body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
def refine_keypoints(regressed_keypoints, keypoint_candidates, keypoint_scores, num_keypoint_candidates, bboxes=None, unmatched_keypoint_score=0.1, box_scale=1.2, candidate_search_scale=0.3, candidate_ranking_mode='min_distance'): 'Refines regressed keypoints by snapping to the nearest candidate keypoints.\n\n The initial regressed keypoints represent a full set of keypoints regressed\n from the centers of the objects. The keypoint candidates are estimated\n independently from heatmaps, and are not associated with any object instances.\n This function refines the regressed keypoints by "snapping" to the\n nearest/highest score/highest score-distance ratio (depending on the\n candidate_ranking_mode) candidate of the same keypoint type (e.g. "nose").\n If no candidates are nearby, the regressed keypoint remains unchanged.\n\n In order to snap a regressed keypoint to a candidate keypoint, the following\n must be satisfied:\n - the candidate keypoint must be of the same type as the regressed keypoint\n - the candidate keypoint must not lie outside the predicted boxes (or the\n boxes which encloses the regressed keypoints for the instance if `bboxes` is\n not provided). Note that the box is scaled by\n `regressed_box_scale` in height and width, to provide some margin around the\n keypoints\n - the distance to the closest candidate keypoint cannot exceed\n candidate_search_scale * max(height, width), where height and width refer to\n the bounding box for the instance.\n\n Note that the same candidate keypoint is allowed to snap to regressed\n keypoints in difference instances.\n\n Args:\n regressed_keypoints: A float tensor of shape\n [batch_size, num_instances, num_keypoints, 2] with the initial regressed\n keypoints.\n keypoint_candidates: A tensor of shape\n [batch_size, max_candidates, num_keypoints, 2] holding the location of\n keypoint candidates in [y, x] format (expressed in absolute coordinates in\n the output coordinate frame).\n keypoint_scores: A float tensor of shape\n [batch_size, max_candidates, num_keypoints] indicating the scores for\n keypoint candidates.\n num_keypoint_candidates: An integer tensor of shape\n [batch_size, num_keypoints] indicating the number of valid candidates for\n each keypoint type, as there may be padding (dim 1) of\n `keypoint_candidates` and `keypoint_scores`.\n bboxes: A tensor of shape [batch_size, num_instances, 4] with predicted\n bounding boxes for each instance, expressed in the output coordinate\n frame. If not provided, boxes will be computed from regressed keypoints.\n unmatched_keypoint_score: float, the default score to use for regressed\n keypoints that are not successfully snapped to a nearby candidate.\n box_scale: float, the multiplier to expand the bounding boxes (either the\n provided boxes or those which tightly cover the regressed keypoints) for\n an instance. This scale is typically larger than 1.0 when not providing\n `bboxes`.\n candidate_search_scale: float, the scale parameter that multiplies the\n largest dimension of a bounding box. The resulting distance becomes a\n search radius for candidates in the vicinity of each regressed keypoint.\n candidate_ranking_mode: A string as one of [\'min_distance\',\n \'score_distance_ratio\'] indicating how to select the candidate. If invalid\n value is provided, an ValueError will be raised.\n\n Returns:\n A tuple with:\n refined_keypoints: A float tensor of shape\n [batch_size, num_instances, num_keypoints, 2] with the final, refined\n keypoints.\n refined_scores: A float tensor of shape\n [batch_size, num_instances, num_keypoints] with scores associated with all\n instances and keypoints in `refined_keypoints`.\n\n Raises:\n ValueError: if provided candidate_ranking_mode is not one of\n [\'min_distance\', \'score_distance_ratio\']\n ' (batch_size, num_instances, num_keypoints, _) = shape_utils.combined_static_and_dynamic_shape(regressed_keypoints) max_candidates = keypoint_candidates.shape[1] range_tiled = tf.tile(tf.reshape(tf.range(max_candidates), [1, max_candidates, 1]), [batch_size, 1, num_keypoints]) num_candidates_tiled = tf.tile(tf.expand_dims(num_keypoint_candidates, 1), [1, max_candidates, 1]) invalid_candidates = (range_tiled >= num_candidates_tiled) nan_mask = tf.where(invalid_candidates, (np.nan * tf.ones_like(invalid_candidates, dtype=tf.float32)), tf.ones_like(invalid_candidates, dtype=tf.float32)) keypoint_candidates_with_nans = tf.math.multiply(keypoint_candidates, tf.expand_dims(nan_mask, (- 1))) regressed_keypoint_expanded = tf.expand_dims(regressed_keypoints, axis=2) keypoint_candidates_expanded = tf.expand_dims(keypoint_candidates_with_nans, axis=1) sqrd_distances = tf.math.reduce_sum(tf.math.squared_difference(regressed_keypoint_expanded, keypoint_candidates_expanded), axis=(- 1)) distances = tf.math.sqrt(sqrd_distances) min_distances = tf.math.reduce_min(distances, axis=2) if (candidate_ranking_mode == 'min_distance'): nearby_candidate_inds = tf.math.argmin(distances, axis=2) elif (candidate_ranking_mode == 'score_distance_ratio'): tiled_keypoint_scores = tf.tile(tf.expand_dims(keypoint_scores, axis=1), multiples=[1, num_instances, 1, 1]) ranking_scores = (tiled_keypoint_scores / (distances + 1e-06)) nearby_candidate_inds = tf.math.argmax(ranking_scores, axis=2) else: raise ValueError(('Not recognized candidate_ranking_mode: %s' % candidate_ranking_mode)) (nearby_candidate_coords, nearby_candidate_scores) = _gather_candidates_at_indices(keypoint_candidates, keypoint_scores, nearby_candidate_inds) if (bboxes is None): regressed_keypoints_flattened = tf.reshape(regressed_keypoints, [(- 1), num_keypoints, 2]) bboxes_flattened = keypoint_ops.keypoints_to_enclosing_bounding_boxes(regressed_keypoints_flattened) else: bboxes_flattened = tf.reshape(bboxes, [(- 1), 4]) boxlist = box_list.BoxList(bboxes_flattened) boxlist_scaled = box_list_ops.scale_height_width(boxlist, box_scale, box_scale) bboxes_scaled = boxlist_scaled.get() bboxes = tf.reshape(bboxes_scaled, [batch_size, num_instances, 4]) bboxes_tiled = tf.tile(tf.expand_dims(bboxes, 2), [1, 1, num_keypoints, 1]) (ymin, xmin, ymax, xmax) = tf.unstack(bboxes_tiled, axis=3) search_radius = (tf.math.maximum((ymax - ymin), (xmax - xmin)) * candidate_search_scale) mask = (((((tf.cast((nearby_candidate_coords[:, :, :, 0] < ymin), tf.int32) + tf.cast((nearby_candidate_coords[:, :, :, 0] > ymax), tf.int32)) + tf.cast((nearby_candidate_coords[:, :, :, 1] < xmin), tf.int32)) + tf.cast((nearby_candidate_coords[:, :, :, 1] > xmax), tf.int32)) + tf.cast((nearby_candidate_scores < unmatched_keypoint_score), tf.int32)) + tf.cast((min_distances > search_radius), tf.int32)) mask = (mask > 0) refined_keypoints = tf.where(tf.tile(tf.expand_dims(mask, (- 1)), [1, 1, 1, 2]), regressed_keypoints, nearby_candidate_coords) refined_scores = tf.where(mask, (unmatched_keypoint_score * tf.ones_like(nearby_candidate_scores)), nearby_candidate_scores) return (refined_keypoints, refined_scores)
100,583,164,911,949,800
Refines regressed keypoints by snapping to the nearest candidate keypoints. The initial regressed keypoints represent a full set of keypoints regressed from the centers of the objects. The keypoint candidates are estimated independently from heatmaps, and are not associated with any object instances. This function refines the regressed keypoints by "snapping" to the nearest/highest score/highest score-distance ratio (depending on the candidate_ranking_mode) candidate of the same keypoint type (e.g. "nose"). If no candidates are nearby, the regressed keypoint remains unchanged. In order to snap a regressed keypoint to a candidate keypoint, the following must be satisfied: - the candidate keypoint must be of the same type as the regressed keypoint - the candidate keypoint must not lie outside the predicted boxes (or the boxes which encloses the regressed keypoints for the instance if `bboxes` is not provided). Note that the box is scaled by `regressed_box_scale` in height and width, to provide some margin around the keypoints - the distance to the closest candidate keypoint cannot exceed candidate_search_scale * max(height, width), where height and width refer to the bounding box for the instance. Note that the same candidate keypoint is allowed to snap to regressed keypoints in difference instances. Args: regressed_keypoints: A float tensor of shape [batch_size, num_instances, num_keypoints, 2] with the initial regressed keypoints. keypoint_candidates: A tensor of shape [batch_size, max_candidates, num_keypoints, 2] holding the location of keypoint candidates in [y, x] format (expressed in absolute coordinates in the output coordinate frame). keypoint_scores: A float tensor of shape [batch_size, max_candidates, num_keypoints] indicating the scores for keypoint candidates. num_keypoint_candidates: An integer tensor of shape [batch_size, num_keypoints] indicating the number of valid candidates for each keypoint type, as there may be padding (dim 1) of `keypoint_candidates` and `keypoint_scores`. bboxes: A tensor of shape [batch_size, num_instances, 4] with predicted bounding boxes for each instance, expressed in the output coordinate frame. If not provided, boxes will be computed from regressed keypoints. unmatched_keypoint_score: float, the default score to use for regressed keypoints that are not successfully snapped to a nearby candidate. box_scale: float, the multiplier to expand the bounding boxes (either the provided boxes or those which tightly cover the regressed keypoints) for an instance. This scale is typically larger than 1.0 when not providing `bboxes`. candidate_search_scale: float, the scale parameter that multiplies the largest dimension of a bounding box. The resulting distance becomes a search radius for candidates in the vicinity of each regressed keypoint. candidate_ranking_mode: A string as one of ['min_distance', 'score_distance_ratio'] indicating how to select the candidate. If invalid value is provided, an ValueError will be raised. Returns: A tuple with: refined_keypoints: A float tensor of shape [batch_size, num_instances, num_keypoints, 2] with the final, refined keypoints. refined_scores: A float tensor of shape [batch_size, num_instances, num_keypoints] with scores associated with all instances and keypoints in `refined_keypoints`. Raises: ValueError: if provided candidate_ranking_mode is not one of ['min_distance', 'score_distance_ratio']
research/object_detection/meta_architectures/center_net_meta_arch.py
refine_keypoints
AvikantSrivastava/models
python
def refine_keypoints(regressed_keypoints, keypoint_candidates, keypoint_scores, num_keypoint_candidates, bboxes=None, unmatched_keypoint_score=0.1, box_scale=1.2, candidate_search_scale=0.3, candidate_ranking_mode='min_distance'): 'Refines regressed keypoints by snapping to the nearest candidate keypoints.\n\n The initial regressed keypoints represent a full set of keypoints regressed\n from the centers of the objects. The keypoint candidates are estimated\n independently from heatmaps, and are not associated with any object instances.\n This function refines the regressed keypoints by "snapping" to the\n nearest/highest score/highest score-distance ratio (depending on the\n candidate_ranking_mode) candidate of the same keypoint type (e.g. "nose").\n If no candidates are nearby, the regressed keypoint remains unchanged.\n\n In order to snap a regressed keypoint to a candidate keypoint, the following\n must be satisfied:\n - the candidate keypoint must be of the same type as the regressed keypoint\n - the candidate keypoint must not lie outside the predicted boxes (or the\n boxes which encloses the regressed keypoints for the instance if `bboxes` is\n not provided). Note that the box is scaled by\n `regressed_box_scale` in height and width, to provide some margin around the\n keypoints\n - the distance to the closest candidate keypoint cannot exceed\n candidate_search_scale * max(height, width), where height and width refer to\n the bounding box for the instance.\n\n Note that the same candidate keypoint is allowed to snap to regressed\n keypoints in difference instances.\n\n Args:\n regressed_keypoints: A float tensor of shape\n [batch_size, num_instances, num_keypoints, 2] with the initial regressed\n keypoints.\n keypoint_candidates: A tensor of shape\n [batch_size, max_candidates, num_keypoints, 2] holding the location of\n keypoint candidates in [y, x] format (expressed in absolute coordinates in\n the output coordinate frame).\n keypoint_scores: A float tensor of shape\n [batch_size, max_candidates, num_keypoints] indicating the scores for\n keypoint candidates.\n num_keypoint_candidates: An integer tensor of shape\n [batch_size, num_keypoints] indicating the number of valid candidates for\n each keypoint type, as there may be padding (dim 1) of\n `keypoint_candidates` and `keypoint_scores`.\n bboxes: A tensor of shape [batch_size, num_instances, 4] with predicted\n bounding boxes for each instance, expressed in the output coordinate\n frame. If not provided, boxes will be computed from regressed keypoints.\n unmatched_keypoint_score: float, the default score to use for regressed\n keypoints that are not successfully snapped to a nearby candidate.\n box_scale: float, the multiplier to expand the bounding boxes (either the\n provided boxes or those which tightly cover the regressed keypoints) for\n an instance. This scale is typically larger than 1.0 when not providing\n `bboxes`.\n candidate_search_scale: float, the scale parameter that multiplies the\n largest dimension of a bounding box. The resulting distance becomes a\n search radius for candidates in the vicinity of each regressed keypoint.\n candidate_ranking_mode: A string as one of [\'min_distance\',\n \'score_distance_ratio\'] indicating how to select the candidate. If invalid\n value is provided, an ValueError will be raised.\n\n Returns:\n A tuple with:\n refined_keypoints: A float tensor of shape\n [batch_size, num_instances, num_keypoints, 2] with the final, refined\n keypoints.\n refined_scores: A float tensor of shape\n [batch_size, num_instances, num_keypoints] with scores associated with all\n instances and keypoints in `refined_keypoints`.\n\n Raises:\n ValueError: if provided candidate_ranking_mode is not one of\n [\'min_distance\', \'score_distance_ratio\']\n ' (batch_size, num_instances, num_keypoints, _) = shape_utils.combined_static_and_dynamic_shape(regressed_keypoints) max_candidates = keypoint_candidates.shape[1] range_tiled = tf.tile(tf.reshape(tf.range(max_candidates), [1, max_candidates, 1]), [batch_size, 1, num_keypoints]) num_candidates_tiled = tf.tile(tf.expand_dims(num_keypoint_candidates, 1), [1, max_candidates, 1]) invalid_candidates = (range_tiled >= num_candidates_tiled) nan_mask = tf.where(invalid_candidates, (np.nan * tf.ones_like(invalid_candidates, dtype=tf.float32)), tf.ones_like(invalid_candidates, dtype=tf.float32)) keypoint_candidates_with_nans = tf.math.multiply(keypoint_candidates, tf.expand_dims(nan_mask, (- 1))) regressed_keypoint_expanded = tf.expand_dims(regressed_keypoints, axis=2) keypoint_candidates_expanded = tf.expand_dims(keypoint_candidates_with_nans, axis=1) sqrd_distances = tf.math.reduce_sum(tf.math.squared_difference(regressed_keypoint_expanded, keypoint_candidates_expanded), axis=(- 1)) distances = tf.math.sqrt(sqrd_distances) min_distances = tf.math.reduce_min(distances, axis=2) if (candidate_ranking_mode == 'min_distance'): nearby_candidate_inds = tf.math.argmin(distances, axis=2) elif (candidate_ranking_mode == 'score_distance_ratio'): tiled_keypoint_scores = tf.tile(tf.expand_dims(keypoint_scores, axis=1), multiples=[1, num_instances, 1, 1]) ranking_scores = (tiled_keypoint_scores / (distances + 1e-06)) nearby_candidate_inds = tf.math.argmax(ranking_scores, axis=2) else: raise ValueError(('Not recognized candidate_ranking_mode: %s' % candidate_ranking_mode)) (nearby_candidate_coords, nearby_candidate_scores) = _gather_candidates_at_indices(keypoint_candidates, keypoint_scores, nearby_candidate_inds) if (bboxes is None): regressed_keypoints_flattened = tf.reshape(regressed_keypoints, [(- 1), num_keypoints, 2]) bboxes_flattened = keypoint_ops.keypoints_to_enclosing_bounding_boxes(regressed_keypoints_flattened) else: bboxes_flattened = tf.reshape(bboxes, [(- 1), 4]) boxlist = box_list.BoxList(bboxes_flattened) boxlist_scaled = box_list_ops.scale_height_width(boxlist, box_scale, box_scale) bboxes_scaled = boxlist_scaled.get() bboxes = tf.reshape(bboxes_scaled, [batch_size, num_instances, 4]) bboxes_tiled = tf.tile(tf.expand_dims(bboxes, 2), [1, 1, num_keypoints, 1]) (ymin, xmin, ymax, xmax) = tf.unstack(bboxes_tiled, axis=3) search_radius = (tf.math.maximum((ymax - ymin), (xmax - xmin)) * candidate_search_scale) mask = (((((tf.cast((nearby_candidate_coords[:, :, :, 0] < ymin), tf.int32) + tf.cast((nearby_candidate_coords[:, :, :, 0] > ymax), tf.int32)) + tf.cast((nearby_candidate_coords[:, :, :, 1] < xmin), tf.int32)) + tf.cast((nearby_candidate_coords[:, :, :, 1] > xmax), tf.int32)) + tf.cast((nearby_candidate_scores < unmatched_keypoint_score), tf.int32)) + tf.cast((min_distances > search_radius), tf.int32)) mask = (mask > 0) refined_keypoints = tf.where(tf.tile(tf.expand_dims(mask, (- 1)), [1, 1, 1, 2]), regressed_keypoints, nearby_candidate_coords) refined_scores = tf.where(mask, (unmatched_keypoint_score * tf.ones_like(nearby_candidate_scores)), nearby_candidate_scores) return (refined_keypoints, refined_scores)
def _pad_to_full_keypoint_dim(keypoint_coords, keypoint_scores, keypoint_inds, num_total_keypoints): 'Scatter keypoint elements into tensors with full keypoints dimension.\n\n Args:\n keypoint_coords: a [batch_size, num_instances, num_keypoints, 2] float32\n tensor.\n keypoint_scores: a [batch_size, num_instances, num_keypoints] float32\n tensor.\n keypoint_inds: a list of integers that indicate the keypoint indices for\n this specific keypoint class. These indices are used to scatter into\n tensors that have a `num_total_keypoints` dimension.\n num_total_keypoints: The total number of keypoints that this model predicts.\n\n Returns:\n A tuple with\n keypoint_coords_padded: a\n [batch_size, num_instances, num_total_keypoints,2] float32 tensor.\n keypoint_scores_padded: a [batch_size, num_instances, num_total_keypoints]\n float32 tensor.\n ' (batch_size, num_instances, _, _) = shape_utils.combined_static_and_dynamic_shape(keypoint_coords) kpt_coords_transposed = tf.transpose(keypoint_coords, [2, 0, 1, 3]) kpt_scores_transposed = tf.transpose(keypoint_scores, [2, 0, 1]) kpt_inds_tensor = tf.expand_dims(keypoint_inds, axis=(- 1)) kpt_coords_scattered = tf.scatter_nd(indices=kpt_inds_tensor, updates=kpt_coords_transposed, shape=[num_total_keypoints, batch_size, num_instances, 2]) kpt_scores_scattered = tf.scatter_nd(indices=kpt_inds_tensor, updates=kpt_scores_transposed, shape=[num_total_keypoints, batch_size, num_instances]) keypoint_coords_padded = tf.transpose(kpt_coords_scattered, [1, 2, 0, 3]) keypoint_scores_padded = tf.transpose(kpt_scores_scattered, [1, 2, 0]) return (keypoint_coords_padded, keypoint_scores_padded)
-119,598,477,833,223,570
Scatter keypoint elements into tensors with full keypoints dimension. Args: keypoint_coords: a [batch_size, num_instances, num_keypoints, 2] float32 tensor. keypoint_scores: a [batch_size, num_instances, num_keypoints] float32 tensor. keypoint_inds: a list of integers that indicate the keypoint indices for this specific keypoint class. These indices are used to scatter into tensors that have a `num_total_keypoints` dimension. num_total_keypoints: The total number of keypoints that this model predicts. Returns: A tuple with keypoint_coords_padded: a [batch_size, num_instances, num_total_keypoints,2] float32 tensor. keypoint_scores_padded: a [batch_size, num_instances, num_total_keypoints] float32 tensor.
research/object_detection/meta_architectures/center_net_meta_arch.py
_pad_to_full_keypoint_dim
AvikantSrivastava/models
python
def _pad_to_full_keypoint_dim(keypoint_coords, keypoint_scores, keypoint_inds, num_total_keypoints): 'Scatter keypoint elements into tensors with full keypoints dimension.\n\n Args:\n keypoint_coords: a [batch_size, num_instances, num_keypoints, 2] float32\n tensor.\n keypoint_scores: a [batch_size, num_instances, num_keypoints] float32\n tensor.\n keypoint_inds: a list of integers that indicate the keypoint indices for\n this specific keypoint class. These indices are used to scatter into\n tensors that have a `num_total_keypoints` dimension.\n num_total_keypoints: The total number of keypoints that this model predicts.\n\n Returns:\n A tuple with\n keypoint_coords_padded: a\n [batch_size, num_instances, num_total_keypoints,2] float32 tensor.\n keypoint_scores_padded: a [batch_size, num_instances, num_total_keypoints]\n float32 tensor.\n ' (batch_size, num_instances, _, _) = shape_utils.combined_static_and_dynamic_shape(keypoint_coords) kpt_coords_transposed = tf.transpose(keypoint_coords, [2, 0, 1, 3]) kpt_scores_transposed = tf.transpose(keypoint_scores, [2, 0, 1]) kpt_inds_tensor = tf.expand_dims(keypoint_inds, axis=(- 1)) kpt_coords_scattered = tf.scatter_nd(indices=kpt_inds_tensor, updates=kpt_coords_transposed, shape=[num_total_keypoints, batch_size, num_instances, 2]) kpt_scores_scattered = tf.scatter_nd(indices=kpt_inds_tensor, updates=kpt_scores_transposed, shape=[num_total_keypoints, batch_size, num_instances]) keypoint_coords_padded = tf.transpose(kpt_coords_scattered, [1, 2, 0, 3]) keypoint_scores_padded = tf.transpose(kpt_scores_scattered, [1, 2, 0]) return (keypoint_coords_padded, keypoint_scores_padded)
def _pad_to_full_instance_dim(keypoint_coords, keypoint_scores, instance_inds, max_instances): 'Scatter keypoint elements into tensors with full instance dimension.\n\n Args:\n keypoint_coords: a [batch_size, num_instances, num_keypoints, 2] float32\n tensor.\n keypoint_scores: a [batch_size, num_instances, num_keypoints] float32\n tensor.\n instance_inds: a list of integers that indicate the instance indices for\n these keypoints. These indices are used to scatter into tensors\n that have a `max_instances` dimension.\n max_instances: The maximum number of instances detected by the model.\n\n Returns:\n A tuple with\n keypoint_coords_padded: a [batch_size, max_instances, num_keypoints, 2]\n float32 tensor.\n keypoint_scores_padded: a [batch_size, max_instances, num_keypoints]\n float32 tensor.\n ' (batch_size, _, num_keypoints, _) = shape_utils.combined_static_and_dynamic_shape(keypoint_coords) kpt_coords_transposed = tf.transpose(keypoint_coords, [1, 0, 2, 3]) kpt_scores_transposed = tf.transpose(keypoint_scores, [1, 0, 2]) instance_inds = tf.expand_dims(instance_inds, axis=(- 1)) kpt_coords_scattered = tf.scatter_nd(indices=instance_inds, updates=kpt_coords_transposed, shape=[max_instances, batch_size, num_keypoints, 2]) kpt_scores_scattered = tf.scatter_nd(indices=instance_inds, updates=kpt_scores_transposed, shape=[max_instances, batch_size, num_keypoints]) keypoint_coords_padded = tf.transpose(kpt_coords_scattered, [1, 0, 2, 3]) keypoint_scores_padded = tf.transpose(kpt_scores_scattered, [1, 0, 2]) return (keypoint_coords_padded, keypoint_scores_padded)
-6,481,720,654,041,201,000
Scatter keypoint elements into tensors with full instance dimension. Args: keypoint_coords: a [batch_size, num_instances, num_keypoints, 2] float32 tensor. keypoint_scores: a [batch_size, num_instances, num_keypoints] float32 tensor. instance_inds: a list of integers that indicate the instance indices for these keypoints. These indices are used to scatter into tensors that have a `max_instances` dimension. max_instances: The maximum number of instances detected by the model. Returns: A tuple with keypoint_coords_padded: a [batch_size, max_instances, num_keypoints, 2] float32 tensor. keypoint_scores_padded: a [batch_size, max_instances, num_keypoints] float32 tensor.
research/object_detection/meta_architectures/center_net_meta_arch.py
_pad_to_full_instance_dim
AvikantSrivastava/models
python
def _pad_to_full_instance_dim(keypoint_coords, keypoint_scores, instance_inds, max_instances): 'Scatter keypoint elements into tensors with full instance dimension.\n\n Args:\n keypoint_coords: a [batch_size, num_instances, num_keypoints, 2] float32\n tensor.\n keypoint_scores: a [batch_size, num_instances, num_keypoints] float32\n tensor.\n instance_inds: a list of integers that indicate the instance indices for\n these keypoints. These indices are used to scatter into tensors\n that have a `max_instances` dimension.\n max_instances: The maximum number of instances detected by the model.\n\n Returns:\n A tuple with\n keypoint_coords_padded: a [batch_size, max_instances, num_keypoints, 2]\n float32 tensor.\n keypoint_scores_padded: a [batch_size, max_instances, num_keypoints]\n float32 tensor.\n ' (batch_size, _, num_keypoints, _) = shape_utils.combined_static_and_dynamic_shape(keypoint_coords) kpt_coords_transposed = tf.transpose(keypoint_coords, [1, 0, 2, 3]) kpt_scores_transposed = tf.transpose(keypoint_scores, [1, 0, 2]) instance_inds = tf.expand_dims(instance_inds, axis=(- 1)) kpt_coords_scattered = tf.scatter_nd(indices=instance_inds, updates=kpt_coords_transposed, shape=[max_instances, batch_size, num_keypoints, 2]) kpt_scores_scattered = tf.scatter_nd(indices=instance_inds, updates=kpt_scores_transposed, shape=[max_instances, batch_size, num_keypoints]) keypoint_coords_padded = tf.transpose(kpt_coords_scattered, [1, 0, 2, 3]) keypoint_scores_padded = tf.transpose(kpt_scores_scattered, [1, 0, 2]) return (keypoint_coords_padded, keypoint_scores_padded)
def _gather_candidates_at_indices(keypoint_candidates, keypoint_scores, indices): 'Gathers keypoint candidate coordinates and scores at indices.\n\n Args:\n keypoint_candidates: a float tensor of shape [batch_size, max_candidates,\n num_keypoints, 2] with candidate coordinates.\n keypoint_scores: a float tensor of shape [batch_size, max_candidates,\n num_keypoints] with keypoint scores.\n indices: an integer tensor of shape [batch_size, num_indices, num_keypoints]\n with indices.\n\n Returns:\n A tuple with\n gathered_keypoint_candidates: a float tensor of shape [batch_size,\n num_indices, num_keypoints, 2] with gathered coordinates.\n gathered_keypoint_scores: a float tensor of shape [batch_size,\n num_indices, num_keypoints, 2].\n ' keypoint_candidates_transposed = tf.transpose(keypoint_candidates, [0, 2, 1, 3]) keypoint_scores_transposed = tf.transpose(keypoint_scores, [0, 2, 1]) nearby_candidate_inds_transposed = tf.transpose(indices, [0, 2, 1]) nearby_candidate_coords_tranposed = tf.gather(keypoint_candidates_transposed, nearby_candidate_inds_transposed, batch_dims=2) nearby_candidate_scores_transposed = tf.gather(keypoint_scores_transposed, nearby_candidate_inds_transposed, batch_dims=2) gathered_keypoint_candidates = tf.transpose(nearby_candidate_coords_tranposed, [0, 2, 1, 3]) gathered_keypoint_scores = tf.transpose(nearby_candidate_scores_transposed, [0, 2, 1]) return (gathered_keypoint_candidates, gathered_keypoint_scores)
1,550,501,514,456,468,500
Gathers keypoint candidate coordinates and scores at indices. Args: keypoint_candidates: a float tensor of shape [batch_size, max_candidates, num_keypoints, 2] with candidate coordinates. keypoint_scores: a float tensor of shape [batch_size, max_candidates, num_keypoints] with keypoint scores. indices: an integer tensor of shape [batch_size, num_indices, num_keypoints] with indices. Returns: A tuple with gathered_keypoint_candidates: a float tensor of shape [batch_size, num_indices, num_keypoints, 2] with gathered coordinates. gathered_keypoint_scores: a float tensor of shape [batch_size, num_indices, num_keypoints, 2].
research/object_detection/meta_architectures/center_net_meta_arch.py
_gather_candidates_at_indices
AvikantSrivastava/models
python
def _gather_candidates_at_indices(keypoint_candidates, keypoint_scores, indices): 'Gathers keypoint candidate coordinates and scores at indices.\n\n Args:\n keypoint_candidates: a float tensor of shape [batch_size, max_candidates,\n num_keypoints, 2] with candidate coordinates.\n keypoint_scores: a float tensor of shape [batch_size, max_candidates,\n num_keypoints] with keypoint scores.\n indices: an integer tensor of shape [batch_size, num_indices, num_keypoints]\n with indices.\n\n Returns:\n A tuple with\n gathered_keypoint_candidates: a float tensor of shape [batch_size,\n num_indices, num_keypoints, 2] with gathered coordinates.\n gathered_keypoint_scores: a float tensor of shape [batch_size,\n num_indices, num_keypoints, 2].\n ' keypoint_candidates_transposed = tf.transpose(keypoint_candidates, [0, 2, 1, 3]) keypoint_scores_transposed = tf.transpose(keypoint_scores, [0, 2, 1]) nearby_candidate_inds_transposed = tf.transpose(indices, [0, 2, 1]) nearby_candidate_coords_tranposed = tf.gather(keypoint_candidates_transposed, nearby_candidate_inds_transposed, batch_dims=2) nearby_candidate_scores_transposed = tf.gather(keypoint_scores_transposed, nearby_candidate_inds_transposed, batch_dims=2) gathered_keypoint_candidates = tf.transpose(nearby_candidate_coords_tranposed, [0, 2, 1, 3]) gathered_keypoint_scores = tf.transpose(nearby_candidate_scores_transposed, [0, 2, 1]) return (gathered_keypoint_candidates, gathered_keypoint_scores)
def flattened_indices_from_row_col_indices(row_indices, col_indices, num_cols): 'Get the index in a flattened array given row and column indices.' return ((row_indices * num_cols) + col_indices)
-2,580,679,528,769,606,700
Get the index in a flattened array given row and column indices.
research/object_detection/meta_architectures/center_net_meta_arch.py
flattened_indices_from_row_col_indices
AvikantSrivastava/models
python
def flattened_indices_from_row_col_indices(row_indices, col_indices, num_cols): return ((row_indices * num_cols) + col_indices)
def row_col_channel_indices_from_flattened_indices(indices, num_cols, num_channels): 'Computes row, column and channel indices from flattened indices.\n\n Args:\n indices: An integer tensor of any shape holding the indices in the flattened\n space.\n num_cols: Number of columns in the image (width).\n num_channels: Number of channels in the image.\n\n Returns:\n row_indices: The row indices corresponding to each of the input indices.\n Same shape as indices.\n col_indices: The column indices corresponding to each of the input indices.\n Same shape as indices.\n channel_indices. The channel indices corresponding to each of the input\n indices.\n\n ' row_indices = ((indices // num_channels) // num_cols) col_indices = ((indices // num_channels) % num_cols) channel_indices = (indices % num_channels) return (row_indices, col_indices, channel_indices)
8,608,488,016,104,368,000
Computes row, column and channel indices from flattened indices. Args: indices: An integer tensor of any shape holding the indices in the flattened space. num_cols: Number of columns in the image (width). num_channels: Number of channels in the image. Returns: row_indices: The row indices corresponding to each of the input indices. Same shape as indices. col_indices: The column indices corresponding to each of the input indices. Same shape as indices. channel_indices. The channel indices corresponding to each of the input indices.
research/object_detection/meta_architectures/center_net_meta_arch.py
row_col_channel_indices_from_flattened_indices
AvikantSrivastava/models
python
def row_col_channel_indices_from_flattened_indices(indices, num_cols, num_channels): 'Computes row, column and channel indices from flattened indices.\n\n Args:\n indices: An integer tensor of any shape holding the indices in the flattened\n space.\n num_cols: Number of columns in the image (width).\n num_channels: Number of channels in the image.\n\n Returns:\n row_indices: The row indices corresponding to each of the input indices.\n Same shape as indices.\n col_indices: The column indices corresponding to each of the input indices.\n Same shape as indices.\n channel_indices. The channel indices corresponding to each of the input\n indices.\n\n ' row_indices = ((indices // num_channels) // num_cols) col_indices = ((indices // num_channels) % num_cols) channel_indices = (indices % num_channels) return (row_indices, col_indices, channel_indices)
def get_valid_anchor_weights_in_flattened_image(true_image_shapes, height, width): 'Computes valid anchor weights for an image assuming pixels will be flattened.\n\n This function is useful when we only want to penalize valid areas in the\n image in the case when padding is used. The function assumes that the loss\n function will be applied after flattening the spatial dimensions and returns\n anchor weights accordingly.\n\n Args:\n true_image_shapes: An integer tensor of shape [batch_size, 3] representing\n the true image shape (without padding) for each sample in the batch.\n height: height of the prediction from the network.\n width: width of the prediction from the network.\n\n Returns:\n valid_anchor_weights: a float tensor of shape [batch_size, height * width]\n with 1s in locations where the spatial coordinates fall within the height\n and width in true_image_shapes.\n ' indices = tf.reshape(tf.range((height * width)), [1, (- 1)]) batch_size = tf.shape(true_image_shapes)[0] batch_indices = (tf.ones((batch_size, 1), dtype=tf.int32) * indices) (y_coords, x_coords, _) = row_col_channel_indices_from_flattened_indices(batch_indices, width, 1) (max_y, max_x) = (true_image_shapes[:, 0], true_image_shapes[:, 1]) max_x = _to_float32(tf.expand_dims(max_x, 1)) max_y = _to_float32(tf.expand_dims(max_y, 1)) x_coords = _to_float32(x_coords) y_coords = _to_float32(y_coords) valid_mask = tf.math.logical_and((x_coords < max_x), (y_coords < max_y)) return _to_float32(valid_mask)
2,124,917,025,900,141,300
Computes valid anchor weights for an image assuming pixels will be flattened. This function is useful when we only want to penalize valid areas in the image in the case when padding is used. The function assumes that the loss function will be applied after flattening the spatial dimensions and returns anchor weights accordingly. Args: true_image_shapes: An integer tensor of shape [batch_size, 3] representing the true image shape (without padding) for each sample in the batch. height: height of the prediction from the network. width: width of the prediction from the network. Returns: valid_anchor_weights: a float tensor of shape [batch_size, height * width] with 1s in locations where the spatial coordinates fall within the height and width in true_image_shapes.
research/object_detection/meta_architectures/center_net_meta_arch.py
get_valid_anchor_weights_in_flattened_image
AvikantSrivastava/models
python
def get_valid_anchor_weights_in_flattened_image(true_image_shapes, height, width): 'Computes valid anchor weights for an image assuming pixels will be flattened.\n\n This function is useful when we only want to penalize valid areas in the\n image in the case when padding is used. The function assumes that the loss\n function will be applied after flattening the spatial dimensions and returns\n anchor weights accordingly.\n\n Args:\n true_image_shapes: An integer tensor of shape [batch_size, 3] representing\n the true image shape (without padding) for each sample in the batch.\n height: height of the prediction from the network.\n width: width of the prediction from the network.\n\n Returns:\n valid_anchor_weights: a float tensor of shape [batch_size, height * width]\n with 1s in locations where the spatial coordinates fall within the height\n and width in true_image_shapes.\n ' indices = tf.reshape(tf.range((height * width)), [1, (- 1)]) batch_size = tf.shape(true_image_shapes)[0] batch_indices = (tf.ones((batch_size, 1), dtype=tf.int32) * indices) (y_coords, x_coords, _) = row_col_channel_indices_from_flattened_indices(batch_indices, width, 1) (max_y, max_x) = (true_image_shapes[:, 0], true_image_shapes[:, 1]) max_x = _to_float32(tf.expand_dims(max_x, 1)) max_y = _to_float32(tf.expand_dims(max_y, 1)) x_coords = _to_float32(x_coords) y_coords = _to_float32(y_coords) valid_mask = tf.math.logical_and((x_coords < max_x), (y_coords < max_y)) return _to_float32(valid_mask)
def convert_strided_predictions_to_normalized_boxes(boxes, stride, true_image_shapes): "Converts predictions in the output space to normalized boxes.\n\n Boxes falling outside the valid image boundary are clipped to be on the\n boundary.\n\n Args:\n boxes: A tensor of shape [batch_size, num_boxes, 4] holding the raw\n coordinates of boxes in the model's output space.\n stride: The stride in the output space.\n true_image_shapes: A tensor of shape [batch_size, 3] representing the true\n shape of the input not considering padding.\n\n Returns:\n boxes: A tensor of shape [batch_size, num_boxes, 4] representing the\n coordinates of the normalized boxes.\n " def _normalize_boxlist(args): (boxes, height, width) = args boxes = box_list_ops.scale(boxes, stride, stride) boxes = box_list_ops.to_normalized_coordinates(boxes, height, width) boxes = box_list_ops.clip_to_window(boxes, [0.0, 0.0, 1.0, 1.0], filter_nonoverlapping=False) return boxes box_lists = [box_list.BoxList(boxes) for boxes in tf.unstack(boxes, axis=0)] (true_heights, true_widths, _) = tf.unstack(true_image_shapes, axis=1) true_heights_list = tf.unstack(true_heights, axis=0) true_widths_list = tf.unstack(true_widths, axis=0) box_lists = list(map(_normalize_boxlist, zip(box_lists, true_heights_list, true_widths_list))) boxes = tf.stack([box_list_instance.get() for box_list_instance in box_lists], axis=0) return boxes
8,227,977,681,416,438,000
Converts predictions in the output space to normalized boxes. Boxes falling outside the valid image boundary are clipped to be on the boundary. Args: boxes: A tensor of shape [batch_size, num_boxes, 4] holding the raw coordinates of boxes in the model's output space. stride: The stride in the output space. true_image_shapes: A tensor of shape [batch_size, 3] representing the true shape of the input not considering padding. Returns: boxes: A tensor of shape [batch_size, num_boxes, 4] representing the coordinates of the normalized boxes.
research/object_detection/meta_architectures/center_net_meta_arch.py
convert_strided_predictions_to_normalized_boxes
AvikantSrivastava/models
python
def convert_strided_predictions_to_normalized_boxes(boxes, stride, true_image_shapes): "Converts predictions in the output space to normalized boxes.\n\n Boxes falling outside the valid image boundary are clipped to be on the\n boundary.\n\n Args:\n boxes: A tensor of shape [batch_size, num_boxes, 4] holding the raw\n coordinates of boxes in the model's output space.\n stride: The stride in the output space.\n true_image_shapes: A tensor of shape [batch_size, 3] representing the true\n shape of the input not considering padding.\n\n Returns:\n boxes: A tensor of shape [batch_size, num_boxes, 4] representing the\n coordinates of the normalized boxes.\n " def _normalize_boxlist(args): (boxes, height, width) = args boxes = box_list_ops.scale(boxes, stride, stride) boxes = box_list_ops.to_normalized_coordinates(boxes, height, width) boxes = box_list_ops.clip_to_window(boxes, [0.0, 0.0, 1.0, 1.0], filter_nonoverlapping=False) return boxes box_lists = [box_list.BoxList(boxes) for boxes in tf.unstack(boxes, axis=0)] (true_heights, true_widths, _) = tf.unstack(true_image_shapes, axis=1) true_heights_list = tf.unstack(true_heights, axis=0) true_widths_list = tf.unstack(true_widths, axis=0) box_lists = list(map(_normalize_boxlist, zip(box_lists, true_heights_list, true_widths_list))) boxes = tf.stack([box_list_instance.get() for box_list_instance in box_lists], axis=0) return boxes
def convert_strided_predictions_to_normalized_keypoints(keypoint_coords, keypoint_scores, stride, true_image_shapes, clip_out_of_frame_keypoints=False): "Converts predictions in the output space to normalized keypoints.\n\n If clip_out_of_frame_keypoints=False, keypoint coordinates falling outside\n the valid image boundary are normalized but not clipped; If\n clip_out_of_frame_keypoints=True, keypoint coordinates falling outside the\n valid image boundary are clipped to the closest image boundary and the scores\n will be set to 0.0.\n\n Args:\n keypoint_coords: A tensor of shape\n [batch_size, num_instances, num_keypoints, 2] holding the raw coordinates\n of keypoints in the model's output space.\n keypoint_scores: A tensor of shape\n [batch_size, num_instances, num_keypoints] holding the keypoint scores.\n stride: The stride in the output space.\n true_image_shapes: A tensor of shape [batch_size, 3] representing the true\n shape of the input not considering padding.\n clip_out_of_frame_keypoints: A boolean indicating whether keypoints outside\n the image boundary should be clipped. If True, keypoint coords will be\n clipped to image boundary. If False, keypoints are normalized but not\n filtered based on their location.\n\n Returns:\n keypoint_coords_normalized: A tensor of shape\n [batch_size, num_instances, num_keypoints, 2] representing the coordinates\n of the normalized keypoints.\n keypoint_scores: A tensor of shape\n [batch_size, num_instances, num_keypoints] representing the updated\n keypoint scores.\n " (batch_size, _, _, _) = shape_utils.combined_static_and_dynamic_shape(keypoint_coords) (true_heights, true_widths, _) = tf.unstack(true_image_shapes, axis=1) yscale = (float(stride) / tf.cast(true_heights, tf.float32)) xscale = (float(stride) / tf.cast(true_widths, tf.float32)) yx_scale = tf.stack([yscale, xscale], axis=1) keypoint_coords_normalized = (keypoint_coords * tf.reshape(yx_scale, [batch_size, 1, 1, 2])) if clip_out_of_frame_keypoints: valid_indices = tf.logical_and(tf.logical_and((keypoint_coords_normalized[:, :, :, 0] >= 0.0), (keypoint_coords_normalized[:, :, :, 0] <= 1.0)), tf.logical_and((keypoint_coords_normalized[:, :, :, 1] >= 0.0), (keypoint_coords_normalized[:, :, :, 1] <= 1.0))) batch_window = tf.tile(tf.constant([[0.0, 0.0, 1.0, 1.0]], dtype=tf.float32), multiples=[batch_size, 1]) def clip_to_window(inputs): (keypoints, window) = inputs return keypoint_ops.clip_to_window(keypoints, window) keypoint_coords_normalized = tf.map_fn(clip_to_window, (keypoint_coords_normalized, batch_window), dtype=tf.float32, back_prop=False) keypoint_scores = tf.where(valid_indices, keypoint_scores, tf.zeros_like(keypoint_scores)) return (keypoint_coords_normalized, keypoint_scores)
1,464,973,746,934,306,600
Converts predictions in the output space to normalized keypoints. If clip_out_of_frame_keypoints=False, keypoint coordinates falling outside the valid image boundary are normalized but not clipped; If clip_out_of_frame_keypoints=True, keypoint coordinates falling outside the valid image boundary are clipped to the closest image boundary and the scores will be set to 0.0. Args: keypoint_coords: A tensor of shape [batch_size, num_instances, num_keypoints, 2] holding the raw coordinates of keypoints in the model's output space. keypoint_scores: A tensor of shape [batch_size, num_instances, num_keypoints] holding the keypoint scores. stride: The stride in the output space. true_image_shapes: A tensor of shape [batch_size, 3] representing the true shape of the input not considering padding. clip_out_of_frame_keypoints: A boolean indicating whether keypoints outside the image boundary should be clipped. If True, keypoint coords will be clipped to image boundary. If False, keypoints are normalized but not filtered based on their location. Returns: keypoint_coords_normalized: A tensor of shape [batch_size, num_instances, num_keypoints, 2] representing the coordinates of the normalized keypoints. keypoint_scores: A tensor of shape [batch_size, num_instances, num_keypoints] representing the updated keypoint scores.
