perception_test_mcq / README.md
advaitgupta's picture
Upload folder using huggingface_hub
64490b8 verified
---
license: apache-2.0
task_categories:
- video-classification
- question-answering
- visual-question-answering
tags:
- perception-test
- video-qa
- multiple-choice
- video-understanding
size_categories:
- 1K<n<10K
viewer: true
---
# Perception Test MCQ Dataset
## Dataset Description
This dataset contains **1000 video question-answering entries** from the Perception Test dataset. Each entry includes a video and a multiple-choice question about the video content, testing various aspects of video understanding including object tracking, action recognition, and temporal reasoning.
## Dataset Structure
This dataset follows the VideoFolder format with the following structure:
```
dataset/
├── data/
│ ├── videos/
│ │ ├── video_XXX.mp4
│ │ └── ...
│ └── metadata.csv
└── README.md
```
### Metadata Format
The `metadata.csv` contains:
- `file_name`: Path to the video file (relative to split directory)
- `video_id`: Unique video identifier
- `question`: The question text
- `options`: JSON string containing multiple choice options
- `correct_answer`: The correct answer (available for 997/1000 entries)
- `question_type`: Type of question (typically "multiple choice")
## Dataset Statistics
- **Total QA pairs**: 1000
- **Unique videos**: 1000
- **Average questions per video**: 1.0
- **Entries with answers**: 997/1000 (99.7%)
- **Video format**: MP4
### Question Type Distribution
- `unknown`: 1000 questions
## Usage
### Loading the Dataset
```python
from datasets import load_dataset
import json
# Load the dataset
dataset = load_dataset("advaitgupta/perception_test_mcq")
# Access the data split
data = dataset['data']
# Example: Get first sample
sample = data[0]
print("Question:", sample['question'])
print("Options:", json.loads(sample['options']))
print("Correct Answer:", sample['correct_answer'])
print("Video:", sample['file_name'])
```
### Processing Videos and Questions
```python
import json
import cv2
# Load metadata
metadata = data.to_pandas()
# Process a video-question pair
sample = metadata.iloc[0]
video_path = sample['file_name']
question = sample['question']
options = json.loads(sample['options'])
correct_answer = sample['correct_answer']
print(f"Question: {question}")
for i, option in enumerate(options):
print(f"{i+1}. {option}")
print(f"Correct Answer: {correct_answer}")
# Load and process video
cap = cv2.VideoCapture(video_path)
# ... your video processing code
```
## Task Types
This dataset covers various video understanding tasks:
### Object and Action Recognition
*"What ingredients did the person put in the bowl or on the plate?"*
### Temporal Reasoning
*"How many objects were put in the backpack throughout the video?"*
### Camera Motion Analysis
*"Is the camera moving or static?"*
### Spatial Understanding
*"Where is the person?"*
### Activity Recognition
*"What is the person preparing?"*
## Data Quality
- All video files have been validated to exist
- Questions are human-annotated from the Perception Test dataset
- Multiple choice format ensures consistent evaluation
- Fair distribution across videos (avg 1.0 questions per video)
- Correct answers provided for evaluation
## Example Entry
```json
{
"file_name": "videos/video_10909.mp4",
"video_id": "video_10909",
"question": "Is the camera moving or static?",
"options": ["I don't know", "moving", "static or shaking"],
"correct_answer": "static or shaking",
"question_type": "multiple choice"
}
```
## Citation
If you use this dataset, please cite the original Perception Test paper:
```bibtex
@article{perception-test-2022,
title={Perception Test: A Diagnostic Benchmark for Multimodal Video Models},
author={Pătrăucean, Viorica and others},
journal={arXiv preprint arXiv:2211.13775},
year={2022}
}
```
## License
This dataset is released under the Apache 2.0 license.