path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
72107191/cell_43
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns path = '../input/learnplatform-covid19-impact-on-digital-learning/engagement_data' files = glob.glob(path + '/*.csv') all_files = [] for filename in files: df = pd.read_csv(filename, index_col=None, header=0) district_id = filename.split('/')[4].split('.')[0] df['district_id'] = district_id all_files.append(df) engagement_data = pd.concat(all_files) engagement_data = engagement_data.reset_index(drop=True) product_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv') districts_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') product_info.shape product_info.columns product_info.isnull().sum() product_info.duplicated().any() product_info = product_info.rename(columns={'Provider/Company Name': 'provider'}) product_info = product_info.rename(columns={'Primary Essential Function': 'essential function'}) plt.figure(figsize=(16, 10)) sns.countplot(y='provider', data=product_info, order=product_info['provider'].value_counts().index[:5], palette='flare') plt.title('Top 7 elearning product providers', size=15) plt.show()
code
72107191/cell_46
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns path = '../input/learnplatform-covid19-impact-on-digital-learning/engagement_data' files = glob.glob(path + '/*.csv') all_files = [] for filename in files: df = pd.read_csv(filename, index_col=None, header=0) district_id = filename.split('/')[4].split('.')[0] df['district_id'] = district_id all_files.append(df) engagement_data = pd.concat(all_files) engagement_data = engagement_data.reset_index(drop=True) product_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv') districts_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') product_info.shape product_info.columns product_info.isnull().sum() product_info.duplicated().any() product_info = product_info.rename(columns={'Provider/Company Name': 'provider'}) product_info = product_info.rename(columns={'Primary Essential Function': 'essential function'}) plt.figure(figsize=(8, 6)) sns.countplot(x='Sector(s)', order=product_info['Sector(s)'].value_counts().index[:3], data=product_info, color='darkblue') plt.title('Top 3 sector dominating the digital learning')
code
72107191/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/learnplatform-covid19-impact-on-digital-learning/engagement_data' files = glob.glob(path + '/*.csv') all_files = [] for filename in files: df = pd.read_csv(filename, index_col=None, header=0) district_id = filename.split('/')[4].split('.')[0] df['district_id'] = district_id all_files.append(df) engagement_data = pd.concat(all_files) engagement_data = engagement_data.reset_index(drop=True) product_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv') districts_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') districts_info.head() districts_info.tail()
code
72107191/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/learnplatform-covid19-impact-on-digital-learning/engagement_data' files = glob.glob(path + '/*.csv') all_files = [] for filename in files: df = pd.read_csv(filename, index_col=None, header=0) district_id = filename.split('/')[4].split('.')[0] df['district_id'] = district_id all_files.append(df) engagement_data = pd.concat(all_files) engagement_data = engagement_data.reset_index(drop=True) product_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv') districts_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') product_info.shape product_info.columns product_info.isnull().sum() product_info.duplicated().any()
code
72107191/cell_37
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/learnplatform-covid19-impact-on-digital-learning/engagement_data' files = glob.glob(path + '/*.csv') all_files = [] for filename in files: df = pd.read_csv(filename, index_col=None, header=0) district_id = filename.split('/')[4].split('.')[0] df['district_id'] = district_id all_files.append(df) engagement_data = pd.concat(all_files) engagement_data = engagement_data.reset_index(drop=True) product_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv') districts_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') engagement_data.shape engagement_data.columns engagement_data.isnull().sum() engagement_data.info()
code
72107191/cell_36
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/learnplatform-covid19-impact-on-digital-learning/engagement_data' files = glob.glob(path + '/*.csv') all_files = [] for filename in files: df = pd.read_csv(filename, index_col=None, header=0) district_id = filename.split('/')[4].split('.')[0] df['district_id'] = district_id all_files.append(df) engagement_data = pd.concat(all_files) engagement_data = engagement_data.reset_index(drop=True) product_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv') districts_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') engagement_data.shape engagement_data.columns engagement_data.isnull().sum()
code
129010375/cell_21
[ "text_plain_output_1.png" ]
import os image_path = '/content/dataset/semantic_drone_dataset/original_images' mask_path = '/content/dataset/semantic_drone_dataset/label_images_semantic' length = len(os.listdir(image_path)) train_dataset_len = int(length * 0.7) val_dataset_len = length - train_dataset_len train_dataset = DroneDataset(image_path, mask_path, train_dataset_len) val_dataset = DroneDataset(image_path, mask_path, val_dataset_len, is_val=True) train_dataset[5][0].shape
code
129010375/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd labels = pd.read_csv('/content/class_dict_seg.csv') classes = labels.name.values.tolist() print(classes)
code
129010375/cell_4
[ "image_output_1.png" ]
!pip install kaggle
code
129010375/cell_33
[ "text_plain_output_1.png" ]
from torch.nn import CrossEntropyLoss from torch.utils.data import random_split, DataLoader, Dataset from torchvision.io import read_image, ImageReadMode from torchvision.models.segmentation.deeplabv3 import DeepLabHead from torchvision.models.segmentation.fcn import FCNHead from tqdm import tqdm from tqdm.notebook import tqdm import os import torch import torch.nn.functional as F import torch.nn.functional as F import torchvision import torchvision.transforms as transforms image_path = '/content/dataset/semantic_drone_dataset/original_images' mask_path = '/content/dataset/semantic_drone_dataset/label_images_semantic' length = len(os.listdir(image_path)) class DroneDataset(Dataset): def __init__(self, imgs_dir, masks_dir, count, is_val=False): self.imgs_dir = imgs_dir self.masks_dir = masks_dir imgs_paths = os.listdir(self.imgs_dir) imgs_paths.sort() mask_paths = os.listdir(self.masks_dir) mask_paths.sort() self.is_val = is_val if not is_val: self.imgs_paths = imgs_paths[:count] self.mask_paths = mask_paths[:count] else: self.imgs_paths = imgs_paths[-count:] self.mask_paths = mask_paths[-count:] def __len__(self): return len(self.imgs_paths) def __getitem__(self, idx): img = read_image(os.path.join(self.imgs_dir, self.imgs_paths[idx]), ImageReadMode.RGB) mask = read_image(os.path.join(self.masks_dir, self.mask_paths[idx]), ImageReadMode.GRAY) return (img, mask) torchvision.models.segmentation.DeepLabV3_ResNet50_Weights.COCO_WITH_VOC_LABELS_V1.transforms() def img_transform(img, mask, is_val=False, size=520): img = img.to(device) mask = mask.to(device) img = img.float() / 255.0 if not is_val: trans_img = torch.nn.Sequential(transforms.Resize([size, size]), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), transforms.RandomAutocontrast(p=0.2)) else: trans_img = trans_img = torch.nn.Sequential(transforms.Resize([size, size]), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])) trans_mask = torch.nn.Sequential(transforms.Resize([size, size])) trans_img.requires_grad_(False) trans_mask.requires_grad_(False) trans_img = trans_img.to(device) trans_mask = trans_mask.to(device) img = trans_img(img) mask = trans_mask(mask) return (img, mask.squeeze(1).long()) train_dataset_len = int(length * 0.7) val_dataset_len = length - train_dataset_len train_dataset = DroneDataset(image_path, mask_path, train_dataset_len) val_dataset = DroneDataset(image_path, mask_path, val_dataset_len, is_val=True) batch_size = 4 train_loader = DataLoader(train_dataset, batch_size, shuffle=True, num_workers=2) val_loader = DataLoader(val_dataset, batch_size, shuffle=False, num_workers=2) model = torchvision.models.segmentation.deeplabv3_resnet50(weights=torchvision.models.segmentation.DeepLabV3_ResNet50_Weights.DEFAULT, progress=True) from torchvision.models.segmentation.deeplabv3 import DeepLabHead from torchvision.models.segmentation.fcn import FCNHead device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') model.classifier = DeepLabHead(2048, 23) model.aux_classifier = FCNHead(1024, 23) model = model.to(device) from torch.nn import CrossEntropyLoss import torch.nn.functional as F loss = CrossEntropyLoss().to(device) learning_rate = 0.01 optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) def pixel_accuracy(mask, output): output_softmax = F.softmax(output, dim=1) output_argmax = torch.argmax(output_softmax, dim=1) bool_tensor = torch.flatten(mask) == torch.flatten(output_argmax) return torch.sum(bool_tensor) / torch.numel(bool_tensor) from tqdm import tqdm epoch_count = 30 train_losses = [] val_losses = [] train_accs = [] val_accs = [] es_steps = 3 count_steps = 0 train_len = len(train_loader) val_len = len(val_loader) print(train_len) print(val_len) best_score = 10000000000.0 for epoch in range(epoch_count): if count_steps >= es_steps: print('Early stopping!') break train_loss_sum = 0 train_pixel_acc = 0 model.train() for img_batch, mask_batch in tqdm(train_loader): img_batch = img_batch.to(device, non_blocking=True) mask_batch = mask_batch.to(device, non_blocking=True) img_batch, mask_batch = img_transform(img_batch, mask_batch, is_val=False) optimizer.zero_grad() output_batch = model(img_batch) loss_value = loss(output_batch['out'], mask_batch) train_pixel_acc += pixel_accuracy(mask_batch, output_batch['out']).detach() train_loss_sum += loss_value.detach() loss_value.backward() optimizer.step() del output_batch train_loss = train_loss_sum / train_len train_acc = train_pixel_acc / train_len train_losses.append(train_loss) train_accs.append(train_acc) print(f'Epoch {epoch} / {epoch_count} | train loss = {train_loss} | train acc = {train_acc}') model.eval() val_loss_sum = 0 val_pixel_acc = 0 for img_batch, mask_batch in tqdm(val_loader): img_batch = img_batch.to(device, non_blocking=True) mask_batch = mask_batch.to(device, non_blocking=True) img_batch, mask_batch = img_transform(img_batch, mask_batch, is_val=True) output_batch = model(img_batch) loss_value = loss(output_batch['out'], mask_batch) val_loss_sum = val_loss_sum + loss_value.detach() val_pixel_acc = val_pixel_acc + pixel_accuracy(mask_batch, output_batch['out']).detach() del output_batch val_loss = val_loss_sum / val_len val_acc = val_pixel_acc / val_len val_losses.append(val_loss) val_accs.append(val_acc) print(f'Epoch {epoch} / {epoch_count} | val loss = {val_loss} | val acc = {val_acc}') if val_loss < best_score: best_score = val_loss count_steps = 0 torch.save(model, 'best_model.pt') else: count_steps += 1
