id
int64
11
59.9k
original
stringlengths
33
150k
modified
stringlengths
37
150k
31,675
def main() -> None: """main function, parses params and runs command functions :return: :rtype: """ params = demisto.params() # if your Client class inherits from BaseClient, SSL verification is # handled out of the box by it, just pass ``verify_certificate`` to # the Client constructor verify_certificate = not params.get('insecure', False) # if your Client class inherits from BaseClient, system proxy is handled # out of the box by it, just pass ``proxy`` to the Client constructor proxy = params.get('proxy', False) app_id = params.get('app_id') base_url = params.get('base_url') tenant_id = params.get('tenant_id') self_deployed = params.get('self_deployed', False) enc_key = params.get('enc_key') first_fetch_time = params.get('first_fetch', '3 days').strip() fetch_limit = params.get('max_fetch', 10) fetch_timeout = arg_to_number(params.get('fetch_timeout', TIMEOUT)) demisto.debug(f'Command being called is {demisto.command()}') command = demisto.command() args = demisto.args() try: client = Client( app_id=app_id, verify=verify_certificate, base_url=base_url, proxy=proxy, tenant_id=tenant_id, enc_key=enc_key, self_deployed=self_deployed, ) if demisto.command() == 'test-module': # This is the call made when pressing the integration Test button. return_results(test_module(client)) elif command == 'microsoft-365-defender-auth-start': return_results(start_auth(client)) elif command == 'microsoft-365-defender-auth-complete': return_results(complete_auth(client)) elif command == 'microsoft-365-defender-auth-reset': return_results(reset_auth()) elif command == 'microsoft-365-defender-auth-test': return_results(test_connection(client)) elif command == 'microsoft-365-defender-incidents-list': test_context_for_token(client) return_results(microsoft_365_defender_incidents_list_command(client, args)) elif command == 'microsoft-365-defender-incident-update': test_context_for_token(client) return_results(microsoft_365_defender_incident_update_command(client, args)) elif command == 'microsoft-365-defender-advanced-hunting': test_context_for_token(client) return_results(microsoft_365_defender_advanced_hunting_command(client, args)) elif command == 'fetch-incidents': fetch_limit = arg_to_number(fetch_limit) fetch_timeout = arg_to_number(fetch_timeout) if fetch_timeout else None incidents = fetch_incidents(client, first_fetch_time, fetch_limit, fetch_timeout) demisto.incidents(incidents) else: raise NotImplementedError # Log exceptions and return errors except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {demisto.command()} command.\nError:\n{str(e)}')
def main() -> None: """main function, parses params and runs command functions :return: :rtype: """ params = demisto.params() # if your Client class inherits from BaseClient, SSL verification is # handled out of the box by it, just pass ``verify_certificate`` to # the Client constructor verify_certificate = not params.get('insecure', False) # if your Client class inherits from BaseClient, system proxy is handled # out of the box by it, just pass ``proxy`` to the Client constructor proxy = params.get('proxy', False) app_id = params.get('app_id') base_url = params.get('base_url') tenant_id = params.get('tenant_id') self_deployed = argToBoolean(params.get('self_deployed', 'false')) enc_key = params.get('enc_key') first_fetch_time = params.get('first_fetch', '3 days').strip() fetch_limit = params.get('max_fetch', 10) fetch_timeout = arg_to_number(params.get('fetch_timeout', TIMEOUT)) demisto.debug(f'Command being called is {demisto.command()}') command = demisto.command() args = demisto.args() try: client = Client( app_id=app_id, verify=verify_certificate, base_url=base_url, proxy=proxy, tenant_id=tenant_id, enc_key=enc_key, self_deployed=self_deployed, ) if demisto.command() == 'test-module': # This is the call made when pressing the integration Test button. return_results(test_module(client)) elif command == 'microsoft-365-defender-auth-start': return_results(start_auth(client)) elif command == 'microsoft-365-defender-auth-complete': return_results(complete_auth(client)) elif command == 'microsoft-365-defender-auth-reset': return_results(reset_auth()) elif command == 'microsoft-365-defender-auth-test': return_results(test_connection(client)) elif command == 'microsoft-365-defender-incidents-list': test_context_for_token(client) return_results(microsoft_365_defender_incidents_list_command(client, args)) elif command == 'microsoft-365-defender-incident-update': test_context_for_token(client) return_results(microsoft_365_defender_incident_update_command(client, args)) elif command == 'microsoft-365-defender-advanced-hunting': test_context_for_token(client) return_results(microsoft_365_defender_advanced_hunting_command(client, args)) elif command == 'fetch-incidents': fetch_limit = arg_to_number(fetch_limit) fetch_timeout = arg_to_number(fetch_timeout) if fetch_timeout else None incidents = fetch_incidents(client, first_fetch_time, fetch_limit, fetch_timeout) demisto.incidents(incidents) else: raise NotImplementedError # Log exceptions and return errors except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {demisto.command()} command.\nError:\n{str(e)}')
17,476
def combine_by_coords( data_objects: Sequence[Union[Dataset, DataArray]] = [], compat: str = "no_conflicts", data_vars: str = "all", coords: str = "different", fill_value: object = dtypes.NA, join: str = "outer", combine_attrs: str = "no_conflicts", datasets: Sequence[Dataset] = None, ) -> Union[Dataset, DataArray]: """ Attempt to auto-magically combine the given datasets (or data arrays) into one by using dimension coordinates. This method attempts to combine a group of datasets along any number of dimensions into a single entity by inspecting coords and metadata and using a combination of concat and merge. Will attempt to order the datasets such that the values in their dimension coordinates are monotonic along all dimensions. If it cannot determine the order in which to concatenate the datasets, it will raise a ValueError. Non-coordinate dimensions will be ignored, as will any coordinate dimensions which do not vary between each dataset. Aligns coordinates, but different variables on datasets can cause it to fail under some scenarios. In complex cases, you may need to clean up your data and use concat/merge explicitly (also see `combine_nested`). Works well if, for example, you have N years of data and M data variables, and each combination of a distinct time period and set of data variables is saved as its own dataset. Also useful for if you have a simulation which is parallelized in multiple dimensions, but has global coordinates saved in each file specifying the positions of points within the global domain. Parameters ---------- data_objects : sequence of xarray.Dataset or sequence of xarray.DataArray Data objects to combine. compat : {"identical", "equals", "broadcast_equals", "no_conflicts", "override"}, optional String indicating how to compare variables of the same name for potential conflicts: - "broadcast_equals": all values must be equal when variables are broadcast against each other to ensure common dimensions. - "equals": all values and dimensions must be the same. - "identical": all values, dimensions and attributes must be the same. - "no_conflicts": only values which are not null in both datasets must be equal. The returned dataset then contains the combination of all non-null values. - "override": skip comparing and pick variable from first dataset data_vars : {"minimal", "different", "all" or list of str}, optional These data variables will be concatenated together: * "minimal": Only data variables in which the dimension already appears are included. * "different": Data variables which are not equal (ignoring attributes) across all datasets are also concatenated (as well as all for which dimension already appears). Beware: this option may load the data payload of data variables into memory if they are not already loaded. * "all": All data variables will be concatenated. * list of str: The listed data variables will be concatenated, in addition to the "minimal" data variables. If objects are DataArrays, `data_vars` must be "all". coords : {"minimal", "different", "all"} or list of str, optional As per the "data_vars" kwarg, but for coordinate variables. fill_value : scalar or dict-like, optional Value to use for newly missing values. If a dict-like, maps variable names to fill values. Use a data array's name to refer to its values. If None, raises a ValueError if the passed Datasets do not create a complete hypercube. join : {"outer", "inner", "left", "right", "exact"}, optional String indicating how to combine differing indexes in objects - "outer": use the union of object indexes - "inner": use the intersection of object indexes - "left": use indexes from the first object with each dimension - "right": use indexes from the last object with each dimension - "exact": instead of aligning, raise `ValueError` when indexes to be aligned are not equal - "override": if indexes are of same size, rewrite indexes to be those of the first object with that dimension. Indexes for the same dimension must have the same size in all objects. combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \ "override"} or callable, default: "drop" A callable or a string indicating how to combine attrs of the objects being merged: - "drop": empty attrs on returned Dataset. - "identical": all attrs must be the same on every object. - "no_conflicts": attrs from all objects are combined, any that have the same name must also have the same value. - "drop_conflicts": attrs from all objects are combined, any that have the same name but different values are dropped. - "override": skip comparing and copy attrs from the first dataset to the result. If a callable, it must expect a sequence of ``attrs`` dicts and a context object as its only parameters. Returns ------- combined : xarray.Dataset or xarray.DataArray See also -------- concat merge combine_nested Examples -------- Combining two datasets using their common dimension coordinates. Notice they are concatenated based on the values in their dimension coordinates, not on their position in the list passed to `combine_by_coords`. >>> x1 = xr.Dataset( ... { ... "temperature": (("y", "x"), 20 * np.random.rand(6).reshape(2, 3)), ... "precipitation": (("y", "x"), np.random.rand(6).reshape(2, 3)), ... }, ... coords={"y": [0, 1], "x": [10, 20, 30]}, ... ) >>> x2 = xr.Dataset( ... { ... "temperature": (("y", "x"), 20 * np.random.rand(6).reshape(2, 3)), ... "precipitation": (("y", "x"), np.random.rand(6).reshape(2, 3)), ... }, ... coords={"y": [2, 3], "x": [10, 20, 30]}, ... ) >>> x3 = xr.Dataset( ... { ... "temperature": (("y", "x"), 20 * np.random.rand(6).reshape(2, 3)), ... "precipitation": (("y", "x"), np.random.rand(6).reshape(2, 3)), ... }, ... coords={"y": [2, 3], "x": [40, 50, 60]}, ... ) >>> x1 <xarray.Dataset> Dimensions: (y: 2, x: 3) Coordinates: * y (y) int64 0 1 * x (x) int64 10 20 30 Data variables: temperature (y, x) float64 10.98 14.3 12.06 10.9 8.473 12.92 precipitation (y, x) float64 0.4376 0.8918 0.9637 0.3834 0.7917 0.5289 >>> x2 <xarray.Dataset> Dimensions: (y: 2, x: 3) Coordinates: * y (y) int64 2 3 * x (x) int64 10 20 30 Data variables: temperature (y, x) float64 11.36 18.51 1.421 1.743 0.4044 16.65 precipitation (y, x) float64 0.7782 0.87 0.9786 0.7992 0.4615 0.7805 >>> x3 <xarray.Dataset> Dimensions: (y: 2, x: 3) Coordinates: * y (y) int64 2 3 * x (x) int64 40 50 60 Data variables: temperature (y, x) float64 2.365 12.8 2.867 18.89 10.44 8.293 precipitation (y, x) float64 0.2646 0.7742 0.4562 0.5684 0.01879 0.6176 >>> xr.combine_by_coords([x2, x1]) <xarray.Dataset> Dimensions: (y: 4, x: 3) Coordinates: * y (y) int64 0 1 2 3 * x (x) int64 10 20 30 Data variables: temperature (y, x) float64 10.98 14.3 12.06 10.9 ... 1.743 0.4044 16.65 precipitation (y, x) float64 0.4376 0.8918 0.9637 ... 0.7992 0.4615 0.7805 >>> xr.combine_by_coords([x3, x1]) <xarray.Dataset> Dimensions: (y: 4, x: 6) Coordinates: * y (y) int64 0 1 2 3 * x (x) int64 10 20 30 40 50 60 Data variables: temperature (y, x) float64 10.98 14.3 12.06 nan ... nan 18.89 10.44 8.293 precipitation (y, x) float64 0.4376 0.8918 0.9637 ... 0.5684 0.01879 0.6176 >>> xr.combine_by_coords([x3, x1], join="override") <xarray.Dataset> Dimensions: (y: 2, x: 6) Coordinates: * y (y) int64 0 1 * x (x) int64 10 20 30 40 50 60 Data variables: temperature (y, x) float64 10.98 14.3 12.06 2.365 ... 18.89 10.44 8.293 precipitation (y, x) float64 0.4376 0.8918 0.9637 ... 0.5684 0.01879 0.6176 >>> xr.combine_by_coords([x1, x2, x3]) <xarray.Dataset> Dimensions: (y: 4, x: 6) Coordinates: * y (y) int64 0 1 2 3 * x (x) int64 10 20 30 40 50 60 Data variables: temperature (y, x) float64 10.98 14.3 12.06 nan ... 18.89 10.44 8.293 precipitation (y, x) float64 0.4376 0.8918 0.9637 ... 0.5684 0.01879 0.6176 """ # TODO remove after version 0.21, see PR4696 if datasets is not None: warnings.warn( "The datasets argument has been renamed to `data_objects`." " From 0.21 on passing a value for datasets will raise an error." ) data_objects = datasets if not data_objects: return Dataset() objs_are_unnamed_dataarrays = [ isinstance(data_object, DataArray) and data_object.name is None for data_object in data_objects ] if any(objs_are_unnamed_dataarrays): if all(objs_are_unnamed_dataarrays): # Combine into a single larger DataArray unnamed_arrays = data_objects temp_datasets = [ data_array._to_temp_dataset() for data_array in unnamed_arrays ] combined_temp_dataset = _combine_single_variable_hypercube( temp_datasets, fill_value=fill_value, data_vars=data_vars, coords=coords, compat=compat, join=join, combine_attrs=combine_attrs, ) return DataArray()._from_temp_dataset(combined_temp_dataset) else: # Must be a mix of unnamed dataarrays with either named dataarrays or with datasets # Can't combine these as we wouldn't know whether to merge or concatenate the arrays raise ValueError( "Can't automatically combine unnamed dataarrays with either named dataarrays or datasets." ) else: # Promote any named DataArrays to single-variable Datasets to simplify combining data_objects = [ obj.to_dataset() if isinstance(obj, DataArray) else obj for obj in data_objects ] # Group by data vars sorted_datasets = sorted(data_objects, key=vars_as_keys) grouped_by_vars = itertools.groupby(sorted_datasets, key=vars_as_keys) # Perform the multidimensional combine on each group of data variables # before merging back together concatenated_grouped_by_data_vars = [] for vars, datasets_with_same_vars in grouped_by_vars: concatenated = _combine_single_variable_hypercube( list(datasets_with_same_vars), fill_value=fill_value, data_vars=data_vars, coords=coords, compat=compat, join=join, combine_attrs=combine_attrs, ) concatenated_grouped_by_data_vars.append(concatenated) return merge( concatenated_grouped_by_data_vars, compat=compat, fill_value=fill_value, join=join, combine_attrs=combine_attrs, )
def combine_by_coords( data_objects: Sequence[Union[Dataset, DataArray]] = [], compat: str = "no_conflicts", data_vars: str = "all", coords: str = "different", fill_value: object = dtypes.NA, join: str = "outer", combine_attrs: str = "no_conflicts", datasets: Sequence[Dataset] = None, ) -> Union[Dataset, DataArray]: """ Attempt to auto-magically combine the given datasets (or data arrays) into one by using dimension coordinates. This method attempts to combine a group of datasets along any number of dimensions into a single entity by inspecting coords and metadata and using a combination of concat and merge. Will attempt to order the datasets such that the values in their dimension coordinates are monotonic along all dimensions. If it cannot determine the order in which to concatenate the datasets, it will raise a ValueError. Non-coordinate dimensions will be ignored, as will any coordinate dimensions which do not vary between each dataset. Aligns coordinates, but different variables on datasets can cause it to fail under some scenarios. In complex cases, you may need to clean up your data and use concat/merge explicitly (also see `combine_nested`). Works well if, for example, you have N years of data and M data variables, and each combination of a distinct time period and set of data variables is saved as its own dataset. Also useful for if you have a simulation which is parallelized in multiple dimensions, but has global coordinates saved in each file specifying the positions of points within the global domain. Parameters ---------- data_objects : sequence of xarray.Dataset or sequence of xarray.DataArray Data objects to combine. compat : {"identical", "equals", "broadcast_equals", "no_conflicts", "override"}, optional String indicating how to compare variables of the same name for potential conflicts: - "broadcast_equals": all values must be equal when variables are broadcast against each other to ensure common dimensions. - "equals": all values and dimensions must be the same. - "identical": all values, dimensions and attributes must be the same. - "no_conflicts": only values which are not null in both datasets must be equal. The returned dataset then contains the combination of all non-null values. - "override": skip comparing and pick variable from first dataset data_vars : {"minimal", "different", "all" or list of str}, optional These data variables will be concatenated together: * "minimal": Only data variables in which the dimension already appears are included. * "different": Data variables which are not equal (ignoring attributes) across all datasets are also concatenated (as well as all for which dimension already appears). Beware: this option may load the data payload of data variables into memory if they are not already loaded. * "all": All data variables will be concatenated. * list of str: The listed data variables will be concatenated, in addition to the "minimal" data variables. If objects are DataArrays, `data_vars` must be "all". coords : {"minimal", "different", "all"} or list of str, optional As per the "data_vars" kwarg, but for coordinate variables. fill_value : scalar or dict-like, optional Value to use for newly missing values. If a dict-like, maps variable names to fill values. Use a data array's name to refer to its values. If None, raises a ValueError if the passed Datasets do not create a complete hypercube. join : {"outer", "inner", "left", "right", "exact"}, optional String indicating how to combine differing indexes in objects - "outer": use the union of object indexes - "inner": use the intersection of object indexes - "left": use indexes from the first object with each dimension - "right": use indexes from the last object with each dimension - "exact": instead of aligning, raise `ValueError` when indexes to be aligned are not equal - "override": if indexes are of same size, rewrite indexes to be those of the first object with that dimension. Indexes for the same dimension must have the same size in all objects. combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \ "override"} or callable, default: "drop" A callable or a string indicating how to combine attrs of the objects being merged: - "drop": empty attrs on returned Dataset. - "identical": all attrs must be the same on every object. - "no_conflicts": attrs from all objects are combined, any that have the same name must also have the same value. - "drop_conflicts": attrs from all objects are combined, any that have the same name but different values are dropped. - "override": skip comparing and copy attrs from the first dataset to the result. If a callable, it must expect a sequence of ``attrs`` dicts and a context object as its only parameters. Returns ------- combined : xarray.Dataset or xarray.DataArray See also -------- concat merge combine_nested Examples -------- Combining two datasets using their common dimension coordinates. Notice they are concatenated based on the values in their dimension coordinates, not on their position in the list passed to `combine_by_coords`. >>> x1 = xr.Dataset( ... { ... "temperature": (("y", "x"), 20 * np.random.rand(6).reshape(2, 3)), ... "precipitation": (("y", "x"), np.random.rand(6).reshape(2, 3)), ... }, ... coords={"y": [0, 1], "x": [10, 20, 30]}, ... ) >>> x2 = xr.Dataset( ... { ... "temperature": (("y", "x"), 20 * np.random.rand(6).reshape(2, 3)), ... "precipitation": (("y", "x"), np.random.rand(6).reshape(2, 3)), ... }, ... coords={"y": [2, 3], "x": [10, 20, 30]}, ... ) >>> x3 = xr.Dataset( ... { ... "temperature": (("y", "x"), 20 * np.random.rand(6).reshape(2, 3)), ... "precipitation": (("y", "x"), np.random.rand(6).reshape(2, 3)), ... }, ... coords={"y": [2, 3], "x": [40, 50, 60]}, ... ) >>> x1 <xarray.Dataset> Dimensions: (y: 2, x: 3) Coordinates: * y (y) int64 0 1 * x (x) int64 10 20 30 Data variables: temperature (y, x) float64 10.98 14.3 12.06 10.9 8.473 12.92 precipitation (y, x) float64 0.4376 0.8918 0.9637 0.3834 0.7917 0.5289 >>> x2 <xarray.Dataset> Dimensions: (y: 2, x: 3) Coordinates: * y (y) int64 2 3 * x (x) int64 10 20 30 Data variables: temperature (y, x) float64 11.36 18.51 1.421 1.743 0.4044 16.65 precipitation (y, x) float64 0.7782 0.87 0.9786 0.7992 0.4615 0.7805 >>> x3 <xarray.Dataset> Dimensions: (y: 2, x: 3) Coordinates: * y (y) int64 2 3 * x (x) int64 40 50 60 Data variables: temperature (y, x) float64 2.365 12.8 2.867 18.89 10.44 8.293 precipitation (y, x) float64 0.2646 0.7742 0.4562 0.5684 0.01879 0.6176 >>> xr.combine_by_coords([x2, x1]) <xarray.Dataset> Dimensions: (y: 4, x: 3) Coordinates: * y (y) int64 0 1 2 3 * x (x) int64 10 20 30 Data variables: temperature (y, x) float64 10.98 14.3 12.06 10.9 ... 1.743 0.4044 16.65 precipitation (y, x) float64 0.4376 0.8918 0.9637 ... 0.7992 0.4615 0.7805 >>> xr.combine_by_coords([x3, x1]) <xarray.Dataset> Dimensions: (y: 4, x: 6) Coordinates: * y (y) int64 0 1 2 3 * x (x) int64 10 20 30 40 50 60 Data variables: temperature (y, x) float64 10.98 14.3 12.06 nan ... nan 18.89 10.44 8.293 precipitation (y, x) float64 0.4376 0.8918 0.9637 ... 0.5684 0.01879 0.6176 >>> xr.combine_by_coords([x3, x1], join="override") <xarray.Dataset> Dimensions: (y: 2, x: 6) Coordinates: * y (y) int64 0 1 * x (x) int64 10 20 30 40 50 60 Data variables: temperature (y, x) float64 10.98 14.3 12.06 2.365 ... 18.89 10.44 8.293 precipitation (y, x) float64 0.4376 0.8918 0.9637 ... 0.5684 0.01879 0.6176 >>> xr.combine_by_coords([x1, x2, x3]) <xarray.Dataset> Dimensions: (y: 4, x: 6) Coordinates: * y (y) int64 0 1 2 3 * x (x) int64 10 20 30 40 50 60 Data variables: temperature (y, x) float64 10.98 14.3 12.06 nan ... 18.89 10.44 8.293 precipitation (y, x) float64 0.4376 0.8918 0.9637 ... 0.5684 0.01879 0.6176 """ # TODO remove after version 0.21, see PR4696 if datasets is not None: warnings.warn( "The datasets argument has been renamed to `data_objects`." " From 0.21 on passing a value for datasets will raise an error." ) data_objects = datasets if not data_objects: return Dataset() objs_are_unnamed_dataarrays = [ isinstance(data_object, DataArray) and data_object.name is None for data_object in data_objects ] if any(objs_are_unnamed_dataarrays): if all(objs_are_unnamed_dataarrays): # Combine into a single larger DataArray unnamed_arrays = data_objects temp_datasets = [ data_array._to_temp_dataset() for data_array in unnamed_arrays ] combined_temp_dataset = _combine_single_variable_hypercube( temp_datasets, fill_value=fill_value, data_vars=data_vars, coords=coords, compat=compat, join=join, combine_attrs=combine_attrs, ) return DataArray()._from_temp_dataset(combined_temp_dataset) else: # Must be a mix of unnamed dataarrays with either named dataarrays or with datasets # Can't combine these as we wouldn't know whether to merge or concatenate the arrays raise ValueError( "Can't automatically combine unnamed DataArrays with either named DataArrays or Datasets." ) else: # Promote any named DataArrays to single-variable Datasets to simplify combining data_objects = [ obj.to_dataset() if isinstance(obj, DataArray) else obj for obj in data_objects ] # Group by data vars sorted_datasets = sorted(data_objects, key=vars_as_keys) grouped_by_vars = itertools.groupby(sorted_datasets, key=vars_as_keys) # Perform the multidimensional combine on each group of data variables # before merging back together concatenated_grouped_by_data_vars = [] for vars, datasets_with_same_vars in grouped_by_vars: concatenated = _combine_single_variable_hypercube( list(datasets_with_same_vars), fill_value=fill_value, data_vars=data_vars, coords=coords, compat=compat, join=join, combine_attrs=combine_attrs, ) concatenated_grouped_by_data_vars.append(concatenated) return merge( concatenated_grouped_by_data_vars, compat=compat, fill_value=fill_value, join=join, combine_attrs=combine_attrs, )
31,074
def main(): params = demisto.params() key = fix_rsa_data(params.get('key', ''), 4) crt = params.get('crt', '') collection = params.get('collection') tags = argToList(params['tags']) if params.get('tags') else None client = TaxiiClient(key, crt, collection, base_url=params.get('base_url'), verify=argToBoolean(params.get('insecure'))) command = demisto.command() handle_proxy() try: if command == 'fetch-indicators': fetch_indicators(client, hours_back=params.get('first_fetch', ''), tlp_color=params.get('tlp_color'), tags=tags) elif command == 'dhs-get-indicators': args = demisto.args() command_results = get_indicators(client, tlp_color=args.get('tlp_color'), limit=int(args.get('limit', 20)), tags=params.get('tags')) return_results(command_results) elif command == 'test-module': command_test_module(client, key, crt, params.get('first_fetch', '')) else: raise DemistoException('not implemented.') except SyntaxError as error: return_error(str(error), error)
def main(): params = demisto.params() key = fix_rsa_data(params.get('key', ''), 4) crt = params.get('crt', '') collection = params.get('collection') tags = argToList(params['tags']) if params.get('tags') else None client = TaxiiClient(key, crt, collection, base_url=params.get('base_url'), verify=argToBoolean(params.get('insecure'))) command = demisto.command() handle_proxy() try: if command == 'fetch-indicators': fetch_indicators(client, hours_back=params.get('first_fetch', ''), tlp_color=params.get('tlp_color'), tags=tags) elif command == 'dhs-get-indicators': args = demisto.args() command_results = get_indicators(client, tlp_color=args.get('tlp_color'), limit=int(args.get('limit', 20)), tags=params.get('tags')) return_results(command_results) elif command == 'test-module': command_test_module(client, key, crt, params.get('first_fetch', '')) else: raise DemistoException('not implemented.') except Exception as error: return_error(str(error), error)
47,552
def load_tf_shard(model, model_layer_map, resolved_archive_file, ignore_mismatched_sizes=False): """ Loads a shard from a sharded checkpoint file. Handles the missing keys and unexpected keys. Args: model (`tf.keras.models.Model`): Model in which the weights are loaded model_layer_map (`Dict`): A dictionnary mapping the layer name to the index of the layer in the model. resolved_archive_file (`str`): Path to the checkpoint file from which the weights will be loaded ignore_mismatched_sizes (bool, optional): _description_. Defaults to False. Whether to ignore the mismatch keys Returns: Three lists, one for the layers that were found and succesfully restored (from the shard file), one for the missmatched layers, and another one for the unexpected layers. """ saved_weight_names_set = set() saved_weights = {} missmatched_keys = set() unexpected_keys = set() # Read the H5 file with h5py.File(resolved_archive_file, "r") as f: # Retrieve the name of each layer from the H5 file saved_h5_model_layers_name = set(hdf5_format.load_attributes_from_hdf5_group(f, "layer_names")) weight_value_tuples = [] # Compute missing and unexpected sub layers # Store the weights in list of tuples that looks like [(weight_object, value_of_weight),...] for layer_name in saved_h5_model_layers_name: h5_layer_object = f[layer_name] saved_weights[layer_name] = np.asarray(h5_layer_object) saved_weight_names_set.add(layer_name) if layer_name not in model_layer_map: unexpected_keys.add(layer_name) else: symbolic_weight = model.weights[model_layer_map[layer_name]] saved_weight_value = saved_weights[layer_name] # If the current weight is found if saved_weight_value is not None: # Check if the shape of the current weight and the one from the H5 file are different if K.int_shape(symbolic_weight) != saved_weight_value.shape: # If yes we reshape the weight from the H5 file accordingly to the current weight # If the two shapes are not compatible we raise an issue try: array = np.reshape(saved_weight_value, K.int_shape(symbolic_weight)) except ValueError as e: if ignore_mismatched_sizes: missmatched_keys.add( (layer_name, saved_weight_value.shape, K.int_shape(symbolic_weight)) ) continue else: raise e else: array = saved_weight_value # We create the tuple that will be loaded and add it to the final list weight_value_tuples.append((symbolic_weight, array)) K.batch_set_value(weight_value_tuples) return saved_weight_names_set, unexpected_keys, missmatched_keys
def load_tf_shard(model, model_layer_map, resolved_archive_file, ignore_mismatched_sizes=False): """ Loads a shard from a sharded checkpoint file. Handles the missing keys and unexpected keys. Args: model (`tf.keras.models.Model`): Model in which the weights are loaded model_layer_map (`Dict`): A dictionnary mapping the layer name to the index of the layer in the model. resolved_archive_file (`str`): Path to the checkpoint file from which the weights will be loaded ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`): Whether to ignore the mismatched keys Returns: Three lists, one for the layers that were found and succesfully restored (from the shard file), one for the missmatched layers, and another one for the unexpected layers. """ saved_weight_names_set = set() saved_weights = {} missmatched_keys = set() unexpected_keys = set() # Read the H5 file with h5py.File(resolved_archive_file, "r") as f: # Retrieve the name of each layer from the H5 file saved_h5_model_layers_name = set(hdf5_format.load_attributes_from_hdf5_group(f, "layer_names")) weight_value_tuples = [] # Compute missing and unexpected sub layers # Store the weights in list of tuples that looks like [(weight_object, value_of_weight),...] for layer_name in saved_h5_model_layers_name: h5_layer_object = f[layer_name] saved_weights[layer_name] = np.asarray(h5_layer_object) saved_weight_names_set.add(layer_name) if layer_name not in model_layer_map: unexpected_keys.add(layer_name) else: symbolic_weight = model.weights[model_layer_map[layer_name]] saved_weight_value = saved_weights[layer_name] # If the current weight is found if saved_weight_value is not None: # Check if the shape of the current weight and the one from the H5 file are different if K.int_shape(symbolic_weight) != saved_weight_value.shape: # If yes we reshape the weight from the H5 file accordingly to the current weight # If the two shapes are not compatible we raise an issue try: array = np.reshape(saved_weight_value, K.int_shape(symbolic_weight)) except ValueError as e: if ignore_mismatched_sizes: missmatched_keys.add( (layer_name, saved_weight_value.shape, K.int_shape(symbolic_weight)) ) continue else: raise e else: array = saved_weight_value # We create the tuple that will be loaded and add it to the final list weight_value_tuples.append((symbolic_weight, array)) K.batch_set_value(weight_value_tuples) return saved_weight_names_set, unexpected_keys, missmatched_keys
50,424
def _skip_if_no_torch(): if not os.environ.get('DOCKER_PYMOR', False): pytest.skip('skipped test due to missing Torch')
def _skip_if_no_torch(): try: import torch except ImportError as ie: if not os.environ.get('DOCKER_PYMOR', False): pytest.skip('skipped test due to missing Torch') raise ie
40,706
def average_precision_compute_fn(y_preds: Any, y_targets: Any): try: from sklearn.metrics import average_precision_score except ImportError: raise RuntimeError("This contrib module requires sklearn to be installed.") y_true = y_targets.numpy() y_pred = y_preds.numpy() return average_precision_score(y_true, y_pred)
def average_precision_compute_fn(y_preds: torch.Tensor, y_targets: torch.Tensor): try: from sklearn.metrics import average_precision_score except ImportError: raise RuntimeError("This contrib module requires sklearn to be installed.") y_true = y_targets.numpy() y_pred = y_preds.numpy() return average_precision_score(y_true, y_pred)
30,604
def get_current_table(grid_id: str, sort_by: Optional[str], columns: Optional[str]) -> \ Tuple[List[Dict[Any, Any]], Any]: """ Get current grid data Date retreived: 1. Column names. 2. Current grid data. Validate: 1. Correct number of context paths. 2. Sort_by is a name of a column. 3. Grid ID. 4. Columns exists. Args: grid_id(str): Normalized Grid ID (Machine name in `Settings -> Advanced -> Fields -> Field property` or in Incident Context Data. sort_by(str): The static name of the column to sort the table rows by. columns(str): Comma separated list of columns names, Should be defined if grid is empty otherwise the automation detect it automatically. Returns: list: Current grid as dict in following structure - [{'col1': 'val1'},{'col2': 'val2'},{'col3': 'val3'}, {'col4': 'val4'}]. list: Table columns name. """ # Get current Grid data current_table: Optional[List[dict]] = demisto.incidents()[0].get("CustomFields", {}).get(grid_id) if not current_table: raise ValueError(f"The grid id isn't valid : {grid_id}") # Validate columns number the same as context paths - If no data initiated skip validation, but check if columns specified if not columns: raise ValueError("Columns not specified - Its a mandatory arg when grid is empty.") # Get columns columns = argToList(columns.lower()) # Validate sort is valide col if sort_by and sort_by not in columns: raise ValueError(f'sort_by: {sort_by} is not columns: {columns}') return current_table, columns
def get_current_table(grid_id: str, sort_by: Optional[str], columns: Optional[str]) -> \ Tuple[List[Dict[Any, Any]], Any]: """ Get current grid data Date retreived: 1. Column names. 2. Current grid data. Validate: 1. Correct number of context paths. 2. Sort_by is a name of a column. 3. Grid ID. 4. Columns exists. Args: grid_id(str): Normalized Grid ID (Machine name in `Settings -> Advanced -> Fields -> Field property` or in Incident Context Data. sort_by(str): The static name of the column to sort the table rows by. columns(str): Comma separated list of columns names, Should be defined if grid is empty otherwise the automation detect it automatically. Returns: list: Current grid as dict in following structure - [{'col1': 'val1'},{'col2': 'val2'},{'col3': 'val3'}, {'col4': 'val4'}]. list: Table columns name. """ # Get current Grid data current_table: Optional[List[dict]] = demisto.incidents()[0].get("CustomFields", {}).get(grid_id) if not current_table: raise ValueError(f"The grid id isn't valid : {grid_id}") # Validate columns number the same as context paths - If no data initiated skip validation, but check if columns specified if not columns: raise ValueError("Columns not specified - Its a mandatory arg when grid is empty.") # Get columns columns = argToList(columns.lower()) # Validate sort is valide col if sort_by and sort_by not in columns: raise ValueError(f'sort_by "{sort_by}" is not one of the columns: {columns}') return current_table, columns
45,644
def run_standalone_app( layout, callbacks, header_colors, filename ): """Run demo app (tests/dashbio_demos/app_*.py) as standalone app.""" app = dash.Dash(__name__, assets_folder='../../../assets/') app.scripts.config.serve_locally = True # Handle callback to component with id "fullband-switch" app.config['suppress_callback_exceptions'] = True # Get all information from filename app_name = os.path.basename(filename).replace( '.py', '').replace( 'app_', '') app_title = "Dash {}".format(app_name.replace('_', ' ').title()) # Assign layout app.layout = app_page_layout( page_layout=layout(), app_title=app_title, app_name=app_name, standalone=True, **header_colors() ) # Register all callbacks callbacks(app) # return app object return app
def run_standalone_app( layout, callbacks, header_colors, filename ): """Run demo app (tests/dashbio_demos/app_*.py) as standalone app.""" app = dash.Dash(__name__, assets_folder=os.path.join('..', '..', '..', 'assets/')) app.scripts.config.serve_locally = True # Handle callback to component with id "fullband-switch" app.config['suppress_callback_exceptions'] = True # Get all information from filename app_name = os.path.basename(filename).replace( '.py', '').replace( 'app_', '') app_title = "Dash {}".format(app_name.replace('_', ' ').title()) # Assign layout app.layout = app_page_layout( page_layout=layout(), app_title=app_title, app_name=app_name, standalone=True, **header_colors() ) # Register all callbacks callbacks(app) # return app object return app
45,559
def is_open(opens, break_starts, break_ends, closes, minute_val): open_idx = np.searchsorted(opens, minute_val) close_idx = np.searchsorted(closes, minute_val) if open_idx != close_idx: # we are not guarenteed to have a sorted list of breaks, since break # may not exist for a given date. Thus we need special logic. # if the indices are not same, that means we are within a session if (break_starts == NP_NAT).all() and (break_ends == NP_NAT).all(): # this calendar has no breaks return True break_start_on_open_dt = break_starts[open_idx - 1] break_end_on_open_dt = break_ends[open_idx - 1] if break_start_on_open_dt == NP_NAT: # There is no break on the relevant day return True elif break_start_on_open_dt <= minute_val <= break_end_on_open_dt: # we're in the middle of a break return False else: return True else: try: # if they are the same, it might be the first minute of a # session return minute_val == opens[open_idx] except IndexError: # this can happen if we're outside the schedule's range (like # after the last close) return False
def is_open(opens, break_starts, break_ends, closes, minute_val): open_idx = np.searchsorted(opens, minute_val) close_idx = np.searchsorted(closes, minute_val) if open_idx != close_idx: # we are not guaranteed to have a sorted list of breaks, since break # may not exist for a given date. Thus we need special logic. # if the indices are not same, that means we are within a session if (break_starts == NP_NAT).all() and (break_ends == NP_NAT).all(): # this calendar has no breaks return True break_start_on_open_dt = break_starts[open_idx - 1] break_end_on_open_dt = break_ends[open_idx - 1] if break_start_on_open_dt == NP_NAT: # There is no break on the relevant day return True elif break_start_on_open_dt <= minute_val <= break_end_on_open_dt: # we're in the middle of a break return False else: return True else: try: # if they are the same, it might be the first minute of a # session return minute_val == opens[open_idx] except IndexError: # this can happen if we're outside the schedule's range (like # after the last close) return False
57,908
def validate_common_args(args: Dict[str, str]) -> Dict[str, Any]: """ Validate page_size and page_number argument, raise ValueError on invalid arguments. :type args: ``Dict[str, str]`` :param args: The command arguments provided by the user. :return: Parameters to send in request :rtype: ``Dict[str, Any]`` """ params: Dict[str, Any] = {} page_size = arg_to_number(args.get("page_size")) params["page[size]"] = 50 if page_size is not None: if page_size <= 0 or page_size > 100: raise ValueError(MESSAGES['PAGE_SIZE'].format(page_size)) params["page[size]"] = page_size page_number = arg_to_number(args.get("page_number")) if page_number is not None: if page_number < 0 or page_number >= 2147483648: raise ValueError(MESSAGES['PAGE_NUMBER'].format(page_number)) params["page[number]"] = page_number return params
def validate_common_args(args: Dict[str, str]) -> Dict[str, Any]: """ Validate page_size and page_number argument, raise ValueError on invalid arguments. :type args: ``Dict[str, str]`` :param args: The command arguments provided by the user. :return: Parameters to send in request :rtype: ``Dict[str, Any]`` """ params: Dict[str, Any] = {} page_size = arg_to_number(args.get("page_size")) if page_size <= 0 or page_size > 100: raise ValueError(MESSAGES['PAGE_SIZE'].format(page_size)) params["page[size]"] = page_size page_number = arg_to_number(args.get("page_number")) if page_number is not None: if page_number < 0 or page_number >= 2147483648: raise ValueError(MESSAGES['PAGE_NUMBER'].format(page_number)) params["page[number]"] = page_number return params
32,598
def create_issue_command(client: Client, args: Dict[str, Any]) -> CommandResults: """ Creates an issue. Args: client (Client): Client to perform calls to GitLab services. args (Dict[str, Any]): XSOAR arguments: - 'state': The state of the issue. - 'labels': Retrieve only issues with the given labels. - 'assignee_username': Retrieve issues by assignee username. Returns: (CommandResults). """ labels = args.get('labels', '') headers = ['Iid', 'Title', 'CreatedAt', 'CreatedBy', 'UpdatedAt', 'Milstone', 'State', 'Assignee'] title = args.get('title', '') description = args.get('description', '') response = client.create_issue_request(labels, title, description) human_readable_dict = { 'Iid': response.get('iid'), 'Title': response.get('title'), 'CreatedAt': response.get('created_at', ' '), 'CreatedBy': response.get('autor.name', ' '), 'UpdatedAt': response.get('updated_at', ' '), 'Milstone': response.get('milestone.title', ' '), 'State': response.get('state', ' '), 'Assignee': response.get('assignee.name', ' ') } human_readable = tableToMarkdown('Create Issue', human_readable_dict, headers=headers, removeNull=True) return CommandResults( outputs_prefix='GitLab.Issue', outputs_key_field='Iid', readable_output=human_readable, outputs=response, raw_response=response )
def create_issue_command(client: Client, args: Dict[str, Any]) -> CommandResults: """ Creates an issue. Args: client (Client): Client to perform calls to GitLab services. args (Dict[str, Any]): XSOAR arguments: - 'state': The state of the issue. - 'labels': Retrieve only issues with the given labels. - 'assignee_username': Retrieve issues by assignee username. Returns: (CommandResults). """ labels = args.get('labels', '') headers = ['Iid', 'Title', 'CreatedAt', 'CreatedBy', 'UpdatedAt', 'Milstone', 'State', 'Assignee'] title = args.get('title', '') description = args.get('description', '') response = client.create_issue_request(labels, title, description) human_readable_dict = { 'Iid': response.get('iid'), 'Title': response.get('title'), 'CreatedAt': response.get('created_at', ' '), 'CreatedBy': response.get('autor.name', ' '), 'UpdatedAt': response.get('updated_at', ' '), 'Milstone': response.get('milestone.title', ' '), 'State': response.get('state', ' '), 'Assignee': response.get('assignee.name', ' ') } human_readable = tableToMarkdown('Created Issue', human_readable_dict, headers=headers, removeNull=True) return CommandResults( outputs_prefix='GitLab.Issue', outputs_key_field='Iid', readable_output=human_readable, outputs=response, raw_response=response )
10,417
def fail_if_max_instance_lifetime_not_supported(): if LooseVersion(boto3.__version__) < LooseVersion('1.10.0'): module.fail_json(msg="max_instance_lifetime requires boto3 version 1.10.0 or higher. Version %s is installed" % boto3.__version__)
def fail_if_max_instance_lifetime_not_supported(): if not module.boto3_at_least('1.10.0'): module.fail_json(msg="max_instance_lifetime requires boto3 version 1.10.0 or higher. Version %s is installed" % boto3.__version__)
4,501
def _export_raw(fname, raw): # load data first raw.load_data() # remove extra epoc and STI channels drop_chs = ['epoc'] try: if not (raw.filenames[0].endswith('.fif')): drop_chs.append('STI 014') except AttributeError: # mne.io.RawArray has no filenames attribute pass ch_names = [ch for ch in raw.ch_names if ch not in drop_chs] cart_coords = _get_als_coords_from_chs(raw.info['chs'], drop_chs) annotations = [raw.annotations.description, raw.annotations.onset, raw.annotations.duration] eeglabio.raw.export_set( fname, data=raw.get_data(picks=ch_names), sfreq=raw.info['sfreq'], ch_names=ch_names, ch_locs=cart_coords, annotations=annotations)
def _export_raw(fname, raw): # load data first raw.load_data() # remove extra epoc and STI channels drop_chs = ['epoc'] try: if not (raw.filenames[0].endswith('.fif')): drop_chs.append('STI 014') except AttributeError: # mne.io.RawArray has no filenames attribute pass ch_names = [ch for ch in raw.ch_names if ch not in drop_chs] cart_coords = _get_als_coords_from_chs(raw.info['chs'], drop_chs) annotations = [raw.annotations.description, raw.annotations.onset, raw.annotations.duration] eeglabio.raw.export_set( fname, data=raw.get_data(picks=ch_names), sfreq=raw.info['sfreq'], ch_names=ch_names, ch_locs=cart_coords, annotations=annotations)
27,481
def execute_workflow( project, location="us-central1", workflow="myFirstWorkflow" ): """Execute a workflow and print the execution results.""" # [START workflows_api_quickstart] from google.cloud import workflows_v1beta from google.cloud.workflows import executions_v1beta from google.cloud.workflows.executions_v1beta.types import executions if not project: raise Exception('GOOGLE_CLOUD_PROJECT is required.') execution_client = executions_v1beta.ExecutionsClient() workflows_client = workflows_v1beta.WorkflowsClient() # Construct the fully qualified location path. parent = workflows_client.workflow_path(project, location, workflow) # Execute workflow response = execution_client.create_execution(request={"parent": parent}) print(f"Created execution: {response.name}") # Wait for execution to finish, then print results. execution_finished = False backoff_delay = 1 # Start wait with delay of 1 second print('Poll every second for result...') while (not execution_finished): execution = execution_client.get_execution(request={"name": response.name}) execution_finished = execution.state != executions.Execution.State.ACTIVE # If we haven't seen the result yet, wait a second. if not execution_finished: print('- Waiting for results...') time.sleep(backoff_delay) backoff_delay *= 2 # Double the delay to provide exponential backoff. else: print(f'Execution finished with state: {execution.state.name}') print(execution.result) return execution.result # [END workflows_api_quickstart]
def execute_workflow( project, location="us-central1", workflow="myFirstWorkflow" ): """Execute a workflow and print the execution results.""" # [START workflows_api_quickstart] from google.cloud import workflows_v1beta from google.cloud.workflows import executions_v1beta from google.cloud.workflows.executions_v1beta.types import executions if not project: raise Exception('GOOGLE_CLOUD_PROJECT env var is required.') execution_client = executions_v1beta.ExecutionsClient() workflows_client = workflows_v1beta.WorkflowsClient() # Construct the fully qualified location path. parent = workflows_client.workflow_path(project, location, workflow) # Execute workflow response = execution_client.create_execution(request={"parent": parent}) print(f"Created execution: {response.name}") # Wait for execution to finish, then print results. execution_finished = False backoff_delay = 1 # Start wait with delay of 1 second print('Poll every second for result...') while (not execution_finished): execution = execution_client.get_execution(request={"name": response.name}) execution_finished = execution.state != executions.Execution.State.ACTIVE # If we haven't seen the result yet, wait a second. if not execution_finished: print('- Waiting for results...') time.sleep(backoff_delay) backoff_delay *= 2 # Double the delay to provide exponential backoff. else: print(f'Execution finished with state: {execution.state.name}') print(execution.result) return execution.result # [END workflows_api_quickstart]
11,883
def autocontrast(image, cutoff=0, ignore=None, mask=None): """ Maximize (normalize) image contrast. This function calculates a histogram of the input image (or mask region), removes **cutoff** percent of the lightest and darkest pixels from the histogram, and remaps the image so that the darkest pixel becomes black (0), and the lightest becomes white (255). :param image: The image to process. :param cutoff: The percent to cut off from the histogram on the low and high ends. Either a tuple of (low, high), or a single number for both. :param ignore: The background pixel value (use None for no background). :param mask: histogram used in contrast operation is computed using pixels within the mask. If no mask is given the entire image is used for histogram computation. :return: An image. """ if mask: histogram = image.histogram(mask) else: histogram = image.histogram() lut = [] for layer in range(0, len(histogram), 256): h = histogram[layer : layer + 256] if ignore is not None: # get rid of outliers try: h[ignore] = 0 except TypeError: # assume sequence for ix in ignore: h[ix] = 0 if cutoff: # cut off pixels from both ends of the histogram if not isinstance(cutoff, tuple): cutoff = (cutoff, cutoff) # get number of pixels n = 0 for ix in range(256): n = n + h[ix] # remove cutoff% pixels from the low end cut = n * cutoff[0] // 100 for lo in range(256): if cut > h[lo]: cut = cut - h[lo] h[lo] = 0 else: h[lo] -= cut cut = 0 if cut <= 0: break # remove cutoff% samples from the high end cut = n * cutoff[1] // 100 for hi in range(255, -1, -1): if cut > h[hi]: cut = cut - h[hi] h[hi] = 0 else: h[hi] -= cut cut = 0 if cut <= 0: break # find lowest/highest samples after preprocessing for lo in range(256): if h[lo]: break for hi in range(255, -1, -1): if h[hi]: break if hi <= lo: # don't bother lut.extend(list(range(256))) else: scale = 255.0 / (hi - lo) offset = -lo * scale for ix in range(256): ix = int(ix * scale + offset) if ix < 0: ix = 0 elif ix > 255: ix = 255 lut.append(ix) return _lut(image, lut)
def autocontrast(image, cutoff=0, ignore=None, mask=None): """ Maximize (normalize) image contrast. This function calculates a histogram of the input image (or mask region), removes **cutoff** percent of the lightest and darkest pixels from the histogram, and remaps the image so that the darkest pixel becomes black (0), and the lightest becomes white (255). :param image: The image to process. :param cutoff: The percent to cut off from the histogram on the low and high ends. Either a tuple of (low, high), or a single number for both. :param ignore: The background pixel value (use None for no background). :param mask: Histogram used in contrast operation is computed using pixels within the mask. If no mask is given the entire image is used for histogram computation. :return: An image. """ if mask: histogram = image.histogram(mask) else: histogram = image.histogram() lut = [] for layer in range(0, len(histogram), 256): h = histogram[layer : layer + 256] if ignore is not None: # get rid of outliers try: h[ignore] = 0 except TypeError: # assume sequence for ix in ignore: h[ix] = 0 if cutoff: # cut off pixels from both ends of the histogram if not isinstance(cutoff, tuple): cutoff = (cutoff, cutoff) # get number of pixels n = 0 for ix in range(256): n = n + h[ix] # remove cutoff% pixels from the low end cut = n * cutoff[0] // 100 for lo in range(256): if cut > h[lo]: cut = cut - h[lo] h[lo] = 0 else: h[lo] -= cut cut = 0 if cut <= 0: break # remove cutoff% samples from the high end cut = n * cutoff[1] // 100 for hi in range(255, -1, -1): if cut > h[hi]: cut = cut - h[hi] h[hi] = 0 else: h[hi] -= cut cut = 0 if cut <= 0: break # find lowest/highest samples after preprocessing for lo in range(256): if h[lo]: break for hi in range(255, -1, -1): if h[hi]: break if hi <= lo: # don't bother lut.extend(list(range(256))) else: scale = 255.0 / (hi - lo) offset = -lo * scale for ix in range(256): ix = int(ix * scale + offset) if ix < 0: ix = 0 elif ix > 255: ix = 255 lut.append(ix) return _lut(image, lut)
31,854
def ignore_ransomware_anomaly_command(client: Client, args: Dict[str, Any]) -> str: """Ignore detected anomalous object on Helios. :type client: ``Client`` :param Client: cohesity helios client to use. :type args: ``Dict[str, Any]`` :param args: Dictionary with ignore anomaly parameters. :return: success message of the ignore anomaly operation. :rtype: ``str`` """ # Filter ransomware alert for given object name. alert_id = '' object_name = args.get('object_name') demisto.debug("Performing ignore anomaly operation for object {name}".format(name=object_name)) resp = client.get_ransomware_alerts() for alert in resp: property_dict = _get_property_dict(alert['propertyList']) if property_dict.get('object', "") == object_name: alert_id = alert.get('id') if alert_id == '': raise ValueError('No anomalous object found by given name') # Suppress ransomware alert. client.suppress_ransomware_alert_by_id(alert_id) return "Ignored object {name}".format(name=object_name)
def ignore_ransomware_anomaly_command(client: Client, args: Dict[str, Any]) -> str: """Ignore detected anomalous object on Helios. :type client: ``Client`` :param Client: cohesity helios client to use. :type args: ``Dict[str, Any]`` :param args: Dictionary with ignore anomaly parameters. :return: success message of the ignore anomaly operation. :rtype: ``str`` """ # Filter ransomware alert for given object name. alert_id = '' object_name = args.get('object_name') demisto.debug(f"Performing ignore anomaly operation for object {object_name}.") resp = client.get_ransomware_alerts() for alert in resp: property_dict = _get_property_dict(alert['propertyList']) if property_dict.get('object', "") == object_name: alert_id = alert.get('id') if alert_id == '': raise ValueError('No anomalous object found by given name') # Suppress ransomware alert. client.suppress_ransomware_alert_by_id(alert_id) return "Ignored object {name}".format(name=object_name)
8,663
def test_find_config_local(tmpdir): """Assert function retrieve configuration file from working dir first""" working_dir = tmpdir.mkdir("working") working_dir.join('local.cfg').write('') config_dir = tmpdir.mkdir("config") with cd(working_dir.strpath): found_config = run_script.find_config(config_dir.strpath, 'local.cfg') assert found_config == 'local.cfg' found_config = run_script.find_config(config_dir.strpath, 'local') assert found_config == config_dir.join('local').strpath
