it needs to be `>= 1` :param to_block: Quantity or Tag - (optional) To this block. :param from_address: Array - (optional) Sent from these addresses. :param to_address: Address - (optional) Sent to these addresses. :param after: Quantity - (optional) The offset trace number :param count: Quantity - (optional) Integer number of traces to display in a batch. :return: [ { "action": { "callType": "call", "from": "0x32be343b94f860124dc4fee278fdcbd38c102d88", "gas": "0x4c40d", "input": "0x", "to": "0x8bbb73bcb5d553b5a556358d27625323fd781d37", "value": "0x3f0650ec47fd240000" }, "blockHash": "0x86df301bcdd8248d982dbf039f09faf792684e1aeee99d5b58b77d620008b80f", "blockNumber": 3068183, "result": { "gasUsed": "0x0", "output": "0x" }, "subtraces": 0, "traceAddress": [], "transactionHash": "0x3321a7708b1083130bd78da0d62ead9f6683033231617c9d268e2c7e3fa6c104", "transactionPosition": 3, "type": "call" }, { "action": { "from": "0x3b169a0fb55ea0b6bafe54c272b1fe4983742bf7", "gas": "0x49b0b", "init": "0x608060405234801561001057600080fd5b5060405161060a38038061060a833981018060405281019080805190602001909291908051820192919060200180519060200190929190805190602001909291908051906020019092919050505084848160008173ffffffffffffffffffffffffffffffffffffffff1614151515610116576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004018080602001828103825260248152602001807f496e76616c6964206d617374657220636f707920616464726573732070726f7681526020017f696465640000000000000000000000000000000000000000000000000000000081525060400191505060405180910390fd5b806000806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff160217905550506000815111156101a35773ffffffffffffffffffffffffffffffffffffffff60005416600080835160208501846127105a03f46040513d6000823e600082141561019f573d81fd5b5050505b5050600081111561036d57600073ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614156102b7578273ffffffffffffffffffffffffffffffffffffffff166108fc829081150290604051600060405180830381858888f1935050505015156102b2576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004018080602001828103825260268152602001807f436f756c64206e6f74207061792073616665206372656174696f6e207769746881526020017f206574686572000000000000000000000000000000000000000000000000000081525060400191505060405180910390fd5b61036c565b6102d1828483610377640100000000026401000000009004565b151561036b576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004018080602001828103825260268152602001807f436f756c64206e6f74207061792073616665206372656174696f6e207769746881526020017f20746f6b656e000000000000000000000000000000000000000000000000000081525060400191505060405180910390fd5b5b5b5050505050610490565b600060608383604051602401808373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168152602001828152602001925050506040516020818303038152906040527fa9059cbb000000000000000000000000000000000000000000000000000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff19166020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff838183161783525050505090506000808251602084016000896127105a03f16040513d6000823e3d60008114610473576020811461047b5760009450610485565b829450610485565b8151158315171594505b505050509392505050565b61016b8061049f6000396000f30060806040526004361061004c576000357c0100000000000000000000000000000000000000000000000000000000900463ffffffff1680634555d5c91461008b5780635c60da1b146100b6575b73ffffffffffffffffffffffffffffffffffffffff600054163660008037600080366000845af43d6000803e6000811415610086573d6000fd5b3d6000f35b34801561009757600080fd5b506100a061010d565b6040518082815260200191505060405180910390f35b3480156100c257600080fd5b506100cb610116565b604051808273ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200191505060405180910390f35b60006002905090565b60008060009054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050905600a165627a7a7230582007fffd557dfc8c4d2fdf56ba6381a6ce5b65b6260e1492d87f26c6d4f1d0410800290000000000000000000000008942595a2dc5181df0465af0d7be08c8f23c93af00000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000d9e09beaeb338d81a7c5688358df0071d498811500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001b15f91a8c35300000000000000000000000000000000000000000000000000000000000001640ec78d9e00000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001200000000000000000000000000000000000000000000000000000000000000004000000000000000000000000f763ea5fbb191d47dc4b083dcdc3cdfb586468f8000000000000000000000000ad25c9717d04c0a12086a1d352c1ccf4bf5fcbf80000000000000000000000000da7155692446c80a4e7ad72018e586f20fa3bfe000000000000000000000000bce0cc48ce44e0ac9ee38df4d586afbacef191fa0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "value": "0x0" }, "blockHash": "0x03f9f64dfeb7807b5df608e6957dd4d521fd71685aac5533451d27f0abe03660", "blockNumber": 