research/object_detection/meta_architectures/center_net_meta_arch.py
convert_strided_predictions_to_normalized_keypoints
AvikantSrivastava/models
python
def convert_strided_predictions_to_normalized_keypoints(keypoint_coords, keypoint_scores, stride, true_image_shapes, clip_out_of_frame_keypoints=False): "Converts predictions in the output space to normalized keypoints.\n\n If clip_out_of_frame_keypoints=False, keypoint coordinates falling outside\n the valid image boundary are normalized but not clipped; If\n clip_out_of_frame_keypoints=True, keypoint coordinates falling outside the\n valid image boundary are clipped to the closest image boundary and the scores\n will be set to 0.0.\n\n Args:\n keypoint_coords: A tensor of shape\n [batch_size, num_instances, num_keypoints, 2] holding the raw coordinates\n of keypoints in the model's output space.\n keypoint_scores: A tensor of shape\n [batch_size, num_instances, num_keypoints] holding the keypoint scores.\n stride: The stride in the output space.\n true_image_shapes: A tensor of shape [batch_size, 3] representing the true\n shape of the input not considering padding.\n clip_out_of_frame_keypoints: A boolean indicating whether keypoints outside\n the image boundary should be clipped. If True, keypoint coords will be\n clipped to image boundary. If False, keypoints are normalized but not\n filtered based on their location.\n\n Returns:\n keypoint_coords_normalized: A tensor of shape\n [batch_size, num_instances, num_keypoints, 2] representing the coordinates\n of the normalized keypoints.\n keypoint_scores: A tensor of shape\n [batch_size, num_instances, num_keypoints] representing the updated\n keypoint scores.\n " (batch_size, _, _, _) = shape_utils.combined_static_and_dynamic_shape(keypoint_coords) (true_heights, true_widths, _) = tf.unstack(true_image_shapes, axis=1) yscale = (float(stride) / tf.cast(true_heights, tf.float32)) xscale = (float(stride) / tf.cast(true_widths, tf.float32)) yx_scale = tf.stack([yscale, xscale], axis=1) keypoint_coords_normalized = (keypoint_coords * tf.reshape(yx_scale, [batch_size, 1, 1, 2])) if clip_out_of_frame_keypoints: valid_indices = tf.logical_and(tf.logical_and((keypoint_coords_normalized[:, :, :, 0] >= 0.0), (keypoint_coords_normalized[:, :, :, 0] <= 1.0)), tf.logical_and((keypoint_coords_normalized[:, :, :, 1] >= 0.0), (keypoint_coords_normalized[:, :, :, 1] <= 1.0))) batch_window = tf.tile(tf.constant([[0.0, 0.0, 1.0, 1.0]], dtype=tf.float32), multiples=[batch_size, 1]) def clip_to_window(inputs): (keypoints, window) = inputs return keypoint_ops.clip_to_window(keypoints, window) keypoint_coords_normalized = tf.map_fn(clip_to_window, (keypoint_coords_normalized, batch_window), dtype=tf.float32, back_prop=False) keypoint_scores = tf.where(valid_indices, keypoint_scores, tf.zeros_like(keypoint_scores)) return (keypoint_coords_normalized, keypoint_scores)
def convert_strided_predictions_to_instance_masks(boxes, classes, masks, true_image_shapes, densepose_part_heatmap=None, densepose_surface_coords=None, stride=4, mask_height=256, mask_width=256, score_threshold=0.5, densepose_class_index=(- 1)): 'Converts predicted full-image masks into instance masks.\n\n For each predicted detection box:\n * Crop and resize the predicted mask (and optionally DensePose coordinates)\n based on the detected bounding box coordinates and class prediction. Uses\n bilinear resampling.\n * Binarize the mask using the provided score threshold.\n\n Args:\n boxes: A tensor of shape [batch, max_detections, 4] holding the predicted\n boxes, in normalized coordinates (relative to the true image dimensions).\n classes: An integer tensor of shape [batch, max_detections] containing the\n detected class for each box (0-indexed).\n masks: A [batch, output_height, output_width, num_classes] float32\n tensor with class probabilities.\n true_image_shapes: A tensor of shape [batch, 3] representing the true\n shape of the inputs not considering padding.\n densepose_part_heatmap: (Optional) A [batch, output_height, output_width,\n num_parts] float32 tensor with part scores (i.e. logits).\n densepose_surface_coords: (Optional) A [batch, output_height, output_width,\n 2 * num_parts] float32 tensor with predicted part coordinates (in\n vu-format).\n stride: The stride in the output space.\n mask_height: The desired resized height for instance masks.\n mask_width: The desired resized width for instance masks.\n score_threshold: The threshold at which to convert predicted mask\n into foreground pixels.\n densepose_class_index: The class index (0-indexed) corresponding to the\n class which has DensePose labels (e.g. person class).\n\n Returns:\n A tuple of masks and surface_coords.\n instance_masks: A [batch_size, max_detections, mask_height, mask_width]\n uint8 tensor with predicted foreground mask for each\n instance. If DensePose tensors are provided, then each pixel value in the\n mask encodes the 1-indexed part.\n surface_coords: A [batch_size, max_detections, mask_height, mask_width, 2]\n float32 tensor with (v, u) coordinates. Note that v, u coordinates are\n only defined on instance masks, and the coordinates at each location of\n the foreground mask correspond to coordinates on a local part coordinate\n system (the specific part can be inferred from the `instance_masks`\n output. If DensePose feature maps are not passed to this function, this\n output will be None.\n\n Raises:\n ValueError: If one but not both of `densepose_part_heatmap` and\n `densepose_surface_coords` is provided.\n ' (batch_size, output_height, output_width, _) = shape_utils.combined_static_and_dynamic_shape(masks) input_height = (stride * output_height) input_width = (stride * output_width) (true_heights, true_widths, _) = tf.unstack(true_image_shapes, axis=1) densepose_present = True if ((densepose_part_heatmap is not None) ^ (densepose_surface_coords is not None)): raise ValueError('To use DensePose, both `densepose_part_heatmap` and `densepose_surface_coords` must be provided') if ((densepose_part_heatmap is None) and (densepose_surface_coords is None)): densepose_present = False densepose_part_heatmap = tf.zeros((batch_size, output_height, output_width, 1), dtype=tf.float32) densepose_surface_coords = tf.zeros((batch_size, output_height, output_width, 2), dtype=tf.float32) crop_and_threshold_fn = functools.partial(crop_and_threshold_masks, input_height=input_height, input_width=input_width, mask_height=mask_height, mask_width=mask_width, score_threshold=score_threshold, densepose_class_index=densepose_class_index) (instance_masks, surface_coords) = shape_utils.static_or_dynamic_map_fn(crop_and_threshold_fn, elems=[boxes, classes, masks, densepose_part_heatmap, densepose_surface_coords, true_heights, true_widths], dtype=[tf.uint8, tf.float32], back_prop=False) surface_coords = (surface_coords if densepose_present else None) return (instance_masks, surface_coords)
5,333,232,042,033,351,000
Converts predicted full-image masks into instance masks. For each predicted detection box: * Crop and resize the predicted mask (and optionally DensePose coordinates) based on the detected bounding box coordinates and class prediction. Uses bilinear resampling. * Binarize the mask using the provided score threshold. Args: boxes: A tensor of shape [batch, max_detections, 4] holding the predicted boxes, in normalized coordinates (relative to the true image dimensions). classes: An integer tensor of shape [batch, max_detections] containing the detected class for each box (0-indexed). masks: A [batch, output_height, output_width, num_classes] float32 tensor with class probabilities. true_image_shapes: A tensor of shape [batch, 3] representing the true shape of the inputs not considering padding. densepose_part_heatmap: (Optional) A [batch, output_height, output_width, num_parts] float32 tensor with part scores (i.e. logits). densepose_surface_coords: (Optional) A [batch, output_height, output_width, 2 * num_parts] float32 tensor with predicted part coordinates (in vu-format). stride: The stride in the output space. mask_height: The desired resized height for instance masks. mask_width: The desired resized width for instance masks. score_threshold: The threshold at which to convert predicted mask into foreground pixels. densepose_class_index: The class index (0-indexed) corresponding to the class which has DensePose labels (e.g. person class). Returns: A tuple of masks and surface_coords. instance_masks: A [batch_size, max_detections, mask_height, mask_width] uint8 tensor with predicted foreground mask for each instance. If DensePose tensors are provided, then each pixel value in the mask encodes the 1-indexed part. surface_coords: A [batch_size, max_detections, mask_height, mask_width, 2] float32 tensor with (v, u) coordinates. Note that v, u coordinates are only defined on instance masks, and the coordinates at each location of the foreground mask correspond to coordinates on a local part coordinate system (the specific part can be inferred from the `instance_masks` output. If DensePose feature maps are not passed to this function, this output will be None. Raises: ValueError: If one but not both of `densepose_part_heatmap` and `densepose_surface_coords` is provided.
research/object_detection/meta_architectures/center_net_meta_arch.py
convert_strided_predictions_to_instance_masks
AvikantSrivastava/models
python
def convert_strided_predictions_to_instance_masks(boxes, classes, masks, true_image_shapes, densepose_part_heatmap=None, densepose_surface_coords=None, stride=4, mask_height=256, mask_width=256, score_threshold=0.5, densepose_class_index=(- 1)): 'Converts predicted full-image masks into instance masks.\n\n For each predicted detection box:\n * Crop and resize the predicted mask (and optionally DensePose coordinates)\n based on the detected bounding box coordinates and class prediction. Uses\n bilinear resampling.\n * Binarize the mask using the provided score threshold.\n\n Args:\n boxes: A tensor of shape [batch, max_detections, 4] holding the predicted\n boxes, in normalized coordinates (relative to the true image dimensions).\n classes: An integer tensor of shape [batch, max_detections] containing the\n detected class for each box (0-indexed).\n masks: A [batch, output_height, output_width, num_classes] float32\n tensor with class probabilities.\n true_image_shapes: A tensor of shape [batch, 3] representing the true\n shape of the inputs not considering padding.\n densepose_part_heatmap: (Optional) A [batch, output_height, output_width,\n num_parts] float32 tensor with part scores (i.e. logits).\n densepose_surface_coords: (Optional) A [batch, output_height, output_width,\n 2 * num_parts] float32 tensor with predicted part coordinates (in\n vu-format).\n stride: The stride in the output space.\n mask_height: The desired resized height for instance masks.\n mask_width: The desired resized width for instance masks.\n score_threshold: The threshold at which to convert predicted mask\n into foreground pixels.\n densepose_class_index: The class index (0-indexed) corresponding to the\n class which has DensePose labels (e.g. person class).\n\n Returns:\n A tuple of masks and surface_coords.\n instance_masks: A [batch_size, max_detections, mask_height, mask_width]\n uint8 tensor with predicted foreground mask for each\n instance. If DensePose tensors are provided, then each pixel value in the\n mask encodes the 1-indexed part.\n surface_coords: A [batch_size, max_detections, mask_height, mask_width, 2]\n float32 tensor with (v, u) coordinates. Note that v, u coordinates are\n only defined on instance masks, and the coordinates at each location of\n the foreground mask correspond to coordinates on a local part coordinate\n system (the specific part can be inferred from the `instance_masks`\n output. If DensePose feature maps are not passed to this function, this\n output will be None.\n\n Raises:\n ValueError: If one but not both of `densepose_part_heatmap` and\n `densepose_surface_coords` is provided.\n ' (batch_size, output_height, output_width, _) = shape_utils.combined_static_and_dynamic_shape(masks) input_height = (stride * output_height) input_width = (stride * output_width) (true_heights, true_widths, _) = tf.unstack(true_image_shapes, axis=1) densepose_present = True if ((densepose_part_heatmap is not None) ^ (densepose_surface_coords is not None)): raise ValueError('To use DensePose, both `densepose_part_heatmap` and `densepose_surface_coords` must be provided') if ((densepose_part_heatmap is None) and (densepose_surface_coords is None)): densepose_present = False densepose_part_heatmap = tf.zeros((batch_size, output_height, output_width, 1), dtype=tf.float32) densepose_surface_coords = tf.zeros((batch_size, output_height, output_width, 2), dtype=tf.float32) crop_and_threshold_fn = functools.partial(crop_and_threshold_masks, input_height=input_height, input_width=input_width, mask_height=mask_height, mask_width=mask_width, score_threshold=score_threshold, densepose_class_index=densepose_class_index) (instance_masks, surface_coords) = shape_utils.static_or_dynamic_map_fn(crop_and_threshold_fn, elems=[boxes, classes, masks, densepose_part_heatmap, densepose_surface_coords, true_heights, true_widths], dtype=[tf.uint8, tf.float32], back_prop=False) surface_coords = (surface_coords if densepose_present else None) return (instance_masks, surface_coords)
def crop_and_threshold_masks(elems, input_height, input_width, mask_height=256, mask_width=256, score_threshold=0.5, densepose_class_index=(- 1)): 'Crops and thresholds masks based on detection boxes.\n\n Args:\n elems: A tuple of\n boxes - float32 tensor of shape [max_detections, 4]\n classes - int32 tensor of shape [max_detections] (0-indexed)\n masks - float32 tensor of shape [output_height, output_width, num_classes]\n part_heatmap - float32 tensor of shape [output_height, output_width,\n num_parts]\n surf_coords - float32 tensor of shape [output_height, output_width,\n 2 * num_parts]\n true_height - scalar int tensor\n true_width - scalar int tensor\n input_height: Input height to network.\n input_width: Input width to network.\n mask_height: Height for resizing mask crops.\n mask_width: Width for resizing mask crops.\n score_threshold: The threshold at which to convert predicted mask\n into foreground pixels.\n densepose_class_index: scalar int tensor with the class index (0-indexed)\n for DensePose.\n\n Returns:\n A tuple of\n all_instances: A [max_detections, mask_height, mask_width] uint8 tensor\n with a predicted foreground mask for each instance. Background is encoded\n as 0, and foreground is encoded as a positive integer. Specific part\n indices are encoded as 1-indexed parts (for classes that have part\n information).\n surface_coords: A [max_detections, mask_height, mask_width, 2]\n float32 tensor with (v, u) coordinates. for each part.\n ' (boxes, classes, masks, part_heatmap, surf_coords, true_height, true_width) = elems boxlist = box_list.BoxList(boxes) y_scale = (true_height / input_height) x_scale = (true_width / input_width) boxlist = box_list_ops.scale(boxlist, y_scale, x_scale) boxes = boxlist.get() num_classes = tf.shape(masks)[(- 1)] masks_4d = tf.transpose(masks, perm=[2, 0, 1])[:, :, :, tf.newaxis] part_heatmap_4d = tf.tile(part_heatmap[tf.newaxis, :, :, :], multiples=[num_classes, 1, 1, 1]) surf_coords_4d = tf.tile(surf_coords[tf.newaxis, :, :, :], multiples=[num_classes, 1, 1, 1]) feature_maps_concat = tf.concat([masks_4d, part_heatmap_4d, surf_coords_4d], axis=(- 1)) cropped_masks = tf2.image.crop_and_resize(feature_maps_concat, boxes=boxes, box_indices=classes, crop_size=[mask_height, mask_width], method='bilinear') num_parts = tf.shape(part_heatmap)[(- 1)] (instance_masks, part_heatmap_cropped, surface_coords_cropped) = tf.split(cropped_masks, [1, num_parts, (2 * num_parts)], axis=(- 1)) instance_masks_int = tf.cast(tf.math.greater_equal(instance_masks, score_threshold), dtype=tf.int32) det_with_parts = tf.equal(classes, densepose_class_index) det_with_parts = tf.cast(tf.reshape(det_with_parts, [(- 1), 1, 1, 1]), dtype=tf.int32) instance_masks_with_parts = tf.math.multiply(instance_masks_int, det_with_parts) det_without_parts = (1 - det_with_parts) instance_masks_without_parts = tf.math.multiply(instance_masks_int, det_without_parts) part_mask_int_zero_indexed = tf.math.argmax(part_heatmap_cropped, axis=(- 1), output_type=tf.int32)[:, :, :, tf.newaxis] part_mask_int_one_indexed = (part_mask_int_zero_indexed + 1) all_instances = (instance_masks_without_parts + (instance_masks_with_parts * part_mask_int_one_indexed)) surface_coords_cropped = tf.reshape(surface_coords_cropped, [(- 1), mask_height, mask_width, num_parts, 2]) surface_coords = gather_surface_coords_for_parts(surface_coords_cropped, part_mask_int_zero_indexed) surface_coords = (surface_coords * tf.cast(instance_masks_with_parts, tf.float32)) return [tf.squeeze(all_instances, axis=3), surface_coords]
-162,861,961,586,320,220
Crops and thresholds masks based on detection boxes. Args: elems: A tuple of boxes - float32 tensor of shape [max_detections, 4] classes - int32 tensor of shape [max_detections] (0-indexed) masks - float32 tensor of shape [output_height, output_width, num_classes] part_heatmap - float32 tensor of shape [output_height, output_width, num_parts] surf_coords - float32 tensor of shape [output_height, output_width, 2 * num_parts] true_height - scalar int tensor true_width - scalar int tensor input_height: Input height to network. input_width: Input width to network. mask_height: Height for resizing mask crops. mask_width: Width for resizing mask crops. score_threshold: The threshold at which to convert predicted mask into foreground pixels. densepose_class_index: scalar int tensor with the class index (0-indexed) for DensePose. Returns: A tuple of all_instances: A [max_detections, mask_height, mask_width] uint8 tensor with a predicted foreground mask for each instance. Background is encoded as 0, and foreground is encoded as a positive integer. Specific part indices are encoded as 1-indexed parts (for classes that have part information). surface_coords: A [max_detections, mask_height, mask_width, 2] float32 tensor with (v, u) coordinates. for each part.
research/object_detection/meta_architectures/center_net_meta_arch.py
crop_and_threshold_masks
AvikantSrivastava/models
python
def crop_and_threshold_masks(elems, input_height, input_width, mask_height=256, mask_width=256, score_threshold=0.5, densepose_class_index=(- 1)): 'Crops and thresholds masks based on detection boxes.\n\n Args:\n elems: A tuple of\n boxes - float32 tensor of shape [max_detections, 4]\n classes - int32 tensor of shape [max_detections] (0-indexed)\n masks - float32 tensor of shape [output_height, output_width, num_classes]\n part_heatmap - float32 tensor of shape [output_height, output_width,\n num_parts]\n surf_coords - float32 tensor of shape [output_height, output_width,\n 2 * num_parts]\n true_height - scalar int tensor\n true_width - scalar int tensor\n input_height: Input height to network.\n input_width: Input width to network.\n mask_height: Height for resizing mask crops.\n mask_width: Width for resizing mask crops.\n score_threshold: The threshold at which to convert predicted mask\n into foreground pixels.\n densepose_class_index: scalar int tensor with the class index (0-indexed)\n for DensePose.\n\n Returns:\n A tuple of\n all_instances: A [max_detections, mask_height, mask_width] uint8 tensor\n with a predicted foreground mask for each instance. Background is encoded\n as 0, and foreground is encoded as a positive integer. Specific part\n indices are encoded as 1-indexed parts (for classes that have part\n information).\n surface_coords: A [max_detections, mask_height, mask_width, 2]\n float32 tensor with (v, u) coordinates. for each part.\n ' (boxes, classes, masks, part_heatmap, surf_coords, true_height, true_width) = elems boxlist = box_list.BoxList(boxes) y_scale = (true_height / input_height) x_scale = (true_width / input_width) boxlist = box_list_ops.scale(boxlist, y_scale, x_scale) boxes = boxlist.get() num_classes = tf.shape(masks)[(- 1)] masks_4d = tf.transpose(masks, perm=[2, 0, 1])[:, :, :, tf.newaxis] part_heatmap_4d = tf.tile(part_heatmap[tf.newaxis, :, :, :], multiples=[num_classes, 1, 1, 1]) surf_coords_4d = tf.tile(surf_coords[tf.newaxis, :, :, :], multiples=[num_classes, 1, 1, 1]) feature_maps_concat = tf.concat([masks_4d, part_heatmap_4d, surf_coords_4d], axis=(- 1)) cropped_masks = tf2.image.crop_and_resize(feature_maps_concat, boxes=boxes, box_indices=classes, crop_size=[mask_height, mask_width], method='bilinear') num_parts = tf.shape(part_heatmap)[(- 1)] (instance_masks, part_heatmap_cropped, surface_coords_cropped) = tf.split(cropped_masks, [1, num_parts, (2 * num_parts)], axis=(- 1)) instance_masks_int = tf.cast(tf.math.greater_equal(instance_masks, score_threshold), dtype=tf.int32) det_with_parts = tf.equal(classes, densepose_class_index) det_with_parts = tf.cast(tf.reshape(det_with_parts, [(- 1), 1, 1, 1]), dtype=tf.int32) instance_masks_with_parts = tf.math.multiply(instance_masks_int, det_with_parts) det_without_parts = (1 - det_with_parts) instance_masks_without_parts = tf.math.multiply(instance_masks_int, det_without_parts) part_mask_int_zero_indexed = tf.math.argmax(part_heatmap_cropped, axis=(- 1), output_type=tf.int32)[:, :, :, tf.newaxis] part_mask_int_one_indexed = (part_mask_int_zero_indexed + 1) all_instances = (instance_masks_without_parts + (instance_masks_with_parts * part_mask_int_one_indexed)) surface_coords_cropped = tf.reshape(surface_coords_cropped, [(- 1), mask_height, mask_width, num_parts, 2]) surface_coords = gather_surface_coords_for_parts(surface_coords_cropped, part_mask_int_zero_indexed) surface_coords = (surface_coords * tf.cast(instance_masks_with_parts, tf.float32)) return [tf.squeeze(all_instances, axis=3), surface_coords]
def gather_surface_coords_for_parts(surface_coords_cropped, highest_scoring_part): 'Gathers the (v, u) coordinates for the highest scoring DensePose parts.\n\n Args:\n surface_coords_cropped: A [max_detections, height, width, num_parts, 2]\n float32 tensor with (v, u) surface coordinates.\n highest_scoring_part: A [max_detections, height, width] integer tensor with\n the highest scoring part (0-indexed) indices for each location.\n\n Returns:\n A [max_detections, height, width, 2] float32 tensor with the (v, u)\n coordinates selected from the highest scoring parts.\n ' (max_detections, height, width, num_parts, _) = shape_utils.combined_static_and_dynamic_shape(surface_coords_cropped) flattened_surface_coords = tf.reshape(surface_coords_cropped, [(- 1), 2]) flattened_part_ids = tf.reshape(highest_scoring_part, [(- 1)]) flattened_lookup_indices = ((num_parts * tf.range(((max_detections * height) * width))) + flattened_part_ids) vu_coords_flattened = tf.gather(flattened_surface_coords, flattened_lookup_indices, axis=0) return tf.reshape(vu_coords_flattened, [max_detections, height, width, 2])
5,027,404,084,321,661,000
Gathers the (v, u) coordinates for the highest scoring DensePose parts. Args: surface_coords_cropped: A [max_detections, height, width, num_parts, 2] float32 tensor with (v, u) surface coordinates. highest_scoring_part: A [max_detections, height, width] integer tensor with the highest scoring part (0-indexed) indices for each location. Returns: A [max_detections, height, width, 2] float32 tensor with the (v, u) coordinates selected from the highest scoring parts.
research/object_detection/meta_architectures/center_net_meta_arch.py
gather_surface_coords_for_parts
AvikantSrivastava/models
python
def gather_surface_coords_for_parts(surface_coords_cropped, highest_scoring_part): 'Gathers the (v, u) coordinates for the highest scoring DensePose parts.\n\n Args:\n surface_coords_cropped: A [max_detections, height, width, num_parts, 2]\n float32 tensor with (v, u) surface coordinates.\n highest_scoring_part: A [max_detections, height, width] integer tensor with\n the highest scoring part (0-indexed) indices for each location.\n\n Returns:\n A [max_detections, height, width, 2] float32 tensor with the (v, u)\n coordinates selected from the highest scoring parts.\n ' (max_detections, height, width, num_parts, _) = shape_utils.combined_static_and_dynamic_shape(surface_coords_cropped) flattened_surface_coords = tf.reshape(surface_coords_cropped, [(- 1), 2]) flattened_part_ids = tf.reshape(highest_scoring_part, [(- 1)]) flattened_lookup_indices = ((num_parts * tf.range(((max_detections * height) * width))) + flattened_part_ids) vu_coords_flattened = tf.gather(flattened_surface_coords, flattened_lookup_indices, axis=0) return tf.reshape(vu_coords_flattened, [max_detections, height, width, 2])
def predicted_embeddings_at_object_centers(embedding_predictions, y_indices, x_indices): 'Returns the predicted embeddings at specified object centers.\n\n Args:\n embedding_predictions: A float tensor of shape [batch_size, height, width,\n reid_embed_size] holding predicted embeddings.\n y_indices: A [batch, num_instances] int tensor holding y indices for object\n centers. These indices correspond to locations in the output feature map.\n x_indices: A [batch, num_instances] int tensor holding x indices for object\n centers. These indices correspond to locations in the output feature map.\n\n Returns:\n A float tensor of shape [batch_size, num_objects, reid_embed_size] where\n predicted embeddings are gathered at the provided locations.\n ' (batch_size, _, width, _) = _get_shape(embedding_predictions, 4) flattened_indices = flattened_indices_from_row_col_indices(y_indices, x_indices, width) (_, num_instances) = _get_shape(flattened_indices, 2) embeddings_flat = _flatten_spatial_dimensions(embedding_predictions) embeddings = tf.gather(embeddings_flat, flattened_indices, batch_dims=1) embeddings = tf.reshape(embeddings, [batch_size, num_instances, (- 1)]) return embeddings
-4,203,698,444,624,568,000
Returns the predicted embeddings at specified object centers. Args: embedding_predictions: A float tensor of shape [batch_size, height, width, reid_embed_size] holding predicted embeddings. y_indices: A [batch, num_instances] int tensor holding y indices for object centers. These indices correspond to locations in the output feature map. x_indices: A [batch, num_instances] int tensor holding x indices for object centers. These indices correspond to locations in the output feature map. Returns: A float tensor of shape [batch_size, num_objects, reid_embed_size] where predicted embeddings are gathered at the provided locations.
research/object_detection/meta_architectures/center_net_meta_arch.py
predicted_embeddings_at_object_centers
AvikantSrivastava/models
python
def predicted_embeddings_at_object_centers(embedding_predictions, y_indices, x_indices): 'Returns the predicted embeddings at specified object centers.\n\n Args:\n embedding_predictions: A float tensor of shape [batch_size, height, width,\n reid_embed_size] holding predicted embeddings.\n y_indices: A [batch, num_instances] int tensor holding y indices for object\n centers. These indices correspond to locations in the output feature map.\n x_indices: A [batch, num_instances] int tensor holding x indices for object\n centers. These indices correspond to locations in the output feature map.\n\n Returns:\n A float tensor of shape [batch_size, num_objects, reid_embed_size] where\n predicted embeddings are gathered at the provided locations.\n ' (batch_size, _, width, _) = _get_shape(embedding_predictions, 4) flattened_indices = flattened_indices_from_row_col_indices(y_indices, x_indices, width) (_, num_instances) = _get_shape(flattened_indices, 2) embeddings_flat = _flatten_spatial_dimensions(embedding_predictions) embeddings = tf.gather(embeddings_flat, flattened_indices, batch_dims=1) embeddings = tf.reshape(embeddings, [batch_size, num_instances, (- 1)]) return embeddings
def get_num_instances_from_weights(groundtruth_weights_list): 'Computes the number of instances/boxes from the weights in a batch.\n\n Args:\n groundtruth_weights_list: A list of float tensors with shape\n [max_num_instances] representing whether there is an actual instance in\n the image (with non-zero value) or is padded to match the\n max_num_instances (with value 0.0). The list represents the batch\n dimension.\n\n Returns:\n A scalar integer tensor incidating how many instances/boxes are in the\n images in the batch. Note that this function is usually used to normalize\n the loss so the minimum return value is 1 to avoid weird behavior.\n ' num_instances = tf.reduce_sum([tf.math.count_nonzero(w) for w in groundtruth_weights_list]) num_instances = tf.maximum(num_instances, 1) return num_instances
-1,074,146,280,008,215,800
Computes the number of instances/boxes from the weights in a batch. Args: groundtruth_weights_list: A list of float tensors with shape [max_num_instances] representing whether there is an actual instance in the image (with non-zero value) or is padded to match the max_num_instances (with value 0.0). The list represents the batch dimension. Returns: A scalar integer tensor incidating how many instances/boxes are in the images in the batch. Note that this function is usually used to normalize the loss so the minimum return value is 1 to avoid weird behavior.
research/object_detection/meta_architectures/center_net_meta_arch.py
get_num_instances_from_weights
AvikantSrivastava/models
python
def get_num_instances_from_weights(groundtruth_weights_list): 'Computes the number of instances/boxes from the weights in a batch.\n\n Args:\n groundtruth_weights_list: A list of float tensors with shape\n [max_num_instances] representing whether there is an actual instance in\n the image (with non-zero value) or is padded to match the\n max_num_instances (with value 0.0). The list represents the batch\n dimension.\n\n Returns:\n A scalar integer tensor incidating how many instances/boxes are in the\n images in the batch. Note that this function is usually used to normalize\n the loss so the minimum return value is 1 to avoid weird behavior.\n ' num_instances = tf.reduce_sum([tf.math.count_nonzero(w) for w in groundtruth_weights_list]) num_instances = tf.maximum(num_instances, 1) return num_instances
def __init__(self, name=None, channel_means=(0.0, 0.0, 0.0), channel_stds=(1.0, 1.0, 1.0), bgr_ordering=False): 'Initializes a CenterNet feature extractor.\n\n Args:\n name: str, the name used for the underlying keras model.\n channel_means: A tuple of floats, denoting the mean of each channel\n which will be subtracted from it. If None or empty, we use 0s.\n channel_stds: A tuple of floats, denoting the standard deviation of each\n channel. Each channel will be divided by its standard deviation value.\n If None or empty, we use 1s.\n bgr_ordering: bool, if set will change the channel ordering to be in the\n [blue, red, green] order.\n ' super(CenterNetFeatureExtractor, self).__init__(name=name) if ((channel_means is None) or (len(channel_means) == 0)): channel_means = [0.0, 0.0, 0.0] if ((channel_stds is None) or (len(channel_stds) == 0)): channel_stds = [1.0, 1.0, 1.0] self._channel_means = channel_means self._channel_stds = channel_stds self._bgr_ordering = bgr_ordering
3,949,862,726,365,284,000
Initializes a CenterNet feature extractor. Args: name: str, the name used for the underlying keras model. channel_means: A tuple of floats, denoting the mean of each channel which will be subtracted from it. If None or empty, we use 0s. channel_stds: A tuple of floats, denoting the standard deviation of each channel. Each channel will be divided by its standard deviation value. If None or empty, we use 1s. bgr_ordering: bool, if set will change the channel ordering to be in the [blue, red, green] order.
research/object_detection/meta_architectures/center_net_meta_arch.py
__init__
AvikantSrivastava/models
python
def __init__(self, name=None, channel_means=(0.0, 0.0, 0.0), channel_stds=(1.0, 1.0, 1.0), bgr_ordering=False): 'Initializes a CenterNet feature extractor.\n\n Args:\n name: str, the name used for the underlying keras model.\n channel_means: A tuple of floats, denoting the mean of each channel\n which will be subtracted from it. If None or empty, we use 0s.\n channel_stds: A tuple of floats, denoting the standard deviation of each\n channel. Each channel will be divided by its standard deviation value.\n If None or empty, we use 1s.\n bgr_ordering: bool, if set will change the channel ordering to be in the\n [blue, red, green] order.\n ' super(CenterNetFeatureExtractor, self).__init__(name=name) if ((channel_means is None) or (len(channel_means) == 0)): channel_means = [0.0, 0.0, 0.0] if ((channel_stds is None) or (len(channel_stds) == 0)): channel_stds = [1.0, 1.0, 1.0] self._channel_means = channel_means self._channel_stds = channel_stds self._bgr_ordering = bgr_ordering
def preprocess(self, inputs): 'Converts a batch of unscaled images to a scale suitable for the model.\n\n This method normalizes the image using the given `channel_means` and\n `channels_stds` values at initialization time while optionally flipping\n the channel order if `bgr_ordering` is set.\n\n Args:\n inputs: a [batch, height, width, channels] float32 tensor\n\n Returns:\n outputs: a [batch, height, width, channels] float32 tensor\n\n ' if self._bgr_ordering: (red, green, blue) = tf.unstack(inputs, axis=3) inputs = tf.stack([blue, green, red], axis=3) channel_means = tf.reshape(tf.constant(self._channel_means), [1, 1, 1, (- 1)]) channel_stds = tf.reshape(tf.constant(self._channel_stds), [1, 1, 1, (- 1)]) return ((inputs - channel_means) / channel_stds)
-6,190,530,192,781,071,000
Converts a batch of unscaled images to a scale suitable for the model. This method normalizes the image using the given `channel_means` and `channels_stds` values at initialization time while optionally flipping the channel order if `bgr_ordering` is set. Args: inputs: a [batch, height, width, channels] float32 tensor Returns: outputs: a [batch, height, width, channels] float32 tensor
research/object_detection/meta_architectures/center_net_meta_arch.py
preprocess
AvikantSrivastava/models
python
def preprocess(self, inputs): 'Converts a batch of unscaled images to a scale suitable for the model.\n\n This method normalizes the image using the given `channel_means` and\n `channels_stds` values at initialization time while optionally flipping\n the channel order if `bgr_ordering` is set.\n\n Args:\n inputs: a [batch, height, width, channels] float32 tensor\n\n Returns:\n outputs: a [batch, height, width, channels] float32 tensor\n\n ' if self._bgr_ordering: (red, green, blue) = tf.unstack(inputs, axis=3) inputs = tf.stack([blue, green, red], axis=3) channel_means = tf.reshape(tf.constant(self._channel_means), [1, 1, 1, (- 1)]) channel_stds = tf.reshape(tf.constant(self._channel_stds), [1, 1, 1, (- 1)]) return ((inputs - channel_means) / channel_stds)
@property @abc.abstractmethod def out_stride(self): 'The stride in the output image of the network.' pass
-2,731,785,466,358,025,700
The stride in the output image of the network.
research/object_detection/meta_architectures/center_net_meta_arch.py
out_stride
AvikantSrivastava/models
python
@property @abc.abstractmethod def out_stride(self): pass
@property @abc.abstractmethod def num_feature_outputs(self): 'Ther number of feature outputs returned by the feature extractor.' pass
-5,547,701,700,219,693,000
Ther number of feature outputs returned by the feature extractor.
research/object_detection/meta_architectures/center_net_meta_arch.py
num_feature_outputs
AvikantSrivastava/models
python
@property @abc.abstractmethod def num_feature_outputs(self): pass
@property @abc.abstractmethod def supported_sub_model_types(self): 'Valid sub model types supported by the get_sub_model function.' pass
-2,112,042,718,320,665,900
Valid sub model types supported by the get_sub_model function.
research/object_detection/meta_architectures/center_net_meta_arch.py
supported_sub_model_types
AvikantSrivastava/models
python
@property @abc.abstractmethod def supported_sub_model_types(self): pass
@abc.abstractmethod def get_sub_model(self, sub_model_type): "Returns the underlying keras model for the given sub_model_type.\n\n This function is useful when we only want to get a subset of weights to\n be restored from a checkpoint.\n\n Args:\n sub_model_type: string, the type of sub model. Currently, CenterNet\n feature extractors support 'detection' and 'classification'.\n " pass
-1,582,457,041,655,619,000
Returns the underlying keras model for the given sub_model_type. This function is useful when we only want to get a subset of weights to be restored from a checkpoint. Args: sub_model_type: string, the type of sub model. Currently, CenterNet feature extractors support 'detection' and 'classification'.
research/object_detection/meta_architectures/center_net_meta_arch.py
get_sub_model
AvikantSrivastava/models
python
@abc.abstractmethod def get_sub_model(self, sub_model_type): "Returns the underlying keras model for the given sub_model_type.\n\n This function is useful when we only want to get a subset of weights to\n be restored from a checkpoint.\n\n Args:\n sub_model_type: string, the type of sub model. Currently, CenterNet\n feature extractors support 'detection' and 'classification'.\n " pass
def __new__(cls, localization_loss, scale_loss_weight, offset_loss_weight, task_loss_weight=1.0): 'Constructor with default values for ObjectDetectionParams.\n\n Args:\n localization_loss: a object_detection.core.losses.Loss object to compute\n the loss for the center offset and height/width predictions in\n CenterNet.\n scale_loss_weight: float, The weight for localizing box size. Note that\n the scale loss is dependent on the input image size, since we penalize\n the raw height and width. This constant may need to be adjusted\n depending on the input size.\n offset_loss_weight: float, The weight for localizing center offsets.\n task_loss_weight: float, the weight of the object detection loss.\n\n Returns:\n An initialized ObjectDetectionParams namedtuple.\n ' return super(ObjectDetectionParams, cls).__new__(cls, localization_loss, scale_loss_weight, offset_loss_weight, task_loss_weight)
319,322,182,275,863,940
Constructor with default values for ObjectDetectionParams. Args: localization_loss: a object_detection.core.losses.Loss object to compute the loss for the center offset and height/width predictions in CenterNet. scale_loss_weight: float, The weight for localizing box size. Note that the scale loss is dependent on the input image size, since we penalize the raw height and width. This constant may need to be adjusted depending on the input size. offset_loss_weight: float, The weight for localizing center offsets. task_loss_weight: float, the weight of the object detection loss. Returns: An initialized ObjectDetectionParams namedtuple.
research/object_detection/meta_architectures/center_net_meta_arch.py
__new__
AvikantSrivastava/models
python
def __new__(cls, localization_loss, scale_loss_weight, offset_loss_weight, task_loss_weight=1.0): 'Constructor with default values for ObjectDetectionParams.\n\n Args:\n localization_loss: a object_detection.core.losses.Loss object to compute\n the loss for the center offset and height/width predictions in\n CenterNet.\n scale_loss_weight: float, The weight for localizing box size. Note that\n the scale loss is dependent on the input image size, since we penalize\n the raw height and width. This constant may need to be adjusted\n depending on the input size.\n offset_loss_weight: float, The weight for localizing center offsets.\n task_loss_weight: float, the weight of the object detection loss.\n\n Returns:\n An initialized ObjectDetectionParams namedtuple.\n ' return super(ObjectDetectionParams, cls).__new__(cls, localization_loss, scale_loss_weight, offset_loss_weight, task_loss_weight)
def __new__(cls, task_name, class_id, keypoint_indices, classification_loss, localization_loss, keypoint_labels=None, keypoint_std_dev=None, keypoint_heatmap_loss_weight=1.0, keypoint_offset_loss_weight=1.0, keypoint_regression_loss_weight=1.0, keypoint_candidate_score_threshold=0.1, heatmap_bias_init=(- 2.19), num_candidates_per_keypoint=100, task_loss_weight=1.0, peak_max_pool_kernel_size=3, unmatched_keypoint_score=0.1, box_scale=1.2, candidate_search_scale=0.3, candidate_ranking_mode='min_distance', offset_peak_radius=0, per_keypoint_offset=False): 'Constructor with default values for KeypointEstimationParams.\n\n Args:\n task_name: string, the name of the task this namedtuple corresponds to.\n Note that it should be an unique identifier of the task.\n class_id: int, the ID of the class that contains the target keypoints to\n considered in this task. For example, if the task is human pose\n estimation, the class id should correspond to the "human" class. Note\n that the ID is 0-based, meaning that class 0 corresponds to the first\n non-background object class.\n keypoint_indices: A list of integers representing the indicies of the\n keypoints to be considered in this task. This is used to retrieve the\n subset of the keypoints from gt_keypoints that should be considered in\n this task.\n classification_loss: an object_detection.core.losses.Loss object to\n compute the loss for the class predictions in CenterNet.\n localization_loss: an object_detection.core.losses.Loss object to compute\n the loss for the center offset and height/width predictions in\n CenterNet.\n keypoint_labels: A list of strings representing the label text of each\n keypoint, e.g. "nose", \'left_shoulder". Note that the length of this\n list should be equal to keypoint_indices.\n keypoint_std_dev: A list of float represent the standard deviation of the\n Gaussian kernel used to generate the keypoint heatmap. It is to provide\n the flexibility of using different sizes of Gaussian kernel for each\n keypoint class.\n keypoint_heatmap_loss_weight: float, The weight for the keypoint heatmap.\n keypoint_offset_loss_weight: float, The weight for the keypoint offsets\n loss.\n keypoint_regression_loss_weight: float, The weight for keypoint regression\n loss. Note that the loss is dependent on the input image size, since we\n penalize the raw height and width. This constant may need to be adjusted\n depending on the input size.\n keypoint_candidate_score_threshold: float, The heatmap score threshold for\n a keypoint to become a valid candidate.\n heatmap_bias_init: float, the initial value of bias in the convolutional\n kernel of the class prediction head. If set to None, the bias is\n initialized with zeros.\n num_candidates_per_keypoint: The maximum number of candidates to retrieve\n for each keypoint.\n task_loss_weight: float, the weight of the keypoint estimation loss.\n peak_max_pool_kernel_size: Max pool kernel size to use to pull off peak\n score locations in a neighborhood (independently for each keypoint\n types).\n unmatched_keypoint_score: The default score to use for regressed keypoints\n that are not successfully snapped to a nearby candidate.\n box_scale: The multiplier to expand the bounding boxes (either the\n provided boxes or those which tightly cover the regressed keypoints).\n candidate_search_scale: The scale parameter that multiplies the largest\n dimension of a bounding box. The resulting distance becomes a search\n radius for candidates in the vicinity of each regressed keypoint.\n candidate_ranking_mode: One of [\'min_distance\', \'score_distance_ratio\']\n indicating how to select the keypoint candidate.\n offset_peak_radius: The radius (in the unit of output pixel) around\n groundtruth heatmap peak to assign the offset targets. If set 0, then\n the offset target will only be assigned to the heatmap peak (same\n behavior as the original paper).\n per_keypoint_offset: A bool indicates whether to assign offsets for each\n keypoint channel separately. If set False, the output offset target has\n the shape [batch_size, out_height, out_width, 2] (same behavior as the\n original paper). If set True, the output offset target has the shape\n [batch_size, out_height, out_width, 2 * num_keypoints] (recommended when\n the offset_peak_radius is not zero).\n\n Returns:\n An initialized KeypointEstimationParams namedtuple.\n ' return super(KeypointEstimationParams, cls).__new__(cls, task_name, class_id, keypoint_indices, classification_loss, localization_loss, keypoint_labels, keypoint_std_dev, keypoint_heatmap_loss_weight, keypoint_offset_loss_weight, keypoint_regression_loss_weight, keypoint_candidate_score_threshold, heatmap_bias_init, num_candidates_per_keypoint, task_loss_weight, peak_max_pool_kernel_size, unmatched_keypoint_score, box_scale, candidate_search_scale, candidate_ranking_mode, offset_peak_radius, per_keypoint_offset)
1,224,667,856,985,538,300
Constructor with default values for KeypointEstimationParams. Args: task_name: string, the name of the task this namedtuple corresponds to. Note that it should be an unique identifier of the task. class_id: int, the ID of the class that contains the target keypoints to considered in this task. For example, if the task is human pose estimation, the class id should correspond to the "human" class. Note that the ID is 0-based, meaning that class 0 corresponds to the first non-background object class. keypoint_indices: A list of integers representing the indicies of the keypoints to be considered in this task. This is used to retrieve the subset of the keypoints from gt_keypoints that should be considered in this task. classification_loss: an object_detection.core.losses.Loss object to compute the loss for the class predictions in CenterNet. localization_loss: an object_detection.core.losses.Loss object to compute the loss for the center offset and height/width predictions in CenterNet. keypoint_labels: A list of strings representing the label text of each keypoint, e.g. "nose", 'left_shoulder". Note that the length of this list should be equal to keypoint_indices. keypoint_std_dev: A list of float represent the standard deviation of the Gaussian kernel used to generate the keypoint heatmap. It is to provide the flexibility of using different sizes of Gaussian kernel for each keypoint class. keypoint_heatmap_loss_weight: float, The weight for the keypoint heatmap. keypoint_offset_loss_weight: float, The weight for the keypoint offsets loss. keypoint_regression_loss_weight: float, The weight for keypoint regression loss. Note that the loss is dependent on the input image size, since we penalize the raw height and width. This constant may need to be adjusted depending on the input size. keypoint_candidate_score_threshold: float, The heatmap score threshold for a keypoint to become a valid candidate. heatmap_bias_init: float, the initial value of bias in the convolutional kernel of the class prediction head. If set to None, the bias is initialized with zeros. num_candidates_per_keypoint: The maximum number of candidates to retrieve for each keypoint. task_loss_weight: float, the weight of the keypoint estimation loss. peak_max_pool_kernel_size: Max pool kernel size to use to pull off peak score locations in a neighborhood (independently for each keypoint types). unmatched_keypoint_score: The default score to use for regressed keypoints that are not successfully snapped to a nearby candidate. box_scale: The multiplier to expand the bounding boxes (either the provided boxes or those which tightly cover the regressed keypoints). candidate_search_scale: The scale parameter that multiplies the largest dimension of a bounding box. The resulting distance becomes a search radius for candidates in the vicinity of each regressed keypoint. candidate_ranking_mode: One of ['min_distance', 'score_distance_ratio'] indicating how to select the keypoint candidate. offset_peak_radius: The radius (in the unit of output pixel) around groundtruth heatmap peak to assign the offset targets. If set 0, then the offset target will only be assigned to the heatmap peak (same behavior as the original paper). per_keypoint_offset: A bool indicates whether to assign offsets for each keypoint channel separately. If set False, the output offset target has the shape [batch_size, out_height, out_width, 2] (same behavior as the original paper). If set True, the output offset target has the shape [batch_size, out_height, out_width, 2 * num_keypoints] (recommended when the offset_peak_radius is not zero). Returns: An initialized KeypointEstimationParams namedtuple.