def test_find_config_local(tmpdir): """Assert function retrieves configuration file from working dir first""" working_dir = tmpdir.mkdir("working") working_dir.join('local.cfg').write('') config_dir = tmpdir.mkdir("config") with cd(working_dir.strpath): found_config = run_script.find_config(config_dir.strpath, 'local.cfg') assert found_config == 'local.cfg' found_config = run_script.find_config(config_dir.strpath, 'local') assert found_config == config_dir.join('local').strpath
21,934
def _bdschur_condmax_search(aschur, tschur, condmax): """Block-diagonal Schur decomposition search up to condmax Iterates mb03rd with different pmax values until: - result is non-defective; - or condition number of similarity transform is unchanging despite large pmax; - or condition number of similarity transform is close to condmax. Parameters ---------- aschur: (n, n) array real Schur-form matrix tschur: (n, n) array orthogonal transformation giving aschur from some initial matrix a condmax: positive scalar >= 1 maximum condition number of final transformation Returns ------- amodal: n, n array block diagonal Schur form tmodal: similarity transformation give amodal from aschur blksizes: Array of Schur block sizes eigvals: Eigenvalues of amodal (and a, etc.) Notes ----- Outputs as for slycot.mb03rd aschur, tschur are as returned by scipy.linalg.schur. """ try: from slycot import mb03rd except ImportError: raise ControlSlycot("can't find slycot module 'mb03rd'") # see notes on RuntimeError below pmaxlower = None # get lower bound; try condmax ** 0.5 first pmaxlower = condmax ** 0.5 amodal, tmodal, blksizes, eigvals = mb03rd(aschur.shape[0], aschur, tschur, pmax=pmaxlower) if np.linalg.cond(tmodal) <= condmax: reslower = amodal, tmodal, blksizes, eigvals else: pmaxlower = 1.0 amodal, tmodal, blksizes, eigvals = mb03rd(aschur.shape[0], aschur, tschur, pmax=pmaxlower) cond = np.linalg.cond(tmodal) if cond > condmax: msg = 'minimum cond={} > condmax={}; try increasing condmax'.format(cond, condmax) raise RuntimeError(msg) pmax = pmaxlower # phase 1: search for upper bound on pmax for i in range(50): amodal, tmodal, blksizes, eigvals = mb03rd(aschur.shape[0], aschur, tschur, pmax=pmax) cond = np.linalg.cond(tmodal) if cond < condmax: pmaxlower = pmax reslower = amodal, tmodal, blksizes, eigvals else: # upper bound found; go to phase 2 pmaxupper = pmax break if _bdschur_defective(blksizes, eigvals): pmax *= 2 else: return amodal, tmodal, blksizes, eigvals else: # no upper bound found; return current result return reslower # phase 2: bisection search for i in range(50): pmax = (pmaxlower * pmaxupper) ** 0.5 amodal, tmodal, blksizes, eigvals = mb03rd(aschur.shape[0], aschur, tschur, pmax=pmax) cond = np.linalg.cond(tmodal) if cond < condmax: if not _bdschur_defective(blksizes, eigvals): return amodal, tmodal, blksizes, eigvals pmaxlower = pmax reslower = amodal, tmodal, blksizes, eigvals else: pmaxupper = pmax if pmaxupper / pmaxlower < _PMAX_SEARCH_TOL: # hit search limit return reslower else: raise ValueError('bisection failed to converge; pmaxlower={}, pmaxupper={}'.format(pmaxlower, pmaxupper))
def _bdschur_condmax_search(aschur, tschur, condmax): """Block-diagonal Schur decomposition search up to condmax Iterates mb03rd with different pmax values until: - result is non-defective; - or condition number of similarity transform is unchanging despite large pmax; - or condition number of similarity transform is close to condmax. Parameters ---------- aschur: (n, n) array_like real Schur-form matrix tschur: (n, n) array orthogonal transformation giving aschur from some initial matrix a condmax: positive scalar >= 1 maximum condition number of final transformation Returns ------- amodal: n, n array block diagonal Schur form tmodal: similarity transformation give amodal from aschur blksizes: Array of Schur block sizes eigvals: Eigenvalues of amodal (and a, etc.) Notes ----- Outputs as for slycot.mb03rd aschur, tschur are as returned by scipy.linalg.schur. """ try: from slycot import mb03rd except ImportError: raise ControlSlycot("can't find slycot module 'mb03rd'") # see notes on RuntimeError below pmaxlower = None # get lower bound; try condmax ** 0.5 first pmaxlower = condmax ** 0.5 amodal, tmodal, blksizes, eigvals = mb03rd(aschur.shape[0], aschur, tschur, pmax=pmaxlower) if np.linalg.cond(tmodal) <= condmax: reslower = amodal, tmodal, blksizes, eigvals else: pmaxlower = 1.0 amodal, tmodal, blksizes, eigvals = mb03rd(aschur.shape[0], aschur, tschur, pmax=pmaxlower) cond = np.linalg.cond(tmodal) if cond > condmax: msg = 'minimum cond={} > condmax={}; try increasing condmax'.format(cond, condmax) raise RuntimeError(msg) pmax = pmaxlower # phase 1: search for upper bound on pmax for i in range(50): amodal, tmodal, blksizes, eigvals = mb03rd(aschur.shape[0], aschur, tschur, pmax=pmax) cond = np.linalg.cond(tmodal) if cond < condmax: pmaxlower = pmax reslower = amodal, tmodal, blksizes, eigvals else: # upper bound found; go to phase 2 pmaxupper = pmax break if _bdschur_defective(blksizes, eigvals): pmax *= 2 else: return amodal, tmodal, blksizes, eigvals else: # no upper bound found; return current result return reslower # phase 2: bisection search for i in range(50): pmax = (pmaxlower * pmaxupper) ** 0.5 amodal, tmodal, blksizes, eigvals = mb03rd(aschur.shape[0], aschur, tschur, pmax=pmax) cond = np.linalg.cond(tmodal) if cond < condmax: if not _bdschur_defective(blksizes, eigvals): return amodal, tmodal, blksizes, eigvals pmaxlower = pmax reslower = amodal, tmodal, blksizes, eigvals else: pmaxupper = pmax if pmaxupper / pmaxlower < _PMAX_SEARCH_TOL: # hit search limit return reslower else: raise ValueError('bisection failed to converge; pmaxlower={}, pmaxupper={}'.format(pmaxlower, pmaxupper))
54,976
def decompose_hamiltonian(H, hide_identity=False): """Decomposes a Hermitian matrix into a linear combination of Pauli operators. Args: H (array[complex]): an Hermitian matrix of dimension :math:`2^n\times 2^n` Keyword Args: hide_identity (bool): always show ~.Identity observables in the results Returns: tuple[list[float], list[~.Observable]]: Returns a list of tensor products of PennyLane Pauli observables, as well as the corresponding coefficients for each tensor product. **Example:** We can use this function to compute the Pauli operator decomposition of an arbitrary Hermitian matrix: >>> A = np.array([[-2, -2+1j, -2, -2], [-2-1j, 0, 0, -1], [-2, 0, -2, -1], [-2, -1, -1, 0]]) >>> coeffs, obs_list = decompose_hamiltonian(A) >>> coeffs [-1.0, -1.5, -0.5, -1.0, -1.5, -1.0, -0.5, 1.0, -0.5, -0.5] We can use the output coefficients and tensor Pauli terms to construct a :class:`~.Hamiltonian`: >>> H = qml.Hamiltonian(coeffs, obs_list) >>> print(H) (-1.0) [I0 I1] + (-1.5) [X1] + (-0.5) [Y1] + (-1.0) [Z1] + (-1.5) [X0] + (-1.0) [X0 X1] + (-0.5) [X0 Z1] + (1.0) [Y0 Y1] + (-0.5) [Z0 X1] + (-0.5) [Z0 Y1] This Hamiltonian can then be used in defining VQE problems using :class:`~VQECost`. """ n = int(np.log2(len(H))) N = 2 ** n if len(H) - N != 0: raise ValueError("Hamiltonian should be in the form (n^2 x n^2), for any n>=1") if not np.allclose(H, H.conj().T): raise ValueError("The Hamiltonian is not Hermitian") paulis = [qml.Identity, qml.PauliX, qml.PauliY, qml.PauliZ] obs = [] coeffs = [] for term in itertools.product(paulis, repeat=n): matrices = [i._matrix() for i in term] coeff = np.trace(functools.reduce(np.kron, matrices) @ H) / N coeff = np.real_if_close(coeff).item() if not np.allclose(coeff, 0): coeffs.append(coeff) if not all(t is qml.Identity for t in term): obs.append( functools.reduce( matmul, [ t(i) for i, t in enumerate(term) if t is not qml.Identity or not hide_identity ], ) ) else: obs.append(functools.reduce(matmul, [t(i) for i, t in enumerate(term)])) return coeffs, obs
def decompose_hamiltonian(H, hide_identity=False): """Decomposes a Hermitian matrix into a linear combination of Pauli operators. Args: H (array[complex]): an Hermitian matrix of dimension :math:`2^n\times 2^n` Keyword Args: hide_identity (bool): does not include the :class:`~.Identity` observable within the tensor products of the decomposition if ``True`` Returns: tuple[list[float], list[~.Observable]]: Returns a list of tensor products of PennyLane Pauli observables, as well as the corresponding coefficients for each tensor product. **Example:** We can use this function to compute the Pauli operator decomposition of an arbitrary Hermitian matrix: >>> A = np.array([[-2, -2+1j, -2, -2], [-2-1j, 0, 0, -1], [-2, 0, -2, -1], [-2, -1, -1, 0]]) >>> coeffs, obs_list = decompose_hamiltonian(A) >>> coeffs [-1.0, -1.5, -0.5, -1.0, -1.5, -1.0, -0.5, 1.0, -0.5, -0.5] We can use the output coefficients and tensor Pauli terms to construct a :class:`~.Hamiltonian`: >>> H = qml.Hamiltonian(coeffs, obs_list) >>> print(H) (-1.0) [I0 I1] + (-1.5) [X1] + (-0.5) [Y1] + (-1.0) [Z1] + (-1.5) [X0] + (-1.0) [X0 X1] + (-0.5) [X0 Z1] + (1.0) [Y0 Y1] + (-0.5) [Z0 X1] + (-0.5) [Z0 Y1] This Hamiltonian can then be used in defining VQE problems using :class:`~VQECost`. """ n = int(np.log2(len(H))) N = 2 ** n if len(H) - N != 0: raise ValueError("Hamiltonian should be in the form (n^2 x n^2), for any n>=1") if not np.allclose(H, H.conj().T): raise ValueError("The Hamiltonian is not Hermitian") paulis = [qml.Identity, qml.PauliX, qml.PauliY, qml.PauliZ] obs = [] coeffs = [] for term in itertools.product(paulis, repeat=n): matrices = [i._matrix() for i in term] coeff = np.trace(functools.reduce(np.kron, matrices) @ H) / N coeff = np.real_if_close(coeff).item() if not np.allclose(coeff, 0): coeffs.append(coeff) if not all(t is qml.Identity for t in term): obs.append( functools.reduce( matmul, [ t(i) for i, t in enumerate(term) if t is not qml.Identity or not hide_identity ], ) ) else: obs.append(functools.reduce(matmul, [t(i) for i, t in enumerate(term)])) return coeffs, obs
14,466
def report_outcome(matches: List["MatchError"], options) -> int: """Display information about how to skip found rules. Returns exit code, 2 if erros were found, 0 when only warnings were found. """ failure = False msg = """\ You can skip specific rules by adding them to the skip_list section of your configuration file: ```yaml # .ansible-lint warn_list: # or 'skip_list' to silence them completly """ matched_rules = {match.rule.id: match.rule.shortdesc for match in matches} for id in sorted(matched_rules.keys()): if id not in options.warn_list: msg += f" - '{id}' # {matched_rules[id]}'\n" failure = True msg += "```" if failure: console.print(Markdown(msg)) return 2 else: return 0
def report_outcome(matches: List["MatchError"], options) -> int: """Display information about how to skip found rules. Returns exit code, 2 if erros were found, 0 when only warnings were found. """ failure = False msg = """\ You can skip specific rules by adding them to the skip_list section of your configuration file: ```yaml # .ansible-lint warn_list: # or 'skip_list' to silence them completely """ matched_rules = {match.rule.id: match.rule.shortdesc for match in matches} for id in sorted(matched_rules.keys()): if id not in options.warn_list: msg += f" - '{id}' # {matched_rules[id]}'\n" failure = True msg += "```" if failure: console.print(Markdown(msg)) return 2 else: return 0
42,703
def _query_blockchain_info(accounts: list[BTCAddress]) -> dict[BTCAddress, FVal]: if _have_bc1_accounts(accounts): raise BlockchainNotSupported('Blockstream.info does not support Bitcoin Cash') balances: dict[BTCAddress, FVal] = {} accounts_chunks = [accounts[x:x + 80] for x in range(0, len(accounts), 80)] for accounts_chunk in accounts_chunks: params = '|'.join(accounts_chunk) btc_resp = request_get_dict( url=f'https://blockchain.info/multiaddr?active={params}', handle_429=True, # If we get a 429 then their docs suggest 10 seconds # https://blockchain.info/q backoff_in_seconds=10, ) for entry in btc_resp['addresses']: balances[entry['address']] = satoshis_to_btc(FVal(entry['final_balance'])) return balances
def _query_blockchain_info(accounts: list[BTCAddress]) -> dict[BTCAddress, FVal]: if _have_bc1_accounts(accounts): raise BlockchainNotSupported('blockchain.info does not support Bitcoin Cash') balances: dict[BTCAddress, FVal] = {} accounts_chunks = [accounts[x:x + 80] for x in range(0, len(accounts), 80)] for accounts_chunk in accounts_chunks: params = '|'.join(accounts_chunk) btc_resp = request_get_dict( url=f'https://blockchain.info/multiaddr?active={params}', handle_429=True, # If we get a 429 then their docs suggest 10 seconds # https://blockchain.info/q backoff_in_seconds=10, ) for entry in btc_resp['addresses']: balances[entry['address']] = satoshis_to_btc(FVal(entry['final_balance'])) return balances
47,956
def main(): args = build_argparser().parse_args() log.info('Initializing Inference Engine...') ie = IECore() refine_config_plugin = get_plugin_configs(args.device_refine, args.refine_nstreams, args.refine_nthreads) output_config_plugin = get_plugin_configs(args.device_output, args.output_nstreams, args.output_nthreads) log.info('Loading network...') model_proposal = models.ProposalModel(ie, args.model_proposal) model_refine = models.RefineModel(ie, args.model_refine) model_output = models.OutputModel(ie, args.model_output) detector_pipeline = MtcnnPipeline(ie, model_proposal, model_refine, model_output, pm_sync=not args.proposal_async, pm_device=args.device_proposal, rm_batch_size=args.refine_batch_size, rm_config=refine_config_plugin, rm_num_requests=args.refine_requests, rm_device=args.device_refine, om_batch_size=args.output_batch_size, om_config=output_config_plugin, om_num_requests=args.output_requests, om_device=args.device_output) cap = open_images_capture(args.input, args.loop) log.info('Starting inference...') print("Use 'c' key to disable/enable confidence drawing, 'l' to disable/enable landmarks drawing") print("To close the application, press 'CTRL+C' here or switch to the output window and press ESC key") palette = ColorPalette(1) metrics = PerformanceMetrics() video_writer = cv2.VideoWriter() draw_lanmdmark = True draw_confidence = True total_frames = 0 while True: start_time = perf_counter() frame = cap.read() if not frame: break total_frames += 1 if total_frames == 1 : presenter = monitors.Presenter(args.utilization_monitors, 55, (round(frame.shape[1] / 4), round(frame.shape[0] / 8))) if args.output: video_writer = cv2.VideoWriter(args.output, cv2.VideoWriter_fourcc(*'MJPG'), cap.fps(), (frame.shape[1], frame.shape[0])) if not video_writer.isOpened(): raise RuntimeError("Can't open video writer") detections = detector_pipeline.infer(frame) presenter.drawGraphs(frame) draw_detections(frame, detections, palette, None, 0.5, draw_lanmdmark, draw_confidence) metrics.update(start_time, frame) if video_writer.isOpened() and (args.output_limit == -1 or total_frames <= args.output_limit - 1): video_writer.write(frame) if not args.no_show: cv2.imshow('Detection Results', frame) key = cv2.waitKey(1) ESC_KEY = 27 # Quit. if key in {ord('q'), ord('Q'), ESC_KEY}: break if key in {ord('l'), ord('L')}: draw_lanmdmark = not draw_lanmdmark if key in {ord('c'), ord('C')}: draw_confidence = not draw_confidence metrics.print_total()
def main(): args = build_argparser().parse_args() log.info('Initializing Inference Engine...') ie = IECore() refine_config_plugin = get_plugin_configs(args.device_refine, args.refine_nstreams, args.refine_nthreads) output_config_plugin = get_plugin_configs(args.device_output, args.output_nstreams, args.output_nthreads) log.info('Loading network...') model_proposal = models.ProposalModel(ie, args.model_proposal) model_refine = models.RefineModel(ie, args.model_refine) model_output = models.OutputModel(ie, args.model_output) detector_pipeline = MtcnnPipeline(ie, model_proposal, model_refine, model_output, pm_sync=not args.proposal_async, pm_device=args.device_proposal, rm_batch_size=args.refine_batch_size, rm_config=refine_config_plugin, rm_num_requests=args.refine_requests, rm_device=args.device_refine, om_batch_size=args.output_batch_size, om_config=output_config_plugin, om_num_requests=args.output_requests, om_device=args.device_output) cap = open_images_capture(args.input, args.loop) log.info('Starting inference...') print("Use 'c' key to disable/enable confidence drawing, 'l' to disable/enable landmarks drawing") print("To close the application, press 'CTRL+C' here or switch to the output window and press ESC key") palette = ColorPalette(1) metrics = PerformanceMetrics() video_writer = cv2.VideoWriter() draw_lanmdmark = True draw_confidence = True total_frames = 0 while True: start_time = perf_counter() frame = cap.read() if frame is None: break total_frames += 1 if total_frames == 1 : presenter = monitors.Presenter(args.utilization_monitors, 55, (round(frame.shape[1] / 4), round(frame.shape[0] / 8))) if args.output: video_writer = cv2.VideoWriter(args.output, cv2.VideoWriter_fourcc(*'MJPG'), cap.fps(), (frame.shape[1], frame.shape[0])) if not video_writer.isOpened(): raise RuntimeError("Can't open video writer") detections = detector_pipeline.infer(frame) presenter.drawGraphs(frame) draw_detections(frame, detections, palette, None, 0.5, draw_lanmdmark, draw_confidence) metrics.update(start_time, frame) if video_writer.isOpened() and (args.output_limit == -1 or total_frames <= args.output_limit - 1): video_writer.write(frame) if not args.no_show: cv2.imshow('Detection Results', frame) key = cv2.waitKey(1) ESC_KEY = 27 # Quit. if key in {ord('q'), ord('Q'), ESC_KEY}: break if key in {ord('l'), ord('L')}: draw_lanmdmark = not draw_lanmdmark if key in {ord('c'), ord('C')}: draw_confidence = not draw_confidence metrics.print_total()
24,017
def _getKeyNames(keys: int) -> Set[int]: return {_keyNames[1 << i] for i in range(16) if (1 << i) & keys}
def _getKeyNames(keys: int) -> Set[int]: return {keyName for bitFlag, keyName in _keyNames.items() if bitFlag & keys}
57,588
def subparser(subparsers): subparser = subparsers.add_parser('rename') subparser.add_argument('sigfiles', nargs='+') subparser.add_argument('name') subparser.add_argument( '-q', '--quiet', action='store_true', help='suppress non-error output' ) subparser.add_argument( '-d', '--debug', action='store_true', help='print debugging output' ) subparser.add_argument( '-o', '--output', metavar='FILE', help='output to this file', default='-' ) add_ksize_arg(subparser, 31) add_moltype_args(subparser)
def subparser(subparsers): subparser = subparsers.add_parser('rename') subparser.add_argument('sigfiles', nargs='+') subparser.add_argument('name') subparser.add_argument( '-q', '--quiet', action='store_true', help='suppress non-error output' ) subparser.add_argument( '-d', '--debug', action='store_true', help='print debugging output' ) subparser.add_argument( '-o', '--output', metavar='FILE', help='output renamed signature to this file (default stdout)', default='-' ) add_ksize_arg(subparser, 31) add_moltype_args(subparser)
45,797
def normalize( data: torch.Tensor, mean: Union[torch.Tensor, float], std: Union[torch.Tensor, float] ) -> torch.Tensor: r"""Normalize a tensor image with mean and standard deviation. .. math:: \text{input[channel] = (input[channel] - mean[channel]) / std[channel]} Where `mean` is :math:`(M_1, ..., M_n)` and `std` :math:`(S_1, ..., S_n)` for `n` channels, Args: data (torch.Tensor): Image tensor of size :math:`(*, C, ...)`. mean (Union[torch.Tensor, Tuple[float], float]): Mean for each channel. std (Union[torch.Tensor, Tuple[float], float]): Standard deviations for each channel. Return: torch.Tensor: Normalised tensor with same size as input :math:`(*, C, ...)`. Examples: >>> x = torch.rand(1, 4, 3, 3) >>> out = normalize(x, 0.0, 255.) >>> out.shape torch.Size([1, 4, 3, 3]) >>> x = torch.rand(1, 4, 3, 3) >>> mean = torch.zeros(1, 4) >>> std = 255. * torch.ones(1, 4) >>> out = normalize(x, mean, std) >>> out.shape torch.Size([1, 4, 3, 3]) """ shape = data.shape if isinstance(mean, float): mean = torch.tensor([mean] * shape[1], device=data.device, dtype=data.dtype) if isinstance(std, float): std = torch.tensor([std] * shape[1], device=data.device, dtype=data.dtype) if isinstance(mean, tuple): assert len(mean) == len(shape) mean = torch.tensor(mean, device=data.device, dtype=data.dtype) if isinstance(std, tuple): assert len(std) == len(shape) std = torch.tensor(std, device=data.device, dtype=data.dtype) if not isinstance(data, torch.Tensor): raise TypeError("data should be a tensor. Got {}".format(type(data))) if not isinstance(mean, torch.Tensor): raise TypeError("mean should be a tensor or a float. Got {}".format(type(mean))) if not isinstance(std, torch.Tensor): raise TypeError("std should be a tensor or float. Got {}".format(type(std))) # Allow broadcast on channel dimension if mean.shape and mean.shape[0] != 1: if mean.shape[0] != data.shape[-3] and mean.shape[:2] != data.shape[:2]: raise ValueError(f"mean length and number of channels do not match. Got {mean.shape} and {data.shape}.") # Allow broadcast on channel dimension if std.shape and std.shape[0] != 1: if std.shape[0] != data.shape[-3] and std.shape[:2] != data.shape[:2]: raise ValueError(f"std length and number of channels do not match. Got {std.shape} and {data.shape}.") mean = torch.as_tensor(mean, device=data.device, dtype=data.dtype) std = torch.as_tensor(std, device=data.device, dtype=data.dtype) if mean.shape: mean = mean[..., :, None] if std.shape: std = std[..., :, None] out: torch.Tensor = (data.view(shape[0], shape[1], -1) - mean) / std return out.view(shape)
def normalize( data: torch.Tensor, mean: Union[torch.Tensor, float], std: Union[torch.Tensor, float] ) -> torch.Tensor: r"""Normalize a tensor image with mean and standard deviation. .. math:: \text{input[channel] = (input[channel] - mean[channel]) / std[channel]} Where `mean` is :math:`(M_1, ..., M_n)` and `std` :math:`(S_1, ..., S_n)` for `n` channels, Args: data (torch.Tensor): Image tensor of size :math:`(*, C, ...)`. mean (Union[torch.Tensor, Tuple[float], float]): Mean for each channel. std (Union[torch.Tensor, Tuple[float, ...], float]): Standard deviations for each channel. Return: torch.Tensor: Normalised tensor with same size as input :math:`(*, C, ...)`. Examples: >>> x = torch.rand(1, 4, 3, 3) >>> out = normalize(x, 0.0, 255.) >>> out.shape torch.Size([1, 4, 3, 3]) >>> x = torch.rand(1, 4, 3, 3) >>> mean = torch.zeros(1, 4) >>> std = 255. * torch.ones(1, 4) >>> out = normalize(x, mean, std) >>> out.shape torch.Size([1, 4, 3, 3]) """ shape = data.shape if isinstance(mean, float): mean = torch.tensor([mean] * shape[1], device=data.device, dtype=data.dtype) if isinstance(std, float): std = torch.tensor([std] * shape[1], device=data.device, dtype=data.dtype) if isinstance(mean, tuple): assert len(mean) == len(shape) mean = torch.tensor(mean, device=data.device, dtype=data.dtype) if isinstance(std, tuple): assert len(std) == len(shape) std = torch.tensor(std, device=data.device, dtype=data.dtype) if not isinstance(data, torch.Tensor): raise TypeError("data should be a tensor. Got {}".format(type(data))) if not isinstance(mean, torch.Tensor): raise TypeError("mean should be a tensor or a float. Got {}".format(type(mean))) if not isinstance(std, torch.Tensor): raise TypeError("std should be a tensor or float. Got {}".format(type(std))) # Allow broadcast on channel dimension if mean.shape and mean.shape[0] != 1: if mean.shape[0] != data.shape[-3] and mean.shape[:2] != data.shape[:2]: raise ValueError(f"mean length and number of channels do not match. Got {mean.shape} and {data.shape}.") # Allow broadcast on channel dimension if std.shape and std.shape[0] != 1: if std.shape[0] != data.shape[-3] and std.shape[:2] != data.shape[:2]: raise ValueError(f"std length and number of channels do not match. Got {std.shape} and {data.shape}.") mean = torch.as_tensor(mean, device=data.device, dtype=data.dtype) std = torch.as_tensor(std, device=data.device, dtype=data.dtype) if mean.shape: mean = mean[..., :, None] if std.shape: std = std[..., :, None] out: torch.Tensor = (data.view(shape[0], shape[1], -1) - mean) / std return out.view(shape)
37,695
def idna_decode(name): pieces = name.lower().split('.') if any([p.startswith('xn--') for p in pieces]): # it's idna if name.startswith('*'): # idna.decode doesn't like the * return f'*.{_decode(name[2:])}' return _decode(name) # not idna, just return as-is return name
def idna_decode(name): pieces = name.lower().split('.') if any(p.startswith('xn--') for p in pieces): # it's idna if name.startswith('*'): # idna.decode doesn't like the * return f'*.{_decode(name[2:])}' return _decode(name) # not idna, just return as-is return name
2,878
def test_assert_ovr_roc_auc_chance_level(): # Build equal probability predictions to multiclass problem y_true = np.array([3, 1, 2, 0]) y_pred = 0.25 * np.ones((4, 4)) macro_roc_auc = roc_auc_score(y_true, y_pred, multi_class="ovr", average="macro") assert_allclose(macro_roc_auc, 0.5) micro_roc_auc = roc_auc_score(y_true, y_pred, multi_class="ovr", average="micro") assert_allclose(micro_roc_auc, 0.5)
def test_assert_ovr_roc_auc_chance_level(): # Build equal probability predictions to multiclass problem y_true = np.array([3, 1, 2, 0]) y_pred = 0.25 * np.ones((4, 4)) macro_roc_auc = roc_auc_score(y_true, y_pred, multi_class="ovr", average="macro") assert_allclose(macro_roc_auc, 0.5) micro_roc_auc = roc_auc_score(y_true, y_pred, multi_class="ovr", average="micro") assert micro_roc_auc == pytest.approx(0.5)
31,522
def main() -> None: """main function, parses params and runs command functions :return: :rtype: """ # get the service API url base_url = demisto.params()['url'] api_key = demisto.params()['apikey'] min_severity = demisto.params()['minSeverity'] # mandatory alert_types = demisto.params()['categories'] # mandatory show_only_active = demisto.params()['ShowOnlyActive'] # mandatory verify_certificate = not demisto.params().get('insecure', False) proxy = demisto.params().get('proxy', False) demisto.debug(f'Command being called is {demisto.command()}') try: headers = { 'Authorization': 'Token {}'.format(api_key) } client = Client( base_url=base_url, verify=verify_certificate, headers=headers, proxy=proxy) if demisto.command() == 'test-module': # This is the call made when pressing the integration Test button. result = test_module(client) return_results(result) elif demisto.command() == 'cyberpion-get-connections-from-domain': return_results(get_domain_connections_command(client, demisto.args())) elif demisto.command() == 'cyberpion-get-connections-to-domain': return_results(get_domain_connections_command(client, demisto.args(), reverse=True)) elif demisto.command() == 'cyberpion-get-domain-state': return_results(get_domain_state_command(client, demisto.args())) elif demisto.command() == 'cyberpion-get-domain-action-items': return_results(get_domain_action_items_command(client, demisto.args(), min_severity=min_severity, alert_types=alert_types, show_only_active=show_only_active)) elif demisto.command() == 'fetch-incidents': # Set and define the fetch incidents command to run after activated via integration settings. max_fetch = demisto.params().get('maxFetch') if not max_fetch: max_fetch = DEFAULT_MAX_INCIDENTS_TO_FETCH try: max_fetch = int(max_fetch) except ValueError: raise ValueError('max_fetch must be an int') if max_fetch > DEFAULT_MAX_INCIDENTS_TO_FETCH: max_fetch = DEFAULT_MAX_INCIDENTS_TO_FETCH new_last_run_dict, incidents = fetch_incidents( client=client, max_fetch=max_fetch, min_severity=min_severity, show_only_active=show_only_active, alert_types=alert_types ) # create incidents demisto.incidents(incidents) # saves next_run for the time fetch-incidents is invoked demisto.setLastRun(new_last_run_dict) else: raise ValueError(f'no such command: {demisto.command()}') # Log exceptions and return errors except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Cyberpion integration: Failed to execute {demisto.command()} command.\nError:\n{str(e)}')
def main() -> None: """main function, parses params and runs command functions :return: :rtype: """ # get the service API url base_url = demisto.params()['url'] api_key = demisto.params()['apikey'] min_severity = demisto.params()['minSeverity'] # mandatory alert_types = demisto.params()['categories'] # mandatory show_only_active = demisto.params()['ShowOnlyActive'] # mandatory verify_certificate = not demisto.params().get('insecure', False) proxy = demisto.params().get('proxy', False) demisto.debug(f'Command being called is {demisto.command()}') try: headers = { 'Authorization': 'Token {}'.format(api_key) } client = Client( base_url=base_url, verify=verify_certificate, headers=headers, proxy=proxy) if demisto.command() == 'test-module': # This is the call made when pressing the integration Test button. result = test_module(client) return_results(result) elif demisto.command() == 'cyberpion-get-connections-from-domain': return_results(get_domain_connections_command(client, demisto.args())) elif demisto.command() == 'cyberpion-get-connections-to-domain': return_results(get_domain_connections_command(client, demisto.args(), reverse=True)) elif demisto.command() == 'cyberpion-get-domain-state': return_results(get_domain_state_command(client, demisto.args())) elif demisto.command() == 'cyberpion-get-domain-action-items': return_results(get_domain_action_items_command(client, demisto.args(), min_severity=min_severity, alert_types=alert_types, show_only_active=show_only_active)) elif demisto.command() == 'fetch-incidents': # Set and define the fetch incidents command to run after activated via integration settings. max_fetch = demisto.params().get('maxFetch') if not max_fetch: max_fetch = DEFAULT_MAX_INCIDENTS_TO_FETCH try: max_fetch = int(max_fetch) except ValueError: raise ValueError('max_fetch must be an int') if max_fetch > DEFAULT_MAX_INCIDENTS_TO_FETCH: max_fetch = DEFAULT_MAX_INCIDENTS_TO_FETCH new_last_run_dict, incidents = fetch_incidents( client=client, max_fetch=max_fetch, min_severity=min_severity, show_only_active=show_only_active, alert_types=alert_types ) # create incidents demisto.incidents(incidents) # saves next_run for the time fetch-incidents is invoked demisto.setLastRun(new_last_run_dict) else: raise NotImplemented(f'no such command: {demisto.command()}') # Log exceptions and return errors except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Cyberpion integration: Failed to execute {demisto.command()} command.\nError:\n{str(e)}')
7,171
def equalize_hist(image, nbins=256, mask=None, source_range='image'): """Return image after histogram equalization. Parameters ---------- image : array Image array. nbins : int, optional Number of bins used to calculate histogram. This value is ignored for integer arrays, for which each integer is its own bin. mask: ndarray of bools or 0s and 1s, optional Array of same shape as `image`. Only points at which mask == True are used for the equalization, which is applied to the whole image. source_range : string, optional 'image' (default) determines the range from the input image. 'dtype' determines the range from the expected range of the images of that data type. Returns ------- out : float array Image array after histogram equalization. Notes ----- This function is adapted from [1]_ with the author's permission. References ---------- .. [1] http://www.janeriksolem.net/histogram-equalization-with-python-and.html .. [2] https://en.wikipedia.org/wiki/Histogram_equalization """ if mask is not None: mask = np.array(mask, dtype=bool) cdf, bin_centers = cumulative_distribution(image[mask], nbins, source_range=source_range) else: cdf, bin_centers = cumulative_distribution(image, nbins, source_range=source_range) out = np.interp(image.flat, bin_centers, cdf) return out.reshape(image.shape)
def equalize_hist(image, nbins=256, mask=None, *, source_range='image'): """Return image after histogram equalization. Parameters ---------- image : array Image array. nbins : int, optional Number of bins used to calculate histogram. This value is ignored for integer arrays, for which each integer is its own bin. mask: ndarray of bools or 0s and 1s, optional Array of same shape as `image`. Only points at which mask == True are used for the equalization, which is applied to the whole image. source_range : string, optional 'image' (default) determines the range from the input image. 'dtype' determines the range from the expected range of the images of that data type. Returns ------- out : float array Image array after histogram equalization. Notes ----- This function is adapted from [1]_ with the author's permission. References ---------- .. [1] http://www.janeriksolem.net/histogram-equalization-with-python-and.html .. [2] https://en.wikipedia.org/wiki/Histogram_equalization """ if mask is not None: mask = np.array(mask, dtype=bool) cdf, bin_centers = cumulative_distribution(image[mask], nbins, source_range=source_range) else: cdf, bin_centers = cumulative_distribution(image, nbins, source_range=source_range) out = np.interp(image.flat, bin_centers, cdf) return out.reshape(image.shape)
48,661
def load_font(prefix, ttf_filename, charmap_filename, directory=None): """ Loads a font file and the associated charmap. If ``directory`` the files will be looked for in the qtawesome ``fonts`` directory. Parameters ---------- prefix: str Prefix string to be used when accessing a given font set ttf_filename: str Ttf font filename charmap_filename: str Character map filename directory: str or None, optional Directory path for font and charmap files Example ------- If you want to load a font ``myicon.tff`` with a ``myicon-charmap.json`` charmap added to the qtawesome ``fonts`` directory (usually located at ``</path/to/lib/python>/site-packages/qtawesome/fonts/``) you can use:: qta.load_font( 'myicon', 'myicon.ttf', 'myicon-charmap.json' ) However, if you want to load a font ``myicon.tff`` with a ``myicon-charmap.json`` charmap located in a specific path outside the qtawesome ``font`` directory like for example ``/path/to/myproject/fonts`` you can use:: qta.load_font( 'myicon', 'myicon.ttf', 'myicon-charmap.json', directory='/path/to/myproject/fonts' ) """ return _instance().load_font(prefix, ttf_filename, charmap_filename, directory)
def load_font(prefix, ttf_filename, charmap_filename, directory=None): """ Loads a font file and the associated charmap. If ``directory`` is passed, the files will be looked for in the qtawesome ``fonts`` directory. Parameters ---------- prefix: str Prefix string to be used when accessing a given font set ttf_filename: str Ttf font filename charmap_filename: str Character map filename directory: str or None, optional Directory path for font and charmap files Example ------- If you want to load a font ``myicon.tff`` with a ``myicon-charmap.json`` charmap added to the qtawesome ``fonts`` directory (usually located at ``</path/to/lib/python>/site-packages/qtawesome/fonts/``) you can use:: qta.load_font( 'myicon', 'myicon.ttf', 'myicon-charmap.json' ) However, if you want to load a font ``myicon.tff`` with a ``myicon-charmap.json`` charmap located in a specific path outside the qtawesome ``font`` directory like for example ``/path/to/myproject/fonts`` you can use:: qta.load_font( 'myicon', 'myicon.ttf', 'myicon-charmap.json', directory='/path/to/myproject/fonts' ) """ return _instance().load_font(prefix, ttf_filename, charmap_filename, directory)
13,587
def rand_QB(A, target_rank=None, distribution='normal', oversampling=0, powerIterations=0): """ randomisierte QB-Zerlegung See Algorithm 3.1 in [EMKB19]_. Parameters ---------- A : The |VectorArray| for which the randomized QB Decomposition is to be computed. target_rank : int The desired rank for the decomposition. If None rank = len(A). distribution : str Distribution used for the random projectionmatrix Omega. (`'normal'` or `'uniform'`) oversampling : int Oversamplingparameter. Number of extra columns of the projectionmatrix. powerIterations : int Number of power Iterations. Returns ------- Q : |VectorArray| containig an approximate optimal Basis for the Image of the Inputmatrix A. len(Q) = target_rank B : Numpy Array. Projection of the Input Matrix into the lower dimensional subspace. """ assert isinstance(A, VectorArray) assert target_rank is None or target_rank <= len(A) assert distribution in ('normal', 'uniform') if A.dim == 0 or len(A) == 0: return A.space.zeros(), np.zeros((target_rank, len(A))) rank = len(A) if target_rank is None else target_rank + oversampling target_rank = len(A) if target_rank is None else target_rank Omega = np.random.normal(0, 1, (rank, len(A))) if distribution == 'normal' else np.random.rand(rank, len(A)) Y = A.lincomb(Omega)[:target_rank] # Power Iterations if(powerIterations > 0): for i in range(powerIterations): Q = gram_schmidt(Y)[:target_rank] Z, _ = spla.qr(A.inner(Q)) Y = A.lincomb(Z)[:target_rank] Q = gram_schmidt(Y)[:target_rank] B = Q.inner(A) return Q, B
def rand_QB(A, target_rank=None, distribution='normal', oversampling=0, powerIterations=0): """ Randomized QB decomposition. See Algorithm 3.1 in [EMKB19]_. Parameters ---------- A : The |VectorArray| for which the randomized QB Decomposition is to be computed. target_rank : int The desired rank for the decomposition. If None rank = len(A). distribution : str Distribution used for the random projectionmatrix Omega. (`'normal'` or `'uniform'`) oversampling : int Oversamplingparameter. Number of extra columns of the projectionmatrix. powerIterations : int Number of power Iterations. Returns ------- Q : |VectorArray| containig an approximate optimal Basis for the Image of the Inputmatrix A. len(Q) = target_rank B : Numpy Array. Projection of the Input Matrix into the lower dimensional subspace. """ assert isinstance(A, VectorArray) assert target_rank is None or target_rank <= len(A) assert distribution in ('normal', 'uniform') if A.dim == 0 or len(A) == 0: return A.space.zeros(), np.zeros((target_rank, len(A))) rank = len(A) if target_rank is None else target_rank + oversampling target_rank = len(A) if target_rank is None else target_rank Omega = np.random.normal(0, 1, (rank, len(A))) if distribution == 'normal' else np.random.rand(rank, len(A)) Y = A.lincomb(Omega)[:target_rank] # Power Iterations if(powerIterations > 0): for i in range(powerIterations): Q = gram_schmidt(Y)[:target_rank] Z, _ = spla.qr(A.inner(Q)) Y = A.lincomb(Z)[:target_rank] Q = gram_schmidt(Y)[:target_rank] B = Q.inner(A) return Q, B
32,296
def check_security_zones(topology: Topology, device_filter_string: str = None) -> ConfigurationHygieneCheckResult: """ Check configured security zones have correct settings. :param topology: `Topology` instance !no-auto-argument :param device_filter_string: String to filter to only check given device """ return HygieneLookups.check_security_zones(topology, device_filter_str=device_filter_string)
def check_security_zones(topology: Topology, device_filter_string: Optional[str] = None) -> ConfigurationHygieneCheckResult: """ Check configured security zones have correct settings. :param topology: `Topology` instance !no-auto-argument :param device_filter_string: String to filter to only check given device """ return HygieneLookups.check_security_zones(topology, device_filter_str=device_filter_string)
8,811
def test_isupport_getattr(): """Test using ISUPPORT parameter as read-only attributes.""" instance = isupport.ISupport(awaylen=50) assert hasattr(instance, 'AWAYLEN') assert not hasattr(instance, 'awaylen'), 'attributes are ALL_UPPERCASE' assert not hasattr(instance, 'UNKNOWN') assert instance.AWAYLEN == 50 # you can't set attributes yourself with pytest.raises(AttributeError): instance.AWAYLEN = 20 with pytest.raises(AttributeError): instance.awaylen = 20 with pytest.raises(AttributeError): instance.UNKNOWN = 'not possible'
def test_isupport_getattr(): """Test using ISUPPORT parameters as read-only attributes.""" instance = isupport.ISupport(awaylen=50) assert hasattr(instance, 'AWAYLEN') assert not hasattr(instance, 'awaylen'), 'attributes are ALL_UPPERCASE' assert not hasattr(instance, 'UNKNOWN') assert instance.AWAYLEN == 50 # you can't set attributes yourself with pytest.raises(AttributeError): instance.AWAYLEN = 20 with pytest.raises(AttributeError): instance.awaylen = 20 with pytest.raises(AttributeError): instance.UNKNOWN = 'not possible'
22,220
def fill_template(template_text, context=None, retry=10, compiler_class=Compiler, first_exception=None, futurized=False, **kwargs): """Fill a cheetah template out for specified context. If template_text is None, an exception will be thrown, if context is None (the default) - keyword arguments to this function will be used as the context. """ if template_text is None: raise TypeError("Template text specified as None to fill_template.") if not context: context = kwargs klass = Template.compile(source=template_text, compilerClass=compiler_class) t = klass(searchList=[context]) try: return unicodify(t) except NotFound as e: if first_exception is None: first_exception = e if retry > 0 and sys.version_info.major > 2: tb = e.__traceback__ last_stack = traceback.extract_tb(tb)[-1] if last_stack.name == '<listcomp>': # On python 3 list,dict and set comprehensions as well as generator expressions # have their own local scope, which prevents accessing frame variables in cheetah. # We can work around this by replacing `$var` with `var` var_not_found = e.args[0].split("'")[1] replace_str = 'VFFSL(SL,"%s",True)' % var_not_found lineno = last_stack.lineno - 1 module_code = t._CHEETAH_generatedModuleCode.splitlines() module_code[lineno] = module_code[lineno].replace(replace_str, var_not_found) module_code = "\n".join(module_code) compiler_class = create_compiler_class(module_code) return fill_template(template_text=template_text, context=context, retry=retry - 1, compiler_class=compiler_class, first_exception=first_exception ) raise first_exception or e except Exception as e: if first_exception is None: first_exception = e if not futurized: # Possibly an error caused by attempting to run python 2 # template code on python 3. Run the generated module code # through futurize and hope for the best. module_code = t._CHEETAH_generatedModuleCode module_code = futurize_preprocessor(module_code) compiler_class = create_compiler_class(module_code) return fill_template(template_text=template_text, context=context, retry=retry, compiler_class=compiler_class, first_exception=first_exception, futurized=True ) raise first_exception or e
def fill_template(template_text, context=None, retry=10, compiler_class=Compiler, first_exception=None, futurized=False, **kwargs): """Fill a cheetah template out for specified context. If template_text is None, an exception will be thrown, if context is None (the default) - keyword arguments to this function will be used as the context. """ if template_text is None: raise TypeError("Template text specified as None to fill_template.") if not context: context = kwargs klass = Template.compile(source=template_text, compilerClass=compiler_class) t = klass(searchList=[context]) try: return unicodify(t) except NotFound as e: if first_exception is None: first_exception = e if retry > 0 and sys.version_info.major > 2: tb = e.__traceback__ last_stack = traceback.extract_tb(tb)[-1] if last_stack.name == '<listcomp>': # On python 3 list,dict and set comprehensions as well as generator expressions # have their own local scope, which prevents accessing frame variables in cheetah. # We can work around this by replacing `$var` with `var` var_not_found = e.args[0].split("'")[1] replace_str = 'VFFSL(SL,"%s",True)' % var_not_found lineno = last_stack.lineno - 1 module_code = t._CHEETAH_generatedModuleCode.splitlines() module_code[lineno] = module_code[lineno].replace(replace_str, var_not_found) module_code = "\n".join(module_code) compiler_class = create_compiler_class(module_code) return fill_template(template_text=template_text, context=context, retry=retry - 1, compiler_class=compiler_class, first_exception=first_exception ) raise first_exception or e except Exception as e: if first_exception is None: first_exception = e if not futurized and sys.version_info.major > 2: # Possibly an error caused by attempting to run python 2 # template code on python 3. Run the generated module code # through futurize and hope for the best. module_code = t._CHEETAH_generatedModuleCode module_code = futurize_preprocessor(module_code) compiler_class = create_compiler_class(module_code) return fill_template(template_text=template_text, context=context, retry=retry, compiler_class=compiler_class, first_exception=first_exception, futurized=True ) raise first_exception or e
58,025
def main(): params = demisto.params() # pragma: no cover filters: Dict[str, Optional[Union[str, list]]] = build_feed_filters(params) # pragma: no cover indicators_type: list = argToList(params.get('indicator_type', [])) # pragma: no cover params['feed_name_to_config'] = create_fetch_configuration(indicators_type, filters, params) # pragma: no cover PACK_VERSION = get_pack_version() # pragma: no cover DEMISTO_VERSION = demisto.demistoVersion() # pragma: no cover DEMISTO_VERSION = f'{DEMISTO_VERSION["version"]}.{DEMISTO_VERSION["buildNumber"]}' # pragma: no cover params['headers'] = {"Content-Type": "application/json", # pragma: no cover 'auth-token': params.get('api_token').get("password"), # pragma: no cover 'User-Agent': f'AccentureCTI Pack/{PACK_VERSION} Palo Alto XSOAR/{DEMISTO_VERSION}'} # pragma: no cover feed_main(params, 'ACTI Indicator Feed', 'acti') # pragma: no cover
def main(): # pragma: no cover params = demisto.params() filters: Dict[str, Optional[Union[str, list]]] = build_feed_filters(params) indicators_type: list = argToList(params.get('indicator_type', [])) params['feed_name_to_config'] = create_fetch_configuration(indicators_type, filters, params) PACK_VERSION = get_pack_version() DEMISTO_VERSION = demisto.demistoVersion() DEMISTO_VERSION = f'{DEMISTO_VERSION["version"]}.{DEMISTO_VERSION["buildNumber"]}' params['headers'] = {"Content-Type": "application/json", 'auth-token': params.get('api_token').get("password"), 'User-Agent': f'AccentureCTI Pack/{PACK_VERSION} Palo Alto XSOAR/{DEMISTO_VERSION}'} feed_main(params, 'ACTI Indicator Feed', 'acti')
42,654
def trade_from_conversion(trade_a: Dict[str, Any], trade_b: Dict[str, Any]) -> Optional[Trade]: """Turn information from a conversion into a trade Mary raise: - UnknownAsset due to Asset instantiation - DeserializationError due to unexpected format of dict entries - KeyError due to dict entires missing an expected entry """ # Check that the status is complete if trade_a['status'] != 'completed': return None # Trade b will represent the asset we are converting to if trade_b['amount']['amount'].startswith('-'): trade_a, trade_b = trade_b, trade_a timestamp = deserialize_timestamp_from_date(trade_a['updated_at'], 'iso8601', 'coinbase') tx_amount = AssetAmount(abs(deserialize_asset_amount(trade_a['amount']['amount']))) tx_asset = asset_from_coinbase(trade_a['amount']['currency'], time=timestamp) native_amount = deserialize_asset_amount(trade_b['amount']['amount']) native_asset = asset_from_coinbase(trade_b['amount']['currency'], time=timestamp) amount = tx_amount # The rate is how much you get/give in quotecurrency if you buy/sell 1 unit of base currency rate = Price(native_amount / tx_amount) # Obtain fee amount in the native currency using data from both trades amount_after_fee = deserialize_asset_amount(trade_b['native_amount']['amount']) amount_before_fee = deserialize_asset_amount(trade_a['native_amount']['amount']) # amount_after_fee + amount_before_fee is a negative amount and the fee needs to be positive conversion_native_fee_amount = abs(amount_after_fee + amount_before_fee) if ZERO not in (tx_amount, conversion_native_fee_amount, amount_before_fee): # To get the asset in wich the fee is nominated we pay attention to the creation # date of each event. As per hour hypothesis the fee is nominated in the asset # for wich the first transaction part was intialized time_created_a = deserialize_timestamp_from_date( date=trade_a['created_at'], formatstr='iso8601', location='coinbase', ) time_created_b = deserialize_timestamp_from_date( date=trade_b['created_at'], formatstr='iso8601', location='coinbase', ) if time_created_a < time_created_b: # We have the fee amount in the native currency. To get it in the # converted asset we have to get the rate asset_native_rate = tx_amount / abs(amount_before_fee) fee_amount = Fee(conversion_native_fee_amount * asset_native_rate) fee_asset = asset_from_coinbase(trade_a['amount']['currency'], time=timestamp) else: trade_b_amount = abs(deserialize_asset_amount(trade_b['amount']['amount'])) asset_native_rate = trade_b_amount / abs(amount_after_fee) fee_amount = Fee(conversion_native_fee_amount * asset_native_rate) fee_asset = asset_from_coinbase(trade_b['amount']['currency'], time=timestamp) else: fee_amount = Fee(ZERO) fee_asset = asset_from_coinbase(trade_a['amount']['currency'], time=timestamp) return Trade( timestamp=timestamp, location=Location.COINBASE, # in coinbase you are buying/selling tx_asset for native_asset base_asset=tx_asset, quote_asset=native_asset, trade_type=TradeType.SELL, amount=amount, rate=rate, fee=fee_amount, fee_currency=fee_asset, link=str(trade_a['trade']['id']), )
def trade_from_conversion(trade_a: Dict[str, Any], trade_b: Dict[str, Any]) -> Optional[Trade]: """Turn information from a conversion into a trade Mary raise: - UnknownAsset due to Asset instantiation - DeserializationError due to unexpected format of dict entries - KeyError due to dict entires missing an expected entry """ # Check that the status is complete if trade_a['status'] != 'completed': return None # Trade b will represent the asset we are converting to if trade_b['amount']['amount'].startswith('-'): trade_a, trade_b = trade_b, trade_a timestamp = deserialize_timestamp_from_date(trade_a['updated_at'], 'iso8601', 'coinbase') tx_amount = AssetAmount(abs(deserialize_asset_amount(trade_a['amount']['amount']))) tx_asset = asset_from_coinbase(trade_a['amount']['currency'], time=timestamp) native_amount = deserialize_asset_amount(trade_b['amount']['amount']) native_asset = asset_from_coinbase(trade_b['amount']['currency'], time=timestamp) amount = tx_amount # The rate is how much you get/give in quotecurrency if you buy/sell 1 unit of base currency rate = Price(native_amount / tx_amount) # Obtain fee amount in the native currency using data from both trades amount_after_fee = deserialize_asset_amount(trade_b['native_amount']['amount']) amount_before_fee = deserialize_asset_amount(trade_a['native_amount']['amount']) # amount_after_fee + amount_before_fee is a negative amount and the fee needs to be positive conversion_native_fee_amount = abs(amount_after_fee + amount_before_fee) if ZERO not in (tx_amount, conversion_native_fee_amount, amount_before_fee): # To get the asset in wich the fee is nominated we pay attention to the creation # date of each event. As per our hypothesis the fee is nominated in the asset # for wich the first transaction part was intialized time_created_a = deserialize_timestamp_from_date( date=trade_a['created_at'], formatstr='iso8601', location='coinbase', ) time_created_b = deserialize_timestamp_from_date( date=trade_b['created_at'], formatstr='iso8601', location='coinbase', ) if time_created_a < time_created_b: # We have the fee amount in the native currency. To get it in the # converted asset we have to get the rate asset_native_rate = tx_amount / abs(amount_before_fee) fee_amount = Fee(conversion_native_fee_amount * asset_native_rate) fee_asset = asset_from_coinbase(trade_a['amount']['currency'], time=timestamp) else: trade_b_amount = abs(deserialize_asset_amount(trade_b['amount']['amount'])) asset_native_rate = trade_b_amount / abs(amount_after_fee) fee_amount = Fee(conversion_native_fee_amount * asset_native_rate) fee_asset = asset_from_coinbase(trade_b['amount']['currency'], time=timestamp) else: fee_amount = Fee(ZERO) fee_asset = asset_from_coinbase(trade_a['amount']['currency'], time=timestamp) return Trade( timestamp=timestamp, location=Location.COINBASE, # in coinbase you are buying/selling tx_asset for native_asset base_asset=tx_asset, quote_asset=native_asset, trade_type=TradeType.SELL, amount=amount, rate=rate, fee=fee_amount, fee_currency=fee_asset, link=str(trade_a['trade']['id']), )
4,563
