Datasets:

Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 3,066 Bytes
ad580ca
 
96dc0d8
 
 
 
 
d827198
 
e30cc70
 
 
 
 
f9a5827
d827198
 
 
f27bceb
d827198
f27bceb
d827198
f27bceb
 
d827198
 
f9a5827
f27bceb
f9a5827
f27bceb
f9a5827
f27bceb
 
96dc0d8
 
ad580ca
96dc0d8
 
 
 
 
 
 
 
 
 
 
 
 
 
f9a5827
 
 
 
 
96dc0d8
 
 
 
 
 
 
 
 
f9a5827
 
 
 
 
 
 
 
 
 
96dc0d8
 
 
 
a1d39d0
96dc0d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
869899a
 
96dc0d8
869899a
 
 
 
 
96dc0d8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---

license: bsd-3-clause
task_categories:
- robotics
tags:
- fingernet
- asfinger
modalities:
  - tabular
configs:
  - config_name: finger
    data_files: data/finger/data_*.parquet
  - config_name: finger_surf
    data_files: data/finger_surf/data_*.parquet
dataset_info:
  - config_name: finger
    features:
    - name: motion
      list: float64
    - name: force
      list: float64
    - name: nodes
      list:
        list: float64
  - config_name: finger_surf
    features:
    - name: motion
      list: float64
    - name: force
      list: float64
    - name: nodes
      list:
        list: float64
size_categories:
- 100K<n<1M
---


# FingerNet-100K

This dataset contains 100K samples of data for FingerNet, generated by finite element simulations.

## Dataset Schema

There are two subsets in this dataset:

- **finger**: Contains 100,000 samples of typical asFinger.
- **finger_surf**: Contains 100,000 samples of asFinger with a contact surface.



Each sample in this dataset contains three components:



| **Field Name** | **Type** | **Shape** | **Description** |

|----------------|----------|-----------|-----------------|

| `motion`      | `List[float64]` | `[6]`     | The 6D motion of the finger, including translation (dx, dy, dz) and rotation (rx, ry, rz) in `mm` and `rad`. |

| `force`       | `List[float64]` | `[6]`     | The 6D force and torque on the bottom surface of the finger, corresponding to (fx, fy, fz, tx, ty, tz) in `N` and `Nmm`. |

| `nodes`       | `List[List[float64]]` | `[N,3]` | The 3D displacement of N surface nodes of the finger, where each node is represented as `[dx, dy, dz]` in `mm`. |



## Usage



```python

from datasets import load_dataset



dataset = load_dataset("asRobotics/fingernet-100k")



# Access the 'finger' subset

for sample in dataset['finger']:

    motion = sample['motion']

    force = sample['force']

    nodes = sample['nodes']



# Access the 'finger_surf' subset

for sample in dataset['finger_surf']:

    motion = sample['motion']

    force = sample['force']

    nodes = sample['nodes']

```



## Citation



If you use this model in your research, please cite the following papers:



```bibtex

@article{liu2024proprioceptive,

  title={Proprioceptive learning with soft polyhedral networks},

  author={Liu, Xiaobo and Han, Xudong and Hong, Wei and Wan, Fang and Song, Chaoyang},

  journal={The International Journal of Robotics Research},

  volume = {43},

  number = {12},

  pages = {1916-1935},

  year = {2024},

  publisher={SAGE Publications Sage UK: London, England},

  doi = {10.1177/02783649241238765}

}

```



[](https://arxiv.org/abs/2308.08538)



```bibtex

@article{wu2025magiclaw,

  title={MagiClaw: A Dual-Use, Vision-Based Soft Gripper for Bridging the Human Demonstration to Robotic Deployment Gap},

  author={Wu, Tianyu and Han, Xudong and Sun, Haoran and Zhang, Zishang and Huang, Bangchao and Song, Chaoyang and Wan, Fang},

  journal={arXiv preprint arXiv:2509.19169},

  year={2025}

}

```