3793534, "result": { "address": "0x61a7cc907c47c133d5ff5b685407201951fcbd08", "code": "0x60806040526004361061004c576000357c0100000000000000000000000000000000000000000000000000000000900463ffffffff1680634555d5c91461008b5780635c60da1b146100b6575b73ffffffffffffffffffffffffffffffffffffffff600054163660008037600080366000845af43d6000803e6000811415610086573d6000fd5b3d6000f35b34801561009757600080fd5b506100a061010d565b6040518082815260200191505060405180910390f35b3480156100c257600080fd5b506100cb610116565b604051808273ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200191505060405180910390f35b60006002905090565b60008060009054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050905600a165627a7a7230582007fffd557dfc8c4d2fdf56ba6381a6ce5b65b6260e1492d87f26c6d4f1d041080029", "gasUsed": "0x4683f" }, "subtraces": 2, "traceAddress": [], "transactionHash": "0x6c7e8f8778d33d81b29c4bd7526ee50a4cea340d69eed6c89ada4e6fab731789", "transactionPosition": 1, "type": "create" }, ... ] """ assert from_address or to_address, 'You must provide at least `from_address` or `to_address`' parameters = {} if from_block: parameters['fromBlock'] = '0x%x' % from_block if to_block: parameters['toBlock'] = '0x%x' % to_block if from_address: parameters['fromAddress'] = from_address if to_address: parameters['toAddress'] = to_address if after: parameters['after'] = after if count: parameters['count'] = count try: return self._decode_traces(self.slow_w3.parity.traceFilter(parameters)) except ParityTraceDecodeException as exc: logger.warning('Problem decoding trace: %s - Retrying', exc) return self._decode_traces(self.slow_w3.parity.traceFilter(parameters))
https://github.com/gnosis/gnosis-py/blob/2a9a5d75a375fc9813ac04df133e6910c82f9d49/gnosis/eth/ethereum_client.py#L252-L327
filter array
python
def filter_rows(filters, rows): """ Yield rows matching all applicable filters. Filter functions have binary arity (e.g. `filter(row, col)`) where the first parameter is the dictionary of row data, and the second parameter is the data at one particular column. Args: filters: a tuple of (cols, filter_func) where filter_func will be tested (filter_func(row, col)) for each col in cols where col exists in the row rows: an iterable of rows to filter Yields: Rows matching all applicable filters .. deprecated:: v0.7.0 """ for row in rows: if all(condition(row, row.get(col)) for (cols, condition) in filters for col in cols if col is None or col in row): yield row
https://github.com/delph-in/pydelphin/blob/7bd2cd63ab7cf74803e1d6547b9ebc014b382abd/delphin/itsdb.py#L1831-L1854
filter array
python
def format_row_filter(self, next_filter): """ Apply overflow, justification, padding and expansion to a row. """ next(next_filter) while True: items = (yield) assert all(isinstance(x, VTMLBuffer) for x in items) raw = (fn(x) for x, fn in zip(items, self.formatters)) for x in itertools.zip_longest(*raw): next_filter.send(x)
https://github.com/mayfield/shellish/blob/df0f0e4612d138c34d8cb99b66ab5b8e47f1414a/shellish/layout/table.py#L653-L661
filter array
python
def filter(self, value, table=None): ''' Return True if the value should be pruned; False otherwise. If a `table` argument was provided, pass it to filterable_func. ''' if table is not None: filterable = self.filterable_func(value, table) else: filterable = self.filterable_func(value) return filterable
https://github.com/UMIACS/qav/blob/f92108855f9fcbe3ccea5fc6f683bd90a6e18e1b/qav/filters.py#L21-L31
filter array
python
def __do_filter_sub(self, scanline, result): """Sub filter.""" ai = 0 for i in range(self.fu, len(result)): x = scanline[i] a = scanline[ai] result[i] = (x - a) & 0xff ai += 1
