id
int64
11
59.9k
original
stringlengths
33
150k
modified
stringlengths
37
150k
1,514
def plot_partial_dependence(estimator, X, features, feature_names=None, target=None, response_method='auto', n_cols=3, grid_resolution=100, percentiles=(0.05, 0.95), method='auto', n_jobs=None, verbose=0, fig=None, line_kw=None, contour_kw=None, ax=None): """Partial dependence plots. The ``len(features)`` plots are arranged in a grid with ``n_cols`` columns. Two-way partial dependence plots are plotted as contour plots. The deciles of the feature values will be shown with tick marks on the x-axes for one-way plots, and on both axes for two-way plots. .. note:: :func:`plot_partial_dependence` does not support using the same axes with multiple calls. To plot the the partial dependence for multiple estimators, please pass the axes created by the first call to the second call:: >>> from sklearn.inspection import plot_partial_dependence >>> from sklearn.datasets import make_friedman1 >>> from sklearn.linear_model import LinearRegression >>> X, y = make_friedman1() >>> est = LinearRegression().fit(X, y) >>> disp1 = plot_partial_dependence(est, X) #doctest: +SKIP >>> disp2 = plot_partial_dependence(est, X, ... ax=disp1.axes_) #doctest: +SKIP Read more in the :ref:`User Guide <partial_dependence>`. Parameters ---------- estimator : BaseEstimator A fitted estimator object implementing :term:`predict`, :term:`predict_proba`, or :term:`decision_function`. Multioutput-multiclass classifiers are not supported. X : {array-like or dataframe} of shape (n_samples, n_features) The data to use to build the grid of values on which the dependence will be evaluated. This is usually the training data. features : list of {int, str, pair of int, pair of str} The target features for which to create the PDPs. If features[i] is an int or a string, a one-way PDP is created; if features[i] is a tuple, a two-way PDP is created. Each tuple must be of size 2. if any entry is a string, then it must be in ``feature_names``. feature_names : array-like of shape (n_features,), dtype=str, default=None Name of each feature; feature_names[i] holds the name of the feature with index i. By default, the name of the feature corresponds to their numerical index for NumPy array and their column name for pandas dataframe. target : int, optional (default=None) - In a multiclass setting, specifies the class for which the PDPs should be computed. Note that for binary classification, the positive class (index 1) is always used. - In a multioutput setting, specifies the task for which the PDPs should be computed. Ignored in binary classification or classical regression settings. response_method : 'auto', 'predict_proba' or 'decision_function', \ optional (default='auto') Specifies whether to use :term:`predict_proba` or :term:`decision_function` as the target response. For regressors this parameter is ignored and the response is always the output of :term:`predict`. By default, :term:`predict_proba` is tried first and we revert to :term:`decision_function` if it doesn't exist. If ``method`` is 'recursion', the response is always the output of :term:`decision_function`. n_cols : int, optional (default=3) The maximum number of columns in the grid plot. Only active when `ax` is a single axis or `None`. grid_resolution : int, optional (default=100) The number of equally spaced points on the axes of the plots, for each target feature. percentiles : tuple of float, optional (default=(0.05, 0.95)) The lower and upper percentile used to create the extreme values for the PDP axes. Must be in [0, 1]. method : str, optional (default='auto') The method to use to calculate the partial dependence predictions: - 'recursion' is only supported for gradient boosting estimator (namely :class:`GradientBoostingClassifier<sklearn.ensemble.GradientBoostingClassifier>`, :class:`GradientBoostingRegressor<sklearn.ensemble.GradientBoostingRegressor>`, :class:`HistGradientBoostingClassifier<sklearn.ensemble.HistGradientBoostingClassifier>`, :class:`HistGradientBoostingRegressor<sklearn.ensemble.HistGradientBoostingRegressor>`) but is more efficient in terms of speed. With this method, ``X`` is optional and is only used to build the grid and the partial dependences are computed using the training data. This method does not account for the ``init`` predictor of the boosting process, which may lead to incorrect values (see warning below. With this method, the target response of a classifier is always the decision function, not the predicted probabilities. - 'brute' is supported for any estimator, but is more computationally intensive. - 'auto': - 'recursion' is used for estimators that supports it. - 'brute' is used for all other estimators. n_jobs : int, optional (default=None) The number of CPUs to use to compute the partial dependences. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. verbose : int, optional (default=0) Verbose output during PD computations. fig : Matplotlib figure object, optional (default=None) A figure object onto which the plots will be drawn, after the figure has been cleared. By default, a new one is created. .. deprecated:: 0.22 ``fig`` will be removed in 0.24. line_kw : dict, optional Dict with keywords passed to the ``matplotlib.pyplot.plot`` call. For one-way partial dependence plots. contour_kw : dict, optional Dict with keywords passed to the ``matplotlib.pyplot.contourf`` call. For two-way partial dependence plots. ax : Matplotlib axes or array-like of Matplotlib axes, default=None - If a single axis is passed in, it is treated as a bounding axes and a grid of partial dependence plots will be drawn within these bounds. The `n_cols` parameter controls the number of columns in the grid. - If an array-like of axes are passed in, the partial dependence plots will be drawn directly into these axes. - If `None`, a figure and a bounding axes is created and treated as the single axes case. .. versionadded:: 0.22 Returns ------- display: :class:`~sklearn.inspection.PartialDependenceDisplay` Examples -------- >>> from sklearn.datasets import make_friedman1 >>> from sklearn.ensemble import GradientBoostingRegressor >>> X, y = make_friedman1() >>> clf = GradientBoostingRegressor(n_estimators=10).fit(X, y) >>> plot_partial_dependence(clf, X, [0, (0, 1)]) #doctest: +SKIP See also -------- sklearn.inspection.partial_dependence: Return raw partial dependence values Warnings -------- The 'recursion' method only works for gradient boosting estimators, and unlike the 'brute' method, it does not account for the ``init`` predictor of the boosting process. In practice this will produce the same values as 'brute' up to a constant offset in the target response, provided that ``init`` is a consant estimator (which is the default). However, as soon as ``init`` is not a constant estimator, the partial dependence values are incorrect for 'recursion'. This is not relevant for :class:`HistGradientBoostingClassifier <sklearn.ensemble.HistGradientBoostingClassifier>` and :class:`HistGradientBoostingRegressor <sklearn.ensemble.HistGradientBoostingRegressor>`, which do not have an ``init`` parameter. """ check_matplotlib_support('plot_partial_dependence') # noqa import matplotlib.pyplot as plt # noqa from matplotlib import transforms # noqa from matplotlib.ticker import MaxNLocator # noqa from matplotlib.ticker import ScalarFormatter # noqa # set target_idx for multi-class estimators if hasattr(estimator, 'classes_') and np.size(estimator.classes_) > 2: if target is None: raise ValueError('target must be specified for multi-class') target_idx = np.searchsorted(estimator.classes_, target) if (not (0 <= target_idx < len(estimator.classes_)) or estimator.classes_[target_idx] != target): raise ValueError('target not in est.classes_, got {}'.format( target)) else: # regression and binary classification target_idx = 0 # Use check_array only on lists and other non-array-likes / sparse. Do not # convert DataFrame into a NumPy array. if not(hasattr(X, '__array__') or sparse.issparse(X)): X = check_array(X, force_all_finite='allow-nan', dtype=np.object) n_features = X.shape[1] # convert feature_names to list if feature_names is None: if hasattr(X, "loc"): # get the column names for a pandas dataframe feature_names = X.columns.tolist() else: # define a list of numbered indices for a numpy array feature_names = [str(i) for i in range(n_features)] elif isinstance(feature_names, np.ndarray): feature_names = feature_names.tolist() if len(set(feature_names)) != len(feature_names): raise ValueError('feature_names should not contain duplicates.') def convert_feature(fx): if isinstance(fx, str): try: fx = feature_names.index(fx) except ValueError: raise ValueError('Feature %s not in feature_names' % fx) return int(fx) # convert features into a seq of int tuples tmp_features = [] for fxs in features: if isinstance(fxs, (numbers.Integral, str)): fxs = (fxs,) try: fxs = tuple(convert_feature(fx) for fx in fxs) except TypeError: raise ValueError('Each entry in features must be either an int, ' 'a string, or an iterable of size at most 2.') if not 1 <= np.size(fxs) <= 2: raise ValueError('Each entry in features must be either an int, ' 'a string, or an iterable of size at most 2.') tmp_features.append(fxs) features = tmp_features if isinstance(ax, list): if len(ax) != len(features): raise ValueError("Expected len(ax) == len(features), " "got len(ax) = {}".format(len(ax))) for i in chain.from_iterable(features): if i >= len(feature_names): raise ValueError('All entries of features must be less than ' 'len(feature_names) = {0}, got {1}.' .format(len(feature_names), i)) # compute averaged predictions pd_results = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(partial_dependence)(estimator, X, fxs, response_method=response_method, method=method, grid_resolution=grid_resolution, percentiles=percentiles) for fxs in features) # For multioutput regression, we can only check the validity of target # now that we have the predictions. # Also note: as multiclass-multioutput classifiers are not supported, # multiclass and multioutput scenario are mutually exclusive. So there is # no risk of overwriting target_idx here. avg_preds, _ = pd_results[0] # checking the first result is enough if is_regressor(estimator) and avg_preds.shape[0] > 1: if target is None: raise ValueError( 'target must be specified for multi-output regressors') if not 0 <= target <= avg_preds.shape[0]: raise ValueError( 'target must be in [0, n_tasks], got {}.'.format(target)) target_idx = target # get global min and max average predictions of PD grouped by plot type pdp_lim = {} for avg_preds, values in pd_results: min_pd = avg_preds[target_idx].min() max_pd = avg_preds[target_idx].max() n_fx = len(values) old_min_pd, old_max_pd = pdp_lim.get(n_fx, (min_pd, max_pd)) min_pd = min(min_pd, old_min_pd) max_pd = max(max_pd, old_max_pd) pdp_lim[n_fx] = (min_pd, max_pd) deciles = {} for fx in chain.from_iterable(features): if fx not in deciles: X_col = _safe_indexing(X, fx, axis=1) deciles[fx] = mquantiles(X_col, prob=np.arange(0.1, 1.0, 0.1)) if fig is not None: warnings.warn("The fig parameter is deprecated in version " "0.22 and will be removed in version 0.24", FutureWarning) fig.clear() ax = fig.gca() display = PartialDependenceDisplay(pd_results, features, feature_names, target_idx, pdp_lim, deciles) return display.plot(ax=ax, n_cols=n_cols, line_kw=line_kw, contour_kw=contour_kw)
def plot_partial_dependence(estimator, X, features, feature_names=None, target=None, response_method='auto', n_cols=3, grid_resolution=100, percentiles=(0.05, 0.95), method='auto', n_jobs=None, verbose=0, fig=None, line_kw=None, contour_kw=None, ax=None): """Partial dependence plots. The ``len(features)`` plots are arranged in a grid with ``n_cols`` columns. Two-way partial dependence plots are plotted as contour plots. The deciles of the feature values will be shown with tick marks on the x-axes for one-way plots, and on both axes for two-way plots. .. note:: :func:`plot_partial_dependence` does not support using the same axes with multiple calls. To plot the the partial dependence for multiple estimators, please pass the axes created by the first call to the second call:: >>> from sklearn.inspection import plot_partial_dependence >>> from sklearn.datasets import make_friedman1 >>> from sklearn.linear_model import LinearRegression >>> X, y = make_friedman1() >>> est = LinearRegression().fit(X, y) >>> disp1 = plot_partial_dependence(est, X) # doctest: +SKIP >>> disp2 = plot_partial_dependence(est, X, ... ax=disp1.axes_) #doctest: +SKIP Read more in the :ref:`User Guide <partial_dependence>`. Parameters ---------- estimator : BaseEstimator A fitted estimator object implementing :term:`predict`, :term:`predict_proba`, or :term:`decision_function`. Multioutput-multiclass classifiers are not supported. X : {array-like or dataframe} of shape (n_samples, n_features) The data to use to build the grid of values on which the dependence will be evaluated. This is usually the training data. features : list of {int, str, pair of int, pair of str} The target features for which to create the PDPs. If features[i] is an int or a string, a one-way PDP is created; if features[i] is a tuple, a two-way PDP is created. Each tuple must be of size 2. if any entry is a string, then it must be in ``feature_names``. feature_names : array-like of shape (n_features,), dtype=str, default=None Name of each feature; feature_names[i] holds the name of the feature with index i. By default, the name of the feature corresponds to their numerical index for NumPy array and their column name for pandas dataframe. target : int, optional (default=None) - In a multiclass setting, specifies the class for which the PDPs should be computed. Note that for binary classification, the positive class (index 1) is always used. - In a multioutput setting, specifies the task for which the PDPs should be computed. Ignored in binary classification or classical regression settings. response_method : 'auto', 'predict_proba' or 'decision_function', \ optional (default='auto') Specifies whether to use :term:`predict_proba` or :term:`decision_function` as the target response. For regressors this parameter is ignored and the response is always the output of :term:`predict`. By default, :term:`predict_proba` is tried first and we revert to :term:`decision_function` if it doesn't exist. If ``method`` is 'recursion', the response is always the output of :term:`decision_function`. n_cols : int, optional (default=3) The maximum number of columns in the grid plot. Only active when `ax` is a single axis or `None`. grid_resolution : int, optional (default=100) The number of equally spaced points on the axes of the plots, for each target feature. percentiles : tuple of float, optional (default=(0.05, 0.95)) The lower and upper percentile used to create the extreme values for the PDP axes. Must be in [0, 1]. method : str, optional (default='auto') The method to use to calculate the partial dependence predictions: - 'recursion' is only supported for gradient boosting estimator (namely :class:`GradientBoostingClassifier<sklearn.ensemble.GradientBoostingClassifier>`, :class:`GradientBoostingRegressor<sklearn.ensemble.GradientBoostingRegressor>`, :class:`HistGradientBoostingClassifier<sklearn.ensemble.HistGradientBoostingClassifier>`, :class:`HistGradientBoostingRegressor<sklearn.ensemble.HistGradientBoostingRegressor>`) but is more efficient in terms of speed. With this method, ``X`` is optional and is only used to build the grid and the partial dependences are computed using the training data. This method does not account for the ``init`` predictor of the boosting process, which may lead to incorrect values (see warning below. With this method, the target response of a classifier is always the decision function, not the predicted probabilities. - 'brute' is supported for any estimator, but is more computationally intensive. - 'auto': - 'recursion' is used for estimators that supports it. - 'brute' is used for all other estimators. n_jobs : int, optional (default=None) The number of CPUs to use to compute the partial dependences. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. verbose : int, optional (default=0) Verbose output during PD computations. fig : Matplotlib figure object, optional (default=None) A figure object onto which the plots will be drawn, after the figure has been cleared. By default, a new one is created. .. deprecated:: 0.22 ``fig`` will be removed in 0.24. line_kw : dict, optional Dict with keywords passed to the ``matplotlib.pyplot.plot`` call. For one-way partial dependence plots. contour_kw : dict, optional Dict with keywords passed to the ``matplotlib.pyplot.contourf`` call. For two-way partial dependence plots. ax : Matplotlib axes or array-like of Matplotlib axes, default=None - If a single axis is passed in, it is treated as a bounding axes and a grid of partial dependence plots will be drawn within these bounds. The `n_cols` parameter controls the number of columns in the grid. - If an array-like of axes are passed in, the partial dependence plots will be drawn directly into these axes. - If `None`, a figure and a bounding axes is created and treated as the single axes case. .. versionadded:: 0.22 Returns ------- display: :class:`~sklearn.inspection.PartialDependenceDisplay` Examples -------- >>> from sklearn.datasets import make_friedman1 >>> from sklearn.ensemble import GradientBoostingRegressor >>> X, y = make_friedman1() >>> clf = GradientBoostingRegressor(n_estimators=10).fit(X, y) >>> plot_partial_dependence(clf, X, [0, (0, 1)]) #doctest: +SKIP See also -------- sklearn.inspection.partial_dependence: Return raw partial dependence values Warnings -------- The 'recursion' method only works for gradient boosting estimators, and unlike the 'brute' method, it does not account for the ``init`` predictor of the boosting process. In practice this will produce the same values as 'brute' up to a constant offset in the target response, provided that ``init`` is a consant estimator (which is the default). However, as soon as ``init`` is not a constant estimator, the partial dependence values are incorrect for 'recursion'. This is not relevant for :class:`HistGradientBoostingClassifier <sklearn.ensemble.HistGradientBoostingClassifier>` and :class:`HistGradientBoostingRegressor <sklearn.ensemble.HistGradientBoostingRegressor>`, which do not have an ``init`` parameter. """ check_matplotlib_support('plot_partial_dependence') # noqa import matplotlib.pyplot as plt # noqa from matplotlib import transforms # noqa from matplotlib.ticker import MaxNLocator # noqa from matplotlib.ticker import ScalarFormatter # noqa # set target_idx for multi-class estimators if hasattr(estimator, 'classes_') and np.size(estimator.classes_) > 2: if target is None: raise ValueError('target must be specified for multi-class') target_idx = np.searchsorted(estimator.classes_, target) if (not (0 <= target_idx < len(estimator.classes_)) or estimator.classes_[target_idx] != target): raise ValueError('target not in est.classes_, got {}'.format( target)) else: # regression and binary classification target_idx = 0 # Use check_array only on lists and other non-array-likes / sparse. Do not # convert DataFrame into a NumPy array. if not(hasattr(X, '__array__') or sparse.issparse(X)): X = check_array(X, force_all_finite='allow-nan', dtype=np.object) n_features = X.shape[1] # convert feature_names to list if feature_names is None: if hasattr(X, "loc"): # get the column names for a pandas dataframe feature_names = X.columns.tolist() else: # define a list of numbered indices for a numpy array feature_names = [str(i) for i in range(n_features)] elif isinstance(feature_names, np.ndarray): feature_names = feature_names.tolist() if len(set(feature_names)) != len(feature_names): raise ValueError('feature_names should not contain duplicates.') def convert_feature(fx): if isinstance(fx, str): try: fx = feature_names.index(fx) except ValueError: raise ValueError('Feature %s not in feature_names' % fx) return int(fx) # convert features into a seq of int tuples tmp_features = [] for fxs in features: if isinstance(fxs, (numbers.Integral, str)): fxs = (fxs,) try: fxs = tuple(convert_feature(fx) for fx in fxs) except TypeError: raise ValueError('Each entry in features must be either an int, ' 'a string, or an iterable of size at most 2.') if not 1 <= np.size(fxs) <= 2: raise ValueError('Each entry in features must be either an int, ' 'a string, or an iterable of size at most 2.') tmp_features.append(fxs) features = tmp_features if isinstance(ax, list): if len(ax) != len(features): raise ValueError("Expected len(ax) == len(features), " "got len(ax) = {}".format(len(ax))) for i in chain.from_iterable(features): if i >= len(feature_names): raise ValueError('All entries of features must be less than ' 'len(feature_names) = {0}, got {1}.' .format(len(feature_names), i)) # compute averaged predictions pd_results = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(partial_dependence)(estimator, X, fxs, response_method=response_method, method=method, grid_resolution=grid_resolution, percentiles=percentiles) for fxs in features) # For multioutput regression, we can only check the validity of target # now that we have the predictions. # Also note: as multiclass-multioutput classifiers are not supported, # multiclass and multioutput scenario are mutually exclusive. So there is # no risk of overwriting target_idx here. avg_preds, _ = pd_results[0] # checking the first result is enough if is_regressor(estimator) and avg_preds.shape[0] > 1: if target is None: raise ValueError( 'target must be specified for multi-output regressors') if not 0 <= target <= avg_preds.shape[0]: raise ValueError( 'target must be in [0, n_tasks], got {}.'.format(target)) target_idx = target # get global min and max average predictions of PD grouped by plot type pdp_lim = {} for avg_preds, values in pd_results: min_pd = avg_preds[target_idx].min() max_pd = avg_preds[target_idx].max() n_fx = len(values) old_min_pd, old_max_pd = pdp_lim.get(n_fx, (min_pd, max_pd)) min_pd = min(min_pd, old_min_pd) max_pd = max(max_pd, old_max_pd) pdp_lim[n_fx] = (min_pd, max_pd) deciles = {} for fx in chain.from_iterable(features): if fx not in deciles: X_col = _safe_indexing(X, fx, axis=1) deciles[fx] = mquantiles(X_col, prob=np.arange(0.1, 1.0, 0.1)) if fig is not None: warnings.warn("The fig parameter is deprecated in version " "0.22 and will be removed in version 0.24", FutureWarning) fig.clear() ax = fig.gca() display = PartialDependenceDisplay(pd_results, features, feature_names, target_idx, pdp_lim, deciles) return display.plot(ax=ax, n_cols=n_cols, line_kw=line_kw, contour_kw=contour_kw)
9,425
def set_facts_for_distribution_id_and_alias(details, facts, distribution_id, aliases): facts[distribution_id].update(details) # also have a fixed key for accessing results/details returned facts['result'] = details facts['result']['DistributionId'] = distribution_id for alias in aliases: facts[alias].update(details) return facts
def set_facts_for_distribution_id_and_alias(details, facts, distribution_id, aliases): facts[distribution_id].update(details) # also have a fixed key for accessing results/details returned facts['result'] = details facts['result']['distribution_id'] = distribution_id for alias in aliases: facts[alias].update(details) return facts
40,534
def load_arguments(self, _): from azure.cli.core.commands.parameters import tags_type with self.argument_context('connectedk8s connect') as c: c.argument('tags', tags_type) c.argument('location', arg_type=get_location_type(self.cli_ctx), validator=get_default_location_from_resource_group) c.argument('cluster_name', options_list=['--name', '-n'], help='The name of the connected cluster.') c.argument('kube_config', options_list=['--kube-config'], help='Path to the kube config file.') c.argument('kube_context', options_list=['--kube-context'], help='Kubconfig context from current machine.') c.argument('https_proxy', options_list=['--proxy-https'], help='Https proxy URL to be used.') c.argument('http_proxy', options_list=['--proxy-http'], help='Http proxy URL to be used.') c.argument('no_proxy', options_list=['--proxy-skip-range'], help='List of URLs/CIDRs for which proxy should not to be used.') c.argument('proxy_cert', options_list=['--proxy-cert'], type=file_type, completer=FilesCompleter(), help='Path to the certificate file for proxy') with self.argument_context('connectedk8s update') as c: c.argument('cluster_name', options_list=['--name', '-n'], id_part='name', help='The name of the connected cluster.') c.argument('kube_config', options_list=['--kube-config'], help='Path to the kube config file.') c.argument('kube_context', options_list=['--kube-context'], help='Kubconfig context from current machine.') c.argument('https_proxy', options_list=['--proxy-https'], help='Https proxy URL to be used.') c.argument('http_proxy', options_list=['--proxy-http'], help='Http proxy URL to be used.') c.argument('no_proxy', options_list=['--proxy-skip-range'], help='List of URLs/CIDRs for which proxy should not to be used.') c.argument('proxy_cert', options_list=['--proxy-cert'], type=file_type, completer=FilesCompleter(), help='Path to the certificate file for proxy') c.argument('disable_proxy', options_list=['--disable-proxy'], action='store_true', help='Disables applying proxy to agents') with self.argument_context('connectedk8s list') as c: pass with self.argument_context('connectedk8s show') as c: c.argument('cluster_name', options_list=['--name', '-n'], id_part='name', help='The name of the connected cluster.') with self.argument_context('connectedk8s delete') as c: c.argument('cluster_name', options_list=['--name', '-n'], id_part='name', help='The name of the connected cluster.') c.argument('kube_config', options_list=['--kube-config'], help='Path to the kube config file.') c.argument('kube_context', options_list=['--kube-context'], help='Kubconfig context from current machine.')
def load_arguments(self, _): from azure.cli.core.commands.parameters import tags_type with self.argument_context('connectedk8s connect') as c: c.argument('tags', tags_type) c.argument('location', arg_type=get_location_type(self.cli_ctx), validator=get_default_location_from_resource_group) c.argument('cluster_name', options_list=['--name', '-n'], help='The name of the connected cluster.') c.argument('kube_config', options_list=['--kube-config'], help='Path to the kube config file.') c.argument('kube_context', options_list=['--kube-context'], help='Kubconfig context from current machine.') c.argument('https_proxy', options_list=['--proxy-https'], help='Https proxy URL to be used.') c.argument('http_proxy', options_list=['--proxy-http'], help='Http proxy URL to be used.') c.argument('no_proxy', options_list=['--proxy-skip-range'], help='List of URLs/CIDRs for which proxy should not to be used.') c.argument('proxy_cert', options_list=['--proxy-cert'], type=file_type, completer=FilesCompleter(), help='Path to the certificate file for proxy') with self.argument_context('connectedk8s update') as c: c.argument('cluster_name', options_list=['--name', '-n'], id_part='name', help='The name of the connected cluster.') c.argument('kube_config', options_list=['--kube-config'], help='Path to the kube config file.') c.argument('kube_context', options_list=['--kube-context'], help='Kubconfig context from current machine.') c.argument('https_proxy', options_list=['--proxy-https'], help='Https proxy URL to be used.') c.argument('http_proxy', options_list=['--proxy-http'], help='Http proxy URL to be used.') c.argument('no_proxy', options_list=['--proxy-skip-range'], help='List of URLs/CIDRs for which proxy should not to be used.') c.argument('proxy_cert', options_list=['--proxy-cert'], type=file_type, completer=FilesCompleter(), help='Path to the certificate file for proxy') c.argument('disable_proxy', options_list=['--disable-proxy'], action='store_true', help='Disables proxy settings for agents') with self.argument_context('connectedk8s list') as c: pass with self.argument_context('connectedk8s show') as c: c.argument('cluster_name', options_list=['--name', '-n'], id_part='name', help='The name of the connected cluster.') with self.argument_context('connectedk8s delete') as c: c.argument('cluster_name', options_list=['--name', '-n'], id_part='name', help='The name of the connected cluster.') c.argument('kube_config', options_list=['--kube-config'], help='Path to the kube config file.') c.argument('kube_context', options_list=['--kube-context'], help='Kubconfig context from current machine.')
20,561
def main(argv=None): # Ensure that the "-list-labels" argument is always parsed last. That way, if `-f` is passed, then `-list-labels` # will see the new location and look there. (https://github.com/spinalcordtoolbox/spinalcordtoolbox/issues/3634) if "-list-labels" in argv: argv.append(argv.pop(argv.index("-list-labels"))) parser = get_parser() arguments = parser.parse_args(argv) verbose = arguments.v set_loglevel(verbose=verbose) param_default = Param() fname_data = get_absolute_path(arguments.i) path_label = arguments.f method = arguments.method fname_output = arguments.o append_csv = arguments.append combine_labels = arguments.combine labels_user = arguments.l slices = parse_num_list(arguments.z) levels = parse_num_list(arguments.vert) fname_vertebral_labeling = arguments.vertfile perslice = arguments.perslice perlevel = arguments.perlevel # check if path_label is a file (e.g., single binary mask) instead of a folder (e.g., SCT atlas structure which # contains info_label.txt file) if os.path.isfile(path_label): # Label is a single file indiv_labels_ids = [0] indiv_labels_files = [path_label] combined_labels_ids = [] label_struc = {0: LabelStruc(id=0, name=extract_fname(path_label)[1], filename=path_label)} # set path_label to empty string, because indiv_labels_files will replace it from now on path_label = '' elif os.path.isdir(path_label): # Labels is an SCT atlas folder structure # Parse labels according to the file info_label.txt # Note: the "combined_labels_*" is a list of single labels that are defined in the section defined by the keyword # "# Keyword=CombinedLabels" in info_label.txt. # TODO: redirect to appropriate Sphinx documentation # TODO: output Class instead of multiple variables. # Example 1: # label_struc[2].id = (2) # label_struc[2].name = "left fasciculus cuneatus" # label_struc[2].filename = "PAM50_atlas_02.nii.gz" # Example 2: # label_struc[51].id = (1, 2, 3, ..., 29) # label_struc[51].name = "White Matter" # label_struc[51].filename = "" # no name because it is combined indiv_labels_ids, indiv_labels_names, indiv_labels_files, \ combined_labels_ids, combined_labels_names, combined_labels_id_groups, map_clusters \ = read_label_file(path_label, param_default.file_info_label) label_struc = {} # fill IDs for indiv labels for i_label in range(len(indiv_labels_ids)): label_struc[indiv_labels_ids[i_label]] = LabelStruc(id=indiv_labels_ids[i_label], name=indiv_labels_names[i_label], filename=indiv_labels_files[i_label], map_cluster=[indiv_labels_ids[i_label] in map_cluster for map_cluster in map_clusters].index(True)) # fill IDs for combined labels # TODO: problem for defining map_cluster: if labels overlap two regions, e.g. WM and GM (e.g. id=50), # map_cluster will take value 0, which is wrong. for i_label in range(len(combined_labels_ids)): label_struc[combined_labels_ids[i_label]] = LabelStruc(id=combined_labels_id_groups[i_label], name=combined_labels_names[i_label], map_cluster=[indiv_labels_ids[i_label] in map_cluster for map_cluster in map_clusters].index(True)) else: raise RuntimeError(path_label + ' does not exist') # check syntax of labels asked by user labels_id_user = check_labels(indiv_labels_ids + combined_labels_ids, parse_num_list(labels_user)) nb_labels = len(indiv_labels_files) # Load data and systematically reorient to RPI because we need the 3rd dimension to be z printv('\nLoad metric image...', verbose) input_im = Image(fname_data).change_orientation("RPI") data = Metric(data=input_im.data, label='') # Load labels labels_tmp = np.empty([nb_labels], dtype=object) for i_label in range(nb_labels): im_label = Image(os.path.join(path_label, indiv_labels_files[i_label])).change_orientation("RPI") labels_tmp[i_label] = np.expand_dims(im_label.data, 3) # TODO: generalize to 2D input label labels = np.concatenate(labels_tmp[:], 3) # labels: (x,y,z,label) # Load vertebral levels if not levels: fname_vertebral_labeling = None # Get dimensions of data and labels nx, ny, nz = data.data.shape nx_atlas, ny_atlas, nz_atlas, nt_atlas = labels.shape # Check dimensions consistency between atlas and data if (nx, ny, nz) != (nx_atlas, ny_atlas, nz_atlas): printv('\nERROR: Metric data and labels DO NOT HAVE SAME DIMENSIONS.', 1, type='error') # Combine individual labels for estimation if combine_labels: # Add entry with internal ID value (99) which corresponds to combined labels label_struc[99] = LabelStruc(id=labels_id_user, name=','.join([str(i) for i in labels_id_user]), map_cluster=None) labels_id_user = [99] for id_label in labels_id_user: printv('Estimation for label: ' + label_struc[id_label].name, verbose) agg_metric = extract_metric(data, labels=labels, slices=slices, levels=levels, perslice=perslice, perlevel=perlevel, vert_level=fname_vertebral_labeling, method=method, label_struc=label_struc, id_label=id_label, indiv_labels_ids=indiv_labels_ids) save_as_csv(agg_metric, fname_output, fname_in=fname_data, append=append_csv) append_csv = True # when looping across labels, need to append results in the same file display_open(fname_output)
def main(argv=None): # Ensure that the "-list-labels" argument is always parsed last. That way, if `-f` is passed, then `-list-labels` # will see the new location and look there. (https://github.com/spinalcordtoolbox/spinalcordtoolbox/issues/3634) if argv is not None and "-list-labels" in argv: argv.append(argv.pop(argv.index("-list-labels"))) parser = get_parser() arguments = parser.parse_args(argv) verbose = arguments.v set_loglevel(verbose=verbose) param_default = Param() fname_data = get_absolute_path(arguments.i) path_label = arguments.f method = arguments.method fname_output = arguments.o append_csv = arguments.append combine_labels = arguments.combine labels_user = arguments.l slices = parse_num_list(arguments.z) levels = parse_num_list(arguments.vert) fname_vertebral_labeling = arguments.vertfile perslice = arguments.perslice perlevel = arguments.perlevel # check if path_label is a file (e.g., single binary mask) instead of a folder (e.g., SCT atlas structure which # contains info_label.txt file) if os.path.isfile(path_label): # Label is a single file indiv_labels_ids = [0] indiv_labels_files = [path_label] combined_labels_ids = [] label_struc = {0: LabelStruc(id=0, name=extract_fname(path_label)[1], filename=path_label)} # set path_label to empty string, because indiv_labels_files will replace it from now on path_label = '' elif os.path.isdir(path_label): # Labels is an SCT atlas folder structure # Parse labels according to the file info_label.txt # Note: the "combined_labels_*" is a list of single labels that are defined in the section defined by the keyword # "# Keyword=CombinedLabels" in info_label.txt. # TODO: redirect to appropriate Sphinx documentation # TODO: output Class instead of multiple variables. # Example 1: # label_struc[2].id = (2) # label_struc[2].name = "left fasciculus cuneatus" # label_struc[2].filename = "PAM50_atlas_02.nii.gz" # Example 2: # label_struc[51].id = (1, 2, 3, ..., 29) # label_struc[51].name = "White Matter" # label_struc[51].filename = "" # no name because it is combined indiv_labels_ids, indiv_labels_names, indiv_labels_files, \ combined_labels_ids, combined_labels_names, combined_labels_id_groups, map_clusters \ = read_label_file(path_label, param_default.file_info_label) label_struc = {} # fill IDs for indiv labels for i_label in range(len(indiv_labels_ids)): label_struc[indiv_labels_ids[i_label]] = LabelStruc(id=indiv_labels_ids[i_label], name=indiv_labels_names[i_label], filename=indiv_labels_files[i_label], map_cluster=[indiv_labels_ids[i_label] in map_cluster for map_cluster in map_clusters].index(True)) # fill IDs for combined labels # TODO: problem for defining map_cluster: if labels overlap two regions, e.g. WM and GM (e.g. id=50), # map_cluster will take value 0, which is wrong. for i_label in range(len(combined_labels_ids)): label_struc[combined_labels_ids[i_label]] = LabelStruc(id=combined_labels_id_groups[i_label], name=combined_labels_names[i_label], map_cluster=[indiv_labels_ids[i_label] in map_cluster for map_cluster in map_clusters].index(True)) else: raise RuntimeError(path_label + ' does not exist') # check syntax of labels asked by user labels_id_user = check_labels(indiv_labels_ids + combined_labels_ids, parse_num_list(labels_user)) nb_labels = len(indiv_labels_files) # Load data and systematically reorient to RPI because we need the 3rd dimension to be z printv('\nLoad metric image...', verbose) input_im = Image(fname_data).change_orientation("RPI") data = Metric(data=input_im.data, label='') # Load labels labels_tmp = np.empty([nb_labels], dtype=object) for i_label in range(nb_labels): im_label = Image(os.path.join(path_label, indiv_labels_files[i_label])).change_orientation("RPI") labels_tmp[i_label] = np.expand_dims(im_label.data, 3) # TODO: generalize to 2D input label labels = np.concatenate(labels_tmp[:], 3) # labels: (x,y,z,label) # Load vertebral levels if not levels: fname_vertebral_labeling = None # Get dimensions of data and labels nx, ny, nz = data.data.shape nx_atlas, ny_atlas, nz_atlas, nt_atlas = labels.shape # Check dimensions consistency between atlas and data if (nx, ny, nz) != (nx_atlas, ny_atlas, nz_atlas): printv('\nERROR: Metric data and labels DO NOT HAVE SAME DIMENSIONS.', 1, type='error') # Combine individual labels for estimation if combine_labels: # Add entry with internal ID value (99) which corresponds to combined labels label_struc[99] = LabelStruc(id=labels_id_user, name=','.join([str(i) for i in labels_id_user]), map_cluster=None) labels_id_user = [99] for id_label in labels_id_user: printv('Estimation for label: ' + label_struc[id_label].name, verbose) agg_metric = extract_metric(data, labels=labels, slices=slices, levels=levels, perslice=perslice, perlevel=perlevel, vert_level=fname_vertebral_labeling, method=method, label_struc=label_struc, id_label=id_label, indiv_labels_ids=indiv_labels_ids) save_as_csv(agg_metric, fname_output, fname_in=fname_data, append=append_csv) append_csv = True # when looping across labels, need to append results in the same file display_open(fname_output)
17,455
def unify_chunks(*objects: "T_DSorDA") -> Tuple["T_DSorDA", ...]: """ Given any number of Dataset and/or DataArray objects, returns new objects with unified chunk size along all chunked dimensions. Returns ------- unified (DataArray or Dataset) – Tuple of objects with the same type as *objects with consistent chunk sizes for all dask-array variables See Also -------- dask.array.core.unify_chunks """ from .dataarray import DataArray # Convert chunked dataarrays to datasets datasets = [] are_chunked = [] for i, obj in enumerate(objects): ds = obj._to_temp_dataset() if isinstance(obj, DataArray) else obj.copy() datasets.append(ds) try: are_chunked.append(True if obj.chunks else False) except ValueError: # "inconsistent chunks" are_chunked.append(True) # Return input objects if no object is chunked if not any(are_chunked): return objects # Unify chunks using dask.array.core.unify_chunks import dask.array dask_unify_args = [] for ds, is_chunked in zip(datasets, are_chunked): if not is_chunked: continue dims_pos_map = {dim: index for index, dim in enumerate(ds.dims)} for variable in ds.variables.values(): if isinstance(variable.data, dask.array.Array): dims_tuple = [dims_pos_map[dim] for dim in variable.dims] dask_unify_args.append(variable.data) dask_unify_args.append(dims_tuple) _, rechunked_arrays = dask.array.core.unify_chunks(*dask_unify_args) # Substitute rechunked variables unified = [] rechunked_arrays = list(rechunked_arrays) for obj, ds, is_chunked in zip(objects, datasets, are_chunked): if not is_chunked: unified.append(obj) else: for name, variable in ds.variables.items(): if isinstance(variable.data, dask.array.Array): ds.variables[name]._data = rechunked_arrays.pop(0) unified.append( obj._from_temp_dataset(ds) if isinstance(obj, DataArray) else ds ) return tuple(unified)
def unify_chunks(*objects: "T_DSorDA") -> Tuple["T_DSorDA", ...]: """ Given any number of Dataset and/or DataArray objects, returns new objects with unified chunk size along all chunked dimensions. Returns ------- unified (DataArray or Dataset) – Tuple of objects with the same type as *objects with consistent chunk sizes for all dask-array variables See Also -------- dask.array.core.unify_chunks """ from .dataarray import DataArray # Convert chunked dataarrays to datasets datasets = [] are_chunked = [] for i, obj in enumerate(objects): ds = obj._to_temp_dataset() if isinstance(obj, DataArray) else obj.copy() datasets.append(ds) try: are_chunked.append(True if obj.chunks else False) except ValueError: # "inconsistent chunks" are_chunked.append(True) # Return input objects if no object is chunked if not any(are_chunked): return objects # Unify chunks using dask.array.core.unify_chunks import dask.array as da dask_unify_args = [] for ds, is_chunked in zip(datasets, are_chunked): if not is_chunked: continue dims_pos_map = {dim: index for index, dim in enumerate(ds.dims)} for variable in ds.variables.values(): if isinstance(variable.data, dask.array.Array): dims_tuple = [dims_pos_map[dim] for dim in variable.dims] dask_unify_args.append(variable.data) dask_unify_args.append(dims_tuple) _, rechunked_arrays = dask.array.core.unify_chunks(*dask_unify_args) # Substitute rechunked variables unified = [] rechunked_arrays = list(rechunked_arrays) for obj, ds, is_chunked in zip(objects, datasets, are_chunked): if not is_chunked: unified.append(obj) else: for name, variable in ds.variables.items(): if isinstance(variable.data, dask.array.Array): ds.variables[name]._data = rechunked_arrays.pop(0) unified.append( obj._from_temp_dataset(ds) if isinstance(obj, DataArray) else ds ) return tuple(unified)
31,357
def list_persons_command(client: Client, args: Dict[str, Any]) -> CommandResults: """Get persons list from TOPdesk""" persons = client.get_list_with_query(list_type="persons", start=args.get('start', None), page_size=args.get('page_size', None), query=args.get('query', None)) if len(persons) == 0: return CommandResults(readable_output='No persons found') headers = ['id', 'name', 'telephone', 'job title', 'department', 'city', 'branch name', 'room'] readable_persons = [] for person in persons: readable_person = { 'id': person.get('id', None), 'name': person.get('dynamicName', None), 'telephone': person.get('phoneNumber', None), 'job title': person.get('jobTitle', None), 'department': person.get('department', None), 'city': person.get('city', None), 'branch name': replace_none(person.get('branch', {}), {}).get('name', None), 'room': None } if person.get('location', None): readable_person['room'] = person.get('location', None).get('room', None) readable_persons.append(readable_person) readable_output = tableToMarkdown(f'{INTEGRATION_NAME} persons', readable_persons, headers=headers, removeNull=True) return CommandResults( readable_output=readable_output, outputs_prefix=f'{INTEGRATION_NAME}.person', outputs_key_field='id', outputs=persons )
def list_persons_command(client: Client, args: Dict[str, Any]) -> CommandResults: """Get persons list from TOPdesk""" persons = client.get_list_with_query(list_type="persons", start=args.get('start', None), page_size=args.get('page_size', None), query=args.get('query', None)) if len(persons) == 0: return CommandResults(readable_output='No persons found') headers = ['id', 'name', 'telephone', 'job title', 'department', 'city', 'branch name', 'room'] readable_persons = [] for person in persons: readable_person = { 'id': person.get('id', None), 'name': person.get('dynamicName', None), 'telephone': person.get('phoneNumber', None), 'job title': person.get('jobTitle', None), 'department': person.get('department', None), 'city': person.get('city', None), 'branch name': replace_none(person.get('branch', {}), {}).get('name', None), 'room': None } if person.get('location', None): readable_person['room'] = person.get('location', None).get('room', None) readable_persons.append(readable_person) readable_output = tableToMarkdown(f'{INTEGRATION_NAME} persons', readable_persons, headers=headers, removeNull=True) return CommandResults( readable_output=readable_output, outputs_prefix=f'{INTEGRATION_NAME}.Person', outputs_key_field='id', outputs=persons )
35,049
def test_command(args): user_box_dir = os.path.join(THIS_DIR, args.platform) base_box_dir = os.path.join(THIS_DIR, args.platform, "base-box") test_config_file = os.path.join(base_box_dir, "test-config.json") with open(test_config_file) as f: test_config = json.load(f) # select microTVM test platform microtvm_test_platform = test_config[args.microtvm_platform] for key, expected_type in REQUIRED_TEST_CONFIG_KEYS.items(): assert key in microtvm_test_platform and isinstance( microtvm_test_platform[key], expected_type ), f"Expected key {key} of type {expected_type} in {test_config_file}: {test_config!r}" microtvm_test_platform["vid_hex"] = microtvm_test_platform["vid_hex"].lower() microtvm_test_platform["pid_hex"] = microtvm_test_platform["pid_hex"].lower() microtvm_test_platform["microtvm_platform"] = args.microtvm_platform providers = args.provider release_test_dir = os.path.join(THIS_DIR, "release-test") if args.skip_build or args.skip_destroy: assert ( len(providers) == 1 ), "--skip-build and/or --skip_destroy was given, but >1 provider specified" test_failed = False for provider_name in providers: try: if not args.skip_build: do_build_release_test_vm( release_test_dir, user_box_dir, base_box_dir, provider_name ) do_run_release_test( release_test_dir, provider_name, microtvm_test_platform, args.test_device_serial ) except subprocess.CalledProcessError: test_failed = True sys.exit( f"\n\nERROR: Provider '{provider_name}' failed the release test. " "You can re-run it to reproduce the issue without building everything " "again by passing the --skip-build and specifying only the provider that failed. " "The VM is still running in case you want to connect it via SSH to " "investigate further the issue, thus it's necessary to destroy it manually " "to release the resources back to the host, like a USB device attached to the VM." ) finally: # if we reached out here do_run_release_test() succeeded, hence we can # destroy the VM and release the resources back to the host if user haven't # requested to not destroy it. if not (args.skip_destroy or test_failed): subprocess.check_call(["vagrant", "destroy", "-f"], cwd=release_test_dir) shutil.rmtree(release_test_dir) print(f'\n\nThe release tests passed on all specified providers: {", ".join(providers)}.')
def test_command(args): user_box_dir = os.path.join(THIS_DIR, args.platform) base_box_dir = os.path.join(THIS_DIR, args.platform, "base-box") test_config_file = os.path.join(base_box_dir, "test-config.json") with open(test_config_file) as f: test_config = json.load(f) # select microTVM test platform microtvm_test_platform = test_config[args.microtvm_platform] for key, expected_type in REQUIRED_TEST_CONFIG_KEYS.items(): assert key in microtvm_test_platform and isinstance( microtvm_test_platform[key], expected_type ), f"Expected key {key} of type {expected_type} in {test_config_file}: {test_config!r}" microtvm_test_platform["vid_hex"] = microtvm_test_platform["vid_hex"].lower() microtvm_test_platform["pid_hex"] = microtvm_test_platform["pid_hex"].lower() microtvm_test_platform["microtvm_platform"] = args.microtvm_platform providers = args.provider release_test_dir = os.path.join(THIS_DIR, "release-test") if args.skip_build or args.skip_destroy: assert ( len(providers) == 1 ), "--skip-build and/or --skip-destroy was given, but >1 provider specified" test_failed = False for provider_name in providers: try: if not args.skip_build: do_build_release_test_vm( release_test_dir, user_box_dir, base_box_dir, provider_name ) do_run_release_test( release_test_dir, provider_name, microtvm_test_platform, args.test_device_serial ) except subprocess.CalledProcessError: test_failed = True sys.exit( f"\n\nERROR: Provider '{provider_name}' failed the release test. " "You can re-run it to reproduce the issue without building everything " "again by passing the --skip-build and specifying only the provider that failed. " "The VM is still running in case you want to connect it via SSH to " "investigate further the issue, thus it's necessary to destroy it manually " "to release the resources back to the host, like a USB device attached to the VM." ) finally: # if we reached out here do_run_release_test() succeeded, hence we can # destroy the VM and release the resources back to the host if user haven't # requested to not destroy it. if not (args.skip_destroy or test_failed): subprocess.check_call(["vagrant", "destroy", "-f"], cwd=release_test_dir) shutil.rmtree(release_test_dir) print(f'\n\nThe release tests passed on all specified providers: {", ".join(providers)}.')
43,333
def test_gcn_lstm_activations(): fx, fy, a = get_timeseries_graph_data() gcn_lstm_model = GraphConvolutionLSTM( seq_len=fx.shape[-2], adj=a, gc_layers=5, lstm_layer_size=[8, 16, 32, 64], ) assert gcn_lstm_model.gc_activations == ["relu", "relu", "relu", "relu", "relu"] assert gcn_lstm_model.lstm_activations == ["tanh", "tanh", "tanh", "tanh"] with pytest.raises(ValueError): # More regularisers than layers gcn_lstm_model = GraphConvolutionLSTM( seq_len=fx.shape[-2], adj=a, gc_layers=2, gc_activations=["relu"], lstm_layer_size=[8, 16, 32, 64], ) with pytest.raises(ValueError): # More regularisers than layers gcn_lstm_model = GraphConvolutionLSTM( seq_len=fx.shape[-2], adj=a, gc_layers=1, gc_activations=["relu"], lstm_layer_size=[32], lstm_activations=["tanh", "tanh"], )
def test_gcn_lstm_activations(): fx, fy, a = get_timeseries_graph_data() gcn_lstm_model = GraphConvolutionLSTM( seq_len=fx.shape[-2], adj=a, gc_layers=5, lstm_layer_size=[8, 16, 32, 64], ) assert gcn_lstm_model.gc_activations == ["relu", "relu", "relu", "relu", "relu"] assert gcn_lstm_model.lstm_activations == ["tanh", "tanh", "tanh", "tanh"] with pytest.raises(ValueError, match="Invalid number of activations.* graph convolution layer"): # More regularisers than layers gcn_lstm_model = GraphConvolutionLSTM( seq_len=fx.shape[-2], adj=a, gc_layers=2, gc_activations=["relu"], lstm_layer_size=[8, 16, 32, 64], ) with pytest.raises(ValueError): # More regularisers than layers gcn_lstm_model = GraphConvolutionLSTM( seq_len=fx.shape[-2], adj=a, gc_layers=1, gc_activations=["relu"], lstm_layer_size=[32], lstm_activations=["tanh", "tanh"], )
32,409
def generate_dbotscore(response: Dict) -> List: """Creates CommandResult object based on the contents of 'response' argument and provides DBotScore objects. Parameters ---------- response : dict Object returned by ANYRUN API call in 'get_report' function. Returns ------- List A list of CommandResults objects. """ data = response.get('data', {}) analysis = data.get('analysis', {}) main_object = analysis.get('content', {}).get('mainObject', {}) submission_type = main_object.get('type') submission_type = 'hash' if submission_type in {'file', 'download'} else submission_type threat_text = analysis.get('scores', {}).get('verdict', {}).get('threatLevelText', '').casefold() reputation_map = { "shared": Common.DBotScore.NONE, "unknown": Common.DBotScore.NONE, "whitelisted": Common.DBotScore.GOOD, "malicious": Common.DBotScore.BAD, "suspicious": Common.DBotScore.SUSPICIOUS } returned_data = [] main_entity = None main_entity_type = None # Add the hash or URL first if submission_type == 'hash': hashes = main_object.get('hashes', {}) info = main_object.get('info', {}) file_type = info.get('file') exif = info.get('exif', {}) main_entity = hashes.get('sha256') or hashes.get('sha1') or hashes.get('md5') main_entity_type = FeedIndicatorType.File dbot_score = Common.DBotScore( indicator=hashes.get('sha256') or hashes.get('sha1') or hashes.get('md5'), indicator_type=DBotScoreType.FILE, integration_name='ANYRUN', score=THREAT_TEXT_TO_DBOTSCORE.get(threat_text) or Common.DBotScore.NONE ) returned_data.append(CommandResults( indicator=Common.File( dbot_score=dbot_score, md5=hashes.get('md5'), sha1=hashes.get('sha1'), sha256=hashes.get('sha256'), file_type=file_type, associated_file_names=exif.get('OriginalFileName') ) )) else: main_entity = main_object.get('url') main_entity_type = FeedIndicatorType.URL url_outputs = { 'Data': main_object.get('url') } dbot_score = Common.DBotScore( indicator=main_object.get('url'), indicator_type=DBotScoreType.URL, integration_name='ANYRUN', score=THREAT_TEXT_TO_DBOTSCORE.get(threat_text) or Common.DBotScore.NONE ) if dbot_score.score >= 2: url_outputs['Malicious'] = { 'Vendor': 'ANYRUN', 'Description': threat_text } returned_data.append(CommandResults( outputs_prefix='URL', outputs_key_field=['Data'], outputs=url_outputs, indicator=Common.URL( url=main_object.get('url'), dbot_score=dbot_score, ) )) # Check if network information is available in the report if 'network' in data: network_data = data.get('network') # Then add all the network-related indicators - 'connections' if 'connections' in network_data: connections = network_data.get('connections') for current_connection in connections: reputation = current_connection.get('Reputation') if reputation in reputation_map.keys(): current_dbot_score = Common.DBotScore( indicator=current_connection.get('IP'), indicator_type=DBotScoreType.IP, integration_name='ANYRUN', score=reputation_map[reputation] ) relationships = [EntityRelationship( name=EntityRelationship.Relationships.COMMUNICATED_WITH, entity_a=main_entity, entity_a_type=main_entity_type, entity_b=current_connection.get('IP'), entity_b_type=FeedIndicatorType.IP, brand="ANYRUN" )] ip_indicator = Common.IP( ip=current_connection.get('IP'), asn=current_connection.get('ASN'), port=current_connection.get('Port'), geo_country=current_connection.get('Country'), dbot_score=current_dbot_score, relationships=relationships ) if current_connection.get('IP') not in [ x.indicator.ip for x in returned_data if isinstance(x.indicator, Common.IP) ]: returned_data.append(CommandResults( readable_output=tableToMarkdown( f"{current_connection.get('IP')}", [{ "Description": f"This IP was observed after detonation of {main_entity} in ANYRUN" }] ), indicator=ip_indicator, relationships=relationships )) # Then add all the network-related indicators - 'dnsRequests' if 'dnsRequests' in network_data: for current_dnsRequests in network_data.get('dnsRequests'): reputation = current_dnsRequests.get('Reputation') if reputation in reputation_map.keys(): current_dbot_score = Common.DBotScore( indicator=current_dnsRequests.get('Domain'), indicator_type=DBotScoreType.DOMAIN, integration_name='ANYRUN', score=reputation_map[reputation] ) relationships = [EntityRelationship( name=EntityRelationship.Relationships.COMMUNICATED_WITH, entity_a=main_entity, entity_a_type=main_entity_type, entity_b=current_dnsRequests.get('Domain'), entity_b_type=FeedIndicatorType.Domain, brand="ANYRUN" )] if "IP" in current_dnsRequests: for ip in current_dnsRequests.get('IP', []): relationships.append( EntityRelationship( name=EntityRelationship.Relationships.RESOLVES_TO, entity_a=current_dnsRequests.get('Domain'), entity_a_type=FeedIndicatorType.Domain, entity_b=ip, entity_b_type=FeedIndicatorType.IP ) ) domain_ip_dbot_score = Common.DBotScore( indicator=ip, indicator_type=DBotScoreType.IP, integration_name="ANYRUN", score=Common.DBotScore.NONE ) domain_ip_indicator = Common.IP( ip=ip, dbot_score=domain_ip_dbot_score ) returned_data.append(CommandResults( indicator=domain_ip_indicator, readable_output=tableToMarkdown( f"{ip}", [{ "Description": f"This IP was resovled from {current_dnsRequests.get('Domain')}" }] ) )) domain_indicator = Common.Domain( domain=current_dnsRequests.get('Domain'), dbot_score=current_dbot_score, relationships=relationships ) if current_dnsRequests.get('Domain') not in [ x.indicator.domain for x in returned_data if isinstance(x.indicator, Common.Domain) ]: returned_data.append(CommandResults( readable_output=tableToMarkdown( f"{current_dnsRequests.get('Domain')}", [{ "Description": f"This domain was observed after detonation of {main_entity} in ANYRUN" }] ), indicator=domain_indicator, relationships=relationships )) # Then add all the network-related indicators - 'httpRequests' if 'httpRequests' in network_data: for current_httpRequests in network_data.get('httpRequests'): reputation = current_httpRequests['Reputation'] if reputation in reputation_map.keys(): current_dbot_score = Common.DBotScore( indicator=current_httpRequests.get('URL'), indicator_type=DBotScoreType.URL, integration_name='ANYRUN', score=reputation_map[reputation] ) relationships = [EntityRelationship( name=EntityRelationship.Relationships.COMMUNICATED_WITH, entity_a=main_entity, entity_a_type=main_entity_type, entity_b=current_httpRequests.get('URL'), entity_b_type=FeedIndicatorType.URL, brand="ANYRUN" )] url_indicator = Common.URL( url=current_httpRequests.get('URL'), geo_country=current_httpRequests.get('Country'), port=current_httpRequests.get('Port'), dbot_score=current_dbot_score, relationships=relationships ) if current_httpRequests.get('URL') not in [ x.indicator.url for x in returned_data if isinstance(x.indicator, Common.URL) ]: returned_data.append(CommandResults( readable_output=tableToMarkdown( f"{current_httpRequests.get('URL')}", [{ "Description": f"This URL was observed after detonation of {main_entity} in ANYRUN" }] ), indicator=url_indicator, relationships=relationships )) if 'mitre' in data: mitre_data = data.get('mitre') for item in mitre_data: relationships = [EntityRelationship( name=EntityRelationship.Relationships.RELATED_TO, entity_a=main_entity, entity_a_type=main_entity_type, entity_b=item.get('name'), entity_b_type='Attack Pattern' )] attack_indicator = Common.AttackPattern( stix_id=None, value=item.get('name'), mitre_id=item.get('id') ) returned_data.append(CommandResults( readable_output=tableToMarkdown( f"{item.get('name')}", [{ "Description": f"This Attack Pattern was observed after detonation of {main_entity} in ANYRUN" }] ), indicator=attack_indicator, relationships=relationships )) return returned_data
def generate_dbotscore(response: Dict) -> List: """Creates CommandResult object based on the contents of 'response' argument and provides DBotScore objects. Parameters ---------- response : dict Object returned by ANYRUN API call in 'get_report' function. Returns ------- List A list of CommandResults objects. """ data = response.get('data', {}) analysis = data.get('analysis', {}) main_object = analysis.get('content', {}).get('mainObject', {}) submission_type = main_object.get('type') submission_type = 'hash' if submission_type in {'file', 'download'} else submission_type threat_text = analysis.get('scores', {}).get('verdict', {}).get('threatLevelText', '').casefold() reputation_map = { "shared": Common.DBotScore.NONE, "unknown": Common.DBotScore.NONE, "whitelisted": Common.DBotScore.GOOD, "malicious": Common.DBotScore.BAD, "suspicious": Common.DBotScore.SUSPICIOUS } returned_data = [] main_entity = None main_entity_type = None # Add the hash or URL first if submission_type == 'hash': hashes = main_object.get('hashes', {}) info = main_object.get('info', {}) file_type = info.get('file') exif = info.get('exif', {}) main_entity = hashes.get('sha256') or hashes.get('sha1') or hashes.get('md5') main_entity_type = FeedIndicatorType.File dbot_score = Common.DBotScore( indicator=hashes.get('sha256') or hashes.get('sha1') or hashes.get('md5'), indicator_type=DBotScoreType.FILE, integration_name='ANYRUN', score=THREAT_TEXT_TO_DBOTSCORE.get(threat_text) or Common.DBotScore.NONE ) returned_data.append(CommandResults( indicator=Common.File( dbot_score=dbot_score, md5=hashes.get('md5'), sha1=hashes.get('sha1'), sha256=hashes.get('sha256'), file_type=file_type, associated_file_names=exif.get('OriginalFileName') ) )) else: main_entity = main_object.get('url') main_entity_type = FeedIndicatorType.URL url_outputs = { 'Data': main_object.get('url') } dbot_score = Common.DBotScore( indicator=main_object.get('url'), indicator_type=DBotScoreType.URL, integration_name='ANYRUN', score=THREAT_TEXT_TO_DBOTSCORE.get(threat_text) or Common.DBotScore.NONE ) if dbot_score.score >= 2: url_outputs['Malicious'] = { 'Vendor': 'ANYRUN', 'Description': threat_text } returned_data.append(CommandResults( outputs_prefix='URL', outputs_key_field=['Data'], outputs=url_outputs, indicator=Common.URL( url=main_entity, dbot_score=dbot_score, ) )) # Check if network information is available in the report if 'network' in data: network_data = data.get('network') # Then add all the network-related indicators - 'connections' if 'connections' in network_data: connections = network_data.get('connections') for current_connection in connections: reputation = current_connection.get('Reputation') if reputation in reputation_map.keys(): current_dbot_score = Common.DBotScore( indicator=current_connection.get('IP'), indicator_type=DBotScoreType.IP, integration_name='ANYRUN', score=reputation_map[reputation] ) relationships = [EntityRelationship( name=EntityRelationship.Relationships.COMMUNICATED_WITH, entity_a=main_entity, entity_a_type=main_entity_type, entity_b=current_connection.get('IP'), entity_b_type=FeedIndicatorType.IP, brand="ANYRUN" )] ip_indicator = Common.IP( ip=current_connection.get('IP'), asn=current_connection.get('ASN'), port=current_connection.get('Port'), geo_country=current_connection.get('Country'), dbot_score=current_dbot_score, relationships=relationships ) if current_connection.get('IP') not in [ x.indicator.ip for x in returned_data if isinstance(x.indicator, Common.IP) ]: returned_data.append(CommandResults( readable_output=tableToMarkdown( f"{current_connection.get('IP')}", [{ "Description": f"This IP was observed after detonation of {main_entity} in ANYRUN" }] ), indicator=ip_indicator, relationships=relationships )) # Then add all the network-related indicators - 'dnsRequests' if 'dnsRequests' in network_data: for current_dnsRequests in network_data.get('dnsRequests'): reputation = current_dnsRequests.get('Reputation') if reputation in reputation_map.keys(): current_dbot_score = Common.DBotScore( indicator=current_dnsRequests.get('Domain'), indicator_type=DBotScoreType.DOMAIN, integration_name='ANYRUN', score=reputation_map[reputation] ) relationships = [EntityRelationship( name=EntityRelationship.Relationships.COMMUNICATED_WITH, entity_a=main_entity, entity_a_type=main_entity_type, entity_b=current_dnsRequests.get('Domain'), entity_b_type=FeedIndicatorType.Domain, brand="ANYRUN" )] if "IP" in current_dnsRequests: for ip in current_dnsRequests.get('IP', []): relationships.append( EntityRelationship( name=EntityRelationship.Relationships.RESOLVES_TO, entity_a=current_dnsRequests.get('Domain'), entity_a_type=FeedIndicatorType.Domain, entity_b=ip, entity_b_type=FeedIndicatorType.IP ) ) domain_ip_dbot_score = Common.DBotScore( indicator=ip, indicator_type=DBotScoreType.IP, integration_name="ANYRUN", score=Common.DBotScore.NONE ) domain_ip_indicator = Common.IP( ip=ip, dbot_score=domain_ip_dbot_score ) returned_data.append(CommandResults( indicator=domain_ip_indicator, readable_output=tableToMarkdown( f"{ip}", [{ "Description": f"This IP was resovled from {current_dnsRequests.get('Domain')}" }] ) )) domain_indicator = Common.Domain( domain=current_dnsRequests.get('Domain'), dbot_score=current_dbot_score, relationships=relationships ) if current_dnsRequests.get('Domain') not in [ x.indicator.domain for x in returned_data if isinstance(x.indicator, Common.Domain) ]: returned_data.append(CommandResults( readable_output=tableToMarkdown( f"{current_dnsRequests.get('Domain')}", [{ "Description": f"This domain was observed after detonation of {main_entity} in ANYRUN" }] ), indicator=domain_indicator, relationships=relationships )) # Then add all the network-related indicators - 'httpRequests' if 'httpRequests' in network_data: for current_httpRequests in network_data.get('httpRequests'): reputation = current_httpRequests['Reputation'] if reputation in reputation_map.keys(): current_dbot_score = Common.DBotScore( indicator=current_httpRequests.get('URL'), indicator_type=DBotScoreType.URL, integration_name='ANYRUN', score=reputation_map[reputation] ) relationships = [EntityRelationship( name=EntityRelationship.Relationships.COMMUNICATED_WITH, entity_a=main_entity, entity_a_type=main_entity_type, entity_b=current_httpRequests.get('URL'), entity_b_type=FeedIndicatorType.URL, brand="ANYRUN" )] url_indicator = Common.URL( url=current_httpRequests.get('URL'), geo_country=current_httpRequests.get('Country'), port=current_httpRequests.get('Port'), dbot_score=current_dbot_score, relationships=relationships ) if current_httpRequests.get('URL') not in [ x.indicator.url for x in returned_data if isinstance(x.indicator, Common.URL) ]: returned_data.append(CommandResults( readable_output=tableToMarkdown( f"{current_httpRequests.get('URL')}", [{ "Description": f"This URL was observed after detonation of {main_entity} in ANYRUN" }] ), indicator=url_indicator, relationships=relationships )) if 'mitre' in data: mitre_data = data.get('mitre') for item in mitre_data: relationships = [EntityRelationship( name=EntityRelationship.Relationships.RELATED_TO, entity_a=main_entity, entity_a_type=main_entity_type, entity_b=item.get('name'), entity_b_type='Attack Pattern' )] attack_indicator = Common.AttackPattern( stix_id=None, value=item.get('name'), mitre_id=item.get('id') ) returned_data.append(CommandResults( readable_output=tableToMarkdown( f"{item.get('name')}", [{ "Description": f"This Attack Pattern was observed after detonation of {main_entity} in ANYRUN" }] ), indicator=attack_indicator, relationships=relationships )) return returned_data
10,444
def diff_config(module, commands, config): """Diff the candidate commands against current config returning a list of updates to be applied to remote edgeos device :param module: ansible module for this type (edgeos) :type module: ansible.module :param commands: candidate commands passed through ansible :type commands: list :param config: [commands pulled from edgeos device] :type config: list :return: updates: changes to apply to remote device :rtype: list :return: unmanaged_config: config on device without matching candidate commands passed to ansible :rtype: list :return: invalid: commands passed to ansible not starting with 'set' or 'delete' and therefore considered invalid :rtype: list """ config = [to_native(check_command(module, c)) for c in config.splitlines()] set_commands, delete_commands, invalid_commands = list(), list(), list() updates, unmanaged_config = list(), list() for line in commands: line = to_native(check_command(module, line)) if line.startswith('delete '): delete_commands.append(line) elif line.startswith('set '): set_commands.append(line) else: invalid_commands.append(line) # Will always run the delete commands first to allow for resets if delete_commands: updates = delete_commands # Removing all matching commands already in config updates = updates + [line for line in set_commands if line not in config] # Add back changes where a corresponding delete command exists if delete_commands: for line in set_commands: search = re.sub('^set ', 'delete ', line) for dline in delete_commands: if search.startswith(dline): updates.append(line) # Unmanaged config (config without matching commands) unmanaged_config = (list(set(config) - set(set_commands))) matches = list() # Remove if actually a change to config for line in unmanaged_config: search = line.rsplit(' ', 1)[0] for update in updates: if update.startswith(search): matches.append(line) break unmanaged_config = [line for line in unmanaged_config if line not in matches] return updates, unmanaged_config, invalid_commands
def diff_config(module, commands, config): """Diff the candidate commands against current config returning a list of updates to be applied to remote edgeos device :param module: ansible module for this type (edgeos) :type module: ansible.module :param commands: candidate commands passed through ansible :type commands: list :param config: [commands pulled from edgeos device] :type config: list :return: updates: changes to apply to remote device :rtype: list :return: unmanaged_config: config on device without matching candidate commands passed to ansible :rtype: list :return: invalid: commands passed to ansible not starting with 'set' or 'delete' and therefore considered invalid :rtype: list """ config = [to_native(check_command(module, c)) for c in config.splitlines()] set_commands, delete_commands, invalid_commands = list(), list(), list() updates, unmanaged_config = list(), list() for line in commands: line = to_native(check_command(module, line)) if line.startswith('delete '): delete_commands.append(line) elif line.startswith('set '): set_commands.append(line) else: invalid_commands.append(line) # Will always run the delete commands first to allow for resets if delete_commands: updates = delete_commands # Removing all matching commands already in config updates.extend(line for line in set_commands if line not in config) # Add back changes where a corresponding delete command exists if delete_commands: for line in set_commands: search = re.sub('^set ', 'delete ', line) for dline in delete_commands: if search.startswith(dline): updates.append(line) # Unmanaged config (config without matching commands) unmanaged_config = (list(set(config) - set(set_commands))) matches = list() # Remove if actually a change to config for line in unmanaged_config: search = line.rsplit(' ', 1)[0] for update in updates: if update.startswith(search): matches.append(line) break unmanaged_config = [line for line in unmanaged_config if line not in matches] return updates, unmanaged_config, invalid_commands
55,165
def pattern_matching(circuit_dag, pattern_dag): r"""Function that applies the pattern matching algorithm and returns the list of maximal matches. Args: circuit_dag (.CommutationDAG): A commutation DAG representing the circuit to be optimized. pattern_dag(.CommutationDAG): A commutation DAG representing the pattern. Returns: list(Match): the list of maximal matches. **Example** First let's consider the following circuit .. code-block:: python def circuit(): qml.S(wires=0) qml.PauliZ(wires=0) qml.S(wires=1) qml.CZ(wires=[0, 1]) qml.S(wires=1) qml.S(wires=2) qml.CZ(wires=[1, 2]) qml.S(wires=2) return qml.expval(qml.PauliX(wires=0)) where we want to find all maximal matches of a pattern containing a sequence of two ``pennylane.S`` gates and a ``pennylane.PauliZ`` gate: .. code-block:: python with qml.tape.QuantumTape() as pattern: qml.S(wires=0) qml.S(wires=0) qml.PauliZ(wires=0) >>> circuit_dag = qml.commutation_dag(circuit)() >>> pattern_dag = qml.commutation_dag(pattern)() >>> all_max_matches = qml.pattern_matching(circuit_dag, pattern_dag) It is possible to access the matches by looping through the list. The first integers indices represent the gates in the pattern and the second intergers the gates in the circuit (by order of appearance). >>> for match_conf in all_max_matches: ... print(match_conf.match) [[0, 0], [2, 1]] [[0, 2], [1, 4]] [[0, 4], [1, 2]] [[0, 5], [1, 7]] [[0, 7], [1, 5]] **Reference:** [1] Iten, R., Moyard, R., Metger, T., Sutter, D. and Woerner, S., 2022. Exact and practical pattern matching for quantum circuit optimization. `doi.org/10.1145/3498325 <https://dl.acm.org/doi/abs/10.1145/3498325>`_ """ # Match list match_list = [] # Loop through all possible initial matches for node_c, node_p in itertools.product(circuit_dag.get_nodes(), pattern_dag.get_nodes()): # Initial matches between two identical gates (No qubits comparison) if _compare_operation_without_qubits(node_c[1], node_p[1]): # Fix qubits from the first (target fixed and control restrained) not_fixed_qubits_confs = _not_fixed_qubits( circuit_dag.num_wires, node_c[1].wires, pattern_dag.num_wires - len(node_p[1].wires) ) # Loop over all possible qubits configurations given the first match constrains for not_fixed_qubits_conf in not_fixed_qubits_confs: for not_fixed_qubits_conf_permuted in itertools.permutations(not_fixed_qubits_conf): for first_match_qubits_conf in _first_match_qubits( node_c[1], node_p[1], pattern_dag.num_wires ): # Qubits mapping between circuit and pattern qubits_conf = _merge_first_match_and_permutation( first_match_qubits_conf, not_fixed_qubits_conf_permuted ) # Update wires, target_wires, control_wires wires, target_wires, control_wires = _update_qubits( circuit_dag, qubits_conf ) # Forward match part of the algorithm forward = ForwardMatch( circuit_dag, pattern_dag, node_c[0], node_p[0], wires, target_wires, control_wires, ) forward.run_forward_match() # Backward match part of the algorithm backward = BackwardMatch( circuit_dag, pattern_dag, qubits_conf, forward.match, forward.circuit_matched_with, forward.circuit_blocked, forward.pattern_matched_with, node_c[0], node_p[0], wires, control_wires, target_wires, ) backward.run_backward_match() _add_match(match_list, backward.match_final) match_list.sort(key=lambda x: len(x.match), reverse=True) # Extract maximal matches and optimizes the circuit for compatible maximal matches if match_list: maximal = MaximalMatches(match_list) maximal.run_maximal_matches() max_matches = maximal.max_match_list return max_matches return match_list
def pattern_matching(circuit_dag, pattern_dag): r"""Function that applies the pattern matching algorithm and returns the list of maximal matches. Args: circuit_dag (.CommutationDAG): A commutation DAG representing the circuit to be optimized. pattern_dag(.CommutationDAG): A commutation DAG representing the pattern. Returns: list(Match): the list of maximal matches. **Example** First let's consider the following circuit .. code-block:: python def circuit(): qml.S(wires=0) qml.PauliZ(wires=0) qml.S(wires=1) qml.CZ(wires=[0, 1]) qml.S(wires=1) qml.S(wires=2) qml.CZ(wires=[1, 2]) qml.S(wires=2) return qml.expval(qml.PauliX(wires=0)) where we want to find all maximal matches of a pattern containing a sequence of two ``pennylane.S`` gates and a ``pennylane.PauliZ`` gate: .. code-block:: python with qml.tape.QuantumTape() as pattern: qml.S(wires=0) qml.S(wires=0) qml.PauliZ(wires=0) >>> circuit_dag = qml.commutation_dag(circuit)() >>> pattern_dag = qml.commutation_dag(pattern)() >>> all_max_matches = qml.pattern_matching(circuit_dag, pattern_dag) The matches are accessible by looping through the list outputted by `qml.pattern_matching`. This output is a list of two lists containing indices. The first list indexes the gates of the pattern and the second list provides indices for the gates in the circuit (by order of appearance). >>> for match_conf in all_max_matches: ... print(match_conf.match) [[0, 0], [2, 1]] [[0, 2], [1, 4]] [[0, 4], [1, 2]] [[0, 5], [1, 7]] [[0, 7], [1, 5]] **Reference:** [1] Iten, R., Moyard, R., Metger, T., Sutter, D. and Woerner, S., 2022. Exact and practical pattern matching for quantum circuit optimization. `doi.org/10.1145/3498325 <https://dl.acm.org/doi/abs/10.1145/3498325>`_ """ # Match list match_list = [] # Loop through all possible initial matches for node_c, node_p in itertools.product(circuit_dag.get_nodes(), pattern_dag.get_nodes()): # Initial matches between two identical gates (No qubits comparison) if _compare_operation_without_qubits(node_c[1], node_p[1]): # Fix qubits from the first (target fixed and control restrained) not_fixed_qubits_confs = _not_fixed_qubits( circuit_dag.num_wires, node_c[1].wires, pattern_dag.num_wires - len(node_p[1].wires) ) # Loop over all possible qubits configurations given the first match constrains for not_fixed_qubits_conf in not_fixed_qubits_confs: for not_fixed_qubits_conf_permuted in itertools.permutations(not_fixed_qubits_conf): for first_match_qubits_conf in _first_match_qubits( node_c[1], node_p[1], pattern_dag.num_wires ): # Qubits mapping between circuit and pattern qubits_conf = _merge_first_match_and_permutation( first_match_qubits_conf, not_fixed_qubits_conf_permuted ) # Update wires, target_wires, control_wires wires, target_wires, control_wires = _update_qubits( circuit_dag, qubits_conf ) # Forward match part of the algorithm forward = ForwardMatch( circuit_dag, pattern_dag, node_c[0], node_p[0], wires, target_wires, control_wires, ) forward.run_forward_match() # Backward match part of the algorithm backward = BackwardMatch( circuit_dag, pattern_dag, qubits_conf, forward.match, forward.circuit_matched_with, forward.circuit_blocked, forward.pattern_matched_with, node_c[0], node_p[0], wires, control_wires, target_wires, ) backward.run_backward_match() _add_match(match_list, backward.match_final) match_list.sort(key=lambda x: len(x.match), reverse=True) # Extract maximal matches and optimizes the circuit for compatible maximal matches if match_list: maximal = MaximalMatches(match_list) maximal.run_maximal_matches() max_matches = maximal.max_match_list return max_matches return match_list
2,241
def test_ovr_partial_fit_exceptions(): ovr = OneVsRestClassifier(MultinomialNB()) X = np.abs(np.random.randn(14, 2)) y = [1, 1, 1, 1, 2, 3, 3, 0, 0, 2, 3, 1, 2, 3] ovr.partial_fit(X[:7], y[:7], np.unique(y)) # If a new class that was not in the first call of partial fit is seen # It should raise Value Error y1 = [5] + y[7:-1] msg = r"Mini-batch contains \[.+\] while classes must be subset of \[.+\]" with pytest.raises(ValueError, match=msg): ovr.partial_fit(X=X[7:], y=y1)
def test_ovr_partial_fit_exceptions(): ovr = OneVsRestClassifier(MultinomialNB()) X = np.abs(np.random.randn(14, 2)) y = [1, 1, 1, 1, 2, 3, 3, 0, 0, 2, 3, 1, 2, 3] ovr.partial_fit(X[:7], y[:7], np.unique(y)) # If a new class that was not in the first call of partial fit is seen # it should raise ValueError y1 = [5] + y[7:-1] msg = r"Mini-batch contains \[.+\] while classes must be subset of \[.+\]" with pytest.raises(ValueError, match=msg): ovr.partial_fit(X=X[7:], y=y1)
25,995
def load_arguments(self, _): # Model imports StorageAccountTypes = self.get_models('StorageAccountTypes') DiskStorageAccountTypes = self.get_models('DiskStorageAccountTypes,', operation_group='disks') SnapshotStorageAccountTypes = self.get_models('SnapshotStorageAccountTypes', operation_group='snapshots') UpgradeMode, CachingTypes, OperatingSystemTypes = self.get_models('UpgradeMode', 'CachingTypes', 'OperatingSystemTypes') HyperVGenerationTypes, HyperVGeneration = self.get_models('HyperVGenerationTypes', 'HyperVGeneration') DedicatedHostLicenseTypes = self.get_models('DedicatedHostLicenseTypes') OrchestrationServiceNames, OrchestrationServiceStateAction = self.get_models('OrchestrationServiceNames', 'OrchestrationServiceStateAction', operation_group='virtual_machine_scale_sets') RebootSetting, VMGuestPatchClassificationWindows, VMGuestPatchClassificationLinux = self.get_models('VMGuestPatchRebootSetting', 'VMGuestPatchClassificationWindows', 'VMGuestPatchClassificationLinux') GallerySharingPermissionTypes = self.get_models('GallerySharingPermissionTypes', operation_group='shared_galleries') ReplicationMode = self.get_models('ReplicationMode', operation_group='gallery_image_versions') # REUSABLE ARGUMENT DEFINITIONS name_arg_type = CLIArgumentType(options_list=['--name', '-n'], metavar='NAME') multi_ids_type = CLIArgumentType(nargs='+') existing_vm_name = CLIArgumentType(overrides=name_arg_type, configured_default='vm', help="The name of the Virtual Machine. You can configure the default using `az configure --defaults vm=<name>`", completer=get_resource_name_completion_list('Microsoft.Compute/virtualMachines'), id_part='name') existing_disk_name = CLIArgumentType(overrides=name_arg_type, help='The name of the managed disk', completer=get_resource_name_completion_list('Microsoft.Compute/disks'), id_part='name') existing_snapshot_name = CLIArgumentType(overrides=name_arg_type, help='The name of the snapshot', completer=get_resource_name_completion_list('Microsoft.Compute/snapshots'), id_part='name') vmss_name_type = CLIArgumentType(name_arg_type, configured_default='vmss', completer=get_resource_name_completion_list('Microsoft.Compute/virtualMachineScaleSets'), help="Scale set name. You can configure the default using `az configure --defaults vmss=<name>`", id_part='name') extension_instance_name_type = CLIArgumentType(help="Name of extension instance, which can be customized. Default: name of the extension.") image_template_name_type = CLIArgumentType(overrides=name_arg_type, id_part='name') disk_encryption_set_name = CLIArgumentType(overrides=name_arg_type, help='Name of disk encryption set.', id_part='name') ephemeral_placement_type = CLIArgumentType(options_list=['--ephemeral-os-disk-placement', '--ephemeral-placement'], arg_type=get_enum_type(['ResourceDisk', 'CacheDisk']), min_api='2019-12-01') license_type = CLIArgumentType( help="Specifies that the Windows image or disk was licensed on-premises. To enable Azure Hybrid Benefit for " "Windows Server, use 'Windows_Server'. To enable Multi-tenant Hosting Rights for Windows 10, " "use 'Windows_Client'. For more information see the Azure Windows VM online docs.", arg_type=get_enum_type(['Windows_Server', 'Windows_Client', 'RHEL_BYOS', 'SLES_BYOS', 'RHEL_BASE', 'RHEL_SAPAPPS', 'RHEL_SAPHA', 'RHEL_EUS', 'SLES_BASE', 'SLES_SAP', 'SLES_HPC', 'None', 'RHEL_ELS_6'])) # StorageAccountTypes renamed to DiskStorageAccountTypes in 2018_06_01 of azure-mgmt-compute DiskStorageAccountTypes = DiskStorageAccountTypes or StorageAccountTypes if DiskStorageAccountTypes: disk_sku = CLIArgumentType(arg_type=get_enum_type(DiskStorageAccountTypes)) else: # StorageAccountTypes introduced in api version 2016_04_30_preview of Resource.MGMT.Compute package.. # However, 2017-03-09-profile targets version 2016-03-30 of compute package. disk_sku = CLIArgumentType(arg_type=get_enum_type(['Premium_LRS', 'Standard_LRS'])) if SnapshotStorageAccountTypes: snapshot_sku = CLIArgumentType(arg_type=get_enum_type(SnapshotStorageAccountTypes)) else: # SnapshotStorageAccountTypes introduced in api version 2018_04_01 of Resource.MGMT.Compute package.. # However, 2017-03-09-profile targets version 2016-03-30 of compute package. snapshot_sku = CLIArgumentType(arg_type=get_enum_type(['Premium_LRS', 'Standard_LRS'])) # special case for `network nic scale-set list` command alias with self.argument_context('network nic scale-set list') as c: c.argument('virtual_machine_scale_set_name', options_list=['--vmss-name'], completer=get_resource_name_completion_list('Microsoft.Compute/virtualMachineScaleSets'), id_part='name') HyperVGenerationTypes = HyperVGenerationTypes or HyperVGeneration if HyperVGenerationTypes: hyper_v_gen_sku = CLIArgumentType(arg_type=get_enum_type(HyperVGenerationTypes, default="V1")) else: hyper_v_gen_sku = CLIArgumentType(arg_type=get_enum_type(["V1", "V2"], default="V1")) ultra_ssd_enabled_type = CLIArgumentType( arg_type=get_three_state_flag(), min_api='2018-06-01', help='Enables or disables the capability to have 1 or more managed data disks with UltraSSD_LRS storage account') scale_in_policy_type = CLIArgumentType( nargs='+', arg_type=get_enum_type(self.get_models('VirtualMachineScaleSetScaleInRules')), help='Specify the scale-in policy (space delimited) that decides which virtual machines are chosen for removal when a Virtual Machine Scale Set is scaled-in.' ) edge_zone_type = CLIArgumentType( help='The name of edge zone.', min_api='2020-12-01', is_preview=True ) t_shared_to = self.get_models('SharedToValues', operation_group='shared_galleries') shared_to_type = CLIArgumentType( arg_type=get_enum_type(t_shared_to), help='The query parameter to decide what shared galleries to fetch when doing listing operations. ' 'If not specified, list by subscription id.' ) marker_type = CLIArgumentType( help='A string value that identifies the portion of the list of containers to be ' 'returned with the next listing operation. The operation returns the NextMarker value within ' 'the response body if the listing operation did not return all containers remaining to be listed ' 'with the current page. If specified, this generator will begin returning results from the point ' 'where the previous generator stopped.') # region MixedScopes for scope in ['vm', 'disk', 'snapshot', 'image', 'sig']: with self.argument_context(scope) as c: c.argument('tags', tags_type) for scope in ['disk', 'snapshot']: with self.argument_context(scope) as c: c.ignore('source_blob_uri', 'source_disk', 'source_snapshot') c.argument('source_storage_account_id', help='used when source blob is in a different subscription') c.argument('size_gb', options_list=['--size-gb', '-z'], help='size in GB. Max size: 4095 GB (certain preview disks can be larger).', type=int) c.argument('duration_in_seconds', help='Time duration in seconds until the SAS access expires', type=int) if self.supported_api_version(min_api='2018-09-30', operation_group='disks'): c.argument('access_level', arg_type=get_enum_type(['Read', 'Write']), default='Read', help='access level') c.argument('for_upload', arg_type=get_three_state_flag(), help='Create the {0} for uploading blobs later on through storage commands. Run "az {0} grant-access --access-level Write" to retrieve the {0}\'s SAS token.'.format(scope)) c.argument('hyper_v_generation', arg_type=hyper_v_gen_sku, help='The hypervisor generation of the Virtual Machine. Applicable to OS disks only.') else: c.ignore('access_level', 'for_upload', 'hyper_v_generation') c.argument('encryption_type', min_api='2019-07-01', arg_type=get_enum_type(self.get_models('EncryptionType')), help='Encryption type. EncryptionAtRestWithPlatformKey: Disk is encrypted with XStore managed key at rest. It is the default encryption type. EncryptionAtRestWithCustomerKey: Disk is encrypted with Customer managed key at rest.') c.argument('disk_encryption_set', min_api='2019-07-01', help='Name or ID of disk encryption set that is used to encrypt the disk.') c.argument('location', help='Location. Values from: `az account list-locations`. You can configure the default location using `az configure --defaults location=<location>`. If location is not specified and no default location specified, location will be automatically set as same as the resource group.') operation_group = 'disks' if scope == 'disk' else 'snapshots' c.argument('network_access_policy', min_api='2020-05-01', help='Policy for accessing the disk via network.', arg_type=get_enum_type(self.get_models('NetworkAccessPolicy', operation_group=operation_group))) c.argument('disk_access', min_api='2020-05-01', help='Name or ID of the disk access resource for using private endpoints on disks.') c.argument('enable_bursting', arg_type=get_three_state_flag(), help='Enable bursting beyond the provisioned performance target of the disk. Bursting is disabled by default, and it does not apply to Ultra disks.') c.argument('public_network_access', arg_type=get_enum_type(['Disabled', 'Enabled']), min_api='2021-04-01', is_preview=True, help='Customers can set on Managed Disks or Snapshots to control the export policy on the disk.') c.argument('accelerated_network', arg_type=get_three_state_flag(), min_api='2021-04-01', is_preview=True, help='Customers can set on Managed Disks or Snapshots to enable the accelerated networking if the OS disk image support.') for scope in ['disk create', 'snapshot create']: with self.argument_context(scope) as c: c.argument('source', help='source to create the disk/snapshot from, including unmanaged blob uri, managed disk id or name, or snapshot id or name') # endregion # region Disks with self.argument_context('disk') as c: c.argument('zone', zone_type, min_api='2017-03-30', options_list=['--zone']) # TODO: --size-gb currently has claimed -z. We can do a breaking change later if we want to. c.argument('disk_name', existing_disk_name, completer=get_resource_name_completion_list('Microsoft.Compute/disks')) c.argument('name', arg_type=name_arg_type) c.argument('sku', arg_type=disk_sku, help='Underlying storage SKU') c.argument('os_type', arg_type=get_enum_type(OperatingSystemTypes), help='The Operating System type of the Disk.') c.argument('disk_iops_read_write', type=int, min_api='2018-06-01', help='The number of IOPS allowed for this disk. Only settable for UltraSSD disks. One operation can transfer between 4k and 256k bytes') c.argument('disk_mbps_read_write', type=int, min_api='2018-06-01', help="The bandwidth allowed for this disk. Only settable for UltraSSD disks. MBps means millions of bytes per second with ISO notation of powers of 10") c.argument('upload_size_bytes', type=int, min_api='2019-03-01', help='The size (in bytes) of the contents of the upload including the VHD footer. Min value: 20972032. Max value: 35183298347520') c.argument('max_shares', type=int, help='The maximum number of VMs that can attach to the disk at the same time. Value greater than one indicates a disk that can be mounted on multiple VMs at the same time') c.argument('disk_iops_read_only', type=int, help='The total number of IOPS that will be allowed across all VMs mounting the shared disk as ReadOnly. One operation can transfer between 4k and 256k bytes') c.argument('disk_mbps_read_only', type=int, help='The total throughput (MBps) that will be allowed across all VMs mounting the shared disk as ReadOnly. MBps means millions of bytes per second - MB here uses the ISO notation, of powers of 10') c.argument('image_reference', help='ID or URN (publisher:offer:sku:version) of the image from which to create a disk') c.argument('image_reference_lun', type=int, help='If the disk is created from an image\'s data disk, this is an index that indicates which of the data disks in the image to use. For OS disks, this field is null') c.argument('gallery_image_reference', help='ID of the Compute Gallery image version from which to create a disk') c.argument('gallery_image_reference_lun', type=int, help='If the disk is created from an image\'s data disk, this is an index that indicates which of the data disks in the image to use. For OS disks, this field is null') c.argument('logical_sector_size', type=int, help='Logical sector size in bytes for Ultra disks. Supported values are 512 ad 4096. 