def plot_surf(surf_mesh, surf_map=None, bg_map=None, hemi='left', view='lateral', cmap=None, colorbar=False, avg_method='mean', threshold=None, alpha='auto', bg_on_data=False, darkness=1, vmin=None, vmax=None, cbar_vmin=None, cbar_vmax=None, cbar_tick_format='%.2g', title=None, output_file=None, axes=None, figure=None, **kwargs): """Plotting of surfaces with optional background and data .. versionadded:: 0.3 Parameters ---------- surf_mesh : str or list of two numpy.ndarray or Mesh Surface mesh geometry, can be a file (valid formats are .gii or Freesurfer specific files such as .orig, .pial, .sphere, .white, .inflated) or a list of two Numpy arrays, the first containing the x-y-z coordinates of the mesh vertices, the second containing the indices (into coords) of the mesh faces, or a Mesh object with "coordinates" and "faces" attributes. surf_map : str or numpy.ndarray, optional Data to be displayed on the surface mesh. Can be a file (valid formats are .gii, .mgz, .nii, .nii.gz, or Freesurfer specific files such as .thickness, .curv, .sulc, .annot, .label) or a Numpy array with a value for each vertex of the surf_mesh. bg_map : Surface data object (to be defined), optional Background image to be plotted on the mesh underneath the surf_data in greyscale, most likely a sulcal depth map for realistic shading. hemi : {'left', 'right'}, optional Hemisphere to display. Default='left'. view : {'lateral', 'medial', 'dorsal', 'ventral', 'anterior', 'posterior'}, optional View of the surface that is rendered. Default='lateral'. cmap : matplotlib colormap, str or colormap object, optional To use for plotting of the stat_map. Either a string which is a name of a matplotlib colormap, or a matplotlib colormap object. If None, matplotlib default will be chosen. colorbar : bool, optional If True, a colorbar of surf_map is displayed. Default=False. avg_method : {'mean', 'median', 'min', 'max', custom function}, optional How to average vertex values to derive the face value, mean results in smooth, median in sharp boundaries, min or max for sparse matrices. You can also pass a custom function which will be executed though `numpy.apply_along_axis`. Here is an example of a custom function: .. code-block:: python def custom_function(vertices): return vertices[0] * vertices[1] * vertices[2]. Default='mean'. threshold : a number or None, default is None. If None is given, the image is not thresholded. If a number is given, it is used to threshold the image, values below the threshold (in absolute value) are plotted as transparent. alpha : float or 'auto', optional Alpha level of the mesh (not surf_data). If 'auto' is chosen, alpha will default to .5 when no bg_map is passed and to 1 if a bg_map is passed. Default='auto'. bg_on_data : bool, optional If True, and a bg_map is specified, the surf_data data is multiplied by the background image, so that e.g. sulcal depth is visible beneath the surf_data. NOTE: that this non-uniformly changes the surf_data values according to e.g the sulcal depth. Default=False. darkness : float between 0 and 1, optional Specifying the darkness of the background image. 1 indicates that the original values of the background are used. .5 indicates the background values are reduced by half before being applied. Default=1. vmin, vmax : float, float, optional Lower / upper bound to plot surf_data values. If None, the values will be set to min/max of the data. Default values are None. cbar_vmin, cbar_vmax : float, float, optional Lower / upper bounds for the colorbar. If None, the values will be set from the data. Default values are None. cbar_tick_format : str, optional Controls how to format the tick labels of the colorbar. Ex: use "%i" to display as integers. Default='%.2g' for scientific notation. title : str, optional Figure title. output_file : str, or None, optional The name of an image file to export plot to. Valid extensions are .png, .pdf, .svg. If output_file is not None, the plot is saved to a file, and the display is closed. axes : instance of matplotlib axes, None, optional The axes instance to plot to. The projection must be '3d' (e.g., `figure, axes = plt.subplots(subplot_kw={'projection': '3d'})`, where axes should be passed.). If None, a new axes is created. figure : instance of matplotlib figure, None, optional The figure instance to plot to. If None, a new figure is created. See Also -------- nilearn.datasets.fetch_surf_fsaverage : For surface data object to be used as background map for this plotting function. nilearn.plotting.plot_surf_roi : For plotting statistical maps on brain surfaces. nilearn.plotting.plot_surf_stat_map : for plotting statistical maps on brain surfaces. nilearn.surface.vol_to_surf : For info on the generation of surfaces. """ _default_figsize = [6, 4] # load mesh and derive axes limits mesh = load_surf_mesh(surf_mesh) coords, faces = mesh[0], mesh[1] limits = [coords.min(), coords.max()] # set view if hemi == 'right': if view == 'lateral': elev, azim = 0, 0 elif view == 'medial': elev, azim = 0, 180 elif view == 'dorsal': elev, azim = 90, 0 elif view == 'ventral': elev, azim = 270, 0 elif view == 'anterior': elev, azim = 0, 90 elif view == 'posterior': elev, azim = 0, 270 else: raise ValueError('view must be one of lateral, medial, ' 'dorsal, ventral, anterior, or posterior') elif hemi == 'left': if view == 'medial': elev, azim = 0, 0 elif view == 'lateral': elev, azim = 0, 180 elif view == 'dorsal': elev, azim = 90, 0 elif view == 'ventral': elev, azim = 270, 0 elif view == 'anterior': elev, azim = 0, 90 elif view == 'posterior': elev, azim = 0, 270 else: raise ValueError('view must be one of lateral, medial, ' 'dorsal, ventral, anterior, or posterior') else: raise ValueError('hemi must be one of right or left') # set alpha if in auto mode if alpha == 'auto': if bg_map is None: alpha = .5 else: alpha = 1 # if no cmap is given, set to matplotlib default if cmap is None: cmap = plt.cm.get_cmap(plt.rcParamsDefault['image.cmap']) else: # if cmap is given as string, translate to matplotlib cmap if isinstance(cmap, str): cmap = plt.cm.get_cmap(cmap) figsize = _default_figsize # Leave space for colorbar if colorbar: figsize[0] += .7 # initiate figure and 3d axes if axes is None: if figure is None: figure = plt.figure(figsize=figsize) axes = Axes3D(figure, rect=[0, 0, 1, 1], xlim=limits, ylim=limits) else: if figure is None: figure = axes.get_figure() figure.set_size_inches(*figsize) axes.set_xlim(*limits) axes.set_ylim(*limits) axes.view_init(elev=elev, azim=azim) axes.set_axis_off() # plot mesh without data p3dcollec = axes.plot_trisurf(coords[:, 0], coords[:, 1], coords[:, 2], triangles=faces, linewidth=0., antialiased=False, color='white') # reduce viewing distance to remove space around mesh axes.dist = 8 # set_facecolors function of Poly3DCollection is used as passing the # facecolors argument to plot_trisurf does not seem to work face_colors = np.ones((faces.shape[0], 4)) if bg_map is None: bg_data = np.ones(coords.shape[0]) * 0.5 else: bg_data = load_surf_data(bg_map) if bg_data.shape[0] != coords.shape[0]: raise ValueError('The bg_map does not have the same number ' 'of vertices as the mesh.') bg_faces = np.mean(bg_data[faces], axis=1) if bg_faces.min() != bg_faces.max(): bg_faces = bg_faces - bg_faces.min() bg_faces = bg_faces / bg_faces.max() # control background darkness bg_faces *= darkness face_colors = plt.cm.gray_r(bg_faces) # modify alpha values of background face_colors[:, 3] = alpha * face_colors[:, 3] # should it be possible to modify alpha of surf data as well? if surf_map is not None: surf_map_data = load_surf_data(surf_map) if surf_map_data.ndim != 1: raise ValueError('surf_map can only have one dimension but has' '%i dimensions' % surf_map_data.ndim) if surf_map_data.shape[0] != coords.shape[0]: raise ValueError('The surf_map does not have the same number ' 'of vertices as the mesh.') # create face values from vertex values by selected avg methods if avg_method == 'mean': surf_map_faces = np.mean(surf_map_data[faces], axis=1) elif avg_method == 'median': surf_map_faces = np.median(surf_map_data[faces], axis=1) elif avg_method == 'min': surf_map_faces = np.min(surf_map_data[faces], axis=1) elif avg_method == 'max': surf_map_faces = np.max(surf_map_data[faces], axis=1) elif callable(avg_method): surf_map_faces = np.apply_along_axis( avg_method, 1, surf_map_data[faces] ) ## check that surf_map_faces has the same length as face_colors if surf_map_faces.shape != (face_colors.shape[0],): raise ValueError( 'Array computed with the custom function ' 'from avg_method does not have the correct shape: ' '{} != {}'.format( surf_map_faces.shape[0], face_colors.shape[0] ) ) ## check that dtype is either int or float if not ( "int" in str(surf_map_faces.dtype) or "float" in str(surf_map_faces.dtype) ): raise ValueError( 'Array computed with the custom function ' 'from avg_method should be an array of numbers ' '(int or float)' ) else: raise ValueError( "avg_method should be either " "['mean', 'median', 'max', 'min'] " "or a custom function" ) # if no vmin/vmax are passed figure them out from data if vmin is None: vmin = np.nanmin(surf_map_faces) if vmax is None: vmax = np.nanmax(surf_map_faces) # treshold if indicated if threshold is None: # If no thresholding and nans, filter them out kept_indices = np.where( np.logical_not( np.isnan(surf_map_faces)))[0] else: kept_indices = np.where(np.abs(surf_map_faces) >= threshold)[0] surf_map_faces = surf_map_faces - vmin surf_map_faces = surf_map_faces / (vmax - vmin) # multiply data with background if indicated if bg_on_data: face_colors[kept_indices] = cmap(surf_map_faces[kept_indices])\ * face_colors[kept_indices] else: face_colors[kept_indices] = cmap(surf_map_faces[kept_indices]) if colorbar: our_cmap = get_cmap(cmap) norm = Normalize(vmin=vmin, vmax=vmax) # Default number of ticks is 5... nb_ticks = 5 # ...unless we are dealing with integers with a small range # in this case, we reduce the number of ticks if cbar_tick_format == "%i" and vmax - vmin < nb_ticks: ticks = np.arange(vmin, vmax + 1) nb_ticks = len(ticks) else: ticks = np.linspace(vmin, vmax, nb_ticks) bounds = np.linspace(vmin, vmax, our_cmap.N) if threshold is not None: cmaplist = [our_cmap(i) for i in range(our_cmap.N)] # set colors to grey for absolute values < threshold istart = int(norm(-threshold, clip=True) * (our_cmap.N - 1)) istop = int(norm(threshold, clip=True) * (our_cmap.N - 1)) for i in range(istart, istop): cmaplist[i] = (0.5, 0.5, 0.5, 1.) our_cmap = LinearSegmentedColormap.from_list( 'Custom cmap', cmaplist, our_cmap.N) # we need to create a proxy mappable proxy_mappable = ScalarMappable(cmap=our_cmap, norm=norm) proxy_mappable.set_array(surf_map_faces) cax, kw = make_axes(axes, location='right', fraction=.1, shrink=.6, pad=.0) cbar = figure.colorbar( proxy_mappable, cax=cax, ticks=ticks, boundaries=bounds, spacing='proportional', format=cbar_tick_format, orientation='vertical') _crop_colorbar(cbar, cbar_vmin, cbar_vmax) p3dcollec.set_facecolors(face_colors) if title is not None: axes.set_title(title, position=(.5, .95)) # save figure if output file is given if output_file is not None: figure.savefig(output_file) plt.close(figure) else: return figure
def plot_surf(surf_mesh, surf_map=None, bg_map=None, hemi='left', view='lateral', cmap=None, colorbar=False, avg_method='mean', threshold=None, alpha='auto', bg_on_data=False, darkness=1, vmin=None, vmax=None, cbar_vmin=None, cbar_vmax=None, cbar_tick_format='%.2g', title=None, output_file=None, axes=None, figure=None, **kwargs): """Plotting of surfaces with optional background and data .. versionadded:: 0.3 Parameters ---------- surf_mesh : str or list of two numpy.ndarray or Mesh Surface mesh geometry, can be a file (valid formats are .gii or Freesurfer specific files such as .orig, .pial, .sphere, .white, .inflated) or a list of two Numpy arrays, the first containing the x-y-z coordinates of the mesh vertices, the second containing the indices (into coords) of the mesh faces, or a Mesh object with "coordinates" and "faces" attributes. surf_map : str or numpy.ndarray, optional Data to be displayed on the surface mesh. Can be a file (valid formats are .gii, .mgz, .nii, .nii.gz, or Freesurfer specific files such as .thickness, .curv, .sulc, .annot, .label) or a Numpy array with a value for each vertex of the surf_mesh. bg_map : Surface data object (to be defined), optional Background image to be plotted on the mesh underneath the surf_data in greyscale, most likely a sulcal depth map for realistic shading. hemi : {'left', 'right'}, optional Hemisphere to display. Default='left'. view : {'lateral', 'medial', 'dorsal', 'ventral', 'anterior', 'posterior'}, optional View of the surface that is rendered. Default='lateral'. cmap : matplotlib colormap, str or colormap object, optional To use for plotting of the stat_map. Either a string which is a name of a matplotlib colormap, or a matplotlib colormap object. If None, matplotlib default will be chosen. colorbar : bool, optional If True, a colorbar of surf_map is displayed. Default=False. avg_method : {'mean', 'median', 'min', 'max', custom function}, optional How to average vertex values to derive the face value, mean results in smooth, median in sharp boundaries, min or max for sparse matrices. You can also pass a custom function which will be executed though `numpy.apply_along_axis`. Here is an example of a custom function: .. code-block:: python def custom_function(vertices): return vertices[0] * vertices[1] * vertices[2] Default='mean'. threshold : a number or None, default is None. If None is given, the image is not thresholded. If a number is given, it is used to threshold the image, values below the threshold (in absolute value) are plotted as transparent. alpha : float or 'auto', optional Alpha level of the mesh (not surf_data). If 'auto' is chosen, alpha will default to .5 when no bg_map is passed and to 1 if a bg_map is passed. Default='auto'. bg_on_data : bool, optional If True, and a bg_map is specified, the surf_data data is multiplied by the background image, so that e.g. sulcal depth is visible beneath the surf_data. NOTE: that this non-uniformly changes the surf_data values according to e.g the sulcal depth. Default=False. darkness : float between 0 and 1, optional Specifying the darkness of the background image. 1 indicates that the original values of the background are used. .5 indicates the background values are reduced by half before being applied. Default=1. vmin, vmax : float, float, optional Lower / upper bound to plot surf_data values. If None, the values will be set to min/max of the data. Default values are None. cbar_vmin, cbar_vmax : float, float, optional Lower / upper bounds for the colorbar. If None, the values will be set from the data. Default values are None. cbar_tick_format : str, optional Controls how to format the tick labels of the colorbar. Ex: use "%i" to display as integers. Default='%.2g' for scientific notation. title : str, optional Figure title. output_file : str, or None, optional The name of an image file to export plot to. Valid extensions are .png, .pdf, .svg. If output_file is not None, the plot is saved to a file, and the display is closed. axes : instance of matplotlib axes, None, optional The axes instance to plot to. The projection must be '3d' (e.g., `figure, axes = plt.subplots(subplot_kw={'projection': '3d'})`, where axes should be passed.). If None, a new axes is created. figure : instance of matplotlib figure, None, optional The figure instance to plot to. If None, a new figure is created. See Also -------- nilearn.datasets.fetch_surf_fsaverage : For surface data object to be used as background map for this plotting function. nilearn.plotting.plot_surf_roi : For plotting statistical maps on brain surfaces. nilearn.plotting.plot_surf_stat_map : for plotting statistical maps on brain surfaces. nilearn.surface.vol_to_surf : For info on the generation of surfaces. """ _default_figsize = [6, 4] # load mesh and derive axes limits mesh = load_surf_mesh(surf_mesh) coords, faces = mesh[0], mesh[1] limits = [coords.min(), coords.max()] # set view if hemi == 'right': if view == 'lateral': elev, azim = 0, 0 elif view == 'medial': elev, azim = 0, 180 elif view == 'dorsal': elev, azim = 90, 0 elif view == 'ventral': elev, azim = 270, 0 elif view == 'anterior': elev, azim = 0, 90 elif view == 'posterior': elev, azim = 0, 270 else: raise ValueError('view must be one of lateral, medial, ' 'dorsal, ventral, anterior, or posterior') elif hemi == 'left': if view == 'medial': elev, azim = 0, 0 elif view == 'lateral': elev, azim = 0, 180 elif view == 'dorsal': elev, azim = 90, 0 elif view == 'ventral': elev, azim = 270, 0 elif view == 'anterior': elev, azim = 0, 90 elif view == 'posterior': elev, azim = 0, 270 else: raise ValueError('view must be one of lateral, medial, ' 'dorsal, ventral, anterior, or posterior') else: raise ValueError('hemi must be one of right or left') # set alpha if in auto mode if alpha == 'auto': if bg_map is None: alpha = .5 else: alpha = 1 # if no cmap is given, set to matplotlib default if cmap is None: cmap = plt.cm.get_cmap(plt.rcParamsDefault['image.cmap']) else: # if cmap is given as string, translate to matplotlib cmap if isinstance(cmap, str): cmap = plt.cm.get_cmap(cmap) figsize = _default_figsize # Leave space for colorbar if colorbar: figsize[0] += .7 # initiate figure and 3d axes if axes is None: if figure is None: figure = plt.figure(figsize=figsize) axes = Axes3D(figure, rect=[0, 0, 1, 1], xlim=limits, ylim=limits) else: if figure is None: figure = axes.get_figure() figure.set_size_inches(*figsize) axes.set_xlim(*limits) axes.set_ylim(*limits) axes.view_init(elev=elev, azim=azim) axes.set_axis_off() # plot mesh without data p3dcollec = axes.plot_trisurf(coords[:, 0], coords[:, 1], coords[:, 2], triangles=faces, linewidth=0., antialiased=False, color='white') # reduce viewing distance to remove space around mesh axes.dist = 8 # set_facecolors function of Poly3DCollection is used as passing the # facecolors argument to plot_trisurf does not seem to work face_colors = np.ones((faces.shape[0], 4)) if bg_map is None: bg_data = np.ones(coords.shape[0]) * 0.5 else: bg_data = load_surf_data(bg_map) if bg_data.shape[0] != coords.shape[0]: raise ValueError('The bg_map does not have the same number ' 'of vertices as the mesh.') bg_faces = np.mean(bg_data[faces], axis=1) if bg_faces.min() != bg_faces.max(): bg_faces = bg_faces - bg_faces.min() bg_faces = bg_faces / bg_faces.max() # control background darkness bg_faces *= darkness face_colors = plt.cm.gray_r(bg_faces) # modify alpha values of background face_colors[:, 3] = alpha * face_colors[:, 3] # should it be possible to modify alpha of surf data as well? if surf_map is not None: surf_map_data = load_surf_data(surf_map) if surf_map_data.ndim != 1: raise ValueError('surf_map can only have one dimension but has' '%i dimensions' % surf_map_data.ndim) if surf_map_data.shape[0] != coords.shape[0]: raise ValueError('The surf_map does not have the same number ' 'of vertices as the mesh.') # create face values from vertex values by selected avg methods if avg_method == 'mean': surf_map_faces = np.mean(surf_map_data[faces], axis=1) elif avg_method == 'median': surf_map_faces = np.median(surf_map_data[faces], axis=1) elif avg_method == 'min': surf_map_faces = np.min(surf_map_data[faces], axis=1) elif avg_method == 'max': surf_map_faces = np.max(surf_map_data[faces], axis=1) elif callable(avg_method): surf_map_faces = np.apply_along_axis( avg_method, 1, surf_map_data[faces] ) ## check that surf_map_faces has the same length as face_colors if surf_map_faces.shape != (face_colors.shape[0],): raise ValueError( 'Array computed with the custom function ' 'from avg_method does not have the correct shape: ' '{} != {}'.format( surf_map_faces.shape[0], face_colors.shape[0] ) ) ## check that dtype is either int or float if not ( "int" in str(surf_map_faces.dtype) or "float" in str(surf_map_faces.dtype) ): raise ValueError( 'Array computed with the custom function ' 'from avg_method should be an array of numbers ' '(int or float)' ) else: raise ValueError( "avg_method should be either " "['mean', 'median', 'max', 'min'] " "or a custom function" ) # if no vmin/vmax are passed figure them out from data if vmin is None: vmin = np.nanmin(surf_map_faces) if vmax is None: vmax = np.nanmax(surf_map_faces) # treshold if indicated if threshold is None: # If no thresholding and nans, filter them out kept_indices = np.where( np.logical_not( np.isnan(surf_map_faces)))[0] else: kept_indices = np.where(np.abs(surf_map_faces) >= threshold)[0] surf_map_faces = surf_map_faces - vmin surf_map_faces = surf_map_faces / (vmax - vmin) # multiply data with background if indicated if bg_on_data: face_colors[kept_indices] = cmap(surf_map_faces[kept_indices])\ * face_colors[kept_indices] else: face_colors[kept_indices] = cmap(surf_map_faces[kept_indices]) if colorbar: our_cmap = get_cmap(cmap) norm = Normalize(vmin=vmin, vmax=vmax) # Default number of ticks is 5... nb_ticks = 5 # ...unless we are dealing with integers with a small range # in this case, we reduce the number of ticks if cbar_tick_format == "%i" and vmax - vmin < nb_ticks: ticks = np.arange(vmin, vmax + 1) nb_ticks = len(ticks) else: ticks = np.linspace(vmin, vmax, nb_ticks) bounds = np.linspace(vmin, vmax, our_cmap.N) if threshold is not None: cmaplist = [our_cmap(i) for i in range(our_cmap.N)] # set colors to grey for absolute values < threshold istart = int(norm(-threshold, clip=True) * (our_cmap.N - 1)) istop = int(norm(threshold, clip=True) * (our_cmap.N - 1)) for i in range(istart, istop): cmaplist[i] = (0.5, 0.5, 0.5, 1.) our_cmap = LinearSegmentedColormap.from_list( 'Custom cmap', cmaplist, our_cmap.N) # we need to create a proxy mappable proxy_mappable = ScalarMappable(cmap=our_cmap, norm=norm) proxy_mappable.set_array(surf_map_faces) cax, kw = make_axes(axes, location='right', fraction=.1, shrink=.6, pad=.0) cbar = figure.colorbar( proxy_mappable, cax=cax, ticks=ticks, boundaries=bounds, spacing='proportional', format=cbar_tick_format, orientation='vertical') _crop_colorbar(cbar, cbar_vmin, cbar_vmax) p3dcollec.set_facecolors(face_colors) if title is not None: axes.set_title(title, position=(.5, .95)) # save figure if output file is given if output_file is not None: figure.savefig(output_file) plt.close(figure) else: return figure
5,413
def test_rename(): """ Test if the source file exists on the system, rename it to the named file. """ name = "/tmp/salt" source = "/tmp/salt/salt" ret = {"name": name, "result": False, "comment": "", "changes": {}} comt = "Must provide name to file.rename" ret.update({"comment": comt, "name": ""}) assert filestate.rename("", source) == ret mock_t = MagicMock(return_value=True) mock_f = MagicMock(return_value=False) mock_lex = MagicMock(side_effect=[False, True, True]) with patch.object(os.path, "isabs", mock_f): comt = "Specified file {} is not an absolute path".format(name) ret.update({"comment": comt, "name": name}) assert filestate.rename(name, source) == ret mock_lex = MagicMock(return_value=False) with patch.object(os.path, "isabs", mock_t): with patch.object(os.path, "lexists", mock_lex): comt = 'Source file "{}" has already been moved out of ' "place".format( source ) ret.update({"comment": comt, "result": True}) assert filestate.rename(name, source) == ret mock_lex = MagicMock(side_effect=[True, True, True]) with patch.object(os.path, "isabs", mock_t): with patch.object(os.path, "lexists", mock_lex): comt = 'The target file "{}" exists and will not be ' "overwritten".format( name ) ret.update({"comment": comt, "result": True}) assert filestate.rename(name, source) == ret mock_lex = MagicMock(side_effect=[True, True, True]) mock_rem = MagicMock(side_effect=IOError) with patch.object(os.path, "isabs", mock_t): with patch.object(os.path, "lexists", mock_lex): with patch.dict(filestate.__opts__, {"test": False}): comt = 'Failed to delete "{}" in preparation for ' "forced move".format( name ) with patch.dict(filestate.__salt__, {"file.remove": mock_rem}): ret.update({"name": name, "comment": comt, "result": False}) assert filestate.rename(name, source, force=True) == ret mock_lex = MagicMock(side_effect=[True, False, False]) with patch.object(os.path, "isabs", mock_t): with patch.object(os.path, "lexists", mock_lex): with patch.dict(filestate.__opts__, {"test": True}): comt = 'File "{}" is set to be moved to "{}"'.format(source, name) ret.update({"name": name, "comment": comt, "result": None}) assert filestate.rename(name, source) == ret mock_lex = MagicMock(side_effect=[True, False, False]) with patch.object(os.path, "isabs", mock_t): with patch.object(os.path, "lexists", mock_lex): with patch.object(os.path, "isdir", mock_f): with patch.dict(filestate.__opts__, {"test": False}): comt = "The target directory /tmp is not present" ret.update({"name": name, "comment": comt, "result": False}) assert filestate.rename(name, source) == ret mock_lex = MagicMock(side_effect=[True, False, False]) with patch.object(os.path, "isabs", mock_t): with patch.object(os.path, "lexists", mock_lex): with patch.object(os.path, "isdir", mock_t): with patch.object(os.path, "islink", mock_f): with patch.dict(filestate.__opts__, {"test": False}): with patch.object( shutil, "move", MagicMock(side_effect=IOError) ): comt = 'Failed to move "{}" to "{}"'.format(source, name) ret.update({"name": name, "comment": comt, "result": False}) assert filestate.rename(name, source) == ret mock_lex = MagicMock(side_effect=[True, False, False]) with patch.object(os.path, "isabs", mock_t): with patch.object(os.path, "lexists", mock_lex): with patch.object(os.path, "isdir", mock_t): with patch.object(os.path, "islink", mock_f): with patch.dict(filestate.__opts__, {"test": False}): with patch.object(shutil, "move", MagicMock()): comt = 'Moved "{}" to "{}"'.format(source, name) ret.update( { "name": name, "comment": comt, "result": True, "changes": {name: source}, } ) assert filestate.rename(name, source) == ret
def test_rename(): """ Test if the source file exists on the system, rename it to the named file. """ name = "/tmp/salt" source = "/tmp/salt/salt" ret = {"name": name, "result": False, "comment": "", "changes": {}} comt = "Must provide name to file.rename" ret.update({"comment": comt, "name": ""}) assert filestate.rename("", source) == ret mock_t = MagicMock(return_value=True) mock_f = MagicMock(return_value=False) mock_lex = MagicMock(side_effect=[False, True, True]) with patch.object(os.path, "isabs", mock_f): comt = "Specified file {} is not an absolute path".format(name) ret.update({"comment": comt, "name": name}) assert filestate.rename(name, source) == ret mock_lex = MagicMock(return_value=False) with patch.object(os.path, "isabs", mock_t): with patch.object(os.path, "lexists", mock_lex): comt = 'Source file "{}" has already been moved out of ' "place".format( source ) ret.update({"comment": comt, "result": True}) assert filestate.rename(name, source) == ret mock_lex = MagicMock(side_effect=[True, True, True]) with patch.object(os.path, "isabs", mock_t): with patch.object(os.path, "lexists", mock_lex): comt = 'The target file "{}" exists and will not be ' "overwritten".format( name ) ret.update({"comment": comt, "result": True}) assert filestate.rename(name, source) == ret mock_lex = MagicMock(side_effect=[True, True, True]) mock_rem = MagicMock(side_effect=IOError) with patch.object(os.path, "isabs", mock_t): with patch.object(os.path, "lexists", mock_lex): with patch.dict(filestate.__opts__, {"test": False}): comt = 'Failed to delete "{}" in preparation for forced move'.format( name ) with patch.dict(filestate.__salt__, {"file.remove": mock_rem}): ret.update({"name": name, "comment": comt, "result": False}) assert filestate.rename(name, source, force=True) == ret mock_lex = MagicMock(side_effect=[True, False, False]) with patch.object(os.path, "isabs", mock_t): with patch.object(os.path, "lexists", mock_lex): with patch.dict(filestate.__opts__, {"test": True}): comt = 'File "{}" is set to be moved to "{}"'.format(source, name) ret.update({"name": name, "comment": comt, "result": None}) assert filestate.rename(name, source) == ret mock_lex = MagicMock(side_effect=[True, False, False]) with patch.object(os.path, "isabs", mock_t): with patch.object(os.path, "lexists", mock_lex): with patch.object(os.path, "isdir", mock_f): with patch.dict(filestate.__opts__, {"test": False}): comt = "The target directory /tmp is not present" ret.update({"name": name, "comment": comt, "result": False}) assert filestate.rename(name, source) == ret mock_lex = MagicMock(side_effect=[True, False, False]) with patch.object(os.path, "isabs", mock_t): with patch.object(os.path, "lexists", mock_lex): with patch.object(os.path, "isdir", mock_t): with patch.object(os.path, "islink", mock_f): with patch.dict(filestate.__opts__, {"test": False}): with patch.object( shutil, "move", MagicMock(side_effect=IOError) ): comt = 'Failed to move "{}" to "{}"'.format(source, name) ret.update({"name": name, "comment": comt, "result": False}) assert filestate.rename(name, source) == ret mock_lex = MagicMock(side_effect=[True, False, False]) with patch.object(os.path, "isabs", mock_t): with patch.object(os.path, "lexists", mock_lex): with patch.object(os.path, "isdir", mock_t): with patch.object(os.path, "islink", mock_f): with patch.dict(filestate.__opts__, {"test": False}): with patch.object(shutil, "move", MagicMock()): comt = 'Moved "{}" to "{}"'.format(source, name) ret.update( { "name": name, "comment": comt, "result": True, "changes": {name: source}, } ) assert filestate.rename(name, source) == ret
9,056
def subreddit_info(bot, trigger, match, commanded=False): """Shows information about the given subreddit""" match_lower = match.lower() if match_lower in ['all', 'popular']: message = '{link}{nsfw} | {public_description}' nsfw = ' ' + bold(color('[Possible NSFW]', colors.ORANGE)) link = 'https://reddit.com/r/' + match_lower public_description = '' if match_lower == 'all': public_description = ("Today's top content from hundreds of " 'thousands of Reddit communities.') elif match_lower == 'popular': public_description = ('The top trending content from some of ' "Reddit\'s most popular communities") message = message.format( link=link, nsfw=nsfw, public_description=public_description) bot.say(message) return plugin.NOLIMIT r = bot.memory['reddit_praw'] try: r.subreddits.search_by_name(match, exact=True) except prawcore.exceptions.NotFound: if commanded: bot.reply('No such subreddit.') # Fail silently if it wasn't an explicit command. return plugin.NOLIMIT try: s = r.subreddit(match) s.subreddit_type except prawcore.exceptions.Forbidden: bot.reply('r/' + match + ' appears to be a private subreddit!') return plugin.NOLIMIT except prawcore.exceptions.NotFound: bot.reply('r/' + match + ' appears to be a banned subreddit!') return plugin.NOLIMIT link = 'https://reddit.com/r/' + s.display_name created = get_time_created(bot, trigger, s.created_utc) message = ('{link}{nsfw} | {subscribers} subscribers | ' 'Created at {created} | {public_description}') nsfw = '' if s.over18: nsfw += ' ' + bold(color('[NSFW]', colors.RED)) sfw = bot.db.get_channel_value(trigger.sender, 'sfw') if sfw: link = '(link hidden)' bot.kick( trigger.nick, trigger.sender, 'Linking to NSFW content in a SFW channel.' ) message = message.format( link=link, nsfw=nsfw, subscribers='{:,}'.format(s.subscribers), created=created, public_description=s.public_description) bot.say(message, truncation=' […]')
def subreddit_info(bot, trigger, match, commanded=False): """Shows information about the given subreddit""" match_lower = match.lower() if match_lower in ['all', 'popular']: message = '{link}{nsfw} | {public_description}' nsfw = ' ' + bold(color('[Possible NSFW]', colors.ORANGE)) link = 'https://reddit.com/r/' + match_lower public_description = '' if match_lower == 'all': public_description = ("Today's top content from hundreds of " 'thousands of Reddit communities.') elif match_lower == 'popular': public_description = ('The top trending content from some of ' "Reddit's most popular communities") message = message.format( link=link, nsfw=nsfw, public_description=public_description) bot.say(message) return plugin.NOLIMIT r = bot.memory['reddit_praw'] try: r.subreddits.search_by_name(match, exact=True) except prawcore.exceptions.NotFound: if commanded: bot.reply('No such subreddit.') # Fail silently if it wasn't an explicit command. return plugin.NOLIMIT try: s = r.subreddit(match) s.subreddit_type except prawcore.exceptions.Forbidden: bot.reply('r/' + match + ' appears to be a private subreddit!') return plugin.NOLIMIT except prawcore.exceptions.NotFound: bot.reply('r/' + match + ' appears to be a banned subreddit!') return plugin.NOLIMIT link = 'https://reddit.com/r/' + s.display_name created = get_time_created(bot, trigger, s.created_utc) message = ('{link}{nsfw} | {subscribers} subscribers | ' 'Created at {created} | {public_description}') nsfw = '' if s.over18: nsfw += ' ' + bold(color('[NSFW]', colors.RED)) sfw = bot.db.get_channel_value(trigger.sender, 'sfw') if sfw: link = '(link hidden)' bot.kick( trigger.nick, trigger.sender, 'Linking to NSFW content in a SFW channel.' ) message = message.format( link=link, nsfw=nsfw, subscribers='{:,}'.format(s.subscribers), created=created, public_description=s.public_description) bot.say(message, truncation=' […]')
45,735
def forecast( precip, velocity, timesteps, feature_method="blob", max_num_features=25, feature_kwargs=None, ari_order=1, kernel_type="anisotropic", localization_window_radius=None, errdist_window_radius=None, acf_window_radius=None, extrap_method="semilagrangian", extrap_kwargs=None, add_perturbations=True, pert_thrs=(0.5, 1.0), n_ens_members=10, vel_pert_method=None, vel_pert_kwargs=None, kmperpixel=None, timestep=None, seed=None, num_workers=1, use_multiprocessing=False, measure_time=False, callback=None, return_output=True, ): """ Generate a deterministic or ensemble nowcast by using the Lagrangian INtegro-Difference equation model with Autoregression (LINDA) model. Parameters ---------- precip: array_like Array of shape (ari_order + 2, m, n) containing the input rain rate or reflectivity fields (in linear scale) ordered by timestamp from oldest to newest. The time steps between the inputs are assumed to be regular. velocity: array_like Array of shape (2, m, n) containing the x- and y-components of the advection field. The velocities are assumed to represent one time step between the inputs. timesteps: int Number of time steps to forecast. feature_method: {'blob', 'domain' 'shitomasi'} Feature detection method: +-------------------+-----------------------------------------------------+ | Method name | Description | +===================+=====================================================+ | blob | Laplacian of Gaussian (LoG) blob detector | | | implemented in scikit-image | +-------------------+-----------------------------------------------------+ | domain | no feature detection, the model is applied over the | | | whole domain without localization | +-------------------+-----------------------------------------------------+ | shitomasi | Shi-Tomasi corner detector implemented in OpenCV | +-------------------+-----------------------------------------------------+ Default: 'blob' max_num_features: int, optional Maximum number of features to use. It is recommended to set this between 20 and 50, which gives a good tradeoff between localization and computation time. Default: 25 feature_kwargs: dict, optional Keyword arguments that are passed as ``**kwargs`` for the feature detector. See :py:mod:`pysteps.feature.blob` and :py:mod:`pysteps.feature.shitomasi`. ari_order: {1, 2}, optional The order of the ARI(p, 1) model. Default: 1 kernel_type: {"anisotropic", "isotropic"}, optional The type of the kernel. Default: 'anisotropic' localization_window_radius: float, optional The standard deviation of the Gaussian localization window. Default: 0.2 * min(m, n) errdist_window_radius: float, optional The standard deviation of the Gaussian window for estimating the forecast error distribution. Default: 0.15 * min(m, n) acf_window_radius: float, optional The standard deviation of the Gaussian window for estimating the forecast error ACF. Default: 0.25 * min(m, n) extrap_method: str, optional The extrapolation method to use. See the documentation of :py:mod:`pysteps.extrapolation.interface`. Default: 'semilagrangian' extrap_kwargs: dict, optional Optional dictionary containing keyword arguments for the extrapolation method. See :py:mod:`pysteps.extrapolation.interface`. add_perturbations: bool Set to False to disable perturbations and generate a single deterministic nowcast. Default: True pert_thrs: float Two-element tuple containing the threshold values for estimating the perturbation parameters (mm/h). Default: (0.5, 1.0) n_ens_members: int, optional The number of ensemble members to generate. Default: 10 vel_pert_method: {'bps', None}, optional Name of the generator to use for perturbing the advection field. See :py:mod:`pysteps.noise.interface`. Default: None vel_pert_kwargs: dict, optional Optional dictionary containing keyword arguments 'p_par' and 'p_perp' for the initializer of the velocity perturbator. The choice of the optimal parameters depends on the domain and the used optical flow method. For the default values and parameters optimized for different domains, see :py:func:`pysteps.nowcasts.steps.forecast`. kmperpixel: float, optional Spatial resolution of the input data (kilometers/pixel). Required if vel_pert_method is not None. timestep: float, optional Time step of the motion vectors (minutes). Required if vel_pert_method is not None. seed: int, optional Optional seed for the random generators. num_workers: int, optional The number of workers to use for parallel computations. Applicable if dask is installed. Default: 1 use_multiprocessing: bool, optional Set to True to improve the performance of certain parallelized parts of the code. If set to True, the main script calling linda.forecast must be enclosed within the 'if __name__ == "__main__":' block. Default: False measure_time: bool, optional If set to True, measure, print and return the computation time. Default: False callback: function, optional Optional function that is called after computation of each time step of the nowcast. The function takes one argument: a three-dimensional array of shape (n_ens_members,h,w), where h and w are the height and width of the input precipitation fields, respectively. This can be used, for instance, writing the outputs into files. Default: None return_output: bool, optional Set to False to disable returning the outputs as numpy arrays. This can save memory if the intermediate results are written to output files using the callback function. Default: True Returns ------- out: numpy.ndarray A four-dimensional array of shape (n_ens_members, timesteps, m, n) containing a time series of forecast precipitation fields for each ensemble member. If add_perturbations is False, the first dimension is dropped. The time series starts from t0 + timestep, where timestep is taken from the input fields. If measure_time is True, the return value is a three-element tuple containing the nowcast array, the initialization time of the nowcast generator and the time used in the main loop (seconds). If return_output is set to False, a single None value is returned instead. Notes ----- It is recommended to choose the feature detector parameters so that the number of features is around 20-40. This gives a good tradeoff between localization and computation time. It is highly recommented to set num_workers>1 to reduce computation time. In this case, it is advisable to disable OpenMP by setting the environment variable OMP_NUM_THREADS to 1. This avoids slowdown caused by too many simultaneous threads. """ _check_inputs(precip, velocity, timesteps, ari_order) if feature_kwargs is None: feature_kwargs = dict() if extrap_kwargs is None: extrap_kwargs = dict() else: extrap_kwargs = extrap_kwargs.copy() if localization_window_radius is None: localization_window_radius = 0.2 * np.min(precip.shape[1:]) if add_perturbations: if errdist_window_radius is None: errdist_window_radius = 0.15 * min(precip.shape[1], precip.shape[2]) if acf_window_radius is None: acf_window_radius = 0.25 * min(precip.shape[1], precip.shape[2]) if vel_pert_method is not None: if kmperpixel is None: raise ValueError("vel_pert_method is set but kmperpixel is None") if timestep is None: raise ValueError("vel_pert_method is set but timestep is None") if vel_pert_kwargs is None: vel_pert_kwargs = dict() print("Computing LINDA nowcast") print("-----------------------") print("") print("Inputs") print("------") print(f"dimensions: {precip.shape[1]}x{precip.shape[2]}") print(f"number of time steps: {precip.shape[0]}") print("") print("Methods") print("-------") nowcast_type = "ensemble" if add_perturbations else "deterministic" print(f"nowcast type: {nowcast_type}") print(f"feature detector: {feature_method}") print(f"extrapolator: {extrap_method}") print(f"kernel type: {kernel_type}") if add_perturbations and vel_pert_method is not None: print(f"velocity perturbator: {vel_pert_method}") print("") print("Parameters") print("----------") print(f"number of time steps: {timesteps}") print(f"ARI model order: {ari_order}") print(f"localization window radius: {localization_window_radius}") if add_perturbations: print(f"error dist. window radius: {errdist_window_radius}") print(f"error ACF window radius: {acf_window_radius}") print(f"ensemble size: {n_ens_members}") print(f"parallel workers: {num_workers}") print(f"seed: {seed}") if vel_pert_method == "bps": vp_par = vel_pert_kwargs.get( "p_par", noise.motion.get_default_params_bps_par() ) vp_perp = vel_pert_kwargs.get( "p_perp", noise.motion.get_default_params_bps_perp() ) print( f"velocity perturbations, parallel: {vp_par[0]:.2f}, {vp_par[1]:.2f}, {vp_par[2]:.2f}" ) print( f"velocity perturbations, perpendicular: {vp_perp[0]:.2f}, {vp_perp[1]:.2f}, {vp_perp[2]:.2f}" ) vel_pert_kwargs = vel_pert_kwargs.copy() vel_pert_kwargs["vp_par"] = vp_par vel_pert_kwargs["vp_perp"] = vp_perp extrap_kwargs["allow_nonfinite_values"] = ( True if np.any(~np.isfinite(precip)) else False ) fct_gen = _linda_deterministic_init( precip, velocity, feature_method, max_num_features, feature_kwargs, ari_order, kernel_type, localization_window_radius, extrap_method, extrap_kwargs, add_perturbations, num_workers, measure_time, ) if measure_time: fct_gen, precip_lagr_diff, init_time = fct_gen else: fct_gen, precip_lagr_diff = fct_gen if add_perturbations: pert_gen = _linda_perturbation_init( precip, precip_lagr_diff, velocity, fct_gen, pert_thrs, localization_window_radius, errdist_window_radius, acf_window_radius, vel_pert_method, vel_pert_kwargs, kmperpixel, timestep, num_workers, use_multiprocessing, measure_time, ) if measure_time: precip_pert_gen, vel_pert_gen, pert_init_time = pert_gen init_time += pert_init_time else: precip_pert_gen, vel_pert_gen = pert_gen else: precip_pert_gen = None vel_pert_gen = None # TODO: make printing info optional fct = _linda_forecast( precip, precip_lagr_diff[1:], timesteps, fct_gen, precip_pert_gen, vel_pert_gen, n_ens_members, seed, measure_time, True, return_output, callback, ) if return_output: if measure_time: return fct[0], init_time, fct[1] else: return fct else: return None
def forecast( precip, velocity, timesteps, feature_method="blob", max_num_features=25, feature_kwargs=None, ari_order=1, kernel_type="anisotropic", localization_window_radius=None, errdist_window_radius=None, acf_window_radius=None, extrap_method="semilagrangian", extrap_kwargs=None, add_perturbations=True, pert_thrs=(0.5, 1.0), n_ens_members=10, vel_pert_method=None, vel_pert_kwargs=None, kmperpixel=None, timestep=None, seed=None, num_workers=1, use_multiprocessing=False, measure_time=False, callback=None, return_output=True, ): """ Generate a deterministic or ensemble nowcast by using the Lagrangian INtegro-Difference equation model with Autoregression (LINDA) model. Parameters ---------- precip: array_like Array of shape (ari_order + 2, m, n) containing the input rain rate or reflectivity fields (in linear scale) ordered by timestamp from oldest to newest. The time steps between the inputs are assumed to be regular. velocity: array_like Array of shape (2, m, n) containing the x- and y-components of the advection field. The velocities are assumed to represent one time step between the inputs. timesteps: int Number of time steps to forecast. feature_method: {'blob', 'domain' 'shitomasi'} Feature detection method: +-------------------+-----------------------------------------------------+ | Method name | Description | +===================+=====================================================+ | blob | Laplacian of Gaussian (LoG) blob detector | | | implemented in scikit-image | +-------------------+-----------------------------------------------------+ | domain | no feature detection, the model is applied over the | | | whole domain without localization | +-------------------+-----------------------------------------------------+ | shitomasi | Shi-Tomasi corner detector implemented in OpenCV | +-------------------+-----------------------------------------------------+ Default: 'blob' max_num_features: int, optional Maximum number of features to use. It is recommended to set this between 20 and 50, which gives a good tradeoff between localization and computation time. Default: 25 feature_kwargs: dict, optional Keyword arguments that are passed as ``**kwargs`` for the feature detector. See :py:mod:`pysteps.feature.blob` and :py:mod:`pysteps.feature.shitomasi`. ari_order: {1, 2}, optional The order of the ARI(p, 1) model. Default: 1 kernel_type: {"anisotropic", "isotropic"}, optional The type of the kernel. Default: 'anisotropic' localization_window_radius: float, optional The standard deviation of the Gaussian localization window. Default: 0.2 * min(m, n) errdist_window_radius: float, optional The standard deviation of the Gaussian window for estimating the forecast error distribution. Default: 0.15 * min(m, n) acf_window_radius: float, optional The standard deviation of the Gaussian window for estimating the forecast error ACF. Default: 0.25 * min(m, n) extrap_method: str, optional The extrapolation method to use. See the documentation of :py:mod:`pysteps.extrapolation.interface`. Default: 'semilagrangian' extrap_kwargs: dict, optional Optional dictionary containing keyword arguments for the extrapolation method. See :py:mod:`pysteps.extrapolation.interface`. add_perturbations: bool Set to False to disable perturbations and generate a single deterministic nowcast. Default: True pert_thrs: float Two-element tuple containing the threshold values for estimating the perturbation parameters (mm/h). Default: (0.5, 1.0) n_ens_members: int, optional The number of ensemble members to generate. Default: 10 vel_pert_method: {'bps', None}, optional Name of the generator to use for perturbing the advection field. See :py:mod:`pysteps.noise.interface`. Default: None vel_pert_kwargs: dict, optional Optional dictionary containing keyword arguments 'p_par' and 'p_perp' for the initializer of the velocity perturbator. The choice of the optimal parameters depends on the domain and the used optical flow method. For the default values and parameters optimized for different domains, see :py:func:`pysteps.nowcasts.steps.forecast`. kmperpixel: float, optional Spatial resolution of the input data (kilometers/pixel). Required if vel_pert_method is not None. timestep: float, optional Time step of the motion vectors (minutes). Required if vel_pert_method is not None. seed: int, optional Optional seed for the random generators. num_workers: int, optional The number of workers to use for parallel computations. Applicable if dask is installed. Default: 1 use_multiprocessing: bool, optional Set to True to improve the performance of certain parallelized parts of the code. If set to True, the main script calling linda.forecast must be enclosed within the 'if __name__ == "__main__":' block. Default: False measure_time: bool, optional If set to True, measure, print and return the computation time. Default: False callback: function, optional Optional function that is called after computation of each time step of the nowcast. The function takes one argument: a three-dimensional array of shape (n_ens_members,h,w), where h and w are the height and width of the input precipitation fields, respectively. This can be used, for instance, writing the outputs into files. Default: None return_output: bool, optional Set to False to disable returning the outputs as numpy arrays. This can save memory if the intermediate results are written to output files using the callback function. Default: True Returns ------- out: numpy.ndarray A four-dimensional array of shape (n_ens_members, timesteps, m, n) containing a time series of forecast precipitation fields for each ensemble member. If add_perturbations is False, the first dimension is dropped. The time series starts from t0 + timestep, where timestep is taken from the input fields. If measure_time is True, the return value is a three-element tuple containing the nowcast array, the initialization time of the nowcast generator and the time used in the main loop (seconds). If return_output is set to False, a single None value is returned instead. Notes ----- It is recommended to choose the feature detector parameters so that the number of features is around 20-40. This gives a good tradeoff between localization and computation time. It is highly recommented to set num_workers>1 to reduce computation time. In this case, it is advisable to disable OpenMP by setting the environment variable OMP_NUM_THREADS to 1. This avoids slowdown caused by too many simultaneous threads. """ _check_inputs(precip, velocity, timesteps, ari_order) if feature_kwargs is None: feature_kwargs = dict() if extrap_kwargs is None: extrap_kwargs = dict() else: extrap_kwargs = extrap_kwargs.copy() if localization_window_radius is None: localization_window_radius = 0.2 * np.min(precip.shape[1:]) if add_perturbations: if errdist_window_radius is None: errdist_window_radius = 0.15 * min(precip.shape[1], precip.shape[2]) if acf_window_radius is None: acf_window_radius = 0.25 * min(precip.shape[1], precip.shape[2]) if vel_pert_method is not None: if kmperpixel is None: raise ValueError("vel_pert_method is set but kmperpixel is None") if timestep is None: raise ValueError("vel_pert_method is set but timestep is None") if vel_pert_kwargs is None: vel_pert_kwargs = dict() print("Computing LINDA nowcast") print("-----------------------") print("") print("Inputs") print("------") print(f"dimensions: {precip.shape[1]}x{precip.shape[2]}") print(f"number of time steps: {precip.shape[0]}") print("") print("Methods") print("-------") nowcast_type = "ensemble" if add_perturbations else "deterministic" print(f"nowcast type: {nowcast_type}") print(f"feature detector: {feature_method}") print(f"extrapolator: {extrap_method}") print(f"kernel type: {kernel_type}") if add_perturbations and vel_pert_method is not None: print(f"velocity perturbator: {vel_pert_method}") print("") print("Parameters") print("----------") print(f"number of time steps: {timesteps}") print(f"ARI model order: {ari_order}") print(f"localization window radius: {localization_window_radius}") if add_perturbations: print(f"error dist. window radius: {errdist_window_radius}") print(f"error ACF window radius: {acf_window_radius}") print(f"ensemble size: {n_ens_members}") print(f"parallel workers: {num_workers}") print(f"seed: {seed}") if vel_pert_method == "bps": vp_par = vel_pert_kwargs.get( "p_par", noise.motion.get_default_params_bps_par() ) vp_perp = vel_pert_kwargs.get( "p_perp", noise.motion.get_default_params_bps_perp() ) print( f"velocity perturbations, parallel: {vp_par[0]:.2f}, {vp_par[1]:.2f}, {vp_par[2]:.2f}" ) print( f"velocity perturbations, perpendicular: {vp_perp[0]:.2f}, {vp_perp[1]:.2f}, {vp_perp[2]:.2f}" ) vel_pert_kwargs = vel_pert_kwargs.copy() vel_pert_kwargs["vp_par"] = vp_par vel_pert_kwargs["vp_perp"] = vp_perp extrap_kwargs["allow_nonfinite_values"] = ( True if np.any(~np.isfinite(precip)) else False ) fct_gen = _linda_deterministic_init( precip, velocity, feature_method, max_num_features, feature_kwargs, ari_order, kernel_type, localization_window_radius, extrap_method, extrap_kwargs, add_perturbations, num_workers, measure_time, ) if measure_time: fct_gen, precip_lagr_diff, init_time = fct_gen else: fct_gen, precip_lagr_diff = fct_gen if add_perturbations: pert_gen = _linda_perturbation_init( precip, precip_lagr_diff, velocity, fct_gen, pert_thrs, localization_window_radius, errdist_window_radius, acf_window_radius, vel_pert_method, vel_pert_kwargs, kmperpixel, timestep, num_workers, use_multiprocessing, measure_time, ) if measure_time: precip_pert_gen, vel_pert_gen, pert_init_time = pert_gen init_time += pert_init_time else: precip_pert_gen, vel_pert_gen = pert_gen else: precip_pert_gen = None vel_pert_gen = None # TODO: make printing info optional precip_forecast = _linda_forecast( precip, precip_lagr_diff[1:], timesteps, fct_gen, precip_pert_gen, vel_pert_gen, n_ens_members, seed, measure_time, True, return_output, callback, ) if return_output: if measure_time: return fct[0], init_time, fct[1] else: return fct else: return None
32,744
def patch_cache(tracer): """ Function that patches the inner cache system. Because the cache backend can have different implementations and connectors, this function must handle all possible interactions with the Django cache. What follows is currently traced: * in-memory cache * the cache client wrapper that could use any of the common Django supported cache servers (Redis, Memcached, Database, Custom) """ # discover used cache backends cache_backends = {cache['BACKEND'] for cache in django_settings.CACHES.values()} def _trace_operation(fn, method_name): """ Return a wrapped function that traces a cache operation """ cache_service_name = settings.DEFAULT_CACHE_SERVICE \ if settings.DEFAULT_CACHE_SERVICE else settings.DEFAULT_SERVICE @wraps(fn) def wrapped(self, *args, **kwargs): # get the original function method method = getattr(self, DATADOG_NAMESPACE.format(method=method_name)) with tracer.trace('django.cache', span_type=TYPE, service=cache_service_name) as span: # update the resource name and tag the cache backend span.resource = _resource_from_cache_prefix(method_name, self) cache_backend = '{}.{}'.format(self.__module__, self.__class__.__name__) span.set_tag(CACHE_BACKEND, cache_backend) if args: keys = quantize_key_values(args[0]) span.set_tag(CACHE_COMMAND_KEY, keys) return method(*args, **kwargs) return wrapped def _wrap_method(cls, method_name): """ For the given class, wraps the method name with a traced operation so that the original method is executed, while the span is properly created """ # check if the backend owns the given bounded method if not hasattr(cls, method_name): return # prevent patching each backend's method more than once if hasattr(cls, DATADOG_NAMESPACE.format(method=method_name)): log.debug('{} already traced'.format(method_name)) else: method = getattr(cls, method_name) setattr(cls, DATADOG_NAMESPACE.format(method=method_name), method) setattr(cls, method_name, _trace_operation(method, method_name)) # trace all backends for cache_module in cache_backends: cache = import_from_string(cache_module, cache_module) for method in TRACED_METHODS: _wrap_method(cache, method)
