|
--- |
|
license: cc-by-3.0 |
|
language: |
|
- en |
|
size_categories: |
|
- 1M<n<10M |
|
pretty_name: BIOSCAN-5M |
|
tags: |
|
- Multimodal_dataset |
|
- Large_dcale_dataset |
|
- Image |
|
- DNA_barcode |
|
- Taxonomy |
|
- Biodiversity |
|
- LLMs |
|
- BERT |
|
- Clustering |
|
- Multimodal_retrieval_learning |
|
- Zero_shot_transfer_learning |
|
- Geo_location |
|
- Specimen_size |
|
- Insect |
|
- Species |
|
maintainers: |
|
- https://huggingface.co/Gharaee |
|
author: |
|
name: Zahra Gharaee |
|
github: https://github.com/zahrag |
|
hf: https://huggingface.co/Gharaee |
|
dataset_loader_script: dataset.py |
|
dataset_split_names: |
|
- pretarin |
|
- train |
|
- validation |
|
- test |
|
- val_unseen |
|
- test_unseen |
|
- key_unseen |
|
- other_heldout |
|
--- |
|
[](https://huggingface.co/Gharaee) |
|
|
|
# BIOSCAN-5M |
|
|
|
 |
|
|
|
## Overview |
|
As part of an ongoing worldwide effort to comprehend and monitor insect biodiversity, we present the BIOSCAN-5M Insect dataset to the machine learning community. BIOSCAN-5M is a comprehensive dataset containing multi-modal information for over 5 million insect specimens, |
|
and it significantly expands existing image-based biological datasets by including taxonomic labels, raw nucleotide barcode sequences, assigned barcode index numbers, geographical information, and specimen size. |
|
|
|
### Citation |
|
|
|
If you make use of the BIOSCAN-5M dataset and/or its code repository, please cite the following paper: |
|
|
|
``` |
|
cite as: |
|
|
|
@inproceedings{gharaee2024bioscan5m, |
|
title={{BIOSCAN-5M}: A Multimodal Dataset for Insect Biodiversity}, |
|
booktitle={Advances in Neural Information Processing Systems}, |
|
author={Zahra Gharaee and Scott C. Lowe and ZeMing Gong and Pablo Millan Arias |
|
and Nicholas Pellegrino and Austin T. Wang and Joakim Bruslund Haurum |
|
and Iuliia Zarubiieva and Lila Kari and Dirk Steinke and Graham W. Taylor |
|
and Paul Fieguth and Angel X. Chang |
|
}, |
|
editor={A. Globerson and L. Mackey and D. Belgrave and A. Fan and U. Paquet and J. Tomczak and C. Zhang}, |
|
pages={36285--36313}, |
|
publisher={Curran Associates, Inc.}, |
|
year={2024}, |
|
volume={37}, |
|
url={https://proceedings.neurips.cc/paper_files/paper/2024/file/3fdbb472813041c9ecef04c20c2b1e5a-Paper-Datasets_and_Benchmarks_Track.pdf}, |
|
} |
|
``` |
|
|
|
## Large-Scale Foundation Model Training for Biodiversity Research |
|
|
|
### Dataset partitions |
|
|
|
| Partition | Example Splits | Description | |
|
|---------------------|---------------------------------------|---------------------------------------------------------------------------| |
|
| **Closed-world** | train, val, test | Samples with known species names for supervised classification. | |
|
| **Open-world** | key_unseen, val_unseen, test_unseen | Placeholder species names but known genera, enabling generalization to unseen species. | |
|
| **Novelty Detection**| other_heldout | Unknown species and genus, suitable for open-set detection. | |
|
| **Pretraining** | pretrain | Unlabeled data for self-/semi-supervised learning at scale. | |
|
|
|
|
|
### Supported tasks |
|
|
|
| Task | Description | |
|
|----------------------------------------|-----------------------------------------------------------------------------| |
|
| DNA-based Taxonomic Classification | Predict taxonomic labels from raw DNA barcode sequences. | |
|
| Zero-Shot Transfer Learning | Evaluate whether unlabeled models can semantically cluster data—across modalities like image and DNA—using learned representations. | |
|
| Multimodal Retrieval Learning | Retrieve matching specimens across modalities (e.g., image ↔ DNA ↔ text) via shared embeddings. | |
|
|
|
|
|
### Dataset features via metadata fields |
|
|
|
| **Field Group** | **Field(s)** | **Description** | |
|
|---------------------|------------------------------------------------------------------------------|---------------------------------------------------------------| |