research/object_detection/meta_architectures/center_net_meta_arch.py
__new__
AvikantSrivastava/models
python
def __new__(cls, task_name, class_id, keypoint_indices, classification_loss, localization_loss, keypoint_labels=None, keypoint_std_dev=None, keypoint_heatmap_loss_weight=1.0, keypoint_offset_loss_weight=1.0, keypoint_regression_loss_weight=1.0, keypoint_candidate_score_threshold=0.1, heatmap_bias_init=(- 2.19), num_candidates_per_keypoint=100, task_loss_weight=1.0, peak_max_pool_kernel_size=3, unmatched_keypoint_score=0.1, box_scale=1.2, candidate_search_scale=0.3, candidate_ranking_mode='min_distance', offset_peak_radius=0, per_keypoint_offset=False): 'Constructor with default values for KeypointEstimationParams.\n\n Args:\n task_name: string, the name of the task this namedtuple corresponds to.\n Note that it should be an unique identifier of the task.\n class_id: int, the ID of the class that contains the target keypoints to\n considered in this task. For example, if the task is human pose\n estimation, the class id should correspond to the "human" class. Note\n that the ID is 0-based, meaning that class 0 corresponds to the first\n non-background object class.\n keypoint_indices: A list of integers representing the indicies of the\n keypoints to be considered in this task. This is used to retrieve the\n subset of the keypoints from gt_keypoints that should be considered in\n this task.\n classification_loss: an object_detection.core.losses.Loss object to\n compute the loss for the class predictions in CenterNet.\n localization_loss: an object_detection.core.losses.Loss object to compute\n the loss for the center offset and height/width predictions in\n CenterNet.\n keypoint_labels: A list of strings representing the label text of each\n keypoint, e.g. "nose", \'left_shoulder". Note that the length of this\n list should be equal to keypoint_indices.\n keypoint_std_dev: A list of float represent the standard deviation of the\n Gaussian kernel used to generate the keypoint heatmap. It is to provide\n the flexibility of using different sizes of Gaussian kernel for each\n keypoint class.\n keypoint_heatmap_loss_weight: float, The weight for the keypoint heatmap.\n keypoint_offset_loss_weight: float, The weight for the keypoint offsets\n loss.\n keypoint_regression_loss_weight: float, The weight for keypoint regression\n loss. Note that the loss is dependent on the input image size, since we\n penalize the raw height and width. This constant may need to be adjusted\n depending on the input size.\n keypoint_candidate_score_threshold: float, The heatmap score threshold for\n a keypoint to become a valid candidate.\n heatmap_bias_init: float, the initial value of bias in the convolutional\n kernel of the class prediction head. If set to None, the bias is\n initialized with zeros.\n num_candidates_per_keypoint: The maximum number of candidates to retrieve\n for each keypoint.\n task_loss_weight: float, the weight of the keypoint estimation loss.\n peak_max_pool_kernel_size: Max pool kernel size to use to pull off peak\n score locations in a neighborhood (independently for each keypoint\n types).\n unmatched_keypoint_score: The default score to use for regressed keypoints\n that are not successfully snapped to a nearby candidate.\n box_scale: The multiplier to expand the bounding boxes (either the\n provided boxes or those which tightly cover the regressed keypoints).\n candidate_search_scale: The scale parameter that multiplies the largest\n dimension of a bounding box. The resulting distance becomes a search\n radius for candidates in the vicinity of each regressed keypoint.\n candidate_ranking_mode: One of [\'min_distance\', \'score_distance_ratio\']\n indicating how to select the keypoint candidate.\n offset_peak_radius: The radius (in the unit of output pixel) around\n groundtruth heatmap peak to assign the offset targets. If set 0, then\n the offset target will only be assigned to the heatmap peak (same\n behavior as the original paper).\n per_keypoint_offset: A bool indicates whether to assign offsets for each\n keypoint channel separately. If set False, the output offset target has\n the shape [batch_size, out_height, out_width, 2] (same behavior as the\n original paper). If set True, the output offset target has the shape\n [batch_size, out_height, out_width, 2 * num_keypoints] (recommended when\n the offset_peak_radius is not zero).\n\n Returns:\n An initialized KeypointEstimationParams namedtuple.\n ' return super(KeypointEstimationParams, cls).__new__(cls, task_name, class_id, keypoint_indices, classification_loss, localization_loss, keypoint_labels, keypoint_std_dev, keypoint_heatmap_loss_weight, keypoint_offset_loss_weight, keypoint_regression_loss_weight, keypoint_candidate_score_threshold, heatmap_bias_init, num_candidates_per_keypoint, task_loss_weight, peak_max_pool_kernel_size, unmatched_keypoint_score, box_scale, candidate_search_scale, candidate_ranking_mode, offset_peak_radius, per_keypoint_offset)
def __new__(cls, classification_loss, object_center_loss_weight, heatmap_bias_init=(- 2.19), min_box_overlap_iou=0.7, max_box_predictions=100, use_labeled_classes=False): 'Constructor with default values for ObjectCenterParams.\n\n Args:\n classification_loss: an object_detection.core.losses.Loss object to\n compute the loss for the class predictions in CenterNet.\n object_center_loss_weight: float, The weight for the object center loss.\n heatmap_bias_init: float, the initial value of bias in the convolutional\n kernel of the object center prediction head. If set to None, the bias is\n initialized with zeros.\n min_box_overlap_iou: float, the minimum IOU overlap that predicted boxes\n need have with groundtruth boxes to not be penalized. This is used for\n computing the class specific center heatmaps.\n max_box_predictions: int, the maximum number of boxes to predict.\n use_labeled_classes: boolean, compute the loss only labeled classes.\n\n Returns:\n An initialized ObjectCenterParams namedtuple.\n ' return super(ObjectCenterParams, cls).__new__(cls, classification_loss, object_center_loss_weight, heatmap_bias_init, min_box_overlap_iou, max_box_predictions, use_labeled_classes)
-244,050,174,111,315,200
Constructor with default values for ObjectCenterParams. Args: classification_loss: an object_detection.core.losses.Loss object to compute the loss for the class predictions in CenterNet. object_center_loss_weight: float, The weight for the object center loss. heatmap_bias_init: float, the initial value of bias in the convolutional kernel of the object center prediction head. If set to None, the bias is initialized with zeros. min_box_overlap_iou: float, the minimum IOU overlap that predicted boxes need have with groundtruth boxes to not be penalized. This is used for computing the class specific center heatmaps. max_box_predictions: int, the maximum number of boxes to predict. use_labeled_classes: boolean, compute the loss only labeled classes. Returns: An initialized ObjectCenterParams namedtuple.
research/object_detection/meta_architectures/center_net_meta_arch.py
__new__
AvikantSrivastava/models
python
def __new__(cls, classification_loss, object_center_loss_weight, heatmap_bias_init=(- 2.19), min_box_overlap_iou=0.7, max_box_predictions=100, use_labeled_classes=False): 'Constructor with default values for ObjectCenterParams.\n\n Args:\n classification_loss: an object_detection.core.losses.Loss object to\n compute the loss for the class predictions in CenterNet.\n object_center_loss_weight: float, The weight for the object center loss.\n heatmap_bias_init: float, the initial value of bias in the convolutional\n kernel of the object center prediction head. If set to None, the bias is\n initialized with zeros.\n min_box_overlap_iou: float, the minimum IOU overlap that predicted boxes\n need have with groundtruth boxes to not be penalized. This is used for\n computing the class specific center heatmaps.\n max_box_predictions: int, the maximum number of boxes to predict.\n use_labeled_classes: boolean, compute the loss only labeled classes.\n\n Returns:\n An initialized ObjectCenterParams namedtuple.\n ' return super(ObjectCenterParams, cls).__new__(cls, classification_loss, object_center_loss_weight, heatmap_bias_init, min_box_overlap_iou, max_box_predictions, use_labeled_classes)
def __new__(cls, classification_loss, task_loss_weight=1.0, mask_height=256, mask_width=256, score_threshold=0.5, heatmap_bias_init=(- 2.19)): 'Constructor with default values for MaskParams.\n\n Args:\n classification_loss: an object_detection.core.losses.Loss object to\n compute the loss for the semantic segmentation predictions in CenterNet.\n task_loss_weight: float, The loss weight for the segmentation task.\n mask_height: The height of the resized instance segmentation mask.\n mask_width: The width of the resized instance segmentation mask.\n score_threshold: The threshold at which to convert predicted mask\n probabilities (after passing through sigmoid) into foreground pixels.\n heatmap_bias_init: float, the initial value of bias in the convolutional\n kernel of the semantic segmentation prediction head. If set to None, the\n bias is initialized with zeros.\n\n Returns:\n An initialized MaskParams namedtuple.\n ' return super(MaskParams, cls).__new__(cls, classification_loss, task_loss_weight, mask_height, mask_width, score_threshold, heatmap_bias_init)
7,861,250,382,031,103,000
Constructor with default values for MaskParams. Args: classification_loss: an object_detection.core.losses.Loss object to compute the loss for the semantic segmentation predictions in CenterNet. task_loss_weight: float, The loss weight for the segmentation task. mask_height: The height of the resized instance segmentation mask. mask_width: The width of the resized instance segmentation mask. score_threshold: The threshold at which to convert predicted mask probabilities (after passing through sigmoid) into foreground pixels. heatmap_bias_init: float, the initial value of bias in the convolutional kernel of the semantic segmentation prediction head. If set to None, the bias is initialized with zeros. Returns: An initialized MaskParams namedtuple.
research/object_detection/meta_architectures/center_net_meta_arch.py
__new__
AvikantSrivastava/models
python
def __new__(cls, classification_loss, task_loss_weight=1.0, mask_height=256, mask_width=256, score_threshold=0.5, heatmap_bias_init=(- 2.19)): 'Constructor with default values for MaskParams.\n\n Args:\n classification_loss: an object_detection.core.losses.Loss object to\n compute the loss for the semantic segmentation predictions in CenterNet.\n task_loss_weight: float, The loss weight for the segmentation task.\n mask_height: The height of the resized instance segmentation mask.\n mask_width: The width of the resized instance segmentation mask.\n score_threshold: The threshold at which to convert predicted mask\n probabilities (after passing through sigmoid) into foreground pixels.\n heatmap_bias_init: float, the initial value of bias in the convolutional\n kernel of the semantic segmentation prediction head. If set to None, the\n bias is initialized with zeros.\n\n Returns:\n An initialized MaskParams namedtuple.\n ' return super(MaskParams, cls).__new__(cls, classification_loss, task_loss_weight, mask_height, mask_width, score_threshold, heatmap_bias_init)
def __new__(cls, class_id, classification_loss, localization_loss, part_loss_weight=1.0, coordinate_loss_weight=1.0, num_parts=24, task_loss_weight=1.0, upsample_to_input_res=True, upsample_method='bilinear', heatmap_bias_init=(- 2.19)): 'Constructor with default values for DensePoseParams.\n\n Args:\n class_id: the ID of the class that contains the DensePose groundtruth.\n This should typically correspond to the "person" class. Note that the ID\n is 0-based, meaning that class 0 corresponds to the first non-background\n object class.\n classification_loss: an object_detection.core.losses.Loss object to\n compute the loss for the body part predictions in CenterNet.\n localization_loss: an object_detection.core.losses.Loss object to compute\n the loss for the surface coordinate regression in CenterNet.\n part_loss_weight: The loss weight to apply to part prediction.\n coordinate_loss_weight: The loss weight to apply to surface coordinate\n prediction.\n num_parts: The number of DensePose parts to predict.\n task_loss_weight: float, the loss weight for the DensePose task.\n upsample_to_input_res: Whether to upsample the DensePose feature maps to\n the input resolution before applying loss. Note that the prediction\n outputs are still at the standard CenterNet output stride.\n upsample_method: Method for upsampling DensePose feature maps. Options are\n either \'bilinear\' or \'nearest\'). This takes no effect when\n `upsample_to_input_res` is False.\n heatmap_bias_init: float, the initial value of bias in the convolutional\n kernel of the part prediction head. If set to None, the\n bias is initialized with zeros.\n\n Returns:\n An initialized DensePoseParams namedtuple.\n ' return super(DensePoseParams, cls).__new__(cls, class_id, classification_loss, localization_loss, part_loss_weight, coordinate_loss_weight, num_parts, task_loss_weight, upsample_to_input_res, upsample_method, heatmap_bias_init)
5,725,670,139,513,713,000
Constructor with default values for DensePoseParams. Args: class_id: the ID of the class that contains the DensePose groundtruth. This should typically correspond to the "person" class. Note that the ID is 0-based, meaning that class 0 corresponds to the first non-background object class. classification_loss: an object_detection.core.losses.Loss object to compute the loss for the body part predictions in CenterNet. localization_loss: an object_detection.core.losses.Loss object to compute the loss for the surface coordinate regression in CenterNet. part_loss_weight: The loss weight to apply to part prediction. coordinate_loss_weight: The loss weight to apply to surface coordinate prediction. num_parts: The number of DensePose parts to predict. task_loss_weight: float, the loss weight for the DensePose task. upsample_to_input_res: Whether to upsample the DensePose feature maps to the input resolution before applying loss. Note that the prediction outputs are still at the standard CenterNet output stride. upsample_method: Method for upsampling DensePose feature maps. Options are either 'bilinear' or 'nearest'). This takes no effect when `upsample_to_input_res` is False. heatmap_bias_init: float, the initial value of bias in the convolutional kernel of the part prediction head. If set to None, the bias is initialized with zeros. Returns: An initialized DensePoseParams namedtuple.
research/object_detection/meta_architectures/center_net_meta_arch.py
__new__
AvikantSrivastava/models
python
def __new__(cls, class_id, classification_loss, localization_loss, part_loss_weight=1.0, coordinate_loss_weight=1.0, num_parts=24, task_loss_weight=1.0, upsample_to_input_res=True, upsample_method='bilinear', heatmap_bias_init=(- 2.19)): 'Constructor with default values for DensePoseParams.\n\n Args:\n class_id: the ID of the class that contains the DensePose groundtruth.\n This should typically correspond to the "person" class. Note that the ID\n is 0-based, meaning that class 0 corresponds to the first non-background\n object class.\n classification_loss: an object_detection.core.losses.Loss object to\n compute the loss for the body part predictions in CenterNet.\n localization_loss: an object_detection.core.losses.Loss object to compute\n the loss for the surface coordinate regression in CenterNet.\n part_loss_weight: The loss weight to apply to part prediction.\n coordinate_loss_weight: The loss weight to apply to surface coordinate\n prediction.\n num_parts: The number of DensePose parts to predict.\n task_loss_weight: float, the loss weight for the DensePose task.\n upsample_to_input_res: Whether to upsample the DensePose feature maps to\n the input resolution before applying loss. Note that the prediction\n outputs are still at the standard CenterNet output stride.\n upsample_method: Method for upsampling DensePose feature maps. Options are\n either \'bilinear\' or \'nearest\'). This takes no effect when\n `upsample_to_input_res` is False.\n heatmap_bias_init: float, the initial value of bias in the convolutional\n kernel of the part prediction head. If set to None, the\n bias is initialized with zeros.\n\n Returns:\n An initialized DensePoseParams namedtuple.\n ' return super(DensePoseParams, cls).__new__(cls, class_id, classification_loss, localization_loss, part_loss_weight, coordinate_loss_weight, num_parts, task_loss_weight, upsample_to_input_res, upsample_method, heatmap_bias_init)
def __new__(cls, num_track_ids, reid_embed_size, num_fc_layers, classification_loss, task_loss_weight=1.0): 'Constructor with default values for TrackParams.\n\n Args:\n num_track_ids: int. The maximum track ID in the dataset. Used for ReID\n embedding classification task.\n reid_embed_size: int. The embedding size for ReID task.\n num_fc_layers: int. The number of (fully-connected, batch-norm, relu)\n layers for track ID classification head.\n classification_loss: an object_detection.core.losses.Loss object to\n compute the loss for the ReID embedding in CenterNet.\n task_loss_weight: float, the loss weight for the tracking task.\n\n Returns:\n An initialized TrackParams namedtuple.\n ' return super(TrackParams, cls).__new__(cls, num_track_ids, reid_embed_size, num_fc_layers, classification_loss, task_loss_weight)
-5,018,960,529,862,917,000
Constructor with default values for TrackParams. Args: num_track_ids: int. The maximum track ID in the dataset. Used for ReID embedding classification task. reid_embed_size: int. The embedding size for ReID task. num_fc_layers: int. The number of (fully-connected, batch-norm, relu) layers for track ID classification head. classification_loss: an object_detection.core.losses.Loss object to compute the loss for the ReID embedding in CenterNet. task_loss_weight: float, the loss weight for the tracking task. Returns: An initialized TrackParams namedtuple.
research/object_detection/meta_architectures/center_net_meta_arch.py
__new__
AvikantSrivastava/models
python
def __new__(cls, num_track_ids, reid_embed_size, num_fc_layers, classification_loss, task_loss_weight=1.0): 'Constructor with default values for TrackParams.\n\n Args:\n num_track_ids: int. The maximum track ID in the dataset. Used for ReID\n embedding classification task.\n reid_embed_size: int. The embedding size for ReID task.\n num_fc_layers: int. The number of (fully-connected, batch-norm, relu)\n layers for track ID classification head.\n classification_loss: an object_detection.core.losses.Loss object to\n compute the loss for the ReID embedding in CenterNet.\n task_loss_weight: float, the loss weight for the tracking task.\n\n Returns:\n An initialized TrackParams namedtuple.\n ' return super(TrackParams, cls).__new__(cls, num_track_ids, reid_embed_size, num_fc_layers, classification_loss, task_loss_weight)
def __new__(cls, localization_loss, task_loss_weight=1.0): 'Constructor with default values for TrackParams.\n\n Args:\n localization_loss: an object_detection.core.losses.Loss object to\n compute the loss for the temporal offset in CenterNet.\n task_loss_weight: float, the loss weight for the temporal offset\n task.\n\n Returns:\n An initialized TemporalOffsetParams namedtuple.\n ' return super(TemporalOffsetParams, cls).__new__(cls, localization_loss, task_loss_weight)
4,264,954,637,863,041,500
Constructor with default values for TrackParams. Args: localization_loss: an object_detection.core.losses.Loss object to compute the loss for the temporal offset in CenterNet. task_loss_weight: float, the loss weight for the temporal offset task. Returns: An initialized TemporalOffsetParams namedtuple.
research/object_detection/meta_architectures/center_net_meta_arch.py
__new__
AvikantSrivastava/models
python
def __new__(cls, localization_loss, task_loss_weight=1.0): 'Constructor with default values for TrackParams.\n\n Args:\n localization_loss: an object_detection.core.losses.Loss object to\n compute the loss for the temporal offset in CenterNet.\n task_loss_weight: float, the loss weight for the temporal offset\n task.\n\n Returns:\n An initialized TemporalOffsetParams namedtuple.\n ' return super(TemporalOffsetParams, cls).__new__(cls, localization_loss, task_loss_weight)
def __init__(self, is_training, add_summaries, num_classes, feature_extractor, image_resizer_fn, object_center_params, object_detection_params=None, keypoint_params_dict=None, mask_params=None, densepose_params=None, track_params=None, temporal_offset_params=None): 'Initializes a CenterNet model.\n\n Args:\n is_training: Set to True if this model is being built for training.\n add_summaries: Whether to add tf summaries in the model.\n num_classes: int, The number of classes that the model should predict.\n feature_extractor: A CenterNetFeatureExtractor to use to extract features\n from an image.\n image_resizer_fn: a callable for image resizing. This callable always\n takes a rank-3 image tensor (corresponding to a single image) and\n returns a rank-3 image tensor, possibly with new spatial dimensions and\n a 1-D tensor of shape [3] indicating shape of true image within the\n resized image tensor as the resized image tensor could be padded. See\n builders/image_resizer_builder.py.\n object_center_params: An ObjectCenterParams namedtuple. This object holds\n the hyper-parameters for object center prediction. This is required by\n either object detection or keypoint estimation tasks.\n object_detection_params: An ObjectDetectionParams namedtuple. This object\n holds the hyper-parameters necessary for object detection. Please see\n the class definition for more details.\n keypoint_params_dict: A dictionary that maps from task name to the\n corresponding KeypointEstimationParams namedtuple. This object holds the\n hyper-parameters necessary for multiple keypoint estimations. Please\n see the class definition for more details.\n mask_params: A MaskParams namedtuple. This object\n holds the hyper-parameters for segmentation. Please see the class\n definition for more details.\n densepose_params: A DensePoseParams namedtuple. This object holds the\n hyper-parameters for DensePose prediction. Please see the class\n definition for more details. Note that if this is provided, it is\n expected that `mask_params` is also provided.\n track_params: A TrackParams namedtuple. This object\n holds the hyper-parameters for tracking. Please see the class\n definition for more details.\n temporal_offset_params: A TemporalOffsetParams namedtuple. This object\n holds the hyper-parameters for offset prediction based tracking.\n ' assert (object_detection_params or keypoint_params_dict) self._is_training = is_training self._feature_extractor = feature_extractor self._num_feature_outputs = feature_extractor.num_feature_outputs self._stride = self._feature_extractor.out_stride self._image_resizer_fn = image_resizer_fn self._center_params = object_center_params self._od_params = object_detection_params self._kp_params_dict = keypoint_params_dict self._mask_params = mask_params if ((densepose_params is not None) and (mask_params is None)): raise ValueError('To run DensePose prediction, `mask_params` must also be supplied.') self._densepose_params = densepose_params self._track_params = track_params self._temporal_offset_params = temporal_offset_params self._prediction_head_dict = self._construct_prediction_heads(num_classes, self._num_feature_outputs, class_prediction_bias_init=self._center_params.heatmap_bias_init) self._target_assigner_dict = self._initialize_target_assigners(stride=self._stride, min_box_overlap_iou=self._center_params.min_box_overlap_iou) self._batched_prediction_tensor_names = [] super(CenterNetMetaArch, self).__init__(num_classes)
5,664,729,417,145,753,000
Initializes a CenterNet model. Args: is_training: Set to True if this model is being built for training. add_summaries: Whether to add tf summaries in the model. num_classes: int, The number of classes that the model should predict. feature_extractor: A CenterNetFeatureExtractor to use to extract features from an image. image_resizer_fn: a callable for image resizing. This callable always takes a rank-3 image tensor (corresponding to a single image) and returns a rank-3 image tensor, possibly with new spatial dimensions and a 1-D tensor of shape [3] indicating shape of true image within the resized image tensor as the resized image tensor could be padded. See builders/image_resizer_builder.py. object_center_params: An ObjectCenterParams namedtuple. This object holds the hyper-parameters for object center prediction. This is required by either object detection or keypoint estimation tasks. object_detection_params: An ObjectDetectionParams namedtuple. This object holds the hyper-parameters necessary for object detection. Please see the class definition for more details. keypoint_params_dict: A dictionary that maps from task name to the corresponding KeypointEstimationParams namedtuple. This object holds the hyper-parameters necessary for multiple keypoint estimations. Please see the class definition for more details. mask_params: A MaskParams namedtuple. This object holds the hyper-parameters for segmentation. Please see the class definition for more details. densepose_params: A DensePoseParams namedtuple. This object holds the hyper-parameters for DensePose prediction. Please see the class definition for more details. Note that if this is provided, it is expected that `mask_params` is also provided. track_params: A TrackParams namedtuple. This object holds the hyper-parameters for tracking. Please see the class definition for more details. temporal_offset_params: A TemporalOffsetParams namedtuple. This object holds the hyper-parameters for offset prediction based tracking.
research/object_detection/meta_architectures/center_net_meta_arch.py
__init__
AvikantSrivastava/models
python
def __init__(self, is_training, add_summaries, num_classes, feature_extractor, image_resizer_fn, object_center_params, object_detection_params=None, keypoint_params_dict=None, mask_params=None, densepose_params=None, track_params=None, temporal_offset_params=None): 'Initializes a CenterNet model.\n\n Args:\n is_training: Set to True if this model is being built for training.\n add_summaries: Whether to add tf summaries in the model.\n num_classes: int, The number of classes that the model should predict.\n feature_extractor: A CenterNetFeatureExtractor to use to extract features\n from an image.\n image_resizer_fn: a callable for image resizing. This callable always\n takes a rank-3 image tensor (corresponding to a single image) and\n returns a rank-3 image tensor, possibly with new spatial dimensions and\n a 1-D tensor of shape [3] indicating shape of true image within the\n resized image tensor as the resized image tensor could be padded. See\n builders/image_resizer_builder.py.\n object_center_params: An ObjectCenterParams namedtuple. This object holds\n the hyper-parameters for object center prediction. This is required by\n either object detection or keypoint estimation tasks.\n object_detection_params: An ObjectDetectionParams namedtuple. This object\n holds the hyper-parameters necessary for object detection. Please see\n the class definition for more details.\n keypoint_params_dict: A dictionary that maps from task name to the\n corresponding KeypointEstimationParams namedtuple. This object holds the\n hyper-parameters necessary for multiple keypoint estimations. Please\n see the class definition for more details.\n mask_params: A MaskParams namedtuple. This object\n holds the hyper-parameters for segmentation. Please see the class\n definition for more details.\n densepose_params: A DensePoseParams namedtuple. This object holds the\n hyper-parameters for DensePose prediction. Please see the class\n definition for more details. Note that if this is provided, it is\n expected that `mask_params` is also provided.\n track_params: A TrackParams namedtuple. This object\n holds the hyper-parameters for tracking. Please see the class\n definition for more details.\n temporal_offset_params: A TemporalOffsetParams namedtuple. This object\n holds the hyper-parameters for offset prediction based tracking.\n ' assert (object_detection_params or keypoint_params_dict) self._is_training = is_training self._feature_extractor = feature_extractor self._num_feature_outputs = feature_extractor.num_feature_outputs self._stride = self._feature_extractor.out_stride self._image_resizer_fn = image_resizer_fn self._center_params = object_center_params self._od_params = object_detection_params self._kp_params_dict = keypoint_params_dict self._mask_params = mask_params if ((densepose_params is not None) and (mask_params is None)): raise ValueError('To run DensePose prediction, `mask_params` must also be supplied.') self._densepose_params = densepose_params self._track_params = track_params self._temporal_offset_params = temporal_offset_params self._prediction_head_dict = self._construct_prediction_heads(num_classes, self._num_feature_outputs, class_prediction_bias_init=self._center_params.heatmap_bias_init) self._target_assigner_dict = self._initialize_target_assigners(stride=self._stride, min_box_overlap_iou=self._center_params.min_box_overlap_iou) self._batched_prediction_tensor_names = [] super(CenterNetMetaArch, self).__init__(num_classes)
def _construct_prediction_heads(self, num_classes, num_feature_outputs, class_prediction_bias_init): 'Constructs the prediction heads based on the specific parameters.\n\n Args:\n num_classes: An integer indicating how many classes in total to predict.\n num_feature_outputs: An integer indicating how many feature outputs to use\n for calculating the loss. The Objects as Points paper attaches loss\n functions to multiple (`num_feature_outputs`) feature maps in the the\n backbone. E.g. for the hourglass backbone, `num_feature_outputs` is 2.\n class_prediction_bias_init: float, the initial value of bias in the\n convolutional kernel of the class prediction head. If set to None, the\n bias is initialized with zeros.\n\n Returns:\n A dictionary of keras modules generated by calling make_prediction_net\n function. It will also create and set a private member of the class when\n learning the tracking task.\n ' prediction_heads = {} prediction_heads[OBJECT_CENTER] = [make_prediction_net(num_classes, bias_fill=class_prediction_bias_init) for _ in range(num_feature_outputs)] if (self._od_params is not None): prediction_heads[BOX_SCALE] = [make_prediction_net(NUM_SIZE_CHANNELS) for _ in range(num_feature_outputs)] prediction_heads[BOX_OFFSET] = [make_prediction_net(NUM_OFFSET_CHANNELS) for _ in range(num_feature_outputs)] if (self._kp_params_dict is not None): for (task_name, kp_params) in self._kp_params_dict.items(): num_keypoints = len(kp_params.keypoint_indices) prediction_heads[get_keypoint_name(task_name, KEYPOINT_HEATMAP)] = [make_prediction_net(num_keypoints, bias_fill=kp_params.heatmap_bias_init) for _ in range(num_feature_outputs)] prediction_heads[get_keypoint_name(task_name, KEYPOINT_REGRESSION)] = [make_prediction_net((NUM_OFFSET_CHANNELS * num_keypoints)) for _ in range(num_feature_outputs)] if kp_params.per_keypoint_offset: prediction_heads[get_keypoint_name(task_name, KEYPOINT_OFFSET)] = [make_prediction_net((NUM_OFFSET_CHANNELS * num_keypoints)) for _ in range(num_feature_outputs)] else: prediction_heads[get_keypoint_name(task_name, KEYPOINT_OFFSET)] = [make_prediction_net(NUM_OFFSET_CHANNELS) for _ in range(num_feature_outputs)] if (self._mask_params is not None): prediction_heads[SEGMENTATION_HEATMAP] = [make_prediction_net(num_classes, bias_fill=self._mask_params.heatmap_bias_init) for _ in range(num_feature_outputs)] if (self._densepose_params is not None): prediction_heads[DENSEPOSE_HEATMAP] = [make_prediction_net(self._densepose_params.num_parts, bias_fill=self._densepose_params.heatmap_bias_init) for _ in range(num_feature_outputs)] prediction_heads[DENSEPOSE_REGRESSION] = [make_prediction_net((2 * self._densepose_params.num_parts)) for _ in range(num_feature_outputs)] if (self._track_params is not None): prediction_heads[TRACK_REID] = [make_prediction_net(self._track_params.reid_embed_size) for _ in range(num_feature_outputs)] self.track_reid_classification_net = tf.keras.Sequential() for _ in range((self._track_params.num_fc_layers - 1)): self.track_reid_classification_net.add(tf.keras.layers.Dense(self._track_params.reid_embed_size, input_shape=(self._track_params.reid_embed_size,))) self.track_reid_classification_net.add(tf.keras.layers.BatchNormalization()) self.track_reid_classification_net.add(tf.keras.layers.ReLU()) self.track_reid_classification_net.add(tf.keras.layers.Dense(self._track_params.num_track_ids, input_shape=(self._track_params.reid_embed_size,))) if (self._temporal_offset_params is not None): prediction_heads[TEMPORAL_OFFSET] = [make_prediction_net(NUM_OFFSET_CHANNELS) for _ in range(num_feature_outputs)] return prediction_heads
-6,639,868,782,437,514,000
Constructs the prediction heads based on the specific parameters. Args: num_classes: An integer indicating how many classes in total to predict. num_feature_outputs: An integer indicating how many feature outputs to use for calculating the loss. The Objects as Points paper attaches loss functions to multiple (`num_feature_outputs`) feature maps in the the backbone. E.g. for the hourglass backbone, `num_feature_outputs` is 2. class_prediction_bias_init: float, the initial value of bias in the convolutional kernel of the class prediction head. If set to None, the bias is initialized with zeros. Returns: A dictionary of keras modules generated by calling make_prediction_net function. It will also create and set a private member of the class when learning the tracking task.
research/object_detection/meta_architectures/center_net_meta_arch.py
_construct_prediction_heads
AvikantSrivastava/models
python
def _construct_prediction_heads(self, num_classes, num_feature_outputs, class_prediction_bias_init): 'Constructs the prediction heads based on the specific parameters.\n\n Args:\n num_classes: An integer indicating how many classes in total to predict.\n num_feature_outputs: An integer indicating how many feature outputs to use\n for calculating the loss. The Objects as Points paper attaches loss\n functions to multiple (`num_feature_outputs`) feature maps in the the\n backbone. E.g. for the hourglass backbone, `num_feature_outputs` is 2.\n class_prediction_bias_init: float, the initial value of bias in the\n convolutional kernel of the class prediction head. If set to None, the\n bias is initialized with zeros.\n\n Returns:\n A dictionary of keras modules generated by calling make_prediction_net\n function. It will also create and set a private member of the class when\n learning the tracking task.\n ' prediction_heads = {} prediction_heads[OBJECT_CENTER] = [make_prediction_net(num_classes, bias_fill=class_prediction_bias_init) for _ in range(num_feature_outputs)] if (self._od_params is not None): prediction_heads[BOX_SCALE] = [make_prediction_net(NUM_SIZE_CHANNELS) for _ in range(num_feature_outputs)] prediction_heads[BOX_OFFSET] = [make_prediction_net(NUM_OFFSET_CHANNELS) for _ in range(num_feature_outputs)] if (self._kp_params_dict is not None): for (task_name, kp_params) in self._kp_params_dict.items(): num_keypoints = len(kp_params.keypoint_indices) prediction_heads[get_keypoint_name(task_name, KEYPOINT_HEATMAP)] = [make_prediction_net(num_keypoints, bias_fill=kp_params.heatmap_bias_init) for _ in range(num_feature_outputs)] prediction_heads[get_keypoint_name(task_name, KEYPOINT_REGRESSION)] = [make_prediction_net((NUM_OFFSET_CHANNELS * num_keypoints)) for _ in range(num_feature_outputs)] if kp_params.per_keypoint_offset: prediction_heads[get_keypoint_name(task_name, KEYPOINT_OFFSET)] = [make_prediction_net((NUM_OFFSET_CHANNELS * num_keypoints)) for _ in range(num_feature_outputs)] else: prediction_heads[get_keypoint_name(task_name, KEYPOINT_OFFSET)] = [make_prediction_net(NUM_OFFSET_CHANNELS) for _ in range(num_feature_outputs)] if (self._mask_params is not None): prediction_heads[SEGMENTATION_HEATMAP] = [make_prediction_net(num_classes, bias_fill=self._mask_params.heatmap_bias_init) for _ in range(num_feature_outputs)] if (self._densepose_params is not None): prediction_heads[DENSEPOSE_HEATMAP] = [make_prediction_net(self._densepose_params.num_parts, bias_fill=self._densepose_params.heatmap_bias_init) for _ in range(num_feature_outputs)] prediction_heads[DENSEPOSE_REGRESSION] = [make_prediction_net((2 * self._densepose_params.num_parts)) for _ in range(num_feature_outputs)] if (self._track_params is not None): prediction_heads[TRACK_REID] = [make_prediction_net(self._track_params.reid_embed_size) for _ in range(num_feature_outputs)] self.track_reid_classification_net = tf.keras.Sequential() for _ in range((self._track_params.num_fc_layers - 1)): self.track_reid_classification_net.add(tf.keras.layers.Dense(self._track_params.reid_embed_size, input_shape=(self._track_params.reid_embed_size,))) self.track_reid_classification_net.add(tf.keras.layers.BatchNormalization()) self.track_reid_classification_net.add(tf.keras.layers.ReLU()) self.track_reid_classification_net.add(tf.keras.layers.Dense(self._track_params.num_track_ids, input_shape=(self._track_params.reid_embed_size,))) if (self._temporal_offset_params is not None): prediction_heads[TEMPORAL_OFFSET] = [make_prediction_net(NUM_OFFSET_CHANNELS) for _ in range(num_feature_outputs)] return prediction_heads
def _initialize_target_assigners(self, stride, min_box_overlap_iou): 'Initializes the target assigners and puts them in a dictionary.\n\n Args:\n stride: An integer indicating the stride of the image.\n min_box_overlap_iou: float, the minimum IOU overlap that predicted boxes\n need have with groundtruth boxes to not be penalized. This is used for\n computing the class specific center heatmaps.\n\n Returns:\n A dictionary of initialized target assigners for each task.\n ' target_assigners = {} target_assigners[OBJECT_CENTER] = cn_assigner.CenterNetCenterHeatmapTargetAssigner(stride, min_box_overlap_iou) if (self._od_params is not None): target_assigners[DETECTION_TASK] = cn_assigner.CenterNetBoxTargetAssigner(stride) if (self._kp_params_dict is not None): for (task_name, kp_params) in self._kp_params_dict.items(): target_assigners[task_name] = cn_assigner.CenterNetKeypointTargetAssigner(stride=stride, class_id=kp_params.class_id, keypoint_indices=kp_params.keypoint_indices, keypoint_std_dev=kp_params.keypoint_std_dev, peak_radius=kp_params.offset_peak_radius, per_keypoint_offset=kp_params.per_keypoint_offset) if (self._mask_params is not None): target_assigners[SEGMENTATION_TASK] = cn_assigner.CenterNetMaskTargetAssigner(stride) if (self._densepose_params is not None): dp_stride = (1 if self._densepose_params.upsample_to_input_res else stride) target_assigners[DENSEPOSE_TASK] = cn_assigner.CenterNetDensePoseTargetAssigner(dp_stride) if (self._track_params is not None): target_assigners[TRACK_TASK] = cn_assigner.CenterNetTrackTargetAssigner(stride, self._track_params.num_track_ids) if (self._temporal_offset_params is not None): target_assigners[TEMPORALOFFSET_TASK] = cn_assigner.CenterNetTemporalOffsetTargetAssigner(stride) return target_assigners
-3,979,121,992,371,626,000
Initializes the target assigners and puts them in a dictionary. Args: stride: An integer indicating the stride of the image. min_box_overlap_iou: float, the minimum IOU overlap that predicted boxes need have with groundtruth boxes to not be penalized. This is used for computing the class specific center heatmaps. Returns: A dictionary of initialized target assigners for each task.
research/object_detection/meta_architectures/center_net_meta_arch.py
_initialize_target_assigners
AvikantSrivastava/models
python
def _initialize_target_assigners(self, stride, min_box_overlap_iou): 'Initializes the target assigners and puts them in a dictionary.\n\n Args:\n stride: An integer indicating the stride of the image.\n min_box_overlap_iou: float, the minimum IOU overlap that predicted boxes\n need have with groundtruth boxes to not be penalized. This is used for\n computing the class specific center heatmaps.\n\n Returns:\n A dictionary of initialized target assigners for each task.\n ' target_assigners = {} target_assigners[OBJECT_CENTER] = cn_assigner.CenterNetCenterHeatmapTargetAssigner(stride, min_box_overlap_iou) if (self._od_params is not None): target_assigners[DETECTION_TASK] = cn_assigner.CenterNetBoxTargetAssigner(stride) if (self._kp_params_dict is not None): for (task_name, kp_params) in self._kp_params_dict.items(): target_assigners[task_name] = cn_assigner.CenterNetKeypointTargetAssigner(stride=stride, class_id=kp_params.class_id, keypoint_indices=kp_params.keypoint_indices, keypoint_std_dev=kp_params.keypoint_std_dev, peak_radius=kp_params.offset_peak_radius, per_keypoint_offset=kp_params.per_keypoint_offset) if (self._mask_params is not None): target_assigners[SEGMENTATION_TASK] = cn_assigner.CenterNetMaskTargetAssigner(stride) if (self._densepose_params is not None): dp_stride = (1 if self._densepose_params.upsample_to_input_res else stride) target_assigners[DENSEPOSE_TASK] = cn_assigner.CenterNetDensePoseTargetAssigner(dp_stride) if (self._track_params is not None): target_assigners[TRACK_TASK] = cn_assigner.CenterNetTrackTargetAssigner(stride, self._track_params.num_track_ids) if (self._temporal_offset_params is not None): target_assigners[TEMPORALOFFSET_TASK] = cn_assigner.CenterNetTemporalOffsetTargetAssigner(stride) return target_assigners
def _compute_object_center_loss(self, input_height, input_width, object_center_predictions, per_pixel_weights): 'Computes the object center loss.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n object_center_predictions: A list of float tensors of shape [batch_size,\n out_height, out_width, num_classes] representing the object center\n feature maps.\n per_pixel_weights: A float tensor of shape [batch_size,\n out_height * out_width, 1] with 1s in locations where the spatial\n coordinates fall within the height and width in true_image_shapes.\n\n Returns:\n A float scalar tensor representing the object center loss per instance.\n ' gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes) gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) if self._center_params.use_only_known_classes: gt_labeled_classes_list = self.groundtruth_lists(fields.InputDataFields.groundtruth_labeled_classes) batch_labeled_classes = tf.stack(gt_labeled_classes_list, axis=0) batch_labeled_classes_shape = tf.shape(batch_labeled_classes) batch_labeled_classes = tf.reshape(batch_labeled_classes, [batch_labeled_classes_shape[0], 1, batch_labeled_classes_shape[(- 1)]]) per_pixel_weights = (per_pixel_weights * batch_labeled_classes) assigner = self._target_assigner_dict[OBJECT_CENTER] heatmap_targets = assigner.assign_center_targets_from_boxes(height=input_height, width=input_width, gt_boxes_list=gt_boxes_list, gt_classes_list=gt_classes_list, gt_weights_list=gt_weights_list) flattened_heatmap_targets = _flatten_spatial_dimensions(heatmap_targets) num_boxes = _to_float32(get_num_instances_from_weights(gt_weights_list)) loss = 0.0 object_center_loss = self._center_params.classification_loss for pred in object_center_predictions: pred = _flatten_spatial_dimensions(pred) loss += object_center_loss(pred, flattened_heatmap_targets, weights=per_pixel_weights) loss_per_instance = (tf.reduce_sum(loss) / (float(len(object_center_predictions)) * num_boxes)) return loss_per_instance
-3,619,118,231,556,900,400
Computes the object center loss. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. object_center_predictions: A list of float tensors of shape [batch_size, out_height, out_width, num_classes] representing the object center feature maps. per_pixel_weights: A float tensor of shape [batch_size, out_height * out_width, 1] with 1s in locations where the spatial coordinates fall within the height and width in true_image_shapes. Returns: A float scalar tensor representing the object center loss per instance.