def patch_cache(tracer): """ Function that patches the inner cache system. Because the cache backend can have different implementations and connectors, this function must handle all possible interactions with the Django cache. What follows is currently traced: * in-memory cache * the cache client wrapper that could use any of the common Django supported cache servers (Redis, Memcached, Database, Custom) """ # discover used cache backends cache_backends = set([cache['BACKEND'] for cache in django_settings.CACHES.values()]) def _trace_operation(fn, method_name): """ Return a wrapped function that traces a cache operation """ cache_service_name = settings.DEFAULT_CACHE_SERVICE \ if settings.DEFAULT_CACHE_SERVICE else settings.DEFAULT_SERVICE @wraps(fn) def wrapped(self, *args, **kwargs): # get the original function method method = getattr(self, DATADOG_NAMESPACE.format(method=method_name)) with tracer.trace('django.cache', span_type=TYPE, service=cache_service_name) as span: # update the resource name and tag the cache backend span.resource = _resource_from_cache_prefix(method_name, self) cache_backend = '{}.{}'.format(self.__module__, self.__class__.__name__) span.set_tag(CACHE_BACKEND, cache_backend) if args: keys = quantize_key_values(args[0]) span.set_tag(CACHE_COMMAND_KEY, keys) return method(*args, **kwargs) return wrapped def _wrap_method(cls, method_name): """ For the given class, wraps the method name with a traced operation so that the original method is executed, while the span is properly created """ # check if the backend owns the given bounded method if not hasattr(cls, method_name): return # prevent patching each backend's method more than once if hasattr(cls, DATADOG_NAMESPACE.format(method=method_name)): log.debug('{} already traced'.format(method_name)) else: method = getattr(cls, method_name) setattr(cls, DATADOG_NAMESPACE.format(method=method_name), method) setattr(cls, method_name, _trace_operation(method, method_name)) # trace all backends for cache_module in cache_backends: cache = import_from_string(cache_module, cache_module) for method in TRACED_METHODS: _wrap_method(cache, method)
54,094
def attach_OPSD_renewables(n, countries=None): if countries is None: countries = (snakemake.config['electricity'] .get('OPSD_VRES_countries', {})) if len(countries) == 0: return for country in countries: mapping = attach_OPSD_ppls_for_country(country) n.generators.loc[mapping.index, 'p_nom'] = mapping logger.info('overwriting renewable capacities in {} [MW] with precise locations\n{}' .format(country, n.generators.loc[mapping.index].groupby('carrier').sum().p_nom))
def attach_OPSD_renewables(n): available = ['DE', 'FR', 'PL', 'CH', 'DK', 'CZ', 'SE', 'GB'] countries = set(available) & set(n.buses.country) tech_map = (snakemake.config['electricity'] .get('include_renewable_capacities_from_OPSD', {})) logger.info(f'Using OPSD renewable capacities in {", ".join(countries)}.') df = pd.concat([pm.data.OPSD_VRE_country(c) for c in countries]) df = df.query('Fueltype in @techs').powerplant.convert_country_to_alpha2() technology_b = ~df.Technology.isin(['Onshore', 'Offshore']) df['Fueltype'] = df.Fueltype.where(technology_b, df.Technology) for fueltype, carrier_like in tech_map.items(): gens = n.generators[lambda df: df.carrier.str.contains(carrier_like)] buses = n.buses.loc[gens.bus.unique()] gens_per_bus = gens.groupby('bus').p_nom.count() caps = map_country_bus(df.query('Fueltype == @fueltype'), buses) caps = caps.groupby(['bus']).Capacity.sum() n.generators.p_nom.update(gens.bus.map(caps).dropna())
43,699
def max_independent_set(graph, constrained=True): r"""Returns the QAOA cost Hamiltonian and the recommended mixer corresponding to the MaxIndependentSet problem, for a given graph. The goal of MaxIndependentSet is to find the largest possible independent set of a graph. Given some graph :math:`G`, an independent set of :math:`G` is a set of vertices such that no two of the vertices in the set share a common edge. Args: graph (nx.Graph): a graph defining the pairs of wires on which each term of the Hamiltonian acts constrained (bool): specifies the variant of QAOA that is performed (constrained or unconstrained) Returns: (.Hamiltonian, .Hamiltonian): .. UsageDetails:: There are two variations of QAOA for this problem, constrained and unconstrained: **Constrained** .. note:: This method of constrained QAOA was introduced by Hadfield, Wang, Gorman, Rieffel, Venturelli, and Biswas in `[arXiv:1709.03489] <https://arxiv.org/abs/1709.03489>`__. The constrained MaxIndependentSet cost Hamiltonian is defined as: .. math:: H_C \ = \ \displaystyle\sum_{v \in V(G)} Z_{v} where :math:`V(G)` is the set of vertices of the input graph, and :math:`Z_i` is the Pauli-Z operator applied to the :math:`i`-th vertex. The returned mixer Hamiltonian is `~qaoa.bit_flip_mixer` applied to :math:`G`. .. note:: **Recommended initialization circuit:** Each wire in the :math:`|0\rangle` state **Unconstrained** The unconstrained MaxIndependentSet cost Hamiltonian is defined as: .. math:: H_C \ = \ \frac{(i, j) \in E(G)} (Z_i Z_j \ - \ Z_i \ - \ Z_j) \ + \ \displaystyle\sum_{i \in V(G)} Z_i where :math:`E(G)` is the edges of :math:`G`, :math:`V(G)` is the set of vertices, and :math:`Z_i` is the Pauli-Z operator acting on the :math:`i`-th vertex. The returned mixer Hamiltonian is `~qaoa.x_mixer` applied to all wires. .. note:: **Recommended initialization circuit:** Even superposition over all basis states """ if not isinstance(graph, nx.Graph): raise ValueError("Input graph must be a nx.Graph, got {}".format(type(graph).__name__)) if constrained: return (bit_driver(graph.nodes, 1), qaoa.bit_flip_mixer(graph, 0)) cost_h = edge_driver(graph, ['10', '01', '00']) + bit_driver(graph.nodes, 1) mixer_h = qaoa.x_mixer(graph.nodes) return (cost_h, mixer_h)
def max_independent_set(graph, constrained=True): r"""For an input graph, returns the QAOA cost Hamiltonian and the recommended mixer for the MaxIndependentSet problem. The goal of MaxIndependentSet is to find the largest possible independent set of a graph. Given some graph :math:`G`, an independent set of :math:`G` is a set of vertices such that no two of the vertices in the set share a common edge. Args: graph (nx.Graph): a graph defining the pairs of wires on which each term of the Hamiltonian acts constrained (bool): specifies the variant of QAOA that is performed (constrained or unconstrained) Returns: (.Hamiltonian, .Hamiltonian): .. UsageDetails:: There are two variations of QAOA for this problem, constrained and unconstrained: **Constrained** .. note:: This method of constrained QAOA was introduced by Hadfield, Wang, Gorman, Rieffel, Venturelli, and Biswas in `[arXiv:1709.03489] <https://arxiv.org/abs/1709.03489>`__. The constrained MaxIndependentSet cost Hamiltonian is defined as: .. math:: H_C \ = \ \displaystyle\sum_{v \in V(G)} Z_{v} where :math:`V(G)` is the set of vertices of the input graph, and :math:`Z_i` is the Pauli-Z operator applied to the :math:`i`-th vertex. The returned mixer Hamiltonian is `~qaoa.bit_flip_mixer` applied to :math:`G`. .. note:: **Recommended initialization circuit:** Each wire in the :math:`|0\rangle` state **Unconstrained** The unconstrained MaxIndependentSet cost Hamiltonian is defined as: .. math:: H_C \ = \ \frac{(i, j) \in E(G)} (Z_i Z_j \ - \ Z_i \ - \ Z_j) \ + \ \displaystyle\sum_{i \in V(G)} Z_i where :math:`E(G)` is the edges of :math:`G`, :math:`V(G)` is the set of vertices, and :math:`Z_i` is the Pauli-Z operator acting on the :math:`i`-th vertex. The returned mixer Hamiltonian is `~qaoa.x_mixer` applied to all wires. .. note:: **Recommended initialization circuit:** Even superposition over all basis states """ if not isinstance(graph, nx.Graph): raise ValueError("Input graph must be a nx.Graph, got {}".format(type(graph).__name__)) if constrained: return (bit_driver(graph.nodes, 1), qaoa.bit_flip_mixer(graph, 0)) cost_h = edge_driver(graph, ['10', '01', '00']) + bit_driver(graph.nodes, 1) mixer_h = qaoa.x_mixer(graph.nodes) return (cost_h, mixer_h)
45,985
def lovasz_hinge_loss(input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: r"""Criterion that computes a surrogate binary intersection-over-union (IoU) loss. According to [2], we compute the IoU as follows: .. math:: \text{IoU}(x, class) = \frac{|X \cap Y|}{|X \cup Y|} [1] approximates this fomular with a surrogate, which is fully differentable. Where: - :math:`X` expects to be the scores of each class. - :math:`Y` expects to be the binary tensor with the class labels. the loss, is finally computed as: .. math:: \text{loss}(x, class) = 1 - \text{IoU}(x, class) Reference: [1] http://proceedings.mlr.press/v37/yub15.pdf [2] https://arxiv.org/pdf/1705.08790.pdf . note:: This loss function only supports binary labels. For multi-class labels please use the Lovasz-Softmax loss. Args: input: logits tensor with shape :math:`(N, 1, H, W)`. labels: labels tensor with shape :math:`(N, H, W)` with binary values. Return: a scalar with the computed loss. Example: >>> N = 1 # num_classes >>> input = torch.randn(1, N, 3, 5, requires_grad=True) >>> target = torch.empty(1, 3, 5, dtype=torch.long).random_(N) >>> output = lovasz_hinge_loss(input, target) >>> output.backward() """ if not isinstance(input, torch.Tensor): raise TypeError(f"Input type is not a torch.Tensor. Got {type(input)}") if not isinstance(target, torch.Tensor): raise TypeError(f"Target type is not a torch.Tensor. Got {type(target)}") if not len(input.shape) == 4: raise ValueError(f"Invalid input shape, we expect Bx1xHxW. Got: {input.shape}") if not len(target.shape) == 3: raise ValueError(f"Invalid target shape, we expect BxHxW. Got: {target.shape}") if not input.shape[1] == 1: raise ValueError(f"Invalid input shape, we expect Bx1xHxW. Got: {input.shape}") if not input.shape[-2:] == target.shape[-2:]: raise ValueError(f"input and target shapes must be the same. Got: {input.shape} and {target.shape}") if not input.device == target.device: raise ValueError(f"input and target must be in the same device. Got: {input.device} and {target.device}") # flatten input and target [B, -1] and to float input_flatten: torch.Tensor = input.flatten(start_dim=1) target_flatten: torch.Tensor = target.flatten(start_dim=1).float() # get shapes B, N = input_flatten.shape # compute probabilities input_prob: torch.Tensor = torch.sigmoid(input_flatten) # compute actual loss signs = 2. * target_flatten - 1. errors = 1. - input_prob * signs errors_sorted, permutation = torch.sort(errors, dim=1, descending=True) batch_index: torch.Tensor = torch.arange(B, device=input.device).repeat_interleave(N, dim=0) target_sorted: torch.Tensor = target_flatten[batch_index, permutation.view(-1)] target_sorted: torch.Tensor = target_sorted.view(B, N) target_sorted_sum: torch.Tensor = target_sorted.sum(dim=1, keepdim=True) intersection: torch.Tensor = target_sorted_sum - target_sorted.cumsum(dim=1) union: torch.Tensor = target_sorted_sum + (1. - target_sorted).cumsum(dim=1) gradient: torch.Tensor = 1. - intersection / union if N > 1: gradient[..., 1:] = gradient[..., 1:] - gradient[..., :-1] loss: torch.Tensor = (F.relu(errors_sorted) * gradient).sum(dim=1).mean() return loss
def lovasz_hinge_loss(input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: r"""Criterion that computes a surrogate binary intersection-over-union (IoU) loss. According to [2], we compute the IoU as follows: .. math:: \text{IoU}(x, class) = \frac{|X \cap Y|}{|X \cup Y|} [1] approximates this fomular with a surrogate, which is fully differentable. Where: - :math:`X` expects to be the scores of each class. - :math:`Y` expects to be the binary tensor with the class labels. the loss, is finally computed as: .. math:: \text{loss}(x, class) = 1 - \text{IoU}(x, class) Reference: [1] http://proceedings.mlr.press/v37/yub15.pdf [2] https://arxiv.org/pdf/1705.08790.pdf . note:: This loss function only supports binary labels. For multi-class labels please use the Lovasz-Softmax loss. Args: input: logits tensor with shape :math:`(N, 1, H, W)`. labels: labels tensor with shape :math:`(N, H, W)` with binary values. Return: a scalar with the computed loss. Example: >>> N = 1 # num_classes >>> input = torch.randn(1, N, 3, 5, requires_grad=True) >>> target = torch.empty(1, 3, 5, dtype=torch.long).random_(N) >>> output = lovasz_hinge_loss(input, target) >>> output.backward() """ if not isinstance(input, torch.Tensor): raise TypeError(f"Input type is not a torch.Tensor. Got {type(input)}") if not isinstance(target, torch.Tensor): raise TypeError(f"Target type is not a torch.Tensor. Got {type(target)}") if not len(input.shape) == 4: raise ValueError(f"Invalid input shape, we expect Bx1xHxW. Got: {input.shape}") if not len(target.shape) == 3: raise ValueError(f"Invalid target shape, we expect BxHxW. Got: {target.shape}") if not input.shape[1] == 1: raise ValueError(f"Invalid input shape, we expect Bx1xHxW. Got: {input.shape}") if not input.shape[-2:] == target.shape[-2:]: raise ValueError(f"input and target shapes must be the same. Got: {input.shape} and {target.shape}") if not input.device == target.device: raise ValueError(f"input and target must be in the same device. Got: {input.device} and {target.device}") # flatten input and target [B, -1] and to float input_flatten: torch.Tensor = input.flatten(start_dim=1) target_flatten: torch.Tensor = target.flatten(start_dim=1).float() # get shapes B, N = input_flatten.shape # compute probabilities input_prob: torch.Tensor = torch.sigmoid(input_flatten) # compute actual loss signs = 2. * target_flatten - 1. errors = 1. - input_prob * signs errors_sorted, permutation = torch.sort(errors, dim=1, descending=True) batch_index: torch.Tensor = torch.arange(B, device=input.device).repeat_interleave(N, dim=0) target_sorted: torch.Tensor = target_flatten[batch_index, permutation.view(-1)] target_sorted: torch.Tensor = target_sorted.view(B, N) target_sorted_sum: torch.Tensor = target_sorted.sum(dim=1, keepdim=True) intersection: torch.Tensor = target_sorted_sum - target_sorted.cumsum(1) union: torch.Tensor = target_sorted_sum + (1. - target_sorted).cumsum(dim=1) gradient: torch.Tensor = 1. - intersection / union if N > 1: gradient[..., 1:] = gradient[..., 1:] - gradient[..., :-1] loss: torch.Tensor = (F.relu(errors_sorted) * gradient).sum(dim=1).mean() return loss
25,835
def get_interface_row_class(record): if not record.enabled: return 'danger' elif not record.is_connectable: return 'primary' else: return get_cabletermination_row_class(record) return ''
def get_interface_row_class(record): if not record.enabled: return 'danger' elif record.is_virtual: return 'primary' else: return get_cabletermination_row_class(record) return ''
57,785
def build_indicator_list(indicator_list: List[str]) -> List[str]: """Builds an indicator list for the query""" result = [] if 'ALL' in indicator_list: # Replaces "ALL" for all types supported on XSOAR. result = ['User-Account', 'Domain-Name', 'Email-Addr', 'StixFile', 'X-OpenCTI-Hostname', 'IPv4-Addr', 'IPv6-Addr', 'Windows-Registry-Key', 'Url'] # Checks for additional types not supported by XSOAR, and adds them. for indicator in indicator_list: if not XSOHR_TYPES_TO_OPENCTI.get(indicator.lower(), ''): result.append(indicator) else: result = [XSOHR_TYPES_TO_OPENCTI.get(indicator.lower(), indicator) for indicator in indicator_list] return result
def build_indicator_list(indicator_list: List[str]) -> List[str]: """Builds an indicator list for the query""" result = [] if 'ALL' in indicator_list: # Replaces "ALL" for all types supported on XSOAR. result = ['User-Account', 'Domain-Name', 'Email-Addr', 'StixFile', 'X-OpenCTI-Hostname', 'IPv4-Addr', 'IPv6-Addr', 'Windows-Registry-Key', 'Url'] result += [XSOHR_TYPES_TO_OPENCTI.get(indicator.lower(), indicator) for indicator in indicator_list if indicator != 'ALL'] return result
53,784
def get_clustering_from_busmap(network, busmap, with_time=True, global_constraints=True, line_length_factor=1.0, aggregate_generators_weighted=False, aggregate_one_ports={}, aggregate_generators_carriers=None, scale_link_capital_costs=True, bus_strategies=dict(), one_port_strategies=dict(), generator_strategies=dict()): buses, linemap, linemap_p, linemap_n, lines = get_buses_linemap_and_lines(network, busmap, line_length_factor, bus_strategies) network_c = Network() io.import_components_from_dataframe(network_c, buses, "Bus") io.import_components_from_dataframe(network_c, lines, "Line") # Carry forward global constraints to clustered network. if global_constraints: network_c.global_constraints = network.global_constraints if with_time: network_c.set_snapshots(network.snapshots) network_c.snapshot_weightings = network.snapshot_weightings.copy() one_port_components = network.one_port_components.copy() if aggregate_generators_weighted: one_port_components.remove("Generator") generators, generators_pnl = aggregategenerators(network, busmap, with_time=with_time, carriers=aggregate_generators_carriers, custom_strategies=generator_strategies) io.import_components_from_dataframe(network_c, generators, "Generator") if with_time: for attr, df in generators_pnl.items(): if not df.empty: io.import_series_from_dataframe(network_c, df, "Generator", attr) for one_port in aggregate_one_ports: one_port_components.remove(one_port) new_df, new_pnl = aggregateoneport(network, busmap, component=one_port, with_time=with_time, custom_strategies=one_port_strategies.get(one_port, {})) io.import_components_from_dataframe(network_c, new_df, one_port) for attr, df in new_pnl.items(): io.import_series_from_dataframe(network_c, df, one_port, attr) ## # Collect remaining one ports for c in network.iterate_components(one_port_components): io.import_components_from_dataframe( network_c, c.df.assign(bus=c.df.bus.map(busmap)).dropna(subset=['bus']), c.name ) if with_time: for c in network.iterate_components(one_port_components): for attr, df in c.pnl.items(): if not df.empty: io.import_series_from_dataframe(network_c, df, c.name, attr) new_links = (network.links.assign(bus0=network.links.bus0.map(busmap), bus1=network.links.bus1.map(busmap)) .dropna(subset=['bus0', 'bus1']) .loc[lambda df: df.bus0 != df.bus1]) new_links['length'] = np.where( new_links.length.notnull() & (new_links.length > 0), line_length_factor * haversine_pts(buses.loc[new_links['bus0'], ['x', 'y']], buses.loc[new_links['bus1'], ['x', 'y']]), 0 ) if scale_link_capital_costs: new_links['capital_cost'] *= (new_links.length/network.links.length).fillna(1) io.import_components_from_dataframe(network_c, new_links, "Link") if with_time: for attr, df in network.links_t.items(): if not df.empty: io.import_series_from_dataframe(network_c, df, "Link", attr) io.import_components_from_dataframe(network_c, network.carriers, "Carrier") network_c.determine_network_topology() return Clustering(network_c, busmap, linemap, linemap_p, linemap_n)
def get_clustering_from_busmap(network, busmap, with_time=True, global_constraints=True, line_length_factor=1.0, aggregate_generators_weighted=False, aggregate_one_ports={}, aggregate_generators_carriers=None, scale_link_capital_costs=True, bus_strategies=dict(), one_port_strategies=dict(), generator_strategies=dict()): buses, linemap, linemap_p, linemap_n, lines = get_buses_linemap_and_lines(network, busmap, line_length_factor, bus_strategies) network_c = Network() io.import_components_from_dataframe(network_c, buses, "Bus") io.import_components_from_dataframe(network_c, lines, "Line") # Carry forward global constraints to clustered network. network_c.global_constraints = network.global_constraints if with_time: network_c.set_snapshots(network.snapshots) network_c.snapshot_weightings = network.snapshot_weightings.copy() one_port_components = network.one_port_components.copy() if aggregate_generators_weighted: one_port_components.remove("Generator") generators, generators_pnl = aggregategenerators(network, busmap, with_time=with_time, carriers=aggregate_generators_carriers, custom_strategies=generator_strategies) io.import_components_from_dataframe(network_c, generators, "Generator") if with_time: for attr, df in generators_pnl.items(): if not df.empty: io.import_series_from_dataframe(network_c, df, "Generator", attr) for one_port in aggregate_one_ports: one_port_components.remove(one_port) new_df, new_pnl = aggregateoneport(network, busmap, component=one_port, with_time=with_time, custom_strategies=one_port_strategies.get(one_port, {})) io.import_components_from_dataframe(network_c, new_df, one_port) for attr, df in new_pnl.items(): io.import_series_from_dataframe(network_c, df, one_port, attr) ## # Collect remaining one ports for c in network.iterate_components(one_port_components): io.import_components_from_dataframe( network_c, c.df.assign(bus=c.df.bus.map(busmap)).dropna(subset=['bus']), c.name ) if with_time: for c in network.iterate_components(one_port_components): for attr, df in c.pnl.items(): if not df.empty: io.import_series_from_dataframe(network_c, df, c.name, attr) new_links = (network.links.assign(bus0=network.links.bus0.map(busmap), bus1=network.links.bus1.map(busmap)) .dropna(subset=['bus0', 'bus1']) .loc[lambda df: df.bus0 != df.bus1]) new_links['length'] = np.where( new_links.length.notnull() & (new_links.length > 0), line_length_factor * haversine_pts(buses.loc[new_links['bus0'], ['x', 'y']], buses.loc[new_links['bus1'], ['x', 'y']]), 0 ) if scale_link_capital_costs: new_links['capital_cost'] *= (new_links.length/network.links.length).fillna(1) io.import_components_from_dataframe(network_c, new_links, "Link") if with_time: for attr, df in network.links_t.items(): if not df.empty: io.import_series_from_dataframe(network_c, df, "Link", attr) io.import_components_from_dataframe(network_c, network.carriers, "Carrier") network_c.determine_network_topology() return Clustering(network_c, busmap, linemap, linemap_p, linemap_n)
1,015
def test_html_metadata(): s = "<h1>Test</h1>" h = display.HTML(s, metadata={"isolated": True}) assert h._repr_html_(), (s == {"isolated": True})
def test_html_metadata(): s = "<h1>Test</h1>" h = display.HTML(s, metadata={"isolated": True}) assert h._repr_html_() == (s , {"isolated": True})
30,955
def create_user_iam(default_base_dn, default_page_size, args): assert conn is not None user_profile = args.get("user-profile") user_profile_delta = args.get('user-profile-delta') iam_user_profile = IAMUserProfile(user_profile=user_profile, user_profile_delta=user_profile_delta) ad_user = iam_user_profile.map_object(mapper_name=OUTGOING_MAPPER, mapping_type='User Profile') try: sam_account_name = ad_user.get("samaccountname") user_exists = check_if_user_exists_by_samaccountname(default_base_dn, default_page_size, sam_account_name) if user_exists: return return_results("User already exists") user_dn = generate_dn_and_remove_from_user_profile(ad_user) object_classes = ["top", "person", "organizationalPerson", "user"] success = conn.add(user_dn, object_classes, ad_user) if success: iam_user_profile.set_result(success=True, email=ad_user.get('email'), username=ad_user.get('name'), details=ad_user, active=ad_user.get("userAccountControl")) else: iam_user_profile.set_result(success=False, error_message="Failed to create user") return_results(iam_user_profile) except Exception as e: iam_user_profile.set_result(success=False, error_message=str(e)) return_results(iam_user_profile)
def create_user_iam(default_base_dn, default_page_size, args): assert conn is not None user_profile = args.get("user-profile") user_profile_delta = args.get('user-profile-delta') iam_user_profile = IAMUserProfile(user_profile=user_profile, user_profile_delta=user_profile_delta) ad_user = iam_user_profile.map_object(mapper_name=OUTGOING_MAPPER, mapping_type='User Profile') try: sam_account_name = ad_user.get("samaccountname") user_exists = check_if_user_exists_by_samaccountname(default_base_dn, default_page_size, sam_account_name) if user_exists: return return_results("User already exists") user_dn = generate_dn_and_remove_from_user_profile(ad_user) object_classes = ["top", "person", "organizationalPerson", "user"] success = conn.add(user_dn, object_classes, ad_user) if success: iam_user_profile.set_result(success=True, email=ad_user.get('email'), username=ad_user.get('name'), details=ad_user, active=True) else: iam_user_profile.set_result(success=False, error_message="Failed to create user") return_results(iam_user_profile) except Exception as e: iam_user_profile.set_result(success=False, error_message=str(e)) return_results(iam_user_profile)
30,853
def format_sort(sort_str: str) -> list: """ Format a sort string from "field1:asc,field2:desc" to a list accepted by pymongo.sort() "field1:asc,field2:desc" => [("field1",1),("field2",-1)] Args: sort_str: a sort detailed as a string Returns: list accepted by pymongo.sort() """ sort_fields = sort_str.split(',') sort_list = list() for field in sort_fields: if ':' not in field: raise ValueError("`sort` is not in the correct format.") field, type = field.split(':') if type not in SORT_TYPE_DICT.keys(): raise ValueError("`sort` is not in the correct format. Please make sure it's either 'asc' or 'desc'") else: sort_list.append((field, SORT_TYPE_DICT[type])) return sort_list
def format_sort(sort_str: str) -> list: """ Format a sort string from "field1:asc,field2:desc" to a list accepted by pymongo.sort() "field1:asc,field2:desc" => [("field1",1),("field2",-1)] Args: sort_str: a sort detailed as a string Returns: list accepted by pymongo.sort() """ sort_fields = sort_str.split(',') sort_list = list() for field in sort_fields: if ':' not in field: raise ValueError("`sort` is not in the correct format.") field, type = field.split(':', 1) if type not in SORT_TYPE_DICT.keys(): raise ValueError("`sort` is not in the correct format. Please make sure it's either 'asc' or 'desc'") else: sort_list.append((field, SORT_TYPE_DICT[type])) return sort_list
5,344
def init( name, cpu, mem, nic="default", interfaces=None, hypervisor=None, start=True, # pylint: disable=redefined-outer-name disk="default", disks=None, saltenv="base", seed=True, install=True, pub_key=None, priv_key=None, seed_cmd="seed.apply", graphics=None, os_type=None, arch=None, boot=None, memtune=None, **kwargs ): """ Initialize a new vm :param name: name of the virtual machine to create :param cpu: Number of virtual CPUs to assign to the virtual machine :param mem: Amount of memory to allocate to the virtual machine in MiB. :param nic: NIC profile to use (Default: ``'default'``). The profile interfaces can be customized / extended with the interfaces parameter. If set to ``None``, no profile will be used. :param interfaces: List of dictionaries providing details on the network interfaces to create. These data are merged with the ones from the nic profile. The structure of each dictionary is documented in :ref:`init-nic-def`. .. versionadded:: 2019.2.0 :param hypervisor: the virtual machine type. By default the value will be computed according to the virtual host capabilities. :param start: ``True`` to start the virtual machine after having defined it (Default: ``True``) :param disk: Disk profile to use (Default: ``'default'``). If set to ``None``, no profile will be used. :param disks: List of dictionaries providing details on the disk devices to create. These data are merged with the ones from the disk profile. The structure of each dictionary is documented in :ref:`init-disk-def`. .. versionadded:: 2019.2.0 :param saltenv: Fileserver environment (Default: ``'base'``). See :mod:`cp module for more details <salt.modules.cp>` :param seed: ``True`` to seed the disk image. Only used when the ``image`` parameter is provided. (Default: ``True``) :param install: install salt minion if absent (Default: ``True``) :param pub_key: public key to seed with (Default: ``None``) :param priv_key: public key to seed with (Default: ``None``) :param seed_cmd: Salt command to execute to seed the image. (Default: ``'seed.apply'``) :param graphics: Dictionary providing details on the graphics device to create. (Default: ``None``) See :ref:`init-graphics-def` for more details on the possible values. .. versionadded:: 2019.2.0 :param os_type: type of virtualization as found in the ``//os/type`` element of the libvirt definition. The default value is taken from the host capabilities, with a preference for ``hvm``. .. versionadded:: 2019.2.0 :param arch: architecture of the virtual machine. The default value is taken from the host capabilities, but ``x86_64`` is prefed over ``i686``. .. versionadded:: 2019.2.0 :param config: minion configuration to use when seeding. See :mod:`seed module for more details <salt.modules.seed>` :param boot_dev: String of space-separated devices to boot from (Default: ``'hd'``) :param serial_type: Serial device type. One of ``'pty'``, ``'tcp'`` (Default: ``None``) :param telnet_port: Telnet port to use for serial device of type ``tcp``. :param console: ``True`` to add a console device along with serial one (Default: ``True``) :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 :param boot: Specifies kernel, initial ramdisk and kernel command line parameters for the virtual machine. This is an optional parameter, all of the keys are optional within the dictionary. The structure of the dictionary is documented in :ref:`init-boot-def`. If a remote path is provided to kernel or initrd, salt will handle the downloading of the specified remote file and modify the XML accordingly. To boot VM with UEFI, specify loader and nvram path or specify 'efi': ``True`` if your libvirtd version is >= 5.2.0 and QEMU >= 3.0.0. .. versionadded:: 3000 .. code-block:: python { 'kernel': '/root/f8-i386-vmlinuz', 'initrd': '/root/f8-i386-initrd', 'cmdline': 'console=ttyS0 ks=http://example.com/f8-i386/os/', 'loader': '/usr/share/OVMF/OVMF_CODE.fd', 'nvram': '/usr/share/OVMF/OVMF_VARS.ms.fd' } :param memtune: Specifies hard_limit, soft_limit, swap_hard_limit and min_guarantee parameters for tuning the memory of the domain. This is an optional parameter, all of the keys are optional within the dictionary. The structure of the dictionary is documented in :ref:`init-memtune-def`. Both decimal and binary base are supported. Detail unit specification is documented in :ref:`virt-units` .. versionadded:: Magnesium .. code-block:: python { 'hard_limit': '1024' 'soft_limit': '512m' 'swap_hard_limit': '1g' 'min_guarantee': '512mib' } .. _init-boot-def: .. rubric:: Boot parameters definition The boot parameters dictionary can contains the following properties: kernel The URL or path to the kernel to run the virtual machine with. initrd The URL or path to the initrd file to run the virtual machine with. cmdline The parameters to pass to the kernel provided in the `kernel` property. loader The path to the UEFI binary loader to use. .. versionadded:: 3001 nvram The path to the UEFI data template. The file will be copied when creating the virtual machine. .. versionadded:: 3001 efi A boolean value. .. versionadded:: sodium .. _init-memtune-def: .. rubric:: Memtune parameter definition Memtune parameter can contain the following properties: hard_limit the maximum memory the guest can use soft_limit memory limit to enforce during memory contention swap_hard_limit the maximum memory plus swap the guest can use min_guarantee the guaranteed minimum memory allocation for the guest .. _init-nic-def: .. rubric:: Network Interfaces Definitions Network interfaces dictionaries can contain the following properties: name Name of the network interface. This is only used as a key to merge with the profile data type Network type. One of ``'bridge'``, ``'network'`` source The network source, typically the bridge or network name mac The desired mac address, computed if ``None`` (Default: ``None``). model The network card model (Default: depends on the hypervisor) .. _init-disk-def: .. rubric:: Disks Definitions Disk dictionaries can contain the following properties: name Name of the disk. This is mostly used in the name of the disk image and as a key to merge with the profile data. format Format of the disk image, like ``'qcow2'``, ``'raw'``, ``'vmdk'``. (Default: depends on the hypervisor) size Disk size in MiB pool Path to the folder or name of the pool where disks should be created. (Default: depends on hypervisor and the virt:storagepool configuration) .. versionchanged:: 3001 If the value contains no '/', it is considered a pool name where to create a volume. Using volumes will be mandatory for some pools types like rdb, iscsi, etc. model One of the disk busses allowed by libvirt (Default: depends on hypervisor) See the libvirt `disk element`_ documentation for the allowed bus types. image Path to the image to use for the disk. If no image is provided, an empty disk will be created (Default: ``None``) Note that some pool types do not support uploading an image. This list can evolve with libvirt versions. overlay_image ``True`` to create a QCOW2 disk image with ``image`` as backing file. If ``False`` the file pointed to by the ``image`` property will simply be copied. (Default: ``False``) .. versionchanged:: 3001 This property is only valid on path-based disks, not on volumes. To create a volume with a backing store, set the ``backing_store_path`` and ``backing_store_format`` properties. backing_store_path Path to the backing store image to use. This can also be the name of a volume to use as backing store within the same pool. .. versionadded:: 3001 backing_store_format Image format of the disk or volume to use as backing store. This property is mandatory when using ``backing_store_path`` to avoid `problems <https://libvirt.org/kbase/backing_chains.html#troubleshooting>`_ .. versionadded:: 3001 source_file Absolute path to the disk image to use. Not to be confused with ``image`` parameter. This parameter is useful to use disk images that are created outside of this module. Can also be ``None`` for devices that have no associated image like cdroms. .. versionchanged:: 3001 For volume disks, this can be the name of a volume already existing in the storage pool. device Type of device of the disk. Can be one of 'disk', 'cdrom', 'floppy' or 'lun'. (Default: ``'disk'``) hostname_property When using ZFS volumes, setting this value to a ZFS property ID will make Salt store the name of the virtual machine inside this property. (Default: ``None``) sparse_volume Boolean to specify whether to use a thin provisioned ZFS volume. Example profile for a bhyve VM with two ZFS disks. The first is cloned from the specified image. The second disk is a thin provisioned volume. .. code-block:: yaml virt: disk: two_zvols: - system: image: zroot/bhyve/CentOS-7-x86_64-v1@v1.0.5 hostname_property: virt:hostname pool: zroot/bhyve/guests - data: pool: tank/disks size: 20G hostname_property: virt:hostname sparse_volume: True .. _init-graphics-def: .. rubric:: Graphics Definition The graphics dictionary can have the following properties: type Graphics type. The possible values are ``none``, ``'spice'``, ``'vnc'`` and other values allowed as a libvirt graphics type (Default: ``None``) See the libvirt `graphics element`_ documentation for more details on the possible types. port Port to export the graphics on for ``vnc``, ``spice`` and ``rdp`` types. tls_port Port to export the graphics over a secured connection for ``spice`` type. listen Dictionary defining on what address to listen on for ``vnc``, ``spice`` and ``rdp``. It has a ``type`` property with ``address`` and ``None`` as possible values, and an ``address`` property holding the IP or hostname to listen on. By default, not setting the ``listen`` part of the dictionary will default to listen on all addresses. .. rubric:: CLI Example .. code-block:: bash salt 'hypervisor' virt.init vm_name 4 512 salt://path/to/image.raw salt 'hypervisor' virt.init vm_name 4 512 /var/lib/libvirt/images/img.raw salt 'hypervisor' virt.init vm_name 4 512 nic=profile disk=profile The disk images will be created in an image folder within the directory defined by the ``virt:images`` option. Its default value is ``/srv/salt-images/`` but this can changed with such a configuration: .. code-block:: yaml virt: images: /data/my/vm/images/ .. _disk element: https://libvirt.org/formatdomain.html#elementsDisks .. _graphics element: https://libvirt.org/formatdomain.html#elementsGraphics """ try: conn = __get_conn(**kwargs) caps = _capabilities(conn) os_types = sorted({guest["os_type"] for guest in caps["guests"]}) arches = sorted({guest["arch"]["name"] for guest in caps["guests"]}) virt_hypervisor = hypervisor if not virt_hypervisor: # Use the machine types as possible values # Prefer 'kvm' over the others if available hypervisors = sorted( { x for y in [ guest["arch"]["domains"].keys() for guest in caps["guests"] ] for x in y } ) virt_hypervisor = "kvm" if "kvm" in hypervisors else hypervisors[0] # esxi used to be a possible value for the hypervisor: map it to vmware since it's the same virt_hypervisor = "vmware" if virt_hypervisor == "esxi" else virt_hypervisor log.debug("Using hypervisor %s", virt_hypervisor) nicp = _get_merged_nics(virt_hypervisor, nic, interfaces) # the disks are computed as follows: # 1 - get the disks defined in the profile # 3 - update the disks from the profile with the ones from the user. The matching key is the name. diskp = _disk_profile(conn, disk, virt_hypervisor, disks, name) # Create multiple disks, empty or from specified images. for _disk in diskp: # No need to create an image for cdrom devices if _disk.get("device", "disk") == "cdrom": continue log.debug("Creating disk for VM [ %s ]: %s", name, _disk) if virt_hypervisor == "vmware": if "image" in _disk: # TODO: we should be copying the image file onto the ESX host raise SaltInvocationError( "virt.init does not support image " "template in conjunction with esxi hypervisor" ) else: # assume libvirt manages disks for us log.debug("Generating libvirt XML for %s", _disk) volume_name = "{0}/{1}".format(name, _disk["name"]) filename = "{0}.{1}".format(volume_name, _disk["format"]) vol_xml = _gen_vol_xml( filename, _disk["size"], format=_disk["format"] ) _define_vol_xml_str(conn, vol_xml, pool=_disk.get("pool")) elif virt_hypervisor in ["qemu", "kvm", "xen"]: def seeder(path): _seed_image( seed_cmd, path, name, kwargs.get("config"), install, pub_key, priv_key, ) create_overlay = _disk.get("overlay_image", False) format = _disk.get("format") if _disk.get("source_file"): if os.path.exists(_disk["source_file"]): img_dest = _disk["source_file"] else: img_dest = _qemu_image_create(_disk, create_overlay, saltenv) else: _disk_volume_create(conn, _disk, seeder if seed else None, saltenv) img_dest = None # Seed only if there is an image specified if seed and img_dest and _disk.get("image", None): seeder(img_dest) elif hypervisor in ["bhyve"]: img_dest = _zfs_image_create( vm_name=name, pool=_disk.get("pool"), disk_name=_disk.get("name"), disk_size=_disk.get("size"), disk_image_name=_disk.get("image"), hostname_property_name=_disk.get("hostname_property"), sparse_volume=_disk.get("sparse_volume"), ) else: # Unknown hypervisor raise SaltInvocationError( "Unsupported hypervisor when handling disk image: {0}".format( virt_hypervisor ) ) log.debug("Generating VM XML") if os_type is None: os_type = "hvm" if "hvm" in os_types else os_types[0] if arch is None: arch = "x86_64" if "x86_64" in arches else arches[0] if boot is not None: boot = _handle_remote_boot_params(boot) vm_xml = _gen_xml( conn, name, cpu, mem, diskp, nicp, virt_hypervisor, os_type, arch, graphics, boot, memtune, **kwargs ) conn.defineXML(vm_xml) except libvirt.libvirtError as err: conn.close() raise CommandExecutionError(err.get_error_message()) if start: log.debug("Starting VM %s", name) _get_domain(conn, name).create() conn.close() return True
def init( name, cpu, mem, nic="default", interfaces=None, hypervisor=None, start=True, # pylint: disable=redefined-outer-name disk="default", disks=None, saltenv="base", seed=True, install=True, pub_key=None, priv_key=None, seed_cmd="seed.apply", graphics=None, os_type=None, arch=None, boot=None, memtune=None, **kwargs ): """ Initialize a new vm :param name: name of the virtual machine to create :param cpu: Number of virtual CPUs to assign to the virtual machine :param mem: Amount of memory to allocate to the virtual machine in MiB. :param nic: NIC profile to use (Default: ``'default'``). The profile interfaces can be customized / extended with the interfaces parameter. If set to ``None``, no profile will be used. :param interfaces: List of dictionaries providing details on the network interfaces to create. These data are merged with the ones from the nic profile. The structure of each dictionary is documented in :ref:`init-nic-def`. .. versionadded:: 2019.2.0 :param hypervisor: the virtual machine type. By default the value will be computed according to the virtual host capabilities. :param start: ``True`` to start the virtual machine after having defined it (Default: ``True``) :param disk: Disk profile to use (Default: ``'default'``). If set to ``None``, no profile will be used. :param disks: List of dictionaries providing details on the disk devices to create. These data are merged with the ones from the disk profile. The structure of each dictionary is documented in :ref:`init-disk-def`. .. versionadded:: 2019.2.0 :param saltenv: Fileserver environment (Default: ``'base'``). See :mod:`cp module for more details <salt.modules.cp>` :param seed: ``True`` to seed the disk image. Only used when the ``image`` parameter is provided. (Default: ``True``) :param install: install salt minion if absent (Default: ``True``) :param pub_key: public key to seed with (Default: ``None``) :param priv_key: public key to seed with (Default: ``None``) :param seed_cmd: Salt command to execute to seed the image. (Default: ``'seed.apply'``) :param graphics: Dictionary providing details on the graphics device to create. (Default: ``None``) See :ref:`init-graphics-def` for more details on the possible values. .. versionadded:: 2019.2.0 :param os_type: type of virtualization as found in the ``//os/type`` element of the libvirt definition. The default value is taken from the host capabilities, with a preference for ``hvm``. .. versionadded:: 2019.2.0 :param arch: architecture of the virtual machine. The default value is taken from the host capabilities, but ``x86_64`` is prefed over ``i686``. .. versionadded:: 2019.2.0 :param config: minion configuration to use when seeding. See :mod:`seed module for more details <salt.modules.seed>` :param boot_dev: String of space-separated devices to boot from (Default: ``'hd'``) :param serial_type: Serial device type. One of ``'pty'``, ``'tcp'`` (Default: ``None``) :param telnet_port: Telnet port to use for serial device of type ``tcp``. :param console: ``True`` to add a console device along with serial one (Default: ``True``) :param connection: libvirt connection URI, overriding defaults .. versionadded:: 2019.2.0 :param username: username to connect with, overriding defaults .. versionadded:: 2019.2.0 :param password: password to connect with, overriding defaults .. versionadded:: 2019.2.0 :param boot: Specifies kernel, initial ramdisk and kernel command line parameters for the virtual machine. This is an optional parameter, all of the keys are optional within the dictionary. The structure of the dictionary is documented in :ref:`init-boot-def`. If a remote path is provided to kernel or initrd, salt will handle the downloading of the specified remote file and modify the XML accordingly. To boot VM with UEFI, specify loader and nvram path or specify 'efi': ``True`` if your libvirtd version is >= 5.2.0 and QEMU >= 3.0.0. .. versionadded:: 3000 .. code-block:: python { 'kernel': '/root/f8-i386-vmlinuz', 'initrd': '/root/f8-i386-initrd', 'cmdline': 'console=ttyS0 ks=http://example.com/f8-i386/os/', 'loader': '/usr/share/OVMF/OVMF_CODE.fd', 'nvram': '/usr/share/OVMF/OVMF_VARS.ms.fd' } :param memtune: Specifies hard_limit, soft_limit, swap_hard_limit and min_guarantee parameters for tuning the memory of the domain. This is an optional parameter, all of the keys are optional within the dictionary. The structure of the dictionary is documented in :ref:`init-memtune-def`. Both decimal and binary base are supported. Detail unit specification is documented in :ref:`virt-units` .. versionadded:: Magnesium .. code-block:: python { 'hard_limit': '1024' 'soft_limit': '512m' 'swap_hard_limit': '1g' 'min_guarantee': '512mib' } .. _init-boot-def: .. rubric:: Boot parameters definition The boot parameters dictionary can contains the following properties: kernel The URL or path to the kernel to run the virtual machine with. initrd The URL or path to the initrd file to run the virtual machine with. cmdline The parameters to pass to the kernel provided in the `kernel` property. loader The path to the UEFI binary loader to use. .. versionadded:: 3001 nvram The path to the UEFI data template. The file will be copied when creating the virtual machine. .. versionadded:: 3001 efi A boolean value. .. versionadded:: sodium .. _init-memtune-def: .. rubric:: Memtune parameter definition Memtune parameter can contain the following properties: hard_limit the maximum memory the guest can use soft_limit memory limit to enforce during memory contention swap_hard_limit the maximum memory plus swap the guest can use min_guarantee the guaranteed minimum memory allocation for the guest .. _init-nic-def: .. rubric:: Network Interfaces Definitions Network interfaces dictionaries can contain the following properties: name Name of the network interface. This is only used as a key to merge with the profile data type Network type. One of ``'bridge'``, ``'network'`` source The network source, typically the bridge or network name mac The desired mac address, computed if ``None`` (Default: ``None``). model The network card model (Default: depends on the hypervisor) .. _init-disk-def: .. rubric:: Disks Definitions Disk dictionaries can contain the following properties: name Name of the disk. This is mostly used in the name of the disk image and as a key to merge with the profile data. format Format of the disk image, like ``'qcow2'``, ``'raw'``, ``'vmdk'``. (Default: depends on the hypervisor) Specifies ``hard_limit, soft_limit``, ``swap_hard_limit`` and ``min_guarantee`` parameters for tuning the memory of the domain. Disk size in MiB pool Path to the folder or name of the pool where disks should be created. (Default: depends on hypervisor and the virt:storagepool configuration) .. versionchanged:: 3001 If the value contains no '/', it is considered a pool name where to create a volume. Using volumes will be mandatory for some pools types like rdb, iscsi, etc. model One of the disk busses allowed by libvirt (Default: depends on hypervisor) See the libvirt `disk element`_ documentation for the allowed bus types. image Path to the image to use for the disk. If no image is provided, an empty disk will be created (Default: ``None``) Note that some pool types do not support uploading an image. This list can evolve with libvirt versions. overlay_image ``True`` to create a QCOW2 disk image with ``image`` as backing file. If ``False`` the file pointed to by the ``image`` property will simply be copied. (Default: ``False``) .. versionchanged:: 3001 This property is only valid on path-based disks, not on volumes. To create a volume with a backing store, set the ``backing_store_path`` and ``backing_store_format`` properties. backing_store_path Path to the backing store image to use. This can also be the name of a volume to use as backing store within the same pool. .. versionadded:: 3001 backing_store_format Image format of the disk or volume to use as backing store. This property is mandatory when using ``backing_store_path`` to avoid `problems <https://libvirt.org/kbase/backing_chains.html#troubleshooting>`_ .. versionadded:: 3001 source_file Absolute path to the disk image to use. Not to be confused with ``image`` parameter. This parameter is useful to use disk images that are created outside of this module. Can also be ``None`` for devices that have no associated image like cdroms. .. versionchanged:: 3001 For volume disks, this can be the name of a volume already existing in the storage pool. device Type of device of the disk. Can be one of 'disk', 'cdrom', 'floppy' or 'lun'. (Default: ``'disk'``) hostname_property When using ZFS volumes, setting this value to a ZFS property ID will make Salt store the name of the virtual machine inside this property. (Default: ``None``) sparse_volume Boolean to specify whether to use a thin provisioned ZFS volume. Example profile for a bhyve VM with two ZFS disks. The first is cloned from the specified image. The second disk is a thin provisioned volume. .. code-block:: yaml virt: disk: two_zvols: - system: image: zroot/bhyve/CentOS-7-x86_64-v1@v1.0.5 hostname_property: virt:hostname pool: zroot/bhyve/guests - data: pool: tank/disks size: 20G hostname_property: virt:hostname sparse_volume: True .. _init-graphics-def: .. rubric:: Graphics Definition The graphics dictionary can have the following properties: type Graphics type. The possible values are ``none``, ``'spice'``, ``'vnc'`` and other values allowed as a libvirt graphics type (Default: ``None``) See the libvirt `graphics element`_ documentation for more details on the possible types. port Port to export the graphics on for ``vnc``, ``spice`` and ``rdp`` types. tls_port Port to export the graphics over a secured connection for ``spice`` type. listen Dictionary defining on what address to listen on for ``vnc``, ``spice`` and ``rdp``. It has a ``type`` property with ``address`` and ``None`` as possible values, and an ``address`` property holding the IP or hostname to listen on. By default, not setting the ``listen`` part of the dictionary will default to listen on all addresses. .. rubric:: CLI Example .. code-block:: bash salt 'hypervisor' virt.init vm_name 4 512 salt://path/to/image.raw salt 'hypervisor' virt.init vm_name 4 512 /var/lib/libvirt/images/img.raw salt 'hypervisor' virt.init vm_name 4 512 nic=profile disk=profile The disk images will be created in an image folder within the directory defined by the ``virt:images`` option. Its default value is ``/srv/salt-images/`` but this can changed with such a configuration: .. code-block:: yaml virt: images: /data/my/vm/images/ .. _disk element: https://libvirt.org/formatdomain.html#elementsDisks .. _graphics element: https://libvirt.org/formatdomain.html#elementsGraphics """ try: conn = __get_conn(**kwargs) caps = _capabilities(conn) os_types = sorted({guest["os_type"] for guest in caps["guests"]}) arches = sorted({guest["arch"]["name"] for guest in caps["guests"]}) virt_hypervisor = hypervisor if not virt_hypervisor: # Use the machine types as possible values # Prefer 'kvm' over the others if available hypervisors = sorted( { x for y in [ guest["arch"]["domains"].keys() for guest in caps["guests"] ] for x in y } ) virt_hypervisor = "kvm" if "kvm" in hypervisors else hypervisors[0] # esxi used to be a possible value for the hypervisor: map it to vmware since it's the same virt_hypervisor = "vmware" if virt_hypervisor == "esxi" else virt_hypervisor log.debug("Using hypervisor %s", virt_hypervisor) nicp = _get_merged_nics(virt_hypervisor, nic, interfaces) # the disks are computed as follows: # 1 - get the disks defined in the profile # 3 - update the disks from the profile with the ones from the user. The matching key is the name. diskp = _disk_profile(conn, disk, virt_hypervisor, disks, name) # Create multiple disks, empty or from specified images. for _disk in diskp: # No need to create an image for cdrom devices if _disk.get("device", "disk") == "cdrom": continue log.debug("Creating disk for VM [ %s ]: %s", name, _disk) if virt_hypervisor == "vmware": if "image" in _disk: # TODO: we should be copying the image file onto the ESX host raise SaltInvocationError( "virt.init does not support image " "template in conjunction with esxi hypervisor" ) else: # assume libvirt manages disks for us log.debug("Generating libvirt XML for %s", _disk) volume_name = "{0}/{1}".format(name, _disk["name"]) filename = "{0}.{1}".format(volume_name, _disk["format"]) vol_xml = _gen_vol_xml( filename, _disk["size"], format=_disk["format"] ) _define_vol_xml_str(conn, vol_xml, pool=_disk.get("pool")) elif virt_hypervisor in ["qemu", "kvm", "xen"]: def seeder(path): _seed_image( seed_cmd, path, name, kwargs.get("config"), install, pub_key, priv_key, ) create_overlay = _disk.get("overlay_image", False) format = _disk.get("format") if _disk.get("source_file"): if os.path.exists(_disk["source_file"]): img_dest = _disk["source_file"] else: img_dest = _qemu_image_create(_disk, create_overlay, saltenv) else: _disk_volume_create(conn, _disk, seeder if seed else None, saltenv) img_dest = None # Seed only if there is an image specified if seed and img_dest and _disk.get("image", None): seeder(img_dest) elif hypervisor in ["bhyve"]: img_dest = _zfs_image_create( vm_name=name, pool=_disk.get("pool"), disk_name=_disk.get("name"), disk_size=_disk.get("size"), disk_image_name=_disk.get("image"), hostname_property_name=_disk.get("hostname_property"), sparse_volume=_disk.get("sparse_volume"), ) else: # Unknown hypervisor raise SaltInvocationError( "Unsupported hypervisor when handling disk image: {0}".format( virt_hypervisor ) ) log.debug("Generating VM XML") if os_type is None: os_type = "hvm" if "hvm" in os_types else os_types[0] if arch is None: arch = "x86_64" if "x86_64" in arches else arches[0] if boot is not None: boot = _handle_remote_boot_params(boot) vm_xml = _gen_xml( conn, name, cpu, mem, diskp, nicp, virt_hypervisor, os_type, arch, graphics, boot, memtune, **kwargs ) conn.defineXML(vm_xml) except libvirt.libvirtError as err: conn.close() raise CommandExecutionError(err.get_error_message()) if start: log.debug("Starting VM %s", name) _get_domain(conn, name).create() conn.close() return True
38,662
def test_list_getitem(): l = [1, 2] expr = sn.defer(l)[1] == 3 l[1] = 3 assert expr
def test_getitem_list(): l = [1, 2] expr = sn.defer(l)[1] == 3 l[1] = 3 assert expr
31,118
def upload_private_id_set(storage_bucket, private_id_set_path): """ Uploads the private_id_set.json artifact to the bucket. Args: storage_bucket (google.cloud.storage.bucket.Bucket): gcs bucket where core packs config is uploaded. private_id_set_path: path to the private_id_set.json file """ if not private_id_set_path: logging.info("Skipping upload of private id set to gcs.") return private_id_set_gcs_path = os.path.join(os.path.dirname(GCPConfig.STORAGE_PRIVATE_ID_SET_PATH), 'private_id_set.json') blob = storage_bucket.blob(private_id_set_gcs_path) with open(private_id_set_path, mode='r') as f: blob.upload_from_file(f) logging.success("Finished uploading id_set.json to storage.")
def upload_private_id_set_to_bucket(storage_bucket, private_id_set_path): """ Uploads the private_id_set.json artifact to the bucket. Args: storage_bucket (google.cloud.storage.bucket.Bucket): gcs bucket where core packs config is uploaded. private_id_set_path: path to the private_id_set.json file """ if not private_id_set_path: logging.info("Skipping upload of private id set to gcs.") return private_id_set_gcs_path = os.path.join(os.path.dirname(GCPConfig.STORAGE_PRIVATE_ID_SET_PATH), 'private_id_set.json') blob = storage_bucket.blob(private_id_set_gcs_path) with open(private_id_set_path, mode='r') as f: blob.upload_from_file(f) logging.success("Finished uploading id_set.json to storage.")