code
129010375/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd labels = pd.read_csv('/content/class_dict_seg.csv') labels.head()
code
129010375/cell_18
[ "text_plain_output_1.png" ]
import torchvision torchvision.models.segmentation.DeepLabV3_ResNet50_Weights.COCO_WITH_VOC_LABELS_V1.transforms()
code
129010375/cell_22
[ "text_plain_output_1.png" ]
import os image_path = '/content/dataset/semantic_drone_dataset/original_images' mask_path = '/content/dataset/semantic_drone_dataset/label_images_semantic' length = len(os.listdir(image_path)) train_dataset_len = int(length * 0.7) val_dataset_len = length - train_dataset_len train_dataset = DroneDataset(image_path, mask_path, train_dataset_len) val_dataset = DroneDataset(image_path, mask_path, val_dataset_len, is_val=True) train_dataset[5][1].shape
code
129010375/cell_12
[ "text_html_output_1.png" ]
import pandas as pd labels = pd.read_csv('/content/class_dict_seg.csv') len(labels)
code
32072152/cell_13
[ "text_plain_output_1.png" ]
from scipy.stats import loguniform, uniform, randint from sklearn.mixture import GaussianMixture from sklearn.model_selection import RandomizedSearchCV, KFold import numpy as np import pandas as pd import numpy as np from sklearn.mixture import GaussianMixture from sklearn.model_selection import RandomizedSearchCV, KFold from scipy.stats import loguniform, uniform, randint RANDOM_STATE = 1563 embeddings = np.load('/kaggle/input/biowordvec-precomputed-cord19/biowordvec.npy') embeddings.shape estimator = GaussianMixture(n_components=10, covariance_type='full', max_iter=100, n_init=1, init_params='kmeans', random_state=RANDOM_STATE) N_ITER = 20 N_SPLITS = 4 param_distributions = {'n_components': randint(2, 256), 'covariance_type': ['diag', 'full', 'spherical']} cv = KFold(n_splits=N_SPLITS, shuffle=True, random_state=RANDOM_STATE) hp_search = RandomizedSearchCV(estimator=estimator, param_distributions=param_distributions, n_iter=N_ITER, n_jobs=N_SPLITS, cv=cv, verbose=1, random_state=RANDOM_STATE, return_train_score=True, refit=True) hp_search.fit(embeddings) best_model = hp_search.best_estimator_ hp_search.best_score_
code
32072152/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/cleaning-cord-19-metadata/cord_metadata_cleaned.csv') len(df) cluster_count = df['cluster'].value_counts().sort_values() ax = cluster_count.plot(kind='bar', figsize=(15, 5)) ax.set_xticks([]) ax.set_xlabel('Cluster id') ax.set_ylabel('Count') ax.grid(True)
code
32072152/cell_8
[ "image_output_1.png" ]
import numpy as np embeddings = np.load('/kaggle/input/biowordvec-precomputed-cord19/biowordvec.npy') embeddings.shape
code
32072152/cell_14
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from scipy.stats import loguniform, uniform, randint from sklearn.mixture import GaussianMixture from sklearn.model_selection import RandomizedSearchCV, KFold import numpy as np import pandas as pd import numpy as np from sklearn.mixture import GaussianMixture from sklearn.model_selection import RandomizedSearchCV, KFold from scipy.stats import loguniform, uniform, randint RANDOM_STATE = 1563 embeddings = np.load('/kaggle/input/biowordvec-precomputed-cord19/biowordvec.npy') embeddings.shape estimator = GaussianMixture(n_components=10, covariance_type='full', max_iter=100, n_init=1, init_params='kmeans', random_state=RANDOM_STATE) N_ITER = 20 N_SPLITS = 4 param_distributions = {'n_components': randint(2, 256), 'covariance_type': ['diag', 'full', 'spherical']} cv = KFold(n_splits=N_SPLITS, shuffle=True, random_state=RANDOM_STATE) hp_search = RandomizedSearchCV(estimator=estimator, param_distributions=param_distributions, n_iter=N_ITER, n_jobs=N_SPLITS, cv=cv, verbose=1, random_state=RANDOM_STATE, return_train_score=True, refit=True) hp_search.fit(embeddings) best_model = hp_search.best_estimator_ hp_search.best_score_ hp_search.best_params_
code
32072152/cell_12
[ "text_plain_output_1.png" ]
from scipy.stats import loguniform, uniform, randint from sklearn.mixture import GaussianMixture from sklearn.model_selection import RandomizedSearchCV, KFold import numpy as np import pandas as pd import numpy as np from sklearn.mixture import GaussianMixture from sklearn.model_selection import RandomizedSearchCV, KFold from scipy.stats import loguniform, uniform, randint RANDOM_STATE = 1563 embeddings = np.load('/kaggle/input/biowordvec-precomputed-cord19/biowordvec.npy') embeddings.shape estimator = GaussianMixture(n_components=10, covariance_type='full', max_iter=100, n_init=1, init_params='kmeans', random_state=RANDOM_STATE) N_ITER = 20 N_SPLITS = 4 param_distributions = {'n_components': randint(2, 256), 'covariance_type': ['diag', 'full', 'spherical']} cv = KFold(n_splits=N_SPLITS, shuffle=True, random_state=RANDOM_STATE) hp_search = RandomizedSearchCV(estimator=estimator, param_distributions=param_distributions, n_iter=N_ITER, n_jobs=N_SPLITS, cv=cv, verbose=1, random_state=RANDOM_STATE, return_train_score=True, refit=True) hp_search.fit(embeddings) best_model = hp_search.best_estimator_
code
32072152/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/cleaning-cord-19-metadata/cord_metadata_cleaned.csv') len(df)
code
49118067/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) data_df.isnull().sum() data_df.duplicated().any() import matplotlib.pyplot as plt import seaborn as sns X = data_df.drop('MEDV', axis=1) y = data_df['MEDV'] y.head()
code
49118067/cell_25
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.linear_model import Ridge import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) from sklearn.linear_model import LinearRegression lr_all = LinearRegression() lr_all.fit(X_train, y_train) y_pred1 = lr_all.predict(X_test) lr_all.intercept_ lr_all_coeffcients = pd.DataFrame([X_train.columns, lr_all.coef_]).T lr_all_coeffcients = lr_all_coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficients'}) lr_all_coeffcients lr_all.score(X_test, y_test) from sklearn import metrics from sklearn.linear_model import Ridge rr1 = Ridge(alpha=0.01) rr1.fit(X_train, y_train) rr2 = Ridge(alpha=100) rr2.fit(X_train, y_train) print('Linear regression test score:', lr_all.score(X_test, y_test)) print('Ridge regression test score with low alpha(0.1):', rr1.score(X_test, y_test)) print('Ridge regression test score with high alpha(100):', rr2.score(X_test, y_test))
code
49118067/cell_4
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) print(data_df.shape)
code
49118067/cell_34
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import Lasso from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.linear_model import Ridge from sklearn.model_selection import GridSearchCV import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) from sklearn.linear_model import LinearRegression lr_all = LinearRegression() lr_all.fit(X_train, y_train) y_pred1 = lr_all.predict(X_test) lr_all.intercept_ lr_all_coeffcients = pd.DataFrame([X_train.columns, lr_all.coef_]).T lr_all_coeffcients = lr_all_coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficients'}) lr_all_coeffcients from sklearn import metrics from sklearn.linear_model import Ridge ridge = Ridge(alpha=100) ridge.fit(X_train, y_train) y_pred2 = ridge.predict(X_test) ridge.score(X_test, y_test) from sklearn.linear_model import Lasso lasso = Lasso(alpha=0.8) lasso.fit(X_train, y_train) y_pred3 = lasso.predict(X_test) lasso.score(X_test, y_test) lasso_coeffcients = pd.DataFrame([X_train.columns, lasso.coef_]).T lasso_coeffcients = lasso_coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficients'}) lasso_coeffcients from sklearn.model_selection import GridSearchCV param_grid = {'alpha': np.arange(1, 10, 500)} ridge = Ridge() ridge_best_alpha = GridSearchCV(ridge, param_grid) ridge_best_alpha.fit(X_train, y_train)
code
49118067/cell_23
[ "text_html_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) from sklearn.linear_model import LinearRegression lr_all = LinearRegression() lr_all.fit(X_train, y_train) y_pred1 = lr_all.predict(X_test) lr_all.intercept_ lr_all_coeffcients = pd.DataFrame([X_train.columns, lr_all.coef_]).T lr_all_coeffcients = lr_all_coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficients'}) lr_all_coeffcients from sklearn import metrics from sklearn.linear_model import Ridge ridge = Ridge(alpha=100) ridge.fit(X_train, y_train) y_pred2 = ridge.predict(X_test) ridge.score(X_test, y_test)
code
49118067/cell_20