research/object_detection/meta_architectures/center_net_meta_arch.py
_compute_object_center_loss
AvikantSrivastava/models
python
def _compute_object_center_loss(self, input_height, input_width, object_center_predictions, per_pixel_weights): 'Computes the object center loss.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n object_center_predictions: A list of float tensors of shape [batch_size,\n out_height, out_width, num_classes] representing the object center\n feature maps.\n per_pixel_weights: A float tensor of shape [batch_size,\n out_height * out_width, 1] with 1s in locations where the spatial\n coordinates fall within the height and width in true_image_shapes.\n\n Returns:\n A float scalar tensor representing the object center loss per instance.\n ' gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes) gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) if self._center_params.use_only_known_classes: gt_labeled_classes_list = self.groundtruth_lists(fields.InputDataFields.groundtruth_labeled_classes) batch_labeled_classes = tf.stack(gt_labeled_classes_list, axis=0) batch_labeled_classes_shape = tf.shape(batch_labeled_classes) batch_labeled_classes = tf.reshape(batch_labeled_classes, [batch_labeled_classes_shape[0], 1, batch_labeled_classes_shape[(- 1)]]) per_pixel_weights = (per_pixel_weights * batch_labeled_classes) assigner = self._target_assigner_dict[OBJECT_CENTER] heatmap_targets = assigner.assign_center_targets_from_boxes(height=input_height, width=input_width, gt_boxes_list=gt_boxes_list, gt_classes_list=gt_classes_list, gt_weights_list=gt_weights_list) flattened_heatmap_targets = _flatten_spatial_dimensions(heatmap_targets) num_boxes = _to_float32(get_num_instances_from_weights(gt_weights_list)) loss = 0.0 object_center_loss = self._center_params.classification_loss for pred in object_center_predictions: pred = _flatten_spatial_dimensions(pred) loss += object_center_loss(pred, flattened_heatmap_targets, weights=per_pixel_weights) loss_per_instance = (tf.reduce_sum(loss) / (float(len(object_center_predictions)) * num_boxes)) return loss_per_instance
def _compute_object_detection_losses(self, input_height, input_width, prediction_dict, per_pixel_weights): 'Computes the weighted object detection losses.\n\n This wrapper function calls the function which computes the losses for\n object detection task and applies corresponding weights to the losses.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n prediction_dict: A dictionary holding predicted tensors output by\n "predict" function. See "predict" function for more detailed\n description.\n per_pixel_weights: A float tensor of shape [batch_size,\n out_height * out_width, 1] with 1s in locations where the spatial\n coordinates fall within the height and width in true_image_shapes.\n\n Returns:\n A dictionary of scalar float tensors representing the weighted losses for\n object detection task:\n BOX_SCALE: the weighted scale (height/width) loss.\n BOX_OFFSET: the weighted object offset loss.\n ' (od_scale_loss, od_offset_loss) = self._compute_box_scale_and_offset_loss(scale_predictions=prediction_dict[BOX_SCALE], offset_predictions=prediction_dict[BOX_OFFSET], input_height=input_height, input_width=input_width) loss_dict = {} loss_dict[BOX_SCALE] = (self._od_params.scale_loss_weight * od_scale_loss) loss_dict[BOX_OFFSET] = (self._od_params.offset_loss_weight * od_offset_loss) return loss_dict
806,099,432,362,530,600
Computes the weighted object detection losses. This wrapper function calls the function which computes the losses for object detection task and applies corresponding weights to the losses. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. prediction_dict: A dictionary holding predicted tensors output by "predict" function. See "predict" function for more detailed description. per_pixel_weights: A float tensor of shape [batch_size, out_height * out_width, 1] with 1s in locations where the spatial coordinates fall within the height and width in true_image_shapes. Returns: A dictionary of scalar float tensors representing the weighted losses for object detection task: BOX_SCALE: the weighted scale (height/width) loss. BOX_OFFSET: the weighted object offset loss.
research/object_detection/meta_architectures/center_net_meta_arch.py
_compute_object_detection_losses
AvikantSrivastava/models
python
def _compute_object_detection_losses(self, input_height, input_width, prediction_dict, per_pixel_weights): 'Computes the weighted object detection losses.\n\n This wrapper function calls the function which computes the losses for\n object detection task and applies corresponding weights to the losses.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n prediction_dict: A dictionary holding predicted tensors output by\n "predict" function. See "predict" function for more detailed\n description.\n per_pixel_weights: A float tensor of shape [batch_size,\n out_height * out_width, 1] with 1s in locations where the spatial\n coordinates fall within the height and width in true_image_shapes.\n\n Returns:\n A dictionary of scalar float tensors representing the weighted losses for\n object detection task:\n BOX_SCALE: the weighted scale (height/width) loss.\n BOX_OFFSET: the weighted object offset loss.\n ' (od_scale_loss, od_offset_loss) = self._compute_box_scale_and_offset_loss(scale_predictions=prediction_dict[BOX_SCALE], offset_predictions=prediction_dict[BOX_OFFSET], input_height=input_height, input_width=input_width) loss_dict = {} loss_dict[BOX_SCALE] = (self._od_params.scale_loss_weight * od_scale_loss) loss_dict[BOX_OFFSET] = (self._od_params.offset_loss_weight * od_offset_loss) return loss_dict
def _compute_box_scale_and_offset_loss(self, input_height, input_width, scale_predictions, offset_predictions): 'Computes the scale loss of the object detection task.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n scale_predictions: A list of float tensors of shape [batch_size,\n out_height, out_width, 2] representing the prediction heads of the model\n for object scale (i.e height and width).\n offset_predictions: A list of float tensors of shape [batch_size,\n out_height, out_width, 2] representing the prediction heads of the model\n for object offset.\n\n Returns:\n A tuple of two losses:\n scale_loss: A float scalar tensor representing the object height/width\n loss normalized by total number of boxes.\n offset_loss: A float scalar tensor representing the object offset loss\n normalized by total number of boxes\n ' gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) num_boxes = _to_float32(get_num_instances_from_weights(gt_weights_list)) num_predictions = float(len(scale_predictions)) assigner = self._target_assigner_dict[DETECTION_TASK] (batch_indices, batch_height_width_targets, batch_offset_targets, batch_weights) = assigner.assign_size_and_offset_targets(height=input_height, width=input_width, gt_boxes_list=gt_boxes_list, gt_weights_list=gt_weights_list) batch_weights = tf.expand_dims(batch_weights, (- 1)) scale_loss = 0 offset_loss = 0 localization_loss_fn = self._od_params.localization_loss for (scale_pred, offset_pred) in zip(scale_predictions, offset_predictions): scale_pred = cn_assigner.get_batch_predictions_from_indices(scale_pred, batch_indices) scale_loss += localization_loss_fn(scale_pred, batch_height_width_targets, weights=batch_weights) offset_pred = cn_assigner.get_batch_predictions_from_indices(offset_pred, batch_indices) offset_loss += localization_loss_fn(offset_pred, batch_offset_targets, weights=batch_weights) scale_loss = (tf.reduce_sum(scale_loss) / (num_predictions * num_boxes)) offset_loss = (tf.reduce_sum(offset_loss) / (num_predictions * num_boxes)) return (scale_loss, offset_loss)
-696,938,473,885,633,900
Computes the scale loss of the object detection task. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. scale_predictions: A list of float tensors of shape [batch_size, out_height, out_width, 2] representing the prediction heads of the model for object scale (i.e height and width). offset_predictions: A list of float tensors of shape [batch_size, out_height, out_width, 2] representing the prediction heads of the model for object offset. Returns: A tuple of two losses: scale_loss: A float scalar tensor representing the object height/width loss normalized by total number of boxes. offset_loss: A float scalar tensor representing the object offset loss normalized by total number of boxes
research/object_detection/meta_architectures/center_net_meta_arch.py
_compute_box_scale_and_offset_loss
AvikantSrivastava/models
python
def _compute_box_scale_and_offset_loss(self, input_height, input_width, scale_predictions, offset_predictions): 'Computes the scale loss of the object detection task.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n scale_predictions: A list of float tensors of shape [batch_size,\n out_height, out_width, 2] representing the prediction heads of the model\n for object scale (i.e height and width).\n offset_predictions: A list of float tensors of shape [batch_size,\n out_height, out_width, 2] representing the prediction heads of the model\n for object offset.\n\n Returns:\n A tuple of two losses:\n scale_loss: A float scalar tensor representing the object height/width\n loss normalized by total number of boxes.\n offset_loss: A float scalar tensor representing the object offset loss\n normalized by total number of boxes\n ' gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) num_boxes = _to_float32(get_num_instances_from_weights(gt_weights_list)) num_predictions = float(len(scale_predictions)) assigner = self._target_assigner_dict[DETECTION_TASK] (batch_indices, batch_height_width_targets, batch_offset_targets, batch_weights) = assigner.assign_size_and_offset_targets(height=input_height, width=input_width, gt_boxes_list=gt_boxes_list, gt_weights_list=gt_weights_list) batch_weights = tf.expand_dims(batch_weights, (- 1)) scale_loss = 0 offset_loss = 0 localization_loss_fn = self._od_params.localization_loss for (scale_pred, offset_pred) in zip(scale_predictions, offset_predictions): scale_pred = cn_assigner.get_batch_predictions_from_indices(scale_pred, batch_indices) scale_loss += localization_loss_fn(scale_pred, batch_height_width_targets, weights=batch_weights) offset_pred = cn_assigner.get_batch_predictions_from_indices(offset_pred, batch_indices) offset_loss += localization_loss_fn(offset_pred, batch_offset_targets, weights=batch_weights) scale_loss = (tf.reduce_sum(scale_loss) / (num_predictions * num_boxes)) offset_loss = (tf.reduce_sum(offset_loss) / (num_predictions * num_boxes)) return (scale_loss, offset_loss)
def _compute_keypoint_estimation_losses(self, task_name, input_height, input_width, prediction_dict, per_pixel_weights): 'Computes the weighted keypoint losses.' kp_params = self._kp_params_dict[task_name] heatmap_key = get_keypoint_name(task_name, KEYPOINT_HEATMAP) offset_key = get_keypoint_name(task_name, KEYPOINT_OFFSET) regression_key = get_keypoint_name(task_name, KEYPOINT_REGRESSION) heatmap_loss = self._compute_kp_heatmap_loss(input_height=input_height, input_width=input_width, task_name=task_name, heatmap_predictions=prediction_dict[heatmap_key], classification_loss_fn=kp_params.classification_loss, per_pixel_weights=per_pixel_weights) offset_loss = self._compute_kp_offset_loss(input_height=input_height, input_width=input_width, task_name=task_name, offset_predictions=prediction_dict[offset_key], localization_loss_fn=kp_params.localization_loss) reg_loss = self._compute_kp_regression_loss(input_height=input_height, input_width=input_width, task_name=task_name, regression_predictions=prediction_dict[regression_key], localization_loss_fn=kp_params.localization_loss) loss_dict = {} loss_dict[heatmap_key] = (kp_params.keypoint_heatmap_loss_weight * heatmap_loss) loss_dict[offset_key] = (kp_params.keypoint_offset_loss_weight * offset_loss) loss_dict[regression_key] = (kp_params.keypoint_regression_loss_weight * reg_loss) return loss_dict
389,698,818,048,579,700
Computes the weighted keypoint losses.
research/object_detection/meta_architectures/center_net_meta_arch.py
_compute_keypoint_estimation_losses
AvikantSrivastava/models
python
def _compute_keypoint_estimation_losses(self, task_name, input_height, input_width, prediction_dict, per_pixel_weights): kp_params = self._kp_params_dict[task_name] heatmap_key = get_keypoint_name(task_name, KEYPOINT_HEATMAP) offset_key = get_keypoint_name(task_name, KEYPOINT_OFFSET) regression_key = get_keypoint_name(task_name, KEYPOINT_REGRESSION) heatmap_loss = self._compute_kp_heatmap_loss(input_height=input_height, input_width=input_width, task_name=task_name, heatmap_predictions=prediction_dict[heatmap_key], classification_loss_fn=kp_params.classification_loss, per_pixel_weights=per_pixel_weights) offset_loss = self._compute_kp_offset_loss(input_height=input_height, input_width=input_width, task_name=task_name, offset_predictions=prediction_dict[offset_key], localization_loss_fn=kp_params.localization_loss) reg_loss = self._compute_kp_regression_loss(input_height=input_height, input_width=input_width, task_name=task_name, regression_predictions=prediction_dict[regression_key], localization_loss_fn=kp_params.localization_loss) loss_dict = {} loss_dict[heatmap_key] = (kp_params.keypoint_heatmap_loss_weight * heatmap_loss) loss_dict[offset_key] = (kp_params.keypoint_offset_loss_weight * offset_loss) loss_dict[regression_key] = (kp_params.keypoint_regression_loss_weight * reg_loss) return loss_dict
def _compute_kp_heatmap_loss(self, input_height, input_width, task_name, heatmap_predictions, classification_loss_fn, per_pixel_weights): 'Computes the heatmap loss of the keypoint estimation task.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n task_name: A string representing the name of the keypoint task.\n heatmap_predictions: A list of float tensors of shape [batch_size,\n out_height, out_width, num_keypoints] representing the prediction heads\n of the model for keypoint heatmap.\n classification_loss_fn: An object_detection.core.losses.Loss object to\n compute the loss for the class predictions in CenterNet.\n per_pixel_weights: A float tensor of shape [batch_size,\n out_height * out_width, 1] with 1s in locations where the spatial\n coordinates fall within the height and width in true_image_shapes.\n\n Returns:\n loss: A float scalar tensor representing the object keypoint heatmap loss\n normalized by number of instances.\n ' gt_keypoints_list = self.groundtruth_lists(fields.BoxListFields.keypoints) gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes) assigner = self._target_assigner_dict[task_name] (keypoint_heatmap, num_instances_per_kp_type, valid_mask_batch) = assigner.assign_keypoint_heatmap_targets(height=input_height, width=input_width, gt_keypoints_list=gt_keypoints_list, gt_weights_list=gt_weights_list, gt_classes_list=gt_classes_list, gt_boxes_list=gt_boxes_list) flattened_valid_mask = _flatten_spatial_dimensions(tf.expand_dims(valid_mask_batch, axis=(- 1))) flattened_heapmap_targets = _flatten_spatial_dimensions(keypoint_heatmap) num_instances = tf.maximum(tf.cast(tf.reduce_sum(num_instances_per_kp_type), dtype=tf.float32), 1.0) loss = 0.0 for pred in heatmap_predictions: pred = _flatten_spatial_dimensions(pred) unweighted_loss = classification_loss_fn(pred, flattened_heapmap_targets, weights=tf.ones_like(per_pixel_weights)) loss += ((unweighted_loss * per_pixel_weights) * flattened_valid_mask) loss = (tf.reduce_sum(loss) / (float(len(heatmap_predictions)) * num_instances)) return loss
4,771,942,718,064,745,000
Computes the heatmap loss of the keypoint estimation task. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. task_name: A string representing the name of the keypoint task. heatmap_predictions: A list of float tensors of shape [batch_size, out_height, out_width, num_keypoints] representing the prediction heads of the model for keypoint heatmap. classification_loss_fn: An object_detection.core.losses.Loss object to compute the loss for the class predictions in CenterNet. per_pixel_weights: A float tensor of shape [batch_size, out_height * out_width, 1] with 1s in locations where the spatial coordinates fall within the height and width in true_image_shapes. Returns: loss: A float scalar tensor representing the object keypoint heatmap loss normalized by number of instances.
research/object_detection/meta_architectures/center_net_meta_arch.py
_compute_kp_heatmap_loss
AvikantSrivastava/models
python
def _compute_kp_heatmap_loss(self, input_height, input_width, task_name, heatmap_predictions, classification_loss_fn, per_pixel_weights): 'Computes the heatmap loss of the keypoint estimation task.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n task_name: A string representing the name of the keypoint task.\n heatmap_predictions: A list of float tensors of shape [batch_size,\n out_height, out_width, num_keypoints] representing the prediction heads\n of the model for keypoint heatmap.\n classification_loss_fn: An object_detection.core.losses.Loss object to\n compute the loss for the class predictions in CenterNet.\n per_pixel_weights: A float tensor of shape [batch_size,\n out_height * out_width, 1] with 1s in locations where the spatial\n coordinates fall within the height and width in true_image_shapes.\n\n Returns:\n loss: A float scalar tensor representing the object keypoint heatmap loss\n normalized by number of instances.\n ' gt_keypoints_list = self.groundtruth_lists(fields.BoxListFields.keypoints) gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes) assigner = self._target_assigner_dict[task_name] (keypoint_heatmap, num_instances_per_kp_type, valid_mask_batch) = assigner.assign_keypoint_heatmap_targets(height=input_height, width=input_width, gt_keypoints_list=gt_keypoints_list, gt_weights_list=gt_weights_list, gt_classes_list=gt_classes_list, gt_boxes_list=gt_boxes_list) flattened_valid_mask = _flatten_spatial_dimensions(tf.expand_dims(valid_mask_batch, axis=(- 1))) flattened_heapmap_targets = _flatten_spatial_dimensions(keypoint_heatmap) num_instances = tf.maximum(tf.cast(tf.reduce_sum(num_instances_per_kp_type), dtype=tf.float32), 1.0) loss = 0.0 for pred in heatmap_predictions: pred = _flatten_spatial_dimensions(pred) unweighted_loss = classification_loss_fn(pred, flattened_heapmap_targets, weights=tf.ones_like(per_pixel_weights)) loss += ((unweighted_loss * per_pixel_weights) * flattened_valid_mask) loss = (tf.reduce_sum(loss) / (float(len(heatmap_predictions)) * num_instances)) return loss
def _compute_kp_offset_loss(self, input_height, input_width, task_name, offset_predictions, localization_loss_fn): 'Computes the offset loss of the keypoint estimation task.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n task_name: A string representing the name of the keypoint task.\n offset_predictions: A list of float tensors of shape [batch_size,\n out_height, out_width, 2] representing the prediction heads of the model\n for keypoint offset.\n localization_loss_fn: An object_detection.core.losses.Loss object to\n compute the loss for the keypoint offset predictions in CenterNet.\n\n Returns:\n loss: A float scalar tensor representing the keypoint offset loss\n normalized by number of total keypoints.\n ' gt_keypoints_list = self.groundtruth_lists(fields.BoxListFields.keypoints) gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) assigner = self._target_assigner_dict[task_name] (batch_indices, batch_offsets, batch_weights) = assigner.assign_keypoints_offset_targets(height=input_height, width=input_width, gt_keypoints_list=gt_keypoints_list, gt_weights_list=gt_weights_list, gt_classes_list=gt_classes_list) loss = 0.0 for prediction in offset_predictions: (batch_size, out_height, out_width, channels) = _get_shape(prediction, 4) if (channels > 2): prediction = tf.reshape(prediction, shape=[batch_size, out_height, out_width, (- 1), 2]) prediction = cn_assigner.get_batch_predictions_from_indices(prediction, batch_indices) unweighted_loss = localization_loss_fn(prediction, batch_offsets, weights=tf.expand_dims(tf.ones_like(batch_weights), (- 1))) loss += (batch_weights * tf.reduce_sum(unweighted_loss, axis=1)) loss = (tf.reduce_sum(loss) / (float(len(offset_predictions)) * tf.maximum(tf.reduce_sum(batch_weights), 1.0))) return loss
3,327,474,415,315,478,000
Computes the offset loss of the keypoint estimation task. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. task_name: A string representing the name of the keypoint task. offset_predictions: A list of float tensors of shape [batch_size, out_height, out_width, 2] representing the prediction heads of the model for keypoint offset. localization_loss_fn: An object_detection.core.losses.Loss object to compute the loss for the keypoint offset predictions in CenterNet. Returns: loss: A float scalar tensor representing the keypoint offset loss normalized by number of total keypoints.
research/object_detection/meta_architectures/center_net_meta_arch.py
_compute_kp_offset_loss
AvikantSrivastava/models
python
def _compute_kp_offset_loss(self, input_height, input_width, task_name, offset_predictions, localization_loss_fn): 'Computes the offset loss of the keypoint estimation task.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n task_name: A string representing the name of the keypoint task.\n offset_predictions: A list of float tensors of shape [batch_size,\n out_height, out_width, 2] representing the prediction heads of the model\n for keypoint offset.\n localization_loss_fn: An object_detection.core.losses.Loss object to\n compute the loss for the keypoint offset predictions in CenterNet.\n\n Returns:\n loss: A float scalar tensor representing the keypoint offset loss\n normalized by number of total keypoints.\n ' gt_keypoints_list = self.groundtruth_lists(fields.BoxListFields.keypoints) gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) assigner = self._target_assigner_dict[task_name] (batch_indices, batch_offsets, batch_weights) = assigner.assign_keypoints_offset_targets(height=input_height, width=input_width, gt_keypoints_list=gt_keypoints_list, gt_weights_list=gt_weights_list, gt_classes_list=gt_classes_list) loss = 0.0 for prediction in offset_predictions: (batch_size, out_height, out_width, channels) = _get_shape(prediction, 4) if (channels > 2): prediction = tf.reshape(prediction, shape=[batch_size, out_height, out_width, (- 1), 2]) prediction = cn_assigner.get_batch_predictions_from_indices(prediction, batch_indices) unweighted_loss = localization_loss_fn(prediction, batch_offsets, weights=tf.expand_dims(tf.ones_like(batch_weights), (- 1))) loss += (batch_weights * tf.reduce_sum(unweighted_loss, axis=1)) loss = (tf.reduce_sum(loss) / (float(len(offset_predictions)) * tf.maximum(tf.reduce_sum(batch_weights), 1.0))) return loss
def _compute_kp_regression_loss(self, input_height, input_width, task_name, regression_predictions, localization_loss_fn): 'Computes the keypoint regression loss of the keypoint estimation task.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n task_name: A string representing the name of the keypoint task.\n regression_predictions: A list of float tensors of shape [batch_size,\n out_height, out_width, 2 * num_keypoints] representing the prediction\n heads of the model for keypoint regression offset.\n localization_loss_fn: An object_detection.core.losses.Loss object to\n compute the loss for the keypoint regression offset predictions in\n CenterNet.\n\n Returns:\n loss: A float scalar tensor representing the keypoint regression offset\n loss normalized by number of total keypoints.\n ' gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes) gt_keypoints_list = self.groundtruth_lists(fields.BoxListFields.keypoints) gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) assigner = self._target_assigner_dict[task_name] (batch_indices, batch_regression_offsets, batch_weights) = assigner.assign_joint_regression_targets(height=input_height, width=input_width, gt_keypoints_list=gt_keypoints_list, gt_classes_list=gt_classes_list, gt_weights_list=gt_weights_list, gt_boxes_list=gt_boxes_list) loss = 0.0 for prediction in regression_predictions: (batch_size, out_height, out_width, _) = _get_shape(prediction, 4) reshaped_prediction = tf.reshape(prediction, shape=[batch_size, out_height, out_width, (- 1), 2]) reg_prediction = cn_assigner.get_batch_predictions_from_indices(reshaped_prediction, batch_indices) unweighted_loss = localization_loss_fn(reg_prediction, batch_regression_offsets, weights=tf.expand_dims(tf.ones_like(batch_weights), (- 1))) loss += (batch_weights * tf.reduce_sum(unweighted_loss, axis=1)) loss = (tf.reduce_sum(loss) / (float(len(regression_predictions)) * tf.maximum(tf.reduce_sum(batch_weights), 1.0))) return loss
3,207,325,843,742,887,000
Computes the keypoint regression loss of the keypoint estimation task. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. task_name: A string representing the name of the keypoint task. regression_predictions: A list of float tensors of shape [batch_size, out_height, out_width, 2 * num_keypoints] representing the prediction heads of the model for keypoint regression offset. localization_loss_fn: An object_detection.core.losses.Loss object to compute the loss for the keypoint regression offset predictions in CenterNet. Returns: loss: A float scalar tensor representing the keypoint regression offset loss normalized by number of total keypoints.
research/object_detection/meta_architectures/center_net_meta_arch.py
_compute_kp_regression_loss
AvikantSrivastava/models
python
def _compute_kp_regression_loss(self, input_height, input_width, task_name, regression_predictions, localization_loss_fn): 'Computes the keypoint regression loss of the keypoint estimation task.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n task_name: A string representing the name of the keypoint task.\n regression_predictions: A list of float tensors of shape [batch_size,\n out_height, out_width, 2 * num_keypoints] representing the prediction\n heads of the model for keypoint regression offset.\n localization_loss_fn: An object_detection.core.losses.Loss object to\n compute the loss for the keypoint regression offset predictions in\n CenterNet.\n\n Returns:\n loss: A float scalar tensor representing the keypoint regression offset\n loss normalized by number of total keypoints.\n ' gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes) gt_keypoints_list = self.groundtruth_lists(fields.BoxListFields.keypoints) gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) assigner = self._target_assigner_dict[task_name] (batch_indices, batch_regression_offsets, batch_weights) = assigner.assign_joint_regression_targets(height=input_height, width=input_width, gt_keypoints_list=gt_keypoints_list, gt_classes_list=gt_classes_list, gt_weights_list=gt_weights_list, gt_boxes_list=gt_boxes_list) loss = 0.0 for prediction in regression_predictions: (batch_size, out_height, out_width, _) = _get_shape(prediction, 4) reshaped_prediction = tf.reshape(prediction, shape=[batch_size, out_height, out_width, (- 1), 2]) reg_prediction = cn_assigner.get_batch_predictions_from_indices(reshaped_prediction, batch_indices) unweighted_loss = localization_loss_fn(reg_prediction, batch_regression_offsets, weights=tf.expand_dims(tf.ones_like(batch_weights), (- 1))) loss += (batch_weights * tf.reduce_sum(unweighted_loss, axis=1)) loss = (tf.reduce_sum(loss) / (float(len(regression_predictions)) * tf.maximum(tf.reduce_sum(batch_weights), 1.0))) return loss
def _compute_segmentation_losses(self, prediction_dict, per_pixel_weights): 'Computes all the losses associated with segmentation.\n\n Args:\n prediction_dict: The dictionary returned from the predict() method.\n per_pixel_weights: A float tensor of shape [batch_size,\n out_height * out_width, 1] with 1s in locations where the spatial\n coordinates fall within the height and width in true_image_shapes.\n\n Returns:\n A dictionary with segmentation losses.\n ' segmentation_heatmap = prediction_dict[SEGMENTATION_HEATMAP] mask_loss = self._compute_mask_loss(segmentation_heatmap, per_pixel_weights) losses = {SEGMENTATION_HEATMAP: mask_loss} return losses
-7,498,127,224,504,642,000
Computes all the losses associated with segmentation. Args: prediction_dict: The dictionary returned from the predict() method. per_pixel_weights: A float tensor of shape [batch_size, out_height * out_width, 1] with 1s in locations where the spatial coordinates fall within the height and width in true_image_shapes. Returns: A dictionary with segmentation losses.
research/object_detection/meta_architectures/center_net_meta_arch.py
_compute_segmentation_losses
AvikantSrivastava/models
python
def _compute_segmentation_losses(self, prediction_dict, per_pixel_weights): 'Computes all the losses associated with segmentation.\n\n Args:\n prediction_dict: The dictionary returned from the predict() method.\n per_pixel_weights: A float tensor of shape [batch_size,\n out_height * out_width, 1] with 1s in locations where the spatial\n coordinates fall within the height and width in true_image_shapes.\n\n Returns:\n A dictionary with segmentation losses.\n ' segmentation_heatmap = prediction_dict[SEGMENTATION_HEATMAP] mask_loss = self._compute_mask_loss(segmentation_heatmap, per_pixel_weights) losses = {SEGMENTATION_HEATMAP: mask_loss} return losses
def _compute_mask_loss(self, segmentation_predictions, per_pixel_weights): 'Computes the mask loss.\n\n Args:\n segmentation_predictions: A list of float32 tensors of shape [batch_size,\n out_height, out_width, num_classes].\n per_pixel_weights: A float tensor of shape [batch_size,\n out_height * out_width, 1] with 1s in locations where the spatial\n coordinates fall within the height and width in true_image_shapes.\n\n Returns:\n A float scalar tensor representing the mask loss.\n ' gt_masks_list = self.groundtruth_lists(fields.BoxListFields.masks) gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes) assigner = self._target_assigner_dict[SEGMENTATION_TASK] heatmap_targets = assigner.assign_segmentation_targets(gt_masks_list=gt_masks_list, gt_classes_list=gt_classes_list) flattened_heatmap_targets = _flatten_spatial_dimensions(heatmap_targets) loss = 0.0 mask_loss_fn = self._mask_params.classification_loss total_pixels_in_loss = tf.reduce_sum(per_pixel_weights) for pred in segmentation_predictions: pred = _flatten_spatial_dimensions(pred) loss += mask_loss_fn(pred, flattened_heatmap_targets, weights=per_pixel_weights) total_loss = (tf.reduce_sum(loss) / (float(len(segmentation_predictions)) * total_pixels_in_loss)) return total_loss
-7,094,407,873,046,366,000
Computes the mask loss. Args: segmentation_predictions: A list of float32 tensors of shape [batch_size, out_height, out_width, num_classes]. per_pixel_weights: A float tensor of shape [batch_size, out_height * out_width, 1] with 1s in locations where the spatial coordinates fall within the height and width in true_image_shapes. Returns: A float scalar tensor representing the mask loss.
research/object_detection/meta_architectures/center_net_meta_arch.py
_compute_mask_loss
AvikantSrivastava/models
python
def _compute_mask_loss(self, segmentation_predictions, per_pixel_weights): 'Computes the mask loss.\n\n Args:\n segmentation_predictions: A list of float32 tensors of shape [batch_size,\n out_height, out_width, num_classes].\n per_pixel_weights: A float tensor of shape [batch_size,\n out_height * out_width, 1] with 1s in locations where the spatial\n coordinates fall within the height and width in true_image_shapes.\n\n Returns:\n A float scalar tensor representing the mask loss.\n ' gt_masks_list = self.groundtruth_lists(fields.BoxListFields.masks) gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes) assigner = self._target_assigner_dict[SEGMENTATION_TASK] heatmap_targets = assigner.assign_segmentation_targets(gt_masks_list=gt_masks_list, gt_classes_list=gt_classes_list) flattened_heatmap_targets = _flatten_spatial_dimensions(heatmap_targets) loss = 0.0 mask_loss_fn = self._mask_params.classification_loss total_pixels_in_loss = tf.reduce_sum(per_pixel_weights) for pred in segmentation_predictions: pred = _flatten_spatial_dimensions(pred) loss += mask_loss_fn(pred, flattened_heatmap_targets, weights=per_pixel_weights) total_loss = (tf.reduce_sum(loss) / (float(len(segmentation_predictions)) * total_pixels_in_loss)) return total_loss
def _compute_densepose_losses(self, input_height, input_width, prediction_dict): 'Computes the weighted DensePose losses.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n prediction_dict: A dictionary holding predicted tensors output by the\n "predict" function. See the "predict" function for more detailed\n description.\n\n Returns:\n A dictionary of scalar float tensors representing the weighted losses for\n the DensePose task:\n DENSEPOSE_HEATMAP: the weighted part segmentation loss.\n DENSEPOSE_REGRESSION: the weighted part surface coordinate loss.\n ' (dp_heatmap_loss, dp_regression_loss) = self._compute_densepose_part_and_coordinate_losses(input_height=input_height, input_width=input_width, part_predictions=prediction_dict[DENSEPOSE_HEATMAP], surface_coord_predictions=prediction_dict[DENSEPOSE_REGRESSION]) loss_dict = {} loss_dict[DENSEPOSE_HEATMAP] = (self._densepose_params.part_loss_weight * dp_heatmap_loss) loss_dict[DENSEPOSE_REGRESSION] = (self._densepose_params.coordinate_loss_weight * dp_regression_loss) return loss_dict
-3,313,712,703,948,206,600
Computes the weighted DensePose losses. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. prediction_dict: A dictionary holding predicted tensors output by the "predict" function. See the "predict" function for more detailed description. Returns: A dictionary of scalar float tensors representing the weighted losses for the DensePose task: DENSEPOSE_HEATMAP: the weighted part segmentation loss. DENSEPOSE_REGRESSION: the weighted part surface coordinate loss.
research/object_detection/meta_architectures/center_net_meta_arch.py
_compute_densepose_losses
AvikantSrivastava/models
python
def _compute_densepose_losses(self, input_height, input_width, prediction_dict): 'Computes the weighted DensePose losses.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n prediction_dict: A dictionary holding predicted tensors output by the\n "predict" function. See the "predict" function for more detailed\n description.\n\n Returns:\n A dictionary of scalar float tensors representing the weighted losses for\n the DensePose task:\n DENSEPOSE_HEATMAP: the weighted part segmentation loss.\n DENSEPOSE_REGRESSION: the weighted part surface coordinate loss.\n ' (dp_heatmap_loss, dp_regression_loss) = self._compute_densepose_part_and_coordinate_losses(input_height=input_height, input_width=input_width, part_predictions=prediction_dict[DENSEPOSE_HEATMAP], surface_coord_predictions=prediction_dict[DENSEPOSE_REGRESSION]) loss_dict = {} loss_dict[DENSEPOSE_HEATMAP] = (self._densepose_params.part_loss_weight * dp_heatmap_loss) loss_dict[DENSEPOSE_REGRESSION] = (self._densepose_params.coordinate_loss_weight * dp_regression_loss) return loss_dict
def _compute_densepose_part_and_coordinate_losses(self, input_height, input_width, part_predictions, surface_coord_predictions): 'Computes the individual losses for the DensePose task.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n part_predictions: A list of float tensors of shape [batch_size,\n out_height, out_width, num_parts].\n surface_coord_predictions: A list of float tensors of shape [batch_size,\n out_height, out_width, 2 * num_parts].\n\n Returns:\n A tuple with two scalar loss tensors: part_prediction_loss and\n surface_coord_loss.\n ' gt_dp_num_points_list = self.groundtruth_lists(fields.BoxListFields.densepose_num_points) gt_dp_part_ids_list = self.groundtruth_lists(fields.BoxListFields.densepose_part_ids) gt_dp_surface_coords_list = self.groundtruth_lists(fields.BoxListFields.densepose_surface_coords) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) assigner = self._target_assigner_dict[DENSEPOSE_TASK] (batch_indices, batch_part_ids, batch_surface_coords, batch_weights) = assigner.assign_part_and_coordinate_targets(height=input_height, width=input_width, gt_dp_num_points_list=gt_dp_num_points_list, gt_dp_part_ids_list=gt_dp_part_ids_list, gt_dp_surface_coords_list=gt_dp_surface_coords_list, gt_weights_list=gt_weights_list) part_prediction_loss = 0 surface_coord_loss = 0 classification_loss_fn = self._densepose_params.classification_loss localization_loss_fn = self._densepose_params.localization_loss num_predictions = float(len(part_predictions)) num_valid_points = tf.math.count_nonzero(batch_weights) num_valid_points = tf.cast(tf.math.maximum(num_valid_points, 1), tf.float32) for (part_pred, surface_coord_pred) in zip(part_predictions, surface_coord_predictions): if self._densepose_params.upsample_to_input_res: part_pred = tf.keras.layers.UpSampling2D(self._stride, interpolation=self._densepose_params.upsample_method)(part_pred) surface_coord_pred = tf.keras.layers.UpSampling2D(self._stride, interpolation=self._densepose_params.upsample_method)(surface_coord_pred) part_pred = cn_assigner.get_batch_predictions_from_indices(part_pred, batch_indices[:, 0:3]) part_prediction_loss += classification_loss_fn(part_pred[:, tf.newaxis, :], batch_part_ids[:, tf.newaxis, :], weights=batch_weights[:, tf.newaxis, tf.newaxis]) (batch_size, out_height, out_width, _) = _get_shape(surface_coord_pred, 4) surface_coord_pred = tf.reshape(surface_coord_pred, [batch_size, out_height, out_width, (- 1), 2]) surface_coord_pred = cn_assigner.get_batch_predictions_from_indices(surface_coord_pred, batch_indices) surface_coord_loss += localization_loss_fn(surface_coord_pred, batch_surface_coords, weights=batch_weights[:, tf.newaxis]) part_prediction_loss = (tf.reduce_sum(part_prediction_loss) / (num_predictions * num_valid_points)) surface_coord_loss = (tf.reduce_sum(surface_coord_loss) / (num_predictions * num_valid_points)) return (part_prediction_loss, surface_coord_loss)
1,636,117,419,904,766,700
Computes the individual losses for the DensePose task. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. part_predictions: A list of float tensors of shape [batch_size, out_height, out_width, num_parts]. surface_coord_predictions: A list of float tensors of shape [batch_size, out_height, out_width, 2 * num_parts]. Returns: A tuple with two scalar loss tensors: part_prediction_loss and surface_coord_loss.
research/object_detection/meta_architectures/center_net_meta_arch.py
_compute_densepose_part_and_coordinate_losses
AvikantSrivastava/models
python
def _compute_densepose_part_and_coordinate_losses(self, input_height, input_width, part_predictions, surface_coord_predictions): 'Computes the individual losses for the DensePose task.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n part_predictions: A list of float tensors of shape [batch_size,\n out_height, out_width, num_parts].\n surface_coord_predictions: A list of float tensors of shape [batch_size,\n out_height, out_width, 2 * num_parts].\n\n Returns:\n A tuple with two scalar loss tensors: part_prediction_loss and\n surface_coord_loss.\n ' gt_dp_num_points_list = self.groundtruth_lists(fields.BoxListFields.densepose_num_points) gt_dp_part_ids_list = self.groundtruth_lists(fields.BoxListFields.densepose_part_ids) gt_dp_surface_coords_list = self.groundtruth_lists(fields.BoxListFields.densepose_surface_coords) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) assigner = self._target_assigner_dict[DENSEPOSE_TASK] (batch_indices, batch_part_ids, batch_surface_coords, batch_weights) = assigner.assign_part_and_coordinate_targets(height=input_height, width=input_width, gt_dp_num_points_list=gt_dp_num_points_list, gt_dp_part_ids_list=gt_dp_part_ids_list, gt_dp_surface_coords_list=gt_dp_surface_coords_list, gt_weights_list=gt_weights_list) part_prediction_loss = 0 surface_coord_loss = 0 classification_loss_fn = self._densepose_params.classification_loss localization_loss_fn = self._densepose_params.localization_loss num_predictions = float(len(part_predictions)) num_valid_points = tf.math.count_nonzero(batch_weights) num_valid_points = tf.cast(tf.math.maximum(num_valid_points, 1), tf.float32) for (part_pred, surface_coord_pred) in zip(part_predictions, surface_coord_predictions): if self._densepose_params.upsample_to_input_res: part_pred = tf.keras.layers.UpSampling2D(self._stride, interpolation=self._densepose_params.upsample_method)(part_pred) surface_coord_pred = tf.keras.layers.UpSampling2D(self._stride, interpolation=self._densepose_params.upsample_method)(surface_coord_pred) part_pred = cn_assigner.get_batch_predictions_from_indices(part_pred, batch_indices[:, 0:3]) part_prediction_loss += classification_loss_fn(part_pred[:, tf.newaxis, :], batch_part_ids[:, tf.newaxis, :], weights=batch_weights[:, tf.newaxis, tf.newaxis]) (batch_size, out_height, out_width, _) = _get_shape(surface_coord_pred, 4) surface_coord_pred = tf.reshape(surface_coord_pred, [batch_size, out_height, out_width, (- 1), 2]) surface_coord_pred = cn_assigner.get_batch_predictions_from_indices(surface_coord_pred, batch_indices) surface_coord_loss += localization_loss_fn(surface_coord_pred, batch_surface_coords, weights=batch_weights[:, tf.newaxis]) part_prediction_loss = (tf.reduce_sum(part_prediction_loss) / (num_predictions * num_valid_points)) surface_coord_loss = (tf.reduce_sum(surface_coord_loss) / (num_predictions * num_valid_points)) return (part_prediction_loss, surface_coord_loss)
def _compute_track_losses(self, input_height, input_width, prediction_dict): 'Computes all the losses associated with tracking.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n prediction_dict: The dictionary returned from the predict() method.\n\n Returns:\n A dictionary with tracking losses.\n ' object_reid_predictions = prediction_dict[TRACK_REID] embedding_loss = self._compute_track_embedding_loss(input_height=input_height, input_width=input_width, object_reid_predictions=object_reid_predictions) losses = {TRACK_REID: embedding_loss} return losses
3,826,571,471,669,439,500
Computes all the losses associated with tracking. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. prediction_dict: The dictionary returned from the predict() method. Returns: A dictionary with tracking losses.
research/object_detection/meta_architectures/center_net_meta_arch.py
_compute_track_losses
AvikantSrivastava/models
python
def _compute_track_losses(self, input_height, input_width, prediction_dict): 'Computes all the losses associated with tracking.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n prediction_dict: The dictionary returned from the predict() method.\n\n Returns:\n A dictionary with tracking losses.\n ' object_reid_predictions = prediction_dict[TRACK_REID] embedding_loss = self._compute_track_embedding_loss(input_height=input_height, input_width=input_width, object_reid_predictions=object_reid_predictions) losses = {TRACK_REID: embedding_loss} return losses
def _compute_track_embedding_loss(self, input_height, input_width, object_reid_predictions): 'Computes the object ReID loss.\n\n The embedding is trained as a classification task where the target is the\n ID of each track among all tracks in the whole dataset.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n object_reid_predictions: A list of float tensors of shape [batch_size,\n out_height, out_width, reid_embed_size] representing the object\n embedding feature maps.\n\n Returns:\n A float scalar tensor representing the object ReID loss per instance.\n ' gt_track_ids_list = self.groundtruth_lists(fields.BoxListFields.track_ids) gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) num_boxes = _to_float32(get_num_instances_from_weights(gt_weights_list)) assigner = self._target_assigner_dict[TRACK_TASK] (batch_indices, batch_weights, track_targets) = assigner.assign_track_targets(height=input_height, width=input_width, gt_track_ids_list=gt_track_ids_list, gt_boxes_list=gt_boxes_list, gt_weights_list=gt_weights_list) batch_weights = tf.expand_dims(batch_weights, (- 1)) loss = 0.0 object_reid_loss = self._track_params.classification_loss for pred in object_reid_predictions: embedding_pred = cn_assigner.get_batch_predictions_from_indices(pred, batch_indices) reid_classification = self.track_reid_classification_net(embedding_pred) loss += object_reid_loss(reid_classification, track_targets, weights=batch_weights) loss_per_instance = (tf.reduce_sum(loss) / (float(len(object_reid_predictions)) * num_boxes)) return loss_per_instance
-975,937,577,233,702,400
Computes the object ReID loss. The embedding is trained as a classification task where the target is the ID of each track among all tracks in the whole dataset. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. object_reid_predictions: A list of float tensors of shape [batch_size, out_height, out_width, reid_embed_size] representing the object embedding feature maps. Returns: A float scalar tensor representing the object ReID loss per instance.