35,618
def ps_roi_pool( input: Tensor, boxes: Tensor, output_size: int, spatial_scale: float = 1.0, ) -> Tensor: """ Performs Position-Sensitive Region of Interest (RoI) Pool operator described in R-FCN Args: input (Tensor[N, C, H, W]): The input tensor, i.e. a batch with ``N`` elements. Each element contains ``C`` feature maps of dimensions ``H x W``. boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2) format where the regions will be taken from. The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``. If a single Tensor is passed, then the first column should contain the index of the corresponding element in the batch, i.e. a number in ``[0, N - 1]``. If a list of Tensors is passed, then each Tensor will correspond to the boxes for an element i in the batch. output_size (int or Tuple[int, int]): the size of the output (in bins or pixels) after the pooling is performed, as (height, width). spatial_scale (float): a scaling factor that maps the input coordinates to the box coordinates. Default: 1.0 Returns: Tensor[K, C/(output_size[0]*output_size[1]), output_size[0], output_size[1]]: The pooled RoIs. """ _assert_has_ops() check_roi_boxes_shape(boxes) rois = boxes output_size = _pair(output_size) if not isinstance(rois, torch.Tensor): rois = convert_boxes_to_roi_format(rois) output, _ = torch.ops.torchvision.ps_roi_pool(input, rois, spatial_scale, output_size[0], output_size[1]) return output
def ps_roi_pool( input: Tensor, boxes: Tensor, output_size: int, spatial_scale: float = 1.0, ) -> Tensor: """ Performs Position-Sensitive Region of Interest (RoI) Pool operator described in R-FCN Args: input (Tensor[N, C, H, W]): The input tensor, i.e. a batch with ``N`` elements. Each element contains ``C`` feature maps of dimensions ``H x W``. boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2) format where the regions will be taken from. The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``. If a single Tensor is passed, then the first column should contain the index of the corresponding element in the batch, i.e. a number in ``[0, N - 1]``. If a list of Tensors is passed, then each Tensor will correspond to the boxes for an element i in the batch. output_size (int or Tuple[int, int]): the size of the output (in bins or pixels) after the pooling is performed, as (height, width). spatial_scale (float): a scaling factor that maps the input coordinates to the box coordinates. Default: 1.0 Returns: Tensor[K, C / (output_size[0] * output_size[1]), output_size[0], output_size[1]]: The pooled RoIs. """ _assert_has_ops() check_roi_boxes_shape(boxes) rois = boxes output_size = _pair(output_size) if not isinstance(rois, torch.Tensor): rois = convert_boxes_to_roi_format(rois) output, _ = torch.ops.torchvision.ps_roi_pool(input, rois, spatial_scale, output_size[0], output_size[1]) return output
29,808
def get_next_x_cron_runs(num_runs, schedule, start_datetime): iter = croniter(schedule, start_datetime) next_runs = [] for _ in range(num_runs): next_runs.append(iter.get_next(datetime)) return next_runs
def get_next_x_cron_runs(num_runs: int, schedule: str, start_datetime: datetime.datetime) -> List[str]: iter = croniter(schedule, start_datetime) next_runs = [] for _ in range(num_runs): next_runs.append(iter.get_next(datetime)) return next_runs
36,263
def _normalize_per_cell( X: Union[np.ndarray, spmatrix], counts_per_cell_after: Optional[float] = None, counts_per_cell: Optional[np.ndarray] = None, copy: bool = False, min_counts: int = 1, ): """Internal function that performs the normalization.""" X = check_array( X, accept_sparse=("csr", "csc"), dtype=(np.float64, np.float32), copy=copy ) if counts_per_cell is None: if copy == False: raise ValueError('Can only be run with copy=True') cell_subset, counts_per_cell = filter_cells(X, min_counts=min_counts) X = X[cell_subset] counts_per_cell = counts_per_cell[cell_subset] if counts_per_cell_after is None: counts_per_cell_after = np.median(counts_per_cell) # Conversion in case counts per cell has int values counts_per_cell = counts_per_cell.astype( np.promote_types(counts_per_cell.dtype, np.float32), copy=False ) with warnings.catch_warnings(): warnings.simplefilter("ignore") counts_per_cell += counts_per_cell == 0 counts_per_cell /= counts_per_cell_after if not issparse(X): X /= materialize_as_ndarray(counts_per_cell[:, np.newaxis]) else: sparsefuncs.inplace_row_scale(X, 1/counts_per_cell) return X
def _normalize_per_cell( X: Union[np.ndarray, spmatrix], counts_per_cell_after: Optional[float] = None, counts_per_cell: Optional[np.ndarray] = None, copy: bool = False, min_counts: int = 1, ) -> Union[np.ndarray, spmatrix]: """Internal function that performs the normalization.""" X = check_array( X, accept_sparse=("csr", "csc"), dtype=(np.float64, np.float32), copy=copy ) if counts_per_cell is None: if copy == False: raise ValueError('Can only be run with copy=True') cell_subset, counts_per_cell = filter_cells(X, min_counts=min_counts) X = X[cell_subset] counts_per_cell = counts_per_cell[cell_subset] if counts_per_cell_after is None: counts_per_cell_after = np.median(counts_per_cell) # Conversion in case counts per cell has int values counts_per_cell = counts_per_cell.astype( np.promote_types(counts_per_cell.dtype, np.float32), copy=False ) with warnings.catch_warnings(): warnings.simplefilter("ignore") counts_per_cell += counts_per_cell == 0 counts_per_cell /= counts_per_cell_after if not issparse(X): X /= materialize_as_ndarray(counts_per_cell[:, np.newaxis]) else: sparsefuncs.inplace_row_scale(X, 1/counts_per_cell) return X
38,264
def format_completion( item: CompletionItem, index: int, can_resolve_completion_items: bool, session_name: str ) -> sublime.CompletionItem: # This is a hot function. Don't do heavy computations or IO in this function. item_kind = item.get("kind") if isinstance(item_kind, int) and 1 <= item_kind <= len(COMPLETION_KINDS): kind = COMPLETION_KINDS[item_kind - 1] else: kind = sublime.KIND_AMBIGUOUS if _is_completion_item_deprecated(item): kind = (kind[0], '⚠', "⚠ {} - Deprecated".format(kind[2])) lsp_label = item["label"] lsp_filter_text = item.get("filterText") st_annotation = (item.get("detail") or "").replace('\n', ' ') st_details = "" if can_resolve_completion_items or item.get("documentation"): st_details += make_command_link("lsp_resolve_docs", "More", {"index": index, "session_name": session_name}) if lsp_filter_text and lsp_filter_text != lsp_label: st_trigger = lsp_filter_text if st_details: st_details += " | " st_details += "<p>{}</p>".format(html.escape(lsp_label)) else: st_trigger = lsp_label args = { "item": item, "session_name": session_name } # type: Dict[str, Any] completion = sublime.CompletionItem.command_completion( trigger=st_trigger, command="lsp_select_completion_item", args=args, annotation=st_annotation, kind=kind, details=st_details) if item.get("textEdit"): completion.flags = sublime.COMPLETION_FLAG_KEEP_PREFIX return completion
def format_completion( item: CompletionItem, index: int, can_resolve_completion_items: bool, session_name: str ) -> sublime.CompletionItem: # This is a hot function. Don't do heavy computations or IO in this function. item_kind = item.get("kind") if isinstance(item_kind, int) and 1 <= item_kind <= len(COMPLETION_KINDS): kind = COMPLETION_KINDS[item_kind - 1] else: kind = sublime.KIND_AMBIGUOUS if _is_completion_item_deprecated(item): kind = (kind[0], '⚠', "⚠ {} - Deprecated".format(kind[2])) lsp_label = item["label"] lsp_filter_text = item.get("filterText") st_annotation = (item.get("detail") or "").replace('\n', ' ') st_details = "" if can_resolve_completion_items or item.get("documentation"): st_details += make_command_link("lsp_resolve_docs", "More", {"index": index, "session_name": session_name}) if lsp_filter_text and lsp_filter_text != lsp_label: st_trigger = lsp_filter_text if st_details: st_details += " | " st_details += "<p>{}</p>".format(html.escape(lsp_label)) else: st_trigger = lsp_label args = { "item": item, "session_name": session_name } # type: Dict[str, Any] completion = sublime.CompletionItem.command_completion( trigger=st_trigger, command="lsp_select_completion_item", args={"item": item, "session_name": session_name}, annotation=st_annotation, kind=kind, details=st_details) if item.get("textEdit"): completion.flags = sublime.COMPLETION_FLAG_KEEP_PREFIX return completion
93
def _validate_catalog(catalog): validation_errors = [] for message in catalog: if message.fuzzy: if message.lineno: validation_errors.append( f' Line {message.lineno}: "{message.string}" is fuzzy.' ) else: validation_errors.append( ' File is fuzzy. Remove line containing "#, fuzzy" found near ' 'the beginning of the file.' ) if validation_errors: print("Validation failed...") print("Please correct the following errors before proceeding:") for e in validation_errors: print(e) return len(validation_errors) == 0
def _validate_catalog(catalog): validation_errors = [] for message in catalog: if message.fuzzy: if message.lineno: validation_errors.append( f'openlibrary/i18n/te/messages.po:{message.lineno}: "{message.string}" is fuzzy.' ) else: validation_errors.append( ' File is fuzzy. Remove line containing "#, fuzzy" found near ' 'the beginning of the file.' ) if validation_errors: print("Validation failed...") print("Please correct the following errors before proceeding:") for e in validation_errors: print(e) return len(validation_errors) == 0
52,206
def find_ldc_dmd_frontend_version(version_output: str): version_regex = re.search(r'DMD v(\d+\.\d+\.\d+)', version_output) if version_regex is not None and len(version_regex.groups()): return version_regex.groups()[0] return ''
def find_ldc_dmd_frontend_version(version_output: str): version_regex = re.search(r'DMD v(\d+\.\d+\.\d+)', version_output) if version_regex: return version_regex.group(1) return ''
55,352
def create_pyramid_level(backbone_input, upsamplelike_input=None, addition_input=None, upsample_type='upsamplelike', level=5, ndim=2, lite=False, interpolation='bilinear', feature_size=256, z_axis_convolutions=False): """Create a pyramid layer from a particular backbone input layer. Args: backbone_input (layer): Backbone layer to use to create they pyramid layer upsamplelike_input (tensor): Optional input to use as a template for shape to upsample to addition_input (layer): Optional layer to add to pyramid layer after convolution and upsampling. upsample_type (str, optional): Choice of upsampling methods from ['upsamplelike','upsampling2d','upsampling3d']. Defaults to 'upsamplelike'. level (int): Level to use in layer names, defaults to 5. feature_size (int):Number of filters for convolutional layer, defaults to 256. ndim (int): The spatial dimensions of the input data. Default is 2, but it also works with 3 lite (bool): Whether to use depthwise conv instead of regular conv for feature pyramid construction interpolation (str): Choice of interpolation mode for upsampling layers from ['bilinear', 'nearest']. Defaults to bilinear. Returns: tuple: Pyramid layer after processing, upsampled pyramid layer Raises: ValueError: ndim is not 2 or 3 ValueError: upsample_type not ['upsamplelike','upsampling2d', 'upsampling3d'] """ # Check input to ndims acceptable_ndims = {2, 3} if ndim not in acceptable_ndims: raise ValueError('Only 2 and 3 dimensional networks are supported') # Check if inputs to ndim and lite are compatible if ndim == 3 and lite: raise ValueError('lite models are not compatible with 3 dimensional ' 'networks') # Check input to interpolation acceptable_interpolation = {'bilinear', 'nearest'} if interpolation not in acceptable_interpolation: raise ValueError('Interpolation mode "{}" not supported. ' 'Choose from {}.'.format( interpolation, list(acceptable_interpolation))) # Check input to upsample_type acceptable_upsample = {'upsamplelike', 'upsampling2d', 'upsampling3d'} if upsample_type not in acceptable_upsample: raise ValueError('Upsample method "{}" not supported. ' 'Choose from {}.'.format( upsample_type, list(acceptable_upsample))) reduced_name = 'C{}_reduced'.format(level) upsample_name = 'P{}_upsampled'.format(level) addition_name = 'P{}_merged'.format(level) final_name = 'P{}'.format(level) # Apply 1x1 conv to backbone layer if ndim == 2: pyramid = Conv2D(feature_size, (1, 1), strides=(1, 1), padding='same', name=reduced_name)(backbone_input) else: pyramid = Conv3D(feature_size, (1, 1, 1), strides=(1, 1, 1), padding='same', name=reduced_name)(backbone_input) # Add and then 3x3 conv if addition_input is not None: pyramid = Add(name=addition_name)([pyramid, addition_input]) # Upsample pyramid input if upsamplelike_input is not None and upsample_type == 'upsamplelike': pyramid_upsample = UpsampleLike(name=upsample_name)( [pyramid, upsamplelike_input]) elif upsample_type == 'upsamplelike': pyramid_upsample = None else: upsampling = UpSampling2D if ndim == 2 else UpSampling3D size = (2, 2) if ndim == 2 else (1, 2, 2) upsampling_kwargs = { 'size': size, 'name': upsample_name, 'interpolation': interpolation } if ndim > 2: del upsampling_kwargs['interpolation'] pyramid_upsample = upsampling(**upsampling_kwargs)(pyramid) if ndim == 2: if lite: pyramid_final = DepthwiseConv2D((3, 3), strides=(1, 1), padding='same', name=final_name)(pyramid) else: pyramid_final = Conv2D(feature_size, (3, 3), strides=(1, 1), padding='same', name=final_name)(pyramid) else: if z_axis_convolutions: pyramid_final = Conv3D(feature_size, (3, 3, 3), strides=(1, 1, 1), padding='same', name=final_name)(pyramid) print('Using convolutions across the z-axis') else: pyramid_final = Conv3D(feature_size, (1, 3, 3), strides=(1, 1, 1), padding='same', name=final_name)(pyramid) print('Not using convolutions across the z-axis') return pyramid_final, pyramid_upsample
def create_pyramid_level(backbone_input, upsamplelike_input=None, addition_input=None, upsample_type='upsamplelike', level=5, ndim=2, lite=False, interpolation='bilinear', feature_size=256, z_axis_convolutions=False): """Create a pyramid layer from a particular backbone input layer. Args: backbone_input (layer): Backbone layer to use to create they pyramid layer upsamplelike_input (tensor): Optional input to use as a template for shape to upsample to addition_input (layer): Optional layer to add to pyramid layer after convolution and upsampling. upsample_type (str, optional): Choice of upsampling methods from ['upsamplelike','upsampling2d','upsampling3d']. Defaults to 'upsamplelike'. level (int): Level to use in layer names, defaults to 5. feature_size (int):Number of filters for convolutional layer, defaults to 256. ndim (int): The spatial dimensions of the input data. Default is 2, but it also works with 3 lite (bool): Whether to use depthwise conv instead of regular conv for feature pyramid construction interpolation (str): Choice of interpolation mode for upsampling layers from ['bilinear', 'nearest']. Defaults to bilinear. Returns: tuple: Pyramid layer after processing, upsampled pyramid layer Raises: ValueError: ndim is not 2 or 3 ValueError: upsample_type not ['upsamplelike','upsampling2d', 'upsampling3d'] """ # Check input to ndims acceptable_ndims = {2, 3} if ndim not in acceptable_ndims: raise ValueError('Only 2 and 3 dimensional networks are supported') # Check if inputs to ndim and lite are compatible if ndim == 3 and lite: raise ValueError('lite models are not compatible with 3 dimensional ' 'networks') # Check input to interpolation acceptable_interpolation = {'bilinear', 'nearest'} if interpolation not in acceptable_interpolation: raise ValueError('Interpolation mode "{}" not supported. ' 'Choose from {}.'.format( interpolation, list(acceptable_interpolation))) # Check input to upsample_type acceptable_upsample = {'upsamplelike', 'upsampling2d', 'upsampling3d'} if upsample_type not in acceptable_upsample: raise ValueError('Upsample method "{}" not supported. ' 'Choose from {}.'.format( upsample_type, list(acceptable_upsample))) reduced_name = 'C{}_reduced'.format(level) upsample_name = 'P{}_upsampled'.format(level) addition_name = 'P{}_merged'.format(level) final_name = 'P{}'.format(level) # Apply 1x1 conv to backbone layer if ndim == 2: pyramid = Conv2D(feature_size, (1, 1), strides=(1, 1), padding='same', name=reduced_name)(backbone_input) else: pyramid = Conv3D(feature_size, (1, 1, 1), strides=(1, 1, 1), padding='same', name=reduced_name)(backbone_input) # Add and then 3x3 conv if addition_input is not None: pyramid = Add(name=addition_name)([pyramid, addition_input]) # Upsample pyramid input if upsamplelike_input is not None and upsample_type == 'upsamplelike': pyramid_upsample = UpsampleLike(name=upsample_name)( [pyramid, upsamplelike_input]) elif upsample_type == 'upsamplelike': pyramid_upsample = None else: upsampling = UpSampling2D if ndim == 2 else UpSampling3D size = (2, 2) if ndim == 2 else (1, 2, 2) upsampling_kwargs = { 'size': size, 'name': upsample_name, 'interpolation': interpolation } if ndim > 2: del upsampling_kwargs['interpolation'] pyramid_upsample = upsampling(**upsampling_kwargs)(pyramid) if ndim == 2: if lite: pyramid_final = DepthwiseConv2D((3, 3), strides=(1, 1), padding='same', name=final_name)(pyramid) else: pyramid_final = Conv2D(feature_size, (3, 3), strides=(1, 1), padding='same', name=final_name)(pyramid) else: z = 3 if z_axis_convolutions else 1 pyramid_final = Conv3D(feature_size, (z, 3, 3), strides=(1, 1, 1), padding='same', name=final_name)(pyramid) return pyramid_final, pyramid_upsample
30,999
def fetch_incidents(client, last_run, fetch_time, mapper_in): """ This function will execute each interval (default is 1 minute). Args: client: Workday client last_run: The greatest incident created_time we fetched from last fetch fetch_time: The time interval when the function should execute and return events/incidents Returns: last_run: This will be last_run in the next fetch-incidents events: Incidents/Events that will be created in Cortex XSOAR """ start = datetime.now() events = [] from_date_time = '###' to_date_time = '$$$' try: # If there is no fetch time configured, it will be set to 0 and no events will be pulled fetch_time = int(fetch_time) if fetch_time else 0 time_elapsed_in_minutes, last_run_time = get_time_elapsed(fetch_time, last_run) from_date_time = last_run_time if fetch_time != 0 and time_elapsed_in_minutes >= fetch_time: to_date_time = datetime.now().strftime(WORKDAY_DATE_TIME_FORMAT) report_data = client.get_full_report() report_entries = report_data.get('Report_Entry') for entry in report_entries: workday_user = demisto.mapObject(entry, mapper_in, INCIDENT_TYPE) workday_user = convert_incident_fields_to_cli_names(workday_user) demisto_user = get_demisto_user(workday_user) profile_changed_fields = get_profile_changed_fields(workday_user, demisto_user) terminate_date_arrived = check_if_user_should_be_terminated(workday_user) does_email_exist = does_email_exist_in_xsoar(workday_user.get('email')) if ((demisto_user and len(profile_changed_fields) == 0) or (not demisto_user and does_email_exist))\ and not terminate_date_arrived: # either no change in user profile or user profile doesn't exist but the email is already used # in both cases, don't create the incident continue entry['UserProfile'] = workday_user event = { "rawJSON": json.dumps(entry), "details": 'Profile changed. Changed fields: ' + str(profile_changed_fields) } events.append(event) last_run_time = datetime.now().strftime(WORKDAY_DATE_TIME_FORMAT) demisto.info(f'Workday Fetch Events Completed. Response Time:' f' {(datetime.now() - start).total_seconds()} seconds') last_run = {'time': last_run_time, "sync_users": True} except Exception as e: demisto.error(f'Failed to fetch events. From Date = {from_date_time}. To Date = {to_date_time}') raise e return last_run, events
def fetch_incidents(client, last_run, fetch_time, mapper_in): """ This function will execute each interval (default is 1 minute). Args: client: Workday client last_run: The greatest incident created_time we fetched from last fetch fetch_time: The time interval when the function should execute and return events/incidents Returns: last_run: This will be last_run in the next fetch-incidents events: Incidents/Events that will be created in Cortex XSOAR """ start = datetime.now() events = [] from_date_time = '###' to_date_time = '$$$' try: # If there is no fetch time configured, it will be set to 0 and no events will be pulled fetch_time = int(fetch_time) if fetch_time else 0 time_elapsed_in_minutes, last_run_time = get_time_elapsed(fetch_time, last_run) from_date_time = last_run_time if fetch_time != 0 and time_elapsed_in_minutes >= fetch_time: to_date_time = datetime.now().strftime(WORKDAY_DATE_TIME_FORMAT) report_data = client.get_full_report(report_url) report_entries = report_data.get('Report_Entry') for entry in report_entries: workday_user = demisto.mapObject(entry, mapper_in, INCIDENT_TYPE) workday_user = convert_incident_fields_to_cli_names(workday_user) demisto_user = get_demisto_user(workday_user) profile_changed_fields = get_profile_changed_fields(workday_user, demisto_user) terminate_date_arrived = check_if_user_should_be_terminated(workday_user) does_email_exist = does_email_exist_in_xsoar(workday_user.get('email')) if ((demisto_user and len(profile_changed_fields) == 0) or (not demisto_user and does_email_exist))\ and not terminate_date_arrived: # either no change in user profile or user profile doesn't exist but the email is already used # in both cases, don't create the incident continue entry['UserProfile'] = workday_user event = { "rawJSON": json.dumps(entry), "details": 'Profile changed. Changed fields: ' + str(profile_changed_fields) } events.append(event) last_run_time = datetime.now().strftime(WORKDAY_DATE_TIME_FORMAT) demisto.info(f'Workday Fetch Events Completed. Response Time:' f' {(datetime.now() - start).total_seconds()} seconds') last_run = {'time': last_run_time, "sync_users": True} except Exception as e: demisto.error(f'Failed to fetch events. From Date = {from_date_time}. To Date = {to_date_time}') raise e return last_run, events
48,073
def fn_pipe_correct_type(df: DataFrame[Schema]) -> DataFrame[SchemaOut]: return df.assign(age=30).pipe(DataFrame[AnotherSchema]) # mypy error
def fn_pipe_incorrect_type(df: DataFrame[Schema]) -> DataFrame[SchemaOut]: return df.assign(age=30).pipe(DataFrame[AnotherSchema]) # mypy error
23,683
def fedis(aoi, surface_tilt, n=1.5, n_ref=1.4585): """ Determine the incidence angle modifiers (iam) for direct, diffuse sky, and ground-reflected radiation using the FEDIS transmittance model. The "Fresnel Equations" for Diffuse radiation on Inclined photovoltaic Surfaces (FEDIS) [1]_ is an analytical solution of diffuse transmission based on the rigorous integration of an alternate form of the Fresnel equations. The approach leads to a simple yet accurate relative transmittance model that reconciles the solar energy sensed by pyranometers and PV panels. Parameters ---------- aoi : numeric Angle of incidence. [degrees] surface_tilt : numeric Surface tilt angle measured from horizontal (e.g. surface facing up = 0, surface facing horizon = 90). [degrees] n : float, default 1.5 Refractive index of the PV cover. The default value of 1.5 was used for an IMT reference cell in [1]_. [unitless] n_ref : float, default 1.4585 Refractive index of the pyranometer cover. The default value was used for a fused silica dome over a CMP22 in [1]_. Returns ------- iam : dict IAM values for each type of irradiance: * 'direct': radiation from the solar disc * 'sky': radiation from the sky dome (zenith <= 90) * 'ground': radiation reflected from the ground (zenith >= 90) Notes ----- This implementation corrects a typo in the reference regarding the sign of the last polynomial term in Equation 5. References ---------- .. [1] Xie, Y., M. Sengupta, A. Habte, A. Andreas, "The 'Fresnel Equations' for Diffuse radiation on Inclined photovoltaic Surfaces (FEDIS)", Renewable and Sustainable Energy Reviews, vol. 161, 112362. June 2022. :doi:`10.1016/j.rser.2022.112362` """ # avoid undefined results for horizontal or upside-down surfaces zeroang = 1e-06 surface_tilt = np.where(surface_tilt == 0, zeroang, surface_tilt) surface_tilt = np.where(surface_tilt >= 90, 90 - zeroang, surface_tilt) # and for aoi: aoi = np.where(aoi <= 0, zeroang, aoi) # similar for AOI > 90 aoi = np.where(aoi >= 90, 90 - zeroang, aoi) # angle between module normal and refracted ray: theta_0tp = asind(sind(aoi) / n) # Eq 3c # reflectance of direct radiation on PV cover: sin_term = sind(aoi - theta_0tp)**2 / sind(aoi + theta_0tp)**2 / 2 tan_term = tand(aoi - theta_0tp)**2 / tand(aoi + theta_0tp)**2 / 2 rd = sin_term + tan_term # Eq 3b # reflectance on pyranometer cover: r0 = ((n_ref-1.0)/(n_ref+1.0))**2.0 # Eq 3e # relative transmittance of direct radiation by PV cover: cd = (1 - rd) / (1 - r0) # Eq 3a # weighting function term1 = n*(n_ref+1)**2 / (n_ref*(n+1)**2) # note: the last coefficient here differs in sign from the reference polycoeffs = [2.77526e-09, 3.74953, -5.18727, 3.41186, -1.08794, 0.136060] term2 = np.polynomial.polynomial.polyval(n, polycoeffs) w = term1 * term2 # Eq 5 # relative transmittance of sky diffuse radiation by PV cover: cosB = cosd(surface_tilt) sinB = sind(surface_tilt) cuk = (2*w / (np.pi * (1 + cosB))) * ( (30/7)*np.pi - (160/21)*np.radians(surface_tilt) - (10/3)*np.pi*cosB + (160/21)*cosB*sinB - (5/3)*np.pi*cosB*sinB**2 + (20/7)*cosB*sinB**3 - (5/16)*np.pi*cosB*sinB**4 + (16/105)*cosB*sinB**5 ) # Eq 4 # relative transmittance of ground-reflected radiation by PV cover: cug = 40 * w / (21 * (1 - cosB)) - (1 + cosB) / (1 - cosB) * cuk # Eq 6 # handle tilt=0 case correctly: cug = np.where(surface_tilt == zeroang, 0, cug) out = { 'direct': cd, 'sky': cuk, 'ground': cug, } return out
def fedis(aoi, surface_tilt, n=1.5, n_ref=1.4585): """ Determine the incidence angle modifiers (iam) for direct, diffuse sky, and ground-reflected radiation using the FEDIS transmittance model. The "Fresnel Equations" for Diffuse radiation on Inclined photovoltaic Surfaces (FEDIS) [1]_ is an analytical solution of diffuse transmission based on the rigorous integration of an alternate form of the Fresnel equations. The approach leads to a simple yet accurate relative transmittance model that reconciles the solar energy sensed by pyranometers and PV panels. Parameters ---------- aoi : numeric Angle of incidence. [degrees] surface_tilt : numeric Surface tilt angle measured from horizontal (e.g. surface facing up = 0, surface facing horizon = 90). [degrees] n : float, default 1.5 Refractive index of the PV cover. The default value of 1.5 was used for an IMT reference cell in [1]_. [unitless] n_ref : float, default 1.4585 Refractive index of the pyranometer cover. The default value was used for a fused silica dome over a CMP22 in [1]_. Returns ------- iam : dict IAM values for each type of irradiance: * 'direct': radiation from the solar disc * 'sky': radiation from the sky dome (zenith <= 90) * 'ground': radiation reflected from the ground (zenith >= 90) Notes ----- This implementation corrects a typo in [1]_ regarding the sign of the last polynomial term in Equation 5. References ---------- .. [1] Xie, Y., M. Sengupta, A. Habte, A. Andreas, "The 'Fresnel Equations' for Diffuse radiation on Inclined photovoltaic Surfaces (FEDIS)", Renewable and Sustainable Energy Reviews, vol. 161, 112362. June 2022. :doi:`10.1016/j.rser.2022.112362` """ # avoid undefined results for horizontal or upside-down surfaces zeroang = 1e-06 surface_tilt = np.where(surface_tilt == 0, zeroang, surface_tilt) surface_tilt = np.where(surface_tilt >= 90, 90 - zeroang, surface_tilt) # and for aoi: aoi = np.where(aoi <= 0, zeroang, aoi) # similar for AOI > 90 aoi = np.where(aoi >= 90, 90 - zeroang, aoi) # angle between module normal and refracted ray: theta_0tp = asind(sind(aoi) / n) # Eq 3c # reflectance of direct radiation on PV cover: sin_term = sind(aoi - theta_0tp)**2 / sind(aoi + theta_0tp)**2 / 2 tan_term = tand(aoi - theta_0tp)**2 / tand(aoi + theta_0tp)**2 / 2 rd = sin_term + tan_term # Eq 3b # reflectance on pyranometer cover: r0 = ((n_ref-1.0)/(n_ref+1.0))**2.0 # Eq 3e # relative transmittance of direct radiation by PV cover: cd = (1 - rd) / (1 - r0) # Eq 3a # weighting function term1 = n*(n_ref+1)**2 / (n_ref*(n+1)**2) # note: the last coefficient here differs in sign from the reference polycoeffs = [2.77526e-09, 3.74953, -5.18727, 3.41186, -1.08794, 0.136060] term2 = np.polynomial.polynomial.polyval(n, polycoeffs) w = term1 * term2 # Eq 5 # relative transmittance of sky diffuse radiation by PV cover: cosB = cosd(surface_tilt) sinB = sind(surface_tilt) cuk = (2*w / (np.pi * (1 + cosB))) * ( (30/7)*np.pi - (160/21)*np.radians(surface_tilt) - (10/3)*np.pi*cosB + (160/21)*cosB*sinB - (5/3)*np.pi*cosB*sinB**2 + (20/7)*cosB*sinB**3 - (5/16)*np.pi*cosB*sinB**4 + (16/105)*cosB*sinB**5 ) # Eq 4 # relative transmittance of ground-reflected radiation by PV cover: cug = 40 * w / (21 * (1 - cosB)) - (1 + cosB) / (1 - cosB) * cuk # Eq 6 # handle tilt=0 case correctly: cug = np.where(surface_tilt == zeroang, 0, cug) out = { 'direct': cd, 'sky': cuk, 'ground': cug, } return out
5,366
def test_uptodate_with_pkgs_no_changes(): """ Test pkg.uptodate with no changes """ pkgs = { "pkga": {"old": "1.0.1", "new": "2.0.1"}, "pkgb": {"old": "1.0.2", "new": "2.0.2"}, "pkgc": {"old": "1.0.3", "new": "2.0.3"}, } list_upgrades = MagicMock(return_value={}) upgrade = MagicMock(return_value={}) with patch.dict( pkg.__salt__, {"pkg.list_upgrades": list_upgrades, "pkg.upgrade": upgrade} ): # Run state with test=false with patch.dict(pkg.__opts__, {"test": False}): ret = pkg.uptodate("dummy", test=True, pkgs=[pkgname for pkgname in pkgs],) assert ret["result"] assert ret["changes"] == {} # Run state with test=true with patch.dict(pkg.__opts__, {"test": True}): ret = pkg.uptodate("dummy", test=True, pkgs=[pkgname for pkgname in pkgs],) assert ret["result"] assert ret["changes"] == {}
def test_uptodate_with_pkgs_no_changes(pkgs): """ Test pkg.uptodate with no changes """ pkgs = { "pkga": {"old": "1.0.1", "new": "2.0.1"}, "pkgb": {"old": "1.0.2", "new": "2.0.2"}, "pkgc": {"old": "1.0.3", "new": "2.0.3"}, } list_upgrades = MagicMock(return_value={}) upgrade = MagicMock(return_value={}) with patch.dict( pkg.__salt__, {"pkg.list_upgrades": list_upgrades, "pkg.upgrade": upgrade} ): # Run state with test=false with patch.dict(pkg.__opts__, {"test": False}): ret = pkg.uptodate("dummy", test=True, pkgs=[pkgname for pkgname in pkgs],) assert ret["result"] assert ret["changes"] == {} # Run state with test=true with patch.dict(pkg.__opts__, {"test": True}): ret = pkg.uptodate("dummy", test=True, pkgs=[pkgname for pkgname in pkgs],) assert ret["result"] assert ret["changes"] == {}
2,259
def _num_features(X): """Return the number of features in an array-like X. This helper function tries hard to avoid to materialize an array version of X unless necessary. For instance, if X is a list of lists, this function will return the length of the first element, assuming that subsequent elements are all lists of the same length without checking. Parameters ---------- X : array-like array-like to get the number of features. Returns ------- features : int Number of features """ type_ = type(X) if type_.__module__ == "builtins": type_name = type_.__qualname__ else: type_name = f"{type_.__module__}.{type_.__qualname__}" message = ( "Unable to find the number of features from X of type " f"{type_name}" ) if not hasattr(X, '__len__') and not hasattr(X, 'shape'): if not hasattr(X, '__array__'): raise TypeError(message) # Only convert X to a numpy array if there is no cheaper, heuristic # option. X = np.asarray(X) if hasattr(X, 'shape'): if not hasattr(X.shape, '__len__') or len(X.shape) <= 1: message += f" with shape {X.shape}" raise TypeError(message) return X.shape[1] first_sample = X[0] # Do not consider an array-like of strings of dicts to be a 2D array if isinstance(first_sample, (str, bytes, dict)): message += (f" where the samples are of type " f"{type(first_sample).__qualname__}") raise TypeError(message) try: # If X is a list of lists, for instance, we assume that all nested # lists have the same length without checking or converting to # a numpy array to keep this function call as cheap as possible. return len(first_sample) except Exception as err: raise TypeError(message) from err
def _num_features(X): """Return the number of features in an array-like X. This helper function tries hard to avoid to materialize an array version of X unless necessary. For instance, if X is a list of lists, this function will return the length of the first element, assuming that subsequent elements are all lists of the same length without checking. Parameters ---------- X : array-like array-like to get the number of features. Returns ------- features : int Number of features """ type_ = type(X) if type_.__module__ == "builtins": type_name = type_.__qualname__ else: type_name = f"{type_.__module__}.{type_.__qualname__}" message = ( "Unable to find the number of features from X of type " f"{type_name}" ) if not hasattr(X, '__len__') and not hasattr(X, 'shape'): if not hasattr(X, '__array__'): raise TypeError(message) # Only convert X to a numpy array if there is no cheaper, heuristic # option. X = np.asarray(X) if hasattr(X, 'shape'): if not hasattr(X.shape, '__len__') or len(X.shape) <= 1: message += f" with shape {X.shape}" raise TypeError(message) return X.shape[1] first_sample = X[0] # Do not consider an array-like of strings or dicts to be a 2D array if isinstance(first_sample, (str, bytes, dict)): message += (f" where the samples are of type " f"{type(first_sample).__qualname__}") raise TypeError(message) try: # If X is a list of lists, for instance, we assume that all nested # lists have the same length without checking or converting to # a numpy array to keep this function call as cheap as possible. return len(first_sample) except Exception as err: raise TypeError(message) from err
31,494
def change_dict_keys(new_names_dict: Dict[str, str], output_dict: Dict[str, Any]) -> Dict[str, Any]: """ Takes a dictionary and changes the names of the keys Args: new_names_dict: a dictionary with the old names as keys and their new names as their values output_dict: Dictionary with string keys Returns: Same dictionary but with keys with the new names or the same dictionary if the old keys don't exist Raises: TypeError: output_dict is not a dictionary """ for key in new_names_dict: new_name = new_names_dict[key] if key in output_dict: output_dict[new_name] = output_dict[key] del output_dict[key] return output_dict
def change_dict_keys(new_names_dict: Dict[str, str], output_dict: Dict[str, Any]) -> Dict[str, Any]: """ Takes a dictionary and changes the names of the keys Args: new_names_dict: a dictionary with the old names as keys and their new names as their values output_dict: Dictionary with string keys Returns: Same dictionary but with keys with the new names or the same dictionary if the old keys don't exist Raises: TypeError: output_dict is not a dictionary """ for key in new_names_dict: new_name = new_names_dict[key] if key in output_dict: output_dict[new_name] = output_dict.pop(key) return output_dict
5,731
def power_divergence(f_obs, f_exp=None, ddof=0, axis=0, lambda_=None): """Cressie-Read power divergence statistic and goodness of fit test. This function tests the null hypothesis that the categorical data has the given frequencies, using the Cressie-Read power divergence statistic. Parameters ---------- f_obs : array_like Observed frequencies in each category. f_exp : array_like, optional Expected frequencies in each category. By default the categories are assumed to be equally likely. ddof : int, optional "Delta degrees of freedom": adjustment to the degrees of freedom for the p-value. The p-value is computed using a chi-squared distribution with ``k - 1 - ddof`` degrees of freedom, where `k` is the number of observed frequencies. The default value of `ddof` is 0. axis : int or None, optional The axis of the broadcast result of `f_obs` and `f_exp` along which to apply the test. If axis is None, all values in `f_obs` are treated as a single data set. Default is 0. lambda_ : float or str, optional The power in the Cressie-Read power divergence statistic. The default is 1. For convenience, `lambda_` may be assigned one of the following strings, in which case the corresponding numerical value is used Pearson (value 1) Pearson's chi-squared statistic. In this case, the function is equivalent to `stats.chisquare`. Log-Likelihood (value 0) Log-likelihood ratio. Also known as the G-test [3]_. Freeman-Turkey (value -1/2) Freeman-Tukey statistic. Mod-Log-Likelihood (value -1) Modified log-likelihood ratio. Neyman (value -2) Neyman's statistic. Cressie-Read (value 2/3) The power recommended in [5]_. Returns ------- statistic : float or ndarray The Cressie-Read power divergence test statistic. The value is a float if `axis` is None or if` `f_obs` and `f_exp` are 1-D. pvalue : float or ndarray The p-value of the test. The value is a float if `ddof` and the return value `stat` are scalars. See Also -------- chisquare Notes ----- This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is that all of the observed and expected frequencies should be at least 5. Also, the sum of the observed and expected frequencies must be the same for the test to be valid; `power_divergence` raises an error if the sums do not agree within a relative tolerance of ``1e-8``. When `lambda_` is less than zero, the formula for the statistic involves dividing by `f_obs`, so a warning or error may be generated if any value in `f_obs` is 0. Similarly, a warning or error may be generated if any value in `f_exp` is zero when `lambda_` >= 0. The default degrees of freedom, k-1, are for the case when no parameters of the distribution are estimated. If p parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are k-1-p. If the parameters are estimated in a different way, then the dof can be between k-1-p and k-1. However, it is also possible that the asymptotic distribution is not a chisquare, in which case this test is not appropriate. This function handles masked arrays. If an element of `f_obs` or `f_exp` is masked, then data at that position is ignored, and does not count towards the size of the data set. .. versionadded:: 0.13.0 References ---------- .. [1] Lowry, Richard. "Concepts and Applications of Inferential Statistics". Chapter 8. https://web.archive.org/web/20171015035606/http://faculty.vassar.edu/lowry/ch8pt1.html .. [2] "Chi-squared test", https://en.wikipedia.org/wiki/Chi-squared_test .. [3] "G-test", https://en.wikipedia.org/wiki/G-test .. [4] Sokal, R. R. and Rohlf, F. J. "Biometry: the principles and practice of statistics in biological research", New York: Freeman (1981) .. [5] Cressie, N. and Read, T. R. C., "Multinomial Goodness-of-Fit Tests", J. Royal Stat. Soc. Series B, Vol. 46, No. 3 (1984), pp. 440-464. Examples -------- (See `chisquare` for more examples.) When just `f_obs` is given, it is assumed that the expected frequencies are uniform and given by the mean of the observed frequencies. Here we perform a G-test (i.e. use the log-likelihood ratio statistic): >>> from scipy.stats import power_divergence >>> power_divergence([16, 18, 16, 14, 12, 12], lambda_='log-likelihood') (2.006573162632538, 0.84823476779463769) The expected frequencies can be given with the `f_exp` argument: >>> power_divergence([16, 18, 16, 14, 12, 12], ... f_exp=[16, 16, 16, 16, 16, 8], ... lambda_='log-likelihood') (3.3281031458963746, 0.6495419288047497) When `f_obs` is 2-D, by default the test is applied to each column. >>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T >>> obs.shape (6, 2) >>> power_divergence(obs, lambda_="log-likelihood") (array([ 2.00657316, 6.77634498]), array([ 0.84823477, 0.23781225])) By setting ``axis=None``, the test is applied to all data in the array, which is equivalent to applying the test to the flattened array. >>> power_divergence(obs, axis=None) (23.31034482758621, 0.015975692534127565) >>> power_divergence(obs.ravel()) (23.31034482758621, 0.015975692534127565) `ddof` is the change to make to the default degrees of freedom. >>> power_divergence([16, 18, 16, 14, 12, 12], ddof=1) (2.0, 0.73575888234288467) The calculation of the p-values is done by broadcasting the test statistic with `ddof`. >>> power_divergence([16, 18, 16, 14, 12, 12], ddof=[0,1,2]) (2.0, array([ 0.84914504, 0.73575888, 0.5724067 ])) `f_obs` and `f_exp` are also broadcast. In the following, `f_obs` has shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting `f_obs` and `f_exp` has shape (2, 6). To compute the desired chi-squared statistics, we must use ``axis=1``: >>> power_divergence([16, 18, 16, 14, 12, 12], ... f_exp=[[16, 16, 16, 16, 16, 8], ... [8, 20, 20, 16, 12, 12]], ... axis=1) (array([ 3.5 , 9.25]), array([ 0.62338763, 0.09949846])) """ # Convert the input argument `lambda_` to a numerical value. if isinstance(lambda_, str): if lambda_ not in _power_div_lambda_names: names = repr(list(_power_div_lambda_names.keys()))[1:-1] raise ValueError("invalid string for lambda_: {0!r}. " "Valid strings are {1}".format(lambda_, names)) lambda_ = _power_div_lambda_names[lambda_] elif lambda_ is None: lambda_ = 1 f_obs = np.asanyarray(f_obs) f_obs_float = f_obs.astype(np.float64) if f_exp is not None: f_exp = np.asanyarray(f_exp) bshape = _broadcast_shapes(f_obs_float.shape, f_exp.shape) f_obs_float = _m_broadcast_to(f_obs_float, bshape) f_exp = _m_broadcast_to(f_exp, bshape) rtol = 1e-8 # to pass existing tests with np.errstate(invalid='ignore'): f_obs_sum = f_obs_float.sum(axis=axis) f_exp_sum = f_exp.sum(axis=axis) relative_diff = (np.abs(f_obs_sum - f_exp_sum) / np.minimum(f_obs_sum, f_exp_sum)) diff_gt_tol = (relative_diff > rtol).any() if diff_gt_tol: msg = (f"For each axis slice, the sum of the observed " f"frequencies must agree with the sum of the " f"expected frequencies to a relative tolerance " f"of {rtol}, but the percent differences are:\n" f"{relative_diff}") raise ValueError(msg) else: # Ignore 'invalid' errors so the edge case of a data set with length 0 # is handled without spurious warnings. with np.errstate(invalid='ignore'): f_exp = f_obs.mean(axis=axis, keepdims=True) # `terms` is the array of terms that are summed along `axis` to create # the test statistic. We use some specialized code for a few special # cases of lambda_. if lambda_ == 1: # Pearson's chi-squared statistic terms = (f_obs_float - f_exp)**2 / f_exp elif lambda_ == 0: # Log-likelihood ratio (i.e. G-test) terms = 2.0 * special.xlogy(f_obs, f_obs / f_exp) elif lambda_ == -1: # Modified log-likelihood ratio terms = 2.0 * special.xlogy(f_exp, f_exp / f_obs) else: # General Cressie-Read power divergence. terms = f_obs * ((f_obs / f_exp)**lambda_ - 1) terms /= 0.5 * lambda_ * (lambda_ + 1) stat = terms.sum(axis=axis) num_obs = _count(terms, axis=axis) ddof = asarray(ddof) p = distributions.chi2.sf(stat, num_obs - 1 - ddof) return Power_divergenceResult(stat, p)
def power_divergence(f_obs, f_exp=None, ddof=0, axis=0, lambda_=None): """Cressie-Read power divergence statistic and goodness of fit test. This function tests the null hypothesis that the categorical data has the given frequencies, using the Cressie-Read power divergence statistic. Parameters ---------- f_obs : array_like Observed frequencies in each category. f_exp : array_like, optional Expected frequencies in each category. By default the categories are assumed to be equally likely. ddof : int, optional "Delta degrees of freedom": adjustment to the degrees of freedom for the p-value. The p-value is computed using a chi-squared distribution with ``k - 1 - ddof`` degrees of freedom, where `k` is the number of observed frequencies. The default value of `ddof` is 0. axis : int or None, optional The axis of the broadcast result of `f_obs` and `f_exp` along which to apply the test. If axis is None, all values in `f_obs` are treated as a single data set. Default is 0. lambda_ : float or str, optional The power in the Cressie-Read power divergence statistic. The default is 1. For convenience, `lambda_` may be assigned one of the following strings, in which case the corresponding numerical value is used Pearson (value 1) Pearson's chi-squared statistic. In this case, the function is equivalent to `chisquare`. Log-Likelihood (value 0) Log-likelihood ratio. Also known as the G-test [3]_. Freeman-Turkey (value -1/2) Freeman-Tukey statistic. Mod-Log-Likelihood (value -1) Modified log-likelihood ratio. Neyman (value -2) Neyman's statistic. Cressie-Read (value 2/3) The power recommended in [5]_. Returns ------- statistic : float or ndarray The Cressie-Read power divergence test statistic. The value is a float if `axis` is None or if` `f_obs` and `f_exp` are 1-D. pvalue : float or ndarray The p-value of the test. The value is a float if `ddof` and the return value `stat` are scalars. See Also -------- chisquare Notes ----- This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is that all of the observed and expected frequencies should be at least 5. Also, the sum of the observed and expected frequencies must be the same for the test to be valid; `power_divergence` raises an error if the sums do not agree within a relative tolerance of ``1e-8``. When `lambda_` is less than zero, the formula for the statistic involves dividing by `f_obs`, so a warning or error may be generated if any value in `f_obs` is 0. Similarly, a warning or error may be generated if any value in `f_exp` is zero when `lambda_` >= 0. The default degrees of freedom, k-1, are for the case when no parameters of the distribution are estimated. If p parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are k-1-p. If the parameters are estimated in a different way, then the dof can be between k-1-p and k-1. However, it is also possible that the asymptotic distribution is not a chisquare, in which case this test is not appropriate. This function handles masked arrays. If an element of `f_obs` or `f_exp` is masked, then data at that position is ignored, and does not count towards the size of the data set. .. versionadded:: 0.13.0 References ---------- .. [1] Lowry, Richard. "Concepts and Applications of Inferential Statistics". Chapter 8. https://web.archive.org/web/20171015035606/http://faculty.vassar.edu/lowry/ch8pt1.html .. [2] "Chi-squared test", https://en.wikipedia.org/wiki/Chi-squared_test .. [3] "G-test", https://en.wikipedia.org/wiki/G-test .. [4] Sokal, R. R. and Rohlf, F. J. "Biometry: the principles and practice of statistics in biological research", New York: Freeman (1981) .. [5] Cressie, N. and Read, T. R. C., "Multinomial Goodness-of-Fit Tests", J. Royal Stat. Soc. Series B, Vol. 46, No. 3 (1984), pp. 440-464. Examples -------- (See `chisquare` for more examples.) When just `f_obs` is given, it is assumed that the expected frequencies are uniform and given by the mean of the observed frequencies. Here we perform a G-test (i.e. use the log-likelihood ratio statistic): >>> from scipy.stats import power_divergence >>> power_divergence([16, 18, 16, 14, 12, 12], lambda_='log-likelihood') (2.006573162632538, 0.84823476779463769) The expected frequencies can be given with the `f_exp` argument: >>> power_divergence([16, 18, 16, 14, 12, 12], ... f_exp=[16, 16, 16, 16, 16, 8], ... lambda_='log-likelihood') (3.3281031458963746, 0.6495419288047497) When `f_obs` is 2-D, by default the test is applied to each column. >>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T >>> obs.shape (6, 2) >>> power_divergence(obs, lambda_="log-likelihood") (array([ 2.00657316, 6.77634498]), array([ 0.84823477, 0.23781225])) By setting ``axis=None``, the test is applied to all data in the array, which is equivalent to applying the test to the flattened array. >>> power_divergence(obs, axis=None) (23.31034482758621, 0.015975692534127565) >>> power_divergence(obs.ravel()) (23.31034482758621, 0.015975692534127565) `ddof` is the change to make to the default degrees of freedom. >>> power_divergence([16, 18, 16, 14, 12, 12], ddof=1) (2.0, 0.73575888234288467) The calculation of the p-values is done by broadcasting the test statistic with `ddof`. >>> power_divergence([16, 18, 16, 14, 12, 12], ddof=[0,1,2]) (2.0, array([ 0.84914504, 0.73575888, 0.5724067 ])) `f_obs` and `f_exp` are also broadcast. In the following, `f_obs` has shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting `f_obs` and `f_exp` has shape (2, 6). To compute the desired chi-squared statistics, we must use ``axis=1``: >>> power_divergence([16, 18, 16, 14, 12, 12], ... f_exp=[[16, 16, 16, 16, 16, 8], ... [8, 20, 20, 16, 12, 12]], ... axis=1) (array([ 3.5 , 9.25]), array([ 0.62338763, 0.09949846])) """ # Convert the input argument `lambda_` to a numerical value. if isinstance(lambda_, str): if lambda_ not in _power_div_lambda_names: names = repr(list(_power_div_lambda_names.keys()))[1:-1] raise ValueError("invalid string for lambda_: {0!r}. " "Valid strings are {1}".format(lambda_, names)) lambda_ = _power_div_lambda_names[lambda_] elif lambda_ is None: lambda_ = 1 f_obs = np.asanyarray(f_obs) f_obs_float = f_obs.astype(np.float64) if f_exp is not None: f_exp = np.asanyarray(f_exp) bshape = _broadcast_shapes(f_obs_float.shape, f_exp.shape) f_obs_float = _m_broadcast_to(f_obs_float, bshape) f_exp = _m_broadcast_to(f_exp, bshape) rtol = 1e-8 # to pass existing tests with np.errstate(invalid='ignore'): f_obs_sum = f_obs_float.sum(axis=axis) f_exp_sum = f_exp.sum(axis=axis) relative_diff = (np.abs(f_obs_sum - f_exp_sum) / np.minimum(f_obs_sum, f_exp_sum)) diff_gt_tol = (relative_diff > rtol).any() if diff_gt_tol: msg = (f"For each axis slice, the sum of the observed " f"frequencies must agree with the sum of the " f"expected frequencies to a relative tolerance " f"of {rtol}, but the percent differences are:\n" f"{relative_diff}") raise ValueError(msg) else: # Ignore 'invalid' errors so the edge case of a data set with length 0 # is handled without spurious warnings. with np.errstate(invalid='ignore'): f_exp = f_obs.mean(axis=axis, keepdims=True) # `terms` is the array of terms that are summed along `axis` to create # the test statistic. We use some specialized code for a few special # cases of lambda_. if lambda_ == 1: # Pearson's chi-squared statistic terms = (f_obs_float - f_exp)**2 / f_exp elif lambda_ == 0: # Log-likelihood ratio (i.e. G-test) terms = 2.0 * special.xlogy(f_obs, f_obs / f_exp) elif lambda_ == -1: # Modified log-likelihood ratio terms = 2.0 * special.xlogy(f_exp, f_exp / f_obs) else: # General Cressie-Read power divergence. terms = f_obs * ((f_obs / f_exp)**lambda_ - 1) terms /= 0.5 * lambda_ * (lambda_ + 1) stat = terms.sum(axis=axis) num_obs = _count(terms, axis=axis) ddof = asarray(ddof) p = distributions.chi2.sf(stat, num_obs - 1 - ddof) return Power_divergenceResult(stat, p)
21,460
def set_cors_headers(request: Request): """Set the CORs headers so that javascript running in a web browsers can use this API Args: request: The http request to add CORs to. """ request.setHeader(b"Access-Control-Allow-Origin", b"*") request.setHeader( b"Access-Control-Allow-Methods", b"GET, POST, PUT, DELETE, OPTIONS" ) request.setHeader( b"Access-Control-Allow-Headers", b"Origin, X-Requested-With, Content-Type, Accept, Authorization", )
def set_cors_headers(request: Request): """Set the CORS headers so that javascript running in a web browsers can use this API Args: request: The http request to add CORs to. """ request.setHeader(b"Access-Control-Allow-Origin", b"*") request.setHeader( b"Access-Control-Allow-Methods", b"GET, POST, PUT, DELETE, OPTIONS" ) request.setHeader( b"Access-Control-Allow-Headers", b"Origin, X-Requested-With, Content-Type, Accept, Authorization", )
50,671
def offline_detection( source_path, all_timestamps, frame_index_range, calculated_frame_indices, shared_memory, ): batch_size = 30 frame_start, frame_end = frame_index_range frame_indices = sorted( set(range(frame_start, frame_end + 1)) - set(calculated_frame_indices) ) if not frame_indices: return frame_count = frame_end - frame_start + 1 shared_memory.progress = (frame_indices[0] - frame_start + 1) / frame_count yield None src = video_capture.File_Source( SimpleNamespace(), source_path, fill_gaps=False, timing=None ) timestamps_no_gaps = src.timestamps uncalculated_timestamps = all_timestamps[frame_indices] seek_poses = np.searchsorted(timestamps_no_gaps, uncalculated_timestamps) queue = [] for frame_index, timestamp, target_frame_idx in zip( frame_indices, uncalculated_timestamps, seek_poses ): detections = [] if timestamp in timestamps_no_gaps: src.seek_to_frame(target_frame_idx) frame = src.get_frame() detections = _detect(frame) if detections: serialized_dicts = [fm.Serialized_Dict(d) for d in detections] else: serialized_dicts = [fm.Serialized_Dict({})] queue.append((timestamp, serialized_dicts, frame_index, len(detections))) if len(queue) >= batch_size: shared_memory.progress = (frame_index - frame_start + 1) / frame_count data = queue[:batch_size] del queue[:batch_size] yield data yield queue
