Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
The info cannot be fetched for the config 'default' of the dataset.
Error code:   InfoError
Exception:    ReadTimeout
Message:      (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: a110d77b-84fa-41b9-82ea-a5b8311d6426)')
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 223, in compute_first_rows_from_streaming_response
                  info = get_dataset_config_info(path=dataset, config_name=config, token=hf_token)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 268, in get_dataset_config_info
                  builder = load_dataset_builder(
                            ^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1132, in load_dataset_builder
                  dataset_module = dataset_module_factory(
                                   ^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1031, in dataset_module_factory
                  raise e1 from None
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1004, in dataset_module_factory
                  ).get_module()
                    ^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 632, in get_module
                  data_files = DataFilesDict.from_patterns(
                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 689, in from_patterns
                  else DataFilesList.from_patterns(
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 592, in from_patterns
                  origin_metadata = _get_origin_metadata(data_files, download_config=download_config)
                                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 506, in _get_origin_metadata
                  return thread_map(
                         ^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/tqdm/contrib/concurrent.py", line 69, in thread_map
                  return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/tqdm/contrib/concurrent.py", line 51, in _executor_map
                  return list(tqdm_class(ex.map(fn, *iterables, chunksize=chunksize), **kwargs))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/tqdm/std.py", line 1169, in __iter__
                  for obj in iterable:
                             ^^^^^^^^
                File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 619, in result_iterator
                  yield _result_or_cancel(fs.pop())
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 317, in _result_or_cancel
                  return fut.result(timeout)
                         ^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 456, in result
                  return self.__get_result()
                         ^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 401, in __get_result
                  raise self._exception
                File "/usr/local/lib/python3.12/concurrent/futures/thread.py", line 59, in run
                  result = self.fn(*self.args, **self.kwargs)
                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 485, in _get_single_origin_metadata
                  resolved_path = fs.resolve_path(data_file)
                                  ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 198, in resolve_path
                  repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision)
                                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 125, in _repo_and_revision_exist
                  self._api.repo_info(
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
                  return fn(*args, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_api.py", line 2816, in repo_info
                  return method(
                         ^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
                  return fn(*args, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_api.py", line 2673, in dataset_info
                  r = get_session().get(path, headers=headers, timeout=timeout, params=params)
                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 602, in get
                  return self.request("GET", url, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 589, in request
                  resp = self.send(prep, **send_kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 703, in send
                  r = adapter.send(request, **kwargs)
                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_http.py", line 96, in send
                  return super().send(request, *args, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/requests/adapters.py", line 690, in send
                  raise ReadTimeout(e, request=request)
              requests.exceptions.ReadTimeout: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: a110d77b-84fa-41b9-82ea-a5b8311d6426)')

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

AI-MO Olympiad Reference Dataset

This dataset contains a structured collection of Olympiad problems and their solutions, organized by competition. Contains high quality data, prioritizing "official" solutions to problems.

Structure

<competition name>/    # Problems and solutions from the International Mathematical Olympiad
├── raw/               # Raw problem/solution statements (.pdf)
│   ├── file1.pdf
│   ├── file2.pdf
├── download_script/   # the scripts used to download raw data
│   ├── download.py    
├── md/                # .md files generated from raw/ files
│   ├── file1.md
│   ├── file2.md
├── segment_script/    # the scripts used to segment the data
│   ├── segment.py     
└── segmented/         # .jsonl segmented data for easier processing
    ├── file1.jsonl
    ├── file2.jsonl
    └── file3.jsonl

Each json in jsonl file follows this structure:

{
 "problem": "string",        // Mandatory: The problem statement in latex or markdown
 "solution": "string",       // Mandatory: The solution for the problem
 "year": "int",              // Optional: Year when the problem was presented
 "problem_type": "string",   // Optional: The mathematical domain of the problem. Here are the supported types: 
                             //['Algebra', 'Geometry', 'Number Theory', 'Combinatorics', 'Calculus',
                             //'Inequalities', 'Logic and Puzzles', 'Other']
 "question_type": "string",  // Optional: The form or style of the mathematical problem. 
                             // The supported classes are: ['MCQ', 'proof' or 'math-word-problem']. 
                             // 'math-word-problem' is a problem with output. 
 "answer": "string",         // Optional: final answer is the question_type is "math-word-problem".
 "source": "string",         // Optional: TODO:describe
 "exam": "string",           // Optional: TODO:describe
 "difficulty": "int",        // Optional: TODO:describe
 "other": "...",             // Optional: You can add other fields with metadata
}

Steps to collect data for formalization

1. Assign yourself a task

Check the tracker and assign yourself one line by updating columns:

  • status: IN PROGRESS
  • assignee: your name

2. Setup

Download data locally.

git lfs install
git clone git@hf.co:datasets/AI-MO/olympiads-ref

3. Find .pdf ressources.

First check if there are already available .pdf in https://huggingface.co/AI-MO/olympiads-0.1

  • if yes upload them in AI-MO/olympiads-ref/<competition>/raw/ and continue to step 4.
  • if no, find sources in internet (preferably with official solution), download and upload in AI-MO/olympiads-ref/<competition>/raw/

4. Find .md ressources.

First check if there are already available .pdf in https://huggingface.co/AI-MO/olympiads-0.1

  • if yes upload in AI-MO/olympiads-ref/<competition>/md/ and continue to step 6.
  • if no, find sources in internet (preferably with official solution), download and upload in AI-MO/olympiads-ref/<competition>/md/

5. Convert .pdf to .md using Mathpix

Use data_pipeline. Example:

python -m data_pipeline convert_to_md --method=pdf_to_md --input_dir="/home/marvin/workspace/olympiads-ref/IMO/raw" --output_dir="/home/marvin/workspace/olympiads-ref/IMO/md"

6. Find .jsonl ressources.

First check if there are already segmentaions available .jsonl in https://huggingface.co/datasets/AI-MO/olympiads-0.3. You can check if the segmentation has been done in this old tracker.

  • if yes, check quality and upload in AI-MO/olympiads-ref/<competition>/segmented/ and continue to step 8.
  • if no, continue to step 7.

7. Segment the .md files into .jsonl

Write a segment.py that can be applied to your data (please do sanity checks!). Examples are this or that. Once you are fine with your segmentation upload the .jsonl in AI-MO/olympiads-ref/<competition>/segmented/ and the segment.py in AI-MO/olympiads-ref/<competition>/segment_script/.

Ask for a review.

8. Update the status in the trackers

Update the tracker with columns:

  • status: DONE + a link to your generated data in hf
  • problem_count: count of problems in data
  • solution_count: count of solutions in data (different than problem_count since a problem can have several solutions)
  • years: range of competition years covered in your data (so we can easily track if many years are missing)
  • assignee: your name

Update the old tracker with this comumn:

  • ref: color in green for the competition you segmented

9. Integrate the data in a base dataset

Create a ticket in git

Notes

  • Image placeholders in the dataset (like: ![md5:f571b12c2c566ce1beedd8190c986910](f571b12c2c566ce1beedd8190c986910.jpeg)) correspond to actual images stored in the images.parquet file.
Downloads last month
30,380