4096 is the default.') c.argument('tier', help='Performance tier of the disk (e.g, P4, S10) as described here: https://azure.microsoft.com/pricing/details/managed-disks/. Does not apply to Ultra disks.') c.argument('edge_zone', edge_zone_type) c.argument('security_type', choices=['TrustedLaunch'], help='The security type of the VM. Applicable for OS disks only.', min_api='2020-12-01') c.argument('support_hibernation', arg_type=get_three_state_flag(), help='Indicate the OS on a disk supports hibernation.', min_api='2020-12-01') # endregion # region Snapshots with self.argument_context('snapshot', resource_type=ResourceType.MGMT_COMPUTE, operation_group='snapshots') as c: c.argument('snapshot_name', existing_snapshot_name, id_part='name', completer=get_resource_name_completion_list('Microsoft.Compute/snapshots')) c.argument('name', arg_type=name_arg_type) c.argument('sku', arg_type=snapshot_sku) c.argument('incremental', arg_type=get_three_state_flag(), min_api='2019-03-01', help='Whether a snapshot is incremental. Incremental snapshots on the same disk occupy less space than full snapshots and can be diffed') c.argument('edge_zone', edge_zone_type) c.argument('copy_start', arg_type=get_three_state_flag(), min_api='2021-04-01', help='Create snapshot by using a deep copy process, where the resource creation is considered complete only after all data has been copied from the source.') # endregion # region Images with self.argument_context('image') as c: c.argument('os_type', arg_type=get_enum_type(['Windows', 'Linux'])) c.argument('image_name', arg_type=name_arg_type, id_part='name', completer=get_resource_name_completion_list('Microsoft.Compute/images')) c.argument('tags', tags_type) with self.argument_context('image create') as c: # here we collpase all difference image sources to under 2 common arguments --os-disk-source --data-disk-sources c.argument('name', arg_type=name_arg_type, help='new image name') c.argument('source', help='OS disk source from the same region, including a virtual machine ID or name, OS disk blob URI, managed OS disk ID or name, or OS snapshot ID or name') c.argument('data_disk_sources', nargs='+', help='Space-separated list of data disk sources, including unmanaged blob URI, managed disk ID or name, or snapshot ID or name') c.argument('zone_resilient', min_api='2017-12-01', arg_type=get_three_state_flag(), help='Specifies whether an image is zone resilient or not. ' 'Default is false. Zone resilient images can be created only in regions that provide Zone Redundant Storage') c.argument('storage_sku', arg_type=disk_sku, help='The SKU of the storage account with which to create the VM image. Unused if source VM is specified.') c.argument('os_disk_caching', arg_type=get_enum_type(CachingTypes), help="Storage caching type for the image's OS disk.") c.argument('data_disk_caching', arg_type=get_enum_type(CachingTypes), help="Storage caching type for the image's data disk.") c.argument('hyper_v_generation', arg_type=hyper_v_gen_sku, min_api="2019-03-01", help='The hypervisor generation of the Virtual Machine created from the image.') c.ignore('source_virtual_machine', 'os_blob_uri', 'os_disk', 'os_snapshot', 'data_blob_uris', 'data_disks', 'data_snapshots') c.argument('edge_zone', edge_zone_type, ) # endregion # region Image Templates with self.argument_context('image builder') as c: ib_output_name_help = "Name of the image builder run output." c.argument('location', get_location_type(self.cli_ctx)) c.argument('scripts', nargs='+', help="Space-separated list of shell or powershell scripts to customize the image with. Each script must be a publicly accessible URL." " Infers type of script from file extension ('.sh' or'.ps1') or from source type. More more customizer options and flexibility, see: 'az image template customizer add'") c.argument('source', options_list=["--image-source", "-i"], help="The base image to customize. Must be a valid platform image URN, platform image alias, Red Hat ISO image URI, managed image name/ID, or shared image version ID.") c.argument('image_template_name', image_template_name_type, help="The name of the image template.") c.argument('checksum', help="The SHA256 checksum of the Red Hat ISO image") c.argument('managed_image_destinations', nargs='+', help='Managed image output distributor information. Space-separated list of key-value pairs. E.g "image_1=westus2 image_2=westus". Each key is the name or resource ID of the managed image to be created. Each value is the location of the image.') c.argument('shared_image_destinations', nargs='+', help='Shared image gallery (sig) output distributor information. Space-separated list of key-value pairs. E.g "my_gallery_1/image_def_1=eastus,westus my_gallery_2/image_def_2=uksouth,canadaeast,francesouth." ' 'Each key is the sig image definition ID or sig gallery name and sig image definition delimited by a "/". Each value is a comma-delimited list of replica locations.') c.argument('output_name', help=ib_output_name_help) c.ignore('destinations_lists', 'scripts_list', 'source_dict') with self.argument_context('image builder create') as c: ib_source_type = CLIArgumentType(arg_group="Image Source") ib_customizer_type = CLIArgumentType(arg_group="Customizer") ib_cutput_type = CLIArgumentType(arg_group="Output") c.argument('build_timeout', type=int, help="The Maximum duration to wait while building the image template, in minutes. Default is 60.") c.argument('image_template', help='Local path or URL to an image template file. When using --image-template, all other parameters are ignored except -g and -n. Reference: https://docs.microsoft.com/azure/virtual-machines/linux/image-builder-json') c.argument('identity', nargs='+', help='List of user assigned identities (name or ID, space delimited) of the image template.') # VM profile c.argument('vm_size', help='Size of the virtual machine used to build, customize and capture images. Omit or specify empty string to use the default (Standard_D1_v2)') c.argument('os_disk_size', type=int, help='Size of the OS disk in GB. Omit or specify 0 to use Azure\'s default OS disk size') c.argument('vnet', help='Name of VNET to deploy the build virtual machine. You should only specify it when subnet is a name') c.argument('subnet', help='Name or ID of subnet to deploy the build virtual machine') # Image Source Arguments c.argument('source', arg_type=ib_source_type) c.argument('checksum', arg_type=ib_source_type) c.argument('', arg_type=ib_source_type) # Image Customizer Arguments c.argument('scripts', arg_type=ib_customizer_type) c.argument('', arg_type=ib_customizer_type) c.argument('', arg_type=ib_customizer_type) # Image Output Arguments c.argument('managed_image_destinations', arg_type=ib_cutput_type) c.argument('shared_image_destinations', arg_type=ib_cutput_type) c.argument('output_name', arg_type=ib_cutput_type) with self.argument_context('image builder output') as c: ib_sig_regions_help = "Space-separated list of regions to replicate the image version into." ib_img_location_help = "Location where the customized image will be created." c.argument('gallery_image_definition', arg_group="Shared Image Gallery", help="Name or ID of the existing SIG image definition to create the customized image version with.") c.argument('gallery_name', arg_group="Shared Image Gallery", help="Shared image gallery name, if image definition name and not ID was provided.") c.argument('gallery_replication_regions', arg_group="Shared Image Gallery", nargs='+', help=ib_sig_regions_help) c.argument('managed_image', arg_group="Managed Image", help="Name or ID of the customized managed image to be created.") c.argument('managed_image_location', arg_group="Managed Image", help=ib_img_location_help) with self.argument_context('image builder output add') as c: ib_artifact_tags_help = "Tags that will be applied to the output artifact once it has been created by the distributor. " + tags_type.settings['help'] ib_artifact_tags_type = CLIArgumentType(overrides=tags_type, help=ib_artifact_tags_help, options_list=["--artifact-tags"]) ib_default_loc_help = " Defaults to resource group's location." c.argument('output_name', help=ib_output_name_help + " Defaults to the name of the managed image or sig image definition.") c.argument('gallery_replication_regions', arg_group="Shared Image Gallery", nargs='+', help=ib_sig_regions_help + ib_default_loc_help) c.argument('managed_image_location', arg_group="Managed Image", help=ib_img_location_help + ib_default_loc_help) c.argument('is_vhd', arg_group="VHD", help="The output is a VHD distributor.", action='store_true') c.argument('tags', arg_type=ib_artifact_tags_type) c.ignore('location') with self.argument_context('image builder customizer') as c: ib_win_restart_type = CLIArgumentType(arg_group="Windows Restart") ib_win_update_type = CLIArgumentType(arg_group="Windows Update") ib_script_type = CLIArgumentType(arg_group="Shell and Powershell") ib_powershell_type = CLIArgumentType(arg_group="Powershell") ib_file_customizer_type = CLIArgumentType(arg_group="File") c.argument('customizer_name', help="Name of the customizer.") c.argument('customizer_type', options_list=['--type', '-t'], help="Type of customizer to be added to the image template.", arg_type=get_enum_type(ScriptType)) # Script Args c.argument('script_url', arg_type=ib_script_type, help="URL of script to customize the image with. The URL must be publicly accessible.") c.argument('inline_script', arg_type=ib_script_type, nargs='+', help="Space-separated list of inline script lines to customize the image with.") # Powershell Specific Args c.argument('valid_exit_codes', options_list=['--exit-codes', '-e'], arg_type=ib_powershell_type, nargs='+', help="Space-separated list of valid exit codes, as integers") # Windows Restart Specific Args c.argument('restart_command', arg_type=ib_win_restart_type, help="Command to execute the restart operation.") c.argument('restart_check_command', arg_type=ib_win_restart_type, help="Command to verify that restart succeeded.") c.argument('restart_timeout', arg_type=ib_win_restart_type, help="Restart timeout specified as a string consisting of a magnitude and unit, e.g. '5m' (5 minutes) or '2h' (2 hours)", default="5m") # Windows Update Specific Args c.argument('search_criteria', arg_type=ib_win_update_type, help='Criteria to search updates. Omit or specify empty string to use the default (search all). Refer to above link for examples and detailed description of this field.') c.argument('filters', arg_type=ib_win_update_type, nargs='+', help='Space delimited filters to select updates to apply. Omit or specify empty array to use the default (no filter)') c.argument('update_limit', arg_type=ib_win_update_type, help='Maximum number of updates to apply at a time. Omit or specify 0 to use the default (1000)') # File Args c.argument('file_source', arg_type=ib_file_customizer_type, help="The URI of the file to be downloaded into the image. It can be a github link, SAS URI for Azure Storage, etc.") c.argument('dest_path', arg_type=ib_file_customizer_type, help="The absolute destination path where the file specified in --file-source will be downloaded to in the image") # endregion # region AvailabilitySets with self.argument_context('vm availability-set') as c: c.argument('availability_set_name', name_arg_type, id_part='name', completer=get_resource_name_completion_list('Microsoft.Compute/availabilitySets'), help='Name of the availability set') with self.argument_context('vm availability-set create') as c: c.argument('availability_set_name', name_arg_type, validator=get_default_location_from_resource_group, help='Name of the availability set') c.argument('platform_update_domain_count', type=int, help='Update Domain count. If unspecified, the server will pick the most optimal number like 5.') c.argument('platform_fault_domain_count', type=int, help='Fault Domain count.') c.argument('validate', help='Generate and validate the ARM template without creating any resources.', action='store_true') c.argument('unmanaged', action='store_true', min_api='2016-04-30-preview', help='contained VMs should use unmanaged disks') with self.argument_context('vm availability-set update') as c: if self.supported_api_version(max_api='2016-04-30-preview', operation_group='virtual_machines'): c.argument('name', name_arg_type, id_part='name', completer=get_resource_name_completion_list('Microsoft.Compute/availabilitySets'), help='Name of the availability set') c.argument('availability_set_name', options_list=['--availability-set-name']) # endregion # region VirtualMachines with self.argument_context('vm') as c: c.argument('vm_name', existing_vm_name) c.argument('size', completer=get_vm_size_completion_list) c.argument('name', arg_type=name_arg_type) c.argument('zone', zone_type, min_api='2017-03-30') c.argument('caching', help='Disk caching policy', arg_type=get_enum_type(CachingTypes)) c.argument('nsg', help='The name to use when creating a new Network Security Group (default) or referencing an existing one. Can also reference an existing NSG by ID or specify "" for none.', arg_group='Network') c.argument('nsg_rule', help='NSG rule to create when creating a new NSG. Defaults to open ports for allowing RDP on Windows and allowing SSH on Linux.', arg_group='Network', arg_type=get_enum_type(['RDP', 'SSH'])) c.argument('application_security_groups', min_api='2017-09-01', nargs='+', options_list=['--asgs'], help='Space-separated list of existing application security groups to associate with the VM.', arg_group='Network') c.argument('workspace', is_preview=True, arg_group='Monitor', help='Name or ID of Log Analytics Workspace. If you specify the workspace through its name, the workspace should be in the same resource group with the vm, otherwise a new workspace will be created.') with self.argument_context('vm capture') as c: c.argument('overwrite', action='store_true') with self.argument_context('vm update') as c: c.argument('os_disk', min_api='2017-12-01', help="Managed OS disk ID or name to swap to") c.argument('write_accelerator', nargs='*', min_api='2017-12-01', help="enable/disable disk write accelerator. Use singular value 'true/false' to apply across, or specify individual disks, e.g.'os=true 1=true 2=true' for os disk and data disks with lun of 1 & 2") c.argument('disk_caching', nargs='*', help="Use singular value to apply across, or specify individual disks, e.g. 'os=ReadWrite 0=None 1=ReadOnly' should enable update os disk and 2 data disks") c.argument('ultra_ssd_enabled', ultra_ssd_enabled_type) c.argument('enable_secure_boot', arg_type=get_three_state_flag(), min_api='2020-12-01', help='Enable secure boot.') c.argument('enable_vtpm', arg_type=get_three_state_flag(), min_api='2020-12-01', help='Enable vTPM.') c.argument('size', help='The new size of the virtual machine. See https://azure.microsoft.com/pricing/details/virtual-machines/ for size info.', is_preview=True) c.argument('ephemeral_os_disk_placement', arg_type=ephemeral_placement_type, help='Only applicable when used with `--size`. Allows you to choose the Ephemeral OS disk provisioning location.', is_preview=True) c.argument('enable_hibernation', arg_type=get_three_state_flag(), min_api='2021-03-01', help='The flag that enable or disable hibernation capability on the VM.') c.argument('v_cpus_available', type=int, min_api='2021-07-01', help='Specify the number of vCPUs available for the VM') c.argument('v_cpus_per_core', type=int, min_api='2021-07-01', help='Specify the vCPU to physical core ratio. Setting this property to 1 also means that hyper-threading is disabled.') with self.argument_context('vm create') as c: c.argument('name', name_arg_type, validator=_resource_not_exists(self.cli_ctx, 'Microsoft.Compute/virtualMachines')) c.argument('vm_name', name_arg_type, id_part=None, help='Name of the virtual machine.', completer=None) c.argument('os_disk_size_gb', type=int, help='the size of the os disk in GB', arg_group='Storage') c.argument('availability_set', help='Name or ID of an existing availability set to add the VM to. None by default.') c.argument('vmss', help='Name or ID of an existing virtual machine scale set that the virtual machine should be assigned to. None by default.') c.argument('nsg', help='The name to use when creating a new Network Security Group (default) or referencing an existing one. Can also reference an existing NSG by ID or specify "" for none (\'""\' in Azure CLI using PowerShell or --% operator).', arg_group='Network') c.argument('nsg_rule', help='NSG rule to create when creating a new NSG. Defaults to open ports for allowing RDP on Windows and allowing SSH on Linux. NONE represents no NSG rule', arg_group='Network', arg_type=get_enum_type(['RDP', 'SSH', 'NONE'])) c.argument('application_security_groups', resource_type=ResourceType.MGMT_NETWORK, min_api='2017-09-01', nargs='+', options_list=['--asgs'], help='Space-separated list of existing application security groups to associate with the VM.', arg_group='Network', validator=validate_asg_names_or_ids) c.argument('boot_diagnostics_storage', help='pre-existing storage account name or its blob uri to capture boot diagnostics. Its sku should be one of Standard_GRS, Standard_LRS and Standard_RAGRS') c.argument('accelerated_networking', resource_type=ResourceType.MGMT_NETWORK, min_api='2016-09-01', arg_type=get_three_state_flag(), arg_group='Network', help="enable accelerated networking. Unless specified, CLI will enable it based on machine image and size") if self.supported_api_version(min_api='2019-03-01', resource_type=ResourceType.MGMT_COMPUTE): VirtualMachineEvictionPolicyTypes = self.get_models('VirtualMachineEvictionPolicyTypes', resource_type=ResourceType.MGMT_COMPUTE) c.argument('eviction_policy', resource_type=ResourceType.MGMT_COMPUTE, min_api='2019-03-01', arg_type=get_enum_type(VirtualMachineEvictionPolicyTypes, default=None), help="The eviction policy for the Spot priority virtual machine. Default eviction policy is Deallocate for a Spot priority virtual machine") c.argument('enable_agent', arg_type=get_three_state_flag(), min_api='2018-06-01', help='Indicates whether virtual machine agent should be provisioned on the virtual machine. When this property is not specified, default behavior is to set it to true. This will ensure that VM Agent is installed on the VM so that extensions can be added to the VM later') c.argument('enable_auto_update', arg_type=get_three_state_flag(), min_api='2020-06-01', help='Indicate whether Automatic Updates is enabled for the Windows virtual machine') c.argument('patch_mode', arg_type=get_enum_type(['AutomaticByOS', 'AutomaticByPlatform', 'Manual', 'ImageDefault']), min_api='2020-12-01', help='Mode of in-guest patching to IaaS virtual machine. Allowed values for Windows VM: AutomaticByOS, AutomaticByPlatform, Manual. Allowed values for Linux VM: AutomaticByPlatform, ImageDefault. Manual - You control the application of patches to a virtual machine. You do this by applying patches manually inside the VM. In this mode, automatic updates are disabled; the paramater --enable-auto-update must be false. AutomaticByOS - The virtual machine will automatically be updated by the OS. The parameter --enable-auto-update must be true. AutomaticByPlatform - the virtual machine will automatically updated by the OS. ImageDefault - The virtual machine\'s default patching configuration is used. The parameter --enable-agent and --enable-auto-update must be true') c.argument('ssh_key_name', help='Use it as public key in virtual machine. It should be an existing SSH key resource in Azure.') c.argument('enable_hotpatching', arg_type=get_three_state_flag(), help='Patch VMs without requiring a reboot. --enable-agent must be set and --patch-mode must be set to AutomaticByPlatform', min_api='2020-12-01') c.argument('platform_fault_domain', min_api='2020-06-01', help='Specify the scale set logical fault domain into which the virtual machine will be created. By default, the virtual machine will be automatically assigned to a fault domain that best maintains balance across available fault domains. This is applicable only if the virtualMachineScaleSet property of this virtual machine is set. The virtual machine scale set that is referenced, must have platform fault domain count. This property cannot be updated once the virtual machine is created. Fault domain assignment can be viewed in the virtual machine instance view') c.argument('count', type=int, is_preview=True, help='Number of virtual machines to create. Value range is [2, 250], inclusive. Don\'t specify this parameter if you want to create a normal single VM. The VMs are created in parallel. The output of this command is an array of VMs instead of one single VM. Each VM has its own public IP, NIC. VNET and NSG are shared. It is recommended that no existing public IP, NIC, VNET and NSG are in resource group. When --count is specified, --attach-data-disks, --attach-os-disk, --boot-diagnostics-storage, --computer-name, --host, --host-group, --nics, --os-disk-name, --private-ip-address, --public-ip-address, --public-ip-address-dns-name, --storage-account, --storage-container-name, --subnet, --use-unmanaged-disk, --vnet-name are not allowed.') c.argument('security_type', arg_type=get_enum_type(['TrustedLaunch']), min_api='2020-12-01', help='Specify if the VM is Trusted Launch enabled. See https://docs.microsoft.com/azure/virtual-machines/trusted-launch.') c.argument('enable_secure_boot', arg_type=get_three_state_flag(), min_api='2020-12-01', help='Enable secure boot. It is part of trusted launch.') c.argument('enable_vtpm', arg_type=get_three_state_flag(), min_api='2020-12-01', help='Enable vTPM. It is part of trusted launch.') c.argument('user_data', help='UserData for the VM. It can be passed in as file or string.', completer=FilesCompleter(), type=file_type, min_api='2021-03-01') c.argument('enable_hibernation', arg_type=get_three_state_flag(), min_api='2021-03-01', help='The flag that enable or disable hibernation capability on the VM.') c.argument('v_cpus_available', type=int, min_api='2021-07-01', help='Specify the number of vCPUs available for the VM') c.argument('v_cpus_per_core', type=int, min_api='2021-07-01', help='Specify the vCPU to physical core ratio. Setting this property to 1 also means that hyper-threading is disabled.') with self.argument_context('vm create', arg_group='Storage') as c: c.argument('attach_os_disk', help='Attach an existing OS disk to the VM. Can use the name or ID of a managed disk or the URI to an unmanaged disk VHD.') c.argument('attach_data_disks', nargs='+', help='Attach existing data disks to the VM. Can use the name or ID of a managed disk or the URI to an unmanaged disk VHD.') with self.argument_context('vm create', arg_group='Dedicated Host', min_api='2019-03-01') as c: c.argument('dedicated_host_group', options_list=['--host-group'], is_preview=True, help="Name or ID of the dedicated host group that the VM will reside in. --host and --host-group can't be used together.") c.argument('dedicated_host', options_list=['--host'], is_preview=True, help="ID of the dedicated host that the VM will reside in. --host and --host-group can't be used together.") with self.argument_context('vm update', arg_group='Dedicated Host', min_api='2019-03-01') as c: c.argument('dedicated_host_group', options_list=['--host-group'], is_preview=True, help="Name or ID of the dedicated host group that the VM will reside in. --host and --host-group can't be used together. You should deallocate the VM before update, and start the VM after update. Please check out help for more examples.") c.argument('dedicated_host', options_list=['--host'], is_preview=True, help="ID of the dedicated host that the VM will reside in. --host and --host-group can't be used together. You should deallocate the VM before update, and start the VM after update. Please check out help for more examples.") with self.argument_context('vm open-port') as c: c.argument('vm_name', name_arg_type, help='The name of the virtual machine to open inbound traffic on.') c.argument('network_security_group_name', options_list=('--nsg-name',), help='The name of the network security group to create if one does not exist. Ignored if an NSG already exists.', validator=validate_nsg_name) c.argument('apply_to_subnet', help='Allow inbound traffic on the subnet instead of the NIC', action='store_true') c.argument('port', help="The port or port range (ex: 80-100) to open inbound traffic to. Use '*' to allow traffic to all ports. Use comma separated values to specify more than one port or port range.") c.argument('priority', help='Rule priority, between 100 (highest priority) and 4096 (lowest priority). Must be unique for each rule in the collection.', type=int) for scope in ['vm show', 'vm list']: with self.argument_context(scope) as c: c.argument('show_details', action='store_true', options_list=['--show-details', '-d'], help='show public ip address, FQDN, and power states. command will run slow') for scope in ['vm show', 'vmss show']: with self.argument_context(scope) as c: c.argument('include_user_data', action='store_true', options_list=['--include-user-data', '-u'], help='Include the user data properties in the query result.', min_api='2021-03-01') for scope in ['vm get-instance-view', 'vm wait', 'vmss wait']: with self.argument_context(scope) as c: c.ignore('include_user_data') with self.argument_context('vm diagnostics') as c: c.argument('vm_name', arg_type=existing_vm_name, options_list=['--vm-name']) with self.argument_context('vm diagnostics set') as c: c.argument('storage_account', completer=get_resource_name_completion_list('Microsoft.Storage/storageAccounts')) with self.argument_context('vm install-patches') as c: c.argument('maximum_duration', type=str, help='Specify the maximum amount of time that the operation will run. It must be an ISO 8601-compliant duration string such as PT4H (4 hours)') c.argument('reboot_setting', arg_type=get_enum_type(RebootSetting), help='Define when it is acceptable to reboot a VM during a software update operation.') c.argument('classifications_to_include_win', nargs='+', arg_type=get_enum_type(VMGuestPatchClassificationWindows), help='Space-separated list of classifications to include for Windows VM.') c.argument('classifications_to_include_linux', nargs='+', arg_type=get_enum_type(VMGuestPatchClassificationLinux), help='Space-separated list of classifications to include for Linux VM.') c.argument('kb_numbers_to_include', nargs='+', help='Space-separated list of KBs to include in the patch operation. Applicable to Windows VM only') c.argument('kb_numbers_to_exclude', nargs='+', help='Space-separated list of KBs to exclude in the patch operation. Applicable to Windows VM only') c.argument('exclude_kbs_requiring_reboot', arg_type=get_three_state_flag(), help="Filter out KBs that don't have a reboot behavior of 'NeverReboots' when this is set. Applicable to Windows VM only") c.argument('package_name_masks_to_include', nargs='+', help='Space-separated list of packages to include in the patch operation. Format: packageName_packageVersion. Applicable to Linux VM only') c.argument('package_name_masks_to_exclude', nargs='+', help='Space-separated list of packages to exclude in the patch operation. Format: packageName_packageVersion. Applicable to Linux VM only') with self.argument_context('vm disk') as c: c.argument('vm_name', options_list=['--vm-name'], id_part=None, completer=get_resource_name_completion_list('Microsoft.Compute/virtualMachines')) c.argument('new', action='store_true', help='create a new disk') c.argument('sku', arg_type=disk_sku, help='Underlying storage SKU') c.argument('size_gb', options_list=['--size-gb', '-z'], help='size in GB. Max size: 4095 GB (certain preview disks can be larger).', type=int) c.argument('lun', type=int, help='0-based logical unit number (LUN). Max value depends on the Virtual Machine size.') with self.argument_context('vm disk attach') as c: c.argument('enable_write_accelerator', min_api='2017-12-01', action='store_true', help='enable write accelerator') c.argument('disk', options_list=['--name', '-n', c.deprecate(target='--disk', redirect='--name', hide=True)], help="The name or ID of the managed disk", validator=validate_vm_disk, id_part='name', completer=get_resource_name_completion_list('Microsoft.Compute/disks')) with self.argument_context('vm disk detach') as c: c.argument('disk_name', arg_type=name_arg_type, help='The data disk name.') with self.argument_context('vm encryption enable') as c: c.argument('encrypt_format_all', action='store_true', help='Encrypts-formats data disks instead of encrypting them. Encrypt-formatting is a lot faster than in-place encryption but wipes out the partition getting encrypt-formatted.') # Place aad arguments in their own group aad_arguments = 'Azure Active Directory' c.argument('aad_client_id', arg_group=aad_arguments) c.argument('aad_client_secret', arg_group=aad_arguments) c.argument('aad_client_cert_thumbprint', arg_group=aad_arguments) with self.argument_context('vm extension') as c: c.argument('vm_extension_name', name_arg_type, completer=get_resource_name_completion_list('Microsoft.Compute/virtualMachines/extensions'), help='Name of the extension.', id_part='child_name_1') c.argument('vm_name', arg_type=existing_vm_name, options_list=['--vm-name'], id_part='name') c.argument('expand', deprecate_info=c.deprecate(expiration='3.0.0', hide=True)) with self.argument_context('vm extension list') as c: c.argument('vm_name', arg_type=existing_vm_name, options_list=['--vm-name'], id_part=None) with self.argument_context('vm secret') as c: c.argument('secrets', multi_ids_type, options_list=['--secrets', '-s'], help='Space-separated list of key vault secret URIs. Perhaps, produced by \'az keyvault secret list-versions --vault-name vaultname -n cert1 --query "[?attributes.enabled].id" -o tsv\'') c.argument('keyvault', help='Name or ID of the key vault.', validator=validate_keyvault) c.argument('certificate', help='key vault certificate name or its full secret URL') c.argument('certificate_store', help='Windows certificate store names. Default: My') with self.argument_context('vm secret list') as c: c.argument('vm_name', arg_type=existing_vm_name, id_part=None) with self.argument_context('vm image') as c: c.argument('publisher_name', options_list=['--publisher', '-p'], help='image publisher') c.argument('publisher', options_list=['--publisher', '-p'], help='image publisher') c.argument('offer', options_list=['--offer', '-f'], help='image offer') c.argument('plan', help='image billing plan') c.argument('sku', options_list=['--sku', '-s'], help='image sku') c.argument('version', help="image sku's version") c.argument('urn', help="URN, in format of 'publisher:offer:sku:version' or 'publisher:offer:sku:edge_zone:version'. If specified, other argument values can be omitted") with self.argument_context('vm image list') as c: c.argument('image_location', get_location_type(self.cli_ctx)) c.argument('edge_zone', edge_zone_type) with self.argument_context('vm image list-offers') as c: c.argument('edge_zone', edge_zone_type) with self.argument_context('vm image list-skus') as c: c.argument('edge_zone', edge_zone_type) with self.argument_context('vm image list-publishers') as c: c.argument('edge_zone', edge_zone_type) with self.argument_context('vm image show') as c: c.argument('skus', options_list=['--sku', '-s']) c.argument('edge_zone', edge_zone_type) with self.argument_context('vm image terms') as c: c.argument('urn', help='URN, in the format of \'publisher:offer:sku:version\'. If specified, other argument values can be omitted') c.argument('publisher', help='Image publisher') c.argument('offer', help='Image offer') c.argument('plan', help='Image billing plan') with self.argument_context('vm nic') as c: c.argument('vm_name', existing_vm_name, options_list=['--vm-name'], id_part=None) c.argument('nics', nargs='+', help='Names or IDs of NICs.', validator=validate_vm_nics) c.argument('primary_nic', help='Name or ID of the primary NIC. If missing, the first NIC in the list will be the primary.') with self.argument_context('vm nic show') as c: c.argument('nic', help='NIC name or ID.', validator=validate_vm_nic) with self.argument_context('vm unmanaged-disk') as c: c.argument('new', action='store_true', help='Create a new disk.') c.argument('lun', type=int, help='0-based logical unit number (LUN). Max value depends on the Virtual Machine size.') c.argument('vhd_uri', help="Virtual hard disk URI. For example: https://mystorage.blob.core.windows.net/vhds/d1.vhd") with self.argument_context('vm unmanaged-disk attach') as c: c.argument('disk_name', options_list=['--name', '-n'], help='The data disk name.') c.argument('size_gb', options_list=['--size-gb', '-z'], help='size in GB. Max size: 4095 GB (certain preview disks can be larger).', type=int) with self.argument_context('vm unmanaged-disk detach') as c: c.argument('disk_name', options_list=['--name', '-n'], help='The data disk name.') for scope in ['vm unmanaged-disk attach', 'vm unmanaged-disk detach']: with self.argument_context(scope) as c: c.argument('vm_name', arg_type=existing_vm_name, options_list=['--vm-name'], id_part=None) with self.argument_context('vm unmanaged-disk list') as c: c.argument('vm_name', options_list=['--vm-name', '--name', '-n'], arg_type=existing_vm_name, id_part=None) with self.argument_context('vm user') as c: c.argument('username', options_list=['--username', '-u'], help='The user name') c.argument('password', options_list=['--password', '-p'], help='The user password') with self.argument_context('vm list-skus') as c: c.argument('size', options_list=['--size', '-s'], help="size name, partial name is accepted") c.argument('zone', options_list=['--zone', '-z'], arg_type=get_three_state_flag(), help="show skus supporting availability zones") c.argument('show_all', options_list=['--all'], arg_type=get_three_state_flag(), help="show all information including vm sizes not available under the current subscription") c.argument('resource_type', options_list=['--resource-type', '-r'], help='resource types e.g. "availabilitySets", "snapshots", "disks", etc') with self.argument_context('vm restart') as c: c.argument('force', action='store_true', help='Force the VM to restart by redeploying it. Use if the VM is unresponsive.') with self.argument_context('vm host') as c: c.argument('host_group_name', options_list=['--host-group'], id_part='name', help="Name of the Dedicated Host Group") c.argument('host_name', name_arg_type, id_part='child_name_1', help="Name of the Dedicated Host") c.ignore('expand') with self.argument_context('vm host create') as c: c.argument('platform_fault_domain', options_list=['--platform-fault-domain', '-d'], type=int, help="Fault domain of the host within a group. Allowed values: 0, 1, 2") c.argument('auto_replace_on_failure', options_list=['--auto-replace'], arg_type=get_three_state_flag(), help="Replace the host automatically if a failure occurs") c.argument('license_type', arg_type=get_enum_type(DedicatedHostLicenseTypes), help="The software license type that will be applied to the VMs deployed on the dedicated host.") c.argument('sku', help="SKU of the dedicated host. Available SKUs: https://azure.microsoft.com/pricing/details/virtual-machines/dedicated-host/") with self.argument_context('vm host list') as c: c.argument('host_group_name', id_part=None) with self.argument_context('vm host group') as c: c.argument('host_group_name', name_arg_type, id_part='name', help="Name of the Dedicated Host Group") c.argument('automatic_placement', arg_type=get_three_state_flag(), min_api='2020-06-01', help='Specify whether virtual machines or virtual machine scale sets can be placed automatically ' 'on the dedicated host group. Automatic placement means resources are allocated on dedicated ' 'hosts, that are chosen by Azure, under the dedicated host group. The value is defaulted to ' 'false when not provided.') with self.argument_context('vm host group create') as c: c.argument('platform_fault_domain_count', options_list=["--platform-fault-domain-count", "-c"], type=int, help="Number of fault domains that the host group can span.") c.argument('zones', zone_type) for scope in ["vm host", "vm host group"]: with self.argument_context("{} create".format(scope)) as c: location_type = get_location_type(self.cli_ctx) custom_location_msg = " Otherwise, location will default to the resource group's location" custom_location_type = CLIArgumentType(overrides=location_type, help=location_type.settings["help"] + custom_location_msg) c.argument('location', arg_type=custom_location_type) # endregion # region VMSS scaleset_name_aliases = ['vm_scale_set_name', 'virtual_machine_scale_set_name', 'name'] with self.argument_context('vmss') as c: c.argument('zones', zones_type, min_api='2017-03-30') c.argument('instance_id', id_part='child_name_1') c.argument('instance_ids', multi_ids_type, help='Space-separated list of IDs (ex: 1 2 3 ...) or * for all instances. If not provided, the action will be applied on the scaleset itself') c.argument('tags', tags_type) c.argument('caching', help='Disk caching policy', arg_type=get_enum_type(CachingTypes)) for dest in scaleset_name_aliases: c.argument(dest, vmss_name_type) c.argument('host_group', min_api='2020-06-01', help='Name or ID of dedicated host group that the virtual machine scale set resides in') for scope in ['vmss deallocate', 'vmss delete-instances', 'vmss restart', 'vmss start', 'vmss stop', 'vmss show', 'vmss update-instances', 'vmss simulate-eviction']: with self.argument_context(scope) as c: for dest in scaleset_name_aliases: c.argument(dest, vmss_name_type, id_part=None) # due to instance-ids parameter with self.argument_context('vmss create', operation_group='virtual_machine_scale_sets') as c: VirtualMachineEvictionPolicyTypes = self.get_models('VirtualMachineEvictionPolicyTypes', resource_type=ResourceType.MGMT_COMPUTE) c.argument('name', name_arg_type) c.argument('nat_backend_port', default=None, help='Backend port to open with NAT rules. Defaults to 22 on Linux and 3389 on Windows.') c.argument('single_placement_group', arg_type=get_three_state_flag(), help="Limit the scale set to a single placement group." " See https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-placement-groups for details.") c.argument('platform_fault_domain_count', type=int, help='Fault Domain count for each placement group in the availability zone', min_api='2017-12-01') c.argument('vmss_name', name_arg_type, id_part=None, help='Name of the virtual machine scale set.') c.argument('instance_count', help='Number of VMs in the scale set.', type=int) c.argument('disable_overprovision', help='Overprovision option (see https://azure.microsoft.com/documentation/articles/virtual-machine-scale-sets-overview/ for details).', action='store_true') c.argument('upgrade_policy_mode', help=None, arg_type=get_enum_type(UpgradeMode)) c.argument('health_probe', help='Probe name from the existing load balancer, mainly used for rolling upgrade or automatic repairs') c.argument('vm_sku', help='Size of VMs in the scale set. Default to "Standard_DS1_v2". See https://azure.microsoft.com/pricing/details/virtual-machines/ for size info.') c.argument('nsg', help='Name or ID of an existing Network Security Group.', arg_group='Network') c.argument('eviction_policy', resource_type=ResourceType.MGMT_COMPUTE, min_api='2017-12-01', arg_type=get_enum_type(VirtualMachineEvictionPolicyTypes, default=None), help="The eviction policy for virtual machines in a Spot priority scale set. Default eviction policy is Deallocate for a Spot priority scale set") c.argument('application_security_groups', resource_type=ResourceType.MGMT_COMPUTE, min_api='2018-06-01', nargs='+', options_list=['--asgs'], help='Space-separated list of existing application security groups to associate with the VM.', arg_group='Network', validator=validate_asg_names_or_ids) c.argument('computer_name_prefix', help='Computer name prefix for all of the virtual machines in the scale set. Computer name prefixes must be 1 to 15 characters long') c.argument('orchestration_mode', help='Choose how virtual machines are managed by the scale set. In Uniform mode, you define a virtual machine model and Azure will generate identical instances based on that model. In Flexible mode, you manually create and add a virtual machine of any configuration to the scale set or generate identical instances based on virtual machine model defined for the scale set.', arg_type=get_enum_type(['Uniform', 'Flexible'])) c.argument('scale_in_policy', scale_in_policy_type) c.argument('automatic_repairs_grace_period', min_api='2018-10-01', help='The amount of time (in minutes, between 30 and 90) for which automatic repairs are suspended due to a state change on VM.') c.argument('user_data', help='UserData for the virtual machines in the scale set. It can be passed in as file or string.', completer=FilesCompleter(), type=file_type, min_api='2021-03-01') c.argument('network_api_version', min_api='2021-03-01', help="Specify the Microsoft.Network API version used when creating networking resources in the Network " "Interface Configurations for Virtual Machine Scale Set with orchestration mode 'Flexible'. Default " "value is 2020-11-01.") c.argument('enable_spot_restore', arg_type=get_three_state_flag(), min_api='2021-04-01', help='Enable the Spot-Try-Restore feature where evicted VMSS SPOT instances will be tried to be restored opportunistically based on capacity availability and pricing constraints') c.argument('spot_restore_timeout', min_api='2021-04-01', help='Timeout value expressed as an ISO 8601 time duration after which the platform will not try to restore the VMSS SPOT instances') c.argument('enable_agent', arg_type=get_three_state_flag(), min_api='2018-06-01', help='Indicate whether virtual machine agent should be provisioned on the virtual machine. When this property is not specified, default behavior is to set it to true. This will ensure that VM Agent is installed on the VM so that extensions can be added to the VM later') c.argument('enable_auto_update', arg_type=get_three_state_flag(), min_api='2020-06-01', help='Indicate whether Automatic Updates is enabled for the Windows virtual machine') c.argument('patch_mode', arg_type=get_enum_type(['AutomaticByOS', 'AutomaticByPlatform', 'Manual', 'ImageDefault']), min_api='2020-12-01', help='Mode of in-guest patching to IaaS virtual machine. Allowed values for Windows VM: AutomaticByOS, AutomaticByPlatform, Manual. Allowed values for Linux VM: AutomaticByPlatform, ImageDefault. Manual - You control the application of patches to a virtual machine. You do this by applying patches manually inside the VM. In this mode, automatic updates are disabled; the paramater --enable-auto-update must be false. AutomaticByOS - The virtual machine will automatically be updated by the OS. The parameter --enable-auto-update must be true. AutomaticByPlatform - the virtual machine will automatically updated by the OS. ImageDefault - The virtual machine\'s default patching configuration is used. The parameter --enable-agent and --enable-auto-update must be true') with self.argument_context('vmss create', arg_group='Network Balancer') as c: LoadBalancerSkuName = self.get_models('LoadBalancerSkuName', resource_type=ResourceType.MGMT_NETWORK) c.argument('application_gateway', help='Name to use when creating a new application gateway (default) or referencing an existing one. Can also reference an existing application gateway by ID or specify "" for none.', options_list=['--app-gateway']) c.argument('app_gateway_capacity', help='The number of instances to use when creating a new application gateway.') c.argument('app_gateway_sku', help='SKU when creating a new application gateway.') c.argument('app_gateway_subnet_address_prefix', help='The subnet IP address prefix to use when creating a new application gateway in CIDR format.') c.argument('backend_pool_name', help='Name to use for the backend pool when creating a new load balancer or application gateway.') c.argument('backend_port', help='When creating a new load balancer, backend port to open with NAT rules (Defaults to 22 on Linux and 3389 on Windows). When creating an application gateway, the backend port to use for the backend HTTP settings.', type=int) c.argument('load_balancer', help='Name to use when creating a new load balancer (default) or referencing an existing one. Can also reference an existing load balancer by ID or specify "" for none.', options_list=['--load-balancer', '--lb']) c.argument('load_balancer_sku', resource_type=ResourceType.MGMT_NETWORK, min_api='2017-08-01', options_list=['--lb-sku'], arg_type=get_enum_type(LoadBalancerSkuName), help="Sku of the Load Balancer to create. Default to 'Standard' when single placement group is turned off; otherwise, default to 'Basic'. The public IP is supported to be created on edge zone only when it is 'Standard'") c.argument('nat_pool_name', help='Name to use for the NAT pool when creating a new load balancer.', options_list=['--lb-nat-pool-name', '--nat-pool-name']) with self.argument_context('vmss create', min_api='2017-03-30', arg_group='Network') as c: c.argument('public_ip_per_vm', action='store_true', help="Each VM instance will have a public ip. For security, you can use '--nsg' to apply appropriate rules") c.argument('vm_domain_name', help="domain name of VM instances, once configured, the FQDN is `vm<vm-index>.<vm-domain-name>.<..rest..>`") c.argument('dns_servers', nargs='+', help="space-separated IP addresses of DNS servers, e.g. 10.0.0.5 10.0.0.6") c.argument('accelerated_networking', arg_type=get_three_state_flag(), help="enable accelerated networking. Unless specified, CLI will enable it based on machine image and size") with self.argument_context('vmss update') as c: protection_policy_type = CLIArgumentType(overrides=get_three_state_flag(), arg_group="Protection Policy", min_api='2019-03-01') c.argument('protect_from_scale_in', arg_type=protection_policy_type, help="Protect the VM instance from scale-in operations.") c.argument('protect_from_scale_set_actions', arg_type=protection_policy_type, help="Protect the VM instance from scale set actions (including scale-in).") c.argument('enable_terminate_notification', min_api='2019-03-01', arg_type=get_three_state_flag(), help='Enable terminate notification') c.argument('ultra_ssd_enabled', ultra_ssd_enabled_type) c.argument('scale_in_policy', scale_in_policy_type) c.argument('user_data', help='UserData for the virtual machines in the scale set. It can be passed in as file or string. If empty string is passed in, the existing value will be deleted.', completer=FilesCompleter(), type=file_type, min_api='2021-03-01') c.argument('enable_spot_restore', arg_type=get_three_state_flag(), min_api='2021-04-01', help='Enable the Spot-Try-Restore feature where evicted VMSS SPOT instances will be tried to be restored opportunistically based on capacity availability and pricing constraints') c.argument('spot_restore_timeout', min_api='2021-04-01', help='Timeout value expressed as an ISO 8601 time duration after which the platform will not try to restore the VMSS SPOT instances') c.argument('vm_sku', help='The new size of the virtual machine instances in the scale set. Default to "Standard_DS1_v2". See https://azure.microsoft.com/pricing/details/virtual-machines/ for size info.', is_preview=True) c.argument('ephemeral_os_disk_placement', arg_type=ephemeral_placement_type, help='Only applicable when used with `--vm-sku`. Allows you to choose the Ephemeral OS disk provisioning location.', is_preview=True) with self.argument_context('vmss update', min_api='2018-10-01', arg_group='Automatic Repairs') as c: c.argument('enable_automatic_repairs', arg_type=get_three_state_flag(), help='Enable automatic repairs') c.argument( 'automatic_repairs_grace_period', help='The amount of time (in minutes, between 30 and 90) for which automatic repairs are suspended due to a state change on VM.' ) for scope in ['vmss create', 'vmss update']: with self.argument_context(scope) as c: c.argument('terminate_notification_time', min_api='2019-03-01', help='Length of time (in minutes, between 5 and 15) a notification to be sent to the VM on the instance metadata server till the VM gets deleted') c.argument('max_batch_instance_percent', type=int, min_api='2020-12-01', help='The maximum percent of total virtual machine instances that will be upgraded simultaneously by the rolling upgrade in one batch. Default: 20%') c.argument('max_unhealthy_instance_percent', type=int, min_api='2020-12-01', help='The maximum percentage of the total virtual machine instances in the scale set that can be simultaneously unhealthy. Default: 20%') c.argument('max_unhealthy_upgraded_instance_percent', type=int, min_api='2020-12-01', help='The maximum percentage of upgraded virtual machine instances that can be found to be in an unhealthy state. Default: 20%') c.argument('pause_time_between_batches', min_api='2020-12-01', help='The wait time between completing the update for all virtual machines in one batch and starting the next batch. Default: 0 seconds') c.argument('enable_cross_zone_upgrade', arg_type=get_three_state_flag(), min_api='2020-12-01', help='Set this Boolean property will allow VMSS to ignore AZ boundaries when constructing upgrade batches, and only consider Update Domain and maxBatchInstancePercent to determine the batch size') c.argument('prioritize_unhealthy_instances', arg_type=get_three_state_flag(), min_api='2020-12-01', help='Set this Boolean property will lead to all unhealthy instances in a scale set getting upgraded before any healthy instances') for scope, help_prefix in [('vmss update', 'Update the'), ('vmss wait', 'Wait on the')]: with self.argument_context(scope) as c: c.argument('instance_id', id_part='child_name_1', help="{0} VM instance with this ID. If missing, {0} VMSS.".format(help_prefix)) for scope in ['vmss update-instances', 'vmss delete-instances']: with self.argument_context(scope) as c: c.argument('instance_ids', multi_ids_type, help='Space-separated list of IDs (ex: 1 2 3 ...) or * for all instances.') with self.argument_context('vmss diagnostics') as c: c.argument('vmss_name', id_part=None, help='Scale set name') with self.argument_context('vmss disk') as c: options_list = ['--vmss-name'] + [c.deprecate(target=opt, redirect='--vmss-name', hide=True)for opt in name_arg_type.settings['options_list']] new_vmss_name_type = CLIArgumentType(overrides=vmss_name_type, options_list=options_list) c.argument('lun', type=int, help='0-based logical unit number (LUN). Max value depends on the Virtual Machine instance size.') c.argument('size_gb', options_list=['--size-gb', '-z'], help='size in GB. Max size: 4095 GB (certain preview disks can be larger).', type=int) c.argument('vmss_name', new_vmss_name_type, completer=get_resource_name_completion_list('Microsoft.Compute/virtualMachineScaleSets')) c.argument('disk', validator=validate_vmss_disk, help='existing disk name or ID to attach or detach from VM instances', min_api='2017-12-01', completer=get_resource_name_completion_list('Microsoft.Compute/disks')) c.argument('instance_id', help='Scale set VM instance id', min_api='2017-12-01') c.argument('sku', arg_type=disk_sku, help='Underlying storage SKU') with self.argument_context('vmss encryption') as c: c.argument('vmss_name', vmss_name_type, completer=get_resource_name_completion_list('Microsoft.Compute/virtualMachineScaleSets')) with self.argument_context('vmss extension') as c: c.argument('extension_name', name_arg_type, help='Name of the extension.') c.argument('vmss_name', vmss_name_type, options_list=['--vmss-name'], id_part=None) with self.argument_context('vmss nic') as c: c.argument('virtual_machine_scale_set_name', options_list=['--vmss-name'], help='Scale set name.', completer=get_resource_name_completion_list('Microsoft.Compute/virtualMachineScaleSets'), id_part='name') c.argument('virtualmachine_index', options_list=['--instance-id'], id_part='child_name_1') c.argument('network_interface_name', options_list=['--name', '-n'], metavar='NIC_NAME', help='The network interface (NIC).', completer=get_resource_name_completion_list('Microsoft.Network/networkInterfaces'), id_part='child_name_2') with self.argument_context('vmss nic list') as c: c.argument('virtual_machine_scale_set_name', arg_type=vmss_name_type, options_list=['--vmss-name'], id_part=None) with self.argument_context('vmss set-orchestration-service-state') as c: c.argument('service_name', arg_type=get_enum_type(OrchestrationServiceNames), help='The name of the orchestration service.') c.argument('action', arg_type=get_enum_type(OrchestrationServiceStateAction), help='The action to be performed.') # endregion # region VM & VMSS Shared for scope in ['vm', 'vmss']: with self.argument_context(scope) as c: c.argument('no_auto_upgrade', options_list=['--no-auto-upgrade-minor-version', c.deprecate(target='--no-auto-upgrade', redirect='--no-auto-upgrade-minor-version')], arg_type=get_three_state_flag(), help='If set, the extension service will not automatically pick or upgrade to the latest minor version, even if the extension is redeployed.') with self.argument_context('{} run-command'.format(scope)) as c: c.argument('command_id', completer=get_vm_run_command_completion_list, help="The command id. Use 'az {} run-command list' to get the list".format(scope)) if scope == 'vmss': c.argument('vmss_name', vmss_name_type) with self.argument_context('{} run-command invoke'.format(scope)) as c: c.argument('parameters', nargs='+', help="space-separated parameters in the format of '[name=]value'") c.argument('scripts', nargs='+', help="Space-separated script lines. Use @{file} to load script from a file") with self.argument_context('{} stop'.format(scope)) as c: c.argument('skip_shutdown', action='store_true', help='Skip shutdown and power-off immediately.', min_api='2019-03-01') run_cmd_name_type = CLIArgumentType(options_list=['--name', '--run-command-name'], help='The name of the virtual machine run command.') run_cmd_vm_name = CLIArgumentType(options_list=['--vm-name'], help='The name of the virtual machine') for scope in ['create', 'update']: with self.argument_context('vm run-command {}'.format(scope)) as c: c.argument('vm_name', run_cmd_vm_name) c.argument('run_command_name', run_cmd_name_type) c.argument('location', arg_type=get_location_type(self.cli_ctx), required=False, validator=get_default_location_from_resource_group) c.argument('tags', tags_type) c.argument('script', help='Contain the powershell or bash script to execute on the VM.') c.argument('script_uri', help='Contain a uri to the script to execute on the VM. Uri can be any link accessible from the VM or a storage blob without SAS. If subscription has access to the storage blob, then SAS will be auto-generated. ') c.argument('command_id', help='Specify a command id of predefined script. All command ids can be listed using "list" command.') c.argument('parameters', nargs='+', help='Set custom parameters in a name-value pair.') c.argument('protected_parameters', nargs='+', help='Set custom parameters in a name-value pair. These parameters will be encrypted during transmission and will not be logged.') c.argument('async_execution', arg_type=get_three_state_flag(), help='Optional. If set to true, provisioning ' 'will complete as soon as the script starts and will not wait for script to complete.') c.argument('run_as_user', help='By default script process runs under system/root user. Specify custom user to host the process.') c.argument('run_as_password', help='Password if needed for using run-as-user parameter. It will be encrypted and not logged. ') c.argument('timeout_in_seconds', type=int, help='The timeout in seconds to execute the run command.') c.argument('output_blob_uri', help='Specify the Azure storage blob where script output stream will be uploaded.') c.argument('error_blob_uri', help='Specify the Azure storage blob where script error stream will be uploaded.') with self.argument_context('vm run-command delete') as c: c.argument('vm_name', run_cmd_vm_name) c.argument('run_command_name', run_cmd_name_type) with self.argument_context('vm run-command list') as c: c.argument('vm_name', run_cmd_vm_name, id_part=None) c.argument('expand', help='The expand expression to apply on the operation.') c.argument('location', arg_type=get_location_type(self.cli_ctx)) with self.argument_context('vm run-command show') as c: c.argument('vm_name', run_cmd_vm_name) c.argument('run_command_name', run_cmd_name_type) c.argument('expand', help='The expand expression to apply on the operation.', deprecate_info=c.deprecate(hide=True)) c.argument('instance_view', action='store_true', help='Track the run command progress') c.argument('location', arg_type=get_location_type(self.cli_ctx)) c.argument('command_id', help='The command id.') with self.argument_context('vm run-command wait') as c: c.argument('vm_name', run_cmd_vm_name) c.argument('run_command_name', run_cmd_name_type) c.argument('expand', help='The expand expression to apply on the operation.', deprecate_info=c.deprecate(hide=True)) c.argument('instance_view', action='store_true', help='Track the run command progress') c.argument('location', arg_type=get_location_type(self.cli_ctx)) c.argument('command_id', help='The command id.') run_cmd_vmss_name = CLIArgumentType(options_list=['--vmss-name'], help='The name of the VM scale set.') for scope in ['create', 'update']: with self.argument_context('vmss run-command {}'.format(scope)) as c: c.argument('vmss_name', run_cmd_vmss_name) c.argument('instance_id', help='The instance ID of the virtual machine.') c.argument('run_command_name', run_cmd_name_type) c.argument('location', arg_type=get_location_type(self.cli_ctx), required=False, validator=get_default_location_from_resource_group) c.argument('tags', tags_type) c.argument('script', help='Contain the powershell or bash script to execute on the VM.') c.argument('script_uri', help='Contain a uri to the script to execute on the VM. Uri can be any link accessible from the VM or a storage blob without SAS. If subscription has access to the storage blob, then SAS will be auto-generated. ') c.argument('command_id', help='Specify a command id of predefined script. All command ids can be listed using "list" command.') c.argument('parameters', nargs='+', help='Set custom parameters in a name-value pair.') c.argument('protected_parameters', nargs='+', help='Set custom parameters in a name-value pair. These parameters will be encrypted during transmission and will not be logged.') c.argument('async_execution', arg_type=get_three_state_flag(), help='Optional. If set to true, provisioning ' 'will complete as soon as the script starts and will not wait for script to complete.') c.argument('run_as_user', help='By default script process runs under system/root user. Specify custom user to host the process.') c.argument('run_as_password', help='Password if needed for using run-as-user parameter. It will be encrypted and not logged. ') c.argument('timeout_in_seconds', type=int, help='The timeout in seconds to execute the run command.') c.argument('output_blob_uri', help='Uri (without SAS) to an append blob where the script output will be uploaded.') c.argument('error_blob_uri', help='Uri (without SAS) to an append blob where the script error stream will be uploaded.') with self.argument_context('vmss run-command delete') as c: c.argument('vmss_name', run_cmd_vmss_name) c.argument('instance_id', help='The instance ID of the virtual machine.') c.argument('run_command_name', run_cmd_name_type) with self.argument_context('vmss run-command list') as c: c.argument('vmss_name', run_cmd_vmss_name, id_part=None) c.argument('instance_id', help='The instance ID of the virtual machine.') c.argument('expand', help='The expand expression to apply on the operation.') with self.argument_context('vmss run-command show') as c: c.argument('vmss_name', run_cmd_vmss_name) c.argument('instance_id', help='The instance ID of the virtual machine.') c.argument('run_command_name', run_cmd_name_type) c.argument('expand', help='The expand expression to apply on the operation.', deprecate_info=c.deprecate(hide=True)) c.argument('instance_view', action='store_true', help='Track the run command progress') for scope in ['vm identity assign', 'vmss identity assign']: with self.argument_context(scope) as c: c.argument('assign_identity', options_list=['--identities'], nargs='*', help="Space-separated identities to assign. Use '{0}' to refer to the system assigned identity. Default: '{0}'".format(MSI_LOCAL_ID)) c.argument('vm_name', existing_vm_name) c.argument('vmss_name', vmss_name_type) for scope in ['vm identity remove', 'vmss identity remove']: with self.argument_context(scope) as c: c.argument('identities', nargs='+', help="Space-separated identities to remove. Use '{0}' to refer to the system assigned identity. Default: '{0}'".format(MSI_LOCAL_ID)) c.argument('vm_name', existing_vm_name) c.argument('vmss_name', vmss_name_type) for scope in ['vm identity show', 'vmss identity show']: with self.argument_context(scope) as c: c.argument('vm_name', existing_vm_name) c.argument('vmss_name', vmss_name_type) for scope in ['vm application set', 'vmss application set']: with self.argument_context(scope) as c: c.argument('vm', existing_vm_name) c.argument('vmss_name', vmss_name_type) c.argument('application_version_ids', options_list=['--app-version-ids'], nargs='*', help="Space-separated application version ids to set to VM.") c.argument('order_applications', action='store_true', help='Whether set order index at each gallery applications, the order index starts from 1.') c.argument('application_configuration_overrides', options_list=['--app-config-overrides'], nargs='*', help='Space-separated application configuration overrides for each application version ids. ' 'It should have the same number of items as the application version ids. Null is available for a application ' 'which does not have a configuration override.') for scope in ['vm application list', 'vmss application list']: with self.argument_context(scope) as c: c.argument('vm_name', options_list=['--vm-name', '--name', '-n'], arg_type=existing_vm_name, id_part=None) c.argument('vmss_name', vmss_name_type, id_part=None) for scope in ['vm create', 'vmss create']: with self.argument_context(scope) as c: c.argument('location', get_location_type(self.cli_ctx), help='Location in which to create VM and related resources. If default location is not configured, will default to the resource group\'s location') c.argument('tags', tags_type) c.argument('no_wait', help='Do not wait for the long-running operation to finish.') c.argument('validate', options_list=['--validate'], help='Generate and validate the ARM template without creating any resources.', action='store_true') c.argument('size', help='The VM size to be created. See https://azure.microsoft.com/pricing/details/virtual-machines/ for size info.') c.argument('image', completer=get_urn_aliases_completion_list) c.argument('custom_data', help='Custom init script file or text (cloud-init, cloud-config, etc..)', completer=FilesCompleter(), type=file_type) c.argument('secrets', multi_ids_type, help='One or many Key Vault secrets as JSON strings or files via `@{path}` containing `[{ "sourceVault": { "id": "value" }, "vaultCertificates": [{ "certificateUrl": "value", "certificateStore": "cert store name (only on windows)"}] }]`', type=file_type, completer=FilesCompleter()) c.argument('assign_identity', nargs='*', arg_group='Managed Service Identity', help="accept system or user assigned identities separated by spaces. Use '[system]' to refer system assigned identity, or a resource id to refer user assigned identity. Check out help for more examples") c.ignore('aux_subscriptions') c.argument('edge_zone', edge_zone_type) with self.argument_context(scope, arg_group='Authentication') as c: c.argument('generate_ssh_keys', action='store_true', help='Generate SSH public and private key files if missing. The keys will be stored in the ~/.ssh directory') c.argument('admin_username', help='Username for the VM. Default value is current username of OS. If the default value is system reserved, then default value will be set to azureuser. Please refer to https://docs.microsoft.com/rest/api/compute/virtualmachines/createorupdate#osprofile to get a full list of reserved values.') c.argument('admin_password', help="Password for the VM if authentication type is 'Password'.") c.argument('ssh_key_value', options_list=['--ssh-key-values'], completer=FilesCompleter(), type=file_type, nargs='+') c.argument('ssh_dest_key_path', help='Destination file path on the VM for the SSH key. If the file already exists, the specified key(s) are appended to the file. Destination path for SSH public keys is currently limited to its default value "/home/username/.ssh/authorized_keys" due to a known issue in Linux provisioning agent.') c.argument('authentication_type', help='Type of authentication to use with the VM. Defaults to password for Windows and SSH public key for Linux. "all" enables both ssh and password authentication. ', arg_type=get_enum_type(['ssh', 'password', 'all'])) with self.argument_context(scope, arg_group='Storage') as c: if DiskStorageAccountTypes: allowed_values = ", ".join([sku.value for sku in DiskStorageAccountTypes]) else: allowed_values = ", ".join(['Premium_LRS', 'Standard_LRS']) usage = 'Usage: [--storage-sku SKU | --storage-sku ID=SKU ID=SKU ID=SKU...], where each ID is "os" or a 0-indexed lun.' allowed_values = 'Allowed values: {}.'.format(allowed_values) storage_sku_help = 'The SKU of the storage account with which to persist VM. Use a singular sku that would be applied across all disks, ' \ 'or specify individual disks. {} {}'.format(usage, allowed_values) c.argument('os_disk_name', help='The name of the new VM OS disk.') c.argument('os_type', help='Type of OS installed on a custom VHD. Do not use when specifying an URN or URN alias.', arg_type=get_enum_type(['windows', 'linux'])) c.argument('storage_account', help="Only applicable when used with `--use-unmanaged-disk`. The name to use when creating a new storage account or referencing an existing one. If omitted, an appropriate storage account in the same resource group and location will be used, or a new one will be created.") c.argument('storage_sku', nargs='+', help=storage_sku_help) c.argument('storage_container_name', help="Only applicable when used with `--use-unmanaged-disk`. Name of the storage container for the VM OS disk. Default: vhds") c.ignore('os_publisher', 'os_offer', 'os_sku', 'os_version', 'storage_profile') c.argument('use_unmanaged_disk', action='store_true', help='Do not use managed disk to persist VM') c.argument('os_disk_size_gb', type=int, help='OS disk size in GB to create.') c.argument('data_disk_sizes_gb', nargs='+', type=int, help='space-separated empty managed data disk sizes in GB to create') c.ignore('disk_info', 'storage_account_type', 'public_ip_address_type', 'nsg_type', 'nic_type', 'vnet_type', 'load_balancer_type', 'app_gateway_type') c.argument('os_caching', options_list=[self.deprecate(target='--storage-caching', redirect='--os-disk-caching', hide=True), '--os-disk-caching'], help='Storage caching type for the VM OS disk. Default: ReadWrite', arg_type=get_enum_type(CachingTypes)) c.argument('data_caching', options_list=['--data-disk-caching'], nargs='+', help="storage caching type for data disk(s), including 'None', 'ReadOnly', 'ReadWrite', etc. Use a singular value to apply on all disks, or use `<lun>=<vaule1> <lun>=<value2>` to configure individual disk") c.argument('ultra_ssd_enabled', ultra_ssd_enabled_type) c.argument('ephemeral_os_disk', arg_type=get_three_state_flag(), min_api='2018-06-01', help='Allows you to create an OS disk directly on the host node, providing local disk performance and faster VM/VMSS reimage time.', is_preview=True) c.argument('ephemeral_os_disk_placement', arg_type=ephemeral_placement_type, help='Only applicable when used with `--ephemeral-os-disk`. Allows you to choose the Ephemeral OS disk provisioning location.', is_preview=True) c.argument('os_disk_encryption_set', min_api='2019-07-01', help='Name or ID of disk encryption set for OS disk.') c.argument('data_disk_encryption_sets', nargs='+', min_api='2019-07-01', help='Names or IDs (space delimited) of disk encryption sets for data disks.') c.argument('data_disk_iops', min_api='2019-07-01', nargs='+', type=int, help='Specify the Read-Write IOPS (space delimited) for the managed disk. Should be used only when StorageAccountType is UltraSSD_LRS. If not specified, a default value would be assigned based on diskSizeGB.') c.argument('data_disk_mbps', min_api='2019-07-01', nargs='+', type=int, help='Specify the bandwidth in MB per second (space delimited) for the managed disk. Should be used only when StorageAccountType is UltraSSD_LRS. If not specified, a default value would be assigned based on diskSizeGB.') c.argument('specialized', arg_type=get_three_state_flag(), help='Indicate whether the source image is specialized.') c.argument('encryption_at_host', arg_type=get_three_state_flag(), help='Enable Host Encryption for the VM or VMSS. This will enable the encryption for all the disks including Resource/Temp disk at host itself.') c.argument('os_disk_delete_option', arg_type=get_enum_type(self.get_models('DiskDeleteOptionTypes')), min_api='2021-03-01', help='Specify the behavior of the managed disk when the VM gets deleted i.e whether the managed disk is deleted or detached.') c.argument('data_disk_delete_option', options_list=['--data-disk-delete-option', self.deprecate(target='--data-delete-option', redirect='--data-disk-delete-option', hide=True)], nargs='+', min_api='2021-03-01', help='Specify whether data disk should be deleted or detached upon VM deletion.') with self.argument_context(scope, arg_group='Network') as c: c.argument('vnet_name', help='Name of the virtual network when creating a new one or referencing an existing one.') c.argument('vnet_address_prefix', help='The IP address prefix to use when creating a new VNet in CIDR format.') c.argument('subnet', help='The name of the subnet when creating a new VNet or referencing an existing one. Can also reference an existing subnet by ID. If both vnet-name and subnet are omitted, an appropriate VNet and subnet will be selected automatically, or a new one will be created.') c.argument('subnet_address_prefix', help='The subnet IP address prefix to use when creating a new VNet in CIDR format.') c.argument('nics', nargs='+', help='Names or IDs of existing NICs to attach to the VM. The first NIC will be designated as primary. If omitted, a new NIC will be created. If an existing NIC is specified, do not specify subnet, VNet, public IP or NSG.') c.argument('private_ip_address', help='Static private IP address (e.g. 10.0.0.5).') c.argument('public_ip_address', help='Name of the public IP address when creating one (default) or referencing an existing one. Can also reference an existing public IP by ID or specify "" for None (\'""\' in Azure CLI using PowerShell or --% operator).') c.argument('public_ip_address_allocation', help=None, default=None, arg_type=get_enum_type(['dynamic', 'static'])) c.argument('public_ip_address_dns_name', help='Globally unique DNS name for a newly created public IP.') if self.supported_api_version(min_api='2017-08-01', resource_type=ResourceType.MGMT_NETWORK): PublicIPAddressSkuName = self.get_models('PublicIPAddressSkuName', resource_type=ResourceType.MGMT_NETWORK) c.argument('public_ip_sku', help='Public IP SKU. It is set to Basic by default. The public IP is supported to be created on edge zone only when it is \'Standard\'', default=None, arg_type=get_enum_type(PublicIPAddressSkuName)) c.argument('nic_delete_option', nargs='+', min_api='2021-03-01', help='Specify what happens to the network interface when the VM is deleted. Use a singular ' 'value to apply on all resources, or use <Name>=<Value> to configure ' 'the delete behavior for individual resources. Possible options are Delete and Detach.') with self.argument_context(scope, arg_group='Marketplace Image Plan') as c: c.argument('plan_name', help='plan name') c.argument('plan_product', help='plan product') c.argument('plan_publisher', help='plan publisher') c.argument('plan_promotion_code', help='plan promotion code') for scope in ['vm create', 'vmss create', 'vm identity assign', 'vmss identity assign']: with self.argument_context(scope) as c: arg_group = 'Managed Service Identity' if scope.split()[-1] == 'create' else None c.argument('identity_scope', options_list=['--scope'], arg_group=arg_group, help="Scope that the system assigned identity can access") c.argument('identity_role', options_list=['--role'], arg_group=arg_group, help="Role name or id the system assigned identity will have") c.ignore('identity_role_id') with self.argument_context('vm auto-shutdown') as c: c.argument('off', action='store_true', help='Turn off auto-shutdown for VM. Configuration will be cleared.') c.argument('email', help='The email recipient to send notifications to (can be a list of semi-colon separated email addresses)') c.argument('time', help='The UTC time of day the schedule will occur every day. Format: hhmm. Example: 1730') c.argument('webhook', help='The webhook URL to which the notification will be sent') c.argument('location', validator=get_default_location_from_resource_group) for scope in ['vm diagnostics', 'vmss diagnostics']: with self.argument_context(scope) as c: c.argument('version', help='version of the diagnostics extension. Will use the latest if not specfied') c.argument('settings', help='json string or a file path, which defines data to be collected.', type=validate_file_or_dict, completer=FilesCompleter()) c.argument('protected_settings', help='json string or a file path containing private configurations such as storage account keys, etc.', type=validate_file_or_dict, completer=FilesCompleter()) c.argument('is_windows_os', action='store_true', help='for Windows VMs') for scope in ['vm encryption', 'vmss encryption']: with self.argument_context(scope) as c: c.argument('volume_type', help='Type of volume that the encryption operation is performed on', arg_type=get_enum_type(['DATA', 'OS', 'ALL'])) c.argument('force', action='store_true', help='continue by ignoring client side validation errors') c.argument('disk_encryption_keyvault', help='Name or ID of the key vault where the generated encryption key will be placed.') c.argument('key_encryption_key', help='Key vault key name or URL used to encrypt the disk encryption key.') c.argument('key_encryption_keyvault', help='Name or ID of the key vault containing the key encryption key used to encrypt the disk encryption key. If missing, CLI will use `--disk-encryption-keyvault`.') for scope in ['vm extension', 'vmss extension']: with self.argument_context(scope) as c: c.argument('publisher', help='The name of the extension publisher.') c.argument('settings', type=validate_file_or_dict, help='Extension settings in JSON format. A JSON file path is also accepted.') c.argument('protected_settings', type=validate_file_or_dict, help='Protected settings in JSON format for sensitive information like credentials. A JSON file path is also accepted.') c.argument('version', help='The version of the extension. To pin extension version to this value, please specify --no-auto-upgrade-minor-version.') c.argument('enable_auto_upgrade', arg_type=get_three_state_flag(), help='Indicate the extension should be automatically upgraded by the platform if there is a newer version of the extension available.') with self.argument_context('vm extension set') as c: c.argument('vm_extension_name', name_arg_type, completer=get_resource_name_completion_list('Microsoft.Compute/virtualMachines/extensions'), help='Name of the extension.', id_part=None) c.argument('force_update', action='store_true', help='force to update even if the extension configuration has not changed.') c.argument('extension_instance_name', extension_instance_name_type) with self.argument_context('vmss extension set', min_api='2017-12-01') as c: c.argument('force_update', action='store_true', help='force to update even if the extension configuration has not changed.') c.argument('extension_instance_name', extension_instance_name_type) c.argument('provision_after_extensions', nargs='+', help='Space-separated list of extension names after which this extension should be provisioned. These extensions must already be set on the vm.') for scope in ['vm extension image', 'vmss extension image']: with self.argument_context(scope) as c: c.argument('image_location', options_list=['--location', '-l'], help='Image location.') c.argument('name', help='Image name', id_part=None) c.argument('publisher_name', options_list=['--publisher', '-p'], help='Image publisher name') c.argument('type', options_list=['--name', '-n'], help='Name of the extension') c.argument('latest', action='store_true', help='Show the latest version only.') c.argument('version', help='Extension version') c.argument('orderby', help="the $orderby odata query option") c.argument('top', help='the $top odata query option') for scope in ['vm create', 'vm update', 'vmss create', 'vmss update']: with self.argument_context(scope) as c: c.argument('license_type', license_type) c.argument('priority', resource_type=ResourceType.MGMT_COMPUTE, min_api='2019-03-01', arg_type=get_enum_type(self.get_models('VirtualMachinePriorityTypes'), default=None), help="Priority. Use 'Spot' to run short-lived workloads in a cost-effective way. 'Low' enum will be deprecated in the future. Please use 'Spot' to deploy Azure spot VM and/or VMSS. Default to Regular.") c.argument('max_price', min_api='2019-03-01', type=float, is_preview=True, help='The maximum price (in US Dollars) you are willing to pay for a Spot VM/VMSS. -1 indicates that the Spot VM/VMSS should not be evicted for price reasons') c.argument('capacity_reservation_group', options_list=['--capacity-reservation-group', '--crg'], help='The ID or name of the capacity reservation group that is used to allocate. Pass in "None" to disassociate the capacity reservation group. Please note that if you want to delete a VM/VMSS that has been associated with capacity reservation group, you need to disassociate the capacity reservation group first.', min_api='2021-04-01', is_preview=True) with self.argument_context('vm update') as c: c.argument('license_type', license_type) c.argument('user_data', help='UserData for the VM. It can be passed in as file or string. If empty string is passed in, the existing value will be deleted.', completer=FilesCompleter(), type=file_type, min_api='2021-03-01') with self.argument_context('vmss create') as c: c.argument('priority', resource_type=ResourceType.MGMT_COMPUTE, min_api='2017-12-01', arg_type=get_enum_type(self.get_models('VirtualMachinePriorityTypes'), default=None), help="Priority. Use 'Spot' to run short-lived workloads in a cost-effective way. 'Low' enum will be deprecated in the future. Please use 'Spot' to deploy Azure spot VM and/or VMSS. Default to Regular.") with self.argument_context('sig') as c: c.argument('gallery_name', options_list=['--gallery-name', '-r'], help='gallery name') c.argument('gallery_image_name', options_list=['--gallery-image-definition', '-i'], help='gallery image definition') c.argument('gallery_image_version', options_list=['--gallery-image-version', '-e'], help='gallery image version') for scope in ['sig show', 'sig image-definition show', 'sig image-definition delete']: with self.argument_context(scope) as c: c.argument('gallery_name', options_list=['--gallery-name', '-r'], id_part='name', help='gallery name') c.argument('gallery_image_name', options_list=['--gallery-image-definition', '-i'], id_part='child_name_1', help='gallery image definition') with self.argument_context('sig list-shared') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx)) c.argument('shared_to', shared_to_type) with self.argument_context('sig show-shared') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx), id_part='name') c.argument('gallery_unique_name', type=str, help='The unique name of the Shared Gallery.', id_part='child_name_1') for scope in ['sig share add', 'sig share remove']: with self.argument_context(scope) as c: c.argument('gallery_name', type=str, help='The name of the Shared Image Gallery.', id_part='name') c.argument('subscription_ids', nargs='+', help='A list of subscription ids to share the gallery.') c.argument('tenant_ids', nargs='+', help='A list of tenant ids to share the gallery.') with self.argument_context('sig share add') as c: c.argument('op_type', default='Add', deprecate_info=c.deprecate(hide=True), help='distinguish add operation and remove operation') with self.argument_context('sig share remove') as c: c.argument('op_type', default='Remove', deprecate_info=c.deprecate(hide=True), help='distinguish add operation and remove operation') with self.argument_context('sig share reset') as c: c.argument('gallery_name', type=str, help='The name of the Shared Image Gallery.', id_part='name') with self.argument_context('sig image-definition create') as c: c.argument('offer', options_list=['--offer', '-f'], help='image offer') c.argument('sku', options_list=['--sku', '-s'], help='image sku') c.argument('publisher', options_list=['--publisher', '-p'], help='image publisher') c.argument('os_type', arg_type=get_enum_type(['Windows', 'Linux']), help='the type of the OS that is included in the disk if creating a VM from user-image or a specialized VHD') c.argument('os_state', arg_type=get_enum_type(self.get_models('OperatingSystemStateTypes')), help="This property allows the user to specify whether the virtual machines created under this image are 'Generalized' or 'Specialized'.") c.argument('hyper_v_generation', arg_type=get_enum_type(self.get_models('HyperVGenerationTypes')), help='The hypervisor generation of the Virtual Machine. Applicable to OS disks only.') c.argument('minimum_cpu_core', type=int, arg_group='Recommendation', help='minimum cpu cores') c.argument('maximum_cpu_core', type=int, arg_group='Recommendation', help='maximum cpu cores') c.argument('minimum_memory', type=int, arg_group='Recommendation', help='minimum memory in MB') c.argument('maximum_memory', type=int, arg_group='Recommendation', help='maximum memory in MB') c.argument('plan_publisher', help='plan publisher', arg_group='Purchase plan') c.argument('plan_name', help='plan name', arg_group='Purchase plan') c.argument('plan_product', help='plan product', arg_group='Purchase plan') c.argument('eula', help='The Eula agreement for the gallery image') c.argument('privacy_statement_uri', help='The privacy statement uri') c.argument('release_note_uri', help='The release note uri') c.argument('end_of_life_date', help="the end of life date, e.g. '2020-12-31'") c.argument('disallowed_disk_types', nargs='*', help='disk types which would not work with the image, e.g., Standard_LRS') c.argument('features', help='A list of gallery image features. E.g. "IsSecureBootSupported=true IsMeasuredBootSupported=false"') with self.argument_context('sig image-definition list-shared') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx), id_part='name') c.argument('gallery_unique_name', type=str, help='The unique name of the Shared Gallery.', id_part='child_name_1') c.argument('shared_to', shared_to_type) c.argument('marker', arg_type=marker_type) c.argument('show_next_marker', action='store_true', help='Show nextMarker in result when specified.') with self.argument_context('sig image-definition show-shared') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx), id_part='name') c.argument('gallery_unique_name', type=str, help='The unique name of the Shared Gallery.', id_part='child_name_1') c.argument('gallery_image_name', options_list=['--gallery-image-definition', '-i'], type=str, help='The name ' 'of the Shared Gallery Image Definition from which the Image Versions are to be listed.', id_part='child_name_2') with self.argument_context('sig create') as c: c.argument('description', help='the description of the gallery') c.argument('permissions', arg_type=get_enum_type(GallerySharingPermissionTypes), arg_group='Sharing Profile', min_api='2020-09-30', is_experimental=True, help='This property allows you to specify the permission of sharing gallery.') c.argument('soft_delete', arg_type=get_three_state_flag(), min_api='2021-03-01', is_preview=True, help='Enable soft-deletion for resources in this gallery, ' 'allowing them to be recovered within retention time.') with self.argument_context('sig update') as c: c.ignore('gallery') c.argument('permissions', arg_type=get_enum_type(GallerySharingPermissionTypes), arg_group='Sharing Profile', min_api='2020-09-30', is_experimental=True, help='This property allows you to specify the permission of sharing gallery.') c.argument('soft_delete', arg_type=get_three_state_flag(), min_api='2021-03-01', is_preview=True, help='Enable soft-deletion for resources in this gallery, ' 'allowing them to be recovered within retention time.') with self.argument_context('sig image-definition create') as c: c.argument('description', help='the description of the gallery image definition') with self.argument_context('sig image-definition update') as c: c.ignore('gallery_image') with self.argument_context('sig image-version') as c: deprecated_option = c.deprecate(target='--gallery-image-version-name', redirect='--gallery-image-version', hide=True, expiration="3.0.0") c.argument('gallery_image_version_name', options_list=['--gallery-image-version', '-e', deprecated_option], help='Gallery image version in semantic version pattern. The allowed characters are digit and period. Digits must be within the range of a 32-bit integer, e.g. `<MajorVersion>.<MinorVersion>.<Patch>`') with self.argument_context('sig image-version create', resource_type=ResourceType.MGMT_COMPUTE, operation_group='gallery_image_versions') as c: c.argument('gallery_image_version', options_list=['--gallery-image-version', '-e'], help='Gallery image version in semantic version pattern. The allowed characters are digit and period. Digits must be within the range of a 32-bit integer, e.g. `<MajorVersion>.<MinorVersion>.<Patch>`') c.argument('description', help='the description of the gallery image version') c.argument('managed_image', help='image name(if in the same resource group) or resource id') c.argument('os_snapshot', help='Name or ID of OS disk snapshot') c.argument('data_snapshots', nargs='+', help='Names or IDs (space-delimited) of data disk snapshots') c.argument('data_snapshot_luns', nargs='+', help='Logical unit numbers (space-delimited) of data disk snapshots') c.argument('exclude_from_latest', arg_type=get_three_state_flag(), help='The flag means that if it is set to true, people deploying VMs with version omitted will not use this version.') c.argument('version', help='image version') c.argument('end_of_life_date', help="the end of life date, e.g. '2020-12-31'") c.argument('storage_account_type', help="The default storage account type to be used per region. To set regional storage account types, use --target-regions", arg_type=get_enum_type(["Standard_LRS", "Standard_ZRS", "Premium_LRS"]), min_api='2019-03-01') c.argument('target_region_encryption', nargs='+', help='Space-separated list of customer managed keys for encrypting the OS and data disks in the gallery artifact for each region. Format for each region: `<os_des>,<lun1>,<lun1_des>,<lun2>,<lun2_des>`. Use "null" as a placeholder.') c.argument('os_vhd_uri', help='Source VHD URI of OS disk') c.argument('os_vhd_storage_account', help='Name or ID of storage account of source VHD URI of OS disk') c.argument('data_vhds_uris', nargs='+', help='Source VHD URIs (space-delimited) of data disks') c.argument('data_vhds_luns', nargs='+', help='Logical unit numbers (space-delimited) of source VHD URIs of data disks') c.argument('data_vhds_storage_accounts', options_list=['--data-vhds-storage-accounts', '--data-vhds-sa'], nargs='+', help='Names or IDs (space-delimited) of storage accounts of source VHD URIs of data disks') c.argument('replication_mode', min_api='2021-07-01', arg_type=get_enum_type(ReplicationMode), help='Optional parameter which specifies the mode to be used for replication. This property is not updatable.') with self.argument_context('sig image-version list-shared') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx), id_part='name') c.argument('gallery_unique_name', type=str, help='The unique name of the Shared Gallery.', id_part='child_name_1') c.argument('gallery_image_name', options_list=['--gallery-image-definition', '-i'], type=str, help='The name ' 'of the Shared Gallery Image Definition from which the Image Versions are to be listed.', id_part='child_name_2') c.argument('shared_to', shared_to_type) c.argument('marker', arg_type=marker_type) c.argument('show_next_marker', action='store_true', help='Show nextMarker in result when specified.') with self.argument_context('sig image-version show') as c: c.argument('expand', help="The expand expression to apply on the operation, e.g. 'ReplicationStatus'") with self.argument_context('sig image-version show-shared') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx), id_part='name') c.argument('gallery_unique_name', type=str, help='The unique name of the Shared Gallery.', id_part='child_name_1') c.argument('gallery_image_name', options_list=['--gallery-image-definition', '-i'], type=str, help='The name ' 'of the Shared Gallery Image Definition from which the Image Versions are to be listed.', id_part='child_name_2') c.argument('gallery_image_version_name', options_list=['--gallery-image-version', '-e'], type=str, help='The ' 'name of the gallery image version to be created. Needs to follow semantic version name pattern: ' 'The allowed characters are digit and period. Digits must be within the range of a 32-bit integer. ' 'Format: <MajorVersion>.<MinorVersion>.<Patch>', id_part='child_name_3') for scope in ['sig image-version create', 'sig image-version update']: with self.argument_context(scope) as c: c.argument('target_regions', nargs='*', validator=process_gallery_image_version_namespace, help='Space-separated list of regions and their replica counts. Use `<region>[=<replica count>][=<storage account type>]` to optionally set the replica count and/or storage account type for each region. ' 'If a replica count is not specified, the default replica count will be used. If a storage account type is not specified, the default storage account type will be used') c.argument('replica_count', help='The default number of replicas to be created per region. To set regional replication counts, use --target-regions', type=int) # endregion # region Gallery applications with self.argument_context('sig gallery-application') as c: c.argument('gallery_application_name', options_list=['--name', '-n', '--application-name'], help='The name of the gallery Application') with self.argument_context('sig gallery-application create') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx), required=False, validator=get_default_location_from_resource_group) c.argument('description', help='The description of this gallery Application Definition resource. ' 'This property is updatable.') c.argument('os_type', arg_type=get_enum_type(['Windows', 'Linux']), help='This property allows you ' 'to specify the supported type of the OS that application is built for. <br><br> Possible values ' 'are: <br><br> **Windows** <br><br> **Linux**') with self.argument_context('sig gallery-application update') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx), required=False, validator=get_default_location_from_resource_group) c.argument('description', help='The description of this gallery Application Definition resource. ' 'This property is updatable.') with self.argument_context('sig gallery-application version') as c: c.argument('gallery_application_name', options_list=['--application-name'], help='The name of the gallery Application') c.argument('gallery_application_version_name', options_list=['--name', '-n', '--version-name'], help='The name of the gallery Application Version') for scope in ['create', 'update']: with self.argument_context('sig gallery-application version {}'.format(scope)) as c: c.argument('location', arg_type=get_location_type(self.cli_ctx), required=False, validator=get_default_location_from_resource_group) c.argument('tags', tags_type) c.argument('package_file_link', help='The mediaLink of the artifact, must be a readable storage page blob.') c.argument('install_command', help='The path and arguments to install the gallery application.') c.argument('remove_command', help='The path and arguments to remove the gallery application.') c.argument('update_command', help='The path and arguments to update the gallery application. If not present,' ' then update operation will invoke remove command on the previous version ' 'and install command on the current version of the gallery application.') c.argument('target_regions', type=validate_file_or_dict, help='The target regions where the Image Version is ' 'going to be replicated to. This property is updatable. Expected value: ' 'json-string/json-file/@json-file.') c.argument('default_file_link', help='The default configuration link of the artifact, must be a readable storage page blob.') c.argument('exclude_from', arg_type=get_three_state_flag(), help='If set to true, Virtual Machines ' 'deployed from the latest version of the Image Definition won\'t use this Image Version.', arg_group='Publishing Profile') c.argument('end_of_life_date', help='The end of life date of the gallery image version. This property can be ' 'used for decommissioning purposes. This property is updatable.', arg_group='Publishing Profile') # endregion # region Proximity Placement Group with self.argument_context('ppg', min_api='2018-04-01') as c: c.argument('proximity_placement_group_name', arg_type=name_arg_type, help="The name of the proximity placement group.") with self.argument_context('ppg create', min_api='2018-04-01') as c: c.argument('ppg_type', options_list=['--type', '-t'], help="The type of the proximity placement group. Allowed values: Standard.") c.argument('tags', tags_type) with self.argument_context('ppg show', min_api='2019-07-01') as c: c.argument('include_colocation_status', action='store_true', help='Enable fetching the colocation status of all the resources in the proximity placement group.') for scope, item in [('vm create', 'VM'), ('vmss create', 'VMSS'), ('vm availability-set create', 'availability set'), ('vm update', 'VM'), ('vmss update', 'VMSS'), ('vm availability-set update', 'availability set')]: with self.argument_context(scope, min_api='2018-04-01') as c: c.argument('proximity_placement_group', options_list=['--ppg'], help="The name or ID of the proximity placement group the {} should be associated with.".format(item), validator=_validate_proximity_placement_group) # only availability set does not have a command level validator, so this should be added. # endregion # region VM Monitor with self.argument_context('vm monitor log show') as c: c.argument('analytics_query', options_list=['--analytics-query', '-q'], help="Query to execute over Log Analytics data.") c.argument('timespan', help="Timespan over which to query. Defaults to querying all available data.") with self.argument_context('vm monitor metrics') as c: c.argument('metricnamespace', options_list=['--namespace'], help='Namespace to query metric definitions for.') with self.argument_context('vm monitor metrics tail') as c: from azure.mgmt.monitor.models import AggregationType c.extra('resource_group_name', required=True) c.argument('resource', arg_type=existing_vm_name, help='Name or ID of a virtual machine', validator=validate_vm_name_for_monitor_metrics, id_part=None) c.argument('metadata', action='store_true') c.argument('dimension', nargs='*', validator=validate_metric_dimension) c.argument('aggregation', arg_type=get_enum_type(t for t in AggregationType if t.name != 'none'), nargs='*') c.argument('metrics', nargs='*') c.argument('orderby', help='Aggregation to use for sorting results and the direction of the sort. Only one order can be specificed. Examples: sum asc') c.argument('top', help='Max number of records to retrieve. Valid only if --filter used.') c.argument('filters', options_list=['--filter']) c.argument('metric_namespace', options_list=['--namespace']) with self.argument_context('vm monitor metrics tail', arg_group='Time') as c: c.argument('start_time', arg_type=get_datetime_type(help='Start time of the query.')) c.argument('end_time', arg_type=get_datetime_type(help='End time of the query. Defaults to the current time.')) c.argument('offset', type=get_period_type(as_timedelta=True)) c.argument('interval', arg_group='Time', type=get_period_type()) with self.argument_context('vm monitor metrics list-definitions') as c: c.extra('resource_group_name', required=True) c.argument('resource_uri', arg_type=existing_vm_name, help='Name or ID of a virtual machine', validator=validate_vm_name_for_monitor_metrics, id_part=None) # endregion # region disk encryption set with self.argument_context('disk-encryption-set') as c: c.argument('disk_encryption_set_name', disk_encryption_set_name) c.argument('key_url', help='URL pointing to a key or secret in KeyVault.') c.argument('source_vault', help='Name or ID of the KeyVault containing the key or secret.') c.argument('encryption_type', arg_type=get_enum_type(['EncryptionAtRestWithPlatformKey', 'EncryptionAtRestWithCustomerKey', 'EncryptionAtRestWithPlatformAndCustomerKeys']), help='The type of key used to encrypt the data of the disk. EncryptionAtRestWithPlatformKey: Disk is encrypted at rest with Platform managed key. It is the default encryption type. EncryptionAtRestWithCustomerKey: Disk is encrypted at rest with Customer managed key that can be changed and revoked by a customer. EncryptionAtRestWithPlatformAndCustomerKeys: Disk is encrypted at rest with 2 layers of encryption. One of the keys is Customer managed and the other key is Platform managed.') c.argument('location', validator=get_default_location_from_resource_group) c.argument('tags', tags_type) c.argument('enable_auto_key_rotation', arg_type=get_three_state_flag(), min_api='2020-12-01', options_list=['--enable-auto-key-rotation', '--auto-rotation'], help='Enable automatic rotation of keys.') # endregion # region DiskAccess with self.argument_context('disk-access', resource_type=ResourceType.MGMT_COMPUTE, operation_group='disk_accesses') as c: c.argument('disk_access_name', arg_type=name_arg_type, help='Name of the disk access resource.', id_part='name') c.argument('location', validator=get_default_location_from_resource_group) c.argument('tags', tags_type) # endRegion with self.argument_context('capacity reservation group') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx), validator=get_default_location_from_resource_group) c.argument('capacity_reservation_group_name', options_list=['--capacity-reservation-group', '-n'], help='The name of the capacity reservation group.') c.argument('tags', tags_type) with self.argument_context('capacity reservation group create') as c: c.argument('zones', zones_type, help='Availability Zones to use for this capacity reservation group. If not provided, the group supports only regional resources in the region. If provided, enforces each capacity reservation in the group to be in one of the zones.') with self.argument_context('capacity reservation group show') as c: c.argument('instance_view', action='store_true', options_list=['--instance-view', '-i'], help='Retrieve the list of instance views of the capacity reservations under the capacity reservation group which is a snapshot of the runtime properties of a capacity reservation that is managed by the platform and can change outside of control plane operations.') with self.argument_context('capacity reservation group list') as c: c.argument('vm_instance', action='store_true', help='Retrieve the Virtual Machine Instance which are associated to capacity reservation group in the response.') c.argument('vmss_instance', action='store_true', help='Retrieve the ScaleSet VM Instance which are associated to capacity reservation group in the response.') with self.argument_context('capacity reservation') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx), validator=get_default_location_from_resource_group) c.argument('capacity_reservation_group_name', options_list=['--capacity-reservation-group', '-c'], help='The name of the capacity reservation group.') c.argument('capacity_reservation_name', options_list=['--capacity-reservation-name', '-n'], help='The name of the capacity reservation.') c.argument('capacity', type=int, help='Specify the number of virtual machines in the scale set.') c.argument('tags', tags_type) with self.argument_context('capacity reservation create') as c: c.argument('zone', zone_type, help='Availability Zone to use for this capacity reservation. The zone has to be single value and also should be part for the list of zones specified during the capacity reservation group creation. If not provided, the reservation supports only non-zonal deployments. If provided, enforces VM/VMSS using this capacity reservation to be in same zone.') c.argument('sku_name', options_list=['--sku', '-s'], required=True, help='The SKU of the resource for which capacity needs be reserved. Currently VM Skus with the capability called "CapacityReservationSupported" set to true are supported. Refer to List Microsoft.Compute SKUs in a region (https://docs.microsoft.com/rest/api/compute/resourceskus/list) for supported values.') with self.argument_context('capacity reservation show') as c: c.argument('instance_view', action='store_true', options_list=['--instance-view', '-i'], help='Retrieve a snapshot of the runtime properties of the capacity reservation that is managed by the platform and can change outside of control plane operations.')
