applied-ai-018's picture
Add files using upload-large-folder tool
d1396f0 verified
# Benchmarking setup 1B3
benchmarked with this slurm setup [tr3m-1B3-emb-norm-pile.slurm](../train/tr3-1B3-baseline/tr3m-1B3-emb-norm-pile.slurm)
# 32GB node
Benchmarking on 2 nodes to make sure we catch the inter-node slowdown.
Measuring w/o BS-rampup so with full GBS
```
salloc --account=six@gpu --constraint=v100-32g --nodes=2 --ntasks=2 --cpus-per-task=40 --gres=gpu:4 --hint=nomultithread --time=2:00:00 bash --rcfile $six_ALL_CCFRWORK/start-prod
```
measuring w/o rampup
| NNODES | TP | PP | DP | MBS | Speed | TFlops | Notes |
| -----: | --: | --: | --: | --: | ----: | -----: | --------------------: |
| 2 | 1 | 1 | 8 | 1 | 29 | 47.0 | 16GB |
| 2 | 1 | 1 | 8 | 2 | 29 | 47.0 | 17GB |
| 2 | 1 | 1 | 8 | 4 | 28 | 48.7 | 20GB |
| 2 | 1 | 1 | 8 | 8 | 28 | 48.7 | 25GB |
| 2 | 1 | 2 | 4 | 1 | 30 | 45.4 | 10GB |
| 2 | 1 | 2 | 4 | 2 | 29 | 47.0 | 11GB |
| 2 | 1 | 2 | 4 | 8 | 29 | 47.0 | 15GB |
| 2 | 1 | 2 | 4 | 16 | x | x | OOM |
| 2 | 1 | 4 | 2 | 1 | 32 | 42.6 | 9GB |
| 2 | 1 | 4 | 2 | 8 | 32 | 42.6 | 13GB |
| 2 | 2 | 1 | 4 | 1 | 53 | 25.7 | 11GB |
| | | | | | | | |
```
perl -le '$ng=8; $sp=29; $ms=1.3; $gbs=512; $seqlen=2048; print $ms*4*2*$seqlen*$gbs / ( $sp * $ng * 1e3)'
```
After removing `--checkpoint-activations` (which changes the factor to 3 from 4 for TFLOPs calculation)
| NNODES | TP | PP | DP | MBS | Speed | TFlops | Notes |
| -----: | --: | --: | --: | --: | ----: | -----: | --------------------: |
| 2 | 1 | 1 | 8 | 1 | 23 | 44.4 | 27GB |
| 2 | 1 | 2 | 4 | 1 | 23 | 44.4 | 21GB |
| 2 | 1 | 4 | 2 | 1 | 25 | 40.8 | 19GB |
| 2 | 1 | 4 | 2 | 2 | 24 | 42.5 | 30GB |
| 2 | 2 | 1 | 4 | 1 | 39 | 26.2 | 21GB |
| | | | | | | | |
factor = 3 here (not 4)
```
perl -le '$ng=8; $sp=; $ms=1.3; $gbs=512; $seqlen=2048; print $ms*3*2*$seqlen*$gbs / ( $sp * $ng * 1e3)'
```
So the best throughput is with
1. removing `--checkpoint-activations`
2. config
```
PP_SIZE=1 # NLAYERS must be a multiple of PP_SIZE here
TP_SIZE=1
MICRO_BATCH_SIZE=1
```
Which means that one replica is 1 gpu.
If BS rampup is used, e.g. starting from 32, that means that you can use max 32/1 = 32 gpus or 8 nodes.
This of course can be manually adjusted to more nodes once BS is larger. Here is a possible schedule:
| NNODES | BS | MBS |
| ------: | ---: | ---: |
| 8 | 32 | 1 |
| 16 | 64 | 1 |
| 32 | 128 | 1 |
# 16GB node
Same as above but with 16GB gpus
```
salloc --account=six@gpu --constraint=v100-16g --nodes=2 --ntasks=2 --cpus-per-task=40 --gres=gpu:4 --hint=nomultithread --time=2:00:00 bash --rcfile $six_ALL_CCFRWORK/start-prod
```
| NNODES | TP | PP | DP | MBS | Speed | TFlops | Notes |
| -----: | --: | --: | --: | --: | ----: | -----: | --------------------: |
| 2 | 1 | 1 | 8 | 1 | 29 | 47.0 | 16GB borderline OOM |
| 2 | 1 | 2 | 4 | 1 | 30 | 45.4 | 11GB |
| 2 | 1 | 2 | 4 | 2 | 29 | 47.0 | 12GB |
| 2 | 1 | 2 | 4 | 4 | 28 | 48.7 | 13GB |
| 2 | 1 | 2 | 4 | 8 | x | x | OOM |
| 2 | 1 | 4 | 2 | 1 | 32 | 42.6 | 9GB |
| 2 | 1 | 4 | 2 | 4 | 30 | 45.4 | 11GB |
| 2 | 1 | 4 | 2 | 8 | x | | OOM |
| 2 | 1 | 8 | 1 | 1 | 37 | 36.8 | 9GB |
| 2 | 1 | 8 | 1 | 4 | 35 | 38.9 | 11GB |
| 2 | 1 | 8 | 1 | 8 | x | | OOM |
| | | | | | | | |
```
perl -le '$ng=8; $sp=29; $ms=1.3; $gbs=512; $seqlen=2048; print $ms*4*2*$seqlen*$gbs / ( $sp * $ng * 1e3)'
```
So the best throughput is with:
```
PP_SIZE=2 # NLAYERS must be a multiple of PP_SIZE here
TP_SIZE=1
MICRO_BATCH_SIZE=4
```
Which means that one replica is 2 gpus. But there is the BS rampup constraint for first values.
but if BS rampup is used, e.g. starting from 32, that means that you can use max 32/4 = 8 replicas, 16 gpus, 4 nodes only.
To use 8 nodes use MBS=2 and so it's just slightly slower (32/2=16 replicas or 32 gpus or 8 nodes).
To use 16 nodes use MBS=1 and so it's again slightly slower (32/1=32 replicas or 64 gpus or 16 nodes).
It's also possible to start with MBS=1 and then down the road switch to MBS=2 and then finally MBS=4 and later use even more nodes.
So here is a possible schedule that will require manual adjustments of the slurm file as the BS is going through a rampup to get the maximum speeds.
| NNODES | BS | MBS |
| ------: | ---: | ---: |
| 16 | 32 | 1 |
| 16 | 64 | 2 |
| 16 | 128 | 4 |
| 32 | 256 | 4 |
| 64 | 512 | 4 |
## calibration
Cuda kernels:
```
python -c "import torch; x = torch.ones(1).cuda(); import time; time.sleep(100)" &
```
V100 16GB 1113MiB
V100 32GB 1113MiB
(same memory!)