research/object_detection/meta_architectures/center_net_meta_arch.py
_compute_track_embedding_loss
AvikantSrivastava/models
python
def _compute_track_embedding_loss(self, input_height, input_width, object_reid_predictions): 'Computes the object ReID loss.\n\n The embedding is trained as a classification task where the target is the\n ID of each track among all tracks in the whole dataset.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n object_reid_predictions: A list of float tensors of shape [batch_size,\n out_height, out_width, reid_embed_size] representing the object\n embedding feature maps.\n\n Returns:\n A float scalar tensor representing the object ReID loss per instance.\n ' gt_track_ids_list = self.groundtruth_lists(fields.BoxListFields.track_ids) gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) num_boxes = _to_float32(get_num_instances_from_weights(gt_weights_list)) assigner = self._target_assigner_dict[TRACK_TASK] (batch_indices, batch_weights, track_targets) = assigner.assign_track_targets(height=input_height, width=input_width, gt_track_ids_list=gt_track_ids_list, gt_boxes_list=gt_boxes_list, gt_weights_list=gt_weights_list) batch_weights = tf.expand_dims(batch_weights, (- 1)) loss = 0.0 object_reid_loss = self._track_params.classification_loss for pred in object_reid_predictions: embedding_pred = cn_assigner.get_batch_predictions_from_indices(pred, batch_indices) reid_classification = self.track_reid_classification_net(embedding_pred) loss += object_reid_loss(reid_classification, track_targets, weights=batch_weights) loss_per_instance = (tf.reduce_sum(loss) / (float(len(object_reid_predictions)) * num_boxes)) return loss_per_instance
def _compute_temporal_offset_loss(self, input_height, input_width, prediction_dict): 'Computes the temporal offset loss for tracking.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n prediction_dict: The dictionary returned from the predict() method.\n\n Returns:\n A dictionary with track/temporal_offset losses.\n ' gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes) gt_offsets_list = self.groundtruth_lists(fields.BoxListFields.temporal_offsets) gt_match_list = self.groundtruth_lists(fields.BoxListFields.track_match_flags) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) num_boxes = tf.cast(get_num_instances_from_weights(gt_weights_list), tf.float32) offset_predictions = prediction_dict[TEMPORAL_OFFSET] num_predictions = float(len(offset_predictions)) assigner = self._target_assigner_dict[TEMPORALOFFSET_TASK] (batch_indices, batch_offset_targets, batch_weights) = assigner.assign_temporal_offset_targets(height=input_height, width=input_width, gt_boxes_list=gt_boxes_list, gt_offsets_list=gt_offsets_list, gt_match_list=gt_match_list, gt_weights_list=gt_weights_list) batch_weights = tf.expand_dims(batch_weights, (- 1)) offset_loss_fn = self._temporal_offset_params.localization_loss loss_dict = {} offset_loss = 0 for offset_pred in offset_predictions: offset_pred = cn_assigner.get_batch_predictions_from_indices(offset_pred, batch_indices) offset_loss += offset_loss_fn(offset_pred[:, None], batch_offset_targets[:, None], weights=batch_weights) offset_loss = (tf.reduce_sum(offset_loss) / (num_predictions * num_boxes)) loss_dict[TEMPORAL_OFFSET] = offset_loss return loss_dict
-6,298,571,109,006,518,000
Computes the temporal offset loss for tracking. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. prediction_dict: The dictionary returned from the predict() method. Returns: A dictionary with track/temporal_offset losses.
research/object_detection/meta_architectures/center_net_meta_arch.py
_compute_temporal_offset_loss
AvikantSrivastava/models
python
def _compute_temporal_offset_loss(self, input_height, input_width, prediction_dict): 'Computes the temporal offset loss for tracking.\n\n Args:\n input_height: An integer scalar tensor representing input image height.\n input_width: An integer scalar tensor representing input image width.\n prediction_dict: The dictionary returned from the predict() method.\n\n Returns:\n A dictionary with track/temporal_offset losses.\n ' gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes) gt_offsets_list = self.groundtruth_lists(fields.BoxListFields.temporal_offsets) gt_match_list = self.groundtruth_lists(fields.BoxListFields.track_match_flags) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) num_boxes = tf.cast(get_num_instances_from_weights(gt_weights_list), tf.float32) offset_predictions = prediction_dict[TEMPORAL_OFFSET] num_predictions = float(len(offset_predictions)) assigner = self._target_assigner_dict[TEMPORALOFFSET_TASK] (batch_indices, batch_offset_targets, batch_weights) = assigner.assign_temporal_offset_targets(height=input_height, width=input_width, gt_boxes_list=gt_boxes_list, gt_offsets_list=gt_offsets_list, gt_match_list=gt_match_list, gt_weights_list=gt_weights_list) batch_weights = tf.expand_dims(batch_weights, (- 1)) offset_loss_fn = self._temporal_offset_params.localization_loss loss_dict = {} offset_loss = 0 for offset_pred in offset_predictions: offset_pred = cn_assigner.get_batch_predictions_from_indices(offset_pred, batch_indices) offset_loss += offset_loss_fn(offset_pred[:, None], batch_offset_targets[:, None], weights=batch_weights) offset_loss = (tf.reduce_sum(offset_loss) / (num_predictions * num_boxes)) loss_dict[TEMPORAL_OFFSET] = offset_loss return loss_dict
def predict(self, preprocessed_inputs, _): "Predicts CenterNet prediction tensors given an input batch.\n\n Feature extractors are free to produce predictions from multiple feature\n maps and therefore we return a dictionary mapping strings to lists.\n E.g. the hourglass backbone produces two feature maps.\n\n Args:\n preprocessed_inputs: a [batch, height, width, channels] float32 tensor\n representing a batch of images.\n\n Returns:\n prediction_dict: a dictionary holding predicted tensors with\n 'preprocessed_inputs' - The input image after being resized and\n preprocessed by the feature extractor.\n 'object_center' - A list of size num_feature_outputs containing\n float tensors of size [batch_size, output_height, output_width,\n num_classes] representing the predicted object center heatmap logits.\n 'box/scale' - [optional] A list of size num_feature_outputs holding\n float tensors of size [batch_size, output_height, output_width, 2]\n representing the predicted box height and width at each output\n location. This field exists only when object detection task is\n specified.\n 'box/offset' - [optional] A list of size num_feature_outputs holding\n float tensors of size [batch_size, output_height, output_width, 2]\n representing the predicted y and x offsets at each output location.\n '$TASK_NAME/keypoint_heatmap' - [optional] A list of size\n num_feature_outputs holding float tensors of size [batch_size,\n output_height, output_width, num_keypoints] representing the predicted\n keypoint heatmap logits.\n '$TASK_NAME/keypoint_offset' - [optional] A list of size\n num_feature_outputs holding float tensors of size [batch_size,\n output_height, output_width, 2] representing the predicted keypoint\n offsets at each output location.\n '$TASK_NAME/keypoint_regression' - [optional] A list of size\n num_feature_outputs holding float tensors of size [batch_size,\n output_height, output_width, 2 * num_keypoints] representing the\n predicted keypoint regression at each output location.\n 'segmentation/heatmap' - [optional] A list of size num_feature_outputs\n holding float tensors of size [batch_size, output_height,\n output_width, num_classes] representing the mask logits.\n 'densepose/heatmap' - [optional] A list of size num_feature_outputs\n holding float tensors of size [batch_size, output_height,\n output_width, num_parts] representing the mask logits for each part.\n 'densepose/regression' - [optional] A list of size num_feature_outputs\n holding float tensors of size [batch_size, output_height,\n output_width, 2 * num_parts] representing the DensePose surface\n coordinate predictions.\n Note the $TASK_NAME is provided by the KeypointEstimation namedtuple\n used to differentiate between different keypoint tasks.\n " features_list = self._feature_extractor(preprocessed_inputs) predictions = {} for (head_name, heads) in self._prediction_head_dict.items(): predictions[head_name] = [head(feature) for (feature, head) in zip(features_list, heads)] predictions['preprocessed_inputs'] = preprocessed_inputs self._batched_prediction_tensor_names = predictions.keys() return predictions
-738,261,801,241,657,200
Predicts CenterNet prediction tensors given an input batch. Feature extractors are free to produce predictions from multiple feature maps and therefore we return a dictionary mapping strings to lists. E.g. the hourglass backbone produces two feature maps. Args: preprocessed_inputs: a [batch, height, width, channels] float32 tensor representing a batch of images. Returns: prediction_dict: a dictionary holding predicted tensors with 'preprocessed_inputs' - The input image after being resized and preprocessed by the feature extractor. 'object_center' - A list of size num_feature_outputs containing float tensors of size [batch_size, output_height, output_width, num_classes] representing the predicted object center heatmap logits. 'box/scale' - [optional] A list of size num_feature_outputs holding float tensors of size [batch_size, output_height, output_width, 2] representing the predicted box height and width at each output location. This field exists only when object detection task is specified. 'box/offset' - [optional] A list of size num_feature_outputs holding float tensors of size [batch_size, output_height, output_width, 2] representing the predicted y and x offsets at each output location. '$TASK_NAME/keypoint_heatmap' - [optional] A list of size num_feature_outputs holding float tensors of size [batch_size, output_height, output_width, num_keypoints] representing the predicted keypoint heatmap logits. '$TASK_NAME/keypoint_offset' - [optional] A list of size num_feature_outputs holding float tensors of size [batch_size, output_height, output_width, 2] representing the predicted keypoint offsets at each output location. '$TASK_NAME/keypoint_regression' - [optional] A list of size num_feature_outputs holding float tensors of size [batch_size, output_height, output_width, 2 * num_keypoints] representing the predicted keypoint regression at each output location. 'segmentation/heatmap' - [optional] A list of size num_feature_outputs holding float tensors of size [batch_size, output_height, output_width, num_classes] representing the mask logits. 'densepose/heatmap' - [optional] A list of size num_feature_outputs holding float tensors of size [batch_size, output_height, output_width, num_parts] representing the mask logits for each part. 'densepose/regression' - [optional] A list of size num_feature_outputs holding float tensors of size [batch_size, output_height, output_width, 2 * num_parts] representing the DensePose surface coordinate predictions. Note the $TASK_NAME is provided by the KeypointEstimation namedtuple used to differentiate between different keypoint tasks.
research/object_detection/meta_architectures/center_net_meta_arch.py
predict
AvikantSrivastava/models
python
def predict(self, preprocessed_inputs, _): "Predicts CenterNet prediction tensors given an input batch.\n\n Feature extractors are free to produce predictions from multiple feature\n maps and therefore we return a dictionary mapping strings to lists.\n E.g. the hourglass backbone produces two feature maps.\n\n Args:\n preprocessed_inputs: a [batch, height, width, channels] float32 tensor\n representing a batch of images.\n\n Returns:\n prediction_dict: a dictionary holding predicted tensors with\n 'preprocessed_inputs' - The input image after being resized and\n preprocessed by the feature extractor.\n 'object_center' - A list of size num_feature_outputs containing\n float tensors of size [batch_size, output_height, output_width,\n num_classes] representing the predicted object center heatmap logits.\n 'box/scale' - [optional] A list of size num_feature_outputs holding\n float tensors of size [batch_size, output_height, output_width, 2]\n representing the predicted box height and width at each output\n location. This field exists only when object detection task is\n specified.\n 'box/offset' - [optional] A list of size num_feature_outputs holding\n float tensors of size [batch_size, output_height, output_width, 2]\n representing the predicted y and x offsets at each output location.\n '$TASK_NAME/keypoint_heatmap' - [optional] A list of size\n num_feature_outputs holding float tensors of size [batch_size,\n output_height, output_width, num_keypoints] representing the predicted\n keypoint heatmap logits.\n '$TASK_NAME/keypoint_offset' - [optional] A list of size\n num_feature_outputs holding float tensors of size [batch_size,\n output_height, output_width, 2] representing the predicted keypoint\n offsets at each output location.\n '$TASK_NAME/keypoint_regression' - [optional] A list of size\n num_feature_outputs holding float tensors of size [batch_size,\n output_height, output_width, 2 * num_keypoints] representing the\n predicted keypoint regression at each output location.\n 'segmentation/heatmap' - [optional] A list of size num_feature_outputs\n holding float tensors of size [batch_size, output_height,\n output_width, num_classes] representing the mask logits.\n 'densepose/heatmap' - [optional] A list of size num_feature_outputs\n holding float tensors of size [batch_size, output_height,\n output_width, num_parts] representing the mask logits for each part.\n 'densepose/regression' - [optional] A list of size num_feature_outputs\n holding float tensors of size [batch_size, output_height,\n output_width, 2 * num_parts] representing the DensePose surface\n coordinate predictions.\n Note the $TASK_NAME is provided by the KeypointEstimation namedtuple\n used to differentiate between different keypoint tasks.\n " features_list = self._feature_extractor(preprocessed_inputs) predictions = {} for (head_name, heads) in self._prediction_head_dict.items(): predictions[head_name] = [head(feature) for (feature, head) in zip(features_list, heads)] predictions['preprocessed_inputs'] = preprocessed_inputs self._batched_prediction_tensor_names = predictions.keys() return predictions
def loss(self, prediction_dict, true_image_shapes, scope=None): 'Computes scalar loss tensors with respect to provided groundtruth.\n\n This function implements the various CenterNet losses.\n\n Args:\n prediction_dict: a dictionary holding predicted tensors returned by\n "predict" function.\n true_image_shapes: int32 tensor of shape [batch, 3] where each row is of\n the form [height, width, channels] indicating the shapes of true images\n in the resized images, as resized images can be padded with zeros.\n scope: Optional scope name.\n\n Returns:\n A dictionary mapping the keys [\n \'Loss/object_center\',\n \'Loss/box/scale\', (optional)\n \'Loss/box/offset\', (optional)\n \'Loss/$TASK_NAME/keypoint/heatmap\', (optional)\n \'Loss/$TASK_NAME/keypoint/offset\', (optional)\n \'Loss/$TASK_NAME/keypoint/regression\', (optional)\n \'Loss/segmentation/heatmap\', (optional)\n \'Loss/densepose/heatmap\', (optional)\n \'Loss/densepose/regression\', (optional)\n \'Loss/track/reid\'] (optional)\n \'Loss/track/offset\'] (optional)\n scalar tensors corresponding to the losses for different tasks. Note the\n $TASK_NAME is provided by the KeypointEstimation namedtuple used to\n differentiate between different keypoint tasks.\n ' (_, input_height, input_width, _) = _get_shape(prediction_dict['preprocessed_inputs'], 4) (output_height, output_width) = ((input_height // self._stride), (input_width // self._stride)) output_true_image_shapes = tf.ceil((tf.to_float(true_image_shapes) / self._stride)) valid_anchor_weights = get_valid_anchor_weights_in_flattened_image(output_true_image_shapes, output_height, output_width) valid_anchor_weights = tf.expand_dims(valid_anchor_weights, 2) object_center_loss = self._compute_object_center_loss(object_center_predictions=prediction_dict[OBJECT_CENTER], input_height=input_height, input_width=input_width, per_pixel_weights=valid_anchor_weights) losses = {OBJECT_CENTER: (self._center_params.object_center_loss_weight * object_center_loss)} if (self._od_params is not None): od_losses = self._compute_object_detection_losses(input_height=input_height, input_width=input_width, prediction_dict=prediction_dict, per_pixel_weights=valid_anchor_weights) for key in od_losses: od_losses[key] = (od_losses[key] * self._od_params.task_loss_weight) losses.update(od_losses) if (self._kp_params_dict is not None): for (task_name, params) in self._kp_params_dict.items(): kp_losses = self._compute_keypoint_estimation_losses(task_name=task_name, input_height=input_height, input_width=input_width, prediction_dict=prediction_dict, per_pixel_weights=valid_anchor_weights) for key in kp_losses: kp_losses[key] = (kp_losses[key] * params.task_loss_weight) losses.update(kp_losses) if (self._mask_params is not None): seg_losses = self._compute_segmentation_losses(prediction_dict=prediction_dict, per_pixel_weights=valid_anchor_weights) for key in seg_losses: seg_losses[key] = (seg_losses[key] * self._mask_params.task_loss_weight) losses.update(seg_losses) if (self._densepose_params is not None): densepose_losses = self._compute_densepose_losses(input_height=input_height, input_width=input_width, prediction_dict=prediction_dict) for key in densepose_losses: densepose_losses[key] = (densepose_losses[key] * self._densepose_params.task_loss_weight) losses.update(densepose_losses) if (self._track_params is not None): track_losses = self._compute_track_losses(input_height=input_height, input_width=input_width, prediction_dict=prediction_dict) for key in track_losses: track_losses[key] = (track_losses[key] * self._track_params.task_loss_weight) losses.update(track_losses) if (self._temporal_offset_params is not None): offset_losses = self._compute_temporal_offset_loss(input_height=input_height, input_width=input_width, prediction_dict=prediction_dict) for key in offset_losses: offset_losses[key] = (offset_losses[key] * self._temporal_offset_params.task_loss_weight) losses.update(offset_losses) return dict([(('%s/%s' % (LOSS_KEY_PREFIX, key)), val) for (key, val) in losses.items()])
4,125,836,591,047,334,000
Computes scalar loss tensors with respect to provided groundtruth. This function implements the various CenterNet losses. Args: prediction_dict: a dictionary holding predicted tensors returned by "predict" function. true_image_shapes: int32 tensor of shape [batch, 3] where each row is of the form [height, width, channels] indicating the shapes of true images in the resized images, as resized images can be padded with zeros. scope: Optional scope name. Returns: A dictionary mapping the keys [ 'Loss/object_center', 'Loss/box/scale', (optional) 'Loss/box/offset', (optional) 'Loss/$TASK_NAME/keypoint/heatmap', (optional) 'Loss/$TASK_NAME/keypoint/offset', (optional) 'Loss/$TASK_NAME/keypoint/regression', (optional) 'Loss/segmentation/heatmap', (optional) 'Loss/densepose/heatmap', (optional) 'Loss/densepose/regression', (optional) 'Loss/track/reid'] (optional) 'Loss/track/offset'] (optional) scalar tensors corresponding to the losses for different tasks. Note the $TASK_NAME is provided by the KeypointEstimation namedtuple used to differentiate between different keypoint tasks.
research/object_detection/meta_architectures/center_net_meta_arch.py
loss
AvikantSrivastava/models
python
def loss(self, prediction_dict, true_image_shapes, scope=None): 'Computes scalar loss tensors with respect to provided groundtruth.\n\n This function implements the various CenterNet losses.\n\n Args:\n prediction_dict: a dictionary holding predicted tensors returned by\n "predict" function.\n true_image_shapes: int32 tensor of shape [batch, 3] where each row is of\n the form [height, width, channels] indicating the shapes of true images\n in the resized images, as resized images can be padded with zeros.\n scope: Optional scope name.\n\n Returns:\n A dictionary mapping the keys [\n \'Loss/object_center\',\n \'Loss/box/scale\', (optional)\n \'Loss/box/offset\', (optional)\n \'Loss/$TASK_NAME/keypoint/heatmap\', (optional)\n \'Loss/$TASK_NAME/keypoint/offset\', (optional)\n \'Loss/$TASK_NAME/keypoint/regression\', (optional)\n \'Loss/segmentation/heatmap\', (optional)\n \'Loss/densepose/heatmap\', (optional)\n \'Loss/densepose/regression\', (optional)\n \'Loss/track/reid\'] (optional)\n \'Loss/track/offset\'] (optional)\n scalar tensors corresponding to the losses for different tasks. Note the\n $TASK_NAME is provided by the KeypointEstimation namedtuple used to\n differentiate between different keypoint tasks.\n ' (_, input_height, input_width, _) = _get_shape(prediction_dict['preprocessed_inputs'], 4) (output_height, output_width) = ((input_height // self._stride), (input_width // self._stride)) output_true_image_shapes = tf.ceil((tf.to_float(true_image_shapes) / self._stride)) valid_anchor_weights = get_valid_anchor_weights_in_flattened_image(output_true_image_shapes, output_height, output_width) valid_anchor_weights = tf.expand_dims(valid_anchor_weights, 2) object_center_loss = self._compute_object_center_loss(object_center_predictions=prediction_dict[OBJECT_CENTER], input_height=input_height, input_width=input_width, per_pixel_weights=valid_anchor_weights) losses = {OBJECT_CENTER: (self._center_params.object_center_loss_weight * object_center_loss)} if (self._od_params is not None): od_losses = self._compute_object_detection_losses(input_height=input_height, input_width=input_width, prediction_dict=prediction_dict, per_pixel_weights=valid_anchor_weights) for key in od_losses: od_losses[key] = (od_losses[key] * self._od_params.task_loss_weight) losses.update(od_losses) if (self._kp_params_dict is not None): for (task_name, params) in self._kp_params_dict.items(): kp_losses = self._compute_keypoint_estimation_losses(task_name=task_name, input_height=input_height, input_width=input_width, prediction_dict=prediction_dict, per_pixel_weights=valid_anchor_weights) for key in kp_losses: kp_losses[key] = (kp_losses[key] * params.task_loss_weight) losses.update(kp_losses) if (self._mask_params is not None): seg_losses = self._compute_segmentation_losses(prediction_dict=prediction_dict, per_pixel_weights=valid_anchor_weights) for key in seg_losses: seg_losses[key] = (seg_losses[key] * self._mask_params.task_loss_weight) losses.update(seg_losses) if (self._densepose_params is not None): densepose_losses = self._compute_densepose_losses(input_height=input_height, input_width=input_width, prediction_dict=prediction_dict) for key in densepose_losses: densepose_losses[key] = (densepose_losses[key] * self._densepose_params.task_loss_weight) losses.update(densepose_losses) if (self._track_params is not None): track_losses = self._compute_track_losses(input_height=input_height, input_width=input_width, prediction_dict=prediction_dict) for key in track_losses: track_losses[key] = (track_losses[key] * self._track_params.task_loss_weight) losses.update(track_losses) if (self._temporal_offset_params is not None): offset_losses = self._compute_temporal_offset_loss(input_height=input_height, input_width=input_width, prediction_dict=prediction_dict) for key in offset_losses: offset_losses[key] = (offset_losses[key] * self._temporal_offset_params.task_loss_weight) losses.update(offset_losses) return dict([(('%s/%s' % (LOSS_KEY_PREFIX, key)), val) for (key, val) in losses.items()])
def postprocess(self, prediction_dict, true_image_shapes, **params): 'Produces boxes given a prediction dict returned by predict().\n\n Although predict returns a list of tensors, only the last tensor in\n each list is used for making box predictions.\n\n Args:\n prediction_dict: a dictionary holding predicted tensors from "predict"\n function.\n true_image_shapes: int32 tensor of shape [batch, 3] where each row is of\n the form [height, width, channels] indicating the shapes of true images\n in the resized images, as resized images can be padded with zeros.\n **params: Currently ignored.\n\n Returns:\n detections: a dictionary containing the following fields\n detection_boxes - A tensor of shape [batch, max_detections, 4]\n holding the predicted boxes.\n detection_boxes_strided: A tensor of shape [batch_size, num_detections,\n 4] holding the predicted boxes in absolute coordinates of the\n feature extractor\'s final layer output.\n detection_scores: A tensor of shape [batch, max_detections] holding\n the predicted score for each box.\n detection_classes: An integer tensor of shape [batch, max_detections]\n containing the detected class for each box.\n num_detections: An integer tensor of shape [batch] containing the\n number of detected boxes for each sample in the batch.\n detection_keypoints: (Optional) A float tensor of shape [batch,\n max_detections, num_keypoints, 2] with normalized keypoints. Any\n invalid keypoints have their coordinates and scores set to 0.0.\n detection_keypoint_scores: (Optional) A float tensor of shape [batch,\n max_detection, num_keypoints] with scores for each keypoint.\n detection_masks: (Optional) A uint8 tensor of shape [batch,\n max_detections, mask_height, mask_width] with masks for each\n detection. Background is specified with 0, and foreground is specified\n with positive integers (1 for standard instance segmentation mask, and\n 1-indexed parts for DensePose task).\n detection_surface_coords: (Optional) A float32 tensor of shape [batch,\n max_detection, mask_height, mask_width, 2] with DensePose surface\n coordinates, in (v, u) format.\n detection_embeddings: (Optional) A float tensor of shape [batch,\n max_detections, reid_embed_size] containing object embeddings.\n ' object_center_prob = tf.nn.sigmoid(prediction_dict[OBJECT_CENTER][(- 1)]) (detection_scores, y_indices, x_indices, channel_indices) = top_k_feature_map_locations(object_center_prob, max_pool_kernel_size=3, k=self._center_params.max_box_predictions) (boxes_strided, classes, scores, num_detections) = prediction_tensors_to_boxes(detection_scores, y_indices, x_indices, channel_indices, prediction_dict[BOX_SCALE][(- 1)], prediction_dict[BOX_OFFSET][(- 1)]) boxes = convert_strided_predictions_to_normalized_boxes(boxes_strided, self._stride, true_image_shapes) postprocess_dict = {fields.DetectionResultFields.detection_boxes: boxes, fields.DetectionResultFields.detection_scores: scores, fields.DetectionResultFields.detection_classes: classes, fields.DetectionResultFields.num_detections: num_detections, 'detection_boxes_strided': boxes_strided} if self._kp_params_dict: (keypoints, keypoint_scores) = self._postprocess_keypoints(prediction_dict, classes, y_indices, x_indices, boxes_strided, num_detections) (keypoints, keypoint_scores) = convert_strided_predictions_to_normalized_keypoints(keypoints, keypoint_scores, self._stride, true_image_shapes, clip_out_of_frame_keypoints=True) postprocess_dict.update({fields.DetectionResultFields.detection_keypoints: keypoints, fields.DetectionResultFields.detection_keypoint_scores: keypoint_scores}) if self._mask_params: masks = tf.nn.sigmoid(prediction_dict[SEGMENTATION_HEATMAP][(- 1)]) (densepose_part_heatmap, densepose_surface_coords) = (None, None) densepose_class_index = 0 if self._densepose_params: densepose_part_heatmap = prediction_dict[DENSEPOSE_HEATMAP][(- 1)] densepose_surface_coords = prediction_dict[DENSEPOSE_REGRESSION][(- 1)] densepose_class_index = self._densepose_params.class_id (instance_masks, surface_coords) = convert_strided_predictions_to_instance_masks(boxes, classes, masks, true_image_shapes, densepose_part_heatmap, densepose_surface_coords, stride=self._stride, mask_height=self._mask_params.mask_height, mask_width=self._mask_params.mask_width, score_threshold=self._mask_params.score_threshold, densepose_class_index=densepose_class_index) postprocess_dict[fields.DetectionResultFields.detection_masks] = instance_masks if self._densepose_params: postprocess_dict[fields.DetectionResultFields.detection_surface_coords] = surface_coords if self._track_params: embeddings = self._postprocess_embeddings(prediction_dict, y_indices, x_indices) postprocess_dict.update({fields.DetectionResultFields.detection_embeddings: embeddings}) if self._temporal_offset_params: offsets = prediction_tensors_to_temporal_offsets(y_indices, x_indices, prediction_dict[TEMPORAL_OFFSET][(- 1)]) postprocess_dict[fields.DetectionResultFields.detection_offsets] = offsets return postprocess_dict
-427,511,309,887,318,850
Produces boxes given a prediction dict returned by predict(). Although predict returns a list of tensors, only the last tensor in each list is used for making box predictions. Args: prediction_dict: a dictionary holding predicted tensors from "predict" function. true_image_shapes: int32 tensor of shape [batch, 3] where each row is of the form [height, width, channels] indicating the shapes of true images in the resized images, as resized images can be padded with zeros. **params: Currently ignored. Returns: detections: a dictionary containing the following fields detection_boxes - A tensor of shape [batch, max_detections, 4] holding the predicted boxes. detection_boxes_strided: A tensor of shape [batch_size, num_detections, 4] holding the predicted boxes in absolute coordinates of the feature extractor's final layer output. detection_scores: A tensor of shape [batch, max_detections] holding the predicted score for each box. detection_classes: An integer tensor of shape [batch, max_detections] containing the detected class for each box. num_detections: An integer tensor of shape [batch] containing the number of detected boxes for each sample in the batch. detection_keypoints: (Optional) A float tensor of shape [batch, max_detections, num_keypoints, 2] with normalized keypoints. Any invalid keypoints have their coordinates and scores set to 0.0. detection_keypoint_scores: (Optional) A float tensor of shape [batch, max_detection, num_keypoints] with scores for each keypoint. detection_masks: (Optional) A uint8 tensor of shape [batch, max_detections, mask_height, mask_width] with masks for each detection. Background is specified with 0, and foreground is specified with positive integers (1 for standard instance segmentation mask, and 1-indexed parts for DensePose task). detection_surface_coords: (Optional) A float32 tensor of shape [batch, max_detection, mask_height, mask_width, 2] with DensePose surface coordinates, in (v, u) format. detection_embeddings: (Optional) A float tensor of shape [batch, max_detections, reid_embed_size] containing object embeddings.
research/object_detection/meta_architectures/center_net_meta_arch.py
postprocess
AvikantSrivastava/models
python
def postprocess(self, prediction_dict, true_image_shapes, **params): 'Produces boxes given a prediction dict returned by predict().\n\n Although predict returns a list of tensors, only the last tensor in\n each list is used for making box predictions.\n\n Args:\n prediction_dict: a dictionary holding predicted tensors from "predict"\n function.\n true_image_shapes: int32 tensor of shape [batch, 3] where each row is of\n the form [height, width, channels] indicating the shapes of true images\n in the resized images, as resized images can be padded with zeros.\n **params: Currently ignored.\n\n Returns:\n detections: a dictionary containing the following fields\n detection_boxes - A tensor of shape [batch, max_detections, 4]\n holding the predicted boxes.\n detection_boxes_strided: A tensor of shape [batch_size, num_detections,\n 4] holding the predicted boxes in absolute coordinates of the\n feature extractor\'s final layer output.\n detection_scores: A tensor of shape [batch, max_detections] holding\n the predicted score for each box.\n detection_classes: An integer tensor of shape [batch, max_detections]\n containing the detected class for each box.\n num_detections: An integer tensor of shape [batch] containing the\n number of detected boxes for each sample in the batch.\n detection_keypoints: (Optional) A float tensor of shape [batch,\n max_detections, num_keypoints, 2] with normalized keypoints. Any\n invalid keypoints have their coordinates and scores set to 0.0.\n detection_keypoint_scores: (Optional) A float tensor of shape [batch,\n max_detection, num_keypoints] with scores for each keypoint.\n detection_masks: (Optional) A uint8 tensor of shape [batch,\n max_detections, mask_height, mask_width] with masks for each\n detection. Background is specified with 0, and foreground is specified\n with positive integers (1 for standard instance segmentation mask, and\n 1-indexed parts for DensePose task).\n detection_surface_coords: (Optional) A float32 tensor of shape [batch,\n max_detection, mask_height, mask_width, 2] with DensePose surface\n coordinates, in (v, u) format.\n detection_embeddings: (Optional) A float tensor of shape [batch,\n max_detections, reid_embed_size] containing object embeddings.\n ' object_center_prob = tf.nn.sigmoid(prediction_dict[OBJECT_CENTER][(- 1)]) (detection_scores, y_indices, x_indices, channel_indices) = top_k_feature_map_locations(object_center_prob, max_pool_kernel_size=3, k=self._center_params.max_box_predictions) (boxes_strided, classes, scores, num_detections) = prediction_tensors_to_boxes(detection_scores, y_indices, x_indices, channel_indices, prediction_dict[BOX_SCALE][(- 1)], prediction_dict[BOX_OFFSET][(- 1)]) boxes = convert_strided_predictions_to_normalized_boxes(boxes_strided, self._stride, true_image_shapes) postprocess_dict = {fields.DetectionResultFields.detection_boxes: boxes, fields.DetectionResultFields.detection_scores: scores, fields.DetectionResultFields.detection_classes: classes, fields.DetectionResultFields.num_detections: num_detections, 'detection_boxes_strided': boxes_strided} if self._kp_params_dict: (keypoints, keypoint_scores) = self._postprocess_keypoints(prediction_dict, classes, y_indices, x_indices, boxes_strided, num_detections) (keypoints, keypoint_scores) = convert_strided_predictions_to_normalized_keypoints(keypoints, keypoint_scores, self._stride, true_image_shapes, clip_out_of_frame_keypoints=True) postprocess_dict.update({fields.DetectionResultFields.detection_keypoints: keypoints, fields.DetectionResultFields.detection_keypoint_scores: keypoint_scores}) if self._mask_params: masks = tf.nn.sigmoid(prediction_dict[SEGMENTATION_HEATMAP][(- 1)]) (densepose_part_heatmap, densepose_surface_coords) = (None, None) densepose_class_index = 0 if self._densepose_params: densepose_part_heatmap = prediction_dict[DENSEPOSE_HEATMAP][(- 1)] densepose_surface_coords = prediction_dict[DENSEPOSE_REGRESSION][(- 1)] densepose_class_index = self._densepose_params.class_id (instance_masks, surface_coords) = convert_strided_predictions_to_instance_masks(boxes, classes, masks, true_image_shapes, densepose_part_heatmap, densepose_surface_coords, stride=self._stride, mask_height=self._mask_params.mask_height, mask_width=self._mask_params.mask_width, score_threshold=self._mask_params.score_threshold, densepose_class_index=densepose_class_index) postprocess_dict[fields.DetectionResultFields.detection_masks] = instance_masks if self._densepose_params: postprocess_dict[fields.DetectionResultFields.detection_surface_coords] = surface_coords if self._track_params: embeddings = self._postprocess_embeddings(prediction_dict, y_indices, x_indices) postprocess_dict.update({fields.DetectionResultFields.detection_embeddings: embeddings}) if self._temporal_offset_params: offsets = prediction_tensors_to_temporal_offsets(y_indices, x_indices, prediction_dict[TEMPORAL_OFFSET][(- 1)]) postprocess_dict[fields.DetectionResultFields.detection_offsets] = offsets return postprocess_dict
def _postprocess_embeddings(self, prediction_dict, y_indices, x_indices): 'Performs postprocessing on embedding predictions.\n\n Args:\n prediction_dict: a dictionary holding predicted tensors, returned from the\n predict() method. This dictionary should contain embedding prediction\n feature maps for tracking task.\n y_indices: A [batch_size, max_detections] int tensor with y indices for\n all object centers.\n x_indices: A [batch_size, max_detections] int tensor with x indices for\n all object centers.\n\n Returns:\n embeddings: A [batch_size, max_detection, reid_embed_size] float32\n tensor with L2 normalized embeddings extracted from detection box\n centers.\n ' embedding_predictions = prediction_dict[TRACK_REID][(- 1)] embeddings = predicted_embeddings_at_object_centers(embedding_predictions, y_indices, x_indices) (embeddings, _) = tf.linalg.normalize(embeddings, axis=(- 1)) return embeddings
-3,924,071,412,387,423,000
Performs postprocessing on embedding predictions. Args: prediction_dict: a dictionary holding predicted tensors, returned from the predict() method. This dictionary should contain embedding prediction feature maps for tracking task. y_indices: A [batch_size, max_detections] int tensor with y indices for all object centers. x_indices: A [batch_size, max_detections] int tensor with x indices for all object centers. Returns: embeddings: A [batch_size, max_detection, reid_embed_size] float32 tensor with L2 normalized embeddings extracted from detection box centers.
research/object_detection/meta_architectures/center_net_meta_arch.py
_postprocess_embeddings
AvikantSrivastava/models
python
def _postprocess_embeddings(self, prediction_dict, y_indices, x_indices): 'Performs postprocessing on embedding predictions.\n\n Args:\n prediction_dict: a dictionary holding predicted tensors, returned from the\n predict() method. This dictionary should contain embedding prediction\n feature maps for tracking task.\n y_indices: A [batch_size, max_detections] int tensor with y indices for\n all object centers.\n x_indices: A [batch_size, max_detections] int tensor with x indices for\n all object centers.\n\n Returns:\n embeddings: A [batch_size, max_detection, reid_embed_size] float32\n tensor with L2 normalized embeddings extracted from detection box\n centers.\n ' embedding_predictions = prediction_dict[TRACK_REID][(- 1)] embeddings = predicted_embeddings_at_object_centers(embedding_predictions, y_indices, x_indices) (embeddings, _) = tf.linalg.normalize(embeddings, axis=(- 1)) return embeddings
def _postprocess_keypoints(self, prediction_dict, classes, y_indices, x_indices, boxes, num_detections): 'Performs postprocessing on keypoint predictions.\n\n Args:\n prediction_dict: a dictionary holding predicted tensors, returned from the\n predict() method. This dictionary should contain keypoint prediction\n feature maps for each keypoint task.\n classes: A [batch_size, max_detections] int tensor with class indices for\n all detected objects.\n y_indices: A [batch_size, max_detections] int tensor with y indices for\n all object centers.\n x_indices: A [batch_size, max_detections] int tensor with x indices for\n all object centers.\n boxes: A [batch_size, max_detections, 4] float32 tensor with bounding\n boxes in (un-normalized) output space.\n num_detections: A [batch_size] int tensor with the number of valid\n detections for each image.\n\n Returns:\n A tuple of\n keypoints: a [batch_size, max_detection, num_total_keypoints, 2] float32\n tensor with keypoints in the output (strided) coordinate frame.\n keypoint_scores: a [batch_size, max_detections, num_total_keypoints]\n float32 tensor with keypoint scores.\n ' total_num_keypoints = sum((len(kp_dict.keypoint_indices) for kp_dict in self._kp_params_dict.values())) (batch_size, max_detections, _) = _get_shape(boxes, 3) kpt_coords_for_example_list = [] kpt_scores_for_example_list = [] for ex_ind in range(batch_size): kpt_coords_for_class_list = [] kpt_scores_for_class_list = [] instance_inds_for_class_list = [] for (task_name, kp_params) in self._kp_params_dict.items(): keypoint_heatmap = prediction_dict[get_keypoint_name(task_name, KEYPOINT_HEATMAP)][(- 1)] keypoint_offsets = prediction_dict[get_keypoint_name(task_name, KEYPOINT_OFFSET)][(- 1)] keypoint_regression = prediction_dict[get_keypoint_name(task_name, KEYPOINT_REGRESSION)][(- 1)] instance_inds = self._get_instance_indices(classes, num_detections, ex_ind, kp_params.class_id) def true_fn(keypoint_heatmap, keypoint_offsets, keypoint_regression, classes, y_indices, x_indices, boxes, instance_inds, ex_ind, kp_params): 'Logics to execute when instance_inds is not an empty set.' (kpt_coords_for_class, kpt_scores_for_class) = self._postprocess_keypoints_for_class_and_image(keypoint_heatmap, keypoint_offsets, keypoint_regression, classes, y_indices, x_indices, boxes, instance_inds, ex_ind, kp_params) (kpts_coords_for_class_padded, kpt_scores_for_class_padded) = _pad_to_full_keypoint_dim(kpt_coords_for_class, kpt_scores_for_class, kp_params.keypoint_indices, total_num_keypoints) return (kpts_coords_for_class_padded, kpt_scores_for_class_padded) def false_fn(): 'Logics to execute when the instance_inds is an empty set.' return (tf.zeros([1, 0, total_num_keypoints, 2], dtype=tf.float32), tf.zeros([1, 0, total_num_keypoints], dtype=tf.float32)) true_fn = functools.partial(true_fn, keypoint_heatmap, keypoint_offsets, keypoint_regression, classes, y_indices, x_indices, boxes, instance_inds, ex_ind, kp_params) results = tf.cond((tf.size(instance_inds) > 0), true_fn, false_fn) kpt_coords_for_class_list.append(results[0]) kpt_scores_for_class_list.append(results[1]) instance_inds_for_class_list.append(instance_inds) kpt_coords_for_example = tf.concat(kpt_coords_for_class_list, axis=1) kpt_scores_for_example = tf.concat(kpt_scores_for_class_list, axis=1) instance_inds_for_example = tf.concat(instance_inds_for_class_list, axis=0) if (tf.size(instance_inds_for_example) > 0): (kpt_coords_for_example_all_det, kpt_scores_for_example_all_det) = _pad_to_full_instance_dim(kpt_coords_for_example, kpt_scores_for_example, instance_inds_for_example, self._center_params.max_box_predictions) else: kpt_coords_for_example_all_det = tf.zeros([1, max_detections, total_num_keypoints, 2], dtype=tf.float32) kpt_scores_for_example_all_det = tf.zeros([1, max_detections, total_num_keypoints], dtype=tf.float32) kpt_coords_for_example_list.append(kpt_coords_for_example_all_det) kpt_scores_for_example_list.append(kpt_scores_for_example_all_det) keypoints = tf.concat(kpt_coords_for_example_list, axis=0) keypoint_scores = tf.concat(kpt_scores_for_example_list, axis=0) return (keypoints, keypoint_scores)
-4,493,164,361,329,250,300
Performs postprocessing on keypoint predictions. Args: prediction_dict: a dictionary holding predicted tensors, returned from the predict() method. This dictionary should contain keypoint prediction feature maps for each keypoint task. classes: A [batch_size, max_detections] int tensor with class indices for all detected objects. y_indices: A [batch_size, max_detections] int tensor with y indices for all object centers. x_indices: A [batch_size, max_detections] int tensor with x indices for all object centers. boxes: A [batch_size, max_detections, 4] float32 tensor with bounding boxes in (un-normalized) output space. num_detections: A [batch_size] int tensor with the number of valid detections for each image. Returns: A tuple of keypoints: a [batch_size, max_detection, num_total_keypoints, 2] float32 tensor with keypoints in the output (strided) coordinate frame. keypoint_scores: a [batch_size, max_detections, num_total_keypoints] float32 tensor with keypoint scores.
