Dataset Viewer
Auto-converted to Parquet Duplicate
hs_number
stringclasses
59 values
variation
int32
1
8
tablet_url
stringclasses
59 values
cdli_archive
stringclasses
33 values
photo
imagewidth (px)
906
11.1k
msii
imagewidth (px)
906
11.1k
HS_0044
1
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29922
HS_0044
2
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29922
HS_0044
3
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29922
HS_0044
4
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29922
HS_0044
5
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29922
HS_0044
6
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29922
HS_0044
7
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29922
HS_0044
8
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29922
HS_0089
1
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29923
HS_0089
2
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29923
HS_0089
3
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29923
HS_0089
4
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29923
HS_0089
5
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29923
HS_0089
6
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29923
HS_0089
7
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29923
HS_0089
8
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29923
HS_0090
1
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29924
HS_0090
2
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29924
HS_0090
3
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29924
HS_0090
4
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29924
HS_0090
5
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29924
HS_0090
6
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29924
HS_0090
7
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29924
HS_0090
8
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29924
HS_0091
1
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29925
HS_0091
2
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29925
HS_0091
3
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29925
HS_0091
4
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29925
HS_0091
5
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29925
HS_0091
6
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29925
HS_0091
7
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29925
HS_0091
8
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29925
HS_0092
1
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29926
HS_0092
2
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29926
HS_0092
3
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29926
HS_0092
4
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29926
HS_0092
5
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29926
HS_0092
6
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29926
HS_0092
7
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29926
HS_0092
8
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29926
HS_0093
1
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29927
HS_0093
2
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29927
HS_0093
3
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29927
HS_0093
4
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29927
HS_0093
5
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29927
HS_0093
6
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29927
HS_0093
7
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29927
HS_0093
8
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29927
HS_0094
1
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29928
HS_0094
2
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29928
HS_0094
3
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29928
HS_0094
4
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29928
HS_0094
5
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29928
HS_0094
6
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29928
HS_0094
7
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29928
HS_0094
8
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29928
HS_0095
1
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29929
HS_0095
2
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29929
HS_0095
3
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29929
HS_0095
4
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29929
HS_0095
5
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29929
HS_0095
6
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29929
HS_0095
7
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29929
HS_0095
8
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29929
HS_0097
1
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29931
HS_0097
2
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29931
HS_0097
3
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29931
HS_0097
4
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29931
HS_0097
5
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29931
HS_0097
6
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29931
HS_0097
7
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29931
HS_0097
8
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29931
HS_0098
1
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29932
HS_0098
2
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29932
HS_0098
3
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29932
HS_0098
4
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29932
HS_0098
5
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29932
HS_0098
6
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29932
HS_0098
7
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29932
HS_0098
8
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29932
HS_0099
1
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29933
HS_0099
2
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29933
HS_0099
3
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29933
HS_0099
4
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29933
HS_0099
5
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29933
HS_0099
6
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29933
HS_0099
7
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29933
HS_0099
8
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29933
HS_0100
1
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29934
HS_0100
2
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29934
HS_0100
3
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29934
HS_0100
4
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29934
HS_0100
5
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29934
HS_0100
6
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29934
HS_0100
7
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29934
HS_0100
8
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29934
HS_0101
1
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29935
HS_0101
2
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29935
HS_0101
3
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29935
HS_0101
4
https://hilprecht.mpiwg-berlin.mpg.de/object3d/29935
End of preview. Expand in Data Studio

Cuneiform Photos⇔MSII

This dataset contains paired images of photorealistic cuneiform tablet renders and their corresponding MSII (Multi Scale Integral Invariant) curvature visualizations. Both are rendered in Blender at 4096px max axis.

Background & Motivation

Cuneiform tablets contain impressions made in clay thousands of years ago. These subtle surface variations are often difficult to see in regular photographs, especially under poor lighting conditions. MSII (Multi Scale Integral Invariant) filtering is a curvature visualization technique that highlights these impressions by computing surface curvature at multiple scales, making cuneiform characters clearly visible regardless of lighting.

However, getting the MSII visualization of a tablet requires a 3D scan and lots of computation. To reduce this barrier and increase the availability of easy-to-read images, I'd like to train a diffusion model to predict the MSII visualization directly from photographs.

To do that, I've created this high quality dataset intended for training.

Dataset Format

Column Description Example
hs_number The Heidelberg Sample identifier "HS_0044"
variation The variant index for this tablet 1-8
tablet_url A link to the tablet data "https://hilprecht.mpiwg-berlin.mpg.de/object3d/XXXXX"
cdli_archive A link to the tablet information in the Cuneiform Digital Library, if applicable "https://cdli.ucla.edu/search/archival_view.php?ObjectID=PXXXXXX"
photo A synthetic photograph of the tablet
msii A matching MSII visualization of the tablet

Source Data

This project uses the HeiCuBeDa (Heidelberg Cuneiform Benchmark Dataset), a professional research dataset of 1,747 high-resolution 3D scans.

Image Diversity

To get the most out of the 1.7K tablet scans from HeiCuBeDa, we generate several varied images for each tablet.

Each variant gets an independent random selection of:

What Varies Description Range
Faces Which of the six faces are shown in the image Variant 1 always shows 6 faces. Variants 2+ have a 20% chance of all 6, otherwise uses per-face probs (front 100%, back 75%, top/bottom 45%, left/right 30%)
Rotation Rotation of the tablet ±5° Euler XYZ
Focal length The focal length of the camera 80–150 mm
Lighting The position, color, and intensity of the lights in the photo ±30% Energy. ±2% Warmth. Random offset along the perpendicular plane
Background The image behind the tablet in the photo 70% use no background. 30% select from fabric/grunge/stone (weighted). Rotation/scale/offset are randomized. Perlin noise is used to vary brightness throughout.

Known Limitations

  • Renders may not capture all real-world photo degradation
  • MSII visualization quality depends on PLY mesh resolution and artifacting
  • Generalization to real photos vs. renders needs validation

Citations & Acknowledgments

We thank the digital humanities and archaeology communities for their foundational work in cuneiform digitization and analysis.

Downloads last month
71