[ "image_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import LinearRegression import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) from sklearn.linear_model import LinearRegression lr_all = LinearRegression() lr_all.fit(X_train, y_train) y_pred1 = lr_all.predict(X_test) lr_all.intercept_ lr_all_coeffcients = pd.DataFrame([X_train.columns, lr_all.coef_]).T lr_all_coeffcients = lr_all_coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficients'}) lr_all_coeffcients from sklearn import metrics print('R^2:', metrics.r2_score(y_test, y_pred1)) print('Adjusted R^2:', 1 - (1 - metrics.r2_score(y_test, y_pred1)) * (len(y_test) - 1) / (len(y_test) - X_train.shape[1] - 1)) print('MAE:', metrics.mean_absolute_error(y_test, y_pred1)) print('MSE:', metrics.mean_squared_error(y_test, y_pred1)) print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, y_pred1)))
code
49118067/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) data_df.isnull().sum()
code
49118067/cell_29
[ "text_html_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import Lasso from sklearn.linear_model import LinearRegression import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) from sklearn.linear_model import LinearRegression lr_all = LinearRegression() lr_all.fit(X_train, y_train) y_pred1 = lr_all.predict(X_test) lr_all.intercept_ lr_all_coeffcients = pd.DataFrame([X_train.columns, lr_all.coef_]).T lr_all_coeffcients = lr_all_coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficients'}) lr_all_coeffcients from sklearn import metrics from sklearn.linear_model import Lasso lasso = Lasso(alpha=0.8) lasso.fit(X_train, y_train) y_pred3 = lasso.predict(X_test) lasso.score(X_test, y_test)
code
49118067/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
49118067/cell_7
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) data_df.isnull().sum() data_df.duplicated().any()
code
49118067/cell_18
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) from sklearn.linear_model import LinearRegression lr_all = LinearRegression() lr_all.fit(X_train, y_train) y_pred1 = lr_all.predict(X_test) lr_all.intercept_ lr_all_coeffcients = pd.DataFrame([X_train.columns, lr_all.coef_]).T lr_all_coeffcients = lr_all_coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficients'}) lr_all_coeffcients lr_all.score(X_test, y_test)
code
49118067/cell_32
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import Lasso from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.linear_model import Ridge import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) data_df.isnull().sum() data_df.duplicated().any() import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LinearRegression lr_all = LinearRegression() lr_all.fit(X_train, y_train) y_pred1 = lr_all.predict(X_test) lr_all.intercept_ lr_all_coeffcients = pd.DataFrame([X_train.columns, lr_all.coef_]).T lr_all_coeffcients = lr_all_coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficients'}) lr_all_coeffcients lr_all.score(X_test, y_test) from sklearn import metrics from sklearn.linear_model import Ridge rr1 = Ridge(alpha=0.01) rr1.fit(X_train, y_train) rr2 = Ridge(alpha=100) rr2.fit(X_train, y_train) import matplotlib.pyplot as plt from sklearn.linear_model import Lasso lasso = Lasso(alpha=0.8) lasso.fit(X_train, y_train) y_pred3 = lasso.predict(X_test) lasso.score(X_test, y_test) lasso_coeffcients = pd.DataFrame([X_train.columns, lasso.coef_]).T lasso_coeffcients = lasso_coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficients'}) lasso_coeffcients import matplotlib.pyplot as plt plt.plot(names[0:13], lasso.coef_, alpha=0.4, linestyle='none', marker='o', markersize=7, color='green', label='Lasso Regression') plt.plot(names[0:13], lr_all.coef_, alpha=0.4, linestyle='none', marker='d', markersize=7, color='blue', label='Linear Regression') plt.xlabel('Coefficient Index', fontsize=16) plt.ylabel('Coefficient Magnitude', fontsize=16) plt.legend(fontsize=13, loc=4) plt.show()
code
49118067/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) data_df.isnull().sum() data_df.duplicated().any() data_df.hist(bins=12, figsize=(12, 10), grid=False)
code
49118067/cell_16
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.linear_model import LinearRegression lr_all = LinearRegression() lr_all.fit(X_train, y_train) y_pred1 = lr_all.predict(X_test) lr_all.intercept_
code
49118067/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) data_df.head()
code
49118067/cell_17
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) from sklearn.linear_model import LinearRegression lr_all = LinearRegression() lr_all.fit(X_train, y_train) y_pred1 = lr_all.predict(X_test) lr_all.intercept_ lr_all_coeffcients = pd.DataFrame([X_train.columns, lr_all.coef_]).T lr_all_coeffcients = lr_all_coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficients'}) lr_all_coeffcients
code
49118067/cell_35
[ "image_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import Lasso from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.linear_model import Ridge from sklearn.model_selection import GridSearchCV import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) from sklearn.linear_model import LinearRegression lr_all = LinearRegression() lr_all.fit(X_train, y_train) y_pred1 = lr_all.predict(X_test) lr_all.intercept_ lr_all_coeffcients = pd.DataFrame([X_train.columns, lr_all.coef_]).T lr_all_coeffcients = lr_all_coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficients'}) lr_all_coeffcients from sklearn import metrics from sklearn.linear_model import Ridge ridge = Ridge(alpha=100) ridge.fit(X_train, y_train) y_pred2 = ridge.predict(X_test) ridge.score(X_test, y_test) from sklearn.linear_model import Lasso lasso = Lasso(alpha=0.8) lasso.fit(X_train, y_train) y_pred3 = lasso.predict(X_test) lasso.score(X_test, y_test) lasso_coeffcients = pd.DataFrame([X_train.columns, lasso.coef_]).T lasso_coeffcients = lasso_coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficients'}) lasso_coeffcients from sklearn.model_selection import GridSearchCV param_grid = {'alpha': np.arange(1, 10, 500)} ridge = Ridge() ridge_best_alpha = GridSearchCV(ridge, param_grid) ridge_best_alpha.fit(X_train, y_train) print('Best alpha for Ridge Regression:', ridge_best_alpha.best_params_) print('Best score for Ridge Regression with best alpha:', ridge_best_alpha.best_score_)
code
49118067/cell_31
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import Lasso from sklearn.linear_model import LinearRegression import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) from sklearn.linear_model import LinearRegression lr_all = LinearRegression() lr_all.fit(X_train, y_train) y_pred1 = lr_all.predict(X_test) lr_all.intercept_ lr_all_coeffcients = pd.DataFrame([X_train.columns, lr_all.coef_]).T lr_all_coeffcients = lr_all_coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficients'}) lr_all_coeffcients from sklearn import metrics from sklearn.linear_model import Lasso lasso = Lasso(alpha=0.8) lasso.fit(X_train, y_train) y_pred3 = lasso.predict(X_test) lasso.score(X_test, y_test) lasso_coeffcients = pd.DataFrame([X_train.columns, lasso.coef_]).T lasso_coeffcients = lasso_coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficients'}) lasso_coeffcients
code
49118067/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) data_df.isnull().sum() data_df.duplicated().any() import matplotlib.pyplot as plt import seaborn as sns plt.figure(figsize=(25, 12)) sns.heatmap(data_df.corr(), vmin=-1, vmax=1, center=0, cmap='coolwarm', annot=True) plt.show()
code
49118067/cell_27
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.linear_model import Ridge import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) data_df.isnull().sum() data_df.duplicated().any() import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LinearRegression lr_all = LinearRegression() lr_all.fit(X_train, y_train) y_pred1 = lr_all.predict(X_test) lr_all.intercept_ lr_all_coeffcients = pd.DataFrame([X_train.columns, lr_all.coef_]).T lr_all_coeffcients = lr_all_coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficients'}) lr_all_coeffcients lr_all.score(X_test, y_test) from sklearn import metrics from sklearn.linear_model import Ridge rr1 = Ridge(alpha=0.01) rr1.fit(X_train, y_train) rr2 = Ridge(alpha=100) rr2.fit(X_train, y_train) import matplotlib.pyplot as plt plt.plot(names[0:13], lr_all.coef_, alpha=0.4, linestyle='none', marker='o', markersize=7, color='green', label='Linear Regression') plt.plot(names[0:13], rr1.coef_, alpha=0.4, linestyle='none', marker='*', markersize=7, color='red', label='Ridge;$\\alpha=0.01$') plt.plot(names[0:13], rr2.coef_, alpha=0.4, linestyle='none', marker='d', markersize=7, color='blue', label='Ridge;$\\alpha=100$') plt.xlabel('Coefficient Index', fontsize=16) plt.ylabel('Coefficient Magnitude', fontsize=16) plt.legend(fontsize=13, loc=4) plt.show()
code
49118067/cell_37
[ "text_html_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import Lasso from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.linear_model import Ridge from sklearn.model_selection import GridSearchCV from sklearn.model_selection import GridSearchCV import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) data_df.isnull().sum() data_df.duplicated().any() import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LinearRegression lr_all = LinearRegression() lr_all.fit(X_train, y_train) y_pred1 = lr_all.predict(X_test) lr_all.intercept_ lr_all_coeffcients = pd.DataFrame([X_train.columns, lr_all.coef_]).T lr_all_coeffcients = lr_all_coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficients'}) lr_all_coeffcients lr_all.score(X_test, y_test) from sklearn import metrics from sklearn.linear_model import Ridge ridge = Ridge(alpha=100) ridge.fit(X_train, y_train) y_pred2 = ridge.predict(X_test) ridge.score(X_test, y_test) from sklearn.linear_model import Ridge rr1 = Ridge(alpha=0.01) rr1.fit(X_train, y_train) rr2 = Ridge(alpha=100) rr2.fit(X_train, y_train) import matplotlib.pyplot as plt from sklearn.linear_model import Lasso lasso = Lasso(alpha=0.8) lasso.fit(X_train, y_train) y_pred3 = lasso.predict(X_test) lasso.score(X_test, y_test) lasso_coeffcients = pd.DataFrame([X_train.columns, lasso.coef_]).T lasso_coeffcients = lasso_coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficients'}) lasso_coeffcients import matplotlib.pyplot as plt from sklearn.model_selection import GridSearchCV param_grid = {'alpha': np.arange(1, 10, 500)} ridge = Ridge() ridge_best_alpha = GridSearchCV(ridge, param_grid) ridge_best_alpha.fit(X_train, y_train) from sklearn.model_selection import GridSearchCV param_grid = {'alpha': np.arange(0, 0.1, 1)} lasso = Lasso() lasso_best_alpha = GridSearchCV(lasso, param_grid) lasso_best_alpha.fit(X_train, y_train) print('Best alpha for Lasso Regression:', lasso_best_alpha.best_params_) print('Best score for Lasso Regression with best alpha:', lasso_best_alpha.best_score_)