def load_arguments(self, _): # Model imports StorageAccountTypes = self.get_models('StorageAccountTypes') DiskStorageAccountTypes = self.get_models('DiskStorageAccountTypes,', operation_group='disks') SnapshotStorageAccountTypes = self.get_models('SnapshotStorageAccountTypes', operation_group='snapshots') UpgradeMode, CachingTypes, OperatingSystemTypes = self.get_models('UpgradeMode', 'CachingTypes', 'OperatingSystemTypes') HyperVGenerationTypes, HyperVGeneration = self.get_models('HyperVGenerationTypes', 'HyperVGeneration') DedicatedHostLicenseTypes = self.get_models('DedicatedHostLicenseTypes') OrchestrationServiceNames, OrchestrationServiceStateAction = self.get_models('OrchestrationServiceNames', 'OrchestrationServiceStateAction', operation_group='virtual_machine_scale_sets') RebootSetting, VMGuestPatchClassificationWindows, VMGuestPatchClassificationLinux = self.get_models('VMGuestPatchRebootSetting', 'VMGuestPatchClassificationWindows', 'VMGuestPatchClassificationLinux') GallerySharingPermissionTypes = self.get_models('GallerySharingPermissionTypes', operation_group='shared_galleries') ReplicationMode = self.get_models('ReplicationMode', operation_group='gallery_image_versions') # REUSABLE ARGUMENT DEFINITIONS name_arg_type = CLIArgumentType(options_list=['--name', '-n'], metavar='NAME') multi_ids_type = CLIArgumentType(nargs='+') existing_vm_name = CLIArgumentType(overrides=name_arg_type, configured_default='vm', help="The name of the Virtual Machine. You can configure the default using `az configure --defaults vm=<name>`", completer=get_resource_name_completion_list('Microsoft.Compute/virtualMachines'), id_part='name') existing_disk_name = CLIArgumentType(overrides=name_arg_type, help='The name of the managed disk', completer=get_resource_name_completion_list('Microsoft.Compute/disks'), id_part='name') existing_snapshot_name = CLIArgumentType(overrides=name_arg_type, help='The name of the snapshot', completer=get_resource_name_completion_list('Microsoft.Compute/snapshots'), id_part='name') vmss_name_type = CLIArgumentType(name_arg_type, configured_default='vmss', completer=get_resource_name_completion_list('Microsoft.Compute/virtualMachineScaleSets'), help="Scale set name. You can configure the default using `az configure --defaults vmss=<name>`", id_part='name') extension_instance_name_type = CLIArgumentType(help="Name of extension instance, which can be customized. Default: name of the extension.") image_template_name_type = CLIArgumentType(overrides=name_arg_type, id_part='name') disk_encryption_set_name = CLIArgumentType(overrides=name_arg_type, help='Name of disk encryption set.', id_part='name') ephemeral_placement_type = CLIArgumentType(options_list=['--ephemeral-os-disk-placement', '--ephemeral-placement'], arg_type=get_enum_type(['ResourceDisk', 'CacheDisk']), min_api='2019-12-01') license_type = CLIArgumentType( help="Specifies that the Windows image or disk was licensed on-premises. To enable Azure Hybrid Benefit for " "Windows Server, use 'Windows_Server'. To enable Multi-tenant Hosting Rights for Windows 10, " "use 'Windows_Client'. For more information see the Azure Windows VM online docs.", arg_type=get_enum_type(['Windows_Server', 'Windows_Client', 'RHEL_BYOS', 'SLES_BYOS', 'RHEL_BASE', 'RHEL_SAPAPPS', 'RHEL_SAPHA', 'RHEL_EUS', 'SLES_BASE', 'SLES_SAP', 'SLES_HPC', 'None', 'RHEL_ELS_6'])) # StorageAccountTypes renamed to DiskStorageAccountTypes in 2018_06_01 of azure-mgmt-compute DiskStorageAccountTypes = DiskStorageAccountTypes or StorageAccountTypes if DiskStorageAccountTypes: disk_sku = CLIArgumentType(arg_type=get_enum_type(DiskStorageAccountTypes)) else: # StorageAccountTypes introduced in api version 2016_04_30_preview of Resource.MGMT.Compute package.. # However, 2017-03-09-profile targets version 2016-03-30 of compute package. disk_sku = CLIArgumentType(arg_type=get_enum_type(['Premium_LRS', 'Standard_LRS'])) if SnapshotStorageAccountTypes: snapshot_sku = CLIArgumentType(arg_type=get_enum_type(SnapshotStorageAccountTypes)) else: # SnapshotStorageAccountTypes introduced in api version 2018_04_01 of Resource.MGMT.Compute package.. # However, 2017-03-09-profile targets version 2016-03-30 of compute package. snapshot_sku = CLIArgumentType(arg_type=get_enum_type(['Premium_LRS', 'Standard_LRS'])) # special case for `network nic scale-set list` command alias with self.argument_context('network nic scale-set list') as c: c.argument('virtual_machine_scale_set_name', options_list=['--vmss-name'], completer=get_resource_name_completion_list('Microsoft.Compute/virtualMachineScaleSets'), id_part='name') HyperVGenerationTypes = HyperVGenerationTypes or HyperVGeneration if HyperVGenerationTypes: hyper_v_gen_sku = CLIArgumentType(arg_type=get_enum_type(HyperVGenerationTypes, default="V1")) else: hyper_v_gen_sku = CLIArgumentType(arg_type=get_enum_type(["V1", "V2"], default="V1")) ultra_ssd_enabled_type = CLIArgumentType( arg_type=get_three_state_flag(), min_api='2018-06-01', help='Enables or disables the capability to have 1 or more managed data disks with UltraSSD_LRS storage account') scale_in_policy_type = CLIArgumentType( nargs='+', arg_type=get_enum_type(self.get_models('VirtualMachineScaleSetScaleInRules')), help='Specify the scale-in policy (space delimited) that decides which virtual machines are chosen for removal when a Virtual Machine Scale Set is scaled-in.' ) edge_zone_type = CLIArgumentType( help='The name of edge zone.', min_api='2020-12-01', is_preview=True ) t_shared_to = self.get_models('SharedToValues', operation_group='shared_galleries') shared_to_type = CLIArgumentType( arg_type=get_enum_type(t_shared_to), help='The query parameter to decide what shared galleries to fetch when doing listing operations. ' 'If not specified, list by subscription id.' ) marker_type = CLIArgumentType( help='A string value that identifies the portion of the list of containers to be ' 'returned with the next listing operation. The operation returns the NextMarker value within ' 'the response body if the listing operation did not return all containers remaining to be listed ' 'with the current page. If specified, this generator will begin returning results from the point ' 'where the previous generator stopped.') # region MixedScopes for scope in ['vm', 'disk', 'snapshot', 'image', 'sig']: with self.argument_context(scope) as c: c.argument('tags', tags_type) for scope in ['disk', 'snapshot']: with self.argument_context(scope) as c: c.ignore('source_blob_uri', 'source_disk', 'source_snapshot') c.argument('source_storage_account_id', help='used when source blob is in a different subscription') c.argument('size_gb', options_list=['--size-gb', '-z'], help='size in GB. Max size: 4095 GB (certain preview disks can be larger).', type=int) c.argument('duration_in_seconds', help='Time duration in seconds until the SAS access expires', type=int) if self.supported_api_version(min_api='2018-09-30', operation_group='disks'): c.argument('access_level', arg_type=get_enum_type(['Read', 'Write']), default='Read', help='access level') c.argument('for_upload', arg_type=get_three_state_flag(), help='Create the {0} for uploading blobs later on through storage commands. Run "az {0} grant-access --access-level Write" to retrieve the {0}\'s SAS token.'.format(scope)) c.argument('hyper_v_generation', arg_type=hyper_v_gen_sku, help='The hypervisor generation of the Virtual Machine. Applicable to OS disks only.') else: c.ignore('access_level', 'for_upload', 'hyper_v_generation') c.argument('encryption_type', min_api='2019-07-01', arg_type=get_enum_type(self.get_models('EncryptionType')), help='Encryption type. EncryptionAtRestWithPlatformKey: Disk is encrypted with XStore managed key at rest. It is the default encryption type. EncryptionAtRestWithCustomerKey: Disk is encrypted with Customer managed key at rest.') c.argument('disk_encryption_set', min_api='2019-07-01', help='Name or ID of disk encryption set that is used to encrypt the disk.') c.argument('location', help='Location. Values from: `az account list-locations`. You can configure the default location using `az configure --defaults location=<location>`. If location is not specified and no default location specified, location will be automatically set as same as the resource group.') operation_group = 'disks' if scope == 'disk' else 'snapshots' c.argument('network_access_policy', min_api='2020-05-01', help='Policy for accessing the disk via network.', arg_type=get_enum_type(self.get_models('NetworkAccessPolicy', operation_group=operation_group))) c.argument('disk_access', min_api='2020-05-01', help='Name or ID of the disk access resource for using private endpoints on disks.') c.argument('enable_bursting', arg_type=get_three_state_flag(), help='Enable bursting beyond the provisioned performance target of the disk. Bursting is disabled by default, and it does not apply to Ultra disks.') c.argument('public_network_access', arg_type=get_enum_type(['Disabled', 'Enabled']), min_api='2021-04-01', is_preview=True, help='Customers can set on Managed Disks or Snapshots to control the export policy on the disk.') c.argument('accelerated_network', arg_type=get_three_state_flag(), min_api='2021-04-01', is_preview=True, help='Customers can set on Managed Disks or Snapshots to enable the accelerated networking if the OS disk image support.') for scope in ['disk create', 'snapshot create']: with self.argument_context(scope) as c: c.argument('source', help='source to create the disk/snapshot from, including unmanaged blob uri, managed disk id or name, or snapshot id or name') # endregion # region Disks with self.argument_context('disk') as c: c.argument('zone', zone_type, min_api='2017-03-30', options_list=['--zone']) # TODO: --size-gb currently has claimed -z. We can do a breaking change later if we want to. c.argument('disk_name', existing_disk_name, completer=get_resource_name_completion_list('Microsoft.Compute/disks')) c.argument('name', arg_type=name_arg_type) c.argument('sku', arg_type=disk_sku, help='Underlying storage SKU') c.argument('os_type', arg_type=get_enum_type(OperatingSystemTypes), help='The Operating System type of the Disk.') c.argument('disk_iops_read_write', type=int, min_api='2018-06-01', help='The number of IOPS allowed for this disk. Only settable for UltraSSD disks. One operation can transfer between 4k and 256k bytes') c.argument('disk_mbps_read_write', type=int, min_api='2018-06-01', help="The bandwidth allowed for this disk. Only settable for UltraSSD disks. MBps means millions of bytes per second with ISO notation of powers of 10") c.argument('upload_size_bytes', type=int, min_api='2019-03-01', help='The size (in bytes) of the contents of the upload including the VHD footer. Min value: 20972032. Max value: 35183298347520') c.argument('max_shares', type=int, help='The maximum number of VMs that can attach to the disk at the same time. Value greater than one indicates a disk that can be mounted on multiple VMs at the same time') c.argument('disk_iops_read_only', type=int, help='The total number of IOPS that will be allowed across all VMs mounting the shared disk as ReadOnly. One operation can transfer between 4k and 256k bytes') c.argument('disk_mbps_read_only', type=int, help='The total throughput (MBps) that will be allowed across all VMs mounting the shared disk as ReadOnly. MBps means millions of bytes per second - MB here uses the ISO notation, of powers of 10') c.argument('image_reference', help='ID or URN (publisher:offer:sku:version) of the image from which to create a disk') c.argument('image_reference_lun', type=int, help='If the disk is created from an image\'s data disk, this is an index that indicates which of the data disks in the image to use. For OS disks, this field is null') c.argument('gallery_image_reference', help='ID of the Compute Gallery image version from which to create a disk') c.argument('gallery_image_reference_lun', type=int, help='If the disk is created from an image\'s data disk, this is an index that indicates which of the data disks in the image to use. For OS disks, this field is null') c.argument('logical_sector_size', type=int, help='Logical sector size in bytes for Ultra disks. Supported values are 512 ad 4096. 4096 is the default.') c.argument('tier', help='Performance tier of the disk (e.g, P4, S10) as described here: https://azure.microsoft.com/pricing/details/managed-disks/. Does not apply to Ultra disks.') c.argument('edge_zone', edge_zone_type) c.argument('security_type', choices=['TrustedLaunch'], help='The security type of the VM. Applicable for OS disks only.', min_api='2020-12-01') c.argument('support_hibernation', arg_type=get_three_state_flag(), help='Indicate the OS on a disk supports hibernation.', min_api='2020-12-01') # endregion # region Snapshots with self.argument_context('snapshot', resource_type=ResourceType.MGMT_COMPUTE, operation_group='snapshots') as c: c.argument('snapshot_name', existing_snapshot_name, id_part='name', completer=get_resource_name_completion_list('Microsoft.Compute/snapshots')) c.argument('name', arg_type=name_arg_type) c.argument('sku', arg_type=snapshot_sku) c.argument('incremental', arg_type=get_three_state_flag(), min_api='2019-03-01', help='Whether a snapshot is incremental. Incremental snapshots on the same disk occupy less space than full snapshots and can be diffed') c.argument('edge_zone', edge_zone_type) c.argument('copy_start', arg_type=get_three_state_flag(), min_api='2021-04-01', help='Create snapshot by using a deep copy process, where the resource creation is considered complete only after all data has been copied from the source.') # endregion # region Images with self.argument_context('image') as c: c.argument('os_type', arg_type=get_enum_type(['Windows', 'Linux'])) c.argument('image_name', arg_type=name_arg_type, id_part='name', completer=get_resource_name_completion_list('Microsoft.Compute/images')) c.argument('tags', tags_type) with self.argument_context('image create') as c: # here we collpase all difference image sources to under 2 common arguments --os-disk-source --data-disk-sources c.argument('name', arg_type=name_arg_type, help='new image name') c.argument('source', help='OS disk source from the same region, including a virtual machine ID or name, OS disk blob URI, managed OS disk ID or name, or OS snapshot ID or name') c.argument('data_disk_sources', nargs='+', help='Space-separated list of data disk sources, including unmanaged blob URI, managed disk ID or name, or snapshot ID or name') c.argument('zone_resilient', min_api='2017-12-01', arg_type=get_three_state_flag(), help='Specifies whether an image is zone resilient or not. ' 'Default is false. Zone resilient images can be created only in regions that provide Zone Redundant Storage') c.argument('storage_sku', arg_type=disk_sku, help='The SKU of the storage account with which to create the VM image. Unused if source VM is specified.') c.argument('os_disk_caching', arg_type=get_enum_type(CachingTypes), help="Storage caching type for the image's OS disk.") c.argument('data_disk_caching', arg_type=get_enum_type(CachingTypes), help="Storage caching type for the image's data disk.") c.argument('hyper_v_generation', arg_type=hyper_v_gen_sku, min_api="2019-03-01", help='The hypervisor generation of the Virtual Machine created from the image.') c.ignore('source_virtual_machine', 'os_blob_uri', 'os_disk', 'os_snapshot', 'data_blob_uris', 'data_disks', 'data_snapshots') c.argument('edge_zone', edge_zone_type, ) # endregion # region Image Templates with self.argument_context('image builder') as c: ib_output_name_help = "Name of the image builder run output." c.argument('location', get_location_type(self.cli_ctx)) c.argument('scripts', nargs='+', help="Space-separated list of shell or powershell scripts to customize the image with. Each script must be a publicly accessible URL." " Infers type of script from file extension ('.sh' or'.ps1') or from source type. More more customizer options and flexibility, see: 'az image template customizer add'") c.argument('source', options_list=["--image-source", "-i"], help="The base image to customize. Must be a valid platform image URN, platform image alias, Red Hat ISO image URI, managed image name/ID, or shared image version ID.") c.argument('image_template_name', image_template_name_type, help="The name of the image template.") c.argument('checksum', help="The SHA256 checksum of the Red Hat ISO image") c.argument('managed_image_destinations', nargs='+', help='Managed image output distributor information. Space-separated list of key-value pairs. E.g "image_1=westus2 image_2=westus". Each key is the name or resource ID of the managed image to be created. Each value is the location of the image.') c.argument('shared_image_destinations', nargs='+', help='Shared image gallery (sig) output distributor information. Space-separated list of key-value pairs. E.g "my_gallery_1/image_def_1=eastus,westus my_gallery_2/image_def_2=uksouth,canadaeast,francesouth." ' 'Each key is the sig image definition ID or sig gallery name and sig image definition delimited by a "/". Each value is a comma-delimited list of replica locations.') c.argument('output_name', help=ib_output_name_help) c.ignore('destinations_lists', 'scripts_list', 'source_dict') with self.argument_context('image builder create') as c: ib_source_type = CLIArgumentType(arg_group="Image Source") ib_customizer_type = CLIArgumentType(arg_group="Customizer") ib_cutput_type = CLIArgumentType(arg_group="Output") c.argument('build_timeout', type=int, help="The Maximum duration to wait while building the image template, in minutes. Default is 60.") c.argument('image_template', help='Local path or URL to an image template file. When using --image-template, all other parameters are ignored except -g and -n. Reference: https://docs.microsoft.com/azure/virtual-machines/linux/image-builder-json') c.argument('identity', nargs='+', help='List of user assigned identities (name or ID, space delimited) of the image template.') # VM profile c.argument('vm_size', help='Size of the virtual machine used to build, customize and capture images. Omit or specify empty string to use the default (Standard_D1_v2)') c.argument('os_disk_size', type=int, help='Size of the OS disk in GB. Omit or specify 0 to use Azure\'s default OS disk size') c.argument('vnet', help='Name of VNET to deploy the build virtual machine. You should only specify it when subnet is a name') c.argument('subnet', help='Name or ID of subnet to deploy the build virtual machine') # Image Source Arguments c.argument('source', arg_type=ib_source_type) c.argument('checksum', arg_type=ib_source_type) c.argument('', arg_type=ib_source_type) # Image Customizer Arguments c.argument('scripts', arg_type=ib_customizer_type) c.argument('', arg_type=ib_customizer_type) c.argument('', arg_type=ib_customizer_type) # Image Output Arguments c.argument('managed_image_destinations', arg_type=ib_cutput_type) c.argument('shared_image_destinations', arg_type=ib_cutput_type) c.argument('output_name', arg_type=ib_cutput_type) with self.argument_context('image builder output') as c: ib_sig_regions_help = "Space-separated list of regions to replicate the image version into." ib_img_location_help = "Location where the customized image will be created." c.argument('gallery_image_definition', arg_group="Shared Image Gallery", help="Name or ID of the existing SIG image definition to create the customized image version with.") c.argument('gallery_name', arg_group="Shared Image Gallery", help="Shared image gallery name, if image definition name and not ID was provided.") c.argument('gallery_replication_regions', arg_group="Shared Image Gallery", nargs='+', help=ib_sig_regions_help) c.argument('managed_image', arg_group="Managed Image", help="Name or ID of the customized managed image to be created.") c.argument('managed_image_location', arg_group="Managed Image", help=ib_img_location_help) with self.argument_context('image builder output add') as c: ib_artifact_tags_help = "Tags that will be applied to the output artifact once it has been created by the distributor. " + tags_type.settings['help'] ib_artifact_tags_type = CLIArgumentType(overrides=tags_type, help=ib_artifact_tags_help, options_list=["--artifact-tags"]) ib_default_loc_help = " Defaults to resource group's location." c.argument('output_name', help=ib_output_name_help + " Defaults to the name of the managed image or sig image definition.") c.argument('gallery_replication_regions', arg_group="Shared Image Gallery", nargs='+', help=ib_sig_regions_help + ib_default_loc_help) c.argument('managed_image_location', arg_group="Managed Image", help=ib_img_location_help + ib_default_loc_help) c.argument('is_vhd', arg_group="VHD", help="The output is a VHD distributor.", action='store_true') c.argument('tags', arg_type=ib_artifact_tags_type) c.ignore('location') with self.argument_context('image builder customizer') as c: ib_win_restart_type = CLIArgumentType(arg_group="Windows Restart") ib_win_update_type = CLIArgumentType(arg_group="Windows Update") ib_script_type = CLIArgumentType(arg_group="Shell and Powershell") ib_powershell_type = CLIArgumentType(arg_group="Powershell") ib_file_customizer_type = CLIArgumentType(arg_group="File") c.argument('customizer_name', help="Name of the customizer.") c.argument('customizer_type', options_list=['--type', '-t'], help="Type of customizer to be added to the image template.", arg_type=get_enum_type(ScriptType)) # Script Args c.argument('script_url', arg_type=ib_script_type, help="URL of script to customize the image with. The URL must be publicly accessible.") c.argument('inline_script', arg_type=ib_script_type, nargs='+', help="Space-separated list of inline script lines to customize the image with.") # Powershell Specific Args c.argument('valid_exit_codes', options_list=['--exit-codes', '-e'], arg_type=ib_powershell_type, nargs='+', help="Space-separated list of valid exit codes, as integers") # Windows Restart Specific Args c.argument('restart_command', arg_type=ib_win_restart_type, help="Command to execute the restart operation.") c.argument('restart_check_command', arg_type=ib_win_restart_type, help="Command to verify that restart succeeded.") c.argument('restart_timeout', arg_type=ib_win_restart_type, help="Restart timeout specified as a string consisting of a magnitude and unit, e.g. '5m' (5 minutes) or '2h' (2 hours)", default="5m") # Windows Update Specific Args c.argument('search_criteria', arg_type=ib_win_update_type, help='Criteria to search updates. Omit or specify empty string to use the default (search all). Refer to above link for examples and detailed description of this field.') c.argument('filters', arg_type=ib_win_update_type, nargs='+', help='Space delimited filters to select updates to apply. Omit or specify empty array to use the default (no filter)') c.argument('update_limit', arg_type=ib_win_update_type, help='Maximum number of updates to apply at a time. Omit or specify 0 to use the default (1000)') # File Args c.argument('file_source', arg_type=ib_file_customizer_type, help="The URI of the file to be downloaded into the image. It can be a github link, SAS URI for Azure Storage, etc.") c.argument('dest_path', arg_type=ib_file_customizer_type, help="The absolute destination path where the file specified in --file-source will be downloaded to in the image") # endregion # region AvailabilitySets with self.argument_context('vm availability-set') as c: c.argument('availability_set_name', name_arg_type, id_part='name', completer=get_resource_name_completion_list('Microsoft.Compute/availabilitySets'), help='Name of the availability set') with self.argument_context('vm availability-set create') as c: c.argument('availability_set_name', name_arg_type, validator=get_default_location_from_resource_group, help='Name of the availability set') c.argument('platform_update_domain_count', type=int, help='Update Domain count. If unspecified, the server will pick the most optimal number like 5.') c.argument('platform_fault_domain_count', type=int, help='Fault Domain count.') c.argument('validate', help='Generate and validate the ARM template without creating any resources.', action='store_true') c.argument('unmanaged', action='store_true', min_api='2016-04-30-preview', help='contained VMs should use unmanaged disks') with self.argument_context('vm availability-set update') as c: if self.supported_api_version(max_api='2016-04-30-preview', operation_group='virtual_machines'): c.argument('name', name_arg_type, id_part='name', completer=get_resource_name_completion_list('Microsoft.Compute/availabilitySets'), help='Name of the availability set') c.argument('availability_set_name', options_list=['--availability-set-name']) # endregion # region VirtualMachines with self.argument_context('vm') as c: c.argument('vm_name', existing_vm_name) c.argument('size', completer=get_vm_size_completion_list) c.argument('name', arg_type=name_arg_type) c.argument('zone', zone_type, min_api='2017-03-30') c.argument('caching', help='Disk caching policy', arg_type=get_enum_type(CachingTypes)) c.argument('nsg', help='The name to use when creating a new Network Security Group (default) or referencing an existing one. Can also reference an existing NSG by ID or specify "" for none.', arg_group='Network') c.argument('nsg_rule', help='NSG rule to create when creating a new NSG. Defaults to open ports for allowing RDP on Windows and allowing SSH on Linux.', arg_group='Network', arg_type=get_enum_type(['RDP', 'SSH'])) c.argument('application_security_groups', min_api='2017-09-01', nargs='+', options_list=['--asgs'], help='Space-separated list of existing application security groups to associate with the VM.', arg_group='Network') c.argument('workspace', is_preview=True, arg_group='Monitor', help='Name or ID of Log Analytics Workspace. If you specify the workspace through its name, the workspace should be in the same resource group with the vm, otherwise a new workspace will be created.') with self.argument_context('vm capture') as c: c.argument('overwrite', action='store_true') with self.argument_context('vm update') as c: c.argument('os_disk', min_api='2017-12-01', help="Managed OS disk ID or name to swap to") c.argument('write_accelerator', nargs='*', min_api='2017-12-01', help="enable/disable disk write accelerator. Use singular value 'true/false' to apply across, or specify individual disks, e.g.'os=true 1=true 2=true' for os disk and data disks with lun of 1 & 2") c.argument('disk_caching', nargs='*', help="Use singular value to apply across, or specify individual disks, e.g. 'os=ReadWrite 0=None 1=ReadOnly' should enable update os disk and 2 data disks") c.argument('ultra_ssd_enabled', ultra_ssd_enabled_type) c.argument('enable_secure_boot', arg_type=get_three_state_flag(), min_api='2020-12-01', help='Enable secure boot.') c.argument('enable_vtpm', arg_type=get_three_state_flag(), min_api='2020-12-01', help='Enable vTPM.') c.argument('size', help='The new size of the virtual machine. See https://azure.microsoft.com/pricing/details/virtual-machines/ for size info.', is_preview=True) c.argument('ephemeral_os_disk_placement', arg_type=ephemeral_placement_type, help='Only applicable when used with `--size`. Allows you to choose the Ephemeral OS disk provisioning location.', is_preview=True) c.argument('enable_hibernation', arg_type=get_three_state_flag(), min_api='2021-03-01', help='The flag that enable or disable hibernation capability on the VM.') c.argument('v_cpus_available', type=int, min_api='2021-07-01', help='Specify the number of vCPUs available for the VM') c.argument('v_cpus_per_core', type=int, min_api='2021-07-01', help='Specify the ratio of vCPU to physical core. Setting this property to 1 also means that hyper-threading is disabled.') with self.argument_context('vm create') as c: c.argument('name', name_arg_type, validator=_resource_not_exists(self.cli_ctx, 'Microsoft.Compute/virtualMachines')) c.argument('vm_name', name_arg_type, id_part=None, help='Name of the virtual machine.', completer=None) c.argument('os_disk_size_gb', type=int, help='the size of the os disk in GB', arg_group='Storage') c.argument('availability_set', help='Name or ID of an existing availability set to add the VM to. None by default.') c.argument('vmss', help='Name or ID of an existing virtual machine scale set that the virtual machine should be assigned to. None by default.') c.argument('nsg', help='The name to use when creating a new Network Security Group (default) or referencing an existing one. Can also reference an existing NSG by ID or specify "" for none (\'""\' in Azure CLI using PowerShell or --% operator).', arg_group='Network') c.argument('nsg_rule', help='NSG rule to create when creating a new NSG. Defaults to open ports for allowing RDP on Windows and allowing SSH on Linux. NONE represents no NSG rule', arg_group='Network', arg_type=get_enum_type(['RDP', 'SSH', 'NONE'])) c.argument('application_security_groups', resource_type=ResourceType.MGMT_NETWORK, min_api='2017-09-01', nargs='+', options_list=['--asgs'], help='Space-separated list of existing application security groups to associate with the VM.', arg_group='Network', validator=validate_asg_names_or_ids) c.argument('boot_diagnostics_storage', help='pre-existing storage account name or its blob uri to capture boot diagnostics. Its sku should be one of Standard_GRS, Standard_LRS and Standard_RAGRS') c.argument('accelerated_networking', resource_type=ResourceType.MGMT_NETWORK, min_api='2016-09-01', arg_type=get_three_state_flag(), arg_group='Network', help="enable accelerated networking. Unless specified, CLI will enable it based on machine image and size") if self.supported_api_version(min_api='2019-03-01', resource_type=ResourceType.MGMT_COMPUTE): VirtualMachineEvictionPolicyTypes = self.get_models('VirtualMachineEvictionPolicyTypes', resource_type=ResourceType.MGMT_COMPUTE) c.argument('eviction_policy', resource_type=ResourceType.MGMT_COMPUTE, min_api='2019-03-01', arg_type=get_enum_type(VirtualMachineEvictionPolicyTypes, default=None), help="The eviction policy for the Spot priority virtual machine. Default eviction policy is Deallocate for a Spot priority virtual machine") c.argument('enable_agent', arg_type=get_three_state_flag(), min_api='2018-06-01', help='Indicates whether virtual machine agent should be provisioned on the virtual machine. When this property is not specified, default behavior is to set it to true. This will ensure that VM Agent is installed on the VM so that extensions can be added to the VM later') c.argument('enable_auto_update', arg_type=get_three_state_flag(), min_api='2020-06-01', help='Indicate whether Automatic Updates is enabled for the Windows virtual machine') c.argument('patch_mode', arg_type=get_enum_type(['AutomaticByOS', 'AutomaticByPlatform', 'Manual', 'ImageDefault']), min_api='2020-12-01', help='Mode of in-guest patching to IaaS virtual machine. Allowed values for Windows VM: AutomaticByOS, AutomaticByPlatform, Manual. Allowed values for Linux VM: AutomaticByPlatform, ImageDefault. Manual - You control the application of patches to a virtual machine. You do this by applying patches manually inside the VM. In this mode, automatic updates are disabled; the paramater --enable-auto-update must be false. AutomaticByOS - The virtual machine will automatically be updated by the OS. The parameter --enable-auto-update must be true. AutomaticByPlatform - the virtual machine will automatically updated by the OS. ImageDefault - The virtual machine\'s default patching configuration is used. The parameter --enable-agent and --enable-auto-update must be true') c.argument('ssh_key_name', help='Use it as public key in virtual machine. It should be an existing SSH key resource in Azure.') c.argument('enable_hotpatching', arg_type=get_three_state_flag(), help='Patch VMs without requiring a reboot. --enable-agent must be set and --patch-mode must be set to AutomaticByPlatform', min_api='2020-12-01') c.argument('platform_fault_domain', min_api='2020-06-01', help='Specify the scale set logical fault domain into which the virtual machine will be created. By default, the virtual machine will be automatically assigned to a fault domain that best maintains balance across available fault domains. This is applicable only if the virtualMachineScaleSet property of this virtual machine is set. The virtual machine scale set that is referenced, must have platform fault domain count. This property cannot be updated once the virtual machine is created. Fault domain assignment can be viewed in the virtual machine instance view') c.argument('count', type=int, is_preview=True, help='Number of virtual machines to create. Value range is [2, 250], inclusive. Don\'t specify this parameter if you want to create a normal single VM. The VMs are created in parallel. The output of this command is an array of VMs instead of one single VM. Each VM has its own public IP, NIC. VNET and NSG are shared. It is recommended that no existing public IP, NIC, VNET and NSG are in resource group. When --count is specified, --attach-data-disks, --attach-os-disk, --boot-diagnostics-storage, --computer-name, --host, --host-group, --nics, --os-disk-name, --private-ip-address, --public-ip-address, --public-ip-address-dns-name, --storage-account, --storage-container-name, --subnet, --use-unmanaged-disk, --vnet-name are not allowed.') c.argument('security_type', arg_type=get_enum_type(['TrustedLaunch']), min_api='2020-12-01', help='Specify if the VM is Trusted Launch enabled. See https://docs.microsoft.com/azure/virtual-machines/trusted-launch.') c.argument('enable_secure_boot', arg_type=get_three_state_flag(), min_api='2020-12-01', help='Enable secure boot. It is part of trusted launch.') c.argument('enable_vtpm', arg_type=get_three_state_flag(), min_api='2020-12-01', help='Enable vTPM. It is part of trusted launch.') c.argument('user_data', help='UserData for the VM. It can be passed in as file or string.', completer=FilesCompleter(), type=file_type, min_api='2021-03-01') c.argument('enable_hibernation', arg_type=get_three_state_flag(), min_api='2021-03-01', help='The flag that enable or disable hibernation capability on the VM.') c.argument('v_cpus_available', type=int, min_api='2021-07-01', help='Specify the number of vCPUs available for the VM') c.argument('v_cpus_per_core', type=int, min_api='2021-07-01', help='Specify the vCPU to physical core ratio. Setting this property to 1 also means that hyper-threading is disabled.') with self.argument_context('vm create', arg_group='Storage') as c: c.argument('attach_os_disk', help='Attach an existing OS disk to the VM. Can use the name or ID of a managed disk or the URI to an unmanaged disk VHD.') c.argument('attach_data_disks', nargs='+', help='Attach existing data disks to the VM. Can use the name or ID of a managed disk or the URI to an unmanaged disk VHD.') with self.argument_context('vm create', arg_group='Dedicated Host', min_api='2019-03-01') as c: c.argument('dedicated_host_group', options_list=['--host-group'], is_preview=True, help="Name or ID of the dedicated host group that the VM will reside in. --host and --host-group can't be used together.") c.argument('dedicated_host', options_list=['--host'], is_preview=True, help="ID of the dedicated host that the VM will reside in. --host and --host-group can't be used together.") with self.argument_context('vm update', arg_group='Dedicated Host', min_api='2019-03-01') as c: c.argument('dedicated_host_group', options_list=['--host-group'], is_preview=True, help="Name or ID of the dedicated host group that the VM will reside in. --host and --host-group can't be used together. You should deallocate the VM before update, and start the VM after update. Please check out help for more examples.") c.argument('dedicated_host', options_list=['--host'], is_preview=True, help="ID of the dedicated host that the VM will reside in. --host and --host-group can't be used together. You should deallocate the VM before update, and start the VM after update. Please check out help for more examples.") with self.argument_context('vm open-port') as c: c.argument('vm_name', name_arg_type, help='The name of the virtual machine to open inbound traffic on.') c.argument('network_security_group_name', options_list=('--nsg-name',), help='The name of the network security group to create if one does not exist. Ignored if an NSG already exists.', validator=validate_nsg_name) c.argument('apply_to_subnet', help='Allow inbound traffic on the subnet instead of the NIC', action='store_true') c.argument('port', help="The port or port range (ex: 80-100) to open inbound traffic to. Use '*' to allow traffic to all ports. Use comma separated values to specify more than one port or port range.") c.argument('priority', help='Rule priority, between 100 (highest priority) and 4096 (lowest priority). Must be unique for each rule in the collection.', type=int) for scope in ['vm show', 'vm list']: with self.argument_context(scope) as c: c.argument('show_details', action='store_true', options_list=['--show-details', '-d'], help='show public ip address, FQDN, and power states. command will run slow') for scope in ['vm show', 'vmss show']: with self.argument_context(scope) as c: c.argument('include_user_data', action='store_true', options_list=['--include-user-data', '-u'], help='Include the user data properties in the query result.', min_api='2021-03-01') for scope in ['vm get-instance-view', 'vm wait', 'vmss wait']: with self.argument_context(scope) as c: c.ignore('include_user_data') with self.argument_context('vm diagnostics') as c: c.argument('vm_name', arg_type=existing_vm_name, options_list=['--vm-name']) with self.argument_context('vm diagnostics set') as c: c.argument('storage_account', completer=get_resource_name_completion_list('Microsoft.Storage/storageAccounts')) with self.argument_context('vm install-patches') as c: c.argument('maximum_duration', type=str, help='Specify the maximum amount of time that the operation will run. It must be an ISO 8601-compliant duration string such as PT4H (4 hours)') c.argument('reboot_setting', arg_type=get_enum_type(RebootSetting), help='Define when it is acceptable to reboot a VM during a software update operation.') c.argument('classifications_to_include_win', nargs='+', arg_type=get_enum_type(VMGuestPatchClassificationWindows), help='Space-separated list of classifications to include for Windows VM.') c.argument('classifications_to_include_linux', nargs='+', arg_type=get_enum_type(VMGuestPatchClassificationLinux), help='Space-separated list of classifications to include for Linux VM.') c.argument('kb_numbers_to_include', nargs='+', help='Space-separated list of KBs to include in the patch operation. Applicable to Windows VM only') c.argument('kb_numbers_to_exclude', nargs='+', help='Space-separated list of KBs to exclude in the patch operation. Applicable to Windows VM only') c.argument('exclude_kbs_requiring_reboot', arg_type=get_three_state_flag(), help="Filter out KBs that don't have a reboot behavior of 'NeverReboots' when this is set. Applicable to Windows VM only") c.argument('package_name_masks_to_include', nargs='+', help='Space-separated list of packages to include in the patch operation. Format: packageName_packageVersion. Applicable to Linux VM only') c.argument('package_name_masks_to_exclude', nargs='+', help='Space-separated list of packages to exclude in the patch operation. Format: packageName_packageVersion. Applicable to Linux VM only') with self.argument_context('vm disk') as c: c.argument('vm_name', options_list=['--vm-name'], id_part=None, completer=get_resource_name_completion_list('Microsoft.Compute/virtualMachines')) c.argument('new', action='store_true', help='create a new disk') c.argument('sku', arg_type=disk_sku, help='Underlying storage SKU') c.argument('size_gb', options_list=['--size-gb', '-z'], help='size in GB. Max size: 4095 GB (certain preview disks can be larger).', type=int) c.argument('lun', type=int, help='0-based logical unit number (LUN). Max value depends on the Virtual Machine size.') with self.argument_context('vm disk attach') as c: c.argument('enable_write_accelerator', min_api='2017-12-01', action='store_true', help='enable write accelerator') c.argument('disk', options_list=['--name', '-n', c.deprecate(target='--disk', redirect='--name', hide=True)], help="The name or ID of the managed disk", validator=validate_vm_disk, id_part='name', completer=get_resource_name_completion_list('Microsoft.Compute/disks')) with self.argument_context('vm disk detach') as c: c.argument('disk_name', arg_type=name_arg_type, help='The data disk name.') with self.argument_context('vm encryption enable') as c: c.argument('encrypt_format_all', action='store_true', help='Encrypts-formats data disks instead of encrypting them. Encrypt-formatting is a lot faster than in-place encryption but wipes out the partition getting encrypt-formatted.') # Place aad arguments in their own group aad_arguments = 'Azure Active Directory' c.argument('aad_client_id', arg_group=aad_arguments) c.argument('aad_client_secret', arg_group=aad_arguments) c.argument('aad_client_cert_thumbprint', arg_group=aad_arguments) with self.argument_context('vm extension') as c: c.argument('vm_extension_name', name_arg_type, completer=get_resource_name_completion_list('Microsoft.Compute/virtualMachines/extensions'), help='Name of the extension.', id_part='child_name_1') c.argument('vm_name', arg_type=existing_vm_name, options_list=['--vm-name'], id_part='name') c.argument('expand', deprecate_info=c.deprecate(expiration='3.0.0', hide=True)) with self.argument_context('vm extension list') as c: c.argument('vm_name', arg_type=existing_vm_name, options_list=['--vm-name'], id_part=None) with self.argument_context('vm secret') as c: c.argument('secrets', multi_ids_type, options_list=['--secrets', '-s'], help='Space-separated list of key vault secret URIs. Perhaps, produced by \'az keyvault secret list-versions --vault-name vaultname -n cert1 --query "[?attributes.enabled].id" -o tsv\'') c.argument('keyvault', help='Name or ID of the key vault.', validator=validate_keyvault) c.argument('certificate', help='key vault certificate name or its full secret URL') c.argument('certificate_store', help='Windows certificate store names. Default: My') with self.argument_context('vm secret list') as c: c.argument('vm_name', arg_type=existing_vm_name, id_part=None) with self.argument_context('vm image') as c: c.argument('publisher_name', options_list=['--publisher', '-p'], help='image publisher') c.argument('publisher', options_list=['--publisher', '-p'], help='image publisher') c.argument('offer', options_list=['--offer', '-f'], help='image offer') c.argument('plan', help='image billing plan') c.argument('sku', options_list=['--sku', '-s'], help='image sku') c.argument('version', help="image sku's version") c.argument('urn', help="URN, in format of 'publisher:offer:sku:version' or 'publisher:offer:sku:edge_zone:version'. If specified, other argument values can be omitted") with self.argument_context('vm image list') as c: c.argument('image_location', get_location_type(self.cli_ctx)) c.argument('edge_zone', edge_zone_type) with self.argument_context('vm image list-offers') as c: c.argument('edge_zone', edge_zone_type) with self.argument_context('vm image list-skus') as c: c.argument('edge_zone', edge_zone_type) with self.argument_context('vm image list-publishers') as c: c.argument('edge_zone', edge_zone_type) with self.argument_context('vm image show') as c: c.argument('skus', options_list=['--sku', '-s']) c.argument('edge_zone', edge_zone_type) with self.argument_context('vm image terms') as c: c.argument('urn', help='URN, in the format of \'publisher:offer:sku:version\'. If specified, other argument values can be omitted') c.argument('publisher', help='Image publisher') c.argument('offer', help='Image offer') c.argument('plan', help='Image billing plan') with self.argument_context('vm nic') as c: c.argument('vm_name', existing_vm_name, options_list=['--vm-name'], id_part=None) c.argument('nics', nargs='+', help='Names or IDs of NICs.', validator=validate_vm_nics) c.argument('primary_nic', help='Name or ID of the primary NIC. If missing, the first NIC in the list will be the primary.') with self.argument_context('vm nic show') as c: c.argument('nic', help='NIC name or ID.', validator=validate_vm_nic) with self.argument_context('vm unmanaged-disk') as c: c.argument('new', action='store_true', help='Create a new disk.') c.argument('lun', type=int, help='0-based logical unit number (LUN). Max value depends on the Virtual Machine size.') c.argument('vhd_uri', help="Virtual hard disk URI. For example: https://mystorage.blob.core.windows.net/vhds/d1.vhd") with self.argument_context('vm unmanaged-disk attach') as c: c.argument('disk_name', options_list=['--name', '-n'], help='The data disk name.') c.argument('size_gb', options_list=['--size-gb', '-z'], help='size in GB. Max size: 4095 GB (certain preview disks can be larger).', type=int) with self.argument_context('vm unmanaged-disk detach') as c: c.argument('disk_name', options_list=['--name', '-n'], help='The data disk name.') for scope in ['vm unmanaged-disk attach', 'vm unmanaged-disk detach']: with self.argument_context(scope) as c: c.argument('vm_name', arg_type=existing_vm_name, options_list=['--vm-name'], id_part=None) with self.argument_context('vm unmanaged-disk list') as c: c.argument('vm_name', options_list=['--vm-name', '--name', '-n'], arg_type=existing_vm_name, id_part=None) with self.argument_context('vm user') as c: c.argument('username', options_list=['--username', '-u'], help='The user name') c.argument('password', options_list=['--password', '-p'], help='The user password') with self.argument_context('vm list-skus') as c: c.argument('size', options_list=['--size', '-s'], help="size name, partial name is accepted") c.argument('zone', options_list=['--zone', '-z'], arg_type=get_three_state_flag(), help="show skus supporting availability zones") c.argument('show_all', options_list=['--all'], arg_type=get_three_state_flag(), help="show all information including vm sizes not available under the current subscription") c.argument('resource_type', options_list=['--resource-type', '-r'], help='resource types e.g. "availabilitySets", "snapshots", "disks", etc') with self.argument_context('vm restart') as c: c.argument('force', action='store_true', help='Force the VM to restart by redeploying it. Use if the VM is unresponsive.') with self.argument_context('vm host') as c: c.argument('host_group_name', options_list=['--host-group'], id_part='name', help="Name of the Dedicated Host Group") c.argument('host_name', name_arg_type, id_part='child_name_1', help="Name of the Dedicated Host") c.ignore('expand') with self.argument_context('vm host create') as c: c.argument('platform_fault_domain', options_list=['--platform-fault-domain', '-d'], type=int, help="Fault domain of the host within a group. Allowed values: 0, 1, 2") c.argument('auto_replace_on_failure', options_list=['--auto-replace'], arg_type=get_three_state_flag(), help="Replace the host automatically if a failure occurs") c.argument('license_type', arg_type=get_enum_type(DedicatedHostLicenseTypes), help="The software license type that will be applied to the VMs deployed on the dedicated host.") c.argument('sku', help="SKU of the dedicated host. Available SKUs: https://azure.microsoft.com/pricing/details/virtual-machines/dedicated-host/") with self.argument_context('vm host list') as c: c.argument('host_group_name', id_part=None) with self.argument_context('vm host group') as c: c.argument('host_group_name', name_arg_type, id_part='name', help="Name of the Dedicated Host Group") c.argument('automatic_placement', arg_type=get_three_state_flag(), min_api='2020-06-01', help='Specify whether virtual machines or virtual machine scale sets can be placed automatically ' 'on the dedicated host group. Automatic placement means resources are allocated on dedicated ' 'hosts, that are chosen by Azure, under the dedicated host group. The value is defaulted to ' 'false when not provided.') with self.argument_context('vm host group create') as c: c.argument('platform_fault_domain_count', options_list=["--platform-fault-domain-count", "-c"], type=int, help="Number of fault domains that the host group can span.") c.argument('zones', zone_type) for scope in ["vm host", "vm host group"]: with self.argument_context("{} create".format(scope)) as c: location_type = get_location_type(self.cli_ctx) custom_location_msg = " Otherwise, location will default to the resource group's location" custom_location_type = CLIArgumentType(overrides=location_type, help=location_type.settings["help"] + custom_location_msg) c.argument('location', arg_type=custom_location_type) # endregion # region VMSS scaleset_name_aliases = ['vm_scale_set_name', 'virtual_machine_scale_set_name', 'name'] with self.argument_context('vmss') as c: c.argument('zones', zones_type, min_api='2017-03-30') c.argument('instance_id', id_part='child_name_1') c.argument('instance_ids', multi_ids_type, help='Space-separated list of IDs (ex: 1 2 3 ...) or * for all instances. If not provided, the action will be applied on the scaleset itself') c.argument('tags', tags_type) c.argument('caching', help='Disk caching policy', arg_type=get_enum_type(CachingTypes)) for dest in scaleset_name_aliases: c.argument(dest, vmss_name_type) c.argument('host_group', min_api='2020-06-01', help='Name or ID of dedicated host group that the virtual machine scale set resides in') for scope in ['vmss deallocate', 'vmss delete-instances', 'vmss restart', 'vmss start', 'vmss stop', 'vmss show', 'vmss update-instances', 'vmss simulate-eviction']: with self.argument_context(scope) as c: for dest in scaleset_name_aliases: c.argument(dest, vmss_name_type, id_part=None) # due to instance-ids parameter with self.argument_context('vmss create', operation_group='virtual_machine_scale_sets') as c: VirtualMachineEvictionPolicyTypes = self.get_models('VirtualMachineEvictionPolicyTypes', resource_type=ResourceType.MGMT_COMPUTE) c.argument('name', name_arg_type) c.argument('nat_backend_port', default=None, help='Backend port to open with NAT rules. Defaults to 22 on Linux and 3389 on Windows.') c.argument('single_placement_group', arg_type=get_three_state_flag(), help="Limit the scale set to a single placement group." " See https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-placement-groups for details.") c.argument('platform_fault_domain_count', type=int, help='Fault Domain count for each placement group in the availability zone', min_api='2017-12-01') c.argument('vmss_name', name_arg_type, id_part=None, help='Name of the virtual machine scale set.') c.argument('instance_count', help='Number of VMs in the scale set.', type=int) c.argument('disable_overprovision', help='Overprovision option (see https://azure.microsoft.com/documentation/articles/virtual-machine-scale-sets-overview/ for details).', action='store_true') c.argument('upgrade_policy_mode', help=None, arg_type=get_enum_type(UpgradeMode)) c.argument('health_probe', help='Probe name from the existing load balancer, mainly used for rolling upgrade or automatic repairs') c.argument('vm_sku', help='Size of VMs in the scale set. Default to "Standard_DS1_v2". See https://azure.microsoft.com/pricing/details/virtual-machines/ for size info.') c.argument('nsg', help='Name or ID of an existing Network Security Group.', arg_group='Network') c.argument('eviction_policy', resource_type=ResourceType.MGMT_COMPUTE, min_api='2017-12-01', arg_type=get_enum_type(VirtualMachineEvictionPolicyTypes, default=None), help="The eviction policy for virtual machines in a Spot priority scale set. Default eviction policy is Deallocate for a Spot priority scale set") c.argument('application_security_groups', resource_type=ResourceType.MGMT_COMPUTE, min_api='2018-06-01', nargs='+', options_list=['--asgs'], help='Space-separated list of existing application security groups to associate with the VM.', arg_group='Network', validator=validate_asg_names_or_ids) c.argument('computer_name_prefix', help='Computer name prefix for all of the virtual machines in the scale set. Computer name prefixes must be 1 to 15 characters long') c.argument('orchestration_mode', help='Choose how virtual machines are managed by the scale set. In Uniform mode, you define a virtual machine model and Azure will generate identical instances based on that model. In Flexible mode, you manually create and add a virtual machine of any configuration to the scale set or generate identical instances based on virtual machine model defined for the scale set.', arg_type=get_enum_type(['Uniform', 'Flexible'])) c.argument('scale_in_policy', scale_in_policy_type) c.argument('automatic_repairs_grace_period', min_api='2018-10-01', help='The amount of time (in minutes, between 30 and 90) for which automatic repairs are suspended due to a state change on VM.') c.argument('user_data', help='UserData for the virtual machines in the scale set. It can be passed in as file or string.', completer=FilesCompleter(), type=file_type, min_api='2021-03-01') c.argument('network_api_version', min_api='2021-03-01', help="Specify the Microsoft.Network API version used when creating networking resources in the Network " "Interface Configurations for Virtual Machine Scale Set with orchestration mode 'Flexible'. Default " "value is 2020-11-01.") c.argument('enable_spot_restore', arg_type=get_three_state_flag(), min_api='2021-04-01', help='Enable the Spot-Try-Restore feature where evicted VMSS SPOT instances will be tried to be restored opportunistically based on capacity availability and pricing constraints') c.argument('spot_restore_timeout', min_api='2021-04-01', help='Timeout value expressed as an ISO 8601 time duration after which the platform will not try to restore the VMSS SPOT instances') c.argument('enable_agent', arg_type=get_three_state_flag(), min_api='2018-06-01', help='Indicate whether virtual machine agent should be provisioned on the virtual machine. When this property is not specified, default behavior is to set it to true. This will ensure that VM Agent is installed on the VM so that extensions can be added to the VM later') c.argument('enable_auto_update', arg_type=get_three_state_flag(), min_api='2020-06-01', help='Indicate whether Automatic Updates is enabled for the Windows virtual machine') c.argument('patch_mode', arg_type=get_enum_type(['AutomaticByOS', 'AutomaticByPlatform', 'Manual', 'ImageDefault']), min_api='2020-12-01', help='Mode of in-guest patching to IaaS virtual machine. Allowed values for Windows VM: AutomaticByOS, AutomaticByPlatform, Manual. Allowed values for Linux VM: AutomaticByPlatform, ImageDefault. Manual - You control the application of patches to a virtual machine. You do this by applying patches manually inside the VM. In this mode, automatic updates are disabled; the paramater --enable-auto-update must be false. AutomaticByOS - The virtual machine will automatically be updated by the OS. The parameter --enable-auto-update must be true. AutomaticByPlatform - the virtual machine will automatically updated by the OS. ImageDefault - The virtual machine\'s default patching configuration is used. The parameter --enable-agent and --enable-auto-update must be true') with self.argument_context('vmss create', arg_group='Network Balancer') as c: LoadBalancerSkuName = self.get_models('LoadBalancerSkuName', resource_type=ResourceType.MGMT_NETWORK) c.argument('application_gateway', help='Name to use when creating a new application gateway (default) or referencing an existing one. Can also reference an existing application gateway by ID or specify "" for none.', options_list=['--app-gateway']) c.argument('app_gateway_capacity', help='The number of instances to use when creating a new application gateway.') c.argument('app_gateway_sku', help='SKU when creating a new application gateway.') c.argument('app_gateway_subnet_address_prefix', help='The subnet IP address prefix to use when creating a new application gateway in CIDR format.') c.argument('backend_pool_name', help='Name to use for the backend pool when creating a new load balancer or application gateway.') c.argument('backend_port', help='When creating a new load balancer, backend port to open with NAT rules (Defaults to 22 on Linux and 3389 on Windows). When creating an application gateway, the backend port to use for the backend HTTP settings.', type=int) c.argument('load_balancer', help='Name to use when creating a new load balancer (default) or referencing an existing one. Can also reference an existing load balancer by ID or specify "" for none.', options_list=['--load-balancer', '--lb']) c.argument('load_balancer_sku', resource_type=ResourceType.MGMT_NETWORK, min_api='2017-08-01', options_list=['--lb-sku'], arg_type=get_enum_type(LoadBalancerSkuName), help="Sku of the Load Balancer to create. Default to 'Standard' when single placement group is turned off; otherwise, default to 'Basic'. The public IP is supported to be created on edge zone only when it is 'Standard'") c.argument('nat_pool_name', help='Name to use for the NAT pool when creating a new load balancer.', options_list=['--lb-nat-pool-name', '--nat-pool-name']) with self.argument_context('vmss create', min_api='2017-03-30', arg_group='Network') as c: c.argument('public_ip_per_vm', action='store_true', help="Each VM instance will have a public ip. For security, you can use '--nsg' to apply appropriate rules") c.argument('vm_domain_name', help="domain name of VM instances, once configured, the FQDN is `vm<vm-index>.<vm-domain-name>.<..rest..>`") c.argument('dns_servers', nargs='+', help="space-separated IP addresses of DNS servers, e.g. 10.0.0.5 10.0.0.6") c.argument('accelerated_networking', arg_type=get_three_state_flag(), help="enable accelerated networking. Unless specified, CLI will enable it based on machine image and size") with self.argument_context('vmss update') as c: protection_policy_type = CLIArgumentType(overrides=get_three_state_flag(), arg_group="Protection Policy", min_api='2019-03-01') c.argument('protect_from_scale_in', arg_type=protection_policy_type, help="Protect the VM instance from scale-in operations.") c.argument('protect_from_scale_set_actions', arg_type=protection_policy_type, help="Protect the VM instance from scale set actions (including scale-in).") c.argument('enable_terminate_notification', min_api='2019-03-01', arg_type=get_three_state_flag(), help='Enable terminate notification') c.argument('ultra_ssd_enabled', ultra_ssd_enabled_type) c.argument('scale_in_policy', scale_in_policy_type) c.argument('user_data', help='UserData for the virtual machines in the scale set. It can be passed in as file or string. If empty string is passed in, the existing value will be deleted.', completer=FilesCompleter(), type=file_type, min_api='2021-03-01') c.argument('enable_spot_restore', arg_type=get_three_state_flag(), min_api='2021-04-01', help='Enable the Spot-Try-Restore feature where evicted VMSS SPOT instances will be tried to be restored opportunistically based on capacity availability and pricing constraints') c.argument('spot_restore_timeout', min_api='2021-04-01', help='Timeout value expressed as an ISO 8601 time duration after which the platform will not try to restore the VMSS SPOT instances') c.argument('vm_sku', help='The new size of the virtual machine instances in the scale set. Default to "Standard_DS1_v2". See https://azure.microsoft.com/pricing/details/virtual-machines/ for size info.', is_preview=True) c.argument('ephemeral_os_disk_placement', arg_type=ephemeral_placement_type, help='Only applicable when used with `--vm-sku`. Allows you to choose the Ephemeral OS disk provisioning location.', is_preview=True) with self.argument_context('vmss update', min_api='2018-10-01', arg_group='Automatic Repairs') as c: c.argument('enable_automatic_repairs', arg_type=get_three_state_flag(), help='Enable automatic repairs') c.argument( 'automatic_repairs_grace_period', help='The amount of time (in minutes, between 30 and 90) for which automatic repairs are suspended due to a state change on VM.' ) for scope in ['vmss create', 'vmss update']: with self.argument_context(scope) as c: c.argument('terminate_notification_time', min_api='2019-03-01', help='Length of time (in minutes, between 5 and 15) a notification to be sent to the VM on the instance metadata server till the VM gets deleted') c.argument('max_batch_instance_percent', type=int, min_api='2020-12-01', help='The maximum percent of total virtual machine instances that will be upgraded simultaneously by the rolling upgrade in one batch. Default: 20%') c.argument('max_unhealthy_instance_percent', type=int, min_api='2020-12-01', help='The maximum percentage of the total virtual machine instances in the scale set that can be simultaneously unhealthy. Default: 20%') c.argument('max_unhealthy_upgraded_instance_percent', type=int, min_api='2020-12-01', help='The maximum percentage of upgraded virtual machine instances that can be found to be in an unhealthy state. Default: 20%') c.argument('pause_time_between_batches', min_api='2020-12-01', help='The wait time between completing the update for all virtual machines in one batch and starting the next batch. Default: 0 seconds') c.argument('enable_cross_zone_upgrade', arg_type=get_three_state_flag(), min_api='2020-12-01', help='Set this Boolean property will allow VMSS to ignore AZ boundaries when constructing upgrade batches, and only consider Update Domain and maxBatchInstancePercent to determine the batch size') c.argument('prioritize_unhealthy_instances', arg_type=get_three_state_flag(), min_api='2020-12-01', help='Set this Boolean property will lead to all unhealthy instances in a scale set getting upgraded before any healthy instances') for scope, help_prefix in [('vmss update', 'Update the'), ('vmss wait', 'Wait on the')]: with self.argument_context(scope) as c: c.argument('instance_id', id_part='child_name_1', help="{0} VM instance with this ID. If missing, {0} VMSS.".format(help_prefix)) for scope in ['vmss update-instances', 'vmss delete-instances']: with self.argument_context(scope) as c: c.argument('instance_ids', multi_ids_type, help='Space-separated list of IDs (ex: 1 2 3 ...) or * for all instances.') with self.argument_context('vmss diagnostics') as c: c.argument('vmss_name', id_part=None, help='Scale set name') with self.argument_context('vmss disk') as c: options_list = ['--vmss-name'] + [c.deprecate(target=opt, redirect='--vmss-name', hide=True)for opt in name_arg_type.settings['options_list']] new_vmss_name_type = CLIArgumentType(overrides=vmss_name_type, options_list=options_list) c.argument('lun', type=int, help='0-based logical unit number (LUN). Max value depends on the Virtual Machine instance size.') c.argument('size_gb', options_list=['--size-gb', '-z'], help='size in GB. Max size: 4095 GB (certain preview disks can be larger).', type=int) c.argument('vmss_name', new_vmss_name_type, completer=get_resource_name_completion_list('Microsoft.Compute/virtualMachineScaleSets')) c.argument('disk', validator=validate_vmss_disk, help='existing disk name or ID to attach or detach from VM instances', min_api='2017-12-01', completer=get_resource_name_completion_list('Microsoft.Compute/disks')) c.argument('instance_id', help='Scale set VM instance id', min_api='2017-12-01') c.argument('sku', arg_type=disk_sku, help='Underlying storage SKU') with self.argument_context('vmss encryption') as c: c.argument('vmss_name', vmss_name_type, completer=get_resource_name_completion_list('Microsoft.Compute/virtualMachineScaleSets')) with self.argument_context('vmss extension') as c: c.argument('extension_name', name_arg_type, help='Name of the extension.') c.argument('vmss_name', vmss_name_type, options_list=['--vmss-name'], id_part=None) with self.argument_context('vmss nic') as c: c.argument('virtual_machine_scale_set_name', options_list=['--vmss-name'], help='Scale set name.', completer=get_resource_name_completion_list('Microsoft.Compute/virtualMachineScaleSets'), id_part='name') c.argument('virtualmachine_index', options_list=['--instance-id'], id_part='child_name_1') c.argument('network_interface_name', options_list=['--name', '-n'], metavar='NIC_NAME', help='The network interface (NIC).', completer=get_resource_name_completion_list('Microsoft.Network/networkInterfaces'), id_part='child_name_2') with self.argument_context('vmss nic list') as c: c.argument('virtual_machine_scale_set_name', arg_type=vmss_name_type, options_list=['--vmss-name'], id_part=None) with self.argument_context('vmss set-orchestration-service-state') as c: c.argument('service_name', arg_type=get_enum_type(OrchestrationServiceNames), help='The name of the orchestration service.') c.argument('action', arg_type=get_enum_type(OrchestrationServiceStateAction), help='The action to be performed.') # endregion # region VM & VMSS Shared for scope in ['vm', 'vmss']: with self.argument_context(scope) as c: c.argument('no_auto_upgrade', options_list=['--no-auto-upgrade-minor-version', c.deprecate(target='--no-auto-upgrade', redirect='--no-auto-upgrade-minor-version')], arg_type=get_three_state_flag(), help='If set, the extension service will not automatically pick or upgrade to the latest minor version, even if the extension is redeployed.') with self.argument_context('{} run-command'.format(scope)) as c: c.argument('command_id', completer=get_vm_run_command_completion_list, help="The command id. Use 'az {} run-command list' to get the list".format(scope)) if scope == 'vmss': c.argument('vmss_name', vmss_name_type) with self.argument_context('{} run-command invoke'.format(scope)) as c: c.argument('parameters', nargs='+', help="space-separated parameters in the format of '[name=]value'") c.argument('scripts', nargs='+', help="Space-separated script lines. Use @{file} to load script from a file") with self.argument_context('{} stop'.format(scope)) as c: c.argument('skip_shutdown', action='store_true', help='Skip shutdown and power-off immediately.', min_api='2019-03-01') run_cmd_name_type = CLIArgumentType(options_list=['--name', '--run-command-name'], help='The name of the virtual machine run command.') run_cmd_vm_name = CLIArgumentType(options_list=['--vm-name'], help='The name of the virtual machine') for scope in ['create', 'update']: with self.argument_context('vm run-command {}'.format(scope)) as c: c.argument('vm_name', run_cmd_vm_name) c.argument('run_command_name', run_cmd_name_type) c.argument('location', arg_type=get_location_type(self.cli_ctx), required=False, validator=get_default_location_from_resource_group) c.argument('tags', tags_type) c.argument('script', help='Contain the powershell or bash script to execute on the VM.') c.argument('script_uri', help='Contain a uri to the script to execute on the VM. Uri can be any link accessible from the VM or a storage blob without SAS. If subscription has access to the storage blob, then SAS will be auto-generated. ') c.argument('command_id', help='Specify a command id of predefined script. All command ids can be listed using "list" command.') c.argument('parameters', nargs='+', help='Set custom parameters in a name-value pair.') c.argument('protected_parameters', nargs='+', help='Set custom parameters in a name-value pair. These parameters will be encrypted during transmission and will not be logged.') c.argument('async_execution', arg_type=get_three_state_flag(), help='Optional. If set to true, provisioning ' 'will complete as soon as the script starts and will not wait for script to complete.') c.argument('run_as_user', help='By default script process runs under system/root user. Specify custom user to host the process.') c.argument('run_as_password', help='Password if needed for using run-as-user parameter. It will be encrypted and not logged. ') c.argument('timeout_in_seconds', type=int, help='The timeout in seconds to execute the run command.') c.argument('output_blob_uri', help='Specify the Azure storage blob where script output stream will be uploaded.') c.argument('error_blob_uri', help='Specify the Azure storage blob where script error stream will be uploaded.') with self.argument_context('vm run-command delete') as c: c.argument('vm_name', run_cmd_vm_name) c.argument('run_command_name', run_cmd_name_type) with self.argument_context('vm run-command list') as c: c.argument('vm_name', run_cmd_vm_name, id_part=None) c.argument('expand', help='The expand expression to apply on the operation.') c.argument('location', arg_type=get_location_type(self.cli_ctx)) with self.argument_context('vm run-command show') as c: c.argument('vm_name', run_cmd_vm_name) c.argument('run_command_name', run_cmd_name_type) c.argument('expand', help='The expand expression to apply on the operation.', deprecate_info=c.deprecate(hide=True)) c.argument('instance_view', action='store_true', help='Track the run command progress') c.argument('location', arg_type=get_location_type(self.cli_ctx)) c.argument('command_id', help='The command id.') with self.argument_context('vm run-command wait') as c: c.argument('vm_name', run_cmd_vm_name) c.argument('run_command_name', run_cmd_name_type) c.argument('expand', help='The expand expression to apply on the operation.', deprecate_info=c.deprecate(hide=True)) c.argument('instance_view', action='store_true', help='Track the run command progress') c.argument('location', arg_type=get_location_type(self.cli_ctx)) c.argument('command_id', help='The command id.') run_cmd_vmss_name = CLIArgumentType(options_list=['--vmss-name'], help='The name of the VM scale set.') for scope in ['create', 'update']: with self.argument_context('vmss run-command {}'.format(scope)) as c: c.argument('vmss_name', run_cmd_vmss_name) c.argument('instance_id', help='The instance ID of the virtual machine.') c.argument('run_command_name', run_cmd_name_type) c.argument('location', arg_type=get_location_type(self.cli_ctx), required=False, validator=get_default_location_from_resource_group) c.argument('tags', tags_type) c.argument('script', help='Contain the powershell or bash script to execute on the VM.') c.argument('script_uri', help='Contain a uri to the script to execute on the VM. Uri can be any link accessible from the VM or a storage blob without SAS. If subscription has access to the storage blob, then SAS will be auto-generated. ') c.argument('command_id', help='Specify a command id of predefined script. All command ids can be listed using "list" command.') c.argument('parameters', nargs='+', help='Set custom parameters in a name-value pair.') c.argument('protected_parameters', nargs='+', help='Set custom parameters in a name-value pair. These parameters will be encrypted during transmission and will not be logged.') c.argument('async_execution', arg_type=get_three_state_flag(), help='Optional. If set to true, provisioning ' 'will complete as soon as the script starts and will not wait for script to complete.') c.argument('run_as_user', help='By default script process runs under system/root user. Specify custom user to host the process.') c.argument('run_as_password', help='Password if needed for using run-as-user parameter. It will be encrypted and not logged. ') c.argument('timeout_in_seconds', type=int, help='The timeout in seconds to execute the run command.') c.argument('output_blob_uri', help='Uri (without SAS) to an append blob where the script output will be uploaded.') c.argument('error_blob_uri', help='Uri (without SAS) to an append blob where the script error stream will be uploaded.') with self.argument_context('vmss run-command delete') as c: c.argument('vmss_name', run_cmd_vmss_name) c.argument('instance_id', help='The instance ID of the virtual machine.') c.argument('run_command_name', run_cmd_name_type) with self.argument_context('vmss run-command list') as c: c.argument('vmss_name', run_cmd_vmss_name, id_part=None) c.argument('instance_id', help='The instance ID of the virtual machine.') c.argument('expand', help='The expand expression to apply on the operation.') with self.argument_context('vmss run-command show') as c: c.argument('vmss_name', run_cmd_vmss_name) c.argument('instance_id', help='The instance ID of the virtual machine.') c.argument('run_command_name', run_cmd_name_type) c.argument('expand', help='The expand expression to apply on the operation.', deprecate_info=c.deprecate(hide=True)) c.argument('instance_view', action='store_true', help='Track the run command progress') for scope in ['vm identity assign', 'vmss identity assign']: with self.argument_context(scope) as c: c.argument('assign_identity', options_list=['--identities'], nargs='*', help="Space-separated identities to assign. Use '{0}' to refer to the system assigned identity. Default: '{0}'".format(MSI_LOCAL_ID)) c.argument('vm_name', existing_vm_name) c.argument('vmss_name', vmss_name_type) for scope in ['vm identity remove', 'vmss identity remove']: with self.argument_context(scope) as c: c.argument('identities', nargs='+', help="Space-separated identities to remove. Use '{0}' to refer to the system assigned identity. Default: '{0}'".format(MSI_LOCAL_ID)) c.argument('vm_name', existing_vm_name) c.argument('vmss_name', vmss_name_type) for scope in ['vm identity show', 'vmss identity show']: with self.argument_context(scope) as c: c.argument('vm_name', existing_vm_name) c.argument('vmss_name', vmss_name_type) for scope in ['vm application set', 'vmss application set']: with self.argument_context(scope) as c: c.argument('vm', existing_vm_name) c.argument('vmss_name', vmss_name_type) c.argument('application_version_ids', options_list=['--app-version-ids'], nargs='*', help="Space-separated application version ids to set to VM.") c.argument('order_applications', action='store_true', help='Whether set order index at each gallery applications, the order index starts from 1.') c.argument('application_configuration_overrides', options_list=['--app-config-overrides'], nargs='*', help='Space-separated application configuration overrides for each application version ids. ' 'It should have the same number of items as the application version ids. Null is available for a application ' 'which does not have a configuration override.') for scope in ['vm application list', 'vmss application list']: with self.argument_context(scope) as c: c.argument('vm_name', options_list=['--vm-name', '--name', '-n'], arg_type=existing_vm_name, id_part=None) c.argument('vmss_name', vmss_name_type, id_part=None) for scope in ['vm create', 'vmss create']: with self.argument_context(scope) as c: c.argument('location', get_location_type(self.cli_ctx), help='Location in which to create VM and related resources. If default location is not configured, will default to the resource group\'s location') c.argument('tags', tags_type) c.argument('no_wait', help='Do not wait for the long-running operation to finish.') c.argument('validate', options_list=['--validate'], help='Generate and validate the ARM template without creating any resources.', action='store_true') c.argument('size', help='The VM size to be created. See https://azure.microsoft.com/pricing/details/virtual-machines/ for size info.') c.argument('image', completer=get_urn_aliases_completion_list) c.argument('custom_data', help='Custom init script file or text (cloud-init, cloud-config, etc..)', completer=FilesCompleter(), type=file_type) c.argument('secrets', multi_ids_type, help='One or many Key Vault secrets as JSON strings or files via `@{path}` containing `[{ "sourceVault": { "id": "value" }, "vaultCertificates": [{ "certificateUrl": "value", "certificateStore": "cert store name (only on windows)"}] }]`', type=file_type, completer=FilesCompleter()) c.argument('assign_identity', nargs='*', arg_group='Managed Service Identity', help="accept system or user assigned identities separated by spaces. Use '[system]' to refer system assigned identity, or a resource id to refer user assigned identity. Check out help for more examples") c.ignore('aux_subscriptions') c.argument('edge_zone', edge_zone_type) with self.argument_context(scope, arg_group='Authentication') as c: c.argument('generate_ssh_keys', action='store_true', help='Generate SSH public and private key files if missing. The keys will be stored in the ~/.ssh directory') c.argument('admin_username', help='Username for the VM. Default value is current username of OS. If the default value is system reserved, then default value will be set to azureuser. Please refer to https://docs.microsoft.com/rest/api/compute/virtualmachines/createorupdate#osprofile to get a full list of reserved values.') c.argument('admin_password', help="Password for the VM if authentication type is 'Password'.") c.argument('ssh_key_value', options_list=['--ssh-key-values'], completer=FilesCompleter(), type=file_type, nargs='+') c.argument('ssh_dest_key_path', help='Destination file path on the VM for the SSH key. If the file already exists, the specified key(s) are appended to the file. Destination path for SSH public keys is currently limited to its default value "/home/username/.ssh/authorized_keys" due to a known issue in Linux provisioning agent.') c.argument('authentication_type', help='Type of authentication to use with the VM. Defaults to password for Windows and SSH public key for Linux. "all" enables both ssh and password authentication. ', arg_type=get_enum_type(['ssh', 'password', 'all'])) with self.argument_context(scope, arg_group='Storage') as c: if DiskStorageAccountTypes: allowed_values = ", ".join([sku.value for sku in DiskStorageAccountTypes]) else: allowed_values = ", ".join(['Premium_LRS', 'Standard_LRS']) usage = 'Usage: [--storage-sku SKU | --storage-sku ID=SKU ID=SKU ID=SKU...], where each ID is "os" or a 0-indexed lun.' allowed_values = 'Allowed values: {}.'