research/object_detection/meta_architectures/center_net_meta_arch.py
_postprocess_keypoints
AvikantSrivastava/models
python
def _postprocess_keypoints(self, prediction_dict, classes, y_indices, x_indices, boxes, num_detections): 'Performs postprocessing on keypoint predictions.\n\n Args:\n prediction_dict: a dictionary holding predicted tensors, returned from the\n predict() method. This dictionary should contain keypoint prediction\n feature maps for each keypoint task.\n classes: A [batch_size, max_detections] int tensor with class indices for\n all detected objects.\n y_indices: A [batch_size, max_detections] int tensor with y indices for\n all object centers.\n x_indices: A [batch_size, max_detections] int tensor with x indices for\n all object centers.\n boxes: A [batch_size, max_detections, 4] float32 tensor with bounding\n boxes in (un-normalized) output space.\n num_detections: A [batch_size] int tensor with the number of valid\n detections for each image.\n\n Returns:\n A tuple of\n keypoints: a [batch_size, max_detection, num_total_keypoints, 2] float32\n tensor with keypoints in the output (strided) coordinate frame.\n keypoint_scores: a [batch_size, max_detections, num_total_keypoints]\n float32 tensor with keypoint scores.\n ' total_num_keypoints = sum((len(kp_dict.keypoint_indices) for kp_dict in self._kp_params_dict.values())) (batch_size, max_detections, _) = _get_shape(boxes, 3) kpt_coords_for_example_list = [] kpt_scores_for_example_list = [] for ex_ind in range(batch_size): kpt_coords_for_class_list = [] kpt_scores_for_class_list = [] instance_inds_for_class_list = [] for (task_name, kp_params) in self._kp_params_dict.items(): keypoint_heatmap = prediction_dict[get_keypoint_name(task_name, KEYPOINT_HEATMAP)][(- 1)] keypoint_offsets = prediction_dict[get_keypoint_name(task_name, KEYPOINT_OFFSET)][(- 1)] keypoint_regression = prediction_dict[get_keypoint_name(task_name, KEYPOINT_REGRESSION)][(- 1)] instance_inds = self._get_instance_indices(classes, num_detections, ex_ind, kp_params.class_id) def true_fn(keypoint_heatmap, keypoint_offsets, keypoint_regression, classes, y_indices, x_indices, boxes, instance_inds, ex_ind, kp_params): 'Logics to execute when instance_inds is not an empty set.' (kpt_coords_for_class, kpt_scores_for_class) = self._postprocess_keypoints_for_class_and_image(keypoint_heatmap, keypoint_offsets, keypoint_regression, classes, y_indices, x_indices, boxes, instance_inds, ex_ind, kp_params) (kpts_coords_for_class_padded, kpt_scores_for_class_padded) = _pad_to_full_keypoint_dim(kpt_coords_for_class, kpt_scores_for_class, kp_params.keypoint_indices, total_num_keypoints) return (kpts_coords_for_class_padded, kpt_scores_for_class_padded) def false_fn(): 'Logics to execute when the instance_inds is an empty set.' return (tf.zeros([1, 0, total_num_keypoints, 2], dtype=tf.float32), tf.zeros([1, 0, total_num_keypoints], dtype=tf.float32)) true_fn = functools.partial(true_fn, keypoint_heatmap, keypoint_offsets, keypoint_regression, classes, y_indices, x_indices, boxes, instance_inds, ex_ind, kp_params) results = tf.cond((tf.size(instance_inds) > 0), true_fn, false_fn) kpt_coords_for_class_list.append(results[0]) kpt_scores_for_class_list.append(results[1]) instance_inds_for_class_list.append(instance_inds) kpt_coords_for_example = tf.concat(kpt_coords_for_class_list, axis=1) kpt_scores_for_example = tf.concat(kpt_scores_for_class_list, axis=1) instance_inds_for_example = tf.concat(instance_inds_for_class_list, axis=0) if (tf.size(instance_inds_for_example) > 0): (kpt_coords_for_example_all_det, kpt_scores_for_example_all_det) = _pad_to_full_instance_dim(kpt_coords_for_example, kpt_scores_for_example, instance_inds_for_example, self._center_params.max_box_predictions) else: kpt_coords_for_example_all_det = tf.zeros([1, max_detections, total_num_keypoints, 2], dtype=tf.float32) kpt_scores_for_example_all_det = tf.zeros([1, max_detections, total_num_keypoints], dtype=tf.float32) kpt_coords_for_example_list.append(kpt_coords_for_example_all_det) kpt_scores_for_example_list.append(kpt_scores_for_example_all_det) keypoints = tf.concat(kpt_coords_for_example_list, axis=0) keypoint_scores = tf.concat(kpt_scores_for_example_list, axis=0) return (keypoints, keypoint_scores)
def _get_instance_indices(self, classes, num_detections, batch_index, class_id): 'Gets the instance indices that match the target class ID.\n\n Args:\n classes: A [batch_size, max_detections] int tensor with class indices for\n all detected objects.\n num_detections: A [batch_size] int tensor with the number of valid\n detections for each image.\n batch_index: An integer specifying the index for an example in the batch.\n class_id: Class id\n\n Returns:\n instance_inds: A [num_instances] int tensor where each element indicates\n the instance location within the `classes` tensor. This is useful to\n associate the refined keypoints with the original detections (i.e.\n boxes)\n ' classes = classes[batch_index:(batch_index + 1), ...] (_, max_detections) = shape_utils.combined_static_and_dynamic_shape(classes) valid_detections_with_kpt_class = tf.math.logical_and((tf.range(max_detections) < num_detections[batch_index]), (classes[0] == class_id)) instance_inds = tf.where(valid_detections_with_kpt_class)[:, 0] return instance_inds
-8,815,530,122,229,937,000
Gets the instance indices that match the target class ID. Args: classes: A [batch_size, max_detections] int tensor with class indices for all detected objects. num_detections: A [batch_size] int tensor with the number of valid detections for each image. batch_index: An integer specifying the index for an example in the batch. class_id: Class id Returns: instance_inds: A [num_instances] int tensor where each element indicates the instance location within the `classes` tensor. This is useful to associate the refined keypoints with the original detections (i.e. boxes)
research/object_detection/meta_architectures/center_net_meta_arch.py
_get_instance_indices
AvikantSrivastava/models
python
def _get_instance_indices(self, classes, num_detections, batch_index, class_id): 'Gets the instance indices that match the target class ID.\n\n Args:\n classes: A [batch_size, max_detections] int tensor with class indices for\n all detected objects.\n num_detections: A [batch_size] int tensor with the number of valid\n detections for each image.\n batch_index: An integer specifying the index for an example in the batch.\n class_id: Class id\n\n Returns:\n instance_inds: A [num_instances] int tensor where each element indicates\n the instance location within the `classes` tensor. This is useful to\n associate the refined keypoints with the original detections (i.e.\n boxes)\n ' classes = classes[batch_index:(batch_index + 1), ...] (_, max_detections) = shape_utils.combined_static_and_dynamic_shape(classes) valid_detections_with_kpt_class = tf.math.logical_and((tf.range(max_detections) < num_detections[batch_index]), (classes[0] == class_id)) instance_inds = tf.where(valid_detections_with_kpt_class)[:, 0] return instance_inds
def _postprocess_keypoints_for_class_and_image(self, keypoint_heatmap, keypoint_offsets, keypoint_regression, classes, y_indices, x_indices, boxes, indices_with_kpt_class, batch_index, kp_params): 'Postprocess keypoints for a single image and class.\n\n This function performs the following postprocessing operations on a single\n image and single keypoint class:\n - Converts keypoints scores to range [0, 1] with sigmoid.\n - Determines the detections that correspond to the specified keypoint class.\n - Gathers the regressed keypoints at the detection (i.e. box) centers.\n - Gathers keypoint candidates from the keypoint heatmaps.\n - Snaps regressed keypoints to nearby keypoint candidates.\n\n Args:\n keypoint_heatmap: A [batch_size, height, width, num_keypoints] float32\n tensor with keypoint heatmaps.\n keypoint_offsets: A [batch_size, height, width, 2] float32 tensor with\n local offsets to keypoint centers.\n keypoint_regression: A [batch_size, height, width, 2 * num_keypoints]\n float32 tensor with regressed offsets to all keypoints.\n classes: A [batch_size, max_detections] int tensor with class indices for\n all detected objects.\n y_indices: A [batch_size, max_detections] int tensor with y indices for\n all object centers.\n x_indices: A [batch_size, max_detections] int tensor with x indices for\n all object centers.\n boxes: A [batch_size, max_detections, 4] float32 tensor with detected\n boxes in the output (strided) frame.\n indices_with_kpt_class: A [num_instances] int tensor where each element\n indicates the instance location within the `classes` tensor. This is\n useful to associate the refined keypoints with the original detections\n (i.e. boxes)\n batch_index: An integer specifying the index for an example in the batch.\n kp_params: A `KeypointEstimationParams` object with parameters for a\n single keypoint class.\n\n Returns:\n A tuple of\n refined_keypoints: A [1, num_instances, num_keypoints, 2] float32 tensor\n with refined keypoints for a single class in a single image, expressed\n in the output (strided) coordinate frame. Note that `num_instances` is a\n dynamic dimension, and corresponds to the number of valid detections\n for the specific class.\n refined_scores: A [1, num_instances, num_keypoints] float32 tensor with\n keypoint scores.\n ' keypoint_indices = kp_params.keypoint_indices num_keypoints = len(keypoint_indices) keypoint_heatmap = tf.nn.sigmoid(keypoint_heatmap[batch_index:(batch_index + 1), ...]) keypoint_offsets = keypoint_offsets[batch_index:(batch_index + 1), ...] keypoint_regression = keypoint_regression[batch_index:(batch_index + 1), ...] y_indices = y_indices[batch_index:(batch_index + 1), ...] x_indices = x_indices[batch_index:(batch_index + 1), ...] y_indices_for_kpt_class = tf.gather(y_indices, indices_with_kpt_class, axis=1) x_indices_for_kpt_class = tf.gather(x_indices, indices_with_kpt_class, axis=1) boxes_for_kpt_class = tf.gather(boxes, indices_with_kpt_class, axis=1) regressed_keypoints_for_objects = regressed_keypoints_at_object_centers(keypoint_regression, y_indices_for_kpt_class, x_indices_for_kpt_class) regressed_keypoints_for_objects = tf.reshape(regressed_keypoints_for_objects, [1, (- 1), num_keypoints, 2]) (keypoint_candidates, keypoint_scores, num_keypoint_candidates) = prediction_tensors_to_keypoint_candidates(keypoint_heatmap, keypoint_offsets, keypoint_score_threshold=kp_params.keypoint_candidate_score_threshold, max_pool_kernel_size=kp_params.peak_max_pool_kernel_size, max_candidates=kp_params.num_candidates_per_keypoint) (refined_keypoints, refined_scores) = refine_keypoints(regressed_keypoints_for_objects, keypoint_candidates, keypoint_scores, num_keypoint_candidates, bboxes=boxes_for_kpt_class, unmatched_keypoint_score=kp_params.unmatched_keypoint_score, box_scale=kp_params.box_scale, candidate_search_scale=kp_params.candidate_search_scale, candidate_ranking_mode=kp_params.candidate_ranking_mode) return (refined_keypoints, refined_scores)
4,418,362,711,257,832,400
Postprocess keypoints for a single image and class. This function performs the following postprocessing operations on a single image and single keypoint class: - Converts keypoints scores to range [0, 1] with sigmoid. - Determines the detections that correspond to the specified keypoint class. - Gathers the regressed keypoints at the detection (i.e. box) centers. - Gathers keypoint candidates from the keypoint heatmaps. - Snaps regressed keypoints to nearby keypoint candidates. Args: keypoint_heatmap: A [batch_size, height, width, num_keypoints] float32 tensor with keypoint heatmaps. keypoint_offsets: A [batch_size, height, width, 2] float32 tensor with local offsets to keypoint centers. keypoint_regression: A [batch_size, height, width, 2 * num_keypoints] float32 tensor with regressed offsets to all keypoints. classes: A [batch_size, max_detections] int tensor with class indices for all detected objects. y_indices: A [batch_size, max_detections] int tensor with y indices for all object centers. x_indices: A [batch_size, max_detections] int tensor with x indices for all object centers. boxes: A [batch_size, max_detections, 4] float32 tensor with detected boxes in the output (strided) frame. indices_with_kpt_class: A [num_instances] int tensor where each element indicates the instance location within the `classes` tensor. This is useful to associate the refined keypoints with the original detections (i.e. boxes) batch_index: An integer specifying the index for an example in the batch. kp_params: A `KeypointEstimationParams` object with parameters for a single keypoint class. Returns: A tuple of refined_keypoints: A [1, num_instances, num_keypoints, 2] float32 tensor with refined keypoints for a single class in a single image, expressed in the output (strided) coordinate frame. Note that `num_instances` is a dynamic dimension, and corresponds to the number of valid detections for the specific class. refined_scores: A [1, num_instances, num_keypoints] float32 tensor with keypoint scores.
research/object_detection/meta_architectures/center_net_meta_arch.py
_postprocess_keypoints_for_class_and_image
AvikantSrivastava/models
python
def _postprocess_keypoints_for_class_and_image(self, keypoint_heatmap, keypoint_offsets, keypoint_regression, classes, y_indices, x_indices, boxes, indices_with_kpt_class, batch_index, kp_params): 'Postprocess keypoints for a single image and class.\n\n This function performs the following postprocessing operations on a single\n image and single keypoint class:\n - Converts keypoints scores to range [0, 1] with sigmoid.\n - Determines the detections that correspond to the specified keypoint class.\n - Gathers the regressed keypoints at the detection (i.e. box) centers.\n - Gathers keypoint candidates from the keypoint heatmaps.\n - Snaps regressed keypoints to nearby keypoint candidates.\n\n Args:\n keypoint_heatmap: A [batch_size, height, width, num_keypoints] float32\n tensor with keypoint heatmaps.\n keypoint_offsets: A [batch_size, height, width, 2] float32 tensor with\n local offsets to keypoint centers.\n keypoint_regression: A [batch_size, height, width, 2 * num_keypoints]\n float32 tensor with regressed offsets to all keypoints.\n classes: A [batch_size, max_detections] int tensor with class indices for\n all detected objects.\n y_indices: A [batch_size, max_detections] int tensor with y indices for\n all object centers.\n x_indices: A [batch_size, max_detections] int tensor with x indices for\n all object centers.\n boxes: A [batch_size, max_detections, 4] float32 tensor with detected\n boxes in the output (strided) frame.\n indices_with_kpt_class: A [num_instances] int tensor where each element\n indicates the instance location within the `classes` tensor. This is\n useful to associate the refined keypoints with the original detections\n (i.e. boxes)\n batch_index: An integer specifying the index for an example in the batch.\n kp_params: A `KeypointEstimationParams` object with parameters for a\n single keypoint class.\n\n Returns:\n A tuple of\n refined_keypoints: A [1, num_instances, num_keypoints, 2] float32 tensor\n with refined keypoints for a single class in a single image, expressed\n in the output (strided) coordinate frame. Note that `num_instances` is a\n dynamic dimension, and corresponds to the number of valid detections\n for the specific class.\n refined_scores: A [1, num_instances, num_keypoints] float32 tensor with\n keypoint scores.\n ' keypoint_indices = kp_params.keypoint_indices num_keypoints = len(keypoint_indices) keypoint_heatmap = tf.nn.sigmoid(keypoint_heatmap[batch_index:(batch_index + 1), ...]) keypoint_offsets = keypoint_offsets[batch_index:(batch_index + 1), ...] keypoint_regression = keypoint_regression[batch_index:(batch_index + 1), ...] y_indices = y_indices[batch_index:(batch_index + 1), ...] x_indices = x_indices[batch_index:(batch_index + 1), ...] y_indices_for_kpt_class = tf.gather(y_indices, indices_with_kpt_class, axis=1) x_indices_for_kpt_class = tf.gather(x_indices, indices_with_kpt_class, axis=1) boxes_for_kpt_class = tf.gather(boxes, indices_with_kpt_class, axis=1) regressed_keypoints_for_objects = regressed_keypoints_at_object_centers(keypoint_regression, y_indices_for_kpt_class, x_indices_for_kpt_class) regressed_keypoints_for_objects = tf.reshape(regressed_keypoints_for_objects, [1, (- 1), num_keypoints, 2]) (keypoint_candidates, keypoint_scores, num_keypoint_candidates) = prediction_tensors_to_keypoint_candidates(keypoint_heatmap, keypoint_offsets, keypoint_score_threshold=kp_params.keypoint_candidate_score_threshold, max_pool_kernel_size=kp_params.peak_max_pool_kernel_size, max_candidates=kp_params.num_candidates_per_keypoint) (refined_keypoints, refined_scores) = refine_keypoints(regressed_keypoints_for_objects, keypoint_candidates, keypoint_scores, num_keypoint_candidates, bboxes=boxes_for_kpt_class, unmatched_keypoint_score=kp_params.unmatched_keypoint_score, box_scale=kp_params.box_scale, candidate_search_scale=kp_params.candidate_search_scale, candidate_ranking_mode=kp_params.candidate_ranking_mode) return (refined_keypoints, refined_scores)
def restore_from_objects(self, fine_tune_checkpoint_type='detection'): "Returns a map of Trackable objects to load from a foreign checkpoint.\n\n Returns a dictionary of Tensorflow 2 Trackable objects (e.g. tf.Module\n or Checkpoint). This enables the model to initialize based on weights from\n another task. For example, the feature extractor variables from a\n classification model can be used to bootstrap training of an object\n detector. When loading from an object detection model, the checkpoint model\n should have the same parameters as this detection model with exception of\n the num_classes parameter.\n\n Note that this function is intended to be used to restore Keras-based\n models when running Tensorflow 2, whereas restore_map (not implemented\n in CenterNet) is intended to be used to restore Slim-based models when\n running Tensorflow 1.x.\n\n TODO(jonathanhuang): Make this function consistent with other\n meta-architectures.\n\n Args:\n fine_tune_checkpoint_type: whether to restore from a full detection\n checkpoint (with compatible variable names) or to restore from a\n classification checkpoint for initialization prior to training.\n Valid values: `detection`, `classification`, `fine_tune`.\n Default 'detection'.\n 'detection': used when loading models pre-trained on other detection\n tasks. With this checkpoint type the weights of the feature extractor\n are expected under the attribute 'feature_extractor'.\n 'classification': used when loading models pre-trained on an image\n classification task. Note that only the encoder section of the network\n is loaded and not the upsampling layers. With this checkpoint type,\n the weights of only the encoder section are expected under the\n attribute 'feature_extractor'.\n 'fine_tune': used when loading the entire CenterNet feature extractor\n pre-trained on other tasks. The checkpoints saved during CenterNet\n model training can be directly loaded using this type. With this\n checkpoint type, the weights of the feature extractor are expected\n under the attribute 'model._feature_extractor'.\n For more details, see the tensorflow section on Loading mechanics.\n https://www.tensorflow.org/guide/checkpoint#loading_mechanics\n\n Returns:\n A dict mapping keys to Trackable objects (tf.Module or Checkpoint).\n " supported_types = self._feature_extractor.supported_sub_model_types supported_types += ['fine_tune'] if (fine_tune_checkpoint_type not in supported_types): message = 'Checkpoint type "{}" not supported for {}. Supported types are {}' raise ValueError(message.format(fine_tune_checkpoint_type, self._feature_extractor.__class__.__name__, supported_types)) elif (fine_tune_checkpoint_type == 'fine_tune'): feature_extractor_model = tf.train.Checkpoint(_feature_extractor=self._feature_extractor) return {'model': feature_extractor_model} else: return {'feature_extractor': self._feature_extractor.get_sub_model(fine_tune_checkpoint_type)}
3,968,676,734,106,757,600
Returns a map of Trackable objects to load from a foreign checkpoint. Returns a dictionary of Tensorflow 2 Trackable objects (e.g. tf.Module or Checkpoint). This enables the model to initialize based on weights from another task. For example, the feature extractor variables from a classification model can be used to bootstrap training of an object detector. When loading from an object detection model, the checkpoint model should have the same parameters as this detection model with exception of the num_classes parameter. Note that this function is intended to be used to restore Keras-based models when running Tensorflow 2, whereas restore_map (not implemented in CenterNet) is intended to be used to restore Slim-based models when running Tensorflow 1.x. TODO(jonathanhuang): Make this function consistent with other meta-architectures. Args: fine_tune_checkpoint_type: whether to restore from a full detection checkpoint (with compatible variable names) or to restore from a classification checkpoint for initialization prior to training. Valid values: `detection`, `classification`, `fine_tune`. Default 'detection'. 'detection': used when loading models pre-trained on other detection tasks. With this checkpoint type the weights of the feature extractor are expected under the attribute 'feature_extractor'. 'classification': used when loading models pre-trained on an image classification task. Note that only the encoder section of the network is loaded and not the upsampling layers. With this checkpoint type, the weights of only the encoder section are expected under the attribute 'feature_extractor'. 'fine_tune': used when loading the entire CenterNet feature extractor pre-trained on other tasks. The checkpoints saved during CenterNet model training can be directly loaded using this type. With this checkpoint type, the weights of the feature extractor are expected under the attribute 'model._feature_extractor'. For more details, see the tensorflow section on Loading mechanics. https://www.tensorflow.org/guide/checkpoint#loading_mechanics Returns: A dict mapping keys to Trackable objects (tf.Module or Checkpoint).
research/object_detection/meta_architectures/center_net_meta_arch.py
restore_from_objects
AvikantSrivastava/models
python
def restore_from_objects(self, fine_tune_checkpoint_type='detection'): "Returns a map of Trackable objects to load from a foreign checkpoint.\n\n Returns a dictionary of Tensorflow 2 Trackable objects (e.g. tf.Module\n or Checkpoint). This enables the model to initialize based on weights from\n another task. For example, the feature extractor variables from a\n classification model can be used to bootstrap training of an object\n detector. When loading from an object detection model, the checkpoint model\n should have the same parameters as this detection model with exception of\n the num_classes parameter.\n\n Note that this function is intended to be used to restore Keras-based\n models when running Tensorflow 2, whereas restore_map (not implemented\n in CenterNet) is intended to be used to restore Slim-based models when\n running Tensorflow 1.x.\n\n TODO(jonathanhuang): Make this function consistent with other\n meta-architectures.\n\n Args:\n fine_tune_checkpoint_type: whether to restore from a full detection\n checkpoint (with compatible variable names) or to restore from a\n classification checkpoint for initialization prior to training.\n Valid values: `detection`, `classification`, `fine_tune`.\n Default 'detection'.\n 'detection': used when loading models pre-trained on other detection\n tasks. With this checkpoint type the weights of the feature extractor\n are expected under the attribute 'feature_extractor'.\n 'classification': used when loading models pre-trained on an image\n classification task. Note that only the encoder section of the network\n is loaded and not the upsampling layers. With this checkpoint type,\n the weights of only the encoder section are expected under the\n attribute 'feature_extractor'.\n 'fine_tune': used when loading the entire CenterNet feature extractor\n pre-trained on other tasks. The checkpoints saved during CenterNet\n model training can be directly loaded using this type. With this\n checkpoint type, the weights of the feature extractor are expected\n under the attribute 'model._feature_extractor'.\n For more details, see the tensorflow section on Loading mechanics.\n https://www.tensorflow.org/guide/checkpoint#loading_mechanics\n\n Returns:\n A dict mapping keys to Trackable objects (tf.Module or Checkpoint).\n " supported_types = self._feature_extractor.supported_sub_model_types supported_types += ['fine_tune'] if (fine_tune_checkpoint_type not in supported_types): message = 'Checkpoint type "{}" not supported for {}. Supported types are {}' raise ValueError(message.format(fine_tune_checkpoint_type, self._feature_extractor.__class__.__name__, supported_types)) elif (fine_tune_checkpoint_type == 'fine_tune'): feature_extractor_model = tf.train.Checkpoint(_feature_extractor=self._feature_extractor) return {'model': feature_extractor_model} else: return {'feature_extractor': self._feature_extractor.get_sub_model(fine_tune_checkpoint_type)}
def true_fn(keypoint_heatmap, keypoint_offsets, keypoint_regression, classes, y_indices, x_indices, boxes, instance_inds, ex_ind, kp_params): 'Logics to execute when instance_inds is not an empty set.' (kpt_coords_for_class, kpt_scores_for_class) = self._postprocess_keypoints_for_class_and_image(keypoint_heatmap, keypoint_offsets, keypoint_regression, classes, y_indices, x_indices, boxes, instance_inds, ex_ind, kp_params) (kpts_coords_for_class_padded, kpt_scores_for_class_padded) = _pad_to_full_keypoint_dim(kpt_coords_for_class, kpt_scores_for_class, kp_params.keypoint_indices, total_num_keypoints) return (kpts_coords_for_class_padded, kpt_scores_for_class_padded)
9,145,846,410,273,019,000
Logics to execute when instance_inds is not an empty set.
research/object_detection/meta_architectures/center_net_meta_arch.py
true_fn
AvikantSrivastava/models
python
def true_fn(keypoint_heatmap, keypoint_offsets, keypoint_regression, classes, y_indices, x_indices, boxes, instance_inds, ex_ind, kp_params): (kpt_coords_for_class, kpt_scores_for_class) = self._postprocess_keypoints_for_class_and_image(keypoint_heatmap, keypoint_offsets, keypoint_regression, classes, y_indices, x_indices, boxes, instance_inds, ex_ind, kp_params) (kpts_coords_for_class_padded, kpt_scores_for_class_padded) = _pad_to_full_keypoint_dim(kpt_coords_for_class, kpt_scores_for_class, kp_params.keypoint_indices, total_num_keypoints) return (kpts_coords_for_class_padded, kpt_scores_for_class_padded)
def false_fn(): 'Logics to execute when the instance_inds is an empty set.' return (tf.zeros([1, 0, total_num_keypoints, 2], dtype=tf.float32), tf.zeros([1, 0, total_num_keypoints], dtype=tf.float32))
-7,194,681,745,874,285,000
Logics to execute when the instance_inds is an empty set.
research/object_detection/meta_architectures/center_net_meta_arch.py
false_fn
AvikantSrivastava/models
python
def false_fn(): return (tf.zeros([1, 0, total_num_keypoints, 2], dtype=tf.float32), tf.zeros([1, 0, total_num_keypoints], dtype=tf.float32))
def _single_replace(self, to_replace, method, inplace, limit): '\n Replaces values in a Series using the fill method specified when no\n replacement value is given in the replace method\n ' if (self.ndim != 1): raise TypeError('cannot replace {0} with method {1} on a {2}'.format(to_replace, method, type(self).__name__)) orig_dtype = self.dtype result = (self if inplace else self.copy()) fill_f = missing.get_fill_func(method) mask = missing.mask_missing(result.values, to_replace) values = fill_f(result.values, limit=limit, mask=mask) if ((values.dtype == orig_dtype) and inplace): return result = pd.Series(values, index=self.index, dtype=self.dtype).__finalize__(self) if inplace: self._update_inplace(result._data) return return result
3,824,816,040,778,656,000
Replaces values in a Series using the fill method specified when no replacement value is given in the replace method
pandas/core/generic.py
_single_replace
kapilepatel/pandas
python
def _single_replace(self, to_replace, method, inplace, limit): '\n Replaces values in a Series using the fill method specified when no\n replacement value is given in the replace method\n ' if (self.ndim != 1): raise TypeError('cannot replace {0} with method {1} on a {2}'.format(to_replace, method, type(self).__name__)) orig_dtype = self.dtype result = (self if inplace else self.copy()) fill_f = missing.get_fill_func(method) mask = missing.mask_missing(result.values, to_replace) values = fill_f(result.values, limit=limit, mask=mask) if ((values.dtype == orig_dtype) and inplace): return result = pd.Series(values, index=self.index, dtype=self.dtype).__finalize__(self) if inplace: self._update_inplace(result._data) return return result
def _doc_parms(cls): 'Return a tuple of the doc parms.' axis_descr = ('{%s}' % ', '.join(('{0} ({1})'.format(a, i) for (i, a) in enumerate(cls._AXIS_ORDERS)))) name = (cls._constructor_sliced.__name__ if (cls._AXIS_LEN > 1) else 'scalar') name2 = cls.__name__ return (axis_descr, name, name2)
-8,152,487,647,864,077,000
Return a tuple of the doc parms.
pandas/core/generic.py
_doc_parms
kapilepatel/pandas
python
def _doc_parms(cls): axis_descr = ('{%s}' % ', '.join(('{0} ({1})'.format(a, i) for (i, a) in enumerate(cls._AXIS_ORDERS)))) name = (cls._constructor_sliced.__name__ if (cls._AXIS_LEN > 1) else 'scalar') name2 = cls.__name__ return (axis_descr, name, name2)
def _init_mgr(self, mgr, axes=None, dtype=None, copy=False): ' passed a manager and a axes dict ' for (a, axe) in axes.items(): if (axe is not None): mgr = mgr.reindex_axis(axe, axis=self._get_block_manager_axis(a), copy=False) if copy: mgr = mgr.copy() if (dtype is not None): if ((len(mgr.blocks) > 1) or (mgr.blocks[0].values.dtype != dtype)): mgr = mgr.astype(dtype=dtype) return mgr
5,469,990,824,350,398,000
passed a manager and a axes dict
pandas/core/generic.py
_init_mgr
kapilepatel/pandas
python
def _init_mgr(self, mgr, axes=None, dtype=None, copy=False): ' ' for (a, axe) in axes.items(): if (axe is not None): mgr = mgr.reindex_axis(axe, axis=self._get_block_manager_axis(a), copy=False) if copy: mgr = mgr.copy() if (dtype is not None): if ((len(mgr.blocks) > 1) or (mgr.blocks[0].values.dtype != dtype)): mgr = mgr.astype(dtype=dtype) return mgr
@property def is_copy(self): '\n Return the copy.\n ' warnings.warn("Attribute 'is_copy' is deprecated and will be removed in a future version.", FutureWarning, stacklevel=2) return self._is_copy
-5,138,356,737,473,574,000
Return the copy.
pandas/core/generic.py
is_copy
kapilepatel/pandas
python
@property def is_copy(self): '\n \n ' warnings.warn("Attribute 'is_copy' is deprecated and will be removed in a future version.", FutureWarning, stacklevel=2) return self._is_copy
def _validate_dtype(self, dtype): ' validate the passed dtype ' if (dtype is not None): dtype = pandas_dtype(dtype) if (dtype.kind == 'V'): raise NotImplementedError('compound dtypes are not implemented in the {0} constructor'.format(self.__class__.__name__)) return dtype
-2,802,526,631,258,644,000
validate the passed dtype
pandas/core/generic.py
_validate_dtype
kapilepatel/pandas
python
def _validate_dtype(self, dtype): ' ' if (dtype is not None): dtype = pandas_dtype(dtype) if (dtype.kind == 'V'): raise NotImplementedError('compound dtypes are not implemented in the {0} constructor'.format(self.__class__.__name__)) return dtype
@property def _constructor(self): 'Used when a manipulation result has the same dimensions as the\n original.\n ' raise AbstractMethodError(self)
6,925,604,355,509,617,000
Used when a manipulation result has the same dimensions as the original.
pandas/core/generic.py
_constructor
kapilepatel/pandas
python
@property def _constructor(self): 'Used when a manipulation result has the same dimensions as the\n original.\n ' raise AbstractMethodError(self)
@property def _constructor_sliced(self): 'Used when a manipulation result has one lower dimension(s) as the\n original, such as DataFrame single columns slicing.\n ' raise AbstractMethodError(self)
-4,845,604,620,012,364,000
Used when a manipulation result has one lower dimension(s) as the original, such as DataFrame single columns slicing.
pandas/core/generic.py
_constructor_sliced
kapilepatel/pandas
python
@property def _constructor_sliced(self): 'Used when a manipulation result has one lower dimension(s) as the\n original, such as DataFrame single columns slicing.\n ' raise AbstractMethodError(self)
@property def _constructor_expanddim(self): 'Used when a manipulation result has one higher dimension as the\n original, such as Series.to_frame() and DataFrame.to_panel()\n ' raise NotImplementedError
5,577,836,939,290,729,000
Used when a manipulation result has one higher dimension as the original, such as Series.to_frame() and DataFrame.to_panel()
pandas/core/generic.py
_constructor_expanddim
kapilepatel/pandas
python
@property def _constructor_expanddim(self): 'Used when a manipulation result has one higher dimension as the\n original, such as Series.to_frame() and DataFrame.to_panel()\n ' raise NotImplementedError
@classmethod def _setup_axes(cls, axes, info_axis=None, stat_axis=None, aliases=None, slicers=None, axes_are_reversed=False, build_axes=True, ns=None, docs=None): 'Provide axes setup for the major PandasObjects.\n\n Parameters\n ----------\n axes : the names of the axes in order (lowest to highest)\n info_axis_num : the axis of the selector dimension (int)\n stat_axis_num : the number of axis for the default stats (int)\n aliases : other names for a single axis (dict)\n slicers : how axes slice to others (dict)\n axes_are_reversed : boolean whether to treat passed axes as\n reversed (DataFrame)\n build_axes : setup the axis properties (default True)\n ' cls._AXIS_ORDERS = axes cls._AXIS_NUMBERS = {a: i for (i, a) in enumerate(axes)} cls._AXIS_LEN = len(axes) cls._AXIS_ALIASES = (aliases or dict()) cls._AXIS_IALIASES = {v: k for (k, v) in cls._AXIS_ALIASES.items()} cls._AXIS_NAMES = dict(enumerate(axes)) cls._AXIS_SLICEMAP = (slicers or None) cls._AXIS_REVERSED = axes_are_reversed setattr(cls, '_typ', cls.__name__.lower()) cls._ix = None if (info_axis is not None): cls._info_axis_number = info_axis cls._info_axis_name = axes[info_axis] if (stat_axis is not None): cls._stat_axis_number = stat_axis cls._stat_axis_name = axes[stat_axis] if build_axes: def set_axis(a, i): setattr(cls, a, properties.AxisProperty(i, docs.get(a, a))) cls._internal_names_set.add(a) if axes_are_reversed: m = (cls._AXIS_LEN - 1) for (i, a) in cls._AXIS_NAMES.items(): set_axis(a, (m - i)) else: for (i, a) in cls._AXIS_NAMES.items(): set_axis(a, i) assert (not isinstance(ns, dict))
-2,622,064,521,481,804,000
Provide axes setup for the major PandasObjects. Parameters ---------- axes : the names of the axes in order (lowest to highest) info_axis_num : the axis of the selector dimension (int) stat_axis_num : the number of axis for the default stats (int) aliases : other names for a single axis (dict) slicers : how axes slice to others (dict) axes_are_reversed : boolean whether to treat passed axes as reversed (DataFrame) build_axes : setup the axis properties (default True)
pandas/core/generic.py
_setup_axes
kapilepatel/pandas
python
@classmethod def _setup_axes(cls, axes, info_axis=None, stat_axis=None, aliases=None, slicers=None, axes_are_reversed=False, build_axes=True, ns=None, docs=None): 'Provide axes setup for the major PandasObjects.\n\n Parameters\n ----------\n axes : the names of the axes in order (lowest to highest)\n info_axis_num : the axis of the selector dimension (int)\n stat_axis_num : the number of axis for the default stats (int)\n aliases : other names for a single axis (dict)\n slicers : how axes slice to others (dict)\n axes_are_reversed : boolean whether to treat passed axes as\n reversed (DataFrame)\n build_axes : setup the axis properties (default True)\n ' cls._AXIS_ORDERS = axes cls._AXIS_NUMBERS = {a: i for (i, a) in enumerate(axes)} cls._AXIS_LEN = len(axes) cls._AXIS_ALIASES = (aliases or dict()) cls._AXIS_IALIASES = {v: k for (k, v) in cls._AXIS_ALIASES.items()} cls._AXIS_NAMES = dict(enumerate(axes)) cls._AXIS_SLICEMAP = (slicers or None) cls._AXIS_REVERSED = axes_are_reversed setattr(cls, '_typ', cls.__name__.lower()) cls._ix = None if (info_axis is not None): cls._info_axis_number = info_axis cls._info_axis_name = axes[info_axis] if (stat_axis is not None): cls._stat_axis_number = stat_axis cls._stat_axis_name = axes[stat_axis] if build_axes: def set_axis(a, i): setattr(cls, a, properties.AxisProperty(i, docs.get(a, a))) cls._internal_names_set.add(a) if axes_are_reversed: m = (cls._AXIS_LEN - 1) for (i, a) in cls._AXIS_NAMES.items(): set_axis(a, (m - i)) else: for (i, a) in cls._AXIS_NAMES.items(): set_axis(a, i) assert (not isinstance(ns, dict))
def _construct_axes_dict(self, axes=None, **kwargs): 'Return an axes dictionary for myself.' d = {a: self._get_axis(a) for a in (axes or self._AXIS_ORDERS)} d.update(kwargs) return d
9,032,129,010,733,145,000
Return an axes dictionary for myself.
pandas/core/generic.py
_construct_axes_dict
kapilepatel/pandas
python
def _construct_axes_dict(self, axes=None, **kwargs): d = {a: self._get_axis(a) for a in (axes or self._AXIS_ORDERS)} d.update(kwargs) return d
@staticmethod def _construct_axes_dict_from(self, axes, **kwargs): 'Return an axes dictionary for the passed axes.' d = {a: ax for (a, ax) in zip(self._AXIS_ORDERS, axes)} d.update(kwargs) return d
-5,779,026,038,520,304,000
Return an axes dictionary for the passed axes.
pandas/core/generic.py
_construct_axes_dict_from
kapilepatel/pandas
python
@staticmethod def _construct_axes_dict_from(self, axes, **kwargs): d = {a: ax for (a, ax) in zip(self._AXIS_ORDERS, axes)} d.update(kwargs) return d
def _construct_axes_dict_for_slice(self, axes=None, **kwargs): 'Return an axes dictionary for myself.' d = {self._AXIS_SLICEMAP[a]: self._get_axis(a) for a in (axes or self._AXIS_ORDERS)} d.update(kwargs) return d
3,606,054,628,442,910,700
Return an axes dictionary for myself.
pandas/core/generic.py
_construct_axes_dict_for_slice
kapilepatel/pandas
python
def _construct_axes_dict_for_slice(self, axes=None, **kwargs): d = {self._AXIS_SLICEMAP[a]: self._get_axis(a) for a in (axes or self._AXIS_ORDERS)} d.update(kwargs) return d
def _construct_axes_from_arguments(self, args, kwargs, require_all=False, sentinel=None): 'Construct and returns axes if supplied in args/kwargs.\n\n If require_all, raise if all axis arguments are not supplied\n return a tuple of (axes, kwargs).\n\n sentinel specifies the default parameter when an axis is not\n supplied; useful to distinguish when a user explicitly passes None\n in scenarios where None has special meaning.\n ' args = list(args) for a in self._AXIS_ORDERS: alias = self._AXIS_IALIASES.get(a) if (alias is not None): if (a in kwargs): if (alias in kwargs): raise TypeError(('arguments are mutually exclusive for [%s,%s]' % (a, alias))) continue if (alias in kwargs): kwargs[a] = kwargs.pop(alias) continue if (a not in kwargs): try: kwargs[a] = args.pop(0) except IndexError: if require_all: raise TypeError('not enough/duplicate arguments specified!') axes = {a: kwargs.pop(a, sentinel) for a in self._AXIS_ORDERS} return (axes, kwargs)
3,963,837,012,820,377,000
Construct and returns axes if supplied in args/kwargs. If require_all, raise if all axis arguments are not supplied return a tuple of (axes, kwargs). sentinel specifies the default parameter when an axis is not supplied; useful to distinguish when a user explicitly passes None in scenarios where None has special meaning.
pandas/core/generic.py
_construct_axes_from_arguments
kapilepatel/pandas
python
def _construct_axes_from_arguments(self, args, kwargs, require_all=False, sentinel=None): 'Construct and returns axes if supplied in args/kwargs.\n\n If require_all, raise if all axis arguments are not supplied\n return a tuple of (axes, kwargs).\n\n sentinel specifies the default parameter when an axis is not\n supplied; useful to distinguish when a user explicitly passes None\n in scenarios where None has special meaning.\n ' args = list(args) for a in self._AXIS_ORDERS: alias = self._AXIS_IALIASES.get(a) if (alias is not None): if (a in kwargs): if (alias in kwargs): raise TypeError(('arguments are mutually exclusive for [%s,%s]' % (a, alias))) continue if (alias in kwargs): kwargs[a] = kwargs.pop(alias) continue if (a not in kwargs): try: kwargs[a] = args.pop(0) except IndexError: if require_all: raise TypeError('not enough/duplicate arguments specified!') axes = {a: kwargs.pop(a, sentinel) for a in self._AXIS_ORDERS} return (axes, kwargs)
@classmethod def _get_block_manager_axis(cls, axis): 'Map the axis to the block_manager axis.' axis = cls._get_axis_number(axis) if cls._AXIS_REVERSED: m = (cls._AXIS_LEN - 1) return (m - axis) return axis
-5,141,080,245,831,676,000
Map the axis to the block_manager axis.
