applied-ai-018's picture
Add files using upload-large-folder tool
bac9aed verified
"""
To reduce dependencies, the functions in this module are adapted from
the `datasketch` library with minor modifications.
"""
from scipy.integrate import quad as integrate
import hashlib
import numpy as np
import struct
from typing import Iterable, List
from utilities.text import form_ngrams
def _false_positive_probability(threshold, b, r):
def proba(s):
return 1 - (1 - s ** float(r)) ** float(b)
a, *_ = integrate(proba, 0.0, threshold)
return a
def _false_negative_probability(threshold, b, r):
def proba(s):
return 1 - (1 - (1 - s ** float(r)) ** float(b))
a, *_ = integrate(proba, threshold, 1.0)
return a
def optimal_param(
threshold: float,
num_perm: int,
false_positive_weight: float = 0.5,
false_negative_weight: float = 0.5
):
r"""
Compute the optimal `MinHashLSH` parameter that minimizes the weighted sum
of probabilities of false positive and false negative.
"""
min_error = float("inf")
opt = (0, 0)
for b in range(1, num_perm + 1):
max_r = int(num_perm / b)
for r in range(1, max_r + 1):
fp = _false_positive_probability(threshold, b, r)
fn = _false_negative_probability(threshold, b, r)
error = fp * false_positive_weight + fn * false_negative_weight
if error < min_error:
min_error = error
opt = (b, r)
return opt
def sha1_hash32(data: bytes) -> int:
"""
A 32-bit hash function based on SHA1.
Note:
This implementation is copied from datasketch to avoid dependency.
Args:
data (bytes): the data to generate 32-bit integer hash from.
Returns:
int: an integer hash value that can be encoded using 32 bits.
"""
return struct.unpack("<I", hashlib.sha1(data).digest()[:4])[0]
def generate_signature(
words_sequence: Iterable[str],
ngram_size: int,
permutations: np.ndarray,
max_hash: int,
mersenne_prime: int
) -> np.ndarray:
r"""
Combined with some datasketch code to better parallelize computation.
Note:
This implementation is adapted from the near-dedupe implementation by
the bigcode project.
Parameters
----------
words_sequence : str
A sequence of (normalized) words for which to generate a signature.
ngram_size : int
The size of n-grams.
permutations : np.ndarray
The permutations for the minhash.
max_hash: int
The maximum value for hashes.
mersenne_prime: int
The mersenne prime.
Returns
-------
List[np.uint32]
The minhash signature.
"""
num_perm = permutations.shape[-1]
hashvalues = np.ones(num_perm, dtype=np.uint64) * max_hash
tokens = {" ".join(t) for t in form_ngrams(words_sequence, ngram_size)}
h_vals = np.array(
[sha1_hash32(token.encode("utf-8")) for token in tokens],
dtype=np.uint64
)
a, b = permutations
phv = np.bitwise_and(
((h_vals * np.tile(a, (len(h_vals), 1)).T).T + b) % mersenne_prime,
max_hash
)
# compute the minhash
signature = np.vstack([phv, hashvalues]).min(axis=0).astype(np.uint32)
return signature