.format(allowed_values) storage_sku_help = 'The SKU of the storage account with which to persist VM. Use a singular sku that would be applied across all disks, ' \ 'or specify individual disks. {} {}'.format(usage, allowed_values) c.argument('os_disk_name', help='The name of the new VM OS disk.') c.argument('os_type', help='Type of OS installed on a custom VHD. Do not use when specifying an URN or URN alias.', arg_type=get_enum_type(['windows', 'linux'])) c.argument('storage_account', help="Only applicable when used with `--use-unmanaged-disk`. The name to use when creating a new storage account or referencing an existing one. If omitted, an appropriate storage account in the same resource group and location will be used, or a new one will be created.") c.argument('storage_sku', nargs='+', help=storage_sku_help) c.argument('storage_container_name', help="Only applicable when used with `--use-unmanaged-disk`. Name of the storage container for the VM OS disk. Default: vhds") c.ignore('os_publisher', 'os_offer', 'os_sku', 'os_version', 'storage_profile') c.argument('use_unmanaged_disk', action='store_true', help='Do not use managed disk to persist VM') c.argument('os_disk_size_gb', type=int, help='OS disk size in GB to create.') c.argument('data_disk_sizes_gb', nargs='+', type=int, help='space-separated empty managed data disk sizes in GB to create') c.ignore('disk_info', 'storage_account_type', 'public_ip_address_type', 'nsg_type', 'nic_type', 'vnet_type', 'load_balancer_type', 'app_gateway_type') c.argument('os_caching', options_list=[self.deprecate(target='--storage-caching', redirect='--os-disk-caching', hide=True), '--os-disk-caching'], help='Storage caching type for the VM OS disk. Default: ReadWrite', arg_type=get_enum_type(CachingTypes)) c.argument('data_caching', options_list=['--data-disk-caching'], nargs='+', help="storage caching type for data disk(s), including 'None', 'ReadOnly', 'ReadWrite', etc. Use a singular value to apply on all disks, or use `<lun>=<vaule1> <lun>=<value2>` to configure individual disk") c.argument('ultra_ssd_enabled', ultra_ssd_enabled_type) c.argument('ephemeral_os_disk', arg_type=get_three_state_flag(), min_api='2018-06-01', help='Allows you to create an OS disk directly on the host node, providing local disk performance and faster VM/VMSS reimage time.', is_preview=True) c.argument('ephemeral_os_disk_placement', arg_type=ephemeral_placement_type, help='Only applicable when used with `--ephemeral-os-disk`. Allows you to choose the Ephemeral OS disk provisioning location.', is_preview=True) c.argument('os_disk_encryption_set', min_api='2019-07-01', help='Name or ID of disk encryption set for OS disk.') c.argument('data_disk_encryption_sets', nargs='+', min_api='2019-07-01', help='Names or IDs (space delimited) of disk encryption sets for data disks.') c.argument('data_disk_iops', min_api='2019-07-01', nargs='+', type=int, help='Specify the Read-Write IOPS (space delimited) for the managed disk. Should be used only when StorageAccountType is UltraSSD_LRS. If not specified, a default value would be assigned based on diskSizeGB.') c.argument('data_disk_mbps', min_api='2019-07-01', nargs='+', type=int, help='Specify the bandwidth in MB per second (space delimited) for the managed disk. Should be used only when StorageAccountType is UltraSSD_LRS. If not specified, a default value would be assigned based on diskSizeGB.') c.argument('specialized', arg_type=get_three_state_flag(), help='Indicate whether the source image is specialized.') c.argument('encryption_at_host', arg_type=get_three_state_flag(), help='Enable Host Encryption for the VM or VMSS. This will enable the encryption for all the disks including Resource/Temp disk at host itself.') c.argument('os_disk_delete_option', arg_type=get_enum_type(self.get_models('DiskDeleteOptionTypes')), min_api='2021-03-01', help='Specify the behavior of the managed disk when the VM gets deleted i.e whether the managed disk is deleted or detached.') c.argument('data_disk_delete_option', options_list=['--data-disk-delete-option', self.deprecate(target='--data-delete-option', redirect='--data-disk-delete-option', hide=True)], nargs='+', min_api='2021-03-01', help='Specify whether data disk should be deleted or detached upon VM deletion.') with self.argument_context(scope, arg_group='Network') as c: c.argument('vnet_name', help='Name of the virtual network when creating a new one or referencing an existing one.') c.argument('vnet_address_prefix', help='The IP address prefix to use when creating a new VNet in CIDR format.') c.argument('subnet', help='The name of the subnet when creating a new VNet or referencing an existing one. Can also reference an existing subnet by ID. If both vnet-name and subnet are omitted, an appropriate VNet and subnet will be selected automatically, or a new one will be created.') c.argument('subnet_address_prefix', help='The subnet IP address prefix to use when creating a new VNet in CIDR format.') c.argument('nics', nargs='+', help='Names or IDs of existing NICs to attach to the VM. The first NIC will be designated as primary. If omitted, a new NIC will be created. If an existing NIC is specified, do not specify subnet, VNet, public IP or NSG.') c.argument('private_ip_address', help='Static private IP address (e.g. 10.0.0.5).') c.argument('public_ip_address', help='Name of the public IP address when creating one (default) or referencing an existing one. Can also reference an existing public IP by ID or specify "" for None (\'""\' in Azure CLI using PowerShell or --% operator).') c.argument('public_ip_address_allocation', help=None, default=None, arg_type=get_enum_type(['dynamic', 'static'])) c.argument('public_ip_address_dns_name', help='Globally unique DNS name for a newly created public IP.') if self.supported_api_version(min_api='2017-08-01', resource_type=ResourceType.MGMT_NETWORK): PublicIPAddressSkuName = self.get_models('PublicIPAddressSkuName', resource_type=ResourceType.MGMT_NETWORK) c.argument('public_ip_sku', help='Public IP SKU. It is set to Basic by default. The public IP is supported to be created on edge zone only when it is \'Standard\'', default=None, arg_type=get_enum_type(PublicIPAddressSkuName)) c.argument('nic_delete_option', nargs='+', min_api='2021-03-01', help='Specify what happens to the network interface when the VM is deleted. Use a singular ' 'value to apply on all resources, or use <Name>=<Value> to configure ' 'the delete behavior for individual resources. Possible options are Delete and Detach.') with self.argument_context(scope, arg_group='Marketplace Image Plan') as c: c.argument('plan_name', help='plan name') c.argument('plan_product', help='plan product') c.argument('plan_publisher', help='plan publisher') c.argument('plan_promotion_code', help='plan promotion code') for scope in ['vm create', 'vmss create', 'vm identity assign', 'vmss identity assign']: with self.argument_context(scope) as c: arg_group = 'Managed Service Identity' if scope.split()[-1] == 'create' else None c.argument('identity_scope', options_list=['--scope'], arg_group=arg_group, help="Scope that the system assigned identity can access") c.argument('identity_role', options_list=['--role'], arg_group=arg_group, help="Role name or id the system assigned identity will have") c.ignore('identity_role_id') with self.argument_context('vm auto-shutdown') as c: c.argument('off', action='store_true', help='Turn off auto-shutdown for VM. Configuration will be cleared.') c.argument('email', help='The email recipient to send notifications to (can be a list of semi-colon separated email addresses)') c.argument('time', help='The UTC time of day the schedule will occur every day. Format: hhmm. Example: 1730') c.argument('webhook', help='The webhook URL to which the notification will be sent') c.argument('location', validator=get_default_location_from_resource_group) for scope in ['vm diagnostics', 'vmss diagnostics']: with self.argument_context(scope) as c: c.argument('version', help='version of the diagnostics extension. Will use the latest if not specfied') c.argument('settings', help='json string or a file path, which defines data to be collected.', type=validate_file_or_dict, completer=FilesCompleter()) c.argument('protected_settings', help='json string or a file path containing private configurations such as storage account keys, etc.', type=validate_file_or_dict, completer=FilesCompleter()) c.argument('is_windows_os', action='store_true', help='for Windows VMs') for scope in ['vm encryption', 'vmss encryption']: with self.argument_context(scope) as c: c.argument('volume_type', help='Type of volume that the encryption operation is performed on', arg_type=get_enum_type(['DATA', 'OS', 'ALL'])) c.argument('force', action='store_true', help='continue by ignoring client side validation errors') c.argument('disk_encryption_keyvault', help='Name or ID of the key vault where the generated encryption key will be placed.') c.argument('key_encryption_key', help='Key vault key name or URL used to encrypt the disk encryption key.') c.argument('key_encryption_keyvault', help='Name or ID of the key vault containing the key encryption key used to encrypt the disk encryption key. If missing, CLI will use `--disk-encryption-keyvault`.') for scope in ['vm extension', 'vmss extension']: with self.argument_context(scope) as c: c.argument('publisher', help='The name of the extension publisher.') c.argument('settings', type=validate_file_or_dict, help='Extension settings in JSON format. A JSON file path is also accepted.') c.argument('protected_settings', type=validate_file_or_dict, help='Protected settings in JSON format for sensitive information like credentials. A JSON file path is also accepted.') c.argument('version', help='The version of the extension. To pin extension version to this value, please specify --no-auto-upgrade-minor-version.') c.argument('enable_auto_upgrade', arg_type=get_three_state_flag(), help='Indicate the extension should be automatically upgraded by the platform if there is a newer version of the extension available.') with self.argument_context('vm extension set') as c: c.argument('vm_extension_name', name_arg_type, completer=get_resource_name_completion_list('Microsoft.Compute/virtualMachines/extensions'), help='Name of the extension.', id_part=None) c.argument('force_update', action='store_true', help='force to update even if the extension configuration has not changed.') c.argument('extension_instance_name', extension_instance_name_type) with self.argument_context('vmss extension set', min_api='2017-12-01') as c: c.argument('force_update', action='store_true', help='force to update even if the extension configuration has not changed.') c.argument('extension_instance_name', extension_instance_name_type) c.argument('provision_after_extensions', nargs='+', help='Space-separated list of extension names after which this extension should be provisioned. These extensions must already be set on the vm.') for scope in ['vm extension image', 'vmss extension image']: with self.argument_context(scope) as c: c.argument('image_location', options_list=['--location', '-l'], help='Image location.') c.argument('name', help='Image name', id_part=None) c.argument('publisher_name', options_list=['--publisher', '-p'], help='Image publisher name') c.argument('type', options_list=['--name', '-n'], help='Name of the extension') c.argument('latest', action='store_true', help='Show the latest version only.') c.argument('version', help='Extension version') c.argument('orderby', help="the $orderby odata query option") c.argument('top', help='the $top odata query option') for scope in ['vm create', 'vm update', 'vmss create', 'vmss update']: with self.argument_context(scope) as c: c.argument('license_type', license_type) c.argument('priority', resource_type=ResourceType.MGMT_COMPUTE, min_api='2019-03-01', arg_type=get_enum_type(self.get_models('VirtualMachinePriorityTypes'), default=None), help="Priority. Use 'Spot' to run short-lived workloads in a cost-effective way. 'Low' enum will be deprecated in the future. Please use 'Spot' to deploy Azure spot VM and/or VMSS. Default to Regular.") c.argument('max_price', min_api='2019-03-01', type=float, is_preview=True, help='The maximum price (in US Dollars) you are willing to pay for a Spot VM/VMSS. -1 indicates that the Spot VM/VMSS should not be evicted for price reasons') c.argument('capacity_reservation_group', options_list=['--capacity-reservation-group', '--crg'], help='The ID or name of the capacity reservation group that is used to allocate. Pass in "None" to disassociate the capacity reservation group. Please note that if you want to delete a VM/VMSS that has been associated with capacity reservation group, you need to disassociate the capacity reservation group first.', min_api='2021-04-01', is_preview=True) with self.argument_context('vm update') as c: c.argument('license_type', license_type) c.argument('user_data', help='UserData for the VM. It can be passed in as file or string. If empty string is passed in, the existing value will be deleted.', completer=FilesCompleter(), type=file_type, min_api='2021-03-01') with self.argument_context('vmss create') as c: c.argument('priority', resource_type=ResourceType.MGMT_COMPUTE, min_api='2017-12-01', arg_type=get_enum_type(self.get_models('VirtualMachinePriorityTypes'), default=None), help="Priority. Use 'Spot' to run short-lived workloads in a cost-effective way. 'Low' enum will be deprecated in the future. Please use 'Spot' to deploy Azure spot VM and/or VMSS. Default to Regular.") with self.argument_context('sig') as c: c.argument('gallery_name', options_list=['--gallery-name', '-r'], help='gallery name') c.argument('gallery_image_name', options_list=['--gallery-image-definition', '-i'], help='gallery image definition') c.argument('gallery_image_version', options_list=['--gallery-image-version', '-e'], help='gallery image version') for scope in ['sig show', 'sig image-definition show', 'sig image-definition delete']: with self.argument_context(scope) as c: c.argument('gallery_name', options_list=['--gallery-name', '-r'], id_part='name', help='gallery name') c.argument('gallery_image_name', options_list=['--gallery-image-definition', '-i'], id_part='child_name_1', help='gallery image definition') with self.argument_context('sig list-shared') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx)) c.argument('shared_to', shared_to_type) with self.argument_context('sig show-shared') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx), id_part='name') c.argument('gallery_unique_name', type=str, help='The unique name of the Shared Gallery.', id_part='child_name_1') for scope in ['sig share add', 'sig share remove']: with self.argument_context(scope) as c: c.argument('gallery_name', type=str, help='The name of the Shared Image Gallery.', id_part='name') c.argument('subscription_ids', nargs='+', help='A list of subscription ids to share the gallery.') c.argument('tenant_ids', nargs='+', help='A list of tenant ids to share the gallery.') with self.argument_context('sig share add') as c: c.argument('op_type', default='Add', deprecate_info=c.deprecate(hide=True), help='distinguish add operation and remove operation') with self.argument_context('sig share remove') as c: c.argument('op_type', default='Remove', deprecate_info=c.deprecate(hide=True), help='distinguish add operation and remove operation') with self.argument_context('sig share reset') as c: c.argument('gallery_name', type=str, help='The name of the Shared Image Gallery.', id_part='name') with self.argument_context('sig image-definition create') as c: c.argument('offer', options_list=['--offer', '-f'], help='image offer') c.argument('sku', options_list=['--sku', '-s'], help='image sku') c.argument('publisher', options_list=['--publisher', '-p'], help='image publisher') c.argument('os_type', arg_type=get_enum_type(['Windows', 'Linux']), help='the type of the OS that is included in the disk if creating a VM from user-image or a specialized VHD') c.argument('os_state', arg_type=get_enum_type(self.get_models('OperatingSystemStateTypes')), help="This property allows the user to specify whether the virtual machines created under this image are 'Generalized' or 'Specialized'.") c.argument('hyper_v_generation', arg_type=get_enum_type(self.get_models('HyperVGenerationTypes')), help='The hypervisor generation of the Virtual Machine. Applicable to OS disks only.') c.argument('minimum_cpu_core', type=int, arg_group='Recommendation', help='minimum cpu cores') c.argument('maximum_cpu_core', type=int, arg_group='Recommendation', help='maximum cpu cores') c.argument('minimum_memory', type=int, arg_group='Recommendation', help='minimum memory in MB') c.argument('maximum_memory', type=int, arg_group='Recommendation', help='maximum memory in MB') c.argument('plan_publisher', help='plan publisher', arg_group='Purchase plan') c.argument('plan_name', help='plan name', arg_group='Purchase plan') c.argument('plan_product', help='plan product', arg_group='Purchase plan') c.argument('eula', help='The Eula agreement for the gallery image') c.argument('privacy_statement_uri', help='The privacy statement uri') c.argument('release_note_uri', help='The release note uri') c.argument('end_of_life_date', help="the end of life date, e.g. '2020-12-31'") c.argument('disallowed_disk_types', nargs='*', help='disk types which would not work with the image, e.g., Standard_LRS') c.argument('features', help='A list of gallery image features. E.g. "IsSecureBootSupported=true IsMeasuredBootSupported=false"') with self.argument_context('sig image-definition list-shared') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx), id_part='name') c.argument('gallery_unique_name', type=str, help='The unique name of the Shared Gallery.', id_part='child_name_1') c.argument('shared_to', shared_to_type) c.argument('marker', arg_type=marker_type) c.argument('show_next_marker', action='store_true', help='Show nextMarker in result when specified.') with self.argument_context('sig image-definition show-shared') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx), id_part='name') c.argument('gallery_unique_name', type=str, help='The unique name of the Shared Gallery.', id_part='child_name_1') c.argument('gallery_image_name', options_list=['--gallery-image-definition', '-i'], type=str, help='The name ' 'of the Shared Gallery Image Definition from which the Image Versions are to be listed.', id_part='child_name_2') with self.argument_context('sig create') as c: c.argument('description', help='the description of the gallery') c.argument('permissions', arg_type=get_enum_type(GallerySharingPermissionTypes), arg_group='Sharing Profile', min_api='2020-09-30', is_experimental=True, help='This property allows you to specify the permission of sharing gallery.') c.argument('soft_delete', arg_type=get_three_state_flag(), min_api='2021-03-01', is_preview=True, help='Enable soft-deletion for resources in this gallery, ' 'allowing them to be recovered within retention time.') with self.argument_context('sig update') as c: c.ignore('gallery') c.argument('permissions', arg_type=get_enum_type(GallerySharingPermissionTypes), arg_group='Sharing Profile', min_api='2020-09-30', is_experimental=True, help='This property allows you to specify the permission of sharing gallery.') c.argument('soft_delete', arg_type=get_three_state_flag(), min_api='2021-03-01', is_preview=True, help='Enable soft-deletion for resources in this gallery, ' 'allowing them to be recovered within retention time.') with self.argument_context('sig image-definition create') as c: c.argument('description', help='the description of the gallery image definition') with self.argument_context('sig image-definition update') as c: c.ignore('gallery_image') with self.argument_context('sig image-version') as c: deprecated_option = c.deprecate(target='--gallery-image-version-name', redirect='--gallery-image-version', hide=True, expiration="3.0.0") c.argument('gallery_image_version_name', options_list=['--gallery-image-version', '-e', deprecated_option], help='Gallery image version in semantic version pattern. The allowed characters are digit and period. Digits must be within the range of a 32-bit integer, e.g. `<MajorVersion>.<MinorVersion>.<Patch>`') with self.argument_context('sig image-version create', resource_type=ResourceType.MGMT_COMPUTE, operation_group='gallery_image_versions') as c: c.argument('gallery_image_version', options_list=['--gallery-image-version', '-e'], help='Gallery image version in semantic version pattern. The allowed characters are digit and period. Digits must be within the range of a 32-bit integer, e.g. `<MajorVersion>.<MinorVersion>.<Patch>`') c.argument('description', help='the description of the gallery image version') c.argument('managed_image', help='image name(if in the same resource group) or resource id') c.argument('os_snapshot', help='Name or ID of OS disk snapshot') c.argument('data_snapshots', nargs='+', help='Names or IDs (space-delimited) of data disk snapshots') c.argument('data_snapshot_luns', nargs='+', help='Logical unit numbers (space-delimited) of data disk snapshots') c.argument('exclude_from_latest', arg_type=get_three_state_flag(), help='The flag means that if it is set to true, people deploying VMs with version omitted will not use this version.') c.argument('version', help='image version') c.argument('end_of_life_date', help="the end of life date, e.g. '2020-12-31'") c.argument('storage_account_type', help="The default storage account type to be used per region. To set regional storage account types, use --target-regions", arg_type=get_enum_type(["Standard_LRS", "Standard_ZRS", "Premium_LRS"]), min_api='2019-03-01') c.argument('target_region_encryption', nargs='+', help='Space-separated list of customer managed keys for encrypting the OS and data disks in the gallery artifact for each region. Format for each region: `<os_des>,<lun1>,<lun1_des>,<lun2>,<lun2_des>`. Use "null" as a placeholder.') c.argument('os_vhd_uri', help='Source VHD URI of OS disk') c.argument('os_vhd_storage_account', help='Name or ID of storage account of source VHD URI of OS disk') c.argument('data_vhds_uris', nargs='+', help='Source VHD URIs (space-delimited) of data disks') c.argument('data_vhds_luns', nargs='+', help='Logical unit numbers (space-delimited) of source VHD URIs of data disks') c.argument('data_vhds_storage_accounts', options_list=['--data-vhds-storage-accounts', '--data-vhds-sa'], nargs='+', help='Names or IDs (space-delimited) of storage accounts of source VHD URIs of data disks') c.argument('replication_mode', min_api='2021-07-01', arg_type=get_enum_type(ReplicationMode), help='Optional parameter which specifies the mode to be used for replication. This property is not updatable.') with self.argument_context('sig image-version list-shared') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx), id_part='name') c.argument('gallery_unique_name', type=str, help='The unique name of the Shared Gallery.', id_part='child_name_1') c.argument('gallery_image_name', options_list=['--gallery-image-definition', '-i'], type=str, help='The name ' 'of the Shared Gallery Image Definition from which the Image Versions are to be listed.', id_part='child_name_2') c.argument('shared_to', shared_to_type) c.argument('marker', arg_type=marker_type) c.argument('show_next_marker', action='store_true', help='Show nextMarker in result when specified.') with self.argument_context('sig image-version show') as c: c.argument('expand', help="The expand expression to apply on the operation, e.g. 'ReplicationStatus'") with self.argument_context('sig image-version show-shared') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx), id_part='name') c.argument('gallery_unique_name', type=str, help='The unique name of the Shared Gallery.', id_part='child_name_1') c.argument('gallery_image_name', options_list=['--gallery-image-definition', '-i'], type=str, help='The name ' 'of the Shared Gallery Image Definition from which the Image Versions are to be listed.', id_part='child_name_2') c.argument('gallery_image_version_name', options_list=['--gallery-image-version', '-e'], type=str, help='The ' 'name of the gallery image version to be created. Needs to follow semantic version name pattern: ' 'The allowed characters are digit and period. Digits must be within the range of a 32-bit integer. ' 'Format: <MajorVersion>.<MinorVersion>.<Patch>', id_part='child_name_3') for scope in ['sig image-version create', 'sig image-version update']: with self.argument_context(scope) as c: c.argument('target_regions', nargs='*', validator=process_gallery_image_version_namespace, help='Space-separated list of regions and their replica counts. Use `<region>[=<replica count>][=<storage account type>]` to optionally set the replica count and/or storage account type for each region. ' 'If a replica count is not specified, the default replica count will be used. If a storage account type is not specified, the default storage account type will be used') c.argument('replica_count', help='The default number of replicas to be created per region. To set regional replication counts, use --target-regions', type=int) # endregion # region Gallery applications with self.argument_context('sig gallery-application') as c: c.argument('gallery_application_name', options_list=['--name', '-n', '--application-name'], help='The name of the gallery Application') with self.argument_context('sig gallery-application create') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx), required=False, validator=get_default_location_from_resource_group) c.argument('description', help='The description of this gallery Application Definition resource. ' 'This property is updatable.') c.argument('os_type', arg_type=get_enum_type(['Windows', 'Linux']), help='This property allows you ' 'to specify the supported type of the OS that application is built for. <br><br> Possible values ' 'are: <br><br> **Windows** <br><br> **Linux**') with self.argument_context('sig gallery-application update') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx), required=False, validator=get_default_location_from_resource_group) c.argument('description', help='The description of this gallery Application Definition resource. ' 'This property is updatable.') with self.argument_context('sig gallery-application version') as c: c.argument('gallery_application_name', options_list=['--application-name'], help='The name of the gallery Application') c.argument('gallery_application_version_name', options_list=['--name', '-n', '--version-name'], help='The name of the gallery Application Version') for scope in ['create', 'update']: with self.argument_context('sig gallery-application version {}'.format(scope)) as c: c.argument('location', arg_type=get_location_type(self.cli_ctx), required=False, validator=get_default_location_from_resource_group) c.argument('tags', tags_type) c.argument('package_file_link', help='The mediaLink of the artifact, must be a readable storage page blob.') c.argument('install_command', help='The path and arguments to install the gallery application.') c.argument('remove_command', help='The path and arguments to remove the gallery application.') c.argument('update_command', help='The path and arguments to update the gallery application. If not present,' ' then update operation will invoke remove command on the previous version ' 'and install command on the current version of the gallery application.') c.argument('target_regions', type=validate_file_or_dict, help='The target regions where the Image Version is ' 'going to be replicated to. This property is updatable. Expected value: ' 'json-string/json-file/@json-file.') c.argument('default_file_link', help='The default configuration link of the artifact, must be a readable storage page blob.') c.argument('exclude_from', arg_type=get_three_state_flag(), help='If set to true, Virtual Machines ' 'deployed from the latest version of the Image Definition won\'t use this Image Version.', arg_group='Publishing Profile') c.argument('end_of_life_date', help='The end of life date of the gallery image version. This property can be ' 'used for decommissioning purposes. This property is updatable.', arg_group='Publishing Profile') # endregion # region Proximity Placement Group with self.argument_context('ppg', min_api='2018-04-01') as c: c.argument('proximity_placement_group_name', arg_type=name_arg_type, help="The name of the proximity placement group.") with self.argument_context('ppg create', min_api='2018-04-01') as c: c.argument('ppg_type', options_list=['--type', '-t'], help="The type of the proximity placement group. Allowed values: Standard.") c.argument('tags', tags_type) with self.argument_context('ppg show', min_api='2019-07-01') as c: c.argument('include_colocation_status', action='store_true', help='Enable fetching the colocation status of all the resources in the proximity placement group.') for scope, item in [('vm create', 'VM'), ('vmss create', 'VMSS'), ('vm availability-set create', 'availability set'), ('vm update', 'VM'), ('vmss update', 'VMSS'), ('vm availability-set update', 'availability set')]: with self.argument_context(scope, min_api='2018-04-01') as c: c.argument('proximity_placement_group', options_list=['--ppg'], help="The name or ID of the proximity placement group the {} should be associated with.".format(item), validator=_validate_proximity_placement_group) # only availability set does not have a command level validator, so this should be added. # endregion # region VM Monitor with self.argument_context('vm monitor log show') as c: c.argument('analytics_query', options_list=['--analytics-query', '-q'], help="Query to execute over Log Analytics data.") c.argument('timespan', help="Timespan over which to query. Defaults to querying all available data.") with self.argument_context('vm monitor metrics') as c: c.argument('metricnamespace', options_list=['--namespace'], help='Namespace to query metric definitions for.') with self.argument_context('vm monitor metrics tail') as c: from azure.mgmt.monitor.models import AggregationType c.extra('resource_group_name', required=True) c.argument('resource', arg_type=existing_vm_name, help='Name or ID of a virtual machine', validator=validate_vm_name_for_monitor_metrics, id_part=None) c.argument('metadata', action='store_true') c.argument('dimension', nargs='*', validator=validate_metric_dimension) c.argument('aggregation', arg_type=get_enum_type(t for t in AggregationType if t.name != 'none'), nargs='*') c.argument('metrics', nargs='*') c.argument('orderby', help='Aggregation to use for sorting results and the direction of the sort. Only one order can be specificed. Examples: sum asc') c.argument('top', help='Max number of records to retrieve. Valid only if --filter used.') c.argument('filters', options_list=['--filter']) c.argument('metric_namespace', options_list=['--namespace']) with self.argument_context('vm monitor metrics tail', arg_group='Time') as c: c.argument('start_time', arg_type=get_datetime_type(help='Start time of the query.')) c.argument('end_time', arg_type=get_datetime_type(help='End time of the query. Defaults to the current time.')) c.argument('offset', type=get_period_type(as_timedelta=True)) c.argument('interval', arg_group='Time', type=get_period_type()) with self.argument_context('vm monitor metrics list-definitions') as c: c.extra('resource_group_name', required=True) c.argument('resource_uri', arg_type=existing_vm_name, help='Name or ID of a virtual machine', validator=validate_vm_name_for_monitor_metrics, id_part=None) # endregion # region disk encryption set with self.argument_context('disk-encryption-set') as c: c.argument('disk_encryption_set_name', disk_encryption_set_name) c.argument('key_url', help='URL pointing to a key or secret in KeyVault.') c.argument('source_vault', help='Name or ID of the KeyVault containing the key or secret.') c.argument('encryption_type', arg_type=get_enum_type(['EncryptionAtRestWithPlatformKey', 'EncryptionAtRestWithCustomerKey', 'EncryptionAtRestWithPlatformAndCustomerKeys']), help='The type of key used to encrypt the data of the disk. EncryptionAtRestWithPlatformKey: Disk is encrypted at rest with Platform managed key. It is the default encryption type. EncryptionAtRestWithCustomerKey: Disk is encrypted at rest with Customer managed key that can be changed and revoked by a customer. EncryptionAtRestWithPlatformAndCustomerKeys: Disk is encrypted at rest with 2 layers of encryption. One of the keys is Customer managed and the other key is Platform managed.') c.argument('location', validator=get_default_location_from_resource_group) c.argument('tags', tags_type) c.argument('enable_auto_key_rotation', arg_type=get_three_state_flag(), min_api='2020-12-01', options_list=['--enable-auto-key-rotation', '--auto-rotation'], help='Enable automatic rotation of keys.') # endregion # region DiskAccess with self.argument_context('disk-access', resource_type=ResourceType.MGMT_COMPUTE, operation_group='disk_accesses') as c: c.argument('disk_access_name', arg_type=name_arg_type, help='Name of the disk access resource.', id_part='name') c.argument('location', validator=get_default_location_from_resource_group) c.argument('tags', tags_type) # endRegion with self.argument_context('capacity reservation group') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx), validator=get_default_location_from_resource_group) c.argument('capacity_reservation_group_name', options_list=['--capacity-reservation-group', '-n'], help='The name of the capacity reservation group.') c.argument('tags', tags_type) with self.argument_context('capacity reservation group create') as c: c.argument('zones', zones_type, help='Availability Zones to use for this capacity reservation group. If not provided, the group supports only regional resources in the region. If provided, enforces each capacity reservation in the group to be in one of the zones.') with self.argument_context('capacity reservation group show') as c: c.argument('instance_view', action='store_true', options_list=['--instance-view', '-i'], help='Retrieve the list of instance views of the capacity reservations under the capacity reservation group which is a snapshot of the runtime properties of a capacity reservation that is managed by the platform and can change outside of control plane operations.') with self.argument_context('capacity reservation group list') as c: c.argument('vm_instance', action='store_true', help='Retrieve the Virtual Machine Instance which are associated to capacity reservation group in the response.') c.argument('vmss_instance', action='store_true', help='Retrieve the ScaleSet VM Instance which are associated to capacity reservation group in the response.') with self.argument_context('capacity reservation') as c: c.argument('location', arg_type=get_location_type(self.cli_ctx), validator=get_default_location_from_resource_group) c.argument('capacity_reservation_group_name', options_list=['--capacity-reservation-group', '-c'], help='The name of the capacity reservation group.') c.argument('capacity_reservation_name', options_list=['--capacity-reservation-name', '-n'], help='The name of the capacity reservation.') c.argument('capacity', type=int, help='Specify the number of virtual machines in the scale set.') c.argument('tags', tags_type) with self.argument_context('capacity reservation create') as c: c.argument('zone', zone_type, help='Availability Zone to use for this capacity reservation. The zone has to be single value and also should be part for the list of zones specified during the capacity reservation group creation. If not provided, the reservation supports only non-zonal deployments. If provided, enforces VM/VMSS using this capacity reservation to be in same zone.') c.argument('sku_name', options_list=['--sku', '-s'], required=True, help='The SKU of the resource for which capacity needs be reserved. Currently VM Skus with the capability called "CapacityReservationSupported" set to true are supported. Refer to List Microsoft.Compute SKUs in a region (https://docs.microsoft.com/rest/api/compute/resourceskus/list) for supported values.') with self.argument_context('capacity reservation show') as c: c.argument('instance_view', action='store_true', options_list=['--instance-view', '-i'], help='Retrieve a snapshot of the runtime properties of the capacity reservation that is managed by the platform and can change outside of control plane operations.')
38,262
def formatting_options(settings: sublime.Settings) -> Dict[str, Any]: # Build 4085 allows "trim_trailing_white_space_on_save" to be a string so we have to account for that in a # backwards-compatible way. trim_trailing_white_space = settings.get("trim_trailing_white_space_on_save") if isinstance(trim_trailing_white_space, bool): pass elif isinstance(trim_trailing_white_space, str): trim_trailing_white_space = (trim_trailing_white_space != "none") else: trim_trailing_white_space = False return { # Size of a tab in spaces. "tabSize": settings.get("tab_size", 4), # Prefer spaces over tabs. "insertSpaces": settings.get("translate_tabs_to_spaces", False), # Trim trailing whitespace on a line. (since 3.15) "trimTrailingWhitespace": trim_trailing_white_space, # Insert a newline character at the end of the file if one does not exist. (since 3.15) "insertFinalNewline": settings.get("ensure_newline_at_eof_on_save", False), # Trim all newlines after the final newline at the end of the file. (sine 3.15) "trimFinalNewlines": settings.get("ensure_newline_at_eof_on_save", False) }
def formatting_options(settings: sublime.Settings) -> Dict[str, Any]: # Build 4085 allows "trim_trailing_white_space_on_save" to be a string so we have to account for that in a # backwards-compatible way. trim_trailing_white_space = settings.get("trim_trailing_white_space_on_save") not in (False, "none") return { # Size of a tab in spaces. "tabSize": settings.get("tab_size", 4), # Prefer spaces over tabs. "insertSpaces": settings.get("translate_tabs_to_spaces", False), # Trim trailing whitespace on a line. (since 3.15) "trimTrailingWhitespace": trim_trailing_white_space, # Insert a newline character at the end of the file if one does not exist. (since 3.15) "insertFinalNewline": settings.get("ensure_newline_at_eof_on_save", False), # Trim all newlines after the final newline at the end of the file. (sine 3.15) "trimFinalNewlines": settings.get("ensure_newline_at_eof_on_save", False) }
20,247
def run(*args): if 'update' in args: dry_run = False else: dry_run = True for (old_pattern, new_pattern) in outdated_patterns: matching_redirects = Redirect.objects.filter(old_path__startswith=old_pattern) total = len(matching_redirects) for redirect in matching_redirects: old_path = redirect.old_path updated_path = old_path.replace(old_pattern, new_pattern) if dry_run: print(f'{old_path} -> {updated_path}') else: print(f"updating {old_path} -> {updated_path}") redirect.old_path = updated_path redirect.save() if dry_run: print(f'\n\nSummary: Would update {total} redirects matching {old_pattern}') print('run the following command to update them:') print(' ./cfgov/manage.py runscript update_existing_redirects --script-args') else: print(f'\n\nSummary: Updated {total} redirects')
def run(*args): if 'update' in args: dry_run = False else: dry_run = True for (old_pattern, new_pattern) in outdated_patterns: matching_redirects = Redirect.objects.filter(old_path__startswith=old_pattern) total = len(matching_redirects) for redirect in matching_redirects: old_path = redirect.old_path updated_path = old_path.replace(old_pattern, new_pattern) if dry_run: print(f'{old_path} -> {updated_path}') else: print(f"updating {old_path} -> {updated_path}") redirect.old_path = updated_path redirect.save() if dry_run: print(f'\n\nSummary: Would update {total} redirects matching {old_pattern}') print('run the following command to update them:') print(' ./cfgov/manage.py runscript update_existing_redirects --script-args update') else: print(f'\n\nSummary: Updated {total} redirects')
56,294
def set_data_classes(config: Config, labels: List[LabelEntity]): # Save labels in data configs. for subset in ('train', 'val', 'test'): if subset == 'train': cfg = get_data_train(config) else: cfg = config.data[subset] cfg.labels = labels config.data[subset].labels = labels # Set proper number of classes in model's detection heads. head_names = ('mask_head', 'bbox_head', 'segm_head') num_classes = len(labels) if 'roi_head' in config.model: for head_name in head_names: if head_name in config.model.roi_head: if isinstance(config.model.roi_head[head_name], List): for head in config.model.roi_head[head_name]: head.num_classes = num_classes else: config.model.roi_head[head_name].num_classes = num_classes else: for head_name in head_names: if head_name in config.model: config.model[head_name].num_classes = num_classes # FIXME. ?
def set_data_classes(config: Config, labels: List[LabelEntity]): # Save labels in data configs. for subset in ('train', 'val', 'test'): if subset == 'train': cfg = get_data_train(config) else: cfg = config.data[subset] cfg.labels = labels config.data[subset].labels = labels # Set proper number of classes in model's detection heads. head_names = ('mask_head', 'bbox_head', 'segm_head') num_classes = len(labels) if 'roi_head' in config.model: for head_name in head_names: if head_name in config.model.roi_head: if isinstance(config.model.roi_head[head_name], List): for head in config.model.roi_head[head_name]: head.num_classes = num_classes else: config.model.roi_head[head_name].num_classes = num_classes else: for head_name in head_names: if head_name in config.model: config.model[head_name].num_classes = num_classes # FIXME. ?
19,899
def list_tools(cm, args): from edalize.edatool import walk_tool_packages _tp = list(walk_tool_packages()) maxlen = max(map(len, _tp)) for tool_name in _tp: tool_class = get_edatool(tool_name) desc = tool_class.get_doc(0)["description"] print(f"{tool_name:{maxlen}} : {desc}")
def list_tools(cm, args): from edalize.edatool import walk_tool_packages _tp = list(walk_tool_packages()) maxlen = max(map(len, _tp)) for tool_name in _tp: tool_class = get_edatool(tool_name) desc = tool_class.get_doc(0)["description"] print(f"{tool_name:{maxlen}}: {desc}")
36,688
def _init_module_attrs(spec, module, *, override=False): # The passed-in module may be not support attribute assignment, # in which case we simply don't set the attributes. # __name__ if (override or getattr(module, '__name__', None) is None): try: module.__name__ = spec.name except AttributeError: pass # __loader__ if override or getattr(module, '__loader__', None) is None: try: module.__loader__ = spec.loader except AttributeError: pass # __package__ if override or getattr(module, '__package__', None) is None: try: module.__package__ = spec.parent except AttributeError: pass # __spec__ try: module.__spec__ = spec except AttributeError: pass # __path__ if override or getattr(module, '__path__', None) is None: if spec.submodule_search_locations is not None: # XXX We should extend __path__ if it's already a list. try: module.__path__ = spec.submodule_search_locations except AttributeError: pass # __file__/__cached__ if spec.has_location: if override or getattr(module, '__file__', None) is None: try: module.__file__ = spec.origin except AttributeError: pass if override or getattr(module, '__cached__', None) is None: if spec.cached is not None: try: module.__cached__ = spec.cached except AttributeError: pass # A backward compatibility hack. if _bootstrap_external and isinstance(spec.loader, _bootstrap_external.NamespaceLoader): # While the docs say that module.__file__ is not set for # built-in modules, and the code below will avoid setting it if # spec.has_location is false, this is incorrect for namespace # packages. Namespace packages have no location, but their # __spec__.origin is None, and thus their module.__file__ # should also be None for consistency. While a bit of a hack, # this is the best place to ensure this consistency. # # See # https://docs.python.org/3/library/importlib.html#importlib.abc.Loader.load_module # and bpo-32305 module.__file__ = None return module
def _init_module_attrs(spec, module, *, override=False): # The passed-in module may be not support attribute assignment, # in which case we simply don't set the attributes. # __name__ if (override or getattr(module, '__name__', None) is None): try: module.__name__ = spec.name except AttributeError: pass # __loader__ if override or getattr(module, '__loader__', None) is None: try: module.__loader__ = spec.loader except AttributeError: pass # __package__ if override or getattr(module, '__package__', None) is None: try: module.__package__ = spec.parent except AttributeError: pass # __spec__ try: module.__spec__ = spec except AttributeError: pass # __path__ if override or getattr(module, '__path__', None) is None: if spec.submodule_search_locations is not None: # XXX We should extend __path__ if it's already a list. try: module.__path__ = spec.submodule_search_locations except AttributeError: pass # __file__/__cached__ if spec.has_location: if override or getattr(module, '__file__', None) is None: try: module.__file__ = spec.origin except AttributeError: pass if override or getattr(module, '__cached__', None) is None: if spec.cached is not None: try: module.__cached__ = spec.cached except AttributeError: pass # A backward compatibility hack. if _bootstrap_external and isinstance(spec.loader, _bootstrap_external.NamespaceLoader): # While the docs say that module.__file__ is not set for # built-in modules, and the code below will avoid setting it if # spec.has_location is false, this is incorrect for namespace # packages. Namespace packages have no location, but their # __spec__.origin is None, and thus their module.__file__ # should also be None for consistency. While a bit of a hack, # this is the best place to ensure this consistency. # # See https://docs.python.org/3/library/importlib.html#importlib.abc.Loader.load_module # and bpo-32305 module.__file__ = None return module
37,620
def get_unique_backends(): """Gets the unique backends that are available. Returns: list: Unique available backends. Raises: QiskitError: No backends available. MissingOptionalLibraryError: If qiskit-ibmq-provider is not installed """ warnings.warn( "The qiskit.IBMQ entrypoint and the qiskit-ibmq-provider package (" "accessible from 'qiskit.providers.ibmq`) are deprecated and will be removed " "in a future release. Instead you should use the qiskit-ibm-provider package " "which is accesible from 'qiskit_ibm_provider'.", DeprecationWarning, stacklevel=3, ) try: from qiskit.providers.ibmq import IBMQ except ImportError as ex: raise MissingOptionalLibraryError( libname="qiskit-ibmq-provider", name="get_unique_backends", pip_install="pip install qiskit-ibmq-provider", ) from ex backends = [] for provider in IBMQ.providers(): for backend in provider.backends(): backends.append(backend) unique_hardware_backends = [] unique_names = [] for back in backends: if back.name() not in unique_names and not back.configuration().simulator: unique_hardware_backends.append(back) unique_names.append(back.name()) if not unique_hardware_backends: raise QiskitError("No backends available.") return unique_hardware_backends
def get_unique_backends(): """Gets the unique backends that are available. Returns: list: Unique available backends. Raises: QiskitError: No backends available. MissingOptionalLibraryError: If qiskit-ibmq-provider is not installed """ warnings.warn( "The qiskit.IBMQ entrypoint and the qiskit-ibmq-provider package (" "accessible from 'qiskit.providers.ibmq`) are deprecated and will be removed " "in a future release. Instead you should use the qiskit-ibm-provider package " "which is accessible from 'qiskit_ibm_provider'.", DeprecationWarning, stacklevel=3, ) try: from qiskit.providers.ibmq import IBMQ except ImportError as ex: raise MissingOptionalLibraryError( libname="qiskit-ibmq-provider", name="get_unique_backends", pip_install="pip install qiskit-ibmq-provider", ) from ex backends = [] for provider in IBMQ.providers(): for backend in provider.backends(): backends.append(backend) unique_hardware_backends = [] unique_names = [] for back in backends: if back.name() not in unique_names and not back.configuration().simulator: unique_hardware_backends.append(back) unique_names.append(back.name()) if not unique_hardware_backends: raise QiskitError("No backends available.") return unique_hardware_backends
41,904
def _get_contour_plot(study: Study, params: Optional[List[str]] = None) -> "Axes": # Calculate basic numbers for plotting. trials = [trial for trial in study.trials if trial.state == TrialState.COMPLETE] if len(trials) == 0: _logger.warning("Your study does not have any completed trials.") _, ax = plt.subplots() return ax all_params = {p_name for t in trials for p_name in t.params.keys()} if params is None: sorted_params = sorted(list(all_params)) elif len(params) <= 1: _logger.warning("The length of params must be greater than 1.") fig, ax = plt.subplots() return ax else: for input_p_name in params: if input_p_name not in all_params: raise ValueError("Parameter {} does not exist in your study.".format(input_p_name)) sorted_params = sorted(list(set(params))) n_params = len(sorted_params) plt.style.use("ggplot") # Use ggplot style sheet for similar outputs to plotly. if n_params == 2: # Set up the graph style. fig, axs = plt.subplots() axs.set_title("Contour Plot") cmap = _set_cmap(study) contour_point_num = 1000 # Prepare data and draw contour plots. if params: x_param = params[0] y_param = params[1] else: x_param = sorted_params[0] y_param = sorted_params[1] cs = _generate_contour_subplot(trials, x_param, y_param, axs, cmap, contour_point_num) if isinstance(cs, ContourSet): axcb = fig.colorbar(cs) axcb.set_label("Objective Value") else: # Set up the graph style. fig, axs = plt.subplots(n_params, n_params) fig.suptitle("Contour Plot") cmap = _set_cmap(study) contour_point_num = 100 # Prepare data and draw contour plots. cs_list = [] for x_i, x_param in enumerate(sorted_params): for y_i, y_param in enumerate(sorted_params): ax = axs[y_i, x_i] cs = _generate_contour_subplot( trials, x_param, y_param, ax, cmap, contour_point_num ) if isinstance(cs, ContourSet): cs_list.append(cs) if cs_list: axcb = fig.colorbar(cs_list[0], ax=axs) axcb.set_label("Objective Value") return axs
def _get_contour_plot(study: Study, params: Optional[List[str]] = None) -> "Axes": # Calculate basic numbers for plotting. trials = [trial for trial in study.trials if trial.state == TrialState.COMPLETE] if len(trials) == 0: _logger.warning("Your study does not have any completed trials.") _, ax = plt.subplots() return ax all_params = {p_name for t in trials for p_name in t.params.keys()} if params is None: sorted_params = sorted(list(all_params)) elif len(params) <= 1: _logger.warning("The length of params must be greater than 1.") _, ax = plt.subplots() return ax else: for input_p_name in params: if input_p_name not in all_params: raise ValueError("Parameter {} does not exist in your study.".format(input_p_name)) sorted_params = sorted(list(set(params))) n_params = len(sorted_params) plt.style.use("ggplot") # Use ggplot style sheet for similar outputs to plotly. if n_params == 2: # Set up the graph style. fig, axs = plt.subplots() axs.set_title("Contour Plot") cmap = _set_cmap(study) contour_point_num = 1000 # Prepare data and draw contour plots. if params: x_param = params[0] y_param = params[1] else: x_param = sorted_params[0] y_param = sorted_params[1] cs = _generate_contour_subplot(trials, x_param, y_param, axs, cmap, contour_point_num) if isinstance(cs, ContourSet): axcb = fig.colorbar(cs) axcb.set_label("Objective Value") else: # Set up the graph style. fig, axs = plt.subplots(n_params, n_params) fig.suptitle("Contour Plot") cmap = _set_cmap(study) contour_point_num = 100 # Prepare data and draw contour plots. cs_list = [] for x_i, x_param in enumerate(sorted_params): for y_i, y_param in enumerate(sorted_params): ax = axs[y_i, x_i] cs = _generate_contour_subplot( trials, x_param, y_param, ax, cmap, contour_point_num ) if isinstance(cs, ContourSet): cs_list.append(cs) if cs_list: axcb = fig.colorbar(cs_list[0], ax=axs) axcb.set_label("Objective Value") return axs
53,939
def _get_plugin_msg_info( name: str, version_s: str, core: Type[dbt.semver.VersionSpecifier] ) -> Tuple[str, str]: plugin = dbt.semver.VersionSpecifier.from_version_string(version_s) latest_plugin = get_latest_version(version_url=get_package_pypi_url(name)) update_msg = "" if plugin.major != core.major and plugin.minor != core.minor: compatibility_msg = red("Not compatible!") update_msg = ( f" Your version of dbt-{name} is not compatible with core!\n" " You can find instructions for upgrading here:\n" " https://docs.getdbt.com/dbt-cli/install/overview" ) return (compatibility_msg, update_msg) if not latest_plugin: compatibility_msg = yellow("No PYPI version available") return (compatibility_msg, update_msg) if plugin < latest_plugin: compatibility_msg = yellow("Update available!") update_msg = ( f" Your version of dbt-{name} is out of date! " "You can find instructions for upgrading here:\n" " https://docs.getdbt.com/dbt-cli/install/overview" ) elif plugin > latest_plugin: compatibility_msg = green("Ahead of latest version!") else: compatibility_msg = green("Up to date!") return (compatibility_msg, update_msg)
def _get_plugin_msg_info( name: str, version_s: str, core: Type[dbt.semver.VersionSpecifier] ) -> Tuple[str, str]: plugin = dbt.semver.VersionSpecifier.from_version_string(version_s) latest_plugin = get_latest_version(version_url=get_package_pypi_url(name)) update_msg = "" if plugin.major != core.major and plugin.minor != core.minor: compatibility_msg = red("Not compatible!") update_msg = ( f" Your version of dbt-{name} is not compatible with core!\n" " You can find instructions for upgrading here:\n" " https://docs.getdbt.com/dbt-cli/install/overview" ) return (compatibility_msg, update_msg) if not latest_plugin: msg = f"The latest version of dbt-{name} could not be determined from {get_package_pypi_url(name)}" compatibility_msg = yellow(msg) return (compatibility_msg, update_msg) if plugin < latest_plugin: compatibility_msg = yellow("Update available!") update_msg = ( f" Your version of dbt-{name} is out of date! " "You can find instructions for upgrading here:\n" " https://docs.getdbt.com/dbt-cli/install/overview" ) elif plugin > latest_plugin: compatibility_msg = green("Ahead of latest version!") else: compatibility_msg = green("Up to date!") return (compatibility_msg, update_msg)
28,107
def notify_journal_entry_cqc(cmdr, is_beta, entry, state): """ Send a journal entry to each plugin. :param cmdr: The Cmdr name, or None if not yet known :param entry: The journal entry as a dictionary :param state: A dictionary containing info about the Cmdr, current ship and cargo :param is_beta: whether the player is in a Beta universe. :returns: Error message from the first plugin that returns one (if any) """ error = None for plugin in PLUGINS: journal_entry = plugin._get_func('journal_entry_cqc') if journal_entry: try: # Pass a copy of the journal entry in case the callee modifies it newerror = journal_entry(cmdr, is_beta, dict(entry), dict(state)) error = error or newerror except Exception as e: logger.exception(f'Plugin "{plugin.name}" failed') return error
def notify_journal_entry_cqc(cmdr, is_beta, entry, state): """ Send a journal entry to each plugin. :param cmdr: The Cmdr name, or None if not yet known :param entry: The journal entry as a dictionary :param state: A dictionary containing info about the Cmdr, current ship and cargo :param is_beta: whether the player is in a Beta universe. :returns: Error message from the first plugin that returns one (if any) """ error = None for plugin in PLUGINS: journal_entry = plugin._get_func('journal_entry_cqc') if journal_entry is not None and callable(journal_entry): try: # Pass a copy of the journal entry in case the callee modifies it newerror = journal_entry(cmdr, is_beta, dict(entry), dict(state)) error = error or newerror except Exception as e: logger.exception(f'Plugin "{plugin.name}" failed') return error
46,671
def _make_pubsubs(hosts, pubsub_routers): if len(pubsub_routers) != len(hosts): raise ValueError( f"lenght of pubsub_routers={pubsub_routers} should be equaled to " f"hosts={hosts}" ) return tuple( Pubsub( host=host, router=router, my_id=host.get_id(), ) for host, router in zip(hosts, pubsub_routers) )
def _make_pubsubs(hosts, pubsub_routers): if len(pubsub_routers) != len(hosts): raise ValueError( f"lenght of pubsub_routers={pubsub_routers} should be equaled to " f"length of hosts={hosts}" ) return tuple( Pubsub( host=host, router=router, my_id=host.get_id(), ) for host, router in zip(hosts, pubsub_routers) )
47,737
def test__api__fix_string_specific_exclude(): """Basic checking of lint functionality with a specific rule excludsion.""" result = sqlfluff.fix(my_bad_query, exclude_rules="L036") # Check actual result assert result == "SELECT *, 1, blah AS foo FROM mytable\n"
def test__api__fix_string_specific_exclude(): """Basic checking of lint functionality with a specific rule exclusion.""" result = sqlfluff.fix(my_bad_query, exclude_rules="L036") # Check actual result assert result == "SELECT *, 1, blah AS foo FROM mytable\n"
2,945
def hash_pandas_object( obj, index=True, encoding="utf8", hash_key=None, categorize=True ): """ Return a data hash of the Index/Series/DataFrame. Parameters ---------- index : bool, default True include the index in the hash (if Series/DataFrame) encoding : str, default 'utf8' encoding for data & key when str hash_key : str key to encode, default to _default_hash_key categorize : bool, default True Whether to first categorize object arrays before hashing. This is more efficient when the array contains duplicate values. .. versionadded:: 0.20.0 Returns ------- Series of uint64, same length as the object """ from pandas import Series if hash_key is None: hash_key = _default_hash_key if isinstance(obj, ABCMultiIndex): return Series(hash_tuples(obj, encoding, hash_key), dtype="uint64", copy=False) if isinstance(obj, ABCIndexClass): h = hash_array(obj.values, encoding, hash_key, categorize).astype( "uint64", copy=False ) h = Series(h, index=obj, dtype="uint64", copy=False) elif isinstance(obj, ABCSeries): h = hash_array(obj.values, encoding, hash_key, categorize).astype( "uint64", copy=False ) if index: index_iter = ( hash_pandas_object( obj.index, index=False, encoding=encoding, hash_key=hash_key, categorize=categorize, ).values for _ in [None] ) arrays = itertools.chain([h], index_iter) h = _combine_hash_arrays(arrays, 2) h = Series(h, index=obj.index, dtype="uint64", copy=False) elif isinstance(obj, ABCDataFrame): hashes = (hash_array(series.values) for _, series in obj.items()) num_items = len(obj.columns) if index: index_hash_generator = ( hash_pandas_object( obj.index, index=False, encoding=encoding, hash_key=hash_key, categorize=categorize, ).values # noqa for _ in [None] ) num_items += 1 hashes = itertools.chain(hashes, index_hash_generator) h = _combine_hash_arrays(hashes, num_items) h = Series(h, index=obj.index, dtype="uint64", copy=False) else: raise TypeError("Unexpected type for hashing %s" % type(obj)) return h
def hash_pandas_object( obj, index=True, encoding="utf8", hash_key=None, categorize=True ): """ Return a data hash of the Index/Series/DataFrame. Parameters ---------- index : bool, default True include the index in the hash (if Series/DataFrame) encoding : str, default 'utf8' encoding for data & key when str hash_key : str, default '_default_hash_key' categorize : bool, default True Whether to first categorize object arrays before hashing. This is more efficient when the array contains duplicate values. .. versionadded:: 0.20.0 Returns ------- Series of uint64, same length as the object """ from pandas import Series if hash_key is None: hash_key = _default_hash_key if isinstance(obj, ABCMultiIndex): return Series(hash_tuples(obj, encoding, hash_key), dtype="uint64", copy=False) if isinstance(obj, ABCIndexClass): h = hash_array(obj.values, encoding, hash_key, categorize).astype( "uint64", copy=False ) h = Series(h, index=obj, dtype="uint64", copy=False) elif isinstance(obj, ABCSeries): h = hash_array(obj.values, encoding, hash_key, categorize).astype( "uint64", copy=False ) if index: index_iter = ( hash_pandas_object( obj.index, index=False, encoding=encoding, hash_key=hash_key, categorize=categorize, ).values for _ in [None] ) arrays = itertools.chain([h], index_iter) h = _combine_hash_arrays(arrays, 2) h = Series(h, index=obj.index, dtype="uint64", copy=False) elif isinstance(obj, ABCDataFrame): hashes = (hash_array(series.values) for _, series in obj.items()) num_items = len(obj.columns) if index: index_hash_generator = ( hash_pandas_object( obj.index, index=False, encoding=encoding, hash_key=hash_key, categorize=categorize, ).values # noqa for _ in [None] ) num_items += 1 hashes = itertools.chain(hashes, index_hash_generator) h = _combine_hash_arrays(hashes, num_items) h = Series(h, index=obj.index, dtype="uint64", copy=False) else: raise TypeError("Unexpected type for hashing %s" % type(obj)) return h
10,479
def process_version_added(version_added): if not isinstance(version_added, str): return version_added if ':' not in version_added: return version_added # Strip tag from version_added. It suffices to do this here since # this is only used for ansible-base, and there the only valid tag # is `ansible.builtin:`. return version_added[version_added.index(':') + 1:]
def process_version_added(version_added): if not isinstance(version_added, string_types): return version_added if ':' not in version_added: return version_added # Strip tag from version_added. It suffices to do this here since # this is only used for ansible-base, and there the only valid tag # is `ansible.builtin:`. return version_added[version_added.index(':') + 1:]
30,156
def fetch_consumption(zone_key="CA-QC", session=None, logger=None): data = _fetch_quebec_consumption() for elem in reversed(data["details"]): if "demandeTotal" in elem["valeurs"]: return { "zoneKey": zone_key, "datetime": elem["date"], "consumption": elem["valeurs"]["demandeTotal"], "source": "hydroquebec.com", }
def fetch_consumption(zone_key="CA-QC", session=None, target_datetime=None, logger=None): data = _fetch_quebec_consumption() for elem in reversed(data["details"]): if "demandeTotal" in elem["valeurs"]: return { "zoneKey": zone_key, "datetime": elem["date"], "consumption": elem["valeurs"]["demandeTotal"], "source": "hydroquebec.com", }
19,989
def find_color_card(img, threshold='adaptgauss', threshvalue=125, blurry=False, background='dark'): """Automatically detects a color card and output info to use in create_color_card_mask function Inputs: img = Input RGB image data containing a color card. threshold = Threshold method, either 'normal', 'otsu', or 'adaptgauss', optional (default 'adaptgauss) thresh_value = Thresholding value, optional (default 125) blurry = Bool (default False) if True then image sharpening applied background = Type of image background either 'dark' or 'light (default 'dark'); if 'light' then histogram expansion applied to better detect edges, but histogram expansion will be hindered if there is a dark background Returns: df = Dataframe containing information about the filtered contours start_coord = Two element tuple of starting coordinates, location of the top left pixel detected spacing = Two element tuple of spacing between centers of chips :param img: numpy.ndarray :param threshold: str :param threshvalue: int :param blurry: bool :param background: str :return df: pandas.core.frame.DataFrame :return start_coord: tuple :return spacing: tuple """ # Imports import skimage import pandas as pd from scipy.spatial.distance import squareform, pdist # Get image attributes height, width, channels = img.shape totalpx = float(height * width) # Minimum and maximum square size based upon 12 MP image minarea = 1000. / 12000000. * totalpx maxarea = 8000000. / 12000000. * totalpx # Create gray image for further processing gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Laplacian Fourier Transform detection of blurriness blurfactor = cv2.Laplacian(gray_img, cv2.CV_64F).var() # If image is blurry then try to deblur using kernel if blurry: # from https://www.packtpub.com/mapt/book/Application+Development/9781785283932/2/ch02lvl1sec22/Sharpening kernel = np.array([[-1, -1, -1, -1, -1], [-1, 2, 2, 2, -1], [-1, 2, 8, 2, -1], [-1, 2, 2, 2, -1], [-1, -1, -1, -1, -1]]) / 8.0 # Store result back out for further processing gray_img = cv2.filter2D(gray_img, -1, kernel) # In darker samples, the expansion of the histogram hinders finding the squares due to problems with the otsu # thresholding. If your image has a bright background then apply if background == 'light': clahe = cv2.createCLAHE(clipLimit=3.25, tileGridSize=(4, 4)) # apply CLAHE histogram expansion to find squares better with canny edge detection gray_img = clahe.apply(gray_img) elif background != 'dark': fatal_error('Background parameter ' + str(background) + ' is not "light" or "dark"!') # Thresholding if threshold == "otsu": # Blur slightly so defects on card squares and background patterns are less likely to be picked up gaussian = cv2.GaussianBlur(gray_img, (5, 5), 0) ret, threshold = cv2.threshold(gaussian, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) elif threshold == "normal": # Blur slightly so defects on card squares and background patterns are less likely to be picked up gaussian = cv2.GaussianBlur(gray_img, (5, 5), 0) ret, threshold = cv2.threshold(gaussian, threshvalue, 255, cv2.THRESH_BINARY) elif threshold == "adaptgauss": # Blur slightly so defects on card squares and background patterns are less likely to be picked up gaussian = cv2.GaussianBlur(gray_img, (11, 11), 0) threshold = cv2.adaptiveThreshold(gaussian, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 51, 2) else: fatal_error('Threshold ' + str(threshold) + ' is not "otsu", "normal", or "adaptgauss"!') # Apply automatic Canny edge detection using the computed median edges = skimage.feature.canny(threshold) edges.dtype = 'uint8' # Compute contours to find the squares of the card _, contours, hierarchy = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Variable of which contour is which mindex = [] # Variable to store moments mu = [] # Variable to x,y coordinates in tuples mc = [] # Variable to x coordinate as integer mx = [] # Variable to y coordinate as integer my = [] # Variable to store area marea = [] # Variable to store whether something is a square (1) or not (0) msquare = [] # Variable to store square approximation coordinates msquarecoords = [] # Variable to store child hierarchy element mchild = [] # Fitted rectangle height mheight = [] # Fitted rectangle width mwidth = [] # Ratio of height/width mwhratio = [] # Extract moments from contour image for x in range(0, len(contours)): mu.append(cv2.moments(contours[x])) marea.append(cv2.contourArea(contours[x])) mchild.append(int(hierarchy[0][x][2])) mindex.append(x) # Cycle through moment data and compute location for each moment for m in mu: if m['m00'] != 0: # This is the area term for a moment mc.append((int(m['m10'] / m['m00']), int(m['m01']) / m['m00'])) mx.append(int(m['m10'] / m['m00'])) my.append(int(m['m01'] / m['m00'])) else: mc.append((0, 0)) mx.append((0)) my.append((0)) # Loop over our contours and extract data about them for index, c in enumerate(contours): # Area isn't 0, but greater than min-area and less than max-area if marea[index] != 0 and minarea < marea[index] < maxarea: peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.15 * peri, True) center, wh, angle = cv2.minAreaRect(c) # Rotated rectangle mwidth.append(wh[0]) mheight.append(wh[1]) mwhratio.append(wh[0] / wh[1]) msquare.append(len(approx)) # If the approx contour has 4 points then we can assume we have 4-sided objects if len(approx) == 4 or 5: msquarecoords.append(approx) else: # It's not square msquare.append(0) msquarecoords.append(0) else: # Contour has area of 0, not interesting msquare.append(0) msquarecoords.append(0) mwidth.append(0) mheight.append(0) mwhratio.append(0) # Make a pandas df from data for filtering out junk locarea = {'index': mindex, 'X': mx, 'Y': my, 'width': mwidth, 'height': mheight, 'WHratio': mwhratio, 'Area': marea, 'square': msquare, 'child': mchild} df = pd.DataFrame(locarea) # Add calculated blur factor to output df['blurriness'] = blurfactor # Filter df for attributes that would isolate squares of reasonable size df = df[(df['Area'] > minarea) & (df['Area'] < maxarea) & (df['child'] != -1) & (df['square'].isin([4, 5])) & (df['WHratio'] < 1.2) & (df['WHratio'] > 0.85)] # Filter nested squares from dataframe, was having issues with median being towards smaller nested squares df = df[~(df['index'].isin(df['index'] + 1))] # Count up squares that are within a given radius, more squares = more likelihood of them being the card # Median width of square time 2.5 gives proximity radius for searching for similar squares median_sq_width_px = df["width"].median() # Squares that are within 6 widths of the current square pixeldist = median_sq_width_px * 6 # Computes euclidean distance matrix for the x and y contour centroids distmatrix = pd.DataFrame(squareform(pdist(df[['X', 'Y']]))) # Add up distances that are less than ones have distance less than pixeldist pixels distmatrixflat = distmatrix.apply(lambda dist: dist[dist <= pixeldist].count() - 1, axis=1) # Append distprox summary to dataframe df = df.assign(distprox=distmatrixflat.values) # Compute how similar in area the squares are. lots of similar values indicates card # isolate area measurements filtered_area = df['Area'] # Create empty matrix for storing comparisons sizecomp = np.zeros((len(filtered_area), len(filtered_area))) # Double loop through all areas to compare to each other for p in range(0, len(filtered_area)): for o in range(0, len(filtered_area)): big = max(filtered_area.iloc[p], filtered_area.iloc[o]) small = min(filtered_area.iloc[p], filtered_area.iloc[o]) pct = 100. * (small / big) sizecomp[p][o] = pct # How many comparisons given 90% square similarity sizematrix = pd.DataFrame(sizecomp).apply(lambda sim: sim[sim >= 90].count() - 1, axis=1) # Append sizeprox summary to dataframe df = df.assign(sizeprox=sizematrix.values) # Reorder dataframe for better printing df = df[['index', 'X', 'Y', 'width', 'height', 'WHratio', 'Area', 'square', 'child', 'blurriness', 'distprox', 'sizeprox']] # Loosely filter for size and distance (relative size to median) minsqwidth = median_sq_width_px * 0.80 maxsqwidth = median_sq_width_px * 1.2 df = df[(df['distprox'] >= 5) & (df['sizeprox'] >= 5) & (df['width'] > minsqwidth) & (df['width'] < maxsqwidth)] # Filter for proximity again to root out stragglers # Find and count up squares that are within given radius, # more squares = more likelihood of them being the card # Median width of square time 2.5 gives proximity radius for searching for similar squares median_sq_width_px = df["width"].median() # Squares that are within 6 widths of the current square pixeldist = median_sq_width_px * 5 # Computes euclidean distance matrix for the x and y contour centroids distmatrix = pd.DataFrame(squareform(pdist(df[['X', 'Y']]))) # Add up distances that are less than ones have distance less than pixeldist pixels distmatrixflat = distmatrix.apply(lambda dist: dist[dist <= pixeldist].count() - 1, axis=1) # Append distprox summary to dataframe df = df.assign(distprox=distmatrixflat.values) # Filter results for distance proximity to other squares df = df[(df['distprox'] >= 4)] # Extract the starting coordinate start_coord = (int(df['X'].min()), int(df['Y'].min())) # Calculate the range spacingx_short = (df['X'].max() - df['X'].min()) / 3 spacingy_short = (df['Y'].max() - df['Y'].min()) / 3 spacingx_long = (df['X'].max() - df['X'].min()) / 5 spacingy_long = (df['Y'].max() - df['Y'].min()) / 5 # Chip spacing since 4x6 card assumed spacing_short = min(spacingx_short, spacingy_short) spacing_long = max(spacingx_long, spacingy_long) # Smaller spacing measurement might have a chip missing spacing = int(max(spacing_short, spacing_long)) spacing = (spacing, spacing) return df, start_coord, spacing
def find_color_card(rgb_img, threshold='adaptgauss', threshvalue=125, blurry=False, background='dark'): """Automatically detects a color card and output info to use in create_color_card_mask function Inputs: img = Input RGB image data containing a color card. threshold = Threshold method, either 'normal', 'otsu', or 'adaptgauss', optional (default 'adaptgauss) thresh_value = Thresholding value, optional (default 125) blurry = Bool (default False) if True then image sharpening applied background = Type of image background either 'dark' or 'light (default 'dark'); if 'light' then histogram expansion applied to better detect edges, but histogram expansion will be hindered if there is a dark background Returns: df = Dataframe containing information about the filtered contours start_coord = Two element tuple of starting coordinates, location of the top left pixel detected spacing = Two element tuple of spacing between centers of chips :param img: numpy.ndarray :param threshold: str :param threshvalue: int :param blurry: bool :param background: str :return df: pandas.core.frame.DataFrame :return start_coord: tuple :return spacing: tuple """ # Imports import skimage import pandas as pd from scipy.spatial.distance import squareform, pdist # Get image attributes height, width, channels = img.shape totalpx = float(height * width) # Minimum and maximum square size based upon 12 MP image minarea = 1000. / 12000000. * totalpx maxarea = 8000000. / 12000000. * totalpx # Create gray image for further processing gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Laplacian Fourier Transform detection of blurriness blurfactor = cv2.Laplacian(gray_img, cv2.CV_64F).var() # If image is blurry then try to deblur using kernel if blurry: # from https://www.packtpub.com/mapt/book/Application+Development/9781785283932/2/ch02lvl1sec22/Sharpening kernel = np.array([[-1, -1, -1, -1, -1], [-1, 2, 2, 2, -1], [-1, 2, 8, 2, -1], [-1, 2, 2, 2, -1], [-1, -1, -1, -1, -1]]) / 8.0 # Store result back out for further processing gray_img = cv2.filter2D(gray_img, -1, kernel) # In darker samples, the expansion of the histogram hinders finding the squares due to problems with the otsu # thresholding. If your image has a bright background then apply if background == 'light': clahe = cv2.createCLAHE(clipLimit=3.25, tileGridSize=(4, 4)) # apply CLAHE histogram expansion to find squares better with canny edge detection gray_img = clahe.apply(gray_img) elif background != 'dark': fatal_error('Background parameter ' + str(background) + ' is not "light" or "dark"!') # Thresholding if threshold == "otsu": # Blur slightly so defects on card squares and background patterns are less likely to be picked up gaussian = cv2.GaussianBlur(gray_img, (5, 5), 0) ret, threshold = cv2.threshold(gaussian, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) elif threshold == "normal": # Blur slightly so defects on card squares and background patterns are less likely to be picked up gaussian = cv2.GaussianBlur(gray_img, (5, 5), 0) ret, threshold = cv2.threshold(gaussian, threshvalue, 255, cv2.THRESH_BINARY) elif threshold == "adaptgauss": # Blur slightly so defects on card squares and background patterns are less likely to be picked up gaussian = cv2.GaussianBlur(gray_img, (11, 11), 0) threshold = cv2.adaptiveThreshold(gaussian, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 51, 2) else: fatal_error('Threshold ' + str(threshold) + ' is not "otsu", "normal", or "adaptgauss"!') # Apply automatic Canny edge detection using the computed median edges = skimage.feature.canny(threshold) edges.dtype = 'uint8' # Compute contours to find the squares of the card _, contours, hierarchy = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Variable of which contour is which mindex = [] # Variable to store moments mu = [] # Variable to x,y coordinates in tuples mc = [] # Variable to x coordinate as integer mx = [] # Variable to y coordinate as integer my = [] # Variable to store area marea = [] # Variable to store whether something is a square (1) or not (0) msquare = [] # Variable to store square approximation coordinates msquarecoords = [] # Variable to store child hierarchy element mchild = [] # Fitted rectangle height mheight = [] # Fitted rectangle width mwidth = [] # Ratio of height/width mwhratio = [] # Extract moments from contour image for x in range(0, len(contours)): mu.append(cv2.moments(contours[x])) marea.append(cv2.contourArea(contours[x])) mchild.append(int(hierarchy[0][x][2])) mindex.append(x) # Cycle through moment data and compute location for each moment for m in mu: if m['m00'] != 0: # This is the area term for a moment mc.append((int(m['m10'] / m['m00']), int(m['m01']) / m['m00'])) mx.append(int(m['m10'] / m['m00'])) my.append(int(m['m01'] / m['m00'])) else: mc.append((0, 0)) mx.append((0)) my.append((0)) # Loop over our contours and extract data about them for index, c in enumerate(contours): # Area isn't 0, but greater than min-area and less than max-area if marea[index] != 0 and minarea < marea[index] < maxarea: peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.15 * peri, True) center, wh, angle = cv2.minAreaRect(c) # Rotated rectangle mwidth.append(wh[0]) mheight.append(wh[1]) mwhratio.append(wh[0] / wh[1]) msquare.append(len(approx)) # If the approx contour has 4 points then we can assume we have 4-sided objects if len(approx) == 4 or 5: msquarecoords.append(approx) else: # It's not square msquare.append(0) msquarecoords.append(0) else: # Contour has area of 0, not interesting msquare.append(0) msquarecoords.append(0) mwidth.append(0) mheight.append(0) mwhratio.append(0) # Make a pandas df from data for filtering out junk locarea = {'index': mindex, 'X': mx, 'Y': my, 'width': mwidth, 'height': mheight, 'WHratio': mwhratio, 'Area': marea, 'square': msquare, 'child': mchild} df = pd.DataFrame(locarea) # Add calculated blur factor to output df['blurriness'] = blurfactor # Filter df for attributes that would isolate squares of reasonable size df = df[(df['Area'] > minarea) & (df['Area'] < maxarea) & (df['child'] != -1) & (df['square'].isin([4, 5])) & (df['WHratio'] < 1.2) & (df['WHratio'] > 0.85)] # Filter nested squares from dataframe, was having issues with median being towards smaller nested squares df = df[~(df['index'].isin(df['index'] + 1))] # Count up squares that are within a given radius, more squares = more likelihood of them being the card # Median width of square time 2.5 gives proximity radius for searching for similar squares median_sq_width_px = df["width"].median() # Squares that are within 6 widths of the current square pixeldist = median_sq_width_px * 6 # Computes euclidean distance matrix for the x and y contour centroids distmatrix = pd.DataFrame(squareform(pdist(df[['X', 'Y']]))) # Add up distances that are less than ones have distance less than pixeldist pixels distmatrixflat = distmatrix.apply(lambda dist: dist[dist <= pixeldist].count() - 1, axis=1) # Append distprox summary to dataframe df = df.assign(distprox=distmatrixflat.values) # Compute how similar in area the squares are. lots of similar values indicates card # isolate area measurements filtered_area = df['Area'] # Create empty matrix for storing comparisons sizecomp = np.zeros((len(filtered_area), len(filtered_area))) # Double loop through all areas to compare to each other for p in range(0, len(filtered_area)): for o in range(0, len(filtered_area)): big = max(filtered_area.iloc[p], filtered_area.iloc[o]) small = min(filtered_area.iloc[p], filtered_area.iloc[o]) pct = 100. * (small / big) sizecomp[p][o] = pct # How many comparisons given 90% square similarity sizematrix = pd.DataFrame(sizecomp).apply(lambda sim: sim[sim >= 90].count() - 1, axis=1) # Append sizeprox summary to dataframe df = df.assign(sizeprox=sizematrix.values) # Reorder dataframe for better printing df = df[['index', 'X', 'Y', 'width', 'height', 'WHratio', 'Area', 'square', 'child', 'blurriness', 'distprox', 'sizeprox']] # Loosely filter for size and distance (relative size to median) minsqwidth = median_sq_width_px * 0.80 maxsqwidth = median_sq_width_px * 1.2 df = df[(df['distprox'] >= 5) & (df['sizeprox'] >= 5) & (df['width'] > minsqwidth) & (df['width'] < maxsqwidth)] # Filter for proximity again to root out stragglers # Find and count up squares that are within given radius, # more squares = more likelihood of them being the card # Median width of square time 2.5 gives proximity radius for searching for similar squares median_sq_width_px = df["width"].median() # Squares that are within 6 widths of the current square pixeldist = median_sq_width_px * 5 # Computes euclidean distance matrix for the x and y contour centroids distmatrix = pd.DataFrame(squareform(pdist(df[['X', 'Y']]))) # Add up distances that are less than ones have distance less than pixeldist pixels distmatrixflat = distmatrix.apply(lambda dist: dist[dist <= pixeldist].count() - 1, axis=1) # Append distprox summary to dataframe df = df.assign(distprox=distmatrixflat.values) # Filter results for distance proximity to other squares df = df[(df['distprox'] >= 4)] # Extract the starting coordinate start_coord = (int(df['X'].min()), int(df['Y'].min())) # Calculate the range spacingx_short = (df['X'].max() - df['X'].min()) / 3 spacingy_short = (df['Y'].max() - df['Y'].min()) / 3 spacingx_long = (df['X'].max() - df['X'].min()) / 5 spacingy_long = (df['Y'].max() - df['Y'].min()) / 5 # Chip spacing since 4x6 card assumed spacing_short = min(spacingx_short, spacingy_short) spacing_long = max(spacingx_long, spacingy_long) # Smaller spacing measurement might have a chip missing spacing = int(max(spacing_short, spacing_long)) spacing = (spacing, spacing) return df, start_coord, spacing
33,616
def check_no_existing_node(node_ip_address, redis_client): """A helper method to check there is no node registered to the cluster of the given ndoe address. """ clients = ray.state._parse_client_table(redis_client) for client in clients: assert "NodeID" in client assert "NodeManagerAddress" in client assert "Alive" in client if client["Alive"] is False: continue if client["NodeManagerAddress"] == node_ip_address: raise Exception("This Redis instance is already connected to " "clients with this IP address.")
def check_no_existing_node(node_ip_address, redis_client): """A helper method to check there is no node registered to the cluster of the given node address. """ clients = ray.state._parse_client_table(redis_client) for client in clients: assert "NodeID" in client assert "NodeManagerAddress" in client assert "Alive" in client if client["Alive"] is False: continue if client["NodeManagerAddress"] == node_ip_address: raise Exception("This Redis instance is already connected to " "clients with this IP address.")