def offline_detection( source_path, all_timestamps, frame_index_range, calculated_frame_indices, shared_memory, ): batch_size = 30 frame_start, frame_end = frame_index_range frame_indices = sorted( set(range(frame_start, frame_end + 1)) - set(calculated_frame_indices) ) if not frame_indices: return frame_count = frame_end - frame_start + 1 shared_memory.progress = (frame_indices[0] - frame_start + 1) / frame_count yield None src = video_capture.File_Source( SimpleNamespace(), source_path, fill_gaps=False, timing=None ) timestamps_no_gaps = src.timestamps uncalculated_timestamps = all_timestamps[frame_indices] seek_poses = np.searchsorted(timestamps_no_gaps, uncalculated_timestamps) queue = [] for frame_index, timestamp, target_frame_idx in zip( frame_indices, uncalculated_timestamps, seek_poses ): detections = [] if timestamp in timestamps_no_gaps: if target_frame_idx != src.target_frame_idx: src.seek_to_frame(target_frame_idx) # only seek if necessary frame = src.get_frame() detections = _detect(frame) if detections: serialized_dicts = [fm.Serialized_Dict(d) for d in detections] else: serialized_dicts = [fm.Serialized_Dict({})] queue.append((timestamp, serialized_dicts, frame_index, len(detections))) if len(queue) >= batch_size: shared_memory.progress = (frame_index - frame_start + 1) / frame_count data = queue[:batch_size] del queue[:batch_size] yield data yield queue
16,599
def get_arguments() -> argparse.Namespace: """Get parsed passed in arguments.""" # pylint: disable=import-outside-toplevel from . import config as config_util parser = argparse.ArgumentParser( description="Home Assistant: Observe, Control, Automate.", epilog="If restart is requested, exits with code {RESTART_EXIT_CODE}", ) parser.add_argument("--version", action="version", version=__version__) parser.add_argument( "-c", "--config", metavar="path_to_config_dir", default=config_util.get_default_config_dir(), help="Directory that contains the Home Assistant configuration", ) parser.add_argument( "--safe-mode", action="store_true", help="Start Home Assistant in safe mode" ) parser.add_argument( "--debug", action="store_true", help="Start Home Assistant in debug mode" ) parser.add_argument( "--open-ui", action="store_true", help="Open the webinterface in a browser" ) parser.add_argument( "--skip-pip", action="store_true", help="Skips pip install of required packages on startup", ) parser.add_argument( "-v", "--verbose", action="store_true", help="Enable verbose logging to file." ) parser.add_argument( "--pid-file", metavar="path_to_pid_file", default=None, help="Path to PID file useful for running as daemon", ) parser.add_argument( "--log-rotate-days", type=int, default=None, help="Enables daily log rotation and keeps up to the specified days", ) parser.add_argument( "--log-file", type=str, default=None, help="Log file to write to. If not set, CONFIG/home-assistant.log is used", ) parser.add_argument( "--log-no-color", action="store_true", help="Disable color logs" ) parser.add_argument( "--script", nargs=argparse.REMAINDER, help="Run one of the embedded scripts" ) if os.name == "posix": parser.add_argument( "--daemon", action="store_true", help="Run Home Assistant as daemon" ) arguments = parser.parse_args() if os.name != "posix" or arguments.debug or arguments.runner: setattr(arguments, "daemon", False) return arguments
def get_arguments() -> argparse.Namespace: """Get parsed passed in arguments.""" # pylint: disable=import-outside-toplevel from . import config as config_util parser = argparse.ArgumentParser( description="Home Assistant: Observe, Control, Automate.", epilog=f"If restart is requested, exits with code {RESTART_EXIT_CODE}", ) parser.add_argument("--version", action="version", version=__version__) parser.add_argument( "-c", "--config", metavar="path_to_config_dir", default=config_util.get_default_config_dir(), help="Directory that contains the Home Assistant configuration", ) parser.add_argument( "--safe-mode", action="store_true", help="Start Home Assistant in safe mode" ) parser.add_argument( "--debug", action="store_true", help="Start Home Assistant in debug mode" ) parser.add_argument( "--open-ui", action="store_true", help="Open the webinterface in a browser" ) parser.add_argument( "--skip-pip", action="store_true", help="Skips pip install of required packages on startup", ) parser.add_argument( "-v", "--verbose", action="store_true", help="Enable verbose logging to file." ) parser.add_argument( "--pid-file", metavar="path_to_pid_file", default=None, help="Path to PID file useful for running as daemon", ) parser.add_argument( "--log-rotate-days", type=int, default=None, help="Enables daily log rotation and keeps up to the specified days", ) parser.add_argument( "--log-file", type=str, default=None, help="Log file to write to. If not set, CONFIG/home-assistant.log is used", ) parser.add_argument( "--log-no-color", action="store_true", help="Disable color logs" ) parser.add_argument( "--script", nargs=argparse.REMAINDER, help="Run one of the embedded scripts" ) if os.name == "posix": parser.add_argument( "--daemon", action="store_true", help="Run Home Assistant as daemon" ) arguments = parser.parse_args() if os.name != "posix" or arguments.debug or arguments.runner: setattr(arguments, "daemon", False) return arguments
14,487
def report_outcome(result: "LintResult", options, mark_as_success=False) -> int: """Display information about how to skip found rules. Returns exit code, 2 if errors were found, 0 when only warnings were found. """ failures = 0 warnings = 0 msg = """\ # .ansible-lint warn_list: # or 'skip_list' to silence them completely """ matches_unignored = [match for match in result.matches if not match.ignored] # counting matched_rules = {match.rule.id: match.rule for match in matches_unignored} for match in result.matches: if {match.rule.id, *match.rule.tags}.isdisjoint(options.warn_list): failures += 1 else: warnings += 1 entries = [] for key in sorted(matched_rules.keys()): if {key, *matched_rules[key].tags}.isdisjoint(options.warn_list): entries.append(f" - {key} # {matched_rules[key].shortdesc}\n") for match in result.matches: if "experimental" in match.rule.tags: entries.append(" - experimental # all rules tagged as experimental\n") break msg += "".join(sorted(entries)) # Do not deprecate the odl tags just yet. Why? Because it is not currently feasible # to migrate old tags to new tags. There are a lot of things out there that still # use ansible-lint 4 (for example, Ansible Galaxy and Automation Hub imports). If we # replace the odl tags, those tools will report warnings. If we do not replace them, # ansible-lint 5 will report warnings. # # We can do the deprecation once the ecosystem caught up at least a bit. # for k, v in used_old_tags.items(): # _logger.warning( # "Replaced deprecated tag '%s' with '%s' but it will become an " # "error in the future.", # k, # v, # ) if result.matches and not options.quiet: console_stderr.print( "You can skip specific rules or tags by adding them to your " "configuration file:" ) console_stderr.print(render_yaml(msg)) console_stderr.print( f"Finished with {failures} failure(s), {warnings} warning(s) " f"on {len(result.files)} files." ) if mark_as_success or not failures: return 0 return 2
def report_outcome(result: "LintResult", options, mark_as_success=False) -> int: """Display information about how to skip found rules. Returns exit code, 2 if errors were found, 0 when only warnings were found. """ failures = 0 warnings = 0 msg = """\ # .ansible-lint warn_list: # or 'skip_list' to silence them completely """ matches_unignored = [match for match in result.matches if not match.ignored] # counting matched_rules = {match.rule.id: match.rule for match in matches_unignored} for match in result.matches: if {match.rule.id, *match.rule.tags}.isdisjoint(options.warn_list): failures += 1 else: warnings += 1 entries = [] for key in sorted(matched_rules.keys()): if {key, *matched_rules[key].tags}.isdisjoint(options.warn_list): entries.append(f" - {key} # {matched_rules[key].shortdesc}\n") for match in result.matches: if "experimental" in match.rule.tags: entries.append(" - experimental # all rules tagged as experimental\n") break msg += "".join(sorted(entries)) # Do not deprecate the old tags just yet. Why? Because it is not currently feasible # to migrate old tags to new tags. There are a lot of things out there that still # use ansible-lint 4 (for example, Ansible Galaxy and Automation Hub imports). If we # replace the odl tags, those tools will report warnings. If we do not replace them, # ansible-lint 5 will report warnings. # # We can do the deprecation once the ecosystem caught up at least a bit. # for k, v in used_old_tags.items(): # _logger.warning( # "Replaced deprecated tag '%s' with '%s' but it will become an " # "error in the future.", # k, # v, # ) if result.matches and not options.quiet: console_stderr.print( "You can skip specific rules or tags by adding them to your " "configuration file:" ) console_stderr.print(render_yaml(msg)) console_stderr.print( f"Finished with {failures} failure(s), {warnings} warning(s) " f"on {len(result.files)} files." ) if mark_as_success or not failures: return 0 return 2
42,350
def get_role_argspec(role, collection=None, playbook_dir=None, **kwargs): ''' Run an ``ansible-doc`` command to get a role argument specification. .. note:: Version added: 2.2 :param str role: Simple role name, or fully qualified collection role name, to query. :param str collection: If specified, will be combined with the role name to form a fully qualified collection role name. If this is supplied, the ``role`` param should not be fully qualified. :param str playbook_dir: This parameter is used to sets the relative path to handle playbook adjacent installed roles. :param str runner_mode: The applicable values are ``pexpect`` and ``subprocess``. Default is set to ``subprocess``. :param str host_cwd: The host current working directory to be mounted within the container (if enabled) and will be the work directory within container. :param dict envvars: Environment variables to be used when running Ansible. Environment variables will also be read from ``env/envvars`` in ``private_data_dir`` :param dict passwords: A dictionary containing password prompt patterns and response values used when processing output from Ansible. Passwords will also be read from ``env/passwords`` in ``private_data_dir``. :param dict settings: A dictionary containing settings values for the ``ansible-runner`` runtime environment. These will also be read from ``env/settings`` in ``private_data_dir``. :param str ssh_key: The ssh private key passed to ``ssh-agent`` as part of the ansible-playbook run. :param bool quiet: Disable all output :param bool json_mode: Store event data in place of stdout on the console and in the stdout file :param str artifact_dir: The path to the directory where artifacts should live, this defaults to 'artifacts' under the private data dir :param str project_dir: The path to the playbook content, this defaults to 'project' within the private data dir :param int rotate_artifacts: Keep at most n artifact directories, disable with a value of 0 which is the default :param int timeout: The timeout value in seconds that will be passed to either ``pexpect`` of ``subprocess`` invocation (based on ``runner_mode`` selected) while executing command. It the timeout is triggered it will force cancel the execution. :param bool process_isolation: Enable process isolation, using a container engine (e.g. podman). :param str process_isolation_executable: Process isolation executable or container engine used to isolate execution. (default: podman) :param str container_image: Container image to use when running an ansible task (default: quay.io/ansible/ansible-runner:devel) :param list container_volume_mounts: List of bind mounts in the form 'host_dir:/container_dir:labels. (default: None) :param list container_options: List of container options to pass to execution engine. :param str container_workdir: The working directory within the container. :param str fact_cache: A string that will be used as the name for the subdirectory of the fact cache in artifacts directory. This is only used for 'jsonfile' type fact caches. :param str fact_cache_type: A string of the type of fact cache to use. Defaults to 'jsonfile'. :param str private_data_dir: The directory containing all runner metadata needed to invoke the runner module. Output artifacts will also be stored here for later consumption. :param str ident: The run identifier for this invocation of Runner. Will be used to create and name the artifact directory holding the results of the invocation. :param function event_handler: An optional callback that will be invoked any time an event is received by Runner itself, return True to keep the event :param function cancel_callback: An optional callback that can inform runner to cancel (returning True) or not (returning False) :param function finished_callback: An optional callback that will be invoked at shutdown after process cleanup. :param function status_handler: An optional callback that will be invoked any time the status changes (e.g...started, running, failed, successful, timeout) :param function artifacts_handler: An optional callback that will be invoked at the end of the run to deal with the artifacts from the run. :param bool check_job_event_data: Check if job events data is completely generated. If event data is not completely generated and if value is set to 'True' it will raise 'AnsibleRunnerException' exception, if set to 'False' it log a debug message and continue execution. Default value is 'False' :returns: A tuple of response and error string. The response is a python dictionary object (as returned by ansible-doc JSON output) containing each role found, or an empty dict if none are found. ''' event_callback_handler = kwargs.pop('event_handler', None) status_callback_handler = kwargs.pop('status_handler', None) artifacts_handler = kwargs.pop('artifacts_handler', None) cancel_callback = kwargs.pop('cancel_callback', None) finished_callback = kwargs.pop('finished_callback', None) rd = DocConfig(**kwargs) rd.prepare_role_argspec_command(role, collection, playbook_dir) r = Runner(rd, event_handler=event_callback_handler, status_handler=status_callback_handler, artifacts_handler=artifacts_handler, cancel_callback=cancel_callback, finished_callback=finished_callback) r.run() response = r.stdout.read() error = r.stderr.read() if response: response = json.loads(sanitize_json_response(response)) return response, error
def get_role_argspec(role, collection=None, playbook_dir=None, **kwargs): ''' Run an ``ansible-doc`` command to get a role argument specification. .. note:: Version added: 2.2 :param str role: Simple role name, or fully qualified collection role name, to query. :param str collection: If specified, will be combined with the role name to form a fully qualified collection role name. If this is supplied, the ``role`` param should not be fully qualified. :param str playbook_dir: This parameter is used to sets the relative path to handle playbook adjacent installed roles. :param str runner_mode: The applicable values are ``pexpect`` and ``subprocess``. Default is set to ``subprocess``. :param str host_cwd: The host current working directory to be mounted within the container (if enabled) and will be the work directory within container. :param dict envvars: Environment variables to be used when running Ansible. Environment variables will also be read from ``env/envvars`` in ``private_data_dir`` :param dict passwords: A dictionary containing password prompt patterns and response values used when processing output from Ansible. Passwords will also be read from ``env/passwords`` in ``private_data_dir``. :param dict settings: A dictionary containing settings values for the ``ansible-runner`` runtime environment. These will also be read from ``env/settings`` in ``private_data_dir``. :param str ssh_key: The ssh private key passed to ``ssh-agent`` as part of the ansible-playbook run. :param bool quiet: Disable all output :param bool json_mode: Store event data in place of stdout on the console and in the stdout file :param str artifact_dir: The path to the directory where artifacts should live, this defaults to 'artifacts' under the private data dir :param str project_dir: The path to the playbook content, this defaults to 'project' within the private data dir :param int rotate_artifacts: Keep at most n artifact directories, disable with a value of 0 which is the default :param int timeout: The timeout value in seconds that will be passed to either ``pexpect`` of ``subprocess`` invocation (based on ``runner_mode`` selected) while executing command. It the timeout is triggered it will force cancel the execution. :param bool process_isolation: Enable process isolation, using a container engine (e.g. podman). :param str process_isolation_executable: Process isolation executable or container engine used to isolate execution. (default: podman) :param str container_image: Container image to use when running an ansible task (default: quay.io/ansible/ansible-runner:devel) :param list container_volume_mounts: List of bind mounts in the form 'host_dir:/container_dir:labels. (default: None) :param list container_options: List of container options to pass to execution engine. :param str container_workdir: The working directory within the container. :param str fact_cache: A string that will be used as the name for the subdirectory of the fact cache in artifacts directory. This is only used for 'jsonfile' type fact caches. :param str fact_cache_type: A string of the type of fact cache to use. Defaults to 'jsonfile'. :param str private_data_dir: The directory containing all runner metadata needed to invoke the runner module. Output artifacts will also be stored here for later consumption. :param str ident: The run identifier for this invocation of Runner. Will be used to create and name the artifact directory holding the results of the invocation. :param function event_handler: An optional callback that will be invoked any time an event is received by Runner itself, return True to keep the event :param function cancel_callback: An optional callback that can inform runner to cancel (returning True) or not (returning False) :param function finished_callback: An optional callback that will be invoked at shutdown after process cleanup. :param function status_handler: An optional callback that will be invoked any time the status changes (e.g...started, running, failed, successful, timeout) :param function artifacts_handler: An optional callback that will be invoked at the end of the run to deal with the artifacts from the run. :param bool check_job_event_data: Check if job events data is completely generated. If event data is not completely generated and if value is set to 'True' it will raise 'AnsibleRunnerException' exception, if set to 'False' it log a debug message and continue execution. Default value is 'False' :returns: A tuple of response and error string. The response is a dictionary object (as returned by ansible-doc JSON output) containing each role found, or an empty dict if none are found. ''' event_callback_handler = kwargs.pop('event_handler', None) status_callback_handler = kwargs.pop('status_handler', None) artifacts_handler = kwargs.pop('artifacts_handler', None) cancel_callback = kwargs.pop('cancel_callback', None) finished_callback = kwargs.pop('finished_callback', None) rd = DocConfig(**kwargs) rd.prepare_role_argspec_command(role, collection, playbook_dir) r = Runner(rd, event_handler=event_callback_handler, status_handler=status_callback_handler, artifacts_handler=artifacts_handler, cancel_callback=cancel_callback, finished_callback=finished_callback) r.run() response = r.stdout.read() error = r.stderr.read() if response: response = json.loads(sanitize_json_response(response)) return response, error
30,995
def fetch_incidents(url): feed = feedparser.parse(url) incidents = [] # demisto.getLastRun() will returns an obj with the previous run in it. last_run = demisto.getLastRun() # Get the last fetch time, if exists last_fetch = last_run.get('last_fetch') if last_fetch == None: last_fetch = datetime(1970, 1, 1) else: last_fetch = datetime.strptime(last_fetch, '%Y-%m-%dT%H:%M:%S.%f') for entry in feed.entries: date_parsed = email.utils.parsedate(entry.published) dt = datetime.fromtimestamp(mktime(date_parsed)) incident = { 'name': entry.title, 'occured': dt.isoformat(), 'rawJSON': json.dumps(entry) } incidents.append(incident) dtnow = datetime.now().strftime('%Y-%m-%dT%H:%M:%S.%f') demisto.setLastRun({'last_fetch': dtnow}) return incidents
def fetch_incidents(url): feed = feedparser.parse(url) incidents = [] # demisto.getLastRun() will returns an obj with the previous run in it. last_run = demisto.getLastRun() # Get the last fetch time, if exists last_fetch = last_run.get('last_fetch') if last_fetch == None: last_fetch = datetime(1970, 1, 1) else: last_fetch = datetime.strptime(last_fetch, '%Y-%m-%dT%H:%M:%S.%f') for entry in feed.entries: date_parsed = email.utils.parsedate(entry.published) dt = datetime.fromtimestamp(mktime(date_parsed)) incident = { 'name': entry.title, 'occured': dt.isoformat(), 'rawJSON': json.dumps(entry) } incidents.append(incident) dtnow = datetime.now().strftime('%Y-%m-%dT%H:%M:%S.%f') demisto.setLastRun({'last_fetch': dt.strftime('%Y-%m-%dT%H:%M:%S.%f')}) return incidents
19,955
def poolRunner(target, queue, coverage_number=None, omit_patterns=[], cov_config_file=True): # pragma: no cover """ I am the function that pool worker processes run. I run one unit test. coverage_config_file is a special option that is either a string specifying the custom coverage config file or the special default value True (which causes coverage to search for it's standard config files). """ # Each pool worker gets his own temp directory, to avoid having tests that # are used to taking turns using the same temp file name from interfering # with eachother. So long as the test doesn't use a hard-coded temp # directory, anyway. saved_tempdir = tempfile.tempdir tempfile.tempdir = tempfile.mkdtemp() def raise_internal_failure(msg): err = sys.exc_info() t = ProtoTest() t.module = 'green.loader' t.class_name = 'N/A' t.description = msg t.method_name = 'poolRunner' result.startTest(t) result.addError(t, err) result.stopTest(t) queue.put(result) cleanup() def cleanup(): # Restore the state of the temp directory # TODO: Make this not necessary on macOS+Python3 (see #173) if sys.version_info[0] == 2: shutil.rmtree(tempfile.tempdir, ignore_errors=True) tempfile.tempdir = saved_tempdir queue.put(None) # Finish coverage if coverage_number: cov.stop() cov.save() # Each pool starts its own coverage, later combined by the main process. if coverage_number: cov = coverage.coverage( data_file='.coverage.{}_{}'.format( coverage_number, random.randint(0, 10000)), omit=omit_patterns, config_file=cov_config_file) cov._warn_no_data = False cov.start() # What to do each time an individual test is started already_sent = set() def start_callback(test): # Let the main process know what test we are starting test = proto_test(test) if test not in already_sent: queue.put(test) already_sent.add(test) def finalize_callback(test_result): # Let the main process know what happened with the test run queue.put(test_result) result = ProtoTestResult(start_callback, finalize_callback) test = None try: loader = GreenTestLoader() test = loader.loadTargets(target) except: raise_internal_failure('Green encountered an error loading the unit test.') return if getattr(test, 'run', False): # Loading was successful, lets do this try: test.run(result) # If your class setUpClass(self) method crashes, the test doesn't # raise an exception, but it does add an entry to errors. Some # other things add entries to errors as well, but they all call the # finalize callback. if result and (not result.finalize_callback_called) and getattr(result, 'errors', False): queue.put(test) queue.put(result) except: # Some frameworks like testtools record the error AND THEN let it # through to crash things. So we only need to manufacture another # error if the underlying framework didn't, but either way we don't # want to crash. if result.errors: queue.put(result) else: try: err = sys.exc_info() result.startTest(test) result.addError(test, err) result.stopTest(test) queue.put(result) except: raise_internal_failure('Green encoundered an error when running the test.') return else: # loadTargets() returned an object without a run() method, probably # None description = ('Test loader returned an un-runnable object. Is "{}" ' 'importable from your current location? Maybe you ' 'forgot an __init__.py in your directory? Unrunnable ' 'object looks like: {} of type {} with dir {}' .format(target, str(test), type(test), dir(test)) ) err = (TypeError, TypeError(description), None) t = ProtoTest() target_list = target.split('.') t.module = '.'.join(target_list[:-2]) if len(target_list) > 1 else target t.class_name = target.split('.')[-2] if len(target_list) > 1 else 'UnknownClass' t.description = description t.method_name = target.split('.')[-1] if len(target_list) > 1 else 'unknown_method' result.startTest(t) result.addError(t, err) result.stopTest(t) queue.put(result) cleanup()
def poolRunner(target, queue, coverage_number=None, omit_patterns=[], cov_config_file=True): # pragma: no cover """ I am the function that pool worker processes run. I run one unit test. coverage_config_file is a special option that is either a string specifying the custom coverage config file or the special default value True (which causes coverage to search for it's standard config files). """ # Each pool worker gets his own temp directory, to avoid having tests that # are used to taking turns using the same temp file name from interfering # with eachother. So long as the test doesn't use a hard-coded temp # directory, anyway. saved_tempdir = tempfile.tempdir tempfile.tempdir = tempfile.mkdtemp() def raise_internal_failure(msg): err = sys.exc_info() t = ProtoTest() t.module = 'green.loader' t.class_name = 'N/A' t.description = msg t.method_name = 'poolRunner' result.startTest(t) result.addError(t, err) result.stopTest(t) queue.put(result) cleanup() def cleanup(): # Restore the state of the temp directory # TODO: Make this not necessary on macOS+Python3 (see #173) if sys.version_info[0] == 2: shutil.rmtree(tempfile.tempdir, ignore_errors=True) tempfile.tempdir = saved_tempdir queue.put(None) # Finish coverage if coverage_number: cov.stop() cov.save() # Each pool starts its own coverage, later combined by the main process. if coverage_number: cov = coverage.coverage( data_file='.coverage.{}_{}'.format( coverage_number, random.randint(0, 10000)), omit=omit_patterns, config_file=cov_config_file) cov._warn_no_data = False cov.start() # What to do each time an individual test is started already_sent = set() def start_callback(test): # Let the main process know what test we are starting test = proto_test(test) if test not in already_sent: queue.put(test) already_sent.add(test) def finalize_callback(test_result): # Let the main process know what happened with the test run queue.put(test_result) result = ProtoTestResult(start_callback, finalize_callback) test = None try: loader = GreenTestLoader() test = loader.loadTargets(target) except: raise_internal_failure('Green encountered an error loading the unit test.') return if getattr(test, 'run', False): # Loading was successful, lets do this try: test.run(result) # If your class setUpClass(self) method crashes, the test doesn't # raise an exception, but it does add an entry to errors. Some # other things add entries to errors as well, but they all call the # finalize callback. if result and (not result.finalize_callback_called) and getattr(result, 'errors', False): queue.put(test) queue.put(result) except: # Some frameworks like testtools record the error AND THEN let it # through to crash things. So we only need to manufacture another # error if the underlying framework didn't, but either way we don't # want to crash. if result.errors: queue.put(result) else: try: err = sys.exc_info() result.startTest(test) result.addError(test, err) result.stopTest(test) queue.put(result) except: raise_internal_failure('Green encountered an internal error when running the test. This error is known to occur with doctests, which Green does not yet support.') return else: # loadTargets() returned an object without a run() method, probably # None description = ('Test loader returned an un-runnable object. Is "{}" ' 'importable from your current location? Maybe you ' 'forgot an __init__.py in your directory? Unrunnable ' 'object looks like: {} of type {} with dir {}' .format(target, str(test), type(test), dir(test)) ) err = (TypeError, TypeError(description), None) t = ProtoTest() target_list = target.split('.') t.module = '.'.join(target_list[:-2]) if len(target_list) > 1 else target t.class_name = target.split('.')[-2] if len(target_list) > 1 else 'UnknownClass' t.description = description t.method_name = target.split('.')[-1] if len(target_list) > 1 else 'unknown_method' result.startTest(t) result.addError(t, err) result.stopTest(t) queue.put(result) cleanup()
30,242
def get_urlscan_http_transaction_list(): uuid = urlscan_submit_url() ready = polling(uuid) if ready is True: format_http_transaction_list(uuid)
def get_urlscan_http_transaction_list(): uuid = urlscan_submit_url() ready = polling(uuid) if ready: format_http_transaction_list(uuid)
30,671
def convert_to_json(response): raw_json_response = json.loads(xml2json(response)) workers_data = raw_json_response.get('Envelope').get('Body').get('Get_Workers_Response').get('Response_Data'). \ get('Worker') return raw_json_response, workers_data
def convert_to_json(response): raw_json_response = json.loads(xml2json(response)) workers_data = raw_json_response.get('Envelope', {}).get('Body', {}).get('Get_Workers_Response', {}).get('Response_Data', {}). \ get('Worker') return raw_json_response, workers_data
57,095
def validate_topic_and_sub_topic_change(obj): """Validates Topic or Sub topic change. Args: obj: dict. Data that needs to be validated. """ allowed_commands = [ command['name'] for command in topic_domain.ALLOWED_COMMANDS ] if obj['cmd'] not in allowed_commands: raise base.BaseHandler.InvalidInputException( '%s cmd is not allowed.' % obj['cmd'] )
def validate_topic_and_sub_topic_change(obj): """Validates Topic or Sub topic change. Args: obj: dict. Data that needs to be validated. """ allowed_commands = [ command['name'] for command in topic_domain.ALLOWED_COMMANDS ] if obj['cmd'] not in allowed_commands: raise base.BaseHandler.InvalidInputException( '%s cmd is not allowed.' % obj['cmd'] )
37,950
def load_ocean_ridge_points(): """ Load a table of ocean ridge points for the entire world as a pandas.DataFrame. This is the ``@ridge.txt`` dataset used in the GMT tutorials. The data are downloaded to a cache directory (usually ``~/.gmt/cache``) the first time you invoke this function. Afterwards, it will load the data from the cache. So you'll need an internet connection the first time around. Returns ------- data : pandas.DataFrame The data table. Columns are longitude and latitude. """ fname = which("@ridge.txt", download="c") data = pd.read_csv( fname, sep=r"\s+", names=["longitude", "latitude"], skiprows=1, comment=">" ) return data
def load_ocean_ridge_points(): """ Load a table of ocean ridge points for the entire world as a pandas.DataFrame. This is the ``@ridge.txt`` dataset used in the GMT tutorials. The data are downloaded to a cache directory (usually ``~/.gmt/cache``) the first time you invoke this function. Afterwards, it will load the data from the cache. So you'll need an internet connection the first time around. Returns ------- data : pandas.DataFrame The data table. Columns are longitude and latitude. """ fname = which("@ridge.txt", download="c") data = pd.read_csv( fname, sep=r"\s+", names=["longitude", "latitude"], skiprows=1, comment=">" ) return data
10,777
def device_array_like(ary, stream=0): """Call cuda.devicearray() with information from the array. """ # Avoid attempting to recompute strides if the default strides will be # sufficient to create a contiguous array. if ary.is_c_contiguous() or ary.ndim <= 1: return device_array(shape=ary.shape, dtype=ary.dtype, stream=stream) # Otherwise, we need to compute new strides using an algorithm adapted from # Numpy's PyArray_NewLikeArrayWithShape in core/src/multiarray/ctors.c. We # permute the strides in ascending order then compute the stride for the # dimensions with the same permutation. # Stride permuation. E.g. a stride array (4, -2, 12) becomes # [(1, -2), (0, 4), (2, 12)] strideperm = [ x for x in enumerate(ary.strides) ] strideperm.sort(key = lambda x: x[1]) # Compute new strides using permutation strides = [0] * len(ary.strides) stride = ary.dtype.itemsize for i_perm, _ in strideperm: strides[i_perm] = stride stride *= ary.shape[i_perm] strides = tuple(strides) return device_array(shape=ary.shape, dtype=ary.dtype, strides=strides, stream=stream)
def device_array_like(ary, stream=0): """Call cuda.devicearray() with information from the array. """ # Avoid attempting to recompute strides if the default strides will be # sufficient to create a contiguous array. if ary.is_c_contiguous() or ary.ndim <= 1: return device_array(shape=ary.shape, dtype=ary.dtype, stream=stream) # Otherwise, we need to compute new strides using an algorithm adapted from # NumPy's PyArray_NewLikeArrayWithShape in core/src/multiarray/ctors.c. We # permute the strides in ascending order then compute the stride for the # dimensions with the same permutation. # Stride permuation. E.g. a stride array (4, -2, 12) becomes # [(1, -2), (0, 4), (2, 12)] strideperm = [ x for x in enumerate(ary.strides) ] strideperm.sort(key = lambda x: x[1]) # Compute new strides using permutation strides = [0] * len(ary.strides) stride = ary.dtype.itemsize for i_perm, _ in strideperm: strides[i_perm] = stride stride *= ary.shape[i_perm] strides = tuple(strides) return device_array(shape=ary.shape, dtype=ary.dtype, strides=strides, stream=stream)
31,270
def main(): try: indicator = demisto.args()['indicator'] resp = demisto.executeCommand("getIndicator", {'value': indicator}) if isError(resp) or not resp: demisto.results(resp) sys.exit(0) data = resp[0].get("Contents") if not data: demisto.results("No results.") sys.exit(0) for entry in data: for results, outputs in iterate_indicator_entry(indicator, entry): return_results(results) appendContext(DbotScoreKey, outputs) except Exception as error: return_error(str(error), error)
def main(): try: indicator = demisto.args()['indicator'] resp = demisto.executeCommand("getIndicator", {'value': indicator}) if isError(resp) or not resp: demisto.results(resp) return data = resp[0].get("Contents") if not data: demisto.results("No results.") sys.exit(0) for entry in data: for results, outputs in iterate_indicator_entry(indicator, entry): return_results(results) appendContext(DbotScoreKey, outputs) except Exception as error: return_error(str(error), error)
46,053
def flow2rgb(flow: np.ndarray, color_wheel: Optional[np.ndarray] = None, unknown_thr: float = 1e6) -> np.ndarray: """Convert flow map to RGB image. Args: flow (ndarray): Array of optical flow. color_wheel (ndarray or None): Color wheel used to map flow field to RGB colorspace. Default color wheel will be used if not specified. unknown_thr (float): Values above this threshold will be marked asx unknown and thus ignored. Returns: ndarray: RGB image that can be visualized. """ assert flow.ndim == 3 and flow.shape[-1] == 2 if color_wheel is None: color_wheel = make_color_wheel() assert color_wheel.ndim == 2 and color_wheel.shape[1] == 3 num_bins = color_wheel.shape[0] dx = flow[:, :, 0].copy() dy = flow[:, :, 1].copy() ignore_inds = ( np.isnan(dx) | np.isnan(dy) | (np.abs(dx) > unknown_thr) | (np.abs(dy) > unknown_thr)) dx[ignore_inds] = 0 dy[ignore_inds] = 0 rad = np.sqrt(dx**2 + dy**2) if np.any(rad > np.finfo(float).eps): max_rad = np.max(rad) dx /= max_rad dy /= max_rad rad = np.sqrt(dx**2 + dy**2) angle = np.arctan2(-dy, -dx) / np.pi bin_real = (angle + 1) / 2 * (num_bins - 1) bin_left = np.floor(bin_real).astype(int) bin_right = (bin_left + 1) % num_bins w = (bin_real - bin_left.astype(np.float32))[..., None] flow_img = (1 - w) * color_wheel[bin_left, :] + w * color_wheel[bin_right, :] small_ind = rad <= 1 flow_img[small_ind] = 1 - rad[small_ind, None] * (1 - flow_img[small_ind]) flow_img[np.logical_not(small_ind)] *= 0.75 flow_img[ignore_inds, :] = 0 return flow_img
def flow2rgb(flow: np.ndarray, color_wheel: Optional[np.ndarray] = None, unknown_thr: float = 1e6) -> np.ndarray: """Convert flow map to RGB image. Args: flow (ndarray): Array of optical flow. color_wheel (ndarray or None): Color wheel used to map flow field to RGB colorspace. Default color wheel will be used if not specified. unknown_thr (float): Values above this threshold will be marked as unknown and thus ignored. Returns: ndarray: RGB image that can be visualized. """ assert flow.ndim == 3 and flow.shape[-1] == 2 if color_wheel is None: color_wheel = make_color_wheel() assert color_wheel.ndim == 2 and color_wheel.shape[1] == 3 num_bins = color_wheel.shape[0] dx = flow[:, :, 0].copy() dy = flow[:, :, 1].copy() ignore_inds = ( np.isnan(dx) | np.isnan(dy) | (np.abs(dx) > unknown_thr) | (np.abs(dy) > unknown_thr)) dx[ignore_inds] = 0 dy[ignore_inds] = 0 rad = np.sqrt(dx**2 + dy**2) if np.any(rad > np.finfo(float).eps): max_rad = np.max(rad) dx /= max_rad dy /= max_rad rad = np.sqrt(dx**2 + dy**2) angle = np.arctan2(-dy, -dx) / np.pi bin_real = (angle + 1) / 2 * (num_bins - 1) bin_left = np.floor(bin_real).astype(int) bin_right = (bin_left + 1) % num_bins w = (bin_real - bin_left.astype(np.float32))[..., None] flow_img = (1 - w) * color_wheel[bin_left, :] + w * color_wheel[bin_right, :] small_ind = rad <= 1 flow_img[small_ind] = 1 - rad[small_ind, None] * (1 - flow_img[small_ind]) flow_img[np.logical_not(small_ind)] *= 0.75 flow_img[ignore_inds, :] = 0 return flow_img
32,064
def wildfire_get_report_command(args): """ Args: args: the command arguments from demisto.args(), including url or file hash (sha256 or md5) to query on Returns: A single or list of CommandResults, and the status of the reports of the url or file of interest. Note that the status is only used for the polling sequence, where the command will always receive a single file or url. Hence, when running this command via the polling sequence, the CommandResults list will contain a single item, and the status will represent that result's status. """ command_results_list = [] urls = argToList(args.get('url', '')) if 'sha256' in args: sha256 = args.get('sha256') elif 'hash' in args: sha256 = args.get('hash') else: sha256 = None md5 = args.get('md5') inputs = urls if urls else hash_args_handler(sha256, md5) status = 'NotFound' for element in inputs: command_results, status = wildfire_get_url_report(element) if urls else wildfire_get_file_report(element, args) command_results_list.append(command_results) return command_results_list, status
def wildfire_get_report_command(args): """ Args: args: the command arguments from demisto.args(), including url or file hash (sha256 or md5) to query on Returns: A single or list of CommandResults, and the status of the reports of the url or file of interest. Note that the status is only used for the polling sequence, where the command will always receive a single file or url. Hence, when running this command via the polling sequence, the CommandResults list will contain a single item, and the status will represent that result's status. """ command_results_list = [] urls = argToList(args.get('url', '')) if 'sha256' in args: sha256 = args.get('sha256') elif 'hash' in args: sha256 = args.get('hash') else: sha256 = None md5 = args.get('md5') inputs = urls if urls else hash_args_handler(sha256, md5) status = '' for element in inputs: command_results, status = wildfire_get_url_report(element) if urls else wildfire_get_file_report(element, args) command_results_list.append(command_results) return command_results_list, status
15,258
def item_payload(item, media_library): """ Create response payload for a single media item. Used by async_browse_media. """ if "songid" in item: media_content_type = MEDIA_TYPE_TRACK media_content_id = f"{item['songid']}" elif "albumid" in item: media_content_type = MEDIA_TYPE_ALBUM media_content_id = f"{item['albumid']}" elif "artistid" in item: media_content_type = MEDIA_TYPE_ARTIST media_content_id = f"{item['artistid']}" elif "movieid" in item: media_content_type = MEDIA_TYPE_MOVIE media_content_id = f"{item['movieid']}" elif "episodeid" in item: media_content_type = MEDIA_TYPE_EPISODE media_content_id = f"{item['episodeid']}" elif "seasonid" in item: media_content_type = MEDIA_TYPE_SEASON media_content_id = f"{item['tvshowid']}/{item['season']}" elif "tvshowid" in item: media_content_type = MEDIA_TYPE_TVSHOW media_content_id = f"{item['tvshowid']}" else: # this case is for the top folder of each type # possible content types: album, artist, movie, library_music, tvshow media_content_type = item.get("type") media_content_id = "" title = item["label"] can_play = media_content_type in PLAYABLE_MEDIA_TYPES and bool(media_content_id) can_expand = media_content_type in EXPANDABLE_MEDIA_TYPES thumbnail = item.get("thumbnail") if thumbnail: thumbnail = media_library.thumbnail_url(thumbnail) if media_content_type == MEDIA_TYPE_MOVIE and not bool(media_content_id): media_class = MEDIA_CLASS_DIRECTORY can_expand = True else: media_class = CONTENT_TYPE_MEDIA_CLASS[media_content_type] return BrowseMedia( title=title, media_class=media_class, media_content_type=media_content_type, media_content_id=media_content_id, can_play=can_play, can_expand=can_expand, thumbnail=thumbnail, )
def item_payload(item, media_library): """ Create response payload for a single media item. Used by async_browse_media. """ if "songid" in item: media_content_type = MEDIA_TYPE_TRACK media_content_id = f"{item['songid']}" elif "albumid" in item: media_content_type = MEDIA_TYPE_ALBUM media_content_id = f"{item['albumid']}" elif "artistid" in item: media_content_type = MEDIA_TYPE_ARTIST media_content_id = f"{item['artistid']}" elif "movieid" in item: media_content_type = MEDIA_TYPE_MOVIE media_content_id = f"{item['movieid']}" elif "episodeid" in item: media_content_type = MEDIA_TYPE_EPISODE media_content_id = f"{item['episodeid']}" elif "seasonid" in item: media_content_type = MEDIA_TYPE_SEASON media_content_id = f"{item['tvshowid']}/{item['season']}" elif "tvshowid" in item: media_content_type = MEDIA_TYPE_TVSHOW media_content_id = f"{item['tvshowid']}" else: # this case is for the top folder of each type # possible content types: album, artist, movie, library_music, tvshow media_content_type = item.get("type") media_content_id = "" title = item["label"] can_play = media_content_type in PLAYABLE_MEDIA_TYPES and bool(media_content_id) can_expand = media_content_type in EXPANDABLE_MEDIA_TYPES thumbnail = item.get("thumbnail") if thumbnail: thumbnail = media_library.thumbnail_url(thumbnail) if media_content_type == MEDIA_TYPE_MOVIE and not media_content_id: media_class = MEDIA_CLASS_DIRECTORY can_expand = True else: media_class = CONTENT_TYPE_MEDIA_CLASS[media_content_type] return BrowseMedia( title=title, media_class=media_class, media_content_type=media_content_type, media_content_id=media_content_id, can_play=can_play, can_expand=can_expand, thumbnail=thumbnail, )
47,500
def stable_softmax(logits: tf.Tensor, axis: Optional[int] = None, name: Optional[str] = None) -> tf.Tensor: """ Stable wrapper that returns the same output as `tf.nn.softmax`, but that works reliably with XLA on CPU. It is meant as a workaround for the following issue (https://github.com/tensorflow/tensorflow/issues/55682), and will be removed after it gets fixed. The arguments and outputs are the same as `tf.nn.softmax`, and relies on the fact that softmax(x) = softmax(x + c) (see https://ogunlao.github.io/2020/04/26/you_dont_really_know_softmax.html). Args: logits (`tf.Tensor`). Must be one of the following types: half, float32, float64. axis (`int`, *optional*). The dimension softmax would be performed on. The default is -1 which indicates the last dimension. name (`str`, *optional*). A name for the operation (optional). Returns: `tf.Tensor`: A Tensor. Has the same type and shape as logits. """ return tf.nn.softmax(logits=logits + 1e-9, axis=axis, name=name)
def stable_softmax(logits: tf.Tensor, axis: Optional[int] = None, name: Optional[str] = None) -> tf.Tensor: """ Stable wrapper that returns the same output as `tf.nn.softmax`, but that works reliably with XLA on CPU. It is meant as a workaround for the [following issue](https://github.com/tensorflow/tensorflow/issues/55682), and will be removed after it gets fixed. The arguments and outputs are the same as `tf.nn.softmax`, and relies on the fact that softmax(x) = softmax(x + c) (see https://ogunlao.github.io/2020/04/26/you_dont_really_know_softmax.html). Args: logits (`tf.Tensor`). Must be one of the following types: half, float32, float64. axis (`int`, *optional*). The dimension softmax would be performed on. The default is -1 which indicates the last dimension. name (`str`, *optional*). A name for the operation (optional). Returns: `tf.Tensor`: A Tensor. Has the same type and shape as logits. """ return tf.nn.softmax(logits=logits + 1e-9, axis=axis, name=name)
45,742
def forecast( precip, velocity, timesteps, precip_thr=None, n_cascade_levels=6, extrap_method="semilagrangian", decomp_method="fft", bandpass_filter_method="gaussian", ar_order=2, conditional=False, probmatching_method="cdf", num_workers=1, fft_method="numpy", domain="spatial", extrap_kwargs=None, filter_kwargs=None, measure_time=False, ): """ Generate a nowcast by using the Spectral Prognosis (S-PROG) method. Parameters ---------- precip: array-like Array of shape (ar_order+1,m,n) containing the input precipitation fields ordered by timestamp from oldest to newest. The time steps between the inputs are assumed to be regular. velocity: array-like Array of shape (2,m,n) containing the x- and y-components of the advection field. The velocities are assumed to represent one time step between the inputs. All values are required to be finite. timesteps: int or list of floats Number of time steps to forecast or a list of time steps for which the forecasts are computed (relative to the input time step). The elements of the list are required to be in ascending order. precip_thr: float, required The threshold value for minimum observable precipitation intensity. n_cascade_levels: int, optional The number of cascade levels to use. extrap_method: str, optional Name of the extrapolation method to use. See the documentation of pysteps.extrapolation.interface. decomp_method: {'fft'}, optional Name of the cascade decomposition method to use. See the documentation of pysteps.cascade.interface. bandpass_filter_method: {'gaussian', 'uniform'}, optional Name of the bandpass filter method to use with the cascade decomposition. See the documentation of pysteps.cascade.interface. ar_order: int, optional The order of the autoregressive model to use. Must be >= 1. conditional: bool, optional If set to True, compute the statistics of the precipitation field conditionally by excluding pixels where the values are below the threshold precip_thr. probmatching_method: {'cdf','mean',None}, optional Method for matching the conditional statistics of the forecast field (areas with precipitation intensity above the threshold precip_thr) with those of the most recently observed one. 'cdf'=map the forecast CDF to the observed one, 'mean'=adjust only the mean value, None=no matching applied. num_workers: int, optional The number of workers to use for parallel computation. Applicable if dask is enabled or pyFFTW is used for computing the FFT. When num_workers>1, it is advisable to disable OpenMP by setting the environment variable OMP_NUM_THREADS to 1. This avoids slowdown caused by too many simultaneous threads. fft_method: str, optional A string defining the FFT method to use (see utils.fft.get_method). Defaults to 'numpy' for compatibility reasons. If pyFFTW is installed, the recommended method is 'pyfftw'. domain: {"spatial", "spectral"} If "spatial", all computations are done in the spatial domain (the classical S-PROG model). If "spectral", the AR(2) models are applied directly in the spectral domain to reduce memory footprint and improve performance :cite:`PCH2019a`. extrap_kwargs: dict, optional Optional dictionary containing keyword arguments for the extrapolation method. See the documentation of pysteps.extrapolation. filter_kwargs: dict, optional Optional dictionary containing keyword arguments for the filter method. See the documentation of pysteps.cascade.bandpass_filters.py. measure_time: bool If set to True, measure, print and return the computation time. Returns ------- out: ndarray A three-dimensional array of shape (num_timesteps,m,n) containing a time series of forecast precipitation fields. The time series starts from t0+timestep, where timestep is taken from the input precipitation fields precip. If measure_time is True, the return value is a three-element tuple containing the nowcast array, the initialization time of the nowcast generator and the time used in the main loop (seconds). See also -------- pysteps.extrapolation.interface, pysteps.cascade.interface References ---------- :cite:`Seed2003`, :cite:`PCH2019a` """ _check_inputs(precip, velocity, timesteps, ar_order) if extrap_kwargs is None: extrap_kwargs = dict() if filter_kwargs is None: filter_kwargs = dict() if np.any(~np.isfinite(velocity)): raise ValueError("velocity contains non-finite values") if precip_thr is None: raise ValueError("precip_thr required but not specified") print("Computing S-PROG nowcast") print("------------------------") print("") print("Inputs") print("------") print(f"input dimensions: {precip.shape[1]}x{precip.shape[2]}") print("") print("Methods") print("-------") print(f"extrapolation: {extrap_method}") print(f"bandpass filter: {bandpass_filter_method}") print(f"decomposition: {decomp_method}") print("conditional statistics: {}".format("yes" if conditional else "no")) print(f"probability matching: {probmatching_method}") print(f"FFT method: {fft_method}") print(f"domain: {domain}") print("") print("Parameters") print("----------") if isinstance(timesteps, int): print(f"number of time steps: {timesteps}") else: print(f"time steps: {timesteps}") print(f"parallel threads: {num_workers}") print(f"number of cascade levels: {n_cascade_levels}") print(f"order of the AR(p) model: {ar_order}") print(f"precip. intensity threshold: {precip_thr}") if measure_time: starttime_init = time.time() fft = utils.get_method(fft_method, shape=precip.shape[1:], n_threads=num_workers) m, n = precip.shape[1:] # initialize the band-pass filter filter_method = cascade.get_method(bandpass_filter_method) filter = filter_method((m, n), n_cascade_levels, **filter_kwargs) decomp_method, recomp_method = cascade.get_method(decomp_method) extrapolator_method = extrapolation.get_method(extrap_method) precip = precip[-(ar_order + 1) :, :, :].copy() precip_min = np.nanmin(precip) # determine the domain mask from non-finite values domain_mask = np.logical_or.reduce( [~np.isfinite(precip[i, :]) for i in range(precip.shape[0])] ) # determine the precipitation threshold mask if conditional: mask_thr = np.logical_and.reduce( [precip[i, :, :] >= precip_thr for i in range(precip.shape[0])] ) else: mask_thr = None # initialize the extrapolator x_values, y_values = np.meshgrid( np.arange(precip.shape[2]), np.arange(precip.shape[1]) ) xy_coords = np.stack([x_values, y_values]) extrap_kwargs = extrap_kwargs.copy() extrap_kwargs["xy_coords"] = xy_coords extrap_kwargs["allow_nonfinite_values"] = ( True if np.any(~np.isfinite(precip)) else False ) # advect the previous precipitation fields to the same position with the # most recent one (i.e. transform them into the Lagrangian coordinates) res = list() def f(precip, i): return extrapolator_method( precip[i, :], velocity, ar_order - i, "min", **extrap_kwargs )[-1] for i in range(ar_order): if not DASK_IMPORTED: precip[i, :, :] = f(precip, i) else: res.append(dask.delayed(f)(precip, i)) if DASK_IMPORTED: num_workers_ = len(res) if num_workers > len(res) else num_workers precip = np.stack( list(dask.compute(*res, num_workers=num_workers_)) + [precip[-1, :, :]] ) # replace non-finite values with the minimum value precip = precip.copy() for i in range(precip.shape[0]): precip[i, ~np.isfinite(precip[i, :])] = np.nanmin(precip[i, :]) # compute the cascade decompositions of the input precipitation fields precip_d = [] for i in range(ar_order + 1): precip_ = decomp_method( precip[i, :, :], filter, mask=mask_thr, fft_method=fft, output_domain=domain, normalize=True, compute_stats=True, compact_output=True, ) precip_d.append(precip_) # rearrange the cascade levels into a four-dimensional array of shape # (n_cascade_levels,ar_order+1,m,n) for the autoregressive model precip_c = nowcast_utils.stack_cascades( precip_d, n_cascade_levels, convert_to_full_arrays=True ) # compute lag-l temporal autocorrelation coefficients for each cascade level gamma = np.empty((n_cascade_levels, ar_order)) for i in range(n_cascade_levels): if domain == "spatial": gamma[i, :] = correlation.temporal_autocorrelation( precip_c[i], mask=mask_thr ) else: gamma[i, :] = correlation.temporal_autocorrelation( precip_c[i], domain="spectral", x_shape=precip.shape[1:] ) precip_c = nowcast_utils.stack_cascades( precip_d, n_cascade_levels, convert_to_full_arrays=False ) precip_d = precip_d[-1] nowcast_utils.print_corrcoefs(gamma) if ar_order == 2: # adjust the lag-2 correlation coefficient to ensure that the AR(p) # process is stationary for i in range(n_cascade_levels): gamma[i, 1] = autoregression.adjust_lag2_corrcoef2(gamma[i, 0], gamma[i, 1]) # estimate the parameters of the AR(p) model from the autocorrelation # coefficients phi = np.empty((n_cascade_levels, ar_order + 1)) for i in range(n_cascade_levels): phi[i, :] = autoregression.estimate_ar_params_yw(gamma[i, :]) nowcast_utils.print_ar_params(phi) # discard all except the p-1 last cascades because they are not needed for # the AR(p) model precip_c = [precip_c[i][-ar_order:] for i in range(n_cascade_levels)] if probmatching_method == "mean": mu_0 = np.mean(precip[-1, :, :][precip[-1, :, :] >= precip_thr]) else: mu_0 = None # compute precipitation mask and wet area ratio mask_p = precip[-1, :, :] >= precip_thr war = 1.0 * np.sum(mask_p) / (precip.shape[1] * precip.shape[2]) if measure_time: init_time = time.time() - starttime_init precip = precip[-1, :, :] print("Starting nowcast computation.") precip_f = [] state = {"precip_c": precip_c, "precip_d": precip_d} params = { "domain": domain, "domain_mask": domain_mask, "fft": fft, "mu_0": mu_0, "n_cascade_levels": n_cascade_levels, "phi": phi, "precip_0": precip, "precip_min": precip_min, "probmatching_method": probmatching_method, "recomp_method": recomp_method, "war": war, } precip_f = nowcast_main_loop( precip, velocity, state, timesteps, extrap_method, _update, extrap_kwargs=extrap_kwargs, params=params, measure_time=measure_time, ) if measure_time: precip_f, mainloop_time = precip_f precip_f = np.stack(precip_f) if measure_time: return precip_f, init_time, mainloop_time else: return precip_f