https://github.com/brechtm/rinohtype/blob/40a63c4e5ad7550f62b6860f1812cb67cafb9dc7/src/rinoh/backend/pdf/xobject/purepng.py#L529-L536
filter array
python
def filter(self, func=None): """ Return a new Collection with some items removed. Parameters: func : function(Node) -> Scalar A function that, when called on each item in the collection, returns a boolean-like value. If no function is provided, then false-y items will be removed. Returns: A new Collection consisting of the items where bool(func(item)) == True Examples: node.find_all('a').filter(Q['href'].startswith('http')) """ func = _make_callable(func) return Collection(filter(func, self._items))
https://github.com/ChrisBeaumont/soupy/blob/795f2f61f711f574d5218fc8a3375d02bda1104f/soupy.py#L583-L606
filter array
python
def find_by_filter(self, filters, all_items): """ Find items by filters :param filters: list of filters :type filters: list :param all_items: monitoring items :type: dict :return: list of items :rtype: list """ items = [] for i in self: failed = False if hasattr(i, "host"): all_items["service"] = i else: all_items["host"] = i for filt in filters: if not filt(all_items): failed = True break if failed is False: items.append(i) return items
https://github.com/Alignak-monitoring/alignak/blob/f3c145207e83159b799d3714e4241399c7740a64/alignak/objects/schedulingitem.py#L3379-L3403
filter array
python
def _filter_desc(self, indexing): ''' Private function to filter data, goes with filter_desc ''' # now filter data if len(indexing) > 0: desc_tmp = np.zeros((len(indexing),len(self.header_desc)),dtype='|S1024') data_tmp = np.zeros((len(indexing),len(self.header_data))) style_tmp= np.zeros((len(indexing),len(self.header_style)),dtype='|S1024') for i in range(len(indexing)): for j in range(len(self.header_desc)): desc_tmp[i][j] = self.desc[indexing[i]][j] for k in range(len(self.header_data)): data_tmp[i][k] = self.data[indexing[i]][k] for l in range(len(self.header_style)): style_tmp[i][l]= self.style[indexing[i]][l] self.desc = desc_tmp self.data = data_tmp self.style= style_tmp else: print('No filter selected or no data found!')
https://github.com/NuGrid/NuGridPy/blob/eee8047446e398be77362d82c1d8b3310054fab0/nugridpy/grain.py#L372-L394
filter array
python
def _filter_list(input_list, search_key, search_value): ''' Filters a list of dictionary by a set of key-value pair. :param input_list: is a list of dictionaries :param search_key: is the key we are looking for :param search_value: is the value we are looking for the key specified in search_key :return: filered list of dictionaries ''' output_list = list() for dictionary in input_list: if dictionary.get(search_key) == search_value: output_list.append(dictionary) return output_list
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/napalm_network.py#L70-L87
filter array
python
def get_filter(self, name=constants.STRING_FILTER): """Get the filter on the source. :param name: The name of the filter. This will be encoded as an AMQP Symbol. By default this is set to b'apache.org:selector-filter:string'. :type name: bytes """ try: filter_key = c_uamqp.symbol_value(name) return self._address.filter_set[filter_key].value except (TypeError, KeyError): return None
https://github.com/Azure/azure-uamqp-python/blob/b67e4fcaf2e8a337636947523570239c10a58ae2/uamqp/address.py#L176-L187
filter array
python
def get_filter_item(name: str, operation: bytes, value: bytes) -> bytes: """ A field could be found for this term, try to get filter string for it. """ assert isinstance(name, str) assert isinstance(value, bytes) if operation is None: return filter_format(b"(%s=%s)", [name, value]) elif operation == "contains": assert value != "" return filter_format(b"(%s=*%s*)", [name, value]) else: raise ValueError("Unknown search operation %s" % operation)
https://github.com/Karaage-Cluster/python-tldap/blob/61f1af74a3648cb6491e7eeb1ee2eb395d67bf59/tldap/query.py#L28-L40
filter array
python
def filter_by_user(self, user): """All filters that should be displayed to a user (by users/group)""" return self.filter(Q(users=user) | Q(groups__in=user.groups.all()))
https://github.com/modlinltd/django-advanced-filters/blob/ba51e6946d1652796a82b2b95cceffbe1190a227/advanced_filters/models.py#L10-L13