pandas/core/generic.py
_get_block_manager_axis
kapilepatel/pandas
python
@classmethod def _get_block_manager_axis(cls, axis): axis = cls._get_axis_number(axis) if cls._AXIS_REVERSED: m = (cls._AXIS_LEN - 1) return (m - axis) return axis
@property def shape(self): '\n Return a tuple of axis dimensions\n ' return tuple((len(self._get_axis(a)) for a in self._AXIS_ORDERS))
-2,033,092,480,248,761,000
Return a tuple of axis dimensions
pandas/core/generic.py
shape
kapilepatel/pandas
python
@property def shape(self): '\n \n ' return tuple((len(self._get_axis(a)) for a in self._AXIS_ORDERS))
@property def axes(self): '\n Return index label(s) of the internal NDFrame\n ' return [self._get_axis(a) for a in self._AXIS_ORDERS]
-3,242,568,803,582,906,000
Return index label(s) of the internal NDFrame
pandas/core/generic.py
axes
kapilepatel/pandas
python
@property def axes(self): '\n \n ' return [self._get_axis(a) for a in self._AXIS_ORDERS]
@property def ndim(self): "\n Return an int representing the number of axes / array dimensions.\n\n Return 1 if Series. Otherwise return 2 if DataFrame.\n\n See Also\n --------\n ndarray.ndim : Number of array dimensions.\n\n Examples\n --------\n >>> s = pd.Series({'a': 1, 'b': 2, 'c': 3})\n >>> s.ndim\n 1\n\n >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})\n >>> df.ndim\n 2\n " return self._data.ndim
4,350,127,406,230,049,000
Return an int representing the number of axes / array dimensions. Return 1 if Series. Otherwise return 2 if DataFrame. See Also -------- ndarray.ndim : Number of array dimensions. Examples -------- >>> s = pd.Series({'a': 1, 'b': 2, 'c': 3}) >>> s.ndim 1 >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.ndim 2
pandas/core/generic.py
ndim
kapilepatel/pandas
python
@property def ndim(self): "\n Return an int representing the number of axes / array dimensions.\n\n Return 1 if Series. Otherwise return 2 if DataFrame.\n\n See Also\n --------\n ndarray.ndim : Number of array dimensions.\n\n Examples\n --------\n >>> s = pd.Series({'a': 1, 'b': 2, 'c': 3})\n >>> s.ndim\n 1\n\n >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})\n >>> df.ndim\n 2\n " return self._data.ndim
@property def size(self): "\n Return an int representing the number of elements in this object.\n\n Return the number of rows if Series. Otherwise return the number of\n rows times number of columns if DataFrame.\n\n See Also\n --------\n ndarray.size : Number of elements in the array.\n\n Examples\n --------\n >>> s = pd.Series({'a': 1, 'b': 2, 'c': 3})\n >>> s.size\n 3\n\n >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})\n >>> df.size\n 4\n " return np.prod(self.shape)
4,814,416,826,443,750,000
Return an int representing the number of elements in this object. Return the number of rows if Series. Otherwise return the number of rows times number of columns if DataFrame. See Also -------- ndarray.size : Number of elements in the array. Examples -------- >>> s = pd.Series({'a': 1, 'b': 2, 'c': 3}) >>> s.size 3 >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.size 4
pandas/core/generic.py
size
kapilepatel/pandas
python
@property def size(self): "\n Return an int representing the number of elements in this object.\n\n Return the number of rows if Series. Otherwise return the number of\n rows times number of columns if DataFrame.\n\n See Also\n --------\n ndarray.size : Number of elements in the array.\n\n Examples\n --------\n >>> s = pd.Series({'a': 1, 'b': 2, 'c': 3})\n >>> s.size\n 3\n\n >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})\n >>> df.size\n 4\n " return np.prod(self.shape)
@property def _selected_obj(self): ' internal compat with SelectionMixin ' return self
223,117,681,623,033,600
internal compat with SelectionMixin
pandas/core/generic.py
_selected_obj
kapilepatel/pandas
python
@property def _selected_obj(self): ' ' return self
@property def _obj_with_exclusions(self): ' internal compat with SelectionMixin ' return self
3,547,958,630,176,529,000
internal compat with SelectionMixin
pandas/core/generic.py
_obj_with_exclusions
kapilepatel/pandas
python
@property def _obj_with_exclusions(self): ' ' return self
def set_axis(self, labels, axis=0, inplace=None): '\n Assign desired index to given axis.\n\n Indexes for column or row labels can be changed by assigning\n a list-like or Index.\n\n .. versionchanged:: 0.21.0\n\n The signature is now `labels` and `axis`, consistent with\n the rest of pandas API. Previously, the `axis` and `labels`\n arguments were respectively the first and second positional\n arguments.\n\n Parameters\n ----------\n labels : list-like, Index\n The values for the new index.\n\n axis : {0 or \'index\', 1 or \'columns\'}, default 0\n The axis to update. The value 0 identifies the rows, and 1\n identifies the columns.\n\n inplace : bool, default None\n Whether to return a new %(klass)s instance.\n\n .. warning::\n\n ``inplace=None`` currently falls back to to True, but in a\n future version, will default to False. Use inplace=True\n explicitly rather than relying on the default.\n\n Returns\n -------\n renamed : %(klass)s or None\n An object of same type as caller if inplace=False, None otherwise.\n\n See Also\n --------\n DataFrame.rename_axis : Alter the name of the index or columns.\n\n Examples\n --------\n **Series**\n\n >>> s = pd.Series([1, 2, 3])\n >>> s\n 0 1\n 1 2\n 2 3\n dtype: int64\n\n >>> s.set_axis([\'a\', \'b\', \'c\'], axis=0, inplace=False)\n a 1\n b 2\n c 3\n dtype: int64\n\n The original object is not modified.\n\n >>> s\n 0 1\n 1 2\n 2 3\n dtype: int64\n\n **DataFrame**\n\n >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})\n\n Change the row labels.\n\n >>> df.set_axis([\'a\', \'b\', \'c\'], axis=\'index\', inplace=False)\n A B\n a 1 4\n b 2 5\n c 3 6\n\n Change the column labels.\n\n >>> df.set_axis([\'I\', \'II\'], axis=\'columns\', inplace=False)\n I II\n 0 1 4\n 1 2 5\n 2 3 6\n\n Now, update the labels inplace.\n\n >>> df.set_axis([\'i\', \'ii\'], axis=\'columns\', inplace=True)\n >>> df\n i ii\n 0 1 4\n 1 2 5\n 2 3 6\n ' if is_scalar(labels): warnings.warn('set_axis now takes "labels" as first argument, and "axis" as named parameter. The old form, with "axis" as first parameter and "labels" as second, is still supported but will be deprecated in a future version of pandas.', FutureWarning, stacklevel=2) (labels, axis) = (axis, labels) if (inplace is None): warnings.warn('set_axis currently defaults to operating inplace.\nThis will change in a future version of pandas, use inplace=True to avoid this warning.', FutureWarning, stacklevel=2) inplace = True if inplace: setattr(self, self._get_axis_name(axis), labels) else: obj = self.copy() obj.set_axis(labels, axis=axis, inplace=True) return obj
8,482,339,352,067,965,000
Assign desired index to given axis. Indexes for column or row labels can be changed by assigning a list-like or Index. .. versionchanged:: 0.21.0 The signature is now `labels` and `axis`, consistent with the rest of pandas API. Previously, the `axis` and `labels` arguments were respectively the first and second positional arguments. Parameters ---------- labels : list-like, Index The values for the new index. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to update. The value 0 identifies the rows, and 1 identifies the columns. inplace : bool, default None Whether to return a new %(klass)s instance. .. warning:: ``inplace=None`` currently falls back to to True, but in a future version, will default to False. Use inplace=True explicitly rather than relying on the default. Returns ------- renamed : %(klass)s or None An object of same type as caller if inplace=False, None otherwise. See Also -------- DataFrame.rename_axis : Alter the name of the index or columns. Examples -------- **Series** >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.set_axis(['a', 'b', 'c'], axis=0, inplace=False) a 1 b 2 c 3 dtype: int64 The original object is not modified. >>> s 0 1 1 2 2 3 dtype: int64 **DataFrame** >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) Change the row labels. >>> df.set_axis(['a', 'b', 'c'], axis='index', inplace=False) A B a 1 4 b 2 5 c 3 6 Change the column labels. >>> df.set_axis(['I', 'II'], axis='columns', inplace=False) I II 0 1 4 1 2 5 2 3 6 Now, update the labels inplace. >>> df.set_axis(['i', 'ii'], axis='columns', inplace=True) >>> df i ii 0 1 4 1 2 5 2 3 6
pandas/core/generic.py
set_axis
kapilepatel/pandas
python
def set_axis(self, labels, axis=0, inplace=None): '\n Assign desired index to given axis.\n\n Indexes for column or row labels can be changed by assigning\n a list-like or Index.\n\n .. versionchanged:: 0.21.0\n\n The signature is now `labels` and `axis`, consistent with\n the rest of pandas API. Previously, the `axis` and `labels`\n arguments were respectively the first and second positional\n arguments.\n\n Parameters\n ----------\n labels : list-like, Index\n The values for the new index.\n\n axis : {0 or \'index\', 1 or \'columns\'}, default 0\n The axis to update. The value 0 identifies the rows, and 1\n identifies the columns.\n\n inplace : bool, default None\n Whether to return a new %(klass)s instance.\n\n .. warning::\n\n ``inplace=None`` currently falls back to to True, but in a\n future version, will default to False. Use inplace=True\n explicitly rather than relying on the default.\n\n Returns\n -------\n renamed : %(klass)s or None\n An object of same type as caller if inplace=False, None otherwise.\n\n See Also\n --------\n DataFrame.rename_axis : Alter the name of the index or columns.\n\n Examples\n --------\n **Series**\n\n >>> s = pd.Series([1, 2, 3])\n >>> s\n 0 1\n 1 2\n 2 3\n dtype: int64\n\n >>> s.set_axis([\'a\', \'b\', \'c\'], axis=0, inplace=False)\n a 1\n b 2\n c 3\n dtype: int64\n\n The original object is not modified.\n\n >>> s\n 0 1\n 1 2\n 2 3\n dtype: int64\n\n **DataFrame**\n\n >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})\n\n Change the row labels.\n\n >>> df.set_axis([\'a\', \'b\', \'c\'], axis=\'index\', inplace=False)\n A B\n a 1 4\n b 2 5\n c 3 6\n\n Change the column labels.\n\n >>> df.set_axis([\'I\', \'II\'], axis=\'columns\', inplace=False)\n I II\n 0 1 4\n 1 2 5\n 2 3 6\n\n Now, update the labels inplace.\n\n >>> df.set_axis([\'i\', \'ii\'], axis=\'columns\', inplace=True)\n >>> df\n i ii\n 0 1 4\n 1 2 5\n 2 3 6\n ' if is_scalar(labels): warnings.warn('set_axis now takes "labels" as first argument, and "axis" as named parameter. The old form, with "axis" as first parameter and "labels" as second, is still supported but will be deprecated in a future version of pandas.', FutureWarning, stacklevel=2) (labels, axis) = (axis, labels) if (inplace is None): warnings.warn('set_axis currently defaults to operating inplace.\nThis will change in a future version of pandas, use inplace=True to avoid this warning.', FutureWarning, stacklevel=2) inplace = True if inplace: setattr(self, self._get_axis_name(axis), labels) else: obj = self.copy() obj.set_axis(labels, axis=axis, inplace=True) return obj
def transpose(self, *args, **kwargs): '\n Permute the dimensions of the %(klass)s\n\n Parameters\n ----------\n args : %(args_transpose)s\n copy : boolean, default False\n Make a copy of the underlying data. Mixed-dtype data will\n always result in a copy\n **kwargs\n Additional keyword arguments will be passed to the function.\n\n Returns\n -------\n y : same as input\n\n Examples\n --------\n >>> p.transpose(2, 0, 1)\n >>> p.transpose(2, 0, 1, copy=True)\n ' (axes, kwargs) = self._construct_axes_from_arguments(args, kwargs, require_all=True) axes_names = tuple((self._get_axis_name(axes[a]) for a in self._AXIS_ORDERS)) axes_numbers = tuple((self._get_axis_number(axes[a]) for a in self._AXIS_ORDERS)) if (len(axes) != len(set(axes))): raise ValueError(('Must specify %s unique axes' % self._AXIS_LEN)) new_axes = self._construct_axes_dict_from(self, [self._get_axis(x) for x in axes_names]) new_values = self.values.transpose(axes_numbers) if (kwargs.pop('copy', None) or (len(args) and args[(- 1)])): new_values = new_values.copy() nv.validate_transpose_for_generic(self, kwargs) return self._constructor(new_values, **new_axes).__finalize__(self)
5,950,421,671,865,310,000
Permute the dimensions of the %(klass)s Parameters ---------- args : %(args_transpose)s copy : boolean, default False Make a copy of the underlying data. Mixed-dtype data will always result in a copy **kwargs Additional keyword arguments will be passed to the function. Returns ------- y : same as input Examples -------- >>> p.transpose(2, 0, 1) >>> p.transpose(2, 0, 1, copy=True)
pandas/core/generic.py
transpose
kapilepatel/pandas
python
def transpose(self, *args, **kwargs): '\n Permute the dimensions of the %(klass)s\n\n Parameters\n ----------\n args : %(args_transpose)s\n copy : boolean, default False\n Make a copy of the underlying data. Mixed-dtype data will\n always result in a copy\n **kwargs\n Additional keyword arguments will be passed to the function.\n\n Returns\n -------\n y : same as input\n\n Examples\n --------\n >>> p.transpose(2, 0, 1)\n >>> p.transpose(2, 0, 1, copy=True)\n ' (axes, kwargs) = self._construct_axes_from_arguments(args, kwargs, require_all=True) axes_names = tuple((self._get_axis_name(axes[a]) for a in self._AXIS_ORDERS)) axes_numbers = tuple((self._get_axis_number(axes[a]) for a in self._AXIS_ORDERS)) if (len(axes) != len(set(axes))): raise ValueError(('Must specify %s unique axes' % self._AXIS_LEN)) new_axes = self._construct_axes_dict_from(self, [self._get_axis(x) for x in axes_names]) new_values = self.values.transpose(axes_numbers) if (kwargs.pop('copy', None) or (len(args) and args[(- 1)])): new_values = new_values.copy() nv.validate_transpose_for_generic(self, kwargs) return self._constructor(new_values, **new_axes).__finalize__(self)
def swapaxes(self, axis1, axis2, copy=True): '\n Interchange axes and swap values axes appropriately.\n\n Returns\n -------\n y : same as input\n ' i = self._get_axis_number(axis1) j = self._get_axis_number(axis2) if (i == j): if copy: return self.copy() return self mapping = {i: j, j: i} new_axes = (self._get_axis(mapping.get(k, k)) for k in range(self._AXIS_LEN)) new_values = self.values.swapaxes(i, j) if copy: new_values = new_values.copy() return self._constructor(new_values, *new_axes).__finalize__(self)
1,932,957,769,574,267,100
Interchange axes and swap values axes appropriately. Returns ------- y : same as input
pandas/core/generic.py
swapaxes
kapilepatel/pandas
python
def swapaxes(self, axis1, axis2, copy=True): '\n Interchange axes and swap values axes appropriately.\n\n Returns\n -------\n y : same as input\n ' i = self._get_axis_number(axis1) j = self._get_axis_number(axis2) if (i == j): if copy: return self.copy() return self mapping = {i: j, j: i} new_axes = (self._get_axis(mapping.get(k, k)) for k in range(self._AXIS_LEN)) new_values = self.values.swapaxes(i, j) if copy: new_values = new_values.copy() return self._constructor(new_values, *new_axes).__finalize__(self)
def droplevel(self, level, axis=0): "\n Return DataFrame with requested index / column level(s) removed.\n\n .. versionadded:: 0.24.0\n\n Parameters\n ----------\n level : int, str, or list-like\n If a string is given, must be the name of a level\n If list-like, elements must be names or positional indexes\n of levels.\n\n axis : {0 or 'index', 1 or 'columns'}, default 0\n\n Returns\n -------\n DataFrame.droplevel()\n\n Examples\n --------\n >>> df = pd.DataFrame([\n ... [1, 2, 3, 4],\n ... [5, 6, 7, 8],\n ... [9, 10, 11, 12]\n ... ]).set_index([0, 1]).rename_axis(['a', 'b'])\n\n >>> df.columns = pd.MultiIndex.from_tuples([\n ... ('c', 'e'), ('d', 'f')\n ... ], names=['level_1', 'level_2'])\n\n >>> df\n level_1 c d\n level_2 e f\n a b\n 1 2 3 4\n 5 6 7 8\n 9 10 11 12\n\n >>> df.droplevel('a')\n level_1 c d\n level_2 e f\n b\n 2 3 4\n 6 7 8\n 10 11 12\n\n >>> df.droplevel('level2', axis=1)\n level_1 c d\n a b\n 1 2 3 4\n 5 6 7 8\n 9 10 11 12\n " labels = self._get_axis(axis) new_labels = labels.droplevel(level) result = self.set_axis(new_labels, axis=axis, inplace=False) return result
8,172,893,012,025,901,000
Return DataFrame with requested index / column level(s) removed. .. versionadded:: 0.24.0 Parameters ---------- level : int, str, or list-like If a string is given, must be the name of a level If list-like, elements must be names or positional indexes of levels. axis : {0 or 'index', 1 or 'columns'}, default 0 Returns ------- DataFrame.droplevel() Examples -------- >>> df = pd.DataFrame([ ... [1, 2, 3, 4], ... [5, 6, 7, 8], ... [9, 10, 11, 12] ... ]).set_index([0, 1]).rename_axis(['a', 'b']) >>> df.columns = pd.MultiIndex.from_tuples([ ... ('c', 'e'), ('d', 'f') ... ], names=['level_1', 'level_2']) >>> df level_1 c d level_2 e f a b 1 2 3 4 5 6 7 8 9 10 11 12 >>> df.droplevel('a') level_1 c d level_2 e f b 2 3 4 6 7 8 10 11 12 >>> df.droplevel('level2', axis=1) level_1 c d a b 1 2 3 4 5 6 7 8 9 10 11 12
pandas/core/generic.py
droplevel
kapilepatel/pandas
python
def droplevel(self, level, axis=0): "\n Return DataFrame with requested index / column level(s) removed.\n\n .. versionadded:: 0.24.0\n\n Parameters\n ----------\n level : int, str, or list-like\n If a string is given, must be the name of a level\n If list-like, elements must be names or positional indexes\n of levels.\n\n axis : {0 or 'index', 1 or 'columns'}, default 0\n\n Returns\n -------\n DataFrame.droplevel()\n\n Examples\n --------\n >>> df = pd.DataFrame([\n ... [1, 2, 3, 4],\n ... [5, 6, 7, 8],\n ... [9, 10, 11, 12]\n ... ]).set_index([0, 1]).rename_axis(['a', 'b'])\n\n >>> df.columns = pd.MultiIndex.from_tuples([\n ... ('c', 'e'), ('d', 'f')\n ... ], names=['level_1', 'level_2'])\n\n >>> df\n level_1 c d\n level_2 e f\n a b\n 1 2 3 4\n 5 6 7 8\n 9 10 11 12\n\n >>> df.droplevel('a')\n level_1 c d\n level_2 e f\n b\n 2 3 4\n 6 7 8\n 10 11 12\n\n >>> df.droplevel('level2', axis=1)\n level_1 c d\n a b\n 1 2 3 4\n 5 6 7 8\n 9 10 11 12\n " labels = self._get_axis(axis) new_labels = labels.droplevel(level) result = self.set_axis(new_labels, axis=axis, inplace=False) return result
def pop(self, item): "\n Return item and drop from frame. Raise KeyError if not found.\n\n Parameters\n ----------\n item : str\n Label of column to be popped.\n\n Returns\n -------\n Series\n\n Examples\n --------\n >>> df = pd.DataFrame([('falcon', 'bird', 389.0),\n ... ('parrot', 'bird', 24.0),\n ... ('lion', 'mammal', 80.5),\n ... ('monkey','mammal', np.nan)],\n ... columns=('name', 'class', 'max_speed'))\n >>> df\n name class max_speed\n 0 falcon bird 389.0\n 1 parrot bird 24.0\n 2 lion mammal 80.5\n 3 monkey mammal NaN\n\n >>> df.pop('class')\n 0 bird\n 1 bird\n 2 mammal\n 3 mammal\n Name: class, dtype: object\n\n >>> df\n name max_speed\n 0 falcon 389.0\n 1 parrot 24.0\n 2 lion 80.5\n 3 monkey NaN\n " result = self[item] del self[item] try: result._reset_cacher() except AttributeError: pass return result
-819,123,279,384,925,300
Return item and drop from frame. Raise KeyError if not found. Parameters ---------- item : str Label of column to be popped. Returns ------- Series Examples -------- >>> df = pd.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey','mammal', np.nan)], ... columns=('name', 'class', 'max_speed')) >>> df name class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN >>> df.pop('class') 0 bird 1 bird 2 mammal 3 mammal Name: class, dtype: object >>> df name max_speed 0 falcon 389.0 1 parrot 24.0 2 lion 80.5 3 monkey NaN
pandas/core/generic.py
pop
kapilepatel/pandas
python
def pop(self, item): "\n Return item and drop from frame. Raise KeyError if not found.\n\n Parameters\n ----------\n item : str\n Label of column to be popped.\n\n Returns\n -------\n Series\n\n Examples\n --------\n >>> df = pd.DataFrame([('falcon', 'bird', 389.0),\n ... ('parrot', 'bird', 24.0),\n ... ('lion', 'mammal', 80.5),\n ... ('monkey','mammal', np.nan)],\n ... columns=('name', 'class', 'max_speed'))\n >>> df\n name class max_speed\n 0 falcon bird 389.0\n 1 parrot bird 24.0\n 2 lion mammal 80.5\n 3 monkey mammal NaN\n\n >>> df.pop('class')\n 0 bird\n 1 bird\n 2 mammal\n 3 mammal\n Name: class, dtype: object\n\n >>> df\n name max_speed\n 0 falcon 389.0\n 1 parrot 24.0\n 2 lion 80.5\n 3 monkey NaN\n " result = self[item] del self[item] try: result._reset_cacher() except AttributeError: pass return result
def squeeze(self, axis=None): "\n Squeeze 1 dimensional axis objects into scalars.\n\n Series or DataFrames with a single element are squeezed to a scalar.\n DataFrames with a single column or a single row are squeezed to a\n Series. Otherwise the object is unchanged.\n\n This method is most useful when you don't know if your\n object is a Series or DataFrame, but you do know it has just a single\n column. In that case you can safely call `squeeze` to ensure you have a\n Series.\n\n Parameters\n ----------\n axis : {0 or 'index', 1 or 'columns', None}, default None\n A specific axis to squeeze. By default, all length-1 axes are\n squeezed.\n\n .. versionadded:: 0.20.0\n\n Returns\n -------\n DataFrame, Series, or scalar\n The projection after squeezing `axis` or all the axes.\n\n See Also\n --------\n Series.iloc : Integer-location based indexing for selecting scalars.\n DataFrame.iloc : Integer-location based indexing for selecting Series.\n Series.to_frame : Inverse of DataFrame.squeeze for a\n single-column DataFrame.\n\n Examples\n --------\n >>> primes = pd.Series([2, 3, 5, 7])\n\n Slicing might produce a Series with a single value:\n\n >>> even_primes = primes[primes % 2 == 0]\n >>> even_primes\n 0 2\n dtype: int64\n\n >>> even_primes.squeeze()\n 2\n\n Squeezing objects with more than one value in every axis does nothing:\n\n >>> odd_primes = primes[primes % 2 == 1]\n >>> odd_primes\n 1 3\n 2 5\n 3 7\n dtype: int64\n\n >>> odd_primes.squeeze()\n 1 3\n 2 5\n 3 7\n dtype: int64\n\n Squeezing is even more effective when used with DataFrames.\n\n >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b'])\n >>> df\n a b\n 0 1 2\n 1 3 4\n\n Slicing a single column will produce a DataFrame with the columns\n having only one value:\n\n >>> df_a = df[['a']]\n >>> df_a\n a\n 0 1\n 1 3\n\n So the columns can be squeezed down, resulting in a Series:\n\n >>> df_a.squeeze('columns')\n 0 1\n 1 3\n Name: a, dtype: int64\n\n Slicing a single row from a single column will produce a single\n scalar DataFrame:\n\n >>> df_0a = df.loc[df.index < 1, ['a']]\n >>> df_0a\n a\n 0 1\n\n Squeezing the rows produces a single scalar Series:\n\n >>> df_0a.squeeze('rows')\n a 1\n Name: 0, dtype: int64\n\n Squeezing all axes wil project directly into a scalar:\n\n >>> df_0a.squeeze()\n 1\n " axis = (self._AXIS_NAMES if (axis is None) else (self._get_axis_number(axis),)) try: return self.iloc[tuple(((0 if ((i in axis) and (len(a) == 1)) else slice(None)) for (i, a) in enumerate(self.axes)))] except Exception: return self
9,216,137,054,533,155,000
Squeeze 1 dimensional axis objects into scalars. Series or DataFrames with a single element are squeezed to a scalar. DataFrames with a single column or a single row are squeezed to a Series. Otherwise the object is unchanged. This method is most useful when you don't know if your object is a Series or DataFrame, but you do know it has just a single column. In that case you can safely call `squeeze` to ensure you have a Series. Parameters ---------- axis : {0 or 'index', 1 or 'columns', None}, default None A specific axis to squeeze. By default, all length-1 axes are squeezed. .. versionadded:: 0.20.0 Returns ------- DataFrame, Series, or scalar The projection after squeezing `axis` or all the axes. See Also -------- Series.iloc : Integer-location based indexing for selecting scalars. DataFrame.iloc : Integer-location based indexing for selecting Series. Series.to_frame : Inverse of DataFrame.squeeze for a single-column DataFrame. Examples -------- >>> primes = pd.Series([2, 3, 5, 7]) Slicing might produce a Series with a single value: >>> even_primes = primes[primes % 2 == 0] >>> even_primes 0 2 dtype: int64 >>> even_primes.squeeze() 2 Squeezing objects with more than one value in every axis does nothing: >>> odd_primes = primes[primes % 2 == 1] >>> odd_primes 1 3 2 5 3 7 dtype: int64 >>> odd_primes.squeeze() 1 3 2 5 3 7 dtype: int64 Squeezing is even more effective when used with DataFrames. >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b']) >>> df a b 0 1 2 1 3 4 Slicing a single column will produce a DataFrame with the columns having only one value: >>> df_a = df[['a']] >>> df_a a 0 1 1 3 So the columns can be squeezed down, resulting in a Series: >>> df_a.squeeze('columns') 0 1 1 3 Name: a, dtype: int64 Slicing a single row from a single column will produce a single scalar DataFrame: >>> df_0a = df.loc[df.index < 1, ['a']] >>> df_0a a 0 1 Squeezing the rows produces a single scalar Series: >>> df_0a.squeeze('rows') a 1 Name: 0, dtype: int64 Squeezing all axes wil project directly into a scalar: >>> df_0a.squeeze() 1
pandas/core/generic.py
squeeze
kapilepatel/pandas
python
def squeeze(self, axis=None): "\n Squeeze 1 dimensional axis objects into scalars.\n\n Series or DataFrames with a single element are squeezed to a scalar.\n DataFrames with a single column or a single row are squeezed to a\n Series. Otherwise the object is unchanged.\n\n This method is most useful when you don't know if your\n object is a Series or DataFrame, but you do know it has just a single\n column. In that case you can safely call `squeeze` to ensure you have a\n Series.\n\n Parameters\n ----------\n axis : {0 or 'index', 1 or 'columns', None}, default None\n A specific axis to squeeze. By default, all length-1 axes are\n squeezed.\n\n .. versionadded:: 0.20.0\n\n Returns\n -------\n DataFrame, Series, or scalar\n The projection after squeezing `axis` or all the axes.\n\n See Also\n --------\n Series.iloc : Integer-location based indexing for selecting scalars.\n DataFrame.iloc : Integer-location based indexing for selecting Series.\n Series.to_frame : Inverse of DataFrame.squeeze for a\n single-column DataFrame.\n\n Examples\n --------\n >>> primes = pd.Series([2, 3, 5, 7])\n\n Slicing might produce a Series with a single value:\n\n >>> even_primes = primes[primes % 2 == 0]\n >>> even_primes\n 0 2\n dtype: int64\n\n >>> even_primes.squeeze()\n 2\n\n Squeezing objects with more than one value in every axis does nothing:\n\n >>> odd_primes = primes[primes % 2 == 1]\n >>> odd_primes\n 1 3\n 2 5\n 3 7\n dtype: int64\n\n >>> odd_primes.squeeze()\n 1 3\n 2 5\n 3 7\n dtype: int64\n\n Squeezing is even more effective when used with DataFrames.\n\n >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b'])\n >>> df\n a b\n 0 1 2\n 1 3 4\n\n Slicing a single column will produce a DataFrame with the columns\n having only one value:\n\n >>> df_a = df[['a']]\n >>> df_a\n a\n 0 1\n 1 3\n\n So the columns can be squeezed down, resulting in a Series:\n\n >>> df_a.squeeze('columns')\n 0 1\n 1 3\n Name: a, dtype: int64\n\n Slicing a single row from a single column will produce a single\n scalar DataFrame:\n\n >>> df_0a = df.loc[df.index < 1, ['a']]\n >>> df_0a\n a\n 0 1\n\n Squeezing the rows produces a single scalar Series:\n\n >>> df_0a.squeeze('rows')\n a 1\n Name: 0, dtype: int64\n\n Squeezing all axes wil project directly into a scalar:\n\n >>> df_0a.squeeze()\n 1\n " axis = (self._AXIS_NAMES if (axis is None) else (self._get_axis_number(axis),)) try: return self.iloc[tuple(((0 if ((i in axis) and (len(a) == 1)) else slice(None)) for (i, a) in enumerate(self.axes)))] except Exception: return self
def swaplevel(self, i=(- 2), j=(- 1), axis=0): '\n Swap levels i and j in a MultiIndex on a particular axis\n\n Parameters\n ----------\n i, j : int, str (can be mixed)\n Level of index to be swapped. Can pass level name as string.\n\n Returns\n -------\n swapped : same type as caller (new object)\n\n .. versionchanged:: 0.18.1\n\n The indexes ``i`` and ``j`` are now optional, and default to\n the two innermost levels of the index.\n\n ' axis = self._get_axis_number(axis) result = self.copy() labels = result._data.axes[axis] result._data.set_axis(axis, labels.swaplevel(i, j)) return result
-4,580,033,766,606,492,700
Swap levels i and j in a MultiIndex on a particular axis Parameters ---------- i, j : int, str (can be mixed) Level of index to be swapped. Can pass level name as string. Returns ------- swapped : same type as caller (new object) .. versionchanged:: 0.18.1 The indexes ``i`` and ``j`` are now optional, and default to the two innermost levels of the index.
pandas/core/generic.py
swaplevel
kapilepatel/pandas
python
def swaplevel(self, i=(- 2), j=(- 1), axis=0): '\n Swap levels i and j in a MultiIndex on a particular axis\n\n Parameters\n ----------\n i, j : int, str (can be mixed)\n Level of index to be swapped. Can pass level name as string.\n\n Returns\n -------\n swapped : same type as caller (new object)\n\n .. versionchanged:: 0.18.1\n\n The indexes ``i`` and ``j`` are now optional, and default to\n the two innermost levels of the index.\n\n ' axis = self._get_axis_number(axis) result = self.copy() labels = result._data.axes[axis] result._data.set_axis(axis, labels.swaplevel(i, j)) return result
def rename(self, *args, **kwargs): '\n Alter axes input function or functions. Function / dict values must be\n unique (1-to-1). Labels not contained in a dict / Series will be left\n as-is. Extra labels listed don\'t throw an error. Alternatively, change\n ``Series.name`` with a scalar value (Series only).\n\n Parameters\n ----------\n %(axes)s : scalar, list-like, dict-like or function, optional\n Scalar or list-like will alter the ``Series.name`` attribute,\n and raise on DataFrame or Panel.\n dict-like or functions are transformations to apply to\n that axis\' values\n copy : bool, default True\n Also copy underlying data.\n inplace : bool, default False\n Whether to return a new %(klass)s. If True then value of copy is\n ignored.\n level : int or level name, default None\n In case of a MultiIndex, only rename labels in the specified\n level.\n errors : {\'ignore\', \'raise\'}, default \'ignore\'\n If \'raise\', raise a `KeyError` when a dict-like `mapper`, `index`,\n or `columns` contains labels that are not present in the Index\n being transformed.\n If \'ignore\', existing keys will be renamed and extra keys will be\n ignored.\n\n Returns\n -------\n renamed : %(klass)s (new object)\n\n Raises\n ------\n KeyError\n If any of the labels is not found in the selected axis and\n "errors=\'raise\'".\n\n See Also\n --------\n NDFrame.rename_axis\n\n Examples\n --------\n\n >>> s = pd.Series([1, 2, 3])\n >>> s\n 0 1\n 1 2\n 2 3\n dtype: int64\n >>> s.rename("my_name") # scalar, changes Series.name\n 0 1\n 1 2\n 2 3\n Name: my_name, dtype: int64\n >>> s.rename(lambda x: x ** 2) # function, changes labels\n 0 1\n 1 2\n 4 3\n dtype: int64\n >>> s.rename({1: 3, 2: 5}) # mapping, changes labels\n 0 1\n 3 2\n 5 3\n dtype: int64\n\n Since ``DataFrame`` doesn\'t have a ``.name`` attribute,\n only mapping-type arguments are allowed.\n\n >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})\n >>> df.rename(2)\n Traceback (most recent call last):\n ...\n TypeError: \'int\' object is not callable\n\n ``DataFrame.rename`` supports two calling conventions\n\n * ``(index=index_mapper, columns=columns_mapper, ...)``\n * ``(mapper, axis={\'index\', \'columns\'}, ...)``\n\n We *highly* recommend using keyword arguments to clarify your\n intent.\n\n >>> df.rename(index=str, columns={"A": "a", "B": "c"})\n a c\n 0 1 4\n 1 2 5\n 2 3 6\n\n >>> df.rename(index=str, columns={"A": "a", "C": "c"})\n a B\n 0 1 4\n 1 2 5\n 2 3 6\n\n Using axis-style parameters\n\n >>> df.rename(str.lower, axis=\'columns\')\n a b\n 0 1 4\n 1 2 5\n 2 3 6\n\n >>> df.rename({1: 2, 2: 4}, axis=\'index\')\n A B\n 0 1 4\n 2 2 5\n 4 3 6\n\n See the :ref:`user guide <basics.rename>` for more.\n ' (axes, kwargs) = self._construct_axes_from_arguments(args, kwargs) copy = kwargs.pop('copy', True) inplace = kwargs.pop('inplace', False) level = kwargs.pop('level', None) axis = kwargs.pop('axis', None) errors = kwargs.pop('errors', 'ignore') if (axis is not None): self._get_axis_number(axis) if kwargs: raise TypeError('rename() got an unexpected keyword argument "{0}"'.format(list(kwargs.keys())[0])) if (com.count_not_none(*axes.values()) == 0): raise TypeError('must pass an index to rename') self._consolidate_inplace() result = (self if inplace else self.copy(deep=copy)) for axis in lrange(self._AXIS_LEN): v = axes.get(self._AXIS_NAMES[axis]) if (v is None): continue f = com._get_rename_function(v) baxis = self._get_block_manager_axis(axis) if (level is not None): level = self.axes[axis]._get_level_number(level) if (not callable(v)): indexer = self.axes[axis].get_indexer_for(v) if ((errors == 'raise') and len(indexer[(indexer == (- 1))])): missing_labels = [label for (index, label) in enumerate(v) if (indexer[index] == (- 1))] raise KeyError('{} not found in axis'.format(missing_labels)) result._data = result._data.rename_axis(f, axis=baxis, copy=copy, level=level) result._clear_item_cache() if inplace: self._update_inplace(result._data) else: return result.__finalize__(self)
5,026,194,608,817,388,000
Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. Alternatively, change ``Series.name`` with a scalar value (Series only). Parameters ---------- %(axes)s : scalar, list-like, dict-like or function, optional Scalar or list-like will alter the ``Series.name`` attribute, and raise on DataFrame or Panel. dict-like or functions are transformations to apply to that axis' values copy : bool, default True Also copy underlying data. inplace : bool, default False Whether to return a new %(klass)s. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. errors : {'ignore', 'raise'}, default 'ignore' If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`, or `columns` contains labels that are not present in the Index being transformed. If 'ignore', existing keys will be renamed and extra keys will be ignored. Returns ------- renamed : %(klass)s (new object) Raises ------ KeyError If any of the labels is not found in the selected axis and "errors='raise'". See Also -------- NDFrame.rename_axis Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.rename("my_name") # scalar, changes Series.name 0 1 1 2 2 3 Name: my_name, dtype: int64 >>> s.rename(lambda x: x ** 2) # function, changes labels 0 1 1 2 4 3 dtype: int64 >>> s.rename({1: 3, 2: 5}) # mapping, changes labels 0 1 3 2 5 3 dtype: int64 Since ``DataFrame`` doesn't have a ``.name`` attribute, only mapping-type arguments are allowed. >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(2) Traceback (most recent call last): ... TypeError: 'int' object is not callable ``DataFrame.rename`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. >>> df.rename(index=str, columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 >>> df.rename(index=str, columns={"A": "a", "C": "c"}) a B 0 1 4 1 2 5 2 3 6 Using axis-style parameters >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6 See the :ref:`user guide <basics.rename>` for more.