code
49118067/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) data_df.isnull().sum() data_df.duplicated().any() import matplotlib.pyplot as plt import seaborn as sns X = data_df.drop('MEDV', axis=1) y = data_df['MEDV'] X.head()
code
49118067/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) data_df.info()
code
49118067/cell_36
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import Lasso from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.linear_model import Ridge from sklearn.model_selection import GridSearchCV from sklearn.model_selection import GridSearchCV import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] data_df = pd.read_csv('/kaggle/input/boston-house-prices/housing.csv', header=None, delim_whitespace=True, names=names) data_df.isnull().sum() data_df.duplicated().any() import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LinearRegression lr_all = LinearRegression() lr_all.fit(X_train, y_train) y_pred1 = lr_all.predict(X_test) lr_all.intercept_ lr_all_coeffcients = pd.DataFrame([X_train.columns, lr_all.coef_]).T lr_all_coeffcients = lr_all_coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficients'}) lr_all_coeffcients lr_all.score(X_test, y_test) from sklearn import metrics from sklearn.linear_model import Ridge ridge = Ridge(alpha=100) ridge.fit(X_train, y_train) y_pred2 = ridge.predict(X_test) ridge.score(X_test, y_test) from sklearn.linear_model import Ridge rr1 = Ridge(alpha=0.01) rr1.fit(X_train, y_train) rr2 = Ridge(alpha=100) rr2.fit(X_train, y_train) import matplotlib.pyplot as plt from sklearn.linear_model import Lasso lasso = Lasso(alpha=0.8) lasso.fit(X_train, y_train) y_pred3 = lasso.predict(X_test) lasso.score(X_test, y_test) lasso_coeffcients = pd.DataFrame([X_train.columns, lasso.coef_]).T lasso_coeffcients = lasso_coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficients'}) lasso_coeffcients import matplotlib.pyplot as plt from sklearn.model_selection import GridSearchCV param_grid = {'alpha': np.arange(1, 10, 500)} ridge = Ridge() ridge_best_alpha = GridSearchCV(ridge, param_grid) ridge_best_alpha.fit(X_train, y_train) from sklearn.model_selection import GridSearchCV param_grid = {'alpha': np.arange(0, 0.1, 1)} lasso = Lasso() lasso_best_alpha = GridSearchCV(lasso, param_grid) lasso_best_alpha.fit(X_train, y_train)
code
90148331/cell_9
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data_movies = pd.read_csv('../input/movielens/movies.dat', sep='::', engine='python', header=None, names=['MovieId', 'Title', 'Genres'], encoding='latin 1') data_ratings = pd.read_csv('../input/movielens/ratings.dat', sep='::', engine='python', header=None, names=['UserId', 'MovieId', 'Rating', 'Timestamp'], encoding='latin 1') data_users = pd.read_csv('../input/movielens/users.dat', sep='::', engine='python', header=None, names=['UserId', 'Gender', 'Age', 'Occupation', 'Zip-code'], encoding='latin 1') sns.kdeplot(data=data_users['Age'], shade=True)
code
90148331/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data_movies = pd.read_csv('../input/movielens/movies.dat', sep='::', engine='python', header=None, names=['MovieId', 'Title', 'Genres'], encoding='latin 1') data_ratings = pd.read_csv('../input/movielens/ratings.dat', sep='::', engine='python', header=None, names=['UserId', 'MovieId', 'Rating', 'Timestamp'], encoding='latin 1') data_users = pd.read_csv('../input/movielens/users.dat', sep='::', engine='python', header=None, names=['UserId', 'Gender', 'Age', 'Occupation', 'Zip-code'], encoding='latin 1') data_ratings.sort_values(by='Rating', ascending=False).head(25) reviews2 = data_ratings.sort_values(by='Rating', ascending=False).head(5) reviews2 = data_ratings.sort_values(by='Rating', ascending=False).head(5) data = [data_ratings['Timestamp'], data_users['Occupation']] headers = ['Timestamp1', 'Occupation1'] df3 = pd.concat(data, axis=1, keys=headers) df3.sort_values(by='Timestamp1') sns.regplot(x=df3['Timestamp1'], y=df3['Occupation1'])
code
90148331/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_movies = pd.read_csv('../input/movielens/movies.dat', sep='::', engine='python', header=None, names=['MovieId', 'Title', 'Genres'], encoding='latin 1') data_ratings = pd.read_csv('../input/movielens/ratings.dat', sep='::', engine='python', header=None, names=['UserId', 'MovieId', 'Rating', 'Timestamp'], encoding='latin 1') data_users = pd.read_csv('../input/movielens/users.dat', sep='::', engine='python', header=None, names=['UserId', 'Gender', 'Age', 'Occupation', 'Zip-code'], encoding='latin 1') data_movies.head()
code
90148331/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_movies = pd.read_csv('../input/movielens/movies.dat', sep='::', engine='python', header=None, names=['MovieId', 'Title', 'Genres'], encoding='latin 1') data_ratings = pd.read_csv('../input/movielens/ratings.dat', sep='::', engine='python', header=None, names=['UserId', 'MovieId', 'Rating', 'Timestamp'], encoding='latin 1') data_users = pd.read_csv('../input/movielens/users.dat', sep='::', engine='python', header=None, names=['UserId', 'Gender', 'Age', 'Occupation', 'Zip-code'], encoding='latin 1') data_ratings.sort_values(by='Rating', ascending=False).head(25) reviews2 = data_ratings.sort_values(by='Rating', ascending=False).head(5) reviews2 = data_ratings.sort_values(by='Rating', ascending=False).head(5) data = [data_ratings['Timestamp'], data_users['Occupation']] headers = ['Timestamp1', 'Occupation1'] df3 = pd.concat(data, axis=1, keys=headers) df3.sort_values(by='Timestamp1')
code
90148331/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
90148331/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_movies = pd.read_csv('../input/movielens/movies.dat', sep='::', engine='python', header=None, names=['MovieId', 'Title', 'Genres'], encoding='latin 1') data_ratings = pd.read_csv('../input/movielens/ratings.dat', sep='::', engine='python', header=None, names=['UserId', 'MovieId', 'Rating', 'Timestamp'], encoding='latin 1') data_users = pd.read_csv('../input/movielens/users.dat', sep='::', engine='python', header=None, names=['UserId', 'Gender', 'Age', 'Occupation', 'Zip-code'], encoding='latin 1') data_ratings.head()
code
90148331/cell_18
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_movies = pd.read_csv('../input/movielens/movies.dat', sep='::', engine='python', header=None, names=['MovieId', 'Title', 'Genres'], encoding='latin 1') data_ratings = pd.read_csv('../input/movielens/ratings.dat', sep='::', engine='python', header=None, names=['UserId', 'MovieId', 'Rating', 'Timestamp'], encoding='latin 1') data_users = pd.read_csv('../input/movielens/users.dat', sep='::', engine='python', header=None, names=['UserId', 'Gender', 'Age', 'Occupation', 'Zip-code'], encoding='latin 1') data_ratings.sort_values(by='Rating', ascending=False).head(25) reviews2 = data_ratings.sort_values(by='Rating', ascending=False).head(5) reviews2 = data_ratings.sort_values(by='Rating', ascending=False).head(5) data = [data_ratings['Timestamp'], data_users['Occupation']] headers = ['Timestamp1', 'Occupation1'] df3 = pd.concat(data, axis=1, keys=headers) df3.head()
code
90148331/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_movies = pd.read_csv('../input/movielens/movies.dat', sep='::', engine='python', header=None, names=['MovieId', 'Title', 'Genres'], encoding='latin 1') data_ratings = pd.read_csv('../input/movielens/ratings.dat', sep='::', engine='python', header=None, names=['UserId', 'MovieId', 'Rating', 'Timestamp'], encoding='latin 1') data_users = pd.read_csv('../input/movielens/users.dat', sep='::', engine='python', header=None, names=['UserId', 'Gender', 'Age', 'Occupation', 'Zip-code'], encoding='latin 1') data_ratings.sort_values(by='Rating', ascending=False).head(25)
code
90148331/cell_15
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data_movies = pd.read_csv('../input/movielens/movies.dat', sep='::', engine='python', header=None, names=['MovieId', 'Title', 'Genres'], encoding='latin 1') data_ratings = pd.read_csv('../input/movielens/ratings.dat', sep='::', engine='python', header=None, names=['UserId', 'MovieId', 'Rating', 'Timestamp'], encoding='latin 1') data_users = pd.read_csv('../input/movielens/users.dat', sep='::', engine='python', header=None, names=['UserId', 'Gender', 'Age', 'Occupation', 'Zip-code'], encoding='latin 1') data_ratings.sort_values(by='Rating', ascending=False).head(25) reviews2 = data_ratings.sort_values(by='Rating', ascending=False).head(5) reviews2 = data_ratings.sort_values(by='Rating', ascending=False).head(5) sns.barplot(x=reviews2.index, y=reviews2['Rating']) plt.xlabel('Ratings Distribution')
code
90148331/cell_16
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_movies = pd.read_csv('../input/movielens/movies.dat', sep='::', engine='python', header=None, names=['MovieId', 'Title', 'Genres'], encoding='latin 1') data_ratings = pd.read_csv('../input/movielens/ratings.dat', sep='::', engine='python', header=None, names=['UserId', 'MovieId', 'Rating', 'Timestamp'], encoding='latin 1') data_users = pd.read_csv('../input/movielens/users.dat', sep='::', engine='python', header=None, names=['UserId', 'Gender', 'Age', 'Occupation', 'Zip-code'], encoding='latin 1') data_users.head()
code
90148331/cell_22