35,586
def densenet121(pretrained: bool = False, progress: bool = True, **kwargs) -> DenseNet: r"""Densenet-121 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ return _densenet('densenet121', 32, (6, 12, 24, 16), 64, pretrained, progress, **kwargs)
def densenet121(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> DenseNet: r"""Densenet-121 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ return _densenet('densenet121', 32, (6, 12, 24, 16), 64, pretrained, progress, **kwargs)
35,082
def call_all_topi_funcs(mod, params, target, opt_level=3): """Call all TOPI compute to extract auto_scheduler tasks in a Relay program""" # pylint: disable=import-outside-toplevel from tvm import relay # Turn off AutoTVM config not found warnings old_autotvm_silent = autotvm.GLOBAL_SCOPE.silent autotvm.GLOBAL_SCOPE.silent = True with transform.PassContext( opt_level=opt_level, config={ "relay.backend.use_auto_scheduler": True, }, disabled_pass={"AutoSchedulerLayoutRewrite"}, ): compiler = relay.vm.VMCompiler() if params: compiler.set_params(params) mod = tvm.IRModule.from_expr(mod) if isinstance(mod, relay.Function) else mod try: compiler.lower(mod, target) # pylint: disable=broad-except except Exception: logger.warning("Got exception in task extraction:\n %s", traceback.format_exc()) finally: autotvm.GLOBAL_SCOPE.silent = old_autotvm_silent
def call_all_topi_funcs(mod, params, target, opt_level=3): """Call all TOPI compute to extract auto_scheduler tasks in a Relay program""" # pylint: disable=import-outside-toplevel from tvm import relay # Turn off AutoTVM config not found warnings old_autotvm_silent = autotvm.GLOBAL_SCOPE.silent autotvm.GLOBAL_SCOPE.silent = True with transform.PassContext( opt_level=opt_level, config={ "relay.backend.use_auto_scheduler": True, }, disabled_pass={"AutoSchedulerLayoutRewrite"}, ): compiler = relay.vm.VMCompiler() if params: compiler.set_params(params) mod = tvm.IRModule.from_expr(mod) if isinstance(mod, relay.Function) else mod try: compiler.lower(mod, target) except Exception: # pylint: disable=broad-except logger.warning("Got exception in task extraction:\n %s", traceback.format_exc()) finally: autotvm.GLOBAL_SCOPE.silent = old_autotvm_silent
41,700
def generate_package_hash(full_path: Path) -> str: sha256_hash = hashlib.sha256() with open(full_path, "rb") as f: for byte_block in iter(lambda: f.read(4096), b""): sha256_hash.update(byte_block) return sha256_hash.hexdigest()
def _generate_package_hash(full_path: Path) -> str: sha256_hash = hashlib.sha256() with open(full_path, "rb") as f: for byte_block in iter(lambda: f.read(4096), b""): sha256_hash.update(byte_block) return sha256_hash.hexdigest()
6,081
def getQueuesResolved(siteDict): """ Get the list of queue descriptions merging site/ce/queue parameters and adding some derived parameters. :param dict siteDict: dictionary with configuration data as returned by Resources.getQueues() method :return: S_OK/S_ERROR, Value dictionary per queue with configuration data updated, e.g. for SiteDirector """ queueDict = {} for site in siteDict: for ce in siteDict[site]: ceDict = siteDict[site][ce] qDict = ceDict.pop('Queues') for queue in qDict: queueName = '%s_%s' % (ce, queue) queueDict[queueName] = qDict[queue] queueDict[queueName] = qDict[queue] queueDict[queueName]['Queue'] = queue queueDict[queueName]['Site'] = site # Evaluate the CPU limit of the queue according to the Glue convention # To Do: should be a utility if "maxCPUTime" in queueDict[queueName] and \ "SI00" in queueDict[queueName]: maxCPUTime = float(queueDict[queueName]['maxCPUTime']) # For some sites there are crazy values in the CS maxCPUTime = max(maxCPUTime, 0) maxCPUTime = min(maxCPUTime, 86400 * 12.5) si00 = float(queueDict[queueName]['SI00']) queueCPUTime = 60. / 250. * maxCPUTime * si00 queueDict[queueName]['CPUTime'] = int(queueCPUTime) # Tags & RequiredTags defined on the Queue level and on the CE level are concatenated # This also converts them from a string to a list if required. for tagFieldName in ('Tag', 'RequiredTag'): ceTags = ceDict.get(tagFieldName, []) if isinstance(ceTags, basestring): ceTags = fromChar(ceTags) queueTags = queueDict[queueName].get(tagFieldName) if queueTags and isinstance(queueTags, basestring): queueTags = fromChar(queueTags) queueDict[queueName][tagFieldName] = queueTags if ceTags: if queueTags: allTags = list(set(ceTags + queueTags)) queueDict[queueName][tagFieldName] = allTags else: queueDict[queueName][tagFieldName] = ceTags # Some parameters can be defined on the CE level and are inherited by all Queues for parameter in ['MaxRAM', 'NumberOfProcessors', 'WholeNode']: queueParameter = queueDict[queueName].get(parameter) ceParameter = ceDict.get(parameter) if ceParameter or queueParameter: queueDict[queueName][parameter] = ceParameter if not queueParameter \ else queueParameter # If we have a multi-core queue add MultiProcessor tag if queueDict[queueName].get('NumberOfProcessors', 1) > 1: queueDict[queueName].setdefault('Tag', []).append('MultiProcessor') queueDict[queueName]['CEName'] = ce queueDict[queueName]['GridCE'] = ce queueDict[queueName]['CEType'] = ceDict['CEType'] queueDict[queueName]['GridMiddleware'] = ceDict['CEType'] queueDict[queueName]['QueueName'] = queue platform = '' if "Platform" in queueDict[queueName]: platform = queueDict[queueName]['Platform'] elif "Platform" in ceDict: platform = ceDict['Platform'] elif "OS" in ceDict: architecture = ceDict.get('architecture', 'x86_64') platform = '_'.join([architecture, ceDict['OS']]) queueDict[queueName]['Platform'] = platform if "Platform" not in queueDict[queueName] and platform: result = getDIRACPlatform(platform) if result['OK']: queueDict[queueName]['Platform'] = result['Value'][0] return S_OK(queueDict)
def getQueuesResolved(siteDict): """ Get the list of queue descriptions merging site/ce/queue parameters and adding some derived parameters. :param dict siteDict: dictionary with configuration data as returned by Resources.getQueues() method :return: S_OK/S_ERROR, Value dictionary per queue with configuration data updated, e.g. for SiteDirector """ queueDict = {} for site in siteDict: for ce, ceDict in siteDict[site].items(): ceDict = siteDict[site][ce] qDict = ceDict.pop('Queues') for queue in qDict: queueName = '%s_%s' % (ce, queue) queueDict[queueName] = qDict[queue] queueDict[queueName] = qDict[queue] queueDict[queueName]['Queue'] = queue queueDict[queueName]['Site'] = site # Evaluate the CPU limit of the queue according to the Glue convention # To Do: should be a utility if "maxCPUTime" in queueDict[queueName] and \ "SI00" in queueDict[queueName]: maxCPUTime = float(queueDict[queueName]['maxCPUTime']) # For some sites there are crazy values in the CS maxCPUTime = max(maxCPUTime, 0) maxCPUTime = min(maxCPUTime, 86400 * 12.5) si00 = float(queueDict[queueName]['SI00']) queueCPUTime = 60. / 250. * maxCPUTime * si00 queueDict[queueName]['CPUTime'] = int(queueCPUTime) # Tags & RequiredTags defined on the Queue level and on the CE level are concatenated # This also converts them from a string to a list if required. for tagFieldName in ('Tag', 'RequiredTag'): ceTags = ceDict.get(tagFieldName, []) if isinstance(ceTags, basestring): ceTags = fromChar(ceTags) queueTags = queueDict[queueName].get(tagFieldName) if queueTags and isinstance(queueTags, basestring): queueTags = fromChar(queueTags) queueDict[queueName][tagFieldName] = queueTags if ceTags: if queueTags: allTags = list(set(ceTags + queueTags)) queueDict[queueName][tagFieldName] = allTags else: queueDict[queueName][tagFieldName] = ceTags # Some parameters can be defined on the CE level and are inherited by all Queues for parameter in ['MaxRAM', 'NumberOfProcessors', 'WholeNode']: queueParameter = queueDict[queueName].get(parameter) ceParameter = ceDict.get(parameter) if ceParameter or queueParameter: queueDict[queueName][parameter] = ceParameter if not queueParameter \ else queueParameter # If we have a multi-core queue add MultiProcessor tag if queueDict[queueName].get('NumberOfProcessors', 1) > 1: queueDict[queueName].setdefault('Tag', []).append('MultiProcessor') queueDict[queueName]['CEName'] = ce queueDict[queueName]['GridCE'] = ce queueDict[queueName]['CEType'] = ceDict['CEType'] queueDict[queueName]['GridMiddleware'] = ceDict['CEType'] queueDict[queueName]['QueueName'] = queue platform = '' if "Platform" in queueDict[queueName]: platform = queueDict[queueName]['Platform'] elif "Platform" in ceDict: platform = ceDict['Platform'] elif "OS" in ceDict: architecture = ceDict.get('architecture', 'x86_64') platform = '_'.join([architecture, ceDict['OS']]) queueDict[queueName]['Platform'] = platform if "Platform" not in queueDict[queueName] and platform: result = getDIRACPlatform(platform) if result['OK']: queueDict[queueName]['Platform'] = result['Value'][0] return S_OK(queueDict)
32,474
def get_domain_command(): results = [] execution_metrics = ExecutionMetrics() domains_list = argToList(demisto.args()['domain']) for domain in domains_list: contents = [] context = {} headers = [] # type: ignore domain = extract_domain_name(domain) try: whois = get_whois_for_domain(domain) admin = { 'Country': whois.get('administrativeContactCountry'), 'Email': whois.get('administrativeContactEmail'), 'Name': whois.get('administrativeContactName'), 'Phone': whois.get('administrativeContactTelephone') } registrant = { 'Country': whois.get('registrantCountry'), 'Email': whois.get('registrantEmail'), 'Name': whois.get('registrantName'), 'Phone': whois.get('registrantTelephone') } first_queried = whois.get('created') name_servers = whois.get('nameServers') emails = whois.get('emails') registrar = {'Name': whois.get('registrarName')} creation_date = first_queried domain_status = whois.get('status') updated_date = whois.get('updated') expiration_date = whois.get('expires') whois = { 'Name': whois.get('domainName'), 'Registrar Name': whois.get('registrarName'), 'Last Retrieved': whois.get('timeOfLatestRealtimeCheck'), 'Created': whois.get('created'), 'Updated': whois.get('updated'), 'Expires': whois.get('expires'), 'IANAID': whois.get('registrarIANAID'), 'Last Observed': whois.get('auditUpdatedDate') } domain_categorization = [] # type: ignore domain_categorization = get_domain_categorization(domain) content_categories = domain_categorization.get('content_categories') # type: ignore malware_categories = domain_categorization.get('security_categories') # type: ignore risk_score = domain_categorization.get('status') # type: ignore domain_categorization_table = { 'Content Categories': content_categories, 'Malware Categories': malware_categories } domain_details = [] # type: ignore domain_details = get_domain_details(domain) popularity = domain_details.get('popularity') # type: ignore secure_rank = domain_details.get('securerank2') # type: ignore dbotscore = securerank_to_dbotscore(secure_rank) context[outputPaths['domain']] = { 'Name': domain, 'Admin': admin, 'Registrant': registrant, 'Registrar': registrar, 'CreationDate': creation_date, 'DomainStatus': domain_status, 'UpdatedDate': updated_date, 'ExpirationDate': expiration_date, 'Umbrella': { 'RiskScore': risk_score, 'SecureRank': secure_rank, 'FirstQueriedTime': first_queried, 'ContentCategories': content_categories, 'MalwareCategories': malware_categories } } # Add malicious if needed if risk_score == -1 or (secure_rank and secure_rank < MALICIOUS_THRESHOLD): context[outputPaths['domain']]['Malicious'] = { 'Vendor': 'Cisco Umbrella Investigate', 'Description': 'Malicious domain found with risk score -1' } dbotscore = 3 context[outputPaths['dbotscore']] = { 'Indicator': domain, 'Type': 'domain', 'Vendor': 'Cisco Umbrella Investigate', 'Score': dbotscore, 'Reliability': reliability } contents.append({ 'Risk Score': risk_score, 'Secure Rank': secure_rank, 'Populairty': popularity, 'Demisto Reputation': scoreToReputation(dbotscore), 'First Queried time': first_queried, }) # Domain reputation + [whois -> whois nameservers -> whois emails] + domain categorization readable_domain_reputation = tableToMarkdown('"Umbrella Investigate" Domain Reputation for: ' + domain, contents, headers) readable_whois = tableToMarkdown('"Umbrella Investigate" WHOIS Record Data for: ' + domain, whois, headers, date_fields=["Last Retrieved"]) readable_name_servers = tableToMarkdown('Name Servers:', {'Name Servers': name_servers}, headers) readable_emails = tableToMarkdown('Emails:', emails, ['Emails']) readable_domain = tableToMarkdown('Domain Categorization:', domain_categorization_table, headers) readable = readable_domain_reputation + readable_whois + readable_name_servers + readable_emails + readable_domain results.append(CommandResults( readable_output=readable, entry_type=entryTypes['note'], content_format=formats['json'], outputs=context, raw_response=[contents, whois, name_servers, emails, domain_categorization_table] )) execution_metrics.success += 1 except RequestException as r: if r.response.status_code == 429: execution_metrics.quota_error += 1 results.append( CommandResults( readable_output=f"Quota exceeded.", entry_type=entryTypes['note'], content_format=formats['json'], outputs=context, raw_response=contents )) continue execution_metrics.general_error += 1 if r.response.status_code == 404: human_readable = tableToMarkdown(name='Cisco Umbrella Investigate:', t={'DOMAIN': domain, 'Result': 'Not found'}, headers=['DOMAIN', 'Result']) context[outputPaths['domain']] = {'Name': domain} context[outputPaths['dbotscore']] = {'Indicator': domain, 'Type': 'domain', 'Vendor': 'Cisco Umbrella Investigate', 'Score': 0, 'Message': 'No results found', 'Reliability': reliability} results.append( CommandResults( entry_type=entryTypes['note'], content_format=formats['json'], readable_output=human_readable, outputs=context, raw_response=contents )) else: if execution_metrics.metrics is not None and execution_metrics.is_supported(): results.append(execution_metrics.metrics) return_results(results) return_error(r.response.text) if execution_metrics.metrics is not None and execution_metrics.is_supported(): results.append(execution_metrics.metrics) return results
def get_domain_command(): results = [] execution_metrics = ExecutionMetrics() domains_list = argToList(demisto.args()['domain']) for domain in domains_list: contents = [] context = {} headers = [] # type: ignore domain = extract_domain_name(domain) try: whois = get_whois_for_domain(domain) admin = { 'Country': whois.get('administrativeContactCountry'), 'Email': whois.get('administrativeContactEmail'), 'Name': whois.get('administrativeContactName'), 'Phone': whois.get('administrativeContactTelephone') } registrant = { 'Country': whois.get('registrantCountry'), 'Email': whois.get('registrantEmail'), 'Name': whois.get('registrantName'), 'Phone': whois.get('registrantTelephone') } first_queried = whois.get('created') name_servers = whois.get('nameServers') emails = whois.get('emails') registrar = {'Name': whois.get('registrarName')} creation_date = first_queried domain_status = whois.get('status') updated_date = whois.get('updated') expiration_date = whois.get('expires') whois = { 'Name': whois.get('domainName'), 'Registrar Name': whois.get('registrarName'), 'Last Retrieved': whois.get('timeOfLatestRealtimeCheck'), 'Created': whois.get('created'), 'Updated': whois.get('updated'), 'Expires': whois.get('expires'), 'IANAID': whois.get('registrarIANAID'), 'Last Observed': whois.get('auditUpdatedDate') } domain_categorization = [] # type: ignore domain_categorization = get_domain_categorization(domain) content_categories = domain_categorization.get('content_categories') # type: ignore malware_categories = domain_categorization.get('security_categories') # type: ignore risk_score = domain_categorization.get('status') # type: ignore domain_categorization_table = { 'Content Categories': content_categories, 'Malware Categories': malware_categories } domain_details = [] # type: ignore domain_details = get_domain_details(domain) popularity = domain_details.get('popularity') # type: ignore secure_rank = domain_details.get('securerank2') # type: ignore dbotscore = securerank_to_dbotscore(secure_rank) context[outputPaths['domain']] = { 'Name': domain, 'Admin': admin, 'Registrant': registrant, 'Registrar': registrar, 'CreationDate': creation_date, 'DomainStatus': domain_status, 'UpdatedDate': updated_date, 'ExpirationDate': expiration_date, 'Umbrella': { 'RiskScore': risk_score, 'SecureRank': secure_rank, 'FirstQueriedTime': first_queried, 'ContentCategories': content_categories, 'MalwareCategories': malware_categories } } # Add malicious if needed if risk_score == -1 or (secure_rank and secure_rank < MALICIOUS_THRESHOLD): context[outputPaths['domain']]['Malicious'] = { 'Vendor': 'Cisco Umbrella Investigate', 'Description': 'Malicious domain found with risk score -1' } dbotscore = 3 context[outputPaths['dbotscore']] = { 'Indicator': domain, 'Type': 'domain', 'Vendor': 'Cisco Umbrella Investigate', 'Score': dbotscore, 'Reliability': reliability } contents.append({ 'Risk Score': risk_score, 'Secure Rank': secure_rank, 'Populairty': popularity, 'Demisto Reputation': scoreToReputation(dbotscore), 'First Queried time': first_queried, }) # Domain reputation + [whois -> whois nameservers -> whois emails] + domain categorization readable_domain_reputation = tableToMarkdown('"Umbrella Investigate" Domain Reputation for: ' + domain, contents, headers) readable_whois = tableToMarkdown('"Umbrella Investigate" WHOIS Record Data for: ' + domain, whois, headers, date_fields=["Last Retrieved"]) readable_name_servers = tableToMarkdown('Name Servers:', {'Name Servers': name_servers}, headers) readable_emails = tableToMarkdown('Emails:', emails, ['Emails']) readable_domain = tableToMarkdown('Domain Categorization:', domain_categorization_table, headers) readable = readable_domain_reputation + readable_whois + readable_name_servers + readable_emails + readable_domain results.append(CommandResults( readable_output=readable, outputs=context, raw_response=[contents, whois, name_servers, emails, domain_categorization_table] )) execution_metrics.success += 1 except RequestException as r: if r.response.status_code == 429: execution_metrics.quota_error += 1 results.append( CommandResults( readable_output=f"Quota exceeded.", entry_type=entryTypes['note'], content_format=formats['json'], outputs=context, raw_response=contents )) continue execution_metrics.general_error += 1 if r.response.status_code == 404: human_readable = tableToMarkdown(name='Cisco Umbrella Investigate:', t={'DOMAIN': domain, 'Result': 'Not found'}, headers=['DOMAIN', 'Result']) context[outputPaths['domain']] = {'Name': domain} context[outputPaths['dbotscore']] = {'Indicator': domain, 'Type': 'domain', 'Vendor': 'Cisco Umbrella Investigate', 'Score': 0, 'Message': 'No results found', 'Reliability': reliability} results.append( CommandResults( entry_type=entryTypes['note'], content_format=formats['json'], readable_output=human_readable, outputs=context, raw_response=contents )) else: if execution_metrics.metrics is not None and execution_metrics.is_supported(): results.append(execution_metrics.metrics) return_results(results) return_error(r.response.text) if execution_metrics.metrics is not None and execution_metrics.is_supported(): results.append(execution_metrics.metrics) return results
52,751
def _prepare_rec(spec, ignorenets, neverignore): # First of all, let's see if we are supposed to ignore this spec, # and if so, do so. if 'addr' in spec and \ spec.get('source') not in neverignore.get(spec['recontype'], []): for start, stop in ignorenets.get(spec['recontype'], ()): if start <= utils.force_ip2int(spec['addr']) <= stop: return None # Then, let's clean up the records. # Change Symantec's random user agents (matching SYMANTEC_UA) to # the constant string 'SymantecRandomUserAgent'. if spec['recontype'] == 'HTTP_CLIENT_HEADER' and \ spec.get('source') == 'USER-AGENT': if SYMANTEC_UA.match(spec['value']): spec['value'] = 'SymantecRandomUserAgent' elif KASPERSKY_UA.match(spec['value']): spec['value'] = 'KasperskyWeirdUserAgent' else: match = SYMANTEC_SEP_UA.match(spec['value']) if match is not None: spec['value'] = '%s%s' % match.groups() # Change any Digest authorization header to remove non-constant # information. On one hand we loose the necessary information to # try to recover the passwords, but on the other hand we store # specs with different challenges but the same username, realm, # host and sensor in the same records. elif ( spec['recontype'] in {'HTTP_CLIENT_HEADER', 'HTTP_CLIENT_HEADER_SERVER'} and spec.get('source') in {'AUTHORIZATION', 'PROXY-AUTHORIZATION'} ): value = spec['value'] if value: authtype = value.split(None, 1)[0] if authtype.lower() == 'digest': try: # we only keep relevant info spec['value'] = '%s %s' % (authtype, ','.join( val for val in _split_digest_auth(value[6:].strip()) if DIGEST_AUTH_INFOS.match(val) )) except Exception: utils.LOGGER.warning("Cannot parse digest error for %r", spec, exc_info=True) elif ntlm._is_ntlm_message(value): # NTLM_NEGOTIATE and NTLM_AUTHENTICATE auth = utils.decode_b64(value.split(' ', 1)[1].encode()) spec['value'] = "NTLM %s" % \ ntlm._ntlm_dict2string(ntlm.ntlm_extract_info(auth)) elif authtype.lower() in {'negotiate', 'kerberos', 'oauth'}: spec['value'] = authtype elif ( spec['recontype'] == 'HTTP_SERVER_HEADER' and spec.get('source') in {'WWW-AUTHENTICATE', 'PROXY-AUTHENTICATE'} ): value = spec['value'] if value: authtype = value.split(None, 1)[0] if authtype.lower() == 'digest': try: # we only keep relevant info spec['value'] = '%s %s' % (authtype, ','.join( val for val in _split_digest_auth(value[6:].strip()) if DIGEST_AUTH_INFOS.match(val) )) except Exception: utils.LOGGER.warning("Cannot parse digest error for %r", spec, exc_info=True) elif ntlm._is_ntlm_message(value): # NTLM_CHALLENGE auth = utils.decode_b64(value.split(' ', 1)[1].encode()) spec['value'] = "NTLM %s" % \ ntlm._ntlm_dict2string(ntlm.ntlm_extract_info(auth)) elif authtype.lower() in {'negotiate', 'kerberos', 'oauth'}: spec['value'] = authtype # TCP server banners: try to normalize data elif spec['recontype'] == 'TCP_SERVER_BANNER': newvalue = value = utils.nmap_decode_data(spec['value']) for pattern, replace in TCP_SERVER_PATTERNS: if pattern.search(newvalue): newvalue = pattern.sub(replace, newvalue) if newvalue != value: spec['value'] = utils.nmap_encode_data(newvalue) # SSL_{CLIENT,SERVER} JA3 elif ((spec['recontype'] == 'SSL_CLIENT' and spec['source'] == 'ja3') or (spec['recontype'] == 'SSL_SERVER' and spec['source'].startswith('ja3-'))): value = spec['value'] spec.setdefault('infos', {})['raw'] = value spec['value'] = hashlib.new("md5", value.encode()).hexdigest() if spec['recontype'] == 'SSL_SERVER': clientvalue = spec['source'][4:] spec['infos'].setdefault('client', {})['raw'] = clientvalue spec['source'] = 'ja3-%s' % hashlib.new( "md5", clientvalue.encode(), ).hexdigest() # SSH_{CLIENT,SERVER}_HASSH elif spec['recontype'] in ['SSH_CLIENT_HASSH', 'SSH_SERVER_HASSH']: value = spec['value'] spec.setdefault('infos', {})['raw'] = value spec['value'] = hashlib.new("md5", value.encode()).hexdigest() # Check DNS Blacklist answer elif spec['recontype'] == 'DNS_ANSWER': if any((spec.get('value') or "").endswith(dnsbl) for dnsbl in config.DNS_BLACKLIST_DOMAINS): dnsbl_val = spec['value'] match = DNSBL_START.search(dnsbl_val) if match is not None: spec['recontype'] = 'DNS_BLACKLIST' spec['value'] = spec.get('addr') spec.update({'source': "%s-%s" % (dnsbl_val[match.end():], spec['source'])}) addr = match.group() # IPv4 if addr.count('.') == 4: spec['addr'] = '.'.join(addr.split('.')[3::-1]) # IPv6 else: spec['addr'] = utils.int2ip6(int(addr .replace('.', '')[::-1], 16)) return spec
def _prepare_rec(spec, ignorenets, neverignore): # First of all, let's see if we are supposed to ignore this spec, # and if so, do so. if 'addr' in spec and \ spec.get('source') not in neverignore.get(spec['recontype'], []): for start, stop in ignorenets.get(spec['recontype'], ()): if start <= utils.force_ip2int(spec['addr']) <= stop: return None # Then, let's clean up the records. # Change Symantec's random user agents (matching SYMANTEC_UA) to # the constant string 'SymantecRandomUserAgent'. if spec['recontype'] == 'HTTP_CLIENT_HEADER' and \ spec.get('source') == 'USER-AGENT': if SYMANTEC_UA.match(spec['value']): spec['value'] = 'SymantecRandomUserAgent' elif KASPERSKY_UA.match(spec['value']): spec['value'] = 'KasperskyWeirdUserAgent' else: match = SYMANTEC_SEP_UA.match(spec['value']) if match is not None: spec['value'] = '%s%s' % match.groups() # Change any Digest authorization header to remove non-constant # information. On one hand we loose the necessary information to # try to recover the passwords, but on the other hand we store # specs with different challenges but the same username, realm, # host and sensor in the same records. elif ( spec['recontype'] in {'HTTP_CLIENT_HEADER', 'HTTP_CLIENT_HEADER_SERVER'} and spec.get('source') in {'AUTHORIZATION', 'PROXY-AUTHORIZATION'} ): value = spec['value'] if value: authtype = value.split(None, 1)[0] if authtype.lower() == 'digest': try: # we only keep relevant info spec['value'] = '%s %s' % (authtype, ','.join( val for val in _split_digest_auth(value[6:].strip()) if DIGEST_AUTH_INFOS.match(val) )) except Exception: utils.LOGGER.warning("Cannot parse digest error for %r", spec, exc_info=True) elif ntlm._is_ntlm_message(value): # NTLM_NEGOTIATE and NTLM_AUTHENTICATE auth = utils.decode_b64(value.split(' ', 1)[1].encode()) spec['value'] = "NTLM %s" % \ ntlm._ntlm_dict2string(ntlm.ntlm_extract_info(auth)) elif authtype.lower() in {'negotiate', 'kerberos', 'oauth'}: spec['value'] = authtype elif ( spec['recontype'] == 'HTTP_SERVER_HEADER' and spec.get('source') in {'WWW-AUTHENTICATE', 'PROXY-AUTHENTICATE'} ): value = spec['value'] if value: authtype = value.split(None, 1)[0] if authtype.lower() == 'digest': try: # we only keep relevant info spec['value'] = '%s %s' % (authtype, ','.join( val for val in _split_digest_auth(value[6:].strip()) if DIGEST_AUTH_INFOS.match(val) )) except Exception: utils.LOGGER.warning("Cannot parse digest error for %r", spec, exc_info=True) elif ntlm._is_ntlm_message(value): # NTLM_CHALLENGE try: auth = utils.decode_b64(value.split(None, 1)[1].encode()) except (UnicodeDecodeError, TypeError, ValueError): pass else: spec['value'] = "NTLM %s" % \ ntlm._ntlm_dict2string(ntlm.ntlm_extract_info(auth)) elif authtype.lower() in {'negotiate', 'kerberos', 'oauth'}: spec['value'] = authtype # TCP server banners: try to normalize data elif spec['recontype'] == 'TCP_SERVER_BANNER': newvalue = value = utils.nmap_decode_data(spec['value']) for pattern, replace in TCP_SERVER_PATTERNS: if pattern.search(newvalue): newvalue = pattern.sub(replace, newvalue) if newvalue != value: spec['value'] = utils.nmap_encode_data(newvalue) # SSL_{CLIENT,SERVER} JA3 elif ((spec['recontype'] == 'SSL_CLIENT' and spec['source'] == 'ja3') or (spec['recontype'] == 'SSL_SERVER' and spec['source'].startswith('ja3-'))): value = spec['value'] spec.setdefault('infos', {})['raw'] = value spec['value'] = hashlib.new("md5", value.encode()).hexdigest() if spec['recontype'] == 'SSL_SERVER': clientvalue = spec['source'][4:] spec['infos'].setdefault('client', {})['raw'] = clientvalue spec['source'] = 'ja3-%s' % hashlib.new( "md5", clientvalue.encode(), ).hexdigest() # SSH_{CLIENT,SERVER}_HASSH elif spec['recontype'] in ['SSH_CLIENT_HASSH', 'SSH_SERVER_HASSH']: value = spec['value'] spec.setdefault('infos', {})['raw'] = value spec['value'] = hashlib.new("md5", value.encode()).hexdigest() # Check DNS Blacklist answer elif spec['recontype'] == 'DNS_ANSWER': if any((spec.get('value') or "").endswith(dnsbl) for dnsbl in config.DNS_BLACKLIST_DOMAINS): dnsbl_val = spec['value'] match = DNSBL_START.search(dnsbl_val) if match is not None: spec['recontype'] = 'DNS_BLACKLIST' spec['value'] = spec.get('addr') spec.update({'source': "%s-%s" % (dnsbl_val[match.end():], spec['source'])}) addr = match.group() # IPv4 if addr.count('.') == 4: spec['addr'] = '.'.join(addr.split('.')[3::-1]) # IPv6 else: spec['addr'] = utils.int2ip6(int(addr .replace('.', '')[::-1], 16)) return spec
48,445
def main(): ORIGINAL_FILE = 'requirements.txt' VENDORED_COPY = 'test/lib/ansible_test/_data/requirements/sanity.import-plugins.txt' requirements_1 = read_file(ORIGINAL_FILE) requirements_2 = read_file(VENDORED_COPY) if requirements_1 is not None and requirements_2 is not None: if requirements_1 != requirements_2: print('%s:%d:%d: Not identical to %s' % (VENDORED_COPY, 0, 0, ORIGINAL_FILE)) sys.exit()
def main(): ORIGINAL_FILE = 'requirements.txt' VENDORED_COPY = 'test/lib/ansible_test/_data/requirements/sanity.import-plugins.txt' original_requirements = read_file(ORIGINAL_FILE) vendored_requirements = read_file(VENDORED_COPY) if original_requirements is not None and vendored_requirements is not None: if original_requirements != vendored_requirements: print('%s:%d:%d: Not identical to %s' % (VENDORED_COPY, 0, 0, ORIGINAL_FILE)) sys.exit()
7,610
def _old_version_workarounds(version): """ Function to keep track of workarounds for older ECSV versions. Parameters ---------- version : tuple tuple of 1-3 strings, representing the ECSV major, minor, or bugfix version if not None Returns ------- string: str Text to match before implementing workaround. """ # Workaround for ECSV <= V0.9 backwards incompatibility of # non-standard dtypes. if int(version[0]) == 0 and int(version[1]) <= 9: return "Disable strict dtype checking for V0.9" elif int(version[0]) > 0: # Example to show other implementations return "No known workarounds" else: return "No known workarounds"
def _old_version_workarounds(version): """ Function to keep track of workarounds for older ECSV versions. Parameters ---------- version : tuple tuple of 1-3 strings, representing the ECSV major, minor, or bugfix version if not None Returns ------- string : str Text to match before implementing workaround. """ # Workaround for ECSV <= V0.9 backwards incompatibility of # non-standard dtypes. if int(version[0]) == 0 and int(version[1]) <= 9: return "Disable strict dtype checking for V0.9" elif int(version[0]) > 0: # Example to show other implementations return "No known workarounds" else: return "No known workarounds"
56,386
def _backprop_to_all(outputs, retain_grad, loss_scale): """Backprop to all input variables Args: outputs (list of tuple): each tuple is (y_node, y_grad_var). y_grad_var should not be None. retain_grad (bool): see docstring of Variable.backward loss_scale (float): see docstring of Variable.backward """ OrderedDict = chainer.utils._collections.OrderedDict # fix py2 memory leak cand_funcs = [] seen_set = set() def add_cand(cand): if cand not in seen_set: # Negate since heapq is min-heap heapq.heappush(cand_funcs, (-cand.rank, len(seen_set), cand)) seen_set.add(cand) grads = _backprop_utils.GradTable(accumulate_grad_inputs=True) leaf_nodes = set() for y, gy in outputs: grads.accumulate(y, gy) func = y.creator_node if func is None: # leaf leaf_nodes.add(y) else: add_cand(func) # Fix F812 (Python 2) y = None del y is_debug = chainer.is_debug() base_hooks = chainer.get_function_hooks().values() while cand_funcs: _, _, func = heapq.heappop(cand_funcs) inputs = func.inputs target_input_indexes = tuple([ i for i, x in enumerate(inputs) if x.requires_grad ]) outputs = [y() for y in func.outputs] # access via weak ref out_grad = tuple([grads.pop(y) if y.creator_node else None for y in outputs]) if not target_input_indexes: continue in_data = [x.data for x in inputs] out_grad_array = [None if g is None else g.array for g in out_grad] if func._n_local_function_hooks != 0: local_hooks = collections.OrderedDict(chainer.get_function_hooks()) local_hooks.update(func.local_function_hooks) hooks = local_hooks.values() # avoid six for performance else: hooks = base_hooks with cuda.get_device_from_array(*(in_data + out_grad_array)): for hook in hooks: hook.backward_preprocess( func, tuple(in_data), tuple(out_grad_array)) # Collect the current input gradients. target_inputs = [inputs[i] for i in target_input_indexes] # Keep the order for the portability, rather than # in_grad = {x: grads.get_as_list(x) # for x in set(target_inputs)} in_grad = OrderedDict() for x in target_inputs: if x not in in_grad: in_grad[x] = grads.get_as_list(x) _backprop_utils.backprop_step( func, target_input_indexes, out_grad, in_grad, is_debug) for hook in hooks: hook.backward_postprocess( func, tuple(in_data), tuple(out_grad_array)) if retain_grad: # The gradients of the outputs of `func` are final. Store them if # retain_grad=True. for y, gy in six.moves.zip(outputs, out_grad): if y is not None: y._set_grad_var_if_available(gy) del gy # to reduce memory usage del out_grad # to reduce memory usage for x, gx in in_grad.items(): if not gx: # gradient == None continue for gx_elem in gx: if gx_elem is not None: _check_grad_type(func, x, True, gx_elem.array) del gx_elem # to reduce memory usage if x.creator_node is None: # leaf leaf_nodes.add(x) else: add_cand(x.creator_node) del gx, in_grad # to reduce memory usage for x in leaf_nodes: x_var = x.get_variable_or_none() gx = grads.pop(x) if x_var is not None: x_var._set_grad_var_without_check(gx) x_var._loss_scale = loss_scale grads.assert_no_grads()
def _backprop_to_all(outputs, retain_grad, loss_scale): """Backprop to all input variables Args: outputs (list of tuple): each tuple is (y_node, y_grad_var). y_grad_var should not be None. retain_grad (bool): see docstring of Variable.backward loss_scale (float): see docstring of Variable.backward """ OrderedDict = chainer.utils._collections.OrderedDict # fix py2 memory leak cand_funcs = [] seen_set = set() def add_cand(cand): if cand not in seen_set: # Negate since heapq is min-heap heapq.heappush(cand_funcs, (-cand.rank, len(seen_set), cand)) seen_set.add(cand) grads = _backprop_utils.GradTable(accumulate_grad_inputs=True) leaf_nodes = set() for y, gy in outputs: grads.accumulate(y, gy) func = y.creator_node if func is None: # leaf leaf_nodes.add(y) else: add_cand(func) # Fix F812 (Python 2) y = None del y is_debug = chainer.is_debug() base_hooks = chainer.get_function_hooks().values() while cand_funcs: _, _, func = heapq.heappop(cand_funcs) inputs = func.inputs target_input_indexes = tuple([ i for i, x in enumerate(inputs) if x.requires_grad ]) outputs = [y() for y in func.outputs] # access via weak ref out_grad = tuple([grads.pop(y) if y is not None and y.creator_node is not None else None for y in outputs]) if not target_input_indexes: continue in_data = [x.data for x in inputs] out_grad_array = [None if g is None else g.array for g in out_grad] if func._n_local_function_hooks != 0: local_hooks = collections.OrderedDict(chainer.get_function_hooks()) local_hooks.update(func.local_function_hooks) hooks = local_hooks.values() # avoid six for performance else: hooks = base_hooks with cuda.get_device_from_array(*(in_data + out_grad_array)): for hook in hooks: hook.backward_preprocess( func, tuple(in_data), tuple(out_grad_array)) # Collect the current input gradients. target_inputs = [inputs[i] for i in target_input_indexes] # Keep the order for the portability, rather than # in_grad = {x: grads.get_as_list(x) # for x in set(target_inputs)} in_grad = OrderedDict() for x in target_inputs: if x not in in_grad: in_grad[x] = grads.get_as_list(x) _backprop_utils.backprop_step( func, target_input_indexes, out_grad, in_grad, is_debug) for hook in hooks: hook.backward_postprocess( func, tuple(in_data), tuple(out_grad_array)) if retain_grad: # The gradients of the outputs of `func` are final. Store them if # retain_grad=True. for y, gy in six.moves.zip(outputs, out_grad): if y is not None: y._set_grad_var_if_available(gy) del gy # to reduce memory usage del out_grad # to reduce memory usage for x, gx in in_grad.items(): if not gx: # gradient == None continue for gx_elem in gx: if gx_elem is not None: _check_grad_type(func, x, True, gx_elem.array) del gx_elem # to reduce memory usage if x.creator_node is None: # leaf leaf_nodes.add(x) else: add_cand(x.creator_node) del gx, in_grad # to reduce memory usage for x in leaf_nodes: x_var = x.get_variable_or_none() gx = grads.pop(x) if x_var is not None: x_var._set_grad_var_without_check(gx) x_var._loss_scale = loss_scale grads.assert_no_grads()
43,705
def observable(me_tables, init_term=0, mapping="jordan_wigner", wires=None): r"""Builds the many-body observable whose expectation value can be measured in PennyLane. This function can be used to build second-quantized operators in the basis of single-particle states (e.g., HF states) and to transform them into PennyLane observables. In general, the many-body observable :math:`\hat{O}` can combine one-particle and two-particle operators as it is the case for electronic Hamiltonians .. math:: \hat{O} = \sum_{\alpha, \beta} \langle \alpha \vert \hat{t}^{(1)} + \hat{t}^{(2)} \cdots + \hat{t}^{(n)} \vert \beta \rangle ~ \hat{c}_\alpha^\dagger \hat{c}_\beta + \frac{1}{2} \sum_{\alpha, \beta, \gamma, \delta} \langle \alpha, \beta \vert \hat{v}^{(1)} + \hat{v}^{(2)} \cdots + \hat{v}^{(n)} \vert \gamma, \delta \rangle ~ \hat{c}_\alpha^\dagger \hat{c}_\beta^\dagger \hat{c}_\gamma \hat{c}_\delta. In the latter equations the indices :math:`\alpha, \beta, \gamma, \delta` run over the basis of single-particle states. The operators :math:`\hat{c}^\dagger` and :math:`\hat{c}` are the particle creation and annihilation operators, respectively. :math:`\langle \alpha \vert \hat{t} \vert \beta \rangle` denotes the matrix element of the single-particle operator :math:`\hat{t}` entering the observable. For example, in electronic structure calculations this is the case for the kinetic energy operator, the nuclei Coulomb potential or any other external fields included in the model Hamiltonian. On the other hand, :math:`\langle \alpha, \beta \vert \hat{v} \vert \gamma, \delta \rangle` denotes the matrix element of the two-particle operator :math:`\hat{v}`, for example, the Coulomb interaction between the electrons. If an `active space <https://en.wikipedia.org/wiki/Complete_active_space>`_ is defined the observable is expanded over the truncated basis of active orbitals. The contribution of core orbitals, if any, can be passed to the function using the keyword argument ``init_term``. The function utilizes tools of `OpenFermion <https://github.com/quantumlib/OpenFermion>`_ to build the second-quantized operator and map it to basis of Pauli matrices via the Jordan-Wigner or Bravyi-Kitaev transformation. Finally, the qubit operator is converted to a a PennyLane observable by the function :func:`~.convert_observable`. Args: me_tables (list(array[float])): list containing the tables of matrix elements of the operators :math:`\hat{t}` and :math:`\hat{v}`. For single-particle operators the :math:`ith` array in the list will have shape ``(me_tables[i].shape[0], 3)`` with each row containing the indices :math:`\alpha`, :math:`\beta` and the matrix element :math:`\langle \alpha \vert \hat{t}^{(i)}\vert \beta \rangle`. For two-particle operators the :math:`jth` array in the list will have shape ``(me_tables[j].shape[0], 5)`` with each row containing the indices :math:`\alpha`, :math:`\beta`, :math:`\gamma`, :math:`\delta` and the matrix element :math:`\langle \alpha, \beta \vert \hat{v}^{(j)}\vert \gamma, \delta \rangle`. init_term: the contribution of core orbitals, if any, or other quantity required to initialize the many-body observable. mapping (str): specifies the fermion-to-qubit mapping. Input values can be ``'jordan_wigner'`` or ``'bravyi_kitaev'``. wires (Wires, list, tuple, dict): Custom wire mapping used to convert the qubit operator to an observable measurable in a PennyLane ansatz. For types Wires/list/tuple, each item in the iterable represents a wire label corresponding to the qubit number equal to its index. For type dict, only int-keyed dict (for qubit-to-wire conversion) is accepted. If None, will use identity map (e.g. 0->0, 1->1, ...). Returns: pennylane.Hamiltonian: the fermionic-to-qubit transformed observable **Example** >>> t = np.array([[0., 0., 0.5], [1.0, 1.0, -0.5], [1.0, 0., 0.]]) >>> v = np.array([[ 0., 0., 0., 0., 0.25], [ 0., 1., 1., 0., -0.25], [ 1., 0., 0., 1., -0.5]]) >>> me_tables = [] >>> me_tables.append(t) >>> me_tables.append(v) >>> print(observable(me_tables, init_term=1/4, mapping="bravyi_kitaev")) (0.0625) [I0] + (-0.0625) [Z0] + (0.4375) [Z0 Z1] + (-0.1875) [Z1] >>> print(observable(me_tables, init_term=1/4, mapping="bravyi_kitaev", wires=['w0','w1'])) (0.0625) [Iw0] + (-0.0625) [Zw0] + (0.4375) [Zw0 Zw1] + (-0.1875) [Zw1] """ if mapping.strip().lower() not in ("jordan_wigner", "bravyi_kitaev"): raise TypeError( "The '{}' transformation is not available. \n " "Please set 'mapping' to 'jordan_wigner' or 'bravyi_kitaev'.".format(mapping) ) sp_op_shape = (3,) tp_op_shape = (5,) for table in me_tables: for row in table: if np.array(row).shape not in (sp_op_shape, tp_op_shape): raise ValueError( "Expected entries of matrix element tables to be of shape (3,) or (5,); got {}".format( np.array(row).shape ) ) # Initialize the FermionOperator mb_obs = FermionOperator() + FermionOperator("") * init_term for table in me_tables: for i in table: if i.shape == (5,): # two-particle operator mb_obs += FermionOperator( ((int(i[0]), 1), (int(i[1]), 1), (int(i[2]), 0), (int(i[3]), 0)), i[4] ) elif i.shape == (3,): # single-particle operator mb_obs += FermionOperator(((int(i[0]), 1), (int(i[1]), 0)), i[2]) # Map the fermionic operator to a qubit operator if mapping.strip().lower() == "bravyi_kitaev": return structure.convert_observable(bravyi_kitaev(mb_obs), wires=wires) return structure.convert_observable(jordan_wigner(mb_obs), wires=wires)
def observable(me_tables, init_term=0, mapping="jordan_wigner", wires=None): r"""Builds the many-body observable whose expectation value can be measured in PennyLane. This function can be used to build second-quantized operators in the basis of single-particle states (e.g., HF states) and to transform them into PennyLane observables. In general, the many-body observable :math:`\hat{O}` can combine one-particle and two-particle operators as it is the case for electronic Hamiltonians .. math:: \hat{O} = \sum_{\alpha, \beta} \langle \alpha \vert \hat{t}^{(1)} + \hat{t}^{(2)} \cdots + \hat{t}^{(n)} \vert \beta \rangle ~ \hat{c}_\alpha^\dagger \hat{c}_\beta + \frac{1}{2} \sum_{\alpha, \beta, \gamma, \delta} \langle \alpha, \beta \vert \hat{v}^{(1)} + \hat{v}^{(2)} \cdots + \hat{v}^{(n)} \vert \gamma, \delta \rangle ~ \hat{c}_\alpha^\dagger \hat{c}_\beta^\dagger \hat{c}_\gamma \hat{c}_\delta. In the latter equations the indices :math:`\alpha, \beta, \gamma, \delta` run over the basis of single-particle states. The operators :math:`\hat{c}^\dagger` and :math:`\hat{c}` are the particle creation and annihilation operators, respectively. :math:`\langle \alpha \vert \hat{t} \vert \beta \rangle` denotes the matrix element of the single-particle operator :math:`\hat{t}` entering the observable. For example, in electronic structure calculations this is the case for the kinetic energy operator, the nuclei Coulomb potential or any other external fields included in the model Hamiltonian. On the other hand, :math:`\langle \alpha, \beta \vert \hat{v} \vert \gamma, \delta \rangle` denotes the matrix element of the two-particle operator :math:`\hat{v}`, for example, the Coulomb interaction between the electrons. If an `active space <https://en.wikipedia.org/wiki/Complete_active_space>`_ is defined the observable is expanded over the truncated basis of active orbitals. The contribution of core orbitals, if any, can be passed to the function using the keyword argument ``init_term``. The function utilizes tools of `OpenFermion <https://github.com/quantumlib/OpenFermion>`_ to build the second-quantized operator and map it to basis of Pauli matrices via the Jordan-Wigner or Bravyi-Kitaev transformation. Finally, the qubit operator is converted to a a PennyLane observable by the function :func:`~.convert_observable`. Args: me_tables (list(array[float])): list containing the tables of matrix elements of the operators :math:`\hat{t}` and :math:`\hat{v}`. For single-particle operators the :math:`ith` array in the list will have shape ``(me_tables[i].shape[0], 3)`` with each row containing the indices :math:`\alpha`, :math:`\beta` and the matrix element :math:`\langle \alpha \vert \hat{t}^{(i)}\vert \beta \rangle`. For two-particle operators the :math:`jth` array in the list will have shape ``(me_tables[j].shape[0], 5)`` with each row containing the indices :math:`\alpha`, :math:`\beta`, :math:`\gamma`, :math:`\delta` and the matrix element :math:`\langle \alpha, \beta \vert \hat{v}^{(j)}\vert \gamma, \delta \rangle`. init_term (float): the contribution of core orbitals, if any, or other quantity required to initialize the many-body observable. mapping (str): specifies the fermion-to-qubit mapping. Input values can be ``'jordan_wigner'`` or ``'bravyi_kitaev'``. wires (Wires, list, tuple, dict): Custom wire mapping used to convert the qubit operator to an observable measurable in a PennyLane ansatz. For types Wires/list/tuple, each item in the iterable represents a wire label corresponding to the qubit number equal to its index. For type dict, only int-keyed dict (for qubit-to-wire conversion) is accepted. If None, will use identity map (e.g. 0->0, 1->1, ...). Returns: pennylane.Hamiltonian: the fermionic-to-qubit transformed observable **Example** >>> t = np.array([[0., 0., 0.5], [1.0, 1.0, -0.5], [1.0, 0., 0.]]) >>> v = np.array([[ 0., 0., 0., 0., 0.25], [ 0., 1., 1., 0., -0.25], [ 1., 0., 0., 1., -0.5]]) >>> me_tables = [] >>> me_tables.append(t) >>> me_tables.append(v) >>> print(observable(me_tables, init_term=1/4, mapping="bravyi_kitaev")) (0.0625) [I0] + (-0.0625) [Z0] + (0.4375) [Z0 Z1] + (-0.1875) [Z1] >>> print(observable(me_tables, init_term=1/4, mapping="bravyi_kitaev", wires=['w0','w1'])) (0.0625) [Iw0] + (-0.0625) [Zw0] + (0.4375) [Zw0 Zw1] + (-0.1875) [Zw1] """ if mapping.strip().lower() not in ("jordan_wigner", "bravyi_kitaev"): raise TypeError( "The '{}' transformation is not available. \n " "Please set 'mapping' to 'jordan_wigner' or 'bravyi_kitaev'.".format(mapping) ) sp_op_shape = (3,) tp_op_shape = (5,) for table in me_tables: for row in table: if np.array(row).shape not in (sp_op_shape, tp_op_shape): raise ValueError( "Expected entries of matrix element tables to be of shape (3,) or (5,); got {}".format( np.array(row).shape ) ) # Initialize the FermionOperator mb_obs = FermionOperator() + FermionOperator("") * init_term for table in me_tables: for i in table: if i.shape == (5,): # two-particle operator mb_obs += FermionOperator( ((int(i[0]), 1), (int(i[1]), 1), (int(i[2]), 0), (int(i[3]), 0)), i[4] ) elif i.shape == (3,): # single-particle operator mb_obs += FermionOperator(((int(i[0]), 1), (int(i[1]), 0)), i[2]) # Map the fermionic operator to a qubit operator if mapping.strip().lower() == "bravyi_kitaev": return structure.convert_observable(bravyi_kitaev(mb_obs), wires=wires) return structure.convert_observable(jordan_wigner(mb_obs), wires=wires)
31,567
def get_logpoints_command(client): result = client.get_logpoints() if not result.get('success'): raise DemistoException(result['message']) table_header = [] display_title = "LogPoints" allowed_loginspects = result.get('allowed_loginspects') if allowed_loginspects and len(allowed_loginspects) > 0: table_header = list(allowed_loginspects[0].keys()) markdown = tableToMarkdown(display_title, allowed_loginspects, headers=table_header) return CommandResults( readable_output=markdown, outputs_prefix='LogPoint.LogPoints', outputs_key_field='ip', outputs=allowed_loginspects )
def get_logpoints_command(client): result = client.get_logpoints() if not result.get('success'): raise DemistoException(result.get('message')) table_header = [] display_title = "LogPoints" allowed_loginspects = result.get('allowed_loginspects') if allowed_loginspects and len(allowed_loginspects) > 0: table_header = list(allowed_loginspects[0].keys()) markdown = tableToMarkdown(display_title, allowed_loginspects, headers=table_header) return CommandResults( readable_output=markdown, outputs_prefix='LogPoint.LogPoints', outputs_key_field='ip', outputs=allowed_loginspects )
49,665
def set_run_validators(run): """ Set whether or not validators are run. By default, they are run. .. deprecated:: 21.3.0 will not be moved to new ``attrs`` namespace. Use :func:`attr.validators.set_disabled()` instead. """ if not isinstance(run, bool): raise TypeError("'run' must be bool.") global _run_validators _run_validators = run
def set_run_validators(run): """ Set whether or not validators are run. By default, they are run. .. deprecated:: 21.3.0 It will not be removed, but it also will not be moved to new ``attrs`` namespace. Use `attr.validators.set_disabled()` instead. """ if not isinstance(run, bool): raise TypeError("'run' must be bool.") global _run_validators _run_validators = run
31,680
def copy_notes_to_target_incident(args: Dict[str, Any]) -> CommandResults: target_incident = args.get('target_incident', None) if not target_incident: raise ValueError('Target Incident ID not specified') tags = argToList(args.get('tags')) entries = demisto.executeCommand('getEntries', {'filter': {'tags': tags}}) note_entries: List = [] md: str = '' if isinstance(entries, list) and len(entries) > 0: for entry in entries: if entry.get('Note') is True: note_entries.append(entry) if len(note_entries) > 0: result = [] retries = 3 sleep_time = 1 for i in range(retries): result = demisto.executeCommand("addEntries", {"id": target_incident, "entries": note_entries}) if result: break sleep(sleep_time) sleep_time += 1 if result: md = f'## {len(note_entries)} notes copied' else: raise DemistoException('Something went wrong with addEntries command, please try again.') else: md = '## No notes found' else: md = '## No notes found' return CommandResults(readable_output=md)
def copy_notes_to_target_incident(args: Dict[str, Any]) -> CommandResults: target_incident = args.get('target_incident', None) if not target_incident: raise ValueError('Target Incident ID not specified') tags = argToList(args.get('tags')) entries = demisto.executeCommand('getEntries', {'filter': {'tags': tags}}) note_entries: List = [] md: str = '' if isinstance(entries, list) and len(entries) > 0: for entry in entries: if entry.get('Note') is True: note_entries.append(entry) if len(note_entries) > 0: result = [] retries = 3 sleep_time = 1 for i in range(retries): result = demisto.executeCommand("addEntries", {"id": target_incident, "entries": note_entries}) if result: break sleep(sleep_time) sleep_time += 1 if result and not isError(result): md = f'## {len(note_entries)} notes copied' else: raise DemistoException('Something went wrong with addEntries command, please try again.') else: md = '## No notes found' else: md = '## No notes found' return CommandResults(readable_output=md)
22,743
def execute_command(cmd_name, shell_cmd, env=None): # type: (str, str, dict) -> Tuple[str, str] """ Run a command: - on Linux command will be run by the standard shell selected with Popen(shell=True) - on Windows command will be run in a Powershell shell :param str cmd_name: the user facing name of the hook being run :param str shell_cmd: shell command to execute :param dict env: environ to pass into Popen on Linux :returns: `tuple` (`str` stderr, `str` stdout) """ logger.info("Running %s command: %s", cmd_name, shell_cmd) if POSIX_MODE: cmd = subprocess.Popen(shell_cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, env=env) else: line = ['powershell.exe', '-Command', shell_cmd] cmd = subprocess.Popen(line, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) # universal_newlines causes Popen.communicate() # to return str objects instead of bytes in Python 3 out, err = cmd.communicate() base_cmd = os.path.basename(shell_cmd.split(None, 1)[0]) if out: logger.info('Output from %s command %s:\n%s', cmd_name, base_cmd, out) if cmd.returncode != 0: logger.error('%s command "%s" returned error code %d', cmd_name, shell_cmd, cmd.returncode) if err: logger.error('Error output from %s command %s:\n%s', cmd_name, base_cmd, err) return err, out
def execute_command(cmd_name, shell_cmd, env=None): # type: (str, str, Optional[dict]) -> Tuple[str, str] """ Run a command: - on Linux command will be run by the standard shell selected with Popen(shell=True) - on Windows command will be run in a Powershell shell :param str cmd_name: the user facing name of the hook being run :param str shell_cmd: shell command to execute :param dict env: environ to pass into Popen on Linux :returns: `tuple` (`str` stderr, `str` stdout) """ logger.info("Running %s command: %s", cmd_name, shell_cmd) if POSIX_MODE: cmd = subprocess.Popen(shell_cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, env=env) else: line = ['powershell.exe', '-Command', shell_cmd] cmd = subprocess.Popen(line, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) # universal_newlines causes Popen.communicate() # to return str objects instead of bytes in Python 3 out, err = cmd.communicate() base_cmd = os.path.basename(shell_cmd.split(None, 1)[0]) if out: logger.info('Output from %s command %s:\n%s', cmd_name, base_cmd, out) if cmd.returncode != 0: logger.error('%s command "%s" returned error code %d', cmd_name, shell_cmd, cmd.returncode) if err: logger.error('Error output from %s command %s:\n%s', cmd_name, base_cmd, err) return err, out
7,162
def tvl1(I0, I1, dt=0.2, lambda_=15, tau=0.3, nwarp=5, niter=10, tol=1e-4, prefilter=False): """Coarse to fine TV-L1 optical flow estimator. TV-L1 ia popular algorithm for optical flow estimation intrudced by Zack et al. [1]_, improved in [2]_ and detailed in [3]_. Parameters ---------- I0 : ~numpy.ndarray The first gray scale image of the sequence. I1 : ~numpy.ndarray The second gray scale image of the sequence. dt : float Time step of the numerical scheme. Convergence is proved for values dt < 0.125, but it can be larger for faster convergence. lambda_ : float Attachement parameter. The smaller this parameter is, the smoother is the solutions. tau : float Tightness parameter. It should have a small value in order to maintain attachement and regularization parts in correspondence. nwarp : int Number of times I1 is warped. niter : int Number of fixed point iteration. tol : float Tolerance used as stopping criterion based on the L² distance between two consecutive values of (u, v). prefilter : bool whether to prefilter the estimated optical flow before each image warp. Returns ------- flow : tuple[~numpy.ndarray] The estimated optical flow. References ---------- .. [1] Zach, C., Pock, T., & Bischof, H. (2007, September). A duality based approach for realtime TV-L 1 optical flow. In Joint pattern recognition symposium (pp. 214-223). Springer, Berlin, Heidelberg. .. [2] Wedel, A., Pock, T., Zach, C., Bischof, H., & Cremers, D. (2009). An improved algorithm for TV-L 1 optical flow. In Statistical and geometrical approaches to visual motion analysis (pp. 23-45). Springer, Berlin, Heidelberg. .. [3] Pérez, J. S., Meinhardt-Llopis, E., & Facciolo, G. (2013). TV-L1 optical flow estimation. Image Processing On Line, 2013, 137-150. Examples -------- >>> from skimage.color import rgb2gray >>> from skimage.data import stereo_motorcycle >>> from skimage.registration import tvl1 >>> I0, I1, disp = stereo_motorcycle() >>> # --- Convert the images to gray level: color is not supported. >>> I0 = rgb2gray(I0) >>> I1 = rgb2gray(I1) >>> flow = tvl1(I1, I0) """ solver = partial(_tvl1, dt=dt, lambda_=lambda_, tau=tau, nwarp=nwarp, niter=niter, tol=tol, prefilter=prefilter) return coarse_to_fine(I0, I1, solver)
def tvl1(I0, I1, dt=0.2, lambda_=15, tau=0.3, nwarp=5, niter=10, tol=1e-4, prefilter=False): """Coarse to fine TV-L1 optical flow estimator. TV-L1 is a popular algorithm for optical flow estimation introduced by Zack et al. [1]_, improved in [2]_ and detailed in [3]_. Parameters ---------- I0 : ~numpy.ndarray The first gray scale image of the sequence. I1 : ~numpy.ndarray The second gray scale image of the sequence. dt : float Time step of the numerical scheme. Convergence is proved for values dt < 0.125, but it can be larger for faster convergence. lambda_ : float Attachement parameter. The smaller this parameter is, the smoother is the solutions. tau : float Tightness parameter. It should have a small value in order to maintain attachement and regularization parts in correspondence. nwarp : int Number of times I1 is warped. niter : int Number of fixed point iteration. tol : float Tolerance used as stopping criterion based on the L² distance between two consecutive values of (u, v). prefilter : bool whether to prefilter the estimated optical flow before each image warp. Returns ------- flow : tuple[~numpy.ndarray] The estimated optical flow. References ---------- .. [1] Zach, C., Pock, T., & Bischof, H. (2007, September). A duality based approach for realtime TV-L 1 optical flow. In Joint pattern recognition symposium (pp. 214-223). Springer, Berlin, Heidelberg. .. [2] Wedel, A., Pock, T., Zach, C., Bischof, H., & Cremers, D. (2009). An improved algorithm for TV-L 1 optical flow. In Statistical and geometrical approaches to visual motion analysis (pp. 23-45). Springer, Berlin, Heidelberg. .. [3] Pérez, J. S., Meinhardt-Llopis, E., & Facciolo, G. (2013). TV-L1 optical flow estimation. Image Processing On Line, 2013, 137-150. Examples -------- >>> from skimage.color import rgb2gray >>> from skimage.data import stereo_motorcycle >>> from skimage.registration import tvl1 >>> I0, I1, disp = stereo_motorcycle() >>> # --- Convert the images to gray level: color is not supported. >>> I0 = rgb2gray(I0) >>> I1 = rgb2gray(I1) >>> flow = tvl1(I1, I0) """ solver = partial(_tvl1, dt=dt, lambda_=lambda_, tau=tau, nwarp=nwarp, niter=niter, tol=tol, prefilter=prefilter) return coarse_to_fine(I0, I1, solver)
624
def corpus_bleu( list_of_references, hypotheses, weights=(0.25, 0.25, 0.25, 0.25), smoothing_function=None, auto_reweigh=False, ): """ Calculate a single corpus-level BLEU score (aka. system-level BLEU) for all the hypotheses and their respective references. Instead of averaging the sentence level BLEU scores (i.e. macro-average precision), the original BLEU metric (Papineni et al. 2002) accounts for the micro-average precision (i.e. summing the numerators and denominators for each hypothesis-reference(s) pairs before the division). >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'military', 'always', ... 'obeys', 'the', 'commands', 'of', 'the', 'party'] >>> ref1a = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'military', 'will', 'forever', ... 'heed', 'Party', 'commands'] >>> ref1b = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'military', 'forces', 'always', ... 'being', 'under', 'the', 'command', 'of', 'the', 'Party'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'army', 'always', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'party'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> corpus_bleu(list_of_references, hypotheses) # doctest: +ELLIPSIS 0.5920... The example below show that corpus_bleu() is different from averaging sentence_bleu() for hypotheses >>> score1 = sentence_bleu([ref1a, ref1b, ref1c], hyp1) >>> score2 = sentence_bleu([ref2a], hyp2) >>> (score1 + score2) / 2 # doctest: +ELLIPSIS 0.6223... :param list_of_references: a corpus of lists of reference sentences, w.r.t. hypotheses :type list_of_references: list(list(list(str))) :param hypotheses: a list of hypothesis sentences :type hypotheses: list(list(str)) :param weights: weights for unigrams, bigrams, trigrams and so on, (one or list of weights) :type weights: tuple(float) or list(tuple(float)) :param smoothing_function: :type smoothing_function: SmoothingFunction :param auto_reweigh: Option to re-normalize the weights uniformly. :type auto_reweigh: bool :return: The corpus-level BLEU score. :rtype: float """ # Before proceeding to compute BLEU, perform sanity checks. p_numerators = Counter() # Key = ngram order, and value = no. of ngram matches. p_denominators = Counter() # Key = ngram order, and value = no. of ngram in ref. hyp_lengths, ref_lengths = 0, 0 assert len(list_of_references) == len(hypotheses), ( "The number of hypotheses and their reference(s) should be the " "same " ) if isinstance(weights, tuple): weights = [weights] max_weight_length = max(len(weight) for weight in weights) # Iterate through each hypothesis and their corresponding references. for references, hypothesis in zip(list_of_references, hypotheses): # For each order of ngram, calculate the numerator and # denominator for the corpus-level modified precision. for i in range(1, max_weight_length + 1): p_i = modified_precision(references, hypothesis, i) p_numerators[i] += p_i.numerator p_denominators[i] += p_i.denominator # Calculate the hypothesis length and the closest reference length. # Adds them to the corpus-level hypothesis and reference counts. hyp_len = len(hypothesis) hyp_lengths += hyp_len ref_lengths += closest_ref_length(references, hyp_len) # Calculate corpus-level brevity penalty. bp = brevity_penalty(ref_lengths, hyp_lengths) # # Uniformly re-weighting based on maximum hypothesis lengths if largest # # order of n-grams < 4 and weights is set at default. # if auto_reweigh: # if hyp_lengths < 4 and weights == (0.25, 0.25, 0.25, 0.25): # weights = (1 / hyp_lengths,) * hyp_lengths # Collects the various precision values for the different ngram orders. p_n = [ Fraction(p_numerators[i], p_denominators[i], _normalize=False) for i in range(1, max_weight_length + 1) ] # Returns 0 if there's no matching n-grams # We only need to check for p_numerators[1] == 0, since if there's # no unigrams, there won't be any higher order ngrams. if p_numerators[1] == 0: return 0 if len(weights) == 1 else [0] * len(weights) # If there's no smoothing, set use method0 from SmoothinFunction class. if not smoothing_function: smoothing_function = SmoothingFunction().method0 # Smoothen the modified precision. # Note: smoothing_function() may convert values into floats; # it tries to retain the Fraction object as much as the # smoothing method allows. p_n = smoothing_function( p_n, references=references, hypothesis=hypothesis, hyp_len=hyp_lengths ) bleu_scores = [] for weight in weights: # Uniformly re-weighting based on maximum hypothesis lengths if largest # order of n-grams < 4 and weights is set at default. if auto_reweigh: if hyp_lengths < 4 and weight == (0.25, 0.25, 0.25, 0.25): weight = (1 / hyp_lengths,) * hyp_lengths s = (w_i * math.log(p_i) for w_i, p_i in zip(weight, p_n)) s = bp * math.exp(math.fsum(s)) bleu_scores.append(s) return bleu_scores[0] if len(weights) == 1 else bleu_scores
def corpus_bleu( list_of_references, hypotheses, weights=(0.25, 0.25, 0.25, 0.25), smoothing_function=None, auto_reweigh=False, ): """ Calculate a single corpus-level BLEU score (aka. system-level BLEU) for all the hypotheses and their respective references. Instead of averaging the sentence level BLEU scores (i.e. macro-average precision), the original BLEU metric (Papineni et al. 2002) accounts for the micro-average precision (i.e. summing the numerators and denominators for each hypothesis-reference(s) pairs before the division). >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'military', 'always', ... 'obeys', 'the', 'commands', 'of', 'the', 'party'] >>> ref1a = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'military', 'will', 'forever', ... 'heed', 'Party', 'commands'] >>> ref1b = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'military', 'forces', 'always', ... 'being', 'under', 'the', 'command', 'of', 'the', 'Party'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'army', 'always', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'party'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> corpus_bleu(list_of_references, hypotheses) # doctest: +ELLIPSIS 0.5920... The example below show that corpus_bleu() is different from averaging sentence_bleu() for hypotheses >>> score1 = sentence_bleu([ref1a, ref1b, ref1c], hyp1) >>> score2 = sentence_bleu([ref2a], hyp2) >>> (score1 + score2) / 2 # doctest: +ELLIPSIS 0.6223... :param list_of_references: a corpus of lists of reference sentences, w.r.t. hypotheses :type list_of_references: list(list(list(str))) :param hypotheses: a list of hypothesis sentences :type hypotheses: list(list(str)) :param weights: weights for unigrams, bigrams, trigrams and so on, (one or list of weights) :type weights: tuple(float) / list(tuple(float)) :param smoothing_function: :type smoothing_function: SmoothingFunction :param auto_reweigh: Option to re-normalize the weights uniformly. :type auto_reweigh: bool :return: The corpus-level BLEU score. :rtype: float """ # Before proceeding to compute BLEU, perform sanity checks. p_numerators = Counter() # Key = ngram order, and value = no. of ngram matches. p_denominators = Counter() # Key = ngram order, and value = no. of ngram in ref. hyp_lengths, ref_lengths = 0, 0 assert len(list_of_references) == len(hypotheses), ( "The number of hypotheses and their reference(s) should be the " "same " ) if isinstance(weights, tuple): weights = [weights] max_weight_length = max(len(weight) for weight in weights) # Iterate through each hypothesis and their corresponding references. for references, hypothesis in zip(list_of_references, hypotheses): # For each order of ngram, calculate the numerator and # denominator for the corpus-level modified precision. for i in range(1, max_weight_length + 1): p_i = modified_precision(references, hypothesis, i) p_numerators[i] += p_i.numerator p_denominators[i] += p_i.denominator # Calculate the hypothesis length and the closest reference length. # Adds them to the corpus-level hypothesis and reference counts. hyp_len = len(hypothesis) hyp_lengths += hyp_len ref_lengths += closest_ref_length(references, hyp_len) # Calculate corpus-level brevity penalty. bp = brevity_penalty(ref_lengths, hyp_lengths) # # Uniformly re-weighting based on maximum hypothesis lengths if largest # # order of n-grams < 4 and weights is set at default. # if auto_reweigh: # if hyp_lengths < 4 and weights == (0.25, 0.25, 0.25, 0.25): # weights = (1 / hyp_lengths,) * hyp_lengths # Collects the various precision values for the different ngram orders. p_n = [ Fraction(p_numerators[i], p_denominators[i], _normalize=False) for i in range(1, max_weight_length + 1) ] # Returns 0 if there's no matching n-grams # We only need to check for p_numerators[1] == 0, since if there's # no unigrams, there won't be any higher order ngrams. if p_numerators[1] == 0: return 0 if len(weights) == 1 else [0] * len(weights) # If there's no smoothing, set use method0 from SmoothinFunction class. if not smoothing_function: smoothing_function = SmoothingFunction().method0 # Smoothen the modified precision. # Note: smoothing_function() may convert values into floats; # it tries to retain the Fraction object as much as the # smoothing method allows. p_n = smoothing_function( p_n, references=references, hypothesis=hypothesis, hyp_len=hyp_lengths ) bleu_scores = [] for weight in weights: # Uniformly re-weighting based on maximum hypothesis lengths if largest # order of n-grams < 4 and weights is set at default. if auto_reweigh: if hyp_lengths < 4 and weight == (0.25, 0.25, 0.25, 0.25): weight = (1 / hyp_lengths,) * hyp_lengths s = (w_i * math.log(p_i) for w_i, p_i in zip(weight, p_n)) s = bp * math.exp(math.fsum(s)) bleu_scores.append(s) return bleu_scores[0] if len(weights) == 1 else bleu_scores
2,193
def test_lasso_dual_gap(): """ Check that Lasso.dual_gap_ matches its objective formulation, with the datafit normalized by n_samples """ X, y, _, _ = build_dataset(n_samples=10, n_features=30) n_samples = len(y) alpha = 0.01 * np.max(np.abs(X.T @ y)) / n_samples clf = Lasso(alpha=alpha, fit_intercept=False).fit(X, y) w = clf.coef_ R = y - X @ w primal = 0.5 * np.mean(R ** 2) + clf.alpha * np.sum(np.abs(w)) # dual pt: R / n_samples, dual constraint: norm(X.T @ theta, inf) <= alpha R /= np.max(np.abs(X.T @ R) / (n_samples * alpha)) dual = 0.5 * (np.mean(y ** 2) - np.mean((y - R) ** 2)) np.testing.assert_allclose(clf.dual_gap_, primal - dual)
def test_lasso_dual_gap(): """ Check that Lasso.dual_gap_ matches its objective formulation, with the datafit normalized by n_samples """ X, y, _, _ = build_dataset(n_samples=10, n_features=30) n_samples = len(y) alpha = 0.01 * np.max(np.abs(X.T @ y)) / n_samples clf = Lasso(alpha=alpha, fit_intercept=False).fit(X, y) w = clf.coef_ R = y - X @ w primal = 0.5 * np.mean(R ** 2) + clf.alpha * np.sum(np.abs(w)) # dual pt: R / n_samples, dual constraint: norm(X.T @ theta, inf) <= alpha R /= np.max(np.abs(X.T @ R) / (n_samples * alpha)) dual = 0.5 * (np.mean(y ** 2) - np.mean((y - R) ** 2)) assert_allclose(clf.dual_gap_, primal - dual)
35,551
def create_lkas11(packer, frame, car_fingerprint, apply_steer, steer_req, lkas11, sys_warning, sys_state, enabled, left_lane, right_lane, left_lane_depart, right_lane_depart): values = lkas11 values["CF_Lkas_LdwsSysState"] = sys_state values["CF_Lkas_SysWarning"] = 3 if sys_warning else 0 values["CF_Lkas_LdwsLHWarning"] = left_lane_depart values["CF_Lkas_LdwsRHWarning"] = right_lane_depart values["CR_Lkas_StrToqReq"] = apply_steer values["CF_Lkas_ActToi"] = steer_req values["CF_Lkas_MsgCount"] = frame % 0x10 if car_fingerprint in (CAR.SONATA, CAR.PALISADE, CAR.KIA_NIRO_EV, CAR.KIA_NIRO_HEV_2021, CAR.SANTA_FE, CAR.IONIQ_EV_2020, CAR.IONIQ_PHEV, CAR.KIA_SELTOS, CAR.ELANTRA_2021, CAR.GENESIS_G70_2020, CAR.ELANTRA_HEV_2021, CAR.SONATA_HYBRID, CAR.KONA_EV, CAR.KONA_HEV, CAR.KONA_EV_2022, CAR.SANTA_FE_2022, CAR.KIA_K5_2021, CAR.IONIQ_HEV_2022, CAR.SANTA_FE_HEV_2022, CAR.SANTA_FE_PHEV_2022): values["CF_Lkas_LdwsActivemode"] = int(left_lane) + (int(right_lane) << 1) values["CF_Lkas_LdwsOpt_USM"] = 2 # FcwOpt_USM 5 = Orange blinking car + lanes # FcwOpt_USM 4 = Orange car + lanes # FcwOpt_USM 3 = Green blinking car + lanes # FcwOpt_USM 2 = Green car + lanes # FcwOpt_USM 1 = White car + lanes # FcwOpt_USM 0 = No car + lanes values["CF_Lkas_FcwOpt_USM"] = 2 if enabled else 1 # SysWarning 4 = keep hands on wheel # SysWarning 5 = keep hands on wheel (red) # SysWarning 6 = keep hands on wheel (red) + beep # Note: the warning is hidden while the blinkers are on values["CF_Lkas_SysWarning"] = 4 if sys_warning else 0 # Likely cars without the ability to show individual lane lines in the dash elif car_fingerprint in (CAR.KIA_OPTIMA,): # SysWarning 4 = keep hands on wheel + beep values["CF_Lkas_SysWarning"] = 4 if sys_warning else 0 # SysState 0 = no icons # SysState 1-2 = white car + lanes # SysState 3 = green car + lanes, green steering wheel # SysState 4 = green car + lanes values["CF_Lkas_LdwsSysState"] = 3 if enabled else 1 values["CF_Lkas_LdwsOpt_USM"] = 2 # non-2 changes above SysState definition # these have no effect values["CF_Lkas_LdwsActivemode"] = 0 values["CF_Lkas_FcwOpt_USM"] = 0 elif car_fingerprint == CAR.HYUNDAI_GENESIS: # This field is actually LdwsActivemode # Genesis and Optima fault when forwarding while engaged values["CF_Lkas_LdwsActivemode"] = 2 dat = packer.make_can_msg("LKAS11", 0, values)[2] if car_fingerprint in CHECKSUM["crc8"]: # CRC Checksum as seen on 2019 Hyundai Santa Fe dat = dat[:6] + dat[7:8] checksum = hyundai_checksum(dat) elif car_fingerprint in CHECKSUM["6B"]: # Checksum of first 6 Bytes, as seen on 2018 Kia Sorento checksum = sum(dat[:6]) % 256 else: # Checksum of first 6 Bytes and last Byte as seen on 2018 Kia Stinger checksum = (sum(dat[:6]) + dat[7]) % 256 values["CF_Lkas_Chksum"] = checksum return packer.make_can_msg("LKAS11", 0, values)
def create_lkas11(packer, frame, car_fingerprint, apply_steer, steer_req, lkas11, sys_warning, sys_state, enabled, left_lane, right_lane, left_lane_depart, right_lane_depart): values = lkas11 values["CF_Lkas_LdwsSysState"] = sys_state values["CF_Lkas_SysWarning"] = 3 if sys_warning else 0 values["CF_Lkas_LdwsLHWarning"] = left_lane_depart values["CF_Lkas_LdwsRHWarning"] = right_lane_depart values["CR_Lkas_StrToqReq"] = apply_steer values["CF_Lkas_ActToi"] = steer_req values["CF_Lkas_MsgCount"] = frame % 0x10 if car_fingerprint in (CAR.SONATA, CAR.PALISADE, CAR.KIA_NIRO_EV, CAR.KIA_NIRO_HEV_2021, CAR.SANTA_FE, CAR.IONIQ_EV_2020, CAR.IONIQ_PHEV, CAR.KIA_SELTOS, CAR.ELANTRA_2021, CAR.GENESIS_G70_2020, CAR.ELANTRA_HEV_2021, CAR.SONATA_HYBRID, CAR.KONA_EV, CAR.KONA_HEV, CAR.KONA_EV_2022, CAR.SANTA_FE_2022, CAR.KIA_K5_2021, CAR.IONIQ_HEV_2022, CAR.SANTA_FE_HEV_2022, CAR.SANTA_FE_PHEV_2022): values["CF_Lkas_LdwsActivemode"] = int(left_lane) + (int(right_lane) << 1) values["CF_Lkas_LdwsOpt_USM"] = 2 # FcwOpt_USM 5 = Orange blinking car + lanes # FcwOpt_USM 4 = Orange car + lanes # FcwOpt_USM 3 = Green blinking car + lanes # FcwOpt_USM 2 = Green car + lanes # FcwOpt_USM 1 = White car + lanes # FcwOpt_USM 0 = No car + lanes values["CF_Lkas_FcwOpt_USM"] = 2 if enabled else 1 # SysWarning 4 = keep hands on wheel # SysWarning 5 = keep hands on wheel (red) # SysWarning 6 = keep hands on wheel (red) + beep # Note: the warning is hidden while the blinkers are on values["CF_Lkas_SysWarning"] = 4 if sys_warning else 0 # Likely cars lacking the ability to show individual lane lines in the dash elif car_fingerprint in (CAR.KIA_OPTIMA,): # SysWarning 4 = keep hands on wheel + beep values["CF_Lkas_SysWarning"] = 4 if sys_warning else 0 # SysState 0 = no icons # SysState 1-2 = white car + lanes # SysState 3 = green car + lanes, green steering wheel # SysState 4 = green car + lanes values["CF_Lkas_LdwsSysState"] = 3 if enabled else 1 values["CF_Lkas_LdwsOpt_USM"] = 2 # non-2 changes above SysState definition # these have no effect values["CF_Lkas_LdwsActivemode"] = 0 values["CF_Lkas_FcwOpt_USM"] = 0 elif car_fingerprint == CAR.HYUNDAI_GENESIS: # This field is actually LdwsActivemode # Genesis and Optima fault when forwarding while engaged values["CF_Lkas_LdwsActivemode"] = 2 dat = packer.make_can_msg("LKAS11", 0, values)[2] if car_fingerprint in CHECKSUM["crc8"]: # CRC Checksum as seen on 2019 Hyundai Santa Fe dat = dat[:6] + dat[7:8] checksum = hyundai_checksum(dat) elif car_fingerprint in CHECKSUM["6B"]: # Checksum of first 6 Bytes, as seen on 2018 Kia Sorento checksum = sum(dat[:6]) % 256 else: # Checksum of first 6 Bytes and last Byte as seen on 2018 Kia Stinger checksum = (sum(dat[:6]) + dat[7]) % 256 values["CF_Lkas_Chksum"] = checksum return packer.make_can_msg("LKAS11", 0, values)
28,054
def get_blame_info(repo: Repo, file_path: str): """ Get blame info for the given file in the given git repo. """ tracking_branch = None try: # If a commit is checked out, accessing the active_branch member will # throw a type error. In this case we will use the current commit hash. tracking_branch = str(repo.active_branch.tracking_branch()) except Exception: tracking_branch = repo.head.commit.hexsha try: blame = repo.blame_incremental(repo.head.commit.hexsha, file_path) res = { 'version': 'v1', 'tracking_branch': tracking_branch, 'remote_url': next(repo.remote().urls, None), 'commits': {}, 'blame': []} for b in blame: commit = b.commit if commit.hexsha not in res['commits']: res['commits'][commit.hexsha] = { 'author': { 'name': commit.author.name, 'email': commit.author.email, }, 'summary': commit.summary, 'message': commit.message, 'committed_datetime': str(commit.committed_datetime)} res['blame'].append({ 'from': b.linenos[0], 'to': b.linenos[-1], 'commit': commit.hexsha}) return res except Exception as ex: LOG.warning("Failed to get blame information for %s: %s", file_path, ex)
def get_blame_info(repo: Repo, file_path: str): """ Get blame info for the given file in the given git repo. """ tracking_branch = None try: # If a commit is checked out, accessing the active_branch member will # throw a type error. In this case we will use the current commit hash. tracking_branch = str(repo.active_branch.tracking_branch()) except AttributeError: tracking_branch = repo.head.commit.hexsha try: blame = repo.blame_incremental(repo.head.commit.hexsha, file_path) res = { 'version': 'v1', 'tracking_branch': tracking_branch, 'remote_url': next(repo.remote().urls, None), 'commits': {}, 'blame': []} for b in blame: commit = b.commit if commit.hexsha not in res['commits']: res['commits'][commit.hexsha] = { 'author': { 'name': commit.author.name, 'email': commit.author.email, }, 'summary': commit.summary, 'message': commit.message, 'committed_datetime': str(commit.committed_datetime)} res['blame'].append({ 'from': b.linenos[0], 'to': b.linenos[-1], 'commit': commit.hexsha}) return res except Exception as ex: LOG.warning("Failed to get blame information for %s: %s", file_path, ex)