|
| **Image** | `image` | RGB JPEG image of an individual insect specimen. | |
|
| **Indexing** | `processid`, `sampleid` | Unique identifiers from BOLD and the collector. | |
|
| **Taxonomy** | `phylum`, `class`, `order`, `family`, `subfamily`, `genus`, `species` | Hierarchical taxonomic classification. | |
|
| **Genetics** | `dna_bin`, `dna_barcode` | Barcode Index Number and DNA sequence. | |
|
| **Geography** | `country`, `province_state`, `coord-lat`, `coord-lon` | Collection location and geographic coordinates. | |
|
| **Specimen Size** | `image_measurement_value`, `area_fraction`, `scale_factor` | Image-based size measures and normalization factors. | |
|
| **Splits & Storage**| `split`, `chunk` | Data partition (e.g., train/test) and storage subdirectory. | |
|
|
|
|
|
|
|
## Usage |
|
|
|
First, download the `dataset.py` script to your project directory by running the following command: |
|
|
|
```python |
|
wget -P /path/to/your/project_directory https://huggingface.co/datasets/bioscan-ml/BIOSCAN-5M/resolve/main/dataset.py |
|
``` |
|
|
|
Once you've downloaded the script, you can use the `datasets` library to load the dataset. For example: |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
ds = load_dataset("dataset.py", name="cropped_256_eval", split="validation", trust_remote_code=True) |
|
``` |
|
|
|
> **ℹ️ Note:** The CSV metadata and image package associated with the selected configuration will be automatically downloaded and extracted to `~/.cache/huggingface/datasets/downloads/extracted/` . |
|
|
|
|
|
### 📑 Configurations |
|
|
|
Each configuration loads specimen images along with associated metadata fields: |
|
|
|
|
|
| **`name`** | **Available `split` values** | |
|
|--------------------------------------------- |------------------------------------------------------------------- | |
|
| `cropped_256`, `original_256` | `pretrain`, `train`, `validation`, `test`, `val_unseen`, `test_unseen`, `key_unseen`, `other_heldout` | |
|
| `cropped_256_pretrain`, `original_256_pretrain` | `pretrain` | |
|
| `cropped_256_train`, `original_256_train` | `train` | |
|
| `cropped_256_eval`, `original_256_eval` | `validation`, `test`, `val_unseen`, `test_unseen`, `key_unseen`, `other_heldout` | |
|
|
|
> **ℹ️ Note:** If you do not specify the `split` when loading the dataset, all available splits will be loaded as a dictionary. |
|
|
|
|
|
## Sample Usage |
|
|
|
First, download the `usage_demo_bioscan5m.py` script to your project directory by running the following command: |
|
|
|
```python |
|
wget -P /path/to/your/project_directory https://huggingface.co/datasets/bioscan-ml/BIOSCAN-5M/resolve/main/usage_demo_bioscan5m.py |
|
``` |
|
|
|
This script demonstrates how to load and visualize samples from the BIOSCAN-5M dataset. |
|
|
|
To run the script, execute: |
|
|
|
|
|
```bash |
|
python usage_demo_bioscan5m.py |
|
``` |
|
|
|
This will display 10 dataset samples, each showing the organism image on the right, and the corresponding metadata fields on the left, including taxonomic, geographic, genetic, and size-related information. |
|
|
|
|
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/64cac7e17221ef3c7e2eed1f/qlC1wtjfa_CqOzD2r07Kr.png" alt="image" width="1000"/> |
|
|
|
|
|
## Dataset Access |
|
To clone this dataset repository, use the following command: |
|
|
|
```bash |
|
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/datasets/bioscan-ml/BIOSCAN-5M |
|
``` |
|
|
|
### 📦 Resources and Access |
|
|
|
- **📄 Paper**: [arXiv](https://arxiv.org/abs/2406.12723) |
|
- **🌐 Website**: [BIOSCAN-5M Project Page](https://biodiversitygenomics.net/5M-insects/) |
|
- **💻 GitHub**: [bioscan-ml/BIOSCAN-5M](https://github.com/bioscan-ml/BIOSCAN-5M) |
|
- **📁 Downloads**: |
|
- [Google Drive](https://drive.google.com/drive/u/1/folders/1Jc57eKkeiYrnUBc9WlIp-ZS_L1bVlT-0) |
|
- [Zenodo](https://zenodo.org/records/11973457) |
|
- [Kaggle](https://www.kaggle.com/datasets/zahragharaee/bioscan-5m/data) |
|
|
|
|
|
|
|
 |
|
|