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data_movies = pd.read_csv('../input/movielens/movies.dat', sep='::', engine='python', header=None, names=['MovieId', 'Title', 'Genres'], encoding='latin 1') data_ratings = pd.read_csv('../input/movielens/ratings.dat', sep='::', engine='python', header=None, names=['UserId', 'MovieId', 'Rating', 'Timestamp'], encoding='latin 1') data_users = pd.read_csv('../input/movielens/users.dat', sep='::', engine='python', header=None, names=['UserId', 'Gender', 'Age', 'Occupation', 'Zip-code'], encoding='latin 1') data_ratings.sort_values(by='Rating', ascending=False).head(25) reviews2 = data_ratings.sort_values(by='Rating', ascending=False).head(5) reviews2 = data_ratings.sort_values(by='Rating', ascending=False).head(5) data = [data_ratings['Timestamp'], data_users['Occupation']] headers = ['Timestamp1', 'Occupation1'] df3 = pd.concat(data, axis=1, keys=headers) df3.sort_values(by='Timestamp1') data = [data_users['Age'], data_movies['Genres']] headers = ['Age1', 'Genres1'] df4 = pd.concat(data, axis=1, keys=headers) sns.regplot(x=df4['Genres1'], y=df4['Age1'])
code
88098284/cell_42
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.metrics import confusion_matrix, classification_report import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/tour-travels-customer-churn-prediction/Customertravel.csv') df.rename(columns={'Target': 'Churn'}, inplace=True) df.groupby('Churn').describe() ax = sns.countplot(data=df, x='Churn') percentage = df['Churn'].value_counts(normalize=True).values * 100 lbls = [f'{p:.1f}%' for p in percentage] ax.bar_label(container=ax.containers[0], labels=lbls) plt.ylim(top=800) plt.title('Churned (0=no, 1=yes)'); df.isnull().sum() df_coded = df.copy() df_coded = df_coded.replace({'AnnualIncomeClass': {'Low Income': 0, 'Middle Income': 1, 'High Income': 2}}) dummies = ['BookedHotelOrNot', 'AccountSyncedToSocialMedia', 'FrequentFlyer'] df_coded = pd.get_dummies(df_coded, columns=dummies, drop_first=True) df_coded.rename(columns={'BookedHotelOrNot_Yes': 'BookedHotel', 'AccountSyncedToSocialMedia_Yes': 'AccountSyncedToSocialMedia'}, inplace=True) # Generic function to fit data and display results/predictions def fit_evaluate(clf, X_train, X_test, y_train, y_test): # fit model to training data clf.fit(X_train, y_train) # make predictions for test data y_pred = clf.predict(X_test) # print evaluation print(classification_report(y_test, y_pred)) print('\nConfusion Matrix: \n') s = sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='g', cmap='YlGnBu'); s.set(xlabel='Predicted class', ylabel='True class') modelRF = RandomForestClassifier() print('* Random Forest Classifier * \n') fit_evaluate(modelRF, X_train, X_test, y_train, y_test)
code
88098284/cell_21
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/tour-travels-customer-churn-prediction/Customertravel.csv') df.rename(columns={'Target': 'Churn'}, inplace=True) df.groupby('Churn').describe() ax = sns.countplot(data=df, x='Churn') percentage = df['Churn'].value_counts(normalize=True).values * 100 lbls = [f'{p:.1f}%' for p in percentage] ax.bar_label(container=ax.containers[0], labels=lbls) plt.ylim(top=800) plt.title('Churned (0=no, 1=yes)'); sns.countplot(data=df, x='BookedHotelOrNot', hue='Churn').set_title('Churn by Booked Hotel')
code
88098284/cell_13
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/tour-travels-customer-churn-prediction/Customertravel.csv') df.rename(columns={'Target': 'Churn'}, inplace=True) df.groupby('Churn').describe() ax = sns.countplot(data=df, x='Churn') percentage = df['Churn'].value_counts(normalize=True).values * 100 lbls = [f'{p:.1f}%' for p in percentage] ax.bar_label(container=ax.containers[0], labels=lbls) plt.ylim(top=800) plt.title('Churned (0=no, 1=yes)'); sns.countplot(data=df, x='Age', hue='Churn').set_title('Churn by Age')
code
88098284/cell_23
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/tour-travels-customer-churn-prediction/Customertravel.csv') df.rename(columns={'Target': 'Churn'}, inplace=True) df.groupby('Churn').describe() df.isnull().sum()
code
88098284/cell_30
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/tour-travels-customer-churn-prediction/Customertravel.csv') df.rename(columns={'Target': 'Churn'}, inplace=True) df.groupby('Churn').describe() df.isnull().sum() df_coded = df.copy() df_coded = df_coded.replace({'AnnualIncomeClass': {'Low Income': 0, 'Middle Income': 1, 'High Income': 2}}) dummies = ['BookedHotelOrNot', 'AccountSyncedToSocialMedia', 'FrequentFlyer'] df_coded = pd.get_dummies(df_coded, columns=dummies, drop_first=True) df_coded.rename(columns={'BookedHotelOrNot_Yes': 'BookedHotel', 'AccountSyncedToSocialMedia_Yes': 'AccountSyncedToSocialMedia'}, inplace=True) df_coded.head(6)
code
88098284/cell_44
[ "text_plain_output_1.png", "image_output_1.png" ]
from imblearn.ensemble import BalancedRandomForestClassifier, BalancedBaggingClassifier from sklearn.metrics import confusion_matrix, classification_report import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/tour-travels-customer-churn-prediction/Customertravel.csv') df.rename(columns={'Target': 'Churn'}, inplace=True) df.groupby('Churn').describe() ax = sns.countplot(data=df, x='Churn') percentage = df['Churn'].value_counts(normalize=True).values * 100 lbls = [f'{p:.1f}%' for p in percentage] ax.bar_label(container=ax.containers[0], labels=lbls) plt.ylim(top=800) plt.title('Churned (0=no, 1=yes)'); df.isnull().sum() df_coded = df.copy() df_coded = df_coded.replace({'AnnualIncomeClass': {'Low Income': 0, 'Middle Income': 1, 'High Income': 2}}) dummies = ['BookedHotelOrNot', 'AccountSyncedToSocialMedia', 'FrequentFlyer'] df_coded = pd.get_dummies(df_coded, columns=dummies, drop_first=True) df_coded.rename(columns={'BookedHotelOrNot_Yes': 'BookedHotel', 'AccountSyncedToSocialMedia_Yes': 'AccountSyncedToSocialMedia'}, inplace=True) # Generic function to fit data and display results/predictions def fit_evaluate(clf, X_train, X_test, y_train, y_test): # fit model to training data clf.fit(X_train, y_train) # make predictions for test data y_pred = clf.predict(X_test) # print evaluation print(classification_report(y_test, y_pred)) print('\nConfusion Matrix: \n') s = sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='g', cmap='YlGnBu'); s.set(xlabel='Predicted class', ylabel='True class') modelRF_bal = BalancedRandomForestClassifier() print('* Balanced Random Forest Classifier * \n') fit_evaluate(modelRF_bal, X_train, X_test, y_train, y_test)
code
88098284/cell_20
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/tour-travels-customer-churn-prediction/Customertravel.csv') df.rename(columns={'Target': 'Churn'}, inplace=True) df.groupby('Churn').describe() ax = sns.countplot(data=df, x='Churn') percentage = df['Churn'].value_counts(normalize=True).values * 100 lbls = [f'{p:.1f}%' for p in percentage] ax.bar_label(container=ax.containers[0], labels=lbls) plt.ylim(top=800) plt.title('Churned (0=no, 1=yes)'); sns.countplot(data=df, x='AccountSyncedToSocialMedia', hue='Churn').set_title('Churn by Account Synched To Social Media')
code
88098284/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/tour-travels-customer-churn-prediction/Customertravel.csv') df.head()
code
88098284/cell_40
[ "image_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, classification_report import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/tour-travels-customer-churn-prediction/Customertravel.csv') df.rename(columns={'Target': 'Churn'}, inplace=True) df.groupby('Churn').describe() ax = sns.countplot(data=df, x='Churn') percentage = df['Churn'].value_counts(normalize=True).values * 100 lbls = [f'{p:.1f}%' for p in percentage] ax.bar_label(container=ax.containers[0], labels=lbls) plt.ylim(top=800) plt.title('Churned (0=no, 1=yes)'); df.isnull().sum() df_coded = df.copy() df_coded = df_coded.replace({'AnnualIncomeClass': {'Low Income': 0, 'Middle Income': 1, 'High Income': 2}}) dummies = ['BookedHotelOrNot', 'AccountSyncedToSocialMedia', 'FrequentFlyer'] df_coded = pd.get_dummies(df_coded, columns=dummies, drop_first=True) df_coded.rename(columns={'BookedHotelOrNot_Yes': 'BookedHotel', 'AccountSyncedToSocialMedia_Yes': 'AccountSyncedToSocialMedia'}, inplace=True) # Generic function to fit data and display results/predictions def fit_evaluate(clf, X_train, X_test, y_train, y_test): # fit model to training data clf.fit(X_train, y_train) # make predictions for test data y_pred = clf.predict(X_test) # print evaluation print(classification_report(y_test, y_pred)) print('\nConfusion Matrix: \n') s = sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='g', cmap='YlGnBu'); s.set(xlabel='Predicted class', ylabel='True class') modelLR = LogisticRegression() fit_evaluate(modelLR, X_train, X_test, y_train, y_test) modelLR = LogisticRegression(class_weight='balanced') print('* Logistic regression * \n') fit_evaluate(modelLR, X_train, X_test, y_train, y_test)
code
88098284/cell_39
[ "text_html_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, classification_report import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/tour-travels-customer-churn-prediction/Customertravel.csv') df.rename(columns={'Target': 'Churn'}, inplace=True) df.groupby('Churn').describe() ax = sns.countplot(data=df, x='Churn') percentage = df['Churn'].value_counts(normalize=True).values * 100 lbls = [f'{p:.1f}%' for p in percentage] ax.bar_label(container=ax.containers[0], labels=lbls) plt.ylim(top=800) plt.title('Churned (0=no, 1=yes)'); df.isnull().sum() df_coded = df.copy() df_coded = df_coded.replace({'AnnualIncomeClass': {'Low Income': 0, 'Middle Income': 1, 'High Income': 2}}) dummies = ['BookedHotelOrNot', 'AccountSyncedToSocialMedia', 'FrequentFlyer'] df_coded = pd.get_dummies(df_coded, columns=dummies, drop_first=True) df_coded.rename(columns={'BookedHotelOrNot_Yes': 'BookedHotel', 'AccountSyncedToSocialMedia_Yes': 'AccountSyncedToSocialMedia'}, inplace=True) # Generic function to fit data and display results/predictions def fit_evaluate(clf, X_train, X_test, y_train, y_test): # fit model to training data clf.fit(X_train, y_train) # make predictions for test data y_pred = clf.predict(X_test) # print evaluation print(classification_report(y_test, y_pred)) print('\nConfusion Matrix: \n') s = sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='g', cmap='YlGnBu'); s.set(xlabel='Predicted class', ylabel='True class') modelLR = LogisticRegression() print('* Logistic regression * \n') fit_evaluate(modelLR, X_train, X_test, y_train, y_test)