9,079
def _install(tarball, install_args=()): # extracting the tarball tmpdir = tempfile.mkdtemp() log.warn("Extracting in %s", tmpdir) old_wd = os.getcwd() try: os.chdir(tmpdir) tar = tarfile.open(tarball) _extractall(tar) tar.close() # going in the directory subdir = os.path.join(tmpdir, os.listdir(tmpdir)[0]) os.chdir(subdir) log.warn("Now working in %s", subdir) # installing log.warn("Installing Setuptools") if not _python_cmd("setup.py", "install", *install_args): log.warn("Something went wrong during the installation.") log.warn("See the error message above.") # exitcode will be 2 return 2 finally: os.chdir(old_wd) shutil.rmtree(tmpdir)
def _install(tarball, install_args=()): # extracting the tarball tmpdir = tempfile.mkdtemp() log.warn("Extracting in %s", tmpdir) old_wd = os.getcwd() try: os.chdir(tmpdir) tar = tarfile.open(tarball) _extractall(tar) tar.close() # going in the directory subdir = os.path.join(tmpdir, os.listdir(tmpdir)[0]) os.chdir(subdir) log.warn(f"Now working in {subdir}") # installing log.warn("Installing Setuptools") if not _python_cmd("setup.py", "install", *install_args): log.warn("Something went wrong during the installation.") log.warn("See the error message above.") # exitcode will be 2 return 2 finally: os.chdir(old_wd) shutil.rmtree(tmpdir)
14,082
def _get_number_of_unique_geometry_types(gdf): return sum(gdf.geom_type.isin(geom_type).any() for geom_type in _GEOMETRY_TYPES)
def _get_number_of_unique_geometry_types(gdf): return gdf.geom_type.nunique()
25,767
def run_and_read_cplex(n, problem_fn, solution_fn, solver_logfile, solver_options, warmstart=None, store_basis=True): """ Solving function. Reads the linear problem file and passes it to the cplex solver. If the solution is sucessful it returns variable solutions and constraint dual values. Cplex must be installed for using this function """ import cplex m = cplex.Cplex() out = m.set_log_stream(solver_logfile) if solver_options is not None: for key, value in solver_options.items(): getattr(m.parameters, key).set(value) m.read(problem_fn) if warmstart: m.start.read_basis(warmstart) m.solve() is_lp = m.problem_type[m.get_problem_type()] == 'LP' termination_condition = m.solution.get_status_string() if 'optimal' in termination_condition: status = 'ok' termination_condition = 'optimal' else: status = 'warning' if (status == 'ok') and store_basis and is_lp: n.basis_fn = solution_fn.replace('.sol', '.bas') m.solution.basis.write(n.basis_fn) objective = m.solution.get_objective_value() sol = pd.Series(m.solution.get_values(), m.variables.get_names()) if is_lp: dual = pd.Series(m.solution.get_dual_values(), m.linear_constraints.get_names()) else: logger.warning("Shadow prices of MILP couldn't be parsed") dual = pd.Series(index=m.linear_constraints.get_names()) return (status, termination_condition, sol, dual, objective)
def run_and_read_cplex(n, problem_fn, solution_fn, solver_logfile, solver_options, warmstart=None, store_basis=True): """ Solving function. Reads the linear problem file and passes it to the cplex solver. If the solution is sucessful it returns variable solutions and constraint dual values. Cplex must be installed for using this function """ import cplex m = cplex.Cplex() out = m.set_log_stream(solver_logfile) if solver_options is not None: for key, value in solver_options.items(): getattr(m.parameters, key).set(value) m.read(problem_fn) if warmstart: m.start.read_basis(warmstart) m.solve() is_lp = m.problem_type[m.get_problem_type()] == 'LP' termination_condition = m.solution.get_status_string() if 'optimal' in termination_condition: status = 'ok' termination_condition = 'optimal' else: status = 'warning' if (status == 'ok') and store_basis and is_lp: n.basis_fn = solution_fn.replace('.sol', '.bas') m.solution.basis.write(n.basis_fn) objective = m.solution.get_objective_value() sol = pd.Series(m.solution.get_values(), m.variables.get_names()) if is_lp: dual = pd.Series(m.solution.get_dual_values(), m.linear_constraints.get_names()).pipe(set_int_index) else: logger.warning("Shadow prices of MILP couldn't be parsed") dual = pd.Series(index=m.linear_constraints.get_names()) return (status, termination_condition, sol, dual, objective)
36,257
def highly_variable_genes_seurat_v3( adata: AnnData, n_top_genes: int = 2000, batch_key: Optional[str] = None, lowess_frac: Optional[float] = 0.15, ): """\ Annotate highly variable genes [Stuart19]_. Expects raw count data. The major difference in this implementation is the use of lowess insted of loess. For further details of the sparse arithmetic see https://www.overleaf.com/read/ckptrbgzzzpg Parameters ---------- adata The annotated data matrix of shape `n_obs` × `n_vars`. Rows correspond to cells and columns to genes. n_top_genes Number of highly-variable genes to keep. batch_key If specified, highly-variable genes are selected within each batch separately and merged. This simple process avoids the selection of batch-specific genes and acts as a lightweight batch correction method. lowess_frac The fraction of the data (cells) used when estimating the variance in the lowess model fit. """ import statsmodels lowess = statsmodels.nonparametric.lowess if batch_key is None: batch_info = pd.Categorical(np.zeros((adata.X.shape[0])).astype(int)) else: batch_info = adata.obs[batch_key] norm_gene_vars = [] for b in np.unique(batch_info): mean, var = materialize_as_ndarray(_get_mean_var(adata[batch_info == b].X)) not_const = var > 0 estimat_var = np.zeros((adata.X.shape[1])) y = np.log10(var[not_const]) x = np.log10(mean[not_const]) # output is sorted by x v = lowess(y, x, frac=lowess_frac) estimat_var[not_const][np.argsort(x)] = v[:, 1] # get normalized variance reg_std = np.sqrt(10 ** estimat_var) batch_counts = adata[batch_info == b].X.copy() # clip large values as in Seurat N = np.sum(batch_info == b) vmax = np.sqrt(N) clip_val = reg_std * vmax + mean # could be something faster here for g in range(batch_counts.shape[1]): batch_counts[:, g][batch_counts[:, g] > vmax] = clip_val[g] if sp_sparse.issparse(batch_counts): squared_batch_counts_sum = np.array(batch_counts.power(2).sum(axis=0)) batch_counts_sum = np.array(batch_counts.sum(axis=0)) else: squared_batch_counts_sum = np.square(batch_counts).sum(axis=0) batch_counts_sum = batch_counts.sum(axis=0) norm_gene_var = (1 / ((N - 1) * np.square(reg_std))) * ( (N * np.square(mean)) + squared_batch_counts_sum - 2 * batch_counts_sum * mean ) norm_gene_vars.append(norm_gene_var.reshape(1, -1)) norm_gene_vars = np.concatenate(norm_gene_vars, axis=0) # argsort twice gives ranks ranked_norm_gene_vars = np.argsort(np.argsort(norm_gene_vars, axis=1), axis=1) median_ranked = np.median(ranked_norm_gene_vars, axis=0) num_batches_high_var = np.sum( ranked_norm_gene_vars >= (adata.X.shape[1] - n_top_genes), axis=0 ) df = pd.DataFrame(index=np.array(adata.var_names)) df["highly_variable_nbatches"] = num_batches_high_var df["highly_variable_median_rank"] = median_ranked df.sort_values( ["highly_variable_nbatches", "highly_variable_median_rank"], ascending=False, na_position="last", inplace=True, ) df["highly_variable"] = False df.loc[:n_top_genes, "highly_variable"] = True df = df.loc[adata.var_names] adata.var["highly_variable"] = df["highly_variable"].values if batch_key is not None: batches = adata.obs[batch_key].cat.categories adata.var["highly_variable_nbatches"] = df["highly_variable_nbatches"].values adata.var["highly_variable_intersection"] = df[ "highly_variable_nbatches" ] == len(batches) adata.var["highly_variable_median_rank"] = df["highly_variable_median_rank"].values
def highly_variable_genes_seurat_v3( adata: AnnData, n_top_genes: int = 2000, batch_key: Optional[str] = None, lowess_frac: Optional[float] = 0.15, ): """\ Annotate highly variable genes [Stuart19]_. Expects raw count data. The major difference in this implementation is the use of lowess insted of loess. For further details of the sparse arithmetic see https://www.overleaf.com/read/ckptrbgzzzpg Parameters ---------- adata The annotated data matrix of shape `n_obs` × `n_vars`. Rows correspond to cells and columns to genes. n_top_genes Number of highly-variable genes to keep. batch_key If specified, highly-variable genes are selected within each batch separately and merged. This simple process avoids the selection of batch-specific genes and acts as a lightweight batch correction method. lowess_frac The fraction of the data (cells) used when estimating the variance in the lowess model fit. """ import statsmodels lowess = statsmodels.nonparametric.lowess if batch_key is None: batch_info = pd.Categorical(np.zeros((adata.X.shape[0])).astype(int)) else: batch_info = adata.obs[batch_key] norm_gene_vars = [] for b in np.unique(batch_info): mean, var = _get_mean_var(adata[batch_info == b].X) not_const = var > 0 estimat_var = np.zeros((adata.X.shape[1])) y = np.log10(var[not_const]) x = np.log10(mean[not_const]) # output is sorted by x v = lowess(y, x, frac=lowess_frac) estimat_var[not_const][np.argsort(x)] = v[:, 1] # get normalized variance reg_std = np.sqrt(10 ** estimat_var) batch_counts = adata[batch_info == b].X.copy() # clip large values as in Seurat N = np.sum(batch_info == b) vmax = np.sqrt(N) clip_val = reg_std * vmax + mean # could be something faster here for g in range(batch_counts.shape[1]): batch_counts[:, g][batch_counts[:, g] > vmax] = clip_val[g] if sp_sparse.issparse(batch_counts): squared_batch_counts_sum = np.array(batch_counts.power(2).sum(axis=0)) batch_counts_sum = np.array(batch_counts.sum(axis=0)) else: squared_batch_counts_sum = np.square(batch_counts).sum(axis=0) batch_counts_sum = batch_counts.sum(axis=0) norm_gene_var = (1 / ((N - 1) * np.square(reg_std))) * ( (N * np.square(mean)) + squared_batch_counts_sum - 2 * batch_counts_sum * mean ) norm_gene_vars.append(norm_gene_var.reshape(1, -1)) norm_gene_vars = np.concatenate(norm_gene_vars, axis=0) # argsort twice gives ranks ranked_norm_gene_vars = np.argsort(np.argsort(norm_gene_vars, axis=1), axis=1) median_ranked = np.median(ranked_norm_gene_vars, axis=0) num_batches_high_var = np.sum( ranked_norm_gene_vars >= (adata.X.shape[1] - n_top_genes), axis=0 ) df = pd.DataFrame(index=np.array(adata.var_names)) df["highly_variable_nbatches"] = num_batches_high_var df["highly_variable_median_rank"] = median_ranked df.sort_values( ["highly_variable_nbatches", "highly_variable_median_rank"], ascending=False, na_position="last", inplace=True, ) df["highly_variable"] = False df.loc[:n_top_genes, "highly_variable"] = True df = df.loc[adata.var_names] adata.var["highly_variable"] = df["highly_variable"].values if batch_key is not None: batches = adata.obs[batch_key].cat.categories adata.var["highly_variable_nbatches"] = df["highly_variable_nbatches"].values adata.var["highly_variable_intersection"] = df[ "highly_variable_nbatches" ] == len(batches) adata.var["highly_variable_median_rank"] = df["highly_variable_median_rank"].values
11,807
def logical_and(image1, image2): """Logical AND between two images. At least one of the images must be "1" mode. .. code-block:: python out = ((image1 and image2) % MAX) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_and(image2.im))
def logical_and(image1, image2): """Logical AND between two images. At least one of the images must have mode. .. code-block:: python out = ((image1 and image2) % MAX) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_and(image2.im))
53,801
def initialize_kolibri_plugin(plugin_name, initialize_hooks=True): """ Try to load kolibri_plugin from given plugin module identifier In so doing, it will instantiate the KolibriPlugin object if it exists, and also register any hooks found in the module. Use the initialize_hooks argument to just retrieve the kolibri plugin without registering its hooks. :returns: the KolibriPlugin object for the module """ was_configured = django_settings.configured # First import the bare plugin name to see if it exists # This will raise an exception if not _import_python_module(plugin_name) try: # Exceptions are expected to be thrown from here. plugin_module = importlib.import_module(plugin_name + ".kolibri_plugin") if not was_configured and django_settings.configured: raise PluginLoadsApp( "Importing plugin module {} caused Django settings to be configured".format( plugin_name ) ) logger.debug("Loaded kolibri plugin: {}".format(plugin_name)) # If no exception is thrown, use this to find the plugin class. # Load a list of all class types in module # Filter the list to only match the ones that belong to the module # and not the ones that have been imported plugin_package = ( plugin_module.__package__ if plugin_module.__package__ else plugin_module.__name__.rpartition(".")[0] ) def is_plugin_module(x): return ( hasattr(x, "__module__") and plugin_package + ".kolibri_plugin" == x.__module__ ) all_classes = [ cls for cls in plugin_module.__dict__.values() if is_plugin_module(cls) and isinstance(cls, type) ] return initialize_plugins_and_hooks( all_classes, plugin_name, initialize_hooks=initialize_hooks ) except ImportError as e: # Python 2: message, Python 3: msg exc_message = getattr(e, "message", getattr(e, "msg", None)) if exc_message.startswith("No module named"): msg = ( "Plugin '{}' exists but does not have an importable kolibri_plugin module" ).format(plugin_name) raise PluginDoesNotExist(msg) else: raise except AppRegistryNotReady: msg = ( "Plugin '{}' loads the Django app registry, which it isn't " "allowed to do while enabling or disabling itself." ).format(plugin_name) raise PluginLoadsApp(msg)
def initialize_kolibri_plugin(plugin_name, initialize_hooks=True): """ Try to load kolibri_plugin from given plugin module identifier In so doing, it will instantiate the KolibriPlugin object if it exists, and also register any hooks found in the module. Set the initialize_hooks argument to False to just retrieve the kolibri plugin without registering its hooks. :returns: the KolibriPlugin object for the module """ was_configured = django_settings.configured # First import the bare plugin name to see if it exists # This will raise an exception if not _import_python_module(plugin_name) try: # Exceptions are expected to be thrown from here. plugin_module = importlib.import_module(plugin_name + ".kolibri_plugin") if not was_configured and django_settings.configured: raise PluginLoadsApp( "Importing plugin module {} caused Django settings to be configured".format( plugin_name ) ) logger.debug("Loaded kolibri plugin: {}".format(plugin_name)) # If no exception is thrown, use this to find the plugin class. # Load a list of all class types in module # Filter the list to only match the ones that belong to the module # and not the ones that have been imported plugin_package = ( plugin_module.__package__ if plugin_module.__package__ else plugin_module.__name__.rpartition(".")[0] ) def is_plugin_module(x): return ( hasattr(x, "__module__") and plugin_package + ".kolibri_plugin" == x.__module__ ) all_classes = [ cls for cls in plugin_module.__dict__.values() if is_plugin_module(cls) and isinstance(cls, type) ] return initialize_plugins_and_hooks( all_classes, plugin_name, initialize_hooks=initialize_hooks ) except ImportError as e: # Python 2: message, Python 3: msg exc_message = getattr(e, "message", getattr(e, "msg", None)) if exc_message.startswith("No module named"): msg = ( "Plugin '{}' exists but does not have an importable kolibri_plugin module" ).format(plugin_name) raise PluginDoesNotExist(msg) else: raise except AppRegistryNotReady: msg = ( "Plugin '{}' loads the Django app registry, which it isn't " "allowed to do while enabling or disabling itself." ).format(plugin_name) raise PluginLoadsApp(msg)
40,338
def homophily(edge_index: Adj, y: Tensor, batch: OptTensor = None, method: str = 'edge') -> Union[float, Tensor]: r"""The homophily of a graph characterizes how likely nodes with the same label are near each other in a graph. There are many measures of homophily that fits this definition. In particular: - In the `"Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs" <https://arxiv.org/abs/2006.11468>`_ paper, the homophily is the fraction of edges in a graph which connects nodes that have the same class label: .. math:: \text{homophily} = \frac{| \{ (v,w) : (v,w) \in \mathcal{E} \wedge y_v = y_w \} | } {|\mathcal{E}|} That measure is called the *edge homophily ratio*. - In the `"Geom-GCN: Geometric Graph Convolutional Networks" <https://arxiv.org/abs/2002.05287>`_ paper, edge homophily is normalized across neighborhoods: .. math:: \text{homophily} = \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \frac{ | \{ (w,v) : w \in \mathcal{N}(v) \wedge y_v = y_w \} | } { |\mathcal{N}(v)| } That measure is called the *node homophily ratio*. - In the "Large-scale learning on non-homophilous graphs: \ New benchmarks and strong simple methods" paper, the class insensitive homophily metric better captures the presence or absence of homophily: .. math:: \text{homophily} = \frac{1}{C-1}\sum_{k=0}^{C-1}\begin{bmatrix} {h_k - \frac{\lvert C_k \rvert}{n}}\end{bmatrix}_+, .. math:: h_k = \frac{\sum_{u \in C_k}d_u^{(k_u)}}{\sum_{u \in C_k}d_u} That measure is called the *class insensitive edge homophily ratio* Args: edge_index (Tensor or SparseTensor): The graph connectivity. y (Tensor): The labels. batch (LongTensor, optional): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots,B-1\}}^N`, which assigns each node to a specific example. (default: :obj:`None`) method (str, optional): The method used to calculate the homophily, either :obj:`"edge"` (first formula), :obj:`"node"` (second formula) or `"edge-insensitive"`. (default: :obj:`"edge"`) """ assert method in ['edge', 'node', 'edge-insensitive'] y = y.squeeze(-1) if y.dim() > 1 else y if isinstance(edge_index, SparseTensor): col, row, _ = edge_index.coo() else: row, col = edge_index if method == 'edge': out = torch.zeros(row.size(0), device=row.device) out[y[row] == y[col]] = 1. if batch is None: return float(out.mean()) else: return scatter_mean(out, batch[col], dim=0) elif method == 'node': out = torch.zeros(row.size(0), device=row.device) out[y[row] == y[col]] = 1. out = scatter_mean(out, col, 0, dim_size=y.size(0)) if batch is None: return float(out.mean()) else: return scatter_mean(out, batch, dim=0) else: c = y.squeeze().max() + 1 nonzero_labels = y[y >= 0] counts = nonzero_labels.unique(return_counts=True)[1] proportions = counts.float() / nonzero_labels.shape[0] h = homophily(edge_index, y, batch=y, method='edge') out = 0 for k in range(c): class_add = torch.clamp(h[k] - proportions[k], min=0) if not torch.isnan(class_add): out += class_add out /= c - 1 return out
def homophily(edge_index: Adj, y: Tensor, batch: OptTensor = None, method: str = 'edge') -> Union[float, Tensor]: r"""The homophily of a graph characterizes how likely nodes with the same label are near each other in a graph. There are many measures of homophily that fits this definition. In particular: - In the `"Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs" <https://arxiv.org/abs/2006.11468>`_ paper, the homophily is the fraction of edges in a graph which connects nodes that have the same class label: .. math:: \text{homophily} = \frac{| \{ (v,w) : (v,w) \in \mathcal{E} \wedge y_v = y_w \} | } {|\mathcal{E}|} That measure is called the *edge homophily ratio*. - In the `"Geom-GCN: Geometric Graph Convolutional Networks" <https://arxiv.org/abs/2002.05287>`_ paper, edge homophily is normalized across neighborhoods: .. math:: \text{homophily} = \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \frac{ | \{ (w,v) : w \in \mathcal{N}(v) \wedge y_v = y_w \} | } { |\mathcal{N}(v)| } That measure is called the *node homophily ratio*. - In the "Large-scale learning on non-homophilous graphs: \ New benchmarks and strong simple methods" paper, the class insensitive homophily metric better captures the presence or absence of homophily: .. math:: \text{homophily} = \frac{1}{C-1}\sum_{k=0}^{C-1}\begin{bmatrix} {h_k - \frac{\lvert C_k \rvert}{n}}\end{bmatrix}_+, .. math:: h_k = \frac{\sum_{u \in C_k}d_u^{(k_u)}}{\sum_{u \in C_k}d_u} That measure is called the *class insensitive edge homophily ratio* Args: edge_index (Tensor or SparseTensor): The graph connectivity. y (Tensor): The labels. batch (LongTensor, optional): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots,B-1\}}^N`, which assigns each node to a specific example. (default: :obj:`None`) method (str, optional): The method used to calculate the homophily, either :obj:`"edge"` (first formula), :obj:`"node"` (second formula) or :obj:`"edge-insensitive"` (third formula). (default: :obj:`"edge"`) """ assert method in ['edge', 'node', 'edge-insensitive'] y = y.squeeze(-1) if y.dim() > 1 else y if isinstance(edge_index, SparseTensor): col, row, _ = edge_index.coo() else: row, col = edge_index if method == 'edge': out = torch.zeros(row.size(0), device=row.device) out[y[row] == y[col]] = 1. if batch is None: return float(out.mean()) else: return scatter_mean(out, batch[col], dim=0) elif method == 'node': out = torch.zeros(row.size(0), device=row.device) out[y[row] == y[col]] = 1. out = scatter_mean(out, col, 0, dim_size=y.size(0)) if batch is None: return float(out.mean()) else: return scatter_mean(out, batch, dim=0) else: c = y.squeeze().max() + 1 nonzero_labels = y[y >= 0] counts = nonzero_labels.unique(return_counts=True)[1] proportions = counts.float() / nonzero_labels.shape[0] h = homophily(edge_index, y, batch=y, method='edge') out = 0 for k in range(c): class_add = torch.clamp(h[k] - proportions[k], min=0) if not torch.isnan(class_add): out += class_add out /= c - 1 return out
25,570
def channel_deposit_with_the_same_node_and_token_network(deposit_queue: JoinableQueue) -> None: """Because of how the ERC20 standard is defined, two concurrent approve calls overwrite each other. Additionally, to prevent a node from trying to deposit more tokens than it has, and by consequence sending an unnecessary transaction, a lock is used. (e.g.: When two transactions that are individually valid, but together use more than the account's balance). This has the side effect of forbiding concurrent deposits on the same token network. (Issue #5447) """ while True: deposit = deposit_queue.get() channel = channel_details(deposit.endpoint, deposit.token_address, deposit.partner) if channel is None: raise RuntimeError(f"Channel does not exist! {deposit}") channel_deposit_if_necessary(channel, deposit)
def channel_deposit_with_the_same_node_and_token_network(deposit_queue: JoinableQueue) -> None: """Because of how the ERC20 standard is defined, two concurrent approve calls overwrite each other. Additionally, to prevent a node from trying to deposit more tokens than it has, and by consequence sending an unnecessary transaction, a lock is used. (e.g.: When two transactions that are individually valid, but together use more than the account's balance). This has the side effect of forbidding concurrent deposits on the same token network. (Issue #5447) """ while True: deposit = deposit_queue.get() channel = channel_details(deposit.endpoint, deposit.token_address, deposit.partner) if channel is None: raise RuntimeError(f"Channel does not exist! {deposit}") channel_deposit_if_necessary(channel, deposit)
41,046
def _fetch_cambridge_functional(n_subjects, data_dir, url, resume, verbose): """Helper function to fetch_cambridge. This function helps in downloading multi-echo functional MRI data for each subject in the Cambridge dataset. Files are downloaded from Open Science Framework (OSF). For more information on the data and its preprocessing, see: https://osf.io/9wcb8/ Parameters ---------- n_subjects : int The number of subjects to load. If None, all the subjects are loaded. Total 88 subjects. data_dir : str Path of the data directory. Used to force data storage in a specified location. If None is given, data are stored in home directory. url : str Override download URL. Used for test only (or if you setup a mirror of the data). resume : bool Whether to resume download of a partly-downloaded file. verbose : int Defines the level of verbosity of the output. Returns ------- func : list of str (Nifti files) Paths to functional MRI data (4D) for each subject. """ dataset_name = 'cambridge' data_dir = _get_dataset_dir(dataset_name, data_dir=data_dir, verbose=verbose) if url is None: # Download from the relevant OSF project, using hashes generated # from the OSF API. Note the trailing slash. For more info, see: # https://gist.github.com/emdupre/3cb4d564511d495ea6bf89c6a577da74 url = 'https://osf.io/download/{}/' func = '{0}_task-rest_{1}_space-scanner_desc-partialPreproc_bold.nii.gz' # The gzip contains unique download keys per Nifti file and confound # pre-extracted from OSF. Required for downloading files. package_directory = os.path.dirname(os.path.abspath(__file__)) dtype = [('participant_id', 'U12'), ('echo_id', 'U12'), ('key_bold', 'U24')] names = ['participant_id', 'echo_id', 'key_b'] # csv file contains download information related to OpenScience(osf) osf_data = csv_to_array(os.path.join(package_directory, "data", "cambridge_echos.csv"), skip_header=True, dtype=dtype, names=names) funcs = [] participant_id, echo_id, uuid = zip(*osf_data) participants = np.unique(participant_id)[:n_subjects] for participant_id in participants: this_osf_id = osf_data[osf_data['participant_id'] == participant_id] participant_funcs = [] for entry in this_osf_id: echo_id = entry['echo_id'] # Download bold images for each echo func_url = url.format(entry['key_b']) func_file = [(func.format(participant_id, echo_id), func_url, {'move': func.format(participant_id, echo_id)})] path_to_func = _fetch_files(data_dir, func_file, resume=resume, verbose=verbose)[0] participant_funcs.append(path_to_func) funcs.append[tuple(participant_funcs)] return funcs
def _fetch_cambridge_functional(n_subjects, data_dir, url, resume, verbose): """Helper function to fetch_cambridge. This function helps in downloading multi-echo functional MRI data for each subject in the Cambridge dataset. Files are downloaded from Open Science Framework (OSF). For more information on the data and its preprocessing, see: https://osf.io/9wcb8/ Parameters ---------- n_subjects : int The number of subjects to load. If None, all the subjects are loaded. Total 88 subjects. data_dir : str Path of the data directory. Used to force data storage in a specified location. If None is given, data are stored in home directory. url : str Override download URL. Used for test only (or if you setup a mirror of the data). resume : bool Whether to resume download of a partly-downloaded file. verbose : int Defines the level of verbosity of the output. Returns ------- func : list of str (Nifti files) Paths to functional MRI data (4D) for each subject. """ dataset_name = 'cambridge' data_dir = _get_dataset_dir(dataset_name, data_dir=data_dir, verbose=verbose) if url is None: # Download from the relevant OSF project, using hashes generated # from the OSF API. Note the trailing slash. For more info, see: # https://gist.github.com/emdupre/3cb4d564511d495ea6bf89c6a577da74 url = 'https://osf.io/download/{}/' func = '{0}_task-rest_{1}_space-scanner_desc-partialPreproc_bold.nii.gz' # The gzip contains unique download keys per Nifti file and confound # pre-extracted from OSF. Required for downloading files. package_directory = os.path.dirname(os.path.abspath(__file__)) dtype = [('participant_id', 'U12'), ('echo_id', 'U12'), ('key_bold', 'U24')] names = ['participant_id', 'echo_id', 'key_b'] # csv file contains download information related to OpenScience(osf) osf_data = csv_to_array(os.path.join(package_directory, "data", "cambridge_echos.csv"), skip_header=True, dtype=dtype, names=names) funcs = [] participant_id, echo_id, uuid = zip(*osf_data) participants = np.unique(participant_id)[:n_subjects] for participant_id in participants: this_osf_id = osf_data[osf_data['participant_id'] == participant_id] participant_funcs = [] for entry in this_osf_id: echo_id = entry['echo_id'] # Download bold images for each echo func_url = url.format(entry['key_b']) func_file = [(func.format(participant_id, echo_id), func_url, {'move': func.format(participant_id, echo_id)})] path_to_func = _fetch_files(data_dir, func_file, resume=resume, verbose=verbose)[0] participant_funcs.append(path_to_func) funcs.append(tuple(participant_funcs)) return funcs
14,333
def test(glyphsets, glyphs=None, names=None): if names is None: names = glyphsets if glyphs is None: glyphs = glyphsets[0].keys() hist = [] for glyph_name in glyphs: #print() #print(glyph_name) try: allVectors = [] allNodeTypes = [] for glyphset,name in zip(glyphsets, names): #print('.', end='') glyph = glyphset[glyph_name] perContourPen = PerContourOrComponentPen(RecordingPen, glyphset=glyphset) glyph.draw(perContourPen) contourPens = perContourPen.value del perContourPen contourVectors = [] nodeTypes = [] allNodeTypes.append(nodeTypes) allVectors.append(contourVectors) for contour in contourPens: nodeTypes.append(tuple([ instruction[0] for instruction in contour.value ])) stats = StatisticsPen(glyphset=glyphset) contour.replay(stats) size = abs(stats.area) ** .5 * .5 vector = ( int(size), int(stats.meanX), int(stats.meanY), int(stats.stddevX * 2), int(stats.stddevY * 2), int(stats.correlation * size), ) contourVectors.append(vector) #print(vector) # Check each master against the next one in the list. for i,(m0,m1) in enumerate(zip(allNodeTypes[:-1],allNodeTypes[1:])): if len(m0) != len(m1): print('%s: %s+%s: Glyphs not compatible (wrong number of paths %i+%i)!!!!!' % (glyph_name, names[i], names[i+1], len(m0), len(m1))) if m0 == m1: continue for pathIx, (nodes1, nodes2) in enumerate(zip(m0,m1)): if nodes1 == nodes2: continue print('%s: %s+%s: Glyphs not compatible at path %i!!!!!' % (glyph_name, names[i], names[i+1], pathIx)) if len(nodes1) != len(nodes2): print("%s has %i nodes, %s has %i nodes" % (names[i], len(nodes1), names[i+1], len(nodes2))) continue for nodeIx, (n1, n2) in enumerate(zip(nodes1, nodes2)): if n1 != n2: print("At node %i, %s has %s, %s has %s" % (nodeIx, names[i], n1, names[i+1], n2)) continue for i,(m0,m1) in enumerate(zip(allVectors[:-1],allVectors[1:])): if len(m0) != len(m1): print('%s: %s+%s: Glyphs not compatible!!!!!' % (glyph_name, names[i], names[i+1])) continue if not m0: continue costs = [[_vlen(_vdiff(v0,v1)) for v1 in m1] for v0 in m0] matching, matching_cost = min_cost_perfect_bipartite_matching(costs) if matching != list(range(len(m0))): print('%s: %s+%s: Glyph has wrong contour/component order: %s' % (glyph_name, names[i], names[i+1], matching)) #, m0, m1) break upem = 2048 item_cost = round((matching_cost / len(m0) / len(m0[0])) ** .5 / upem * 100) hist.append(item_cost) threshold = 7 if item_cost >= threshold: print('%s: %s+%s: Glyph has very high cost: %d%%' % (glyph_name, names[i], names[i+1], item_cost)) except ValueError as e: print('%s: %s: math error %s; skipping glyph.' % (glyph_name, name, e)) print(contour.value) #raise
def test(glyphsets, glyphs=None, names=None): if names is None: names = glyphsets if glyphs is None: glyphs = glyphsets[0].keys() hist = [] for glyph_name in glyphs: #print() #print(glyph_name) try: allVectors = [] allNodeTypes = [] for glyphset,name in zip(glyphsets, names): #print('.', end='') glyph = glyphset[glyph_name] perContourPen = PerContourOrComponentPen(RecordingPen, glyphset=glyphset) glyph.draw(perContourPen) contourPens = perContourPen.value del perContourPen contourVectors = [] nodeTypes = [] allNodeTypes.append(nodeTypes) allVectors.append(contourVectors) for contour in contourPens: nodeTypes.append(tuple(instruction[0] for instruction in contour.value)) stats = StatisticsPen(glyphset=glyphset) contour.replay(stats) size = abs(stats.area) ** .5 * .5 vector = ( int(size), int(stats.meanX), int(stats.meanY), int(stats.stddevX * 2), int(stats.stddevY * 2), int(stats.correlation * size), ) contourVectors.append(vector) #print(vector) # Check each master against the next one in the list. for i,(m0,m1) in enumerate(zip(allNodeTypes[:-1],allNodeTypes[1:])): if len(m0) != len(m1): print('%s: %s+%s: Glyphs not compatible (wrong number of paths %i+%i)!!!!!' % (glyph_name, names[i], names[i+1], len(m0), len(m1))) if m0 == m1: continue for pathIx, (nodes1, nodes2) in enumerate(zip(m0,m1)): if nodes1 == nodes2: continue print('%s: %s+%s: Glyphs not compatible at path %i!!!!!' % (glyph_name, names[i], names[i+1], pathIx)) if len(nodes1) != len(nodes2): print("%s has %i nodes, %s has %i nodes" % (names[i], len(nodes1), names[i+1], len(nodes2))) continue for nodeIx, (n1, n2) in enumerate(zip(nodes1, nodes2)): if n1 != n2: print("At node %i, %s has %s, %s has %s" % (nodeIx, names[i], n1, names[i+1], n2)) continue for i,(m0,m1) in enumerate(zip(allVectors[:-1],allVectors[1:])): if len(m0) != len(m1): print('%s: %s+%s: Glyphs not compatible!!!!!' % (glyph_name, names[i], names[i+1])) continue if not m0: continue costs = [[_vlen(_vdiff(v0,v1)) for v1 in m1] for v0 in m0] matching, matching_cost = min_cost_perfect_bipartite_matching(costs) if matching != list(range(len(m0))): print('%s: %s+%s: Glyph has wrong contour/component order: %s' % (glyph_name, names[i], names[i+1], matching)) #, m0, m1) break upem = 2048 item_cost = round((matching_cost / len(m0) / len(m0[0])) ** .5 / upem * 100) hist.append(item_cost) threshold = 7 if item_cost >= threshold: print('%s: %s+%s: Glyph has very high cost: %d%%' % (glyph_name, names[i], names[i+1], item_cost)) except ValueError as e: print('%s: %s: math error %s; skipping glyph.' % (glyph_name, name, e)) print(contour.value) #raise
53,833
def _resolve_api_identifier_to_app_id(graph_client, api_identifier): """Resolves an API identifier to an app ID The identifier can be an object ID or service principal name for an existing service principal object. If no matching service principal object is found but the identifier is a Guid, it is assumed to be the app ID of an API which is not instantiated in the tenant. """ try: resource_sp = show_service_principal(graph_client.service_principals, api_identifier) return resource_sp.app_id except CLIError: if _is_guid(api_identifier): return api_identifier raise CLIError("No API was found for identifier '{}'.".format(api_identifier))
def _resolve_api_identifier_to_app_id(graph_client, api_identifier): """Resolves an API identifier to an app ID The identifier can be an object ID or service principal name, like `https://graph.microsoft.com` for an existing service principal object. If no matching service principal object is found but the identifier is a Guid, it is assumed to be the app ID of an API which is not instantiated in the tenant. """ try: resource_sp = show_service_principal(graph_client.service_principals, api_identifier) return resource_sp.app_id except CLIError: if _is_guid(api_identifier): return api_identifier raise CLIError("No API was found for identifier '{}'.".format(api_identifier))
31,914
def list_user_policies(args, aws_client): client = aws_client.aws_session( service=SERVICE, role_arn=args.get('roleArn'), role_session_name=args.get('roleSessionName'), role_session_duration=args.get('roleSessionDuration'), ) user_name = args.get('userName', "") marker = args.get('marker', None) limit, is_manual, page_size = get_limit(args) kwargs = { 'UserName': user_name, 'MaxItems': limit } if marker: kwargs.update({'Marker': marker}) response = client.list_user_policies(**kwargs) data = response.get('PolicyNames', []) marker = response.get('Marker', None) if is_manual and page_size and len(data) > page_size: data = data[-1 * args.get('page_size'):] policy_data = [] for policy in data: policy_data.append({ 'UserName': user_name, 'PolicyName': policy, }) ec = {'AWS.IAM.UserPolicies(val.PolicyName && val.UserName && val.PolicyName === obj.PolicyName && ' 'val.UserName === obj.UserName)': policy_data, 'AWS.IAM.Users(val.UserName === \'{}\').InlinePoliciesMarker'.format(user_name): marker} human_readable = tableToMarkdown('AWS IAM Policies for user {}'.format(user_name), headers=["PolicyNames"], headerTransform=pascalToSpace, t=data) return_outputs(human_readable, ec)
def list_user_policies(args, aws_client): client = aws_client.aws_session( service=SERVICE, role_arn=args.get('roleArn'), role_session_name=args.get('roleSessionName'), role_session_duration=args.get('roleSessionDuration'), ) user_name = args.get('userName', "") marker = args.get('marker', None) limit, is_manual, page_size = get_limit(args) kwargs = { 'UserName': user_name, 'MaxItems': limit } if marker: kwargs.update({'Marker': marker}) response = client.list_user_policies(**kwargs) data = response.get('PolicyNames', []) marker = response.get('Marker', None) if is_manual and page_size and len(data) > page_size: data = data[-1 * args.get('page_size'):] policy_data = [] for policy in data: policy_data.append({ 'UserName': user_name, 'PolicyName': policy, }) ec = {'AWS.IAM.UserPolicies(val.PolicyName && val.UserName && val.PolicyName === obj.PolicyName && ' 'val.UserName === obj.UserName)': policy_data, 'AWS.IAM.Users(val.UserName === \'{}\').InlinePoliciesMarker'.format(user_name): marker} human_readable = tableToMarkdown('AWS IAM Policies for user {}'.format(user_name), headers=["PolicyNames"], headerTransform=pascalToSpace, t=data) return_outputs(human_readable, ec, response)
23,567
def initialize_scheduler(): """ Start the scheduled background tasks. Re-schedule if interval settings changed. """ with SCHED_LOCK: # Check if scheduler should be started start_jobs = not len(SCHED.get_jobs()) # Update check github_minutes = CONFIG.CHECK_GITHUB_INTERVAL if CONFIG.CHECK_GITHUB_INTERVAL and CONFIG.CHECK_GITHUB else 0 pms_update_notify_hours = CONFIG.PMS_UPDATE_NOTIFY_INTERVAL if 1 <= CONFIG.PMS_UPDATE_NOTIFY_INTERVAL <= 999 else 24 schedule_job(versioncheck.check_update, 'Check GitHub for updates', hours=0, minutes=github_minutes, seconds=0, args=(bool(CONFIG.PLEXPY_AUTO_UPDATE), True)) backup_hours = CONFIG.BACKUP_INTERVAL if 1 <= CONFIG.BACKUP_INTERVAL <= 24 else 6 schedule_job(database.make_backup, 'Backup Tautulli database', hours=backup_hours, minutes=0, seconds=0, args=(True, True)) schedule_job(config.make_backup, 'Backup Tautulli config', hours=backup_hours, minutes=0, seconds=0, args=(True, True)) if WS_CONNECTED and CONFIG.PMS_IP and CONFIG.PMS_TOKEN: schedule_job(plextv.get_server_resources, 'Refresh Plex server URLs', hours=12 * (not bool(CONFIG.PMS_URL_MANUAL)), minutes=0, seconds=0) schedule_job(activity_pinger.check_server_access, 'Check for Plex remote access', hours=0, minutes=0, seconds=60 * bool(CONFIG.MONITOR_REMOTE_ACCESS)) schedule_job(activity_pinger.check_server_updates, 'Check for Plex updates', hours=pms_update_notify_hours * bool(CONFIG.MONITOR_PMS_UPDATES), minutes=0, seconds=0) # Refresh the users list and libraries list user_hours = CONFIG.REFRESH_USERS_INTERVAL if 1 <= CONFIG.REFRESH_USERS_INTERVAL <= 24 else 12 library_hours = CONFIG.REFRESH_LIBRARIES_INTERVAL if 1 <= CONFIG.REFRESH_LIBRARIES_INTERVAL <= 24 else 12 schedule_job(users.refresh_users, 'Refresh users list', hours=user_hours, minutes=0, seconds=0) schedule_job(libraries.refresh_libraries, 'Refresh libraries list', hours=library_hours, minutes=0, seconds=0) schedule_job(activity_pinger.connect_server, 'Check for server response', hours=0, minutes=0, seconds=0) schedule_job(web_socket.send_ping, 'Websocket ping', hours=0, minutes=0, seconds=10 * bool(CONFIG.WEBSOCKET_MONITOR_PING_PONG)) else: # Cancel all jobs schedule_job(plextv.get_server_resources, 'Refresh Plex server URLs', hours=0, minutes=0, seconds=0) schedule_job(activity_pinger.check_server_access, 'Check for Plex remote access', hours=0, minutes=0, seconds=0) schedule_job(activity_pinger.check_server_updates, 'Check for Plex updates', hours=0, minutes=0, seconds=0) schedule_job(users.refresh_users, 'Refresh users list', hours=0, minutes=0, seconds=0) schedule_job(libraries.refresh_libraries, 'Refresh libraries list', hours=0, minutes=0, seconds=0) # Schedule job to reconnect server schedule_job(activity_pinger.connect_server, 'Check for server response', hours=0, minutes=0, seconds=60, args=(False,)) schedule_job(web_socket.send_ping, 'Websocket ping', hours=0, minutes=0, seconds=0) # Start scheduler if start_jobs and len(SCHED.get_jobs()): try: SCHED.start() except Exception as e: logger.error(e)
def initialize_scheduler(): """ Start the scheduled background tasks. Re-schedule if interval settings changed. """ with SCHED_LOCK: # Check if scheduler should be started start_jobs = not len(SCHED.get_jobs()) # Update check github_minutes = CONFIG.CHECK_GITHUB_INTERVAL if CONFIG.CHECK_GITHUB_INTERVAL and CONFIG.CHECK_GITHUB else 0 pms_update_check_hours = CONFIG.PMS_UPDATE_CHECK_INTERVAL if 1 <= CONFIG.PMS_UPDATE_CHECK_INTERVAL else 24 schedule_job(versioncheck.check_update, 'Check GitHub for updates', hours=0, minutes=github_minutes, seconds=0, args=(bool(CONFIG.PLEXPY_AUTO_UPDATE), True)) backup_hours = CONFIG.BACKUP_INTERVAL if 1 <= CONFIG.BACKUP_INTERVAL <= 24 else 6 schedule_job(database.make_backup, 'Backup Tautulli database', hours=backup_hours, minutes=0, seconds=0, args=(True, True)) schedule_job(config.make_backup, 'Backup Tautulli config', hours=backup_hours, minutes=0, seconds=0, args=(True, True)) if WS_CONNECTED and CONFIG.PMS_IP and CONFIG.PMS_TOKEN: schedule_job(plextv.get_server_resources, 'Refresh Plex server URLs', hours=12 * (not bool(CONFIG.PMS_URL_MANUAL)), minutes=0, seconds=0) schedule_job(activity_pinger.check_server_access, 'Check for Plex remote access', hours=0, minutes=0, seconds=60 * bool(CONFIG.MONITOR_REMOTE_ACCESS)) schedule_job(activity_pinger.check_server_updates, 'Check for Plex updates', hours=pms_update_notify_hours * bool(CONFIG.MONITOR_PMS_UPDATES), minutes=0, seconds=0) # Refresh the users list and libraries list user_hours = CONFIG.REFRESH_USERS_INTERVAL if 1 <= CONFIG.REFRESH_USERS_INTERVAL <= 24 else 12 library_hours = CONFIG.REFRESH_LIBRARIES_INTERVAL if 1 <= CONFIG.REFRESH_LIBRARIES_INTERVAL <= 24 else 12 schedule_job(users.refresh_users, 'Refresh users list', hours=user_hours, minutes=0, seconds=0) schedule_job(libraries.refresh_libraries, 'Refresh libraries list', hours=library_hours, minutes=0, seconds=0) schedule_job(activity_pinger.connect_server, 'Check for server response', hours=0, minutes=0, seconds=0) schedule_job(web_socket.send_ping, 'Websocket ping', hours=0, minutes=0, seconds=10 * bool(CONFIG.WEBSOCKET_MONITOR_PING_PONG)) else: # Cancel all jobs schedule_job(plextv.get_server_resources, 'Refresh Plex server URLs', hours=0, minutes=0, seconds=0) schedule_job(activity_pinger.check_server_access, 'Check for Plex remote access', hours=0, minutes=0, seconds=0) schedule_job(activity_pinger.check_server_updates, 'Check for Plex updates', hours=0, minutes=0, seconds=0) schedule_job(users.refresh_users, 'Refresh users list', hours=0, minutes=0, seconds=0) schedule_job(libraries.refresh_libraries, 'Refresh libraries list', hours=0, minutes=0, seconds=0) # Schedule job to reconnect server schedule_job(activity_pinger.connect_server, 'Check for server response', hours=0, minutes=0, seconds=60, args=(False,)) schedule_job(web_socket.send_ping, 'Websocket ping', hours=0, minutes=0, seconds=0) # Start scheduler if start_jobs and len(SCHED.get_jobs()): try: SCHED.start() except Exception as e: logger.error(e)
45,631
def create_local_files(data, file_name): """Create local .JSON file and .CSV files.""" data.to_csv("{}.csv".format(file_name), encoding="utf-8", index=False) data = data.to_dict(orient='records') json_file = open("{}.json".format(file_name), 'w') out = json.dumps(data) json_file.write(out)
def create_local_files(data, file_name): """Create local JSON and CSV files.""" data.to_csv("{}.csv".format(file_name), encoding="utf-8", index=False) data = data.to_dict(orient='records') json_file = open("{}.json".format(file_name), 'w') out = json.dumps(data) json_file.write(out)
57,882
def invite_member(args): try: client = aws_session( region=args.get('region'), roleArn=args.get('roleArn'), roleSessionName=args.get('roleSessionName'), roleSessionDuration=args.get('roleSessionDuration'), ) accountIds = [] accountIds.append(args.get('accountId')) response = client.invite_members( DetectorId=args.get('detectorId'), AccountIds=accountIds ) unprocessed_accounts = response.get('UnprocessedAccounts', []) ec = {"AWS.GuardDuty.InviteMember.UnprocessedAccounts": unprocessed_accounts} \ if unprocessed_accounts else None return create_entry('AWS GuardDuty Invite Member', unprocessed_accounts, ec) except Exception as e: return raise_error(e)
def invite_member(args): try: client = aws_session( region=args.get('region'), roleArn=args.get('roleArn'), roleSessionName=args.get('roleSessionName'), roleSessionDuration=args.get('roleSessionDuration'), ) account_ids = argToList(args.get('accountId')) response = client.invite_members( DetectorId=args.get('detectorId'), AccountIds=account_ids ) unprocessed_accounts = response.get('UnprocessedAccounts', []) ec = {"AWS.GuardDuty.InviteMember.UnprocessedAccounts": unprocessed_accounts} \ if unprocessed_accounts else None return create_entry('AWS GuardDuty Invite Member', unprocessed_accounts, ec) except Exception as e: return raise_error(e)
41,483
def dedupe_parameters(parameters): duplicates = {} for p in parameters: duplicates.setdefault(p['name'], []).append(p) for pname in duplicates.keys(): parameter_list = duplicates[pname] if len(parameter_list) == 1: continue elif any(p != parameter_list[0] for p in parameter_list[1:]): for p in parameter_list: log.warning(p) raise RuntimeError( 'cannot import workspace due to incompatible parameter configurations for {0:s}.'.format( pname ) ) # no errors raised, de-dupe and return return list({v['name']: v for v in parameters}.values())
def dedupe_parameters(parameters): duplicates = {} for p in parameters: duplicates.setdefault(p['name'], []).append(p) for pname in duplicates.keys(): parameter_list = duplicates[pname] if len(parameter_list) == 1: continue elif any(p != parameter_list[0] for p in parameter_list[1:]): for p in parameter_list: log.warning(p) raise RuntimeError( 'cannot import workspace due to incompatible parameter configurations for {0:s}.'.format( parname ) ) # no errors raised, de-dupe and return return list({v['name']: v for v in parameters}.values())
23,842
def environment_wrap_command(env_filenames, env_folder, cmd, subsystem=None, accept=None): if not env_filenames: return cmd filenames = [env_filenames] if not isinstance(env_filenames, list) else env_filenames bats, shs, ps1s = [], [], [] accept = accept or ("ps1", "bat", "sh") # TODO: This implemantation is dirty, improve it for f in filenames: f = f if os.path.isabs(f) else os.path.join(env_folder, f) if f.lower().endswith(".sh"): if os.path.isfile(f) and "sh" in accept: f = subsystem_path(subsystem, f) shs.append(f) elif f.lower().endswith(".bat"): if os.path.isfile(f) and "bat" in accept: bats.append(f) elif f.lower().endswith(".ps1") and "ps1" in accept: if os.path.isfile(f): ps1s.append(f) else: # Simple name like "conanrunenv" path_bat = "{}.bat".format(f) path_sh = "{}.sh".format(f) path_ps1 = "{}.ps1".format(f) if os.path.isfile(path_bat) and "bat" in accept: bats.append(path_bat) if os.path.isfile(path_ps1) and "ps1" in accept: ps1s.append(path_ps1) if os.path.isfile(path_sh) and "sh" in accept: path_sh = subsystem_path(subsystem, path_sh) shs.append(path_sh) if bool(bats) + bool(shs) + bool(ps1s) > 1: raise ConanException("Cannot wrap command with different envs," " {} - {} - {}".format(bats, shs, ps1s)) if bats: launchers = " && ".join('"{}"'.format(b) for b in bats) return '{} && {}'.format(launchers, cmd) elif shs: launchers = " && ".join('. "{}"'.format(f) for f in shs) return '{} && {}'.format(launchers, cmd) elif ps1s: # TODO: at the moment it only works with path without spaces launchers = " ; ".join('{}'.format(f) for f in ps1s) return 'powershell.exe {} ; cmd /c {}'.format(launchers, cmd) else: return cmd
def environment_wrap_command(env_filenames, env_folder, cmd, subsystem=None, accepted_extensions=None): if not env_filenames: return cmd filenames = [env_filenames] if not isinstance(env_filenames, list) else env_filenames bats, shs, ps1s = [], [], [] accept = accept or ("ps1", "bat", "sh") # TODO: This implemantation is dirty, improve it for f in filenames: f = f if os.path.isabs(f) else os.path.join(env_folder, f) if f.lower().endswith(".sh"): if os.path.isfile(f) and "sh" in accept: f = subsystem_path(subsystem, f) shs.append(f) elif f.lower().endswith(".bat"): if os.path.isfile(f) and "bat" in accept: bats.append(f) elif f.lower().endswith(".ps1") and "ps1" in accept: if os.path.isfile(f): ps1s.append(f) else: # Simple name like "conanrunenv" path_bat = "{}.bat".format(f) path_sh = "{}.sh".format(f) path_ps1 = "{}.ps1".format(f) if os.path.isfile(path_bat) and "bat" in accept: bats.append(path_bat) if os.path.isfile(path_ps1) and "ps1" in accept: ps1s.append(path_ps1) if os.path.isfile(path_sh) and "sh" in accept: path_sh = subsystem_path(subsystem, path_sh) shs.append(path_sh) if bool(bats) + bool(shs) + bool(ps1s) > 1: raise ConanException("Cannot wrap command with different envs," " {} - {} - {}".format(bats, shs, ps1s)) if bats: launchers = " && ".join('"{}"'.format(b) for b in bats) return '{} && {}'.format(launchers, cmd) elif shs: launchers = " && ".join('. "{}"'.format(f) for f in shs) return '{} && {}'.format(launchers, cmd) elif ps1s: # TODO: at the moment it only works with path without spaces launchers = " ; ".join('{}'.format(f) for f in ps1s) return 'powershell.exe {} ; cmd /c {}'.format(launchers, cmd) else: return cmd
32,471
def handle_incoming_closing_incident(incident_data): closing_entry = {} # type: Dict if incident_data.get('status') in XDR_RESOLVED_STATUS_TO_XSOAR: demisto.debug(f"Closing XDR issue {incident_data.get('incident_id')}") closing_entry = { 'Type': EntryType.NOTE, 'Contents': { 'dbotIncidentClose': True, 'closeReason': XDR_RESOLVED_STATUS_TO_XSOAR.get(incident_data.get("status")), 'closeNotes': incident_data.get('resolve_comment') }, 'ContentsFormat': EntryFormat.JSON } incident_data['closeReason'] = XDR_RESOLVED_STATUS_TO_XSOAR.get(incident_data.get("status")) incident_data['closeNotes'] = MIRROR_IN_CLOSE_REASON + f'\n{incident_data.get("resolve_comment")}' if incident_data.get('status') == 'resolved_known_issue': close_notes = 'Known Issue.\n' + incident_data.get('closeNotes', '') closing_entry['Contents']['closeNotes'] = close_notes incident_data['closeNotes'] = close_notes return closing_entry
def handle_incoming_closing_incident(incident_data): closing_entry = {} # type: Dict if incident_data.get('status') in XDR_RESOLVED_STATUS_TO_XSOAR: demisto.debug(f"Closing XDR issue {incident_data.get('incident_id')}") closing_entry = { 'Type': EntryType.NOTE, 'Contents': { 'dbotIncidentClose': True, 'closeReason': XDR_RESOLVED_STATUS_TO_XSOAR.get(incident_data.get("status")), 'closeNotes': incident_data.get('resolve_comment') }, 'ContentsFormat': EntryFormat.JSON } incident_data['closeReason'] = XDR_RESOLVED_STATUS_TO_XSOAR.get(incident_data.get("status")) incident_data['closeNotes'] = '{MIRROR_IN_CLOSE_REASON}\n{incident_data.get("resolve_comment")}' if incident_data.get('status') == 'resolved_known_issue': close_notes = 'Known Issue.\n' + incident_data.get('closeNotes', '') closing_entry['Contents']['closeNotes'] = close_notes incident_data['closeNotes'] = close_notes return closing_entry
40,150
def _get_test_config_tuple(defaults: Dict = None) -> Tuple[Config, ConfigParser]: """Returns a tuple containing a `config.Config` instance and a `ConfigParser` instance. Both instances are equivalent and the latter is legacy only. The "docker-mount-base-dir" and "firmware-file-storage-directory" in the section "data-storage" are created and must be cleaned up manually. :arg defaults: Sections to overwrite """ config.load_config() docker_mount_base_dir = create_docker_mount_base_dir() firmware_file_storage_directory = Path(tempfile.mkdtemp()) # This dict must exactly match the one that a ConfigParser instance would # read from the config file sections = { 'data-storage': { 'postgres-server': 'localhost', 'postgres-port': '5432', 'postgres-database': 'fact_test', 'postgres-test-database': 'fact_test', 'postgres-ro-user': config.cfg.data_storage.postgres_ro_user, 'postgres-ro-pw': config.cfg.data_storage.postgres_ro_pw, 'postgres-rw-user': config.cfg.data_storage.postgres_rw_user, 'postgres-rw-pw': config.cfg.data_storage.postgres_rw_pw, 'postgres-del-user': config.cfg.data_storage.postgres_del_user, 'postgres-del-pw': config.cfg.data_storage.postgres_del_pw, 'postgres-admin-user': config.cfg.data_storage.postgres_del_user, 'postgres-admin-pw': config.cfg.data_storage.postgres_del_pw, 'redis-fact-db': config.cfg.data_storage.redis_test_db, # Note: This is unused in testing 'redis-test-db': config.cfg.data_storage.redis_test_db, # Note: This is unused in production 'redis-host': config.cfg.data_storage.redis_host, 'redis-port': config.cfg.data_storage.redis_port, 'firmware-file-storage-directory': str(firmware_file_storage_directory), 'user-database': 'sqlite:////media/data/fact_auth_data/fact_users.db', 'password-salt': '1234', 'structural-threshold': '40', # TODO 'temp-dir-path': '/tmp', 'docker-mount-base-dir': str(docker_mount_base_dir), 'variety-path': 'bin/variety.js', }, 'database': { 'ajax-stats-reload-time': '10000', # TODO 'number-of-latest-firmwares-to-display': '10', 'results-per-page': '10' }, 'default-plugins': { 'default': '', 'minimal': '', }, 'expert-settings': { 'authentication': 'false', 'block-delay': '0.1', 'communication-timeout': '60', 'intercom-poll-delay': '0.5', 'nginx': 'false', 'radare2-host': 'localhost', 'ssdeep-ignore': '1', 'throw-exceptions': 'false', 'unpack-threshold': '0.8', 'unpack_throttle_limit': '50' }, 'logging': { 'logfile': '/tmp/fact_main.log', 'loglevel': 'WARNING', }, 'unpack': { 'max-depth': '10', 'memory-limit': '2048', 'threads': '4', 'whitelist': '' }, 'statistics': { 'max_elements_per_chart': '10' }, } # Update recursively for section_name in defaults if defaults else {}: sections.setdefault(section_name, {}).update(defaults[section_name]) configparser_cfg = ConfigParser() configparser_cfg.read_dict(sections) config._parse_dict(sections) cfg = Config(**sections) return cfg, configparser_cfg
def _get_test_config_tuple(defaults: dict | None = None) -> tuple[Config, ConfigParser]: """Returns a tuple containing a `config.Config` instance and a `ConfigParser` instance. Both instances are equivalent and the latter is legacy only. The "docker-mount-base-dir" and "firmware-file-storage-directory" in the section "data-storage" are created and must be cleaned up manually. :arg defaults: Sections to overwrite """ config.load_config() docker_mount_base_dir = create_docker_mount_base_dir() firmware_file_storage_directory = Path(tempfile.mkdtemp()) # This dict must exactly match the one that a ConfigParser instance would # read from the config file sections = { 'data-storage': { 'postgres-server': 'localhost', 'postgres-port': '5432', 'postgres-database': 'fact_test', 'postgres-test-database': 'fact_test', 'postgres-ro-user': config.cfg.data_storage.postgres_ro_user, 'postgres-ro-pw': config.cfg.data_storage.postgres_ro_pw, 'postgres-rw-user': config.cfg.data_storage.postgres_rw_user, 'postgres-rw-pw': config.cfg.data_storage.postgres_rw_pw, 'postgres-del-user': config.cfg.data_storage.postgres_del_user, 'postgres-del-pw': config.cfg.data_storage.postgres_del_pw, 'postgres-admin-user': config.cfg.data_storage.postgres_del_user, 'postgres-admin-pw': config.cfg.data_storage.postgres_del_pw, 'redis-fact-db': config.cfg.data_storage.redis_test_db, # Note: This is unused in testing 'redis-test-db': config.cfg.data_storage.redis_test_db, # Note: This is unused in production 'redis-host': config.cfg.data_storage.redis_host, 'redis-port': config.cfg.data_storage.redis_port, 'firmware-file-storage-directory': str(firmware_file_storage_directory), 'user-database': 'sqlite:////media/data/fact_auth_data/fact_users.db', 'password-salt': '1234', 'structural-threshold': '40', # TODO 'temp-dir-path': '/tmp', 'docker-mount-base-dir': str(docker_mount_base_dir), 'variety-path': 'bin/variety.js', }, 'database': { 'ajax-stats-reload-time': '10000', # TODO 'number-of-latest-firmwares-to-display': '10', 'results-per-page': '10' }, 'default-plugins': { 'default': '', 'minimal': '', }, 'expert-settings': { 'authentication': 'false', 'block-delay': '0.1', 'communication-timeout': '60', 'intercom-poll-delay': '0.5', 'nginx': 'false', 'radare2-host': 'localhost', 'ssdeep-ignore': '1', 'throw-exceptions': 'false', 'unpack-threshold': '0.8', 'unpack_throttle_limit': '50' }, 'logging': { 'logfile': '/tmp/fact_main.log', 'loglevel': 'WARNING', }, 'unpack': { 'max-depth': '10', 'memory-limit': '2048', 'threads': '4', 'whitelist': '' }, 'statistics': { 'max_elements_per_chart': '10' }, } # Update recursively for section_name in defaults if defaults else {}: sections.setdefault(section_name, {}).update(defaults[section_name]) configparser_cfg = ConfigParser() configparser_cfg.read_dict(sections) config._parse_dict(sections) cfg = Config(**sections) return cfg, configparser_cfg
1,202
def test_is_fancy(): slices = (2, [2], [2, 3], Ellipsis, np.array(2), np.array((2, 3))) for slice0 in slices: _check_slice(slice0) _check_slice((slice0,)) # tuple is same # Double ellipsis illegal in np 1.12dev - set up check for that case maybe_bad = slice0 is Ellipsis for slice1 in slices: if maybe_bad and slice1 is Ellipsis: continue _check_slice((slice0, slice1)) assert not is_fancy((None,)) assert not is_fancy((None, 1)) assert not is_fancy((1, None)) # Chack that actual False returned (rather than falsey) assert is_fancy(1) == False
def test_is_fancy(): slices = (2, [2], [2, 3], Ellipsis, np.array(2), np.array((2, 3))) for slice0 in slices: _check_slice(slice0) _check_slice((slice0,)) # tuple is same # Double ellipsis illegal in np 1.12dev - set up check for that case maybe_bad = slice0 is Ellipsis for slice1 in slices: if maybe_bad and slice1 is Ellipsis: continue _check_slice((slice0, slice1)) assert not is_fancy((None,)) assert not is_fancy((None, 1)) assert not is_fancy((1, None)) # Chack that actual False returned (rather than falsey) assert is_fancy(1) is False
34,652
def _generate_lookup_regex( lookup_table: Dict[Text, Union[Text, List[Text]]], use_word_boundaries: bool = True ) -> Text: r"""Creates a regex pattern from the given lookup table. The lookup table is either a file or a list of entries. Args: lookup_table: The lookup table. use_word_boundaries: If True add `\b` around the regex expression for each lookup table expressions. Returns: The regex pattern. """ lookup_elements = lookup_table["elements"] # if it's a list, it should be the elements directly if isinstance(lookup_elements, list): elements_to_regex = lookup_elements # otherwise it's a file path. else: elements_to_regex = read_lookup_table_file(lookup_elements) # sanitize the regex, escape special characters elements_sanitized = [re.escape(e) for e in elements_to_regex] if use_word_boundaries: # regex matching elements with word boundaries on either side return "(\\b" + "\\b|\\b".join(elements_sanitized) + "\\b)" else: return "(" + "|".join(elements_sanitized) + ")"
def _generate_lookup_regex( lookup_table: Dict[Text, Union[Text, List[Text]]], use_word_boundaries: bool = True ) -> Text: """Creates a regex pattern from the given lookup table. The lookup table is either a file or a list of entries. Args: lookup_table: The lookup table. use_word_boundaries: If True add `\b` around the regex expression for each lookup table expressions. Returns: The regex pattern. """ lookup_elements = lookup_table["elements"] # if it's a list, it should be the elements directly if isinstance(lookup_elements, list): elements_to_regex = lookup_elements # otherwise it's a file path. else: elements_to_regex = read_lookup_table_file(lookup_elements) # sanitize the regex, escape special characters elements_sanitized = [re.escape(e) for e in elements_to_regex] if use_word_boundaries: # regex matching elements with word boundaries on either side return "(\\b" + "\\b|\\b".join(elements_sanitized) + "\\b)" else: return "(" + "|".join(elements_sanitized) + ")"
15,432
def test_auto_purge(hass_recorder): """Test saving and restoring a state.""" hass = hass_recorder() original_tz = dt_util.DEFAULT_TIME_ZONE tz = dt_util.get_time_zone("Europe/Copenhagen") dt_util.set_default_time_zone(tz) now = dt_util.utcnow() test_time = now + timedelta(days=365) async_fire_time_changed(hass, test_time) with patch( "homeassistant.components.recorder.purge.purge_old_data", return_value=True ) as purge_old_data: for delta in (-1, 0, 1): async_fire_time_changed(hass, test_time + timedelta(seconds=delta)) hass.block_till_done() hass.data[DATA_INSTANCE].block_till_done() assert len(purge_old_data.mock_calls) == 1 dt_util.set_default_time_zone(original_tz)
def test_auto_purge(hass_recorder): """Test saving and restoring a state.""" hass = hass_recorder() original_tz = dt_util.DEFAULT_TIME_ZONE tz = dt_util.get_time_zone("Europe/Copenhagen") dt_util.set_default_time_zone(tz) now = dt_util.utcnow() test_time = now + timedelta(days=365) fire_time_changed(hass, test_time) with patch( "homeassistant.components.recorder.purge.purge_old_data", return_value=True ) as purge_old_data: for delta in (-1, 0, 1): async_fire_time_changed(hass, test_time + timedelta(seconds=delta)) hass.block_till_done() hass.data[DATA_INSTANCE].block_till_done() assert len(purge_old_data.mock_calls) == 1 dt_util.set_default_time_zone(original_tz)
11,361
def get_client_credential(certificate_path, password=None, certificate_data=None, send_certificate_chain=False, **_): # type: (Optional[str], Optional[Union[bytes, str]], Optional[bytes], bool, **Any) -> dict """Load a certificate from a filesystem path or bytes, return it as a dict suitable for msal.ClientApplication""" if certificate_path: if certificate_data: raise ValueError('Please specify either "certificate_path" or "certificate_data"') with open(certificate_path, "rb") as f: certificate_data = f.read() elif not certificate_data: raise ValueError('CertificateCredential requires a value for "certificate_path" or "certificate_data"') if isinstance(password, six.text_type): password = password.encode(encoding="utf-8") private_key = serialization.load_pem_private_key(certificate_data, password=password, backend=default_backend()) if not isinstance(private_key, RSAPrivateKey): raise ValueError("CertificateCredential requires an RSA private key because it uses RS256 for signing") cert = x509.load_pem_x509_certificate(certificate_data, default_backend()) fingerprint = cert.fingerprint(hashes.SHA1()) # nosec client_credential = {"private_key": certificate_data, "thumbprint": hexlify(fingerprint).decode("utf-8")} if password: client_credential["passphrase"] = password if send_certificate_chain: try: # the JWT needs the whole chain but load_pem_x509_certificate deserializes only the signing cert chain = extract_cert_chain(certificate_data) client_credential["public_certificate"] = six.ensure_str(chain) except ValueError as ex: # we shouldn't land here--cryptography already loaded the cert and would have raised if it were malformed six.raise_from(ValueError("Malformed certificate"), ex) return client_credential
def get_client_credential(certificate_path, password=None, certificate_data=None, send_certificate_chain=False, **_): # type: (Optional[str], Optional[Union[bytes, str]], Optional[bytes], bool, **Any) -> dict """Load a certificate from a filesystem path or bytes, return it as a dict suitable for msal.ClientApplication""" if certificate_path: if certificate_data: raise ValueError('Please specify exactly one of either "certificate_path" or "certificate_data"') with open(certificate_path, "rb") as f: certificate_data = f.read() elif not certificate_data: raise ValueError('CertificateCredential requires a value for "certificate_path" or "certificate_data"') if isinstance(password, six.text_type): password = password.encode(encoding="utf-8") private_key = serialization.load_pem_private_key(certificate_data, password=password, backend=default_backend()) if not isinstance(private_key, RSAPrivateKey): raise ValueError("CertificateCredential requires an RSA private key because it uses RS256 for signing") cert = x509.load_pem_x509_certificate(certificate_data, default_backend()) fingerprint = cert.fingerprint(hashes.SHA1()) # nosec client_credential = {"private_key": certificate_data, "thumbprint": hexlify(fingerprint).decode("utf-8")} if password: client_credential["passphrase"] = password if send_certificate_chain: try: # the JWT needs the whole chain but load_pem_x509_certificate deserializes only the signing cert chain = extract_cert_chain(certificate_data) client_credential["public_certificate"] = six.ensure_str(chain) except ValueError as ex: # we shouldn't land here--cryptography already loaded the cert and would have raised if it were malformed six.raise_from(ValueError("Malformed certificate"), ex) return client_credential
35,287
def fista(AtB, pseudo_inverse, x=None, n_iter_max=100, non_negative=True, gradient_step=None, sparsity_coefficient=None): """ Fast Iterative Shrinkage Thresholding Algorithm (FISTA) Computes and approximate solution for Ax=b linear system. Parameters ---------- AtB: ndarray Pre-computed product of the transposed of A and B. pseudo_inverse: ndarray Pre-computed product of the transposed of A and A. x: initialized array Default: None n_iter_max : int Maximum number of iteration Default: 100 non_negative : bool, default is False if True, result will be non-negative gradient_step : float sparsity_coefficient : float or None Returns ------- x : Updated ndarray Reference ---------- [1] : Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences, 2(1), 183-202. """ if sparsity_coefficient[-1] is None: sparse = 0 else: sparse = sparsity_coefficient[-1] if gradient_step is None: gradient_step = 0.001 if x is None: x = tl.zeros([tl.shape(pseudo_inverse)[0], tl.shape(AtB)[1]]) # Parameters momentum_old = tl.tensor(1.0) norm_0 = 0.0 x_upd = tl.copy(x) for iteration in range(n_iter_max): gradient = - AtB + tl.tenalg.multi_mode_dot(x_upd, pseudo_inverse, transpose=False) + sparse if non_negative is True: delta_x = tl.where(gradient_step * gradient < x, gradient_step * gradient, x_upd) else: delta_x = gradient_step * gradient xnew = x_upd - delta_x momentum = (1 + tl.sqrt(1 + 4 * momentum_old ** 2)) / 2 x_upd = xnew + ((momentum_old - 1) / momentum) * (xnew - x) momentum_old = momentum x = tl.copy(xnew) norm = tl.norm(delta_x) if iteration == 1: norm_0 = norm if norm < 0.01 * norm_0: break return x
def fista(AtB, pseudo_inverse, x=None, n_iter_max=100, non_negative=True, gradient_step=None, sparsity_coefficient=None): """ Fast Iterative Shrinkage Thresholding Algorithm (FISTA) Computes and approximate solution for Ax=b linear system. Parameters ---------- AtB: ndarray Pre-computed product of the transposed of A and B. pseudo_inverse: ndarray Pre-computed product of the transposed of A and A. x: initialized array Default: None n_iter_max : int Maximum number of iteration Default: 100 non_negative : bool, default is False if True, result will be non-negative gradient_step : float sparsity_coefficient : float or None Returns ------- x : Updated ndarray Reference ---------- [1] : Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences, 2(1), 183-202. """ if sparsity_coefficient[-1] is None: sparse = 0 else: sparse = sparsity_coefficient[-1] if gradient_step is None: gradient_step = 0.001 if x is None: x = tl.zeros([tl.shape(pseudo_inverse)[0], tl.shape(AtB)[1]]) # Parameters momentum_old = tl.tensor(1.0) norm_0 = 0.0 x_upd = tl.copy(x) for iteration in range(n_iter_max): gradient = - AtB + tl.tenalg.multi_mode_dot(x_upd, pseudo_inverse, transpose=False) + sparse if non_negative is True: delta_x = tl.where(gradient_step * gradient < x, gradient_step * gradient, x_upd) else: delta_x = gradient_step * gradient x_new = x_update - gradient_step*x_gradient momentum = (1 + tl.sqrt(1 + 4 * momentum_old ** 2)) / 2 x_upd = xnew + ((momentum_old - 1) / momentum) * (xnew - x) momentum_old = momentum x = tl.copy(xnew) norm = tl.norm(delta_x) if iteration == 1: norm_0 = norm if norm < 0.01 * norm_0: break return x
14,132
def clip(gdf, mask, keep_geom_type=False): """Clip points, lines, or polygon geometries to the mask extent. Both layers must be in the same Coordinate Reference System (CRS). The `gdf` will be clipped to the full extent of the clip object. If there are multiple polygons in mask, data from `gdf` will be clipped to the total boundary of all polygons in mask. If the `mask` is a tuple of `(minx, miny, maxx, maxy)`, a faster rectangle clipping algorithm will be used. Note that this can lead to slightly different results in edge cases, e.g. if a line would be reduced to a point, this point might not be returned. Parameters ---------- gdf : GeoDataFrame or GeoSeries Vector layer (point, line, polygon) to be clipped to mask. mask : GeoDataFrame, GeoSeries, (Multi)Polygon, tuple Polygon vector layer used to clip `gdf`. The mask's geometry is dissolved into one geometric feature and intersected with `gdf`. If the mask is a tuple of `(minx, miny, maxx, maxy)`, `clip` will use a faster rectangle clipping (`.clip_by_rect()`), possibly leading to slightly different results. keep_geom_type : boolean, default False If True, return only geometries of original type in case of intersection resulting in multiple geometry types or GeometryCollections. If False, return all resulting geometries (potentially mixed-types). Returns ------- GeoDataFrame or GeoSeries Vector data (points, lines, polygons) from `gdf` clipped to polygon boundary from mask. See also -------- GeoDataFrame.clip : equivalent GeoDataFrame method GeoSeries.clip : equivalent GeoSeries method Examples -------- Clip points (global cities) with a polygon (the South American continent): >>> world = geopandas.read_file( ... geopandas.datasets.get_path('naturalearth_lowres')) >>> south_america = world[world['continent'] == "South America"] >>> capitals = geopandas.read_file( ... geopandas.datasets.get_path('naturalearth_cities')) >>> capitals.shape (202, 2) >>> sa_capitals = geopandas.clip(capitals, south_america) >>> sa_capitals.shape (12, 2) """ if not isinstance(gdf, (GeoDataFrame, GeoSeries)): raise TypeError( "'gdf' should be GeoDataFrame or GeoSeries, got {}".format(type(gdf)) ) if not isinstance(mask, (GeoDataFrame, GeoSeries, Polygon, MultiPolygon, tuple)): raise TypeError( "'mask' should be GeoDataFrame, GeoSeries," f"(Multi)Polygon or 4 element tuple, got {type(mask)}" ) if isinstance(mask, tuple) and len(mask) != 4: raise TypeError( "If 'mask' is a tuple, it must have four values (minx, miny, maxx, maxy)" ) if isinstance(mask, (GeoDataFrame, GeoSeries)): if not _check_crs(gdf, mask): _crs_mismatch_warn(gdf, mask, stacklevel=3) if isinstance(mask, (GeoDataFrame, GeoSeries)): box_mask = mask.total_bounds elif isinstance(mask, tuple): box_mask = mask else: box_mask = mask.bounds box_gdf = gdf.total_bounds if not ( ((box_mask[0] <= box_gdf[2]) and (box_gdf[0] <= box_mask[2])) and ((box_mask[1] <= box_gdf[3]) and (box_gdf[1] <= box_mask[3])) ): return gdf.iloc[:0] if isinstance(mask, (GeoDataFrame, GeoSeries)): combined_mask = mask.geometry.unary_union else: combined_mask = mask clipped = _clip_gdf_with_mask(gdf, combined_mask) if keep_geom_type: geomcoll_concat = (clipped.geom_type == "GeometryCollection").any() geomcoll_orig = (gdf.geom_type == "GeometryCollection").any() new_collection = geomcoll_concat and not geomcoll_orig if geomcoll_orig: warnings.warn( "keep_geom_type can not be called on a " "GeoDataFrame with GeometryCollection." ) else: polys = ["Polygon", "MultiPolygon"] lines = ["LineString", "MultiLineString", "LinearRing"] points = ["Point", "MultiPoint"] # Check that the gdf for multiple geom types (points, lines and/or polys) orig_types_total = sum( [ gdf.geom_type.isin(polys).any(), gdf.geom_type.isin(lines).any(), gdf.geom_type.isin(points).any(), ] ) # Check how many geometry types are in the clipped GeoDataFrame clip_types_total = sum( [ clipped.geom_type.isin(polys).any(), clipped.geom_type.isin(lines).any(), clipped.geom_type.isin(points).any(), ] ) # Check there aren't any new geom types in the clipped GeoDataFrame more_types = orig_types_total < clip_types_total if orig_types_total > 1: warnings.warn( "keep_geom_type can not be called on a mixed type GeoDataFrame." ) elif new_collection or more_types: orig_type = gdf.geom_type.iloc[0] if new_collection: clipped = clipped.explode(index_parts=False) if orig_type in polys: clipped = clipped.loc[clipped.geom_type.isin(polys)] elif orig_type in lines: clipped = clipped.loc[clipped.geom_type.isin(lines)] return clipped
def clip(gdf, mask, keep_geom_type=False): """Clip points, lines, or polygon geometries to the mask extent. Both layers must be in the same Coordinate Reference System (CRS). The `gdf` will be clipped to the full extent of the clip object. If there are multiple polygons in mask, data from `gdf` will be clipped to the total boundary of all polygons in mask. If the `mask` is a tuple of `(minx, miny, maxx, maxy)`, a faster rectangle clipping algorithm will be used. Note that this can lead to slightly different results in edge cases, e.g. if a line would be reduced to a point, this point might not be returned. Parameters ---------- gdf : GeoDataFrame or GeoSeries Vector layer (point, line, polygon) to be clipped to mask. mask : GeoDataFrame, GeoSeries, (Multi)Polygon, tuple Polygon vector layer used to clip `gdf`. The mask's geometry is dissolved into one geometric feature and intersected with `gdf`. If the mask is a tuple of `(minx, miny, maxx, maxy)`, `clip` will use a faster rectangle clipping (:meth:`~GeoSeries.clip_by_rect`), possibly leading to slightly different results. keep_geom_type : boolean, default False If True, return only geometries of original type in case of intersection resulting in multiple geometry types or GeometryCollections. If False, return all resulting geometries (potentially mixed-types). Returns ------- GeoDataFrame or GeoSeries Vector data (points, lines, polygons) from `gdf` clipped to polygon boundary from mask. See also -------- GeoDataFrame.clip : equivalent GeoDataFrame method GeoSeries.clip : equivalent GeoSeries method Examples -------- Clip points (global cities) with a polygon (the South American continent): >>> world = geopandas.read_file( ... geopandas.datasets.get_path('naturalearth_lowres')) >>> south_america = world[world['continent'] == "South America"] >>> capitals = geopandas.read_file( ... geopandas.datasets.get_path('naturalearth_cities')) >>> capitals.shape (202, 2) >>> sa_capitals = geopandas.clip(capitals, south_america) >>> sa_capitals.shape (12, 2) """ if not isinstance(gdf, (GeoDataFrame, GeoSeries)): raise TypeError( "'gdf' should be GeoDataFrame or GeoSeries, got {}".format(type(gdf)) ) if not isinstance(mask, (GeoDataFrame, GeoSeries, Polygon, MultiPolygon, tuple)): raise TypeError( "'mask' should be GeoDataFrame, GeoSeries," f"(Multi)Polygon or 4 element tuple, got {type(mask)}" ) if isinstance(mask, tuple) and len(mask) != 4: raise TypeError( "If 'mask' is a tuple, it must have four values (minx, miny, maxx, maxy)" ) if isinstance(mask, (GeoDataFrame, GeoSeries)): if not _check_crs(gdf, mask): _crs_mismatch_warn(gdf, mask, stacklevel=3) if isinstance(mask, (GeoDataFrame, GeoSeries)): box_mask = mask.total_bounds elif isinstance(mask, tuple): box_mask = mask else: box_mask = mask.bounds box_gdf = gdf.total_bounds if not ( ((box_mask[0] <= box_gdf[2]) and (box_gdf[0] <= box_mask[2])) and ((box_mask[1] <= box_gdf[3]) and (box_gdf[1] <= box_mask[3])) ): return gdf.iloc[:0] if isinstance(mask, (GeoDataFrame, GeoSeries)): combined_mask = mask.geometry.unary_union else: combined_mask = mask clipped = _clip_gdf_with_mask(gdf, combined_mask) if keep_geom_type: geomcoll_concat = (clipped.geom_type == "GeometryCollection").any() geomcoll_orig = (gdf.geom_type == "GeometryCollection").any() new_collection = geomcoll_concat and not geomcoll_orig if geomcoll_orig: warnings.warn( "keep_geom_type can not be called on a " "GeoDataFrame with GeometryCollection." ) else: polys = ["Polygon", "MultiPolygon"] lines = ["LineString", "MultiLineString", "LinearRing"] points = ["Point", "MultiPoint"] # Check that the gdf for multiple geom types (points, lines and/or polys) orig_types_total = sum( [ gdf.geom_type.isin(polys).any(), gdf.geom_type.isin(lines).any(), gdf.geom_type.isin(points).any(), ] ) # Check how many geometry types are in the clipped GeoDataFrame clip_types_total = sum( [ clipped.geom_type.isin(polys).any(), clipped.geom_type.isin(lines).any(), clipped.geom_type.isin(points).any(), ] ) # Check there aren't any new geom types in the clipped GeoDataFrame more_types = orig_types_total < clip_types_total if orig_types_total > 1: warnings.warn( "keep_geom_type can not be called on a mixed type GeoDataFrame." ) elif new_collection or more_types: orig_type = gdf.geom_type.iloc[0] if new_collection: clipped = clipped.explode(index_parts=False) if orig_type in polys: clipped = clipped.loc[clipped.geom_type.isin(polys)] elif orig_type in lines: clipped = clipped.loc[clipped.geom_type.isin(lines)] return clipped