def forecast( precip, velocity, timesteps, precip_thr=None, n_cascade_levels=6, extrap_method="semilagrangian", decomp_method="fft", bandpass_filter_method="gaussian", ar_order=2, conditional=False, probmatching_method="cdf", num_workers=1, fft_method="numpy", domain="spatial", extrap_kwargs=None, filter_kwargs=None, measure_time=False, ): """ Generate a nowcast by using the Spectral Prognosis (S-PROG) method. Parameters ---------- precip: array-like Array of shape (ar_order+1,m,n) containing the input precipitation fields ordered by timestamp from oldest to newest. The time steps between the inputs are assumed to be regular. velocity: array-like Array of shape (2,m,n) containing the x- and y-components of the advection field. The velocities are assumed to represent one time step between the inputs. All values are required to be finite. timesteps: int or list of floats Number of time steps to forecast or a list of time steps for which the forecasts are computed (relative to the input time step). The elements of the list are required to be in ascending order. precip_thr: float, required The threshold value for minimum observable precipitation intensity. n_cascade_levels: int, optional The number of cascade levels to use. extrap_method: str, optional Name of the extrapolation method to use. See the documentation of pysteps.extrapolation.interface. decomp_method: {'fft'}, optional Name of the cascade decomposition method to use. See the documentation of pysteps.cascade.interface. bandpass_filter_method: {'gaussian', 'uniform'}, optional Name of the bandpass filter method to use with the cascade decomposition. See the documentation of pysteps.cascade.interface. ar_order: int, optional The order of the autoregressive model to use. Must be >= 1. conditional: bool, optional If set to True, compute the statistics of the precipitation field conditionally by excluding pixels where the values are below the threshold precip_thr. probmatching_method: {'cdf','mean',None}, optional Method for matching the conditional statistics of the forecast field (areas with precipitation intensity above the threshold precip_thr) with those of the most recently observed one. 'cdf'=map the forecast CDF to the observed one, 'mean'=adjust only the mean value, None=no matching applied. num_workers: int, optional The number of workers to use for parallel computation. Applicable if dask is enabled or pyFFTW is used for computing the FFT. When num_workers>1, it is advisable to disable OpenMP by setting the environment variable OMP_NUM_THREADS to 1. This avoids slowdown caused by too many simultaneous threads. fft_method: str, optional A string defining the FFT method to use (see utils.fft.get_method). Defaults to 'numpy' for compatibility reasons. If pyFFTW is installed, the recommended method is 'pyfftw'. domain: {"spatial", "spectral"} If "spatial", all computations are done in the spatial domain (the classical S-PROG model). If "spectral", the AR(2) models are applied directly in the spectral domain to reduce memory footprint and improve performance :cite:`PCH2019a`. extrap_kwargs: dict, optional Optional dictionary containing keyword arguments for the extrapolation method. See the documentation of pysteps.extrapolation. filter_kwargs: dict, optional Optional dictionary containing keyword arguments for the filter method. See the documentation of pysteps.cascade.bandpass_filters.py. measure_time: bool If set to True, measure, print and return the computation time. Returns ------- out: ndarray A three-dimensional array of shape (num_timesteps,m,n) containing a time series of forecast precipitation fields. The time series starts from t0+timestep, where timestep is taken from the input precipitation fields precip. If measure_time is True, the return value is a three-element tuple containing the nowcast array, the initialization time of the nowcast generator and the time used in the main loop (seconds). See also -------- pysteps.extrapolation.interface, pysteps.cascade.interface References ---------- :cite:`Seed2003`, :cite:`PCH2019a` """ _check_inputs(precip, velocity, timesteps, ar_order) if extrap_kwargs is None: extrap_kwargs = dict() if filter_kwargs is None: filter_kwargs = dict() if np.any(~np.isfinite(velocity)): raise ValueError("velocity contains non-finite values") if precip_thr is None: raise ValueError("precip_thr required but not specified") print("Computing S-PROG nowcast") print("------------------------") print("") print("Inputs") print("------") print(f"input dimensions: {precip.shape[1]}x{precip.shape[2]}") print("") print("Methods") print("-------") print(f"extrapolation: {extrap_method}") print(f"bandpass filter: {bandpass_filter_method}") print(f"decomposition: {decomp_method}") print("conditional statistics: {}".format("yes" if conditional else "no")) print(f"probability matching: {probmatching_method}") print(f"FFT method: {fft_method}") print(f"domain: {domain}") print("") print("Parameters") print("----------") if isinstance(timesteps, int): print(f"number of time steps: {timesteps}") else: print(f"time steps: {timesteps}") print(f"parallel threads: {num_workers}") print(f"number of cascade levels: {n_cascade_levels}") print(f"order of the AR(p) model: {ar_order}") print(f"precip. intensity threshold: {precip_thr}") if measure_time: starttime_init = time.time() fft = utils.get_method(fft_method, shape=precip.shape[1:], n_threads=num_workers) m, n = precip.shape[1:] # initialize the band-pass filter filter_method = cascade.get_method(bandpass_filter_method) filter = filter_method((m, n), n_cascade_levels, **filter_kwargs) decomp_method, recomp_method = cascade.get_method(decomp_method) extrapolator_method = extrapolation.get_method(extrap_method) precip = precip[-(ar_order + 1) :, :, :].copy() precip_min = np.nanmin(precip) # determine the domain mask from non-finite values domain_mask = np.logical_or.reduce( [~np.isfinite(precip[i, :]) for i in range(precip.shape[0])] ) # determine the precipitation threshold mask if conditional: mask_thr = np.logical_and.reduce( [precip[i, :, :] >= precip_thr for i in range(precip.shape[0])] ) else: mask_thr = None # initialize the extrapolator x_values, y_values = np.meshgrid( np.arange(precip.shape[2]), np.arange(precip.shape[1]) ) xy_coords = np.stack([x_values, y_values]) extrap_kwargs = extrap_kwargs.copy() extrap_kwargs["xy_coords"] = xy_coords extrap_kwargs["allow_nonfinite_values"] = ( True if np.any(~np.isfinite(precip)) else False ) # advect the previous precipitation fields to the same position with the # most recent one (i.e. transform them into the Lagrangian coordinates) res = list() def f(precip, i): return extrapolator_method( precip[i, :], velocity, ar_order - i, "min", **extrap_kwargs )[-1] for i in range(ar_order): if not DASK_IMPORTED: precip[i, :, :] = f(precip, i) else: res.append(dask.delayed(f)(precip, i)) if DASK_IMPORTED: num_workers_ = len(res) if num_workers > len(res) else num_workers precip = np.stack( list(dask.compute(*res, num_workers=num_workers_)) + [precip[-1, :, :]] ) # replace non-finite values with the minimum value precip = precip.copy() for i in range(precip.shape[0]): precip[i, ~np.isfinite(precip[i, :])] = np.nanmin(precip[i, :]) # compute the cascade decompositions of the input precipitation fields precip_d = [] for i in range(ar_order + 1): precip_ = decomp_method( precip[i, :, :], filter, mask=mask_thr, fft_method=fft, output_domain=domain, normalize=True, compute_stats=True, compact_output=True, ) precip_d.append(precip_) # rearrange the cascade levels into a four-dimensional array of shape # (n_cascade_levels,ar_order+1,m,n) for the autoregressive model precip_cascades = nowcast_utils.stack_cascades( precip_d, n_cascade_levels, convert_to_full_arrays=True ) # compute lag-l temporal autocorrelation coefficients for each cascade level gamma = np.empty((n_cascade_levels, ar_order)) for i in range(n_cascade_levels): if domain == "spatial": gamma[i, :] = correlation.temporal_autocorrelation( precip_c[i], mask=mask_thr ) else: gamma[i, :] = correlation.temporal_autocorrelation( precip_c[i], domain="spectral", x_shape=precip.shape[1:] ) precip_c = nowcast_utils.stack_cascades( precip_d, n_cascade_levels, convert_to_full_arrays=False ) precip_d = precip_d[-1] nowcast_utils.print_corrcoefs(gamma) if ar_order == 2: # adjust the lag-2 correlation coefficient to ensure that the AR(p) # process is stationary for i in range(n_cascade_levels): gamma[i, 1] = autoregression.adjust_lag2_corrcoef2(gamma[i, 0], gamma[i, 1]) # estimate the parameters of the AR(p) model from the autocorrelation # coefficients phi = np.empty((n_cascade_levels, ar_order + 1)) for i in range(n_cascade_levels): phi[i, :] = autoregression.estimate_ar_params_yw(gamma[i, :]) nowcast_utils.print_ar_params(phi) # discard all except the p-1 last cascades because they are not needed for # the AR(p) model precip_c = [precip_c[i][-ar_order:] for i in range(n_cascade_levels)] if probmatching_method == "mean": mu_0 = np.mean(precip[-1, :, :][precip[-1, :, :] >= precip_thr]) else: mu_0 = None # compute precipitation mask and wet area ratio mask_p = precip[-1, :, :] >= precip_thr war = 1.0 * np.sum(mask_p) / (precip.shape[1] * precip.shape[2]) if measure_time: init_time = time.time() - starttime_init precip = precip[-1, :, :] print("Starting nowcast computation.") precip_f = [] state = {"precip_c": precip_c, "precip_d": precip_d} params = { "domain": domain, "domain_mask": domain_mask, "fft": fft, "mu_0": mu_0, "n_cascade_levels": n_cascade_levels, "phi": phi, "precip_0": precip, "precip_min": precip_min, "probmatching_method": probmatching_method, "recomp_method": recomp_method, "war": war, } precip_f = nowcast_main_loop( precip, velocity, state, timesteps, extrap_method, _update, extrap_kwargs=extrap_kwargs, params=params, measure_time=measure_time, ) if measure_time: precip_f, mainloop_time = precip_f precip_f = np.stack(precip_f) if measure_time: return precip_f, init_time, mainloop_time else: return precip_f
38,529
def l2_norm(dim: int, var: pp.ad.Ad_array) -> pp.ad.Ad_array: """L2 norm of a vector variable. For the example of dim=3 components and n vectors, the ordering is assumed to be [u0, v0, w0, u1, v1, w1, ..., un, vn, wn] Usage note: See module level documentation on how to wrap functions like this in ad.Function. Parameters ---------- dim : int Dimension, i.e. number of vector components. var : pp.ad.Ad_array Ad operator (variable or expression) which is argument of the norm function. Returns ------- pp.ad.Ad_array The norm of var with appropriate val and jac attributes. """ if dim == 1: return pp.ad.functions.abs(var) resh = np.reshape(var.val, (dim, -1), order="F") vals = np.linalg.norm(resh, axis=0) # Avoid dividing by zero tol = 1e-12 nonzero_inds = vals > tol jac_vals = np.zeros(resh.shape) jac_vals[:, nonzero_inds] = resh[:, nonzero_inds] / vals[nonzero_inds] jac_vals[:, ~nonzero_inds] = 1 # Prepare for left multiplication with var.jac to yield # norm(var).jac = var/norm(var) * var.jac dim_size = var.val.size size = int(var.val.size / dim) local_inds_t = np.arange(dim_size) local_inds_n = np.int32(np.kron(np.arange(size), np.ones(dim))) norm_jac = sps.csr_matrix( (jac_vals.ravel("F"), (local_inds_n, local_inds_t)), shape=(size, dim_size), ) jac = norm_jac * var.jac return pp.ad.Ad_array(vals, jac)
def l2_norm(dim: int, var: pp.ad.Ad_array) -> pp.ad.Ad_array: """L2 norm of a vector variable, taken cell-wise and represented as an Ad_array. For the example of dim=3 components and n vectors, the ordering is assumed to be [u0, v0, w0, u1, v1, w1, ..., un, vn, wn] Usage note: See module level documentation on how to wrap functions like this in ad.Function. Parameters ---------- dim : int Dimension, i.e. number of vector components. var : pp.ad.Ad_array Ad operator (variable or expression) which is argument of the norm function. Returns ------- pp.ad.Ad_array The norm of var with appropriate val and jac attributes. """ if dim == 1: return pp.ad.functions.abs(var) resh = np.reshape(var.val, (dim, -1), order="F") vals = np.linalg.norm(resh, axis=0) # Avoid dividing by zero tol = 1e-12 nonzero_inds = vals > tol jac_vals = np.zeros(resh.shape) jac_vals[:, nonzero_inds] = resh[:, nonzero_inds] / vals[nonzero_inds] jac_vals[:, ~nonzero_inds] = 1 # Prepare for left multiplication with var.jac to yield # norm(var).jac = var/norm(var) * var.jac dim_size = var.val.size size = int(var.val.size / dim) local_inds_t = np.arange(dim_size) local_inds_n = np.int32(np.kron(np.arange(size), np.ones(dim))) norm_jac = sps.csr_matrix( (jac_vals.ravel("F"), (local_inds_n, local_inds_t)), shape=(size, dim_size), ) jac = norm_jac * var.jac return pp.ad.Ad_array(vals, jac)
38,001
def load_mars_shape(): """ Load a table of data for the shape of Mars. This is the ``@mars370d.txt`` dataset used in GMT examples, with data and information from Smith, D. E., and M. T. Zuber (1996), The shape of Mars and the topographic signature of the hemispheric dichotomy. Data columns are "longitude," "latitude", and "radius (meters)." The data are downloaded to a cache directory (usually ``~/.gmt/cache``) the first time you invoke this function. Afterwards, it will load the data from the cache. So you'll need an internet connection the first time around. Returns ------- data : pandas.DataFrame The data table. Use ``print(data.describe())`` to see the available columns. """ fname = which("@mars370d.txt", download="c") data = pd.read_csv(fname, sep="\t", header=None, names=["lon", "lat", "radius(m)"]) return data
def load_mars_shape(): """ Load a table of data for the shape of Mars. This is the ``@mars370d.txt`` dataset used in GMT examples, with data and information from Smith, D. E., and M. T. Zuber (1996), The shape of Mars and the topographic signature of the hemispheric dichotomy. Data columns are "longitude," "latitude", and "radius (meters)." The data are downloaded to a cache directory (usually ``~/.gmt/cache``) the first time you invoke this function. Afterwards, it will load the data from the cache. So you'll need an internet connection the first time around. Returns ------- data : pandas.DataFrame The data table with columns "longitude", "latitude", and "radius(m)". """ fname = which("@mars370d.txt", download="c") data = pd.read_csv(fname, sep="\t", header=None, names=["lon", "lat", "radius(m)"]) return data
36,164
def upload_calculation( node: CalcJobNode, transport: Transport, calc_info: CalcInfo, folder: SandboxFolder, inputs: Optional[MappingType[str, Any]] = None, dry_run: bool = False ) -> None: """Upload a `CalcJob` instance :param node: the `CalcJobNode`. :param transport: an already opened transport to use to submit the calculation. :param calc_info: the calculation info datastructure returned by `CalcJob.presubmit` :param folder: temporary local file system folder containing the inputs written by `CalcJob.prepare_for_submission` """ # pylint: disable=too-many-locals,too-many-branches,too-many-statements # If the calculation already has a `remote_folder`, simply return. The upload was apparently already completed # before, which can happen if the daemon is restarted and it shuts down after uploading but before getting the # chance to perform the state transition. Upon reloading this calculation, it will re-attempt the upload. link_label = 'remote_folder' if node.base.links.get_outgoing(RemoteData, link_label_filter=link_label).first(): EXEC_LOGGER.warning(f'CalcJobNode<{node.pk}> already has a `{link_label}` output: skipping upload') return calc_info computer = node.computer codes_info = calc_info.codes_info input_codes = [load_node(_.code_uuid, sub_classes=(Code,)) for _ in codes_info] logger_extra = get_dblogger_extra(node) transport.set_logger_extra(logger_extra) logger = LoggerAdapter(logger=EXEC_LOGGER, extra=logger_extra) if not dry_run and not node.is_stored: raise ValueError( f'Cannot submit calculation {node.pk} because it is not stored! If you just want to test the submission, ' 'set `metadata.dry_run` to True in the inputs.' ) # If we are performing a dry-run, the working directory should actually be a local folder that should already exist if dry_run: workdir = transport.getcwd() else: remote_user = transport.whoami() remote_working_directory = computer.get_workdir().format(username=remote_user) if not remote_working_directory.strip(): raise exceptions.ConfigurationError( "[submission of calculation {}] No remote_working_directory configured for computer '{}'".format( node.pk, computer.label ) ) # If it already exists, no exception is raised try: transport.chdir(remote_working_directory) except IOError: logger.debug( '[submission of calculation {}] Unable to chdir in {}, trying to create it'.format( node.pk, remote_working_directory ) ) try: transport.makedirs(remote_working_directory) transport.chdir(remote_working_directory) except EnvironmentError as exc: raise exceptions.ConfigurationError( '[submission of calculation {}] ' 'Unable to create the remote directory {} on ' "computer '{}': {}".format(node.pk, remote_working_directory, computer.label, exc) ) # Store remotely with sharding (here is where we choose # the folder structure of remote jobs; then I store this # in the calculation properties using _set_remote_dir # and I do not have to know the logic, but I just need to # read the absolute path from the calculation properties. transport.mkdir(calc_info.uuid[:2], ignore_existing=True) transport.chdir(calc_info.uuid[:2]) transport.mkdir(calc_info.uuid[2:4], ignore_existing=True) transport.chdir(calc_info.uuid[2:4]) try: # The final directory may already exist, most likely because this function was already executed once, but # failed and as a result was rescheduled by the eninge. In this case it would be fine to delete the folder # and create it from scratch, except that we cannot be sure that this the actual case. Therefore, to err on # the safe side, we move the folder to the lost+found directory before recreating the folder from scratch transport.mkdir(calc_info.uuid[4:]) except OSError: # Move the existing directory to lost+found, log a warning and create a clean directory anyway path_existing = os.path.join(transport.getcwd(), calc_info.uuid[4:]) path_lost_found = os.path.join(remote_working_directory, REMOTE_WORK_DIRECTORY_LOST_FOUND) path_target = os.path.join(path_lost_found, calc_info.uuid) logger.warning( f'tried to create path {path_existing} but it already exists, moving the entire folder to {path_target}' ) # Make sure the lost+found directory exists, then copy the existing folder there and delete the original transport.mkdir(path_lost_found, ignore_existing=True) transport.copytree(path_existing, path_target) transport.rmtree(path_existing) # Now we can create a clean folder for this calculation transport.mkdir(calc_info.uuid[4:]) finally: transport.chdir(calc_info.uuid[4:]) # I store the workdir of the calculation for later file retrieval workdir = transport.getcwd() node.set_remote_workdir(workdir) # I first create the code files, so that the code can put # default files to be overwritten by the plugin itself. # Still, beware! The code file itself could be overwritten... # But I checked for this earlier. for code in input_codes: if isinstance(code, (PortableCode, PortableContainerizedCode)): # Note: this will possibly overwrite files for filename in code.base.repository.list_object_names(): # Note, once #2579 is implemented, use the `node.open` method instead of the named temporary file in # combination with the new `Transport.put_object_from_filelike` # Since the content of the node could potentially be binary, we read the raw bytes and pass them on with NamedTemporaryFile(mode='wb+') as handle: try: handle.write(code.base.repository.get_object_content(filename, mode='rb')) except: # raise TypeError('directory not supperted.') pass handle.flush() transport.put(handle.name, filename) transport.chmod(code.filepath_executable, 0o755) # rwxr-xr-x # local_copy_list is a list of tuples, each with (uuid, dest_path, rel_path) # NOTE: validation of these lists are done inside calculation.presubmit() local_copy_list = calc_info.local_copy_list or [] remote_copy_list = calc_info.remote_copy_list or [] remote_symlink_list = calc_info.remote_symlink_list or [] provenance_exclude_list = calc_info.provenance_exclude_list or [] for uuid, filename, target in local_copy_list: logger.debug(f'[submission of calculation {node.uuid}] copying local file/folder to {target}') try: data_node = load_node(uuid=uuid) except exceptions.NotExistent: data_node = _find_data_node(inputs, uuid) if inputs else None if data_node is None: logger.warning(f'failed to load Node<{uuid}> specified in the `local_copy_list`') else: # If no explicit source filename is defined, we assume the top-level directory filename_source = filename or '.' filename_target = target or '' # Make the target filepath absolute and create any intermediate directories if they don't yet exist filepath_target = pathlib.Path(folder.abspath) / filename_target filepath_target.parent.mkdir(parents=True, exist_ok=True) if data_node.base.repository.get_object(filename_source).file_type == FileType.DIRECTORY: # If the source object is a directory, we copy its entire contents data_node.base.repository.copy_tree(filepath_target, filename_source) provenance_exclude_list.extend(data_node.base.repository.list_object_names(filename_source)) else: # Otherwise, simply copy the file with folder.open(target, 'wb') as handle: with data_node.base.repository.open(filename, 'rb') as source: shutil.copyfileobj(source, handle) provenance_exclude_list.append(target) # In a dry_run, the working directory is the raw input folder, which will already contain these resources if not dry_run: for filename in folder.get_content_list(): logger.debug(f'[submission of calculation {node.pk}] copying file/folder {filename}...') transport.put(folder.get_abs_path(filename), filename) for (remote_computer_uuid, remote_abs_path, dest_rel_path) in remote_copy_list: if remote_computer_uuid == computer.uuid: logger.debug( '[submission of calculation {}] copying {} remotely, directly on the machine {}'.format( node.pk, dest_rel_path, computer.label ) ) try: transport.copy(remote_abs_path, dest_rel_path) except (IOError, OSError): logger.warning( '[submission of calculation {}] Unable to copy remote resource from {} to {}! ' 'Stopping.'.format(node.pk, remote_abs_path, dest_rel_path) ) raise else: raise NotImplementedError( '[submission of calculation {}] Remote copy between two different machines is ' 'not implemented yet'.format(node.pk) ) for (remote_computer_uuid, remote_abs_path, dest_rel_path) in remote_symlink_list: if remote_computer_uuid == computer.uuid: logger.debug( '[submission of calculation {}] copying {} remotely, directly on the machine {}'.format( node.pk, dest_rel_path, computer.label ) ) try: transport.symlink(remote_abs_path, dest_rel_path) except (IOError, OSError): logger.warning( '[submission of calculation {}] Unable to create remote symlink from {} to {}! ' 'Stopping.'.format(node.pk, remote_abs_path, dest_rel_path) ) raise else: raise IOError( f'It is not possible to create a symlink between two different machines for calculation {node.pk}' ) else: if remote_copy_list: filepath = os.path.join(workdir, '_aiida_remote_copy_list.txt') with open(filepath, 'w', encoding='utf-8') as handle: # type: ignore[assignment] for remote_computer_uuid, remote_abs_path, dest_rel_path in remote_copy_list: handle.write( 'would have copied {} to {} in working directory on remote {}'.format( remote_abs_path, dest_rel_path, computer.label ) ) if remote_symlink_list: filepath = os.path.join(workdir, '_aiida_remote_symlink_list.txt') with open(filepath, 'w', encoding='utf-8') as handle: # type: ignore[assignment] for remote_computer_uuid, remote_abs_path, dest_rel_path in remote_symlink_list: handle.write( 'would have created symlinks from {} to {} in working directory on remote {}'.format( remote_abs_path, dest_rel_path, computer.label ) ) # Loop recursively over content of the sandbox folder copying all that are not in `provenance_exclude_list`. Note # that directories are not created explicitly. The `node.put_object_from_filelike` call will create intermediate # directories for nested files automatically when needed. This means though that empty folders in the sandbox or # folders that would be empty when considering the `provenance_exclude_list` will *not* be copied to the repo. The # advantage of this explicit copying instead of deleting the files from `provenance_exclude_list` from the sandbox # first before moving the entire remaining content to the node's repository, is that in this way we are guaranteed # not to accidentally move files to the repository that should not go there at all cost. Note that all entries in # the provenance exclude list are normalized first, just as the paths that are in the sandbox folder, otherwise the # direct equality test may fail, e.g.: './path/file.txt' != 'path/file.txt' even though they reference the same file provenance_exclude_list = [os.path.normpath(entry) for entry in provenance_exclude_list] for root, _, filenames in os.walk(folder.abspath): for filename in filenames: filepath = os.path.join(root, filename) relpath = os.path.normpath(os.path.relpath(filepath, folder.abspath)) dirname = os.path.dirname(relpath) # Construct a list of all (partial) filepaths # For example, if `relpath == 'some/sub/directory/file.txt'` then the list of relative directory paths is # ['some', 'some/sub', 'some/sub/directory'] # This is necessary, because if any of these paths is in the `provenance_exclude_list` the file should not # be copied over. components = dirname.split(os.sep) dirnames = [os.path.join(*components[:i]) for i in range(1, len(components) + 1)] if relpath not in provenance_exclude_list and all( dirname not in provenance_exclude_list for dirname in dirnames ): with open(filepath, 'rb') as handle: # type: ignore[assignment] node.base.repository._repository.put_object_from_filelike(handle, relpath) # pylint: disable=protected-access # Since the node is already stored, we cannot use the normal repository interface since it will raise a # `ModificationNotAllowed` error. To bypass it, we go straight to the underlying repository instance to store the # files, however, this means we have to manually update the node's repository metadata. node.base.repository._update_repository_metadata() # pylint: disable=protected-access if not dry_run: # Make sure that attaching the `remote_folder` with a link is the last thing we do. This gives the biggest # chance of making this method idempotent. That is to say, if a runner gets interrupted during this action, it # will simply retry the upload, unless we got here and managed to link it up, in which case we move to the next # task. Because in that case, the check for the existence of this link at the top of this function will exit # early from this command. remotedata = RemoteData(computer=computer, remote_path=workdir) remotedata.base.links.add_incoming(node, link_type=LinkType.CREATE, link_label='remote_folder') remotedata.store()
def upload_calculation( node: CalcJobNode, transport: Transport, calc_info: CalcInfo, folder: SandboxFolder, inputs: Optional[MappingType[str, Any]] = None, dry_run: bool = False ) -> None: """Upload a `CalcJob` instance :param node: the `CalcJobNode`. :param transport: an already opened transport to use to submit the calculation. :param calc_info: the calculation info datastructure returned by `CalcJob.presubmit` :param folder: temporary local file system folder containing the inputs written by `CalcJob.prepare_for_submission` """ # pylint: disable=too-many-locals,too-many-branches,too-many-statements # If the calculation already has a `remote_folder`, simply return. The upload was apparently already completed # before, which can happen if the daemon is restarted and it shuts down after uploading but before getting the # chance to perform the state transition. Upon reloading this calculation, it will re-attempt the upload. link_label = 'remote_folder' if node.base.links.get_outgoing(RemoteData, link_label_filter=link_label).first(): EXEC_LOGGER.warning(f'CalcJobNode<{node.pk}> already has a `{link_label}` output: skipping upload') return calc_info computer = node.computer codes_info = calc_info.codes_info input_codes = [load_node(_.code_uuid, sub_classes=(Code,)) for _ in codes_info] logger_extra = get_dblogger_extra(node) transport.set_logger_extra(logger_extra) logger = LoggerAdapter(logger=EXEC_LOGGER, extra=logger_extra) if not dry_run and not node.is_stored: raise ValueError( f'Cannot submit calculation {node.pk} because it is not stored! If you just want to test the submission, ' 'set `metadata.dry_run` to True in the inputs.' ) # If we are performing a dry-run, the working directory should actually be a local folder that should already exist if dry_run: workdir = transport.getcwd() else: remote_user = transport.whoami() remote_working_directory = computer.get_workdir().format(username=remote_user) if not remote_working_directory.strip(): raise exceptions.ConfigurationError( "[submission of calculation {}] No remote_working_directory configured for computer '{}'".format( node.pk, computer.label ) ) # If it already exists, no exception is raised try: transport.chdir(remote_working_directory) except IOError: logger.debug( '[submission of calculation {}] Unable to chdir in {}, trying to create it'.format( node.pk, remote_working_directory ) ) try: transport.makedirs(remote_working_directory) transport.chdir(remote_working_directory) except EnvironmentError as exc: raise exceptions.ConfigurationError( '[submission of calculation {}] ' 'Unable to create the remote directory {} on ' "computer '{}': {}".format(node.pk, remote_working_directory, computer.label, exc) ) # Store remotely with sharding (here is where we choose # the folder structure of remote jobs; then I store this # in the calculation properties using _set_remote_dir # and I do not have to know the logic, but I just need to # read the absolute path from the calculation properties. transport.mkdir(calc_info.uuid[:2], ignore_existing=True) transport.chdir(calc_info.uuid[:2]) transport.mkdir(calc_info.uuid[2:4], ignore_existing=True) transport.chdir(calc_info.uuid[2:4]) try: # The final directory may already exist, most likely because this function was already executed once, but # failed and as a result was rescheduled by the eninge. In this case it would be fine to delete the folder # and create it from scratch, except that we cannot be sure that this the actual case. Therefore, to err on # the safe side, we move the folder to the lost+found directory before recreating the folder from scratch transport.mkdir(calc_info.uuid[4:]) except OSError: # Move the existing directory to lost+found, log a warning and create a clean directory anyway path_existing = os.path.join(transport.getcwd(), calc_info.uuid[4:]) path_lost_found = os.path.join(remote_working_directory, REMOTE_WORK_DIRECTORY_LOST_FOUND) path_target = os.path.join(path_lost_found, calc_info.uuid) logger.warning( f'tried to create path {path_existing} but it already exists, moving the entire folder to {path_target}' ) # Make sure the lost+found directory exists, then copy the existing folder there and delete the original transport.mkdir(path_lost_found, ignore_existing=True) transport.copytree(path_existing, path_target) transport.rmtree(path_existing) # Now we can create a clean folder for this calculation transport.mkdir(calc_info.uuid[4:]) finally: transport.chdir(calc_info.uuid[4:]) # I store the workdir of the calculation for later file retrieval workdir = transport.getcwd() node.set_remote_workdir(workdir) # I first create the code files, so that the code can put # default files to be overwritten by the plugin itself. # Still, beware! The code file itself could be overwritten... # But I checked for this earlier. for code in input_codes: if isinstance(code, PortableCode): # Note: this will possibly overwrite files for filename in code.base.repository.list_object_names(): # Note, once #2579 is implemented, use the `node.open` method instead of the named temporary file in # combination with the new `Transport.put_object_from_filelike` # Since the content of the node could potentially be binary, we read the raw bytes and pass them on with NamedTemporaryFile(mode='wb+') as handle: try: handle.write(code.base.repository.get_object_content(filename, mode='rb')) except: # raise TypeError('directory not supperted.') pass handle.flush() transport.put(handle.name, filename) transport.chmod(code.filepath_executable, 0o755) # rwxr-xr-x # local_copy_list is a list of tuples, each with (uuid, dest_path, rel_path) # NOTE: validation of these lists are done inside calculation.presubmit() local_copy_list = calc_info.local_copy_list or [] remote_copy_list = calc_info.remote_copy_list or [] remote_symlink_list = calc_info.remote_symlink_list or [] provenance_exclude_list = calc_info.provenance_exclude_list or [] for uuid, filename, target in local_copy_list: logger.debug(f'[submission of calculation {node.uuid}] copying local file/folder to {target}') try: data_node = load_node(uuid=uuid) except exceptions.NotExistent: data_node = _find_data_node(inputs, uuid) if inputs else None if data_node is None: logger.warning(f'failed to load Node<{uuid}> specified in the `local_copy_list`') else: # If no explicit source filename is defined, we assume the top-level directory filename_source = filename or '.' filename_target = target or '' # Make the target filepath absolute and create any intermediate directories if they don't yet exist filepath_target = pathlib.Path(folder.abspath) / filename_target filepath_target.parent.mkdir(parents=True, exist_ok=True) if data_node.base.repository.get_object(filename_source).file_type == FileType.DIRECTORY: # If the source object is a directory, we copy its entire contents data_node.base.repository.copy_tree(filepath_target, filename_source) provenance_exclude_list.extend(data_node.base.repository.list_object_names(filename_source)) else: # Otherwise, simply copy the file with folder.open(target, 'wb') as handle: with data_node.base.repository.open(filename, 'rb') as source: shutil.copyfileobj(source, handle) provenance_exclude_list.append(target) # In a dry_run, the working directory is the raw input folder, which will already contain these resources if not dry_run: for filename in folder.get_content_list(): logger.debug(f'[submission of calculation {node.pk}] copying file/folder {filename}...') transport.put(folder.get_abs_path(filename), filename) for (remote_computer_uuid, remote_abs_path, dest_rel_path) in remote_copy_list: if remote_computer_uuid == computer.uuid: logger.debug( '[submission of calculation {}] copying {} remotely, directly on the machine {}'.format( node.pk, dest_rel_path, computer.label ) ) try: transport.copy(remote_abs_path, dest_rel_path) except (IOError, OSError): logger.warning( '[submission of calculation {}] Unable to copy remote resource from {} to {}! ' 'Stopping.'.format(node.pk, remote_abs_path, dest_rel_path) ) raise else: raise NotImplementedError( '[submission of calculation {}] Remote copy between two different machines is ' 'not implemented yet'.format(node.pk) ) for (remote_computer_uuid, remote_abs_path, dest_rel_path) in remote_symlink_list: if remote_computer_uuid == computer.uuid: logger.debug( '[submission of calculation {}] copying {} remotely, directly on the machine {}'.format( node.pk, dest_rel_path, computer.label ) ) try: transport.symlink(remote_abs_path, dest_rel_path) except (IOError, OSError): logger.warning( '[submission of calculation {}] Unable to create remote symlink from {} to {}! ' 'Stopping.'.format(node.pk, remote_abs_path, dest_rel_path) ) raise else: raise IOError( f'It is not possible to create a symlink between two different machines for calculation {node.pk}' ) else: if remote_copy_list: filepath = os.path.join(workdir, '_aiida_remote_copy_list.txt') with open(filepath, 'w', encoding='utf-8') as handle: # type: ignore[assignment] for remote_computer_uuid, remote_abs_path, dest_rel_path in remote_copy_list: handle.write( 'would have copied {} to {} in working directory on remote {}'.format( remote_abs_path, dest_rel_path, computer.label ) ) if remote_symlink_list: filepath = os.path.join(workdir, '_aiida_remote_symlink_list.txt') with open(filepath, 'w', encoding='utf-8') as handle: # type: ignore[assignment] for remote_computer_uuid, remote_abs_path, dest_rel_path in remote_symlink_list: handle.write( 'would have created symlinks from {} to {} in working directory on remote {}'.format( remote_abs_path, dest_rel_path, computer.label ) ) # Loop recursively over content of the sandbox folder copying all that are not in `provenance_exclude_list`. Note # that directories are not created explicitly. The `node.put_object_from_filelike` call will create intermediate # directories for nested files automatically when needed. This means though that empty folders in the sandbox or # folders that would be empty when considering the `provenance_exclude_list` will *not* be copied to the repo. The # advantage of this explicit copying instead of deleting the files from `provenance_exclude_list` from the sandbox # first before moving the entire remaining content to the node's repository, is that in this way we are guaranteed # not to accidentally move files to the repository that should not go there at all cost. Note that all entries in # the provenance exclude list are normalized first, just as the paths that are in the sandbox folder, otherwise the # direct equality test may fail, e.g.: './path/file.txt' != 'path/file.txt' even though they reference the same file provenance_exclude_list = [os.path.normpath(entry) for entry in provenance_exclude_list] for root, _, filenames in os.walk(folder.abspath): for filename in filenames: filepath = os.path.join(root, filename) relpath = os.path.normpath(os.path.relpath(filepath, folder.abspath)) dirname = os.path.dirname(relpath) # Construct a list of all (partial) filepaths # For example, if `relpath == 'some/sub/directory/file.txt'` then the list of relative directory paths is # ['some', 'some/sub', 'some/sub/directory'] # This is necessary, because if any of these paths is in the `provenance_exclude_list` the file should not # be copied over. components = dirname.split(os.sep) dirnames = [os.path.join(*components[:i]) for i in range(1, len(components) + 1)] if relpath not in provenance_exclude_list and all( dirname not in provenance_exclude_list for dirname in dirnames ): with open(filepath, 'rb') as handle: # type: ignore[assignment] node.base.repository._repository.put_object_from_filelike(handle, relpath) # pylint: disable=protected-access # Since the node is already stored, we cannot use the normal repository interface since it will raise a # `ModificationNotAllowed` error. To bypass it, we go straight to the underlying repository instance to store the # files, however, this means we have to manually update the node's repository metadata. node.base.repository._update_repository_metadata() # pylint: disable=protected-access if not dry_run: # Make sure that attaching the `remote_folder` with a link is the last thing we do. This gives the biggest # chance of making this method idempotent. That is to say, if a runner gets interrupted during this action, it # will simply retry the upload, unless we got here and managed to link it up, in which case we move to the next # task. Because in that case, the check for the existence of this link at the top of this function will exit # early from this command. remotedata = RemoteData(computer=computer, remote_path=workdir) remotedata.base.links.add_incoming(node, link_type=LinkType.CREATE, link_label='remote_folder') remotedata.store()
24,736
def _get_config_paths(curdir): paths = [] config_names = ("pylintrc", ".pylintrc", "pyproject.toml", "setup.cfg") for config_name in config_names: config_path = os.path.join(curdir, config_name) if os.path.isfile(config_path): if config_name.endswith(".toml") and not _toml_has_config(config_path): continue if config_name.endswith(".cfg") and not _cfg_has_config(config_path): continue paths.append(config_path) return paths
def _get_config_paths(curdir: Union[Path, str]) -> List[Path]: paths = [] config_names = ("pylintrc", ".pylintrc", "pyproject.toml", "setup.cfg") for config_name in config_names: config_path = os.path.join(curdir, config_name) if os.path.isfile(config_path): if config_name.endswith(".toml") and not _toml_has_config(config_path): continue if config_name.endswith(".cfg") and not _cfg_has_config(config_path): continue paths.append(config_path) return paths
10,495
def main(): module = AnsibleModule( argument_spec=dict( state=dict(type='str', default='present', choices=['absent', 'build-dep', 'fixed', 'latest', 'present']), update_cache=dict(type='bool', aliases=['update-cache']), update_cache_retries=dict(type='int', default=5), update_cache_retry_max_delay=dict(type='int', default=12), cache_valid_time=dict(type='int', default=0), purge=dict(type='bool', default=False), package=dict(type='list', elements='str', aliases=['pkg', 'name']), deb=dict(type='path'), default_release=dict(type='str', aliases=['default-release']), install_recommends=dict(type='bool', aliases=['install-recommends']), force=dict(type='bool', default=False), upgrade=dict(type='str', choices=['dist', 'full', 'no', 'safe', 'yes']), dpkg_options=dict(type='str', default=DPKG_OPTIONS), autoremove=dict(type='bool', default=False), autoclean=dict(type='bool', default=False), no_remove=dict(type='bool', default=False, aliases=['no-remove']), policy_rc_d=dict(type='int', default=None), only_upgrade=dict(type='bool', default=False), force_apt_get=dict(type='bool', default=False), allow_unauthenticated=dict(type='bool', default=False, aliases=['allow-unauthenticated']), ), mutually_exclusive=[['deb', 'package', 'upgrade']], required_one_of=[['autoremove', 'deb', 'package', 'update_cache', 'upgrade']], supports_check_mode=True, ) module.run_command_environ_update = APT_ENV_VARS if not HAS_PYTHON_APT: if module.check_mode: module.fail_json(msg="%s must be installed to use check mode. " "If run normally this module can auto-install it." % PYTHON_APT) try: # We skip cache update in auto install the dependency if the # user explicitly declared it with update_cache=no. if module.params.get('update_cache') is False: module.warn("Auto-installing missing dependency without updating cache: %s" % PYTHON_APT) else: module.warn("Updating cache and auto-installing missing dependency: %s" % PYTHON_APT) module.run_command(['apt-get', 'update'], check_rc=True) module.run_command(['apt-get', 'install', '--no-install-recommends', PYTHON_APT, '-y', '-q'], check_rc=True) global apt, apt_pkg import apt import apt.debfile import apt_pkg except ImportError: module.fail_json(msg="Could not import python modules: apt, apt_pkg. " "Please install %s package." % PYTHON_APT) global APTITUDE_CMD APTITUDE_CMD = module.get_bin_path("aptitude", False) global APT_GET_CMD APT_GET_CMD = module.get_bin_path("apt-get") p = module.params if p['upgrade'] == 'no': p['upgrade'] = None use_apt_get = p['force_apt_get'] if not use_apt_get and not APTITUDE_CMD: use_apt_get = True updated_cache = False updated_cache_time = 0 install_recommends = p['install_recommends'] allow_unauthenticated = p['allow_unauthenticated'] dpkg_options = expand_dpkg_options(p['dpkg_options']) autoremove = p['autoremove'] no_remove = p['no_remove'] autoclean = p['autoclean'] # Get the cache object cache = get_cache(module) try: if p['default_release']: try: apt_pkg.config['APT::Default-Release'] = p['default_release'] except AttributeError: apt_pkg.Config['APT::Default-Release'] = p['default_release'] # reopen cache w/ modified config cache.open(progress=None) mtimestamp, updated_cache_time = get_updated_cache_time() # Cache valid time is default 0, which will update the cache if # needed and `update_cache` was set to true updated_cache = False if p['update_cache'] or p['cache_valid_time']: now = datetime.datetime.now() tdelta = datetime.timedelta(seconds=p['cache_valid_time']) if not mtimestamp + tdelta >= now: # Retry to update the cache with exponential backoff err = '' update_cache_retries = module.params.get('update_cache_retries') update_cache_retry_max_delay = module.params.get('update_cache_retry_max_delay') randomize = random.randint(0, 1000) / 1000.0 for retry in range(update_cache_retries): try: cache.update() break except apt.cache.FetchFailedException as e: err = to_native(e) # Use exponential backoff plus a little bit of randomness delay = 2 ** retry + randomize if delay > update_cache_retry_max_delay: delay = update_cache_retry_max_delay + randomize time.sleep(delay) else: module.fail_json(msg='Failed to update apt cache: %s' % (err if err else 'unknown reason')) cache.open(progress=None) mtimestamp, post_cache_update_time = get_updated_cache_time() if updated_cache_time != post_cache_update_time: updated_cache = True updated_cache_time = post_cache_update_time # If there is nothing else to do exit. This will set state as # changed based on if the cache was updated. if not p['package'] and not p['upgrade'] and not p['deb']: module.exit_json( changed=updated_cache, cache_updated=updated_cache, cache_update_time=updated_cache_time ) force_yes = p['force'] if p['upgrade']: upgrade(module, p['upgrade'], force_yes, p['default_release'], use_apt_get, dpkg_options, autoremove, no_remove, allow_unauthenticated) if p['deb']: if p['state'] != 'present': module.fail_json(msg="deb only supports state=present") if '://' in p['deb']: p['deb'] = fetch_file(module, p['deb']) install_deb(module, p['deb'], cache, install_recommends=install_recommends, allow_unauthenticated=allow_unauthenticated, force=force_yes, no_remove=no_remove, dpkg_options=p['dpkg_options']) unfiltered_packages = p['package'] or () packages = [package.strip() for package in unfiltered_packages if package != '*'] all_installed = '*' in unfiltered_packages latest = p['state'] == 'latest' if latest and all_installed: if packages: module.fail_json(msg='unable to install additional packages when upgrading all installed packages') upgrade(module, 'yes', force_yes, p['default_release'], use_apt_get, dpkg_options, autoremove, no_remove, allow_unauthenticated) if packages: for package in packages: if package.count('=') > 1: module.fail_json(msg="invalid package spec: %s" % package) if latest and '=' in package: module.fail_json(msg='version number inconsistent with state=latest: %s' % package) if not packages: if autoclean: cleanup(module, p['purge'], force=force_yes, operation='autoclean', dpkg_options=dpkg_options) if autoremove: cleanup(module, p['purge'], force=force_yes, operation='autoremove', dpkg_options=dpkg_options) if p['state'] in ('latest', 'present', 'build-dep', 'fixed'): state_upgrade = False state_builddep = False state_fixed = False if p['state'] == 'latest': state_upgrade = True if p['state'] == 'build-dep': state_builddep = True if p['state'] == 'fixed': state_fixed = True success, retvals = install( module, packages, cache, upgrade=state_upgrade, default_release=p['default_release'], install_recommends=install_recommends, force=force_yes, dpkg_options=dpkg_options, build_dep=state_builddep, fixed=state_fixed, autoremove=autoremove, no_remove=no_remove, only_upgrade=p['only_upgrade'], allow_unauthenticated=allow_unauthenticated ) # Store if the cache has been updated retvals['cache_updated'] = updated_cache # Store when the update time was last retvals['cache_update_time'] = updated_cache_time if success: module.exit_json(**retvals) else: module.fail_json(**retvals) elif p['state'] == 'absent': remove(module, packages, cache, p['purge'], force=force_yes, dpkg_options=dpkg_options, autoremove=autoremove) except apt.cache.LockFailedException: module.fail_json(msg="Failed to lock apt for exclusive operation") except apt.cache.FetchFailedException: module.fail_json(msg="Could not fetch updated apt files")