code
88098284/cell_48
[ "text_plain_output_1.png", "image_output_1.png" ]
from imblearn.ensemble import BalancedRandomForestClassifier, BalancedBaggingClassifier from sklearn.metrics import confusion_matrix, classification_report import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/tour-travels-customer-churn-prediction/Customertravel.csv') df.rename(columns={'Target': 'Churn'}, inplace=True) df.groupby('Churn').describe() ax = sns.countplot(data=df, x='Churn') percentage = df['Churn'].value_counts(normalize=True).values * 100 lbls = [f'{p:.1f}%' for p in percentage] ax.bar_label(container=ax.containers[0], labels=lbls) plt.ylim(top=800) plt.title('Churned (0=no, 1=yes)'); df.isnull().sum() df_coded = df.copy() df_coded = df_coded.replace({'AnnualIncomeClass': {'Low Income': 0, 'Middle Income': 1, 'High Income': 2}}) dummies = ['BookedHotelOrNot', 'AccountSyncedToSocialMedia', 'FrequentFlyer'] df_coded = pd.get_dummies(df_coded, columns=dummies, drop_first=True) df_coded.rename(columns={'BookedHotelOrNot_Yes': 'BookedHotel', 'AccountSyncedToSocialMedia_Yes': 'AccountSyncedToSocialMedia'}, inplace=True) # Generic function to fit data and display results/predictions def fit_evaluate(clf, X_train, X_test, y_train, y_test): # fit model to training data clf.fit(X_train, y_train) # make predictions for test data y_pred = clf.predict(X_test) # print evaluation print(classification_report(y_test, y_pred)) print('\nConfusion Matrix: \n') s = sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='g', cmap='YlGnBu'); s.set(xlabel='Predicted class', ylabel='True class') modelBBC = BalancedBaggingClassifier() print('* Balanced Bagging Classifier * \n') fit_evaluate(modelBBC, X_train, X_test, y_train, y_test)
code
88098284/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/tour-travels-customer-churn-prediction/Customertravel.csv') df.rename(columns={'Target': 'Churn'}, inplace=True) df.groupby('Churn').describe() ax = sns.countplot(data=df, x='Churn') percentage = df['Churn'].value_counts(normalize=True).values * 100 lbls = [f'{p:.1f}%' for p in percentage] ax.bar_label(container=ax.containers[0], labels=lbls) plt.ylim(top=800) plt.title('Churned (0=no, 1=yes)')
code
88098284/cell_50
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.metrics import confusion_matrix, classification_report from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/tour-travels-customer-churn-prediction/Customertravel.csv') df.rename(columns={'Target': 'Churn'}, inplace=True) df.groupby('Churn').describe() ax = sns.countplot(data=df, x='Churn') percentage = df['Churn'].value_counts(normalize=True).values * 100 lbls = [f'{p:.1f}%' for p in percentage] ax.bar_label(container=ax.containers[0], labels=lbls) plt.ylim(top=800) plt.title('Churned (0=no, 1=yes)'); df.isnull().sum() df_coded = df.copy() df_coded = df_coded.replace({'AnnualIncomeClass': {'Low Income': 0, 'Middle Income': 1, 'High Income': 2}}) dummies = ['BookedHotelOrNot', 'AccountSyncedToSocialMedia', 'FrequentFlyer'] df_coded = pd.get_dummies(df_coded, columns=dummies, drop_first=True) df_coded.rename(columns={'BookedHotelOrNot_Yes': 'BookedHotel', 'AccountSyncedToSocialMedia_Yes': 'AccountSyncedToSocialMedia'}, inplace=True) # Generic function to fit data and display results/predictions def fit_evaluate(clf, X_train, X_test, y_train, y_test): # fit model to training data clf.fit(X_train, y_train) # make predictions for test data y_pred = clf.predict(X_test) # print evaluation print(classification_report(y_test, y_pred)) print('\nConfusion Matrix: \n') s = sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='g', cmap='YlGnBu'); s.set(xlabel='Predicted class', ylabel='True class') modelKNN = KNeighborsClassifier() print('* K Nearest Neighbors Classifier * \n') fit_evaluate(modelKNN, X_train, X_test, y_train, y_test)
code
88098284/cell_18
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/tour-travels-customer-churn-prediction/Customertravel.csv') df.rename(columns={'Target': 'Churn'}, inplace=True) df.groupby('Churn').describe() ax = sns.countplot(data=df, x='Churn') percentage = df['Churn'].value_counts(normalize=True).values * 100 lbls = [f'{p:.1f}%' for p in percentage] ax.bar_label(container=ax.containers[0], labels=lbls) plt.ylim(top=800) plt.title('Churned (0=no, 1=yes)'); sns.countplot(data=df, x='AnnualIncomeClass', order=['Low Income', 'Middle Income', 'High Income'], hue='Churn').set_title('Churn by Annual Income Class')
code
88098284/cell_32
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/tour-travels-customer-churn-prediction/Customertravel.csv') df.rename(columns={'Target': 'Churn'}, inplace=True) df.groupby('Churn').describe() ax = sns.countplot(data=df, x='Churn') percentage = df['Churn'].value_counts(normalize=True).values * 100 lbls = [f'{p:.1f}%' for p in percentage] ax.bar_label(container=ax.containers[0], labels=lbls) plt.ylim(top=800) plt.title('Churned (0=no, 1=yes)'); df.isnull().sum() df_coded = df.copy() df_coded = df_coded.replace({'AnnualIncomeClass': {'Low Income': 0, 'Middle Income': 1, 'High Income': 2}}) dummies = ['BookedHotelOrNot', 'AccountSyncedToSocialMedia', 'FrequentFlyer'] df_coded = pd.get_dummies(df_coded, columns=dummies, drop_first=True) df_coded.rename(columns={'BookedHotelOrNot_Yes': 'BookedHotel', 'AccountSyncedToSocialMedia_Yes': 'AccountSyncedToSocialMedia'}, inplace=True) sns.heatmap(np.round(df_coded.corr(method='spearman'), 2), annot=True, cmap='Blues')
code
88098284/cell_51
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/tour-travels-customer-churn-prediction/Customertravel.csv') df.rename(columns={'Target': 'Churn'}, inplace=True) df.groupby('Churn').describe() ax = sns.countplot(data=df, x='Churn') percentage = df['Churn'].value_counts(normalize=True).values * 100 lbls = [f'{p:.1f}%' for p in percentage] ax.bar_label(container=ax.containers[0], labels=lbls) plt.ylim(top=800) plt.title('Churned (0=no, 1=yes)'); df.isnull().sum() df_coded = df.copy() df_coded = df_coded.replace({'AnnualIncomeClass': {'Low Income': 0, 'Middle Income': 1, 'High Income': 2}}) dummies = ['BookedHotelOrNot', 'AccountSyncedToSocialMedia', 'FrequentFlyer'] df_coded = pd.get_dummies(df_coded, columns=dummies, drop_first=True) df_coded.rename(columns={'BookedHotelOrNot_Yes': 'BookedHotel', 'AccountSyncedToSocialMedia_Yes': 'AccountSyncedToSocialMedia'}, inplace=True) error_rate = [] for i in range(1, 25): knn = KNeighborsClassifier(n_neighbors=i) knn.fit(X_train, y_train) pred_i = knn.predict(X_test) error_rate.append(np.mean(pred_i != y_test)) plt.plot(range(1, 25), error_rate, color='b', linestyle='--', marker='o', markerfacecolor='r', markeredgecolor='r', markersize=8) plt.xlabel('K') plt.ylabel('Error Rate') plt.title('Error Rate vs. K Value') print('Minimum error:', np.round(min(error_rate), 3), 'at K =', error_rate.index(min(error_rate)) + 1, '\n')
code
88098284/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/tour-travels-customer-churn-prediction/Customertravel.csv') df.rename(columns={'Target': 'Churn'}, inplace=True) df.info()
code
88098284/cell_15
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/tour-travels-customer-churn-prediction/Customertravel.csv') df.rename(columns={'Target': 'Churn'}, inplace=True) df.groupby('Churn').describe() ax = sns.countplot(data=df, x='Churn') percentage = df['Churn'].value_counts(normalize=True).values * 100 lbls = [f'{p:.1f}%' for p in percentage] ax.bar_label(container=ax.containers[0], labels=lbls) plt.ylim(top=800) plt.title('Churned (0=no, 1=yes)'); sns.countplot(data=df, x='ServicesOpted', hue='Churn').set_title('Churn by Services Opted')
code
88098284/cell_16
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/tour-travels-customer-churn-prediction/Customertravel.csv') df.rename(columns={'Target': 'Churn'}, inplace=True) df.groupby('Churn').describe() ax = sns.countplot(data=df, x='Churn') percentage = df['Churn'].value_counts(normalize=True).values * 100 lbls = [f'{p:.1f}%' for p in percentage] ax.bar_label(container=ax.containers[0], labels=lbls) plt.ylim(top=800) plt.title('Churned (0=no, 1=yes)'); sns.countplot(data=df, x='FrequentFlyer', hue='Churn').set_title('Churn by Frequent Flyer Status')
code
88098284/cell_46
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.metrics import confusion_matrix, classification_report import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/tour-travels-customer-churn-prediction/Customertravel.csv') df.rename(columns={'Target': 'Churn'}, inplace=True) df.groupby('Churn').describe() ax = sns.countplot(data=df, x='Churn') percentage = df['Churn'].value_counts(normalize=True).values * 100 lbls = [f'{p:.1f}%' for p in percentage] ax.bar_label(container=ax.containers[0], labels=lbls) plt.ylim(top=800) plt.title('Churned (0=no, 1=yes)'); df.isnull().sum() df_coded = df.copy() df_coded = df_coded.replace({'AnnualIncomeClass': {'Low Income': 0, 'Middle Income': 1, 'High Income': 2}}) dummies = ['BookedHotelOrNot', 'AccountSyncedToSocialMedia', 'FrequentFlyer'] df_coded = pd.get_dummies(df_coded, columns=dummies, drop_first=True) df_coded.rename(columns={'BookedHotelOrNot_Yes': 'BookedHotel', 'AccountSyncedToSocialMedia_Yes': 'AccountSyncedToSocialMedia'}, inplace=True) # Generic function to fit data and display results/predictions def fit_evaluate(clf, X_train, X_test, y_train, y_test): # fit model to training data clf.fit(X_train, y_train) # make predictions for test data y_pred = clf.predict(X_test) # print evaluation print(classification_report(y_test, y_pred)) print('\nConfusion Matrix: \n') s = sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='g', cmap='YlGnBu'); s.set(xlabel='Predicted class', ylabel='True class') modelGB = GradientBoostingClassifier() print('* Gradient Boosting Classifier * \n') fit_evaluate(modelGB, X_train, X_test, y_train, y_test)