57,214
def motion_camera_ui_to_dict(ui, prev_config=None): prev_config = dict(prev_config or {}) main_config = get_main() # needed for surveillance password data = { # device 'camera_name': ui['name'], '@enabled': ui['enabled'], 'auto_brightness': ui['auto_brightness'], 'framerate': int(ui['framerate']), 'rotate': int(ui['rotation']), 'mask_privacy': '', # file storage '@storage_device': ui['storage_device'], '@network_server': ui['network_server'], '@network_share_name': ui['network_share_name'], '@network_smb_ver': ui['network_smb_ver'], '@network_username': ui['network_username'], '@network_password': ui['network_password'], '@upload_enabled': ui['upload_enabled'], '@upload_movie': ui['upload_movie'], '@upload_picture': ui['upload_picture'], '@upload_service': ui['upload_service'], '@upload_server': ui['upload_server'], '@upload_port': ui['upload_port'], '@upload_method': ui['upload_method'], '@upload_location': ui['upload_location'], '@upload_subfolders': ui['upload_subfolders'], '@upload_username': ui['upload_username'], '@upload_password': ui['upload_password'], '@clean_cloud_enabled': ui['clean_cloud_enabled'], # text overlay 'text_left': '', 'text_right': '', 'text_scale': ui['text_scale'], # streaming 'stream_localhost': not ui['video_streaming'], 'stream_port': int(ui['streaming_port']), 'stream_maxrate': int(ui['streaming_framerate']), 'stream_quality': max(1, int(ui['streaming_quality'])), '@webcam_resolution': max(1, int(ui['streaming_resolution'])), '@webcam_server_resize': ui['streaming_server_resize'], 'stream_motion': ui['streaming_motion'], 'stream_auth_method': {'disabled': 0, 'basic': 1, 'digest': 2}.get( ui['streaming_auth_mode'], 0 ), 'stream_authentication': main_config['@normal_username'] + ':' + main_config['@normal_password'], # still images 'picture_output': False, 'snapshot_interval': 0, 'picture_filename': '', 'snapshot_filename': '', 'picture_quality': max(1, int(ui['image_quality'])), '@preserve_pictures': int(ui['preserve_pictures']), '@manual_snapshots': ui['manual_snapshots'], # movies 'movie_output': False, 'movie_passthrough': bool(ui['movie_passthrough']), 'movie_filename': ui['movie_file_name'], 'movie_max_time': ui['max_movie_length'], '@preserve_movies': int(ui['preserve_movies']), # motion detection '@motion_detection': ui['motion_detection'], 'emulate_motion': False, 'text_changes': ui['show_frame_changes'], 'locate_motion_mode': ui['show_frame_changes'], 'threshold_maximum': ui['max_frame_change_threshold'], 'threshold_tune': ui['auto_threshold_tuning'], 'noise_tune': ui['auto_noise_detect'], 'noise_level': max(1, int(round(int(ui['noise_level']) * 2.55))), 'lightswitch_percent': ui['light_switch_detect'], 'event_gap': int(ui['event_gap']), 'pre_capture': int(ui['pre_capture']), 'post_capture': int(ui['post_capture']), 'minimum_motion_frames': int(ui['minimum_motion_frames']), 'smart_mask_speed': 0, 'mask_file': '', 'picture_output_motion': ui['create_debug_media'], 'movie_output_motion': ui['create_debug_media'], # working schedule '@working_schedule': '', # events 'on_event_start': '', 'on_event_end': '', 'on_movie_end': '', 'on_picture_save': '', } if utils.is_v4l2_camera(prev_config): proto = 'v4l2' elif utils.is_mmal_camera(prev_config): proto = 'mmal' else: proto = 'netcam' if proto in ('v4l2', 'mmal'): # leave videodevice unchanged # resolution if not ui['resolution']: ui['resolution'] = '320x240' width = int(ui['resolution'].split('x')[0]) height = int(ui['resolution'].split('x')[1]) data['width'] = width data['height'] = height threshold = int(float(ui['frame_change_threshold']) * width * height / 100) if proto == 'v4l2': # video controls vid_control_params = ( ('{}={}'.format(n, c['value'])) for n, c in list(ui['video_controls'].items()) ) data['vid_control_params'] = ','.join(vid_control_params) else: # assuming netcam if re.match( r'^rtsp|^rtmp', data.get('netcam_url', prev_config.get('netcam_url', '')) ): # motion uses the configured width and height for RTSP/RTMP cameras width = int(ui['resolution'].split('x')[0]) height = int(ui['resolution'].split('x')[1]) data['width'] = width data['height'] = height threshold = int(float(ui['frame_change_threshold']) * width * height / 100) else: # width & height are not available for other netcams threshold = int(float(ui['frame_change_threshold']) * 640 * 480 / 100) data['threshold'] = threshold if ui['privacy_mask']: capture_width, capture_height = data.get('width'), data.get('height') if data.get('rotate') in [90, 270]: capture_width, capture_height = capture_height, capture_width data['mask_privacy'] = utils.build_editable_mask_file( prev_config['@id'], 'privacy', ui['privacy_mask_lines'], capture_width, capture_height, ) if (ui['storage_device'] == 'network-share') and settings.SMB_SHARES: mount_point = smbctl.make_mount_point( ui['network_server'], ui['network_share_name'], ui['network_username'] ) if ui['root_directory'].startswith('/'): ui['root_directory'] = ui['root_directory'][1:] data['target_dir'] = os.path.normpath( os.path.join(mount_point, ui['root_directory']) ) elif ui['storage_device'].startswith('local-disk'): target_dev = ui['storage_device'][10:].replace('-', '/') mounted_partitions = diskctl.list_mounted_partitions() partition = mounted_partitions[target_dev] mount_point = partition['mount_point'] if ui['root_directory'].startswith('/'): ui['root_directory'] = ui['root_directory'][1:] data['target_dir'] = os.path.normpath( os.path.join(mount_point, ui['root_directory']) ) else: data['target_dir'] = ui['root_directory'] # try to create the target dir try: os.makedirs(data['target_dir']) logging.debug( 'created root directory {} for camera {}'.format( data['target_dir'], data['camera_name'] ) ) except OSError as e: if isinstance(e, OSError) and e.errno == errno.EEXIST: pass # already exists, things should be just fine else: logging.error( 'failed to create root directory "{}": {}'.format( data['target_dir'], e ), exc_info=True, ) if ui['upload_enabled'] and '@id' in prev_config: upload_settings = { k[7:]: ui[k] for k in list(ui.keys()) if k.startswith('upload_') } tasks.add( 0, uploadservices.update, tag='uploadservices.update(%s)' % ui['upload_service'], camera_id=prev_config['@id'], service_name=ui['upload_service'], settings=upload_settings, ) if ui['text_overlay']: left_text = ui['left_text'] if left_text == 'camera-name': data['text_left'] = ui['name'] elif left_text == 'timestamp': data['text_left'] = '%Y-%m-%d\\n%T' elif left_text == 'disabled': data['text_left'] = '' else: data['text_left'] = ui['custom_left_text'] right_text = ui['right_text'] if right_text == 'camera-name': data['text_right'] = ui['name'] elif right_text == 'timestamp': data['text_right'] = '%Y-%m-%d\\n%T' elif right_text == 'disabled': data['text_right'] = '' else: data['text_right'] = ui['custom_right_text'] if ui['still_images']: data['picture_filename'] = ui['image_file_name'] data['snapshot_filename'] = ui['image_file_name'] capture_mode = ui['capture_mode'] if capture_mode == 'motion-triggered': data['picture_output'] = True elif capture_mode == 'motion-triggered-one': data['picture_output'] = 'best' elif capture_mode == 'interval-snapshots': data['snapshot_interval'] = int(ui['snapshot_interval']) elif capture_mode == 'all-frames': data['picture_output'] = True data['emulate_motion'] = True elif capture_mode == 'manual': data['picture_output'] = False data['emulate_motion'] = False if ui['movies']: data['movie_output'] = True recording_mode = ui['recording_mode'] if recording_mode == 'motion-triggered': data['emulate_motion'] = False elif recording_mode == 'continuous': data['emulate_motion'] = True data['movie_codec'] = ui['movie_format'] q = int(ui['movie_quality']) data['movie_quality'] = max(1, q) # motion detection if ui['despeckle_filter']: data['despeckle_filter'] = prev_config['despeckle_filter'] or 'EedDl' else: data['despeckle_filter'] = '' if ui['motion_mask']: if ui['motion_mask_type'] == 'smart': data['smart_mask_speed'] = 11 - int(ui['smart_mask_sluggishness']) elif ui['motion_mask_type'] == 'editable': capture_width, capture_height = data.get('width'), data.get('height') if data.get('rotate') in [90, 270]: capture_width, capture_height = capture_height, capture_width data['mask_file'] = utils.build_editable_mask_file( prev_config['@id'], 'motion', ui['motion_mask_lines'], capture_width, capture_height, ) # working schedule if ui['working_schedule']: data['@working_schedule'] = ( ui['monday_from'] + '-' + ui['monday_to'] + '|' + ui['tuesday_from'] + '-' + ui['tuesday_to'] + '|' + ui['wednesday_from'] + '-' + ui['wednesday_to'] + '|' + ui['thursday_from'] + '-' + ui['thursday_to'] + '|' + ui['friday_from'] + '-' + ui['friday_to'] + '|' + ui['saturday_from'] + '-' + ui['saturday_to'] + '|' + ui['sunday_from'] + '-' + ui['sunday_to'] ) data['@working_schedule_type'] = ui['working_schedule_type'] # event start on_event_start = [ '%(script)s start %%t' % {'script': meyectl.find_command('relayevent')} ] if ui['email_notifications_enabled']: emails = re.sub('\\s', '', ui['email_notifications_addresses']) line = ( "%(script)s '%(server)s' '%(port)s' '%(account)s' '%(password)s' '%(tls)s' '%(from)s' '%(to)s' " "'motion_start' '%%t' '%%Y-%%m-%%dT%%H:%%M:%%S' '%(timespan)s'" % { 'script': meyectl.find_command('sendmail'), 'server': ui['email_notifications_smtp_server'], 'port': ui['email_notifications_smtp_port'], 'account': ui['email_notifications_smtp_account'], 'password': ui['email_notifications_smtp_password'] .replace(';', '\\;') .replace('%', '%%'), 'tls': ui['email_notifications_smtp_tls'], 'from': ui['email_notifications_from'], 'to': emails, 'timespan': ui['email_notifications_picture_time_span'], } ) on_event_start.append(line) if ui['telegram_notifications_enabled']: line = ( "%(script)s '%(api)s' '%(chatid)s' " "'motion_start' '%%t' '%%Y-%%m-%%dT%%H:%%M:%%S' '%(timespan)s'" % { 'script': meyectl.find_command('sendtelegram'), 'api': ui['telegram_notifications_api'], 'chatid': ui['telegram_notifications_chat_id'], 'timespan': ui['telegram_notifications_picture_time_span'], } ) on_event_start.append(line) if ui['web_hook_notifications_enabled']: url = re.sub('\\s', '+', ui['web_hook_notifications_url']) on_event_start.append( "{script} '{method}' '{url}'".format( script=meyectl.find_command('webhook'), method=ui['web_hook_notifications_http_method'], url=url, ) ) if ui['command_notifications_enabled']: on_event_start += utils.split_semicolon(ui['command_notifications_exec']) data['on_event_start'] = '; '.join(on_event_start) # event end on_event_end = [ '%(script)s stop %%t' % {'script': meyectl.find_command('relayevent')} ] if ui['web_hook_end_notifications_enabled']: url = re.sub(r'\s', '+', ui['web_hook_end_notifications_url']) on_event_end.append( "%(script)s '%(method)s' '%(url)s'" % { 'script': meyectl.find_command('webhook'), 'method': ui['web_hook_end_notifications_http_method'], 'url': url, } ) if ui['command_end_notifications_enabled']: on_event_end += utils.split_semicolon(ui['command_end_notifications_exec']) data['on_event_end'] = '; '.join(on_event_end) # movie end on_movie_end = [ '%(script)s movie_end %%t %%f' % {'script': meyectl.find_command('relayevent')} ] if ui['web_hook_storage_enabled']: url = re.sub('\\s', '+', ui['web_hook_storage_url']) on_movie_end.append( "{script} '{method}' '{url}'".format( script=meyectl.find_command('webhook'), method=ui['web_hook_storage_http_method'], url=url, ) ) if ui['command_storage_enabled']: on_movie_end += utils.split_semicolon(ui['command_storage_exec']) data['on_movie_end'] = '; '.join(on_movie_end) # picture save on_picture_save = [ '%(script)s picture_save %%t %%f' % {'script': meyectl.find_command('relayevent')} ] if ui['web_hook_storage_enabled']: url = re.sub('\\s', '+', ui['web_hook_storage_url']) on_picture_save.append( "{script} '{method}' '{url}'".format( script=meyectl.find_command('webhook'), method=ui['web_hook_storage_http_method'], url=url, ) ) if ui['command_storage_enabled']: on_picture_save += utils.split_semicolon(ui['command_storage_exec']) data['on_picture_save'] = '; '.join(on_picture_save) # additional configs for name, value in list(ui.items()): if not name.startswith('_'): continue data['@' + name] = value # extra motion options for name in list(prev_config.keys()): if name not in _USED_MOTION_OPTIONS and not name.startswith('@'): prev_config.pop(name) extra_options = ui.get('extra_options', []) for name, value in extra_options: data[name] = value or '' prev_config.update(data) return prev_config
def motion_camera_ui_to_dict(ui, prev_config=None): prev_config = dict(prev_config or {}) main_config = get_main() # needed for surveillance password data = { # device 'camera_name': ui['name'], '@enabled': ui['enabled'], 'auto_brightness': ui['auto_brightness'], 'framerate': int(ui['framerate']), 'rotate': int(ui['rotation']), 'mask_privacy': '', # file storage '@storage_device': ui['storage_device'], '@network_server': ui['network_server'], '@network_share_name': ui['network_share_name'], '@network_smb_ver': ui['network_smb_ver'], '@network_username': ui['network_username'], '@network_password': ui['network_password'], '@upload_enabled': ui['upload_enabled'], '@upload_movie': ui['upload_movie'], '@upload_picture': ui['upload_picture'], '@upload_service': ui['upload_service'], '@upload_server': ui['upload_server'], '@upload_port': ui['upload_port'], '@upload_method': ui['upload_method'], '@upload_location': ui['upload_location'], '@upload_subfolders': ui['upload_subfolders'], '@upload_username': ui['upload_username'], '@upload_password': ui['upload_password'], '@clean_cloud_enabled': ui['clean_cloud_enabled'], # text overlay 'text_left': '', 'text_right': '', 'text_scale': ui['text_scale'], # streaming 'stream_localhost': not ui['video_streaming'], 'stream_port': int(ui['streaming_port']), 'stream_maxrate': int(ui['streaming_framerate']), 'stream_quality': max(1, int(ui['streaming_quality'])), '@webcam_resolution': max(1, int(ui['streaming_resolution'])), '@webcam_server_resize': ui['streaming_server_resize'], 'stream_motion': ui['streaming_motion'], 'stream_auth_method': {'disabled': 0, 'basic': 1, 'digest': 2}.get( ui['streaming_auth_mode'], 0 ), 'stream_authentication': main_config['@normal_username'] + ':' + main_config['@normal_password'], # still images 'picture_output': False, 'snapshot_interval': 0, 'picture_filename': '', 'snapshot_filename': '', 'picture_quality': max(1, int(ui['image_quality'])), '@preserve_pictures': int(ui['preserve_pictures']), '@manual_snapshots': ui['manual_snapshots'], # movies 'movie_output': False, 'movie_passthrough': bool(ui['movie_passthrough']), 'movie_filename': ui['movie_file_name'], 'movie_max_time': ui['max_movie_length'], '@preserve_movies': int(ui['preserve_movies']), # motion detection '@motion_detection': ui['motion_detection'], 'emulate_motion': False, 'text_changes': ui['show_frame_changes'], 'locate_motion_mode': ui['show_frame_changes'], 'threshold_maximum': ui['max_frame_change_threshold'], 'threshold_tune': ui['auto_threshold_tuning'], 'noise_tune': ui['auto_noise_detect'], 'noise_level': max(1, int(round(int(ui['noise_level']) * 2.55))), 'lightswitch_percent': ui['light_switch_detect'], 'event_gap': int(ui['event_gap']), 'pre_capture': int(ui['pre_capture']), 'post_capture': int(ui['post_capture']), 'minimum_motion_frames': int(ui['minimum_motion_frames']), 'smart_mask_speed': 0, 'mask_file': '', 'picture_output_motion': ui['create_debug_media'], 'movie_output_motion': ui['create_debug_media'], # working schedule '@working_schedule': '', # events 'on_event_start': '', 'on_event_end': '', 'on_movie_end': '', 'on_picture_save': '', } if utils.is_v4l2_camera(prev_config): proto = 'v4l2' elif utils.is_mmal_camera(prev_config): proto = 'mmal' else: proto = 'netcam' if proto in ('v4l2', 'mmal'): # leave videodevice unchanged # resolution if not ui['resolution']: ui['resolution'] = '320x240' width = int(ui['resolution'].split('x')[0]) height = int(ui['resolution'].split('x')[1]) data['width'] = width data['height'] = height threshold = int(float(ui['frame_change_threshold']) * width * height / 100) if proto == 'v4l2': # video controls vid_control_params = ( ('{}={}'.format(n, c['value'])) for n, c in list(ui['video_controls'].items()) ) data['vid_control_params'] = ','.join(vid_control_params) else: # assuming netcam if re.match( r'^rtsp|^rtmp', data.get('netcam_url', prev_config.get('netcam_url', '')) ): # motion uses the configured width and height for RTSP/RTMP cameras width = int(ui['resolution'].split('x')[0]) height = int(ui['resolution'].split('x')[1]) data['width'] = width data['height'] = height threshold = int(float(ui['frame_change_threshold']) * width * height / 100) else: # width & height are not available for other netcams threshold = int(float(ui['frame_change_threshold']) * 640 * 480 / 100) data['threshold'] = threshold if ui['privacy_mask']: capture_width, capture_height = data.get('width'), data.get('height') if data.get('rotate') in [90, 270]: capture_width, capture_height = capture_height, capture_width data['mask_privacy'] = utils.build_editable_mask_file( prev_config['@id'], 'privacy', ui['privacy_mask_lines'], capture_width, capture_height, ) if (ui['storage_device'] == 'network-share') and settings.SMB_SHARES: mount_point = smbctl.make_mount_point( ui['network_server'], ui['network_share_name'], ui['network_username'] ) if ui['root_directory'].startswith('/'): ui['root_directory'] = ui['root_directory'][1:] data['target_dir'] = os.path.normpath( os.path.join(mount_point, ui['root_directory']) ) elif ui['storage_device'].startswith('local-disk'): target_dev = ui['storage_device'][10:].replace('-', '/') mounted_partitions = diskctl.list_mounted_partitions() partition = mounted_partitions[target_dev] mount_point = partition['mount_point'] if ui['root_directory'].startswith('/'): ui['root_directory'] = ui['root_directory'][1:] data['target_dir'] = os.path.normpath( os.path.join(mount_point, ui['root_directory']) ) else: data['target_dir'] = ui['root_directory'] # try to create the target dir try: os.makedirs(data['target_dir']) logging.debug( 'created root directory {} for camera {}'.format( data['target_dir'], data['camera_name'] ) ) except OSError as e: if isinstance(e, OSError) and e.errno == errno.EEXIST: pass # already exists, things should be just fine else: logging.error( 'failed to create root directory "{}": {}'.format( data['target_dir'], e ), exc_info=True, ) if ui['upload_enabled'] and '@id' in prev_config: upload_settings = { k[7:]: ui[k] for k in list(ui.keys()) if k.startswith('upload_') } tasks.add( 0, uploadservices.update, tag='uploadservices.update(%s)' % ui['upload_service'], camera_id=prev_config['@id'], service_name=ui['upload_service'], settings=upload_settings, ) if ui['text_overlay']: left_text = ui['left_text'] if left_text == 'camera-name': data['text_left'] = ui['name'] elif left_text == 'timestamp': data['text_left'] = '%Y-%m-%d\\n%T' elif left_text == 'disabled': data['text_left'] = '' else: data['text_left'] = ui['custom_left_text'] right_text = ui['right_text'] if right_text == 'camera-name': data['text_right'] = ui['name'] elif right_text == 'timestamp': data['text_right'] = '%Y-%m-%d\\n%T' elif right_text == 'disabled': data['text_right'] = '' else: data['text_right'] = ui['custom_right_text'] if ui['still_images']: data['picture_filename'] = ui['image_file_name'] data['snapshot_filename'] = ui['image_file_name'] capture_mode = ui['capture_mode'] if capture_mode == 'motion-triggered': data['picture_output'] = True elif capture_mode == 'motion-triggered-one': data['picture_output'] = 'best' elif capture_mode == 'interval-snapshots': data['snapshot_interval'] = int(ui['snapshot_interval']) elif capture_mode == 'all-frames': data['picture_output'] = True data['emulate_motion'] = True elif capture_mode == 'manual': data['picture_output'] = False data['emulate_motion'] = False if ui['movies']: data['movie_output'] = True recording_mode = ui['recording_mode'] if recording_mode == 'motion-triggered': data['emulate_motion'] = False elif recording_mode == 'continuous': data['emulate_motion'] = True data['movie_codec'] = ui['movie_format'] q = int(ui['movie_quality']) data['movie_quality'] = max(1, q) # motion detection if ui['despeckle_filter']: data['despeckle_filter'] = prev_config['despeckle_filter'] or 'EedDl' else: data['despeckle_filter'] = '' if ui['motion_mask']: if ui['motion_mask_type'] == 'smart': data['smart_mask_speed'] = 11 - int(ui['smart_mask_sluggishness']) elif ui['motion_mask_type'] == 'editable': capture_width, capture_height = data.get('width'), data.get('height') if data.get('rotate') in [90, 270]: capture_width, capture_height = capture_height, capture_width data['mask_file'] = utils.build_editable_mask_file( prev_config['@id'], 'motion', ui['motion_mask_lines'], capture_width, capture_height, ) # working schedule if ui['working_schedule']: data['@working_schedule'] = ( ui['monday_from'] + '-' + ui['monday_to'] + '|' + ui['tuesday_from'] + '-' + ui['tuesday_to'] + '|' + ui['wednesday_from'] + '-' + ui['wednesday_to'] + '|' + ui['thursday_from'] + '-' + ui['thursday_to'] + '|' + ui['friday_from'] + '-' + ui['friday_to'] + '|' + ui['saturday_from'] + '-' + ui['saturday_to'] + '|' + ui['sunday_from'] + '-' + ui['sunday_to'] ) data['@working_schedule_type'] = ui['working_schedule_type'] # event start on_event_start = [ '%(script)s start %%t' % {'script': meyectl.find_command('relayevent')} ] if ui['email_notifications_enabled']: emails = re.sub('\\s', '', ui['email_notifications_addresses']) line = ( "%(script)s '%(server)s' '%(port)s' '%(account)s' '%(password)s' '%(tls)s' '%(from)s' '%(to)s' " "'motion_start' '%%t' '%%Y-%%m-%%dT%%H:%%M:%%S' '%(timespan)s'" % { 'script': meyectl.find_command('sendmail'), 'server': ui['email_notifications_smtp_server'], 'port': ui['email_notifications_smtp_port'], 'account': ui['email_notifications_smtp_account'], 'password': ui['email_notifications_smtp_password'] .replace(';', '\\;') .replace('%', '%%'), 'tls': ui['email_notifications_smtp_tls'], 'from': ui['email_notifications_from'], 'to': emails, 'timespan': ui['email_notifications_picture_time_span'], } ) on_event_start.append(line) if ui['telegram_notifications_enabled']: line = ( "%(script)s '%(api)s' '%(chatid)s' " "'motion_start' '%%t' '%%Y-%%m-%%dT%%H:%%M:%%S' '%(timespan)s'" % { 'script': meyectl.find_command('sendtelegram'), 'api': ui['telegram_notifications_api'], 'chatid': ui['telegram_notifications_chat_id'], 'timespan': ui['telegram_notifications_picture_time_span'], } ) on_event_start.append(line) if ui['web_hook_notifications_enabled']: url = re.sub('\\s', '+', ui['web_hook_notifications_url']) on_event_start.append( "{script} '{method}' '{url}'".format( script=meyectl.find_command('webhook'), method=ui['web_hook_notifications_http_method'], url=url, ) ) if ui['command_notifications_enabled']: on_event_start += utils.split_semicolon(ui['command_notifications_exec']) data['on_event_start'] = '; '.join(on_event_start) # event end on_event_end = [ '%(script)s stop %%t' % {'script': meyectl.find_command('relayevent')} ] if ui['web_hook_end_notifications_enabled']: url = re.sub(r'\s', '+', ui['web_hook_end_notifications_url']) on_event_end.append( "%(script)s '%(method)s' '%(url)s'" % { 'script': meyectl.find_command('webhook'), 'method': ui['web_hook_end_notifications_http_method'], 'url': url, } ) if ui['command_end_notifications_enabled']: on_event_end += utils.split_semicolon(ui['command_end_notifications_exec']) data['on_event_end'] = '; '.join(on_event_end) # movie end on_movie_end = [ '%(script)s movie_end %%t %%f' % {'script': meyectl.find_command('relayevent')} ] if ui['web_hook_storage_enabled']: url = re.sub('\\s', '+', ui['web_hook_storage_url']) on_movie_end.append( "{script} '{method}' '{url}'".format( script=meyectl.find_command('webhook'), method=ui['web_hook_storage_http_method'], url=url, ) ) if ui['command_storage_enabled']: on_movie_end += utils.split_semicolon(ui['command_storage_exec']) data['on_movie_end'] = '; '.join(on_movie_end) # picture save on_picture_save = [ '%(script)s picture_save %%t %%f' % {'script': meyectl.find_command('relayevent')} ] if ui['web_hook_storage_enabled']: url = re.sub('\\s', '+', ui['web_hook_storage_url']) on_picture_save.append( "{script} '{method}' '{url}'".format( script=meyectl.find_command('webhook'), method=ui['web_hook_storage_http_method'], url=url, ) ) if ui['command_storage_enabled']: on_picture_save += utils.split_semicolon(ui['command_storage_exec']) data['on_picture_save'] = '; '.join(on_picture_save) # additional configs for name, value in list(ui.items()): if not name.startswith('_'): continue data['@' + name] = value # extra motion options for name in list(prev_config.keys()): if name not in _USED_MOTION_OPTIONS and not name.startswith('@'): prev_config.pop(name) extra_options = ui.get('extra_options', []) for name, value in extra_options: data[name] = value or '' prev_config.update(data) return prev_config
31,447
def get_malicious_domains_for_ip_command(rlb): # Initialize contents = [] context = {} headers = [] # type: ignore results = [] context_dbotscore = [] context_malicious = [] # Get vars ip = demisto.args()['ip'] # Fetch data res = get_malicious_domains_for_ip(ip) if res: # Process response - build context and markdown table domains = [] for item in res: domains.append(item['name']) domains = get_domains_categorization(domains) domains_context = [] if domains: for domain in domains: domains_context.append({ 'Name': domain, 'MalwareCategories': domains[domain]['security_categories'], 'ContentCategories': domains[domain]['content_categories'] }) contents.append({ 'Name': domain, 'Malware Categories': domains[domain]['security_categories'], 'Content Categories': domains[domain]['content_categories'] }) context_dbotscore.append({ 'Indicator': domain, 'Type': 'domain', 'Vendor': 'Cisco Umbrella Investigate', 'Score': 3, 'Reliability': rlb }) context_malicious.append({ 'Name': domain, 'Malicious': { 'Vendor': 'Cisco Umbrella Investigate', 'Description': 'For IP ' + ip } }) context['Umbrella.MaliciousDomains(val.IP && val.IP == obj.IP)'] = { 'IP': ip, 'Data': domains_context } context[outputPaths['domain']] = context_malicious # type: ignore context[outputPaths['dbotscore']] = context_dbotscore # type: ignore results.append({ 'Type': entryTypes['note'], 'ContentsFormat': formats['json'], 'Contents': contents, 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('"Umbrella Investigate" Malicious Domains for an IP: ' + ip, contents, headers), 'EntryContext': context }) return results
def get_malicious_domains_for_ip_command(reliability): # Initialize contents = [] context = {} headers = [] # type: ignore results = [] context_dbotscore = [] context_malicious = [] # Get vars ip = demisto.args()['ip'] # Fetch data res = get_malicious_domains_for_ip(ip) if res: # Process response - build context and markdown table domains = [] for item in res: domains.append(item['name']) domains = get_domains_categorization(domains) domains_context = [] if domains: for domain in domains: domains_context.append({ 'Name': domain, 'MalwareCategories': domains[domain]['security_categories'], 'ContentCategories': domains[domain]['content_categories'] }) contents.append({ 'Name': domain, 'Malware Categories': domains[domain]['security_categories'], 'Content Categories': domains[domain]['content_categories'] }) context_dbotscore.append({ 'Indicator': domain, 'Type': 'domain', 'Vendor': 'Cisco Umbrella Investigate', 'Score': 3, 'Reliability': rlb }) context_malicious.append({ 'Name': domain, 'Malicious': { 'Vendor': 'Cisco Umbrella Investigate', 'Description': 'For IP ' + ip } }) context['Umbrella.MaliciousDomains(val.IP && val.IP == obj.IP)'] = { 'IP': ip, 'Data': domains_context } context[outputPaths['domain']] = context_malicious # type: ignore context[outputPaths['dbotscore']] = context_dbotscore # type: ignore results.append({ 'Type': entryTypes['note'], 'ContentsFormat': formats['json'], 'Contents': contents, 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('"Umbrella Investigate" Malicious Domains for an IP: ' + ip, contents, headers), 'EntryContext': context }) return results
28,620
def from_beanmachine( sampler=None, *, coords=None, dims=None, ): """Convert Bean Machine MonteCarloSamples object into an InferenceData object. For a usage example read the :ref:`Creating InferenceData section on from_beanmachine <creating_InferenceData>` Parameters ---------- sampler : bm.MonteCarloSamples Fitted MonteCarloSamples object from Bean Machine coords : dict[str] -> list[str] Map of dimensions to coordinates dims : dict[str] -> list[str] Map variable names to their coordinates """ return BMConverter( sampler=sampler, coords=coords, dims=dims, ).to_inference_data()
def from_beanmachine( sampler=None, *, coords=None, dims=None, ): """Convert Bean Machine MonteCarloSamples object into an InferenceData object. For a usage example read the :ref:`Creating InferenceData section on from_beanmachine <creating_InferenceData>` Parameters ---------- sampler : bm.MonteCarloSamples Fitted MonteCarloSamples object from Bean Machine coords : dict of {str : array-like} Map of dimensions to coordinates dims : dict[str] -> list[str] Map variable names to their coordinates """ return BMConverter( sampler=sampler, coords=coords, dims=dims, ).to_inference_data()
9,315
def main(): """ :return: token """ # define the available arguments/parameters that a user can pass to # the module # the AnsibleModule object will be our abstraction working with Ansible # this includes instantiation, a couple of common attr would be the # args/params passed to the execution, as well as if the module # supports check mode module = AnsibleModule( argument_spec=dict( iap_port=dict(type='str', required=True), iap_fqdn=dict(type='str', required=True), username=dict(type='str', required=True), password=dict(type='str', required=True), https=(dict(type='bool', default=False)) ) ) get_token(module)
def main(): """ :return: token """ # define the available arguments/parameters that a user can pass to # the module # the AnsibleModule object will be our abstraction working with Ansible # this includes instantiation, a couple of common attr would be the # args/params passed to the execution, as well as if the module # supports check mode module = AnsibleModule( argument_spec=dict( iap_port=dict(type='int', required=True), iap_fqdn=dict(type='str', required=True), username=dict(type='str', required=True), password=dict(type='str', required=True), https=(dict(type='bool', default=False)) ) ) get_token(module)
2,967
def lexsort_indexer(keys, orders=None, na_position="last"): from pandas.core.arrays import Categorical labels = [] shape = [] if isinstance(orders, bool): orders = [orders] * len(keys) elif orders is None: orders = [True] * len(keys) for key, order in zip(keys, orders): # we are already a Categorical if is_categorical_dtype(key): cat = key # create the Categorical else: cat = Categorical(key, ordered=True) if na_position not in ["last", "first"]: raise ValueError(f"invalid na_position: {na_position}") n = len(cat.categories) codes = cat.codes.copy() mask = cat.codes == -1 if order: # ascending if na_position == "last": codes = np.where(mask, n, codes) elif na_position == "first": codes += 1 else: # not order means descending if na_position == "last": codes = np.where(mask, n, n - codes - 1) elif na_position == "first": codes = np.where(mask, 0, n - codes) if mask.any(): n += 1 shape.append(n) labels.append(codes) return indexer_from_factorized(labels, shape)
def lexsort_indexer(keys, orders=None, na_position="last"): from pandas.core.arrays import Categorical labels = [] shape = [] if isinstance(orders, bool): orders = [orders] * len(keys) elif orders is None: orders = [True] * len(keys) for key, order in zip(keys, orders): # we are already a Categorical if is_categorical_dtype(key): cat = key # create the Categorical else: cat = Categorical(key, ordered=True) if na_position not in ["last", "first"]: raise ValueError(f"invalid na_position: {repr(na_position)}") n = len(cat.categories) codes = cat.codes.copy() mask = cat.codes == -1 if order: # ascending if na_position == "last": codes = np.where(mask, n, codes) elif na_position == "first": codes += 1 else: # not order means descending if na_position == "last": codes = np.where(mask, n, n - codes - 1) elif na_position == "first": codes = np.where(mask, 0, n - codes) if mask.any(): n += 1 shape.append(n) labels.append(codes) return indexer_from_factorized(labels, shape)
32,151
def results(results): """Outputs entries to the war-room Args: results (Union[list, dict]): The entry object or array of entry objects to output For example: results = { 'Type' : entryTypes['note'], 'Contents': data, 'ContentsFormat' : formats['json'], 'HumanReadable': md, 'ReadableContentsFormat' : formats['markdown'], 'EntryContext' : context, 'Tags' : ['tag1', 'tag2'] } Returns: None: No data returned """ if isinstance(results, dict) and results.get("contents"): results = results.get("contents") log("demisto results: {}".format(json.dumps(results, indent=4, sort_keys=True)))
def results(results): """Outputs entries to the war-room Args: results (Union[list, dict]): The entry object or array of entry objects to output For example: results = { 'Type' : entryTypes['note'], 'Contents': data, 'ContentsFormat' : EntryFormat.JSON, 'HumanReadable': md, 'ReadableContentsFormat' : formats['markdown'], 'EntryContext' : context, 'Tags' : ['tag1', 'tag2'] } Returns: None: No data returned """ if isinstance(results, dict) and results.get("contents"): results = results.get("contents") log("demisto results: {}".format(json.dumps(results, indent=4, sort_keys=True)))
31,008
def test_get_multiple_packs_dirs(requests_mock): """ Scenario: Get a pack dir name from pull request files Given - A pull request - A file in the pull request is in a pack When - Getting the pack dir name from a pull request Then - Ensure the pack dir name is returned correctly """ branch = 'contrib_branch' pr_number = '1' repo = 'contrib_repo' requests_mock.get( 'https://api.github.com/repos/demisto/content/pulls/1/files', [{'json': github_response_1, 'status_code': 200}, {'json': github_response_2, 'status_code': 200}, {'json': github_response_3, 'status_code': 200}, {'json': github_response_4, 'status_code': 200}] ) pack_dir = get_pack_dir(branch, pr_number, repo) assert pack_dir == ['Slack', 'Slack1']
def test_get_multiple_packs_dirs(requests_mock): """ Scenario: Get a list of pack dir names from pull request files Given - A pull request - A file in the pull request is in a pack When - Getting the pack dir name from a pull request Then - Ensure the pack dir name is returned correctly """ branch = 'contrib_branch' pr_number = '1' repo = 'contrib_repo' requests_mock.get( 'https://api.github.com/repos/demisto/content/pulls/1/files', [{'json': github_response_1, 'status_code': 200}, {'json': github_response_2, 'status_code': 200}, {'json': github_response_3, 'status_code': 200}, {'json': github_response_4, 'status_code': 200}] ) pack_dir = get_pack_dir(branch, pr_number, repo) assert pack_dir == ['Slack', 'Slack1']
43,006
def delete_config(filename="config.toml", directory=None): """Delete a configuration file Keyword Args: filename (str): the configuration file to delete directory (str): the directory of the configuration file if None, use default directory """ if directory is None: file_path = get_default_config_path(filename) else: file_path = os.path.join(directory, filename) os.remove(file_path)
def delete_config(filename="config.toml", directory=None): """Delete a configuration file Keyword Args: filename (str): the filename of the configuration file to delete directory (str): the directory of the configuration file if None, use default directory """ if directory is None: file_path = get_default_config_path(filename) else: file_path = os.path.join(directory, filename) os.remove(file_path)
35,067
def generate_project_from_mlf( template_project_dir: typing.Union[pathlib.Path, str], project_dir: typing.Union[pathlib.Path, str], mlf: typing.Union[pathlib.Path, str], options: dict, ): """Generate a project from a platform template and an existing MLF. Parameters ---------- template_project_path : pathlib.Path or str Path to a template project containing a microTVM Project API server. project_dir : pathlib.Path or str Path to a directory where the project will be created. mlf : pathlib.Path or str Path to the Model Library Format archive that will be used when creating the new project. options : dict Project API options given to the microTVM API server for the specified platform. Returns ------- GeneratedProject : A class that wraps the generated project and which can be used to further interact with it. """ template = TemplateProject.from_directory(str(template_project_dir)) return template.generate_project_from_mlf(str(mlf), str(project_dir), options)
def generate_project_from_mlf( template_project_dir: typing.Union[pathlib.Path, str], project_dir: typing.Union[pathlib.Path, str], mlf_path: typing.Union[pathlib.Path, str], options: dict, ): """Generate a project from a platform template and an existing MLF. Parameters ---------- template_project_path : pathlib.Path or str Path to a template project containing a microTVM Project API server. project_dir : pathlib.Path or str Path to a directory where the project will be created. mlf : pathlib.Path or str Path to the Model Library Format archive that will be used when creating the new project. options : dict Project API options given to the microTVM API server for the specified platform. Returns ------- GeneratedProject : A class that wraps the generated project and which can be used to further interact with it. """ template = TemplateProject.from_directory(str(template_project_dir)) return template.generate_project_from_mlf(str(mlf), str(project_dir), options)
49,913
def test_prepare_new_username_for_conflicted_username(db): user = User.objects.create_user("jkowalski", "jkowalski@example.com") new_username = User.objects.prepare_new_username("jkowalski") assert new_username != user.username assert new_username.startswith(user.username)
def test_sso_username_is_suffixed_if_its_not_available(db): ... user = User.objects.create_user("jkowalski", "jkowalski@example.com") new_username = User.objects.prepare_new_username("jkowalski") assert new_username != user.username assert new_username.startswith(user.username)
56,402
def main(args): """ Entry point for parsing some analysis results and printing them to the stdout in a human-readable format. """ logger.setup_logger(args.verbose if 'verbose' in args else None) try: cmd_config.check_config_file(args) except FileNotFoundError as fnerr: LOG.error(fnerr) sys.exit(1) export = args.export if 'export' in args else None if export == 'html' and 'output_path' not in args: LOG.error("Argument --export not allowed without argument --output " "when exporting to HTML.") sys.exit(1) if export == 'gerrit' and gerrit.no_mandatory_env_var_is_set(): sys.exit(1) context = analyzer_context.get_context() # To ensure the help message prints the default folder properly, # the 'default' for 'args.input' is a string, not a list. # But we need lists for the foreach here to work. if isinstance(args.input, str): args.input = [args.input] original_cwd = os.getcwd() src_comment_status_filter = args.review_status suppr_handler = None if 'suppress' in args: __make_handler = False if not os.path.isfile(args.suppress): if 'create_suppress' in args: with open(args.suppress, 'w', encoding='utf-8', errors='ignore') as _: # Just create the file. __make_handler = True LOG.info("Will write source-code suppressions to " "suppress file: %s", args.suppress) else: LOG.warning("Suppress file '%s' given, but it does not exist" " -- will not suppress anything.", args.suppress) else: __make_handler = True if __make_handler: suppr_handler = suppress_handler.\ GenericSuppressHandler(args.suppress, 'create_suppress' in args, src_comment_status_filter) elif 'create_suppress' in args: LOG.error("Can't use '--export-source-suppress' unless '--suppress " "SUPPRESS_FILE' is also given.") sys.exit(2) processed_path_hashes = set() skip_handler = None if 'skipfile' in args: with open(args.skipfile, 'r', encoding='utf-8', errors='ignore') as skip_file: skip_handler = SkipListHandler(skip_file.read()) trim_path_prefixes = args.trim_path_prefix if \ 'trim_path_prefix' in args else None if export: if export not in EXPORT_TYPES: LOG.error(f"Unknown export format: {export}") return # The HTML part will be handled separately below. if export != 'html': try: res = parse_convert_reports(args.input, export, context.severity_map, trim_path_prefixes) if 'output_path' in args: output_path = os.path.abspath(args.output_path) if not os.path.exists(output_path): os.mkdir(output_path) reports_json = os.path.join(output_path, 'reports.json') with open(reports_json, mode='w', encoding='utf-8', errors="ignore") as output_f: output_f.write(json.dumps(res)) return print(json.dumps(res)) except Exception as ex: LOG.error(ex) sys.exit(1) def trim_path_prefixes_handler(source_file): """ Callback to util.trim_path_prefixes to prevent module dependency of plist_to_html """ return util.trim_path_prefixes(source_file, trim_path_prefixes) html_builder = None def skip_html_report_data_handler(report_hash, source_file, report_line, checker_name, diag, files): """ Report handler which skips bugs which were suppressed by source code comments. This function will return a tuple. The first element will decide whether the report should be skipped or not and the second element will be a list of source code comments related to the actual report. """ files_dict = {k: v for k, v in enumerate(files)} report = Report({'check_name': checker_name}, diag['path'], files_dict, metadata=None) path_hash = get_report_path_hash(report) if path_hash in processed_path_hashes: LOG.debug("Skip report because it is a deduplication of an " "already processed report!") LOG.debug("Path hash: %s", path_hash) LOG.debug(diag) return True, [] skip, source_code_comments = skip_report(report_hash, source_file, report_line, checker_name, suppr_handler, src_comment_status_filter) if skip_handler: skip |= skip_handler.should_skip(source_file) if not skip: processed_path_hashes.add(path_hash) return skip, source_code_comments file_change = set() severity_stats = defaultdict(int) file_stats = defaultdict(int) report_count = 0 for input_path in args.input: input_path = os.path.abspath(input_path) os.chdir(original_cwd) LOG.debug("Parsing input argument: '%s'", input_path) if export == 'html': output_path = os.path.abspath(args.output_path) if not html_builder: html_builder = \ PlistToHtml.HtmlBuilder(context.path_plist_to_html_dist, context.severity_map) LOG.info("Generating html output files:") PlistToHtml.parse(input_path, output_path, context.path_plist_to_html_dist, skip_html_report_data_handler, html_builder, trim_path_prefixes_handler) continue files = [] metadata_dict = {} if os.path.isfile(input_path): files.append(input_path) elif os.path.isdir(input_path): metadata_file = os.path.join(input_path, "metadata.json") if os.path.exists(metadata_file): metadata_dict = util.load_json_or_empty(metadata_file) LOG.debug(metadata_dict) if 'working_directory' in metadata_dict: working_dir = metadata_dict['working_directory'] try: os.chdir(working_dir) except OSError as oerr: LOG.debug(oerr) LOG.error("Working directory %s is missing.\n" "Can not parse reports safely.", working_dir) sys.exit(1) _, _, file_names = next(os.walk(input_path), ([], [], [])) files = [os.path.join(input_path, file_name) for file_name in file_names] file_report_map = defaultdict(list) plist_pltf = PlistToPlaintextFormatter(suppr_handler, skip_handler, context.severity_map, processed_path_hashes, trim_path_prefixes, src_comment_status_filter) plist_pltf.print_steps = 'print_steps' in args for file_path in files: f_change = parse_with_plt_formatter(file_path, metadata_dict, plist_pltf, file_report_map) file_change = file_change.union(f_change) report_stats = plist_pltf.write(file_report_map) sev_stats = report_stats.get('severity') for severity in sev_stats: severity_stats[severity] += sev_stats[severity] f_stats = report_stats.get('files') for file_path in f_stats: file_stats[file_path] += f_stats[file_path] rep_stats = report_stats.get('reports') report_count += rep_stats.get("report_count", 0) # Create index.html and statistics.html for the generated html files. if html_builder: html_builder.create_index_html(args.output_path) html_builder.create_statistics_html(args.output_path) print('\nTo view statistics in a browser run:\n> firefox {0}'.format( os.path.join(args.output_path, 'statistics.html'))) print('\nTo view the results in a browser run:\n> firefox {0}'.format( os.path.join(args.output_path, 'index.html'))) else: print("\n----==== Summary ====----") if file_stats: vals = [[os.path.basename(k), v] for k, v in dict(file_stats).items()] vals.sort(key=itemgetter(0)) keys = ['Filename', 'Report count'] table = twodim.to_str('table', keys, vals, 1, True) print(table) if severity_stats: vals = [[k, v] for k, v in dict(severity_stats).items()] vals.sort(key=itemgetter(0)) keys = ['Severity', 'Report count'] table = twodim.to_str('table', keys, vals, 1, True) print(table) print("----=================----") print("Total number of reports: {}".format(report_count)) print("----=================----") if file_change: changed_files = '\n'.join([' - ' + f for f in file_change]) LOG.warning("The following source file contents changed since the " "latest analysis:\n%s\nMultiple reports were not " "shown and skipped from the statistics. Please " "analyze your project again to update the " "reports!", changed_files) os.chdir(original_cwd)
def main(args): """ Entry point for parsing some analysis results and printing them to the stdout in a human-readable format. """ logger.setup_logger(args.verbose if 'verbose' in args else None) try: cmd_config.check_config_file(args) except FileNotFoundError as fnerr: LOG.error(fnerr) sys.exit(1) export = args.export if 'export' in args else None if export == 'html' and 'output_path' not in args: LOG.error("Argument --export not allowed without argument --output " "when exporting to HTML.") sys.exit(1) if export == 'gerrit' and not gerrit.is_mandatory_env_var_set(): sys.exit(1) context = analyzer_context.get_context() # To ensure the help message prints the default folder properly, # the 'default' for 'args.input' is a string, not a list. # But we need lists for the foreach here to work. if isinstance(args.input, str): args.input = [args.input] original_cwd = os.getcwd() src_comment_status_filter = args.review_status suppr_handler = None if 'suppress' in args: __make_handler = False if not os.path.isfile(args.suppress): if 'create_suppress' in args: with open(args.suppress, 'w', encoding='utf-8', errors='ignore') as _: # Just create the file. __make_handler = True LOG.info("Will write source-code suppressions to " "suppress file: %s", args.suppress) else: LOG.warning("Suppress file '%s' given, but it does not exist" " -- will not suppress anything.", args.suppress) else: __make_handler = True if __make_handler: suppr_handler = suppress_handler.\ GenericSuppressHandler(args.suppress, 'create_suppress' in args, src_comment_status_filter) elif 'create_suppress' in args: LOG.error("Can't use '--export-source-suppress' unless '--suppress " "SUPPRESS_FILE' is also given.") sys.exit(2) processed_path_hashes = set() skip_handler = None if 'skipfile' in args: with open(args.skipfile, 'r', encoding='utf-8', errors='ignore') as skip_file: skip_handler = SkipListHandler(skip_file.read()) trim_path_prefixes = args.trim_path_prefix if \ 'trim_path_prefix' in args else None if export: if export not in EXPORT_TYPES: LOG.error(f"Unknown export format: {export}") return # The HTML part will be handled separately below. if export != 'html': try: res = parse_convert_reports(args.input, export, context.severity_map, trim_path_prefixes) if 'output_path' in args: output_path = os.path.abspath(args.output_path) if not os.path.exists(output_path): os.mkdir(output_path) reports_json = os.path.join(output_path, 'reports.json') with open(reports_json, mode='w', encoding='utf-8', errors="ignore") as output_f: output_f.write(json.dumps(res)) return print(json.dumps(res)) except Exception as ex: LOG.error(ex) sys.exit(1) def trim_path_prefixes_handler(source_file): """ Callback to util.trim_path_prefixes to prevent module dependency of plist_to_html """ return util.trim_path_prefixes(source_file, trim_path_prefixes) html_builder = None def skip_html_report_data_handler(report_hash, source_file, report_line, checker_name, diag, files): """ Report handler which skips bugs which were suppressed by source code comments. This function will return a tuple. The first element will decide whether the report should be skipped or not and the second element will be a list of source code comments related to the actual report. """ files_dict = {k: v for k, v in enumerate(files)} report = Report({'check_name': checker_name}, diag['path'], files_dict, metadata=None) path_hash = get_report_path_hash(report) if path_hash in processed_path_hashes: LOG.debug("Skip report because it is a deduplication of an " "already processed report!") LOG.debug("Path hash: %s", path_hash) LOG.debug(diag) return True, [] skip, source_code_comments = skip_report(report_hash, source_file, report_line, checker_name, suppr_handler, src_comment_status_filter) if skip_handler: skip |= skip_handler.should_skip(source_file) if not skip: processed_path_hashes.add(path_hash) return skip, source_code_comments file_change = set() severity_stats = defaultdict(int) file_stats = defaultdict(int) report_count = 0 for input_path in args.input: input_path = os.path.abspath(input_path) os.chdir(original_cwd) LOG.debug("Parsing input argument: '%s'", input_path) if export == 'html': output_path = os.path.abspath(args.output_path) if not html_builder: html_builder = \ PlistToHtml.HtmlBuilder(context.path_plist_to_html_dist, context.severity_map) LOG.info("Generating html output files:") PlistToHtml.parse(input_path, output_path, context.path_plist_to_html_dist, skip_html_report_data_handler, html_builder, trim_path_prefixes_handler) continue files = [] metadata_dict = {} if os.path.isfile(input_path): files.append(input_path) elif os.path.isdir(input_path): metadata_file = os.path.join(input_path, "metadata.json") if os.path.exists(metadata_file): metadata_dict = util.load_json_or_empty(metadata_file) LOG.debug(metadata_dict) if 'working_directory' in metadata_dict: working_dir = metadata_dict['working_directory'] try: os.chdir(working_dir) except OSError as oerr: LOG.debug(oerr) LOG.error("Working directory %s is missing.\n" "Can not parse reports safely.", working_dir) sys.exit(1) _, _, file_names = next(os.walk(input_path), ([], [], [])) files = [os.path.join(input_path, file_name) for file_name in file_names] file_report_map = defaultdict(list) plist_pltf = PlistToPlaintextFormatter(suppr_handler, skip_handler, context.severity_map, processed_path_hashes, trim_path_prefixes, src_comment_status_filter) plist_pltf.print_steps = 'print_steps' in args for file_path in files: f_change = parse_with_plt_formatter(file_path, metadata_dict, plist_pltf, file_report_map) file_change = file_change.union(f_change) report_stats = plist_pltf.write(file_report_map) sev_stats = report_stats.get('severity') for severity in sev_stats: severity_stats[severity] += sev_stats[severity] f_stats = report_stats.get('files') for file_path in f_stats: file_stats[file_path] += f_stats[file_path] rep_stats = report_stats.get('reports') report_count += rep_stats.get("report_count", 0) # Create index.html and statistics.html for the generated html files. if html_builder: html_builder.create_index_html(args.output_path) html_builder.create_statistics_html(args.output_path) print('\nTo view statistics in a browser run:\n> firefox {0}'.format( os.path.join(args.output_path, 'statistics.html'))) print('\nTo view the results in a browser run:\n> firefox {0}'.format( os.path.join(args.output_path, 'index.html'))) else: print("\n----==== Summary ====----") if file_stats: vals = [[os.path.basename(k), v] for k, v in dict(file_stats).items()] vals.sort(key=itemgetter(0)) keys = ['Filename', 'Report count'] table = twodim.to_str('table', keys, vals, 1, True) print(table) if severity_stats: vals = [[k, v] for k, v in dict(severity_stats).items()] vals.sort(key=itemgetter(0)) keys = ['Severity', 'Report count'] table = twodim.to_str('table', keys, vals, 1, True) print(table) print("----=================----") print("Total number of reports: {}".format(report_count)) print("----=================----") if file_change: changed_files = '\n'.join([' - ' + f for f in file_change]) LOG.warning("The following source file contents changed since the " "latest analysis:\n%s\nMultiple reports were not " "shown and skipped from the statistics. Please " "analyze your project again to update the " "reports!", changed_files) os.chdir(original_cwd)
11,804
def subtract(image1, image2, scale=1.0, offset=0): """ Subtracts two images, dividing the result by scale and adding the offset. If omitted, scale defaults to 1.0, and offset to 0.0. At least one of the images must be "1" mode. .. code-block:: python out = ((image1 - image2) / scale + offset) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_subtract(image2.im, scale, offset))
def subtract(image1, image2, scale=1.0, offset=0): """ Subtracts two images, dividing the result by scale and adding the offset. If omitted, scale defaults to 1.0, and offset to 0.0. At least one of the images must have mode "1". .. code-block:: python out = ((image1 - image2) / scale + offset) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_subtract(image2.im, scale, offset))
53,651
def double_sum(attribute_path=None): """Creates an aggregator that calculates the sum of the input values. Does NOT accept ``None`` input values or ``None`` extracted values. Since the server-side implementation is in Java, values stored in the Map must be of type ``double`` (primitive or boxed) in Java or of a type that can be converted to that. That means, one should be able to use this aggregator with ``float`` or ``int`` values sent from the Python client unless they are out of range for ``double`` type in Java. Args: attribute_path (str): Extracts values from this path, if given. Returns: Aggregator[float]: An aggregator that calculates the sum of input the values. """ return _DoubleSumAggregator(attribute_path)
def double_sum(attribute_path=None): """Creates an aggregator that calculates the sum of the input values. Does NOT accept ``None`` input values or ``None`` extracted values. Since the server-side implementation is in Java, values stored in the Map must be of type ``double`` (primitive or boxed) in Java or of a type that can be converted to that. That means, one should be able to use this aggregator with ``float`` or ``int`` values sent from the Python client unless they are out of range for ``double`` type in Java. Args: attribute_path (str): Extracts values from this path, if given. Returns: Aggregator[float]: An aggregator that calculates the sum of the input values. """ return _DoubleSumAggregator(attribute_path)
8,800
def _join_event_processing(bot): """Process a batch of JOIN event from the ``join_events_queue`` queue. Every time this function is executed, it process at most ``throttle_join`` JOIN event: for each, it sends a WHO request to know more about the channel. This will prevent an excess of flood when there are too many channels to join at once. """ batch_size = max(bot.settings.core.throttle_join, 1) for _ in range(batch_size): try: channel = bot.memory['join_events_queue'].popleft() except IndexError: break LOGGER.debug('Send WHO after JOIN channel: %s', channel) _send_who(bot, channel)
def _join_event_processing(bot): """Process a batch of JOIN event from the ``join_events_queue`` queue. Every time this function is executed, it process at most ``throttle_join`` JOIN events. For each JOIN, it sends a WHO request to know more about the channel. This will prevent an excess of flood when there are too many channels to join at once. """ batch_size = max(bot.settings.core.throttle_join, 1) for _ in range(batch_size): try: channel = bot.memory['join_events_queue'].popleft() except IndexError: break LOGGER.debug('Send WHO after JOIN channel: %s', channel) _send_who(bot, channel)
24,570
def check_values( func=None, checks_on_return: Dict[str, bool] = None, **checks: Dict[str, bool] ): """ A decorator to 'check' -- limit/control -- the values of input and return arguments to a function or method. Parameters ---------- func: The function to be decorated checks_on_return: Dict[str, bool] Specifications for value checks on the return of the function being wrapped. (see `check values`_ for valid specifications) **checks: Dict[str, Dict[str, bool]] Specifications for value checks on the input arguments of the function being wrapped. Each keyword argument in `checks` is the name of a function argument to be checked and the keyword value contains the value check specifications. .. _`check values`: The value check specifications are defined within a dictionary containing the keys defined below. If the dictionary is empty or omitting keys, then the default value will be assumed for the missing keys. ================ ======= ================================================ Key Type Description ================ ======= ================================================ can_be_negative `bool` [DEFAULT `True`] values can be negative can_be_complex `bool` [DEFAULT `False`] values can be complex numbers can_be_inf `bool` [DEFAULT `True`] values can be :data:`~numpy.inf` can_be_nan `bool` [DEFAULT `True`] values can be :data:`~numpy.nan` none_shall_pass `bool` [DEFAULT `False`] values can be a python `None` can_be_zero `bool` [DEFAULT `True`] values can be zeros ================ ======= ================================================ Notes ----- * Checking of function arguments `*args` and `**kwargs` is not supported. * Full functionality is defined by the class :class:`CheckValues`. Examples -------- .. code-block:: python from plasmapy.utils.decorators import check_values @check_values(arg1={'can_be_negative': False, 'can_be_nan': False}, arg2={'can_be_inf': False}, checks_on_return={'none_shall_pass': True) def foo(arg1, arg2): return None # on a method class Foo: @check_values(arg1={'can_be_negative': False, 'can_be_nan': False}, arg2={'can_be_inf': False}, checks_on_return={'none_shall_pass': True) def bar(self, arg1, arg2): return None """ if checks_on_return is not None: checks["checks_on_return"] = checks_on_return if func is not None: # `check_values` called as a function return CheckValues(**checks)(func) else: # `check_values` called as a decorator "sugar-syntax" return CheckValues(**checks)
def check_values( func=None, checks_on_return: Dict[str, bool] = None, **checks: Dict[str, bool] ): """ A decorator to 'check' -- limit/control -- the values of input and return arguments to a function or method. Parameters ---------- func: The function to be decorated checks_on_return: Dict[str, bool] Specifications for value checks on the return of the function being wrapped. (see `check values`_ for valid specifications) **checks: Dict[str, Dict[str, bool]] Specifications for value checks on the input arguments of the function being wrapped. Each keyword argument in `checks` is the name of a function argument to be checked and the keyword value contains the value check specifications. .. _`check values`: The value check specifications are defined within a dictionary containing the keys defined below. If the dictionary is empty or omitting keys, then the default value will be assumed for the missing keys. ================ ======= ================================================ Key Type Description ================ ======= ================================================ can_be_negative `bool` [DEFAULT `True`] values can be negative can_be_complex `bool` [DEFAULT `False`] values can be complex numbers can_be_inf `bool` [DEFAULT `True`] values can be :data:`~numpy.inf` can_be_nan `bool` [DEFAULT `True`] values can be :data:`~numpy.nan` none_shall_pass `bool` [DEFAULT `False`] values can be a python `None` can_be_zero `bool` [DEFAULT `True`] values can be zero ================ ======= ================================================ Notes ----- * Checking of function arguments `*args` and `**kwargs` is not supported. * Full functionality is defined by the class :class:`CheckValues`. Examples -------- .. code-block:: python from plasmapy.utils.decorators import check_values @check_values(arg1={'can_be_negative': False, 'can_be_nan': False}, arg2={'can_be_inf': False}, checks_on_return={'none_shall_pass': True) def foo(arg1, arg2): return None # on a method class Foo: @check_values(arg1={'can_be_negative': False, 'can_be_nan': False}, arg2={'can_be_inf': False}, checks_on_return={'none_shall_pass': True) def bar(self, arg1, arg2): return None """ if checks_on_return is not None: checks["checks_on_return"] = checks_on_return if func is not None: # `check_values` called as a function return CheckValues(**checks)(func) else: # `check_values` called as a decorator "sugar-syntax" return CheckValues(**checks)
57,691
def test_get_indicators(mocker): """Tests get_indicators function Given 'indicator_types': ['value', 'user-account'] When - `fetch_indicators_command` or `fetch_indicators_command` are calling the get_indicators function Then - convert the result to indicators list - validate the the indicators list - validate the the new_last_id to set """ client = Client mocker.patch.object(client.stix_observable, 'list', return_value=RESPONSE_DATA) new_last_id, indicators = get_indicators(client, indicator_type=['value', 'user-account']) assert len(indicators) == 2 assert new_last_id == 'YXJyYXljb25uZWN0aW9uOjI='
def test_get_indicators(mocker): """Tests get_indicators function Given 'indicator_types': ['value', 'user-account'] When - `fetch_indicators_command` or `fetch_indicators_command` are calling the get_indicators function Then - convert the result to indicators list - validate the length of the indicators list - validate the new_last_id that is saved into the integration context is the same as the ID returned by the command. """ client = Client mocker.patch.object(client.stix_observable, 'list', return_value=RESPONSE_DATA) new_last_id, indicators = get_indicators(client, indicator_type=['value', 'user-account']) assert len(indicators) == 2 assert new_last_id == 'YXJyYXljb25uZWN0aW9uOjI='
26,454
def match(command): return (('choco install' in command.script_parts or 'cinst' in command.script_parts) and 'Installing the following packages' in command.output)
def match(command): return ((command.script.startswith('choco install') or 'cinst' in command.script_parts) and 'Installing the following packages' in command.output)
30,597
def escape_illegal_characters_in_file_name(file_name): if file_name: file_name = re.sub(ESCAPE_CHARACTERS, '-', file_name) file_name = re.sub('-+', '-', file_name) return file_name
def escape_illegal_characters_in_file_name(file_name): if file_name: file_name = re.sub(ESCAPE_CHARACTERS, '-', file_name) file_name = re.sub(r'-+', '-', file_name) return file_name
41,530
def split_and_plot_by_parts(w, I, *args, **kwargs): """Plot two discontinued arrays (typically a spectrum) without showing junctions: first identify junctions then split and plot separately. Useful for plotting an experimental spectrum defined on different, non overlapping ranges without showing connecting lines between the ranges, or to plot an experimental spectrum defined on overlapping ranges, without showing connecting lines neither. Parameters ---------- w, I: arrays typically output of :py:func:`~numpy.hstack`. Other Parameters ---------------- split_threshold: int number of standard deviation for threshold. Default 10 ax: matplotlib axe plot on a particular axe kwargs: dict forwarded to :func:`~matplotlib.pyplot.plot` cutwings: int discard elements on the side. Default 0 Returns ------- ax.plot """ from publib.tools import keep_color # Get defaults ax = kwargs.pop("ax", None) if ax == None: ax = plt.gca() split_threshold = kwargs.pop("split_threshold", 10) # type: int cutwings = kwargs.pop("cutwings", 0) # type: int label = kwargs.pop("label", None) # type: str # identify joints dw = np.diff(w) dwmean = dw.mean() joints = np.argwhere((abs(dw - dwmean) > split_threshold * dw.std())) + 1 # Split if len(joints) > 0: ws = np.split(w, joints.flatten()) Is = np.split(I, joints.flatten()) # Plot separately out = [] for i, (wi, Ii) in enumerate(zip(ws, Is)): if cutwings: wi = wi[cutwings:-cutwings] Ii = Ii[cutwings:-cutwings] if i == 0: # label once only out.append( ax.plot( wi, Ii, *args, **dict(list(kwargs.items()) + [("label", label)]) ) ) else: keep_color() out.append(ax.plot(wi, Ii, *args, **kwargs)) return list(zip(*out)) else: if cutwings: w = w[cutwings:-cutwings] I = I[cutwings:-cutwings] return ax.plot(w, I, *args, **dict(list(kwargs.items()) + [("label", label)]))
def split_and_plot_by_parts(w, I, *args, **kwargs): """Plot two discontinued arrays (typically a spectrum) without showing junctions: first identify junctions then split and plot separately. Useful for plotting an experimental spectrum defined on different, non overlapping ranges without showing connecting lines between the ranges, or to plot an experimental spectrum defined on overlapping ranges, without showing connecting lines neither. Parameters ---------- w, I: arrays typically output of :py:func:`~numpy.hstack`. Other Parameters ---------------- split_threshold: int number of standard deviation for threshold. Default 10 ax: matplotlib axe plot on a particular axe kwargs: dict forwarded to :func:`~matplotlib.pyplot.plot` cutwings: int discard elements on the side. Default 0 Returns ------- ax.plot """ from publib.tools import keep_color # Get defaults ax = kwargs.pop("ax", None) if ax is None: ax = plt.gca() split_threshold = kwargs.pop("split_threshold", 10) # type: int cutwings = kwargs.pop("cutwings", 0) # type: int label = kwargs.pop("label", None) # type: str # identify joints dw = np.diff(w) dwmean = dw.mean() joints = np.argwhere((abs(dw - dwmean) > split_threshold * dw.std())) + 1 # Split if len(joints) > 0: ws = np.split(w, joints.flatten()) Is = np.split(I, joints.flatten()) # Plot separately out = [] for i, (wi, Ii) in enumerate(zip(ws, Is)): if cutwings: wi = wi[cutwings:-cutwings] Ii = Ii[cutwings:-cutwings] if i == 0: # label once only out.append( ax.plot( wi, Ii, *args, **dict(list(kwargs.items()) + [("label", label)]) ) ) else: keep_color() out.append(ax.plot(wi, Ii, *args, **kwargs)) return list(zip(*out)) else: if cutwings: w = w[cutwings:-cutwings] I = I[cutwings:-cutwings] return ax.plot(w, I, *args, **dict(list(kwargs.items()) + [("label", label)]))
26,029