def main(): module = AnsibleModule( argument_spec=dict( state=dict(type='str', default='present', choices=['absent', 'build-dep', 'fixed', 'latest', 'present']), update_cache=dict(type='bool', aliases=['update-cache']), update_cache_retries=dict(type='int', default=5), update_cache_retry_max_delay=dict(type='int', default=12), cache_valid_time=dict(type='int', default=0), purge=dict(type='bool', default=False), package=dict(type='list', elements='str', aliases=['pkg', 'name']), deb=dict(type='path'), default_release=dict(type='str', aliases=['default-release']), install_recommends=dict(type='bool', aliases=['install-recommends']), force=dict(type='bool', default=False), upgrade=dict(type='str', choices=['dist', 'full', 'no', 'safe', 'yes']), dpkg_options=dict(type='str', default=DPKG_OPTIONS), autoremove=dict(type='bool', default=False), autoclean=dict(type='bool', default=False), no_remove=dict(type='bool', default=False, aliases=['no-remove']), policy_rc_d=dict(type='int', default=None), only_upgrade=dict(type='bool', default=False), force_apt_get=dict(type='bool', default=False), allow_unauthenticated=dict(type='bool', default=False, aliases=['allow-unauthenticated']), ), mutually_exclusive=[['deb', 'package', 'upgrade']], required_one_of=[['autoremove', 'deb', 'package', 'update_cache', 'upgrade']], supports_check_mode=True, ) module.run_command_environ_update = APT_ENV_VARS if not HAS_PYTHON_APT: if module.check_mode: module.fail_json(msg="%s must be installed to use check mode. " "If run normally this module can auto-install it." % PYTHON_APT) try: # We skip cache update in auto install the dependency if the # user explicitly declared it with update_cache=no. if module.params.get('update_cache') is False: module.warn("Auto-installing missing dependency without updating cache: %s" % PYTHON_APT) else: module.warn("Updating cache and auto-installing missing dependency: %s" % PYTHON_APT) module.run_command(['apt-get', 'update'], check_rc=True) module.run_command(['apt-get', 'install', '--no-install-recommends', PYTHON_APT, '-y', '-q'], check_rc=True) global apt, apt_pkg import apt import apt.debfile import apt_pkg except ImportError: module.fail_json(msg="Could not import python modules: apt, apt_pkg. " "Please install %s package." % PYTHON_APT) global APTITUDE_CMD APTITUDE_CMD = module.get_bin_path("aptitude", False) global APT_GET_CMD APT_GET_CMD = module.get_bin_path("apt-get") p = module.params if p['upgrade'] == 'no': p['upgrade'] = None use_apt_get = p['force_apt_get'] if not use_apt_get and not APTITUDE_CMD: use_apt_get = True updated_cache = False updated_cache_time = 0 install_recommends = p['install_recommends'] allow_unauthenticated = p['allow_unauthenticated'] dpkg_options = expand_dpkg_options(p['dpkg_options']) autoremove = p['autoremove'] fail_on_autoremove = p['fail_on_autoremove'] autoclean = p['autoclean'] # Get the cache object cache = get_cache(module) try: if p['default_release']: try: apt_pkg.config['APT::Default-Release'] = p['default_release'] except AttributeError: apt_pkg.Config['APT::Default-Release'] = p['default_release'] # reopen cache w/ modified config cache.open(progress=None) mtimestamp, updated_cache_time = get_updated_cache_time() # Cache valid time is default 0, which will update the cache if # needed and `update_cache` was set to true updated_cache = False if p['update_cache'] or p['cache_valid_time']: now = datetime.datetime.now() tdelta = datetime.timedelta(seconds=p['cache_valid_time']) if not mtimestamp + tdelta >= now: # Retry to update the cache with exponential backoff err = '' update_cache_retries = module.params.get('update_cache_retries') update_cache_retry_max_delay = module.params.get('update_cache_retry_max_delay') randomize = random.randint(0, 1000) / 1000.0 for retry in range(update_cache_retries): try: cache.update() break except apt.cache.FetchFailedException as e: err = to_native(e) # Use exponential backoff plus a little bit of randomness delay = 2 ** retry + randomize if delay > update_cache_retry_max_delay: delay = update_cache_retry_max_delay + randomize time.sleep(delay) else: module.fail_json(msg='Failed to update apt cache: %s' % (err if err else 'unknown reason')) cache.open(progress=None) mtimestamp, post_cache_update_time = get_updated_cache_time() if updated_cache_time != post_cache_update_time: updated_cache = True updated_cache_time = post_cache_update_time # If there is nothing else to do exit. This will set state as # changed based on if the cache was updated. if not p['package'] and not p['upgrade'] and not p['deb']: module.exit_json( changed=updated_cache, cache_updated=updated_cache, cache_update_time=updated_cache_time ) force_yes = p['force'] if p['upgrade']: upgrade(module, p['upgrade'], force_yes, p['default_release'], use_apt_get, dpkg_options, autoremove, no_remove, allow_unauthenticated) if p['deb']: if p['state'] != 'present': module.fail_json(msg="deb only supports state=present") if '://' in p['deb']: p['deb'] = fetch_file(module, p['deb']) install_deb(module, p['deb'], cache, install_recommends=install_recommends, allow_unauthenticated=allow_unauthenticated, force=force_yes, no_remove=no_remove, dpkg_options=p['dpkg_options']) unfiltered_packages = p['package'] or () packages = [package.strip() for package in unfiltered_packages if package != '*'] all_installed = '*' in unfiltered_packages latest = p['state'] == 'latest' if latest and all_installed: if packages: module.fail_json(msg='unable to install additional packages when upgrading all installed packages') upgrade(module, 'yes', force_yes, p['default_release'], use_apt_get, dpkg_options, autoremove, no_remove, allow_unauthenticated) if packages: for package in packages: if package.count('=') > 1: module.fail_json(msg="invalid package spec: %s" % package) if latest and '=' in package: module.fail_json(msg='version number inconsistent with state=latest: %s' % package) if not packages: if autoclean: cleanup(module, p['purge'], force=force_yes, operation='autoclean', dpkg_options=dpkg_options) if autoremove: cleanup(module, p['purge'], force=force_yes, operation='autoremove', dpkg_options=dpkg_options) if p['state'] in ('latest', 'present', 'build-dep', 'fixed'): state_upgrade = False state_builddep = False state_fixed = False if p['state'] == 'latest': state_upgrade = True if p['state'] == 'build-dep': state_builddep = True if p['state'] == 'fixed': state_fixed = True success, retvals = install( module, packages, cache, upgrade=state_upgrade, default_release=p['default_release'], install_recommends=install_recommends, force=force_yes, dpkg_options=dpkg_options, build_dep=state_builddep, fixed=state_fixed, autoremove=autoremove, no_remove=no_remove, only_upgrade=p['only_upgrade'], allow_unauthenticated=allow_unauthenticated ) # Store if the cache has been updated retvals['cache_updated'] = updated_cache # Store when the update time was last retvals['cache_update_time'] = updated_cache_time if success: module.exit_json(**retvals) else: module.fail_json(**retvals) elif p['state'] == 'absent': remove(module, packages, cache, p['purge'], force=force_yes, dpkg_options=dpkg_options, autoremove=autoremove) except apt.cache.LockFailedException: module.fail_json(msg="Failed to lock apt for exclusive operation") except apt.cache.FetchFailedException: module.fail_json(msg="Could not fetch updated apt files")
29,385
def send_mail_to_notify_contributor_ranking_achievement( contributor_ranking_email_info: ( suggestion_registry.ContributorMilestoneEmailInfo)) -> None: """Sends an email to translation/question submitters and reviewers when they achieve a new rank. Args: contributor_ranking_email_info: ContributorMilestoneEmailInfo. An object with contributor ranking email information. """ if not feconf.CAN_SEND_EMAILS: logging.error('This app cannot send emails to users.') return recipient_username = user_services.get_username( contributor_ranking_email_info.contributor_user_id) can_user_receive_email = user_services.get_email_preferences( contributor_ranking_email_info.contributor_user_id ).can_receive_email_updates if not can_user_receive_email: logging.error('This user can not recieve emails.') return email_template = NOTIFICATION_FOR_CONTRIBUTOR_RANKING_ACHIEVEMENT[ contributor_ranking_email_info.contribution_type][ contributor_ranking_email_info.contribution_sub_type] email_body = '' if contributor_ranking_email_info.contribution_type == ( feconf.CONTRIBUTION_TYPE_TRANSLATION): language = utils.get_supported_audio_language_description( contributor_ranking_email_info.language_code) email_body = email_template['email_body_template'] % ( recipient_username, contributor_ranking_email_info.rank_name, language, feconf.OPPIA_SITE_URL, feconf.CONTRIBUTOR_DASHBOARD_URL ) else: email_body = email_template['email_body_template'] % ( recipient_username, contributor_ranking_email_info.rank_name, feconf.OPPIA_SITE_URL, feconf.CONTRIBUTOR_DASHBOARD_URL ) _send_email( contributor_ranking_email_info.contributor_user_id, feconf.SYSTEM_COMMITTER_ID, feconf.EMAIL_INTENT_NOTIFY_CONTRIBUTOR_DASHBOARD_ACHIEVEMENTS, email_template['email_subject'], email_body, feconf.NOREPLY_EMAIL_ADDRESS)
def send_contributor_rank_achievement_email( contributor_ranking_email_info: ( suggestion_registry.ContributorMilestoneEmailInfo)) -> None: """Sends an email to translation/question submitters and reviewers when they achieve a new rank. Args: contributor_ranking_email_info: ContributorMilestoneEmailInfo. An object with contributor ranking email information. """ if not feconf.CAN_SEND_EMAILS: logging.error('This app cannot send emails to users.') return recipient_username = user_services.get_username( contributor_ranking_email_info.contributor_user_id) can_user_receive_email = user_services.get_email_preferences( contributor_ranking_email_info.contributor_user_id ).can_receive_email_updates if not can_user_receive_email: logging.error('This user can not recieve emails.') return email_template = NOTIFICATION_FOR_CONTRIBUTOR_RANKING_ACHIEVEMENT[ contributor_ranking_email_info.contribution_type][ contributor_ranking_email_info.contribution_sub_type] email_body = '' if contributor_ranking_email_info.contribution_type == ( feconf.CONTRIBUTION_TYPE_TRANSLATION): language = utils.get_supported_audio_language_description( contributor_ranking_email_info.language_code) email_body = email_template['email_body_template'] % ( recipient_username, contributor_ranking_email_info.rank_name, language, feconf.OPPIA_SITE_URL, feconf.CONTRIBUTOR_DASHBOARD_URL ) else: email_body = email_template['email_body_template'] % ( recipient_username, contributor_ranking_email_info.rank_name, feconf.OPPIA_SITE_URL, feconf.CONTRIBUTOR_DASHBOARD_URL ) _send_email( contributor_ranking_email_info.contributor_user_id, feconf.SYSTEM_COMMITTER_ID, feconf.EMAIL_INTENT_NOTIFY_CONTRIBUTOR_DASHBOARD_ACHIEVEMENTS, email_template['email_subject'], email_body, feconf.NOREPLY_EMAIL_ADDRESS)
27,086
def task_must_have_owners(task: BaseOperator): if task.owner and not isinstance(task.owner, str): raise AirflowClusterPolicyViolation(f'''owner should be a string. Current value: {task.owner}''') if not task.owner or task.owner.lower() == conf.get('operators', 'default_owner'): raise AirflowClusterPolicyViolation( f'''Task must have non-None non-default owner. Current value: {task.owner}''' )
def task_must_have_owners(task: BaseOperator): if task.owner and not isinstance(task.owner, str): raise AirflowClusterPolicyViolation(f'''owner should be a string. Current value: {task.owner!r}''') if not task.owner or task.owner.lower() == conf.get('operators', 'default_owner'): raise AirflowClusterPolicyViolation( f'''Task must have non-None non-default owner. Current value: {task.owner}''' )
35,160
def gmres(A, b, x0=None, tol=1e-5, restart=None, maxiter=None, M=None, callback=None, atol=None, callback_type=None): """Uses Generalized Minimal RESidual iteration to solve ``Ax = b``. Args: A (cupy.ndarray or cupyx.scipy.sparse.spmatrix): The real or complex matrix of the linear system with shape ``(n, n)``. b (cupy.ndarray): Right hand side of the linear system with shape ``(n,)`` or ``(n, 1)``. x0 (cupy.ndarray): Starting guess for the solution. tol (float): Tolerance for convergence. restart (int): Number of iterations between restarts. Larger values increase iteration cost, but may be necessary for convergence. maxiter (int): Maximum number of iterations. M (cupy.ndarray or cupyx.scipy.sparse.spmatrix): Preconditioner for ``A``. The preconditioner should approximate the inverse of ``A``. callback (function): User-specified function to call on every restart. It is called as ``callback(arg)``, where ``arg`` is selected by ``callback_type``. callback_type (str): 'x' or 'pr_norm'. If 'x', the current solution vector is used as an argument of callback function. if `pr_norm`, relative (preconditioned) residual norm is used as an arugment. atol (float): Tolerance for convergence. Returns: tuple: It returns ``x`` (cupy.ndarray) and ``info`` (int) where ``x`` is the converged solution and ``info`` provides convergence information. Reference: M. Wang, H. Klie, M. Parashar and H. Sudan, "Solving Sparse Linear Systems on NVIDIA Tesla GPUs", ICCS 2009 (2009). .. seealso:: :func:`scipy.sparse.linalg.gmres` """ if A.ndim != 2 or A.shape[0] != A.shape[1]: raise ValueError('expected square matrix (shape: {})'.format(A.shape)) if A.dtype.char not in 'fdFD': raise TypeError('unsupprted dtype (actual: {})'.format(A.dtype)) n = A.shape[0] if not (b.shape == (n,) or b.shape == (n, 1)): raise ValueError('b has incompatible dimensins') b = b.astype(A.dtype).ravel() if n == 0: return cupy.empty_like(b), 0 b_norm = cupy.linalg.norm(b) if b_norm == 0: return b, 0 if atol is None: atol = tol * float(b_norm) else: atol = max(float(atol), tol * float(b_norm)) if x0 is None: x = cupy.zeros((n,), dtype=A.dtype) else: if not (x0.shape == (n,) or x0.shape == (n, 1)): raise ValueError('x0 has incompatible dimensins') x = x0.astype(A.dtype).ravel() if maxiter is None: maxiter = n * 10 if restart is None: restart = 20 restart = min(restart, n) if callback_type is None: callback_type = 'pr_norm' if callback_type not in ('x', 'pr_norm'): raise ValueError('Unknow callback_type: {}'.format(callback_type)) if callback is None: callback_type = None V = cupy.empty((n, restart), dtype=A.dtype, order='F') H = cupy.zeros((restart+1, restart), dtype=A.dtype, order='F') e = numpy.zeros((restart+1,), dtype=A.dtype) matvec, psolve = _make_funcs(A, M) compute_hu = _make_compute_hu(V) iters = 0 while True: mx = psolve(x) r = b - matvec(mx) r_norm = cublas.nrm2(r) if callback_type == 'x': callback(mx) elif callback_type == 'pr_norm' and iters > 0: callback(r_norm / b_norm) if r_norm <= atol or iters >= maxiter: break v = r / r_norm V[:, 0] = v e[0] = r_norm # Arnoldi iteration for j in range(restart): z = psolve(v) u = matvec(z) H[:j+1, j], u = compute_hu(u, j) cublas.nrm2(u, out=H[j+1, j]) if j+1 < restart: v = u / H[j+1, j] V[:, j+1] = v # Note: The least-square solution to equation Hy = e is computed on CPU # because it is faster if tha matrix size is small. ret = scipy.linalg.lstsq(cupy.asnumpy(H), e) y = cupy.array(ret[0]) x += V @ y iters += restart info = 0 if iters == maxiter and not (r_norm <= atol): info = iters return mx, info
def gmres(A, b, x0=None, tol=1e-5, restart=None, maxiter=None, M=None, callback=None, atol=None, callback_type=None): """Uses Generalized Minimal RESidual iteration to solve ``Ax = b``. Args: A (cupy.ndarray or cupyx.scipy.sparse.spmatrix): The real or complex matrix of the linear system with shape ``(n, n)``. b (cupy.ndarray): Right hand side of the linear system with shape ``(n,)`` or ``(n, 1)``. x0 (cupy.ndarray): Starting guess for the solution. tol (float): Tolerance for convergence. restart (int): Number of iterations between restarts. Larger values increase iteration cost, but may be necessary for convergence. maxiter (int): Maximum number of iterations. M (cupy.ndarray or cupyx.scipy.sparse.spmatrix): Preconditioner for ``A``. The preconditioner should approximate the inverse of ``A``. callback (function): User-specified function to call on every restart. It is called as ``callback(arg)``, where ``arg`` is selected by ``callback_type``. callback_type (str): 'x' or 'pr_norm'. If 'x', the current solution vector is used as an argument of callback function. if `pr_norm`, relative (preconditioned) residual norm is used as an arugment. atol (float): Tolerance for convergence. Returns: tuple: It returns ``x`` (cupy.ndarray) and ``info`` (int) where ``x`` is the converged solution and ``info`` provides convergence information. Reference: M. Wang, H. Klie, M. Parashar and H. Sudan, "Solving Sparse Linear Systems on NVIDIA Tesla GPUs", ICCS 2009 (2009). .. seealso:: :func:`scipy.sparse.linalg.gmres` """ if A.ndim != 2 or A.shape[0] != A.shape[1]: raise ValueError('expected square matrix (shape: {})'.format(A.shape)) if A.dtype.char not in 'fdFD': raise TypeError('unsupprted dtype (actual: {})'.format(A.dtype)) n = A.shape[0] if not (b.shape == (n,) or b.shape == (n, 1)): raise ValueError('b has incompatible dimensins') b = b.astype(A.dtype).ravel() if n == 0: return cupy.empty_like(b), 0 b_norm = cupy.linalg.norm(b) if b_norm == 0: return b, 0 if atol is None: atol = tol * float(b_norm) else: atol = max(float(atol), tol * float(b_norm)) if x0 is None: x = cupy.zeros((n,), dtype=A.dtype) else: if not (x0.shape == (n,) or x0.shape == (n, 1)): raise ValueError('x0 has incompatible dimensions') x = x0.astype(A.dtype).ravel() if maxiter is None: maxiter = n * 10 if restart is None: restart = 20 restart = min(restart, n) if callback_type is None: callback_type = 'pr_norm' if callback_type not in ('x', 'pr_norm'): raise ValueError('Unknow callback_type: {}'.format(callback_type)) if callback is None: callback_type = None V = cupy.empty((n, restart), dtype=A.dtype, order='F') H = cupy.zeros((restart+1, restart), dtype=A.dtype, order='F') e = numpy.zeros((restart+1,), dtype=A.dtype) matvec, psolve = _make_funcs(A, M) compute_hu = _make_compute_hu(V) iters = 0 while True: mx = psolve(x) r = b - matvec(mx) r_norm = cublas.nrm2(r) if callback_type == 'x': callback(mx) elif callback_type == 'pr_norm' and iters > 0: callback(r_norm / b_norm) if r_norm <= atol or iters >= maxiter: break v = r / r_norm V[:, 0] = v e[0] = r_norm # Arnoldi iteration for j in range(restart): z = psolve(v) u = matvec(z) H[:j+1, j], u = compute_hu(u, j) cublas.nrm2(u, out=H[j+1, j]) if j+1 < restart: v = u / H[j+1, j] V[:, j+1] = v # Note: The least-square solution to equation Hy = e is computed on CPU # because it is faster if tha matrix size is small. ret = scipy.linalg.lstsq(cupy.asnumpy(H), e) y = cupy.array(ret[0]) x += V @ y iters += restart info = 0 if iters == maxiter and not (r_norm <= atol): info = iters return mx, info
28,591
def plot_trace( data: InferenceData, var_names: Optional[Sequence[str]] = None, filter_vars: Optional[str] = None, transform: Optional[Callable] = None, coords: Optional[CoordSpec] = None, divergences: Optional[str] = "auto", kind: Optional[str] = "trace", figsize: Optional[Tuple[float, float]] = None, rug: bool = False, lines: Optional[List[Tuple[str, CoordSpec, Any]]] = None, circ_var_names: Optional[List[str]] = None, circ_var_units: str = "radians", compact: bool = True, compact_prop: Optional[Union[str, Mapping[str, Any]]] = None, combined: bool = False, chain_prop: Optional[Union[str, Mapping[str, Any]]] = None, legend: bool = False, plot_kwargs: Optional[KwargSpec] = None, fill_kwargs: Optional[KwargSpec] = None, rug_kwargs: Optional[KwargSpec] = None, hist_kwargs: Optional[KwargSpec] = None, trace_kwargs: Optional[KwargSpec] = None, rank_kwargs: Optional[KwargSpec] = None, labeller=None, axes=None, backend: Optional[str] = None, backend_config: Optional[KwargSpec] = None, backend_kwargs: Optional[KwargSpec] = None, show: Optional[bool] = None, ): """Plot distribution (histogram or kernel density estimates) and sampled values or rank plot. If `divergences` data is available in `sample_stats`, will plot the location of divergences as dashed vertical lines. Parameters ---------- data: obj Any object that can be converted to an :class:`arviz.InferenceData` object Refer to documentation of :func:`arviz.convert_to_dataset` for details var_names: str or list of str, optional One or more variables to be plotted. Prefix the variables by `~` when you want to exclude them from the plot. filter_vars: {None, "like", "regex"}, optional, default=None If `None` (default), interpret var_names as the real variables names. If "like", interpret var_names as substrings of the real variables names. If "regex", interpret var_names as regular expressions on the real variables names. A la `pandas.filter`. coords: dict of {str: slice or array_like}, optional Coordinates of var_names to be plotted. Passed to :meth:`xarray.Dataset.sel` divergences: {"bottom", "top", None}, optional Plot location of divergences on the traceplots. kind: {"trace", "rank_bar", "rank_vlines"}, optional Choose between plotting sampled values per iteration and rank plots. transform: callable, optional Function to transform data (defaults to None i.e.the identity function) figsize: tuple of (float, float), optional If None, size is (12, variables * 2) rug: bool, optional If True adds a rugplot of samples. Defaults to False. Ignored for 2D KDE. Only affects continuous variables. lines: list of tuple of (str, dict, array_like), optional List of (var_name, {'coord': selection}, [line, positions]) to be overplotted as vertical lines on the density and horizontal lines on the trace. circ_var_names : str or list of str, optional List of circular variables to account for when plotting KDE. circ_var_units : str Whether the variables in `circ_var_names` are in "degrees" or "radians". compact: bool, optional Plot multidimensional variables in a single plot. compact_prop: str or dict {str: array_like}, optional Tuple containing the property name and the property values to distinguish different dimensions with compact=True combined: bool, optional Flag for combining multiple chains into a single line. If False (default), chains will be plotted separately. chain_prop: str or dict {str: array_like}, optional Tuple containing the property name and the property values to distinguish different chains legend: bool, optional Add a legend to the figure with the chain color code. plot_kwargs, fill_kwargs, rug_kwargs, hist_kwargs: dict, optional Extra keyword arguments passed to :func:`arviz.plot_dist`. Only affects continuous variables. trace_kwargs: dict, optional Extra keyword arguments passed to :meth:`matplotlib.axes.Axes.plot` labeller : labeller instance, optional Class providing the method `make_label_vert` to generate the labels in the plot titles. Read the :ref:`label_guide` for more details and usage examples. rank_kwargs : dict, optional Extra keyword arguments passed to :func:`arviz.plot_rank` axes: axes, optional Matplotlib axes or bokeh figures. backend: {"matplotlib", "bokeh"}, optional Select plotting backend. backend_config: dict, optional Currently specifies the bounds to use for bokeh axes. Defaults to value set in rcParams. backend_kwargs: dict, optional These are kwargs specific to the backend being used, passed to :func:`matplotlib.pyplot.subplots` or :func:`bokeh.plotting.figure`. show: bool, optional Call backend show function. Returns ------- axes: matplotlib axes or bokeh figures See Also -------- plot_rank : Plot rank order statistics of chains. Examples -------- Plot a subset variables and select them with partial naming .. plot:: :context: close-figs >>> import arviz as az >>> data = az.load_arviz_data('non_centered_eight') >>> coords = {'school': ['Choate', 'Lawrenceville']} >>> az.plot_trace(data, var_names=('theta'), filter_vars="like", coords=coords) Show all dimensions of multidimensional variables in the same plot .. plot:: :context: close-figs >>> az.plot_trace(data, compact=True) Display a rank plot instead of trace .. plot:: :context: close-figs >>> az.plot_trace(data, var_names=["mu", "tau"], kind="rank_bars") Combine all chains into one distribution and select variables with regular expressions .. plot:: :context: close-figs >>> az.plot_trace( >>> data, var_names=('^theta'), filter_vars="regex", coords=coords, combined=True >>> ) Plot reference lines against distribution and trace .. plot:: :context: close-figs >>> lines = (('theta_t',{'school': "Choate"}, [-1]),) >>> az.plot_trace(data, var_names=('theta_t', 'theta'), coords=coords, lines=lines) """ if kind not in {"trace", "rank_vlines", "rank_bars"}: raise ValueError("The value of kind must be either trace, rank_vlines or rank_bars.") if divergences == "auto": divergences = "top" if rug else "bottom" if divergences: try: divergence_data = convert_to_dataset(data, group="sample_stats").diverging except (ValueError, AttributeError): # No sample_stats, or no `.diverging` divergences = None if coords is None: coords = {} if labeller is None: labeller = BaseLabeller() if divergences: divergence_data = get_coords( divergence_data, {k: v for k, v in coords.items() if k in ("chain", "draw")} ) else: divergence_data = False coords_data = get_coords(convert_to_dataset(data, group="posterior"), coords) if transform is not None: coords_data = transform(coords_data) var_names = _var_names(var_names, coords_data, filter_vars) if compact: skip_dims = set(coords_data.dims) - {"chain", "draw"} else: skip_dims = set() plotters = list( xarray_var_iter(coords_data, var_names=var_names, combined=True, skip_dims=skip_dims) ) max_plots = rcParams["plot.max_subplots"] max_plots = len(plotters) if max_plots is None else max(max_plots // 2, 1) if len(plotters) > max_plots: warnings.warn( "rcParams['plot.max_subplots'] ({max_plots}) is smaller than the number " "of variables to plot ({len_plotters}), generating only {max_plots} " "plots".format(max_plots=max_plots, len_plotters=len(plotters)), UserWarning, ) plotters = plotters[:max_plots] # TODO: Check if this can be further simplified trace_plot_args = dict( # User Kwargs data=coords_data, var_names=var_names, # coords = coords, divergences=divergences, kind=kind, figsize=figsize, rug=rug, lines=lines, circ_var_names=circ_var_names, circ_var_units=circ_var_units, plot_kwargs=plot_kwargs, fill_kwargs=fill_kwargs, rug_kwargs=rug_kwargs, hist_kwargs=hist_kwargs, trace_kwargs=trace_kwargs, rank_kwargs=rank_kwargs, compact=compact, compact_prop=compact_prop, combined=combined, chain_prop=chain_prop, legend=legend, labeller=labeller, # Generated kwargs divergence_data=divergence_data, # skip_dims=skip_dims, plotters=plotters, axes=axes, backend_config=backend_config, backend_kwargs=backend_kwargs, show=show, ) if backend is None: backend = rcParams["plot.backend"] backend = backend.lower() plot = get_plotting_function("plot_trace", "traceplot", backend) axes = plot(**trace_plot_args) return axes
def plot_trace( data: InferenceData, var_names: Optional[Sequence[str]] = None, filter_vars: Optional[str] = None, transform: Optional[Callable] = None, coords: Optional[CoordSpec] = None, divergences: Optional[str] = "auto", kind: Optional[str] = "trace", figsize: Optional[Tuple[float, float]] = None, rug: bool = False, lines: Optional[List[Tuple[str, CoordSpec, Any]]] = None, circ_var_names: Optional[List[str]] = None, circ_var_units: str = "radians", compact: bool = True, compact_prop: Optional[Union[str, Mapping[str, Any]]] = None, combined: bool = False, chain_prop: Optional[Union[str, Mapping[str, Any]]] = None, legend: bool = False, plot_kwargs: Optional[KwargSpec] = None, fill_kwargs: Optional[KwargSpec] = None, rug_kwargs: Optional[KwargSpec] = None, hist_kwargs: Optional[KwargSpec] = None, trace_kwargs: Optional[KwargSpec] = None, rank_kwargs: Optional[KwargSpec] = None, labeller=None, axes=None, backend: Optional[str] = None, backend_config: Optional[KwargSpec] = None, backend_kwargs: Optional[KwargSpec] = None, show: Optional[bool] = None, ): """Plot distribution (histogram or kernel density estimates) and sampled values or rank plot. If `divergences` data is available in `sample_stats`, will plot the location of divergences as dashed vertical lines. Parameters ---------- data: obj Any object that can be converted to an :class:`arviz.InferenceData` object Refer to documentation of :func:`arviz.convert_to_dataset` for details var_names: str or list of str, optional One or more variables to be plotted. Prefix the variables by ``~`` when you want to exclude them from the plot. filter_vars: {None, "like", "regex"}, optional, default=None If `None` (default), interpret var_names as the real variables names. If "like", interpret var_names as substrings of the real variables names. If "regex", interpret var_names as regular expressions on the real variables names. A la `pandas.filter`. coords: dict of {str: slice or array_like}, optional Coordinates of var_names to be plotted. Passed to :meth:`xarray.Dataset.sel` divergences: {"bottom", "top", None}, optional Plot location of divergences on the traceplots. kind: {"trace", "rank_bar", "rank_vlines"}, optional Choose between plotting sampled values per iteration and rank plots. transform: callable, optional Function to transform data (defaults to None i.e.the identity function) figsize: tuple of (float, float), optional If None, size is (12, variables * 2) rug: bool, optional If True adds a rugplot of samples. Defaults to False. Ignored for 2D KDE. Only affects continuous variables. lines: list of tuple of (str, dict, array_like), optional List of (var_name, {'coord': selection}, [line, positions]) to be overplotted as vertical lines on the density and horizontal lines on the trace. circ_var_names : str or list of str, optional List of circular variables to account for when plotting KDE. circ_var_units : str Whether the variables in `circ_var_names` are in "degrees" or "radians". compact: bool, optional Plot multidimensional variables in a single plot. compact_prop: str or dict {str: array_like}, optional Tuple containing the property name and the property values to distinguish different dimensions with compact=True combined: bool, optional Flag for combining multiple chains into a single line. If False (default), chains will be plotted separately. chain_prop: str or dict {str: array_like}, optional Tuple containing the property name and the property values to distinguish different chains legend: bool, optional Add a legend to the figure with the chain color code. plot_kwargs, fill_kwargs, rug_kwargs, hist_kwargs: dict, optional Extra keyword arguments passed to :func:`arviz.plot_dist`. Only affects continuous variables. trace_kwargs: dict, optional Extra keyword arguments passed to :meth:`matplotlib.axes.Axes.plot` labeller : labeller instance, optional Class providing the method `make_label_vert` to generate the labels in the plot titles. Read the :ref:`label_guide` for more details and usage examples. rank_kwargs : dict, optional Extra keyword arguments passed to :func:`arviz.plot_rank` axes: axes, optional Matplotlib axes or bokeh figures. backend: {"matplotlib", "bokeh"}, optional Select plotting backend. backend_config: dict, optional Currently specifies the bounds to use for bokeh axes. Defaults to value set in rcParams. backend_kwargs: dict, optional These are kwargs specific to the backend being used, passed to :func:`matplotlib.pyplot.subplots` or :func:`bokeh.plotting.figure`. show: bool, optional Call backend show function. Returns ------- axes: matplotlib axes or bokeh figures See Also -------- plot_rank : Plot rank order statistics of chains. Examples -------- Plot a subset variables and select them with partial naming .. plot:: :context: close-figs >>> import arviz as az >>> data = az.load_arviz_data('non_centered_eight') >>> coords = {'school': ['Choate', 'Lawrenceville']} >>> az.plot_trace(data, var_names=('theta'), filter_vars="like", coords=coords) Show all dimensions of multidimensional variables in the same plot .. plot:: :context: close-figs >>> az.plot_trace(data, compact=True) Display a rank plot instead of trace .. plot:: :context: close-figs >>> az.plot_trace(data, var_names=["mu", "tau"], kind="rank_bars") Combine all chains into one distribution and select variables with regular expressions .. plot:: :context: close-figs >>> az.plot_trace( >>> data, var_names=('^theta'), filter_vars="regex", coords=coords, combined=True >>> ) Plot reference lines against distribution and trace .. plot:: :context: close-figs >>> lines = (('theta_t',{'school': "Choate"}, [-1]),) >>> az.plot_trace(data, var_names=('theta_t', 'theta'), coords=coords, lines=lines) """ if kind not in {"trace", "rank_vlines", "rank_bars"}: raise ValueError("The value of kind must be either trace, rank_vlines or rank_bars.") if divergences == "auto": divergences = "top" if rug else "bottom" if divergences: try: divergence_data = convert_to_dataset(data, group="sample_stats").diverging except (ValueError, AttributeError): # No sample_stats, or no `.diverging` divergences = None if coords is None: coords = {} if labeller is None: labeller = BaseLabeller() if divergences: divergence_data = get_coords( divergence_data, {k: v for k, v in coords.items() if k in ("chain", "draw")} ) else: divergence_data = False coords_data = get_coords(convert_to_dataset(data, group="posterior"), coords) if transform is not None: coords_data = transform(coords_data) var_names = _var_names(var_names, coords_data, filter_vars) if compact: skip_dims = set(coords_data.dims) - {"chain", "draw"} else: skip_dims = set() plotters = list( xarray_var_iter(coords_data, var_names=var_names, combined=True, skip_dims=skip_dims) ) max_plots = rcParams["plot.max_subplots"] max_plots = len(plotters) if max_plots is None else max(max_plots // 2, 1) if len(plotters) > max_plots: warnings.warn( "rcParams['plot.max_subplots'] ({max_plots}) is smaller than the number " "of variables to plot ({len_plotters}), generating only {max_plots} " "plots".format(max_plots=max_plots, len_plotters=len(plotters)), UserWarning, ) plotters = plotters[:max_plots] # TODO: Check if this can be further simplified trace_plot_args = dict( # User Kwargs data=coords_data, var_names=var_names, # coords = coords, divergences=divergences, kind=kind, figsize=figsize, rug=rug, lines=lines, circ_var_names=circ_var_names, circ_var_units=circ_var_units, plot_kwargs=plot_kwargs, fill_kwargs=fill_kwargs, rug_kwargs=rug_kwargs, hist_kwargs=hist_kwargs, trace_kwargs=trace_kwargs, rank_kwargs=rank_kwargs, compact=compact, compact_prop=compact_prop, combined=combined, chain_prop=chain_prop, legend=legend, labeller=labeller, # Generated kwargs divergence_data=divergence_data, # skip_dims=skip_dims, plotters=plotters, axes=axes, backend_config=backend_config, backend_kwargs=backend_kwargs, show=show, ) if backend is None: backend = rcParams["plot.backend"] backend = backend.lower() plot = get_plotting_function("plot_trace", "traceplot", backend) axes = plot(**trace_plot_args) return axes
11,792
def export_regions(objs): """ Convenience function to convert a sequence of Ginga canvas objects to a ds9 file containing regions and return a list of matching . Parameters ---------- objs : seq of subclasses of `~ginga.canvas.CanvasObject.CanvasObjectBase` Sequence of Ginga canvas objects compatible with Regions Returns ------- regions : `~regions.Regions` object Returns an astropy regions Regions object """ regs = regions.Regions(map(ginga_canvas_object_to_astropy_region, objs)) return regs
def export_regions(objs): """ Convenience function to convert a sequence of Ginga canvas objects to a DS9 file containing regions and return a list of matching . Parameters ---------- objs : seq of subclasses of `~ginga.canvas.CanvasObject.CanvasObjectBase` Sequence of Ginga canvas objects compatible with Regions Returns ------- regions : `~regions.Regions` object Returns an astropy regions Regions object """ regs = regions.Regions(map(ginga_canvas_object_to_astropy_region, objs)) return regs
45,565
def ReminderCancelled(name, timestamp=None): return { "event": "cancel", "timestamp": timestamp, "name": name }
def ReminderCancelled(name, timestamp=None): return { "event": "cancel_reminder", "timestamp": timestamp, "name": name }
17,460
def _encode_coordinates(variables, attributes, non_dim_coord_names): # calculate global and variable specific coordinates non_dim_coord_names = set(non_dim_coord_names) for name in list(non_dim_coord_names): if isinstance(name, str) and " " in name: warnings.warn( "coordinate {!r} has a space in its name, which means it " "cannot be marked as a coordinate on disk and will be " "saved as a data variable instead".format(name), SerializationWarning, stacklevel=6, ) non_dim_coord_names.discard(name) global_coordinates = non_dim_coord_names.copy() variable_coordinates = defaultdict(set) not_technically_coordinates = set() for coord_name in non_dim_coord_names: target_dims = variables[coord_name].dims for k, v in variables.items(): if ( k not in non_dim_coord_names and k not in v.dims and set(target_dims) <= set(v.dims) ): variable_coordinates[k].add(coord_name) if any( attr_name in v.encoding and coord_name in v.encoding.get(attr_name) for attr_name in CF_RELATED_DATA ): not_technically_coordinates.add(coord_name) global_coordinates.discard(coord_name) variables = {k: v.copy(deep=False) for k, v in variables.items()} # keep track of variable names written to file under the "coordinates" attributes written_coords = set() for name, var in variables.items(): encoding = var.encoding attrs = var.attrs if "coordinates" in attrs and "coordinates" in encoding: raise ValueError( f"'coordinates' found in both attrs and encoding for variable {name!r}." ) # if coordinates set to None, don't write coordinates attribute if "coordinates" in attrs and attrs.get("coordinates") is None: continue # this will copy coordinates from encoding to attrs if "coordinates" in attrs # after the next line, "coordinates" is never in encoding # we get support for attrs["coordinates"] for free. coords_str = pop_to(encoding, attrs, "coordinates") if not coords_str and variable_coordinates[name]: coordinates_text = " ".join( str(coord_name) for coord_name in variable_coordinates[name] if coord_name not in not_technically_coordinates ) if coordinates_text: attrs["coordinates"] = coordinates_text if "coordinates" in attrs: written_coords.update(attrs["coordinates"].split()) # These coordinates are not associated with any particular variables, so we # save them under a global 'coordinates' attribute so xarray can roundtrip # the dataset faithfully. Because this serialization goes beyond CF # conventions, only do it if necessary. # Reference discussion: # http://mailman.cgd.ucar.edu/pipermail/cf-metadata/2014/007571.html global_coordinates.difference_update(written_coords) if global_coordinates: attributes = dict(attributes) if "coordinates" in attributes: warnings.warn( f"cannot serialize global coordinates {global_coordinates!r} because the global " f"attribute 'coordinates' already exists. This may prevent faithful roundtripping" f"of xarray datasets", SerializationWarning, ) else: attributes["coordinates"] = " ".join(map(str, global_coordinates)) return variables, attributes
def _encode_coordinates(variables, attributes, non_dim_coord_names): # calculate global and variable specific coordinates non_dim_coord_names = set(non_dim_coord_names) for name in list(non_dim_coord_names): if isinstance(name, str) and " " in name: warnings.warn( "coordinate {!r} has a space in its name, which means it " "cannot be marked as a coordinate on disk and will be " "saved as a data variable instead".format(name), SerializationWarning, stacklevel=6, ) non_dim_coord_names.discard(name) global_coordinates = non_dim_coord_names.copy() variable_coordinates = defaultdict(set) not_technically_coordinates = set() for coord_name in non_dim_coord_names: target_dims = variables[coord_name].dims for k, v in variables.items(): if ( k not in non_dim_coord_names and k not in v.dims and set(target_dims) <= set(v.dims) ): variable_coordinates[k].add(coord_name) if any( attr_name in v.encoding and coord_name in v.encoding.get(attr_name) for attr_name in CF_RELATED_DATA ): not_technically_coordinates.add(coord_name) global_coordinates.discard(coord_name) variables = {k: v.copy(deep=False) for k, v in variables.items()} # keep track of variable names written to file under the "coordinates" attributes written_coords = set() for name, var in variables.items(): encoding = var.encoding attrs = var.attrs if "coordinates" in attrs and "coordinates" in encoding: raise ValueError( f"'coordinates' found in both attrs and encoding for variable {name!r}." ) # if coordinates set to None, don't write coordinates attribute if attrs.get("coordinates") is None or encoding.get("coordinates") is None: continue # this will copy coordinates from encoding to attrs if "coordinates" in attrs # after the next line, "coordinates" is never in encoding # we get support for attrs["coordinates"] for free. coords_str = pop_to(encoding, attrs, "coordinates") if not coords_str and variable_coordinates[name]: coordinates_text = " ".join( str(coord_name) for coord_name in variable_coordinates[name] if coord_name not in not_technically_coordinates ) if coordinates_text: attrs["coordinates"] = coordinates_text if "coordinates" in attrs: written_coords.update(attrs["coordinates"].split()) # These coordinates are not associated with any particular variables, so we # save them under a global 'coordinates' attribute so xarray can roundtrip # the dataset faithfully. Because this serialization goes beyond CF # conventions, only do it if necessary. # Reference discussion: # http://mailman.cgd.ucar.edu/pipermail/cf-metadata/2014/007571.html global_coordinates.difference_update(written_coords) if global_coordinates: attributes = dict(attributes) if "coordinates" in attributes: warnings.warn( f"cannot serialize global coordinates {global_coordinates!r} because the global " f"attribute 'coordinates' already exists. This may prevent faithful roundtripping" f"of xarray datasets", SerializationWarning, ) else: attributes["coordinates"] = " ".join(map(str, global_coordinates)) return variables, attributes
34,532
def _validate_domain(domain_path: Text): from rasa.shared.core.domain import InvalidDomain from rasa.shared.core.domain import Domain try: Domain.load(domain_path) except InvalidDomain as e: cli_utils.print_error_and_exit( "The provided domain file could not be loaded. " "Error: {}".format(e) )
def _validate_domain(domain_path: Text): from rasa.shared.core.domain import Domain, InvalidDomain from rasa.shared.core.domain import Domain try: Domain.load(domain_path) except InvalidDomain as e: cli_utils.print_error_and_exit( "The provided domain file could not be loaded. " "Error: {}".format(e) )
32,521
def main() -> None: """ main function, parses params and runs command functions """ params = demisto.params() args = demisto.args() command = demisto.command() api_key = params.get('apikey') # get the service API url base_url = urljoin(params.get('url'), '/api/v1') # if your Client class inherits from BaseClient, SSL verification is # handled out of the box by it, just pass ``verify_certificate`` to # the Client constructor verify_certificate = not params.get('insecure', False) # How much time before the first fetch to retrieve incidents first_fetch_time = arg_to_datetime( arg=params.get('first_fetch', '3 days'), arg_name='First fetch time', required=True ) first_fetch_timestamp = int(first_fetch_time.timestamp()) if first_fetch_time else None # Using assert as a type guard (since first_fetch_time is always an int when required=True) assert isinstance(first_fetch_timestamp, int) # if your Client class inherits from BaseClient, system proxy is handled # out of the box by it, just pass ``proxy`` to the Client constructor proxy = params.get('proxy', False) # Integration that implements reputation commands (e.g. url, ip, domain,..., etc) must have # a reliability score of the source providing the intelligence data. reliability = params.get('integrationReliability', DBotScoreReliability.C) # INTEGRATION DEVELOPER TIP # You can use functions such as ``demisto.debug()``, ``demisto.info()``, # etc. to print information in the XSOAR server log. You can set the log # level on the server configuration # See: https://xsoar.pan.dev/docs/integrations/code-conventions#logging demisto.debug(f'Command being called is {command}') try: headers = { 'Authorization': f'Bearer {api_key}' } client = Client( base_url=base_url, verify=verify_certificate, headers=headers, proxy=proxy) if command == 'test-module': # This is the call made when pressing the integration Test button. result = test_module(client, params, first_fetch_timestamp) return_results(result) elif command == 'fetch-incidents': # Set and define the fetch incidents command to run after activated via integration settings. alert_status = params.get('alert_status', None) alert_type = params.get('alert_type', None) min_severity = params.get('min_severity', None) # Convert the argument to an int using helper function or set to MAX_INCIDENTS_TO_FETCH max_results = arg_to_number( arg=params.get('max_fetch'), arg_name='max_fetch', required=False ) if not max_results or max_results > MAX_INCIDENTS_TO_FETCH: max_results = MAX_INCIDENTS_TO_FETCH next_run, incidents = fetch_incidents( client=client, max_results=max_results, last_run=demisto.getLastRun(), # getLastRun() gets the last run dict first_fetch_time=first_fetch_timestamp, alert_status=alert_status, min_severity=min_severity, alert_type=alert_type ) # saves next_run for the time fetch-incidents is invoked demisto.setLastRun(next_run) # fetch-incidents calls ``demisto.incidents()`` to provide the list # of incidents to create demisto.incidents(incidents) elif command == 'ip': default_threshold_ip = int(params.get('threshold_ip', '65')) return_results(ip_reputation_command(client, args, default_threshold_ip, reliability)) elif command == 'domain': default_threshold_domain = int(params.get('threshold_domain', '65')) return_results(domain_reputation_command(client, args, default_threshold_domain, reliability)) elif command == 'helloworld-say-hello': return_results(say_hello_command(client, args)) elif command == 'helloworld-search-alerts': return_results(search_alerts_command(client, args)) elif command == 'helloworld-get-alert': return_results(get_alert_command(client, args)) elif command == 'helloworld-update-alert-status': return_results(update_alert_status_command(client, args)) elif command == 'helloworld-scan-start': return_results(scan_start_command(client, args)) elif command == 'helloworld-scan-status': return_results(scan_status_command(client, args)) elif command == 'helloworld-scan-results': return_results(scan_results_command(client, args)) else: raise NotImplementedError(f'Command {command} is not implemented') # Log exceptions and return errors except Exception as e: return_error(f'Failed to execute {command} command.\nError:\n{str(e)}')
def main() -> None: """ main function, parses params and runs command functions """ params = demisto.params() args = demisto.args() command = demisto.command() api_key = params.get('apikey') # get the service API url base_url = urljoin(params.get('url'), '/api/v1') # if your Client class inherits from BaseClient, SSL verification is # handled out of the box by it, just pass ``verify_certificate`` to # the Client constructor verify_certificate = not params.get('insecure', False) # How much time before the first fetch to retrieve incidents first_fetch_time = arg_to_datetime( arg=params.get('first_fetch', '3 days'), arg_name='First fetch time', required=True ) first_fetch_timestamp = int(first_fetch_time.timestamp()) if first_fetch_time else None # Using assert as a type guard (since first_fetch_time is always an int when required=True) assert isinstance(first_fetch_timestamp, int) # if your Client class inherits from BaseClient, system proxy is handled # out of the box by it, just pass ``proxy`` to the Client constructor proxy = params.get('proxy', False) # Integration that implements reputation commands (e.g. url, ip, domain,..., etc) must have # a reliability score of the source providing the intelligence data. reliability = params.get('integrationReliability', DBotScoreReliability.C) # INTEGRATION DEVELOPER TIP # You can use functions such as ``demisto.debug()``, ``demisto.info()``, # etc. to print information in the XSOAR server log. You can set the log # level on the server configuration # See: https://xsoar.pan.dev/docs/integrations/code-conventions#logging demisto.debug(f'Command being called is {command}') try: headers = { 'Authorization': f'Bearer {api_key}' } client = Client( base_url=base_url, verify=verify_certificate, headers=headers, proxy=proxy) if command == 'test-module': # This is the call made when pressing the integration Test button. result = test_module(client, params, first_fetch_timestamp) return_results(result) elif command == 'fetch-incidents': # Set and define the fetch incidents command to run after activated via integration settings. alert_status = params.get('alert_status', None) alert_type = params.get('alert_type', None) min_severity = params.get('min_severity', None) # Convert the argument to an int using helper function or set to MAX_INCIDENTS_TO_FETCH max_results = arg_to_number( arg=params.get('max_fetch'), arg_name='max_fetch', required=False ) if not max_results or max_results > MAX_INCIDENTS_TO_FETCH: max_results = MAX_INCIDENTS_TO_FETCH next_run, incidents = fetch_incidents( client=client, max_results=max_results, last_run=demisto.getLastRun(), # getLastRun() gets the last run dict first_fetch_time=first_fetch_timestamp, alert_status=alert_status, min_severity=min_severity, alert_type=alert_type ) # saves next_run for the time fetch-incidents is invoked demisto.setLastRun(next_run) # fetch-incidents calls ``demisto.incidents()`` to provide the list # of incidents to create demisto.incidents(incidents) elif command == 'ip': default_threshold_ip = arg_to_number(params.get('threshold_ip', '65')) return_results(ip_reputation_command(client, args, default_threshold_ip, reliability)) elif command == 'domain': default_threshold_domain = int(params.get('threshold_domain', '65')) return_results(domain_reputation_command(client, args, default_threshold_domain, reliability)) elif command == 'helloworld-say-hello': return_results(say_hello_command(client, args)) elif command == 'helloworld-search-alerts': return_results(search_alerts_command(client, args)) elif command == 'helloworld-get-alert': return_results(get_alert_command(client, args)) elif command == 'helloworld-update-alert-status': return_results(update_alert_status_command(client, args)) elif command == 'helloworld-scan-start': return_results(scan_start_command(client, args)) elif command == 'helloworld-scan-status': return_results(scan_status_command(client, args)) elif command == 'helloworld-scan-results': return_results(scan_results_command(client, args)) else: raise NotImplementedError(f'Command {command} is not implemented') # Log exceptions and return errors except Exception as e: return_error(f'Failed to execute {command} command.\nError:\n{str(e)}')
38,240
def load_openers(opt) -> Optional[List[str]]: if opt['task'].startswith('internal:'): base_task = opt['task'] else: base_task = opt['task'].split(':')[0] if base_task == 'self_chat': # TODO(#2284): Load default openers from s3 return None print('[ loading conversation openers... ]') # create dummy task so we can get openers from the data task_opt = copy.deepcopy(opt) task_opt['task'] = base_task # default train will loop forever, but evalmode will stop after one epoch datatype = task_opt['datatype'] if 'train' in datatype and 'evalmode' not in datatype: task_opt['datatype'] = f'{datatype}:evalmode' task_opt['interactive_task'] = False task_opt['selfchat_task'] = False task_opt['fixed_response'] = None task_agent = FixedResponseAgent(task_opt) task_world = create_task(task_opt, task_agent) # run through task data, collecting all first messages openers = set() is_first_turn = True while not task_world.epoch_done(): task_world.parley() msg = task_world.get_acts()[0] # add only the first message in the episode if is_first_turn and msg.get('text'): openers.add(msg['text']) is_first_turn = msg.get('episode_done', False) print(f'[ loaded {len(openers)} openers ]') return list(openers)
def load_openers(opt) -> Optional[List[str]]: if opt['task'].startswith('internal:') or opt['task'].startswith('fb:'): base_task = opt['task'] else: base_task = opt['task'].split(':')[0] if base_task == 'self_chat': # TODO(#2284): Load default openers from s3 return None print('[ loading conversation openers... ]') # create dummy task so we can get openers from the data task_opt = copy.deepcopy(opt) task_opt['task'] = base_task # default train will loop forever, but evalmode will stop after one epoch datatype = task_opt['datatype'] if 'train' in datatype and 'evalmode' not in datatype: task_opt['datatype'] = f'{datatype}:evalmode' task_opt['interactive_task'] = False task_opt['selfchat_task'] = False task_opt['fixed_response'] = None task_agent = FixedResponseAgent(task_opt) task_world = create_task(task_opt, task_agent) # run through task data, collecting all first messages openers = set() is_first_turn = True while not task_world.epoch_done(): task_world.parley() msg = task_world.get_acts()[0] # add only the first message in the episode if is_first_turn and msg.get('text'): openers.add(msg['text']) is_first_turn = msg.get('episode_done', False) print(f'[ loaded {len(openers)} openers ]') return list(openers)