code
88098284/cell_10
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/tour-travels-customer-churn-prediction/Customertravel.csv') df.rename(columns={'Target': 'Churn'}, inplace=True) df.groupby('Churn').describe()
code
33101127/cell_21
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns playstore = pd.read_csv('/kaggle/input/google-play-store-apps/googleplaystore.csv') playstore.isnull().sum() playstore.loc[playstore['Reviews'] == '3.0M', 'Reviews'] = 3000000 playstore.loc[playstore['Size'] == 'Varies with device', 'Size'] = '-1M' playstore.loc[playstore['Size'] == '1,000+', 'Size'] = '-1M' playstore.loc[:, 'Size'] = playstore.loc[:, 'Size'].apply(lambda x: float(x[:-1]) * 1000 if x[-1] == 'M' else float(x[:-1])) def drawBarChart(df, col): tmp = df.reset_index() tmp = tmp.groupby(col).index.count() playstore.groupby('Category')['App'].count().plot(kind = 'bar', figsize = (15, 7)) _ = plt.title('Number of app with different category') sns.kdeplot(playstore.groupby('App').agg({'Rating':'mean'})['Rating'], shade = True) _ = plt.xlim(0,5) _ = plt.title('rating distribution for all available app') playstore.loc[playstore['Reviews'] == '3.0M', 'Reviews'] = 3000000 playstore['Reviews'] = playstore['Reviews'].astype('int64') tmp = playstore.groupby('Category').agg({'Reviews' : 'sum'}) tmp.plot(kind = 'bar', figsize = (15,7)) _ = plt.title('number of user reviws for cagetory') playstore.groupby('Content Rating')['App'].count().plot(figsize=(15, 7), kind='bar') _ = plt.title('Number of app with different Content ratings')
code
33101127/cell_23
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns playstore = pd.read_csv('/kaggle/input/google-play-store-apps/googleplaystore.csv') playstore.isnull().sum() playstore.loc[playstore['Reviews'] == '3.0M', 'Reviews'] = 3000000 playstore.loc[playstore['Size'] == 'Varies with device', 'Size'] = '-1M' playstore.loc[playstore['Size'] == '1,000+', 'Size'] = '-1M' playstore.loc[:, 'Size'] = playstore.loc[:, 'Size'].apply(lambda x: float(x[:-1]) * 1000 if x[-1] == 'M' else float(x[:-1])) def drawBarChart(df, col): tmp = df.reset_index() tmp = tmp.groupby(col).index.count() playstore.groupby('Category')['App'].count().plot(kind = 'bar', figsize = (15, 7)) _ = plt.title('Number of app with different category') sns.kdeplot(playstore.groupby('App').agg({'Rating':'mean'})['Rating'], shade = True) _ = plt.xlim(0,5) _ = plt.title('rating distribution for all available app') playstore.loc[playstore['Reviews'] == '3.0M', 'Reviews'] = 3000000 playstore['Reviews'] = playstore['Reviews'].astype('int64') tmp = playstore.groupby('Category').agg({'Reviews' : 'sum'}) tmp.plot(kind = 'bar', figsize = (15,7)) _ = plt.title('number of user reviws for cagetory') playstore.groupby('Content Rating')['App'].count().plot(figsize = (15, 7), kind = 'bar') _ = plt.title('Number of app with different Content ratings') playstore.groupby(['Installs'])['App'].count().plot(kind='bar', figsize=(15, 7)) _ = plt.title('Total Number of downloads')
code
33101127/cell_6
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) playstore = pd.read_csv('/kaggle/input/google-play-store-apps/googleplaystore.csv') playstore.info()
code
33101127/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns playstore = pd.read_csv('/kaggle/input/google-play-store-apps/googleplaystore.csv') playstore.isnull().sum() playstore.loc[playstore['Reviews'] == '3.0M', 'Reviews'] = 3000000 playstore.loc[playstore['Size'] == 'Varies with device', 'Size'] = '-1M' playstore.loc[playstore['Size'] == '1,000+', 'Size'] = '-1M' playstore.loc[:, 'Size'] = playstore.loc[:, 'Size'].apply(lambda x: float(x[:-1]) * 1000 if x[-1] == 'M' else float(x[:-1])) def drawBarChart(df, col): tmp = df.reset_index() tmp = tmp.groupby(col).index.count() playstore.groupby('Category')['App'].count().plot(kind = 'bar', figsize = (15, 7)) _ = plt.title('Number of app with different category') sns.kdeplot(playstore.groupby('App').agg({'Rating':'mean'})['Rating'], shade = True) _ = plt.xlim(0,5) _ = plt.title('rating distribution for all available app') playstore.loc[playstore['Reviews'] == '3.0M', 'Reviews'] = 3000000 playstore['Reviews'] = playstore['Reviews'].astype('int64') tmp = playstore.groupby('Category').agg({'Reviews': 'sum'}) tmp.plot(kind='bar', figsize=(15, 7)) _ = plt.title('number of user reviws for cagetory')
code
33101127/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
33101127/cell_8
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) playstore = pd.read_csv('/kaggle/input/google-play-store-apps/googleplaystore.csv') for col in playstore.columns: print('{} has {} unique values'.format(col, len(playstore[col].unique())))
code
33101127/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns playstore = pd.read_csv('/kaggle/input/google-play-store-apps/googleplaystore.csv') playstore.isnull().sum() playstore.loc[playstore['Reviews'] == '3.0M', 'Reviews'] = 3000000 playstore.loc[playstore['Size'] == 'Varies with device', 'Size'] = '-1M' playstore.loc[playstore['Size'] == '1,000+', 'Size'] = '-1M' playstore.loc[:, 'Size'] = playstore.loc[:, 'Size'].apply(lambda x: float(x[:-1]) * 1000 if x[-1] == 'M' else float(x[:-1])) def drawBarChart(df, col): tmp = df.reset_index() tmp = tmp.groupby(col).index.count() playstore.groupby('Category')['App'].count().plot(kind = 'bar', figsize = (15, 7)) _ = plt.title('Number of app with different category') sns.kdeplot(playstore.groupby('App').agg({'Rating': 'mean'})['Rating'], shade=True) _ = plt.xlim(0, 5) _ = plt.title('rating distribution for all available app')
code
33101127/cell_24
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns playstore = pd.read_csv('/kaggle/input/google-play-store-apps/googleplaystore.csv') playstore.isnull().sum() playstore.loc[playstore['Reviews'] == '3.0M', 'Reviews'] = 3000000 playstore.loc[playstore['Size'] == 'Varies with device', 'Size'] = '-1M' playstore.loc[playstore['Size'] == '1,000+', 'Size'] = '-1M' playstore.loc[:, 'Size'] = playstore.loc[:, 'Size'].apply(lambda x: float(x[:-1]) * 1000 if x[-1] == 'M' else float(x[:-1])) def drawBarChart(df, col): tmp = df.reset_index() tmp = tmp.groupby(col).index.count() playstore.groupby('Category')['App'].count().plot(kind = 'bar', figsize = (15, 7)) _ = plt.title('Number of app with different category') sns.kdeplot(playstore.groupby('App').agg({'Rating':'mean'})['Rating'], shade = True) _ = plt.xlim(0,5) _ = plt.title('rating distribution for all available app') playstore.loc[playstore['Reviews'] == '3.0M', 'Reviews'] = 3000000 playstore['Reviews'] = playstore['Reviews'].astype('int64') tmp = playstore.groupby('Category').agg({'Reviews' : 'sum'}) tmp.plot(kind = 'bar', figsize = (15,7)) _ = plt.title('number of user reviws for cagetory') playstore.groupby('Content Rating')['App'].count().plot(figsize = (15, 7), kind = 'bar') _ = plt.title('Number of app with different Content ratings') playstore.groupby(['Installs'])['App'].count().plot(kind = 'bar', figsize = (15,7)) _ = plt.title('Total Number of downloads') playstore.loc[playstore.Type == 'Free', :].groupby(['Installs'])['App'].count().plot(kind='bar', figsize=(15, 7)) _ = plt.title('Free Apps downloads')
code
33101127/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) playstore = pd.read_csv('/kaggle/input/google-play-store-apps/googleplaystore.csv') playstore.isnull().sum() playstore.loc[playstore['Reviews'] == '3.0M', 'Reviews'] = 3000000 playstore.loc[playstore['Size'] == 'Varies with device', 'Size'] = '-1M' playstore.loc[playstore['Size'] == '1,000+', 'Size'] = '-1M' playstore.loc[:, 'Size'] = playstore.loc[:, 'Size'].apply(lambda x: float(x[:-1]) * 1000 if x[-1] == 'M' else float(x[:-1])) def drawBarChart(df, col): tmp = df.reset_index() tmp = tmp.groupby(col).index.count() playstore.groupby('Category')['App'].count().plot(kind='bar', figsize=(15, 7)) _ = plt.title('Number of app with different category')
code
33101127/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) playstore = pd.read_csv('/kaggle/input/google-play-store-apps/googleplaystore.csv') playstore.isnull().sum()
code
33101127/cell_5
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) playstore = pd.read_csv('/kaggle/input/google-play-store-apps/googleplaystore.csv') playstore.head()
code
34139893/cell_13
[ "text_plain_output_1.png" ]