def load_command_table(self, _): from ._client_factory import cf_synapse_client_workspace_factory from ._client_factory import cf_synapse_client_operations_factory from ._client_factory import cf_synapse_client_bigdatapool_factory from ._client_factory import cf_synapse_client_sqlpool_factory from ._client_factory import cf_synapse_client_ipfirewallrules_factory from ._client_factory import cf_synapse_client_cmk_factory from ._client_factory import cf_synapse_client_sqlpool_sensitivity_labels_factory from ._client_factory import cf_synapse_client_restorable_dropped_sqlpools_factory from ._client_factory import cf_synapse_client_sqlpool_transparent_data_encryptions_factory from ._client_factory import cf_synapse_client_sqlpool_security_alert_policies_factory from ._client_factory import cf_synapse_client_sqlpool_blob_auditing_policies_factory from ._client_factory import cf_synapse_client_managed_identity_sqlcontrol_factory from ._client_factory import cf_synapse_client_workspace_aad_admins_factory from ._client_factory import cf_synapse_client_sqlserver_blob_auditing_policies_factory from ._client_factory import cf_synapse_client_integrationruntimes_factory from ._client_factory import cf_synapse_client_integrationruntimeauthkeys_factory from ._client_factory import cf_synapse_client_integrationruntimemonitoringdata_factory from ._client_factory import cf_synapse_client_integrationruntimenodeipaddress_factory from ._client_factory import cf_synapse_client_integrationruntimenodes_factory from ._client_factory import cf_synapse_client_integrationruntimecredentials_factory from ._client_factory import cf_synapse_client_integrationruntimeconnectioninfos_factory from ._client_factory import cf_synapse_client_integrationruntimestatus_factory from ._client_factory import cf_kusto_pool from ._client_factory import cf_kusto_script from ._client_factory import cf_kusto_scripts def get_custom_sdk(custom_module, client_factory): return CliCommandType( operations_tmpl='azure.cli.command_modules.synapse.manual.operations.{}#'.format(custom_module) + '{}', client_factory=client_factory, ) synapse_workspace_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#WorkspacesOperations.{}', client_factory=cf_synapse_client_workspace_factory) synapse_operations_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#Operations.{}', client_factory=cf_synapse_client_operations_factory) synapse_bigdatapool_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#BigDataPoolsOperations.{}', client_factory=cf_synapse_client_bigdatapool_factory) synapse_workspace_aad_admin_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#WorkspaceAadAdminsOperations.{}' ) synapse_sqlpool_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#SqlPoolsOperations.{}', client_factory=cf_synapse_client_sqlpool_factory) # Classification operation synapse_sqlpool_sensitivity_labels_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#SqlPoolSensitivityLabelsOperations.{}', client_factory=cf_synapse_client_sqlpool_sensitivity_labels_factory) # List deleted synapse_restorable_dropped_sqlpools_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#RestorableDroppedSqlPoolsOperations.{}', client_factory=cf_synapse_client_restorable_dropped_sqlpools_factory) # Tde operation synapse_sqlpool_transparent_data_encryptions_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#SqlPoolTransparentDataEncryptionsOperations.{}', client_factory=cf_synapse_client_sqlpool_transparent_data_encryptions_factory) # Threat policy operation synapse_sqlpool_security_alert_policies_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#SqlPoolSecurityAlertPoliciesOperations.{}', client_factory=cf_synapse_client_sqlpool_security_alert_policies_factory) # Audit policy operation synapse_sqlpool_blob_auditing_policies_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#SqlPoolBlobAuditingPoliciesOperations.{}', client_factory=cf_synapse_client_sqlpool_blob_auditing_policies_factory) # Workspace managed sql server audit policy operation synapse_workspace_managed_sqlserver_blob_auditing_policies_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#WorkspaceManagedSqlServerBlobAuditingPoliciesOperations.{}', client_factory=cf_synapse_client_sqlserver_blob_auditing_policies_factory) synapse_firewallrules_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#IpFirewallRulesOperations.{}', client_factory=cf_synapse_client_ipfirewallrules_factory) synapse_cmk_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#KeysOperations.{}', client_factory=cf_synapse_client_cmk_factory) synapse_managedidentitysqlcontrol_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#WorkspaceManagedIdentitySqlControlSettingsOperations.{}', client_factory=cf_synapse_client_managed_identity_sqlcontrol_factory) synapse_integrationruntimes_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#IntegrationRuntimesOperations.{}', client_factory=cf_synapse_client_integrationruntimes_factory) synapse_integrationruntimeauthkeys_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#IntegrationRuntimeAuthKeysOperations.{}', client_factory=cf_synapse_client_integrationruntimeauthkeys_factory) synapse_integrationruntimemonitoringdata_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#IntegrationRuntimeMonitoringDataOperations.{}', client_factory=cf_synapse_client_integrationruntimemonitoringdata_factory) synapse_integrationruntimenodes_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#IntegrationRuntimeNodesOperations.{}', client_factory=cf_synapse_client_integrationruntimenodes_factory) synapse_integrationruntimenodeipaddress_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#IntegrationRuntimeNodeIpAddressOperations.{}', client_factory=cf_synapse_client_integrationruntimenodeipaddress_factory) synapse_integrationruntimecredentials_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#IntegrationRuntimeCredentialsOperations.{}', client_factory=cf_synapse_client_integrationruntimecredentials_factory) synapse_integrationruntimeconnectioninfos_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#IntegrationRuntimeConnectionInfosOperations.{}', client_factory=cf_synapse_client_integrationruntimeconnectioninfos_factory) synapse_integrationruntimestatus_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#IntegrationRuntimeStatusOperations.{}', client_factory=cf_synapse_client_integrationruntimestatus_factory) synapse_spark_session_sdk = CliCommandType( operations_tmpl='azure.synapse.spark.operations#SparkSessionOperations.{}', client_factory=None) synapse_spark_batch_sdk = CliCommandType( operations_tmpl='azure.synapse.spark.operations#SparkBatchOperations.{}', client_factory=None) synapse_role_assignment_sdk = CliCommandType( operations_tmpl='azure.synapse.accesscontrol.operations#RoleAssignmentsOperations.{}', client_factory=None) synapse_role_definitions_sdk = CliCommandType( operations_tmpl='azure.synapse.accesscontrol.operations#RoleDefinitionsOperations.{}', client_factory=None) synapse_linked_service_sdk = CliCommandType( operation_tmpl='azure.synapse.artifacts.operations#LinkedServiceOperations.{}', client_factory=None) synapse_dataset_sdk = CliCommandType( operation_tmpl='azure.synapse.artifacts.operations#DatasetOperations.{}', client_factory=None) synapse_pipeline_sdk = CliCommandType( operation_tmpl='azure.synapse.artifacts.operations#PipelineOperations.{}', client_factory=None) synapse_pipeline_run_sdk = CliCommandType( operation_tmpl='azure.synapse.artifacts.operations#PipelineRunOperations.{}', client_factory=None) synapse_trigger_sdk = CliCommandType( operations_tmpl='azure.synapse.artifacts.operations#TriggerOperations.{}', client_factory=None) synapse_data_flow_sdk = CliCommandType( operation_tmpl='azure.synapse.artifacts.operations#DataFlowOperations.{}', client_factory=None) synapse_trigger_run_sdk = CliCommandType( operation_tmpl='azure.synapse.artifacts.operations#TriggerRunOperations.{}', client_factory=None) synapse_notebook_sdk = CliCommandType( operation_tmpl='azure.synapse.artifacts.operations#NotebookOperations.{}', client_factory=None) synapse_library_sdk = CliCommandType( operation_tmpl='azure.synapse.artifacts.operations#LibraryOperations.{}', client_factory=None) synapse_managed_private_endpoints_sdk = CliCommandType( operations_tmpl='azure.synapse.managedprivateendpoints.operations#ManagedPrivateEndpoints.{}', client_factory=None) synapse_spark_job_definition_sdk = CliCommandType( operations_tmpl='azure.synapse.artifacts.operations#SparkJobDefinitionOperations.{}', client_factory=None) synapse_sql_script_sdk = CliCommandType( operations_tmpl='azure.synapse.artifacts.operations#SqlScriptOperations.{}', client_factory=None) synapse_kusto_pool_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations._kusto_pools_operations#KustoPoolsOperations.{}', client_factory=cf_kusto_pool, ) synapse_kusto_script_sdk = CliCommandType( operations_tmpl='azure.synapse.artifacts.operations#KqlScriptOperations.{}', client_factory=cf_kusto_script, ) synapse_link_connection_sdk = CliCommandType( operations_tmpl='azure.synapse.artifacts.operations#linkconnectionOperations.{}', client_factory=None, ) # Management Plane Commands --Workspace with self.command_group('synapse workspace', command_type=synapse_workspace_sdk, custom_command_type=get_custom_sdk('workspace', cf_synapse_client_workspace_factory), client_factory=cf_synapse_client_workspace_factory) as g: g.show_command('show', 'get') g.custom_command('list', 'list_workspaces') g.custom_command('create', 'create_workspace', supports_no_wait=True) g.custom_command('update', 'update_workspace', supports_no_wait=True) g.custom_command('check-name', 'custom_check_name_availability', command_type=synapse_operations_sdk, client_factory=cf_synapse_client_operations_factory) g.command('delete', 'begin_delete', confirmation=True, supports_no_wait=True) g.custom_command('activate', 'activate_workspace', command_type=synapse_cmk_sdk, client_factory=cf_synapse_client_cmk_factory, supports_no_wait=True) g.wait_command('wait') # Management Plane Commands --SparkPool with self.command_group('synapse spark pool', command_type=synapse_bigdatapool_sdk, custom_command_type=get_custom_sdk('sparkpool', cf_synapse_client_bigdatapool_factory), client_factory=cf_synapse_client_bigdatapool_factory) as g: g.custom_show_command('show', 'get_spark_pool') g.command('list', 'list_by_workspace') g.custom_command('create', 'create_spark_pool', supports_no_wait=True) g.custom_command('update', 'update_spark_pool', supports_no_wait=True) g.custom_command('delete', 'delete_spark_pool', confirmation=True, supports_no_wait=True) g.wait_command('wait') # Management Plane Commands --SqlPool with self.command_group('synapse sql pool', command_type=synapse_sqlpool_sdk, custom_command_type=get_custom_sdk('sqlpool', cf_synapse_client_sqlpool_factory), client_factory=cf_synapse_client_sqlpool_factory) as g: g.show_command('show', 'get') g.command('list', 'list_by_workspace') g.custom_command('create', 'create_sql_pool', supports_no_wait=True) g.command('delete', 'begin_delete', confirmation=True, supports_no_wait=True) g.custom_command('update', 'update_sql_pool') g.command('pause', 'begin_pause') g.command('resume', 'begin_resume') g.custom_command('restore', 'restore_sql_pool') g.custom_command('show-connection-string', 'sql_pool_show_connection_string') g.wait_command('wait') # Management Plane Commands --SqlPool list-deleted with self.command_group('synapse sql pool', command_type=synapse_restorable_dropped_sqlpools_sdk, client_factory=cf_synapse_client_restorable_dropped_sqlpools_factory) as g: g.command('list-deleted', 'list_by_workspace') # Management Plane Commands --SqlPool Classification with self.command_group('synapse sql pool classification', command_type=synapse_sqlpool_sensitivity_labels_sdk, custom_command_type=get_custom_sdk('sqlpoolsensitivitylabel', cf_synapse_client_sqlpool_sensitivity_labels_factory), client_factory=cf_synapse_client_sqlpool_sensitivity_labels_factory) as g: g.custom_show_command('show', 'sqlpool_sensitivity_label_show') g.command('list', 'list_current') g.custom_command('create', 'sqlpool_sensitivity_label_create') g.command('delete', 'delete') g.custom_command('update', 'sqlpool_sensitivity_label_update') with self.command_group('synapse sql pool classification recommendation', command_type=synapse_sqlpool_sensitivity_labels_sdk, custom_command_type=get_custom_sdk('sqlpoolsensitivitylabel', cf_synapse_client_sqlpool_sensitivity_labels_factory), client_factory=cf_synapse_client_sqlpool_sensitivity_labels_factory) as g: g.command('list', 'list_recommended') g.command('enable', 'enable_recommendation') g.command('disable', 'disable_recommendation') # Management Plane Commands --SqlPool Tde with self.command_group('synapse sql pool tde', command_type=synapse_sqlpool_transparent_data_encryptions_sdk, custom_command_type=get_custom_sdk('sqlpooltde', cf_synapse_client_sqlpool_transparent_data_encryptions_factory), client_factory=cf_synapse_client_sqlpool_transparent_data_encryptions_factory) as g: g.custom_command('set', 'create_or_update') g.show_command('show', 'get') # Management Plane Commands --SqlPool Threat-policy with self.command_group('synapse sql pool threat-policy', command_type=synapse_sqlpool_security_alert_policies_sdk, custom_command_type=get_custom_sdk('sqlpoolsecurityalertpolicy', cf_synapse_client_sqlpool_security_alert_policies_factory), client_factory=cf_synapse_client_sqlpool_security_alert_policies_factory) as g: g.show_command('show', 'get') g.generic_update_command('update', custom_func_name='sqlpool_security_alert_policy_update') # Management Plane Commands --SqlPool Audit-policy with self.command_group('synapse sql pool audit-policy', command_type=synapse_sqlpool_blob_auditing_policies_sdk, custom_command_type=get_custom_sdk('sqlpoolblobauditingpolicy', cf_synapse_client_sqlpool_blob_auditing_policies_factory), client_factory=cf_synapse_client_sqlpool_blob_auditing_policies_factory) as g: g.custom_show_command('show', 'sqlpool_audit_policy_show') g.generic_update_command('update', custom_func_name='sqlpool_blob_auditing_policy_update') # Management Plane Commands --Sql Ad-Admin with self.command_group('synapse sql ad-admin', command_type=synapse_workspace_aad_admin_sdk, custom_command_type=get_custom_sdk('workspacesqlaadadmin', cf_synapse_client_workspace_aad_admins_factory), client_factory=cf_synapse_client_workspace_aad_admins_factory) as g: g.show_command('show', 'get') g.custom_command('create', 'create_workspace_sql_aad_admin', supports_no_wait=True) g.generic_update_command('update', setter_name='begin_create_or_update', custom_func_name='update_workspace_sql_aad_admin', setter_arg_name='aad_admin_info', supports_no_wait=True) g.command('delete', 'begin_delete', confirmation=True, supports_no_wait=True) g.wait_command('wait') # Management Plane Commands --Sql audit-policy with self.command_group('synapse sql audit-policy', command_type=synapse_workspace_managed_sqlserver_blob_auditing_policies_sdk, custom_command_type=get_custom_sdk('sqlpoolblobauditingpolicy', cf_synapse_client_sqlserver_blob_auditing_policies_factory), client_factory=cf_synapse_client_sqlserver_blob_auditing_policies_factory) as g: g.custom_show_command('show', 'workspace_audit_policy_show') g.generic_update_command('update', setter_name='begin_create_or_update', custom_func_name='sqlserver_blob_auditing_policy_update', supports_no_wait=True) g.wait_command('wait') # Management Plane Commands --FirewallRule with self.command_group('synapse workspace firewall-rule', command_type=synapse_firewallrules_sdk, custom_command_type=get_custom_sdk('workspace', cf_synapse_client_ipfirewallrules_factory), client_factory=cf_synapse_client_ipfirewallrules_factory) as g: g.command('list', 'list_by_workspace') g.show_command('show', 'get') g.custom_command('create', 'create_firewall_rule', supports_no_wait=True) g.custom_command('update', 'update_firewall_rule', supports_no_wait=True) g.command('delete', 'begin_delete', confirmation=True, supports_no_wait=True) g.wait_command('wait') # Management Plane Commands --IntegrationRuntime with self.command_group('synapse integration-runtime', command_type=synapse_integrationruntimes_sdk, custom_command_type=get_custom_sdk('integrationruntime', cf_synapse_client_integrationruntimes_factory), client_factory=cf_synapse_client_integrationruntimes_factory) as g: g.command('list', 'list_by_workspace') g.show_command('show', 'get') g.custom_command('create', 'create', deprecate_info=g.deprecate(redirect='managed create, self-hosted create'), supports_no_wait=True) g.custom_command('managed create', 'Managed_Create', supports_no_wait=True) g.custom_command('self-hosted create', 'Selfhosted_Create', supports_no_wait=True) g.command('delete', 'begin_delete', confirmation=True, supports_no_wait=True) g.custom_command('update', 'update') g.command('start', 'begin_start', supports_no_wait=True) g.command('stop', 'begin_stop', confirmation=True, supports_no_wait=True) g.command('upgrade', 'upgrade') g.command('list-auth-key', 'list', command_type=synapse_integrationruntimeauthkeys_sdk, client_factory=cf_synapse_client_integrationruntimeauthkeys_factory) g.custom_command('regenerate-auth-key', 'regenerate', command_type=synapse_integrationruntimeauthkeys_sdk, client_factory=cf_synapse_client_integrationruntimeauthkeys_factory) g.command('get-monitoring-data', 'list', command_type=synapse_integrationruntimemonitoringdata_sdk, client_factory=cf_synapse_client_integrationruntimemonitoringdata_factory) g.command('sync-credentials', 'sync', command_type=synapse_integrationruntimecredentials_sdk, client_factory=cf_synapse_client_integrationruntimecredentials_factory) g.command('get-connection-info', 'get', command_type=synapse_integrationruntimeconnectioninfos_sdk, client_factory=cf_synapse_client_integrationruntimeconnectioninfos_factory) g.command('get-status', 'get', command_type=synapse_integrationruntimestatus_sdk, client_factory=cf_synapse_client_integrationruntimestatus_factory) g.wait_command('wait') # Management Plane Commands --Keys with self.command_group('synapse workspace key', command_type=synapse_cmk_sdk, custom_command_type=get_custom_sdk('workspace', cf_synapse_client_cmk_factory), client_factory=cf_synapse_client_cmk_factory) as g: g.command('list', 'list_by_workspace') g.show_command('show', 'get') g.custom_command('create', 'create_workspace_key', supports_no_wait=True) g.command('delete', 'delete', confirmation=True, supports_no_wait=True) g.wait_command('wait') # Management Plane Commands --Managed-Identity with self.command_group('synapse workspace managed-identity', command_type=synapse_managedidentitysqlcontrol_sdk, custom_command_type=get_custom_sdk('workspace', cf_synapse_client_managed_identity_sqlcontrol_factory), client_factory=cf_synapse_client_managed_identity_sqlcontrol_factory) as g: g.show_command('show-sql-access', 'get') g.custom_command('grant-sql-access', 'grant_sql_access_to_managed_identity', supports_no_wait=True) g.custom_command('revoke-sql-access', 'revoke_sql_access_to_managed_identity', supports_no_wait=True) g.wait_command('wait') with self.command_group('synapse integration-runtime-node', command_type=synapse_integrationruntimenodes_sdk, custom_command_type=get_custom_sdk('integrationruntimenode', cf_synapse_client_integrationruntimenodes_factory), client_factory=cf_synapse_client_integrationruntimenodes_factory) as g: g.show_command('show', 'get') g.custom_command('update', 'update') g.command('delete', 'delete', confirmation=True) g.command('get-ip-address', 'get', command_type=synapse_integrationruntimenodeipaddress_sdk, client_factory=cf_synapse_client_integrationruntimenodeipaddress_factory) # Data Plane Commands --Spark batch opertions with self.command_group('synapse spark job', command_type=synapse_spark_batch_sdk, custom_command_type=get_custom_sdk('spark', None)) as g: g.custom_command('submit', 'create_spark_batch_job') g.custom_command('list', 'list_spark_batch_jobs') g.custom_show_command('show', 'get_spark_batch_job') g.custom_command('cancel', 'cancel_spark_batch_job', confirmation=True) # Data Plane Commands --Spark session operations with self.command_group('synapse spark session', synapse_spark_session_sdk, custom_command_type=get_custom_sdk('spark', None)) as g: g.custom_command('create', 'create_spark_session_job') g.custom_command('list', 'list_spark_session_jobs') g.custom_show_command('show', 'get_spark_session_job') g.custom_command('cancel', 'cancel_spark_session_job', confirmation=True) g.custom_command('reset-timeout', 'reset_timeout') # Data Plane Commands --Spark session statements operations with self.command_group('synapse spark statement', synapse_spark_session_sdk, custom_command_type=get_custom_sdk('spark', None)) as g: g.custom_command('invoke', 'create_spark_session_statement') g.custom_command('list', 'list_spark_session_statements') g.custom_show_command('show', 'get_spark_session_statement') g.custom_command('cancel', 'cancel_spark_session_statement', confirmation=True) # Data Plane Commands --Access control operations with self.command_group('synapse role assignment', synapse_role_assignment_sdk, custom_command_type=get_custom_sdk('accesscontrol', None)) as g: g.custom_command('create', 'create_role_assignment') g.custom_command('list', 'list_role_assignments') g.custom_show_command('show', 'get_role_assignment_by_id') g.custom_command('delete', 'delete_role_assignment', confirmation=True) with self.command_group('synapse role definition', synapse_role_definitions_sdk, custom_command_type=get_custom_sdk('accesscontrol', None)) as g: g.custom_command('list', 'list_role_definitions') g.custom_show_command('show', 'get_role_definition') with self.command_group('synapse role scope', synapse_role_definitions_sdk, custom_command_type=get_custom_sdk('accesscontrol', None)) as g: g.custom_command('list', 'list_scopes') # Data Plane Commands --Artifacts Linked service operations with self.command_group('synapse linked-service', synapse_linked_service_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('create', 'create_or_update_linked_service', supports_no_wait=True) g.custom_command('set', 'create_or_update_linked_service', deprecate_info=g.deprecate(redirect='update'), supports_no_wait=True) g.custom_command('update', 'create_or_update_linked_service', supports_no_wait=True) g.custom_command('list', 'list_linked_service') g.custom_show_command('show', 'get_linked_service') g.custom_command('delete', 'delete_linked_service', confirmation=True, supports_no_wait=True) # Data Plane Commands --Artifacts dataset operations with self.command_group('synapse dataset', synapse_dataset_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('create', 'create_or_update_dataset', supports_no_wait=True) g.custom_command('set', 'create_or_update_dataset', deprecate_info=g.deprecate(redirect='update'), supports_no_wait=True) g.custom_command('update', 'create_or_update_dataset', supports_no_wait=True) g.custom_command('list', 'list_datasets') g.custom_show_command('show', 'get_dataset') g.custom_command('delete', 'delete_dataset', confirmation=True, supports_no_wait=True) # Data Plane Commands --Artifacts pipeline operations with self.command_group('synapse pipeline', synapse_pipeline_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('create', 'create_or_update_pipeline', supports_no_wait=True) g.custom_command('set', 'create_or_update_pipeline', deprecate_info=g.deprecate(redirect='update'), supports_no_wait=True) g.custom_command('update', 'create_or_update_pipeline', supports_no_wait=True) g.custom_command('list', 'list_pipelines') g.custom_show_command('show', 'get_pipeline') g.custom_command('delete', 'delete_pipeline', confirmation=True, supports_no_wait=True) g.custom_command('create-run', 'create_pipeline_run') # Data Plane Commands --Artifacts pipeline run operations with self.command_group('synapse pipeline-run', synapse_pipeline_run_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('query-by-workspace', 'query_pipeline_runs_by_workspace') g.custom_show_command('show', 'get_pipeline_run') g.custom_command('cancel', 'cancel_pipeline_run', confirmation=True) with self.command_group('synapse activity-run', synapse_pipeline_run_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('query-by-pipeline-run', 'query_activity_runs') # Data Plane Commands --Artifacts trigger operations with self.command_group('synapse trigger', synapse_trigger_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('create', 'create_or_update_trigger', supports_no_wait=True) g.custom_command('set', 'create_or_update_trigger', deprecate_info=g.deprecate(redirect='update'), supports_no_wait=True) g.custom_command('update', 'create_or_update_trigger', supports_no_wait=True) g.custom_command('list', 'list_triggers') g.custom_show_command('show', 'get_trigger') g.custom_command('delete', 'delete_trigger', confirmation=True, supports_no_wait=True) g.custom_command('subscribe-to-event', 'subscribe_trigger_to_events', supports_no_wait=True) g.custom_command('get-event-subscription-status', 'get_event_subscription_status') g.custom_command('unsubscribe-from-event', 'unsubscribe_trigger_from_events', supports_no_wait=True) g.custom_command('start', 'start_trigger', supports_no_wait=True) g.custom_command('stop', 'stop_trigger', supports_no_wait=True) g.custom_wait_command('wait', 'get_trigger') # Data Plane Commands --Artifacts trigger run operations with self.command_group('synapse trigger-run', synapse_trigger_run_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('rerun', 'rerun_trigger') g.custom_command('cancel', 'cancel_trigger') g.custom_command('query-by-workspace', 'query_trigger_runs_by_workspace') # Data Plane Commands --Artifacts data flow operations with self.command_group('synapse data-flow', synapse_data_flow_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('create', 'create_or_update_data_flow', supports_no_wait=True) g.custom_command('set', 'create_or_update_data_flow', supports_no_wait=True) g.custom_command('list', 'list_data_flows') g.custom_show_command('show', 'get_data_flow') g.custom_command('delete', 'delete_data_flow', confirmation=True, supports_no_wait=True) # Data Plane Commands --Artifacts notebook operations with self.command_group('synapse notebook', synapse_notebook_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('create', 'create_or_update_notebook', supports_no_wait=True) g.custom_command('set', 'create_or_update_notebook', supports_no_wait=True) g.custom_command('import', 'create_or_update_notebook', supports_no_wait=True) g.custom_command('list', 'list_notebooks') g.custom_show_command('show', 'get_notebook') g.custom_command('export', 'export_notebook') g.custom_command('delete', 'delete_notebook', confirmation=True, supports_no_wait=True) # Data Plane Commands --Artifacts library operations with self.command_group('synapse workspace-package', synapse_library_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('upload', 'upload_workspace_package') g.custom_command('upload-batch', 'workspace_package_upload_batch') g.custom_command('list', 'list_workspace_package') g.custom_show_command('show', 'get_workspace_package') g.custom_command('delete', 'delete_workspace_package', confirmation=True, supports_no_wait=True) # Data Plane Commands --Managed private endpoints operations with self.command_group('synapse managed-private-endpoints', synapse_managed_private_endpoints_sdk, custom_command_type=get_custom_sdk('managedprivateendpoints', None)) as g: g.custom_show_command('show', 'get_Managed_private_endpoints') g.custom_command('create', 'create_Managed_private_endpoints') g.custom_command('list', 'list_Managed_private_endpoints') g.custom_command('delete', 'delete_Managed_private_endpoints', confirmation=True) # Data Plane Commands --Artifacts Spark job definitions operations with self.command_group('synapse spark-job-definition', synapse_spark_job_definition_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('list', 'list_spark_job_definition') g.custom_show_command('show', 'get_spark_job_definition') g.custom_command('delete', 'delete_spark_job_definition', supports_no_wait=True) g.custom_command('create', 'create_or_update_spark_job_definition', supports_no_wait=True) g.custom_wait_command('wait', 'get_spark_job_definition') g.custom_command('update', 'create_or_update_spark_job_definition', supports_no_wait=True) with self.command_group('synapse sql-script', synapse_sql_script_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('list', 'list_sql_scripts') g.custom_show_command('show', 'get_sql_script') g.custom_command('delete', 'delete_sql_script', supports_no_wait=True) g.custom_command('create', 'create_sql_script', supports_no_wait=True) g.custom_wait_command('wait', 'get_sql_script') g.custom_show_command('export', 'export_sql_script') g.custom_command('import', 'create_sql_script', supports_no_wait=True) with self.command_group('synapse', is_preview=True): pass # synapse kusto pool Commands --Managed kusto pool Commands with self.command_group('synapse kusto pool', command_type=synapse_kusto_pool_sdk, custom_command_type=get_custom_sdk('kustopool', cf_kusto_pool), client_factory=cf_kusto_pool) as g: g.custom_command('create', 'synapse_kusto_pool_create', supports_no_wait=True) g.custom_command('update', 'synapse_kusto_pool_update', supports_no_wait=True) g.custom_command('add-language-extension', 'synapse_kusto_pool_add_language_extension', supports_no_wait=True) g.custom_command('detach-follower-database', 'synapse_kusto_pool_detach_follower_database', supports_no_wait=True) g.custom_command('remove-language-extension', 'synapse_kusto_pool_remove_language_extension', supports_no_wait=True) with self.command_group('synapse kql-script', command_type=synapse_kusto_script_sdk, custom_command_type=get_custom_sdk('kustopool', cf_kusto_script), client_factory=cf_kusto_script) as g: g.custom_show_command('show', 'synapse_kusto_script_show') g.custom_command('create', 'synapse_kusto_script_create', supports_no_wait=True) g.custom_command('import', 'synapse_kusto_script_create', supports_no_wait=True) g.custom_command('delete', 'synapse_kusto_script_delete', supports_no_wait=True, confirmation=True) g.custom_command('list', 'synapse_kusto_script_list', client_factory=cf_kusto_scripts) g.custom_command('export', 'synapse_kusto_script_export') g.custom_wait_command('wait', 'synapse_kusto_script_show') with self.command_group('synapse link-connection', synapse_link_connection_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('list', 'list_link_connection') g.custom_show_command('show', 'get_link_connection') g.custom_command('delete', 'delete_link_connection') g.custom_command('create', 'create_or_update_link_connection') g.custom_command('update', 'create_or_update_link_connection') g.custom_command('get-status', 'get_link_connection_status') g.custom_command('start ', 'start_link_connection') g.custom_command('stop', 'stop_link_connection') g.custom_command('list-link-tables', 'synapse_list_link_table') g.custom_command('edit-link-tables', 'synapse_edit_link_table') g.custom_command('get-link-tables-status', 'synapse_get_link_tables_status') g.custom_command('update-landing-zone-credential', 'synapse_update_landing_zone_credential')
def load_command_table(self, _): from ._client_factory import cf_synapse_client_workspace_factory from ._client_factory import cf_synapse_client_operations_factory from ._client_factory import cf_synapse_client_bigdatapool_factory from ._client_factory import cf_synapse_client_sqlpool_factory from ._client_factory import cf_synapse_client_ipfirewallrules_factory from ._client_factory import cf_synapse_client_cmk_factory from ._client_factory import cf_synapse_client_sqlpool_sensitivity_labels_factory from ._client_factory import cf_synapse_client_restorable_dropped_sqlpools_factory from ._client_factory import cf_synapse_client_sqlpool_transparent_data_encryptions_factory from ._client_factory import cf_synapse_client_sqlpool_security_alert_policies_factory from ._client_factory import cf_synapse_client_sqlpool_blob_auditing_policies_factory from ._client_factory import cf_synapse_client_managed_identity_sqlcontrol_factory from ._client_factory import cf_synapse_client_workspace_aad_admins_factory from ._client_factory import cf_synapse_client_sqlserver_blob_auditing_policies_factory from ._client_factory import cf_synapse_client_integrationruntimes_factory from ._client_factory import cf_synapse_client_integrationruntimeauthkeys_factory from ._client_factory import cf_synapse_client_integrationruntimemonitoringdata_factory from ._client_factory import cf_synapse_client_integrationruntimenodeipaddress_factory from ._client_factory import cf_synapse_client_integrationruntimenodes_factory from ._client_factory import cf_synapse_client_integrationruntimecredentials_factory from ._client_factory import cf_synapse_client_integrationruntimeconnectioninfos_factory from ._client_factory import cf_synapse_client_integrationruntimestatus_factory from ._client_factory import cf_kusto_pool from ._client_factory import cf_kusto_script from ._client_factory import cf_kusto_scripts def get_custom_sdk(custom_module, client_factory): return CliCommandType( operations_tmpl='azure.cli.command_modules.synapse.manual.operations.{}#'.format(custom_module) + '{}', client_factory=client_factory, ) synapse_workspace_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#WorkspacesOperations.{}', client_factory=cf_synapse_client_workspace_factory) synapse_operations_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#Operations.{}', client_factory=cf_synapse_client_operations_factory) synapse_bigdatapool_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#BigDataPoolsOperations.{}', client_factory=cf_synapse_client_bigdatapool_factory) synapse_workspace_aad_admin_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#WorkspaceAadAdminsOperations.{}' ) synapse_sqlpool_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#SqlPoolsOperations.{}', client_factory=cf_synapse_client_sqlpool_factory) # Classification operation synapse_sqlpool_sensitivity_labels_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#SqlPoolSensitivityLabelsOperations.{}', client_factory=cf_synapse_client_sqlpool_sensitivity_labels_factory) # List deleted synapse_restorable_dropped_sqlpools_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#RestorableDroppedSqlPoolsOperations.{}', client_factory=cf_synapse_client_restorable_dropped_sqlpools_factory) # Tde operation synapse_sqlpool_transparent_data_encryptions_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#SqlPoolTransparentDataEncryptionsOperations.{}', client_factory=cf_synapse_client_sqlpool_transparent_data_encryptions_factory) # Threat policy operation synapse_sqlpool_security_alert_policies_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#SqlPoolSecurityAlertPoliciesOperations.{}', client_factory=cf_synapse_client_sqlpool_security_alert_policies_factory) # Audit policy operation synapse_sqlpool_blob_auditing_policies_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#SqlPoolBlobAuditingPoliciesOperations.{}', client_factory=cf_synapse_client_sqlpool_blob_auditing_policies_factory) # Workspace managed sql server audit policy operation synapse_workspace_managed_sqlserver_blob_auditing_policies_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#WorkspaceManagedSqlServerBlobAuditingPoliciesOperations.{}', client_factory=cf_synapse_client_sqlserver_blob_auditing_policies_factory) synapse_firewallrules_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#IpFirewallRulesOperations.{}', client_factory=cf_synapse_client_ipfirewallrules_factory) synapse_cmk_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#KeysOperations.{}', client_factory=cf_synapse_client_cmk_factory) synapse_managedidentitysqlcontrol_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#WorkspaceManagedIdentitySqlControlSettingsOperations.{}', client_factory=cf_synapse_client_managed_identity_sqlcontrol_factory) synapse_integrationruntimes_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#IntegrationRuntimesOperations.{}', client_factory=cf_synapse_client_integrationruntimes_factory) synapse_integrationruntimeauthkeys_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#IntegrationRuntimeAuthKeysOperations.{}', client_factory=cf_synapse_client_integrationruntimeauthkeys_factory) synapse_integrationruntimemonitoringdata_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#IntegrationRuntimeMonitoringDataOperations.{}', client_factory=cf_synapse_client_integrationruntimemonitoringdata_factory) synapse_integrationruntimenodes_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#IntegrationRuntimeNodesOperations.{}', client_factory=cf_synapse_client_integrationruntimenodes_factory) synapse_integrationruntimenodeipaddress_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#IntegrationRuntimeNodeIpAddressOperations.{}', client_factory=cf_synapse_client_integrationruntimenodeipaddress_factory) synapse_integrationruntimecredentials_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#IntegrationRuntimeCredentialsOperations.{}', client_factory=cf_synapse_client_integrationruntimecredentials_factory) synapse_integrationruntimeconnectioninfos_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#IntegrationRuntimeConnectionInfosOperations.{}', client_factory=cf_synapse_client_integrationruntimeconnectioninfos_factory) synapse_integrationruntimestatus_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations#IntegrationRuntimeStatusOperations.{}', client_factory=cf_synapse_client_integrationruntimestatus_factory) synapse_spark_session_sdk = CliCommandType( operations_tmpl='azure.synapse.spark.operations#SparkSessionOperations.{}', client_factory=None) synapse_spark_batch_sdk = CliCommandType( operations_tmpl='azure.synapse.spark.operations#SparkBatchOperations.{}', client_factory=None) synapse_role_assignment_sdk = CliCommandType( operations_tmpl='azure.synapse.accesscontrol.operations#RoleAssignmentsOperations.{}', client_factory=None) synapse_role_definitions_sdk = CliCommandType( operations_tmpl='azure.synapse.accesscontrol.operations#RoleDefinitionsOperations.{}', client_factory=None) synapse_linked_service_sdk = CliCommandType( operation_tmpl='azure.synapse.artifacts.operations#LinkedServiceOperations.{}', client_factory=None) synapse_dataset_sdk = CliCommandType( operation_tmpl='azure.synapse.artifacts.operations#DatasetOperations.{}', client_factory=None) synapse_pipeline_sdk = CliCommandType( operation_tmpl='azure.synapse.artifacts.operations#PipelineOperations.{}', client_factory=None) synapse_pipeline_run_sdk = CliCommandType( operation_tmpl='azure.synapse.artifacts.operations#PipelineRunOperations.{}', client_factory=None) synapse_trigger_sdk = CliCommandType( operations_tmpl='azure.synapse.artifacts.operations#TriggerOperations.{}', client_factory=None) synapse_data_flow_sdk = CliCommandType( operation_tmpl='azure.synapse.artifacts.operations#DataFlowOperations.{}', client_factory=None) synapse_trigger_run_sdk = CliCommandType( operation_tmpl='azure.synapse.artifacts.operations#TriggerRunOperations.{}', client_factory=None) synapse_notebook_sdk = CliCommandType( operation_tmpl='azure.synapse.artifacts.operations#NotebookOperations.{}', client_factory=None) synapse_library_sdk = CliCommandType( operation_tmpl='azure.synapse.artifacts.operations#LibraryOperations.{}', client_factory=None) synapse_managed_private_endpoints_sdk = CliCommandType( operations_tmpl='azure.synapse.managedprivateendpoints.operations#ManagedPrivateEndpoints.{}', client_factory=None) synapse_spark_job_definition_sdk = CliCommandType( operations_tmpl='azure.synapse.artifacts.operations#SparkJobDefinitionOperations.{}', client_factory=None) synapse_sql_script_sdk = CliCommandType( operations_tmpl='azure.synapse.artifacts.operations#SqlScriptOperations.{}', client_factory=None) synapse_kusto_pool_sdk = CliCommandType( operations_tmpl='azure.mgmt.synapse.operations._kusto_pools_operations#KustoPoolsOperations.{}', client_factory=cf_kusto_pool, ) synapse_kusto_script_sdk = CliCommandType( operations_tmpl='azure.synapse.artifacts.operations#KqlScriptOperations.{}', client_factory=cf_kusto_script, ) synapse_link_connection_sdk = CliCommandType( operations_tmpl='azure.synapse.artifacts.operations#linkconnectionOperations.{}', client_factory=cf_synapse_link_connection, ) # Management Plane Commands --Workspace with self.command_group('synapse workspace', command_type=synapse_workspace_sdk, custom_command_type=get_custom_sdk('workspace', cf_synapse_client_workspace_factory), client_factory=cf_synapse_client_workspace_factory) as g: g.show_command('show', 'get') g.custom_command('list', 'list_workspaces') g.custom_command('create', 'create_workspace', supports_no_wait=True) g.custom_command('update', 'update_workspace', supports_no_wait=True) g.custom_command('check-name', 'custom_check_name_availability', command_type=synapse_operations_sdk, client_factory=cf_synapse_client_operations_factory) g.command('delete', 'begin_delete', confirmation=True, supports_no_wait=True) g.custom_command('activate', 'activate_workspace', command_type=synapse_cmk_sdk, client_factory=cf_synapse_client_cmk_factory, supports_no_wait=True) g.wait_command('wait') # Management Plane Commands --SparkPool with self.command_group('synapse spark pool', command_type=synapse_bigdatapool_sdk, custom_command_type=get_custom_sdk('sparkpool', cf_synapse_client_bigdatapool_factory), client_factory=cf_synapse_client_bigdatapool_factory) as g: g.custom_show_command('show', 'get_spark_pool') g.command('list', 'list_by_workspace') g.custom_command('create', 'create_spark_pool', supports_no_wait=True) g.custom_command('update', 'update_spark_pool', supports_no_wait=True) g.custom_command('delete', 'delete_spark_pool', confirmation=True, supports_no_wait=True) g.wait_command('wait') # Management Plane Commands --SqlPool with self.command_group('synapse sql pool', command_type=synapse_sqlpool_sdk, custom_command_type=get_custom_sdk('sqlpool', cf_synapse_client_sqlpool_factory), client_factory=cf_synapse_client_sqlpool_factory) as g: g.show_command('show', 'get') g.command('list', 'list_by_workspace') g.custom_command('create', 'create_sql_pool', supports_no_wait=True) g.command('delete', 'begin_delete', confirmation=True, supports_no_wait=True) g.custom_command('update', 'update_sql_pool') g.command('pause', 'begin_pause') g.command('resume', 'begin_resume') g.custom_command('restore', 'restore_sql_pool') g.custom_command('show-connection-string', 'sql_pool_show_connection_string') g.wait_command('wait') # Management Plane Commands --SqlPool list-deleted with self.command_group('synapse sql pool', command_type=synapse_restorable_dropped_sqlpools_sdk, client_factory=cf_synapse_client_restorable_dropped_sqlpools_factory) as g: g.command('list-deleted', 'list_by_workspace') # Management Plane Commands --SqlPool Classification with self.command_group('synapse sql pool classification', command_type=synapse_sqlpool_sensitivity_labels_sdk, custom_command_type=get_custom_sdk('sqlpoolsensitivitylabel', cf_synapse_client_sqlpool_sensitivity_labels_factory), client_factory=cf_synapse_client_sqlpool_sensitivity_labels_factory) as g: g.custom_show_command('show', 'sqlpool_sensitivity_label_show') g.command('list', 'list_current') g.custom_command('create', 'sqlpool_sensitivity_label_create') g.command('delete', 'delete') g.custom_command('update', 'sqlpool_sensitivity_label_update') with self.command_group('synapse sql pool classification recommendation', command_type=synapse_sqlpool_sensitivity_labels_sdk, custom_command_type=get_custom_sdk('sqlpoolsensitivitylabel', cf_synapse_client_sqlpool_sensitivity_labels_factory), client_factory=cf_synapse_client_sqlpool_sensitivity_labels_factory) as g: g.command('list', 'list_recommended') g.command('enable', 'enable_recommendation') g.command('disable', 'disable_recommendation') # Management Plane Commands --SqlPool Tde with self.command_group('synapse sql pool tde', command_type=synapse_sqlpool_transparent_data_encryptions_sdk, custom_command_type=get_custom_sdk('sqlpooltde', cf_synapse_client_sqlpool_transparent_data_encryptions_factory), client_factory=cf_synapse_client_sqlpool_transparent_data_encryptions_factory) as g: g.custom_command('set', 'create_or_update') g.show_command('show', 'get') # Management Plane Commands --SqlPool Threat-policy with self.command_group('synapse sql pool threat-policy', command_type=synapse_sqlpool_security_alert_policies_sdk, custom_command_type=get_custom_sdk('sqlpoolsecurityalertpolicy', cf_synapse_client_sqlpool_security_alert_policies_factory), client_factory=cf_synapse_client_sqlpool_security_alert_policies_factory) as g: g.show_command('show', 'get') g.generic_update_command('update', custom_func_name='sqlpool_security_alert_policy_update') # Management Plane Commands --SqlPool Audit-policy with self.command_group('synapse sql pool audit-policy', command_type=synapse_sqlpool_blob_auditing_policies_sdk, custom_command_type=get_custom_sdk('sqlpoolblobauditingpolicy', cf_synapse_client_sqlpool_blob_auditing_policies_factory), client_factory=cf_synapse_client_sqlpool_blob_auditing_policies_factory) as g: g.custom_show_command('show', 'sqlpool_audit_policy_show') g.generic_update_command('update', custom_func_name='sqlpool_blob_auditing_policy_update') # Management Plane Commands --Sql Ad-Admin with self.command_group('synapse sql ad-admin', command_type=synapse_workspace_aad_admin_sdk, custom_command_type=get_custom_sdk('workspacesqlaadadmin', cf_synapse_client_workspace_aad_admins_factory), client_factory=cf_synapse_client_workspace_aad_admins_factory) as g: g.show_command('show', 'get') g.custom_command('create', 'create_workspace_sql_aad_admin', supports_no_wait=True) g.generic_update_command('update', setter_name='begin_create_or_update', custom_func_name='update_workspace_sql_aad_admin', setter_arg_name='aad_admin_info', supports_no_wait=True) g.command('delete', 'begin_delete', confirmation=True, supports_no_wait=True) g.wait_command('wait') # Management Plane Commands --Sql audit-policy with self.command_group('synapse sql audit-policy', command_type=synapse_workspace_managed_sqlserver_blob_auditing_policies_sdk, custom_command_type=get_custom_sdk('sqlpoolblobauditingpolicy', cf_synapse_client_sqlserver_blob_auditing_policies_factory), client_factory=cf_synapse_client_sqlserver_blob_auditing_policies_factory) as g: g.custom_show_command('show', 'workspace_audit_policy_show') g.generic_update_command('update', setter_name='begin_create_or_update', custom_func_name='sqlserver_blob_auditing_policy_update', supports_no_wait=True) g.wait_command('wait') # Management Plane Commands --FirewallRule with self.command_group('synapse workspace firewall-rule', command_type=synapse_firewallrules_sdk, custom_command_type=get_custom_sdk('workspace', cf_synapse_client_ipfirewallrules_factory), client_factory=cf_synapse_client_ipfirewallrules_factory) as g: g.command('list', 'list_by_workspace') g.show_command('show', 'get') g.custom_command('create', 'create_firewall_rule', supports_no_wait=True) g.custom_command('update', 'update_firewall_rule', supports_no_wait=True) g.command('delete', 'begin_delete', confirmation=True, supports_no_wait=True) g.wait_command('wait') # Management Plane Commands --IntegrationRuntime with self.command_group('synapse integration-runtime', command_type=synapse_integrationruntimes_sdk, custom_command_type=get_custom_sdk('integrationruntime', cf_synapse_client_integrationruntimes_factory), client_factory=cf_synapse_client_integrationruntimes_factory) as g: g.command('list', 'list_by_workspace') g.show_command('show', 'get') g.custom_command('create', 'create', deprecate_info=g.deprecate(redirect='managed create, self-hosted create'), supports_no_wait=True) g.custom_command('managed create', 'Managed_Create', supports_no_wait=True) g.custom_command('self-hosted create', 'Selfhosted_Create', supports_no_wait=True) g.command('delete', 'begin_delete', confirmation=True, supports_no_wait=True) g.custom_command('update', 'update') g.command('start', 'begin_start', supports_no_wait=True) g.command('stop', 'begin_stop', confirmation=True, supports_no_wait=True) g.command('upgrade', 'upgrade') g.command('list-auth-key', 'list', command_type=synapse_integrationruntimeauthkeys_sdk, client_factory=cf_synapse_client_integrationruntimeauthkeys_factory) g.custom_command('regenerate-auth-key', 'regenerate', command_type=synapse_integrationruntimeauthkeys_sdk, client_factory=cf_synapse_client_integrationruntimeauthkeys_factory) g.command('get-monitoring-data', 'list', command_type=synapse_integrationruntimemonitoringdata_sdk, client_factory=cf_synapse_client_integrationruntimemonitoringdata_factory) g.command('sync-credentials', 'sync', command_type=synapse_integrationruntimecredentials_sdk, client_factory=cf_synapse_client_integrationruntimecredentials_factory) g.command('get-connection-info', 'get', command_type=synapse_integrationruntimeconnectioninfos_sdk, client_factory=cf_synapse_client_integrationruntimeconnectioninfos_factory) g.command('get-status', 'get', command_type=synapse_integrationruntimestatus_sdk, client_factory=cf_synapse_client_integrationruntimestatus_factory) g.wait_command('wait') # Management Plane Commands --Keys with self.command_group('synapse workspace key', command_type=synapse_cmk_sdk, custom_command_type=get_custom_sdk('workspace', cf_synapse_client_cmk_factory), client_factory=cf_synapse_client_cmk_factory) as g: g.command('list', 'list_by_workspace') g.show_command('show', 'get') g.custom_command('create', 'create_workspace_key', supports_no_wait=True) g.command('delete', 'delete', confirmation=True, supports_no_wait=True) g.wait_command('wait') # Management Plane Commands --Managed-Identity with self.command_group('synapse workspace managed-identity', command_type=synapse_managedidentitysqlcontrol_sdk, custom_command_type=get_custom_sdk('workspace', cf_synapse_client_managed_identity_sqlcontrol_factory), client_factory=cf_synapse_client_managed_identity_sqlcontrol_factory) as g: g.show_command('show-sql-access', 'get') g.custom_command('grant-sql-access', 'grant_sql_access_to_managed_identity', supports_no_wait=True) g.custom_command('revoke-sql-access', 'revoke_sql_access_to_managed_identity', supports_no_wait=True) g.wait_command('wait') with self.command_group('synapse integration-runtime-node', command_type=synapse_integrationruntimenodes_sdk, custom_command_type=get_custom_sdk('integrationruntimenode', cf_synapse_client_integrationruntimenodes_factory), client_factory=cf_synapse_client_integrationruntimenodes_factory) as g: g.show_command('show', 'get') g.custom_command('update', 'update') g.command('delete', 'delete', confirmation=True) g.command('get-ip-address', 'get', command_type=synapse_integrationruntimenodeipaddress_sdk, client_factory=cf_synapse_client_integrationruntimenodeipaddress_factory) # Data Plane Commands --Spark batch opertions with self.command_group('synapse spark job', command_type=synapse_spark_batch_sdk, custom_command_type=get_custom_sdk('spark', None)) as g: g.custom_command('submit', 'create_spark_batch_job') g.custom_command('list', 'list_spark_batch_jobs') g.custom_show_command('show', 'get_spark_batch_job') g.custom_command('cancel', 'cancel_spark_batch_job', confirmation=True) # Data Plane Commands --Spark session operations with self.command_group('synapse spark session', synapse_spark_session_sdk, custom_command_type=get_custom_sdk('spark', None)) as g: g.custom_command('create', 'create_spark_session_job') g.custom_command('list', 'list_spark_session_jobs') g.custom_show_command('show', 'get_spark_session_job') g.custom_command('cancel', 'cancel_spark_session_job', confirmation=True) g.custom_command('reset-timeout', 'reset_timeout') # Data Plane Commands --Spark session statements operations with self.command_group('synapse spark statement', synapse_spark_session_sdk, custom_command_type=get_custom_sdk('spark', None)) as g: g.custom_command('invoke', 'create_spark_session_statement') g.custom_command('list', 'list_spark_session_statements') g.custom_show_command('show', 'get_spark_session_statement') g.custom_command('cancel', 'cancel_spark_session_statement', confirmation=True) # Data Plane Commands --Access control operations with self.command_group('synapse role assignment', synapse_role_assignment_sdk, custom_command_type=get_custom_sdk('accesscontrol', None)) as g: g.custom_command('create', 'create_role_assignment') g.custom_command('list', 'list_role_assignments') g.custom_show_command('show', 'get_role_assignment_by_id') g.custom_command('delete', 'delete_role_assignment', confirmation=True) with self.command_group('synapse role definition', synapse_role_definitions_sdk, custom_command_type=get_custom_sdk('accesscontrol', None)) as g: g.custom_command('list', 'list_role_definitions') g.custom_show_command('show', 'get_role_definition') with self.command_group('synapse role scope', synapse_role_definitions_sdk, custom_command_type=get_custom_sdk('accesscontrol', None)) as g: g.custom_command('list', 'list_scopes') # Data Plane Commands --Artifacts Linked service operations with self.command_group('synapse linked-service', synapse_linked_service_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('create', 'create_or_update_linked_service', supports_no_wait=True) g.custom_command('set', 'create_or_update_linked_service', deprecate_info=g.deprecate(redirect='update'), supports_no_wait=True) g.custom_command('update', 'create_or_update_linked_service', supports_no_wait=True) g.custom_command('list', 'list_linked_service') g.custom_show_command('show', 'get_linked_service') g.custom_command('delete', 'delete_linked_service', confirmation=True, supports_no_wait=True) # Data Plane Commands --Artifacts dataset operations with self.command_group('synapse dataset', synapse_dataset_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('create', 'create_or_update_dataset', supports_no_wait=True) g.custom_command('set', 'create_or_update_dataset', deprecate_info=g.deprecate(redirect='update'), supports_no_wait=True) g.custom_command('update', 'create_or_update_dataset', supports_no_wait=True) g.custom_command('list', 'list_datasets') g.custom_show_command('show', 'get_dataset') g.custom_command('delete', 'delete_dataset', confirmation=True, supports_no_wait=True) # Data Plane Commands --Artifacts pipeline operations with self.command_group('synapse pipeline', synapse_pipeline_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('create', 'create_or_update_pipeline', supports_no_wait=True) g.custom_command('set', 'create_or_update_pipeline', deprecate_info=g.deprecate(redirect='update'), supports_no_wait=True) g.custom_command('update', 'create_or_update_pipeline', supports_no_wait=True) g.custom_command('list', 'list_pipelines') g.custom_show_command('show', 'get_pipeline') g.custom_command('delete', 'delete_pipeline', confirmation=True, supports_no_wait=True) g.custom_command('create-run', 'create_pipeline_run') # Data Plane Commands --Artifacts pipeline run operations with self.command_group('synapse pipeline-run', synapse_pipeline_run_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('query-by-workspace', 'query_pipeline_runs_by_workspace') g.custom_show_command('show', 'get_pipeline_run') g.custom_command('cancel', 'cancel_pipeline_run', confirmation=True) with self.command_group('synapse activity-run', synapse_pipeline_run_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('query-by-pipeline-run', 'query_activity_runs') # Data Plane Commands --Artifacts trigger operations with self.command_group('synapse trigger', synapse_trigger_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('create', 'create_or_update_trigger', supports_no_wait=True) g.custom_command('set', 'create_or_update_trigger', deprecate_info=g.deprecate(redirect='update'), supports_no_wait=True) g.custom_command('update', 'create_or_update_trigger', supports_no_wait=True) g.custom_command('list', 'list_triggers') g.custom_show_command('show', 'get_trigger') g.custom_command('delete', 'delete_trigger', confirmation=True, supports_no_wait=True) g.custom_command('subscribe-to-event', 'subscribe_trigger_to_events', supports_no_wait=True) g.custom_command('get-event-subscription-status', 'get_event_subscription_status') g.custom_command('unsubscribe-from-event', 'unsubscribe_trigger_from_events', supports_no_wait=True) g.custom_command('start', 'start_trigger', supports_no_wait=True) g.custom_command('stop', 'stop_trigger', supports_no_wait=True) g.custom_wait_command('wait', 'get_trigger') # Data Plane Commands --Artifacts trigger run operations with self.command_group('synapse trigger-run', synapse_trigger_run_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('rerun', 'rerun_trigger') g.custom_command('cancel', 'cancel_trigger') g.custom_command('query-by-workspace', 'query_trigger_runs_by_workspace') # Data Plane Commands --Artifacts data flow operations with self.command_group('synapse data-flow', synapse_data_flow_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('create', 'create_or_update_data_flow', supports_no_wait=True) g.custom_command('set', 'create_or_update_data_flow', supports_no_wait=True) g.custom_command('list', 'list_data_flows') g.custom_show_command('show', 'get_data_flow') g.custom_command('delete', 'delete_data_flow', confirmation=True, supports_no_wait=True) # Data Plane Commands --Artifacts notebook operations with self.command_group('synapse notebook', synapse_notebook_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('create', 'create_or_update_notebook', supports_no_wait=True) g.custom_command('set', 'create_or_update_notebook', supports_no_wait=True) g.custom_command('import', 'create_or_update_notebook', supports_no_wait=True) g.custom_command('list', 'list_notebooks') g.custom_show_command('show', 'get_notebook') g.custom_command('export', 'export_notebook') g.custom_command('delete', 'delete_notebook', confirmation=True, supports_no_wait=True) # Data Plane Commands --Artifacts library operations with self.command_group('synapse workspace-package', synapse_library_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('upload', 'upload_workspace_package') g.custom_command('upload-batch', 'workspace_package_upload_batch') g.custom_command('list', 'list_workspace_package') g.custom_show_command('show', 'get_workspace_package') g.custom_command('delete', 'delete_workspace_package', confirmation=True, supports_no_wait=True) # Data Plane Commands --Managed private endpoints operations with self.command_group('synapse managed-private-endpoints', synapse_managed_private_endpoints_sdk, custom_command_type=get_custom_sdk('managedprivateendpoints', None)) as g: g.custom_show_command('show', 'get_Managed_private_endpoints') g.custom_command('create', 'create_Managed_private_endpoints') g.custom_command('list', 'list_Managed_private_endpoints') g.custom_command('delete', 'delete_Managed_private_endpoints', confirmation=True) # Data Plane Commands --Artifacts Spark job definitions operations with self.command_group('synapse spark-job-definition', synapse_spark_job_definition_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('list', 'list_spark_job_definition') g.custom_show_command('show', 'get_spark_job_definition') g.custom_command('delete', 'delete_spark_job_definition', supports_no_wait=True) g.custom_command('create', 'create_or_update_spark_job_definition', supports_no_wait=True) g.custom_wait_command('wait', 'get_spark_job_definition') g.custom_command('update', 'create_or_update_spark_job_definition', supports_no_wait=True) with self.command_group('synapse sql-script', synapse_sql_script_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('list', 'list_sql_scripts') g.custom_show_command('show', 'get_sql_script') g.custom_command('delete', 'delete_sql_script', supports_no_wait=True) g.custom_command('create', 'create_sql_script', supports_no_wait=True) g.custom_wait_command('wait', 'get_sql_script') g.custom_show_command('export', 'export_sql_script') g.custom_command('import', 'create_sql_script', supports_no_wait=True) with self.command_group('synapse', is_preview=True): pass # synapse kusto pool Commands --Managed kusto pool Commands with self.command_group('synapse kusto pool', command_type=synapse_kusto_pool_sdk, custom_command_type=get_custom_sdk('kustopool', cf_kusto_pool), client_factory=cf_kusto_pool) as g: g.custom_command('create', 'synapse_kusto_pool_create', supports_no_wait=True) g.custom_command('update', 'synapse_kusto_pool_update', supports_no_wait=True) g.custom_command('add-language-extension', 'synapse_kusto_pool_add_language_extension', supports_no_wait=True) g.custom_command('detach-follower-database', 'synapse_kusto_pool_detach_follower_database', supports_no_wait=True) g.custom_command('remove-language-extension', 'synapse_kusto_pool_remove_language_extension', supports_no_wait=True) with self.command_group('synapse kql-script', command_type=synapse_kusto_script_sdk, custom_command_type=get_custom_sdk('kustopool', cf_kusto_script), client_factory=cf_kusto_script) as g: g.custom_show_command('show', 'synapse_kusto_script_show') g.custom_command('create', 'synapse_kusto_script_create', supports_no_wait=True) g.custom_command('import', 'synapse_kusto_script_create', supports_no_wait=True) g.custom_command('delete', 'synapse_kusto_script_delete', supports_no_wait=True, confirmation=True) g.custom_command('list', 'synapse_kusto_script_list', client_factory=cf_kusto_scripts) g.custom_command('export', 'synapse_kusto_script_export') g.custom_wait_command('wait', 'synapse_kusto_script_show') with self.command_group('synapse link-connection', synapse_link_connection_sdk, custom_command_type=get_custom_sdk('artifacts', None)) as g: g.custom_command('list', 'list_link_connection') g.custom_show_command('show', 'get_link_connection') g.custom_command('delete', 'delete_link_connection') g.custom_command('create', 'create_or_update_link_connection') g.custom_command('update', 'create_or_update_link_connection') g.custom_command('get-status', 'get_link_connection_status') g.custom_command('start ', 'start_link_connection') g.custom_command('stop', 'stop_link_connection') g.custom_command('list-link-tables', 'synapse_list_link_table') g.custom_command('edit-link-tables', 'synapse_edit_link_table') g.custom_command('get-link-tables-status', 'synapse_get_link_tables_status') g.custom_command('update-landing-zone-credential', 'synapse_update_landing_zone_credential')
34,248
def encode_string(s: Text) -> Text: """Return a encoded python string""" def replace(match): return ESCAPE_DCT[match.group(0)] return ESCAPE.sub(replace, s)
def encode_string(s: Text) -> Text: """Return a encoded python string.""" def replace(match): return ESCAPE_DCT[match.group(0)] return ESCAPE.sub(replace, s)
31,891
def get_tag_groups(tag_groups: list) -> list: """ Returns the tag groups as a list of the groups names. Args: tag_groups: list of all groups Returns: The tag groups as a list of the groups names """ # Tag_groups is a list of dictionaries, each contains a tag group name and its description results = [] if len(tag_groups) > 0: for group in tag_groups: tag_group_name = group.get('tag_group_name', '') if tag_group_name: results.append(tag_group_name) return results
def get_tag_groups_names(tag_groups: list) -> list: """ Returns the tag groups as a list of the groups names. Args: tag_groups: list of all groups Returns: The tag groups as a list of the groups names """ # Tag_groups is a list of dictionaries, each contains a tag group name and its description results = [] if len(tag_groups) > 0: for group in tag_groups: tag_group_name = group.get('tag_group_name', '') if tag_group_name: results.append(tag_group_name) return results
34,766
def story_graph_from_paths( files: List[Text], domain: Domain, template_variables: Optional[Dict] = None, use_e2e: bool = False, exclusion_percentage: Optional[int] = None, ) -> StoryGraph: """Returns the StoryGraph from paths.""" from rasa.shared.core.training_data import loading story_steps = loading.load_data_from_files( files, domain, template_variables, use_e2e, exclusion_percentage ) return StoryGraph(story_steps)
def story_graph_from_paths( files: List[Text], domain: Domain, template_variables: Optional[Dict] = None, use_e2e: bool = False, exclusion_percentage: Optional[int] = None, ) -> StoryGraph: """Returns the `StoryGraph` from paths.""" from rasa.shared.core.training_data import loading story_steps = loading.load_data_from_files( files, domain, template_variables, use_e2e, exclusion_percentage ) return StoryGraph(story_steps)
55,386
def delete_run(run_id): """ Deletes a run with the given ID. :param run_id: Unique identifier for the run to delete. .. code-block:: python :caption: Example import mlflow # Set existing run_ids to delete run_ids = ["13ee9e661cbf4095a7c92cc55b4e12b4", "948fbf2d0b7f4056b3dd4914845a1e1b"] # Delete run_ids and fetch the results. # Note that runs are not actually delete, only lifecycle stage is set to "deleted" [mlflow.delete_run(run_id) for run_id in run_ids] [print("run_id={}; lifecycle_stage={}".format(run_id, mlflow.get_run(run_id).info.lifecycle_stage)) for run_id in run_ids] .. code-block:: text :caption: Output run_id=13ee9e661cbf4095a7c92cc55b4e12b4; lifecycle_stage=deleted run_id=948fbf2d0b7f4056b3dd4914845a1e1b; lifecycle_stage=deleted """ MlflowClient().delete_run(run_id)
def delete_run(run_id): """ Deletes a run with the given ID. :param run_id: Unique identifier for the run to delete. .. code-block:: python :caption: Example import mlflow # Set existing run_ids to delete run_ids = ["13ee9e661cbf4095a7c92cc55b4e12b4", "948fbf2d0b7f4056b3dd4914845a1e1b"] # Delete run_ids and fetch the results. # Note that runs are not actually delete, only lifecycle stage is set to "deleted" for run_id in run_ids: mlflow.delete_run(run_id) [print("run_id={}; lifecycle_stage={}".format(run_id, mlflow.get_run(run_id).info.lifecycle_stage)) for run_id in run_ids] .. code-block:: text :caption: Output run_id=13ee9e661cbf4095a7c92cc55b4e12b4; lifecycle_stage=deleted run_id=948fbf2d0b7f4056b3dd4914845a1e1b; lifecycle_stage=deleted """ MlflowClient().delete_run(run_id)
22,019
def correlation_test(): df = vaex.example() # A single column pair desired = df.correlation('x', 'y') expected = np.array(-0.066913) np.testing.assert_array_almost_equal(desired, expected) # A list of columns desired = df.correlation(x=['x', 'y', 'z']) expected = np.array([[ 1.00000000, -0.06691309, -0.02656313], [-0.06691309, 1.00000000, 0.03083857], [-0.02656313, 0.03083857, 1.00000000]]) np.testing.assert_array_almost_equal(desired, expected) # A list of columns and a single target desired = df.correlation(x=['x', 'y', 'z'], y='vx') expected = np.array([-0.00779179, 0.01804911, -0.02175331]) np.testing.assert_array_almost_equal(desired, expected) # A list of columns and a list of targets desired = df.correlation(x=['x', 'y', 'z'], y=['vx', 'vy']) expected = np.array(([-0.00779179, 0.01804911, -0.02175331], [0.00014019, -0.00411498, 0.02988355])) # No arguments (entire DataFrame) desired = df[['x', 'y', 'z']].correlation(x=None, y=None) expected = np.array([[ 1.00000000, -0.06691309, -0.02656313], [-0.06691309, 1.00000000, 0.03083857], [-0.02656313, 0.03083857, 1.00000000]])
def test_correlation(): df = vaex.example() # A single column pair desired = df.correlation('x', 'y') expected = np.array(-0.066913) np.testing.assert_array_almost_equal(desired, expected) # A list of columns desired = df.correlation(x=['x', 'y', 'z']) expected = np.array([[ 1.00000000, -0.06691309, -0.02656313], [-0.06691309, 1.00000000, 0.03083857], [-0.02656313, 0.03083857, 1.00000000]]) np.testing.assert_array_almost_equal(desired, expected) # A list of columns and a single target desired = df.correlation(x=['x', 'y', 'z'], y='vx') expected = np.array([-0.00779179, 0.01804911, -0.02175331]) np.testing.assert_array_almost_equal(desired, expected) # A list of columns and a list of targets desired = df.correlation(x=['x', 'y', 'z'], y=['vx', 'vy']) expected = np.array(([-0.00779179, 0.01804911, -0.02175331], [0.00014019, -0.00411498, 0.02988355])) # No arguments (entire DataFrame) desired = df[['x', 'y', 'z']].correlation(x=None, y=None) expected = np.array([[ 1.00000000, -0.06691309, -0.02656313], [-0.06691309, 1.00000000, 0.03083857], [-0.02656313, 0.03083857, 1.00000000]])
32,044
def update_list_name(args: dict, sg): listID = args.get('list_id') listName = args.get('updated_list_name') data = {"name": listName} response = sg.client.marketing.lists._(listID).patch(request_body=data) if response.status_code == 200: rBody = response.body body = json.loads(rBody.decode("utf-8")) ec = {'Sendgrid.updatedList': body} md = tableToMarkdown('List Name has been updated successfully ', body) return { 'ContentsFormat': formats['json'], 'Type': entryTypes['note'], 'Contents': body, 'HumanReadable': md, 'EntryContext': ec } else: return 'List name update has been failed: ' + str(response.body)
def update_list_name(args: dict, sg): listID = args.get('list_id') listName = args.get('updated_list_name') data = {"name": listName} response = sg.client.marketing.lists._(listID).patch(request_body=data) if response.status_code == 200: rBody = response.body body = json.loads(rBody.decode("utf-8")) ec = {'Sendgrid.updatedList': body} md = tableToMarkdown('List Name has been updated successfully ', body) return { 'ContentsFormat': formats['json'], 'Type': entryTypes['note'], 'Contents': body, 'HumanReadable': md, 'EntryContext': ec } else: return 'Failed to update list name: ' + str(response.body)
58,419
def subaward_filter(filters, for_downloads=False): queryset = SubawardView.objects.all() recipient_scope_q = Q(recipient_location_country_code="USA") | Q(recipient_location_country_name="UNITED STATES") pop_scope_q = Q(pop_country_code="USA") | Q(pop_country_name="UNITED STATES") for key, value in filters.items(): if value is None: raise InvalidParameterException("Invalid filter: " + key + " has null as its value.") key_list = [ "keywords", "elasticsearch_keyword", "time_period", "award_type_codes", "prime_and_sub_award_types", "agencies", "legal_entities", "recipient_search_text", "recipient_scope", "recipient_locations", "recipient_type_names", "place_of_performance_scope", "place_of_performance_locations", "award_amounts", "award_ids", "program_numbers", "naics_codes", "psc_codes", "contract_pricing_type_codes", "set_aside_type_codes", "extent_competed_type_codes", TasCodes.underscore_name, TreasuryAccounts.underscore_name, ] if key not in key_list: raise InvalidParameterException("Invalid filter: " + key + " does not exist.") if key == "keywords": def keyword_parse(keyword): # keyword_ts_vector & award_ts_vector are Postgres TS_vectors. # keyword_ts_vector = recipient_name + psc_description + subaward_description # award_ts_vector = piid + fain + uri + subaward_number filter_obj = Q(keyword_ts_vector=keyword) | Q(award_ts_vector=keyword) # Commenting out until NAICS is associated with subawards in DAIMS 1.3.1 # if keyword.isnumeric(): # filter_obj |= Q(naics_code__contains=keyword) if len(keyword) == 4 and PSC.objects.filter(code__iexact=keyword).exists(): filter_obj |= Q(product_or_service_code__iexact=keyword) return filter_obj filter_obj = Q() for keyword in value: filter_obj |= keyword_parse(keyword) potential_duns = list(filter((lambda x: len(x) > 7 and len(x) < 10), value)) if len(potential_duns) > 0: filter_obj |= Q(recipient_unique_id__in=potential_duns) | Q( parent_recipient_unique_id__in=potential_duns ) queryset = queryset.filter(filter_obj) elif key == "elasticsearch_keyword": keyword = value transaction_ids = elasticsearch_helper.get_download_ids(keyword=keyword, field="transaction_id") # flatten IDs transaction_ids = list(itertools.chain.from_iterable(transaction_ids)) logger.info("Found {} transactions based on keyword: {}".format(len(transaction_ids), keyword)) transaction_ids = [str(transaction_id) for transaction_id in transaction_ids] queryset = queryset.filter(latest_transaction_id__isnull=False) # Prepare a SQL snippet to include in the predicate for searching an array of transaction IDs sql_fragment = '"subaward_view"."latest_transaction_id" = ANY(\'{{{}}}\'::int[])' # int[] -> int array type queryset = queryset.extra(where=[sql_fragment.format(",".join(transaction_ids))]) elif key == "time_period": min_date = API_SEARCH_MIN_DATE if for_downloads: min_date = API_MIN_DATE queryset &= combine_date_range_queryset(value, SubawardView, min_date, API_MAX_DATE) elif key == "award_type_codes": queryset = queryset.filter(prime_award_type__in=value) elif key == "prime_and_sub_award_types": award_types = value.get("sub_awards") if award_types: queryset = queryset.filter(award_type__in=award_types) elif key == "agencies": # TODO: Make function to match agencies in award filter throwing dupe error funding_toptier = Q() funding_subtier = Q() awarding_toptier = Q() awarding_subtier = Q() for v in value: type = v["type"] tier = v["tier"] name = v["name"] if type == "funding": if tier == "toptier": funding_toptier |= Q(funding_toptier_agency_name=name) elif tier == "subtier": if "toptier_name" in v: funding_subtier |= Q(funding_subtier_agency_name=name) & Q( funding_toptier_agency_name=v["toptier_name"] ) else: funding_subtier |= Q(funding_subtier_agency_name=name) elif type == "awarding": if tier == "toptier": awarding_toptier |= Q(awarding_toptier_agency_name=name) elif tier == "subtier": if "toptier_name" in v: awarding_subtier |= Q(awarding_subtier_agency_name=name) & Q( awarding_toptier_agency_name=v["toptier_name"] ) else: awarding_subtier |= Q(awarding_subtier_agency_name=name) awarding_queryfilter = Q() funding_queryfilter = Q() # Since these are Q filters, no DB hits for boolean checks if funding_toptier: funding_queryfilter |= funding_toptier if funding_subtier: funding_queryfilter |= funding_subtier if awarding_toptier: awarding_queryfilter |= awarding_toptier if awarding_subtier: awarding_queryfilter |= awarding_subtier queryset = queryset.filter(funding_queryfilter & awarding_queryfilter) elif key == "legal_entities": # This filter key has effectively become obsolete by recipient_search_text msg = 'API request included "{}" key. No filtering will occur with provided value "{}"' logger.info(msg.format(key, value)) elif key == "recipient_search_text": def recip_string_parse(recipient_string): upper_recipient_string = recipient_string.upper() # recipient_name_ts_vector is a postgres TS_Vector filter_obj = Q(recipient_name_ts_vector=upper_recipient_string) if len(upper_recipient_string) == 9 and upper_recipient_string[:5].isnumeric(): filter_obj |= Q(recipient_unique_id=upper_recipient_string) return filter_obj filter_obj = Q() for recipient in value: filter_obj |= recip_string_parse(recipient) queryset = queryset.filter(filter_obj) elif key == "recipient_scope": if value == "domestic": queryset = queryset.filter(recipient_scope_q) elif value == "foreign": queryset = queryset.exclude(recipient_scope_q) else: raise InvalidParameterException("Invalid filter: recipient_scope type is invalid.") elif key == "recipient_locations": queryset = queryset.filter(geocode_filter_locations("recipient_location", value)) elif key == "recipient_type_names": if len(value) != 0: queryset = queryset.filter(business_categories__overlap=value) elif key == "place_of_performance_scope": if value == "domestic": queryset = queryset.filter(pop_scope_q) elif value == "foreign": queryset = queryset.exclude(pop_scope_q) else: raise InvalidParameterException("Invalid filter: place_of_performance_scope is invalid.") elif key == "place_of_performance_locations": queryset = queryset.filter(geocode_filter_locations("pop", value)) elif key == "award_amounts": queryset &= total_obligation_queryset(value, SubawardView, filters) elif key == "award_ids": queryset = build_award_ids_filter(queryset, value, ("piid", "fain")) # add "naics_codes" (column naics) after NAICS are mapped to subawards elif key in ("program_numbers", "psc_codes", "contract_pricing_type_codes"): filter_to_col = { "program_numbers": "cfda_number", "psc_codes": "product_or_service_code", "contract_pricing_type_codes": "type_of_contract_pricing", } in_query = [v for v in value] if len(in_query) != 0: queryset &= SubawardView.objects.filter(**{"{}__in".format(filter_to_col[key]): in_query}) elif key in ("set_aside_type_codes", "extent_competed_type_codes"): or_queryset = Q() filter_to_col = {"set_aside_type_codes": "type_set_aside", "extent_competed_type_codes": "extent_competed"} in_query = [v for v in value] for v in value: or_queryset |= Q(**{"{}__exact".format(filter_to_col[key]): in_query}) queryset = queryset.filter(or_queryset) # Because these two filters OR with each other, we need to know about the presense of both filters to know what to do # This filter was picked arbitrarily to be the one that checks for the other elif key == TasCodes.underscore_name: if TreasuryAccounts.underscore_name in filters.keys(): q = TasCodes.build_tas_codes_filter(queryset, value) q |= TreasuryAccounts.build_tas_codes_filter(queryset, filters[TreasuryAccounts.underscore_name]) queryset = queryset.filter(q) else: queryset = queryset.filter(TasCodes.build_tas_codes_filter(queryset, value)) elif key == TreasuryAccounts.underscore_name and TasCodes.underscore_name not in filters.keys(): queryset = queryset.filter(TreasuryAccounts.build_tas_codes_filter(queryset, value)) return queryset
def subaward_filter(filters, for_downloads=False): queryset = SubawardView.objects.all() recipient_scope_q = Q(recipient_location_country_code="USA") | Q(recipient_location_country_name="UNITED STATES") pop_scope_q = Q(pop_country_code="USA") | Q(pop_country_name="UNITED STATES") for key, value in filters.items(): if value is None: raise InvalidParameterException("Invalid filter: " + key + " has null as its value.") key_list = [ "keywords", "elasticsearch_keyword", "time_period", "award_type_codes", "prime_and_sub_award_types", "agencies", "legal_entities", "recipient_search_text", "recipient_scope", "recipient_locations", "recipient_type_names", "place_of_performance_scope", "place_of_performance_locations", "award_amounts", "award_ids", "program_numbers", "naics_codes", "psc_codes", "contract_pricing_type_codes", "set_aside_type_codes", "extent_competed_type_codes", TasCodes.underscore_name, TreasuryAccounts.underscore_name, ] if key not in key_list: raise InvalidParameterException("Invalid filter: " + key + " does not exist.") if key == "keywords": def keyword_parse(keyword): # keyword_ts_vector & award_ts_vector are Postgres TS_vectors. # keyword_ts_vector = recipient_name + psc_description + subaward_description # award_ts_vector = piid + fain + uri + subaward_number filter_obj = Q(keyword_ts_vector=keyword) | Q(award_ts_vector=keyword) # Commenting out until NAICS is associated with subawards in DAIMS 1.3.1 # if keyword.isnumeric(): # filter_obj |= Q(naics_code__contains=keyword) if len(keyword) == 4 and PSC.objects.filter(code__iexact=keyword).exists(): filter_obj |= Q(product_or_service_code__iexact=keyword) return filter_obj filter_obj = Q() for keyword in value: filter_obj |= keyword_parse(keyword) potential_duns = list(filter((lambda x: len(x) > 7 and len(x) < 10), value)) if len(potential_duns) > 0: filter_obj |= Q(recipient_unique_id__in=potential_duns) | Q( parent_recipient_unique_id__in=potential_duns ) queryset = queryset.filter(filter_obj) elif key == "elasticsearch_keyword": keyword = value transaction_ids = elasticsearch_helper.get_download_ids(keyword=keyword, field="transaction_id") # flatten IDs transaction_ids = list(itertools.chain.from_iterable(transaction_ids)) logger.info("Found {} transactions based on keyword: {}".format(len(transaction_ids), keyword)) transaction_ids = [str(transaction_id) for transaction_id in transaction_ids] queryset = queryset.filter(latest_transaction_id__isnull=False) # Prepare a SQL snippet to include in the predicate for searching an array of transaction IDs sql_fragment = '"subaward_view"."latest_transaction_id" = ANY(\'{{{}}}\'::int[])' # int[] -> int array type queryset = queryset.extra(where=[sql_fragment.format(",".join(transaction_ids))]) elif key == "time_period": min_date = API_SEARCH_MIN_DATE if for_downloads: min_date = API_MIN_DATE queryset &= combine_date_range_queryset(value, SubawardView, min_date, API_MAX_DATE) elif key == "award_type_codes": queryset = queryset.filter(prime_award_type__in=value) elif key == "prime_and_sub_award_types": award_types = value.get("sub_awards") if award_types: queryset = queryset.filter(award_type__in=award_types) elif key == "agencies": # TODO: Make function to match agencies in award filter throwing dupe error funding_toptier = Q() funding_subtier = Q() awarding_toptier = Q() awarding_subtier = Q() for v in value: type = v["type"] tier = v["tier"] name = v["name"] if type == "funding": if tier == "toptier": funding_toptier |= Q(funding_toptier_agency_name=name) elif tier == "subtier": if "toptier_name" in v: funding_subtier |= Q(funding_subtier_agency_name=name) & Q( funding_toptier_agency_name=v["toptier_name"] ) else: funding_subtier |= Q(funding_subtier_agency_name=name) elif type == "awarding": if tier == "toptier": awarding_toptier |= Q(awarding_toptier_agency_name=name) elif tier == "subtier": if "toptier_name" in v: awarding_subtier |= Q(awarding_subtier_agency_name=name) & Q( awarding_toptier_agency_name=v["toptier_name"] ) else: awarding_subtier |= Q(awarding_subtier_agency_name=name) awarding_queryfilter = Q() funding_queryfilter = Q() # Since these are Q filters, no DB hits for boolean checks if funding_toptier: funding_queryfilter |= funding_toptier if funding_subtier: funding_queryfilter |= funding_subtier if awarding_toptier: awarding_queryfilter |= awarding_toptier if awarding_subtier: awarding_queryfilter |= awarding_subtier queryset = queryset.filter(funding_queryfilter & awarding_queryfilter) elif key == "legal_entities": # This filter key has effectively become obsolete by recipient_search_text msg = 'API request included "{}" key. No filtering will occur with provided value "{}"' logger.info(msg.format(key, value)) elif key == "recipient_search_text": def recip_string_parse(recipient_string): upper_recipient_string = recipient_string.upper() # recipient_name_ts_vector is a postgres TS_Vector filter_obj = Q(recipient_name_ts_vector=upper_recipient_string) if len(upper_recipient_string) == 9 and upper_recipient_string[:5].isnumeric(): filter_obj |= Q(recipient_unique_id=upper_recipient_string) return filter_obj filter_obj = Q() for recipient in value: filter_obj |= recip_string_parse(recipient) queryset = queryset.filter(filter_obj) elif key == "recipient_scope": if value == "domestic": queryset = queryset.filter(recipient_scope_q) elif value == "foreign": queryset = queryset.exclude(recipient_scope_q) else: raise InvalidParameterException("Invalid filter: recipient_scope type is invalid.") elif key == "recipient_locations": queryset = queryset.filter(geocode_filter_locations("recipient_location", value)) elif key == "recipient_type_names": if len(value) != 0: queryset = queryset.filter(business_categories__overlap=value) elif key == "place_of_performance_scope": if value == "domestic": queryset = queryset.filter(pop_scope_q) elif value == "foreign": queryset = queryset.exclude(pop_scope_q) else: raise InvalidParameterException("Invalid filter: place_of_performance_scope is invalid.") elif key == "place_of_performance_locations": queryset = queryset.filter(geocode_filter_locations("pop", value)) elif key == "award_amounts": queryset &= total_obligation_queryset(value, SubawardView, filters) elif key == "award_ids": queryset = build_award_ids_filter(queryset, value, ("piid", "fain")) # add "naics_codes" (column naics) after NAICS are mapped to subawards elif key in ("program_numbers", "psc_codes", "contract_pricing_type_codes"): filter_to_col = { "program_numbers": "cfda_number", "psc_codes": "product_or_service_code", "contract_pricing_type_codes": "type_of_contract_pricing", } in_query = [v for v in value] if len(in_query) != 0: queryset &= SubawardView.objects.filter(**{"{}__in".format(filter_to_col[key]): in_query}) elif key in ("set_aside_type_codes", "extent_competed_type_codes"): or_queryset = Q() filter_to_col = {"set_aside_type_codes": "type_set_aside", "extent_competed_type_codes": "extent_competed"} in_query = [v for v in value] for v in value: or_queryset |= Q(**{"{}__exact".format(filter_to_col[key]): in_query}) queryset = queryset.filter(or_queryset) # Because these two filters OR with each other, we need to know about the presense of both filters to know what to do # This filter was picked arbitrarily to be the one that checks for the other elif key == TasCodes.underscore_name: q = TasCodes.build_tas_codes_filter(queryset, value) if TreasuryAccounts.underscore_name in filters.keys(): q |= TreasuryAccounts.build_tas_codes_filter(queryset, filters[TreasuryAccounts.underscore_name]) queryset = queryset.filter(q) elif key == TreasuryAccounts.underscore_name and TasCodes.underscore_name not in filters.keys(): queryset = queryset.filter(TreasuryAccounts.build_tas_codes_filter(queryset, value)) return queryset