pandas/core/generic.py
rename
kapilepatel/pandas
python
def rename(self, *args, **kwargs): '\n Alter axes input function or functions. Function / dict values must be\n unique (1-to-1). Labels not contained in a dict / Series will be left\n as-is. Extra labels listed don\'t throw an error. Alternatively, change\n ``Series.name`` with a scalar value (Series only).\n\n Parameters\n ----------\n %(axes)s : scalar, list-like, dict-like or function, optional\n Scalar or list-like will alter the ``Series.name`` attribute,\n and raise on DataFrame or Panel.\n dict-like or functions are transformations to apply to\n that axis\' values\n copy : bool, default True\n Also copy underlying data.\n inplace : bool, default False\n Whether to return a new %(klass)s. If True then value of copy is\n ignored.\n level : int or level name, default None\n In case of a MultiIndex, only rename labels in the specified\n level.\n errors : {\'ignore\', \'raise\'}, default \'ignore\'\n If \'raise\', raise a `KeyError` when a dict-like `mapper`, `index`,\n or `columns` contains labels that are not present in the Index\n being transformed.\n If \'ignore\', existing keys will be renamed and extra keys will be\n ignored.\n\n Returns\n -------\n renamed : %(klass)s (new object)\n\n Raises\n ------\n KeyError\n If any of the labels is not found in the selected axis and\n "errors=\'raise\'".\n\n See Also\n --------\n NDFrame.rename_axis\n\n Examples\n --------\n\n >>> s = pd.Series([1, 2, 3])\n >>> s\n 0 1\n 1 2\n 2 3\n dtype: int64\n >>> s.rename("my_name") # scalar, changes Series.name\n 0 1\n 1 2\n 2 3\n Name: my_name, dtype: int64\n >>> s.rename(lambda x: x ** 2) # function, changes labels\n 0 1\n 1 2\n 4 3\n dtype: int64\n >>> s.rename({1: 3, 2: 5}) # mapping, changes labels\n 0 1\n 3 2\n 5 3\n dtype: int64\n\n Since ``DataFrame`` doesn\'t have a ``.name`` attribute,\n only mapping-type arguments are allowed.\n\n >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})\n >>> df.rename(2)\n Traceback (most recent call last):\n ...\n TypeError: \'int\' object is not callable\n\n ``DataFrame.rename`` supports two calling conventions\n\n * ``(index=index_mapper, columns=columns_mapper, ...)``\n * ``(mapper, axis={\'index\', \'columns\'}, ...)``\n\n We *highly* recommend using keyword arguments to clarify your\n intent.\n\n >>> df.rename(index=str, columns={"A": "a", "B": "c"})\n a c\n 0 1 4\n 1 2 5\n 2 3 6\n\n >>> df.rename(index=str, columns={"A": "a", "C": "c"})\n a B\n 0 1 4\n 1 2 5\n 2 3 6\n\n Using axis-style parameters\n\n >>> df.rename(str.lower, axis=\'columns\')\n a b\n 0 1 4\n 1 2 5\n 2 3 6\n\n >>> df.rename({1: 2, 2: 4}, axis=\'index\')\n A B\n 0 1 4\n 2 2 5\n 4 3 6\n\n See the :ref:`user guide <basics.rename>` for more.\n ' (axes, kwargs) = self._construct_axes_from_arguments(args, kwargs) copy = kwargs.pop('copy', True) inplace = kwargs.pop('inplace', False) level = kwargs.pop('level', None) axis = kwargs.pop('axis', None) errors = kwargs.pop('errors', 'ignore') if (axis is not None): self._get_axis_number(axis) if kwargs: raise TypeError('rename() got an unexpected keyword argument "{0}"'.format(list(kwargs.keys())[0])) if (com.count_not_none(*axes.values()) == 0): raise TypeError('must pass an index to rename') self._consolidate_inplace() result = (self if inplace else self.copy(deep=copy)) for axis in lrange(self._AXIS_LEN): v = axes.get(self._AXIS_NAMES[axis]) if (v is None): continue f = com._get_rename_function(v) baxis = self._get_block_manager_axis(axis) if (level is not None): level = self.axes[axis]._get_level_number(level) if (not callable(v)): indexer = self.axes[axis].get_indexer_for(v) if ((errors == 'raise') and len(indexer[(indexer == (- 1))])): missing_labels = [label for (index, label) in enumerate(v) if (indexer[index] == (- 1))] raise KeyError('{} not found in axis'.format(missing_labels)) result._data = result._data.rename_axis(f, axis=baxis, copy=copy, level=level) result._clear_item_cache() if inplace: self._update_inplace(result._data) else: return result.__finalize__(self)
@rewrite_axis_style_signature('mapper', [('copy', True), ('inplace', False)]) def rename_axis(self, mapper=sentinel, **kwargs): '\n Set the name of the axis for the index or columns.\n\n Parameters\n ----------\n mapper : scalar, list-like, optional\n Value to set the axis name attribute.\n index, columns : scalar, list-like, dict-like or function, optional\n A scalar, list-like, dict-like or functions transformations to\n apply to that axis\' values.\n\n Use either ``mapper`` and ``axis`` to\n specify the axis to target with ``mapper``, or ``index``\n and/or ``columns``.\n\n .. versionchanged:: 0.24.0\n\n axis : {0 or \'index\', 1 or \'columns\'}, default 0\n The axis to rename.\n copy : bool, default True\n Also copy underlying data.\n inplace : bool, default False\n Modifies the object directly, instead of creating a new Series\n or DataFrame.\n\n Returns\n -------\n Series, DataFrame, or None\n The same type as the caller or None if `inplace` is True.\n\n See Also\n --------\n Series.rename : Alter Series index labels or name.\n DataFrame.rename : Alter DataFrame index labels or name.\n Index.rename : Set new names on index.\n\n Notes\n -----\n Prior to version 0.21.0, ``rename_axis`` could also be used to change\n the axis *labels* by passing a mapping or scalar. This behavior is\n deprecated and will be removed in a future version. Use ``rename``\n instead.\n\n ``DataFrame.rename_axis`` supports two calling conventions\n\n * ``(index=index_mapper, columns=columns_mapper, ...)``\n * ``(mapper, axis={\'index\', \'columns\'}, ...)``\n\n The first calling convention will only modify the names of\n the index and/or the names of the Index object that is the columns.\n In this case, the parameter ``copy`` is ignored.\n\n The second calling convention will modify the names of the\n the corresponding index if mapper is a list or a scalar.\n However, if mapper is dict-like or a function, it will use the\n deprecated behavior of modifying the axis *labels*.\n\n We *highly* recommend using keyword arguments to clarify your\n intent.\n\n Examples\n --------\n **Series**\n\n >>> s = pd.Series(["dog", "cat", "monkey"])\n >>> s\n 0 dog\n 1 cat\n 2 monkey\n dtype: object\n >>> s.rename_axis("animal")\n animal\n 0 dog\n 1 cat\n 2 monkey\n dtype: object\n\n **DataFrame**\n\n >>> df = pd.DataFrame({"num_legs": [4, 4, 2],\n ... "num_arms": [0, 0, 2]},\n ... ["dog", "cat", "monkey"])\n >>> df\n num_legs num_arms\n dog 4 0\n cat 4 0\n monkey 2 2\n >>> df = df.rename_axis("animal")\n >>> df\n num_legs num_arms\n animal\n dog 4 0\n cat 4 0\n monkey 2 2\n >>> df = df.rename_axis("limbs", axis="columns")\n >>> df\n limbs num_legs num_arms\n animal\n dog 4 0\n cat 4 0\n monkey 2 2\n\n **MultiIndex**\n\n >>> df.index = pd.MultiIndex.from_product([[\'mammal\'],\n ... [\'dog\', \'cat\', \'monkey\']],\n ... names=[\'type\', \'name\'])\n >>> df\n limbs num_legs num_arms\n type name\n mammal dog 4 0\n cat 4 0\n monkey 2 2\n\n >>> df.rename_axis(index={\'type\': \'class\'})\n limbs num_legs num_arms\n class name\n mammal dog 4 0\n cat 4 0\n monkey 2 2\n\n >>> df.rename_axis(columns=str.upper)\n LIMBS num_legs num_arms\n type name\n mammal dog 4 0\n cat 4 0\n monkey 2 2\n ' (axes, kwargs) = self._construct_axes_from_arguments((), kwargs, sentinel=sentinel) copy = kwargs.pop('copy', True) inplace = kwargs.pop('inplace', False) axis = kwargs.pop('axis', 0) if (axis is not None): axis = self._get_axis_number(axis) if kwargs: raise TypeError('rename_axis() got an unexpected keyword argument "{0}"'.format(list(kwargs.keys())[0])) inplace = validate_bool_kwarg(inplace, 'inplace') if (mapper is not sentinel): non_mapper = (is_scalar(mapper) or (is_list_like(mapper) and (not is_dict_like(mapper)))) if non_mapper: return self._set_axis_name(mapper, axis=axis, inplace=inplace) else: msg = "Using 'rename_axis' to alter labels is deprecated. Use '.rename' instead" warnings.warn(msg, FutureWarning, stacklevel=3) axis = self._get_axis_name(axis) d = {'copy': copy, 'inplace': inplace} d[axis] = mapper return self.rename(**d) else: result = (self if inplace else self.copy(deep=copy)) for axis in lrange(self._AXIS_LEN): v = axes.get(self._AXIS_NAMES[axis]) if (v is sentinel): continue non_mapper = (is_scalar(v) or (is_list_like(v) and (not is_dict_like(v)))) if non_mapper: newnames = v else: f = com._get_rename_function(v) curnames = self._get_axis(axis).names newnames = [f(name) for name in curnames] result._set_axis_name(newnames, axis=axis, inplace=True) if (not inplace): return result
4,914,523,485,724,767,000
Set the name of the axis for the index or columns. Parameters ---------- mapper : scalar, list-like, optional Value to set the axis name attribute. index, columns : scalar, list-like, dict-like or function, optional A scalar, list-like, dict-like or functions transformations to apply to that axis' values. Use either ``mapper`` and ``axis`` to specify the axis to target with ``mapper``, or ``index`` and/or ``columns``. .. versionchanged:: 0.24.0 axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to rename. copy : bool, default True Also copy underlying data. inplace : bool, default False Modifies the object directly, instead of creating a new Series or DataFrame. Returns ------- Series, DataFrame, or None The same type as the caller or None if `inplace` is True. See Also -------- Series.rename : Alter Series index labels or name. DataFrame.rename : Alter DataFrame index labels or name. Index.rename : Set new names on index. Notes ----- Prior to version 0.21.0, ``rename_axis`` could also be used to change the axis *labels* by passing a mapping or scalar. This behavior is deprecated and will be removed in a future version. Use ``rename`` instead. ``DataFrame.rename_axis`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` The first calling convention will only modify the names of the index and/or the names of the Index object that is the columns. In this case, the parameter ``copy`` is ignored. The second calling convention will modify the names of the the corresponding index if mapper is a list or a scalar. However, if mapper is dict-like or a function, it will use the deprecated behavior of modifying the axis *labels*. We *highly* recommend using keyword arguments to clarify your intent. Examples -------- **Series** >>> s = pd.Series(["dog", "cat", "monkey"]) >>> s 0 dog 1 cat 2 monkey dtype: object >>> s.rename_axis("animal") animal 0 dog 1 cat 2 monkey dtype: object **DataFrame** >>> df = pd.DataFrame({"num_legs": [4, 4, 2], ... "num_arms": [0, 0, 2]}, ... ["dog", "cat", "monkey"]) >>> df num_legs num_arms dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("animal") >>> df num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("limbs", axis="columns") >>> df limbs num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2 **MultiIndex** >>> df.index = pd.MultiIndex.from_product([['mammal'], ... ['dog', 'cat', 'monkey']], ... names=['type', 'name']) >>> df limbs num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2 >>> df.rename_axis(index={'type': 'class'}) limbs num_legs num_arms class name mammal dog 4 0 cat 4 0 monkey 2 2 >>> df.rename_axis(columns=str.upper) LIMBS num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2
pandas/core/generic.py
rename_axis
kapilepatel/pandas
python
@rewrite_axis_style_signature('mapper', [('copy', True), ('inplace', False)]) def rename_axis(self, mapper=sentinel, **kwargs): '\n Set the name of the axis for the index or columns.\n\n Parameters\n ----------\n mapper : scalar, list-like, optional\n Value to set the axis name attribute.\n index, columns : scalar, list-like, dict-like or function, optional\n A scalar, list-like, dict-like or functions transformations to\n apply to that axis\' values.\n\n Use either ``mapper`` and ``axis`` to\n specify the axis to target with ``mapper``, or ``index``\n and/or ``columns``.\n\n .. versionchanged:: 0.24.0\n\n axis : {0 or \'index\', 1 or \'columns\'}, default 0\n The axis to rename.\n copy : bool, default True\n Also copy underlying data.\n inplace : bool, default False\n Modifies the object directly, instead of creating a new Series\n or DataFrame.\n\n Returns\n -------\n Series, DataFrame, or None\n The same type as the caller or None if `inplace` is True.\n\n See Also\n --------\n Series.rename : Alter Series index labels or name.\n DataFrame.rename : Alter DataFrame index labels or name.\n Index.rename : Set new names on index.\n\n Notes\n -----\n Prior to version 0.21.0, ``rename_axis`` could also be used to change\n the axis *labels* by passing a mapping or scalar. This behavior is\n deprecated and will be removed in a future version. Use ``rename``\n instead.\n\n ``DataFrame.rename_axis`` supports two calling conventions\n\n * ``(index=index_mapper, columns=columns_mapper, ...)``\n * ``(mapper, axis={\'index\', \'columns\'}, ...)``\n\n The first calling convention will only modify the names of\n the index and/or the names of the Index object that is the columns.\n In this case, the parameter ``copy`` is ignored.\n\n The second calling convention will modify the names of the\n the corresponding index if mapper is a list or a scalar.\n However, if mapper is dict-like or a function, it will use the\n deprecated behavior of modifying the axis *labels*.\n\n We *highly* recommend using keyword arguments to clarify your\n intent.\n\n Examples\n --------\n **Series**\n\n >>> s = pd.Series(["dog", "cat", "monkey"])\n >>> s\n 0 dog\n 1 cat\n 2 monkey\n dtype: object\n >>> s.rename_axis("animal")\n animal\n 0 dog\n 1 cat\n 2 monkey\n dtype: object\n\n **DataFrame**\n\n >>> df = pd.DataFrame({"num_legs": [4, 4, 2],\n ... "num_arms": [0, 0, 2]},\n ... ["dog", "cat", "monkey"])\n >>> df\n num_legs num_arms\n dog 4 0\n cat 4 0\n monkey 2 2\n >>> df = df.rename_axis("animal")\n >>> df\n num_legs num_arms\n animal\n dog 4 0\n cat 4 0\n monkey 2 2\n >>> df = df.rename_axis("limbs", axis="columns")\n >>> df\n limbs num_legs num_arms\n animal\n dog 4 0\n cat 4 0\n monkey 2 2\n\n **MultiIndex**\n\n >>> df.index = pd.MultiIndex.from_product([[\'mammal\'],\n ... [\'dog\', \'cat\', \'monkey\']],\n ... names=[\'type\', \'name\'])\n >>> df\n limbs num_legs num_arms\n type name\n mammal dog 4 0\n cat 4 0\n monkey 2 2\n\n >>> df.rename_axis(index={\'type\': \'class\'})\n limbs num_legs num_arms\n class name\n mammal dog 4 0\n cat 4 0\n monkey 2 2\n\n >>> df.rename_axis(columns=str.upper)\n LIMBS num_legs num_arms\n type name\n mammal dog 4 0\n cat 4 0\n monkey 2 2\n ' (axes, kwargs) = self._construct_axes_from_arguments((), kwargs, sentinel=sentinel) copy = kwargs.pop('copy', True) inplace = kwargs.pop('inplace', False) axis = kwargs.pop('axis', 0) if (axis is not None): axis = self._get_axis_number(axis) if kwargs: raise TypeError('rename_axis() got an unexpected keyword argument "{0}"'.format(list(kwargs.keys())[0])) inplace = validate_bool_kwarg(inplace, 'inplace') if (mapper is not sentinel): non_mapper = (is_scalar(mapper) or (is_list_like(mapper) and (not is_dict_like(mapper)))) if non_mapper: return self._set_axis_name(mapper, axis=axis, inplace=inplace) else: msg = "Using 'rename_axis' to alter labels is deprecated. Use '.rename' instead" warnings.warn(msg, FutureWarning, stacklevel=3) axis = self._get_axis_name(axis) d = {'copy': copy, 'inplace': inplace} d[axis] = mapper return self.rename(**d) else: result = (self if inplace else self.copy(deep=copy)) for axis in lrange(self._AXIS_LEN): v = axes.get(self._AXIS_NAMES[axis]) if (v is sentinel): continue non_mapper = (is_scalar(v) or (is_list_like(v) and (not is_dict_like(v)))) if non_mapper: newnames = v else: f = com._get_rename_function(v) curnames = self._get_axis(axis).names newnames = [f(name) for name in curnames] result._set_axis_name(newnames, axis=axis, inplace=True) if (not inplace): return result
def _set_axis_name(self, name, axis=0, inplace=False): '\n Set the name(s) of the axis.\n\n Parameters\n ----------\n name : str or list of str\n Name(s) to set.\n axis : {0 or \'index\', 1 or \'columns\'}, default 0\n The axis to set the label. The value 0 or \'index\' specifies index,\n and the value 1 or \'columns\' specifies columns.\n inplace : bool, default False\n If `True`, do operation inplace and return None.\n\n .. versionadded:: 0.21.0\n\n Returns\n -------\n Series, DataFrame, or None\n The same type as the caller or `None` if `inplace` is `True`.\n\n See Also\n --------\n DataFrame.rename : Alter the axis labels of :class:`DataFrame`.\n Series.rename : Alter the index labels or set the index name\n of :class:`Series`.\n Index.rename : Set the name of :class:`Index` or :class:`MultiIndex`.\n\n Examples\n --------\n >>> df = pd.DataFrame({"num_legs": [4, 4, 2]},\n ... ["dog", "cat", "monkey"])\n >>> df\n num_legs\n dog 4\n cat 4\n monkey 2\n >>> df._set_axis_name("animal")\n num_legs\n animal\n dog 4\n cat 4\n monkey 2\n >>> df.index = pd.MultiIndex.from_product(\n ... [["mammal"], [\'dog\', \'cat\', \'monkey\']])\n >>> df._set_axis_name(["type", "name"])\n legs\n type name\n mammal dog 4\n cat 4\n monkey 2\n ' axis = self._get_axis_number(axis) idx = self._get_axis(axis).set_names(name) inplace = validate_bool_kwarg(inplace, 'inplace') renamed = (self if inplace else self.copy()) renamed.set_axis(idx, axis=axis, inplace=True) if (not inplace): return renamed
-3,503,825,494,571,687,400
Set the name(s) of the axis. Parameters ---------- name : str or list of str Name(s) to set. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to set the label. The value 0 or 'index' specifies index, and the value 1 or 'columns' specifies columns. inplace : bool, default False If `True`, do operation inplace and return None. .. versionadded:: 0.21.0 Returns ------- Series, DataFrame, or None The same type as the caller or `None` if `inplace` is `True`. See Also -------- DataFrame.rename : Alter the axis labels of :class:`DataFrame`. Series.rename : Alter the index labels or set the index name of :class:`Series`. Index.rename : Set the name of :class:`Index` or :class:`MultiIndex`. Examples -------- >>> df = pd.DataFrame({"num_legs": [4, 4, 2]}, ... ["dog", "cat", "monkey"]) >>> df num_legs dog 4 cat 4 monkey 2 >>> df._set_axis_name("animal") num_legs animal dog 4 cat 4 monkey 2 >>> df.index = pd.MultiIndex.from_product( ... [["mammal"], ['dog', 'cat', 'monkey']]) >>> df._set_axis_name(["type", "name"]) legs type name mammal dog 4 cat 4 monkey 2
pandas/core/generic.py
_set_axis_name
kapilepatel/pandas
python
def _set_axis_name(self, name, axis=0, inplace=False): '\n Set the name(s) of the axis.\n\n Parameters\n ----------\n name : str or list of str\n Name(s) to set.\n axis : {0 or \'index\', 1 or \'columns\'}, default 0\n The axis to set the label. The value 0 or \'index\' specifies index,\n and the value 1 or \'columns\' specifies columns.\n inplace : bool, default False\n If `True`, do operation inplace and return None.\n\n .. versionadded:: 0.21.0\n\n Returns\n -------\n Series, DataFrame, or None\n The same type as the caller or `None` if `inplace` is `True`.\n\n See Also\n --------\n DataFrame.rename : Alter the axis labels of :class:`DataFrame`.\n Series.rename : Alter the index labels or set the index name\n of :class:`Series`.\n Index.rename : Set the name of :class:`Index` or :class:`MultiIndex`.\n\n Examples\n --------\n >>> df = pd.DataFrame({"num_legs": [4, 4, 2]},\n ... ["dog", "cat", "monkey"])\n >>> df\n num_legs\n dog 4\n cat 4\n monkey 2\n >>> df._set_axis_name("animal")\n num_legs\n animal\n dog 4\n cat 4\n monkey 2\n >>> df.index = pd.MultiIndex.from_product(\n ... [["mammal"], [\'dog\', \'cat\', \'monkey\']])\n >>> df._set_axis_name(["type", "name"])\n legs\n type name\n mammal dog 4\n cat 4\n monkey 2\n ' axis = self._get_axis_number(axis) idx = self._get_axis(axis).set_names(name) inplace = validate_bool_kwarg(inplace, 'inplace') renamed = (self if inplace else self.copy()) renamed.set_axis(idx, axis=axis, inplace=True) if (not inplace): return renamed
def equals(self, other): '\n Test whether two objects contain the same elements.\n\n This function allows two Series or DataFrames to be compared against\n each other to see if they have the same shape and elements. NaNs in\n the same location are considered equal. The column headers do not\n need to have the same type, but the elements within the columns must\n be the same dtype.\n\n Parameters\n ----------\n other : Series or DataFrame\n The other Series or DataFrame to be compared with the first.\n\n Returns\n -------\n bool\n True if all elements are the same in both objects, False\n otherwise.\n\n See Also\n --------\n Series.eq : Compare two Series objects of the same length\n and return a Series where each element is True if the element\n in each Series is equal, False otherwise.\n DataFrame.eq : Compare two DataFrame objects of the same shape and\n return a DataFrame where each element is True if the respective\n element in each DataFrame is equal, False otherwise.\n assert_series_equal : Return True if left and right Series are equal,\n False otherwise.\n assert_frame_equal : Return True if left and right DataFrames are\n equal, False otherwise.\n numpy.array_equal : Return True if two arrays have the same shape\n and elements, False otherwise.\n\n Notes\n -----\n This function requires that the elements have the same dtype as their\n respective elements in the other Series or DataFrame. However, the\n column labels do not need to have the same type, as long as they are\n still considered equal.\n\n Examples\n --------\n >>> df = pd.DataFrame({1: [10], 2: [20]})\n >>> df\n 1 2\n 0 10 20\n\n DataFrames df and exactly_equal have the same types and values for\n their elements and column labels, which will return True.\n\n >>> exactly_equal = pd.DataFrame({1: [10], 2: [20]})\n >>> exactly_equal\n 1 2\n 0 10 20\n >>> df.equals(exactly_equal)\n True\n\n DataFrames df and different_column_type have the same element\n types and values, but have different types for the column labels,\n which will still return True.\n\n >>> different_column_type = pd.DataFrame({1.0: [10], 2.0: [20]})\n >>> different_column_type\n 1.0 2.0\n 0 10 20\n >>> df.equals(different_column_type)\n True\n\n DataFrames df and different_data_type have different types for the\n same values for their elements, and will return False even though\n their column labels are the same values and types.\n\n >>> different_data_type = pd.DataFrame({1: [10.0], 2: [20.0]})\n >>> different_data_type\n 1 2\n 0 10.0 20.0\n >>> df.equals(different_data_type)\n False\n ' if (not isinstance(other, self._constructor)): return False return self._data.equals(other._data)
-7,646,363,434,194,578,000
Test whether two objects contain the same elements. This function allows two Series or DataFrames to be compared against each other to see if they have the same shape and elements. NaNs in the same location are considered equal. The column headers do not need to have the same type, but the elements within the columns must be the same dtype. Parameters ---------- other : Series or DataFrame The other Series or DataFrame to be compared with the first. Returns ------- bool True if all elements are the same in both objects, False otherwise. See Also -------- Series.eq : Compare two Series objects of the same length and return a Series where each element is True if the element in each Series is equal, False otherwise. DataFrame.eq : Compare two DataFrame objects of the same shape and return a DataFrame where each element is True if the respective element in each DataFrame is equal, False otherwise. assert_series_equal : Return True if left and right Series are equal, False otherwise. assert_frame_equal : Return True if left and right DataFrames are equal, False otherwise. numpy.array_equal : Return True if two arrays have the same shape and elements, False otherwise. Notes ----- This function requires that the elements have the same dtype as their respective elements in the other Series or DataFrame. However, the column labels do not need to have the same type, as long as they are still considered equal. Examples -------- >>> df = pd.DataFrame({1: [10], 2: [20]}) >>> df 1 2 0 10 20 DataFrames df and exactly_equal have the same types and values for their elements and column labels, which will return True. >>> exactly_equal = pd.DataFrame({1: [10], 2: [20]}) >>> exactly_equal 1 2 0 10 20 >>> df.equals(exactly_equal) True DataFrames df and different_column_type have the same element types and values, but have different types for the column labels, which will still return True. >>> different_column_type = pd.DataFrame({1.0: [10], 2.0: [20]}) >>> different_column_type 1.0 2.0 0 10 20 >>> df.equals(different_column_type) True DataFrames df and different_data_type have different types for the same values for their elements, and will return False even though their column labels are the same values and types. >>> different_data_type = pd.DataFrame({1: [10.0], 2: [20.0]}) >>> different_data_type 1 2 0 10.0 20.0 >>> df.equals(different_data_type) False
pandas/core/generic.py
equals
kapilepatel/pandas
python
def equals(self, other): '\n Test whether two objects contain the same elements.\n\n This function allows two Series or DataFrames to be compared against\n each other to see if they have the same shape and elements. NaNs in\n the same location are considered equal. The column headers do not\n need to have the same type, but the elements within the columns must\n be the same dtype.\n\n Parameters\n ----------\n other : Series or DataFrame\n The other Series or DataFrame to be compared with the first.\n\n Returns\n -------\n bool\n True if all elements are the same in both objects, False\n otherwise.\n\n See Also\n --------\n Series.eq : Compare two Series objects of the same length\n and return a Series where each element is True if the element\n in each Series is equal, False otherwise.\n DataFrame.eq : Compare two DataFrame objects of the same shape and\n return a DataFrame where each element is True if the respective\n element in each DataFrame is equal, False otherwise.\n assert_series_equal : Return True if left and right Series are equal,\n False otherwise.\n assert_frame_equal : Return True if left and right DataFrames are\n equal, False otherwise.\n numpy.array_equal : Return True if two arrays have the same shape\n and elements, False otherwise.\n\n Notes\n -----\n This function requires that the elements have the same dtype as their\n respective elements in the other Series or DataFrame. However, the\n column labels do not need to have the same type, as long as they are\n still considered equal.\n\n Examples\n --------\n >>> df = pd.DataFrame({1: [10], 2: [20]})\n >>> df\n 1 2\n 0 10 20\n\n DataFrames df and exactly_equal have the same types and values for\n their elements and column labels, which will return True.\n\n >>> exactly_equal = pd.DataFrame({1: [10], 2: [20]})\n >>> exactly_equal\n 1 2\n 0 10 20\n >>> df.equals(exactly_equal)\n True\n\n DataFrames df and different_column_type have the same element\n types and values, but have different types for the column labels,\n which will still return True.\n\n >>> different_column_type = pd.DataFrame({1.0: [10], 2.0: [20]})\n >>> different_column_type\n 1.0 2.0\n 0 10 20\n >>> df.equals(different_column_type)\n True\n\n DataFrames df and different_data_type have different types for the\n same values for their elements, and will return False even though\n their column labels are the same values and types.\n\n >>> different_data_type = pd.DataFrame({1: [10.0], 2: [20.0]})\n >>> different_data_type\n 1 2\n 0 10.0 20.0\n >>> df.equals(different_data_type)\n False\n ' if (not isinstance(other, self._constructor)): return False return self._data.equals(other._data)
def bool(self): '\n Return the bool of a single element PandasObject.\n\n This must be a boolean scalar value, either True or False. Raise a\n ValueError if the PandasObject does not have exactly 1 element, or that\n element is not boolean\n ' v = self.squeeze() if isinstance(v, (bool, np.bool_)): return bool(v) elif is_scalar(v): raise ValueError('bool cannot act on a non-boolean single element {0}'.format(self.__class__.__name__)) self.__nonzero__()
-5,600,088,005,043,880,000
Return the bool of a single element PandasObject. This must be a boolean scalar value, either True or False. Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean
pandas/core/generic.py
bool
kapilepatel/pandas
python
def bool(self): '\n Return the bool of a single element PandasObject.\n\n This must be a boolean scalar value, either True or False. Raise a\n ValueError if the PandasObject does not have exactly 1 element, or that\n element is not boolean\n ' v = self.squeeze() if isinstance(v, (bool, np.bool_)): return bool(v) elif is_scalar(v): raise ValueError('bool cannot act on a non-boolean single element {0}'.format(self.__class__.__name__)) self.__nonzero__()
def _is_level_reference(self, key, axis=0): '\n Test whether a key is a level reference for a given axis.\n\n To be considered a level reference, `key` must be a string that:\n - (axis=0): Matches the name of an index level and does NOT match\n a column label.\n - (axis=1): Matches the name of a column level and does NOT match\n an index label.\n\n Parameters\n ----------\n key : str\n Potential level name for the given axis\n axis : int, default 0\n Axis that levels are associated with (0 for index, 1 for columns)\n\n Returns\n -------\n is_level : bool\n ' axis = self._get_axis_number(axis) if (self.ndim > 2): raise NotImplementedError('_is_level_reference is not implemented for {type}'.format(type=type(self))) return ((key is not None) and is_hashable(key) and (key in self.axes[axis].names) and (not self._is_label_reference(key, axis=axis)))
5,860,233,145,217,881,000
Test whether a key is a level reference for a given axis. To be considered a level reference, `key` must be a string that: - (axis=0): Matches the name of an index level and does NOT match a column label. - (axis=1): Matches the name of a column level and does NOT match an index label. Parameters ---------- key : str Potential level name for the given axis axis : int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- is_level : bool
pandas/core/generic.py
_is_level_reference
kapilepatel/pandas
python
def _is_level_reference(self, key, axis=0): '\n Test whether a key is a level reference for a given axis.\n\n To be considered a level reference, `key` must be a string that:\n - (axis=0): Matches the name of an index level and does NOT match\n a column label.\n - (axis=1): Matches the name of a column level and does NOT match\n an index label.\n\n Parameters\n ----------\n key : str\n Potential level name for the given axis\n axis : int, default 0\n Axis that levels are associated with (0 for index, 1 for columns)\n\n Returns\n -------\n is_level : bool\n ' axis = self._get_axis_number(axis) if (self.ndim > 2): raise NotImplementedError('_is_level_reference is not implemented for {type}'.format(type=type(self))) return ((key is not None) and is_hashable(key) and (key in self.axes[axis].names) and (not self._is_label_reference(key, axis=axis)))
def _is_label_reference(self, key, axis=0): '\n Test whether a key is a label reference for a given axis.\n\n To be considered a label reference, `key` must be a string that:\n - (axis=0): Matches a column label\n - (axis=1): Matches an index label\n\n Parameters\n ----------\n key: str\n Potential label name\n axis: int, default 0\n Axis perpendicular to the axis that labels are associated with\n (0 means search for column labels, 1 means search for index labels)\n\n Returns\n -------\n is_label: bool\n ' if (self.ndim > 2): raise NotImplementedError('_is_label_reference is not implemented for {type}'.format(type=type(self))) axis = self._get_axis_number(axis) other_axes = (ax for ax in range(self._AXIS_LEN) if (ax != axis)) return ((key is not None) and is_hashable(key) and any(((key in self.axes[ax]) for ax in other_axes)))
7,299,412,412,023,767,000
Test whether a key is a label reference for a given axis. To be considered a label reference, `key` must be a string that: - (axis=0): Matches a column label - (axis=1): Matches an index label Parameters ---------- key: str Potential label name axis: int, default 0 Axis perpendicular to the axis that labels are associated with (0 means search for column labels, 1 means search for index labels) Returns ------- is_label: bool
pandas/core/generic.py
_is_label_reference
kapilepatel/pandas
python
def _is_label_reference(self, key, axis=0): '\n Test whether a key is a label reference for a given axis.\n\n To be considered a label reference, `key` must be a string that:\n - (axis=0): Matches a column label\n - (axis=1): Matches an index label\n\n Parameters\n ----------\n key: str\n Potential label name\n axis: int, default 0\n Axis perpendicular to the axis that labels are associated with\n (0 means search for column labels, 1 means search for index labels)\n\n Returns\n -------\n is_label: bool\n ' if (self.ndim > 2): raise NotImplementedError('_is_label_reference is not implemented for {type}'.format(type=type(self))) axis = self._get_axis_number(axis) other_axes = (ax for ax in range(self._AXIS_LEN) if (ax != axis)) return ((key is not None) and is_hashable(key) and any(((key in self.axes[ax]) for ax in other_axes)))
def _is_label_or_level_reference(self, key, axis=0): '\n Test whether a key is a label or level reference for a given axis.\n\n To be considered either a label or a level reference, `key` must be a\n string that:\n - (axis=0): Matches a column label or an index level\n - (axis=1): Matches an index label or a column level\n\n Parameters\n ----------\n key: str\n Potential label or level name\n axis: int, default 0\n Axis that levels are associated with (0 for index, 1 for columns)\n\n Returns\n -------\n is_label_or_level: bool\n ' if (self.ndim > 2): raise NotImplementedError('_is_label_or_level_reference is not implemented for {type}'.format(type=type(self))) return (self._is_level_reference(key, axis=axis) or self._is_label_reference(key, axis=axis))
1,784,305,677,259,383,000
Test whether a key is a label or level reference for a given axis. To be considered either a label or a level reference, `key` must be a string that: - (axis=0): Matches a column label or an index level - (axis=1): Matches an index label or a column level Parameters ---------- key: str Potential label or level name axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- is_label_or_level: bool
pandas/core/generic.py
_is_label_or_level_reference
kapilepatel/pandas
python
def _is_label_or_level_reference(self, key, axis=0): '\n Test whether a key is a label or level reference for a given axis.\n\n To be considered either a label or a level reference, `key` must be a\n string that:\n - (axis=0): Matches a column label or an index level\n - (axis=1): Matches an index label or a column level\n\n Parameters\n ----------\n key: str\n Potential label or level name\n axis: int, default 0\n Axis that levels are associated with (0 for index, 1 for columns)\n\n Returns\n -------\n is_label_or_level: bool\n ' if (self.ndim > 2): raise NotImplementedError('_is_label_or_level_reference is not implemented for {type}'.format(type=type(self))) return (self._is_level_reference(key, axis=axis) or self._is_label_reference(key, axis=axis))
def _check_label_or_level_ambiguity(self, key, axis=0): '\n Check whether `key` is ambiguous.\n\n By ambiguous, we mean that it matches both a level of the input\n `axis` and a label of the other axis.\n\n Parameters\n ----------\n key: str or object\n label or level name\n axis: int, default 0\n Axis that levels are associated with (0 for index, 1 for columns)\n\n Raises\n ------\n ValueError: `key` is ambiguous\n ' if (self.ndim > 2): raise NotImplementedError('_check_label_or_level_ambiguity is not implemented for {type}'.format(type=type(self))) axis = self._get_axis_number(axis) other_axes = (ax for ax in range(self._AXIS_LEN) if (ax != axis)) if ((key is not None) and is_hashable(key) and (key in self.axes[axis].names) and any(((key in self.axes[ax]) for ax in other_axes))): (level_article, level_type) = (('an', 'index') if (axis == 0) else ('a', 'column')) (label_article, label_type) = (('a', 'column') if (axis == 0) else ('an', 'index')) msg = "'{key}' is both {level_article} {level_type} level and {label_article} {label_type} label, which is ambiguous.".format(key=key, level_article=level_article, level_type=level_type, label_article=label_article, label_type=label_type) raise ValueError(msg)
-731,676,864,510,409,500
Check whether `key` is ambiguous. By ambiguous, we mean that it matches both a level of the input `axis` and a label of the other axis. Parameters ---------- key: str or object label or level name axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Raises ------ ValueError: `key` is ambiguous
pandas/core/generic.py
_check_label_or_level_ambiguity
kapilepatel/pandas
python
def _check_label_or_level_ambiguity(self, key, axis=0): '\n Check whether `key` is ambiguous.\n\n By ambiguous, we mean that it matches both a level of the input\n `axis` and a label of the other axis.\n\n Parameters\n ----------\n key: str or object\n label or level name\n axis: int, default 0\n Axis that levels are associated with (0 for index, 1 for columns)\n\n Raises\n ------\n ValueError: `key` is ambiguous\n ' if (self.ndim > 2): raise NotImplementedError('_check_label_or_level_ambiguity is not implemented for {type}'.format(type=type(self))) axis = self._get_axis_number(axis) other_axes = (ax for ax in range(self._AXIS_LEN) if (ax != axis)) if ((key is not None) and is_hashable(key) and (key in self.axes[axis].names) and any(((key in self.axes[ax]) for ax in other_axes))): (level_article, level_type) = (('an', 'index') if (axis == 0) else ('a', 'column')) (label_article, label_type) = (('a', 'column') if (axis == 0) else ('an', 'index')) msg = "'{key}' is both {level_article} {level_type} level and {label_article} {label_type} label, which is ambiguous.".format(key=key, level_article=level_article, level_type=level_type, label_article=label_article, label_type=label_type) raise ValueError(msg)
def _get_label_or_level_values(self, key, axis=0): "\n Return a 1-D array of values associated with `key`, a label or level\n from the given `axis`.\n\n Retrieval logic:\n - (axis=0): Return column values if `key` matches a column label.\n Otherwise return index level values if `key` matches an index\n level.\n - (axis=1): Return row values if `key` matches an index label.\n Otherwise return column level values if 'key' matches a column\n level\n\n Parameters\n ----------\n key: str\n Label or level name.\n axis: int, default 0\n Axis that levels are associated with (0 for index, 1 for columns)\n\n Returns\n -------\n values: np.ndarray\n\n Raises\n ------\n KeyError\n if `key` matches neither a label nor a level\n ValueError\n if `key` matches multiple labels\n FutureWarning\n if `key` is ambiguous. This will become an ambiguity error in a\n future version\n " if (self.ndim > 2): raise NotImplementedError('_get_label_or_level_values is not implemented for {type}'.format(type=type(self))) axis = self._get_axis_number(axis) other_axes = [ax for ax in range(self._AXIS_LEN) if (ax != axis)] if self._is_label_reference(key, axis=axis): self._check_label_or_level_ambiguity(key, axis=axis) values = self.xs(key, axis=other_axes[0])._values elif self._is_level_reference(key, axis=axis): values = self.axes[axis].get_level_values(key)._values else: raise KeyError(key) if (values.ndim > 1): if (other_axes and isinstance(self._get_axis(other_axes[0]), MultiIndex)): multi_message = '\nFor a multi-index, the label must be a tuple with elements corresponding to each level.' else: multi_message = '' label_axis_name = ('column' if (axis == 0) else 'index') raise ValueError("The {label_axis_name} label '{key}' is not unique.{multi_message}".format(key=key, label_axis_name=label_axis_name, multi_message=multi_message)) return values
-345,589,549,459,989,760
Return a 1-D array of values associated with `key`, a label or level from the given `axis`. Retrieval logic: - (axis=0): Return column values if `key` matches a column label. Otherwise return index level values if `key` matches an index level. - (axis=1): Return row values if `key` matches an index label. Otherwise return column level values if 'key' matches a column level Parameters ---------- key: str Label or level name. axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- values: np.ndarray Raises ------ KeyError if `key` matches neither a label nor a level ValueError if `key` matches multiple labels FutureWarning if `key` is ambiguous. This will become an ambiguity error in a future version
pandas/core/generic.py
_get_label_or_level_values
kapilepatel/pandas
python
def _get_label_or_level_values(self, key, axis=0): "\n Return a 1-D array of values associated with `key`, a label or level\n from the given `axis`.\n\n Retrieval logic:\n - (axis=0): Return column values if `key` matches a column label.\n Otherwise return index level values if `key` matches an index\n level.\n - (axis=1): Return row values if `key` matches an index label.\n Otherwise return column level values if 'key' matches a column\n level\n\n Parameters\n ----------\n key: str\n Label or level name.\n axis: int, default 0\n Axis that levels are associated with (0 for index, 1 for columns)\n\n Returns\n -------\n values: np.ndarray\n\n Raises\n ------\n KeyError\n if `key` matches neither a label nor a level\n ValueError\n if `key` matches multiple labels\n FutureWarning\n if `key` is ambiguous. This will become an ambiguity error in a\n future version\n " if (self.ndim > 2): raise NotImplementedError('_get_label_or_level_values is not implemented for {type}'.format(type=type(self))) axis = self._get_axis_number(axis) other_axes = [ax for ax in range(self._AXIS_LEN) if (ax != axis)] if self._is_label_reference(key, axis=axis): self._check_label_or_level_ambiguity(key, axis=axis) values = self.xs(key, axis=other_axes[0])._values elif self._is_level_reference(key, axis=axis): values = self.axes[axis].get_level_values(key)._values else: raise KeyError(key) if (values.ndim > 1): if (other_axes and isinstance(self._get_axis(other_axes[0]), MultiIndex)): multi_message = '\nFor a multi-index, the label must be a tuple with elements corresponding to each level.' else: multi_message = label_axis_name = ('column' if (axis == 0) else 'index') raise ValueError("The {label_axis_name} label '{key}' is not unique.{multi_message}".format(key=key, label_axis_name=label_axis_name, multi_message=multi_message)) return values
def _drop_labels_or_levels(self, keys, axis=0): '\n Drop labels and/or levels for the given `axis`.\n\n For each key in `keys`:\n - (axis=0): If key matches a column label then drop the column.\n Otherwise if key matches an index level then drop the level.\n - (axis=1): If key matches an index label then drop the row.\n Otherwise if key matches a column level then drop the level.\n\n Parameters\n ----------\n keys: str or list of str\n labels or levels to drop\n axis: int, default 0\n Axis that levels are associated with (0 for index, 1 for columns)\n\n Returns\n -------\n dropped: DataFrame\n\n Raises\n ------\n ValueError\n if any `keys` match neither a label nor a level\n ' if (self.ndim > 2): raise NotImplementedError('_drop_labels_or_levels is not implemented for {type}'.format(type=type(self))) axis = self._get_axis_number(axis) keys = com.maybe_make_list(keys) invalid_keys = [k for k in keys if (not self._is_label_or_level_reference(k, axis=axis))] if invalid_keys: raise ValueError('The following keys are not valid labels or levels for axis {axis}: {invalid_keys}'.format(axis=axis, invalid_keys=invalid_keys)) levels_to_drop = [k for k in keys if self._is_level_reference(k, axis=axis)] labels_to_drop = [k for k in keys if (not self._is_level_reference(k, axis=axis))] dropped = self.copy() if (axis == 0): if levels_to_drop: dropped.reset_index(levels_to_drop, drop=True, inplace=True) if labels_to_drop: dropped.drop(labels_to_drop, axis=1, inplace=True) else: if levels_to_drop: if isinstance(dropped.columns, MultiIndex): dropped.columns = dropped.columns.droplevel(levels_to_drop) else: dropped.columns = RangeIndex(dropped.columns.size) if labels_to_drop: dropped.drop(labels_to_drop, axis=0, inplace=True) return dropped
-2,654,759,804,545,341,400
Drop labels and/or levels for the given `axis`. For each key in `keys`: - (axis=0): If key matches a column label then drop the column. Otherwise if key matches an index level then drop the level. - (axis=1): If key matches an index label then drop the row. Otherwise if key matches a column level then drop the level. Parameters ---------- keys: str or list of str labels or levels to drop axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- dropped: DataFrame Raises ------ ValueError if any `keys` match neither a label nor a level
pandas/core/generic.py
_drop_labels_or_levels
kapilepatel/pandas
python
def _drop_labels_or_levels(self, keys, axis=0): '\n Drop labels and/or levels for the given `axis`.\n\n For each key in `keys`:\n - (axis=0): If key matches a column label then drop the column.\n Otherwise if key matches an index level then drop the level.\n - (axis=1): If key matches an index label then drop the row.\n Otherwise if key matches a column level then drop the level.\n\n Parameters\n ----------\n keys: str or list of str\n labels or levels to drop\n axis: int, default 0\n Axis that levels are associated with (0 for index, 1 for columns)\n\n Returns\n -------\n dropped: DataFrame\n\n Raises\n ------\n ValueError\n if any `keys` match neither a label nor a level\n ' if (self.ndim > 2): raise NotImplementedError('_drop_labels_or_levels is not implemented for {type}'.format(type=type(self))) axis = self._get_axis_number(axis) keys = com.maybe_make_list(keys) invalid_keys = [k for k in keys if (not self._is_label_or_level_reference(k, axis=axis))] if invalid_keys: raise ValueError('The following keys are not valid labels or levels for axis {axis}: {invalid_keys}'.format(axis=axis, invalid_keys=invalid_keys)) levels_to_drop = [k for k in keys if self._is_level_reference(k, axis=axis)] labels_to_drop = [k for k in keys if (not self._is_level_reference(k, axis=axis))] dropped = self.copy() if (axis == 0): if levels_to_drop: dropped.reset_index(levels_to_drop, drop=True, inplace=True) if labels_to_drop: dropped.drop(labels_to_drop, axis=1, inplace=True) else: if levels_to_drop: if isinstance(dropped.columns, MultiIndex): dropped.columns = dropped.columns.droplevel(levels_to_drop) else: dropped.columns = RangeIndex(dropped.columns.size) if labels_to_drop: dropped.drop(labels_to_drop, axis=0, inplace=True) return dropped
def __iter__(self): 'Iterate over info axis' return iter(self._info_axis)
-2,233,122,514,471,977,500
Iterate over info axis
pandas/core/generic.py
__iter__
kapilepatel/pandas
python
def __iter__(self): return iter(self._info_axis)
def keys(self): "Get the 'info axis' (see Indexing for more)\n\n This is index for Series, columns for DataFrame and major_axis for\n Panel.\n " return self._info_axis
5,350,577,501,278,983,000
Get the 'info axis' (see Indexing for more) This is index for Series, columns for DataFrame and major_axis for Panel.
pandas/core/generic.py
keys
kapilepatel/pandas
python
def keys(self): "Get the 'info axis' (see Indexing for more)\n\n This is index for Series, columns for DataFrame and major_axis for\n Panel.\n " return self._info_axis
def iteritems(self): 'Iterate over (label, values) on info axis\n\n This is index for Series, columns for DataFrame, major_axis for Panel,\n and so on.\n ' for h in self._info_axis: (yield (h, self[h]))
-8,959,623,205,265,551,000
Iterate over (label, values) on info axis This is index for Series, columns for DataFrame, major_axis for Panel, and so on.
pandas/core/generic.py
iteritems
kapilepatel/pandas
python
def iteritems(self): 'Iterate over (label, values) on info axis\n\n This is index for Series, columns for DataFrame, major_axis for Panel,\n and so on.\n ' for h in self._info_axis: (yield (h, self[h]))
def __len__(self): 'Returns length of info axis' return len(self._info_axis)
2,516,517,228,926,761,500
Returns length of info axis
pandas/core/generic.py
__len__
kapilepatel/pandas
python
def __len__(self): return len(self._info_axis)
def __contains__(self, key): 'True if the key is in the info axis' return (key in self._info_axis)
3,148,144,458,199,314,000
True if the key is in the info axis
pandas/core/generic.py
__contains__
kapilepatel/pandas
python
def __contains__(self, key): return (key in self._info_axis)
@property def empty(self): "\n Indicator whether DataFrame is empty.\n\n True if DataFrame is entirely empty (no items), meaning any of the\n axes are of length 0.\n\n Returns\n -------\n bool\n If DataFrame is empty, return True, if not return False.\n\n See Also\n --------\n Series.dropna\n DataFrame.dropna\n\n Notes\n -----\n If DataFrame contains only NaNs, it is still not considered empty. See\n the example below.\n\n Examples\n --------\n An example of an actual empty DataFrame. Notice the index is empty:\n\n >>> df_empty = pd.DataFrame({'A' : []})\n >>> df_empty\n Empty DataFrame\n Columns: [A]\n Index: []\n >>> df_empty.empty\n True\n\n If we only have NaNs in our DataFrame, it is not considered empty! We\n will need to drop the NaNs to make the DataFrame empty:\n\n >>> df = pd.DataFrame({'A' : [np.nan]})\n >>> df\n A\n 0 NaN\n >>> df.empty\n False\n >>> df.dropna().empty\n True\n " return any(((len(self._get_axis(a)) == 0) for a in self._AXIS_ORDERS))
7,124,979,622,633,238,000
Indicator whether DataFrame is empty. True if DataFrame is entirely empty (no items), meaning any of the axes are of length 0. Returns ------- bool If DataFrame is empty, return True, if not return False. See Also -------- Series.dropna DataFrame.dropna Notes ----- If DataFrame contains only NaNs, it is still not considered empty. See the example below. Examples -------- An example of an actual empty DataFrame. Notice the index is empty: >>> df_empty = pd.DataFrame({'A' : []}) >>> df_empty Empty DataFrame Columns: [A] Index: [] >>> df_empty.empty True If we only have NaNs in our DataFrame, it is not considered empty! We will need to drop the NaNs to make the DataFrame empty: >>> df = pd.DataFrame({'A' : [np.nan]}) >>> df A 0 NaN >>> df.empty False >>> df.dropna().empty True
pandas/core/generic.py
empty
kapilepatel/pandas
python
@property def empty(self): "\n Indicator whether DataFrame is empty.\n\n True if DataFrame is entirely empty (no items), meaning any of the\n axes are of length 0.\n\n Returns\n -------\n bool\n If DataFrame is empty, return True, if not return False.\n\n See Also\n --------\n Series.dropna\n DataFrame.dropna\n\n Notes\n -----\n If DataFrame contains only NaNs, it is still not considered empty. See\n the example below.\n\n Examples\n --------\n An example of an actual empty DataFrame. Notice the index is empty:\n\n >>> df_empty = pd.DataFrame({'A' : []})\n >>> df_empty\n Empty DataFrame\n Columns: [A]\n Index: []\n >>> df_empty.empty\n True\n\n If we only have NaNs in our DataFrame, it is not considered empty! We\n will need to drop the NaNs to make the DataFrame empty:\n\n >>> df = pd.DataFrame({'A' : [np.nan]})\n >>> df\n A\n 0 NaN\n >>> df.empty\n False\n >>> df.dropna().empty\n True\n " return any(((len(self._get_axis(a)) == 0) for a in self._AXIS_ORDERS))
def to_dense(self): '\n Return dense representation of NDFrame (as opposed to sparse).\n ' return self
-8,314,391,330,797,823,000
Return dense representation of NDFrame (as opposed to sparse).
pandas/core/generic.py
to_dense
kapilepatel/pandas
python
def to_dense(self): '\n \n ' return self
def _repr_latex_(self): '\n Returns a LaTeX representation for a particular object.\n Mainly for use with nbconvert (jupyter notebook conversion to pdf).\n ' if config.get_option('display.latex.repr'): return self.to_latex() else: return None
3,186,633,606,793,060,000
Returns a LaTeX representation for a particular object. Mainly for use with nbconvert (jupyter notebook conversion to pdf).
pandas/core/generic.py
_repr_latex_
kapilepatel/pandas
python
def _repr_latex_(self): '\n Returns a LaTeX representation for a particular object.\n Mainly for use with nbconvert (jupyter notebook conversion to pdf).\n ' if config.get_option('display.latex.repr'): return self.to_latex() else: return None