from sklearn import model_selection from sklearn.compose import ColumnTransformer from sklearn.metrics import confusion_matrix, classification_report, roc_curve from sklearn.pipeline import Pipeline import pandas as pd df = pd.read_csv('/kaggle/input/titanic/train.csv') submission_df = pd.read_csv('/kaggle/input/titanic/test.csv') ids = pd.read_csv('/kaggle/input/titanic/test.csv') df.drop('PassengerId', axis=1, inplace=True) df['FamilySize'] = df['SibSp'] + df['Parch'] + 1 df = df.drop(columns=['Ticket', 'Cabin']) df['Title'] = df.Name.str.extract(' ([A-Za-z]+)\\.', expand=False) df = df.drop(columns='Name') submission_df.drop('PassengerId', axis=1, inplace=True) submission_df['FamilySize'] = submission_df['SibSp'] + submission_df['Parch'] + 1 submission_df = submission_df.drop(columns=['Ticket', 'Cabin']) submission_df['Title'] = submission_df.Name.str.extract(' ([A-Za-z]+)\\.', expand=False) submission_df = submission_df.drop(columns='Name') num_features = list(X_test.select_dtypes(include=['int64', 'float64']).columns) numeric_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('center', StandardScaler()), ('scale', MinMaxScaler())]) cat_features = list(X_test.select_dtypes(include=['object']).columns) categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='constant', fill_value='missing')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]) features_preprocessor = ColumnTransformer(transformers=[('num', numeric_transformer, num_features), ('cat', categorical_transformer, cat_features)]) logreg_model = Pipeline(steps=[('features_preprocessor', features_preprocessor), ('logreg', LogisticRegression())]) xgb_model = Pipeline(steps=[('features_preprocessor', features_preprocessor), ('xgb', XGBClassifier())]) def run_exps(X_train: pd.DataFrame, y_train: pd.DataFrame, X_test: pd.DataFrame, y_test: pd.DataFrame) -> pd.DataFrame: """ Lightweight script to test many models and find winners :param X_train: training split :param y_train: training target vector :param X_test: test split :param y_test: test target vector :return: DataFrame of predictions """ dfs = [] models = [('Logistic Regression', logreg_model), ('XGBoost', xgb_model)] results = [] names = [] scoring = ['accuracy', 'precision_weighted', 'recall_weighted', 'f1_weighted', 'roc_auc'] target_names = list(map(str, y_train.unique())) for name, model in models: kfold = model_selection.KFold(n_splits=5, shuffle=True, random_state=21) cv_results = model_selection.cross_validate(model, X_train, y_train, cv=kfold, scoring=scoring) clf = model.fit(X_train, y_train) y_pred = clf.predict(X_test) results.append(cv_results) names.append(name) this_df = pd.DataFrame(cv_results) this_df['model'] = name dfs.append(this_df) final = pd.concat(dfs, ignore_index=True) return final def best_model_submission(X_train: pd.DataFrame, y_train: pd.DataFrame, X_submission: pd.DataFrame, best_model: list): """ Run fit function to the best model :param X_train: training split :param y_train: training target vector :param X_submission: test split :param best_model: list with name and classifier :return: submission predictions """ for name, model in best_model: clf = model.fit(X_train, y_train) y_pred = clf.predict(X_submission) return y_pred model = [('Logistic Regression', logreg_model)] y_pred = best_model_submission(pd.concat([X_train, X_test], ignore_index=True), pd.concat([y_train, y_test], ignore_index=True), submission_df, model) results = pd.DataFrame() results['PassengerId'] = ids.PassengerId results['Survived'] = y_pred results
code
34139893/cell_9
[ "text_html_output_1.png" ]
from sklearn import model_selection from sklearn.compose import ColumnTransformer from sklearn.metrics import confusion_matrix, classification_report, roc_curve from sklearn.pipeline import Pipeline import pandas as pd df = pd.read_csv('/kaggle/input/titanic/train.csv') submission_df = pd.read_csv('/kaggle/input/titanic/test.csv') ids = pd.read_csv('/kaggle/input/titanic/test.csv') num_features = list(X_test.select_dtypes(include=['int64', 'float64']).columns) numeric_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('center', StandardScaler()), ('scale', MinMaxScaler())]) cat_features = list(X_test.select_dtypes(include=['object']).columns) categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='constant', fill_value='missing')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]) features_preprocessor = ColumnTransformer(transformers=[('num', numeric_transformer, num_features), ('cat', categorical_transformer, cat_features)]) logreg_model = Pipeline(steps=[('features_preprocessor', features_preprocessor), ('logreg', LogisticRegression())]) xgb_model = Pipeline(steps=[('features_preprocessor', features_preprocessor), ('xgb', XGBClassifier())]) def run_exps(X_train: pd.DataFrame, y_train: pd.DataFrame, X_test: pd.DataFrame, y_test: pd.DataFrame) -> pd.DataFrame: """ Lightweight script to test many models and find winners :param X_train: training split :param y_train: training target vector :param X_test: test split :param y_test: test target vector :return: DataFrame of predictions """ dfs = [] models = [('Logistic Regression', logreg_model), ('XGBoost', xgb_model)] results = [] names = [] scoring = ['accuracy', 'precision_weighted', 'recall_weighted', 'f1_weighted', 'roc_auc'] target_names = list(map(str, y_train.unique())) for name, model in models: kfold = model_selection.KFold(n_splits=5, shuffle=True, random_state=21) cv_results = model_selection.cross_validate(model, X_train, y_train, cv=kfold, scoring=scoring) clf = model.fit(X_train, y_train) y_pred = clf.predict(X_test) results.append(cv_results) names.append(name) this_df = pd.DataFrame(cv_results) this_df['model'] = name dfs.append(this_df) final = pd.concat(dfs, ignore_index=True) return final models_results = run_exps(X_train, y_train, X_test, y_test)
code
34139893/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/titanic/train.csv') submission_df = pd.read_csv('/kaggle/input/titanic/test.csv') ids = pd.read_csv('/kaggle/input/titanic/test.csv') df.head()
code
34139893/cell_2
[ "text_html_output_1.png" ]
import os import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
129018802/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd dados = pd.read_csv('/kaggle/input/student-performance-in-mathematics/exams.csv') dados.drop('Student ID', axis=1, inplace=True)
code
129018802/cell_3
[ "text_html_output_1.png" ]
import pandas as pd dados = pd.read_csv('/kaggle/input/student-performance-in-mathematics/exams.csv') dados.head()
code
106192280/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd df_cust = pd.read_csv('../input/customer-segmentation-dataset/Mall_Customers.csv') df_cust.columns df_cust.isna().sum()
code
106192280/cell_25
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_cust = pd.read_csv('../input/customer-segmentation-dataset/Mall_Customers.csv') df_cust.columns df_cust.isna().sum() df_cust.isnull().sum() df_cust_male = df_cust[df_cust['Genre'] == 'Male'] df_cust_female = df_cust[df_cust['Genre'] == 'Female'] def boxplot(frame,x,y,*args): '''This function helps to plot the boxplot frame : dataframe to be used x : dataframe column for x axis y : dataframe column for y axis *args : to include more features like Title, palette, notch''' plt.figure(figsize=(8,8)) bp=sns.boxplot(data=frame,x=x,y=y,palette=args[0],notch=args[1]) medians = frame.groupby([x])[y].median().sort_values(ascending=False) vertical_offset = frame[y].median() * 0.01 # offset from median for display for xtick in bp.get_xticks(): bp.text(xtick,medians[xtick] + vertical_offset,medians[xtick], horizontalalignment='center',size='medium',color='blue',weight='semibold') plt.title(args[2]) plt.grid() plt.show() boxplot(df_cust, 'Genre', 'Spending Score (1-100)', 'husl', False, 'Spending Score distribution of Male and Female')
code
106192280/cell_34
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_cust = pd.read_csv('../input/customer-segmentation-dataset/Mall_Customers.csv') df_cust.columns df_cust.isna().sum() df_cust.isnull().sum() df_cust_male = df_cust[df_cust['Genre'] == 'Male'] df_cust_female = df_cust[df_cust['Genre'] == 'Female'] def boxplot(frame,x,y,*args): '''This function helps to plot the boxplot frame : dataframe to be used x : dataframe column for x axis y : dataframe column for y axis *args : to include more features like Title, palette, notch''' plt.figure(figsize=(8,8)) bp=sns.boxplot(data=frame,x=x,y=y,palette=args[0],notch=args[1]) medians = frame.groupby([x])[y].median().sort_values(ascending=False) vertical_offset = frame[y].median() * 0.01 # offset from median for display for xtick in bp.get_xticks(): bp.text(xtick,medians[xtick] + vertical_offset,medians[xtick], horizontalalignment='center',size='medium',color='blue',weight='semibold') plt.title(args[2]) plt.grid() plt.show() df_genre = pd.DataFrame({'Genre': ['Female', 'Male'], 'Genre_code': [0, 1]}) df_cust = df_cust.merge(df_genre, on='Genre') df_cust.drop('Genre', axis=1, inplace=True) df_cust.columns
code
106192280/cell_23
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_cust = pd.read_csv('../input/customer-segmentation-dataset/Mall_Customers.csv') df_cust.columns df_cust.isna().sum() df_cust.isnull().sum() df_cust_male = df_cust[df_cust['Genre'] == 'Male'] df_cust_female = df_cust[df_cust['Genre'] == 'Female'] def boxplot(frame,x,y,*args): '''This function helps to plot the boxplot frame : dataframe to be used x : dataframe column for x axis y : dataframe column for y axis *args : to include more features like Title, palette, notch''' plt.figure(figsize=(8,8)) bp=sns.boxplot(data=frame,x=x,y=y,palette=args[0],notch=args[1]) medians = frame.groupby([x])[y].median().sort_values(ascending=False) vertical_offset = frame[y].median() * 0.01 # offset from median for display for xtick in bp.get_xticks(): bp.text(xtick,medians[xtick] + vertical_offset,medians[xtick], horizontalalignment='center',size='medium',color='blue',weight='semibold') plt.title(args[2]) plt.grid() plt.show() boxplot(df_cust, 'Genre', 'Age', 'rainbow', True, 'Age distribution of Male and Female')
code
106192280/cell_30
[ "image_output_1.png" ]
import pandas as pd df_cust = pd.read_csv('../input/customer-segmentation-dataset/Mall_Customers.csv') df_genre = pd.DataFrame({'Genre': ['Female', 'Male'], 'Genre_code': [0, 1]}) df_genre.head()
code
106192280/cell_20
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df_cust = pd.read_csv('../input/customer-segmentation-dataset/Mall_Customers.csv') df_cust.columns df_cust.isna().sum() df_cust.isnull().sum() df_cust_male = df_cust[df_cust['Genre'] == 'Male'] df_cust_female = df_cust[df_cust['Genre'] == 'Female'] plt.figure(figsize=(8, 8)) plt.scatter(df_cust_female['Age'], df_cust_female['Spending Score (1-100)'], c='blue', label='Female') plt.scatter(df_cust_male['Age'], df_cust_male['Spending Score (1-100)'], c='orange', label='Male') plt.legend(title='Gender') plt.xlabel('Age') plt.ylabel('Spending Score') plt.title('Relationship of Age with Spending score') plt.show()
code
106192280/cell_6
[ "text_html_output_1.png" ]
import pandas as pd df_cust = pd.read_csv('../input/customer-segmentation-dataset/Mall_Customers.csv') df_cust.describe()
code